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The ground state of a lattice model of weakly interacting quantum rigid rotators is
analyzed by the cluster expansion method applied to its Feynman–Kac representa-
tion. The Hamiltonian of the infinite crystal in the ground state is shown to have a
branch of absolutely continuous spectrum separated by gaps from the rest of the
spectrum, describing the one-particle excitations. ©2000 American Institute of
Physics.@S0022-2488~00!01401-8#

I. INTRODUCTION

Several mathematical papers1 ~and references therein!,2,3 have been devoted recently to th
study ~of obvious physical interest for the low-temperature physics! of the excitation energy
spectrum in the ground state of infinite lattice quantum systems for various choices of the on
spaceS. We consider here the case of weakly interacting rigid rotators, whereS is the two-
dimensional sphereS2,R3, and the formal Hamiltonian is given by

H52 (
xPZd

Dx1« (
x,yPZd

ux2yu51

F~qx ,qy!, ~1.1!

where Q5$qx ,xPZd%,(S2)Zd
[V is the configuration space of the field,Dx is the Laplace–

Beltrami operator with respect toqxPS2, F(q1 ,q2) is a symmetric, sufficiently smooth functio
of two variablesq1 ,q2PS2, and« is a small parameter.

The main results of the present paper can be summarized as follows.
Ground state.Let HL be the self-adjoint operator inL2((S2)L,)xPL dqx), where dq is

the normalized area element on the sphere, given by the expression~1.1! with summations re-
stricted to the finite subsetL,Zd. Let CL

° PL2((S2)L,)xPL dqx) be the normalized ground stat
of HL . Then, forL↗Zd the measures

dnL5~CL
° !2 )

xPL
dqx ,

a!Electronic mail: nangel@theor1.theory.nipne.ro
b!Electronic mail: minl@iitp.ru
c!Electronic mail: zagrebnov@cpt.univ-mrs.fr
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converge weakly to a certain probability measuren on V, which is to be understood as the groun
state of the infinite system.

Limit Hamiltonian.A positive self-adjoint operatorH̃ in the Hilbert spaceL2(V,n) is con-
structed, with the natural interpretation of an energy operator for the excitations of the g
state.

Elementary excitations.A subspaceH1,L2(V,n), invariant with respect toH̃ and to the
translation group, is constructed, which describes the so-called one-particle~elementary! excita-
tions of the ground state. The energies of the latter states form the lowest branch of the sp

of H̃.
This paper is, in fact, a continuation of the work done in Ref. 3, where the program has

performed for the case of one-spin spaceS5Tn (n-dimensional torus!. While the approach and
constructions here are quite similar to those in Refs. 2–5, we encounter new analytical diffic
coming essentially from the more complicated structure of the eigenfunctions of the La
operator onS2, as compared to those of the Laplace operator onTn. One expects that simila
results hold true for more general choices ofS ~e.g., for symmetric spaces of the classical comp
Lie groups; in fact, part of the analysis, namely the constructions done in Sec. IV, can be ex
without difficulty to this case!. Also expected, but in our opinion more difficult, would be t
extension to noncompactS, for instance, to anharmonic quantum crystals with weak quadr
interactions. In this case, only the ground state has been constructed in Refs. 6 and 7.

II. FORMULATION OF THE PROBLEM AND MAIN RESULTS

For every finite subsetL,Zd of the d-dimensional square lattice, we consider the quant
system described in the Hilbert spaceL2(VL ,dQL) by the Hamiltonian

~HL f !~QL!52 (
xPL

~Dxf !~QL!1«S (
x,yPL

ux2yu51

F~qx ,qy!D f ~QL!. ~2.1!

Here, VL5(S2)L is the space of allS2-valued configurations onL, QL5$qx ,xPL%, qxPS2,
dQL5)xPL dqx , with dq the normalized area element onS2, andDx is the Laplace–Beltram
operator onS2 with respect to the variableqx . The interaction potentialF(q1 ,q2) is a symmetric,
sufficiently smooth function onS23S2 invariant under simultaneous reflection ofq1 andq2:

F~2q1 ,2q2!5F~q1 ,q2!, ~2.2!

and the interaction strength« is a small parameter.
Let us denote byCL

° .0 the normalized ground state and byEL
° the corresponding eigenvalu

of HL . We define a probability measurenL on VL by

dnL

dQL
5~CL° !2,

and a unitaryW:L2(VL ,dQL)→L2(VL ,nL) by

W f5
1

CL
° f , f PL2~VL ,dQL!. ~2.3!

The operatorHL is transported by the applicationW into WHLW* 5H̃L1EL
° , where

H̃L f 52 (
xPL

~Dxf !~QL!22 (
xPL

,x~ ln CL
° !,x f , ~2.4!

with ,x denoting the gradient with respect to the variableqx .
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Let us denoteN the set of all multi-indicesn5$nx ,xPZd%, where nx5( l x ,mx), with
l x ,mxPZ, l x>0, 2 l x<mx< l x , of finite support,

suppn5$xPZd,l x.0%.

Consider the system, indexed byN, of functions defined onV5(S2)Zd
,

cn~Q!5 )
xPZd

Yl x ,mx
~qx!,n5$~ l x ,mx!,xPZd%PN, ~2.5!

whereYl ,m is the normalized spherical function of weightl and magnetic numberm, which reads
in spherical coordinatesq5(u,w) on S2 as

Yl ,m~q!5eimwPl ,m~cosu!, ~2.6!

with Pl ,m(m),21<m<1, the associated Legendre functions normalized by1
2*21

1 Pl ,m
2 (m)dm

51.8

Theorem 1: There exists« +.0, such that, foru«u,« + we have the following.
~1! The weak limit,

lim
L↗Zd

nL5n, ~2.7!

exists; the probability measuren on V is invariant with respect to the translations of the co
figurations: for sPZd,

~tsQ!x5qx2s , QPV, xPZd.

~2! For every xPZd there existsvx :V→R such that

lim
L↗Zd

“x ln CL
° 5“xvx . ~2.8!

Moreover,

vx~Q!5v0~tx
21Q!, xPZd, ~2.88!

and vx has an expansion,

vx5 (
nPN

Bn,xcn , xPZd, ~2.9!

where the coefficients Bn,x allow the estimate

uBn,xu<Ck usuppnø$x%uS 1

3D d(suppnø$x%)

)
yPZd

~ l y11!28. ~2.10!

Here, C.0 is an absolute constant,k5k(«)↘0 for «↘0, and, for X,Zd, d(X) is the minimal
length of the connected subgraphs ofZd whose edges cover X.

~3! The operator

H̃ f 52 (
xPZd

Dxf 22 (
xPZd

“xvx•“xf , ~2.11!

is self-adjoint on L2(V,n) and commutes with the unitary representation of the translation gr
in L2(V,n), defined by
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~Usf !~Q!5 f ~ts
21Q!.

Remark:In view of Eq. ~2.2!, H̃ commutes with the unitary involution inL2(V,n),

~Q f !~Q!5 f ~2Q!, where 2Q5$2qx ,xPZd%;

therefore the subspacesL2
odd(V,n) andL2

even(V,n), consisting of odd, respectively even, functio

with respect toQ, are invariant subspaces ofH̃.
Also, if the interaction potentialF(q1 ,q2) is rotation invariant, i.e.,

F~gq1 ,gq2!5F~q1 ,q2!,gPO~3!, ~2.12!

where O(3) denotes the rotation group ofR3, the measuren is invariant with respect to the
transformations ofV:

~tgQ!x5g21qx , Q5$qx%PV, gPO~3!,

and H̃ commutes with the unitary representation ofO(3) in L2(V,n):

~Vgf !~Q!5 f ~tg
21Q!.

The proof of this theorem rests on cluster expansions and is essentially the same
corresponding one in Ref. 3; we give a sketch in Sec. IV for the reader’s convenience.

The main result of the paper, dealing with the lower branch of the spectrum ofH̃, is contained
in the following theorem.

Theorem 2:
(i) There exists a subspaceH1,L2

odd(V,n), invariant with respect to H˜ and Us, such that the

spectrum of the restriction H˜ uH1
is contained in the interval@22C«,21C«#, where C is an

absolute constant (independent of«). The spectrum of H˜ in the orthogonal complement ofH1 in
L2

odd(V,n) lies above62C«.
(ii ) The one-dimensional subspaceH0,L2

even(V,n) consisting of constant functions is th

invariant subspace of H˜ corresponding to the zero eigenvalue, and the spectrum of H˜ in the
orthogonal complement ofH0 in L2

even(V,n) lies above42C«.

(iii ) There exists an orthonormal basis$ux
m ;xPZd,m521,0,1% of H1, on which Us and H̃

act as follows:

Usux
m5ux1s

m ,

H̃ux
m5 (

yPZd

m8521,0,1

Cm,m8~x2y!uy
m8 , ~2.13!

where the matrix C(x)5„Cm,m8(x)… decays exponentially fast as x→`.
Remark:In the case of rotation-invariant interactions, Eq.~2.12!, H1 is an invariant subspac

of Vg ,gPO(3), too, and, moreover, for everyxPZd $ux
m ;m521,0,1% behave underVg like the

canonical basis of the irreducible representation ofO(3) of weight l 51, i.e., ~with the usual
notationDm,m8

l (g) for the matrix elements of the weight-l representation operators in the cano
cal basis8!:

Vgux
m5(

m8
Dm,m8

1
~g!ux

m8 , ~2.138!

and the matrixC(x) in Eq.~2.13! is diagonal.
As corollaries of Theorem 2, we mention the following.
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~1! Let us define a unitary operator F:H1→L2(Td,C3), the space of square integrableC3

2 valued functions$ f m(•);m521,0,1% on the torusTd, by

~Fux
m!m8~l!5dm,m8 exp i ~l,x!, lPTd, m8521,0,1.

The operators H˜ uH1
and UsuH1

are transported by F into operators Hˆ and Ûs, acting as

~Ĥ ! f m~l!5 (
m8521,0,1

Ĉm,m8~l! f m8~l!,

~Ûsf !m~l!5exp i ~l,s! f m~l!,

~2.14!

where Ĉm,m8(l)5(xCm,m8(x)exp i(l,x).
We shall see later that

Ĉm,m8~l!52dm,m81«S (
i 51

d

cosl i DBm,m81o~«!, ~2.15!

with a nonsingular matrixB. Hence, we have the following.

~2! H̃uH1
has an absolutely continuous spectrum, given by the set covered by the eigen

m1(l), m2(l), m3(l) of the matrix Ĉ(l) for l running in Td.

III. PROOF OF THEOREM 2

Lemma 1: For every nPN, cnPL2(V,n) and

icniL2(V,n)<Busuppnu, ~3.1!

where B.1 is an absolute constant.
The proof of Lemma 1 uses the cluster expansion of the measuren; see Sec. IV for details.
Let us denote

fn5
cn

Busuppnu
,

and consider the setL,L2(V,n) of all elements,

f 5 (
nPN

cnfn ,

for which

(
nPN

ucnu5:uuu f uuu,`.

Obviously,L is a dense subspace ofL2(V,n), a Banach space with respect to the normuuu•uuu,
and, for all f PL,

i f i<uuu f uuu. ~3.2!

Lemma 2: For every nPN, H̃fnPL.
Proof: Let us remark that, for everyn5$( l x ,mx);xPZd%PN,
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H̃fn5(
x

l l x
fn1Gfn , ~3.3!

where the notationl l5 l ( l 11) has been used for the eigenvalues ofD, and, using the expansio

~2.9! in the definition~2.11! of H̃, one has

Gfn~Q!5B2usuppnu(
x

(
n8

Bn8,x “xcn8~Q!•“xcn~Q!

5B2usuppnu(
n8

(
xPsuppnùsuppn8

Bn8,x “xYl
x8 ,m

x8
~qx!•“xYl x ,mx

~qx!

• )
yPsuppnøsuppn8\$x%

Yl
y8 ,m

y8
~qy!Yl y ,my

~qy!

5B2usuppnu(
n8

(
xPsuppnùsuppn8

Bn8,x (
n9

D
mx ,m

x8 ;m
x9

l x ,l x8 ; l x9

• )
yPsuppnøsuppn8\$x%

R
my ,m

y8 ;m
y88

l y ,l y8 ; l y9 Busuppn9ufn9~Q!

[(
n9

Gnn9fn9~Q!. ~3.4!

Here,Dm,m8;m9
l ,l 8; l 9 andRm,m8;m9

l ,l 8; l 9 are the coefficients appearing in the expansions:

Yl 8,m8~q!Yl ,m~q!5 (
l 9,m9

Rm,m8;m9
l ,l 8; l 9 Yl 9,m9~q!,

“Yl 8,m8~q!•“Yl ,m~q!5 (
l 9,m9

Dm,m8;m9
l ,l 8; l 9 Yl 9,m9~q!.

~3.5!

We shall show later on that there exists a constantK.0, such that

(
l 9,m9

uRm,m8;m9
l ,l 8; l 9 u<H Kl 8, if l 8>1,

1, if l 850,
~3.6!

(
l 9,m9

uDm,m8;m9
l ,l 8; l 9 u<Kl 85l ln~ l 11!, l>1, l 8>1.

Now, using the estimates~3.6!, we continue the proof of Lemma 2, i.e., thatGfnPL. We have,
with the notation introduced in the last line of Eq.~3.4!,

uuuGfnuuu5(
n9

uGnn9u

< (
xPsuppn

(
n8

uBn8,xuBusuppn8u (
l x9 ,mx9

uD
mx ,m

x8 ;m
x9

l x ,l x8 ; l x9 u

• )
yPsuppn8\$x%

(
l y9 ,my9

uR
my ,m

y8 ;m
y9

l y ,l y8 ; l y9 u
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< (
xPsuppn

l x ln~ l x11!(
n8

uBn8,xu Busuppn8u

•K usuppn8ø$x%ul x8
5 )

yPsuppn8\$x%

l y8 . ~3.7!

In the first inequality in Eq.~3.7! we used that suppn9,suppnøsuppn8, implying usuppn9u
<usuppnu1usuppn8u, and that the compositions in Eq.~3.6! are applied effectively only inside
suppnùsuppn8,suppn8.

Next, using the estimate~2.10! for Bn,x , one sees that the series,

(
n8

uBn8,xuBusuppn8uK usuppn8ø$x%ul x8
5 )

yPsuppn8\$x%

l y8 ,

converges for sufficiently small«o and is bounded byCk(«), with some absolute constantC.
Summarizing, we proved the estimate

uuuGfnuuu<Ck~«! (
xPsuppn

l x ln~ l x11!. ~3.78!

We are left with proving the estimates~3.6!.

A. The estimate for R

The coefficientsR are expressed in terms of Clebsch–Gordan coefficients in the form8

Rm,m8;m9
l ,l 8; l 9 5Cm,m8;m9

l ,l 8; l 9 C0,0;0
l ,l 8; l 9A~2l 11!~2l 811!

2l 911
. ~3.8!

In particular,Rm,m8;m9
l ,l 8; l 9 Þ0 only if u l 2 l 8u< l 9< l 1 l 8 and m95m1m8. Taking into account the

orthogonality relation of the Clebsch–Gordan coefficients,

(
l 9,m9

uCm,m8;m9
l ,l 8; l 9 u251,

one obtains

(
l 9,m9

uRm,m8;m9
l ,l 8; l 9 u< max

u l 2 l 8u< l 9< l 1 l 8

A~2l 11!~2l 811!

2l 911
<Kl 8,

where the last inequality comes, forl .2l 8, from l 9. l 8 and is obviously true forl<2l 8.

B. The estimate for D

Obviously,

Dm,m8;m9
l ,l 8; l 9 5E

S2
„“Yl 8,m8~q!•“Yl ,m~q!…Ȳl 9,m9~q!dq. ~3.9!

Hence, one gets easily that, forlÞ l 9,

Dm,m8;m9
l ,l 8; l 9 5

1

l l 92l l
E

S2
@~D2l l !„“Yl 8,m8~q!•“Yl ,m~q!…Ȳl 9,m9~q!#dq. ~3.10!
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We shall use spherical coordinates onS2, in terms of which

dq5
1

4p
sin u du d w,

and divide the integration domainS2 into three parts: two polar caps,

C15$u,p/4%, C25$3p/4,u<p%,

and an equatorial region,

E5$p/4<u<3p/4%,

to be estimated separately.
I. The integral overE. We have

“Yl 8,m8•“Yl ,m5
]

]u
Yl 8,m8

]

]u
Yl ,m1

1

sin2 u

]

]w
Yl 8,m8

]

]w
Yl ,m . ~3.11!

It is convenient to use in the first term the known relation for the derivative of the assoc
Legendre functions:8

]

]u
Pl ,m5a l ,mPl ,m212a l ,m11Pl ,m11 „a l ,m5A~ l 1m!~ l 2m11!…, ~3.12!

providing

]

]u
Yl 8,m8

]

]u
Yl ,m5eiw(m1m8)

]

]u
Pl 8,m8

]

]u
Pl ,m

5
1

4
~e2iwa l 8,m8a l ,mYl 8,m821Yl ,m212a l 8,m811a l ,mYl 8,m811Yl ,m21

2a l 8,m8a l ,m11Yl 8,m821Yl ,m111e22iwa l 8,m811a l ,m11Yl 8,m811Yl ,m11)

5
1

4 (
L,M

~e2iwa l 8,m8a l ,mRm21,m821;M
l ,l 8;L

2a l 8,m811a l ,mRm21,m811;M
l ,l 8;L

2a l 8,m8a l ,m11Rm11,m821;M
l ,l 8;L

1e22iwa l 8,m811a l ,m11Rm11,m811;M
l ,l 8;L )YL,M .

~3.13!

Using hereD( f 1• f 2)5(D f 1)• f 212(¹ f 1)•(¹ f 2)1 f 1•(D f 2), one gets, after a few calcula
tions,

~D2l l !
]

]u
Yl 8,m8

]

]u
Yl ,m5

1

4
eiw(m1m8)(

L,M
Fa l 8,m8a l ,mRm21,m821;M

l ,l 8;L S lL2l l2
4~M11!

sin2u
D

2~a l 8,m811a l ,mRm21,m811;M
l ,l 8;L

1a l 8,m8a l ,m11Rm11,m821;M
l ,l 8;L

!~lL2l l !

1a l 8,m811a l ,m11Rm11,m811;M
l ,l 8;L S lL2l l1

4~M21!

sin2u
D GPL,M . ~3.14!

We now consider the second term of Eq.~3.11!:
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1

sin2 u

]

]w
Yl 8,m8

]

]w
Yl ,m52

mm8

sin2 u
Yl 8,m8Yl ,m52

mm8

sin2 u
(
L,M

Rm,m8;M
l ,l 8;L YL,M . ~3.15!

Proceeding as above, we have

~D2l l !S 1

sin2 u

]

]w
Yl 8,m8

]

]w
Yl ,mD

52mm8(
L,M

Rm,m8;M
l ,l 8;L FDS 1

sin2 u
D YL,M12

]

]u S 1

sin2 u
D ]

]u
YL,M1

1

sin2 u
~lL2l l !YL,MG

52mm8eiw(m1m8)(
L,M

Rm,m8;M
l ,l 8;L FDS 1

sin2 u
D PL,M12

]

]u S 1

sin2 u
D

3~aL,MPL,M212aL,M11PL,M11!1
lL2l l

sin2 u
PL,MG . ~3.16!

The transformed forms in Eqs.~3.14!, ~3.16! are suited for estimating the integral overE.
Indeed, there 1/sin2 u and its derivatives are bounded, and one has only to take into accoun
the number of terms in the sums is less than 2l 811, and also that

~ i! ua l ,mu<const• l ,

~ ii ! uRm,m8;m1m8
l ,l 8;L u<const• l 8,

~ iii ! ulL2l l u<const•~ l l 81 l 82!,

~3.17!

to obtain

E
E
u~D2l l !¹Yl 8,m8~q!•¹Yl ,m~q!Ȳl 9,m9dqu<const•~ l 84l 21 l 85l !dm1m8,m9 . ~3.18!

II. The integrals overC6.
We transform differently the second term in Eq.~3.11!:

1

sin2 u

]

]w
Yl 8,m8

]

]w
Yl ,m52eiw(m1m8)S m

sin u
Pl ,mD S m8

sin u
Pl 8,m8D , ~3.19!

which allows to use the formula8

m

sin u
Pl ,m52

1

2cosu
~a l ,mPl ,m211a l ,m11Pl ,m11!, ~3.20!

together with the composition formula~3.5! to obtain
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~D2l l !S 1

sin2 u

]

]w
Yl 8,m8

]

]w
Yl ,mD

52
1

4
eiw(m1m8)

•(
L,M

H 1

cos2 u
Fa l 8,m8a l ,mRm21,m821;M

l ,l 8;L S lL2l l2
4~M11!

sin2u
D

1~a l 8,m8a l ,m11Rm11,m821;M
l ,l 8;L

1a l 8,m811a l ,mRm21,m811;M
l ,l 8;L

!~lL2l l !

1a l 8,m811a l ,m11Rm11,m811;M
l ,l 8;L S 4~M21!

sin2u
1lL2l l D GPL,M

12
]

]u S 1

cos2 u
D [(a l 8,m8a l ,mRm21,m821;M

l ,l 8;L
1a l 8,m811a l ,mRm21,m811;M

l ,l 8;L

1a l 8,m8a l ,m11Rm11,m821;M
l ,l 8;L

1a l 8,m811a l ,m11Rm11,m811;M
l ,l 8;L )

]

]u
PL,M

1DS 1

cos2 u
D @a l 8,m8a l ,mRm21,m821;M

l ,l 8;L
1a l 8,m8a l ,m11Rm11,m821;M

l ,l 8;L

1a l 8,m811a l ,mRm21,m811;M
l ,l 8;L

1a l 8,m811a l ,m11Rm11,m811;M
l ,l 8;L ] PL,M% . ~3.21!

When comparing this expression with the expression of the first term, Eq.~3.14!, we see that
the singularities atu50,p of the form A/sin2 u, which were present in the latter, are exac
canceled by the singularities of the form2A/sin2 u cos2 u in Eq. ~3.21!. Thus, there are no
singularities in the integrals overC6 in Eq. ~3.9!, and we obtain for them in the same way
above the same estimate~3.18!.

In this way, we proved that, forlÞ l 8,

uDm,m8;m9
l ,l 8; l 9 u<const

l 84l 21 l 85l

ul l2l l 9u
dm1m8,m9 . ~3.22!

If l 5 l 9, we obtain the following estimate for the contribution of the first term using
expression~3.13!:

U E
S2

]

]u
Yl 8,m8~q!

]

]u
Yl ,m~q!Ȳl ,m9~q!dqU<const• l 83l •dm1m8,m9 . ~3.23!

What concerns the contribution of the second term, is one has to use the representation~3.15! for
the integral overE and the representation~3.21! for the integral overC6 , to obtain, as a result, the
same bound as in Eq.~3.23!. So, for l 5 l 9 one has the estimate

uDm,m8;m9
l ,l 8; l u<const• l 83l •dm1m8,m9 . ~3.24!

Equations~3.22! and ~3.24! give
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(
l 9

uDm,m8;m9
l ,l 8; l 9 u<C(

l 9Þ l

l 85l 2

ul l2l l 9u
1Cl83l

<Cl85 (
l 9Þ l

S l 1
1

2D 2

US l 1
1

2D 2

2S l 91
1

2D 2U 1Cl83l

<Cl85~2l 11!S E
0

12 ~2/2l 11!

1E
11 ~2/2l 11!

` D dj

uj221u
1Cl83l . ~3.25!

As the integrals have logarithmic divergences, one obtains hence the bound~3.6!.
This finishes the proof of Lemma 2.
The further construction of the invariant one-particle subspaceL1 and of its complementL.1

in L odd follows the same steps as in Refs. 3, and we shall only sketch it below for the rea
convenience.

Let L 1
o,L odd be the subspace generated by$Fx,m ;xPZd,m521,0,1%, where

Fx,m~Q!5
1

B
Y1,m~qx!

and by L .1
o ,L odd the subspace generated by$fn ;(xl x.1 and odd%. Obviously, L 1

o1L .1
o

5L odd and, corresponding to this direct sum decomposition, one has a matrix representa

H̃uL odd5H̃odd:

H̃odd;S h00 h01

h10 h11
D .

The subspacesL1 and L.1 will be represented in terms of the graphs of operatorsS:L 1
o

→L .1
o and, respectively,T:L .1

o →L 1
o as

L15$u1Su;uPL 1
o%, L.15$w1Tw;wPL .1

o %. ~3.26!

The requirement of invariance ofL1 ,L.1 underH̃odd is equivalent with the following equations

h11S1h105Sh001Sh01S,
~3.27!

h00T1h015Th111Th10T.

We consider the unknown operatorsS, T as belonging, respectively, to the spaces of boun
operatorsB(L 1

o ,L .1
o ),B(L .1

o ,L 1
o) endowed with the usual operator normuuu•uuu.

~1! The operator h11 has an inverse(h11)
21PB(L .1

o ,L .1
o ) and

uuu~h11!
21uuu<

1

62C8k
, ~3.28!

where C8 is an absolute constant andk is defined in Eq. (2.10).
This allows to write Eqs.~3.27! as fixed point equations:

S5~h11!
21Sh001~h11!

21Sh01S2~h11!
21h10,

~3.29!
T5h00T~h11!

212Th10T~h11!
211h01~h11!

21,
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and apply them to the contraction principle, with the following result.
~2! The equations (3.29) have unique solutions SPB(L 1

o ,L .1
o ), TPB(L .1

o ,L 1
o), such that

uuuSuuu<C9k1/2, uuuTuuu<C9k1/2, ~3.30!

with an absolute constant C9.

Hence, the existence of the subspacesL1 ,L.1 invariant underH̃ andUs and the direct sum
decompositionL odd5L11L.1 readily follow. TheL2(V,n) closuresH15L1, H.15L.1 are

likewise invariant underH̃ andUs andL2
odd(V,n)5H11H.1. Moreover, the spectrum ofH̃ in

H.1 lies above 62C8k.
~3! Consider the basis ofL1:

vx,m5Fx,m1SFx,m , xPZd, m521,0,1.

On this basis, the operators Us and H̃ act as follows:

Usvx,m5vx1s,m , H̃vx,m5 (
m8,x8

Cm,m8~x2x8!vx8,m8 , ~3.31!

where Cm,m8(x2x8) coincide with the matrix elements of h001h01S in the basis$Fx,m%.
~4! The matrix elements of the operator S in the basis$Fx,m%:

SFx,m5 (
n:(

x
l x.1 and odd

S(x,m),nFn

have the estimate

uS(x,m),nu<Cusuppnu~C1k!d(suppnø$x%)sx,n , ~3.32!

where

supx (
n

usx,nu<C2k1/2.

This result implies thatCm,m8(x2y) can be represented in the form

Cm,m8~x2y!5l l x
dx,x8dm,m81C̃m,m8~x2y!, ~3.33!

whereC̃ satisfies

uC̃m,m8~x2y!u<~Ck1/2! ux2yu11. ~3.338!

~5! The Gramm matrixD5$D(x,m),(x8,m8)% of the basis$vx,m% has the form

D(x,m),(x8,m8)[~vx,m ,vx8,m8!5dx,x8dm,m81dm,m8~x2x8!, ~3.34!

where dm,m8(x2x8) satisfy the estimate

udm,m8~x2x8!u<~Ck1/2! ux2yu11. ~3.35!

It follows hence that the matricesD 1/2 and D 21/2 exist and their matrix elements have
representation like~3.34! with an estimate of the form~3.35!. One defines an orthonormal bas

$v̂x,m% by
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v̂x,m5 (
x8,m8

~D 21/2!(x,m),(x8,m8)vx8,m8 .

The action ofH̃ on this basis is given by

H̃ v̂x,m5 (
x8,m8

Ĉm,m8~x2x8!v̂x8,m8 ,

where againĈm,m8(x2x8) have a representation like~3.33! and an estimate like~3.338!. It follows

that the spectrum ofH̃ in H1 is included in@22Ck,21Ck#.
~6! In the case of rotation invariant interactions, Eq. (2.12), the subspaceH1 is invariant with

respect to the representation Vg of O(3), the operators Vg act on the basis$v̂x,m% according to
Eq. (2.138) and the matrix elements Cm,m8(x2x8) have the formdm,m8C(x2x8).

~7! Similar considerations show that the even subspace L2
even has an orthogonal sum decom

position H0% H>2 into invariant subspaces with respect to H˜ and Us, where H0 is the one-

dimensional subspace of constant functions, and that the spectrum of H˜ uH>2
lies above42Ck.

APPENDIX: CLUSTER EXPANSION AND PROOF OF THEOREM 1

1. The representation of the ground state CL
o .

We attach to the sitesxPL independent stationary Brownian motions on the sphereS2,
vx(t),tPR, and denotedWx the distribution of the process atx anddWL5)xPL dWx the joint
distribution of vL(•)5$vx(•),xPL%. The kernel of the operatore2(t12t2)HL, t1.t2 can be
represented in terms of these processes as

e2(t12t2)HL~Q1 ,Q2!5E vL~ t1!5Q1

vL~ t2!5Q2
expF2 (

x,yPL
ux2yu51

«E
t2

t1
F~vx~t!,vy~t!!dtGdWL ,

~A1!

where the integration limits mean conditioning the process at timest1 , t2. For T.0, let VL,T

denote the set of restrictions,vLu [ 2T,T] , of the sample paths of the process to the time inter
@2T,T# and endowVL,T with the Gibbs distribution:

dmL,T5
1

ZL,2T
expH 2 (

x,yPL
«E

2T

T

F„vx~ t !,vy~ t !…dtJ dWL , ~A2!

where the partition functionZL,2T is given by

ZL,2T5E
VL,T

expH 2 (
x,yPL

«E
2T

T

F~vx~ t !,vy~ t !!dtJ dWL . ~A3!

Obviously, the distribution of the valuesvL(t)5$vx(t),xPL% of the paths at any fixed timet
with respect to the stationary measuredWL is the productdQL5)xPL dqx of the normalized
area measures on the sphereS2. The distribution ofvL(0) with respect with the Gibbs measu
mL,T will be denotednL,T . Clearly, the densitydnL,T /dQL equals

dnL,T

dQL
~Q!5

ZL,[0,T]~Q!ZL,[2T,0]~Q!

ZL,2T
, ~A4!

where the partition functionZL,[0,T] (Q) is defined by
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ZL,[0,T]~Q!5E
vL(0)5Q

expH 2 (
x,yPL

«E
0

T

F~vx~ t !,vy~ t !!dtJ dWL , ~A5!

andZL,[2T,0](Q) by a similar formula. AsEL
o , the lowest eigenvalue ofHL, is simple: one has9

e2(t12t2)HL~Q1 ,Q2!5CL
o ~Q1!CL

o ~Q2!e2(t12t2)EL
o
„11o~1!…, ~ t12t2!→`. ~A6!

Therefore, taking into account Eq.~4.4!, the representation~A1! and the definitions~A3!, ~A5! of
the partition functions, one obtains

lim
T→`

dnL,T

dQL
~Q!5 lim

T→`

ZL,[0,T]~Q!ZL,[2T,0]~Q!

ZL,2T
5„CL

o ~Q!…25
dnL

dQL
~Q!. ~A7!

The representation~A7! of CL
o in terms of partition functions gives the possibility of applyin

the cluster expansions of the partition functionsZL,2T , ZL,[0,T] (Q), to control the ground state in
the thermodynamic limit, i.e., to prove the existence and identify the different limits in Theo
1. For instance, as a consequence of Eq.~A7!, one has the convenient representation

lim
L↗Zd

“x ln CL
o ~Q!5 lim

L↗Zd

T→`

“x ln ZL,[0,T]~Q!, ~A8!

which is suited to find the functionsvx in Eq. ~2.8!, their expansion~2.9!, and the estimate~2.10!.

2. The cluster expansion of the partition functions

We shall discretize the time variable: leta.0, a fixed number to be specified later, a
denoteZa5$ka;kPZ% the lattice with spacinga. We assume henceforth thatT5Na. In the
integral representation~A5!, every path will be cut into parts of time intervala, and the integration
will be performed in two stages: over paths of time intervala conditioned by the configurations o
their end points, followed by the integration over the latter. We thus obtain a lattice mod
which the cluster expansion will be performed. We start with a few definitions.

Consider the (d11)-dimensional latticeZd3Za . The edgesbk
x5$(x,ka), (x,(k11)a)%

parallel to the time axis will be calledtime edges. Two time edges,bk
x ,bk8

x8 are namedneighbor
edges if they belong to the same time slice (k5k8) and x,x8 are nearest neighbors i
Zd (ux2x8u51). A pair of neighbor edges is called aplaquette:

hx,x8
k

5$bk
x ,bk

x8%,~ ux2x8u51!,

and a connected collection of plaquettes belonging to the same time slicek is called acontour:

gk5$hx,x8
k %,x,x8. .

Two time edgesbk
x ,bk8

x8 are calledsuccessive, if x5x8 and k85k11; a sequence of successiv
time edges:

tx5$bk11
x , . . . ,bk1p

x %,

is called aseries. Finally, a pair consisting of a finite unordered collection of contours and a fi
unordered collection of series,

G5$gk1,..,gks;tx1, . . . ,txp%,

is called acluster, if the following conditions are fulfilled.
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~i! Any two seriestxi,txjPG are disjoint and any two contours in the same time slicek are
disconnected.

~ii ! Any endpoint of a seriestxiPG is at the same time as a vertex in some contourgkj

PG.
~iii ! The clusterG is connected in the following sense: if one associates with every plaq

belonging to some contour ofG the four-point set of its vertices, and with every edge in so
series ofG the two-point set of its ends, then the collection of subsets ofZd11 obtained in this way
is connected.

For a clusterG, we denote by]Ḡ the set of all its vertices and byḠc,Ḡ, ~respectively,

Ḡs,Ḡ) the subset of time edges belonging to its contours~respectively, to its series!. We associate
with every clusterG a configuration spaceVG consisting of all pairs,

$Q]Ḡ ,vḠc
%,

whereQ]Ḡ is anS2-valued configuration on]Ḡ, $qz ;zP]Ḡ%, andvḠc
is a configuration of paths

vb
k
x:@ka,(k11)a#→S2, bk

xPḠc . For every clusterG5$gk1,..,gks;tx1, . . . ,txp%, we define a

function xG :VG→R by

xG~Q]Ḡ ,vḠc
!

5 )
gkPG

)
h

x,x8
k

5$bk
x ,bk

x8%Pgk
S expF2«E

ka

(k11)a

F~vb
k
x~ t !,vb

k
x8~ t !!dtG21D

• )
txPG

)
k:bk

xPtx
„Pa~q(x,(k11)a)uq(x,ka)!21…. ~A9!

HerePa(quq8) denotes the density with respect to the measuredq of the conditional distribution
of the Brownian process onS2 at timea, givenv(0)5q8.

The central objects for the cluster expansion of the partition functionZ2T,L will be the
expectations of the functionsxG :

KG5E S E xG~Q]Ḡ ,vḠc
!dW~vḠc

uQ]Ḡ! DdQ]Ḡ , ~A10!

where,dW(vḠc
uQ]Ḡ) denotes the conditional distribution of the collection of Brownian pa

vḠc
, given that their end values areQ]Ḡ , i.e., for everybk

xPḠc , the end values coincide with th
value of Q]Ḡ at that vertex:vb

k
x(ka)5q(x,ka) , vb

k
x„(k11)a…5q

„x,(k11)a… . Indeed, with our as-

sumption thatT5Na for some integerN, Z2T,L can be represented in terms ofKG as

Z2T,L511 (
s>1,$G1 , . . . ,Gs%

)
i 51

s

KG i
, ~A11!

where the summation runs over all unordered collections$G1 , . . . ,Gs% of mutually disjoint clus-

ters such that]Ḡ i,L3@2T,T#,Zd3Za .10

We shall now show that the coefficientsKG satisfy the ‘‘cluster estimate,’’ i.e., that,given
0,«o,1, there exists R,k.0, such that, for allu«u<«o:

uKGu<~Rk! uḠu, ~A12!

wherek5max$«o ,«ouln «ou1/d%.
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To this aim, we start by remarking that, for largea, Pa(quq8) approaches 1 uniformly at a
exponential rate, i.e., there exists an absolute constantM.0, such that

supq,q8PS2uPa~quq8!21u<Me2a. ~A13!

@Indeed, the functionPa(quq8) is bounded for anya.0,11 which allows us to obtain Eq.~A13! in
the same way as in the proof of Lemma 3.1 in,7 i.e., write for someao.0,

Pa~quq8!215E
S23S2

du du8 Pao
~quu!„Pa22ao

~uuu8!21…Pa~u8uq8!,

and use the Schwartz inequality to bound the sup-norm of the left-hand side by the Hi
Schmidt norm of exp@(a22ao)D#2Pl50, wherePl 50 denotes the projection ontoY0,0(q)51].

Let C5maxuF(q,q8)u. Then, one can see directly on Eq.~4.9! that

uxG~Q]Ḡ ,vḠc
~Q]Ḡ!!u< )

gkPG

~Cu«uaeCu«ua! ugku )
txPG

~Me2a! utxu

<~Cu«uaeCu«ua! uḠcu/d~Me2a! uḠsu.

Clearly, uKGu satisfies the same bound. By choosinga5 ln(1/«o) and R5max(M,CeC«o ln(1/«o)),
one obtains the bound~A12!.

We consider now the cluster representation ofZ[0,T],L(Q), Eq. ~A5!, whereQ is a configu-
ration onZd. In order to take care of the conditioning of the paths att50, we need to modify the
definition of KG for clusters touching the planeY05$(x,0);xPZd%,Zd3Za . By definition, G
5$gk1,..,gks;tx1, . . . ,txp% is a touching cluster, if

]Ḡ,Zd3Za,15$~x,ka!;xPZd,k>0%,

]0Ḡª]ḠùY0ÞB,

and its contoursgki and seriestxj fulfill conditions ~i!–~iii ! in the definition of a cluster, with the
only exception that left endpoints lying inY0 of time series are not required to belong to som
other edge ofG. Let now QP(S2)Y0 be a configuration onY0 andG be a touching cluster. We
define then

KG~Q!5E S E xG~Q̃]Ḡ ,vḠc
!dW~vḠc

uQ̃]Ḡ! D )
zP]Ḡ2]0Ḡ

dqz , ~A14!

where byQ̃]Ḡ we mean any configuration onZd3Za,1 satisfyingQ̃u]0Ḡ5Qu]0Ḡ . If G is a cluster

with ]Ḡ,Zd3Za,1 , which is not touching, the definition~A14! coincides with~A10!, and we
maintain the same notation, thoughKG(Q) is, of course, independent ofQ. Then, the following
representation is valid:

Z[0,T],L~Q!511 (
s>1,$G1 , . . . ,Gs%

)
i 51

s

KG i
~Q!, ~A15!

where the summation runs over all unordered collections of mutually disjoint~touching or not

touching! clusters with]Ḡ,Zd3Za,1 . Thereby, it is obvious thatKG(Q) satisfy the cluster
estimate~A12!.
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3. Construction of the functions v x

The expansion~A15! entails an expansion of the logarithm:

ln Z[0,T],L~Q!5 (
bk

x :xPL,0<k<N21
(

r

(bk
x)

DrKr~Q!. ~A16!

Here, the internal sum is over all unordered connected collections,

r5$G1 , . . . ,Gm%,

of ~not necessarily distinct! clusters, such that

bk
x,ø i 51

m Ḡ i5 r̄, ]Ḡ i,L3@0,T#, ~A17!

and

Kr~Q!5 )
GPr

~2KG~Q!!. ~A18!

Thereby, the constantsDr.0 are independent ofL andT. A collectionr is said to touchY0 if all
its clusters are contained inZd3Za,1 and there exists at least one touching cluster among th
For a touching collectionr, we define

]0r̄5øGPr]0Ḡ,Y0 .

We are now ready to define the functionsvx . For finiteL, T they are defined by restricting
the sum in Eq.~A16! to thoser that contain the vertex (x,0):

vx
L,T~Q!5 (

r:]r̄,L3@0,T#

xP]0r̄

DrKr~Q!
ur̄u

u]0r̄u
, ~A19!

which clearly satisfy~differentiability will be settled below!

“x ln Z[0,T],L~Q!5“xvx
L,T~Q!. ~A20!

Let us remark that,10 whenever the cluster functions$KG% satisfy an estimateuKGu<a uGu for
somea5a(d), the series

(
r

(bk
x)

DruKruur̄u, ~A21!

converges for every edgebk
x and its sum is independent ofbk

x . This implies the existence of th
limit of vx

L,T , which allows us to define the bounded functionsvx :(S2)Zd→R as

vx~Q!5 lim
L↗Zd,T→`

vx
L,T~Q!5 (

r:]r̄,Zd3Za,1

xP]0r̄

DrKr~Q!
ur̄u

u]0r̄u
. ~A22!

By Eq. ~A22!, $vx ,xPZd% behave under translations according‘ to Eq.~2.88!
We have still to show that these functions are exactly those needed in Theorem 1, i.e.
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lim
L↗Zd,T→`

“x ln Z[0,T],L~Q!5“xvx~Q!, ~A23!

and prove the expansion~2.9! and estimates~2.10!. As a prerequisite, we show in the ne
paragraph that they are sufficiently smooth and obtain suitable bounds on their derivatives

4. Differentiability properties of K r

We need a slight extension of the definitions~A14!, in order to obtain cluster representatio
of derivatives of cluster functions and to manage thereby the inessential complication that s
charts are needed for the manifoldS2.

For every touching clusterG a classC(G) of functions on (S2)Zd
will be defined in the

following way.

Suppose that for every plaquettehx,x8
k

5$bk
x ,bk

x8% in G, a collection

Fh
x,x8
k 5$F1~q1 ,q2!, . . . ,Fs~q1 ,q2!%,

of s5s(hx,x8
k ) bounded functionsF i :S23S2→R and a functionGh

x,x8
k :Rs→R are given. Then,

for a pair of paths,vb
k
x,vb

k
x8, denote

M h
x,x8
k ~vb

k
x,vb

k
x8!

5Gh
x,x8
k S «E

ka

(k11)a

F1„vb
k
x~t!,vb

k
x8~t!…dt, . . . ,«E

ka

(k11)a

Fs„vb
k
x~t!,vb

k
x8~t!…dt D , ~A24!

and define in terms of these quantities a functionFG :VG→R by

FG~Q̃]Ḡ ,vḠc
!5 )

gkPG
)

h
x,x8
k

5$bk
x ,bk

x8%Pgk

M h
x,x8
k ~vb

k
x,vb

k
x8!

• )
txPG

)
(x,ka)Ptx

„Pa~q(x,(k11)a)uq(x,ka)!21…. ~A25!

Finally, for a configurationQP(S2)Zd
, consider the conditional expectation ofFG , given that the

endpoints ofvḠc
(Q̃]Ḡ) areQ̃]Ḡ andQ̃u]0Ḡ5Qu]0Ḡ :

KG
F~Q!5E S E FG„Q̃]Ḡ ,vḠc

~Q̃]Ḡ!…dW~vḠc
uQ̃]Ḡ! D )

zP]Ḡ2]0Ḡ

dqz . ~A26!

The classC(G) consists of all finite sums of functionsKG
F(•) as defined by Eq.~4.26! for different

choices ofFG .
Clearly, KG(Q) defined in Eq.~A14! belong toC(G). Also, a cluster estimate like~A12! is

obtained in the following way: Suppose that all the functionsF i attached to every plaquettehx,x8
k

of G, are equally bounded:

max
i ,h

x,x8
k

max
q1 ,q2

uF i~q1 ,q2!u<C, ~A27!

and that the functionsGh
x,x8
k (u1 , . . . ,us) are continuously differentiable and with equal

bounded derivatives in a neighborhood of 0PRs. In particular, for«o sufficiently small and if
uui u,C«o ln(1/«o) ,i 51, . . . ,s, then
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max
h

x,x8
k

uGh
x,x8
k ~u1 , . . . ,us!u,B«o ln

1

«o
. ~A28!

Under these assumptions, the functionsFG andKG
F calculated fora5 ln(1/«o) are bounded by

)
gkPG

S B«o ln
1

«o
D ugku

)
txPG

~M«o! utxu<~R̃k! uḠu, ~A29!

wherek5k(«o) is the same as before.
We shall consider an atlas on the sphereS2 consisting of three charts:U0 for the equatorial

region andU6 for the two polar regions, each with coordinates denoted (j1
a ,j2

a),a50,6, such
that the components of the metric tensorgi , j

a (j1
a ,j2

a) are bounded and smooth functions on ea
charta and the transformation functions between coordinates in the intersection of two cha
also smooth. For instance, one can choose usual polar coordinates (u,w) on U0 and ‘‘rotated’’
polar coordinates (u8,w8) ~with poles the intersections of the axis 1 with the sphere! for U6 .
Then, the manifold VL5(S2)L, where L,Zd is finite, has an atlas of chartsUaL

5 ^ xPLUa(x) , whereaL5$a(x),xPL% is a multi-index with valuesa(x)50,6, and coordi-
natesjaL5$(j1

a(x) ,j2
a(x)),xPL%.

Consider now a smooth functionf (Q) on V, and let

b5$„b1~x!,b2~x!…,xPZd%

be an multi-index withb1(x),b2(x) positive integers and of finite support included inL, i.e.,

suppbª$xPZd,b1~x!1b2~x!.0%,L.

Then, the differential operator,

Db f 5
] ubu f

]b1(x)j1
a(x) ]b2(x)j2

a(x)
,

makes sense in every neighborhoodUaL
of the atlas~strictly speaking, this operator depends

the chartaL , but in order to avoid a cumbersome notation we shall not indicate this depende!.
We shall estimate nowDbvx for various multi-indicesb. We start considering the derivative

of a functionKG
F(Q)PC(G) with respect to the coordinates (j1

a(x0) ,j2
a(x0)) of someqx0

, whereG

is a cluster touchingY0 andx0P]0Ḡ. Such a derivative is likewise inC(G) and has a represen
tation as a finite sum of functions of the form~A26!, but with new functionsF constructed as
follows.

For every elementl of the Lie algebra ofO(3) of normili51, consider the one-paramete
subgroupgl(w) generated by it, and the vector field on the sphereS2,

q°ml~q!PTq , qPS2,

corresponding to the flowq°gl(w)q, i.e.,

ml~q!5
d

dw
gl~w!quw505l•q.
                                                                                                                



s in

to the

rule

ts

o

-

20 J. Math. Phys., Vol. 41, No. 1, January 2000 Angelescu, Minlos, and Zagrebnov

                    
~In the last equality we used the 333 matrix representation of rotations onR3.) Let tx0

5(b0
x0 , . . . ,bm

x0) be the maximal sequence of successive time edges ofḠ with starting pointx0.

Let hx0 ,y
k PG be a plaquette containing the edgebk

x0Ptx0
. For eachj 51, . . . ,s @s5s(hx0 ,y

k )#,

we add to the collectionFh
x0 ,y
k one more function,

Fs11
( j ,l)~qx0

,qy!5„“xo
F j~qx0

,qy!,ml~qxo
!…, ~A30!

where (•,•) is the usual scalar product in the tangent planeTqxo
, and the previous functionGh

x0 ,y
k

is replaced byG̃
h

x0 ,y
k

j
:Rs11→R,

G̃
h

x0 ,y
k

j
~u1 , . . . ,us11!5

]Gh
x0 ,y
k

]uj
~u1 , . . . ,us!•us11 , j 51,..,s. ~A31!

For all other plaquetteshx,y
k PG the collectionsFh

x,y
k and functionsGh

x,y
k are left unchanged. We

denote F (h
x0 ,y
k , j ,l) the function constructed according to~A26!, ~A27! with the new sets

Fh
x0 ,y
k ø$Fs11

( j ,l)% and new functionsG̃
h

x0 ,y
k

j
. Then, we have the following.

Lemma: Let x0P]0Ḡ. The gradient¹xo
KG

F(Q) with respect to qx0
satisfies the relation: for all

l in the Lie algebra of O(3) with ili51,

„“xo
KG

F ,ml~qxo
!…5 (

hx0 ,y
k PG

k50,1, . . . ,m

(
j 51, . . . ,s

K
G

F(hx0 ,y
k , j ,l)

. ~A32!

Proof: Obviously, the left-hand side of Eq.~4.32! multiplied by dw equals, to first order in
dw, the variation ofKG

F at the changeqxo
°gl(dw)qxo

5qxo
1ml(qxo

)dw1o(dw) of its argu-
ment at the lattice sitexo . On the other hand, by making a change of the integration variable
Eq. ~4.26! consisting in a simultaneous rotation bygl(dw) of all end valuesq(x0 ,k) , k

51, . . . ,m11, of the trajectoriesvb
k

x0 , k50,1,. . . ,m, associated withtx0
and using thereby the

rotation invariance of the Brownian process, one can see that the latter variation is due
variation of the functionFG under the integral at the rotation applied to those trajectoriesvb

k

x0

appearing as arguments ofM h
xo ,y
k ~i.e., associated to edgesbk

x0Ptx0
which belong at the same

time to a plaquette!. Hence, the assertion follows by direct application of the differentiation
for products.

For a coordinate system (j1
a(x0) ,j2

a(x0)) in a chart containingqxo
, one can choose elemen

l i5l i(qxo
),i 51,2, il i i51, and constantsCi5Ci(qxo

),i 51,2, such that

] f

]j i
a(x0) ~qxo

!5Ci„¹xo
f ~qxo

!,ml i
~qxo

!…, i 51,2,

for any smooth functionf on S2. Thereby, the constantsCi are uniformly bounded with respect t
qxo

in the charta(xo).

This circumstance allows one to obtain an estimate for the derivative]KG
F/]j i

a(x0) , under the
assumption that the functionsF jPFh

x,y
k and Gh

x,y
k entering the definition~A26! satisfy ~A27!,

~A28!, are sufficiently smooth, and the derivatives]Gh
x,y
k /]uj are equally bounded in a neigh

borhood of 0. Namely, one obtains from Eq.~A32! that
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U ]KG
F

]j i
a(x0) ~Q!U<~R̄k! uḠu max

hx0 ,y
k ,k50, . . . ,m(y)

s~hx0 ,y
k !•2dutx0

u, ~A33!

whereR̄ depends only on the various constants appearing in the assumed equal bounds.
Applying this bound to the quantitiesKG(Q), Eq. ~A14!, for which Fh

x,y
k 5$F(q1 ,q2)% and

Gh
x,y
k (u)5e2u21 for every plaquette, one finds that]KG /]j i

a(x0) PC(G) and has the estimate

U ]KG

]j i
a(x0) ~Q!U<~R1k! uḠu2dutx0

u. ~A34!

The same kind of analysis applies to higher-order derivatives. Suppose thatF(q1 ,q2) is
p-times continuously differentiable in each variable and all its derivatives of order up top are
bounded by the same constantC. Consider a positive-integer-valued multi-index of finite supp

included in]0Ḡ, b5$b1(x),b2(x)%, such thatb1(x)1b2(x)<p. Then,DbKGPC(G) and the
following estimate holds:

uDbKG~Q!u<~R2k! uḠu~p! ! u]0Ḡu~2d! ubu)
x

utxub1(x)1b2(x), ~A35!

whereR2 depends only onC andp. As (xutxu<uḠu, one has

)
x

utxub1(x)1b2(x)<e~1/e! puḠu , ~A36!

and also

~p! ! u]0Ḡu<~p! ! uḠu, ~2d! ubu<~2d!puḠu.

So, finally,

uDbKG~Q!u<~R3k! uḠu, ~A37!

whereR35R2e(1/e) pp!(2d)p.
Finally, let r be some collection of clusters that touchesY0 and r̂,r the subset of touching

clusters. Then

DbKr5Kr\ r̂ (
$bG%

)
xP]0r̄

b1~x!!b2~x!!

)
GP r̂

b1
G~x!!b2

G~x!!
)
GP r̂

~2DbG
KG!, ~A38!

with summation running over all collections$bG% of multi-indices, such that(Gb i
G(x) 5b i(x) for

i 51,2 and allx, and suppbG,]0Ḡ. Using the estimates~A37! in Eq. ~A38!, one obtains

uDbKr~Q!u< )
GPr

~R3k! uḠu )
xP]0r̂

Mx~ r̂ !p, ~A39!

whereMx( r̂) is the number of clustersGP r̂ such thatxP]0Ḡ. As

(
xP]0r̄

Mx~ r̂ !5 (
GP r̂

u]0Ḡu< (
GP r̂

uḠu,
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we have again, like in Eq.~A36!,

)
xP]0r̂

Mx~ r̂ !p< )
GPr

e~1/e! puḠu, ~A40!

so finally we obtain

uDbKr~Q!u< )
GPr

~R4k! uḠu, ~A41!

with R45R3e(1/e) p.

5. The expansion of v x

The functionsvx(Q) have been defined by Eq.~A22!. As the right-hand side of that equatio
is bounded uniformly with respect toQ,

vxPL2S V, )
xPZd

dqxD ,

hence it has an expansion in the orthonormal system$cn ,nPN%, i.e., Eq.~2.9! holds in this space.
A similar expansion holds, by the same argument, for the derivatives ofvx .

In order to prove the estimate~2.10! of the coefficientsBx,n , let us consider, for a finite subse
A,Zd, the differential operator,

DA
p5 )

xPA
~Dx!

p, ~A42!

wherenx is the Laplace–Beltrami operator with respect toqx . n is given in a charta of S2 by

D5
1

Aḡa

(
i 51,2

]

]j i
a (

k51,2
ga

i ,kAḡa

]

]jk
a

, ~A43!

wherega
i ,k are the components of the metric tensorg21 in terms of the coordinatesj1

a ,j2
a and

ḡa5detiga
i ,ki21.12 Clearly,

DA
p5 (

b:suppb5A
S~b!Db, ~A44!

where the sum involves onlyb such thatb1(x)1b2(x)<2p for all xPA. Besides, the coeffi-
cientsS(b) satisfy

uS~b!u<R5
uAu . ~A45!

Applying nA
p to both sides of the equality(DrKr(Q) (ur̄u/u]0r̄u) 5(Bx,nCn , one obtains

(
r:A,]r̄
xP]0r̄

Dr~nA
pKr!~Q!

ur̄u

u]0r̄u
5 (

n:suppn5A
Bx,n)

yPA
@ l y~ l y11!#pCn~Q!. ~A46!

Using the estimates~A41!, ~A45!, and the fact that the collectionsr in the sum in Eq.~A46! are
connected, we see that the right-hand side of Eq.~A46! is bounded by
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const•k~1/2! uAø$x%uS 1

3D d(Aø$x%)

, ~A47!

where the constant depends onp. Puttingp54, Eqs.~A46! and ~A47! imply

H (
n:suppn5A

uBx,nu2)
yPA

@ l y~ l y11!#8J 1/2

<const•k~1/2! uAø$x%uS 1

3D d(Aø$x%)

,

in particular, every term of the sum on the left-hand side satisfies the same bound, wherefr
estimate~2.10! follows immediately.

This finishes the proof of Theorem 1.
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We study stationary relativistic scattering theory for ad-sphere interaction formally
given by the HamiltonianH5HD1ad(uxI u2R), xI PR3, aPR, R.0 with the
boundary conditions of second type. First we give the mathematical definition of
the model, self-adjointness of the Hamiltonian, indicial equation, stationary scat-
tering theory and the spectral properties. Next we extend the model by adding a
Coulomb potential and provide useful mathematical definitions and corresponding
stationary scattering elements. ©2000 American Institute of Physics.
@S0022-2488~99!02212-4#

I. INTRODUCTION

Solvable models in quantum mechanics have been well investigated, both physicall
mathematically.1–18 For example, it is by now standard to define a Hamiltonian with sing
interaction~d, d8, d, andd8 on a sphere, ...! by the von Neumann theory of self-adjoint extensio
and Krein formula~see the review volume of Albeverioet al.2!. The physical motivation3 comes
mainly from nuclear physics where the model introduced by Green and Moszkowski19 under the
name SDI~surface delta interaction! has been popular. Interesting applications may also be fo
in molecular and solid state physics.20–22 However, most of the results known to date conce
nonrelativistic Hamiltonians.

To our best knowledge of the literature, the only exception concerns the two pape
Dittrich, Exner, and Seba,4,5 where the Dirac and the Dirac–Coulomb Hamiltonians are rigorou
defined and analyzed. The present paper aims at filling this gap.

In our previous paper—Ref. 1—a formalism was worked out for nonrelativistic quan
scattering theory for finitely many sphere interactions supported by concentric spheres, in w
crucial role is played by the self-adjoint Hamiltonians associated with interactions defined
straightforward application of the theory of self-adjoint extensions of closed symmetric ope
in Hilbert space.3 The main results in Ref. 1 concern the scattering theory for finitely many sp
interactions formally given by the HamiltonianH52D1( j 51

N a jd(uxI u2Rj ), xI PR3, Rj.0 and
its generalization to the case of interactions of the second type and interactions with nonse
boundary conditions.

In the present work, we extend the analysis of Ref. 1 to the Dirac and the Dirac–Cou
cases. The results obtained here are very similar to those obtained in the nonrelativistic c
particular, up to a multiplicative factorb j l /c @see Eq.~2.26! of Theorem 2.1#, the resolvent of the
Dirac Hamiltonian with thed-sphere interaction is similar to that of the Schro¨dinger Hamiltonian

a!Electronic mail: hounkon@syfed.bj.refer.org
240022-2488/2000/41(1)/24/16/$17.00 © 2000 American Institute of Physics
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for the same interaction@see Eq.~79! in Ref. 1 settingN51]. Similarly, when we consider the
Dirac–Coulomb case, the analogy is striking and in the absence of the Coulomb interactio
case reduces to the pure Dirac case. Finally the number of self-adjoint extension famil
Hamiltonians is two in the Dirac case instead of one in the Schro¨dinger Hamiltonian case. This i
due to the matrix structure of the Dirac equation.

The paper is organized as follows. In Sec. II, we provide a mathematical definition o
model, discuss some important elements of stationary scattering theory, and present the
properties of the radial Hamiltonian. In Sec. III, we give a generalization to the case of D
Coulomb Hamiltonian.

II. THE d-SPHERE INTERACTION IN RELATIVISTIC QUANTUM MECHANICS WITH
BOUNDARY CONDITIONS OF SECOND TYPE

In this section, we provide the mathematical definition of the relativistic quantum Hamilto
describing ad interaction with support on a sphere of radiusR.0, formally expressed as4

H5HD1ad~ uxI u2R!, aPR, xI PR3, ~2.1!

whereHD represents the free Dirac Hamiltonian acting in the Hilbert spaceH5L2(R3) ^ C4. The
corresponding second-type boundary conditions are given by1

g8~k,R1!2g8~k,R2!5
b

c
f 8~k,R!1A,

~2.2!
f 8~k,R1!5 f 8~k,R2![ f 8~k,R!,

or

f 8~k,R1!2 f 8~k,R2!52
g

c
g8~k,R!1B,

~2.3!
g8~k,R1!5g8~k,R2![g8~k,R!,

where f (k,r ) andg(k,r ) are the components of the wave function;k, b, g, A, andB are nonva-
nishing constants; c is the velocity of the light.

Let us consider inH the closed symmetric operator2

Ḣ[HD ,

with the domain

D~Ḣ !5$cPH1,2~R3! ^ C4, c~SR!50%, ~2.4!

where SR5$xPR3, uxu5R% is the closed ball of radiusR centered at the origin inR3, and
Hm,n(V) is the Sobolev space of indices (m,n).

Next, we decompose the state Hilbert spaceH into orthogonal sum of subspaces referring
the total angular momentumj, its third componentm, and the parity (21)l as

H5 %
j 51/2

`

%
l 5 j 2(1/2)

j 1(1/2)

%
m52 j

j

Hj lm5 %
j 51/2

`

%
l 5 j 2~1/2!

j 1(1/2)

Hj l ^ @V j lm#, ~2.5!

Hj l is the radial space

Hj l 5H c~r !PL2~~0,̀ !! ^ C2; c~r !5S f ~r !

g~r !
D ; f ,gPL2~~0,̀ !,r 2 dr !J , ~2.6!
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and @V j lm(u,w)# is a space generated by the spherical spinors5,23,24

V j lm~u,w!5SA j 1m

2l 11
Yl ,m2 (1/2)~u,w!

A j 2m

2l 11
Yl ,m1 (1/2)~u,w!

D for l 5 j 2
1

2
, ~2.7!

V j lm~u,w!5S 2Aj 2m11

2l 11
Yl ,m2 (1/2)~u,w!

Aj 1m11

2l 11
Yl ,m1 (1/2)~u,w!

D for l 5 j 1
1

2
, ~2.8!

where the spherical harmonics provide a basis forL2(S2) (S2 is the unit sphere inR3) and denote
the linear span of vectors inL2(S2).

In each subspaceHj lm , one can separate the radial part of the operatorH. To this aim, we
introduce the isomorphism5

U jl :H j l →L2~~0,̀ !,dr ! ^ C2,
~2.9!

c°~U jl c!~r !5S r f ~r !

~21! j 2 l 2 1/2rg~r !
D ,

to get the following decomposition ofH:

H5 %
j 51/2

`

%
l 5 j 2(1/2)

j 1(1/2)

U jl
21@L2~~0,̀ !,dr ! ^ C2# ^ @V j l 2 j ,... ,V j l j #. ~2.10!

Provided the decomposition~2.10!, one definesḢ as

Ḣ5 %
j 51/2

`

%
l 5 j 2(1/2)

j 1(1/2)

U jl
21ḣ j l U jl ^ 1, ~2.11!

where ‘‘the component operator’’ḣ j l is self-adjoint and represents the radial quantum Ham
tonian

ḣ j l 5S Mc2 cS 2
d

dr
1

K jl

r D
cS d

dr
1

K jl

r D 2Mc2
D , ~2.12!

with the domain

D~ ḣ j l !5$cPL2~~0,̀ !! ^ C2; c,c8PACloc~~0,̀ !2$R%!; ḣ j l cPL2~~0,̀ !! ^ C2%, ~2.13!

and the physical constantK jl 5(21) j 2 l 1 (1/2)( j 1 1
2).

From the equation

ḣ j l
! c j l ~k!5k2c j l ~k!, Im k.0, ~2.14!
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we can show thatḣ j l has deficiency indicies~2,2! and that the deficiency subspace is spanned
two linearly independent functions

f ( j l )1
~k8,r !5H d

dr
@Gjl

(0)~k8,r !# r 5R3F jl
(0)~k8,r !, r ,R

0, r .R,

~2.15!

f ( j l )2
~k8,r !5H 0, r ,R

d

dr
@F jl

(0)~k8,r !# r 5R3Gjl
(0)~k8,r !, r .R,

~2.16!

for the components of the first 2-spinor ofc, and

g( j l )1
~k8,r !5H d

dr
@G̃jl

(0)~k8,r !# r 5R3F̃ j l
(0)~k8,r !, r ,R

0, r .R,

~2.17!

g( j l )2
~k8,r !5H 0, r ,R

d

dr
@ F̃ j l

(0)~k8,r !# r 5R3G̃jl
(0)~k8,r !, r .R,

~2.18!

for the components of the second 2-spinor ofc, with

F jl
(0)~k8,r !5S k8

2 D 2K jl 2 ~1/2!

GS K jl 1
3

2D r 1/2JK jl 1 (1/2)~k8r !,

Gjl
(0)~k8,r !5

2 ip

2

1

G~K jl 1 ~3/2!! S k8

2 D K jl 1 (1/2)

r 1/2HK jl 1 (1/2)
(2) ~k8r !,

F̃ j l
(0)~k8,r !5S k8

2 D 2K jl 1 ~1/2!

GS K jl 1
1

2D r 1/2JK jl 2 ~1/2!~k8r !,

~2.19!

G̃jl
(0)~k8,r !52

ip

2

1

G~K jl 1 ~1/2!! S k8

2 D K jl 2 (1/2)

r 1/2HK jl 2 (1/2)
(2) ~k8r !,

wherek825(k42M2c4)/c2 , Jn(z) andHn
(2)(z) are23,25 the Bessel function and the Hankel fun

tion of the second type of ordern, respectively. Therefore, all self-adjoint extensions ofḣ j l are
given by a four-parameter family of self-adjoint operators.26 Taking into account the boundar
conditions~2.2! and~2.3!, two special one-parameter families of self-adjoint extensions have t
considered.

Following the boundary conditions~2.2!, the first family reads

hjl ,b j l
[S Mc2 cS 2

d

dr
1

K jl

r D
cS d

dr
1

K jl

r D 2Mc2
D , ~2.20!
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D~hjl ,b j l
!5$c~r !PL2~~0,̀ !! ^ C2; f j l8 PACloc~~0,̀ !!;

gjl8 PACloc~~0,̀ !2$R%!,

gjl8 ~k,R1!2gjl8 ~k,R2!5
b j l

c
f j l8 ~k,R!1A;

hjl ,b j l
cPL2~~0,̀ !! ^ C2; AÞ0; 2`,b j l ,1`%. ~2.21!

The caseb j l 50 coincides with the free radial Dirac Hamiltonianhjl ,0 for fixed angular momen-
tum (j l ). The caseb j l 5` leads to the free radial Dirac Hamiltonian with a Neumann bound
condition onSR : gjl8 (k,R1)2gjl8 (k,R2)50.

The operatorHb given in L2(R3) ^ C4 by

Hb5 %
j 51/2

`

%
l 5 j 21/2

j 11/2

U jl
21hjl ,b j l

U jl ^ 1, b5$b j l , j 2 1
2 < l< j 1 1

2
, 1

2 < j ,`%, ~2.22!

provides a mathematical definition of the formal expression~2.1!.
Taking into account the boundary conditions~2.3!, the second family reads

hjl ,g j l
[S Mc2 cS 2

d

dr
1

K jl

r D
cS d

dr
1

K jl

r D 2Mc2
D , ~2.23!

D~hjl ,g j l
!5$c~r !PL2~~0,̀ !! ^ C2; gjl8 PACloc~~0,̀ !!,

f j l8 PACloc~~0,̀ !2$R%!;

f j l8 ~k,R1!2 f j l8 ~k,R2!5
2g j l

c
gjl8 ~k,R!1B,

hjl ,g j l
cPL2~~0,̀ !! ^ C2; BÞ0 ; 2`,g j l ,1`%. ~2.24!

The caseg j l 50 coincides with the free radial Dirac Hamiltonian andg j l 5` leads to the free
radial Dirac Hamiltonian with a Neumann boundary condition.

The operatorHg given in L2(R3) ^ C4 by

Hg5 %
j 5(1/2)

`

%
l 5 j 2(1/2)

j 1(1/2)

U jl
21hjl ,g j l

U jl ^ 1, g5$g j l , j 2 1
2 < l< j 1 1

2
, 1

2 < j ,`%, ~2.25!

provides another mathematical definition of the formal expression~2.1!.
Concerning the scattering theory, let us study in detail the case of the pair (hjl ,b j l

;hjl ,0); the
analysis of the second pair (hjl ,g j l

;hjl ,0) can be easily carried out following step by step the sa
procedure, using the boundary conditions~2.3!.

The resolvent ofhjl ,b j l
andHb are given by the following Theorem3,26

Theorem 2.1: If b j l Þ0 , then the following holds.
~i! The resolvent ofhjl ,b j l

is given by
                                                                                                                



29J. Math. Phys., Vol. 41, No. 1, January 2000 Relativistic scattering theory for a d sphere . . .

                    
~hjl ,b j l
2k2!215~hjl ,02k2!211

b j l /c

12 ~b j l /c! F jl
(0)8~k,R!Gjl

(0)8~k,R!

3S 1 0

0 1D ~c j l ~2 k̄!,.!c j l ~k!; k2Pr~hjl ,b j l
!, Im k.0, ~2.26!

taking into account the fact that the WronskianW@Gjl
(0)8 ,F jl

(0)8#51.
Gjl ,05(hjl ,02k2)21, Im k.0, is the free resolvent kernel:

Gjl ,0~k8,r ,r 8!5F g̃ j l 0
(I) ~k8,r ,r 8! g̃ j l 0

(I) ~k8,r ,r 8!

g̃ j l 0
(II) ~k8,r ,r 8! g̃ j l 0

(II) ~k8,r ,r 8!
G , ~2.27!

where

g̃ j l 0
(I) ~k8,r ,r 8!5H Gjl

(0)~k8,r !F jl
(0)~k8,r 8!; r 8,r ,

F jl
(0)~k8,r !Gjl

(0)~k8,r 8!; r 8.r ,
~2.28!

and

g̃ j l 0
(II) ~k8,r ,r 8!5H G̃jl

(0)~k8,r !F̃ j l
(0)~k8,r 8!; r 8,r ,

F̃ j l
(0)~k8,r !G̃jl

(0)~k8,r 8!; r 8.r ,
~2.29!

F jl
(0) , F̃ j l

(0) , Gjl
(0) , andG̃jl

(0) are defined in~2.19! andc j l (k8,r ) is given by

c j l ~k8,r !5S F jl
(0)~k8,r !Gjl

(0)8~k8,R!1F jl
(0)8~k8,R!Gjl

(0)~k8,r !

F̃ j l
(0)~k8,r !Gjl

(0)8~k8,R!1F jl
(0)8~k8,R!G̃jl

(0)~k8,r !
D . ~2.30!

~ii ! The resolvent ofHb is given by

~Hb2k2!215~H02k2!211 %
j 51/2

`

%
l 5 j 2(1/2)

j 1(1/2)

%
m52 l

1 l b j l /c

12 ~b j l /c! F jl
(0)8~k,R!Gjl

(0)8~k,R!

3@ u.u21~c j l ~2 k̄! ^ V j lm~u,w!!,.#u.u21c j l ~k! ^ V j lm~u,w!, k2Pr~Hb!,

~2.31!

r~•! is the resolvent set, with the notation

c j l ~k! ^ V j lm~u,w!5S c ( j l )1
~k!V ( j lm)1

~u,w!

c ( j l )2
~k!V ( j lm)2

~u,w!D ,

c j l 5S c ( j l )1

c ( j l )2

D , V ( j lm)5S V ( j lm)1

V ( j lm)2

D .

Proof: Since the closed symmetric radial operatorḣ j l has deficiency indicies~2,2!, it follows
from Krein’s formula26 that the resolvent of the extended operatorhjl ,b j l

is given by
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~hjl ,b j l
2k2!215~hjl ,02k2!211 (

i , j 51

2

D i j ~c j l
( j )~2k!,.!c j l

( i )~k!,

~2.32!

D i j 5S l i j 0

0 l i j
D , k2Pr~hjl ,b j l

!, Im k.0,

with the spinorsc j l
(m) ,m51,2, defined by their components@relations~2.15! to ~2.18!#. Let us

determine the coefficientsl i j .
We know that the resolvent is defined as (hjl ,b j l

2k2)21:L2(0,̀ ) ^ C2→D(hjl ,b j l
).

So, we chooseF(r )PL2(0,̀ ) ^ C2 ,

F~r !55 S F jl
(0)~r !

F̃ j l
(0)~r !

D , r ,R

S Gjl
(0)~r !

G̃jl
(0)~r !

D , r .R,

~2.33!

then (hjl ,b j l
2k2)21FPD(hjl ,b j l

).
Let us writeYjl (r )5((hjl ,b j l

2k2)21F)(r ), then the spinorYjl (r )PD(hjl ,b j l
) and its com-

ponents satisfy the boundary conditions of the first family. The implementation of these bou
conditions gives the coefficientsl i j :

l~k!5S l11 l12

l21 l22
D

5
b j l /c

12 ~b j l /c! F jl
(o)8~k,R!Gjl

(o)8~k,R!
S @Gjl

(o)8~k,R!#2 F jl
(o)8~k,R!Gjl

(o)8~k,R!

Gjl
(o)8~k,R!F jl

(o)8~k,R! @F jl
(o)8~k,R!#2 D .

~2.34!

The insertion of Eq.~2.34! into the Krein’s formula reduces this to the form expressed by
~2.26!.

The resolvent ofHb is obtained from that ofhjl ,b j l
through the decomposition~2.11!. j

Let us define the function

F j l ,b j l
~k8,r !5S F 1~k8,r !

F 2~k8,r !
D 5S a1F jl

(0)~k8,r !1a2Gjl
(0)~k8,r !

a1F̃ j l
(0)~k8,r !1a2G̃jl

(0)~k8,r !
D , ~2.35!

with

a1511KGjl
(0)8~k8,R!, a25KF jl

(0)8~k8,R!,
~2.36!

K5
~b j l /c! @F jl

(0)8~k8,R!1A1#

@12 ~b j l /c! Gjl
(0)8~k8,R!F jl

(0)8~k8,R!#
,

A15Gjl
(0)8~k8,R!E

0

R

@ F̃ j l
(0)~k8,r 8!2F jl

(0)~k8,r 8!#F̃ j l
(0)~k8,r 8!dr8

1F jl
(0)8~k8,R!E

R

`

@G̃jl
(0)~k8,r 8!2Gjl

(0)~k8,r 8!#G̃jl
(0)~k8,r 8!dr8. ~2.37!
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A straightforward computation shows that the functionF j l ,b j l
(k,r ) satisfies the following condi-

tions:

F 28~k,R1!2F 28~k,R2!5
b j l

c
@F 18~k,R!1A1#, F 18~k,R1!5F 18~k,R2!,

~2.38!
hjl ,b j l

~k,r !F j l ,b j l
~k,r !5k2F j l ,b j l

~k,r !; k>0,

and constitutes a set of generalized eigenfunctions associated withhjl ,b j l
; it represents the scat

tering wave function ofhjl ,b j l
. The corresponding phase shifts may be obtained by taking

asymptotic behavior ofF j l ,b j l
(k8,r ) as r→`:

Fj l ,b j l
~k8,r ! →

k8.0H a1Ajl ~k8!sinS k8r 2K jl

p

2 D1a2Bjl ~k8!e2 i (k8r 2K jl ~p/2!)

a1Ãj l ~k8!sinS k8r 2K jl S p

2 D 1 S p

2 D D1a2B̃j l ~k8!e2 i (k8r 2K jl ~p/2! 1 ~p/2!)
J

5H @C1
2~k8!1C2

2~k8!#1/2sinS k8r 2K jl

p

2
1d j l ,b j l

~k8! D1o~1!

@D1
2~k8!1D2

2~k8!#1/2sinS k8r 2K jl

p

2
1 d̃ j l ,b j l

~k8! D1o~1!
J , ~2.39!

with

C1~k8!5a1Ajl ~k8!2 ia2Bjl ~k8!, D1~k8!52a2B̃j l ~k8!,

C2~k8!5a2Bjl ~k8!, D2~k8!5a1Ãj l ~k8!2 ia2B̃j l ~k8!.

The phase shifts ofhjl ,b j l
read

D j l ,b j l
~k8!5S d j l ,b j l

~k8!

d̃ j l ,b j l
~k8!

D , ~2.40!

where we have used the following notations:

d j l ,b j l
~k8!52arctan

C2~k8!

C1~k8!
52arctan

a2Bjl ~k8!

a1Ajl ~k8!2 ia2Bjl ~k8!
, ~2.41!

d̃ j l ,b j l
~k8!52arctan

D2~k8!

D1~k8!
52arctan

a1Ãj l ~k8!2 ia2B̃j l ~k8!

2a2B̃j l ~k8!
, ~2.42!

Ajl 522K jl k8(2K jl 21)G~2K jl 12!G~K jl 11!21, Bjl 5
1

k8Ajl ~k8!
,

~2.43!

Ãj l 522K jl 11k8(2K jl )G~2K jl !G~K jl !
21, B̃j l 5

1

k8Ãj l ~k8!
.

The on-shell scattering matrix is given by
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( ~k8!5S exp@2id j l ,b j l
~k8!#

exp@2i d̃ j l ,b j l
~k8!#

D , ~2.44!

and the corresponding effective range expansion reads27

S @~2K jl 11!!! #2k82K jl 11 cotd j l ,b j l
~k8!

@~2K jl 21!!! #2k82K jl 21 cotd̃ j l ,b j l
~k8!

D 5S 2ajl ,b j l

21 1 1
2 r j l ,b j l

k821o~k84!

2ã j l ,b j l

21 1 1
2r̃ j l ,b j l

k821o~k84!
D , ~2.45!

where the pair of coefficients

S ajl ,b j l

ã j l ,b j l

D
and

S r j l ,b j l

r̃ j l ,b j l

D
define the partial wave scattering length and the effective range parameters, respective
on-shell scattering amplitude associated withHb is defined by

F b j l
~k8,v,v8!54p %

j 51/2

`

%
l 5 j 21/2

j 11/2

%
m52 j

j S exp~2id j l ,b j l
~k8!!21

2ik8
V ( j lm)1

~v8!V ( j lm)1
~v!

exp~2i d̃ j l ,b j l
~k8!!21

2ik8
V ( j lm)2

~v8!V ( j lm)2
~v!

D ,

~2.46!

with v, v8PS2, where the partial amplitudeF b j l
(k8) is given by

F b j l
~k8!5S exp~2id j l ,b j l

~k8!!21

2ik8

exp~2i d̃ j l ,b j l
~k8!!21

2ik8

D . ~2.47!

Concerning the spectral properties of the first family, we state the following Theorem.
Theorem 2.2: If b j l PR, then the following holds.2,26,28,29

The essential spectrumsess(hjl ,b j l
) is purely absolutely continuous and lies on real ax

Therefore, the singularly continuous spectrumssc(hjl ,b j l
) and the residual spectrums r(hjl ,b j l

) are

empty. (hjl ,b j l
) has no non-negative eigenvalues. The negative eigenvaluesẼ which constitute the

point spectrumsp(hjl ,b j l
) are given by

b j l

c
5

2T̃j l
(0)8~Ẽ,R!L̃ j l

(0)8~Ẽ,R!

Tjl
(0)8~Ẽ,R!L jl

(0)8~Ẽ,R!1A1

, ~2.48!

or
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b j l

c
5

T̃j l
(0)8~Ẽ,R!L̃ j l

(0)8~Ẽ,R!

Tjl
(0)8~Ẽ,R!L jl

(0)8~Ẽ,R!1A1

, ~2.49!

where

L jl
(0)~Ẽ,r !5GS K jl 1

3

2D SA2Ẽ

2
D 2K jl 2 (1/2)

r 1/2I K jl 1 (1/2)~A2Ẽr !,

Tjl
(0)~Ẽ,r !5

2

G~K jl 1 ~3/2!!
SA2Ẽ

2
D K jl 1 (1/2)

r 1/2KK jl 1 (1/2)~A2Ẽr !,

~2.50!

L̃ j l
(0)~Ẽ,r !5GS K jl 1

1

2D SA2Ẽ

2
D 2K jl 1 (1/2)

r 1/2I K jl 2 (1/2)~A2Ẽr !,

T̃j l
(0)~Ẽ,r !5

2

G~K jl 1 ~1/2!!
SA2Ẽ

2
D K jl 2 (1/2)

r 1/2KK jl 2 (1/2)~A2Ẽr !.

I n andKn are the modified Bessel functions of the first and second type of ordern, respectively.
Proof: Following Ref. 29,

sess~hjl ,b j l
!5sac~hjl ,b j l

!,R,

ssc~hjl ,b j l
!5B, s r~hjl ,b j l

!5B.

Besides, sp(hjl ,b j l
)ù@0,̀ )5B since for c j l (k,r )PD(hjl ,b j l

) and k.0, the equation

ḣ j l c j l (k,r )5k2c j l (k,r ) can be solved uniquely in terms of spinors which do not belong
L2((0,̀ )) ^ C2.

To complete the proof, let us point out that the bound state equations~2.48! and ~2.49! are
obtained by using the modified Bessel functions that are nothing but the components of the
solutions of the equationḣ j l c j l (Ẽ,r )5Ẽc j l (Ẽ,r ), Ẽ,0 and the boundary conditions~2.2!. j

The same procedure applied to the second family (hjl ,g j l
,hjl ,o) gives

g j l

c
5

6Tjl
(0)8~Ẽ,R!L jl

(0)8~Ẽ,R!

T̃j l
(0)8~Ẽ,R!L̃ j l

(0)8~Ẽ,R!2B1

, B5
g j l

c
B1 , ~2.51!

B15G̃jl
(0)8~k8,R!E

0

R

@ F̃ j l
(0)~k8,r 8!2F jl

(0)~k8,r 8!#F jl
(0)~k8,r 8!dr8

1F̃ j l
(0)8~k8,R!E

R

`

@G̃jl
(0)~k8,r 8!2Gjl

(0)~k8,r 8!#Gjl
(0)~k8,r 8!dr8. ~2.52!

III. RELATIVISTIC d-SPHERE INTERACTION COUPLED WITH A COULOMB POTENTIAL

Now we deal with the case of the Dirac–Coulomb Hamiltonian formally given by5

H5HD1
g0

r
1ad~r 2R!, ~3.1!
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whereHD represents the free Dirac Hamiltonian,g0 anda are nonvanishing physical constants.
the absence of delta-sphere interaction, this Hamiltonian reduces to that studied in Ref. 2
boundary conditions are defined in Eqs.~2.2! and ~2.3!.

Since the whole analysis can be carried through as in Sec. II after replacing~2.1! by ~3.1!, we
only sketch some facts and merely provide a collection of relevant formulas.

The closed symmetric operator is now

Hg0
[HD1

g0

r
,

~3.2!
D~Hg0

!5$cPH1,2~R3! ^ C4, c~SR!50%.

With respect to the decomposition~2.10!, Hg0
reads

Hg0
5 %

j 51/2

`

%
l 5 j 21/2

j 11/2

U jl
21hjl g0

U jl ^ 1, ~3.3!

wherehjl g0
is the radial quantum Hamiltonian

hjl g0
5S Mc21

g0

r
cS 2

d

dr
1

K jl

r D
cS d

dr
1

K jl

r D 2Mc21
g0

r

D [tg0
, ~3.4!

with the domain

D~hjl g0
!5$cPL2~~0,̀ !! ^ C2; c,c8PACloc~~0,̀ !2$R%!;

~3.5!
hjl g0

cPL2~~0,̀ !! ^ C2%.

From the equation

hjl g0

! c j l ~k!5k2c j l ~k!, Im k.0, ~3.6!

we can show thathjl g0
has deficiency indicies~2,2! and the deficiency subspace is spanned by

linearly independent functions:23

f ( j l )5F jl g0

(0) ~k8,r !5C1S g0

2n~K jl 2n!
u12

1

2n
v1D , r ,R,

~3.7!

g( j l )5Gjl g0

(0) ~k8,r !5C2S g0

2n~K jl 2n!
u22

1

2n
v2D , r .R,

for the components of the first 2-spinor ofc, and

f ( j l )5F̃ j l g0

(0) ~k8,r !5C18S 2
1

2n
u11

g0

2n~K jl 2n!
v1D , r ,R,

~3.8!

g( j l )5G̃jl g0

(0) ~k8,r !5C28S 2
1

2n
u21

g0

2n~K jl 2n!
v2D , r .R,

for the components of the second 2-spinor ofc. C1 , C2 , C18 , C28 are constants, and
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u1~k8,r !5r m11 exp~2 ik8r !1F1S 11m2 i
k2g0

c2k8
; 2~m11!; 2ik8r D ,

~3.9!

u2~k8,r !5G@2~m11!#21GF S 11m2 i
k2g0

c2k8
D G ~2ik8!2m11r m11

3exp~2 ik8r !US 11m2 i
k2g0

c2k8
; 2~m11!; 2ik8r D ,

v1~k8,r !5r m exp~2 ik8r !1F1S m2 i
k2g0

c2k8
; 2m; 2ik8r D ,

~3.10!

v2~k8,r !5G~2m!21GS m2 i
k2g0

c2k8
D ~2ik8!2m21r m exp~2 ik8r !US m2 i

k2g0

c2k8
; 2m; 2ik8r D ,

wherek825(k42M2c4)/c2 ,n5Ac2K jl
2 2g0

2, 1F1(z), andU(z) are the hypergeometric function
of the first and second type, respectively. Therefore, all self-adjoint extensions ofhjl g0

are given
by a four-parameter family of self-adjoint operators. Taking into account the boundary cond
~2.2! and ~2.3!, two special one-parameter families of self-adjoint extensions have to be co
ered.

With the boundary conditions~2.2!, we can define the first family as follows:

hjl g0 ,b j l
[S Mc21

g0

r
cS 2

d

dr
1

K jl

r D
cS d

dr
1

K jl

r D 2Mc21
g0

r

D , ~3.11!

D~hjl g0
,b j l !5$c~r !PL2~~0,̀ !! ^ C2; f j l8 PACloc~~0,̀ !!;

gjl8 PACloc~~0,̀ !2$R%!;
~3.12!

gjl8 ~k,R1!2gjl8 ~k,R2!5
b j l

c
f j l8 ~k,R!1A;

hjl g0 ,b j l
cPL2~~0,̀ !! ^ C2; AÞ0; 2`,b j l ,1`%.

The caseb j l 50 coincides with the Coulomb Hamiltonianhjl g0
for fixed angular momentum (j l ).

The caseb j l 5` leads to the Coulomb Hamiltonian with a Neumann boundary condition onSR .
The operatorHb given in L2(R3) ^ C4 by

Hb5 %
j 51/2

`

%
l 5 j 2(1/2)

j 1(1/2)

U jl
21hjl g0 ,b j l

U jl ^ 1, b5$b j l , j 2 1
2 < l< j 1 1

2,
1
2 < j ,`%, ~3.13!

provides a mathematical definition of the formal expression~3.1!.
The second family could be easily defined, mimicking step by step the same technique
Finally let us give the scattering theory for the pair (hjl b j l

,hjl ,0), using the following Theo-
rem.

Theorem 3.1: If b j l Þ0, then the following holds.
~i! The resolvent ofhjl g0 ,b j l

is given by
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~hjl g0 ,b j l
2k2!215~hjl g0,02k2!211

b j l

cD S 1 0

0 1D ~c j l g0
~2 k̄!,.!c j l g0

~k!, ~3.14!

k2Pr~hjl g0 ,b j l
!, Im k.0,

~3.15!

D5F jl g0

(0)8~k8,R!G̃jl g0

(0)8~k8,R!2F̃ j l g0

(0)8~k8,R!Gjl g0

(0)8~k8,R!2
b j l

c
F jl g0

(0)8~k8,R!Gjl g0

(0)8~k8,R!.

Gjl g0
5(hjl g0,02k2)21, Im k.0, is the free resolvent kernel:

Gjl g0
~k8,r ,r 8!5F g̃ j l g0

(I) ~k8,r ,r 8! g̃ j l g0

(I) ~k8,r ,r 8!

g̃ j l g0

(II) ~k8,r ,r 8! g̃ j l g0

(II) ~k8,r ,r 8!
G , ~3.16!

where

g̃ j l g0

(I) ~k8,r ,r 8!5H Gjl g0

(0) ~k8,r !F jl g0

(0) ~k8,r 8!, r 8,r

F jl g0

(0) ~k8,r !Gjl g0

(0) ~k8,r 8!, r 8.r ,
~3.17!

and

g̃ j l 0
(II) ~k8,r ,r 8!5H G̃jl g0

(0) ~k8,r !F̃ j l g0

(0) ~k8,r 8!, r 8,r

F̃ j l g0

(0) ~k8,r !G̃jl g0

(0) ~k8,r 8!, r 8.r ,
~3.18!

F jl g0

(0) , F̃ j l g0

(0) , Gjl g0

(0) , and G̃jl g0

(0) are defined in~3.7! and ~3.8!, with C15C25C185C2851.

c j l g0
(k8,r ) is given by

c j l g0
~k8,r !5S F jl g0

(0) ~k8,r !Gjl g0

(0)8~k8,R!1F jl g0

(0)8~k8,R!Gjl g0

(0) ~k8,r !

F̃ j l g0

(0) ~k8,r !Gjl g0

(0)8~k8,R!1F jl g0

(0)8~k8,R!G̃jl g0

(0) ~k8,r !
D . ~3.19!

~ii ! The resolvent ofHb is given by

~Hb2k2!215~H02k2!211 %
j 51/2

`

%
l 5 j 2~1/2!

j 1~1/2!

%
m52 l

1 l b j l

cD
@ u.u21~c j l g0

~2 k̄!

^ V j lm~u,w!!,.#u.u21c j l g0
~k! ^ V j lm~u,w!. ~3.20!

Proof: Similar to that of the Theorem 2.1. j

Let us define the function

F j l g0 ,b j l
~k8,r !5S F 1~k8,r !

F 2~k8,r !
D 5S a1F jl g0

(0) ~k8,r !1a2Gjl g0

(0) ~k8,r !

a1F̃ j l g0

(0) ~k8,r !1a2G̃jl g0

(0) ~k8,r !
D , ~3.21!

with
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a1511KGjl g0

(0)8~k8,R!, a25KF jl g0

(0)8~k8,R!,

~3.22!

K5
~b j l /c! @F jl g0

(0)8~k8,R!1A1#

D
.

A straightforward computation shows that the functionF j l g0 ,b j l
(k,r ) satisfies the following con-

ditions:

F 28~k,R1!2F 28~k,R2!5
b j l

c
@F 18~k,R!1A1#,

F 18~k,R1!5F 18~k,R2!, ~3.23!

hjl g0 ,b j l
~k,r !F j l g0 ,b j l

~k,r !5k2F j l g0 ,b j l
~k,r !, k>0,

where

A15Gjl g0

(0)8~k8,R!E
0

R

@ F̃ j l g0

(0) ~k8,r 8!2F jl g0

(0) ~k8,r 8!#F̃ j l g0

(0) ~k8,r 8!dr8

1F jl g0

(0)8~k8,R!E
R

`

@G̃jl g0

(0) ~k8,r 8!2Gjl g0

(0) ~k8,r 8!#G̃jl g0

(0) ~k8,r 8!dr8. ~3.24!

Therefore, $F j l g0 ,b j l
(k8,r )% constitutes a set of generalized eigenfunctions associated

hjl g0 ,b j l
that represents the scattering wave functions ofhjl g0 ,b j l

. The phase shifts ofhjl g0 ,b j l
may

be obtained by taking the asymptotic behavior ofF j l g0 ,b j l
(k8,r )as r→`:

F j l g0 ,b j l
~k8,r ! →

k8.0

5 @C1
2~k8!1C2

2~k8!#1/2sinS k8r 2
k82g0

c2k
ln~2k8r !2m

p

2
1dm,b j l

~k8!D 1o~1!

@D1
2~k8!1D2

2~k8!#1/2sinS k8r 2
k82g0

c2k
ln~2k8r !2m

p

2
1 d̃m,b j l

~k8!D 1o~1!6 . ~3.25!

The phase shifts are given by

D j l g0 ,b j l
~k8!5S d j l g0 ,b j l

~k8!

d̃ j l g0 ,b j l
~k8!

D , ~3.26!

where the following notations have been adopted:

dm,b j l
5d j l g0 ,b j l

~k8!52arctan
C2~k8!

C1~k8!
; d̃m,b j l

5 d̃ j l g0 ,b j l
~k8!52arctan

D2~k8!

D1~k8!
, ~3.27!

with the coefficients defined as

C1~k8!5~a1A2 ia2B!cosdm
(0)2~a1A82 ia2B8!sindm8

(0)1a2B sindm
(0)1a2B8 cosdm8

(0) ,

C2~k8!5~a1A2 ia2B!sindm
(0)1~a1A82 ia2B8!cosdm8

(0)1a2B cosdm
(0)2a2B8 sindm8

(0) ,
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D1~k8!5~a1Ã2 ia2B̃!cosd̃m
(0)2~a1Ã82 ia2B̃8!sind̃m8

(0)1a2B̃ sind̃m
(0)1a2B̃8 cosd̃m8

(0) ,

D2~k8!5~a1Ã2 ia2B̃!sind̃m
(0)1~a1Ã82 ia2B̃8!cosd̃m8

(0)1a2B̃ cosd̃m
(0)2a2B̃8 sind̃m8

(0) .

According to Ref. 17, we can define the constants

A5
g0

2n~K jl 2n!
Am,g0

5
g0

2n~K jl 2n!
22mk82(m11)G~2m12!UGS m111

ik82g0

c2r
D U21

3exp~pg0/4k8!,

A85
21

2n
A8m,g0

5
21

2n
22(m21)k82mG~2m!UGS m1

ik82g0

c2r
D U21

exp~pg0/4k8!,

B5
g0

2n~K jl 2n!

1

k8Am,g0

, B85
21

2n

1

k8Am,g0
8

,

Ã5
21

2n
Ãm,g0

5
21

2n
22mk82(m11)G~2m12!UGS m111

ik82g0

c2r
D U21

exp~pg0/4k8!,

Ã85
g0

2n~2nKjl 2n!
Ã8m,g0

5
g0

2n~2nKjl 2n!
22(m21)k82mG~2m!UGS m1

ik82g0

c2r
D U21

3exp~pg0/4k8!,

B̃5
21

2n

1

k8Ãm,g0

, B̃85
g0

2n~2nKjl 2n!

1

k8Ãm,g0
8

,

dm
(0)5argGS m111

ik82g0

c2r
D 5 d̃m

(0) , dm8
(0)5argGS m1

ik82g0

c2r
D 5 d̃m8

(0) .

We can decompose~3.26!

D j l g0 ,b j l
~k8!5S d j l g0 ,b j l

~k8!

d̃ j l g0 ,b j l
~k8!

D 5S d j l g0 ,b j l

(0) ~k8!1d j l g0 ,b j l

(c) ~k8!

d̃ j l g0 ,b j l

(0) ~k8!1d j l g0 ,b j l

(c) ~k8!
D , ~3.28!

whered j l g0 ,b j l

(0) (k8) and d j l g0 ,b j l

(c) (k8) are the phase shifts ofhjl g0 ,b j l
and the modified Coulomb

phase shifts, respectively. The on-shell scattering matrix is given by

( ~k8!5S exp@2id j l g0 ,b j l
~k8!#

exp@2i d̃ j l g0 ,b j l
~k8!#

D . ~3.29!

The on-shell scattering amplitude associated withHb is defined by
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Fj l g0 ,b j l
~k8,v,v8!54p %

j 5(1/2)

`

%
l 5 j 2(1/2)

j 1(1/2)

%
m52 j

j

3S exp~2id j l g0 ,b j l
~k8!!21

2ik8
V ( j lm)1

~v8!V ( j lm)1
~v!

exp~2i d̃ j l g0 ,b j l
~k8!!21

2ik8
V ( j lm)2

~v8!V ( j lm)2
~v!

D , ~3.30!

with v,v8PS2, where the partial amplitudeF j l g0 ,b j l
(k8) is given by

F j l g0 ,b j l
~k8!5S exp~2id j l g0 ,b j l

~k8!!21

2ik8

exp~2i d̃ j l g0 ,b j l
~k8!!21

2ik8

D . ~3.31!

The scattering theory for the pair (hjl g0 ,g j l
;hjl 0) could also be provided, following step b

step the development given above.
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Locality in free string field theory
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Department of Mathematics, SUNY at Buffalo, Buffalo, New York 14214
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Free string field operators are constructed for the open bosonic string in the light
cone gauge in any dimension. These are naturally localized by the center of
mass coordinate. Relative to this localization they are shown to have a causal
commutator provided there are no tachyons. For the critical string ind526 the
result still holds if the tachyon is suppressed. We also show a causal commutator
relative to the ‘‘string light cone.’’ ©2000 American Institute of Physics.
@S0022-2488~00!02901-7#

I. INTRODUCTION

We consider the general question of discovering the extent to which string field theo
local. The question for interacting strings is completely unsettled, since the theory itself i
settled. One expects such a theory to have a quantized gravitational field, hence a fluc
metric and light cone, and so the very formulation of the question is likely to be problemat

On the other hand, for free strings in a fixed Minkowski metric one can at least pos
question. In this paper we find that under certain circumstances there are local string field
tors.

The circumstances are as follows. We consider open bosonic strings in the light cone ga
any dimension spacetime. We assume that there are no tachyons, or that they have be
pressed. The field operator is a functionF(X) of parametrized stringsX5Xm(s). The result is
that there is a vanishing commutator

@F~X!,F~Y!#50 ~1!

whenever the center of mass coordinates are spacelike separated, i.e., whenever

S E
0

p

X~s! ds2E
0

p

Y~s! ds D 2

.0. ~2!

The result is perhaps stronger than one might have expected since~2! does not rule out that a poin
on X be timelike separated from a point onY.

The result is not really new, but it seems worthwhile to give a careful mathematical treat
Indeed we take this opportunity to give careful treatment of the whole light cone gauge the

An even stronger result has been obtained by Martenic1 and Lowe.2 They find that the com-
mutator vanishes whenever

E
0

p

„X~s!2Y~s!…2 ds.0, ~3!

a configuration defining the ‘‘string light cone.’’ We also give a precise version of this resu
One can also state the result in terms of Fourier components

a!Electronic mail: dimock@ubunix.acsu.buffalo.edu
400022-2488/2000/41(1)/40/22/$17.00 © 2000 American Institute of Physics

                                                                                                                



ng
gate
a limi-

ssical
uantum
of the

ely its
e same
ss, we

light
en we
ization
Finally
lds on
pment.

or

y

41J. Math. Phys., Vol. 41, No. 1, January 2000 Locality in free string field theory

                    
Xm~s!5x0
m1 (

n51

`

&xn
m cosns. ~4!

Then the field is a functionF5F(x0 ,x1 ,x2 ,...) of these components, the region~2! is
(x02y0)2.0, and the region~3! is

~x02y0!21 (
n51

`

~xn2yn!2.0. ~5!

In the light cone gauge (xn2yn)2>0 for n>1 so the second region is larger. The vanishi
commutator for (x02y0)2.0 embodies a limitation on how fast string disturbances propa
through space–time. The vanishing commutator outside the string light cone incorporates
tation on how fast the various modes can grow.

Throughout the paper we employ a canonical quantization procedure to pass from cla
systems to quantum systems. This quantization procedure is meant only to motivate the q
theory, and should not be construed as a derivation of the quantum theory. The justification
quantum theory should be its consistency with general principles, its naturality, and ultimat
success as a model for the real world. Thus the quantization procedure is not subject to th
standard of rigor as the development of the quantum theory on its own terms. Neverthele
will try to be careful.

The organization of the paper is as follows. We first discuss quantization of particles in
cone coordinates and show it is equivalent to quantization in standard coordinates. Th
quantize point fields in light cone coordinates and show that the result is equivalent to quant
in standard coordinates. Next we discuss single string quantization in the light cone gauge.
we define string fields in the light cone gauge and prove the locality results. Each step bui
the preceding steps. In the Appendix we discuss topics which supplement the main develo
These are~1! the characteristic Cauchy problem for the Klein–Gordon equation,~2! canonical
field quantization in light cone coordinates, and~3! the existence of the light cone gauge f
strings.

II. POINT PARTICLES AND FIELDS

A. Classical particles

Start with d-dimensional Minkowski space–time (Rd,h). Points arex5(x0,x1,...,xd21) or
x5(x0,x) andx25x•x5hmnxmxn or x252(x0)21x2.

The worldlinex(t) of a particle of mass squaredm>0 obeysd2x/dt250 with the constraint
(dx/dt)21m50. This can be written in the form

dxm/dt5pm, dpm/dt50, ~6!

and constraint becomes

p21m50. ~7!

The constraint says that the momentump lies on the mass shell.
We restrict to forward-directed curves satisfyingdx0/dt.0. These have positive energ

p0.0. The constraint2(p0)21(p)21m50 is solved byp05vm(p)[Ap21m. To put it another
way, we work in terms of coordinatesp5(p1,...,pd) for the mass shell. Sincep0 is a constant,
one can solvedx0/dt5p0 by x05p0t. The remaining variables arex, p and if we parametrize in
terms ofx0 instead oft they satisfy

dxj /dx05pj /v~p!, dpj /dx050. ~8!

This is a Hamiltonian system with Hamiltonianvm(p).
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Now consider light cone coordinates onRd given by (p1,p2,p̃) where

p65
1

&
~p06pd21!, ~9!

p̃5~p1,...,pd22!. ~10!

In these coordinates the inner product isp•a52p1a22p2a11 p̃•ã. The equations~6! become

dx6/dt5p6, dxk/dt5pk, dp6/dt50, dpk/dt50 ~11!

for 1<k<d22. The mass shell condition is

22p1p21 p̃21m50. ~12!

Excluding the casem50,p̃50 we have p1Þ0 and can solve the constraint byp2

5( p̃21m)/2p1. Thus we takep1,p̃ as coordinates for the mass shell. Note that this includes
positive energy (p6.0) and negative energy (p6,0). Sincep1 is constant we may solve
dx1/dt5p1 by x15p1t. With x1,p2 determined the remaining variables arex2,p1,x̃,p̃, and
if we reparametrize in terms ofx1 they satisfy

dx2/dx15p2/p1, dxk/dx15pk/p1, dp1/dx150, dpk/dx150. ~13!

The x2 equation can be writtendx2/dx152]p2/]p1 and thexk equations can be written
dxk/dx15]p2/]pk. Thus we have a Hamiltonian system with canonical variab
(p1,x2),(xk,pk) and Hamiltonian

hm5p25
p̃21m

2p1 . ~14!

B. Quantum particles

The standard quantization of the single particle starts with the Hamiltonian system~8!. We
look for symmetric operatorsxi ,pj with 1< i , j <d21 so that@xi , pj #5 id i j , form the Hamil-
tonianvm(p), and solve the dynamical equations byxi(x0)5exp(ivmx0)xi exp(2ivm x0), etc. Start
with the Hilbert spaceL2(Rd21,dp). Let pj be multiplication by thej th coordinate. Takexj

5 i ]/]pj . Thenvm(p) is also a multiplication operator.
Changing to a relativistic normalization we introduce the Hilbert space

Hm5L2S Rd21,
dp

2vm~p! D . ~15!

The operator of multiplication by„2vm(p)…1/2 is unitary from the old space to the new space, a
we use it to transform the operators. Thenpj ,vm(p) are unaffected andxj becomes the Newton–
Wigner coordinate operator

xj5 i
]

]pj2
ip j

2~p21m!
. ~16!

The choice of the Lorentz invariant measure in~15! means we have a simple representation
the Poincare group onHm , which, however, we do not need. We do take note of the represe
tion of the translation subgroup which is generated by the momenta and so withp05vm(p) has
the form
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u~a!5exp~2 ip•a!5exp~ ip0a02 ip–a!. ~17!

Now consider quantization in light cone coordinates. We seek operatorsx2, p1, xk, pk for
1<k<d22 satisfying@p1,x2#5 i , @xj ,pk#5 id jk, then form the Hamiltonianhm , and generate
x1 evolution by the operatore2 ihmx1

. For the Hilbert space start withL2(Rd21,dp1dp̃), take
p1, pk, and hm to be multiplication operators, and then takex252 i ]/]p1 and xk5 i ]/]pk.
Next restrict to positive energy by restrictingp1 to R15(0,̀ ). The Hilbert space is then
L2(R13Rd22,dp1dp̃) and the operators are as before.

A word on domains is in order here. To form functions of these operators they shou
self-adjoint and not just symmetric. This is no problem for the operators onL2(Rd21), they are
essentially self-adjoint on the Schwartz spaceS(Rd21) of smooth rapidly decreasing function
and satisfy the commutation relations there. However, when we cut down toL2(R13Rd22) there
is a problem withx252 i ]/]p1. It is not essentially self-adjoint on its natural minimal doma
C0

`(R13Rd22) and one must specify boundary conditions atp150 to obtain a self-adjoint
extension. However, there is no natural choice, so we stick with the minimal symmetric ope

Changing to a relativistic normalization we define Hilbert space

H15L2S R13Rd22,
dp1dp̃

2p1 D . ~18!

The operator of multiplication by (2p1)1/2 is unitary from the old Hilbert space to the new Hilbe
space and we use it to transform the operators. The operatorsp1, pk andhm are unaffected and
the coordinate operators become

x252 i
]

]p1 1
i

2p1 , xk5 i
]

]pk ~19!

again with the minimal domain forx2.
Space time translations are now written withp25hm :

u8~a!5exp~ ip2a11 ip1a22 i p̃•ã!. ~20!

Next we establish an equivalence between the standard quantization and the light cone
tization. Our two choices of coordinates are related by holdingp̃ fixed and exchangingp1 and
pd21. The mappings, which are inverse to one another, are

pd215
1

&
S p12

p̃21m

2p1 D ,

~21!

p15
1

&
„vm~ p̃,pd21!1pd21

….

These are diffeomorphisms betweenR1 andR unless bothm50 andp̃50.
Correspondingly we change coordinates in functions with an operatorv defined by

~vc!~ p̃,pd21!5cS 1

&
„vm~ p̃,pd21!1pd21

…, p̃D . ~22!

Proposition 1:v is a unitary operator fromH1 to Hm and satisfies

vu8~a!v215u~a!. ~23!
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Proof: The operator is norm preserving since forcPH1 ,

ivci25E UcS 1

&
„vm~ p̃,pd21!1pd21

…,p̃D U2
dp̃dpd21

2vm~ p̃,pd21!
5E E

0

`

uc~p1,p̃!u2
dp1dp̃

2p1 5ici2,

~24!

and hence determines a unitary operator. Here we have made the change of variablepd21

→p1 and usedv→„p11( p̃21m)/2p1
…/& and

]pd21

]p1 5
1

&
S 11

p̃21m

2~p1!2D . ~25!

The identity~23! is easily checked.
Remark:The theorem says that the operatorv induces the expected transformations on

momenta. We do not claim thatv connects the coordinates.

C. Quantum fields

First some notation. For any Hilbert spaceH, let Hn be then-fold symmetric tensor product
and letF(H)5 % n50

` Hn be the Fock space. Leta* (g),a(g) be the usual creation and annihilatio
operators on the Fock space, respectively linear and antilinear ingPH, and adjoint to each other
As a domain we usually take states with a finite number of entries denotedF0(H). Any unitary
operatorU on H induces a unitaryG(U) on F(H). Then G(U)a* (g)G(U)215a* (Ug) and
G(U)a(g)G(U)215a(Ug).

For a standard multiparticle theory take the single particle Hilbert spaceHm , and form the
Fock spaceF(Hm). The single particle time evolutione2 ivmx0

becomes for many particle
G(e2 ivmx0

). More generally, the single-particle space time translation operatoru(a) becomes for
many particles

U~a![G„u~a!…. ~26!

The single particle wave functione2 ivx0
c, after Fourier transformation, satisfies the Klein

Gordon equation (h2m)c50 whereh5hmn]m]n . Correspondingly, for quantum fields w
want solutionsf of the Klein–Gordon equation (h2m)f50 which we write in Hamiltonian
form as

]f/]x05p, ]p/]x052~2D1m!f. ~27!

We seek operator-valued solutions which satisfy the canonical commutation relations at
times, and for which time evolution is unitarily implemented with positive energy.

Regard the field as a distribution in space. For realgPC0
`(Rd21) we define f(x0,g)

5*f(x0,x)g(x) dx on the multiparticle Hilbert spaceF(Hm) by

f~x0,g!5a* ~eivmx0
g̃!1a~eivmx0

g̃!,
~28!

p~x0,g!5 ia* ~vmeivmx0
g̃!2 ia~vmeivmx0

g̃!,

where g̃ is the Fourier transform. Smearing in space and time, for realf PC0
`(Rd) we define

f( f )5*f(x) f (x) dx by

f~ f !5a~Pm f !1a* ~Pm f !, ~29!

wherePm is restriction of the Fourier transformf̃ to the mass shell:
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~Pm f !~p!5~2p!2~d21!/2E eivm~p!x02 ip–xf ~x0,x! dx0dx5A2p f̃ „2vm~p!,p…. ~30!

The fieldf( f ) is well-defined sincePm :C0
`→Hm . Also u(a)Pm f 5Pm„f (•2a)… which implies

the translation covariance

U~a!f~ f !U~a!215f„f ~•2a!…. ~31!

To exhibit the locality of the fields we introduce the retarded and advanced fundam
solutionsEm

6 for h2m. For f PC0
`(Rd) we defineu5E6 f to be the solution of (h2m)u5 f

which vanishes in the distant past/future. Explicitly,

~Em
6 f !~x!5

21

~2p!d/2 E
G63Rd21

eip•x

p21m
f̃ ~p! dp. ~32!

The p0 contourG6 is a positive/negative imaginary translation of the real axis. The expressi
independent of the contour sincef̃ (p) is entire and rapidly decreasing in real directions. T
support ofEm

6 f is contained in the future/past of the support off.
Now we compute the commutator. WithEm5Em

12Em
2 we have

@f~ f 1!,f~ f 2!#52i Im ~Pm f 1 ,Pm f 2!5 i ^ f 1 ,E f2&, ~33!

where^ f 1 , f 2&5* f 1(x) f 2(x) dx. The last step follows by working backwards and identifying t
p0 integral as an integrals aroundp056vm(p). Because of the support properties ofE6 the
commutator vanishes iff, g have spacelike separated supports.

Now we turn to fields in light cone coordinates. Leth8522]1]21D be the D’Alembertian
in light cone coordinates. The single particle wave functione2 ihmx1

c after Fourier transformation
satisfies (h82m)c50. Correspondingly we look for a quantum field operatorf8(x1,x2,x̃)
satisfying (h82m)f850 and also some commutation relations. The canonical commuta
relations in terms of

f8~x1,g!5E f8~x1,x2,x̃!g~x2,x̃! dx2dx̃ ~34!

are

Ff8S 0,
]g1

]x2D ,f8S 0,
]g2

]x2D G5
i

2 E g1~x2,x̃!
]g2

]x2 ~x2,x̃! dx2dx̃. ~35!

We explain in the Appendix Sec. 2, why this is the appropriate choice.
To fulfill these conditions we form the multiparticle light cone Hilbert spaceF(H1), and

define on this space for realgPC0
`(Rd21)

f8~x1,g!5a* ~eihmx1
g#!1a~eihmx1

g#!. ~36!

Hereg# is defined onR13Rd22 by

g#~p1,p̃!5g̃~2p1,p̃! ~37!

and g̃(p1,p̃) is the Fourier transform ofg(x2,x̃).
Proposition 2: The fieldf8(x1,g) is well defined for real gPC0

`(Rd21) provided g̃(0,p̃)
50. It satisfies the field equation(h82m)f850 in the sense of distributions. The fields
f8(0,]g/]x2) are well defined and have the commutator (35).
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Proof: The function g̃ is in Schwartz space and ifg̃(0,p̃)50 it satisfies ug̃(p1,p̃)u
5O(up1u) near the origin. These facts are sufficient to guaranteeg#PH1 . Thus f8(x1,g) is
well defined forg̃(0,p̃)50 andf8(x1,]g/]x2) is well defined for anyg.

The field equation is the statement that

2
]

]x1 f8S x1,
]g

]x2D1f8„x1,~D2m!g…50. ~38!

This is easily checked.
For the commutator we have

Ff8S 0,
]g1

]x2D ,f8S 0,
]g2

]x2D G5~p1g1
# ,p1g2

#!H1
2~p1g2

# ,p1g1
#!H1

52
1

2 E g̃1~p1,p̃!p1g̃2~p1,p̃! dp1dp̃

5
i

2 E g1

]g2

]x2 dx2dx̃. ~39!

In the second step we have usedg#(p1,p̃)5g̃(2p1,p̃)5g̃(p1,2 p̃) to combine two integrals
over p1.0 into an integral over the whole line. This completes the proof.

Now we smear in all the coordinates and consider

f8~ f !5E f8~x1,x2,x̃! f ~x1,x2,x̃! dx1dx2dx̃.

The expression~36! becomes the operator onF(H1),

f8~ f !5a* ~Pm f !1a~Pm f !, ~40!

wherePm is the restriction operator in the new coordinates:

~Pm f !~p1,p̃!5A2p f̃ S 2
p̃21m

2p1 ,2p1,p̃D . ~41!

Theorem 1: For any real fPC0
`(Rd):

(1) f8( f ) is well defined for d>3, m>0 (and d52 if m.0).
(2) f8( f ) satisfies the field equationf8„(h82m) f …50.
(3) With space–time translations represented by U8(a)5G„u8(a)… we have the covariance

U8~a!f8~ f !U8~a!215f8„f ~•2a!…. ~42!

(4) The commutator@f8( f 1),f8( f 2)# vanishes if f1 , f 2 have spacelike separated support.
Proof: To show the field is well defined we need to know thatPm f is in H1 . Since f̃ is in

Schwartz space we have that for anyN there is a Schwartz normi f iS and a constantC such that

u f̃ ~p2,p1,p̃!u<Ci f iS~11up2u1up1u1u p̃u!2N. ~43!

We can assume that the norm has the form

i f iS
25(

a,b
E u~xa]b f !~x!u2 dx ~44!

with a finite sum over multi-indexesa, b. For up1u>1 we drop theup2u and get
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u~Pm f !~p1,p̃!u<Ci f iS~11up1u1u p̃u!2N. ~45!

For up1u<1 first boundPm f by (11up2u)21/8(11u p̃u)2N11 and then useup2u>u p̃u2/2up1u to get

u~Pm f !~p1,p̃!u<Ci f iSup1u1/8u p̃u21/4~11u p̃u!2N11. ~46!

Combining these we have for a constantC independent ofm>0,

E E
0

`

u~Pm f !~p1,p̃!u2
dp1dp̃

2p1 <Ci f iS
2,`, ~47!

which showsPm f is in H1 . ~If d52, thenp̃ does not exist, and for a lower bound onp2 we use
up2u>m/2up1u.)

The field equation follows fromPm„(h82m) f …50.
The covariance follows fromu8(a)Pm f 5Pm„f (•2a)….
The commutator is evaluated by returning to standard coordinates. Let

f̂ ~x!5 f S x01xd21

&
,
x02xd21

&
,x̃D . ~48!

be the test function in standard coordinates. One can check the identity

vPm f 5Pm f̂ . ~49!

Sincev is unitary the commutator is evaluated as

@f8~ f 1!,f8~ f 2!#52i Im~Pm f 1 ,Pm f 2!H1
52i Im~Pm f̂ 1 ,Pm f̂ 2!Hm

5 i ^ f̂ 1 ,Em f̂ 2&. ~50!

If 22(x12y1)(x22y2)1( x̃2 ỹ)2.0 for all xPsuppf 1 , yPsuppf 2 , then 2(x02y0)2

1(x2y)2.0 for all xPsuppf̂ 1 , yPsuppf̂ 2 and the commutator vanishes by the standard res
This completes the proof.

The next result shows the complete equivalence of the light cone field and the standard
Theorem 2: Let V:F(H1)→F(Hm) be the unitary operator V5G(v). Then

Vf8~ f !V215f~ f̂ !,
~51!

VU8~a!V215U~a!.

Proof: The first identity follows from~49! and the second identity follows from~23!.

III. STRINGS

Our discussion of strings is more or less standard, see Refs. 3–5. We start with a disc
of the classical free relativistic string. This is described by a Hamiltonian system and
constraints. We use the constraints to eliminate redundant variables and obtain a reduced
tonian system with independent variables. This is then quantized.

A. Classical strings

A single string is specified by the world sheetX:@0,p#3R→Rd which is forward directed in
the sense that]X0/]t.0. In the conformal gauge the string satisfies the wave equation

S ]2

]t22
]2

]s2DXm~t,s!50 ~52!
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and the constraint

S ]X

]t
6

]X

]s D 2

50. ~53!

The constraint need only be satisfied att50; it is preserved by time evolution. For the open stri
we also require Neumann boundary conditions

]X

]s
~t,0!5

]X

]s
~t,p!50. ~54!

We write the equation as a first-order system,

]Xm/]t5Pm,
~55!

]Pm/]t5
]2Xm

]s2 ,

with the constraint

S P6
]X

]s D 2

50. ~56!

We are especially interested in the center of mass variables

xm~t!5
1

p E
0

p

Xm~t,s! ds,

~57!

pm~t!5
1

p E
0

p

Pm~t,s! ds,

which satisfydxm/dt5pm anddpm/dt50.
Our system of equations~55! and ~56! is invariant under conformal diffeomorphisms o

two-dimensional Minkowski space. For a generic class of solutions, which entailp1.0, we can
use this fact to reparametrize so that

X1~t,s!5p1t, ~58!

a condition which defines the light cone gauge. We discuss this step in detail in the Appendix
3. Hereafter we assume that~58! holds, and hence also thatP1(t,s)5p1.

Now the constraint says

2p1S P26
]X2

]s D5 (
k51

d22 S Pk6
]Xk

]s D 2

, ~59!

or, equivalently,

2p1P25 (
k51

d22

~Pk!21S ]Xk

]s D 2

, 2p1
]X2

]s
52(

k51

d22

Pk
]Xk

]s
. ~60!
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Next we expandXm,Pm in eigenfunctions of (2]2/]s2) with Neumann boundary conditions
i.e., in a cosine series. We have

Xm~t,s!5xm~t!1 (
n51

`

&xn
m~t!cosns,

~61!

Pm~t,s!5pm~t!1 (
n51

`

&pn
m~t!cosns,

where

xn
m~t!5

&

p E
0

p

Xm~t,s!cosns ds,

~62!

pn
m~t!5

&

p E
0

p

Pm~t,s!cosns ds.

The gauge condition says thatx15p1t and thatxn
150 and hencepn

15dxn
1/dt50. The

constraints expressp2,pn
2 ,xn

2 as functions ofp1,p̃,p̃n ,x̃n where p̃5(p1,...,pd22), etc. In par-
ticular, we have

p25
1

2p1 S p̃21 (
n51

`

( p̃n
21n2x̃n

2) D . ~63!

The remaining variables arex2, p1, x̃, p̃, x̃n , p̃n and they satisfy

dx2/dt5p2, dp1/dt50,

dxk/dt5pk, dpk/dt50, ~64!

dxn
k/dt5pn

k , dpn
k/dt52n2xn

k .

This is not a Hamiltonian system, but it is if we drop (p1,x2) and take a Hamiltonian

Ĥ5p1p25
1

2 S p̃21 (
n51

`

p̃n
21n2x̃n

2D . ~65!

Now, changing variables fromt to x15p1t we get

dx2/dx15p2/p1, dp1/dx150,

dxk/dx15pk/p1, dpk/dx150, ~66!

dxn
k/dx15pn

k/p1, dpn
k/dx15~2n2/p1!xn

k .

This is a Hamiltonian system with canonical variables (p1,x2), (xk,pk), (xn
k ,pn

k) and Hamil-
tonianH5p2 given by ~63!.

B. Quantum strings

Now we quantize the above system. We seek operatorsx2, p1, xk, pk, xn
k , pn

k for 1<k
<d22, 1<n, which at equal times satisfy the canonical commutation relatio6
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@p1, x2#5 i ,

@xj , pk#5 id jk , ~67!

@xn
j , pm

k #5 id jkdnm .

Furthermore, they should satisfy the dynamical equations~66! andx1-evolution should be imple-
mented with a Hamiltonian which has spectrum bounded below.

We start by considering onlyxk, pk, xn
k , pn

k and solving the equations~64!. Just as an
N-component scalar field onRd has a simple definition on the Fock space overL2(Rd,CN) or its
Fourier transform, so the transverse modes of a string inRd parameterized by@0, p# have a simple
definition on the Fock space overL2(@0,p#,Cd22) or its cosine transforml 2(N,Cd22). This is the
same asl 2

„N3(1,...,d22)… and we call it simplyl 2 so that

l 25H $cn
k%: (

k51

d22

(
n51

`

ucn
ku2,`J . ~68!

We have excluded the zero modes, which are treated separately. Thus the Hilbert space is
the Fock spaceF( l 2) but rather

L2~Rd22! ^ F~ l 2!. ~69!

In this space letpk5pk
^ I be the multiplication operator and letxk5 i ]/]pk

^ I , just as for the
single particle. Also leten

k be the orthonormal basis inl 2 consisting of the characteristic function
of the points ~n,k!. Let an

k5I ^ a(en
k) and let (an

k)* 5I ^ „a(en
k)…* and define xn

k

5(2n)21/2
„(an

k)* 1an
k
… and pn

k5 i (n/2)1/2
„(an

k)* 2an
k
…. These satisfy the commutation relation

and the solution to~64! with these operators att50 is

xk~t!5xk1pkt,

pk~t!5pk,
~70!

xn
k~t!5~2n!21/2

„eint~an
k!* 1e2 intan

k
…,

pn
k~t!5 i ~n/2!1/2

„eint~an
k!* 2e2 intan

k
….

We can recover the full string operatorXk(t,s) as in ~61!. In the literature these formulas ar
usually written in terms ofan

k52 iAnan
k anda2n

k 5 iAn(an
k)* .

Now t-evolution is writtenxn
k(t)5eiĤ txn

ke2 iĤ t, etc., where the evolution operator ise2 iĤ t

5e2 iat
„e2 i ( p̃)2t/2

^ G(e2 int)… for any constanta. The generator is

Ĥ5
p̃2

2
1N2a. ~71!

Here N5I ^ N is defined byN5dG(n)[ id/dtG(e2 int)u t50 . It is called the number operato
although the terminology is different from field theory wheredG(1) would be called the numbe
operator. It can also be written

N5(
k,n

n~an
k!* ~an

k!5
1

2 (
k,n

:~pn
k!21n2~xn

k!2: . ~72!

Thus the quantumĤ is obtained from the classicalĤ by Wick ordering and~possibly! adjusting
by a constant.
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Now add the last pair of variablesp1,x2. Taking our cue from the particle quantization w
tensor inL2(R1,dp1/2p1) and define

H5L2S R1,
dp1

2p1D ^ L2~Rd22,dp̃! ^ F~ l 2!

5L2S R13Rd22,
dp1dp̃

2p1 D ^ F~ l 2!

5L2S R13Rd22,F~ l 2!,
dp1dp̃

2p1 D . ~73!

Here we have listed some naturally isomorphic Hilbert spaces. The last is the square inte
F( l 2)-valued functions onR13Rd22.

Now let p1 be the multiplication operator andx252 i ]/]p11 i /2p1 just as in~19!. Classi-
cally p2 is Ĥ/p1, and we take this as the quantum definition as well so

p25
Ĥ

p1 5
p̃212~N2a!

2p1 . ~74!

All these operators can be thought of as acting onC0
`
„R13Rd22,F0( l 2)…, a dense domain inH.

For t evolution we takex2(t)5x21p2t andp1(t)5p1 and then~64! is solved.
Now we replacet by x1/p1 to get a solution of~66!. We have

x2~x1!5x21~p2/p1!x1,

p1~x1!5p1,

xk~x1!5xk1~pk/p1!x1,
~75!

pk~x1!5pk,

xn
k~x1!5~2n!21/2~einx1/p1

~an
k!* 1e2 inx1/p1

an
k!,

pn
k~x1!5 i ~n/2!1/2~einx1/p1

~an
k!* 2e2 inx1/p1

an
k!.

The x1-evolution is implemented bye2 iĤ x1/p1
, which is writtene2 iHx1

where

H5
Ĥ

p1 5p2. ~76!

Space–time translations only change the center of mass, or to put it another way, th
momentum is the center of mass momentum. So space–time translations are represente
unitary operators

U~a!5exp~ ip2a11 ip1a22 i p̃•ã! ~77!

with p2 as above. The mass operator is

M252p1p22 p̃252~N2a! ~78!

and the spectrum is$22a,22a12,22a14,...% with increasing multiplicity.
Then there is the question of whether there is a unitary representation of the Poincare

with the translation subgroup as above. Here there is a well-known anomaly in the commut
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the generators of the Lorentz transformation. The anomaly vanishes if and only ifd526 anda
51. One expects that in this case the unitary representation of the Poincare group exists, a
there is apparently no rigorous proof. Witha51 the spectrum starts at22 which is the tachyon.

C. String wave function

The string wave functionc is in H5L2
„R13Rd22,F( l 2),dp1dp̃/2p1

…. However, the center
of mass coordinatesxk,x2 have a momentum space representation, and the the mode coord
xn

k have a harmonic oscillator representation. We also want to change to a coordinate repr
tion in which these are multiplication operators.

First we take the inverse Fourier transform so thatx2,xk are multiplication operators. At the
same time we pass to the Schrodinger picture and incorporate thex1 evolution. Thus we define

c~x1,x2,x̃!5~2p!2~d21!/2E E
0

`

e2 ip2x12 ip1x21 i p̃ x̃c~p1,p̃!
dp1dp̃

~2p1!1/2, ~79!

wherep2 is defined by~74!. If we assume thatcPC0
`
„R13Rd22,F0( l 2)…, thenc(x1,x2,x̃) is a

smoothF( l 2)-valued function onRd. As such it satisfies the equation

„h822~N2a!…c50, ~80!

which generalizes the Klein–Gordon equation.
On the other hand, we can represent all thexn

k as multiplication operators as follows.~See, for
example, Ref. 7, p. 228.! Consider the Gaussian random process indexed by~n, k! with covariance
(2n)21. This consists of a probability measure space~Q, m! and Gaussian random variablesxn

k

such that*xn
kxn8

k8 dm5(2n)21dnn8dkk8 . The spaceQ can be thought of as a space of sequen
$xn

k% and the functionsxn
k as the coordinates. There is a unitary operatorS from L2(Q,dm) to

F( l 2) such that S•15V05the Fock vacuum, andS21xn
kS5xn

k , where on the left xn
k

5(2n)21/2
„(an

k)* 1an
k
… and on the right it is multiplication byxn

k . UsingS, states and operators i
F( l 2) can be represented inL2(Q,dm). The operatorspn

k , N become differential operators, abo
which we will say more later.

If we make both changes at once the wave functions are a functions fromRd to L2(Q,dm).
Hence they are functions onRd3Q and can be written

c~x,x̃1 ,x̃2 ,...!, ~81!

wherex5(x1,x2,x̃).

IV. STRING FIELDS

A. Center of mass localization

First consider the multistring quantum mechanics. The single-string Hilbert spaceH
5L2

„R13Rd22,F( l 2),dp1dp̃/2p1
… and x1-evolution is given by e2 iHx1

where H

5„p̃212(N2a)…/2p1. For many strings we take the Fock spaceF(H) and the evolution operato
is G(e2 iHx1

). More generally,U(a)5G„U(a)… gives a representation of the translation group
the Fock space.

We want to define a field operator on this Hilbert space, and we proceed by analogy with
field theory. The field operator should be a operator version of real-valued wave functionsc(x) as
in ~79!. Real means real under the isomorphismF( l 2)>L2(Q,dm). The wave function can be
regarded as anF( l 2)-valued distribution in the sense that

^F,c&5E „F~x!,c~x!…F dx ~82!
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is a continuous function on real-valuedFPC0
`
„Rd,F0( l 2)…. Correspondingly, we ask for sym-

metric operatorsF(F) on F~H! defined, linear, and continuous in realFPC0
`
„Rd,F0( l 2)…. The

field operator should satisfy the same equation as the wave function, that is,„h822(N2a)…F
50 This should be understood in the sense of distributions, namely,

F~„h822~N2a!…F !50. ~83!

To fulfill these requirements follow~36! and define for realGPC0
`
„Rd21,F0( l 2)… an opera-

tor F(x1,G) on F~H! by

F~x1,G!5a* ~eiHx1
G#!1a~eiHx1

G#!, ~84!

where G#(p1,p̃)5G̃(2p1,p̃). Just as for point fields, this can be motivated by a canon
quantization procedure for solutions of„h822(N2a)…F50. Also as for point fields the opera-
tor is well defined under certain restrictions onG, but we do not tarry on this point.

Now smearing inx1 as well, we define for realFPC0
`
„Rd,F0( l 2)…

F~F !5a* ~PF !1a~PF !, ~85!

where

~PF !~p1,p̃!5E exp~ iHx1!F̃~x1,2p1,p̃!dx1, ~86!

and whereF̃ denotes the Fourier transform in the lastd21 variables. Just as for point fields w
have the following.

Theorem 3: For real FPC0
`
„Rd,F0( l 2)…,

(1) F(F) is well defined for d>3, a<0 (and d52 if a,0),
(2) F(F) satisfies the field equationF(„h822(N2a)…F)50, and
(3) Under space time translations, U(a)F(F)U(a)215F„F(•2a)….
Proof: For the proof it is convenient to choose an explicit orthonormal basis forF( l 2). The

basis is the occupation number basis and is indexed by sequences of non-negative intea
5$an,k% with 1<n,1<k<d22 and finitely many nonzero entries. The basis elements are

xa5)
n,k

@~an
k!* #ank

Aank!
V0 . ~87!

We have

Nxa5S (
nk

nankDxa . ~88!

For cPF( l 2), let ca5(xa ,c) be the components in these basis elements. Simila
F( l 2)-valued functionsF(x) have componentsFa(x)5„xa ,F(x)….

Now for PF(p1,p̃) we can compute the components as

~PF !a~p1,p̃!5A2pF̃aS 2
p̃21m~a!

2p1 ,2p1,p̃D 5~Pm~a!Fa!~p1,p̃!, ~89!

where

m~a!52XS (
nk

nankD 2aC. ~90!
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To show thatF(F) is well defined we must show thatPF is in H. To see this we expandPF
in the above basis and use~47!, noting thata<0 implies m(a)>0 @and for d52 that a,0
implies m(a).0]. We obtain for theH norm

E E
0

`

i~PF !~p1,p̃!i2
dp1dp̃

2p1

5(
a

E E
0

`

u~Pm~a!Fa!~p1,p̃!u2
dp1dp̃

2p1 <C(
a

iFaiS
2 5CiFiS

2,`. ~91!

Here in the last step we refer to theF( l 2)-valued version of the Schwartz norm~44! and use
xb(]gFa)(x)5(xb]gF)a(x).

The field equation is satisfied sinceP„h822(N2a)…F50 and the covariance follows from
U(a)PF5P„F(•2a)…. Each of these statements can be reduced to the point field case b
panding in the basis. This completes the proof.

Now we define advanced and retarded fundamental solutions for the standard coo
operatorh22(N2a). As for the point field these are defined forFPC0

`
„Rd,F0( l 2)… by

~E6F !~x!5
21

~2p!d/2 E
G63Rd21

eipx

p212~N2a!
F̃~p! dp. ~92!

We have that

~E6F !a5Em~a!
6 Fa , ~93!

whereEm
6 is defined in~32!. This shows that the support ofE6F is contained in the future/past o

the support ofF. Define as beforeE5E12E2.
If F1 ,F2PC0

`
„Rd,F0( l 2)… are test functions in light cone coordinates, letF̂1 , F̂2 be the

expression in standard coordinates as in~48!. The main result is as follows:
Theorem 4: (Locality) For F1 , F2 as above,

@F~F1!,F~F2!#5^F̂1 ,EF̂2&. ~94!

The commutator vanishes if F1 , F2 have spacelike separated supports.
Proof: If F is real, thenFa5(xa ,F) is real since in theL2(Q,dm) representationF is real by

definition and thexa correspond to Hermite polynomials which are real. Then, by our ea
result ~50!,

@F~F1!,F~F2!#52i Im~PF1 ,PF2!H

5(
a

2i Im~Pm~a!F1a ,Pm~a!F2a!H1

5(
a

^F̂1a ,Em~a!F̂2a&5^F̂1 ,EF̂2&. ~95!

If suppF̂1 and suppF̂2 are space like separated, then suppF̂1a and suppF̂2a are spacelike sepa
rated ~since suppF̂a,suppF̂), hence ^F̂1a ,Em(a)F̂2a&50 and the commutator vanishe
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Remarks:

~1! The result still holds for the critical theoryd526, a51 provided the tachyon is suppresse
i.e., providedF1,05F2,050. In this casea50 does not contribute andm(a)>0 still holds.
If we combine the locality result with a treatment of Lorentz covariance ford526, a51, it
may be possible to show that the field operatorsF(F) generate localC* algebras satisfying
all the Haag–Kastler axioms.

~2! We expect that the locality result would hold for any free string theory in the light cone ga
i.e., closed strings, superstrings, etc. For critical superstrings ind510 the tachyon is absen
from the start and one would not have to remove it.2

There is some speculation about interacting strings in Ref. 8.
~3! One can also formulate the question in a covariant gauge. However, the covariant strin

operator then contains certain projection operators which are difficult to analyze, and so
is no result as yet. See also Ref. 9.

B. String light cone

Now we go for the stronger result of Ref. 1. In the Hilbert spacel 2 we consider the finite
dimensional subspacesl N

2 which are spanned by the vectorsen
k with 1<k<d22 and 1<n<N.

Correspondingly, the Fock spaceF( l 2) has the subspaceF( l N
2 ). We are going take our tes

functions~and hence fields! to beF( l N
2 ) valued for some arbitraryN. Since the union of the space

F( l N
2 ) is dense inF( l 2) we do not expect to miss anything important with this restriction.
There is a unitary operatorS from L2(RN(d22),dmN) to F( l N

2 ) wheredmN is the Gaussian
measure

dmN~ x̃1,...,x̃N!5 )
n51

N

~n/p!~d22!/2e2nx̃n
2
dx̃n . ~96!

The operator is determined by its action on polynomials which is

S„P~ x̃1 ,...,x̃N!…5P~ x̃1 ,...,x̃N!V0 , ~97!

where on the rightx̃n is the Fock space operator. This is the finite variable version of
previously definedS.

Under the inverse mapping operators onF( l N
2 ) transform as

S21xn
kS5xn

k , S21pn
kS52 i

]

]xn
k 1 inxn

k , S21NS5L, ~98!

where we define the differential operator

L5
1

2 X(
k51

d22

(
n51

N

2S ]

]xn
kD 2

12nxn
k ]

]xn
k C. ~99!

The result for the string light cone is as follows.
Theorem 5: Let F1 ,F2PC0

`
„Rd,F( l N

2 )… and suppose that the transforms S21F̂1 , S21F̂2 are
in C0

`(Rd3RN(d22)) and have spacelike separated supports with respect to the Minkowski m
on Rd3RN(d22). Then

@F~F1!,F~F2!#50. ~100!

Proof: The commutator is evaluated as
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E „~S21F̂1!~x!,~S21EF̂2!~x!… dx

5E ~S21F̂1!~x,x̃1 ,...,x̃N!~S21EF̂2!~x,x̃1 ,...,x̃N! dxdmN~ x̃1 ...x̃N!. ~101!

Now both operatorsN, L are essentially self-adjoint on the polynomial domains. One
show that the full domainD(L) includesC0

`(RN(d22)), and soD(N) includesS@C0
`(RN(d22))#.

Now supposeHPC0
`(Rd,F( l N

2 )) is such thatH(x)PS@C0
`(RN(d22))# for all x, as forF̂1 , F̂2

in the hypotheses the theorem. ThenH(x)PD(N) and one can also deduce that (E6H)(x)
PD(N). It follows that (S21E6H)(x)PD(L). Similarly, it is in D(Lr) for any r and from this
we can deduce that it is a smooth function.

Now we can compute

„h22~L2a!…S21E6H5S21~h22~N2a!…E6H5S21H. ~102!

Furthermore,S21E6H vanishes in the distant past/future. It follows that

S21E6H̃5E6~S21H !, ~103!

whereE6 are the fundamental retarded and advanced solutions for the operator

h22~L2a!52S ]

]x0D 2

1(
k

S ]

]xkD 2

1(
n,k

S ]

]xn
kD 2

22nxn
k ]

]xn
k 12a. ~104!

This is the wave operator inRd3RN(d22) perturbed by some lower-order terms. However, it
well known that lower-order terms do not affect the domain of dependence or the doma
influence. Thus the support ofE6(S21H) is contained in the future/past of the supportS21H as
defined by the metric

2~dx0!21 (
k51

d

~dxk!21 (
k51

d22

(
n51

N

~dxn
k!2. ~105!

Returning now to~101!, we have that the support ofS21E6F̂25E6(S21F̂2) is contained in
the future/past of the support ofS21F̂2 . Hence it vanishes on the support ofS21F̂1 by our
assumption, and so the commutator vanishes.

ACKNOWLEDGMENT

This research was supported by NSF Grant No. PHY9722045.

APPENDIX

1. A characteristic Cauchy problem

One does not generally expect a characteristic Cauchy problem to be well posed. Howe
one restricts the class of solutions, one can obtain existence and uniqueness theorems.
show how this obtains for the Klein–Gordon equation (h2m)u50 in Rd based on development
in the text. We restrict the discussion to the casem.0.

We consider the class of regular solutions of the Klein–Gordon equation, defined
smooth functionsu(x0,x) with datau(0,x)5 f (x) and (]u/]x0)(0,x)5g(x) in the Schwartz space
S(Rd21). Any such solution can be written as a sum of positive and negative frequency pa
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u~x0,x!5~2p!2~d21!/2E e2 iv~p!x01 ip•xh1~p!
dp

2v~p!

1~2p!2~d21!/2E e1 iv~p!x01 ip•xh2~p!
dp

2v~p!
. ~A1!

Hereh6 are given by

h6~p!5v~p! f̃ ~p!6 i g̃~p! ~A2!

and are also inS(Rd21).
We also consider such solutions in light cone coordinates defined by

ǔ~x1,x2,x̃!5uS 1

&
~x11x2!,x̃,

1

&
~x12x2!D . ~A3!

We are interested in the Cauchy problem for the lightlike~characteristic! surfacex052xd21 or
x150. Does the restrictionU(x2,x̃)[ǔ(0,x2,x̃) uniquely determine a solution? First we ha
the following:

Lemma 1: Let u be a regular solution of(h2m)u50. Then the restriction U(x2,x̃) to x1

50 is in S(Rd21). Furthermore, for any multi-indexa and any r there is a constant C such th
the Fourier transform satisfies

u]aŨ~p1,p̃!u<Cup1ur . ~A4!

Proof: We have forU(x2,x̃) the expression

~2p!2~d21!/2E expX2 i S v1pd21

&
D x2Ceip̃• x̃h1~ p̃,pd21!

dp̃dpd21

2v~ p̃,pd21!

1~2p!2~d21!/2E expXi S v1pd21

&
D x2Ceip̃• x̃h2~ p̃,2pd21!

dp̃dpd21

2v~ p̃,pd21!
. ~A5!

Now make the change of variablespd21→p1 as in ~21! and we find

~2p!2~d21!/2E E
0

`

e2 ip1x21 i p̃• x̃h1Xp̃,
1

&
S p12

p̃21m

2p1 D C dp1dp̃

2p1

1~2p!2~d21!/2E E
0

`

eip1x21 i p̃• x̃h2Xp̃,2
1

&
S p12

p̃21m

2p1 D C dp1dp̃

2p1 . ~A6!

From this we identify

Ũ~p1,p̃!55
2h1Xp̃,2

1

&
S p12

p̃21m

2p1 D CY 2p1, p1.0,

0, p150,

h2Xp̃,2
1

&
S p12

p̃21m

2p1 D CY 2p1, p1,0.

~A7!

We show thatŨ is rapidly decreasing at infinity, and is rapidly vanishing asp1→0. Sinceh6

are Schwartz functions we have
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uŨ~p1,p̃!u<CS 11u p̃u1Up12
p̃21m

2p1 U D 2N

up1u21 ~A8!

for anyN. If p̃21m<(p1)2, we haveup12( p̃21m)/2p1u>up1u/2 and the rapid decrease follow
from ~A8!. If m/4<(p1)2< p̃21m, we drop this factor and getuŨ(p1,p̃)u<C(11u p̃u)2N, which
gives the rapid decrease in this region. Finally, if (p1)2<m/4, then up12( p̃21m)/2p1u
>m/4up1u and we obtain

uŨ~p1,p̃!u<C~11u p̃u!2N/2up1uN/221. ~A9!

This gives the rapid decrease and also establishes the bound~A4! for a50.
The same bounds hold for all partial derivatives ofŨ for p1Þ0. In particular, they all

converge to zero asp1→0. From this one can deduce thatŨ is smooth. HenceŨ is in S(Rd21)
and so isU.

This result tells us how to pose the existence and uniqueness result.
Theorem A1: Let g(x2,x̃)PS(Rd21) have a Fourier transform g˜ (p1,p̃) which satisfies

(A4). Then there is a unique regular solution of(h2m)u50 such that the restriction to x1

50 satisfies U(x2,x̃)5g(x2,x̃).
Proof: Let u be such a solution withg50. Thenh650 by ~A7! and sou50. This proves the

uniqueness.
For existence we defineh6 by

h6~ p̃,pd21!572p1g̃~p1,p̃! ~A10!

evaluated at

p15
1

&
„6v~ p̃,pd21!2pd21

…. ~A11!

This is a smooth function and we have

uh6~ p̃,pd21!u<C~11uv~ p̃,pd21!7pd21u1u p̃u!2N. ~A12!

To see it is rapidly decreasing consider several cases. For7pd21>0 the above bound suffices
and if 21<7pd21<0 just the (11u p̃u)2N suffices. Finally, if7pd21,21, we useug̃(p1,p̃)u
<Cup1ur to obtain

uh6~ p̃,pd21!u<Cuv~ p̃,pd21!7pd21ur 11<CU p̃21m

2pd21U r 11

. ~A13!

A convex combination of this bound and a (11u p̃u)2N bound yields the rapid decrease in th
region. The same bounds hold for all the partial derivatives ofh6 . Henceh6PS(Rd21).

Now u defined by~A1! is a regular solution, and we have chosenh6 so thatŨ computed in
~A7! is just g̃. HenceU5g.

2. Canonical quantization for fields

We quantize the space of solutions of the Klein–Gordon equation (h2m)u50. There is a
natural symplectic form on this space given by

s~u1 ,u2!5E
S
S u1

]u2

]n
2u2

]u1

]n D ds, ~A14!
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where S is a spacelike hypersurface with normalnm and and forward normal derivative]/]n
5nm]/]xm. The form is independent of the choice of the surface. Quantization can be regard
asking for a field operatorf such that

@s~f,u1!,s~f,u2!#5 is~u1 ,u2! ~A15!

for any solutionsu1 ,u2 . This formulation generalizes nicely to manifolds; see, for example, R
10.

In the standard formulation one takes the surfaceS to be x050, in which case]/]n
5]/]x0. Solutionsu(x) are identified with their datau(0,x)5 f (x) and (]u/]x0)(0,x)5g(x) and
the form becomes

s~ f 1 ,g1 ; f 2 ,g2!5E „f 1~x!g2~x!2g1~x! f 2~x!… dx. ~A16!

For quantization one takess(f,p; f ,g)5f(g)2p( f ) with the standard commutato
@f( f ), p(g)#5 i * f (x)g(x) dx, and obtains the announced

@s~f,p; f 1 ,g1!,s~f,p; f 2 ,g2!#5 is~ f 1 ,g1 ; f 2 ,g2!. ~A17!

For the light cone formulation the surfaceS is x150. This is lightlike, but can be regarded a
a limit of spacelike hypersurfaces. Solutions are written in light cone coordinatesǔ(x1,x2,x̃) and
are identified with their restrictionǔ(0,x2,x̃)5 f (x2,x̃) to this surface. As we have seen in th
Appendix, Sec. 1, this is justified under certain circumstances. The forward derivative is]/]n
5]/]x2, and the symplectic form becomes, after an integration by parts,

s~ f 1 , f 2!52E f 1~x2,x̃!
] f 2

]x2 ~x2,x̃! dx2dx̃. ~A18!

There is now no natural split into coordinates and momenta.
For quantization we seek for a field operatorf(x2,x̃) such that the smeared versio

s(f, f )52f(] f /]x2) satisfies~A15!, that is so that

FfS ] f 1

]x2D , fS ] f 2

]x2D G5
i

2
s~ f 1 , f 2!. ~A19!

3. Existence of the light cone gauge

Let Xm(t,s) be an open string. Thus it satisfies the wave equation]2Xm/]t22]2Xm/]s2

50, the constraint (]X/]t6]X/]s)250, and the forward moving condition]X0/]t.0. We
assumeXm(t,s) is defined on the whole plane and impose Neumann boundary condition
requiring that as a function ofs it is even and periodic with period 2p. We investigate the
circumstances under which one can find a conformal change of coordinates so that in th
coordinatesX1(t,s)5p1t.

We work in coordinatesu5t1s, v5t2s in terms of which the equation is]2Xm/]u]v
50 and the constraint is (]X/]u)25(]X/]v)250. The general solution of the equation has t
form Xm(u,v)5 f m(u)1gm(v), or, in the original coordinates,Xm(t,s)5 f m(t1s)
1gm(t2s). The Neumann boundary conditions are equivalent to the condition thatf m5gm up to
a constant~and we may as well take them equal!, and thatf 8 is periodic with period 2p. The latter
condition implies that

f m~u!5amu1hm~u!, ~A20!

wherehm is periodic with period 2p and
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am5~2p!21E
2p

p

~ f m!8~s! ds5~2p!21
„f m~p!2 f m~2p!…. ~A21!

A short calculation shows that 2am5pm.
The constraint equation becomes (f 8)250 and the forward moving condition become

( f 0)8.0. Thus we have

~ f 0!85S (
k51

d21

„~ f k!8…2D 1/2

. ~A22!

It follows that

~ f 0!8>u~ f d21!8u ~A23!

and hence that

~ f 1!8>0. ~A24!

We make the further mild restriction that

~ f 1!8.0. ~A25!

This is a condition on initial data. It implies thata1.0.
Now we can state the following theorem.
Theorem A2: Let X be an open string so that

Xm~t,s!5 f m~t1s!1 f m~t2s! ~A26!

with f8 smooth, f 8 periodic, ( f 8)250, and ( f 0)8.0. If also ( f 1)8.0, then there is a conforma

diffeomorphism(t,s)→( t̃,s̃) such that in the new coordinates

X̃m~ t̃,s̃ !5 f̃ m~ t̃1s̃ !1 f̃ m~ t̃2s̃ !, ~A27!

where f̃ satisfies the same conditions and in addition

X̃1~ t̃,s̃ !5p1t̃. ~A28!

Proof: The condition~A25! and the periodicity imply that (f 1)8.e.0, and it follows that
ũ5a(u)[(a1)21f 1(u) is a diffeomorphism onR. With this coordinate change we define

f̃ m~ ũ!5 f m
„a21~ ũ!…5 f m

„~ f 1!21~a1ũ!…. ~A29!

Then f̃ 1(ũ)5a1ũ.
Now ũ5a(u),ṽ5a(v) is a conformal diffeomorphism onR2 with the Minkowski metric

dudv. ThenXm(u,v)5 f m(u)1 f m(v) becomes in the new coordinates

X̃m~ ũ,ṽ !5 f̃ m~ ũ!1 f̃ m~ ṽ !. ~A30!

Hence

X̃1~ ũ,ṽ !5a1~ ũ1 ṽ !, ~A31!

and introducingt̃5(ũ1 ṽ)/2 ands̃5(ũ2 ṽ)/2 we get that

X̃1~ t̃,s̃ !52a1t̃5p1t̃ ~A32!
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as desired.
It remains to show thatf̃ has the same properties asf. To see thatf̃ 8 is periodic, note that

a(u12p)5a(u)12p. Hencea21(ũ12p)5a21(ũ)12p and the periodicity follows from

~ f̃ m!8~ ũ!5
~ f m!8„a21~ ũ!…

a8„a21~ ũ!…
. ~A33!

The other conditions follow as well.
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Semi-classical study of the origin of quantized Hall
conductance in periodic potentials
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The semi-classical study of the integer quantum Hall conductivity is investigated
for electrons in a biperiodic potentialV(x,y). The Hall conductivity is due to the
tunnelling effect and we concentrate our study on potentials having three wells in a
periodic cell. We show that a nonzero topological conductivity requires special
conditions for the positions and shapes of the wells. The results are derived by
changing the potential, using the topological nature of Chern indices. Our numeri-
cal calculations show that these semi-classical results are still valid for small value
of B. © 2000 American Institute of Physics.@S0022-2488~00!00101-8#

I. INTRODUCTION

Some physical phenomena happen to be expressible from topological properties of s
models. The integer Hall conductivity is one of them.1,2 In a simple model of noninteracting
electrons moving in a two-dimensional periodic potentialV(x,y) subject to a uniform perpendicu
lar magnetic fieldBz and a low electric fieldEy , the Hall conductivitysxy of a given filled
Landau electronic band turns out to be proportional to an integerC:

sxy5
e2

h
C.

HereC is the Chern index of the band, describing the topology of its fiber bundle structure1,3–5

For a better understanding of this phenomenon, and to bring out the conditions of po
experimental measures, we investigate in this paper the value ofC as a function of the potentialV.
This is done by semi-classical methods, and the tunnelling effect appears to be the funda
mechanism for a nonzero conductivity.

In the limit of high magnetic fieldBz , the above model is mapped onto the well-know
Harper model: the potentialV is considered as a perturbation of the cyclotron motion, and
averaging method of mechanics gives an effective Hamiltonian equal to the average ofV on the
cyclotron circles. We neglect the coupling between the Landau bands.6 For a high magnetic field
~hence for a small cyclotron radius!, this transformation gives an effective Hamiltonian Heff(q,p)
;V(q,p), which is biperiodic in position and momentum~the phase space is a 2D torus!, and an
effective Planck constantheff5hc/(eB). In this approximation, trajectories are the contours
Heff;V. Furthermore, the expression ofheff shows that the high magnetic field regime correspo
to the semi-classical limit. This model will be the starting point of our study in the next sec
For the sake of simplicity, we will denote\eff by \ in the sequel. Quantum mechanics on the to
has been extensively used as a convenient framework to study basic properties of the
classical limit like quantum chaos7–10 or the tunnelling effect.11–13

a!Electronic mail: faure@labs.polycnrs-gre.fr
b!Electronic mail: parisse@fourier:ujf-grenoble.fr
620022-2488/2000/41(1)/62/14/$17.00 © 2000 American Institute of Physics
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The new results presented in this paper are the conditions under which the tunnelling
between three different wells can be responsible for a nonzero Hall conductivity. The cond
will be expressed by specifying the special positions the three wells must have inside a pe
cell.

It is worth mentioning that due to its topological aspect, it is natural to study the Chern i
values in a generic situation, because topological properties are robust against perturb
Second, in the generic ensemble of Hamiltonians under study, the integer values of the
indices are characterized by the position of the boundary where their value changes by on
These boundaries turn out to correspond to degeneracies in the spectrum.14

Under reasonable assumptions on the tunneling interaction in phase space, we find th
boundary of constant Chern index domain form ellipses in any generic two-dimensional sub
of the Hamiltonian’s space: see Sec. V for details. Numerical calculations in Sec. VI confirm
results established analytically in the limit heff→0, and show that their validity extends even f
values of heff not so small.

These results extend previous work by the first author for the Hall conductivity resulting
the tunneling effect between two wells in a given periodic cell.15,16 Although the methods looks
similar, calculations and results are quite different.

II. QUANTUM MECHANICS ON THE TORUS

Let us consider a one-degree of freedom Hamiltonian~hence an integrable dynamics!, peri-
odic both in positionq and momentump, with respective periodsQ andP:

H~q,p!5H~q1Q,p!5H~q,p1P!. ~1!

The Hilbert space isL2(R). We denote byT̂Q ~respectively,T̂P) the translation operator by
one period:

T̂Q5exp~2 iQp̂/\!, T̂p5exp~ iPq̂/\!.

Quantum mechanically speaking, the periodicity Eq.~1! reads

@Ĥ,T̂Q#5@Ĥ, T̂p#50. ~2!

To continue, we now have to assume that

@ T̂Q , T̂p#50. ~3!

It is easy to prove thatT̂QT̂P5exp(2iQP/\)T̂PT̂Q , hence~3! is fulfilled if and only if there exists
an integerN such that

N5
QP

2p\
PN* . ~4!

This hypothesis~4! can be regarded as a geometric quantization condition, which states that
is an integer number of Planck cells in the phase space. The semi-classical limit\→0 corresponds
to the limit N→1`. We now assume that hypothesis~4! is fulfilled.

According to the commutation relations~2! and~3!, the Hilbert spaceL2(R) may be decom-
posed as a direct sum of the eigenspaces of the translation operatorsT̂Q and T̂P :

L2~R!5E E HN~u1 ,u2! du1 du2 , ~5!
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HN~u1 ,u2!5H uc& such thatH T̂Quc&5exp~ iu1!uc&

T̂puc&5exp~ iu2!uc&
J ,

with (u1 ,u2)P@0,2p@2 related to the periodicity of the wave function under translations by
elementary cell. The space of the parameters (u1 ,u2) has also the topology of a torus, and will b
denoted byTu . It is well known that7

dimCHN~u1 ,u2!5N.

The spectrum of Hˆ in HN(u1 ,u2) will be noted

Ĥucn~u1 ,u2!&5En~u1 ,u2!ucn~u1 ,u2!&, n51,...,N.

For a given leveln, as (u1 ,u2)PTu are varying, the energy levelEn(u1 ,u2) form a band, and
@assuming thatEn(u1 ,u2) is never degenerate;u#, the eigenvectorsucn(u1 ,u2)& form a complex-
line-bundle~of fiber>C{l) in the projective space of the bundle HN→Tu . The topology of this
line bundle is characterized by an integerCnPZ, called the Chern index.1,3–5

III. SEMI-CLASSICAL EXPECTATION OF THE CHERN INDEX

The question is now to guess the value of the Chern index of a given band from cla
informations. The first result in this direction is a characterization of the Chern index from
Husimi distribution made by Leboeufet al.7

If there exists some point (q,p)PTqp of the phase space, such that

;~u1 ,u2!PTu , hcn~u1 ,u2!~q,p!Þ0,

thenCn50.
The proof is quite simple: if̂qpucn(u1 ,u2)& is never zero, then we can select an eigens

ucn(u1 ,u2)& in each fiber such that arg (^qpucn(u1,u2)&)50, giving us a nonvanishing section of th
bundle. This section is also a global frame, hence the bundle is trivial:Cn50.

As a corollary, this gives an important semi-classical result about Chern indices:7 if the energy
level SE5$(q,p) such that H(q,p)5E% consists of a single contractible trajectory, then the Ch
index of the bands of energy aroundE are semi-classically zero~more precisely, if we consider a
\-parametrized family of energy bands tending toE as\ tends to 0, then for\ sufficiently small,
the Chern index of the energy band must be 0!.

Indeed the Wentzel–Kremers–Brillouin~WKB! construction of quasi-modes in phas
space17–19shows that the Husimi distributionhcn(u1 ,u2)(q,p) of the eigenstates is highly concen
trated and nonvanishing in the vicinity of the trajectory. Thus, taking~q,p! on the classical trajec
tory we obtainCn50.

Hence, to get a nonzero Chern index, we must investigate situations where the energ
SE is not connected or is noncontractible. In this paper, we will study the first situation.
example, if the energy level is made of two connected componentsG1 and G2 , then from the
tunnelling effect, the eigenstatesucn(u1 ,u2)& are a superposition of modesuc1& and uc2& local-
ized on each trajectory. If this superposition is fluctuating enough when (u1 ,u2) are varying, then
hcn(u1 ,u2)(q,p) can vanish for every point~q,p! and we expect to getCnÞ0. In fact, this is
possible only for special configurations of the two trajectories. This has been investigated in
in Ref. 15, showing that in specific situations, we can observeCn561. In the following sections,
we will study the~more complicated! case of three contractible trajectories of energyE.
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IV. GENERIC FAMILY OF HAMILTONIAN H
„g1 ,...,gp

…, CHERN INDICES AND
DEGENERACIES

As in Ref. 15, the strategy we will adopt to calculate the Chern indices is to build a pa
Hamiltonians H(t), tP@0,1# such that H~0!5H and H~1! has zero Chern indices@for H~1! no
tunnelling effect occurs so eigenfunctions are supported by only one connected and contr
trajectory in the phase space, hence Chern indices are zero#. Along the path H(t), Chern indices
are constant because a continuous application with discrete values is constant. The exce
when a degeneracy occurs between eigenvalues. In this case the Chern index changes b61. In
order to calculate the Chern indices, we are therefore left to compute these degeneracies.

In this section, we will study a generic parametrized Hamiltonian family~in other words, we
will consider a submanifold of the space of Hamiltonians!. Our main interest is to detect eigen
value degeneracies.

Our investigations are based on an essential property:20 for a generic family of Hermitian
matrices, degeneracies between two levels of the spectrum occur with codimension 3. Co
now a parametrized family of classical Hamiltonian Hg on the torus with external parametersg
5(g1 ,...,gp). The shape and position of each trajectory in the phase space depend on
classical parametersg1 ,...,gp . On the quantum side, the matrix of the Hamiltonian in a spec
base, depends on the classical parametersg1 ,...,gp and on the two quantum parametersu1 ,u2 .
Since degeneracies are of codimension three in the space (u1 ,u2 ,g1 ,...,gp), they are of codi-
mension 1~hyper-surfaces! if we project them onto the space of classical parameters (g1 ,...,gp).
If we cross a degeneracy hyper-surface corresponding to the bandn andn11, the value ofCn and
Cn11 changes respectively by61 and 71 ~because the sum is conserved: cf. Ref. 14!. For
example, in a one-dimensional spaceg, degeneracies appear as points. For a two-dimensi
space (g1 ,g2), degeneracies appear as lines bordering different values of the Chern index
Chern index changes by61 when crossing a line. In the previous section, we mentioned that t
lines occur only if the tunneling effect occur. In the next section, we will determine~in the
semi-classical limit! the location of these lines when the tunneling effect occurs between
trajectories in a periodic cell.

V. DEGENERACIES DUE TO THE TUNNELLING EFFECT BETWEEN THREE
TRAJECTORIES OF ENERGY E

In this section, we consider a generic family of periodic Hamiltonians Hg . We will use local
coordinatesg5(g1 ,...,gp).

We assume that for a given value ofE, the intersection of the periodic torus with the ener
level SE consists of three contractible trajectoriesG i ~Fig. 1!:

FIG. 1. The energy levelE in the phase space.
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(EùTqp5$~q,p!PTqp /H~q,p!5E%5G1øG2øG3 .

We do not assume thatE is noncritical since construction of quasi-modes along critical trajecto
may be done as in Refs. 21 and 22. The only characteristic we will use is that the mean d
between energy levels is of order\/uln \u for a critical trajectory, whereas it is of order\ for a
noncritical trajectory.

Our purpose is now to establish under which conditions~shape and locations of the traject
ries G i) degeneracies in the spectrum ofĤ may occur semi-classically near the energyE. More
precisely, we will describe the generic degeneracy lines in the spaceg.

By WKB methods, it is possible to construct a quasi-mode denotedu1& localized on the
trajectory G1 . The same construction applies for the trajectoriesG2 and G3 and we get the
functionsu2& and u3& micro-locally supported onG2 andG3 , respectively.

From u1&, u2&, and u3& we construct Floquet-periodic quasi-modes:

uw i&5P~u1 ,u2!u i & for i 51,2,3, ~6!

whereP(u1 ,u2) is the operator fromL2(R) to HN(u1 ,u2) which makes a given state Floque
periodic:

P~u1 ,u2!ª (
n1 ,n2PZ2

exp~2 in1u12 in2u2!TQ
n1TP

n2. ~7!

Figures 2 and 3 show the micro-local support ofu1& and uw1&.
Now, we want to expand the functionsuw i& using~6! and~7! and evaluate the scalar product

We obtain

^w1uĤuw1&5^1uĤu1&12 (
nPD

Re„exp~2 inu!^1uĤu1n&…, ~8!

where

~i! n5(n1 ,n2), u5(u1 ,u2),
~ii ! D5$(Z3N)\(2N3$0%)% is the half plan ofn,
~iii ! u1n&5TQ

n1TP
n2u1& is a quasi-mode concentrated on the translated trajectory (G1)n1 ,n2

in the
(n1 ,n2) cell of the phase space.

FIG. 2. Micro-local support of the statesu1& in the phase space.
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There is generically one dominant term in the sum, corresponding to the dominant tunn
interaction between the quasi-modeu1& localized in cell~0, 0! and the quasi-modeu1n& localized in
the cell (n1 ,n2)Þ(0,0):

^w1uHuw1&5Ẽ11m11cos~w112n11u!1¯ . ~9!

Similar asymptotics hold for the other diagonal termsi 51,2,3.
A nondiagonal term is, e.g.,

^w1uĤuw2&5 (
nPZ2

exp~2 inu!^1uĤu2n&, ~10!

and there is generically only one leading term due to the strongest tunnelling interaction be
u1& and u2n12

& @located in the celln12:n12 may be, for example,~0, 0! or ~0, 61! or ~61, 0!#, of
strength

^1uĤu2n12
&5m12exp~ iw12!,

wherem12.0. This gives

^w1uĤuw2&5m12exp~ i ~w122n12u!!1¯

and similar expressions for others nondiagonal terms.
We have thus obtained an orthonormal basis (uw1&,uw2&,uw3&) of quasi-modes localized re

spectively near classical trajectoriesG1 , G2 , andG3 . Let A(u1 ,u2) be the matrix of the restriction
of Ĥ to the space of basisuw i&.

We have a continuous mapping on the torusTu5@0,2p#2 into the 333 Hermitian matrices:

A:~u1 ,u2!PTu→A~u1 ,u2!5~ai , j ! i , j 51,2,3,

with asymptotics given by

aii 5Ẽi1mii cos~w i i 2ni i u!, i 51,2,3, ~11!

for the diagonal terms and by

ai j 5mi j expi ~w i j 2ni j u!, i , j 51,2,3, ~12!

FIG. 3. Micro-local support of the stateuw1& in the phase space.
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for the nondiagonal terms, where we have the following.

~i! Ẽi is the energy of the quasi-modesuei& on trajectoryG i .
~ii ! (mi j ,w i j ,ni j ) refer to the tunnelling interaction between the three trajectories (G i) i , i

51,2,3 as sketched in Fig. 4.
~iii ! ni j 5(n1(i j ) ,n2(i j ))PZ2 andu5(u1 ,u2).

We consider (mi j ,w i j ,ni j ) i , j 51,2,3 as fixed. We will study only the dependence ofA with the

parameters (Ẽ1 ,Ẽ2 ,Ẽ3).
If we look at the dependency of the interaction matrix with respect to the external param

g, it is easy to prove that

dgai j 5~dgẼi !d i j 1¯ ,

wheredg denotes the differential. The first term is dominant, since the variation ofẼi is of order
\ ~or \/u ln \u for a critical trajectory!.

Since we are interested in eigenvalue degeneracies, we may subtractẼ3 .I to the interaction
matrix, hence the variation of the shifted interaction matrix with respect tog is described by the

variation ofẼ12Ẽ3 andẼ22Ẽ3 with respect tog. Hence, we will reduce our parameter space
two parametersg1 andg2 . They can be chosen as

g15~Ẽ12Ẽ3!/\, ~13!

g25~Ẽ22Ẽ3!/\. ~14!

If no degeneracy occurs in the spectrum ofA(u1 ,u2) @for all u5(u1 ,u2)PTu], each eigen-
vector family has a well-defined Chern index. Precisely, each eigenvector family (ucn(u)&)u for
n51,2,3 is a submanifold of the projective spaceP(C” 3), homeomorphic toTu . The complex line
bundle structure ofP(C” 3) induces a complex line bundle over this submanifold whose topolog
characterized by its Chern index. For specific values of the parameters@codimension 1 in the spac

of (Ẽi) i ] degeneracies occur and this causes a change of the Chern index.
In this paragraph we will compute these Chern indices and the locus of the degeneracie

space of (Ẽi) i for each family of eigenvector (ucn(u)&)u for n51,2,3.
The locus of the degeneracies we are looking for are lines in the space (g1 ,g2).

FIG. 4. Example of tunnelling interaction.n125n2350, n315(0,1), andn115n225n335(1,0).
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A general property of 333 Hermitian matrices is that a degeneracy occurs for the matrixA if
and only if

I~a12a23a31!50,

a112a221
a12a23

a13
2

a21a13

a23
50, ~15!

a222a331
a13a32

a12
2

a12a23

a13
50.

I stands for imaginary part. Moreover, the degeneracy is between levelsn51,2 ~resp.n52,3) if
R(a12a23a32).0 ~resp.,0!.

The first equation can be written

Q5arg~a12a23a31!5w121w231w312~n121n231n31!u[0 @p#. ~16!

The phaseQ can be seen as the total tunnelling phase for the cycle of traject
(G1 ,G2 ,G3). We want to find solutions inu of this equation for fixed values ofw i j ,ni j . For that
purpose,we assume that(n121n231n31)Þ0. This is a generic assumption. This means that the
cycle of trajectories (G1 ,G2 ,G3) is not contractible on the torusTqp .

To simplify notations, we will assume thatn125n2350, n315(0,1), andni i 5(1,0). This
corresponds to the tunnelling interactions sketched with dashed lines in Fig. 4. For the tunn
problem considered in this paper, we think~without proof! that this case is the general one afte
suitable lattice transformation in SL(2,Z).

Equation~16! then has two solutionsu2[w121w231w31 @p#.
Let

s5exp~ iQ!561.

The two-last equations of Eq.~15! give

Ẽ12Ẽ35sm13S m12

m23
2

m23

m12
D1m33cos~w332u1!2m11cos~w112u1!, ~17!

and similarly forẼ22Ẽ3 .
Let us remark that

A cos~u12a!2B cos~u12b! i5~A cosa2B cosb!cosu11~A sina2B sinb!sinu1

5D cos~u12h!,

where

D5AA21B222AB cos~a2b!,
~18!

~cosh,sinh!5S A cosa2B cosb

D
,
A sina2B sinb

D D .

So we put

K15Am11
2 1m33

2 22m11m33cosw1,
~19!

K25Am22
2 1m33

2 22m22m33cosw2,
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where

w i5w i i 2w33,

and define

Y15m13S m12

m23
2

m23

m12
D , Y25m23S m12

m13
2

m13

m12
D .

From ~17! and~13!, the degeneracy lines in the space (g1 ,g2) are the followingtPR param-
etrized curves (s561):

g1~ t !5„K1 cos~ t2h!2sY1…/\,
~20!

g2~ t !5„K2 cos~ t !2sY2…/\,

wheres561, t5u12h2 , h5h32h2 , and the anglesh2 andh3 may be computed by Eq.~18!.
As t describes@0, 2p#, „g1(t),g2(t)… describes two translated ellipses of axes parallel tog1

56g2 , one for eachsP$21,1%. s51 ~resp.s521) gives the degeneracy line between lev
n51,2 ~resp. levelsn52,3). See Fig. 5. These two ellipses may intersect, but they do not r
intersect in the whole space (u1 ,u2 ,g1 ,g2) because they correspond to two different values ofu2 .

Outside the ellipses, the Chern indices are zero. This is because, wheng1 ,g2→`, the A
matrix goes to a diagonal matrix with trivial eigenvectors. Crossing a degeneracy line chan
Chern index change by61. It can be shown that the value61 is related to the orientation
relatively to the orientation of the parametrized ellipse. From this, we deduce the values
Chern indices in Fig. 5.

We are now ready to present the final result. Consider a generic two-dimensional subma
of the manifold of classical Hamiltonian Hg ~g are coordinates on this manifold, and can
viewed as external parameters of the Hamiltonian!. We have obtained that, in this space, dege
eracy lines are two ellipses@one for each pair of levels~1, 2! and ~2, 3!#.

Note that it make sense to state that the shapes of the curves are ellipses even if the Hg-space
is a manifold. This is because the ellipses are exponentially small, and thus live in the ta
space.

More precisely, there exists a coordinate system (g1 ,g2) ~i.e., a special parametrization of th
Hamiltonian! for which the two ellipses are given by Eq.~20!. The width of the ellipses are give
by the coefficientsK1 ,K2 , whereas the position of the centers are given by coefficie
sY1 ,sY2 ,s561.

It is obvious from Eq.~19! thatK1 ,K2 are exponentially small in the semi-classical limit. Th
is true also forY1 ,Y2 .

We have then two different generic situations in the semi-classical limit:

~1! Case: the nondiagonal termsY1 ,Y2 are exponentially small with respect to the diagonal ter
K1 ,K2 . The two ellipses are identical~see Fig. 6!. At the origin, the three bands of energy w

FIG. 5. Degeneracies lines and value of Chern indices from Eq.~20!.
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have Chern indices of~71, 62, 71!. Outside the ellipse, the Chern indices are~0, 0, 0!. Note
that in the (g1 ,g2) parameter spaces, the ellipses are exponentially small and exponen
flat becauseK1 is exponentially small compare toK2 ~or the inverse!.

~2! Case: the diagonal termsK1 ,K2 are exponentially small with respect to the nondiagonal o
Y1 ,Y2 ~see Fig. 7!. At the scaleYi of the distance between the two centers the degene
lines collapse to two single points as\ tends to 0. Individually these lines are still elliptic
with respect to their own scaleKi .

The nongeneric intermediate case occurs when the diagonal termsKi and nondiagonal terms
Yi are of the same order. Hence the degeneracies are two ellipses (s561) with symmetric
centers. These two ellipses may intersect. Corrections to the leading behavior in the semi-c
limit can modify the shape and sizes of the ellipses~see Sec. VI!.

We now discuss the special translation-symmetric case corresponding to the first calc
of Chern indices done by Thoulesset al.2 For example, take H(q,p) from Eq. ~22! with b5g1

5g250. We constructu2&5T̂P/3u1& and u3&5T̂P/3u2& by translation byP/3 in the momentum
direction. Applying the relationTP/3TQ5e2ipN/3TQTP/3 we obtain

w25w1/252w152
2pN

3
. ~21!

Since the nondiagonalmi j are equal, we are in the first case~double ellipse centered at the orig
of Fig. 6!. Assuming that 3 does not divideN, then we getK15K2 and the precise shape of th
ellipse:

g15
K

\
cos~ t !, g25

K

\
cosS t6

2p

3 D .

We conclude that we get an ellipse of axesg156g2 and eccentricityA2
3.

FIG. 6. Degeneracies lines and value of Chern indices in case 1.

FIG. 7. Degeneracies lines and value of Chern indices in case 2.
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VI. NUMERICAL ILLUSTRATION

More precise informations on how to perform the numerical simulation and also soft
will be available on the web address: http://www-fourier.ujf-grenoble.fr/;parisse or http://
lpm2c.polycnrs-gre.fr/;faure

We take the following Hamiltonian on the torus, parametrized byg1 andg2 :

H~q,p!5cosS 2p
q

QD1cosS 6p
p

PD
14b sinS 2p

q

QD cosS 2p
p

PD
1X~g12g2! cosS 2p

p

PD C1X~2g12g2!sinS 2p
p

PD C.

FIG. 8. Contour levels of Hamiltonian~22!, with b50.2 andg152g2520.1.

FIG. 9. Chern indices for the first three bandsn51,2,3, forN517. Case~a!: The strength of the perturbation isb50.1.
Case~b!: The strength of the perturbation isb50.2.
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The two terms in the first line are the main part of the Hamiltonian. They create
symmetric wells in thep direction in the lower part of the energy spectrum, see Fig. 8. The se
line breaks this symmetry, by moving the second well on the left whenb increases.b can be seen
as a perturbation from the transnational symmetric case. The coefficientsg1 andg2 in the third
line change the depth of wells 1 and 3, respectively. We therefore expect them to act direc

(Ẽ12Ẽ2) and (Ẽ32Ẽ2), respectively, as in Eq.~13!. In Fig. 8 it seems clear that the ma
tunnelling interactions between the well are those sketched in Fig. 4 as assumed for the c
tions of the previous section.

For the numerical calculations, the Hamiltonian~22! has been diagonalized and a curvatu
formula for the Chern indices3 has been used to obtain the Chern indicesCn . Maps of the Chern
indices have been numerically obtained by varying parametersg1 andg2 . For N517 the values
of the Chern indices for the first three energy bandsn51,2,3 are shown in Fig. 9.

In case~a! in Fig. 9, the strength of the perturbation isb50.1. The two ellipses are degene
ated. This is the generic situation depicted in Fig. 6, and the same generic situation as
translation-symmetric case withb50, treated in the previous section. This means that the par
eterb50.1 is small enough to stay in the same generic ensemble.

In case~b! in Fig. 9, the strength of the perturbation isb50.2. The two ellipses are separate
as in the second generic situation, sketched in Fig. 7.

In cases~a! and~b!, the two ellipses have the same shape, in agreement with the semi-cla
results of the previous section.

Figure 10 shows results for a lower value ofN, N511, and for strengthsb50.2 andb
50.25. Here, the generic situations expected in the semi-classical limitN→1` are less visible.
There are still elliptical curves~from a topological point of view!, but their position and shapes a
affected by nonleading corrections with respect toN→1`.

These numerical calculations show that the validity of the analytical results established
limit h51/N→0, extend even for values ofN quite small.

VII. CONCLUSION

In this paper, we have shown in which conditions a nonzero quantum Hall conductivity
occur in the framework of the Harper model, and for the tunnelling between three trajector

FIG. 10. Chern indices for the first three bandsn51,2,3, for N511. Case~a!: The strength of the perturbation isb
50.2. Case~b!: The strength of the perturbation isb50.25.
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a periodic cell. In this framework, the Hall conductivity is proportional to the topological Ch
index. These results were derived semi-classically and give at the same time a descrip
degeneracies in the spectrum.

Currently, one tries to observe experimental signatures of the Harper spectrum~Landau level
substructures! in lateral super-lattices with periods of about 100 nm on GaAs–AlGa
heterojunctions.23,24 Our results could therefore have some experimental importance in the fu

The main mathematical gap in this work is that we do not have results about micro
tunnelling effects~like those obtained by Helffer and Sjo¨strand25 in the Schro¨dinger case!. The
main ideas to solve these difficulties are currently to find upper bounds of the wave funct26

complex paths~estimations of the tunnelling effect by Wilkinson11,12!, or normal forms,27 but the
authors are not aware of a general rigorous result.

Some other related problems could be investigated in the future such as

~i! numerical localization in theg-space of the ellipsis~this requires numeric estimations of th
tunnelling effect!,

~ii ! generic interaction betweenN bands~N-wells tunnelling effect! by a recursive clustering
approach, and

~iii ! the tunnelling effect between noncontractible classical trajectories.
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The following article was originally published in theJournal of Mathematical Physics40, 2584 (1999). Due to a produc-
tion error, the original article was published without the author’s corrections. A corrected version of the artic
reprinted here in its entirety.

A new type of loop independence and SU „N… quantum
Yang–Mills theory in two dimensions
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and Max-Planck-Institut fu¨r Mathematik in den Naturwissenschaften,
Inselstraße 22-26, 04103 Leipzig, Germany

~Received 3 September 1998; accepted for publication 9 February 1999!

The expectation values of Wilson loop products for the pure Euclidean Yang–Mills
theory onR3R given by Ashtekaret al. in the article ‘‘SU(N) Quantum Yang–
Mills Theory in Two Dimensions: A Complete Solution’’@J. Math. Phys.38, 5453
~1997!# are determined directly for all piecewise analytic loops. For that purpose
we enlarge their calculations from quadratic lattices to general floating lattices
introducing a new kind of loop independence and slightly modifying the regular-
ization scheme. ©2000 American Institute of Physics.@S0022-2488~99!01606-0#

I. INTRODUCTION

For quite a long time the quantization of Yang–Mills theories has been investigated. O
the main emphases is the approach via functional integration. The crucial point is the defini
an appropriate measuredm on the spaceA/G of all connections modulo gauge transformation
Heuristically one sets simplydmªe2S(A)DA, whereS(A) is the Yang–Mills action andDA is a
kinematical measure onA/G, but the resulting mathematical problems are enormous. Some y
ago, Ashtekar and Isham1 developed an interesting idea to overcome these difficulties. T
considered a certain completion ofA/G, the compact Hausdorff spaceA/G. Now, Ashtekar and
Lewandowski2 were able to construct a natural kinematical measuredm0 corresponding toDA,
but the extension ofS onto the wholeA/G remained difficult. This problem was circumvente
using the duality between measures onA/G and positive linear functionals on the space of
Wilson loop products. Using the lattice regularization, Thiemann3 and Ashtekaret al.4 defined
these expectation values and received the measuredm.

Nevertheless, some technical problems remained open. The authors of Ref. 4 did not
the type of hoop independence used for the projectionA/G→Gn/Ad. Both the strong indepen
dence and the weak independence2 are not applicable—the former because obviously the lat
loopsbx,y5rx,yhx,yrx,y

21 cannot be strongly independent for lattices with more than two rows
columns, and the latter because then the integral would become ill-defined.2 Furthermore, the
authors of Ref. 4 used the completeness of the plaquette loopsbx,y , i.e., that the subgroup of th
hoop group generated by thebx,y coincides with the subgroup generated by all loops in the latt
But, in general, the completeness is not guaranteed if one chooses arbitrary pathsrx,y from the
base point to the plaquette~x,y!. So we will prove that thereexistsa choice for therx,y such that
the plaquette loopsbx,y are complete. For the same reasons, the proof of the decompo
lemma, which ensures that any loopa without self-intersections can be expressed by a produc
the loops corresponding to the plaquettes in the interior ofa, has to be modified.

a!Electronic mail: Christian.Fleischhack@itp.uni-leipzig.deor Christian.Fleischhack@mis.mpg.de
760022-2488/2000/41(1)/76/27/$17.00 © 2000 American Institute of Physics
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The present article is intended to provide these missing mathematical details. Moreov
drop the restriction on quadratic lattices. We admit now any finite connected graph—a ‘‘floa
lattice—for the regularization. For this we slightly modify the regularization of the Yang–M
action simply replacinga2 ~a...lattice spacing! by the areauGu of the plaquette~see also Ref. 5! and
adapting the regularization to the given loops and not, as usual, vice versa. Thus, the
floating lattices allows us to calculate the Wilson loop expectation values for all sets of h
directly, i.e., without approximating them in a certain sense by loops in a quadratic lattice
without a subsequent~naive! limit. On the other hand we need a little bit more sophisticated—a
unfortunately, more technical—analysis, even if we would consider only quadratic lattices. A
beginning we define a new type of independence—the so-called moderate independence
stands between the strong and the weak independence and is well suited to making the calc
mathematically rigorous. We prove that it is strong enough to make the integration calculu
applicable. Then we generalize the propositions in Ref. 4 to the case of floating lattices. The
bx,y correspond now to the so-called flagsf G , i.e., loops that run from the base pointm to the
interior domainG—the generalized plaquette—, traverseG once, and return tom. Choosing a flag
to each interior domain we get a flag world. The crucial point is now the proof that there
~moderately! independent and complete flag world for any graph. Moreover, the genera
decomposition lemma yields that, if one refines the underlying graph, any flag world ca
naturally refined to a new~again moderately independent and complete! flag world and each flag
f of the old flag world is a product of exactly the flags of the new one that correspond to dom
in the interior off.

By means of these propositions we can finally compute the Wilson loop expectation v
reusing the calculations of Thiemann and Ashtekaret al.

II. PRELIMINARIES

In this section we summarize the basic facts about the spaceA/G of generalized connection
modulo gauge transformations following Refs. 1, 2, and 4.

Let P be a fixed principal fiber bundle over the base manifoldM with structure groupG and
m any fixed point inM. Furthermore, let$Ui% be a covering ofM , $x i% a trivialization ofP over
$Ui% and j a fixed index withmPU j . In the following we supposeG to be either SU(N), N
>2, or U~1!. Connections onP are described by their connection one-formA on P or, equiva-
lently, their localized formsAi on Ui . Similarly, we describe a gauge transformation by
corresponding equivariant mapr:P→G or its localized formsr i :Ui→G. We will only consider
C` connections andC` gauge transformations. The spaces of all connections and all g
transformations are denoted byA andG, respectively, and their quotient with respect to the natu
action ofG on A is denoted byA/G.

Next, we defineLm to be the set of all piecewise analytic loops inM with base pointm, i.e.,
all piecewise analytic mapsa:@0,1#→M , a(0)5a(1)5m. Two loopsa1 anda2 are multiplied
by

a1+a2~ t !ªH a1~2t ! for tP@0,1
2#

a2~2t21! for tP@ 1
2,1#

.

Note, that + is not associative. For anyaPLm and APA we define the holonomyha(A)
5hA(a)5h(a,A)PG as the group element, which corresponds to the parallel transport
respect toA of x j

21(m,eG) alonga. In the trivializationx j we haveh(a,A)5P exp(2raAj) if a
is completely contained inU j . A change of the trivialization yields only a conjugation ofh(a,A)
independent ofa. ~Since such a conjugation is irrelevant for our purpose, we fix now a ce
chart U j for the computation of the holonomies.! Moreover, we havehahb5ha+b for all a,b
PLm .

The fundamental idea of Ashtekar and Isham was to use the description of connections
traces of their holonomies, the so-called Wilson loops. First, they defined an equivalence r
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on Lm . Two loops a1 , a2PLm are said to be holonomically equivalenta1;a2 iff ha1
(A)

5ha2
(A) for anyAPA. The equivalence classes@a# are called hoops.@In the following we often

drop the brackets. Then the symbol5 means the equality of loops and the symbol; means
equality of hoops.# The hoop groupHG is the set of all hoops with the well-defined project
multiplication of Lm : @a1#+@a2#5@a1+a2# and @a#215@b# with b(t)5a(12t). For instance,
two loops are holonomically equivalent if they can be obtained from each other by repara
zation or insertion of retracings. Second, Ashtekar and Isham made use of the so-called
loopsTa :A→C defined byT(a,A)5Ta(A)5(1/N)tr ha(A). Obviously,T factorizes over; and
G, i.e., T:HG3A/G→C. Next, they defined the algebra HAª$ f :A/G→Cu f
5( i 51

n ciP j i51
ni Ta j i

un,niPN,ciPC% of all finite linear combinations of finite products of Wilso

loops and called its completionHA with respect to the sup-norm onA/G holonomy algebra.
Clearly,HA is a commutativeC* algebra. This allows to use the powerful tools provided by
theory of C* algebras. Due to the Gelfand–Naimark theorem there exists a compact Hau
spaceM(HA), the space of all characters ofHA, i.e., all nontrivial, linear, multiplicative func-
tionals onHA, such thatHA>C(M(HA)). Giles6 had proved that given all Wilson loops on
can reconstruct the corresponding connection up to a gauge transformation. Rendall7 observed
that, therefore,A/G can be densely embedded intoM(HA). This justifies the Ashtekar–Isham
definitionA/GªM(HA) of the space of the generalized connections modulo gauge transfo
tions. The elements ofA/G are denoted byĀ. The isomorphism betweenHA andC(M(HA)) is
given by the Gelfand transformation

;: HA→C~A/G! with f̃ : A/G→ C

f ° f̃ Ā °Ā~ f !
.

The theory ofC* algebras yields also the measure theory and representation theory onA/G.
There is a one-to-one correspondence between Borel measuresm on A/G, linear continuous
positive functionalsF on HA, and continuous cyclic Hilbert space representationsf of HA.
More precisely, any such functionalF can be obtained byF( f )5*A/G f̃ dmF with a certain unique
Borel measuremF and any suchf is unitarily equivalent to the representationw of HA on
L2(A/G,dmf) by multiplication operatorsw( f )c5 f̃ •c with a certain measuremf .

Ashtekar and Lewandowski2 ~in the following denoted by AL! discovered a second descrip
tion of A/G via the hoop groupHG. ~Marolf and Mourão8 obtained a third description ofA/G via
projective limits. However, this approach is unimportant for our purpose and we only ment
for completeness.! They defined two kinds of independence onLm . A finite subsetbª$b i% of Lm

is called strongly independent iff eachb i contains an open segment which is traced once and
once byb i and which is intersected by the remainingb j at most in a finite set of points.b is
weakly independent iff to any (g1 ,...,gn)PGn there exists anAPA such thathb i

(A)5gi for all
i. They proved that strong independence implies weak independence. Then they could
bijection betweenA/G and the space Hom(HG,G)/Ad of all homomorphisms fromHG to G
modulo a hoop independent conjugation. More precisely, anyhPHom(HG,G)/Ad yields anĀh

PA/G via Āh(Ta)ª(1/N)tr h(a) and vice versa.
This graph-theoretical approach was used by AL to define a natural integration measu

so-called induced Haar measure.2 They introduced an equivalence relation onA/G for finitely
generated subgroupsHG(b)#HG: Ā1;Ā2 with respect toHG~b! iff hĀ1

(g)5g21hĀ2
(g)g for

all gPHG(b) with a ~hoop independent! gPG. pb : A/G→A/G/; is the corresponding projec
tion. Thus, there is a bijectionA/G/;↔Hom(HG(b),G)/Ad as forA/G and Hom(HG,G)/Ad.
Hom(HG(b),G)/Ad itself is isomorphic toG#b/Ad if b is weakly independent. Therefore A
could reduce the integration overA/G under certain circumstances to the case of the integra
over a finite dimensional Lie group. In detail, they defined cylindrical functions, i.e., functiof
being pullbackspbf b of continuous functionsf b on Hom(HG(b),G)/Ad5G#b/Ad with strongly
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independentb and showed that the setC of all such functions is dense inHA5C(A/G). Now,
they defined*A/G f dm0ª*G#b/Ad f bdmb and chosedmb to be the Haar measure for eachb. Thus
they got a well-defined, regular and positive measurem0 on A/G, the so-called induced Haa
measure.

Ashtekar and Lewandowski realized thatm0 could serve as a kinematical measure of physi
theories in the functional integral approach. Since the elements ofA/G are classical potentia
configurations, the completionA/G seems to be a candidate for the space of histories in
quantum regime and the physical measure is built fromdm0 by multiplication withe2S, whereS
is the physical action of the theory. The crucial point was to choose such anSdefined not only on
A/G but onA/G. Neglecting that fact, one could compute via^ f &5*e2Sf dm0 any expectation
value of the theory supposedf to be a function onA/G. Thiemann3 and Ashtekaret al.4 ~in the
following denoted by TA1) proposed a solution of that problem in the case of the tw
dimensional quantum Yang–Mills theory using lattice regularization. The main problem wa
replacement of the Yang–Mills actionSYM5 1

4*MFmnFmn dx by an expression whose domain
A/G. The onlya priori available quantities are the generalized holonomies. This indicates th
of Wilson’s lattice regularization. For this one places a finite quadratic lattice with spacinga and
length R on the 2-plane and definesSYM

reg 5(N/g2a2)(h(12(1/N)Re trhh) where the sum goes
over all plaquettes of the lattice.hh denotes the holonomy around the plaquetteh. In the limit
a→0 andR→` one can show naively the regularized action to converge toSYM . The advantage
of SYM

reg is its natural extendability toA/G. Now, TA1 could compute the expectation values of t
Wilson loops expected to determine the whole pure quantum YM2 theory:

^Ta1
¯Tan

&5
1

Z E
A/G

dm0 e2 lima→0,R→`SYM
reg

Ta1
¯Tan

5 lim
a→0,R→`

1

Za,R
E

A/G
dm0 e2SYM

reg
Ta1

¯Tan

~1!

after exchanging limit and integral.~The factor 1/Z guaranteeŝT1&51.) Afterwards they ex-
pressed each loopa1 ,...,an and each plaquette looph by a product of ‘‘simple’’ loops~i.e., loops
traversing exactly one plaquette and connecting it with the base pointm by conjugation!, provided,
however,a1 ,...,an are contained in the lattice. Under the assumption that these loops are
pendent they could reduce the integration overA/G to the integration overGn, n finite. Finally,
they computed the integrals explicitly and got an algebraic expression depending only on th
enclosed by the loops. For generala1 ,...,an they suggested to approximate these loops naively
lattice loops and to consider the limit of the expectation values, but this is simply given b
limit of the enclosed areas.

III. MODERATE INDEPENDENCE

In this section we will introduce a new type of independence being crucial for the cons
ations below—the so-called moderate independence.

A. Why a new type of independence?

We consider a quadratic lattice with spacinga and lengthR5 la, l PN1, i.e., with l 2

plaquettes, see, e.g., Fig. 1. Now we assign~see Ref. 4! a loop bx,yªrx,y+ f x,y+rx,y
21 to each

FIG. 1. Example of a lattice (l 53) and the loopb1,1.
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plaquettehx,y , x,y indicates the position of the plaquette, as follows: First, choose a pathrx,y

from the base pointm to the bottom left-hand corner~x,y! and then definebx,yªrx,y+ f x,y+rx,y
21

wheref x,y is a path traversinghx,y counterclockwise. For our example, we chooserx,y to consist
of a horizontal and a subsequent vertical path as in Fig. 1.

Obviously, the setb of all these loopsbx,y is not strongly independent~for the exact defini-
tion see Sec. III B! because, e.g.,b1,1 does not have a segment which is intersected by any o
bx,y at most in a finite number of points. Of course, one can prove thatb is weakly independent
but this is not sufficient to allow the application of the integration calculus. Therefore we ne
third type of independence between these two ones; this will be the moderate independen

B. Moderate independence: Definition and position among the independencies

In the following,b denotes any finite subset$b i% of Lm ~or HG! andHG~b! the subgroup of
HG generated byb. ~To avoid technical complications we setHG(B)5$@1#%.) First, we recall
the definition of the strong independence.2

Definition 3.1:Strong independence inLm

b#Lm is strongly independentiff any b iPb contains an open segmentei , the so-calledfree
segment, traced exactly once byb i and intersected by anyb j , j Þ i , in at most a finite number
of points. ~The intersection condition can be replaced by ‘‘eiùb j5B ; j Þ i . ’’ However,
this yields to an equivalent definition.!

Our definition of the moderate independence differs very little from the previous one. We
replacej Þ i by j , i .

Definition 3.2:Moderate Independence inLm

b#Lm is moderately independentiff any b iPb contains an open segmentei , the so-called
free segment, traced exactly once byb i and intersected by anyb j , j , i , in at most a finite
number of points.~The remark in Definition 3.1 holds analogously in the case of mode
independence: ‘‘eiùb j5B ; j , i ’’. !

We have simply replaced the rigid condition of a simultaneous freeness of segments
flexible condition of an iterative freeness. We will see that this keeps the integration calculus
and makes the set of all plaquette loops~cf. Fig. 1! independent.

We mention that the simple specification of the elements of a moderately independent sb is
not sufficient. If we say ‘‘b is moderately independent’’ then there is an order of the elem
b iPb, such that the above criterion is valid. Analogously, the specification ‘‘$b1 ,b2% or
$b2 ,b1%, respectively, are moderately independent’’ should be clear.

Finally, we recall the definition of weak independence.2

Definition 3.3:Weak Independence inLm

b#Lm is weakly independentiff for any (g1 ,...,gn)PGn, n5#b, there is anAPA, such that
hb i

(A)5gi for all i 51,...,n.

Obviously, this kind of independence can be extended fromLm to HG.
Instead of the previous two definitions being graph-theoretical we have here an alg

condition. Weak independence ofb means no relations between the holonomieshb i
and so it

ensures the freeness of the corresponding subgroupHG(b)#HG, see Sec. III C.
The position of the moderate independence clarifies the next
Proposition 3.1:b strongly independent⇒b moderately independent⇒b weakly indepen-

dent.
Proof:
~1! The first implication is obvious.
~2! The proof of the second implication is technical and can be found in the Appendix.qed
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C. Algebraic consequences of the weak independence

Proposition 3.2:Let b#HG be weakly independent. Then the following holds:

~1! HG~b! is freely generated byb. @In the caseG5U(1) we understand by ‘‘free’’ anytime
‘‘Abelian free.’’#

~2! Let there be given ag #HG, such thatHG(b)5HG(g). Then we have:g is weakly
independent⇔b andg have the same cardinality.

Proof: ~1! See Ref. 2.
~2! ⇐
~a! For HG(g)5HG(b) there are expressions

g i; )
ki51

Ki

b j ~ i ,ki !

e~ i ,ki ! and b j; )
l j 51

L j

g i ~ j ,l j !

h~ j ,l j !

for any i , j P@1,n#, nª#b5#g, and thus

g i; )
ki51

Ki S )
l j ~ i ,ki !

51

L j ~ i ,ki !

g
i ~ j ~ i ,ki !,l j ~ i ,ki !

!

h~ j ~ i ,ki !,l j ~ i ,ki !
!D e~ i ,ki !

; i P@1,n#.

~b! Due to the first pointb is a free system of generators forHG~b!. Sinceg also generates
HG(b)5HG(g) and #g5#b, g is a free system of generators forHG(b)5HG(g) ~Ref. 9!.

~c! Let there be given (g1 ,...,gn)PGn and letH be the group generated by$g1 ,...,gn%. Since
HG~g! has the free rankn there is~Ref. 9! an epimorphismp:HG(g)→H with p(g i)5gi .

~d! Sinceb is weakly independent, there exists anAPA with hb j
(A)5P l j 51

L j gi ( j ,l j )
h( j ,l j ) ; j , i.e.,

we have for alli P@1,n#

hg i
~A!5hP

ki51

Ki b
j ~ i ,ki !

e~ i ,ki !~A!5 )
ki51

Ki S )
l j ~ i ,ki !

51

L j ~ i ,ki !

g
i ~ j ~ i ,ki !,l j ~ i ,ki !

!

h~ j ,~ i ,ki !,l j ~ i ,ki !
!D e~ i ,ki !

5pS )
ki51

Ki S )
l j ~ i ,ki !

51

L j ~ i ,ki !

g
i ~ j ~ i ,ki !,l j ~ i ,ki !

!

h~ j ~ i ,ki !,l j ~ i ,ki !
!D e~ i ,ki !D 5p~g i !5gi .

Thus,g is weakly independent.
⇒
Let g be weakly independent, i.e.,HG(g)5HG(b) is free. Consequently,b andg have the same
cardinality.9 qed

D. Graphs and loops

We recall some fundamental facts about graphs~see, e.g., Ref. 10!.
A graph (X,X0) consists of a Hausdorff spaceX and a discrete subspaceX0 , the space of the

so-called vertices.X\X0 is a disjoint union of edges, i.e., open subsetsei isomorphic to the interval
~0, 1!. ei can connect one or two vertices. In the first caseei is called sling. Two vertices are
connected by a multiple edge iff there are at least two different edges connecting these verti
a graph has neither slings nor multiple edges, it is called ordinary. Furthermore, (X,X0) is finite iff
both the set of edges and the set of vertices are finite. A graph (X8,X08) is called subgraph~or
refinement! of a graph (X,X0) iff X8#X andX08#X0 . Obviously, any~finite! graph is subgraph
of an ordinary~finite! graph. In the following we will briefly denote a graph byX instead of
(X,X0). Additionally, X<X8 means thatX is a subgraph ofX8.

In a natural way one can choose an orientation to any edge. The initial~terminal! vertex of an
edge e is denoted byve

2(ve
1). A path f in a graph is a finite sequence of~oriented! edges
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(e1 ,...,en), n>0, such that the terminal vertex ofei coincides with the initial vertex ofei 11 (1
< i ,n) with respect to the chosen orientation. Iffn50, f is called trivial. Iff the initial vertexv f

2

and the terminal vertexv f
1 of f are equal,f is called closed path or loop with base pointv f

5v f
6 . f is called reduced iff no edge is retraced immediately and is called genuine iff no v

is traced twice~exception: initial and terminal vertex can be equal!. Finally, a treeT is a graph
without any nontrivial genuine closed path.

Obviously, any graph contains trees. If we partially order the set of all trees in a graph
the inclusion, i.e., subgraph relation, we get

Lemma 3.3:Any tree in a graphX is contained in a maximal tree inX. If X is connected, then
a treeT in X is maximal if and only ifT contains all vertices ofX.
Using this lemma one can construct explicitly the fundamental group of a connected graph
choose a vertexv0 and a maximal tree. Let$elulPL% be the set of all edges ofX not contained
in T and choose an orientation for eachel . Now denote bytl

2 and tl
1 the ~unique! reduced path

alongT from v0 to the initial vertex ofel and, respectively, from the terminal vertex ofel to v0 .
Finally, defineal to be the product oftl

2 , el and tl
1 . We have

Proposition 3.4:The fundamental groupp(X,v0) is the free group generated by$alul
PL%, whereal denotes here not the loop itself, but its homotopy class.
The Euler–Poincare´ characteristicx(X) of a finite graph is per def. the difference of the numb
of vertices and the number of edges.

Proposition 3.5: Let X be finite and connected. Thenp(X,v0) is a free group with 1
2x(X) generators andX is a tree iffx(X)51.
Let there be given now a finite set of loopsb5$b i%#Lm in a manifoldM. Note thatLm contains
only piecewise analytic loops. The image ofb in M defines naturally a finite connected graphGb

via the following ~see also Ref. 2!
Construction 3.4:~1! Mark all end points of overlapping intervals of two loops and

intersection points outside those overlapping intervals. These points become the verticesGb .
Due to the piecewise analyticity the number of vertices is finite.

~2! Divide any b i into paths between ‘‘neighboring’’ vertices and call these paths edge
Gb . Again due to the piecewise analyticity the set of edges is finite.

~3! Since anyb i is a loop with base pointm, Gb is connected.

E. Relations between the fundamental group and the hoop group of a graph

In this sectionG is a finite connected graph andm an arbitrary, but fixed vertex ofG.
Furthermore, we denote byHG~G! the subgroup ofHG generated by all loops inG.

It was an important observation of Ashtekar and Lewandowski2 that there is a close relatio
between the representation of a loop as a hoop and as an equivalence class with respe
homotopy in a graph. In detail, they got

Lemma 3.6:Two homotopically equivalent loops are holonomically equivalent, i.e., ther
an epimorphismf:p(G,m)→HG(G). f is an isomorphism ifG5SU(N). ForG5U(1) we have
kerf5@p(G,m),p(G,m)#.
Consequently, in the caseG5SU(N) two loops are holonomically equivalent if and only if the
can be obtained from each other by reparametrizations or~if necessary successively! canceling
retracings. Obviously, we have

Lemma 3.7:Let T be a maximal tree and$al% the set of the corresponding generators
p(G,m) as in Proposition 3.4. Then$al% is strongly independent and complete inG, i.e., we have
HG($al%)5HG(G).
The free segments are the edgesel not contained inT. Additionally, one can express any finite s
of hoops by a finite set of strongly independent hoops.2

Lemma 3.8:For any finite set@b# of hoops there is a seta#Lm , such that

~1! HG(b)#HG(a),
~2! a is strongly independent, and
~3! #a5rankp(Gb ,m).
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For this choose the natural graphGb of b. Choose now some generating seta of the fundamental
groupp(Gb ,m). Obviously,a fulfills the required conditions.

Now we want to investigate the independence of loops.
Lemma 3.9:Let n be the rank ofp(G,m). Then anyb#Lm with #b5n and HG(b)

5HG(G) is weakly independent.
Proof: Choose any maximal treeT in G and a corresponding system$al% of generators of

p(G,m). $al% hasn elements and is a free generating system. Due to Lemma 3.7$al% is strongly
independent and thus weakly independent. Proposition 3.2 finishes the proof. qed

Generally, one cannot conclude thatb is even moderately independent. To see this
p(G,m) be generated by two loopsa1 ,a2 as in Proposition 3.4. Setb1ªa1a2a1

21 and b2

ªa1a2 .

~1! We haveHG(b)5HG(G)5HG($a1 ,a2%), becausea15b1
21b2 anda25b2

21b1b2 .
~2! Suppose$b1 ,b2% are moderately independent. Any segment ofb2 is already traced byb1 .

This is a contradiction to the assumptionb2 has a free segment.
The case ‘‘$b2 ,b1% are moderately independent’’ yields an analogous contradiction.

Thusb is not moderately independent.
We finish this section with a criterion for the completeness of loops in a given graph.
Proposition 3.10:Let G be a finite connected graph andb a set of moderately independe

loops inG. Then isb complete with respect toG if and only if the cardinality ofb equals the rank
of p(G,m).

Proof: The ⇒ direction is simple. Due to Lemma 3.8 there is a seta with HG(a)5HG(G)
5HG(b), whose cardinality is just equal to the rank ofp(G,m). Proposition 3.2 yields thata and
b have the same cardinality.

The ⇐ direction is a little bit technical.
The free segments of theb i are as usual denoted byei and the cardinality ofb by n. Suppose

first that nob i has a retracing interval.
~1! W.l.o.g. the free segmentsei of b i are edges ofG. Otherwise, if necessary, restrict anyei ,

such that it is still contained in only one edgeki . Sinceb i has no retracing intervals, the wholeki

is a free segment ofb i . Thus one can seteiªki .
~2! The graphTªG\ø i 51

n $ei% created by removing all free segments is again a conne
graph.

SetG jªG\ø i 5 j
n $ei%. ThenGn115G, G15T. Due to the moderate independence of theb i we

have b iùei 85B ; i 8. i , i.e., b i is a loop in G i 11 . SupposeT is not connected. Then ther
would exist aj P@1,n#, such that allG i with i . j are connected, butG j is not connected. Sinceb j

is a loop inG j 11 andb j passesej , b j has to pass vertices of both connected components oG j

5G j 11\$ej%. Thus ej must be passed at least once in each direction byb j , i.e., we have a
contradiction to the assumption thatej is a free segment. Thus,G i is connected for alli P@1,n
11#.

~3! T is a maximal tree inG.
Due to Proposition 3.5 we haven5rankp(G,m)512x(G)512eG1kG , whereeG andkG

are the numbers of vertices and edges ofG, respectively. SinceT5G\ø i 51
n $ei% we havekT

5kG2n and obviouslyeT5eG . For T connected, we havex(T)5eT2kT5eG2kG1n5x(G)
1n51. ThusT is a tree inG due to Proposition 3.5.T is even maximal becauseT contains all
vertices ofG.

~4! Let aª$a i% be a free system of generators ofp(G,m) due to Proposition 3.4 for the jus
constructed maximal treeT and the edges$ei%. Thus, a fulfills HG(a)5HG(G). W.l.o.g. a i

traces the edgeei in the same direction asb i . We show thatb is complete inG.
~a! b1 is a loop inTø$e1%5G111 , wheree1 is traced once and in the same direction

a1 is. Thusb15t1e1t2;a1 with certain pathst6 in T, i.e.,HG($b1%)5HG($a1%), i.e., $b1% is
complete inG111 .

~b! Let HG($b1 ,...,b i%)5HG(G i 11)5HG($a1 ,...,a i%) hold for all i , j . We have now
b j5kj ,1ejkj ,2 , where kj ,6 are some paths inG j 11\$ej%5G j . Furthermore, we havea j

5t j ,1ej t j ,2 with t j ,6#T#G j . Thus b j;kj ,1t j ,1
21 a j t j ,2

21 kj ,2 . Since kj ,1t j ,1
21 and t j ,2

21 kj ,2 are
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loops in G j , we have @kj ,1t j ,1
21 #,@ t j ,2

21 kj ,2#PHG(G j )5HG($a1 ,...,a j 21%)
5HG($b1 ,...,b j 21%). Due to a j;t j ,1kj ,1

21 b j kj ,2
21 t j ,2PHG($b1 ,...,b j%) we have

HG($a1 ,...,a j 21%ø$a j%)#HG($b1 ,...,b j%). Sinceb j is a loop inG j 11 , we get immediately the
$ relation, i.e.,HG(G j 11)5HG($a1 ,...,a j%)5HG($b1 ,...,b j%). Thus $b1 ,...,b j% is complete
in G j 11 .

The induction yields alsoHG(b)5HG(a)5HG(Gn11), i.e., b is complete inGn115G.
We allow now theb i to have retracing intervals. Denote byb i8 the loop that remains afte
canceling all these intervals inb i . Obviously, b i8 lies in the same hoop class asb i , i.e.,
HG(b)5HG(b8). Thus, since we have already proven the proposition for the retracing-freeb8,
we get immediately the claim for arbitraryb. qed

IV. FLAG WORLDS

This section provides some facts about the hoop group of a graph~‘‘lattice’’ ! G in the
two-dimensional manifoldM5R2. For this we can specialize the facts of Sec. III E to the cas
planar graphs~see, e.g., Ref. 11!. These have a crucial advantage: one can define domain
closed by the graph edges. The set of all these domains induces a basis of the correspondi
groupHG~G!. Finally, we will investigate the behavior of that set under refinement of the graG
generalizing the results of TA1.

A. Planar graphs

This section collects some basic and simple facts about planar graphs and is inten
clarify the notations. We call a graphX planar iff there exists a homeomorphismi:X→G#R2.
We identify X and G in the sequel. Furthermore, in the following any graph is supposed t
planar, finite, and connected.

Any graph is the complement of a disjoint union of domains. Exactly one of them
unbounded—the so-called exterior domainGext. The set of the remaining domains, the so-cal
interior domains, is denoted byL int(G) and we setL(G)ªL int(G)ø$Gext%. We say that a domain
G is contained inG iff its boundary]G is in G andGùGext5B.

One easily proves Euler’s polyhedron formulae2k1l52, wheree, k, andl are the numbers
of vertices, edges, and domains, respectively, of the graph. Sincel21512(e2k)512x(G),
we have using Proposition 3.5

Lemma 4.1:The number of interior domains of a graphG is equal to the rank ofp(G,m).
We are now interested in the behavior ofL(G8) under refinement ofG8. Clearly, if we refine

a graphG8 to a graphG, then any domain ofG8 is refined into a certain set of domains inG ~see,
e.g., Fig. 2!. We have in detail the simple

Proposition 4.2:Let G8<G. Then the following holds:

~1! For any GPL(G),G8PL(G8) we haveGùG8ÞB⇒G#G8. Especially, two interior do-
mains of one and the same graph are disjoint or equal.

~2! For anyGPL(G) there exists exactly oneG8PL(G8) with GùG8ÞB.
~3! For anyG8PL(G8) there exists exactly oneLG8#L(G), such thatGùG8ÞB⇔GPLG8 and

øGPLG8
G$G8.

FIG. 2. Example for the decomposition of domains.
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~4! Now let G8 be any domain inG, not necessarily an interior domain. There is exactly one
LG8(G)#L int(G), such that for all interior domainsG holds: GPLG8(G)⇔GùG8ÞB and
øGPLG8

G$G8.

We call L(G) a refinement ofL(G8) ~and analogously forL int) iff G is a refinement ifG8.
Definition 4.1:A domain G#R2 is calledsimple iff it is the interior of a Jordan curve. A

graphG is calledsimpleiff each of its interior domains is simple.
Finally we need

Proposition 4.3:Any ordinary graphG is subgraph of a simple, ordinary graphG8 whose
exterior domain coincides with that ofG.

The proof is quite easy. First one eliminates the retracings, then the repetitions of edge
finally the repetitions of vertices by inserting appropriate edges as demonstrated in Fig. 3.

B. Boundary loops and flags

We start with a simple
Lemma 4.4:For any simple domainG#G and anym̃PG0ù]G there is exactly one genuin
loop aG,m̃ in G with base pointm̃, such that~we recall that we do not distinguish betwee
loops and hoops in the sequel—the symbol5 means equality of loops and the symbol;
means equality of hoops!
~1! aG,m̃5]G and
~2! aG,m̃ traverses the domainG counterclockwise.
Conversely, any such loop determines exactly one simpleG#G. We callaG,m̃ theboundary
loop of G with base pointm̃.
Analogously, for anyG#G and anym̃PG0ù]G there exists a loopaG,m̃ in G with base point

m̃ and the properties above.
Now we are interested in loops with base pointm, that traverse only one domainG in G. This

is provided by
Definition 4.2:Let G be a simple domain in a graphG. We call a loopf G,m,m̃ flag with base

point m, flag pointm̃, and domainG iff

~1! f 5rmm̃aG,m̃rmm̃
21,

~2! aG,m̃ is a boundary loop ofG with base pointm̃ and
~3! rmm̃ is a path fromm to m̃ in G;
~4! there is avP]G, such that

~a! rmm̃5rmvrvm̃ ,
~b! rmvù]G5$v%,
~c! rmv traces neither an edge nor a vertex twice and
~d! rvm̃#]G holds.

Thenrmm̃ is calledflagpole. We call f G,m,m̃ minimal iff v5m̃. ~See Fig. 4!
SinceG is connected, we get from Lemma 4.4

FIG. 3. Canceling~a! retracings,~b! repetition of edges,~c! repetition of vertices.
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Lemma 4.5:For any triple (G,m,m̃) with the above properties there exists a correspond
flag f G,m,m̃.

Remark:~1! To any simple domainG and anymPG0 there exists a minimal flag. For thi
choose a maximal treeT and anm8P]GùG0 . Furthermore, choose the shortest pathr from m to
m8 alongT. Let m̃ be the nearest tom ~with respect to the up to there traced edges ofr! point in
]Gùr and rmm̃ the corresponding initial path ofr from m to m̃. Obviously, f G,m,m̃

ªrmm̃aG,m̃rmm̃
21 with the boundary loopaG,m̃ is a minimal flag forG.

~2! All flags beginning with the samermv are equal modulo holonomy equivalence, especia
any flag is holonomically equivalent to a minimal flag.

~3! For G5U(1) all flags to one and the same domain are holonomically equivalent.
Let f i5rmm̃i

aG,m̃i
rmm̃i

21 , i 51,2. We have

f 15rmm̃1
aG,m̃1

rmm̃1

21 ;rmm̃1
rm̃1m̃2

aG,m̃2
rm̃1m̃2

21 rmm̃1

21

;rmm̃1
rm̃1m̃2

rmm̃2

21 rmm̃2
aG,m̃2

rmm̃2

21 rmm̃2
rm̃1m̃2

21 rmm̃1

21

;rmm̃1
rm̃1m̃2

rmm̃2

21 rmm̃2
rm̃1m̃2

21 rmm̃1

21 rmm̃2
aG,m̃2

rmm̃2

21 ; f 2 .

rm̃1m̃2
is any path fromm̃1 to m̃2 along]G. In the last but one step we used the commutativ

of HG$HG(G) induced by the commutativity of U~1!.
~4! Two flags to disjoint domains are nonoverlapping.

C. Flag worlds: Definition and existence

In this section and Sec. IV D we only consider simple graphs, i.e., graphs with only si
interior domains, to avoid technical complications.

We are looking for a setb of hoops, such that any hoop inG can be expressed by a produ
of elements ofb, i.e., HG(b)5HG(G) holds. Furthermore, we are interested in integrating
lindrical functions overHG~b!. For this we need the moderate independence ofb, that means at
least the weak independence. Due to Proposition 3.2 that is guaranteed only if the num
elements ofb equals the number of generators ofHG~G!, i.e., equals the number of generators
the fundamental groupp(G,m). With this in mind one could chooseb to be a system of genera
tors as in Proposition 3.4. But, because of our regularization we need loops enclosing a
being as tiny as possible, i.e., enclosing only one interior domain. For this the above define
are well suited. We already know that the number of interior domains ofG equals the rank of the
fundamental group~cf. Euler’s polyhedron formula in Sec. IV A!. Thus the following definition is
obvious.

FIG. 4. Flags: Examples and counterexamples.
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Definition 4.3:A setF of flags is calledflag world to the simple graphG ~with base pointm!
iff F5$ f GuGPL int(G)%, wheref G is any flag to the domainG and to the base pointm. F is called
completeiff HG(F)5HG(G).

Using Proposition 3.2 we have immediately
Corollary 4.6: The flags of a complete flag world are weakly independent.
Now we are interested in moderately independent flag worlds because they are neces

the integration calculus and because of
Proposition 4.7:Let F be a moderately independent flag world in a simple graphG. ThenF

is complete.
Proof: G is a finite, connected graph andF is a moderately independent set of loops inG,

whose cardinality is equal to the rank ofp(G,m) due to Lemma 4.1. Proposition 3.10 finishes t
proof. qed

We can construct naturally a flag world to any tree as follows.
Definition 4.4:Let T be a maximal tree in a simple graphG.
F is calledT-flag world for G iff the following holds for all flagsf PF:

~1! f is a minimal flag.
~2! The flagpole off is a path inT.

Proposition 4.8:Let T be a maximal tree in a simple graphG.

~1! There is aT-flag world for G.
~2! Any T-flag world for G is moderately independent.

From this we get the crucial
Corollary 4.9: For any simple graphG there exists a moderately independent, i.e., also c

plete flag world.
Corollary 4.10:Any loop in G is holonomically equivalent to a product of mutually nonove

lapping loops.
Proof (Proposition 4.8):
~i! First, letG be a tree, i.e.,G5T. Then there is no interior domain and therefore no flag, t

We haveF5B andHG(F)5$1%5HG(G).
~ii ! Now, G is not a tree. LetT be a maximal tree inG andEª$el% the corresponding set o

edges ofG not contained inT. Now we can constructG from T inserting successively edgesel .
The intermediate graphs are denoted byGl . This allows us to use induction on the number
interior domains increased exactly by 1 in each step. We can insert these edges, such that a
edgeel lies on the boundary of the corresponding graphGl . ~Suppose there is a treeT8 with
]G#T8. Then]G is a tree itself and]G has no interior domain. Consequently,G has no interior
domain, i.e.,G is a tree. Thus, there is no treeT8 with ]G#T8 and so for any treeT in G there is
an edgeel#]G that is not contained inT.! Thus the interior domains of the intermediate grap
are simple due toL int(Gl)#L int(G). Obviously, anyGl is finite, planar, and connected.

~iii ! Suppose the proposition holds for any graph withk21>0 interior domains. Now,G has
k interior domains,T andE are chosen as above andePE is an edge in]G. We setG8ªG\$e% and
E8ªE\$e%. By inserting e in G8 we get a new~simple! interior domain G, i.e., L int(G)
5L int(G8)ø$G%. Obviously,T is also a maximal tree inG8 andE8 is the set of all edges ofG8 not
contained inT. G8 has exactlyk21 interior domains and we have by induction:

~1! There exists aT-flag world for G8.
~2! Any T-flag world for G8 is moderately independent.

~iv! ~1! Existence of aT-flag world for G
We construct a flag forG. Since any vertex ofG is contained inT, there is a path inT from m to
a vertex of]G. We choose from among these paths a pathr which is minimal with respect to the
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number of traced edges. The terminal vertex ofr is denoted bym̃, m̃P]G. Due to Lemma 4.4 we
choose a boundary loopa of G with base pointm̃. fªrar21 is now a minimal flag forG and
FªF8ø$ f % is a T-flag world for G.

~2! Moderate independence of anyT-flag world for G
G8, E8, andG are still chosen as above. SetF8ªF\$ f G%, wheref GPF, f G5rar21, is the flag
for G with flagpole r#T. Obviously, F8 is a T-flag world for G8, and therefore moderatel
independent by induction.

Since f G is minimal, e is traced exactly once byf G , and becauseF8 is a flag world inG8
5G\e, not any f iPF8 tracese. Thereforee is now a free segment off G .

Finally, F8 itself is moderately independent with the free segmentsei of the corresponding
f iPF8. Thus, F5F8ø$ f G% is moderately independent with the free segme
$e1 ,...,ek21 ,e%. qed

Remark:For G5U(1) even any flag worldF is complete.
To prove this choose any complete flag worldF8 for G. Since @for G5U(1)] all flags

belonging to one and the same domain are equal up to holonomy equivalence, we haveHG(F)
5HG(F8)5HG(G), i.e., F is complete.

In other words, for U~1! all flag worlds to one and the same graphG are equal modulo
holonomy equivalence.
The completeness of a flag world is not at all trivial for the SU(N) because of

Proposition 4.11:Let G5SU(N). Then there exists a simple graphG, such that a noncom
plete ~and so also not moderately independent! flag world exists toG.

Proof: It is sufficient to give an example. Due toG5SU(N) holonomy equivalence equal
homotopy equivalence and we will identify hoops and the corresponding elements of the f
mental groupp(G,m). It is sufficient to construct a flag worldF, such that there is a loopf
Pp(G,m)5HG(G) not contained in the subgroupHG~F ! of the fundamental group generated b
F.

Let G be the graph in Fig. 5 with the flag worldFª$ f 1 , f 2 , f 3 , f 4%, the maximal treeT, and
the corresponding free edgese1 ,e2 ,e3 ,e4 . We constuct fromT and ei the free generators
a1 ,...,a4 of p(G,m) as in Proposition 3.4. We will prove, thatF is not complete showing tha
f ¹HG(F), wheref is the loop defined in Fig. 5.

A simple calculation shows:

f ;a1
21a3 ,

f 1;a1 ,

f 2;a2 ,

f 3;a4a3a1
21a4

21,

f 4;a3
21a2

21a4a3 .

FIG. 5. Example of a noncomplete flag world.
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Supposef PHG(F ), i.e., f ;P j 51
J f i j

h j;Pkalk

ek with h jPZ and ekP$21,11%. Choose this

decomposition, such that the numberJ of used factorsf i j

h j is minimal. Due to the freeness o

HG(G)5p(G,m) there must exist aj 8 with i j 853 andh j 8>11, i.e.,

a1
21a3; f ; )

j 51

j 821

f i j

h j f 3
h j 8 )

j 5 j 811

J

f i j

h j;)
k

alk

ek a4 )
h j 8

~a3a1
21! a4

21 )
k8

alk8

ek8 .

In the last stepf j
h has been replaced by the corresponding reduced representation in tal

~see above!, e.g., f 3
h by a4(a3a1

21)ha4
21 @i.e., not by (a4a3a1

21a4
21)h, since here~for uhu.1)

the a4a4
21 terms are not reduced#.

The right-hand decomposition off in al is ~with respect to the number of used factors! longer
than the left-hand one. Again by the freeness ofHG~G! there must exist in the right-hand decom
position of f in al a k with alk

ek5alk11

2ek11. This case does not occur in the decompositions of

f i in al above, thus this must occur during the multiplicationf i j

h j f i j 11

h j 11 of two flags. From the

decompositions above we see that such a collision ofal is only possible, ifi j5 i j 11 . This is a
contradiction to the minimality of the decomposition off into a product of flagsf i

hPF.
Thus, f ¹HG(F), andF is not complete. qed

Remark:~1! Up to now, we do not know, whether noncomplete flag worlds can be constru
for graphs with less than four interior domains.

~2! Simultaneously, we have constructed an example for the fact that fromHG(b)#HG(a)
and the equality of the cardinalities ofa andb not generally follows, thatHG(b)5HG(a).

But, obviously,HG~F! is freely generated by$ f 1 , f 2 , f 3 , f 4%. Thus, we have constructed
genuine~free! subgroup ofHG~G! having the same rank asHG~G!.

D. Refinement of flag worlds

Now we want to investigate the behavior of flag worlds under refinement of the under
graph. We need the following

Lemma 4.12:Let G be a simple graph andG a simple domain inG(m¹G) with corresponding
refinement$Gi u i PI %#L int(G). Let f be a minimal flag belonging toG with base pointm. Fur-
thermore,e is an arbitrary edge ofG on ]G. Then, there exist minimal flagsf i with base pointm,
such that:

~1! f i is a flag to domainGi for all i PI ;
~2! f is holonomically equivalent to the product of allf i in a certain order;
~3! $ f i% is moderately independent and any of the free segments lies in intGøe.

Proof: Induction on the cardinality ofI. @I is finite, sinceG is finite and thusL int(G) is finite.#
~1! I 51 is trivial, i.e.,G5Gi is an interior domain itself.
~2! First, we consider the caseI 5$1,2%.
We consider the case thate and m̃ do not lie on the boundary of one and the same inte

domain. Topologically, we have the situation of Fig. 6; if necessary, one has to exchang
domains 1 and 2. Letrmm̃ be the flagpole off from m to m̃, r,r1 ,r2 ,r12 as in Fig. 6 anda i the
corresponding boundary loop forGi with base pointm1 .

We setf iªrmm̃r1a ir1
21rmm̃

21 for i 51,2, after canceling possible retracings, i.e., we cons
f i to be minimal.

~a! Obviously, f i is a flag forGi .
~b! We havef ; f 2f 1 .
~c! Choose an edgee1#]G1ù]G2 , i.e., e1#r12, and sete2ªe. Then$ f 1 , f 2% is obvi-

ously moderately independent with the free segmentse1 ,e2# int Gøe.
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In the case thate andm̃ lie on the boundary of one and the same domain, one has to exch
if necessary,r1 and r in the construction above, such thateùr15B. The rest of the proof is
completely analogous.

~3! Suppose the lemma is proven for refinements byk21>2 domains and now let$Gi% be a
refinement ofG by k>3 domains.

~a! Choose anyi PI , such thatGiù]G contains at least one edge ofG and the domainG̃
built from the remainingGj is again simple.~W.l.o.g. we seti 5k and j runs in the
following from 1 to k21.) More precisely:]G, ]Gk , andrmm̃ span a finite and for
Gkù]GÞB again connected graph. We demand that the set of the interior doma
this graph is equal to$G̃,Gk% and thatG̃ is simple.
It remains the question, whether such aGk exists. The first condition is trivial. To
prove the second one it is sufficient to choose a domainGk , such that]Gkù]G is
connected.
To see this leta be a boundary loop ofG. One gets anã from this, if one replaces the
subpathak of a belonging to]Gk by the pathãk corresponding to the boundar
]Gk\]G. Obviously,ã is a path inG. ã has neither repetitions of vertices nor of edge
because neithera nor ak have the like and becauseãk touchesa only in its initial and
terminal vertex~these are distinct!. Otherwise, we would have a contradiction to t
connectivity of]Gkù]G. Thereforeã is a Jordan path, i.e., a boundary of exactly o
simple interior domainG̃.
It remains now to ask for the existence of such a domain. Suppose not any]Giù]G is
connected. Then there would exist a pair of indices (i 1 ,i 2), such that we have the
situation in Fig. 7. Obviously, this is a contradiction to the connectivity ofGi 1

andGi 2
.

Thus, there is a refinement ofG into two simple domains$G̃,Gk%, such thatG̃ itself
has a refinement into$Gj% in G.

~b! Due to point~2! there are minimal flagsf̃ , f k for G̃ andGk , respectively, such that
~i! f ; f̃ f k ~or f k f̃ );
~ii ! $ f̃ , f k% or $ f k , f̃ % is moderately independent, where the free segmentsẽ andek lie
in int Gøe.

~c! Let ẽ be the free segment off̃ . It is obviously an edge inGù]G̃. Thus, by induction
there are minimal flagsf j , such that:
~i! f̃ is a product of thef j in a certain order;
~ii ! $ f j% is moderately independent, where any of the free segmentsej lies in intG̃øẽ.

~d! Thus,f can be represented as a hoop product of thef i in a certain order.

FIG. 6. Refinement into two domains.
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~e! The proof of the moderate independence of$ f j%ø$ f k% goes completely analogously t
the case of two domains.

~i! Let $ f̃ , f k% be moderately independent. Thenek lies in (intGøe)\ f̃ , otherwiseek

would already be traced byf̃ . Thus, ek5e, since (intG\ f̃ )ù f k5B, and so

ẽ# int G. Due toej# int G̃øẽ# int G we haveej ,ek# int Gøe.
$ f 1 ,...,f k21 , f k% is moderately independent becausee1 ,...,ek21 are free segments

of f 1 ,...,f k21 , and ek is free, because ekù f j#ekù( f̃ ø int G̃)

5(ekù f̃ )ø(ekù int G̃)5B. The second intersection vanishes obviously and

first one does because$ f̃ , f k% are moderately independent.

~ii ! Let $ f k , f̃ % be moderately independent. The argumentation is analogous to the
case, however, here$ f k , f 1 ,...,f k21% is moderately independent. qed

We have now
Proposition 4.13:Let G,G8 be simple graphs,G8 a refinement ofG and mPG. Then there

exists for any moderately independent flag worldF of G a moderately independent flag worldF8
of G8, such that the following holds for all interior domainsGI of G: The flag f IPF to GI is the
hoop product of exactly these flagsf I ,i I

PF8, that belong to the interior domainsGI ,i I
with

GI ,i I
#GI , in a certain order.

Proof: Obviously, we havem¹GI for all GIPL int(G) becausemPG.
First, we defineG9 to be the graph built from all interior domains ofG8 that are contained in

the exterior domain ofG and from all interior domains ofG. Obviously,G9 is simple,G<G9
<G8 and the exterior domains ofG9 andG8 coincide. Now letF5$ f I%5$ f 1 ,...,f L% be moder-
ately independent with the free segmentseI . We can refineF to a moderately independent fla
world F 95$ f 1 ,...,f L9%$F of G9, whereL9 is the number of interior domains ofG9, analo-
gously to the proof of Proposition 4.8. Next, we consider for any interior domain ofG the
corresponding refinement ofGI into theGI ,i I

PL int(G8). Due to Lemma 4.12 there exist minima

flags f I ,i I
with base pointm, such that:

~1! f I ,i I
is a flag to the domainGI ,i I

.

~2! f I is holonomically equivalent to the product of allf I ,i I
in a certain order.

~3! $ f I ,i I
% is moderately independent and any free segmenteI ,i I

is contained in intGIøeI .

~W.l.o.g. eI is an edge ofG on ]GI .)

The flags f I in F 9\F, i.e., those flags that belong to the interior domain ofG8, but are con-
tained in the exterior domain ofG, are left untouched. We only setl Iª1 and f I ,i I

ª f I . Now

FIG. 7. Existence of aGk with connected]Gkù]G.
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(l I is the number of domains, that the GI are refined into! F8
5$ f 1,1,...,f 1,l1

, f 2,1,...,f 2,l2
,... ...,f L9,1 ,...,f L9,lL9

% is a moderately independent flag world
G8 because:

~i! eI ,i I
is traced exactly once byf I ,i I

per constructionem and is not traced by anyf I , j with
j , i I because due to the just stated point~3! $ f I , j u j P@1,l I #% is moderately independen
with the free segmentseI , j for a fixed I.

~ii ! But, eI ,i I
is also not traced byf J, j with J,I : f J, j traces onlyf Jø int GJ and we have

eI ,i I
# int GIøeI . Since the domains ofG are disjoint, we have intGJù int GI

5B, f Jù int GI5B and intGJùeI5B. Finally, we have f JùeI5B since F 9
5$ f 1 ,...,f L9% itself is moderately independent. Thus,f J, jùeI ,i I

5B.
Thus,eI ,i I

fits all conditions for a free segment. SinceF8 is obviously a flag world ofG8,
we get the proof. qed

E. Conclusions

We collect the most important facts with regard to the applications in Sec. VI some
neglecting mathematical details. Any graph is finite, planar, connected, and nonempty.

Let there be given an arbitrary graphG.
~1! There is a refinement ofG to an ordinary graphG8.
~2! Any graph can be naturally associated with a finite set of connected interior domain

an exterior domain~Sec. IV A!. By a refinement ofG this set is refined.
~3! A graph is called simple iff its interior domains are simple, i.e., are bounded by Jo

loops.
~4! Any ordinary graphG8 is subgraph of a simple, ordinary graphG9. The exterior domains

of both graphs are the same~Proposition 4.3!.
~5! Any simple domainG in a graph can be naturally associated with a flag, i.e., a l

running from a base pointm to ]G, traversingG exactly once and running back tom ~Definition
4.2!.

~6! By choosing a flag to each interior domain one gets a flag world~Definition 4.3!. It is
called complete iff it spans the full hoop group ofG.

~7! We are looking for moderately independent and complete flag worlds. The complet
ensures that any loop inG can be expressed by elements of a flag world. The moderate inde
dence is necessary for the integration of cylindrical functions. Fortunately, the moderate ind
dence implies the completeness~Proposition 4.7!.

~8! One can naturally construct flag worlds to any simple graph. For this one choo
maximal tree in this graph and then for any interior domain a flag consisting of a path alon
tree, a boundary loop of the corresponding domain and the inverse initial path. Any suc
world is moderately independent~Proposition 4.8!.

~9! There is a moderately independent flag world for any simple graph~Corollary 4.9!. Thus,
any hoop can be represented as a hoop product of mutually nonoverlapping loops.

~10! Under refinement of a simple domainG with a flag f one can choose flagsf i to the new
domainsGi such that these generate all hoops ‘‘inG’’ and that f can be expressed as a hoo
product of thef i in a certain order~Lemma 4.12!.

~11! In simple graphsG8 any moderately independent flag worldF of a simple subgraphG
can be refined to a moderately independent flag worldF8 of G8 such that any flagf GPF is a
product of the flagsf G8PF8 to the interior domainsG8#G in a certain order~Proposition 4.13!.

In Sec. VI we will see that especially the last point is crucial for the regularization of
Wilson loop functionals. We can now decompose the ‘‘banner’’ of a given flag in smaller ‘‘b
ners.’’ But all small ‘‘banners’’ have ‘‘equal rights’’ sincef I; f I ,1••• f I ,l I

. That is why they give
identical contributions if we integrate cylindrical functions inf I .
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V. INTEGRATION ON A/G

In this section we slightly generalize the integration calculus onA/G which was in detail
investigated by Ashtekar and Lewandowski.2 Their key idea was to first define an equivalen
relation onA/G which identifies two connections iff their holonomies on a certain finite setb of
hoops are equal~up to conjugation!, i.e., factorizing with respect to that relation they extracted
properties of a generalized connection on that finite set. But, if one knows these properties
finite sets of hoops, one can reconstruct viaA/G>Hom(HG,G)/Ad the generalized connection i
A/G. The main advantage of the factorization is the reduction of the infinite-dimensional pro
to a finite-dimensional one, sinceA/G/;>Hom(HG(b),G)/Ad>G#b/Ad. Comparing that situ-
ation with the case of infinite-dimensional topological vector spaces, AL defined first cylind
functions as functions onA/G/; and second the integral of cylindrical functionsf 5pb* f b via
*A/G f dm5*A/G/; f b dmb , wheredmb is a measure onA/G/;>G#b/Ad. The main problem is to
guarantee that this integral is well defined. AL could prove this for the choice thatdmb is the Haar
measure onG#b/Ad, and if only strongly independentb are allowed for calculating the integra
above. The use of merely weakly independentb leads to contradictions. Our task is now to pro
that the use ofmoderatelyindependentb keeps instead the definition valid. This point is cruc
for the calculation of the Wilson loop expectation values using the not strongly, but mode
independent flag worlds.

A. Equivalence of connections

We recall2 the following.
Definition 5.1:Equivalence of Connections.
Let HG(b)#HG be a finitely generated subgroup of the hoop groupHG with weakly inde-

pendentb. Two ~generalized! connectionsĀ1 andĀ2 are calledequivalent with respect toHG~b!
iff

hĀ1
~g!5g21hĀ2

~g!g ;gPHG~b!

with a fixed ~hoop independent! gPG.
Furthermore, letpb :A/G→A/G/; be the corresponding canonical projection.
Using the bijectionA/G↔Hom(HG,G)/Ad Ashtekar and Lewandowski2 could easily analyze the
structure ofA/G/;.

Lemma 5.1:~1! There is a bijectionA/G/;→Hom(HG(b),G)/Ad. That means, two gener
alized connections are equivalent if and only if they coincide mod Ad onHG~b!.

~2! Any choice of n weakly independent generatorsb iPHG(b) yields a bijection
fb :A/G/;→Gn/Ad.

~3! GivenHG(b)#HG the topology onA/G/; induced by the last point is independent of t
choice of generators.
Furthermore, we have2

Corollary 5.2: Let HG~b! be a finitely generated subgroup of the hoop group and; the
induced equivalence relation onA/G. Then any equivalence class@Ā#PA/G/; contains a regular
connection.

B. Cylindrical functions

In the following we setBbªHom(HG(b),G)/Ad>Gn/Ad with b a weakly independent se
of n hoops. Furthermore we usually do not distinguish between a functionf PHA and its Gelfand
transform f̃ :A/G→C.

We now provide a slightly modified version of the Ashtekar–Lewandowski definition
cylindrical function.
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Definition 5.2: f:A/G→C is calledcylindrical function iff there is a finite setb of weakly
independent hoops and a continuousf b :Bb→C, such thatf 5pb* f b . Iff f can be obtained that wa
for a givenb, f is calledcylindrical with respect tob.

The set of all cylindrical functions is denoted byC.
It is very simple to verify

Lemma 5.3:Let f be cylindrical with respect tob. Thenf is cylindrical with respect toa, if the
following holds:

~1! a is weakly independent.
~2! HG(a)$HG(b).

Remark:In contrast to Ref. 2 we define cylindrical functions not only on strongly indep
dent, but also on weakly independentb. For the present the set of cylindrical functions seems
be enlarged. But, it is easy to see, that given anf PC there is a seta of strongly independent loops
such thatf is cylindrical with respect toBa .

Let f PC, i.e., there is a finite setb of weakly independent hoops with respect to thatf is
cylindrical. Following Lemma 3.8 there is a seta of strongly independent loops, such th
HG(b)#HG(a). Due to the just proven lemmaf is cylindrical with respect to the strongl
independent seta. Thus, our definition is equivalent to that one in Ref. 2.
Finally, we quote2

Proposition 5.4:C is a normed*-algebra andC̄ is isomorphic toHA.

C. The induced Haar measure on A/G

Definition 5.3:Let be f PC andb#HG be a moderately independent set ofn hoops, such that
f is cylindrical with respect tob, i.e., f 5pb* f b with a continuous functionf b :Bb→C. Further-
more,dmb is an arbitrary measure onBb . Then we define*A/G f dmª*Bb

f b dmb .
We have to guarantee that the measures on the distinctBb are compatible in order to make th
integral in the definition above well-defined.

Ashtekar and Lewandowski suggested to choose the Haar measure on eachBb , b strongly
independent, induced fromGn/Ad with n the cardinality ofb. Indeed, they could prove that th
definition above provides a well-defined integral onA/G. We are only left with the proof that the
integral is still well-defined if we allowb to be merely moderately independent instead of stron
independent. Fortunately, for this we can reuse the AL proof with slight modifications. Thu
have

Theorem 5.5:Let *A/G f dm0 be defined as in Definition 5.3, where the measure onBb is in
each case the Haar measurednmHaar.

~1! The integral*A/G f dm0 is well-defined.
~2! The functional

F: HA→ C

f ° E
A/G

f ~Ā!dm0~Ā!

is linear, continuous, positive and Diff(M ) invariant.
~3! The cylindrical measuredm0 is a regular, positive and Diff(M )-invariant measure onA/G.

Proof: It remains to prove the integral to be well defined. If it is, then our measure coinc
with the AL measure defined only by the use of strongly independent hoops, since the AL m
is unique and we did not remove any of the conditions the integral has to fulfill—becaus
strongly independentb is moderately independent. Consequently, all the other assertions o
theorem already proven in Ref. 2 using the strong independence can be generalized to ou
lem.
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~1! Let there be given anf PC and two setsb8,b9#Lm of moderately independent loops, suc
that f is cylindrical with respect toBb8 andBb 9 .

~2! W.l.o.g. choose the free segmentsei 8
8 ,ei 9

9 of bi 8
8 ,bi 9

9 , such that they are in each cas
completely contained in an edge ofGb8øb9 . ~If necessary, freeb8 andb9 from retracings and then
use the argumentation of Proposition 3.10. For the definition ofGb8øb9 see Construction 3.4.!
Now connect any vertexvÞm of Gb8øb9 with the base pointm by a piecewise analytic Jorda
pathhv , such thathvùhv8 ;vÞv8 andhvùGb8øb9 consist of at most a finite number of point
Construct all pathsb iªhe

i
2eihe

i
1

21
, where ei runs over all edges ofGb8øb9 . Obviously,

b8,b9#HG(b),bª$b i u i 51,...,n%, and alsoHG(b8),HG(b9)#HG(b). More precisely: Letb j8

5Pkj 51
K j ei ( j ,kj )

e( j ,kj ) be a ~minimal! decomposition of b j8 into a sequence of edges, sob j8

;Pkj 51
K j b i ( j ,kj )

e( j ,kj ) is a ~minimal! decomposition ofb j8 in b i . The same holds forb j9 .

Next, b is strongly independent with the free segmentsei .
SinceHG(b8),HG(b9)#HG(b), f is also cylindrical with respect toBb . Thus, it is sufficient to
prove*Bb8

f b8 dmBb8
5*Bb

f b dmBb
.

~3! Now we can express anyb i 8
8 Pb8 by a product ofb iPb, such that for alli P@1,n8# there

exists aK( i 8)P@1,n# and that the following holds:
~a! iÞ j 8⇔K( i 8)ÞK( j 8);
~b! bK( i 8) is not used in any decomposition of theb j 8

8 , j 8, i 8, into elements ofb;
~c! bK( i 8) ~or bK( i 8)

21 ) is used in any decomposition ofb i 8 exactly once.
To see this chooseK( i 8), such thateK( i 8) contains the free segment ofb i 8

8 . Since there is a
bijection ei↔b i , these three conditions are only a reformulation of the criteria for the mode
independence of theb i 8

8 .
~4! Since f is as well cylindrical with respect tob as with respect tob8, f 5pb* f b

5pb8
* f b8 . Analogously to Lemma 5.3 we havepb85ppb , where

p: Gn/Ad → Gn8/Ad

@g1 ,...,gn#Ad ° F )
k151

K1

gi ~1,k1!

e~1,k1! ,..., )
kn851

Kn8

g
i ~n8,kn8!

e~n8,kn8!G
Ad

is defined due to the decompositions

b i 8
8 5 )

ki851

Ki 8

e
i ~ i 8,ki 8!

e~ i 8,ki 8!
.

Thus, we have

f b5p* f b8 , i.e., f b~@g1 ,...,gn#Ad!5~p* f b8!~@g1 ,...,gn#Ad!

5 f b8S F )
k151

K1

gi ~1,k1!

e~1,k1! ,..., )
kn851

Kn8

g
i ~n8,kn8!

e~n8,kn8!G
Ad
D .

~5! Since we fixed the generators ofHG~b!, we can interpret the integration onBb as an
integration onGn/Ad. Since the Haar measure is Ad invariant, we can pull back any functio
Gn/Ad onto the wholeGn and integrate hereon. The analogon holds forBb8 .

~6! Now we can integrate~consideringf b to be both a function onGn andGn/Ad):
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E
Bb

f b dmBb
5E

Gn)i 51

n

dm i f b~g1 ,...,gn!

5E
Gn)i 51

n

dm i f b8S )
k151

K1

gi ~1,k1!

e~1,k1! ,..., )
kn851

Kn8

g
i ~n8,kn8!

e~n8,kn8!D
5E

Gn2n8 )
i 51,i ¹K~@1,n8# !

n

dm iE
G

dmK~1!¯E
G

dmK~n8!

f b8~¯gK~1!¯,... ,̄ gK~n8!¯ !

~Permutation of the order of integration. The three dots in
¯gK( i 8)¯ denote a product ofgi , which because of the
construction above does not contain agK( j 8) with j 8> i 8.)

5E
Gn2n8 )

i 51,i ¹K~@1,n8# !

n

dm iE
G

dmK~n8!E
G

dmK~1!¯E
G

dmK~n821!

f b8~¯gK~1!¯,... ,̄ gK~n821!¯,gK~n8!!

~results from the translation invariance of the Haar measure,
since for all j 8,n8 ¯gK( j 8)¯ does not contain a factor
gK(n8) and sincegK(n8) appears in̄ gK(n8)¯ exactly once.!

]

5E
Gn2n8 )

i 51,i ¹K~@1,n8# !

n

dm iE
G

dmK~1!¯E
G

dmK~n8!

f b8~gK~1! ,...,gK~n8!!.

~We used successively the translation invariance of the
Haar measure in order to eliminate thē products as in
the step above.!

5E
Gn8)i 51

n8

dm i f b8~g1 ,...,gn8!

~Normalization of the Haar measure and bijection
i 8↔K( i 8))

5E
Bb8

f b8 dmBb8
.

~7! Thus, *A/G f dm0 is well-defined. ~We assumed in our calculation, that in any ca
¯gK( i 8)¯ appears and̄ gK( i 8)

21
¯ does not. Otherwise in the last step but three we get a func

partially in gK( i 8)
21 . The claim remains valid since the Haar measure is invariant under invers

i.e., we have*G dmHaarf (g)5*G dmHaarf (g21).) qed
Remark:The proof that the integral is well-defined gives us the earlier mentioned import

of moderate independence. Though the flag worlds in Sec. IV are usually not strongly ind
dent, they can be used for the integration calculus. If one instead demanded only the
independence for the definition of the integral, the integral would becomeill-defined. Let, e.g.,
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G5SU(2) andb be a strongly or, equivalently, a moderately independent loop.gªb2 is no
longer moderately independent, but, of course, still weakly independent, since extractin
square root is possible in SU~2!. Let now f 5tr hg5tr hb

2. f is cylindrical with respect tog and
with respect tob. We integratef with respect tog and receive*A/G f dm05*G tr gdmHaar50. But,
with respect tob we have*A/G f dm05*G tr g2 dmHaar521, i.e., the integral is ill-defined. Thus
the moderate independence is best-suited for the mathematically rigorous calculation of th
son loop expectation values in Sec. VI.

VI. CALCULATION OF THE WILSON LOOP EXPECTATION VALUES

In this section the expectation values of the Wilson loop products^Ta1
¯Tan

& of the pure
Yang–Mills theory are computed. Thiemann3 and Ashtekaret al.4 were the first who succeeded i
calculating^Ta1

¯Tan
&—at least for loopsa i that lie in a certain quadratic lattice—in the Ash

tekar framework. Our goal is now to generalize their results for arbitrarya i .
It is well known2 that given the expectation values^Ta1

¯Tan
& for all a i one can reconstruc

the measuredmYM of the theory and vice versa. A direct definitiondmYMªe2S@Ā#dm0 is difficult
since one has to define the actionS not only onA/G but on the wholeA/G. The first step to

overcome this problem is an appropriate regularizationSreg
W (A) of SYM(A)5*M

1
4 tr FmnFmn dx.

Since the only variables useda priori in the Ashtekar approach are the Wilson loops, it seems v
likely to use the lattice regularization. Strictly speaking, TA1 set

Sreg
W ~A!ª

N

g2a2 (
h

S 12
1

N
Re trhh~A! D , ~2!

wherea denotes the lattice spacing,h runs over all plaquettes of the lattice, andhh(A) is the
holonomy around the boundary ofh. On the one hand,Sreg

W converges naively toSYM , when the
lattice grows ad infinitum anda goes to zero, and on the other hand,Sreg

W is a function of Wilson
loops, i.e., it can be naturally extended fromA/G onto the wholeA/G. The second step of TA1

was now the definition of̂ Ta1
¯Tan

& exchanging limit and integration~L is the length of the
lattice!:

^Ta1
¯Tan

&ª lim
a→0,L→`

1

Za,L
E

A/G
dm0 e2Sreg

W
Ta1

¯Tan
‘ ‘ 5 ’ ’

1

Z E
A/G

dm0 e2 lima→0,L→`Sreg
W

Ta1
¯Tan

.

Now they were able to calculate explicitly the expectation values for alla1 ,...,an contained in a
quadratic lattice. Finally, they suggested to compute these values for generala i by approximating
them by certain lattice loops.

We avoid this problem using a slightly modified regularization. The idea is to adap
regularization to the given loops and not vice versa. We consider any finite lattice with c
interior domainsG generalizing the quadratic plaquettesh. Then we replace in~2! h by G and
alsoa2 by uGu, the area of the interior domainG, in the denominator. Following the calculation
of TA1 we get an explicit formula for̂Ta1

¯Tan
& with arbitrarya1 ,...,an that coincides with the

naive limit of TA1.

A. Regularization of the Wilson loop functionals

In this subsection we want to introduce our regularization.
Definition 6.1:Generalized Yang–Mills action.
Let G be a simple domain inR2, uGu its area,aG a boundary loop ofG and@A#PA/G. Then

we set

SG~@A# !ª
N

g2

1

uGu S 12
1

N
Re trhaG

~A! D5
N

g2

1

uGu ~12ReTaG
~A!!.
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~This definition is obviously independent of the choice of the boundary loop and the chosA
P@A#.)

Now let G be a finite simple graph inR2 with interior domainsG. G→R2 means that the
supremum supGPG diamG of the diameters of the interior domains goes to 0 and the supremu
the diameters of all circles with center inm, which are completely contained inøḠ goes to`.
~The choice ofm is arbitrary. One can choose any point inM5R2, but one has to fix that poin
once for all.!

We set theregularized Yang–Mills action to be SG(@A#)ª(G SG(@A#) and defineS(A)
[S(@A#)ª limG→R2 SG(@A#).

Finally let ĀPA/G. We defineS(Ā)ª limG→R2(G SG(Ā) to be thegeneralized Yang–Mills
action.

Remark:While we have written the present paper the article ‘‘Study of Wilson loop funct
als in 2D Yang–Mills theories’’ of Aroca and Kubyshin5 appeared. They used an analogo
regularization, i.e., they also permitted arbitrarily bounded domains instead of the usual qua
plaquettes. They even considered a more general class of actionsSG(A)ª(G S1(haG

(A)), where
G runs over all plaquettes which the lattice on the~compact! two-dimensional manifold is divided
into and whereS1 has to fulfill the following axioms

~1! S1(g)5S1(g21) for all gPG;
~2! S1(g) has an absolute minimum ing5eG ;
~3! limG→$x% (1/uGu)S1(haG

(A))5 1
2 tr Fmn(x)Fmn(x).

Our definition reduces to that of Thiemann, Ashtekaret al.3,4,12if all domainsG are quadratic and
congruent with areauGu5a2 ~a...lattice spacing!. One can prove—at least in a naive limit—th
S(A) converges pointwise toSYMª

1
4*M tr FmnFmn dx with Fmn5] [mAn]2 ig@Am ,An#.

Note that the limitS(Ā) is very formal because one can easily prove that this limit neithe
unique nor exists for generalĀPA/G. However, why should we need the existence or uniquen
of the limit S(Ā)? Actually, we only have to calculate terms like

E
A/G

expF2 lim
G→R2

(
G

SG~Ā!G T̃a1
~Ā!¯T̃an

~Ā!dm0 .

In order to use the integration calculus one has to exchange the limit and the integral.A priori we
do not know, whether this is—at least mathematically—correct. Astonishingly, one can prov
such an exchange makes the limitof the integralsindependent of the limiting process. By now, w
do not really know which effect is responsible for that behavior.

B. Results

Given a finite seta5$a1 ,...,an% of loops. We have to calculate the following expression

x~a!ª lim
G→R2

1

Z E
A/G

expF2(
G

SG~Ā!G T̃a1
~Ā!¯T̃an

~Ā!dm0 .

Z is chosen here so that we havex(1)51. ~Strictly speaking,Z actually depends onG, but we
suppress this here and in the sequel.!

Due to the analyticity of the loops the seta generates a finite, nonempty, planar and connec
graphGa . We enlargeGa to an ordinary graph~Sec. III D! and afterwards to a simple, ordinar
graph~Proposition 4.3! again denoted byGa with the interior domainsGI , I 51,...,l. Furthermore
we choose any moderately independent flag worldF5$ f I% for Ga existing due to Proposition 4.9
Now, due to Corollary 4.10 any hoop inGa can be expressed by a hoop product of flags inF, i.e.,
by a product of nonoverlapping loops:
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a i5)
j 51

j i

f I ~ i , j !
e~ i , j ! ; i 51,...,n;e~ i , j !561.

Finally, we demand that any graphG in the limiting process is a refinement ofGa .
Thus, we arrived at the point where we can reuse the calculations of TA1. We have to replace

simply the plaquette loops in TA1 by the flags and, analogously, the corresponding refineme
Therefore we skip the technical details~for that purpose, see, e.g., Ref. 13! and present only the
result:

x~a!5
1

Nn )
I 51

l S (
~m!

e2
1
2g2c~m!uGI up~m!

~n!
^

n1D
AW I

BW I

C
CW
DW E

EW
FW

,

which for a1 ,...,an contained in a quadratic lattice coincides with the results of TA1. Here,p(m)
(n)

are the projectors built from the Young tableaux~m! for ^
ng and c(m) is the eigenvalue of the

corresponding quadratic Casimir operator.n depends only on the decomposition of thea i into the

flags f I . Finally, C
CW
DW

and E
EW
FW

are certain tensors andAW I and BW I indices whose structure is als
determined by the algebraic structure of that decomposition.

For G5U(1) we get

x~a!5)
I 51

l

e2
1
2g2nI

2uGI u,

wherenI is the ‘‘effective’’ winding number ofa1¯an around the domainGI .
In conclusion we emphasize that the limits above are completely independent of the lim

processG→R2 supposedGa is a restriction of any graph in the limiting process. Thus, the lim
exists and is unique.

VII. DISCUSSION

In Sec. VI we ‘‘derived’’ the expectation values of the Wilson loop products. Actually,
word ‘‘derived’’ is an exaggeration—de facto wedefinedthe values even if the Yang–Mills actio
on A/G influenced the definition ofx. But we did not deduce the values ofx from SYM in a
mathematically correct way. Formally we gotx by

x~a!5E
A/G

dm0 e2SYM~Ā!Ta1
¯Tan

5E
A/G

dm0e2 lim Sreg~Ā!Ta1
¯Tan

,

i.e., by extendingSYM onto A/G, and subsequently by exchanging the limiting process and
integration

x~a!ª lim E
A/G

dm0 e2Sreg~Ā!Ta1
¯Tan

.

Consequently, this definition is the actual start of our considerations. In principle, that appro
a kind of constructive quantum field theory that needs a physical justification only a poster

In Sec. VI A we already noted that the regularization ofSYM by

Sª lim
G→R2

(
G

N

g2

1

uGu S 12
1

N
Re trhaGD

makes no problems onA/G, but breaks down onA/G, because the limit does not exist in gener
Thus,Scannot be inHA. But, surprisingly the exchange of limit and integral yields very regu
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results. We have even shown13 that the limit x~a! for our choice of regularization exists for a
finite a#Lm and is independent of the limiting process. Is there a deeper reason behind th

However, we know that the given expectation values define a unique Borel measurem on
A/G 2 because we can extend these values to a linear continuous positive functional onHA. Note
that originally the expectation values are not mutually independent, but subjected to the so
Mandelstam relations. Since we defined the expectation values using integrals onTa , these
relations are indeed implemented. What properties doesm have? Ism strictly positive or ism
absolutely continuous with respect to the induced Haar measurem0? Is it even possible to defin
an actionS on A/G directly, i.e., without regularization, and is it therefore possible to get
desired measure bydmªe2Sdm0?

The choice of regularization is also worth being discussed. In the present case the regu
tion of SYM depends crucially on the dimension 2. It cannot be extended to three or more d
sions because it uses—roughly speaking—the chance that for two-dimensional manifolds
has both dimension and codimension 1. But the codimension is decisive. To avoid renormal
one has to regularize thed-dimensional Yang–Mills theory by

lim
sup diamG→0

N

g2

1

vol G (
$G%

S 12
1

N
Re trP expS 2 igE ]GAD D ,

where $G% is a decomposition of the base manifold into certaind-dimensional objects. How to
connectP exp(2ig*]GA) andP exp(2ig*aA)? Moreover, the used propositions for planar grap
cannot be applied to higher dimensions. Thus, from dimension 3 on problems of knot theor
be important and so will methods of the topological quantum field theory. Perhaps using alg
topology or invariant theory one can specify a class of constructible models.

Let us return finally to the concrete generalization of the two-dimensional Yang–Mills th
within the Ashtekar approach. In the last few years some papers were published that calcula
expectation values of the Wilson loops inA/G ~e.g., Refs. 14–16! and performed the continuum
limit. They provided an area law, an indication for the confinement in the theory. All in all th
papers delivered the same result as the Ashtekar approach does today. Thus, we get
justification for our choice of the regularization. Perhaps it is possible to translate further m
into the new approach and to confirm that way the results got onA/G. However, it seems to be
unlikely that one gets—at least in the next time—general assertions for the equivalence
‘‘classical’’ and the Ashtekar approach. But, from the mathematical point of view this woul
very interesting because some problems of the classical approach could be circumvented.
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APPENDIX: PROOF OF PROPOSITION 3.1

Lemma A.1:Let g be a Jordan path inM contained completely in a chartUi with trivialization
x i and p any point in the fiber overg~0!. Furthermore, letG be compact and connected ande

P]0,1
2@ arbitrary.

Then tg,Ae,g,i
(p)5Pg(1) , where Ae,g,i is defined by Ae,g,iª$APAuAi(g(t))[0 for

t¹@e,12e#%, i.e., any point ofPg(1) can be reached by parallel transport starting inp with respect
to connections inAe,g,i . @tg,A(p):P→P is the parallel transport ofp alongg with respect to the
connectionA andtg,p(A) the corresponding group element.#

Proof: ~1! Let p[piªsi(g(0))ªx i
21(g(0),eG). Thentg,p(A)5P exp@2*gAi(ġ)dt#, where

ġ is the tangential vector field tog andAi is the connectionA in the local trivializationx i . ~We
dropped the factor ig.!
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~2! Obviously, there is a one-formai :TUi→C with ai(ġ)ug(@0,e#ø@12e,1#)[0 and
2*gai(ġ)dt51Þ0.

~3! SetAl,iªai ^ l for anylPg and extendAl,i to a connectionAl on TP. ~This is possible,
see, e.g., Ref. 17, p. 67.! Obviously,AlPAe,g,i for any lPg.

~4! For l constant, we havetg,p(Al)5Pexp@2(*gai(ġ)dt)l#5el.
~5! Since the image of the Lie algebrag under the exponential map is the connected com

nent of unity of the Lie groupG, we haveG$tg,p(Ae,g,i)$$tg,p(Al)ulPg%5$elulPg%5G,
i.e., G5tg,p(Ae,g,i) and thustg,Ae,g,i

(p)5Pg(1) .
~6! Now let p be arbitrary. Since the parallel transport commutes with the right action

havetg,Ae,g,i
(p)5(Ad cg)tg,Ae,g,i

(pi)5(Ad cg)5Pg(1)5Pg(1) becauseG acts freely onP. We
choseg, such thatp5pi•g. qed

Proof ~Proposition 3.1!:
Let aª$a1 ,...,an% be a set of moderately independent loops. We have to show that fo

n-tupel (g1 ,...,gn)PGn there is anAPA with ha i
(A)5gi ;1< i<n. ~Note, that we have fixed a

trivialization x and therefore a base pointp in Pm from the very beginning.!
Fix a covering$Uk% of M. Choose a free segmentei to anya iPa due to Definition 3.2, such

that

~1! a i5 f i
2ei f i

1 with f i
6ùei5B anda jùei5B ; j , i and

~2! any free segment lies completely in a chartUi .

Next, choose open neighborhoodsVi of ei , such thatVi#Ui are mutually disjoint and tha
a jùVi5B for any j , i , and modify the covering ofM in that way, thatVi lies in exactly one
chart~denoted again byUi). Furthermore, choose openVi ,e and compact setsVi

c ,Vi ,e
c with some

eP]0,1
2@ , ei#Vi

c#Vi and Vi ,e
c #Vi ,e#Vi

c , Vi ,eù f i
65B and g i(t)PVi ,e

c ⇔tP@e,12e#, where
g i :@0,1#→ei is a parametrization ofei . ~See Fig. 8.!
It is a well-known fact that there exists afPC`(M ) with f[1 on øVi

c andf[0 on M \øVi

and analogously af i ,ePC`(M ) with f i ,e[1 auf Vi ,e
c andf i ,e[0 on M \Vi ,e for all i.

Let BPA be some connection.
~1! i 50.
A(0)

ªB2fB is again a connection.~This simple notation means: There is anA(0) for thatB,
such thatAi

(0)5(12f)Bi on øVi and elsewhereB5A(0) since because of the special selection
Vi the compatibility conditions of chart changes are not touched.! We have nowAj

( i )[0 onej for
all j . i 50 ~and obviouslyha j

(A( i ))5gj for all j < i 50).
~2! i .0.
Let pi ,2ªt f

i
2 ,A( i 21)(p)PPg i (0) be the parallel transport toA( i 21) of p along f i

2 and pi ,1

ªt f
i
1 ,A( i 21)

21
(p•gi) the ‘‘inverse’’ parallel transport with respect toA( i 21) along f i

1 leading from

FIG. 8. The domainsVi , Vi
c , Vi ,e , andVi ,e

c .
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Pg i (1) to p•gi . Due to the lemma above there is anA8PAe,g i ,i with pi ,15tei ,A8(pi ,2) and we

have

p•gi5t f
i
1 ,A~ i 21!~tei ,A8~t f

i
2 ,A~ i 21!~p!!!

5t f
i
1 ,A~ i 21!1f i ,eA8~tei ,A8~t f

i
2,A~ i 21!1f i ,eA8~p!!! ~due to f i ,e[0 on f i

6!

5t f
i
1 ,A~ i 21!1f i ,eA8~tei ,A

~ i 21!1f i ,eA8~t f
i
2 ,A~ i 21!1f i ,eA8~p!!!

~due to Ai
~ i 21!uei

[0 and f i ,eusuppA
i8ùei

[1!

5t f
i
2ei f i

1 ,A~ i 21!1f i ,eA8~p!

5ta i ,A~ i !~p!,

where we setA( i )
ªA( i 21)1f i ,eA8. Obviously,A( i ) is a connection, and we getha i

(A( i ))5gi .
Since A( i )5A( i 21) outside Vi and Viùa j5B ; j , i , we have alsoha j

(A( i ))5ha j
(A( i 21))

5gj , ; j , i by induction. Furthermore, we haveAj
( i )[0 on ej for all j . i .

The proof ends settingAªA(n). qed
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Resonances in a box
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We investigate a numerical method for studying resonances in quantum mechanics.
We prove rigorously that this method yields accurate approximations to resonance
energies and widths for shape resonances in the semiclassical limit. ©2000
American Institute of Physics.@S0022-2488~00!01201-9#

I. INTRODUCTION

In this paper we rigorously analyze the validity of a numerical technique for studying r
nances in quantum mechanics. The technique is called ‘‘a spherical box approach to reson
by its inventors, Maieret al.1 We prove that the technique yields correct energies and lifetimes
shape resonances in the semiclassical limit.

The technique is an ‘‘L2 method,’’ in contrast to time-independent scattering theory meth
such as the calculation of phase shifts near energies where a resonance is expected. TL2

methods are surveyed, e.g., in Ref. 2.
The basic physical idea underlying allL2 methods is that a resonance wave function is a s

that is concentrated mainly in the interaction region. In contrast, states associated with the
the continuous spectrum are not concentrated in any bounded interval. As a consequenc
the system is confined to a box that is large compared to the interaction region and the size
box is varied, the resonance wave function is much less influenced than the states from the
the continuous spectrum. This should be visible in the spectrum, and is the basis of the tec
we study.

To make this precise, we consider the Schro¨dinger operator

HªD21V, Dª

\

i

d

dx
~1!

with a resonance producing potentialV that is defined on all ofR. We restrict the system to th
interval (2 l ,l ) with Dirichlet boundary conditions atx56 l , and plot the eigenvalues of th
resulting operatorH( l ) as a function ofl.

Figure 1 presents the results obtained by doing this for the potentialV that is depicted in Fig.
2.

In Fig. 1, one can clearly distinguish between eigenvalues that depend strongly onl and others
that seem to be almost independent ofl. Furthermore, there are avoided eigenvalue crossings w
a strongly dependent eigenvalue is close to an eigenvalue that is almost independent ofl. Note that
in our example, eigenvalues are not expected to cross,3 since the potential has no apparent sy
metry properties.

In addition to relating the almost constant eigenvalues to resonance energies, Maieret al.1 also
relate the sizes of the gaps in the avoided crossings to the imaginary part~or width, or inverse
lifetime! of the resonance. In Ref. 1, spherically symmetric potentials are treated. After the r

a!Present address: Donaustr. 105, 12043 Berlin, Germany.
1030022-2488/2000/41(1)/103/15/$17.00 © 2000 American Institute of Physics
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tion to an angular momentum subspace, the particle can escape to infinity in only one w
increasing the radial coordinater. In the model we consider, the particle can escape toward e
plus or minus infinity. Since the probabilities for going in the two directions can be different
observe two different size gaps for each given resonance. This is obviously the case in Fig.
our model, the resonance width is related to the larger of the two gaps.

In this paper, we provide rigorous justification of these results in the semiclassical limit.
first step, we adopt a standard definition of a resonance that is presented in Refs. 4 and
definition identifies a resonance with a complex eigenvalue of a suitably constructed an
family of operators obtained from the original Hamiltonian~1!.

FIG. 1. An example of the dependence of the eigenvalues on the box sizel.

FIG. 2. The potential associated to Fig. 1 and relevant parameters.
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In many instances, as in the case of shape resonances, such a complex eigenvalue
viewed as arising from the perturbation of an eigenvalue embedded in the continuous spe
We take this viewpoint and employ the framework of ‘‘The Shape Resonance’’6 by Combeset al.
We temporarily impose supplementary Dirichlet boundary conditions at pointsv6 to decouple the
interaction region from the rest ofR. This yields an unperturbed operator on all ofR that has
embedded eigenvalues whose eigenfunctions are supported in the interaction region. Rem
these Dirichlet conditions perturbs the embedded eigenvalues to produce the resonances~that are
realized as complex eigenvalues of certain non-self-adjoint operators!. The perturbation calcula
tions are facilitated by the use of Krein’s formula.6

To relate the resonances ofH defined onL2(R) to the almostl-independent eigenvalues o
H( l ), we show that the techniques of Ref. 6 can also be applied in a box to studyH( l ). We then
employ the following strategy: For small values of\, resonances ofH are very close to embedde
eigenvalues ofH with supplementary Dirichlet conditions atv6 . For l .max$uv1u,uv2u%, these
embedded eigenvalues are also eigenvalues ofH( l ) with supplementary Dirichlet conditions a
v6 . For largel and small\, removal of these supplementary Dirichlet conditions perturbs th
eigenvalues only slightly. Thus, the resonances ofH are near eigenvalues ofH( l ). These results
are made precise in Theorem 2.

This approach also allows us to prove rigorously that the gap in the avoided crossing is
order of the square root of the resonance width, in accordance with Ref. 1. We accomplish
relating both the gap and the resonance width to the thickness of the potential barrier as me
by the Agmon distance.7 The relationship between resonance widths and Agmon distanc
already established in Ref. 6, so we need only examine the relationship between the A
distances and the gaps in the avoided crossings. This is done in Theorem 3.

II. HYPOTHESIS AND RESULTS

For simplicity, we assume the potentialV to be bounded. We wish to study resonances that
produced by a single well and to avoid asymptotically degenerate eigenvalues with an exp
tially small separation in\. Furthermore, we want the bottomv0 of the well to be above the
scattering threshold. We force this situation by imposing a hypothesis that can be expressed
with the help of the notion ofthe classical forbidden region at energy E. This is defined as

J~E!ª$xPR:V~x!.E%.

Our precise hypothesis is the following:
„H1… VPC1(R) is bounded and has a local minimumv0 at a unique pointx0 , such that

J(v0) is connected, and lim supuxu→` V(x),v0 .
By translating the origin if necessary, we choose an interior region

V iª~v2 ,v1!, with v2,0 and v1.0, such thatV̄ i \$x0%,J~v0!.

We define the exterior region to beVeªR\V̄ i , and letVe
25(2`,v2) andVe

15(v1 ,`). We
define the decoupled comparison operatorHd as having the same symbol asH, but with supple-
mentary Dirichlet conditions atv2 andv1 . This operator decomposes into

Hd5Hi
% He with D~Ha!5H0

1ùH2~Va!, where aP$ i ,e%.

Since we want to focus on shape resonances, we impose a hypothesis that prevents res
from being produced in the exterior region for energies nearv0 . We phrase this hypothesis i
terms of a nontrapping condition:8 We say the potential V is nontrapping inVe at energy E
(abbreviated E is NT), if the following condition is satisfied foraP$2,1%:

'S.0, ;xPVe
a\J~E!,

x2va

x
„2~V~x!2E!1xV8~x!…,2S. ~2!
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We assume the following.
„H2… v0 is NT.

Note that formula~2! implies the more standard virial condition

'S̃.0, ;xPVe\J~E!, 2~V~x!2E!1xV8,2S̃.

Furthermore,~2! implies the ‘‘exterior’’ virial condition

'S.0, ;xPVe
a\J~E!, ~2„V~x!2E…1~x2va!V8~x!!,2S, aP$2,1%.

Our third hypothesis concerns analyticity under exterior dilation. ForuPR, we define
Uu :L2(R)→L2(R) by

Uu :f°Ar u8f+r u ,

where

r u~x!ªH v21eu~x2v2!, x,v2

x, xP~v2 ,v1!

v11eu~x2v1!, x.v1

.

We then assume the following.
„H3… VuªUuVUu

21 defined initially for uPR has an analytic continuation as a bound
operator to the strip$uPC:uIm uu,b%, for somebP(0,p/4).

For uPR we also define the operatorsHuªUuHUu
21 and Hu

d
ªUuHdUu

21. It is a straight-
forward calculation to obtain the associated symbol

Uu~D21V!Uu
215r u8

22D21V+r u ,

where

@r u8
22D2u#~x!5H 2\2u9~x!, xP~v2 ,v1!

2\2e22uu9~x!, x¹@v2 ,v1#
.

Since Uu is a unitary operator onL2(R) for uPR, we easily compute the domains for th
operatorsHu

d andHu , for uPR:

D~Hu
d!5D~Hi ! % D~He!,

~3!
D~Hu!5$ui % uePH2~V i ! % H2~Ve!:ue~v6!5eu/2ui~v6!,ue8~v6!5e3u/2ui8~v6!%.

We define the restrictions of these operators to the box (2 l ,l ) to be

Hu
d~ l !ªr u8

22D21V+r u on D~Hu
d!ùH0

1
„~2 l ,l !…, and

Hu~ l !ªr u8
22D21V+r u on ~4!

D~Hu!~ l !ª$uPL2~2 l ,l !,'vPD~Hu!,u5v u~2 l ,l !,u~2 l !5u~ l !50%. ~5!

For u50, Hu50( l ) is simply the Schro¨dinger operatorH( l ) described in the Introduction that i
used to produce plots, such as Fig. 1.

The following lemma describes the analytic continuations of these families of operato
complex values ofu:

Lemma 1: Hypotheses„H1…–„H3… imply the following two conclusions:
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~1! $Hu
d ,u Im uu,b% and $Hu

d( l ),u Im uu,b% are self-adjoint analytic families of Type (A) o
m-sectorial operators.

~2! $Hu ,u Im uu,b% and $Hu( l ),u Im uu,b% are self-adjoint analytic families of operators.

Proof: These conclusions for the familiesHu
d andHu are proved in Ref. 6. The same proo

apply for the familiesHu
d( l ) andHu( l ) since the proofs in Ref. 6 make no use of the~un!bound-

edness ofVe . j

We next recall the Agmon distance,7 which we denote by the symboldE . It is the distance
associated to the pseudo-metricds2

ª max$0,V(x)2E%dx2. We introduce the abbreviations

dv0

a
ªdv0

~x0 ,a l !, aP$2,1%, and d!
ªmin $dv0

2 ,dv0

1 %.

The following theorem gives precise information about the resonance on the line an
‘‘resonance in the box.’’ Its first conclusion follows from Ref. 6.

Theorem 2: Assume„H1…–„H3… and that Ed is the nth eigenvalue of Hi .

~i! For any qP(0,1) and sufficiently small\, there existsb0P(0,b) such that Hib0
has a

(complex) eigenvalue E close to Ed that satisfies

E5Ed1(
n>1

tnsn

n!
, with t5o~e22qd!/\!, where sn5o~1!, ;n>1.

~ii ! The same is true for the operator Hib0
( l ). Furthermore, its eigenvalue is stable in the sen

of Kato (Ref. 9, Sec. VIII.1.4), as the box size l tends to infinity. As l tends to infinity
eigenvalue converges to the corresponding eigenvalue of Hib0

.
~iii ! For sufficiently small\ and those values of l, for which there exist positive constants c

N, such thatdist (Ed,s„Hd( l )…\$Ed%)>c\N, there exists a real eigenvalue of H( l ) close to
Ed that satisfies the same type of expansion as above.

Remark:~a! Note that in Ref. 6, the theorem is stated withd! replaced bydv0
(x0 ,]V i). Due

to the possible choices ofv6 , the difference between the two quantities can be made arbitr
small and can be absorbed intoq. But then, how small\ must be chosen depends onq.

~b! In the third conclusion of this theorem, one cannot expect uniform results inl and\. The
eigenvalues of the exterior operatorHe( l ) have different dependence onl and\ than the eigen-
values of the interior operatorHi . The condition dist (Ed,s„Hd( l )…\$Ed%)>c\N is technical; we
do not know how to handle exponentially closely spaced eigenvalues. It is well known that
our hypotheses, the eigenvalues ofHi near the bottom of the well~close tov0! cannot be spaced
more closely thanO(\g). Here, the constantg is strictly smaller than 2. Its value depends on ho
flat the bottom of the well is. In order to prove that eigenvalues fromHe( l ) do not cause
dist (Ed,s„Hd( l )…\$Ed%)>c\N to be violated for alll, we would need an additional assumption
the decay of the potential. For example, together with dilation analyticity, it would be enou
assume thatV tends to a limit at infinity likeuxu2e for any e.0.

We now turn our attention to the gaps in the avoided crossings that occur in graphs
eigenvalues ofH( l ). For this part of our analysis, we replace hypotheses„H2… and „H3… by the
following:

„H4… VPC3(R). For xPVe\J(v0), the potential obeysV(x),v0 and there exist two con
stantsv6,v0 , such thatV2v65O(uxu2e) asx tends to6`. Furthermore, forn51,2, we have
V(n)5O(uxu2e21) asx tends to6`.

This hypothesis allows us to use Wentzel–Kramers–Brillouin~WKB! estimates to analyze th
behavior of eigenvalues ofHe( l ). We note thatHe( l ) decomposes into the direct sum ofH2

e ( l )
andH1

e ( l ), whereH2
e ( l ) acts onL2

„(2 l ,v2)… andH1
e ( l ) acts onL2

„(v1 ,l )….
We have the following result on the gaps:
Theorem 3: Assume„H1… and „H4…. Suppose Ed is an eigenvalue of Hi and of Ha

e( l 0), but
not of H2a

e ( l 0). Assume it satisfiesdist (Ed,s„H2a
e ( l 0)…)>c\N, for some positive constants c an

N andaP$2,1%. Then we have the following: For fixed values of\ that are sufficiently small,
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there exists a neighborhoodV( l 0) of l0 , such that for all l inV( l 0), H( l ) has two eigenvalues E1
and E2 that are exponentially close to Ed. These two eigenvalues are separated by a gap
satisfies

min
l PV~ l 0!

$uE12E2u%5U(
n>1

~2t !nsn

n! U, where sn5o~1!, ;n>1.

In this estimate t satisfies the following for anyqP(0,1):

t5o„exp~2qdv0

2 /\!…, i f EdPs~Hi !ùs„H2
e ~ l 0!…,

t5o„exp~2qdv0

1 /\!…, i f EdPs~Hi !ùs„H1
e ~ l 0!….

Remark:~a! Here,\ does not depend onq.
~b! The width of the resonance is given by the tunneling parametert according to Theorem 2

We do not know whether the resonance is going to tunnel to the left or right, so we only obta
estimatet5o„exp (2q2d! /\)…. In Theorem 3 we know to which side the resonance escapes
the result is more precise. We obtain estimates for both of the gap sizes that can occur
avoided crossings for a given resonance. Although we only have rigorous upper bounds, we
that the gap sizes are of the order exp (22dv0

6/\). If this is the case, then Theorem 3 shows that

larger gap is of the same order as the square root of the resonance width. We again note
Ref. 1, a radial symmetric situation is studied, so that there is only one way for the resona
escape, and hence only one gap size.

~c! The eigenvalues ofHi are obviously independent ofl, but not ofv6 . Thus, it might seem
that the condition of having a double eigenvalue is crucially dependent on the choice ofv6 . This
is not the case: From Theorem 2~iii ! we see that the eigenvalues ofHi vary only by an exponen-
tially small quantity in\ when thev6 are varied. For the eigenvalues ofH6

e ( l ), we show in
Appendix B that„H4… implies that eigenvaluesEPs„Ha

e( l )… that belong to an interval (v0 ,v0

1d) are related to\, l, and a quantum numberm by the asymptotic formula

E5va1XS m1
3

4D p\

l
C2

„11O~\!1O~ l 2e!…, aP$2,1%.

We thus have the following consequence: Suppose, for example, that thenth eigenvalueEd of Hi

coincides with an eigenvalue ofH1
e ( l 0) for some choice ofv6 , and thatEd is at least a distance

of O(\N) from the spectrum ofH2
e ( l 0). Then for any other choice ofv6 , there exists anl in a

neighborhood ofl 0 , such thatEd is an eigenvalue ofH1
e ( l ), and the distance fromEd to the

spectrum ofH2
e ( l ) is still at leastO(\N).

III. THE PROOFS

Inspection of the proofs of Ref. 6 for Theorem 2~i! shows that they are valid whether or n
Ve is bounded. Furthermore, these proofs can be separated into two parts: The first is a
algebraic part that shows the stability of the eigenvalue ofHi for the whole operator and construc
the asymptotic expansion of the perturbed eigenvalue in powers of the tunneling parametert. It is
quite simple and short. The second part is the justification of these algebraic formulas wi
corresponding estimates. This part is more complicated and involves estimation of the op
involved in Krein’s formula.

We present the formal algebraic part, which is needed in all of the situations treat
Theorems 2~ii ! and 2~iii ! and Theorem 3. We do this in Section III A in the context of Theor
2~iii !. In Sec. III B, we treat the stability of the resonance eigenvalue ofHib0

( l ) as the box sizel
tends to infinity. Finally, in Sec. III C we prove Theorem 3. In the appendices, we recall Kr
formula and present the more technical estimates, including the WKB estimates.
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We omit the estimates required to prove the existence and the series expansion of the
value ofHib0

( l ) because they are identical to those in Ref. 6.

A. Stability and tunneling expansion for the box

We viewH( l ) as a perturbation ofHd( l ). This perturbation involves two Dirichlet conditions
It is most easily approached by way of Krein’s formula, which exhibits the difference of
resolvents ofH( l ) andHd( l ) as a rank-two operator.

The norm of this rank-two operator is not small. However, because the Dirichlet cond
are imposed inside the classically forbidden region, its norm does not explode in proportion
inverse of the distance from the spectrum to the spectral parameter in the resolvents. This
us to choose the parameters in such a way that the resolvent of the resolvent ofHd( l ) is small in
norm, and we can still use perturbation theory.

The tunneling expansion is based upon a Feshbach-type reduction of the eigenvalue e
with respect to the unperturbed eigenprojection. This leads to an implicit equation that we so
using the Lagrange inversion formula.

1. Stability

To simplify the notation, we suppress thel dependence in many of the formulas. We defi

Rd~z!ª„Hd~ l !2z…21 and R~z!ª„H~ l !2z…21.

We choose a contourG that lies in the resolvent set ofHd( l ) and encloses onlyEd in s„Hd( l )….
We then choose a pointz0 in the intersection of the resolvent sets ofH( l ) andHd( l ), but outside
of G. By using the identity

S Rd~z0!2
1

z2z0
D 21

52~z2z0!2~z2z0!2Rd~z!, ~6!

we obtain the following expression for the eigenprojectionPd[Pd( l ) associated toEd:

Pd52
1

2p i EG
Rd~z! dz52

1

2p i EG̃
~Rd~z0!2 z̃!21 dz̃,

where$G̃ª z̃PC: z̃51/(z2z0), zPG%. By defining

p~z0!ª„H~ l !2z0…
212„Hd~ l !2z0…

21,

we can formally write the eigenprojectionP[P( l ) associated to the perturbed eigenvalueE as

P52
1

2p i EG̃
„Rd~z0!2 z̃…21~11p~z0!„Rd~z0!2 z̃…21!21 dz̃.

If we can chooseG and z0 , such thatip(z0)„Rd(z0)2 z̃…21i,1, then the inverse term in th
integral forP can be computed by geometric series. Then the eigenprojection is well defined
by standard arguments, we can deduce the stability of the eigenvalue forH( l ).

To see that we can do this, fix anynPN. Let

Dªdist~Ed,s„Hd~ l !…\$Ed%!, and fix r P@min $\n, 1
2D%, 1

2D#. ~7!

Note that by hypothesis,D>c\N, for someNPN, and that we can chooser to be as small as any
power of\.

We define Gª$zPC:uz2Edu5r % and z05Ed12ir . Then, formula ~6! implies „Rd(z0)
2 z̃…215O(r ). Thus, the stability follows from the following proposition that we prove in A
pendix A, Sec. 1:
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Proposition 4:p(z0)5O(1).

2. Tunneling expansion

Since we have proven the stability of the eigenvalue and constructedP( l ), we can write the
eigenvalue equation as

R~z0!P~ l !5
1

E2z0
P~ l !.

We perform a Feshbach-type reduction to this equation, with respect to the projectionsPd and
Qd512Pd. We define the ‘‘reduced’’ resolvent

R̂~w;z0!ªQd~Qd
„R~z0!2w…Qd!21Qd.

It satisfies the following estimate:
Proposition 5: For any z in the disc delimited byG, one has Rˆ „1/(z2z0);z0…5O(r ).
Proof: If we replace theR(z0) by Rd(z0) in the definition ofR̂(z;z0), we obtain a trivial

result. The conclusion to the proposition is obtained by applying perturbation theory to this
result. j

For (E2z0)21 the reduction yields the implicit equation

S 1

E2z0
2

1

Ed2z0
D PdP5PdXp~z0!2p~z0!R̂S 1

E2z0
;z0Dp~z0!CPdP.

Using properties of the trace and the factorizationp(z)5\A!( z̄)B(z), cf. Appendix A, Sec. 1, we
obtain

1

E2z0
2

1

Ed2z0
5\TrS B~z0!PdA!~z0!X12\B~z0!R̂S 1

E2z0
;z0DA!~ z̄0!CD ,

or equivalently

1

E2z0
2

1

Ed2z0
5tsS 1

E2z0
D , ~8!

where~suppressingz0 in A andB!

tª\uTr ~BPdA!!u and s~w!ª
1

t
Tr ~\BPdA!

„12\BR̂~w;z0!A!
…!. ~9!

For anyz in the disc delimited byG and z̃51/(z2z0), we have the following estimate ons( z̃):

us~ z̃!u<i12\BR̂~ z̃;z0!A!i511O~r !.

This follows from Proposition 5 and the bound onp, cf. Appendix A, Sec. 1. If we can establis
the estimatet5o(e22qd!/\) of Theorem 2, then Eq.~8! can be solved with Lagrange’s inversio
formula ~Ref. 10, p. 250!.

1

E2z0
5

1

Ed2z0
1 (

n>1

tn

n! F dn21

dzn21 snG S 1

Ed2z0
D5:

1

Ed2z0
1 (

n>1

tn

n!
s̃n .

Multiplying by (E2z0)(Ed2z0) and rearranging, we obtain
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E5Ed2~E2z0!~Ed2z0! (
n>1

tn

n!
s̃n5Ed2 (

k>1
~z02Ed!k11S (

n>1

tn

n!
s̃nD k

.

We estimate the coefficientss̃n by using the Cauchy formula

s̃n5
~n21!!

2p i E
G̃

s~ z̃!n

S 1

Ed2z0
2 z̃D n dz̃ and S 1

Ed2z0
2 z̃D 21

5O~r !.

We definesnª(E2z0)(Ed2z0)s̃n and easily obtain the estimatesn5o(1) of Theorem 2.

3. The tunneling parameter

The above calculation relies on the estimatet5o(e22qd!/\). To prove this, we note that iffd

denotes the eigenfunction associated toEd, then using the definitions and estimations of Appen
A, Sec. 1,

t<\iBfdiiAfdi<\2iTRT!iiBfdi25
\2iTRT!i
uEd2z0u2

iTdDfdi2<
c\3

4r 2 „ufd8~v2!u21ufd8~v1!u2
….

For each part of Theorem 2, we can estimate the expressionufd8(v2)u21ufd8(v1)u2 by the
well-known decay estimates of Agmon.7 This implies the results of Theorem 2.

B. Stability as the box size tends to infinity

We consider the operator

Hu
D~ l !ªHu~ l ! % Hu

ee~ l !, ~10!

whereHu( l ) is the operator defined in~5!, and

Hu
ee~ l !ªe22uD21V+r u on H0

1ùH~R\@2 l ,l # !.

It is easy to see thatHu
ee( l ) is an analytic family of Type~A! in u, and that we have the following

resolvent estimate:
Proposition 6: Assume„H1…–„H3… and let S denote the constant in the nontrapping condit

„H2…. Let n5$zPC: uRez2v0u,S/4, Imz.2kS/4%. Then

;zPn, iRik
ee~z!i<

4

ukuS
„11O~k!….

Proof: Hik
ee( l ) decomposes into a direct sum of operators that act onL2

„(2`,2 l )… and
L2

„( l ,`)…. We consider only the term associated to the interval (l ,`); analogous formulas hold
for the other term. We mimic arguments of Ref. 8. ForuPH0

1ùH2
„( l ,`)… and any v

PL2
„( l ,`)…, we have

ivii~Hik
ee~ l !2z!ui>Re~ „Hik

ee~ l !2z…u,v !.

For k.0 we use this withv52 iei2ku to obtain
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Re~ „Hik
ee~ l !2z…u,v !52Im „e2ik~e22ikD21V+r ik2z!u,u…

52Im „e2ik~V+r ik2z!u,u…

52„~k„2~V2Rez!1~x2v1!V8…2Im z1O~k2!!u,u…

.~k„S22~v02Rez!…1Im z1O~k2!!iui2

.S kS

4
1O~k2! D iui2.

For negativek repeat this calculation withv5 ie2 i2ku. This proves the proposition. j

We now fix u5 ib0 as in Ref. 6. With the definitions ofz0 andG̃ as in Sec. III A, we define

Pib0
~ l !52

1

2p i EG̃
~„Hib0

~ l !2z0…
212 z̃!21

% ~„Hib0

ee ~ l !2z0…
212 z̃!21 dz̃.

Here,Pib0
( l ) projects onto the eigenspace for the eigenvalueEPs„Hib0

( l )…, but does so in the
spaceL2(R). To prove stability of the eigenvalue in the generalized sense~cf. Ref. 9, Sec.
VIII.1.4!, it suffices to show thatPib0

( l )→s Pib0
as l tends to`, where

Pib0
52

1

2p i EG̃
„~Hib0

2z0!212 z̃…21 dz̃,

since both projections have the same dimension, i.e., dimension one. It is shown in Ref. 6 t

sufficiently small,\,„(Hib0
2z0)212 z̃…215O(r ), uniformly on G̃. The estimates of Ref. 6 ar

also valid for„(Hib0
( l )2z0…

212 z̃)21. So, from Proposition 6 and identity~6!, we see that

~„Hib0

D ~ l !2z0…
212 z̃!215O~r !,

uniformly on G̃. Thus, we need only show that for anyuPL2(R),

lim
l→`

i~~Hib0
2z0!212„Hib0

D ~ l !2z0…
21!ui50,

uniformly in \. This is shown in Appendix A, Sec. 2.

C. Proof of Theorem 3

In the degenerate case, we must solve for two eigenvalues. So, we cannota priori use the
Lagrange inversion formula to solve Eq.~8! in the disc delimited byG.

However, we could use the formula if one of the solutions were known to be 1/(Ed2z0). This
would happen ifp were a rank-one operator. In that case, the spectra ofHd and H would
intertwine, and, as a consequence, at the crossing of two eigenvalues ofHd there would have to be
an eigenvalue ofH.

In our situation such a scenario can be realized by lifting the two Dirichlet conditions one
the other.

If suffices to consider the case whereEdPs(Hi)ùs„H1
e ( l 0)…. In the first step, we conside

the operators

H2
d ~ l !ªH2

e ~ l ! % Hi and H2~ l !ªD21V on L2
„~2 l ,v1!….

By hypothesis,\ is small and fixed, andHi has the eigenvalueEd, which for l 5 l 0 is a distance
of O(\N) from the rest of the spectrum ofH2

d ( l 0), i.e., Ed is a simple, conveniently isolate
eigenvalue ofH2

d ( l 0). Thus, the analog Theorem 2~iii ! is valid:
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Lemma 7: Assume the hypotheses of Theorem 3 with EdPs(Hi)ùs„H1
e ( l 0)…. Then there

exists a neighborhood ofV( l 0), of size c\N, such that for each lPV( l 0), the operator H2( l ) has
an eigenvalue E2 close to Ed that satisfies the following for anyqP(0,1).

E25Ed1 (
n>1

tnsn

n!
with t5o~e22qdv0

~v2 ,x0!/\! and sn5o~1!, ;n>1.

Proof: We first note that as we varyl, with the restriction thatu l 2 l 0u<c\N, Ed remains
isolated from the rest of the spectrum by a distance of sizec\N. Thus, we can prove the lemma b
mimicking the proof of Theorem 2~iii !. j

For the second step, note that due to the behavior ofE1
e ( l ) in l, cf. ~14!, there exists anl 1

PV( l 0) such that

E25E1
e ~ l 1!.

We now use the interwining of the spectra ofH2( l 1) % H1
e ( l 1) andH( l 1). We obtain the follow-

ing lemma by using the techniques we used for Lemma 7 and noting that the eigenfunctifd

associated toE2 has the formfd5f2 % f1 , where H2( l 1)f25E2f2 and H1
e ( l 1)f1

5E2f1 :
Lemma 8: AssumeH„1… and „H4… and that E2 is a double eigenvalue of H2( l 1) % H1

e ( l 1) as
constructed above. Then the operator H( l 1) has two eigenvalues E2 and E1 that satisfy

E15E21 (
n>1

~ t11t2!nsn

n!
with sn5o~1!, ;n>1,

where, for anyqP(0,1),

t15o~e22qdv0
~x0 ,v1!/\! and t25o~e22qdv0

~v1 ,l 1!/\!.

The last step in the proof of Theorem 3 is to note that the first two steps can be done f
admissiblev1 . Thenth eigenvalueEd of Hi changes by only an exponentially small amount
\ when v1 is varied, so it remains properly isolated froms„H2

e ( l 0)…. Furthermore, by the
behavior of the exterior eigenvalues, there exists anl 2 in a neighborhood ofl 0 , such that the new
E2 is also an eigenvalue ofH1

e ( l 2). The optimal estimate is obtained whent15t2 , in which case

we havet15t25o(e2qdv0

1 /\).
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APPENDIX A: KREIN’S FORMULA

Since we need Krein’s formula for one and two supplementary Dirichlet boundary condi
taken at different points depending on the situation, we wish to present the formula in a g
setting. On the other hand, for simplicity, we leave out the exterior dilation. We deal with this
when necessary.

Supposen>2, and 2`<x0,x1,¯,xn<` are specified. LetVª(x0 ,xn) and Vk

ª(xk21 ,xk) for k51,...,n. Let HªD21V be a Schro¨dinger operator onV, with self-adjoint
boundary conditions atx0 and xn , and let Hd be the corresponding decoupled operator w
supplementary Dirichlet conditions atx1 ,x2 ,...,xn21 . Denote their resolvents byR and Rd, re-
spectively.

Let zPr(H)ùr(Hd) and u,vPL2(R). Define ûªRd(z)u and v̂ªR(z)!v. Clearly, û
PD(Hd), and thusû5 % k51

n ûk with û(xk)50, k51,...,n21. We have
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~„R~z!2Rd~z!…u,v !5~u,v̂ !2~ û,v !

5 (
k51

n

~D2ûk ,v̂ !Vk
2~ ûk ,D2v̂ !Vk

52\2(
k51

n

ûk8 v̄̂u]Vk

5\2(
k51

n21

~ ûk118 2ûk8! v̄̂uxk
.

We use standard Sobolev space notation and define functionalsTxk

j by the following relations,

where f P % k51
n H1(Vk):

Txk

j :H1~V j !→C, Txk

j fª lim
y→x,yPV j

f ~y!, for j 5k,k11, k51,...,n21.

WhenTxk

k is applied on functions belonging toH1(V) we simply writeTxk
. It is well known that

Txk

j is compact, and, consequently, (Txk

j )!:C2→H21(V j ) is continuous. Furthermore, Lemma 4

Sec. III of Ref. 6 shows that wheneverxPC0
`(R) satisfiesx(xk)51 for k51,...,n21,

iTxk

j ui2<2\21ixuj iiDxuj i<c\21ixuj iH1, for j 5k,k11. ~A1!

Finally, we define

T2
ªS Tx1

1

]

Txn21

n21 D , T1
ªS Tx1

2

]

Txn21

n D , Td
ª2T2

% T1, and TªS Tx1

]

Txn21

D .

With these definitions, we have the following formula,

~„R~z!2Rd~z!…u,v !5\„R~z!T!iTdDRd~z!u,v…,

where all the multiplications are understood to be matrix multiplications.

1. Applying Krein’s formula for Theorem 2 „iii …

In the proof of Theorem 2~iii !, we havex052 l ,x152v2 ,x25v1 ,x35 l ,

Rd~z!5„Hd~ l !2z…21, and R~z!5„H~ l !2z…21.

Following Ref. 6, we define

B~z!ª iTdDRd~z! and A~z!ªTR~z!.

SinceH is self-adjoint, we can write

p~z!5R~z!2Rd~z!5\A!~ z̄!B~z!.

Furthermore, sinceTRd(z)50, we have

Tp~z!5TR~z!5A~z!5\TR~z!T!B~z!.

We combine the two formulas to obtain
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p~z!5\2B!~ z̄!TR~z!T!B~z!.

Proposition 4 now follows from the next proposition
Proposition 9: Let z05Ed12ir . Fix any NPN. Then for sufficiently small\ and any r

P@min $\N,1
2D%,1

2D#,

B~z0!5O~\21/2! and TR~z0!T!5O~\21!.

Proof: The assertion onTR(z0)T! is proved in step 5 of the proof of Theorem III.3 of Ref.
As for B(z0) we have

iB~z0!i25iTv2

1 DRe~z0!i21iTv2

2 DRi~z0!i21iTv1

2 DRi~z0!i21iTv2

3 DRe~z0!i2,

where Ri(z0)ª(Hi2z0)21 and Re(z0)ª(He( l )2z0)21. Let x be a C0
` function supported

aroundv6 such thatx(v6)51. Using the estimate~A1!, it suffices to find a uniform bound on
the expressions

xDRi~z0!, DxDRi~z0!, and xDRe~z0!, DxDRe~z0!.

We choosex, such thatV(x)2v0>e.0 for xPsuppx. Then steps 1 and 2 of the proof o
Theorem III.3 of Ref. 6 show that all theses terms are uniformly bounded. j

2. Applying Krein’s formula for Theorem 2 „ii …

Here we consider the difference of the resolvents of the operatorsHib0
defined by formula~3!

of the Introduction andHib0

D ( l ) defined by formula~10!. In this case,n53, x052`, x152 l ,

x25 l , andx35`. The difference of the resolvents is

Rib0
~z0!2Rib0

d ~z0!5\Rib0
~z0!T!ie22ib0TdDRib0

d ~z0!.

Let x be aC0
` function supported around6 l , with x(6 l )51. To show thatTdDRib0

D (z0) and

TR2 ib( z̄0) are uniformly bounded operators we use the estimate~A1!. Thus, it suffices to show
that xDRib0

D (z0) andxR2 ib( z̄0) are uniformly bounded operators fromL2 to H1. If that is true,

then foruPL2(R), we have

i~Rib0
~z0!2Rib0

d ~z0!!ui<iTR2 ib~ z̄0!i~ uû~2 l !u1uû~ l !u!<c~ uû~2 l !u1uû~ l !u! ——→l→` 0,

uniformly in \, sinceû5xDRib0

D (z0)uPH1(R).

We now address the required uniform bounds. Commutingx andD, we need only conside
xDRib0

D (z0) andxD2Rib0

D (z0). The expressions forTR2 ib( z̄0) are analogous and can be treat

the same way. The formula

ixDRib0

D ~z0!i25ReRib0

D ~z0!!x2
„D222\2~x2!9…Rib0

D ~z0!

shows that it is sufficient to boundxD2Rib0

D (z0) andxRib0

D (z0). We have

xD2Rib0

D ~z0!5e2ibx„Hib0

D 2z02~V+r ib0
2z0!…Rib0

D ~z0!5e2ib
„12~V+r ib0

2z0!xRib0

D ~z0!….

For xRib0

D (z0), we setp ib0
(z0)ª„Hib0

( l )2z…212„Hib0

d ( l )2z…21, and then write
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xRib0

D ~z0!5x~Ri~z0! % „Hib0

e ~ l !2z0…
211p ib0

~z0!! % Rib0

ee ~z0!

5x~„HIb0

e ~ l !2z0…
211p ib0

~z0!! % Rib0

ee ~z0!.

The right-hand side is uniformly bounded in\ andl by Propostion 6 and Lemma II.3 and Theore
III.3 of Ref. 6, which are also valid for~„Hib0

e ( l )2z0…
21 andp ib0

(z0), respectively.

APPENDIX B: WKB ESTIMATES

For these estimates, we follow Olver~Ref. 11, Chap. 11!. The goal is to find approximate
solutions to the differential equation

2\2w91~V2E!w50 ~B1!

in Ve with v01d.E.v0 for some positived. Due to either the nontrapping condition or th
explicit assumption„H4…, there is at most one turning point in each of the intervals (v1 ,`) and
(2`,v2). There is exactly one, ifd is sufficiently small. We assumed has been chosen so th
this is the case.

It suffices to consider the interval (v1 ,`), and we denote the turning point byxt . We define
a new independent variablejªs(x) by

s~x!s8~x!25E2V~x!, s~xt!50, s8~xt!.0.

By integration, we obtain

j5sgn~x2xt!„
3
2S~x!…2/3

where

S~x!ªE
min $x,xt%

max$x,xt%AuV~ t !2Eu dt.

Note that sgn (V(x)2E)5sgn (xt2x). It is easy to check that under our conditions, Theorem 3.1
Ref. 11, Chap. 11, shows that Equation~B1! has twoC2 solutionsw1 andw2 in (v1 ,`), such
that

w1~x;\!5s8~x!21/2~Bi~2j/\2/3!1O„\Bi~2j/\2/3!…!,

w2~x;\!5s8~x!21/2~Ai ~2j/\2/3!1O„\Ai ~2j/\2/3!…!. ~B2!

Higher-order approximations are also known, cf. Ref. 11, Sec. 11.7.
The Dirichlet boundary conditions imply the quantization condition

w1~v1;\!w2~ l ;\!2w2~v1;\!w1~ l ;\!50.

Factoring the error in~B2! in the classically forbidden region, using the asymptotic expansion
the Airy functions~Ref. 11, p. 392 and 393!, and substituting all this into the quantization co
dition yields

eS~v1!/\S cosS S~ l !

\
2

p

4 D1O~\! D1
1

2
e2S~v1!/\S sinS S~ l !

\
2

p

4 D1O~\! D50.

If this equation is satisfied, then, necessarily, cos(S( l )/\2p/4)5O(\). This implies S( l )/\
2p/45@(2n11)/2#p1O(\), or equivalently
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E
xt

l
AE2V~ t !dt5S n1

3

4Dp\1O~\2!.

Now using~H4!, we have

E
xt

l
AE2V~ t ! dt5E

xt

l
AE2v1 dt1E

xt

l

~AE2V~ t !2AE2v1! dt

5AE2v1~ l 2xt!1E
xt

l v12V~ t !

AE2V~ t !1AE2v1

dt5 lAE2v1„11O~ l 2e!….

From this, it follows that

E5v11S ~n1 3
4!p\

l
D 2

„11O~\!1O~ l 2e!…. ~B3!
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Friedrichs model with virtual transitions. Exact solution
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The Friedrichs-type model of interaction between matter~multilevel system! and
radiation including virtual transitions is considered. The canonical Bogolubov
transformation diagonalizing the total Hamiltonian is constructed. It is pointed out
that the transformation is improper when the discrete part of the spectrum of system
is ‘‘dissolved’’ in the continuous one. The new vacuum state for the total Hamil-
tonian is obtained. The time evolution of the bare vacuum and the bare operators is
calculated. Using the exact solution, the result of Passante, Petrosky, and Prigogine
@Physica A218, 437 ~1995!# that the transition from the bare vacuum state to the
true vacuum leads to the emission of real photons is confirmed. The dressing of the
bare vacuum at the presence of resonances is an irreversible process. The relation
of the result with the idea of ‘‘indirect spectroscopy’’ is discussed. ©2000
American Institute of Physics.@S0022-2488~00!02701-8#

I. INTRODUCTION

The well-known Friedrichs model was introduced1 to investigate the perturbation of un
bounded operators. It was extensively used in the discussion of intrinsic irreversibility of dyn
by Brussels-Austin school2–5 as an example oflarge Poincaré~nonintegrable! systems. The non-
integrability in the sense ofPoincaréis due to the resonances.6–11

The ‘‘classic’’ Friedrichs model without virtual transition has been solved exactly.1 It de-
scribes nicely the resonance emission of quanta of a field~which we callphotons! by the excited
atom. However, we have to take into account virtual transitions for actual atoms. This pr
changes the vacuum energy. By using an approximate scheme in terms of subdynamics,12–14 this
problem has been discussed in Ref. 2. In Ref. 2 Passante, Petrosky, and Prigogine have co
the evolution of the system where the atom is initially in the bare ground state. The intera
leads to a complicated transition from the bare ground state to the true ground state. For a
atom the energy difference between the two ground states is of order 109 Hz. They have shown
that the atom, initially in its bare ground state, goes to its excited state due to virtual trans
The excited state is unstable and the atom can decay through a real transition to the true
state by emitting a resonant photon with a huge energy~typically of order 1015Hz, which corre-
sponds to the energy difference between the ground state and the excited state!. Hence the tran-
sition from the bare ground state to the true ground state is ‘‘indirect,’’ through the interme

a!Electronic mail: antoniou@solvayins.ulb.ac.be
1180022-2488/2000/41(1)/118/14/$17.00 © 2000 American Institute of Physics
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excited state. This is the reason why Passante, Petrosky, and Prigogine have used the te
direct spectroscopy.’’ They pointed out that in this indirect transition the energy conservatio
is satisfiedon averagewith a small probability of the emission of the photon. In this paper,
confirm this interesting conclusion.

Recently a second quantized form of the Friedrichs model, which includes a coupling
virtual transitions of a local scalar field with a bilocal scalar field through the virtual transiti
was solved rigorously using the Bogolubov transformation.9 If such transformation is given by
bounded operators in the Hilbert space, then there exists a unitary operator which lead
similitude relation between ‘‘old’’ and ‘‘new’’ creation and annihilation operators. The Bogolu
transformation of this kind is calledproper, and otherwise it is calledimproper. For example, for
systems with finite number of degrees of freedom every Bogolubov transformation isproper ~see
Beresin15!. The impropertransformation already arises in the Friedrichs model without the vir
transitions for the unstable case, when the discrete spectrum of the unperturbed Hamilto
embedded in the continuous spectrum. The total Hamiltonian in the Hilbert space does no
discrete spectrum, therefore, there is no one-to-one correspondence between ‘‘old’’ and ‘
operators. To our knowledge the improper case of the Friedrichs model including virtual proc
has not yet been solved. We construct field operators diagonalizing the total Hamiltonian
determine the new vacuum state. Then we apply our solution to the calculation of the
evolution of the occupation number of the bare photons, starting from the bare vacuum sta
time evolution reflects well-known regimes of the time dependence of the decaying state:~1! the
initial nonexponential~quantum Zeno! region,~2! exponential behavior, and finally~3! nonexpo-
nential ‘‘long-time tail.’’ 16

The paper is organized as follows. In Sec. II we describe the model and construct the c
cal Bogolubov transformation leading to a set of ‘‘new’’ operators diagonalizing the total Ha
tonian and the vacuum state for the new operators, which we call ‘‘true vacuum.’’ In Sec. I
describe the time evolution of bare operators. Finally, in Sec. IV, we calculate the time evo
of the occupation number of the photons, starting from the bare vacuum state, and comp
result with the result obtained for an analogous model in Ref. 2.

II. THE MODEL AND THE BOGOLUBOV TRANSFORMATION

We shall consider a simple generalization of the model discussed in Ref. 2. Instead
two-level atom, we consider a harmonic oscillator~which we call an ‘‘atom’’! interacting with a
scalar field. Our model is described by the Hamiltonian

H5H01lV,

H05e01v1a†a1E
0

`

dv vbv
† bv , ~1!

V5E
0

`

dv f ~v!~bv
† 1bv!~a†1a!,

wherea†, a are creation and annihilation boson operators of the atom excitations,bv
† , bv are

creation and annihilation boson operators of photon with frequencyv, e0 is the vacuum energy,l
is the coupling constant, andf (v) is the form actor. We shall assume also thatf (v) satisfies the
condition

E
0

`

dv2 f 2~v!,`. ~2!

The spectrum ofH0 has a continuous part@e0 ,`) and a discrete parte01nv1 ~n is integer!
embedded in the continuous part of the spectrum. The space of wave functions is the
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product of the Hilbert space of the oscillator and the Fock space of the field. This model
second quantized version of the Friedrichs model including the virtual transitions.

The operatorsa,bv satisfy the usual commutation relations

@a,a†#51, @bv ,bv8
†

#5d~v2v8!. ~3!

We shall separate the solution in to the following two parts.
~1! Solution of the operator eigenvalue problem, i.e., construction of the operatorsBv , Bv

† ,
such that

LHBv
† 5vBv

† ,
~4!

LHBv52vBv ,

whereLH is the Liouville–von Neumann operator which acts on any operatorA as follows:

LHA[@H,A# ~5!

with the HamiltonianH(1).
~2! Solution of the vacuum problem or, in other words the ‘‘dressing’’ of the vacuum. B

these problems are different aspects of the Bogolubov transformation.
We start with the eigenvalue problem~4!. As we shall prove later in this section, the ne

operatorsBv
† ,Bv diagonalize the total HamiltonianH,

H5E01E
0

`

dv vBv
† Bv , ~6!

whereE0 is the renormalized vacuum energy which will be evaluated at~19!.
Following the general theory of Bogolubov transformations15 and the presentation in Ref.

we form the new operatorsBv andBv
† as linear combinations of creation and annihilation ope

torsa, a†, bv , bv
† with unknown functions and constants. Inserting this general form into Eq~4!

we obtain a set of integral equations for the unknown functions and constants. The solut
these equations leads to

~Bv
† !

out
in 5bv

† 12v1l f ~v!G6~v!

3H E
0

`

dv8 l f ~v8!S bv8
†

v82~v6 i0!
2

bv8

v81v
D 2

~v1v1!a†1~v2v1!a

2v1
J , ~7!

~Bv!
out
in 5bv12v1l f ~v!G7~v!

3H E
0

`

dv8 l f ~v8!S bv8

v82~v7 i0!
2

bv8
†

v81v
D 2

~v1v1!a†1~v2v1!a

2v1
J . ~8!

The two sets of solutions~incoming and outgoing! are determined by the boundary values of t
Green functionG(z) for real v, G6(v)[G(v6 i0). The functionG(z) is given by

G~z!5Fv1
22z22E

0

`

dv82
2v1l2f 2~v8!

v822z2 G21

. ~9!

We assume that the form factorf (v) satisfies the following condition:
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v1
22E

0

`

dv82
2v1l2f 2~v8!

v82 .0. ~10!

Then the Green’s functionG(z) is an analytic function without singularities on the first Riema
sheet~the so-called physical sheet! of the complexz2 plane with the cut@0,̀ !. The new operators
satisfy the following commutation relation:

@~Bv! in ,~Bv8
†

! in#5@~Bv!out,~Bv8
†

!out#5d~v2v8!. ~11!

To find the evolution law for the bare operators we shall express them via (Bv)
out
in and (Bv

† )
out
in .

For t.0 we shall use only incoming operators and hereafter we drop the subscript to simpli
notations. Using the properties of the Green’s functionG(z) presented in Appendix A one ca
prove the following inverse relations:

bv
† 5Bv

† 22v1l f ~v!E
0

`

dv8 l f ~v8!F G2~v8!

v82v2 i0
Bv8

†
2

G1~v8!

v81v
Bv8G , ~12!

bv5Bv22v1l f ~v!E
0

`

dv8 l f ~v8!F G1~v8!

v82v1 i0
Bv82

G2~v8!

v81v
Bv8

† G , ~13!

a†52E
0

`

dv l f ~v!@~v1v1!G2~v!Bv
† 2~v2v1!G1~v!Bv#, ~14!

a52E
0

`

dv l f ~v!@~v1v1!G1~v!Bv2~v2v1!G2~v!Bv
† #. ~15!

We note that there is no one-to-one correspondence of the operatorsa1 andbv to Bv , as the
discrete states disappear in the new representation. As a result, one cannot introduce a si
relation15 betweena1 , bv , and Bv . Hence our Bogolubov transformation is ‘‘improper.’’15

However, it is possible to construct a new vacuum stateu01& which satisfies

Bvu01&50. ~16!

This new vacuum state and the commutation relation~11! for the operatorsBv
† andBv lead to the

construction of the Fock space of states. Following the general approach of the Bogo
transformation15 we are looking for the new vacuum of the form:

u01&5eVu0&, ~17!

whereV is the ‘‘dressing operator’’ given by a general quadratic form of bare creation opera
The unknown functions and constants of this quadratic form are obtained from conditions~16! and
~17!. For the case of the relativistic model, the analogous problem was solved in Ref. 9. Usin
approach we obtain

V5E
0

`

dv8E
0

`

dv9 v1l2f ~v8! f ~v9!h~v8!h~v9!S 1

2~v11de0!
1

1

v81v9
D bv8

† bv9
†

1E
0

`

dv8 v1

l f ~v8!h~v8!

v11de0
bv8

† a†2
de0

2~v11de0!
~a†!2. ~18!

This result allows us to determine the true vacuum energyE0 of the total Hamiltonian~6!:
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E05e01E
0

`

dv
v1l2f 2~v!h~v!

v11de0
5e01de0 , ~19!

wherede0 is the vacuum energy shift.
The essential part of this solution is the solution of the factorization problem of the G

function G(v):

h~z!h~2z!5G~z!. ~20!

This problem is related to the Riemann–Hilbert problem17,18 and has been solved in Ref. 9. Th
result is that the functionh(z) is analytic everywhere on the first sheet of the complexz plane
apart from the cut~2`,0# and has the following properties:

h21~2z!5z2~v112de0!2E
0

`

dv
2v1l2f 2~v!h~v!

v2z
, ~21!

h~2z!5E
0

`

dv
2v1l2f 2~v!uG~v!u2

h~v!~v2z!
. ~22!

To describe the time evolution of the bare vacuum we obtain the inverse operatorṼ expressed
in terms of the new creation and annihilation operators:

Ṽ5
1

2 E0

`

dv8E
0

`

dv9 l f ~v8!l f ~v9!h~2v81 i0!h~2v91 i0!

3Bv8
† Bv9

† v1

v11de0
S 12

2~v11de0!

v81v9 D , ~23!

which acts as follows:

u0&5eṼu01&. ~24!

III. THE TIME EVOLUTION OF BARE OPERATORS

In this section we shall consider the time evolution of the bare operatorsbv
† , bv , a†, anda

in the Heisenberg picture. Using the inverse relations in~12!–~15! and the fact thatBv
† andBv

diagonalize the Hamiltonian~6! and obey the commutation relations~11! we can easily obtain the
time evolution as functions ofBv

† andBv . In the actual application, it is often convenient to wri
these solutions in terms of the bare operators. Using~7! and ~8! we obtain

bv
† ~ t !5eivtbv

† ~0!22v1l f ~v!E
0

`

dv8 l f ~v8!

3S @g~v,t !2g~v8,t !#
bv8

†

v82v2 i0
2@g~v,t !2g~2v8,t !#

bv8

v81v
D

2l f ~v!F S i
]

]t
2v1Da†1S i

]

]t
1v1DaGg~v,t ! ~25!

and
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a†~ t !52S i
]

]t
2v1D E

0

`

dv l f ~v!@g~v,t !bv
† 1g~2v,t !bv#

1E
0

`

dv l2f 2~v!uG~v!u2$@~v1v1!2eivt2~v2v1!2e2 ivt#a†

1~v22v1
2!@eivt2e2 ivt#a%. ~26!

The expressions for time-dependent annihilation operatorsbv(t) anda(t) are just the Hermitian
conjugate of~25! and ~26!, respectively. To obtain these expressions we have introduced
function g(z,t) ~see also Ref. 5!,

g~z,t !5E
0

`

dv 2v1l2f 2~v!uG~v!u2S eivt

v2z
1

e2 ivt

v1zD2G~z!eizt. ~27!

We show thatg(z,t) is an analytic function ofz except for the infinity. Therefore,g(z,t) is an
entire function ofz. Henceg(v6 i0,t)5g(v,t) and the argumentsv6 i0 of g which could appear
in ~25! and ~26! are redundant. That is why we dropped them. Indeed, we can rewrite~27! as

g~z,t !5
1

2p i EC1

dz8 G~z8!
eiz8t2eizt

z82z
, ~28!

where we have used the relation in~A1! for v.0. The contourC1 embraces left and right cuts o
G(z) ~Fig. 1, the solid line!. Due to the asymptotic property ofG(z) in ~A3!, the integral on the
right-hand side~rhs! of ~28! is finite for any finitez. Hence, the only possible singularity cou
arise whenz is situated on the contour of integration, because of the denominator which van
at z5z8. However, the numerator in the integrand on the rhs of~28! also vanishes in this case an
cancels this vanishing denominator. On the other hand, due to the term with the factor exp(izt) the
functiong(z,t) has an essential singularity at infinity. Thereforeg(z,t) is analytic inz except for
infinity.

In the following discussion we shall use the asymptotic behavior ofg(v,t) for t→6` proved
in Appendix B,

g~v,t ! ——→
t→6`

2eivtG7~v!. ~29!

We insert the asymptotic~29! into Eqs.~25! and~26! and use the fact thatg(z,t) vanishes at
infinity in a weak sense. Then, with the help of~12! and~14!, we obtain the asymptotic behavio
of the operatorsbv

† (t) anda†(t) in the following form:

bv
† ~ t ! ——→

t→6`

eivtB
in
out
†

~v!, ~30!

FIG. 1. The contour of integrationC1 in ~28!.
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a†~ t ! ——→
t→6`

0. ~31!

Equations~30! and~31! allow us to speak about dressing of operators while the evolution is
semi-infinite interval.

Here we should emphasise that the formulas~30!, ~31! are valid only in the weak sense. Fro
them we cannot make any conclusion about asymptotic properties of the productsa†(t)a(t) and
a(t)a(t)†. Therefore, there is not any contradiction between~31! and the commutation relation

@a~ t !,a†~ t !#51, ~32!

which holds for any finitet. This is related to the fact that the productg(v,t)g(2v,t) does not
vanish in any sense fort→1` ~B5!.

IV. THE EVOLUTION OF THE BARE PHOTONS

As an example of the application of our solution, we shall consider time evolution o
number of the bare photons. Starting with the bare vacuum as an initial condition, we
calculate the quantity

nv~ t !5^0ubv
† ~ t !bv~ t !u0&. ~33!

Using ~25! and its Hermitian conjugate we have

nv~ t !52v1l2f 2~v!E
0

`

dv9
2v1l2f 2~v9!

~v1v9!2 u~g~2v,t !2g~v9,t !!u2

1l2f 2~v!US i
]

]t
2v1Dg~2v,t !U2

. ~34!

This expression is exact. It is valid for alll satisfying~10!. To compare this result with the on
obtained by Passante, Petrosky, and Prigogine2 for the weak coupling case, let us construct
approximate expression of~34! for l!1.

We first consider the short time behavior ofnv(t) in the lowest order approximation inl. The
first term in~34! is already of the order ofl4, therefore, we need to calculate only the second te
in ~34!. This term has the factorl2 in front, and we have to use the approximation of the funct
G6(v), which is of zero order inl. From ~9!, we have

G6~v!5
1

~v12v7 i0!~v11v6 i0!
1O~l2!. ~35!

We insert this approximation into expression~27! for the functiong(v,t), then we insert this into
the second term of~34!. For t;v21 straightforward calculations give us

nv~ t !52
l2f 2~v!

~v1v1!2 @12cos~~v1v1!t !#1O~l4!. ~36!

The same result was obtained by Passante, Petrosky, and Prigogine2 in terms of a series expansio
in l. This formula reflects the initial growth of the number of the bare photons due to vi
processes. In the other words, this corresponds to the formation of the photon cloud arou
atom. Forv1t!1, Eq. ~36! leads to the behaviornv(t)}t2. This corresponds to the so-calle
quantum Zeno period, where the system does not yet obey the exponential decay law. The
Zeno time (t@v1

21) the fast oscillating term does not contribute in the sense of distribu
because it vanishes when integrated overv due to Riemann–Lebesque lemma. The first term
~36! describes the probability of the emission of a virtual photon.
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Next, we consider the long time behavior ofnv(t) of order t;l22. We shall calculate the
contribution ofl2(l2t)n terms. It means that we shall keep the pole contributions of the G
function G6(v). For this case we can use an approximate form of the Green functionG2(v)
@and its complex conjugate forG1(v)],

G2~v!'
1

~z12v!~z1* 1v!
, ~37!

wherez1 and 2z1* are the poles ofG2(v) on the second Riemann sheet, the asterisk den
complex conjugation. Up to the second order ofl2 we have

z1'ṽ11 i
g

2
, ~38!

g52pl2f 2~v1!, ~39!

ṽ15v12V.P.E
0

`

dv2
l2f 2~v!

v22v1
2 . ~40!

Here V.P. stands for the principal part of the integral. In this approximation we conside
evolution at the time scale of orderg21, which corresponds to the lifetime of the excited state.
this time scale we can neglect terms proportional to 1/t which correspond to the well-known ‘‘long
time tail’’ effect. Using the approximation~37!–~40! in ~34!, we can obtain the explicit form o
nv(t) with a simple manipulation. However, since the calculation is lengthy, we present here
the final result and present the details in Appendix C. The result is~for t;g21)

nv~ t !'2
l2f 2~v!

~v1v1!2 1d~v2v1!~12e2gt!E
0

`

dv8
l2f 2~v8!

~v81v1!2
. ~41!

We note that the first term in~41! corresponds to the first term in~36!, while we have no
oscillating term in~41! corresponding to the second term in~36! because this oscillating term
gives a vanishing contribution fort;g21@v1

21, as we previously discussed.
The second term in~41! is an additional term to~36!. This term gives a contribution, which

has a peak on the top of the broad spectrum of virtual photons, and can be interpreted
emission of the resonant photon.

This result shows the possibility of ‘‘indirect process’’ of the emission of a resonant pho2

Initially, an atom goes to the excited state due to virtual transitions. The excited state is un
and can decay through a real transition to the true ground state emitting a resonant ph
frequencyv1 . Namely, this irreversible transition from the bare ground state to the true gr
state is indirect throughout the excited state. The probability of this emission was evaluate2 by
calculation of the integral in the second term in~41!. It gives a result of the order of the rati
between the vacuum energy shift and the transition frequencyv1 .2 For the hydrogen atom this
value is ;1026. The average energy of the emitted photon is a product of its frequencv1

(;1015Hz for the hydrogen atom! and the probability of its emission (;1026 Hz as mentioned
before!, which gives;109 Hz, corresponding to the vacuum energy shift. The energy conse
tion holds ‘‘on average.’’ The physical reason is that the initial state, that is the bare ground
does not possess a well-defined energy, because it is not an eigenstate of the total HamiltoH.
That is why there is a nonvanishing probability that it possesses enough energy to emit a re
photon with a frequencyv1 . This is related to the large energy fluctuations of the bare gro
state. For example, among 1023 bare ground state hydrogen atoms 1017 atoms should emit a photo
of frequencyv1 .
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V. CONCLUDING REMARKS

In this paper we have presented a rigorous solution of the second quantized Friedrichs
including virtual transitions for the case when the discrete spectrum is embedded in the
tinuum. The solution is an example of animproperBogolubov transformation. Using this solutio
we have calculated the time evolution of the bare operators. The results can be applied
calculation of the time evolution of any given initial state. We have calculated the time evol
of the occupation number of bare photons starting from the bare vacuum state. The result
the existence of an indirect process of photon emission which was first proposed by an ap
mation method in Ref. 2. The dressing of the bare states at the presence of resonance
irreversible process.
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APPENDIX A

In this appendix we present some useful properties of the Green’s functionG(z). The jump on
the cut satisfies

~G1~v!!212~G2~v!!21524p iv1l2f 2~v!, v.0, ~A1!

G1~v!2G2~v!54p iv1l2f 2~v!uG~v!u2, v.0. ~A2!

The asymptotic behavior ofG(v) at infinity is given by

G~v!uv→`5
1

v1
22v2 1oS 1

v4D . ~A3!

There exists the dispersion relation valid in the whole complexz plane

G~z!5E
0

`

dv82
2v1l2f 2~v8!uG~v8!u2

v822z2
. ~A4!

We have two sum rules

E
0

`

dv82 2v1l2f 2~v8!uG~v8!u251, ~A5!

E
0

`

dv82 2v1l2f 2~v8!uG~v8!u2~v1
22v82!50. ~A6!

APPENDIX B

In this appendix we prove~29! for t→1`. The proof fort→2` is strictly the same. First
we considerg(z,t) for t.0. As we have shown,g(z,t) is analytic inz and~28! does not change
under the contour deformation even ifz cross the contour. Therefore, by contour deformation
can put any finitez plane between upper and lower parts of the contourC1 ~Fig. 1!. Thanks to the
exponent under the integral in~28!, for t.0 we can add to the contourC1 a big semicircle in the
upper half plane~Fig. 1, dashed line!.
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Because there are no singularities in the integrand on the rhs of~28! inside the upper part o
the contour~Fig. 1!, we can shrink this part of the contour. Then, we arrive at the following n
path of integrationC2 ~Fig. 2!,

g~z,t !5
1

2p i EC2

dz8 G~z8!
eiz8t

z82z
2

eizt

2p i EC2

dz8
G~z8!

z82z
. ~B1!

The last term in~B1! is zero, becauseG(v) is analytic in the lower half plane andz lays above the
contourC2 . Then

g~z,t !5
1

2p i EC2

dz8 G~z8!
eiz8t

z82z
. ~B2!

The exponent of the integrand in~B2! permits the deformation of the contour fort.0 to the upper
half plane with the analytically continued Green’s functionG2(z) to the second Riemann shee
whereG2(z) has singularities. Now, our contour of integration is a contour along the imagi
semiaxisC3 plus the circles around the point atz85z and the points atz85zi which are the
singularities ofG2(z) in the upper half plane~Fig. 3!. For this contour we have

g~z,t ! t.052eiztG2~z!1(
i

r ie
izi t

z2zi
1

1

2p i EC3

dz8 G~z8!
eiz8t

z82z
, ~B3!

wherer i is the residue ofG(z) at the pointzi . The cut is now along the imaginary semiaxis fro
0 to 1 i`. All poles ofG2(z) contributing to the second term lay in the upper half of the comp
plane. Hence all these contributions damp exponentially witht. To estimate the last term in~B3!
we assume that all singularities of the Green’s functionG(z) are separated from the imagina
axis. Then the absolute value of this term does not exceedM (z)/t whereM (z) is some function
of z, which does not depend ont. Therefore, this estimation shows that the third term in~B3! also
tends to zero whent→1`. This term is associated with the well-known ‘‘long time tail.’’ W
discuss this also in Appendix C. Now, we see that~29! is valid because both the second and th
terms in~B3! vanish fort→1`.

FIG. 2. The contour of integrationC2 in ~B1!.

FIG. 3. The contour of integrationC3 in ~B3!.
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We note here that the second term in~B3! has poles atzi . However, as we know, the functio
g(z,t) is an entire function ofz. Hence, these singularities are compensated by the poles o
Green functionG2(z) in the first term of~B3!.

Actually, the first term in~B3! with realz5v also vanishes fort→1` in the weak sense du
to Riemann–Lebesque Lemma, i.e.,

E
a

b

dv w~v!eivt ——→
t→1`

0 ~B4!

for anyw(v)PL2 whereL2 is the space of square integrable functions on@a,b#. Therefore, in the
weak sense the wholeg(z,t) vanishes whent→1`. However, from~B3! we conclude that the
productg(v,t)g(2v,t) does not vanish in any sense fort→` and

lim
t→1`

g~v,t !g~2v,t !5G1~v!G2~v!Þ0. ~B5!

APPENDIX C

In this appendix, we obtain the approximate expression for the time evolution of the p
occupation numbernv(t) for the weak coupling casel!1 at the time scale of the order ofg21

~39!. We use thel2(l2t)n approximation of the exact result~34!. In this approximation the Green
function G(z) is expressed by~37!. We insert this expression into~27! and obtain the following
approximation of the functiong(v,t):

g~v,t !'
eivt

~v2z1!~v1z* 1!
2

1

z11z1*
S eiz1t

v2z1
2

e2 iz1
* t

v1z1*
D . ~C1!

Then we shall calculatenv(t) inserting this approximation into~34!. We separate the calculatio
of the first term in~34! into three parts:

2v1l2f 2~v!E
0

`

dv8
2v1l2f 2~v8!

~v1v8!2 $ug~v,t !u21@g~v8,t !u21ug~2v,t !g~v8,t !1c.c.#%

[I 11I 21I 3 ,

where ‘‘c.c.’’ denotes complex conjugate. Let us considerI 3 ,

I 352v1l2f 2~v!g~2v,t !E
0

`

dv8
2v1l2f 2~v8!

~v1v8!2
g~v8,t !1c.c. ~C2!

We know that the functiong(z,t), as a function ofz, is analytic at the complex plane for ever
finite t. It means that, at the right half of the complex plane at any finitez, there is no singularity
either in the integrand or in front of the integral. Even at large timet→1` the asymptotic of this
function ~29! vanishes in the weak sense. Therefore, this term does not contribute tonv(t) in the
l2(l2t)n approximation, because this approximation counts pole contributions. Even the l
order of I 2 in l does not contribute tonv(t), because this expansion starts already with the te
of the order ofl4.

Another situation arises in the termsI 1 and I 2 , because these terms contain not just
function g(v,t), but the productg(v,t)g(2v,t). For example, forI 1 we have

I 154v1
2l2f 2~v!g~v,t !g~2v,t !E

0

`

dv8
l2f 2~v8!

~v1v8!2
. ~C3!
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Due to condition~2! the integral is well defined and we need to consider the factor in front o
As we discussed in Appendix B, the productg(v,t)g(2v,t) at t→1` has a nonvanishing term
which is G1(v)G2(v) ~5!. This term, as a function ofv, being analytically continued to the
complex plane, does have poles. In thel2(l2t)n approximation ofnv(t) at large times we take
into account the contribution of these poles. This approximation corresponds to the follo
order of taking limits: First we taket→`, and theng→0 for all terms except forl2(l2t)n terms.
Using the approximation~C1! with the help of~38! we have

4v1
2l2f 2~v!g~v,t !g~2v,t !

'
4v1

2l2f 2~v!

S ~v2ṽ1!21S g

2D 2D S ~v1ṽ1!21S g

2D 2D22l2f 2~v!e2~g/2!t
v1

2

ṽ1

3S eivt

S v2ṽ12 i
g

2D S v1ṽ12 i
g

2D F e2 i ṽ1t

v2ṽ11 i
g

2

2
ei ṽ1t

v1ṽ11 i
g

2
G1c.c.D

12l2f 2~v!e2gt
v1

2

ṽ1
2

v21v1
21S g

2D 2

1S v22v1
22S g

2D 2D cos~v1t !2gv1 sin~v1t !

S ~v2ṽ1!21S g

2D 2D S ~v1ṽ1!21S g

2D 2D .

Three terms on the rhs of this expression result in three terms ofI 1 ~C3!. The first term ofI 1 does
not havet dependence. Using~37! and ~A2! we obtain for this term

4v1
2l2f 2~v!

S ~v2ṽ1!21S g

2D 2D S ~v1ṽ1!21S g

2D 2D ——→
g→0

ṽ1→v1

d~v2v1!. ~C4!

Therefore in thel2(l2t)n approximation we need to calculate other terms also considering t
as kernels of distributions.

In the second term ofI 1 thel2(l2t)n terms come from the factorl2 exp(2gt/2) and from the
pole contribution of the factor

l2e6 ivt

v2ṽ17 i
g

2

. ~C5!

We analyze this pole contribution considering the integral of~C5! with a suitable test function. We
assume that this function can be analytically continued to the complex plane and vanis
infinity. We also assume that the functionh(v) does not have any singularities on the positive h
of the real line and on the imaginary axis, and in the right half of the complex plane it may
only poles at the points with imaginary parts much bigger thang. Under these conditions we hav

E
0

`

dvl2h~v!
e6 ivt

v2ṽ17 i
g

2

562p il2S e6 i ṽ1te2~g/2!thS ṽ16 i
g

2D1(
i

e6 iRz½ i te2Izi tr hi

zi2ṽ17 i
g

2
D

1l2E
0

6 i`

dvh~v!
e6 ivt

v2ṽ17 i
g

2

, ~C6!
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where the first term is the pole contribution of the denominator and the sum comes from the
of the functionh(z). Herer hi

is the residue ofh(z) at the pointzi . According to our assumption
Izi t@g then, we can neglect all the terms under the summation in the time scalet;g21. The last
integral is estimated byM /t whereM depends ong, ṽ1 , and does not depend ont. Hence, at the
time scalet;g21, the integral on the rhs of~C6! is of higher order inl compared with the first
term. Therefore the integral does not contribute toI 1 in thel2(l2t)n approximation and gives the
terms, which describe so-called ‘‘long time tail’’ effects.

All l2(l2t)n contributions in the first term on the rhs of~C6! are gathered in the facto
l2 exp(2gt/2). For other factors we apply the following approximation:

ṽ1→v1 , g→0, ~C7!

which gives

E
0

`

dv h~v!
e6vt

v2ṽ17 i
g

2

'62p ie6 iv1te2~g/2!th~v1!. ~C8!

Then we come to the formula

e6 ivt

v2ṽ17 i
g

2

'62p id~v2v1!e6 iv1te2~g/2!t, ~C9!

which is valid in the sense of distribution, e.g., as the kernel of a functional.
All l2(l2t)n terms in the third term ofI 1 are gathered in the factorl2 exp(2gt). Therefore,

in all other factors of this term, we should use the approximation~C7!.
With these considerations we come to

I 15d~v2v1!~12e2gt!E
0

`

dv8
l2f 2~v8!

~v1v8!2 . ~C10!

In I 2 the productg(v,t)g(2v,t) is in the integrand. To calculate this integral we repeat
same arguments, as forI 1 , and come to

I 25
l2f 2~v!

~v1v1!2 ~12e2gt!. ~C11!

The same arguments we apply to the second term ofnv(t) ~34! and obtain

l2f 2~v!US i
]

]t
1v1Dg~v,t !U2

'
l2f 2~v!

~v1v1!2 ~11e2gt!. ~C12!

At this stage we obtain the desired result~41! just summing up~C10!–~C12!.
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Refined algebraic quantization in the oscillator
representation of SL „2, R…
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We investigate refined algebraic quantization~RAQ! with group averaging in a
constrained Hamiltonian system with unreduced phase spaceT* R4 and gauge
group SL~2, R!. The reduced phase spaceM is connected and contains four mu-
tually disconnected ‘‘regular’’ sectors with topologyR3S1, but these sectors are
connected to each other through an exceptional set, whereM is not a manifold and
where M has non-Hausdorff topology. The RAQ physical Hilbert spaceHphys

decomposes asHphys. % Hi , where the four subspacesHi naturally correspond to
the four regular sectors ofM. The RAQ observable algebraAobs, represented on
Hphys, contains natural subalgebras represented on eachHi . The group averaging
takes place in the oscillator representation of SL~2, R! on L2(R2,2), and ensuring
convergence requires a subtle choice for the test state space: the classical analog of
this choice is to excise fromM the exceptional set while nevertheless retaining
information about the connections between the regular sectors. A quantum theory
with the Hilbert spaceHphys and a finitely generated observable subalgebra ofAobs

is recovered through both Ashtekar’s algebraic quantization and Isham’s group
theoretic quantization. ©2000 American Institute of Physics.
@S0022-2488~00!01501-2#

I. INTRODUCTION

In the quantization of constrained systems, one proposal for defining an inner product
physical Hilbert space is to induce this inner product from an auxiliary Hilbert spaceHaux via
averaging over the gauge group. The construction ofHaux draws input from the kinematica
structure of the theory before imposing the constraints, and the constraints enter throu
operator representation of the gauge group onHaux. The method has emerged and been applie
various contexts; see Refs. 1–9 and the references therein.

A major open question with group averaging is the sense in which the averaging can be
to converge. One may encounter situations where the group averaging diverges merely bec
some ill-chosen piece of technical input, and modifying the input leads to a well-defined th
On the other hand, one may also encounter situations where convergence of the group av
is precluded by some physically interesting property of the system. For example, within the r
algebraic quantization framework of Ref. 8, a convergent group averaging cannot yield a
with superselection sectors, while a well-defined theory with superselection sectors may ne
less be recovered through a suitable renormalization of the averaging.9

In this paper we study group averaging in a quantum mechanical system whose cons
generate the gauge group SL~2, R!. The classical phase space isG5T* R4, and the three classica

a!Present address: School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kin
Electronic mail: jorma.louko@nottingham.ac.uk

b!Electronic mail: rovelli@cpt.univ-mrs.fr
1320022-2488/2000/41(1)/132/24/$17.00 © 2000 American Institute of Physics
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constraints onG are homogeneous quadratic functions of the global canonical phase space
dinates. The system was introduced by Montesinos, Rovelli, and Thiemann10 as an analog of
general relativity with two ‘‘Hamiltonian’’-type constraints, quadratic in the momenta, and
‘‘momentum’’-type constraint, linear in the momenta. The reduced phase spaceM is connected,
and it contains four mutually disconnected ‘‘regular’’ sectors with topologyR3S1, but connect-
ing these sectors there is an exceptional set whereM is not a manifold and the topology ofM is
non-Hausdorff. One thus anticipates quantization to produce a theory with four ‘‘regular’’ se
with subtleties in those aspects of quantization that try in some sense to connect these four
We shall see that this is indeed the case, and when group averaging is used in the quantiza
subtleties emerge precisely in the convergence of the group averaging.

We consider two quantization approaches. First, we recall thatG admits an explicitly known
o~2, 2! Poisson bracket algebraAclass of constants of motion~‘‘observables’’! that separates the
regular sectors ofM.10 We therefore carry through Ashtekar’s algebraic quantization program11,12

with Aclasspromoted into a quantum observable star algebraAphy
(!) . In agreement with the results o

Ref. 10, we find four distinct Hilbert spaces, each corresponding to one of the regular sec
M. We then add toAphy

(!) four new generators whose classical counterparts act on the four se
of M as aZ23Z2 permutation subgroup, and we carry through algebraic quantization with
resulting larger observable algebraAphy1

(!) . Expectedly, the emerging Hilbert spaceH1 is the
direct sum of the previous four individual Hilbert spaces. We also show thatH1 with the observ-
able algebraAphy1

(!) can be recovered by applying Isham’s group theoretic quantization13 to an
O(2,2) action onG: the infinitesimal generators of the action of the connected subgroupOc(2,2)
are precisely the classical observables inAclass.

We then consider a group averaging approach. For concreteness, and to a considerable
without loss of generality,14 we adopt the formalism of refined algebraic quantization~RAQ!.4,8,14

The structure ofG and the classical constraints suggests a natural choice forHaux and for the
representation of the gauge group SL~2, R!: this representation is isomorphic to the oscillat
representation of SL~2, R! on L2(R2,2).15 Haux also carries a representation of the algebr
quantization observable algebraAphy1

(!) , and this representation commutes with the SL~2, R! ac-
tion. With a suitable choice for the RAQ linear spaceF,Haux of test states, we find that the grou
averaging converges in absolute value and produces a nontrivial physical Hilbert spaceHphys.
Hphys is isomorphic toH1 , and the representation of the RAQ observable algebraAobs on Hphys

contains a subrepresentation isomorphic to the representation ofAphy1
(!) on H1 . ~For technical

reasons, these isomorphisms are antilinear.! In this sense, the RAQ quantum theory contains
algebraic quantization quantum theory. Further, the uniqueness theorem of Ref. 8 shows t
choices forHaux, the SL~2, R! action, andF completely determine the RAQ quantum theory ev
without group averaging: with our choices, the only freedom in the RAQ rigging map
multiplicative constant.

Now to the promised subtleties. In the algebraic quantization approach, the subtlety o
with the choice of the linear space on which the constraints are solved. The ‘‘natural’’

candidateṼ for this linear space contains a one-dimensional subspace that, by the spectra
erties ofAphy

(!) , corresponds classically to the exceptional set inM. This subspace turns, howeve
out to have zero norm, and one does not recover a Hilbert space. The remedy is simply to d

troublesome one-dimensional subspace fromṼ, with the results mentioned above.
In the RAQ approach, the subtlety occurs with the choice of the test state space. The st

of the quantum constraint operators and the SL~2, R! action suggests a natural choiceF̃, but it

turns out that the group averaging fails to converge precisely on the subspace ofF̃ where it
attempts to produce the ‘‘zero norm’’ vectors encountered in the algebraic quantization
remedy is again to ensure that the troublesome subspace does not appear in the physica
space, but now this has to be done by modifying the test state space, and as the defin
observables in RAQ is intimately related to the test state space, care must be taken in order
RAQ observable algebra remain large enough to allow a comparison with the algebraic qu
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tion observable algebra. Our choice,F, was found by scrutinizing the explicitly known
Aphy1

(!) -action onF̃.
The rest of the paper is as follows. In Sec. II we review and analyze the classical sys10

paying special attention to the classical observable algebraAclass, its pull-backs to the various
parts of the reduced phase space, and the associatedO(2,2) action. The algebraic quantization an
the group theoretic quantization are carried out in Sec. III. In Sec. IV we present a concise o
of RAQ with group averaging, in the specific formulation of Ref. 8, and in Sec. V we carry
RAQ in our system. Section VI contains a brief discussion. In Appendices A and B we co
some relevant facts about SL~2, R!, its covering groups, and their oscillator representation15

Certain technical calculations concerning the group averaging are given in Appendices C

II. CLASSICAL DYNAMICS

In this section we review and analyze the classical system introduced in Ref. 10.
relevant facts about the group SL~2, R! and its Lie algebrasl~2, R! are collected in Appendix A.

The phase space isGªT* R4.R8, with the global coordinate functions (u1,u2,v1,v2) for the
base and (p1,p2,p1,p2) for the cotangent fibers. The symplectic structure isV5( i(dpi`dui

1dp i`dv i). We adopt the vector notation (u1,u2)ªu, (v1,v2)ªv, (p1,p2)ªp, (p1,p2)
ªp, and we indicate a contraction in the suppressed two-dimensional indices by a dot pro

The action reads as

S5E dt~p–u̇1p–v̇2N1H12N2H22lD !, ~2.1!

whereN1, N2, andl are Lagrange multipliers, and the three constraints are

H1ª
1
2~p22v2!, ~2.2a!

H2ª
1
2~p22u2!, ~2.2b!

Dªu–p2v–p. ~2.2c!

The Poisson bracket algebra of the constraints is

$H1 ,H2%5D, ~2.3a!

$D,H1%52H1 , ~2.3b!

$D,H2%522H2 , ~2.3c!

which is isomorphic to the Lie algebrasl~2, R! in the basis~A3! of Appendix A. The system is
therefore a first class constrained system.16 The gauge group generated by the constraints is S~2,
R!, and its action onG is10

S u
pD°gS u

pD ,

~2.4!

S p

v D°gS p

v D ,

whereg is an 232 matrix in SL~2, R!.
The reduced phase spaceM is, by definition, the quotient of the constraint hypersurface un

the SL~2, R! action~2.4!. The topology ofM is induced fromG, and wherever the geometry ofM
is sufficiently regular,M inherits fromG also a differentiable structure and a real analytic str
ture.
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M0 decomposes naturally into six subsets, which we denote, respectively, byM0 , Mex, and
Me1 ,e2

, wheree iP$1,21%. For the points inMe1 ,e2
, unique representatives inG are

u5Ar ~1,0!,

p5Ar ~0,e1!,
~2.5!

v5Ar ~cosw,2e1e2 sinw!,

p5Ar ~sinw,1e1e2 cosw!,

wherer .0 and 0<w,2p. For the points inMex, unique representatives inG are

u5~cosu,sinu!,

p5~cosw,sinw!, ~2.6!

v5p50,

where 0<u,p and 0<w,2p. M0 contains a single point, whose unique representative inG is
u5v5p5p50.

The four subsetsMe1 ,e2
of M are disconnected. Each is open inM and has topologyR

3S1, and each is coordinatized by the pair~r, w! as shown in~2.5!, with r .0 and (r ,w)
;(r ,w12p). The pullback ofV to eachMe1 ,e2

is nondegenerate and equal to2dr`dw, thus
making eachMe1 ,e2

into a smooth symplectic manifold. We regardMe1 ,e2
as the four ‘‘regular’’

sectors ofM, and we denote their union byMreg.
Mex is a smooth two-dimensional manifold, and the pullback ofV to Mex vanishes. The

topology of M near Mex is severely non-Hausdorff: any neighborhood of any point inMex

containsM0 , and there are pairs of points inMex whose neighborhoods also overlap in eve
sector ofMreg. Finally, any neighborhood ofM0 containsMex and intersects all the sectors o
Mreg.

We therefore see thatM is connected: each of the disconnected sectors ofMreg is attached to
M0 andMex. It is clear from~2.5! that the subsetMregøM0 can be visualized as four cone
with a common tip, the tip consisting of the single point inM0 and being atr→01 in each
Me1 ,e2

.10 On the other hand, for fixede2 , the union ofM1,e2
, M21,e2

, and theu50 circle of
Mex constitutes a smooth symplectic manifold with topologyR3S1: to see this, make in~2.5! a
gauge transformation that multipliesv andp by Ar and dividesu andp by Ar , and allowr to take
all real values. The union ofM1,e2

, M21,e2
, and theu5p/2 circle of Mex constitutes also a

smooth symplectic manifold with topologyR3S1: to see this, make in~2.5! the analogous gaug
transformation with 1/Ar instead ofAr . The union ofM1,e2

, M21,e2
, and both of these circles in

Mex is a smooth symplectic non-Hausdorff manifold, with topologyR83S1, whereR8 is the real
line with a doubled origin. The structure ofM nearMex is therefore reminiscent of, but mor
involved than, the joining of the causal and noncausal sectors of Misner space,17 or the joining of
the spacelike and timelike sectors in the solution space to Witten’s 211 gravity onR3T2 ~Refs.
18 and 19! or on R3(Klein bottle).20

We now turn to the observables. Consider onG the six functions:10

O12ªu1p22p1u2, O23ªu2v12p2p1,

O13ªu1v12p1p1, O24ªu2v22p2p2, ~2.7!

O14ªu1v22p1p2, O34ªp1v22v1p2.
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The linear span of theOi j is closed under Poisson brackets, and the Poisson bracket alge
isomorphic to the Lie algebrao(2,2).sl(2,R)3sl(2,R). The basis~2.7! is adapted to theo~2, 2!
form of the algebra, while a basis adapted to thesl(2,R)3sl(2,R) form is

t0
h
ª

1
2~O122hO34!,

t1
h
ª

1
2~O132hO24!, ~2.8!

t2
h
ª

1
2~O231hO14!,

wherehP$1,21%: the Poisson brackets read as

$t1
h ,t2

h8%52dh,h8t0
h ,

$t2
h ,t0

h8%5dh,h8t1
h , ~2.9!

$t0
h ,t1

h8%5dh,h8t2
h .

We record for future use that thet i
h satisfy for eachh the identity

2~t0
h!21~t1

h!21~t2
h!25H1H21 1

4D
2. ~2.10!

Now, t i
h Poisson commute with the constraints and are thus, by definition, observable

denote byAclass the classical observable algebra generated by$t j
h%. The pullbacks oft i

h to M
vanish onM0 andMex, while onMreg we have

t0
h5 1

2e1~11he2!r , ~2.11a!

t1
h5 1

2~11he2!r cosw, ~2.11b!

t2
h52 1

2e1~11he2!r sinw. ~2.11c!

Aclasstherefore separatesMreg. More precisely, for givenh, thesl~2, R! subalgebra generated b
$t i

h% vanishes onM1,2h andM21,2h but separatesM1,høM21,h , and onMe1 ,h t0
h has the

definite signe1 .
We note in passing thatt i

h are real analytic functions onG. For givene1 and e18 , ~2.11!
therefore shows thatMe1,1 andMe

18 ,21 cannot both belong to a connected real analytic manif

whose analytic structure would be induced from that ofG.
By construction, exponentiating the Poisson bracket action ofAclass on G yields on G the

action of a connected groupG that is locally SL(2,R)3SL(2,R), and thisG action commutes with
the gauge group action~2.4!. ConsideringG in a polarization in which~u, p! are the ‘‘coordi-
nates’’ and~p, 2v! are the ‘‘momenta,’’ it is immediate from~2.7! that thisG action reads as

S u
pD°AS u

pD , ~2.12a!

S p
2vD°~A21!TS p

2vD , ~2.12b!

whereA is a 434 matrix in the defining representation ofO(2,2), and in the connected compo
nentOc(2,2). HenceG5Oc(2,2).@SL(2,R)3SL(2,R)#/Z2 . We use~2.12! to extend theG action
to the action ofG1ªO(2,2): theG1 action is generated by theG action and the four mapsPe1 ,e2

,
wheree iP$1,21% and
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Pe1 ,e2
:~u1,u2,v1,v2,p1,p2,p1,p2!°~u1,e1u2,v1,e1e2v2,p1,e1p2,p1,e1e2p2!. ~2.13!

It is clear that also theG1 action onG commutes with the gauge group action~2.4!.
The inducedG action onM is trivial on M0 , mapsMex transitively to itself, and maps eac

Me1 ,e2
transitively to itself. The inducedG1 action onM is trivial on M0 , mapsMex transi-

tively to itself, and mapsMreg transitively to itself, permuting the four sectors ofMreg by a Z2

3Z2 permutation subgroup according to

Pe
18 ,e

28
:Me1 ,e2

→Me
18e1 ,e

28e2
. ~2.14!

III. ALGEBRAIC QUANTIZATION

In this section we quantize the system in the algebraic quantization framework of Ref.
this framework one first solves the quantum constraint equations on a linear space, with
inner product, and then seeks a Hermitian inner product such that the adjoint relations
chosen quantum observable algebra reflect the reality relations in the corresponding cl
observable algebra; we refer to Refs. 11, 12 for overviews and more detail. Our analysis c
follows that in Ref. 10, the main difference being that we consider two possible choices fo
classical observable algebra, arising, respectively, from the groupsG andG1 introduced in Sec. II.
The connection to Isham’s group theoretic quantization13 is made at the end of the section.

We work in a ‘‘coordinate representation,’’ starting with the linear space of smooth func
C(u,v) on R4. We shall frequently use the polar coordinates defined byu11 iu25ueia, v1

1 iv25veib, whereu>0, v>0. Note that no inner product is introduced at this stage.
To begin, we promote the classical constraints~2.2! into quantum constraint operators. Th

momentum operators are

p̂ª2 i“u , p̂ª2 i“v , ~3.1!

and we order the quantum constraints as

Ĥ1ª2 1
2~“u

21v2!, ~3.2a!

Ĥ2ª2 1
2~“v

21u2!, ~3.2b!

D̂ª2 i ~u–“u2v–“v!, ~3.2c!

where“u
2
ª]2/](u1)21]2/](u2)2, and similarly for“v

2. The commutator algebra of the quantu
constraints then closes as

@Ĥ1 ,Ĥ2#5 iD̂ , ~3.3a!

@D̂,Ĥ1#52iĤ 1 , ~3.3b!

@D̂,Ĥ2#522iĤ 2 . ~3.3c!

Next, we define a set of quantum observablesÔi j by substituting the momentum operato
~3.1! into the expressions~2.7! of the classical observablesOi j . As the resulting expression
contain no products of noncommuting operators, no issue of ordering arises. The operatoÔi j

commute with the constraints~3.2!, and their commutator algebra closes. AsOi j are real, we
introduce on this algebra a star operation byÔi j

! 5Ôi j and extending to the full algebra b
antilinearity. We denote this star-algebra of physical observables byAphy

(!) .
We define inAphy

(!) the operatorst̂ i
h by the overcareted a counterparts of~2.8!, and we write
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t̂6
h
ª t̂1

h6 i t̂2
h . ~3.4!

The operatorst̂0
h and t̂6

h generateAphy
(!) . The commutators are

@ t̂0
h ,t̂6

h8#56dh,h8t̂6
h , ~3.5a!

@ t̂1
h ,t̂2

h8#522dh,h8t̂0
h , ~3.5b!

and the star operation reads as

~ t̂0
h!!5 t̂0

h , ~3.6a!

~ t̂6
h !!5 t̂7

h . ~3.6b!

The explicit expressions of the operators in the polar coordinates are

t̂0
h52 1

2i ~]a1h]b!, ~3.7a!

t̂6
h 5 1

2e
6 i ~a1hb!$uv1@]u6~ i /u!]a#@]v6h~ i /v !]b#%. ~3.7b!

We now solve the quantum constraints by the separation of variables. As shown in Re
solutions that are smooth functions of~u, v! and separable in their angle dependence are multi
of the functions

Cm,eªeim~a1eb!Jm~uv !, ~3.8!

wheremPZ, eP$1,21%, andJm is the Bessel function of the first kind.21 The functionsCm,e are
linearly independent, with the exception thatC0,15C0,2 . We denote the linear span of theCm,e

by Ṽ. As

t̂0
hCm,e5dh,emCm,e , ~3.9a!

t̂6
h Cm,e5dh,emCm61,e , ~3.9b!

Ṽ carries a representation ofAphy
(!) .

One could now find the subspaces ofṼ on which the representation ofAphy
(!) is ~algebraically!

irreducible, and look on each for an inner product in which the star operation~3.6! becomes the
adjoint operation,

~ t̂0
h!†5 t̂0

h , ~3.10a!

~ t̂6
h !†5 t̂7

h . ~3.10b!

However, the only subspace on which such an inner product exists is the one-dimension
space generated byC0,1 , and the resulting theory is physically uninteresting, as every operat
Aphy

(!) then annihilates the whole Hilbert space. There are four other subspaces carrying an i
ible representation ofAphy

(!) , but each of these subspaces containsC0,1 , and the adjoint relations
~3.10! imply that C0,1 have a vanishing norm@cf. ~3.12! and ~3.13! below#.

The way to remedy the situation is to note that the troublesome vectorC0,1 is annihilated by
every operator inAphy

(!) , and this vector can therefore be dropped at the outset. Let thusV be the
linear span of$Cm,eumÞ0%. V carries a representation ofAphy

(!) , which reads as in~3.9!, except
that wheneverC0,e would occur on the right-hand side, it is replaced by the zero vectoV
decomposes into the direct sumV5 % Ve1 ,e2

, wheree iP$1,21% and
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Ve1 ,e2
ªspan$Cm,e2

ue1m.0%. ~3.11!

EachVe1 ,e2
carries an irreducible representation ofAphy

(!) , and we therefore seek an inner produ
(•,•)e1 ,e2

individually on each. Equations~3.9a! and~3.10a! imply that theCm,e are orthogonal.
Equations~3.9b! and ~3.10b! yield the recurrence relation

~m61!2~Cm ,Cm!5~ t̂7Cm61 ,t̂7Cm61!5~Cm61 ,t̂6t̂7Cm61!5m~m61!~Cm61 ,Cm61!,
~3.12!

where we have suppressed the indexe on the vectors, the indexh5e on t̂6 , and the index on the
inner product. It follows, still suppressing the indices, that

~Cm ,Cm8!5aumudm,m8 , ~3.13!

wherea is a positive constant, independent for eachVe1 ,e2
.

It is clear that~3.13! defines on eachVe1 ,e2
an inner product satisfying the adjoint relation

~3.10!. Completion yields the four Hilbert spacesHe1 ,e2
, and it follows from the asymptotic

large-order expansion ofJm
22 that every vector in these Hilbert spaces is represented by a fun

on the original configuration spaceR45$(u,v)%. EachHe1 ,e2
carries a representation ofAphy

(!) by

densely defined operators. For givenh, the sl(2,R) subalgebra generated by$t̂ i
h% is represented

nontrivially onHe1 ,h : the representation belongs to the discrete series15,23–25and, in the notation

of Ref. 23, is known asD1
e1.

In each of these representations ofAphy
(!) on He1 ,e2

, the Casimir operators of both the trivia
and nontrivialsl(2,R) subalgebra take the value zero:

@2~ t̂0
h!21~ t̂1

h!21~ t̂2
h!2#He1 ,e2

50. ~3.14!

In this sense, the quantum theory has preserved the identities~2.10! satisfied by the classica
observables.

It is easy to extend the above analysis to the larger observable algebraAphy1
(!) , generated by

Aphy
(!) and the set$P̂e1 ,e2

%, wheree iP$1,21% and

~ P̂e1 ,e2
C!~u1,u2,v1,v2!ªC~u1,e1u2,v1,e1e2v2!. ~3.15!

Note that P̂e1 ,e2
is the operator analog of the mapPe1 ,e2

~2.13! on G. The star operation is

extended toAphy1
(!) by P̂e1 ,e2

! 5 P̂e1 ,e2
. As

P̂e1 ,e2
Cm,e5Ce1m,e2e , ~3.16!

the new operators permute the subspacesVe1 ,e2
by a Z23Z2 permutation subgroup according t

P̂e
18 ,e

28
Ve1 ,e2

5Ve
18e1 ,e

28e2
, ~3.17!

and the representation ofAphy1
(!) on V is irreducible. Proceeding as above, we arrive at the Hilb

spaceH1ª% He1 ,e2
, where the subspacesHe1 ,e2

are orthogonal and the inner product on each
given by ~3.13!, but now with the samea for all He1 ,e2

.
The quantum theories that we have obtained have a natural interpretation as quantizat

different subsets of the classical reduced phase spaceM. For givene1 ande2 , the representation
of Aphy

(!) on He1 ,e2
is the quantum analog of the pullback of the classical algebraAclassto Me1 ,e2

,
in that in each case theh52e2 sl(2,R) subalgebra is trivial, and in the nontrivialsl~2, R!
subalgebrat̂0

e2 and andt0
e2 have the same definite sign. The Hilbert spaceHe1 ,e2

with the observ-

able algebraAphy
(!) can therefore be thought of as a quantization of the sectorMe1 ,e2

. Similarly, the
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Hilbert spaceH1 with the observable algebraAphy1
(!) can be thought of as a quantization of all th

four sectors ofMreg.
One can also obtain our quantum theories via the group theoretic quantization of Isham13 As

noted in Sec. II, theG action~2.12! on G induces on eachMe1 ,e2
a transitiveG action, and also the

transitive action of a subgroup SL(2,R),G: this SL~2, R! action is obtained by exponentiating th
Poisson bracket action of the algebra~2.11!. For group-theoretic quantization on a given sec
Me1 ,e2

, we can therefore adopt this SL~2, R! as the canonical group. In order to preserve
classical identities~2.10! in the quantum theory, we consider the irreducible unitary represe
tions of SL~2, R! in which the Casimir operator vanishes. The only such representations ar
trivial representation and the discrete series representationsD1

6 .15,23–25t̂0
e2 vanishes in the trivial

representation, whereas in eachD1
6 it as a definite sign, and it is inD1

e1 that this sign agrees with

the sign of the classical functiont0
e2 ~2.11a! on Me1 ,e2

. Thus, requiring the signs oft̂0
e2 andt0

e2

to agree picks the representationD1
e1: we arrive at the Hilbert spaceHe1 ,e2

, and the observable

algebra is thesl~2, R! subalgebra ofAphy
(!) with h5e2 . A similar argument can be made for grou

theoretic quantization onMreg with the canonical groupG1.O(2,2).Oc(2,2)3s(Z2)2, arriving
at H1 with the observable algebraAphy1

(!) . As neitherMreg nor G1 is connected, it is perhaps no
clear how unique the implementation of the group-theoretic quantization in this case is, buH1

clearly does carry an irreducible unitary representation ofG1 . Further possibilities of implement
ing group-theoretic quantization onMreg and its four sectors are discussed in Ref. 26, 27.

We end the section with two remarks.
~1! One might have tried to include in the vector space of solutions to the constraints fun

that are not smooth atuv50. In this case one can replaceJm in ~3.8! by any linear combination
of Jm andNm , with m-independent coefficients, and the abstract construction of the Hilbert sp
goes through as above. However, whenNm is present, it is seen from the large-order expansion
Nm

22 that the completion introduces in the Hilbert spaces vectors that cannot be represen
functions on the original configuration space.

~2! One might have tried to include in the vector space of solutions to the constraints ve
that are not single-valued functions on the configuration space, thus allowingm in ~3.8!, or in the
analog of~3.8! with a linear combination ofJm andNm , to be a noninteger. The representation
Aphy

(!) on this larger vector space takes again the form~3.9!, and breaks thus into irreducibl
representations classified bye and the fractional part ofm. However, in this case no inner produ
satisfying the adjoint relations~3.10! exists.

IV. FORMALISM OF REFINED ALGEBRAIC QUANTIZATION WITH GROUP AVERAGING

In this section we give a brief outline of refined algebraic quantization~RAQ! with group
averaging. Our main purposes in this section are to fix the notation and to fix the particular v
of RAQ: we follow the formulation of Giulini and Marolf.8 We specialize throughout to the cas
where the gauge group is a connected unimodular Lie group.

A. Refined algebraic quantization

RAQ begins by implementing the quantum constraints as self-adjoint operators on an
iary Hilbert spaceHaux. We assume that the commutator algebra of the constraints closes as
algebra, so that the algebra exponentiates into a unitary representationU(g) of a corresponding
connected Lie groupG on Haux. We refer toG as the gauge group, and we assume that i
unimodular~that is, that the structure constants of the Lie algebra are traceless!.

Next, RAQ solves the constraints in an enlargement ofHaux. To this end, one introduces
space of test states, a dense linear subspaceF,Haux such that the operatorsU(g) mapF to itself.
The desired enlargement is the algebraic dual ofF, denoted byF* and topologized by the
topology of pointwise convergence. Forf PF* andfPF, we denote the dual action off on f by
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f @f#. F* carries a representationU* (g) of G defined by the dual action: forf PF* ,
„U* (g) f …@f#5 f @U(g21)f# for all fPF. Solutions to the quantum constraints are then
definition the elementsf PF* for which U* (g) f 5 f for all gPG.

The RAQ algebra of observables is completely determined by the structure specified
An operatorO on Haux is called gauge invariant if the domains ofO andO† includeF, O andO†

map F to itself, andO commutes with theG action onF: OU(g)f5U(g)Of for all gPG,
fPF. Note that ifO is gauge invariant, so isO†. The observable algebraAobs is, by definition,
the algebra of gauge-invariant operators.Aobs has onF* an antilinear representation defined b
the dual action:14 for f PF* , (Of )@f#5 f @O†f# for all fPF. Note thatAobs does not need to
be constructed or presented in any explicit sense.

The last ingredient in RAQ is a rigging map, which is, by definition, an antilinear maph from
F to F* satisfying four postulates.

~i! The image ofh solves the constraints: Each vector in the image ofh is invariant under the
G action onF* .

~ii ! h is real:h(f1)@f2#5h(f2)@f1# for all f1 , f2PF.
~iii ! h is positive:h(f)@f#>0 for all fPF.
~iv! h intertwines with the representations of the observable algebra onF andF* : O(hf)

5h(Of) for all OPAobs and allfPF.
The input required in RAQ is now complete. As the final step, RAQ introduces on the im

of h a Hermitian inner product by

„h~f1!,h~f2!…physªh~f2!@f1#, ~4.1!

and completes the image ofh in this inner product into a Hilbert spaceHphys, which is, by
definition, the physical Hilbert space of the theory.Hphys carries an antilinear representation
Aobs, and the adjoint map in this representation~with respect to the inner product onHphys! is by
construction that induced by the adjoint map onHaux. The representation ofAobs on Hphys is
known to be nontrivial provided certain technical conditions hold.14

B. Group averaging

The group averaging proposal in RAQ addresses the last ingredient above, the choice
rigging map. The proposal seeks the rigging map as a suitable interpretation of the formal e
sion

h~ uf&)ªE
G

dg^fuU~g!, ~4.2!

where we have invoked the Dirac notation for the vectoruf&PF and for its Hilbert dual vector
^fu. The measuredg is the Haar measure onG ~which is both left and right invariant by the
unimodularity ofG!.

Consider now the formula

~f2 ,f1!gaªE
G

dg„f2 ,U~g!f1…aux, ~4.3!

and suppose that the integral on the right-hand side converges in absolute value for allf1 andf2

in F. Formula~4.3! defines then onF the sesquilinear form (•,•)ga, and we interpret the group
averaging proposal~4.2! as

h~f1!@f2#ª~f1 ,f2!ga. ~4.4!
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The resulting maph clearly satisfies postulates~i!, ~ii !, and~iv!: ~i! follows from the invariance of
the Haar measure, and~ii ! from the fact thatdg5d(g21). If h further satisfies~iii !, and ifh is not
identically zero, the group averaging proposal has then produced a rigging map.

Considerable control over the space of possible rigging maps is provided by the uniqu
theorem of Giulini and Marolf.8 To state the theorem, we note8 that if h is anL1 function onG, the
expressionĥª*G dg h(g)U(g) defines a bounded operator onHaux, and the set of all such
operators forms an algebraÂG . Suppose now thatF is invariant underÂG , the integral in~4.3!
converges in absolute value for allf1 andf2 in F, and the sesquilinear form (•,•)ga on F is not
identically zero. Then, if a rigging map exists, it is unique up to an overall multiple, and give
~4.4!.8

V. REFINED ALGEBRAIC QUANTIZATION OF THE SL „2, R… SYSTEM

In this section we apply the RAQ formalism of Sec. IV to our system. To maintain a co
to the algebraic quantization of Sec. III, we shall proceed so that the RAQ observable algebAobs

will turn out to contain the algebraic quantization observable algebraAphy1
(!) .

A. Auxiliary Hilbert space and the gauge group

We take the auxiliary Hilbert spaceHaux to beL2(R4) of wave functionsC(u,v) in the inner
product,

~C1 ,C2!auxªE d2u d2v C̄1C2 . ~5.1!

We take the constraint operators to be given by~3.2!.
The constraints are essentially self-adjoint onHaux, and exponentiating2i times their algebra

yields onHaux a unitary representationU of the universal covering group of SL~2, R!. The group
elements that appear in the Iwasawa decomposition~A7! are represented by

U„exp~be2!…5exp~2 imĤ2!, ~5.2a!

U„exp~lh!…5exp~2 ilD̂ !, ~5.2b!

U„exp@u~e12e2!#…5exp„2 iu~Ĥ12Ĥ2!…. ~5.2c!

exp(2imĤ2) and exp(2ilD̂) act on the wave functionsC(u,v), respectively, as

@exp~2 imĤ2!C#~u,v!5E d2v8

2p im
expH i

2 F ~v2v8!2

m
1mu2G J C~u,v8! ~ for mÞ0!,

~5.3a!

@exp~2 ilD̂ !C#~u,v!5C~e2lu,elv!. ~5.3b!

Regarding exp„2 iu(Ĥ12Ĥ2)…, it suffices to observe that

Ĥ12Ĥ25Ĥu
sho2Ĥv

sho, ~5.4!

whereĤu
sho andĤv

sho are the two-dimensional harmonic oscillator Hamiltonians in, respectivelu
andv,

Ĥu
sho
ª

1
2~2“u

21u2!, ~5.5a!

Ĥv
sho
ª

1
2~2“v

21v2!. ~5.5b!
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It follows that exp„2 iu(Ĥ12Ĥ2)… is periodic inu with period 2p. As discussed in Appendix A
this shows thatU is a representation of SL~2, R! @and not just a representation of the univers
covering group of SL~2, R!#. In the terminology of RAQ, the gauge groupG is thus SL~2, R!.

The algebraic quantization observable algebraAphy1
(!) is represented onHaux by densely de-

fined operators, and the star operation ofAphy1
(!) is the adjoint map ofHaux. Aphy1

(!) clearly com-
mutes both with the constraint operators~3.2! and with U on the respective common domain
Aphy1

(!) exponentiates into anO(2,2) action onHaux: representing the states as functions of~u, p!
via the Fourier transform inv, O(2,2) acts on the arguments of the functions by~2.12a!. It is clear
that thisO(2,2) action commutes withU.

U is isomorphic to the oscillator representation of SL~2, R! on L2(R2,2), and ourO(2,2)
action onHaux is isomorphic to theO(2,2) action onL2(R2,2) known in this context.15 We give a
brief review of the oscillator representation in Appendix B.

B. Test states

Next, we seek a suitable linear space of test states inHaux. The decomposition~5.4! suggests
that we make use of the eigenstates of the harmonic oscillator Hamiltonians~5.5!. It is convenient
to choose the eigenstates so that they are also eigenstates of the angular momentum o
û1p̂22û2p̂152 i ]a and v̂1p̂22 v̂2p̂15 i ]b . These eigenstates are

fm,m8;n,n8ªei ~ma1m8b!uumuv um8uLn
umu~u2!Ln8

um8u
~v2!exp@2 1

2~u21v2!#, ~5.6!

where the indices are integers withn>0 andn8>0, and theL’s are the generalized Laguerr
polynomials.28,29 fm,m8;n,n8 is an eigenstate ofĤu

sho and Ĥv
sho with the respective eigenvalue

umu12n andum8u12n8, and it is an eigenstate of2 i ]a and2 i ]b with the respective eigenvalue
m andm8. The statesfm,m8;n,n8 form a linearly independent and orthogonal set inHaux satisfying

~fm,m8;n,n8 ,fm̃,m̃8;ñ,ñ8!aux5
p2~n1umu!! ~n81um8u!!

n! ~n8!!
dm,m̃dm8,m̃8dn,ñdn8,ñ8 , ~5.7!

and their linear spanF̃ is dense inHaux. F̃ consists of vectors of the formP(u,v)exp@21
2(u

2

1v2)#, whereP(u,v) is an arbitrary polynomial in the four coordinates (u1,u2,v1,v2): from this
characterization it is clear thatF̃ is mapped to itself by the quantum constraint operators~3.2!.
Similarly, recalling that the algebraic quantization observable algebraAphy1

(!) is generated by~3.15!
and the overcareted counterparts of~2.7!, it is clear thatF̃ is mapped to itself byAphy1

(!) .
F̃ itself is not suitable for our RAQ test state space. First, there is a technical issue in tF̃

is not mapped to itself by theG actionU, as is immediate, for example, from~5.3b!. The serious
problem withF̃ is, however, that the group averaging integral~4.3! is not convergent, as we show
in Appendix C: convergence fails when both angular momentum quantum numbers vanis
now show how to modifyF̃ so that the group averaging integral becomes convergent, and we
use the group algebra technique of Ref. 8 to generate a test state space that is invariantU
and large enough for the uniqueness theorem of Ref. 8 to apply.

Let F0 be the linear span of the set

B0ª$fm,m8;n,n8uumu1um8u.0%ø$~f0,0;n,n81f0,0;n11,n811!%. ~5.8!

What motivates this definition is thatF0 is mapped to itself by the algebraic quantization obse
able algebraAphy

1(!) . To see this, recall from above thatF̃ is mapped to itself byAphy1
(!) . It is

therefore sufficient to consider the situation in which an element ofAphy1
(!) acts on a vector inB0

and produces a vector whose expansion in the basis$fm,m8;n,n8% has components withm5m8
50. From ~3.15!, ~3.7!, and the angle dependence infm,m8;n,n8 ~5.6!, we see that the only
nontrivial instance of how this can happen is the action oft̂6

h on f71,7h;n,n8 , which reads by
explicit computation30
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t̂6
h f71,7h;n,n85~n11!~n811!~f0,0;n,n81f0,0;n11,n811!, ~5.9!

and this is in the linear span ofB0 . ThusF0 is mapped to itself byAphy1
(!) .

We claim thatF0 is dense inHaux. To show this, recall from above that$fm,m8;n,n8% is an
orthogonal Hilbert space basis forHaux. It is therefore sufficient to show that the linear subspa
W,F spanned by$(f0,0;n,n81f0,0;n11,n811)% is dense in the Hilbert subspaceH0,Haux spanned
by $f0,0;n,n8%. Suppose this is false. Then there exists a nonzero vectorvPH0 that is in the
orthogonal complement of the closure ofW. As vPH0 , we can writev5(n,n8bn,n8f0,0;n,n8 ,
where the coefficients satisfy(n,n8ubn,n8u

2,` by ~5.7!, and at least one coefficient is nonzer
However, the orthogonality ofv with each (f0,0;n,n81f0,0;n11,n811)PW implies bn,n8
52bn11,n811 for all n andn8, and the sum(n,n8ubn,n8u

2 therefore diverges, which is a contra
diction. ThusF0 is dense inHaux.

The crucial property ofF0 is that the group averaging integral~4.3! converges in absolute
value for allf1 andf2 in F0 . This is shown in Appendix C.

As F0 is not mapped to itself byU, F0 does not technically qualify as a test state space in
version of RAQ. A simple remedy would be to consider the spaceF08 , which is the closure ofF0

under the algebra generated by the operatorsU(g) for gPG. F08 is clearly dense inHaux and
invariant underU, and it thus satisfies the RAQ test state space conditions, and one could i
successfully complete RAQ withF08 as the test state space. However, we wish to work with a
state space to which the uniqueness theorem of Giulini and Marolf8 applies. To this end, recal
from Sec. IV that anL1 function h on G defines on Haux the bounded operatorĥ
ª*G dg h(g)U(g), and the set of all such operators forms an algebraÂG . Let now F be the
closure ofF08 under the action ofÂG . It is clear thatF is dense inHaux and invariant underU,
andF thus satisfies the RAQ test state space conditions. It is also clear thatF is mapped to itself
by ÂG , while F08 is not.

We now adoptF as the RAQ test state space. AsF0 is mapped to itself byAphy1
(!) , so isF,

and the RAQ observable algebraAobs therefore containsAphy1
(!) as a subalgebra.

As a final remark, we note thatF0 is mapped to itself by the quantum constraint operat
~3.2!,30 and thereforeF08 andF are also mapped to themselves by these operators.F0 , F08 , and
F would therefore all qualify as test state spaces in formulations of RAQ that solve the cons
in terms of the constraint operators rather than in terms of theG actionU.4,14

C. Group averaging and the physical Hilbert space

Consider now the group averaging. As mentioned above, the integral in~4.3! converges in
absolute value for allf1 andf2 in F0 . It follows from Lemma 2 in Ref. 8 that the integral i
~4.3! converges in absolute value for allf1 andf2 in F. The maph is therefore well defined by
~4.3! and~4.4!, and it satisfies the rigging map postulates with the possible exception of posit

To evaluateh, let f iPF, and lethi be L1 functions onG. We then have from~4.3! and
~4.4!,8

h~ ĥ1f1!@f2#5S E
G

dg h1~g! Dh~f1!@f2#, ~5.10a!

h~f1!@ ĥ2f2#5S E
G

dg h2~g! Dh~f1!@f2#, ~5.10b!

As further h(f1)@U(g0)f2#5h(U(g0)f1)@f2#5h(f1)@f2#, it suffices to evaluate
h(f1)@f2# for f1 andf2 in the setB0 ~5.8!.

The explicit evaluation ofh is done in Appendix D. We can represent the vectors in the im
of h as functions onR45$(u,v)%, acting on the test statesfPF by
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f @f#5E d2u d2v f ~u,v!f~u,v!. ~5.11!

We find

h~fm,m8;n,n8!52p2~21!n@sgn~m!#md umu,um8udn,n8

~n1umu!!
umun!

f m,~m8/m! , umu1um8u.0,

~5.12a!

h~f0,0;n,n81f0,0;n11,n811!50, ~5.12b!

where the functionsf m,e , with mPZ\$0% andeP$1,21%, are defined by

f m,eªJm~uv !e2 im~a1eb!. ~5.13!

The action~5.11! of f m,e on the vectors inB0 reads31 as

f m,e@fm̃,m̃8;n,n8#52p2~21!n@sgn~m!#mdm,m̃dem,m̃8dn,n8

~n1umu!!
n!

, um̃u1um̃8u.0,

~5.14a!

f m,e@f0,0;n,n81f0,0;n11,n811#50. ~5.14b!

From this it is clear that the set$ f m,eumPZ\$0%,e561% is linearly independent inF* and a basis
for the image ofh.

What remains is to evaluate the~prospective! inner product on the image ofh. From ~4.1!,
~5.12a!, and~5.14a!, we find

~ f m,e , f m8,e8!phys5umudm,m8de,e8 . ~5.15!

As ~5.15! is positive definite, all the rigging map postulates are satisfied, and~5.15! does define an
inner product on the image ofh. The physical Hilbert spaceHphys is obtained by completion. The
asymptotic large-order expansion ofJm

22 shows that every vector inHphys can be represented as
function onR45$(u,v)%.

Finally, asF is invariant underÂG , the assumptions of the uniqueness theorem of Giulini
Marolf are satisfied. It follows that every rigging map for our triple (Haux,U,F) is a multiple of
the group averaging rigging maph.

D. Observables and the relation to algebraic quantization

As we have emphasized, the RAQ observable algebraAobscontains the algebraic quantizatio
observable algebraAphy

1(!) as a subalgebra, and the star operation onAphy1
(!) is the adjoint map of

Haux. It follows that the antilinear representation ofAobs on Hphys contains an antilinear repre
sentationr1 of Aphy1

(!) , and inr1 the star operation onAphy1
(!) is the adjoint map ofHphys. r1 acts

on the basis$ f m,eumPZ\$0%,e561% of Hphys as

r1~ t̂0
h!: f m,e°dh,em fm,e , ~5.16a!

r1~ t̂6
h !: f m,e°dh,em fm61,e , ~5.16b!

r1~ P̂e1 ,e2
!: f m,e° f e1 m,e2e , ~5.16c!

where f 0,e , whenever it appears on the right-hand side, is understood to mean zero.
Comparing~5.16! to ~3.9!, and ~3.16!, and the RAQ inner product~5.15! to the algebraic

quantization inner product~3.13!, we see thatr1 is anti-isomorphic to the representation ofAphy1
(!)
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on the Hilbert spaceH1 obtained in the algebraic quantization of Sec. III, provided the in
products are normalized to agree. TheO(2,2) action onH1 found in Sec. III is anti-isomorphic to
theO(2,2) action onHphys induced by theO(2,2) action onHaux. In this sense, the RAQ quantum
theory contains the algebraic quantization quantum theory.

VI. DISCUSSION

In this paper we have compared the algebraic quantization~AQ! framework and the refined
algebraic quantization~RAQ! framework in a constrained Hamiltonian system with unredu
phase spaceG5T* R4 and gauge group SL~2, R!. In both approaches we used input motivated
the structure of the classical constraints as quadratic functions onG. In AQ, we first solved the
constraints on a suitable vector space, promoted an explicitly known classical observable a
into the quantum operator star algebraAphy1

(!) , and determined the inner product by requiring t
star operation onAphy1

(!) to coincide with the adjoint operation. In RAQ, we chose the auxili
Hilbert spaceHaux to be L2 over the unreduced configuration spaceR4, and we promoted the
classical SL~2, R! gauge transformations onG into a unitary SL~2, R! action onHaux. We took
particular care to choose the RAQ test state spaceF,Haux so that the RAQ observable algeb
Aobs containsAphy1

(!) . Considering the similarity in these inputs, it is not surprising that the R
quantum theory turned out to contain the AQ quantum theory. We also investigated theO(2,2)
group actions underlying the classical and quantum observable algebras, and we showed
AQ quantum theory can be recovered through Isham’s group theoretic quantization framew

Both AQ and RAQ encountered with the zero angular momentum states a technical diffi
whose origin is in the structure of a certain pathological subset of the classical reduced
space. The remedy was to ensure that such states do not appear in the physical Hilbert s
AQ, the problem appeared in the guise of ‘‘zero norm’’ states in the prospective Hilbert spac
the cure was simply to drop the states already from the vector space on which the constra
solved. In RAQ, on the other hand, the problem appeared as the divergence of the group
ing, and the cure now was to modify the space of test states. However, as the RAQ obse
algebra is defined in terms of the test state space, the modification needed to be quite s
order that the RAQ observable algebra could still be meaningfully compared with the AQ ob
able algebra: here we took advantage of the explicit knowledge of the operators inAphy1

(!) . This
illustrates well how neither AQ nor RAQ is aprescriptionfor quantization: they are schemes th
need input at various steps, and making successful choices in the ‘‘early’’ steps may r
hindsight from the ‘‘later’’ steps.12,14,32Also, this illustrates that although RAQ does not assu
a single observable to be explicitly constructed, the knowledge of some observables of inter
be quite useful in making good choices at the various steps of RAQ.

As discussed in Ref. 10, the constraint algebra of our system is analogous to the con
algebra of general relativity. Among the three constraints~2.2!, H1 andH2 are ‘‘Hamiltonian’’-
type, quadratic in the momenta, whileD is ‘‘momentum’’-type, linear in the momenta, and th
mixing of these two types of constraints in~2.3! is as in general relativity.33 One consequence o
this analogy is that one could introduce and investigate in our system also group averagin
Teitelboim’s ‘‘causal’’ boundary condition.34–36 In general relativity, this condition proposes th
only positive lapses contribute to the path integral that defines the quantum mechanical pr
tion amplitude. IfH1 andH2 are adopted as the analog of the Hamiltonian constraint of gen
relativity at two spatial points,10 the causal boundary condition in our system yields an aver
over the semigroup of SL~2, R! matrices whose all entries are positive: integrating first over
lapses and then over the shift, the SL~2, R! elements emerge from the amplitude folding of Re
34, 35 in the form

exp~nh!exp~n1e11n2e2!, ~6.1!

where2`,n,` andn6.0, and we have explicitly verified that the measure emerging from
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ghost integrations of Refs. 34, 35 is the SL~2, R! Haar measure in the parametrization~6.1!. It
might be interesting to see whether a scattering theory of the type considered in Refs. 34–3
be built on the causal boundary condition in our system.

We note in this context that allowingn andn6 to take all real values in~6.1! does not cover
all of SL~2, R!, and, in particular, it does not reach those matrices where the product o
diagonal elements is negative. In our system, the decomposition of the quantum propa
amplitude in the form given in Refs. 34, 35, first integrating over the lapses and then over the
does thus not yield an average over the whole group when the lapses and the shift are allo
take all real values. This phenomenon occurs also upon considering~6.1! in the group
PSL(2,R)5SL(2,R)/$61%.Oc(2,1). The phenomenon is therefore not a consequence of the
that the exponential map fromsl~2, R! to SL~2, R! is not onto, as is the exponential map fromsl~2,
R! to PSL~2, R!.

We saw in Sec. II that theO(2,2) action onG looks simple in the polarization in which~u, p!
are the ‘‘coordinates’’ and (p,2v) are the ‘‘momenta.’’ Similarly, we noted in Sec. V that th
O(2,2) action onHaux5L2

„$(u,v)%… looks simple when Fourier transformed toL2
„$u,p%…. At-

tempting to quantize the system in a~u, p! representation would, however, present difficultie
Adopting the~u, p! representation in algebraic quantization and proceeding as in Sec. III
finds that the constraints cannot be solved in terms of smooth functions: the constraintĤ2C50
implies that the support ofC(u,p) would need to be in some sense atp22u250. The reason
underlying this difficulty is precisely that our solutions to the constraints in the~u, v! representa-
tion are not square integrable, or even integrable, and Fourier transforming them to a~u, p!
representation isa priori not defined. In RAQ, in contrast, the Fourier transform to the~u, p!
representation is well defined inHaux, there is no obstacle to constructing in this representationF,
theG action, or the group averaging sesquilinear form~4.3!, and proving the absolute convergen
of the integral in~4.3! is, in fact, technically simpler than in the~u, v! representation. At the
abstract level, one thus recovers isomorphic RAQ quantum theories in the~u, v! representation
and the~u, p! representation. The difficulty of doing RAQ in the~u, p!-representation is a mor
practical one, namely, that the methods of Appendix D now do not yield a representation
image ofh as functions onR45$(u,p)%, and one needs some other way to prove thath is positive
and to evaluateh in some practical fashion.

The classical system admits a generalization in whichu andv in the action functional~2.1!–
~2.2! have, respectively,r and s components, for any non-negative integersr and s. The phase
space isG r ,sªT* Rr ,s, the gauge group generated by the constraints is still SL~2, R!, andG r ,s has
a naturalO(r ,s)-action that commutes with the SL~2, R! action. One expects that this generaliz
system could be quantized with our methods, and that the quantum theory would reflect pro
of the oscillator representation onL2(Rr ,s).15,37,38It is also possible to generalize the system
certain other gauge groups of interest by minor modification of the constraint structure in~2.1!–
~2.2!, such as to the (111) Poincare´ group, or to the affine group onR ~which is nonunimodular!.
We leave such generalizations subject to future work.

Note added:After this work was completed, a quantization of the system in the algeb
constraint quantization framework of Refs. 39, 40 was posted in Ref. 41. As noted in Ref. 4
quantum theory recovered therein is, in essence, identical to our algebraic quantization qu
theory.
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APPENDIX A: IWASAWA DECOMPOSITION OF SL „2, R…

In this appendix we collect some well-known properties of SL~2, R!. The notation follows
Ref. 15.

SL~2, R! consists of real 232 matrices with a unit determinant,

g5S a b

c dD , ad2bc51. ~A1!

Each element of SL~2, R! admits a unique Iwasawa decomposition,

g5S 1 0

m 1D S el 0

0 e2lD S cosu sinu

2sinu cosu D , ~A2!

wheremPR, lPR, and 0<u,2p. In terms of the parametrization~A2!, the left- and right-
invariant Haar measure reads ase2l dl dm du.

A standard basis for the Lie algebrasl~2, R! consists of three matrices:

hªS 1 0

0 21D , e1
ªS 0 1

0 0D , e2
ªS 0 0

1 0D , ~A3!

whose commutators are

@h,e1#52e1, @h,e2#522e2, @e1,e2#5h. ~A4!

A second standard basis is

g0ª
1
2~e12e2!, g1ª

1
2~e11e2!, g2ª

1
2h, ~A5!

with the commutators

@g1 ,g2#52g0 , @g2 ,g0#5g1 , @g0 ,g1#5g2 . ~A6!

Each of the three matrices in~A2! is in the image of the exponential map fromsl~2, R! to
SL~2, R!. In terms of the exponential map,~A2! reads as

g5exp~me2!exp~lh!exp@u~e12e2!#. ~A7!

The decomposition~A2! encodes the first homotopy groupZ of SL~2, R! entirely in the
rightmost factor. The quotient map from SL~2, R! to PSL(2,R)5SL(2,R)/$61%.Oc(2,1) @the
connected component ofO(2,1)# acts in the decomposition~A2! by the identification (m,l,u)
;(m,l,u1p). A unique Iwasawa decomposition of the form~A7! holds therefore also for
covering groups ofOc(2,1): for then-fold covering 0<u,np, and for the universal covering
2`,u,`.

APPENDIX B: OSCILLATOR REPRESENTATION OF THE DOUBLE COVER OF SL „2, R…

In this appendix we recall some properties of the oscillator representation of the double
of SL~2, R!.15 We denote in this appendix the double cover of SL~2, R! by SL̃~2, R!.

1. Oscillator representation on L 2
„R…

Consider onL2(R) the three essentially self-adjoint operators,

Ĥ1ª2 1
2]x

2, ~B1a!

Ĥ2ª2 1
2x

2, ~B1b!
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D̂ª2 i ~x]x1 1
2!, ~B1c!

whose commutators form thesl~2, R! algebra~3.3!. Exponentiation yields a unitary representati
v of the universal covering group of SL~2, R! on L2(R). The group elements that appear in t
Iwasawa decomposition~A7! are represented by

v„exp~me2!…5exp~2 imĤ2!, ~B2a!

v„exp~lh!…5exp~2 ilD̂ !, ~B2b!

v„exp@u~e12e2!#…5exp„2 iu~Ĥ12Ĥ2!…. ~B2c!

The two first operators in~B2! act on functionsc(x) as

@exp~2 imĤ2!c#~x!5eimx2/2c~x!, ~B3a!

@exp~2 ilD̂ !c#~x!5e2l/2c~e2lx!, ~B3b!

while exp„2 iu(Ĥ12Ĥ2)… is the unit mass and frequency harmonic oscillator evolution opera
As exp„2 iu(Ĥ12Ĥ2)… is periodic inu with period 4p, v is a representation of SL˜~2,R) but not
a representation of SL~2, R!.

It is evident thatv decomposes into a sum of two unitary representations, one acting on
and the other on odd functions. It can be shown that these two representations are irreduc15

The oscillator representation can be formally written as

@v~g!c#~x!5E dy

A2p ib
expF i ~ay21dx222xy!

2b Gc~y!, ~B4!

wherea,bandd are as shown in~A1! in the SL~2, R! representative ofg @while g itself is in SL̃~2,
R!#. The singularities and branch cuts in the integral kernel in~B4! must, however, be interprete
consistently with the unambiguously defined left-hand side. For example, wheng5exp@u(e1

2e2)#, v(g) is the harmonic oscillator evolution operator, for whicha5d5cosu andb5sinu,
and the integral kernel in~B4! is singular atu5pn.

The integral kernel in~B4! can be derived from the SL~2, R! action that the classical coun
terparts of the operators~B1! generate onT* R. Writing gPSL(2,R) as in~A1!, and denoting by
~q,p! the usual canonical chart onT* R, this action reads as

S q
pD°S q8

p8 D5S a b

c dD S q
pD . ~B5!

~B5! preserves the symplectic structuredp∧dq and is therefore a canonical transformation. F
bÞ0, one can express the old and new momenta as functions of the old and new coordinat
the canonical transformation has then a generating functionS(q,q8), satisfying

p8~q,q8!dq82p~q,q8!dq5dS~q,q8!. ~B6!

Simple algebra yields

S~q,q8!5
aq21dq8222qq8

2b
. ~B7!
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As S(q,q8) ~B7! is quadratic inq andq8, the integral kernel of the corresponding unitary tran
formation consists of the exponential exp@iS(q,q8)# and a prefactor that does not depend onq or
q8. Imposing unitarity yields the prefactor shown in~B4!.

2. Oscillator representation on L 2
„Rr ,s

…

Inverting the signs of bothe1 ande2 in the basis~A3! of sl~2, R! is an automorphism ofsl~2,
R!. Inverting the signs ofĤ1 and Ĥ2 in ~B1! and proceeding as above yields therefore a rep
sentationv* of SL̃~2, R! on L2(R). The tensor productv r ,s of r copies ofv ands copies ofv*
is naturally realized as a representation of SL˜~2,R) on L2(Rr ,s), eachv acting on one of the first
r coordinates and eachv* acting on one of the lasts coordinates.v r ,s is a representation of SL~2,
R! iff r 1s is even.

The groupO(r ,s) has a natural action onL2(Rr ,s) by c(x)°c(a21x), wherea is in the
defining matrix representation ofO(r ,s). This O(r ,s) action commutes withv r ,s , and the spec-
tral decomposition of one completely determines the spectral decomposition of the other.15,37

The representationU of SL~2, R! on Haux introduced in Sec. V, and the representation
O(2,2) onHaux generated by the observable algebraAphy1

(!) therein, are isomorphic to the abov
structure withr 5s52. The isomorphism is the Fourier transform in the last two coordinate
Haux.L2(R2,2).

APPENDIX C: CONVERGENCE OF THE GROUP AVERAGING

In this appendix we show that the integral in~4.3!,

E
G

dg„f2 ,U~g!f1…aux, ~C1!

converges in absolute value for allf1 andf2 in the spaceF0 defined in Sec. V.
It suffices to considerf1 andf2 in the setB0 ~5.8!. As the operators2 i ]a and2 i ]b ~which

belong toAobs! commute withU(g), it suffices to consider the case wheref1 andf2 have the
same angular momentum quantum numbers, for otherwise the integrand in~C1! vanishes by the
orthogonality~5.7!.

We now consider separately the case where at least one angular momentum is nonzero
case where both angular momenta are zero.

1. At least one angular momentum nonzero

We setf15fm,m8;n,n8 andf25fm,m8;ñ,ñ8 , whereumu1um8u.0.
We write g in the Iwasawa decomposition~A2!. By ~5.2!, U(g) is given by

U~g!5exp~2 imĤ2!exp~2 ilD̂ !exp„2 iu~Ĥ12Ĥ2!…. ~C2!

The Haar measure in~C1! reads asdg5e2l dl dm du, and the integration is over all real value
of l andm and over one 2p cycle in u. As f1 is an eigenstate of the rightmost operator in~C2!
with an eigenvalue of absolute value 1, it suffices to setu50 and consider the integral overl and
m in the measuree2l dl dm.

Let thusU(g) be as in~C2! with u50 andmÞ0. By ~5.3!, we have

„f2 ,U~g!f1…aux5
4p2@sgn~m8!#m8z~k82k!/2

i ~m811!m

3E du dv dv8 u2k11vk811~v8!k811Jk8~vv8/m!Lñ
k~u2!

3Lñ8
k8~v2!Ln

k~u2/z!Ln8
k8
„z~v8!2

…
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3exp$2 1
2@11~1/z!2 im#u22 1

2@12~ i /m!#v22 1
2@z2~ i /m!#~v8!2%,

~C3!

wherekªumu, k8ªum8u, zªe2l, and the integration is over positive values ofu, v, andv8. The
Bessel functionJk8(vv8/m) has emerged from performing the angular part of thed2v8 integral in
~5.3a!. Here, and from now on, the individual components ofu and v will not appear, and we
always writeu5Au2, u2

ªu2, and so on.
In ~C3!, we write out the generalized Laguerre polynomials as polynomials in their respe

arguments.Ln
k(u2/z) yields a sum of numerical coefficients timesu2rz2r , Ln8

k8
„z(v8)2

… yields

(v8)2r 8zr 8, Lñ
k(u2) yieldsu2s, andLñ8

k8(v2) yieldsv2s8, wherer, r 8, s, ands8 range over integers
satisfying 0<r<n, 0<r 8<n8, 0<s<ñ, and 0<s8<ñ8. Therefore~C3! equals a sum overr, r 8,
s, ands8 of numerical coefficients times

zr 82r 1~k82k!/2

m E du dv dv8 u2r 12s12k11v2s81k811~v8!2r 81k811Jk8~vv8/m!

3exp$2 1
2@11~1/z!2 im#u22 1

2@12~ i /m!#v22 1
2@z2~ i /m!#~v8!2%. ~C4!

In ~C4!, we perform first the elementary integral overu. We then perform the integral overv

using~6.631.10! in Ref. 21: the result involves the generalized Laguerre polynomialLs8
k8 of argu-

ment (v8)2/@2m(m2 i )#, and we expand this polynomial as a sum of numerical coefficients ti

$(v8)2/@m(m2 i )#%s9, wheres9 ranges over integers satisfying 0<s9<s8. The remaining integral
over v8 is elementary. Note that these integrals overu, v, and v8 converge in absolute value
Collecting, we find that~C3! is a sum overr, r 8, s, s8, ands9 of numerical coefficients times

ms82s9~11 im!r 82s8z11r 81s1~k81k!/2~11z1 imz!2r 82s92k821~11z2 imz!2r 2s2k21, ~C5!

where 0<s9<s8. An elementary analysis shows that~C5! is integrable in absolute value ove
$(z,m)uz.0,mPR% in the measure*dz dm, providedr 1(k1k8)/2.0. As umu1um8u.0 by as-
sumption, this condition is satisfied. Thus~C1! converges in absolute value.

We note that the assumptionumu1um8u.0 was only used in the final step, in showing th
integrability of ~C5!. We also note that this assumption is necessary. Takingf15f0,0;0,0 and
f25f0,0;n,n , ~C2! and ~C3! yield, using Ref. 31 and~6.631.4! in Ref. 21,

„f2 ,U~g!f1…aux54p2~21!n3
z@~12z!21m2z2#n

@~11z!21m2z2#n11 , ~C6!

and the integral of~C6! over the group in the Haar measure is unambiguously divergent.

2. Both angular momenta zero

We setf15f0,0;n,n81f0,0;n11,n811 andf25f0,0;ñ,ñ81f0,0;ñ11,ñ811 . As above, it suffices to
takeu50 and consider the integral overl andm in the measuree2l dl dm.

Let againU(g) be as in~C2! with u50 andmÞ0. By ~5.3!, we have

„f2 ,U~g!f1…aux5
4p2

im E du dv dv8 uvv8J0~vv8/m!@Lñ~u2!Lñ8~v2!1Lñ11~u2!Lñ811~v2!#

3@Ln~u2/z!Ln8„z~v8!2
…1Ln11~u2/z!Ln811„z~v8!2

…#

3exp$2 1
2@11~1/z!2 im#u22 1

2@12~ i /m!#v22 1
2@z2~ i /m!#~v8!2%. ~C7!

In ~C7!, we write out Ln(u2/z) and Ln11(u2/z) as polynomials in their arguments. Th
previous analysis@the integrability of~C5! for k5k850 providedr .0# shows that the noncon
stant terms give integrable contributions. Consider therefore the expression whereLn(u2/z) and
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Ln11(u2/z) in ~C7! are each replaced by their constant term 1. We perform the integrals ou
andv using ~7.414.6! and ~7.421.1! in Ref. 21, obtaining a sum of numerical constants times

z~12z2 imz!p~12 im!p8

~11z2 imz!p11~11 im!p811 E dv8 v8Lp8S ~v8!2

11m2DexpH 2
1

2 Fz1
1

~11 im!G~v8!2J
3@Ln8„z~v8!2

…1Ln811„z~v8!2
…#, ~C8!

where (p,p8)5(ñ,ñ8) or (p,p8)5(ñ11,ñ811). In ~C8!, we write outLp8 as a sum of numerica
coefficients times (v8)2s(11m2)2s, wheres ranges over integers satisfying 0<s<p8. We then
perform the remaining integral by changing the integration variable fromv8 to xªz(v8)2 and
using the formula

E
0

`

dx xs@Ln8~x!1Ln811~x!#expF2
1

2
~11a21!xG5

as11Pn8,s~a!

~11a!n81s12
, ~C9!

wherePn8,s is a polynomial~whose precise numerical coefficients will not be needed! of order
n81s. The validity of ~C9! for s50 follows from ~7.414.7! in Ref. 21, and the validity fors
.0 follows by repeated differentiation with respect toa21. It then follows by elementary analysi
that ~C8! is integrable in absolute value over$(z,m)uz.0,mPR% in the measure*dz dm. Thus
~C1! converges in absolute value.

APPENDIX D: EVALUATION OF THE RIGGING MAP

In this appendix we evaluate the maph, given by~4.3! and~4.4!, on the test function spaceF
defined in Sec. V.

It suffices to consider test statesf in the setB0 ~5.8!. We consider separately the case whe
both angular momenta are nonzero and the case where at least one angular momentum i

1. Both angular momenta nonzero

SupposemÞ0Þm8, and considerU(g)fm,m8;n,n8 as a function onG3R4, where G
5SL(2,R) is the gauge group andR45$(u,v)% is the configuration space. By the methods
Appendix C it is straightforward to show thatU(g)fm,m8;n,n8 is integrable in absolute value ove
G pointwise in~u, v!, and thatf̄U(g)fm,m8;n,n8 is integrable in absolute value overG3R4 for
everyfPF0 . It follows by Fubini’s theorem thath(fm,m8;n,n8) can be represented by a functio
on R4, acting on test statesfPF by ~5.11!: we have

h~fm,m8;n,n8!5xm,m8;n,n8, ~D1!

where

xm,m8;n,n8ªE
G

dg U~g!fm,m8;n,n8 , ~D2!

and the integral in~D2! is evaluated pointwise onR4. We shall now evaluate~D2!.
We write U(g) in the Iwasawa decomposition~C2! and writezªe2l. For mÞ0, we obtain
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U~g!fm,m8;n,n85
@sgn~m8!#m8ei ~ma1m8b!z~k82k!/2eiu~k82k12n822n!

~ i !m811m

3E
0

`

dv8uk~v8!k811Jk8~vv8/m!Ln
k~u2/z!Ln8

k8
„z~v8!2

…

3expF2
1

2 S u2

z
1z~v8!2D1

i

2 S mu21
v21~v8!2

m D G , ~D3!

wherekªumu andk8ªum8u, and, by assumption,k>1 andk8>1. As in Appendix C, the Besse
functionJk8(vv8/m) has emerged from performing the angular part of thed2v8 integral in~5.3a!.
The integral in~D3! could be performed in terms of a generalized Laguerre polynomial u
~7.421.4! in Ref. 21, but for us it will be more convenient to proceed directly with~D3!.

We now integrate~D3! in the Haar measuredg5e2l dl dm du5 1
2dz dm du. By the above

discussion, this integral converges in absolute value. We may assumeu.0 andv.0. The integral
overu yields the factor 2pdk12n,k812n8 . In the remaining expression we first change the varia
in the integral in~D3! from v8 to xªz(v8)2, and we then change the variables in the outer inte
*dz dm to yªu2/z andpªu2m. We obtain

xm,m8;n,n85
p@sgn~m8!#m8dk12n,k812n8e

i ~ma1m8b!

2~ i !m811 E
0

`

dy y~k/2!21Ln
k~y!e2y/2

3E
2`

` dp

p E
0

`

dx xk8/2Jk8S uvAxy

p D Ln8
k8~x!expF2

x

2
1

i

2 S p1
u2v21xy

p D G .
~D4!

We then interchange the order of the*dx and *dp integrals in~D4!, justified by the absolute
convergence of the double integral*dx dp. Performing the*dp integral by~the absolutely con-
vergent analytic continuation of! ~6.635.3! in Ref. 21, we obtain

xm,m8;n,n85p2dk12n,k812n8e
i ~ma1m8b!Jk8~uv !

3E
0

`

dy y~k/2!21Ln
k~y!e2y/2E

0

`

dx xk8/2Jk8~Axy!Ln8
k8~x!e2x/2

52p2~21!n8dk12n,k812n8e
i ~ma1m8b!Jk8~uv !

3E
0

`

dy y~k1k8!/221Ln
k~y!Ln8

k8~y!e2y, ~D5!

where in the last step we have evaluated the*dx integral using Ref. 31.
Consider the remaining integral in~D5!. Supposek8>k. Because of the factordk12n,k812n8 ,

it suffices to considerk85k12s andn5n81s for some non-negative integers. We thus need to
evaluate

E
0

`

dy yk1s21Ln81s
k

~y!Ln8
k12s

~y!e2y. ~D6!

ExpandingLn8
k12s(y) in ~D6! as a polynomial iny yields integrals of the form

E
0

`

dy yk1qLn81s
k

~y!e2y, ~D7!
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wheres21<q<s1n821. The orthogonality of the generalized Laguerre polynomials30 implies
that~D7! vanishes for 0<q,n81s. Whens.0, q is always in this range, and~D6! thus vanishes.
Whens50, the only value ofq not in this range isq521, which comes from the constant ter
of the expandedLn8

k (y) in ~D6!: using Ref. 42,~7.414.7! in Ref. 21, and~15.1.40! in Ref. 22, we
then find that~D6! for s50 is equal to (n81k)!/ @k(n8)! #. Finally, the casek8,k reduces to the
case already considered by interchange of the primed and unprimed indices, and we find th~D5!
vanishes.

Expressing the result in terms of the original indices, we have

xm,m8;n,n852p2~21!n@sgn~m!#md umu,um8udn,n8

~n1umu!!
umun!

Jm~uv !ei ~ma1m8b!. ~D8!

The result~5.12a! then follows from~D1! and ~5.13!.

2. At least one angular momentum zero

What remains is to evaluate the maph for f0,m8;n,n8 with m8Þ0, fm,0;n,n8 with mÞ0, and
f0,0;n,n81f0,0;n11,n811 . We shall show thath vanishes on these states.

A direct analysis along the above lines would run into a technical difficulty in that not al
analogous multiple integrals now converge in absolute value. It is, however, suggestive t
that the integrals are still conditionally convergent, and starting from the counterpart of~D2! and
formally interchanging the integrations as above yields the result zero. Forf0,m8;n,n8 and
fm,0;n,n8 , ~D2! yields the zero function and hence the zero vector inF* . For f0,0;n,n8
1f0,0;n11,n811 , the counterpart of~D2! yields a function proportional toJ0(uv), which clearly
solves the quantum constraints, but the dual action~5.11! of J0(uv) on every vector inF0

vanishes@by the extension of~5.14a! to m50#, and as an element ofF* J0(uv) is thus identical
to the zero vector. We now show that the result zero is indeed the correct one.

Consider first

h~f0,m8;p,p8!@f#5~f0,m8;p,p8 ,f!ga, ~D9!

wherem8Þ0 andfPB0 ~5.8!. As noted in Appendix C, it suffices to considerf5f0,m8;n,n8 .
Using the Iwasawa decomposition~C2! in ~4.3!, the integral overu shows that we can setum8u
52(n2n8), and a similar reasoning withU(g) in ~4.3! conjugated to act on the first argume
shows that we can set um8u52(p2p8). It therefore suffices to conside
(f0,62s;p1s,p ,f0,62s;n1s,n)ga with s>1.

Consider thus (f0,2s;p1s,p,f0,2s;n1s,n)ga with s>1. We recall that the operatorst̂6
h ~3.7! are

in Aobs and the adjoint oft̂6
h in Haux is t̂7

h . Using properties of the generalized Lague
polynomials,30 we find

t̂2
2f1,2s21;n1s21,n52~n1s!~f0,2s;n1s21,n211f0,2s;n1s,n!, ~D10a!

t̂1
2f0,2s;p1s,p52~p11!f1,2s21;p1s,p111~p12s!f1,2s21;p1s21,p , ~D10b!

wheref0,2s;n1s21,n21 for n50 is understood as the zero vector. We therefore have

~n1s!@~f0,2s;p1s,p ,f0,2s;n1s21,n21!ga1~f0,2s;p1s,p ,f0,2s;n1s,n!ga#

52~f0,2s;p1s,p ,t̂2
2f1,2s21;n1s21,n!ga

52~ t̂1
2f0,2,s;p1s,p ,f1,2s21;n1s21,n!ga

5~p11!~f1,2s21;p1s,p11 ,f1,2s21;n1s21,n!ga1~p12s!~f1,2s21;p1s21,p ,f1,2s21;n1s21,n!ga

50, ~D11!
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where the last equality follows from~5.12a! in the index range where~5.12a! has already been
verified. By induction inn, ~D11! implies (f0,2s;p1s,p ,f0,2s;n1s,n)ga50. An analogous argumen
shows (f0,22s;p1s,p ,f0,22s;n1s,n)ga50.

Thus h(f0,m8;p,p8)50 for m8Þ0. A similar argument shows thath(fm,0;p,p8)50 for m
Þ0. Finally, h(f0,0;p,p81f0,0;p11,p811)50 follows by applying an analogous reasoning to t
relations,30

t̂2
1f1,1;n,n85~n11!~n811!~f0,0;n,n81f0,0;n11,n811!, ~D12a!

t̂1
1~f0,0;p,p81f0,0;p11,p811!5f1,1;p21,p82112f1,1;p,p81f1,1;p11,p811 . ~D12b!
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Geometry, stochastic calculus, and quantum fields in a
noncommutative space–time

R. Vilela Mendesa)

Grupo de Fı´sica Matema´tica, Complexo Interdisciplinar, Universidade de Lisboa,
Av. Gama Pinto, 2-P1699 Lisboa Codex, Portugal
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The algebras of nonrelativistic and of classical mechanics are unstable algebraic
structures. Their deformation towards stable structures leads, respectively, to rela-
tivity and to quantum mechanics. Likewise, the combined relativistic quantum me-
chanics algebra is also unstable. Its stabilization requires the noncommutativity of
the space–time coordinates and the existence of a fundamental length constant. The
new relativistic quantum mechanics algebra has important consequences on the
geometry of space–time, on quantum stochastic calculus, and on the construction
of quantum fields. Some of these effects are studied in this paper. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!00601-0#

I. THE INSTABILITY OF RELATIVISTIC QUANTUM MECHANICS AND A FUNDAMENTAL
LENGTH

Physical models and theories are mere approximations to nature and the physical co
can never be known with absolute precision. Therefore, if a fine tuning of the parameters is n
to reproduce some particular phenomenon, it is probable that the model is basically unsou
that its other predictions are unreliable. A wider range of validity is expected for theories th
not change in a qualitative manner for a small change of parameters. Such theories are
stableor rigid.

A mathematical structure is said to bestable ~or rigid! for a class ofdeformationsif any
deformation in this class leads to an equivalent~isomorphic! structure. The idea of stability o
structures provides a guiding principle to test either the validity or the need for generalizat
a physical theory. Namely, if the mathematical structure of a given theory turns out to be uns
one might just as well deform it, until one falls into a stable one, which has a good chance of
a generalization of wider validity.

The stable-model point of view had a large impact in the field of nonlinear dynamics, w
it led to the notion ofstructural stability.1,2 As emphasized by Flato3 and Faddeev4 the same
pattern seems to occur in the fundamental theories of nature. In fact, the two most imp
physical revolutions of this century, namely the passage from nonrelativistic to relativistic
from classical to quantum mechanics, may be interpreted as the transition from two un
theories to two stable ones. In the nonrelativistic mechanics case, one notices that the
cohomology group of the homogeneous Galileo group does not vanish and the corresp
algebra has a deformation that leads to the Lorentz algebra which, being semi-simple, is sta
turn, the transition from classical to quantum mechanics may be regarded as a deformation
unstable Poisson algebra of phase-space functions to the stable Moyal-Vey algebra.5 I will refer to
these two stabilizing deformations as the (1/c)-deformation and the\-deformation. The deformed
algebras are all equivalent for nonzero values of 1/c and \. Hence, relativistic mechanics an
quantum mechanics may be derived from the conditions for stability of their algebras, bu
exact values of the deformation parameters cannot be fixed by purely algebraic consider
Instead, the deformation parameters are fundamental constants to be obtained from experim

a!Electronic mail: vilela@alf1.cii.fc.ul.pt
1560022-2488/2000/41(1)/156/31/$17.00 © 2000 American Institute of Physics
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this sense not only is deformation theory the theory of stable theories, it is also the theor
identifies the fundamental constants.

A review of deformation theory and of the transition from nonrelativistic to relativistic
from classical to quantum mechanics as the deformation-stabilization of two unstable theo
contained in Ref. 6. Also, it is shown there that both deformations may be studied in the c
of finite-dimensional Lie algebras, which is simpler than the usual treatment of quantum me
ics as a deformation of an infinite-dimensional algebra of functions. The algebra that results
the (1/c)-deformation is the Lorentz algebra and the one coming from the\-deformation is the
Heisenberg algebra. A simple fact in this construction, which, however, has nontrivial c
quences, is that, to have both constructions in a finite-dimensional algebra setting, it is esse
include the coordinates as basic operators in the defining~kinematical! algebra of relativistic
quantum mechanics. The full algebra of relativistic quantum mechanics will then contai
Lorentz algebra$Mmn%, the Heisenberg algebra for the momenta and space–time coordi
$pm ,xn% in Minkowski space and also the commutators that define the vector nature~under the
Lorentz group! of pm andxn , namely,

@Mmn ,M rs#5 i ~Mmshnr1M nrhms2M nshmr2Mmrhns!,

@Mmn ,pl#5 i ~pmhnl2pnhml!,

@Mmn ,xl#5 i ~xmhnl2xnhml!,
~1!

@pm ,pn#50,

@xm ,xn#50,

@pm ,xn#5 ihmnI,

with hmn5(1,21,21,21), c5\51 andI a unit that commutes with all the other operators
One knows that the Lorentz algebra, being semi-simple, is stable and that each one

two-dimensional Heisenberg algebras$pm ,xn% is also stable in the nonlinear sense discussed
Ref. 6. When the two algebras are combined through the covariance commutators, the
question to ask is whether the whole algebra is stable or whether there are any nontrivial
mations. The answer6 is that the algebraR05$Mmn ,pm ,xm ,I% defined by Eqs.~1! is not stable.
This is shown by exhibiting a two-parameter (l ,R)-deformation ofR0 to a simple algebraRl ,R

which itself is stable, namely,

@Mmn ,M rs#5 i ~Mmshnr1M nrhms2M nshmr2Mmrhns!,

@Mmn ,pl#5 i ~pmhnl2pnhml!,

@Mmn ,xl#5 i ~xmhnl2xnhml!,

@pm ,pn#52 i
e8

R2 Mmn , ~2!

@xm ,xn#52 i el 2Mmn ,

@pm ,xn#5 ihmnI,

@pm ,I#52 i
e8

R2 xm ,

@xm ,I#5 i el 2pm ,

@Mmn ,I#50,
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e ande8 being6 signs. The stable algebraRl ,R to whichR0 has been deformed is the algebra
the six-dimensional pseudo-orthogonal group with metrichaa5(1,21,21,21,e8,e) and commu-
tation relations

@Mab ,Mcd#5 i ~2Mbdhac2Machbd1Mbchad1Madhbc!, ~3!

the correspondence being established by

pm5
1

R
Mm4 ,

xm5l Mm5 , ~4!

I5
l

R
M45.

To understand the role of the deformation parameters consider first the Poincare´ subalgebra
P5$Mmn ,pm% of R0 . It is well known that already this subalgebra is not stable and may
deformed3,7 to the stable simple algebras of the de Sitter groups O~4,1! or O~3,2!. This is the
deformation that corresponds to the parameterR. This instability of the Poincare´ algebra is,
however, physically harmless and well understood. It simply means that flat space is a s
point in the set of arbitrarily curved spaces. Faddeev4 points out that Einstein’s theory of gravit
may be interpreted as a deformation. This theory is based on curved pseudo-Riemannian
folds. Therefore, in the set of Riemannian manifolds, Minkowski space is an isolated p
whereas a generic Riemannian manifold is stable in the sense that in its neighborhood all
are curved. However, as long as the Poincare´ group is used as the kinematical group of the tang
space to the space–time manifold, and not as a group of motions in the manifold itself
perfectly consistent to takeR→` and this deformation goes away.

For the other deformation parameter~l ! there is no reason to imagine that it should vani
even in tangent space, if one insists on the stability paradigm as the guiding principle for t
construction. One is therefore led toRl ,` as our candidate for astable algebra of relativistic
quantum mechanicsin the tangent space. The main features are the noncommutativity of thxm

coordinates and the fact thatI, previously a trivial element of the center of the Heisenberg alge
becomes now a nontrivial operator. Two constants define this deformation. One isl , a funda-
mental length, the other the sign ofe. The tangent space algebraRl ,` would be the kinematica
algebra appropriate for microphysics. For physics in the large, one might, however, useRl ,R with
~finite! R2 related to the gravitational constantG.

The idea of modifying the algebra of the space–time componentsxm in such a way that they
become noncommuting operators had already appeared several times in the physical lit
However, rather than being motivated~and forced! by stability considerations, the aim of thos
proposals was to endow space–time with a discrete structure, to be able, for example, to co
quantum fields free of ultraviolet divergences. Sometimes a nonzero commutator was
postulated, some other times the motivation was the formulation of field theory in curved sp
Although the algebra discussed above is so simple and appears in such a natural way in the
of deformation theory, it seems that, strangely, it differs in some way or another from the
proposals. In some schemes, for example, the coordinates were assumed to be the gene
rotations in a five-dimensional space with constant negative curvature. This possibility wa
posed long ago by Snyder8 and the consequences of formulating field theories in such spaces
extensively studied by Kadishevsky and collaborators.9,10 The coordinate commutation relation
@xm ,xn# are identical to those in~2!; however, because of the representation chosen for
momentum operators, the Heisenberg algebra is different and, in particular,@pm ,xn# has nondi-
agonal terms. Banai11 also proposed a specific nonzero commutator which only operates bet
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time and space coordinates, breaking Lorentz invariance. Many other discussions exist con
the emergence and the role of discrete or quantum space–time, which, however, in general
specify a complete operator algebra.12–28

In Rl ,` , the fact thatI becomes a nontrivial operator changes the structure of the Heisen
algebra. This has some consequences on the construction of the state spaces even for no
istic quantum mechanics. This was partly discussed in Ref. 29. Here the emphasis will be
study of the geometric structure of space–time that follows from theRl ,` algebra and on the
nature of quantum fields. In particular the larger set of derivations thatRl ,` possesses has fo
gauge fields some important consequences that do not depend on the size of the parametel , but
only on the fact that it is different from zero.

In Sec. II one collects the basic facts about the noncommutative geometry of space
which are implied by the algebraRl ,` . In particular, the role of the elementary sets of t
geometry is clarified and a differential calculus developed. In a general noncommutative geo
setting,30 differential calculus cannot be developed through derivations, because for some al
there is not enough derivations. Then, the noncommutative analog of the Dirac operator is u
this purpose. In theRl ,` case, however, an approach through derivations is possible. This ha
advantage of making the commutative limit (l →0) very transparent. Nevertheless, corresp
dence with the related Dirac operator approach is also established.

The representation theory of algebras is the basic tool to extract physical consequence
the noncommutative geometry. This is discussed at length in Sec. III. In theRl ,` algebra, the
usual Heisenberg algebras are replaced by the algebras of ISO~2! and ISO~1,1!. A construction of
a quantum stochastic calculus based on these algebras is sketched in the Appendix.

Integration in noncommutative space–time is discussed in Sec. IV and finally Sec.
dedicated to the construction of local quantum fields, the main emphasis being on the no
mutative geometry implications for gauge field interactions.

II. THE NONCOMMUTATIVE SPACE–TIME GEOMETRY

Every geometrical property of an ordinary~commutative! manifold M may be expressed as
property of the commutativeC* -algebraC0(M ) of continuous functions onM vanishing at
infinity. For example, there is a one-to-one correspondence between the characters ofC0(M ) and
the points of the manifoldM , regular Borel measures onM correspond to positive linear func
tionals onC0(M ), complex vector bundles overM are given by the finite projective modules ov
C0(M ), etc. Similarly in noncommutative geometry one starts from a noncommuta
C* -algebra and uses the same correspondence as in the commutative case to characte
geometric properties of the noncommutative space.30,31

In a general representation, the operators inRl ,` are not bounded operators. However, on
a representation ofRl ,` is obtained, there are standard ways to construct bounded operators
unbounded ones, in the universal enveloping algebra ofRl ,` . For example,

G→exp~ iaG! ~5!

or

G→G~11G* G!2 1/2, ~6!

and one constructs from the latter, by norm completion, the associatedC* -algebra. Therefore, for
simplicity, the discussion of the representations may be carried out at theRl ,` algebra level, even
if the noncommutative space–time algebra is actually aC* -algebraCR obtained by the restriction
to the bounded operators in the universal enveloping algebraUR of Rl ,` and norm completion.
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A. The elementary sets of the geometry. Commutative versus noncommutative
space–time

In the commutative case, the elementary sets of the space–time manifoldM ~the points with
coordinatesxm) are in a one-to-one correspondence with the character representations
algebra. In noncommutative case the elementary sets are the irreducible unitary representa
the algebra.

In Rl ,` , the setAM5$xm ,Mmn% is the minimal algebraically closed set that contains
space–time coordinate operators. It is therefore their representations that define the basic s
of noncommutative space–time. Therefore, it is appropriate to compare the nature of the
sentations of theAM algebra for the commutative and the noncommutative cases. In the com
tative caseAM is a Poincare´ algebra and in the noncommutative case it is a de Sitter algebr@of
O~3,2! for e511 and of O~4,1! for e521]. In the following, for definiteness, I will usee
521. In the commutative case the elementary setsTK of the geometry are the spinless represe
tations of the Poincare´ group corresponding to fixedxmxm:

TK5$xmu~x0!22~x1!22~x2!22~x3!25K%.

From the physical point of view it makes sense to consider these~and not the pointsxm) as the
elementary sets of the geometry because each particular pointxm in TK is just a particular aspec
of the same event seen in different frames. In the noncommutative case the elementary sets
representations of the de Sitter group which reduce to these Poincare´ group representations in th
l →0 limit.

The correspondence is made very clear by using the explicit representation of the opera
the Rl ,` algebra as differential operators in a five-dimensional commutative manifoldM5

5$jm% with metric haa5(1,21,21,21,e):

Mmn5 i S jm

]

]jn 2jn

]

]jmD ,

xm5jm1 i l S jm

]

]j42ej4
]

]jmD . ~7!

In M5 consider the family of hypersurfaces

GK5$ju~j0!22~j1!22~j2!22~j3!22~j4!25K%

for KP(2`,`). For each fixedK, GK carries a representation of the de Sitter group~for
e521). The intersection of eachGK with any planej45c is a three-dimensional hypersurfac
TK1c2 that corresponds to a spinless irreducible unitary representation of the Poincare´ group.
However, because of the~m,4!-rotations in thexm operator@Eq. ~7!#, it is GK that is irreducible for
the AM algebra. Therefore the elementary sets of the commutative space–time geometry
spond to theTK sets and those of noncommutative space–time to theGK’s. It should, however, be
clear that theTK andGK sets are simply abstract representations of the irreducible represent
of the algebra and their dimensionality should not be confused with the dimensionality of sp
time. The manifoldM5 is simply the carrier of the representation of the noncommutative spa
time algebra. Space–time is still defined by the same fourxm operators operating on the eleme
tary geometric sets. Figure 1 depicts the structure of the elementary sets with theGK’s, when
intersected by thej451 plane, generating the elementary sets of the pseudo-Euclidean~commu-
tative! Minkowski geometry~and the intersection with thej050 plane generating an Euclidea
geometry!.

Although not changing the dimensionality of space–time, theGK sets, as compared to th
TK’s, have a richer group of motions and, in particular, a richer set of derivations, as will be
below.
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B. Derivations as vector fields and the differential algebra

A differential algebra may be defined either by duality from the derivations of the alg
when a sufficient number of derivations is available or directly from the triple (H,p(CR),D),
wherep(CR) is a representation of theCR algebra in the Hilbert spaceH and D is the Dirac
operator. In this latter case the commutator with the Dirac operator is used to obtain the one-
In the most general noncommutative framework30 it is not always possible to use the derivatio
of the algebra to construct by duality the differential forms. In fact, many algebras hav
derivations at all. However, when the algebra has enough derivations it is useful to co
them32,33 because the correspondence of the noncommutative geometry notions to the cl
ones becomes very clear. In our case it means to obtain the usual commutative geometry
in the limit l →0. For this reason the construction through derivations will be used here an
correspondence to the Dirac commutator approach will be established later on.

Although not essential, the representation of the remaining operators of theRl ,` algebra as
differential operators onM5 provides an intuitive interpretation of the derivations and is lis
below:

pm5 i
]

]jm ,

~8!

I511 i l
]

]j4 .

The derivations of the algebra play, as in the classical case, the role of vector fields
derivations that are considered, to construct by duality the differential algebra, play only a
sidiary role in identifying the minimal extension needed when going from the commutativl

50) to the noncommutative case (l Þ0). In the end it is the resulting differential algebra whi
plays the central role.

The minimal algebraically closed subalgebra that contains the coordinate operatorAM

5$xm ,Mmn%, being semi-simple, only has inner derivations. In particular, because of the com
tation relation@pm ,xn#5 ihmnI and the nontriviality of theI operator, the derivations that corre
spond to the momentum operator are not contained in the set of derivations of the enve
algebra ofAM (Der $UAM

%). Therefore, to obtain enough derivations, one should consider
full algebra Rl ,` and its generalized enveloping algebraUR , to which a unit and, for later
convenience, the inverse ofI, are also added:

FIG. 1. Representation of elementary sets in space–time geometry: commutative versus noncommutative
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UR5$xm ,Mmn ,pm ,I,I21,1%. ~9!

The derivations ofRl ,` are the inner derivations plus a dilationD which acts on the generators a
follows:

@D,Pm#5Pm ,

@D,I#5I, ~10!

@D,Mmn#5@D,xm#50.

This may be computed directly or, alternatively, by embeddingRl ,` into O~2,5!, noticing that this
algebra has only inner derivations and selecting those that operate insideRl ,` . Therefore,

Der $Rl ,`%5$xm ,Mmn ,pm ,I,D%.

Any element of the formad, where aPUR and dPDer $Rl ,`%, will be a derivation of the
generalized enveloping algebraUR . Because of the special role that they play in the construc
of the differential algebra, the derivations corresponding to (1/i ) Pm and (1/i l )I will be denoted
by the symbols]m and]4 to emphasize their role as elements of Der$UR% rather than elements o
UR . The action on the generators is

]m~xn!5hmnI,

]4~xm!5l pm ,

]s~Mmn!5hsmpn2hsnpm , ~11!

]m~pn!5]m~I!5]m~1!50,

]4~Mmn!5]4~pm!5]4~I!5]4~1!50.

In the commutative (l 50) case a basis for one-forms is obtained, by duality, from the set$]m%.
In the l Þ0 case the set of derivations$]m ,]4% is the minimal set that contains the usual]m’s, is
maximal Abelian, and is action closed on the coordinate operators, in the sense that the ac
]m on xn leads to the operatorI that corresponds to]4 and conversely.

Denote byV the complex vector space of derivations spanned by$]m ,]4%. The algebra of
differential formsV(UR) is now constructed from the complexC(V,UR) of multilinear antisym-
metric mappings fromV to UR . For an explicit construction ofV(UR) use a basis of one-form
$um,u4% defined by

ua~]b!5db
a , a,bP~0,1,2,3,4!. ~12!

The operators that are associated to the physical coordinates are just the fourxm , m
P(0,1,2,3). An additional degree of freedom appears, however, in the set of derivations. T
not a conjectured extra dimension but simply a mathematical consequence of the algebrai
ture of Rl ,` which, in turn, was a consequence of the stabilizing deformation of relativ
quantum mechanics. No extra dimension appears in the set of physical coordinates, becaus
not correspond to any operator inRl ,` . However, the derivations inV introduce, by duality, an
additional degree of freedom in the exterior algebra. Therefore, all quantum fields that ar
nections will pick up some additional components. These additional components, in qu
fields that are connections, are a consequence of the length parameterl which does not depend o
its magnitude, but only onl beingÞ0.

A basis for k-forms is$ua1`ua2`¯`uak% where
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ua1`ua2`¯`uak5
1

k! (P
~21!puP(a1^ ua2^¯^ uak), ~13!

p being the parity of theP permutation. A general k-formvPVk(UR) is v5(a1¯ak
ba1¯ak

ua1

`ua2`¯`uak with ba1¯ak
PUR .

Given v15b1u i 1`¯`u i p andv25b2u j 1`¯`u j k with b1 ,b2PUR , the product is

v1`v25b1b2u i 1`¯`u j k5~21!pkv2`v11@b1 ,b2#u i 1`¯`u j k. ~14!

In the exterior algebraV(UR)5 % p50
` Vp(UR) an exterior derivative is defined as a mappi

d:Vp(UR)→Vp11(UR) such that

dv~d1 ,d2 ,...,dp11!5 (
k51

p11

~21!k21dkv~d1 ,...,d k̂,...,dp11!, ~15!

whered iPV. Notice the absence of commutator terms, in the definition of the exterior deriva
because the setV is Abelian. Hered250 follows trivially from the commutation of the deriva
tions.

The elementsua of the one-form basis do not coincide withdxm . Actually,

dxm5hnmIun1l pmu4, ~16!

and, for the other elements ofRl ,` ,

dMmn5~hsmpn2hsnpm!us,
~17!

dpm5dI50.

We may also define a contractioni d as a mapping fromVp(UR) to Vp21(UR),

i dv~d1 ,...,dp21!5v~d,d1 ,...,dp21!, ~18!

with vPVp(UR) anddPV, and a Lie derivative Ld ,

Ld5did1 i dd. ~19!

C. The Dirac operator

The discussion above was based on the construction of the differential algebra in nonco
tative space–time using the set of derivations$]m ,]4%. An alternative construction of the differ
ential algebra in noncommutative geometry follows the method proposed by Connes,30 which uses
the triple (H,p(CR),D), wherep(CR) is a representation of theCR algebra in the Hilbert space
H andD is the Dirac operator.

Consider the spaceL2(M5) of square-integrable functions onM5 , a five-dimensional pseudo
Riemannian manifold with local metrichab5(1,21,21,21,21), and the representation ofCR

on L2(M5) induced by Eqs.~7! and ~8!.
The Clifford algebra C~1,4! has, like C~1,3!, a representation by 434 matrices, namely

ga5~g0,g1,g2,g3,g45 ig5!.

For C~1,4! this is a 2:1 representation because complex C~1,4! is isomorphic to M16(C)
3M16(C). We may therefore construct over the pseudo-Riemannian manifoldM5 a spin bundle
with four-dimensional spinors with sections defined by

~D2m!C~x!50, ~20!
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D5 iga ]/]xa being the Dirac operator. The Hilbert spaceH of the triple (H,p(CR),D) is now
the space of square integrable sections of the spin bundle and the representationp(CR) is the one
induced by Eqs.~7! and~8!. The differential algebra may now be constructed by defining k-fo
as the following operators onH:

v5( a0@D,a1#¯@D,ak# ~21!

with aiPCR . Computing the commutators of the Dirac operator with the elements ofRl ,` one
obtains

@D,xm#5 ignhnmI1 ig4l pm ,

@D,Mmn#5 igs~hsmpn2hsnpm!, ~22!

@D,pm#5@D,I#50,

and comparing with~16! and ~17! one sees that the same structure is obtained as with the
struction through derivations.

III. REPRESENTATIONS

Explicit representations of the subalgebras ofRl ,` in spaces of functions are the tools need
to compute the physical consequences of this type of noncommutative space–time. He
studies in detail a few cases, starting from the representations of the three-dimensional sub
that replaces Heisenberg’s algebra.

Consider the subalgebra associated to one-dimensional problems, that is

@P,X#52 iI,

@X,I#5 i«P, ~23!

@P,I#50,

where P5pl and X5 x/l . In these variables, the position is measured in units ofl and the
momentum in units of 1/l .

Let «521. Then ~23! is the algebra of the group of motions of the plane, ISO~2!. Its
irreducible representationsTr ~Ref. 34! are realized as operators on the space of smooth funct
on S1 with scalar product

~ f 1 , f 2!5
1

2p E
0

2p

f 1~u! f 2* ~u!du, ~24!

the operators being

X5 i
]

]u
,

P5r sinu, ~25!

I5r cosu.

The irreducible representations are of two types. ForrÞ0 the irreducible representationTr is
infinite dimensional, a convenient basis being the set of exponentials exp (2inu),
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Tr5$e2 inu;nPZ%, ~26!

and for r 50 the irreducible representations are one-dimensional

T0n5$e2 inu%. ~27!

In Tr the operatorsV15 iP1I andV252 iP1I are raising and lowering operators

V1e2 inu5re2 i (n21)u,
~28!

V2e2 inu5re2 i (n21)u.

The statese2 inu being the eigenstates of the position operatorX, this one has a discrete spectru
(5Z for X or 5l Z for x). The representation withr 50 would correspond to a space with
single isolated point. Therefore, it is the representations withrÞ0 that are physically useful.l
being the minimal fundamental length, the maximum momentum, in units of 1/l , is one. Hence,
for consistency with~25!, r might actually be chosen equal to one. The consistency of this ch
will become clear in the study of the harmonic oscillator spectrum.

For each localized stateen;e2 inu, P is a random variable with characteristic function

C~s!5^en ,eisPen&5J0~sr! ~29!

the corresponding probability density being

m~P!5
1

p

1

Ar 22P2
, uPu,r ,

50, uPu.r .
~30!

An elaborate boson calculus, based on the operators of the Heisenberg algebra, ha
developed by several authors.35–38For l Þ0 the Heisenberg algebra is replaced by the algebr
ISO~2!. For the calculus based on this algebra it is useful to represent it as a set of operators
on a space of holomorphic functions

X5z,

P5
1

2i
~e]/]z2e2 ]/]z!5

1

i
D2 , ~31!

I5
1

2
~e]/]z1e2 ]/]z!5D1 .

Let Ta be the translation operator bya,

Ta f ~z!5 f ~z1a!. ~32!

ThenD25 1
2(T12T21) is a finite difference operator andD15 1

2(T11T21) a finite average op-
erator. Therefore, instead ofx andd/dx for the Heisenberg algebra, the ISO~2! boson calculus is
based onz, D1 , D2 and the relations

@D2 ,z#5D1 ,

@D1 ,z#5D2 , ~33!

@D1 ,D2#50.
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On the other hand,~with the choicee521) the algebra for the pairP05l p0, X05x0/l is
the algebra of ISO~1,1!;

@P0,X0#5 iI,

@X0,I#52 iP0, ~34!

@P0,I#50.

In this case the representation, as operators acting on differentiable functions on the hyper

P05r sinhm,

I5r coshm, ~35!

X052 i
d

dm
.

Generalized eigenvalues of the time operator areeitm. Because there is nom-periodicity in the
hyperbola, there is no discrete quantization of time, as opposed to the discrete quantization
space coordinate. This conclusion, of course, depends on the choicee521. The opposite situation
would hold fore511.

The main steps of a calculus based on ISO~2! and ISO~1,1! are described in the Appendix.

A. Modifications to the one-dimensional harmonic oscillator spectrum

From the harmonic oscillator Hamiltonian

H5
p2

2m
1

mv2

2
x2 ~36!

using the representation~25!, one obtains the eigenvalue problem

S R2

2ml 2 sin2 u2
mv2l 2

2

d2

du2D f ~u!5E f~u!. ~37!

Equation~37! is a Mathieu equation which one rewrites as

d2

du2 f ~u!5~2a12q cos~2u!! f ~u! ~38!

with

a5
2E

2mv2l 2 2
R2

2l 4m2v2 ,

~39!

q52
R2

4l 4m2v2 ,
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and has solutions of four types

f 05 (
m50

`

A2m1p cos~2m1p!u, p50, or 1,

~40!

f 15 (
m50

`

B2m1p sin~2m1p!u, p50, or 1,

with characteristic valuesa which are denoted by39

a
s

5ar for even periodic solutions,

~41!

a
s

5br for odd periodic solutions.

For smalll , q is large and one may use the asymptotic form for the eigenvalues

ar;br 11;22q12~2r 11!Aq2
~2r 11!211

8
2

~2r 11!316r 13

27Aq
2¯ ~42!

from which, and from~39!, one obtains~using r 51)

En5S n1
1

2Dv2
~2n11!211

16
mv2l 22

~2n11!313~2n11!

27 m2v3l 41O~ l 6! ~43!

as the corrections to the harmonic oscillator spectrum arising from thel Þ0 algebra.

B. Barrier problems

Consider a one-dimensional barrier, that is

H5P2 for x.0,
~44!

H5P21V for x,0.

Using the representation~25!, the eigenvalue problem

H (
nPZ

cneinu5l (
nPZ

cneinu ~45!

leads to the following recurrences:

cn221cn125zcn for n,0,
~46!

cn221cn125z8cn for n.0,

with

z5224l,
~47!

z85214V24l.
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Let l,V. For a solution that corresponds to a wave propagating from the right and being refl
at the barrier, the recurrences in~46! are solved by

cn50 for n even,

cn5e2(n11)g for n odd and n>1, ~48!

cn5ae2 ind1beind for n odd and n<21.

With g5 1
2 cosh21 (z8/2) andd5 1

2 cos21 (z/2), the recurrences are satisfied forunu>3 and, from
the matching conditions,

c235zc212c1 ,

c215z8c12c3 ,

one obtains

a5
21

2i sin 2d
$~z8e22g2e24g!e2 i3d2~zz8e22g2ze24g2e22g!e2 id%,

~49!

b5
1

2i sin 2d
$~z8e22g2e24g!ei3d2~zz8e22g2ze24g2e22g!eid%.

The constantg controls the decay of the wave function under the barrier andd the wave length of
the intensity fluctuations to the right of the barrier. For smalll ~that is, small energy!, d
5 1

2 sin 2Al2l2'Al, Al being the momentum of the incident wave in units of 1/l . Let the
momentum in physical units bep5 Al/l . Then, expandingd

ind' inl pH 11
5

6
l 2p21¯J . ~50!

The conclusion is that the intensity fluctuations to the right of the barrier have a wave l
smaller than the inverse momentum, the leading correction factor being5

6l 2p2.

C. Diffraction

The representation~25! also provides all the required framework to compute the effects of
fundamental lengthl on the diffraction experiments. Let a matter wave pass through a sl
width L52Nl . The wave function at the slit may be represented by

CL5
1

A2N
(

n52N

N

einu. ~51!

~Generalized! eigenstates of the momentum (P5sinu) in the einu basis are

fk5
~12k2!2 1/4

A2p
(

n
e2 in sin21 (k)einu, ~52!

the factor (12k2)21/4 being included to insure a normalizationd(k2k8) of the momentum states
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Computing the projection

A4pN^fkuCL&5~12k2!2 1/4
1

N (
n52N

N

ein sin21 (k)

5~12k2!2 1/4
1

2N H 112(
n51

N

Tn~A12k2!J , ~53!

whereTn is a Chebyshev polynomial.
With the transverse momentumq in physical units,q5 k/l , and, for largeN, approximating

the sum in~53! by an integral one obtains

4pNu^fkuCL&u2.~12k2!2 1/2S sin~N sin21 ~k!!

N sin21 ~k! D 2

.~12l 2q2!2 1/2S 2

Lq
sinS Lq

2 S 11
1

6
l 2q21¯ D D D 2

, ~54!

meaning that, for large transverse momentum~large diffraction angles!, the separation between th
diffraction rings becomes smaller.

The same result could have been obtained by studying the distribution of the random va
with characteristic function

^cL ,eisPcL&5
1

2N (
k522N

2N

~2N2uku11!Jk~s!. ~55!

D. Stochastic processes in noncommutative space–time

In the Appendix, a quantum stochastic calculus is developed, based on ISO~1,1! and ISO~2!,
which are the algebraic structures of the operator sets$X0,P0,I% and $Xi ,Pi ,I%. The stochastic
processes constructed there are sums of independent identically distributed random va
Therefore, the ‘‘time’’ of the process is simply the continuous parameter that labels the proba
convolution semigroup. If, however, time is an operator that satisfies well-defined algebraic
tions with the other observables, as in the~2!, the construction has to be done in a differe
manner. The notion of filtration, in particular, cannot be obtained simply by a splitting of
indexing spaceh. It must be replaced by a construction of the spaces of eigenstates of the
operator. Physically the treatment of time as a parameter still makes sense if the time scale
processes is slow.~Remember thatx05ct and then@ t,xi #5 ( i l 2/c) Moi .) However, for pro-
cesses with a fast time scale, a construction where time is treated as an operator is neede

To describe time-dependent processes one needs at least one space and one time co
Therefore, the minimal algebra is$x0,x1,M01,p0,p1,I% which, for «521, is the algebra of
ISO~2,1!, the group of motions of pseudo-Euclidean three-spaceE2,1. Representations may b
realized on the space of functions on the double- or single-sheeted hyperboloidH1

2 or H2
2 and on

the coneC2, with coordinates, respectively

5
j15sinhm sinu,

j25sinhm cosu,

j35coshm,

~56!
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5
j15coshm sinu,

j25coshm cosu,

j35sinhm,

~57!

5
j15r sinu,

j25r cosu,

j35r .

~58!

Here representations on the space of functions on the upper sheet of the coneC2 will be chosen.
The reason for this choice is to have positive energy but no minimal nonzero energy. The

l p15r sinu,

I5r cosu,

l p05r ,
~59!

x0

l
52 i H 2sinu

]

]u
1r cosu

]

]r J ,

x1

l
5 i

]

]u
,

M0152 i H cosu
]

]u
1r sinu

]

]r J ,

acting on functionsf (r ,u) on C2, square-integrable for the measuredrdu. Hermitean symmetry
of the operators is obtained if eitherr 1/2f (r ,u)→0 whenr→` or f (r ,u)5r 21/21 irg(u). The last
case corresponds to the principal series ofSO(2,1) representations.

One sees that the time and the space coordinates are noncommuting operators. Th
when describing a process, time cannot be simply considered a c-number parameter. Ins
describe, for example, a stochastic process that at each fixed time may be sampled to find
value of the space variable, what one has to do is to find the subspaces of time eigenv
corresponding to each fixed eigenvaluet. Then, in each such subspace, one has to find the pos
values ofx and their probabilities. If no further constraints are imposed on the values ofx, this
will be the analog of Brownian motion in the noncommutative one-time one-space setting.

The eigenvectors of the time operator in~59! are obtained from

i H sinu
]

]u
2r cos

]

]r J f t~r ,u!5
t

l
f t~r ,u!, ~60!

the solution being

f t~r ,u!5S cot
u

2D i ~ t/l !

g~r sinu! ~61!

with g(r sinu) an arbitrary function ofr sinu. Now one considers the spectrum of possible val
of the space coordinatex in each one of the subspaces spanned by the functionsf t(r ,u). The
projection on thee2 inu eigenstate of the position operatorx ~corresponding to the positionnl ) is
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c2n~ t !5
1

2p E dueinuS cot
u

2D i ~ t/l !

g~r sinu!. ~62!

For a process that starts fromx50 at timet50 it should bec0(0)51 andcn(0)50 for nÞ0.
Therefore for such a processg(r sinu)5const. Strictly speaking a constant function is outside
L2 domain of the operator and therefore one should consider the operator as acting in the
alized functions space of a Gelfand triplet. With the choicef t(r ,u)5(cotu/2)i(t/l ) one obtains, by
computing the integral~62!,

c0~ t !5e2 ~p/2!t/l . ~63!

For the other coefficients, they are more conveniently obtained by solving~60! in an e2 inu basis,

f t~r ,u!5r s (
nPZ

cneinu,

which leads to the recurrence

~n212s!cn212~n111s!cn111 i
2t

l
cn50. ~64!

For s50, using a recurrence relation for hypergeometric functions one obtainscn; (1/n)
3F(2n,2 i (t/l ) ;0;2). Then

cn~ t !5
1

2
ein p/2e2 ~p/2!t/l Pn

0S t

l
;
p

2 D for nÞ0, ~65!

Pn
0(t/l ; p/2) being Pollaczek-Meixner polynomials with generating function

~12 i t ! ix~11 i t !2 ix5 (
n50

`

Pn
0S x;

p

2 D tn. ~66!

Hence, without further restrictions on the dynamics, the process that att50 starts fromx
50 has a probability to be found at6nl at time t equal to

PS 6nl ,0;
t

l
D5

1

4
e2p~ t/l !S Pn

0S t

l
;
p

2 D D 2

. ~67!

E. Higher-dimensional representations

The full algebraRl ,` , described in Sec. II, is isomorphic to the algebra of ISO~4,1!, the
group of motions of the pseudo-Euclidean five-spaceE4,1. Consequently, as pointed out in Sec.
a representation may be obtained in the form of differential operators in a five-dimensional
mutative manifold. Alternatively, as for the lower dimension subalgebras treated before, a
sentation is obtained in the space of functions on the upper sheet of the coneC4, with coordinates
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j15r sinu3 sinu2 sinu1 ,

j25r sinu3 sinu2 cosu1 ,

j35r sinu3 cosu2 , ~68!

j45r cosu3 ,

j55r ,

the invariant measure for which the functions are square-integrable being

dn~r ,u i !5r 2 sin2 u3 sinu2drdu1du2du3 . ~69!

On these functions the operators ofRl ,` act as follows:

l p05r ,

I5r cosu3 ,

l p15r sinu3 cosu2 ,

l p25r sinu3 sinu2 cosu1 ,

l p35r sinu3 sinu2 sinu1 ,

M2352 i
]

]u1
,

M1252 i S cosu1

]

]u2
2sinu1 cotu2

]

]u1
D ,

M315 i S sinu1

]

]u2
1cosu1 cotu2

]

]u1
D ,

x0

l
52 i S 2sinu3

]

]u3
1r cosu3

]

]r D , ~70!

x1

l
5 i S cosu2

]

]u3
2sinu2 cotu3

]

]u2
D ,

x2

l
5 i S cosu1 sinu2

]

]u3
1cosu1 cosu2 cotu3

]

]u2
2

sinu1

sinu2
cotu3

]

]u1
D ,

x3

l
5 i S sinu1 sinu2

]

]u3
1sinu1 cosu2 cotu3

]

]u2
1

cosu1

sinu2
cotu3

]

]u1
D ,

M015 i S sinu2

sinu3

]

]u2
2cosu2 cosu3

]

]u3
2r cosu2 sinu3

]

]r D ,
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M0252 i S cosu1 cosu2

sinu3

]

]u2
2

sinu1

sinu2 sinu3

]

]u1

1cosu1 sinu2 cosu3

]

]u3
1r cosu1 sinu2 sinu3

]

]r D ,

M0352 i S sinu1 cosu2

sinu3

]

]u2
1

cosu1

sinu2 sinu3

]

]u1

1sinu1 sinu2 cosu3

]

]u3
1r sinu1 sinu2 sinu3

]

]r D .

This is the appropriate representation to generalize to higher dimensions the construc
processes carried out in the previous subsections.

IV. INTEGRATION IN NONCOMMUTATIVE SPACE–TIME

Here one has to distinguish two cases. Because the energy-momentum operators$p0,pi% are a
commuting set, integration in momentum space is the usual commutative Lebesgue integ
However, the domain of integration must be consistent with the structure of the algebra
servables. From the representation~70! one sees that, whenr ,u1 ,u2 ,u3 are diagonalized, integra
tion over momentum space corresponds to

E F~pm!dn~r ,u i !, ~71!

dn(r ,u i) being the invariant measure defined in~69! and thepm in the functionalF being replaced
by their representations in~70!.

Integration over configuration space, however, differs from Lebesgue integration be
$xm% is not a commuting set.

In the commutative case an integral

E f ~x!dn~x! ~72!

has the following algebraic interpretation: In a representation wherex is diagonalized,f (x) is the
diagonal element (x, f x) and the integral~72! is a weighed trace, with the weights assigned to e
eigenvalue by the measuren(x). For compact operators a noncommutative integration theory
been developed with the integral replaced by the Dixmier trace. Infinitesimals of order
compact operators with eigenvaluesm5O(n21) asn→`. Then, given the sequence

gN5
1

logN (
0

N21

mn , ~73!

there is a linear form limv on the spacel ` of bounded sequences which satisfies the propertie
linearity and scale invariance needed to interpret it as an algebraic substitute for the no
integral. This form is the Dixmier trace which, if the sequence~73! converges, coincides with its
limit.

The coordinate operators are not compact operators. Therefore, when constructing th
commutative version of integration over configuration space, the question of the regulari
factor in the trace should be carefully analyzed. Consider first integration in one space variab
discussed in Sec. III, the spectrum ofx is $nl :nPZ%. Therefore the trace is a sum overn,
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lim
N→`

(
n52N

N

F~x!5 lim
N→`

(
n52N

N

F~nl !.

The question is whether one needs anN-dependent regularization factor to interpret this trace
the integral~like the logN in the Dixmier trace!. Comparing

EN 1

x
dx; logN

with

(
1

N
1

n
5C1 logN1OS 1

ND ,

the conclusion is that, in this case, the trace itself has the same singularity structure
corresponding continuous integral. Therefore, it seems consistent to simply use the trace,
any regularization factor, as the definition of the integral. This is carried over to configur
space integration on the four-dimensional case by defining an orthonormal basis

unW m)5S 1

2p D 3/2

einW •uWHm~r !

for functions on the coneC4, wherenW 5(n1 ,n2 ,n3), uW 5(u1 ,u2 ,u3), andHm(r ) is an Hermite
polynomial. Integration is then defined by the trace

(
ni ,m

~nW m,F~xm!nW m!, ~74!

it being understood that thexm in ~74! are represented by the operators in~70!.

V. QUANTUM FIELDS IN NONCOMMUTATIVE SPACE–TIME

A. Local free fields

In the Rl ,` algebra,$Pm,I% is a commuting set. Therefore, a complete set of eigenstate
the momentum may be constructed and, in momentum-space, calculations may be carried o
the commutative case. However, quantum fields over space–time are also needed, to c
local interactions. Because the momenta and the coordinates are not Heisenberg dual, th
Fourier transform cannot be used to construct local fields. This is then replaced by the foll
construction:

Given a representation where the operators$Pm,I% act as multiplicative operators in a spa
of functions~Sec. III!, I21 is also a well-defined multiplicative operator. Then, a set that ob
Heisenberg commutation relations with$Pm% is the set$ym5 1

2$x
m,I21%1%, where$ ¯ %1 denotes

the anticommutator. This set may be used to construct local fields, from the momentum
states, by Fourier transform. Notice, however, that$ym% is still a noncommuting set and th
noncommutative nature of the geometry is fully preserved.

In the commutative case, fields are sections of vector bundlesE over the configuration spac
M and the space of sections is a representation space for the algebra of functions on th
manifold ~more precisely a projective module!. Moreover, it is known that for compactM there is
a one-to-one correspondence between vector bundles and finite projective modules over th
C(M ) of continuous functions onM .40,41This is the correspondence that provides a generaliza
to the noncommutative case. The notion is carried over to the noncommutative case as f
Let
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Ep5$cPUR^ UR^¯^ UR :pc5c%. ~75!

The noncommutative version of a section (n-component quantum field! is an element of then-fold
tensor product of the generalized enveloping algebraUR defined in~9! ~Sec. II B!, restricted by
the projector relationpc50. (p21)c50 is the equivalent of a field equation.

To fully appreciate the similarities and differences to the commutative case one follo
construction as close as possible to the commutative one. For this purpose one profits fr
commutative nature of the energy-momentum operator set. InUR one has the relation

@pm ,e~ i /2! kn$xn,I21%1#5 ikme~ i /2! kn$xn,I21%1. ~76!

ThereforefPUR given by

f5E d4kd~k22m2!$ake
~ i /2! kn$xn,I21%11bk* e2 ~ i /2! kn$xn,I21%1% ~77!

satisfies the~projection! equation

@Pm ,@Pm,f##2m2f50 ~78!

and is a free scalar field in noncommutative space–time. The local fieldf is an element of the
enveloping algebraUR . Therefore, powers off, multiplication, and the action of the derivation
being well defined, the noncommutative version of local interactions is also well defined.

Similarly free spinor fields may be defined by

c5E d4kd~k22m2!$bkuke
2 ~ i /2! kn$xn,I21%11dk* vke

~ i /2! kn$xn,I21%1%, ~79!

cPUR :Dc2mc50, ~80!

D being the Dirac operator defined before~Sec. II!

B. Gauge fields

Consider now gauge fields in the noncommutative space–time context. Gauge fields
commutative case are Lie algebra-valued connections.

In the simplest case consider a rightUR-module generated by 1:

E5$1a; aPUR%. ~81!

A connection is a mapping¹:E→E^ V1(UR) such that

¹~xa!5xda1¹~x!a, ~82!

xPE, aPUR . For each derivationd iPV the connection defines a mapping¹d i
:E→E. Because

of Eq. ~82!, if one knows how the connection acts on the algebra unit 1, one has the com
action. Define

¹~1!8A5Aiu
i , AiPUR . ~83!

A gauge transformation is a unitary element (U* U51) acting onE. Such unitary elements
exist in theC* -algebra formed from the elements of the enveloping algebra by the stan
techniques.

Let fPE be a scalar field. Then

¹~f!5df1¹~1!f. ~84!
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Acting on ¹(f) with a unitary element,

U¹~f!5Ud~U21Uf!1U¹~1!U21Uf

5d~Uf!1$U~dU21!1U¹~1!U21%Uf5¹8~Uf!. ~85!

Therefore, the gauge field transforms as follows under a gauge transformation:

¹~1!→U~dU21!1U¹~1!U21. ~86!

Notice that the second term does not vanish because of the noncommutativity ofUR .
The connection is extended to a mappingE^ V(UR)→E^ V(UR) by

¹~fa!5¹~f!a1fda, ~87!

fPE andaPV(UR). We may now compute¹2(1):

¹2~1!5¹~1Aiu
i !5¹~1Ai !u

i11Aidu i

51dAiu
i1¹~1!Aiu

i11Aidu i5] j~Ai !u
j`u i1AjAiu

j`u i . ~88!

Therefore, given an electromagnetic potentialA5Aiu
i (AiPUR), the corresponding electromag

netic field isFi j u
i`u j , where

Fi j 5] i~Aj !2] j~Ai !1@Ai ,Aj #, ~89!

Fi j PUR .
Unlike the situation in commutative space–time, the commutator term does not vanis

pure electromagnetism is no longer a free theory, because of the quadratic terms inFi j . Notice
also that the indices in the connections~83! and gauge fields~89! run over~0,1,2,3,4!.

To construct an action for the gauge fields an integration on forms is needed. Because
structure of the derivation algebraV5(UR) is generated byu0`u1`u2`u3`u4. Therefore,
given an arbitrary element ofV5(UR)

A5au0`u1`u2`u3`u4, ~90!

we define

E A5Tr ~a!. ~91!

By Tr we mean the trace in the sense discussed in Sec. IV, if a basis for the representationUR ,
as operators acting on a space of functions on the coneC4, is used. As discussed before, if th
representation is used, the trace has the same singularity structure as the corresponding
tative integral. For other representations, however, a regularizing factor~as in the Dixmier trace!
may have to be used.

To construct an action for the electromagnetic field consider a diagonal metrichab5(1,21,
21,21,21) and construct

G5Gknlu
k`un`u l , ~92!

whereGknl5e
••knl
i j Fi j PUR . The actionSA is obtained from the trace ofF`G,

SA5Tr $FabF
ab%5Tr $FmnFmn12F4mF4m%, ~93!

m,nP(0,1,2,3).
In conclusion one finds
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~i! additional fields (A4 ,F4m) in noncommutative electromagnetism,
~ii ! nonlinear terms inFab , and
~iii ! additional terms in the action.

The existence of additional field components is not associated to extra dimensions or a
sheeted nature for space–time. They appear only because of the existence of the deriva]4 .
This, however, operates inside the algebra of the usual physical observables, namely,

]4~xm!5l Pm . ~94!

The gauge fields in noncommutative space–time, we have considered, are gauge fields
U~1! internal symmetry group. Because of the noncommutativity ofUR , the expressions for
gauge potential, gauge field and action, in the case of a non-Abelian internal group, are exa
same. The only change is that now the coefficientsAa andFab are inUR^ LG , LG being the Lie
algebra of the internal symmetry group.

To discuss matter fields one also needs spinors, and an appropriate set ofg matrices to
contract the derivations]a . A massless action term for spinor matter fields may then be writ

Sc5 i c̄ga]ac, ~95!

whereaP(0,1,2,3,4), ga5(g0,g1,g2,g3,ig5) andc is a field in a projective moduleEc,UR
^ 4 .

It follows from the properties~11! of the derivations that this term is Lorentz invariant. Notice th
although the set$Mmn ,xm% has a O~1,4! structure, it is only the O~1,3! part that is a symmetry
group. Coupling the fermions to the gauge fields,

Sc5c̄ iga~]a1 igAa .t!c, ~96!

$t% is a set of representatives of the internal symmetry Lie algebra. From~96! one sees tha
fermions may be coupled to the connectionAa without having to introduce new degrees
freedom in the fermion sector.

The existence of the additional degree of freedom on the connections is a consequenc
noncommutative space–time algebra which does not depend on the magnitude ofl but just onl

beingÞ0. Therefore, in addition to the specific effects coming from the noncommutativity o
UR algebra, a more dramatic consequence is the emergence of new interactions which, fo
gauge model, follow from the gauge principle.

Connes and Lott42 and several other authors after them~for a review and references see Re
43 and 44! have used the~H,p,D! scheme to construct a geometric formulation of the stand
model. What essentially is done is to consider as geometric space the product of a comm
four-dimensional space–time with a discrete space. This is interpreted as a multi-sheeted
time and the Yukawa coupling matrix of the standard model provides the part of the D op
that acts on the discrete space. This construction provides a nice bookkeeping of the
phenomena and the Kobayashi-Maskawa matrix although it is a little hard to believe t
phenomenological model, with so many free parameters as the standard model, is a direc
festation of the intrinsic geometry of space–time.

The additional degrees of freedom arising from the noncommutative space–time structu
I have been discussing have a quite different origin from those in the Connes-Lott constru
They are not associated to any discrete component in space–time but to the structure
derivations and the differential algebra. Also, there is no reason to expect them to be related
Higgs phenomenon. In fact, if the structure that we obtained from the structural stability ide
good clue to the behavior of nature, we would expect the extra degrees of freedom to m
themselves at the same level of dimensions as the size of the fundamental length paramete
are a consequence of the structure of the differential algebra and they appear both in the A
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and non-Abelian theories, through the fields that are connections. Of particular interest fro
experimental point of view is the pseudoscalar partner of the photon associated to theA4 compo-
nent of the Abelian connection.

The only nontrivial action of the derivation]4 is on the coordinate operatorsxm . From ~11!
one sees that in thel →0 limit this action vanishes and all the effects of the]4 derivation~extra
connection components, etc.! disappear together with the noncommutativity of@xm ,xn#. Extract-
ing thel factor from]4 , u4 andA4 we estimate the dependence onl of all the physical effects
arising from the noncommutative space–time structure. Define

]45
1

l
]4 , u45l u4, A45

1

l
A4.

Then

]4~xm!5Pm , u4~]4!51, ¹~1!5Amum1A4 u4.

The non-Abelian QED field equation

]aFab2@Aa,Fab#50

becomes

]mFmn1l 2$]4 ]4~An!2]4]n~A4!2]4@A4,An#%2@Am,Fmn#2@A4,F4n#50. ~97!

Notice that the last two terms are also, at most, of orderl 2. Therefore]mFmn5O(l 2) and, for
example, eventual deviations from the masslessness of the photon are expected to be
O(l 2). Notice, however, that these effects have a dependence on the energy scale of the
ment.]mFmn has dimensions~length!23. This means that expectation values of the operator
multiplies l 2 in Eq. ~97! have dimension~length!25. Therefore, although the deviations fro
]mFmn50 areO(l 2), they may be strongly enhanced by the energy scale of the experimen

For the pseudoscalar electromagnetic coupling we have

l gc̄g5A4c,

that is, expected effects are of orderl 2a. The same considerations as above, concerning
experimental energy scale, apply to the pseudoscalar coupling effect.

C. Metric and Riemannian structure

To complete this survey of geometric notions, a brief discussion is also included on h
construct metrics and a Riemannian structure in noncommutative space–time. Applicati
general relativity will be discussed elsewhere.

Besides the exterior differential algebra defined above we will be concerned here wi
tensor algebra constructed from the same$ua% basis by formal tensor products

ua1^ ua2^¯^ uap.

In particular, ametric is a symmetric element

gklu
k

^ u l ~98!

with gklPUR andgkl5glk .
We now considerUR-modules constructed from elements of the tensor algebra. To defi

connection, in modules constructed in this way, it suffices to consider the action of¹d in the basis
elementsua. Define
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¹d~ua!52Gb
a~d!ub ~99!

with dPV, Gb
a(d)PUR , ubPV1(UR). Gb

a(d) is an element of the enveloping algebraUR

which depends on the derivationd. Therefore, it may be written as the contraction of a one-fo

¹~ua!52Gbc
a ub

^ uc, ~100!

Gbc
a PUR . For a metric, using~82! and the Leibnitz rule,

¹~gbcu
b

^ uc!5]a~gbc!u
a

^ ub
^ uc2gbcGde

b ud
^ ue

^ uc2gbcGde
c ud

^ ub
^ ue. ~101!

For a metric with vanishing covariant derivative¹(gbcu
b

^ uc)50 and a symmetric connectio
Gbc

a 5Gcb
a one obtains, permuting the indices,

gabGde
a 5 1

2 $]e~gbd!1]d~geb!2]b~gde!%, ~102!

which corresponds, in this setting, to the Christofell relations. The factors on the left are, how
in general, noncommuting elements ofUR , instead of c-numbers, and the derivations on the ri
are computed by the rules of Eqs.~11!. Hence the relations are not so useful as in the commuta
case to compute the connection from a given metric, because theUR-valued matrixgab is, in
general, not easy to invert. Therefore, it is more convenient to define physical configuration
the connection itself.

The quantity that corresponds to the Riemann tensor is aUR-valued tensor

R5Rbce
a ub

^ uc
^ ue

^ ]a , ~103!

uaPV1(UR), ]aPDer (UR), andRbce
a PUR , which is obtained computing

¹d~¹d8abub!2¹d8~¹dabub!2¹ [d,d8]abub. ~104!

The result is

Rbce
a 5]b~Gce

a !2]c~Gbe
a !1Gbn

a Gce
n 2Gcn

a Gbe
n 1 i f cb

n Gne
a . ~105!

For completeness the last term contains the structure constants of the derivation algebra, w
this case vanish because Der (UR) is Abelian. Notice that in Eq.~105! the order of the factors, in
the quadratic terms, is not arbitrary becauseGbc

a PUR .
From ~105!, by contraction, one would obtain the noncommutative versions of the R

tensor and the scalar curvature.

APPENDIX: QUANTUM STOCHASTIC CALCULUS BASED ON ISO „1,1… AND ISO„2…

Consider first the ISO~1,1! case. In the representation~35! replacing2 i (d/dm) by X0 andm
by i (d/dX0) one obtains

P05
1

2 Sei ~d/dX0!2e2 i ~d/dX0!D5
1

2
~Ti2T2 i !5 i sinS d

dX0D ,

~A1!

I5
1

2 Sei ~d/dX0!1e2 i ~d/dX0!D5
1

2
~Ti1T2 i !5cosS d

dX0D .
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Operating on holomorphic functions ofX0, P andI may be interpreted as a finite difference a
as an averaging operator in the complex direction. Defining

sinS d

dX0D s

5D2, cosS d

dX0D s

5D1,

the commutation relations are

@D2 ,X0#5D1,

@D1 ,X0#52D2, ~A3!

@D1 ,D2#50.

The first step in the construction of a quantum stochastic calculus, based on this algebra
construction of the associated representation spaces. Let

A5
1

&
~X01D2!, A†5

1

&
~X02D2!, ~A4!

with algebra

@A,A†#5D1,

@A,D1#5 1
2 ~A2A†!, ~A5!

@A†,D1#5 1
2 ~A2A†!.

The vacuum is chosen to be the vector that is annihilated byA,

Af~X0!5
1

&
~X01D2!f~x0!50, ~A6!

which, in the Fourier transform, becomes

2 i S d

dv
1sinhv Df~v!50, ~A7!

yielding

f~v!5
1

ANf

e2coshv ~A8!

with normalization factor

Nf52K0~2!50.227 7877 . . . ,

Kn(z) being a modified Bessel function, and

f~X0!5F21~f~v!!5
1

ApK0~2!
KiX0~1!. ~A9!

A basis is obtained by acting onf with powers ofA†.
Lemma A1:The set$A†nf:n50,1,2, . . .% is an orthogonal set.
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Proof: Assume that up to ordern all A†nf are known to be orthogonal to all states of the fo
A†

¯ A†D1A†
¯ A†f, whereA† appears less thann times and D1 one time. Then fora<n,

~A†af,A†n11f!5~A†AA†a21f,A†nf!5¯5~A†aAf,A†nf!50.

The base for the induction is provided by (f,A†f)50 and (D1f,A†f)5 1
2((A2A†)f,f)

50. j

The statef may be used to define a probability distribution. An operatorO in the enveloping
algebra of$X0,D1 ,D2% becomes a random variable with expectation (f,Of). In particular, for
X0 the characteristic function is

CX0~y!5~f,eiyX0
f!5

K0~2 cosh~y/2!!

K0~2!
5E eiyxp~dx!. ~A10!

The statef is the analog of the harmonic oscillator ground state in the Heisenberg alg
case. Although this is the state that will always be used to define the probability structure, f
construction of the stochastic process it is more convenient to use a different basis. Define

H15P01I,
~A11!

H252P01I.

Then

@X0,H1#52 iH1,

@X0,H2#52 iH2, ~A12!

@H1 ,H2#50,

and, in the representation~35! with r 51, one has the simple action

X0c~m!52 i
d

dm
c~m!,

H1c~m!5emc~m!, ~A13!

H2c~m!5e2mc~m!,

with the scalar product in the spaceV of square-integrable functions on the hyperbola defined

~f,c!m5E dmf* ~m!c~m!. ~A14!

An equally simple representation is obtained by Fourier transform, namely,

X0F~l!5 ilF~l!,

H1F~l!5F~l11!, ~A15!

H2F~l!5F~l21!.

Let now h5L2(R1) be the Hilbert space of square-integrable functions on the half-lineR1

5@0,̀ #. It is the variable inR1 that will be the continuous indexs labeling the convolution
semigroup generated by the probability distributionp(dx) in ~A10!. It is interpreted as the time
parameter of a stochastic process, sum of independent identically distributed random varia
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From ~A12! one constructs an infinite set of operators labeled by functions in h, with alg

@X0~ f !,H1~g!#52 iH1~ f g!,

@X0~ f !,H2~g!#5 iH2~ f g!, ~A16!

@H1~ f !,H2~g!#50,

f ,gPh.
These operators are made to act on a space that is a direct integral H of spaces of funct

the hyperbola indexed by functions onh, namely,

c~ f !
s

5 % E dt f ~t!c~mt! ~A17!

with scalar product

^f~ f 1!,c~ f 2!&5~ f 1 , f 2!h~f,c!m , ~A18!

where, on the right-hand side, the first scalar product is inh and the second inV. For f ,gPh the
action of the operators is

X0~ f !c~g!52 i ]mc~ f g!,

H1~ f !c~g!5~emc!~ f g!, ~A19!

H2~ f !c~g!5~e2mc!~ f g!.

This action satisfies the commutation relations~A16!.
Notice that other functional realizations of the commutation relations are possible. Fo

ample, the operators may be made to act on a space of square-integrable functionals overh in the
following way:

X0~ f !F~g!52 iDfF~g!,

H1~ f !F~g!5~ f̄ ,eg!F~g!, ~A20!

H2~ f !F~g!5~ f̄ ,e2g!F~g!.

However, in this case, the difficulty is in finding a scalar product for which the operators
symmetric. Therefore, here only the direct integral construction will be used.

To define adapted processes the usual splittings are considered,

h5L2@0,̀ !5L2@0,s# % L2~s,`!5hs
% h(s,

~A21!
H5Hs

^ H(s,

and anadapted processis a family K5(K(s),s>0) of operators in H such that for eacht

K~s!5Ks
^ 1. ~A22!

The basic adapted processes here are
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X0~s!5X0~x [0,s] !,

H1~s!5H1~x [0,s] !, ~A23!

H2~s!5H2~x [0,s] !,

x [0,s] being the indicator function of the interval@0,s#. Given an elementary processEs1s2
, that is,

a process that is constant in the interval@s1 ,s2# and zero otherwise, the stochastic integral is

E
0

s

Es1s2
dK5Es1s2

$K~min ~s,s2!!2K~min ~s,s1!!%. ~A24!

The stochastic integral of a general adapted process is obtained by approximation by elem
processes and a limiting procedure. The following two results characterize the properties
stochastic integral in the ISO~1,1! stochastic calculus

Lemma A.2: For adapted processE0 , E1 , E2 , f , gPh andf( f ), c(g)PH,

K f~ f !,E
0

t

$E0dX01E1dH11E2dH2%c~g!L
5E

0

t

^f~ f !,2 iE0~s!~]mc!~gxds!1E1~s!~emc!~gxds!1E2~s!~e2mc!~gxds!&,

~A25!

where xds denotes the indicator function of the interval@s,s1ds#. The proof follows from
application of the operator action in~A19!. Using the properties of the scalar product in H,~A25!
may be rewritten as

2 i ~f,]mc!m~ f ,E0g!h1~f,emc!m~ f ,E1g!h1~f,e2mc!m~ f ,E2g!h .

Lemma A.3: For adapted processE0 , E1 , E2 define

Ni~ t !5E
0

t

$E0
( i )dX01E1

( i )dH11E2
( i )dH2%. ~A26!

Then, for f , gPh andf( f ), c(g)PH,

^N1~ t !f~ f !,N2~ t !c~g!&5E
0

t

^N1~ t !f~ f !,$2 iE0
(2)~s!~]mc!~gxds!1E1

(2)~s!~emc!~gxds!

1E2
(2)~s!~e2mc!~gxds!%&1E

0

t

^$2 iE0
(1)~s!~]mf!~ f xds!1E1

(1)~s!

3~emf!~ f xds!1E2
(1)~s!~e2mf!~ f xds!%,N2~ t !c~g!&

2
i

2 E0

t

~f,emc!m$Ē0
(1)~s! f̄ ~s!E1

(2)~s!g~s!

2Ē1
(1)~s! f̄ ~s!E0

(2)~s!g~s!%ds

1
i

2 E0

t

~f,e2mc!m$Ē0
(1)~s! f̄ ~s!E2

(2)~s!g~s!

2Ē2
(1)~s! f̄ ~s!E0

(2)~s!g~s!%ds. ~A27!
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The proof follows from splitting the integral in its upper and lower triangular regions plus
diagonal and using the commutation relations~A16! to compute the diagonal terms. The diagon
terms @the last two terms in~A27!# contain the Ito-type corrections for this stochastic calcu
which may be written symbolically as

d~N1N2!5dN1•N21N1•dN21dN1•dN2 ~A28!

with multiplication rules

dX0
•dH152dH1•dX052

i

2
dH1,

~A29!

dX0
•dH252dH2•dX05

i

2
dH2,

all others being identically zero.
The probability structure of the process is defined by the choice of a state that is us

compute expectations. For this purpose one uses a direct sum of states of type~A8! which are
annihilated by the operatorA of ~A4!:

V5 % E dtft5 % E dt
1

Nf
e2coshmt. ~A30!

This state belongs to the space H and splits as follows:

% E dtx [0,s]ft1 % E dtx [s,`]ft

in the decomposition H5Hs
^ H(s. The triple~H, $Oadap.%, V!, where$Oadap.% denotes the set o

adapted operators over H, is the~noncommutative! probability space associated to ISO~1,1!. For
X0( f ), for example, the characteristic functional is

C~ f !5^V,eiX0( f )V&5expH E dt log
K0~2 cosh@ f ~t!/2# !

K0~2! J . ~A31!

In the ISO~2! case, to theX, P andI operators correspond finite difference operators

D2 f ~x!5 1
2 ~ f ~x11!2 f ~x21!!,

~A32!

D1 f ~x!5 1
2 ~ f ~x11!1 f ~x21!!,

and the representation

X5x, P5
1

i
D2 , I5D1 , ~A33!

with associated operators

B5
1

&
~x1D2!, B†5

1

&
~x2D2!. ~A34!

An alternative representation as operators acting on functions on the circle is
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X5 i
d

du
, P5sinu, I5cosu, ~A35!

X has a discrete spectrum, with eigenvectorsen5(1/&p) einu, and, when this basis is used, stat
are in l 2(Z). The state that is annihilated byB is

f05(
n

cn
(0)en ~A36!

with cn
(0);I n(1), I n being the modified Bessel function. In the representation~A35!

f05
1

ANf

ecosu, ~A37!

Nf being the normalization factor 2pI 0(2).
As in ISO~1,1! the set$B†nf0% is an orthogonal set. However, for the construction of

processes, it is more convenient to use arbitrary square-integrable functions on the circle a
representation~A35!.

HereX is a random variable with characteristic function

C~s!5^f0 ,eisXf0&5
I 0~2 cos~s/2!!

I 0~2!
. ~A38!

To construct processes and a stochastic calculus, the commutation relations are lifted to an
set indexed by functions on the circle

@X~ f !,V1~g!#52V1~ f g!,

@X~ f !,V2~g!#5V2~ f g!, ~A39!

@V1~ f !,V2~g!#50,

whereV1 and V2 correspond toD11D2 and D12D2 . These operators are made to act in
direct sum spaceH8 of functions on the circle

X~ f !c~g!5 i ]uc~ f g!,

V1~ f !c~g!5~eiuc!~ f g!, ~A40!

V2~ f !c~g!5~e2 iuc!~ f g!,

and the construction follows the same steps as before.
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Green’s function for the five-dimensional SU „2…
MIC–Kepler problem

M. V. Pletyukhova) and E. A. Tolkachevb)

Institute of Physics, National Academy of Sciences of Belarus,
F. Scorina Av. 70, Minsk 220072, Belarus

~Received 26 April 1999; accepted for publication 30 August 1999!

The Green’s function for the five-dimensional counterpart of the MIC–Kepler
problem @Kepler potential plus SU~2! Yang–Mills instanton plus Zwanziger-like
1/R2 centrifugal term# is constructed on the basis of the Green’s function for the
eight-dimensional harmonic oscillator. ©2000 American Institute of Physics.
@S0022-2488~00!02401-4#

I. INTRODUCTION

Coulomb Green’s functions in ann-dimensional Euclidean space have been constructe
Ref. 1. The results for the casesn52,3,5 can be deduced from the oscillator Green’s function
N52,4,8 dimensions due to Levi-Civita, Kustaanheimo–Stiefel,2 and Hurwitz transformations,3

respectively.
Moreover,4 the N54 oscillator representation allows one to obtain the Green’s function

the three-dimensional MIC–Kepler problem5 @Kepler–Coulomb potential plus U~1! Dirac mono-
pole plus Zwanziger’s6 1/R2 centrifugal term#.

In this paper we construct the Green’s function for the five-dimensional counterpart o
MIC–Kepler problem7 @Kepler potential plus SU~2! Yang–Mills instanton plus Zwanziger-like
1/R2 centrifugal term#. We avoid a tedious procedure of path integration and deduce our r
from the well-known expression for the eight-dimensional~8D! oscillator Green’s function by
exploiting the Hurwitz correspondence between these five-dimensional~5D! and eight-
dimensional problems.7–9

II. CORRESPONDENCE BETWEEN 8D AND 5D PROBLEMS

Under certain known conditions7–9 there appears a correspondence between the e
dimensional harmonic oscillator problem

Hc~8!5Ec~8!, H52
1

2
D81

v2

2
~ uuu21uvu2! ~1!

and the five-dimensional SU~2! MIC–Kepler problem

Hlf l5Elf l , Hl5
pm

2

2
1

l ~ l 11!

2R2 2
a

R
, ~2!

where the covariant derivativepm52 i ]m2Am
a La

2l 11 contains SU~2! Yang–Mills instanton10 as
the gauge potential defined due to

Am
a drm5

1

R~R1r 0!
~2r 4dra1r adr42eabcr bdrc!,

~3!

a!Electronic mail: plet@dragon.bas-net.by
b!tea@dragon.bas-net.by
1870022-2488/2000/41(1)/187/8/$17.00 © 2000 American Institute of Physics
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m50,...,4, a,b,c51,2,3,

andLa
2l 11 are the generators of the (2l 11)-dimensional representation of SU~2!.

The conditions are the following.
~1! The coordinates of 5D Euclidean space are expressed through that of 8D Euclindean

by means of the Hurwitz transformation

r 05uuu22uvu2, ~4!

r 52uv̄, ~5!

whereu5u01uaea , v5v01vaea , r 5r 41r aea (a51,2,3) are the real quaternions.
We recall that quaternion’s algebra

eaeb52dab1eabcec , e0ea5eae05ea

has the involution—quaternionic conjugation—which is an antiautomorphism of the alg
(uv̄)5vū. One can define the normuuu5Auū, scalar (u)S51/2(u1ū)5u0 , and vector (u)V

51/2(u2ū)5uaea5u parts.
The Hurwitz transformation possesses the property

R[Ar 0
21ur u25uuu21uvu2. ~6!

To make the change of coordinates~4! and ~5! complete, we representu5uuug ~and, there-
fore, v5uvu r̄ g/ur u) where g is unimodular quaternion. It is relevant to note that there is
isomorphism between the unimodular quaternions and the group SU~2!. We can introduce param
eters~following Ref. 11 we shall call them vector parameters!

g56
11z

A11z2
, z5

u

u0
, ~7!

and chooseza5ua /u0 as an additional coordinate.
~2! The eigenvalues of one problem are expressed through the parameters of another o

vice versa:

E54a, v2528El . ~8!

~3! The equivariance condition

K2c~8!5 l ~ l 11!c~8! ~9!

is supposed to hold. It allows one to establish the correspondence between the respective
spaces

c~8!~u,v !5Tr~C l~ ḡ!f l~r m!!, C l~ ḡ!5@C l~g!#†. ~10!

HereC l(g) is the matrix of the (2l 11)-dimensional representation of SU~2! whose components
are the eigenfunctions of the mutually commuting operatorsK2,K3 ,T3 :

K2Cmm8
l

5 l ~ l 11!Cmm8
l ,

~2K3!Cmm8
l

5mCmm8
l ,

~11!
T3Cmm8

l
5m8Cmm8

l ,
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2 l<m,m8< l .

When written in the vector parametrization, operatorsKa andTa read7

Ka52
i

2 S zazb

]

]zb
1

]

]za
1eabczb

]

]zc
D , ~12!

Ta5
i

2 S zazb

]

]zb
1

]

]za
2eabczb

]

]zc
D . ~13!

The well-known formula for the SU~2! matrix elements12

Cmm8
l

~g!5A~ l 2m!! ~ l 2m8!!

~ l 1m!! ~ l 1m8!!

dm1m8

bmgm8 (
j 5max~m,m8!

l
~ l 1 j !! ~bg! j

~ l 2 j !! ~ j 2m!! ~ j 2m8!!
, ~14!

where

g5S a b

g d D
with $a,b,g,dPCuad2bg51% can be expressed in terms of vector parameters if we choo

g56
1

A11z2 S 12 iz3 2 i ~z12 iz2!

2 i ~z11 iz2! 11 iz3
D 56

12 isaza

A11z2
~15!

@compare with~7!. Note that there is the representation for quaternion’s basisea52 isa.]
In the spherical coordinates

z15n1 tanx5tanx sinu cosw,

z25n2 tanx5tanx sinu sinw,
~16!

z35n3 tanx5tanx cosu,

0<x,p, 0<u,p, 0<w,2p,

the group elementg and its representationC l(g) are parametrized

g5exp~nx!5cosx2 isana sinx5S cosx2 i sinx cosu 2 i sinx sinu exp~2 iw!

2 i sinx sinu exp~ iw! cosx1 i sinx cosu D
~17!

and

Cmm8
l

~g!5A~ l 2m!! ~ l 2m8!!

~ l 1m!! ~ l 1m8!!
~cosx1 i sinx cosu!m1m8 exp~ i ~m2m8!w!

3S i

sinx sinu D m1m8

(
j 5max~m,m8!

l
~2 i !2 j~ l 1 j !! @sinx sinu#2 j

~ l 2 j !! ~ j 2m!! ~ j 2m8!!
, ~18!

respectively.
RepresentationC l(g) coincides with that used in Ref. 7 up to the complex conjugation.
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III. GREEN’S FUNCTION

The equation defining the Green’s function of the eight-dimensional harmonic oscillato

~H2E!G~u,v,u8,v8;E!52 id~4!~u2u8!d~4!~v2v8!. ~19!

Its solution is well-known,3

G5E
0

`

dt exp~ i4at!S v

2p sinvt D
4

3expF iv

2 sinvt
~~ uuu21uvu21uu8u21uv8u2!cosvt22~uū81vv̄8!S!G . ~20!

Let us express it in (r m ,z)-coordinates. In this section we now assumeu5uuuh and u8

5uuuh8. The notationg we shall reserve forg5hh̄8.
First of all, note that

2~uū81vv̄8!S52S uuuuu8uhh̄81uvuuv8u
r̄

ur u
hh̄8

r 8

ur 8u D
S

52S S uuuuu8u1uvuuv8u
r 8 r̄

ur 8uur u Dhh̄8D
S

5~ F̄g!S , ~21!

where

F52S uuuuu8u1uvuuv8u
r r̄ 8

ur 8uur u D
52uuuuu8uS 11

r r̄ 8

4uuu2uu8u2D
5

~R1r 0!~R81r 08!1r r̄ 8

A~R1r 0!~R81r 08!
5

RR81Rr081r 0R81r mr m8 1~r r̄ 8!V

A~R1r 0!~R81r 08!
. ~22!

The norm of the quaternionF is

uFu5A2~RR81r mr m8 !52ARR8 cos
Q

2
,

~23!
cosQ5r mr m8 /RR8,

and then we can introduce the unimodular quaternionf which is

f [
F

uFu
5

RR81Rr081r 0R81r mr m8 1~r r̄ 8!V

A2~RR81r mr m8 !~R1r 0!~R81r 08!
. ~24!

Then

G~r m ,r m8 ,g;E!5E
0

`

dtS v

2p sinvt D
4

expF i4at1
iv

2
~R1R8!cotvt G

3expS 2
ivuFu

2 sinvt
~ f̄ g!SD . ~25!
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To obtain the expression for the five-dimensional Green’s function we make the follo
simple manipulations on Eq.~19! in the spirit of Ref. 7:

4RC l~ h̄!~Hl2El !C l~h!G52 id~4!~u2u8!d~4!~v2v8!, ~26!

then

~Hl2El !C l~hh̄8!G52
1

4R
id~4!~u2u8!d~4!~v2v8!C l~hh̄8!. ~27!

By analogy to the symbolic identityd(x) f (x)5d(x) f (0) we can write

d~4!~u2u8!C l S uū8

uuuuu8u D5d~4!~u2u8!C l~1!5d~4!~u2u8!. ~28!

Integrating~27! over the group we obtain

~Hl2El !E dt~g!C l~g!G52
1

4R
i E dt~g!d~4!~u2u8!d~4!~v2v8!. ~29!

Because of3

E dt~g!d~4!~u2u8!d~4!~v2v8!5
16R

p2 d~5!~r m2r m8 ! ~30!

we are led to the equation defining the Green’s function for the five-dimensional problem,

~Hl2El !Gl~r m ,r m8 ;El !52 id~5!~r m2r m8 !. ~31!

It can be solved easily by evaluation of the integral

Gl~r m ,r m8 ;El !5
p2

4 E dt~g!C l~g!G~r m ,r m8 ,g;E!. ~32!

Due to the properties of the invariant measuredt(g) the next expression is valid,

Gl~r m ,r m8 ;El !5
p2

4
C l~ f !E dt~g!C l~g!G~r m ,r m8 , f g;E!. ~33!

To achieve the final result we have to perform the integration over the group volume i
expression

Gl~r m ,r m8 ;El !5
p2

4
C l~ f !E

0

`

dtS v

2p sinvt D
4

3expF i4at1
iv

2
~R1R8!cotvt G E dt~g!C l~g! exp~ ix~g!S!, ~34!

where it is introduced

x52
vuFu

2 sinvt
. ~35!

Due to the identity
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E dt~g!C l~g! exp~ ix~g!S!5 i 2l
2

x
J2l 11~x!,

whereJ2l 11(x) is the Bessel function~see the Appendix for the details of the evaluation!, we
obtain

Gl~r m ,r m8 ;El !5C l~ f !
~2 i !2lv3

16p2uFu E0

`

dt

expF i4at1
iv

2
~R1R8!cotvt G

sin3 vt

3J2l 11S vuFu
2 sinvt D . ~36!

To bring our result to the notations of Ref. 1 we introduceq52 ivt, v52ik, p852 ia/k
and finally have

Gl~r m ,r m8 ;El !5C l~ f !
~2 i !2lk2

8p2ARR8 cos
Q

2

E
0

`

dq
exp@22p8q1 ik~R1R8!cothq#

sinh3 q

3J2l 11
S 2kARR8 cos

Q

2

sinhq
D . ~37!

For the case of the trivial constraintsl 50 the expression

G0~r m ,r m8 ;E0!5
k2

8p2ARR8 cos
Q

2

E
0

`

dq
exp@22p8q1 ik~R1R8!cothq#

sinh3 q

3J1S 2k~RR8!1/2

sinhq
cos

Q

2 D ~38!

appears to be the same as the respective result of Ref. 1 atn55.

APPENDIX

We intend to calculate*dt(g)Cmm8
l (g)exp(ix cosx) @(g)S5cosx in the parametrization

~17!#.
Let us introduce operators

La52Ka2Ta5 i eabczb

]

]zc
~A1!

and pose the eigenproblem

K2Flm
l 5 l ~ l 11!Flm

l ,

L2Flm
l 5lFlm

l ,
~A2!

L3Flm
l 5mFlm

l ,

0<l<2l , 2l<m<l.
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Its solution is12

Flm
l ~g!52l11l!A~2l 11!~2l 2l!!

2p~2l 1l11!!
sinl xC2l 2l

l11 ~cosx!Ylm~u,w!, ~A3!

whereC2l 2l
l11 (cosx) are the Gegenbauer polynomials,Ylm(u,w) are the spherical functions.

One therefore can expressCmm8
l (g) via Flm

l (g),

Cmm8
l

~g!5 (
l50

2l

(
m52l

l

Bmm8
lm Flm

l ~g!, ~A4!

whereBmm8
lm are constant coefficients.

Let us perform the integration of the left-hand side of~A4!. Denoting j 85 j 2m and taking
into account that12

E
0

p

@cosx1 i sinx cosu#2m sin2 j 811 u du5
22 j 811~2m!! @ j 8! #2

~2 j 812m11!!
C2m

j 811~cosx! ~A5!

we deduce

E
0

p

sinu duE
0

2p

dw Cmm8
l

~g!

52pdmm8

~ l 2m!!

~11m!! (
j 850

l 2m
~21! j 822 j 811~2m!!

~2 j 812m11!!

3
~ l 1 j 81m!!

~ l 2 j 82m!!
C2m

j 811~cosx!sin2 j 8 x. ~A6!

The same integration of the right-hand side of~A4! yields

E
0

p

sinu duE
0

2p

dw (
l50

2l

(
m52l

l

Bmm8
lm Flm

l ~g!52&Bmm8
00 C2l

1 ~cosx! ~A7!

because of

E
0

p

sinu duE
0

2p

dw Ylm~u,w!5A4pdl0dm0 . ~A8!

So, we are to determineBmm8
00 only. Let us putx50. Then, taking into account thatC2l

1 (1)
52l 11 ~Ref. 13! we obtain

2pdmm8

2~2m!!

~2m11!!
~2m11!52&Bmm8

00
~2l 11!, ~A9!

hence

Bmm8
00

5dmm8

p&

2l 11
~A10!

and
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E
0

p

sinu duE
0

2p

dwCmm8
l

~g!5dmm8

4p

2l 11
C2l

1 ~cosx!. ~A11!

To make integration overdx we use the known identity12

E
0

p

exp~ ix cosx!C2l
1 ~cosx!sin2 xdx5 i 2lp~2l 11!

J2l 11~x!

x
. ~A12!

So, finally we have

E dt~g!Cmm8
l

~g!exp~ i cosx!5dmm8i
2l

2

x
J2l 11~x!, ~A13!

where

dt~g!5
1

2p2 sin2 x sinudx du dw ~A14!

is the invariant measure in the parametrization~16!.
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Traditionally point interaction problems in quantum mechanics are treated in the
physics literature by solving the Schro¨dinger equation containing an appropriate
potential term. In this paper we discuss a systematic quantization scheme, known as
the method ofquantization by parts, which provides a general method for dealing
with single point interactions in one dimension, namely by reducing the problem to
boundary conditions. Our method can also be applied to superconducting systems
like those concerning Josephson and the recently discoveredp-junctions, and
single electron circuit systems. ©2000 American Institute of Physics.
@S0022-2488~00!02301-X#

I. INTRODUCTION

In quantum scattering theory it is sometimes appropriate to consider a scattering potent
is strongly localized. Point interaction models are an extreme idealization of this and de
physical systems where the potential is not constant only at a countable number of isolated p1

The method of quantization by parts was introduced to deal with quantum circuits whic
not have the geometry of a manifold.2–6 This method can lead to the description of a surpris
variety of single point interactions in one dimension.

To establish a differential operator in the Hilbert spaceL2(R) the standard procedure is to le
the differential expression act onC0

`(R) first. Let the resulting operator be denoted byÂ0 . Such
an operator is usually symmetric and not self-adjoint. HopefullyÂ0 will have a unique self-adjoint
extension. One then takes this self-adjoint extension as the quantized operator. In the cas
kinetic energy of a particle of massm one would initially introduce the operatorK̂0 defined by the
differential expression2(\2/2m)d2/dx2 acting on the domainC0

`(R). The resulting operator is
symmetric, but possesses a unique self-adjoint extension,7 to be denoted byK̂ (0). The same
argument applies to arrive at the usual self-adjoint momentum operatorp̂52 i\d/dx in L2(R).
For a free particle of massm the Hamiltonian operatorĤ (0) and the kinetic energy operatorK̂ (0)

coincide. A useful quantity to relate the wave functionc(x) and its derivativec8(x) at two
neighboring pointsx1,x2 is the transfer matrix8 defined by

M~x1 ,x2!S c~x1!

c8~x1! D5S c~x2!

c8~x2! D . ~1!

For the eigenfunctions ofK̂ (0), the transfer matrix tends to the identity matrix whenx1→x2 . Later
we will encounter situations where the wave function or its derivative are discontinuous atx1 or
x2 . In such cases the transfer matrix is meant to relatec(x11) and c8(x11) to c(x22) and
c8(x22), wherec(x11) andc8(x11) signify limiting values asx→x1 from the right andc(x22)
andc8(x22) denote limiting values asx→x2 from the left.

By a one-dimensional single point interaction we visualize a particle of massm moving freely
from the far left or from the far right along the real lineR5$xP(2`,`)% until it reaches the

a!Electronic mail: kw@st-andrews.ac.uk
1950022-2488/2000/41(1)/195/11/$17.00 © 2000 American Institute of Physics
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origin x50 where there is an abrupt change of potential. The presence of a point interaction
origin implies that the Hamiltonian for the systemĤ is not equal to the kinetic energy operat
K̂ (0) in L2(R). However, apart from a possible additive constant,Ĥ acts as a second-orde
differential operator away from the origin. For a scattering situation with particles incident
the left, assuming the incident beam to be normalized to one particle per unit volume~see Ref. 2,
Appendix B!, the standard physical argument leads us to eigenfunctions of the form

c~x!5H c1~x!5eik1x1Re2 ik1x, x,0

c2~x!5Teik2x, x.0
~2!

wherek1 is real and positive, butR, T, andk2 may be complex. We could havek25 ik, wherek
is real and positive, then we have in effect an exponentially decaying wave function right o
origin. The wave function and its derivative may not be continuous at the origin. It follows tha
transfer matrix atx50 defined to be lime→0 M(2e,e), e.0 is generally not an identity matrix

Mathematically the geometry of a one-dimensional system with a point interaction ma
idealized as the real lineR broken into two half linesR0

25(2`,0) andR0
15(0,̀ ). The point at

which the potential abruptly changes being atx50. A particle being scattered by this potential
represented by a wave functionc on the interrupted lineR05R0

2øR0
1 . The wave function onR0

2

is denoted byc1(x) and byc2(x) on R0
1 . Classically, for point interactions, the particle is fre

when it is onR0
2 or onR0

1 , and when restricted to these regions the Hamiltonian would agree
the kinetic energy, apart from some additive constant. The idea of quantization by parts is to
the kinetic energy or any other operators for the particle onR0

2 and R0
1 separately, and then

combine the results to obtain the kinetic energy, the Hamiltonian, or other quantities fo
system as a whole. Different ways of combining operators lead to different types of point
actions.

So, stage one of quantization consists of taking the Hilbert space onR0
2 to be L2(R0

2) of
square-integrable functions defined onR0

2 . The differential operator for the kinetic energy, d
noted byK̂10, is taken as2(\2/2m)d2/dx2 acting on the setC0

`(R0
2) of infinitely differentiable

functions of compact support onR0
2 . Similarly onR0

1 , the kinetic energyK̂20 is defined on the se
C0

`(R0
1).

The next stage, known as composite quantization, combines the separately quantized
ties by taking their direct sums. First, the Hilbert space for the whole system is taken to b
direct sumL2(R0

2) % L2(R0
1). The kinetic energy for the system as a whole is initially taken

K̂05K̂10% K̂20. Since the separately quantized operatorsK̂10 in L2(R0
2) and K̂20 in L2(R0

1) are
symmetric, their direct sumK̂0 will be symmetric and not self-adjoint. An obvious way to achie
self-adjointness is to construct self-adjoint extensions toK̂0 . Surprisingly as it turns out, eac
self-adjoint extension can serve as a Hamiltonian describing a certain point interaction. The
four-parameter family of different self-adjoint extensions toK̂0 . This nonuniqueness turns out t
be a blessing, helping us to classify point interactions. If we assume that our system is dynam
symmetric about the origin, we can reduce this to a two-parameter family.2 We know all these
self-adjoint extensions from previous work.2–6,9 Each self-adjoint extension can be specified
boundary conditions at the origin on the wave functions in its domain. We can therefore cl
every self-adjoint extension by the behavior of the wave functions in its domain at the orig

The final stage of quantization may involve a correlation of several cognate observab
order to achieve a consistent theory applicable to a given physical system.

II. SELF-ADJOINT BOUNDARY CONDITIONS AND POINT INTERACTIONS

We can classify the self-adjoint extensions ofK̂0 which are dynamically symmetric about th
origin into eleven types, each representing a point interaction with a distinctive physical pro
The boundary conditions for these eleven types of extensions can be obtained as special c
the general boundary conditions listed in Ref. 2. When talking about single point interactions
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types come immediately to mind, i.e., the step potential, thed potential, and thed8 potential, each
of these is characterized by distinct boundary conditions.1 There are three additional types spe
fied by:

~1! The Dirichlet conditions@Eqs. ~76! and ~77! with a5b50 in Ref. 2#: c1(02)
50, c2(01)50.

~2! The elastic conditions10,11 @Eqs.~76! and ~77! with b50 in Ref. 2#:

c1~02!5ac18~02!, c2~01!52ac28~01!, aPR and aÞ0.

~3! The Neumann conditions@Case~3! and Eq.~89! in Ref. 2#: c18(02)50, c28(01)50.

We shall not delve into these six familiar types of extensions here.

A. Type 7: The full p-phase shifter

ExtensionK̂ (7) is defined by boundary conditions~BC7! @Eqs.~83! and~84! with g50 in Ref.
2#:

c1~02!1c2~01!50, c18~02!1c28~01!50. ~3!

The corresponding transfer matrix at the origin is

M~7!5S 21 0

0 21D . ~4!

We can visualize this point interaction in terms of a finite family ofd potentials located a
regular intervals from the origin. LetV0 be a positive number,a a small positive number much
less than 1,n a positive integer, and following Pearson8 let

vna
1 ~x!5ga

1d~x2na!, ga
15

\2

2maS \

A2mV0

1

Aa
21D . ~5!

For smalla, ga
1 is positive andvna

1 (x) represents a repulsived potential atx5na. Next, let

vna
2 ~x!5ga

2d~x2na!, ga
25

\2

2ma SA2mV0

\
Aa21D . ~6!

For smalla, ga
2 is negative and hencevna

2 (x) represents an attractive potential atx5na. Note that
the coefficientsga

1 andga
2 are dependent ona but not onn. Now combine thesed potentials to

form two new potentialsD1,a(x) ~Fig. 1! andD2,a(x) defined by

D1,a~x!5va
2~x!1v2a

1 ~x!1v3a
1 ~x!1v4a

2 ~x!, ~7!

FIG. 1. D1,a potential.
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D2,a~x!52V0d~x!1D1,a~x!2V0d~x25a!1D1,a~x25a!2V0d~x210a!22V0d~x211a!

1D1,a~x211a!22V0d~x216a!1D1,a~x216a!. ~8!

Then the following family ofd potentials~Fig. 2! leads to conditions~BC7! and transfer matrix
M(7) in the limit asa→0:

Va
~7!~x!522V0d~x!1D1,a~x!22V0d~x25a!1D1,a~x25a!. ~9!

This can be verified by working out the transfer matrix for this potential between the pox
502 and x59a1 , and then showing that the matrix obtained by lettinga→0 coincides with
M(7). We call such a family a limiting family ofd potentials. This point interaction induces
phase shift ofp across the origin in the functions in its domain, and hence the name fullp-phase
shifter.

B. Type 8: High-pass p-phase shifters

For extensionK̂2
(8) we have boundary conditions (BC82) @Eqs. ~76! and ~77! with a52b

Þ0 in Ref. 2#:

c1~02!1c2~01!50, S 2m

\2 V0Dc1~02!5c18~02!1c28~01!. ~10!

The corresponding transfer matrix at the origin is

M2V0

~8! 5S 21 0

2mV0

\2 21D . ~11!

The following limiting family of d potentials~Fig. 3! leads to conditions (BC82) and transfer
matrix M(8):

V2,a
~8! ~x!52V0d~x!1Va

~7!~x2a!. ~12!

This extension admits eigenfunctions of the form of Eq.~2! with k15k25kPR0
1 , and

R2
~8!5R52

mV0

mV01 i\2k
, T2

~8!5T52
i\2k

mV01 i\2k
. ~13!

FIG. 2. The fullp-phase shifter.
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For k@(mV0 /\2), we haveR'0 andT'21, and fork!(mV0 /\2), we haveR'21 andT
'0. This point interaction behaves as a high pass filter with ap-phase shift between the tran
mitted and incident particle wave functions. We call this an attractive high-passp-phase shifter,
attractive on account of the existence of a bound state corresponding to eigenvaluE2

(8)

52mV0
2/2\2.

There is another extensionK̂1
(8) specified by~10!, and hence by~11!, with V0 replaced by

2V0 . This corresponds to a repulsive high-passp-phase shifter because of the lack of any bou
states.

C. Type 9: Low-pass p-phase shifters

For extensionK̂2
(9) we have boundary conditions (BC92) @Eqs. ~83! and ~84! with gÞ0 in

Ref. 2#:

2S 2m

\2 V0D ~c1~02!1c2~01!!5c28~01!, c18~02!1c28~01!50. ~14!

The corresponding transfer matrix at the origin is

M2V0

~9! 5S 21
\2

2mV0

0 21
D . ~15!

A corresponding limiting family ofd potentials for (BC92) andM2V0

(9) is ~Fig. 4!

V2,a
~9! ~x!5Va

~7!~x!1D2,a~x210a!. ~16!

K̂2
(9) admits eigenfunctions of the form of Eq.~2! with k15k25kPR0

1 ,

R2
~9!5R5

i\2k

4mV01 i\2k
, T2

~9!5T52
4mV0

4mV01 i\2k
. ~17!

For k@(4mV0 /\2), we haveR'1 andT'0. For k!(4mV0 /\2), we haveR'0 andT'21.
Hence this potential acts as a low-pass filter withp-phase shift between the transmitted a
incident particle wave functions. This is an attractive interaction because of the existenc

FIG. 3. Attractive high-passp-phase shifter.
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bound state corresponding to eigenvalueE2
(9)528mV0

2/\2. There is another extensionK̂1
(9) speci-

fied by ~14!, hence by~15!, with V0 replaced by2V0 , corresponding to repulsive low-pas
p-phase shifters.

D. Type 10: Midpass 1
2p-phase shifter

For extensionK̂2
(10) we have boundary conditions (BC102) @Eqs.~76! and~77! with a50 in

Ref. 2#:

c1~02!5
\2

2mV0
c28~01!, c2~01!52

\2

2mV0
c18~02!. ~18!

The corresponding transfer matrix at the origin is

M2V0

~10! 5S 0 2
\2

2mV0

2mV0

\2 0
D . ~19!

An appropriate limiting family ofd potentials for (BC102) andM2V0

(10) is

V2,a
~10!~x!5V0d~x!1D2,a~x2a!1V0d~x222a!. ~20!

ExtensionK̂2
(10) also admits eigenfunctions of the form of Eq.~2! with k15k25kPR0

1 , and

R2
~10!5R5

\4k224m2V0
2

\4k214m2V0
2 , T2

~10!5T52
4i\2mV0k

\4k214m2V0
2 . ~21!

Whenk254m2V0
2/\4 we have complete transmission. Note that this extension effectively for

any transmission for extremely low and high values ofk. Since whenk2@4m2V0
2/\4, we have

R'1, T'0, and whenk2!4m2V0
2/\4 we haveR'21, T'0. This extension also induces

1
2p-phase shift in the transmitted wave relative to the incident wave at intermediate valuesk.

We name this extension an attractive midpass1
2p-phase shifter on account of the existence

bound state corresponding to eigenvalueE2
(10)522mV0

2/\2. Again we have another self-adjoin
extensionK̂1

(10) specified by~18!, and hence by~19!, with V0 replaced by2V0 .

FIG. 4. Attractive low-passp-phase shifter.
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E. Type 11: Tunable filters and phase shifters

For extensionsK̂ (11) we have boundary conditions~BC11! @Eqs.~76! and ~77! with a2Þb2

andaÞ0,bÞ0 in Ref. 2#:

c1~02!5ac18~02!2bc28~01!, c2~01!5bc18~02!2ac28~01!, ~22!

wherea, b are real,a2Þb2 andaÞ0, bÞ0. With a2Þb2 we can recast~22! into the form

c18~02!5Ac1~02!1Bc2~01!, c28~01!52Ac2~01!2Bc1~02!, ~23!

which corresponds to a transfer matrix atx50 of the form

M~11!5
1

B S 2A 1

A22B2 2AD , BÞ0, ~24!

where the various quantities are related byA5a/(a22b2) andB52b/(a22b2). K̂ (11) admits
eigenfunctions of the form of Eq.~2! with k15k25kPR0

1 , and

R~11!5R5
B22A22k2

~A1 ik !22B2 , T~11!5T52
2iBk

~A1 ik !22B2 . ~25!

First, supposeA2B.0. There are two cases: Case 1 withB.0 and Case 2 withB,0. Let us
label the corresponding self-adjoint extensions byK̂11

(11) and K̂12
(11) .

Case 1:For the extensionK̂11
(11) a limiting family of d potentials forM(11) is ~Fig. 5!

V11
~11!~x!52V1d~x!1D1,a~x!2V1d~x25a!, ~26!

whereV05\2B/2m andV15\2(A1B)/2m. The extensionK̂11
(11) admits two bound states corre

sponding to eigenvaluesE11
(11)(6)52\2(A6B)2/2m. The transmission coefficientuTu2 is at a

maximum at some intermediate value ofk, i.e., at k5AA22B2, when we find thatuTu2

5(B/A)2. We can achieve high transmission by changing the parametersA andB, but not total
transmission sinceAÞB, hence the name a tunable partial midpass filter.

Case 2:This corresponds to a limiting family ofd potentials

V12
~11!~x!5V1d~x!1D2,a~x2a!1V1d~x222a!, ~27!

FIG. 5. Tunable filters and phase shifters potential.
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whereV052\2B/2m andV152\2(A1B)/2m.
The situation as regards eigenvalues and transmission in this case as is the previous
Second, supposeA2B,0. There are two cases here: Case 1 withB.0 and Case 2 withB

,0. Let us label the corresponding self-adjoint extensions byK̂21
(11) and K̂22

(11) .
Case 1:For extensionK̂21

(11) a limiting family of d potentials of the form~26! generates the
corresponding transfer matrix. The extensionK̂21

(11) again admits two bound states with ener
eigenvalues of the same form as in previous cases.

Case 2:For extensionK̂22
(11) a limiting family of d potentials of the form~27! generates the

corresponding transfer matrix. Equation~25! shows that for very smallk, R'21 andT'0, and
for very large k, R'1 and T'0. When k5AB22A2 we find that R50, T5eig2 with g2

5tan21(AB22A2/A). Hence this potential acts as an ideal midpass filter. The freedom we ha
chooseA andB allows us control over the phase of the transmitted wave, i.e.,g2 , and hence this
extension provides us with a tunable midpass phase shifter.

III. PHYSICAL APPLICATIONS: JOSEPHSON AND p JUNCTIONS IN
SUPERCONDUCTIVITY

So far we have concentrated on listing various types of point interactions mathematicall
no direct physical application has been mentioned. We shall remedy this situation by disc
two novel applications in superconductivity to highlight the wide range of applications poss

A. Josephson junctions

Consider a long superconductor interrupted by a very thin insulating gap. It is well known
a supercurrent can tunnel through the insulating gap, known as a Josephson junction. In a
conductor the electrons form pairs, referred to as Cooper pairs, with each behaving like a
Collectively these Cooper pairs form what is known as a condensate. In the macroscopic
function approach championed by Feynman,12 the condensate, whose motion causes the supe
rent, is treated as a single entity described by a one-particle wave function, known as a m
scopic wave function. In other words, we can employ quantum mechanics of a single pa
rather than quantum field theory, to model the Josephson effect. The orthodox treatment13 relies on
ad hoc procedure and assumptions. It turns out that the macroscopic wave function describ
condensate has a phase discontinuity at the junction. The supercurrent traversing the jun
linked to this phase change by the Josephson equation.13

Our theory of quantization by parts can systematically model such physical systems, w
junction interpreted as a point interaction. The link with a point interaction is obvious sinc
geometry of a long superconductor interrupted by a junction can be idealized asR05R0

2øR0
1 .

We shall confine ourselves to the dc Josephson effect, i.e., we shall deal with a static
supercurrent rather than a time varying ac current. The supercurrent is a measurable quan
a superconductor, and should correspond to an operator, i.e., the supercurrent operatoĴ, in
accordance with orthodox quantum mechanics; a state corresponding to a dc supercurre
then be an eigenfunction of the operatorĴ.

In order to define a supercurrent operator, we must first introduce a momentum opera
the system. Using the idea of quantization by parts, we quantize the momentum inR0

2 andR0
1

separately first to obtainp̂152 i\d/dx in L2(R0
2) and p̂252 i\d/dx in L2(R0

1). Both these
operators turn out to be maximal symmetric but not self-adjoint.14 Next we form the direct sum
p̂1% p̂2 . This direct sum operator is symmetric, but it possesses a one-parameter family o
adjoint extensionsP̂l in L2(R0

2) % L2(R0
1) defined on domains of functions satisfying, amo

other things, the boundary conditionc1(02)5e2 ilc2(01), lP@0,2p). Each extensionP̂l pos-
sesses a continuous set of real~generalized! eigenvaluesp corresponding to~generalized! eigen-
functions of the formwl,p5w1l,p% w2l,p , where

w1l,p~x1!5ei– px1, x1PR0
2 ; w2l,p~x2!5eilei– px2, x2PR0

1 , ~28!
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where i– 5 i /\. Observe that these eigenfunctions are discontinuous at the junction because
phasel in w2l,p . The supercurrent operator is defined to be proportional to the mome
operator, i.e.,Ĵl5(q/m) P̂l , whereq is the charge of a Cooper pair andm is its mass.Ĵl admits
eigenvaluesj 5(q/m)p.

To model a superconducting system we must input the special features of supercondu
into the theory. For the dc effect these features are summarized into two physical assumpt2,3

~PA1!: A superconducting state with a dc supercurrent corresponds to a~generalized! eigen-
function of the supercurrent operatorĴ with the current equal to an eigenvaluej of operatorĴ.

~PA2!: A superconducting state with an established supercurrent must also correspon
~generalized! eigenfunction of the Hamiltonian of the system.

The way the condensate in a superconductor behaves differently from a one-particle sys
orthodox quantum mechanics lies in our assumptions~PA1! and~PA2!. This requirement amount
to the third stage of our quantization by parts scheme. We have to correlate the supercurr
the Hamiltonian. First,~PA1! tells us that the condensate is in statewl,p and hence it suffers no
reflection at the potential barrier. In contrast, a reflection generally occurs when a parti
orthodox quantum mechanics with low energy meets up with a high potential barrier. Se
~PA2! ensures the stability of the supercurrent, i.e., for a superconducting state to be a sta
state to maintain a stable dc currentwl,p must be an eigenfunction of the Hamiltonian as wel

For the Hamiltonian of the system we look for a suitable self-adjoint extension ofK̂0 in
L2(R0

2) % L2(R0
1) compatible with~PA1! and~PA2!. Our initial choice is an extension defined b

boundary conditions~BC11! with A2B.0, i.e., K̂11
(11) . Having to be an eigenfunction of th

Hamiltonian the momentum eigenfunctionwl,p must satisfy boundary condition~BC11!. Substi-
tuting wl,p into Eq. ~22! we obtain the following relations:

i–p5A1Beil, i–peil52Aeil2B provided lÞ0,p. ~29!

Whenl50 or p the functionwl,p does not satisfy boundary conditions~BC11!. Equating real and
imaginary parts of one of the equations in~29! yields

05A1B cosl, p5\B sinl. ~30!

These then give rise to

j 5
q

m
p5

qB

m
sinl, ~31!

which is precisely the desired Josephson equation withj being the supercurrent. This is not the e
of the story; a lot more physics can be obtained based on this mathematical analysis. W
assume that parameterB is characteristic of the junction, and hence independent ofj andl. The
parameterA, however, is kind of environmental dependent, i.e., its value is dependent on thel and
the actual value of the supercurrent. Clearly the junction does not determine a unique exten
the K̂0 , as the junction parameterB does not determinel. One can carry the physical argume
forward to arrive at a superselection rule, an important feature of these macroscopic qu
systems.2,3

B. p junctions

Let us explore what happens when the phase differencel at the junction is equal to 0 orp.
One is tempted, by simply equatingl to 0 or p in Eq. ~31!, to say that the current would simpl
be zero. This is fallacious since Josephson’s equation~31! is not applicable in these cases.

We can see that thel50 case should correspond to the conductor having no junction,
hence no point interaction at all. The momentum operatorP̂l50 is equal to the usual momentum
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p̂ in L2(R), and the Hamiltonian for the system should then be taken as the usual free Hamil

Ĥ (0) again inL2(R). A nonzero current can certainly flow in the conductor.
The l5p case requires a little more thought. However, if we persist a little and look

another self-adjoint extension ofK̂0 which can fit~PA1! and ~PA2! for our description of super-
conductivity we would see that a Type 7 fullp-phase shifter does fit. To see this we observe t
the ~generalized! eigenfunctions ofK̂ (7) are

w~x!5H eikx, x,0

2eikx, x.0.
~32!

These eigenfunctions are of the form of Eq.~2!, corresponding toR50, T521. These are also
the eigenfunctions of the momentum operatorP̂l5p . So, we can takeK̂ (7) as the Hamiltonian and
P̂l5p and Ĵl5p5(q/m) P̂l5p as the momentum and current operators respectively. T
K̂ (7), P̂l5p , and Ĵl5p share above eigenfunctions, and hence satisfy~PA1! and ~PA2!. Physi-
cally this would describe a superconducting system having a supercurrentj 5(q/m)p together
with a p-phase shift in its wave function across the junction. It would appear that this result
agreement with the recently discoveredp junction in superconductivity and superfluidity.15 This
would also explain why these systems can exist in a stable superconducting state with a n
current when they reach a phase difference ofp. The nature of the point interaction for ap
junction, as visualized in terms of a limiting family ofd potentials, is clearly very different from
that of a Josephson junction.

IV. CONCLUSIONS

The method of quantization by parts can be extended to various physical configuration
as single electron and superconducting circuits for which conventional methods of quantizat
inapplicable because of the complex geometry of these circuits. It is the exploitation of the c
geometry by the method of quantization by parts that gives it its generality. Often the uns
aim of traditional quantization schemes is to produce a unique quantized theory. The presen
demonstrates the fallacy of such an aim. A quantum mechanical description of a physical s
is in general more complex than the corresponding classical description. It is then natural th
same classical system in a given geometric configuration can be quantized into quite d
quantum systems.

The nonuniqueness of composite quantization is a general feature of our scheme of qu
tion by parts. This demonstrates the richness and complexity of point interactions as well
nonuniqueness of quantization in general. The application to superconductivity shows that
tization is not just a mathematical process. Instead, we have to incorporate the physics inv
and it is the mathematical nonuniqueness which enables us to incorporate physics into the p

Hopefully the theoretical possibility of these point interactions will find new applications,
in identifying some of these point interactions with known phenomena as well as prompting
experiments to verify their existence.

Finally we point out that symmetric operators and the studies of their extensions, not
discussed in physics texts, are well worth exploring for their physical applications.14
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The averaged null energy condition for general quantum
field theories in two dimensions *

Rainer Vercha)

Institut für Theoretische Physik, Universita¨t Göttingen, Bunsenstr. 9,
D-37073 Go¨ttingen, Germany
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It is shown that in any local quantum field theory in two-dimensional Minkowski
space–time possessing a mass gap and an energy-momentum tensor, the average
null energy condition is fulfilled for the set of those vector states which correspond
to energetically strongly damped, local excitations of the vacuum. This set of physi-
cal vector states is translation invariant and dense. The energy-momentum tensor of
the theory is assumed to be a Wightman field which is local relative to the observ-
ables, generates locally the translations, is divergence-free, and energetically
bounded. Thus the averaged null energy condition can be deduced from completely
generic, standard assumptions for general quantum field theory in two-dimensional
flat space–time. ©2000 American Institute of Physics.@S0022-2488~00!00701-5#

I. INTRODUCTION

The averaged null energy condition~ANEC, for short! has attracted some interest during t
past several years as a possible candidate for a stability condition in semiclassical gravity
simplest form, this condition requires that in quantum field theory~on any space–time manifold!
the integral of the expectation value,^Tmn&, of the energy-momentum tensor in any physical sta
along any complete lightlike geodesicg is always non-negative:

E
2`

`

^Tmn„g~s!…&kmkn ds>0,

wheres is an affine parameter andkm is the~parallelly propagated! tangent ofg. ~For a formula-
tion not requiring the existence of the integral, see below.!

We shall briefly indicate the origin and development of this condition; however, we are
attempting to properly review this area of research and refer the reader to Refs. 1–5 for
discussion and additional references.

In the theory of classical gravity, one central object of study is the behavior of solutio
Einstein’s equations,

Gmn~x!58p Tmn~x!,

for classical matter described by the energy-momentum tensorTmn . There are important result
asserting that a certain qualitative behavior of these solutions must necessarily occur, w
broad range of initial conditions, as soon as certain stability requirements are imposed onTmn . It
is significant that such qualitative behavior typically reflects a stability of causality, i.e., an ini
causally well-behaved space–time will not end up to develop, e.g., closed timelike curves
prominent among those results are the singularity theorems;6,7 the typical stability requirements in
this context are the null energy condition,

*Dedicated to the memory of Klaus Baumann.
a!Electronic mail: verch@theorie.physik.uni-goettingen.de
2060022-2488/2000/41(1)/206/12/$17.00 © 2000 American Institute of Physics
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Tmn~x!kmkn>0 ~1.1!

for all lightlike vectorskm at any pointx in space–time, or the weak energy condition, where~1.1!
is to hold for all causal vectorskm at any pointx, and related variants, like the strong ener
condition or the dominant energy condition, cf. Refs. 6 and 7. The common feature of
conditions is that they impose a local~even pointlike! positivity constraint like in Eq.~1.1! on the
energy-momentum tensor. For energy-momentum tensors of phenomenological models fo
sical matter, such local positivity constraints have largely been found to be physically realis
contrast, it is known that, under very general hypotheses, similar local positivity constraints c
hold for the expectation values of the energy-momentum tensor^c,Tmn(x)c& of a quantum field
in Minkowski space–time for a dense set of state vectorsc.8

Now, in semiclassical gravity, one investigates the semiclassical Einstein equation

Gmn~x!58p^Tmn~x!&, ~1.2!

where^Tmn(x)& is the expectation value of the energy-momentum tensor in a physical state
quantum field propagating in a classical background space–time whose Einstein tensor isGmn .
The question arises if there is a realistic replacement for the local positivity constrain
^Tmn(x)& leading to similar implications, i.e., the necessity of a certain, causally stable behav
solutions to~1.2! to occur. And in fact, candidates for such replacements have been found. In
9 it was observed that nonlocal, ‘‘averaged’’ versions of the local positivity constraints on
classical energy-momentum tensor still lead to essentially the same singularity theorems
result from imposing local positivity constraints~see also Refs. 10–12 for discussion and furt
results!. The ‘‘averaged’’ refers to integrating the energy-momentum tensor along causal g
sics. The condition used in Ref. 9 is that

E
2`

` S Tmn2
1

2
gmnTs

sD „g~s!…kmkn ds>0

for any complete causal geodesic with affine parameters and tangentkm; gmn is the space–time
metric. This is referred to as averaged strong energy condition. In Ref. 12 it was shown t
averaged null energy condition for certain half-complete geodesics, i.e., essentially

lim inf
r→`

E
0

r

Tmn„g~s!…kmkn ds>0 ~1.3!

for all lightlike geodesicsg with affine parameters and tangentkm emanating ats50 from a
closed trapped surface, implies singularity theorems. Moreover, it is proved in Ref. 11 tha
gularity theorems are implied by the ANEC, roughly,

lim inf
r 6→`

E
2r 2

r 1

Tmn„g~s!…kmkn ds>0 ~1.4!

for all complete lightlike geodesics with affine parameters and tangentkm. @The precise formu-
lations in Refs. 12 and 11 are slightly different from ours in~1.3! and~1.4!. The reader is referred
to these references for the technical details. The significant point is that the averaged
conditions do not assume that the integrals converge, nor that they are bounded above.# It was also
shown in Refs. 13 and 14 that the averaged null energy conditions~1.3! and ~1.4!, respectively,
prevent the occurrence of traversable wormholes in solutions to Einstein’s equations.

In the light of these findings, an interesting issue is whether such averaged energy~positivity!
conditions are fulfilled for the expectation values of the energy-momentum tensor for~suitable!
states in quantum field theories. There have been several works dealing with this question
continue by summarizing, however briefly, the results found so far. To fix our terminology, w
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that a statev of a quantum field theory on some background space–time fulfills the ANEC~resp.,
AWEC5averaged weak energy condition! if the expectation valuêTmn(x)&v of the energy-
momentum tensor exists in this state as a~smooth! function of all x in space–time, and if

lim inf
r 6→`

E
2r 2

r 1

^Tmn„g~s!…&v kmkn ds>0 ~1.5!

holds for all complete lightlike~resp., timelike! geodesicsg with affine parameters and tangent
km. ~However, it should be noted that in some references slightly different formulations are u!

In Ref. 15 it is shown that the ANEC and AWEC are fulfilled for the free scalar field
n-dimensional Minkowski space–time for states which are bounded in particle number an
ergy. It was also found in this work that the AWEC is violated in some states of the free s
field on a static, spatially closed two-dimensional space–time.

Reference 16 establishes the ANEC for states bounded in particle number and energy
free electromagnetic field in four-dimensional Minkowski space–time.

In Ref. 5 it is shown that the ANEC holds for all Hadamard states of the massless free
field in any two-dimensional globally hyperbolic space–time, and for all Hadamard states
massive free scalar field on two-dimensional Minkowski space–time. Moreover, it is proved
the ANEC holds for Hadamard states of the massive and massless free scalar fields fulfilling
additional condition@implying that the limit r 6→` in ~1.5! exists# in four-dimensional flat
space–time. In that work there appears also an argument indicating that the ANEC can
expected to hold in general for the massless free scalar field on all four-dimensional c
space–times. Conditions implying that the ANEC and AWEC will fail to hold generally fo
large class of curved space–times are given in Ref. 17. In Refs. 2 and 3 it has therefor
suggested that the original formulation of the ANEC should be altered via replacing the inte
of ~1.5! by

^Tmn„g~s!…&v2Dmn„g~s!…,

where Dmn(x) is some state-independent tensor, e.g., the expectation value of the en
momentum tensor in some reference state~like the vacuum in flat space–time! or some quantity
locally constructed from curvature terms. Such formulation of ANEC has been termed ‘‘differ
inequality.’’ Results in Refs. 2–4~cf. also Ref. 1! indicate that such difference inequalities m
have a better chance to hold generally in curved space–time. We refer to the references for
discussion.

At any rate, investigations about the validity of the ANEC~or difference inequalities! so far
have been limited to the consideration of free fields only. The proofs of the ANEC present
to now strongly rely either on the fact that the quantum field obeys a linear hyperbolic equat
motion, or on the explicit form of the Wick-ordered energy-momentum tensor operator as bi
expression in annihilation and creation operators in Fock space. This is clearly unsatisfac
one wishes to assess the general validity of the ANEC in quantum field theory~say, in flat
space–time!. Moreover, one would like to understand the connection of the ANEC to the stan
stability requirement in general quantum field theory, i.e., the spectrum condition and existe
a vacuum state.

In the present work, we make a first attempt towards clarifying the status of the ANE
general quantum field theory. We shall consider a general quantum field theory on
dimensional Minkowski space–time obeying the usual assumptions like locality, translatio
variance, spectrum condition with mass gap, and existence of a unique vacuum. Furtherm
assume that such a theory possesses an energy-momentum tensor, which is essentially sup
be a Wightman field~operator-valued distribution! characterized by being local relative to th
observables, divergence-free, generating locally the translations, and fulfilling an energy b
The precise assumptions are given in Sec. II A. Comments on these assumptions and som
known consequences~needed later! appear in Sec. II B. In Sec. II C we prove that the ANEC
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fulfilled for a dense, translation-invariant set of vector states of any quantum field theo
two-dimensional Minkowski space–time fulfilling the general assumptions of Sec. II A. In Se
we show that the ANEC will, in general, fail to hold if the integral averaging is carried out o
along a lightlike geodesic half-line as in~1.3!. This is, of course, expected in view of locality an
the Reeh–Schlieder property. Some concluding remarks appear in Sec. IV.

We have opted to stage our discussion in the framework of the operator-algebraic appro
local quantum field theory~cf. Refs. 18 and 19! since this makes the structures involved in t
argument particularly transparent. One could also obtain similar results working entirely i
setting of Wightman fields.20

II. THE ANEC IN QUANTUM FIELD THEORY ON TWO-DIMENSIONAL MINKOWSKI
SPACE–TIME

A. Assumptions

Our discussion of the ANEC in general quantum field theory on two-dimensional Minko
space–time begins by formulating the relevant assumptions.

Notation: Two-dimensional Minkowski space–time will be identified, as usual, withR2 with
metric (hmn)5diag (1,21). The open forward lightcone is the setV1ª$xPR2:(x0)22(x1)2

.0, x0.0%, the open backward lightcone isV2ª2V1 . The causal complement,O', of a set
O,R2 is the largest open complement of the union of all sets (V1øV2)1x, xPO. A double
coneis a set of the formOIª(S\I ) ' whereS is any spacelike line inR2 ~a spacelike hypersur
face! and I any finite open subinterval ofS. Any double cone is of the formO5(V11y)ù(V2

1x) for pairs of pointsx,yPR2 with xPV11y. A wedge regionis of the formW5L(WR) for
any Poincare´ transformationL where WR is the right wedge,WRª$(x0,x1)PR2:0,x1,ux0

u,x1%.
There will often appear the following special elements inR2:

e0ªS 1
0D , e1ªS 0

1D , e1ª
1

&
~e01e1!, e2ª

1

&
~e02e1!.

The summation convention is used throughout.
We shall now define what we mean by a quantum field theory with an energy-mome

tensor on two-dimensional Minkowski space–time: This is described in terms of a collecti
objects$H,A,U,V,Tmn% whose properties are assumed to be as follows:

~i! H is a Hilbert space, and there is a mapO °A(O) assigning to each double coneO in R2

a von Neumann algebra inB~H!, with the properties

Õ,O⇒A~Õ!,A~O! ~ isotony!,

Õ,O'⇒A~Õ!,A~O!8 ~locality!.
@Recall thatA(O)8 is the commutant ofA~O!, i.e., the algebra formed by all operators
B~H! that commute with every element inA~O!.#

~ii ! There is a weakly continuous representationR2{a°U(a) of the two-dimensional trans
lation group by unitary operators onH, fulfilling for all double conesO,

U~a!A~O!U~a!* 5A~O1a!, aPR2 ~covariance!.
~iii ! There is an, up to a phase, unique unit vectorVPH which is left invariant by the unitary

groupU(a),aPR2 ~existence of a unique vacuum!.
~iv! Denote byP5(P0 ,P1) the generator ofU(a), aPR2, i.e., U(a)5eiPmam

. Its spectrum
fulfills

sp~P!,$0%ø$~p0 ,p1!PR2:~p0!22~p1!2>m2.0, p0.0%
for some fixedm.0 ~spectrum condition with mass gap!.

~v! The vacuum vectorV is cyclic for the union of the local von Neumann algebrasøOA(O),
i.e., the setøOA(O)V is dense inH ~cyclicity of the vacuum!.
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~vi! We denote byA` the *-subalgebra ofB~H! generated by all operatorsA of the form

A5Eh~a!U~a!BU~a!* d2a

for hPC0
`(R2) andBPøOA(O), and define

A`~O!ªA`ùA~O!.
The energy-momentum tensor,Tmn , n,m50,1, is a set of operator-valued distribution
more precisely, there is a dense domainD,H, with U(a)D,D, aPR2, andA`V,D, so
that for eachf PC0

`(R2), Tmn( f ) is a closable operator onD with Tmn( f̄ ),Tmn( f )* . For
eachc,c8PD, the map

C0
`~R2!{ f °^c,Tmn~ f !c8&

is a distribution inD8(R2).
~vii ! Translation-covariance holds:

U~a!Tmn~f !U~a!*5Tmn~fa!, fPC0
`~R2!, aPR2,

with f a(x)ª f (x2a). Moreover,Tmn has vanishing vacuum-expectation value:

^V,Tmn~f !V&50, f PC0
`~R2!.

~viii ! Tmn is local on the vacuum:̂AV,†Tmn( f ),B‡V&50 for all APA` , BPA`(O) and f
PC0

`(O').
~ix! Tmn is divergence-free on the vacuum:

^AV,†Tmn~] m f !,B‡V&50, A,BPA` .
~x! Tmn generates~locally! the translations on the vacuum: LetS be thex050 hyperplane

~5 spacelike line! with unit normal vectore0 . Whenevera,bPC0
`(R) are any two non-

negative functions with the properties
~a! a(x0)50 outside of somex0-interval (2«a ,«a) and*a(x0)dx051,
~b! b(x1)51 on an openx1-interval (jb2«a2db ,jb1«a1db), where«a ,db.0, jbPR,
we require that, upon settingx(x0,x1)ªa(x0)b(x1), there holds

^AV,†Tmn~x!,B‡V&e0
m5^AV,†Pn ,B‡V&5^AV,PnBV&

for all APA` and allBPA`(OI) with I 5(jb2db ,jb1db).
~xi! Energy bounds for Tmn : There is a pair of numbersc,l .0 such that

(11P0)2 lTmn( f )(11P0)2 l is for each f PC0
`(R2) a bounded operator whose operat

norm satisfies the estimate

i ~11P0!
2lTmn~f !~11P0!

2l i<ci f iL1, fPC0
`~R2!.

B. Comments and some implications

The conditions~i!–~v! imply that we are considering a translation-covariant quantum fi
theory in a vacuum representation with mass gap, in operator algebraic formulation. Thes
ditions are quite standard; the self-adjoint elements inA~O! are viewed as observables of th
theory localized in the spacetime regionO, cf. Ref. 18 for further discussion.

Note that ~v! and uniqueness of the vacuum vector imply irreducibility of the observa
algebra, i.e.,„øOA(O)…85C1. Note also that locality, spectrum condition, and~v! imply the
Reeh–Schlieder property of the algebras associated with wedge regionsW, defined asA(W)
ª„øO,WA(O)…9, i.e., the setsA(W)V are dense inH for any wedge region. It follows easily
that then the setsA`(W)V are also dense inH for all wedge regionsW. A slightly stronger
assumption would be the Reeh–Schlieder property for the local algebras, i.e., thatA(O)V is
dense inH for each double coneO; this is the case when the local von Neumann algebras
weakly additive, as, e.g., when there is a Wightman field generating the local algebras.20,21 Then
it follows that A`(O)V is dense inH. We will make such an assumption in Sec. III.

The conditions~vi!–~xi! serve to characterize an energy-momentum tensor in the pre
abstract setting. Conditions~vi!–~viii ! basically say that the energy-momentum tensor is a Wig
man field which is local relative to the observables. Particularly important for the interpretati
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Tmn as an energy-momentum tensor are clearly~ix! and~x! expressing that, in a weak sense,Tmn

is divergence-free and generates locally the translations. Notice that on account of the as
translation-covariance the condition formulated in~x! implies its validity for any translated cop
S1a, aPR2, of S in place ofS. It is worth pointing out that we could have also taken forS any
other spacelike hyperplane~5 spacelike line! instead of thex050 hyperplane; the proof o
Theorem 2.5 below would then only involve changes in notation. Specializing to thex050
hyperplane is thus just a matter of notational convenience.

Notice that for eachAPA` one hasAVPù j PN dom (11P0) j . In view of the assumed
energy bound, it actually follows thatA`V is contained in the domain ofTmn( f ). @An assumption
of this kind is clearly needed, otherwise it would be difficult to formulate thatTmn( f ) is local
relative to the observables.# The energy bound~xi! has the simple interpretation that the loc
energy-momentum density integrated over a finite space–time volume should be dominated
total energy~or at least a sufficiently high moment of it!. We mention as an aside that, if on
assumes the domainD of Tmn to coincide with the setù j PN dom (11P0) j and takes as tes
function space the Schwartz functionsS(R2) instead ofC0

`(R2), then this implies already an
energy bound of the form as in~xi! ~Ref. 19, Proposition 12.4.10!.

Finally, there arises the question if our assumptions regardingTmn are realistic. For free fields
the canonically constructed energy-momentum tensor fulfills the assumptions. While we
made no attempt to check this, it is to be expected that the quantum field models which hav
constructed in two dimensions, likeP(f)2 or Yukawa2, also comply with all of our assumptions

The assumptions~i!–~xi! for a theory with energy-momentum tensor,$H,A,U,V,Tmn%, are
known to imply certain properties which will be used in deriving the ANEC in the next sec
Hence we subsequently collect these properties, mainly referring to the literature for proof

Proposition 2.1:22,23 One has weak asymptotic lightlike clustering: For any lightlike
PR2\$0% and any pair of vectorsc,c8PH, it holds that

lim
s→`

^c,U~s•k!c8&5^c,V&^V,c8&. ~2.1!

Sketch of Proof:Let WR be the right wedge region andA(WR) the associated von Neuman
algebra. LetD i t , tPR, be the modular group corresponding toA(WR),V. Then a theorem by
Borchers~Ref. 22, Theorem II.9! establishes the relation

D i tU~s•e1!D2 i t5U~e22pts•e1!

for all t,sPR. Consequently, one can apply the argument of Proposition I.1.3 in Ref. 23 to
relation ~2.1!. We point out that the mass gap assumption enters in that argument.

Lemma 2.2: Let Eª12uV&^Vu be the projection orthogonal to the vacuum vector, and
P6ªP06P1 . Let cPdom (P0). Then there exist vectorsc6Pdom (P6) such that

^c,Ec8&5^c6 ,EP6c8& for all c8Pdom~P0!.

Proof: From the mass-gap assumption we obtain

1

up6u2
<

4•upou2

m4 ~2.2!

for all p5(p0 ,p1)Psp(P)\$0%, where p6ªp06p1 . We claim that the vectorsc6

ª(P6)21Ec exist ~in the sense of the functional calculus!. Indeed, denoting the spectral measu
of P by F, Eq. ~2.2! implies

i~P6!21Eci25E
sp~P!\$0%

1

up6u2 ^c,dF~p!c&<E
sp~P!\$0%

4•up0u2

m4 ^c,dF~p!c&<
4

m4 iP0ci2.
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Thus, by the functional calculus we have for allc8Pdom (P0),

^c,Ec8&5^Ec,Ec8&5^P6~P6!21Ec,Ec8&5^c6 ,EP6c8&,

where we used thatE commutes withP6 . h

Proposition 2.3: Let fPC0
`(R2) with f>0, * f (x) d2x51, and define fx,l(y)ªl22f „l21(y

2x)… so that fx,l approaches forl→0 the delta-distribution concentrated at x. Then for ea
pair A,BPA` , the limit

^AV,Tmn@x#BV&ª lim
l→0

^AV,Tmn~ f x,l!BV&

exists and defines a quadratic form onA`V3A`V. Moreover,

~a! R2{x°^AV,Tmn@x#BV& is C`,
~b! ^U(a)AV,Tmn@x#U(a)BV&5^AV,Tmn@x2a#BV&, x,aPR2,
~c! (11P0)2 lTmn@x#(11P0)2 l

ª liml→0(11P0)2 lTmn( f x,l)(11P0)2 l is a bounded operator
on H,

~d! ^AV,†Tmn@x#,B‡V&50 for all APA` , BPA`(O), and xPO',
~e! ]m^AV,†Tmn@x#,B‡V&50, A,BPA` , and
~f! *^AV,†Tmn@x1e1#,B‡V&e0

mdx15^AV,PnBV&, A,BPA` .

This proposition is a fairly direct consequence of assumption~xi!, @see Ref. 19, Theorem 12.4.
~cf. also references cited there!#. The commutator is defined as difference of quadratic forms

^AV,†Tmn@x#,B‡V&ª^AV,Tmn@x#BV&2^B* AV,Tmn@x#V&.

Observe that the integrand in~f! is supported on a finite interval because of~d!. It should also be
noted thatTmn@x# will, in general, not exist as an operator.

Lemma 2.4: Let W be a wedge region, BPA` , and jPN. Then for each«.0 there is some
B«PA`(W) such that

i~11P0! j~B2B«!Vi,«.

The proof can be given along similar lines as the proof of Ref. 19, Proposition 14.3.2; we
therefore skip the details. The cyclicity ofV for the algebrasA`(W) enters here. In combination
with ~b! and ~c! of Proposition 2.3 one obtains as a simple corollary:

For each wedge regionW, anyA,BPA` and given«.0 there is someB«PA`(W) so that

u^AV,Tmn@x#~B2B«!V&u,« ~2.3!

holds uniformly inxPR2.

C. Main result

In the present section we state and prove our main result about the ANEC in quantum
theory on two-dimensional Minkowski space–time.

Theorem 2.5:Let $H,A,U,V,Tmn% be a quantum field theory with energy-momentum ten
on two-dimensional Minkowski space–time fulfilling the assumptions (i)–(xi) of Sec. II A.

Let k be any nonzero lightlike vector inR2 and let A,BPA` , aPR2. Then it holds that

lim
r 6→`

E
2r 2

r 1

^AV,Tmn@s•k1a#BV&kmds56^AV,PnBV&,

with ‘‘ 1’’ if k is future-directed, ‘‘ 2’’ if k is past-directed.
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Corollary 2.6: This implies the ANEC for all vector states induced by the dense, transla
invariant set of vectors$c5AV:APA`%, corresponding to energetically strongly damped, loc
excitations of the vacuum:

lim
r 6→`

E
2r 2

r 1

^c,Tmn@s•k1a#c&kmkn ds56^c,knPnc&>0

with ‘‘ 1’’ for future-directed and‘‘ 2’’ for past-directed lightlike k, since the relativistic spectru
condition holds.

Proof: The proof proceeds in three simple steps. For simplicity of notation, we will give
proof only for the casek5e1 , the proof for the other cases is obtained by analogous argum
In view of translation covariance, it suffices also to consider only the casea50.

~1! We will first show that for allCPA`

lim
s→6`

^CV,Tmn@s•e1#V&50, ~2.4!

lim
r 6→`

E
2r 2

r 1

^CV,Tmn@s•e1#V& ds50. ~2.5!

To this end, let

c ª ~11P0! l 11CV,

cmn8 ª ~11P0!2~ l 11!Tmn@0#~11P0!2 lV.

One can see from Proposition 2.3~c! that c,cmn8 Pdom (11P0). Moreover, denoting byEª1
2uV&^Vu the projection orthogonal to the vacuum, we deduce, upon using assumption~vii !
~implying ^V,Tmn@x#V&50) and Proposition 2.3~b! together with the fact thatE commutes with
U(a), aPR2, that

^CV,Tmn@s•e1#V&5^c,EU~s•e1!cmn8 &, sPR.

Then relation~2.4! follows from weak asymptotic lightlike clustering, Proposition 2.1. Furth
more, by Lemma 2.2 it follows that there is a vectorc1PH so that

^c,EU~s•e1!cmn8 &5^c1 ,EP1U~s•e1!cmn8 &5
1

i

d

ds
^c1 ,EU~s•e1!cmn8 &.

Thus one obtains

E
2r 2

r 1

^CV,Tmn@s•e1#V& ds5E
2r 2

r 1 1

i

d

ds
^c1 ,EU~s•e1!cmn8 & ds

5
1

i
~^c1 ,EU~r 1•e1!cmn8 &2^c1 ,EU~r 2•e1!cmn8 &!

and the last expression tends to 0 in the limitr 6→` in view of weak asymptotic lightlike
clustering, Proposition 2.1. This establishes relation~2.5!.

~2! Relation~2.5! shows, for anyA,BPA` ,

lim
r 6→`

S E
2r 2

r 1

^AV,Tmn@s•e1#BV& ds2E
2r 2

r 1

^AV,†Tmn@s•e1#,B‡V& dsD 50,
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and, hence, to prove the theorem, it suffices to demonstrate

lim
r 6→`

E
2r 2

r 1

^AV,†Tmn@s•e1#,B‡V&e1
m ds5^AV,PnBV&. ~2.6!

To show this, we fix anyA,BPA` and use the abbreviation

tmn~x!ª^AV,†Tmn@x#,B‡V&.

Now we define two maps with values inR2,

h1~s,r!ªs•e12r•e2 , h2~s,r!ª2s•e11r•e2 , s,r>0,

and the two triangle-shaped regions

R1,r 1
ª $h1~s,r!:0<s<r 1, 0<r<s%,

R2,r 2
ª $h2~s,r!:0<s<r 2, 0<r<s%.

The regionR1,r 1
is bounded by the two lightlike line segmentsL1(r 1)ª$s•e1 :0<s<r 1% and

H1(r 1)ª$h1(r 1 ,r):0<r<r 1%, and by the spacelike line segmentS1(r 1)ª$x1e1 :0<x1

<&r 1%. Similarly, R2,r 2
is bounded by the line segmentsL2(r 2)ª$2s•e1 :0<s<r 2%,

H2(r 2)ª$h2(r 2 ,r):0<r<r 2%, andS2(r 2)ª$2x1e1 :0<x1<&r 2%. ~See Fig. 1.!
Now we use]mtmn(x)50 and thus, applying Gauss’ law to the regionR1,r 1

, we convert the

integral ofvm5tn
m paired with the outer normal alongL1(r 1) into a sum of two integrals ofvm

paired with the inner normals alongH1(r 1) and S1(r 1). Doing the same with respect to th
region R2,r 2

~with the roles of inner and outer normals interchanged! yields, with the above
parametrizations of the various line segments inserted,

E
2r 2

r 1

tmn~s•e1!e1
m ds5E

2&r 2

&r 1

tmn~x1e1!e0
m dx12E

0

r 1

tmn~h1~r 1 ,r!!e2
m dr

2E
0

r 2

tmn~h2~r 2 ,r!!e1
m dr. ~2.7!

In view of Prop. 2.3~d,f!, we deduce that the first integral on the right-hand side of~2.7! equals
^AV,PnBV& as soon asr 1 and r 2 are large enough. This implies that~2.6!, and hence the
statement of the theorem, is proved once it is shown that the two remaining integrals o
right-hand side of~2.7! vanish in the limitr 6→`.

~3! The remaining step in the proof is therefore to show

FIG. 1. Sketch of the regions and bounding line segments described in the text.
                                                                                                                



imated
tion

ense
nergy-
se in
umed
ws.

um
t k
l

ly.

215J. Math. Phys., Vol. 41, No. 1, January 2000 Averaged null energy condition in two dimensions

                    
lim
r 6→`

E
0

r 6

tmn„h6~r 6 ,r!… dr 5 0. ~2.8!

We will demonstrate this only for the ‘‘1’’ case, the reasoning for the ‘‘2’’ case is similar.
It holds that BPA`(OI) for I 5$x1e1 :ux1u,&j% with some sufficiently largej.0. By

Proposition 2.3~d!, tmn(x)50 for xP(OI)
', implying that

E
0

r 1

tmn„h1~r 1 ,r!… dr 5E
0

j

tmn„h1~r 1 ,r!… dr, ~2.9!

i.e., the integral extends for allr 1.0 only over a fixed interval of finite length.
Now choose some wedge regionW in the causal complement ofø r 1>0H1(r 1),WR , and let

d.0 be arbitrary. According to~2.3!, one can find someBdPA`(W) so that

u^AV,Tmn@x#~B2Bd!V&u,
d

2j

uniformly in xPR2. Then^AV,†Tmn@x#,Bd‡V&50 for all xPH1(r 1), and

E
0

j

tmn„h1~r 1 ,r!…dr 5E
0

j

^AV,Tmn@h1~r 1 ,r!#~B2Bd!V&dr

1E
0

j

^~Bd* 2B* !AV,Tmn@h1~r 1 ,r!#V&dr.

The absolute value of the first integral on the right-hand side of the last equation can be est
by j•d/2j5d/2. Owing to ~2.4!, the other integral on the right-hand side of the last equa
converges to 0 forr 1→` ~note that the integrands are bounded uniformly inr 1). Therefore, we
can find for the givend.0 somer .0 so thatu*0

jtmn„h1(r 1 ,r)…dru,d for all r 1.r . By ~2.9!,
this establishes the required relation~2.8!, and thus the proof is complete. h

III. A RESULT FOR LIGHTLIKE HALF-LINES

In this section we present a result indicating that the ANEC fails to hold, in general, for d
subsets of the vectors considered in Theorem 2.5 when the expectation value of the e
momentum tensor is integrated only over a lightlike half-line. This is, of course, no surpri
view of the fact that a lightlike half-line has a large causal complement together with the ass
properties of the energy-momentum tensor. The precise formulation of the result is as follo

Proposition 3.1: Let$H,A,U,V,Tmn% be a quantum field theory with energy-moment
tensor on two-dimensional Minkowski space–time with the properties assumed in Sec. II A. Le
be a nonzero lightlike vector inR2,aPR2, and let O be a double cone lying in the causa
complement of the lightlike half-line Lª$s•k1a:s>0%.

Suppose thatA`(O)V is dense inH (Reeh–Schlieder property) and that for allA
PA`(O) there holds

lim inf
r→`

E
0

r

^AV,Tmn@s•k1a#AV&kmkn ds>0.

Then the Hilbert spaceH is one-dimensional and spanned by the vacuum vectorV, and
Tmn( f )50 for all f PC0

`(R2).
Proof: We consider only the casek5e1 anda50; the general case is proved analogous
Then we observe that
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^AV,T@L#BV&ª lim
r→`

E
0

r

^AV,Tmn@s•e1#BV&e1
m e1

n ds5 i ^AV,Tmn@0#BV&e1
m e1

n ~3.1!

holds for all A,BPA`(O) as can be seen from~2.5! together with the fact that̂AV,†Tmn@s
•e1#,B‡V&50, s>0. Equation ~3.1! defines a quadratic form̂ .,T@L#.& on A`(O)V
3A`(O)V which is by assumption positive, i.e.,^AV,T@L#AV&>0, APA`(O). Thus, this
quadratic form satisfies the Cauchy–Schwarz inequality and hence

u^AV,T@L#BV&u25u^B* AV,T@L#V&u2<^B* AV,T@L#B* AV&^V,T@L#V&

holds for allA,BPA`(O). Using^V,T@L#V&50 this implies^AV,T@L#BV&50 and hence, by
~3.1!,

^~11P0! lAV,~11P0!2 lTmn@0#~11P0!2 l~11P0! lBV&e1
m e1

n

5^AV,Tmn@0#BV&e1
m e1

n 52 i ^AV,T@L#BV&50

for all A,BPA`(O). The set of vectors (11P0) lAV, APA`(O) is dense inH, therefore, using
also covariance@Proposition 2.3~b!#, one arrives at

~11P0!2 lTmn@x#~11P0!2 le1
m e1

n 50, xPR2.

Thus ^AV,Tmn@x#BV&e1
m e1

n 50 for all A,BPA` andxPR2, and in view of Theorem 2.5, this
entails

~P01P1!BV50, BPA` .

Since we have imposed the mass gap assumption~iv!, we may apply Proposition 1.1.2 of Ref. 2
to conclude that this is only possible ifBV is parallel to the vacuum vectorV. As the set of
vectors A`V is dense inH, this implies H5C•V, and by the vanishing of the vacuum
expectation value ofTmn , finally Tmn( f )50 for all f PC0

`(R2). h

IV. CONCLUDING REMARKS

It has been shown that in two-dimensional Minkowski space–time the ANEC can be de
under very general hypotheses for quantum field theories endowed with an energy-mom
tensor. The two-dimensionality was quite essential in exploiting the vanishing of the divergen
Tmn in the proof of Theorem 2.5 and it is not at all clear if our simple argument can be genera
to higher dimensions. So the general validity of ANEC in higher dimensions remains unse

Concerning quantum field theory in curved space–time, a familiar problem is that there a
candidates for a vacuum state of a quantum field theory owing to the circumstance that, in g
there are no space–time symmetries. Then already the characterization of physical states
definition of expectation values of an energy-momentum tensor poses considerable problem~see
Ref. 24 for discussion of how this problem is treated in the case of free fields!. Clearly the
question if, and in which sense, ANEC may hold in quantum field theory in curved space–ti
connected to this circle of problems, particularly to the issue of how to characterize states
may be viewed as playing the role of preferred, vacuumlike states. Here ANEC is in some
attractive as imposing a global constraint on candidates for such states, complementary t
prominent conditions, like the Hadamard condition~cf. Ref. 24! or the microlocal spectrum con
dition ~see Ref. 25! which constrain the short-distance properties of physical states. A drawba
that ANEC is a condition which cannot be tested locally. It is to be hoped that more progre
understanding the relation between the said local conditions and ANEC will be made in the f
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Branch-point structure and the energy level
characterization of avoided crossings
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The appearance of avoided crossings among energy levels as a system parameter is
varied is signaled by the presence of square-root branch points in the complex
parameter-plane. Even hidden crossings, which are so gradual as to be difficult to
resolve experimentally, can be uncovered by the knowledge of the locations of
these branch points. As shown in this paper, there are two different analytic struc-
tures that feature square-root branch points and give rise to avoided crossings in
energy. Either may be present in an actual quantum-mechanical problem. This
poses special problems in perturbation theory since the analytic structure of the
energy is not readily apparent from the perturbation series, and yet the analytic
structure must be known beforehand if the perturbation series is to be summed to
high accuracy. Determining which analytic structure is present from the perturba-
tion series is illustrated here with the example of a dimensional perturbation treat-
ment of the diamagnetic hydrogen problem. The branch point trajectories for this
system in the complex plane of the perturbation parameterd ~related to the mag-
netic quantum number and the dimensionality! as the magnetic field strength is
varied are also examined. It is shown how the trajectories of the two branch-point
pairs as the magnetic field strength varies are a natural consequence of the particu-
lar analytic structure the energy manifests in the complexd-plane. There is no need
to invoke any additional analytic structures as a function of the field strength
parameter. ©2000 American Institute of Physics.@S0022-2488~99!00612-X#

I. INTRODUCTION

Avoided crossings in energy level spectra as system parameters are adiabatically var
prevalent in all areas of quantum physics. They are often viewed as the result of a re
interaction that couples states that would otherwise cross. When the interaction is introduc
degeneracies move off the real line into the complex parameter plane. Therefore, as the pa
is varied along the real line, a near-degeneracy occurs in the vicinity of these degeneracie
complex plane; that is, an avoided crossing appears. Nevertheless, the states diabatically e
character across an avoided crossing, so the ordering of the states with respect to chara
follows the pattern set when the residual interaction is turned off.

Near an avoided crossing, if we can ignore the perturbing influence of all other states
two states involved in the crossing, the problem reduces to a two-dimensional, matrix eige
equation. This naturally produces a square-root branch-point structure in the eigenvalue
degeneracy points; that is, the energy is a two-branched function of the parameter, w
physical energies lying on the real axis of a two-sheeted Riemann surface. An analytic con
tion of the system parameter by 2p around a square-root branch point takes one onto the o
sheet. If one starts on the real axis of one of the sheets, the physical energy of one of the
transforms in a continuous fashion into the energy of the other state—the energies intercha1,2

Since the eigenvalue determines the eigenvectors, the wave functions also interchange un

a!Electronic mail: walkup@mail.nhn.ou.edu
2180022-2488/2000/41(1)/218/22/$17.00 © 2000 American Institute of Physics
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transformation. As more distant states are included, the size of the matrix-eigenvalue pr
increases, so the order of the secular equation increases as well. This raises the possibi
higher-order branch-points/degeneracies may appear. However, Bender, Happ, and Sv3

demonstrated that this is extremely unlikely. Therefore, as a general rule avoided crossin
signaled by square-root branch points.

Hidden avoided crossings2,4–8 are nearly impossible to spot in the energy spectrum, yet
characters of the states still exchange diabatically across these avoided crossings.2 However,
hidden crossings are easily identified by the presence of nearby branch-point degeneracie
energy function for complex values of the system parameter. Therefore, important informa
obtained by studying the branch-point degeneracies for complex values of the system param
examples include the works of Solov’ev, Ovchinnikov, and others in low-energy heav
collisions.4,9 This information could be missed or more difficult to obtain through other
proaches.

A. Distribution of branch points on the complex parameter plane

With the energy real-valued for real values of the system parameter, the Schwartz refl
principle10 has an important consequence for the branch-point distribution of the single-para
system: Branch-point degeneracies must appear as complex-conjugate pairs. Therefore,
crossings in single-parameter problems result from nearbycomplex-conjugate, square-root branch
point degeneracies.

If a system has more than one variable parameter, however, the extra degrees of free
the combined parameter space make it possible to find specific real values for all parame~a
conical section! for which neighboring states are degenerate for real energy. However, this se
occurs. If one of the parameters does not correspond to one of these specific values, then
one parameter must be complex-valued for neighboring states to be degenerate~albeit at a com-
plex energy!.

Consider the situation where one parameter is varied while the others are held co
Furthermore, consideru as a parameter that has been continued off the real axis into the com
plane. Regarding the avoided crossings caused by these degeneracies, we have the follow

~1! If u is the parameter being adiabatically varied, then the situation is the same as th
parameter problem discussed above.

~2! If a different parameterv is being varied, the degeneracies in the complexu plane move in
response to adiabatic changes inv. When they pass close to the point on the real axis at wh
u has been fixed, then the nearby degeneracy causes a near-degeneracy to appear in th
levels for real values of all parameters. In other words, at this value ofv an avoided crossing
between energy levels appears at real values of all system parameters.

In another paper,8 hereafter denoted paper I, we show specific examples where both situa
occur.

The avoided crossings as one parameter is varied depend on the values of the other par
that are held constant. Since avoided crossings are the result of nearby degeneracies for c
values of the variable parameter, we can study this dependency by examining the trajecto
the degeneracies, with the other parameters held to physical~real! values. These degeneracies ha
a square-root branch-point structure for the same reasons as the one-parameter problem co
above.11

B. Emergence of an alternative branch-point structure

Much of the above discussion of avoided crossings and square-root branch points conce
symmetric-matrix eigenvalue problem; this does not automatically apply to the general qua
mechanical problem since, strictly speaking, stationary wave functions of the ‘‘infi
dimensional,’’ self-adjoint, matrix eigenvalue problem are not actually vectors in a spac
ratherfunctionalson a space, so the energy eigenvalues can be complex even if the Hamil
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is self-adjoint.12 ~Such are the Gamow states, also known as Seigert states, which describe
nances in terms of stationary wave functions with complex energies.13! Most importantly for our
purposes, branch points can connect states with real energies to states with complex energ4,9,14

Heiss and Steeb1 determined the square-root, branch-point structure of the symmetric-m
eigenvalue problem, which only permits real eigenvalues. The analytic form of the squar
branch points uncovered by Heiss and Steeb conforms to this requirement, in that the
points only connect states with real energy to other states with real energy when the branch
are off the real axis. However, this same analytic form of the symmetric-matrix, eigenv
problem permits the square-root branch points to connect states with real energies to tho
complex energies, but only when the branch points areon the real axis~which does not occur with
real-valued, symmetric-matrix, eigenvalue problems!. This situation corresponds to a bound sta
in a short-range potential crossing into the continuum to become a resonant state as the pa
u is varied along the real axis around a branch point at the continuum threshold.13 This does not
correspond to the case of interest here where two branch points are complex-valued, c
avoided crossings between two bound states.

The existence of complex energies for the ‘‘infinite-dimensional’’ problem, and the possi
that square-root branch points connect states with real energy to states with complex energy
up another possibility for the analytic structure of the energy that is not present for the fi
dimensional problem limited to real eigenvalues. It represents an additional analytic structu
the ‘‘infinite-dimensional’’ problem can have over the finite-dimensional problem and, as we
see in Sec. II, the branch points that connect states with real energies to states with co
energies can also cause avoided crossings between two states with real energies.

We derive the two analytic structures in the next section and determine which is prese
particular quantum-mechanical problem in Sec. VI. This is explored through the example
dimensional perturbation treatment of the diamagnetic hydrogen problem. Given the two po
analytic structures for the general quantum-mechanical problem, one way to see which is
is to traverse a path around a branch point that is away from the realu axis by 2p, beginning and
ending on the realu axis. If, starting with a real energy, one obtains a complex energy, then
alternative analytic structure must be present near the square-root branch point. That s
alternative branch-point structure connecting states with real energy to states with complex
exists within quantum mechanics is demonstrated by the example of the H2

1 problem in the
Born–Oppenheimer approximation, as studied by Solov’ev, Ochinnikov, and others.9 They found
that taking a path in the complexR plane around the branch point at the ends of the S serie
branch points in the complexR plane does indeed take one from states with real energy to s
with complex energy.

However, one is not always in a position to traverse such a path in the Riemann sheet st
of the problem. An example occurs with perturbation theory in the parameteru. The analytic
structure does not immediately emerge from a power series since partial sums of the ser
single-valued functions ofu, and may not even converge if they are asymptotic series. Asymp
series are often ‘‘summable’’ with Pade´ approximates, but they too are single-valued functio
and ‘‘sum’’ multivalued functions by limiting themselves to a single branch through the intro
tion of branch cut discontinuities.2 Furthermore, to sum a perturbation series with maxim
accuracy and/or for all branches of the original function one needs to know the analytic str
of the original function beforehand so that one can choose an approximate that possesses t
analytic structure.

In Sec. VI we use quadratic Pade` approximates and analytical methods to determine from
perturbation series which of the two analytic structures is present in a given problem.

II. ANALYTIC STRUCTURE OF DEGENERACIES

Consider an atomic system whose energyE is a function of at least two variablesu and v,
whereu is the parameter that is continued off the real axis andv is the external, real-valued
variable parameter.~Note that this is exactly Situation 2 in the Introduction, with the same
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menclature.! We define the branch points to be located at valuesu1(v) andu2(v) on the complex
u plane. Near the branch pointu1 we expand and resum the energy series aboutu1 as

E~u,v !5 (
k50

`

ck~v !~u2u1!k/25a1bAu2u1, ~1!

wherea andb are sums over even and odd powers ofck(u2u1)k, respectively, andu is a function
of v. One branch point is paired with another, so expandinga andb aboutu2(v) and resumming
the series, we obtain

E~u,v !5A1CAu2u11FAu2u21GAu2u1Au2u2, ~2!

where the coefficientsA,C,F, andG are functions ofu andv.
This function has four branches connected by square-root branch points, so here the en

defined on au domain consisting of a four-sheeted Riemann surface. Near the avoided cro
caused by the branch points atu1 andu2 , the energies of the states are real on the positive,
u axis. Therefore, if Eq.~2! is to represent the functional form of the energy of the two sta
involved in an avoided crossing, on at least two of the four sheets the energy must be real
positive, realu axis. Note thatAu2u1Au2u2 is real-valued whenu is on the positive, real axis
and when the branch points are either complex conjugate or both lie on the negative rea
Therefore the first and last terms are real on the positive, realu axis of all four sheets ifA andG
are real on the positive, realu axis. The sum of the second and third terms is real on the posi
real u axis of two of the four sheets, with

F~u,v !5C* ~u,v !, ~3!

whenu1 andu2 are complex conjugate15 and withC andF real when the the branch points lie o
the negative real axis. Given these criteria, we obtain the general energy structure,

E6~u,v !5A6@CAu2u11FAu2u2#1GAu2u1Au2u2. ~4!

The energies on the other two branches are complex for positive, realu and complex-
conjugate values ofu1 andu2 . This is not in itself a concern since, as we noted in the Introd
tion, stationary wave functions are not, strictly speaking, vectors in a space but rather func
on a space. Therefore the eigenvalues can be complex even if the Hamiltonian is self-adjo

An exception to the four-sheeted structure outlined above occurs ifC(u,v) andF(u,v) were
identically 0. Then Eq.~2! defines a two-sheeted energy function. The energies of the two i
acting states are then given by the reduced energy structure,

E6~u,v !5A6GAu2u1Au2u2, ~5!

evaluated on the positive, realu axis. This has the analytic form we expect from a finite-mat
problem. With a Hamiltonian that is self-adjoint for realu, the eigenenergies must be real f
positive, realu. As discussed in the Introduction, avoided crossings arise from the proximi
nearby branch points at which the two states are degenerate in energy. However, for the
energy structure, Eq.~4!, the branch points represent degeneracies between two states, bu
one of which has a real energy on the positive, realu axis. Despite this, the general energ
structure can also feature avoided crossing-like structures near the branch points,16 as shown by
the solid lines in Fig. 1.

It is important to note that a high-order examination of the perturbation series will not d
entiate between the two analytic structures because both structures have the same hig
behavior.17
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We have shown that there are two different possible analytic structures of the energy n
avoided crossing in ‘‘infinite-dimensional’’ matrix problems. The functional forms of both st
tures provide a means of determining which structure is correct for a given avoided crossi

~1! If Eq. ~4! is correct, thenE11E2 is a function with two branches and two branch points.
the other hand, if Eq.~5! is correct thenE11E2 is a function with only one branch and n
branch points.

~2! One characteristic feature of Eq.~5! is that at the coalescence pointvc , where the two branch
points are at the same location@that is, the pointvc whereu1(vc)5u2(vc)[uc#, the energy
reduces to

E6~u,vc!5A~u,vc!6G~u,vc!~u2uc!. ~6!

Therefore, we lose the square-root nature of the energy function; the two branch
annihilate atvc . In Eq.~4!, however, square-root branch points atvc remain in the second an
third terms. Therefore, we can also distinguish between these two possibilities by the pre
or absence of branch-point annihilation at the coalescence point.

To see how this may be implemented in a specific example, we now consider a dimen
perturbation treatment of the diamagnetic hydrogen problem.

III. DIAMAGNETIC HYDROGEN

In a recent paper2 we examined some branch-point degeneracy trajectories for the Bar
Hamiltonian, which has two nontrivial parameters.18 In paper I we examined in detail a simila
situation with the diamagnetic hydrogen problem. WithZ held constant this is not normall
regarded as a two-parameter problem. However, in dimensional perturbation theory~Sec. IV! the
dimensionality of space is regarded as a continuously variable parameter.19–21 For two-particle
problems, dimensionality and angular momentum enter the problem in equivalent and interc
able ways. Therefore we can consider the diamagnetic hydrogen problem as a function
parameters: the external magnetic field and angular momentum.

In dimensional perturbation theory, the magnetic field and Coulomb potential are both
porated into the zeroth-order Hamiltonian to such an extent that we can directly associate a

FIG. 1. Avoided crossings occurring between energy levels resulting from the general energy structure, Eq.~4!, for
A51, G50.1, andd651.060.02i . The solid lines correspond toC511 i and F512 i , whereas the dashed line
correspond toC5F51.
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crossings appearing in theE-vs-B spectrum with degeneracies arising at zeroth order~Sec. V!.
Therefore, this method establishes an orderly means of examining the complicated energ
trum of diamagnetic hydrogen.

In paper I we used the positions of the branch points in the complexm plane,22 together with
the analytic structure imparted by the branch points to the energy function in the complexm plane,
to determine the position of the avoided crossings, whether hidden or not. One of our purpo
this paper is to establish this analytic structure.23

As with the Barbanis system, the branch-point trajectories in the complexm plane as a
function of field strength exhibit nonanalytic behavior, where the branch points coalesce on
real axis~Sec. VII!. ~Here,m is the parameter continued off the real line, whereas the field stre
is the parameter not continued off the real line.! A second purpose of this paper, once we ha
determined the analytic form of the energy in the complexm plane, is to find a smooth param
etrization underlying the nonanalytic behavior of the branch points~Sec. VIII!, that is, to uncover
the nature of the singularity in the trajectory of the branch points as a function of field streng
we will see in Sec. VIII, the singular behavior of the branch-point trajectories in the complm
plane as a function of field strength arises quite naturally from the analytic form of the ene
the complexm plane. There is no need to further invoke any additional singular behavior. De
the common singularity at the coalescence points, the branch-point trajectories and their be
through the coalescence points can be markedly different. In Sec. IX we study this dissimila
deriving analytic expressions for the motion of branch points as a function of field strength
the coalescence points. For the two branch-point-pair trajectories studied in detail in this pap
show that, despite the differences in their trajectories, they share a common structure.

IV. DIMENSIONAL PERTURBATION THEORY

The basic steps involved in all dimensional scaling methods, including dimensional per
tion theory, are to generalize the system toD spatial dimensions and subsequently scale
physical variables to remove the leadingD dependence.19–21 With dimensional perturbation
theory, we then perform a perturbation expansion of the scaled Schro¨dinger equation about som
special value ofD that allows an analytic solution. The infinite-dimensional limit serves
purpose well for the diamagnetic hydrogen problem. To find the energy corresponding
three-dimensional system, we simply sum the perturbation series aboutD53 because allD de-
pendence is incorporated into the perturbation parameter.

Upon generalizing toD dimensions, the Schro¨dinger equationHC5EC has the form
H̃F5ẼF, where

H̃52
1

2
d2S ]2

]r̃2 1
]2

] z̃2D1Ṽeff , ~7!

Ṽeff5
124d13d2

8r̃2 1
B̃2r̃2

8
2

Z

Ar̃21 z̃2
, ~8!

F~r,z!5r~D22!/2C~r,z!, ~9!

and some of the physical quantities have been rescaled to obtain a useful infinite-dimen
limit:

r̃5d2r, z̃5d2z, E5d2Ẽ, B5d3B̃. ~10!

~For a more detailed discussion, including the following, see paper I.! Note that we have scaled th
physical magnetic field24 B and introduced the perturbation parameter
                                                                                                                



ane.
irect

e

-

the

gmuir

ic and
range

ns as

he dia-
plex

d
se

voided
he

224 J. Math. Phys., Vol. 41, No. 1, January 2000 Walkup, Dunn, and Watson

                    
d5
1

D12umu21
~11!

into the Hamiltonian. It is important to note that allD andm dependence is accounted for ind.
In this research,d is the parameter that is continued off the real axis into the complex pl

The field strengthB̃ is the real-valued, variable parameter. In other words, there is a d
correlation betweend and B̃ and the parametersu andv in Sec. II: (d,B̃)↔(u,v).

In the infinite-dimensional limit (d→0) all derivative terms in the Hamiltonian vanish, so w
obtain an ‘‘electrostatic’’ problem; the electron settles to the minimum of the limd→0 Ṽeff(r̃,z̃)
located at (rm,0). We denote the energy in this limit asE(`).

Using dimensionally scaled displacementsx1 andx2 , we next shift the origin to this minimum
by means of the relationsr̃5rm1d1/2x1 andz̃5d1/2x2 . We then expand the Schro¨dinger equation
in powers ofd1/2,

Ẽ5Ẽ~`!1dẼ~0!1(
i 51

`

Ẽ~2i !d i 11, ~12!

H̃~ r̃,z̃!5Ẽ~`!1dH̃~0!1(
i 51

`

H̃~ i !~x1 ,x2!d i /211, ~13!

F~r̃,z̃!5F~0!~x1 ,x2!1(
i 51

`

F~ i !~x1 ,x2!d i /2. ~14!

Note that the energy coefficients at half-integer powers ofd are identically 0, which is demon
strated in Sec. IV of Ref. 25. The general form ofH̃( i ) is given in Refs. 25 and 26.

By equating powers ofd1/2, we obtain an infinite set of coupled differential equations,
zeroth order of which is (H̃(0)2E(0))F (0)50, where

H̃~0!52
1

2 S ]2

]x1
2 1

]2

]x2
2D 1

1

2
v1

2x1
21

1

2
v2

2x2
22

1

2rm
2 ~15!

has been put into the same form as a two-dimensional SHO by defining the so-called Lan
oscillation frequenciesv1(B̃) and v2(B̃) ~explicit forms for both are in paper I!. Both the
d→0 limit and the harmonic zeroth-order wave functionF (0) not only automatically adapt asB
changes, but they adapt in a way that is sensitive to the interplay between the Coulomb
diamagnetic potentials. Therefore, dimensional perturbation theory is applicable to the entire
of field strengths, not just to the high-field or low-field regions.

Since dimensional perturbation theory naturally provides energies and wave functio
functions ofd, they are readily analytically continued off the reald axis into the complexd plane.
Therefore in this paper we seek to understand the avoided crossings, hidden or not, of t
magnetic hydrogen problem by studying the square-root branch-point structure in the comd
plane for realB̃.

V. AVOIDED CROSSINGS AND FERMI RESONANCES

At small d ~which is the same as largeD and largeumu! the Coulombic, diamagnetic, an
kinetic terms all contribute, so the small-d solution is sensitive to the interplay between the
terms asB̃ is changed. Therefore, we can understand much of the basic structure of the a
crossings from the behavior of the small-d solution, as we will see shortly. Note that much of t
following is discussed in more detail in paper I.

To harmonic order the energy is simply
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Ẽ5Ẽ~`!1dẼ~0!5Ẽ~`!1dF S n11
1

2Dv11S n21
1

2Dv22
1

2rm
2 G . ~16!

We assign the ket

un1n2&[F~0!~x1 ,x2!5hn1
~Av1x1!hn2

~Av2x2! ~17!

to represent the unperturbed harmonic basis, where then i are the quantum numbers of the SH
eigenfunctionshn i

(x). The quantum numbersn1 andn2 correspond to the number of nodal line
in the ẑ and r̂ directions, respectively. The basic topology of nodal lines is preserved at non
d with the stipulation that states are traced diabatically across avoided crossings. Therefore
the quantum numbersn1 andn2 to label the character of the state.

We denote the system paritypz , which refers to reflection in thez coordinate, by the value o
n2—even parity states correspond to even values ofn2 ; likewise for odd parity states. Although
we largely limit the following discussion to examining odd parity states, the qualitative featur
the response of the system to adiabatic changes inB̃, most importantly the branch point structure
and energy spectra, are essentially the same no matter which parity sector we cho
consider.8,27

The harmonic~zeroth-order! HamiltonianH̃(0) is completely separable inr̂ andẑ; that is, the
r̂ and ẑ degrees of freedom uncouple. This has important consequences for the harmonic
spectrum that results from Eq.~16!.

~1! The harmonic energy levels do not interact and actually cross asB̃ is adiabatically varied.~In
Fig. 2 we show the harmonic energy levels for those states we extensively discuss
paper. Paper I includes a more detailed plot.!

~2! These crossings, called Fermi resonances,28,29 occur at values ofB̃ determined by the Ferm
resonance conditionlv15kv2 , wherel andk are any two positive integers.2 For example, the
u11& and u05& states are degenerate at harmonic order nearB̃5320.8, where the ratiov2 /v1

54. Therefore, we say that these two states, even at converged orders, are related th
4:1 Fermi resonance.

FIG. 2. Harmonic order energy levels of diamagnetic hydrogen. Note that the 2:1 and 4:1 Fermi-resonance dege
involving the u11& state, extensively discussed in this paper, are circled. For clarity, we only show the lowest-lying
The u11& energy level~solid line! crosses even more higher-lying energy levels~at 6:1, 8:1,..., Fermi resonances! as it rises
toward the continuum. For a more complete spectrum, see paper I.
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The umu→` crossings become avoided crossings at finitem. Therefore, at finitem this pattern
of Fermi-resonance degeneracies among different states at different field strengths~that is, the
positions of the zeroth-order energy-level crossings! determines the basic evolution of the patte
of avoided crossings with adiabatic variations inB̃.

There is a clear relationship between theE-vs-B andE-vs-umu spectra. WhenB̃ is held constant
at some valueB̃0 , the avoided crossings asd is adiabatically varied occurs at some val
d[d0 . Now if d is held constant atd0 while B̃ is adiabatically varied, the avoided crossing occ
at roughlyB̃0 . This relationship was explained in paper I from the analytic structure of the br
points and the positions of the branch points in the complexd plane. In the next section we
establish the analytic structure of these branch points. We focus on two avoided crossi
particular~see Fig. 1!.

~1! The previously mentioned 4:1 Fermi resonance (v254v1) between theu05& and u11& states
nearB̃5320.8.

~2! A 2:1 Fermi resonance (v252v1) between theu03& and u11& states nearB̃532.1.

Both are the lowest-lying crossings for their respective field strengths. These are also the fi
crossings that theu11& state encounters as it rises toward the continuum asB̃ increases. They are
markedly dissimilar. The avoided crossing for the 2:1 Fermi resonance is a good exampl
hidden avoided crossing, whereas the 4:1 avoided crossing is so sharp as to look almos
level crossing. Furthermore, as we will see later, both avoided crossings have different b
point structures, yet underlying their branch point structures is a common characterization be
the branch point trajectories as functions of field strength and the resulting avoided crossin

VI. ANALYTIC ENERGY STRUCTURE OF DIAMAGNETIC HYDROGEN

In Sec. II we derived two basic criteria for determining the analytic energy structure o
avoided crossing. We now apply these criteria to determine whether the general energy st
or the reduced energy structure applies to the avoided crossings of diamagnetic hydrog
consider in this paper. At this point, we remind the reader that the parametersd and B̃ of the
diamagnetic hydrogen problem correspond to the parametersu andv in Sec. II, respectively.

A. Quadratic Pade´ analysis of the 2:1 and 4:1 Fermi resonances

We can use quadratic Pade´ approximants, which can naturally approximate functions with o
or two branches30 ~see Appendix A! to distinguish which of Eqs.~4! or ~5! is correct. Like linear
Padés, quadratic Pade´s are more accurate when the branch points are closer to the origin,
ensure that the quadratic Pade´s pick up any branch points that may be present inE1(d,B̃)
1E2(d,B̃) one should look for these branch points whenB̃ is such that they are close to th
origin. As shown in Appendix B, at least one of the branch points is close to the origin whenB̃ is
close to the Fermi resonance. However, after examining the quadratic Pade´ approximants for the
E1(0,B̃)1E2(0,B̃) series near both Fermi resonances, we find no branch points that conve
the origin as the Fermi resonance condition is approached. Therefore, according to criterio
Sec. II, this indicates that the reduced, and not the general, energy structure correctly param
the energies of the states involved in both the 2:1 and 4:1 Fermi resonances.

B. Analytic investigation of the energy structure of the 4:1 Fermi resonance

Upon applying degenerate perturbation theory to the 2:1 Fermi resonance states a
degeneracy in Appendix B, we obtain a series in powers ofd1/2; this leads us to conclude that th
energies have a square-root branch point at the origin. Naively, we would expect the same
and conclusion to hold for the 4:1 Fermi resonance. In Appendix C, however, we show that
not so, since the zeroth-order states turn outnot to be a superposition of theu11& andu05& harmonic
states, but rather either theu11& or the u05& harmonic state individually. Therefore, in this case t
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coefficients of the odd powers ofd1/2 in the energy series are 0 in the same way that the co
cients of the odd powers ofd1/2 in the energy series derived from nondegenerate perturba
theory are 0@see the text following Eqs.~12! and ~14!#.

Although the coefficients of the nondegenerate energy series rise without bound, indi
that at least one branch point is converging onto the origin at exact resonance~see Sec. VI A, as
well as Sec. VII B!, using degenerate perturbation theory we find no branch points at the orig
exact degeneracy. The two branch points must therefore annihilate at the origin, as in E~6!.
Therefore, according to criterion 2 in Sec. II, this rules out Eq.~4! for the energies of the 4:1
states.

Hence the independent arguments of Secs. VI A and VI B both agree and we conclude t
reduced energy structure, Eq.~5!, rather than the general energy structure, Eq.~4!, correctly
describes the analytic energy structure of the states for both Fermi resonances.

VII. BRANCH-POINT TRAJECTORIES OF DIAMAGNETIC HYDROGEN

We determined that Eq.~5! correctly characterizes the branch-point structure of the ener
of the 2:1 and 4:1 Fermi resonance states. Now we apply quadratic Pade´ approximants, which
naturally approximate functions with two branch points connecting two branches~see Appendix
A!, to determine the branch-point trajectories of this energy structure in the complexd plane as we
adiabatically varyB̃ along the real axis.

A. 2:1 Fermi resonance

In Fig. 3 we show the branch-point trajectories of the 2:1 Fermi resonance involving theu11&
and u03& states.~We denote the branch points asd6.) Here, the branch points are comple
conjugate untilB̃ reaches roughly 25.1, at which point the branch points coalesce onto the
tive real axis. From there one branch point travels toward2`, while the other travels toward th
origin. In Sec. VI A and Appendix C we demonstrated through degenerate perturbation theo
existence of a branch point at the origin at the 2:1 Fermi-resonance degeneracy. The branc
that travels toward the origin from the coalescence point reaches the origin atB̃532.1, the value
of B̃ at the 2:1 Fermi-resonance degeneracy. Once we increaseB̃ beyond this value both point
travel toward2` ~this last step is not demonstrated in Fig. 3!.

FIG. 3. Branch point structure of diamagnetic hydrogen in the complexd-plane relating to the 2:1 Fermi resonanc

involving theu11& andu03& states, for field strengths up toB̃530. The numbers near each branch-point location refer to

corresponding value ofB̃. The arrows on the real axis indicate the direction the branch points move as we increase th
strength. The branch points traveling toward the origin change direction once that branch point reaches the o

B̃532.1. The unmarkedd1 branch point locations close to the origin correspond to~from left to right! B̃528 and

B̃530.
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B. 4:1 Fermi resonance

In Fig. 4 we show the branch points that connect theu11& andu05& states, associated with a 4:
Fermi resonance, for various values ofB̃. If we start out withB̃,320.8, we see that the branc
points initially are complex conjugate and lie in the positive half-plane of the complexd plane. As
we increaseB̃, the branch points sweep toward the left in the complex plane until they sim
neously reach the origin at roughlyB̃5320.8; this value ofB̃ corresponds to the 4:1 Ferm
resonance degeneracy. As we saw in Sec. VI B, there are no branch points at the origin at th
4:1 Fermi resonance condition, so the branch points annihilate when they reach this point~denoted
by an open square in the figure!. This means that the two energy levels at the 4:1 Fermi-reson
degeneracy are not actually connected by square-root branch points. ForB̃.320.8 the branch
points reappear and separate on the negative real-axis, all the while traveling toward2` as we
increaseB̃.

VIII. SMOOTH PARAMETRIZATION OF THE BRANCH POINT TRAJECTORIES
THROUGH THE COALESCENCE POINTS

In Sec. VII we clearly show that the branch-point trajectories display nonanalytic behav
the coalescence points. In this section we identify a parametrization of the energy function
smooth and apparently analytic through these coalescence points; this in turn provides a
parameterization for the branch-point trajectories and makes explicit the nature of the sing
in the branch point trajectories.

A. The parametrization

If we define two functions

b~B̃!52
d̃1~B̃!1 d̃2~B̃!

2
, g~B̃!5Ad̃1~B̃!d̃2~B̃!, ~18!

we can reexpress Eq.~5! as

E6~d,B̃!5A6GAd212bd1g2, ~19!

FIG. 4. The branch-point structure of diamagnetic hydrogen relating to the 4:1 Fermi resonance involving theu11& andu05&

states. As in Fig. 3, the numbers refer toB̃. At the origin, which corresponds to the Fermi resonance, the branch p

annihilate~denoted by the open square!. Note that the branch-point pair locations forB̃5321 are so close together as to b
indistinguishable within the resolution of the plot.
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where the coefficientsA andG are functions ofd and B̃.
A priori there is no more reason to expectb andg to be smooth—or even analytic—function

of B̃ than there is for the branch-point locationsd̃6(B̃); we saw thatd̃6(B̃) are indeed nonana
lytic at the coalescence point. However, we plotb(B̃) andg(B̃) in Figs. 5 and 6 and we see tha
for both the 4:1 and 2:1 Fermi resonances, both functions are smooth, apparently analytic
tions of B̃ even as the branch points move through the coalescence point and Fermi-res
degeneracy. This means that the branch point positions in the complexd-plane are given by the
roots of the quadratic equation,

d212bd1g250, ~20!

where the nonanalytic behavior of the roots withB̃ is solely determined by the quadratic nature
the equation rather than any nonanalytic behavior of the parameters in Eq.~20!. Therefore, Eq.~5!
automatically determines the positions of the branch points from the last term of the re
energy structure, Eq.~20!; that is, the nonanalytic behavior of the branch points at the coalesc

FIG. 5. Branch-point parametersb52(d11d2)/2 andg56Ad1d2, whered6 are the branch points in Figs. 3, plotte

as functions ofB̃ for the 2:1 Fermi resonance. Note the smooth trajectories of both parameters through the coale
point and the Fermi resonance.

FIG. 6. The same as Fig. 5, except for the 4:1 Fermi resonance. As in Fig. 5, both parameters are smooth functioB̃,
even through the Fermi resonance~which coincides with the coalescence point for this interaction!.
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points is naturally explained from the analytic structure of the energy in the complexd-plane in
terms of smooth, apparently analytic, functionsb andg. The analytic structure of the energy in th
complexd-plane alone determines the nonanalytic behavior of the branch points as a funct
B̃!

Note that if the general energy structure, Eq.~4!, correctly parametrized the analytic structu
of the energy, the above economy of explanation would not hold since the terms in the brack
the right side of Eq.~4! cannot be expressed in terms ofb and g without the introduction of
additional singularities.

B. Branch-point trajectories as determined by the smooth parametrization of the
energy

The solutions of Eq.~20!,

d̃6~B̃!52b~B̃!6A@b~B̃!#22@g~B̃!#2, ~21!

allow us to understand the trajectories of the branch points in Figs. 3 and 4 from the beha
the smooth parametersb(B̃) andg(B̃) in Figs. 5 and 6. Since bothb andg are real, the branch
pointsd6 either both lie on the real axis or are complex conjugate. This also means thatg2 and
b2 are always positive, regardless of the field strength. The field strengthB̃c at which the branch
points coalesce onto the real axis corresponds tob25g2. Across the branch point singularity i
Eq. ~21! at B̃c , the branch pointsd̃6 discontinuously change their behavior asb22g2 changes
sign. Therefore, for the purposes of this analysis it is convenient to divide the branch
trajectories into two separate regions of field strength:B̃<B̃c and B̃.B̃c .

We initially considerB̃,B̃c and allow it to increase adiabatically. For the 2:1 Fermi re
nance in Fig. 3,b2<g2 whenB̃,B̃c . Therefore, the branch points form complex-conjugate p
straddling the positive real axis. Initially,b,0, so the branch points lie in the positive half-plan
As b increases to 0 as we increaseB̃, the value ofb22g2 approaches 0 but remains negativ
Therefore, the branch points approach the imaginary axis with a falling imaginary compo
crossing the axis whenb50. The parameterb becomes increasingly positive as we increaseB̃,
while g continues to fall, so the branch points continue to sweep toward the left in the neg
half-plane. During this time the imaginary component continues to shrink untilb25g2 at B̃c , at
which point they coalesce onto the negative real axis.

When B̃.B̃c the quantityb22g2.0, so from Eq.~21! the branch pointsd6 lie on the real
axis. Sinceb>Ab22g2, both branch points must be negative. The parameterg continues to fall
asB̃ increases pastB̃c , soAb22g2 rises in value faster thanb. Therefore, whiled2 travels in the
negative direction from the coalescence point,d1 initially travels toward the origin. However,g2

has a minimum value of 0 at the Fermi resonance, sod1 bounces off the origin at the Ferm
resonance and then followsd2 in the negative direction.

The nonanalytic behavior of the 4:1 Fermi-resonance, branch-point trajectories of Fig
similarly explained from the plots ofb(B̃) andg(B̃) in Fig. 6. In this case the coalescence poi
b5g, coincides with the Fermi resonance,g50. The parametersb andg are almost straight lines
passing through the origin with opposite gradient, sob22g25(b2g)(b1g) in the radical of Eq.
~21! is not readily determined from Fig. 6. The quantity (b2g) is close to a straight line, but with
twice the gradient ofb. Therefore (b2g),0 for B̃,B̃c , whereas (b2g).0 for B̃.B̃c . The
quantity (b1g)>0, with a minimum of 0 at the coalescence points~see Fig. 7!. Therefore, since
b22g2,0 for B̃,B̃c , the branch points of the 4:1 Fermi resonance, as for the 2:1 Fermi
nance, are complex conjugate in the complexd plane for these values ofB̃. Becauseb22g2

.0 whenB̃.B̃c , both branch points of the 4:1 Fermi resonance lie on the negative real ax
these values ofB̃. Since (b1g)!b, both branch points travel in the negative direction more
less as a pair centered around the point2b.
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IX. ANALYTIC BEHAVIOR OF THE BRANCH POINTS AT THE COALESCENCE POINTS

Although we found a common singularity structure in the branch-point trajectories of bot
2:1 and 4:1 Fermi resonances, the trajectories of Figs. 3 and 4 differ significantly. Given the
smooth parametrization we can investigate this further and determine from Eq.~21! the precise
nonanalytic behavior of the branch points through the coalescence points. At the coalescenc
B̃[B̃c andb(B̃c)5g(B̃c)5a, so we can expandb andg as

b5a1b~DB̃!1c~DB̃!21¯ , g5a2e~DB̃!1 f ~DB̃!21¯ , ~22!

whereDB̃[B̃2B̃c . Substitutingb andg into Eq. ~21! we find to lowest order that

d̃652a2b~DB̃!2c~DB̃!2

6~DB̃!1/2A2a@~b1e!1~c2 f !~DB̃!#1~DB̃!@~b22e2!12~bc1e f !~DB̃!#. ~23!

Therefore to second order in (DB̃)1/2 the branch points of the 2:1 Fermi resonance in the ne
borhood of the coalescence point behave as

d̃652a2b~DB̃!6~DB̃!1/2A2a~b1e!. ~24!

Now we consider the 4:1 Fermi resonance. Figure 6 shows thata50. From Eqs.~22! we get

b1g

DB̃
5~b2e!1~c1 f !~DB̃!1¯ , ~25!

from which Fig. 7 shows thatb5e. Therefore, to fourth order in (DB̃)1/2 Eq. ~23! becomes

d̃65~DB̃!@2b2c~DB̃!6~DB̃!1/2A2b~c1 f !# ~26!

for the 4:1 Fermi resonance in the neighborhood of the coalescence point/Fermi resonanc
Equations~24! and ~26! reveal the square-root branch-point singularities that account for

nonanalytic behavior atB̃c of the branch-point trajectories in the complexd plane for the 2:1 and
4:1 Fermi resonances, respectively. They also make it clear where the differences in the b
point trajectories develop. Surprisingly, the right side of Eq.~26! has the same form as the righ
side of Eq.~24! except that it is multiplied byDB̃5(B̃2B̃c). Hence, the plot ofd̃6(B̃)/(B̃

FIG. 7. Plot of the sumsb1g and (b1g)/(B̃2B̃) as functions ofB̃ for the 4:1 Fermi resonance.
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2B̃c) for the 4:1 Fermi resonance should look similar in structure to the plot ofd̃6(B̃) for the 2:1
Fermi resonance. Comparing Figs. 8 and 3 we see that this is indeed the case; the branc
travel in opposite directions along the real axis asB̃ is raised past the coalescence points. T
branch point traveling in the negative direction then reverses direction and follows the
branch point in the positive direction.31

X. CONCLUSION AND DISCUSSION

In an atomic system, there is a direct relationship between avoided crossings appearin
energy spectrum and square-root branch points appearing in the complex parameter plan
typically thinks of these branch points as connecting states of real energy. However, beca
eigenvalues of the general quantum-mechanical problem can be complex-valued, these squ
branch points can also connect states with real energies to states with complex energie
opens up the possibility of an alternative analytic energy structure, which we termed thegeneral
energy structure,

E6~u,v !5A6@CAu2u11FAu2u2#1GAu2u1Au2u2,

which describes the relationship between the energy eigenvalues in the complexu plane as the
variable parameterv is swept across avoided crossings. Here,u1 andu2 are the locations of the
square-root branch points on the complexu plane. As we saw in Fig. 2, this analytic structure c
produce avoided crossings in atomic spectra.

Under certain conditions, the general energy structure reduces to thereduced energy structure,

E6~u,v !5A6GAu2u1Au2u2,

having a completely different topological character, namely a reduction from a four-sheete
two-sheeted Riemann surface and the absence of branch points connecting real-energy
complex-energy states. In this paper, we established two criteria for determining which e
structure is correct for a given quantum-mechanical problem. Using dimensional pertur
theory with the perturbation parameterd, we applied these criteria to the example problem

FIG. 8. Plot ofd6(B̃)/(B̃2B̃c) for the 4:1 Fermi resonance, for field strengths up toB̃5329. The coalescence point her

occurs at the 4:1 Fermi resonance, which occurs roughly atB̃5320.8. The unmarked branch point locations ford2 ~open

circles! on the real axis are, from left to right,B̃5323, 321, 325, 327, 329. Note that atB̃5321 the branch pointd2 lies
practically on top of the coalescence point, whereas the other branch point has already moved a significant distan

right. Once the field is strengthened beyondB̃c , the d2 branch point initially travels toward the left, subsequen
reversing its direction and traveling in the same direction asd1. Compare to Fig. 3 and note the similarity in th
branch-point trajectories.
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diamagnetic hydrogen. We found that the reduced energy structure is the appropriate struc
the branch-point trajectories studied in this problem. Once we determined the analytic form
energy in the complexd plane, we found a smooth parametrization underlying the nonana
structure of the square-root branch points.

Diamagnetic hydrogen features a tunable external parameter~the scaled external fieldB̃) and
displays a complex series of avoided crossings as the field is varied adiabatically. Desp
complexity, there is a direct correspondence between Fermi resonances appearing at zero
in perturbation theory and avoided crossings appearing in the energy spectrum. The two a
crossings studied in this research, corresponding to a 2:1 and 4:1 Fermi resonance between
levels, differ markedly. First, the avoided crossing corresponding to the 2:1 Fermi resona
essentially a hidden crossing and is very difficult to discern from a plot of the energy levels
other avoided crossing is so sharp that it resembles a level crossing at ordinary resolutio~see
Ref. 8!. The square-root branch-point trajectories of the two avoided crossings in the compd
plane also differ significantly, as we saw in Figs. 3 and 4.

However, we found that the square-root branch-point trajectories of both avoided cro
share the same parametrization,

E6~d,B̃!5A6GAd212bd1g2, ~27!

whereb andg are smooth parameters of the square-root branch-point locationsd1 andd2 in the
complex d plane. Furthermore, when we factor (B̃2B̃c) from the 4:1 branch point function
@compare Eqs.~26! and~24!#, the resulting trajectories are qualitatively the same as the 2:1 br
points ~see Figs. 3 and 8!.

As B̃ increases, theu11& state avoidedly crosses theu0(2n11)& states, wheren51,2,3,..., at
2n:1 Fermi resonances as it rises toward the continuum~see Fig. 1 and the caption!.32 A similar
analysis for the 6:1, 8:1,..., Fermi resonances of theu11& state as performed in Appendix C
indicates that, as for the 4:1 Fermi resonance, no square-root branch point is present atd50 for
exact resonance. The square-root branch points must therefore annihilate at the origin.~See Fig.
4.! Therefore, given the previously mentioned behavior of the 2:1 and 4:1 square-root b
points, we speculate that the ratiod6/@(21)(B̃2B̃c)# (n22) for the 2n:1 Fermi resonances in
volving the u11& state will show the same qualitative features and will behave in the same fa
as the square-root branch points for the 2:1 Fermi resonance near the coalescence points.
question that remains for the future is how the square-root branch-point trajectories beha
other Fermi resonances such as the 3:2 Fermi resonances.

Having determined that the reduced energy structure is appropriate for diamagnetic hyd
~and other problems that have been successfully truncated to a finite, symmetric-matrix,
value problem!, the question arises as to what problems the general energy structure may
Solov’ev, Ovchinnikov, and co-workers found a series of square-root branch points in the co
R plane of the two-center Coulomb problem, giving rise to a ladder of avoided crossings ha
limit point at the continuum.4 This series of states is closed, however, since a square-root br
point of the lowest-lying state in the series connects with a resonance state~complex energy!,
which then has another square-root branch point at the limit point at the continuum connec
the ‘‘top’’ of the series. Since the square-root branch points at the bottom and top of the
connect with a state with complex energy rather than real energy, the general energy stru
a strong candidate to describe the analytic structure of these particular square-root branch p
the energy function.

Although we saw in Fig. 2 that the latter equation can lead to avoided crossings be
energy levels, for certain parameter values the energy levels can look quite striking. An ex
is shown with dashed lines in Fig. 2. The analytic structure of the general energy structure is
possibility for a system where the energy levels behave in a similar way to those in the fig
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APPENDIX A: QUADRATIC PADÉ APPROXIMANTS

To analyze the divergent energy series we employ both linear Pade´s and quadratic Pade´s.33

Quadratic Pade´s have a functional form that enables them to incorporate explicitly square
branch-point singularities; in addition, linear Pade´s S@L/M # ~see below! are determined by the
requirement that

QE2P;0,

whereE is the energy series,P is anLth-order polynomial,Q is an M th-order polynomial with
zeroth-order coefficientq0[1, and ‘‘;0’’ means ‘‘asymptotic34 to 0 up to and including orde
L1M . ’’ Therefore the energy seriesE is asymptotic to the rational function of polynomials,
linear Pade´s,

S@L/M #5
P

Q
,

up to and including orderL1M . In other words,

E;S@L/M # .

The value ofS@L/M # for a specific value of the perturbation parameter is the@L/M # linear Pade´
sum of the energy expansion at that value of the perturbation parameter. By introducing a
polynomialR of orderN, we can determine the quadratic Pade´s S@L/M /N# from the equation

QE22PE1R;0,

where ‘‘;0’’ means asymptotic to 0 up to and including orderL1M1N11. Therefore

E;S@L/M /N# , S@L/M /N#5
1

2 S P

Q
1

A~P224QR!

Q D . ~A1!

The square-root term in Eq.~A1! requires thatS@L/M /N# be a multivalued function with two
branches.35 Equation~A1! holds for only one of these two branches. The value ofS@L/M /N# for
some value of the perturbation parameter is the@L/M /N# quadratic Pade´ sum of the energy
expansion at that value of the perturbation parameter. Although quadratic Pade´ summation is
useful in its own right for summing series of functions with branch points, we simply use
locate such branch points. The branch points are given by the zeros ofP224QR, which have a
stable position asL,M , andN are varied in a regular fashion so thatL1M1N11 increases.

APPENDIX B: VERIFICATION OF BRANCH POINTS AT THE ORIGIN AT THE FERMI
RESONANCE

At the Fermi resonance,d50 andE1(0,B̃)5E2(0,B̃). Therefore, there are two possibilitie

~1! At least one branch point is found at the origin.@The coefficientC(d,B̃) or F(d,B̃) in front of

the nonzeroAd2 d̃6(B̃) term in Eq.~4! must be 0. This possibility imposes no constraint
G(d,B̃) in Eq. ~5!, sinced2 d̃2(B̃)50.#

~2! Neither branch point is found at the origin.@This requires thatC(d,B̃)5F(d,B̃)50 in Eq.~4!

andG(d,B̃)50 in Eq. ~5!.#

To see which of these two possibilities is correct, we only need to examine the magnitu
the coefficients in thed expansions forE6(d,B̃) near the Fermi resonance. If the coefficien
diverge without bound asB̃ approaches the Fermi resonance, then at least one of the singula
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approaches the origin and the first possibility is correct. This is what occurs for both the 2:
4:1 Fermi resonances~see Table I!; one or more branch points converge onto the origin at
Fermi resonance.

For the 2:1 Fermi resonance, we can even show analytically the presence of a branch p
the origin when the 2:1 Fermi-resonance degeneracy condition between theu11& and u03& states is
met exactly. This can be achieved using degenerate perturbation theory~see Appendix C!, the
required method when two zeroth-order states are degenerate. Although degenerate pert
theory proceeds in almost exactly the same fashion as nondegenerate perturbation theory o
zeroth-order state has been determined, the fact that the zeroth-order state is a linear supe
of both the u11& and u03& states means that the usual arguments for the coefficients of the
powers ofd1/2 in the energy series being 0 in nondegenerate perturbation theory break dow
degenerate perturbation theory@see the text following Eqs.~12! and ~14!#. This confirms the
presence of a branch point at the origin when the 2:1 Fermi-resonance degeneracy cond
exactly satisfied.

The application of degenerate perturbation theory to the 4:1 Fermi resonance is a little
ent from the ordinary. See Sec. VI B and Appendix A.

APPENDIX C: BRANCH POINT BEHAVIOR VIA DEGENERATE PERTURBATION
THEORY

The harmonic Hamiltonian has the same form as a two-dimensional SHO, therefore w
pand the perturbed states in the two-dimensional SHO basisun1n2&. The u11& state is involved in
both crossings under consideration. The other is either theu03& state~2:1 Fermi resonance! or the
u05& state~4:1 Fermi resonance!. Therefore, for the two-fold degeneracies we consider, we exp
the nth perturbed eigensolutions to second order ind1/2 as36

uFn&5cn1
~0!u1&1cn2

~0!u2&1d1/2(
m53

`

cnm
~1!um&1d (

m53

`

cnm
~2!um&, En5En

~0!1d1/2En
~1!1dEn

~2! .

~C1!

Hereu1&[u11&,u2& refers to either theu03& or the u05& state~depending on which crossing we a
considering! and theum& number all unperturbed states other thanu1& and u2&.

The first-order correction to the harmonic Hamiltonian,H(1), contains the following set of
annihilation/creation operatorsai :

TABLE I. Fourth-order energy coefficients@see Eq.~12!# of the u11& state as

functions ofB̃ in the large-B̃ limit. The numbers in parentheses indicate the
power of ten multiplying the entry.

B̃a Ẽ(8)b

10 000 1.335 658 355 161 043 7~6!
20 000 9.219 812 971 701 488 0~6!
30 000 2.500 827 269 969 464 2~7!
40 000 4.909 890 763 042 328 3~7!
50 000 8.166 493 972 677 507 6~7!
60 000 1.227 877 215 814 609 3~8!
70 000 1.725 028 249 180 563 6~8!
80 000 2.308 203 884 634 792 1~8!
90 000 2.977 354 404 967 420 7~8!

aNote that the scaled field strengths listed are extremely large physically,

even for large values ofumu. From B5d3B̃, the scaled strengthB̃
510 000 corresponds to nearly 7500 Tesla whenumu533. At umu50 this
field strength is on the order of 108 Tesla.

bCalculated using a computer algorithm in Ref. 25.
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H~1!:$a1
3I 2 ,a1I 2 ,ã1

3I 2 ,ã1I 2 ,a1a2
2,a1ã2

2,ã1a2
2,ã1ã2

2%, ~C2!

whereI 1 andI 2 refer to diagonal operators operating on the first and second quanta, respec
Now consider first-order degenerate perturbation theory. Since there are no purely di

terms,H11
(1)5H22

(1)50. ThereforeEn
(1)56uH12

(1)u. For the 2:1 Fermi resonance,En
(1)Þ0 because

^11uH(1)u03&Þ0. However,̂ 11uH(1)u05&50.
For the 4:1 Fermi resonance (u2&[u05&) we cannot determine either of the expansion co

ficientscn1
(0) or cn2

(0) at first order sinceH11
(1)5H22

(1)5H12
(1)5H21

(1)50, so we now resort to the nex
order of perturbation theory to determine the zeroth-order states at the degeneracy.

The first-order perturbed wave function coefficients are given by

cnm
~1!5

cn1
~0!Hm1

~1!1cn2
~0!Hm2

~1!

En
~0!2Em

~0! , Hi j
~a![^ i uH~a!u j &. ~C3!

According to Eq.~C2!, there are only nine possibleum& for cnm
(1)Þ0:

um&P~ u01&,u21&,u23&,u41&,u03&,u13&,u15&,u17&,u35&). ~C4!

The first five states in the set above are connected byH(1) to u05&, whereas the final four are
connected byH(1) to u11&. It is important to note that noum& state simultaneously connectsH(1) to
both u05& and u11&.

The second-order perturbation,26

H~2!50v2,4x1
411v2,4x1

2x2
212v2,4x2

41v2,2x1
21v2,0 ~C5!

contains the following annihilation/creation operators:

H~2!:$a1
4I 2 ,a1

2I 2 ,ã1
2I 2 ,ã1

4I 2 ,a1
2a2

2,a1
2ã2

2,ã1
2ã2

2,I 1a2
2,I 1ã2

2,ã1
2a2

2,I 1a2
4,I 1ã2

4,I 1I 2 ,%. ~C6!

At second order we have the coupled equations,36

(
m53

`

cnm
~1!Hsm

~1!1(
l 51

2

cnl
~0!Hsl

~2!5(
l 51

2

cnl
~0!En

~2!^su l &, ~C7!

where^su l &5dsl . For s corresponding tou11&,

(
m53

`

cnm
~1!H1m

~1!1cn1
~0!H11

~2!1cn2
~0!H12

~2!5cn1
~0!En

~2! , ~C8!

and fors corresponding tou05&,

(
m53

`

cnm
~1!H2m

~1!1cn1
~0!H21

~2!111cn2
~0!H22

~2!5cn2
~0!En

~2! . ~C9!

From Eq.~C3!, the first-order wave function coefficientscnm
(1) are functions ofcn1

(0) andcn2
(0) .

Therefore, the first term on the left side in Eq.~C8! is given by

(
m53

`

cnm
~1!H1m

~1!5 (
m53

` Fcn1
~0!Hm1

~1!1cn2
~0!Hm2

~1!

En
~0!2Em

~0! GH1m
~1! . ~C10!

But we know thatHm2
(1)H1m

(1)5^muH(1)u05&^11uH(1)um&50, sinceH(1) cannot simultaneously con
nect um& to u11& and u05&. Therefore
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(
m53

`

cnm
~1!H1m

~1!5 (
m53

` uHm1
~1!u2

En
~0!2Em

~0! cn1
~0! . ~C11!

Similarly, the first term on the left side of Eq.~C9! becomes

(
m53

`

cnm
~2!H2m

~1!5 (
m53

` uHm2
~1!u2

En
~0!2Em

~0! cn2
~0! . ~C12!

Combining like coefficients ofcn1
(0) andcn2

(0) in Eqs.~C8! and ~C9!, we find

S M11H12
~2!

H21
~2!M22

D S cn1
~0!

cn2
~0!D 50, ~C13!

where

M11[ (
m53

` uHm1
~1!u2

Enm
~0! 1H11

~2!2En
~2! , M22[ (

m53

` uHm2
~1!u2

Enm
~0! 1H22

~2!2En
~2! . ~C14!

However,H(2) cannot connect statesu11& and u05& since none of the raising/lowering operators
H(2) raise or lowern1 by only one quanta. This means that the matrix operator in Eq.~C13! is
diagonal with eigenvectors

S cn1
~0!

0 D and S 0
cn2

~0!D . ~C15!

Therefore, the zeroth-order wave functions of degenerate perturbation theory for the states
4:1 Fermi resonance at exact degeneracy are not composed of a linear combination of theu05& and
u11& harmonic functions, but instead consist of only one of the two harmonic functions.

In summary, no branch points connect the two states at the 4:1 Fermi resonance. This e
the branch point annihilation at the Fermi resonance in Fig. 4. From the above argumen
branch-point annihilation should exist for the 6:1, 8:1, 10:1,..., Fermi resonances as well, alt
this has not been confirmed. On the other hand, the interaction between theu11& and u03& states,
which connect at first order, does not feature branch point annihilation at the 2:1 Fermi reso
and therefore both mixing coefficients are nonzero for all field strengths.

1W. D. Heiss and W.-H. Steeb, J. Math. Phys.32, 3003~1991!.
2M. Dunn, D. K. Watson, J. R. Walkup, and T. C. Germann, J. Chem. Phys.104, 9870~1996!.
3C. M. Bender, H. J. Happ, and B. Svetitsky, Phys. Rev. D9, 2324~1974!.
4E. A. Solov’ev, Zh. Eksp. Teor. Fiz.81, 1681~1981! @Sov. Phys. JETP54, 893 ~1981!#; S. Yu. Ovchinnikov and E. A.
Solov’ev, Comments At. Mol. Phys.22, 69 ~1988!; E. A. Solov’ev, Usp. Fiz. Nauk157, 437~1989! @Sov. Phys. Usp.32,
228 ~1989!#; T. P. Grozdanov and E. A. Solov’ev, Phys. Rev. A51, 2630~1995!; R. K. Janev, J. Pop-Jordanov, and E
A. Solov’ev, J. Phys. B30, L353 ~1997!.

5M. Pieksma and S. Yu. Ovchinnikov, J. Phys. B24, 2699~1991!.
6D. Jakimovski, V. I. Savichev, and E. A. Solov’ev, Phys. Rev. A54, 2962~1996!.
7S. J. Ward, J. H. Macek, and S. Yu. Ovchinnikov, Nucl. Instrum. Methods Phys. Res. B143, 175 ~1998!.
8J. R. Walkup, M. Dunn, D. K. Watson, and T. C. Germann, Phys. Rev. A58, 4688~1999!.
9E. A. Solov’ev, Zh. Eksp. Teor. Fiz.90, 1165~1986! @Sov. Phys. JETP63, 678~1986!#; 91, 477~1986! @Sov. Phys. JETP
64, 280 ~1987!#.

10G. Arfken, Mathematical Methods for Physicists~Academic, San Diego, 1985!, pp. 377–378.
11Bender, Happ, and Svetitsky in Ref. 3 consider a finiteN3N matrix approximation to the full Schro¨dinger equation, and

show that, although one can expect square-root branch points, we must view the presence of higher-order bran
as quite fortuitous. In the context of the multivariable problem, it means that with any change of the paramet
continued off the real axis, a higher-order-root branch point in the complex plane of the parameter continued off
axis disappears. Therefore, in situation 1 the parameter continued off the real axis is the same as the parame
being adiabatically varied. Except for possible isolated values of the parameters held along the real axis, high
branch points play no role in the avoided crossings of the system. In situation 2, the parameter continued
complex plane is different from the parameter that is adiabatically varied. A higher-order branch point may mome
                                                                                                                



the real
nergies

nergies

root branch
ry
tic Pade

states that
sitive,

in the

x
er and

y

across the

the

ch, J.

TO

ional
poles

imating
d

d
e

ergies

up.

238 J. Math. Phys., Vol. 41, No. 1, January 2000 Walkup, Dunn, and Watson

                    
appear as we scan the adiabatic variable, but the higher-order branch point would have to be sufficiently close to
axis, and the summation point close to the place where it momentarily appears, for it to have any effect on the e
of states.

12A. Bohm,Quantum Mechanics: Foundations and Applications~Springer-Verlag, New York, 1986!, Sec. I.7 and Chapter
XXI.
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On the universality of almost every quantum logic gate
Nik Weavera)

Mathematics Department, Washington University, St. Louis, Missouri 63130

~Received 14 June 1999; accepted for publication 6 October 1999!

Lloyd @Phys. Rev. Lett.75, 346 ~1995!# showed that almost every quantum logic
gate is universal in the sense that it can be used to approximate any unitary trans-
formation. The argument relied on a more general fact whose proof was not given
in detail. We give a complete proof of this more general fact. ©2000 American
Institute of Physics.@S0022-2488~00!02201-5#

In Ref. 1 Lloyd announced the following result. LetA and B be Hermitian matrices of
dimension at least 2 and letL be the Lie algebra they generate though commutation—that is,L is
the real linear span of the matrices

A,B,i @A,B#,@A,@A,B##,...;

then for anyLPL, the unitary matrixU5eiL can be expressed in the form

U5eiAt1eiBt2eiAt3eiBt4
¯ . ~* !

This implies that almost everyA andB are universal in the sense that any unitary matrixU can be
realized by the expression~* !.

Informally, one thinks ofA as the intrinsic Hamiltonian of a quantum system and takesB to
be a different Hamiltonian resulting from some external influence which can be applied at wi
turning B on and off for successive time intervals of various lengths, one can achieve any
evolution of the form~* !, and the claim is that for almost everyA andB this suffices to produce
any desired unitary evolution. It follows that almost any quantum logic gate with two inpu
universal. This verifies a conjecture of Deutsch2 and generalizes a result of Deutsch, Barenco,
Ekert.3

The proof was only sketched in Ref. 1, and actually the claim is not exactly true. The pro
involves the use of negative values fort j , clearly a practical impossibility, first explicitly in the
expression

~e2 iBAt/ne2 iAAt/ne2 iBAt/neiAAt/n!n

and then implicitly in the assertion that the unitaries given by~* ! form a manifold. However, this
problem is irrelevant to the main issue of universality of quantum logic gates, since, as
notes later in his paper,eiAt can be approximated with arbitrary accuracy by the powers of s
fixed eiAtA. This is true for both positive and negative values oft, so the difficulty does not
invalidate the main line of argument.

Nonetheless, this objection is genuine, as the following example shows. LetA andB be the
232 matrices,

A5S a 0

0 bD , B5S 0 0

0 0D
a!Electronic mail: nweaver@math.wustl.edu
2400022-2488/2000/41(1)/240/4/$17.00 © 2000 American Institute of Physics
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~a,b real!. Then any expression of the form~* ! with non-negativet j can be simplified toeiAt for
somet>0. But if a/b is irrational, thenU5e2 iA cannot be expressed in such a form. For then
would have

e2 iA5eiAt,

hence

S e2 ia 0

0 e2 ibD 5S eiat 0

0 eibtD
and

ei ~at1a!515ei ~bt1b!,

so thatat1a and bt1b are both integer multiples of 2p. Since tÞ21 this implies thata/b
5(at1a)/(bt1b) is rational.

In the previous example the operatore2 iA can beapproximatedby eiAt for positive values of
t. Indeed, in general ifA is a Hermitian matrix of any finite dimension then given anys.0 we
may find t.s such thatlt is approximately an integer multiple of 2p, simultaneously for every
eigenvaluel of A. TheneiAt approximates the identity matrix, soeiA(t2s) approximatese2 iAs.
This is essentially the same as the observation following Eq.~3! in Ref. 1.

Thus, the reasoning in Ref. 1 does imply that for everyLPL the unitary matrixeiL can be
approximated by operators of the form~* !. This does not settle the question of exact represe
tion of unitary matrices. However, the approximate result can be used to prove an exact re

We review the argument that verifies this approximate result, which states:Let A and B be
n3n Hermitian matrices(n>2) and letL be the Lie algebra they generate through commu
tion; then for any LPL, the unitary matrix U5eiL can be approximated by finite products of th
form ~* !, with each tj positive. The proof proceeds on the complexity ofL. If L5A or L5B the
conclusion is immediate. ForL5 i @A,B# we have

lim
k→`

~eiA/AkeiB/Ake2 iA/Ake2 iB/Ak!k5eiL .

Thus eiL can be approximated by finite products of the form~* !, if the t j are allowed to take
negative values. But as we previously noted, the negative exponentse2 iA/Ak ande2 iB/Ak can be
approximated by positive exponents; so in facteiL can be approximated by finite products of th
form ~* ! with positive t j . The conclusion can be inductively extended to more complex com
tators.

Using this approximate result, we can now prove the desired theorem:For almost all Her-
mitian n3n matrices A and B(n>2), every unitary n3n matrix can be exactly represented
the form~* ! with each tj>0.

Observe first that it will suffice to consider only unitary matrices which are close to
identity matrix I, because any unitary matrix is a power of one close to the identity. That
U5eiL thenU5(eiL /k)k, so we need only to representeiL /k in the form ~* ! for largek.

Indeed, it will suffice to represent all unitaries close toanygiven unitaryU0 . For any unitary
close toI may be expressed as a power ofU0 times a unitary close toU0 . In other words, if we
can represent everyV within some neighborhood ofU0 then in particular we can representU0

itself, and hence also anything of the formU0
kV. Choosing a power ofU0 which is sufficiently

close toU0
21, this left multiplication byU0

k will take the neighborhood ofU0 onto a neighborhood
of I.

Let L be the Lie algebra generated byA andB through commutation. As noted in Ref. 1, fo
almost everyA andB this algebra contains every Hermitian matrix. Therefore we assume th
the case.
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Find unitariesV1 ,...,Vn2 such that$V1AV1
21,...,Vn2AVn2

21% span the real vector space of a
n3n Hermitian matrices. This can be done provided tr(A)Þ0 andA is not a scalar multiple ofI,
and such matricesA constitute a set of full measure; to avoid interrupting the main line
argument we postpone verification of this claim to the end of the proof. We may also takV1

5I . Now by the approximate representation result, find unitariesU1 ,...,Un221 each in the form
~* ! with positive t j , such thatU j approximatese2 iAVj

21Vj 11 . Then let Un25e2 iA and U0

5eiAU1eiAU2 ...eiAUn2.
Let M be the manifold of alln3n unitary matrices and consider the mapF:Rn2→M defined

by

F~s1 ,...,sn2!5eiAs1U1eiAs2U2¯eiAsn2Un2 .

If the sj are all positive thenF(s1 ,...,sn2) is evidently representable in the form~* ! with positive
t j . We will show thatF maps neighborhoods of the point~1, 1,...,1! onto neighborhoods ofU0 ,
and this will complete the proof.

By the implicit function theorem~see, e.g., Ref. 4!, this will follow if we can show that the
Jacobian ofF at ~1, 1,...,1! is nonzero. Equivalently we may consider the mapF0 defined by
F0(s1 ,...,sn2)5F(s1 ,...,sn2)•U0

21.
A simple calculation shows that

]F

]sj
U

s15¯5sn251

5 ieiAU1¯eiAU j 21AeiAU j¯eiAUn2

and therefore

]F0

]sj
U

s15¯5sn251

5 ieiAU1¯eiAU j 21AUj 21
21 e2 iA

¯U1
21e2 iA.

By the definition of theU j ’s, this simplifies to

]F0

]sj
U

s15¯5sn251

' iV jAVj
21,

which shows that partial derivatives ofF0 at the origin span the space of skew-Hermitian ma
ces, by our original choice of theVj ’s. Thus its Jacobian is nonzero at the the point~1, 1,...,1!, as
desired.

This completes the proof, modulo the claim that if tr(A)Þ0 andA is not a scalar multiple of
I then the matricesV AV21, asV ranges over all unitaries, span the real vector space of Herm
matrices. To verify this we use the fact that^A,B&5tr(AB) defines an inner product which make
the Hermitian matrices into a real Hilbert space. Thus if the matricesV AV21 do not span this
space then there must be a Hermitian matrixB such that tr(V AV21B)50 for every unitaryV.
Taking V so thatB andV AV21 are simultaneously diagonalizable, we find thatSaibi50 where
ai are the eigenvalues ofA—in any order—andbi are the eigenvalues ofB. SinceA is not a scalar
multiple of I, theai are not all identical, and since tr(A)Þ0 neither are thebi . Thus there must
exist indicesi 0 and i 1 such thatai 0

Þai 1
andbi 0

Þbi 1
, and this implies that (ai 0

2ai 1
)(bi 0

2bi 1
)

Þ0, hence

ai 0
bi 0

1ai 1
bi 1

Þai 0
bi 1

1ai 1
bi 0

.

Therefore we cannot also haveSaibi50 for the rearrangement of theai which switchesai 0
and

ai 1
. This contradiction shows that the matricesV AV21 must span the space of Hermitian mat

ces.
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An interesting feature of this solution is that one cannot achieve or even approximate u
matrices close to the identity in arbitrarily short times. Because of the restriction to positivet j , in
short times one can only reach unitaries which are, so to speak, ‘‘on one side’’ of the ident
more full explanation of this phenomenon in control-theoretic terms will be given elsewher
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A transformation of a Feynman–Kac formula
for holomorphic families of type B

Olaf Witticha)

Fachbereich Mathematik, Universita¨t Kaiserslautern, Erwin Schro¨dinger Straße,
67633 Kaiserslautern, Germany and IBB, GSF–National Research Center for Environment
and Health, 85764 Neuherberg, Germany

~Received 14 April 1999; accepted for publication 14 September 1999!

A transformation formula for resolvents of families of Schro¨dinger operators
H(j)52 1

2D1jQ, which are assumed to be holomorphic of type B, is proved. It
can be used to derive the well-known correspondence between three-dimensional
Coulomb problem and four-dimensional harmonic oscillator. ©2000 American
Institute of Physics.@S0022-2488~99!03112-6#

I. INTRODUCTION

It is well known ~see Ref. 1! that the heat equation semigroup generated by a Schro¨dinger
operator bounded from below~and therefore its resolvent! can be represented probabilistically
an expectation value of a functional of some stochastic process. One simple consequenc
mere existence of those Feynman–Kac formulas is that the stochastic process is determin
up to version, i.e., you can use any other process with the same law. Surprisingly this may
nontrivial results. In this paper we aim to illustrate this fact by a well-known example:
correspondence between the harmonic oscillator in dimension 4 and the Coulomb prob
dimension 3. To obtain this result the following transformation formula~Theorem 6.3! is proved
using a Feynman–Kac formula for holomorphic families of type B.

Given a proper and surjective harmonic morphismF:M→N between complete and orientab
Riemannian manifolds without boundary and a holomorphic family of type B,

H~j!52 1
2DujQ,

of Schrödinger operators onL2(N), the resolvent family can be lifted to the resolvent family o
corresponding holomorphic family,

G~k!52 1
2Dukl,

on L2(M ), providedFLQ(x)ªl(x)Q+F(x)[C equals a constant andl:M→R is the square of
the dilatation of the harmonic morphismF. The correspondence is given for compactly suppor
f PL2(N) by

R„z,H~j!…f ~x!5R„2Cj,G~2z!…FL f ~y!,

for yPF21(x).
The proof uses a version of Brownian motion constructed by Csink and Oksendal: su

time transformed Brownian motion onM, mapped toN by a harmonic morphism, coincides in la
with Brownian motion onM.2 This property generalizes the classical scale invariance due to L´vy.
Once the Feynman–Kac formula is taken for granted the proof reduces to the transform
formula for integrals on some infinite-dimensional measure space. It is believed that othe

a!Electronic mail: wittich@gsf.de
2440022-2488/2000/41(1)/244/16/$17.00 © 2000 American Institute of Physics
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structions from stochastic calculus can be used in a similar way and that looking for symm
of some underlying stochastic process provides a common point of view upon analogous
spondences between quantum mechanical systems.

The paper is organized as follows: In Sec. II we summarize some facts about operators t
used in the sequel. Section III mainly consists of a proof of a Feynman–Kac formula
holomorphic family of generators and a representation of the corresponding resolvent. Since
proof of ~Theorem 6.3! the unique continuation property of holomorphic families of type B
used, in Sec. IV we summarize some facts about the domain of holomorphicity of the resolv
Sec. V we deal with well-known facts about harmonic morphisms; of special importan
Proposition 5.5, which is the invariance property mentioned above. In Sec. VI the transform
formula is proved and in Sec. VII it is applied to the well-known3,4 correspondence between th
Coulomb problem in dimension 3 and the harmonic oscillator in dimension 4. Finally, Sec.
contains the corresponding transformation formula for the kernel of the resolvent.

II. SOME FACTS ABOUT SECTORIAL OPERATORS

For the convenience of the reader, some facts from functional analysis are summa
Almost all of them can be found in the classical book of Kato. In the sequel,M denotes a complete
and oriented smooth Riemannian manifold without a boundary andV5L2(M ).

If the measurable real functionQPL loc
1 (M ) is bounded from below, i.e. essinfQ5CPR,

pointwise multiplication withQ yields a sectorial operatorQ̂ from a dense domainD(Q̂),V to V

~Ref. 5, Example 1.5, p. 312!. It can be assumed thatQ̂ is closed~Ref. 5, Example 1.15, p. 315!.
The same holds forjQ̂ if jPC with Re(j).0. The domains of the operatorsjQ̂ coincide and are
equal toD(Q̂). The associated quadratic formsjq( f )ªj( f ,Q̂f ) are as well sectorial and close
with domainD(q),V, independent ofj.

Let us now denoteDª2d* d the Laplacian on functions onM and letd( f )ª2 1
2( f ,D f ) the

associated quadratic form with domainD(d),V. Then, since the Laplacian is self-adjoint~Ref. 6,
Theorem 5.7, p. 117! on V, d is a densely defined closed sectorial form.

By the Friedrichs construction~Ref. 5 Theorem 2.1, p. 322, Theorem 2.23, p. 331! there are
uniquely determined closed operators associated to the formsjq andd. They are also denoted b
2 1

2D andjQ̂, respectively. These operators turn out to bem-sectorial~Ref. 5, Sec. V.10, p. 280!.
By Ref. 5, Theorem 1.31, p. 319, the sum

h~j!ªd1jq,

with common domainD5D(d)ùD(q), is closed and sectorial for Re(j).0. In other words,
h(j),Re(j).0 is aholomorphic family of type~a! ~Ref. 5, Sec. VII.2, p. 395!.

Therefore them-sectorial operatorsH(j),Re(j).0, associated toh(j) by the Friedrichs con-
struction, i.e., theform sums,

H~j!52 1
2DujQ̂,

form a holomorphic family of type B~Ref. 5, Theorem 4.2, p. 395!. For fixedj, the numerical
range

Q„h~j!…ª$~ f ,H~j! f !:i f in51%,

is contained in asector,

S~r,g!ª$zPC:arguz2ru,g%,

rPR,g,p/2 that containsjC.
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Crucial for all the applications in the sequel is the following result due to Simon,7 who also
emphasized the fact that the form sum is most suitable in connection with the Feynman
formula.8

Theorem 2.1: Let A,B be m-sectorial operators in V with associated closed sectorial fo
a,b. Let P the orthogonal projection onto the closure V8,V of the intersection of domain
D(a)ùD(b). Then

lim
n→`

~e2tA/ne2tB/n!nf 5e2t~AuB!P f ,

for each fPV.
It should be noted that, by the Hille–Yoshida theorem, thatm-sectorial operators genera

strongly continuous semigroups.

III. A FEYNMAN–KAC FORMULA FOR HOLOMORPHIC FAMILIES OF TYPE B

Let ~V,F,P,Ft) denote the space of continuous paths in~a suitable compactification of! M and
Bx Brownian motion with starting pointxPM . Brownian motion onM is, in general, only defined
up to anexplosion timedenoted byTM . The present section is devoted to a proof of the follow
statement.

Proposition 3.1: Let QPL loc
1 (M ) be a potential such that

H~j!52 1
2DujQ̂

is a holomorphic family of type B forjPU, where U,$j:Re(j).0% is some open connected s

such that UùRÞ0” . Then the Feynman–Kac formula holds, i.e., for t.0 and fPV,

e2tH~j! f 5EF f ~Bt!expS 2jE
0

t

ds Q~Bs! D x$t,TM̂%G ,
where the domainD5D„H(j)… is dense in V.

Proof: The proof consists of three steps.

~1! The formula is proved for bounded continuous potentials
Q:M→R,

i.e., uQu<C.
~2! By a first approximation argument the formula is extended to measurable pote

QPL loc
1 (M ) bounded from below.

~3! By a further approximation argument for quadratic forms, the formula is extende
potentialsQPL loc

1 (M ), subject to the condition that the operatorsH(j) defined above
actually form a holomorphic family of type B.

~1! Assume firstQ to be continuous. Then for fixed (v,x)PV3M the approximation by
Riemann sums,

Fn
x~v!ª f „Bt

x~v!…expS 2
tj

n (
k51

n

Q„Bkt/n
x ~v!…D x$t,TM̂%~v!,

converges to

Fx~v!5 f „Bt
x~v!…expS 2jE

0

t

ds Q„Bs
x~v!…D x$t,TM̂%~v!,

asn tends to infinity. Let volM denote thevolume formon M. Then, for f PV,
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iE~Fn
x2Fx!iV

25E
M

volM~dx!uE~Fn
x2Fx!u2<E

M
volM~dx!~EuFn

x2Fxu!2

5E
M

volM~dx!E~Fn
x2Fx!E~Fn

x2Fx!

5E
M3V3V

volM~dx!P~dv!P~dv8!~Fn
x2Fx!~v!~Fn

x2Fx!~v8!

<E
M3V3V8

volM~dx!P~dv!P~dv8!u f „Bt
x~v!…i f „Bt

x~v8!…ue22C Re~j!t

5e22C Re~j!tE
M

volM~dx!Eu f ~Bt
x!uEu f ~Bt

x!u

5e22C Re~j!tietD/2u f uiV
2<e22C Re~j!ti f iV

2,

sinceetD/2 is bounded with a norm of less than one. Therefore

u f „Bt
x~v!…i f „Bt

x~v!…ue22C Re~j!t>~Fn
x2Fx!~v!~Fn

x2Fx!~v8!

is a l3P3P-integrable majorant. By the above, for all (v,x),Fn
x2Fx converges to zero. Tha

implies by Lebesgue’s dominated convergence,

iEFn
x2EFxiV

2→0,

asn→`.
Since continuous potentials are inL loc

1 (M ), smooth functions with compact support are co
tained in the domains ofd andjq. Since the manifold was assumed to be complete these func
form a dense subset ofV. Therefore we may setP51 in ~2.1!. The statement now follows from
the equality

EF f ~Bt!expS 2
tj

n (
k51

n

Q~Bkt/n!D x$t,TM̂%G5~etD/2ne2tjQ̂/n!nf .

~2! First of all, it has to be shown that the Feynman–Kac formula only depends on
equivalence class ofQPL loc

1 (M ). This follows from the fact that since the transition density
Brownian motion posesses aC` density with respect to the volume form, theexpected occupation
time,

m t
x~A!ªEE

0

t∧TM
xA~Bs

x!ds,

for a Borel setA,M yields a finite Borel measure onM of total mass less or equal tot that
posesses a density with respect to the volume form as well. From that the following can be d
concluded.

Lemma 3.2: Let QPL loc
1 (M ) be bounded with essupuQu50. Then

EE
0

t∧TM
Q~Bs

x!ds5E
M

Q~y!m t
x~dy!50.

Now for a general measurable potentialQ with esssupuQu50, we have by monotone conve
gence,
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EUexpS 2jE
0

t

Q~Bs
x!dsD 21Ux$t,TM%

5 lim
N→`

EUexpS 2jE
0

t

Q~Bs
x!dsD 21Ux$t,TM%

< lim
N→`

ujueujNux$t,TM%EE
0

t

Q~Bs
x!ds50.

Therefore the probability

PS UexpS 2jE
0

t

Q~Bs
x!dsD 21Ux$t,TM%Þ0D 50,

which implies

EF f ~Bt!expS 2jE
0

t

Q~Bs
x!dsD x$t,TM%G5E@ f ~Bt

x!x$t,TM%#,

and the expectation of the Feynman–Kac functional only depends on the class ofQPL loc
1 (M ).

Moreover, the Feynman–Kac formula for Brownian motion is continuous inQPL`(M ).
Let nowQPL loc

1 (M ) be bounded from below. ThenQ∧nPL`(M ) and there is a sequence o
bounded continuous potentialsQn,k such that

lim
k→`

iQn,k2Q∧ni`50.

By the above mentioned continuity;

lim
k→`

EF f ~Bt!expS 2jE
0

t

Qn,k~Bs
x!dsD x$t,TM%G5EF f ~Bt

x!expS 2jE
0

t

Q∧n~Bs
x!dsD x$t,TM%G .

On the other hand, sinceQn,k2Q∧nPL`(M ) is bounded as multiplication operator onV, the
domains of

Hn~j!52 1
2Duj~Q∧n!

and

Hn,k~j!52 1
2DujQn,k

coincide, and for allf PD(d)ùD(q∧n),

i~Hn,k~j!2Hn~j! f iV<iQn,k2Q∧ni`i f iV,

which impliesgeneralized strong convergencein the sense of Ref. 5, Sec. VIII 1, p. 427. By Re
5, Theorem 2.16, p. 504, this finally implies uniform convergence of the corresponding
groups in any finite subinterval of the positive real axis. Therefore~3.1! is proven for potentials
Q∧n.

Now let n tend to infinity. The convergence of the corresponding Feynman–Kac functio
follows by monotone convergence and the fact that for Re(j).0,

U f ~Bt
x!expS 2jE

0

t

Q~Bs
x!dsD x$t,TM%U<u f ~Bt

x!ue2Re~j!Ct,
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is P integrable.
The convergence of the corresponding operator semigroups follows by the fact mentio

Sec. II, that for Re(j).0 the form sumsHn(j) andH(j) arem-sectorial with a common secto
S(r,g) that containsjCPC. SinceD„H(j)… is a common core for these operators and (Q∧n)
3(x)→Q(x), Ref. 5, Theorem 1.5, p. 429 implies generalized strong convergenceHn(j)
→H(j) for Re(j).0 and therefore again by Ref. 5, Theorem 2.16, p. 504 convergence o
corresponding semigroups.

~3! For a general potentialQPL loc
1 (M ) such that the operatorsH(j) form a holomorphic

family of type B, the Feynman–Kac formula is obtained by a criterion for convergence of sec
forms from above~Ref. 5, Theorem 3.6, p. 455!. Consider

Hm~j!ª2 1
2Duj~Q∨2m!.

The associated quadratic forms are densely defined and sectorial for Re(j).0 and by the above
the Feynman–Kac formula holds for the corresponding semigroups. By Sec. II the ope
Hm(j) form a holomorphic family of type B for Re(j).0.

~a! For real parameterjPUùR, the associated quadratic forms decrease, i.e.,

hm~j!~ f !>h~j!~ f !>c,

for somecPR, sinceh(j) was assumed to be sectorial. This implies

D„hm~j!…,D„h~j!…,

for realj, but since the operatorshm(j),h(j) form holomorphic families of type~a! this statement
does not depend onjPU.

~b! For f PD„hm(j)… andhm
o ( f )ªhm(j)( f )2h(j)( f ),

uIm„hm
o ~ f !…u5uIm~j!u„f ,~Q∨~2m!2Q! f …5

uIm~j!u
Re~j!

Re~j!„f ,~Q∨~2m!2Q! f …

5K Re~hm
o ~ f !…,

sinceQ∨(2m)2Q>0.
~c! Smooth functionsC0

`(M ) with compact support form a common core ofh(j) andhm(j)
for all m. By monotone convergence,

„f ,Q∨~2m! f …→~ f ,Q f !,

for f PC0
`(M ) asm tends to infinity.

Now ~a!, ~b!, and~c! are the conditions under which the convergence criterion for quad
forms mentioned above can be applied. It yields generalized strong convergence,

Hm~j!→H~j!,

for jPU asm tends to infinity.
By Ref. 5, Theorem 1.2, p. 427 generalized strong convergence of the generators i

strong convergence of the resolvents for Re(z),r(j). Again, by Ref. 5, Theorem 2.16, p. 504, th
implies convergence of the corresponding semigroups.

On the other hand,

lim
m→`

EF f ~Bt!expS 2jE
0

t

~Q∨2m!~Bs
x!dsD x$t,TM%G5EF f ~Bt

x!expS 2jE
0

t

Q~Bs
x!dsD x$t,TM%G ,
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compactly for realjPUùR by monotone convergence. For generaljPU convergence follows by
Vitali’s theorem~Ref. 9, p. 154!. h

Corollary 3.3: Under the assumptions above the resolvent of H(j) can be expressed by

„H~j!2z…21f ~x!5ExF E
0

`

dt f~Bt!expS E
0

t

„z2jQ~Bs!…dsD x$t,TM%G ,
for Re(z),r(j), where S„r(j),g(j)… is a sector corresponding to H(j).

Remark 3.4:The Feynman–Kac formula admits the following generalization: Instead of
Laplacian, it could be taken by any symmetric differential operator densely defined onV that is
bounded from below and that generates a uniquely determined Markov semigroup with a
tion probability that posesses aC` density with respect to the volume form.

Remark 3.5:It should also be noted that ifQ is D bounded with relative boundb, 1
2, the

operators

H~j!ª2 1
2D1jQ

form a holomorphic family of type B foruju,1/2b ~Ref. 5, Sec. VII.4, Theorem 4.16, p. 403!. By
~3.1! this implies the validity of the Feynman–Kac formula as well and especially yields
Feynman–Kac Formula for

Hª2 1
2DuQ.

IV. DOMAIN OF HOLOMORPHY FOR THE RESOLVENT

The results above for a singlej in the parameter space ofH(j) also hold uniformly for
parameters varying in a compact set. This will now be made precise.

Proposition 4.1 Let: T(j) be any holomorphic family of type B forjPU,C and K,,U a
relatively compact subset. Then we have the following.

~1! All numerical ranges of T(j),jPK are contained in a common sector S(rK ,gK).
~2! The set,

UKª„C2S~rK ,gK!…3K,

is contained in the domain of holomorphy of the resolvent,

R~z,j!5„T~j!2z…21.

~3! For (z,j)PUK with Re(z),rK the resolvent is given by the Laplace integral,

R~z,j! f 5E
0

`

dt ezte2tT~j! f .

Proof:

~1! This property is calledlocal uniform sectorialityin Ref. 5, Theorem 4.2, p. 395.
~2! See the remark after the definition ofm-sectoriality, Ref. 5, Chap. V, p. 280.
~3! It follows from the fact thatz2T(j) for Re(z),rK generates a contraction semigroup.h

Remark 4.2:Since by the above forQPL loc
1 (M ) with Q>0 the form sum

H~j!52 1
2DujQ
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yields a holomorphic family of type B for Re(j).0, and for eachK,,$j:Re(j).0% a common
sector can be chosen with vertexrK50, the corresponding resolventR(z,j) can be represented b
the Laplace transform for each Re(z),0.

The following remark is important for the proof of the transformation formula of Theo
6.3.

Remark 4.3:Holomorphic families of type B and their resolvent functions enjoy the uni
continuation property, i.e., if the resolvent functions of two holomorphic families coincide
some open setU,C2, the two families coincide as well.

Proof: Reference 5, Remark 1.6, p. 368. h

V. HARMONIC MORPHISMS AND BROWNIAN MOTION

Harmonic morphisms are twice continuously differentiable mappings between Riema
manifolds such that composition with harmonic functions on the target manifold yields a harm
function on the preimage.

Harmonic morphisms can as well be characterized by their geometric and stochastic p
ties. The following definitions and results can be found in Refs. 10 and 2.

Definition 5.1 (harmonic morphism): Let(M ,gM),(N,gN) be Riemannian manifolds an
DM ,DN their Laplace–Beltrami operators. A twice continuously differentiable mapF:M→N is
called harmonic morphism if the pullback of germs of harmonic functions on N yields germ
harmonic functions on M, i.e.,

DNf F~x!50⇒DM~ f +F!x50.

Definition 5.2 (horizontally conformal map): A C2 mappingF:M→N between Riemannian
manifolds is called horizontally conformal, if for every xPM such that TxFÞ0, the restriction of
the tangent map,

TxFuK
x
':Kx

'→TF~x!N,

to the orthogonal complement of Kxªker(TxF),TxM is surjective and conformal,

dF~x!ªH iTxFi , if x is a regular point,

0, otherwise,

is called the dilation ofF.
Theorem 5.3~geometric characterization!: For a C2 mapF:M→N are equivalent.

~1! F is a harmonic morphism.
~2! F is harmonic and horizontally conformal.

Proof: Reference 10 Theorem, p. 123. h

Remark 5.4:~1! By the semiconformality of harmonic morphisms, the tangent map is equ
zero for each nonregular point.

~2! The set of nonregular points for a nonconstant harmonic morphismF:M→N can be
covered by a countable collection of submanifolds ofM of codimension less or equal to two an
therefore is polar inM ~compare Ref. 10, p. 116, Remark!.

The following proposition is a direct consequence of the stochastic characterization o
monic morphisms in Ref. 2 and will be the main tool to prove the transformation formula
avoid the construction of ‘‘t welding,’’ the harmonic morphism is assumed to be surjective.

Proposition 5.5: LetF:M→N be a harmonic morphism of dilation dF . Let further be
l(x)ªdF

2 (x) and BN, BM be Brownian motion on N, M, respectively. Consider now the t
transform
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t~ t !ªE
0

t

l~Bs
M !ds,

and its inverse,

t~t!ª inf$s>0:t~s!5t%.

Then the image underF of time-transformed Brownian motion Zt(v)ªBt(t)
M (v) coincides in law

with Brownian motion on N, i.e.,

F~Zt
y~v!…;Bt

N,x~v!,

for any yPF21(x).
Remark 5.6 (stochastic characterization):Harmonic morphisms can as well be characteriz

by a slightly modified stochastic property as in Proposition~5.5! ~see Ref. 2, Theorem 1, p. 224!.

VI. THE TRANSFORMATION FORMULA

The transformation formula just consists of inserting special harmonic morphisms int
Feynman–Kac formula for the resolvent. The harmonic morphisms used in the sequel are a
to be proper in order to be able to lift distributions. In the sequel the explosion times ofN,M are
denoted byTN , TM , respectively.

Lemma 6.1: LetF:M→N be a proper and surjective harmonic morphism. Then, the dom
D(FL) of the linear map,

FL:D~FL!→L2~M !,

with

FL f ~x!ªl~x!•~ f +F!~x!;

(l5dF
2 ) is dense in L2(N).

Proof: Compactly supported functions are dense inL2(N). By a proper map they are lifted to
compactly supported functions inL2(M ). That meansC0

`(N),D(FL). h

Proposition 6.2: LetF be as above and QPL loc
1 (N) be a measurable potential such that

H~j!52 1
2DnujQ

is a holomorphic family of type B on L2(N) for jPU,C, U open. Then forjPK,,U with
corresponding uniform sector S(rK ,gK) and Re(z),rK the resolvent equals

R~z,j! f ~x!5EyE
0

`

dt FL f ~Bt
M !expS E

0

t

dsFL~z2jQ!~Bs
M ! D x$t,TM% ,

for any yPF21(x).
Proof: By Corollary 3.3 the resolvent can be represented by a Feynman–Kac formula,

R~z,j! f ~x!5ExE
0

`

dt f ~Bt
N!expS E

0

t

ds~z2jQ!~Bs
N! D x$t,TN% .

SinceF(Zt
y);Bt

x by Proposition 5.5,

R~z,j! f ~x!5EyE
0

`

dt f +F~Zt!expS E
0

t

ds~z2jQ!„F~Zs!…D x$t,TN% .

By the time transformt(t,v)5*0
t dsl(Bs

M), i.e.,
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dt5l~Bt
M !dt,

and byZt;Bt(t)
M :

R~z,j! f ~x!5EyE
0

t~t,v!

dt l~Bt
M !• f +F~Bt

M !expS E
0

t

dsl~Bs
M !~z2jQ!„F~Bs

M !…D x$t,TN%

5EyE
0

`

dt FL f ~Bt
M !expS E

0

t

dsFL~z2jQ!~Bs
M ! D x$t,TM% ,

sincet(TN)5TM almost surely. h

If FLQ[C equals a constant, then

FL~z2jQ!~x!5zl~x!2Cj.

This is interesting because, in that case, by the uniqueness of analytic continuation, the
formed expectation value can again be interpreted as a resolvent, namely the resolvent
operator

G~k!52 1
2Dukl,

where the coupling parameter and the resolvent parameter change place. Sincel is non-negative
and continuous, the domain ofG(k) containsC0

`(M ) and forms a holomorphic family of type B
for Re(k).0 ~Remark 4.2!.

Theorem 6.3~transformation formula!: Let

H~j!52 1
2DujQ

be a holomorphic family of type B on L2(N) on an open subset U,C such that

U1
ªUù$z:Re~z!.0%

and

U2
ªUù$z:Re~z!,0%,

are both nonempty. Let K,,U. Then, the resolvent RH(z,j) is holomorphic in UK . Let F:M
→N be a proper and surjective harmonic morphism withFLQ[CÞ0.

Then

G~k!52 1
2Dukl

is a holomorphic family of type B forRe(k).0 on L2(M ) and

RH~z,j! f ~x!5RG~2Cj,2z!FL f ~y!,

for all yPF21(x).
Proof: ChooseK such that

K1
ªKù$z:Re~z!.0%

and

K2
ªKù$z:Re~z!,0%

are both nonempty. By~Proposition 6.2!,
                                                                                                                



uality
lvent.

rk

n

d

254 J. Math. Phys., Vol. 41, No. 1, January 2000 Olaf Wittich

                    
RH~z,j! f ~x!5EyE
0

`

dt FL f ~Bt
M !expS E

0

t

dsFL~z2jQ!~Bs
M ! D x$t,TM%

5EyE
0

`

dt FL f ~Bt
M !expS E

0

t

ds~2Cj1zl!~Bs
M ! D x$t,TM%

5EyE
0

`

dt FL f ~Bt
M !expS E

0

t

ds„2Cj2~2z!l~Bs!…D x$t,TM%

5RG~2Cj,2z!FL f ~y!.

The above equality holds for (z,j)PUK , therefore Re(z),rK∧0, which implies that the
intersection of Re(2z).2rK ∨0 with that part of the parameter space, whereG(k) forms a
holomorphic family of type B, is an open set. On the other hand, by Remark 4.2, the last eq
holds for those values ofj, where the Laplace integral can indeed be interpreted as a reso
Depending on the sign ofC this is the case forjPK1 if C,0 and forjPK2 if C.0. Now since
the identity holds on some open subset ofUK,C2 both resolvent functions coincide by Rema
4.3.

VII. EXAMPLE

By the above formula, a well-known correspondence3,4 between the harmonic oscillator i
dimension 4 and the Coulomb System in dimension 3 can be established.

Consider Coulomb’s potential,

Q~x!ª2
1

uxu
:R3→R.

The family H(j)ª2 1
2D2̇j/r is of type B for everyjPC, sinceQ is in the Kato class.

Definition 7.1 (Kuustanheimo–Stiefel transform): The mapping

F5~F1,F2,F3!:R4→R3,

given by quadratic forms,

wi
ªF i~x!5~x,eix!, i 51,2,3,

with

e1ªS 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D , e2ªS 0 0 0 1

0 0 21 0

0 21 0 0

1 0 0 0

D , esªS 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D
is called the Kuustanheimo–Stiefel transform. Its restriction to S3,R4 is the Hopf map.

F is a harmonic morphism of the so-called Clifford type,11 since

$ei ,ej%ªeiej1ejei52d i j ,

which means that the matricese1 , e2 , e3 yield an irreducible representation of the Cliffor
algebraCl3* ~see Ref. 6!.

The square of the dilation ofF is given by

l~x!5„“F i~x!,“F j~x!…54ieixi254ixi2,
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since the matricesei are orthogonal.
F is proper sinceiF(x)i5ixi2 and surjective by computing explicitly that the preimage o

point xPR32$0% is given by a one-sphere.
Finally, by

FLS 2
1

uxu D52
4uxu2

iF~x!i 524,

andl(x)54ixi2 the correspondence

RS z;2
1

2
D2̇

j

uwu D f ~w!5RS 24j;2
1

2
Du4zuxu2DFL f ~x!

is obtained.

VIII. THE DUAL SEMIGROUP. COMPUTATION OF THE RESOLVENT KERNEL

Throughout this section the assumptions of Theorem 6.3 remain valid. The resolven
semigroup kernels forH(j), G(k), respectively, are denoted by upper indicesM,N corresponding
to the underlying manifold. If some statement holds for both of them, the index is om
Remember that the vertex of the common sector forH(j), jPK is denoted byrK ~Proposition
4.1!.

Denote bykt
N(j;x,dy) the kernel of the Feynman–Kac semigroup generated byH(j), j

PK. The resolvent kernel,

RH~j,z! f ~x!5E
n
rN~j,z;x,dy! f ~y!,

can, for Re(z),rK) be computed by the Laplace transform,

rN~j,z;x,dy!5
w E

0

`

dt eztkt
N~j;x,dy!,

where 5
w

means that this equality is, in general, valid only in the weak sense, i.e., for
continuous functionw with compact support,

E
N
rN~j,z;x,dy!w~y!5E

0

`

dt eztkt
N~j;x,dy!w~y!.

In the case of existing densities, this statement can be reformulated as follows.
Lemma 8.1: If the transition kernel possesses a density with respect to the volume form,

kt~x,dy!5kt~x,y!volN~dy!,

then the resolvent kernel possesses a density with respect to the volume form as well. This
r(z;x,y) is also obtained by the Laplace transform

r~j,z;x,y!5
w E

0

`

dt eztkt~j;x,y!.

The following fact is a consequence of the weak continuity of the dual semigroup.
Proposition 8.2: The Feynman–Kac kernel is obtained by

kt~j;x,y!5
w

ExFdy~Bt!expF2jE
0

t

Q~Bs!dsGx$TM.t%G ,
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wheredy denotes the Delta distribution with support$y%.
By using Brownian bridges, the integration about the position of Brownian motion at tit

can be carried out explicitly.
Definition 8.3: A Brownian bridge bs with initial point x5b0(v) and final point y5bt(v) is

the stochastic process,

b:@0,t#3$vPV:v~0!5x,v~ t !5y%→N,

given by bs(v)ªv(s) and distributed by the conditional probability

Qx,y,t~dv!ªPx
„dvuBt~v!5y,TN~v!.t…,

where Px denotes the probability distribution of Brownian motion on the manifold with star
point x.

The same construction works forM. Brownian motion onM,N, respectively, is not distin-
guished by notation. It will be clear from the context which one is meant.

This yields the following expression for the kernel.
Proposition 8.4: The Feynman–Kac Kernel is given by

kt~j;x,dy!5
w

pt~x,dy!Ex,y,tFexp2jE
0

t

Q~bs!dsG ,
where Ex,y,t denotes expectation with respect to Qx,y,t and, as above,

pt~x,dy!ªPx
„Bt~v!Pdy,T~v!.t…,

where T denotes the explosion time on M,N, respectively.
Proof: The computation is carried out forN. By ~Proposition 8.2!,

kt
N~j;x,dy!5

w
ExFdy~Bt!expF2jE

0

t

Q~Bs!dsGx$TN.t%G
5
w E

N
Px~BtPdu,TN.t !ExFdy~Bt!expF2jE

0

t

Q~Bs!dsGx$TN.t%UBt5u,TN.t G
5
w E

N
Pt

N~x,du!dy~u!ExFexpF2jE
0

t

Q~Bs!dsGx$TN.t%UBt5u,TN.t G
5
w

pt
N~x,dy!Ex,y,tFexpF2jE

0

t

Q~bs!dsG G .
h

Corollary 8.5: If pt(x,dy)5pt(x,y)vol(dy) possesses a density with respect to the volu
form on M,N, respectively, then

kt~j;x,y!5
w

pt~x,y!Ex,y,tFexpF2jE
0

t

Q~bs!dsG G .
Under the same assumptions the resolvent kernel can (Lemma 8.1) be expressed by

r~j,z;x,y!5
w E

0

`

dt pt~x,y!Ex,y,tFexpF E
0

t

~z2jQ!~bs!dsG G ,
for Re(z),rK in the case of H(j),jPK and for Re(z),0 in the case of G(j),Re(j).0.
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By these considerations the Feynman–Kac formula for holomorphic families of type B~3.1!
and the transformation formulas Proposition~6.2! and Theorem~6.3! can be transferred to th
corresponding kernels.

Corollary 8.6: The following reformulations of the relevant formulas are valid.

~1! Under the assumptions of Proposition (3.1), the resolvent kernelr(z,j;x,dy) of the holomor-
phic family can be expressed by

r~z,j;x,dy!5
w E

0

`

dt pt~x,dy!Ex,y,tFexpFE
0

t

(z2jQ~bs!dsGG.
~2! Under the assumptions of Proposition (6.2), the resolvent kernel is obtained by

rN~z,j;x,dy!5
w

EzFE
0

`

dtFLdy~Bt!expFE
0

t

dsFL
„z2jQ~Bs!…x$TM.t%G G ,

~3! where zPF21(x).
~4! If, furthermore, as in Theorem 6.3,

FLQ[C,

then

E
n
rN~z,j;x,du!f~u!5E

M
rM~2Cj,2z;z,dv!l~z!f+F~v!

for f continuous with compact support.
In the case of existing densities this can be made more explicit by a decomposition

volume form along the fibers of the harmonic morphism, a procedure that is well known
summarized in the following Lemma.

Lemma 8.7: Let* denote the Hodge–Star operator andF:M→N a harmonic morphism.
Consider points zPF21(y), where yPM is such that all points in the fiber are regular values
F. Then we have the following.

~1! There is an open neighborhood U(y)PN and a diffeomorphism,

u:U~y!3Fy→
;

F21
„U~y!…,

FyªF21(y). For simplicity, the compositionF+u is again denoted byF.
~2! For z5u(u, f ),

volM~dz!5Fz* volN∧
* Fz* volN

iFz* volNi2 ~dz!5Fz* volN~du!∧l2n~u, f !* Fz* volN~d f !.

The last equality holds because by horizontal semiconformality, the square of the determ
of the cotangent mapping equalsln. This yields the following modification of~3! of Corollary
8.6.

Corollary 8.8: Let n5dim(N) and yPN a point such that all preimages are regular values
the harmonic morphism. Then, under the assumptions of Proposition (6.2),

rN~j,z,;x,y!5
w E

Fy

Fz* volN~d f !l~22n!/2~y, f !rM
„2Cj,2z;z,~y, f !….

Proof: By the transformation formula
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rN~z,j;x,y!5
w E

0

`

dtE
M

pt
M~z,dz8!FLdy~z8!Ez,z8,tFexpF E

0

t

FL~z2jQ!~bs!dsG G
5
w E

0

`

dtE
M

volM~dz8!pt
M~z,z8!FLdy~z8!Ez,z8,tFexpF E

0

t

FL~z2jQ!~bs!dsG G
5
w E

~u, f !PU~y!3Fy

F* volN~du!∧* F* volN~d f !l~22n!/2~u, f !dy~u!

3E
0

`

dt pt
M
„z,~u, f !…Ez,~u, f !,tFexpF E

0

t

FL~z2jQ!~bs!dsG G
5
w E

f PFy
* F* volN~d f !l~22n!/2~y, f !E

0

`

dt pt
N
„z,~y, f !…Ez,~y, f !,t

3FexpF E
0

t

FL~z2jQ!~bs!dsG G
5
w E

f PFy
* F* volN~d f !l~22n!/2~y, f !r„2Cj,2z;z,~y, f !….

Example 8.9: In the case of the example of Sec. VII, the preimage of a point yPR3 can be
computed explicitly. If in spherical coordinates,

y5r „sin~u!cos~f !,sin~u!sin~f !,cos~u!…,

the preimage is given by

F21~y!5$U~r ,u,f,g!ugP@0,4p!%,

where

U~r ,u,f,g!5Ar S cosS u

2D cosS f1g

2 D ,

2cosS u

2D sinS f1g

2 D ,sinS u

2D cosS f2g

2 D ,sinS u

2D sinS f2g

2 D D .

Now by (8.8) and the fact that the volume element is given by

Fz* volN5 1
2uxu3 dg,

the kernel can be expressed by

rN~j,z;x,y!5
w 1

2 uyu E
0

4p

dg rM
„2Cj,2z;z,U~r ,u,f,g!…,

where zPF21(x) and r, u, f as above. The kernel on the right-hand side is given by Mehl
formula.

ACKNOWLEDGMENTS

The author wishes to thank the University of Go¨ttingen for hospitality during the winter term
97/98 and the F. Thyssen-Stiftung for financial support.
                                                                                                                



to the

,

259J. Math. Phys., Vol. 41, No. 1, January 2000 A transformation of a Feynman–Kac formula . . .

                    
1B. Simon,Functional Integration and Quantum Physics~Academic, London, 1979!.
2L. Cszink and B. Oksendal, ‘‘Stochastic harmonic morphisms: Functions mapping the paths of one diffusion in
paths of another,’’ Ann. Inst. Fourier33, 219–240~1983!.

3P. Blanchard, ‘‘Transformation of Wiener integrals and the desingularization of the Coulomb problem,’’ inProceedings
of the Workshop on Stochastic Processes in Quantum Theory and Statistical Physics, Marseille 1981, Springer Lecture
Notes in Physics~Springer-Verlag, Berlin, 1982!, Vol. 173, pp. 19–28.

4I. H. Duru and H. Kleinert, Phys. Lett. B84, 30 ~1979!.
5T. Kato, Perturbation Theory for Linear Operators, corr. pr. 2nd ed.~Springer-Verlag, Berlin, 1980!.
6H. B. Lawson and M. L. Michelsohn,Spin Geometry~Princeton University Press, Princeton, NJ, 1989!.
7T. Kato,Trotter’s Product Formula for an Arbitrary Pair of Self-Adjoint Contraction Semigroups, in: Advances in Math.
Supplementary Studies 1978, edited by Gohberg and Kac~Academic, New York, 1978!, Vol. 3, pp. 185–195.

8B. Simon,Quantum Mechanics for Hamiltonians Defined as Quadratic Forms~Princeton University Press, Princeton
NJ, 1971!.

9J. B. Conway,Functions of One Complex Variables, 2nd ed.~Springer-Verlag, New York, 1978!.
10B. Fuglede, ‘‘Harmonic morphisms between Riemannian manifolds,’’ Ann. Inst. Fourier28, 107–144~1978!.
11P. Baird, ‘‘Harmonic morphisms and circle actions on 3- and 4-manifolds,’’ Ann. Inst. Fourier40, 177–212~1990!.
                                                                                                                



is par-
bstan-
vides
uclear
uction

n JWKB
i
ent

-

he

ges,

ders

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 1 JANUARY 2000

                    
Free energy of a screened ion pair
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We calculate the effect of weak electrostatic screening of ions in a plasma. The
original calculation by Salpeter is based on a linearization of the Poisson–
Boltzmann equation for the screened electrostatic potential. This approximation is
valid where the potential is small, but is formally invalid in the vicinity of the ions
where the solutions for the potential and the associated charge distribution diverge.
In reality, quantum exclusion must prevent the divergence of the charge density of
the screening cloud. Nevertheless, in the limit in which screening is weak, Sal-
peter’s value for the total screening energy is essentially correct. Here we extend
Salpeter’s calculation to account approximately for both quantum-mechanical ex-
clusion in the vicinity of the ions, using what we call the Poisson–Boltzmann–
Fermi–Dirac approximation, and the polarization of the screening cloud. By match-
ing the solution onto an expression for the two-center Poisson–Boltzmann charge
distribution far from the ions we are able to construct a consistent solution over all
space. We obtain the first-order term in the expansion of that solution, from which
we calculate the free-energy associated with the screened ion pair. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!00301-7#

I. INTRODUCTION

Electrostatic screening is a significant phenomenon occurring in dense plasmas, and
ticularly important in astrophysics. The accumulation of charge about ions can influence su
tially the equation of state of stellar material; throughout much of the sun, for example, it pro
the largest nonideal contribution aside from ionization. Screening also influences thermon
reaction rates, and must be accurately taken into account when calculating neutrino prod
rates in the solar core.

Nuclear reaction rates are enhanced by screening; the standard assumption, based o
theory, is that the screened reaction rate during two-body interactions between heavy nucle~ions!
1 and 2 in a plasma at temperatureT is given by the unscreened rate multiplied by an enhancem
factor f which can be expressed approximately as

f 5exp@2bVs~0!#, ~1!

whereb51/kT, in which k is Boltzmann’s constant, andVs(2a) is the contribution from screen
ing to the potential of the interaction when the nuclei are separated by a distance 2a. Under
isothermal conditionsVs(0)5FZ11Z2

(0)2FZ1
2FZ2

is the free-energy difference between t
initial and final configurations, as discussed in Bru¨ggen and Gough.1 We call Vs the screening
energy;FZi

denotes the free energy associated with a single screened ion of chargeZie, wheree

is the unit of electron charge, andFZ11Z2
(0) denotes the free energy of the two screened char

Z1e andZ2e, at zero separation, which has the same value as the free energyFZ11Z2
of a single

ion of chargeZ11Z2 . We note that the precision required by solar physics in particular ren
2600022-2488/2000/41(1)/260/24/$17.00 © 2000 American Institute of Physics
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the JWKB approximation to the nuclear barrier penetration probability inadequate for calcu
the nuclear reaction rates; higher-order terms in the Liouville–Green expansion must be inc
which requires knowledge ofVs(2a) beyond 2a50.

In main-sequence stars, such as the sun, screening is weak. In such circumstances it
mon to adopt Salpeter’s analysis2 of the Poisson–Boltzmann~PB! equation@cf. Eq. ~10! below# to
represent screening of an isolated ion. It is assumed thatebf!1 everywhere,f being the
electrostatic potential of a screened ion, so that the PB equation can be linearized inebf. Then,
in the vicinity of ion i, f is given approximately by the spherically symmetrical Debye–Hu¨ckel
potential f.Zi exp(2kri)/ri , were r i is the distance from the ion andk is the inverse Debye
length given byk254pneeb(11Z* ), wherene is the mean electron number density; alsoZ* is
the ~number-weighted, relative to all the ions in the plasma! mean charge number of those rel
tively light ions that also contribute to the screening. In that caseVs(0)52Z1Z2e2k.2

Although Debye–Hu¨ckel theory provides an adequate approximation for many purpose
suffers from two obvious deficiencies:~i! it makes the electron density andf diverge asr i→0,
violating the assumptionebf!1, and~ii ! it does not take into account the electrostatic distort
of the screening clouds around each ion as the two ions approach one another. The diverg
the electron density is integrable, and therefore permits at least a finite correction toVs. We
remark that that divergence is not itself a consequence of linearization, for the solution to th
nonlinear PB equation, if it exists, is also divergent.

Another aspect of Debye–Hu¨ckel theory which is sometimes brought into question is
assumption that the screening electron cloud adjusts to the positions of the~slowly! moving heavy
ions so quickly that the charge distribution may be regarded as being instantaneously sta
discussed by Salpeter, the validity of this assumption, which we adopt here too, is a conse
of the thermal velocities of the electrons being much greater than the velocities of the inter
screened ions.

There have been many attempts to obviate the divergence of the screening charge de
the vicinity of the ions. One of the earliest was by Abe,3 via a reordering of cluster expansions
the kind developed in Mayer’s4 classical theory. Furthermore, Graboskeet al.5 have used many-
particle correlation functions to calculateVs(0) for a range of temperatures and densities. DeW6

used a diagrammatic expansion of the quantum grand canonical ensemble to obtain a gene
of the Montroll–Ward7 ring-sum formula~a quantum-mechanical generalization of the Deby
Hückel free energy!, and evaluated it to get the lowest level of the electron-degeneracy corre
to the classical Debye–Hu¨ckel plasma free energy. The screening contribution to the free en
has also been estimated using a Pade´ approximation~see, e.g., Refs. 8 and 9!. These methods
however, yield only the leading contribution,Vs(0), to thework done by the particles as the
approach each other, which can be calculated under the assumption that the electron sc
clouds experience, aside from their own self-interactions, only the~spherically symmetrical! elec-
trostatic potentials of their associated ions. Only Mitler10 has attempted to take asphericity in
account, but that was in quite a crude representation of both the quantum statistics a
electrostatic equilibrium.

When the reaction rate is evaluated within the framework of the JWKB approximation
greatest contribution to the work integral comes from the outer regions near the classical t
point, where the screening cloud is governed by Maxwell–Boltzmann statistics. However,
corrections from the Liouville–Green expansion about the JWKB approximation to the ba
penetration problem are considered, regions closer to the ion, where quantum-mechanical
come into play, become important. We accommodate these effects by using equilibrium F
Dirac statistics to describe the electron cloud. In so doing, we assume the density of state
given by the many-particle limit, as did Cowan and Kirkwood,11 taking no explicit account of the
details of the quantum states of the bound species~cf. Ref. 12!. Thus, in the limit of zero
temperature, our description would reduce essentially to the Thomas–Fermi model of the a
interactions with neighboring charges were ignored. We continue to apply Boltzmann statis
the more massive ions. Thus our entire system is described by a hybrid equation, which we
Poisson–Boltzmann–Fermi–Dirac~PBFD! equation.
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Although for the linearized form of the PB equation the total screening cloud around a
pair is—according to the principle of superposition—given by the sum of the screening clou
the two individual ions, this is not the case when nonlinear higher-order corrections and the
of degeneracy are taken into account; then the full interaction between the charges that m
the screening cloud must be taken into consideration. As the two ions approach one anot
common screening cloud is progressively deformed.

The procedure we adopt for analyzing the system, which is valid for weak screenin
facilitated by two properties of the screened two-ion system. Since the screening is weak, e
degeneracy is important only very close to the ions, within a sphere of radiusr d , say. Therefore,
provided the ion separation 2a exceeds 2r d by a good margin, the degenerate regions of
electron screening cloud are each close to being spherically symmetric. Consequently, o
conveniently solve the governing equation by expanding about the spherically symmetric
This yields what we call the inner solutions. The leading-order spherically symmetrical terms
be obtained numerically. An important feature of the higher-order aspherical terms in the e
sion is that the differential equations governing them are linear with a common linear differ
operator; they differ only by their inhomogeneous terms. Consequently those solutions c
obtained by quadrature. Outside the electron-degenerate regions the PB equation is vali
weak-potential approximation; we call its solution the outer solution. The PB equation ca
expanded about its linearized form, yielding once again a sequence of linear differential equ
which also differ only by their inhomogeneous terms. In the calculation of the outer solutio
accommodate large deviations from spherical symmetry; there is only axisymmetry, about a
passing through the two interacting ions. We solve the equations by expanding the solutio
series involving spheroidal harmonics. As with the expansion of the inner solutions, onc
first-order correction to the outer potential has been calculated, further terms in the expans
be obtained solely by quadrature.

The inner and outer solutions are matched in a region of common validity, in which ele
degeneracy is negligible. This requires the ions to be not so close as to cause the reg
electron degeneracy to overlap. Evidently, at very small ion separation, this does not occu
the procedure breaks down. However, for weak screening the domain of invalidity is smal
the error incurred has only a small influence on the total free energy and the nuclear reactio
One could extend the range of validity of the outer solution by regarding the PB equation
leading term in an expansion of the PBFD equation for weak degeneracy, and including h
order corrections to the solution before carrying out the matching with the inner solutions.

In Sec. II we briefly review the earlier attempt by Mitler to calculate the higher-order term
the interaction energy between two screened ions. We then proceed to present our expan
Sec. III we expand the PB equation to second order in the potentialf. Using perturbation theory
about the linear result, we can write down a solution which contains constants that depend
conditions in the vicinity of the heavy ions. In Sec. IV we derive PBFD equation. We
determine unknown constants of the inner solutions, together with the constants in the pertu
~outer! solution to the PB equation, by matching in the vicinity of each ion separately. Having
obtained the potential and density distribution, we proceed to calculate the total electro
potential energy,U, and finally the Helmholtz free energy,F.

From here on, atomic units, i.e.,\5me5e51, will be used.

II. MITLER’S MODEL

A first attempt to calculate higher-order corrections to Salpeter’s approximation was ma
Mitler.10 He investigated the screening at all densities with the aim of finding the ignition c
for carbon burning. He constructed the following phenomenological model for the~continuous!
charge distribution about a single ion of chargeZ: within some sphere of radiusr m the component
r in of the electron density associated with the ion is assumed arbitrarily to be constant and
to the mean valuene of the total electron density, and outside that sphere the componentrout of the
electron density associated with the ion has the functional form of the Debye model, i.e
r ,r m,
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r in~r !5Zd~3!~r !2ne, ~2!

whered (3)(r ) represents the Dirac delta function in three dimensions, and, forr .r m,

rout~r !52k2Ce2kr /4pr , ~3!

where C is a constant and, as usual,k254pneb(11Z* ). Matching the densities atr m and
demanding that the total charge in the screening cloud is2Z determines bothr m andC, yielding

xmªkr m5S 3k3Z

4pne
11D 1/3

21 ~4!

and

C54pnexmexm/k3. ~5!

Thus one can calculate the internal energy as follows:

U5
1

2 E rf dV52
4p2ne

2xm
2

k5 S 2

5
xm

3 12xm
2 14xm13D . ~6!

On makingk3 the independent variable, one can integrate this expression forU with respect tob
to calculate the Helmholtz free energy for an ion of chargeZi :

FZi
5

1

b E
0

b

U db52
8p2ne

2

5k5 F ~z i11!5/3212
5

3
z i G , ~7!

where z i53Zikb(11Z* ). Thus one finds that the screening energy of ions 1 and 2~at zero
separation! is given by

bVs~0!5
1

10kb~11Z* !2 @~z11z211!5/32~z111!5/32~z211!5/311#. ~8!

With this result Mitler estimates a first-order correction to the screening energy at nonze
separation by assuming there now to be a uniform charge density around the two ions dist
as an ellipsoid of revolution, and thus finds

Vs~r !5FZ11Z2
~0!~120.0104k2r 2!2FZ1

2FZ2
, ~9!

whereFZi
is the free energy associated with a single ion of chargeZi as given by Eq.~7!.

Mitler’s phenomenological model suffers from a few unphysical assumptions, the mos
nificant of which is that the electron density of the screening cloud at the nucleus~ion! is equal to
the mean valuene of the total electron density. Evidently the electron density must be higher
average in the vicinity of the nucleus; for instance, Bahcall and Gruzinov13 have shown that nea
a beryllium nucleus in the core of the sun the electron density is almost 4 times its field-free
Also there is no reason to believe that in general the distorted charge cloud has the form
ellipsoid of revolution. It is the purpose of this investigation to calculate what the charge d
bution actually is.

III. EXPANSION OF THE POISSON–BOLTZMANN EQUATION TO SECOND ORDER:
OUTER SOLUTION

As did Salpeter for the linear case, we assume that the screening charges follow a
averaged potential distribution. The Poisson–Boltzmann equation for an assembly of heav
of chargeZi in a plasma can thus be written
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“

2f54pne@ebf2e2Z* fb#14p(
i

Zid~r2r i !, ~10!

where r i is the position of ioni. In the case ofweak screening, i.e., whenbf!1 throughout
~almost! all space, this equation can be linearized inbf far from the ions. For the resulting linea
equation the principle of superposition applies, and the solution appropriate to the situat
hand may be writtenf(r )5( if i(r i), wheref i is the screened potential due to the single ioni:

f i~r i ;k!5
Zi

r i
e2kr i, ~11!

wherer i5ur2r i u. The associated contribution to the charge distribution is

r i52
Zik

2

4pr i
e2kr i1Zid~r2r i !, ~12!

the total charge distribution beingr5( ir i . Thus, when linearization is valid, the total screeni
is simply the superposition of the linearized screening of each ion considered separately.

We now regard two neighboring ions, 1 and 2, in isolation from the rest of the plasma
consider their combined screening cloud far from each ion. Expanding the exponential
Poisson–Boltzmann equation~10! up to second order inbf yields

“

2f2k2f5
1

2
k2~12Z* !bf214p(

i 51

2

Zid~r2r i !. ~13!

We write

f5f01f1 , ~14!

wheref0 is the appropriate zero-order solution, satisfying

“

2f02k2f054p(
i 51

2

Zid~r2r i !, ~15!

namely,

f05
Z1

r 1
e2kr 11

Z2

r 2
e2kr 2. ~16!

The functionf1 is the first-order perturbation to the potential, which satisfies

~“22k2!f15 1
2k

2~12Z* !bf0
2. ~17!

We note that

f0
25

Z1
2

r 1
2 e22kr 11

Z2
2

r 2
2 e22kr 21

2Z1Z2

r 1r 2
e2k~r 11r 2!. ~18!

The first two terms on the right-hand side~rhs! of Eq. ~18! depend only onr 1 or r 2 , so Eq.~17!
can be solved separately in spherical polar coordinates about the appropriate ion for each
first two terms. The third term, however, requires more analysis. To seek a solution in sphe
coordinates is the most straightforward approach. Because Eq.~17! is linear in f1 , the general
solution is the sum of the solutions of the homogeneous equation plus the three particular so
associated with each of the three inhomogeneous terms.
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First we calculate the particular solutions,f1
( i ) ~i 51 or 2!, corresponding to the first two

terms, which depend only on eitherr 1 or r 2 . They satisfy

~“22k2!f1
~ i !5 1

2k
2~12Z* !bZi

2r i
22e22kr i. ~19!

Because the rhs is spherically symmetric, it generates a spherically symmetric particular in
and one can writev5r if1

( i ) , yielding

d2v

dri
22k2v5

1

2
k2~12Z* !bZi

2r i
21e22kr i, ~20!

whose general solution is

v~r i !5
1

2
Zi

2k~12Z* !bE
r i

r 0
sinhk~r 82r i !

e22kr 8

r 8
dr81Aie

2kr i1Bie
1kr i. ~21!

Clearly v must vanish asr→`, requiring thatr 05` andBi50. Therefore

v~r i !5
1

2
Zi

2k~12Z* !bE
r i

`

sinhk~r 82r i !e
22kr 8r 821 dr81Aie

2kr i. ~22!

We note that the first term on the rhs of Eq.~22! has a logarithmic divergence at the origin, whic
represents a more severe divergence inf1

( i ) than the 1/r divergence of the zero-order Debye
Hückel term, and which signifies a~positive! change in the total screening charge accumulate
the vicinity of the ion. Indeed, in the complete solution it effectively generates small correc
Ai to the coefficientsZi in the zero-order solution~16!. Any higher-order expansion is expected
suffer a more severe divergence. Nevertheless, we do not extend these particular integral
origin. The second term in the expression~22! represents the spherically symmetrical~about ioni!
part of the complementary function; we have found it convenient to include the aspherical re
der of the complementary function in the interaction potentialf1

(3) . The unknown constantsAi

have to be determined by matching onto solutions that are valid near the heavy ions. This
discussed later.

For the calculation of the particular integralf1
(3) of Eq. ~17! associated with the cross term o

the rhs of Eq.~18! it is convenient to employ dimensionless prolate spheroidal coordinatesj, h
defined as follows:

j5
r 11r 2

2a
, ~23!

h5
r 12r 2

2a
; ~24!

r 1 andr 2 are the distances to the foci~at which the chargesZ1 andZ2 are situated! of a family of
confocal ellipses and hyperbolae, 2a being the distance between the foci. The appropriate solu
satisfyingf1

(3)→0 asj→` is axisymmetric about the line joining the two ions.
One can write the inhomogeneous term on the rhs of~18! as

2Z1Z2

r 1r 2
e2k~r 11r 2!5

2Z1Z2

a2~j22h2!
e22kaj. ~25!

The corresponding particular integral of Eq.~17! satisfies
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~“22k2!f1
~3!5

Z1Z2k2~12Z* !b

a2~j22h2!
e22kaj, ~26!

which is a modified Helmholtz equation with an inhomogeneous term. That inhomogeneou
diverges more slowly at the charges than do the self-interaction terms, and it does not gen
divergence inf1

(3) . Separating variables in the form

f1
~3!5(

n
Jn~j!Sn~h! ~27!

yields

(
n

H d

dj F ~j221!
dJn

dj G2LnJn2k2a2j2JnJ Sn~h!5Z1Z2k2~12Z* !be22kaj, ~28!

whereLn is a separation constant.
The so-called angular functionsSn(h) satisfy the equation

d

dh F ~12h2!
dSn

dh G1@Ln1k2a2h2#Sn50, ~29!

which, whenka is small, resembles Legendre’s equation. Indeed, it is convenient to expan
angular functions in terms of Legendre functions thus

Sn~h;ka!5 ( 8
m50,1

`

dmn~ka!Pm~h!, ~30!

where(8 denotes summation over evenm if n is even and over oddm if n is odd. It is found that
the series expansion~30! converges rapidly for smallka. The coefficientsdmn(ka) satisfy three-
term recurrence relations and are tabulated, for instance, by Flammer.14 They are reproduced in th
Appendix.

To obtain an equation forJn(j) one can multiply equation~28! by Sm(h) and integrate over
h in the interval@21,1#. We use the orthogonality relation

E
21

1

Sm~h;ka!Sn~h;ka!dh5Nn~ka!dmn , ~31!

wheredmn is the Kronecker symbol; the factorNn(ka), which is related simply to the expansio
coefficientsdmn(ka), is tabulated in the Appendix. Defining

ln[E
21

1

Sn~h!dh5H 2d0n~ka! for n even,

0 for n odd,
~32!

one obtains

d

dj F ~j221!
dJn

dj G2~Ln2k2a2j2!Jn5lnNn
21Z1Z2k2~12Z* !be22kaj. ~33!

Equation~33! is an ordinary inhomogeneous second-order equation which one can solve b
method of variation of parameters. IfRn

(1) and Rn
(3) are two independent solutions of the corr

sponding homogeneous equation
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d

dj F ~j221!
dRn

dj G2@Ln1k2a2j2#Rn50, ~34!

one obtains after a few lines of algebra:

Jn5
2

p
lnNn

21Z1Z2k3~12Z* !baF E
j1

j

Rn
~3!~x;ka!e22kax dx Rn

~1!~j;ka!

2E
j2

j

Rn
~1!~x;ka!e22kax dx Rn

~3!~j;ka!G , ~35!

wherej1 andj2 are integration constants which are to be determined by boundary condition
choose the functionRn

(1)(j;ka) such that it tends tò as j→` and is finite atj51, whereas
Rn

(3)(j;ka) is chosen to tend to 0 asj→` and has a logarithmic singularity atj51. At largej
both behave like modified spherical Bessel functions of the first and third kinds, respect
Imposing the condition thatJn→0 asj→`, the solution to Eq.~33! is given by Eq.~35! with
j15` andj251.

Now we can write down a representation of the total potentialf in terms of some transition
value j8 of j of the full first-order solution, which includes a solution to the homogene
equation

f5
Z̃1

r 1
e2kr 11

Z̃2

r 2
e2kr 21

1

2
Z1

2k~12Z* !br 1
21E

r 1

`

sinhk~r 82r 1!e22kr 8r 821 dr8

1
1

2
Z2

2k~12Z* !br 2
21E

r 2

`

sinhk~r 82r 2!e22kr 8r 821 dr8

1(
n

Sn~h;ka!FJn~j;k,a!1CnH Rn
~1!~j;ka!Rn

~3!~j8;ka! for j,j8

Rn
~3!~j;ka!Rn

~1!~j8;ka! for j.j8
J G , ~36!

whereZ̃i5Zi1Ai andCn are constants which will have to be determined by matching onto
solution that is valid near the heavy ions. The constantj8 is greater than 1~the lower limit of the
possible range ofj! but can otherwise be chosen arbitrarily. Equation~36! is valid everywhere
except very near the ions, where quantum-mechanical exclusion modifies the statistics
cantly. The functionsSn are even with respect toh for evenn, and odd for oddn. In the special
case when the two charges are equal, i.e.,Z15Z2 , only the even terms contribute, and allCn with
oddn vanish. The constantsZ̃i differ from Zi , the differences representing the contribution to
first-order correction tof arising from the complementary function associated with Eq.~17!.

For the purpose of matching the outer Poisson–Boltzmann solutions to the inner sol
valid near the ions,f is expanded in the regions close to each of ionsi in terms of local spherica
polar coordinates (r i ,u i) centered at each ion~see Fig. 1!, which are the coordinates with respe
to which we shall derive the inner solutions. Close to ion 1, the termZ̃2e2kr 2/r 2 can be approxi-
mated

Z̃2e2kr 2

r 2
'

Z̃2e22ka

2a
@12~k11/2a!r 1 cosu1#. ~37!

The termZ̃1 exp(2kr1)/r1 close to ion 2 is approximated similarly. Moreover, in the vicinity of io
i, wherer i /a!1, the spheroidal coordinatesj andh can be written in the form

j'11
r i

2a
~12cosu i ! ~38!
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and

h'716
r i

2a
~11cosu i !. ~39!

In Eq. ~39! the upper sign applies to ion 1 and the lower sign to ion 2.
Nearj51 the radial functionRn

(3) is dominated by the functionRn
(2) , defined in the Appen-

dix, which is singular at that point. Hence one can write@see Eqs.~A24!, ~A29!, and~A21!#

R0
~3!~j;ka!5R0

~1!~j;ka!2R0
~2!~j;ka!'12b00~ka!Q0~j!, ~40!

and forn.0,

R0
~3!~j;ka!5Rn

~1!~j;ka!2Rn
~2!~j;ka!'2bnn~ka!Qn~j!, ~41!

whereQn is a Legendre function of the second kind; it is given by e.g., Ref. 15

Qn~j!5
1

2
Pn~j!lnS j11

j21D2Wn21~j! ~42!

with n50,1,2,...; the functionWn21 is given by the sum

Wn21~j!5 (
k51

n

k21Pk21~j!Pn2k~j!. ~43!

Close to ioni one can expandJ0 in terms of the local polar coordinates using Eqs.~38! and~39!.
The integrals may thus be approximated by

E
1

j

R0
~1!~x,ka!e22kax dx R0

~3!~j,ka!.e22ka
r i

2a
~12cosu i !F12

b00

2
ln 21

b00

2
ln

r i

2a

1
b00

2
ln~12cosu i !G ~44!

and

FIG. 1. Coordinates in the expansion of the spheroidal coordinates around their foci.
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E
j

`

R0
~3!~x,ka!e22kax dx R0

~1!~j,ka!.E
1

`

R0
~3!~x,ka!e22kax dx2e22ka

r i

2a
~12cosu i !

3F11
b00

2
1

b00

2
ln 22

b00

2
ln

r i

2a
2

b00

2
ln~12cosu i !G .

~45!

It is expedient to expand the term (12cosui) ln(12cosui) in orthogonal functions of powers o
cosui , namely in Legendre polynomialsPn(cosui):

~12cosu i !ln~12cosu i !5 (
n50

`

anPn~cosu i !. ~46!

We do this in anticipation of the natural aspherical expansion of the inner solution to whic
outer solution must be matched. Indeed, for compatibility with the expansions~37!, in our nu-
merical computations we shall retain only the first two terms. By projecting Eq.~46! onto
Pn(cosui), using the orthogonality of the Legendre polynomials, the expansion coefficientsan are
obtained in the form

an5~n11/2!E
21

1

Pn~x!~12x!ln~12x!dx. ~47!

The integrals can be evaluated from the formula~e.g., Ref. 16!

E xn ln~11x!dx5~n11!21@xn112~21!n11# ln~11x!1~n11!21(
k51

n11

~21!k
xn2k12

~n2k12!
,

~48!

yielding

a050.19 and a1520.86. ~49!

The angular functionsSn are regular ath561, and can be Taylor expanded in the form

Sn~h,ka!'Sn~61,ka!7Sn8~61,ka!
r i

2a
~11cosu i !, ~50!

where the prime denotes differentiation with respect to the first argument. Simple expansio
Sn(61,ka) andSn8(61,ka) exist, and are listed in the Appendix. The zeroth-order angular fu
tions take on the special values

S0~61;ka!5 ( 8
m50

`

dm0~ka! ~51!

and

d

dh
S0~h;ka!U

h561

56 ( 8
m50

`

dm0~ka!m~m11!/2. ~52!

The values atj51 of R0
(1)(j;ka) and its derivative with respect toj are given by Eqs.~A21! and

~A33!; these imply thatR0
(1)(1;ka).1, and, for the purpose of estimating the value of express
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~A33!, dR0
(1)(j;ka)/djuj51 is negligibly small. However, in the computations reported in Sec.

the precise values were used. Thus in the vicinity of ion 1 or ion 2,f can be written in the form

f' f 0
~ i !~r i !1 f 1

~ i !~r i !cosu i1¯1 f n
~ i !~r i !Pn~cosu i !. ~53!

After incorporating the results derived above into the expansion ofbf about each ion, we find

b f 0'Z̃bkx21e2x1Z̃bk~2ka!21e22ka1axe22kab00@ ln~x/2ka!2 ln 220.62#/2ka1aJ

1C0S0~61;ka!bR0
~3!~j8;ka!1

1

2
~Zkb!2~12Z* !x21E

x

`

x821 sinh~x82x!e22x8 dx8

~54!

and

b f 1'2Z̃bk~2ka!21e22ka~111/2ka!x1axe22kab00@ ln~x/2ka!2 ln 210.72#/2ka, ~55!

wherea522S0(1;ka)(Zkb)2ka(12Z* )l0(ka)N0
21(ka)/p and x5kr i is the dimensionless

radius from ioni. MoreoverJ(ka)ª*1
`R0

(3)e22kaj dj, whose values are tabulated in the Appe
dix.

The coefficientsb00 andl0 /N0 can be written in the form

b00~ka!52
1

ka(m508 dm0~ka!
~56!

and

l0

N0
5

d00~ka!

(m508 ~2m11!21@dm0~ka!#2 . ~57!

Aside from the unknown constantsZ̃i andC0 , the functionsf n are therefore known forn50 and
n51. It is straightforward in principle to extend the expansion to higher order.

IV. THE POISSON–BOLTZMANN–FERMI–DIRAC EQUATION

The Debye–Hu¨ckel potential describes the effect of electrostatic screening only in the lim
weak screening, far enough from the nuclei wherebf!1.2 It breaks down in the vicinity of the
nuclei where the potential diverges and where the classical Maxwell–Boltzmann distribution
longer a good approximation to the Fermi–Dirac statistics of the electrons.

In order to find a solution for those regions in which the Debye–Hu¨ckel potential is not
applicable we shall describe the electrons by nonrelativistic Fermi–Dirac statistics; the
heavier ions are assumed still to obey classical Maxwell–Boltzmann statistics. The res
model is essentially the finite-temperature Thomas–Fermi model of the atom. This stat
model of the atom, which was first proposed by Thomas and Fermi in 1923, has been
extensively in equation-of-state calculations of high-temperature high-density material~e.g., Ref.
17!, and in plasmas~e.g., Ref. 12!.

In Fermi–Dirac statistics the mean number of particles in a state of energye is given by

ne5
1

ebe2d11
, ~58!

where hered is the degeneracy parameter, which we trust will not be confused with the
function. In order to obtain an expression for the number density of electrons,ne, we have to sum
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up the occupations of all states. Definingre de to be the number of translational states lying in t
energy range betweene ande1de, one obtains the local electron number density:

ñe52E
2f

` re de

ebe2d11
. ~59!

The factor 2 accounts for the fact that the electron can assume either of two spin states
translational state. An electron that moves inside a potentialf has a translational energye5 1

2p
2

2f, wherep is the magnitude of the momentum, so we can write for the density of statesre in
the energy~momentum! subspace of phase space:

re de5
1

2p2 p2
dp

de
de5

p

2p2 de. ~60!

This approximation, which is strictly correct only in the limit when the characteristic volum
the configuration subspace defined by the cube of the scale height off is large, is the principal
deficiency in our description of the electron–degenerate regions close to the ions from wh
obtain the inner solution. Substituting expression~60! in Eq. ~59! and integrating over alle, one
obtains the following expression for the electron density in a potentialf:

ñe~r !5ñe~`!
F1/2~bf1d!

F1/2~d!
. ~61!

Here ñe(`) denotes the electron density far from the ion, which we take to be the mean ele
densityne of the plasma. The latter is related to the degeneracy parameterd through

ne5&p22b23/2F1/2~d!; ~62!

F1/2 is a Fermi function, defined as

Fa~z!5E
0

` ta dt

et2z11
. ~63!

Large positived corresponds to a strongly degenerate plasma, while large negatived corresponds
to low degeneracy.

The electron density is related to the potential again by Poisson’s equation. Subst
expression~62! for ne and assuming the usual Maxwell–Boltzmann distribution for the densit
the light ions, the electrostatic potential around a single ion satisfies

“

2f54pneFF1/2~bf1d!

F1/2~d!
2e2Z* bfG24p(

i
Zid~r2r i !. ~64!

This is the equation that we call the Poisson–Boltzmann–Fermi–Dirac~PBFD! equation, and is
equivalent to that derived by Cowan and Kirkwood.11 In the limit of zero temperature, it become
the equation for the Thomas–Fermi atom.

V. EXPANSION OF INNER SOLUTIONS

It is convenient to cast the PBFD equation into dimensionless form by writingc[bf and
x[kr :

“x
2c5

1

Z* 11 FF1/2~c1d!

F1/2~d!
2e2Z* cG14pkb(

i
Zid~x2xi !, ~65!
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where¹x
2 is the¹2 operator referred to the new dimensionless coordinate system. Near ioni the

forms of the potential and the associated screening cloud are dominated by the charge of
and therefore they are nearly spherically symmetric. We therefore expandc about the spherically
symmetric components with respect to spherical polar coordinates (xi ,u i ,f i) about each ion, with
common axes coincident with the line of centers:

c~ i !~xi ,u i !5c0
~ i !~xi !1c1

~ i !~xi !cosu i1¯1cn
~ i !~xi !Pn~cosu i !. ~66!

Substituting into Eq.~17!, expanding the rhs about spherical symmetry, and separating the
ables, one obtains

1

xi

d2

dxi
2 ~xic0

~ i !!5
1

Z* 11 FF1/2~c0
~ i !1d!

F1/2~d!
2e2Z* c0

~ i !G14pkbZid
~3!~xi ! ~67!

and

1

xi

d2

dxi
2 ~xic1

~ i !!2
2

xi
2 c i

~ i !5
1

Z* 11 FF1/28 ~c0
~ i !1d!

F1/2~d!
1Z* e2Z* c0

~ i !Gc1
~ i ! , ~68!

where the prime onF1/28 denotes differentiation with respect to the argument. The derivativeF1/28
is evaluated by recalling thatF1/28 (z)52F21/2(z). The inner boundary conditions to be applied
ck

( i ) arexic0
( i )→Zikb asxi→0 and thatck

( i ) be regular atxi50 for k>1. Inspection of the form
of the solutions to Eqs.~67! and~68! reveals that the derivatived(xic0

( i ))/dxi5G i is undetermined
and that the appropriate higher-order solutions satisfyck

( i );g ixi asxi→0, whereg i are constants.

VI. MATCHING THE SOLUTIONS

Equations~67! and~68! were integrated numerically outwards fromxi50. Because we do no
know at this stage the values ofc1

( i ) at the origins of their respective coordinates, we construc
normalized solutionsy1

( i )(xi) satisfyingy1
( i )50 anddy1

( i )/dxi51 at xi50. The appropriate solu
tions can therefore be writtenc1

( i )5g1
( i )y1

( i ) for some constantsg1
( i ) . Matching was then achieve

by demanding that both terms of the inner solution and their first derivatives be continuous
their outer counterparts in Eq.~53! at some radiusr̃ . Thus

c0
~ i !~ x̃!5b f 0

~ i !~ r̃ !, ~69!

dc0
~ i !

dxi
U

xi5 x̃

5k21b
d f0

~ i !

dri
U

r i5 r̃

~70!

and

g1
~ i !y1

~ i !~ x̃!5b f 1
~ i !~ r̃ ! ~71!

and

g1
~ i !

dy1
~ i !

dxi
U

xi5 x̃

5k21b
d f1

~ i !

dri
U

r i5 r̃

~72!

for i 51,2, wherex̃5k r̃ . These eight conditions determine the constantsG i , g1
( i ) , Z̃i ( i 51,2) and

C0 andC1 .
Note that by taking the aspherical terms in the expansion~36! up to first order as a firs

approximation, we have included an odd term~antisymmetric with respect to the midplane pe
pendicular to the line of centers! to account for the caseZ1ÞZ2 . If the expansion were taken t
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higher order, at every new order one more term from the expansions~66! of F about each ion has
to be matched to the sum in Eq.~36!. This yields four more undetermined constants per expan
term: there are two more boundary values,gk

( i ) , of the inner solution, and two more constants,Cn ,
of the outer solution for another even and another odd term ofRn

(3) . These are determined by th
four further conditions for the matching off k and f k8 to ck andck8 around each ion.

For simplicity let us examine the case whenZ15Z25Z, and let us take the expansion in~36!
up to first order. Again it may be useful to write the potential in dimensionless form:c[bf with
x[kr 1,2. The problem is now dependent only on the parametersZbk andka, as well asZ* and
d which appear in the PBFD equation.

The ensuing set of transcendental equations is now solved numerically using a Ne
Raphson method. The parameterka is varied between 1, which is the value for which the Deb
spheres touch, tok r̃ , which is the value for which the two matching spheres touch, at and be
which this method cannot be applied. We have found that to a precision better than 1 part2

the total charge of the screening cloud is equal and opposite to the charge of the heavy io
which is an independent check on the self-consistency of this solution.

The choice of the matching radiusr̃ is constrained by the following two effects. On the o
hand,r̃ should be great enough for the nonlinear effects of the PBFD equation not to be sign
~i.e., thatf!d!. Thus it is ensured that the asymptotic outer solution in the Poisson–Boltzm
limit which is to be matched onto the inner solution is approximately valid. On the other hand
matching radius should be small enough for the effect of the second heavy ion on the solu
the PBFD equation to be treated as a small perturbation, i.e.,c1( r̃ )/c0( r̃ )!1, allowing the
aspherical perturbation to the PBFD equation to be linearized. It has been confirmed th
dependence of the solutions illustrated below on the exact choice ofr̃ within these constraints is
weak.

We have terminated the series in Eq.~53! at the first-order term, although the series is infini
For improved accuracy the expansion could be taken to higher orders, as we have outlined
but the computational effort grows substantially, since with every new term the number of
scendental equations that have to be solved at each order increases by eight, for the gene
Z1ÞZ2 , or by four for the special case whenZ15Z2 .

Finally we estimate the order of magnitude of the neglected second-order term:

J2~11 r̃ /2a!

J0~11 r̃ /2a!
'

l2N0b22*1
`R2

~1!e22kaj dj Q2~11 r̃ /2a!

l0N2b00*1
`R0

~1!e22kaj dj Q0~11 r̃ /2a!
. ~73!

We note that

l2N0b22

l0N2b00
'

5d22

4d00
'1, ~74!

for all values ofka, and that

*1
`R2

~1!e22kaj dj Q2~11 r̃ /2a!

*1
`R0

~1!e22kaj dj Q0~11 r̃ /2a!
'1022. ~75!

The exact value of the last expression depends onka as well as onk r̃ , and the estimated valu
that we have quoted was obtained for those values within the aforementioned constraintsk r̃ .
Thus the second-order term is about 1 percent of the zeroth-order term, which suggests th
justified to include only the zeroth-order term. Having thus calculatedC0 andZ̃, we can substitute
them into Eq.~53!, and the electrostatic potential is then fully determined.

We now proceed to calculate the electrostatic potential energyU, and subsequently the fre
energyF.
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VII. RESULTS AND DISCUSSION

As shown by Mitler10 and Brüggen and Gough,1 the work done in fusing two heavy ions tha
are immersed in a plasma is the free-energy difference between the initial and final configur
In each of these configurations the screening clouds are spherically symmetrical.

In Sec. IV we introduced the~inner! PBFD equation, which can be solved numerically for t
density in the vicinity of an isolated ion and matched onto the outer solution~36! to the PB
equation according to conditions~69!–~72!. The resulting representation of the full solution can
used immediately to calculate the electrostatic energyU, and hence the free energyF associated
with the single screening cloud surrounding an ion of chargeZ. In Fig. 2 we have plotted the fre
energy associated with such a single screened ion, as well as the corresponding free en
Salpeter’s Debye–Hu¨ckel solution, which is given by

2bFDH5 1
2Z

2kb. ~76!

We show this figure to provide some indication of the influence of electron degeneracy. How
we emphasize that it applies only to the isolated spherically symmetric ion cloud; it doe
provide a complete measure of the importance of the phenomena we address in this pape

Shown are the free energies for a screened ion in conditions similar to those at the ce
the sun and in a degenerate plasma. In Fig. 2~b!, in which screening is quite strong, the results a
compared also with the free energies from the ion-sphere model~see Ref. 2!, in which each ion is
considered to be surrounded by an electrostatically neutralizing sphere of fully degenerat
electrons of uniform density:

2bF ion–sphere5
9~kb!2/3Z5/3

10)~11Z* !1/3
. ~77!

Whatever the strength of the screening, our estimate ofuFu is less than Salpeter’s Debye–Hu¨ckel
value, because our modifications reduce the screening. The reason is twofold: firstly, qua
mechanical exclusion reduces the electron density in the vicinity of the ion, and secondl
Debye–Hu¨ckel linearization of the exponential Boltzmann factor in the PB equation overestim
the deviation of that factor from unity, thereby overestimating even the nondegenerate scre
The modifications we have computed increase withZ, even when they are measured in units of t
total free energy.

FIG. 2. Free energy of a single screened ion as a function of ion chargeZ in solar core. Results of this work are shown
crosses, the weak screening result as triangles, and~in panelb only! the results from the ion-sphere model~e.g., Salpeter,
1954! as circles. In panel~a! conditions are characteristic of the solar core:kb50.047,Z* 51.45 andd51.4. In panel~b!
conditions are characteristic of a degenerate plasma:kb50.2, Z* 54 andd525.
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For the strongly screened ion@Fig. 2~b!#, our results lie between Salpeter’s two extreme we
and strong-screening approximations. For lowZ, the results are hardly distinguishable from t
ion-sphere model; differences, however, become discernible for heavier ions. For high valueZ
the ion-sphere model underestimates the screening.

Our principal aim has been to calculate the interaction energyU int by performing the full
two-center calculation using the expansions developed in Secs. III and V. We define

U int~a;k!5
k2

8p E
V
f~r !r~r !d3r2U` , ~78!

whereU` represents the internal energy of the two ions at infinite separation, andU int represents
the energy arising from the interaction of the two heavy ions. The integration is over the wh
space.U` does not vary with ion separation 2a, and therefore does not contribute to the for
between the ions. In Fig. 3 we plotbU int(a;k) againstka for various values ofZ andkb, and we
compare it with Salpeter’s Debye–Hu¨ckel ~DH! result, which is

bU int
DH~a;k!52

Z2kb

2ka
~12ka!e22ka. ~79!

Because the DH approximation overestimates the screening, it underestimatesU int . It is evident
that the difference between the DH result and our model increases with decreasing valueska.
This is due to the increasingly strong nonlinear interaction between the screening charges
two screening clouds merge, which is not taken into account in the linear DH picture.
difference is an increasing function ofZ. The interaction energyU int tends to zero aska→` for
both the DH model and our model, but it does so more rapidly for the former because th
approximation overestimates the screening.

Finally U int is integrated overb, with all other parameters remaining fixed, to yield t
interaction free energy:

bF int~a;k~b!!5E
0

b

U int~a;k~b8!!db8. ~80!

The lower limit of the integration isb50; therefore in a lower part of the integration intervalka
is small, ask is proportional tob1/2, and our model cannot be applied. This is due to the fact
one cannot find a value for the matching radiusr̃ at which both the potential is small compared
the thermal energy and the influence of the other nucleus can be treated as a small perturb
the spherically symmetric solution to the PBFD equation within the sphere of radiusr̃ . But when
b50, i.e., at infinite temperature, there is no screening, andU int is given by the bare Coulomb
interaction. This allows us to interpolateU int down tob50 in order to calculate the free energ
The result forZ52, k52.22 andb50.0215~conditions typical of the solar interior! is shown in
Fig. 4. We find thatF int is bigger than the corresponding free energy obtained using the
potential. Also shown is the free energy as given by Mitler’s formalism.

The screening energyVs(2a) is then found using

Vs~2a!5F int~a;k!2
Z2

2a
. ~81!

The aim of this work was to present the results of our calculation of the free energy
screened ion pair. We shall investigate possible astrophysical consequences of these res
forthcoming paper.
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ACKNOWLEDGMENTS

We thank D. Lynden-Bell and W. Da¨ppen for helpful discussions. M.B. is grateful to PPAR
~UK! for a Research Studentship.

APPENDIX: MODIFIED SPHEROIDAL WAVE FUNCTIONS

Spheroidal coordinates

Here we define the spheroidal coordinates used in the body of the paper, and we disc
solutions of the modified Helmholtz equation in these coordinates. The latter are not well st
and are not easily available in the literature. However, they are analogous to the solutions
wave equation in spheroidal coordinates, which are described by, for example, Abramowi
Stegun,15 Morse and Feshbach18 and in the monograph by Flammer.14 We derive some propertie
of thesemodified spheroidal functionsin this appendix.

We define spheroidal coordinates appropriate to our problem as follows:

j5
r 11r 2

2a
, ~A1!

FIG. 3. bU int(a;k) plotted against the dimensionless semiseparationka of two screened ions of chargeZ. The solid curves
represent the results from this paper; the dotted curves denote the Debye–Hu¨ckel result. ~a! Z52,kb50.1; ~b! Z
58,kb50.025; ~c! Z53,kb50.3.
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h5
r 12r 2

2a
, ~A2!

wherer 1 andr 2 are the distances to the foci of a family of confocal ellipses and hyperbolaea
being the distance between the foci. This system of ellipses and hyperbolae can now be
about their major axis, i.e., the line connecting the foci, and the third spatial coordinate,f, denotes
the angle about the axis of symmetry. These coordinates are generally called prolate sph
coordinates, and they can take the values 1<j,`,21<h<1,0<f<2p. Their metric coeffi-
cients are

hj5aAj22h2

j221
, ~A3!

hh5aAj22h2

12h2 , ~A4!

hf5aA~j221!~12h2!. ~A5!

The problem discussed in this paper is symmetric about the major axis~the line connecting the
heavy ions! and is thus independent off. Hence the modified Helmholtz equation

“

2c2k2c50 ~A6!

reads

]

]j F ~j221!
]c

]j G1
]

]h F ~12h2!
]c

]hG2k2a2~j22h2!c50. ~A7!

We can now separate variables by writing

c~j,h!5(
n

Rn~j;ka!Sn~h;ka!, ~A8!

FIG. 4. bF int(a;k) for Z15Z252, k52.22, andb50.0215, which represents conditions characteristic of the solar c
The continuous curve is from the model in this paper, the dotted curve is the DH result and the dashed curve re
Mitler’s model.
                                                                                                                



e

s

uced at
sed the

tends
case

278 J. Math. Phys., Vol. 41, No. 1, January 2000 M. Brüggen and D. O. Gough

                    
where theRn(j;ka) are commonly referred to as the radial functions and theSn(h;ka) as the
angular functions.

The angular functions Sn„h; ka…

After substituting the ansatz~A8! into Eq.~A7! and recognizing the orthogonality@Eq. ~A14!#
of Sn , the following differential equation for the angular functions is obtained:

d

dh F ~12h2!
dSn

dh G1@Ln1k2a2h2#Sn50, ~A9!

whereLn is the separation constant. The two regularity conditions ath561 require thatLn be
an eigenvalue.

Equation~A9! has two regular singularities ath561, and also an irregular singularity ath
5`.

For ka!1, Eq.~A9! is close to Legendre’s equation sinceuhu<1. It seems natural therefor
to expandSn in terms of Legendre functions,Pn :

Sn~h;ka!5 ( 8
m50,1

`

dmn~ka!Pm~h!; ~A10!

S8 denotes summation over evenm if n is even and over oddm if n is odd. We find that the serie
expansion~A10! converges rapidly for smallka. The coefficientsdmn(ka) satisfy three-term
recurrence relations and are tabulated, for instance, in Ref. 14. They have also been reprod
the end of this appendix. There are various normalization schemes in use, and we have u
Flammer scheme, which requiresSn(0,ka) to be equal to the valuePn(0) of the Legendre
function at the origin for evenn, andSn8(0,ka) to be equal toPn8(0) for oddn, i.e.,

Sn~0;ka!5Pn~0!5
~21!n/2n!

2n~n/2!! 2 ~A11!

for evenn, and

Sn8~0;ka!5Pn8~0!5
~21!~n21!/2~n11!!

2nS n21

2 D !
2S n11

2 D !
2 , ~A12!

for odd n. We have plottedSn as a function ofh for two different values ofka in Fig. 5.
For completeness we note that in addition to the solution~A10!, which is finite ath561,

there is a second solution~called the angular function of the second kind! which diverges ath
561, and which can be expanded in the form

Sn
~2!~h;ka!5 ( 8

m52`

`

dmn~ka!Qm~h!, ~A13!

whereQm denotes a Legendre function of the second kind. Note that the summation now ex
from 2` to 1`. For details of this expansion see Ref. 14. This solution is not relevant to the
at hand, and therefore we discuss it no further.

Orthogonality

The angular functionsSn form an orthogonal set over the interval@21,1#. The orthogonality
relation is
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E
21

1

Sm~h;ka!Sn~h;ka!dh5Nn~ka!dmn , ~A14!

wheredmn is the Kronecker symbol and the factorNn(ka) is simply related to the expansio
coefficientsdmn(ka), which follows immediately from the orthogonality relation for Legend
functions:

Nn~ka!52 ( 8
m50,1

`
1

2m11
@dmn~ka!#2. ~A15!

Values ofNn are tabulated in Tables I–V.

The radial functions Rn„j; ka…

The radial functionsRn satisfy the equation

d

dj F ~j221!
dRn

dj G2@Ln1k2a2j2#Rn50. ~A16!

Comparing with Eq.~A9! one finds thatRn andSn satisfy the same differential equation, name

L~ f !5~12x2! f 922x f81@Ln1k2a2x2# f 50, ~A17!

wherex is j or h. However, the solutions for each coordinate are valid in separate regions. F
angular functions,Sn , defined for21<x<1, we have expressed the solutions as a sum o
Legendre functionsSn(x)5SmdmnPm(x). We express the radial functions in terms of modifi
spherical Bessel functions, because Eq.~A17! is similar to the modified Bessel equation whenx
@1. The radial functionsRn(x;ka), defined forx>1, can be obtained from the expansions ofSn

using the transformation

f̂ ~x!5E
21

1

e2kaxtf ~ t !dt[F~ f ! ~A18!

with f 5Sn , for if f (x) satisfiesL( f )50, then so doesf̂ . The corresponding expansion is in term
of modified spherical Bessel functionsi n(x)5Ap/2xIn11/2(x), whereI n11/2(x) is the modified
Bessel function of the first kind, namely

FIG. 5. Sn(h;ka): ~a! ka50.1, ~b! ka50.8.
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TABLE I. Nonzero coefficientsdmn(c) for n50 or 1 for the expansions of modified spheroidal wave functions fr
Flammer~1957!; dmn(c)50 if m1n is odd. Note: small numbers are entered in the formatA p which denotesA310p.

dmn(c) m50 1 2 3 4 5

c50.0 1.0000 1.0000 0.000 00 0.000 00 0.000 00 0.0
c50.1 1.0006 1.0006 0.001 11 0.000 44 0.000 1923 0.0
c50.2 1.0021 1.0024 0.004 46 0.001 60 0.003 0623 0.0
c50.4 1.0090 1.0097 0.018 03 0.006 45 0.049 5223 0.3
c50.6 1.0205 1.0219 0.041 28 0.014 67 0.255 5523 0.3
c50.8 1.0373 1.0393 0.075 23 0.026 45 0.829 7723 0.3
c51.0 1.0599 1.0623 0.121 38 0.042 09 2.097523 0.3

TABLE II. Nonzero coefficientsamn(c) for n50 or 1 for the expansions of modified spheroidal wave functions fr
Flammer~1957!; amn(c)50 if m1n is odd. Note: small numbers are entered in the formatA p which denotesA310p.

amn(c) m50 1 2 3 4 5

c50.0 1.0000 1.0000 0.000 00 0.000 00 0.000 00 0.0
c50.1 1.0006 1.0006 0.001 11 0.000 44 0.00 1923 0.0
c50.2 1.0021 1.0024 0.004 46 0.001 60 0.003 0623 0.0
c50.4 1.0090 1.0097 0.018 03 0.006 45 0.049 5223 0.3
c50.6 1.0205 1.0219 0.041 28 0.014 67 0.0255 5523 0.3
c50.8 1.0373 1.0393 0.075 23 0.026 45 0.0829 7723 0.3
c51.0 1.0599 1.0623 0.121 38 0.042 09 2.097523 0.3

TABLE III. Nonzero coefficientscmn(c) for n50 or 1 for the expansions of modified spheroidal wave functions fr
Flammer~1957!; cmn(c)50 if m1n is odd. Note: small numbers are entered in the formatA p which denotesA310p.

cmn(c) m51 2 3 4

c50.0 0.0000 0.0000 0.0000 0.0000
c50.1 0.2502 0 21.333822 0.0000 24.526726
c50.2 0.1673 0 21.782422 9.959424 22.379525
c50.4 1.015621 22.157822 2.694823 21.153424
c50.6 7.397922 22.347522 4.403823 22.831824
c50.8 5.916322 22.488322 6.232723 25.356724
c51.0 5.018322 22.619322 8.201223 28.852524

TABLE IV. Normalization factors for the angular functionSn as defined by
Eq. ~A14!.

Nn(c) n50 1

c50.1 0.667 467 0.667 467
c50.2 0.669 478 0.669 872
c50.4 0.678 851 0.679 679
c50.6 0.694 962 0.696 272
c50.8 0.719 592 0.720 376
c51.0 0.754 820 0.753 030

TABLE V. IntegralsJ(c).

c J(c)

0.0 0.0
0.1 4.5808
0.2 1.9117
0.3 1.0644
0.4 0.6671
0.5 0.4461
0.6 0.3107
0.7 0.2226
0.8 0.1628
0.9 0.1208
1.0 0.1233
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Rn
~1!~j;ka!5 ( 8

m50,1

`

amn~ka!i m~kaj!, ~A19!

because

i n~x!5 1
2~21!nF~Pn!uka51 . ~A20!

Flammer’s normalization

Rn
~1!~1;ka!52n@~n/2!! #2d0n~ka!/n! ~A21!

for evenn, and

Rn
~1!~1;ka!5

2nkaS n21

2 D ! S n11

2 D !dln~ka!

3~n11!!
~A22!

for odd n, implies the following relation between the coefficientsamn anddmn :

amn~ka!5F ( 8
k50,1

`

dkn~ka!G21

i m2ndmn~ka!. ~A23!

We have plottedRn
(1) as a function ofj for two different values ofka in Fig. 6. This solution is

regular atj51.
There is a second solution of Eq.~A16!, Rn

(2), which has a logarithmic singularity atj51.
One could write down a series expansion forRn

(2) by replacingi n by the modified spherical Bess
functions of the second kind. However, it has been shown that this series does not conver
for small values ofkaj. Instead, sinceRn andSn satisfy the same equation, it is possible to fi
a series expansion in terms of Legendre functions which converges well. IfQn denotes a Legendr
function of the second kind, then

Rn
~2!~j;ka!5 ( 8

m50,1

`

bmn~ka!Qm~j!1 ( 8
m52,1

`

cmn~ka!Pm21~j! ~A24!

FIG. 6. Rn
(1)(j;ka): ~a! ka50.1, ~b! ka50.8.
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@cf. Ref. 14, Eq.~4.2.6!#. The coefficientsbmn are given by

bmn~ka!52
i nn!

ka2n~n/2!! 2d0n~ka!
F ( 8

k50

`

dknG21

dmn~ka! ~A25!

for evenn, and

bmn~ka!52
i n213~n11!!

~ka!22nS n21

2 D ! S n11

2 D !2d1n~ka!

F ( 8
k51

`

dknG21

dmn~ka! ~A26!

for odd n. The coefficientscmn are related to the coefficientsdrur
mn defined by Flammer. It is

straightforward to show that

cmn~ka!52
n!

ka2n~n/2!! 2d0n~ka!
F ( 8

k50

`

dknG21

drum
0n ~ka! ~A27!

for evenn, and

cmn~ka!52
3~n11!!

~ka!22nS n21

2 D ! S n11

2 D !2d1n~ka!

F ( 8
k51

`

dknG21

drum
0n ~ka! ~A28!

for odd n. The coefficientsamn , bmn , andcmn are tabulated at the end of this Appendix.
Useful to our problem is the radial function of the third kind, which tends to 0 asj→`, and

which is defined by

Rn
~3!~j;ka![Rn

~1!~j;ka!2Rn
~2!~j;ka!. ~A29!

Rn
(3) andRn

(1) are linearly independent. The WronskianW5Rn
(1)8Rn

(3)2Rn
(1)Rn

(3)8 is found in the
usual manner:

Wn5
2

pka~j221!
. ~A30!

Asymptotic behavior and special values

The values of the angular functions and their first derivatives ath51 are given by

Sn~1;ka!5 ( 8
m50,1

`

dmn~ka!, ~A31!

d

dh
Sn~h;ka!U

h51

5
1

2 ( 8
m50,1

`

m~m11!dmn~ka!. ~A32!

Derivatives of the radial functions atj51 are given by

d

dj
Rn

~1!~j;ka!U
j51

5
2n21@~n/2!! #2d0n~ka!(m508` m~m11!dmn~ka!

n! (m508` dmn~ka!
~A33!
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for evenn, and

d

dj
Rn

~1!~j;ka!U
j51

5

2n21kaS n21

2 D ! S n11

2 D !d1n~ka!(m518` m~m11!dmn~ka!

3~n11!! (m518` dmn~ka!
~A34!

for odd n.
As j→`,

Rn
~1!~j;ka!→A p

2kaj
I n11/2~kaj! ~A35!

and

Rn
~3!~j;ka!→A p

2kaj
Kn11/2~kaj!, ~A36!

whereI andK are modified Bessel functions of the first and third kinds, respectively.

Integral J

In Sec. III the following integral occurred:

J~ka![E
1

`

R0
~3!e22kaj dj. ~A37!

This integral could be expressed as a series of Gegenbauer polynomials, but for compu
purposes it was just as convenient here to calculate it numerically. Results are displayed in
I.
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We investigate the contraction of a class of superintegrable Hamiltonians by imple-
menting the contraction of the underlying Lie groups. We also discuss the behavior
of the coordinate systems that separate their equations of motion, the motion con-
stants, as well as the corresponding solutions along such a process. ©2000
American Institute of Physics.@S0022-2488~99!02412-3#

I. INTRODUCTION

In a series of recent papers1–4 we have studied different aspects of a family of superintegra
Hamiltonian systems associated with the pseudo-orthogonal groups SO(p,q), p1q5N11. These
systems were obtained by symmetry reduction from a free Hamiltonian

H5
c

4
gm̄np̄mpn , ~1.1!

with configuration space given by a complex SU(p,q)-homogeneous space. Hereg is the Hermit-
ian metric of signature~p,q!, c a real constant, and the bar stands for complex conjugation. A
symmetry reduction, the resulting SO(p,q)-Hamiltonian systems are not free: they include
potential termV(s). Their expression is

Hr5
c

4
gmnpsmpsn1V~s!, ~1.2!

and now the real coordinates belong to the homogeneous space SO(p,q)/SO(p21,q). Among the
potentials that appear in this way we can find generalizations of the Po¨schl–Teller5 and Morse6

potentials.
It is worthy to point out that the above-mentioned systems are ‘‘maximally’’ superintegr

i.e., they have 2N21 functionally independent integrals of motion, not all of them in involutio
defined in the phase space of anN-dimensional configuration space.7 Recall that a completely
integrable Hamiltonian system hasN integrals of motion in the phase space, such that all of th
are functionally independent and in involution. The superintegrability property is also relat
the separation of variables of the Hamilton–Jacobi~HJ! equation in more than one coordina
system.2,8 As an application, in Ref. 3 we solved the HJ equation for any generic element o
whole family of these SO(p,q)-Hamiltonian systems but limited to a particular separable coo
nate system.

a!Electronic mail: juacal@wmatem.eis.uva.es
b!Electronic mail: jnegro@fta.uva.es
c!Electronic mail: olmo@fta.uva.es
d!Electronic mail: rodrigue@eucmos.sim.ucm.es
3170022-2488/2000/41(1)/317/20/$17.00 © 2000 American Institute of Physics
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The number of known superintegrable systems is not very large.7 Besides our
SO(p,q)-Hamiltonians we can mention the Calogero–Moser,9 the Smorodinsky–Winternitz,10

and two of the more paradigmatic systems in Physics: the harmonic oscillator and the K
problem. Therefore, it seems very attractive to use them in two aspects:~a! in order to derive some
new superintegrable systems, and, at the same time,~b! to find a unified language to deal with th
known ones. This is the purpose of the present paper by means of a contraction method ap
a whole class of SO(p,q)-Hamiltonian systems.

The basic idea of our development is that since the original Hamiltonians~1.1! or ~1.2! are
associated with a group, the new ‘‘contracted’’ systems must be linked to the corresponding
obtained by an Ino¨nü–Wigner ~IW! contraction.11 The contraction technique has recently be
used also by Gromov, Kostyakov, and Kuratov12 in a similar context. Other applications of th
procedure for generating more physical systems can be found in Ref. 13. In a recent
Izmest’evet al.14 showed that the separable coordinates of free systems on the two-sphere
turned into the separable coordinates on the Euclidean plane by using contractions. Here
carry out a similar study for our superintegrable systems in a systematic way for any dime
but restricting ourselves to a class of separable coordinates obtained by group theoretical
erations.

In order to handle in an efficient way the SO(p,q) groups and their IW contractions we wi
use the Cayley–Klein~CK! scheme.15 This group formalism allows a unifying treatment of
certain class of superintegrable systems.

The organization of the paper is as follows. In Sec. II we present an overview of the Ca
Klein scheme for the pseudounitary and the pseudo-orthogonal group families that allows us
a common pattern for any SO(p,q) or SU(p,q) groups together with some of their IW contra
tions and their corresponding homogeneous spaces. We also give the main properties
configuration spaces of the Hamiltonian systems~1.1! and~1.2! which will be used in this article.
Section III shows how to contract the Hamiltonians. Section IV develops the symmetry redu
method in homogeneous and affine coordinates. The main feature of superintegrable syst
previously mentioned, is that they have a wealth of first integrals which, as it is shown in Se
will become first integrals of the corresponding contracted systems. Consequently, thes
tracted systems coming from our original superintegrable systems also share this characte
tion VI deals with the Hamilton–Jacobi equation and its contracted version and Sec. VII co
some examples in order to show explicitly how the theory works. Finally in Sec. VIII we m
some general remarks and comments.

II. THE GEOMETRY OF THE CONFIGURATION SPACES

In this section, we will consider the relevant properties of the pseudo-orthogonal
pseudounitary CK groups and their homogeneous spaces.

A. Pseudo-orthogonal Cayley–Klein groups

TheN-dimensional CK algebras are real Lie algebras of dimensionN(N11)/2, characterized
by N real parametersk5(k1 ,...,kN).15 This family of algebras can be obtained as particu
solutions of the graded contractions16 of the Lie algebra so(N11) equipped with aZ2

^ N grading.17

In the following we will denote them by sok(N11), and their associated CK groups b
SOk(N11).

Let $Jmn ; m,n, m,n50,1,...,N% be the basis of sok(N11), with nonvanishing commutation
relations

@Jmn ,Jms#5kmnJns , @Jmn ,Jns#52Jms , @Jms ,Jns#5knsJmn , ~2.1!

wherem,n,s, m, n, s50,1,...,N, andkmn5P i 5m11
n k i . There is no summation over repeate

indices~in the following we will use Greek and Latin indices according to the well-establis
convention,m50,1,...,N and i 51,...,N). This basis is well adapted to the gradingZ2

^ N and its
associated contractions to be discussed later.
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We can consider 3N differentN sets (k1 ,...,kN) after rescaling of the real parameters to11,
21, or 0. We get by this procedure 3N CK algebras not all of them nonisomorphic, although th
associated CK groups are the motion groups of 3N different geometries. When all thek i , i
51,...,N, are nonzero we obtain the algebras so(p,q) ~with p1q5N11, p>q>0); in particular
so(N11) corresponds tok i51 for all i. On the other hand, when somek i50 we get an inho-
mogeneous algebra@i.e., an algebra obtained from so(p,q) through a sequence of IW contrac
tions#.

The IW contractions~along a subalgebra! can be described as follows. Each of theN inde-
pendent and commutative involutive automorphisms of sok(N11) that determines the gradin
Z2

^ N gives rise to a decomposition of sok(N11) in two subspaces:

sok~N11!5pl
% hl , ~2.2!

with hl invariant andpl anti-invariant under the corresponding involution. The subspacehl is a
subalgebra of sok(N11) generated by the elementsJmn such thatn, l or m> l ; whereas the
subspacepl-~in general not a subalgebra! is spanned by thoseJmn whose indices satisfym, l or
n> l . Each decomposition~2.2! gives rise to an IW contraction with respect to the subalgebrhl

by defining the linear contraction mappingGe
( l ) through its action over the basis elementsJmn as

Ge
~ l !~Jmn!5H Jmn if JmnPh~ l !

eJmn if JmnPp~ l !, ~2.3!

where the contraction parameter ise5uk l u1/2. The contraction is achieved by replacing~2.3! in
~2.1! and performing the limite→0. This classical procedure for applying the contractionGe

( l ) is
equivalent to taking simplyk l50 in ~2.1!; in both cases we get the CK algeb
sok1 ,...,k l 21,0,k l 11 ,...,kN

(N11).
In particular, whenk150 the CK algebras so0,k2 ,...,kN

(N11)[ isok8(N) (k85(k2 ,...,kn))
can be realized as the Lie algebras of affine groups of transformations on spaces of zero cu
The corresponding groups ISOk8(N)[SO0,k2 ,...,kN

(N11) have a semidirect product structure

ISOk8~N![TN(SOk8~N!, ~2.4!

where TN is the Abelian subgroup generated by$J0i ; i 51,...,N% and SOk8(N21) is an
(N21)-dimensional CK group generated by$Ji j ; i , j 51,...,N%. Among these affine groups we ca
mention: the Euclidean group inN dimensions characterized by (k2 ,...,kN)5(1,...,1), the Poin-
caré group in (N21,1) dimensions taking for instance (k2 ,...,kN)5(21/c2,1,...,1) ~c is the
vacuum light velocity!, and the (N21,1) Galilei group realized when (k2 ,...,kN)5(0,1,...,1).

B. The homogeneous spaces SO k„N11…/SOk8„N…

The homogeneous spacesMl5SOk(N11)/H ( l ) are the spaces of points (l 51), lines (l
52),...,N hyperplanes (l 5N) of the corresponding CK geometry, whereH ( l ) is the Lie group
associated with the Lie algebrah( l ) @i.e., the groupH ( l ) is the isotropy group of a point~for l
51), a line~for l 52), etc.#. Eachk l constant can be seen as the curvature of the spaceMl . In
this respect, the contractions determined by the mappingsGe

( l ) have a clear geometrical meanin
due to the relationshipe5uk l u1/2. So, theGe

( l ) contraction determines the properties ofM1

5SOk(N11)/SOk8(N) in the neighborhood of a point (l 51), a line (l 52),..., anN hyperplane
( l 5N).

The CK groups act linearly inRN11 ~which is the ambient space! but this action is not
transitive. We will denote byRk

N11, the spaceRN11 equipped with the bilinear form defined b
the matrix

gk5diag~1,k01,k02,...,k0N!. ~2.5!
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The ‘‘pseudosphere’’S

~x0!21k01~x1!21¯1k0N~xN!251, xmPR, m50,1,...,N, ~2.6!

is the orbit of the point~1,0,...,0! and can be considered~after, in some cases, antipodal identi
cation! as the homogeneous space SOk(N11)/SOk8(N). From a metric point of view, the CK
groups keep invariant the bilinear form~2.5!. In fact, to determine completely the correspondi
CK group we need to consider a whole set of metrics,15 the first one being~2.5! for the ambient
space~or in other words, the metric in homogeneous coordinates!. If all k i ’s are nonzero the
restriction of~2.5! to M1 gives a nondegenerate Fubini–Study metric,ĝk

(1) , in affine coordinates
~see Sec. II D!. Wheneverk150 ~but the remainingk i ’s are still nonzero! the restrictionĝk

(1)

vanishes, but it can be now renormalized by the factor 1/k01 leading to a well-defined metric on
M1, gk

(1)5(1/k1)ĝk
(1) . If k1Þ0 and there are some otherk i50 the ambient metric and th

~renormalized! metric gk
(1) are degenerate. In this case the spaceM1 has curvature~proportional

to! k1 and a foliation of codimensionj 21 ~wherej is the smallest indexi such thatk i50) whose
leaves have the metricgk

( j )5(1/k j )ĝk
( j ) , with ĝk

( j ) the restriction of the metricgk
1 to the leaves of

the foliation. Obviously, this foliation can have other new foliations if there are some othek i

50, and the previous discussion about the metrics can be applied once more.
Let X(Rk

N11) be the space ofC ` vector fields onRk
N11. An elementj5jm(x)]xm of X(Rk

N11)
will belong to TS if

jmxm[gmn
k jmxn50. ~2.7!

SinceS is invariant under the action of SOk(N11), the fundamental vector fields of this actio
are tangent to the pseudosphere. In terms of the natural (N11)3(N11) representation of
SOk(N11) these fundamental vector fields are

jX52~X!n
mxn]xm, ~2.8!

whereX are the matrices in the corresponding (N11)3(N11) matrix representation of sok(N
11), and the vector fieldsjX are real vector fields inTS. Relation ~2.7! is equivalent to the
defining condition over the matricesX of ok(N11):

XTK1KX50, ~2.9!

whereK is the diagonal matrix corresponding to the metricgk .
The basis elements,Jmn , of sok(N11) in the above-mentioned (N11)3(N11) matrix

representation take the form

Jmn52kmnEmn1Enm , ~2.10!

whereEmn is the real matrix with 1 in the intersection of themth row and thenth column and
zeros elsewhere. From~2.8! and ~2.10! the differential representation of the generatorsJmn is
given by

jJmn
5kmnxn]xm

2xm]xn
. ~2.11!

C. The pseudounitary Cayley–Klein groups

We choose as a basis for suk(N11),1,18

Jmn52kmnEmn1Enm , Kmn5 i ~kmnEmn1Emn!, H j5 i ~Ej 21, j212Ejj !, ~2.12!
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and the nonzero Lie brackets are (m,n,s)

@Jmn ,Jms#5kmnJns , @Jmn ,Jns#52Jms , @Jms ,Jns#5knsJmn ,

@Kmn ,Kms#5kmnJns , @Kmn ,Kns#5Jms , @Kms ,Kns#5knsJmn ,

@Jmn ,Kms#5kmnKns , @Jmn ,Kns#52Kms , @Jms ,Kns#5knsKmn ,

@Jms ,Kmn#5kmnKns , @Jns ,Kmn#5Kms , @Jns ,Kms#52knsKmn ,

@Jmn ,Kmn#522kmn (
t5m11

n

Ht ,

@Jmn ,H j #5~dm j 212dm j2dn j 211dn j !Kmn , @Kmn ,H j #52~dm j 212dm j2dn j 211dm j !Jmn .

This family of groups SUk(N11) acts on the complex spaceCN11 by matrix multiplication
keeping invariant the Hermitian form

^x,y&5gkmn̄xmȳn, x,yPCN11, ~2.13!

wheregk was defined in~2.5!. Let us denoteCk
N11 the complex manifoldCN11 endowed with the

metric ~2.13!. The orbit of the point~1,0,...,0! of Ck
N11 is the real submanifold

Hk
N[uy0u21k01uy1u21¯1k0NuyNu251, ~2.14!

which is diffeomorphic to the homogeneous space SUk(N11)/SUk8(N). If we take into account
the action of U~1! in Hk

N , i.e., y→eiay, we obtain the Hermitian symmetric spaces

Ck
N[

SUk

U~1!3SUk8~N!
, ~2.15!

which are noncompact spaces, except whenk i51, ; i ; this last case corresponds to the comp
projective space CPN[SU(N11)/U(N).

A real vector field in the complex manifoldCk
N11 has the form

j5jm]ym1c.c., ~2.16!

where c.c. stands for complex conjugate. These vector fields will belong toTHk
N if

jmȳm1 j̄mym50. ~2.17!

The fundamental vector fields of the action of suk(N11) on Hk
N are given by

jX52~X!n
myn]ym2~X̄!n

mȳn] ȳm, ~2.18!

whereX are the matrices in the (N11)3(N11) representation of suk(N11). Obviously, these
real vector fields,jX , are inTHk

N , since the relation~2.17! is equivalent to the condition over th
traceless matricesX to belong to suk(N11), i.e.,

X†K1KX50, ~2.19!
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whereK is the diagonal matrix corresponding to the Hermitian formgk . In particular, for the basis
of suk(N11) the fundamental vector fields are

jJmn
52~kmnyn]ym1ym]yn!1c.c.,

jKmn
52 i ~kmnyn]ym1ym]yn!1c.c., ~2.20!

jH j
52 i ~yj 21]yj 212yj]yj !1c.c.

For a more detailed description of these vector fields see Ref. 3.

D. Affine coordinates

Affine coordinates are defined by

zi5
yi

y0 , i 51,...,N, ~2.21!

in any domain of the hyperboloidHk
N where y0Þ0. The action of U~1! on Hk

N allows us to
consider the orbits under such an action and to choose a section with the condition thaty0 be a
positive real number. Then, we can invert Eq.~2.21! and define the homogeneous coordinatesym

in terms of the affine ones by

y05
1

A11uzu2
, yi5

zi

A11uzu2
, i 51,...,N, ~2.22!

wherekk,i j 5gk,i j , i , j 51,2,...,N, anduzu25kk,i j z
i z̄j .

The Fubini–Study Hermitian metrichk in the affine coordinateszi takes the following ex-
pression in covariant components~for a complete discussion see Ref. 3!:

hk,i j 5~11uzu2!22@~11uzu2!kk,i j 2kk,l j kk,ikzl z̄k#. ~2.23!

The contravariant components are

hk
i j 5~11uzu2!2~kk

i j 1zi z̄j !. ~2.24!

E. Contraction of coordinate systems

The group generators can be used to define coordinate systems on homogeneous sp
suitable geodesic parallel coordinate system parametrizingS, which will be used in Sec. VI to
separate the HJ equation, is defined as follows.18 Any point (s0,...,sN) of S can be reached
through a transformationef1J01ef2J02̄ efNJ0N acting over the point~1, 0...., 0!, i.e.,

~s0,...,sN! t5ef1J01ef2J02̄ efNJ0N~1,0....,0! t. ~2.25!

Using the matrix expression ofJmn ~2.10! it is easy to find explicitly each exponential

efJmn5I N111~Ckmn
~f!21!~Emm1Enn!2kmnSkmn

~f!Emn1Skmn
~f!Enm , ~2.26!

whereI N11 is the (N11)3(N11) identity matrix. ByCk(f) andSk(f) we denote a general
ized version of the trigonometric functions cosf and sinf, respectively, defined by15
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Ck~f!5H cosAkf, k.0

1, k50

coshA2kf, k,0 ,
~2.27!

Sk~x!5H sin~Akf!/Ak, k.0

f, k50

sinh~A2kf!/A2k, k,0.

For k51, 0,21 we have the usual trigonometric, parabolic, or hyperbolic functions, respecti
Indeed, the properties of the generalized functions~2.27! are consistent with such an interpret
tion, for instance:

Ck
2~f!1kSk

2~f!51,
d

df
Ck~f!52kSk~f!,

d

df
Sk~f!5Ck~f!. ~2.28!

Substituting~2.26! in ~2.25! we have

s05Ck0N
~fN!Ck0,N21

~fN21!¯Ck02
~f2!Ck01

~f1!,

s15Ck0N
~fN!Ck0,N21

~fN21!¯Ck02
~f2!Sk01

~f1!,

s25Ck0N
~fN!Ck0,N21

~fN21!¯Ck03
~f3!Sk02

~f2!,

~2.29!

A

sN215Ck0N
~fN!Sk0,N21

~fN21!,

sN5Sk0N
~fN!.

Note that in~2.29! whenk0i.0, the corresponding anglef i is bounded; in particular ifk i51 for
all i we obtain the spherical coordinates ofSN:2p<f1,p and2p/2<f i,p/2, i 52,...,N.

When k150 and k iÞ0, i 52,...,N, we recover the Cartesian coordinates system
N-dimensional flat spaces:

s051, s15f1[x1, s25f2[x2,..., sN5fN[xN. ~2.30!

The generatorsJ0i go into the translation generatorsPi on Rk8
N . In consequence, we can writ

ef i J0i[exi Pi for the exponentials that give the coordinate system in the limitk1→0.
The system~2.29! is not the only coordinate system that can be used to separate th

equations of our superintegrable systems as we will show by means of geodesic polar coord
Starting from the origin~1, 0,..., 0! we can get any points by using a different transformation
sequence:

~s0,...,sN! t5efN21,NJN21,N
¯ef12J12ef01J01~1,0,...,0! t, ~2.31!

leading to the parametrization formulas
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s05Ck01
~f01!,

s15Sk01
~f01!Ck12

~f12!,

s25Sk01
~f01!Sk12

~f12!Ck23
~f23!,

A ~2.32!

sN5Sk01
~f01!Sk12

~f12!Sk23
~f23!¯SkN21,N

~fN21,N!.

To show the differences derived from the contraction of this new coordinate system, let us ta
three-dimensional ambient space,N52. Whenk15k251 we have the two-sphere coordinates

s05cos~f01!,

s15sin~f01!cos~f12!,

s25sin~f01!sin~f12!,

where 0<f01,p, 0<f12,2p. By taking k150, k251 the above-mentioned two-sphe
changes into a two plane with coordinates

s051,

s15f01cos~f12!, ~2.33!

s25f01sin~f12!.

The contracted coordinates originated in this case are polar by identifyingf01[r , f12[u, not
Cartesian as the ones we previously obtained~2.30!. The same situation appears in the hyperbo
case choosingk2521, but with the polar angle changed to a hyperbolic angle.

III. SUk„N11… HAMILTONIANS

The free Hamiltonian in the spaceCk
N11 can be written as3

H5
c

4
gk

m̄np̄mpn . ~3.1!

However, it has a bad behavior under contraction: Sincegk
m̄n5diag(1,k01

21,k02
21,...,k0N

21), when
somek i50 they give rise to diverging terms. A simple renormalization procedure is achieve
multiplying by the global factork0N avoiding the divergences for anyk i50 ~one could also think
of this factor as included in ak i-dependentc!. Hence, a more suitable Hamiltonian is

H5
c

4
k0Ngk

m̄np̄mpn , ~3.2!

wherec is a real constant. The extended action of the group SUk(N11) on TCk
N11 leaves the

Hamiltonian invariant.
If we are working in the spaceHk

N , i.e., using homogeneous coordinates,ym, we must add the
constraintgkm̄nȳmyn51, which, in the case of allk iÞ0, can be easily solved by the method of t
Lagrange multipliers. A way to avoid such a constraint is by using affine coordinates (zi), i.e.,
working in Ck

N . However, the resulting HamiltonianHa and, obviously, the equation of motio
become more complicated:
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Ha5
c

4
k0Nhk

i j p̄zipzj5
c

4
k0N~11kk,lmzl z̄m! ~kk

i j p̄zipzj1~zi p̄zi !~ z̄j pzj !!, ~3.3!

wherepzi is the momentum conjugate to the coordinatezi .
Let us consider the contraction procedure assuming thatk150 and all the otherk iÞ0.

Replacing these values in~3.2! and ~3.3! we obtain in homogeneous and affine coordinat
respectively,

H0,k2 ,...,kN
5

c

4
~k1Nup1u21k2Nup2u21¯1kN21,NupN21u21upNu2!, ~3.4!

and

H0,k2 ,...,kN

a 5
c

4
~k1Nupz1u21k2Nupz2u21¯1kN21,NupzN21u21upzNu2!. ~3.5!

We can see that both contracted Hamiltonians coincide, which is in agreement with the fact
this limiting case both kinds of coordinates are indeed the same.

On the other hand, as we have also discussed in Sec. II B, whenk150 the contracted metric
in RN will be gk

(1)5diag(1,k12,k13,...,k1N). Hence, the Hamiltonian in this space will be@k8
5(k2 ,...,kN)#:

Hk8
8 5

c

4
k1Ngk

~1!m̄np̄mpn5
c

4
~ up1u21k12

21up2u21¯1k1,N21
21 upN21u21k1N

21upNu2!, ~3.6!

and comparing with~3.4! we see thatH0,k2 ,...,kN
5Hk8

8 .
If we go ahead with the contraction process and makek250 the procedure is similar leadin

to a Hamiltonian with one term less. Finally, when allk i50 we are left with a residual Hamil
tonian

H0,0,...,05~c/4!upNu2. ~3.7!

When we setk i50 for someiÞ1 the problem becomes more involved, and in this case o
the affine coordinates are admissible. For instance, ifk250 andk iÞ0 for iÞ2, we obtain from
~3.3! the Hamiltonian

Hk1,0,k3 ,...,kN

a 5
c

4
~11k1uz1u2!~k2Nupz2u21¯1kN21,NupzN21u21upzNu2!. ~3.8!

In the following we will consider contractions withk1 going to zero in the first place becaus
this case covers the most relevant physical examples~for instance Euclidean, Galilei, and Poinca´
groups!.

IV. COMPACT CARTAN SUBALGEBRA REDUCTION

In this section we shall use the Marsden–Weinstein reduction theory19 using the compact
Cartan subalgebra of suk(N11). We can consider the reduction in homogeneous coordinate
well as in affine ones. The first case has been introduced in Ref. 4 and, for this reason, we
here only a short review. The second case is completely new and will be developed below

A. Phase space reduction on Ck
N

Let G* be the dual space of a Lie commutative subalgebraG of suk(N11). The momentum
mapJ:T* Ck

N11→G* can be defined by

^J~y,p!,X&5FX̂L~y,p!, XPG, ~4.1!
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where X̂L is the fundamental vector field onT* Ck
N11, corresponding toX. If we consider a

suitable basis

$XiPsuk~N11!u~Xi !n
m52~X̄i !n

m ; i 51,...,l 5dimG% ~4.2!

of G we obtain

FX̂
i
L~y,p!52~Xi !n

m~ynpm2 ȳnp̄m! ~4.3!

usingi(XL)v5dFXL. The reduction procedure imposes several conditions on the momenta~to be
precise, on the imaginary part of the momenta!

2~Xi !n
msn~pm2 p̄m!5r i , ~4.4!

wherer 5(r i)PG is a regular point of the image of the momentum map. This condition gives
to a new Hamiltonian,

Hk
r 5gk

mnpsmpsn1V~s,r !, ~4.5!

wherepsm5R(pm). For the compact Cartan subalgebra of uk(N11) the appropriate basis is

Xj5 i ~Ej 21, j 212Ej j !, j 51,...,N, X05diag~1,...,1!, ~4.6!

and the potential obtained after reduction is

V5k0NS c0
2

~s0!2 1k01
21

c1
2

~s1!2 1¯1k0N
21

cN
2

~sN!2D . ~4.7!

The coefficientsci are real constants related withr. The reduced Hamiltonian can be written a

Hk
r 5k0N(

m,n
gk

mnS 1

2
psmpsn1

cm

sm

cn

sn D . ~4.8!

B. Phase space reduction on Hk
N

In the homogeneous spaceHk
N the SUk(N11) free Hamiltonian is given by formula~1.1!.

The fundamental vector fieldXL associated with the action of an elementL5exp(X) of SUk(N
11)(XPsuk(N11)) on Hk

N ,

z8 i5~Lz! i
L0

i 1L j
i zj

L0
01L j

0zj , i 51,...,N, zPHk
N , ~4.9!

is lifted to a vector fieldX̂L on the contangent bundleT* Hk
N ,

X̂L52~X0
i 1~Xj

i 2X0
0d j

i !zj2Xj
0zjzi !]zi1~Xj

i 2~X0
01Xk

0zk!d j
i 2Xj

0zi !pi]pj
1c.c., ~4.10!

which leaves the Hamiltonian~3.3! invariant.
The canonical symplectic two-formv on T* Hk

N can be chosen asv5dzi∧dpi1dz̄i∧dp̄i .
The functionFX̂L(z,p) is defined in a similar way to~4.3!, i.e.,

FX̂L~z,z̄,p,p̄!52X0
j ~pj2 p̄ j !13Xj

0~zjzkpk2 z̄j z̄kp̄k!22~Xj
k2X0

0d j
k!~zj pk2 z̄j p̄k!, ~4.11!
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where $Xi% i 51
N is a basis of the Lie algebraG @in our particular case a Cartan subalgebra

suk(N11)] such thatX̄i52Xi . The momentum mapJ:T* Hk
N→G* is defined by^J(z,p),X&

5FX̂L(z,p), and if u5(uk)PG* is a regular point ofJ, its inverse image,J21(u), is a submani-
fold of T* Hk

N .
The isotropy group of the pointuPG* , when the coadjoint action of the groupTN11

5exp(G) on G* is taken in consideration, is againTN11 , because the group is Abelian. Moreove
the action ofTN11 on J21(u) is free.

In order that a point~s,p! of T* Hk
N with s real belongs toJ21(u) it is necessary and sufficien

that the following equation be verified:

22i $~Xl !0
k23~Xl ! j

0sksj12@~Xl ! j
k2~Xl !0

0d j
k#sj%Ipk5ul , l 51,...,N. ~4.12!

So, the imaginary part ofp, Ip, is not arbitrary. Since all the matrices in the basis of the comp
Cartan subalgebra can be chosen to be diagonal, it is an easy task to show that the solution
linear system have the form:

Ipk5
ck

sk , k51,...,N, ~4.13!

whereck are some constants depending onuk . Finally, the reduced Hamiltonian is given by

Ha
r 5k0N~11ki j s

isj !F ~ki j psipsj1~sipsi !2!1S (
i , j 51

N

ki j
ci

si

cj

sj 1C2D G , ~4.14!

whereC5Sci . The reduced Hamiltonian appears as a sum of two terms, the free Hamilton
the reduced phase space@the first term on the right-hand side of~4.14!#, which is in fact the
quadratic Casimir operator of the O(p,q) group, and a potential term, only depending on t
coordinates of the manifold (si) and on some constants (ci), which are related to the coordinate
(ui) of the fixed point ofG* used in the momentum map method.

We are working with a particular type of maximal Abelian subalgebras~MASA! of suk(N
11), the compact Cartan ones, though there are other MASAs of the same dimension~even
higher!. Our first reason to work with them is that we can assure the existence of a pure ima
matrix basis of these subalgebras~this is crucial in the phase space reduction method in orde
easily obtain the momenta!. The second is that in the global scheme here developed it is the
MASA that suits all of them@any suk(N11) algebra contains a subalgebra of this kind#. It is clear
that other MASAs in suk(N11) could be used leading to new potentials, but they have to
treated case by case and the results cannot be easily generalized to the whole family ofk(N
11) algebras.

C. Contraction and reduction

We are dealing with two different processes acting on our systems: contraction and red
so, a natural question here raised is whether they are interchangeable, i.e., if the following d
is commutative:
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contraction ~k1→0!

SUk~N11! ——→ ISUk8~N!

u u

symmetry reduction byGc symmetry reduction byGc

↓ ↓

contraction ~k1→0!

SOk~N11! ——→ ISOk8~N!

~4.15!

In the last sections we have carried out the procedure of contraction after reduction. Now,
first act with the contractionk1→0 on the Hamiltonian~3.2!. It turns into

Hk85
c

4
k1N (

i , j 51

N

gk8
ī j p̄i pj . ~4.16!

On the other hand, the vector fields associated with the generators of ISUk8(N) are@it suffices to
put in the expression~2.20! k150 and take into account thaty051]

Ĵ0i52]yi1c.c., Ĵi j 52~k i j y
j]yi1yi]yj !1c.c.,

K̂0i52 i ]yi1c.c., K̂ i j 52 i ~k i j y
j]yi1yi]yj !1c.c., ~4.17!

Ĥ15 i ]y11c.c., Ĥ l52 i ~yl 21]yl 212yl]yl !1c.c.,

where i , j 51,...,N, l 52,...,N. If we now apply the symmetry reduction using the Abelian s
algebra~which is invariant under the contraction! generated by$H1 ,...,HN%, we obtain the re-
duced Hamiltonian

Hk8
r

5k1N (
i , j 51

N

gk8
i j S 1

2
pxipxj1

ci

xi

cj

xj D , ~4.18!

which coincides with the contracted version of~4.8!. Thus, we can state that in this sense
contraction and reduction processes indeed commute. Nevertheless, one must be awar
contraction generally increases the number of inequivalent classes of Abelian subalgebras
in principle, it can supply us with new reductions.

V. INTEGRALS OF MOTION

In Ref. 1 it was given a group-theoretical method to construct integrals of motion: se
order operators belonging to the enveloping algebra of suk(N11) that commute with the appro
priate MASA, in our case the compact Cartan subalgebra. The procedure consists in
the quadratic invariants of the coadjoint action of the Cartan subgroup of SUk(N11) on
suk* (N11) and afterwards, by duality, to rewrite them in terms of the elements of suk(N11).

If A5(amn)Psuk* (N11) andXPsuk(N11) the coadjoint action will be given by the wel
known formulaA85eXAe2X. In particular, whenX belongs to the compact Cartan subalgebra
suk(N11) we obtainamn8 5ei (cm2cn)amn , with cm , cnPR. Then, in this case, the second-ord
invariants under the coadjoint action areuamnu2, m,n50,1,...,N. Their corresponding
(N11)N/2 second-order invariants in the enveloping algebra read
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Rmn5Jmn
2 1Kmn

2 , 0<m,n<N. ~5.1!

The Casimir of suk(N11) can be expressed as a linear combination of them plus a linear
bination of second-order operators in the enveloping algebra of the Cartan subalgebra. Note
we fix a constant of motionRmn there are (N21)(N22)/2 quantities of typeRmn in involution
with it. In any case the above construction always guarantees at leastN21 constants of motion in
involution.

The explicit expression of theRmn invariants depends on the kind of coordinates un
consideration. So, in homogeneous coordinates we have

Jmn5kmnynpym2ympyn1c.c., Kmn52 i ~kmnynpym1ympyn!1c.c., ~5.2!

and in affine ones

J0 j52~k0 j z
jzkpzk1pzj !1c.c., Ji j 5k i j z

j pzi2zipzj1c.c., ~5.3!

K0 j52 i ~k0 j z
jzkpzk2pzj !1c.c., Ki j 52 i ~k i j z

j pzi1zipzj !1c.c. ~5.4!

Note that there is no sum in the indicesm, n and i, j . After the reduction process we get the fir
integrals

R̂mn5 Ĵmn
2 1K̂mn

2 , ~5.5!

for the SOk(N11) Hamiltonian systems, whereĴmn andK̂mn are the reductions of the correspon
ing Lie algebra generators. Their explicit expressions in terms of the homogeneous~5.2! or affine
~5.3! and ~5.4! coordinates and their conjugate momenta, are given, respectively, by

Ĵmn5kmnsnpsm2smpsn, K̂mn5kmncm

sn

sm 1cn

sm

sn , ~5.6!

and

Ĵ0 j522~k0 j s
jskpsk1psj !, Ĵi j 5k i j s

j psi2sipsj ,
~5.7!

K̂0 j 5k0 j

ci

sj 2
cj

sj , K̂ i j 5k i j ci

sj

si 1cj

si

sj .

Note that in all the possible contractions noĴmn and noK̂mn vanishes and the number of motio
integrals remains invariant. If two of theRmn’s are in involution before contraction they wi
remain in involution after contraction by continuity arguments.

If we take, for instance,k150 we obtain

R̂0 j uk1505 P̂0 j
2 1K̂0 j

2 5psj

2 1S cj

sj
D 2

,

~5.8!

R̂i j uk1505~k i j sj psi
2sipsj

!21S k i j ci

sj

si
1cj

si

sj
D 2

.

It is a straightforward computation to check that~5.8! are indeed constants of motion of th
contracted Hamiltonian~4.18!.

VI. HAMILTON–JACOBI EQUATION

The sok(N11)-Hamiltonian ~4.8! obtained after a Marsden–Weinstein reduction~up to a
sign! expressed in the pseudospherical coordinates~2.29! takes the form3
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Hk
r 5k0NFk0N

21pfN

2 1
1

Ck0N

2 ~fN! Fk0N21
21 pfN21

2 1
1

Ck0,N21

2 ~fN21!

3F¯Fk01
21pf1

2 1
c0

2

Ck01

2 ~f1!
1

k01
21c1

2

Sk01

2 ~f1!G¯G1
k0N21

21 cN21
2

Sk0,N21

2 ~fN21!G1
k0N

21cN
2

Sk0N

2 ~fN!G
5pfN

2 1
kN21,N

Ck0N

2 ~fN! F pfN21

2 1
kN22,N21

Ck0,N21

2 ~fN21! F¯F pf1

2 1
k01c0

2

Ck01

2 ~f1!
1

c1
2

Sk01

2 ~f1!G¯G
1

cN21
2

Sk0,N21

2 ~fN21!G1
cN

2

Sk0N

2 ~fN!
. ~6.1!

For instance, forN53, the Hamiltonian is

Hk1 ,k2 ,k3

r 5pf3

2 1
k23

Ck03

2 ~f3! F pf2

2 1
k12

Ck02

2 ~f2! F pf1

2 1
k01c0

2

Ck01

2 ~f1!
1

c1
2

Sk01

2 ~f1!G
1

c2
2

Sk0,2

2 ~f2!G1
c3

2

Sk03

2 ~f3!
. ~6.2!

The HJ equation associated with the above Hamiltonian

Hk
r ~]S/]f i ,f i !5E ~6.3!

is completely separable in this coordinate system. This expression is particularly well adap
the cases when all thek iÞ0 or only k150. We consider the separable solution

S~f1 ,...,fN!5(
i 51

N

Si~f i !2Et. ~6.4!

In terms of this solution we obtain the following set of differential equations:

kNNF S ]SN

]fN
D 2

1
kNaN21

Ck0N

2 ~fN!
1

cN
2

Sk0N

2 ~fN!G5kNNE[kNNaN ,

kN21,NF S ]SN21

]fN21
D 2

1
kN21aN22

Ck0,N21

2 ~fN21!
1

cN21
2

Sk0,N21

2 ~fN21!G5kN21,NaN21 ,

~6.5!
]

k1NF S ]S1

]f1
D 2

1
k1a0

Ck01

2 ~f1!
1

c1
2

Sk01

2 ~f1!G5k1Na1 ,

with a05c0
2 andkNN51. The general solution of thei th equation (k iNÞ0) is

Si56E F S a i2
k ia i 21

Ck0i

2 ~f i !
2

ci
2

Sk0i

2 ~f i !
D G 1/2

df i , i 51,2,...,N. ~6.6!

A detailed discussion about the solutions of the HJ equation~6.5! in terms of the values of the
energy when all the parametersk i are nonzero can be found in Ref. 3. Ifk150, thenk0i50, i
51,...,N, and all theN equations of~6.5! survive to the contraction; it is only necessary to do t
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following changes:Sk0i
(f i)→f i ,Ck0i

(f i)→1. We can also make the changef i→xi since the
variables f i now are representing, not angles, but the Cartesian coordinates of a
N-dimensional space.

By considering the separation constants as the new momenta the conjugate coordinat

b i5
]S

]a i
5

]Si

]a i
1

]Si 11

]a i
, i 51,...,N21, ~6.7!

bN5
]S

]aN
5

]SN

]aN
2t. ~6.8!

The HJ equations~6.5! are solved by an iterative procedure. From~6.6! we obtain

]Si

]a i
56

1

2 E Fa i2
k ia i 21

Ck0i

2 ~f i !
2

ci
2

Sk0i

2 ~f i !
G21/2

df i . ~6.9!

By means of the change of variable,ui5Sk0i

2 (f i), ~6.9! is rewritten as

]Si

]a i
56

1

4 E @2k0ia iui
21biui2ci

2#21/2dui , ~6.10!

with bi5a i2k ia i 211k0ici
2. The general solution to the integral~6.10! can be given in the form

]Si

]a i
56

1

4Aa i

Ck0i

21S 22k0ia iui1bi

Abi
224k0ia ici

2D , ~6.11!

for k0iÞ0. The functionCk
21(x) is only defined whenkÞ0 as

Ck
21~x!5H cos21(Akx)/Ak, k.0

cosh21(A2kx)/A2k, k,0.
~6.12!

One must be careful on the allowed values for the constantsbi ,a i ,ci , so that~6.11! is meaning-
ful. Whenk i50, the result can be obtained directly from~6.10!. Note that we have chosen all th
separation constantsa i.0 since these were the allowed values in SO(N11). All the other groups
of the CK family admit other values of thea i ’s. So, only whena i.0,; i , can we find solutions
for all the cases by contraction.

We can distinguish three representative cases, according to the sign ofk0i

~1! k0i51:

]Si

]a i
56

1

4Aa i

cos21S 22a iui1bi

Abi
224a ici

2D . ~6.13!

~2! k0i521:

]Si

]a i
56

1

4Aa i

cosh21S 2a iui1bi

Abi
214a ici

2D . ~6.14!

~3! k0i50:

]Si

]a i
56

Abiui2ci
2

2bi
. ~6.15!
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Formula~6.15! can also be obtained as the limit whenk0i→0 of ~6.11!.
For i 5N and callingbN52t0 from ~6.8! we gett2t05]SN /]aN . The solution for theuN

variable is

uN5
bN7AbN

2 24k0NaNcN
2 Ck0N

~4AaN~ t2t0!!

2k0NaN
. ~6.16!

In the limit whenk0i→0, this expression gives, after a suitable choice of the sign,

xN562AbN~ t2t0!21
cN

2

bN
. ~6.17!

For the remaining coordinatesb i ,i 51,...,N21, according to~6.7!, we also have to take into
account]Si 11 /]a i . Thus, from~6.6! we obtain

]Si 11

]a i
57

k i 11

2 E Ck0i 11

22 ~f i 11!Fa i 112
k i 11a i

Ck0i 11

2 ~f i 11!
2

ci 11
2

Sk0i 11

2 ~f i 11!G21/2

df i 11 . ~6.18!

Using again the change of variableui 115Sk0i 11

2 (f i 11), we rewrite~6.18!,

]Si 11

]a i
57

k i 11

4 E @2k0i 11a i 11ui 11
2 1bi 11ui 112ci 11

2 #21/2~12k0i 11ui 11!21dui 11 ,

~6.19!

with bi 115a i 111k i 11a i2ci 11
2 . Settingv i 115(12k0i 11ui 11)21 we rewrite the integral as

]Si 11

]a i
57

k i 11

4 E dv i 11

Awi 11
1 v i 11

2 1wi 11
2 v i 111wi 11

3
, ~6.20!

where

wi 11
1 5k0i 11~bi 112a i 112k0i 11ci 11

2 !, ~6.21!

wi 11
2 5k0i 11~2a i 112bi 11!, ~6.22!

wi 11
3 52k0i 11a i 11 . ~6.23!

The integral~6.20! will depend onk0i 11 :

]Si 11

]a i
56

k i 11

4A2wi 11
1 /k0i 11

Ck0,i 11

21 S 2wi 11
1 v i 111wi 11

2

A~wi 11
2 !224wi 11

1 wi 11
3 D . ~6.24!

For k0i 1150 andk i 11Þ0 expression~6.20! turns into

]Si 11

]a i
57

k i 11Abi 11xi 11
2 2ci 11

2

2bi 11
, ~6.25!

wherexi 11[f i 11 is the coordinate that corresponds to the limitk0i 11→0.
Taking into account expression~6.7! we can obtain the corresponding solutionui , i

51,...,N21, by means of expressions~6.11!–~6.15!, ~6.24! and ~6.25!.
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Let us mention that if we take an arbitrary parameter equal to zero, for instancek i , the
separation constantsa1 ,a2 ,...,a i 21 are now identically zero, and the lasti 21 equations~6.5!
become trivial identities. However, the expression of the remaining equations@always including
the first one of~6.5!# remains the same.

If we make use of the second set of coordinates~2.32!, the HJ equation also separates. In th
case the expression for the Hamiltonian is

H k̂
r
5k0NFk01

21pf01

2 1
1

Sk01

2 ~f01!
Fk02

21pf12

2 1
1

Sk12

2 ~f12!

3F¯Fk0N
21pfN21,N

2 1
k0,N

21cN
2

SkN21,N

2 ~fN21,N!
1

k0,N21
21 cN21

2

CkN21,N

2 ~fN21,N!G¯G
1

k01
21c1

2

Ck12

2 ~f12!
G1

c0
2

Ck01

2 ~f01!
G . ~6.26!

For instance, whenN52, k150, andk251, the contracted Hamiltonian in this coordinate syst
~2.33! is

H0,1
r 5k12pr

21
1

r 2 F pf12

2 1
k12c1

2

Ck12

2 ~f12!
1

c2
2

Sk12

2 ~f12!
G . ~6.27!

We could handle~6.26! or ~6.27! along the same lines as~6.1! in order to obtain the solutions
separated in this new class of generalized polar coordinates.

VII. EXAMPLES OF CONTRACTION OF INTEGRABLE SYSTEMS

A. N54 systems

We shall write down the contractions for Hamiltonians ofN54 dimensions. Let us firs
considerk150 and the remainingk’s nonzero. The Hamiltonian~4.18! becomes

H0,k2 ,k3 ,k4

r 5p4
21k34p3

21k24p2
21k14p1

21
c4

2

~x4!2 1
k34c3

2

~x3!2 1
k24c2

2

~x2!2 1
k14c1

2

~x1!2 ~7.1!

in terms of the contracted coordinates (x1,x2,x3,x4) and their conjugate momentapi . The asso-
ciated HJ equation separates in the following equations@see~6.5!#:

k44F S ]S4

]x4D 2

1
c4

2

~x4!2 1k34a3G5k44E[k44a4 ,

k34F S ]S3

]x3D 2

1
c3

2

~x3!2 1k23a2G5k34a3 ,

~7.2!

k24F S ]S2

]x2D 2

1
c2

2

~x2!2 1k12a1G5k24a2 ,

k14F S ]S1

]x1D 2

1
c1

2

~x1!2G5k14a1 .

The solution of these equations~7.2! can be obtained from the general solution~6.13!–~6.15!
taking into account thatk150. So,
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x4~ t !5A4b4~ t2t0!21
c4

2

b4
, b45a42k4a3 , ~7.3!

xi~ t !5A4biFb i1
k i 11Abi 11~xi 11!22ci 11

2

2bi 11
G 2

1
ci

2

bi

, i 51,2,3, ~7.4!

with bi5a i2k ia i 21 . Notice that for (k150,k25k35k451) we get a four-dimensional Euclid
ean system associated with the Euclidean groupE(4).

For k15k250, k35k451 the corresponding Hamiltonian can be associated with a (311)
Galilean system by means of a kinematical interpretation where the coordinatex1 is the time
coordinate, and the other three are the spatial coordinates (x25x,x35y,x45z) ~for more details
see Ref. 17!

H5p4
21p3

21p2
21

c4
2

~x4!2 1
c3

2

~x3!2 1
c2

2

~x2!2 . ~7.5!

Finally, for k150,k251/c2,k35k451 the CK orthogonal group is the Poincare´ group with
the same kinematical interpretation we did in the Galilean case. The HJ equation is, cons
c150,

S ]S

]xD 2

1S ]S

]yD 2

1S ]S

]zD 2

2
1

c2 S ]S

]t D
2

1
c4

2

z2 1
c3

2

y2 1
c2

2

x2 52c2. ~7.6!

Finding a solutionS52(E1c2)t1S(x)1S(y)1S(z) we easily get the Galilean case after taki
the limit c→` ~note that the rest mass ism051).20

B. Contraction of su „1, 1… systems

For the sake of completeness we shall also consider briefly the contraction for systems
ciated with other MASAs different from the Cartan compact ones of su(p,q).

The noncompact algebra u~1, 1! has three nonconjugate classes of MASAs: compact
noncompact Cartan subalgebras, and a class of maximal Abelian nilpotent subalgebras.21 We will
fix the metric to be

K5S 1 0

0 k D , ~7.7!

with k,0. The compact Cartan case has been the object of study along this paper so that
turn our attention to the other two types of MASAs.

1. Noncompact Cartan subalgebra

A representative subalgebra of this class@in the metric~7.7!# is generated by the noncompa
element

Y15S 0 ik

i 0 D , ~7.8!

plus the diagonalu(1)-matrixY05 i I . The new (s0,s1) and old (y0,y1) coordinates are related b

y05eix0
~s0Ck~x1!1 iks1Sk~x1!!, y15eix0

~ is0Sk~x1!1s1Ck~x1!!, ~7.9!

and the Hamiltonian is written in the new coordinates as
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H5c@ 1
2~kps0

2
1ps1

2
!1V~s!#, V~s!5

kc0
21c1

224kc0c1s0s1

124k~s0!2~s1!2 . ~7.10!

with the constraint (s0)21k(s1)251. Using thef coordinate, as in the previous cases, we ge

H~f!5 1
2pf

2 1V~f!, V~f!5
kc0

21c1
222kc0c1Sk~2f!

Ck
2~2f!

. ~7.11!

In the limit k→0 we arrive atH(f)5 1
2pf

2 1c1
2.

However a nontrivial limit can be reached if we allow the constantsc0 ,c1 to depend onk, and
we add ak-dependent constanth(k) as well. In other words, we will write the Hamiltonian in th
form

H~f!5
1

2
pf

2 1
kc0~k!21c1~k!222kc0~k!c1~k!Sk~2f!

Ck
2~2f!

1h~k!. ~7.12!

We can take for instance

c0~k!5
c0

k
, c1~k!5c1 , h~k!52

c0
2

k
. ~7.13!

In this case, the limitk→0 leads us to the Hamiltonian

H~f!5 1
2pf

2 1~2c0f2c1!2, ~7.14!

which corresponds to the harmonic oscillator.

2. Nilpotent subalgebra

The simplest representative of this class of subalgebras is obtained in the skewdiagon
ric, but we will again use the diagonal one since the kinetic term is also diagonal. We will ch
the following nilpotent matrix:

Y15 i S A2k 2k

21 2A2k
D , k<0, ~7.15!

together withY05 i I to complete the basis of a u~1, 1! MANS. Old and new coordinates satisfy

y05eix0~~11 iA2kx1!s02 ikx1s1!, y15eix0~2 ix1s01~12 iA2kx1!s1!. ~7.16!

The Hamiltonian is now

H5c@ 1
2~kps0

2
1ps1

2
!1V~s!#, V~s!5

2A2kc0c1

~s01A2ks1!2
2

c1
2

~s01A2ks1!4
, ~7.17!

or, rewritten in terms of thef coordinate:

H~f!5 1
2pf

2 1c1
2e24A2kf22A2kc0c1e22A2kf. ~7.18!

Note that fork521 we recover the Morse potential and in the limitk→0 the potential become
a constant.

It is worth noticing that in the contraction limitk→0 both MASAs bases, noncompact an
nilpotent, go into the same one, which is a nilpotent subalgebra of an inhomogeneous iu~1! algebra
@contraction of the su~1, 1! algebra#.
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VIII. CONCLUSIONS

In this paper we have shown how to contract superintegrable Hamiltonian systems in or
get new ones keeping the superintegrability property. The key point to achieve this progra
to set up the problem in the frame of the contraction of Lie groups. This point of view tells us
to deal not only with the contraction of the initial Hamiltonian, but also with the separ
coordinates, constants of motion, and solutions. Particular attention was paid to pointlike co
tions when onlyk1 was equal to zero. Two general coordinate systems are given separating
equations and going into Cartesian or polar coordinates on the flat space when contracted

Our study uses the frame of a classical model, but obviously similar considerations c
applied to the Schro¨dinger equation associated with these Hamiltonians, allowing one to ex
this contraction scheme to the quantum context. Some previous results can already be fo
Ref. 22 but a thorough treatment on this subject will be published elsewhere.
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New (211)-dimensional integrable coupled modified Kadomtsev–Petviashvili
~mKP! equations are proposed with the help of known (111)-dimensional soliton
equations. The (211)-dimensional coupled mKP equations are decomposed into
systems of solvable ordinary differential equations. The Abel–Jacobi coordinates
are introduced to straighten the flows, from which new algebro-geometric solutions
of the (211)-dimensional mKP equation and algebro-geometric solutions of the
(211)-dimensional coupled mKP equations are obtained in terms of the Riemann
theta functions. ©2000 American Institute of Physics.@S0022-2488~00!00201-2#

I. INTRODUCTION

It is very important to search for algebro-geometric solutions for soliton equations. Va
approaches have been developed to get algebro-geometric solutions of (111)-dimensional soliton
equations, for instance, the algebro-geometric approach,1 the alternative elementary algebra
approach,2 the nonlinearization of Lax pairs,3–5 and others~see, e.g., Refs. 6–14 and referen
therein!. Algebro-geometric solutions for a lot of (111)-dimensional soliton equations have be
obtained, such as the KdV, nonlinear Schro¨dinger, mKdV, sine-Gordon, and Toda lattice equ
tions, etc. However, the study of algebro-geometric solutions for (211)-dimensional soliton
equations is very few.

In Ref. 1, the abgebro-geometric solutions of the (211)-dimensional Kadomtsev–
Petviashvili~KP! equation were obtained by means of the Baker function approach. Recentl
have given the algebro-geometric solutions15 of the (211)-dimensional mKP equation16 resorting
to the nonlinearization of Lax pairs and (111)-dimensional stationary soliton equations.17

In this paper, based on the known (111)-dimensional soliton equations we propose n
(211)-dimensional integrable coupled mKP equations

qt5
1
8~qxxx26q2qx16qx]x

21qy13]x
21qyy!, ~1.1a!

pt5
1
8~pxxx26ppx13]x

21pyy!1 3
4~pqx2pq21p]x

21qy!x . ~1.1b!

It is shown that solutions of the (211)-dimensional coupled mKP equations are reduced
solving solvable ordinary differential equations, from which new algebro-geometric solutio
the (211)-dimensional mKP equation~1.1a! and algebro-geometric solutions of th
(211)-dimensional coupled mKP equations~1.1! are obtained. The present paper is organized
follows. In Sec. II, we shall derive the hierarchy of (111)-dimensional soliton equations assoc
ated with a spectral problem and give the relation between the first two soliton equations
hierarchy and (211)-dimensional coupled mKP equations~1.1!. A Lax representation of (2
11)-dimensional coupled mKP equations~1.1! is obtained. In Sec. III, with the help of solution
for the (111)-dimensional stationary soliton equations, we introduce the elliptic coordinate
3370022-2488/2000/41(1)/337/12/$17.00 © 2000 American Institute of Physics

                                                                                                                



ann
s. The
he (2
e

e-

the

rd’s

ect

338 J. Math. Phys., Vol. 41, No. 1, January 2000 X. G. Geng and H. H. Dai

                    
which solutions of the (211)-dimensional coupled mKP equations~1.1! are reduced to solving
two systems of solvable ordinary differential equations. In Sec. IV, a hyperelliptic Riem
surface of genusN and Abel–Jacobi coordinates are defined to straighten the associated flow
Jacobi’s inversion problem is discussed, from which new algebro-geometric solutions of t
11)-dimensional mKP equation~1.1a! and the algebro-geometric solutions of th
(211)-dimensional coupled mKP equations~1.1! are expressed explicitly in terms of the Ri
mann theta functions.

II. THE DECOMPOSITION OF THE „211…-DIMENSIONAL COUPLED MKP EQUATIONS

In this section, we shall decompose the (211)-dimensional coupled mKP Eqs.~1.1! into two
systems of (111)-dimensional soliton equations and give the Lax pair of Eqs.~1.1!. To this end
we first derive the hierarchy of the (111)-dimensional soliton equations associated with
spectral problem18

wx5Uw , U5S 2l1u lv

21 l2uD , ~2.1!

whereu andv are two scalar potentials,l a constant spectral parameter. Consider the Lena
gradient sequenceSj , 21< j PZ by the recursion relation

KSj 215JSj , Sj u~u,v !5050, S215~0,2!T, j >0, ~2.2!

with two skew-symmetric operators (]5]/]x)

K5S 0 1
2]

21]u

2 1
2]

21u] ]v1v]
D , J5S 2 1

2] ]

] 0
D .

It is easy to see thatSj is uniquely determined by the recursion relation~2.2!. Here the condition
Sj u(u,v)5050 is used only in Eq.~2.2! to select constants of integration to be zero. A dir
calculation gives from the recursion relation~2.2! that

S05S 2v
2u1v D , S15S 2vx14uv1 3

2v
2

ux13uv12u21 3
4v

2D .

Let w satisfy the spectral problem~2.1! and the auxiliary problem

w tm
5V~m!w, V~m!5S V11

~m! V12
~m!

V21
~m! 2V11

~m!D , ~2.3!

where

V11
~m!5(

j 50

m S 1

2
Sj 21,x

~2! 1uSj 21
~2! Dlm2 j2(

j 50

m

Sj 21
~2! lm112 j ,

V12
~m!5(

j 50

m S vSj 21
~2! 2

1

2
Sj 21,x

~1! Dlm112 j , V21
~m!52(

j 50

m

Sj 21
~2! lm2 j .

The compatibility condition of Eqs.~2.1! and~2.3! is Utm
2Vx

(m)1@U,V(m)#50, which is equiva-
lent to the hierarchy of nonlinear evolution equations

~utm
,v tm

!T5Xm , m>0, ~2.4!
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whereXj5KSj 215JSj . The first two nontrivial members in the hierarchy~2.4! are as follows:

uy5uxx1
1
2vxx14uux1~uv !x ,

~2.5!
vy52vxx14~uv !x13vvx ,

and

ut5
1
2uxxx1~2u313uux1 3

2uxv1 3
2uvx1 3

4vvx13u2v1 3
4uv2!x ,

~2.6!
v t5

1
2vxxx1~ 5

4v
32 3

2vvx23uvx16u2v16uv2!x

with y5t1 and t5t2 .
It is a well-known fact that Eqs.~2.5! and~2.6! are compatible since the flows determined

them commute. We assume that~u, v) is a solution of Eqs.~2.5! and ~2.6!, and introduce two
functionsq andp by

q52u1v, p54ux1vx . ~2.7!

Using Eqs.~2.5! and ~2.6!, and the first expression of Eq.~2.7!, a direct calculation gives

]21qy52ux14u21 3
2v

216uv,

]21qyy2qxxx516uuxx18ux
214uxvx18uxxv132u2ux156uvux

132u2vx118v2ux136uvvx19v2vx , ~2.8!

qx]
21qy54ux

212uxvx1ux~8u213v2112uv !1vx~4u21 3
2 v216uv !,

q2qx52ux~4u21v214uv !1vx~4u21v214uv !,
~2.9!

qt2
1
2qxxx5~6uux13uxv14u3112u2v1 15

2 uv21 5
4v

3!x .

From the above equalities, we have

1
8~23qxxx26q2qx16qx]

21qy13]21qyy!5~6uux13uxv14u3112u2v1 15
2 uv21 5

4v
3!x ,

which together with Eq.~2.9! yields the (211)-dimensional mKP equation~1.1a!.
Noticing Eqs.~2.5!, ~2.6!, and the second expression of Eq.~2.7!, we can verify by tedious

calculations that

py5pxx1~16uux13vvx18uxv18uvx!x ,

]21py5px116uux13vvx18uxv18uvx ,

]21pyy2pxxx22ppx5~8uxvx12vx
2132uuxx116uxxv18uvxx14vvxx164u2ux

180uvux120v2ux144uvvx148u2vx19v2vx!x , ~2.10!

pt2
1
2pxxx5~12ux

21 3
2vx

219uxvx112uuxx16vuxx13uvxx1
3
2vvxx

124u2ux136uvux19v2ux118uvvx118u2vx1 15
4 v2vx!x ,

pqx2pq21p]21qy516ux
218uxvx1vx

218uvux12v2ux12uvvx1 1
2v

2vx .

Combine these results together, we arrive at the desired equation~1.1b!.
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Therefore, if~u, v) is a solution of Eqs.~2.5! and~2.6!, thenq andp determined by Eq.~2.7!
are solutions of the (211)-dimensional coupled mKP equations~1.1!.

In the following, we shall give a Lax pair of the (211)-dimensional coupled mKP equation
~1.1!. Assume thatx satisfies the following equations:

xy5~M0]21M1]1M2!x,
~2.11!

x t5~ 1
2]

31Q1]21Q2]1Q3!x,

with

M05S 21 0

0 1D , M15S 2q 0

0 2qD , M25S p 0

0 0D ,

Q15S 2
3

2
q 0

0
3

2
q
D , Q25S Q11

~2! 0

0 Q22
~2!D , Q35S Q11

~3! 0

0 0
D ,

where

Q11
~2!5 3

4~2qx1q21]21qy2p!,

Q22
~2!5 3

4~qx1q21]21qy!, ~2.12!

Q11
~3!5 3

8~2px12pq1]21py!.

Then the compatibility conditionxyt5x ty of Eq. ~2.11! yields

@M0 ,Q1#50,

2M0Q1,x2 3
2M1,x1@M0 ,Q2#1@M1 ,Q1#50,

~2.13!
Q1,y1 3

2M1,xx2M0Q1,xx1
3
2M2,x22M0Q2,x12Q1M1,x2M1Q1,x

1@Q1 ,M2#1@Q2 ,M1#1@Q3 ,M0#50,

M1,t2Q2,y5 1
2M1,xxx1

3
2M2,xx2M0Q2,xx1Q1M1,xx1Q2M1,x

22M0Q3,x2M1Q2,x12Q1M2,x1@Q2 ,M2#1@Q3 ,M1#,
~2.14!

M2,t2Q3,y5 1
2M2,xxx2M0Q3,xx1Q1M2,xx1Q2M2,x2M1Q3,x1@Q3 ,M2#.

A direct calculation shows that Eq.~2.13! is identical and Eq.~2.14! is equivalent to Eqs.~1.1!.
Therefore, the (211)-dimensional coupled mKP equations~1.1! are integrable in the Lax sense.19

III. ORDINARY DIFFERENTIAL EQUATIONS

In this section, we shall show how the (111)-dimensional Eqs.~2.5! and~2.6! are reduced to
two systems of solvable ordinary differential equations. Assume that Eqs.~2.1! and~2.3! have two
basic solutionsc5(c1 ,c2)T andf5(f1 ,f2)T. We define a matrixW of three functionsf,g,hby

W5
1

2
~fcT1cfT!s5S f g

h 2 f D , s5S 0 21

1 0 D . ~3.1!
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It is easy to verify by Eqs.~2.1! and ~2.3! that

Wx5@U,W#, Wtm
5@V~m!,W#, ~3.2!

which imply that the functions detW is a constant independent ofx andtm . Equation~3.2! can be
written as

f x5lvh1g, gx52~u2l!g22lv f , hx522 f 22~u2l!h ~3.3!

and

f tm
5hV12

~m!2gV21
~m! , gtm

52gV11
~m!22 f V12

~m! , htm
52 f V21

~m!22hV11
~m! . ~3.4!

Now suppose that the functionsf, g, andh are finite-order polynomials inl:

f 5 1
2bx1ub2lb, g5lvb2 1

2lax , h52b,
~3.5!

a5(
j 50

N

aj 21lN2 j , b5(
j 50

N

bj 21lN2 j .

Substituting Eq.~3.5! into Eq. ~3.3! yields

KG5lJG, G5~a,b!T,

which is equivalent to

KGj 215JGj , JG2150, ~3.6!

KGN2150, Gj5~aj ,bj !
T. ~3.7!

It is easy to see that the equationJG2150 has the general solution:

G215a0S211b0S22 , S225~1,0!T, ~3.8!

wherea0 andb0 are constants of integration. Therefore, kerJ5$a0S211a21S22u;a0 ,a21%, and
S22PkerK. Acting with the operator (J21K)k11 upon G21 in Eq. ~3.8!, we obtain from Eqs.
~3.6! and ~2.2! that

Gk5 (
j 50

k11

a jSk2 j1bk11S22 , 21<k<N21, ~3.9!

wherea0 ,...,ak11 and bk11 are constants of integration. Substituting Eq.~3.9! into Eq. ~3.7!
yields the stationary equation

a0XN1a1XN211¯1aNX050. ~3.10!

This means thatu is a finite-band solution.
In what follows, Eqs.~2.5! and ~2.6! will be decomposed into systems of solvable ordina

differential equations with the help of elliptic coordinates. Without loss of generality, leta051
andb050. From Eqs.~3.8! and ~3.9!, we have

G215S 0
2D , G05S 2v1b1

2u1v12a1
D ,
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G15S 2vx14uv1 3
2v

212a1v1b2

ux13uv12u21 3
4v

21a1~2u1v !12a2
D .

By using the above expressions and Eq.~3.5!, we have

f 5 (
j 50

N11

f jl
N112 j , g5(

j 50

N

gjl
N112 j , h5(

j 50

N

hjl
N2 j ~3.11!

with

f 052b21 , f j5
1
2bj 22,x1ubj 222bj 21 ,

~3.12!
f N115 1

2bN21,x1ubN21 , gj5vbj 212 1
2aj 21,x , hj52bj 21 .

Therefore, it is easy to calculate the first few members:

f 0522, f 152v22a1 , f 25 1
2vx22uv2 3

4v
22a1v22a2 ,

g052v, g152vx1v~2u1v !12a1v,
~3.13!

g25 1
2vxx2uxv22uvx2 3

2vvx1v~3uv12u21 3
4v

2!1a1~2uv1v22vx!12a2v,

h0522, h1522u2v22a1 ,

h252ux23uv22u22 3
4v

22a1~2u1v !22a2 .

We useg andh as polynomials ofl to define the elliptic coordinates$m i% and$n i%:

g52lv)
i 51

N

~l2m i !, h522)
i 51

N

~l2n i !. ~3.14!

By comparing the coefficients of the same power forl, we get

g1522v(
j 51

N

m j , h152(
j 51

N

n j ,

~3.15!

g252v(
i , j

m im j , h2522(
i , j

n in j ,

which together with Eq.~3.13! yields

] ln v52(
j 51

N

m j22(
j 51

N

n j , ~3.16!

2u1v522(
j 51

N

n j22a1 . ~3.17!

If we look at the term oflN for the first expression in Eq.~3.4! with m51, we find

vy522vh22~g122a1v !h122g21~h112a1!g1 . ~3.18!

Substituting Eq.~3.15! into Eq. ~3.18! yields
                                                                                                                



343J. Math. Phys., Vol. 41, No. 1, January 2000 Algebro-geometric solutions of (211) . . .

                    
]y ln v54(
i , j

~n in j2m im j !14a1(
j 51

N

~n i2m j !. ~3.19!

On the other hand, we have by using Eqs.~3.16! and~3.17! and the second expression of Eq.~2.5!
that

]y ln v52]2 ln v2~] ln v !212~2u1v !x12~2u1v !] ln v2vx

522](
j 51

N

~m j1n j !14S (
j 51

N

n j D 2

24S (
j 51

N

m j D 2

28a1(
j 51

N

~m j2n j !2vx ,

which together with Eq.~3.19! implies

vx522](
j 51

N

~m j1n j !12S (
j 51

N

n j D 2

22S (
j 51

N

m j D 2

12(
j 51

N

~n j
22m j

2!24a1(
j 51

N

~m j2n j ! ~3.20!

in view of equality

2(
i , j

j ij j5S (
j 51

N

j j D 2

2(
j 51

N

j j
2.

Noticing Eqs.~3.16!, ~3.17!, and~3.20!, we have

v524a112(
j 51

N

~m j1n j !1
( j 51

N ~n j
22m j

2!2]( j 51
N ~m j1n j !

( j 51
N ~m j2n j !

. ~3.21!

Substituting Eqs.~3.17! and ~3.20! into Eq. ~2.7! yields

q522(
j 51

N

n j22a1 ,

~3.22!

p52](
j 51

N

~m j2n j !12S (
j 51

N

m j D 2

22S (
j 51

N

n j D 2

12(
j 51

N

~m j
22n j

2!14a1(
j 51

N

~m j2n j !.

Let us consider the function detW, which is a (2N12)th-order polynomial inl with constant
coefficients of thex flow and tm flow:

2detW5 f 21gh54 )
j 51

2N12

~l2l j !54R~l!. ~3.23!

Substituting Eq.~3.11! into the above expression and comparing the coefficients ofl2N11 and
l2N, we obtain

2 f 0f 11g0h0524 (
j 51

2N12

l j ,

2 f 0f 21 f 1
21g1h01g0h154(

i , j
l il j .
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Together with Eq.~3.13!, we obtain

a152
1

2 (
j 51

2N12

l j , a25
1

2 (
i , j

l il j2
1

8 S (
j 51

2N12

l j D 2

. ~3.24!

From Eq.~3.23!, we see that

f ul5mk
52AR~mk!, f ul5nk

52AR~nk!. ~3.25!

Noticing Eqs.~3.14! and ~3.3!, we get

gxul5mk
522vmkmkx )

i 51,iÞk

N

~mk2m i !522vmkf ul5mk
,

~3.26!

hxul5nk
52nkx )

i 51,iÞk

N

~nk2n i !522 f ul5nk
, 1<k<N.

Hence we have the evolution of the elliptic coordinates along thex flow:

mkx5
2AR~mk!

) i 51,iÞk
N ~mk2m i !

, nkx5
22AR~nk!

) i 51,iÞk
N ~nk2n i !

, 1<k<N. ~3.27!

From Eqs.~2.3!, ~3.13!, ~3.15!, ~3.16!, and~3.17!, we have

v21V12
~1!ul5mk

52mkS mk2(
j 51

N

m j2a1D ,

v21V12
~2!ul5mk

52mkFmk
22mk(

j 51

N

m j1(
i , j

m im j1a1S (
j 51

N

m j2mkD 1a1
22a2G ,

~3.28!

V21
~1!ul5nk

52S (
j 51

N

n j2nk1a1D ,

V21
~2!ul5nk

522Fnk
22nk(

j 51

N

n j1(
i , j

n in j1a1S (
j 51

N

n j2nkD 1a1
22a2G .

In a way similar to the calculation of Eq.~3.27!, we arrive at the evolution of$mk% and$nk% along
the tm flow:

mktm
5

2v21V12
~m!ul5mk

AR~mk!

mk) i 51,iÞk
N ~mk2m i !

,

nktm
5

2V21
~m!ul5nk

AR~nk!

) i 51,iÞk
N ~nk2n i !

,

1<k<N, 1<m<2. ~3.29!

Therefore, if the 2N12 distinct parametersl1 ,...,l2N12 are given, and letmk andnk be distinct
solutions of ordinary differential equations~3.27! and~3.29!, then~u, v) determined by Eqs.~3.17!
and ~3.21! is a solution of Eq.~2.5! with m51 or Eq. ~2.6! with m52. This means that the
functionsq and p by Eq. ~3.22! are solutions the (211)-dimensional coupled mKP equation
~1.1!.
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It should be pointed out that the method used here is interesting. Under the transform
~2.7!, the (211)-dimensional coupled mKP equations are separated into two members i
(111)-dimensional soliton hierarchy. Further the (111)-dimensional soliton equations decom
posed into the solvable ordinary differential equations with the help of the elliptic coordin
$m j% and$n j%. Thus solutions of the (211)-dimensional coupled mKP equations are reduced
solving the solvable ordinary differential equations.

IV. ALGEBRO-GEOMETRIC SOLUTIONS

In order to obtain the algebro-geometric solutions of the (211)-dimensional coupled mKP
equations~1.1!, we first introduce the Riemann surfaceG of the hyperelliptic curvez25R(l),
R(l)5P j 51

2N12(l2l j ), of genusN. On G there are two infinite points̀ 1 and`2 , which are not
branch points ofG. Equip G with the canonical basis of cycles:a1 ,...,aN ; b1 ,...,bN , and the
holomorphic differentials

ṽ l5
l l 21dl

AR~l!
, 1< l<N.

Then the period matricesA andB defined by

Ai j 5E
aj

ṽ i , Bi j 5E
bj

ṽ i ,

are invertible.19,20 Let C5A21, t5A21B. The matrixt is symmetric (t i j 5t j i ) and has positive
definite imaginary part (Imt.0). Then the Riemann theta function ofG is defined as

u~jut!5 (
zPZN

exp~pA21^t,z,z&12pA21^j,z&!, j5~j1 ,...,j!TPCN,

where^.,.& represents the inner-product,^j,§&5( j 51
N j j§ j . If we normalizeṽ l into the new basis

v j

v j5(
l 51

N

Cjl ṽ l , 1< j <N,

then we have

E
ai

v j5d j i , E
bi

v j5t j i .

Now we introduce the Abel mapA(p)

A~p!5E
p0

p

v, AS ( nkpkD5( nkA~pk!

and the Abel–Jacobi coordinates

r~1!5AS (
k51

N

p~mk!D 5 (
k51

N E
p0

p~mk!

v, ~4.1!

r~2!5AS (
k51

N

p~nk!D 5 (
k51

N E
p0

p~nk!

v, ~4.2!
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wherep(mk)5(l5mk , z5AR(mk)), p(nk)5(l5nk , z5AR(nk))PG, andp0 is chosen a base
point onG. The components of the Abel–Jacobi coordinates in Eqs.~4.1! and ~4.2! read

r j
~1!~x,y,t !5 (

k51

N E
p0

p~mk~x,y,t !!

v j5 (
k51

N

(
l 51

N

Cjl E
l~p0!

mk l l 21dl

AR~l!
, 1< j <N, ~4.3!

r j
~2!~x,y,t !5 (

k51

N E
p0

p~nk~x,y,t !!

v j5 (
k51

N

(
l 51

N

Cjl E
l~p0!

nk l l 21dl

AR~l!
, 1< j <N, ~4.4!

wherel(p0) is the local coordinates ofp0 . From the first expression of Eq.~3.27!, we get

]xr j
~1!5(

l 51

N

(
k51

N

Cjl

mk
l 21mkx

AR~mk!
5(

l 51

N

(
k51

N 2mk
l 21Cjl

) iÞk
N ~mk2m i !

,

which implies

]xr j
~1!52CjN5V j

~0! , 1< j <N ~4.5!

with the help of the following equality:

(
k51

N mk
l 21

) iÞk
N ~mk2m i !

5d lN , 1< l<N. ~4.6!

In a similar way, we obtain from Eqs.~4.3!, ~4.4!, ~3.27!–~3.29! that

]yr j
~1!5V j

~1! , ] tr j
~1!5V j

~2! , 1< j <N, ~4.7!

]xr j
~2!52V j

~0! , ]yr j
~2!52V j

~1! , ] tr j
~2!52V j

~2! , 1< j <N, ~4.8!

with

V j
~1!54~Cj ,N212a1CjN!, V j

~2!54@Cj ,N222a1Cj ,N211~a1
22a2!CjN#.

On the basis of these results we get the following:

r j
~1!~x,y,t !5V j

~0!x1V j
~1!y1V j

~2!t1g j
~1! , 1< j <N, ~4.9!

r j
~2!~x,y,t !52V j

~0!x2V j
~1!y2V j

~2!t2g j
~2! , 1< j <N, ~4.10!

whereg j
( i )’s ( i 51,2) are constants,

g j
~1!5 (

k51

N E
p0

p~mk~0,0,0!!

v j , g j
~2!52 (

k51

N E
p0

p~nk~0,0,0!!

v j .

According to the Riemann theorem,20,21 there exists a constant vectorM (m)PCN such that the
function

F ~m!~l!5u~A~p~l!!2r~m!2M ~m!!, m51,2,

has exactlyN zeros atm1 ,...,mN for m51 or n1 ,...,nN for m52.
To make the function single valued, the surfaceG is cut along allak , bk to form a simple

connected region, whose boundary is denoted byg. By Refs. 20 and 21, the quantity
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1

2pA21
E

g
lkd ln F ~m!~l!5I k~G!, k>1,

are constant independent ofr (m) with

I k~G!5(
j 51

N E
aj

lkv j .

By the residue theorem, we have

I k5(
l 51

N

m l
k1(

s51

2

Res
l5`s

lkd ln F ~1!~l!,

~4.11!

I k5(
l 51

N

n l
k1(

s51

2

Res
l5`s

lkd ln F ~2!~l!.

Here we need only compute the residues in Eq.~4.11! for k51,2. In a way similar to calculations
in Refs. 9, 10, and 15, we obtain

Res
l5`s

ld ln F ~m!~l!5 1
2~21!s21] ln us

~m! , 1<m<2,1<s<2,

~4.12!
Res
l5`s

l2d ln F ~m!~l!5 1
4~21!s21]y ln us

~m!1 1
4]

2 ln us
~m! ,

where

us
~1!5u~V~0!x1V~1!y1V~2!t1Y~s!!, us

~2!5u~V~0!x1V~1!y1V~2!t1L~s!!,

with

V~ i !5~V1
~ i ! ,...,VN

~ i !!T, Y~s!5~Y1
~s! ,...,YN

~s!!T, L~s!5~L1
~s! ,...,LN

~s!!T,

Y j
~s!5g j

~1!1M j
~1!1 È

s

p0
v j , L j

~s!5g j
~2!2M j

~2!2 È
s

p0
v j , 0< i<2,1< j <N.

Equations~4.11! and ~4.12! imply the equalities

(
l 51

N

m l~x,y,t !5I 1~G!1
1

2
] ln

u2
~1!

u1
~1! , (

l 51

N

n l~x,y,t !5I 1~G!1
1

2
] ln

u2
~2!

u1
~2! , ~4.13!

(
l 51

N

m l
2~x,y,t !5I 2~G!1

1

4
]y ln

u2
~1!

u1
~1!2

1
4]

2 ln u1
~1!u2

~1! ,

~4.14!

(
l 51

N

n l
2~x,y,t !5I 2~G!1

1

4
]y ln

u2
~2!

u1
~2!2

1

4
]2 ln u1

~2!u2
~2! .

Substituting Eqs.~4.13! and~4.14! into Eq.~3.22!, we arrive at algebro-geometric solutions of th
(211)-dimensional coupled mKP equations~1.1!:

q5k01] ln
u~V~0!x1V~1!y1V~2!t1L~1!!

u~V~0!x1V~1!y1V~2!t1L~2!!
, ~4.15!
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p5S ]1
1

2
]yD ln

u2
~1!u1

~2!

u1
~1!u2

~2! 1
1

2
] ln

u2
~1!u1

~2!

u1
~1!u2

~2! ] ln
u2

~1!u2
~2!

u1
~1!u1

~2! 1
1

2
]2 ln

u1
~2!u2

~2!

u1
~1!u2

~1!2k0] ln
u2

~1!u1
~2!

u1
~1!u2

~2! ,

~4.16!

where k0522I 122a1 . The expression~4.15! is new algebro-geometric solutions of the (
11)-dimensional mKP equation~1.1a!, which are not the same as that in Ref. 15.
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Algebraic L 2 decay for the solution to a class system
of non-Newtonian fluid in Rn
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In this paper, we investigate theL2 decay rates for the solution to a class system of
non-Newtonian fluid inRn(n>2). The decay rates are optimal in the sense that
they coincide with the decay rates of the solution to the heat system. ©2000
American Institute of Physics.@S0022-2488~00!01701-1#

I. INTRODUCTION

In the present paper, we intend to study theL2 decay rates for the solution to a class syst
of non-Newtonian fluids inRn. As we know, the motion of a continuous medium~incompressible,
with viscosity! is described by the following system:

ut2¹•tV1u•¹u1¹p5 f , ~1.1!

div u50, ~1.2!

where

tV52~m01m1ue~u!ur !e~u!, ~1.3!

e~u!5~ei j ~u!!, ei j ~u!5
1

2 S ]ui

]xj
1

]uj

]xi
D . ~1.4!

For the sake of completeness, the following initial condition should be added:

uu t505a~x!. ~1.5!

Here, u5u(x,t)5(u1 ,u2 ,...,un) is the velocity,x5(x1 ,x2 ,...,xn) is the spatial variables.tV

denotes the viscous part of stress tensor which depends only on the rate strain tensore. p is the
pressure.m0 ,m1 are positive constants.

Whenm150 or r 50, we find that the Stokes Law which has the following form:

tV52m2e~u! ~1.6!

holds. The fluids that satisfy the law~1.6! are called Newtonian fluids, and the system~1.1!–~1.2!
turns out to be the famousNavier–Stokes system. However, the fluids that cannot be adequat
described by~1.6! are called non-Newtonian fluids, while the system~1.1!–~1.2! is the so-called
non-Newtonian system. SincetV depends only on the first order derivatives of the velocity fie
the fluid is a monopolar one.

a!Electronic mail: js8s@mail.iapcm.ac.cn
b!Electronic mail: pczhu@hotmail.com
3490022-2488/2000/41(1)/349/8/$17.00 © 2000 American Institute of Physics
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The models of viscous fluids conforming to~1.1!–~1.3! with a p-growth condition fortV ~p
not necessarily equal to 2!, have appeared in several instances in the literature; Ladyzhenska1,2

Lions,3 and more recently, Du and Gunzburger4 have considered the nonlinear version of~1.6! in
which

t i j
V52~m01m08u¹uur !] jui , r .0, ~1.7!

so that the growth condition

ut i j
Vu<C~11ue~u!u!p21, C.0, ~1.8!

applies withp5r 12. This paper contains a very lucid account of the rationale for conside
viscous fluid models exhibiting nonlinear viscosity; other work in this direction includes
analysis of Kaniel.5 The recently developed theory of nonlinear multipolar viscous fluids~see, e.g.,
Necas, Novotny, and Silhavy,6 Bellout, Bloom, and Necas7! is based on the work of Necas an
Silhavy,8 and has its root in the earlier work of Green and Rivlin9,10 and Bleustein and Green11 on
the multipolar continuum theories for solids and fluids. For the nonlinear bipolar viscous fluid
refer to Bellout, Bloom, and Necas,7 etc., and to the book by Malek, Necas, Rokyta, a
Ruzicka.12

In Refs. 7, 13 etc., the global existence and uniqueness to the initial boundary value pro
are considered. On the other hand, Pokorny14 investigate the Cauchy problems for both monopo
and bipolar fluids.

In the present paper, we are going to study theL2 decay rates for the solution. For th
direction, concerning Navier–Stokes system, there is a large amount of literature, for ins
Refs. 15–20.

Hereafter, we assume thatp5r 12, 1<q,2. The main results are
Theorem 1.1: Let n>2, f 50 and p>3. Suppose the initial data aPLs

2ùLq(Rn), u
5u(x,t) is the solution to~1.1!–~1.5! which is defined in Ref.14. Then,

~i! iu(t)i2<C(11t)2a0,
~ii ! iu(t)2u0(t)i2→0, ast→`.

Wherea05(n/q)2(n/2), 1<q,2 is the decay rates of the solution u0(t), and u0(t) is the
solution to the linear heat system with the same initial data as data from the associated non
Eq. (1.1). Hereafter, byi•i we denote the normi•iL2(Rn) and Ls

2(Rn)5$u5(u1 ,u2 ,...,un)
3(x,t)uuiPL2(Rn), div u50%. h

For the casef Þ0, we have
Theorem 1.2:Let n>2 and p>3. Suppose the initial data aPL2ùLq(Rn), u5u(x,t) is the

solution to~1.1!–~1.5! which is defined in Ref.14. Moreover, assume that

i f ~ t !i<C~11t !2a0/221. ~1.9!

Then we have,
~i! iu(t)i2<C(11t)2a0,
~ii ! iu(t)2u0(t)i2→0, ast→`. h

Remarks:~1! Result~ii ! in the above theorem means thatu(x,t) andu0(x,t) are asymptoti-
cally equivalent ast→`. This result follows easily from the fact thatu(x,t) andu0(x,t) decay at
the same rates.

~2! The decay rates ofu(x,t) are optimal in the sense that they coincide with the decay r
of the solution to the heat system.

~3! For the sake of simplicity, we prove only the casef [0. It is easy to prove the case th
f Ó0 in a similar manner. h

Notations:N stands for the set of positive integers.C denotes the universal constant which
independent of timet and may change from line to line.
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We denote theLp-norm by i•iLp and theL2-norm by i•i.
The Fourier transformation of a functionf is denote byf̂ of F( f ). h

The rest of this paper is organized as follows. In Sec. II, we derive some basic lemmas
will yield the decay rates of solution. The main tool in our proof is the Fourier transformatio
Sec. III, by taking specific forms of the radiu functiond(t) ~for definition ofd(t), see Sec. II!, we
obtain the algebraic decay rates.

II. THE CRUCIAL LEMMA

In this section, we are going to show the following lemma which is crucial in our proof.
first establish an auxiliary lemma. This lemma gives estimates similar to the ones obtain
solutions to the Navier–Stokes system. It follows some of the ideas used by Wiegner18 when he
establishes an extension to the Fourier splitting method introduced by Schonbek in Refs.
17.

Lemma 2.1: The following inequality holds:

iu~ t !i2 expS E
0

t

d2~s!dsD<iai21CE
0

t d

ds
expS E

0

s

d2~t!dt D H iu0~ t !i21dn12~s!1dn12~s!

3S E
0

s

iui2~t!dt D 2J ds ~2.1!

for the solution u defined in Ref.14 and n>2. Here, d(t) is the radii of a ball.
Proof: Multiplying ~1.1! by u and integrating the result with respect tox over Rn, recalling

~1.2! we arrive at

1

2

d

dt
iui212m0i¹ui212m1E

Rn
ue~u!urei j ~u!] iujdx50. ~2.2!

Here and below, we use the Einstein convention on repeat indices. Recalling~1.4!, we haveei j

5eji . Thus,

IªE
Rn

ue~u!urei j ~u!] iujdx ~Changing the indicesi , j into j ,i ! ~2.3!

5E
Rn

ue~u!ureji ~u!] juidx

5E
Rn

ue~u!urei j ~u!] juidx. ~2.4!

Therefore, we infer from~1.4!, ~2.3!, and~2.4! that

I5
1

2 S E
Rn

ue~u!urei j ~u!] iujdx1E
Rn

ue~u!urei j ~u!] juidxD
5E

Rn
ue~u!urei j ~u!ei j ~u!dx5E

Rn
ue~u!up. ~2.5!

Combined with~2.2! yields

d

dt
iui214m0i¹ui214m1E

Rn
ue~u!updx50. ~2.6!
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Integrating~2.6! with respect tot over (0,t), we arrive at

iui21CE
0

t

~ i¹ui21ie~u!i21ie~u!iLp
p

!dt<iuu t50i25iai2. ~2.7!

Here, we have used the factie(u)i2<i¹ui2. ~Recalling ~1.4!, using the elementary inequalit
(a1b)2<2(a21b2), we see that the fact is valid.!

By ~2.7!, we havee(u)PL2ùLp(R13Rn). Thanks top>3, we getp21P@2,p#. Then using
the interpolation technique, we assert thate(u)PLp21, namely,

E
0

t

ie~u!iLp21
p21 dt<C. ~2.8!

Therefore, invokingp5r 12, we find

U E
0

tE
RnUe~u!urei j ~u!dxdtu<C. ~2.9!

From ~2.6! and the Plancherel theorem it follows that

d

dt ERn
uûu2dj1CE

Rn
ue~u!updx

52CE
Rn

uju2uûu2dj

52CS E
s~ t !

1E
s~ t !cD uju2uûu2dj<2CE

s~ t !
uju2uûu2dj2Cd2~ t !E

s~ t !c
uûu2dj

5CE
s~ t !

~d2~ t !2uju2u!uûu2dj2Cd2~ t !E
Rn

uûu2dj<CE
s~ t !

d2~ t !uûu2dj2Cd2~ t !E
Rn

uûu2dj.

~2.10!

Heres(t)5$j:uju<d(t)%. Hence,

d

dt ERn
uûu2dj1Cd2~ t !E

Rn
uûu2dj1E

Rn
ue~u!updx<CE

s~ t !
d2~ t !uûu2dj, ~2.11!

where, the functiond(t) decreases monotonously and will be specified later on. In what follo
we proceed to estimate the right-hand side of Eq.~2.11!. To this end, we take the Fourier tran
formation on~1.1! to get

ût1uju2û5G~j,t !, ~2.12!

where

G~j,t !5F~u•¹u!1F~¹p!2F~2¹•ue~u!ure~u!!5:I 11I 21I 3 . ~2.13!

Solving û from ~2.12! yields

û5e2uju2tâ1E
0

t

e2uju2~ t2s!G~j,s!ds. ~2.14!

Therefore,
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E
s~ t !

uûu2dj<CE
s~ t !

e22uju2tuâu2dj1CE
s~ t !

S E
0

t

e2uju2~ t2s!G~j,s!dsD 2

dj. ~2.15!

We now estimate the right-hand side of~2.15! term by term,

E
s~ t !

e22uju2tuâu2dj<E
Rn

~e2uju2tuâu!2dj5i û0~ t !i25iu0~ t !i2. ~2.16!

For the convection term which containsI 1 , we handle it as follows:

E
s~ t !

S E
0

t

e2uju2~ t2s!F~u•¹u!dsD 2

dj<CE
s~ t !

uju2S E
0

t

iui2dsD 2

dj5Cdn12~ t !S E
0

t

iui2dsD 2

.

~2.17!

Equation~1.2! and the factF(u•¹u)52 i jkF(ujuk) have been used above.
For the term onI 3 , making use of~2.9!, we have

E
s~ t !

S E
0

t

e2uju2~ t2s!F~¹•ue~u!ure~u!!dsD 2

dj<CE
s~ t !

uju2djS E
0

tE
Rn

ie~u!ure~u!udxdsD 2

<Cdn12~ t !. ~2.18!

Finally, we treat the troublesome term, i.e., theI 2 term. We deduce from~1.1!–~1.2! that

Dp5
]2

]xi]xj
~2ue~u!urei j ~u!2uiuj !. ~2.19!

Taking the Fourier transformation on~2.19! we find

uju2p̂5j ij j~F~2ue~u!urei j ~u!!2F~uiuj !!, ~2.20!

whence,

p̂5
j ij j

uju2 ~F~2ue~u!urei j ~u!!2F~uiuj !!, ~2.21!

which combined with~2.17!–~2.18! yields

E
s~ t !

S E
0

t

e2uju2~ t2s!F~¹p!dsD 2

dj<Cdn12~ t !S 11S E
0

t

iui2dsD 2D . ~2.22!

The combination of~2.11! and ~2.15!–~2.22! yields ~2.1! and the proof of the lemma is com
plete. h

III. THE DECAY RATES

After the preparations in the above section, we intend in this section to investigate the
rates of the solution to~1.1!–~1.5! by taking specific forms of the functiond(t) in Lemma 2.1.

Step 1:First, we consider the casen>3.
Lemma 3.1: The following estimate holds

iu~ t !i2<C~11t !2a0 ~3.1!

for the solution u (defined in Ref.14) to the system~1.1!–~1.5!.
Proof: It follows from ~2.1! and ~2.7! that
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iu~ t !i2 expS E
0

t

d2~s!dsD<iai21CE
0

t d

ds
expS E

0

s

d2~t!dt D $iu0~ t !i21dn12~s!1dn12~s!s2%ds.

~3.2!

Now we take

d2~ t !5a~11t !21, with a suitably large. ~3.3!

Then,

expS E
0

t

d2~s!dsD 5~11t !a. ~3.4!

Combining this with~3.2! we have

iu~ t !i2~11t !a<iai21CE
0

t

~11s!a21$iu0~s!i21~11s!@~n12!/2#1~11s!@~n22!/2#%ds

<C~11t !2b11a. ~3.5!

Whereb15min$(n22)/2,a0%. That is,

iu~ t !i2<~11t !2b1, ~3.6!

If b15a0 , then the proof is complete. Otherwise, substituting~3.6! into the right-hand side of
~2.1!, we obtain a new decay indexb2 satisfyinga0>b2>b1 . Repeating this process, after
most finitely many iterations, then one has

iu~ t !i2<~11t !2a0. ~3.7!

Thus the proof is complete. h

Step 2:For the casen52, the decay rate in~3.6! is 0, i.e., without decay if we start with inde
0. So we need two choices ofd(t) when we make use of~2.1!.

First, we want to prove~3.9!. To this end, we choose

d2~ t !5k~ t1e!21~ ln~ t1e!!21, where kPN,

so that

expS E
0

t

d2~s!dsD 5~ ln~ t1e!!k.

Then we can infer from~2.1! with n52 that

iu~ t !i2~ ln~ t1e!!k<iai21CE
0

t

k~ ln~e1s!!k21~e1t !21

3H iu0~s!i21k2~ ln~e1s!!22~e1s!22S 11S E
0

s

iu~r !i2dr D 2D J .

~3.8!

We have obtainediu(t)i2<C in Sec. II, then letk51, it follows from ~3.8! that

ln~e1t !iu~ t !i2<C.

Hence,
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E
0

s

iu~r !i2dr<C~s1e!ln21~s1e!.

Now we putk52 in ~3.8! to get

ln2~e1t !iu~ t !i2<C.

Then we now obtain

E
0

s

iu~r !i2dr<C~s1e!ln22~s1e!. ~3.9!

Next, we choose

d2~ t !5a~11t !21.

We have pointed out in Theorem 1.1 thatiu0(t)i2<C(11t)2a0, so we takeaP(a0,1).
Then, from~2.1! with n52 and~3.9! it follows that

iu~ t !i2~11t !a<C~11t !a2a01CE
0

t

~11s!a23S 11S E
0

s

iu~r !i2dr D 2D ds

<C@11~11t !a2a01~11t !a22#

1CE
0

t

~11s!a22 ln22~e1s!E
0

s

iu~r !i2drds. ~3.10!

For t>1, we define

y~ t !ªE
t21

t

iu~r !i2~11r !adr and Y~ t !ªmax$y~x!u1<x<t%.

It is easy to see thaty(t),Y(t) are continuous. Now we estimate the factor

I ~s!ªE
0

s

iu~r !i2dr.

Clearly,s2@s#,1. Thus,

I ~s!5E
0

s2@s#

iu~r !i2dr1E
s2@s#

s

iu~r !i2dr

<C1E
s2@s#

s

iu~r !i2dr

<C1 (
j 50

@s#21 E
s2 j 21

s2 j

iu~r !i2~11r !a~11r !2adr

<C1Y~s! (
j 50

@s#21

~s2 j !2a<C1Y~s!
~11s!12a

12a
. ~3.11!

We integrate~3.10! over (t21,t) and use the above estimate to get fort>1,

y~ t !<Y~ t !<C@11~11t !a2a01~11t !a22#1CE
1

t

~11s!21 ln22~e1s!Y~s!ds.
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By the Gronwall inequality, making use of the fact

E
0

t

~11s!21 ln22~e1s!ds<C,

we then have for allt>1 that

Y~ t !<C@11~11t !a2a01~11t !a22#.

From this and~3.11! we obtain a new estimate ofI (s) as follows:

I ~s!<C@11~11t !12a1~11t !12a01~11t !21#.

Inserting this new growth rate ofI (s) into ~3.10!, we then have

iu~ t !i2~11t !a<C@11~11t !a2a01~11t !a21#.

Note thata0,1 anda can be taken suitably large, we obtain immediately the decay rate. Thu
proof is complete. h
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The dynamical twisting and nondynamical r-matrix
structure of the elliptic Ruijsenaars–Schneider model

Bo-yu Hou and Wen-Li Yanga)

CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, People’s Republic of China
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From the dynamical twisting of the classicalr-matrix, we obtain a new Lax opera-
tor for the elliptic Ruijsenaars–Schneider model~cf. Ruijsenaars!. The correspond-
ing r-matrix is shown to be the classicalZn-symmetric ellipticr-matrix, which is
the same as that obtained in the study of the nonrelativistic version—theAn21

Calogero–Moser model. ©2000 American Institute of Physics.
@S0022-2488~00!02801-2#

I. INTRODUCTION

Following the successes of the Calogero–Moser~CM! models,1,2 a relativistic generalization
of the CM models—the so-called Ruijsenaars–Schneider~RS! models have been proposed3

which the integrability has been conserved. The RS model describes a completely inte
system ofn one-dimensional interacting relativistic particles. Its importance lies in the fact th
is related to the dynamics of solitons in some integrable relativistic field theories4,5 and its
discrete-time version has been connected with the Bethe anstaz equation of the solvable
statistical model.6 A recent development demonstrated that it can be obtained by a Hamilto
reduction of the contangent bundle of some Lie group,7 and can also be considered as the gau
WZW theory.8 The study of the RS model would play a universal role in study of comple
integrable multiparticle systems. Among all types of RS models, the elliptic RS model is the
general one and other types such as the rational, hyperbolic, and trigonometric types a
various degenerations of the elliptic one. In this paper, we shall study the ellipticAn21 type RS
model with genericn(n.2).

The Lax representation and its correspondingr-matrix structure for rational, hyperbolic, an
trigonometricAn21 type RS models were constructed by Avan and Talon.9 The Lax representation
for the elliptic RS models was constructed by Ruijsenaars,10 and the correspondingr-matrix
structure was given by Nijhoff, Kuznetsov, and Sklyanin11 and Suris.12 It turns out that the
r-matrix structure of the RS model is given in terms of a quadratic Poisson–Lie bracket
dynamicalr-matrices~i.e., ther-matrix depends upon the dynamical variables!. Particularly, in
contrast to the dynamical Yang–Baxter equation of ther-matrix structure of the CM model, the
generalized Yang–Baxter relations for the quadratic Poisson–Lie bracket with a dyna
r-matrix is still an open problem.11 Since the Poisson bracket of the Lax operator is no lon
closed, the quantum version of such classicalL-operator has not been able to be constructed.

It is well known that the Lax representation for completely integrable models is not uniq
has been recognized13,14 that ther-matrix of a model can be changed drastically by the choice
Lax representation. In our former work,14 we succeeded in constructing a new Lax operator~cf.
Krichever’s15! for the elliptic An21 CM model and showing that the correspondingr-matrix is a
nondynamical one, which is the classicalZn-symmetric ellipticr-matrix.16,14 Very recently, we
found a ‘‘good’’ Lax operator for the elliptic RS model with a very special casen52.17 In the
present paper, extending our former work in Ref. 17, we construct a ‘‘good’’ Lax operator~in the

a!Author to whom all correspondence should be addressed: Institute of Modern Physics, Northwest Univ
Xian 710069, China; electronic mail: wlyang@phy.nwu.edu.cn
3570022-2488/2000/41(1)/357/13/$17.00 © 2000 American Institute of Physics
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sense that it has a nondynamicalr-matrix structure! for the elliptic RS model with a genera
n(n.2).

The paper is organized as follows. In Sec. II, we construct the dynamical twisting relatio
the classicalr-matrix for the quadratic Poisson–Lie bracket. The condition that a ‘‘good’’ L
representation could exist is found. In Sec. III, we provide brief reviews of the work of Nijhoff
co-workers on the dynamicalr-matrix of the elliptic RS model. In Sec. IV, we construct a ‘‘good
Lax representation for an elliptic RS model with genericn, and obtain the corresponding nond
namicalr-matrix structure. The quantum versionL-operator of the Lax operator is constructed
Sec. V. Finally, we give a summary and discussions. The Appendix contains some de
calculations.

II. THE DYNAMICAL TWISTING OF CLASSICAL r-MATRIX

In this section we will give some general theories of the completely integrable finite par
systems.

A Lax pair ~L, M! consists of two functions on the phase space of the system with valu
some Lie algebrag, such that the evolution equations may be written in the following form

dL

dt
5@L,M #, ~II.1!

where@ # denotes the bracket in the Lie algebrag. The interest in the existence of such a pair li
in the fact that it allows for an easy construction of conserved quantities~integrals of motion!. It
follows that the adjoint-invariant quantities trLl ( l 51,...,n) are the integrals of the motion. In
order to implement Liouville theorem onto this set of possible action variables we need them
Poisson commuting. As shown in Ref. 13, the commutativity of the integrals trLl of the Lax
operator can be deduced from the fact that the fundamental Poisson bracket$L1(u),L2(v)% could
be represented in the linear commutator form

$L1~u!,L2~v !%5@r 12~u,v !,L1~u!#2@r 21~v,u!,L2~v !#, ~II.2!

or quadratic form18

$L1~u!,L2~v !%5L1~u!L2~v !r 12
2 ~u,v !2r 12

1 ~v,u!L1~u!L2~v !

1L1~u!s12
1 ~u,v !L2~v !2L2~v !s12

2 ~u,v !L1~u!, ~II.3!

where we have used the notation

L1[L ^ 1, L2[1^ L, a215Pa12P,

andP is the permutation operator such thatPx^ y5y^ x.
The dynamical twisting of the linear Poisson–Lie bracket~II.2! was studied in Ref. 14~we

refer therein! and also studied by Babelon and Viallet.13 We are to investigate the general d
namical twisting of the quadratic Poisson–Lie bracket~II.3!.

In order to define a consistent Poisson bracket, one should impose some constraints
r-matrices. The skew-symmetry of the Poisson bracket requires that

r 21
6 ~v,u!52r 12

6 ~u,v !, s21
1 ~v,u!5s12

2 ~u,v !, ~II.4!

r 12
1 ~u,v !2s12

1 ~u,v !5r 12
2 ~u,v !2s12

2 ~u,v !. ~II.5!

As for the numericalr-matricesr 6(u,v), s6(u,v) case, some constraint conditions~sufficient
condition! imposed on ther-matrices to satisfy the Jacobi identity were given by Freidel a
Maillet.18 However, generally speaking, the Jacobi identity for the dynamicalr-matricesr 6(u,v),
s6(u,v) would take a very complicated form.
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It should be remarked that such a classification~from dynamical and nondynamicalr-matrix
structure! is by no means unique, which drastically depends on the Lax representation whic
chooses for a system. Therefore, there is no one-to-one correspondence between a given
cal system and a definedr-matrix. The same dynamical system may have several Lax repre
tations and severalr-matrix.14 The different Lax representations of a system are conjugated
each other. Namely, if (L̃,M̃ ) is one of other Lax pair of the same dynamical system conjuga
with the old one~L, M!, it means that

L̃~u!5g~u!L~u!g21~u!, M̃ ~u!5g~u!M ~u!g21~u!2S d

dt
g~u! Dg21~u!, ~II.6!

whereg(u)PG whose Lie algebra isg. Then, we have

Proposition 1: The Lax pair(L̃,M̃ ) has the following r-matrix structure:

$L̃1~u!,L̃2~v !%5L̃1~u!L̃2~v ! r̃ 12
2 ~u,v !2 r̃ 12

1 ~v,u!L̃1~u!L̃2~v !

1L̃1~u!s̃12
1 ~u,v !L̃2~v !2L̃2~v !s̃12

2 ~u,v !L̃1~u!, ~II.7!

where

r̃ 12
2 ~u,v !5g1~u!g2~v !r 12

2 ~u,v !g1
21~u!g2

21~v !2D̃12~u,v !1D̃21~v,u!,

r̃ 12
1 ~u,v !5g1~u!g2~v !r 12

1 ~u,v !g1
21~u!g2

21~v !2D̃12
~1!~u,v !1D̃21

~1!~v,u!,

s̃12
1 ~u,v !5g1~u!g2~v !s12

1 ~u,v !g1
21~u!g2

21~v !2D̃21~v,u!2D̃12
~1!~u,v !,

s̃12
2 ~u,v !5g1~u!g2~v !s12

2 ~u,v !g1
21~u!g2

21~v !2D̃12~u,v !2D̃21
~1!~v,u!,

D̃12~u,v !5L̃2
21~v !D12~u,v !, D̃12

~1!~u,v !5D12~u,v !L̃2
21~v !,

D12~u,v !51 1
2@$g1~u!,g2~v !%g1

21~u!g2
21~v !,g2~v !L2~v !g2

21~v !#

3g2~v !$g1~u!,L2~v !%g1
21~u!g2

21~v !

and the properties of (II.4) and (II.5) are conserved

r̃ 21
6 ~v,u!52 r̃ 12

6 ~u,v !, s̃21
1 ~v,u!5 s̃12

2 ~u,v !,

r̃ 12
1 ~u,v !2 s̃12

1 ~u,v !5 r̃ 12
2 ~u,v !2 s̃12

2 ~u,v !.

Proof: The proof is directly substituting~II.6! into the fundamental Poisson bracket~II.3! and use
the following identity:

@@a12,L1#,L2#5@@a12,L2#,L1#,

wherea12 is any matrix ong^ g. h

It can be seen that:~I! The Lax operatorL(u) is transferred as a similarity transformatio
from the different Lax representation;~II ! the correspondingM has undergone the usual gau
transformation;~III ! the r-matrices are transferred as some generalized gauge transform
which can be considered as the generalized classical version of the dynamically twisting re
of the quantumR-matrix.19 Therefore, it is of great value to find a ‘‘good’’ Lax representation
a system if it exists, in which the correspondingr-matrices are all nondynamical ones a
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r 12
1 (u,v)5r 12

2 (u,v), s12
6 (u,v)50. In this special case, the corresponding Poisson–Lie bra

becomes the Sklyanin bracket and the well-studied theories20,21 can be directly applied in the
system.

Corollary 1: For given Lax pair (L, M) and the corresponding r-matrices, if there exist g(u)
satisfied

g1~u!g2~v !s12
1 ~u,v !g1

21~u!g2
21~v !2D̃21~v,u!2D̃12

~1!~u,v !50,
~II.8!

g1~u!g2~v !s12
2 ~u,v !g1

21~u!g2
21~v !2D̃12~u,v !2D̃21

~1!~v,u!50,

]gih125]p jh1250, ~II.9!

where

h12~u,v !5g1~u!g2~v !r 12
2 ~u,v !g1

21~u!g2
21~v !2D̃12

~1!~u,v !1D̃21~v,u!

[g1~u!g2~v !r 12
1 ~u,v !g1

21~u!g2
21~v !2D̃12

~1!~u,v !1D̃21
~1!~v,u!, ~II.10!

the nondynamical Lax representation with Sklyanin Poisson–Lie Bracket of the system woul
exist.
The main purpose of this paper is to find a ‘‘good’’ Lax representation for the elliptic RS m
with genericn(n.2).

III. REVIEW OF THE ELLIPTIC RS MODEL

We first define some elliptic functions

u~ j !~u!5uF 1

2
2

j

n

1

2

G ~u,nt!, s~u!5uF 1

2

1

2

G ~u,t!, ~III.1!

uFabG~u,t!5 (
m52`

`

exp$A21p@~m1a!2t12~m1a!~z1b!#%,

~III.2!
u8~ j !~u!5]u$u

~ j !~u!%, s8~u!5]u$s~u!%, j~u!5]u$ ln s~u!%,

wheret is a complex number with Im(t).0.
The Ruijsenaars–Schneider model is the system ofn one-dimensional relativistic particle

interacting by the two-body potential. In terms of the canonical variablespi ,qi ( i 51,...,n) enjoy-
ing in the canonical Poisson bracket

$pi ,pj%50, $qi ,qj%50, $qi ,pj%5d i j ,

the Hamiltonian of the system is expressed as10

H5mc2(
j 51

n

coshpj)
kÞ j

H s~qjk1g!s~qjk2g!

s2~qjk! J 1/2

, qjk5qj2qk . ~III.3!

Here,m denotes the particle mass,c denotes the speed of light,g is the coupling constant. The
Hamiltonian ~III.3! is known to be completely integrable. The most effective way to show
integrability is to construct the Lax representation for the system~namely, to find the classical Lax
operator!. OneL-operator for the elliptic RS model was given by Ruijsenaars10
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LR~u! j
i 5

epjs~g1u1qji !

s~g1qji !s~u! )
kÞ j

n H s~qjk1g!s~qjk2g!

s2~qjk! J 1/2

, i , j 51,...,n. ~III.4!

Alternatively, we adopt another Lax operatorL̃R , which is similar to that of Nijhoff Kutznetsov
and Sklyanin in Ref. 11,

L̃R~u! j
i 5

epjs~g1u1qji !

s~u!s~g1qji
)
kÞ j

s~g1qjk!

s~qjk!
. ~III.5!

The relation ofL̃R with the standard Ruijsenaars’LR(u) can be obtained from a Poisson map~or
a canonical transformation!

qi→qi , pi→pi1
1

2
ln )

kÞ i

s~qik1g!

s~qik2g!
. ~III.6!

Proposition 2: The map defined in (III.6) is a Poisson map.
Proof: Proposition 2 can be proven by considering the symplectic two-form

(
i

dS pi1
1

2
ln )

kÞ i

s~qik1g!

s~qik2g! D ∧dqi5(
i

dpi∧dqi2
1

2 (
kÞ i

S s8~qik1g!

s~qik1g!
2

s~qik2g!

s~qik2g! Ddqk∧dqi

5(
i

dpi∧dqi2
1

2 (
k, i

H S s8~qik1g!

s~qik1g!
1

s8~qik2g!

s~qik2g! D
2S s8~qik2g!

s~qik2g!
1

s8~qik1g!

s~qik1g! D J dqk∧dqi5(
i

dpi∧dqi ,

where we have used the property that the elliptic functions(u) is an odd function with regard to
argumentu. h

It is well known that the Poisson bracket is invariant under the Poisson map. Hence the
of the r-matrix structure for the standard Ruijsenaars Lax operatorLR(u) is equivalent to that of
Lax operatorL̃R(u).

Following the work of Nijhoff, Kuznetsov, and Sklyanin,11 the fundamental Poisson brack
of the Lax operatorL̃R(u) can be given in the following quadraticr-matrix form with a dynamical
r-matrices:

$L̃R~u!1 ,L̃R~v !2%5L̃R~u!1L̃R~v !2r 12
2 ~u,v !2r 12

1 ~v,u!L̃R~u!1L̃R~v !2

1L̃R~u!1s12
1 ~u,v !L̃R~v !22L̃R~v !2s12

2 ~u,v !L̃R~u!1 , ~III.7!

where

r 12
2 ~u,v !5a12~u,v !2s12~u!1s21~v !, r 12

1 ~u,v !5a12~u,v !1u12
1 1u12

2 ,

s12
1 ~u,v !5s12~u!1u12

1 , s12
2 ~u,v !5s21~v !2u12

2 ,

and

a12~u,v !5r 12
0 ~u,v !1(

i 51
j~u2v !eii ^ eii 1(

iÞ j
j~qi j !eii ^ ej j ,

r 12
0 ~u,v !5(

iÞ j

s~qi j 1u2v !

s~qi j !s~u2v !
ei j ^ eji , s12~u!5(

i , j
~ L̃R~u!]gL̃R~u!! j

i ei j ^ ej j ,
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u12
6 5(

i , j
j~qji 6g!eii ^ ej j .

The matrix element ofei j is equal to (ei j ) l /k5d i l d jk . It can be checked that the followin
symmetric condition holds for ther-matricesr 12

6 (u,v) ands12
6 (u,v):

r 21
6 ~v,u!52r 12

6 ~u,v !, s21
1 ~v,u!5s12

2 ~u,v !, ~III.8!

r 12
1 ~u,v !2s12

1 ~u,v !5r 12
2 ~u,v !2s12

2 ~u,v !. ~III.9!

The classicalr-matricesr 12
6 (u,v), s12

6 (u,v) are of dynamical ones~i.e., the matrix element de
pends upon the dynamical variablesqi). The quadratic Poisson bracket~III.7! and the symmetric
conditions of~III.8! and ~III.9! lead to the evolution integrals tr(L̃R(u)) l .

Due to ther-matrices depending on the dynamical variables, the Poisson bracket ofL̃R(u) is
no longer closed. Due to the complexity of ther-matrices~III.7! it is still an open problem to
check the generalized Yang–Baxter relations for the RS model. Moreover, the quantum ver
the algebraic relation~III.7! is still not found. The same situation also occurs for the standard
operatorLR(u), and the correspondingr-matrices were given by Suris.12

IV. THE ‘‘GOOD’’ LAX REPRESENTATION OF THE ELLIPTIC RS MODEL
AND ITS r-MATRIX

The L-operator of the elliptic RS model given by RuijsenaarsLR(u) in ~III.4! @or its Poisson
equivalent counterpartL̃R(u) in ~III.5!# and correspondingr-matrix r 12(u,v) given by Suris,12 ~or
given by Nijhoff, Kuznetov, and Sklyanin11! leads to some difficulties in the investigation of th
RS model. This motivates us to find a ‘‘good’’ Lax representation of the RS model. As see
Proposition 1 and Corollary 1 in Sec. II, this means findingg(u) which satisfies~II.8! and~II.9!.
In our previous work,17 we succeeded in finding such ag(u) for the elliptic RS model with a
special casen52. Fortunately, we could also find such ag(u) for the elliptic RS model with a
genericn(n.2) ~This kind of L-operator does not always exist for a general completely in
grable system!. The fundamental Poisson bracket of this newL-operatorL(u) would be expressed
in the Sklyanin Poisson–Lie bracket form with a numericr-matrix. The correspondingr-matrix is
the classicalZn-symmetricr-matrix in Ref. 14. Namely, the elliptic RS and the correspond
nonrelativistic version—the ellipticAn21 CM model,14 are governed by the exact samer-matrix
~cf. Ref. 12! in some gauge. In order to compare with theL-operator given by RuijsenaarsLR(u)
and its Poisson equivalenceL̃R(u), we call thisL-operator the new Lax operator~alternatively, a
‘‘good’’ Lax operator!.

Set ann^ n matrix A(u;q),

A~u;q! j
i [A~u;q1 ,q2 ,...,qn! j

i 5u~ i !S u1nqj2 (
k51

n

qk1
n21

2 D . ~IV.1!

We remark thatA(u,q) j
i corresponds to the interwiner functionw j

( i ) between theZn-symmetric
Belavin model and theAn21

(1) face model22 in Ref. 23
Define

g~u!5A~u;q!L~q!, L~q! j
i 5hi~q!d j

i ,

hi~q![hi~q1 ,...,qn!5
1

) lÞ is~qil !
.

Let us construct the new Lax operatorL(u),
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L~u!5g~u!L̃R~u!g21~u!. ~IV.2!

It will turn out that such a Lax operatorL(u) gives a ‘‘good’’ Lax representation for the ellipti
RS model. This is our main result of this paper. To recover this, let us express the ‘‘good’
operatorL(u) more explicitly.

Proposition 3: The Lax operator L(u) can be rewritten in the factorized form

L~u! j
i 5 (

k51

n
1

s~g!
A~u1ng;q!k

i A21~u;q! j
kepk, i , j 51,2,...,n. ~IV.3!

Proof: First, let us introduce a matrixT(u) with matrix elements

T~u! j
i 5(

k
epjA21~u;q!k

i A~u1ng;q! j
k .

From the definition ofA(u;q) j
i and the determinant formula of Vandermonde type23

det@u~ j !~uk!#5const.3sS 1

n (
k

uk2
n21

2 D )
1< j ,k<n

sS uk2uj

n D , ~IV.4!

where the const. does not depend upon$uk%, we have

(
k

A21~u;q!k
i A~u1ng;q! j

k5
s~g1u1qji !

s~u! )
kÞ i

s~g1qjk!

s~qik!
.

Namely,

T~u! j
i 5

epjs~g1u1qji !

s~u! )
kÞ i

s~g1qjk!

s~qik!

5
1

)kÞ is~qik! H epjs~g1u1qji !s~g!

s~u!s~g1qji !
)
kÞ j

s~g1qjk!

s~qjk! J )
kÞ j

s~qjk!.

Then, we obtain

1

s~g! (k
A~u1ng;q!k

i A21~u;q! j
kepk

5
1

s~g! (m,l
A~u;q!m

i Tl
m~u!A21~u;q! j

l

5(
m,l

A~u;q!m
i

)kÞms~qmk!
H e2pls~g1u1qlm!

s~u!s~g1qlm! )
kÞ l

s~g1qlk!

s~qlk! J A21~u;q! j
l )

kÞ l
s~qlk!

5(
m,l

g~u!m
i L̃R~u! l

mg21~u! j
l [L~u! j

i .

h

Let us consider the nonrelativistic limit of our Lax operatorL(u). First, rescale the moment
$pi%, the coupling constantg, and the Lax operatorL(u) as follows:11

piª2bpi8 , ngªbs, L~u!ªsS bs

n DL8~u!, ~IV.5!
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wherepi8 is the conjugated momenta ofqi in the CM model.
Then the nonrelativistic limit is obtained by takingb→0, we have the following asymptotic

properties:

L8~u! j
i 5d j

i 2bS (
k

$A~u;q!k
i A21~u;q! j

kpk82s]u~A~u;q!k
i !A21~u;q! j

k% D 10~b2!.

If we make the canonical transformation

pi8→pi82
s

n

]

]qi
ln M ~q!, M ~q!5)

i , j
s~qi j !,

we obtain the ‘‘good’’ Lax operator of the ellipticAn21 CM model in Ref. 14,

LCM~u! j
i 52 lim

b→0

L8~u! j
i 2d j

i

b
U

p
i8→p

i82~s/n! ~]/]qi ! ln M ~q!

. ~IV.6!

Now, we have a position to calculate ther-matrix structure of the ‘‘good’’ Lax operatorL(u)
for the elliptic RS model. From Proposition 3 and through the straightforward calculation, we
the main theorem of this paper:

Theorem 1: (Main Theorem) The fundamental Poisson bracket of L(u) can be given in the
quadratic Poisson–Lie form with a nondynamical r-matrix (or Sklyanin bracket)

$L1~u!,L2~v !%5@r 12~u2v !,L1~u!L2~v !#, ~IV.7!

where the numeric r-matrix r12(u) is the classical Zn-symmetric r-matrix14

r i j
lk~v !5H ~12d i

l !
u8~0!~0!u~ i 2 j !~v !

u~ i 2 j !~v !u~ i 2 l !~0!
1d i

ld j
kS u8~ i 2 j !~v !

u~ i 2 j !~v !
2

s8~v !

s~v ! D if i 1 j 5 l 1k modn

0 otherwise.
~IV.8!

Remark:I. The elliptic RS and CM model are governed by the exact same nondynam
r-matrix in the special Lax representation.

II. It was shown in Ref. 14 that such aZn-symmetricr-matrix satisfies the nondynamica
classical Yang–Baxter equation

@r 12~v12v2!,r 13~v12v3!#1@r 12~v12v2!,r 23~v22v3!#1@r 13~v12v3!,r 23~v22v3!#50,

and enjoys in the antisymmetric properties

2r 21~2v !5r 12~v !. ~IV.9!

Moreover, ther-matrix r 12(u) also enjoys in theZn^ Zn symmetry

r 12~v !5~a^ a!r 12~v !~a^ a!21 for a5g,h, ~IV.10!

where then3n matricesh, g are defined in Sec. V.
Corollary 2: The Lax operator LCM(u) of the elliptic An21 CM model in (IV.6) satisfies the

nondynamical linear Poisson–Lie bracket

$LCM~u!1 ,LCM~v !2%5@r 12~u2v !,LCM~u!11LCM~v !2#. ~IV.11!

The direct proof that such a ‘‘good’’~classical! Lax operatorLCM(u) of the elliptic An21 CM
model satisfies~IV.11! was given in Ref. 14.
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V. THE QUANTUM L-OPERATOR FOR THE ELLIPTIC QUANTUM RS MODEL

In this section, we will construct the quantumL-operator for the quantum elliptic RS mode
which satisfies the nondynamical ‘ ‘RLL5LLR’ ’ relation.

We first introduce the ellipticZn-symmetric quantumR-matrix related toZn-symmetric Be-
lavin model, which is the quantum version of the classicalZn-symmetric r-matrix defined in
~IV.8!.

We definen3n matricesh, g, andI a by

hi j 5d i 11,j modn , gi j 5v id i j , I a1 ,a2
[I a5ga2ha1,

wherea1 , a2PZn andv5exp(2p(A21/n)). Define theZn-symmetric Belavin’sR-matrix24,22,23

Ri j
lk~v !5H u8~0!~0!s~v !s~A21\!

s8~0!u~0!~v !s~v1A21\!

u~0!~v !u~ i 2 j !~v1A21\

u~ i 21!~A21\!u~ i 2 j !~v !
if i 1 j 5 l 1k modn

0 otherwise,
~V.1!

where \ is the Planck’s constant andA21\ is usually called the crossing parameter of t
R-matrix. We remark that ourR-matrix coincides with the usual one in Ref. 23 up to a scalar fa

u8~0!~0!s~v !

s8~0!u~0!~v ! )
j 51

n21
u~ j !~v !

u~ j !~0!
,

which is to satisfy~V.4!. TheR-matrix satisfies the quantum Yang–Baxter equation~QYBE!

R12~v12v2!R13~v12v3!R23~v22v3!5R23~v22v3!R13~v12v3!R12~v12v2!. ~V.2!

Moreover, theR-matrix enjoys in followingZn^ Zn symmetric properties

R12~v !5~a^ a!R12~v !~a^ a!21 for a5g,h. ~V.3!

The Zn-symmetricr-matrix has the following relation with its quantum counterpart:

R12~v !u\5051^ 1,
~V.4!

R12~v !51^ 11A21\r 12~v !10~\2! when \→0.

Now we construct the quantum version ofL-operatorL(u). The usual canonical quantizatio
procedure reads

pj→ p̂ j52A21\
]

]qj
, qj→qi , j 51,...,n.

Then, the corresponding quantumL-operatorL̂(u) consequently reads

L̂~u! l
m5

1

s~g! (
k51

n

A~u1ng;q!k
mA21~u;q! l

kep̂k5
1

s~g! (
k51

n

A~u1ng;q!k
mA21~u;q! l

ke2A21\~]/]qk.

~V.5!

It should be remarked that such a quantumL-operator is just the factorized difference represe
tation for the ellipticL-operator.23 So, we have

Theorem 2: (References 23, 26 and 25) The quantum L-operator Lˆ (u) defined in (V.5)
satisfies
                                                                                                                



jii in
dently.

tic
aar’s

uch a
bolic,

is

hina.
lpful

r.
g

366 J. Math. Phys., Vol. 41, No. 1, January 2000 B.-Y. Hou and W.-L. Yang

                    
R12~u2v !L̂1~u!L̂2~v !5L̂2~v !L̂1~u!R12~u2v !, ~V.6!

and R12(u) is the Zn-symmrtric R-matrix.
The proof of Theorem 2 was given by Hou, Shi, and Yang in Ref. 23, by Quano and Fu

Ref. 26, by Hasegawa in Ref. 25, through the face-vertex corresponding relations indepen
The direct proof was also given in Ref. 27.

From the quantumL-operatorL̂(u) and the fundamental relationRLL2LLR, Hasegawa
constructed the skew-symmetric fusion ofL̂(u) and succeeded in relating them with the ellip
type Macdonald operator in Ref. 25, which is actually equivalent to the quantum Ruijsen
operators.

VI. DISCUSSION

In this paper, we only consider the most general RS model—the elliptic RS model. S
nondynamicalr-matrix structure should exist for the degenerated case: the rational, hyper
and trigonometric RS model.

From the results of Ref. 25 and 28, when the coupling constantg/A21\5non-negative
integer, the corresponding quantumL-operatorL̂(u) has finite dimensional representation. Th
means that the states of the quantum RS model should degenerate in this special case.
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APPENDIX: THE PROOF OF THEOREM 1

In this appendix, we give the proof of Theorem 1, which is the main result of this pape
Lemma 1: The classical L-operator L(u) for the elliptic RS model satisfies the followin

algebraic relations:

@r 12~u2v !,L1~u!L2~v !#ab
rd 5(

i , j
H A~u1ng;q! i

rA21~v;q!a
i epi

]

]qi
~A~v1ng;q! j

]A21~v;q!b
j !epj

2A~v1ng;q! i
dA21~v;q!b

i epi
]

]qi
~A~u1ng;q! j

rA21~u;q!a
j !epjJ .

Proof: Let us introduce the difference operators$D̂ j%,

D̂ j5expS 2A21\
]

]qj
D and D̂ j f ~q!5 f ~q1 ,...,qj 21 ,qj2A21\,qj 11 ,...,qn!.

Define

T~ i , j !ab
rd 5H Sr8,d8R~u2v!r8d8

rd A~u1ng;q!i
r8A21~u;q!a

i D̂ i~A~v1ng;q! i
d8A21~v;q!b

i ! if i 5 j

Sr8,d8R~u2v!r8,d8
rd $A~u1ng;q!i

r8A21~u;q!a
i D̂ i~A~v1ng;q! j

d8A21~v;q!b
j !

1A~u1ng;q! j
r8A21~u;q!a

j D̂ j~A~v1ng;q! i
d8A21~v;q!b

i !} if iÞ j

,
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and

G~ i , j !ab
rd

5H Sr8,d8R~u2v !ab
r8d8A~v1ng;q! i

dA21~v;q!d8
i D̂ i~A~u1ng;q! i

rA21~u;q!r8
i

! if i 5 j

Sr8,d8R~u2v !ab
r8d8$A~v1ng;q! i

dA21~v;q!d8
i D̂ i~A~u1ng;q! j

rA21~u;q!r8
j

!

1A~v1ng;q! j
dA21~v;q!d8

j D̂ j~A~u1ng;q! i
rA21~u;q!r8

i
! if iÞ j .

The quantumL-operatorL̂(u) satisfying the ‘‘RLL5LLR’ ’ relation results in

T~ i , j !ab
rd 5G~ i , j !ab

rd . ~A1!

Considering the asymptotic properties when\→0,

R12~u!511A21\r 12~u!10~\2!,

D̂ j512A21\
]

]qj
10~\2!,

we have the following.
~I! If i 5 j :

T~ i , j !ab
rd [T~0!~ i , j !ab

rd 1A21\T~1!~ i , j !ab
rd 10~\2!

5A~u1ng;q! i
rA21~u;q!a

i A~v1ng;q! i
dA21~v;q!b

i 1A21\ (
r8,d8

r ~u2v !r8d8
rd A~u

1ng;q! i
r8A21~u;q!a

i A~v1ng;q! i
d8A21~v;q!b

i 2A21\A~u1ng;q! i
rA21~u;q!a

i

3
]

]qi
~A~v1ng;q! i

dA21~v;q!b
i !10~\2!.

~II ! If iÞ j :

T~ i , j !ab
rd [T~0!~ i , j !ab

rd 1A21\T~1!~ i , j !ab
rd 10~\2!

5A~u1ng;q! i
rA21~u;q!a

i A~v1ng;q! j
dA21~v;q!b

j 1A~u1ng;q! j
rA21~u;q!a

j

3A~v1ng;q! i
dA21~v;q!b

i 1A21\ (
r8,d8

r ~u2v !r8d8
rd $A~u1ng;q! i

r8A21~u;q!a
i

3A~v1ng;q! j
d8A21~v;q!b

j 1A~u1ng;q! j
r8A21~u;q!a

j A~v1ng;q! i
d8A21~u;q!b

i %

2A21\H A~u1ng;q! i
rA21~u;q!a

i ]

]qi
~A~v1ng;q! j

dA21~v;q!b
j !

1A~u1ng;q! j
rA21~u;q!

]

]qj
~A~v1ng;q! i

dA21~v;q!b
i !J 10~\2!.
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~III ! If i 5 j :

G~ i , j !ab
rd [G~0!~ i , j !ab

rd 1A21\G~1!~ i , j !ab
rd 10~\2!

5A~u1ng;q! i
rA21~u;q!a

i A~v1ng;q! i
dA21~v;q!b

i 1A21\ (
r8,d8

r ~u2v !ab
r8d8

3A~v1ng;q! i
dA21~v;q!d8

i A~u1ng;q! i
rA21~u;q!r8

i

2A21\A~v1ng;q! i
dA21~v;q!b

i ]

]qi
~A~u1ng;q! i

rA21~u;q!a
i 10~\2!.

~IV ! If iÞ j :

G~ i , j !ab
rd [G~0!~ i , j !ab

rd 1A21\G~1!~ i , j !ab
rd 10~\2!

5A~u1ng;q! i
rA21~u;q!a

i A~v1ng;q! j
dA21~v;q!b

j 1A~u1ng;q! j
rA21~u;q!a

j

3A~v1ng;q! i
dA21~v;q!b

i 1A21\ (
r8,d8

r ~u2v !ab
r8d8$A~v1ng;q! i

dA21~v;q!d8
i

3A~u1ng;q! j
rA21~u;q!r8

j
1A~v1ng;q! j

dA21~v;q!d8
j A~u1ng;q! i

rA21~u;q!r8
i %

2A21\H A~v1ng;q! i
dA21~v;q!b

i ]

]qi
~A~u1ng;q! j

rA21~u;q!a
j !

1A~v1ng;q! j
dA21~v;q!b

j ]

]qj
~A~u1ng;q! i

rA21~u;q!a
i !J 10~\2!.

Noting ~A1! and considering the term of the first order with regard to\, we have

T~1!~ i , j !ab
rd 5G~1!~ i , j !ab

rd . ~A2!

Multiplying by epi1pj from both sides of~A.2! and summing up fori and j, we have

(
i , j

T~1!~ i , j !ab
rd epiepj5(

i , j
G~1!~ i , j !ab

rd epiepj .

Due to the commutativity of$epj%, we obtain

(
r8,d8 i , j

$r ~u2v !r8d8
rd $A~u1ng;q! i

r8A21~u;q!a
i epiA~v1ng;q! j

d8A21~v;q!b
j epj2r ~u2v !ab

r8d8

3A~v1ng;q! i
dA21~v;q!d8

i epiA~u1ng;q! j
rA21~u;q!r8

j epj%

5(
i , j

H A~u1ng;q! i
rA21~v;q!a

i epi
]

]qi
~A~v1ng;q! j

dA21~v;q!b
j !epj

2A~v1ng;q! i
dA21~v;q!b

i epi
]

]qi
~A~u1ng;q! j

rA21~u;q!a
j !epjJ .

Namely, we have
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@r 12~u2v !,L1~u!L2~v !#ab
rd 5(

i , j
H A~u1ng;q! i

rA21~v;q!a
i epi

]

]qi
~A~v1ng;q! j

dA21~v;q!b
j !epj

2A~v1ng;q! i
dA21~v;q!b

i epi
]

]qi
~A~u1ng;q! j

rA21~u;q!a
j !epjJ .

h

Now, we have a position to calculate the fundamental Poisson bracket ofL(u),

$L1~u!,L2~v !%ab
rd 5$L~u!a

r ,L~v !b
d %

5H(
i

A~u1ng;q! i
rA21~u;q!a

i epi,(
j

A~v1ng;q! j
dA21~v;q!b

j epjJ
5(

i , j
H A~u1ng;q! i

rA21~u;q!a
i epi

]

]qi
~A~v1ng;q! j

dA21~v;q!b
j !epjJ

2A~v1ng;q! i
dA21~v;q!b

i epi
]

]qi
~A~u1ng;q! j

rA21~u;q!a
j !epj%

5@r 12~u2v !,L1~u!L2~v !#ab
rd .

We have used the Lemma 1 in the last equation. Thus, we have

$L1~u!,L2~v !%5@r 12~u2v !,L1~u!L2~v !#.
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A unified treatment of cubic invariants at fixed
and arbitrary energy

Max Karlovinia) and Kjell Rosquistb)

Department of Physics, Stockholm University, Box 6730, 113 85 Stockholm, Sweden
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Cubic invariants for two-dimensional Hamiltonian systems are investigated using
the Jacobi geometrization procedure. This approach allows for a unified treatment
of invariants at both fixed and arbitrary energy. In the geometric picture the invari-
ant generally corresponds to a third rank Killing tensor, whose existence at a fixed
energy value forces the metric to satisfy a nonlinear integrability condition ex-
pressed in terms of a Ka¨hler potential. Further conditions, leading to a system of
equations which is overdetermined except for singular cases, are added when the
energy is arbitrary. As solutions to these equations we obtain several new superin-
tegrable cases in addition to the previously known cases. We also discover a su-
perintegrable case where the cubic invariant is of a new type which can be repre-
sented by an energy-dependent linear invariant. A complete list of all known
systems which admit a cubic invariant at arbitrary energy is given. ©2000
American Institute of Physics.@S0022-2488~00!01101-4#

I. INTRODUCTION

The quest for integrable systems has a long history going back more than a century. Ho
to this day, no general systematic method exists for finding the invariants of a given syste
effective criterion to test if a linear invariant exists in a two-dimensional system was found
recently in Ref. 1~compare also Ref. 2!. In the absence of such general methods one can at
study and classify sufficiently simple integrable systems with certain simple types of invarian
the present work, we focus on cubic invariants admitted by natural Hamiltonian systems in
dimensional Euclidean space.

Cubic invariants in two dimensions have been studied before by several workers. In
Drach3 carried out the first systematic study of such systems. However, using null vari
without restricting them to be complex conjugate, Drach’s Hamiltonians were not constrain
be the sum of the Euclidean space kinetic energy and a real potential. This is probably w
results have not often been compared to those of more recent studies such as that of Holt in4

The most complete classification of two-dimensional systems admitting a cubic invariant, b
including the Drach systems, was later given by Hietarinta in 1987.5 Most workers have dealt with
arbitrary energy~strongly conserved! invariants, but fixed energy~weakly conserved! invariants
have also been investigated to some extent~cf. Ref. 5!. In this paper we use the Jacobi geome
zation method to represent the dynamics. That approach was used in Ref. 6 to give a
treatment of quadratic invariants at fixed and arbitrary energy. We will show that such a un
tion is possible also for systems with cubic second invariants.

The Jacobi formulation has the advantage of encoding the entire dynamics in a singl
metric object, the Jacobi metric. The system orbits are simply the geodesics of the Jacobi
etry. To analyze the system one can utilize all the mathematical and computer algebra
developed for Riemannian geometry. Other geometric methods which have been used fo
grable systems can be found, e.g., in Ref. 7. In particular we mention the projection meth

a!Electronic mail: max@physto.se
b!Electronic mail: kr@physto.se
3700022-2488/2000/41(1)/370/15/$17.00 © 2000 American Institute of Physics

                                                                                                                



he
nt the
ally a

uitable

ect on
tor of
illing

namical
se

i
s is a
ng
-
eneral
cubic
h due
lt’s

ns are
ss of
umber
r
wn
nown

which
such
of this
is and

clas-

c

erred
of this

a

371J. Math. Phys., Vol. 41, No. 1, January 2000 A unified treatment of cubic invariants at . . .

                    
Olshanetsky and Perelomov.8 That formulation, however, is fundamentally different from t
Jacobi geometrization. For example, the projection geometry itself is not sufficient to represe
dynamics. On the other hand, the projection geometry is designed to be very simple, typic
space of constant curvature. A drawback is that there is no general algorithm to find a s
projection.

A polynomial invariant of the geodesic equations corresponds to a single geometric obj
the configuration space, known as a Killing tensor. The vanishing of the Poisson commuta
the invariant and the Hamiltonian gives a set of conditions which are referred to as the K
tensor equations. Because of Noether’s theorem, such invariants correspond to certain dy
symmetries of the geodesic equations.9 When dealing with cubic invariants, in contrast to the ca
of quadratic invariants, it turns out to be very natural to use a Ka¨hler potential for the Jacob
metric. We find that the condition imposed on the geometry by the Killing tensor equation
nonlinear partial differential equation~PDE! in the Kähler potential, whereas the correspondi
condition for the second rank case is a linear PDE.6 Imposing the additional condition of invari
ance at arbitrary energy, the nonlinear PDE splits into a system of three equations which in g
is overdetermined. This accounts for the fact that only isolated cases of systems with a
invariant at arbitrary energy are known. Comparing this method with the more direct approac
to Holt,4,5 we find the two final sets of equations to be very different. In particular, while Ho
approach leads to a PDE whose nonlinearity has noa priori restriction, our nonlinear PDE is
always quadratic. Although our work therefore represents an improvement, the equatio
nevertheless complicated and, in practice, impossible to solve in full generality. The fruitfulne
our particular approach is in any case confirmed by the fact that we are able to present a n
of new results concerning systems which are superintegrable~i.e., admitting the maximal numbe
of independent invariants! at arbitrary energy. Furthermore, we obtain all previously kno
strongly conserved cubic invariants, and are thus able to give a unified classification of all k
cases.

In addition, we have also considered strongly conserved cubic invariants of a new type
correspond to Killing vectors rather than Killing tensors of rank three. The existence of
‘‘quasi-linear’’ invariants seems to be a new feature. One nontrivial superintegrable system
type is presented, and we also show how its potential via coupling constant metamorphos
coordinate translation is in fact dual to the harmonic oscillator potential.

II. JACOBI GEOMETRY AND KILLING TENSORS

The Jacobi geometrization procedure relies on the fact that given a Hamiltonian of the
sical type

H5T1V, T5 1
2h

abpapb , V5V~q!, ~1!

the orbits on a fixed energy surface H5E can be mapped onto geodesics of the Jacobi metri

gabª2~E2V!hab ~2!

on the fixed energy surface

HJª
1
2g

abpapb5 1
2, gagggb5db

a . ~3!

The mapping is achieved via the time reparametrizationt→tJ wheredtJ52(E2V)dt. Thus the
HamiltoniansH andHJ represent the same system but in two different time gauges, often ref
to as the physical and the Jacobi time gauge, respectively. For a less sketchy discussion
time reparametrization, the reader is referred to Ref. 6.

As will be made clear below, a physical polynomial invariantI always corresponds to
geodesic invariantI J which is ahomogeneouspolynomial:
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I J5Km1¯mmpm1
¯pmm

, ~4!

whereKm1¯mm is a symmetric tensor on the configuration space, with the tensor rankm in general
being the same as the polynomial degree ofI. For the case whenI is cubic, the correspondenc
betweenI andI J will be given explicitly in Sec. III, and the method used there can also be app
to polynomial invariants of any other degree. The equation of motion$I J ,HJ%50 can readily be
shown to be equivalent to the covariant equation

K ~m i¯mm ;mm11!50, ~5!

where the parenthesis denotes symmetrization, the semi-colon denotes covariant derivati
gab and the indices ofKm1¯mm are lowered usinggab . This is the Killing tensor equation and
solutionKm1¯mm

is known as a Killing tensor of rankm. A closely related geometric object is
conformal Killing tensor, a symmetric tensorPm1¯mm

for which Pm1¯mmpm1
¯pmm

in general is
invariant for null geodesics only. Since this is nontrivial only for the trace-free part of any te
a conformal Killing tensor is usually taken to be trace-free from the outset. The conformal K
tensor equation then takes the form

P~m1¯mm ;mm11!5m@2~m21!1n#21g~m1m2
Pm3¯mm11);n

n , ~6!

wheren is the dimension of the configuration space. In particular, the trace-free part of any K
tensor is a conformal Killing tensor satisfying this equation.

In this work we focus on the classical two-dimensional Hamiltonians which can be writte

H5 1
2~px

21py
2!1V~x,y!. ~7!

The associated Jacobi geometry is given by the line element

ds252G~dx21dy2!52Gdzdz̄, G5E2V, ~8!

where we have introduced the complex conjugate null variablesz5x1 iy , z̄5x2 iy , which are
convenient to use as they are adapted to the action of the conformal group. This will ma
conformal Killing tensor equation~6! maximally simplified. Furthermore, all tensor calculatio

will be done in the standard null frameV05G1/2dz, V 0̄5G1/2dz̄ in which the metric takes the

simplest possible formds252dV0dV 0̄. We use the convention that tensor indices in this fra
take the values 0 and 0,̄ while in any coordinate frame the values will be the names of
coordinates~e.g.,z and z̄!.

III. MAPPING INVARIANTS BETWEEN THE PHYSICAL AND THE JACOBI TIME GAUGE

We consider a Hamiltonian of the type~1!, admitting a cubic invariantI at least on some fixed
energy surfaceH5E and possibly at arbitrary energy. The invariant can without restriction
assumed to have the form

I 5Aabgpapbpg1Bapa , ~9!

since an additional term that is even in the momenta must Poisson commute separately with
see how the invariant transforms when going to the Jacobi time gauge, we perform the
reparametrization by using the method of coupling constant metamorphosis.10 To this end we wish
to introduce a coupling constantk into the Hamiltonian by rescaling the potential according
V→2kV. To see how this rescaling affects the invariant, it is useful to implement it in two s
which both trivially preserve Poisson commutativity although they are in fact noncanonical t
formations. The first step is to rescale the momenta according topa→l21pa which gives
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H→l22T1V,

I→l23Aabgpapbpg1l21Bapa , ~10!

$ , %→l$ , %,

where$ , % is the Poisson bracket. By the bilinearity of the Poisson bracket, we are also fr
rescale the commuting functionsH andI themselves. The second step is to setk5 1

2l
2 and use this

rescaling freedom to redefineH and I according to

H̃ªl2H5T12kV, ~11!

Ĩªl3I 5Aabgpapbpg12kBapa , ~12!

which gives the desired rescaling ofV. We could, of course, have definedĨ using any scaling
factor, butl3 will turn out to be the natural general choice. As in Ref. 11, to obtain the Ja
Hamiltonian when solving a fixed energy constraint fork, we must hold on to the interpretation o
the parameterE as the energy value of the original HamiltonianH5T1V, thus making 2kE the
corresponding energy value of the rescaled HamiltonianH̃. SolvingH̃52kE for k then results in

k5@2~E2V!#21T5HJ, ~13!

where we have used the standard definition of the Jacobi HamiltonianHJ associated with the fixed
energy surface of the original HamiltonianH5T1V. Thus we find that a coupling constan
metamorphosis acting onk is equivalent to a transformation to Jacobi time. However, as note
Ref. 11, this is not a coupling constant metamorphosis in the true sense, as the old energyE does
not enter linearly into the new HamiltonianHJ. Nevertheless, the results of Ref. 10 still app
which means that the physical invariantI and Jacobi invariantI J , Poisson commuting withH and
HJ, respectively, are transformed into each other according to

I J5 Ĩ uk→HJ
, I 5I JuE→H . ~14!

Hence the Jacobi invariant corresponding to the physical invariant~9! is

I J5Aabgpapbpg12HJB
apa5Kabgpapbpg , Kabg

ªAabg1B~agbg, ~15!

wheregab is the inverse of the Jacobi metricgabª2(E2V)hab . It follows directly thatKabg is
a third-rank Killing tensor wrt the Jacobi metric. Thus we see that a cubic invariant of the form~9!
can always be mapped to such a Killing tensor. However, there might, in fact, be cases wh
invariant~15! is reducible and for which a nontrivial cubic invariant more naturally correspond
a Killing vector, rather then a third-rank Killing tensor. By applying the transformation re
~14!, one realizes that for this to happen, the cubic invariant~9! must be of the form

I 5HCapa1Dapa , ~16!

for some vectorsCa,Da. This is clearly the same as saying that the tensorAabg has a vanishing
traceless part. Now, if after takingpa→l21pa we would have defined the rescaled invariant~16!

according toĨªlI instead ofĨ →l3I as was done in Eq.~12!, the corresponding Jacobi invarian
would simply become

I J5japa , ja5ECa1Da, ~17!

from which it follows directly thatja is a Killing vector wrt the Jacobi metric. In Sec. VI we giv
an example of a Hamiltonian which has a nontrivial cubic invariant of the type~16!.
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IV. CUBIC INVARIANTS CORRESPONDING TO THIRD-RANK KILLING TENSORS

In this section we begin by deriving a necessary and sufficient integrability condition fo
Jacobi metric to admit a third-rank Killing tensor at a fixed value of the energy parameterE. In the
next section we proceed by finding the conditions that ensure that the Killing tensor equation
be satisfied at arbitrary energy values, but with attention restricted to the case when the
dependence of the Killing tensor is such that the corresponding invariant of the physical H
tonian is cubic. In analogy with the second-rank case6 as well as the third-rank case with indefini
metric,12 our Killing tensorKabg will from the outset be decomposed into its trace-free~confor-
mal! part Pabg and traceKaªKba

b according to

Kabg5Pabg13~n12!21K ~agbg) , ~18!

wheren is the dimension of the configuration space, i.e.,n52 in our case. Similarly the Killing
tensor equation itself,K (abg;d)50, will be split into its three trace-free ‘‘components,’’ namely i
trace-free part, the trace-free part of its trace, and the trace of its trace, which read

CabgdªP~abg;d!23~n14!21g~abPgd);l
l 50, ~19!

DabªK ~a;b!1~n12!~n14!21Pab;g
g 50, ~20!

K ;a
a 50, ~21!

where the trace of Eq.~20! is automatically satisfied once the divergence-free condition~21! for
Ka has been solved. Just as in the case of an indefinite metric,12 it is advantageous to use th
coordinate frame components ofKa andPabg ~note the index positioning! when parametrizing the
four independent components ofKabg . The parametrization thus becomes

K0005G3/2Pz̄z̄z̄,

K 0̄0̄0̄5G3/2Pzzz,
~22!

K000̄5
1
2G

21/2Kz ,

K00̄0̄5 1
2G

21/2Kz̄ ,

The calculations leading to the integrability condition imposed on the Jacobi metric are anal
to the indefinite case.12 An important difference, however, is the fact that the null variablesz and
z̄ here are complex conjugate. Demanding that the potentialV ~and thereby the Jacobi metric! be
real implies that there is no restriction in assuming that the Killing tensorKabg be real as well.
This in turn leads to the component constraints thatKz̄ andPz̄z̄z̄ be the complex conjugates ofKz

andPzzz, respectively. In the indefinite case, on the other hand, the reality condition for the K
tensor requires that the corresponding four components be real, but implies no other r
between them.

We now proceed by solving the two equations~19! and~21!, leaving~20!—the only equation
which couples the conformal and trace parts of the Killing tensor—for later consideration.

The conformal Killing tensor equation~19! for Pabg has the components

C00005C0̄0̄0̄0̄5GP,z̄
zzz50. ~23!

Hence Pabg can be fully represented in terms of an analytic functionS(z)ªPzzz. We shall
assumeS(z)Þ0 to be the case, since otherwise Eq.~20! implies thatKa is a Killing vector. The
divergence free condition~21! for Ka ,

K ;a
a 52G21 Re$Kz,z̄%50, ~24!
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is just as easily solved by introducing a real potential functionF satisfyingKz52iF ,z , with the
factor 2 inserted for later convenience. This potential relation can also be expressed covaria

terms of the natural volume two-formeab5 i (V0`V 0̄)ab as

Ka52ea
bF ;b , ~25!

provided thatF transforms as a scalar. We can now write Eq.~20! in the form

Dab52F ;g~aeb!
g1 2

3Pab;g
g 50. ~26!

Its components,

D005D 0̄0̄522i S F ,z̄

G D
,z̄

1
2

3
G22~G3S! ,z50, ~27!

can in analogy with the procedure used in Ref. 12 be simplified by using a conformal tra
mation to a new complex null variablew5H(z), with the inverse relation beingz5F(w). The
metric will then be given in terms of the new conformal factorG̃5uF8(w)u2G as ds2

52G̃dwdw̄. To preserve the relation between the standard null frame and the null variabl

frame must be scaled asṼ05BV0, Ṽ 0̄5B21V 0̄ whereB215B̄5@F8(w)/F̄(w̄)#1/2. The analytic
function S(z) transforms as

S̃~v!ªPwww5@H8~z!#3Pzzz5@H8~z!#3S~z!. ~28!

This shows that we can always makeS̃(w) take the standard constant value 1 by choosing
conformal transformation such thatH8(z)5@S(z)#21/3. With this choice, Eq.~27! simplifies to

D̃005D̃ 0̄0̄522i S F ,w̄

G̃
D

,w̄

12G̃,w50. ~29!

Comparing this equation with its complex conjugate leads directly to the integrability condi

ReH S F ,w

G̃
D

,ww

J 50, ~30!

which is satisfied iffF andG̃ are related by some real functionK according to

F ,w5 iG̃K,w̄w̄ . ~31!

Substituting this back into Eq.~29! yields

G̃,w5K,www̄ . ~32!

In fact, asK is determined only up to the transformationK→K1Aww̄1Re$L(w)%, whereA is a
real constant andL(w) is an analytic function, we can partially fix this freedom by requiring t
the relation

G̃5K,ww̄ ~33!
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holds, meaning thatK becomes a Ka¨hler potential13 for the Jacobi metric. As such,K transforms
as a scalar under conformal transformations. Hence forany null variablez, the metric conformal
factor G is related toK according to the simple formulaK,zz̄5G. Substituting Eq.~33! into Eq.
~31! now leads to the final integrability condition

Re$~K,ww̄K,ww! ,w%50, ~34!

which is necessary and sufficient for the existence of a third-rank Killing tensor. In contrast
first- and second-rank cases,6 we are here dealing with a nonlinear condition imposed on
metric. It can be noted that a condition which is formally identical to Eq.~34! also applies to one
of the three different types of third-rank Killing tensors that are allowed when the metric
indefinite signature.12 The interested reader can consult that reference for a number of nont
solutions. Moreover, the same condition can be found in Ref. 5, but not in the context o
geometric approach of this work in which the unknown function can be interpreted as a K¨hler
potential.

Going back to the original null variablez, Eq. ~31! now takes the form

F ,z5 iK,zz̄~S̄K,z̄z̄1
1
3S̄8K,z̄!, ~35!

with the corresponding integrability condition

Re$@K,zz̄~SK,zz1
1
3S8K,z!# ,z%50. ~36!

The cubic Jacobi invariantI J5Kabgpapbpg can now, via Eq.~35! andG5K,zz̄, be written down
as

I J52 Re$Spz
32~3SK,zz1S8K,z!HJpz%, HJ5K,zz̄

21pzpz̄ . ~37!

Expressed in the standardized null variablew, this simplifies to

I J52 Re$pw
3 23K,wwHJpw%, HJ5K,ww̄

21 pwpw̄ . ~38!

Note that up to conformal transformations, the Jacobi Hamiltonian and its cubic invaria
completely determined byK.

V. ARBITRARY ENERGY INVARIANTS

So far we have derived the necessary and sufficient condition@Eq. ~34! or ~36!# for a two-
dimensional Riemannian geometry to admit a third-rank Killing tensor. Given that this cond
is satisfied, we can use any null variablez and identify the associated metric conformal fac
G5K,zz̄ with E2V for a flat space HamiltonianH52pzpz̄1V which is integrable with cubic
invariant at fixed energyE. Thus we can choose to interpret the geometry as a common J
geometry of a large family of such flat space Hamiltonians, whose members are relat
conformal transformations. Now, however, we shall make the identificationK,zz̄5E2V for a
particular null variablez and derive the additional conditions that make the Killing tensor eq
tions satisfied for all values ofE, corresponding toH52pzpz̄1V being integrable at arbitrary
energy. To this end we begin by noting that we can write the Ka¨hler potential as

K5Ezz̄12 Re$u~E,z!%2C, ~39!

whereu(E,z) is analytic inz, and can be assumed to satisfyu(0,z)50, whereasC is real, satisfies
C ,zz̄5V, and is independent ofE. It appears at first sight thatu(E,z) in principle could have any
dependence onE, which would make it very difficult to continue working in full generality
Similarly, it seems possible that the functionS(z) could also have some dependence onE. How-
ever, if we apply the recipe that the Jacobi invariantI J is transformed to the physical time gaug
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according toI 5I JuE→H , it follows from Eqs.~36! and ~37! that I becomes a cubic polynomia
invariant iff S(z) is independent ofE and no restriction is implied by settingu(E,z)5EL(z) for
some analytic functionL(z) which is also independent ofE. Since this paper is devoted to cub
invariants, we shall use this fact from the outset. Our physical cubic invariantI then has the
general form

I 5Re$2Spz
322@S8~ z̄1L8!13SL9#pz

2pz̄1@S8~C ,z2~ z̄1L8!C ,zz̄!13S~C ,zz2L9C ,zz̄!#pz%.

~40!

If we now substitute

K5E@zz̄12 Re$L~z!%#2C ~41!

into Eq. ~36!, the condition becomes a second degree polynomial inE:

A2E21A1E1A050, ~42!

where the coefficientsAi must vanish separately if the equation is to hold for arbitraryE. This
gives the three equations

A25Re$@S8~ z̄1L8!13SL9# ,z%50, ~43!

A152Re$@S8~~ z̄1L8!C ,zz̄1C ,z!13S~L9C ,zz̄1C ,zz!# ,z%50, ~44!

A05Re$@C ,zz̄~S8C ,z13SC ,zz!# ,z%50. ~45!

By applying the differential operator]2/]z] z̄ to Eq. ~43!, we split off the condition

Re$S-~z!%50, ~46!

with the polynomial solution

S~z!5 iaz31bz21gz1d, ~47!

where a is a real constant andb, g, and d are complex constants. A standardization of the
coefficients can be achieved by using the transformation property ofS(z) given by Eq.~28!,
combined with the freedom to make translationsz→z1z0 , rotationsz→eibz, and scalingsz
→cz, with b andc real. Comparing with the first- and second-rank cases6 leads us to conjecture
that the analytic functionS(z) representing the conformal part of a Killing tensor of arbitrary ra
m is required to satisfy

ReH S d

dzD
m

S~z!J 50 ~m odd!,

~48!

Im H S d

dzD
m

S~z!J 50 ~m even!.

However, we make no attempt to prove this. For any choice of coefficientsa, b, g, andd, Eq.~43!
is a linear ordinary differential equation~ODE! in L(z) which can be solved by standard method
Once this first equation has been taken care of, Eqs.~44! and~45! are two PDEs for one unknown
function C, i.e., in general an overdetermined system. This is consistent with the fact that
isolated cases of classical Hamiltonians integrable with cubic invariant are known.5 The obvious
way to proceed is to try to find the general solution to the linear PDE~44! and then check if its
functional degrees of freedom can be exploited to make the nonlinear PDE~45! satisfied. As a
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simple illustration of this method, we start out from the simplest possible solution to Eq.~43!,
namelya5b5g5L(z)50, d5d with d real. In terms of the real variablesx andy which satisfy
z5x1 iy , the linear condition~44! in this case becomes

C ,xxx23C ,xyy50. ~49!

Writing down the general solution as

C5 f 1~y1)x!1 f 2~y2)x!1 f 3~22y!, ~50!

the nonlinear condition~45! takes the cyclic form

F18~F22F3!1F28~F32F1!1F38~F12F2!50, ~51!

whereFi5 f i9 so that

V5F1~y1)x!1F2~y2)x!1F3~22y!. ~52!

The functional condition~51! is well known from Lax pair studies5,14 and arises for a three
particle Hamiltonian of the generic form

H5 1
2~p1

21p2
21p3

2!1F1~q32q2!1F2~q12q3!1F3~q22q1!, ~53!

which can be reduced to our two-dimensional Hamiltonian withV given by Eq.~52! by going to
the center-of-mass system and making a rescaling of the coordinates.5 Its solutions include the
Toda potentialFi(j)5Cie

bj and alsoFi(j)5CP(bj), where the Weierstrass functionP~j! can
be taken in the special limitsP(j)→j22, P(j)→sinh22 j andP(j)→sin22 j. The cubic invariant
of a system of this type can be found in Table I.

In more general cases, the linear PDE~44! is not as easily solved. Failing to work in fu
generality, we have restricted attention to the special cases whereS(z) is a homogeneous poly
nomial, i.e., we have set all but one of the constantsa, b, g, andd to zero. Furthermore, for all ou
solutions, whether previously known or not, it has turned out thatL(z)5lz2 for some complex
constantl. Thus the coefficientzz̄12 Re$L(z)% of E in the Kähler potential~41! is always a
Hermitian form inz ~or equivalently, a real quadratic form inx andy!. However, we stress tha
solutions of other types may very well exist. With bothS(z) andzz̄12 Re$L(z)% being homoge-
neous functions ofz, z̄, it is very natural to make the ansatz thatC is homogeneous as well. T
this end one can, e.g., introduce polar coordinatesr, f according to z5reif and set C
5r kf (f), wherek is a real constant andf (f) is an arbitrary real function. This form ofC gives
a Jacobi metric

ds252~E2V!~dr21r 2df2!, V5 1
4r

k22@k2f ~f!1 f 9~f!# ~54!

which, at zero energy~all energies iffk52!, admits a homothetic vector fieldz52k21r ]/]r ,
satisfyingLzgab52gab . The advantage of this ansatz is that Eqs.~44! and~45! become ODEs in
f (f), parametrized byk. Several of our solutions, some of which are new, were found using
approach. However, it is worth mentioning that in some cases the ODEs become simpler in
coordinates~such asj5z, h5 z̄/z! which are also adapted to the homogeneous ansatz.

VI. CUBIC INVARIANTS CORRESPONDING TO KILLING VECTORS

In this section we look for geometries admitting a Killing vectorja corresponding to a cubic
invariant by the mechanism discussed in Sec. III. If we parametrize the Killing vector byjz and
its complex conjugate, the trace-free part of the Killing vector equationsj (a;b)50 ~i.e., the
conformal Killing vector equations! becomes

j~0;0!5j~ 0̄;0̄!5j ,z̄
z 50, ~55!
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which is solved by settingjz5Z(z) with Z(z) analytic. The linear Jacobi invariant thus takes t
form I J5japa52 Re$Z(z)pz%. The trace part of the Killing vector equations becomes

j ;a
a 52G21 Re$~SG! ,z%50. ~56!

Under conformal transformations,S(z) transforms according to

Z̃~w!ªjw5H8~z!jz5H8~z!Z~z!. ~57!

Hence we obtainZ̃(w)51 by choosing the transformation so thatH8(z)5@Z(z)#21, which makes
Eq. ~56! take the standardized form

Re$G̃,w%50. ~58!

TABLE I. Systems for whichS(z) is of the zeroth degree.

S(z)54
K5E(x21y2)2 f 1(y1)x)2 f 2(y2)x)2 f 3(22y),
Fi(j)ª f i9(j)P$ej,P(j), j22,sinh22 j, sin22 j%
V5F1(y1)x)1F2(y2)x)1F3(22y)
I 5px

323pxpy
213@F1(y1)x)1F2(y2)x)22F3(22y)#px

13)@2F1(y1)x)1F2(y2)x)#py

Fi(j)5j22 is superintegrable, case~2!

S(z)511 i

K5E(x2y)22
16
15(x5/26y5/2)

V5Ax6Ay
I 5px

32py
313(Axpx7Aypy)

Superintegrable, case~7!

S(z)51

K52Ey22
16
15x5/222d21xy2

2
3dy3

V5Ax1dy

I 5px
313Axpx2

3
2d21py

Superintegrable, case~7!

S(z)521

K5
2
3E(2x21y2)2

1
9(8x4124x2y22y4)14d lnuyu

V54x21y21dy22 ~Refs. 3 and 4!.
I 5pxpy

212(2y21dy22)px18xypy

Superintegrable, cases~4! and ~7!

S(z)521

K5
2
3E(2x21y2)2

2
3(

2
3x31xy2)14d lnuyu

V5x1dy22 ~Ref. 3, can be linearly combined with the potential above!
I 5pxpy

212dy22px1ypy

Superintegrable, cases~4! and ~7!

S(z)521

K52E(2x22y2)1
27
14y10/329(x21d)y4/3

V5
3
4y4/31(x21d)y22/3 ~Refs. 3 and 4!

I 52px
313pxpy

213@23y4/312(x21d)y22/3#px

118xy1/3py

S(z)521
K52E(2x22y2)29xy24/3

V5xy22/3 ~Ref. 3, can be linearly combined with the potential above!
I 52px

313pxpy
216xy22/3px19y1/3py
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It follows that G̃ is a function ofY5Im w only, which is consistent with the invariant beingI J

52pX, X5Rew.
We now fix a null variablez for which we setG5E2V and focus on trying to make th

Killing vector equations hold for arbitrary energyE, for the case that the Killing vector corre
sponds to a cubic physical invariant. According to Eq.~17! we must allow forZ(z) to have a
linear dependence onE:

Z~z!→Z~E,z!5Z1~z!E1Z0~z!, ~59!

where we have setZ1(z)5Cz and Z0(z)5Dz. This leads to the physical invariant taking th
general form

I 52 Re$~Z1H1Z0!pz%, H52pzpz̄1V. ~60!

Substituting Eq.~59! into Eq. ~56! yields

1
2 Re$~ZG! ,z%5B2E21B1E1B050, ~61!

giving us the three equations

B25Re$Z18%50, ~62!

B15Re$~Z02Z1V! ,z%50, ~63!

B052Re$~Z0V! ,z%50. ~64!

The solution to Eq.~62! reads

Z1~z!5 iaz1b, ~65!

TABLE II. Systems for whichS(z) is of the first degree.

S(z)52 iz

K5
1
2E(3x21y2)2

27
10x42

9
5x2y22

1
30y4

V59x21y2 ~Ref. 15!

I 5(xpy2ypx)py
21

2
3y3px26xy2py

Superintegrable, case~7!

S(z)52z

K5E(x21y2)2
1
5A(x414x2y21y4)14(B ln uxu1C ln uyu)

V5A(x21y2)1Bx221Cy22 ~Ref. 3!
I 5(xpy2ypx)(pxpy12Axy)22Byx22py12Cxy22px

Superintegrable, cases~2! and ~7!

S(z)52iz
K5Er226$sin(2f/3)* cos(2f/3)@cos(2f)#22/3df

2cos(2f/3)* sin(2f/3)@cos(2f)#22/3df%r 2/3

V5(x22y2)22/3 ~Ref. 15!
I 5(xpy2ypx)(px

22py
2)24(ypx1xpy)(x

22y2)22/3

S(z)52iz

K5E(x21y2)2
1

10A(3x412x2y213y4)

2
1
2B ln u(x1y)(x2y)21u1C ln ux22y2u

V5A(x21y2)1@Bxy1C(x21y2)#(x22y2)22

I 5(xpy2ypx)(px
22py

2)12A(xpy2ypx)(x
22y2)

2@x(x213y2)(Bpx12Cpy)1y(3x21y2)(2Cpx1Bpy)#(x22y2)22

Superintegrable, case~2!
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wherea is a real constant andb is a complex constant. This gives us two inequivalent case
study since we can make a linear transformation such that eitherZ1(z)→1 or Z1(z)→ iz depend-
ing on whethera is zero or nonzero. We consider these two cases in some detail below.

A. The case Z1„z…51

In this case Eq.~63! takes the form

Re$Z082V,z%50, ~66!

with the general solution given by

V5Z0~z!1Z̄0~ z̄!1F~y!, y5Im z, ~67!

Here F(y) is an arbitrary real function. The final condition~64! now becomes the functiona
equation

Re$@Z0~Z01Z̄01F !# ,z%5S Z01
1

2
Z̄01

1

2
F D Z̄081S Z̄01

1

2
Z01

1

2
F D Z̄082

i

4
~Z02Z̄0!F850.

~68!

We have found no nontrivial solution to this equation.

B. The case Z1„z…5 iz

Here Eq.~44! reads

Re$Z082 izV,z%50, ~69!

and is solved by

V5 i S 2E Z08

z
dz1E Z̄08

z̄
dz̄D 1F~r !, r 5Azz̄, ~70!

TABLE III. Systems for whichS(z) is of the second degree.

S(z)52z2

K5
2
5E(2x213y2)24@Ar2B ln (r1x)2C ln (r2z)#

V5@A1B(r 1x)211C(r 2x)21#r 21

I 5(xpy2ypx)
2px12(B1C)@11(x/y)2#px

1$2Ay(xpy2ypx)1(C2B)(@2(x/y)213#xpx1ypy)%r
21

Superintegrable, cases~2! and ~4!

S(z)52z2

K5E@12
1
5 cos (2f)#r224(*f(f)df2C ln r),

condition: @3 f 9 f 822 f 8 f 2C f9#sinf1@f9f14(f8)222Cf8# cosf50
V5 f 8(f)r 22

I 5pf
2 (cosfpr2sinfr21pf)1@2 f8(f) cosf2f(f) sinf#pr

2@3f8(f) sinf1f(f) cosf#r21pf

Superintegrable, case~2!

S(z)52z2

K5
2
5E(2x213y2)24(Ar1b lnuy(r2x)21u2C lnuyu) ~special case of the

above whenA50!
V5Ar211(Bxr211C)y22 ~Ref. 3!
I 5(xpy2ypx)

2px2A(xpy2ypx)yr21

1@B(2x213y2)xr2112Cr2#y22px1Byr21py

Superintegrable, case~2!
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with F(r ) being an arbitrary real function. The integrals can be avoided by introducing an an
function Q(z) satisfying

Z05 i ~zQ82Q!. ~71!

We can then write the potential as

V5Q8~z!1Q̄8~ z̄!1F~r !, ~72!

which makes Eq.~64! become

Im $@~zQ82Q!~Q81Q̄81F !# ,z%5
1

2i
~2zQ82Q1zQ̄81zF!Q92

1

2i
~2z̄Q̄82Q̄1 z̄Q81 z̄F !Q̄9

1
1

4i
~rQ82rQ̄82 z̄Q/r 1zQ̄/r !F850. ~73!

This functional equation has at least one nontrivial solution, given byQ(z)5aAz, F(r )5Ar21

with a complex andA real. Writinga5&(B1 iC), the potential becomes

V5
A1BAr 1x1CAr 2x

r
. ~74!

This potential was given in complex form by Drach.3 We also note that the potential also adm
a quadratic invariant5 and is therefore now superintegrable.@The cubic invariant of the system
given by Eq.~60!, is presented in Table V.# What is interesting about this result is that it gives
new way of solving Hamilton’s equations for the system, even in the physical time ga
Namely, for any fixed energyE, one can choose coordinates such that the cubic invariantI reduces
to the momentapQ of a configuration coordinateQ that becomes cyclic in the Hamiltonian for th
particular energy value. In other words, the equations of motion can be solved just as in th
of an ordinary linear invariant, but the coordinate transformation which makesQ cyclic is depen-
dent on the energyE. In the geometric picture, one obtains a cyclic variable by the abo
described conformal transformation which makes the metric conformal factor satisfy Eq.~58!.

Quite surprisingly, we soon realized that this potential via coupling constant metamorp
acting onA is dual to the usual~isotropic! harmonic oscillator potential, with its center in gene
translated off the coordinate origin. This coupling constant metamorphosis can be realize
conformal transformation in the Jacobi geometry setting. Choosing the transformationz
5F(w)5w2, the metric conformal factorG5E2V, with V given by Eq.~74!, transforms into

G̃5uF8u2G5Ẽ2Ṽ, Ṽ5Ã~X21Y2!1B̃X1C̃Y, ~75!

TABLE IV. Systems for whichS(z) is of the third degree.

S(z)52 iz3

K5Er224 f (f)r 21, condition: f- f 922 f 9 f 823 f 8 f 50
V5@ f (f)1 f 9(f)#r 23 ~compare with Ref. 16!
I 5pf

3 13@ f 8(f)pr1 f 9(f)r 21pf#

S(z)52 iz3

K5Er22A@(ln r)21f2#2(Be)f1Ce2)f)r21 ~special case of the above
whenA50!

V5Ar221(Be)f1Ce2)f)r 23 ~Refs. 3 and 5!

I5pf
31

3)

4
~Be)f2Ce2)f!pr1

3
4@2A13~Be)f1Ce2)f!r21#pf
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whereX5Rew, Y5Im w, Ẽ524A, Ã524E, B̃54&B, andC̃54&C. We have assumed tha
X andY are both positive to avoid keeping track of signs. It follows thatṼ can be interpreted a
a potential which is integrable at arbitrary energyẼ. Obviously this Ṽ is just the translated
harmonic oscillator potential.

The analytic functionZ(E,z)5 i @Ez2221/2(B1 iC)Az#, on the other hand, transforms a
cording to Eq.~57! into

Z̃~w!52
i

16
~2Ãw1B̃1 iC̃ !. ~76!

SinceZ̃(w) is independent of the new energyẼ, the invariant is the same in both time gauges a
reads

I 5I J5 1
16@~2ÃY1C̃!pX2~2ÃX1B̃!py#, ~77!

where, of course, the factor116 could be dropped by rescalingZ̃(w). Clearly I is the ordinary,
well-known linear invariant for the system.5

VII. CLASSIFICATION OF HAMILTONIANS ADMITTING A CUBIC INVARIANT AT
ARBITRARY ENERGY

In this section we present our nontrivial solutions to the equations~43!–~45! and ~62!–~64!.
For the third-rank Killing tensor cases the solutions can be fully represented by the an
functionS(z) and the Ka¨hler potentialK. The solutions are given in four tables~Tables I–IV!, one
for each possible degree of the polynomialS(z). For the single Killing vector case, the analyt
function Z(E,z) and the potentialV give all the information. This solution is given in Table V

For all cases we will present the potentialV ~up to linear transformations of the coordinat
and a rescaling of the potential itself! as well as the physical cubic invariantI, thereby making it
possible to directly compare our results with Hietarinta’s classification of 1982.5 A real scaling of
S(z) or Z(E,z) only results in an irrelevant scaling of the invariantI by the same factor. Accord
ingly, this freedom will be fixed such thatI takes a convenient form.

For the cases which are superintegrable with both quadratic and cubic invariant we
indicate, using the notation of Ref. 5, which of the real quadratic cases~1!, ~2!, ~4!, or ~7! a given
system belongs to.

VIII. COMMENTS

We have shown that cubic invariants at fixed and arbitrary energy can be treated in a u
manner by using the Jacobi geometrization method. Most strongly conserved cubic invaria
nontrivially cubic in our geometric picture, but we also found a mechanism by which a new
of cubic invariant can instead correspond to a family of linear invariants parametrized b
energy. It is then possible to obtain a cyclic variable by making a standardizing conformal
formation which is energy dependent. A natural first extension of this result could be to inves
if the same mechanism can be explored to find nontrivial quartic invariants which analog
correspond to quadratic invariants standardized by means of energy-dependent conforma
formations. This is particularly interesting considering that the standardizing conformal tran

TABLE V. A system with a cubic invariant corresponding to a Killing
vector.

Z(E,z)5 i @Ez2221/2(B1 iC)Az#
V5(A1BAr 1x1CAr 2x)r 21 ~Ref. 3!

I 5(xpy2ypx)H1
1
2@(BAr 2x1CAr 1x)px1(2BAr 1x1CAr 2x)py#

Superintegrable, case~4!
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mations in the quadratic case are associated with explicit Hamiltonian separability.6 Compare also
recent work by Rauch-Wojciechowski and Tsiganov17 who gave some examples of nonstanda
separability. In fact, they considered a more general situation with the separating transform
involving the second invariant itself in addition to the energy.

It would also be of interest to apply the method used in this paper to the usual type of q
invariants which does not reduce to quadratic invariants when fixing the energy. In Ref. 18
shown that the integrability condition for fourth-rank Killing tensors is of the same nonlinear
as in the third-rank case. Thus it should be possible to impose the arbitrary energy condition
the approach adopted in the present work.
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Integrable hierarchies associated with the singular sector of the Kadomtsev–
Petviashvili~KP! hierarchy, or equivalently, with]̄ operators of nonzero index are
studied. They arise as the restriction of the standard KP hierarchy to submanifolds
of finite codimension in the space of independent variables. For higher]̄ index
these hierarchies represent themselves as families of multidimensional equations
with multidimensional constraints. The]̄-dressing method is used to construct these
hierarchies. Hidden Korteweg–de Vries, Boussinesq, and hidden Gelfand–Dikii
hierarchies are considered, too. ©2000 American Institute of Physics.
@S0022-2488~99!02812-1#

I. INTRODUCTION

It is well established now that the Kadomtsev–Petviashvili~KP! hierarchy is the key ingre-
dient in a number of remarkable nonlinear problems, both in physics and mathematics~see, e.g.,
Refs. 1–4!. In physics, its applications range from the shallow water waves~see Refs. 1–4! to the
modern string theory~see, e.g., Refs. 5–8!. Resolution of the famous Schottky problem is one
the most impressive manifestations of the KP hierarchy in pure mathematics.9 Several methods
have been developed to describe and analyze the KP hierarchy and other integrable hierarc

instance, the inverse scattering transform method,1–4 Grassmannian approach,10–13 or ]̄-dressing
method.14–16,4,17These methods have arisen to study generic properties of the KP hierarch
other integrable equations. In particular, the construction of everywhere regular solutions o
grable systems~solitons, lumps, dromions, etc.!, which may have applications in physics, was
main interest.

Much less attention was paid to singular solutions of integrable equations. Pole-type so
of the Korteweg–de Vries~KdV! equation have been known for a long time. However, interes
this class of solutions increased only when it was shown that the motion of poles for the
equation is governed by the Calogero–Moser model.18,19 Similar results for rational singula
solutions of the KP equation have been obtained in Ref. 20. The general study of generic
larity manifolds began with the formulation of the Painleve´ analysis method for partial differentia
equations in Refs. 21 and 22. The structure of generic singularities of integrable equation
out to be connected with all their remarkable properties~Lax pairs, Backlund-transformations
etc.! ~see, e.g., Refs. 23 and 3!. Characteristic singular manifolds~i.e., singular manifolds with
additional constraints! have been discussed in Refs. 24–26.

A new method to analyze singular sectors of integrable equations has been proposed

a!Electronic mail: luis@ciruelo.fis.ucm.es
3850022-2488/2000/41(1)/385/29/$17.00 © 2000 American Institute of Physics
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27. It uses the Birkhoff decomposition of the Grassmannian, its relation with zero sets oft
function and its derivatives, and properties of Backlu¨nd transformations. This method provides
regular way to construct desingularized wave functions near the blow-up locus~Birkhoff strata!.
Note that the connection between the Painleve´ analysis and cell decomposition for the Toda latti
has been discussed in Ref. 28~see also Ref. 29!. Note also that the characteristic singular ma
folds considered in Refs. 24 and 26 correspond to the second Birkhoff stratum (t50, tx50).

A problem closely related to the study of these singular sectors is the following: A stan
KP ~and KdV! hierarchy flows in the so-called big cell of the Grassmannian~dense open subset o
the Grassmannian!. The Birkhoff strata are subsets with finite codimension. Are there any i
grable systems associated with the Birkhoff strata? A positive answer to this question ha
given recently in Ref. 30. It occurs that in the KdV case the corresponding integrable hiera
are connected to the Schro¨dinger equation with energy-dependent potential.

In the present paper we study integrable hierarchies associated with the singular secto
KP hierarchy. This sector consists of different Birkhoff strata or equivalently of different Schu
cells. The Schubert cells have finite dimension and are connected with the family of the Calo
Moser-type models which describe motion of poles. Here we will concentrate on integrabl
tems associated with Birkhoff strata. We show that they can be constructed by restrictin
standard KP hierarchy to submanifolds of finite codimension in the space of independen
ables. To build these hierarchies we will mainly use the]̄-dressing method. Integrable system
associated with Birkhoff strata are rather complicated as well as the corresponding linear
lems. They are of high order, though there are effectively 211 dimensional hierarchies. Fo
higher Birkhoff strata these integrable equations clearly demonstrate a sort of q
multidimensionality. We also discuss hidden Gelfand–Dikii hierarchies. Besides illustratin
simpler formulas some of the results of this work, we can in this case provide useful meth
construct solutions.

An important property of the hidden KP hierarchies is that they are associated with]̄ opera-
tors of nonzero index. This result is due to the interpretation of the Grassmannian as the sp
boundary conditions for the]̄ operator acting on the Hilbert space of square integrable functi
We prove that the codimension of Birkhoff strata coincides with the index of correspond]̄
operator up to sign.

We finish this introduction by describing the plan of the work. In Sec. II we recall some b
facts about the KP hierarchy. In Sec. II A we briefly present the]̄-dressing method. In Sec. II B w
review the Grassmannian and its stratification. The relation between singular sectors of t
hierarchy and]̄ operators of nonzero index is considered in Sec. II C. Section III is devoted t
construction of the hidden KP hierarchies. In Sec. III A the case index]̄521 is carefully ana-
lyzed. The case index]̄522 is studied in Sec. III B and the cases of index]̄523 and higher
indices are discussed in Sec. III C. Finally, hidden Gelfand–Dikii hierarchies are analyzed in
IV. We prove that under certain conditions the only hidden Gelfand–Dikii hierarchies are the
hidden hierarchy and the Boussinesq hidden hierarchy. The former is studied in Sec. IV
latter in Sec. IV B. A method of constructing solutions is developed in Sec. IV C.

II. THE STANDARD KP HIERARCHY AND SOME GENERAL METHODS

We start by recalling some basic facts about the KP hierarchy and some of the me
developed to its study. The KP hierarchy can be described in various ways~see, e.g., Refs. 1–8!.
The most compact form of it is given by the Lax equation

]L

]tn
5@~Ln!1 ,L#, n51,2,3,..., ~2.1!

where

L5]1u1]211u2]221u3]231¯ ~2.2!
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is the formal pseudodifferential operator,]5]/]t1 and (Ln)1 denotes the differential part ofLn.
Equation~2.1! is an infinite set of equations for scalar functionsu1 ,u2 ,u3 ,... . These equations
allow one to expressu2 ,u3 ,... viau1 and its derivatives with respects tot1 andt2 . As a result one
gets the usual form of the KP hierarchy given by

]u

]tn
5 f nS u,

]u

]t1
,

]u

]t2
,...,

]21u

]t1
,...D , n53,4,5,..., ~2.3!

whereu5u1 and f n are certain functions onu,]u/]t1 ,]u/]t2 ,...,]21u/]t1 ,... . Thesimplest of
these equations is

]u

]t3
5

]3u

]t1
3 16u

]u

]t1
13S ]

]t1
D 21 ]2u

]t2
2 . ~2.4!

Equation~2.1! arises as the compatibility condition of the linear equations

Lc5lc ~2.5!

and

]c

]tn
5~Ln!1c, n51,2,3,..., ~2.6!

wherec5c(t,l) is the wave function of the KP hierarchy,l is a complex parameter~spectral
parameter!, andt5(t1 ,t2 ,...,tn ,...)PC`. This wave function has the form

c5expS (
n51

`

lntnD x~ t,l!, ~2.7!

where

x~ t,l!511
x1~ t!

l
1

x2~ t!

l2 1¯ for large l. ~2.8!

The functionsc(t,l) and the adjoin wave functionc* (t,l) @solution of equations formally
adjoined to Eqs.~2.5! and ~2.6!# obey the famous Hirota bilinear equation

E
S`

dlc~ t,l!c* ~ t8,l!50 ~all t and t8!, ~2.9!

whereS` is a small circle aroundl5`.
Finally, the wave function is connected with thet function via

x~ t,l!5
t~ t2@l21# !

t~ t!
, ~2.10!

where@a#ª(a, 1
2a

2, 1
3a

3,...).

A. The ̄-dressing method

Now, we present a sketch of the]̄-dressing method~see, e.g., Refs. 14–16!. It is based on the
nonlocal]̄ problem:
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]x~ t,l,l̄ !

]l̄
5E E

G

dmLdm̄x~ t,m,m̄ !g~ t,m!R0~m,m̄,l,l̄ !g21~ t,l!, ~2.11!

where x is a scalar function,R0(m,m̄,l,l̄) is an arbitrary function, the bar means compl
conjugation,G is a domain inC, andg(t,m) is a certain function oft and the spectral paramete

It is assumed thatx is properly normalized@x ——→
l→l0

h(l0)# and Eq.~2.11! is uniquely solvable.
By virtue of the generalized Cauchy formula, the]̄ problem~2.11! is equivalent to a linear integra
equation. The form of this linear equation@and corresponding nonlinear equations, associated
~2.11!# is encoded in the dependence of the functiong on t. To extract these equations, w
introduce long derivatives

¹n5
]

]tn
1g21~ t,l!gtn

~ t,l!, ~2.12!

wheregtn
[]g /]tn . Then, we consider the Manakov ring of differential operators of the form

L5 (
n1 ,n2 ,...

un1n2n3¯
~ t!¹1

n1¹2
n2¹3

n3
¯ , ~2.13!

whereun1n2n3¯
(t) are scalar functions. In this ring we select thoseL which obey the conditions

FL,
]

]l̄
Gx50 ~2.14!

and Lx→0 as l→`. Condition ~2.14! means thatLx has no singularities inG. The unique
solvability of ~2.11! implies that for suchL one has

Lix50. ~2.15!

The set of equations~2.15! is known as the system of linear problems. Note that taking
account that (]/]tn)c5g¹nx, Eq. ~2.15! can be equivalently written as

Lic50, ~2.16!

where in operatorsLi one has to substitute¹n by ]/]tn . The compatibility conditions of~2.15! @or
~2.16!# are equivalent to nonlinear equations forun1n2n3¯

(t), which are solvable by the]̄-dressing
method. One has to select a basis among an infinite set of linear equations~2.15! @or ~2.16!#. If one
considers an infinite family of timestn(n51,2,3,...) one has an infinite basis of operatorsLi and,
consequently an infinite hierarchy of nonlinear integrable equation associated with~2.11!.

To get the standard KP hierarchy one can choose the canonical normalization ofx ~i.e., x
→11x1 /l1x2 /l21¯ asl→`) and put

g5expS (
n51

`

lntnD .

The long derivatives¹n are¹n5]/]tn1ln (n51,2,3,...) and the corresponding linear proble
take the form

Lnx5S ¹n2 (
k50

n

uk~ t!¹1
kD x50, ~2.17!
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or equivalently

]c

]tn
5 (

k50

n

uk~ t!
]kc

]t1
k , n51,2,3,..., ~2.18!

whereuk(t) are scalar functions. Equation~2.18! is just equation~2.6! and their compatibility
conditions are equivalent to the KP hierarchy in the usual form. The]̄-dressing method provide
a wide class of exact explicit solutions of the KP hierarchy which correspond to degen
kernelsR0(m,m̄,l,l̄) of the ]̄-problem~2.11! ~see Refs. 14–16, and 4!. It is worth realizing that
the ]̄ problem forc and the adjoin]̄ problem forc* (t,l) imply the Hirota bilinear identity~2.9!.

Note that in the KP case, the domainG is D05C2D` , whereD` is a small disk aroundl
5`(]D`5S`). In a similar manner, one can formulate the KP hierarchy if one choosesG such
that ]G5S ~S being the unit circle!.

B. Grassmannian and stratification

Next, we comment on some basic facts about the Grassmannian approach in relation
standard KP hierarchy. Following Refs. 8 and 27, we consider the Grassmannian Gr as the
linear subspacesW of formal Laurent series on the circleS` . That means thatW possesses an
algebraic basis

W5$w0~l!,w1~l!,w2~l!,...% ~2.19!

with the basis elements

wn~l!5 (
i 52`

sn

ail
i ~2.20!

of finite order. Heres0,s1,s2,¯ andsn5n for largen. It can be proved that Gr is a connecte
Banach manifold which exhibits a stratified structure.13,27To describe this structure one introduc
the setS0 of increasing sequences of integers

S5$s0 ,s1 ,s2 ,...%, ~2.21!

such thatsn5n for largen. One can associate to eachWPGr the set of integers

SW5$nPZ:'wPW of order n%PS0 .

On the other hand, givenSPS0 one may define the subset of Gr,

Ss5$WPGr:SW5S%, ~2.22!

which is called the Birkhoff stratum associated withS. The stratumSs is a submanifold of Gr of
finite codimensionl (S)5(n>0(n2sn). In particular, ifS5$0,1,2,3,...% the corresponding stratum
has codimension zero and it is a dense open subset of Gr which is called the principal stra
the big cell. Lower Birkhoff strata correspond toS5$s0 ,s1 ,s2 ,...% different from $0,1,2,3,...%.

The KP hierarchy wave functionc(t,l) ~2.7!, ~2.8! leads naturally to a familyW(t) in Gr.27

In order to see it we start by introducing (lPS`):

W5span$c~ t,l!, all t%. ~2.23!

Using ~2.6! and Taylor expansions, one gets

W5span$c,]1c,]1
2c,...%, ~2.24!
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where][]/]t1 . Now, the flow defined as

W~ t!ªexp~2Sk>1lntn!W,

can be characterized as

W~ t!5span$x~ t,l!,¹1x~ t,l!,¹1
2x~ t,l!,...%, ~2.25!

where¹15]/]t11l. Since¹1
nx5ln1O(ln21), one has

SW~ t!5$0,1,2,...%. ~2.26!

So the flowsW(t) generated by the standard KP hierarchy belong to the principal Birk
stratum.27,31 Then, it seems natural to wonder if there exist integrable structures associated
other Birkhoff strata. In this sense, only recently some progress has been made. In Ref. 30
shown that for the KdV hierarchy,~reduction of the KP hierarchy! evolutions associated with th
Birkhoff strata are given by integrable hierarchies arising from the Schro¨dinger equations with
energy dependent potentials. One of the main goals of the present paper is the study of int
structures associated with the full KP hierarchy outside the principal stratum.

C. ̄ operators of nonzero index and singular sector of KP

Finally, we propose a wider approach which reveals the connection of stratification o
Grassmannian with the analytic properties of the]̄ operators. This approach is based on t
observation that the Grassmannian can be viewed as the space of boundary conditions fo]̄

operator.5 Let us consider the Hilbert spaceH of square integrable functionsw5w(l,l̄) on
VªC2D` ~whereD` is a small disk around the pointl5`), with respect to the bilinear form

^u,v&5EE
V

u~l,l̄ !v~l,l̄ !
dlLdl̄

2p il
. ~2.27!

Then, givenWPGr ~described above! there is an associated domainDW on H for ]̄, given by
those functionsw for which ]̄wPH and such that their boundary values onS` are inW. Thus, we
have an elliptic boundary value problem. To formulate it correctly, that is to have a s
symmetric]̄ operator:

^v,]̄u&52^]̄v,u& ;uPDW , ;vPDW̃ ~2.28!

one has to defineW̃, the dual of an elementW in the Grassmannian, as the space of formal Laur
seriesv(l) of lPS`(S`5]D`) which obey the condition

E
s`

dl

2p il
v~l!u~l!50, ;uPW. ~2.29!

Properties ofW andW̃ are convenient to evaluate the index of the]̄ operator. LetSW andSW̃

be subsets of integers determined by the orders of elements inW andW̃. Then, we have

SW̃5$2nun¹SW%. ~2.30!

Let ]̄W denote the operator]̄ acting on the domainDW . The index of this operator is defined a

index ]̄Wªdim~ker ]̄W)2dim~coker ]̄W).
                                                                                                                



of

r? Are
bject of

se

pose

the

the
ion

391J. Math. Phys., Vol. 41, No. 1, January 2000 Singular sector of the KP hierarchy . . .

                    
It can be determined as

index ]̄W5card~SW2N!2card~SW̃2N!, ~2.31!

whereN[$0,1,2,...%. Note that the index of the]̄W operator is closely connected to the notion
virtual dimension ofW used in Ref. 13,

v.d.~W!5card~SW2N!2card~N2SW̃!.

Indeed,

0PSW⇒ index ]̄W5v.d.~W!. ~2.32!

Let us consider now subspacesW(t) generated by the standard KP hierarchy. SinceSW(t)

5$0,1,2,...% @see~2.26!# andSW̃(t)5$1,2,...%, one has that index]̄W(t)50. Thus, all the equations
of the standard KP hierarchy are associated with a sector of Gr with zero index of]̄.

Now, what about the case of nonzero index? How to characterize these sectors in G
there integrable systems associated with them? Addressing these questions is the main su
our paper. The answer can be formulated as follows: Given the wave functionc(t,l) of the
standard KP hierarchy, we consider submanifoldsM of finite codimension in the spaceC` which
are defined bym constraints

f i~ t!50, i 51,2,...,m ~2.33!

( f i are some analytic functions! imposed on the independent variablest5(t1 ,t2 ,...). Thepoint is
that under appropriate conditions, the restrictionc res of the wave functionc on M determines
familiesWres(s) in Gr which correspond to]̄ operators of nonzero index. We will show that the
sectors of Gr are associated with integrable hierarchies.

The nonzero]̄-index sector of Gr is closely connected to its singular sector. Indeed, sup
that the restriction ofc on the manifold~2.33! defines the corresponding familyWres(s) such that

Swres~s!
5N2$r 1 ,r 2 ,...,r l%. ~2.34!

Then it is clear that

l2 lWres~s! ~2.35!

are elements of Gr with zero virtual dimension and, consequently, the same holds forl2 lWres.
Therefore, there is at function, t(t), associated withl2 lWres such that

x̃~ t,l!5
t~ t2@l21# !

t~ t!
.

On the other hand, the elements of minimal order in~2.35! arel2 lx res(s,l). This means that the
function x̃ is singular on the submanifoldM or, equivalently

tuM[0. ~2.36!

Then, the submanifoldsM leading to the nonzero index sector of Gr are zero manifolds of
t-function of the KP hierarchy. This property is rather obvious if one observes that~2.35! deter-
mines a domain for the]̄ operator with a nontrivial kernel. Consequently, the determinant of
]̄ operator, which is proportional tot(t(s)),13 vanishes. Therefore, the constrained wave funct
c res(s,l) is a regularization of the wave functionc̃(t,l) on the blow-up submanifoldM.
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The above coincidence between a singular and nonzero]̄ index sectors is an important featu
of the KP hierarchy. It demonstrates close relation between singular and nonzero]̄ index aspects
of the integrable hierarchies.

Note that integrable hierarchies with constrained independent variables have been discu
different context also in Refs. 32 and 33.

III. HIDDEN KP HIERARCHIES

Now, we proceed to the construction of nonlinear systems associated with manifolds of
codimensions given by constraints~2.33!. First, we realize that for ‘‘good’’ functionsf i , the
theorem of implicit function implies that one can solve Eq.~2.33! with respect to anym variables,
i.e., one can expressm variables tn1

,tn2
,...,tnm

as functions of the otherss5(...,tn ,...)
3(n¹$n1 ,...,nm%) in the form

tni
5bi~s!, i 51,...,m. ~3.1!

Formula ~3.1! gives us the parametrization of the manifold given by~2.33! by the independen
variabless. Since any set ofm times can be chosen astni

in ~3.1!, one has an infinite number o
different parametrizations of the same manifold~2.33!.

The KP wave functionc(t,l) restricted to the manifold~3.1!, i.e., the functionc res(s,l) is
regularizable.24 Since in what follows, we have to considerc res(s,l) andx res(s,l) instead ofc
andx we will omit the label res in both cases. In order to construct restricted KP hierachie
start with the]̄-problem~2.11! for the regularized restricted functionx(s,l). This function has
canonical normalization, the corresponding]̄ problem is uniquely solvable and

g~s,l!5expS (
n51

`

lntn~s!D . ~3.2!

Then, one can use all the machinery of the]̄-dressing method.

A. The case index „̄…521

We start our study of the hidden KP hierarchies by considering the simplest casem51.
Suppose first that we solve the constraintf (t)50 with respect tot1 , then we have

t15b1~s2 ,s3 ,...!, ~3.3!

g~s,l!5expS lb1~s!1 (
n52

`

lnsnD ~3.4!

and the long derivatives¹n are

¹n5
]

]sn
1l

]b1~s!

]sn
1ln, n52,3,... . ~3.5!

Since in this case the operator of the first order inl is missing in the basis~2.25! one has

SWres~s!5N2$1%,

consequently, due to~2.30! and ~2.31!,

index~ ]̄Wres~s!!521. ~3.6!
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In order to get the linear problems~2.16! associated to~3.4!, one has to construct the operatorsL
of the form ~2.13! which obey conditions~2.14! and Lx→0 as l→`. This is a tedious but
straightforward calculation after which one gets the infinite set of linear problems

]x
3c2]y

2c5u0c1u1]xc1u2]yc1u3]x
2c1u4]x]yc, ~3.7!

and

]s4
c2]x

2c5v0c1v1]xc1v2]yc,

]s5
c5p0c1p1]xc1p2]yc1p3]x

2c1]x]yc,... ~3.8!

]sn
c5]x

n2]y
n3c1¯ ,

where n54,5,6,...; n52n213n3 with n252,3,... andn350,1, and we have madexªs2 ,
yªs3 . By denotingbªb1 , we have that the coefficients in~3.7! and ~3.8! are given by

u05bxxxx113bxxx1x13x2xx13bxx1xx13bx
2x2x13bxx3x13x4x2byyx122byx1y23bxbxyx1

1bxbyx1x23bx
2x1y23bxx2y14byx2x2bybxxx123byx1x1x23x3x1x23bx

2bxxx1

23bxx1x2x12bxx1x1y23bxx2x1x23x2x2x13x1x2x1x12x2x1y22x3y , ~3.9!

u153bxbxx13bxx1x13x2x23x1xx122x1y2by
22bx

2by ,

u253bxx1bx
313x1x1bxby , u3522by , u453bx ,

v052x1x1x22x2x22bxx1x , v152bx
2, v2522bx .

p352bx , p252bx
22by , p15bx

32bxby2x1x ,

p05x1x2x1x1x1y22bxx1x1x2x1
2x1x1x1xx22x3x2x2y2byx1x2bxx1y12bxx2x12bx

2x1x .

The absence of an operator¹ of the pure first-orderl imposes the constraints:

bxxx13x1xx13x3x2byy22x2y23bxbxy2bxx1y1byx1x2bxxby

23x1xx223bx
2bxx23x2xx113x1xx1

212x1yx150,
~3.10!

bs4
2bxx22x1x12bxby1bx

350,

bs5
2bxy1bxbxx1by

22bx
2by2bx

42x2x2x1y13bxx1x1x1x1x50

and so on. Higher linear problems and the expressions of the coefficients are complicated
omit them. The linear problems~3.7! and~3.8! represent themselves as an infinite hierarchy of
linear problems for the restricted~hidden! KP hierarchy with index]̄521. All these problems are
compatible by construction and the compatibility conditions for them give rise to an infi
hierarchy of nonlinear evolution equations, a restricted~hidden! KP hierarchy. The simplest sys
tem of this hidden KP hierarchy is the one associated with~3.7! and the first equation in~3.8! and
has the form
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(tªs4):

u4t52u4xx2
8
9u4u4y2 5

9u4
2u4x1 4

3u3u4x12u2x ,

u3t52 2
3u4u4xx2

2
3u4x

2 13v0x1u3xx12u1x2 1
9u4

2u3x2 4
3u3u4y2 2

3u4u3y1 2
9u4

2u4y2 2
9u3u4u4y ,

~3.11!
u2t52 2

3u4xxx1u2xx2
1
9u4

2u2x2 2
3u2u4y1 2

3u4yy2
2
3u4u2y22v0y1 2

3u4u4xy2
2
3u2u4u4x2u4v0x

1 2
3u3u4xx1

2
3u1u4x ,

u1t52 2
9u4u4xxx2

8
9u4xu4xx13v0xx1u1xx12v0x2 1

9u4
2u1x2 4

3u1u4y1 2
9u4u4yy1

2
9u4y

2 2 2
3u4u1y

2u4v0y1 2
9u4

2u4xy1
2
9u4u4xu4y2 4

9u1u4u4x2 2
9u3u4u4xx2

2
9u3u4x

2 22u3v0x1 2
9u2u4u4y ,

u0t5v0xxx1u0xx2
1
9u4

2u0x2 4
3u0u4y2v0yy2

2
3u4u0y2u4v0xy2

2
3u0u4u4x2u3v0xx2u2v0y2u1v0x

where

v05 1
27u4

2u32 1
6u3

21 2
9u4u4x2 2

3u11 4
9u4y2 4

9]y]x
21~u22 1

27u4
31 1

6u3u4!.

Note that since due to~3.9! u453bx andu352by , one can rewrite the system~3.11! as a system
of four equations for the variablesb, u2 , u1 , andu0 . Equation~3.11! and higher equations ar
solvable by the]̄-dressing method, though all solutions would be expressed in implicit fo
Then, we have an infinite hierarchy of integrable 211-dimensional equations. This hierarchy
associated with a restricted element in the Grassmannaian which satisfies

Wres~s!5span$¹x
n¹y

mx~s,l!,n>0,m50,1%. ~3.12!

Note that the basis of the spaceWres(s) is formed by two-dimensional jets of special form
contrast to the one-dimensional jets~2.25! for the standard KP hierarchy with index]̄50.

Note also that if one tries to construct the linear problem starting withg of the form~3.4! with
b15const, the procedure collapses. In this case~3.10! gives too strong constraints on the functio
x (x1x50,x2x1x1y50,...).

As has been mentioned before, the formula~3.3! gives only one possible parametrization
the manifold defined by the equationf (t)50. Let us take the one given by

t25b2~s1 ,s3 ,s4 ,...!, ~3.13!

so

g~s,l!5expS ls11l2b2~s!1(
i 53

`

l isi D ~3.14!

and long derivatives are

¹n5
]

]sn
1l2

]b2

]sn
1ln, n51,3,4,... . ~3.15!

Similar to the previous case, one gets an infinite family of linear problems with the correspo
family of constraints. The first linear problem is of the form (xªs1 , yªs3 , tªs4)

]x
3c5u5]y

2c1u4]x]yc1u3]x
2c1u2]yc1u0c,

] tc5v3]x
2c1v2]yc1v1]xc1v0c.
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The compatibility condition for this system leads to the first integrable system of this hidde
hierarchy. The expressions of the potentials, the constraints and the system are a bit mor
plicated than in the above-studied case and we omit them here. Note that in this case we

Wres~s!5span$¹x
n¹y

mx~s,l!,n>0,m50,1% ~3.16!

and consequently

index~ ]̄Wres~s!res!521. ~3.17!

Let us consider now the next choice,

t35b3~s1 ,s2 ,s4 ,...!. ~3.18!

One has

g5expS ls11l2s21l3b3~s!1(
i 54

`

l isi D ~3.19!

and the long derivatives have the form

¹n5
]

]sn
1l3

]b3

]sn
1ln, n51,2,4,5,... . ~3.20!

Using these long derivatives we can find the corresponding hierarchy of linear problem
nonlinear integrable equations. On first sight, one could think that as¹xª¹1 and ¹yª¹2 are
third-order operators, the operators of the first and the second order are missing and conse
index ]̄522. However, by taking the linear combination of long derivatives (bªb3 here!

by¹x2bx¹y5by]x1lby2bx]y2l2bx ,

we see that only the first order inl is missing and then, we have index]̄521.
A similar situation takes place in the general case

tn5bn~s1 ,...,sn21 ,sn11 ,...! ~3.21!

for n>3. One has

¹m5
]

]sm
1ln

]bn

]sm
1lm, mÞn. ~3.22!

In a similar way to the previous case, one gets the operators of the second, third, ..., (n21)th
order by taking linear combinations of the operators¹1 , ¹2 ,...,¹n21 . Then, we have that in the
general case index]̄521.

We finally point out that all the hierarchies of linear problems and integrable systems co
ered in this section are closely connected. In fact, since they are associated with different
etrizations of the same manifoldf (t)50, they are related to each other by change of indepen
and dependent variables.

B. The case index „̄…522

Suppose now that we takem52 in ~2.33!, i.e., the manifoldM is defined as

f 1~ t!50, f 2~ t!50.
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Then, one possible parametrization is

t15b1~s3 ,s4 ,...!, t25b2~s3 ,s4 ,...!,

and the functiong and the long derivatives are given by

g~s,l!5expS lb1~s!1l2b2~s!1(
i 53

`

l isi D ,

¹k5
]

]sk
1l

]b1

]sk
1l2

]b2

]sk
1lk, k53,4,5,... .

In order to construct linear problems we look for the operators of the form

L5( un3n4n5¯
¹3

n3¹4
n4¹5

n5
¯

satisfying Lx50. It is easy to see that fornÞ1,2 we have an ordern operator of the form
¹3

n3¹4
n4¹5

n5 with n350,1,2,... andn4 , n550,1. On the other hand, as each long derivative is o
order>3, there are not operators of order 1 and 2. Then,

Wres~s!5span$¹3
n3¹4

n4¹5
n5x~s,l!,n350,1,2,...,n4 ,n550,1%,

~3.23!
SWres~s!5N2$1,2%

and consequently

index~ ]̄Wres~s!!522.

In order to get the linear problems involving the minimum number of independent variable
use, instead of~3.23!, the more convenient system of generators ofWres(s) given by

Wres~s!5span$¹3
n3¹4

n4x~s,l!,n3 ,n450,1,2,...,¹5x~s,l!%. ~3.24!

The linear problems corresponding to the lowest orders are then

]4
3c2]3

4c1u11]3]4
2c1u10]3

2]4c1u9]3
3c1u8]4

2c1u7]3]4c1u6]3
2c

1u5]5c1u4]4c1u3]3c1u0c50, ~3.25!

]3]5c2]4
2c1v7]3]4c1v6]3

2c1v5]5c1v4]4c1v3]3c1v0c50, ~3.26!

]5]4c2]3
3c1p8]3]5c1p7]3]4c1p6]3

2c1p5]5c1p4]4c1p3]3c1p0c50, ~3.27!

whereui , i 50,3,4,...,11,vk k50,3,...,7, andpl , l 50,3,...,8 can be expressed in terms ofb1 , b2 ,
andxn (n>1). Due to the absence of operators of the first and second order inl we have two
constraints onb1 , b2 , andxn(n>1) associated to each equation~3.25!–~3.27!.

Note that only two linear equations among~3.25!–~3.27! are independent~form the basis of
the Manakov ring!. For instance, the problems~3.26! and~3.27! are equivalent modulo the prob
lem ~3.25!. Indeed, acting by operator]4 on ~3.26! and by the operator]3 on ~3.27!, subtracting
the equations obtained and using~3.25! one gets an identity. Then, choosing, for instance,~3.25!
and ~3.26! we have a system of two three-dimensional linear equations~variabless3 , s4 , s5).
However, it implies thatc satisfies also a two-dimensional linear equation. Indeed, using~3.25!,
one can express]5c via the derivatives ofc with respect tos3 ands4 ~since in generalu5Ó0).
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By substituting this expression into~3.26!, one gets

]3]4
3c2]3

5c1r 14]3
2]4

2c1r 13]3
3]4c1r 12]4

3c1 r̃ 12]3
4c1r 11]3]4

2c1r 10]3
2]4c

1r 9]3
3c1r 8]4

2c1r 7]3]4c1r 6]3
2c1r 4]4c1r 3]3c1r 0c50, ~3.28!

wherer i ( i 50,3,4,6,7,...,14) andr̃ 12 can be expressed in terms ofui ( i 50,3,4,...,11) andv j ( j
50,3,4,...,7). Thus, one has the two-dimensional equation~3.28! with variabless3 ands4 and the
three-dimensional equation~3.25!. The compatibility condition of the linear problem constitute
by these two equations@or equivalently~3.25! and ~3.26!# gives rise to a three-dimensional no
linear integrable system with independent variabless3 ,s4 ,s5 .

In the same way, taking into account~3.24!, the equations in linear problems which involv
higher timessn (n56,7,...) can be written in the form

]c

]sk
5]3

n3]4
n4c1¯1pk5]5c1¯1pk0c, k56,7,..., ~3.29!

wherek53n314n4 and pka are certain functions and we have two constraints associated
each equation~3.29!. In order to eliminate]5c in ~3.29!, we use~3.25! so that

]c

]sk
5]3

n3]4
n4c1 (

m3 ,m4

p̃m3m4
~s!]3

m3]4
m4c, k56,7,... .

By construction, these last equations are compatible with Eq.~3.28!, thus, we have an infinite
hierarchy of commuting 211-dimensional integrable systems for the coefficients.

Finally, from ~3.25! we can express¹5x as a linear combination of elements of the for
¹3

n3¹4
n4x, we can eliminate¹5x for the system of generators ofWres(s) @see~3.23!, ~3.24!#. In

fact, by using~3.25!–~3.27! in ~3.23! we get

Wres~s!5span$¹3
n3¹4

n4x~s,l!, n350,1,2,...,n450,1,2%.

C. Higher indices of the ̄ operator

We finish Sec. III by discussing the basic properties of the case index]̄<23 @or equivalently
m>3 in ~2.33!#. We will show that we have a hierarchy of integrable systems associated
each manifold defined by~2.33! with m>3, but in this case the hierarchy consists
311-dimensional nonlinear systems, instead of the 211 dimensional systems found in the cas
index ]̄521 and index]̄522. As all the basic properties are exhibited form53, we start by
considering this particular case. Suppose then, that we takem53 in ~2.33! and solve the con-
straints with respect tot1 , t2 , andt3 . We have

t15b1~s! t25b2~s!, t35b3~s!,

consequently

g~s,l!5expS lb1~s!1l2b2~s!1l3b3~s!1(
i 54

`

l isi D ,

and the long derivatives are

¹k5
]

]sk
1l

]b1

]sk
1l2

]b2

]sk
1l3

]b3

]sk
1lk, k54,5,.. .
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From the expressions of the long derivatives, it is easy to see that, forn>4, we have an operato
of ordern in l of the form¹4

n4¹5
n5¹6

n6¹7
n7 with n4>0, n5 , n6 , n750,1 ~at most one of them equa

to 1!. On the other hand, as every long derivative is of order>4, there are not operators of orde
1, 2, and 3. Then

Wres~s!5span$¹4
n4¹5

n5¹6
n6¹7

n7x~s,l!,n4

>0,n5 ,n6 ,n7

50,1 at most one ofn5 ,n6 ,n7 equal to 1%, ~3.30!

so that

SWres~s!5N2$1,2,3%

and consequently

index~ ]̄Wres~s!!523.

In order to get the linear problems involving the minimum number of independent variable
use, instead of~3.30!, the more convenient description ofWres(s) as

Wres~s!5span$¹4
n4¹5

n5x,n4>0,n550,1,2,3,¹6x,¹7x,¹5¹6x%. ~3.31!

The lowest order linear equations constructed using the system of generators in~3.31! are

]5
4c2]4

5c1u19]5
3]4c1u18]5

2]4
2c1u17]4

3]5c1u16]4
4c1u15]5

3c1u14]5
2]4c1u13]5]4

2c1u12]4
3c

1u11]5]6c1u10]5
2c1u9]4]5c1u8]4

2c1u7]7c1u6]6c1u5]5c1u4]4c1u0c50,

~3.32!

]4]6c2]5
2c1v9]4]5c1v8]4

2c1v7]7c1v6]6c1v5]5c1v4]4c1v0c50, ~3.33!

]4]7c2]5]6c1p10]5
2c1p9]4]5c1p8]4

2c1p7]7c1p6]6c1p5]5c1p4]4c1p0c50,
~3.34!

]5]7c2]4
3c1q11]5]6c1q10]5

2c1q9]4]5c1q8]4
2c1q7]7c1q6]6c1q5]5c1q4]4c1q0c

50, ~3.35!

]6
2c2]4

3c1w11]5]6c1w10]5
2c1w9]4]5c1w8]4

2c1w7]7c1w6]6c1w5]5c1w4]4c1w0c

50, ~3.36!

where ui , i 50,4,5,...,19;v j , j 50,4,5,...,9;pk , k50,4,5,...,10;ql , l 50,4,5,...,11; andwr , r
50,4,5,...,11 are functions ofb1 , b2 , b3 , xn (n>1) and their derivatives. Besides, we have thr
constraints on the coefficients of the wave functions for each equation~3.32!–~3.36!.

Again, among these five equations, there are only three independent ones modulo~3.32!. For
instance, acting on~3.33! by ]5

2, on ~3.35! by ]4
2 and using~3.32!, ~3.33!, and~3.34! one gets an

identity. So~3.35! and similarly~3.36! are satisfied due to Eqs.~3.32!–~3.34!. These three equa
tions provides a four-dimensional system~being the independent variabless4 ,s5 ,s6 ,s7). How-
ever, using Eq.~3.33! one can get]7c in terms of derivatives ofc with respect to the three other
independent variables, i.e.,

]7c52
1

v7
~]4]6c2]5

2c1v9]4]5c1v8]4
2c1v6]6c1v5]5c1v4]4c1v0c!, ~3.37!
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and then this term can be eliminated from~3.32! and ~3.34!. As a result one gets two linea
equations forc which contain only]4 , ]5 , and]6 . The linear problem determined by this coup
of equations is compatible by construction, and the compatibility condition gives rise to a s
of nonlinear equations in three dimensions (s4 , s5 , ands6). A new system in the hierarchy can b
obtained as the compatibility condition of one of the equations considered before~where]7 has
been eliminated! and ~3.37!. In this case we have a system of 311-dimensional nonlinear equa
tions ~spatial variabless4 , s5 , s6 , and time s7). Linear problems containing higher time
s8 ,s9 ,... have the form

]kc5 (
n4n5n6

vn4n5n6
]4

n4]5
n5]6

n6c, k58,9,..., ~3.38!

wheren4 , n5>0, n650,1 andvn4n5n6
are certain functions. Note that in~3.38! we have already

eliminated the term]7c by using~3.33!.
The compatibility conditions of~3.38! with the equation obtained by eliminating]7c in ~3.32!

defines an infinite hierarchy of 311 dimensional nonlinear systems with four independent v
ables:s4 , s5 , s6 , and timesk . Now, one could eliminate also]6c from Eqs.~3.32!, ~3.33!, and
~3.34!, in order to get a single linear equation containing derivatives with respect to only
independent variables,s4 ands5 . But in order to do it, one has to invert an involved different
operator. Consequently, the corresponding 211 dimensional equation is a complicated integr
differential one.

Finally, from the above discussion, it is clear that we can eliminate¹7x from ~3.31!, then we
get a basis ofWres(s) in the form:

Wres~s!5span$¹4
n4¹5

n5x,n4>0,n550,1,2,3,¹6x,¹5¹6x%.

We finish the study of the hidden KP hierarchies by summarizing the results for the ge
casem>3. Solving Eq.~2.33! with respect to the firstm times one has

tk5bk~sm11 ,sm12 ,...!, k51,2,...,m,

then

g5expH (
k51

m

lkbk~s!1 (
k5m11

`

lkskJ
and

¹k5
]

]sk
1(

l 51

m

l l
]bl

]sk
1lk, k5m11,m12,... .

In this case

SWres~s!5N2$1,2,...,m%,

and consequently

index~ ]̄Wres~s!!52m.

Now, by constructing operators of the form

L5 (
nm11nm12,...

unm11nm12,...
¹m11

nm11¹m12
nm12...,
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which satisfy the condition~2.14!, one gets an infinite hierarchy of linear equations. One can
that there arem of them which form a basis of Manakov ring of operators of lowest order w
minimal number of independent variables (sm11 , sm12 ,..., s2m11). As above, one can in gen
eral eliminate ]2m11c,]2mc,...,]m14c from these subsystem, and get a system of thr
dimensional linear problems. In this way, the whole hierarchy consists in 311 dimensional
nonlinear systems with constraints.

We finally point out that 311 hierarchies of integrable systems with constraints have b
discussed in a different situations in Refs. 34–36.

IV. HIDDEN GELFAND–DIKII HIERARCHIES ON THE GRASSMANNIAN

As a particular case of hidden KP hierarchies associated with sectors of Gr with nonz]̄
index, we discuss here the hidden Gelfand–Dikii~GD! hierarchies, 111-dimensional integrable
hierarchies associated with energy-dependent spectral problems. We prove that under
assumptions the only hidden GD hierarchies are those associated with Schro¨dinger equations with
energy-dependent potentials~hidden KdV hierarchies!

]x
2c5S k2m111 (

n50

2m

un~s!knDc, kªl2,

and that associated to the third-order equation~hidden Boussinesq hierarchy!

]x
3c5~k21u1~s!k1u0~s!!c1~v1~s!k1v0~s!!]xc, kªl3.

The hidden KdV hierarchies were already introduced and studied from the point of vie
the Hamiltonian formalism in Ref. 37 and they were further generalized and analyzed in Re
and 39. As for the hidden Boussinesq hierarchy, it is one of the four cases studied in Ref.
connection with the theory of energy-dependent third-order Lax operators. In both cas
manage to formulate a general solution method.

The start point here is anl-GD wave function. It is a particular KP wave functionc(t,l)
verifying the reduction conditions:

]mlx50, m51,2,... . ~4.1!

As a consequence, its corresponding flow can be characterized as

W~ t!5span$lml¹ l
nx~ t,l!,m>0,0<n< l 21%.

Note thatW(t) does not depend on the parameterstml m51,2,..., so from now on they will be
supposed to be set equal zero, or equivalently

t5~ t1 ,...,tn ,...!, n¹~ l !ª$ l ,2l ,3l ,...%.

In the ]̄-dressing method, reductions~4.1! correspond to kernels of the form

R0~m,m̄,l,l̄ !5d~m l2l l !R̃0~m!,

then, we have the]̄ problem

]x~ t,l!

]l̄
5 (

a51

l

x~ t,qal!R̃a~ t,l!, ~4.2!

where
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q5expS 2p i

l D , R̃a~ t,l!5g0~ t,l!R̃a~l!g0
21~ t,qal!

with g0(t,l)5exp(Si¹(l) til
i) and R̃a(l)a51,2,...,l are l arbitrary functions. Note that the]̄

problem~4.2! is invariant under multiplication byl l .
We now focus our attention on the study of the hidden 1-GD hierarchy. In order to do

given an integer numberr .0,r ¹( l ), we consider restriction underdr5r 212@(r 21)/l # con-
straints ~2.33!, ~here @•# denotes integer part!, solved with respect to the first consecutivedr

parameters. It means

t i5bi~sr ! 1< i ,r , i ¹~ l !

with sr5(sr ,...,sn ,...)n.r ,n¹( l ). We have then that

Wres~sr !5span$lml¹ i 1

n1¹ i 2

n2...x~sr ,l!,m,n1 ,n2 ,...>0,i 1 ,i 2 ,...>r ,i 1 ,i 2 ,...¹~ l !% ~4.3!

and long derivatives are here defined as

¹n5
]

]sn
1(

i ,r
l i

]bi

]sn
1ln, n>r .

Clearly, if we look for (111)-dimensional hierarchies associated with these restrictions we

Wres~sr !5span$lml¹x
nx~sr ,l!,m>0,0<n< l 21% ~4.4!

wherex stands now forsr . Consequently we are interested in those submanifoldsM for which
the correspondingWres(sr) verifies ~4.4!. In this sense we have:

Proposition 1: The family Wres(sr) satisfies (4.4) if and only if the functionc(sr ,l) obeys an
infinite system of linear equations of the form

]x
l c5Sm50

l 21 um~sr ,k!]x
mc,

~4.5!
]nc5Sm50

l 21 anm~sr ,k!]x
mc, n.r , n¹~ l !,

where um and anm are polynomials in kªl l .
Proof: The functionx(sr ,l) as well as its long derivatives of all orders with respect to

variablessn belong toWres(sr). Then, if ~4.4! holds all these functions can be decomposed
terms of the basiskm¹x

nx. Therefore~4.5! follows.
Reciprocally, ifx satisfies a system of the form~4.5! then from ~4.3! and by using Taylor

expansion we deduce~4.4! at once. h

The next statement describes the cases in which~4.4! may arise.
Proposition 2: Only two classes of parametrized submanifoldsM satisfying (4.4) are al-

lowed:
~i! SubmanifoldsMm

(2) of the form

t2i 215bi~s2m11!, i 51,...,m, m>1,

for the second GD hierarchy.
~ii ! SubmanifoldsM(3) of the form

t15b~s2!,

for the third GD hierarchy.
Proof: Let us assume that~4.4! holds thenWres(sr) has no elements with ordern such that

0,n,min(r,l). Moreover
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order~l lm¹x
nx!5 lm1nr.

Let us first consider the caser . l . It implies thatl 1r ,2r , and therefore if there arei ¹( l ) such
that r , i , l 1r then the functions¹ ix are elements of orderi which cannot be decomposed
terms of the basisl lm¹x

nx. The only way to avoid these functions is to takel 52, and conse-
quently the allowedr are the odd integersr 52m11 (m>1).

Consider now the caser , l . We have

order~¹xx!,order~¹x
2x!,order~l l¹xx!.

Thus, giveni ¹( l ) such thatr , i ,2r then the functions¹ ix are elements of orderi which cannot
be decomposed in terms of the basisl lm¹x

nx. But it is obvious that these functions will aris
unless we taker 52 andl 53. h

As it will be proved below one can construct explicit examples of submanifoldsMm
(2) and

M(3) satisfying~4.4!. Observe that in these cases the corresponding families of subspaces
Grassmannian lead to the following values of the index of]̄:

~1! For Mm
(2) :

SWres~s2m11!5N2$1,3,...,2m21%,

so that

index~ ]̄Wres~s2m11!!52m.

~2! For M(3):

SWres~s2!5N2$1%,

and as a consequence

index~ ]̄Wres~s2!!521.

In both cases the families of subspaces in the Grassmannian lie outside the zero index secto
]̄ operator. Next, we are going to show that for both classes of submanifolds described abov
exist hierarchies of integrable systems.

Before analyzing these two cases, it is worth noticing that we have only looked for sub
folds associated to (111)-dimensional hierarchies of integrable systems, obtained by sol
constraints~2.33! with respect to the first variables. Nevertheless, by using the methods of Se
and solving the constraints with respect to any set of variables, we can get in general multid
sional hiddenl-Gelfand–Dikii hierarchies for arbitraryl and r (r ¹( l )). It is also clear that all
these hierarchies belong to sectors in the Grassmannian with nonzero index.

A. Hidden KdV hierarchies

Consider first submanifoldsMm
2 verifying ~4.4!. From Proposition 1 the constrained wav

function c(s2m11 ,l) satisfies an infinite linear system of the form

]x
2c5u~s2m11 ,k!c,

~4.6!
]2n11c5an~s2m11 ,k!c1bn~s2m11 ,k!]xc, n.m,

wherekªl2, u5u(s2m11 ,k)ªk2m111Sn50
2m knun(s2m11), andan , bn are polynomials ink. By

introducing the bilinear form
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B~c,w!ª2
1

2l2m11 U c~l! w~l!

c~2l! w~2l!
U,

we may write the coefficientsan andbn in ~4.6! as

an5
B~]2n11c,]xc!

B~c,]xc!
, bn5

B~c,]2n11c!

B~c,]xc!
. ~4.7!

Then, we havean52 1
2bnx . Furthermore, the compatibility conditions for~4.6! imply

]2n11u5Jbn ,

where

Jª2 1
2]x

312u]x1ux . ~4.8!

On the other hand, the functionbn is related to the trace of the resolvent of the Schro¨dinger
operator

R~s2m11 ,k!ª
c~s2m11 ,l!c~s2m11 ,2l!

B~c,]xc!
.

Thus, from~4.7! and the polynomial character ofbn as a function ofk it follows that

bn5~kn2mR!1 ,

where (kn2mR)1 stands for the polynomial part ofkn2mR with R being substituted by its expan
sion ask→`,

R511 (
n>1

Rn~s2m11!

kn .

Therefore

]2n11u5J~kn2mR!1 . ~4.9!

It turns out37 that the coefficientsRn are differential polynomials in the potential function
(u0 ,u1 ,...,u2m). They can be determined by identifying coefficients of powers ofk in the equa-
tion

JR50.

In this way the set of equations~4.9! constitutes a hierarchy of integrable systems associated
the Schro¨dinger operator in~4.6!. We will refer to this hierarchy as KdV2m11 . Solutions of the
members of the hierarchies can be derived from the functionsbi andxn .

For example, form51, using our standard techniques and the method considered abo
construct the hierarchy, we have that the potential function is given by

u252bx ,
~4.10!

u15bx
212x1x ,

u052x3x22x2x1x1x1bzz12x1xbx

wherebªb1 . The first integrable system in the hierarchy corresponds totªs5 and takes the form
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] tu05 1
4u2xxx2u0u2x2 1

2u2u0x ,

] tu152 1
2u2u1x2u1u2x1u0x , ~4.11!

] tu252 3
2u2u2x1u1x .

The second equation in~4.6! is in this case

] tc5 1
4u2xc1~k2 1

2u2!]xc,

and the absence of the pure first orderl in Wres(s2) means@Eq. ~4.6!# the constraints

x1x5bx
21bt , x2x5xx1x2 1

2bxx . ~4.12!

Note also, that using~4.10! and the first equation in~4.12!, system~4.11! is equivalent to a system
of two equations forb andu0 ,

u0t5
1
2bxxxx22bxxu02bxu0x ,

~2bt13bx
2! t12bxx~2bt13bx

2!2u0x1bx~2bt13bx
2!x50.

Analogously, form52, we have that the potential function is given by

u452b2x ,

u352b1x1b2x
2 ,

u252b1xb2x12x1x ,

u152x3x22x2x1x1x1b2xx112x1xb2x1b1x
2 ,

u052x5x22x4x1x1x3b2xx12x3xb2x1x1b1xx12b1xx1x2~u12b1x
2 !x2x .

The second equation in~4.6! is

] tc5 1
4u4xc1~k2 1

2u4!]xc,

and the absence of ordersl andl3 means the constraints

b2x
2 1b2t2b1x50, x1x2b2xb1x2b1t50, 2x2x1b2xx22x1xx150,

2x4x1b1xx22~x1x3!x1b2xx~x22x1
22b2x!12x2x1x1x50.

Finally, we point out that although we have only considered constraints solved with resp
the first parameters, submanifolds of the formMm

(2) can be parametrized in other ways and w
also get hierarchies of integrable systems. Unfortunately, in this case, there are not availabl
methods to construct the hierarchies, as the one discussed above to construct the KdV2m11 hier-
archy, but we can always use standard techniques to get integrable systems. For example
the casem51 with the parametrization

t35b~s!, sª~s1 ,s5 ,...,s2m11 ,...!
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and takingxªs1 , tªs5 we have the linear problem

]x
2c5~u3k31u2k21u1k1u0!c1v0]xc,

~4.13!
] tc5a0c1~b1k1b0!]xc,

where

u35bx
2, u252bx , u15112bxx1x ,

u052
bxx

bx
x122bxx1xx212x1x12bxx3x , ~4.14!

v05
bxx

bx
, a0522

u2x

u2
3 , b15

2

u2
, b052

12u1

u2
2 ,

and the absence of orderl in Eq. ~4.13! means the constraints

x1x5
1

bx
2bt , x2x5xx1x1

bxx

2bx
2 . ~4.15!

By imposing the compatibility condition in the linear problem~4.13! we have the integrable
system

u3t52b1xu212b0xu31b1u2x1b0u3x ,

u2t52b1xu112b0xu21b1u1x1b0u2x ,

u1t52b1xu012b0xu11b1u0x1b0u1x ,

u1t5a0xx12b0xu01b0u0x2a0xv0 ,

u0t5~2a01b0x1v0b0!x ,

that using~4.14! and ~4.15! can be reduced to a system of two equations forb andu0 :

~bxbt! t2
bxx

bx
2 u01S bt

bx
2

1

bx
2D

x

~322bxbt!1
1

2bx
u0x2S bt

bx
2

1

bx
2Dbxbt50,

u0t1
1

2 S bxx

bx
3 D

xx

22S bt

bx
2

1

bx
2D

x

u02S bt

bx
2

1

bx
2Du0x2

bxx

2bx
S bxx

bx
3 D

x

50.

B. Hidden Boussinesq hierarchy

Our next task is to show that the submanifoldsM(3) satisfying~4.4! are also associated wit
a hierarchy of integrable systems. From Proposition 1, now, we have

]x
3c5u~s2 ,k!c1v~s2 ,k!]xc,

~4.16!
]nc5an~s2 ,k!c1bn~s2 ,k!]xc1gn~s2 ,k!]x

2c,

wherekªl3, uªu0(s2)1ku1(s2)1k2, vªv0(s2)1kv1(s2) andan , bn , andgn are polynomi-
als in k. By introducing the trilinear form
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T~c,w,h!ª
1

3i)l6U c~l! w~l! h~l!

c~el! w~el! h~el!

c~e2l! w~e2l! h~e2l!
U ,

wheree5(211 i))/2, we may write the coefficients in~4.16! as

an5
T~]nc,]xc,]x

2c!

T~c,]xc,]x
2c!

, bn5
T~c,]nc,]x

2c!

T~c,]xc,]x
2c!

,

gn5
T~c,]xc,]nc!

T~c,]xc,]x
2c!

.

By now using~4.16! it immediately follows that

an52 1
3@2vgn1gnxx13bnx#.

Furthermore, the compatibility conditions for~4.16! imply

S ]nv
]nuD5JS gnx1bn

gn
D ,

whereJ is the matrix operator given by

J11ª22]x
312v]x1vx , J12ª5]x

42]x
2
•v13]x•u2ux ,

J21ª2]x
41v]x

213u]x1ux ,

J22ª
1
3@2]x

522~v]x
31]x

3
•v !1~v213ux!]x1]x•~v213ux!#.

The standard technique shows that these equations are related to the resolvent trace func

~Rs2 ,k!ªS T~c,]xc,l]xc!

T~c,]xc,]x
2c!

T~c,]xc,lc!

T~c,]xc,]x
2c!

D , S~s2 ,k!ªS T~c,]xc,l2]xc!

T~c,]xc,]x
2c!

T~c,]xc,l2c!

T~c,]xc,]x
2c!

D ,

in the form

S ]3n11v
]3n11uD5J~knR!1 , S ]3n21v

]3n21uD5J~kn21S!1 . ~4.17!

In these expressionsR andS are substituted by their expansion ask→`,

R5 (
n>1

Rn~s2!

kn , S5 (
n>0

Sn~s2!

kn .

The coefficientsRn are Sn are differential polynomials in the potential functionsui ,v i( i 50,1).
They can be determined by identifying coefficients of powers ofk in

JR50, JS50.
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It is easy to prove that Eq.~4.17! constitutes an evolution equation foru andv. The set of these
equations is a hierarchy of integrable systems associated with the third-order operator in~4.16!.
We will refer to this hierarchy as the hidden Boussinesq hierarchy. Solutions of the memb
the hierarchy can be derived from the functionsb andxn :

u05bxxxx123x1xx313x4x13bxx3x13bx
2x2x13bxxx1x13x2xx13bxx1xx13x1xx1x2

23x2xx223bxx1xx223bxxbx
2x113x1xx1

2bx23x2xx1bx23bx
2x1xx1 ,

u15bx
313bxx13x1x ,

~4.18!
v053bxxbx23x1xx113x2x13bxx1x ,

v153bx .

The first equation of the hidden Boussinesq hierarchy corresponds to the time para
tªs4 and takes the form

] tu05 2
9v1v1xxxx1

8
9v1xv1xxx1

2
3v1xx

2 2 2
9v0v1v1xx2

2
9v0v1x

2 2 2
3u0v1v1x

2 1
9u0xv1

22 2
3v0xxx1

2
3v0v0x1u0xx ,

] tu152 2
9v1

2v1xx2
2
9v1v1x

2 2 2
3u1v1v1x2 1

9u1xv1
22 2

3v1xxx1
2
3~v0v1!x1u1xx ,

~4.19!
] tv05 4

9v1v1xxx1
4
3v1xv1xx2

4
9v0v1v1x2 1

9v1
2v0x2v0xx12u0x ,

] tv152 5
9v1

2v1x2v1xx12u1x ,

The second equation in the linear problem~4.16! is

] tc5~a01a1k!c1b0]xc1]x
2c

with

a05 2
9v1v1x2 2

3v0 , a152 2
3v1 , b052 1

9v1
2.

Finally, the constraints imposed by the absence of the first order inWres(s2) are given by

1
3bxxx2x1xx21x3x1x1xx1x1xx1

22x2xx12bxxbx
250,

~4.20!
bx

31bt2bxx22x1x50.

C. Methods of solution of hidden Gelfand–Dikii Hierarchies

A solution method for the hierarchies studied above was discussed for the hidden
hierarchies in Ref. 41 and some solutions were exhibited there. The main idea is that ta
particularl-GD wave function (l 52 for Mm

(2) and l 53 for M(3)) the constraints imposed by th
absence of some orders inWres(sr) determine differential equations for the functionsbi associated
with the submanifoldsMm

(2) andM(3) satisfying~4.4!. If these equations can be solved, they le
to solutions of the corresponding hierarchy. In general, these differential equations are too
plicated to be solved. Nevertheless, we may provide appropriate methods of solution d
based on the Grassmannian. To this end it is required an elementW of Gr associated to a wav
function c for the l-Gelfand–Dikii hierarchy, such that the functions ofW admit meromorphic
expansions in the diskD05C2D` with fixed poles l i ,i 51,...,n of maximal ordersr i ,
i 51,...,n. Under these conditions any linear functional onW of the form
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l ~c!5(
j 5 l

s

cj

dnjw

dlnj
~qj !, uqj u,1, qj¹$l i : i 51,...,n%,

admits a representation

l ~w!5 R
s`

w̃~l!w~l!
dl

2p il
, ;wPW, ~4.21!

with a finite order functionw̃. For example in the caser i51, ; i 51,...,n we have

1

n!

dnw

dln ~q!5 R
s`

F l

~l2q!n11 2(
j

l

~l j2q!n11 )
iÞ j

l2l i

l j2l i
Gw~k!

dl

2p il
.

Proposition 3: Given WPGr associated to a wave functionc for the KdV hierarchy and a
linearly independent set of m functionals$ l i% i 51

m such that for certain numbers ci j

W,KerS l2l i2(
j

ci j l j D , i 51,...,m, ~4.22!

where(l2l i)(w)[ l i(l
2w). Then, a submanifoldMm

(2) satisfies (4.4) if

l i~c~ t,l!!50, i 51,...,m, ~4.23!

for all tPMm
(2) .

Proof: Let $w̃i : i 51,...,m% be the functions representing the functionalsl i . From ~4.22! it
follows that

l2w̃i5(
j

ci j w̃ j1ũi , i 51,...,m,

whereũi are elements ofW̃. Moreover, from~4.21! we have that the equations~4.23! are equiva-
lent to

R
s`

w̃i~l!c~ t,l!
dl

2p il
50, i 51,...,m.

Therefore, ift2i 215bi(s2m11), i 51,...,m are the functions characterizing the parametrized s
manifold Mm

(2) , then, the restricted wave functionc(s2m11 ,l) generates a subspaceWres such
that

Wres̃5W̃% span$w̃i ,i 51,...,m%.

As a consequence

v.d.~Wres!5v.d.~W!2m52m.

Moreover, it is known42 that the virtual dimension of a subspaceW does not change under th
action of an invertible multiplication operator. Then, by taking~2.32! into account we have

Index]̄Wres~s2m11!5v.d.~Wres~s2m11!!5v.d.~Wres!52m.

Hence, it is easy to deduce that

SWres~s2m11!5N2$1,3,...,2m21%,
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so that the statement follows at once.
In the same way one proves:
Proposition 4: Given W associated to a wave functionc for the Boussinesq hierarchy and

nontrivial functional l on W verifying

W,Ker~k3l 2cl !,

for a certain number c. Then a submanifoldM(3) satisfies (4.4) if

l ~c~ t,l!!50, ~4.24!

for all tPM(3).
These results allow us to determine the functionsbi5bi(sr) from constraints of the types

~4.23! and ~4.24!.
We devote the rest of the section to illustrating this method by constructing some solu

We concentrate first on the hidden KdV hierarchies. Our first example is based on the su
WPGr of boundary values of functionsw5w(l) analytic on the unit diskulu,1, with the
possible exception of a single real pole21,q,1 and such that

l2W,W, Res~w,q!5cw~2q!,

for a givenc.0. This subspace determines a KdV wave function

c~ t,l!5expS (
n>1

l2n21t2n21D S 11
a~ t!

l2qD , a~ t!5
2qc~ t!

2q1c~ t!
,

where

c~ t !ªc expS 22(
n>1

q2n21t2n21D .

We may construct solutions of the KdV3 hierarchy fromW by means of the functional

l ~w!5
dw

dl
~0!,

which obviously satisfiesl2l 50. The implicit equationl (c(t,l))50 reads

t1S 12
a~ t!

q D5
a~ t!

q2 .

By introducing the new variables

yª2qt1 , xªs3 ,

zª2q3x2 logc12(
n>2

q2n11s2n11 ,

the equation reduces to

y1z5 logF 1

2q
1

2

qyG . ~4.25!

For q.0 it defines two branchesy( i )52qb( i )(z) ( i 51,2), while for q,0 it leads to only one
branchy(3)52qb(3)(z). Moreover, from~4.25! we have
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dy

dz
5211

4

~y12!2 .

This relation together with~4.10! leads to the following expressions for the corresponding so
tions of the KdV3 hierarchy

u058q6
y~y14!~y214y24!

~y12!6 ,

u15q4
y~y14!~y214y28!

~y12!4 , ~4.26!

u2522q2
y~y14!

~y12!2 .

They represent coherent structures which propagate freely without deformation. In the casey(3)

it determines a singular solution.
More general solutions of this type can be defined by increasing the number of poles.

one may take the subspaceWPGr of boundary values of analytic functionsw5w(l) on the disk
ulu,1, with the possible exception ofn single poles at given real numbers (0,uqi u,1 i
51,...,n) and such that

l2W,W, Res~w,qi !5ciw~2qi !,

with ci.0. The corresponding KdV wave function reads

c~ t,l!5expS (
n>1

l2n21t2n21D S 11(
i 51

n
ai~ t!

l2qi
D ,

where the coefficientsai satisfy the system

ai~ t!1ci~ t!(
j 51

n
aj~ t!

qi1qj
5ci~ t!

with

ci~ t!ªci expS 22(
n>1

qi
2n21t2n21D .

By using again the functionall (w)5w8(0), theimplicit equationl (c)50 is now

t1S 12(
j 51

n
aj~ t!

qj
D 5(

j 51

n
aj~ t!

qj
2 .

It can be shown that the corresponding solutions of the KdV3 hierarchy represent composit
structures which decompose asymptotically into solutions of the form~4.26!.

Another kind of solution is obtained by considering the subspaceWPGr of boundary values
of analytic functionsw5w(l) on the diskulu,1, with the possible exception of a single pole
l50 and such that

l2W,W, ~w,q!5cw~2q!,

for given c.0 andqPR such that21,q,1. The wave function is
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c~ t,l!5expS (
n>1

l2n21t2n21D S 11
a~ t!

l D , a~ t!5q
c~ t!21

c~ t!11
,

where

c~ t!ªc expS 22(
n>1

q2n21t2n21D .

Solutions of the KdV3 hierarchy can be derived by taking the functional

l ~w!5
dw

dl
~q!1c

dw

dl
~2q!,

which verifies

W,Ker~l2l 2q2l !.

The implicit equationl (c(t,l))50 leads to

(
n>0

~2n11!q2nt2n115
1

4q S c~ t!2
1

c~ t! D .

By introducing the new variables

yª2Sn>0q2n11t2n112 logc, xª5s3 ,

zª4q3x1 logc14Sn>2nq2n11s2n11 ,

the equation reduces to

y1z52sinhy.

It defines one implicit branchy5y(z) which satisfies

dy

dz
52

1

11coshy
.

From this relation and~4.10! we get the following expressions for the associated solution of
KdV3 hierarchy:

u052
4q6

cosh6
y

2

,

u15q4S 11
2

cosh2 ~y/2!
1

3

cosh4 ~y/2! D ,

u2522q2S 11
1

cosh2 ~y/2! D .

They again represent coherent structures propagating freely and without deformation.
The same strategy can be applied for characterizing solutions of the hidden Boussines

archy. Let us first take the subspaceWPGr of boundary values of functionsw5w(l) analytic on
the unit diskulu,1, with the possible exception of a single poleq and such that
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l3W,W,
dw

dl
~0!50.

This subspace determines a wave function for the Boussinesq hierarchy given by

c~ t,l!5g~ t,l!S 11
q2t1

~11qt1!~k2q! D .

Consider now the functional

l ~w!5
d2w

dl2 ~0!,

which obviously satisfiesl3
• l 50. The equationl (c(t,l))50 implies

qt1
212t122qt250,

so that one finds the following explicit solution of the hidden Boussinesq hierarchy:

u052
12q6

~112q2x!3 , u15
q3

~112q2x!3/2,

v05
3q4

~112q2x!2 , v15
3q

~112q2x!1/2,

Other solutions can be generated by starting with the same subspaceWPGr and by taking the
functional

l ~w!5
d4w

dl4 ~0!.

In this case

l3l ~w!524
dw

dl
~0!,

so thatW,Ker(l3l ). The constraintl (c(t,l))50 takes the form

q3t1
414q2t1

314q~21q2t2!t1
218~11q2t2!t124q3~2t41t2

2!50.

A particular solutiont15b1(s2) of this equation is

b152
1

q
1

1

q
A2122q2s212A112q4s412q2s212q4s2

2.

It can be seen that the corresponding solution, as a function ofx, is globally defined onR only for
s4.21/4q4, otherwise its domain isR2@2q2(11A2124q4s4),2q2(12A2124q4s4)#.
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Elbow scattering and inverse scattering applications
to LKdV and KdV

Pierre C. Sabatier
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It is well known that many integrable partial differential equations are consistency
conditions of a ‘‘Lax pair’’ of linear differential equations whose variablesx,t can
be considered as coordinates in a plane. The standard inverse scattering method,
and the standard direct linearization methods, are related to the scattering problem
defined on thex-axis. In a previous paper, the scattering problem defined on the
t-axis was considered. Here, the scattering on an unbounded line of the plane, an
‘‘elbow,’’ is defined and it is shown how it can yield new reconstruction methods
for the solutions of the consistency condition. The results are neither as complete or
as much interesting as the standard IST, but their derivation shows that defining the
‘‘wanted’’ class of solutions is crucial, and it helps understanding why the standard
IST is so ‘‘simple.’’ © 2000 American Institute of Physics.
@S0022-2488~00!01901-0#

I. INTRODUCTION

Let x, tPR. We call t5t0 an x-path,x5x0 a t-path. LetF(k,x,t) be a 2-vector continuous
solution of the equations,

]

]x
F~k,x,t !5M ~k,x,t !F~k,x,t !, ~1.1!

]

]t
F~k,x,t !5N~k,x,t !F~k,x,t !, ~1.2!

whereM andN are 232 matrices, with zero trace, depending continuously onk,x, andt. We call
‘‘elbow’’ a path which is half-space and half-time: hereafter, more precisely, the elbowE(P0) is
the path

E~P0!5$x,tu~ t5t0 ,x>x0!,~x5x0 ,t>t0!%, ~1.3!

whose apexP0 coordinates arex0 , t0 .
Thanks to the zero trace assumption, the determinant of the matrix made out of two co

which are everywhere continuous solutions of (1.1) and (1.2) is an invariant along the elbow
throughout any bounded connected domain inR3R). F andG are two independent solutions
det@F,G#Þ0, and then any solutionH of ~1.1! and~1.2! is a linear combination ofF andG, whose
coefficients~complex numbers! only depend onk.

Suppose now thatM and N enable us to define two independent ‘‘time Jost solutions’’
their asymptotic behavior ast→` onE(P0), and two independent ‘‘space Jost solutions’’ by th
asymptotic behavior asx→` on E(P0). The ‘‘scattering problem onE(P0)’’ is settled by the
linear relations between these couples of Jost solutions, and the ‘‘scattering coefficient
calculated from their determinants. AssumeM and N depend on parameters collectively calle
‘‘the potential,W0(x,t)’’ ( x,tPE(P0)), and the scattering yields results collectively called ‘‘sc
4140022-2488/2000/41(1)/414/23/$17.00 © 2000 American Institute of Physics
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tering data,S0(k), ’’ which are bijectively related toW0 . ‘‘Solving the direct problem’’ is obtain-
ing a well defined method,R, to constructS0 from W0 , and ‘‘solving the inverse problem’’ is
obtaining a methodR2 for the reciprocal construction.

Suppose now the elbow is translated, its apex going, say, fromP050(t5x50), to P
5P(t,x) ~see Fig. 1!. By following auxiliary paths~dotted lines in Fig. 1! sitting in the asymptotic
ranges (x→`, t→`) where the contribution ofW(x,t) to M andN is very small, we can study
the asymptotic behavior of a solution defined onE~0! and continued inR3R to E~P!, or the
reverse case. Usually, simple approximations, e.g., Born’s one, enable us to do it and to re
Jost solutions ofE(P) to the continuation of those ofE~0!. Hence we can derive the evolution o
scattering data as we go fromE~0! to E(P). UsingR2 gives then back the corresponding evol
tion of W from W0 . This is nothing but inverse scattering transform, which is presented here a
did it recently for solving1 the time Cauchy problem for KdV.

In the following, we apply the program to reconstructing a solution of KdV or LKdV from
values on an elbowE(P0). Scattering and reconstruction are managed in Secs. II, III, an exa
in Sec. IV.

In the case of LKdV, reasonably weak sufficient conditions are given, so that we can
talk of an inverse scattering method. In the general case, we do not go beyond necessary
tions except in narrow classes so that we can only talk of a reconstruction method. The sca
is described as in the potential theory, by relating ‘‘space Jost solutions’’ which are defined
elbow by their asymptotic behavior asx→`, and ‘‘time Jost solutions’’ which are defined on th
elbow by their asymptotic behavior ast→`. They can be continued throughoutR2. It turns out
that if the elbow is translated, its apex~0, 0! going to (x0 ,t0), the Jost solutions of the new elbo
are related to the continuations of previous ones by derivable multiplicative factors. This re
is the corner stone of the inverse scattering method, which may also be adapted to some k
‘‘curved’’ elbows. The present paper completes a series of three where we revisit the
equation direct linearizations,1,2 and the construction of a solutionV(x,t) from boundary values by
inverse scattering. In fact, the well know inverse scattering method,3,4 applies whenV(x,t) is
known at fixed t, and we already gave1 the method applying whenV(x,t) and its two first
x-derivative are known at fixedx. The main interest of our approach is its simple physical me
ing, which makes very transparent the success of inverse reconstruction methods in inte
nonlinear evolution equations. During the completion of this series of papers, a study of som
related problems was published by Fokas and Pelloni in a beautiful paper,5 using different meth-
ods and assumptions.

II. THE KdV PROBLEM SCATTERING EQUATIONS
A. Problem

Let F(k,x,t) be a continuous solution of~1.1! and ~1.2!, where

M ~k,x,t !5S 0 1

2k21V~x,t ! 0D 5M01V, M05S 0 1

2k2 0D , ~2.1!

FIG. 1.
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N~k,x,t !52k4n21k2n11n05N01W, N05k2M0 , ~2.2!

n25S 0 0

1 0D , n15S 0 1

V0 0D , n05S V1 V0

V2 2V1
D , ~2.3!

V05 1
2V~x,t !, V152 1

4V8~x,t !, V25~ 1
2V

22 1
4V9!~x,t !, ~2.4!

V5S 0 0

V 0D , W5S V1 V0

k2V01V2 2V1
D , ~2.5!

the prime denotes the partial derivative with respect tox, and theVi8s are supposed to be continu
ous inx and t and to go to zero asx and t go to 1` inside the quarter limited by the elbowE~0!.
If we assume thatV has continuous derivative with respect tot, andV2 continuous derivative with
respect tox, F(k,x,t) has continuous second derivatives with respect tox and t and the consis-
tency relation between~1.1! and ~1.2! reads

]M

]t
2

]N

]x
1@M,N#50, ~2.6!

which holdsif and only if the Korteveg de Vries equation~‘‘KdV’’ ! holds,

]V

]t
1

1

4
V-2

3

2
VV850. ~2.7!

We wish to solve the problem: being given a convenient information onV(x,t) for x,t
PE(0), is it possible to constructV(x,t) in the quarterx>0, t>0, and how?

We always assume~Assumption A1! that V(x,0) is given forx>0, continuous and with a
‘‘sufficiently rapid’’ decreasing asx→`. Equation~1.1!, with M as in ~2.1!, reduces for the
solution componentsF1 to the Schro¨dinger equation

F2~k,x,0!5F18~k,x,0!, ~2.8!

F ]2

]x2 1k22V~x,0!GF1~k,x,0!50. ~2.9!

B. Jost solutions on the elbow

We define ‘‘space Jost solutions’’GQ 6(k,x,0) onE~0! by their asymptotic behavior,

GQ 6~k,x,0!
x→`

kPR S 7 i
k De6 ikx. ~2.10!

It follows from well known3 results onGQ 1
6 as a solution of~2.9!, and a straightforward

derivation of itsx-derivativeGQ 2
6 , that there exists a transformation kernelKQ (x,y) such that, for

any x>0,

GQ 6~k,x,0!5GQ 0
6~k,x!e6 ikx1E

x

`

KQ 6~x,y!e6 ikydy, ~2.11!

where
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GQ 0
6~k,x!5S 7 i

k6 ik~x,x! D5S 7 i

k7~2i !21E
x

`

V~y,0!dyD ~2.12!

and

KQ 6~x,y!57 i S k~x,y!

]

]x
k~x,y!D , ~2.13!

with k(x,y) being the usual Faddeev–Marchenko kernel.3 Remember that this kernel is unique
constructed only if we fix a continuation ofV(x,0) throughoutx,0, ~such thatVPL1

1(R)), but
that all the possible ones would give the sameGQ 6 on x>0.

Known on the space branch of the elbow,GQ 6 can be continued on the time branch by solvi
the Volterra equation,

GQ 6~k,0,t !5GQ 6~k,0,0!1E
0

t

N~k,0,u!GQ 6~k,0,u!du ~2.14!

provided that we know~assumption A2! the continuous functionsVi(0,t) for i 50,1,2.
In the following, we seek a solutionV(x,t) of KdV which be continuous inx and t, together

with V8 and V9, throughout the quarter plane limited byE~0!. Starting from an arbitrary poin
(x,0) of E~0!, and the valueGQ 6(k,x,0), we see that the continuationGQ 6(k,x,t) of G6(k,x,0) can
be done by solving a Volterra equation involvingVi(x,t), i 50,1,2. So, this function exists, i
unique, and depends continuously onx and t, in the quarter plane limited byE~0!.

Assume now~Assumption A3! that Vi(0,t) goes to zero ‘‘rapidly enough’’ ast→`, i

50,1,2. We can define ‘‘time Jost solutions’’GW 6(k,0,t) on E~0! by their asymptotic behavior,

GW 6~k,0,t ! ——→
kPR

t→` ~7 i
k !e6 ik3t. ~2.15!

The representation ofGW 6 by means of a transformation kernel was obtained recently1 for the
problem ~1.2! and ~2.2! on the full axis. Thus it is not so well-known, and since we need
pinpoint some properties, we shall sketch the derivation~omitting for convenience the variabl
x50 in the notations, and assuming~A4! thatV- and]V/]t also exist as continuous and asym
totically vanishing functions!; proofs are given in our previous paper.1

GW 6 is the solution, with asymptotic behavior~2.15!, of

]

]t
GW 6~k,t !5N~k,t !GW 6~k,t ! ~2.16!

or of

F ]2

]t22S ]N

]t
1N2D GGW 6~k,t !50, ~2.17!

which can be written,

F ]2

]t2 1k62k2~B1I 1B3n2!2AGGW 650, ~2.18!

where
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B15
3

4
V22

1

4
V9, B35

1

2

]V

]t
, ~2.19!

A5n0
21

]n0

]t
5:S A1 A2

A3 A4
D , ~2.20!

B5B1I 1B3n25S B1 0

B3 B1
D , ~2.21!

all the functions being taken at (k,0,t). Setting then

GW 6~ j lk,t !5GW ~ l !
6 , ~2.22!

where

j 5exp@2ip/3#, ~2.23!

and

FW n
65

1

3
k2n(

l 50

l 52

j 2lnGW ~ l !
6 n50,1,2, ~2.24!

we readily see that the six-vectorF¢ 6 whose components are theFW n
6’s is a solution of the equation

]2F

]t2 1k6F2k3S 0 B 0

0 0 B

0 0 0
D F2S A 0 0

0 A 0

B 0 A
D F50, ~2.25!

where the two 636 matrices, sayB andA are written in a 333 form because each element is
fact a 232 matrix.

The Schro¨dinger equation~2.25! can be studied by known methods,1,3 its Jost matrix solution
on the rightMW 6 being defined by the asymptotic behavior ast→`, kPR,

MW 6~k3,t ! ——→
t→`

e6 ik3tI , ~2.26!

whereI is the 636 unit matrix. Reducing the construction ofMW 6 to a Volterra integral equation
extending it to complexk and making a careful study of its asymptotics asuk3u goes to`

(6Im k3>0), shows that one can Fourier transform at fixedt the difference MW 6(l,t)
2e6 iltPW 6(t), where

PW 6~ t !5expF7~2i !21E
t

`

B~u!duG . ~2.27!

Doing the Fourier transform yields the representation ofMW 6(l,t),

MW 6~l,t !5PW 6~ t !exp@6 ilt#1E
t

`

KW 6~ t,u!exp@6 ilu#du ~6Im l>0!, ~2.28!

whereMW 6, PW 6, KW 6 are 636 matrices.
It is easy to identifyF¢ 6(k,t) as
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F¢ 6~k,t !5MW 6~k3,t !v0
7 , ~2.29!

where

v0
75S 7 i

0
0
1
0
0

D , ~2.30!

and to get from~2.28! and ~2.24! the following representation ofGW 6(k,t) ~we omit x50 in the
notations!:

GW 6~k,t,0!5GW 0
6~k,t !exp@6 ik3t#1E

t

`

KW 0
6~ t,u!exp@6 ik3u#du

1kE
t

`

KW 1
6~ t,u!exp@6 ik3u#du1k2E

t

`

KW 2
6~ t,u!exp@6 ik3u#du, ~2.31!

where

GW 0
6~k,t !5S 7 i

k7~2i !21E
t

`

B1~u!duD ~2.32!

and

KW l
6~ t,u!5:@KW 6~ t,u!v0

7# l , l 50,1,2. ~2.33!

One should notice that because the Fourier transform is used at fixedt for deriving ~2.28!, the
kernel values fort>t0 ~e.g.,t00) are bijectively related to the values ofGW 6(k,t) and of theVi8s
at t>t0 . This is similar~and due to the same reasons! to the case of Faddeev–Marchenko theo
It is tantamount to the remark we made about the fact that a continuation ofV belowx<x0 ~here
it would be belowt<t0) modifies only the corresponding part of a Jost solution defined by
asymptotic behavior asx→` ~here ast→`). We can call these properties the ‘‘local characte
of our Jost solutions representations.

Let us now come back to the precise notations. From the valueGW 6(k,0,t0), t0>0 we can
integrate the equation,

GW 6~k,x,t0!5GW 6~k,0,t0!1E
0

x0
M ~k,y,t0!GW 6~k,y,t0!dy. ~2.34!

Thanks to our assumptions on continuity and the bounds which follow from this property
~2.34! is a standard Volterra integral equation, whose solution exists and is unique. Hen
continuationG¢ 6(k,x,t) of G¢ 6(k,0,t) can be defined throughout the quarter plane limited byE~0!.

C. Elbow translations

We look for a solution of KdV in a class of functionsV that satisfy assumptions~A1!–~A4!
not only onE~0! but throughout the quarter planex>0, t>0.

Suppose now we translate the elbow to a new apex,P(x5x0.0,t50), the x axis being
unchanged. It is clear thatGª 6(k,x,0) remains the space Jost solution.
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On the other hand, ifGW 6(k,x,t) is continued in the quarter plane byG¢ 6(k,x,t), G¢ 6(k,x0 ,t)
has no reason to be the time Jost solution of the new elbow. So as to see how it is related t
can follow an auxiliary path (0,T)→(x0 ,T), with T→`.

Thanks to our assumptions onV, the Born approximation can be used to approximateM in
~2.34! and we get

G¢ 6~k,x0 ,T!;exp@M0x0#GW 6~k,0,T! ~2.35!

or, using the asymptotic behavior ofGW 6 asT→`,

G¢ 6~k,x0 ,T!;exp@6 ikx0#S 7 i
k Dexp@6 ik3T#, ~2.36!

which proves that the time Jost solution on the elbowE(P) is

GW P
6~k,x0 ,t !5exp@7 ikx0#G¢ 6~k,x0 ,t !. ~2.37!

In the same way, if a translation along the half time axis ofE~0! put the new apex atQ(x
50, t5t0), the time Jost solution is unchanged, and the new space Jost solution is

GQ Q
6~k,x,t0!5exp@7 ik3t0#Gª 6~k,x,t0!. ~2.38!

For V50, bothG¢ 6(k,x,t) andGª 6(k,x,t) reduce toE6(k,x,t),

E6~k,x,t !5S 7 i
k De6 iz, z5kx1k3t. ~2.39!

These vectors can be gathered into a matrixE,

E5~E2,E1!5S ie2 iz 2 ieiz

ke2 iz keiz D . ~2.40!

III. ELBOW SCATTERING AND INVERSE SCATTERING

A. Direct scattering

On the elbowE(0), weknow two couples of independent~Jost! solutions. Hence we can write
down at any point • ofE(0),

GQ 7~k,•!5cQ 6~k!GW 7~k,•!1dQ 6~k!GW 6~k,•! ~3.1!

from which we readily derive

cQ 6~k!5~62ik !21 det@GQ 7,GW 6#, ~3.2!

dQ 6~k!5~72ik !21 det@GQ 7,GW 7#. ~3.3!

Similarly

GW 7~k,•!5c6~k!GQ 7~k,•!1dW 6~k!GQ 6~k,•!. ~3.4!

We easily derive values of the coefficients in term of determinants and from them,

cW 7~k!5cQ 6~k!, ~3.5!
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dW 6~k!52dQ 6~k!. ~3.6!

Thus the two setscQ , dQ, andcW, dW, are equivalent. IfGQ andGW are continued intoGª andG¢ , the
equations hold true, the coefficients dependence onk only coming from the fact thatM andN are
zero trace. We shall deal with the setcQ dQ and call it the set of scattering coefficients. In th
well-known ‘‘scattering’’ problem on the line, they would ‘‘correspond’’ toT21(k) and
R1(k)/T(k) ~see Sec. IV!. The reader also may enjoy gathering the coefficients into an ‘‘elb
S-matrix.’’

B. Reconstruction on an x-path

If V(x,0), which is known forx>0 onE(0), is arbitrarily continued onx,0 as a function of
L1

1(R), we are able to construct it from the reflection coefficient and discrete spectrum data
well-known Faddeev theory. Indeed, letgQ 6(k,x) be the couple of solutions of~1.1! ~1.2!
asymptotic to

gQ 6~k,x! ——→
x→2` S 7 i

k De6 ikx, ~3.7!

we can write down

gQ 7~k,x!5aQ 6~k!GQ 7~k,x,0!1bQ 6~k!GQ 6~k,x,0!. ~3.8!

It is easy to see that for realV, Eq. ~2.9! is such that the Jost solutions in~3.8! with the minus
index are proportional to those with the1 index and the variable2k, so that

aQ 2~k!5aQ 1~2k!, bQ 2~k!5bQ 1~2k!. ~3.9!

Hence we can use only upper indexed functions in~3.8!, which can be rewritten as

~aQ 1~k!!21gQ 2~k,x!5GQ 2~k,x,0!1RQ ~k!GQ 1~k,x,0!, ~3.10!

where

RQ ~k!5~aQ 1~k!!21b1~k!. ~3.11!

Using then the representation~2.11! for GQ 2 and forGQ 1, Eq. ~3.10! can be written as

A~k,x!5E
x

`

KQ 2~x,y!e2 ikydy1RQ ~k!H GQ 0
1~k,x!eikx1E

x

`

KQ 1~x,y!eikydyJ , ~3.12!

where

A~k,x!5~aQ 1~k!!21gQ 2~k,x!2GQ 0
2~k,x!e2 ikx. ~3.13!

Let us apply (1/2p)*2`
1`eikudk to both sides of~3.12!, at u>x. It follows from ~2.11! ~2.12!

that uA(k,x)u is 0(uku21 expx Im k) asuku→`,Im k>0, so thatA(k,x)expiku goes to zero. Hence
the inverse Fourier transform ofA(k,x) reduces to a finite sum of residues at the zeros ofaQ 1(k),
i.e., k5 iln , the discrete spectrum of the Schro¨dinger operator. At eachiln , the vanishing of

aQ 1~k!5~2ik !21 det@gQ 2~k,x!, GQ 1~k,x,0!# ~3.14!

implies thatgQ 2 andGQ 1 are proportional
                                                                                                                



,

re on
early

ce

422 J. Math. Phys., Vol. 41, No. 1, January 2000 Pierre C. Sabatier

                    
gQ 2~ iln ,x!5CnGQ 1~ iln ,x,0!. ~3.15!

GQ 1 in turn can be expressed in~3.12! by using~2.11! and we get foru.x,

KQ 2~x,u!1
1

2p E
2`

1`

dkeikuR~k!FGQ 0
1~k,x!eikz1E

x

`

KQ 1~x,y!eikydyG
1(

n
rne2lnuFGQ 0

1~ iln ,x!e2lnx1E
x

`

KQ 1~x,y!e2lnydyG50, ~3.16!

where

rn52 iCn

Res

k5 iln
S 1

aQ 1~k! D . ~3.17!

The first component of~3.16! and ~2.13! readily yields the Faddeev–Marchenko equation

k~x,u!5m~x1u!1E
x

`

k~x,y!m~y1u!dy, ~3.18!

where

m~z!5
1

2p E
2`

1`

dkeikzRQ ~k!1( rne2lnz ~3.19!

and the second component yields itsx-derivative.
The reasons why we gave this terse derivation of a well-known result is that it is done he

vectorial forms similar to those which would show in the scattering on time paths and it cl
shows the ‘‘local character’’ ofk(x,y), which should have values aty5x1.0 independent of the
continuation chosen intox,0.

C. Scanning reconstruction of V„x ,t … inside the quarterplane

At the point 0(t50, x50) we know the valuesGQ 6(k,0,0) andGW 6(k,0,0), which can be
calculated respectively by solving~1.1! ~2.1! on (t50, x>0) and ~1.2! ~2.2! on (x50, t>0),
since we know, by assumption,V(x,0), (x>0) andVi(0,t), (t>0), i 50,1,2.

Hence, the elbow scattering coefficients can be derived from

GQ 7~k,0,0!5cQ 6~k!GW 7~k,0,0!1dQ 6~k!GW 6~k,0,0!. ~3.20!

At Q(0,t0), GQ 75Gª 7 is nothing but

Gª 7~k,0,t0!5cQ 6~k!GW 7~k,0,t0!1dQ 6~k!GW 6~k,0,t0!. ~3.21!

The space Jost solutions on (x>0, t5t0) are given by~2.37!,

GQ 6~k,x,t0!5exp@6 ik3t#Gª 7~k,x,t !. ~3.22!

Suppose nowV(x,t) is continued by 0 on (x,0, t). It is clear that the corresponding spa
Jost solutiongQ 2(k,x,t) is, onR2,

gQ 2~k,x,t !5S i
kDe2 ikx x,0. ~3.23!
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We can match it at anyx ~in particularx50), to the space Jost solutionsGQ Q
6(k,x,t),

gQ 2~k,x,t !5aQ t
1~k!GQ Q

2~k,x,t !1bQ 2
1~k!GQ Q

1~k,x,t !. ~3.24!

However, comparing~3.23! and ~2.39!; and using~3.22!, we see that it is tantamount t
match, atx50, E2(k,0,t) andGª 6(k,0,t), as so,

E2~k,0,t !5aQ 1~k,t !Gª 2~k,0,t !1bQ 1~k,t !Gª 1~k,0,t !, ~3.25!

where

aQ 1~k,t !5aQ t
1~k!, bQ 1~k,t !5e22ik3tbQ t

1~k!. ~3.26!

We callaQ 1(k,t) andbQ 1(k,t) the ‘‘space boundary scattering coefficients’’ at timet. Accord-
ing to ~3.25! they are equal to

2ikaQ 1~k,t !5det~E2,Gª 1!5@ iGª 2
1~k,0,t !2kGª 1

1~k,0,t !#e2 ik3t, ~3.27!

2ikbQ 1~k,t !52det~E2,Gª 2!5@ iGª 2
2~k,0,t !2kGª 1

2~k,0,t !#e2 ik3t. ~3.28!

Inserting~3.21! into ~3.27! and ~3.28! enables one constructinga1(k,t) andb1(k,t) from datas
V,V8,V9 given atx50 and all times between 0 andt. The reflection coefficient corresponding
the ‘‘potential’’ V(x,t) continued by 0 forx,0 is obviously

RQ t~k!5
bQ t~k!

aQ t~k!
5e2ik3t

bQ 1~k,t !

aQ 1~k,t !
, ~3.29!

whereas the transmission coefficient, which fixes the discrete spectrum, is@a1(k,t)#21. Hence,
V(x,t) can be constructed for this value oft and allx>0 by means of the Marchenko procedur
Continuing the scanning along the half-axis t>0 reconstructs V(x,t) in the quarter plane pro-
vided data are consistent.

Remark 1:In particular problems, it may be better using other continuations ofV.
Remark 2:It is interesting to relate between them scattering coefficients. Let us first gene

the definition of ‘‘space boundary scattering coefficients’’ by setting at anyP(x,t),

2ikaQ 1~k,x,t !5det@E2~k,x,t !,Gª 1~k,x,t !#, ~3.30!

2ikbQ 1~k,x,t !52det@E2~k,x,t !,Gª 2~k,x,t !#. ~3.31!

These coefficients match functions solving~1.1! on anx-axis, fixedt with M given by ~2.1!,
and V set to zero for values of the space variable lower thanx. They reduce toaQ 1(k,t) and
bQ 1(k,t) at x50. In the same way,

2ikaW 1~k,x,t !5det@E2~k,x,t !,G¢ 1~k,x,t !#, ~3.32!

2ikbW 1~k,x,t !52det@E2~k,x,t !,G¢ 2~k,x,t !#, ~3.33!

define ‘‘time boundary scattering coefficients,’’ which match on at-axis, fixedx, functions solving
~1.2!, with N given by~2.2!, andV setted to zero for values of the time variable lower thant. We

use the reduced notationsaW 1(k,t),bW 1(k,t) for x50. It is clear that aWQ 1(k,t), bWQ 1(k,t),
cQ 6(k),dQ 6(k), are calculated by solving direct problems involving only the data, and it is eas
see from~3.21! and ~3.30! that they are related to each other, for instance,
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aQ 1~k,t !5cQ 2~k!aW 1~k,t !2dQ 2~k!bW 1~k,t !, ~3.34!

bQ 1~k,t !5cQ 1~k!bW 1~k,t !2dQ 1~k!aW 1~k,t !. ~3.35!

The scanning procedure:ReconstructingV(x,t0) for any positive value ofx and t0 can thus
be processed as

~1! From V(x,0) andV,V8,V9(0,t), solving Eq.~1.1! with ~2.1! and ~1.2! with ~2.2!, derive the
elbow scattering coefficientscQ 1(k) anddQ 1(k).

~2! FromV,V8,V9(0, t), t>t0 , using Eqs.~3.32! and~3.33!, derive the tbs coefficientsaW 1(k,0,t)
andbW 1(k,0,t).

~3! Using Eqs.~3.34! and~3.35!, derive the sbs coefficientsaQ 1(k,0,t) andbQ 1(k,0,t). Use them to
constructV(x,t) for x>0 by the Faddeev Marchenko method as it was done on the exa
of V(x,0) @Eqs.~3.7!–~3.19!#.

Information contained in the boundary scattering coefficients on x50.
Statement I:We recall that the Faddeev Marchenko method which is shown after Eq.~3.7!,

implies that the functions ofk:aQ 1(k,t0) andbQ 1(k,t0) are uniquely determined by and unique
determine a ‘‘potential’’V(x,t0) in L1

1(R1).
Statement II:We also claim that the functions ofk:aW 1(k,t0) and bW 1(k,t0) are uniquely

determined and uniquely determine in convenient classesV(0,t),V8(0,t),V9(0,t) for t>t0 .
This statement is justified by the analysis we gave previously1 for the inverse problem relate

to ~1.2!, with N as in ~2.2!. Let us sketch it, with the present notations and concerns. First
V,V8,V9, to zero forx50, t,t0 . We introduce the solutiongW t0

6(k,t) of ~2.16!, asymptotic to

(k
7 i)e6 ik3t as t goes to2`, and notice that~3.32!, ~3.33! imply for tPR,

gW t0
7~k,t !5aW 6~k,t0!GW t0

2~k,t !1bW 6~k,t0!GW t0
1~k,t !, ~3.36!

where the time Jost solutionGW t0
6(k,t) of this ‘‘truncated’’ problem is nothing butG¢ 6(k,0,t) for

t>t0 . It is also the ‘‘truncated problem’’ case ofGW 6(k,t) defined in~2.17! and from which we
derived the 6-vectorF of ~2.25!. Exactly in the same way, we derive fromgW t0

6 the 6-vector

GW t0
6(k3,t), and from~3.36! the relation

@ã6~l!#21GW t0
6~l,t !5FW t0

7~l,t !1@ã6~l!#21b̃6~l!FW t0
6~l,t !, ~3.37!

where the 636 matricesã are made from the coefficientsaW and the matricesb̃ from the coeffi-
cientsbW in a way such that they also depend only onk3. In our truncated case and ifV,V8,V9

PL1
1(R1) it is not difficult to retrace the analysis which enables to show thatGW 2, FW 1, andã1 are

holomorphic functions in Iml>0, with I 2ã1 ~I is the identity matrix! being 0(ulu21) asulu goes
to infinity, whereasb̃1 is continuous and is 0(ulu21) at infinity onlPR. Transposed results hol
for the other upper indices, and better bounds onV and derivatives improve the asymptot
behavior ofã21b̃. It is also clear from these properties that@ã(l)#21 has only a finite number
poles in the upperhalf plane. Fourier transforming~3.37! and using~2.28! and ~2.29! yields a
matrix inversion equation for the matrix transformation kernelKW 6 which appears in~2.28!, where
datas are thus readily derived fromaW (k,t0) andbW (k,t0). The Fredholm property of this equatio
achieves the proof of our statement for almost allt.t0 and also, thanks to the continuity assum
tions onV(0,t),V8(0,t),V9(0,t), for all t>t0 .

Statements I and II show that the scanning method constructs uniquely a functionV(x,t) in
the quarter plane that satisfies the boundary conditions on the elbowE~0!. But it remains to check
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its consistency with KdV inside the quarterplaneand/or to simplify a heavy procedure. Both goa
can be reached in the case of LKdV, but only partial results are given here in the KdV cas

D. Towards an elbow inverse scattering method

1. Necessary consistency conditions

One usually calls ‘‘consistency conditions’’ the conditions on data—hereV(0,t), V8(0,t),
V9(0,t)(t>0), andV(x,0)(x>0)—which are necessary and/or sufficient for derivingV(x,t) but
can be checked without solving the full problem. We already met two sets of necessary cond
Those related to the fact that KdV existence means that mixed double derivatives ofF are
continuous arecontinuity conditionson data~in particular atx50, t50). As usually in problems
coming from physics may we expect being able to attenuate them? Probably not, because t
too closely related to the derivation of KdV. Those related to the fact that an Inverse Scat
method requires that space and time Jost solutions do exist are certainly conditions odata
asymptotic vanishing, asx→` and/or t→`. Another kind of consistency conditions, that did n
exist in the problems on the line~either in space or in time! comes from the fact that data bein
given on the half-space line and half time line, assumptions on the behavior of functions
quarter plane can imply coupling conditions between data. We see it first in the case of LK

2. The linearized problem

M0 andN0 being defined as in Eq.~2.1!, we introduce

W05V0S 0 1

k2 0D 1S V1 0

V2
0 2V1

D , ~3.38!

whereV0 andV1 are related toV as in ~2.4!, and

V2
05

]V1

]x
52

1

4

]2V

]x2 . ~3.39!

Now, define two-vector solutions,FQ 6 andFW 6, of the pair of homogeneous equations,

]FQW 6

]x
2M0FQW 62VE6505

]

]t
FQW 62N0FQW 62W0E6 ~3.40!

such that~in addition! FQ 6 is asymptotic toE6 asx→`, fixed t>0, andFW 6 is asymptotic toE6

ast→`, fixedx>0. They exist ifV(x,t) goes to zero rapidly enough~as a scattering ‘‘potential’’!
asx→1`, fixed t, and ast goes to1`, fixed x, in the quarter plane, and they areC2 if and only
if the following consistency equation~LKdV ! holds,

2
]V0

]t
2

]V2
0

]x
5:

]V

]t
1

1

4

]3V

]x3 50. ~3.41!

Let us now introduce the matricesFQW 5(FQW 2,FQW 1), the matricesSQW 0, Ṽ, andW̃0 by

FQ 5ESQ 0, FW 5ESW 0, ~3.42!

Ṽ5E21VE, W̃05E21W0E. ~3.43!

It is readily seen that

2ikṼ~k,x,t !5V~x,t !S 21 e2iz

2e22iz 1 D , ~3.44!
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2ikW̃0~k,x,t !5S 2V0~0,x,t ! e2izV0~2k,x,t !

2e22izV0~k,x,t ! V0~0,x,t ! D , ~3.45!

where

V0~k,x,t !5V2
0~x,t !12ikV1~x,t !12k2V0~x,t !. ~3.46!

It is also straightforward that eachSQW 0 satisfies the pair of equations,

]SWQ 0

]x
5Ṽ,

]SQW 0

]t
5W̃0. ~3.47!

But SW 0 andSQ 0 differ by the location of their asymptotic condition,

SW 0~k,x,>0,1`!5I 5SQ 0~k,1`,t>0!. ~3.48!

Either matrixS0 is twice differentiable if and only if the global consistency equation,

]Ṽ

]t
5

]W̃0

]x
~3.49!

holds, and this equation is equivalent to LKdV. Now, integrating~3.47! ~3.48! yields

SQ 0~k,x,t !5I 2E
x

`

Ṽ~y,t !dy, ~3.50!

SW 0~k,x,t !5I 2E
t

`

W̃~k,x,u!du. ~3.51!

Equations~3.40! are ‘‘Born approximations’’ to the exact Lax equations, but once they
settled, all the derivations are exact and do correspond to similar ones in the nonlinear prob
particular, the coupling of time and space Jost solutions in the nonlinear problem is achiev
‘‘elbow scattering coefficients’’ which depend only onk, whereas here, it follows from~3.47! that
the differenceof SW 0 andSQ 0 depends only onk,

SQ 0~k,x,t !5SW 0~k,x,t !1~2ik !21s~k!, ~3.52!

wheres(k) can be calculated from data att50, x50,

s~k!5S E
0

`

V~y,0!dy2E
0

`

V0~0,0,u!du 2E
0

`

V~y,0!e2ikydy1E
0

`

V0~2k,0,u!e2ik3udu

E
0

`

V~y,0!e22ikydy2E
0

`

V0~k,0,u!e22ik3udu 2E
0

`

V~y,0!dy1E
0

`

V0~0,0,u!du
D .

~3.53!

In the following, many matrices we write will be made out of vectors labeled6 as inE and
it will be convenient to use for them the notation

M5S M1
2 M1

1

M2
2 M2

1D .
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Now, we want to understand how the scanning method can work. Clearly, it is founded on th

that SQW 0(k,x,t) can be reached by several ways involving or not data. Because of the struct

SQW 0, it is sufficient to work on the coefficientS2
2 ~or S2

1) because the other ones can be deriv
from them. For instance, in the scanning method we described, we introduce the sbs coef
at (0,t),

vQ 0
65det@E2,FQ 2#52ikSQ 2

0 ~3.54!

we can first calculate it directly at (0,t) from the unknow valuesV̂(x,t) ~fixed t! by using~3.50!
and ~3.44!. We can also calculateSQ 2

2 from data by ‘‘following the elbow branches,’’ i.e., b
derivingSQ 0(k,0,0) from data on 0x, then using successively~3.52!, ~3.51!, ~3.52! to go from 0 to
(0,t) again by using data only. Equating the two results yields the scanning equation,

E
0

`

V̂~y,t !e22i ~ky1k3t !dy52E
0

t

due22ik3uV0~k,0,u!1E
0

`

dye22ikyV~y,0!, ~3.55!

where data appear in the r.h.s. One readily sees conditions sufficient thatV̂(y,t) can be determined
by inversing the Fourier transform, reduces toV(y,0) as t→0, and it is easy to check that
satisfies LKdV. But thatV̂(y,t) is also consistent withV0(k,0,t) does not appear easily, and
symmetric difficult point would occur if we performed at-scanning. So as to go further, we notic
that using~3.50!, ~3.51!, and ~3.52! on the two paths that join~0, 0! to ~x,t! yields the general
formula ~not depending on asymptotic conditions onV),

E
0

x

V~y,0!e22ikydy2E
0

t

V0~k,0,u!e22ik3udu5E
0

x

V~y,t !e22iky22ik3tdy

2E
0

t

V0~k,x,u!e22ikx22ik3udu, ~3.56!

whereV0, according to Eq.~3.46!, is related toV by

V0~k,x,t !52 1
4 V9~x,t !2 1

2ikV8~x,t !1k2V~x,t !. ~3.57!

If V(x,t) satisfies~3.56! for all x,t,k straightforward derivations show that it is a solution
KdV and satisfies the boundary conditions forx50, t>0, and fort50, x>0. If we let x→` and
use the ‘‘inverse scattering assumption’’ thatV(x,t) goes then to zero, we go back from~3.56! to
~3.55!. The asymptotic conditions we used above in the paper were thatV(x,t) as a function ofx,
fixed t, and its two firstx-derivatives, as a function oft, fixed x, allows ‘‘potential scattering.’’
Hence it must be true at least that*0

`uV(x,t)udx and*0
`uV0(k,x,t)udt are finite for anyk and any

value of the free variable. Suppose we impose in addition that

E
0

`

uV~x,t !udx→0,~ t→`!; E
0

`

uV0~k,x,t !udt→0,~x→`!. ~3.58!

It follows from Eq. ~3.56! that for anykPR, if conditions~3.58! hold, data must satisfy the
coupling consistency condition,

E
0

`

e22ikyV~y,0!dy5E
0

`

e22ik3uV0~k,0,u!du. ~3.59!
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Condition ~3.59! strongly reduces the range of admissible data. However, we can produce
class of data that is wide enough and is sufficient to yield a solution. To this end, let us t
following representation ofV(x,0), x>0, which is obviously the boundary value of a solution
LKdV, and satisfies asymptotic requirements,

V~x,0!5ReE
0

`

dl$e2ilxv~l!1e2i j lxw~l!%, ~3.60!

wherev,v8,v9,PL1(R1),w,w8 are bounded onR1 and absolutely continuous at 0;j 351 andw
can contain also Dirac measures. As forV(0,t),V8(0,t),V9(0,t) we choose them of the form (t
.0, p50,1,2),

V~p!~0,t !5ReE
0

`

@up~l!e2il3t#lpdl, ~3.61!

where theup8s and two first derivatives belong toL1(R1).
Tauberian theorems show thatV(p)(0,t) can be continued into Imt>0, and thatV(x,0) is the

real part of a sum of functions that can be continued analytically respectively into Imy>0,
Im jy>0, or Im jp y>0. These properties, together with those on the real axis, are also equiv
to the representations we wrote. Inserting now Eqs.~3.60! and ~3.61! into ~3.59! we see that the
coupling condition~3.59! holds if

up~l!5~2i !p@v~l!1 j pw~l!# p50,1,2. ~3.62!

In this case theup8s must be related between them by

u0~l!2 1
2i ju 1~l!2 1

4 j 2u2~l!50. ~3.63!

Thanks to~3.59!, the scanning equation~3.55! reduces to

V̂~y,t !5p21E
2`

1`

e2ikydkE
t

`

due22ik3uV0~k,0,u!. ~3.64!

Deriving V0(k,0,u) from ~3.61! and ~3.62! we obtain

V~y,t !5
1

2 E0

`

dl$@e2ilyv~l!1e2i j lyw~l!#e2il3t

1@e22ilyv* ~l!1e22i j 2lyw* ~l!#e22il3t%, ~3.65!

which is indeed a solution of LKdV and satisfies the two boundary conditions.
It seems difficult to get at reasonable larger classes of boundary conditions where the sc

methodis guaranteedto work. On the opposite way if we enforce conditions stronger than~3.58!,
we easily get unacceptable constraints. For instance, assuming that there exists forx,0 an
underlying ‘‘potential’’ such that*2`

1`dxuV(x,t)u and *0
`dtuV(k,x,t)u are finiteand

E
2`

1`

dxuV~x,t !u→0~ t→`!; E
0

`

dtuV0~k,x,t !u→0~ uxu→`! ~3.66!

enables us to continue~3.56! for x,0, but eventually showing thatV(x,0) vanishes for almos
every value ofx!

If we give up Eq.~3.58! and impose only the second part of~3.66!, we get from~3.56! what
can be called the ‘‘standard IST’’ for the linearized case, namely,
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E
2`

1`

dy@V~y,t !e22iky22ik3t2V~y,0!e22iky#50, ~3.67!

where it is seen that the Fourier transform~or ‘‘reflection coefficient’’! of V(y,t) evolves with
time by a simple factore2ik3t ~the ‘‘linearized transmission coefficient’’ is 1!. The solutionV(x,t)
can then be represented by

V~x,t !5E
2`

1`

e2ilx12il3tv~l!dl, ~3.68!

wherev is such that, say,

E
2`

1`

~11l2!uv~l!udl,`. ~3.69!

It is clear that this representation corresponds to the ‘‘standard’’ scattering problem i.e
on the linex. If V is given there,V(x,t) is determined everywhere. If we are givenV only on the
elbow but assume that there exists an underlying ‘‘potential’’ with the properties above, we
check that the values on the elbow are consistent with the representation~3.68!. We do not give
here a study of special classes where it can be done@including the case where we keep~3.58!#,
since we are too far from the main object of our paper.

3. The nonlinear problem

Let us first remark that the matricesG(k,x,t) satisfy both Eqs.~1.1! and ~1.2!, say,

]

]x
G2MG5

]

]t
G2NG50, ~3.70!

whereG stands for any of the matricesG we introduced, andM and N are given by~2.1! and
~2.2!. For V50, matricesGW 5(G¢ 2,G¢ 1) andGQ 5(Gª 2,G¢ 1) both reduce toE, which is given by
~2.40! and is a solution of

]

]x
2M0E5

]E

]t
2N0E50. ~3.71!

Setting now

Gª¢ 5ESQW , ~3.72!

we see that~3.70! holds provided

]SQW

]x
2ṼSQW 5

]SQW

]t
2W̃SQW 50, ~3.73!

where

Ṽ5E21VE, W̃5E21WE, ~3.74!

and the definitions ofSW andSQ are achieved by setting

SW ~k,x,1`!5SQ ~k,1`,t !5I . ~3.75!

The consistency condition derived from~3.73! by fixing SW or SQ in C2 is
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]Ṽ

]t
2

]W̃

]x
1@Ṽ,W̃#50. ~3.76!

From ~2.40! we easily derive

E215
1

2ik S keiz ieiz

2ke2 iz ie2 izD ~3.77!

and from~3.74!,

Ṽ~k,x,t !5
V~x,t !

2ik S 21 e2iz

2e22iz 1 D , ~3.78!

W̃~k,x,t !5
1

2ik S 2V~0,x,t ! e2izV~2k,x,t !

2e22izV~k,x,t ! V~0,x,t ! D , ~3.79!

where

V~k,x,t !5V212ikV112k2V0 . ~3.80!

These formulas are written for anykPR. It is a matter of straightforward derivations, an
identification of the coefficients ofk0,k1,k2, to show that KdV, as given by~2.7!, is equivalent to
the consistency formula~3.76!.

For realV, realk, Gª 1(k,x,t) andGª 2(k,x,t) are complex conjugate of each other. We can u
this fact for deriving the componentsGª 1

2 ,Gª 2
2 ,Gª 1

1 ,Gª 2
1 , from det@E2,Gª 1# and det@E2,Gª 2#. It is

then easy to see that if these two determinants areC2 as functions ofx and t, so doGª 1 andGª 2,
and the reverse is obvious. Hence, according to~3.30! and~3.31!, writing down thataQ 1(k,x,t) and
bQ 1(k,x,t) areC2 functions ofx andt should give a consistency formula equivalent to KdV. Doi
it is simplified thanks to two formulas, which follow from~1.1!, ~1.2! and the zero trace propert
of M andN,

]

]x
det~E2,G!52det~~VE!2,G!, ~3.81!

]

]x
det~E2,G!52det~~WE!2,G!, ~3.82!

whereG stands either forG¢ 1,G¢ 2,Gª 1,Gª 2, with of course the same meaning in both sides o
given formula.

Writing down that]2b1/]x]t5]2b1/]t]x gives with the help of~3.81! and ~3.82! the con-
sistency formula,

]

]t
@Ve2 izG1

2#5
]

]x
@~v2GQ 1

22v1GQ 2
2!e2 iz#, ~3.83!

where

v15V12 ikV0 ; v25V21 ikV11k2V0 . ~3.84!

It is tantamount to say that~3.83! must hold at any point~x,t! of the quarterplane or to say tha
its integrated form on any rectangle (X0 ,X)(T0 ,T) of the quarter plane must hold,
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E
X0

X

dye2 i ~ky1k3T!V~y,T!GQ 1
2~k,y,T!2E

X0

X

dye2 i ~ky1k3T0!V~y,T0!GQ 1
2~k,y,T0!

5E
T0

T

due2 ik3u$e2 ikX@v2~k,X,u!GQ 1
2~k,X,u!2v1~k,X,u!GQ 2

2~k,X,u!#

2e2 ikX0@v2~k,X0 ,u!GQ 1
2~k,X0 ,u!2v1~k,X0 ,u!GQ 2

2~k,X0 ,u!#%. ~3.85!

By the same token, we obtain froma1,

]

]t
@Ve2 izGQ 1

1#5
]

]x
@~v2GQ 1

12v1GQ 2
1!e2 iz# ~3.86!

and the integrated condition~3.85! with GQ 1
1 instead ofGQ 1

2 .
Let us now come to the asymptotic assumptions. If~in addition to the existence inL1 of the

derivatives we use!, V(x,t) goes to zero faster thanx23 asx→`, andV(k,x,t) faster thant23 as
t→`, scattering studies show that the scattering coefficients exist and Jost solutions are b
for any couple~x,t!. But let us assume in addition a condition similar to~3.58!,

E
0

`

uV~x,t !udx→0, ~ t→`!; E
0

`

uV~k,x,t !udt→0, ~x→`!. ~3.87!

From ~3.85! and~3.86!, settingX05T050, and lettingX, thenT, ~or the reverse order! go to
`, we get thecoupling consistency condition,

E
0

`

dye2 ikyV~y,0!GQ 1
6~k,y,0!

5E
0

`

due2 ik3u@v2~k,0,u!GQ 1
6~k,0,u!2v1~k,0,u!GQ 2

6~k,0,u!#. ~3.88!

Going back to Eqs.~3.81! and ~3.82!, we see that this condition is written as well as

det@E2,GQ 6#~k,x,0!] ux50
x5`5det@E2,GQ 6#~k,0,t !] t50

t5` ~3.89!

which implies that det@E2,GQ 6# vanishes atx50, t5`, or, because of Eq.~3.1!,

dQ 1~k!5cQ 2~k!50. ~3.90!

HenceGQ 1 andGW 6 are proportional. Writing down det@GQ 2,GQ 1# with the help of Eq.~3.1!, we
readily show that

cQ 1~k!dQ 2~k!51, cQ 1~k!5e2 iw~k!, dQ 2~k!5eiw~k!, ~3.91!

where we used the fact thatGQ 1 and GQ 2 are conjugate.Hence the consistency condition (3.8
holds together with (3.87) if and only if the elbow scattering coefficients reduce to a phase

from GQ 6 to GW 6.
If we seek a solutionV(x,t) which could also be derived from an ‘‘underlying’’ potentia

V(x,0) ~defined on the whole line and vanishing at`! by the ‘‘standard’’ inverse scattering
transform the natural condition is that*0

`uV(k,x,u)udu goes to zero asx→` but *2`
1`uV(x,t)udx

does not ast→`. Hence, it follows from~3.85! that for any T,
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E
0

`

dye2 ikyV~y,0!GQ 1
6~k,y,0!5E

2`

1`

dye2 ikyV~y,T!GQ 1
6~k,t,T!, ~3.92!

which is the cornerstone of the standard IST. Equation~3.92! says that the transmission coefficie
and the reflection coefficient corrected by a factore2ik3t are independent oft. It is then easy to see
that the conditions~3.91! correspond to the caseV(x,0) is a transparent potential, andeiw(k) is then
trivially related toT(k) ~a product of factors (k1 iln)/(k2 iln)), and the class of solutions is th
‘‘multisolitonic’’ one. The scanning method works but these results have only a secondary in
after the invention of the standard IST, and need not a detailed study. They mainly show w
standard IST is so simple, to what constraints it is related, and illustrate the fact that a hop
weak constraint may be actually too strong for deriving a new IST.

Of course, the first strategy these results suggest is to stick to one direction of scannin
the x-direction, so that the vanishing of*0

`uV(k,x,t)udt as x→1` can still remain a working
assumption and to give up any other one on*0

`uV(x,t)udx. The successes we got up to now in th
direction do not go much beyond the standard IST. However, we still believe that giving up~3.87!
and any supposed information outside of the quarterplane, it is possible to give new classes
for which the scanning method is guaranteed~may be those which might correspond, in a ‘‘ge
eralized standard IST,’’ to an underlying potential that is unbounded forx,0).

E. Alternative points

1. t-scanning

The method we described can be considered as a scanning of the quarter-plane by rays
to the x-axis, and recoveringV(x,t) from the information contained in sbs coefficients at t
points where rays intersect the (0,t) path. It needs solving the direct ‘‘t’’ problem along the time
axis, deriving the sbs coefficients at each point of the time axis, and solving the inversex’’
problem from it by means of Faddeev–Marchenko method.

An alternative and already quoted method would use a scanning of the quarter plane b
parallel to thet-axis, and recoveringV(x,t) from the information contained in tbs coefficients
the points where rays intersect the (0,x) path. It would need solving the direct ‘‘x’’ problem along
the time axis, deriving the tbs coefficients at each of thex-axis, and solving the inverse ‘‘t’’
problem from it by means of the method recently given in our previous paper, and recalled
under the title ‘‘statement II.’’

2. Extension to ‘‘curved elbows’’

We shall call ‘‘curved’’ elbow any line inside thex>0, t>0 quarter plane which separate
this domain into two simply connected open domains and reduces asx or t go to1` to a branch,
respectively, parallel or asymtotic to a fixedx or a fixedt straight line. The method of reconstruc
tion which was described above can be readily extended to such an elbow provided it is po
to scan the domain which contains (x5`, t5`) either by rays parallel to thex-axis~first method!
or by rays parallel to thet-axis~alternative method!. For instance, the first method will apply t
elbows made of thex-branch (x>x0 , t5t0) and thet-branch (x5 f (t), t>t0), provided f (t) is
continuously defined forF(k,x,t) along thet-branch from dataV(x(t),t)((]/]x)V(x,t))x5x(t)

3((]2/]x2)V(x,t))x5x(t) , deriving the sbs coefficient at each point (x(t),t) and recovering
V(x,t) from this information. There is an apex in this example, but it is not necessary, an
method apply as well if thex-branch is replaced for 0<t1<t<t0 by the ~convex! graph of the
continuous and decreasing functiont5g(x)(x>x0). In the case of elbow whose structure wou
be similar after interchangingx and t, one will make a scanning by rays parallel to thet-axis and
use the alternative method. Convex elbows can fit both approaches.
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IV. EXAMPLES

A. Preparation and reminders

It is of interest for readers familiar with potential theory to notice that Eq.~2.11! for G1 , Eqs.
~3.10!, ~3.11!, ~3.15!, ~3.17!, ~3.18!, ~3.19!, are the ‘‘right side’’ equations of the usual invers
scattering theory on the axis. We give the correspondence with usual notations,3 which is obtained
after making the substitutions,

gQ 6~k,x!57 i f 2~7k,x!; GQ 1
6~k,x!57 i f 1~6k,x!, ~4.1!

@aQ 1~k!#215T~k!, R~k!52R1~k!, pn52pn
1 , ~4.2!

and putting the upper index1 to k1(x,y) in ~3.18!, so that3

f 1~k,x!5eikx1E
x

`

k1~x,y!eikydy, ~4.3!

2m~z!5m1~z!5~2p!21E
2`

1`

dkeikzR1~k!1(
n

pn
1e2lnz, ~4.4!

k1~x,y!1m1~x1y!1E
x

`

k1~x,z!m1~z1y!dz50. ~4.5!

Of course, these formulas hold without the restrictionV50 for x,0 providedVPL1
1.

In addition, we can notice that although the reflection coefficient is not generally define
Im kÞ0 in the complexk-plane, it may be in some examples. In such a case, and in agreemen
~3.15! and ~3.17!, we have

pn
652 i ~ResT!~ iln!~R6/T!~ iln!. ~4.6!

The index minus which appears in this ‘‘usual’’ notation3 refers to the left-hand side problem
which corresponds to the right hand side one as~3.4! corresponds to~3.1!, and whose ‘‘master’’
formulas are

f 2~k,x!5eikz1E
2`

x

k2~x,y!e2 ikydy, ~4.7!

m2~z!5~2p!21E
2`

1`

dke2 ikzR2~k!1(
n

pn
2elnz, ~4.8!

k2~x,y!1m2~x1y!1E
2`

x

k2~x,z!m2~z1y!dz50, ~4.9!

k2~x,x!5
1

2 E2`

x

V~y!dy. ~4.10!

Finally, notice that the approach from the left-hand side and the approach from the right
side should give the same results in the case of a potentialV belonging toL1

1(R)~but the calcu-
lation of V may be easier by one of them!, that the structure of~2.9! is such thatT(k) is the same,
and finally that, as it is well known3 and also could be seen from~3.6!,

R2~k!/T~k!52R1~2k!/T~2k!. ~4.11!
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B. Academic example

Suppose we are given

V~0,t !522K2/ch2~K3t !, ~4.12!

V~x,0!522K2/ch2@Kx#. ~4.13!

We readily derive

GW 6~k,0,t !5e6 ik3tS 7 i
kchw7 ikshw

~k7 ik!chw

k2ch2w7 ikkchwshw1k2

~k7 ik!ch2w

D , ~4.14!

G6~k,x,0!5e6 ikxS 7 i
kchu6 ikshu

~k6 ik!chu

k2ch2u6 ikkchushu1k2

~k6 ik!ch2u

D , ~4.15!

where

w5k3t; u5kx. ~4.16!

From ~3.2! and ~3.3! we readily derive

cQ0
6~k!5

k6 ik

k7 ik
, dQ 0

6~k!50, ~4.17!

and from~3.27! and ~3.28! at (0,t0),

aQ t0
1~k!5

2k2ch2w~ t0!22ikkchw~ t0!shw~ t0!1k2

2k~k1 ik!ch2w~ t0!
, ~4.18!

bQ t0
1~k!52k2@2k~k2 ik!ch2w~ t0!#21. ~4.19!

Using ~4.2!, ~4.4!, ~4.5! and noting that forz.0, the contribution ofR1(k) to m1(z) can be
calculated by residues and a half circle in the upper plane, we obtain forz.0,

m1~z!52Ke2kz12w0 ~4.20!

and then, forx>0, t>0,

V~x,t !522k2/ch@kx2k3t#. ~4.21!

This result was of course expected; it shows that the method works on a well-known so
of KdV but it has only a pedagogical interest.

APPENDIX: REMARK ON EQUIVALENT SCANNINGS AND CLASSES OF SOLUTIONS

If V(x,0) andV,V8,V9(0,t) were given on the elbow without relation between them,
scanning parallel to thex-axis and that parallel to thet-axis would enable us to construct tw
different functionsV(x,t) in the quarter plane. Since KdV~resp. LKdV! is a consistency relation
these functions generally would not be solutions of KdV.~resp. LKdV!. Hence, coupling condi-
tions between data are unavoidable. Conversely, if we are able to construct a class of solu
                                                                                                                



ould

asy to

-
satz for

ons’’

It is

the

435J. Math. Phys., Vol. 41, No. 1, January 2000 Elbow scattering and inverse scattering . . .

                    
KdV ~resp. LKdV! with asymptotic properties that allow the two ways of scanning, they sh
yield the functionV(x,t) in the quarter plane. This remark inspired the ansatz~3.60!–~3.61!. We
did not check at this point that the two ways of scanning were equivalent. It is tedious but e
do it. Indeed, if Eq.~3.59! is taken into acount,x-scanning andt-scanning, respectively, solve

E
0

`

V̂~y,t !e22ikydy5e2ik3tE
t

`

V0~k,0,u!e22ik3udu, ~A1!

E
0

`

V̂0~k,x,u!)e22ik3udu5e2ikxE
t

`

V~y,0!e22ikydy, ~A2!

whereV(y,0) is given by Eq.~3.60!, andV0(k,0,u) follows from Eqs.~3.61! and ~3.62!,

V0~k,0,t !5E
0

`

dle2il3t$l2 Re@v~l!1 j 2w~l!#1 ikl Im@v~l!1 jw~l!#1k2 Re@v~l!1w~l!#%.

~A3!

The coupled data yield the r.h.s. of~A1! and~A2!. Thex-scanning yieldsV̂(x,t) by inversing
the Fourier transform in the l.h.s. of~A1!, as it is done in Eq.~3.64!. Thet-scanning yieldsV̂(x,t)
by first changing~A2! into three equations for functions ofk3 and then inversing Fourier trans
form. In both cases, the inversion has the uniqueness property. Hence we can use an an
V̂(y,t). If we use as an ansatz the r.h.s. of Eq.~3.65!, with v̂,ŵ instead ofv,w, we readily see that
in both x and t scanning, the solution is given by

v5 v̂, w5ŵ, ~A4!

which proves our point.
For the nonlinear problem, it is possible to derive a generalization of the class of ‘‘soluti

~3.65!, by using a direct linearization equation that we derived in a previous paper.1 Let us use, for
instance, its Eqs.~6.9! and~6.10!. They can be written with a measure similar to~3.65!, and give
GQ 1

1 andV ~with notations of the present paper!,

GQ 1
1~k,x,t !52 i exp@ i ~kx1k3t !#1E

2`

1`

dma0~m!t~k,m,x,t !GQ 1
1~m,x,t !

1E
0

`

dna1~n!t~k, j n,x,t !GQ 1
1~ j n,x,t !

1E
0

`

dna1* ~n!t~~k,2 j 2n,x,t !GQ 1
1~2 j 2n,x,t !, ~A5!

V~x,t !52i
]

]x H E
2`

1`

dma0~m!ei ~mx1m3t !GQ 1
1~m,x,t !1E

0

`

dna1~n!ei ~ j nx1n3t !GQ 1
1~ j n,x,t !

1E
0

`

dna1* ~n!ei ~2 j 2nx1n3t !GQ 1
1~2 j 2n,x,t !J , ~A6!

wheret was defined in the paper.1 It is clear that~A6! reduces to~3.65! in the linear limit provided
thatma0 andna1 are trivially related tov andw; we shall assume they are in the same sets.
then possible to check thex-scanning Eqs.~3.88!, coming from~3.87!, and thet-scanning equa-
tions ~obtained in the same way!. Uniqueness properties can be obtained, but we shall not do
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job, which is complicated and quite tedious, because it is clear that the characterization of th
defined in the r.h.s. of~A6! ~where the Jost solutions can be re-expressed in terms ofV by means
of Volterra equations! is too complicated to be really useful.

1P. C. Sabatier, ‘‘New direct linearization for KdV and solutions of the other Cauchy problem,’’ J. Math. Phys40,
2983–3020~1999!. In this large size paper, misprints unfortunately remain in particular in formula~2.11!, whose two last
terms are2

1
2V f8s1

1
4V8 f s, and~2.12!, where one should read23Vg8 and not13Vg8.

2P. C. Sabatier, ‘‘On local inverse transforms,’’ J. Math. Phys.39, 5396–5405~1998!.
3K. Chadan and P. C. Sabatier,Inverse Problems in Quantum Scattering Theory, 2nd ed. revised and expanded~Springer,
Berlin, 1989!.

4F. Calogero and A. Degasperis,Spectral Transform and Solitons~North–Holland, Amsterdam, 1982!.
5A. S. Fokas and B. Pelloni, ‘‘The solution of certain initial boundary-value problems for the linearized Kortewe
Vries equation,’’ Proc. R. Soc. London, Ser. A454, 645–657~1998!; A. S. Fokas and B. Pelloni, ‘‘A spectral approac
for linear and integrable nonlinear PDE’s in arbitrary domains’’~preprint, January, 1999!.
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Local twistors and the conformal field equations
Jörg Frauendienera)

Institut für Theoretische Astrophysik, Universita¨t Tübingen, Auf der Morgenstelle 10,
D-72076 Tu¨bingen, Germany

George A. J. Sparling
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

~Received 2 August 1999; accepted for publication 25 August 1999!

In this paper we establish the connection between Friedrich’s conformal field equa-
tions and the conformally invariant formalism of local twistors. ©2000 American
Institute of Physics.@S0022-2488~00!01301-3#

The conformal field equations as derived by Friedrich1 have proved to be a valuable tool i
both analytical and numerical work in general relativity. Not only has it been possible to d
global existence theorems for solutions of Einstein’s field equations,2,3 thereby obtaining rigorous
results about the global properties of asymptotically flat space–times. It was also succe
demonstrated that the conformal field equations provide a well-defined and very well-be
system of equations for numerical purposes~Refs. 4–10!.

The success of this formulation of the Einstein equations is due to the fact that the conf
field equations areregular andconformally invariant. This allows for the inclusion of the parts o
a space–timeM̃ which are ‘‘at infinity’’ with respect to the ‘‘physical metric’’g̃. The extension
into the ‘‘unphysical’’ space–time manifoldM with metricg is achieved by embeddingM̃ into M

in such way that on the image inM ~which we identify withM̃ ) the relationg5V2g̃ holds, where
V is a conformal factor, i.e., a non-negative scalar function onM with the property that it is
strictly positive onM̃ . On the setIª$V50% one imposes the conditiondVÞ0, by which I
becomes a regular three-dimensional hypersurface ofM. For more information on this construc
tion we refer to Ref. 11~see also Ref. 12 for a recent review!.

The physical metricg̃ on M̃ is therefore replaced by a pair (g,V) on M, which gives rise to
g̃5V22g at points ofM with VÞ0, but makes sense also at points whereV vanishes. Obviously,
this relationship is not one-to-one, as there are many pairs (g,V) which give rise to the same
metric g̃. In fact, we need to regard (g,V) as being equivalent to (u2g,uV) for any strictly
positive functionu on M. Thus, every equation forg̃ has the property that, when expressed
terms of a pair (g,V), it is invariant under the rescalingg°u2g, V°uV. This is the conformal
invariance of the equation in question.

Our purpose in this paper is to show how the conformal field equations of Friedrich ca
expressed in the manifestly conformally invariant formalism of local twistors.13

We start by writing down the conformal field equations. Using the conventions of Re
throughout, we definePabª2 1

2(Rab24Lgab), whereRab is the Ricci tensor of the metricgab

with scalar curvatureR524L. Furthermore, we defineda
bcdªV21Ca

bcd and sª2 1
4(hV

24LV). Note ~Ref. 11!, that as a consequence of the smoothness ofJ, the Weyl tensorCa
bcd

vanishes onJ so that the ‘‘gravitational field’’da
bcd is regular there. With these variables th

conformal field equations can be expressed onM as follows:

¹aPbc2¹bPac52¹eV de
cab , ~1!

¹ada
bcd50, ~2!

a!Electronic mail: joergf@tat.physik.uni-tuebingen.de
4370022-2488/2000/41(1)/437/7/$17.00 © 2000 American Institute of Physics
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¹a¹bV1VPab1sgab50, ~3!

¹as2Pab ¹bV50, ~4!

2Vs2¹aV ¹aV5l/3. ~5!

The covariant derivative operator¹ is the Levi–Civita connection of the metricg andl denotes
the cosmological constant. Several remarks are in order

~1! These equations are easily checked to be conformally invariant in the sense explained
~2! If one takesg5g̃ andV51 then the equations turn out to be equivalent onM̃ to the Einstein

vacuum equations with cosmological constantl together with the Bianchi identity for the
Weyl tensor.

~3! When these equations are supplemented by the first and second Cartan structure eq
then one can derive a first order system of equations for a tetrad, the connection, the cu
and the conformal factor.

~4! Upon introduction of suitable ‘‘gauge source functions’’ this system can be decompose
a symmetric hyperbolic system of evolution equations and a set of constraint equation
constraints are propagated by the evolution. This is the basis for the analytical and num
applications mentioned above.

We now want to briefly discuss the concept of a local twistor. Let (M ,g) be any ~four-
dimensional! Lorentzian space–time. LetTa(M ) denote a fiber bundle overM with each fiber
isomorphic to twistor spaceTa. In the usual manner, we may construct the Grassmann bu
G2(Ta)(M ) of two-dimensional subspaces ofTa overM. Then the structure ofTa(M ) is fixed by
the requirement that the fiber ofG2(Ta)(M ) over any point be isomorphic to the~complexified,
compactified! Minkowski vector spaceTpM . This is nothing but the usual Klein corresponden
which allows the identification of points of Minkowski space with two-dimensional subspace
twistor space. Each element of the fiber ofTa(M ) overp is called a local twistor atp and a section
Za of Ta(M ) is called a local twistor~field!.

We may identify each tangent vector atpPM with a two-dimensional subspace of the fiber
Ta(M ) over p, which in turn can be identified with a bitwistorVab52Vba up to scale. Real
tangent vectors correspond to simple bitwistors which satisfy the reality condition

Vab5V̄ab .

Here, the overbar denotes complex conjugation which takes twistors to dual twistors anVab

5 1
2eabgdVgd is the dual ofVab. Also, «abgd is the four-dimensional volume on twistor space

Each fiber ofTa(M ) can be considered as a direct sum of two two-dimensional spin sp
However, this decomposition depends on the conformal scale: if, for a given metricg a local
twistor is represented by (vA,pA8), then for the conformally related metricu2g this same twistor
is represented by (vA,pA81 iYAA8v

A), whereYa5u21 ¹au. We writeZa5(vA,pA8), when the
metric g is understood.

There exists a natural connectionD on Ta(M ), the local twistor transport. It is defined i
terms of the representing spinor fields by

DZa5~dvA1 iuAA8pA8 ,dpA81 iPABA8B8u
BB8vA!.

Here, the one-formuAA8 is the van der Waerden one-form or soldering form whilePABA8B8 is the
spinor form ofPab defined above. It is easily checked that this has the right conformal tran
mation properties. The curvature ofD can be obtained as usual fromD2Za52 iK b

aZb.
The fact that the tangent spaces ofM are not affine spaces but vector spaces with a prefe

origin implies the existence of a global sectionXab ~unique up to scale!, representing the zero
                                                                                                                



nnec-

eds to
onfor-
f an

ich

439J. Math. Phys., Vol. 41, No. 1, January 2000 Local twistors and the conformal field equations

                    
section ofT(M ). Equivalently, one can think ofXab as representing the ‘‘current point’’p in the
fibre overp. This ‘‘origin twistor’’ is simple, i.e., it satisfiesXa[bXgd]5X[abXgd]50. We have

Xab5S 0 0

0 «A8B8
D .

Its covariant derivative is easily computed as

DXab5S 0 iuA
B8

2 iuA8
B 0 D . ~6!

Thus,DXab assumes a role similar to the soldering form. As a consequence of Eq.~6! we have

D2Xab52iK g
[aXb]g50, ~7!

which, in view of the previous remark, can be interpreted as stating that the local twistor co
tion has no torsion.

From Eq.~7! we conclude thatKa
b has the form

Ka
b5S iCA

B FAB8

0 2 i C̄A8
B8
D .

Here CAB5CABCDSCD contains only the Weyl curvature spinor whileFAA8
5“C(C8P

C
D8)AA8S

C8D81c.c. contains only the~derivatives of the! Ricci curvature. The anti-self-
dual two-formSAB is defined bySAB5uA

A8`uBA8.
The Einstein equations themselves are not conformally invariant. Therefore, one ne

introduce an additional structural element in order to reduce the structure group from the c
mal group to the Poincare´ group. This is done conventionally by postulating the existence o
infinity twistor. This is a real bitwistor~field! I ab which is to represent the ‘‘point at infinity.’’
Finite points represented byUab have the property thatUabI abÞ0 while for points at infinity this
quantity vanishes. Note that this interpretation is valid only if the infinity twistor is simple, wh
we do not require here.

In terms of its representing spinor fields the infinity twistor has the form

I ab5S f «AB iGA
B8

2 iGA8
B g«A8B8

D ,

with real functionsf, g, and a Hermitian spinor fieldGAA8 . Its covariant derivative has the form

DI ab5S E«AB iEA
B8

2 iEA8
B E8«A8B8

D ,

for two scalar one-formsE andE8 and a Hermitian spinor-valued one-formEAA8 . These forms
are given by

E5d f2GAA8u
AA8, ~8!

EAA85dGAA81guAA81PABA8B8u
BB8, ~9!

E85dg2PABA8B8u
BB8GAA8. ~10!
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SinceXab represents the current point and sinceXabI ab52 f we require thatf vanishes at infinity,
i.e., at those points whereV50. Thus, we make the ansatzf 5V. A comparison of Eqs.~8!–~10!
with the conformal field equations~3! and~4! then shows that these equations are exactly equ
lent to the equation

DI ab50, ~11!

provided we make the identificationsf←V, GAA8←¹AA8V andg←s. As a consequence of Eq
~11! we haveD(I abI ab)50 and hence the equation

I abI ab52Vs2¹AA8V ¹AA8V5const5l/3,

i.e., Eq.~5!. We note, that the infinity twistor has the property

I agI bg5
l

12
db

a . ~12!

Therefore, the infinity twistor is simple if and only if the cosmological constant vanishes.
Before we consider the curvature equations~1! and ~2! we need to discuss some more pro

erties of the origin and infinity twistors. We have the following lemma.
Lemma 1: The two twistors Ua

b5XagI bg and Pa
b5I agXbg possess the following properties

~i! Pa
gPg

b5VPa
b, Ua

gUg
b5VUa

b;
~ii ! Pa

gUg
b5Ua

gPg
b50;

~iii ! at points withVÞ0 both V21Pa
b and V21Ua

b are projectors onto two-dimensiona
subspaces ofTa;

~iv! Pa
b1Ua

b5Vda
b.

Proof: The property~i! is immediate when one uses the fact thatXab is simple, which implies
Xa[bXg]d52 1

2XadXbg . Property (i i ) follows from direct calculation. The projector property (i i i )
follows from ~i! and the fact thatPa

a5Qa
a52V. Finally, (iv) follows from (i i ) and the four-

dimensionality of twistor space. j

These two twistors,Ua
b and Pa

b, can be interpreted as projectors onto the unprimed
primed spin spaces, respectively.

Next, we consider the curvature equations~1! and~2!. The definition of the gravitational field
tensorda

bcd suggests that we try to divide the curvatureKa
b by the infinity twistor, i.e., to write

Ka
b5Db

agdI gd for some unique and regularDb
agd which has to be determined. To begin wi

we have the following.
Lemma 2: Consider the spaceVa

b of twistors Ea
b, satisfying the equations

Eg
[bXa]g50, Eg

[bI a]g50.

Then the map

v:Ea
b°I agEd

gXdb1XagEd
gI db

mapsVa
b into itself. Furthermore, it is an isomorphism at points withVÞ0.

Proof: The proof is straightforward once we have made the following observation. F
Lemma 1 we obtain for anyEa

bPVa
b,

I agEd
gXdb5I agEd

bXdg5Pa
dEd

b,

and similarly for the other term, which equalsUa
dEd

b. Thus, v mapsEa
b°VEa

b which is
obviously an isomorphism ifVÞ0. j

Now we find thatv does exactly what we set out to show, namely that it allows us to w
Ka

b proportional to the infinity twistor. We have the following.
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Proposition 3: The curvature Ka
b of the local twistor connection can be written as

Ka
b5I agEd

gXdb1XagEd
gI db, ~13!

for some uniquely determined Hermitian, trace-free twistor Ed
g. This twistor satisfies the equatio

I agDEd
gXdb1XagDEd

gI db1I agEd
gDXdb1DXagEd

gI db50, ~14!

or, equivalently,

DEa
b1

DV

V
Ea

b50. ~15!

Proof: A further consequence of Eq.~11! is

Kg
[aI b]g50.

Thus,Ka
b is a two-form with values inVa

b and by Lemma 2 it is of the form~13! at points with
VÞ0. The fact thatEd

g is Hermitian and trace-free follows from hermiticity and a vanishing tra
of Ka

b. We extend this form for the curvature by continuity to the points withV50. Then we
obtain that for regularEd

g some parts of the local twistor curvature must vanish. This is
complete analogy to the conformal field equations where the regularity ofda

bcd implies that
the Weyl curvature vanishes onJ. The first form of the field equation forEa

b follows from
the Bianchi identityDKa

b50, while the second form arises either by simple manipulation of
first, using the fact that the infinity twistor is covariantly constant, or by observing
Ka

b5VEa
b. j

Now we know that the curvature can be uniquely ‘‘divided’’ by the infinity twistor. In ord
to make contact with the conformal field equations we need to determine the spinor represe
of the equations~14! or ~15!. Denote byHa

b the space of Hermitian, trace-free twistorsSa
b which

satisfy the equationsSg
[bXa]g50 andSg

[bI a]g50. It is easy to check that a HermitianSa
b with

Sg
[bXa]g50 is of the form

Sa
b5S SA

B FAB8

0 S̄A8
B8
D ,

with a symmetric spinorSAB and a Hermitian spinorFAA8 . It is obviously trace-free. The furthe
equationSg

[bI a]g50 imposes the additional condition

VFAA85 iGA
C8S̄C8A82 iGA8

CSCA ,

which, assuming regularity and definingSAB5VEAB , can be satisfied by writing

Sa
b5S iVEA

B GB8
CECA2GA

C8ĒC8B8

0 2 iVĒA8
B8

D .

This is the form that any twistor inHa
b assumes.

Since the curvature is a two-form with values inHa
b, we can write it also in this way, wher

now EAB andFAA8 are spinor valued two-forms. Stripping off the basis two-forms we obtain
equations

CABCD5VEABCD , ~16!

“C8(CPC8
D)AA85GA8

BEBACD , ~17!
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which are easily verified to be the spinorial equivalents of the definition ofda
bcd and Eq.~1!.

The remaining equation is obtained from the field equation forEa
b. After a lengthy calcula-

tion one finds that the only remaining equation which is not identically satisfied due to e
equations is

dEB
A2

1

V
~GB

B8ĒB8C8u
AC82GC8

CECBuAC82uCC8GCC8EB
A!50.

Here the first term in the parenthesis vanishes because of the symmetry ofĒA8B8C8D8 , while the
remaining two terms are seen to cancel each other after some manipulation. Thus, th
equation forEa

b reduces to the single equationdEB
A50, which when written in terms of com

ponents is

¹A8
AEABCD50,

the spinor equivalent of the conformal field equation~2!.
In summary, we have shown the following.
Theorem 4:The validity of the conformal field equations~1!–~5! is equivalent to the existenc

of a covariantly constant ‘‘infinity twistor’’ Iab. The norm of the infinity twistor determines th
cosmological constant. In particular, the cosmological constant vanishes if and only if the in
twistor is simple.

We should remark that one could have shown the validity of the Eq.~15! in an easier way by
simply defining Ea

b by the equationKa
b5VEa

b and then using the Bianchi identity forKa
b as

before. However, this seems undesirable to us for two reasons. First, it puts too much emph
the conformal factorV, which we want to avoid for reasons discussed below. And, secon
hides the fact that the division procedure is an essential consequence of the properties of
distinguished bitwistorsXab and I ab.

This concludes our discussion of the conformal field equations in the version of Ref. 1
future aim is to also find the relationship between the newer version of the conformal
equations and local twistors. In Ref. 14 it is shown that one can gain additional freedo
introducing an arbitrary Weyl connection, which respects the given conformal structure an
pressing the equations in terms of this connection. This removes the equations~3! and~4! for the
conformal factorV, which can therefore be fixed by other methods. The natural setting for t
constructions is the normal conformal Cartan connection which, as was shown by Fried15

coincides with the local twistor connection. Thus, we expect that there exists a very n
interpretation in terms of local twistors also for the more general form of the conformal
equations.
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Solutions with intersecting p-branes related to Toda
chains
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Solutions in multidimensional gravity withm p-branes related to Toda-type sys-
tems ~of general type! are obtained. These solutions are defined on a product of
n11 Ricci-flat spacesM03M13•••3Mn and are governed by one harmonic
function on M0. The solutions are defined up to the solutions of Laplace and
Toda-type equations and correspond to null-geodesics of the~sigma-model! target-
space metric. Special solutions relating toAm Toda chains~e.g., withm51,2) are
considered. ©2000 American Institute of Physics.@S0022-2488~00!01801-6#

I. INTRODUCTION

At present there exists a special interest to the so-calledM theory ~see, for example, Refs. 1
and 2!. This theory is a ‘‘supermembrane’’ analog of superstring models3 in D511. The low-
energy limit ofM-theory after a dimensional reduction leads to models governed by a Lagra
containing metric, fields of forms and scalar fields. These models contain a large varie
so-calledp-brane solutions~see Refs. 4–42, and references therein!.

In Ref. 5 it was shown that after dimensional reduction on the manifoldM03M13 . . .
3Mn and when the compositep-brane ansatz for fields of forms is considered the problem
reduced to the gravitating self-interactings-model with certain constraints imposed.~For electric
p-branes see also Refs. 6–8.! This representation may be considered as a powerful tool
obtaining different solutions with intersectingp-branes~analogs of membranes!. In Refs. 5, 8–11
the Majumdar–Papapetrou-type solutions~see Ref. 43! were obtained~for the noncomposite case
see Refs. 6,7!. These solutions correspond to Ricci-flat (Mi ,gi), (gi is metric onMi) i 51,...,n,
and were also generalized to the case of Einstein internal spaces.5 Earlier some special classes
these solutions were considered in Refs. 12–17. The obtained solutions take place, when
~block-!orthogonality relations~on couplings parameters, dimensions of ‘‘branes,’’ total dim
sion! are imposed. In this situation a class of cosmological and spherically-symmetric solu
was obtained.18,19 Special cases were also considered in Refs. 20–23. The solutions wit
horizon were considered in details in Refs. 18, 24–27.

In models under consideration there exists a large variety of Toda-chain solutions,
certain intersection rules are satisfied.18 Cosmological and spherically symmetric solutions w
p-branes andn internal spaces related toAm Toda chains were previously considered in Re
20,28 and 29,30.

It is well known that geodesics of the target space equipped with some harmonic functi
a three-dimensional space generate a solution to thes-model equations.44,45 ~It was observed in
Ref. 46 that null geodesics of the target space of stationary five-dimensional Kaluza–Klein
may be used to generate multisoliton solutions similar to the Israel–Wilson–Perje`s solutions of

a!Electronic mail: ivas@rgs.phys.msu.su
b!Electronic mail:sungwon@mm.ewha.ac.kr
4440022-2488/2000/41(1)/444/17/$17.00 © 2000 American Institute of Physics

                                                                                                                



and
r-
pace

445J. Math. Phys., Vol. 41, No. 1, January 2000 Solutions with intersecting p-branes related to . . .

                    
Einstein–Maxwell theory.! Here we apply this null-geodesic method to our sigma-model
obtain a new class of solutions in multidimensional gravity withp-branes governed by one ha
monic functionH. The solutions from this class correspond to null-geodesics of the target-s
metric and are defined by some functionsf s(H)5exp(2qs(H)) with qs(u) being solutions to
Toda-type equations.

II. THE MODEL

We consider a model governed by the action,5

S5E dDzAugu H R@g#2habgMN]Mwa]Nwb2 (
aPn

ua

na!
exp@2la~w!#~Fa!2J , ~2.1!

whereg5gMNdzM
^ dzN is a metric,w5(wa)PRl is a vector of scalar fields, (hab) is a constant

symmetric non-degeneratel 3 l matrix (l PN), ua561, Fa5dAa is anna-form (na>1), la is a
1-form onRl : la(w)5laawa, aPn, a51,...,l .. Here,n is some finite set.

We consider a manifold

M5M03M13•••3Mn , ~2.2!

with a metric

g5e2g(x)g01(
i 51

n

e2f i (x)gi , ~2.3!

whereg05gmn
0 (x)dxm

^ dxn is a metric on the manifoldM0, andgi5gmini

i (yi)dyi
mi ^ dyi

ni is an

Einstein metric onMi satisfying the equation

Rmini
@gi #5j igmini

i , ~2.4!

mi ,ni51,...,di ; j i5const,i 51,...,n. ~Here we identify notations forgi andĝi , whereĝi5pi* gi is
the pullback of the metricgi to the manifoldM by the canonical projection,pi :M→Mi , i
50,...,n. An analogous agreement will be also kept for volume forms, etc.!

Any manifoldM n is supposed to be oriented and connected anddn[dim M n , n50,...,n. Let,

t i[Augi~yi !udyi
1` . . . `dyi

di , «~ i ![sign~det~gmini

i !!561 ~2.5!

denote the volumedi-form and signature parameter respectively,i 51,...,n. Let V5Vn be a set of
all subsets of$1,...,,n%, uVu52n. For anyI 5$ i 1 ,...,i k%PV, i 1,•••, i k , we denote

t~ I ![t i 1
` •••`t i k

, d~ I ![(
i PI

di , «~ I ![)
i PI

«~ i !. ~2.6!

We also putt(B)5«(B)51 andd(B)50.
For fields of forms we consider the following composite electromagnetic ansatz,

Fa5 (
I PVa,e

F (a,e,I )1 (
JPVa,m

F (a,m,J), ~2.7!

where

F (a,e,I )5dF (a,e,I )`t~ I !, ~2.8!

F (a,m,J)5e22la(w)* ~dF (a,m,J)`t~J!! ~2.9!
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are elementary forms of electric and magnetic types, respectively,aPn, I PVa,e , JPVa,m , and
Va,e , Va,m are nonempty subsets ofV. In ~2.9! * 5* @g# is the Hodge operator on (M ,g). For
scalar functions we put

wa5wa~x!, Fs5Fs~x!, ~2.10!

sPS, xPM0.
Here and below

S5SeøSm , Sv5øaPn$a%3$v%3Va,v , ~2.11!

v5e,m. The setS consists of elementss5(as ,vs ,I s), whereasPn, vs5e,m and I sPVas ,vs
.

Due to ~2.8! and ~2.9!,

d~ I !5na21, d~J!5D2na21, ~2.12!

for I PVa,e , JPVa,m .
The sigma model. Let d0Þ2 and

g5g0~f![
1

22d0
(
j 51

n

djf
j , ~2.13!

i.e., the generalized harmonic gauge is used.
We impose the restriction on setsVa,v . These restrictions guarantee the block-diagonal st

ture of a stress-energy tensor~like for the metric! and the existence ofs-model representation.5

We denote w1[$ i u i P$1,...,n%,di51%, and n15uw1u ~i.e., n1 is the number of one-
dimensional spaces amongMi , i 51,...,n).

Restriction 1:Let ~1a! n1<1 or ~1b! n1>2 and for anyaPn, vP$e,m%, i , j Pw1 , i , j ,
there are noI ,JPVa,v such thati PI , j PJ and I \$ i %5J\$ j %.

Restriction 2:~Only for d051,3.) Let ~2a! n150 or ~2b! n1>1 and for anyaPn, i Pw1

there are noI PVa,m , JPVa,e such thatĪ 5$ i %tJ for d051 andJ5$ i %t Ī for d053. Here and
in what follows,

Ī [$1,...,,n%\I . ~2.14!

These restrictions are satisfied in the noncomposite case,6,7 uVa,vu51, ~i.e., when there are no two
p-branes with the same color indexa, aPn). Restriction~1! and~2! forbid certain intersections
of two p-branes with the same color index forn1>2 andn1>1, respectively.

It was proved in Ref. 5 that equations of motion for the model~2.1! and the Bianchi identities
dF s50, sPSm , for fields from~2.3! and ~2.13!, when Restrictions~1! and ~2! are imposed, are
equivalent to equations of motion for thes-model governed by the action,

Ss5E dd0xAug0u H R@g0#2ĜABg0mn]mzA]nzB2(
sPS

«se
22UA

s zA
g0mn]mFs]nFs22VJ ,

~2.15!

where (zA)5(f i ,wa), the index setS is defined in~2.11!,

V5V~f!52
1

2 (
i 51

n

j idie
22f i12g0(f) ~2.16!

is the potential,
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~ĜAB!5S Gi j 0

0 hab
D , ~2.17!

is the target space metric with

Gi j 5did i j 1
didj

d022
, ~2.18!

~UA
s !5~did i I s

,2xslaas
!, ~2.19!

are vectors,s5(as ,vs ,I s), xe511, xm521;

d i I 5(
j PI

d i j ~2.20!

is the indicator ofi belonging toI: d i I 51 for i PI andd i I 50 otherwise; and

«s5~2«@g# !(12xs)/2«~ I s!uas
, ~2.21!

sPS, «@g#[sign det(gMN). More explicitly ~2.21! reads «s5«(I s)uas
for vs5e and «s

52«@g#«(I s)uas
, for vs5m.

III. EXACT SOLUTIONS WITH ONE HARMONIC FUNCTION

A. Toda-type Lagrangian

Action ~2.15! may be also written in the form

Ss5E dd0xAug0u$R@g0#2GÂB̂~X!g0mn]mXÂ]nXB̂22V%, ~3.1!

whereX5(XÂ)5(f i ,wa,Fs)PRN, and minisupermetric,

G5GÂB̂~X!dXÂ
^ dXB̂ ~3.2!

on minisuperspace

M5RN, N5n1 l 1uSu ~3.3!

(uSu is the number of elements inS) is defined by the relation

~GÂB̂~X!!5S Gi j 0 0

0 hab 0

0 0 «s exp~22Us~X!!dss8

D . ~3.4!

Here we consider exact solutions to field equations corresponding to the action~3.1!,

Rmn@g0#5GÂB̂~X!]mXÂ]nXB̂1
2V

d022
gmn

0 , ~3.5!

1

Aug0u
]m@Aug0uGĈB̂~X!g0mn]nXB̂#2

1

2
GÂB̂,Ĉ~X!g0,mn]mXÂ]nXB̂5V,Ĉ , ~3.6!

sPS. Heren@g0# is the Laplace–Beltrami operator corresponding tog0 andV,Ĉ5]V/]XĈ.
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We put

XÂ~x!5FÂ~H~x!!, ~3.7!

whereF:(u2 ,u1)→RN is a smooth function,H:M0→R is a harmonic function onM0, i.e.,

n@g0#H50, ~3.8!

satisfyingu2,H(x),u1 for all xPM0.
The substitution of~3.7! into Eqs.~3.5! and ~3.6! leads us to the relations

Rmn@g0#5GÂB̂~F~u!!ḞÂḞ B̂]mH]nH1
2V

d022
gmn

0 , ~3.9!

F d

du
~GĈB̂~F~u!!ḞB̂!2

1

2
GÂB̂,Ĉ~F~u!!ḞÂḞ B̂Gg0,mn]mH]nH5V,Ĉ , ~3.10!

whereu5H(x) and ḟ 5d f /du.
Let all spaces (Mi ,gi) be Ricci-flat, i.e.,

Rmini
@gi #50, ~3.11!

i 50,...,n. In this case the potential is zero;V50 and the field Eqs.~3.9! and ~3.10! are satisfied
identically if F5F(u) obey the Lagrange equations for the Lagrangian,

L5 1
2GÂB̂~F !ḞÂḞ B̂ ~3.12!

with the zero-energy constraint

E5 1
2GÂB̂~F !ḞÂḞ B̂50. ~3.13!

This means thatF:(u2 ,u1)→RN is a null-geodesic map for the minisupermetric~3.2!. Thus, we
are led to the Lagrange system~3.12! with the minisupermetricG defined in~3.4!.

The problem of integrability may be simplified if we integrate the Lagrange equations c
sponding toFs ~i.e., the Maxwell equations forsPSe and Bianchi identities forsPSm),

d

du
~exp~22Us~z!!Ḟs!50⇔Ḟs5Qsexp~2Us~z!!, ~3.14!

whereQs are constants,sPS. Here (FÂ)5(zA,Fs). We put

QsÞ0, ~3.15!

for all sPS.
For fixedQ5(Qs ,sPS) the Lagrange equations for the Lagrangian~3.12! corresponding to

(zA)5(f i ,wa), when Eqs.~3.14! are substituted, are equivalent to the Lagrange equations fo
Lagrangian,

LQ5 1
2ĜABżAżB2VQ , ~3.16!

where

VQ5
1

2 (
sPS

«sQs
2 exp@2Us~z!#, ~3.17!
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(ĜAB) are defined in~2.17! respectively. The zero-energy constraint~3.13! reads

EQ5 1
2ĜABżAżB1VQ50. ~3.18!

B. Toda-type solutions

Let us define the scalar product as follows:

~U,U8!5ĜABUAUB8 , ~3.19!

for U,U8PRn1 l , where (ĜAB)5(ĜAB)21. The scalar products~3.19! for vectorsUs were calcu-
lated in Ref. 5,

~Us,Us8!5d~ I sùI s8!1
d~ I s!d~ I s8!

22D
1xsxs8laas

lbas8
hab, ~3.20!

where (hab)5(hab)21; s5(as ,vs ,I s) ands85(as8 ,vs8 ,I s8) belong toS.
Here we are interested in exact solutions for a special case when the vectorsUsPRn1 l satisfy

the following conditions:

Ks5~Us,Us!Þ0, ~3.21!

for all sPS, and a~‘‘quasi-Cartan’’! matrix,

~Ass8!5S 2~Us,Us8!

~Us8,Us8!
D ~3.22!

is a nondegenerate one. Here some ordering inS is assumed. It follows from~3.21! and the
nondegeneracy of the matrix~3.22! that the vectorsUs,sPS, are linearly independent. Hence, th
number of the vectorsUs should not exceed the dimension ofRn1 l , i.e.,

uSu<n1 l . ~3.23!

From ~3.20!–~3.22! we get the following intersection rules18

d~ I sùI s8!5
d~ I s!d~ I s8!

D22
2xsxs8las

•las8
1

1

2
Ks8Ass8 , ~3.24!

sÞs8.
The exact solutions to Lagrange equations corresponding to~3.16! with the potential~3.17!

could be readily obtained using the relations from Appendix. The solutions read

zA5(
sPS

UsA

~Us,Us!
qs1cAu1 c̄A, ~3.25!

whereqs are solutions to Toda-type equations,

q̈s52Bs expS (
s8PS

Ass8q
s8D , ~3.26!

with

Bs52KsAs , As5
1
2«sQs

2 , ~3.27!
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sPS. These equations correspond to the Lagrangian

LTL5
1

4 (
s,s8PS

Ks
21Ass8q̇

sq̇s82(
sPS

AsexpS (
s8PS

Ass8q
s8D . ~3.28!

Vectorsc5(cA) and c̄5( c̄A) satisfy the linear constraint relations~see~A11! in the Appen-
dix!

Us~c!5UA
s cA5 (

i PI s

dic
i2xslasa

ca50, ~3.29!

Us~ c̄!5UA
s c̄A5 (

i PI s

di c̄
i2xslasa

c̄a50, ~3.30!

sPS.
The contravariant componentsUrA5ĜABUB

r are5,18

Usi5Gi j U j
s5d i I s

2
d~ I s!

D22
, Usa52xslas

a . ~3.31!

Here ~as in Ref. 47!,

Gi j 5
d i j

di
1

1

22D
, ~3.32!

i , j 51,...,n, are the components of the matrix inverse to (Gi j ) from ~2.18!.
Using ~3.25! and ~3.31! we obtain

f i5(
sPS

hsS d i I s
2

d~ I s!

D22Dqs1ciu1 c̄i , ~3.33!

and

wa52(
sPS

hsxslas

a qs1cau1 c̄a, ~3.34!

a51,...,l , and i 51,...,n. For g0 from ~2.13! we get

g0~f!52(
sPS

d~ I s!

D22
hsq

s1c0u1 c̄0, ~3.35!

where we denote

hs5Ks
21 ~3.36!

and

c05
1

22d0
(
j 51

n

djc
j , c̄05

1

22d0
(
j 51

n

dj c̄
j . ~3.37!

The zero-energy constraint reads~see Appendix!
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2E52ETL1ĜABcAcB52ETL1habcacb1(
i 51

n

di~ci !21
1

d022 S (
i 51

n

dic
i D 2

50, ~3.38!

where

ETL5
1

4 (
s,s8PS

Ks
21Ass8q̇

sq̇s81(
sPS

As expS (
s8PS

Ass8q
s8D , ~3.39!

is an integration constant~energy! for the solutions from~3.26!.
From the relation,

exp~2Us~z!!5 )
s8PS

f
s8

2Ass8 , ~3.40!

following from ~3.22!, ~3.25!, ~3.29!, and~3.30! we get for electric-type forms~2.8!,

F s5QsS )
s8PS

f
s8

2Ass8D dH`t~ I s!, ~3.41!

sPSe , and for magnetic-type forms~2.9!,

F s5exp@22la~w!#* FQsS )
s8PS

f
s8

2Ass8D dH`t~ I s!G5Q̄s~* 0dH!`t~ Ī s!, ~3.42!

sPSm , where Q̄s5Qs«(I s)m(I s) and m(I )561 is defined by the relationm(I )dH`t(I 0)
5t( Ī )`dH`t(I ), I 05$1,...,n$ ~see Eq.~2.26! in Ref. 5!. Here *05* @g0# is the Hodge operato
on (M0 ,g0).

Relations for the metric and scalar fields follows from~3.33!–~3.35!

g5S )
sPS

f s
2d(I s)hs /(D22)D H exp~2c0H12c̄0!g0 ~3.43!

1(
i 51

n S )
sPS

f
s

22hsd i I sDexp~2ciH12c̄i !giJ , ~3.44!

exp~wa!5S )
sPS

f
s

hsxslas

a Dexp~caH1 c̄a!, ~3.45!

a51,...,l . Here,

f s5 f s~H !5exp~2qs~H !!, ~3.46!

whereqs(u) is a solution to Toda-type equations~3.26! and H5H(x) (xPM0) is a harmonic
function on (M0 ,g0) ~see~3.8!!.

The solution is presented by relations~3.41!–~3.46! with the functionsqs defined in~3.26! and
the relations on the parameters of solutionscA, c̄A (A5 i ,a,0), Qs , hs imposed in~3.29!, ~3.30!,
~3.37!, and~3.36!, respectively.

This solution describes a set of charged~by forms! overlappingp-branes (ps5d(I s)21, s
PS) ‘‘living’’ on submanifolds of M13•••3Mn . The solution is valid if the dimensions o
p-branes and dilatonic coupling vector satisfy the relations~2.12!.
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IV. SOLUTIONS CORRESPONDING TO THE A m TODA CHAIN

Here we consider exact solutions to equations of motion of a Toda-chain corresponding
Lie algebraAm5sl(m11,C),48,49

q̈s52Bs expS (
s851

m

Ass8q
s8D , ~4.1!

where

~Ass8!5S *6c2 21 0 . . . 0 0

21 2 21 . . . 0 0

0 21 2 . . . 0 0

•••

0 0 0 . . . 2 21

0 0 0 . . . 21 2

D ~4.2!

is the Cartan matrix of the Lie algebraAm and Bs.0, s,s851, . . . ,m. Here we putS
5$1, . . . ,m%.

The equations of motion~4.1! correspond to the Lagrangian

LT5
1

2 (
s,s851

m

Ass8q̇
sq̇s82(

s51

m

Bs expS (
s851

m

Ass8q
s8D . ~4.3!

This Lagrangian may be obtained from the standard one48 by separating a coordinate describin
the motion of the center of mass.

Using the result of Anderson49 we present the solution to Eqs.~4.1! in the following form:

Cs exp~2qs~u!!5 (
r 1,•••,r s

m11

v r 1
•••v r s

D2~wr 1
, . . . ,wr s

!exp@~wr 1
1•••1wr s

!u#, ~4.4!

s51, . . . ,m, where

D~wr 1
, . . . ,wr s

!5)
i , j

s

~wr i
2wr j

!; D~wr 1
![1, ~4.5!

denotes the Vandermonde determinant. The real constantsv r andwr , r 51, . . . ,m11, obey the
relations

)
r 51

m11

v r5D22~w1 , . . . ,wm11!, (
r 51

m11

wr50. ~4.6!

In ~4.4!,

Cs5 )
s851

m

Bs8
2Ass8

, ~4.7!

where

Ass85
1

m11
min~s,s8!@m112max~s,s8!#, ~4.8!
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s,s851, . . . ,m, are components of a matrix inverse to the Cartan one, i.e., (Ass8)5(Ass8)
21 ~see

Chap. 7 in Ref. 50!. Here,

v rÞ0, wrÞwr 8 , rÞr 8, ~4.9!

r ,r 851,...,m11. We note that the solution withBs.0 may be obtained from the solution wit
Bs51 ~see Ref. 49! by a certain shiftqs°qs1ds.

The energy reads49

ET5
1

2 (
s,s851

m

Ass8q̇
sq̇s81(

s51

m

Bs expS (
s851

m

Ass8q
s8D 5

1

2 (
r 51

m11

wr
2 . ~4.10!

If Bs.0, sPS, then allwr ,v r are real and, moreover, allv r.0, r 51,...,m11. In a general
caseBsÞ0, sPS, relations ~4.4!–~4.7! also describe real solutions to Eqs.~4.1! for suitably
chosen complex parametersv r and wr . These parameters are either real or belong to pair
complex conjugate~nonequal! numbers, i.e., for example,w15w̄2 , v15 v̄2. When some ofBs are
negative, there are also some special~degenerate! solutions to Eqs.~4.1! that are not described b
relations~4.4!–~4.7!, but may be obtained from the latter by certain limits of parameterswi ~see
example in the next section!.

For the energy~3.39! we get

ETL5
1

2K
ET5

h

4 (
r 51

m11

wr
2 . ~4.11!

Here

Ks5K, hs5h5K21, ~4.12!

sPS.
Thus, in theAm Toda chain case~4.1! Eqs.~4.4!–~4.12! should be substituted into relation

~3.38! and ~3.41!–~3.46! for the general solution.

A. Examples for d 0>2

Here we consider the cased0.2. Let matrix (hab) be positively defined andK5Ks.0. Then
from the energy constraint~3.38! we get

ETL<0⇒ET<0. ~4.13!

In this case,

ca5ci50⇔ETL5ET50, ~4.14!

i 51, . . . ,n, and a51, . . . ,l . When (hab) is negatively defined~as it takes place in
12-dimensional theory from Ref. 31! there exists solutions withETL.0.

B. A 1-case

Here we consider the case of one ‘‘brane,’’ i.e.,S5$s%. Solving the Liouville equation,

q̈s52Bs exp~2qs!, ~4.15!

with Bs5«sKsQs
2 , we get

f s~H !5uKsu1/2uQsu f̂ s~H !, ~4.16!
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whereH5H(x).0 and

f̂ s~H !5
1

AET

ch~AETH !, «sKs.0, ET.0; ~4.17!

1

AET

sh~AETH !, «sKs,0, ET.0; ~4.18!

1

A2ET

sin~A2ETH !, «sKs,0, ET,0; ~4.19!

H, «sKs,0, ET50. ~4.20!

Here,

ET5~ q̇s!21Bs exp~2qs!. ~4.21!

In a special caseET50 this solution agrees with those from Refs. 5 and 9 if the follow
redefinition of the harmonic function is performed:H°Ĥ,

Ĥ5uKsu1/2uQsuH. ~4.22!

C. A 2-case

Now we consider the casem52 ~for perfect fluid case see also Ref. 51!. Here we putS
5$1,2%. The solution reads

C1 exp~2q1!5v1 exp~w1u!1v2 exp~w2u!1v3 exp~w3u!, ~4.23!

C2 exp~2q2!5v1v2~w12w2!2 exp~2w3u!1v2v3~w22w3!2

3exp~2w1u!1v3v1~w32w1!2 exp~2w2u!, ~4.24!

where

w11w21w350, ~4.25!

v1v2v35~w12w2!22~w22w3!22~w32w1!22, ~4.26!

and

C15~B1
2B2!21/3, C25~B2

2B1!21/3. ~4.27!

Let K.0. ThenET<0 and hence some ofBi should be negative.
Let B1,0 andB2,0. In the pseudo-Euclidean case, when«@g#521 and allua51, this

means that«si
5«(I si

)521, i 51,2, ~see~2.21!!, i.e., all p-branes should contain an odd numb
of time submanifolds.

Let us consider solutions with a negative energy

ET5 1
2~w1

21w2
21w3

2!,0. ~4.28!

In this case two of parameterswi should be complex. Without loss of generality we put

w1522a, w25a1 ib, w35a2 ib, ~4.29!
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v25veiu, v35ve2 iu, ~4.30!

where parametersbÞ0, a andv.0 are real and

v1v252 1
4b

22~9a21b2!22. ~4.31!

Then relations~4.23! and ~4.24! read

uC1uexp~2q1!52v1 exp~22au!12v exp~au!cos~bu1u!, ~4.32!

uC2uexp~2q2!54b2v2 exp~2au!22vv1~9a21b2!exp~2au!cos~bu1u12w!, ~4.33!

whereuC1u5(B1
2uB2u)21/3, uC2u5(B2

2uB1u)21/3, uBj u5Qj
2 , j 51,2, and

3a1 ib5~9a21b2!1/2eiw. ~4.34!

There exists also a degenerate solution withET50,

uC1uexp~2q1!5uC2uexp~2q2!5 1
2~u2u0!2, ~4.35!

u05const, that may be obtained from the solution~4.32!, ~4.33! with a50, v1522v, v
51/2b2, u52bu0 ,

uC1uexp~2q1!5uC2uexp~2q2!5
2

b2
sin2@b~u2u0!/2#, ~4.36!

in the limit b→0.
Let us consider an example of theA2-solution inD511 supergravity.52 We putn53, g35

2dt^ dt, d152, d255, d053 ~metricsg0,g1,g2 are Ricci-flat!. The A2-solution, describing a
dyon configuration with electric 2-brane and magnetic 5-brane, corresponding to 4-formF and
intersecting in one-dimensional time manifold reads

g5c2/9~Ĥ2g02Ĥ22dt^ dt!1c8/9g11c24/9g2, ~4.37!

F5cn1dĤ21`dt`t11cn2~* 0dĤ!`t1 , ~4.38!

whereĤ is the harmonic function on (M0 ,g0) andn1
25n2

251. This solution corresponds to th
degenerate solution~4.35!. Here the following notationsĤ5H(uQ1uuQ2u)1/2, c5(uQ2u/uQ1u)1/3

are adopted. Forc51 this solution coincides with that of Ref. 9.

V. COSMOLOGICAL-TYPE SOLUTIONS

A. Solutions with Ricci-flat spaces

Let us consider a ‘‘cosmological’’ case:d051 and

M05R, g05wdu^ du, ~5.1!

wherew561. SinceH(u)5u is a harmonic function on (M0 ,g0) we get for the metric and
scalar fields from~3.43!, ~3.45!,

g5S )
sPS

f s
2d(I s)hs /(D22)D H exp~2c0u12c̄0!wdu^ du

1(
i 51

n S )
sPS

f
s

22hsd i I sDexp~2ciu12c̄i !giJ , ~5.2!
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exp~wa!5S )
sPS

f
s

hsxslas

a Dexp~cau1 c̄a!, ~5.3!

a51,...,l , where f s5 f s(u)5exp(2qs(u)) andqs(u) obey Toda-type equations~3.26!.
Relations~3.37! and ~3.38! take the form,

c05(
j 51

n

djc
j , c̄05(

j 51

n

dj c̄
j , ~5.4!

2E52ETL1habcacb1(
i 51

n

di~ci !22S (
i 51

n

dic
i D 2

50, ~5.5!

with ETL from ~3.39! and all other relations~e.g., constraints~3.29!, ~3.30!! and relations for forms
~3.41! and ~3.42! with H5u) are unchanged. In a specialAm Toda chain case this solution wa
considered previously in Ref. 30.

B. Solutions with one curved space

The cosmological solution with Ricci-flat spaces may be also modified to the following c

j1Þ0, j25•••5jn50, ~5.6!

i.e., one space is curved and others are Ricci-flat and

1¹I s , ;sPS, ~5.7!

i.e., all ‘‘brane’’ submanifolds do not containM1.
Relation~5.6! modifies the potential (3.17) by adding the term

dV5 1
2wj1d1 exp~2U1~z!!, ~5.8!

where (d1.1),

U1~z!5UA
1zA52f11g0~f!, ~5.9!

~UA
1 !5~2d i

11di ,0!. ~5.10!

For the scalar products we get18

~U1,U1!5
1

d1
21,0, ~5.11!

~U1,Us!50 ~5.12!

for all sPS.
The solutions in the case under consideration may be obtained by a little modificati

solution ~3.25! ~see Appendix!,

zA~u!52
U1A

~U1,U1!
lnu f 1~u2u1!u2(

sPS

UsA

~Us,Us!
ln~ f s~u!!1cAu1 c̄A, ~5.13!

where

f 1~t!5R sh~AC1t!, C1.0, j1w.0 ~5.14!
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R sin~AuC1ut!, C1,0, j1w.0; ~5.15!

R ch~AC1t!, C1.0, j1w,0; ~5.16!

uj1~d121!u1/2t, C150, j1w.0, ~5.17!

u1 andC1 are constants andR5uj1(d121)/C1u1/2.
Vectorsc5(cA) and c̄5( c̄A) satisfy the linear constraints~3.29!, ~3.30! and also additional

constraints,

U1~c!5UA
1cA52c11(

j 51

n

djc
j50, ~5.18!

U1~ c̄!5UA
1 c̄A52 c̄11(

j 51

n

dj c̄
j50. ~5.19!

The zero-energy constraint reads

E5E11ETL1 1
2ĜABcAcB50, ~5.20!

whereC152E1(U1,U1) or, equivalently,

C1

d1

d121
52ETL1habcacb1(

i 52

n

di~ci !21
1

d121 S (
i 52

n

dic
i D 2

. ~5.21!

From ~5.11!, ~5.13! and

U1i52
d1

i

d1
, U1a50, ~5.22!

we get a relation for the metric

g5S )
sPS

@ f s~u!#2d(I s)hs /(D22)D H @ f 1~u2u1!#2d1 /(12d1) exp~2c1u12c̄1! ~5.23!

3@wdu^ du1 f 1
2~u2u1!g1#1(

i 52

n S )
sPS

@ f s~u!#22hsd i I sDexp~2ciu12c̄i !giJ . ~5.24!

All other relations are unchanged.~Here H(u)5u and *0dH5w in ~3.42!.! This solution in a
special case ofAm Toda chain was obtained earlier in Ref. 29.

VI. CONCLUSIONS

Here we obtained a family of solutions in multidimensional gravity withp-branes generalizing
Majumdar–Papapetrou-type solutions from Refs. 5,9 in a special case of one harmonic fu
These solutions are related to Toda-type systems~of general type! and are defined up to th
solutions of Laplace and Toda-type equations. We considered special solutions correspon
Am Toda lattices~written in a parametrization of Andersen49!. The general solutions may be als
used for other open Toda lattices, e.g., corresponding to theBm , Cm , Dm series. The solutions
also contain a class of ‘‘cosmological’’ and spherically symmetric solutions and may be use
investigation of possible black hole and wormhole configurations.
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APPENDIX: SOLUTIONS FOR THE TODA-TYPE SYSTEM

Let

L5
1

2
^ẋ,ẋ&2(

sPS
As exp~2^bs ,x&! ~A1!

be a Lagrangian, defined onV3V, whereV is n-dimensional vector space overR, AsÞ0, s
PS; SÞB, and^•,•& is nondegenerate real-valued quadratic form onV. Let

Ks5^bs ,bs&Þ0, ~A2!

for all sPS.
Then, the Euler–Lagrange equations for the Lagrangian~A1!,

ẍ1(
sPS

2Asbs exp~2^bs ,x&!50, ~A3!

have the following solutions:

x~u!5(
sPS

qs~u!bs

^bs ,bs&
1au1b, ~A4!

wherea,bPV,

^a,bs&5^b,bs&50, ~A5!

sPS, and functionsqs(u) satisfy the Toda-type equations,

q̈s522AsKs expS (
s8PS

Ass8q
s8D , ~A6!

with

Ass85
2^bs ,bs8&

^bs8 ,bs8&
, ~A7!

s,s8PS. Let the matrix (Ass8) be a nondegenerate one. In this case vectorsbs , sPS, are linearly
independent. Then Eqs.~A6! are field equations corresponding to the Lagrangian,

LTL5
1

4 (
s,s8PS

Ks
21Ass8q̇

sq̇s82(
sPS

As expS (
s8PS

Ass8q
s8D . ~A8!

For the energy corresponding to the solution~A4! we get
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E5
1

2
^ẋ,ẋ&1(

sPS
exp~2^bs ,x&!5ETL1

1

2
^a,a&, ~A9!

where

ETL5
1

4 (
s,s8PS

Ks
21Ass8q̇

sq̇s81(
sPS

As expS (
s8PS

Ass8q
s8D , ~A10!

is the energy function corresponding to the Lagrangian~A9!.
For dual vectorsusPV* defined asus(x)5^bs ,x&, ;xPV, we have^us,ul&* 5^bs ,bl&,

where^•,•&* is a dual form onV* . The orthogonality conditions~A5! read

us~a!5us~b!50, ~A11!

sPS.
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The character of the exceptional series of representations of SU~1,1! is determined
by using Bargmann’s realization of the representation in the Hilbert spaceHs of
functions defined on the unit circle. The construction of the integral kernel of the
group ring turns out to be especially involved because of the nonlocal metric
appearing in the scalar product with respect to which the representations are uni-
tary. Since the nonlocal metric disappears in the ‘‘momentum space,’’ i.e., in the
space of the Fourier coefficients the integral kernel is constructed in the momentum
space, which is transformed back to yield the integral kernel of the group ring in
Hs . The rest of the procedure is parallel to that for the principal series treated in a
previous paper. The main advantage of this method is that the entire analysis can be
carried out within the canonical framework of Bargmann. ©2000 American In-
stitute of Physics.@S0022-2488~99!02312-9#

I. INTRODUCTION

It is well known that the traditional definition of character breaks down for infinite dim
sional representations of locally compact groups. For such representations character was
by Gel’fand1 and co-workers as

Tr~Tx!5E K~z,z!dl~z!,

whereK(z,z1) is the integral kernel of the group ring.
In a previous paper2 ~I! the character problems of SU~2! and SU~1,1! were re-examined from

the standpoint of a physicist by employing the powerful Hilbert space method of Bargmann3 and
Segal4 which was shown to yield a completely unified treatment for SU~2! and the discrete serie
of representations of SU~1,1!. The main advantage of this method is that the entire analysis ca
carried out within the canonical framework of Bargmann.5 The representations of the positiv
discrete series were realized in I in the Hilbert space of functions analytic within the open
disk. For the principal series the carrier space was chosen to be the Hilbert space of fun
defined on the unit circle.

It is the object of this paper to extend the method of I to the exceptional or the suppleme
series of representations of SU~1,1!. This representation is realized, as for the principal series

a!Electronic mail: dbasu@phy.iitkgp.ernet.in
b!Electronic mail: subrata@imsc.ernet.in
c!Electronic mail: kvs@prl.ernet.in
4610022-2488/2000/41(1)/461/7/$17.00 © 2000 American Institute of Physics
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the space of functions defined on the unit circle. The construction of the integral kernel o
group ring is, however, more involved for the exceptional representations because the
product contains a nonlocal metric,5,6

~ f ,g!5
c

4p2 E
0

2p

du1E
0

2p

du2f ~u1!ei ~~1/2!2s!~u22u1!@12ei ~u22u1!#~2s21!g~u2!, ~1!

where

c5
p2~122s!eip~s2~1/2!!

B~ 1
2,s!

.

This difficulty is resolved by expanding the functions in Fourier series

f ~u!5
1

A2p
(

m52`

`

ameimu.

Since the nonlocal metric disappears in the ‘‘momentum space,’’ i.e., in the space of the F
coefficientsam the integral kernel is constructed in the momentum space, which is transfo
back to yield the integral kernel of the group ring

Txf ~u!5
c

4p2 E E Q~u,u1!ei ~u22u1!~~1/2!2s!@12ei ~u22u1!#~2s21! f ~u2!du1du2 ~2!

in the space of the functionsf (u). The rest of the procedure is parallel to that for the princi
series of representations as outlined in I. An important common feature of the principa
supplementary series is that the elliptic elements of SU~1,1! do not contribute to their character

II. THE EXCEPTIONAL REPRESENTATIONS OF THE GROUP SU „1,1…

We start with the basic properties of the group SU~1,1! which consists of pseudounitar
unimodular matrices,

u5S a b

b̄ ā D , uau22ubu251, ~3!

and is isomorphic to the group SL(2,R) of real unimodular matrices,

g5S a b

c dD , ad2bc51. ~4!

If we diagonalize the SU~1,1! matrix ~3!, the eigenvalues are given by

l5a16Aa1
221,

wherea15Rea.
For the elliptic elementsa15cos(u0/2), 0,u0,2p so thatl5exp(6i(u0/2)). For the hy-

perbolic elementsua1u.1 so that settinga15e cosh(t/2), e5sgnl we obtain the eigenvalues a
e exp(6e(t/2)). Since the diagonal matrix

e~ t !5S sgnl esgnl ~ t/2! 0

0 sgnl e2sgnl ~ t/2!D ~5!

belongs to SL(2,R), it can be regarded as the diagonal form of the matrixg given by Eq.~4!.
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Following Bargmann we realize the representations of the exceptional series in the H
spaceHs of functions defined on the unit circle. The finite element of the group in this realiza
is given by

Tuf ~z!5ubz1āu22s21f S az1b̄

bz1ā
D , ~6!

where

2 1
2,s, 1

2; z5eiu, 0,u,2p. ~7!

This representation is unitary with respect to the scalar product

~ f 1 , f 2!5
c

4p2 E
0

2p

du1E
0

2p

du2f 1~z1!S z2

z1
D ~~1/2!2s!S 12

z2

z1
D ~2s21!

f 2~z2!, ~8!

where,

zk5eiuk, k51,2; c5
p2~122s!eip~s2~1/2!!

B~1/2,s!
. ~9!

The integral converges in the usual sense for 0,s, 1
2. For 2 1

2,s,0 the integral is to be
understood in the sense of its regularization.7

Settingz52 ieiu the finite group element takes the form,

Tuf ~2 ieiu!5u2 ibeiu1āu22s21f S 2 iaeiu1b̄

2 ibeiu1ā
D . ~10!

We now introduce as usual the operator of the group ring

Tx5E dm~u!x~u!Tu , ~11!

wherex(u) is an arbitrary test function on the group which vanishes outside a bounded se
dm(u) is the left and right invariant measure on the group. Proceeding as in I it can be show
the action of the operatorTx is given by

Txg~u!5E K~u,u2!g~u2!du2 , ~12!

where

g~u!5 f ~2 ieiu! ~13!

and following the notation of I,

K~u,u2!5
1

4 E x~uI 21kI uI 2!uk22u22s21dm l~k!. ~14!

It must be pointed out that Eq.~12! does not yield the integral kernel of the operatorTx of the
group ring becauseTx now is an operator in the spaceHs in which the scalar product is given b
Eq. ~8!. It is, therefore, not cleara priori that

E K~u,u!du ~15!
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is the trace of the operatorTx . Nevertheless, we shall show that~15! is the trace of the operato
Tx .

To write the action ofTx on g(u) in the form consistent with the scalar product~8! we pass
over to the ‘‘momentum space’’~space of the Fourier coefficients!,

g~u!5
1

A2p
(

m52`

`

ameimu, ~16!

where

am5
1

A2p
E

0

2p

g~u!e2 imudu. ~17!

We then obtain

~g1 ,g2!5 (
m52`

`

āmbmrm , ~18!

wherebm is the Fourier coefficient ofg2(u),

bm5
1

A2p
E

0

2p

g2~u!e2 imudu ~19!

and

rm5
1

2p

G~ 1
21s!G~ 1

22s1m!

G~ 1
22s!G~ 1

21s1m!
. ~20!

Hence,

igi25 (
m52`

`

uamu2rm . ~21!

We can, therefore, define the scalar product in the momentum space as

~a,b!5( āmbmrm , ~22!

whererm as given by Eq.~20! is a positive metric.
The operator of the group ring in the momentum space is given by

Txam5
1

2p (
n52`

`

anE
0

2pE
0

2p

K~u,u2!e2 i ~mu2nu2!dudu2 . ~23!

If we now expandK(u,u2) in a Fourier series,

K~u,u2!5
1

2p ( Lmne
i ~mu2nu2!, ~24!

we have
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Txam5 (
n52`

`

Lmnan , ~25!

where

Lmn5
1

2p E
0

2pE
0

2p

K~u,u2!e2 i ~mu2nu2!dudu2 . ~26!

We now define

Lmn5Gmnrn . ~27!

Thus,

Txam5(
n

Gmnrnan . ~28!

We shall now show that

rm5
c

4p2 E
0

2p

ei ~~1/2!2s1m!a~12eia!2s21da. ~29!

Settingz5eia the integral on the right-hand side can be recast as an integral over the unit
S. Since the only singularities of the subsequent integrand are the branch points atz50 andz
51 the unit circleS can be deformed to a contourS that starts fromz51 along the positive rea
axis, encircles the pointz50 once counterclockwise and returns to the pointz51 along the
positive real axis. The integral is, therefore, the contour integral representation of the beta fu
regularized at the origin,

E
1

01

t ~~1/2!2s1m21!~12t !2s21dt5@e2p i ~~1/2!2s!21#BS 1

2
2s1m,2s D . ~30!

Equation~30! in conjunction with Eq.~9! immediately yields Eq.~29!.
We now pass over from the momentum space to the space of functionsg(u),

Txg~u!5
1

A2p
(

m52`

`

(
n52`

`

eimuGmnrnan . ~31!

We now substitute Eqs.~29! and ~17! in Eq. ~31!. Thus,

Txg~u!5
c

8p3 E
0

2pE
0

2p

dadu2g~u2!ei ~~1/2!2s!a~12eia!2s21(
Lmn

rn
ei @mu2n~u22a!#. ~32!

SinceLmn is the Fourier coefficient ofK(u,u2) andrn is given by Eq.~20! the function

Q~u,u22a!5
1

2p (
Lmn

rn
ei @mu2n~u22a!# ~33!

is known and well defined. Hence we have

Txg~u!5
c

4p2 E
0

2pE
0

2p

dadu2g~u2!Q~u,u22a!ei ~~1/2!2s!a~12eia!2s21. ~34!
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Finally settinga5u22u1 we have

Txg~u!5
c

4p2 E
0

2pE
0

2p

du1du2g~u2!Q~u,u1!ei ~~1/2!2s!~u22u1!~12ei ~u22u1!!2s21, ~35!

which is in the form consistent with the scalar product~8!. Q(u,u1) is, therefore, the integra
kernel of the group ring. Comparing Eq.~35! with Eq. ~12! we have

K~u,u2!5
c

4p2 E
0

2p

Q~u,u1!ei ~~1/2!2s!~u22u1!~12ei ~u22u1!!2s21du1 . ~36!

From Eq.~25! Tr(Tx) is given by

Tr~Tx!5 (
n52`

`

Lnn5 (
n52`

`

Gnnrn . ~37!

Substituting the integral representation~29! in Eq. ~37! we obtain

Tr~Tx!5
c

4p2 E daei ~~1/2!2s!a~12eia!2s21(
n

Gnne
ina. ~38!

Now from Eqs.~27! and ~33!,

Gnn5
1

2p E Q~u,u1!e2 in~u2u1!dudu1 . ~39!

The above equation in conjunction with Eq.~38! yields,

Tr~Tx!5
c

4p2 E E dudu1Q~u,u1!E
0

2p

daei ~~1/2!2s!a~12eia!2s21
1

2p (
n52`

`

ein~a2u1u1!.

~40!

The summation overn appearing on the right-hand side of Eq.~40! can be carried out using th
formula

1

2p (
n52`

`

einb5d~b!. ~41!

Equation~41! immediately leads to

Tr~Tx!5
c

4p2 E Q~u,u1!ei ~~1/2!2s!~u2u1!@~12ei ~u2u1!!2s21dudu1 . ~42!

Finally using Eq.~36! we have

Tr~Tx!5E K~u,u!du5
1

4 E x~uI 21kI uI !uk22u22s21dm l~k!du. ~43!

The rest of the calculation is parallel to that of the principal series outlined in I. It now follows

Tr~Tx!5E x~u!p~u!dm~u!,

where the characterp(u) is given by
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p~u!5
est1e2st

uet/22e2t/2u
5

coshst

usinh
t

2
u
.
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N52 supercovariant operators and Krichever–Novikov
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The N52 superdiffeomorphism anomaly is defined on the compactN52 super-
Riemann surfaces by the inclusion ofN52 superprojective connection. TheN
52 supercovariant operators which are superconformally covariant are constructed
and the relations with theN52 super-Poisson operators and the Krichever–
Novikov algebra are given. ©2000 American Institute of Physics.
@S0022-2488~00!00401-1#

I. INTRODUCTION

Recently, the construction of linearnth-order differential operators in one complex variab
which are conformally covariant has regained considerable interest in mathematics1,2 and physics3

such as conformal models and classicalW-algebras.4–6

Supersymmetric extension of this subject consists of the study of covariant operators o
2n11.3 Specific subclasses of these operators are constructed by starting from operators wh
covariant with respect to superprojective changes of coordinates.7 These are the so-called supe
Bol operators. Other classes of operators do not only depend on the superprojective struct
also on some superconformal fieldsWk(1<k,2n11).7 In the applications to super-W-algebras,
the superprojective structure is related to the super-stress tensor while the superconforma
Wk correspond to supercurrents for theW-symmetries.7 On the other hand, starting from supe
differential operators in anN51 superfield formulation, a systematic prescription for the deri
tion of classicalN51 and N52 super-W-algebras by imposing a zero curvature condition
presented.8

In the present work, we will be concerned with the covariantization ofN52 superdifferential
operators in terms of theN52 supersymmetric formalism which areN52 superconformally
covariant. For this purpose we proceed along the lines of the bosonic andN51 supersymmetric
theories of Ref. 3. The study is based on the~2,0! superdiffeomorphism anomaly9 which is not
well defined on the compactN52 super-Riemann surfaces and has to be modified by the inclu
of N52 superprojective connection. In fact, this leads to the simplest and most important

~]2D2D1!]1R]2 1
2~D2R!D11 1

2~D1R!D21]R, ~1.1!

whereRz(z,u6) is the N52 superprojective connection. AnN52 superdifferential operator o
this type occurs in the cocycles ofN52 graded Krichever–Novikov algebra and theN52 super-
Poisson operators for the Korteweg–de Vries~KdV! equations.

This article is organized as follows. In Sec. II we recall the necessary tools and notatio
Sec. III, we construct theN52 supercovariant differential operators and we show that the m
fied integrand of the~2,0! superconformal anomaly contains the familiar Bol operators.3 Other
N52 super-Bol operators can be obtained in the same way. These correspond to the cov
zation of the operator

]m21~]2D2D1!5 1
2 ]m21@D1,D2#, ~1.2!
4680022-2488/2000/41(1)/468/12/$17.00 © 2000 American Institute of Physics
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with m51,2,3,... .
In Sec. IV we discuss theN52 superprojective structures and we show that in terms

superprojective coordinates theN52 extended Wess–Zumino–Polyakov action is cancelled.
In Sec. V, we establish the relation with the Krichever–Novikov algebra by giving the

cycles of theN52 graded Krichever–Novikov algebra. In Sec. VI we give theN52 super-
Poisson operators which coincide with theN52 supercovariant operator~1.1! after substituting
the superfieldF of theN52 SKdV equation by theN52 superprojective connectionRz . The last
section is devoted to the conclusion.

II. GENERAL FRAMEWORK

The objective of this section is to recall9,10 the notions which are needed in the sequence
this work. Consider a compact~2,0! super-Riemann surface parametrized by (z,z̄,u1,u2) with
u15u2

1 andu25u2
2 where the lower index corresponds to the Lorentz indices and the upp

the U(1) charges. According to this choice the~2,0! superderivatives are given by

D1
15Du

15
]

]u2 1u1]z ,

~2.1!

D1
25Du

25
]

]u1 1u2]z ,

which satisfy the relations

$Du
1 ,Du

2%52]z , Du
12505Du

22. ~2.2!

By definition, any two sets of local supercoordinates on the~2,0! super-Riemann surfac
(Z,Z̄,U1,U2) and (Z8,Z̄8,U18,U28) are related by a superconformal transformation if it sa
fies

Z85Z8~Z,U1,U2!, U685U68~Z,U1,U2!,
~2.3!

Z̄85Z̄8~ Z̄!.

These are equivalent to the~2,0! superconformal conditions:9

DU
6Z85U68~DU

6U78!. ~2.4!

Such conditions are obtained by settingDU
1U18505DU

2U28 and mean thatDU
6 transform ho-

mogeneously under superconformal transformations. Therewith we have

DU8
1

5eWDU
1 , DU8

2
5eW̄DU

2 , ~2.5!

with

DU
1U285e2W, DU

2U185e2W̄ ~2.6!
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and where2 is the U(1) charge conjugation. Furthermore, by the application ofDU
1 , DU

2 the
constraints~2.4! lead to the relation

e2W2W̄5]ZZ81U18]ZU281U28]ZU185~DU
2U18!~DU

1U28! ~2.7!

and

~DU
1U28!~DU

18U2!515~DU
2U18!~DU

28U1! . ~2.8!

The transformations of]Z and] Z̄ are given by

]Z85eW1W̄@]Z1~DU
1W̄!DU

21~DU
2W!DU

1#,
~2.9!

] Z̄85S ]Z̄

]Z̄8
D ] Z̄ .

On the other hand, the derivatives]Z , ] Z̄ , DU
6 are dual to the set of the one-forms:

eZ5dZ1U1dU21U2dU1,

eU6
5dU6, ~2.10!

eZ̄5dZ̄,

and the graded lie brackets are equivalent to

deZ1eU1
eU2

1eU2
eU1

50,

deU6
50, ~2.11!

deZ̄50,

Now let us assume that the~2,0! superconformal coordinates (Z,Z̄,U6) are obtained from a
reference system of superconformal coordinates (z,z̄,u6) by a smooth change of coordinates

~z,z̄,u6!→„Z~z,z̄,u6!,Z̄~ z̄!,U6~z,z̄,u6!…. ~2.12!

The expressions of the one forms in terms of the reference coordinate basis allow us to de
super-Beltrami variables which are inert under the superconformal transformation~2.3!.9–11 They
are given by

~eZ,eZ̄,eU1
,eU2

!5~ez,ez̄,eu1
,eu2

!M .L, ~2.13!

whereM andL are matrices expressed in terms of the super-Beltrami variablesHa
b and supercon-

formal factors, respectively.9–11 The transformations of the super-Beltrami variable are obtai
by setting some gauge fixing choices. These choices can be validated by considering a ch
the reference coordinate system (z,z̄,u1,u2) with

D1z85u18~D1u28!, D2z85u28~D2u18!,
~2.14!

and D1u18505D2u28.
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So the super-Beltrami variablesHa
b transform as9,10

Hz̄8
z85e2~w1w̄!Y21S ] z̄

] z̄8
D Hz̄

z ,

H
u18
z8

5e2wY21Hu1
z ,

H
u28
z8

5e2w̄Y21Hu2
z ,

~2.15!

H
u18
u68

5e2~w2w̄!/2Y21/2@Hu1
u6

2Y21Hu1
z

~Hu1
u6

D1W̄1Hu2
u6

D2W!#,

H
u28
u68

5e1~w2w̄!/2Y21/2@Hu2
u6

2Y21Hu2
z

~Hu1
u6

D1W̄1Hu2
u6

D2W!#,

Hz̄
u68

5e2~w1w̄!/2Y21/2S ] z̄

] z̄8
D @Hz̄

u6

2Y21Hz̄
z~Hu1

u6

D1W̄1Hu2
u6

D2W!#,

Y511~D1W̄!Hu1
z

1~D2W!Hu2
z . ~2.16!

The choicesHu6
z

50 are invariant under the change of the reference coordinate system
simplify all the other super-Beltrami variable transformations. These choices which lead t

mogeneous transformation ofHu7
u7

and Hu6
u6

, and the use of Eqs.~2.10! written in the reference
coordinate system, show that the super-Beltrami variables and the superconformal facto
related to each other. Therefore the transformations of the ghost superfieldsSz, Su6

, andS z̄ are
given by9

Sz85Y21e2~w1w̄!Sz,

Su68
5Y21/2e2~w1w̄!/2@Su6

2Y21Sz
„~D1w̄!Hu1

u6

1~D2w!Hu2
u6

…#, ~2.17!

S z̄85S ] z̄8

] z̄
D S z̄.

On the other hand, theN52 super-Schwarzian derivative of the superconformal transformatio
coordinateZ(z,u6)→Z8(Z) is defined by

S~Z,Z8!5e21/2~w1w̄!@D1,D2#e1/2~w1w̄!

52F]~w2w̄!1
1

2
~D1w̄!~D2w!G

5
]~D1u28!

~D1u28!
2

]~D2u18!

~D2u18!
22

~]u18!~]u28!

~D1u28!~D2u18!
, ~2.18!

which becomes for infinitesimal transformationZ85Z1dZ5Z1v as12

S~Z8,Z!5]@D1,D2#v. ~2.19!

In the next section the important choicesHu6
z

50 will be used in order to discuss theN52
supercovariant differential operators.
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III. N52 SUPERCOVARIANT DIFFERENTIAL OPERATORS

Consider the two tensor superfields on theN52 super-Riemann surface whose compone
transform according to

Sz85Y21e2~w1w̄!Sz,

Hz̄8
z85e2~w1w̄!Y21S ] z̄

] z̄8
D Hz̄

z . ~3.1!

As known,9 the geometry of the~2,0! super-Riemann surfaces is parametrized by the su

Beltrami variablesHz̄
z , Hu6

z and Hu1
u1

~or Hu2
u2

) which are independent. If the geometry is r
stricted by

Hu6
z

50, ~3.2!

thenHz̄
z transforms as

Hz̄8
z

5e2~w1w̄!S ] z̄

] z̄8
D Hz̄

z ~3.3!

under superconformal changes of coordinates. On the other hand, the Becchi–Rouet–Stor
formation ~BRST! variation of the extended Wess–Zumino–Polyakov action to the~2,0! super-
symmetric case in the right sector leads to the~2,0! superconformal anomaly,9 namely,

E d3z22 A~Sz,Hz̄
z!5

1

2 E d3z22 $Sz]@D1,D2#Hz̄
z%5E d3z22 ~@]22D2D1]#Sz!Hz̄

z .

~3.4!

Our goal is to see if this expression which corresponds to theN52 extension of the Berezinian
integral given in Ref. 3 is well defined on a compactN52 super-Riemann surface. In fact, und
a superconformal change of coordinates,

~z,z̄,u6!→~z8~z,z̄,u6!; z̄8~ z̄!;u68~z,z̄,u6!!,

the two terms of the integrand in~3.4! transform as

@~]22D2D1]!Sz#85e~w1w̄!@~]22D2D1]!1S]2 1
2~D2S!D12 1

2~D1S!D21]S#Sz,
~3.5!

whereS(z8,u68;z,u6) denotes theN52 super-Schwarzian derivative defined previously. Con
quently, the expression~3.4! is also not well defined on a compactN52 super-Riemann surfac
as in the ordinary andN51 supersymmetric cases.3 However, the differential operator (]2

2D2D1]) can be modified by the introduction of theN52 superprojective connection.
For this reason we define anN52 superprojective connection byRz(z,u6) which transforms

underN52 superconformal change of coordinates as

Rz8~z8,u68!5e~w1w̄!@Rz~z,u6!2S~z8,u68;z,u6!#, ~3.6!

and where the expansion in terms ofu6 is given by

Rz~z,u6!5rz~z!1u1luz
2 1u2cuz

1 1u1u2r zz. ~3.7!
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We note that the componentr zz transforms like an ordinary projective connection up to sup
symmetric contributions as in theN51 supersymmetric case:

Rz8~z8,u68!uu1u25e~w1w̄!@Rz~z,u6!uu1u22S~z8,u68;z,u6!uu1u2#

5e~w1w̄!@r zz2
1
2~]w̄!~]w!#1¯ . ~3.8!

In fact, the modified expression

L2Sz5@~]22D2D1]!1R]2 1
2~D2R!D12 1

2~D1R!D21]R#Sz ~3.9!

transforms as follows,

~L2Sz!85e~w1w̄!L2Sz, ~3.10!

and consequently the modified integrand, namely,

Ã~Sz,Hz̄
z!5~L2Sz!Hz̄

z , ~3.11!

transforms with the Jacobian

Ã~Sz,Hz̄
z!85~ ]̄8z̄!Ã~Sz,Hz̄

z!. ~3.12!

The differential operatorL2 represents the covariantization of (]22D2D1]) and it is Hermitian
in the sense that

E d3z22Sz@L2Hz̄
z#5E d3z22~L2Sz!Hz̄

z ~3.13!

whered3z225d2zdu1du2.
The expansion in terms of components is given by

E d3z22 Ã~Sz,Hz̄
z!5E d2z H Szl 3m z̄

z1Sz@r]jz1]rjz1~]r!~]m z̄
z!#

12Su1
l 2m z̄

u2

2Su1Fr]m z̄
u2

1
3

2
~]r!m z̄

u2

1l2jz2~]l2!m z̄
zG

12Su2
l 2m z̄

u1

1Su2Fr]m z̄
u1

1
3

2
~]r!m z̄

u1

2c1jz2~]c1!m z̄
zG

1terms in D6Sz and D1D2SzJ , ~3.14!

with

Hz̄
z5m z̄

z1u1m z̄
u2

1u2m z̄
u1

1u1u2jz ,

~3.15!
Sz5Sz1u1Su2

1u2Su1
1u1u2C,

and where

l 35]312r zz]1]r zz, l 25]21 1
2r zz ~3.16!

are the familiar Bol operators.3 In order to obtain the otherN52 super-Bol operators, let us defin
N52 conformal superfieldsS2m with m upperu1 andu2 indices transforming as follows:
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~S2m!85e2~m/2!~w1w̄!S2m , ~3.17!

where thez index is identified withu1u2 indices. Such conformal superfields can be viewed
components of the invariant expressions:

~Gu1
Gu2

!m/2S2m , ~3.18!

whereGu1
andGu2

are generators with the following transformations:

~Gu1
!85ewGu1

, ~Gu2
!85ew̄Gu2

. ~3.19!

As in the previous procedure, we can show that theN52 super-Bol operators correspond to t
covariantization of the operator]m21(]2D2D1)5 1

2]
m21@D1,D2# with m51,2,3,.... We find,

for instance, form51 and 3,

L15]2D2D11
R

2
,

~3.20!
L35~]2D2D1!]21 3

2R]22 3
2~D2R!]D11 3

2~D1R!]D213~]R!]

1 1
4~@D1,D2#R2R2!~]2D2D1!1 1

2~
1
2R~D2R!22]D2R!D1

2 1
2~

1
2R~D1R!12]D1R!D21 3

2~]2R1 1
4R@D1,D2#R2 1

4R
32~D1R!~D2R!!.

Thanks to their covariance, these operators give a well-defined meaning to the superspa
grals:

~3.21!

More precisely, form51 and 3 we have

E d3z22 Su2
L1Hz̄

u1

, ~3.22!

E d3z22 Szu1
L3Hz̄

zu2

. ~3.23!

The expansion of~3.22! in terms of components leads

E d3z22 Su2
L1Hz̄

u1

5E d2z H Su2F l 2b z̄
u1

12l 1jzz̄
u1

1rzjzz̄
u1

1
1

2
luz

2 d z̄
112

1

2
b z̄

u1

g z̄G
2SF l 1g z̄1

1

2
rzg z̄1

1

2
luz

2 b z̄
u1G1vz

u2F2l 1b z̄
u1

1rzb z̄
u1

2
1

2
jzz̄

u1G J ,

~3.24!

wherel 15] andl 25]21 1
2r zz are the familiar Bol operators and where we have used the follow

expansions ofSu2
andHz̄

u1

:

Su2
5Su2

1u1h221u2S1u1u2vz
u2

,
~3.25!

Hz̄
u1

5b z̄
u1

1u1g z̄1u2d z̄
111u1u2jzz̄

u1

.
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Quite generally, the scalar equation

Fm5Lmf m , ~3.26!

S F1

0 D5S ]2D2D1 R

2

21 1
D S f 0

f 1
D . ~3.27!

The general case can be discussed as for theN51 supersymmetric case and provides an extrem
efficient way for determining explicit expressions for the operatorsLm .

IV. N52 SUPERPROJECTIVE STRUCTURES

It is known that the superprojective mappings are defined by a superconformal chan
coordinatesZ5(Z,U1,U2)→Z8 such that the super-Schwarzian derivative is equal to zero

S~Z,Z8!505e2~1/2!~w1w̄!@DU
1 ,DU

2#e~1/2!~w1w̄!, ~4.1!

which implies that

@DU
1 ,DU

2#e~1/2!~w1w̄!50. ~4.2!

Such an equation has a general solution

~DU
2U18!~DU

1U28!5~cZ1d1g2U11g1U2!22, ~4.3!

so the superprojective mappingZ→Z8 is given by13

Z85
aZ1g1

28U11g2
18U21b

cZ1g1
2U11g2

1U21d
,

~4.4!

U685
e2

6Z1tU11t66U21e1
6

cZ1g1
2U11g2

1U21d
,

wherea,b,c,d,t, t66Pú andg6,g1
2 ,g2

1 ,g1
28 ,g2

18 ,e1
6 ,e2

6 are Grassmann numbers.
On the other hand, the transformation law of]z@DU

1 ,DU
2#Sz under N52 superprojective

changes of coordinatesZ→Z8 must be homogeneous, namely,

~]Z@DU
1 ,DU

2#SZ!85~cZ1d1g2U11g1U2!2]z@DU
1 ,DU

2#SZ. ~4.5!

Upon passage to an arbitrary holomorphic coordinate (z,u1,u2) by a superconformal transfor
mation one has

]Z@DU
1 ,DU

2#SZ5e~w1w̄!L2Sz

with

SZ5~D1U2!~D2U1!Sz. ~4.6!

On a compact super-Riemann surface there is a one-to-one correspondence between sup
tive connections and superprojective structures. This relation is expressed by
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R~z,u6!5S~Z,U6,z,u6!, ~4.7!

which can be rewritten as follows:

R~z,u6!5F21@D1,D2#F, ~4.8!

with

F5~D1U2!21/2~D2U1!21/2.

The N52 extended Wess–Zumino–Polyakov action,9 namely,

GWZP5
1

2 E d3z22 Hz̄
z@D1,D2#Ln L ~4.9!

with

L5~D1U2!1/2~D2U1!1/2,

can be rewritten in terms of the super-Schwarzian derivatives as follows:

GWZP52E d3z22 Hz̄
zS. ~4.10!

In terms of the superprojective coordinate system theN52 extended Wess–Zumino–Polyako
action is cancelled.

Finally, let us note that the superfield]Z
n21@DU

1 ,DU
2#Sn transforms homogeneously under

superprojective change of coordinatesZ→Z8:

~]Z
n21@DU

1 ,DU
2#Sn!85~DU

1U28!2n/2~DU
2U18!2n/2]Z

n21@DU
1 ,DU

2#Sn

5~cZ1d1g2U11g1U2!n]Z
n21@DU

1 ,DU
2#Sn ~4.11!

with Sn(Z,U6) a quasi-primary superfield of weight2n/2, namely,

Sn85~DU
1U28!n/2~DU

2U18!n/2Sn5~cZ1d1g2U11g1U2!2nSn. ~4.12!

Upon passage to an arbitrary system of superconformal coordinates, the supero
]Z

n21@DU
1 ,DU

2# becomes theN52 super-Bol operatorLn ,

]Z
n21@DU

1 ,DU
2#Sn5~D1U2!2n/2~D2U1!2n/2LnSn

with

Sn~Z,U6!5~D1U2!n/2~D2U1!n/2Sn~z,u6!. ~4.13!

In operatorial form we have

Ln5~D1U2!n/2~D2U1!n/2]Z
n21@DU

1 ,DU
2#~D1U2!n/2~D2U1!n/2. ~4.14!

As for theN51 supersymmetric case, one can obtain theN52 super-Bol operatorsLn in terms of
certain universal polynomial inR,D6R,]R,..., etc. This will be discussed elsewhere.

V. COCYCLES OF THE GRADED KRICHEVER–NOVIKOV ALGEBRA

In order to establish a relation with the Krichever–Novikov algebra, let us symmetrize
expression~3.11! corresponding to theN52 superdiffeomorphism anomaly:
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Ã~Sz,Hz̄
z!5 1

2@SzL2Hz̄
z1Hz̄

zL2Sz#

5 1
2$S

z~]22D1D2]!Hz̄
z1Hz̄

z~]22D1D2]!Sz2R~Sz]Hz̄
z1Hz̄

z]Sz!

2 1
2~D2R!~SzD1Hz̄

z1Hz̄
zD1Sz!1 1

2~D1R!~SzD2Hz̄
z1Hz̄

zD1Sz!%. ~5.1!

The Wess–Zumino consistency condition reads

sE d3z22 Ã~Sz,Hz̄
z!50, ~5.2!

wheres is the BRST differential operator given by9,10

sHz̄
z5@ ]̄2Hz̄

z]2 1
2~D1Hz̄

z!D21 1
2~D2Hz̄

z!D11]Hz̄
z#Sz,

sSz52Sz]Sz1 1
2~D1Sz!~D2Sz!, ~5.3!

sR50.

In terms of component fields, the expression~5.1! contains for the choicesr50, c1505l2 the
central extension of the graded Krichever–Novikov algebra. In fact,

E d3z22Ã~Sz,Hz̄
z!5

1

2 E d2z$~Sz]3m z̄
z2m z̄

z]3Sz!22r zz~Sz]m z̄
z2Sz]m z̄

z!

12~Su1
]2m z̄

u2

2m z̄
u2

]2Su1
!12~Su2

]2m z̄
u1

2m z̄
u1

]2Su2
!

1r zzS
u1

m z̄
u2

1r zzS
u2

m z̄
u1

%, ~5.4!

in which one can read the corresponding cocycles of theN52 graded Krichever–Novikov alge
bra. These are given by

x~Sz,m z̄
z!5 1

2$~Sz]3m z̄
z2m z̄

z]3Sz!2r zz~]Szm z̄
z2Sz]m z̄

z!%dz,

w~Su1
,m z̄

u1

!52$]Su1
]m z̄

u2

1 1
2r zzS

u1
m z̄

u2

%dz, ~5.5!

c~Su2
,m z̄

u1

!52$]Su2
]m z̄

u1

1 1
2r zzS

u2
m z̄

u1

%dz.

These choices are actually correct and depend upon the fact that the inhomogeneous tran
tion laws for both odd and even cocycle contain a Schwarzian derivative term. The expre
~5.1! and ~5.4! should provide a basis for defining theN52 super Krichever–Novikov operato
formalism on a general superconformal manifold. This is also adopted to define a global
alization of the twisting operation ofN52 superconformal field theories on a compact Riema
surfaceSg of genusg.14 In the following section we will see that the so-calledN52 super-
Poisson operator coincides with theN52 supercovariant opratorL2 for the ordinary andN52
supersymmetric cases.

VI. N52 SUPER-POISSON OPERATORS

The super extensions of the KdV equation~SKdV!15–17are related via the second Hamiltonia
structure to superconformal algebras. TheN52 SKdV equation which corresponds to the on
parameter family of supersymmetric evolution equations is given by16
                                                                                                                



n.

st for

iables
ng the

ng
ith

f the

that

pact
to
ant.

478 J. Math. Phys., Vol. 41, No. 1, January 2000 N. Benhamou and T. Lhallabi

                    
F z̄52Fzzz13~F@D1,D2#F!z1
a21

2
~@D1,D2#F2!z13aF2Fz , ~6.1!

wherea is an arbitrary constant. This is related to the choice of the most generalN52 supersym-
metric Hamiltonian of dimension 3:

H5
1

2 E dz du1 du2S F@D1,D2#F1
a

3
F3D . ~6.2!

The so-called ‘‘second’’ Hamiltonian structure for theN52 SKdV equation is given by the
Hamiltonian H in~6.2! and by the Poisson brackets

$F~Z!,F~Z8!%52@~]2D1D2!]1F]2 1
2~D1F!D22 1

2~D2F!D11]F#d~Z2Z8!,

where

Z5~z,z̄,u6! ~6.3!

and

d~Z2Z8!5d2~z2z8!~u12u18!~u22u28!.

Note that the super-Poisson operator in~6.3! coincides with theN52 supercovariant operatorL2

~3.9! after substitutingF(z,z̄,u6) by Rz . It was shown that16 the equation~6.1! is completely
integrable and admits an infinite number of the conserved quantities only fora522, 4. Fora
51 there exist higher-order conservation laws and no standard Lax representation is know17

VII. CONCLUSION

Concerning the comment made in Ref. 11, we would like to note that theU(1) symmetry
connection has been omitted at the beginning of all the development of Refs. 9 and 10 ju
simplicity. Furthermore, as it is indicated in Refs. 9 and 10, the introduction of theU(1) symme-
try connection as a degree of freedom which closed the multiplet of the super-Beltrami var
can be made in a straightforward way. In fact, this can be taken into account by consideri
new covariant derivative

d→d6A

on an object having1 and 2 U(1) charges, respectively. This is equivalent to modifyi
equations~2.23!–~2.26! of Ref. 9 by covariantizing the derivatives of the fermionic variables w
respect to theU(1) connection. This latter can also be redefined in a particular form~see Ref. 10!
in order to maintain the super-Beltrami multiplet inert under superconformal transformation o
capital coordinates. This has no consequences on the expression of the~2,0! superconformal
anomaly given in Ref. 9 on which all our present work is based. Finally, we would like to note
the expressions of~2,0! superconformal anomaly given in Refs. 9 and 11 are the same.

In the present work the~2,0! superconformal anomaly becomes well defined on the com
N52 super-Riemann surfaces by the inclusion ofN52 superprojective connections. This leads
the covariantization ofN52 superdifferential operators which are superconformally covari
These operators occur in the cocycles ofN52 graded Krichever–Novikov algebra and in theN
52 super-Poisson operators for the Korteweg–de Vries equation. TheN52 super-Bol operators
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correspond to the covariantization of the operator]m21(]2D2D1)5 1
2]

m21@D1,D2#, m
51,2,3,..., which contains the familiar Bol operators. Notice that theN52 superconformally
covariant operators have been studied in Ref. 18. TheseN52 super-Bol operators can also b
obtained by using the zero curvature condition written in terms of theN52 superfield formalism
in the super-Beltrami parametrization. On the other hand, starting from theN52 superdifferential
operators in anN52 superfield formulation, one can present a prescription for the derivatio
classicalN52 super-W-algebra by imposing a zero curvature condition. This set of subjec
under study.
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A group classification of invariant difference models, i.e., difference equations and
meshes, is presented. In the continuous limit the results go over into Lie’s classi-
fication of second-order ordinary differential equations. The discrete model is a
three point one and we show that it can be invariant under Lie groups of dimension
0<n<6. © 2000 American Institute of Physics.@S0022-2488~00!02601-3#

I. INTRODUCTION

Lie group theory started out as a theory of transformations of solutions of sets of differ
equations.1–4 Over the years it has developed into a powerful tool for classifying differen
equations and for solving them. These aspects of Lie group theory have been described i
books and lecture notes.5–10

Applications of Lie group theory to difference equations are much more recent.11–36 Essen-
tially there are two different points of view that have been adopted when studying contin
symmetries of equations involving discrete or discretely varying independent variables.

One point of view is that a difference equation isa priori given on some fixed lattice and th
task is to determine a group of transformations, leaving the solution set invariant. Diff
approaches differ in their treatment of independent variables, and in the assumed form
global and infinitesimal transformations considered. In any case, the distinction between
symmetries and generalized symmetries becomes blurred. In order to obtain symmetries
into dilations, rotations, or Lorentz transformations in the continuous limit, it is necessa
significantly modify the Lie techniques used in the continuous case.11–22

An alternative point of view23–34is to pose the following question: How does one discretiz
differential equation while preserving all of its Lie point symmetries? Here one starts fro
differential equation and finds its Lie point symmetries, using well-known techniques.5–10 Thus a
symmetry groupG and its Lie algebra area priori given. One then looks for a difference schem
i.e., a difference equation and a mesh that have the same symmetry group and the same sy
algebraL. In particular the Lie algebraL is realized by the same vector fields in the continuous
in the discrete case.

In this article we adopt the second point of view. We start our from Lie’s classificatio
second-order ordinary differential equations~ODEs! according to their point symmetries. Our ai
is to provide a similar classification of second-order difference schemes.

Thus, Lie considered equations of the form

a!Electronic mail: dorod@spp.keldysh.ru
b!Electronic mail: kozlov@math.ntnu.no
c!Electronic mail: wintern@crm.umontreal.ca
4800022-2488/2000/41(1)/480/25/$17.00 © 2000 American Institute of Physics
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E~x,y,y8,y9!50,
]E

]y9
Þ0, ~1.1!

whereE is an arbitrary sufficiently smooth function. The Lie algebraL of the symmetry groupG
of Eq. ~1.1! is realized by vector fields of the form

Xa5ja~x,y!
]

]x
1ha~x,y!

]

]y
, a51,...,n. ~1.2!

Lie showed1,2 that the Lie algebra of Eq.~1.1! can be of dimensionn5dimL50, 1, 2, 3, or 8.
Moreover, he classified equations with point symmetries into equivalence classes under the
of the infinite dimensional group Diff~2, C! of all local diffeomorphisms of a complex planeC2

~his analysis was over the fieldC of complex numbers!. For each equivalence class he chos
simple representative equation and gave the corresponding realization ofL. He showed that all
equations with dimL>2 can be integrated in quadratures.

We shall provide a similar classification of discrete models of second-order ODEs. We re
ourselves to a three point stencil, as shown in Fig. 1.

Thus, we are considering a six-dimensional subspace (x,x2 ,x1 ,y,y2 ,y1) of the space of
independent and dependent variables. The discrete model under consideration can be pres
terms of pair of difference equations

F~x,x2 ,x1 ,y,y2 ,y1!50,
~1.3!

V~x,x2 ,x1 ,y,y2 ,y1!50,

such that

det
]~F,V!

]~x1 ,y1!
Þ0, det

]~F,V!

]~x2 ,y2!
Þ0. ~1.4!

The conditions on the model are as follows.
~1! In the continuous limith15x12x→0 andh25x2x2→0 the first equation should go

into a second-order ODE of the form~1.1!. The second equation gives the lattice on which the fi
equation is considered. In the continuous limit the second equation becomes an identity (050).

~2! The difference system~1.3! and~1.4! is invariant under the same group as the ODE~1.1!.
That is, the difference scheme~1.3! and~1.4! and the ODE~1.1! are annihilated by the appropriat
prolongations~see the following! of the same vector fields~1.2!.

Lie’s classification of ODEs was performed over the field of complex numbersC. He made
use of his classification of all finite-dimensional Lie algebras that can be realized in term
vector fields of the form~1.2!. Thus, he classified all finite-dimensional subalgebrasL,diff(2,C).3

Our classification of the difference models will be overR; that overC will be obtained as a
by-product. We shall make use of a much more recent classification of finite-dimensional
gebras of diff~2, R!.37

FIG. 1. Elementary stencil for a three-point difference equation.
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The article is organized as follows. In Sec. II we present the general theory and outlin
classification method. Difference models invariant under one- and two-dimensional group
analyzed in Sec. III. Section IV is devoted to groups of dimension three. The dimensions<n
<8 are discussed in Sec. V. Section VI is devoted to the free particle equationÿ50 and its
discretization. Finally, the results are summed up in two tables and the conclusions are pre
in Sec. VII.

II. CONSTRUCTION OF INVARIANT DIFFERENCE SCHEMES

As stated in Sec. I, we wish to construct all three-point difference schemes invariant
some transformation group. The Lie algebra of this group is realized by vector fields of the
~1.2!, i.e., the Lie algebra, and the group action is the same as for differential equations.

An essential tool for studying Lie symmetries is prolongation theory. For a second-order
we must prolong the action of a vector field~1.2! from the space~x,y! of independent and
dependent variables to a four-dimensional space (x,y,y8,y9). The prolongation formula for vecto
fields is5–10

pr ~2!Xa5ja~x,y!
]

]x
1ha~x,y!

]

]y
1ha

1~x,y,y8!
]

]y8
1ha

2~x,y,y8,y9!
]

]y9
~2.1!

with

ha
15Dx~ha~x,y!!2y8Dx~ja~x,y!!, ha

25Dx~ha
1 !2y9Dx~ja~x,y!!, ~2.2!

whereDx is the total differentiation operator.
In the discrete case we prolong the operatorsXa to a six-dimensional spac

(x,x2 ,x1 ,y,y2 ,y1). The prolongation formula is

pr ~2!Xa5Xa1ja~x2 ,y2!
]

]x2
1ja~x1 ,y1!

]

]x1
1ha~x2 ,y2!

]

]y2
1ha~x1 ,y1!

]

]y1
. ~2.3!

Let us assume that a Lie groupG is given and that its Lie algebra is realized by vector fie
of the form ~1.2!. If we wish to construct a second-order ODE that is invariant underG, we
proceed as follows. We choose a basis ofL, namely$Xa ,a51,...,n%, and impose the equations

pr ~2!XaF~x,y,y8,y9!50, a51,...,n, ~2.4!

with pr (2)Xa as in Eq.~2.1!. Using the method of characteristics, we obtain a set of elemen
invariantsI 1 ,...,I k . Their number is

k5dim M2~dimG2dimG0!, ~2.5!

whereM is the manifold thatG acts on andG0 is the stabilizer of a generic point onM. In our case
we haveM;$x,y,y8,y9% and hence dimM54. An equivalent, but more practical formula for th
number of invariants is

k5dimM2rankZ, k>0, ~2.6!

whereZ is the matrix

Z5S j1 h1 h1
1 h1

2

]

jn hn hn
1 hn

2
D . ~2.7!
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The rank ofZ is calculated at a generic point ofM. The invariant equation is written as

E~ I 1 ,...,I k!50, ~2.8!

whereE must satisfy the condition from~1.1!. Equation~2.8! obtained in this manner is ‘‘strongly
invariant,’’ i.e., pr (2)XaE50 is satisfied identically.38

Further invariant equations are obtained if the rank ofZ is less than maximum on som
manifold described by the equationE(x,y,y8,y9)50, itself satisfying the condition

pr ~2!XaEuE5050, a51,...,n. ~2.9!

We then obtain a ‘‘weakly invariant’’ equation of the form~1.1!, i.e., Eq.~2.9! is satisfied on the
solution set of the equationE50.

The procedure for obtaining an invariant second-order difference model for a given groG
is quite analogous. Instead of Eq.~2.4! we write

pr ~2!XaF~x,y,x2 ,y2 ,x1 ,y1!50, a51,...,n, ~2.10!

with pr (2)Xa as in Eq. ~2.3!. We use the method of characteristics to obtain the elemen
invariantsI 1 ,...,I k in the spaceM;$x,y,x2 ,y2 ,x1 ,y1%. The number of invariantsk satisfies
Eqs.~2.5! and ~2.6!. However, in this case we have dimM56 and the matrixZ is

Z5S j1 h1 j1,2 h1,2 j1,1 h1,1

]

jn hn jn,2 hn,2 jn,1 hn,1

D , ~2.11!

where

j j ,65j j~x6 ,y6!, h j ,65h j~x6 ,y6!, 1< j <n. ~2.12!

The ‘‘strongly invariant’’ difference scheme is then given by

F~ I 1 ,...,I k!50, V~ I 1 ,...,I k!50, ~2.13!

satisfying condition~1.4!.
‘‘Weakly invariant’’ difference schemes are obtained by finding invariant manifolds inM, i.e.,

finding surfacesS(x,y,x2 ,y2 ,x1 ,y1)50 on which the rank ofZ is less than maximal. The
system~2.13! represents both the difference equation and a mesh. In general, for the same
G we expect to have more difference invariants, than differential ones~since we have dimM
56 in the first case and dimM54 in the second!. We need two equations for a difference schem
just one for a differential equation. That still leaves us with one more degree of freedom
discrete case.

We shall run through subalgebras of diff~2, R! by dimension. For each representative sub
gebra we shall construct the most general difference scheme. We shall then specialize
specific choices of the arbitrary functions involved, so as to obtain a scheme that has the
priate ODE as its continuous limit.

To do this it is often convenient to use different coordinates in the six-dimensional spac
three-point model. For instance, we may use

x, h15x12x, h25x2x2 , yx5
y12y

h1
, yx̄5

y2y2

h2
,

~2.14!

yxx̄5
2

h11h2
S y12y

h1
2

y2y2

h2
D .
                                                                                                                



ich

e
ariant

Lie
all Lie
n-

.

f

e shall

484 J. Math. Phys., Vol. 41, No. 1, January 2000 Dorodnitsyn, Kozlov, and Winternitz

                    
We shall callyx andyx̄ discrete right and left derivatives, respectively, andyxx̄ a discrete second
derivative.

In the continuous limit we have

h1→0, h2→0, yx→y8, yx̄→y8, yxx̄→y9. ~2.15!

The most common way of discretizing independent variables is to introduce a regular~uni-
form! mesh, i.e., to put

h15h2 . ~2.16!

Using the prolongation formula~2.3! it is easy to determine the class of transformations wh
preserves the uniformity of the mesh. The invariance condition of Eq.~2.16! is

j~x1 ,y1!22j~x,y!1j~x2 ,y2!uh15h2
50. ~2.17!

We shall see in the following that condition~2.17! is not satisfied for most transformations in th
~x,y! plane. Hence, the use of nonregular lattices is essential in the construction of inv
difference schemes.

In the following we shall make use of two types of classifications of low-dimensional
algebras. The first is a classification of abstract Lie algebras. Such classification exists for
algebras of dimL<6,39–42both overR and overC. The second is a classification of finite dime
sional subalgebras of diff~2, F! with F5R or F5C. This classification is known for all~finite!
values of dimL3,37 It is easy to see that for dimL>2 the two classifications do not coincide
Indeed, let us consider the lowest dimensions.

dim L51: Any vector field of the form~1.2! can be rectified@in the neighborhood of a
nonsingular point~x,y!#. That is, by a locally invertible change of variables we can transform

X→X5
]

]y
. ~2.18!

In other words, every one-dimensional subalgebra of diff~2, F! is conjugate toX of Eq. ~2.18!.
dim L52: Two isomorphism classes of two-dimensional Lie algebras exist~over R and over

C!. They are represented by

L2,1: @X1 ,X2#5X1 , L1% L1 : @X1 ,X2#50. ~2.19!

Each of the isomorphism classes can be realized in two different ways as subalgebras of dif~2, F!.
The realizations are represented by

D2,1: X15
]

]x
, X25

]

]y
, D2,2: X15

]

]y
, X25x

]

]y
,

~2.20!

D2,3: X15
]

]y
, X25x

]

]x
1y

]

]y
, D2,4: X15

]

]y
, X25y

]

]y
.

The algebrasD2,1 andD2,2 are Abelian,D2,3 andD2,4 isomorphic toL2,1 from ~2.19!. In the tangent
space$]/]x,]/]y% D2,2 and D2,4 generate a one-dimensional subspace,D2,1 and D2,3 the entire
two-dimensional space. We say thatX1 andX2 are ‘‘linearly connected’’ forD2,2 andD2,4, i.e.,
they are linearly dependent at any fixed generic point ofF2. For D2,1 andD2,3 the vector fieldsX1

andX2 are ‘‘linearly nonconnected.’’
dim L53: Six classes of indecomposable three-dimensional Lie algebras exist overR, four

overC. Two classes of decomposable three-dimensional Lie algebras exist in both cases. W
use the following notations for the isomorphism classes:

~1! Nilpotent:
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L3,1: @e2 ,e3#5e1 , @e1 ,e2#50, @e1 ,e3#50. ~2.21!

~2! Solvable:
A solvable three-dimensional Lie algebra has a two-dimensional Abelian ideal. We chooX1

andX2 as basis elements of the ideal. The commutation relations then are

S @e1 ,e3#

@e2 ,e3# D5M S e1

e2
D , @e1 ,e2#50, ~2.22!

whereMPF2 can be chosen in its Jordan canonical form. OverR we have

L3,2: M5S 1 0

0 aD , 0,uau<1

L3,3: M5S 1 0

1 1D , ~2.23!

L3,4: M5S a 1

21 aD , 0<a.

Over C the algebrasL3,2 andL3,4 are isomorphic, soL3,4 is dropped.
~3! Simple:

L3,5;sl ~2,F!: @e1 ,e2#5e1 , @e2 ,e3#5e3 , @e3 ,e1#522e2 , ~2.24!

L3,6;o~3!: @e1 ,e2#5e3 , @e2 ,e3#5e1 , @e3 ,e1#5e2 . ~2.25!

Over C these two algebras are isomorphic, soL3,6 should be dropped. The decomposable thr
dimensional algebras are represented byL2,1% L1 andL1% L1% L1 .

As subalgebras of diff~2,R! L3,1, L3,6, L2,1% L1 andL1% L1% L1 can be realized in one wa
each,L3,5 in four inequivalent ways, all others in two inequivalent ways. All these realizations
be presented in Sec. IV. ForL3,2 it is convenient to treat the valuea51 separately.

Let us now construct the invariant difference schemes, proceeding by dimension.

III. EQUATIONS INVARIANT UNDER ONE AND TWO-DIMENSIONAL GROUPS

We start with the simplest case of a symmetry group, namely a one-dimensional one.
algebra is generated by one vector field of the form~1.2!. By an appropriate change of variable
we take this vector field into its rectified form. Thus we have

D1,1: X15
]

]y
. ~3.1!

The most general second-order ODE invariant under the corresponding group is

y95F~x,y8!, ~3.2!

whereF is an arbitrary function. In order to write a difference scheme invariant under the
group we need the difference invariants annihilated by the prolongation ofX1 to the prolonged
space (x,x2 ,x1 ,y,y2 ,y1). A basis for the invariants is$h15y12y,h25y2y2 ,x,x2 ,x1%,
but a more convenient basis is$yxx̄ ,(yx1yx̄)/2,x,h2 ,h1%. The general invariant model can b
written as

yxx̄5 f S x,
yx1yx̄

2
,h2D , h15h2gS x,

yx1yx̄

2
,h2D , ~3.3!
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wheref andg are arbitrary functions.
The simplest invariant difference scheme that approximates the ODE~3.2! is obtained by

restrictingf to be independent ofh2 and puttingg[1. We have

yxx̄5FS x,
yx1yx̄

2 D , h25h1 . ~3.4!

We would like to stress that~3.4! is just a specified case of the difference model~3.3!, involving
two arbitrary functions. In other words, invariant difference schemes have much more fre
than invariant differential equations.

D2,1: The Abelian Lie algebra with nonconnected basis elements@see Eq.~2.20!#. In the
continuous case the invariant ODE is

y95F~y8!, ~3.5!

where F is an arbitrary function. A convenient set of difference invariants is$h1 ,h2 ,(yx

1yx̄)/2,yxx̄%. The most general invariant difference model can be written as

yxx̄5 f S yx1yx̄

2
,h2D , h15h2gS yx1yx̄

2
,h2D . ~3.6!

The simplest scheme approximating Eq.~3.5! is again obtained by restrictingf and puttingg
51.

D2,2: The Abelian Lie algebra with connected basis elements@see Eq.~2.20!#. The invariant
differential equation is

y95F~x!. ~3.7!

Equation~3.7! can be transformed into the equationu950 by the change of variables

u5y2W~x!,

where

W9~x!5F~x!, ~3.8!

i.e., W(x) is any solution of Eq.~3.7!.
A basis for the finite-difference invariants of the group corresponding to the Lie algebraD2,2

is $yxx̄ ,x,h1 ,h2% and the invariant model can be presented as

yxx̄5 f ~x,h2!, h15h2g~x,h2!. ~3.9!

Restrictingf (x,h2)5F(x) and settingg51 we obtain the discrete system representing Eq.~3.7!.
The discrete model~3.9! can be taken into the standard form

uxx̄50, h15h2g~x,h2! ~3.10!

by putting

u5y2W~x,h2 ,h1!, Wxx̄5 f ~x,h2!, ~3.11!

i.e., W is any solution of the system~3.9! ~just as in the continuous case!.
D2,3: The non-Abelian Lie algebra with nonconnected elements@see Eq.~2.20!# yields the

invariant ODE
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y95
1

x
F~y8!. ~3.12!

A convenient basis for the finite-difference invariants of the group corresponding toD2,3 is
$xyxx̄ ,(yx1yx̄)/2,h1 /h2 ,h2 /x%. The general invariant difference scheme can be written as

yxx̄5
1

x
f S yx1yx̄

2
,
h2

x D , h15h2gS yx1yx̄

2
,
h2

x D . ~3.13!

Restricting f 5F((yx1yx̄)/2) and settingg51, we obtain an invariant approximation of E
~3.12!.

D2,4: The non-Abelian Lie algebra with linearly connected basis elements@see Eq.~2.20!#
leads to the invariant ODE

y95F~x!y8. ~3.14!

Equation~3.14! can be taken to its standard formv950 by a transformation of the independe
variablet5g(x), v(t)5y(x), whereg(x) is any particular solution of Eq.~3.14!.

Finite-difference invariants forD2,4 are $yxx̄ /(yx1yx̄),x,h2 ,h1%. The general invariant dif-
ference model can be written as

yxx̄5
yx1yx̄

2
f ~x,h2!, h15h2g~x,h2!. ~3.15!

An invariant difference approximation of the ODE~3.14! is obtained by puttingf (x,h2)
5F(x), g(x,h2)51.

The discrete model~3.15! can be simplified by a transformation of the independent varia
just as in the continuous case. Indeed, letf(x) be a solution of Eq.~3.15! and transform

~x,y!→~ t5f~x!,u~ t !5y~x!!. ~3.16!

We obtain the difference scheme~3.10!.
The results on two-dimensional symmetry algebras can be summed up as a theorem.
Theorem 1: The two subalgebrasD2,1 andD2,3 of diff ~2,F! with linearly nonconnected basi

elements provide invariant difference schemes involving two arbitrary functions of two vari
each, namely~3.6! and~3.13!, respectively. The subalgebrasD2,2 andD2,4 with linearly connected
elements lead to the difference schemes~3.9! and ~3.15!, respectively. Both of them can b
transformed into the scheme~3.10! if one solution of the original schemes is known.

Comments.
~1! We have obtained the discrete analog of a well-known result for ODEs. Namely,

second-order ODE invariant under a two-dimensional Lie group with linearly connected ge
tors can be transformed by a point transformation intoy950.1,2

~2! The transformations~3.11! and ~3.16! will be used in the following for equations with
higher dimensional symmetry algebras, containingD2,2 andD2,4 as subalgebras.

IV. EQUATIONS INVARIANT UNDER THREE-DIMENSIONAL LIE GROUPS

As stated in Sec. II, eight isomorphism classes of three-dimensional Lie algebras exist oR.
Two of them,L3,2 and L3,4, depend on a continuous parameter calleda in Eq. ~2.23!. For our
purpose it is sometimes convenient to separate out some special values of this parameter
algebra L3,2. All together we must consider 16 classes of three-dimensional subalg
D3,j,diff(2,R), j 51,...,16.

For differential equations, seven of these algebras, we shall call themD3,1,...,D3,7 lead to
equations equivalent to

y950. ~4.1!
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This ODE is invariant underSL(3,F), so none of of the groups corresponding toD3,1,...,D3,7 is a
maximal symmetry group of Eq.~4.1!, i.e., we haveD3,j,sl(3,F), j 51,...,7.

Two of the subalgebras, we call themD3,15 andD3,16, do not allow any invariant second-orde
ODE. The remaining seven algebras lead to specific invariant ODEs, not involving any arb
functions.

We shall run through all the algebrasD3,j, j 51,...,16 and construct the invariant ODEs a
the invariant difference schemes whenever they exist. The difference schemes in general
arbitrary functions. Whenever possible, we specialize these functions so as to obtain inv
difference schemes, approximating the invariant ODEs. This last step is of course not u
different discrete schemes can approximate the same ODE.

We start from the six algebras that containD2,2 or D2,4 as subalgebras. The invariant ODE w
hence be equivalent to Eq.~4.1! and the invariant difference schemes can always be transfor
to the form~3.10!, though the functiong(x,h2) may differ from case to case.

D3,1: The nilpotent Lie algebra isomorphic toL3,1 can, up to equivalence, be realized in o
way only:

X15
]

]x
, X25

]

]y
, X35x

]

]y
. ~4.2!

Notice thatX2 andX3 commute and are linearly connected. The invariant ODEy95C is equiva-
lent to Eq.~4.1!.

The difference invariants are$yxx̄ ,h2 ,h1%. The most general invariant difference scheme

yxx̄5 f ~h2!, h15h2g~h2!. ~4.3!

The ODEy95C is approximated if we setf 5C, g51. The scheme~4.3! is equivalent to that of
Eq. ~3.10!, however the functiong is independent ofx.

D3,2: The solvable Lie algebraL3,3 can be represented as

X15
]

]y
, X25x

]

]y
, X35

]

]x
1y

]

]y
, ~4.4!

with X1 andX2 linearly connected. The invariant ODE is

y95C exp~x!. ~4.5!

A basis for the difference invariants is$yxx̄ exp(2x),h2 ,h1%. The general invariant differenc
scheme is

yxx̄5 f ~h2!exp~x!, h15h2g~h2!, ~4.6!

and Eq.~4.5! is approximated if we putf 5C, g51. The scheme~4.6! can be transformed into
~3.10! with g independent ofx.

D3,3: The decomposable algebraL2,1% L1 can be represented by

X15
]

]x
, X25

]

]y
, X35y

]

]y
. ~4.7!

The invariant ODE is

y95Cy8. ~4.8!

The simplest set of difference invariants is$h1 ,h2 ,(y12y)/(y2y2)%, but an equivalent and
more convenient set is$yxx̄ /yx ,(yx1yx̄)/yx ,h2%. We write the general invariant differenc
scheme as
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yxx̄5
yx1yx̄

2
f ~h2!, h15h2g~h2!. ~4.9!

The ODE~4.8! is approximated by puttingf 5C, g51. The transformation~3.16! will take ~4.9!
into ~3.10! with g independent ofx.

D3,4: The Lie algebraL3,2 with a51 is realized by

X15
]

]y
, X25x

]

]y
, X35y

]

]y
. ~4.10!

In this case all three operators are linearly connected. The only differential invariant isx, but y9
50 is an invariant manifold, soy950 is a weakly invariant ODE.

The difference invariants are only$x2 ,x,x1%, but yxx̄50 is again an invariant manifold. Th
general~weakly! invariant difference scheme is

yxx̄50, h15h2g~x,h2!. ~4.11!

The simplest approximation of the invariant ODE is obtained if we setg51 in Eq. ~4.11!.
D3,5: The Lie algebraL3,2 with aÞ1 can be realized as

X15
]

]y
, X25x

]

]y
, X35~12a!x

]

]x
1y

]

]y
, aÞ1. ~4.12!

The invariant ODE is

y95Cx~2a21!/~12a!, aÞ1. ~4.13!

A convenient set of invariants is$yxx̄x
(2a21)/(a21),h2 /x,h1 /x%. The general invariant differenc

scheme is

yxx̄5x~2a21!/~12a! f S h2

x D , h15h2gS h2

x D . ~4.14!

Equation ~4.13! is approximated by settingf 5C, g51. The difference scheme can again
transformed into~3.10! with g as in Eq.~4.14!.

D3,6: The algebraL3,4 can be represented as

X15
]

]y
, X25x

]

]y
, X35~11x2!

]

]x
1~x1b!y

]

]y
, ~4.15!

and corresponds to the invariant ODE

y95C~11x2!23/2exp~b arctan~x!!, ~4.16!

which can be transformed intoy950.
The expressions$h1 /(11xx1),h2 /(11xx2),(yx2yx̄)A11x2 exp(2barctan(x))% form a

complete set of difference invariants for the group corresponding toD3,6. The invariant difference
scheme can be written as

yxx̄5
exp~b arctan~x!!

A11x2 S h1

h21h1

1

11xx1
1

h2

h21h1

1

11xx2
D f S h2

11xx2
D ,

~4.17!

h15h2

11xx1

11xx2
gS h2

11xx2
D .
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Putting f 5g51 we obtain an invariant discrete approximation of the ODE~4.16!.
When considered overC, the caseD3,6 is equivalent toD3,5. Indeed, if we put

x5 i
t2 i

t1 i
, y5

&u

12 i t
, ~4.18!

the vector fields~4.15! go into a linear combination of the fields~4.12! and Eq.~4.16! goes into

utt5
&

4
expS ip

32 ib

4 DCt2~31 ib !/2, ~4.19!

i.e., ~4.13! with a5(211 ib)(11 ib)21. Similarly, the model~4.17! goes into~4.14!.
D3,7: The Lie algebraL3,2 with a51 was already realized asD3,4. A different, inequivalent

realization ofL3,2(a51) is given by

X15
]

]x
, X25

]

]y
, X35x

]

]x
1y

]

]y
. ~4.20!

Notice that the Abelian ideal$X1 ,X2% is realized by linearly nonconnected vector fields. The o
differential invariant isy8, howevery950 is an invariant manifold. Hence the equationy950 is
weakly invariant.

A basis for the difference invariants is$h2yxx̄ ,(yx1yx̄)/2,h1 /h2 %. We obtain a strongly
invariant difference scheme, namely

h2yxx̄5 f S yx1yx̄

2 D , h15h2gS yx1yx̄

2 D . ~4.21!

In general, this model does not have a continuous limit. That exists only forf 50. The equation
y950 is approximated by Eq.~4.21! with f 50, g51.

All different schemes obtained so far are equivalent to special cases of the model

yxx̄50, g~x,h2 ,h1!50. ~4.22!

The following algebrasD3,8,...,D3,14 are different in that they lead to equations that cannot
reduced to the form~4.22!.

D3,8: The Lie algebraL3,3 was already realized asD3,2. A second realization, not equivalent t
~4.4!, is given by

X15
]

]x
, X25

]

]y
, X35x

]

]x
1~x1y!

]

]y
. ~4.23!

Notice that the elements of the ideal$X1 ,X2% are linearly nonconnected. The correspond
invariant ODE is

y95exp~2y8!. ~4.24!

Its general solution is

y52x1~x1B!ln~x1B!1A,

whereA andB are integration constants.
A basis for the difference invariants is$h1 /h2 ,h1 exp(2yx),h2 exp(2yx̄)%. The general in-

variant difference scheme can be written as
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2

h21h1
~exp~yx!2exp~yx̄!!5 f ~h2 exp~2yx̄!!,

~4.25!
h15h2g~h2 exp~2yx̄!!.

An invariant approximation of the ODE~4.24! is obtained by settingf 5g51. An equivalent
alternative to the scheme~4.25! is

yxx̄5expS 2
yx1yx̄

2 D f SAh2h1 expS 2
yx1yx̄

2 D D ,

~4.26!

h15h2gSAh2h1 expS 2
yx1yx̄

2 D D .

An approximation of Eq.~4.24! is again obtained by settingf 5g51. The two above approxima
tions are not equivalent~they correspond to different choices of the arbitrary functions!.

D3,9: The algebraL3,2 with aÞ1 was realized asD3,5. A second realization is

X15
]

]x
, X25

]

]y
, X35x

]

]x
1ky

]

]y
, kÞ0,1

2,1,2. ~4.27!

In this case$X1 ,X2% are not linearly connected, henceD3,9 and D3,5 are not equivalent. The
corresponding invariant ODE is

y95y8~k22!/~k21! ~4.28!

and its general solution is

y5S 1

k21D k21 1

k
~x2x0!k1y0 . ~4.29!

A basis for finite-difference invariants is given by$h1 /h2 ,yxh1
(12k) ,yx̄h2

(12k)%. An invariant
difference scheme is given by

2~k21!

h21h1
~~yx!

1/~k21!2~yx̄!
1/~k21!!5 f ~yx̄h2

~12k!!,

~4.30!
h15h2g~yx̄h2

~12k!!.

An approximation of Eq.~4.28! is obtained if we putf 5g51 ~this can be verified by setting
yx5yx̄1« and expanding in terms of powers of«!. An alternative invariant difference model is

yxx̄5S yx1yx̄

2 D ~k22!/~k21!

f S yx1yx̄

2
h2

~12k!D ,

~4.31!

h15h2gS yx1yx̄

2
h2

~12k!D .

The ODE~4.28! is approximated if we putf 5g51.
D3,10: The Lie algebraL3,4, already realized asD3,6, can also be realized with the idea

$X1 ,X2% linearly unconnected. We have

X15
]

]x
, X25

]

]y
, X35~kx1y!

]

]x
1~ky2x!

]

]y
. ~4.32!
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Over C this algebra is equivalent toD3,9. The corresponding transformation of variables is

t5
x2 iy

&
, w52

i

&
~x1 iy !. ~4.33!

The invariant ODE is

y95~11~y8!2!3/2exp~k arctan~y8!! ~4.34!

and its solution is

expS 2k arctanS 2~x2x0!1k~y2y0!

k~x2x0!1~y2y0! D D ~11k2!~~x2x0!21~y2y0!2!51. ~4.35!

A basis for the difference invariants can be chosen in the form$h1A11yx
2 exp(karctanyx),

h2A11yx̄
2 exp(karctanyx̄), (yx2yx̄)/(11yxyx̄)%. The general form of the invariant differenc

model is

yxx̄5~11yxyx̄!S h1

h21h1

A11yx
2 exp~k arctan~yx!!

1
h2

h21h1

A11yx̄
2 exp~k arctan~yx̄!! D f ~h2A11yx̄

2 exp~k arctan~yx̄!!!,

~4.36!
h1A11yx

2 exp~k arctan~yx!!5h2A11yx̄
2 exp~k arctan~yx̄!1g~h2A11yx̄

2 exp~k arctan~yx̄!!!.

In order to approximate the ODE~4.34! we setf 51, g50.
D3,11: This is the first of four inequivalent realizations ofsl(2,F). We have

X15
]

]x
, X252x

]

]x
1y

]

]y
, X35x2

]

]x
1xy

]

]y
. ~4.37!

The invariant ODE is

y95y23, ~4.38!

with the general solution

y25A~x2x0!21
1

A
, AÞ0.

A convenient set of difference invariants is $y(yx2yx̄),1/y(h1 /y1

1h2 /y2),1/y2(h1h2 /(h11h2))%. The invariant difference scheme can be written as

yxx̄5
1

y2 S h1

h11h2

1

y1
1

h2

h11h2

1

y2
D f S 1

y2

h1h2

h11h2
D ,

~4.39!
1

y S h1

y1
1

h2

y2
D54

1

y2

h1h2

h11h2
gS 1

y2

h1h2

h11h2
D .

We approximate the ODE~4.38! by settingf 5g51.
We mention that this particular realization ofsl(2,F) is not maximal in diff~2,F!. Indeed, we

have an embedding
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sl~2,F!,gl~2,F!,sl~3,F!,diff ~2,F! ~4.40!

and the centralizer ofD3,11 is Y5y(]/]y). Note also that the coefficients of]/]x in Xi depend
only on the variablex. The realization is hence imprimitive.

D3,12: A second realization ofsl(2,F) is

X15
]

]x
, X25x

]

]x
1y

]

]y
, X35~x22y2!

]

]x
12xy

]

]y
. ~4.41!

The invariant ODE is

yy95C~11~y8!2!3/22~11~y8!2!, C5const, ~4.42!

with the general solution

~Ax2B!21~Ay2C!251.

The difference invariants can be chosen in the form

I 15
h2

2 1~y2y2!2

yy2
, I 25

h1
2 1~y12y!2

yy1
,

I 35
2y~h11h21h1yx

21h2yx̄
212y~yx2yx̄!!

4y22~h1~11yx
2!12yyx!~h2~11yx̄

2!22yyx̄!
.

We write the invariant difference scheme as

I 35 1
2~AI 11AI 2! f ~ I 1!, I 25I 1g~ I 1!. ~4.43!

A discrete approximation of the ODE~4.42! is obtained by settingf 5C, g51 in Eq. ~4.43!.
The subalgebrasD3,11 andD3,12 are not equivalent, either forF5C, or for F5R. To see this,

it is sufficient to notice that there is no nonzero element of diff~2,F! that commutes with all
elementsXi from ~4.41!, i.e., the centralizer ofD3,12 in diff ~2,F! is zero, whereas that ofD3,11 is
Y5y(]/]y). OverR the algebra~4.41! is primitive. However, overC we can put

u5x1 iy , v5x2 iy . ~4.44!

The algebra~4.41! in terms of the coordinatesu andv is transformed into the algebraD3,13, which
we turn to now.

D3,13: A third realization ofsl(2,F) is

X15
]

]x
1

]

]y
, X25x

]

]x
1y

]

]y
, X35x2

]

]x
1y2

]

]y
. ~4.45!

Over R, D3,13 is a new inequivalent imprimitive realization ofsl(2,F). As previously mentioned
D3,13 andD3,12 are equivalent overC. The realization is imprimitive.

The invariant ODE is

y91
2

x2y
~y81y82!5

2C

x2y
y83/2. ~4.46!

Its general solution is

y5
1

A~B1 1
2C!2Ax

1
2B2C

2A
, AÞ0.
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A special solution is

y5ax,

where the constanta is a solution of the following algebraic equation:

a2CaAa1a250.

A complete set of difference invariants is

I 15
h1

2 yx

~x2y1!~x12y!
, I 25

h2
2 yx̄

~x2y2!~x22y!
, I 35

x12y

x2y

h2

h21h1
.

An invariant difference scheme can be written as

I 1

~12I 3!22
I 2

~ I 3!2 5 f ~ I 3!S I 1

~12I 3!2 1
I 2

~ I 3!2D 3/2

, I 15I 2g~ I 3!. ~4.47!

It approximates Eq.~4.46! if we put f 5C,g51.
We mention thatD3,13 is not maximal in diff~2,F!. For F5R andF5C we have

D3,13,o~2,2!,diff ~2,R!,

or

D3,13,o~4,C!,diff ~2,C!, ~4.48!

respectively. The algebraso(2,2) ando(4,C) are both realized by the vector fields

H ]

]x
,x

]

]x
,x2

]

]x
,

]

]y
,y

]

]y
,y2

]

]yJ . ~4.49!

D3,14: There exists just one~up to equivalence! realization of o(3) as a subalgebra o
diff(2,F). We choose it in the form

X15~11x2!
]

]x
1xy

]

]y
, X25xy

]

]x
1~11y2!

]

]y
, X35y

]

]x
2x

]

]y
. ~4.50!

The corresponding invariant ODE is

y95CS 11y821~y2xy8!2

11x21y2 D 3/2

. ~4.51!

The general solution of Eq.~4.51! can be presented in the form

~Bx2Ay1CA11x21y2!2511C22A22B2.

The discrete invariants can be chosen to be

I 15
h1

2 ~11yx
21~y2xyx!

2!

~11x21y2!~11x1
2 1y1

2 !
, I 25

h2
2 ~11yx̄

21~y2xyx̄!
2!

~11x2
2 1y2

2 !~11x21y2!
,

I 35
h1h2~yx2yx̄!

A11x2
2 1y2

2 A11x21y2A11x1
2 1y1

2
.
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The general form of the invariant difference model can be written as

h1h2~yx2yx̄!

A11x2
2 1y2

2 A11x21y2A11x1
2 1y1

2
5 f S h2

2 ~11yx̄
21~y2xyx̄!

2!

~11x2
2 1y2

2 !~11x21y2!
D ,

~4.52!
h1

2 ~11yx
21~y2xyx!

2!

~11x21y2!~11x1
2 1y1

2 !
5gS h2

2 ~11yx̄
21~y2xyx̄!

2!

~11x2
2 1y2

2 !~11x21y2!
D .

As an invariant discrete model that approximates the ODE~4.51! we can consider the discret
equation

h1h2~yx2yx̄!

A11x2
2 1y2

2 A11x21y2A11x1
2 1y1

2

5CS S h1
2 ~11yx

21~y2xyx!
2!

~11x21y2!~11x1
2 1y1

2 !
D 3/2

1S h2
2 ~11yx̄

21~y2xyx̄!
2!

~11x2
2 1y2

2 !~11x21y2!
D 3/2D

on the grid

h1
2 ~11yx

21~y2xyx!
2!

~11x21y2!~11x1
2 1y1

2 !
5

h2
2 ~11yx̄

21~y2xyx̄!
2!

~11x2
2 1y2

2 !~11x21y2!
5«2.

Over C the algebraD3,14 is equivalent to thesl(2,R) algebraD3,13. The transformation of
variables that takes one algebra into the other one is quite complicated and we shall not rep
it here. The algebraD3,14 does not have a nontrivial centralizer in diff(2,R).

D3,15: The fourth realization ofsl(2,R) is represented by

X15
]

]y
, X25y

]

]y
, X35y2

]

]y
, ~4.53!

so that all three elements are linearly connected. The independent variablex is the only invariant
in the continuous case, i.e., in the space (x,y,y8,y9). The only invariant manifold isy850, so it
does not provide an invariant second-order ODE.

In the discrete case we have three invariantsx, x2 ,x1 . The variablesy, y2 , andy1 are not
involved and hence we cannot form an invariant difference scheme.

D3,16: The Abelian Lie algebra can be presented as

X15
]

]y
, X25x

]

]y
, X35f~x!

]

]y
, f9~x!Þ0. ~4.54!

Again, all the elements of the Lie algebraD3,16 are linearly connected. There is neither a seco
order ODE, nor a second-order difference scheme invariant under this group.

V. EQUATIONS INVARIANT UNDER HIGHER DIMENSIONAL LIE GROUPS

The symmetry group of a second-order ODE can be at most eight-dimensional. Moreo
is eight-dimensional only if the equation can be transformed intoy950 by a point transformation
The symmetry group in that case isSL(3,F). Any second-order ODE invariant under a Lie gro
of dimension four, five, or six is also invariant underSL(3,F). No such ODE invariant under a Lie
group of dimension seven exists.

Now let us consider the case of invariant difference models.
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A. Four-dimensional Lie algebras

Twelve isomorphism classes of indecomposable Lie algebras with dimL54 exist, as well as
ten decomposable ones.39 Many of them can be ruled out immediately as symmetry algebra
three-point difference schemes. We already know that no difference schemes invariant un
group corresponding to the algebrasD3,15 and D3,16 exist. Hence we can rule out all algebra
containing one of these as a subalgebra.

This rules out Abelian and nilpotent Lie algebras, solvable Lie algebras with th
dimensional Abelian ideals, and all decomposable Lie algebras of the typeL3,j ^ L1 , whereL3,j is
nilpotent, solvable, orsl(2,R) realized asD3,15. We can also rule out thesl(2,F) algebras with no
centralizer in diff(2,F) and theo(3) algebraD3,14 for the same reason. Indeed,L1 must be in the
centralizer ofL3,j in diff(2,F).

This leaves us with the following eight Lie algebras to consider.
~A! Solvable, indecomposable, with nilradical NR(L);2L1 . There is just one class of suc

algebras, isomorphic to the similitude algebra of the Euclidean plane~two translations, a rotation
and a uniform dilation!. OverR the algebra is indecomposable, overC decomposable according t
the pattern 45212. Since 2L1 can be realized in two ways as a subalgebra of diff(2,R) we have
two realizations of this algebra.

D4,1: The algabra is represented as

X15
]

]x
, X25

]

]y
, X35x

]

]x
1y

]

]y
, X45y

]

]x
2x

]

]y
. ~5.1!

There are no differential invariants in the space (x,y,y8,y9), but y950 is an invariant manifold.
There are two independent difference invariants, namelyI 15(yx2yx̄)/(11yxyx̄),

I 25h1 /h2((11yx
2)/(11yx̄

2))1/2. Hence we can write an invariant difference scheme as

yx2yx̄5C1~11yxyx̄!, h15C2h2A11yx̄
2

11yx
2, ~5.2!

where C1 and C2 are arbitrary constants. However, a continuous limit exists only if we h
C150. The limit is theny950.

D4,2: The group with infinitesimal operators

X15
]

]y
, X25x

]

]y
, X35y

]

]y
, X45~11x2!

]

]x
1xy

]

]y
, ~5.3!

has no invariants in the space (x,y,y8,y9). There is however an invariant manifoldy950.
Finite-difference invariants areI 15h1 /(11xx1), I 25h2 /(11xx2) andyxx̄50 is an invari-

ant manifold. We thus have an invariant difference model

yxx̄50, h15h2

11xx1

11xx2
gS h2

11xx2
D . ~5.4!

For g51 it approximates the ODEy950.
~B! Solvable, indecomposable with NR(L);A3,1. The nilradical will be$X1 ,X2 ,X3% ~the

Heisenberg algebra!. The additional non-nilpotent element isX4 . Depending on the form ofX4 ,
we obtain three mutually nonisomorphic Lie algebras.

D4,3: The group with infinitesimal operators

X15
]

]x
, X25

]

]y
, X35x

]

]y
, X45x

]

]x
1ay

]

]y
~5.5!
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has a differential invariant, namelyy9, only if a52 in X4 . For aÞ2 there is an invariant
manifold, y950.

The expressionsI 15h1 /h2 ,I 25yxx̄h1
22a form the entire set of difference invariants of th

corresponding group. The general form of the invariant model is

yxx̄5C1h1
a22, h15C2h2 . ~5.6!

For a.2 the continuous limit isy950. For a,2 a continuous limit exists only if we choos
C150.

D4,4: The group with infinitesimal generators

X15
]

]x
, X25

]

]y
, X35x

]

]y
, X45x

]

]x
1~2y1x2!

]

]y
~5.7!

has neither invariants, nor invariant manifolds in the continuous case.
The expressionsI 15h1 /h2 ,I 25yxx̄2 ln(h2h1) form the entire set of difference invariants

this case. We can hence write an invariant difference scheme

yxx̄5 ln~h2h1!1C1 , h15C2h2 , ~5.8!

but it does not have a continuous limit.
D4,5: The group with infinitesimal generators

X15
]

]x
, X25

]

]y
, X35x

]

]y
, X45y

]

]y
~5.9!

has no invariants in the space (x,y,y8,y9), but there is the invariant manifoldy950.
The step lengthsh1 andh2 form a basis of difference invariants andyxx̄50 is an invariant

manifold. The general form of the invariant difference model is

yxx̄50, h15h2g~h2!. ~5.10!

~C! The decomposable Lie algebraA2% A2 can be realized in two inequivalent manners.
D4,6: The Lie algebra is

X15
]

]x
, X25

]

]y
, X35x

]

]x
, X45y

]

]y
, ~5.11!

and exist both overC andR. OverC, D4,1 andD4,6 are equivalent.
There are no differential invariants, buty950 is an invariant manifold. Difference invarian

areI 15h1 /h2 , I 25yx /yx̄ . The general form of the invariant difference scheme can be writte

yxx̄5C1

yx̄

h2
, h15C2h2 , ~5.12!

however a continuous limit exists only forC150.
D4,7: The second realization ofA2% A2 is

X15
]

]y
, X25x

]

]y
, X35x

]

]x
, X45y

]

]y
. ~5.13!

OverR this is new, overC D4,2 andD4,7 are equivalent. There are no differential invariants in
space (x,y,y8,y9), but y950 is an invariant manifold.

The ratiosh1 /x andh2 /x are difference invariants andyxx̄50 is an invariant manifold. The
general invariant difference scheme is
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yxx̄50, h15h2gS h2

x D . ~5.14!

~D! The decomposable Lie algebrasl(2,F) % A1 can be realized in a single manner allowin
invariant differential or difference equations.

D4,8: The group with infinitesimal generators

X15
]

]x
, X25x

]

]x
, X35y

]

]y
, X45x2

]

]x
1xy

]

]y
~5.15!

has no differential invariants, but does leave the manifoldy950 invariant.
The expressionsI 15h1h2(yxx̄ /y), I 25(y2h1)/(y1h2) generate the entire set of differenc

invariants. The general form of an invariant difference model is

yxx̄5
C1

h1h2
y, h1y25C2h2y1 . ~5.16!

A continuous limit exists only forC150.

B. Five-dimensional Lie algebras

The number of isomorphism classes of five-dimensional Lie algebras is quite large. W
immediately exclude all those that are not subalebras of diff~2,F!, that contain a three-dimensiona
Abelian subalgebra, or thesl(2,F) algebraD3,15 of Eq. ~4.53!.

Finally, only two five-dimensional Lie algebras provide invariant difference schemes.
D5,1: A solvable Lie algebra with the Heisenberg algebraA3,1 as its nilradical,

X15
]

]x
, X25

]

]y
, X35x

]

]x
, X45x

]

]y
, X55y

]

]y
. ~5.17!

The corresponding group has no differential invariants, buty950 is an invariant manifold.
The group has one difference invariant, namelyj5h1 /h2 , and one invariant manifold

namely

h5~x2x2!~y12y!2~x12x!~y2y2!. ~5.18!

The most general invariant difference scheme can hence be written as

yxx̄50, h15Ch2 ; ~5.19!

whereC is an arbitrary constant.
D5,2: The special affine Lie algebrasaff(2,F),

X15
]

]x
, X25

]

]y
, X35y

]

]x
, X45x

]

]y
, X55x

]

]x
2y

]

]y
. ~5.20!

There is no differential invariant, buty950 is an invariant manifold.
There are no difference invariants either, buth50 of Eq. ~5.18! is an invariant manifold.

Equation~5.19! again provides a~weakly! invariant difference scheme. Note that the relationj
5x12x2C(x2x2)50 is invariant on the manifoldh50 ~it is strongly invariant under the grou
generated by$X1 ,X2 ,X5%!.

C. A six-dimensional symmetry algebra

D6,1: The general affine Lie algebragaff(2,F),
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X15
]

]x
, X25

]

]y
, X35x

]

]x
,

~5.21!

X45y
]

]x
, X55x

]

]y
, X65y

]

]y
.

This algebra containsD5,1 andD5,2 as subalgebras. Again,y950 is an invariant manifold in the
continuous case and Eq.~5.19!, with C arbitrary, provides a weakly invariant difference schem

The ODEy950 is invariant under a larger group, namelySL(3,F) of dimension eight. There
are no three-point difference schemes invariant under Lie groups of dimensionh>7. We shall
compare the continuous and discrete situations in Sec. VI.

The obtained classification of invariant difference schemes is summed up in Table I.

VI. THE FREE PARTICLE EQUATION AND ITS DISCRETIZATION

The free particle equation

y950 ~6.1!

is invariant ~weakly! under the groupSL(3,F). The most general second-order ODE invaria
underSL(3,F) is known43–47 and is quite complicated. It can be transformed into Eq.~6.1! by a
point transformation. Every linear second-order ODE is invariant underSL(3,F).

A three-point discretization of the free particle equation~6.1! should have the form

yxx̄50, V~x,x2 ,x1y,yx̄ 1yx!50, ~6.2!

whereV50 determines the mesh.
D8,1: The Lie algebrasl(3,F) can be presented as

X15
]

]x
, X25

]

]y
, X35x

]

]y
, X45x

]

]x
12y

]

]y
, X55y

]

]y
,

~6.3!

X65y
]

]x
, X75x2

]

]x
1xy

]

]y
, X85xy

]

]x
1y2

]

]y
.

The group generated by the subalgebra$X1 ,X2 ,X3 ,X4% has one differential invariant, namelyy9,
and two difference ones, namelyI 15yxx̄ , I 25h1 /h2 . Moreover, in the continuous casey950 is
an invariant manifold for the entire groupSL(3,F). In the discrete case we have only one invaria
manifold, namelyyxx̄50, and we need two. We have

pr „2…XiI 2u I 15050, a51,...,6. ~6.4!

However, we have

pr „2…X7I 2u I 1505I 2~h11h2!Þ0,

~6.5!
pr (2)X8I 2u I 1505I 2~h11h2!Þ0;

so I 2 is not invariant on the surfaceI 150. We are not allowed to setI 250 sinceh1 andh2 by
assumption satisfyh1.0, h2.0.

Finally, we find that the difference scheme~5.19! is ~weakly! invariant under the genera
affine group generated byD6,1, but not under the larger groupSL(3,F).
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TABLE I. Group classification of three-point difference schemes and their continuous limits. The functionsf and g are
nonsingular forh1→0, h2→0, otherwise arbitrary.

Group Difference equation Mesh Differential equation

D1,1 yxx̄5fSx,
yx1yx̄

2
,h2D h15h2gSx,

yx1yx̄

2
,h2D y95F(x,y8)

D2,1 yxx̄5fSyx1yx̄

2
,h2D h15h2gSyx1yx̄

2
,h2D y95F(y8)

D2,2 yxx̄5 f (x,h2) h15h2g(x,h2) y95F(x)

D2,3 yxx̄5
1

x
fSyx1yx̄

2
,
h2

x D h15h2gSyx1yx̄

2
,
h2

x D y95
1

x
F(y8)

D2,4 yxx̄5
yx1yx̄

2
f~x,h2! h15h2g(x,h2) y95F(x)y8

D3,1 yxx̄5 f (h2) h15h2g(h2) y95C

D3,2 yxx̄5 f (h2)exp(x) h15h2g(h2) y95C exp(x)

D3,3 yxx̄5
yx1yx̄

2
f~h2! h15h2g(h2) y95Cy8

D3,4 yxx̄50 h15h2g(x,h2) y950

D3,5 yxx̄5x~2a21!/~12a! f S h2

x D h15h2gS h2

x D y95Cx(2a21)/(12a)

D3,6 yxx̄5
exp~b arctan~x!!

A11x2 S h1

h21h1

1

11xx1

1
h2

h21h1

1

11xx2
D f S h2

11xx2
D

h15h2

11xx1

11xx2
gS h2

11xx2
D y95C

exp~b arctan~x!!

~11x2!3/2

D3,7 h2yxx̄5fSyx1yx̄

2 D h15h2gSyx1yx̄

2 D y950

D3,8 yxx̄5expS2 yx1yx̄

2 DfSAh2h1

3expS2 yx1yx̄

2 DD
h15h2gSAh2h1 expS2 yx1yx̄

2 DD y95exp(2y8)

D3,9 yxx̄5Syx1yx̄

2 D~k22!/~k21!

f S yx1yx̄

2
h2

~12k!D h15h2gS yx1yx̄

2
h2

~12k!D y95y8(k22)/(k21)

D3,10 yxx̄5S h1

h21h1

A11yx
2 exp~k arctan~yx!!

1
h2

h21h1

A11yx̄
2 exp(k arctan~yx̄)!D

3~11yxyx̄!f~h2A11yx̄
2 exp~k arctan~yx̄!!!

h1A11yx
2 exp~k arctan~yx!!

5h2A11yx̄
2 exp(k arctan~yx̄!)

1g~h2A11yx̄
2 exp~k arctan~yx̄!!!

y95~11~y8!2!3/2

3exp~k arctan~y8!!

D3,11 yxx̄5
1

y2 S h1

h11h2

1

y1
1

h2

h11h2y2
D

3 f S 1

y2

h1h2

h11h2
D

1

y S h1

y1
1

h2

y2
D

54
1

y2

h1h2

h11h2
gS 1

y2

h1h2

h11h2
D

y95y23

D3,12
2y~h11h2!12y~h1yx

21h2yx̄
2
14y2~yx2yx̄!

4y22~h1~11yx
2!12yyx!~h2~11yx̄

2!22yyx̄!

5
1

2
SAh2

2 1~y2y2!2

yy2
1Ah1

2 1~y12y!2

yy1
D

3 f S h2
2 1~y2y2!2

yy2
D

h1
2 1~y12y!2

yy1

5
h2

2 1(y2y2)2

yy2

3gSh2
2 1~y2y2!2

yy2
D

yy95C(11(y8)2)3/2

2(11(y8)2)

D3,13
yx

~x2y1!~x22y!
2

yx̄

~x2y2!~x12y!

5 f S x12y

x2y

h2

h21h1
D ~x2y!~h21h1!

A~x22y!~x12y!

3S yx

~x2y1!~x22y!
1

yx̄

~x2y2!~x12y!
D 3/2

h1
2 yx

~x2y1!~x12y!

5
h2

2 yx̄

(x2y2)(x22y)

3gSx12y

x2y

h2

h21h1
D

y91
2

x2y
~y81y82!

5
2C

x2y
y83/2
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The difference scheme~6.2! is invariant under subgroups ofD6,1 for more general meshes tha
those satisfyingh15Ch2 . These are obtained from the results of Secs. III–V. The invar
mesh equations and maximal invariance algebras are given in Table II.

Finally, while there is no difference scheme invariant underSL(3,F), there are schemes of th
type ~5.19!, invariant under subgroups ofSL(3,F), not contained inD6,1. The corresponding
algebras areD3,11, D3,14, D4,2, andD4,8.

VII. CONCLUSIONS

Let us first compare Lie’s classification of second-order ordinary differential equations
the obtained classification of three-point difference schemes.

~1! For every ODE invariant under a Lie groupG of dimensionn, 1<n<3, there exist a
family of different schemes invariant under the same groupG. In particular, forn53, the invariant
ODE is specified up to at most a constant. The invariant difference scheme in general involv
arbitrary functions.

~2! All ODEs invariant under a Lie groupG of dimensionn54, 5, or 6 are also invarian
underSL(3,F) and we haveG,SL(3,F). Moreover, the ODE can be transformed intoy950.
Three-point difference schemes invariant under groups of dimensions four, five, and six exi
continuous limit exists, it isy950. However, other invariant schemes exist that do not h
continuous limits~seeD4,1,D4,4,D4,6,D4,8!.

~3! The ‘‘discrete free particle equation’’yxx̄50 has a different symmetry behavior from i
continuous limit. First of all, it is invariant at most under a six-dimensional Lie group, namely
group of all linear transformations of the spaceR2, or C2, i.e., $x,y%. This invariance occurs on th
meshh15Ch2 , whereC.0 is a constant. We have shown in Sec. VI that the equationyxx̄

50 is invariant under groups of dimension 1<n<4 for more general meshes~see Table II!.

TABLE I. (Continued.)

Group Difference equation Mesh Differential equation

D3,14
h1h2~yx2yx̄!

A11x2
2 1y2

2 A11x21y2A11x1
2 1y1

2

5 f S h2
2 ~11yx̄

2
1~y2xyx̄!2!

~11x2
2 1y2

2 !~11x21y2!
D

h1
2 ~11yx

21~y2xyx!2!

~11x21y2!~11x1
2 1y1

2 !

5gS h2
2 ~11yx̄

2
1~y2xyx̄!2!

~11x2
2 1y2

2 !~11x21y2!
D

y95CS 11y821~y2xy8!2

11x21y2 D 3/2

D3,15 ¯ g(x2 ,x,x1)50 y850

D3,16 ¯ g(x2 ,x,x1)50 ¯

D4.1 yx2yx̄5C1(11yxyx̄) h15C2h2A11yx̄
2

11yx
2

y950

D4,2 yxx̄50 h15h2

11xx1

11xx2
gS h2

11xx2
D y950

D4,3 yxx̄5C1h1
a22 h15C2h2 y950 if aÞ2,

y95C if a52
D4,4 yxx̄5 ln(h2h1)1C1 h15C2h2 ¯

D4,5 yxx̄50 h15h2g(h2) y950

D4,6
yxx̄5C1

yx̄

h2

h15C2h2 y950

D4,7 yxx̄50 h15h2gSh2

x D y950

D4,8 yxx̄5
C1

h1h2
y h1y25C2h2y1 y950

D5,1 yxx̄50 h15Ch2 y950

D5,2 yxx̄50 h15Ch2 y950

D6,1 yxx̄50 h15Ch2 y950

D8,1 yxx̄50 ¯ y950
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Our main results are summed up in two tables. Table I presents all invariant three
difference schemes. In column 1 we identify the Lie algebra of the invariance group, usin
notations of Secs. II–V. The difference equations and meshes are given in columns 2 an
each algebra. The invariant ODE is given in column 4. The ODEs involve arbitrary function
1<dimL<2. For dimL>3 they are either completely specified or involve arbitrary consta
The difference schemes in general involve two functions. In the limith1→0,h2→0 they can be
specified to obtain the correct continuous limit. The difference schemes are linear whenev
ODEs are, and vice versa.

TABLE II. Invariant discretizations of the equationy950. The discrete equation isyxx̄50, the invariant mesh is given. We
only list the maximal invariance algebras for a given mesh. Throughoutg is an arbitrary function of its arguments
nonsingular forh2→0.

dim L Algebra Mesh

1 D1,1: X15
]

]y
h15h2gSx,

yx1yx̄

2
,h2D

2 D2,1: X15
]

]x
,X25

]

]y
h15h2gSyx1yx̄

2
,h2D

2 D2,3: X15
]

]y
,X25x

]

]x
1y

]

]y
h15h2gSyx1yx̄

2
,
h2

x D
3 D3,4: X15

]

]y
,X25x

]

]y
,X35y

]

]y
h15h2g(x,h2)

3 D3,7: X15
]

]x
,X25

]

]y
,X35x

]

]x
1y

]

]y
h15h2gSyx1yx̄

2 D
3 D3,8: X15

]

]x
,X25

]

]y
,X35x

]

]x
1~x1y!

]

]y
h15h2gSAh2h1 expS2 yx1yx̄

2 DD
3 D3,9: X15

]

]x
,X25

]

]y
,X35x

]

]x
1ky

]

]y
,kÞ0,

1
2,1,2 h15h2gS yx1yx̄

2
h2

~12k!D
3 D3,10: X15

]

]x
,X25

]

]y
,

X35(kx1y)
]

]x
1(ky2x)

]

]y

h1A11hx̄
2 exp(k arctan(yx))

5h2A11yx̄
2 exp(k arctan(yx̄))

1g(h2A11yx̄
2 exp(k arctan(yx̄)))

3 D3,11: X15
]

]x
,X252x

]

]y
1y

]

]y
,

X35x2
]

]x
1xy

]

]y

1

y Sh1

y1
1

h2

y2
D

54
1

y2

h1h2

h11h2
gS 1

y2

h1h2

h11h2
D

3 D3,14:
X15~11x2!

]

]x
1xy

]

]y
,X25xy

]

]x
1~11y2!

]

]y
,

X35y
]

]x
2x

]

]y

h1
2 ~11yx

21~y2xyx!
2!

~11x21y2!~11x1
2 1y1

2 !

5gS h2
2 ~11yx̄

21~y2xyx̄!
2!

~11x2
2 1y2

2 !~11x21y2!
D

4 D4,2: X15
]

]y
,X25x

]

]y
,X35y

]

]y
,X35~11x2!

]

]x
1xy

]

]y
h15h2

11xx1

11xx2
gS h2

11xx2
D

4 D4,5: X15
]

]x
,X25

]

]y
,X35x

]

]y
,X45y

]

]y
h15h2g(h2)

4 D4,7: X15
]

]y
,X25x

]

]y
,X35x

]

]x
,X45y

]

]y
h15h2gSh2

x D
4 D4,8: X15

]

]x
,X25x

]

]x
,X35y

]

]y
,X45x2

]

]x
1xy

]

]y
h15Ch2

y1

y2

6 D6,1: X15
]

]x
,X25

]

]y
,X35x

]

]x
,

X45x
]

]y
,X55y

]

]y
,X65y

]

]x

h15Ch2
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In Table II we sum up the results on the free particle equationyxx̄50. For each Lie algebra in
column 2 the invariant mesh is in column 3. We list those algebras that are maximal for the
mesh.

Work is in progress on constructing invariant Lagrangians, first integrals, and solutions
obtained difference schemes.
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Master function approach to quantum solvable models
on SL „2,c … and SL „2,c …/GL„1,c … manifolds

H. Fakhria) and M. A. Jafarizadehb)

Faculty of Physics, Tabriz University, Tabriz, 51664, Iran and Institute for Studies in
Theoretical Physics and Mathematics, Tehran 19395-1795, Iran

~Received 8 March 1999; accepted for publication 13 July 1999!

By introducing a new parameter as a second associated index for special functions,
we construct the three-dimensional differential generators of gl(2,c) Lie algebra
together with the corresponding contracted formh4 . Non-Casimir quadratic as well
as the Casimir of gl(2,c) ~andh4! generators can be considered as quantum solv-
able models on group manifold SL(2,c). Then, by appropriate parametrization of
group manifold SL(2,c) and eliminating one of the coordinates, we obtain quantum
solvable Hamiltonians on homogeneous manifold SL(2,c)/GL(1,c) with the metric
described by master function. We show that two-dimensional Hamiltonian on
SL(2,c)/GL(1,c) derived from the reduction of Casimir operator so(4,c) Lie alge-
bra as a three-dimensional Hamiltonian on group manifold SL(2,c), possesses the
degeneracy SL(2,c) group and, also, the shape invariance property, where both
have para-supersymmetry representations of arbitrary order. ©2000 American
Institute of Physics.@S0022-2488~99!01212-8#

I. INTRODUCTION

In Refs. 1 and 2 using the master function together with the corresponding weight fun
the associated special functions with integer indexn and single associated indexm have been
introduced. It is shown that they satisfy shape invariant second order differential equationsn
and m as parameters of shape invariance.1,2 Consequently, we have given some of on
dimensional solvable models in terms of master function together with shape invar
property.2–5 Also, in Ref. 6 it has been shown that the shape invariance property of these d
ential equations with respect to the parameterm can be extended to GL(2,c) Lie group and its
contracted formH4 if we replace the parameterm with an extra coordinate. As a result som
quantum solvable Hamiltonians on homogeneous manifold SL(2,c)/GL(1,c) with degeneracy
group GL(2,c) have been obtained. In this article, by adding a new parameter, the asso
special functions with 2-associated indices are introduced. Similar to Ref. 6 we obtain
solvable quantum Hamiltonians on the group manifold SL(2,c), as well as on the homogeneou
manifold SL(2,c)/GL(1,c) by reducing the group manifold SL(2,c). The content of this paper is
as follows:

Using the master function in Sec. II, we introduce a new associated parameter calledl. Then
we obtain differential equations of the associated special functions with two associated indi
an appropriate similarity transformation, where all information corresponding to different pos
choices of master function, have been listed in the Appendix. Then, by introducing new var
y andz corresponding to the indicesm andl, respectively, we obtain a 3-variable representation
gl(2,c) Lie algebra and its contracted formh4 . Consequently, one-dimensional differential equ
tion transforms to 3-dimensional differential equation with solutions as 3-variable associate
cial functions. These 3-variable associated special functions themselves form the bases of
tary representations of gl(2,c) Lie algebra, where via other appropriate similarity transformati

a!Electronic mail: Hfakhri@ark.tabrizu.ac.ir
b!Electronic mail: Jafarzadeh@ark.tabrizu.ac.ir
5050022-2488/2000/41(1)/505/42/$17.00 © 2000 American Institute of Physics
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one can form the bases of 3-variable unitary representation of gl(2,c) Lie algebra.
In Sec. III, by constructing a second order differential operator on group manifold SL(2,c) as

a non-Casimir quadratic function of the generators gl(2,c) Lie algebra, which can be interpreted
the Hamiltonian operator of a charged point particle on group manifold SL(2,c) in the presence of
magnetic field of a magnetic monopole, we obtain the eigenstates algebraically via represen
of gl(2,c) Lie algebra. While restricting this operator to the Casimir operator of GL(2,c) group,
we obtain the GL(2,c) degeneracy group, but instead lose the magnetic field, since it vanish
this special case.

In Sec. IV, we obtain the left and right invariant vector fields of SL(2,c) group manifold,
where these left invariant vector fields can be obtained by restricting the unitary generators gc)
Lie algebra to sl(2,c) Lie algebra together with an appropriate similarity transformation. Th
again, we construct some quantum solvable Hamiltonian as a quadratic non-Casimir and C
function of these left or right invariant operators. In the latter case, Casimir of left and
generators are the same, and therefore we get solvable models with degeneracy group Sc)
.SL(2,c) ^ SL(2,c).

In Sec. V, by eliminating the coordinatez via the prescription to be explained in this sectio
we obtain some two-dimensional solvable quantum Hamiltonian on homogeneous ma
SL(2,c)/GL(1,c). These can be interpreted as quantum Hamiltonian of a charged point partic
homogeneous manifold SL(2,c)/GL(1,c), in the presence of magnetic field of magnetic monop
and electric field. But note that for vanishing electric field we get a solvable Hamiltonian
degeneracy group SL(2,c).

In Sec. VI, again by eliminating one of the coordinates through the prescription of Sec. V
show that by restricting the second order Casimir operator of so(4,c)5sl(2,c) % sl(2,c) Lie alge-
bra on homogeneous manifold SL(2,c)/GL(1,c), it reduces to a quantum Hamiltonian with bo
shape invariance symmetry and degeneracy group of SL(2,c). Finally, using these properties, w
obtain the bases of the representation of para-supersymmetry algebra. Hence we can in
isospectral quantum solvable models on homogeneous manifold SL(2,c)/GL(1,c).

II. MASTER FUNCTION APPROACH TO THE REPRESENTATIONS OF gl „2,c … LIE
ALGEBRA

At the outset we briefly explain the connection between the master function and the
sponding orthogonal polynomials together with the related second order differential equatio
master function, as the main ingredient, consists of polynomials of at most degree two. For a
master function we can associate a non-negative weight functionW(x) in the interval@a,b#. This
weight function can be determined in such a way that the expression@1/W(x)#(d/dx)
3(A(x)W(x)) becomes the polynomial of at most degree one. Also, the interval@a,b# can be fixed
by lettingA(x)W(x) and it derivatives vanish at the boundary pointsa andb. As usual, for a given
non-negative weight functionW(x) in the interval@a,b#, one can define the scalar product f
arbitrary functionsf (x) andg(x) as7

^ f ~x!,g~x!&ªE
a

b

W~x! f ~x!g~x!dx. ~2.1!

Now we can define a second order linear differential operator,

L5
1

W~x!

d

dx S A~x!W~x!
d

dxD , ~2.2!

which is a self-adjoint operator with respect to the scalar product~2.1!. Under the action of this
operator the degree of the polynomials does not increase. Using this fact together with the
sponding self-adjoint property one can show that the orthogonal polynomials defined throu
weight functionW(x) in the interval@a,b# are eigenstates of this operator, where they have
following generalized Rodrigues representation
                                                                                                                



l

as

507J. Math. Phys., Vol. 41, No. 1, January 2000 Master function approach to quantum solvable . . .

                    
Fn~x!5
an

W~x! S d

dxD
n

~An~x!W~x!!, ~2.3!

with an as an arbitrary constant. The eigenequation of the differential operatorL given in ~2.2!
yields the following second order differential equation:

A~x!Fn9~x!1
~A~x!W~x!!8

W~x!
Fn8~x!2FnS A~x!W8~x!

W~x! D 8
1

n~n11!

2
A9~x!GFn~x!50. ~2.4!

Consequently by differentiating both sides of Eq.~2.4! and multiplying the orthogonal polynomia
by an appropriate function we obtain the following associated differential equation:

A~x!Fn,m9 ~x!1
~A~x!W~x!!8

W~x!
Fn,m8 ~x!1F2

1

2
~n21n2m2!A9~x!1~m2n!S A~x!W8~x!

W~x! D 8

2
m2

4

~A8~x!!2

A~x!
2

m

2

A8~x!

A~x!

A~x!W8~x!

W~x! GFn,m~x!50, m50,1,2,...,n, ~2.5!

whereFn,m(x) is

Fn,m~x!5
an~21!m

Am/2~x!W~x! S d

dxD
n2m

~An~x!W~x!!. ~2.6!

By introducing the operators

B~m!5AA~x!
d

dx
2

m21

2AA~x!
A8~x!,

A~m!52AA~x!
d

dx
2

1

AA~x!
S A~x!W8~x!

W~x!
1

1

2
mA8~x! D ~2.7!

as in Ref. 2, the associated differential Eq.~2.5! has been factorized in a shape invariant form

B~m!A~m!Fn,m~x!5E~n,m!Fn,m~x!,

A~m!B~m!Fn,m21~x!5E~n,m!Fn,m21~x!, ~2.8!

with

E~n,m!52~n2m11!F S A~x!W8~x!

W~x! D 8
1

1

2
~n1m!A9~x!G . ~2.9!

Now we define the new weight functionWl(x) which satisfies

A~x!Wl8~x!

Wl~x!
5

A~x!W8~x!

W~x!
12l , ~2.10!

with l as an arbitrary constant. Obviously the new weight functionWl(x) is almost similar to
W(x) and has all of its properties. Solving the first order differential Eq.~2.10! we get for the new
weight function

Wl~x!5W~x!expS E 2l

A~x!
dxD . ~2.11!
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Proceeding as above we obtain the following associated differential equation corresponding
new weight function with the same master functionA(x),

A~x!Fn,l ,m9 ~x!1S ~A~x!W~x!!8

W~x!
12l DFn,l ,m8 ~x!1F2

1

2
~n22m21n!A9~x!1~m2n!

3S A~x!W8~x!

W~x! D 8
2

m2

4

A82~x!

A~x!
2

m

2

A8~x!

A~x!

A~x!W8~x!

W~x!
2ml

A8~x!

A~x! GFn,l ,m~x!50,

~2.12!

with the following associated orthogonal function,

Fn,l ,m~x!5
an~21!m

Am/2~x!W~x!expS *
2l

A~x!
dxD S d

dxD
n2m

~An~x!W~x!e*@2l /A~x!#dx! ~2.13!

as its solution. Clearly, the new associated differential Eq.~2.12! can be factorized in the follow-
ing shape invariant form:

B~ l ,m!A~ l ,m!Fn,l ,m~x!5E~n,m!Fn,l ,m~x!,

A~ l ,m!B~ l ,m!Fn,l ,m21~x!5E~n,m!Fn,l ,m21~x!, ~2.14!

where the operatorsB( l ,m) andA( l ,m) are

B~ l ,m!5AA~x!
d

dx
2

m21

2AA~x!
A8~x!,

A~ l ,m!52AA~x!
d

dx
2

1

AA~x!
S A~x!W8~x!

W~x!
1

m

2
A8~x!12l D . ~2.15!

We define the new associated functions

Fn,l ,m~x; f ~x!!5 f 21~x!Fn,l ,m~x!, ~2.16!

where for the momentf (x) can be any arbitrary function. Alsof (x) similarity transformation of
the operators~2.15! reads

B~ l ,m; f ~x!!ª f 21~x!B~ l ,m! f ~x!5AA~x!
d

dx
1

1

AA~x!
S A~x! f 8~x!

f ~x!
2

m21

2
A8~x! D

A~ l ,m; f ~x!!ª f 21~x!A~ l ,m! f ~x!

52AA~x!
d

dx
2

1

AA~x!
S A~x! f 8~x!

f ~x!
1

A~x!W8~x!

W~x!
1

m

2
A8~x!12l D . ~2.17!
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Then the shape invariant Eqs.~2.14! can be written as

B~ l ,m; f ~x!!A~ l ,m; f ~x!!Fn,l ,m~x; f ~x!!5E~n,m!Fn,l ,m~x; f ~x!!,

A~ l ,m; f ~x!!B~ l ,m; f ~x!!Fn,l ,m21~x; f ~x!!5E~n,m!Fn,l ,m21~x; f ~x!!. ~2.18!

The shape invariance factorization given in~2.18! is important from the point of view that the
zonal associated spherical functions and their varieties, which can be obtained simply by di
choices of the master functionA(x), are solutions of second order differential equation with sh
invariance symmetry. This point has been investigated in all details in Appendix A.

Now by choosing

f ~x!5A21/4~x!W21/2~x!expS 2E l

A~x!
dxD ~2.19!

the raising and the lowering operators~2.17! become adjoint of each other,

B̂~ l ,m!5AA~x!
d

dx
2

1

AA~x!
S 1

2

A~x!W8~x!

W~x!
1

2m21

4
A8~x!1 l D

~2.20!

Â~ l ,m!52AA~x!
d

dx
2

1

AA~x!
S 1

2

A~x!W8~x!

W~x!
1

2m21

4
A8~x!1 l D .

Here, by introducing the associated functions

F̂n,l ,m~x!5A1/4~x!W1/2~x!expS E l

A~x!
dxDFn,l ,m~x!, ~2.21!

the shape invariant factorization~2.18! can be written as

B̂~ l ,m!Â~ l ,m!F̂n,l ,m~x!5E~n,m!F̂n,l ,m~x!,
~2.22!

Â~ l ,m!B̂~ l ,m!F̂n,l ,m21~x!5E~n,m!F̂n,l ,m21~x!.

The shape invariant factorization~2.14! can be rewritten as

eyS AA~x!
]

]x
2

A8~x!

2AA~x!

]

]yD e2yS 2AA~x!
]

]x
2

A8~x!

2AA~x!

]

]y
2

2

AA~x!

]

]z

2
1

AA~x!

A~x!W8~x!

W~x! D emy1 lzFn,l ,m~x!5E~n,m!emy1 lzFn,l ,m~x!,

e2yS 2AA~x!
]

]x
2

A8~x!

2AA~x!

]

]y
2

2

AA~x!

]

]z
2

1

AA~x!

A~x!W8~x!

W~x! D eyS AA~x!
]

]x

2
A8~x!

2AA~x!

]

]yD e~m21!y1 lzFn,l ,m21~x!5E~n,m!e~m21!y1 lzFn,l ,m21~x!, ~2.23!

wherey andz are momentarily considered to be two arbitrary variables. By the following de
tions:
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L1ªeyS AA~x!
]

]x
2

A8~x!

2AA~x!

]

]yD ,

L2ªe2yS 2AA~x!
]

]x
2

A8~x!

2AA~x!

]

]y
2

2

AA~x!

]

]z
2

1

AA~x!

A~x!W8~x!

W~x! D ~2.24!

and

Fn,l ,m~x,y,z!ªemy1 lzFn,l ,m~x!, ~2.25!

the shape invariance~2.23! becomes

L1L2Fn,l ,m~x,y,z!5E~n,m!Fn,l ,m~x,y,z!,
~2.26!

L2L1Fn,l ,m21~x,y,z!5E~n,m!Fn,l ,m21~x,y,z!.

Similarly, by defining

J1ªeyS AA~x!
]

]x
2

A8~x!

2AA~x!

]

]y
2

1

AA~x!

]

]z
2

1

2AA~x!

A~x!W8~x!

W~x!
2

A8~x!

4AA~x!
D

~2.27!

J2ªe2yS 2AA~x!
]

]x
2

A8~x!

2AA~x!

]

]y
2

1

AA~x!

]

]z
2

1

2AA~x!

A~x!W8~x!

W~x!
1

A8~x!

4AA~x!
D ,

F̂n,l ,m~x,y,z!ªemy1 lzF̂n,l ,m~x!, ~2.28!

the shape invariant factorization~2.22! takes the following form:

J1J2F̂n,l ,m~x,y,z!5E~n,m!F̂n,l ,m~x,y,z!,
~2.29!

J2J1F̂n,l ,m21~x,y,z!5E~n,m!F̂n,l ,m21~x,y,z!.

It is clear that the operatorsL6 andJ6 are similarity transformations of each other,

J65A1/4~x!W1/2~x!expS E @ l /A~x!#dxDL6A21/4~x!W21/2~x!exp2S E @ l /A~x!#dxD .

Also, it is obvious thatJ1 andJ2 are adjoint of each other, while this is not true for the pair
operatorsL1 andL2 . By defining

L35J35
]

]y
, ~2.30!

one can rather straightforwardly show that the operatorsL1 , L2 , L3 andI 51 close a gl(2,c) Lie
algebra. That is, we have8

@L1 ,L2#52A9~x!L32S A~x!W8~x!

W~x! D 8
I ,

@L3 ,L6#56L6 ,

@L ,I #50, ~2.31!
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provided thatA9(x)Þ0, otherwise, we obtainh4 Lie algebra. It is clear that the operatorsJ1 , J2 ,
J3 , andI close a gl(2,c) algebra similar to~2.31!, too. From Eqs.~2.26! it follows that

L1Fn,l ,m~x,y,z!5AE~n,m11!Fn,l ,m11~x,y,z!,
~2.32!

L2Fn,l ,m~x,y,z!5AE~n,m!Fn,l ,m21~x,y,z!.

The relations~2.32! together with

L3Fn,l ,m~x,y,z!5mFn,l ,m~x,y,z!,
~2.33!

IFn,l ,m~x,y,z!5Fn,l ,m~x,y,z!,

indicate that the associated functionsFn,l ,m(x,y,z) form the bases of the representation of t
gl(2,c) Lie algebra. With an analogous reasoning we can show that the associated fun
F̂n,l ,m(x,y,z) form the bases of the representation of the gl(2,c) Lie algebra generated through th
basesJ1 , J2 , J3 , andI.

Now, the Killing metric of the gl(2,c) Lie algebra with the commutation relations~2.31! is

gab5S 0 2 1
2 0 0

2 1
2 0 0 0

0 0 1
2A9~x! 1

2S A~x!W8~x!

W~x! D 8

0 0 1
2S A~x!W8~x!

W~x! D 8
2 1

2C

D , ~2.34!

whereC is an arbitrary constant. ForA9(x)50, the metric~2.34! is not the Killing form ofh4 Lie
algebra, but it can be a nondegenerate adjoint invariant metric ofh4 Lie algebra, provided tha
@A(x)W8(x)/W(x)#8 does not vanish. Using the above form of Killing tensor, the Casimir op
tor of the gl(2,c) algebra with the set of bases$L1 , L2 , L3 , andI% and$J1 , J2 , J3 , andI% can
be written as

HCas,nonun,gl~2,c!5A~x!
]2

]x2 1
~A~x!W~x!!8

W~x!

]

]x
2

A82~0!22A9A~0!

4A~x!

]2

]y2 1S S A~x!W8~x!

W~x! D 8

2
A8~x!

2A~x!

A~x!W8~x!

W~x! D ]

]y
12

]2

]x]z
2

A8~x!

A~x!

]2

]y]z
1

1

2 S A~x!W8~x!

W~x! D 8
2

1

2
C

~2.35!

and

HCas.un.gl~2,c!5A~x!
]2

]x2 1
1

2
A8~x!

]

]x
2

A82~0!22A9A~0!

4A~x!

]2

]y2

1S S A~x!W8~x!

W~x! D 8
2

A8~x!

2A~x!

A~x!W8~x!

W~x! D ]

]y
2

1

A~x!

]2

]z22
1

A~x!

A~x!W8~x!

W~x!

]

]z

2
A8~x!

A~x!

]2

]y]z
2

1

4A~x! S A~x!W8~x!

W~x! D 2

1
1

16

A82~x!

A~x!
2

1

4
A9~x!2

1

2
C, ~2.36!

respectively. The Casimir operators~2.35! and ~2.36! yield the following eigenvalue equations:
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HCas.nonun.gl~2,c!Fn,l ,m~x,y,z!5E~n!Fn,l ,m~x,y,z!, ~2.37!

HCas.un.gl~2,c!F̂n,l ,m~x,y,z!5E~n!F̂n,l ,m~x,y,z!, ~2.38!

respectively, where

E~n!5S n1
1

2D S A~x!W8~x!

W~x! D 8
1

1

2
n~n11!A9~x!2

1

2
C. ~2.39!

In the eigenvalue Eqs.~2.37! and ~2.38! the transfer of the functionelz to the left of the Casimir
operators is simply equivalent to the replacement of (]/]z) by l. Replacing (]/]z! by l and putting
l 50, the eigenvalue equations coincide with those of the Casimir operators of Ref. 6 with
variablesx, y. By further eliminating the variabley, which is simply done by transfering th
function emy to the left-hand side, we obtain the one variable differential Eq.~2.5!. In the next
section we will show that Eq.~2.38! is the same as the Schro¨dinger equation of motion of a free
particle on a SL(2,c) group manifold with the GL(2,c) group degeneracy.

In Appendix B, we introduce all solvable systems on SL(2,c) group manifolds by non-
Casimir operators of unitary generators gl(2,c) Lie algebra.

III. SOLVABLE QUANTUM SYSTEMS OVER SL „2,c … GROUP MANIFOLD

According to Sec. II for the gl(2,c) Lie algebra with the unitary generators as functions
variablesx, y, and the new variable

Zª
22z

AA82~0!22A9A~0!
~3.1!

for the master function satisfying the conditionA82(0)22A9A(0).0, we write new generators a

Ĵ15eyS AA~x!
]

]x
2

A8~x!

2AA~x!

]

]y
2

1

AA~x!

]

]Z
2

1

2AA~x!

A~x!W8~x!

W~x!
2

A8~x!

4AA~x!
D ,

Ĵ25e2yS AA~x!
]

]x
2

A8~x!

2AA~x!

]

]y
2

1

AA~x!

]

]Z
2

1

2AA~x!

A~x!W8~x!

W~x!
1

A8~x!

4AA~x!
D ,

Ĵ35
]

]y
, Î 51. ~3.2!

Thus we obtain the following unitary representation for gl(2,c) Lie algebra,

Ĵ1F̂n,l ,m~x,y,Z!5AE~n,m11!F̂n,l ,m11~x,y,Z!,

Ĵ2F̂n,l ,m~x,y,Z!5AE~n,m!F̂n,l ,m21~x,y,Z!,

Ĵ3F̂n,l ,m~x,y,Z!5mF̂n,l ,m~x,y,Z!,

Î F̂n,l ,m~x,y,Z!5F̂n,l ,m~x,y,Z!, ~3.3!

which naturally yields the following shape invariance symmetry

Ĵ1Ĵ2F̂n,l ,m~x,y,Z!5E~n,m!F̂n,l ,m~x,y,Z!,
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Ĵ2Ĵ1F̂n,l ,m21~x,y,Z!5E~n,m!F̂n,l ,m21~x,y,Z!. ~3.4!

Now, up to a scale, the most general quadratic non-Casimir operator which commutes wĴ3

is

HnonCas.gl~2,c!52 Ĵ1Ĵ21a1Ĵ3
21a2Ĵ31a3 , ~3.5!

wherea1 , a2 , anda3 are arbitrary constants~a1 cannot vanish!. Clearly we have

@HnonCas.gl~2,c! ,Ĵ3#50. ~3.6!

Choosing

a15 1
2A9~x!, a252

1

2
A9~x!1S A~x!W8~x!

W~x! D 8
, a352

1

2 S A~x!W8~x!

W~x! D 8
2

1

2
C, ~3.7!

the operator~3.5! becomes the Casimir operator of gl(2,c). With the help of Eqs.~3.3! and~3.4!
we get the following eigenvalue equation for the non-Casimir operator:

HnonCas.gl~2,c!F̂n,l ,m~x,y,Z!5F ~n2m11! S A~x!W8~x!

W~x! D 8
1

1

2
~n22m21n1m!A9~x!

1m2a11ma21a3GF̂n,l ,m~x,y,Z!. ~3.8!

Now, with the change of variables

y5 if, z5 ic, ~3.9!

and

g

singu
5

AA82~0!22A9A~0!

2AA~x!
, ~3.10!

with gªA2(A9(x)/2) as a solution ofdx/AA(x)5du for A82(0)22A9A(0).0, the non-
Casimir operator~3.5! can be assumed to be the Hamiltonian of motion of a charged particle
three-dimensional manifold with the following explicit form

HnonCas.gl~2,c!5H ]2

]u2 1
A82~x!24a1A~x!

4A~x!

]2

]f2 1 i F1

2 S A8~x!

A~x!

A~x!W8~x!

W~x!
2A9~x! D2a2G ]

]f

1
A82~0!22A9A~0!

4A~x!

]2

]c22 i
AA82~0!22A9A~0!

2A~x!

A~x!W8~x!

W~x!

]

]c

2
AA82~0!22A9A~0!

2

A8~x!

A~x!

]2

]f]c
2

1

4A~x! S A~x!W8~x!

W~x! D 2

1
1

16

A82~x!

A~x!

2
1

4
A9~x!1

1

2 S A~x!W8~x!

W~x! D 8
1a3J . ~3.11!

It is possible to interpret the non-Casimir operator as a Hamiltonian operator correspondin
charged particle on the manifold described by the metricgmv , in the presence of magnetic an
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electric fields with gauge connectionAm and electric potentialV. The metricgmv , the gauge
potentialAm , and the electric potentialV can be determined by writing the non-Casimir opera
as

21

2a2 HnonCas.gl~2c!52
1

2
Dm

ADAm1V. ~3.12!

The covariant derivativeDm
A can be written in terms of gauge and Levi-Civita connections

Dm
A
ª¹m2 iAm , ~3.13!

where the indexm takes the values 1, 2, and 3, indicating the coordinatesu, f, andc, respectively.
Also the parametera is a scaling factor which can be interpreted as a radius in the embeddi
three-dimensional manifold into four-dimensional space one. Comparing the second order
derivative of both sides of Eq.~3.12! we arrive at the following metricgmv of a three-dimensiona
manifold,

gmn5a2S 1 0 0

0
21

a1

21

a1

A8~x!

AA82~0!22A9A~0!

0
21

a1

A8~x!

AA82~0!22A9A~0!

21

a1

A82~x!24a1A~x!

A82~0!22A9A~0!

D ~3.14!

which only depends ona1 . The nonvanishing component of Christoffel symbols of the me
~3.14! reads

Guf
f 5

A9~x!

8a1

A8~x!

AA~x!
, Guc

c 5
1

2 S 12
A9~x!

4a1
D A8~x!

AA~x!
,

Gfc
u 5

A9~x!

2a1

AA~x!

AA82~0!22A9A~0!
, Gcc

u 5
A9~x!22a1

a1~A82~0!22A9A~0!!
A8~x!AA~x!, ~3.15!

Guf
c 5

2A9~x!

8a1

AA82~0!22A9A~0!

AA~x!
, Guc

f 5
A9~x!A82~x!24a1~A82~x!2A9A~x!!

8a1AA82~0!22A9A~0!AA~x!
.

Nonvanishing component of the Ricci tensor as well as the Ricci scalar curvature of the
metric are

Ruu5
A9~x!24a1

8a1
A9~x!, Rff5

A9~x!

8~a1!2 ,

Rcc5
A92~x!A82~x!14a1A9~x!~A9~x!24a1!A~x!

8~a1!2~A82~0!22A9A~0!!
,

~3.16!

Rfc5Rcf5
A92~x!

8~a1!2AA82~0!22A9A~0!
A8~x!,

R5
A9~x!

8a2a1
@A9~x!28a1#.
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The above results indicate that the manifold described by the metric~3.14! has a constant Ricc
scalar. Also, using Eq.~3.12!, we can determine vector potentialAm and constant scalar potentia
V as

Au5
2 i

4

A8~x!

AA~x!
,

Af5
21

2a1
S a21

1

2
A9~x! D ,

~3.17!

Ac5

A~x!W8~x!

W~x!
2

1

2a1
S a21

1

2
A9~x! DA8~x!

AA82~0!22A9A~0!
,

V5
1

2a2 F2
1

2 S A~x!W8~x!

W~x! D 8
1

1

4a1
S a21

1

2
A9~x! D 2

2a3G .
For these solvable systems, the spectra are

E5
21

2a2 H ~n2m11!S A~x!W88~x!

W~x! D 8
1

1

2
~n22m21n1m!A9~x!1m2a11ma21a3J .

~3.18!

The expression above implies that for gauge connection and scalar potential we have
magnetic field which can be obtained from the connection one-form,

A5Audu1Afdf1Acdc,

simply by taking exterior derivative. Therefore, the two-form of magnetic fieldB5dA on mani-
fold described by the metric of~3.14! becomes

B5

S A~x!W8~x!

W~x! D 8
2

1

2a1
S a21

1

2
A9~x! DA9~x!

AA82~0!22A9A~0!
AA~x!du∧dc. ~3.19!

We see that, in general, the eigenequation of non-Casimir operator corresponds to the Schr¨dinger
equation of a charged point particle on manifold described by metric~3.14! in the presence of the
magnetic field given in~3.19!. This quantum system can be solved algebraically via the repre
tation of the gl(2,c) Lie algebra, hence it is a solvable quantum model. For arbitrarya1 anda2 we
do not have any degeneracy, the latter exists only for the special choice of~3.7!. In this particular
case, the magnetic field vanishes and the non-Casimir operator coincides with the Casimir o
of SL(2,c) group manifold, described by the metric

gmn5a2S 1 0 0

0
22

A9

22A8~x!

A9AA82~0!22A9A~0!

0
22A8~x!

A9AA82~0!22A9A~0!

22

A9

D . ~3.20!

In the next section we will calculate the metric~3.20! directly, using the parametrization of th
group manifold SL(2,c) in terms of the master function. Therefore, by choosinga1 as in~3.7! but
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a2 different from the value given in~3.7!, Eq. ~3.8! becomes the Schro¨dinger equation of a
charged point particle on group manifoldSL(2,c) described by the Killing metric~3.20! with
scalar curvatureR5(23A9/4a2) in the presence of the magnetic field

BnonCas5

S A~x!W8~x!

W~x! D 8
2

1

2
A9~x!2a2

AA82~0!22A9A~0!
AA~x!du∧dc, ~3.21!

with spectrum

Enon-Cas5
21

2a2 H ~n2m11!S A~x!W8~x!

W~x! D 8
1

1

2
~n21n1m!A9~x!1ma21a3J . ~3.22!

Due to the presence of the magnetic field we again lose the degeneracy group. Finally,
choose fora2 the value of~3.7! too, this will lead to the quantum system of a free particle on
group manifold SL(2,c) with metric ~3.20!, where again it has the degeneracy group GL(2,c).
The corresponding spectra are given by

ECas5
21

2a2 H ~n11!S A~x!W8~x!

W~x! D 8
1

1

2
n~n11!A9~x!1a3J . ~3.23!

IV. QUANTUM SOLVABLE HAMILTONIANS ON SL „2,c … GROUP MANIFOLD WITH
DEGENERACY GROUP OF SO„4,c …

Let us parametrize the GL(2,c) group manifold as9

L~r ,u,y,z!5re~z/2!s3ei ~gu/2!s1e~y/2!s3, ~4.1!

wheres1 , s2 , and s3 are Pauli matrices. Clearly, by choosingr as an arbitrary constant, w
obtain the SL(2,c) subgroup with coordinatesu, y, andz. Therefore, an element of SL(2,c) group
manifold can be written as

L~u,y,z!5e~z/2!s3ei ~gu/2!s1e~y/2!s35S cos
gu

2
e~y1z!/2 i sin

gu

2
e2~y2z!/2

i sin
gu

2
e~y2z!/2 cos

gu

2
e2~y1z!/2

D . ~4.2!

In order to obtain the left and right invariant vector fields of SL(2,c) group manifold, we need to
do infinitesimal right and left translations respectively over the SL(2,c) group manifold via an
element of the group in neighborhood of identity element. This element can be written as

P5I 1 (
A51,2,3

eAKA , ~4.3!

where

K15S 0 g

0 0D , K25S 0 0

g 0D , K35S 1
2 0

0 2 1
2

D , ~4.4!

are Cartan bases of sl(2,c) Lie algebra with the following commutation relations:

@K1 ,K2#52A9~x!K3 , @K3 ,K6#56K6 . ~4.5!
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Now, parametrizing the infinitesimally transfered element byu8, y8, andz8, the infinitesimal right
translation can be written as

L~u,y,z!P5L~u8,y8,z8!. ~4.6!

The differential form of the left invariant Cartan bases of sl(2,c) Lie algebra can be written as

L1
~L !5

]u8

]e1

]

]u
1

]y8

]e1

]

]y
1

]z8

]e1

]

]z
,

L2
~L !5

]u8

]e2

]

]u
1

]y8

]e2

]

]y
1

]z8

]e2

]

]z
, ~4.7!

L3
~L !5

]u8

]e3

]

]u
1

]y8

]e3

]

]y
1

]z8

]e3

]

]z
.

In order to obtain the partial derivatives of the new parameters with respect to the old
appearing above, first we express the new parameters in terms of the old one, by using the
relation ~4.6!. We get

S 11
1

2
e3D cos

gu

2
e~y1z!/21 ige2 sin

gu

2
e2~y2z!/25cos

gu8

2
e~y81z8!/2,

ge1 cos
gu

2
e~y1z!/21 i S 12

1

2
e3D sin

gu

2
e2~y2z!/25 i sin

gu8

2
e2~y82z8!/2,

~4.8!

i S 11
1

2
e3D sin

gu

2
e~y2z!/21ge2 cos

gu

2
e2~y1z!/25 i sin

gu8

2
e~y82z8!/2,

ige1 sin
gu

2
e~y2z!/21S 12

1

2
e3D cos

gu

2
e2~y1z!/25cos

gu8

2
e2~y81z8!/2.

Now, Taylor expanding the new coordinates$u8, y8, andz8% in terms of the infinitesimal param
eterse1 , e2 , ande3 up to first order and equating the coefficients of these infinitesimal par
eters on both sides of~4.8!, we determine the partial derivatives of new primed coordinates w
respect to the old one. Substituting the results thus obtained in~4.7!, and rescaling these lef
invariant vector fields as

J1
~L !

ª iL 1
~L ! , J2

~L !
ª2 iL 2

~L ! , J3
~L !

ªL3
~L ! ,

we obtain

J1
~L !

ªeyS ]

]u
2

g

tangu

]

]y
1

g

singu

]

]zD ,

J2
~L !

ªe2yS 2
]

]u
2

g

tangu

]

]y
1

g

singu

]

]zD ,

J3
~L !

ª

]

]y
. ~4.9!
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In terms of the variablesx andZ, defined in~3.10! and~3.1!, the above left invariant vector field
reads as

J1
~L !

ªeyS AA~x!
]

]x
2

A8~x!

2AA~x!

]

]y
2

1

AA~x!

]

]ZD ,

J2
~L !

ªe2yS 2AA~x!
]

]x
2

A8~x!

2AA~x!

]

]y
2

1

AA~x!

]

]ZD , ~4.10!

J3
~L !

ª

]

]y
.

Similarly, by an infinitesimal left translation over the SL(2,c) group manifold via an infinitesima
element given in~4.3! in the infinitesimal neighborhood identity element as

PL~u,y,z!5L~u8,y8,z8!,

and repeating the above procedure, we can also obtain the right invariant vector field

J1
~R!

ªezS AA~x!
]

]x
2

1

AA~x!

]

]Y
2

A8~x!

2AA~x!

]

]zD ,

J2
~R!

ªe2zS 2AA~x!
]

]x
2

1

AA~x!

]

]Y
2

A8~x!

2AA~x!

]

]zD , ~4.11!

J3
~R!

ª

]

]z
,

where the new variableY is defined as

Y5
22y

AA82~0!22A9A~0!
. ~4.12!

After some algebraic calculations, one can show that the left and right invariant vector fields
separately closing an sl(2,c) Lie algebra given in~4.5!, also commute with each other.

Below we try to find the representation of left and right invariant vector fields given in~4.10!
and ~4.11!. It is more convenient to assume that

S A~x!W8~x!

W~x! D 8
50. ~4.13!

This assumption is quite plausible, as we are going to see in the rest of the article. Let us co
the assumption~4.13!, then gl(2,c) Lie algebra with commutation relations given in~2.31! become
the direct sum of sl(2,c) Lie algebra generated byĴ1 , Ĵ2 , Ĵ3 and Abelian Lie algebra generate
by I. Now by the following similarity transformation, the generatorsĴ1 , Ĵ2 andĴ3 transform into
the bases of left invariant vector field

J6
~L !5A21/4~x!e~1/2!~AW8/W!~0!ZĴ6A1/4~x!e2~1/2!~AW8/W!~0!Z,

~4.14!
J3

~L !5A21/4~x!e~1/2!~AW8/W!~0!ZĴ3A1/4~x!e2~1/2!~AW8/W!~0!Z.
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Hence, using the representation of gl(2,c) Lie algebra given in Sec. III, we also obtain th
representation of sl(2,c) Lie algebra generated by the left invariant vector field as

J1
~L !F̄n,l ,m~x,y,z!5AĒ~n,m11!F̄n,l ,m11~x,y,z!,

J2
~L !F̄n,l ,m~x,y,z!5AĒ~n,m!F̄n,l ,m21~x,y,z!, ~4.15!

J3
~L !F̄n,l ,m~x,y,z!5mF̄n,l ,m~x,y,z!,

where the bases of representation are

F̄n,l ,m~x,y,z!5W1/2~x!exp~$@2~2l 1~AW8/W!~0!!#/AA82~0!22A9A~0!%z1my

1*@ l /A~x!#dx!Fn,l ,m~x!, ~4.16!

and Ē(n,m) are

Ē~n,m!52 1
2~n1m!~n2m11!A9~x!. ~4.17!

The bases above are also the eigenstates of shape invariant operators constructed by
invariant vector fields,

J1
~L !J2

~L !F̄n,l ,m~x,y,z!5Ē~n,m!F̄n,l ,m~x,y,z!,

J2
~L !J1

~L !F̄n,l ,m21~x,y,z!5Ē~n,m!F̄n,l ,m21~x,y,z!. ~4.18!

Similarly, we can obtain the representation of right invariant generators of sl(2,c) Lie algebra
together with their shape invariance. Here we only need to substituteY andz, instead ofZ andy,
respectively, in Eqs.~3.2!, ~3.3!, and~3.4!. Thus we get

J1
~R!F̄n,l ,m~x,z,y!5AĒ~n,m11!F̄n,l ,m11~x,z,y!,

J2
~R!F̄n,l ,m~x,z,y!5AĒ~n,m!F̄n,l ,m21~x,z,y!,

J3
~R!F̄n,l ,m~x,z,y!5mF̄n,l ,m~x,z,y!, ~4.19!

and

J1
~R!J2

~R!F̄n,l ,m~x,z,y!5Ē~n,m!F̄n,l ,m~x,z,y!,

J2
~R!J1

~R!F̄n,l ,m21~x,z,y!5Ē~n,m!F̄n,l ,m21~x,z,y!. ~4.20!

Both generators of the left and right invariant lie algebra given in~4.10! and~4.11!, respectively,
and have the same Casimir operatorH̄ªH (L)5H (R) as the following:

H̄5A~x!
]2

]x2 1A8~x!
]

]x
2

A82~0!22A9A~0!

4A~x! S ]2

]y2 1
]2

]z2D1
AA82~0!22A9A~0!

2

A8~x!

A~x!

]2

]y]z
.

~4.21!

It is rather straightforward to see that the bases of representation of left and right invaria
algebra are also eigenstates of the Casimir operator, that is, they satisfy the following eige
equations:
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H̄F̄n,l ,m~x,y,z!5Ē~n!F̄n,l ,m~x,y,z!, ~4.22a!

H̄F̄n,l ,m~x,z,y!5Ē~n!F̄n,l ,m~x,z,y!, ~4.22b!

where

Ē~n!5 1
2n~n11!A9~x!. ~4.23!

Now we obtain the metric of the group manifold SL(2,c) given in ~4.2!. Using~4.2! and~4.4!
one can show that

L21~u,y,z!dL~u,y,z!5
i

2
e2yK1du1

i

2
eyK2du1K3dy1cosguK3dz1

i

2

singu

g
e2yK1dz

2
i

2

singu

g
eyK2dz.

With the change of variables given in~3.9! and ~3.10! we get

L21~u,f,c!dL~u,f,c!5
i

2
e2 ifK1du1

i

2
eifK2du1 iK 3df

2A A~x!

A82~0!22A9A~0!
e2 ifK1dc

1A A~x!

A82~0!22A9A~0!
eifK2dc1

iA8~x!

AA82~0!22A9A~0!
K3dc.

~4.24!

Therefore, the vielbeinsVm
A are calculated as

Vm
A5S i

2
e2 if

i

2
eif 0

0 0 i

2A A~x!

A82~0!22A9A~0!
e2 if A A~x!

A82~0!22A9A~0!
eif

iA8~x!

AA82~0!22A9A~0!

D ,

~4.25!

where the indexm ~Greek letters! can be equal tou, f, andc, while the indexA ~Capital roman
letter! can be set equal to1, 2, and 3. Using the well-known expression for the Killing metri

gAB52CAD
C CBC

D ,

we can calculate the Killing metric of the groupSL(2,c) as follows:

gAB5S 0 2A9~x! 0

2A9~x! 0 0

0 0 22
D . ~4.26!

Now, using the formula of metric group manifold in terms of vielbeins and Killing metric, i.e

gmn5gABVm
AVn

B ,
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we obtain the metric of the SL(2,c) group manifold as

gmn5S 2A9~x! 0 0

0 2
2A8~x!

AA82~0!22A9A~0!

0
2A8~x!

AA82~0!22A9A~0!
2

D . ~4.27!

We see that the metric~4.27! of theSL(2,c) group manifold is the same as the one given in~3.20!
except for the factora2. In the previous section, we presented a quantum solvable model fo
motion of a charged particle onSL(2,c) group manifold with metric~4.27!. In the presence of a
magnetic field, where it vanishes for special choice ofa2 , as given in~3.7!, the problem reduces
to a free particle motion on SL(2,c) group manifold. Thus, the GL(2,c) degeneracy group is
restored.

By using the similarity transformation given in~4.14!, we obtain the non-Casimir operator o
sl(2,c) Lie algebra as

HnonCas,sl~2,c!
~L ! 52J1

~L !J2
~L !1a1J3

~L !2
1a2J3

~L !

5H A~x!
]2

]x2 1A8~x!
]

]x
2

A82~x!24a1A~x!

4A~x!

]2

]y2 1S a21
1

2
A9~x! D ]

]y

2
A82~0!22A9A~0!

4A~x!

]2

]z2 1
AA82~0!22A9A~0!

2

A8~x!

A~x!

]2

]y]zJ , ~4.28!

which satisfies the following eigenequation

HnonCas,sl~2,c!
~L ! F̄n,l ,m~x,y,z!5@ 1

2~n22m21n1m!A9~x!1m2a11ma2#F̄n,l ,m~x,y,z!.
~4.29!

For special choice ofa1 given in~3.7!, Eq.~4.29! is the Schro¨dinger equation of a charged partic
on the SL(2,c) group manifold in the presence of a magnetic field only, with magnetic fi
proportional to the two-form~3.19! provided that the condition~4.13! holds. Finally, also with
special choice ofa2 given in ~3.7!, the magnetic field is eliminated and the degeneracy gr
SL(2,c) is restored, i.e., it reduces the non-Casimir quadratic operator to Casimir one. We ca
construct quadratic non-Casimir operator, consisting of right invariant vector field~4.11! as fol-
lows:

HnonCas-sl~2,c!
~R! 52J1

~R!J2
~R!1a1J3

~R!2
1a2J3

~R! . ~4.30!

The non-Casimir operator of right invariant vector field is the same as the left one except f
fact thatc and f are interchanged. Similarly, with particular choice ofa1 and a2 according to
~3.7!, we again obtain the Casimir operator~4.21! from ~4.28! and ~4.30!.

Finally, the operator

HCas,so~4,c!5H ~L !1H ~R!, ~4.31!

written in terms of the generators~4.10! and ~4.11!, is the Casimir operator of so(4,c).sl(2,c)
% sl(2,c) Lie algebra. By restricting it as a Hamiltonian of free particle on SL(2,c) group mani-
fold, it has the degeneracy group of SO(4,c). In Sec. VI we eliminate the coordinatez by
replacing]/]z by its eigenvaluem to render a two-dimensional solvable model on homogene
manifold SL(2,c)/GL(1,c) with degeneracy group ofSL(2,c) and shape invariance symmetry.
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V. QUANTUM SOLVABLE MODELS ON SL „2,c …/GL„1,c … HOMOGENEOUS MANIFOLD

We can obtain two-dimensional quantum solvable models with either parasupersymmet
algebraically solvable properties, by reducing three-dimensional quantum solvable models d
on the SL(2,c) group manifold over the SL(2,c)/GL(1,c) homogeneous manifold. In order t
reduce the operators defined in the SL(2,c) group manifold over the SL(2,c)/GL(1,c) manifold,
consider the parametrization~4.2! as

L~u,y,z!5GL~1,c! ^ ~SL~2,c!/GL~1,c!!,

then the GL(1,c) parameterz will appear in the bases of the representation of SL(2,c) as a phase
factor. Now by transfering this phase factor to the left of the operator in all equations
eliminating it on both sides, the functionality will depend onx and y, as coordinates of
SL(2,c)/GL(1,c) homogeneous manifold. Also in all operators the derivative]/]z must be re-
placed by zero, because in fact, the constantl is a part of (AW8/W)(0).

With the above-mentioned prescription the gl(2,c) Lie algebra, generated byI and left invari-
ant vector fields of SL(2,c) manifolds, reduces to gl(2,c) Lie algebra generated again byI and left
invariant vector fields of SL(2,c)/GL(1,c) manifold. This procedure for three-dimensional ge
erators of the gl(2,c) Lie algebra~2.31! gives two-dimensional generators of gl(2,c) Lie algebra
as follows:

L15eyS AA~x!
]

]x
2

A8~x!

2AA~x!

]

]yD ,

L25e2yS 2AA~x!
]

]x
2

A8~x!

2AA~x!

]

]y
2

1

AA~x!

A~x!W8~x!

W~x! D ,

~5.1!

L35
]

]y
,

I51,

with the representation

L1Fn,m~x,y!5AE~n,m11!Fn,m11~x,y!,

L2Fn,m~x,y!5AE~n,m!Fn,m21~x,y!,
~5.2!

L3Fn,m~x,y!5mFn,m~x,y!,

IFn,m~x,y!5Fn,m~x,y!.

The bases of representation can be obtained for~2.25! simply by choosingl 50, that is, we have

Fn,m~x,y!ªemyFn,m~x!. ~5.3!
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From similarity transformation~2.19! we obtain the following generators of unitary representat
of the two-dimensional gl(2,c) Lie algebra,

J15eyS AA~x!
]

]x
2

A8~x!

2AA~x!

]

]y
2

1

2AA~x!

A~x!W8~x!

W~x!
2

A8~x!

4AA~x!
D ,

J25e2yS 2AA~x!
]

]x
2

A8~x!

2AA~x!

]

]y
2

1

2AA~x!

A~x!W8~x!

W~x!
1

A8~x!

4AA~x!
D ,

J35
]

]y
,

I51, ~5.4!

with the corresponding bases of representation

F̂n,m~x,y!5F̂n,0,m~x,y,0!, ~5.5!

where this procedure is similar to reducing]/]z in ~2.27!. Also the most general quadrati
differential operator~3.5! reduces to

Hnon-Cas.gl~2,c!52J1J21a1J 3
21a2J31a3

5H A~x!
]2

]x2 1
1

2
A8~x!

]

]x
2

A82~x!24a1A~x!

4A~x!

]2

]y2

2F1

2 S A8~x!

A~x!

A~x!W8~x!

W~x!
2A9~x! D2a2G ]

]y
2

1

4A~x! S A~x!W8~x!

W~x! D 2

1
A82~x!

16A~x!
1

1

2 S A~x!W8~x!

W~x! D 8
2

1

4
A9~x!1a3J . ~5.6!

Obviously the projection preserves the commutation relations, hence, using the relation~3.6!, we
have

@Hnon-Cas.gl~2,c! ,J3#50. ~5.7!

The Hamiltonian~5.6! satisfies the following eigenvalue relation:

Hnon-Cas-gl~2,c!F̂n,m~x,y!5F ~n2m11!S A~x!W8~x!

W~x! D 8
1

1

2
~n22m21n1m!A9~x!

1m2a11ma21a3GF̂n,m~x,y!. ~5.8!

Now, we write the Hamiltonian~5.6! in the following form;

21

2a2 Hnon-Cas.gl~2,c!52
1

2
Da

ADAa1V, ~5.9!

where the indexa takes the values 1 and 2 which indicates the coordinates ofu andf, respec-
tively. We see that this is the Hamiltonian associated with a charged particle on a manifold
the metric
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gab5a2S 1 0

0
4A~x!

A82~x!24a1A~x!
D ~5.10!

and an electromagnetic field with vector potential

Au5
2 i

4

A8~x!

AA~x!

A82~0!22A9A~0!

A82~x!24a1A~x!
,

Af5
22

A82~x!24a1A~x! F1

2 S A8~x!
A~x!W8~x!

W~x!
2A9~x!A~x! D2a2A~x!G , ~5.11!

and scalar potential

V5
1

2a2
H 2

F1

2 S A8~x!

A~x!

A~x!W8~x!

W~x!
2A9~x! D2a2G2

A82~x!24a1A~x!
A~x!1

1

8A~x!

~A82~0!22A9A~0!!2

A82~x!24a1A~x!

2
1

16

A82~x!

A~x! S A82~0!22A9A~0!

A82~x!24a1A~x! D
2

1
1

2

A82~x!~A82~0!22A9A~0!!~A9~x!22a1!

~A82~x!24a1A~x!!2

2
1

16A~x!
~A82~x!24A9A~x!!1

1

4A~x! S A~x!W8~x!

W~x! D 2

2
1

2 S A~x!W8~x!

W~x! D 8
2a3

J .

~5.12!

The nonvanishing Christoffel symbol, nonvanishing components of the Ricci tensor, and
scalar curvature of the metric~5.10! read

Gff
u 522A8~x!AA~x!

A82~0!22A9A~0!

~A82~x!24a1A~x!!2 , Guf
f 5

A8~x!

2AA~x!

A82~0!22A9A~0!

A82~x!24a1A~x!
,

Ruu52a1S A82~0!22A9A~0!

A82~x!24a1A~x! D
2

1
A82~x!~A9~x!22a1!~A82~0!22A9A~0!!

~A82~x!24a1A~x!!2 ,

Rff54A~x!
A82~0!22A9A~0!

~A82~x!24a1A~x!!3 @A82~x!A9~x!2~3A82~x!22A9~x!A~x!!a1#,

R5
2

a2

A82~0!22A9A~0!

~A82~x!24a1A~x!!2 @A82~x!A9~x!2~3A82~x!22A9~x!A~x!!a1#.

Therefore, the metric~5.10! describes a two-dimensional manifold with nonconstant scalar cu
ture. For the special value ofa1 as in ~3.7!, the metric ~5.10! reduces to the metric of the
homogeneous manifold SL(2,c)/GL(1,c) as

gab5a2S 1 0

0
4A~x!

A82~0!22A9A~0!
D . ~5.13!

Nonvanishing Christoffel symbols, nonvanishing components of the Ricci tensor, and Ricci
curvature of the metric~5.13! are
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Gff
u 5

22A8~x!AA~x!

A82~0!22A9A~0!
, Guf

f 5
A8~x!

2AA~x!
,

~5.14!

Ruu52 1
2 A9~x!, Rff5

22A9~x!A~x!

A82~0!22A9A~0!
,

‘ R52
A9~x!

a2 . ~5.15!

Therefore the solvable system~5.8! reduces to the Hamiltonian of a charged particle
SL(2,c)/GL(1,c) homogeneous manifold in the presence of electromagnetic field with ve
potential

Au5
2 i

4

A8~x!

AA~x!
,

~5.16!

Af5
22

A82~0!22A9A~0! F1

2 S A8~x!

A~x!

A~x!W8~x!

W~x!
2A9~x! D2a2GA~x!,

and scalar potential

V5
1

2a2
F 1

4A~x! S A~x!W8~x!

W~x! D 2

2

S A8~x!

2A~x!

A~x!W8~x!

W~x!
2

1

2
A9~x!2a2D 2

A82~0!22A9A~0!
A~x!

2
1

2 S A~x!W8~x!

W~x! D 8
2a3

G . ~5.17!

Two-form magnetic fields corresponding to the components of gauge field~5.16!, and the electri-
cal field corresponding to the scalar potential~5.17! on homogeneous manifold SL(2,c)/GL(1,c)
are

Bnon-Cas.5
AA~x!

A82~0!22A9A~0! F S A9~x!2S A~x!W8~x!

W~x! D 8
12a2DA8~x!

2A9~x!
A~x!W8~x!

W~x! Gdu∧df, ~5.18!

Enon-Cas.5
22eu

a3

AA~x!

A82~0!22A9A~0! FA9~x!S A~x!W8~x!

W~x! D 8A~x!W8~x!

W~x!
1S a21

1

2
A9~x! D 2

A8~x!

2S a21
1

2
A9~x! D S A9~x!

A~x!W8~x!

W~x!
1S A~x!W8~x!

W~x! D 8
A8~x! D G . ~5.19!

For these solvable systems the spectra are those of~3.22!. Also, it is clear from expressions~5.19!
and ~5.18! that for special choice ofa2 , as in~3.7!, the electric field vanishes and the magne
field reduces to the magnetic field of a monopole with two-form

BCas.5

A8~0!S A~x!W8~x!

W~x! D 8
2A9S AW8

W D ~0!

A82~0!22A9A~0!
AA~x!du∧df, ~5.20!
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with spectrum~3.23!.
Obviously for the special choice ofa1 anda2 given in ~3.7! the Hamiltonian~5.6! commutes

with the generators of GL(2,c) group ~5.4!, hence, GL(2,c) is its degeneracy group.
In the rest of this section we obtain the Killing metric of the homogeneous man

SL(2,c)/GL(1,c) in terms of the master function. As in Ref. 6 we need to first obtain
SL(2,c)/GL(1,c) left invariant vector field. We introduce the following parametrization
SL(2,c)/GL(1,c):

L~u,y!5e~u/2!e2yK12~u/2!eyK25S cos
gu

2
e2y sin

gu

2

2ey sin
gu

2
cos

gu

2

D . ~5.21!

Then an infinitesimal element of the SL(2,c) group

g5I 1 (
A51,2,3

eAKA5S 11 1
2e3 ge1

ge2 12 1
2e3

D ~5.22!

can translate from right the pointL(u,y) belonging to the manifold SL(2,c)/GL(1,c) into another
point L(u8,y8) with new parametersu8 andy8 as below,

gL~u,y!5L~u8,y8!h, ~5.23!

where

h5S u 0

0 v D ~5.24!

is an element of GL(1,c) ^ GL(1,c). The matrix Eq.~5.23! leads to the following equations:

S 11
1

2
e3D cos

gu

2
2ge1ey sin

gu

2
5u cos

gu8

2
,

ge2 cos
gu

2
2S 12

1

2
e3Dey sin

gu

2
52uey8 sin

gu8

2
,

S 11
1

2
e3De2y sin

gu

2
1ge1 cos

gu

2
5ve2y8 sin

gu8

2
,

ge2e2y sin
gu

2
1S 12

1

2
e3D cos

gu

2
5v cos

gu8

2
. ~5.25!

Let us Taylor expand the right-hand side of the above equations in terms of the param
e1 ,e2 , ande3 to calculate the partial derivatives of the coordinatesu8, x8, andy8 with respect
to the parameterse1 , e2 , ande3 . Then, we use the result to derive the following expression
the left invariant vector fields corresponding toK1 , K2 , andK3 :

J̄1ªeyS ]

]u
2

g

tangu

]

]yD ,

J̄2ªe2yS 2
]

]u
2

g

tangu

]

]yD ,
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J̄3ª
]

]y
. ~5.26!

We use Eq.~3.10! to write the above generators in terms ofx,

J̄15eyS AA~x!
]

]x
2

A8~x!

2AA~x!

]

]yD ,

J̄25e2yS 2AA~x!
]

]x
2

A8~x!

2AA~x!

]

]yD ,

J̄35
]

]y
. ~5.27!

Now we show that the metric~5.12! for SL(2,c)/GL(1,c) can be obtained from parametrization
~5.21!. Hence restriction of the Killing metric of SL(2,c) Lie group to that of the
SL(2,c)/GL(1,c) gives

gab52CaD
C CbC

D 5S 0 2A9~x!

2A9~x! 0 D . ~5.28!

It is well known that zwei-beinsVa
a of SL(2,c)/GL(1,c) and its GL(1,c)-connectionsVa

3 are the
coefficients of the left invariant 1-form,

L21~u,y!dL~u,y!5
1

2
e2yK1du2

1

2
eyK2du2

1

2
e2y

singu

g
K1dy

2
1

2
ey

singu

g
K -dy12 sin2

gu

2
K3dy .

Making use of the change of coordinates~3.9! and ~3.10! we have

L21~u,f!dL~u,f!5
1

2
e2 ifK1du2

1

2
eifK2du2 ie2 ifA A~x~u!!

A82~0!22A9A~0!
K1df

2 ieifA A~x~u!!

A82~0!22A9A~0!
K2df

1 i
AA82~0!22A9A~0!2A8~x~u!!

AA82~0!22A9A~0!
K3df. ~5.29!

Therefore, the zwei-beinsVa
a and the GL(1,c)-connectionsVa

3 are

Vu
15 1

2e
2 if,

Vu
252 1

2e
if,

Vf
152 ie2 ifA A~x!

A82~0!22A9A~0!
, Vf

252 ieifA A~x!

A82~0!22A9A~0!
, ~5.30!

Vu
350,
                                                                                                                



ifold
t
ight be

he

p, but
are led
eneous
eld
s on

528 J. Math. Phys., Vol. 41, No. 1, January 2000 H. Fakhri and M. A. Jafarizadeh

                    
Vf
3 5 i

AA82~0!22A9A~0!2A8~x!

AA82~0!22A9A~0!
.

It is obvious that the indexa takes the values1 and2, while the greek indexa takes the values
u andf. Then, using the formula

gab5gabVa
aVb

b ,

we obtain the Killing metric~5.13! of the manifold SL(2,c)/GL(1,c) up to a factor2a2/A9(x).
We have constructed the solvable models on the base manifold SL(2,c)/GL(1,c) via the

generators of gl(2,c) Lie algebra. In this section, quantum solvable models on base man
SL(2,c)/GL(1,c) constructed by gl(2,c) generators given in~5.4!, and considering the fact tha
the left invariant generators form the solvable models by themselves, suggest that there m
a relation between the sl(2,c) left invariant generators~5.27! on the base manifold
SL(2,c)/GL(1,c) and gl(2,c) Lie algebra~5.4!. This relation can be established only under t
condition

A8~0!S A~x!W8~x!

W~x! D 8
2A9S AW8

W D ~0!50. ~5.31!

By similarity transformation defined by

f ~x,y!5A1/4~x!e@21/A8~x!#@A~x!W8~x!/W~x!#y ~5.32!

we have

J̄15 f 21~x,y!J1 f ~x,y!,

J̄25 f 21~x,y!J2 f ~x,y!,
~5.33!

J̄32
21

A9~x! S A~x!W8~x!

W~x! D 8
5 f 21~x,y!J3f ~x,y!,

Ī5 f 21~x,y!If ~x,y!5I.

Using condition~4.13!, the gl(2,c) generators reduce to the generators of sl(2,c) obtained from
the similarity transformation above.

It must be reminded again that for non-Casimir operator we lose degeneracy grou
instead either of the magnetic and electric fields are preserved. In the case of Casimir, we
to the solvable models described by the quantum state of a charged particle on the homog
manifold SL(2,c)/GL(1,c) with SL(2,c) degeneracy group in the presence of magnetic fi
~5.20!. At the end of this section, we introduce the two-dimensional solvable system
SL(2,c)/GL(1,c) manifolds for different choices of master function,

A~x!512x2, x52cosu, 0<u,2p,

J15eifF ]

]u
1

i

tanu

]

]f
2

1

2 sinu
~b2a1~a1b11!cosu!G ,

J25e2 ifF2]

]u
1

i

tanu

]

]f
2

1

2 sinu
~b2a1~a1b21!cosu!G ,

u~2!:@J1J2#52J31~a1b!I, @J3 ,J6#56J6 , @J,I#50,
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ds25a2~du21sin2 udf2!,
SL~2,c!

GL~1,c!
5

SU~2!

U~1!
, R5

2

a2 ,

Bnon-Cas.5
1
2@b2a12~a1b1a221!cosu#sinudu∧df,

Enon-Cas.5
2eu

a3 ~a1b1a221!@b2a1~a1b1a221!cosu#sinu,

Enon-Cas.5
1

2a2 @~n2m11!~a1b!1n~n11!1m~12a2!2a3#,

BCas.5
1
2~b2a!sinudu∧df,

ECas.5
1

2a2 @~n11!~n1a1b!2a3#,

F̂n,m~x~u!,if!5an~21!neimf~11cosu!~1/2!~~1/2!2m2a!~12cosu!~1/2!~~1/2!2m2b!

3S d

d cosu D n2m

~~11cosu!n1a~12cosu!n1b!,

A~x!5x221, x5coshu, 0<u1`,

J15eifF ]

]u
1

i

tanhu

]

]f
2

1

2 sinu
~a2b1~a1b11!coshu!G ,

J25e2 ifF2]

]u
1

i

tanhu

]

]f
2

1

2 sinhu
~a2b1~a1b21!coshu!G ,

u~1,1!:@J1,J2#522J32~a1b!I, @J3 ,J6#56J6 , @J,I#50,

ds25a2~du21sinh2 udf2!,
SL~2,c!

GL~1,c!
5

SU~1,1!

U~1!
, R5

22

a2 ,

Bnon-Cas.5
1
2@b2a12~11a22a2b!coshu#sinhudu∧df,

Enon-Cas.5
2eu

a3 ~a1b212a2!@a2b1~a1b212a2!coshu#sinhu,

Enon-Cas.5
21

2a2 @~n2m11!~a1b!1n~n11!1m~11a2!1a3#,

BCas.5
1
2 ~b2a!sinhudu∧df,

ECas.5
21

2a2 @~n11!~n1a1b!1a3#,

F̂n,m~x~u!,if!5an~21!meimf~coshu21!~1/2!~~1/2!2m2a!~coshu11!~1/2!~~1/2!2m2b!

3S d

d coshu D n2m

~~coshu21!n1a~coshu11!n1b!,
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A~x!5x~12x!, x5
12cosu

2
, 0<u,2p,

J15eifF ]

]u
1

i

tanu

]

]f
2

1

2 sinu
~a2b1~a1b11!cosu!G ,

J25e2 ifF2]

]u
1

i

tanu

]

]f
2

1

2 sinu
~a2b1~a1b21!cosu!G ,

u~2!:@J1 ,J2#52J31~a1b!I, @J3 ,J6#56J6 , @J,I#50,

ds25a2~du21sin2 udf2!,
SL~2,c!

GL~1,c!
5

SU~2!

U~1!
, R5

2

a2 ,

Bnon-Cas.5
1
2@a2b12~a1b1a221!cosu#sinudu∧df,

Enon-Cas.5
2eu

a3 ~a1b1a221!@a2b1~a1b1a221!cosu#sinu,

Enon-Cas.5
1

2a2 @~n2m11!~a1b!1n~n11!1m~12a2!2a3#,

BCas.5
1
2~a2b!sinudu∧df,

ECas.5
1

2a2 @~n11!~n1a1b!2a3#,

F̂n,m~x~u!,if!5an~21!m2~21/2!~112n1a1b!eimf~12cosu!
1
2~

1
22m2a!~11cosu!

1
2~

1
22m2b!

3S d

d~12cosu! D
n2m

~~12cosu!n1a~11cosu!n1b!,

A~x!5x211, x5sinhu, 2`,u,1`,

J15eifF ]

]u
1

i

cothu

]

]f
2

1

2 coshu
~b1~2a11!sinhu!G ,

J25e2 ifF2]

]u
1

i

cothu

]

]f
2

1

2 coshu
~b1~2a21!sinhu!G ,

u~1,1!:@J1 ,J2#522J322aI, @J3 ,J6#56J6 , @J,I#50,

ds25a2~du22cosh2 udf2!,
SL~2,c!

GL~1,c!
5

SU~1,1!

U~1!
, R5

22

a2 ,

Bnon-Cas.5
1
2@b12~2a212a2!sinhu#coshudu∧df,

Enon-Cas.5
eu

a3 ~2a212a2!@b1~2a212a2!sinhu#coshu,
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Enon-Cas.5
21

2a2 @2~n2m11!a1n~n11!1m~11a2!1a3#,

BCas.5
1
2b coshudu∧df,

ECas.5
21

2a2 @~n11!~2a1n!1a3#,

F̂n,m~x~u!,if!5an~21!meimf~coshu!
1
2~122m22a!e2~1/2!b tan21sinhu

3S d

d sinhu D n2m

~~coshu!2n12aeb tan21 sinhu!,

A~x!5x~11x!, x5
coshu21

2
, 0<u,1`,

J15eifF ]

]u
1

i

tanhu

]

]f
2

1

2 sinhu
~a2b1~a1b11!coshu!G ,

J25e2 ifF2]

]u
1

i

tanhu

]

]f
2

1

2 sinhu
~a2b1~a1b21!coshu!G ,

u~1,1!:@J1 ,J2#522J32~a1b!I, @J3 ,J6#56J6 , @J,I#50,

ds25a2~du21sinh2 df2!,
SL~2,c!

GL~1,c!
5

SU~1,1!

U~1!
, R5

22

a2 ,

Bnon-Cas.5
1
2@b2a12~12a2b1a2!coshu#sinhudu∧dc,

Enon-Cas.5
2eu

a3 ~a1b2a221!@a2b1~a1b2a221!coshu#sinhu,

Enon-Cas.5
21

2a2 @~n2m11!~a1b!1n~n11!1m~11a2!1a3#,

BCas.5
1
2~b2a!sinhudu∧df,

ECas.5
21

2a2 @~n11!~n1a1b!1a3#,

F̂n,m~x~u!,if!5an~21!m2~21/2!~112n1a1b!eimf~coshu21!~1/2!~~1/2!2m2a!

3~coshu11!~1/2!~~1/2!2m2b!

3S d

d~coshu21! D
n2m

~~coshu21!n1a~coshu11!n1b!,

A~x!5x, x5 1
4u

2, 0<u,1`,

J15eifF ]

]u
1

i

u

]

]f
2

1

4u
~4a122bu2!G ,
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J25e2 ifF2
]

]u
1

i

u

]

]f
2

1

4u
~4a222bu2!G ,

h4 :@J1J2#5bI, @J3 ,J6#56J6 , @J,I#50,

ds25du21u2df2,
SL~2,c!

GL~1,c!
5

H4

U~1! ^ U~1!
, R50,

Bnon-Cas.5S b

2
1a2D udu∧df,

Enon-Cas.52eua2~a21b!u,

Enon-Cas.5
1
2@~n2m11!b2ma22a3#,

BCas.5
2b

2
udu∧df,

ECas.5
1
2@~n11!b2a3#,

F̂n,m~x~u!,if!5an~21!m22m2a2~1/2!eimfu~1/2!2m2ae~b/8!u2S d

du2D n2m

~u2n12ae2~b/4!u2
!.

VI. PARA-SUPERSYMMETRY OF QUANTUM SOLVABLE HAMILTONIANS ON
SL„2,c …/GL„1,c … HOMOGENEOUS MANIFOLD

By eliminating thez-dependence as before, the solvable Hamiltonians defined on the SLc)
group manifold reduces to another solvable Hamiltonian defined on the homogeneous m
SL(2,c)/GL(1,c), where the Hamiltonian obtained from the left invariant generators posses
SL(2,c) degeneracy group while the other one, obtained from the right invariant generator
two-dimensional shape invariant Hamiltonian. Actually~4.21! can be written in terms of the lef
and right invariant generators as before

H̄52J1
~L !J2

~L !1 1
2A9~x!J3

~L !2
2 1

2A9~x!J3
~L ! ~6.1a!

52J1
~R!J2

~R!1 1
2A9~x!J3

~R!2
2 1

2A9~x!J3
~R! . ~6.1b!

The differential equation associated with the eigenspectrum of the operator~6.1a! can be the same
eigenvalue Eq.~2.38! provided that we putC50 and use the constraint~4.13!, with the difference
that z must be replaced byZ. We write the eigenvalue equation for~6.1a! as follows:

~2J1
~L !J2

~L !1 1
2A9~x!J3

~L !2
2 1

2A9~x!J3
~L !!F̄n,l ,m~x,z,y!5Ē~n!F̄n,l ,m~x,z,y!. ~6.2!

According to the reduction prescription explained before, the Hamiltonian operator given in~6.1a!
takes the following form if we replace the operator (]/]z) by m in Eq. ~6.2!,

H̄~m!52J1
~L !~m!J2

~L !~m!1 1
2A9~x!J3

~L !2
~m!2 1

2A9~x!J3
~L !~m!, ~6.3!

with the following eigenvalue equation:

H̄~m!F̄n,l ,m~x,0,y!5Ē~n!F̄n,l ,m~x,0,y!, ~6.4!

where the generators
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J1
~L !~m!5eyS AA~x!

]

]x
2

A8~x!

2AA~x!

]

]y
1

m

2

AA82~0!22A9A~0!

AA~x!
D ,

J2
~L !~m!5e2yS 2AA~x!

]

]x
2

A8~x!

2AA~x!

]

]y
1

m

2

AA82~0!22A9A~0!

AA~x!
D ,

J3
~L !~m!5

]

]y
, ~6.5!

form an sl(2,c) Lie algebra given in~4.5!. Therefore, by elimination of thez-coordinate, and by
replacing]/]z with parameterm, we give the solvable quantum Hamiltonian of a free particle
SL(2,c) manifold into another solvable Hamiltonian for charged particle in the presence
monopole magnet on SL(2,c)/Gl(1,c) homogeneous manifold with SL(2,c) group as its degen
eracy group with generators given in~6.5!. The Hamiltonian~6.3! has the following second orde
differential form:

H̄~m!5A~x!
]2

]x2 1A8~x!
]

]x
2

A82~0!22A9A~0!

4A~x!

]2

]y2 1
m

2
AA82~0!22A9A~0!

A8~x!

A~x!

]

]y

2
m2

4

A82~0!22A9A~0!

A~x!
. ~6.6!

We may add, without going into the details, that we can also obtain a parasupersymmetric
sentation for the sl(2,c) generators~6.5!, in analogy with Ref. 6.

We obtain another two-dimensional parasupersymmetric representation of the Hamil
~6.6! which can be obtained from the Hamiltonian~6.1b! via the reduction prescription as below
With due attention to the fact that the Hamiltonian~6.1b!, or its explicit form given in~4.21!, is
symmetrical with respect to the coordinatesy and z, we can write the following eigenvalue
differential equation for it:

~2J1
~R!J2

~R!1 1
2A9~x!J3

~R!2
2 1

2A9~x!J3
~R!!F̄n,l ,m~x,z,y!5Ē~n!F̄n,l ,m~x,z,y!, ~6.7!

where we have used Eq.~4.22b!. Now, according to the reduction prescription replacing]/]z by
m and we obtain

H̄~m!52J1
~R!~m21!J~R!~m!1 1

2A9~x!m22 1
2A9~x!m, ~6.8!

where it describes two-dimensional shape invariance for Hamiltonian~6.6!. In fact, it is easy to
show that

J1
~R!~m21!J2

~R!~m!F̄n,l ,m~x,0,y!5Ē~n,m!F̄n,l ,m~x,0,y!,

J2
~R!~m!J1

~R!~m21!F̄n,l ,m21~x,0,y!5Ē~n,m!F̄n,l ,m21~x,0,y!, ~6.9!

and also that the factorization operators of shape invariant~6.9! for differential Eq.~6.4! are

J1
~R!~m!5AA~x!

]

]x
1

1

2
AA82~0!22A9A~0!

A~x!

]

]y
2

m

2

A8~x!

AA~x!
,

J2
~R!~m!52AA~x!

]

]x
1

1

2
AA82~0!22A9A~0!

A~x!

]

]y
2

m

2

A8~x!

AA~x!
. ~6.10!
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Using the shape invariance factorization~6.9! we have

J1
~R!~m21!F̄n,l ,m21~x,0,y!5AĒ~n,m!F̄n,l ,m~x,0,y!,

J2
~R!~m!F̄n,l ,m~x,0,y!5AĒ~n,m!F̄n,l ,m21~x,0,y!. ~6.11!

Below we show that the two-dimensional differential operators given by~6.10!, that is the
raising and lowering operators of the parameterm can describe a parasupersymmetry of ordep
<n2 l on the base manifold SL(2,c)/Gl(1,c). As in Refs. 2 and 6 the nonunitary parasupersy
metry of orderp with the parafermionic generatorsQ1 andQ2 and parabosonic generatorH satisfy
the following:3,10,11

Q1
pQ21Q1

p21Q2Q11¯1Q1Q2Q1
p211Q2Q1

p52pQ1
p21H, ~6.12a!

Q2
pQ11Q2

p21Q1Q21¯1Q2Q1Q2
p211Q1Q2

p52pQ2
p21H, ~6.12b!

Q1
p115Q2

p1150, ~6.12c!

@H,Q1#5@H,Q2#50. ~6.12d!

Defining the generatorsQ1 , Q2 , and H as (p11)(p11) matrices with the following matrix
elements:

~Q1!mm8ªJ2
~R!~m!dm11,m8 ,

~Q2!mm8ªJ1
~R!~m821!dm,m811 ,

~H !mm8ªHmdm,m8 , m,m851,2,...,p11, ~6.13!

Eq. ~6.12c! is automatically satisfied, while Eqs.~6.12a! and ~6.12b! lead to the following equa-
tions among the operatorsJ1

(R)(m)’s, J2
(R)(m)’s, andHm’s:

J1
~R!~p22!¯J1

~R!~1!J1
~R!~0!J2

~R!~1!1¯1J1
~R!~p22!J2

~R!~p21!J1
~R!~p22!J2

~R!~p23!¯J1
~R!~0!

1J2
~R!~p!J1

~R!~p21!J1
~R!~p22!¯J1

~R!~0!52pJ1
~R!~p22!J1

~R!~p23!¯J1
~R!~0!H1 , ~6.14a!

J1
~R!~p21!¯J1

~R!~1!J1
~R!~0!J2

~R!~1!1J1
~R!~p21!¯J1

~R!~2!J1
~R!~1!J2

~R!~2!J1
~R!~1!1¯1J1

~R!

3~p21!J2
~R!~p!J1

~R!~p21!J1
~R!~p22!¯J1

~R!~1!52pJ1
~R!~p21!J1

~R!~p22!¯J1
~R!~1!H2 ,

~6.14b!

J2
~R!~1!¯J2

~R!~p21!J2
~R!~p!J1

~R!~p21!1J2
~R!~1!¯J2

~R!~p22!J2
~R!~p21!J1

~R!~p22!J2
~R!~p21!

1¯1J2
~R!~1!J1

~R!~0!J2
~R!~1!J2

~R!~2!¯J2
~R!~p21!52pJ2

~R!~1!J2
~R!~2!¯J2

~R!~p21!Hp ,

~6.14c!

J2
~R!~2!¯J2

~R!~p21!J2
~R!~p!J1

~R!~p21!J2
~R!~p!1¯1J2

~R!~2!J1
~R!~1!J2

~R!~2!J2
~R!~3!¯J2

~R!~p!

1J1
~R!~0!J2

~R!~1!J2
~R!~2!¯J2

~R!~p!52pJ2
~R!~2!J2

~R!~3!¯J2
~R!~p!Hp11 , ~6.14d!
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and Eqs.~6.12d! automatically reduces to

HmJ2
~R!~m!5J2

~R!~m!Hm11 ,

Hm11J1
~R!~m21!5J1

~R!~m21!Hm . ~6.15!

Using the following ansatz for the HamiltoniansHm ,

Hm5 1
2J2

~R!~m!J1
~R!~m21!1 1

2Cm m51,2,...,p,

Hp115 1
2J1

~R!~p21!J2
~R!~p!1 1

2Cp , ~6.16!

Eqs. ~6.15! are automatically satisfied form5p. Substituting the ansatz~6.16! in ~6.15! for m
51,2,...,p21, and using the following form for the shape invariance relation~6.9!:

J1
~R!~m21!J2

~R!~m!2J2
~R!~m11!J1

~R!~m!5Ē~n,m!2Ē~n,m11!, ~6.17!

we obtain

Ē~n,m11!2Ē~n,m!5Cm2Cm11 . ~6.18!

Again, substituting the ansatz~6.16! in ~6.14a! and using the shape invariance relation~6.17! we
get

C15
1

p
@~12p!Ē~n,1!1Ē~n,2!1Ē~n,3!1¯1Ē~n,p!#. ~6.19!

Now, from relations~6.18! and ~6.19! the coefficientsCm can be determined as

Cm5
1

p (
m851

p

Ē~n,m8!2Ē~n,m!, m51,2,...,p. ~6.20!

From the above equations it follows that the coefficientsCm satisfy the following relations:

C11C21¯1Cp50. ~6.21!

Using the ansatz~6.16! and the shape invariance relation~6.17! together with~6.20! we can rather
straightforwardly show that the relations~6.14b!, ~6.14c!, and~6.14d! are automatically satisfied
Considering the shape invariance relation~6.9! and the expression~6.20! for the coefficientsCm ,
one can show that the HamiltoniansH1 ,H2 ,...,Hp11 have the same spectra as follows:

E5
1

2p (
m51

p

Ē~n,m!5
21

12
@3n~n11!112p2#A9~x!, ~6.22!

and they satisfy the following eigenvalue equation:

HmF̄n,l ,m~x,0,y!5EF̄n,l ,m~x,0,y! m51,2,...,p11. ~6.23!

Using Eqs.~4.17!, ~6.20!, and~6.22! coefficientsCm can be written as

Cm5
21

6
@3m~m21!112p2#A9~x!. ~6.24!

Also these isospectral Hamiltonians have the following second order differential form:
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Hm5
21

2 H A~x!
]2

]x2 1A8~x!
]

]x
2

A82~0!22A9A~0!

4A~x!

]2

]y2 1~m21!

3
AA82~0!22A9A~0!

2

A8~x!

A~x!

]

]y
2

1

4
~m21!2

A82~x!

A~x!

1
1

6
@3~m21!2112p2#A9~x!J m51,2,...,p11. ~6.25!

Using the column matrices of (p11)31 with the following matrix elements:

~Fn,l~x,y!!mªF̄n,l ,m~x,0,y! ~6.26!

as bases of the parasupersymmetric algebra of orderp described above, the eigenvalue equation
parabosonic Hamiltonian can be written as

HFn,l~x,y!5EFn,l~x,y!. ~6.27!

With due attention to the commutation relation of the parafermionic generatorsQ1 andQ2 with
the bosonic generatorH, one can show thatQ1

mFn,l(x,y) andQ1
mFn,l(x,y) for m51,2,...,p, are

also the eigenstates of the bosonic HamiltonianH with eigenvalueE. Comparing eigenstate
Fn,l(x,y) with Q1

mFn,l(x,y), together with the remark given below the definition ofQ1 and, also,
the lowering property ofJ2

(R)(m) given in ~6.11!, we obtain

F̄n,l ,m~x,0,y!5
J2

~R!~m11!

AĒ~n,m11!

J2
~R!~m12!

AĒ~n,m12!

¯

J2
~R!~m1m8!

AĒ~n,m1m8!

F̄n,l ,m1m8~x,0,y!

m50,1,...,p2m8. ~6.28!

For the given-value corresponding top5n2 l , and by comparing Fn,l(x,y) with
Q1

n2 l 2mFn,l(x,y), one can writeF̄n,l ,m(x,0,y) in terms ofF̄n,l ,n2 l(x,0,y). For this purpose we
simply need to choosem85n2 l 2m in ~6.28!. Then, for given values ofn and l the functions
Fn,l(x,y) form the bases of the representation space of the parasupersymmetric algebra o
p<n2 l . For the special case ofA9(x)50, the order of parasupersymmetry algebra becom
infinite. This is due to the fact that, in the solution of Eq.~6.9! by an ordinary method of separatio
of variables, thex as theu dependent part turns out to be the Bessel function. Indeed, comp
Fn,l(x,y) with Q2

n2 lFn,l(x,y) in the special case ofA9(x)50, we cannot get any first orde
differential equation forFn,l ,n2 l(x) any more, since none of the Bessel functions can satisfy a
order differential equation.

Now, the isospectral HamiltoniansHm can be written as those which correspond to
Hamiltonian of a charged point particle on homogeneous manifold SL(2,c)/Gl(1,c) in the pres-
ence of magnetic and probably electric fields, with vector potentialsAu andAf and scalar poten-
tial V, which can depended on the parameterm,

1

a2 Hm52
1

2
Dm

ADAm1V. ~6.29!

Comparing both sides of~6.29! we obtain the solvable Hamiltonian of charged particle on
homogeneous manifold SL(2,c)/Gl(1,c) with the metric~5.13! in the presence of magnetic an
electric fields described by the gauge potential,

Au50,
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Af5
m21

AA82~0!22A9A~0!
A8~x!, ~6.30!

and scalar potential

V5
21

12a2 @3~m21!2112p2#A9~x!, ~6.31!

which corresponds to the following 2-form of the magnetic field,

B5
~m21!A9~x!

AA82~0!22A9A~0!
AA~x! du∧df, ~6.32!

with vanishing electric field. According to~6.32! for A9(x)Þ0 andmÞ0, the magnetic field is
nonvanishing, hence we have a family of isospectral Hamiltonians on the homogeneous m
SL(2,c)/Gl(1,c) in the presence of the magnetic field. Note that ifm varies only the flux associ
ated with the magnetic field~6.32! changes. Sincem takes integer values for charged particl
only, hence the flux is quantized for differentHm . It is interesting to note that the energy itself
independent of the parameterm, and analogous to the classical case magnetic field has no co
bution in the energy of the system. In fact, scalar potential depends onm and just shifts the energy

APPENDIX A: ZONAL ASSOCIATED FUNCTIONS

Here we show that the zonal associated spherical functions and other similar function
tained from the master function satisfy shape invariant differential equations. We also give
Rodrigues formula and some other information. In order to achieve this goal, we choose

f ~x!5
1

AWl~x!
, ~A1!

so that the operators~2.17! become

B̃~ l ,m!ªBS l ,m;
1

AWl~x!
D 5AA~x!

d

dx
2

1

AA~x!
S 1

2

A~x!W8~x!

W~x!
1

m21

2
A8~x!1 l D ,

Ã~ l ,m!ª2AS l ,m;
1

AWl~x!
D 5AA~x!

d

dx
1

1

AA~x!
S 1

2

A~x!W8~x!

W~x!
1

m

2
A8~x!1 l D . ~A2!

Then, one can show that the associated functions

F̃n,l ,m~x!ªFn,l ,mS x;
1

AWl~x!
D

5
an~21!m

Am/2~x!W1/2~x!expS *
l

A~x!
dxD S d

dxD
n2mS An~x!W~x!expS E 2l

A~x!
dxD D

~A3!
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are eigenfunctions of the first order shape invariant operators, that is, we have

B̃~ l ,m!Ã~ l ,m!F̃n,l ,m~x!5Ẽ~n,m!F̃n,l ,m~x!,

Ã~ l ,m!B̃~ l ,m!F̃n,l ,m21~x!5Ẽ~n,m!F̃n,l ,m21~x!, ~A4!

where

Ẽ~n,m!52E~n,m!. ~A5!

Here, for nonpositiveA9(x), we describeB̃( l ,m) and Ã( l ,m) as raising and lowering operator
respectively,

B̃~ l ,m!F̃n,l ,m21~x!52AE~n,m!F̃n,l ,m~x!,

Ã~ l ,m!F̃n,l ,m~x!5AE~n,m!‘ F̃n,l ,m21~x!. ~A6!

For positiveA9(x), we describe the raising and lowering operators as

B̃~ l ,m!F̃n,l ,m21~x!5AẼ~n,m!F̃n,l ,m~x!,

Ã~ l ,m!F̃n,l ,m~x!5AẼ~n,m!F̃n,l ,m21~x!. ~A7!

We should be reminded that by using the shape invariance relations~A4! we can show that the

associated functionsF̃n,l ,m(x) satisfy the following second order differential equation:

A~x!F̃n,l ,m9 ~x!1A8~x!F̃n,l ,m8 ~x!1F2
1

2
~n21n2m2!A9~x!1S m2n2

1

2D S A~x!W8~x!

W~x! D 8

2
m2

4

A82~x!

A~x!
2

m

2

A8~x!

A~x!

A~x!W8~x!

W~x!
2ml

A8~x!

A~x!
2

1

4A~x! S A~x!W8~x!

W~x! D 2

2
l

A~x!

A~x!W8~x!

W~x!
2

l 2

A~x!GF̃n,l ,m~x!50. ~A8!

For any plausible choice of the master functionA(x), the corresponding weight functionW(x)
depends in general on two arbitrary parametersa andb. Hence it is more convenient to add he
two indices to the representation of the associated functions, that is we denote the

F̃n,l ,m
(a,b)(x). Of course we have chosen the traditional notation for the usual special func

appearing in literature.
In the rest of this appendix we give a complete list of possible twofold associated sp

functions connected with different possible choices of the master function and its correspo
weight function. We must remind that for the special choicesA(x)512x2 andA(x)5x221 with
conditionsa5b50 the results are in agreement with Ref. 12. In this reference the twofold a
ciated functions corresponding to these two special cases have been obtained by using th
sentation of SU(2) and SU(1,1) groups. For this reason, therefore, we have chosen the coe
an such that the Rodrigues representation given in~A3! agrees with that of Ref. 12,

A~x!512x2, 21<x<11,

W~x!5~12x!a~11x!b, a. l 21, b.2 l 21,

B̃~ l ,m!5A12x2
d

dx
1

S a1b

2
1m21D x1

a2b

2
2 l

A12x2
,
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Ã~ l ,m!5A12x2
d

dx
2

S a1b

2
1mD x1

a2b

2
2 l

A12x2
,

E~n,m!5~n2m11!~a1b1n1m!,

~12x2!Pn,l ,m9~a,b!~x!22xPn,l ,m8~a,b!~x!1F n22m21n1~a1b!S n2m1
1

2D1S m1
a1b

2 D 2

1

S m1
a1b

2 D ~b2a12l !x2S b2a

2
1 l D 2

2S a1b

2
1mD 2

12x2
GPn,l ,m

~a,b!~x!50,

Pn,l ,m
~a,b!~x!5

an~21!m

~12x!~a1m2 l !/2~11x!~b1m1 l !/2 S d

dxD
n2m

~~12x!a1n2 l~11x!b1n1 l !,

an5
~21!n

2n A G~n1m11!

G~n2 l 11!G~n1 l 11!G~n2m11!
,

Pl ,m
n ~x!ªPn,l ,m

~0,0! ~x!,

A~x!5x221, 11<x,1`,

W~x!5~x21!a~x11!b, a.2 l 21, b,2a22,

B̃~ l ,m!5Ax221
d

dx
2

S a1b

2
1m21D x1

a2b

2
1 l

Ax221
,

Ã~ l ,m!5Ax221
d

dx
1

S a1b

2
1mD x1

a2b

2
1 l

Ax221
,

Ẽ~n,m!5~n2m11!~a1b1n1m!,

~x221!Bn,l ,m9~a,b!~x!12xBn,l ,m8~a,b!~x!1Fm22n22n1~a1b!S m2n2
1

2D2S m1
a1b

2 D 2

2

S m2
a1b

2 D ~a2b12l !x1S a2b

2
1 l D 2

2S a1b

2
1mD 2

x221
GBn,l ,m

~a,b!~x!50,

Bn,l ,m
~a,b!~x!5

an~21!m

~x21!~a1m1 l !/2~x11!~b1m2 l !/2 S d

dx
D n2m

~~x21!a1n1 l~x11!b1n2 l !,

an5
~21!m

2n

G~n1m11!

G~n2 l 11!G~n1 l 11!
,

Bl ,m
n ~x!ªBn,2 l ,m

~0,0! ~x!,
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A~x!5x2, 0<x,1`,

W~x!5xae2b/x, a,22, b.22l ,

B̃~ l ,m!5x
d

dx
2

S a

2
1m21D x1

b

2
1 l

x
,

Ã~ l ,m!5x
d

dx
1

S a

2
1mD x1

b

2
1 l

x
,

Ẽ~n,m!5~n2m11!~a1n1m!,

x2F n,l ,m9~a,b!~x!12xFn,l ,m8~a,b!~x!1Fm22n22n1S m2n2
1

2Da2S m1
a

2 D 2

2

2S m1
a

2 D S l 1
b

2 D x1S l 1
b

2 D 2

x2
GF n,l ,m

~a,b!~x!50,

F n,l ,m
~a,b!~x!5

an~21!m

x~a/2!1me2~b12l !/2x S d

dxD
n2m

~xa12ne2@~b121!/x#!,

A~x!5x~12x!, 0<x<11,

W~x!5xa~12x!b, a.22l 21, b.2l 21,

B̃~ l ,m!5Ax~12x!
d

dx
1

S a1b

2
1m21D x2S a1b21

2
1 l D

Ax~12x!
,

Ã~ l ,m!5Ax~12x!
d

dx
2

S a1b

2
1mD x2S a1b

2
1 l D

Ax~12x!
,

E~n,m!5~n2m11!~a1b1n1m!,

x~12x!Fn,l ,m9~a,b!~x!1~122x!Fn,l ,m8~a,b!~x!1F n22m21n1~a1b!S n2m1
1

2D2S m1
a1b

2 D 2

1

S m1
a1b

2 D S a2b

2
12l D x2

1

4
~a1m12l !2

x~12x!
GFn,l ,m

~a,b!~x!50,

Fn,l ,m
~a,b!~x!5

an~21!m

x~a1m12l !/2~12x!~b1m22l !/2 S d

dxD
n2m

~xa1n12l~12x!b1n22l !,

A~x!511x2, 2`,x,1`,

W~x!5~12x2!aeb tan21 x, a,2 l ,
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B̃~ l ,m!5A11x2
d

dx
2

~a1m21!x1
b

2
1 l

A11x2
,

Ã~ l ,m!5A11x2
d

dx
1

~a1m!x1
b

2
1 l

A11x2
,

Ẽ~n,m!5~n2m11!~2a1n1m!,

(11x2)Jn,l ,m9~a,b!~x!12xJn,l ,m8~a,b!~x!1Fm22n22n12S m2n2
1

2Da2~m1a!2

1

2(m1a)~b12l !x1~a1m!22S b

2
1 l D 2

11x2
G Jn,l ,m

~a,b!~x!50,

Jn,l ,m
~a,b!~x!5

an~21!m

~11x2!~a1m!/2e@~b12l !/2# tan21 x S d

dxD
n2m

~~11x2!a1ne(b12l )tan21 x!,

A~x!5x~11x!, 0<x,1`,

W~x!5xa~11x!b, a.22l 21, b,2a22,

B̃~ l ,m!5Ax~11x!
d

dx
2

S a1b

2
1m21D x1S a1m21

2
1 l D

Ax~11x!
,

Ã~ l ,m!5Ax~11x!
d

dx
1

S a1b

2
1mD x1S a1m

2
1 l D

Ax~11x!
,

E~n,m!5~n2m11!~a1b1n1m!,

x~11x!Bn,l ,m9~a,b!~x!1~112x!Bn,l ,m8~a,b!~x!1Fm22n22n1~a1b!S m2n2
1

2D

2S m1
a1b

2 D 2

2

S m1
a1b

2 D S a2b

2
12l D x1

1

4
~a1m12l !2

x~11x!
G

3Bn,l ,m
~a,b!~x!50,

Bn,l ,m
~a,b!~x!5

an~21!m

x~a1m12l !/2~11x!~b1m22l !/2 S d

dxD
n2m

~xa1n12l~11x!b1n22l !,

A~x!5x, 0<x,x1`,

W~x!5xae2bx, a.22l 21, b.0,
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B̃~ l ,m!5Ax
d

dx
1

bx2~a12l 1m21!

2Ax
,

Ã~ l ,m!5Ax
d

dx
2

bx2~a12l 1m!

2Ax
,

Ẽ~n,m!5b~n2m11!,

xLn,l ,m9~a,b!~x!1Ln,l ,m8~a,b!~x!1FbS n1 l 1
a2m11

2 D2
1

4
b2x2

~a12l !~a12l 12m!

4x GLn,l ,m
~a,b!~x!50,

Ln,l ,m
~a,b!~x!5

an~21!m

x~1/2!~a12l 1m!e2~b/2!x S d

dxD
n2m

~xa1n12le2bx!,

A„x…51, 2`,x,1`,

W~x!5e2~1/2!ax21bx, a.0,

B̃~ l ,m!5
d

dx
1

1

2
~ax2b22l !,

Ã~ l ,m!5
d

dx
2

1

2
~ax2b22l !,

E~n,m!5a~n2m11!,

Hn,l ,m9~a,b!~x!2[ 1
4 (2ax1b12l )21a(m2n2 1

2)]Hn,l ,m
~a,b!~x!50,

Hn,l ,m
~a,b!~x!5

an~21!m

e2~1/4!ax21@~b12l !/2#x S d

dxD
n2m

~e2~1/2!ax21~b12l !x!.

APPENDIX B: FACTORIZATION OF HAMILTONIAN ON SL „2,c… MANIFOLD

The most general quadratic non-Casimir operator of unitary generators of gl(2,c) Lie algebra
which commute withJ3 is

Hnon-Cas.gl~2,c!52J1J21a1J3
21a2J31a3 . ~B1!

Using ~2.33! for J3 , and also Eqs.~2.29! we get the following eigenvalue equation for th
non-Casimir operator:

Hnon-Cas.gl~2,c!F̂n,l ,m~x,y,z!5F ~n2m11!S A~x!W8~x!

W~x! D 8
1

1

2
~n22m21n1m!A9~x!

1m2a11ma21a3GF̂n,l ,m~x,y,z!. ~B2!

Now, let us use~3.9! together with

dx

AA~x!
5du ~B3!

to show that the non-Casimir operator~B1! can be taken as the Hamiltonian of motion of
charged particle on a three-dimensional manifold with the following explicit form:
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Comparing the second order partial derivative of both sides of~3.12! for ~B4! we arrive at the
following metric gmn for a three-dimensional manifold:

gmn5a2S 1 0 0

0
21

a1

A8~x!

2a1

0
A8~x!

2a1
2

A82~x!24a1A~x!

4a1

D , ~B5!

where again it only depends ona1 . Scalar curvature, scalar potential, and spectra of these solv
systems are given again by~3.16!, ~3.17!, and~3.18!, respectively. But, the 2-form of the magnet
field varies up to a scale as follows:

B5
1

2 F 1

2a1
S a21

1

2
A9~x! DA9~x!2S A~x!W8~x!

W~x! D 8GAA~x!du∧dc. ~B6!

We see that in general the eigenequation of the non-Casimir operator corresponds to the¨-
dinger equation of a charged point particle on the manifold described by metric~B5! in the
presence of the magnetic field given in~B6!.

By choosinga1 as in ~3.7! but a2 different from the value given in~3.7!, the metric of
SL(2,c) group manifold and the two-form of magnetic field are

gmn5a2S 1 0 0

0
22
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0
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A9~x!2S A~x!W8~x!

W~x! D 8
1a2GAA~x!du∧dc, ~B8!

and the spectra become as in~3.22!. Finally, if we choose the value of~3.7! for a2 , we will be led
to the quantum system of a free particle on group manifold SL(2,c) with metric ~B7! with
degeneracy group GL(2,c). At the end of this appendix we calculate the results for differ
master functions due to the presence of magnetic field, where we lose the degeneracy gro
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Casimir invariants from quasi-Hopf „super …algebras
Mark D. Gould, Yao-Zhong Zhang,a) and Phillip S. Isaac
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We show how to construct, starting from a quasi-Hopf~super!algebra, central ele-
ments or Casimir invariants. We show that these central elements are invariant
under quasi-Hopf twistings. As a consequence, the elliptic quantum~super!groups,
which arise from twisting the normal quantum~super!groups, have the same Ca-
simir invariants as the corresponding quantum~super!groups. © 2000 American
Institute of Physics.@S0022-2488~99!01312-2#

I. INTRODUCTION

Quasi-Hopf superalgebras areZ2-graded versions of Drinfeld’s quasi-Hopf algebras1 and
were introduced in Ref. 2. The potential for applications of these structures, particularly to
theory and integrable systems, is enormous. They give rise to new~nonstandard! representations
of the braid group and corresponding link polynomials.3,4 Moreover these remarkable structur
underly elliptic quantum~super!groups5–9,2 which play an important role in obtaining solutions
the dynamical Yang–Baxter equations.10,11

In applications such as these it is important to have a well defined representation theo
this paper we investigate several aspects of this theory concerned with the constructio
general properties of invariants~invariant bilinear forms, module morphisms, central eleme
etc.!. In particular, in the quasitriangular case, it is shown how central elements may be sy
atically constructed utilizing theR-matrix. This construction may be regarded as a natural ge
alization of that introduced in Refs. 12 and 13, to which it reduces in the case of normal
~super!algebras. However the extension of this paper is by no means straightforward and re
the explicit inclusion of the coassociator into the construction.

We moreover prove the strong result that the Casimir invariants so obtained are inv
under twisting. This implies, in particular, that one will not obtain new Casimir invariants
twisting on quantum~super!groups. As part of our approach we extend theu-operator formalism
of Drinfeld–Reshetikhin to the case of quasi-Hopf superalgebras. In particular we prov
surprising result that theu-operator is invariant under twisting. This has some important impl
tions for knot theory which will be investigated elsewhere. It is worth noting that most of
results are new, even in the nongraded case.

II. QUASI-HOPF „SUPER…ALGEBRAS

Let us briefly recall the quasi-Hopf algebras1 and their super~or Z2 graded! versions, quasi-
Hopf superalgebras.2

Definition 1: A quasi-Hopf (super)algebra is a~Z2 graded! unital associative algebra A ove
a field K which is equipped with algebra homomorphismse:A→K (co-unit), D:A→A^ A (co-
product), an invertible homogeneous elementFPA^ A^ A (co-associator), an(Z2 graded! al-
gebra antihomomorphism S:A→A (antipode) and homogeneous canonical elements, a, bPA,
satisfying

~1^ D!D~a!5F21~D ^ 1!D~a!F, ;aPA, ~2.1!

a!Electronic mail: yzz@maths.uq.edu.au
5470022-2488/2000/41(1)/547/22/$17.00 © 2000 American Institute of Physics
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~D ^ 1^ 1!F•~1^ 1^ D!F5~F ^ 1!•~1^ D ^ 1!F•~1^ F!, ~2.2!

~e ^ 1!D515~1^ e!D, ~2.3!

~1^ e ^ 1!F51, ~2.4!

m•~1^ a!~S^ 1!D~a!5e~a!a, ;aPA, ~2.5!

m•~1^ b!~1^ S!D~a!5e~a!b, ;aPA, ~2.6!

m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!F2151, ~2.7!

m•~m^ 1!•~S^ 1^ 1!~1^ a ^ b!~1^ 1^ S!F51. ~2.8!

Here m denotes the usual product map onA:m•(a^ b)5ab, ;a, bPA. Note that sinceA is
associative we havem•(m^ 1)5m•(1^ m). For the homogeneous elementsa, bPA, the anti-
pode satisfies

S~ab!5~21!@a#@b#S~b!S~a!, ~2.9!

which extends to inhomogeneous elements through linearity.~2.2!, ~2.3!, and~2.4! imply that F
also obeys

~e ^ 1^ 1!F515~1^ 1^ e!F. ~2.10!

It follows that the co-associatorF is an even element. Applyinge to definitions~2.7! and~2.8! we
obtain, in view of ~2.4!, e(a)e(b)51. Thus the canonical elementsa, b are both even. By
applying e to ~2.5!, we havee(S(a))5e(a), ;aPA. Note that the multiplication rule for the
tensor products is defined for homogeneous elementsa, b, a8, b8PA by

~a^ b!~a8^ b8!5~21!@b#@a8#~aa8^ bb8!, ~2.11!

where@a#PZ2 denotes the grading of the elementa.
The category of quasi-Hopf~super!algebras is invariant under a kind of gauge transformat

Let (A,D,e,F) be a quasi-Hopf~super!algebra, witha, b, S satisfying ~2.5!–~2.8!, and letF
PA^ A be an invertible homogeneous element satisfying the co-unit properties

~e ^ 1!F515~1^ e!F. ~2.12!

It follows that F is even. Throughout we set

DF~a!5FD~a!F21, ;aPA, ~2.13!

FF5~F ^ 1!~D ^ 1!F•F•~1^ D!F21~1^ F21!. ~2.14!

Then
Theorem 1: (A,DF ,e,FF) defined by~2.13! and ~2.14! together withaF , bF , SF given by

SF5S, aF5m•~1^ a!~S^ 1!F21, bF5m•~1^ b!~1^ S!F, ~2.15!

is also a quasi-Hopf (super)algebra. The element F is referred to as a twistor, throughout.
Definition 2: A quasi-Hopf (super)algebra~A, D, e, F! is called quasitriangular if there exists

an invertible homogeneous elementRPA^ A such that

DT~a!R5RD~a!, ;aPA, ~2.16!
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~D ^ 1!R5F231
21R13F132R23F123

21, ~2.17!

~1^ D!R5F312R13F213
21R12F123. ~2.18!

R is referred to as the universal R- matrix.
Throughout,DT5T•D with T being the graded twist map which is defined, for homogene
elementsa, bPA, by

T~a^ b!5~21!@a#@b#b^ a; ~2.19!

andF132, etc. are derived fromF[F123 with the help ofT,

F1325~1^ T!F123,

F3125~T^ 1!F1325~T^ 1!~1^ T!F123,

F231
215~1^ T!F213

215~1^ T!~T^ 1!F123
21,

and so on.
It is easily shown that the properties~2.16!–~2.18! imply the ~graded! Yang–Baxter type

equation,

R12F231
21R13F132R23F123

215F321
21R23F312R13F213

21R12, ~2.20!

which is referred to as the~graded! quasi-Yang–Baxter equation, and the co-unit properties ofR,

~e ^ 1!R515~1Je!R. ~2.21!

Thus the universalR-matrix R is even. We have
Theorem 2: Denoting by the set~A, D, e, F, R! a quasitriangular quasi-Hopf (super)algebra

then~A, DF , e, FF , RF) is also a quasitriangular quasi-Hopf (super)algebra, with the choice
RF given by

RF5FTRF21, ~2.22!

where FT5T•F[F21. Here DF and FF are given by (2.13) and (2.14), respectively.
Let us specify some notations. Throughout the paper,

F5( Xn ^ Yn ^ Zn , F215( X̄n ^ Ȳn ^ Z̄n ,

F5( f i ^ f i , F215( f̄ i ^ f̄ i ,

R5( ei ^ ei , R215( ēi ^ ēi , ~2.23!

~1^ D!D~a!5( a~1! ^ D~a~2!!5( a~1!
R

^ a~2!
R

^ a~3!
R ,

~D ^ 1!D~a!5( D~a~1!! ^ a~2!)5( a~1!
L

^ a~2!
L

^ a~3!
L .

The following lemma is proved in Ref. 14 and will be used frequently in this paper.
Lemma 1:;aPA,
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~i! ( Xna^YnbS~Zn!~21!@a#@Xn#5( a~1!
L Xn^a~2!

L YnbS~Zn!S~a~3!
L !~21!@a~2!

L
#@Xn#,

~ii ! ( S~Xn!aYn^aZn~21!@a#@Zn#5( S~a~1!
R !S~Xn!aYna~2!

R
^Zna~3!

R ~21!@a~2!
R

#@Zn#,

~iii ! ( aX̄n^S~Ȳn!aZ̄n5( X̄na~1!
L

^S~a~2!
L !S~Ȳn!aZ̄na~3!

L ~21!@Xn#~@a~1!
L

#1@a~2!
L

#!,

~iv! ( X̄nbS~Ȳn!^Z̄na5( a~1!
R X̄nbS~Ȳn!S~a~2!

R !^a~3!
R Z̄n~21!~@a~2!

R
#1@a~3!

R
#!@Z̄n#.

~2.24!

III. CENTRAL ELEMENTS FROM „ANTI-…ADJOINT ACTIONS

Given an~Z2 graded! A-moduleV, we sayvPV an invariant if

a•v5e~a!v, ;aPA. ~3.1!

In particular,A itself constitutes anA-module under the adjoint action defined by

Ad a•b5( a~1!bS~a~2!!~21!@b#@a~2!#, ;a,bPA. ~3.2!

It is easily shown that

Ad a•Ad b5Ad ab. ~3.3!

We call c1PA an invariant if it is invariant under the adjoint action, i.e.,

( a~1!c1S~a~2!!~21!@c1#@a~2!#5e~a!c1 , ;aPA. ~3.4!

For normal Hopf~super!algebras, the invariants ofA are precisely the central elements. This is n
true, however, for quasi-Hopf~super!algebras. For instance, the canonical elementb is invariant
but not generally central. Nevertheless, there is a close connection between central eleme
invariants. We have

Proposition 1: Suppose c1PA is even and invariant. Set

C15( X̄nc1S~Ȳn!aZ̄n5m~m^ 1!•~1^ c1^ a!~1^ S^ 1!F21. ~3.5!

Then (i) aC15C1a, ;aPA, i.e., C1 is central, and

~ ii ! c15C1b5bC1 ,
~3.6!

~ iii ! C15( S~Xn!aYnc1S~Zn!.

Proof: Applying m•(1^ c1) to Lemma 1~ii ! and keeping in mind of~3.4!, we obtain~i!. We now
prove ~ii !. From ~2.2!,

C1^ 15~m~m^ 1! ^ 1!•~1^ c1^ a ^ 1!~1^ S^ 1^ 1!~F21
^ 1!

5( „XnX̄sX̄r
~1!c1S~X̄r

~2!!S~Ȳs!S~Xm!S~Yn
~1!!aYn

~2!YmZ̄s
~1!Ȳr ^ ZnZmZ̄s

~2!Z̄r…~21!x,

~3.7!
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where

x5@ Z̄s#@Xn#1@Xm#@Yn#1@Zm#@Zn#1~@ Z̄s
~1!#1@Ȳr#!~@Zm#

1@Zn#!1@Ȳr#@ Z̄s
~2!#1@X̄r#~@Xn#1@X̄s#!. ~3.8!

By ~3.4! and ~2.5!,

C1^ 15( ~XnX̄se~X̄r!c1S~Ȳs!S~Xm!e~Yn!aYmZ̄s
~1!Ȳr ^ ZnZmZ̄s

~2!Z̄r!~21!x

5( ~Xne~Yn! ^ Zn!~X̄sc1S~Ȳs!S~Xm!aYmZ̄s
~1!

^ ZmZ̄s
~2!!~e~X̄r!Ȳr ^ Z̄r!~21!@Zm#@Zs

~1!
#

5( ~X̄sc1S~Ȳs!S~Xm!aYmZ̄s
~1!

^ ZmZ̄s
~2!!~21!@Zm#@ Z̄s

~1!
# ~3.9!

by ~2.4! and ~2.10!.
Applying m•(1^ b)(1^ S) gives rise to

C1b5( X̄sc1S~Ȳs!S~Xm!aYmZ̄s
~1!bS~ Z̄s

~2!!S~Zm!~21!@Zm#@ Z̄s#

5( X̄sc1S~Ȳs!S~Xm!aYme~ Z̄s!bS~Zm!

by ~2.6!

5( X̄sc1S~Ȳs!e~ Z̄s!5c1 , ~3.10!

by ~2.8! and ~2.10!, thus proving~ii !. ~iii ! is the direct consequence of~i! and ~ii !.
The above gives a very clear picture of the connection between invariants and centr

ments. In particular, we have
Corollary 1: Suppose cPA is even. Then c is an invariant if and only if there exists a cen

element C such that

c5Cb5bC. ~3.11!

A also admits an antiadjoint action defined by

Ad a•b5( S~a~1!!ba~2!~21!@b#@a~1!#, ;a,bPA. ~3.12!

We have

Ad a•Ad b5Ad~ba!. ~3.13!

We call c2PA a pseudoinvariant if it is invariant under the antiadjoint action, i.e.,

( S~a~1!!c2a~2!~21!@c2#@a~1!#5e~a!c2 , ;aPA. ~3.14!

Proposition 2: Suppose c2PA i.e., even and pseudoinvariant. Set

C25( S~Xn!c2YnbS~Zn!5m~m^ 1!•~1^ c2^ b!~S^ 1^ S!F. ~3.15!
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Then (i) aC25C2a, ;aPA, i.e., C2 is central, and

~ ii ! c25C2a5aC2,

~ iii ! C25( X̄nbS~Ȳn!c2Z̄n . ~3.16!

Proof: Similar to the proof of Proposition 1. Applyingm•(1^ c2)(S^ 1) to Lemma 1~i!, we
obtain ~i!. Applying m•(1^ a) to

C2^ 15~m~m^ 1! ^ 1!•~1^ c2^ b!~S^ 1^ S!~F ^ 1!, ~3.17!

leads to~ii !. Finally, ~iii ! is a direct consequence of~i! and ~ii !.
As an example we construct the so-called quadratic invariants. Supposev5(v i ^ v iPA

^ A is even and satisfies

D~a!v5vD~a!, ;aPA. ~3.18!

Applying m•(1^ b)(1^ S) gives

( a~1!v ibS~v i !S~a~2!!5e~a!( v ibS~v i !, ;aPA, ~3.19!

which implies that

c1[( v ibS~v i ! ~3.20!

is an invariant. Similarly, applyingm•(1^ a)(S^ 1), one can show that

c2[( S~v i !av i ~3.21!

is a pseudoinvariant. It follows from propositions 1 and 2 that

C15( X̄nv ibS~v i !S~Ȳn!aZ̄n5( S~Xn!aYnv ibS~v i !Zn ,

C25( S~Xn!S~v i !av iYnbS~Zn!5( X̄nbS~Ȳn!S~v i !av i Z̄n ~3.22!

are central elements. The invariants~3.22! are usually referred to as quadratic invariants.

IV. TWISTING INVARIANCE OF CENTRAL ELEMENTS C1 AND C2

Lemma 2: Let c1PA be even and invariant, and c2PA be even and pseudoinvariant. For an
hPA^ A, jPA^ A^ A, we have, ;a,bPA,

~ i ! m•~1^ c1!~1^ S!~hD~a!!5e~a!m•~1^ c1!~1^ S!h,

~ i i ! m•~1^ c2!~S^ 1!~D~a!h!5e~a!m•~1^ c2!~SJ1!h,
~4.1!

~ i i i ! m~m^ c1^ c2!~1^ S^ 1!@~1^ D~a!!•j•~D~b! ^ 1!#

5e~a!e~b!m~m^ 1!•~1^ c1^ c2!~1^ S^ 1!j,
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~ iv ! m~m^ c2^ c1!~S^ 1^ S!@~D~a! ^ 1!•j•~1^ D~b!!#

5e~a!e~b!m~m^ 1!•~1^ c2^ c1!~S^ 1^ S!j.

The proof of this lemma is a straightforward computation, which we omit.
Lemma 3:

c1
F5m•~1^ c1!~1^ S!F5( f ic1S~ f i !,

c2
F5m•~1^ c2!~S^ 1!F215( S~ f̄ i !c2 f̄ i , ~4.2!

are invariant and pseudoinvariant, respectively, under the twisted structureDF(a)
5FD(a)F21, ;aPA.

Proof: Write

DF~a!5( a~1!
F

^ a~2!
F 5F( a~1! ^ a~2!F

21. ~4.3!

Then,;aPA,

( S~a~1!
F !c2

Fa~2!
F 5( S~ f ia~1! f̄ j !S~ f̄ k!c2 f̄ kf ia~2! f̄

j~21!@ f i #~@a~1!#1@ f̄ j # !1@a~2!#@ f̄ j #

5( S~ f̄ j !S~a~1!!S~ f̄ kf i !c2 f̄ k f̄ ia~2! f̄
j~21!@ f i #@ f̄ k#1@a#@ f̄ j #

5( S~ f̄ j !S~a~1!!e~F21F !c2a~2! f̄
j~21!@a#@ f̄ j #

by ~3.14!

5e~a!( S~ f̄ j !c2 f̄ j5e~a!c2
F . ~4.4!

Similarly, one can proveSa(1)
F c1

FS(a(2)
F )5e(a)c1

F , ;aPA.
We thus arrive at the following central elements induced by twisting withF:

C1
F5( S~Xn

F!aFYn
Fc1

FS~Zn
F!5m~m^ 1!•~1^ aF ^ c1

F!~S^ 1^ S!FF ,

~4.5!

C2
F5( S~Xn

F!c2
FYn

FbFS~Zn
F!5m~m^ 1!•~1^ c2

F
^ bF!~S^ 1^ S!FF ,

which corresponds to~3.6! and ~3.15!, respectively. HereaF and bF are the twisted canonica
elements given in~2.15!.

Theorem 3: The central elements (4.5) induced by twisting with F coincide precisely with
central elements C1 , C2 defined by (3.6) and (3.15), respectively. In other words, the cen
elements C1 and C2 are invariant under twisting.

To prove this theorem, we first notice
Lemma 4: For any elementshPA^ A andjPA^ A^ A,

~ i ! m•~1^ c1
F!~1^ S!h5m•~1^ c1!~1^ S!~hF !,

~ i i ! m•~1^ c2
F!~S^ 1!h5m•~1^ c2!~S^ 1!~F21h!,
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~4.6!
~ i i i ! m•~m^ 1!•~1^ c1

F
^ c2

F!~1^ S^ 1!j

5m•~m^ 1!•~1^ c1^ c2!~1^ S^ 1!@~1^ F21!•j•~F ^ 1!#,

~ iv ! m•~m^ 1!•~1^ c2
F

^ c1
F!~S^ 1^ S!j

5m•~m^ 1!•~1^ c2^ c1!~S^ 1^ S!@~F21
^ 1!•j•~1^ F !#.

This lemma is proven by direct computation. Now with the help of~2.14!, lemmas 3 and 4 and
using the obvious fact thatb, a are invariant and pseudoinvariant ofA, respectively, one can easil
show that indeedC1

F5C1 andC2
F5C2 .

For the quadratic-type invariants~3.20! and~3.21!, we have the central elements@cf. ~3.22!#,

C15( S~Xn!aYnv ibS~v i !S~Zn!5m~m^ 1!•~S^ a ^ bS!@F~1^ v!#,

~4.7!

C25( S~Xn!S~v i !av iYnbS~Zn!5m~m^ 1!•~S^ a ^ bS!@~v ^ 1!F#.

By ~4.2! and Lemma 4~i!~ii !, one has

c1
F5( f jc1S~ f j !5m•~1^ bS!~Fv!5m•~1^ bFS!vF ,

~4.8!

c2
F5( S~ f̄ j c2 f̄ j5m•~S^ a!~vF21!5m•~S^ aF!vF ,

where

vF5FvF21, ~4.9!

obviously commutes with the action of the twisted coproductDF :DF(a)vF5vFDF(a), ;a
PA. In this notation, we have central elements

C1
F5m~m^ 1!•~1^ aF ^ bF!~S^ 1^ S!@FF~1^ vF!#,

~4.10!
C2

F5m~m^ 1!•~1^ aF ^ bF!~S^ 1^ S!@~vF ^ 1!FF#,

which, as a corollary of Theorem 3, reduce toC1 andC2 defined in~4.7!, respectively, indepen
dent of the twist applied.

In the case thatA is quasitriangular with the universalR-matrix R, where D(a)RTR
5RTRD(a), ;aPA, so we can takev5(RTR)m, mPZ. Then we obtain families of Casimi
invariantsC1

m andC2
m , mPZ, which are invariant under twisting.

V. INVARIANT BILINEAR FORMS AND INVARIANT FORMS

Let V, W be two~graded! A-modules, andl (V,W) the space of vector space maps~i.e., linear
maps! from V to W. We makel (V,W) into a ~graded! A-module with the definition

~a• f !~v !5( a~1! f ~S~a~2!!v !~21!@ f #@a~2!#, ;aPA, vPV, f P l ~V,W!. ~5.1!

We call f invariant if a• f 5e(a) f , ;aPA. Or equivalently,;aPA, vPV,
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( a~1! f ~S~a~2!v !~21!@ f #@a~2!#5e~a! f ~v !. ~5.2!

In the case of normal Hopf~super!algebras, such invariants correspond precisely toA-module
homomorphisms, provided they are even. This is not the case for quasi-Hopf~super!algebras.
Nevertheless, there is a close connection between such invariants andA-module homomorphisms

Proposition 3: Suppose fPl (V,W) is even and invariant. Set

f̃ ~v !5( S~Xn!aYn f ~S~Zn!v !, ;vPV. ~5.3!

Then (i) f̃Pl (V,W) is an A-module homomorphism, and

~ i i ! b f̃ ~v !5 f ~v !, ;vPV,
~5.4!

~ i i i ! f̃ ~v !5( X̄n f ~S~Ȳn!aZ̄nv !, ;vPV.

Proof: Applying m•(1^ S) to Lemma 1~ii ! and using~5.2!, one derives,

f̃ ~S~a!v !5S~a! f̃ ~v !, ;aPA, vPV. ~5.5!

Thus f̃ is anA-module homomorphism. This proves~i!. As for ~ii !, note

f̃ ~v !5m~m^ 1!•~S^ a ^ f S!•F•~1^ 1^ v !. ~5.6!

Then by~2.2!,

1^ f̃ ~v !5( X̄nX̄mXs
~1!Xr ^ S~Yr!S~Xs

~2!!S~Ȳm!S~Ȳn
~1!!aȲn

~2!)Z̄mYsZr
~1!

• f ~S~Zr
~2!!S~Zs!S~ Z̄n!v !~21!y, ~5.7!

where

y5~@Xs#1@Zr#!~@X̄n#1@X̄m#!1@Xs
~2!#@Zr#1@ Z̄n#@Xs#1@X̄m#@Ȳn1@Zr#@Xs#. ~5.8!

By ~2.5! and ~5.2!,

1^ f̃ ~v !5( X̄nX̄mXs
~1!Xr ^ S~Yr!S~Xs

~2!!S~Ȳm!e~Ȳn!aZ̄mYse~Zr! f ~S~Zs!S~ Z̄n!v !~21!y,

5~1^ m!•~1^ S^ 1!( ~X̄nX̄mXs
~1!

^ e~Ȳn!ȲmXs
~2!

^ aZ̄mYs f ~S~Zs!S~ Z̄n!v !!~Xr ^ Yr

^ e~Zr!!~21!@Xs#~@ Z̄n#1@X̄m#!1@ Z̄n#@Xs#1@Ȳm#@Xs
~2!

#

5( X̄nX̄mXs
~1!

^ e~Ȳn!S~Xs
~2!!S~Ȳm!aZ̄mYs f ~S~ Z̄nZs!v !~21!@ Z̄n#@Zs#1@Xs#@X̄m#

by ~2.10!
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5~1^ m!•~1^ 1^ f S!( ~X̄n ^ e~Ȳn! ^ Z̄n!~X̄mXs
~1!

^ S~Xs
~2!!S~Ȳm!aZmYs ^ Zsv !~21!@Xs#@X̄m#

5( X̄mXs
~1!

^ S~Xs
~2!!S~Ȳm!aZmYs f ~S~Zs!v !~21!@Xs#@X̄m# ~5.9!

by ~2.4!.
Applying m•(1^ b) gives

b f̃ ~v !5( X̄mXs
~1!bS~Xs

~2!!S~Ȳm!aZmYs f ~S~Zs!v !~21!@Xs#@X̄m#

5( X̄me~Xs!bS~Ȳm!aZmYs f ~S~Zs!v !~21!@Xs#@X̄m#

by ~2.6!

5( e~Xs!Ys f ~S~Zs!v !5 f ~v !, ~5.10!

by ~2.7! and ~2.10!, which proves~ii !. ~iii ! is a direct consequence of~ii ! and ~i!.
In the special case whereW5C is one-dimensional, we obtain the dual spaceV* 5 l (V,C)

which thus becomes a gradedA-module with the definition,

a• f ~v !5( e~a~1!! f ~S~a~2!!v !~21!@ f #@a~2!#5~21!@ f #@a# f ~S~a!v !, ;aPA, vPV, f PV* .

~5.11!

We note thatf PV* is anA-invariant if and only if

e~a! f ~v !5a• f ~v !5~21!@ f #@a# f ~S~a!v !, ;aPA, ~5.12!

or equivalently, sincee(a)50 if @a#51 ande(S21(a))5e(a),

e~a! f ~v !5~S21
• f !~v !5 f ~av !5, ;aPA. ~5.13!

A bilinear form ~ , ! on V andW is equivalent to an elementjP(V^ W)* defined by

j~v ^ w!5~v,w!, ;vPV, wPW. ~5.14!

We say the form is invariant ifj is invariant. From~5.13! this is equivalent to

e~a!j~v ^ w!5j~D~a!~v ^ w!!5( j~a~1!v ^ a~2!w!~21!@v#@a~2!#, ;aPA. ~5.15!

Thus a bilinear form is invariant iff

( ~a~1!v,a~2!w!~21!@v#@a~2!#5e~a!~v,w!, ;aPA, vPV, wPW. ~5.16!

In particular, a bilinear form~ , ! on A itself is called invariant iff

( ~Ad a~1!•b,Ad a~2!•c!~21!@b#@a~2!#5e~a!~b,c!, ;a,b,cPA. ~5.17!
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Of particular interest are linear forms onA which correspond to elementsj of A* . Such a
linear formj is called invariant if it is an invariant element ofA* , i.e., a•j5e(a)j, ;aPA.
Equivalently,jPA* is called an invariant linear form onA* if

j~Ad a•b!5~S21~a!•j!~b!5e~a!j~b!, ;a,bPA. ~5.18!

A linear form jPA* is called pseudoinvariant if

j~Ad a•b!5e~a!j~b!, ;a,bPA. ~5.19!

Summarizing,jPA* is called a pseudoinvariant linear form onA if

( j~S~a~1!!ba~2!!~21!@b#@a~1!#5e~a!j~b!, ;a,bPA, ~5.20!

and an invariant linear form onA if

( j~a~1!bS~a~2!!!~21!@b#@a~2!#5e~a!j~b!, ;a,bPA. ~5.21!

It is easily seen that given any~graded! A-moduleV, the even invariants ofV* 5 l (V,C) corre-
spond precisely with theA-module homomorphismsf PV* . Thus the even invariant forms onA
correspond toA-module homomorphismsjPA* , regardingA as a module under the adjoin
actions.

VI. CASIMIR INVARIANTS FROM INVARIANT FORMS

We now investigate the construction of central elements utilizing invariant and pseudoin
ant linear forms onA. In the caseA is quasitriangular, we shall see how such central elements
be constructed, corresponding to any finite dimensionalA-module, utilizing the universa
R-matrix.

Proposition 4: Supposeu5Sai ^ bi ^ ciPA^ 3 obeys

~1^ D!D~a!•u5u•~1^ D!D~a!, ;aPA. ~6.1!

If jPA* is an even invariant form, then

C5~1^ j!~1^ m!~1^ 1^ bS!u5( aij~bibS~ci !! ~6.2!

is a central element. Similarly ifū5Sāi ^ b̄i ^ c̄iPA^ 3 satisfies

ū•~D ^ 1!D~a!5~D ^ 1!D~a!• ū, ;aPA, ~6.3!

and j̄PA* is an even pseudoinvariant form then

C̄5~ j̄ ^ 1!~m^ 1!~S^ a ^ 1!ū5( j̄~S~ āi !ab̄i !c̄i ~6.4!

is a central element.
Proof: Applying (1^ m)(1^ 1^ bS) to ~6.1!, one has

l.h.s.5( a~1!ai ^ Ad a~2!•~bibS~ci !!~21!@ai #@a~2!#,
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r.h.s.5( aia~1!
R

^ bia~2!
R bS~a~3!

R !S~ci !~21!@ci #~@a~2!
R

#1@a~3!
R

# !1@a~1!
R

#~@bi #1@ci # !

5( aia~1!e~a~2!! ^ bibS~ci !~21!@a#~@bi #1@ci # !

by ~2.6!

5( aia^ bibS~ci !~21!@a#~@bi #1@ci # !. ~6.5!

by ~2.3!.

Applying (1^ j) gives

l.h.s.5( a~1!ai ^ j~Ad a~2!•~bibS~ci !!!~21!@ai #@a~2!#

5( ~a~1!aij~Ad a~2!•~bibS~ci !!! ^ 1!~21!@ai #@a~2!#

5( a~1!aie~a~2!!j~bibS~ci !! ^ 15aC^ 1,

by ~5.18! and ~2.3!,

r.h.s.5( aia^ j~bibS~ci !!~21!@a#~@bi #1@ci # !

5( aiaj~bibS~ci !! ^ 15Ca^ 1, ~6.6!

where in the second last equality we have used the fact thatj is even, i.e.,j(a)50 if @a#51. This
proves the first part of the proposition. The second part can be proved in a similar way.

It is easily shown that

u5F21~v ^ 1!F, ū5F~1^ v!F21 ~6.7!

satisfy ~6.1! and ~6.3!, respectively. Thus as a corollary of Proposition 4 we have the ce
elements,

C5( j~Ȳnv iYmbS~ Z̄nZm!!X̄nv iXm~21!@Xm#@Ȳn#1@Ym#@ Z̄n#1@v i #~@Xm#1@Ȳn#!

5~1^ j!~1^ m!~1^ 1^ bS!@F21~v ^ 1!F#,
~6.8!

C̄5( j̄~S~XnX̄m!aYnv i Ȳm!Znv i Z̄m~21!@Zn#@ Z̄m#1@Yn#@X̄m#1@v i #~@Zn#1@Ȳm#!

5~ j̄ ^ 1!~m^ 1!~S^ a ^ 1!@F~1^ v!F21#.

A quasi-Hopf ~super!algebra is said to be of trace type if there exists an invertible e
elementuPA such that

S2~a!5uau21, ;aPA. ~6.9!

In the caseA is quasitriangular with theR-matrix as in~2.23! we have
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Proposition 5: The operator defined by

u5( S~YnbS~Zn!!S~ei !aeiXn~21!@ei #1@Xn# ~6.10!

satisfies (6.9). Moreover the inverse is given by

u215S2~u21!5( S21~Xn!S21~ae2 i !ēiYnbS~Zn!~21!@ ēi #. ~6.11!

Proof: The nonsuper case was proven in Ref. 3. We here prove the super case. First o

S2~a!u5( S2~a~3!
L !S~YnbS~Zn!!S~ei !S~a~1!

L !aa~2!
L eiXn

3~21!~@a~1!
L

#1@a~2!
L

# !~@ei #1@a~3!
L

#1@Xn#!1@ei #1@Xn#

by ~2.5! and ~2.3!

5( S2~a~3!
L !S~YnbS~Zn!!m•@~S^ a!~a~1!

L
^ a~2!

L !~ei
^ ei !#

3Xn~21!~@a~1!
L

#1@a~2!
L

# !~@a~3!
L

#1@Xn#!1@ei #1@Xn#

5( S2~a~3!
L !S~YnbS~Zn!!S~a~2!

L !S~ei !aeia~1!
L

3Xn~21!~@a~1!
L

#1@a~2!
L

# !~@a~3!
L

#1@Xn#!1@ei #1@Xn#1@a~1!
L

#@a~2!
L

#

by ~2.16!

5( S~a~2!
L YnbS~Zn!S~a~3!

L !!S~ei !aeia~1!
L Xn

3~21!@a~1!
L

#~@a~2!
L

#1@a~3!
L

# !1~@a~1!
L

#1@a~3!
L

# !@Xn#1@Xn#1@ei #. ~6.12!

Applying m•T•@SS(ei)aei(21)@ei # ^ S# to Lemma 1~i!, one has

ua5( S~a~2!
L YnbS~Zn!S~a~3!

L !!S~ei !aeia~1!
L

3Xn~21!@a~1!
L

#~@a~2!
L

#1@a~3!
L

# !1~@a~1!
L

#1@a~3!
L

# !@Xn#1@Xn#1@ei #

5S2~a!u ~6.13!

by ~6.12!.
It remains to show thatu is invertible. First, we have
Lemma 5:

S~a!u5( S~ei !aei~21!@ei #5m•~S^ a!RT. ~6.14!

Proof: Note
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u^ 15Fm•S S^ ( S~ei !aei~21!@ei #D ~m^ 1! ^ 1G
•~1^ bS^ 1^ 1!~1^ T^ 1!~T^ 1^ 1!~F ^ 1!

5( S~Xn
~2!YmX̄sȲr

~1!bS~Ȳr
~2!!S~YnZm

~1!Ȳs!!S~ei !aeiXn
~1!XmX̄r ^ ZnZm

~2!Z̄sZ̄r~21!z

~6.15!

by ~2.2!, where,

z5@ei #1@Xn
~1!#@Xn

~2!#1~@Xm#1@Xn
~1!# !~@Ym#1@Yn#1@ Z̄s#1@Ȳr#1@Zm

~1!# !1@X̄r#~@Zm#1@Zn#

1@ Z̄s#1@Ȳr#1@Zm
~1!# !1@X̄s#~@Zm#1@Xn#!1@Ȳs#~@Zn#1@Zm

~2!# !1@Zm#@Xn#1@Zn#@Zm
~1!#

1@Ȳr#~@Zm#1@Xn#1@X̄s#!. ~6.16!

By ~2.6!, one has

u^ 15( @S~Xn
~2!YmX̄sbS~YnZm

~1!Ȳs!!S~ei !aeiXn
~1!Xm ^ ZnZm

~2!Z̄s#~X̄re~Ȳr! ^ Z̄r!~21! z̄,

~6.17!

where

z̄5@ei #1@Xn
~1!#@Xn

~2!#1~@Xm#1@Xn
~1!# !~@Ym#1@Yn#1@ Z̄s#1@Zm

~1!# !

1@X̄s#~@Zm#1@Xn#!1@Ȳs#~@Zn#1Zm
~2!#)1@Zm#@Xn#1@Zn#@Zm

~1!#. ~6.18!

By ~2.4!, one gets

u^ 15( S~Xn
~2!YmX̄sbS~YnZm

~1!Ȳs!!S~ei !aeiXn
~1!Xm ^ ZnZm

~2!Z̄s~21! z̄

5( S~YmX̄sbS~YnZm
~1!Ȳs!!S~ei !S~Xn

~1!!aXn
~2!eiXm ^ ZnZm

~2!Z̄s

3~21! z̄1@Xn
~2!

#~@Ym#1@Yn#1@ Z̄s#1@Zm
~1!

# !1@ei #1@ei #@Xn#

by ~2.16!

5( ~e~Xn!S2~Yn! ^ Xn!~S~YmX̄sbS~Zm
~1!Ȳs!!S~ei !aeiXm ^ Zm

~2!Z̄s!

3~21!@ei #1@Xm#~@Ym#1@ Z̄s#1@Zm
~1!

# !1@X̄s#@Zm#1@Ȳs#@Zm
~2!

#

by ~2.5!

5( S~YmX̄sbS~Ȳs!S~Zm
~1!!!S~ei !aeiXm ^ Zm

~2!Z̄s

3~21!@ei #1@Xm#~@Ym#1@ Z̄s#1@Zm
~1!

# !1@X̄s#@Zm#1@Ȳs#@Zm# ~6.19!

by ~2.10!.
Applying m•(1^ S(a))•T•(1^ S) gives
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~a!u5( S~ Z̄s!S~S~Zm
~1!!aZm

~2!!S~YmX̄sbS~Ȳs!!S~ei !aeiXm

3~21!@Zm#1@ Z̄s#1@ei #1@Xm#~@Ym#1@ Z̄s#!

5( S~ Z̄s!e~Zm!S~a!S~YmX̄sbS~Ȳs!!S~ei !aeiXm~21!@ Z̄s#1@ei #1@Xm#~@Ym#1@ Z̄s#!

by ~2.5!

5( S~ Z̄s!S~a!S~X̄sbS~Ȳs!!~21!@ Z̄s#m•T•S ( S~ei !aei~21!@ei # ^ SD ~Xm ^ Yme~Zm!!

5( S~ Z̄s!S~a!S~X̄sbS~Ȳs!!S~ei !aei~21!@ei #1@ Z̄s#

by ~2.10!

5( S~X̄sbS~Ȳs!aZ̄s!S~ei !aei~21!@ei #5( S~ei !aei~21!@ei # ~6.20!

by ~2.7!,
thus proving lemma 5.

Lemma 6:

u( S21~ae2 i !ēi~21!@ei #5a. ~6.21!

This lemma is easily proved with the help of~6.13! and Lemma 5.
Now we are in a position to prove Proposition 5,

15( S~Xn!aYnbS~Zn!

by ~2.8!

5( S~Xn!uS21~ae2 i !ēiYnbS~Zn!~21!@ ēi #

by Lemma 6

5u( S21~Xn!S21~ae2 i !ēiYnbS~Zn!~21!@ ēi #

by ~6.13!

5S2S ( S21~Xn!S21~ae2 i !ēiYnbS~Zn!~21!@ ēi #Du ~6.22!

by ~6.13!.
It follows that u is invertible, withu21 given by~6.11!. This completes our proof for Propo

sition 5.
Corollary 2: If A is a quasitringular quasi-Hopf (super) algebra, then A is of trace-type

particular S2(u)5u, and uS(u)5S(u)u is a central element.
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Below we assume thatA is a quasi-Hopf~super!algebra of trace type. LetV be finite-
dimensional~graded! A-module. Then,

Proposition 6:jPA* defined by

j~a!5StrV~uS21~a!a!, ;aPA ~6.23!

determines an invariant linear form, andj̄PA* defined by

j̄~a!5StrV~u21S~b!a!, ;aPA ~6.24!

determines a pseudoinvariant linear form.
Proof: By means of~6.9! and the~super!trace property,

StrV~ab!5~21!@a#@b#StrV~ba!, ;a,bPA ~6.25!

one has,;a,bPA,

j~Ad a•b!5( StrV~uS21~a!a~1!bS~a~2!!!~21!@b#@a~2!#

5( StrV~S~a~2!uS21~a!a~1!b!~21!@a~1!#@a~2!#

by ~6.25!

5( StrV~uS21~a~2!S
21~a!a~1!b!~21!@a~1!#@a~2!#

by ~6.9!

5( StrV~uS21~S~a~1!!aa~2!!b!

5e~a!•StrV~uS21~a!b!

by ~2.5!

5e~a!j~b!. ~6.26!

Thus we have proved the first part of the proposition. The second part of the proposition is p
in a similar fashion.

It immediately follows from Propositions 4 and 6 that one has
Proposition 7: Let p be the representation afforded by the finite-dimensional (grad

A-module V. Supposeu5Sai ^ Bi ^ ciPA^ EndV^ A obeys

~1^ p ^ 1!~1^ D!D~a!•u5u•~1^ p ^ 1!~1^ D!D~a!, ;aPA, ~6.27!

then

C5( StrV~uS21~a!BibS~ci !!ai ~6.28!

is a central element. Similarly if ū5Sāi ^ B̄i ^ c̄iPA^ EndV^ A satisfies

ū•~1^ p ^ 1!~D ^ 1!D~a!5~1^ p ^ 1!~D ^ 1!D~a!• ū, ;aPA. ~6.29!

Then,
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C̄5( StrV~u21S~b!S~ āi !aB̄i !c̄i ~6.30!

is a central element.
Corollary 3: Supposev5Sv i ^ V iPA^ EndV satisfies

~1^ p!D~a!•v5v•~1^ p!D~a!, ;aPA. ~6.31!

Then the first equation of (6.8) implies that

C5( StrV~uS21~a!ȲnV iYmbS~ Z̄nZm!!X̄nv iXm~21!@Xm#@X̄n#1@Ym#@Ȳn#1@v i #~@Xm#1Ȳn#)

~6.32!

is a central element. Similarly if v̄5SV̄ i ^ v̄ iPEndV^ A satisfies

~p ^ 1!D~a!•v̄5v̄•~p ^ 1!D~a!, ;aPA. ~6.33!

Then the second equation of (6.8) means that

C̄5( StrV~u21S~b!S~XnX̄m!aYnV̄ i Ȳm!Znv̄ i Z̄m~21!@Zn#@ Z̄m#1@Yn#@X̄m#1@v i #~@Zn#1@Ȳm#!

~6.34!

is a central element.
Corollary 4: In the case that A is quasitriangular, one takesv5(RTR)m,mPZ. Then we

obtain the following families of Casimir invariants associated withRTR and its powers:

Cm5~1^ StrV!~1^ m!~1^ uS21~a! ^ bS!•F21~~RTR!m
^ 1!F,

~6.35!
C̄m5~StrV^ 1!~m^ 1!~u21S~b!S^ a1!•F~1^ ~RTR!m!F21.

Remark:The above invariants are natural generalizations of those obtained in Refs. 12 a
to which they reduce in the case of normal Hopf~super!algebras~for which F51^ 1^ 1!.

VII. TWISTING INVARIANCE OF CENTRAL ELEMENTS C AND C̄

In this section we show that the trace-type central elementsC and C̄ are invariant under
twisting. Associated withF, we have the twisted coassociatorFF and in the quasitriangular case
the twistedR-matrix RF . We write,

FF5( Xn
F

^ Yn
F

^ Zn
F ,

FF
215( X̄n

F
^ Ȳn

F
^ Z̄n

F ,

RF5( et
F

^ eF
t . ~7.1!

Lemma 7:

b5( f̄ ibFS~ f̄ i !, a5( S~ f i !aF f i . ~7.2!

This lemma is proven by direct computation by means of~2.15!.
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Associated with a twistF on a quasitriangular quasi-Hopf~super!algebra, we have the
u-operator in terms of the twisted structure, denoteduF ,

uF5( S~Yn
FbFS~Zn

F!!S~eF
t !aFet

FXn
F~21!@et

F
#1@Xn

F
#. ~7.3!

Theorem 4: The u-operator, given explicitly in Proposition 5, is invariant under twisting.
Proof: We computeuF . By ~2.14!, one has

uF5( S~ f i f j
~2!Yn f̄ ~1!

k f̄ lbFS~ f̄ l !S~ f̄ ~2!
k S~ f jZn!!S~eF

t !aFet
F f i f j

~1!Xn f̄ k~21!@et
F

#1r , ~7.4!

where

r 5@ f i #1~@ f j
~1!#1Xn#1@ f̄ k#)~@ f i #1@ f j

~2!#1@ f j #1@ f̄ k#1@Xn#!

1@ f j #~@ f̄ k#1@Zn#!1@ f k#~@ f j #1@Zn#!1@ f j
~2!#~@ f̄ k#1@Xn#!1@ f̄ k#@Xn#. ~7.5!

By Lemma 7,

uF5( SS f i f j
~2!Yn f̄ ~1!

k bS~ f̄ ~2!
k S~ f jZn!!S~eF

t !aFet
F f i f j

~1!Xn f̄ k~21!@et
F

#1r ,

5( S~ f i f j
~2!Yne~ f̄ k!bS~ f jZn!!S~eF

t !aFet
F f i f j

~1!Xn f̄ k

3~21!@et
F

#1@ f i #1@Xn#1@ f j #@Yn#1@Xn#@ f i #1@ f j
~1!

#~@ f j
~2!

#1@ f i #1@ f j #1@Xn#!

by ~2.6!

5( S~ f j
~2!YnbS~ f jZn!!S~eF

t f i !aFet
F f i f j

~1!Xn

3~21!@et
F

#1@ f i #1@Xn#1@ f i #@et
F

#1@ f j #@Yn#1@ f j
~1!

#~@ f j
~2!

#1@ f j #1@Xn#!

by ~2.12!

5( S~ f j
~2!YnbS~ f jZn!!S~et!S~ f i !aF f iet f j

~1!Xn

3~21!@et#1@Xn#1@ f j #@Yn#1@ f j
~1!

#~@ f j
~2!

#1@ f j #1@Xn#!

by ~2.16!

5( S~ f j
~2!YnbS~ f jZn!!S~et!aet f j

~1!Xn

3~21!@et#1@Xn#1@ f j #@Yn#1@ f j
~1!

#~@ f j
~2!

#1@ f j #1@Xn#!

by Lemma 7
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5( S~YnbS~ f jZn!!S~et f j
~2!!aet f j

~1!Xn

3~21!@et#1@Xn#1@ f j
~2!

#@et#1@ f j
~1!

#@ f j
~2!

#1@ f j #1@ f j #@Zn#

5( S~YnbS~ f jZn!!S~et!S~ f j
~1!!a f j

~2!etXn~21!@et#1@Xn#1@ f j #@et#1@ f j #1@ f j #@Zn#

by ~2.16!

5( S~YnbS~ f jZn!!S~et!aete~ f j !Xn~21!@et#1@Xn#

by ~2.5!

5( S~YnbS~Zn!!S~et!aetXn~21!@et#1@Xn#

by ~2.12!

5u. ~7.6!

Thus we end up with the sameu-operator, independently of the twist applied.
Corollary 5:

S~u!S~b!5( eibS~ei !5m•~b ^ S!R. ~7.7!

Proof: We apply Theorem 4 and Lemma 5 to the special case whereF is the Drinfeld twist1

FD . In Ref. 14, we proved

S~b!5aFD
, ~S^ S!R5RFD

. ~7.8!

Then from Lemma 5 and Theorem 4,

S~aFD
!u5m•~S^ aFD

!RFD

T , ~7.9!

which gives rise to, on using~7.8!,

S2~b!u5( S2~ei !S~b!S~ei !~21!@ei #5S( eibS~ei !. ~7.10!

Namely,

( eibS~ei !5S21~u!S~b!5S~u!S~b!, ~7.11!

where we have usedS2(u)5u•u•u215u.
The following result follows as a special case of Proposition 6 applied to the twisted q

Hopf ~super!algebra structure.
Lemma 8:jFPA* defined by

jF~a!5StrV~uS21~aF!a!, ;aPA ~7.12!

determines a linear form invariant under the twisted quasi-Hopf (super) algebra structure. Simi-

larly j̄PA* defined by
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j̄F~a!5StrV~u21S~bF!a!, ;aPA ~7.13!

determines a pseudoinvariant linear form under the twisted structure.
Following Proposition 4, ifuPA^ 3 satisfies~6.1! and ūPA^ 3 satisfies~6.3!, then we have

trace type invariants

C5~1^ Str!~1^ m!~1^ uS21~a! ^ bS!u,

C̄5~Str^ 1!~m^ 1!~u21S~b!S^ a ^ 1!ū. ~7.14!

Lemma 9: SupposeuPA^ 3 satisfies (6.1). Then,

uF[~1^ F !~1^ D!F•u•~1^ D!F21~1^ F21! ~7.15!

also satisfies (6.1) for the twisted structure; viz.,

~1^ DF!DF~a!•uF5uF•~1^ DF!DF~a!, ;aPA. ~7.16!

Similarly if ūPA^ 3 satisfies (6.3). Then,

ūF[~F ^ 1!~D ^ 1!F• ū•~D ^ 1!F21~F21
^ 1! ~7.17!

also satisfies (6.3) for the twisted structure; viz.,

~DF ^ 1!DF~a!• ūF5 ūF•~DF ^ 1!DF~a!, ;aPA. ~7.18!

Proof: Applying (1^ F)(1^ D)F to the left and (1̂ D)F21(1^ F21) to the right of ~6.1!
gives~7.16!. Similarly, applying (F ^ 1)(D ^ 1)F to the left and (D ^ 1)F21(F21

^ 1) to the right
of ~6.3!, one gets~7.18!.

We thus arrive at the following central elements obtained by twisting those of~7.14! with F:

CF5~1^ Str!~1^ m!~1^ uS21~aF! ^ bFS!uF ,

C̄F5~Str^ 1!~m^ 1!~u21S~bF!S^ aF ^ 1!ūF . ~7.19!

We shall show that these invariants coincide precisely with those of~7.14!. Namely,
Theorem 5: The trace type central elements (7.14) are invariant under twisting.
To prove this theorem, we first state
Lemma 10:;aPA,jPA^ 3, we have

~ i ! ~1^ StrV!~1^ m!~1^ uS21~a! ^ bS!•j~1^ D~a!!

5~1^ StrV!~1^ m!~1^ uS21~a! ^ bS!•~1^ D~a!!j

5e~a!~1^ StrV!~1^ m!~1^ uS21~a! ^ bS!•j,

~ i i ! ~StrV^ 1!~m^ 1!u21S~b!S^ a ^ 1)•~D~a! ^ 1!j

5~StrV^ 1!~m^ 1!~u21S~b!S^ a ^ 1!•j~D~a! ^ 1!

5e~a!~StrV^ 1!~m^ 1!~u21S~b!S^ a ^ 1!•j,

~ i i i ! ~1^ StrV!~1^ m!~1^ uS21~aF! ^ bFS!•j

5~1^ StrV!~1^ m!~1^ uS21~a! ^ bS!@~1^ F21!•j•~1^ F !#,
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~ iv ! ~StrV^ 1!~m^ 1!~u21S~bF!S^ aF ^ 1!•j~StrV^ 1!

3~m^ 1!~u21S~b!S^ a ^ 1!@~F21
^ 1!•j•~F ^ 1!#. ~7.20!

Proof: This lemma is proven by direct computations using~6.25!, ~6.9!, ~2.5!, and~2.6!. For
demonstration, we show the details for proving some of the relations. Writej5Sxi ^ yi ^ zi

PA^ 3. Then,

~1^ StrV!~1^ m!~1^ uS21~a! ^ bS!•~1^ D~a!!j

5( ~1^ StrV!~xi ^ uS21~a!a~1!yibS~zi !S~a~2!!!~21!@xi #~@a#1@a~2!# !

5( ~1^ StrV!~xi ^ S~a~2!!uS21~a!a~1!yibS~zi !!)~21!@xi #@a#1@a~1!#@a~2!#

by ~6.25!

5( ~1^ StrV!~xi ^ uS21~S~a~1!aa~2!!yibS~zi !!!~21!@zi #@a#

by ~6.9!

5e~a!~1^ StrV!~1^ m!~1^ uS21~a! ^ bS!•j ~7.21!

by ~2.5!.
Other relations in~i! and ~ii ! are proven similarly. We now prove~iii !,

~1^ StrV!~1^ m!~1^ uS21~aF! ^ bFS!•j

5( ~1^ StrV!~xi ^ uS21~ f̄ j !S21~a! f̄ j yi f kbS~zi f
k!!~21!@ f̄ j #1@zi #@ f k#

by ~2.15!

5( ~1^ StrV!~xi ^ S~ f̄ j !uS21~a! f̄ j yi f kbS~zi f
k!!~21!@ f̄ j #1@zi #@ f k#

by ~6.9!

5( ~1^ StrV!~xi ^ uS21~a! f̄ j yi f kbS~ f̄ j zi f
k!!~21!@ f̄ j #~@yi #1@ f k# !1@zi #@ f k#

by ~6.25!

5~1^ StrV!~1^ m!~1^ uS21~a! ^ bS!@1^ F21!•j•~1^ F !]. ~7.22!

~iv! Can be proved in a similar fashion.
We are now in a position to prove Theorem 5. From~7.19!, one has, by Lemma 10~iii ! and

~7.15!,

CF5~1^ Str!~1^ m!~1^ uS21~a! ^ bS!@~1^ D!F•u•~1^ D!F21#

5~1^ Str!~1^ m!~1^ uS21~a! ^ bS!@~1^ e!F•u•~1^ e!F21#

by Lemma 10~i!

5~1^ Str!~1^ m!~1^ uS21~a! ^ bS!u
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by ~2.12!

5C. ~7.23!

Similarly, one can showC̄F5C̄. This completes the proof of Theorem 5.
In the quasitriangular case it is worth noting that whenu, ū have the special form of~6.7! with

v5(RTR)m,PmPZ, then their twisted analogues are given by

uF5FF
21~vF ^ 1!FF , ūF5FF~1^ vF!FF

21, vF5~RF
TRF!m, ~7.24!

which agree precisely with the prescription of Lemma 9. It follows, as a special case of The
5, that the central elements of~6.35! are invariant under twisting.
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A second-order differential~q-difference! eigenvalue equation is contructed whose
solutions are generating functions of the dual~q-!Hahn polynomials. The fact is
noticed that these generating functions are reduced to the~little q-!Jacobi polyno-
mials, and implications of this for quasiexactly solvable problems are studied. A
connection with the Azbel–Hofstadter problem is indicated. ©2000 American
Institute of Physics.@S0022-2488~00!01601-7#

I. INTRODUCTION

In the present paper we shall consider some second-order differential andq-difference eigen-
value equations of the form,

a~z! f 9~z!1b~z! f 8~z!1c~z! f ~z!5l f ~z! ~1!

and

a~z! f ~qsz!1b~z! f ~qs11z!1g~z! f ~qs12z!5l f ~z!, ~2!

respectively, where the functionsa(z), b(z), c(z) are polynomials inz, while a(z), b(z), g(z),
in z andz21. We shall be looking for polynomial solutionsf (z). Note that using a transformatio
of the type c(y)5g(y) f (z(y)) we can always reduce~1! to the Schro¨dinger form
2(d2/dy2)c(y)1V(y)c(y)5lc(y).

After subjecting the coefficients of~1! and~2! to certain general conditions, we shall see th
the polynomial solutions to Eqs.~1! and ~2! are given by generating functions of the dual Ha
and dualq-Hahn polynomials, respectively. These solutions are explicit in the sense that a
eigenvaluesl and corresponding eigenfunctionsf (z) in the space of polynomials of degree
mostN are known explicitly.

Let us first consider Eq.~1!. It is known1 ~see also Ref. 2 for a recent review of the subje!
that the spectral problem for the operatorD5a(z)(d2/dz2)1b(z)(d/dz)1c(z) in the spaceHN

spanned by the vectors 1,z,z2,...,zN is closely related to the representation theory of the alge
sl2 . HN is a representation space of this algebra, and the generators ofsl2 have in this represen
tation the following form:

J15z2
d

dz
2Nz; J05z

d

dz
2N/2; J25

d

dz
. ~3!

The necessary and sufficient condition3 for the operatorD to leaveHN invariant is thatD be
expressed in the form,

D5c11J1J11c10J1J01c12J1J21c02J0J21c22J2J21c1J11c0J01c2J21d, ~4!

a!Electronic mail: ivk@mpipks-dresden.mpg.de
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whereci , j ,ci ,d are constant parameters. Henceforth, we shall assume that~4! holds. According to
the classification of Turbiner Eq.~1! is called in this case quasiexactly-solvable.~For the expres-
sions of all possible potentials in the corresponding Schro¨dinger equations see Ref. 4.!

If the parametersc115c105c150 then D is, obviously, upper diagonal in the basis
monomials$zk%k50

N , and hence, it preserves the flagH0,H1,...,HN . The coefficienta(z) in
this case is a polynomial of no more than the second degree,b(z), the first degree, andc is
independent ofz. Hence, the operatorD preservesHN for any N. Corresponding Eq.~1! is then
called exactly-solvable.~An important algebraic approach to the exactly solvable problem
proposed in Ref. 5.! It is easy to verify that in this case, changing the six remaining parame
c12 ,c02 ,c22 ,c0 ,c2 ,d, we can obtain for anyN an arbitrary operatorD with the just mentioned
restriction on the degrees ofa(z), b(z), and c(z). The full classification of the polynomia
solutions to~1! for such an operatorD is available in the literature~e.g., Ref. 6!. All these
solutions can be written in an explicit form. In particular, the classical orthogonal polynom
~Jacobi, Laguerre, and Hermite! satisfy exactly solvable equations of the type~1!. In the present
paper, however, we shall be interested in a different type of solutions.

Take once again the general case~4! and let nowc115c2250. Then it is seen from~3! and
~4! that the operatorD is represented in the basis of monomials$zk%k50

N by a tridiagonal matrix.
Equation~1! takes on the following form:

S a02l b0 0

c1 a12l b1

c2 a22l b2

� � �

0 cN aN2l

D S p0

p1

A
A
pN

D 50, ~5!

where(k50
N zkpk5 f (z). ~The quantity(k50

N akz
kpk , whereak are some parameters, is called

generating function of the sequence$pk%k50
N .)

We see that the quantitiespk satisfy the three-term recurrence relation

ckpk211~ak2l!pk1bkpk1150, p2150. ~6!

Thus ~e.g., Ref. 6!, pk(l) form a finite system of orthogonal polynomials.~See Refs. 7–10 for
studies related to this aspect of quasiexact solvability.!

The matrix elementsak ,bk ,ck are polynomials of degree 2 in the indexk. The coefficients of
these polynomials are expressed in terms of the 7 free parametersc10 ,c12 ,c02 ,c1 ,c0 ,c2 ,d. It
is easy to verify thatak ,bk ,ck can be obtained in the following way. AssumeA(k),B(k),C(k) to
be arbitrary polynomials ink of degree 2 and impose the boundary conditionsC(N11)
5B(21)50. Thenak5A(k),bk5B(k),ck5C(k),k50,...,N.

Now consider a particular case of~5!. Namely, impose the Askey–Wilson condition for th
transposed matrixak1bk211ck1150 and the restrictionc105c02 . Then the polynomials
$ p̂k(l/c10)%k50

N associated with the transposed matrix, are the dual Hahn hypergeometr
thogonal polynomials. One of their generating functions provides an explicit solution to~1!. In
Sec. II we show that the corresponding Eq.~1! is reduced to the exactly solvable~see above!
equation for the Jacobi polynomials by means of the transformationc(y)
5(y11)Nf ((y21)/(y11)). ~Note that this is a particular case of the transformation that c
nects various forms of a quasiexactly solvable equation.10 Such transformations comprise th
irreducible representation of the groupGL(2) in the space of polynomials.! Equation~1! in this
case has an infinite number of formal explicit solutionsf (z), but onlyN11 of them are guaran
teed to be polynomials.

The above considerations can be generalized for Eq.~2!. Equation~2! is related to quantum
deformations of thesl2 algebra in a similar way as Eq.~1! is related tosl2 .2,11 In addition to the
results for differential andq-difference equations reviewed in Ref. 2, it is also possible12 to obtain
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similar results for difference equations of the form( iAi(x) f (x1d i)5l f (x). For connections
between~quantum! groups and orthogonal polynomials, see Refs. 13, 14.

Let a(z),b(z),g(z) in ~2! be the first order polynomials inz andz21. Then, obviously, in the
basis of monomials$zk%k50

N , Eq. ~2! has the form~5! whereak ,bk ,ck are expressed in terms o
the coefficients of the polynomialsa(z),b(z),g(z). For the space spanned by$zk%k50

N to be an
eigenspace, these coefficients should be such thatb215cN1150. This condition implies that only
7 out of total 9 coefficients are independent. We shall fix 3 more by requiring the Askey–W
condition for the transposed matrix to hold,ak1bk211ck1150. Fixing then one of the remaining
4 free parameters in an appropriate way and puttings50, we obtain the dualq-Hahn basic
hypergeometric polynomials$ p̂k(l/e)%k50

N as a system generated by the recurrence rela
bk21p̂k211(ak2l/e) p̂k1ck11p̂k1150.

In Sec. III we shall consider equations of the type~2! whose solutions will be given by the
generating functions of the dualq-Hahn polynomials. These equations are related to
q-difference equation for the littleq-Jacobi polynomials.

It is interesting to note that the zeros of polynomial solutions of Eqs.~1! and~2! are connected
with the eigenvaluesl by a set of Bethe-ansatz type algebraic equations.11,15

Thus, the message of the present paper can be summarized as follows. The dual Hah~dual
q-Hahn! polynomials are the most general system in the Askey-scheme of the known hype
metric ~basic hypergeometric! orthogonal polynomials16 whose generating function provides a
explicit polynomial solution to the eigenvalue Eq.~1! ~Eq. ~2!!. This generating function of the
dual Hahn~dual q-Hahn! polynomials is reduced to the Jacobi~little q-Jacobi! polynomials.~The
corresponding problems are, thus, exactly solvable.!

II. DUAL HAHN POLYNOMIALS AND A DIFFERENTIAL EQUATION

Unlike in the Introduction, we shall now begin with the dual Hahn polynomials rather
with the differential equation.

The dual Hahn polynomials are defined by the formula~e.g., Ref. 16!,

pn~l~x!!5 (
k50

n
~2n!k~2x!k~x1g1d11!k

~g11!k~2N!kk!
, n50,1...,N, ~7!

whereg andd are fixed parameters and the ‘‘shifted’’ factorial is defined as (a)051,(a)k5a(a
11)¯(a1k21),k51,2,... . The polynomials~7! satisfy the recurrence relation~which we will
formally consider for an arbitrary integern!,

l~x!pn5Anpn112~An1Cn!pn1Cnpn21 ,

An5~n2N!~n1g11!, Cn5n~n2d2N21!, ~8!

l~x!5x~x1g1d11!.

The above three-term recurrence relation can be viewed as the eigenvalue equation
infinite tridiagonal matrixM, pn’s being components of an eigenvector. For what follows,
would need to demand that the finite dimensional spaceLN corresponding to the indicesn
50,1,...,N be invariant under the action of the matrixM. This would be the case if the matri
elementsM 2105MN11N50. Since for our matrixM0215C050 andMNN115AN50, the trans-
posed matrixMT will have the desired property of preservingLN . The polynomials associate
with MT satisfy the recurrence

l~x!p̃n5Cn11p̃n112~An1Cn! p̃n1An21p̃n21 ; ~9!

and it is easy to show by induction that
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p̃n5
A0A1¯An21

C1C2¯Cn
pn5

~2N!n~g11!n

~2d2N!nn!
pn .

Now multiply both sides of~9! by zn and perform summation overn from n50 to N. We obtain

l f ~z!5z~z21!2f 9~z!1$~g2N12!z22~g2d22N12!z

2~d1N!% f 8~z!2N~g11!~z21! f ~z!, ~10!

where f (z)5(n50
N znp̃n . To get thehomogeniousEq. ~10!, it was necessary to putp̃2150 and

p̃N1150 ~we can do this because we are looking for solutions inLN).
We can represent~10! in the form l f (z)5D f (z) as the eigenvalue equation for a secon

order differential operatorD in the spaceHN spanned by monomials$zk%k50
N . One can already

notice that~10! can be reduced to a hypergeometric equation. However, we shall follow an
approach which can be easier generalized toq-difference equations.

SinceMT in LN is just the matrix representation of the operatorD in the basis$zk%k50
N , the

eigenvalues ofD in HN andMT in LN are the same. To find them, first replace the parameterN in
~7! and ~8! by N1e,eÞ0. Then~7! will be valid not only for n50,1,...,N, but also forn5N
11. We find the eigenvalues from the equation,

05det~MT2lI !5det~M2lI !5 lim
e→0

A0A1¯ANpN11~l!. ~11!

Here ~only! one of the factorsAi goes to zero ase→0: AN52e(N1g11). Furthermore, only
the addend with the indexk5N11 in the expression,

pN11~l~x!!5 (
k50

N11
~2N21!k~2x!k~x1g1d11!k

~g11!k~2N2e!kk!

is not bounded ase→0 ~growing as 1/e). Hence ~11! is equivalent to (2x)N11(x1g1d
11)N1150. From here, using the definition ofl in ~8!, we obtain the eigenvalues,

l~m!5m~m1g1d11!, m50,1,...,N. ~12!

The corresponding eigenvectors ofD are

f m~z!5 (
n50

N

zn
~2N!n~g11!n

~2d2N!nn!
pn~l~m!!.

Notice that this generating function is one of those admitting representation in terms o
hypergeometric series,16

f m~z!5~12z!m (
k50

N2m
~m2N!k~m1g11!k

~2d2N!kk!
zk. ~13!

Using one of the representations of the Jacobi polynomials~see, e.g., Ref. 17! we can rewrite~13!
in the form,

f m~z!5
~N2m!!

~2N2d!N2m
~12z!NPN2m

~2d2N21,2g2N21!S 11z

12zD , ~14!

wherePk
(a,b)(x) is the usual notation for the Jacobi polynomial. Thus, this formula expresse

generating function of the dual Hahn polynomials in terms of the Jacobi polynomials. It is ea
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transform~10! into the hypergeometric equation for the Jacobi polynomials. Since the equatio
the Jacobi polynomials is valid for an arbitrary large indexk, formula ~14! provides an infinite
number ofnonpolynomialsolutions to~10! for m521,22,... .

The operatorD is expressed in the following form in terms of the generators~4!:

D5J1J022J1J21J0J21~g111N/2!J1

1~d2g22!J02~N/21d!J21N~d1g!/2. ~15!

After the transformation,

c~y!5 f S coth2
y

2 D HAsinhy sinhg
y

2
coshd

y

2
cothN

y

2 J 21

, ~16!

Eq. ~10! is reduced to the Schro¨dinger-type equation,

2
d2

dy2 c~y!1V~y!c~y!5ec~y!,

V~y!5
1

2 sinh2 y H ~g2d!~2N1g1d12!coshy1~N1g!21~N1d!212~2N1g1d!1
3

2J
1

1

4
~11g1d!2, ~17!

with formal solutions,

em52m~m1g1d11!, m5...,21,0,1,...,N,

cm~y!5
cmPN2m

~2d2N21,2g2N21!~2coshy!

Asinhy sinhg
y

2
coshd

y

2
cothN

y

2
~12coshy!N

, ~18!

wherecm is a constant factor. This is the exactly solvable Schro¨dinger equation related to th
Jacobi polynomials. It is easy to verify that ifg1N,0 and 2m1g1d11.0, then the function
cm(y) belongs to the spaceL2(2`,`) ~that is*2`

` ucmu2dy,`). In this case, since the operato
2d2/dy21V(y) is symmetric with respect to the inner product (f ,g)5*2`

` f (y)g(y)dy, such
eigenfunctionscm(y) corresponding to differentem are orthogonal.

Note that, generally,cm(y) and cm8 (y) are discontinuous aty50. Consider the physically
more reasonable Schro¨dinger Eq.~17! in the spaceL2(0,̀ ) with the boundary conditionc(0)
50. The functionscm(y) for m50,1,...,N belong to this space ifg1N,21/2,g1d11.0. The
correspondingem are the levels of the discrete spectrum because they are less then the asym
(11g1d)2/4 of the potential asy→`; and V(y) goes to 2` as y→0. Note thatem ,m
5N,...,1,0 are the firstN11 lowest eigenvalues of the Schro¨dinger operator.

III. CONTINUOUS DUAL q-HAHN „DUAL q-HAHN… POLYNOMIALS AND A
q-DIFFERENCE EQUATION

A. q a root of unity

The continuous dualq-Hahn polynomials~which depend on parametersa,b, andc! are defined
by the expression~e.g., Ref. 16!,

pn~x!5 (
k50

n
~q2n;q!k~at;q!k~at21;q!kq

k

~ab;q!k~ac;q!k~q;q!k
, 2x5t1t21, n50,1..., ~19!
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where (d;q)051 and (d;q)k5(12d)(12dq)¯(12dqk21),k51,2,... .~In fact thenth continu-
ous dualq-Hahn polynomial differs frompn(x) by a constant.! They satisfy the recurrence rela
tion,

2xpn5Anpn111~a1a212An2Cn!pn1Cnpn21 ,

An5a21~12abqn!~12acqn!, Cn5a~12qn!~12bcqn21!. ~20!

As in the previous section, introduce the matrixMq associated with the eigenvalue proble
~20! and the spaceLk corresponding to the indicesn50,1,...,k. Let us first consider the case whe
q is anNth primitive root of unity,18 that isq5e2p iS/N, whereSandN are positive integers which
do not have a common divisor other than 1. Let us set furthermoreac5q. Then, obviously,Mq

preservesLN21 . ~Moreover, the orthogonal complement ofLN21 to the whole space whereMq

acts is also invariant with respect toMq .)
Multiplying both sides of the recurrence relation~20! by zn and performing summation from

n50 to N21, we obtain

2x f~z!5$~az!211az% f ~z!1$2~a211bq21!z211a12b1qa21

2~a1b!qz% f ~qz!1b$~qz!212q211q2z% f ~q2z!, ~21!

where f (z)5(n50
N21znpn .

Proceeding in a similar way as in Sec. II, we obtain the following set of solutions to~21! in
the space spanned by$zk%k50

N21:

2xm5aqm1a21q2m, ~22!

f m~z!5 (
n50

N21

zn(
k50

n
~q2n;q!k~a2qm;q!k~q2m;q!kq

k

~ab;q!k~~q;q!k!
2

5~qz;q!N212m(
k50

m
~q2m;q!k~ba21q2m;q!k~a2qmz!k

~ab;q!k~q;q!k
, m50,1,...,N21, ~23!

where in the last formula we used the equivalence of the continuous dualq-Hahn polynomials at
ac5q2N11 and the dualq-Hahn polynomials~to be verified below! and the expression for a
generating function of the dualq-Hahn polynomials.16

The solution is especially simple form50:2x05a1a21, f 0(z)511z1z21¯1zN21. In
this case we also know explicitly the zeros off 0(z); zi5qi ,i 51,2,...,N21. Note that the zeros o
all N solutionsf m(z) can be found in the case whenb50. Then it is a simple exercise to obtai
using ~21!, the set of zerosz(m)5$z1 ,z2 ,...,zN21% of f m(z),

z~m!5$qm11,qm12,...,qN21,a22q2m11,a22q2m12,...,a22%,

m51,2,3,...,N22, ~24!

z~0!5$q,q2,...,qN21%, z~N21!5$a22q2,a22q3,...,a22qN%.

The difference operatorDq ~defined by the Eq.~21! written in the form 2x f(z)5Dqf (z)) can
be expressed in terms of the generators of theUq1/2(sl2) algebra represented inHN21 . In a certain
representation in this space the generators have the form~we use the notation from Ref. 11!,

A5q2~N21!/4T1 , D5q~N21!/4T2 ,
~25!

B5z~q1/22q21/2!21~q~N21!/2T22q2~N21!/2T1!,
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C52z21~q1/22q21/2!21~T22T1!,

~recall thatq5e2p iS/N) where the operatorsT1 andT2 act on a vectorg(z)PHN21 as follows:
T6g(z)5g(q61/2z).

As is easy to verify,

Dq5A2$2b~11q21!A21~q1/22q21/2!~bq2~N21!/421CA1aq2~N21!/421BD

2bq~N21!/4BA2a21q~N21!/411CD!1~a12b1a21q!q~N21!/2%. ~26!

B. Azbel–Hofstadter problem

It was recently shown19 that part of the spectrum of the Hamiltonian in the Azbel–Hofstad
problem~of an electron on a square lattice subject to a perpendicular uniform magnetic field! can
be obtained as~N! solutionsl of the following equation inHN21 :

i ~z211qz! f ~qz!2 i ~z211q21z! f ~q21z!5l f ~z!, ~27!

whereq5eiF/2. F54pS/N is the flux of the magnetic field per plaquette of the lattice.~Hence-
forth, we assume thatN is odd.! The spectrum has particularly interesting properties whenS,N
→` so thatS/N→a, wherea is an irrational number~see, e.g., Refs. 20, 21!. Representation of
~27! in the basis of monomials gives

i ~qn112q2~n11!! p̃n111 i ~qn2q2n!p̃n215l p̃n , n50,1,...,N21, ~28!

where the polynomialsp̃n(l) are defined by the formulaf (z)5(n50
N21znp̃n(l).

On the other hand, setting in~20! a5 iq1/2 ~hence,c52 iq1/2), b50, we reduce~20! to

~12qn11! p̂n111~12qn!p̂n2152xp̂n ,

p̂n5a2npn , n50,1,...,N21. ~29!

If we denote theN3N matrices corresponding to eigenvalue equations~28! and~29! by H and
M, respectively, then the following expression holds:

H5~M2M* !/ i . ~30!

In other words,H is the imaginary part of 2M . ~Note thatM and its adjointM* do not commute.!
The spectrum ofM is given by~22! with a5 iq1/2:2xk52 sin(2pk/N), k50,1,...,N21.

Expression~30! provides a connection between the results of Sec. III and the Azb
Hofstadter problem.

C. Arbitrary q

Equations~19! and ~20! are valid for an arbitrary complexq ~except for certain fixed value
which one can treat on the basis of continuity considerations!. In this general case, in order t
obtain a q-difference equation with the largest number of free parameters, we shall us
approach of Sec. II. Namely, consider the polynomials associated with the transposed matrMq

T .
Put ac5q12N, then the spaceLN21 will be invariant with respect toMq

T . ~Note that unlike for
qN51, in the general case the orthogonal complement ofLN21 to the whole infinite-dimensiona
space is not invariant with respect toMq

T .) The polynomials associated withMq
T are connected

with the dualq-Hahn polynomials as follows~cf. Sec. II!:

p̃n5
~ab;q!n~q2N11;q!n

a2n~q;q!n~ba21q2N11;q!n
pn .
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Proceeding as in Sec. II, we obtain the following equation for the generating functionf (z)
5(n50

N21znp̃n :

2x f~x!5$az211a21z% f ~z!1$2~a1bq2N!z211a1b1bq2N1a21q2N11

2~a21q2N111b!z% f ~qz!1bq2N$z212q211qz% f ~q2z!. ~31!

Its solutions in the space spanned by$zk%k50
N21 are

2xm5aqm1a21q2m, m50,1,...,N21, ~32!

f m~z!5 (
n50

N21

zn
~ab;q!n~q2N11;q!n

a2n~q;q!n~ba21q2N11;q!n
(
k50

n
~q2n;q!k~a2qm;q!k~q2m;q!kq

k

~ab;q!k~q2N11;q!k~q;q!k

5~z;q!m (
k50

N212m
~qm2N11;q!k~abqm;q!kq

2mkzk

~ba21q2N11;q!k~q;q!ka
2k

5~z;q!mPN212m~za22q2m21,ba21q2N,a2q2muq!, ~33!

wherePk(x,a,buq) are the littleq-Jacobi polynomials. Thus Eq.~31! is related to theq-difference
equation for these polynomials16 by the transformation PN212m(x)5 f m(xa2qm11)/
(xa2qm11;q)m .

Finally, consider the dualq-Hahn polynomials.~Other known basic hypergeometric polyn
mials leading by the procedure of this section to equations of the type~2! can be considered a
particular cases of the continuous dualq-Hahn or dualq-Hahn polynomials.! These polynomials
are defined by the recurrence relation~we useN21 instead ofN in the usual definition16

m~y!pn5Anpn111~11gdq2An2Cn!pn1Cnpn21 ,

An5~12qn2N11!~12gqn11!, Cn5gq~12qn!~d2qn2N!, ~34!

m~y!5q2y1gdqy11, p2150, n50,1,...,N21.

Settingg5abq21,d5ab21,q2N115ac, and multiplying the recurrence relation~34! by a21, we
obtain ~20! where 2x5t1t21,t5aqy. Thus, the firstN continuous dualq-Hahn polynomials at
ac5q2N11 and the dualq-Hahn polynomials are the same~up to renaming the parameters!.
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Let n be an odd integer greater than 3 andX be the (n11)-dimensional anti-de
Sitter space–time. Binegar and Zierau have constructed in Commun. Math. Phys.
138, 245–258~1991! a unitary representationH5H1 % H2 of the conformal group
SOo(n11,2) of X. They have shown that this particular representation is, in a
certain algebraic sense, a quantization of the union,On11

min 5On11
min1øOn11

min2 , of the
two minimal nilpotent orbits in so(n11,2) @Commun. Math. Phys.138, 245–258
~1991!#. ~This work is part of the author’s Ph.D. thesis.! In spite of this, it is known
how to obtainH from On11

min using a known quantization procedure. One reason for
this interest inH is that, in the casen53, H1 is the representation carried by the
one-particle sector of the massless scalar field on the anti-de Sitter space–timeX. In
this paper, we strengthen this link between the coadjoint orbitsOn11

min6 andH6 , by
studying the semiclassical limit of the latter. In this way, we clarify their appear-
ance in the massless theory and corroborate the existing evidence thatH6 is the
‘‘correct’’ quantization ofOn11

min6 . As a preliminary, we show that the projection
onto so(n,2)* of On11

min6 is the union of the two coadjoint orbitsOn
o6 and On

min6

~Proposition IV.1!; one of those is the phase space of the classical massless particle
on X. We then show~Theorem VI.1 and Corollary VI.3! that the semiclassical limit
of the spectral counting function of the generator of the SO~2! subgroup of
SOo(n,2) in the representationH6 is dominated by a Weyl term, expressed natu-
rally in terms of the symplectic volume of a compact portion of the classical phase
spaceOn

o6 . Furthermore, we show~Theorem VI.4! that the highest weight vectors
of the representation coincide in the semiclassical limit with the BKW functions
constructed starting fromOn

o6 . We show in addition that, even though the orbit
method applied toOn11

min6 does not yieldH6 , it nevertheless establishes a natural
relation between them. Namely, the simple SO(n11)3S0(2)-modules appearing
in H1 are those we obtain if we apply the orbit method to integral SO(n11)
3S0(2)-orbits contained in the projection on (so(n11)% so(2))* of On11

min6 ~Sec.
VII !. As a by-product of our analysis, we study the restriction to SOo(n,2) of H
~Proposition VIII.1! and we show that the unitary structure onH is exactly a
Klein–Gordon scalar product onX ~Proposition IX.2!. © 2000 American Institute
of Physics.@S0022-2488~99!03011-X#

I. INTRODUCTION

Let n be an integer greater than 3 andOn11
min 5On11

min1øOn11
min2 be the union of the two minima

nilpotent orbits of so(n11,2)* , the vector dual of the Lie algebra so(n11,2) of the Lie group
Gc[SOo(n11,2). In Ref. 1, Binegar and Zierau have studied a direct sumH5H1 % H2 of two
unitary irreducible representationsH6 of Gc . In particular, they showed that the annihilator
this representation in the enveloping algebra of so(n11,2)C is the so-called Joseph ideal, which

a!Electronic mail: mehdi@math.jussieu.fr
5780022-2488/2000/41(1)/578/24/$17.00 © 2000 American Institute of Physics
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the maximal primitive ideal associated toOn11
min C , the complexification ofOn11

min .1,2 This suggests
that the representationH is naturally associated to the~complexified! minimal orbit, or in the
language of the physics literature, thatH is a quantization ofOn11

min .
Furthermore, the (n11)-dimensional real hyperboloid

X5H ~x1 ,...,xn12!PRn12U(
j 51

n

xj
22xn11

2 2xn12
2 521J

is a Lorentzian manifold known as the generalization of the classical anti-de Sitter space
The restriction of the representationH1 of SOo(n11,2) to its isometry groupG[SOo(n,2)
defines the one-particle sector of the scalar massless free field onX.3–7 This also suggests it is th
correct quantization of the phase space of the classical massless free particle onX, which is a
nilpotent coadjoint orbitOn

o1 of the isometry group SOo(n,2) of X. Our interest in the notion of
masslessness onX, which is closely related to the notion of conformal invariance onX, is moti-
vated by the fact that massless particles play a crucial role in many physical theories onX ~see, for
example, Refs. 3, 5, 7 for more detail!.

In spite of all this, no known method of quantization actually leads to a constructionH
~respectivelyH6!, starting from the coadjoint orbitOn11

min ~respectively,On
o6!.

On the other hand, if the links established in the above works are really natural, we exp
observe their manifestation also in the semiclassical limit. It is the primary goal of this paper~Sec.
VI ! to study the semiclassical limit ofH1 and to show it naturally leads toOn11

min1 and toOn
o1 ~the

case ofH2 being similar!. We note that the casen51, which is somewhat singular, was treat
in Ref. 8.

To prepare our analysis, we first establish in Secs. II–IV the link betweenOn11
min1 and the

classical phase spaceOn
o1 of the free massless particle onX. Here On

o1 is obtained as the
symplectic reduction of the zero-mass hyperboloidp0

1 in TX. We show in particular~Proposition
IV. 1! that On

o1 is open and dense inRso(n,2)(On11
min1), where Rso(n,2) stands for the natura

projection of so(n11,2)* on so(n,2)* .
Then, in Sec. V, we recall the definition of the Binegar–Zierau representationH of the group

Gc . In fact,H is realized as the kernel of the Laplace–Beltrami operator acting on some spa
homogeneous functions on the cone,

Cn115H ~x0 ,...,xn12!PRn13\$0%U(
j 50

n

xj
22xn11

2 2xn12
2 50J .

A crucial point for our analysis will be the realization ofH as a space of functions onX. More
precisely, we consider these homogeneous functions onCn11 as functions onX by taking their
restriction to the hypersurfacex051 of Cn11 ~V.3!.

Then the analysis of the semi-classical behavior of the representationH6 is given in Sec. VI.
In particular, we show~Theorem VI.1! that, for all functionsf :R→R, Riemann integrable on an
interval and of sufficiently fast decrease, we have

Tr~ f ~2 i\Xn11n12!!5
1

~2p\!n EOn
o1

~ f +Jn11n12!vo
n1o~\2n!. ~* !

Here Xn11n12 denotes the generator inH of SO~2! and Jn11n12 is the Hamiltonian of the
SO~2!-coadjoint action onOn

o1 . The operator2 i\Xn11n12 has a nice physical interpretation~see
Sec. VI!. It is the analog of an ‘‘energy operator’’ and its spectrum has a lower bound
particular, as a corollary~Corollary VI.3!, we obtain that iff is the characteristic function of a
fixed interval@a,b# then ~* ! reads

#~@a,b#ùSpec~2 i\Xn11n12!!5
1

~2p\!n volume~Jn11n12
21 ~@a,b# !!1o~\2n!,
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which is exactly the Weyl’s law for the operator2 i\Xn11n12 . Moreover, using the realization
given in Sec. V, of the representationH of Gc as a space of functions on the hyperboloidX, we
study the semiclassical behavior of some highest weight vectors of the simpleKc-modules inH.
Actually, we establish a link, in the semiclassical limit\→0, between a level surfaceLe of
Jn11n12 and some eigenfunctions of the operator2 i\Xn11n12 acting onH. More precisely, we
show ~Theorem VI.4! that, in the semiclassical limit\→0, these eigenfunctions are localized o
p(Le), wherep is the natural projection ofTX on X.

After Theorems VI.1 and VI.4, a third link between the unitary irreducible representationH6

of the groupGc and the orbitOn11
min6 of Gc is given in Sec. VII. We show that, even though th

orbit method applied toOn11
min6 does not yieldH6 , it nevertheless establishes a natural relat

between them. Namely, the simple SO(n11)3S0(2)-modules appearing inH1 are those we
obtain if we apply the orbit method to integral SO(n11)3S0(2)-orbits contained in the projec
tion on (so(n11)% so(2))* of On11

min6 ~~VII.5!–~VII.6!!.
Finally, as a by-product of our analysis, we compare the unitary structure onH with the

Klein–Gordon scalar product onX. First, we compute explicitly the restriction to the groupG of
H. And we obtain~Proposition VIII.1! that, as a representation ofG, H6 is the direct sum
W6,0% W6,1 of two unitary irreducible representations ofG. It turns out~Proposition IX.1! that
not all of the restriction toG of H6 belongs toL2(X), the usual space of square integrab
functions onX. In particular, in the direct sumW6,0% W6,1 , only W6,1 belongs toL2(X). Then
it is completely natural to look for a nice geometric expression for the inner product, diffe
from the usualL2-integral. We show~Proposition IX.2! that the unitary structure~V.11! defined
by Binegar and Zierau onH is exactly the Klein–Gordon scalar product on the hyperboloidX.

It is of interest to compare our results with the well known harmonic analysis ofX.9–13 One
has the following decomposition of the quasiregular representation ofG on X,

L2~X!5E
t.0

%

Htdm~ t !1 (
rPZ,r,2~n/2!

Hr ~I.1!

in a continuous series and a discrete series of unitary irreducible representations, wheredm is the
Plancherel measure onR. TheHm’s are realized as eigenspaces of the Laplace–Beltrami ope
DX of X,

DXf 52m~m1n! f if f PHm . ~I.2!

There is a nice and suggestive relation, inspired by the philosophy behind the orbit metho
explained in some more detail in the next section, between the direct integral decompositio~I.1!
and theG-orbits in the tangent bundleTX of X. More precisely, if one identifies the cotange
bundle of X with its tangent bundleTX in the usual way, then there is a natural symplec
structure onTX. Moreover, the symplectic reduction of aG-orbit in TX of X is identified, via the
moment map, with a coadjoint orbit ofG. Consider now the coadjoint orbits obtained through
symplectic reduction of theG-orbits in TX. Apart from the trivial orbit, they consist of thre
families described in the next section. Two of them are semisimple and applying the orbit m
to them yields precisely the relative continuous and discrete series appearing in~I.1!. The discrete
series is associated to the orbits obtained by symplectic reduction of the mass hyperboloidsTX
and those representations show up in the one-particle sectors of the massive free scalar fielX.
In short, quantizing, via the orbit method, all semisimple orbits obtained by reduction from
orbits inTX, one obtains all representations showing up in the Plancherel formula forL2(X). This
is a rather pleasing picture, where it is not for the third family, which consists of the two nilpo
orbitsOn

o6 described above. One remarks that, in the correspondence between the decomp
of L2(X) given in ~I.1! and theG-orbits in TX, they do not seem to play a role. We have argu
in this paper that the representation associated to them isH6 . A first argument in favor of this lies
in the observation thatOn

o6 is the ~locally conformally invariant! phase space of the massle
particle onX, combined with the work on the conformally coupled massless scalar quantum
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theory onX3–7 which shows~for n53! that the one particle sector of this field is given by t
completely reducibleH65W6,0% W6,1 , realized as a subspace of the spaceE(n221)/4(X) of
distributional solutions of the conformally invariant wave equation onX,

DXf5
n221

4
f.

The work of Ref. 1 and our semiclassical analysis give yet another argument in favor of this t
But then, since onlyW6,1 belongs toL2(X), with W6,15Hr andr52(n/2)2 1

2PZ, it is clear
why the nilpotent orbits do not ‘‘contribute’’ to the Plancherel formula.

II. THE SYMPLECTIC REDUCTION OF THE G-ORBITS IN TX

Let n>3 be an integer. We consider the bilinear form^•,•& on Rn12 defined by

^x,y&5 (
i , j 51

n12

h i j xiy j[(
i 51

n

xiyi2xn11yn112xn12yn12;~x,y!PRn123Rn12, ~II.1!

with the pseudo-orthogonal groupO(n,2) as group of isometries. LetX be the one-sheeted hy
perboloid,

X5$xPRn12u^x,x&521%. ~II.2!

It is clear that the natural action ofO(n,2) onRn12 induces onX a transitive action of the identity
componentG[SOo(n,2) of O(n,2). Moreover, we shall identify the tangent bundle ofX with the
submanifold ofRn123Rn12,

TX5$~x,y!PRn123Rn12u^x,x&521 and ^x,y&50%. ~II.3!

The natural action ofG on TX is no longer transitive, its orbits are justX3$0% and the connected
components of thepl’s, lPR, where

pl5$~x,y!PTXuyÞ0 and ^y,y&5l%. ~II.4!

So, the decomposition ofTX into G-orbits follows

TX5@øl.0pl#ø@øl<0pl
6#ø@X3$0%#. ~II.5!

Note thatpl is a 2n11-dimensional submanifold ofTX which is connected ifl.0, and has two
connected componentspl

6 if l<0. For convenience, we shall use^•,•& to identify TX with the
cotangent bundleT* X of X, so that there is a symplectic structure onTX given by the symplectic
form v5( i 51

n12h i i dxi∧dyi . The restrictionvl of v to pl equipspl with the structure of a
presymplectic submanifold ofTX. The symplectic reduction ofpl is easily computed using th
moment map. More precisely, let$Xi j %1< i , j <n12 be the standard basis of the Lie algebrag
[so(n,2) of G, with commutation relations

@Xi j ,Xkl#5h ikXjl 1h j l Xik2h i l Xjk2h jkXil . ~II.6!

The generators of the natural action ofG on TX are the Hamiltonian vector fields$X̃i j %1< i , j <n12

given by

X̃i j ~x,y!5h j j xi

]

]xj
2h i i xj

]

]xi
1h j j yi

]

]yj
2h i i y j

]

]yi
;~x,y!PTX ~II.7!

with Hamiltonians,
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Ji j ~x,y!5xiyj2xjyi;~x,y!PTX;1< i , j <n1II . ~II.8!

If g* denotes the vector dual ofg and$Xi j* %1< i , j <n12 the dual basis of$Xi j %1< i , j <n12 , then the
Ad* -equivariant moment mapJ:TX→g* associated to the~strongly Hamiltonian! action ofG on
TX is given by

J~x,y!5
1

2 (
i , j 51

n12

Ji j ~x,y!Xi j* ;~x,y!PTX. ~II.9!

In particular, this implies that the image underJ of theG-orbitspl
6 ~resp.pl! are 2n-dimensional

coadjoint orbitsOn
l6 ~resp.On

l! of G if l<0 ~resp.l.0!.
Actually, we shall identify, via the moment mapJ, the orbitsOn

l6 ~resp. On
l! with the

symplectic reduction ofpl
6 ~resp.pl! if l<0 ~resp.l.0!. For the sequel, it is important to not

that among the orbitsOn
l6 ~resp.On

l!, l<0 ~resp.l.0!, only On
o6 are nilpotent.

The orbit method14 establishes, via the moment mapJ, a link between the decomposition
~I.1! and~II.5!. More precisely, it associates to the orbitsOn

l6 , l,0 integer, the relative discret
series ofX, and to the orbitsOn

l , l.0 real, the relative continuous series ofX. However, this
method associates to the orbitsOn

o6 and$0%, unitary representations ofG which do not belong to
L2(X). More precisely, for the trivial orbit one obtains the trivial representation and forOn

o6 one
obtains an irreducible unitary representation realized as a subspace of the distributional so
of the equationDXf 52(n/2) f on X.15 In both cases the representations do not appear in
decomposition~I.1! of L2(X) and they do not admit a local so(n11,2)-action. In this sense, the
are not the ‘‘right’’ ones.

III. THE CONFORMAL COMPACTIFICATION OF X

To understand the action of the group SOo(n11,2) on theG-orbits On
o6 , we recall the

conformal compactification of the hyperboloidX.16 The bilinear form^•,•& on Rn12 induces, by
restriction, a Lorentz metrich on X. We shall say that a vector fieldj on X is conformal if the Lie
derivativeL~j!h of h alongj is equal tof h, wheref is a real smooth function onX. It is well
known that the set of conformal vector fields onX generates a Lie algebra isomorphic to the L
algebra so(n11,2) of the SOo(n11,2).17 For this reason we call SOo(n11,2) the conformal
group ofX and denote it~resp. its Lie algebra! by Gc ~resp.gc!. In analogy with~II.1!, note that
Gc is just the identity component of the isometry group of the bilinear form^•,•&c on Rn13

defined by

^x,y&c5 (
i , j 50

n12

b i j xiy j[(
i 50

n

xiyi2xn11yn112xn12yn12;~x,y!PRn133Rn13. ~III.1!

It will be useful for us to realizeG as the closed subgroup ofGc fixing the first coordinatexo , that
is

i G :G�Gc , g°S 1 0

0 gD . ~III.2!

Let us define the asymptotic conesCn,Rn12 andCn11,Rn13 associated, respectively, to^•,•&
and ^•,•&c by

Cn5$xPRn12u^x,x&50 and xÞ0% and Cn115$xPRn13u^x,x&c50 and xÞ0%.
~III.3!

On the other hand, letCn11
o andCn118 be the subsets ofCn11 defined by

Cn11
o 5$xPCn11uxo50%.Cn and Cn118 5$xPCn11uxoÞ0%. ~III.4!
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Let PRn13 be the projective space ofRn13\$0% andp the canonical surjection

p:Rn13\$0%→PRn13, x°@x#. ~III.5!

We denote byPCn11 ~resp.PCn11
o , PCn118 ! the image underp of Cn11 ~resp.Cn11

o , Cn118 !.
Then it is easy to see that the map,

X→PCn118 , x°@~1,x!# ~III.6!

is a diffeomorphism.PCn118 is called the projectivisation ofX. Moreover,PCn118 is a dense open
subset ofPCn11 , which is compact. We say thatPCn11 is the conformal compactification ofX
and we will denote it byX̄. This terminology is justified by the fact that the groupGc acts
transitively onPCn11 but not onX.PCn118 . HoweverGc acts locally onX and we can make
more explicit this action. The generators of theGc-action onCn11 are the right-invariant vecto
fields $Vi j %0< i , j <n12 defined by

Vi j ~x!5h j j xi

]

]xj
2h i i xj

]

]xi
;xPCn11 . ~III.7!

Then the generators$Vi j
c %0< i , j <n12 of the local action ofGc on X are given by the projection o

$Vi j %0< i , j <n12 ,

Vi j
c ~x!5Xi j ~x! ;xPX ;1< j <n12 ~III.8!

and

Vj 0
c ~x!5 (

i 51

n12

xiXi j ~x! ;xPX ;1< i , j <n12, ~III.9!

where theXi j ’s are the generators of the naturalG-ation onRn12, that is, the projection onX of
the X̃i j ’s defined by~II.7!.

IV. THE LOCAL CONFORMAL STRUCTURE ON On
o 1

In this section we analyze in detail the conformal structure of the nilpotent orbitsOn
o6 . First

note that there is also a symplectic structure onTX̄, since there is a uniqueGc-invariant symplec-
tic form v̄ on TX̄ which coincides withv on TX. Next the injectioni G of G in Gc defined by
~III.2! induces a projection,

Rg :gc* →g* . ~IV.1!

In particular we have

Rg~On11
min1!.On

o1 . ~IV.2!

Indeed, from the injection~III.6!, we define the injectionĩ of X in X̄ by

X{x°@ x̃#5p~ x̃!PX̄,PCn11 . ~IV.3!

We denote bydĩ:TX→TX̄ its differential. Let (xo,yo1) be a point of po
1,TX such that

J((xo,yo1))5Xo[(X1n111Xn11n12)Pg* . It is easy to see that15

Jc~dĩ~~xo,yo1!!!5~2X011X0n121X1n111Xn11n12!POn11
min1 ~IV.4!
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such thatRg(Jc(dĩ((xo,yo1))))5Xo. Note that dimOn11
min65dimOn

o6 , but the restriction ofRg

to On11
min6 is not a diffeomorphism ontoOn

o6 ,15 as is true whenn51.8 Actually ~IV.2! shows that
On

o1 is an openG-orbit in the projection ong* of On11
min1 . The same arguments hold forOn

o2 and
On11

min2 .
On the other hand, the local action ofGc on X defined by~III.8!–~III.9! induces a local action

of Gc on po
6,TX and also onOn

o6 . Actually we have
Proposition IV.1: The local action of Gc on On

o6 , induced by (III.8)–(III.9), is not global.
Moreover, as a G-orbit, the minimal nilpotent Gc-orbit On11

min6 splits in two G-orbits,

Rg~On11
min6!5On

o6øOn
min6 , ~IV.5!

whereOn
min6 is the minimal nilpotent G-orbit defined asOn11

min6 while replacing Gc by G.
In order to prove this proposition~Sec. IV B!, it will be useful to see how to realizeOn11

min6 as
the symplectic reduction of a certain presymplectic submanifold in the tangent bundleTCn11 of
the coneCn11 .

A. On 11
min 6 and symplectic reduction of Gc-orbits in TCn 11

Let TCn115$(s,s8)PCn113Rn13u^s,s8&c50%. Then, obviously,TCn11 is a smooth con-
nected submanifold ofRn133Rn13 of dimension 2n14 on which the groupGc does not act
transitively. Moreover, the restrictionvc to TCn11 of the canonical symplectic formvc on
Rn133Rn13 equipsTCn11 with the structure of a presymplectic submanifold ofRn133Rn13.
More precisely, one easily checks that the kernel ofvc on TCn11 is generated by the vector field
X15s(]/]s8) andX25s(]/]s)2s8(]/]s8).

On the other hand, letEo be the subset ofTCn11 defined by

Eo5$~s,s8!PTCn11u^s,s8&c50 and s8Þbs ;bPR%. ~IV.6!

The following lemma describes theGc-orbits in Eo and their symplectic reduction.
Lemma IV.2: (i) Eo is a 2n13-dimensional smooth submanifold of TCn11 which has two

connected components Eo
6 .

(ii) G c acts transitively on each connected component of Eo .
(iii) The kernel of the restrictionvo

c of vc to Eo is generated by X1 , X2 , and X3

5s(]/]s).
(iv) Let Jc :Rn133Rn13→gc* be the unique Ad* -equivariant moment map associated with t

(strongly Hamiltonian) action of Gc on Rn133Rn13. Then the symplectic reduction of Eo
6 is

given by

On11
min65Jc~E0

6!. ~IV.7!

Proof: For ~i!, the conditions8Þbs for all bPR implies thatEo is a 2n13-dimensional
smooth submanifold ofTCn11 . On the other hand, sinceCn11 is connected,Eo has as many
connected components as the fiberEo( x̃o) of the point x̃o5(1,xo)5(1,0,0,...,1,0)PCn11 rela-
tively to the bundleTCn11→Cn11 . Then~i! follows immediately from

Eo~ x̃o!5H vPRn13\$0%uvo5vn11 and (
i 51

n

v i
22vn12

2 5lJ . ~IV.8!

A straightforward calculation shows thatGc( x̃
o), the isotropy group ofx̃o, acts transitively on

each connected component ofEo( x̃o). ~ii ! follows from the fact thatGc( x̃o) acts transitively on
Cn11 . For ~iii !, it suffices to remark that

T~s,s8!El5$~H,K !PRn11,23Rn11,2u^s,H&c5^s8,K&c50^s,K&c1^H,s8,&c50%
~IV.9!
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and one checks that the kernel ofvo
c is generated byX1 , X2 , andX3 . To prove~iv!, first note that

since;mPR* , Jc(ms,(1/m)s)5Jc(s,s8), one obtains~IV.7!. On the other hand the co-adjoin
orbits On11

min6 of Gc are nilpotent. Indeed, iff POn11
min6 , then there exists (s,s8)PEo

6 such that
Jc(s,s8)5 f . But ~ls,ls8! belongs toEo

6 and Jc(ls,ls8)5l2f . SinceJc(Eo
6)5On11

min6 , then
l2f POn11

min6;lPR* , which exactly says thatOn11
min6 is nilpotent. ActuallyOn11

min6 are exactly the
minimal nilpotentGc-orbits in gc* .18 Finally the symplectic reduction ofEo

6 is computed using
the moment mapJc , in the same way as explained in Sec. II, by considering the transport, viaJc ,
of the canonical symplectic structure on theGc-orbits On11

min6 . It is clear that On11
min6 is

2n-dimensional. h

We have
Proposition IV.3: Let p be the canonical surjection defined by (III.5) and dp its differen

then

~i! dp(Eo
6) are Gc-orbits in TX̄.

~ii ! Equipped with the restriction ofv̄, dp(Eo
6) is a 2n11-dimensional presymplectic sub

manifold of TX̄with a 2n-dimensional symplectic reduction.
~iii ! We have also

dp~Eo
6!ùTX5po

6 . ~IV.10!

Sopo
6 are G-orbits in TX admitting a local action of the conformal group Gc of X.
Proof: First note thatp commutes with the action ofGc . ~i! follows immediately from Lemma

IV.2. For ~ii ! it suffices to remark that the vector fieldX1 , instead ofX2 andX3 , is in the kernel
of dp. Then the point~ii ! comes directly from~iii ! of Lemma IV.2. Since the kernel ofdp is
generated byX1 ands~]/]s!1s8~]/]s! which are tangent toEo

6 , ~iii ! of Lemma IV.2 implies the
point ~iii !. Considering all theG-orbits in TX, then, exceptX3$0%, po

6 are the onlyG-orbits
admitting a local action ofGc . h

We turn now to the proof of Proposition IV.1.

B. Proof of Proposition IV.1

We shall only considerOn11
min1 since our arguments will still hold forOn11

min2 . We show that
On11

min1 is the disjoint union of twoG-orbits given byJc(E01
1 ) andJc(E02

1 ) where

E01
1 5$~s,s8!PEo

1uso5so850% ~IV.11!

and

E02
1 5$~s,s8!PEo

1usoso8Þ0%. ~IV.12!

MoreoverJc(E01
1 ) is a 2n21-dimensional presymplectic submanifold ofOn11

min1 andJc(E02
1 ) is a

2n-dimensional symplectic submanifold.
Indeed for Jc(E01

1 ) it suffices to note that one can identifyE01
1 with $(s,s8)

PTCn11u^s8,s8&50, sn11sn128 2sn12sn118 &0 and s8Þbs ;bPR%. Hence E01
1 is itself a

G-orbit. To show thatJc(E02
1 ) is a G-orbit, it is useful to study the action ofG on E02

1 . First
observe that ifs* 5(1,0,...,0,1) ands

*
8 5(0,1,0,...,21,0) then (s* ,s

*
8 )PE02

1 . Let (s,s8)
PE02

1 . It suffices to show that

'gPGuJc~g•~s,s8!!5Jc~s* ,s
*
8 !. ~IV.13!

We shall use the following relations:
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Jc~s,s8!5Jc~2s,2s8!

5JcS 1

l
s,ls8D ;lPR*

5Jc~s1ts8,s8! ;tPR

5Jc~s,s81ss! ;sPR, ~IV.14!

and also theAd* -equivariance ofJc . So let (s,s8)PE02
1 and suppose first thatsoÞ0. Up to

~s,s8!°~2s,2s8!, one may suppose thatso.0. With a rotation of SO(n), a rotation in the plane
(n11,n12) and a pseudorotation in the plane (1,n12), change the point~s,s8! to a point

s5so~1,0,...,0,1!so.0,

where we used̂s,s&cÞ0. Finally one can supposeso51, since we have~IV.14!. Using, now,
Jc(s,s81ss) ;sPR and a rotation of SO(n), this, without changings, move the points8 to
a point

s85~0,s18,0,...,sn118 ,sn128 !s18.0,

since ^s8,s8&50 and s8Þ0. Moreover, becausês,s8&50, we see thatsn128 50. On the other
hand, since (s,s8)PE0

1 , we know thatJn11n12(s,s8)52sn118 .0 and ^s8,s8&c505s18
2

2sn1182 , hences85s18(0,1,0,...,21,0) with s18.0. Finally, a pseudorotation in the plane (1n
11) does not affects and takes8 to s

*
8 , which shows~IV.13!. If so50 then necessarilyso8

Þ0 and we come back to the previous case using the fact thatJc(s,s8)5Jc(2s8,s). h

V. THE BINEGAR–ZIERAU REPRESENTATION OF Gc

In this section, we recall the construction by Binegar and Zierau of the representationH of Gc

and its unitary structure given in Ref. 1.
We assume now thatG5SOo(n,2) with n>3 an odd integer. LetCo

`(Cn11 ,l ) ~resp.
C1

`(Cn11 ,l )! be the vector space of even~resp. odd! smooth complex functions on the coneCn11

homogeneous of degreel PC. Let Vn,2 be theG-invariant operator onRn12 defined by

Vn,25 (
i , j 51

n12

h i i h j j Xi j
2 . ~V.1!

It is easy to check that, fore50 or 1, the subspace

He5H fPCe
`~Cn11 ,l !u l 512

n11

2
and Vn,2f5

n221

4
fJ , ~V.2!

is a Gc-submodule ofCe
`(Cn11 ,l ). On the other hand, consider the injective map

C:fPC0
`~Cn11 ,l !°fuxo51PC`~X!. ~V.3!

One easily checks that iffPC0
`(Cn11 ,l ) thenC~f! satisfies the wave equation onX,

DXfuX5
n221

4
fuX ;fPHe . ~V.4!

Hence the representationHe is realized as a space of solutions of the wave equation onX.
Binegar and Zierau showed in Ref. 1 that, whene[(n/2)1 1

2,
2 He is completely reducible.

More precisely, in this case there exists two unitary simpleGc-submodulesH1 and H2 of
Ce

`(Cn11 ,2(n/2)1 1
2) such thatH[He5H1 % H2 . To defineH1 andH2 , it is useful to study
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first the Kc-typesof H, whereKc5SO(n11)3SO(2) is a maximal compact subgroup ofGc .
From ~V.2!, it suffices to look at theKc-types ofCe

`(Cn11 ,2(n/2)1 1
2), which are well-known.19

Let e50 or 1 andl PC. Let Hqr
(n11)5Hq

(n11)
^ Hr

(2) , whereHq
(n11) denotes the vector space o

harmonic polynomials onRn11, homogeneous of degreeq, andHr
(2) is generated by the harmoni

polynomial (xn112 ixn12) r if r .0 and (xn111 ixn12) r if r ,0. Let uxun115A( j 50
n xj

2 for all x in
Rn13, and define a map:j l

(n11) :Hqr
(n11)→C`(Cn11 ,l )5øe50,1Ce

`(Cn11 ,l ), h1^ h2° j l
(n11)

3(h1^ h2) by

j l
~n11!~h1^ h2!~x,y!5h1~x!h2~y!uxun11

l 2q2r ~V.5!

for all (x,y)P$(x,y)PRn113R2uuxun115uyu2%. If we denote byCe
`(Cn11 ,l )Kc the vector sub-

space ofKc-finite elements inCe
`(Cn11 ,l ), then, asKc-modules, we have the following isomor

phism:

Ce
`~Cn11 ,l !Kc. %

~q,r !PN3Z
q1r[e@2#

j l
~n11!~Hqr

~n11!!. ~V.6!

From the definition~V.2! of He , it is easy to check that

j 2~n/2!11/2
~n11! ~Hqr

~n11!!,H⇔S q1
n21

2 D 2

2r 250. ~V.7!

If we assume now thatn>3 is odd, l 52(n/2)1 1
2 and e[2(n/2)1 1

2,
2 then H.H1 % H2 ,

where

H15 %
~q,r !PN3N

q2r 52~n/2!11/2

j 2~n/2!11/2
~n11! ~Hqr

~n11!! ~V.8!

and

H25 %
~q,r !PN3Z2

q1r 52~n/2!11/2

j 2~n/2!11/2
~n11! ~Hqr

~n11!!. ~V.9!

In the sequel, we shall denote byU6 the Gc-action onH6 ,

U6~g!~f!~x!5f~g21x! ;gPGc ;fPH6 ;xPCn11 . ~V.10!

We will also denote byU6 the induced action ofgc on H6 .
Finally, concerning the unitary structure ofH, an explicit formula for the invariant scala

product^•,•&BZ is given in Ref. 1. More precisely, for allmPN* defineDm the operator (Vm

1(m22)/2)1/2 acting on the SO(m)-finite elements ofL2(Sm21). Then^•,•&BZ is defined onH
by

^F1 ,F2&BZ5~~Dn111D2!F1 ,F2!2~F1 ,~Dn112D2!F2! ;F1 and F2PH,
~V.11!

where (F1 ,F2)5*Sn11
F1F2ds is the usual scalar product onL2(Sn11) relative to the normal-

ized Kc-invariant measureds on Sn11 , where

Sn115$~x,y!PRn113R2uuxun115uyu251%.Sn3S1. ~V.12!
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VI. THE SEMICLASSICAL LIMIT FOR On 11
min 6

A. Introduction

Let us briefly recall what is meant by a quantization in physics. Let (M ,v) be a symplectic
manifold andA a Lie algebra~for the Poisson structure relatively tov! of real smooth functions
on M. We will assume thatA contains the constants. By a quantization of (M ,v,A), we mean the
construction of the following objects:20

~i! A family $H\%\ of Hilbert spaces indexed by\PI ,R1\$0% with 0P Ī ,
~ii ! A linear mapf PA°Op\ f , whereOp\ f is a symmetric operator onH\ .
~iii ! If u andv are inA then there existswPA such that@Op\u,Op\v#5Op\w.

We will ignore the technical problems related to the domains ofOp\ f . However we ask~at least!
the following properties:

Op\15IdH\
~VI.1!

and

1

i\
@Op\ f ,Op\g#2Op\$ f ,g% →

\→0

0. ~VI.2!

One of the main problems in semiclassical analysis is to find relations between spectral pro
of Op\ f when\→0 and properties of the Hamiltonian flow off on (M ,v).21

On the other hand, when (M ,v) is the coadjoint orbit of a Lie group equipped with i
canonical symplectic structure, the orbit method provides under some assumptions on the g
quantization of (M ,v,A).8,14 More precisely, letO be a coadjoint orbit of a Lie groupG. For
m.0, we putmO[$m f u f PO%. Assume that the orbit method associates tomO a unitary repre-
sentation (Hm ,Um) of G, for mPJ,R1, with J unbounded. In this case, a quantization
(M ,v,A) with (M ,v)5O and A5g% R is done as follows~here the Lie algebrag of G is
realized by evaluation functions onO andR is realized by the constant functions!. Put\5~1/m!,
H\5Hm and

Op\Y5 i\Ym ;YPg,

whereYm[(d/dt)Um(exp(2tY))ut50. It is easy to check that

1

i\
@Op\Y1 ,Op\Y2#5Op\$Y1 ,Y2%,

so ~VI.2! is satisfied, even without taking the limit. Note that in the applications one wan
quantize more thang%R, for example the symmetric algebra ofg. The orbit method does not giv
a satisfactory solution to this problem. The case ofO5On11

min6 is particular sinceOn11
min6 are nilpo-

tent, somO5O and (Hm ,Um)5(H6 ,U6) for all mPR1* .

B. The semiclassical behavior of the spectrum of U6„Xn 11n 12…

We shall consider the quantization ofOn11
min6 given by H\5H6 and Op\Xi j [X̂i j

\

52 i\Xi j . Recall thatU6 is theGc-action onH6 ,

U6~g!~f!~x!5f~g21x! ;gPGc ;fPH6 ;xPCn11 . ~VI.3!

For any elementY of gc consider the evaluation functionOn11
min6→R, c°c(Y), which we still

denote byY. To this function we associate, for all real number\.0, the self-adjoint linear
operatorŶ\ on H6 defined by
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Ŷ\5 i\
d

dt
U6~exp~2tY!!u t5052 i\Y ~VI.4!

such that

@Ŷ\,Ŷ8\#5 i\$Y,Y8̂%\ ;~Y,Y8!Pgc3gc . ~VI.5!

In particular, we have

X̂n11n12
\ 52 i\Xn11n12 . ~VI.6!

The reason why we pay a special attention toX̂n11n12
\ is motivated by its physical interpretation

Indeed, the operatorX̂n11n12
\ is the analog of an ‘‘energy’’ operator’’~see Ref. 8 for the case

n51!. Moreover, using the results of Sec. V, one gets that the spectrum ofX̂n11n12
\ has a lower

bound.
In the sequel, we will restrict our attention on the representationU1 of Gc in H1 since our

arguments will be analogous forU2 . Finally, if we considervo the restriction topo of the
canonical symplectic two-formv on TX and still denote byvo the image ofvo under the moment
mapJ, we have

Theorem VI.1: For all real functions f Riemann-integrable on any interval@0,a# with a
PR1* and such that

'a.1'c.0 u f ~x!u<cx2a2n11, ~VI.7!

we have

Tr~ f ~X̂n11n12
h !!5

1

~2p\!n EOn
o1

~ f +Jn11n12!vo
n1o~\2n!. ~VI.8!

To prove this theorem the following simple lemma will be useful.15

Lemma VI.2: If g is a real function onR which is Riemann-integrable on any interval@0,a#
with aPR1* and, if there existsa.1 and c.0 such thatug(x)u<cx2a, then

E
0

1`

g~x!dx5 lim
N→1`

1

N (
k50

1`

gS k

ND .

Proof of Theorem VI.1:Let us first study the left-hand side of~VI.8!. We know that19

dimHqr
~n11!5~n2112q!F ~n221q!!

~n21!!q! G , ~VI.9!

then it follows that

Tr~ f ~X̂n11n12
\ !!5

2

~n21!!

1

\n21 (
r .0

\r S \r 2\S n

2
2

3

2D D¯S \r 1\S n

2
2

3

2D D f ~\r !

~VI.10!

since we have

H1uK5 %
~q,r !PN3N

q2r 52~n/2!11/2

S %
k50

q

j 2~n/2!11/2
~n11! ~Hkr

~n!! D . ~VI.11!

Actually we have to study the behavior of
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Sf~\!5
1

\n21 (
r .0

\r S \r 2\S n

2
2

3

2D D¯S \r 1\S n

2
2

3

2D D f ~\r ! ~VI.12!

when\ goes to 0. An easy calculation shows that15

Sf~\!5
1

\n21 (
r .0

(
l 51

n21

al~\r ! l\n212 l f ~\r !, ~VI.13!

whereaiPZ with an2151, so that

\nSf~\!5(
r .0

~\r !n21f ~\r !\1 (
l 51

n22

alF (
r .0

~\r ! l f ~\r !\G\n212 l . ~VI.14!

From Lemma VI.2, each series( r .0(\r ) l f (\r )\, l 51,...,n21 is convergent, with

lim
\→0

(
r .0

~\r ! l f ~\r !\5E
0

1`

f ~x!xldx l51,...,n21. ~VI.15!

Then we obtain

Tr~ f ~X̂n11n12
\ !!5

2

~n21!!

1

\n E
0

1`

f ~x!xn21dx1o~\2n!. ~VI.16!

We turn now to the study of the right-hand side of~VI.8!. To determine the integral*O
n
o1( f

+Jn11n12)vo
n , we introduce a system of coordinates adapted toOn

o1 . Let po
1 be the connected

component ofpo whose symplectic reduction isOn
o1 and let

So5$~x,y!Ppo
1uxn1250%. ~VI.17!

ThenSo is a 2n-dimensional submanifold ofpo
1 which has two connected componentsSo

6 . The
restriction of moment mapJ to So is injective butJ(So)ÞOn

o1 . Actually we haveJ(So)5On
o1

~the complement ofSo in po
1 is of measure zero!.15

Consider the coordinates~x,f! on X with x5(x1 ,...,xn)PRn andfP@0,2p@ such that

xn115Y cosf and xn125Y sinf ~VI.18!

with Y5A11x25Axn11
2 1xn12

2 . Hence this gives us coordinates (x,f,p,pf) on TX defined by

y•dx5pdx2pfdf. ~VI.19!

In particular, we have onSo ,

^y,y&50⇔pf
2 5Y2~~p!21~x–p!2!. ~VI.20!

SinceJ(So)5On
o1 , vo

nuSo
5dx∧dp andpf5Jn11n12(x,y), we obtain that

E
On

o1
~ f +Jn11n12!vo

n52E
Rn
E

Rn
f ~YA~p!21~x–p!2!dx∧dp. ~VI.21!

Now if we let I (x)5*Rnf (YA(p)21(x–p)2)dp and if R is a rotation ofRn, then it is easy to check
that

I ~R•x!5I ~x! ;xPRn. ~VI.22!
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Thus, using the spherical coordinates onx, with x5(a,0,...,0), we get that

E
On

o1
~ f +Jn11n12!vo

n52E
0

1`E
Rn

f ~A~11a2!~~11a2!p1
21¯1pn

2!!an21dadp~s~Sn21!!,

~VI.23!

where s(Sn21) denotes the surface of the unit sphereSn21 in Rn. Finally if we put z1

5A11a2p1 andzi5pi for 2< i<n, we have

E
On

o1
~ f +Jn11n12!vo

n52E
0

1`E
Rn

an21

A11a2
f ~A~11a2!z2!dadz~s~Sn21!!, ~VI.24!

or using the usual spherical coordinates onzi where (z)25r2,

E
On

o1
~ f +Jn11n12!vo

n52E
0

1`E
0

1` an21

A11a2
f ~rA11a2!rn21dadr~s~Sn21!!2. ~VI.25!

Moreover, ifb5rA11a2 we get

E
On

o1
~ f +Jn11n12!vo

n52S E
0

1`S 1

11a2D ~n11!/2

daD S E
0

1`

f ~b!bn21db Ds~Sn21!2.

~VI.26!

But we know22 that if n>3 is odd then,

E
0

1`S 1

11a2D ~n11!/2

da5
~n22!!!

~n21!!!

p

2
and s~Sn21!5

2~n11!/2p~n21!/2

~n22!!!
, ~VI.27!

where (n21)!! 52343¯3n21 and (n22)!! 51333¯3n22. Hence~VI.26! becomes

E
On

o1
~ f +Jn11n12!vo

n5
2

~n21!!
~2p!nE

0

1`

f ~b!bn21db, ~VI.28!

so

1

~2p\!n EOn
o1

~ f +Jn11n12!vo
n5

2

~n21!!

1

\n E
0

1`

f ~b!bn21db. ~VI.29!

~VI.8! follows then immediately from~VI.16! and ~VI.29!. h

The nilpotency of the orbitOn
o1 plays an important role in the semiclassical behavior~VI.8!

of Tr( f (X̂n11n12
\ )). Indeed, consider theG-orbits On

l1 with l52m2 and m is a positive real
number. TheseG-orbits are not nilpotent and their symplectic formv2m2 is realized as the image
underJ of the restriction top2m2 of the two-formv on TX. Then using same arguments as tho
of the proof of Theorem VI.1~see Ref. 15 for details!, we obtain that for all positive real function
f satisfying the hypothesis of the Theorem VI.1,

E
On

2m21
~ f +Jn11n12!v2m2

n

<E
On

o1
~ f +Jn11n12!vo

n22E
0

1`E
mA11a2

1` an21

~11a2!~n11!/2 f ~b!bn21dadb~s~Sn21!!2.

~VI.30!
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C. The Weyl’s law for the spectrum of X̂n 11n 12
\

An immediate and interesting corollary of Theorem VI.1 is the so-called Weyl’s law for
operatorX̂n11n12

\ . This formula gives an asymptotic behavior, when\ goes to zero, of the
number of eigenvalues of the operatorX̂n11n12

\ contained in a fixed real interval@a;b#. More
precisely,

Corollary VI.3: Let @a;b# be a real interval independent of\ and let Spec(X̂n11n12
\ ) be the

spectrum of the operator Xˆ
n11n12
\ . We have

#~@a,b#ùSpec~X̂n11n12
\ !!5

1

~2p\!n volume~Jn11n12
21 ~@a,b# !!1o~\2n!. ~VI.31!

Proof: Just apply Theorem VI.1 withf 5x@a;b# the characteristic function of the interva
@a;b#. h

D. The semiclassical behavior of the highest weight vectors

The result of the previous subsections is about the spectrum of the operatorX̂n11n12
\ . Now,

we want to prove a result concerning the eigenfunctions themselves. We shall only consideH1 ,
the arguments will still hold forH2 .

Let e.0. We study a family of vectorsc\PH1,C`(X) which are eigenvectors o
X̂n11n12

\ ,

X̂n11n12
\ c\5ec\ ~VI.32!

and which are also highest weight vectors inHq
(n11) , that is

X̂01
\ c\5S e2\S n

2
2

1

2D Dc\ . ~VI.33!

Obviously ~VI.32! could be satisfied only for values of\ for which there existsr PN such that

\r 5e. ~VI.34!

In the sequel, we will always consider this situation. Actually, it is easy to calculatec\ ,15

c\~x!5~11 ix1!q~xn112 ixn12!r uxun11
l 2q2r ;x5~1,x1 ,...,xn12!PCn11 , ~VI.35!

wherel 52(n/2)1 1
2 andq5r 1 l . This can be rewritten as

c\~x!5
~11 ix1!r

uxun11
r

~xn112 ixn12!r

uxun11
r ~11 ix1! l . ~VI.36!

On the other hand, letXr be the subset ofX defined by

Xr5$xPXuxi50 ;2< i<n%. ~VI.37!

Then Xr is a two-dimensional hyperboloid embedded in then11-dimensional hyperboloidX.
Moreover letp0

r be the subset ofTXr defined by

p0
r 5$~x,y!PTXr uyÞ0 and ^y,y&50%. ~VI.38!

Herep0
r is naturally embedded in theG-orbit p0 in TX defined by~II.4!. Note thatXr andp0

r play
the same role asX and p0 but for the subgroup SOo(1,2) of G fixing the coordinatesxi , 2< i
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<n. In particular the symplectic reduction ofp0
r is a nilpotent coadjoint orbit of SO0(1,2). If e is

the real number given in~VI.32!, we consider the level surfaceLe in TXr of the functionJn11n12

on TX defined by~II.8!, that is,

Le5$~x,y!PTXr uJn11n12~x,y!5e%. ~VI.39!

If we now consider the parametrization (t,f)PR3@0,2p# of Le given by

x15et, x25et cosf2sinf, and x352et sinf2cosf,
~VI.40!

y15e, y25e cosf, and y352e sinf,

then it is easy to show thatLe is a Lagrangian submanifold ofTXr , with y•dx5df on Le .
In fact the functionJn11n12 on TX defined by~II.8! is just the Hamiltonian function assoc

ated with the Hamiltonian vector fieldX̂n11n12 on TX given by~II.7!. Then, it is natural, from the
point of view of the semiclassical analysis,23 to look for a link, in the semiclassical limit\→0,
between the level surfaceLe of Jn11n12 and the eigenfunctionsc\ of the operatorX̂n11n12

\ with
eigenvaluee. If we denote byp the natural projection ofTX on X, a link between the familyc\

andLe is then given by
Theorem VI.4: Let c\ be the function on X defined by~VI.36!.

~i! If x¹p(Le), then

uc\~x!u<~11x1
2!2~n/2!11/2 expS 2

e

\
lnS 11

x'
2

11x'
2 D D , ~VI.41!

where x5(x1 ,x' ,xn11 ,xn12)PX.
If xPp(Le), we have

c\~x!5 i r expS i
e

\
f D , ~VI.42!

wheref is defined in~VI.40!.
Proof: For ~i!, it suffices to remark thatx5(x1 ,x' ,xn11 ,xn12) is not inp(Le) if, and only if,

x'Þ0, ~VI.41! follows then directly from~VI.34! and ~VI.36!. Finally, for ~ii !, note that from
~VI.40!, we have

c\~x!5
~11 iet!r

~11e2t2!r /2

~et exp~ if!2sinf1 i cosf!r

~11e2t2!r /2 5 i r exp~ ir f!. ~VI.43!

h

So, we see that, in the semiclassical limit\→0, the functionc\ has its support onp(Le).
However, outside ofp(Le), c\ is exponentially decreasing in 1/\. Moreover, the phase appearin
in ~VI.42! is, according to~VI.40!, precisely the generating function of the Lagrangian manif
Le . Hence,c\ is identically equal to the WKB solution23 of ~VI.32!–~VI.33! on p(Le).

VII. K c-MODULES IN H6 AND K c-ORBITS IN On 11
min 6

In this section we want to give, via the orbit method, another link between the orbitOn11
min6 and

the unitary irreducible representationH6 of Gc . We need first to determine theKc-orbits in
On11

min6 . Actually we shall restrict our attention onH1 andOn11
min1 , since our arguments will still

hold for H2 andOn11
min2 .
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A. The K c-orbits in On 11
min 1

Let f POn11
min1 . We write

f 5
1

2 (
i , j 50

n12

f i j X
i j ~VII.1!

and introduce the followingKc-invariant polynomial function on so(n11,2)* ,

Vn11 : f Pso~n11,2!* °
1

2 (
i , j 50

n

f i j
2 . ~VII.2!

The following simple lemma will be useful:
Lemma VII.1:

Vn11~ f !5 f n11n12
2 ; f POn11

min1 . ~VII.3!

Proof: SinceOn11
min15Jc(Eo

1), it suffices to observe that if̂•,•&n11 denotes the usual scala
product on Rn11, then ^s,s&n11^s8,s8&n112^s,s8&n11

2 5Jn11n12
2 (s,s8), for all (s,s8)

PTCn11 , with ^s8,s8&e50. h

Recall now that ifh is a Lie subalgebra of a Lie algebrag, there is a natural projection
Rh :g* →h* . Introduce, for all real numberse>0, the subsetS(e) of On11

min1 defined by

S~e!5$ f POn11
min1u f n11n125e%, ~VII.4!

such thatOn11
min15øe.0S(e). We have

Proposition VII.2: For each real e>0, S(e) is a (2n21)-dimensional submanifold ofOn11
min1

and a Kc-orbit. The coadjoint orbitsRso(n11)(S(e)) are all disjoint and of dimension2n22.
Proof: Let us recall thatOn11

min15Jc(Eo
1) ~IV.7!. On the other hand, (s* ,s

*
8 )PJc

21(S(e))
wheres* 5(1,0,...,1,0) ands

*
8 5(0,e,0,....,0,e). Hence, let (s,s8)PJc

21(S(e)). It will be suffi-
cient to show that there existsgPKc such thatg•(s,s8)5(s* ,s

*
8 ). First, an appropriate rota

tion of SO(n11), we can suppose thats5(so,0,...,sn11 ,sn12) with so.0. Using the transfor-
mation (s,s8)°(s,s81ss) which leaves invariantJc ~IV.14!, we can transforms8 in s8
5(0,s18 ,...,sn8 ,sn118 ,sn128 ). Then, a rotation of SO(n) take us to the point s
5(so,0,...,0,sn11 ,sn12) ands85(0,s18,0,...,0,sn118 ,sn128 ) with so.0 ands18.0. Finally, with
a rotation of SO~2! takes tosn11.0 andsn1250, and usinĝs,s&c50 together with~IV.14! we
takes to s* . On the other hand, sincês,s&c5^s8,s8&c50 andsn11sn128 5e, we conclude
that s85s

*
8 . To show the last assertion of the proposition, remark that the canonical symp

form on On11
min1 , restricted toS(e), has a one-dimensional kernel, and that the leaves of

associated foliation are SO~2!-orbits inS(e). SinceKc acts transitively onS(e), we conclude that
SO(n11) acts transitively on the symplectic reduction ofS(e). But this symplectic reduction is
directly obtained using the moment map of theKc-action onS(e). So, sinceRso(2)(S(e)) is
reduced to a point, we get thatRso(n11)(S(e)) is only one coadjoint orbit of SO(n11). On the
other hand, from Lemma VII.1, we know thatVn11(S(e))5e2. Hence, Rso(n11)(S(e))
ÞRso(n11)(S(e8)) as soon aseÞe8. h

We turn now to a relation between the orbitOn11
min1 and the unitary irreducible representatio

H1 .

B. K c-modules in H1 and K c-orbits in On 11
min 1

From ~V.8! we know that

H15 %
~q,r !PN3N

q2r 52~n/2!1~1/2!

j 2~n/2!1~1/2!~Hqr
~n11!!. ~VII.5!
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Moreover, from the previous subsection we know that

On11
min15 ø

e.0
S~e!, ~VII.6!

where eachS(e) is a Kc-orbit. The analogy between~VII.5! and ~VII.6! is completely natural.
Indeed, consider the irreducible representationHqr

(n11) of Kc with q2r 52(n/2)1 1
2. Choosing

\r→e, we see that\q→e when \→0. On the other handHqr
(n11) is, in the usual way~via its

highest weight!,24 associated with the coadjoint orbit passing through\qX011\rXn11n12

→e(X011Xn11n12). But the coadjoint orbit ofKc passing throughe(X011Xn11n12) is precisely
Rkc

(S(e)), wherekc is the Lie algebra ofKc .

VIII. DETERMINATION OF THE RESTRICTION TO G OFH

In this section, we compute explicitly the restriction to groupG of the irreducible unitary
representationsH6 of the groupGc . We assume in the sequel thatn>3 is odd and we define fo
e50 or 1,

W6,e5 %
~s,r !PN3N

k56r 2~n/2!1~1/2!22s2e

j 2~n/2!11/2
~n11! ~Hkr

~n!!. ~VIII.1 !

Then we have
Proposition VIII.1: The G-modules W6,e , e50 or 1, are simple and unitarizable. Moreove

the restriction to G of the unitary simple Gc-moduleH1 (resp. H2) is the G-module W1,0

% W1,1 (resp. W2,0% W2,1).
Proof: The idea is to determine the restriction toK5SO(n)3SO(2) of theKc-moduleH1

~resp.H2!. Since the injection~III.2! of G in Gc determines also an injection ofK in Kc , it
suffices to know the restriction of the SO(n11)-module Hq

(n11) to the subgroup SO(n) of
SO(n11) fixed by this injection. From Ref. 19 IX, Sec. 2.8, we know that

Hq
~n11!uSO~n!5 (

k50

q

Hk
~n! , ~VIII.2 !

so the restriction toK of the Kc-moduleHq
(n11)

^ Hr
(2) is

Hqr
~n11!uK5 (

k50

q

Hkr
~n! . ~VIII.3 !

Then, it follows that

H1uK5 %
~q,r !PN3N

q2r 52~n/2!11/2

S %
k50

q

j 2~n/2!11/2
~n11! ~Hkr

~n!! D ~VIII.4 !

and

H2uK5 %
~q,r !PN3Z

q1r 52~n/2!11/2

S %
k50

q

j 2~n/2!11/2
~n11! ~Hkr

~n!! D . ~VIII.5 !

Rewriting, slightly,~VIII.4 ! and ~VIII.5 ! and using the definition~VIII.1 !, one easily gets that
                                                                                                                



e

duct

596 J. Math. Phys., Vol. 41, No. 1, January 2000 Salah Mehdi

                    
H1uK5 %
~k,r !PN3N
k1r[0@2#

k2r<2~n/2!11/2

~ j 2~n/2!11/2
~n! ~Hkr

~n!!! % %
~k,r !PN3N
k1r[1@2#

k2r<2~n/2!11/2

~ j 2~n/2!11/2
~n! ~Hkr

~n!!! ~VIII.6 !

and

H2uK5 %
~k,r !PN3Z2

k1r[0@2#
k1r<2~n/2!11/2

~ j 2~n/2!11/2
~n! ~Hkr

~n!!! % %
~k,r !PN3Z2

k1r[1@2#
k1r<2~n/2!11/2

~ j 2~n/2!11/2
~n! ~Hkr

~n!!!, ~VIII.7 !

hence

H6uG5W6,0% W6,1 . ~VIII.8 !

Finally, from Ref. 10,W6,e , e50 or 1, are unitarizable simpleG-modules. h

Remark VIII.2: Note that for n53, W1,0% W1,1 is exactly the unitarizable G-modul
D~1,0!%D~2,0! describing positive energy solutions of the wave equationDXf 52 f on X in Ref. 5.
The G-module W2,0% W2,1 is its analog for the negative energy solutions.

From Proposition VIII.1, we know that

H6uG5W6,0% W6,1 . ~VIII.9 !

On the other hand, from Proposition IV.1, we know thatRg(On11
min6) is the union of twoG-orbits,

Rg~On11
min6!5On

o6øOn
min6 . ~VIII.10!

Comparing~VIII.9 ! and~VIII.10!, one would like to associateW6,0 to On
o6 andW6,1 to On

min6 or
vice versa. But it does not seem to be a natural way to do this.

IX. THE KLEIN–GORDON SCALAR PRODUCT ON H
Let us first give some motivation for the consideration of the Klein–Gordon scalar pro

on X.

A. The intersection of H6 with L 2
„X,d m…

We use the notation of the previous section. Recall that the applicationC is the restriction
map defined by~V.3!, we have

Proposition IX.1:

C~H6!ùL2~X,dm!5W6,1 ~IX.1!

and

W6,0ùL2~X,dm!5$0%. ~IX.2!

Proof: Let Fqr be the element ofH1 defined by

Fqr~x![hq
~n11!~s!hr

~2!~t !usun11
l 2q2r x5~s,t!PRn113R2, ~IX.3!

with l 52(n/2)1 1
2, q5r 2(n/2)1 1

2 andr PN. Herehk
(m) denotes a harmonic polynomial onRm

homogeneous of degreek. We first look at the nature of the integral

E
X
uFqru2dm. ~IX.4!
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Sincedm5ds1∧¯∧dsndf, wherefP@0,2p@ is defined by

xn115Axn11
2 1xn12

2 cosf, xn125Axn11
2 1xn12

2 sinf, ~IX.5!

we can rewrite~IX.4! as

E
Rn

uhq
~n11!~1,s!u2~11s2!2rdns. ~IX.6!

We shall show that this integral converges ifFqrPW1,1 and does not converge otherwise. Rec
that hq

(n11)(s) is homogeneous of degreeq in s, so uhq
(n11)(1,s)u<usun

q when usun goes to1`.
On the other hand,hq

(n11)(1,s) will have the same behavior asusun at infinity, only if
hq

(n11)(s) contains a term independent ofso . In this case the integral in~IX.6! will diverge since
the integrand will behave asusun

2q22r5usun
2n11, otherwiseuhq

(n11)(1,s)u<usun
q21 and~IX.6! will

converge. LetFqrPW1,e . Then, there exists a homogeneous polynomial of degreek<q with

k5r 2
n

2
1

1

2
22s2e5q22s2e sPN ~IX.7!

such that

hq
~n11!~s!5H~so

q2khk
~n!~s!!, ~IX.8!

whereH denotes the operator of harmonization.H is defined, for all harmonic polynomialP on
Rn11, homogeneous of degreel, by ~see Ref. 19, IX, Sec. 2.5!

~H~P!!~s!5(
t50

@ l /2#

a t~so
21s2! t~hn11

t P!~s!, ~IX.9!

the a t’s are real numbers less or equal to 1 with an explicit form given in Ref. 19, IX, Sec.
Consider the case wheree51, then ~IX.7! implies that q2k is odd. Since hn115hn

1(]2/]so
2), hn11

t will produce onso
q2khk

(n)(s) a polynomial with all terms containing a facto
so

p , pÞ0. It follows that W1,1,L2(X,dm). Now let e50. In this case~IX.7! becomesq2k
52s so that

hq
~n11!~s!5F (

t50

@q/2#

a t~so
21~s!2! tS ]2t

]so
2t so

q2kD Ghk
~n!~s!. ~IX.10!

Sincehn115hn1(]2/]so
2) andhnhk

(n)50. Moreover, we have

hq
~n11!~s!5 (

t50
2t<q2k

@q/2#

a t~so
21~s!2! tso

q2t22t~q2k!~q2k21!¯~q2k22t11!hk
~n!~s!,

~IX.11!

hence

hq
~n11!~s!5(

t50

s

a t~so
21~s!2! tso

q2t22t~q2k!~q2k21!¯~q2k22t11!hk
~n!~s!.

~IX.12!

Finally, we get that
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hq
~n11!~1,s!;gusun

2s1k5gusun
q when usun→1` ~IX.13!

and the integral

E
X
uFqru2dm ~IX.14!

diverges. On the other hand, sinceW1,0 is a simple G-module then theG-submodule
W1,0ùL2(X,dm) of W1,0 is either reduced to$0% or is W1,0 itself. But if we chooseFPW1,0

nonzero such thatF5Fqr is given by~IX.3!, then we just have seen thatF¹L2(X,dm), so that
W1,0ùL2(X,dm)5$0%. The argument is an analog forW2,1 andW2,0 . Finally, we have

W6,15C~H6!ùL2~X,dm!

but

W6,0ùL2~X,dm!5$0%.
h

Since not all ofC(H1) belongs toL2(X,dm), it is completely natural to look for a nice
geometric expression for the inner product, different from the usualL2-integral. Actually, we shall
compare the unitary structure onH given by~V.11! with the Klein–Gordon scalar product on th
hyperboloidX which we briefly recall now.

B. The Klein–Gordon scalar product

Let (M ,g) be ann11-dimensional Lorentz manifold andS a Riemannian hypersurface inM.
If f PC`(M ), define the vector field¹ f ~gradiant off ! by

g~¹ f ,X!5d f~X! ;XPTM. ~IX.15!

If dm is the volume form onM, as soon as the integral converges, consider

^ f 1 , f 2&KG,S5 i E
S
~ f 1¹ f 22¹ f 1f 2!cdm, ~IX.16!

wherec denotes the inner product. The interest of this definition is based on the following fa
DM denotes the Laplace–Beltrami operator onM, one easily checks that, ifDM f 15a f 1 and
DM f 25a f 2(aPR), then

d@~ f 1¹ f 22¹ f 1f 2!cdm#50. ~IX.17!

On the other hand, suppose now thatM is globally hyperbolic,25,26 and thatS1 andS2 are two
Cauchy surfaces inM. If the solutionsf 1 and f 2 have compact support onS1 , thenf 1 and f 2 have
also a compact support onS2 . It follows from Stokes’ Theorem that

^ f 1 , f 2&KG,S1
5^ f 1 , f 2&KG,S2

. ~IX.18!

We shall then writê f 1 , f 2&KG . Note that this scalar product is automatically invariant un
isometries of (M ,g), since an isometry maps a Cauchy surface onto another. If the man
(M ,g) does not admit Cauchy surfaces, the situation is not so clear. This is the case forX, which
is not globally hyperbolic. However, we shall show in the next section that a Klein–Gordon s
product properly defined onX induces onH a scalar product not onlyG-invariant but also
Gc-invariant.
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C. The Klein–Gordon scalar product on H

Let FPH6,Ce
`(Cn11 ,l 5(2n/2)1 1

2). SinceX is the hypersurface inCn11 defined by the
equationxo51, one can realizeH6 as a subspace ofC`(X)ùC(n221)/4

` (X) via the mapC ~V.3!,

whereC(n221)/4
` (X) denotes the space of smooth real eigenfunctions ofDX with eigenvalue (n2

21)/4. Here, for convenience, we still denote byH6 its image inC`(X). To define the Klein–
Gordon scalar product onH6 , we first choose a Riemannian hypersurface inX. Let fP@0,2p@ be
defined by

xn115Axn11
2 1xn12

2 cosf, xn125Axn11
2 1xn12

2 sinf, ~IX.19!

and put

Sfo
5$xPXuf5fo% and Ŝfo

5Sfo
øSfo1p . ~IX.20!

Note that all timelike geodesics crossSfo
once, and henceŜfo

twice. However almost all the

lightlike geodesics cross eitherSfo
or Sfo2p . Actually those which do not intersectŜfo

are all
contained inXù$xPRn,2uxn1251%.15 Then we define forF, F8PH6 andfP@0,2p@,

^F,F8&KG,Ŝfo
56 i E

Ŝfo

~F̄¹F82¹FF8!cdm. ~IX.21!

Proposition IX.2: The scalar product^•,•&KG,Ŝfo
is well defined onH6 and is Gc-invariant.

It does not depend onfo . More precisely, we have

^•,•&KG,Ŝfo
5

1

2p
^•,•&BZ . ~IX.22!

Proof: We shall just considerH1 , since our arguments will still hold forH2 . If FPH1 , F
is a finite sum of terms,

Fqr~x![hq
~n11!~s!hr

~2!~t !usun11
l 2q2r x5~s,t!PRn113R2, ~IX.23!

with l 5(n/2)1 1
2, q5r 2(n/2)1 1

2 and r PN. Herehk
(m) denotes a harmonic polynomial onRm

homogeneous of degreek. We have also

hr
~2!~t !5~t11 i t2!r5utu2ei tf, ~IX.24!

wheret15utu2 cosf andt25utu2 sinf. Finally, sinceutu25usu
n11

if x5(s,t)PCn11 , we get

Fqr~x![hq
~n11!~s!~t11 i t2!r utu2

22r5hq
~n11!~s!eir futu2

2r5hq
~n11!~s!eir fusun11

2r .
~IX.25!

So it suffices to show that

^Fqr ,Fq8r 8
8 &KG,Ŝfo

5
1

2p
^Fqr ,Fq8r 8

8 &BZ ~IX.26!

for all r and r 8PN, andr and r 8<(n/2)2 1
2. First note that from~V.11!, one has

^Fqr ,Fq8r 8
8 &BZ52rd rr 8E

Sn11

F̄qrFq8r 8
8 ds, ~IX.27!

where
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Sn115$x5~s,t!PRn113R2uusun115utu251%,Cn11 . ~IX.28!

On the other hand, it is not hard to check that

^Fqr ,Fq8r 8
8 &KG,Ŝfo

5~r 1r 8!ei ~r 2r 8!fo~11ei ~r 2r 8!p!

3E
Rn

hq
~n11!~1,s!hq8

~n11!8~1,s!~11s2!212@~r 1r 8!/2#dns, ~IX.29!

wheredns5ds1∧¯∧dsn . From the homogeneity ofhq
(n11) , we see that this integral converge

Considering the coordinates~s,f! on X, a simple calculation shows that,15

dm5ds1∧¯∧dsn∧df ~IX.30!

and then

E
Rn

hq
~n11!~1,s!hq8

~n11!8~1,s!~11s2!212@~r 1r 8!/2#dns

5
1

2p E
X
hq

~n11!~1,s!hq8
~n11!8~1,s!~11s2!212~r 1r 8!/2dm, ~IX.31!

where the integrand is the restriction toX of the homogeneous function onCn11 of degree2n
21 given by

hq
~n11!~s!hq8

~n11!8~s!utu22~11@~r 1r 8!/2# !. ~IX.32!

On the other hand, sinceSn11
6 5$x5(s,t)PSn11u6so.0%, then

Sn11
1 →X, x5~s,t!°S 1,

s

so
,

t

so
D ~IX.33!

is a bijection and we have (1/so
n11)ds5dm.16 Moreover the change of variables~VI.18! gives

E
Rn

hq
~n11!~1,s!hq8

~n11!8~1,s!~11s2!212@~r 1r 8!/2#dns5
1

2p E
Sn11

1
hq

~n11!~s!hq8
~n11!8~s!ds,

~IX.34!

hence

^Fqr ,Fq8r 8
8 &KG,Ŝfo

5
1

2p
~r 1r 8!ei ~r 2r 8!fo~11ei ~r 2r 8!p!E

sn11
1

hq
~n11!~s!hq8

~n11!8~s!ds.

~IX.35!

Moreover ifr[r 811,2 then^Fqr ,Fq8r 8
8 &KG,Ŝfo

50. Now assume thatr[r 8,2 thenq[q8.2 In this

case we have

E
Sn11

1
hq

~n11!~s!hq8
~n11!8~s!ds5

1

2
dqq8E

Sn11

hq
~n11!~s!hq

~n11!8~s!ds. ~IX.36!

Sincedqq85d rr 8 it follows, from ~IX.35!, that for all r and r 8, we have
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^Fqr ,Fq8r 8
8 &KG,Ŝfo

5
r

p
d rr 8E

Sn11

hq
~n11!~s!hq

~n11!8~s!ds5
1

2p
^Fqr ,Fq8r 8

8 &BZ ,

~IX.37!
h

where we used~IX.25! and ~IX.27!.
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Classification of finite dimensional modules of singly
atypical type over the Lie superalgebras sl „m/n …

Yucai Sua)

Department of Applied Mathematics, Shanghai Jiaotong University,
People’s Republic of China
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We classify the finite dimensional indecomposablesl(m/n)-modules with at least a
typical or singly atypical primitive weight. We do this classification not only for
weight modules, but also for generalized weight modules. We obtain that such a
generalized weight module is simply a module obtained by ‘‘linking’’ subquotient
modules of generalized Kac-modules. By applying our results tosl(m/1), we have
in fact completely classified all finite dimensionalsl(m/1)-modules. ©2000
American Institute of Physics.@S0022-2488~00!02101-0#

I. INTRODUCTION

Because finite dimensional indecomposable modules over Lie superalgebras are not
simple, the representation theory of Lie superalgebras is more complicated than that of Lie

bras. Kac1 defined the induced modulesV̄(L) for integral dominant weightsL, which are referred
to as Kac-modules.2 Kac divided the Kac modules into two categories:typical or atypicalaccord-

ing to whether they are simple or not, he also gave a necessary and sufficient condition forV̄(L)
to be simple. Van der Jeugtet al.2 gave a character formula for singly atypical simp
sl(m/n)-modules. Hughes, King, and Van der Jeugt3 achieved much progress on the classificat
of composition factors of Kac modules. However, the structure of a Kac-module is in genera
an unsolved problem. More generally, the problem of classifying finite dimensional indecom
able modules, posted by Kac,1 remains open.

Reference 4 made a start by giving a complete classification of finite dimens
sl(2/1)-modules. In this paper, the results are generalized tosl(m/n). More precisely, all finite
dimensionalsl(m/n)-modules with at least a typical or singly atypical primitive weight are cl
sified. It may be worth mentioning that although the results here are similar to those in Ref.
proofs are more interesting, more technical, and also more complicated since Lemma 2.6
4, which was crucial in the proof of that paper, is no longer valid for generalsl(m/n).

By introducing the primitive vector diagram, we are able to obtain Theorem 2.9, a cr
preliminary result in our classification. Then in Sec. III, by classifying the primitive vector
gram, the main result of this section is obtained in Theorem 3.8, so that a clear picture of a m
is provided. In Sec. IV, by looking deep into generalized weight modules, a better understa
of these modules is obtained. Then by a strict and complete proof, it is found in Theorem 4
such a module is nothing but a module obtained by ‘‘linking’’ some subquotient module
generalized Kac-modules.

By applying the results tosl(m/1), all finite dimensionalsl(m/1)-modules have been effi
ciently classified.

It should be pointed out that it may be possible to use the method in this paper to cl
general indecomposable modules as long as there is a better understanding of the struct
Kac-module in general.

a!Electronic mail: kfimmi@public1.sta.net.cn
6020022-2488/2000/41(1)/602/12/$17.00 © 2000 American Institute of Physics
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II. THE LIE SUPERALGEBRA sl „m/n … AND PRELIMINARY RESULTS

Let G denote the spacesl(m11/n11) consisting of (m1n12)3(m1n12) matricesx
5(C D

A B), where APM (m11)3(m11) , BPM (m11)3(n11) , CPM (n11)3(m11) , and D
PM (n11)3(n11) , satisfying the zero supertrace condition str(x)5tr(A)2tr(D)50. Here,M p3q

denotes the space of allp3q complex matrices. LetG0̄5$(0 D
A 0)%, G1̄5$(C 0

0 B)%, then G5G0̄

% G1̄ is a Z2(5Z/2Z) graded space overC with even partG0̄ and odd partG1̄ . G is a Lie
superalgebra with respect to the bracket relation defined in the above matrix representa
@x,y#5xy2(21)abyx, for xPGa , yPGb , a,bPZ2 . G0̄ is a Lie algebra isomorphic tosl(m
11)% C% sl(n11). Let G115$(0 0

0 B)%, G215$(C 0
0 0)%. Then G has aZ2-consistentZ-grading

G5G21% G0% G11 , G0̄5G0 andG1̄5G21% G11 .
A Cartan subalgebraH of G has dimension (m1n11) and consists of diagonal (m1n

12)3(m1n12) matrices of zero supertrace, with basis$hi5Em1 i 11,m1 i 112Em1 i 12,m1 i 12u i
Þ0,2m< i<n%ø$h05Em11,m111Em12,m12%, whereEi j is the matrix with 1 in~i, j!-entry and
0 otherwise. The weight spaceH* is the dual space ofH with basis consisting of the simple roo
$a i u2m< i<n% such that the Chevalley generators are$ei5Em1 i 11,m1 i 12 , f i5Em1 i 12,m1 i 11u
2m< i<n%, and

D15$a i j 5Sk5 i
j aku2m< i< j <n%,

D0
15$a i j u2m< i< j ,0 or 0, i< j <n%, D1

15$a i j u2m< i<0<n%,

are, respectively, the sets of positive roots, positive even roots, and positive odd roots. Fa i j

PD1, ea i j
5ei j 5Em1 i 11,m1 j 11 , e2a i j

5 f a i j
5 f i j 5Em1 j 11,m1 i 11 are the generators of the roo

spacesGa i j
,G2a i j

, respectively.G andG0 have the triangular decompositionG5G2
% H % G1,

G05G0
2

% H % G0
1 whereG2,G1,G0

2 ,G0
1 are, respectively, sums of negative, positive, nega

even, positive even, root spaces. For any subalgebraG8 of G, denote byU(G8) the universal
enveloping algebra ofG8. Let ~.,.! be the inner products inH* such that

~a i ,a i !52 if i ,0, ~a0 ,a0!50, ~a i ,a i !522 if i .0,

~a i ,a i 61!521 if i ,i 61<0, ~a i ,a j !50 if u i 2 j u>2, ~a i ,a i 61!51 if i ,i 61>0,

Definer051/2SaPD
1
0 a, r151/2SaPD

1
1 a, andr5r02r1 . We give a well order inH* : for l,

mPH* , l.m⇔l2m5S i 52m
n aia i such that for the firstaiÞ0, we haveai.0.

Now let L be an integral dominant weight overG, i.e.,L(hi)PZ1 if iÞ0. Let V0(L) be the
simple highest weightG0-modules with the highest weightL. As in Ref. 4, some definitions an
preliminary results are given first.

Definition 2.1:ExtendV0(L) to a G0% G11-module by requiringG11V0(L)50, and define
the Kac-module to be the induced moduleV̄(L)5IndG0% G11

G V0(L)5U(G) % U(G0% G11)V
0(L)

>U(G21) % V0(L). Similarly, one can define the anti-Kac-moduleV̄* (2L) with the lowest
weight 2L in the obvious way, starting from the lowest weightG0-moduleV

*
0 (2L) with the

lowest weight2L. j

It follows1 that any finite dimensional highest weight module with highest weightL is a
quotient ofV̄(L). V(L) will denote the simple highest weight module with highest weightL.

Definition 2.2:Let L be integral dominant.L, V̄(L), V(L) are calledtypical if there does not
exist an odd roota i j PD1

1 such that (L1r,a i j )5Sk5 i
0 L(hk)2Sk51

j L(hk)2 i 2 j 50, otherwise
they are calledatypical. They are calledsingly atypicalif there exists exactly one sucha i j ~in this
case,a i j is called anatypical root of L!, otherwise they are calledmultiply atypical ~see Refs.
1–3!. They are called anti-typical, singly~multiply! anti-atypical if2L is typical, singly~multi-
ply! atypical, respectively. j

Definition 2.3:A weight vectorvlÞ0 in a moduleV is calledprimitive ~see Ref. 5, Sect. 9.3!
if there exists a submoduleU such thatvl¹U but G1vl,U, or equivalently,vl¹U(G)G1vl .
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If U50, i.e.,G1vl50, thenvl is calledstrongly primitive. Correspondingly,l is called primi-
tive, or strongly primitive. Denote byPV the set of primitive weights ofV. Similarly, one can
define anti-primitive vectors and weights by replacingG1 by G2 in the definition. j

In this paper,~anti-! primitive vectors are restricted to be those which areG0-strongly~anti-!
primitive and which generate indecomposable submodules; different primitive vectors a
mean that they generate different submodules. The importance of the notion ‘‘primitive’’ lie
the fact that each primitive vector determines a composition factor and vice versa so th
classification of an indecomposable module is equivalent to the classification of primitive ve
in the module.

This paper will only consider those finite dimensional indecomposable modules with a
dition that there exists at least a primitive weight of typical or singly atypical type~note that such
condition does not necessarily imply that all primitive weights are typical or singly atypical,
implication will be proven in Theorem 2.9!. Therefore in the following, it will always be assume
that L is integral dominant. AsH does not always act diagonally on aG-module, in Secs. II and
III, weight modulesV will be considered first, i.e.,V admits a weight space decomposition:V
5 % lPH* Vl , whereVl5$vPVuhv5l(h)v, for hPH%. ~In Ref. 4, V is called a module with
diagonal Cartan subalgebra.! Then in Sec. IV, the results will be extended to generalized we
modules.

Lemma 2.4:~1! V̄(L) is simple⇔ L is typical.~2! SupposeV̄(L) is not simple, then~i! if L

is singly atypical,V̄(L) has two composition factors: one isV(L), the other will be denoted by

V(L2), whereL2 is the other primitive weight inV̄(L) which must also be singly atypical;~ii !

if L is multiply atypical, all primitive weights ofV̄(L) are multiply atypical.
Proof: ~1! See Ref. 1.~2! ~i! See Refs. 2 and 3. From Remark 2.5 we see thatL2 is singly

atypical. ~ii ! ~See Ref. 3.! SupposeL is r-fold atypical with atypical rootsg1 ,g2 ,...,g r , r>2.
Let vl0

with weightl0 , be the lowest vector inG0-moduleV0(L). Using character formula~see,
e.g., Sec. 10.4 in Ref. 5!, we see that there existsw0PW ~the Weyl group ofG0) such thatl0

1r05w0(L1r0). It is clear thatw0D1
15D1

1 and w0(r1)5r1 , we obtainl01r5w0(L1r)
and there are exactlyr positive odd rootsg i85w0(g i), i 51,2,...,r such that (l01r,g i8)50. Thus
l0 is r-fold anti-atypical. Note thatvl5PaPD

1
1e2avl0

is the lowest weight vector inV̄(L) with

weight l5l022r1 . Since (r1 ,a)50 for aPD1
1 , l is alsor-fold anti-atypical. Also, note tha

vl can be generated by any nonzero vector inV̄(L) and so, it is contained in all nonzer
submodules. Now suppose converselyvmPV̄(L) is a primitive vector with singly atypical weigh
m such thatU5U(G)vm has minimal dimension. ThenvlPU, soU cannot be simple. If we take
a composition series 05U0,U1,¯,Uk5U, k>2, then since dimUi,dimU, Ui has no
singly atypical primitive weight,i 51,...,k21. Now Ū5U/Uk22 is generated by singly atypica
vectorv̄m5vm1Uk22 . If v̄m is strongly primitive, thenŪ is a highest weight module~a quotient
of a Kac-module!, and as it has two composition factors, it must be a Kac-module; otherwi
must be an anti-Kac-module. In either case, the primitive vector ofUk21 /Uk22 is singly atypical.
This is a contradiction. j

Remark 2.5:If L is singly atypical, by introducing3 the atypicality matrixA(L), an (m
11)3(n11) matrix with (m1 i 11,j 11)-entry beingA(L) i j 5(L1r,a i j ), and the southwes
chain ofA(L), one can obtainL2 by subtracting fromL thosea i j sitting on the chain. This can
be simply done as follows: chooseL05L, L15L02a i j , wherea i j is the atypical root ofL,
i.e., A(L0) i j 50; suppose we have chosenLk5Lk212a i j , whose atypicality matrixA(Lk) is
obtained fromA(Lk21) by subtracting 1 from the (m1 i 11)th row and adding 1 to the (j
11)th column, thenLk115Lk2a i 8 j 8 , where (i 8, j 8)Þ( i , j ) is another entry other than~i, j!
satisfyingA(Lk) i 8 j 850; continue this procedure until there is no more such (i 8, j 8), thenLk is
dominant andL25Lk . From this construction, it is clear thatL2 is also singly atypical. j

SupposeL is singly atypical. We will use the following notations through the paper.
Definition 2.6: ~1! Let L2 denote the weight defined by Lemma 2.4. SupposevL , vL2

PV̄(L) are the primitive vectors, then there existsgPG21U(G2) such thatgvL5vL2. Fix such
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a g and denote it bygL
2 .

~2! Let L low denote the lowest weight inV(L).
~3! Let L1 denote the highest weight of the anti-Kac-moduleV̄* (L low). ~It follows that L low is
the lowest weight of the Kac-moduleV̄(L1).)
~4! In anti-Kac-moduleV̄* (L low), whereL low is a singly anti-atypical lowest weight, similar t
Lemma 2.4~2.i!, there are two primitive vectorsvL , vL1 in V̄* (L low). By decomposing the
enveloping algebraU(G)5U(G2)U(G11)U(G0

1)U(H), and by noting thatvL1 is the highest
weight vector inV̄* (L low) @however,V̄* (L low) is not a highest weight module#, there existsg
PG11U(G11) such thatgvL5vL1. Fix such ag and denote it bygL

1 . j

Note that from the definition ofgL
1 andgL

2 , one can prove that ifvl is any primitive vector
with singly atypical weightl in a moduleV, thengl

1vl must be a primitive vector with weigh
l1 or it is zero, in the latter casevl is strongly primitive so that it generates a highest weig
module; similarlygl

2vl must be a primitive vector with weightl2 or it is zero and in the latter
casevl generates a lowest weight module. By the above-mentioned definition, it is seen2,3 that
L5(L1)25(L2)1 andL1 can be computed as in Remark 2.5 by defining the northeast c
of A(L) and adding toL those a i j sitting on the chain, so thatL1 is the lastLk5Lk21

1a i 8 j 8 . Thus, for a singly atypical weightL, we can define inductively$L ( i )u i PZ% by L (0)

5L, L (2 i )5(L (2 i 11))2, L ( i )5(L ( i 21))1, i .0. We have (L (k))15L (k11) for kPZ. For each
L, denotefL5$L ( i )u i PZ%, and for i , j PZ, i< j , denotefL

( i j )5$L (k)u i<k< j %. Note that all
L (k), kPZ are singly atypical.

In the following, we will see that a module is uniquely determined, up to an isomorphism
the relationship between its primitive vectors. We define a diagram to express the structu
moduleV, where two primitive vectorsvl , vm are linked by a line with an arrow:

~ i! vl→vm⇔vmPG21U~G21!vl, ~ ii ! vl←vm⇔vlPG11U~G11!vm . ~2.1!

It follows that a primitive vectorvl can be linked by four ways:→vl , ←vl , vl→, vl←.
Definition 2.7:For a moduleV, let WV be a set of primitive vectors ofV corresponding to a

composition series. We can associateWV with a diagram defined by~2.1! for vl , vmPWV . We
call this diagram the primitive vector diagram ofV, and denote it again byWV . j

From this definition, we see that the primitive vector diagram depends on the choic
primitive vectors: a moduleV may correspond to more than one primitive vector diagram. Ho
ever, a primitive vector diagramWV does determine the structure ofV as we will see later. When
there is no confusion, we sometimes may useV to mean its diagram or vice versa.

Definition 2.8:A cyclic moduleX(L) is a module generated by a primitive vectorvL . j

Theorem 2.9:SupposeV is an indecomposable module with a primitive vectorvS of weight
S. We have
~1! If S is typical, thenV5V̄(S).
~2! If S is multiply atypical, then all primitive weights are multiply atypical.
~3! If S is singly atypical, then all the primitive weights are singly atypical andPV5fS

( i j ) for some
i<0< j .
~4! For any choice ofWV , WV must be connected, i.e., for anyu, vPWV , there existu0

5u,u1 ,...,uk5vPWV for somek such thatui is linked to ui 11 by a line with an arrow fori
50,...,k21.

Proof: Take a composition series: 05V0,V1,¯,Vk5V. We will prove the result by
induction onk. If k<2, it must be a subquotient of some~anti-!Kac-module, by Lemma 2.4, the
result is obtained. Now supposek>3. Statement~A! is proven first: All primitive weights must
have the same type: typical, singly atypical, or multiply atypical, andWV must be connected. Cas
~a!: V/V1 is decomposable. Decompose it into a direct sum of indecomposable submo
V/V15 % i 51

l Vi8/V1 , then eachVi8.V1 must be indecomposable@if Vi85Vi9% V1 , we would then
write V as a disjoint sumVi9% (S j Þ i Vj8)], and by inductive assumption, for alli, all primitive
weights of Vi8 , which containsV1 , have the same type andWV

i8
is connected, and thus, a
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primitive weights ofV have the same type as that ofV1 andWV is connected. Case~b!: V/V1 is
indecomposable. By inductive assumption, all primitive weights inV/V1 are of the same type an
WV/V1

is connected. This means that (k21) of k primitive weights ofV are of the same type. I
V1 is the only simple submodule ofV, thenVk21 is also indecomposable, and so by inducti
assumption, primitive weights ofVk21 have the same type andWVk21

is connected; or else, ifV

has another simple submoduleV18 , then again by inductive assumption, primitive weights ofV/V18
have the same type andWV/V

18
is connected. In either aspect, another primitive vector ofV linking

to, and having the same type with, the primitive vector ofV1 can be found. Therefore all primitive
weights ofV have the same type andWV is connected. This proves Statement~A!, which implies
~2! and ~4!.

Now ~1! can be proved as above by induction onk. To complete the proof of~3!, by Statement
~A!, we see that all primitive weights are now singly atypical. We divide the proof into three s
Step~i!: SupposeV is cyclic. TakeU15V/V1 and takeU25V2 if V1 is the only simple submod
ule of V, or else,U25V/V18 if V18 is another simple submodule ofV. Then in either case,U1 and

U2 are both cyclic. By inductive assumption,PU1
5fl

( i j ) , PU2
5fm

( i 8 j 8) for somel, m, andPV is
their union. As they are not disjoint, andS is at least in one of them, we see thatPV has the
required form. Step~ii !: For a primitive weightl, let V(l) be the submodule generated by prim
tive vectors with weights infl . By Step~i!, PV(l),fl . For any two weightsl, m, fl andfm are
either the same set or they are disjoint, thus differentV(l) are disjoint. SinceV, being a disjoint
sum of V(l), is indecomposable, we must haveV5V(S). Step ~iii !: SupposeS ( l )¹PV but
S ( i ), S ( j )PPV for somei , l , j . Let W1 andW2 be submodules generated by primitive vecto
with weight S (r ) such thatr . l and r , l , respectively. ThenV5W1% W2 , a contradiction with
that V is indecomposable. Thus we have~3!. j

Remark 2.10:~1! If the primitive vector diagramWV is connected, it is not necessary thatV
is indecomposable~see Remark 3.7!. However, ifV is decomposable, we can always choose so
suitable primitive vectors such thatWV is not connected.
~2! vmPU(G)vl does not mean thatvm is linked to vl as we will see fromX4(l) in Lemma
3.4. j

III. INDECOMPOSABLE WEIGHT MODULES

Now we can classify indecomposable modulesV with a primitive weightL of typical or
singly atypical type. We do this by classifying the primitive vector diagram. IfL is typical, then
by Theorem 2.9,V is simply V̄(L). Thus, from now on, it is supposed thatL is singly atypical.
Then, all primitive weights are singly atypical~again by Theorem 2.9!.

Lemma 3.1:For any primitive vectorvl , there exists at most one primitive vectorvm such
that m,l andvmPU(G)vl ~or m.l andvmPU(G)vl).

Proof: Suppose conversely there exists a cyclic moduleV15U(G)vl of the lowest dimension
such that there are two primitive vectorsvm , vsPV1 with, say,m, s,l. By Theorem 2.9~3!, m,
s<l2. If there is a primitive vectorvdPV1 such thatd.l ~and thend>l1), then by our choice
of V1 being lowest dimensional,V185U(G)vd does not have more than one primitive weig
d1,d. Hence, by Theorem 2.9~3!, if d1,d is a primitive weight ofV18 , then d15d2.l2

>m,s. Thus, if we letV2 be the module generated by$vdud.l, vdPV1 primitive%, thenm, s are
not primitive weights inV2 , sovm , vs are still primitive inV35V1 /V2 . SinceV3 is also a cyclic
module, by our choice ofV1 , we must haveV250, i.e.,V1 is a highest weight module, but b
Lemma 2.4~2i!, V1 cannot contain two primitive weightsm, s. Thus we obtain a contradiction.j

Corollary 3.2: WV does not contain~1! u→v→w, ~2! u→w
→v , ~3! u←v←w, or ~4! v←

u←w.
Proof: This follows immediately from Lemma 3.1@say VW contains~1! or ~2!, then v, w

PU(G)u and their weights are less than the weight ofv]. j

Corollary 3.3: ~1! If vl→vm or vl←vm , thenl5m1 andm5l2. ~2! PU(G)vl
,$l1,l,l2%.

Proof: ~1! Say,vl→vm . Let V15U(G)vl . By Theorem 2.9~3!, if mÞl2, thenm<l (22),
andl2 must also be a primitive weight ofV1 . This contradicts Lemma 3.1.~2! follows from ~1!
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and Lemma 3.1. j

Lemma 3.4:If ~1! vl1→ul

←vl or ~2! ul←
vl→vl2, is a part of the diagram, thenWV must contain

X4(l): vl1→ul←
←vl→vl2.

Proof: First note that inX4(l), vl andul are different primitive vectors, since they genera
different submodules; one has four composition factors, while the other has one compo
factor. Also note thatvl andul cannot be directly linked by our definition~2.1! @Remark 2.10~2!#.
Now suppose converselyV15U(G)vl is cyclic with the lowest dimension such that its primitiv
vector diagram contains, say,~2!, but does not containX4(l). If vl is strongly primitive, thenV1

is a highest weight module and by Lemma 2.4~2.i!, it has at most two composition factors,
contradiction to our assumption that it has at least three composition factors. Thusvl is not
strongly primitive, i.e., there existsvl1 such thatvl1←vl . By Corollary 3.2, we do not have a
primitive vector x such that x←vl1←vl , so vl1 must be strongly primitive. LetV2

5U(G)vl1. If ul¹V2 , then the primitive vector diagram ofV1 /V2 containsul←
ul→vl2 which

violates the choice ofV1 being of lowest dimension. ThusulPV2 , i.e., ulPG21U(G21)vl1,
i.e., vl1→ul , a contradiction. j

Lemma 3.5:If V5X(L) is cyclic, then
~1! WV is one of ~i! vL , ~ii ! vL1←vL , ~iii ! vL→vL2, ~iv! vL1←vL→vL2, or ~v! X4(L).
X4(L) is the only cyclic module containing a primitive vector which is not linked by the gener
vL .
~2! V is uniquely~up to isomorprhisms! determined by its diagram.

Proof: ~1! If vL is not linked to any primitive vector on one side, thenV is a quotient of Kac-
~or anti-Kac-! module, and we have one of~i!, ~ii !, or ~iii !. Suppose nowvL is linked to primitive
vectors on both sides, thenWV contains~iv!. If it is not ~iv!, then there is another primitive vecto
u, by Lemma 3.1, it must have weightL ~and we denoteuL5u). Since both modules
V/U(G)vL1, V/U(G)vL2 are Kac- or anti-Kac-modules, we must haveuLPU(G)vL1 anduL

PU(G)vL2, i.e.,vL1 andvL2 are both linked touL with an arrow pointed touL . By Corollary
3.2,u5uL is unique, i.e., we have~v!. The statement aboutX4(L) is clearly true.~2! Let gL

1 , gL
2

be as in Definition 2.6. By the statements after Definition 2.6,gL
1vL is a primitive vector. Thus if

necessary, by replacingvL1 by gL
1vL , vL2 by gL

2vL , we can supposevL15gL
1vL , vL2

5gL
2vL . This uniquely determinesV in the first four cases. Suppose nowV is ~v!, we can choose

uL5gL1
2 vL1 and gL2

1 vL2 must be a nonzero multiple ofuL , i.e., gL2
1 vL25xuL for some 0

ÞxPC. SupposeV8 is another module with primitive vector diagram~v! ~denote its correspond
ing primitive vectors by the same notation with a prime! and supposegL2

1 vL28 5yuL8 for some
0ÞyPC, yÞx. Form a direct sumV% V8 and letV9 be its submodule generated byvL9 5vL

1vL8 . Then V9 is indecomposable, which contains primitive vectorsvL19 5vL11vL18 , vL29

5vL21vL28 , uL9 5uL1uL8 anduL-5xuL1yuL8 . This contradicts~1!. ~We will see from~4.11!
that x521.) j

In the following, to be consistent, we use the same notations as in Ref. 4.
Theorem 3.6: ~1! WV must be one of the following:~i! X4(L), ~ii ! ~a! X5a(L,k): vL→v1

←v2→¯ ~ended byvk21→vk , or vk21←vk if k is odd or even!, ~b! X5b(L,k): vL←v1→v2

←¯ ~ended byvk21←vk or vk21→vk if k is odd or even!, wherev i has weightL (2 i ).
~2! V is uniquely determined up to isomorphisms byWV .

Proof: For ~2!, Lemma 3.5~2! tells that X4(L) determinesV. As in the proof of Lemma
3.5~2!, X5a(L,k), X5b(L,k) also uniquely determineV. In fact, we can choosev i inductively,
such thatv05vL , v i 215gL(2 i )

1 v1 if v i 21←v i andgL(2 i 11)
2 v i 215v i if v i 21→v i .

~1! @cf. proof of Theorem 4.9~2.ii!.# If V has a submodule corresponding to~i!, denote it byV1 ;
otherwise, letV1 be a maximal submodule whose diagram is~ii ! ~a! or ~ii ! ~b!. If V has more
primitive vectors, chooseB to be its other primitive vectors such thatSvPB dim(V1ùU(G)v) is
minimum. If B is not empty, by Theorem 2.9~4!, there existsvPB linking to V1 . ~i! If V1

5X4(L). By Corollary 3.2, the only possible links are:~a! vL1←v, ~b! v→vL2, ~c! vL1←v
→vL2, ~d! v→uL , ~e! uL←v. For the first three cases,v has weightL. Say we have the mos
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complicated case~c!. We can choosev such thatvL15gL
1v and gL

2v5yvL2, for someyÞ0.
Apply Lemma 3.5~2! to U(G)v, whose diagram isX4(L), we must havey51. Thus if we let
v85v2vL , thenV1ùU(G)v850. By replacingv by v8 in B, we get a contradiction with the
choice ofB. Similarly, for other cases, we can also choose some primitive vectorv9PV1 such that
if we replacev by v2v9 we obtain a contradiction with the choice ofB. Therefore,B is empty,
andV5X4(L). ~ii ! As V1 is maximal, by Lemma 3.4 and Corollary 3.2,v cannot be linked tovL

or vk . Also by Corollary 3.2,v cannot be linked to a vectorv2i of X5a(L,k), or v2i 21 of
X5b(L,k). On the other hand, ifv is linked to a vectorv2i 21PX5a(L,k) or v2iPX5b(L,k), then
v must be linked to that vector with an arrow pointed to it. Then as in~i!, by replacingv by v
2v9 for somev9PV1 , we can get a contradiction. Thus again,B is empty and we have~ii !. j

Remark 3.7:Diagrams such asu←w
←u andw→

v→ u can exist, but they correspond to decomposa
modules: by replacingw by w2v, we see thatw is not linked tou, v ~see Remark 2.10!. j

It is not difficult to constructX5a(L,k),X5b(L,k) as follows: in the moduleV̄* ((L2) low))
% V̄(L2), whose diagram has two parts:←vL28 ,vL29 →, ‘‘joining’’ two primitive vectors
vL28 ,vL29 , into one, by letting vL25vL28 1vL29 , we obtain X5b(L,3)5U(G)vL2. Now
X5b(L (22i ),3) has diagramvL(22i )8 ← vL(22i 21)→vL(22i 22)9 . By taking a quotient module, by
‘‘merging’’ vL(22i )8 ,vL(22i )9 into one, we obtainX5b(L,2k)5 % i 50

k X5b(L (22i ),3)/% i 51
k U(G)

3(vL(22i )8 2vL(22i )9 ) . Modules X5a(L,k),X5b(L,2k11) can be realized as subquotients
X5b(L,l ) for some l. To construct X4(L), form an induced moduleV̂(L)5IndG0

G V0(L)

5U(G) % U(G0)V
0(L)>U(G21) % U(G11) % V0(L). ~Note that this module is in general decom

posable, therefore not cyclic. However a cyclic module can be realized as its quotient modul! We
are not going to realizeX4(L) to be a quotient module ofV̂(L), but as a submodule ofV̂(L1

22r1): let vL122r1
be the highest weight vector inG0-module V0(L122r1), then vL1

5gvL122r1
@whereg is the highest root vector inU(G11)] is a strongly primitive vector with

weight L1, which generates Kac-moduleV̄(L1). It is clear that there must exist a primitiv
vectorvL in V̂(L122r1) such thatvL1←vL . By Lemma 3.4 and Theorem 3.6,vL generates a
module corresponding toX4(L) @see also~4.11!#.

We see that just as any anti-Kac-module is isomorphic to some Kac-module,X5b(L,2k11) is
isomorphic to X5a(S,2k11) for some S ~in fact, (S (22k21)) low52L). To see that
X4(L),X5a(L,k),X5b(L,k) are indecomposable: supposeV5V1% V2 is a disjoint sum, then each
simple submodule must be contained inV1 or V2 , and then we can obtain that all primitive vecto
must be in one, say,V1 , andV5V1 . Now we can conclude the following:

Theorem 3.8: $V̄(L)uLtypical%ø$X4(L),X5a(L,k),X5b(L,2k)ukPZ1\$0%% is the complete
set of indecomposable modules with at least a primitive weight of typical or singly atypical

Proof: It remains to prove there is no isomorphism between each other. This can be se
comparing number of simple submodules and number of composition factors. j

IV. INDECOMPOSABLE GENERALIZED WEIGHT MODULES

Now supposeV is an indecomposableG-module such thatH acts onV not necessarily
diagonally. Such a module is called a generalized weight module~in Ref. 4, it is called a module
with nondiagonal Cartan subalgebra, or nondiagonal module!. In this case, we do not have weigh
space decomposition. However, by the properties of semisimple Lie algebras, we see thatV must
be H0 diagonal, whereH0 is the Cartan subalgebra ofG08 ~where, here and after,G08 is the
subalgebra ofG0 with co-dimension 1 such thath0¹G08) with a basis$hi u iÞ0%. We have

V5 % lPH* Vl , ~4.1!

where Vl5$vPVu(h2l(h))kv50 for some kPZ1%. Vl are called generalized weight
spaces. With this decomposition, we have, similar to Sec. II, notions ofgeneralized~strongly!
~anti-! primitive vectors~weights!, generalizedprimitive vector diagram, etc. In the following, w
often omit the wordgeneralizedif there is no confusion.
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We can take a composition series

05V~0!,V~1!,¯,V~k!5V, ~4.2!

such that eachV( i ) is a direct sum of subspaces

V~ i !5V~ i 21!
% V̄~ i !, ~4.3!

whereV̄( i ) is aG08 module. Then eachV̄( i ) has a unique, up to scalars, generalized primitive vec

v
l̄ i

( i )
with some weightl i . Sometimes, we can just choose~4.2! to be any series of submodule

such that~4.3! holds.
Definition 4.1:For an integral dominant weightL, construct an indecomposable module, t

generalizedKac-moduleV̄(L,k),kPZ1\$0%, as follows: It is a semidirect sum ofk copies of
V̄(L), such that each copy is aG08% G21 module, and

h0vL
~ i !5L~h0!vL

~ i !1vL
~ i 21! , i 52,...,k, ~4.4!

wherevL
( i ) belongs to thei th copy of V̄(L). As V̄(L) is the induced module, it is easy to chec

that V̄(L,k) is well defined as an indecomposableG module. Similarly, we can define generalize
anti-Kac-moduleV̄* (2L,k). j

Note that ifL is singly atypical, thenV̄(L,k) has the ‘‘zigzag’’ primitive vector diagram suc
that

vL
~ i !→vl2

~ i !

vl
~ i 21! →

......

↙
vl2

~ i 21! . ~4.5!

Remark 4.2:If L is typical, V̄(L,k) give us examples that there may exist a primitive vec
vL such that it is not linked to any primitive vector, butU(G)vL is not simple and that an
indecomposable module may not correspond to a connected primitive vector diagram. The
more care should be taken when one considers generalized weight modules. We shall
Lemmas 4.5~2! and 4.6~3! that this does not happen ifL is singly atypical. j

Definition 4.3:Define a partial order on generalized primitive vectors: we sayv has ahigher
level thanu or v is on top of u⇔uPU(G)v, but v¹U(G)u. j

We see that the generalized primitive vectors ofV̄0(L,k)5V̄(L,k) are well ordered by this
partial order. Now ifL is singly atypical, by removing the top vectorvL

(k) , removing the bottom
vectorvL2

(1) , and removing both top and bottom vectorsvL
(k) ,vL2

(1) , respectively, we obtain thre

indecomposable modules:V̄1(L,k)5U(G)vL2
(k) ,V̄2(L,k)5V̄(L,k)/U(G)vL2

(1) , and V̄3(L,k

21)5U(G)vL2
(k) /U(G)vL2

(1) . We see the generalized anti-Kac moduleV̄* (L2) low ,k) can be

realized asV̄3(L,k), a subquotient of the generalized Kac-moduleV̄(L,k11).
Lemma 4.4:SupposeV is a ~generalized! highest weight module with highest weightL ~i.e.,

V is generated by a generalized strongly primitive vectorvL). ~1! If L is typical, thenV

>V̄(L,k) for somek. ~2! If L is singly atypical, thenV is a quotient ofV̄(L,k) for somek. More
precisely,V5V̄i(L,k), i 50 or 2.

Proof: First, asU(G)5U(G2)U(H)U(G1), we see thatV5U(G2)U(H)vL does not have
weight.L. Let V be as in~4.2!. We use induction onk. If k51, the result is obvious. Suppos
now k>2. As V85V/V(1) is still a highest weight module, by inductive assumption, it has
required form. IfL is typical, thenV85V̄(L,k21), and therefore by~4.4!, we can inductively
choose spacesV̄( i ) in ~4.3! as a copy ofV̄(L) with the primitive vectorvL

( i ) , i 5k, k21,...,2,
such that
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h0vl
~ i !5L~h0!vl

~ i !1vl
~ i 21!1v i for some v iPV~1!, ~4.6!

where we takevL
(1)50 wheni 52. As all vL

( i )PVL , we havev iPVL , i.e., v i has weightL. By
replacingvL

( i 21) by vL
( i 21)1v i @and replacing spaceV̄( i ) by U(G21)U(G08)(vL

( i 21)1v i) accord-
ingly#, we can supposev i50 if i .2. If v2Þ0, denote it byvL

(1) , then we have~4.4!, and thus
V5V̄(L,k) and the result follows. On the other hand, ifv250, thenV95S i 52

k V̄( i ) is a submod-
ule of V andV5V(1)

% V9, a contradiction with thatV is a highest weight module. This proves~1!.
For ~2!, asV8 has the required form, without loss of generality, sayV85V̄2(L,k). Then as space
it is the direct sum of (k21) copies ofV̄(L) plus V(L). Now again chooseV̄( i ) to be a copy of
V̄(L) for i>3 andV̄(2)5V(L) @in this case,~4.2! is not a composition series#. Now follow the
arguments exactly as above, we have~4.4! for i .53. TakevL2

( i ) to be the other primitive vecto

in V̄( i ) for i>3. Then we have~4.5! for i 5k,...,3. Now wemust haveV̄(1),V-5U(G)vL
(2)

~otherwise,V5V̄(1)
% (S i 52

k V̄( i )) is decomposable!. It remains to proveV-, which is now as
spaceV̄(1)

% V̄(2), is V̄(L) @and thenV5V̄(L,k)]. This follows from Lemma 4.5~3!. j

The following Lemma 4.5 tells that, unlike the typical case, for atypical weightL, one does
not have an indecomposable module whose composition factors arek copies ofV(L).

Lemma 4.5:~1! SupposeV is a ~generalized weight! module whose composition factors arek
copies ofV(L) with L typical or singly atypical, then~i! if V is indecomposable, then eitherk

51, or else,L is typical andV5V̄(L,k); ~ii ! if L is singly atypical, thenV is the direct sum of
k copies ofV(L) ~and thus,V is a weight module!.
~2! If vL is a primitive vector with singly atypical weightL such that it is not linked to any
primitive vector, thenU(G)vL is simple.
~3! If V is an indecomposable module with two composition factors of singly atypical type,
V is a Kac-~or anti-Kac-! weight module.

Proof: ~1! Let ~4.2! be a composition series ofV. By induction onk, we see that we only nee
to prove the result fork52. ~i! If L is typical, it is easy to see, as in the proof of Lemma 4
V5V̄(L,2). ~ii ! Suppose nowL is singly atypical, letvL

( i ) , i 51,2, be the primitive vectors ofV
and suppose

h0v ~1!5L~h0!v ~1!, h0vl
~2!5L~h0!vL

~2!1avL
~1! for some aPC. ~4.7!

Note that, inU(G), for G5sl(m/n), using notations in Sec. II, we have

)
2m< i<0< j <n

ei j )
2m< i<0< j <n

f i j 5s )
2m< i<0< j <n

~Sk5 i
0 hk2Sk51

j hk2 i 2 j !1g1, ~4.8!

for someg1PU(G)G1, wheres561 @this can be proved by orderingei j ( f i j ) properly in the
products, such that ifj 2 i . j 82 i 8, or j 2 i 5 j 82 i 8 and j . j 8, thenei j ( f i j ) is placed to the right
~left! of ei 8 j 8 ( f i 8 j 8 respectively!; then using induction onm, n#. We have

U~G!G1vL
~2!50, )

2m< i<0< j <n
f i j vL

~2!50. ~4.9!

~The left-hand side of the second equality, having weightL22r1 , is in the bottom composition
factorV(L2) of V̄(L), any copy ofV(L) does not have a vector with weightL22r1 ; therefore
it is zero inV). Now apply~4.8! to vL

(2) , using~4.9! and ~4.7!, one obtains

05 )
2m< i<0<n

~L1r,a i j !vL
~2!1 (

2m< i<0< j <n
)

2m< i 8<0< j 8<n,~ i 8 j 8!Þ~ i , j !

~L1r,a i 8 j 8!avL
~1! .

~4.10!
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However, by Definition 2.2, there is exactly one atypical root, i.e., one pair of~i, j! such that
(L1r,a i j )50, thus~4.10! forcesa50. This provesV5U(G)vL

(2)
% U(G)vL

(1)5V(L) % V(L).
~2! Let V5U(G)vL be as in~4.2!. If k.1, using induction, we can supposeV/V(1) is simple, i.e.,
k52. By ~1!, two composition factors cannot be the same, but then as in~4.6! ~for i 52) and the
arguments after~4.6!, we see thatU(G)uL is a weight module. AsvL is not linked to any
primitive vector, by Theorem 2.9,V has to be simple~and sok52 does not occur!. ~3! The proof
is the same as~2!. j

Now we have the generalized weight modulesV̄i(L,k) and X5a(L,k), X5b(L,k), whose
diagrams have twoend points~i.e., vectors linked by only one vector!. Such diagrams are calle
lines. We can ‘‘join’’ and ‘‘merge’’ those modules to form other indecomposable modules ju
we did to form X5b(L,k) in Sec. III. In particular, we can define a moduleX4(L,k,l ,x) (k,l
>2,0ÞxPC) as follows: LetX3(L,k,l )5(V̄1(L1,k) % V̄2(L,l ))/U(G)(vL

(1)2vL8
(1)) ~with obvi-

ous meanings of notations! be the quotient module@by ‘‘merging’’ the two bottom end points

vL
(1)PV̄1(L1,k) andvL8

(1)PV̄2(L,l )]. ThenX4(L,k,l ,x) is the submodule ofX3(L,k,l ) gener-
ated byvL

(k)1xvL8
( l ) ~by ‘‘joining’’ the two top end points!. By this construction, one sees th

X4(L,k,l ,x) is indecomposable, generated by a primitive vector, therefore cyclic. Its diagram
circle, i.e., no end points. It is interesting to see thatX4(L) can be realized as

X4~L!5X4~L,2,2,21!. ~4.11!

This is because: ifx521, when we ‘‘join’’ the top end points, the second term of the right-ha
side of~4.4! is lost, and soh0 becomes acting diagonally. We point out that only with a circle,
x makes difference: Just as in Sec. III, we can choose suitable primitive vectors starting f
vectorvl1

of the primitive vector diagram~we always choosevl1
to be an end point if it is a line!,

and follow the links between vectors, such that ifvl→vm , thengl
2vl5vm and if vl←vm , then

vl5gm
1vm . But within a circle, the last vectorvlk

we chose is linked to the first one and in th

case, say,vlk
←vl1

, we may havegl1

1 vl1
5xvlk

for somexPC\$0%. By rescaling vectors, we se

that x can be shifted anywhere, but cannot be eliminated if the diagram is a circle.
It is interesting to see that we can ‘‘add’’ a primitive vector to a circle to break it into a l

In the above construction,X3(L,k,l ) can be obtained by addingvL
(k) to X4(L,k,l ,x).

Lemma 4.6:~1! Let V be a cyclic module with a primitive weightL of typical or singly
atypical type, then all generalized primitive weights have the same type. Furthermore,V must be
~i! V̄(L,k) if L is typical or ~ii ! a quotient of someX4(S,k,l ,x), whereS5L ( i ) for some i
521, 0, 1~and so its diagram is obtained fromX4(S,k,l ,x) by removing some vectors from th
bottom! if L is singly atypical.
~2! If L is singly atypical andV5X(L) is cyclic, thenPVP$L1,L,L2%.
~3! If V is an indecomposable module with a singly atypical weight, thenWV is connected.

Proof: ~1! Take a composition series 05V0,V1,¯,Vj5V. First as in the proof of Theo-
rem 2.9, by induction onj, we can prove that all generalized primitive weights have the same t
Now if j 51, we clearly have the result. Supposej >2. ThenV/V1 is still cyclic, by inductive
assumption, it has the required form. Now follow exactly the same arguments as in the pr
Lemma 4.4, we have the result.~2! follows from ~1!. ~3! By ~1!, diagrams for cyclic modules ar
connected. IfWV is not connected, two submodules generated by primitive vectors in two dis
parts are disjoint andV is their disjoint sum. j

In V̄(L,k), all vL2
( i ) have weightL2,L, thus, Lemma 3.1 does not hold for generaliz

weight modules; and we havevL2
( i ) PG21U(G2)U(H)vL

(k) , but vL2
( i ) ¹G21U(G2)vL

(k) if i ,k,
thus by ~2.1!, vL2

( i ) is not linked by the generatorvL
(k) if i ,k. However, from the structure o

primitive vector diagrams of cyclic modules in Lemma 3.6, we see that Corollary 3.2 still h
for generalized primitive vector diagrams. Now similar~but not exactly! to Ref. 4, we define

Definition 4.7: ~1! A chain is a triple (C,L,x), whereL is a singly atypical weight,C is a
finite set:C5$v1 ,...,vk%,xPC, such thatv i has a weightl i5L ( l ) for somel and there are links
with arrows between elements inC, such that
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~i! each elementv is linked by at most two elements, and in this case, it can only be one o~a!
←v→, ~b! →v←, ~c! v→

← , ~d! ←
→v ~accordingly,v is called atop, bottom, left, right, point!;

~ii ! If v i is linked tov j with an arrow pointed to it, thenv i is not derived fromv j ~we sayv is
derived from u if there existv5u0 ,u1 ,...,ut5u such thatui 11 is linked to ui with an arrow
pointed to it fori 50,...,t21);
~iii ! C is connected;
~iv! if v i is linked tov j from the left, thenl i5l j

1 ;
~v! if v i is a leftmostelement, i.e., there are no elements linked to it from left side, thenl i5L;
~vi! x50 ⇔ there are two end points.
~2! A subchain of (C,L,x) is a subset ofC together with the weight, the original relationsh
between the elements.
~3! An isomorphism between two chains (C,L,x) and (C8,L8,x8) is a bijectionC→C8 which
preserves weight, linking relationship, andx5x8.
~4! An anti-isomorphism between (C,L,x) and (C8,L8,x8) is a bijectionf: C→C8 such that~i!
u←v ⇔ f(v)→f(u), and u→v ⇔ f(v)←f(u); ~ii ! if a rightmost element ofC8 has the
weight l, thenl low52L; ~iii ! x5x8. j

Remark 4.8:~1! For a chain (C,L,x), we can break it, at top and bottom points, into piec
of subchains according to the rule: if←vl→ ~or →ul←), then we break at the pointvl ~or ul)
into ←vl8 ,vl9→ ~or →ul8 ,ul9←, respectively!. Then each piece is corresponding to som

V̄i(L
( j ),l ). If we only break it at the bottom points, then each piece corresponds to a c

module. This gives us a better understanding of what a chain is.
~2! If a chain is a line, then conditions~ii ! and~iv! are unnecessary as~ii ! cannot happen and w
have a unique way to associate with eachv i a weightl i such that~iv! is satisfied.

~3! Examples of non-chains:

~it violates ~iv!!. j

We see that the primitive vector diagrams of all indecomposable modules introduced
now are chains. Now we can prove the main result of this section.

Theorem 4.9: ~1! For any chain (C,L,x), there is a unique indecomposable generaliz
weight G moduleX(C,L,x) corresponding to it.
~2! If V is an indecomposable generalized weight module with a primitive weightL of typical or

singly atypical type, then~i! V5V̄(L,k) if L is typical, or ~ii ! there exists a unique chai
(C,L,x), up to an~anti-! isomorphism, such thatV5X(C,L,x) if L is singly atypical.

Proof: ~1! Break the chain as in Remark 4.8, letV8 be the direct sum of allV̄i(L
( j ),l )

obtained. Then for each pair oful8 ,ul9 , we can ‘‘merge’’ them into oneul ~this is a bottom point!
by taking quotientV8/U(G)(ul82ul9) and letV9 be this quotient module; and for each pair
vl8 ,vl9 , we ‘‘join’’ them into onevl ~this is a top point! by letting vl5vl81avl9 ~wherea5x if
xÞ0 andvl is the last vector to be joined in order to form the circle; or otherwise,a51). Now
let X(C,L,x) be the submodule ofV9 generated by all ‘‘joined’’ vectorsvl ~all top points!. Then
we seeX(C,L,x) is corresponding to (C,L,x). By the statements following~4.11!, we see that it
is uniquely determined by (C,L,x). To see it is indecomposable, suppose it is a direct sum
submodulesV1% V2 . If vl plus a linear combination of other vectors inC with weightl belongs
to V1 , then by Lemma 4.6~1.ii!, all vectors derived fromvl is in V1 ; asC is connected, all vectors
in C must also be inV1 ; thusV250.
~2! ~i! Let V8 be the submodule generated by$vlPCul singly atypical~if any!%, and letV(l) be
the submodule generated by$vPCuv has weightl% if l is typical. Then by Lemma 4.6~1.i!, V
5 % $l typical%V

(l)
% V8 is a direct sum, thusV5V(L). Now by Lemmas 4.6~1.i! and 4.5~1.i!, we

haveV5V̄(L,k).
~ii ! @cf. proof of Theorem 3.6.~1!# We want to prove Statement~A!: For any generalized weigh
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moduleV, we can chooseWV such that it is a union of pieces of disconnected subdiagrams,
subdiagram is a chain. Then by Lemma 4.6~3!, we have the result. Now letV have a composition
series as in~4.2!. If k<2, ~A! follows immediately from Lemma 4.5. Assume nowk>3. By
induction, supposeWV(k21) satisfies~A!. Let v be a primitive vector corresponding toV/V(k21).
Thenv is not derived by any primitive vector. To understand it better, we prove~A! case by case
Using Corollary 3.2, we consider all possible cases below. Case~a!: If v is not linked toWV(k21),
thenv itself is a piece of chain. Thus we have~A!. Case~b!: If v is linked toWV(k21) only on the
right-hand side, then there is a uniqueu in a piece ofWV(k21) such thatu←v. Thus, there does no
existu8 such thatu8←u. ~b.1!: If there isv8PWV(k21) such thatu←v8, then we can replacev by
v2v8 so thatv is now not linked toWV(k21). This becomes~a!. ~b.2!: It remains thatu is either
a left top end point:u→w, or a right bottom end point:w→u. Then we see thatv can be added
to that piece so that we haveu→w

←v or w→u←v, and it is still a chain. Thus we have~A!. Case~c!:
Similar to ~b!, if v is linked toWV(k21) only on the left-hand side, we have~A!. Case~d!: If v is
linked to WV(k21) on both sides, i.e., there are uniqueu, wPWV(k21) such that we have Diagram
~D.1!: u←v→w. ~d.1!: If u, w belong to two different pieces of chains, then as in~a! and~b!, by
a suitable choice ofv and rescaling primitive vectors if necessary, eitherv can be added to one
piece, or we can link two pieces throughv into one piece of chain. Thus we have~A!. ~d.2!:
Finally supposeu andw are in the same piece of chain. In this case, supposev has weightl, and
u5gl

1v, gl
2v5xw for somexÞ0. ~d.2.1!: If there is v8PWV(k21) such that we have Diagram

~D.2!: u←v8→w. ~d.2.1.i!: If x51. Replacev by v2v8, thenv is not linked to any one. This
becomes~a! and we have~A!. ~d.2.1.ii!: If xÞ1, by replacingv by v2v8 and replacingv8 by
xv2v8, when we addv into that piece, from~D.1! and ~D.2!, we see that~D.2! is broken into:
u←v8,v→w ~cf. the statement before Lemma 4.6!. Therefore it is still corresponding to a piec
of chain~or two pieces of chains if that piece becomes disconnected!. Thus we have~A!. ~d.2.2!:
If there existsv8PWV(k-1) such thatv8→w, but notu←v8 or there existsv9PWV(k21) such that
u←v9 but notv9→w, or if both, by replacingv by v2v8, or v2v9, or v2v82v9, we see that
~D.1! becomesu←v or v→w, or v. This becomes~b! or ~c! or ~a!. ~d.2.3!: It remains thatu is
either a right bottom end pointt→u or a left top end pointu→t andw is either a left bottom end
point w←x or a right top end pointx←w. From~D.1!, we see thatv can be added to it so that w

havet→u←v→w←x or t→ux←
←v→w, or u→t

←v→w←x or u →t
x↙

↙v↘
w and it is still a chain. Thus we

have~A!. This completes the proof of Statement~A!. j

Remark 4.10:By applying the above results tosl(m/1), as all primitive weights ofsl(m/1)
are typical or singly atypical, all finite dimensional~weight or generalized weight! sl(m/1) mod-
ules, have been efficiently classified. j
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For a quantum field living on a nonstatic space–time no instantaneous Hamiltonian
is definable, for this generically necessitates a choice of inequivalent representation
of the canonical commutation relations at each instant of time. This fact suggests a
description in terms of time-dependent Hilbert spaces, a concept that fits naturally
in a ~consistent! histories framework. Our primary tool for the construction of the
quantum theory in a continuous-time histories format is the recently developed
formalism based on the notion of the history group. This we employ to study a
model system involving a 111 scalar field in a cavity with moving boundaries.
The instantaneous~smeared! Hamiltonian and a decoherence functional are then
rigorously defined so that finite values for the time-averaged particle creation rate
are obtainable through the study of energy histories. We also construct the
Schwinger–Keldysh closed-time-path generating functional as a ‘‘Fourier trans-
form’’ of the decoherence functional and evaluate the correspondingn-point func-
tions. © 2000 American Institute of Physics.@S0022-2488~00!00102-X#

I. INTRODUCTION

The consistent histories approach1–4 was mainly devised as an alternative point of view
quantum phenomena, providing a more convenient language for the treatment of individual,
quantum mechanical systems. While its physical predictions exactly agree with the ones o
dard quantum mechanics~arguably even for the case of the paradoxes connected to the mult
ity of the consistent sets!, its internal structure is somehow distinct. While standard quan
mechanics~in its Heisenberg version! incorporates kinematics through Hilbert space operat
dynamics through a Hamiltonian and initial conditions~probability assignment! through a state
~density matrix!, in the history theory histories~or history propositions! provide the kinematics,
with state and dynamics being encoded in a new object: the decoherence functional.

This is a complex valued functiond(a,a8) of pairs of histories, whose role is the assignme
of probabilities. If for any set of histories, the decoherence condition,

d~a,a8!50, ~1.1!

is satisfied foraÞa8, then a probability measure exists in this set given by

p~a!5d~a,a!.

A mathematically elegant formalism for histories has been developed by Isham
collaborators.5,6 In this formulation histories can be identified with projection operators o
Hilbert space. In standard systems this is constructed from the tensor product of the sing
Hilbert spaces, that characterize the canonical theory. Besides providing a characteriza
consistent histories as temporal quantum logic, this formalism highlights the similarity to

a!Electronic mail: charis@physics.umd.edu
6170022-2488/2000/41(2)/617/21/$17.00 © 2000 American Institute of Physics
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closest classical analog, stochastic processes. An important feature of this construction
these single-time Hilbert spaces need not be isomorphic~or carry isomorphic structures such a
unitarily equivalent group representations! to each other.

This seems particularly suited for the study of quantum field theories in nonstatic backgr
for the following reason: The Hilbert space that defines the quantum theory correspondin
particular classical system is constructed from the study of the representations of the can
group~for the general scheme, see Ref. 7!. For linear systems this is the familiar Weyl group, t
Lie algebra of which is defined by the canonical commutation relations. When considering
we have to deal with an infinite dimensional Lie group, which will admit many unitarily inequ
lent representations. The natural way to proceed would be to select a representation, in wh
Hamiltonian can be defined as a concrete self-adjoint operator. When this is attempted for fi
a nonstatic background, one realizes that at different times one has to admit unitarily inequ
representations of the canonical commutation relations. This implies the nonexistence of
stantaneous Hamiltonian. Rather than abandoning the definition of a Hamiltonian, the his
approach provides a possibility of welding these representations together in order to cons
well-definedfinite quantum theory describing such systems.

Two recent developements provide insight necessary for dealing with this case. In a se
papers Ishamet al. analyzed the kinematical structure of the Hilbert space describing continu
time histories.8,9 The main ingredient has been the history group, the analog of the canonical
in the histories context. Its Lie algebra for the case of a particle at a line is

@xt ,pt8#5 i\d~ t,t8!. ~1.2!

The time indext does not here refer to the dynamics of the system, as generated by a Hamilt
but is an index labeling the instant of time at which a proposition~for instance corresponding t
the generators! is asserted. Equation~1.2! is formally similar to the canonical algebra for a
11 field theory and as such admits many unitarily inequivalent representations. A guiding
ciple for a selection of a representation has been the definability of an instantaneous Hamilt9

Accepting continuous time implies that all history propositions are about quantities smeare~av-
eraged! in time. This again suggests that if we demand the existence of a smeared, instant
Hamiltonian, we might be able to obtain a unique representation of the history algebra corre
ing to a quantum field in nonstatic background.

This we shall show that can be relatively straightforwardly achieved through a simple g
alization of the results of Ref. 9. But then we should need a guiding principle for the constru
of the decoherence functional, since the corresponding canonical theory is not well defined
has come from a recent result by Savvidou; the discernment of two laws of time transform
~and corresponding time parameters! in the backbone of the structure of history theories.10 One
parameter is associated with the background temporal structure and describes how one
from one single-time Hilbert space to another~Schrödinger time!. The other incorporates th
effects of the actual dynamics~Heisenberg time!. Taking this as a fundamental property that oug
to be reflected in all objects of our theory, we have been able to expand on a previous
result8 and identify three pieces out of which a physical decoherence functional is constru
These pieces we call the Schro¨dinger operator, the Heisenberg operator, and the boundary o
tor. They correspond respectively to the aforementioned times and the initial state.

This result enables us then to write afinite decoherence functional for a model case we stu
in this paper; a 111 field in a cavity with moving boundaries. This is sufficiently general to pro
the main point; that a history theory based on the physical principle of the existence
instantaneous Hamiltonian rigorously exists and can provide finite values for the probab
assigned to histories.@One can view these results as a direct consequence of the existence
notions of time transformation in history theory compared to the unique one of canonical qua
mechanics. In the canonical theory the nonhomogeneity of time transformations reflects it
the nonexistence of the corresponding generator. In the history version it is only the gener
kinematicaltime transformations, related to the space–time causal structure~the Liouville opera-
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tor of Ref. 10! that need not exist, while the other~the Hamiltonian! does exist, and it is the on
that determines the representation space of the theory.# In addition, we establish that th
Schwinger–Keldysh closed-time-path~CTP! generating functional11 is equal to the decoherenc
functional evaluated at pairs of elements of the history group. Hence we are able to co
n-point functions and get into contact with the results of the more familiar canonical treatm

The generalization of these results to general space–times is technically straightforwa~by
demanding the existence of the Ashtekar–Magnon Hamiltonian12!, but for one thing. Our theory
should be independent of the choice of the time variable employed in the definition of the H
tonian. This means that changes of foliation should be generically implemented by a u
operator on the history Hilbert space.13 Such a proof of unitary implementation for the gene
case is quite more demanding and necessitates a different set of techniques from the o
employ in this paper. We therefore defer it to a future work. Here we shall restrict ourselves
convenient choice of the background Minkowski time, which in any case is relevant fo
discussion of the time-dependent Casimir effect.

II. STRUCTURE OF DECOHERENCE FUNCTIONAL

All physical histories can be represented by elements of a lattice of propositions5 and in the
familiar case of standard quantum mechanics they are realized by projection operators on a
spaceF which is the tensor product of the single time Hilbert spaces,

F5Ht1
^ Ht2

^¯^ Htn
. ~2.1!

In Ref. 6, the most general form of a decoherence functional satisfying the relevant a
has been constructed. It is in one to one correspondence with particular class of operatorX that
act onF^ F. Explicitly,

d~a,a8!5TrF^ F~Pa ^ Pa8X!. ~2.2!

This is an important result, enabling a mathematical classification of decoherence functiona
what would be more interesting for physical applications is the construction of the decohe
functional in terms of operators acting solely onF. ~This has been done for a special case in R
8.! The reason for that is the possibility of having a physical interpretation and understandi
such objects. This would enable the construction of the decoherence functional even wh
having the reliable guide of a corresponding canonical theory. This is what we shall undert
this section.

Our starting point is the standard form of the time symmetric decoherence functional4

d~a,a8!5TrH~Ca8
† r fCar0!/Tr~r fr0! ~2.3!

with Ca5Pan
(tn)¯Pa1

(t1) in terms of the Heisenberg picture projectors and the trace is
formed within the single-time Hilbert spaceH. Recall that the standard form can be obtained
settingr f51.

It is easy to verify6 that the above expression can be written in the form

Tr^
i 51
4 Hi

~Ca8
†

^ r f ^ Ca ^ r0S4!/Tr~r fr0!, ~2.4!

whereS4 is an operator acting onH ^ H ^ H ^ H as

S4~ uv1& ^ uv2& ^ uv3& ^ v4&)5uv2& ^ uv3& ^ uv4& ^ uv1&. ~2.5!

Tracing independently over the second and fourth Hilbert space in~2.4! we get the expressio
TrH ^ H(Ca8

† ,^ CaZ), where
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Z5TrH2^ H4
~1^ r f ^ 1^ r0!S4 /Tr~r fr i ! ~2.6!

in an obvious notation. The matrix elements ofZ in an orthonormal basisu i & ^ u j & of H ^ H are
easily computed,

^mluZu i j &5~r f !m j~r0!ki /Tr~r fr0!. ~2.7!

This can be written in the form

^mluZu i j &5(
rs

@~r f
1/2!mr~r0

1/2!si#@~r f
1/2!r j ~r0

1/2! ls#/Tr~r fr0!, ~2.8!

hence

Z5(
rs

A~r ,s!
^ ~A†!~r ,s! ~2.9!

with A(rs) operators onH with matrix elements

^ i uA~rs!u j &5@~r f
1/2! ir ~r0

1/2!s j#/~Tr~r fr0!!1/2. ~2.10!

Since the history operators are trace-class and theA’s bounded, the decoherence functional can
written

d~a,a8!5(
rs

TrH~Ca8
† A~rs!!TrH~CaA†~rs!!. ~2.11!

In the above expression the decoherence functional has separated in different traces the c
tion of each of the pair of histories. If in each of those traces we employ the technique we u
derive ~2.4! we obtain

d~a,a8!5(
rs

TrF@U†PaUA†~rs!RSR#TrF@U†Pa8UA~rs!S#, ~2.12!

where

Pa5Pa1
^¯^ Pan

~2.13!

is the projector onF corresponding to the history propositiona and similarly forPa8 . Also,

U5U1^¯Un5e2 iHt 1^¯^ e2 iHt n, ~2.14!

A~rs!5A~rs!
^ 1^¯^ 1, ~2.15!

~2.16!

and the operatorsS andR are defined in terms of their action,

S~ uv1& ^¯^ uvn&)5uv2& ^ uv3& ^¯^ uv1&, ~2.17!

R~ uv1& ^¯^ uvn&)5uvn& ^ uvn21& ^¯^ uv1&. ~2.18!

Before discussing the physical significance of these operators let us recast our express
a more elegant and suggestive form. Let us by]2F and]1F denote the past and future ‘‘bound
ary’’ of F, that is the Hilbert spacesHt1

and Htn
in the case of discrete histories we ha

considered in this section. IfH is the space of continuous linear maps]2F→]1F thenA can be
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viewed as a linear map fromF to H. Checking thatRSR5S† and assuming the initial and fina
times to be the ones at whichr0 andr f are defined our expression~2.12! reads

d~a,a8!5TrH@TrF~U†PaU~SA!†!TrF~U†Pa8U~SA!!#, ~2.19!

hence the operatorX of ~2.2! is given by

X5TrH~UA†S†U†
^ USAU†!. ~2.20!

Interpretation. It is clear from the discussion above that three are the important ingred
entering in the construction of the decoherence functional.

~1! The unitary operatorU in which the contribution of the dynamics in the evaluation of pro
abilities are contained. Its action is to provide the weight in the probabilities due to
evolution, or, rather heuristically, to turn the projection operators into Heisenberg pi
ones. Note that this operator can be similarly defined even when the Hamiltonian is
dependent.

~2! The operatorS. As can be seen from its definition it encodes the temporal structure~in the
sense of partial ordering! of the history theory. In the standard~discrete time! case we have
examined, it can be readily verified to be unitary, but it seems reasonable that this con
could be relaxed in certain generalizations.~What we have in mind is space–times that are
globally hyperbolic, as possibly involving topology change.! A sufficient condition for the
finiteness of the traces in~2.19! is that S is bounded, which follows trivially when being
unitary. Note that also by its definition TrS51.

~3! The linear mapA. It essentially contains the contribution of the initial and final states, tha
the weight given to probabilities by the particularly boundary conditions. In the standard
it is a trace-class operator but in general~as in our particular examples later! we can dispense
with even its~strong! continuity. Given our previous assumptions forU and S a sufficient
condition onA for the finiteness of the traces is the

Weak continuity condition:

~1! TrH(A†A):F^ F̄^ F^ F̄→C is continuous.
~2! For anyuf1&,uf2&PH,^f1uAuf2&:F→C is continuous.

For purposes of easy reference we shall henceforward callU the Heisenberg operator,S the
Schrödinger operator, andA the boundary operator.

Casting the decoherence functional in the form~2.19! can be seen as a step of departure
constructing generalized history theories. A nontrivial generalization is when the single-time
bert spaces are not the same. The change is then included in the operatorS which contains
information about the welding of the unequal time Hilbert spaces together in the history H
spaceF. If there exists~physically justifiable! identification maps between the Hilbert spacesHti
~to keep full generality this does not have to be structure preserving!, i.e., a family of maps,

I ~ t i ,t j !:Ht j
→Hti

, ~2.21!

then the Schro¨dinger operator can be defined as

S~ uv1& ^ uv2& ^¯^ uvn&)5I ~ t2 ,t1!uv1& ^ I ~ t3 ,t2!uv2& ^¯I ~ t1 ,tn!uvn&. ~2.22!

Finally, we should remark that the behavior ofS at the boundaries would result in mo
situations in its intricate mixing with the boundary operatorA.
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III. SCALAR FIELD IN TIME DEPENDENT SPACE–TIME

The identification of the operator structure within the decoherence functional carried out
previous section, enables us to proceed in the construction of history theories, in which the
time-dependence on the single time Hilbert spaces. Our motivation is the study of field theo
nonstatic background; hence in the rest of the paper we shall undertake an examination of a
model, employing techniques developed for the study of continuous histories.

A. The history algebra

The system under study is a massless scalar field in a cavity with time-varying size giv
the positive functionL(t) ~this has to be assumed to have at least continuous first derivative!. On
the edges of the cavity Dirichlet boundary conditions are to be assumed. The time paramet
respect to which the history theory is defined is the ‘‘Minkowski’’ time.

Our natural choice for the history algebra is

@f t~x!,p t8~x8!#5 i
1

L~ t !
d~ t,t8!d I~x,x8!, ~3.1!

wheret,t8 lie in R, x,x8 in I 5@0,1#, d I denotes the delta function as defined onI and Dirichlet
boundary conditions are assumed for the fields.@The d function is represented asSn51

` sinnpx.
The presence of the 1/L(t) in the right-hand side, is due to the fact that the proper integra
measure isL(t)dx.] More precisely one should use the smeared fields,

f~ f !5E dtL~ t !E
0

1

dxf t~x! f ~ t,x!, ~3.2!

p~g!5E dtL~ t !E
0

1

dxf t~x!g~ t,x!, ~3.3!

wheref andg are elements of the vector spaceLR
2(R) ^ LR

2(I )D , whereD stands for the imposition
of the Dirichlet boundary condition,

f ~0,t !5 f ~1,t !50. ~3.4!

This way we have

@f~ f !,p~g!#5 i E dtL~ t !E
0

1

dx f~ t,x!g~ t,x!. ~3.5!

It is more convenient to express the fields in terms of their Fourier transforms,

f t~x!5L21/2~ t ! (
n51

`

qt~n!sinnpx, ~3.6!

p t~x!5L21/2~ t ! (
n51

`

pt~n!sinnpx, ~3.7!

with respect to which

@qt~n!,pt8~m!#5 idnmd~ t,t8!. ~3.8!

These can be smeared by elements ofLR
2(R)D , so thatqn( f )5*dtqt(n) f (t). Hence,
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@qn~ f !,pm~g!#5 idmnE dt f~ t !g~ t ! ~3.9!

and the underlying vector space of the history algebra is simplyLR
2(R)D ^ l R

2.

B. The representation space

Our next task is to find a representation of the history algebra~3.1! in a Hilbert spaceF,
together with an isometry from the continuous tensor product^ tPRHt , whereHt is the Hilbert
space on which thecanonical algebraat time t is represented. This Hilbert space suppose
contains the projections having information about the properties of the system at timet.

1. Single-time Hilbert spaces Ht

The canonical algebra at timet reads

@f~x!,p~x8!#5
i

L~ t !
d I~x2x8!. ~3.10!

Now Ht has naturally the structure of an exponential Hilbert space,Ht5eVt5 % n50
` (Vt)S

n , where
Vt is the space of complex valued functions on@0,1# satisfying Dirichlet boundary conditions an
with inner product given by

~z1 ,z2! t5L~ t !E
0

1

dxz1* ~x!z2~x!. ~3.11!

It is well known thatHt is spanned by an overcomplete set of states~unnormalized coheren
states! uexpz&5%n50

`
^nz, (zPVt) with inner product,

^expzuexpw& t5expS L~ t !E
0

1

dxz* ~x!w~x! D . ~3.12!

Equivalently using the Fourier transform,

f ~x!5L21/2(
n51

`

zn sinnpx, ~3.13!

one characterizesVt asL2(R)D ^ l 2.

2. The history Hilbert space F
The fact thatHt can be written as an exponential Hilbert space enables us to emplo

analysis of Ref. 8 for the construction ofF. The important identity that carries on into our case

^ ^ t expztu ^ t expwt& ^ te
v t5expS E dt~ztuwt!v t D5expS E dt(

n51

`

~zn* ! t~wn! tD , ~3.14!

wherez andw stand for elements ofl 2. This implies straightforwardly the isomorphisms,

^ t expVt.expE %

Vt.expE,

^ tuexpzt&→UexpE %

ztdtL→uexpz~ .!&, ~3.15!
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where E is the spaceL2(R) ^ l 2 ~i.e., some complexification of the test function space in
history algebra! with inner product,

^zuw&E5E dt(
n51

`

zn* ~ t !wn~ t !. ~3.16!

So we conclude that

F5 ^ tHt.expE. ~3.17!

C. Operators on F

Having found the structure ofF does not yet mean that we have identified the representa
of the canonical group. In each Fock space construction, creation and annihilation operat
naturally defined~see, for instance, Ref. 14!, but we have still to determine how the generators
the history group are written as linear combinations of them~equivalent to choosing a comple
structure onLR

2(R) ^ l R
2, the space of smearing functions of the history group15!.

The Hamiltonian operator. In standard quantum field theory in Minkowski space–time this
achieved by postulating that the state corresponding to the vectoruexp 0& is invariant under the
action of the Poincare´ group as is represented on the Fock space,16 or equivalently that it is the
lowest eigenvalue of the field’s Hamiltonian. In generalizing to field theory in curved space–
one demands that this state is invariant under the space–time group of isometries. In gene
essential that this group has a generator that corresponds to a timelike Killing vector field, in
that time evolution can be unitarily implemented.

This interconnection between the choice of the representation and the existence
Hamiltonian-type of operator has been exploited for the case of the history group in Ref.
order both to select a Fock space representation among the ones considered in Ref. 8 and c
an operator, the spectral family of which can naturally be said to correspond to history pro
tions about energy.

In our system, the absence of a time translation symmetry would disallow the definition
Hamiltonian in a canonical framework~mainly for the inability to select a representation of t
CCR!, but there is nothing forbidding the introduction of a smeared Hamiltonian in the c
sponding history theory, along the lines of Ref. 9. This would correspond to the spatially
grated 00 component of the energy momentum tensor and should act as an operator gover
evolution within a single-time Hilbert space.

Keeping these remarks in mind, we can now proceed to the introduction of the Hamilt
Ht . Formally, this should be

Ht5L~ t !E
0

1

dx
1

2
~p t~x!21~L21~ t !]xf t!~x!2!5

1

2 (
n51

` Fpt~n!21S np

L~ t ! D
2

qt~n!2G . ~3.18!

One can then proceed to define suitable creation and annihilation operators,

at~n!5S np

2L~ t ! D
1/2

qt~n!1 i S L~ t !

2np D 1/2

pt~n!, ~3.19!

thereby making concrete the choice of our representation, and inheritingE with a particular
complex structure.15

With respect to these, the Hamiltonian is written

Ht5 (
n51

`
np

L~ t !
at

†~n!at~n!1E0~ t !. ~3.20!
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The termsEvac(t) stands forSn51
` @np/2L(t)# that corresponds to vacuum ‘‘energy.’’ This

formally divergent and cannot be physically normal ordered away. Indeed with proper regul
tion this is exactly the Casimir energy of the field between the plates. In our case it is
straightforward to calculate it using the standard point-splitting methods,17 with the boundary
condition thatE050 for L(t)→` pointwise. Indeed, thet-dependence has no consequence in
computational details. The result is simply

Eren
0 ~ t !52

p

3L~ t !
. ~3.21!

In order to avoid a natural misunderstanding, we should stress here thatE0 is not the physical
vacuum energy of the fields, i.e., it is not the value of energy one would read when, say, mea
the force on the plates. It is rather the lowestpossibleenergy the field can have at any time, a
is not expected to be ever naturally realized at all times even when the system starts in a v
state~except of course for the trivial case thatL(t) is constant!. The physical energy at any tim
is to be determined by a proper examining of the energy histories and is expected to be a
E0 with energy due to the ‘‘particle creation.’’

The spectrum ofHt is easily identified from~3.20!. The vacuumu0& ~identified with the vector
uexp 0&) satisfies

at~n!u0&50, ~3.22!

and corresponding ‘‘many particle’’ states,

un1 ,t1 ;...;nsts&5at1
† ~n1!¯ats

† ~ns!u0& ~3.23!

interpreted as corresponding to the proposition that one quantum characterized byni is present at
time t i for i 51¯s. The corresponding energy is given by the eigenvalues, e.g.,

Htut1 ,n1&5d~ t2t1!S n1p

L~ t !
1E0~ t ! D ut1 ,n1&. ~3.24!

To be precise the Hamiltonian, the annihilation and creation operators as well as the eigen
can be rigorously defined only with respect to smearing. The smearing functions fora a† and the
eigenstates are elements ofE, or sincen is a discrete quantity with elements ofL2(R), e.g., can
meaningfully define

an~z!5E dtz~ t !at~n!, ~3.25!

un,c&5E c~ t !un,t&. ~3.26!

The smeared HamiltonianHj5*dtj(t)Ht is a well defined operator onF. This can be seen, in
direct analogy with Ref. 9 by considering the automorphism

e2 iH jat~n!eiH j5e2 i @np/L~ t !#j~ t !at~n!, ~3.27!

which implies thatHj can be rigorously defined onF by its action on coherent states. If we deno
by G(A) the operator onF5expE defined as

G~A!uexpz~ .!&5uexpAz~ .!&, ~3.28!

whereA an operator onE. Also definingdG(A) by
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G~eA!5edG~A!, ~3.29!

we can verify that

Hj5 idG~2 ihj!, ~3.30!

with hj acting onE by

~hjz!n~ t !5
np

L~ t !
j~ t !zn~ t !. ~3.31!

Equation~3.30! implies thatHj is actually definable for all measurablej(t).9

D. The decoherence functional

We have now all the necessary information to compute the decoherence functional.

1. The Heisenberg operator

To construct the Heisenberg operator we start from Eq.~2.14! and have to take into accoun
the time-dependence of the Hamiltonian and the continuity of time.

Let us first assume that timet takes values in the interval (t0 ,t f). This can be taken as~2`,
`! if one wishes, but then square integrability forces that the boundary Hilbert spaces areC
and contain only the vacuum state.

Now, concerning the time-dependence it is straightforward to verify that each operatorUt at
a single time Hilbert spaceHt ought be implemented by

Utuexpw&Ht
5uexpûtw&Ht

~3.32!

with ût a unitary operator acting onHt by

~ ûtw!n5expS 2 inpE
t0

t

ds/L~s! Dwn . ~3.33!

Let us now pass to the continuous case. Using Eq.~3.15! we have

Uuexpw~ .!&F5 ^ tUtuexpwt&Ht
5 ^ tuexpûtwt&Ht

5uexpUw~ .!&F , ~3.34!

where

~Uw!n~ t !5expS 2 inpE
t0

t

ds/L~s! Dwn~ t !. ~3.35!

Hence

U5G~U !. ~3.36!

2. The Schrö dinger operator

In the construction of the decoherence functional the operatorS contains the information of
the natural way the single-time Hilbert spaces are welded together. It involves a natural is
phism between different-time Hilbert spaces. A natural expression for such an isomorphism
be to consider the map,

I ~ t1a,t !uexpw&Ht
5uexpw&Ht1a

, ~3.37!
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which is essentially the unitary operator connectingbt with bt1a . ~Note that in this the indext is
simply labeling the Hilbert space,bt meaning an annihilation operator in the single time Hilb
spaceHt . We are using the letterb to distinguish from the operator valued distributionat defined
previously as acting onF.! But this would fail to perform the transformationf t→f t1a , which is
deemed essential, if this would be to connect the representations of the canonical gro
different single time Hilbert spaces. The identification ofHt at different t ought to be given in
terms of the physical variables of the theory, rather than the annihilation and creation ope
related to the noninvariant notion of particle.

This being our concrete physical principle for the identification of time translations, we
easily establish that these ought to be implemented on theb andb† as

bt~n!→ 1

2 SAL~ t1a!

L~ t !
1A L~ t !

L~ t1a!
D bt1a~n!1

1

2 SAL~ t1a!

L~ t !
2A L~ t !

L~ t1a!
D bt1a

† ~n!.

~3.38!

But can this transformation be unitarily implemented? Before addressing this, let us re
number of useful objects appearing in the Fock space construction. LetVt* denote the complex
conjugate of the Hilbert spaceVt , with the act of complex conjugation defining an antiline
isomorphismC:Vt→Vt* . Clearly,C2152C†. ~Recall thatVt by virtue of the representation o
the history group can be viewed as a real vector space with a specific complex structure.!

An elementX(w) of the Lie algebra of the canonical group at timet is parametrized by
elementsw of Vt asXt(w)5b(Cw)1b†(w). In terms of its matrix elements we have

^expzuXt~w!uexpf&5@~w,f!Vt
1~z,w!Vt

#^expzuexpf&. ~3.39!

With this notation, the unitary operatorI (t1a,t) ~which we shall denoteI a) ought to act

I a
†~bt~Cw!1bt

†~w!!I a5bt1a~CAaw1Baw!1bt1a
† ~Aaw1C21Baw!, ~3.40!

in terms of the two operators,

Aa :Vt→Vt1a

~Aaw!n5
1

2 SAL~ t1a!

L~ t !
1A L~ t !

L~ t1a!
Dwn , ~3.41!

Ba :Vt→Vt1a*

~Baw!n5
1

2 SAL~ t1a!

L~ t !
2A L~ t !

L~ t1a!
Dwn . ~3.42!

These operators can be easily checked to satisfy the Bogolubov identities

Aa
†Aa2Ba

†Ba51, ~3.43!

Aa
†B̄a5Ba

†Āa , ~3.44!

where we have denotedB̄5C21B. Also we shall denoteĀ5CAC21.
UnfortunatelyI a turns out not to be unitarily implementable. The necessary condition for

would be

Tr~Ka
†Ka!,`, ~3.45!

whereKa :Vt→Vt1a* is defined byKa5B̄aĀa
21. In our caseKa

†Ka is
                                                                                                                



eous
-
-
in

ence of
ctively

this
a
tions of
istory

l
nce

to

, is
he

n is
ent
el.
g

e

628 J. Math. Phys., Vol. 41, No. 2, February 2000 C. Anastopoulos

                    
~K†Kw!n5S L~ t1a!2L~ t !

L~ t1a!1L~ t ! D
2

wn . ~3.46!

This is proportional to unity and hence its trace diverges.
This is not surprising, it is the reason for the well-known inability to define an instantan

Hamiltonian in any field theory in nonstatic space–times.@We should point out that time transla
tion does not constitute in any sense a symmetry of the system.~See Ref. 13 for the implemen
tation of symmetries in histories theories.! This also implies that the action operator introduced
Ref. 10 as the generator of physical time transformations does not exist. This is a consequ
the fact that such systems as quantum field theory in nonstatic backgrounds are effe
‘‘open.’’ The full theory ought to include the interaction with gravitational field, in which case~as
it is true at the classical level! the Schro¨dinger time could be considered as homogeneous. In
case the action operator might be expected to exist.# But this problem is not as serious in
histories theory as in a canonical scheme. The intertwiners between the different representa
the canonical group may not exist, but we should recall that the physical object in any h
theory is the decoherence functional. The presence of continuous time~the important difference
between this scheme and standard quantum mechanics! implies a smearing in time of all physica
quantities and will turn out to be crucial in our ability to provide a well defined decohere
functional.

Let us start by regularizing the operatorI; we shall consider an ultraviolet integer cutoffN in
the field modes. The regularized operatorI (N) is then well defined, and can be readily found
have the matrix elements

Ht1a
^expwuI a

~N!uexpz&Ht
5@det~12K̄aKa!#21/2exp~2 1

2 ~w,Ka
~N!w!2 1

2 ~K̄a
~N!z,z!1~A21w,z!!.

~3.47!

At the limit N→` the Fredholm determinant diverges. The important point, for what follows
that whena is taken to be infinitesimal, that is, equal todt theN-dependence appears solely in t
terms of order (dt)2, and higher. It is easy to check that for small smalldt,Ka is proportional to
dt and since in the divergent determinantKa appears squared the lowest divergent contributio
of order (dt)2. This point is of primary importance for the construction of a cutoff independ
decoherence functional and as a mathematical fact it is not restricted to our particular mod

Let us now begin our construction of the Schro¨dinger operator. We shall start by considerin
its discrete version using the regularized intertwiner. Let us assume then a discreten-time history
with propositions in the interval@ t i ,t f # such thatt i5t0 andt f5tn . Let the time interval between
any two propositions be constant and equal todt5(t f2t i)/n. We have

^expwt0
;wt1

;...;wtn
uSuexpzt0

;zt1
;...ztn

&

5^expwt0
uI dt

~N!uexpz1&^expwt1
uI dt

~N!uexpzt2
&¯^expwnuI tn2t0

~N! uexpz1&

5^expwt f
uI tn2t0

~N! uexpz~ t0!&expS (
k50

n21 S ~wk ,zk11!2
L̇~ tk!

4L~ tk!
~~wtk

,Cwtk
!

1~C†ztk11
,ztk11

!!dt D 1O@~dt !2# D . ~3.48!

Now at the limit ofdt→` the term in the exponential in~3.48! becomes a Stieljes integral; henc
at the continuous limit one can meaningfully write
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^expw~ .!uSuexpz~ .!&5^expw~ t f !uI T
~N!uexpz~ t0!&

3expS (
n51

` S wn* ~ t f !zn~ t f !1E
t0

t f
ds(wn* ~s!zn~s!1wn* ~s!żn~s!

2
L̇

4L
~s!@wn* ~s!wn* ~s!1zn~s!zn~s!# D D

ª^expw~ t f !uI T
~N!uexpz~ t0!&eiA@w~ .!,z~ .!#. ~3.49!

Hence the only divergent contribution toS comes from the operatorI (N)† which appears in the
boundary term. But it is the boundary term that is multiplied by the boundary operatorA. To see
how this multiplication is to be carried out let us return to Eqs.~2.10! and~2.12!. The indicesi and
j in Eq. ~2.10! correspond, respectively, to the initial and final Hilbert space. Hence, when d
Eq. ~2.12! the density matrix at the opposite boundary acts upon them one should introd
factor of I T

(N) . Hence if one writesA in a coherent state basis onHt0
^ H̄tn

it should read

^expwf uAufv0uexpz0&5^expwf u~r f !
1/2uexpuf&^expv0u~r0!1/2I T

†~N!uexpzf&

3@Tr~ I T
~N!r f I T

†~N!r0!#21/2, ~3.50!

where the presence of theI (N) in the denominator is to make the trace well defined andT5tn

2t0 . Hence we can compute the mapAS ~properly speaking, the multiplication is to be pe
formed in the discrete history version, but theeiA term is not affected anyway!. Hence our result
reads

^expw~ .!uSAufv0uexpz~ .!&5^expw~ t f !u~r f !
1/2uexpuf&^expv0u~r0!1/2uexpz~ t0!&

3eiA@w~ .!,z~ .!#@Tr~ I T
~N!r f I T

†~N!r0!#21/2. ~3.51!

There is still anN-dependence in the denominator,but this cancels outwhen we restrict ourselve
to the standard case of time-asymmetric histories withr f51.

Hence eventually, we have arrived at a well-defined, finite expression for the decohe
functional for the time-asymmetric case. It is of the form~2.19! with the Heisenberg operato
given by ~3.36! and the mapSA:F→Ht i

^ H̄t f
given by the matrix elements~3.51!.

For completeness we give the following expression involving the trace overHt0
^ H̄t f

:

TrHt0
^ H̄t f

~SA!†~AS!:F^ F̄^ F^ F̄→Cuexpw~ .!& ^ ^expz~ .!u ^ uexpw8~ .!& ^ ^expz8~ .!u

→^expw~ t f !uexpz8~ t f !&

3^expw8~ t0!ur0uexpz~ t0!&eiA@w~ .!,z~ .!#2 iA* @w8~ .!,z8~ .!#.

~3.52!

Let us at this point address an important mathematical subtlety. The Gaussian integral o
coherent states is essentially an integral of the Wiener type defined primarily on skeleton
~cylinder sets! and then by continuity extending to the whole of the Hilbert space. As such
should be very careful when taking the continuum limit for the path.

This is in particular important for Eq.~3.49!. There we have written a term*dtw* (t)(1
1(]/]t))z(t) as a limit of the discretized termSkwk* zk11 . It should be kept in mind that this is
just a formal suggestive expression, so should not be taken literally. This should more corre
written as
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E dtw* ~ t !~11]2!w~ t !, ~3.53!

where]2 is thebackwardsin time Ito derivative defined by the limit of the following matrix i
skeleton paths,

S ... ... ... ...

1 21 0 ...

0 1 21 0

0 0 1 21

D . ~3.54!

Also note that inS† the corresponding term is 12]1 with ]152]2
† . For a large class of

calculations this distinction might not be proved important, but whenever one encounters
minants and inverses, one should regularize and then take the continuum limit. This is the c
the calculations performed in the Appendix. For more details, see for instance, Ref. 18.

E. Some examples

From our previous results it is easy to write down an explicit expression for the decohe
functional evaluated for particular choices of history propositions.

1. Coherent state histories and the path integral

The projection operators

Pw~ .!5uexpw~ .!&^expw~ .!u/^expwuexpw& ~3.55!

corresponds to propositions about coherent state paths.8 It is straightforward to compute that

d~w~ .!,z~ .!!5^expw8~ t0!ur0uexpz~ t0!&^expw8~ t f !uexpz8~ t f !&3eiS@w~ .!#2 iS* @z~ .!#,
~3.56!

with S the coherent state action,

iS@w~ .!#5 (
n51

` S wn* wn~ t f !2E
t0

t f
dsS wn* ~s!ẇn~s!2 i

np

L~s!
wn* ~s!wn~s! ~3.57!

1
L̇

4L
~s!@wn* ~s!wn* ~s!1wn~s!wn~s!# D D . ~3.58!

The above formula has such a strong similarity to a coherent state path integral express
the decoherence functional, that we cannot help wonder whether such an object is meanin

In some ~not very precise! sense it is. If one wants to evaluate the time-evolution ker

Ht f
^wf ;t f uwi ;t i&Ht0

one can proceed by the standard way by splitting the interval@ t0 ,t f # into

intervals of widthdt and considering evolution first by the intertwinerI dt and then by Hamiltonian
evolution. It would be then easy to repeat the derivation that at the limitdt→0 the amplitude
becomesN-independent, reading

Ht f
^wf ;t f uwi ;t i&Ht0

5E DwDw* eiS@w~ .!,w* ~ .!# ~3.59!

with summation such thatw(t0)5wi andw* (t f)5wf* . But of course this would be just a forma
expression since one cannot interchange the limit ofdt→0 with the integrations. In addition, i
would be rather awkward to have the standard quantum theory with changing Hilbert space
construction is natural only in a history framework.
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Still, it would be interesting to look for a rigorous definition of the path integral~3.57!. I am
in particular referring to Klauder’s algorithm19 of constructing the coherent state path integ
through the use of a metric on phase space, so that one can define a Wiener process upo
a conjecture, worth investigating, that such an object could be constructed from the introduc
a time-dependent metric on phase space. The natural candidate would be the standard; t
back of the projective Hilbert space metric to phase space,

ds2~ t !5iduqp;t&i22u^qp;tuduqp;t&u25 (
n50

` S np

2L~ t !
dqn

21
L~ t !

2np
dpn

2D , ~3.60!

whered is the exterior differentiation operator on phase space.

2. Particle creation

The best way to examine the effect of particle creation is through the consideration of e
histories. That is we need to consider the value of the decoherence functional on coarse
projectors in values of energy.

The linearity of the field allows us to separately consider the effect on each mode. Rest
ourselves to any mode labeled byn we can easily derive that the most general projector o
energy eigenstates is of the form

P5(
r 50

` E dt1¯dtnk r~ t1 ,...,t r !ut1¯t r&^t1¯t r u, ~3.61!

wherek r are step functions elements ofL2(Rr) and correspond to smearing with respect to tim
of a proposition aboutr quanta. Substituting these into Eq.~2.19! we could easily get an expres
sion for the decoherence functional. Of particular interest is of the case where

k r~ t1 ,...,t r !5xD~ t1!¯xD~ tm!d rm ~3.62!

corresponding to a proposition of an appearance ofm quanta~of the quantum numbern! within the
time intervalD (xD stands for the characteristic function of this interval!.

It would indeed be cumbersome to conduct the full analysis of finding the proper c
graining of the energy histories that would allow us to identify consistent sets of energy his
and hence of the quasiclassical values of the total energy in the cavity.

Still, we can make a number of qualitative statements solely through the analysis of the
of this construction. Essentially, the continuous history approach has enabled us to de
quantum theory by considering propositions of quantities smeared in time. Hence a prop
about energy is meaningful not when defined sharply at a moment, but rather as a prop
about the time-averaged number of excitations in a time interval of widthDt. Hence when
evaluating the time average energy in an intervalDt one has an effective high energy cutoff at t
mode number,

N.
L

Dt
. ~3.63!

From Eq.~3.42! one can estimate that~at the classical limit! the total number of particles of mod
n created in an intervalDt is of the order of (L̇Dt/L)2, so that the average energy should pe
around the value~ignore constants of order one!

Ē. (
n51

N S L̇Dt

L
D 2

n

L
.

L̇2~Dt !2

L3
N2.

L̇2

L
. ~3.64!
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We can also estimate an optimal degree of coarse graining that minimizes the energy unc
DE. This ought to have two contributions, the fully quantum@proportional to (Dt)21# and a
statistical one associated with time averaging. The latter will be essentially

~DE!av.
L̇2~Dt !2

L3
N.

L̇2Dt

L2
, ~3.65!

hence the total energy fluctuation will behave as

DE.~Dt !211
L̇2Dt

L2
, ~3.66!

which is minimized atDt.L/L̇ HenceDE5L̇/L is a minimum degree of energy coarse graini
that will possibly lead to consistency of time-averaged energy histories. SinceDE@Ē the classical
picture we would get would be of largeclassicalfluctuations around the minimum valueE0(t).
The fluctuations should be adequately described by a noise term of amplitudeL̇/L when sampling
in times larger thanL/L̇.

3. CTP generating functional and n-point functions

The decoherence functional written in~2.19! is defined on pairs of projectors of the histo
Hilbert space. As such it can be extended by continuity to act on all bounded operators the
a large class of unbounded ones. A particular instance is of course the smeared field oper
can be readily checked that if forPa8 we substitutef(X)f(Y) and forPa the unity in~2.19!, the
value of the decoherence functional is nothing but the Feynman propagator for the field, i.
expectation value of the time-ordered product of two fields.

This is an important point, because this means that from the decoherence functional o
read objects appearing in the standard canonical quantum mechanical treatment. More gen
for Pa8 we substitute the productf(X1)¯f(Xn) and forPaf(Y1)¯f(Ym) ~smeared of course
with suitable test functions! we obtain in an obvious notation

d~f~Y1!¯f~Ym!,f~X1!¯f~Xn!!5G~n,m!~X1 ,...,Xn ,Y1 ,...,Ym!, ~3.67!

whereG(n,m) are the Schwinger–Keldysh close-time-path~CTP! correlation functions; form50
they are the time-ordered and forn50 the antitime ordered correlation functions. The correspo
ing generating functional is then readily defined as

ZCTP@J1 ,J2#5d~e2 i f̂~J2!,ei f̂~J1!! ~3.68!

in terms of the smearing functionsJ1(t,x) andJ2(t,x) interpreted as external sources. Or still w
can generalize to a phase space closed-time-path~PSCTP! generating functional,

ZPSCTP@~ f ,g!1 ,~ f ,g!2#5d~U†~ f 2 ,g2!,U~ f 1 ,g1!! ~3.69!

in terms of the generatorsU( f ,g) of the history group.~The relation of the generating functiona
to the decoherence functional is reminiscent of the definition of the generating functiona
stochastic process as a Fourier transform of the stochastic probability measure. In the q
case we have a double Fourier transform which reflects the fact that the decoherence fun
represents a ‘‘quantum measure’’ on phase space.20,21!

These equations can be easily verified to give the correct results in the static caseL̇50. They
also provide well defined and finite objects in the general time-dependent case. This me
particular that then-point functions of this theory are meaningful distributions. Again we sho
stress the importance of smearing over time. In the canonical quantization scheme, time
treated in the same footing as the spatial variables, and it is not a variable with respect to
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one actually smears. Then-pt functions are then strictly speaking smooth functions of th
t-arguments. Here, smearing overt implies that then-point functions are of nontrivial distribu
tional character with respect to all their variables.

Let us consider the easiest case, where time runs in the full real axis and the initial state
vacuum. Then the time-ordered two-point function is~recall TrS51),

G~2,0!~ t,x;t8,x8!5Tr~Uf t~x!f t8~x8!U†S†!, ~3.70!

and can actually be computed~see the Appendix! as

G~2,0!~ t,x;t8,x8!5(
n

L~ t !1L~ t8!

@L~ t !L~ t8!#1/2

1

4np
sin~npx!sin~npx8!@e2 inpuF~ t !2F~ t8!u#

1
1

L~ t !
d~ t2t8!d~x2x8!, ~3.71!

where F(t)5*2`
t ds/L(s). This is to be compared with the expression used by Davies

Fulling.22

We should note here that in a histories framework there is no direct physical interpretati
then-point functions. It is difficult to view them as expectation values of time-ordered produc
the fields, simply because we need not assume an ensemble of systems; hence expectation
a vague or even meaningless concept. This of course relates to the old problem of what m
quantum mechanical probability has when talking about a single system. In any case, then-point
functions arise naturally as temporal correlation functions from which the CTP generating
tional ~and consequently the decoherence functional! is constructed. Indeed we would expect
analog of Wightman’s reconstruction theorem16 to hold in the histories version of quantum fie
theory. By that we mean that the knowledge of the hierarchy of all CTP correlation func
~satisfying certain space–time symmetry requirements! should uniquely determine the historie
Hilbert spaceF, the decoherence functional and a representation of the group of spacetime
metries onF.

We should also remark that the study of the short distance behavior of then-point functions
will enable us to determine whether they are of the Hadamard form15,23 ~we do expect that for
vacuum initial states taken as in the example we calculated above, but not for generic
conditions!. This will enable a direct comparison between the histories quantization and
C* -algebraic framework for the description of quantum fields in curved space–time~see Ref. 15,
and references therein!. ~In particular the GNS construction of a Hilbert space where
C* -algebra is represented based on the choice of Hadamard vacua.!

IV. CONCLUSIONS

We have seen the construction of a well defined, finite quantum theory describing a 111 field
in a time dependent cavity. This has been written in a continuous-time histories form,
recently developed ideas and techniques and in this context being based on the use of sm
time observables to ensure finiteness of our objects. It is in this sense important that we hav
able toa posteriori justify our construction by relating it to the CTP formalism.

We should again remind the reader of two important principles—one mathematical
physical—entering our construction. The first is the use of the history group and the requir
of existence of an instantaneous Hamiltonian as posited in Refs. 8 and 9. The second
appearance of two distinct notions of time-transformations as identified in Ref. 10. Their se
tion ought to be reflected in the probability assignment, hence in the decoherence functiona
concrete sense, our result points implies the construction of quantum theories in a hi
scheme, that cannot be satisfactorily defined in a canonical way.~Another example, this time in
classical systems, where constructions using histories yield better results than the corresp
canonical ones is to be found in Ref. 24.!
                                                                                                                



les to
time.
y
the
ether

level

ntages

as we
no

g the
l
ssign
eral
tudy of
f this
s of
to the

thin

e of
nowl-

ld be
s that
ss.

me
for

ra for
for-

th E.
rch was
atalu-

e-

634 J. Math. Phys., Vol. 41, No. 2, February 2000 C. Anastopoulos

                    
From the perspective of the current paper the next step will be to apply these princip
provide auniquealgorithm for constructing a generic quantum field theory in curved space–
Our approach does straightforwardly apply in this case~for space–times with compact Cauch
surfaces and in the absence of zero modes!; the important unaddressed issue is whether
resulting history theory is dependent or not in the choice of the time variable; essentially wh
the linear transformations associated with the change of foliation can be implemented byproper
Bogolubov transformations. This is a difficult problem both at the technical and conceptual
and we hope to address it in a future work.

We should point out, that quantization based on the history group has a number of adva
over its canonical counterpart;

~1! It has a much smaller degree of arbitrariness in the choice of the representation. If,
believe, changes of foliation turn out to be unitarily implementable, then there will be
ambiguity at all in the quantization algorithm.

~2! It allows a real-time description of field observables, rather than focusing on evaluatin
S-matrix between in and out vacua. In particular, global quantities~such as time-averaged tota
energy! can be unambiguously identified and we are allowed to make predictions or a
probabilities about their values.@Even at the current state of the theory, where the gen
covariance of the scheme remains unproven, our results should be relevant to the s
cosmological models, where a preferred foliation is always assumed. The strength o
approach lies in the possibility of providing a unique choice for the correlation function
the field and as such should facilitate treatment of issues like matter backreaction
geometry, especially in approaches that employ the CTP formalism~for a sampling of recent
work, see Ref. 25!.#

~3! As a quantization algorithm it is strictly local. That means, if we restrict ourselves in a
space–time slice the theory is constructed from the knowledge of the causal structure~S!, the
dynamics~U!, and the initial data~A!. While the canonical approach necessitates a choic
positive frequency solutions and most physical criteria for such a choice necessitate a k
edge of the behavior of classical solutions at all times.

If our construction passes the test of unitarily incorporating changes of foliation, this wou
an impetus for further generalization. Eventually, we would like to treat fields in space–time
are not globally hyperbolic; ideally the ones appearing in the black hole evaporation proce26
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APPENDIX: COMPUTING THE TWO-POINT FUNCTION

From Eq. ~3.67! and the definitions~3.19! we see that the Fourier transform of the tim
ordered two-point functionGnm

(2)(t,t8) is by

Gnm
~2!~ t,t8!5dnmGn~ t,t8!, ~A1!

with
                                                                                                                



ia-

635J. Math. Phys., Vol. 41, No. 2, February 2000 Histories QFT in nonstatic background

                    
Gn~ t,t8!5
@~L~ t !L~ t8!#1/2

2np
Tr~U~atnat8n1atn

† at8n
†

1atnat8n
†

1atn
† at8n!U†S†!. ~A2!

From ~3.35! we can see that

Ubnt
† bt8nU†5e2 inp@F~ t !2F~ t8!# ~A3!

with F(t)5*2`
t ds/L(s). Similar expressions hold for the other terms in~A2!. Hence we are left

with the calculation of objects of the formS†btbt8 , etc. These are best computed by different
tion of the generating functional,

A@F,F* #5E DwDw* expS E dsF2w* ~s!]1w~s!1
L̇

4L
~s!~w* ~s!w* ~s!1w~s!w~s!!

1F* ~s!w~s!1w* ~s!F~s!G D . ~A4!

Let us compute first the caseL̇50. In that case it is a standard result that

A@F,F* #5expS E dsds8F* ~s!U1~s,s8!F~s8! D . ~A5!

HereU1 is the inverse of]1 and has matrix elements

U1
21~ t,t8!5u~ t2t8!. ~A6!

Note the importance of having identified the operator as]1 . For ]2 we would have

U2
21~ t,t8!52u~ t82t !. ~A7!

In the general case whereL̇Þ0 the integral is performed by splittingw into its real and imaginary
parts. That is we define

x~ t !5S a

2L~ t ! D
1/2

~w1w* !, ~A8!

y~ t !5 i S L~ t !

a D 1/2

~w* 2w!, ~A9!

in terms of some arbitrary positive real numbera. Then the integral becomes of the form

E DxDy expS 2
1

2
XTAY1KTXD5exp~KTA21K !, ~A10!

with

A5S a

L~ t !
]1 2 i ]1

i ]1

L~ t !

a
]1

D , ~A11!
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K5S S a

2L~ t ! D
1/2

~F1F* !

i S L~ t !

a D 1/2

~F* 2F !
D . ~A12!

The inverse ofA is just

A215
1

2 S U1L/a iU1

2 iU1 aU1L21D . ~A13!

It is therefore easy to compute

A@F,F* #5expS 1

2 E dsds8F* ~s!SA L~s!

L~s8!
1AL~s8!

L~s! D u~s2s8!F~s8!D , ~A14!

leading to

Gn~ t,t8!5
@~L~ t !L~ t8!#1/2

4np SA L~ t !

L~ t8!
1AL~ t8!

L~ t !
D e2 inpuF~ t !2F~ t8!u1d~ t2t8! ~A15!

from which ~3.68! follows.
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On the concept of Einstein–Podolsky–Rosen states and
their structure *

Richard Arens and V. S. Varadarajana)
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In this paper the notion of an EPR state for the compositeS of two quantum
systemsS1 ,S2 , relative toS2 and a setO of bounded observables ofS2 , is intro-
duced in the spirit of the classical examples of Einstein–Podolsky–Rosen and
Bohm. We restrict ourselves mostly to EPR states of finite norm. The main results
are contained in Theorems 3–6 and imply that if EPR states of finite norm relative
to (S2 ,O) exist, then the elements ofO have discrete probability distributions and
the Von Neumann algebra generated byO is essentially imbeddable insideS1 by an
antiunitary map. The EPR states then correspond to the different imbeddings and
certain additional parameters, and are explicitly given by formulas which general-
ize the famous example of Bohm. IfO generates all bounded observables,S2 must
be of finite dimension and can be imbedded insideS1 by an antiunitary map, and
the EPR states relative toS2 are then in canonical bijection with the different
imbeddings ofS2 insideS1 ; moreover they are then given by formulas which are
exactly those of the generalized Bohm states. The notion of EPR states of infinite
norm is also explored and it is shown that the original state of Einstein–Podolsky–
Rosen can be realized as a renormalized limit of EPR states of finite quantum
systems considered by Weyl, Schwinger, and many others. Finally, a family of
states of infinite norm generalizing the Einstein–Podolsky–Rosen example is ex-
plicitly given. © 2000 American Institute of Physics.@S0022-2488~00!02002-8#

I. INTRODUCTION

Let S1 ,S2 be two quantum systems, e.g., those of two one-dimensional particles. The fa
example, first introduced by Einstein, Podolsky, and Rosen~EPR! in 1935,1 describes a states of
the composite systemS5S13S2 with the following property. LetXi ,Pi be the position and
momentum coordinates of thei th particle (i 51,2); then, if a measurement ofX1 ~respectively,
P1) is known to have a definite value whenS is in the states, the value ofX2 ~respectively,P2)
can be predicted with certainty. The conclusions that these authors drew from this example
the completeness of the quantum mechanical description of physical reality, and their refuta
Bohr in 1935,2 are well known, and the reader may refer to the papers of these authors and
related articles on quantum measurement theory reprinted in the well-known reprint collect
Wheeler–Zurek.3

The Einstein–Podolsky–Rosen~EPR! state has infinite norm and so does not lie in Hilb
space; indeed in their example both systems are infinite dimensional and the state in que
actually a distribution state. In an effort to simplify the discussion of Einsteinet al., Bohm
introduced spin~or polarization! states of particle pairs with the same properties as their st
Bohm’s example deals with two-dimensional quantum systems and his computations of the
abilities and discussions of gedankenexperiments eventually led to experimental tests w

*This article is dedicated to the memory of Moshe Flato who passed away on 27 November 1998. His deep s
culture and unbounded generosity of spirit made a huge impact on many mathematicians and physicists, in
ourselves. We mourn his loss and offer this small contribution to commemorate his invincible spirit.

a!Electronic mail: vsv@math.ucla.edu
6380022-2488/2000/41(2)/638/14/$17.00 © 2000 American Institute of Physics
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these probabilities could be derived from a local hidden variable theory. For all this the reade
consult Bohm’s famous book4 as well as the nice discussion in Ref. 5.

In this paper we introduce the concept of a states of the compositeSof two quantum systems
Si( i 51,2) being EPR relative to (S2 ,O), whereO is any set of bounded observables ofS2 .
Briefly, this is the case if there is, for eachA2PO, a bounded observableA1 of S1 such that the
measured value ofA1 in the states determines with certainty the value ofA2 in S2 . We determine
completely the relationship betweenO ands ~Theorems 3 and 5 in Sec. III!, and, for a fixed state
s with this property, show that this predictive mapA2→A1 extends to a mapB2→B1 for all
bounded observablesB2 lying in an algebra canonically associated tos, and for no others; and
further that the map that takesB2 to B1 is an antilinear algebra homomorphism which is
essential imbedding@which means the kernel consists of elements that are 0 in the states ~Theo-
rem 4, Sec. III!.# Special cases of this result have been obtained in the literature, for instan
Refs. 6 and 7. Moreover, when such states exist relative toO, the elements ofO have discrete
probability distributions in those states. If we now suppose, as was done by Einsteinet al. that the
states has the EPR property relative to (S2 ,X2) and (S2 ,P2) whereX2 ,P2 are two bounded
observables that generate the algebra of all bounded operators~or equivalently, if the only
bounded operators commuting with bothX2 andP2 are the scalars!, thenS2 has finite dimension
d<dimS1 and the EPR states are in bijection with the set of antiunitary isomorphisms ofS2 as a
subsystem ofS1 ; moreover, the associated states are essentially of the form in the exam
Bohm ~suitably generalized!. Of course, if we assume that the two systems have the same
dimension, the EPR states are completely symmetrical with respect to the two systems, an
are exactly the generalized Bohm states~Theorem 6, Sec. III!.

It turns out that our definition of the EPR states forces the distributions of the sel
observablesA2 to be discrete. Thus the original state of Einsteinet al. cannot be subsumed unde
our framework although it has the same formal structure. For a rigorous discussion of this
from the point of view of operator algebras see Ref. 8. Nevertheless one can use the the
approximations of quantum systems by finite quantum systems developed in Refs. 9–13 to
that the Einstein–Podolsky–Rosen state is the limit of suitably renormalized EPR states ass
to a particle moving in a large cyclic group as the order of the cyclic group goes to infinity
another treatment of a similar limiting process see Ref. 14. We also mention a recent p15

where multipartite states that are maximally EPR correlated are characterized, although t
pears to go in a direction different from the line of discussion pursued in this paper.

II. THE CONCEPT OF AN EPR STATE

We begin with a brief discussion of the Bohm state and follow the discussion in pp. 69–
Ref. 5. The Bohm state is that of a composite of two spin 1/2 systems, say that of an electr
a positron, and has the form

F5
1

&
~w1 ^ c22w2 ^ c1!,

where the positive and negative signs refer to the spin up or spin down states of the electr
positron, respectively. LetA1 ~respectivelyA2) denote the electron~respectively, positron! spin
observable with values61 and corresponding eigenstatesw6 ~respectively,c6). It is then a
simple calculation that if in the stateF we knowA1 is observed to have a given value61, then
the value ofA2 is determined with certainty to be71, and vice versa. Furthermore, letB2 be the
observable in the spin system of the positron corresponding to the spin in an arbitrary direct
that B2 has the values61 with corresponding eigenstatesh6 . Another simple calculation show
that F can be expressed in the form

F5
1

&
~x1 ^ h22x2 ^ h1!,
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where x6 is an orthonormal basis for the space of the electron uniquely determined byh6 .
Indeed, ifh6 are defined by

S c1

c2
D5S a11 a12

a21 a22
D S h1

h2
D ,

where (ai j ) is a unitary matrix, thenx6 are determined by

S x1

x2
D5S a22 2a12

2a21 a11
D S w1

w2
D .

So, if B2 is the observable in the system of the positron with values61 and ~orthonormal!
eigenstatesh6 , then the pair of observables (B1 ,B2) has the same property as (A1 ,A2), namely,
that in the stateF if the value ofB1 is observed to have a given value61, then the value ofB2

is determined with certainty to be71 and vice versa. In other words,F has the remarkable
property that ifB2 is any observable in the positron system with values61, there is a uniquely
associated observableB1 in the electron system such that an observation ofB1 that yields a value
of B1 predicts the value ofB2 and vice versa.

The example of Bohm generalizes immediately to arbitrary finite dimensional systems
Hj ( j 51,2) be two Hilbert spaces of the same finite dimensionN and let (w i)1< i<N and (c i)1< i<N

be orthonormal bases inH1 andH2 , respectively.H1 andH2 are the Hilbert spaces correspondin
to two systemsS1 andS2 , respectively. Let

F5
1

AN
(

1< i<N
w i ^ c i .

Then exactly as in the case of the Bohm example we can show that if (h i)1< i<N is any ortho-
normal basis ofH2 , there is an orthonormal basis (x i)1< i<N of H1 such thatF can be expressed
in the form

F5
1

AN
(

1< i<N
x i ^ h i .

Indeed,

c i5(
j

ai j h j⇒x i5(
j

aj i w j .

It follows from this as in the Bohm example that ifB2 is any observable withN distinct values in
the systemS2 , there is an observableB1 in the systemS1 with the following property: If in the
stateF for the compound system an observation ofB1 in the systemS1 yields an exact value, the
value ofB2 in S2 can be predicted with certainty. It is also remarkable that in this and the ea
example the roles ofB1 andB2 can be interchanged.

Any definition of an EPR state in the general context of two arbitrary quantum systems w
course depend on what features of the examples of Bohm and Einsteinet al. that one wishes to
focus on. In order to formulate our notion and justify its reasonableness we begin with
preliminaries.

Let S1 ,S2 be two quantum systems and letHi be the Hilbert space ofSi . As usualHi is
complex and separable. Then the Hilbert space of the composite systemS13S2 is the tensor
productH5H1^ H2 . An observableA1 of S1 is considered as an observable ofS via the iden-
tification A1°A1^ 1; similarly observablesA2 of S2 are considered as observables ofS via the
identificationA2°1^ A2 . Given a state ofS13S2 , i.e., a unit vectors in H1^ H2 , thecommut-
ing observables A1^ 1 and 1̂ A2 have a joint probability distributionPs,A1 ,A2 in the states. We
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shall often writeP or Ps when it is clear whats,A1 ,A2 are. ThenP is a probability measure on
R2; the probability measuresP1 ,P2 induced onR by the projections (x1 ,x2)→x1 ,x2 are the
distributions ofA1^ 1, 1^ A2 in the states. For Borel setsE,F the probability of the event$A1

^ 1PE,1^ A2PF% is P(E3F). We also have the family (qa)aPR of conditional probability
measures onR, with the interpretation thatqa(F) is the conditional probability of the value o
1^ A2 belonging to the Borel setF whenA1^ 1 is known to have the valuea. Mathematically,
(qa)aPR is characterized as the family, unique almost everywhere with respect toP1 , with the
property that for all borel setsM,R2,

P~M !5E
R
qa~M @a# !dP1~a! ~M @a#5$bu~a,b!PM %!.

We wish to focus on the fact that the examples of Bohm and Einsteinet al. feature observ-
ablesAi in Si such that a measurement ofA1 in S1 predicts with certainty the value ofA2 in S2 .
Indeed, in the classical argumentation of Einsteinet al., this property was interpreted to mean th
we can measure the observableA2 in S2 without disturbing the systemS2 . Without making this
interpretation we shall first formulate this in precise mathematical terms. Since the value ofA2 is
determined with certainty by the value ofA1 we must have a functiong such that ifA1 is observed
to have the valuea,A2 has the valueg(a). For general reasons we shall assume thatg is a Borel
function. This can be formulated in either of two ways: either that

qa~g~$a%!51 for P12almost all a

or in the apparently weaker form where onlyP and not theqa intervenes:

P~A1^ 1PE,1^ A2PF !50 if g~E!ùF5B~Eùg21~F !5B !.

Indeed, if the value ofA1^ 1 is aPE, then the value of 1̂ A2 cannot be inF if g(E)ùF5B.
Actually, these two formulations are equivalent as the following lemma shows.

Lemma 1: Let P be the probability measure onR2 as above and let g be a Borel map ofR into
R. Let G be the graph of g, namely,

G5$~x,g~x!!uxPR%.

Then the following statements are equivalent.
~a! P(E3F)50) if Eùg21(F)5B, i.e., if (E3F)ùG5B.
~b! P(R2\G)50.
~c! For P12almost all a,

qa~$g~a!%!51.

Proof: (b)⇔(c): It is known thatG is a Borel set. By general results in measure theoryP,
which can be viewed as a probability measure onG by the condition~b!, can be fibered with
respect to the projection (x1 ,x2)°x1 . The fibers are the points$g(a)% and so the fiber measure
are delta functions at the pointsg(a) which is ~c!. If ~c! is assumed, then

p~G!5E
R
qa~$g~a!%!dP1~a!51,

which is ~b!.
(b)⇔(a): The implication (b)⇒(a) is trivial. The reverse implication requires a more delic

argument. However, ifP is discrete, i.e., if all its mass is concentrated in a countable set,
(a)⇒(b) is easy. In fact, in this case, the probability measures ofx1 andx2 are both discrete. Le
Di be the set of points wherePi has positive mass. SinceP($a%3(R\$g(a)%))50 for aPD1 by
~a!, we haveP(x15a,x25g(a))5P(x15a). Summing overa one sees thatP(g(D1))51 and
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henceP(G)51 which is ~b!. Note that in this caseP(x25g(a))>P(x25g(a),x15a)5P(x1

5a).0 so thatg mapsD1 into D2 ; asP(x2Pg(D1))51 we must haveg(D1)5D2 .
In the general case the argument for showing that (a)⇒(b) is more technical but it is no

needed for this paper@the point is that we shall use only the apparently weaker form~a!, and as~a!
is a trivial consequence of~b! and hence also of~c!, this does not affect the argumentation of t
rest of the paper#. Using a general result on Borel maps~see Ref. 16, p. 137! we may assume tha
we are in the situation of separable metric spacesX andY and acontinuousmapg of X into Y. The
probability measureP is defined onX3Y and we are given thatP(E3F)50 for Borel setsE,F
if ( E3F)ùG5B whereG is the graph ofg. Note that the graph is now aclosedset asg is
continuous~this is also a proof that the graph of a Borel map is a Borel set!. If ~a,b! is a point not
in G, there are open setsE,F, respectively, containinga,b such thatE3F is disjoint fromG, and
so P(E3F)50. By separability,X3Y\G can be covered by a countable collection of setsEi

3Fi whereEi ,Fi are open andP(Ei3Fi)50, and soP(X3Y\G)50. This proves that (a)⇒(b).
Corollary 2: Suppose that the equivalent conditions of the lemma are satisfied. Then th

a Borel set F such that F,g(R) and P2(F)51. If P is discrete, and Di is the set of positive mas
points of Pi , then g(D1)5D2 .

Proof : The second statement was established in the course of the above-mentioned pr
prove the first note that we can find a sequence of compact setsGi,G such thatP(ø iGi)51. If
Ki is the image ofGi under the projection (x1 ,x2)°x2 , thenKi is compact andP2(ø iKi)51.
Obviouslyø iKi,g(R).

We shall now make our definition of an EPR state.
Definition 1 :Let A2 be a bounded observable ofS2 andsPH1^ H2 a unit vector. Thens is

said to be anEPR stateof S13S2 relative to (S2 ,A2) if there is a bounded observableA1 of S1

such thatP5Ps,A1 ,A2 has the following property: there is a Borel mapg(R→R) such that

P~A1^ E,1^ A2PF !50 wheneverEùg21~F !5B.

If there is a setO of bounded observables ofS2 such thats is EPR relative to (S2 ,A2) for each
A2PO, we say thats is anEPR state of S13S2 relative to (S2 ,O).

III. THE MAIN RESULTS

Our aim now is to explore the consequences of our definition of an EPR states relative to
(S2 ,A2) for the structural relationships betweens,A2 ,A1 . Before we can formulate and prove ou
main results we need some preliminaries.Note that all our scalar products are linear in the firs
argument and conjugate linear in the second. Our entire argument depends on a canonical id
tification of H1^ H2 with the space ofconjugatelinear maps ofH2 into H1 ~equally ofH1 into
H2) that are of the Hilbert–Schmidt class. This identification is well known, but as conju
linear maps are somewhat less familiar than linear ones we go into this in some detail. LetC21 be
the linear space of boundedconjugate linear maps L(H2→H1) such that Tr(L†L),`. HereL†,
defined by the relation (Lu,v)5(L†v,u), is also a conjugate linear map, fromH1 into H2 , so that
L* L is a linear map ofH2 . The scalar product

~L,M !5Tr~M†L ! ~L,MPC21!

then convertsC21 into a Hilbert space. The spaceC21 contains as a dense subspace the setC21,f of
L of finite rank.

Lemma 1: There is a canonical unitary isomorphism

s°Ls , H1^ H2.C21,

such that for anysPH1^ H2 and any ON basis(en) of H2 ,

s5(
n

Lsen^ en .
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Proof : The simplest way to construct this canonical isomorphism is to first fix an ON b
(en) for H2 . Then the elements ofH1^ H2 are precisely those of the form

s5(N
n

vn^ en S vnPH1 ,(
n

ivni2,` D . ~1!

We defineLs as the uniqueconjugate linearmap of Hilbert–Schmidt class ofH2 into H1 such
thatLsen5vn . The point is thatLs depends only ons and not on the orthonormal basis(en) that
enters the representation~1! of s. Indeed, if (f m) is another ON basis ofH2 , we can writeen

5(m unmf m where (unm) is a unitary matrix. Then

s5( Lsen^ en5(
np

unpLs f p^ (
nm

unmf m5(
mp

S (
n

unmunpDLs f p^ f m5(
m

Ls f m^ f m ,

since

(
n

unmunp5dmp .

Finally

isi25(
m

ivni25(
n

iLseni25Tr~Ls
†Ls!. ~2!

Remark 1: It should be noted that had we definedLs as thelinear map such thatLsen5vn

then it will not be independent of the ON basis chosen. So to guarantee the canonical natu
essential to chooseLs as theconjugate linear maptaking en to vn .

Remark 2 :The representation of vectors inH1^ H2 in the form

( vn^ en S ~en! an ON basis ofH2 ,(
n

ivni2,` D
is well known, see for instance the discussion of Von Neumann in Chap. VI of Ref. 15 w
reference is made to the work of Schmidt. However Von Neumann,17 concerned as he was abo
other aspects of the quantum theory of composite systems, does not remark on the use o
gate linear operators that makes the representation independent of the ON basis, a fac
absolutely crucial for us.

Remark 3 :The construction of the isomorphism

s°Ls

is perhaps not esthetically nice since we use a basis for its definition. An alternative way
proceed as follows. LetH8 be thealgebraic tensor productof H1 andH2 . Then one knows tha
H8 is canonically isomorphic to the space of linear maps of finite rank fromH2* to H1 ; but H2*
is in canonicalantiunitary isomorphismwith H2 and so we have a canonical linear isomorphi
of H8 with the space ofconjugate linear mapsof finite rank fromH2 to H1 . Explicitly,

s5 (
i< j <m

aj ^ bj⇒Lsu5 (
1< j <m

~bj ,u!aj .

Then

Ls
†w5 (

1< j <m
~aj ,w!bj ~wPH1!.
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Taking the (bj ) to be orthonormal, we see thatLsbj5aj andLtu50 if u is orthogonal to thebj .
Hence

Tr~Ls
†Ls!5(

j
iaj i25isi2.

The required isomorphism is then obtained by extending the maps→Ls from H8 to C21,f by
completion sinceH8 ~respectively,C21,f) is dense inH1^ H2 ~respectively,C21).

The operatorLs
†Ls , being of trace class, has a discrete spectrum with eigenvaluesl j.0( j

>1) of finite multiplicity, and possibly 0 as an eigenvalue whose multiplicity could be infinite
H2(l j ) is the eigenspace corresponding tol j anddj5dim(H2(l j )), then

Tr~Ls
†Ls!5(

j
djl j,`.

We have the orthogonal decomposition

H25H2
s

% H2
0,

where

H2
s5 % j >1H2~l j !, H2

05the kernel of Ls
†Ls.

We shall use these notations a little later. At this moment we note a simple fact.
Lemma 2: Fix a unit vectorsPH^ H2 . Let B2 be a bounded observable ofH2 commuting

with Ls
†Ls . Then, B2 leaves theH2(l j ) invariant. In particular, in the states the probability

distribution of1^ B2 is discrete and is concentrated on the set of eigenvalues of B2 on H2
s .

Proof : It is obvious thatB2 leaves theH2(l j ) invariant, and as these are finite dimension
B2 has discrete spectrum on each of these and hence onH2

s . Let (ejp)1<p<dj
be an ON basis of

H2(l j ) consisting of eigenstates ofB2 , B2ejp5bjpejp . By the previous lemma we can write

s5(
j >1

(
1<p<dj

Lsejp ^ ejp

and so, ifb is the set of all the numbersbjp ,

Ps~1^ B2Pb!>(
j >1

(
1<p<dj

iLsejpi25Tr~Ls
†Ls!51.

We now come to the result which is the basis for everything that we can say about EPR
Its proof depends essentially on the possibility of usinganyON basis ofH2 in the decomposition
of s.

Theorem 3 : Let O be any set of bounded observables ofH2 and lets be an element of uni
norm in H1^ H2 . If L s is the element ofC21 that corresponds tos under the canonical isomor
phism of Lemma 1, thens is an EPR state relative to(S2 ,O) if and only if Ls

†Ls commutes with
every element ofO.

Proof : It is obviously enough to do this for each element ofO separately. FixB2PO and
assume thats is EPR relative to (S2 ,B2). Let B1 be a bounded observable ofH1 with the
following property: There is a Borel mapg of R into R such that

P~B1^ 1PE,1^ B2PF !50 ~Eùg21~F !5B !.
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We should prove thatLs
†Ls commutes withB2 . The proof is slightly simpler ifB1 andB2 have

discrete spectra, but not by much. Still it may be worthwhile to give the argument separat
this case.

Case of discrete spectra :Let b1 ~respectively,b2) be the set of eigenvalues ofB1 ~respec-
tively, B2). For aPb1 ~respectively,bPb2) let Ea ~respectively,Fb) be the corresponding
eigenspace. Theng is a mapb1→b2 .

We are given that

P~B1^ 15a,1^ B25b!50 ~bÞg~a!!.

Fix bPb2 . Select an ON basis (ei) of Fb and an ON basis (f j ) of Fb
' and write

s5(
i

Lsei ^ ei1(
j

Ls f j ^ f i .

Let Qa be the orthogonal projectionH1→Ea . Then

P~B1^ 15a,1^ B25b!5 I(
i

QaLsei ^ ei I 2

5(
i

iQaLsei i2.

Since this is zero forbÞg(a), we must have

QaLsei50 ~bÞg~a!!.

In other words, if we write

E@b#5 % a;g~a!5bEa ,

then

Ls@Fb#,E@b#.

Suppose now thatb8Þb, and letuPFb ,vPFb8 . Then

~Ls
†Lsu,v !5~Lsv,Lsu!50,

since

E@b#'E@b8#.

Thus

Ls
†LsuPFb .

This proves thatLs
†Ls leaves all theFb invariant and hence that it commutes withB2 .

General case :We must prove thatLs
†Ls commutes with all the spectral projections ofB2 .

SinceLs
†Ls is self-adjoint, this is equivalent to showing thatLs

†Ls leaves the spectral subspac
of B2 invariant. For any Borel setB,R let FB ~respectively,EB) be the corresponding spectr
subspace ofB2 ~respectively,B1). Write QB for the orthogonal projectionH1→EB . Fix a Borel
set ofB,R. Select ON bases (ei) for FB and (f j ) for FB

' . Then

s5(
i

Lsei ^ ei1(
j

Ls f j ^ f j .

If C5g21(B), then
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05P~B1^ 1PR\C,1^ B2PB!5 I(
i

QR\CLsei ^ ei I 2

5(
i

iQR\CLsei i2

and hence

QR\CLsei50 for all i .

Thus

Ls@FB#,Eg21~B! .

We now calculate (Ls
†Lsu,v) for uPFB ,vPFR\B . We have

~Ls
†Lsu,v !5~Lsv,Lsu!50

sinceg21(R\B)5R\g21(B) and

Eg21~B!'ER\g21~B!

Thus

Ls
†Ls@FB#'Fg21~B! ,

which gives

Ls
†Ls@FB#,FB .

This is what we wanted to prove.
We now take up the converse. We assume thatB2 commutes withLs

†Ls and wish to find a
bounded observableB1 of H1 such that the EPR property is satisfied for the pair (B1 ,B2). We use
the above-mentioned Lemma 2. OnH2(l j ) we can writeLs asl j

1/2U j whereU j is anantiunitary
imbeddingof H2(l j ) into H1 . If H1(l j )5Ls@H2(l j )#, it is then easy to check that theH1(l j )
are mutually orthogonal. Let

H1
s5 % jH1~l j !.

We defineU as the antiunitary isomorphism ofH2
s with H1

s,H1 which is equal toU j onH2(l j ).
If now (ejp)1<p<dj

is any ON basis ofH2(l j ), we have the representation

s5(
j >1

l j
1/2 (

1<p<dj

Uejp ^ ejp .

We take theejp to be the eigenstates ofB2 , B2ejp5bjpejp . Let us define

B15UB2U†.

It is easy to check thatB1Uejp5bjpUejp . We may therefore conclude that the distribution
B1^ 1 is discrete in the states with its mass concentrated on the setb2 of eigenvalues ofB2 in
H2

s . It is immediate that

P~B1^ 15b1,1^ B25b2!50 ~b1Þb2 ,biPb2!.

This completes the proof of the theorem.
Remark:Note the obvious symmetry between the roles ofB1 andB2 as revealed in the las

relation.
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For any setO of bounded observables inH2 we writeO8 for the set of bounded observable
commuting withO andO95(O8)8. Theorem 3 leads at once to the following results.

Theorem 4 : Let the notation be as above and lets be a unit vector inH1^ H2 . Let Ls

PC21 correspond tos and letBs be the Von Neumann algebra of bounded operators commu
with Ls

†Ls . Thens is EPR relative to the observables inBs and to no others. These observabl
all have discrete probability distributions in the states, which are concentrated on the set of the
eigenvalues inH2

s (on which they have discrete spectra). The states induces an antilinear
homomorphism B2°B1 of Bs into the algebra of bounded operators ofH1 , and the distributions
of B1 and B2 are the same for all observables in B2PBs. Moreover we have

P~B1^ 5b1,1^ B25b2!50 ~b1Þb2 ,biPbs!,

wherebs is the spectrum of B2 on H2
s .

Remark :The mapB2°B1 need not be an imbedding. However all observables in its ke
vanish onH2

s and so vanish with probability 1 in the states. We may therefore say that it is a
essential imbedding.

Intuitively, the existence of the essential imbedding ofBs insideS1 is reasonable because, a
B1 determinesB2 , the propositions ofB2 must be found within those ofB1 , and so, by Wigner’s
theorem, this map should be effected by a symmetry. The technical point which goes beyo
heuristic reasoning is that this symmetry is antiunitary.

Theorem 5: If O is any set of bounded observables ofH2 , there exist EPR states relative t
(S2 ,O) if and only if there are projections Q commuting withO whose ranges have dimension
<dimH1 . If Q j is a family of such projections which are mutually orthogonal, F j

5range o f Qj , dj5dimF j , and if dim% F j<dimH1 , then for any set of numbers dj such that
S j djl j51 and any antiunitary imbedding U of% F j into H1 the state

s5(
j >1

l j
1/2 (

1<p<dj

Uejp ^ ejp

where the ejp are any ON basis forH2(l j ) is EPR relative to(S2 ,O). Every state EPR relative
to (S2 ,O) is obtained this way, and any such is EPR relative to(S2 ,@O#) where@O# is the set of
observables in the Von Neumann algebra generated byO.

Remark :The fact that a state which has the EPR property with respect to some obser
has that property for infinitely many others has been known for a long time; see Refs. 6 a

Suppose we assume, as is the case in the Einstein–Podolsky–Rosen example, t
bounded observablesX2 and P2 of H2 have the property that the only bounded observab
simultaneously measurable with both of them are the scalars. ThenLs

†Ls must be a scalar, ther
is only onej in the above-mentioned formulas,H25H2(l1) is finite dimensional, and dimH1

>dimH2 . ThenU is an antiunitary injection ofH2 into H1 and there is a bijection between EP
states ofS relative to (S2 ,$X2 ,P2%) and the equivalence classes of antiunitary imbeddings ofH2

into H1 . In particular, if, as is true in many examples, thatS1 andS2 are identical, then the EPR
states are the same relative to each system, and are in canonical bijection with the set of
tary symmetries between the two systems. We thus have the following theorem.

Theorem 6 : Let s be a unit vector inH1^ H2 and let it be an EPR state relative t
(S2 ,$X2 ,P2%) where X2 ,P2 are bounded observables with the property that only the scalars in2

commute with both of them. ThendimH5d,`,dimH1>d, and there is an antiunitary imbed
ding U of H1 into H2 such that

s5d21/2 (
1< j <d

Uej ^ ej ,

where(ej ) is any ON basis ofH2 . The correspondences→U induces a bijection between the s
of states of S13S2 that are EPR relative to(S2 ,X2 ,P2) and the set of equivalence classes
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antiunitary imbeddings ofH2 into H1 . In this case, ifB is the set of all bounded observables
S2 and, for B2PB we define B15UBU†, then B1^ 1 and1^ B2 have identical distributions ins
which are concentrated on the (finite) seta of eigenvalues of B2 , and

P~B1^ 15b1,1^ B25b2!50 ~b1Þb2 ,b1 ,b2Pa!.

If further dimH15dimH2 , the EPR states relative to(S2$X2 ,P2%) are precisely those that are
EPR relative to(S1 ,X1 ,P1), and are in bijective correspondence with the set of antiunit
isomorphisms ofH1 and H2 .

Remark :We see that in this case the EPR states are essentially the same as the ones d
at the beginning of this paper as generalizations of the Bohm states.

IV. EXAMPLES

We have mentioned already that one can construct the analogs of the original Ein
Podolsky–Rosen states in certain finite quantum systems. These finite systems were firs
duced by Weyl9 and explored subsequently by Schwinger,10 Digernes, Varadarajan, an
Varadhan,11 Husstad,12 and Digernes, Husstad, and Varadarajan.13 In their most general form they
treat a particle which moves not in the real lineR but in afinite Abelian group G~for Weyl and
Schwinger this group wasZN , the group of integers moduloN while for Digernes and co-worker
it was a more general finite Abelian group!. When G is a large cyclic group it serves as a
approximation toR, which is the point of view of the papers previously mentioned. Indeed,
groupZN is identified by a grid of equidistant points symmetric about the origin inR, with the
intergrid distance of the order ofN21/2, so that whenN→` the kinematics of the system go ove
in the limit to the kinematics of the usual one-particle system in quantum mechanics. We
take up this approximation point of view in Sec. V. Here we shall keep our discussion t
structure of some specific EPR states. We takeH15H25L2(G) whereG is a finite Abelian group
whose order will be denoted byuGu. The scalar product is given by

~ f ,g!5
1

uGu (
xPG

f ~x!g~x!conj ~ f ,gPL2~G!!.

For simplicity we consider the antiunitary isomorphism

U: f ° f conj

of H2 with H1 . If ( en) is any ON basis ofH1 we have the representation of the correspond
statesU as

su5d21/2( en
conj

^ en .

Now we have two ON bases ofH2 , namely

$AuGudx%xPG , $j%jPG ,

wheredx is the delta function atx andĜ is the group of characters ofG. So

sU5AuGu (
xPG

dx^ dx5
1

AuGu
(
jPĜ

j21
^ j. ~* !

The equality of the last two expressions in~* ! can also be verified directly using the orthogonal
relations inG and Ĝ. Let X2 be an observable inS2 with distinct valuesax(xPG) and corre-
sponding eigenstatesdx . Then UX2U†5X1 has the same definition inH1 . Clearly Xi are the
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positionobservables in the two systems. ForY2 we take the observable inS2 with distinct values
bj and eigenstatesj. ThenY15UY2U† is the observable inH1 with valuesbj and eigenstates
j21. TheYi are the momentum observables in the two systems. It is then a simple calculat
verify the EPR property. For the pair (H1 ,H2) these are summarized by the symmetrical relatio

P~X1^ 15ax,1^ X25ax8!50 ~axÞax8!,

P~Y1^ 15bj,1^ Y25bj8!50 ~bjÞbj8!.

As a second example let us takeH15H25L2(G) ^ CN and let the bounded observable
X28 ,P28 of H2 be defined byX285X2^ 1, P285P2^ 1, the observablesX2 ,P2 in L2(G) being as in
the preceding example~all this insideH2 , the tensor products here should not be confused w
the one involvingH1 andH2). One may view this as a quantum system of a particle withN spin
states moving in the finite Abelian groupG. The commutator of$X28 ,P28% is then the algebraA
51^ M whereM is the matrix algebra inCN. AlthoughX28 andP28 generate an algebra withou
any dispersion states, nevertheless there is a wide choice of EPR states relative to$X28 ,P28% since
the choice ofLs

†Ls within A is arbitrary, so that they will depend on more than just an antiuni
imbedding ofH2

s into H1 . This example shows that the structure of EPR states relative to a sO
does not depend exclusively on the structure of the algebra generated byO but also on its
commutator inH2 .

V. STATES OF INFINITE NORM

Theorem 5 of Sec. IV shows that if an observableB2 in H has a continuous spectrum, the
is no EPR state relative to it. Strictly speaking therefore, the original state of Einsteinet al., is not
subsumed under our results since their state is defined by a tempered distribution which d
have finite norm. Nevertheless in the approximation scheme of Weyl, Schwinger, and
mentioned in Sec. IV, in the limit whenG5ZN approachesR, the states considered there might
expected to go over to the original Einstein–Podolsky–Rosen stateafter a renormalization. We
shall see now that this is the case. Since the calculations are similar to those found in Refs.
11 we shall be very brief. Indeed, in this example,H15H25L2(R) and the identification is taken
to be, as in the finite case, the map

U:c°cconj ~cPH2!.

Let Xi ~respectively,Pi) be the position~respectively, momentum! of the i th particle. The original
state of Einsteinet al. is

sU5s5E ei ~x12x2!p dp ~\51!

which can be written as

E Uep^ ep dp, ep~x!5e2 ixp.

Of course the integrals have to be interpreted as tempered distributions and so have to be
with Schwartz functions. In this state, ifP1^ 15p, then 1̂ P252p. A simple calculation using
Fourier analysis then shows that we also have the representation

s5E dx^ dx dx.

Thus
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s5E Uep^ ep dp52pE dx^ dx dx.

The analogy with~* ! of Sec. IV is now clear. This representation shows that in this state, iX1

^ 15x, then 1̂ X25x.
To exhibits as the limit of renormalized EPR states associated to the cyclic groupZN we use

the imbedding ofL2(ZN) into L2(R) given by ~see Ref. 11!

N1/2dx°e21/2x r e ,

where e5(2p/N)1/2, and x r e is the characteristic function of the interval ((r 21/2)e,(r
11/2)e) andx runs through the congruences classes ofr (r 50,61,62,...,6(N21)/2) ~we takeN
to be odd, which is of no consequence as we letN→`). Then the EPR state associated withZN

is

N1/2(
x

dx^ dx ,

which goes over under our imbedding to

sN5~2p!21/2 (
ur u<~N21!/2

x r e ^ x r e .

Since, for any Schwartz functionf we have

^x r e , f &5E
~~r 21/2!e

~r 11/2!e
f ~x!dx5e f ~r e!1O~e3!

we find that

N1/2sN~ f ^ g!5 (
ur u<~N21!/2

e f ~r e!g~r e!1O~e!→E
R

f ~x!g~x!dx.

Hence

N1/2sN→s ~N→`!.

Note that the norm of the state on the left-hand side goes to infinity as it should, sinc
right-hand side is a state of infinite norm.

As we mentioned in Sec. I, Ref. 14 contains a detailed discussion of the original EPR s
Einsteinet al.as a limit of normalized states with very sharp correlations between the position
momentum variables in the two systems, while Ref. 8 contains a rigorous characterization
EPR state from the point of algebraic quantum theory.

It is easy to see that we can generalize the original example of Einsteinet al. by taking other
choices ofU. If U is an antiunitary isomorphism of the Schwartz space with itself in the Schw
topology then we obtain a class of states generalizing the example of Einsteinet al. For instance
we may take

~U f !~x!5eiu~x! f ~x!conj,

whereu is a smooth real function whose derivatives have polynomial growth at most. We
take up the properties of these states on a later occasion.
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The aim of this paper is to show that there is a Hopf structure of the parabosonic
and parafermionic algebras and this Hopf structure can generate the well-known
Hopf algebraic structure of the Lie algebras, through a realization of Lie algebras
using the parabosonic~and parafermionic! extension of the Jordan–Schwinger
map. The differences between the Hopf algebraic and the graded Hopf superalge-
braic structure on the parabosonic algebra are discussed. ©2000 American Insti-
tute of Physics.@S0022-2488~00!02202-7#

I. INTRODUCTION

In 1935, Jordan proposed a realization of Lie algebras using boson or fermion crea
destruction operators. This realization was rediscovered by Schwinger in 1953, see the dis
of the Jordan–Schwinger map in Ref. 1~Chap. 5! and in Ref. 2, Sec. 2.3. The realization of a L
algebra by bosons corresponds to the symmetric representation of the Lie algebra, wh
realization by using fermions corresponds to the antisymmetric representation of the Lie al
The case of the u(N) algebra was presented in Ref. 3. The bosons and the fermions are s
cases of parabosons and parafermions, which are introduced by Green.4 The parabosonic~and
correspondingly the parafermionic! algebra is a generalization of the usual bosonic~fermionic!
algebra leading to generalized alternatives of the Bose–Einstein~Fermi–Dirac! statistics or to field
theories based on paraparticles; all the related bibliographies and details can be found in
TheN parabosons were used for constructing realization of a sp(2N) algebra, this construction is
based on the idea of using parabosons, rather than usual bosons. The same idea can be a
the case of the so(2N) algebra butN parafermions are used~Ref. 5, Sec. 3.2!. Biswas and Soni6

used systematically parabosons or parafermions for a Jordan–Schwinger realization of aN)
algebra. In the same paper realizations of the so(2N11) or sp(2N) algebras using parafermion
and parabosons, were discussed in a similar way as in Refs. 5, 7, and 8. Also a realization
g(M /N) superalgebra is proposed by usingM parafermionic andN parabosonic operators, b
extending the corresponding realizations based on the use of usual fermions and bosons9

has shown that, the bilinear combinations of the paraoperators yield the superalgebra gl(n/m) @see
also in the same paper the realizations of so(2n11) and of osp(1/2m)#. Later the same author10

also proved that the parabosonic and parafermionic algebras can be used for constructing
tions of osp(2N11/2M ) algebras.

The extension of the Jordan–Schwinger map as a method of a realization of every Lie a
using parabosons and parafermions, was originally published in 1971 in a local journal by P11

This work is not widely known, even we ignored it when the first version of this work was pri
as a preprint.

The fact that Lie algebras and superalgebras have a Hopf algebra structure is a stron

a!Electronic mail: daskalo@auth.gr
6520022-2488/2000/41(2)/652/9/$17.00 © 2000 American Institute of Physics
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cation that the parabosonic and parafermionic algebras might possess a Hopf algebraic st
too. If this is true, then the Hopf algebra structure of the Lie algebra should be consistent w
supposed Hopf algebra structure of the parabosonic and parafermionic algebra. Another
indication of the existence of the Hopf structure in the parabosonic algebra can be conjectu
the recent investigation by Macfarlane,12 which has proved that the one-dimensional Caloge
Vassiliev oscillator algebra is closely related to the one-dimensional parabosonic algebra. In
13 and 14 a Hopf algebra structure was proposed for the one-dimensional Calogero–Va
oscillator algebra. Therefore a natural idea is to transfer the Hopf structure of the Calo
Vassiliev algebra to the case of the parabosonic algebra. In this paper we show that bo
parabosonic and parafermionic algebras admit a Hopf algebra structure. Also the Jo
Schwinger map is a Hopf homomorphism from the Lie algebras to the parafermionic or
bosonic algebras. This means that the rules of the Hopf algebra structure of the Lie algebra
deduced from the rules of the Hopf algebra structure of the parabosonic of parafermionic a
Also we show that for a Lie algebra ofN generators which is realized usingN pairs of creation–
destruction parabosonic~or parafermionic! operators, theN parabosonic~parafermionic! destruc-
tion operators are the components of a covariant tensor algebra, while theN creation operators are
the contravariant components of a tensor corresponding to the adjoint representation of t
algebra.

Ganchev and Palev15 have shown that there is a realization of the Lie superalgebra osp(1n)
by using the parabosonic algebra. In this realization, the parabosonic generators are t
generators of the osp(1,2n). The universal U(osp(1,2n)) algebra is aZ2 graded associative
algebra, which has a usual Hopf superalgebra structure.16 This structure is closely related to theZ2

grading of the osp(1,2n) algebra. In this paper we show that the parabosonic algebra is a
Hopf algebra, this structure is obtained by adding a generator to the parabosonic algebra.
fore the parabosonic algebra can be regarded either as a Hopf superalgebra or as a Hopf
The differences of these algebra structures are examined in Sec. II. The above cited peculi
the parabosonic algebra is not valid for the case of parafermionic algebras.

II. PARABOSONIC REALIZATION OF A LIE ALGEBRA

Let us consider a finite dimensional Lie algebraL, generated by the generatorsX1 ,X2 ,...,Xn

and the following commutation relations:

@Xi ,Xj #5 (
k51

n

ci j
k Xk . ~1!

The universal enveloping algebra U~L! is a Hopf algebra with commultiplication, co-unit, an
antipode, which are defined by the well-known relations:

D~Xi !5Xi ^ 111^ Xi ,

e~Xi !50, ~2!

S~Xi !52Xi .

Let us consider the parabosonic algebraP(n), which is the associative algebra generated
n generatorsb1 ,b2 ...,bn satisfying the trilinear commutation relations:

@bk ,$bl
† ,bm%#52dkl bm ,

@bk ,$bl
† ,bm

† %#52dkl bm
† 12dkmbl

† , ~3!

@bk ,$bl ,bm%#50.
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The generators of the parabosonic algebra define a u(n) algebra by putting

Nl m
@B#5 1

2 $bl
† ,bm%. ~4!

The trilinear equations~3! imply that the operatorsNl m
@B# are generators of au(n) algebra, because

the following commutation relations are satisfied:

@Nkl
@B# ,Nmn

@B##5d l mNkn
@B#2dknNml

@B# . ~5!

The linear Casimir operator of theu(n) algebra is defined by

N@B#5(
i 51

n

Nii
@B#5

1

2 (
i 51

n

$bi
† ,bi% ~6!

and it satisfies the following commutation relations:

@N@B#,bi
†#5bi

† , @N@B#,bi #52bi . ~7!

Starting from theN@B# operator we can define the operator

K5exp@ ipN@B##, K†5K215exp@2 ipN@B##. ~8!

The above-mentioned commutation relations imply

KK†5K†K51,
~9!

$K,bi%5$K,bi
†%5$K†,bi%5$K†,bi

†%50.

The parabosonic algebraP(n) admits a Hopf algebra structure, with a coproductDp , counit
ep , and antipodeSp given by

Dp~bi !5bi ^ 11K ^ bi ,

Dp~bi
†!5bi

†
^ 11K†

^ bi
† ,

Dp~K !5K ^ K, Dp~K†!5K†
^ K†, ~10!

ep~bi !5ep~bi
†!50, ep~K !5ep~K†!51,

Sp~bi !5biK
†, Sp~bi

†!5bi
†K, Sp~K !5K†, Sp~K†!5K.

The above-defined coproductDp is an algebra homomorphism from the spaceP(n) into the tensor
productP(n) ^ P(n).

P~n! ——→
Dp

P~n! ^ P~n!.

The tensor productP(n) ^ P(n) has the usual tensor algebra structure, i.e., there is a pro
defined as follows:

~a^ b!•~c^ d!5ac^ bd. ~11!

It is not difficult to show that the above-mentioned definitions do indeed satisfy the well-kn
consistency conditions
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~ id ^ D!D~a!5~D ^ id !D~a!,

~ id ^ e!D~a!5~e ^ id !D~a!5a, ~12!

m~ id ^ S!D~a!5m~S^ id !D~a!5e~a!I .

Using the above-defined generators a realization of the Lie algebraL can be defined on the
parabosonic algebraP(n) by using a Jordan–Schwinger map:2

L{Xi→
J

J~Xi !PP~n!,

where

J~Xi !5(
kl

cki
l Nkl

@B#5
1

2 (
kl

cki
l $bk

† ,bl %. ~13!

After trivial calculations one can verify that the generatorsJ(Xi) satisfy the Lie algebra commu
tation relations~1!, because the structure constants of the Lie algebra satisfy the Jacobi eq

ci j
p cpk

m 1cjk
p cpi

m1cki
p cp j

m 50.

The Jordan–Schwinger map can be extended to a map from the universal enveloping algeb~L!
to the parabosonic algebraP(n). This extension of the Jordan–Schwinger map was initia
introduced by Palev11 in 1971. Unfortunately, it was published in a local journal, and since
publication, it is not widely known.

The existence of the Hopf algebraic structure of the parabosonic algebraP(n), given by Eq.
~10!, and the definition of the operatorsNi j

@B# , see Eq.~4! imply that

Dp~Ni j
@B#!5Ni j

@B#
^ 111^ Ni j

@B# ,

ep~Ni j
@B#!50,

Sp~Ni j
@B#!52Ni j

@B# .

These relations can be shown by lengthy but trivial algebraic calculations. For clarificatio
reproduce here the proof of the first of these relations:

Dp~Ni j
@B#!5 1

2 Dp~$bi
† ,bj%!5 1

2 $Dp~bi
†!,Dp~bj !%

5 1
2 $bi

†
^ 11K†

^ bi
† ,bj ^ 11K ^ bj%

5 1
2 ~~bi

†
^ 11K†

^ bi
†!~bj ^ 11K ^ bj !

1~bj ^ 11K ^ bj !~bi
†

^ 11K†
^ bi

†!!

5 1
2 ~bi

†bj ^ 11bi
†K ^ bj1K†bj ^ bi

†1K†K ^ bi
†bj1bjbi

†
^ 1

1Kbi
†

^ bj1bjK
†

^ bi
†1KK†

^ bjbi
†!

5 1
2 ~$bi

† ,bj% ^ 11$bi
† ,K% ^ bj1$K†,bj% ^ bi

†11^ $bi
† ,bj%!

5Ni j
@B#

^ 111^ Ni j
@B# .

By using the parabosonic realization~13! of the Lie algebraL, the Hopf algebra relations ar
satisfied:
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Dp~J~Xi !!5J~Xi ! ^ 111^ J~Xi !5~J^ J!+D~Xi !,

ep~J~Xi !!505e~Xi !,

Sp~J~Xi !!52J~Xi !5J~S~Xi !!.

Therefore we have shown that the trilinear parabosonic definition~3! and the ‘‘deformed’’ -like
Hopf structure~10! of the parabosonic algebra imply the Hopf structure of theP(n) algebra.

A direct implication of the above-mentioned relations is that the Hopf algebraic structu
the enveloping algebra U~L! can be deduced from the Hopf algebraic structure of the parabos
algebraP(n).

The following diagrams are commutative:

U~L! →
D

U~L! ^ U~L!

J↓ ↓J^ J, ~14!

P~n! →
Dp

P~n! ^ P~n!

U~L! →
e

C

J↓ ↓Id, ~15!

P~n! →
ep

C

and

U~L! →
S

U~L!

J↓ ↓J. ~16!

P~n! →
Sp

P~n!.

Diagrams~14!–~16! prove that the Jordan mapJ is a Hopf algebra homomorphism,17

Dp+J5~J^ J!+D,

ep+J5e,

Sp+J5J+S.

The realization of any Lie algebra by using boson or fermions operators was initially dis
ered by Jordan and later was rediscovered by Schwinger for the su~2! case, see Ref. 2, Sec. 2.4.
this construction formula~13! is used, but thebi ’s correspond to usual bosons. In this paper,
have extended the notion of the ‘‘Jordan map’’ from the boson~or fermion! case to the paraboso
case, i.e., and we have proved that:

Proposition 1: The extended Jordan map, which is defined by (13), is a Hopf algebra h
morphism from the Hopf algebraU~L! into the parabosonic Hopf algebraP(n)
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U~L!→
J

P~n!.

Another trivial result is:
Proposition 2: The set of n parabosonic destruction (or creation) operators$bi%, i 51,...,n ~or

$bi
†%, i 51,...,n! are adjoint tensor covariant (correspondingly contravariant) operators of the

algebraL.
That is true because the definition~13! of the parabosonic realization of the Lie algeb

generators and the trilinear commutation relations for the parabosons~3! imply the following
relations:

@J~Xi !,bj #5 (
k51

n

cji
k bk ,

~17!

@J~Xi !,bj
†#52 (

k51

n

cik
j bk

†

and the structure constantsci j
k are the matrix elements of the adjoint representation of the

generatorsXi .
It should be noted that a Hopf superalgebra structure can be obtained by using the res

Ref. 15, where the parabosonic algebraP(n) is formulated as a gradedZ2 superalgebra with the
parabosonic annihilation and creation operators being graded as odd elements of the osp(1n) Lie
superalgebra. In this structure the parabosonic algebraP(n) is mapped in the universal envelopin
algebra U(osp(1,2n)). The graded algebra U(osp(1,2n)) is a Hopf superalgebra,16 which means
that there is a superalgebra coproductDgr , a counite, and a superalgebra antipodeSgr , which have
the usual Hopf algebra properties~12!. These operators can be defined on the parabosonic alg
P(n). The coproductDgr is a mapping from the algebraP(n) into the graded tensor superalgeb
P(n) ^ grP(n). The algebraP(n) ^ grP(n) is the usual tensor algebra with a graded multiplicati
namely:

~a^ b!•~c^ d!5~21!deg~b!deg~c!ac^ bd ~18!

and

Dgr~a!5a^ 111^ a,

e~a!50, e~1!51, ~19!

Sgr~a!52a, Sgr~ab!5~21!deg~a!deg~b!Sgr~b!Sgr~a!.

Therefore the parabosonicP(n) is a Hopf superalgebra,16 and is also a Hopf algebra as w
have shown in this section by adding an additional generatorK which is defined by Eq.~8!.

III. PARAFERMIONIC REALIZATION OF A LIE ALGEBRA

Another similar construction can be achieved by considering the parafermionic algebraF(n),
which is generated by the elementsf 1 , f 2 ,...,f n , which satisfy the following trilinear commuta
tion relations:

@ f k ,@ f l
† , f m##52dkl f m ,

@ f k ,@ f l
† , f m

† ##52dkl f m
† 22dkmf l

† , ~20!

@ f k ,@ f l , f m##50.
                                                                                                                



d:
ebra

a-

useful
ie
of the

enta-

ic
osonic

e con-
d para-
lgebra.

tions of

fer-

658 J. Math. Phys., Vol. 41, No. 2, February 2000 Daskaloyannis, Kanakoglou, and Tsohantjis

                    
This algebra has a simple Hopf algebraic structure given by

D f~ f i !5 f i ^ 111^ f i ,

D f~ f i
†!5 f i

†
^ 111^ f i

† ,
~21!

e f~ f i !5e~ f i
†!50,

Sf~ f i !52 f i , Sf~ f i
†!52 f i

†

and it can easily be checked that the consistency relations~12! are satisfied.u(n) generators can
be defined, similarly as was given in Eq.~4!:

Nl m
@F#5

1

2
@ f l

† , f m#, N@F#5(
i 51

n

Nii
@F# ~22!

the Lie algebra can be realized by using a Jordan–Schwinger map:

J~Xi !5(
kl

cki
l Nkl

@F#5
1

2 (
kl

cki
l @ f k

† , f l #. ~23!

The generalization of Proposition 1 and 2 in the case of parafermions is straightforwar
Proposition 1a: The extended Jordan map, which is defined by (23), is a Hopf alg

homomorphism from the Hopf algebraU~L! into the parafermionic Hopf algebraF(n),

U~L!→
J

F~n!

and
Proposition 2a: The set of n parafermionic destruction (or creation) operators$ f i%, i

51,...,n ~or $ f i
†%, i 51,...,n! are adjoint tensor covariant (correspondingly contravariant) oper

tors of the Lie algebraL

IV. DISCUSSION

The realizations of the Lie algebras by using a generalized Jordan map seems to be a
tool. The importance of the Jordan–Schwinger map1 in the study of the representation of the L
algebras is well known. The proposed extension of this fundamental map in the case
parabosonic and parafermionic algebra, creates several problems to be solved.

~1! The relation of the parabosonic and parafermionic realizations to the known repres
tions of the Lie algebras.

It is well known that the usual bosonic~or fermionic! Jordan map leads to the symmetr
~antisymmetric! unitary representations of the Lie algebras. The representations of the parab
and parafermionic algebras are characterized by a positive integerp and a vacuum stateu0&:

bibj
†u0&5pd i j u0&.

Starting from this representation one can construct a representation of the Lie algebra. Th
nection of this representation to the known representations is not yet known. The propose
bosonic extension of the Jordan–Schwinger map uses the adjoint representation of the Lie a
A more general extension of this construction can be defined by using the other representa
the Lie algebra.

~2! The construction of the dual Hopf algebra corresponding to the Hopf algebra of para
mions and parabosons. The dual Hopf algebra of the universal enveloping algebra U~L! is the set
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of the smooth real functionsC`(G) defined on the local Lie group corresponding to the L
algebraL. The structure of the dual Hopf algebra of the parabosonic or the parafermionic al
is not known.

~3! The q-deformed versions of parabosonic or the parafermionic algebras. Another open
problem is theq-deformed extension of the Jordan–Schwinger map. It is well known that
ordinary one-dimensionalq-deformed bosons lead to the Jordan–Schwinger map in the sp
case of the suq(2), andanalogous constructions are known for theuq(N) algebras. As far as we
know, there is not any generalization of the Jordan–Schwinger map for theq-deformed versions of
the parabosonic or parafermionic algebra, while descriptions of the ospq(1/m)18 and ospq(2n
11/m) have been recently studied19 by using q-deformed generalizations of parabosonic a
parafermionic algebras. A very interesting problem seems to be the investigation o
q-deformed generalizations of the parabosonic or parafermionic algebras and their relation
Hopf algebraic structure of the quantum groups.

Beyond the importance of the study of representations of the generalized Jordan–Sch
map, we have shown that this map is a Hopf algebra homomorphism. This fact implies th
Hopf algebraic structure of the universal enveloping algebra of a Lie algebra is generated
Hopf algebraic structure of the parabosonic and parafermionic algebras. From this point of
the Hopf structure of parabosonic and parafermionic algebras is more fundamental than th
structure of Lie algebras. The extension of these ideas in the case of superalgebras is
investigation.

We must also notify, that Greenberg20 conjectured that the quarks are parafermions of or
p53. The basic symmetry group of the naive quark theory is the SU~3!, therefore Greenberg’s
assumption is related to the proposed realization of the su~3! algebra by using eight parafermion
of orderp53.
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The system ofN-nonrelativistic spineless particles minimally coupled to a massless
quantized radiation field with an ultraviolet cutoff is considered. The Hamiltonian
of the system is defined for arbitrary coupling constants in terms of functional
integrals. It is proved that the ground state of the system with a class of external
potentials, if they exist, is unique. Moreover an expression of the ground state
energy is obtained and it is shown that the ground state energy is a monotonously
increasing, concave, and continuous function with respect to the square of a cou-
pling constant. ©2000 American Institute of Physics.@S0022-2488~00!00902-6#

I. PRELIMINARIES

This is a continuation of paper 1.1 In paper 1 we considered the existence of the ground st
of a system consisting of a nonrelativistic particle and a massless quantized radiation fie~the
Pauli–Fierz model!. The next issue is to consider the multiplicity of the ground states. In partic
we consider the uniqueness of the ground states ofN-nonrelativistic spineless particle system
under some conditions. Degenerate ground states will be considered elsewhere.2 Moreover we also
give an expression of the ground state energy by a functional integral. Unfortunately we a
that the particles are spineless throughout this paper.

In this paper, dispensing with the usual perturbative approach, we want to tackle the H
tonian of the system with a nonperturbative approach, i.e., we donot require any assumptions o
the magnitude of the absolute value of coupling constante. A nonperturbative approach is possib
by using the Schro¨dinger representation3–7 instead of the Fock–Cook representation.

In the Schro¨dinger representation the Boson Fock spaceF is represented as theL2 space over
a probability measure space (A,mA). The HamiltonianHS of the system in the Schro¨dinger
representation is defined as a self-adjoint operator acting in a Hilbert space,

HSªL2~R3N,dx! ^ L2~A,dmA!>L2~R3N3A,dx^ dmA!,

and has the form:

Hsª~1/2!(
j 51

N

~PW j ^ I 2eA¢ ~xj !!21I ^ HF1V^ I ,

where PW jª(2i¹x
1
j ,2i¹x

2
j ,2i¹x

3
j ), j 51,...,N, A¢ (x)ªA¢ (r(•2x))ª(A1(r(•2x)), A2(r(•2x)),

A3(r(•2x))) denotes a quantized radiation field with ultraviolet cutoffr̂ in the Schro¨dinger
representation,HF the free Hamiltonian inL2(A,dmA). We define a self-adjoint extension,ĤS ,
of HS for arbitrary coupling constants in terms of functional integrals.

The problems of the uniqueness of the ground state of Hamiltonians have a long histo
have been widely investigated for several models; for our purpose most relevant results
Refs. 8–15. Recall the following definition:

a!Electronic mail: hiro@mathematik.tu-muenchen.de
6610022-2488/2000/41(2)/661/14/$17.00 © 2000 American Institute of Physics
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Definition 1.1: Let(M ,m) be a s-finite measure space. A function fPL2(M ,dm) is called
‘‘positive’’ if f >0 a.e. and fÓ0 a.e. and f is called ‘‘strictly positive’’ if f.0 a.e.

Definition 1.2: Let(M ,m) be as-finite measure space. A bounded operator, A, on L2(M ,dm)
is called ‘‘positivity preserving’’ if, (u1 ,Au2)L2(M ,dm)>0 for all positiveu1 andu2 in L2(M ,dm).
A is called ‘‘positivity improving’’ if (u1 ,Au2)L2(M ,dm).0 for all positive u1 and u2 in
L2(M ,dm).
The next proposition is well known:

Proposition 1.3 (Ref. 16, Theorem XIII 44): Let(M ,m) be as-finite measure space and K b
a self-adjoint operator that is bounded below in L2(M ,dm). Suppose thatinf s(K) is eigenvalue
and e2tK is positivity improving. Theninf s(K) is nondegenerate and the eigenfunction cor
sponding to the eigenvalueinf s(K) is strictly positive.

In this paper we give a class of external potentialsV @Hypothesis~RII!# such that there exists

unitary operatorq so thatq21e2tĤSq,t.0, is positivity improving, i.e., for all positiveC1 ,C2 in
HS ,

~C1 ,q21e2tĤsqC2!HS
.0, t.0.

Then we shall obtain that the ground state ofq21ĤSq is unique and strictly positive, which
implies that the ground state ofĤS is unique. Hence we also see that the ground state

q21e2tĤSq, if it exists, overlaps with any positive vector. Then we also present an expressi
the ground state energyE(e2) by the formula with any positiveC,

E~e2!ª inf s~ĤS!5 lim
b→`

2
1

b
log~C,q21e2bĤSqC!HS

. ~1.1!

Expression~1.1! gives us thatE(e2) is a monotonously increasing, concave, and continu
function in e2.

This paper is organized as follows: Section II specifies isomorphism between Fock–
representation and Schro¨dinger representation as we need in this paper and contains the defi
of the HamiltonianĤS with nonperturbative approach. Section III is the main section in this pa

This section states thatq21e2tĤSq is positivity improving in Theorem 3.10. In Sec. IV we giv
an expression of the ground state energy and show the properties of the ground state ene

II. SCHRÖDINGER REPRESENTATION

A. Quantized fields

We assume thatN51 for simplicity. For the caseN.1 it is considered in a similar way to
that of the caseN51 ~see Sec. V!. We use the same notation as in the previous paper.1 For
ultraviolet cutoff r̂PM21 the quantized radiation fieldAm(x)ªAm( r̂,x), m51,2,3, inF is de-
fined by Ref. 1 and the momentum conjugateEm(x), m51,2,3, inF by

Em~x!ªEm~ r̂,x!ª i (
r 51

2 E dk

A2v~k!
$r̂~2k!em

r ~k!eikxar~k!2 r̂~k!em
r ~k!e2 ikxa†r~k!%,

wherer̂ ~respectively,ř) is the Fourier transform~respectively, the inverse Fourier transform! of
r: r̂(k)ª(2p)23/2*R3r(x)e2 ikxdx. Let W0ªL2(R4) % L2(R4). We denote byF0 the Boson Fock
space overW0 , i.e.,F0ª% n50

`
^ s

nW0 and byV0 the Fock vacuum inF0 . We denote byF0,fin the
finite particle subspace ofF0 . Throughout this paper notationTa ~respectively,Ta) denotesT or
T0 ~respectively,T or T0), andk0PR, k5(k1 ,k2 ,k3)PR3. Let v0ªv0(k,k0)ªAv(k)21uk0u2

and

Mn
0
ª$ f :Borel measurableuiv0

n/2f iL2~R4!,`%.
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We define forr̂PM22
0 ,

Am
0 ~x!ªAm

0 ~ r̂,x!

ª(
r 51

2 E dk dk0

v0~k,k0!
$r̂~k,k0!em

r ~k!e2 ikxb†r~k,k0!

1 r̂~2k,2k0!em
r ~k!eikxbr~k,k0!%,

Em
0 ~x!ªEm

0 ~ r̂,x!

ª i (
r 51

2 E dk dk0

v0~k,k0!
$r̂~2k,2k0!em

r ~k!eikxbr~k,k0!

2 r̂~k,k0!em
r ~k!e2 ikxb†r~k,k0!%,

whereb†r(k,k0) andbr(k,k0) are formal kernels of the smeared creation operator and the sme
annihilation operator inF0 , i.e., b]r( f )5*b]r(k,k0) f (k,k0)dk dk0 , f PL2(R4), and b]r( f )
satisfy@1, ~2.1!, ~2.2!, and~2.3!# with L2(R3) andFfin replaced byL2(R4) andF0,fin, respectively.
Let Am( r̂)ªAm( r̂,0), Em( r̂)ªEm( r̂,0), Am

0 ( r̂)ªAm
0 ( r̂,0) andEm

0 ( r̂)ªEm
0 ( r̂,0). Note that

~Am~ r̂ !V,An~ l̂ !V!F 5
1

2 E dmn~k!r̄̂~k!l̂~k!

v~k!
dk, r̂,l̂PM21 , ~2.1!

~Am
0 ~ r̂ !V0 ,An

0~ l̂ !V0!F0
5E dmn~k!r̄̂~k,k0!l̂~k,k0!

v0~k,k0!2 dk dk0 , r̂,l̂PM22
0 , ~2.2!

wheredmn(k)ªS r 51
3 em

r (k)en
r (k)5dmn2(kmkn)/uku2, m,n51,2,3.

B. Probabilistic description

In this section, taking into account~2.1! and ~2.2!, we construct the Schro¨dinger representa
tion of Fa and defineHS . Let S(Rd), d53,4, denote the set of rapidly decreasing infinite tim
differentiable functions onRd,Sr(R

d) the set of real-valued functions inS(Rd) andSr8(R
d) the set

of real tempered distributions onRd. Let SªSr(R
3), S0ªSr(R

4), S8ªSr8(R
3) and S08

ªSr8(R
4). Define

SªH f PS8Ui f iS
2
ªE

R3

u f̂ ~k!u2

v~k!
dk,`J

with scalar product (f ,g)Sª*R3 f̂ (k)ĝ(k)/v(k)dk. In what follows, for any linear spaceG, we put
G%

ªG% G% G. We equip with a positive semidefinite bilinear formq(•,•) on S% ; for f
5( f 1 , f 2 , f 3)PS% andg5(g1 ,g2 ,g3)PS% ,

q~ f ,g!ª (
m,n51

3

~~dmn f̂ m! ˇ ,gn!s.

We define Hilbert spaceS0 by

S0ªH f PS08Ui f iS0

2
ª2E

R4

u f̂ ~k,k0!u2

v0~k,k0!2 dk dk0,`J
with scalar product (f ,g)S0

ª2*R4 f̂ (k,k0)ĝ(k,k0)/v(k,k0)2dk dk0 . On S0
% we equip with a posi-

tive semidefinite bilinear formq0(•,•); for f 5( f 1 , f 2 , f 3)PS0
% andg5(g1 ,g2 ,g3)PS0

% ,
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q0~ f ,g!ª2 (
m,n51

3

~~dmn f̂ m! ˇ ,gn!S0
.

For instance we putqa( f )ªqa( f , f ). We denote the dual pairsSa8 andSa by ^•,•&a and define,
for Aa

ª(A1
a ,A2

a ,A3
a)PSa8

% ,

Aa~h!ª (
m51

3

^Am
a ,hm&a , h5~h1 ,h2 ,h3!PSa

% ,

Am
a ~h!ª^Am

a ,h&a , hPSa , m51,2,3.

Note thatSa
% is dense inSa

% . Since functionalCa( f )ªe2(1/4)qa( f ), f PSa
% , satisfies that~1!

Ca(0)51, ~2! Ca(•) is continuous inSa
% , ~3! S i , j 51

n z̄izjCa( f i2 f j )>0, for any ziPC and f i

PSa
% , i 51,...,n, the Minlos theorem~Ref. 6. Theorem I.10! yields thatCa( f ) is the characteristic

function of a Gaussian measure,mAa, of mean zero and covariance (1/2)qa overAa
ªSa8

% with a
s algebra,Sa , constructed by cylinder sets, i.e.,

E
Aa

eiAa~h!dmAa~Aa!5e2~1/4!qa~h!, hPSa
% .

By the construction,$Aa(h),hPSa
%% is ‘‘full’’ ~Ref. 6, p. 21! with respect toSa , i.e., Sa is the

smallests algebra generated by$Aa( f ), f PSa
%%. We put

Aa
ªL2~Aa,Sa ,dmAa!.

For hPSa
% , we defineAa(h)ªs2 limn→` Aa(hn) in Aa, wherehn→h in Sa

% with hnPSa
% . Note

that

iAa~h!2Aa~ f !iAa
2

5~1/2!qa~h2 f !<~3/2!ih2 f is
a
%

2
,

wherei f iS
a
%

2
ªSm51

3 i f miSa

2 for f 5( f 1 , f 2 , f 3)PSa
% . HenceAa(h) does not depend on the choic

of sequences$hn%n51
` ,Sa

% . Thus we have constructed Gaussian random process indexed bSa
% ,

(Aa(h),hPSa
% ), over the probability measure space (Aa,Sa ,mAa) with covariance (1/2)qa ~Ref.

6, p. 15!. It is well known ~Ref. 6 ~I.25!! that

Afin
a
ª ø

N50

`

% n50
N L$:Aa~h1!¯Aa~hn!:AauhjPSa

% , j 51,...,n%

is dense inAa, where<Aa is the ‘‘Wick product’’ in Aa ~Ref. 6, p. 9!. We define a subsetQa of
coherent vectors inAa by

Qa5$G~Aa~h1!,...,Aa~hn!!uGPS~Rn!,hjPSa
% , j 51,...,n,n>1%.

Since$Aa(h),hPSa
%% is ‘‘full,’’ Qa is dense inAa ~Ref. 6, Lemma I.5!. Define an operatorṽ in

S by ṽ f̂ (k)ªv(k) f̂ (k) and v̂5ṽ % ṽ % ṽ as the operator inS% . SetVSª1 in A andVS
0
ª1 in

A0. Define the non-negative self-adjoint operatorHF in A by the generator of the strongly con
tinuous contraction symmetric one-parameter semigroup of the second quantization6 of e2tv̂;
G(e2tv̂)5e2tHF, t>0. It is shown thate2tHF is positivity preserving~Ref. 6, I.12! andHF has the
strictly positive unique ground stateVS : HFVS50, which implies that the semigroupe2tHF is
ergodic.15 Thene2tHF is not only positivity preserving but also positivity improving14 for all t.0.
We define the family of linear operatorsj t , t>0, of S to S0 by

j t f̂ ~k0 ,k!ª~1/A2p!e2 i tk0 f̂ ~k!, f PS,
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andj tª j t % j t % j t as the operator ofS% to S0
% . The family of linear operatorsJt , t>0, of A to A0

is defined by

Jt :A~h1!¯A~hn!:Aª:A0~ j th1!¯A0~ j thn!:A0, n>1,

JtVSªVS
0.

The operatorsJs* andJt ,s,tPR, are positivity preserving and we have

j t* j s5e2ut2suv̂, t,sPR, ~2.3!

Jt* Js5e2ut2suHF, t,sPR. ~2.4!

Let NS
a denote the number operator inAa. We shall see relation betweenFa andAa. We define a

linear mapUa :Fa→Aa by

Ua :Am1

a ~ r̂1!¯Amn

a ~ r̂n!:Fa
Va

ª:Am1

a ~r1!¯Amn

a ~r1!¯Amn

a ~rn!:Aa, n>1,

UaVaªVS
a , r jPSa

% , m j51,2,3, j 51,...,n.

where<Fa
is the ‘‘Wick product’’ in Fa ~Ref. 16, p. 226!.

Lemma 2.1 (Ref. 4): The operators Ua extend a unitary operator ofFa to Aa so that
~1! U maps D(H f) to D(HF) with Hf5U21HFU,
~2! U maps D(N) to D(NS) with N5U21NSU,
~3! Let rPSa . Then Ua maps D(Am

a ( r̂) dFfin
) to D(Am

a (r) dA
fin
a ) with

Am
a ~ r̂ !dFfin

5Ua
21~Am

a ~r!dA
fin
a !Ua , m51,2,3, ~2.5!

where T̄denotes the closure of closable operator T.
From ~2.5! it follows that Ua implements isomorphismAa>Fa . Set

HSªL2~R3,dx! ^ A>L2~R33A,dx^ dmA!. ~2.6!

For rPS, we definer(•2x),xPR3, by r(•2x)ª(e2 i (•,x)r̂(•)) ˇ , where~•,•! denotes the Eu-
clidean scalar product. ThenHS reads

HSª~1/2!~PW ^ I 2eA¢ ~x!!21V^ I 1I ^ HF ,

whereA¢ (x)ªA¢ (r(•2x))ª(A1(r(•2x)),A2(r(•2x)),A3(r(•2x)).

C. Definition of self-adjoint Hamiltonian and functional integral representation

Let b(t)5$bm(t),t>0,m51,2,3% be the three-dimensional Brownian motion starting at
origin, b(0)50, on a probability measure space~M, b!. Set MªR33M , dvªdx3db and
v(t)ªx1b(t). We introduce Hypothesis as follows:

Hypothesis~RI !: r̂PM21ùM1 and r̂(k)5 r̂(2k).
Hypothesis~RII !: The external potentialV5V12V2 , whereV1 is the positive part ofV and

V2 the nonpositive part, is so thatV1PL loc
1 (R3) and V2 is relatively form bounded with re-

spected to the LaplacianD in L2(R3) with sufficiently small relative form bound.
Remark 2.2~RI ! implies thatr(•2x)PCb

1(R3;S), the set of strongly differentiable bounde
S-valued functions in xPR3.

Remark 2.3~RII ! implies that e2tHp is positivity improving.10 Hence, if the ground states o
Hp exist, it is unique. We do not, however, assume the existence of the ground statesp

throughout this paper.
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Proposition 2.4 (Ref. 4, Theorem 4.10): We assume that~RI ! and~RII ! hold. Then there exists

a self-adjoint operator Hˆ S so that HSdD(Hp^ I )ùD(I ^ HF)ùD(I ^ NS),ĤS and

~F,e2tĤSG!HS
5E

M
expS 2E

0

t

V~v~s!!dsD ~J0F0 ,e2 ieA0~W~ t !!JtGt!A0dv, ~2.7!

where F, GPHS ,F0ªF(v(0)),GtªG(v(t)),

W~ t !ªS E
0

t

j sr~•2v~s!!db1~s!,E
0

t

j sr~•2v~s!!db2~s!,E
0

t

j sr~•2v~s!!db3~s! D PS0
%

and *0
t j sr(•2v(s))dbm(s) denotesS0-valued stochastic integral4 of jsr(•2x2b(s)).

Remark 2.5: Proposition 2.4 yields that Hˆ
S is a self-adjoint extension of HS for arbitrary

coupling constant e. See Ref. 7 for the essential self-adjointness of Hˆ
S .

III. UNIQUENESS OF GROUND STATE

In this section we shall show that the ground state ofĤS is unique.

A. Positivity preserving

The Plancherel–Wiener transformation inAa is defined by

qaªexpS 2 i
p

2
NS

aD .

Let Em
a ( f )ªqa

21Am
a ( f )qa ,m51,2,3. Forf PSa , in accordance with Lemma 2.1, we have

Ua
21Em

a ~ f !Ua5ei ~p/2!Na
Am

a ~ f̂ !e2 i ~p/2!Na
5Em

a ~ f̂ !, m51,2,3. ~3.1!

By a limiting argument,~3.1! extends to f PSa . Note that, for r5(r1 ,r2 ,r3)PSa
% and l

5(l1 ,l2 ,l3)PSa
% ,

(
m,n51

3

@Am
a ~ r̂m!,En

a~ l̂n!#5 iqa~r,l!,

~3.2!

(
m,n51

3

~Am
a ~ r̂m!Va,En

a~ l̂n!Va!Fa
5

i

2
qa~r,l!.

For f 5( f 1 , f 2 , f 3 )PSa
% , we setEa( f )ª(m51

3 Em
a ( f m ). Using ~3.1!, we see that forGPSa

% and
aPC,

:eaAa~G!:AaVS
a5e2~a2/4!qa~G!eaAa~G!VS

a , ~3.3!

:eaEa~G!:AaVS
a5e2~a2/4!qa~G!eaEa~G!VS

a , ~3.4!

:eaEa~G!:AaVS
a5:ea iAa~G!:AaVS

a . ~3.5!

Hence~3.3!, ~3.4!, and~3.5! imply that for GPSa
% andaPC,

eaEa~G!VS
a5e~a2/4!qa~G!:eaEa~G!:AaVS

a5e~a2/4!qa~G!:ea iAa~G!:AaVS
a5e~a2/2!qa~G!ea iAa~G!VS

a .

Especially we have
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eiEa~G!VS
a5e2~1/2!qa~G!e2Aa~G!VS

a , GPSa
% . ~3.6!

The Weyl relation follows from~3.2!:

eiEa~G!eiAa~H !5eiqa~H,G!eiAa~H !eiEa~G!, G,HPSa
% . ~3.7!

Lemma 3.1: Let G,G1 ,G2PSa
% . Then we have

~eiAa~G1!VS
a ,eiEa~G!eiAa~G2!VS

a!Aa5e~ i /2!qa~G11G2 ,G!e2~1/4!qa~G12G2!e2~1/4!qa~G!. ~3.8!

Proof: By ~3.7! we see that

~eiAa~G1!VS
a ,eiEa~G!eiAa~G2!VS

a!Aa5~eiAa~G12G2!VS
a ,eiEa~G!VS

a!Aaeiqa~G2 ,G!.

Moreover from~3.6! it follows that

~eiAa~G12G2!VS
a ,eiEa~G!VS

a!Aa5~eiAa~G12G2!VS
a ,e2Aa~G!VS

a!Aae2~1/2!qa~G!

5e~ i /2!qa~G12G2 ,G!e2~1/4!qa~G12G2!e2~1/4!qa~G!.

Hence~3.8! follows.
Lemma 3.2: Let GPSa

% . Then eiE
a(G) is positivity preserving on Aa.

Proof: We must show that, for all positiveu jPAa, j 51,2,

~u1 ,eiEa~G!u2!Aa>0. ~3.9!

For any positiveCPAa, we can take a positive sequence$Cn%n51
` ,Qa so thatCn→C in Aa

strongly ~Ref. 13, Theorem 3.2!. Then it suffices to show~3.9! for any positiveu1 ,u2PQa. Let

u15u1~Aa~K1!,...,Aa~Kn!!5~2p!2n/2E
Rn

d tW û1~ tW !expF iAaS (
j 51

n

t jK j D G ,

u25u2~Aa~L1!,...,Aa~Lm!!5~2p!2m/2E
Rm

dsW û2~sW !expF iAaS (
i 51

m

siLi D G ,

whereK j ,LiPSa
% , j 51,...,n,i 51,...,m, tW5(t1 ,...,tn),sW5(s1 ,...,sm). We have

~u1 ,eiEa~G!u2!Aa5
1

~A2p!n1m ERn1m
d tW dsW û1~ tW !û2~sW !

3S expF iAaS (
j 51

n

t jK j D G ,eiEa~G! expF iAaS (
i 51

m

siLi D G D
Aa

5
1

~A2p!n1m ERn1m
d tW dsW û1~ tW !û2~sW !expS ~ i /2!(

j 51

n

qa~K j ,G!t j D
3expS ~ i /2!(

i 51

m

qa~Li ,G!si D G~ tW,sW !e2~1/4!qa~G!

5@~u1
T

^ u2!* Ǧ#~u1 ,...,un ,v1 ,...,vm!e2~1/4!qa~G!, ~3.10!
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where u1
T(x)ªu1(2x), the asterisk denotes convolution,G( tW,sW)ª exp@2(1/4)qa(( j 51

n K j t j

2( i 52
m Lisi) and u1ª(1/2)qa(K1 ,G),..., unª(1/2)qa(Kn ,G), v1ª(1/2)qa(L1 ,G),..., vm

ª(1/2)qa(Lm ,G). The second equality in~3.10! is due to~3.8!. SinceǦ.0, ~3.9! follows.
The next lemma is explained by J. Fro¨hlich in a private communication.17

Lemma 3.3: We assume that~RI ! and ~RII ! hold. Thenq21e2tĤs q is positivity preserving.
Proof: Assume thatF,GPHS are positive. Note thatJsq5q0Js . From Proposition 2.4 it

follows that

~F,q21e2tĤSqG!HS
5E

M
exp2E

0

t

V~v~s!!ds~JtFt ,eieE0~W~ t !!J0G0!A0dv.

SinceJt andJ0 are positivity preserving, Lemma 3.2 yields that (JtFt ,eieE0(W(t))J0G0)A0>0 for
a.e. (x,b)PM. Thus lemma follows. h

B. Positivity improving

In this section we shall prove thatJt* eiE0(W(t))J0 is positivity improving and the ground stat
of ĤS is unique. ForaPC, we note thatD(eaAa(h)).Qa, wherehPSa

% . The following lemma is
the key lemma in this section.

Lemma 3.4: Let GPQ and hPS0
% . Then J0eiE( j0* h)eA( j0* h)GPD(e2A0(h)) with

e2A0~h!J0eiE~ j0* h!eA~ j0* h!G5e~1/2!~q0~h!1q~ j0* h!!eiE0~h!
J0G. ~3.11!

Proof: Let G5G(A(K1),...,A(Kn))5(2p)2n/2*Rn d tW Ĝ( tW)exp@iA(Sj51
n tjKj)#, where G

PS(Rn), K jPS% , j 51,...,n, tW5(t1 ,...,tn). SinceJ0 is isometry, we see that

J0G~A~K1!,...,A~Kn!!VS5G~A0~ j0K1!,...,A0~ j0Kn!!VS
0.

Note that, forK j5(K j 1 ,K j 2 ,K j 3) andh5(h1 ,h2 ,h3),

q0~ j0K j ,h!5 (
m,n51

3

~dmn~ j 0K j m! ˆ ,ĥn!215 (
m,n51

3

„ j 0~dmnK̂ j m! ˇ ,hn…S0

5 (
m,n51

3

~~dmnK̂ j m! ˇ , j 0* hn!S5q~K j ,j0* h!, j 51,...,n.

By virtue of ~3.6! and ~3.7!, we have

eiE0~h!J0GVS5G~A0~ j0K1!1q0~ j0K1 ,h!,...,A0~ j0Kn!1q0~ j0Kn ,h!!eiE0~h!VS
0

5e2~1/2!q0~h!e2A0~h!G~A0~ j0K1!1q0~ j0K1 ,h!,...,A0~ j0Kn!1q0~ j0Kn ,h!!VS
0

5e2~1/2!q0~h!e2A0~h!G~A0~ j0K1!1q~K1 ,j0* h!,...,A0~ j0Kn!1q~Kn ,j0* h!!VS
0

5e2~1/2!q0~h!e2A0~h!J0G~A~K1!1q~K1 ,j0* h!,...,A~Kn!1q~Kn ,j0* h!!VS

5e2~1/2!q0~h!e2A0~h!J0eiE~ j0* h!Ge2 iE~ j0* h!VS

5e2~1/2!q0~h!e2A0~h!J0eiE~ j0* h!Ge2~1/2!q~ j0* h!eA~ j0* h!VS

5e2~1/2!~q0~h!1q~ j0* h!!e2A0~h!J0eiE( j0* heA~ j0* h!GVS .

Thus ~3.11! follows. h

Remark 3.5: Simple calculation shows that
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j t* l̂~k!5
2

A2p
E

R

uku
uku21uk0u2

eitk0l̂~k,k0!dk0 , lPS0 , tPR.

The right-hand side of~3.11! is a bounded operator ofA to A0. Hence we see that

e2A0~h!J0eiE~ j0* h!eA~ j0* h!dQ5e~1/2!~q0~h!1q~ j0* h!!eiE0~h!J0 .

Let us define bounded multiplication operators by (e2A0(h))M and (eA( j 0* h))M as follows:

~e2A0~h!!MªH e2A0~h!, e2A0~h!,M ,

M , e2A0~h!>M ,
~eA~ j0* h!!MªH eA~ j0* h!, eA~ j0* h!,M ,

M , eA~ j0* h!>M .

Lemma 3.6: Assume that hPS0
% . Then bounded operator PMªJt* (e2A0(h))MJ0 is positivity

improving on A.
Proof: Let u jPA, j 51, 2, be positive. It is clear that the operatorPM is positivity preserving,

i.e.,

~u1 ,PMu2!A>0. ~3.12!

We shall prove that there are no positive vectorsu1 andu2 so that the left-hand side of~3.12! is
zero. We assume that

~u1 ,PMu2!A5~~e2A0~h!!MJtu1 ,J0u2!A050. ~3.13!

Since (e2A0(h))MJt is positivity preserving,~3.13! implies that

usupp$~e2A0~h!!MJtu1%ùsuppJ0u2u050, ~3.14!

where uSua denotes the measure of a setS in Aa. Since *A0uA0(h)u2dmA05(1/2)q0(h),`,
uA0(h)u is bounded for almost surelyA0PA0. Thus we see that

u$A0PA0u~e2A0~h!!M50%u050. ~3.15!

Thus ~3.14! and ~3.15! imply that usuppJtu1ùsuppJ0u2u050 which deduces that

05~Jtu1 ,J0u2!A05~u1 ,e2tHFu2!A .

This is in contradiction to the fact thate2tHF is positivity improving. Hence there exist no vecto
u j as in ~3.13!. Thus the lemma follows. h

Lemma 3.7: Assume that hPS0
% . Then QMªe2(1/2)(q0(h)1q( j0* h))PMeiE( j0* h)(e2A( j0* h))M is

positivity improving on A.

Proof: By Lemma 3.6,PM is positivity improving and botheiE( j0* h) and (e2A( j0* h))M are
positivity preserving. HenceQM is positivity improving. h

Theorem 3.8: Assume that hPS0
% . Then the bounded operator Jt* eiE0(h)J0 is positivity im-

proving on A.

Proof: Since Jt* , J0 , and eiE( j0* h) are positivity preserving, and the fact (e2A0(h))M

<e2A0(h), (eA( j0* h))M<eA( j0* h), we see that, for positiveuPQ,
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QMu5e2~1/2!~q0~h!1q~ j0* h!!Jt* ~e2A0~h!!MJ0eiE~ j0* h!~eA~ j0* h!!Mu

<e2~1/2!~q0~h!1q~ j0* h!!Jt* e2A0~h!J0eiE~ j0* h!eA~ j0* h!u

5e2~1/2!~q0~h!1q~ j0* h!!Jt* ~e2A0~h!J0eiE~ j0* h!eA~ j0* h!dQ!u

5Jt* eiE0~h!J0u. ~3.16!

Since arbitrary positiveC in A can be strongly approximated by a positive sequence$un%n51
` ,Q

in A, ~3.16! yields that, for arbitrary positiveCPA,QNC<Jt* eiE0(h)J0C. Thus, for all positive
u jPA, j 51,2,

~u1 ,Jt* eiE0~h!J0u2!A>~u1 ,QNu2!A.0.

Hence the theorem follows. h

Lemma 3.9: The semigroup e2t(Hp1HF)t.0, is positivity improving.
Proof: For arbitrary positive functionF5F(x)5F(x,A) and G5G(x)5G(x,A), we must

prove

~F,e2t~Hp1HF!G!HS
5E

M
expS 2E

0

t

V~v~s!!dsD ~J0F~v~0!!,JtG~v~ t !!!A0.0.

Note that, sinceV1PL loc
1 (R3), for a.e (x,b)PM,*0

t V1(v(s))ds,` ~Ref. 10, Lemma 2!. Hence
exp(2*0

t V(v(s))ds)5exp(*0
t V2(v(s))ds)exp(2*0

t V1(v(s))ds).0 for a.e. (x,b)PM. Let DGª$x
PR3uG(x,•)Ó0% andDFª$xPR3uF(x,•)Ó0%, andJS be the characteristic function ofS,M .
Then, for eachxPD,

E
M

J$bPM ux1b~ t !PDF%~b!db5~2pt !23/2E
DF

e2ux2yu2/2tdy.0.
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Thus *DG
dx*M J$bPM ux1b(t)PDF% (b)db.0, which yields that the measure of setDFG

ªøxPDG
$bPM ux1b(t)PDF% is positive. Sincee2sHF,s.0, is positivity improving, we see

that, for (x,b)PDFG , Gt5G(v(t))Ó0 and F05F(v(0))Ó0 in A and that (J0F0 ,JtGt)A0

5(F0 ,e2tHFGt)A.0. Hence we have

E
M

expS 2E
0

t

V~v~s!!dsD ~J0F0 ,JtGt!A0>E
DFG

expS 2E
0

t

V~v~s!!dsD ~G0 ,e2tHFGt!A.0.

Thus lemma follows. h

Theorem 3.10:We assume that~RI ! and ~RII ! hold. Thenq21e2tĤSq is positivity improv-
ing.

Proof: We must show that, for all positiveF,GPHS ,

~F,q21e2tĤSqG!HS
.0. ~3.17!

Since, by Theorem 3.8,Jt* eieE0(W(t))J0 is positivity improving, (F0J0* e2 ieE0(W(t))JtGt)A

.0,(x,b)PDFG . Thus it follows that

~F,q21e2tĤSqG!HS
>E

DFG

expS 2E
0

t

V~v~s!!dsD ~F0 ,J0* e2 ieE0~W~ t !!JtGt!Adv.0.

Hence~3.17! follows. h

Corollary 3.11 (Uniqueness): We assume that~RI ! and ~RII ! hold, and that the ground state

of ĤS exists. Then the ground state of Hˆ
S is unique and unitary transform of a strictly positiv

vector.
Proof: By Theorem 3.10 and Proposition 1.3, the ground state ofq21ĤSq is unique and

strictly positive, which implies the desired result. h

Corollary 3.12 (Overlap): We assume that~RI ! and ~RII ! hold, and that the ground state o

ĤS ,Vg , exist. Then, for arbitrary positiveCPL2(R3),(C ^ VS ,Vg)HS
.0.

Proof: By Corollary 3.11Vg has the formVg5qF, whereF is strictly positive inHS .
Hence (C ^ VS ,Vg)HS

5(C ^ q21VS ,F)HS
5(C ^ VS ,F)HS

.0. Thus corollary follows. h

IV. GROUND STATE ENERGY

In this section we shall give an expression of infs(ĤS) by the functional integral represen
tation. We have the following theorem:

Theorem 4.1 „Ground State Energy…: We assume that~RI ! and ~RII ! hold, and that the

ground state of Hˆ S exist. Then, for arbitrary positiveFPL2(R3),

E~e2!ª inf s~Ĥs!5 lim
b→`

2
1

b
log E

M
dvF~v~b!!F~v~0!!expS 2E

0

b

V~v~s!!dsD
3exp@2~e2/4!q0~W~b!!#. ~4.1!

Proof: From Corollary 3.12 it follows that

inf s~ĤS!5 lim
b→`

2
1

b
log~F ^ VS ,e2bĤSF ^ VS!HS

.

Since
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~F ^ VS ,e2bĤSF ^ VS!HS

5E
M

dv F~v~b!!F~v~0!!~VS ,e2 ieA0~W~b!!VS!A0 expS 2E
0

b

V~v~s!!dsD
5E

M
dv F~v~b!!F~v~0!!expS 2E

0

b

V~v~s!!dsD exp@2~e2/4!q0~W~b!!#.

Thus the theorem follows. h

We shall give a remark on the termq0(W(b)) in ~4.1!. We see that, by~3.1!,

~JtAm~r~•2x!!,JsAn~r~•2x!!!A05
1

2 ER3

dmn~k!ur̂~k!u2

uku
e2 ik~x2y!e2ut2suukudk

ªDmn~x2y,t2s!.

By the definition4 of *0
t j sr(•2x2b(s))dbm(s), taking a subsequencen8 in the set of natural

numbers, for almost surelybPM , we see that

(
k51

2n8

j (k21)/n8rS •2x2bS k21

2n8
t D D H bmS k

2n8
t D 2bmS k21

2n8
t D J

→E
0

t

j sr~•2x2b~s!!dbm~s!,

asn8→` strongly inS0 . Then it follows that for almost surelybPM , taking subsequencesn8
andm8 in the set of natural numbers, we see that

q0S H E0

t

j sr~x1b~s!!dbm~s!J
m51

3 D
5 lim

m8→`

lim
n8→`

(
m,n51

3

(
k51

2n8

(
l 51

2m8

3E
R3

dmn~k!ur̂~k!u2 expS 2 ikS bS l 21

2m8
t D 2bS k21

2n8
t D D D expS 2U l 21

2m8
t2

k21

2n8
tUUkU D

uku
dk

3H bnS l

2m8
t D 2bnS l 21

2m8
t D J H bmS k

2n8
t D 2bmS k21

2n8
t D J

5 lim
m8→`

lim
n8→`

(
m,n51

3

(
k51

2n8

(
l 51

2n8

DmnS bS l 21

2m8
t D 2bS k21

2n8
t D ,

l 21

2m8
t2

k21

2n8
t D

3H bnS l

2m8
t D 2bnS l 21

2m8
t D J H bmS k

2n8
t D 2bmS k21

2n8
t D J .

Thus we may ‘‘formally’’ put as follows:

q0~W~ t !!52 (
m,n51

3 E
0

tS E
0

t

Dmn~b~s!2b~s8!,s2s8!dbm~s8! D dbn~s!. ~4.2!

Remark 4.2: Double stochastic integral in the right-hand side of (4.2) is pointed out in Re
and studied in Refs. 19 and 7.
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Theorem 4.3: We assume that~RI ! and ~RII ! hold, and that the ground state of Hˆ
S exist.

Then E(e2) is a concave and continuous function in e2.0.
Proof: Let FPL2(R3) be positive. ThusdmFªF(v(t))F(v(0))exp(2*0

t V(v(s))ds)dv is a
positive measure onM. We see thatu(e2)ªe2(e2/4)q(W(b)) is log-convex~Ref. 20, IV 13! in e2.
Thus we see that, by Ho¨lder’s inequality,*M u(e2)dmF is also log-convex ine2. HenceE is
concave, which implies thatE(e2) is continuous ine2.0. h

Corollary 4.4: We assume that~RI ! and ~RII ! hold, and that the ground state of Hˆ
S exist.

Moreover r̂PM22ùM0 . Then E(e2) is a monotonously increasing, concave and continu
function in e2>0.

Proof: Since we can see thatĤS converges toHp^ I 1I ^ HF in norm resolvent sense ase
→0,E(e2) is continuous ate250. By Theorem 4.3,E(e2) is continuous concave function ine2

>0. Thus, in general, there exists a monotone increasing functionf(t) so that

E~e2!5E~0!1E
0

e2

f~ t !dt.

By diamagnetic inequality,4,21 we haveE(0)<E(e2). Thusf(t)>0 for anyt>0. HenceE(e2) is
monotone increasing ine2>0. h

V. CONCLUDING REMARKS

The argument of Sec. IV can be extended tod-dimensional (d>3) N-nonrelativistic spineless
particle system. The Hilbert space of the system is defined byL2(RdN) ^ L2(A,dmA) and the
Hamiltonian by

HSª~1/2!(
j 51

N

~PW j ^ I 2eA¢ ~r~•2xj !!!21I ^ HF1V^ I .

Here PW j5(2 i¹x
1
i ,...,2 i¹x

d
j ), j 51,...,N, and d-dimensional polarization vectorser , r 51,...,d

21, satisfy thates(k)er(k)5d rs , ker(k)50. The self-adjoint extensionĤS of HS for arbitrary
coupling constante is defined by functional integral representation as in Proposition 2.4. The
can show that the ground state of the system with external potentialV5V12V2(V1

PL loc
1 (RdN),V2 , relatively form bounded with respect to thedN-dimensional Laplacian2D with

sufficiently small relative bound! is unique and overlap with the vectors of the formC ^ V with
positive CPL2(RdN). Moreover, it is shown that the ground state energy is a monotono
increasing, concave and continuous function with respect toe2.
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Isospectral deformation of some shape invariant
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Here we generalize the isospectral deformation of the discrete eigenspectrum of
Eleonsky and Korolev@Phys. Rev. A55, 2580~1997!# to continuous eigenspectrum
of some well-known shape-invariant potentials. We show that the isospectral de-
formations preserve their shape invariance properties. Hence, using the preserved
shape invariance property of the deformed potentials, we obtain both discrete and
continuous eigenspectrum of the deformed Rosen–Morse, Natanzon, Rosen–Morse
with added Dirac delta term, and Natanzon with added Dirac delta term potentials,
respectively. It is shown that deformation does not change their other pecurialities,
such as the reflectionless property of the Rosen–Morse potential and the penetra-
tionless property of the Natanzon one. ©2000 American Institute of Physics.
@S0022-2488~00!00901-4#

I. INTRODUCTION

In Ref. 1 an elegant algorithm of a one-parameter isospectral deformation of one-dimen
potentials was presented. In the same reference some operators were introduced, where
crete eigenspectrum of the deformed potential was obtained by applying these operators o
discrete eigenfunction of the undeformed potential. Here in this article we show that, under c
circumstances, we can also obtain the continuous eigenspectrum of the deformed potenti
the corresponding continuous eigenfunction of the undeformed one. Especially, this algo
works well in case of shape-invariant potentials and leads to some quite interesting results s
the preservation of the shape invariance symmetry under these isospectral deformations. W
here worked on some very interesting shape-invariant potentials such as those of Rosen
Natanzon, Rosen–Morse with the Dirac delta term added to it, and Natanzon together the
delta term. It is shown that the isospectral deformation preserves the reflectionless property
first potential and it preserves also the penetrationless property of the second and fourth pot

This paper is organized as follows: In Sec. II, we generalize the algorithm of isope
deformation of Ref. 1 to continuous eigenspectrum. In Sec. III, we apply this generalized
rithm on the shape-invariant potentials and we show that it preserves the shape invarianc
metry. The Rosen–Morse potential is worked up in detail in Sec. IV. Section V is devote
isospectral deformation of the Natanzon potential. In Sec. VI, we deform these two potential
the Dirac delta function added to them. The paper ends with a conclusion~Sec. VII!.

II. ISOSPECTERAL DEFORMATION OF QUANTUM POTENTIALS

It has been shown in Ref. 1 that, if the parameter-dependent potentialu(x,l) of a one-
dimensional Schro¨dinger equation satisfies the following conservation law or flow equation

a!Electronic mail: Jafarzadeh@ark.tabrizu.ac.ir
b!Electronic mail: Esfand@ark.tabrizu.ac.ir
c!Electronic mail: t-Panahi@ark.tabrizu.ac.ir
6750022-2488/2000/41(2)/675/26/$17.00 © 2000 American Institute of Physics
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u~x,l!5
]

]x S (
k

tkck
2~x,l! D , ~2.1!

whereck(x,l) corresponds to discrete eigenspectrum of the Schro¨dinger equation

2
d2ck~x,l!

dx2 1u~x,l!ck~x,l!5Ekck~x,l!, lim
x→6`

ck~x,l!50, ~2.2!

then these potentials will form a familly of isospectral potentials, that is

dEk

dl
50. ~2.3!

Also according to Ref. 1, for a single-phase flow case, that is,

tn51 and tm50 for mÞn,

u(x,l) turns out to be

u~x,l!5u~x!2
d2

dx2 ln un~x,l!, ~2.4!

whereun(x,l) is defined as

un~x,l!511~el21!E
x

`

dx8 cn
2~x8!. ~2.5!

Also, the discrete eigenstates of the parameter-dependent potentialu(x,l) can be written as

cm~x,l!5Ŝn~x,l!cm~x!, mÞn, ~2.6!

cm~x,l!5N̂n~x,l!cm~x!, m5n, ~2.7!

where the linear operatorŜn(x,l) and the nonlinear operatorN̂n(x,l) act on a given functionf (x)
as

Ŝn~x,l! f ~x!5 f ~x!2~el21!
cn~x!

un~x,l!
E

x

`

dx8 cn~x8! f ~x8! ~2.8!

and

N̂n~x,l!cn~x!5
el/2cn~x!

11~el21!*x
`dx8 cn

2~x8!
, ~2.9!

respectively. Furthermore, their inverses act on the functionf (x) as

Ŝn
21~x,l! f ~x!5 f ~x!2~el21!cn~x!E

2`

x

dx8
cn~x8! f ~x8!

un~x8,l!

and

N̂n
21~x,l!cn~x,l!5

el/2cn~x,l!

11~el21!*2`
x dx8 cn

2~x8,l!
,
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respectively. Here we also show that the continuous eigenspectrum of the potentialu(x,l) is
isospectral, provided that the corresponding continuous eigenfunctionsc(x,l;k) satisfy the
Schrödniger equation with potentialu(x,l) for a given value ofl such asl50. To prove it, first
we consider the Schro¨dinger equation~2.2! for l50, that is,

H~x!c~x;k!5E~k!c~x;k!, ~2.10!

with H(x) defined as

H~x!52
d2

dx2 1u~x! ~2.11!

as in Ref. 1, acting as the operatorŜn(x,l) on both sides of the relation~2.10! we get

Ŝn~x,l!H~x!Ŝn
21~x,l!Ŝn~x,l!c~x;k!5E~k!Ŝn~x,l!c~x;k!

or

H~x,l!c~x,l;k!5E~k!c~x,l;k!, ~2.12!

where

H~x,l!5Ŝn~x,l!H~x!Ŝn
21~x,l!.

Hence the eigenfunctionc(x,l;k)5Ŝn(x,l)c(x;k), and the corresponding continuou
eigenspectrum will satisfy the Schro¨dinger equation with potentialu(x,l) given in ~2.12!, pro-
vided that the integral given in~2.8! exists. In the next sections we will show that these integ
exist for some special potentials which we are going to deal with in this article. It shoul
reminded that, according to relation~2.1!, for the generation of the phase flow, we have on
exploited the discrete eigenspectrum.

III. DEFORMATION OF SHAPE-INVARIANT POTENTIALS

In Ref. 2, it has been shown that some general classes of potentials which are obtaine
the master functions are shape invariant, that is, their corresponding quantum Hamiltonian
factorized in a shape-invariant form into the product of operators

Al
†~x!52

d

dx
1g~x!,

~3.1!

Al~x!5
d

dx
1g~x!,

that is, we have

Hl~x!5Al~x!Al
†~x!52

d2

dx2 1ul~x!,

~3.2!

Hl 21~x!5Al
†~x!Al~x!52

d2

dx2 1ul 21~x!.

These operators are similar to raising and lowering operators. It is rather straightforward to
that a pair of given Hamiltonians Hl(x) and Hl 21(x) have the same eigenspectrum except for
ground state. Hence, we can write
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Al~x!Al
†~x!c l 21~x!5Elc l 21~x!,

~3.3!
Al

†~x!Al~x!c l~x!5Elc l~x!.

It is rather trivial to deduce the following relations from the above equations:

c l 21~x!5
1

AEl

Al~x!c l~x!,

~3.4!

c l~x!5
1

AEl

Al
†~x!c l 21~x!.

Here in this section we investigate the preservation of the shape invariance symmetry

thel-deformation. First we consider the operatorsŜl
n8(x,l) andŜl 21

n (x,l) generated by the wave

functionsc l
n8(x) andc l 21

n (x), respectively. From the relation~2.6! we have

c l
m~x,l!5Ŝl

n8~x,l!c l
m~x!,

~3.5!
c l 21

m ~x,l!5Ŝl 21
n ~x,l!c l 21

m ~x!.

Now, writing c l
m(x) in the first row of~3.5! in terms ofc l 21

m (x) via using the relation~3.4!, we
obtain

c l
m~x,l!5Ŝl

n8~x,l!
Al

†~x!

AEl ,m

c l 21
m ~x!5Ŝl

n8~x,l!
Al

†~x!

AEl ,m

Ŝl 21
n21

~x,l!c l 21
m ~x,l!.

Defining A†(x,l) as

A†~x,l!5Ŝl
n8~x,l!

Al
†~x!

AEl ,m

Ŝl 21
n21

~x,l!, mÞn,n8, ~3.6!

we will have

c l
m~x,l!5A†~x,l!c l

m~x,l!. ~3.7!

Similarly, using the relation~3.5! we get

c l 21
m ~x,l!5Ŝl 21

n ~x,l!
Al~x!

AEl ,m

c l
m~x!5Ŝl 21

n ~x,l!
Al~x!

AEl ,m

Ŝl
n821

~x,l!c l
m~x,l!,

and definingA(x,l) as

A~x,l!5Ŝl 21
n ~x,l!

Al~x!

AEl ,m

Ŝl
n821

~x,l!, mÞn,n8, ~3.8!

we will have

c l 21
m ~x,l!5A~x,l!c l

m~x,l!. ~3.9!

Using the relations~3.7! and ~3.9!, we see that the deformed Schro¨dinger equation has shap
invariance symmetry, that is, we have
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A†~x,l!A~x,l!c l
m~x,l!5c l

m~x,l!,

A~x,l!A†~x,l!c l 21
m ~x,l!5c l 21

m ~x,l!.

Summarizing the discussion mentioned above, we conclude that the isospectral defor
preserves the shape invariance symmetry. In other words, the following diagram commute

or

Ŝl
n8~x,l!Al

†~x!5Al
†~x,l!Ŝl 21

n ~x,l!.

Also, according to the relation~2.7! we have

c l
n~x,l!5N̂l

n~x,l!c l
n~x!5N̂l

n~x,l!
Al

†~x!

AEl ,n

N̂l 21
n21

~x,l!c l 21
n ~x,l!.

Hence the raising and lowering operators of the deformed potential shape-invariant potenti
four different kinds as

A†~x,l!5Ŝl
n8~x,l!

Al
†~x!

AEl ,m

Ŝl 21
n21

~x,l!, mÞn,n8,

~3.10!

A~x,l!5Ŝl 21
n ~x,l!

Al~x!

AEl ,m

Ŝl
n821

~x,l!, mÞn,n8,

A†~x,l!5N̂l
n~x,l!

Al
†~x!

AEl ,n

N̂l 21
n21

~x,l!, m5n,n8,

~3.11!

A~x,l!5N̂l 21
n ~x,l!

Al~x!

AEl ,n

N̂l
n21

~x,l!, m5n,n8,
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A†~x,l!5Ŝl
n8~x,l!

Al
†~x!

AEl ,n

N̂l 21
n21

~x,l!, m5n,mÞn8,

~3.12!

A~x,l!5N̂l 21
n ~x,l!

Al~x!

AEl ,n

Ŝl
n821

~x,l!, m5n,mÞn8,

A†~x,l!5N̂l
n8~x,l!

Al
†~x!

AEl ,n8

Ŝl 21
n821

~x,l!, m5n8,mÞn

~3.13!

A~x,l!5Ŝl 21
n ~x,l!

Al~x!

AEl ,n8

N̂l
n821

~x,l!, m5n8,mÞn.

Considering the proof of the isospectral deformation of continuous eigenspectrum men
in the previous section, it is straightforward to see that the shape invariance symmetry is pre
under the deformation even in the continuous eigenspectrum. This can be proved rather e
we replace the discrete eigenspectrumc l

m by the continuous one in Eqs.~3.6! and ~3.8!.
The existence of shape invariance symmetry in continuous eigenspectrum is as importa

the discrete case. Since, as we are going to explain in the rest of this section, one can ob
continuous eigenspectrum simply by acting the related raising operator over the corresp
continuous eigenfunction’s free particle Hamiltonian. This is possible if, for a given valuel
such asl 50, the potentialul(x) vanishes@u0(x)50#. In this case, acting the raising operat
A1

†(x) over the continuous eigenspectrum of the free particle Hamiltonian, we obtain the co
ous eigenspectrum of the undeformed Hamiltonian with potentialu1(x):

c1~x;k!5
A1

†~x!

AE~k!
c0~x;k!. ~3.14!

Then, acting the operatorŜ1
n on both sides of~3.14!, we get

c1~x,l;k!5Ŝ1
n~x,l!

A1
†~x!

AE~k!
c0~x;k!. ~3.15!

Finally, by repeated action of the deformed raising operatorsAj
†(x,l), j 52,3,...,l , we get the

continuous eigenspectrum of the deformed potentialul(x,l):

c l ,nl
~x,l;k!5)

i 52

l Ai ,ni

† ~x,l!

AE~k,ni !
Ŝ1

n1~x,l!
A1

†~x!

AE~k!
c~x;k!. ~3.16!

In Refs. 3 and 4, it has already been shown that in calculation of the tunneling rate or e
splitting of some one-dimensional potential by instanton method, the eigenspectrum~both discrete
and continuous!, obtained via the shape invariance factorization method, plays a crucial role
eigenspectrum of the deformed potentials which we are obtaining in this work will also be
helpful in the calculation of the tunneling rate or energy splitting of more general potentials~this
is under separate investigation!. This is due to the appearance of the deformation parameter o
deformed potentials.
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IV. ISOSPECTRAL DEFORMATION OF THE ROSEN–MORSE POTENTIAL

A. Discrete eigenspectrum

The shape invariance symmetry of the Schro¨dinger equation with undeformed Rosen–Mor
potential

2
d2c l

m~x!

dx2 2
l ~ l 11!

cosh2~x!
c l

m~x!5El ,mc l
m~x! ~4.1!

has already been studied in Refs. 2 and 5. The raising and lowering operators are

Al
†~x!52

d

dx
1 l tanh~x!,

~4.2!

Al~x!5
d

dx
1 l tanh~x!.

Also, the Schro¨dinger equation~4.1! can be factorized in the following shape-invariant form:

Al
†~x!Al~x!c l

m~x!52
d2

dx2 c l
m~x!1S 2

l ~ l 11!

cosh2 ~x!
1 l 2Dc l

m~x!5~El ,m1 l 2!c l
m ,

Al~x!Al
†~x!c l 21

m ~x!52
d2

dx2 c l 21
m ~x!1S 2

l ~ l 21!

cosh2 ~x!
1 l 2Dc l 21

m ~x!5~El ,m1 l 2!c l 21
m ~x!.

According to~2.8!, for the wave functionc l
m(x) with mÞn,n8 we have

Ŝl
n8~x,l!c l

m~x!5c l
m~x!2

2T

12T

c l
n8~x!

u l ,n8~x,l!
E

x

`

dx8 c l
n8~x8!c l

m~x8!, ~4.3!

whereu l ,n8(x,l) is defined as

u l ,n8~x,l!511
2T

12T E
x

`

dx8 „c l
n8~x8!…2, ~4.4!

with T5tanh (l/2).
Using the shape invariance symmetry of the undeformed Rosen–Morse potential, the in

on the right-hand side of~4.4! has been calculated in the Appendix. Substituting the inte
calculated in the Appendix in~4.4!, we get

u l ,n8~x,l!511
2T

12T (
i 50

d21

Ci
l 1n8Ci

l 2n8c l 2 i 21
n8 ~x!c l 2 i

n8 ~x!1
2T

12T

an8
2

~2n8!! 2

2~2n8!~n8! !2
Cd

l 1n8Cd
l 2n

35
„12tanh~x!…, n851,

sech~2n822! ~x! tanh~x!

2n8
2

tanh~x!

2n821 (
k52

@n821/2#

sech~2n822k!~x!

3)
i 52

k
2n822i 12

2n822i 11
1

~2n822!!!

~2n821!!!
„12tanh~x!…, n8.1.

~4.5!

The integral on the right hand side of the expression~4.3! can be calculated similarly to the on
calculated in the Appendix, hence we have
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E
x

`

dx8 c l
n8~x8!c l

m~x8!5 (
i 50

d21

Ci
l 1mCi

l 2mc l 2 i 21
n8 ~x!c l 2 i

m ~x!

1
~2m!!am

2mm!
Cd

l 1mCd
l 2m

„12tanh2 ~x!…m/2cm21
n8 ~x!, ~4.6!

wherem.n8 andd5 l 2n8. Substituting~4.6! in ~4.3! we obtain

Ŝl
n~x,l!c l

m~x!5F12
2T

12T

c l
n~x!

c l
m~x!u l ,n~x,l!

S (
i 50

d21

Ci
l 1mCi

l 2mc l 2 i 21
n ~x!c l 2 i

m ~x!

1
~2m!!am

2mm!
Cd

l 1mCd
l 2m

„12tanh2 ~x!…m/2cm21
n ~x!D Gc l

m~x!. ~4.7!

Defining f (x,l) andg(x,l) as

f ~x,l!5F12
2T

12T

c l
n~x!

c l
m~x!u l ,n~x,l!

S (
i 50

d21

Ci
l 1mCi

l 2mc l 2 i 21
n ~x!c l 2 i

m ~x!

1
~2m!!am

2mm!
Cd

l 1mCd
l 2m

„12tanh2 ~x!…m/2cm21
n ~x!D G , ~4.8!

g~x,l!5F12
2T

12T

c l 21
n8 ~x!

c l 21
m ~x!u l 21,n8~x,l!

S (
i 50

d21

Ci
l 1m21Ci

l 2m21c l 2 i 22
n8 ~x!c l 2 i 21

m ~x!

1
~2m!!am

2mm!
Cd

l 1m21Cd
l 2m21

„12tanh2 ~x!…m/2cm21
n8 ~x!D G , ~4.9!

the relation~4.7! can be briefly written as

Ŝl
n8~x,l!c l

m~x!5 f ~x,l!c l
m~x!,

Ŝl 21
n ~x,l!c l 21

m ~x!5g~x,l!c l 21
m ~x!.

Using the relations~3.6! and ~3.8!, we have

A†~x,l!5
1

Al 22m2
f ~x,l!S 2

d

dx
1 l tanh~x! D 1

g~x,l!

5
1

Al 22m2 S 2
f ~x,l!

g~x,l!

d

dx
1

f ~x,l!

g2~x,l!

dg~x,l!

dx
1

l tanh~x! f ~x,l!

g~x,l! D , ~4.10!

A~x,l!5
1

Al 22m2
g~x,l!S d

dx
1 l tanh~x! D 1

f ~x,l!

5
1

Al 22m2 S g~x,l!

f ~x,l!

d

dx
1

g~x,l!

f 2~x,l!

d f~x,l!

dx
1

l tanh~x!g~x,l!

f ~x,l! D . ~4.11!

Now, we obtain first the ground state by solving

A~x,l!c l ,m
0 ~x,l!50,
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which is due to the fact that the lowering operator kills the ground state as usual. Hence, w
for the ground state

c l ,m
0 ~x,l!5Cl ,m~l!

f ~x,l!

coshl ~x!
.

Using the relations~2.7! and ~2.9! we obtain

N̂l
n~x,l!c l

n~x!5A11T

12T

c l
n~x!

u l ,n~x,l!
, ~4.12!

for special casem5n5n8. Similar to the above-mentioned prescription we can obtain the rai
operatorA†(x,l) and lowering operatorA(x,l) for the special casem5n5n8, m5n, mÞn8 and
mÞn, m5n8, respectively. As an example we consider the casem5n5n8 with l 51 and l
52. We have

u1~x!52
1

cosh2 ~x!
, c1

1~x!5
1

&

1

cosh~x!
, E1,152

1

2
,

u2~x!52
3

cosh2 ~x!
,

c2
1~x!5A3

2

sinh~x!

cosh2 ~x!
, E2,152

1

2
,

c2
2~x!5A3

2

1

cosh2 ~x!
, E2,2522.

The isospectral deformed potentials and their wave functions can be written as

u1~x,l!52
12T2

„cosh~x!2T sinh~x!…2
, c1

1~x,l!5A12T2

2

1

cosh~x!2T sinh~x!
,

u2~x,l!523
cosh4 ~x!22T cosh~x! sinh~x!2T2 sinh4 ~x!

„cosh3 ~x!2T sinh3 ~x!…2
,

c2
1~x,l!5A3~12T2!

2

cosh~x! sinh~x!

cosh3 ~x!2T sinh3 ~x!
.

Using the relations~4.10! and ~4.11! and the above deformed wave function we have

A†~x,l!5
1

) S 2
12T tanh~x!

12T tanh3 ~x!

d

dx
1

3T tanh2 ~x!22 tanh~x!2T

12T tanh3 ~x! D ,

A~x,l!5
1

) S 12T tanh3 ~x!

12T tanh~x!

d

dx
1

T tanh4 ~x!23T tanh2 ~x!12 tanh~x!

12T tanh~x! D .

B. Continuous eigenspectrum

Here in this subsection we are concerned with the continuous eigenspectrum of the de
potential and calculation of the reflection and transmission amplitudes. It is well known tha
undeformed Rosen–Morse potential belongs to reflectionless potentials.4–6 We show below that
the isospectral deformation preserves the reflectionless property of the Rosen–Morse poten
see this, using the relation~3.15! and considering the wave function of free Hamiltonian w
energyE(k)5k2,
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c0~x;k!5
1

A2p
eikx, E~k!5k2, ~4.13!

we get

Ŝ1~x,l!
A1

†~x!

AE~k!
c0~x;k!5

~11 ikT! tanh~x!2~T1 ik !

A2pk„12Ttanh~x!…
eikx.

Then, by successive action of the raising operatorsAj
†(x,l), j 52,3,...,l , we obtain the deformed

wave functionc l ,nl
(x,l;k):

c l ,nl
~x,l;k!5)

j 52

l Aj ,nj

† ~x,l!

Aj 21k2

~11 ikT! tanh~x!2~T1 ik !

A2pk~12T tanh~x!!
eikx. ~4.14!

It is rather straightforward to convince that these correspond to scattering solution o
isospectral deformed potential. From the action of the operatorsŜn(x,l) and Ŝn

21(x,l) on the
continuous spectrum given in~2.6! and~2.8!, it follows that the deformed continuous spectrum
asymptotically the same as the undeformed one foruxu→`. This is due to the fact that the
continuous spectrum is orthogonal to the discrete one.

To find the asymptotic behavior of the undeformed continuous spectrum foruxu→`, first we
put l50 in ~4.14!, then we replace tanh (x) with 1~21! for `(2`) and substitute for the deriva
tive ik in the operatorAj ,n

† (x,l), respectively. Since the derivative of the tanh (x) vanishes as
uxu→`, therefore, we have

lim
x→6`

c l~x,l;k!5 lim
x→6`

c l~x,l50;k!5
Al

†~x!

Ak21 l 2

Al 21
† ~x!

Ak21~ l 21!2
¯

Al
†~x!

Ak21 l 2

eikx

A2p

5S )
j 51

l
2 ik6 j

Ak21 j 2D eikx

A2p
. ~4.15!

We see that the reflection term is absent, therefore, the isospectral deformation preser
reflectionless property. Using the asymptotic behavior of the scattering solution given in~4.15! we
can determine the transmission amplitude as

Transmission amplitude5
limx→` c l~x,l;k!

limx→2` c l~x,l;k!
5

) j 51
l ~2 ik1 j !

) j 51
l ~2 ik2 j !

. ~4.16!

From the above expression it follows that the transmission rate is one.

V. ISOSPECTRAL DEFORMATION OF THE NATANZON POTENTIAL

A. Discrete eigenspectrum

The shape invariance of the Natanzon potential has already been investigated in Refs. 2
4. For the Schro¨dinger equation of the undeformed Natanzon potential,

2
d2

dx2 c l ,m~x!1F2
l ~ l 11!

cosh2 ~x!
1

m~m11!

sinh2 ~x! Gc l ,m~x!5El ,mc l ,m~x!. ~5.1!

Following Ref. 4, the following two sets of raising and lowering operators can be introduce
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Ql ,m
† ~x!52

d

dx
1 l tanh~x!1m coth~x!,

~5.2!

Ql ,m~x!5
d

dx
1 l tanh~x!1m coth~x!,

and

Pl ,m
† ~x!52

d

dx
1 l tanh~x!2~m11! coth~x!

~5.3!

Pl ,m~x!5
d

dx
1 l tanh~x!2~m11! coth~x!,

where

El ,m5 l 22~ l 2m21!2.

The Schro¨dinger equation with Natanzon potential can only be factorized in a shape-inva
form into the products of the first set of operators, that is,

Ql ,m
† ~x!Ql ,m~x!c l ,m~x!5„El ,m1~ l 1m!2

…c l ,m~x!

~5.4!
Ql ,m~x!Ql ,m

† ~x!c l 21,m21~x!5„El ,m1~ l 1m!2
…c l 21,m21~x!.

Also, it can be factorized into the product of the second set of the operators, without the pre
of the shape invarince symmetry:

Pl ,m
† ~x!Pl ,m~x!c l ,m~x!5„El ,m1~ l 2m21!2

…c l ,m~x!.

It follows from the above equation that for the ground state we have

Pl ,m~x!c l ,m
0 ~x!50.

Solving the above first-order differential equation we get

c l ,m~x!5a l ,m

sinhm11 ~x!

coshl ~x!
, with

a l ,m5
1

A2( r 50
l 2m22~~21!r~ l 2m22!!/ r ! ~ l 2m2r 22!! ~2m12r 13!!

. ~5.5!

It is clear from~5.5! that the ground state is square integrable only form< l 22. As it is shown in
Ref. 4, if we act the lowering operatorsQl 2m1 j , j , j 5m, m21,...,2,1 successively on the groun
state given in~5.5!, then we will obtain the Rosen–Morse potentialul 2m(x) with the ground state
written in terms of the associated Legendre functionPl 2m

l 2m21(tanh (x)). Therefore, by consecutive
action of the raising operatorsQl 2m1 j , j

† , j 51,2,...,m21,m on the discrete spectrum of th
Rosen–Morse potentialul 2m(x), we can obtain the discrete eigenspectrum of the Natanzon
tential, provided that the wave function obtained in this way becomes square integrable
ground state is the only square integrable wave function which can be obtained in this way,
the discrete eigenspectrum of the Natanzon Hamiltonian consists of its ground state only, h
can be deformed isospectrally through this unique discrete state or, in other words, the de
tion itself is possible only in one way.
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According to ~2.7! and ~2.9! we obtain the following expression for the deformed grou
state:

c l ,m~x,l!5
A~11T!/~12T!c l ,m~x!

11~2T!/~12T!*x
`dx c l ,m

2 ~x8!
, ~5.6!

where the integral appearing on the right-hand side of~5.6! is

E
x

`

dx8c l ,m
2 ~x8!5a l ,m

2 (
r 50

l 2m22
~21!r~ l 2m21!!

r ! ~ l 2m2r 21!! ~2m12r 13!
„12tanh2m12r 13 ~x!…. ~5.7!

Also, the deformed raising and lowering operators can be obtained from the relation~3.10! rather
easily due to uniqueness of the deformation method:

Q†~x,l!5N̂l ,m~x,l!
Ql ,m

† ~x!

AÊl ,m

N̂l 21,m21
21 ~x,l!,

~5.8!

Ql ,m~x,l!5N̂l 21,m21~x,l!
Ql ,m~x!

AÊl ,m

N̂l ,m
21~x,l!,

where

Êl ,m5El ,m1~ l 11!2.

Substituting~5.7! in ~5.6! we obtain

c l ,m~x,l!5F A~11T!/~12T!

11@~2T!/~12T!#a l ,m
2 ( r 50

l 2m22@~21!r~ l 2m21!!/ r ! ~ l 2m2r 21!! ~2m12r 13!#~12tanh2m12r 13 ~x!!
Gc l ,m~x!.

~5.9!

Again by introducing

f ~x,l!5A11T

12T

1

11@~2T!/~12T!#a l ,m
2 ( r 50

l 2m22@~21!r~ l 2m21!!/ r ! ~ l 2m2r 21!! ~2m12r 13!#„12tanh2m12r 13 ~x!…

and

g~x,l!5A11T

12T

1

11@~2T!/~12T!#a l 21,m21
2 ( r 50

l 2m22@~21!r~ l 2m21!!/ r ! ~ l 2m2r 21!! ~2m12r 11!#„12tanh2m12r 11 ~x!…
,

we can write

c l ,m~x,l!5N̂l ,m~x,l!c l ,m~x!5 f ~x,l!c l ,m~x!,

c l 21,m21~x,l!5N̂l 21,m21~x,l!c l 21,m21~x!5g~x,l!c l 21,m21~x!.

Therefore, the operatorsQ†(x,l) andQ(x,l) take the following differential form:
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Q†~x,l!5
f ~x,l!

AÊl ,m

S 2
d

dx
1 l tanh~x!1m coth~x!D 1

g~x,l!

5
1

AÊl ,m

S 2
f ~x,l!

g~x,l!

d

dx
2

f ~x,l!

g2~x,l!

dg~x,l!

dx
1

l tanh~x! f ~x,l!

g~x,l!
1

m coth~x! f ~x,l!

g~x,l!
D

~5.10!

Q~x,l!5
g~x,l!

AÊl ,m

S d

dx
1 l tanh~x!1m coth~x!D 1

f ~x,l!

5
1

AÊl ,m

S g~x,l!

f ~x,l!

d

dx
2

g~x,l!

f 2~x,l!

d f~x,l!

dx
1

l tanh~x!g~x,l!

f ~x,l!
1

m coth~x!g~x,l!

f ~x,l!
D .

B. Continuous eigenspectrum

According to Ref. 4 the eigenfunction associated with the continuous spectrum can
tained by successive application of the raising operator~5.10! to the continuous eigenfunction o
the free particle. Due to the existence of the coth (x) in the raising operator, one has to be ve
careful in the choice of eigenspectrum of the free particle.

In order that the continuous eigenspectrum of the undeformed Natanzon potential be
able at the singularity of the potential, that is, at origin, we need to take sin(kx)„cos(kx)… for the
continuous eigenfunction of the free particle, for odd~even! values of (l 2m). Thus we have

c l ,m~x;k!5)
i 51

m Ql 2m1 i ,i
† ~x!

AÊl 2m1 i ,i~k!
)
j 51

l 2m Aj
†~x!

AÊj~k!
S eikx1~2 ! l 2me2 ikx

2A2p i P D , ~5.11!

with

Êl ,m~k!5k21~ l 1m!2, Êl~k!5k21 l 2, P5H 1, l 2m5odd,

0, l 2m5even,

whereAj
†(x) are the raising operators of the undeformed Rosen–Morse potential introdu

previous section.
It is clear from the asymptotic behavior of the scattering solution of the Natanzon pot

given in ~5.11! that these potentials are penetrationless. We will show below that, similar t
case Rosen–Morse potential, the isospectral deformation preserves the penetrationless pr
the Natanzon potential. To see first using the relation~5.11! we obtain the continuous eigenspe
trum of the isospectral deformed Natanzon potential as

c l ,m~x,l;k!5Ŝl ,m~x,l!)
i 51

m Ql 2m1 i ,i
† ~x!

AÊl 2m1 i ,i~k!
)
j 51

l 2m Aj
†~x!

AÊj~k!
S eikx1~2 ! l 2me2 ikx

2A2p i P D , ~5.12!

where, in terms of the deformed raising operators, we have

c l ,m~x,l;k!5)
i 51

m Ql 2m1 i ,i
† ~x,l!

AÊl 2m1 i ,i~k!
)
j 52

l 2m Aj
†~x,l!

AÊj~k!

Ŝ1~x,l!
A1

†~x!

AÊ1~k!
S eikx1~21! l 2me2 ikx

2A2p i P D .
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It is again trivial to show that these correspond to the scattering solution of the isosp
deformed potential. From the action of the operatorsŜl ,m(x,l) and Ŝl ,m

21(x,l) on the continuous
spectrum given in~2.6! and ~2.8! it follows that the deformed continuous spectrum is asympt
cally the same as the undeformed one foruxu→`. This is again due to the orthogonality of th
continuous spectrum to the discrete one. Hence, the isospectral deformation preserves the
tionless property of these potentials. Now, using the asymptotic behavior of the scattering so
given in~5.12!, we can determine the reflection amplitude. We find the asymptotic behavior o
undeformed continuous spectrum foruxu→` with the same prescription mentioned at the end
the previous section. To do this, it is more convenient to write the scattering solution a
superposition of incident and reflected waves as

c l ,m~x;k!5
F l ,m~x;k!1~2 ! l 2mF l ,m* ~x;k!

2~ i !P .

Now, considering the asymptotic behavior of the incident wave functionsF l ,m(x;k),

lim
x→6`

F l ,m~x;k!5)
j 51

m
2 ik6~2 j 1 l 2m!

AÊl 2m1 j , j~k!
)
j 51

l 2m
2 ik6 j

AÊj~k!

eikx

A2p
,

the reflection amplitude is determined as

Reflection Amplitude5
@ limx→2` F l ,m* ~x;k!#/exp~2 ik !

@ limx→` F l ,m~x;k!#/exp~ ik !

5
) j 51

m @2 ik2~2 j 1 l 2m!#) j 51
l 2m~2 ik2 j !

) j 51
m @2 ik1~2 j 1 l 2m!#) j 51

l 2m~2 ik1 j !
.

Therefore, it follows from the above expression for the reflection amplitude that the refle
rate is one.

VI. ISOSPECTRAL DEFORMATION OF THE POTENTIALS WITH A DELTA FUNCTION
TERM

A. Rosen–Morse potential with delta function term

As another example we consider the Schro¨dinger equation of the Rosen–Morse potential w
a delta function term added to it:

2
d2c l~x!

dx2 2
l ~ l 11!

cosh2 ~x!
c l~x!2a~ l !d~x!c l~x!5Ec l~x!. ~6.1!

Obviously the above equation reduces to the Schro¨dinger equation of the delta potential as

2
d2c0~x!

dx2 2u0d~x!c0~x!5Ec0~x!. ~6.2!

Therefore, the eigenspectrum of the Schro¨dinger equation with delta-added Rosen–Morse pot
tial ~6.1! can be obtained from the eigenspectrum of the Schro¨dinger equation with delta potentia
simply by consecutive action of the raising operators of the undeformed Rosen–Morse po
First, we start with the discrete eigenspectrum. Clearly the Schro¨dinger equation with delta po
tential ~6.2! has the following single bound state:
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c0~x!55A
u0

2
e2~u0/2!x, x.0,

Au0

2
e~u0/2!x, x,0,

E52
u0

2

4
. ~6.3!

Now, writing the raising operator of the undeformed Rosen–Morse potential as

Al
†~x!52

d

dx
1 l tanh~x!52coshl 11 ~x!S 1

cosh~x!

d

dxD 1

coshl ~x!
,

and then by successive application of the above operator on the wave function~6.3!, we get

c l~x!5H ~21! lC1~ l ! coshl 11 ~x!S 1

cosh~x!

d

dxD
l e2~u0/2!x

cosh~x!
, x.0,

~21! lC2~ l ! coshl 11 ~x!S 1

cosh~x!

d

dxD
l e~u0/2!x

cosh~x!
, x,0.

~6.4!

The continuity of the above wave function atx50 indicates that

C2~ l !5~21! lC1~ l !,

while we get from the discontinuity of the derivative of the wave function atx50

a~ l !522
dc l

1~0!/dx

c l
1~0!

, ~6.5!

with c l
1(x) as restriction of the wave functionc l(x) to the positivex axes. In order to calculate

a( l ) and the normalization constantC1( l ), using the raising operatorAl
†(x), we can write

c l~x!5B~ l !Al
†~x!c l 21~x!

5H ~21! lB1~ l !C1~ l 21! coshl 11 ~x!S 1

cosh~x!

d

dxD
l e2~u0/2!x

cosh~x!
, x.0,

2B2~ l !C1~ l 21! coshl 11 ~x!S 1

cosh~x!

d

dxD
l e~u0/2!x

cosh~x!
, x,0.

~6.6!

Again continuity of the wave function atx50 indicates that

B2~ l !52B1~ l !.

Comparing the relations~6.4! and ~6.6! we obtain

B1~ l !5
C1~ l !

C1~ l 21!
. ~6.7!

Similarly, using the lowering operatorAl(x) we obtain
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c l 21~x!5D~ l !Al~x!c l~x!

5

¦

~21! lD1~ l !C1~ l !F ~2l 11! tanh~x! coshl 11 ~x!S 1

cosh~x!

d

dxD
l e2~u0/2!x

cosh~x!

1 coshl 12 ~x!S 1

cosh~x!

d

dxD
l 11 e2~u0/2!x

cosh~x! G , x.0,

D2~ l !C1~ l !F ~2l 11! tanh~x! coshl 11 ~x!S 1

cosh~x!

d

dxD
l e~u0/2!x

cosh~x!

1coshl 12 ~x!S 1

cosh~x!

d

dxD
l 11 e~u0/2!x

cosh~x!G , x,0,

~6.8!

with the requirement of the continuity of the wave function atx50:

D2~ l !52D1~ l !.

Evaluating the wave functionc l 21(x) given in ~6.8! at origin we get

2
D1~ l !C1~ l !

C1~ l 11!
c l 11

1 ~0!5c l 21
1 ~0!. ~6.9!

Again, writing the relations~6.6! and ~6.8! in differential form we obtain

D1~ l !
dc l

1~0!

dx
5c l 21

1 ~0!,

~6.10!

2B1~ l !
dc l 21

1 ~0!

dx
5c l

1~0!.

Using the above relation we obtain the following recursion relation:

dc l
1~0!/dx

c l
1~0!

5
B1~ l 21!D1~ l 21!

B1~ l !D1~ l !

dc l 22
1 ~0!/dx

c l 22
1 ~0!

. ~6.11!

Also, using the shape-invariant factorization of the Rosen–Morse potential given in~3.3!, ~6.6!,
and ~6.8! we obtain

B1~ l !D1~ l !5
1

l 22u0
2/4

. ~6.12!

Finally, using the relations~6.12!, ~6.11!, and~6.5! we get

a~2n!5u0)
i 50

n21
„2~n2 i !…22u0

2/4

„2~n2 i !21…22u0
2/4

,

~6.13!

a~2n11!5
u0

224

u0
)
i 50

n21
~2~n2 i !11!22u0

2/4

~2~n2 i !!22u0
2/4

.

To calculate the normalization constant, first we write the norm of the wave function a
sum of the integrals of left-handed and right-handed half lines as

E
2`

1`

dx c l
2~x!5E

2`

0

dx „c l
2~x!…21E

0

1`

dx „c l
1~x!…251. ~6.14!
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Then, using the relation~6.6!, we obtain

B1~ l !F E
2`

0

dx c l
2~x!Al

†~x!c l 21
2 ~x!2E

0

1`

dx c l
1~x!Al

†~x!c l 21
1 ~x!G51,

where, after some algebra, we get

2B1~ l !c l
1~0!c l 21

1 ~0!512
1

l 22uo
2/4

. ~6.15!

Using the relation~6.7!, ~6.9!, and~6.11! we obtain the following recursion relation:

B1
2 ~ l !5

1

2l 211@„~ l 21!22u0
2/4…B1~ l 21!#2 .

Consequently, we can determine the normalization constant as

C1~ l !5Au0

2 )
i 50

l 21

B1~ l 2 i !. ~6.16!

B. Isospectral deformation of the discrete eigenspectrum

According to the general algorithm of the isospectral deformation, presented in the firs
tion, the deformed raising and lowering operators of the deformed Rosen–Morse potential

Al
†~x,l!5N̂l~x,l!B~ l !Al

†~x!N̂l 21
21 ~x,l!,

Al~x,l!5N̂l 21~x,l!D~ l !Al~x!N̂l
21~x,l!,

have the following differential form:

Al
†~x,l!5B~ l !

u l 21~x,l!

u l~x,l! F2
d

dx
2

~d/dx!u l 21~x,l!

u l 21~x,l!
1 l tanh~x!G ,

~6.17!

Al~x,l!5D~ l !
u l~x,l!

u l 21~x,l! F d

dx
1

~d/dx!u l~x,l!

u l~x,l!
1 l tanh~x!G ,

where the functionu l(x,l) appearing in the above formula is defined in the regionsx.0 andx
,0 as

u l~x.0,l!5u l
1~x,l!511

2T

12T
C1

2 ~ l !(
i 50

l 21

Ci
l 1u0/2Ci

l 2u0/2f l 2 i 21
1 ~x!f l 2 i

1 ~x!

1
2T

12T
C1

2 ~ l !Cl
l 1u0/2Cl

l 2u0/2 e2u0x

u0

and

u l~x,0,l!5u l
2~x,l!511

2T

12T
C1

2 ~ l !(
i 50

l 21

Ci
l 1u0/2Ci

l 2u0/2
„2f l 2 i 21

1 ~0!f l 2 i
1 ~0!

2f l 2 i 21
1 ~2x!f l 2 i

1 ~2x!…1
2T

12T
C1

2 ~ l !Cl
l 1u0/2Cl

l 2u0/2F 2

u0
2

eu0x

u0
G ,
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respectively, where

f l
1~x!5~21! l coshl 11 ~x!S 1

cosh~x!

d

dxD
l e2~u0/2!x

cosh~x!
~6.18!

and

Cr
n5n~n21!~n22!¯~n2r 11!, C0

n51.

In order to calculatef l
1(0), using the relations~6.4!, ~6.7!, and ~6.8! we obtain the following

recursion relation:

S 1

cosh~e!

d

de D l e2~u0/2!e

cosh~e!
52„~ l 21!22u0

2/4…S 1

cosh~e!

d

de D l 22 e2~u0/2!e

cosh~e!
U

e→0

.

Then we have for even and oddl

S 1

cosh~e!

d

de D 2n e2~u0/2!e

cosh~e!
U

e→0

5~21!n)
j 50

n21

@~2~n2 j !21!22u0
2/4#, n51,2,...,

S 1

cosh~e!

d

de D 2n11 e2~u0/2!e

cosh~e!
U

e→0

52~21!n
u0

2 )
j 50

n21

@~2~n2 j !21!22u0
2/4#, n51,2,... .

As an example we give the deformed bound state forl 50,1. Forl 50 we have

c0~x,l!5Au0

2
~12T2!H e2~u0/2!x

12T1Te2u0x , x.0,

e~u0/2!x

11T2Teu0x , x,0,

and for l 51

c1~x,l!

5A2u0~12T2!

u0
214 5

„u0/21tanh~x!…e2~u0/2!x

12T1@4T/~41u0
2!#~u0

2/4111u0 tanh~x!!e2u0x , x.0,

„u0/22tanh~x!…e~u0/2!x

12T1@4T/~41u0
2!#@u0

2/2122„u0
2/4112u0 tanh~x!…eu0x#

, x,0.

Also, the deformed raising and lowering operators are

A1
†~x,l!5

12T1Te2u0x

A11u0
2/4@12T1@4T/~41u0

2!#~u0
2/4111u0 tanh~x!!e2u0x#

3F2
d

dx
1

Tu0e2u0x

12T1Te2u0x 1tanh~x!G ,
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A1~x,l!5
Au0

2/411

12
u0

2

4

@12T1@4T/~41u0
2!#~u0

2/4111u0 tanh~x!!e2u0x#

12T1Te2u0x

3F d

dx
2

4T

41u0
2

„u0
3/41u0

2 tanh~x!1u0 tanh2 ~x!…e2u0x

12T1@4T/~41u0
2!#~u0

2/4111u0 tanh~x!!e2u0x 1tanh~x!G .
One can rather simply show that the above raising operator maps the eigenfunctionc0(x;l)

into c1(x;l) and the lowering one does the reverse. Also, the Hamiltonian with deformed p
tials u0(x,l) andu1(x,l) can be factorized in the shape-invariant form into the product of th
operators.

C. Undeformed continuous eigenspectrum

To obtain the continuous eigenspectrum of the undeformed Rosen–Morse potential w
delta function term, we have to consider its shape invariance symmetry. Again using this pr
we can generate its continuous eigenspectrum by successive application of the raising op
over the continuous wave function of the Hamiltonian with only the delta term (l 50) with wave
numberk:

c0~x;k!5H e2 ikx1b~k!eikx, x.0,

c~k!e2 ikx, x,0,
~6.19!

whereb(k) and c(k) are determined by the continuity of the wave function together with
discontinuity of its derivative atx50 as

b~k!52
u0

u012ik
, c~k!5

2ik

u012ik
. ~6.20!

Now, by acting the required raising operators consecutively on the above continuous eige
tion we get

c l~x;k!55
~21! la l~k! coshl 11 ~x!S 1

cosh~x!

d

dxD
l e2 ikx

cosh~x!

1~21! lb~k!b l~k! coshl 11 ~x!S 1

cosh~x!

d

dxD
l eikx

cosh~x!
, x.0

~21! lg l~k!c~k! coshl 11 ~x!S 1

cosh~x!

d

dxD
l e2 ikx

cosh~x!
, x,0.

~6.21!

The continuity of this obtained continuous wave function given above atx50 indicates that

a l~k!S 1

cosh~e!

d

de D l e2 ike

cosh~e!
1b~k!b l~k!S 1

cosh~e!

d

de D l eike

cosh~e!

5~21! lg l~k!c~k!S 1

cosh~e!

d

de D l eike

cosh~e!
U

e→0

.

Also imposing the discontinuity condition of the continuous wave function given in~6.21! at x
50, we have
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~21! la l~k!
d

de S 1

cosh~e!

d

de D l e2 ike

cosh~e!
1~21! lb~k!b l~k!

d

de S 1

cosh~e!

d

de D l eike

cosh~e!

1g l~k!c~k!
d

de S 1

cosh~e!

d

de D l eike

cosh~e!
52al~u0!c~k!b l~k!S 1

cosh~e!

d

de D l eike

cosh~e!
U

e→0

.

After some rather tedious algebraic calculation we can determine the coefficientsa l(k) andg l(k)
in terms of the ceofficientb l(k) as

a l~k!5

2b l~k!b~k!Fal~u0!S 1

cosh~e!

d

de D
l eike

cosh~e!
12

d

de S 1

cosh~e!

d

de D
l eike

cosh~e!G

F al~u0!S 1

cosh~e!

d

de D
l e2 ike

cosh~e!
1

S 1

cosh~e!

d

de D
l e2 ike

cosh~e!

S 1

cosh~e!

d

de D
l eike

cosh~e!

d

de S 1

cosh~e!

d

de D
l eike

cosh~e!
1

d

de S 1

cosh~e!

d

de D
l e2 ike

cosh~e!GU
e→0

~6.22!

and

g l~k!5~21! l
b~k!b l~k!

c~k!

3F 12

al~u0!12
~d/de!~@1/cosh~e!#d/de! leike/cosh~e!

S 1

cosh~e!

d

de D l eike

cosh~e!

al~u0!1
~d/de!~@1/cosh~e!#d/de! l eike/cosh~e!

~@1/cosh~e!#d/de! l eike/cosh~e!
1

~d/de!~@1/cosh~e!#d/de! l e2 ike/cosh~e!

~@1/cosh~e!#d/de! l e2 ike/cosh~e!

GU
e→0

.

~6.23!

Of course we can determine the coefficientsa l(k) and b l(k) by a rather simpler method a
follows:

Similar to the discrete case, by acting the raising operator over the continuous eigenfu
given in ~6.21! we obtain

B~ l !Al
†~x!c l 21~x;k!

55
~21! la l 21~k!B1

1~ l ! coshl 11 ~x!S 1

cosh~x!

d

dxD
l e2 ikx

cosh~x!

1~21! lb~k!b l 21B2
1~ l ! coshl 11 ~x!S 1

cosh~x!

d

dxD
l eikx

cosh~x!
, x.0

~21! lc~k!g l 21~k!B3
2~ l ! coshl 11 ~x!S 1

cosh~x!

d

dxD
l e2 ikx

cosh~x!
, x,0.

Now, comparing it with Eq.~6.21!, we obtain the following relations between the coefficients

a l 21~k!B1
1~ l !5a l~k!,

b l 21B2
1~ l !5b l~k!, ~6.24!

g l 21~k!B3
1~ l !5g l~k!.

Similarly, by acting the lowering operator on the continuous wave function~6.21! we obtain
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D~ l !Al~x!c l~x;k!

5

¦

~21! la l~k!F ~2l 11! tanh~x! coshl 11 ~x!S 1

cosh~x!

d

dxD
l e2 ikx

cosh~x!

1coshl 12 ~x!S 1

cosh~x!

d

dxD
l 11 e2 ikx

cosh~x!GD1
1~ l !

1~21! lb l~k!b~k!F ~2l 11! tanh~x! coshl 11 ~x!S 1

cosh~x!

d

dxD
l eikx

cosh~x!

1coshl 12 ~x!S 1

cosh~x!

d

dxD
l 11 eikx

cosh~x!GD2
1~ l !, x.0

~21! lg l~k!c~k!F ~2l 11! tanh~x! coshl 11 ~x!S 1

cosh~x!

d

dxD
l e2 ikx

cosh~x!

1coshl 12 ~x!S 1

cosh~x!

d

dxD
l 11 e2 ikx

cosh~x!GD3
2~ l !, x,0.

Again, comparing it with the wave functionc l 21(x,k) at x50 we get

D1
1~ l !a l~k!

d

de S 1

cosh~e!

d

de D l e2 ike

cosh~e!
1D2

1~ l !b l~k!b~k!
d

de S 1

cosh~e!

d

de D l eike

cosh~e!

52a l 21~k!S 1

cosh~e!

d

de D l 21 e2 ike

cosh~e!
2b l 21~k!b~k!S 1

cosh~e!

d

de D l 21 eike

cosh~e!
U

e→0

~6.25!

and

2D3
2~ l !g l~k!c~k!

d

de S 1

cosh~e!

d

de D l eike

cosh~e!
5g l 21~k!c~k!S 1

cosh~e!

d

de D l 21 eike

cosh~e!
U

e→0

.

~6.26!

Considering the shape invariance symmetry explained in Sec. VI A, similar to the discrete
we have

D3
2~ l !B3

2~ l !5
1

l 21k2 . ~6.27!

Substituting~6.24! and ~6.27! in ~6.26! we obtain the following recursion relations:

S 1

cosh~e!

d

de D l eike

cosh~e!
52„k21~ l 21!2

…S 1

cosh~e!

d

de D l 22 eike

cosh~e!
U

e→0

,

where it leads to the following results:

S 1

cosh~e!

d

de D 2n eike

cosh~e!
U

e→0

5~21!n)
j 50

n21

@k21„2~n2 j !21…2#, n51,2...,

~6.28!

S 1

cosh~e!

d

de D 2n11 eike

cosh~e!
U

e→0

5~21!nik )
j 50

n21

@k21„2~n2 j !21…2#, n51,2...,
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for odd and evenl, respectively. Finally, by substituting~6.28! in ~6.22! and~6.23! we determine
the coefficientsa l(k) andg l(k) in terms ofb l(k) as

a2n~k!52
b~k!

a2n~u0! S a2n~u0!12ik )
j 50

n21
k21„2~n2 j !…2

k21„2~n2 j !21…2Db2n~k!,

~6.29!

g2n~k!5
u0

a2n~u0! )
j 50

n21
k21„2~n2 j !…2

k21„2~n2 j !21…2
b2n~k!,

and

a2n11~k!5
b~k!

a2n11~u0! S a2n11~u0!12ik)
j 50

n
k21„2~n2 j !11…2

k21„2~n2 j !…2 Db2n11~k!,

g2n11~k!5
u0

a2n11~u0! )j 50

n
k21„2~n2 j !11…2

k21„2~n2 j !…
b2n11~k!. ~6.30!

The normalization constant can be calculated as before, but as far as the scattering
cerned, we need not know it, hence we omit the determination of the normalization con
Therefore, the unnormalized scattering solution can be written as

c2n~x;k!5cosh2n11 ~x!

35 S 1

cosh (x)

d

dxD
2n e2 ikx

cosh (x)
2

a2n(u0)([1/cosh (x)]d/dx)2neikx/cosh (x)

†a2n(u0)12ik) j 50
n21[ „2(n2 j )…21k2]/[ „2(n2 j )21…21k2] ‡

, x.0,

2
u0c(k)([1/cosh (x)]d/dx)2ne2 ikx/cosh(x)

b(k)†2ik1a2n(u0)) j 51
n21[(2n2 j )21)21k2]/[ „2(n2 j )…21k2] ‡

, x,0,

~6.31!

and
c2n11(x;k)

5cosh2n12(x)5
2S 1

cosh (x)

d

dxD
2n11 e2ikx

cosh (x)

1
a2n11(u0)([1/cosh (x)]d/dx)2n11eikx/cosh (x)

†a2n11(u0)12ik) j 50
n [ „2(n2 j )11…21k2]/[ „2(n2 j )…21k2] ‡,

x.0

2
u0c(k)([1/cosh (x)]d/dx)2n11e2ikx/cosh (x)

b(k)†2ik1a2n11(u0)) j 51
n [ „2(n2 j )…21k2]/[ „2(n2 j )11…21k2] ‡

, x,0.

~6.32!

D. Isospectral deformation of the continuous eigenspectrum

To obtain the deformed continuous eigenstate of the deformed Rosen–Morse potentia
the delta term, first we write this obtained undeformed continuous eigenfunction given in~6.31!
and ~6.32! in the following form:

c l~x;k!5H f l
1~x;k!1h l~k,u0!f l

1* ~x;k!, x.0,

d l~k,u0!f l
1~x;k!, x,0,

~6.33!

with
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f l
1~x;k!5~21! l coshl 11 ~x!S 1

cosh~x!

d

dxD
l e2 ikx

cosh~x!
, ~6.34!

where the reflection amplitudeh l(k,u0) and the transmission amplituded l(k,u0) can be deter-
mined by comparing~6.33! with ~6.31! and ~6.32! and * denotes the complex conjugate. Th
above integral over the intervalx.0 can be calculated rather easily with the following calcula
result:

I l
1~x!5E

x

`

dx8 c l
1~x8;k!c l

1~x8!

5C1~ l !(
i 50

l 21

Ci
l 1u0/2Ci

l 2u0/2
@f l 2 i 21

1 ~x;k!1h l~k,u0!f l 2 i 21
1* ~x;k!#f l 2 i

1 ~x!

1C1~ l !Cl
l 1u0/2Cl

l 2u0/2F 1

ik1u0/2
e2~ ik1u0/2!x1

h l~k,u0!

2 ik1u0/2
e~ ik2u0/2!xG ,

wheref l 2 i
1 (x) can be obtained from the relation~6.34! and the normalization constantC1( l ) is

given in ~6.16!. Therefore, the deformed continuous eigenfunction in the regionx.0 takes the
following form:

c l~x.0,l;k!5c l
1~x,l;k!5c l

1~x;k!2
2T

12T

c l
1~x!

u l
1~x,l!

I l
1~x!. ~6.35!

Similarly, for the regionx,0 we have

I l
2~x!5C1~ l !d l~k,u0!F(

i 50

l 21

Ci
l 1u0/2Ci

l 2u0/2
„f l 2 i 21

1 ~x;k!f l 2 i
2 ~x!2f l 2 i 21

1 ~0;k!f l 2 i
2 ~0!…G

1C1~ l !d l~k,u0!FCl
l 1u0/2Cl

l 2u0/2

ik1u0/2
~e2~ ik1u0/2!x21!G1I l

1~0!,

wheref i
2(x)5f i

1(2x). Hence the deformed continuous eigenfunction in the regionx,0 can be
written as

c l
2~x,l;k!5c l

2~x;k!2
2T

12T

c l
2~x!

u l
2~x,l!

I l
2~x!. ~6.36!

As an example we give below the closed form of the deformed continuous eigenspectr
the deformed delta Hamiltonian

c0~x,l;k!5H e2 ikx1b~k!eikx2
Tu0e2~u0/2!x

12T1Te2u0x Fe2~ ik1u0/2!x

ik1u0/2
1

b~k!e~ ik2u0/2!x

2 ik1u0/2 G , x.0,

c~k!e2 ikx2
Tu0e~u0/2!x

11T2Te2u0x F 112b~k!

2 ik1u0/2
1

1

ik1u0/2
1

c~k!e2~ ik2u0/2!x

ik2u0/2 G , x,0.

Using undeformed discrete and continuous wave function forl 51 as

c1~x!5A 2u0

u0
214 H S u0

2
1tanh~x! De2~u0/2!x, x.0,

S u0

2
2tanh~x! De~u0/2!x, x,0,
                                                                                                                



n-

ble
ver the
.

698 J. Math. Phys., Vol. 41, No. 2, February 2000 Jafarizadeh, Esfandyari, and Panahi-Talemi

                    
c1~x;k!5H „ik1tanh~x!…e2 ikx1b1~k!„ik2tanh~x!…eikx, x.0,

c1~k!„ik1tanh~x!…e2 ikx, x,0,

where

b1~k!5
~u0

224!k

~u0
224!k12iku0~k211!

, c1~k!52
2iku0~k211!

2iku0~k211!1~u0
224!k

,

we have

I 1
1~x!5C1S 21 iku0

2~ ik1u0/2!
1tanh~x! De2~ ik1u0/2!x1C1b1~k!S 22 iku0

2~ ik2u0/2!
2tanh~x! De~ ik2u0/2!x,

I 1
2~x!5C1c1~k!F iku022

2~2 ik1u0/2!
1S 22 iku0

2~2 ik1u0/2!
2tanh~x! De~2 ik1u0/2!xG ,

whereC15A2u0 /(u0
214). Hence,

c1
1~x,l;k!5„ik1tanh~x!…e2 ikx1b1~k!„ik2tanh~x!…e2 ikx

2
4Tu0„u0/21tanh~x!…e2~u0/2!x

~12T!~41u0
2!1T~u0

21414u0 tanh~x!!e2u0x

3@~a1tanh~x!!e2~ ik1u0/2!x1b1~k!~b2tanh~x!!e~ ik2u0/2!x#

and

c1
2~x,l;k!5c1~k!„ik1tanh~x!…e2 ikx

2
4Tu0c1~k!„u0/22tanh~x!…e~u0/2!x

~12T!~41u0
2!14T@u0

2/2122„u0
2/4112u0 tanh~x!…eu0x#

3@b2„b1tanh~x!…e~2 ik1u0/2!x#,

where

a5
21 iku0

2ik1u0
, b5

22 iku0

2ik2u0
.

E. Natanzon potential with a Dirac delta function term

As another example we consider the Schro¨dinger equation with undeformed Natanzon pote
tial with a Dirac delta function added to it; that is,

2
d2

dx2 c l ,m~x!1S 2
l ~ l 11!

cosh2 ~x!
1

m~m11!

sinh2 ~x!
2a~ l ,m!d~x! Dc l ,m~x!5El ,mc l ,m~x!. ~6.37!

Again, due to the presence of the coth (x) in the raising operators, we cannot get an accepta
discrete eigenspectrum by successive application of the raising and lowering operators o
corresponding eigenspectrum of the undeformed Rosen–Morse potential with a delta term

The only acceptable discrete eigenfunction is
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c l ,m~x!5H a l ,m

sinhm11 ~x!

coshl ~x!
, x.0,

b l ,m

sinhm11 ~x!

coshl ~x!
, x,0.

The continuity of the wave function at the originx50 indicates that

b l ,m5~21!m11a l ,m .

Now, integrating both sides of~6.37! in the interval~2e, e!, also considering the vanishing o
the wave function atx50, we deduce that the derivative of the wave function atx50 is continu-
ous. Hence we need not impose any constraint over the depth of the delta terma( l ,m). In other
words, addition of the Dirac delta term has no effect on the continuous spectrum of the
formed Natanzon potential.

Therefore, the normalization constanta l ,m can be determined as before and the eigenspect
of the deformed Natanzon potential with a delta term is the same as~5.5!, that is, again the delta
term does not change the descrete eigenspectrum even in the presence of deformation. A
raising and lowering operators in both regionsx.0 and x,0 are the same as the deforme
Natanzon potential given in~5.10!.

As far as the continuous spectrum is concerned, here again the deformed Natanzon p
and deformed Natanzon potential with delta term both have the same continuous eigensp
The presence of delta term does not change anything. Therefore, even the additional del
does not change the penetrationless character of the Natanzon potential neither in the de
state nor in the undeformed one.

Finally, we come to the conclusion that, due to the existence of the singular term 1/sinh2 (x) in
the potential, addition of the Dirac delta singular term does not have any effect in its penetr
less character.

VII. CONCLUDING REMARKS

In this paper, by generalizing the isospectral deformation algorithm of Ref. 1 to the contin
eigenspectrum, we have obtained both discrete and continuous eigenspectra of some im
shape-invariant deformed potentials and it is shown that the generalized algorithm is com
with shape invariance symmetry, that is, preserves it. Actually, on the one hand, the shape
ance plays a very important role in the solvability of these potentials.3,5 On the other hand, it is
rather crucial in the determination of the determinant of the Hamiltonian operator associate
these shape invariant potentials.2,4 Also shape invariance symmetry is almost responsible for
generation of the coherent and squeezed states via the shape invariant potential.7 Therefore, due to
preservation of the shape invariance symmetry under the generalized isospectral deformat
deformed shape-invariant potentials can be as important as the undeformed ones and th
definitely have applications in many different branches of physics and applied mathematic
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APPENDIX: CALCULATION OF INTEGRALS OF FORMULA „4.4…

Here in this Appendix we calculate integrals which we encounter in the process of the
pectral deformation of some important potentials. First, we start with integral appearing o
right-hand side of~4.4!:
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E
x

`

dx8„c l
n8~x8!…25E

x

`

dx8c l
n8~x8!Al

†~x8!c l 21
n8 ~x8!

5C0
l 1n8C0

l 2n8c l 21
n8 ~x!c l

n8~x!1E
x

`

dx8 Al~x8!c l
n8~x8!c l 21

n8 ~x8!

5 (
i 50

d21

Ci
l 1n8Ci

l 2n8c l 2 i 21
n8 ~x!c l 2 i

n8 ~x!1
an8

2
~2n8!! 2

2~2n8! ~n8! !2
Cd

l 1n8Cd
l 2n8

35
„12tanh~x!…, n851,

2
sech2n822~x! tanh~x!

2n8
2

tanh~x!

2n821 (
k52

@n821/2#

sech2n822k~x!

3)
i 52

k
2n822i 12

2n822i 11
1

~2n822!!!

~2n821!!!
„12tanh~x!…, n8.1,

with Cr
m5m(m21)(m22)¯(m2r 11), C0

m51, andd5 l 2n8. Also, an is the normalization
coefficient and@ # indicates the greatest integer part.

Here in the second line, by partial integration we have transformed the raising operato

its action overc l 21
n8 (x8) into the lowering operator which acts onc l

n8(x8). Then, using the
relation, we have obtained the third line and the rest follows from repetition of similar proce
with lower values ofl.
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Calculation of the level splitting of energy and the decay
rate of some one-dimensional potentials
by instantons method

M. A. Jafarizadeha)

Department of Theoretical Physics and Astrophysics, Tabriz University, Tabriz 51664,
and Iran Institute for Studies in Theoretical Physics and Mathematics,
Tehran 19395-1795, Iran

S. Jalalzadehb)

Department of Theoretical Physics and Astrophysics, Tabriz University,
Tabriz 51664, Iran
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Using the popular Langer–Polyakov–Coleman instanton method, the decay rate of
metastable states and the level splitting of energy, due to tunneling of some one-
dimensional potentials have been calculated. The operators appearing in the pref-
actor of the decay rate or the level splitting of energy of these kinds of potentials
possess the shape invariance symmetry, hence using this property, the determinant
of these operators have been calculated analytically via heat kernel method.
© 2000 American Institute of Physics.@S0022-2488~00!00801-X#

I. INTRODUCTION

Tunneling through the classically forbidden regions is a striking prediction of quantum
chanics, which besides being so occurrent in almost all branches of physics, such as sta
physics, solid state physics, nuclear physics, particle physics, and cosmology, it also po
interesting theoretical importance. Some of the most significant examples are proton dec
duced by anomaly,1 the decay of the QFT false vacuum in the inflationary models of
Universe,2 quantum gravity,3 and macroscopic quantum tunneling.4 In all of these works the
popular Langer–Polyakov–Coleman instanton method5–8 is exploited for the evaluation of the
decay rate and also level splitting of energy due to tunneling or instanton phenomena v
semiclassical calculations of the corresponding Euclidean path integrals. Actually the semi
cal approximation to the~Euclidean! functional integral is one of the major analytical tools
quantum theory. The hope is that by expanding around nontrivial background fields, on
obtain information about the dynamics that is complementary to perturbation theory. The n
starting point for a semiclassical approximation is, besides the expansion around the
vacuum~conventional perturbation theory!, the expansion around nontrivial solutions of the cla
sical equations of motion. In the neighborhood of these solutions the integration can be perf
in the Gaussian approximation, with the exception of zero modes, which reflect the symmet
the system. Here, in this paper, using the Langer–Polyakov–Coleman instanton method, w
culate the decaying rate of metastable states and also the splitting of energy of som
dimensional potentials to be introduced in the next section. As we are going to see in th
section, these kinds of potentials are almost occurrent in different fields of physics, partic
quantum gravity and cosmology. Besides being so applicable in different branches of phy
mentioned above, what makes these potentials so important is that these potentials po
shape-invariant operator in their prefactor, making the determination of the determinant of
operators exact by the heat kernel method. The structure of the paper is as follows: In the

a!Electronic mail: jafarzadeh@ark.tabrizu.ac.ir
b!Electronic mail: Msph0675@ark.tabrizu.ac.ir
7010022-2488/2000/41(2)/701/20/$17.00 © 2000 American Institute of Physics
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section we introduce the hierarchy of one-dimensional potentials. In the third section, fir
quote briefly the Langer–Polyakov–Coleman instanton method of the calculation of level sp
of energy and decay rate9,10 then derive the instanton and bounce solution of the model poten
introduced in the second section. In Sec. IV, using the prescription of Refs. 11–13, we fac
the operators appearing in the prefactors of level splitting of energy and the decay rat
shape-invariant form into the product of raising and lowering operators. Using this factoriz
we obtain the discrete and continuous spectra of these operators. Finally, in Sec. V, us
eigenspectrum obtained in Sec. IV, we calculate the determinant of the shape-invariant op
appearing in the prefactors with a heat kernel method,14 which leads to the calculation of the leve
splitting of energy and decay rate, which is the main result of this article. The paper is ende
a conclusion.

II. HIERARCHY OF ONE-DIMENSIONAL POTENTIALS

As mentioned in the Introduction, in this article we are concerned with the calculatio
energy splitting and decay rate through the potential barrier via tunneling in three types of p
tials that are going to be introduced below.

~i! The first type of potentials have the following general form:

V~1!~q!5
1

2
v2q2S 12U q

qc
U2/aD , a51,2,3,..., ~2.1!

whereqc is the classical zero energy turning point of the potentials. These potentials have ex
at

q50 and q56qcS a

11a D a/2

.

~ii ! The second type of potentials can be defined as

V~2!~q!5H 1

2
v2q2S 12S q

qc
D 2/aD , for q>0,

`, for q,0,

a51,2,3,... . ~2.2!

Similarly, these potentials have extrema at

q50 and q5qcS a

11a D a/2

.

In Fig. 1 and Fig. 2 some of the first and second types of potentials have been drawn fora51, 2,
and 3, respectively. As it is clear from the Fig. 1 and Fig. 2, in all of these types of potential
origin is minumum, hence the particle initially located at the origin will eventually penetrate
classically forbidden regions with finite height, thus the initial quantum state is metastable a
are here concerned with the calculation of a tunneling rate for these kinds of potentials.

The potentialV(2)(q) for a51 is used in Ref. 15 to calculate the rate of tunneling fro
nothing to a F.R.W. universe. Also,V(2)(q) for arbitrary integer values ofa, is called Konoplich
potentials,16 used in Refs. 17 and 18 to calculate the rate of tunneling in a cosmological m
with a violation of the strong energy condition andL decaying cosmologies, respectively.

Finally, the third type of potentials can be defined as

~a! V~3a!~q!5
v2a2

8
q2S S q

qc
D 1/a

2S q

qc
D 21/aD 2

, ~2.3a!

for odd positive integer values ofa, that is,a52k11, with positive integerk:
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~b! V~3b!~q!5
v2a2

8
q2S S U q

qc
U D 1/a

2S U q

qc
U D 21/aD 2

, ~2.3b!

for even positive integer values ofa, except fora50 and 2, that is,a52k, with positive integer
k.1:

~c! V~3c!~q!5
v2

2
qqcS 12

q

qc
D 2

, ~2.3c!

for a52.
In this case, almost all potentials look alike for all odd or even values ofa, except fora

51 and 2 cases, which look different from each other and also from the other potentials, as
in Fig. 3~a! and Fig. 3~b!. In the potentials~2.3a! and ~2.3b!, tunneling will lead to a small leve
splitting of energy between the ground state and the first excited state, while in potential~2.3c!
tunneling leads to the decay of an initially located particle at the origin.

FIG. 1. Potentials of the first kindV(1) given by the formula~2.1! for a51 and 2, respectively.

FIG. 2. Potentials of the second kindV(2) given by the formula~2.2! for a51 and 2, respectively.
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The potentialV(3a) for a51 is used already in macroscopic tunneling,4 vacuum instablity in
cosmology,2,7,8 andV(3c) for a52 occurs in macroscopic tunneling.4

III. CALCULATION OF THE LEVEL SPLITTING OF ENERGY AND THE DECAY RATE
VIA INSTANTON METHOD

A. Calculation of the level splitting of energy

In both calculations of the level splitting of energy and decay rate due to tunneling phenom-
ena, one has to calculate the partition function of the system that can be expressed as an integr
over all paths starting at some fixed pointq0 and terminating at the same point with the exponen-
tial of Euclidean action as their weight, that is,

Z~t!5^q0uexpS 2
Ht

\ D uq0&5E Dq exp„2SE~q,q̇!…, ~3.1!

with Euclidean action

SE~q,q̇!5E
0

`S 1

2 S dq

dt D 2

1v~q! Ddt,

together with the boundary conditionsq(0)5q(t)5q0 . The partition functionZ(t) is the am-
plitude of finding a particle atq0 at imaginary timet provided that it was located intially there. It
can be calculated approximately using the well-known WKB method of asymptotic expansion in
terms of\, where the main contribution comes from those paths that satisfy a classical Euclidean
equation of motion. Hence, expanding Euclidean action around these paths, while just keeping
fluctuating terms of quadratic order and integrating over these quadratic fluctuations, we obtain the
following expression for the partition function up to the first-order approximation in\:

Z~t!5(
i

expS 2
S„qi

cl~t!…

\ D F 2p\

S9„qi
cl~t!…G

1/2

. ~3.2!

The sum is over all solutions of the Euclidean–Euler–Lagrange’s equation of motion andS9 is the
second functional derivative of action with respect toq at the corresponding classical path, that is
the minima of action,

FIG. 3. ~a! Potentials of the third kindV(3a) andV(3b) given by the formula~2.3a! and~2.3b! for a53 and 4, respectively.
~b! Potential of the third kindV(3a) given by the formula~2.2a! for a51. ~c! Potential of the third kindV(3c) given by the
formula ~2.3c! for a52.
                                                                                                                



t

705J. Math. Phys., Vol. 41, No. 2, February 2000 Calculation of the level splitting of energy . . .

                    
dS

dqcl 50, ~3.3a!

and

S9>0. ~3.3b!

Equation~3.3a! together with the condition~3.3b! is the equilibrium condition of motion of a poin
particle in potential2v(q) ~see Figs. 4, 5, and 6!. Hence for a given potential2v(q), the qcl

satisfies the following equation of motion:

d2qcl

d2t
2

dV~qcl!

dqcl 50, ~3.4!

together with the boundary conditionq(0)5q(t)5q0 . By integrating Eq.~3.4! we obtain its
energy as a constant of motion, since the potential2v(q) does not depend ont explicitly but only
throughq(t), that is,

E5
1

2 S dqcl

dt D 2

2V~qcl!5const.

For an instanton solution we haveE50. Therefore for potentials of type~2.3! we get the
instanton solutions of the following form:

q~3a!5qcS tanhS vt

2 D D a

, for odd integer values ofa, ~3.5a!

FIG. 4. Inverted potential2V(1).

FIG. 5. Inverted potential2V(2).
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q~3b!5H 2qcS tanhS vt

2 D D a

, t,0,

qcS tanhS vt

2 D D a

, t.0,

for even integer values ofa ~3.5b!

except fora50 and 2, where we have

q~3c!5qcS tanhS vt

2 D D 2

, for a52. ~3.5c!

The solution corresponding toa52 is a bounce that starts fromq5qc at imaginary time~2`!
and ends at the same point at imaginary time~1`!, while the solutions in all other cases a
instanton solutions that start fromq52qc at imaginary time~2`! and end atq5qc at imaginary
time ~1`!. Hence their bounce solutions consist of a pair of instanton and anti-instanton, wh
the latter the direction of time has been reversed. In the dilute instanton–gas approximati
partition function of the potential given in~2.3!, except fora52 can be expressed as a sum of t
contribution of the multi-instantons and anti-instantons pairs or multibounce configurations
is,

Z5Z01Z21Z41¯5Z0S (
n51

`
R2n

~2n!! D 5Z0 cosh~R! ——→
t→`

expS 2
tv

2\
1RD , ~3.6!

whereZn is the partition function ofn instanton configurations whileR is defined as the ratio o
one instanton partition functionZ1 to zero instanton partition functionZ0 , that is,

FIG. 6. Inverted potential2V(3a).
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R5
Z1

Z0
.

Using the expression~3.3!, namely the semiclassical approximation of first order in terms of\ of
the partition function, we get for a zero instanton approximationZ0 ,

Z05 (
n50

`

expS 2tS n1
1

2Dv D ——→
t→`

expS 2
tv

2 D .

We denote the energy shift via tunneling phenomena in the potentials of a third type given in~2.3!,
by DE, where its calculation is one of the major goals of this article. Thus, the energy o
ground state can be written as

E05
\v

2
1DE.

Taking into account the fact that

lim
t→`

Z~t!5exp~2tE0!,

we have

DE52 lim
t→`

R

t
. ~3.7!

On the other hand, using the semiclassical approximation given in~3.2!, R can be written as

R5expS 2
S~qcl!

\ D Fdet„2]t
21U ~3!~t !…

det~2]t
21v2! G21/2

, ~3.8!

whereS(qcl) is the Euclidean action of the instanton solutions~3.5!,

S~3!~qcl!5E
2`

` v2a2

4

sinhS vt

2 D 2~a21!

coshS vt

2 D 2~a11! dt5
a2qc

2v

2
vBS a2

1

2
,2D , ~3.9!

andU (3)(t) is

U ~3!~t !5V9„qcl~one-instanton!…5S v

2 D 2S 41
~a21!~a22!

S sinhS vt

2 D D 2 2
~a11!~a12!

S coshS vt

2 D D 2 D , ~3.10!

which is known as theNatanzonpotential,11,13 Figs. 7 and 8.
Obviously, to potentialU (3)(t) we should add a delta term that deduces from the abso

valued term of the potentialV(3b)(q) given in ~2.3b!. But the Natanzon potential itself contains
singular term that is more dominant than this delta term, hence the delta term does not infl
the spectrum of the Natanzon potential.

The determinant det„2]t
21U (3)(t)… appearing in the formula~3.8! vanishes due to the fac

that the operator„2]t
21U (3)(t)… has a zero eigenvalue with the instanton solution, as the co

sponding eigendirection, as we will show in the next section, henceR becomes infinite butDE is
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defined as the ratio ofR to t ; hence in the infinite limit oft, the infinity appearing in the
denominator ofDE compensates the infinity of its numerator; consequently, we get the follow
finite expression for the shift of energy:

DE5expS 2
S~qcl!

\ D S S~qcl!

2p\ D 1/2Fdet8„2]t
21U ~3!~t !…

det~2]t
21v2! G21/2

, ~3.11!

FIG. 7. Potential2U (1,2) for different values ofl.

FIG. 8. Potential2U (3) for different values ofl.
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with Euclidean actionS(qcl) given in ~3.9!. Here det8 is the determinant without the zero eige
value. The ratio of the determinant appearing in the expression of the energy splitting~3.11! is
called prefactor that is going to be calculated in Sec. V using the shape-invariant property
operator appearing in its numerator. The prefactor is denoted byB(3); therefore we have

B~3!5Udet8„2]t
21U ~3!~t !…

det~2]t
21v2!

U. ~3.12!

B. The decay rate

The decay of metastable states and the calculation of their decay rate is more or less
to the case of the calculation of level splitting of energy in instanton phenomena, except tha
because of the non-normalizability of the wave function, the Hamiltonian is not self-adjoint, h
its eigenspectrum is not real anymore, but it gets a small negative imaginary part in its e
spectrum. The imaginary part of energy can be interpreted as half the decay rate, which f
from the temporal property of a wave function with complex energyE5E02 ia/2; that is,

C~q,t !5c~q!expS 2 i
E0t

\ DexpS 2
at

2\ D . ~3.13!

Now if the system initially~at timet50! prepared to be at a quantum state described by the w
functionc(q), then the probability of finding it still at the same state at timet is denoted byP(t),
where its amplitude can be calculated using the time-dependent wave function~3.13!, that is,

P~ t !5uA~ t !u2,

with the Minkowski decay amplitude given by

A~ t !5E
2`

`

C~q,t !* C~q,0!dq5E
2`

`

uc~q!u2 dq expS 2
at

2\ D5expS 2
at

2\ D .

Therefore\/G is the half-lifetime of the quantum state described by the wave functionC(x,t).
For the quantum state corresponding to the localization of particle atq5q0 , the probability
amplitude takes the following form:

A~ t !5^q0 ,tuq0,0&5^q0uexpS 2
iH

\ D uq0&. ~3.14!

In the Euclidean approach we evaluate the Euclidean decay amplitudeAE(t):

AE~t!5^q0uexpS 2
Ht

\ D uq0&, ~3.15!

as the analytic continuationt→2 i t ~Wick transformation! of the physical~Minkowskian! decay-
ing amplitudeA(t) given in ~3.14!. On the other hand, Euclidean decay amplitude~3.15! is the
same as the partition function~3.1!. Hence, the main formula of the decay rate for a unit of tim
is

G52t lim
t→`

1

t
Im lnS ^q0uexpS 2

Ht

\ D uq0& D52 lim
t→`

Im ln Z~t!. ~3.16!
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Here, in the Langer–Polyakov–Coleman method, the partition function of the potentials~2.1! and
~2.2! are expressed by the corresponding integrals, calculated in the semiclassical approx
for t→`, around the following bounce solution of the corresponding classical Euclidean e
tions of motion:

q~1!56
qc

S coshS vt

a D D a , ~3.17!

in the case of the first kind of potentials, and

q~2!5
qc

S coshS vt

a D D a , ~3.18!

for the potentials of the second kind with the following Euclidean action:

SE
~1,2!~q,q̇!5E

2`

`

qc
2v2

S sinhS vt

a D D 2

S coshS vt

a D D 2~11a! dt5aqc
2vBS 3

2
,a D , ~3.19!

for both potentials. Similar to the case of level splitting of energy due to tunneling, in the d
bounce approximation the partition function of the potentials given in~2.1! and ~2.2!, also the
potential~2.3a!, can be expressed as sum of the contribution of multibounce configurations a
gous to~3.6!, with Zn as the partition function ofn-bounce configurations, whileR is defined as
the ratio of one bounce partition functionZ1 to zero bounce partition functionZ0 . Again, using
the semiclassical approximationR, can be given by the formula~3.8! with s(qcl) given in ~3.19!
as the Euclidean action of bounce solutions~3.5c! ~for g52!, ~3.17! and ~3.18!, respectively.
Also, U (1,2)(t) is

U ~1,2!~t !5V9„qcl~one bounce!…5S v

a D 2S ~a!22
~a11!~a12!

S coshS vt

a D D 2 D , ~3.20!

which is known as theRosenpotential;11,13 see Fig. 7. Here also the determinant of the opera
„2]t

21U (1,2)(t)… vanishes due to a zero eigenvalue with the bounce solution as the correspo
eigendirection. Also, due to the existence of a turning point in a classical motion point pa
this operator has a single negative energy. Hence, the semiclassical approximation of
integral diverges in this case, where after the tricky analytic continuation we get imaginaR
instead of a real one, which leads to the appearance of an imaginary part in the eigenspec
a Hamiltonian associated with the potentials~2.1!, ~2.2!, and~2.3c!, respectively. Hence, for the
decay rate per unit time, we get

G5expS 2
S~qcl!

\ D S S~qcl!

2p\ D 1/2F udet8„2]t
21U ~1,2!~t !…u

det~2]t
21v2! G21/2

, ~3.21!

with Euclidean actionS(qcl) given in~3.19!. Here again the prime over the determinant means
omission of a zero eigenvalue due to the existence of the imaginary eigenvalue; we n
consider its absolute value in the calculation of the determinant. In this case the prefactorB(1,2) is
defined as
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B~1,2!5Udet8u„2]t
21U ~1,2!~t !…u

det~2]t
21v2!

U . ~3.22!

IV. SHAPE-INVARIANCE SYMMETRY

Using the shape-invariance symmetry of the operator„2]t
21U(t)… with U(t) given in ~3.9!

and~3.20!, we obtain in this section both the discrete and the continuous eigenspectrum, to
with the corresponding eigenfunction of these operators.11,13 First we start with the potentia
~3.20!, where the time-independent Schro¨dinger equation for this potential for a given energy
terms of the variablex5vt/a and integerl, with l 5a11, can be written as

F2
d2

dx22
l ~ l 11!

cosh2 x
1 l 2Gc l

~1,2!~x!5~El2112l !c l
~1,2!~x!, ~4.1!

where we have ignored the factor (v)2/(a)2 for the moment. Defining the operators

D l
~1!
ª2

d2

dx22
l ~ l 11!

cosh2 x
1 l 2, ~4.2!

and

D l
~1!~0!ª2

d2

dx2 1 l 2, ~4.3!

the equation~4.1! can be written as

D l
~1!c l

~1,2!~x!5~El22l 11!c l
~1,2!~x!. ~4.4!

Ignoring the constant shift of energy 2l 21 for the moment and introducing the following firs
order differential operators,

H Bl~x!ª
d

dx
1 l tanhx,

Bl
†~x!ª2

d

dx
1 l tanhx,

~4.5!

the operatorD l can be factorized as

Bl
†~x!Bl~x!c l

~1,2!~x!5~El !c l
~1,2!~x!, ~4.6!

Bl~x!Bl
†~x!c l 21

~1,2!~x!5~El !c l 21
~1,2!~x!. ~4.7!

We see that changing the order of operatorsBl(x) andBl
†(x) simply leads to the shift of the valu

of l. This means that it has the same shape as before, but the values ofl are shifted. This symmetry
is called shape-invariance symmetry. Using the shape-invariance symmetry, one can sho
c l

(1,2)(x) andc l 21
(1,2)(x) are proportional toBl

†(x)c l 21
(1,2)(x) andBl(x)c l

(1,2)(x), respectively; that is,
we have

c l
~1,2!~x!5

1

AEl

Bl
†~x!c l 21

~1,2!~x!, ~4.8a!

c l 21
~1,2!~x!5

1

AEl

Bl~x!c l
~1,2!~x!. ~4.8b!
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In Fig. 7, the potentialUl
(1,2)(x)5 l 22 l ( l 11)/cosh2 x has been shown for different values ofl.

Therefore, for a givenl, its first ~bounded! excited state can be obtained from the ground state
l 21. Consequently, the excited statem of a givenl, that isc l ,m

(1,2) , can be written as

c l ,m
~1,2!~x!5A 2~2m21!!

) j 51
m j ~2l 2 j !

1

2m~m21!!
Bl

†~x!Bl 21
† ~x!¯Bm11

† ~x!
1

coshm x
, ~4.9!

with eigenvalueEl ,m5 l 22m2. Obviously its ground state withEl ,050 is given by c l ,0
(1,2)(x)

.1/ coshx. Of course, for potentials~2.1! and ~2.2! the energy of the ground state would b
negative because of the constant shift of energyh5122l . Also, its continuous spectrum consis
of

c l ,k
~1,2!5

Bl
†~x!

Ak21 l 2

Bl 21
† ~x!

Ak21~ l 21!2
¯

B1
†~x!

Ak2112

eikx

A2p
, ~4.10!

with eigenvaluesEl ,k5 l 21k2, where *2`
1`C l ,k* (1)(x)c l ,k8

(1,2)(x)dx5d(k2k8). In the case of the
potential ~3.10! its time-independent Schrodinger equation for a given energy in terms o
variablex5vt/a and l 5a11 can be written as

F2
d2

dx22
l ~ l 11!

cosh2 x
1

~ l 22!~ l 23!

sinh2 x
14Gc l

~3!~x!5Elc l
~3!~x!, ~4.11!

where we have ignored the factor (v)2/(a)2 again. Defining the operators

D l
~2!
ªF2

d2

dx22
l ~ l 11!

cosh2 x
1

~ l 22!~ l 23!

sinh2 x
14G , ~4.12!

D l
~2!~0!ª2

d2

dx2 14, ~4.13!

the equation~4.11! can be written as

D l
~2!c l

~3!~x!5Elc l
~3!~x!. ~4.14!

By introducing the first-order differential operators,

Pl~x!ª
d

dx
1 l tanhx2~ l 22!cothx,

Pl
†~x!ª2

d

dx
1 l tanhx2~ l 22!cothx, ~4.15!

Ql~x!ª
d

dx
1 l tanhx1~ l 23!cothx,

Ql
†~x!ª2

d

dx
1 l tanhx1~ l 23!cothx, ~4.16!

the operatorD2 can be factorized as

Pl
†~x!Pl~x!c l

~3!~x!5Elc l
~3!~x!, ~4.17!

Ql
†~x!Ql~x!c l

~3!~x!5„El241~2l 23!2
…c l

~3!~x!, ~4.18!
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Ql~x!Ql
†~x!c l 21

~3! ~x!5„El241~2l 23!2
…c l 21

~3! ~x!. ~4.19!

It is clear that the eigenspectrum of the operatorPl
†(x)Pl(x) is non-negative. Therefore its groun

state energy is zero and the ground state eigenfunction is to be annihilated by the operaPl .
Hence, solving the first-order differential equation

Pl~x!c l
~3!~x!50, ~4.20!

we obtain the following normalized wave function:

c l ,0
~3!~x!5

1

ABS 2l 21

2
,2D

~sinhx! l 22

~coshx! l , ~4.21!

as the ground state of the Schrodinger equation~4.11! with zero energy. Again the change of th
order of operatorsQl(x) andQl

†(x) simply leads to the shift of the value ofl. Hence, the operato
D l

(2) has shape-invariance symmetry too. Using this property, one can show that

c l
~3!~x!5

1

AEl241~2l 23!2
Ql

†~x!c l 21
~3! ~x!, ~4.22a!

c l 21
~3! ~x!5

1

AEl241~2l 23!2
Ql~x!c l

~3!~x!. ~4.22b!

In Fig. 4 the potentialUl
(3)(x)52 l ( l 11)/cosh2 x1(l22)(l23)/sinh2 x14 has been shown fo

different values ofl. In the discrete spectrum of these potential the relations~4.22a! and ~4.22b!
are no longer valid for values ofl ,4, because the eigenfunctions thus obtained are not nor
izable, hence they cannot correspond to bound states. Therefore, the ground state with zer
is the only bound state for the case of these potentials and, as is well known, the relations~4.22a!
and~4.22b! are not valid for the ground state anymore. Actually the differential equation~4.11! is
of the Fuchsian type having three regular singularities,19 with the following RiemannP symbol:

c~3!~x!55
1

2
2

1

2
`

l 22

2
2

1

2
A12

El

4

1

2
cosh 2x

2
l 23

2
2

l 12

2
2A12

El

4

6 . ~4.23!

Hence, the solution of the differential equation~4.11! that is acceptable atx50 is

c~3!~x!5
sinhl 22 x

coshl x2
F1SA12

El

4
21,2SA12

El

4
11D ,l 2

3

2
,2sinh2 xD . ~4.24!

From the asymptotic behavior of this solution at`, it is clear that it cannot correspond to th
bound state unless the hypergeometric function reduces to a polynomial. This is possible21
1A12El /4 takes the negative integer values, that is, if we have

211A12
El

4
52n, ~4.25!
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wheren is an arbitrary non-negative integer.El50 is the only possible solution of the equatio
~4.25!. Hence, these potentials have only one bound state, as has already been shown us
shape-invariance symmetry. But for the continuous spectrum of these potentials, these re
can be valid. There we have

c l ,k
~3!5

Ql
†~x!

Ak21~2l 23!2

Ql 21
† ~x!

Ak21~2l 25!2
¯ ,

Q3
†~x!

Ak2132

B2
†~x!

Ak2122

B1
†~x!

Ak2112 5
sin~kx!

Ap
, for even values ofl ,

cos~kx!

Ap
, for odd values of l ,

~4.26!

with eigenvaluesEl ,k541k2. Again, *2`
1`C l ,k* (3)(x)c l ,k8

(3) (x)dx5d(k2k8).

V. HEAT KERNEL

Now, using the spectrum obtained in Sec. IV, we can calculate the ratio of the determina
follows. First, we explain very briefly how one can calculate the determinant of an ope
through the heat kernel method.14 We introduce the generalized Riemann zeta function of
operatorA by

zA~s!5(
n

1

ulnus , ~5.1!

whereln are eigenvalues of the operatorA, and the determinant of the operatorA is given by

detA5e2zA8 ~0!. ~5.2!

It is obvious from the equations~5.1! and ~5.2! that

det~aA!5azA~0! detA, ~5.3!

for an arbitrary constanta. On the other hand,zA(s) is a Mellin transformation of the heat kerne
G(x,y,t), which satisfies the following heat diffusion equation:

AG~x,y,t!52
]G~x,y,t!

]t
,

with an initial conditionG(x,y,0)5d(x2y). Note thatG(x,y,t) can be written in terms of its
spectrum,

G~x,y,t!5(
n

e2lntcn* ~x!cn~y!. ~5.4!

As usual, if the spectrum is continuous, one should integrate over the spectrum. From the r
~5.1!, it is clear that

zA~s!5
1

G~s!
E

0

`

dt t s21E
2`

1`

dx G~x,x,t!. ~5.5!
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Now, going through the above procedure, we can calculate the prefactorsB1 andB2 associated
with the potentials of the first, second, and third kinds, respectively. In the case of potentials~2.1!,
~2.2!, and ~2.3c!, sinceD l

(1)1122l @or D l
(1)(0)1122l # has the same eigenspaces asD l

(1) @or
D l

(1)(0)# and the eigenspectrum is shifted by 122l ; therefore we have

GD
l
~1!~0!1122l~x,y,t!5

e2„~ l 21!2
…t

2Apt
e2~x2y!2/4t, ~5.6!

GD
l
~1!1122l~x,y,t!5 (

m50,m5Þ1

l 21

C l ,m* ~1,2!~x!c l ,m
~1,2!~y!e2u~m21!„2l 2~m11!…ut

1E
2`

1`

dk e2„~ l 21!21k2
…tC l ,k* ~1,2!~x!c l ,k

~1,2!~y!. ~5.7!

In order to calculate thezD
l
(1)1122l function, according to the relation~4.3! we have to take the

trace of heat kernelGD
l
(1)1122l(x,y,t), where we need to integrate overuc l ,k

(1,2)u2. Using the

relationBl /AElc l ,k
(1,2)(x)5c l 21,k

(1,2) (x), we have

E
2`

1`

dx C l ,k* ~1,2!~x!c l ,k
~1,2!~x!52 lim

x→`

1

A~El ,k!
C l ,k* ~1,2!~x!c l 21,k

~1,2! ~x!

1 lim
x→2`

1

A~El ,k!
C l ,k* ~1,2!~x!c l 21,k

~1,2! ~x!

1E
2`

1`

dx C l 21,k* ~1,2!~x!c l 21,k
~1,2! ~x!. ~5.8!

The first and the second terms appearing on the right-hand side of the recursion relation~5.8! are
proportional with the asymptotic value of the wave functions at` and2`, respectively, where the
latter is calculated as

lim
x→6`

cm,k
~1,2!~x!5

2 ik6m

Ak21m2

2 ik6~m21!

Ak21~m21!2
¯

2 ik61

Ak211

exp~ ikx!

A2p

5
1

A2p
)
j 51

m S 2 ik6 j

Ak21 j 2D exp~ ikx!. ~5.9!

Substituting these asymptotic behaviors in the recursions relations between the norms of th
functionscm,k

(1,2) associated with the continuous spectrum~5.8!, then using the obtained recursio
relations together with the orthonormality of the discrete spectrum, we get the following resu
the difference of traces of heat kernels:

E
2`

1`

dx„GD
l
~1!1122l~x,x,t!2GD l ~1!~0!1122l~x,x,t!…

5 (
m50,mÞ1

l 21

exp~2u~m21!„2l 2~m11!…ut!2
1

p (
m51

l

mS E
2`

1`

dk
exp~2„~ l 21!2

…1k2!t

„k21~ l 21!2
…

1„~ l 21!22m2
…E

2`

1`

dk
exp~2„~ l 21!2

…1k2!

~k21m2!„k21~ l 21!2
…

D . ~5.10!

Hence using the Mellin transformation~5.5!, we get
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zD l ~1!1122l~s!2zD l ~1!~0!1122l~s!

5 (
m50,mÞ1

l 21

~ u~m21!„2l 2~m11!…u!2s

2
1

p (
m51

l

mS E
2`

1` dk

„k21~ l 21!2
…

s11 1„~ l 21!22m2
…

3E
2`

1` dk

~k21m2!„k21~ l 21!2
…

s11D . ~5.11!

The integrals on the right-hand side of~5.11! can be calculated straightforwardly, using th
well-known Feynman integral,

1

D1
a1D2

a2
¯Dn

an
5

G~a11a21¯1an!

a~a1!G~a2!¯G~an!
E dt1 dt2¯dtn

d~12t12t2¯2tn!t1
a121t2

a221
¯tn

an21

~ t1D11t2D21¯1tnDn!a11a21¯1an
.

~5.12!

Finally, we get

zD l ~1!1122l~s!2zD l ~1!~0!1122l~s!5 (
m50,mÞ1

l 21

~ u~m21!„2l 2~m11!…u!2s

2
1

2p
l ~ l 11!~ l 21!2~2s11!BS s1

1

2
,
1

2D ; ~5.13!

2
1

Ap

GS s1
3

2
D

G~s12!
(

m51

l 21

m~ l 21!2~2s13!
„~ l 21!22m2

…2F1S s1
3

2
,1,s12,12

m2

~ l 21!2D

2
1

Ap

GS s1
3

2
D

G~s12!
l 22~s11!~122l !

2F1S s1
3

2
,s11,s12,12

~ l 21!2

l 2 D . ~5.14a!

For s50, we obtain

zD l ~1!1122l~s!2zD l ~1!~0!1122l~s!us50521. ~5.15a!

This means that the operatorsD l(1)1122l and D l(1)(0)1122l have the same number o
eigenspaces~even though for both of them this number is infinite!, since from the definition of
Riemann’s zeta function, it is obvious that its value ats50 can be interpreted as the number
eigenspaces of the corresponding operator. Here the appearance of21 on the right-hand side o
the relation is due to the ignorance of the eigenfunctions associated with the zero eigenvalue
operatorD l(1)1122l . Therefore, its number of eigenstates is the same as those of the op
D l(1)(0)1122l . In order to calculate the ratio of the determinant of the operatorsD l(1)11
22l andD l(1)(0)1122l , we need to know the derivative of their associated zeta function
s50. Hence, differentiating both sides of the relation~5.10! with respect tos and evaluating such
integrals as
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E
0

1

dt~„~ l 21!22m2
…t1m2!23/2 log t5

4

m„~ l 21!22m2
…

~ log 21 logm22 log~ l 211m!…,

~5.16a!

E
0

1

dt~„~ l 21!22m2
…t1m2!23/2 log~„~ l 21!22m2

…t1m2!log t

5
4

m„~ l 21!22m2
…

S logm
m

l 21
log~ l 21!1

~ l 212m!

l 21 Dm22 log~ l 211m!, ~5.14b!

we get

zD l ~1!1122l8 ~s!2zD l ~1!~0!1122l8 ~s!us505 logS 2~2l 21!!

„~ l 22!! …2D . ~5.15b!

Therefore, according to the relations~5.6!, ~~5.14a!, and~5.15a!, B(1,2), the prefactors associate
with the first kinds of potentials, are calculated as

Bl
~1,2!5UdetS v2

~ l 21!2 S 2
d2

dx22
l ~ l 11!

cosh2x
1~ l 21!2D D

detS v2

~ l 21!2 S 2
d2

dx2 1~ l 21!2D D U5
„~ l 21!! …2

2v2~2l 21!!
. ~5.16b!

Finally, the decay rate of metastable state of these potentials, using the relation~3.20!, ~3.21!,
~3.22!, ~5.2! and ~5.3! are calculated as

G5
v3/2

Ap\
qc2

l 21 expS ~ l 21!qc
2vBS 3

2
,l 21D

\
D 1O~\!. ~5.17!

For example forl 53 ~the cubic potential! we have

G5
4v3/2

Ap\
qc expS 2

8qc
2v

15\ D 1O~\!, ~5.18!

which is in agreement with the results of Refs. 20, 21, 15. For the third kind of potentials~2.3!, we
have

GD
l
~2!~0!~x,y,t!5

1

p E
2`

`

dk exp„2~41k2!t…sinkx sinky, ~5.19!

GD
l
~2!~x,y,t!5E

2`

`

dk exp„2~41k2!t…C l ,k* ~3!~x!c l ,k
~3!~y!. ~5.20!

Inserting the relation@Ql /Ak21(2l 23)2#c l ,k
(3)(x)5c l 21,k

(3) (x) we obtain the following recursion
relation between the norm of continuous spectra:

E
2`

1`

dx C l ,k* ~3!~x!C l ,k
~3!~x!52 lim

x→`

1

Ak21~2l 23!2
C l ,k* ~3!~x!c l 21,k

~3! ~x!

1E
2`

1`

dx C l 21,k* ~3! ~x!c l 21,k
~3! ~x!. ~5.21!
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Defining

F l ,k5
Ql

†~x!

Ak21~2l 23!2

Ql 21
† ~x!

Ak21~2l 25!2
¯

Q3
†~x!

Ak2132

B2
†~x!

Ak2122

B1
†~x!

Ak211

exp~ ikx!

Ap
, ~5.22!

we have

c l ,k
~3!~x!5

F l ,k6F l ,k*

2i
. ~5.23!

Considering the asymptotic behavior of the functionsF l ,k ,

lim
x→6`

F l ,k5S )
j 51

l
2 ik6~2 j 23!

sqrtk21~2 j 23!2D¯ 2 ik62

sqrtk214

2 ik61

sqrtk211

exp~ ikx!

Ap

5
2 ik6~2l 23!

sqrtk21~2l 23!2 lim
x→6`

F l 21,k , ~5.24!

and

lim
x→6`

uF l ,ku25
1

p
, ~5.25!

we get

lim
x→`

C l ,kC l 21,k2 lim
x→2`

C l ,kC l 21,k5
22l 13

pAk21~2l 23!2
. ~5.26!

Therefore, we have

E
2`

1`

dx„GD
l
~2!~x,x,t!2GD l ~2!~0!~x,x,t!…52

1

p (
m51

l

~2m23!F S E
2`

1`

dk
exp„2~41k2!t…

~k214! D
2E

2`

1`

dk
exp~41k2!t

~k21m2!„k21~2l 23!2
…

G . ~5.27!

Again, using Feynman integrals~5.12!, we obtain

zD l ~2!~s!2zD l ~2!~0!~s!52
1

p
l ~ l 11!22~2s11!BS s1

1

2
,
1

2D2
1

Ap

GS s1
3

2D
G~s12!

3 (
m53

l

2m~23!22~s11!
2F1S s1

3

2
,s11,s12,12

4

~2m23!2D .

~5.28!

For s50, we get

zD l ~2!~s!2zD l ~2!~0!~s!52 l . ~5.29!

Using the integrals~5.15a! and~5.15b!, we can calculate the derivatives of Riemann’s zeta fu
tions,
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zD l ~2!8 ~s!2zD l ~2!~0!8 ~s!5 log@~2l 21!!! #2. ~5.30!

Also, using the relations~5.2!, ~5.3!, ~5.30!, and~5.31!, the second prefactorBl
(3) can be calculated

as

Bl
~3!5UdetS v2

4 S 2
d2

dx22
l ~ l 11!

cosh2 x
1

~ l 22!~ l 23!

sinh2 x
14D D

detS v2

4 S 2
d2

dx2 14D D U5S v

2 D 22l

@~2l 21!!! #22.

~5.31!

Finally, using the relations~3.9!, ~3.11!, and~5.32!, we calculate the energy shift of the third kind
of potentials~for l>3, of course!

DE5F ~ l 21!2BS l 2
3

2
,2D

2p\
G 1/2

S v

2 D ~2l 11!/2

qc„~2l 21!!! …expS 2

v

2
qc

2~ l 21!2BS l 1
1

2
,2D

\
D .

~5.32!

VI. CONCLUSION

In this article the energy splitting and decay rate for three different hierarchies of pote
have been calculated by instanton methods. The prefactor associated with all these po
possess a shape-invariant operator, which is responsible for the calculation of their determ
by the heat kernel method. The results agree with those obtained by the WKB approximatio
the details of calculations by the latter method is not included in the article. It seems the
plenty of other one-dimensional potentials with a shape-invariant prefactor, which is under
tigation. However, it could be more interesting to investigate some two-dimensional or hi
dimensional potentials with a shape-invariant prefactor.

The decay rate of potentials of the first kindV(1), is the same as that of potentials of th
second kindV(2). This is due to the fact that the tunneling rate depends on the penetration
where in the first case there are two equivalent penetration paths to the right-hand sid
left-hand side of the origin, while in the second case there is only one penetration path
right-hand side of the origin.
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Construction of quasi-two- and higher-dimensional
quantum integrable models
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A class of quantum integrable quasi-two- and higher-dimensional quantum spin as
well as strongly correlated electron systems with localized interactions are pro-
posed. The basic idea of construction is to introduce interchain interactions in an
array of spin chains or one-dimensional Hubbard models through twisting transfor-
mation. The models allow explicit quantumR-matrix, Lax operator, and exact
eigenvalue solution. ©2000 American Institute of Physics.
@S0022-2488~00!02702-X#

I. INTRODUCTION

Quantum integrable coupled spin chains withXXZ as well as Hubbard interactions we
introduced through twisting transformation in Ref. 1. Exact eigenvalue solutions of such m
were obtained in Ref. 2 and their extensions were proposed in Ref. 3. Here we generali
concept to construct a family of quasi-two- and higher-dimensional quantum spin and str
correlated electron models with nearest-neighbor~NN! and next NN interactions. Since the twis
ing transformation preserves integrability, the higher dimensional systems thus constructe
out to be quantum integrable,4,5 allowing explicit R-matrix and Lax operator and can be solv
exactly for the eigenvalue problem through the Bethe ansatz. One should mention here
integrable two-dimensional~2D! quantum spin model, its corresponding classical statistical
tem, as well as models with internal degrees of freedom were also obtained earlier follow
different route.6 However, the twisting transformation due to its inherent symmetry makes
approach much simpler, allowing easy construction of integrable spin and electron mod
arbitrary dimensions.

II. 2D MODELS

Let us define spin2 1
2 operatorss ( i ,m)

a ,a51,2,3; i 51,2,...,N; m51,2,...,M ; as well as fer-
mionic creation–annihilation operatorsc6( i ,m))

† ,c6( i ,m) at site~i,m! in a 2DN3M lattice with the
commutation relations

@s~ j ,m!
a ,s~k,n!

b #5 i eabcs~ j ,m!
c d jkdnm ,

$c6~ i ,m! ,c6~ i ,m!
† %5d jkdmn , ~II.1!

$c6~ i ,m! ,c7~ i ,m!
† %5$c6~ i ,m! ,c6~ i ,m!%5$c6~ i ,m!

† ,c6~ i ,m!
† %50.

Here the subscripts6 indicate ‘‘up’’ and ‘‘down’’ spin electrons.
The quantum models we propose may be given by the Hamiltonians

a!Electronic mail: anjan@tnp.saha.ernet.in
7210022-2488/2000/41(2)/721/7/$17.00 © 2000 American Institute of Physics
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Hs5(
j 51

N

(
m51

M

s~ j ,m!
1 s~ j 11,m!

2 ~exp@2i ~umm11s~ j ,m11!
3 2um21ms~ j 11,m21!

3 !# !

1Dms~ j ,m!
3 s~ j 11,m!

3 1h.c., ~II.2!

giving a 2D quantum spin model and by

He5(
j 51

N

(
m51

M

(
s51

2

cs~ j ,m!
† cs~ j 11,m! exp@ i (umm11~ns~ j ,m11!1ns~ j 11,m11!!2um21m~ns~ j ,m21!

1ns~ j 11,m21!!1summ11~n2s~ j ,m!1n2s~ j 11,m!!#1Umn1~ j ,m!n2~ j ,m!1h.c., ~II.3!

representing a generalized 2D Hubbard model with hopping of electrons controlled by those
neighboring chains. Herens( j ,m)5cs( j ,m)

† cs( j 11,m) are the electron number operators with sp
projection s. These models with periodic boundary conditions are constructed by couplinM
number ofXXZ4 chains or one-dimensional~1D! Hubbard models7,8 with mth chain coupled to the
nearestm61th chains through coupling constantsumm61 with the symmetryumm215um21m and
boundary conditionsuM ,M115uM15u01.

We see from the above-mentioned Hamiltonians that they are asymmetric inx and y direc-
tions, i.e., along the chains indexed byj and across the chains indexed bym. There areXXZ or
Hubbard type of NN interactions along the chains, while other types of coupling in the pe
dicular direction. The hopping process, though affected by the neighboring chains is confine
to thex direction. All these features give the models a quasi-2D structure.

Note that in~II.2! and~II.3! one encounters NN and next NN many-body interactions. Mo
over, the anisotropy in~II.2! and the Coulomb repulsion in~II.3! may differ from chain to chain.

III. QUANTUM INTEGRABILITY AND CONSTRUCTION OF R-MATRICES

For providing that the models represent exactly integrable quantum systems with a hie
of commuting conserved integrals, we have to find for the models the associated qu
R-matrix and the Lax operator satisfying the Yang–Baxter equation~YBE!

R^a&^b&~la2lb!L ^a&^ j &~la!L ^b&^ j &~lb!5L ^b&^ j &~lb!L ^a&^ j &~la!R^a&^b&~la2lb!. ~III.1!

Let us consider first the spin model~II.2! due to its relative simplicity and explain the idea
construction by performing twisting9 plus similarity transformation on R^a&^ j &

0 (l)
5Pm51

M R(a,m)( j ,m)
xxz (l,hm), where

R~a,m!~ j ,m!
xxz ~l,hm!5w0~l,hm!I m^ I m1w3~l,hm!s~a,m!

3 s~ j ,m!
3

1w~hm!~h~a,m!
1 s~ j ,m!

2 1s~a,m!
2 s~ j ,m!

1 !, ~III.2!

with

a5w01w35sin~l1hm!, b5w02w35sinl, c5w5sinhm ~III.3!

corresponds to that of the well-knownXXZ spin chains.4 Since theR0-matrix is a solution of the
Yang–Baxter equation and such transformations respect YBE symmetry, one gets a newR-matrix
of the form

R^a&^ j &~l!5F ^a&^ j &G^a&^ j &R^a&^ j &
0 ~l!G^a&^ j &

21 F ^a&^ j & , ~III.4!

where
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F ^a&^ j &5)
m

F ~a,m!~ j ,m11! , G^a&^ j &5)
m

G~a,m!~ j ,m11! ~III.5!

corresponds, respectively, to the twisting and the similarity transformation with

F ~a,m!~ j ,m11!5 f ~a,m!~ j ,m11!
u ~ f ~ j ,m!~a,m11!

u !21,

G~a,m!~ j ,m11!5 f ~a,m!~a,m11!
a f ~ j ,m!~ j ,m11!

a ~III.6!

and the explicit expression through the spin operators as

f ~a,m!~ j ,m11!
u 5exp@ iumm11s~a,m!

3 s~ j ,m11!
3 # ~III.7!

and withumm11 replaced byamm11 for f (a,m)( j ,m11)
a . To check that the newR-matrix ~III.4! is a

solution of the YBE~III.1! we insert it in the equation, since for the spin models it may also
taken as the Lax operator. We note that due to the specially designed forms~III.6!, ~III.7! of F, the
twisting matrices can be pushed through all theR0s without spoiling their structures and cancel
from both the sides. As a result we are left with theR0 matrices only, which surely satisfy th
YBE. For example, for shifting theF factors throughR0 in the termR^a&^b&

0 F ^a&^ j &F ^b&^ j & appearing
in the equation, one notices that the only term inR0 which does not commute with theF factors
is Pm51

M s (a,m)
1 s (b,m)

2 . However using the obvious relation

s~a,m!
6 exp@ iuX̂~ j ,m11!s~a,m!

3 #

5exp@6 iuX̂~ j ,m11!#exp@ iuX̂~ j ,m11!s~a,m!
3 #s~a,m!

6 ~III.8!

with arbitrary operatorX̂( j ,m11), the extra factor

exp@ i ~um21ms~ j ,m21!
3 2umm11s~ j ,m11!

3 !#

produced due to the transition ofF (a,m)( j ,m11)F (a,m21)( j ,m) is canceled exactly by the facto
created due toF (b,m)( j ,m11)F (b,m21)( j ,m) . Thus R^a&^b&

0 remains unchanged after taking theF
factors through it. Similar reasoning holds forR^a&^ j &

0 and R^b&^ j &
0 . The factors related to th

similarity transformation:G(a,m)(b,m11)
21 G(a,m)( j ,m11) , etc., on the other hand, are canceled mo

among themselves due to their factorized form as defined in~III.6! and the remaining one
commute trivially with theR0 matrices. This shows that the transformedR-matrix ~III.4! is indeed
a solution of the YBE, which proves the quantum integrability of the system and guarantee
the transfer matrixt(l)5tr^a&(P j 51

N R^a&^ j &(l)) would generate mutually commuting set of co
served operatorsCn5((]n/]ln)logt(l))ul50.5,4

To demonstrate that theR-matrix ~III.4! corresponds really to the model~II.2!, we now
construct the Hamiltonian in the explicit form supposingH[C15t8(0)t21(0) and using the
definition of t(l) along with the expressions~III.4! and ~III.2!. Notice an important property o
the R-matrix ~III.4!:

R^a&^ j &~0!5cF^a&^ j &G^a&^ j &P^a&^ j &G^a&^ j &
21 F ^a&^ j &

5cF^a&^ j &G^a&^ j &G^ j &^a&
21 F ^ j &^a&P^a&^ j &5cP^a&^ j & , ~III.9!

which follows easily from that ofR^a&^ j &
0 (0)5Pm51

M sinhmP(a,m)(j,m)5cP̂ a&^j& and the symmetry
F ^ j &^a&5F ^a&^ j &

21 ,G^ j &^a&5G^a&^ j & . Using this and the property of the permutation operator
P^a&^ j &R^a&^ j 11&8 (0)5R^ j &^ j 11&8 (0)P^a&^ j & , andP^a&^ j &

2 5I we get

t~0!5cS S )
m51

M

P~ j ,m!~ j 11,m!D P^ j &^ j 12&¯ D tra~P^a&^ j &! ~III.10!
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and

t8~0!5c(
j 51

N

(
m51

M S )
l 5m21

m

~F ~ j ,l !~ j 11,l 11!G~ j ,l !~ j 1 l ,l 11!!R~ j ,m!~ j 1 l ,m!8xxz ~0! )
nÞm

P~ j ,n!~ j 11,n!

3 )
l 5m21

m

F ~ j ,l !~ j 11,l 11!G~ j ,l !~ j 11,l 11!
21 D P^ j &^ j 12&¯3tra~P^a&^ j &!, ~III.11!

yielding

H5(
j 51

N

(
m51

M

Sj j 11
m R~ j ,m!~ j 11,m!8xxz ~0!P~ j ,m!~ j 11,m!~Sj j 11

m !21,

Sj j 11
m 5 )

l 5m21

m

F ~ j ,l !~ j 11,l 11!G~ j ,l !~ j 1 l ,l 11! . ~III.12!

Expressions~III.2! and ~III.7! through spin operators and their properties~III.8! reduce~III.12!
finally to a family of 2D quantum spin models

H5(
j 51

N

(
m51

M

s~ j ,m!
1 s~ j 11,m!

2 exp~ i @~umm111amm11!s~ j ,m11
3 2~um21m1am21m!s~ j 11,m21!

3

1~umm112amm11!s~ j 11,m11!
3 2~um21m2am21m!s~ j ,m21!

3 # !1Dms~ j ,m!
3 s~ j 11,m!

3 1h.c.,

~III.13!

parametrized by the set$umm11%,$amm11%. This also establishes that the set of models~III.13!
belongs to the hierarchy of quantum integrable systems. Choosing the coupling parameteu, a
differently we can generate a family of quasi-2D integrable models with rich variety of interc
interactions. The simplest choiceamm115umm11 , clearly yields the Hamiltonian~II.2!, while
a l l 1150 constructs another model keeping only the twisting effect as

H5(
j 51

N

(
m51

M

~s~ j ,m!
1 s~ j 11,m!

2 S~m!1Dms~ j ,m!
3 s~ j 11,m!

3 !1h.c., ~III.14!

where

S~m!5exp~ i @umm11~s~ j ,m11!
3 1s~ j 11,m11!

3 !2um21m~s~ j ,m21!
3 1s~ j 11,m21!

3 !# !. ~III.15!

On the other hand a different choicea l l 115(21)luu11 leads to the models having the same fo
as ~III.14!, but with chain dependent expressions forS(m) as

S~m!5exp~2i @umm11s~ j ,m11!
3 2um21ms~ j ,m21!

3 # !,m52k,

~III.16!
S~m11!5exp~2i @um11m12s~ j 11,m12!

3 2umm11s~ j 11,m!
3 # !,

alternatingly. Similarly one may choose other varieties for the 2M number of interchain param
etersumm11 ,amm11 to generate wide range of interacting 2D spin models.

Coming to the generalized Hubbard model~II.3! we observe that since through the Jorda
Wigner transformations the electron operatorsc6( j ,m)

† ,c6( j ,m) can be transformed into spin oper
tors s (6)( j ,m)

6 ,7 twisting transformation similar to~III.4! also holds true in constructing th
R-matrix and theL-operator for this model:

R^a&^b&~0!5F ^a&^b&R^a&^b&
0 F ^a&^b& ,
~III.17!
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L ^a&^ j &~0!5F ^a&^ j &L ^a&^ j &
0 F ^a&^ j & .

More explicitly one gets hereR^a&^b&
0 (la ,lb)5(Pm51

M R(a,m)( j ,m)
Hub (la ,lb ,habm), and L ^a&^ j &

0 (l)
5Pm51

M L (a,m)( j ,m)
Hub (la ,ham), where the well known7,8 R-matrix and theL-operator related to the

1D Hubbard model at themth chain are given as

L ~a,m!~ j ,m!
Hub ~la!5~L

~a,m!~ j ,m!

s~1 ! ~la! ^ L
~a,m!~ j ,m!

s~2 ! ~la!!exp~hams~1 !~a,m!
3 s~2 !~a,m!

3 ! ~III.18!

and

R~a,m!~b,m!
Hub ~la ,lb!5@cosg̃ab coshhabm~L

~a,m!~b,m!

s~1 ! ~gab! ^ L
~a,m!~b,m!

s~2 ! ~gab!!

1cosgab sinhhabm~L
~a,m!~b,m!

s~1 ! ~ g̃ab! ^ L
~a,m!~b,m!

s~2 ! ~ g̃ab!!

3~s~1 !~a,m!
3 s~2 !~b,m!

3 !#,

where Ls(6) correspond to the 6-vertex free-fermionic model andgab5la2lb ,g̃ab5la1lb

represent the dependence on the difference and the sum of the spectral parameters. T
matricess (6)( j ,m) correspond to the spin up/down fermion operatorsc6( j ,m) and the parameter
habm5ham2hbm with ham defined as sinh 2ham5(Um/4)sin 2la .8 The twisting transformation
~III.17! here is given through the similar structure~III.6! with

f ~a,m!~ j ,m11!
u 5exp@ iumm11~n~a,m!

1 ~an~ j ,m11!
1 1gn~ j ,m!

2

1dn~ j ,m11!
2 !1bn~a,m!

2 n~ j ,m11!
2 !#, ~III.19!

where n( j ,m)
6 are the electron number operators anda, b, g, d are arbitrary parameters. Sinc

n( j ,m)
6 5 1

2(s (6)( j ,m)
3 11) and six-vertex free-fermionLs(1)-operators have the same structures

~III.3! only with the constrainta21b25c2, similar reasonings as above also go through
showing R-matrix and the Lax operator~III.17! for the 2D generalized Hubbard as genui
solutions of the YBE. Moreover since it is easy to see that the Lax operator~III.17! with ~III.18!
have the same regular property as~III.9! one can repeat the construction through~III.10!, ~III.11!,
and~III.12! to obtain the Hamiltonian of the system. In general the Hamiltonian contains the
parametersa, b, g, d, different choice of which results in different types of models, while
simple choicea5b5g51,d50 yields the model~II.3!. An additional similarity transformation
and the choice of the related parameter can produce different variations of such quasi-2D H
model as in the spin chain case discussed previously.

IV. HIGHER DIMENSIONAL MODELS

We extend now this idea for constructing higher-dimensional models. For simplicity
restrict ourselves to the construction of quasi-3D spin models only. Similar generalization
correlated electron models to higher dimensions can be done in the analogical way.

The R-matrix for the 3D spin model can again be defined as~III.4! with the transforming
operators as

F ^a&^ j &5)
m,p

F ~a,m,p!~ j ,m11,p!
~m! F ~a,m,p!~ j ,m,p11!

~p! ,

G^a&^ j &5)
m,p

G~a,m,p!~ j ,m11,p!
~m! G~a,m,p!~ j ,m,p11!

~p! . ~IV.1!

Here as before the indexj 51,...,N denotes the site number in thex direction,m51,...,M stands
for the chain number along they direction, while the additional indexp51,...,L indicates the layer
number along thez direction. Therefore we may extend our above definitions to the 3D cas
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F ~a,m,p!~ j ,m,p11!
~p! 5 f

~a,m,p!~ j ,m,p11!

upp11 ~ f
~ j ,m,p!~a,m,p11!

upp11 !21

and

G~a,m,p!~ j ,m,p11!
~p! 5 f

~a,m,p!~a,m,p11!

app11 f
~ j ,m,p!~ j ,m,p11!

app11 ~IV.2!

with

f
~a,m,p!~ j ,m,p11!

upp11 5exp@ iupp11s~a,m,p!
3 s~ j ,m,p11!

3 # ~IV.3!

for fixed chain indexm andupp11 as the interlayer coupling. Analogous relations to~IV.2! hold
also forF (a,m,p)( j ,m11,p)

(m) with fixed layer indexp. All the above-mentioned arguments for provin
theR-matrix as the YBE solution remain valid for the present extension and one can genera
related Hamiltonian for a family of quantum integrable 3D spin models. In the simplest ca
aab5uab the explicit form of such models may be given as

H5(
j 51

N

(
m51

M

(
p51

L

~s~ j ,m,p!
1 s~ j 11,m,p!

2 Sm,p
j j 111Dms~ j ,m,p!

3 s~ j 11,m,p!
3 !1h.c. ~IV.4!

with the interchain and interlayer interactions given as

Sm,p
j j 115exp~2i @~umm11s~ j ,m11,p!

3 2um21ms~ j 11,m21,p!
3 !

1~upp11s~ j ,m,p11!
3 2up21ps~ j 11,m,p21!

3 !# !. ~IV.5!

Note that due to the factorized form of

Sm,p
j j 115S~m11,p!

j ~S~m21,p!
j 11 !21S~m,p11!

j ~S~m,p21!
j 11 !21

with

S~m,p11!
j 5exp~2i @upp11s~ j ,m,p11!

3 # !5cos 2upp111 is~ j ,m,p11!
3 sin 2upp11 , ~IV.6!

etc., such interactions take place between NN and next NN chains in the same plane~with fixed p!
as well as between NN and next NN layers in the same chain~with m fixed! and finally between
such terms themselves.

V. CONCLUDING REMARKS

Thus we have constructed a class of quasi-2D and 3D quantum spin models and show
their exact integrability by constructing explicitly the quantumR-matrix and consequently deriv
ing the Hamiltonians from them. Similar higher dimensional quantum integrable strongly c
lated electron models are also proposed with equal success. The eigenvalue problem fo
models can be solved exactly using the Bethe ansatz in analogy with the two chain cases
ered in Refs. 3 and 2. More precisely an additional phase factor like

um52~umm11Nm112um21mNm21!, ~V.1!

with the number of pseudoparticle excitationsNm in the mth chain would appear in the Beth
equation for the pseudo-momentumpk(m)

in the quasi-2D case. A similar expression involvin
both the neighboring interchain and interlayer coupling parametersumm61 ,upp61 would corre-
spond also to the 3D case.

Note that, though the expressions for the eigenvalues as a function ofpk(m)
would look

formally like those for the noninteracting arrays ofXXZchains or 1D Hubbard models, the energ
eigenvalues would actually be different due to the changed equations for determining the sepk(m)

.
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Moreover since the additional phase factor~V.7! depends only on the twisting parameter, differe
models related through the similarity transformations would have the same set of Bethe equ

The nature of the eigenfunctions for such models should also change, exhibiting s
unusual features as witnessed in the twisted Hubbard model.2 At different sectors in the configu
ration space different phase factors involvingu parameters arise in the wave functions and at
boundaries of the sectors the wave functions suffer phase jumps resulting in the occurre
discontinuity at coinciding points.

It is important to note that unlike long-ranged systems10 the present class of 2D and 3
models includes only nearest- and next nearest-neighbor interactions in all directions, wh
crucial for the physical models. Therefore such models, possibly with improved twisting o
tors, might be helpful in constructing integrable higher-dimensional physically interesting sys
which could not be achieved through the approach of tetrahedron equation.11

1A. Kundu, hep-th/9612046~1996!.
2A. Kundu, Proceedings NEEDS’97 Chania, Greece, 12–28 June 1997, reprint cond-mat/9710033 1997; Phys.
249, 126 ~1998!.
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On 2D Euler equations. I. On the energy–Casimir
stabilities and the spectra for linearized 2D Euler equations

Yanguang (Charles) Lia)

Department of Mathematics, University of Missouri, Columbia, Missouri 65211

~Received 10 July 1998; accepted for publication 30 September 1999!

In this paper, we study a linearized two-dimensional Euler equation. This equation
decouples into infinitely many invariant subsystems. Each invariant subsystem is
shown to be a linear Hamiltonian system of infinite dimensions. Another important
invariant besides the Hamiltonian for each invariant subsystem is found and is
utilized to prove an ‘‘unstable disk theorem’’ through a simple energy–Casimir
argument@Holm et al., Phys. Rep.123, 1–116 ~1985!#. The eigenvalues of the
linear Hamiltonian system are of four types: real pairs (c,2c), purely imaginary
pairs (id,2 id), quadruples (6c6 id), and zero eigenvalues. The eigenvalues are
computed through continued fractions. The spectral equation for each invariant
subsystem is a Poincare´-type difference equation, i.e., it can be represented as the
spectral equation of an infinite matrix operator, and the infinite matrix operator is a
sum of a constant-coefficient infinite matrix operator and a compact infinite matrix
operator. We have obtained a complete spectral theory. ©2000 American Insti-
tute of Physics.@S0022-2488~00!00702-7#

I. INTRODUCTION

In Ref. 1, Henshaw and Kreiss numerically studied the propagation of perturbations
solution of the two-dimensional incompressible Navier–Stokes~2D N-S! equations with no body
force, and at high Reynolds numbers. They numerically solved the equations starting with
smooth initial data for which the Fourier modes have random phases. This flow evolved ove
initially through a complicated state containing many shear layers and then into a state o
vortex structures~with shear layers! which persists for a long time.

~1! Changing the viscosity, the large vortex structures do not change much.
~2! Adding high mode perturbation to the initial data, the large vortex structures do not ch

much.
~3! Changing the LaplacianD to D2, the large vortex structures do not change much.
~4! Changing the LaplacianD to an operator which isD for low modes andD2 for high modes,

the large vortex structures do not change much.

In Ref. 2, Matthaeuset al. studied the same problem, and found similar results. Matthaeuset al.
run the numerics for a much longer time. These numerics indicate that for relatively long tim~not
infinite, long time!, the solution to the 2D N-S equation~without body force, i.e., decaying
turbulence! has the large vortex structures. Such structures persist in the solution to the 2D
equation by the claims 1, 3, 4 above.~Cf. Under decay boundary conditions, the Kato theor
states that for finite time the solution to the 2D N-S equation converges to the solution to th
Euler equation in norm as viscosity approaches zero, see Ref. 3.! Moreover, the large vortex
structures are stable with respect to the change in initial data.

In Ref. 4, Robert and Sommeria studied the organized structures in two-dimensional
fluid flows by a theory of equilibrium statistical mechanics. The theory takes into account a
known constants of motion for the two-dimensional Euler equations. The microscopic states

a!Electronic mail: cli@math.missouri.edu
7280022-2488/2000/41(2)/728/31/$17.00 © 2000 American Institute of Physics
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the possible vorticity fields, while a macroscopic state is defined as a probability distributi
vorticity at each point of the domain, which describes in a statistical sense the fine-scale vo
fluctuations. The organized structure appears as a state of maximal entropy, with the constr
all the constants of motion. The vorticity field obtained as the local average of this op
macrostate is asteady solutionof the Euler equations.

The above numerical results show that certain relatively long-time large vortex structur
the 2D Euler equation persist for 2D N-S equation at high Reynolds numbers. Such structu
stable with respect to the change in initial data. We believe such structures are the exhibi
certain unstable manifolds. The above theoretical results show that the probability mean o
structures for 2D Euler flows are steady solutions to the 2D Euler equations. Thus, we belie
certain unstable manifolds, if there are any, of steady solutions to 2D Euler equations are r
sible for such large vortex structures. Therefore, a dynamical system study on certain un
manifolds of certain steady solutions to 2D Euler equations, and their persistence for 2D
equations at high Reynolds numbers, is crucial for studying the large vortex structures. Inde
have built achaos-molecules-modelon 2D turbulence based upon the above motivations.5 We
believe that our chaos-molecules-model captures the qualititive frames of the hyperbolic
tures, and the energy inverse cascade and the enstrophy cascade nature for 2D turbulenc

In this paper, we study the linearized 2D Euler equation at a fixed point. This study is the
for future analytical studies on the unstable manifolds for the 2D Euler equation. In Ref. 6
have begun numerical studies on the unstable manifolds for the 2D Euler equation.

The current study is also important in the linear hydrodynamic stability theory. By utili
the Energy–Casimir method,7 we obtain anunstable disk theoremwhich is not in the category o
the classical Rayleigh theorem.8

Next we discuss the approaches used in this study. Through the energy–Casimir m
nonlinear stabilities of various types of two-dimensional ideal fluid flows have b
established.7,9–11 Below we give a brief description on the energy-Casimir method. LetD be a
region on the~x,y!-plane bounded by the curvesG i( i 51,2). An ideal fluid flow inD is governed
by the 2D Euler equation written in the stream-function form:

]

]t
Dc5@¹c, ¹Dc#, ~I.1!

where

@¹c, ¹Dc#5
]c

]x

]Dc

]y
2

]c

]y

]Dc

]x
,

with the boundary conditions

cuG i
5ci~ t !, c1[0,

d

dt R
G i

]c

]n
ds50.

For every functionf (z), the functional

F5E E
D

f ~Dc! dx dy ~I.2!

is a constant of motion~a Casimir! for ~I.1!. The conditional extremum of the kinetic energy

E5
1

2 E E
D

¹c•¹c dx dy ~I.3!

for fixed F is given by the Lagrange’s formula,9
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dH5d~E1lF !50, ⇒c05l f 8~Dc0!, ~I.4!

wherel is the Lagrange multiplier. Thus,c0 is the stream function of a stationary flow, whic
satisfies

c05F~Dc0!, ~I.5!

whereF5l f 8. The second variation is given by9

d2H5
1

2 E E
D
$¹f•¹f1F8~Dc0!~Df!2% dx dy. ~I.6!

Let c5c01w be a solution to the 2D Euler equation~I.1!. Arnold proved the following
estimates.10

~a! Whenc<F8(Dc0)<C, 0,c<C,`,

E E
D
$¹w~ t !•¹w~ t !1c@Dw~ t !#2% dx dy<E E

D
$¹w~0!•¹w~0!1C@Dw~0!#2% dx dy,

for all tP(2`,1`).
~b! Whenc<2F8(Dc0)<C, 0,c,C,`,

E E
D
$c@Dw~ t !#22¹w~ t !•¹w~ t !% dx dy<E E

D
$C@Dw~0!#22¹w~0!•¹w~0!% dx dy,

for all tP(2`,1`). Therefore, when the second variation~I.6! is positive definite, or when

E E
D
$¹f•¹f1@maxF8~Dc0!#~Df!2% dx dy

is negative definite, the stationary flow~I.5! is nonlinearly stable~Liapunov stable!. In this paper,
we have found an invariant for the linearized 2D Euler equation, and use this invariant tog
with an energy–Casimir-type argument to study linear stability, and to prove an unstable
theorem. The linearized 2D Euler equation is an infinite-dimensional linear Hamiltonian sy
For finite-dimensional linear Hamiltonian systems, it is well known that the eigenvalues a
four types: real pairs (c,2c), purely imaginary pairs (id,2 id), quadruples (6c6 id), and zero
eigenvalues.12–14 The same is true for the linearized 2D Euler equation. The eigenvalues
computed through continued fractions following the work of Meshalkin and Sinai.15 The linear-
ized 2D Euler equation can also be written in an infinite-matrix form. The spectral equation
infinite-matrix operator defines a Poincare´-type difference equation.16,17That is, the infinite-matrix
operator can be written as the sum of a constant-coefficient infinite matrix operator and a co
infinite matrix operator. In this paper, we follow a spectral theory developed by Duren18 to study
the spectra of the constant-coefficient infinite matrix operator through characteristic polyno
Then we apply the Weyl’s essential spectra theorem to the perturbation of the constant-coe
infinite matrix operator by the compact infinite matrix operator,19 to achieve a complete spectr
theory.

Finally, we discuss some preliminaries on the 2D Euler equation. Consider the
dimensional incompressible Euler equation written in vorticity form,

]V

]t
52u

]V

]x
2v

]V

]y
,

~1.7!
]u

]x
1

]u

]y
50;
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under periodic boundary conditions in bothx andy directions with period 2p, whereV is vorticity,
u andv are respectively velocity components alongx andy directions. We also require that bot
u andv have means zero,

E
0

2pE
0

2p

u dx dy5E
0

2pE
0

2p

v dx dy50.

ExpandV into Fourier series,

V5 (
kPZ2/$0%

vke
ik•X,

wherev2k5vk, k5(k1 ,k2)T, andX5(x,y)T. In this paper, we use 0 for (0,0)T; the context will
always make it clear. By the relation between vorticityV and stream functionC,

V5
]v
]x

2
]u

]y
5DC,

where the stream functionC is defined by

u52
]C

]y
, v5

]C

]x
;

the system~I.7! can be rewritten as the following kinetic system,

v̇k5 (
k5p1q

A~p,q!vpvq , ~I.8!

whereA(p,q) is given by,

A~p,q!5
1

2
@ uqu222upu22#~p1q22p2q1!5

1

2
@ uqu222upu22#Up1 q1

p2 q2
U, ~I.9!

FIG. 1. An illustration on the locations of the modes (k85rk) and (uk8u5uku) in the definitions ofEk
1 andEk

2 ~Proposition
1!.
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whereuqu25q1
21q2

2 for q5(q1 ,q2)T, similarly for p.
Remark I.1: Notice that direct calculation shows that the nonlinear term in (I.8)

Sk5p1qÃ(p,q)vpvq , where Ã(p,q)5upu22(q1p22p1q2). Then, Ã(q,p)5uqu22(p1q22q1p2).
The A(p,q) in (I.8) is the average of A˜ (p,q) and Ã(q,p), A(p,q)5 1

2@Ã(p,q)1Ã(q,p)#.
For any two functionalsF1 andF2 of $vk%, define their Lie–Poisson bracket:

$F1 ,F2%5 (
k1p1q50

Uq1 p1

q2 p2
Uvk

]F1

]vp

]F2

]vq

. ~I.10!

Then the 2D Euler equation~I.8! is a Hamiltonian system,20

v̇k5$vk ,H%, ~I.11!

where the HamiltonianH is the kinetic energy,

H5
1

2 (
kPZ2/$0%

uku22uvku2. ~I.12!

Following are Casimirs~i.e., invariants that Poisson commute with any functional! of the Hamil-
tonian system~I.11!:

Jn5 (
k11¯1kn50

vk1
¯vkn

. ~I.13!

The following proposition is concerned with the equilibrium manifolds of the 2D Euler equa
~I.8!.

Proposition 1: For any kPZ2/$0%, the infinite-dimensional space

Ek
1[$$vk8%uvk850, i f k8Þrk,;r PR%,

and the finite-dimensional space

Ek
2[$$vk8%uvk850, i f uk8uÞuku%,

entirely consist of fixed points of the system (I.8).
Proof: Let k0PZ2/$0%, $vk

0%PEk0
1 . For any p,qPZ2/$0%, vp

0vq
0Þ0 implies that p

5r 1k0, q5r 2k0 for somer 1 ,r 2PR. Then,A(p,q)50; thus we always haveA(p,q)vp
0vq

050,
and $vk

0% is a fixed point of~I.8!. Let k0PZ2/$0%, $vk
0%PEk0

2 . For anyp,qPZ2/$0%,vp
0vq

0Þ0
implies thatupu5uk0u, uqu5uk0u. Then,A(p,q)50; thus we always haveA(p,q)vp

0vq
050, and

$vk
0% is a fixed point of~I.8!. h

Figure 1 shows an example on the locations of the modes (k85rk) and (uk8u5uku) in the
definitions ofEk

1 andEk
2 ~Proposition 1!.

The paper is organized as follows: Sec. II contains the formulations of the problem. Se
III contains the Liapunov stability. Section IV contains the properties of the eigenvalues o
linearized 2D Euler equation as a linear Hamiltonian system. Section V holds the cont
fraction study of the eigenvalues. Section VI has the infinite-matrix study of the spectra o
linearized 2D Euler equation. Section VII is the conclusion.

II. THE FORMULATIONS OF THE PROBLEM

Denote$vk%kPZ2/$0% by v. Consider the simple fixed pointv* :

vp* 5G, vk* 50, if kÞp or 2p, ~II.1!
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of the 2D Euler equation~I.8!, which belongs to the two-dimensional intersection spaceEp
1ùEp

2

~Proposition 1!, whereG is an arbitrary complex constant. Thelinearized two-dimensional Eule
equationat v* is given by

v̇k5A~p,k2p!Gvk2p1A~2p,k1p!Ḡvk1p . ~II.2!

This is the linearized two-dimensional Euler equation that we are going to study in this pa
Definition 1 (Classes): For any kˆ PZ2/$0%, we define the classS k̂ to be the subset of Z2/$0%:

S k̂5$k̂1npPZ2/$0%unPZ, p is specified in (II.1)%.

See Fig. 2 for an illustration of the classes. According to the classification defined in Definit
the linearized two-dimensional Euler equation~II.2! decouples into infinitely many invariant sub
systems:

v̇ k̂1np5A„p,k̂1~n21!p…Gv k̂1~n21!p1A„2p,k̂1~n11!p…Ḡv k̂1~n11!p . ~II.3!

Each invariant subsystem can be rewritten as a linear Hamiltonian system as shown belo
Definition 2 (the quadratic Hamiltonian): The quadratic HamiltonianHk̂ is defined as

Hk̂522 Im H (
nPZ

rnGA„p,k̂1(n21)p…v k̂1~n21!pv̄ k̂1npJ
52Up1 k̂1

p2 k̂2
U Im H (

nPZ
Grnrn21v k̂1~n21!pv̄ k̂1npJ , ~II.4!

wherern5@ uk̂1npu222upu22# and ‘‘Im’’ denotes ‘‘imaginary part’’.
Then the invariant subsystem~II.3! can be rewritten as a linear Hamiltonian system,

i v̇ k̂1np5rn
21 ]Hk̂

]v̄ k̂1np
. ~II.5!

Let

v k̂1np5an1 ibn , nPZ,

FIG. 2. An illustration of the classesS k̂ and the diskD̄ upu .
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i.e., an and bn are the real and imaginary parts ofv k̂1np . Then the linear Hamiltonian system
~II.5! can be rewritten in the form

ȧn5
1

2
rn

21 ]Hk̂

]bn
,

~II.6!

ḃn52
1

2
rn

21 ]Hk̂

]an
,

where

Hk̂5U k̂1 p1

k̂2 p2
U(

nPZ
rnrn21@G r~anbn212an21bn!1G i~an21an1bn21bn!#,

whereG5G r1 iG i , i.e., G r andG i are the real and imaginary parts ofG. Explicitly,

ȧn5
1

2 U k̂1 p1

k̂2 p2
U@rn11G ran112rn21G ran211rn11G ibn111rn21G ibn21#,

~II.7!

ḃn52
1

2 U k̂1 p1

k̂2 p2
U@rn21G rbn212rn11G rbn111rn11G ian111rn21G ian21#.

If we rescale the variables as follows,

t5
1

2 U k̂1 p1

k̂2 p2
U t, ãn5rnan , b̃n5rnbn ,

the linear Hamiltonian system~II.7! can be rewritten in the simpler form

dãn /dt5rn@G r~ ãn112ãn21!1G i~ b̃n111b̃n21!#,

db̃n /dt52rn@G r~ b̃n212b̃n11!1G i~ ãn111ãn21!#.

Next we discuss the fixed pointv* from a variational-principle point of view. Consider the kinet
energy and the enstrophy of the 2D Euler equation~I.8!,

E5
1

2 (
kPZ2/$0%

uku22uvku2, J5 (
kPZ2/$0%

uvku2.

If we extremize the kinetic energyE for fixed enstrophyJ5c ~a constant!, we have the critical
states by the Lagrange formula,

]L

]l
5J2c50,

]L

]vk
5~ uku221l!v̄k50, ;kPZ2/$0%,

whereL52E1l(J2c). Thus, the critical states satisfy the relations,

l52uqu22, for some qPZ2/$0%,
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vk50, if ukuÞuqu, ~II.8!

(
uku5uqu

uvku25c.

Thus, we have thecritical manifold for extremizing the kinetic energy for fixed enstrophy,

M uqu
c 5H vUvk50, if ukuÞuqu, (

uku5uqu
uvku25cJ ,

which is a submanifold of the equilibrium manifoldEq
2 ~Proposition 1!. Denote byI the linear

combination,

I 52E2upu22J. ~II.9!

Then, we have the following variational principle for the fixed pointv* ~II.1!.
Variational principle:The fixed pointv* is a conditionally critical state of the kinetic energ

E for fixed enstrophyJ5uGu2, and is an absolute critical state ofI.

III. LIAPUNOV STABILITY

Definition 3 (an important functional): For each invariant subsystem (II.3), we define
functional Ik̂ which is the restriction of the functional I (II.9) to the classS k̂ ,

I k̂5I ~restricted to ( k̂!5 (
nPZ

$uk̂1npu222upu22%uv k̂1npu2. ~III.1!

Lemma III.1: Ik̂ is a constant of motion for the system (II.5).
Proof: Differentiating I k̂ , we have

İ k̂5 (
nPZ

rn@v̇ k̂1npv̄ k̂1np1v k̂1npv̇̄ k̂1np#

52 i (
nPZ

F v̄ k̂1np

]Hk̂

]v̄ k̂1np
2v k̂1np

]Hk̂

]v k̂1np
G

5
1

2 Up1 k̂1

p2 k̂2
U(

nPZ
@v̄ k̂1np~Grnrn21v k̂1~n21!p2Ḡrn11rnv k̂1~n11!p!

2v k̂1np~Grn11rnv̄ k̂1~n11!p2Ḡrnrn21v̄ k̂1~n21!p!#50.

This completes the proof of the lemma. h

Next we define the concept of disk inZ2/$0% which is needed in the unstable disk theorem
be proved below.

Definition 4 (the disk): The disk of radiusupu in Z2/$0%, denoted by Dupu , is defined as

D upu5$kPZ2/$0%uuku,upu%.

The closure of Dupu , denoted by D̄upu , is defined as

D̄ upu5$kPZ2/$0%uuku<upu%.

See Fig. 2 for an illustration. Next we prove the unstable disk theorem using a simple en
Casimir-type argument,7,20

Theorem III.1 „unstable disk theorem…: If S k̂ùD̄ upu5B, then the invariant subsystem (II.3
is Liapunov stable for all tPR; in fact,
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(
nPZ

uv k̂1np~ t !u2<s (
nPZ

uv k̂1np~0!u2, ;tPR,

where

s5@max
nPZ

$2rn%#@min
nPZ

$2rn%#21, 0,s,`.

Proof: By Lemma~III.1!, I k̂ is a constant of motion for the invariant subsystem~II.3!. Then,

(
nPZ

rnuv k̂1np~ t !u25 (
nPZ

rnuv k̂1np~0!u2, ;tPR. ~III.2!

If S k̂ùD̄ upu5B, then

uk̂1npu.upu, ;nPZ.

Thus, there exists a constantd.0 such that

d,2rn,2. ~III.3!

By ~III.2!,

min
nPZ

$2rn% (
nPZ

uv k̂1np~ t !u2<2 (
nPZ

rnuv k̂1np~ t !u2

52 (
nPZ

rnuv k̂1np~0!u2

<max
nPZ

$2rn% (
nPZ

uv k̂1np~0!u2,

that is,

(
nPZ

uv k̂1np~ t !u2<s (
nPZ

uv k̂1np~0!u2,

where

s5@max
nPZ

$2rn%#@min
nPZ

$2rn%#21.

By relation ~III.3!,

1
2d,s,2d21.

This completes the proof of the theorem. h

Remark III.1: If k̂ip, i.e., ' real scalara such that kˆ 5ap, then the invariant subsystem (II.3
reduces to

v̇ k̂1np50, ;nPZ;

thus, it is obviously Liapunov stable for all tPR. In fact, this is a linearization inside the equi
librium space Ep

1 of the 2D Euler equation (cf. Definition 1).
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If uk̂u5upu, then the invariant subsystem~II.3! decomposes into two decoupled systems,

v̇ k̂1np5A„p,k̂1~n21!p…Gv k̂1~n21!p1A„2p,k̂1~n11!p…Ḡv k̂1~n11!p ~n>1!,
~III.4!

v̇ k̂1np5A„p,k̂1~n21!p…Gv k̂1~n21!p1A„2p,k̂1~n11!p…Ḡv k̂1~n11!p ~n<21!,
~III.5!

whereA(p,k̂)50. The equation forv k̂ is

v̇ k̂5A~p,k̂2p!Gv k̂2p1A~2p,k̂1p!Ḡv k̂1p . ~III.6!

Each of~III.4! and ~III.5! is a Hamiltonian system with the Hamiltonian

H
k̂

1
52Up1 k̂1

p2 k̂2
U Im H (

n51

`

Grnrn21v k̂1~n21!pv̄ k̂1npJ ,

H
k̂

2
52Up1 k̂1

p2 k̂2
U Im H (

n521

2`

Grnrn21v k̂1~n21!pv̄ k̂1npJ ,

which has the same representation as~II.5!. Denote byI
k̂

1
and I

k̂

2
the restrictions ofI k̂ to the

systems~III.4! and ~III.5!:

I
k̂

1
5 (

n51

`

rnuv k̂1npu2, ~III.7!

I
k̂

2
5 (

n521

2`

rnuv k̂1npu2. ~III.8!

Lemma III.2: If uk̂u5upu, then I
k̂

1
and I

k̂

2
are respectively constants of motion for the syste

(III.4) and (III.5).
Proof: The same as that for Lemma III.1. h

Theorem III.2 „half class stability theorem…: If uk̂u5upu, k̂1p¹D̄ upu , then the linear
Hamiltonian system (III.4) is Liapunov stable for all tPR. In fact,

(
n51

`

uv k̂1np~ t !u2<s (
n51

`

uv k̂1np~0!u2, ;tPR,

where

s5@max
n>1

$2rn%#@min
n>1

$2rn%#21, 0,s,`.

If uk̂u5upu, k̂2p¹D̄ upu , then the linear Hamiltonian system (III.5) is Liapunov stable for al
PR. In fact,

(
n521

2`

uv k̂1np~ t !u2<s (
n521

2`

uv k̂1np~0!u2, ;tPR,

where
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s5@ max
n<21

$2rn%#@ min
n<21

$2rn%#21, 0,s,`.

Proof: The same argument on I
k̂

1
and I

k̂

2
as that on Ik̂ in the proof of Theorem III.1. h

Remark III.2: If k̂5(p2 ,2p1)T or k̂5(2p2 ,p1)T, then k̂1p¹D̄ upu and k̂2p¹D̄ upu . There-
fore, by Theorem III.2, both systems (III.4) and (III.5) are Liapunov stable for all tPR. Points in

S k̂ are on the tangent lines to the circle of radiusupu at k̂ ~cf. Fig. 2!.

IV. PROPERTIES OF THE POINT SPECTRUM FOR THE LINEARIZED
TWO-DIMENSIONAL EULER EQUATION AS A LINEAR HAMILTONIAN SYSTEM

In this section, we study the properties of the eigenvalues for the linear Hamiltonian s
~II.6!. The right-hand side of~II.6! defines a linear operator denoted byL, i.e.,

LS a
b D5S j

h D , ~IV.1!

where

a5~¯ a21 a0 a1 ¯ !T, b5~¯ b21 b0 b1 ¯ !T;

j5~¯ j21 j0 j1 ¯ !T , h5~¯ h21 h0 h1 ¯ !T;

jn5
1

2
rn

21 ]Hk̂

]bn
, hn52

1

2
rn

21 ]Hk̂

]an
, nPZ.

HereL has the infinite matrix representation:

whereun5G rrn , vn5G irn ,

k5
1

2U k̂1 p1

k̂2 p2
U .

We define the enstrophy norm which is thel 2 norm:

i~a,b!Ti25 (
nPZ

~an
21bn

2!. ~IV.2!

Lemma IV.1: The linear operatorL maps l23 l 2 into l23 l 2 :
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L: l 23 l 2° l 23 l 2 .

Proof: Notice that

rn→upu22 as unu→`.

Let

r* 5max
nPZ

urnu

be the maximum ofurnu. Thenr* ,`, and from~IV.1! we have

ujnu<c$uan11u1uan21u1ubn11u1ubn21u%,

uhnu<c$uan11u1uan21u1ubn11u1ubn21u%,

wherec5 1
2r* uGuuk̂1p22 k̂2p1u. Thus

I S j
h D I 2

<8c2I S a
b D I 2

,

which proves the lemma. h

A complex numberl is an eigenvalue ofL, if there exists (a,b)TP l 23 l 2 such that

LS a
b D5lS a

b D . ~IV.3!

Lemma IV.2: The eigenvalues of the linear operatorL have the following properties:

~1! If lPC is an eigenvalue ofL, then bothl̄ ~the complex conjugate ofl! and 2l are also
eigenvalues.

~2! If l is a real eigenvalue, thenl is a multiple eigenvalue.
~3! If l is a simple eigenvalue which is not real, then its corresponding eigenvector satisfie

relation b56 ia.

Proof: Since L is a real linear operator, ifl is an eigenvalue ofL, then l̄ is also an
eigenvalue. Next we show that ifl is an eigenvalue ofL, then2l is also an eigenvalue. Letl and
v be an eigenvalue and a corresponding eigenvector. Starting from the equation~II.3!, we have

lv k̂1np5A„p,k̂1~n21!p…Gv k̂1~n21!p1A„2p,k̂1~n11!p…Ḡv k̂1~n11!p .

Then,

v̂ k̂1np5~21!nv k̂1np

satisfies

~2l!v̂ k̂1np5A„p,k̂1~n21!p…Gv̂ k̂1~n21!p1A„2p,k̂1~n11!p…Ḡv̂ k̂1~n11!p .

Therefore,2l is also an eigenvalue. To prove claims 2 and 3, notice that the HamiltonianHk̂

~II.6! is invariant under the transformation

ãn52bn ,

b̃n5an .
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Therefore, ifl is an eigenvalue and

eltS a
b D

solves the linear system~II.6!, then

eltS 2b
a D

also solves the system~II.6!. If l is real, then (a,b)T can be chosen to be real. Assume that

S a
b D5hS 2b

a D . ~IV.4!

Thenh2521, which leads to a contradiction. Thus (a,b)T and (2b,a)T are linearly indepen-
dent, andl is a multiple eigenvalue which proves claim 2. Ifl is simple and not real, then (a,b)T

and (2b,a)T are linearly dependent and~IV.4! implies thatb56 ia, which proves claim 3.h
In fact, we have the following theorem.
Theorem IV.1: The eigenvalues of the linear operatorL defined in (IV.1) have the following

properties:

~1! The eigenvalues ofL are of four types: real pairs(c,2c), purely imaginary pairs( id,
2 id), quadruples(6c6 id), and zero eigenvalues.

~2! If l is a real eigenvalue, thenl is a multiple eigenvalue. Ifl is a simple nonreal eigenvalue
then its corresponding eigenvector satisfies the relationb56 ia.

~3! If S k̂ùD̄ upu5B, then all the eigenvalues ofL are either purely imaginary and in comple
conjugate pairs (l5 ic,2 ic; c is real and not zero) or zeros.

~4! If uk̂u5upu, then zero is a multiple eigenvalue ofL.
~5! If uk̂u5upu and k̂1p¹D̄ upu (or k̂2p¹D̄ upu), then all the eigenvalues for the system (III.4) [

(III.5)] are either purely imaginary and in complex conjugate pairs or zeros.

Proof: Claims 1 and 2 are proved in Lemma IV.2. Next we prove claim 3. IfS k̂ùD̄ upu
5B, then I k̂ is negative definite for (a,b)TP l 23 l 2 . In fact, there exists a constantd.0, such
that

d,2rn,2, ;nPZ. ~IV.5!

Thus,

2I k̂.di~a,b!Ti2. ~IV.6!

Let l be an eigenvalue ofL and (ã,b̃)T be its corresponding eigenvector, which are written
terms of real and imaginary parts,

l5l r1 il i , ~ ã,b̃ !T5~ ã~1!,b̃~1!!T1 i ~ ã~2!,b̃~2!!T. ~IV.7!

Then both the real and the imaginary parts ofelt(ã,b̃)T, denoted by (a (1),b (1)) and (a (2),b (2)),
are real solutions to system~II.6!, where

a~1!5elr t@ã~1! cosl i t2ã~2! sinl i t#,

b~1!5elr t@b̃~1! cosl i t2b̃~2! sinl i t#;

a~2!5elr t@ã~1! sinl i t1ã~2! cosl i t#,
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b~2!5elr t@b̃~1! sinl i t1b̃~2! cosl i t#.

Denote byI
k̂

( j )
( j 51,2) the values ofI k̂ evaluated at (a ( j ),b ( j ))T. Then

I
k̂

~1!
~ t !1I

k̂

~2!
~ t !5e2lr t (

nPZ
rn[( ã~1!)21~ ã~2!!21~ b̃~1!!21~ b̃~2!!2]

5I
k̂

~1!
~0!1I

k̂

~2!
~0!5 (

nPZ
rn@~ ã~1!!21~ ã~2!!21~ b̃~1!!21~ b̃~2!!2#Þ0

by Lemma III.1 and relations~IV.5! and ~IV.6!. Thus,

e2lr t51, i.e., l r50.

This proves claim 3. To prove claim 4, notice that ifuk̂u5upu, then system~II.3! decomposes into
systems~III.4!–~III.6!. Thus the vectors (a,b)T defined as

a051, an50 ~nÞ0!, bn50 ~;nPZ!,

and

b051, bn50 ~nÞ0!, an50 ~;nPZ!,

give two linearly independent eigenvectors ofL with eigenvalue zero. This proves claim 4. Clai
5 follows from the proof for claim 3 when restricted to system~III.4! or ~III.5!. h

Remark IV.1: For a finite-dimensional linear Hamiltonian system, it is well known that
eigenvalues are of four types: real pairs(c,2c), purely imaginary pairs( id,2 id), quadruples
(6c6 id), and zero eigenvalues.12–14 There is also a complete theorem on the normal forms
such Hamiltonians.14

V. THE POINT SPECTRUM OF THE LINEARIZED TWO-DIMENSIONAL EULER
EQUATION: A CONTINUED FRACTION STUDY

Rewrite the equation~II.3! as follows,

rn
21ż̃n5a@ z̃n112 z̃n21#, ~V.1!

where z̃n5rnein(u1p/2)v k̂1np , u1g5p/2, G5uGueig, a5 1
2 uGu up2

p1

k̂2

k̂1u, and rn5uk̂1npu22

2upu22. Let z̃n5eltzn , wherelPC. Thenzn satisfies

anzn1zn212zn1150, ~V.2!

wherean5l(arn)21. Let wn5zn /zn21 .15 Thenwn satisfies

an1
1

wn
5wn11 . ~V.3!

Iteration of ~V.3! leads to the continued fraction solution,15

wn
~1!5an211

1

an221
1

an231
�

. ~V.4!

Rewrite ~V.3! as follows:
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wn5
1

2an1wn11
. ~V.5!

Iteration of ~V.5! leads to the continued fraction solution,15

wn
~2!52

1

an1
1

an111
1

an121
�

. ~V.6!

Before we study the two continued fraction solutions~V.4! and~V.6!, we quote two theorems on
the convergence of continued fractions.21

Theorem V.1 „Śleszyński–Pringsheim’s theorem…: The continued fraction

K~an /bn!5
a1

b11
a2

b21
a3

b31
�

,

where$an% and $bn% are complex numbers and all anÞ0, converges if for all n

ubnu>uanu11.

Under the same condition

uK ~an /bn!u<1.

Theorem V.2 „Van Vleck’s theorem…: Let 0,e,p/2, and let bn satisfy

2p/21e,arg$bn%,p/22e

for all n. Then the continued fractionK (1/bn) converges if and only if

(
n51

`

ubnu5`.

Notice that asn→6`,

an→ã52la21upu2. ~V.7!

Then we have the corollary.
Corollary 1: If Re$ã%Þ0, or Re$ã%50 (uãu.2), then the two continued fractions (V.4) an

(V.6) converge.
Proof: If Re $ã%Þ0, then there exists an positive integerÑ and a positive constante such that

2p/21e,arg$an%,p/22e

for all unu>Ñ, or

2p/21e,arg$2an%,p/22e

for all unu>Ñ. In either case, applying Van Vleck’s theorem, we have the convergence of th
continued fractions~V.4! and ~V.6!. If Re$ã%50 (uãu.2), then there exists a positive integerN̂
such that
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uanu.2

for all unu>N̂. Then, applying S´ leszyński–Pringsheim’s theorem, we have the convergence of
two continued fractions~V.4! and ~V.6!. h

Remark V.1: In fact, as proved in Theorem VI.5, Re$ã%50 and uãu<2 correspond to the
continuous spectrum (5essential spectrum) of the system.

When Re$ã%Þ0, or Re$ã%50 (uãu.2), asn→2`,

wn
~1!→w~1!5ã1

1

ã1
1

ã1
�

5ã1K~1/ã!, ~V.8!

and asn→1`,

wn
~2!→w~2!52

1

ã1
1

ã1
1

ã1
�

52K~1/ã!. ~V.9!

Both w(1) andw(2) satisfy the equation

w̃22ãw̃2150. ~V.10!

~i! When Re$ã%Þ0, the solutions of~V.10! can be written as

w65 1
2@ ã6dAã214#, ~V.11!

whered5sign (Re$ã%) sign (Re$Aã214%). ~Note that if Re$ã%Þ0, then Re$Aã214%Þ0.!
~ii ! When Re$ã%50 (uãu.2), let ã5 i j, wherej is a real number. The solutions of~V.10! can

be written as:

w65
i

2
@j6dAj224#, ~V.12!

whered5sign (j) sign (Aj224).
Lemma V.1: The solutions (V.11) and (V.12) satisfy the inequality

uw1u.1.uw2u,

and the continued fractions (V.8) and (V.9) have the values

w~1!5v1 , w~2!5w2 .

Proof: First we show thatuw1u.1 when Re$ã%Þ0:

w1w15 1
4~ uãu21uã 214u1 ā̃dAã2141ãdAā̃214!. ~V.13!

Let ã5a11 ia2 andAã2145b11 ib2 . Then

b1b25a1a2 , ~V.14!

b1
22b2

25a1
22a2

214. ~V.15!

From ~V.14!, we have
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a1
2~a2b2!5b2

2~a1b1!.

Thus,a2b2 is either zero or of the same sign asa1b1 . Therefore,

ā̃dAã2141ãdAā̃21452d@a1b11a2b2#.0. ~V.16!

Together with

uã214u>42uãu2,

we have uw1u.1. When Re$ã%50(uãu.2), it is obvious thatuw1u.1. Notice that w1w2

521, we haveuw2u,1 in both cases. Thus, we have

uw1u.1.uw2u.

From the relationw1w2521, when Re$ã%Þ0, Re$w1% and Re$w2% are of opposite signs. Whe
Re$ã%Þ0, Re$w(1)% and Re$w(2)% are of opposite signs, and Re$w(1)% and Re$w1% are of the same
sign; thus,w(1)5w1 andw(2)5w2 . When Re$ã%50(uãu.2), by Śleszyński–Pringsheim’s theo-
rem,

uK ~1/ã!u<1.

Then,

uw~1!u5uã1K ~1/ã!u>uãu2uK ~1/ã!u.1.

Thus,w(1)5w1 andw(2)5w2 . h

Definition 5: Define w(* ) as follows:

wn
~* !5wn

~1! for n<1, wn
~* !5wn

~2! for n.1.

Thenwn
(* ) solves~V.3!, provided thatw1

(1)5w1
(2) , i.e.,

f 5a01S 1

a211
1

a221
1

a231�

D 1S 1

a11
1

a21
1

a31�

D 50, ~V.17!

where f 5 f (l̃,k̂,p), l̃5l/a. Let z(* ) satisfy

wn
~* !5zn

~* !/zn21
~* ! .

Then asn→1`,

zn
~* !;~w2!n,

and asn→2`,

zn
~* !;~w1!n.

Thus by Lemma V.1,z(* )P l 2 . Therefore Eq.~V.17! determines eigenvalues.
If S k̂ùD̄ upu5B, thenrn,0 for anynPZ. If Re$l̃%Þ0, then Re$ãn%Þ0 and are of a fixed sign

for any nPZ. Then Re$f%Þ0. Therefore, in such cases, there is no eigenvalue with nonzero
part. This fact is already obtained in Theorem IV.1. Moreover, we have the following fact.

Lemma V.2: IfS k̂ùD̄ upu5B, then Eq. (V.17) determines no eigenvalue.
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Proof: As discussed above, ifS k̂ùD̄ upu5B, then the possible solutionl̃ to ~V.17! has to be
imaginary. Therefore,ã has to be imaginary. Rewrite Eq.~V.2! as follows:

L̃zn[
rn

r
@zn112zn21#5ãzn . ~V.18!

If S k̂ùD̄ upu5B, then 0,rn /r,1 for all nPZ. Thus, i L̃i<2. Then if l̃ is an eigenvalue,uãu
<i L̃i<2. Notice that Eq.~V.17! should be solved under the condition Re$ã%Þ0 or Re$ã%
50(uãu.2). Thus, in this case, Eq.~V.17! determines no eigenvalue. h

Remark V.2: In fact, as proved in Theorem VI.5, Re$ã%50 and uãu<2 correspond to the

continuous spectrum (5 essential spectrum) of the system. Thus, ifS k̂ùD̄ upu5B, the point spec-
trum is empty (cf. Theorem VI.5). Then the problem is reduced to solving Eq. (V.17) und

conditionsS k̂ùD̄ upuÞB, Re$ã%Þ0 or Re$ã%50(uãu.2).
Example:Let p5(1,1)T. In this case, only one classS k̂ labeled byk̂5(1,0)T has non-empty

intersection withD̄ upu . @The other class labeled byk̂5(0,1)T gives the complex conjugate of th
system led by the class labeled byk̂5(1,0)T.# For this class,urn /ru<1 for all nPZ. Thus, the
linear operatorL̃ defined in~V.18! has normi L̃i<2. Therefore, Eq.~V.17! determines no rea
eigenvalue. Numerical calculation on Eq.~V.17! gives the eigenvalue

l̃50.248 223 024 782 551 i0.351 720 765 265 20.

By Theorem IV.1, Eq.~V.17! determines a quadruple of eigenvalues~see Fig. 3 for an illustra-
tion!.

VI. THE SPECTRA OF THE LINEARIZED TWO-DIMENSIONAL EULER EQUATION: AN
INFINITE MATRIX STUDY

A. The general setup

Rewrite ~II.3! as follows:

ż̃n5 ia@rn21z̃n211rn11z̃n11# ~nPZ!, ~VI.1!

FIG. 3. The quadruple of eigenvalues determined by Eq.~V.17! for the system led by the classS k̂ labeled by k̂
5(1,0)T, whenp5(1,1)T.
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where

z̃n5einuv k̂1np , G5uGueig, u1g5p/2, a5
1

2
uGuUp1 k̂1

p2 k̂2
U .

Relabel$z̃n% as follows:

z̃n5z2n , n>1,

z̃2n5z2n11 , n>0.

Then

ż2n5 ia@rn21z2~n21!1rn11z2~n11!# ~n>2!, ~VI.2!

ż2n115 ia@r2n11z2~n21!111r2n21z2~n11!11# ~n>1!, ~VI.3!

ż25 ia@r0z11r2z4#, ~VI.4!

ż15 ia@r1z21r21z3#, ~VI.5!

for z5(z1 ,z2 ,...)T. Notice that Eqs.~VI.2! and ~VI.3! are decoupled, the coupling betwee
components ofz with even and odd indices is through Eqs.~VI.4! and~VI.5!. The right-hand sides
of ~VI.2!–~VI.5! define a bounded linear operatorLA : l 2° l 2 , with the infinite matrix representa
tion

A5 iaS 0 r1 r21 0 0 0 0

r0 0 0 r2 0 0 0

r0 0 0 0 r22 0 0 s

0 r1 0 0 0 r3 0

0 0 r21 0 0 0 r23

s � s �

D . ~VI.6!

More importantly,

rn→r52upu22 as unu→`. ~VI.7!

Define the infinite matrix

B5 ibS 0 1 1 0 0 0 0

1 0 0 1 0 0 0

1 0 0 0 1 0 0 s

0 1 0 0 0 1 0

0 0 1 0 0 0 1

s � s �

D , ~VI.8!

whereb5ar52aupu22. Define the infinite matrixC as

C5A2B, ~VI.9!

that is,
                                                                                                                



rix

t, i.e.,

ist

747J. Math. Phys., Vol. 41, No. 2, February 2000 On the energy–Casimir stabilities and the . . .

                   
C5 iaS 0 r̃1 r̃21 0 0 0 0

r̃0 0 0 r̃2 0 0 0

r̃0 0 0 0 r̃22 0 0 s

0 r̃1 0 0 0 r̃3 0

0 0 r̃21 0 0 0 r̃23

s � s �

D , ~VI.10!

where r̃n5rn2r. Denote byLB and LC the bounded linear operators with the infinite mat
representations byB and C. According to Duren,18 LA , LB , and LC are called
(23211)-operators, since their entriescn,n1m satisfy the conditioncn,n1m50 if umu.2. LB is a
(23211)-operator with constant coefficients, since its entriescn,n1m are independent ofn when
n.2 andiLB is self-adjoint.

Theorem VI.1: The bounded linear operatorLC : l 2° l 2 is a compact operator.
Proof: Denote byLC

(N) the linear operator represented through the matrixCN3N obtained from
C by replacing its entriescm,n by 0, whenm.N. Let $z( j )% be a bounded sequence inl 2 . Then
$LC

(1)z( j )% is a bounded sequence in which each element has only one nonzero componen

(LC
~1!z~ j !)n50, when n.1.

Thus, there exists a subsequence$z(1 j )%, such that$LC
(1)z(1 j )% converges inl 2 . Similarly, we can

get a subsequence of$z(1 j )%, denoted as$z(2 j )%, such that$LC
(2)z(2 j )% converges inl 2 , and so on.

Therefore, we have a nested list of subsequences:

z~11! z~12!
¯

z~21! z~22!
¯

] ] ]

] ] ]

] ] ]

We choose the subsequence$z(nn)% of $z( j )%, which is the diagonal of the above list. There ex
constantsz andN0 , such that

iLC
~ n̂!z~nn!2LCz~nn!i<

z

n̂2 , for all n̂.N0 and all n. ~VI.11!

For anye.0, chooseN̂ large enough, such that

z

N̂2
,

1

3
e. ~VI.12!

Since the subsequence$LC
(N̂)z(N̂j )% converges, there existsÑ, such that

iLC
~N̂!z~N̂j 1

!2LC
~N̂!z~N̂j 2

!i, 1
3e, ; j 1 , j 2.Ñ. ~VI.13!

Let N15max$N̂,Ñ%. Then

iLC
~N̂!z~nn!2LC

~N̂!z~ ññ!i, 1
3e, ;n,ñ.N1 . ~VI.14!

Thus
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iLCz~nn!2LCz~ ññ!i<iLCz~nn!2LC
~N̂!z~nn!i1iLC

~N̂!z~nn!2LC
~N̂!z~ ññ!i1iLC

~N̂!z~ ññ!2LCz~ ññ!i

, 1
3e1 1

3e1 1
3e5e, ;n,ñ.N1 .

Therefore,$LCz(nn)% is a Cauchy sequence inl 2 and thus converges. This proves thatLC is a
compact operator. h

Remark VI.1: In fact, a theorem of Achieser and Glasmann18,22 states that a
(2M11)-operator is compact if and only if its diagonal sequence entries tend to zeros,,
cn,n1m→0, as n→` for each fixed m, umu<M . Here we give the proof for self-containedness.

B. The spectra of the linear operator LB

Next we will follow a theory of Duren18 to study the spectra of the constant-coefficie
infinite-matrix bounded self-adjoint operatoriLB .

The characteristic polynomialfor the difference equation

~B2lI !z50, ~VI.15!

whereI is the identity matrix, is defined as

f B~w,l!5 ib2lw21 ibw4. ~VI.16!

Define the rescaled characteristic polynomial as follows:

f̃ B~w,l̃ !512l̃w21w4, ~VI.17!

wherel5 ibl̃. In fact, f̃ B(w,l̃) is the characteristic polynomial for the difference equation

~B̃2l̃I !z50, ~VI.18!

whereB̃52 ib21B. The roots off̃ B(w,l̃) are

w* , 2w* ,
1

w*
, 2

1

w*
, ~VI.19!

where

w* 5F l̃1Al̃224

2
G1/2

.

Definition 6: Thespectral curveof the linear operatorLB̃ (with the infinite matrix represen

tation by B̃), denoted by CB̃ , is defined to be the set of alll̃PC for which the characteristic

polynomial f̃ B(w,l̃) has a root of modulus one. Thespectral point-set of the operatorLB̃ ,

FIG. 4. The spectral curveCB̃ .
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denoted by PB̃ , is defined to be the set of alll̃PC for which the characteristic polynomia

f̃ B(w,l̃) has a multiple root. Denote by SB̃(l̃) the number of roots of f˜
B(w,l̃), of modulus less

than 1 (counted with multiplicity).
Notice that

l̃5w
*
2 1w

*
22. ~VI.20!

Let w* be a root of modulus 1~then all the four roots are of modulus 1!, w* 5eiu,uP@0,2p).
Thus the spectral curveCB̃ is the segment of the real axis,

CB̃ :l̃52 cos 2u, uP@0,2p!. ~VI.21!

See Fig. 4. The spectral point-setPB̃ consists of two points,

PB̃ :l̃562, ~VI.22!

which are the boundary points of the spectral curveCB̃ . At l̃562, the four roots off̃ B(w,l̃) are

at l̃52: 1,21,1,21;

at l̃522: i ,2 i ,2 i ,i .

The functionSB̃(l̃) is
~VI.23!

SB̃~ l̃ !5H 0, if l̃PCB̃ ,

2, if l̃¹CB̃ .

The general solution to~VI.18! is

zn5c1w
*
n 1c2~2w* !n1c3w

*
2n1c4~2w* !2n, if l¹PB̃ , ~VI.24!

zn5c1w
*
n 1c2nw

*
n 1c3~2w* !n1c4n~2w* !n, if lPPB̃ ~ thenw* 51,i !; ~VI.25!

under the restrictions

2l̃z11z21z350, ~VI.26!

z12l̃z21z450. ~VI.27!

Lemma VI.1: The general solution (VI.24) and (VI.25) is in l2 if and only if uw* u,1 and
c35c450 in (VI.24) or uw* u.1 and c15c250 in (VI.24).

Proof: See Ref. 18, p. 24, Lemma 5. h

Definition 7: Let L: l 2° l 2 be a linear operator. The set of pointssp(L) in the complex
l-plane C such that(L2lI ) has no inverse (i.e., L2lI is not 1-1) is called the point spectrum
of L. The set of pointss r(L) in C such that(L2lI )21 exists and is a linear operator with
domain not everywhere dense is called the residual spectrum ofL. The set of pointssc(L) in C
such that(L2lI )21 exists and is an unbounded linear operator with domain everywhere den
called the continuous spectrum ofL. The set of pointsr(L) in C such that(L2lI )21 exists and
is a bounded linear operator with domain everywhere dense is called the resolvent set ofL. The
sets(L)5sp(L)øs r(L)øsc(L) is called the spectrum ofL.

Without loss of generality, assumeuw* u,1. Thenl̃ is an eigenvalue if and only if there exis
a nontrivial solution (c1 ,c2) to the following system:
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S 2l̃w* 1w
*
2 1w

*
3 l̃w* 1w

*
2 2w

*
3

w* 2l̃w
*
2 1w

*
4 2w* 2l̃w

*
2 1w

*
4 D S c1

c2
D50. ~VI.28!

Theorem VI.2: The l2 point spectrumsp(B) of the linear operatorLB is empty.
Proof: The determinant

detS 2l̃w* 1w
*
2 1w

*
3 l̃w* 1w

*
2 2w

*
3

w* 2l̃w
*
2 1w

*
4 2w* 2l̃w

*
2 1w

*
4 D 52w

*
3 @w

*
4 22l̃w

*
2 1~ l̃221!#50

~VI.29!

implies that

w
*
4 22l̃w

*
2 1l̃22150, ~VI.30!

sincew* Þ0. Herew* is a root of f̃ B(w,l̃) ~VI.17!,

w
*
4 2l̃w

*
2 1150. ~VI.31!

From ~VI.30! and ~VI.31!, we have

w
*
2 5

l̃222

l̃
. ~VI.32!

Notice also that

l̃5w
*
2 1w

*
225

l̃222

l̃
1

l̃

l̃222
,

which implies thatl̃562. Thenuw* u51. Thus, if uw* u,1, then Eq.~VI.28! has only a trivial
solution. Therefore, the point spectrum ofLB̃ is empty; equivalently, the point spectrum ofLB is
empty. h

Theorem VI.3: The l2 residual spectrums r(B) of the linear operatorLB is empty.
Proof: l̃Ps r(B̃) if and only if the dimension of the orthocomplement of (LB̃2l̃I )+ l 2 is

positive and (LB̃2l̃I )21 exists. From the inner product relation

^~LB̃2l̃I !z~1!,z~2!&5^z~1!,~L
B̃
* 2 l̄̃I !z~2!&5^z~1!,~LB̃2 l̄̃I !z~2!&,

sinceLB̃ is self-adjoint,LB̃5L
B̃
* ~the adjoint ofLB̃!, where^,& denotes the inner product over th

complex field. We have that ifl̃Ps r(B̃), then l̄̃Psp(B̃). By Theorem VI.2,sp(B̃) is empty;
thus,s r(B̃) is empty and, equivalently,s r(B) is empty. h

SinceiLB is self-adjoint, this theorem is well known, but we furnish a short proof here. F
~VI.15!, ~VI.18!, ~VI.21!, and ~VI.22!, the spectral curveCB for the linear operatorLB is the
segment of the imaginary axis,

CB :l5 i2b cos 2u, uP@0,2p!; ~VI.33!

the spectral point-setPB for the linear operatorLB is

PB :l56 i2b, ~VI.34!

which are the boundary points of the spectral curveCB .
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Theorem VI.4: The l2 continuous spectrumsc(B) of the linear operatorLB is the spectral
curve, sc(B)5CB . The l2 resolvent setr(B) of the linear operatorLB is the complement of CB
in the finite complex plane C, r(B)5(CB)8.

Proof: First we show that ifl̃PCB̃ , thenl̃Psc(B̃). Since bothsp(B̃) ands r(B̃) are empty,
by Theorems VI.2 and VI.3, for anyl̃PCB̃ ,(LB̃2l̃I )21 exists and is everywhere densely d
fined. We need to show that (LB̃2l̃I )21 is unbounded. For anyl̃PCB̃ , there exists a root of
f̃ B(w,l̃) of modulus one:

w* 5eiu, uP@0,2p!.

Define the elements

zn
~N!5H einu, n<N,

0, n.N.

Thenz(N)P l 2 for each finiteN, andiz(N)i→`, asN→`. There exists a constantd independent
of N, such that

i~B̃2l̃I !z~N!i<d, ;N.

Thus

iz~N!i

i~B̃2l̃I !z~N!i
→`, as N→`.

Therefore, (LB̃2l̃I )21 is unbounded, andl̃Psc(B̃). Next we show that ifl̃¹CB̃ , then l̃

Pr(B̃). For anyl̃¹CB̃ , the corresponding roots off̃ B(w,l̃) are ~VI.19!, such that

uw* u5u2w* u,1,uw
*
21u5u~2w* !21u. ~VI.35!

For anyyP l 2 , we want to construct a solution to

~B̃2l̃I !z5y, ~VI.36!

using the method of variation of coefficients. Explicitly, we need to solve

zn2l̃zn121zn145yn12 ~n>1! ~VI.37!

under the constraints

2l̃z11z21z35y1 ,
~VI.38!

z12l̃z21z45y2 .

Assume a solution to~VI.37! has the form

zn5cn
~1!w

*
n 1cn

~2!~2w* !n1cn
~3!w

*
2n1cn

~4!~2w* !2n. ~VI.39!

If

Dcn
~1!w

*
n111Dcn

~2!~2w* !n111Dcn
~3!w

*
2~n11!1Dcn

~4!~2w* !2~n11!50, ~VI.40!

Dcn
~1!w

*
n121Dcn

~2!~2w* !n121Dcn
~3!w

*
2~n12!1Dcn

~4!~2w* !2~n12!50, ~VI.41!
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Dcn
~1!w

*
n131Dcn

~2!~2w* !n131Dcn
~3!w

*
2~n13!1Dcn

~4!~2w* !2~n13!50, ~VI.42!

Dcn
~1!w

*
n141Dcn

~2!~2w* !n141Dcn
~3!w

*
2~n14!1Dcn

~4!~2w* !2~n14!5yn12 , ~VI.43!

whereDcn
( l )5cn11

( l ) 2cn
( l ) ( l 51,2,3,4), thenzn given in ~VI.39! solves~VI.37!. Solving ~VI.40!–

~VI.43!, we have

Dcn
~ l !5~21! l yn12

Dn
~ l !

Wn
~ l 51,2,3,4!, ~VI.44!

where

Wn5Uw
*
n11 ~2w* !n11 w

*
2~n11! ~2w* !2~n11!

w
*
n12 ~2w* !n12 w

*
2~n12! ~2w* !2~n12!

w
*
n13 ~2w* !n13 w

*
2~n13! ~2w* !2~n13!

w
*
n14 ~2w* !n14 w

*
2~n14! ~2w* !2~n14!

U , ~VI.45!

Dn
~1!5U ~2w* !n11 w

*
2~n11! ~2w* !2~n11!

~2w* !n12 w
*
2~n12! ~2w* !2~n12!

~2w* !n13 w
*
2~n13! ~2w* !2~n13!

U52w
*
2n@w

*
2421#, ~VI.46!

Dn
~2!5Uw

*
n11 w

*
2~n11! ~2w* !2~n11!

w
*
n12 w

*
2~n12! ~2w* !2~n12!

w
*
n13 w

*
2~n13! ~2w* !2~n13!

U52~2w* !2n@12w
*
24#, ~VI.47!

Dn
~3!5Uw

*
n11 ~2w* !n11 ~2w* !2~n11!

w
*
n12 ~2w* !n12 ~2w* !2~n12!

w
*
n13 ~2w* !n13 ~2w* !2~n13!

U52w
*
n @w

*
4 21#, ~VI.48!

Dn
~4!5Uw

*
n11 ~2w* !n11 w

*
2~n11!

w
*
n12 ~2w* !n12 w

*
2~n12!

w
*
n13 ~2w* !n13 w

*
2~n13!

U52~2w* !n@12w
*
4 #. ~VI.49!

The Wn defined in~VI.45! satisfies the Wronskian relation

Wn115Wn . ~VI.50!

The representation~VI.44! can be extended ton>0. Choosec0
( l )50. We have

cn
~ l !5 (

j 50

n21

Dcj
~ l !5

1

W0
(
j 50

n21

D j
~ l !~21! l y j 12 ~n>1!. ~VI.51!

The expressions~VI.46!–~VI.49! lead to

cn
~1!5

2@12w
*
24#

W0
(
j 50

n21

w
*
2 j y j 12 , ~VI.52!
                                                                                                                



753J. Math. Phys., Vol. 41, No. 2, February 2000 On the energy–Casimir stabilities and the . . .

                    
cn
~2!5

2@12w
*
24#

W0
(
j 50

n21

~2w* !2 j y j 12 , ~VI.53!

cn
~3!5

2@12w
*
4 #

W0
(
j 50

n21

w
*
j y j 12 , ~VI.54!

cn
~4!5

2@12w
*
4 #

W0
(
j 50

n21

~2w* ! j y j 12 . ~VI.55!

With these representations ofcn
( l ) , zn given by ~VI.39! is a special solution to~VI.37!. The

general solution to~VI.37! is

zn5~cn
~1!1a~1!!w

*
n 1~cn

~2!1a~2!!~2w* !n1~cn
~3!1a~3!!w

*
2n1~cn

~4!1a~4!!~2w* !2n,
~VI.56!

wherea( l )( l 51,2,3,4) are arbitrary constants. Set

a~3!52
2@12w

*
4 #

W0
(
j 50

`

w
*
j y j 12 , ~VI.57!

a~4!52
2@12w

*
4 #

W0
(
j 50

`

~2w* ! j y j 12 . ~VI.58!

Let

f n5cn
~1!w

*
n 1cn

~2!~2w* !n1~cn
~3!1a~3!!w

*
2n1~cn

~4!1a~4!!~2w* !2n. ~VI.59!

Then, from expressions~VI.52!–~VI.55! and ~VI.57!–~VI.59!, we have

f n5
2@12w

*
24#

W0
(
j 50

n21

@w
*
n2 j1~2w* !n2 j #yj 122

2@12w
*
4 #

W0
(
j 5n

`

@w
*
j 2n1~2w* ! j 2n#yj 12 .

~VI.60!

Finally,

zn5a~1!w
*
n 1a~2!~2w* !n1 f n . ~VI.61!

Next we choosea(1) anda(2) to satisfy the constraints~VI.38!:

M S a~1!

a~2!D5F y11l̃ f 12 f 22 f 3

y22 f 11l̃ f 22 f 4
G , ~VI.62!

where

M5F2l̃w* 1w
*
2 1w

*
3 l̃w* 1w

*
2 2w

*
3

w* 2l̃w
*
2 1w

*
4 2w* 2l̃w

*
2 1w

*
4 G .

As shown in the proof of Theorem~VI.2!, M is nonsingular. Then,

S a~1!

a~2!D5M 21F y11l̃ f 12 f 22 f 3

y22 f 11l̃ f 22 f 4
G , ~VI.63!
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where

M 215k̃21F2w* 2l̃w
*
2 1w

*
4 2l̃w* 2w

*
2 1w

*
3

2w* 1l̃w
*
2 2w

*
4 2l̃w* 1w

*
2 1w

*
3 G ,

wherek̃52w
*
3 (w

*
4 22l̃w

*
2 1l̃221). Thus

zn5„w
*
n ,~2w* !n

…M 21F y11l̃ f 12 f 22 f 3

y22 f 11l̃ f 22 f 4
G1 f n ~VI.64!

solves Eq.~VI.36!. Rewrite f n given in ~VI.60! as follows:

f n5(
j 51

`

g~n, j !yj , ~VI.65!

where

g~n, j !55
0, j51;

2@12w
*
24#

W0
@w

*
n2j121~2w* !n2j12#, 2<j<n11;

2
2@12w

*
4 #

W0
@w

*
j2n221~2w* !j2n22#, j>n12 .

Rewritezn given in ~VI.64! as follows:

zn5(
j 51

`

G~n, j !yj , ~VI.66!

where

G~n, j !5„w
*
n ,~2w* !n

…M 21

S d1,j1l̃g~1,j !2g~2,j !2g~3,j !

d2,j2g~1,j !1l̃g~2,j !2g~4,j !
D 1g~n, j !, ~VI.67!

whered l , j is the Kronecker delta:d l , j51(l 5 j ) andd l , j50(lÞ j ). From the expression~VI.67!,
we see that there exists a constantK independent ofn,j such that

(
j 51

`

uG~n, j !u<K, ;n51,2,... ; ~VI.68!

(
n51

`

uG~n, j !u<K, ; j 51,2,... . ~VI.69!

Then, we have thel ` norm relation,

izi`5sup
n

uznu<sup
n

(
j 51

`

uG~n, j !uuyj u<F sup
n

(
j 51

`

uG~n, j !uG iyi`<Kiyi` , ~VI.70!

and thel 1 norm relation,
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izi15 lim
N→`

F (
n51

N

uznuG< lim
N→`

F (
n51

N

(
j 51

`

uG~n, j !uuyj uG5 lim
N→`

F (
j 51

`

uyj u (
n51

N

uG~n, j !uG
<K(

j 51

`

uyj u5Kiyi1 .

~VI.71!

Thus the linear operator defined in~VI.66!, which mapsy into z, is bounded inl ` and l 1 .
Therefore, by Riesz convexity theorem,18,23,24(LB̃2l̃I )21 defined in~VI.66! is bounded inl 2 .
Since, by Theorems~VI.2! and~VI.3!, (LB̃2l̃I )21 exists and is everywhere densely defined a
is bounded, we havel̃Pr(B̃). In summary, we have shown that ifl̃PCB̃ , thenl̃Psc(B̃); and
if l̃¹CB̃ , then l̃Pr(B̃). Thus, sc(B̃)5CB̃ and r(B̃)5(CB̃)8. Equivalently,sc(B)5CB and
r(B)5(CB)8. h

In summary, the spectrum ofLB is as depicted in Fig. 5.

C. The spectra of the linear operator LA

Now we apply Weyl’s essential spectrum theorem19 to obtain the spectral theorem forLA .
Theorem VI.5 „The spectral Theorem ofLA…: (1) If S k̂ùD̄ upu5B, then the entire l2

spectrum of the linear operatorLA is its continuous spectrum which is the spectral curveB
defined in (VI.33), i.e., s(LA)5sc(LA)5CB . See Fig. 5.

(2) If S k̂ùD̄ upuÞB, then the entire essential l2 spectrum of the linear operatorLA is its
continuous spectrum which is the spectral curve CB defined in (VI.33), i.e., sess(LA)5sc(LA)
5CB . That is, the residual spectrum ofLA is empty, s r(LA)5B. The point spectrum ofLA is
symmetric with respect to both real and imaginary axes. See Fig. 6.

Proof: First, we want to show that, in both cases, the residual spectrum ofLA is empty. By
Weyl’s essential spectrum theorem,19 the essential spectrum ofiLA is the same with the essenti
spectrum ofiLB , sess( iLA)5sess( iLB)5 iCB . Let il rPs r( iLA), then il rP iCB . By the argu-
ment in the proof of Theorem VI.3,il rPsp„( iLA)* …, where (iLA)* is the adjoint ofiLA ,

~ iLA!* 5 iLB1~ iLC!* .

By Weyl’s essential spectrum theorem,19 the essential spectrum of (iLA)* is the same with the
essential spectrum ofiLB , sess„( iLA)* …5sess( iLB)5 iCB . Thus, il rPsess„( iLA)* …. Since
sess„( iLA)* … andsp„( iLA)* … are disjoint,s r( iLA)5B. The claimsp(LA)5B in case 1 follows

FIG. 5. The continuous spectrum ofLB andLA .
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from the proof of Lemma V.2 and the fact that the spectral curveCB corresponds to Re$ã%50 and
uãu<2. The property ofsp(LA) in case 2 has been proved in Theorem IV.1. Then Weyl’s esse
spectrum theorem implies the rest of the claims. h

Remark VI.2: By the above theorem, the computation of eigenvalues is reduced to th

that S k̂ùD̄ upuÞB. By Corollary 1, if l¹CB5sess(LA), the two continued fractions (V.4) an
(V.6) converge, and solutions of Eq. (V.17) lead to eigenvalues.

Remark VI.3: The width of the continuous spectrumsc(LA) is 4ubu, where b52aupu22 and

a5 1
2uGuu

p2 k̂2

p1 k̂1u. Although uau can increase to infinity asuku increases to infinity, a is essentially

scaling factor forLA as can be seen in the expression for the infinite-matrix A.
Next we discuss an alternative way of representing eigenvalues. This approach is not

for practical computation. Consider the linear difference equation,

~A2lI !z50, ~VI.72!

whereA defined in~VI.6! is the representation matrix ofLA . Explicitly,

rn21z2~n21!2l̂z2n1rn11z2~n11!50 ~n>2!,
~VI.73!

r2n11z2~n21!112l̂z2n111r2n21z2~n11!1150 ~n>1!,

under the constraints

2l̂z11r1z21r21z350,
~VI.74!

r0z12l̂z21r2z450,

where l̂5( ia)21l. By Theorem VI.1, the linear operatorLA is a compact perturbation ofLB .
Thus, the difference equation~VI.73! is of Poincare´–Perron type. The Poincare´–Perron theorem
stated specifically for the difference equation~VI.72! is as follows:16–18

Theorem VI.6 „Poincaré–Perron theorem…: For any lPC, let w* ,2w* ,1/w* ,21/w* be
the roots of the characteristic polynomial fB(w,l) defined in (VI.16), which are given in (VI.19
whereuw* u<1. Then there exists a fundamental set of solutions zn

( j )( j 51,2,3,4)to the difference
equation (VI.73), such that

FIG. 6. The spectrum ofLA in case 2.
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lim sup
n→`

uzn
~ j !u1/n5uw* u ~ j 51,2!,

~VI.75!

lim sup
n→`

uzn
~ j !u1/n5

1

uw* u ~ j 53,4!.

It is easy to see that

z~ j !P l 2 ~ j 51,2!; z~ j !¹ l 2 ~ j 53,4!;

if uw* u,1. By definition, whenl¹CB @defined in~VI.33!#, uw* u,1. Next we study the condi-
tions for the point spectrum ofLA . Let

zn5c1zn
~1!1c2zn

~2! . ~VI.76!

Substitutezn into the constraints~VI.74!, we have

M S c1

c2
D50, ~VI.77!

where

M5S 2l̂z1
~1!1r1z2

~1!1r21z3
~1! 2l̂z1

~2!1r1z2
~2!1r21z3

~2!

r0z1
~1!2l̂z2

~1!1r2z4
~1! r0z1

~2!2l̂z2
~2!1r2z4

~2! D . ~VI.78!

Theorem VI.7: If l¹CB [the spectral curve forLB , defined in (VI.33)], and detM50
[where M is defined in (VI.78)], thenlPsp(A) (the point spectrum ofLA).

Proof: If detM50, then there is a nontrivial solution to~VI.77!. Thus there is a nonzero
solution to~VI.73!, which satisfies the constraints~VI.74!. Therefore,l is an eigenvalue. h

VII. CONCLUSION

In this paper, we study the linearized two-dimensional Euler equation at a stationary
This equation decouples into infinitely many invariant subsystems. Each invariant subsys
shown to be a linear Hamiltonian system of infinite dimensions. Another important inva
besides the Hamiltonian for each invariant subsystem is found and is utilized to prove an
stable disk theorem’’ through a simple energy–Casimir argument. The eigenvalues of the
Hamiltonian system are of four types: real pairs (c,2c), purely imaginary pairs (id,2 id), qua-
druples (6c6 id), and zero eigenvalues. The eigenvalues are studied through continued fra
The spectral equation for each invariant subsystem is a Poincare´-type difference equation, i.e., i
can be represented as the spectral equation of an infinite matrix operator, and the infinite
operator is a sum of a constant-coefficient infinite matrix operator and a compact infinite m
operator. We have a complete spectral theory. The essential spectrum of each invariant sub
is a bounded band of continuous spectrum. The point spectrum can be computed through
ued fractions.

This study is the first step toward understanding the unstable manifold structures of stat
states of the two-dimensional Euler equation, which we believe to be the key for understa
two-dimensional turbulence. In particular, we will be interested in investigating whether or no
unstable manifolds of 2D Euler equations are degenerate~i.e., figure eight structures!. Degeneracy
will imply that the dynamics of 2D Euler equations is not turbulent.
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Quantum interaction : f4
4:, the construction of quantum

field defined as a bilinear form
Edward P. Osipova)

Department of Theoretical Physics, Sobolev Institute for Mathematics,
630090 Novosibirsk 90, Russia

~Received 2 February 1998; accepted for publication 26 March 1998!

We construct the solutionf(t,x) of the quantum wave equationhf1m2f
1l:f3:50 as a bilinear form which can be expanded over Wick polynomials of
the freein-field, and where :f3(t,x): is defined as the normal ordered product with
respect to the freein-field. The constructed solution is correctly defined as a bilin-
ear form onDu3Du , whereDu is a dense linear subspace in the Fock space of the
free in-field. On Du3Du the diagonal of the Wick symbol of this bilinear form
satisfies the nonlinear classical wave equation. ©2000 American Institute of
Physics.@S0022-2488~00!01001-X#

I. INTRODUCTION

The construction of an interacting quantum field, which satisfies a system of Wigh
axioms~or a physical and/or mathematical analog!, is a central problem in quantum field theor
It seems that the best starting point would be a relativistic dynamical equation of motion
some interpretation of nonlinear terms. The description of a physical vacuum as a measure
configuration space or on the space of trajectories is closely connected with dynamical equ
of motion and quantum mechanics. However, here we consider a possible description of dy
and leave a possible description of the vacuum for the future.

In the present paper we consider a self-interacting scalar quantum field in four-dimen
Minkowski space–time satisfying the following relativistic wave equation,

hf~ t,x!1m2f~ t,x!1l:f3~ t,x!ª0, ~1.1!

or in the form of integral equation

f~ t,x!5f in~ t,x!2lE
2`

t E R~ t2t,x2y!:f3~t,y!:dtd3y. ~1.2!

Equations~1.1! and ~1.2! contain the relativistic and quantum constantsc, \ and we put\
5Planck8s constant51 andc5the light velocity51.

A principal barrier of this way appears as difficulties associated with the definition
product of fields given at the same point. This difficulty of the definition of a local produc
connected with a singular dependence of the field on space–time coordinates. Usually one
solve this problem by renormalization.

We consider Eqs.~1.1! and ~1.2! and the definition of the product of fields at a point in t
following way. First of all, we construct the solution of the quantum Yang–Feldman Eq.~1.2! in
the class of bilinear form acting in the Fock Hilbert spaceHin corresponding to the free quantu
in-field. In the other words, we seek the solution of the Yang–Feldman Eq.~1.2! in the form of
the expansion of the solution in terms of creation and annihilation operators of the freein-field
and its normal-ordered product (5 the Wick product!.

a!Electronic mail: osipov@math.nsc.ru
7590022-2488/2000/41(2)/759/28/$17.00 © 2000 American Institute of Physics
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In the Fock Hilbert space any operator or any bilinear form~belonging to a wide class o
operators or bilinear forms! can be approximated by Wick polynomials. In the Fock space one
define a product of bilinear forms for bilinear forms expanded in terms of normal-ordered
polynomials. The normal-ordered functionals of the creation and annihilation operators h
natural dense domain of definition,s,Hin , which is some analog to the Schwartz space. Th
are linear continuous maps froms into s8, wheres8 is the dual ofs, i.e., they are bilinear forms
on s3s, ~see Refs. 1–3!. In our paper we use the construction of Wick polynomials of the f
field given in Refs. 4–11.

We solve the Yang-Feldman Eq.~1.2! by constructing the expansion of the quantum field
terms of Wick polynomials of the freein-field.

Since this expansion does not converge on all vectors, to construct the quantum fiel
bilinear form we choose the special subspaceDu of vectors in the Fock Hilbert space. Namely, w
take coherent vectors near to the vacuum of thein-field and their finite linear combinations. Her
a coherent vector near to the vacuum means the vector of the formuz&5exp(zain

1)V with small
complex-valued test functionz @V is the vacuum vector,zPS(R3) and has a smallF-norm, the
definition of theF-norm is in Sec. II#. We note thatDu is dense in the Fock space.

The considered expansion of the quantum field in terms of the Wick polynomials of the
in-field converges on the coherent vectors near to the vacuum and defines the solution
quantum wave Eqs.~1.1! and ~1.2! as a bilinear form onDu3Du .

The considered construction uses, in fact, the idea that the creation operator is conjugat
annihilation one; moreover, every coherent vector is an eigenvector of all annihilation oper
In other words, matrix elements of quantum field on coherent vectors, i.e., Wick symbol
solutions of the classical Yang–Feldman wave equation with complexin-data.

However, a complication arises here~see, however, Ref. 11b!. This complication is connected
with the existence and the construction of complex solutions of the classical~real! wave equation.
We overcome this complication by using coherent vectors near to the vacuum.@The alternative
and more natural way is to use the complex structure~see Ref. 11b! for real solutions of the
classical nonlinear equation.# Coherent vectors near to the vacuum correspond to small m
elements of the quantum field and to small complexin-data of the classical wave equation. Th
convergence of solutions of the classical wave equation for small complex initialin-data gives us
the convergence of the considered expansion and allows us to construct the quantum fie
bilinear form defined on the subspace, generated by linear combinations of coherent v
corresponding to small complexin-data. Therefore, we construct the bilinear form by using
Wick symbols for coherent vectors near to the vacuum only.

The same consideration allows us to construct the bilinear formfout corresponding to the
quantumout-field.

The constructed quantum field is a scalar with respect to the Poincare´ transformation

U~a,L!f~ t,x!U~a,L!215f~~a,L!~ t,x!!, where U~a,L!5Uin~a,L!.

The generator of the translation subgroup~that is, the Hamiltonian and the momentum operat!
satisfy the spectrum condition. The constructed field is nonlocal with respect to the freef in(t,x)
field. The question about locality of the constructed field is open. This question is closely
nected with the question about a structure of the bilinear form and with the question abo
existence of a measure corresponding to the vacuum and about its support. It would be inte
to represent the constructed bilinear formf(t,x) as an operator-valued generalized function or
an operator-valued hyperfunction.

In conclusion, we remark that the considered construction has been suggested by Heife12 He
also constructed the quantum field with the help of small complex initial data; however, Hei12

used instead ofF-norm the more complicated variant ofR-norm. In addition, Heifets has intro
duced and described the complex structure and has obtained some useful estimates.

Ra̧czka13 also tried to construct the quantum field as a bilinear form. He used for the
struction an unproved assumption about the Wick symbols of approximations and their co
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gence to the solution of~real! wave equations for any~not necessarily small! complex in-data.
This assumption is incorrect in general. We go around this difficulty considering small com
initial in-data and extending the results of Morawetz and Strauss14,15 ~for this case, see also Ref
16–18!.

Our consideration is the following. In Sec. II we formulate and prove the assertions~Theo-
rems 2.3 and 2.4! that we need for solutions of nonlinear~real! wave equations with smal
complexin-data. In Sec. III we prove some estimates for the nonlinear part of the classical
equation~Lemmas 2.1 and 2.2!. In Sec. IV we describe the construction of the quantum field a
bilinear form~Theorems 4.1–4.3! and in Sec. V we discuss the obtained results and its conne
with other approaches.

II. SOLUTION OF THE WAVE EQUATION FOR SMALL COMPLEX INITIAL IN-DATA

In this section we consider global complex solutions of the classical~real! nonlinear wave
equation

utt2Du1m2u1lu350, m.0, l.0. ~2.1!

To construct the Hermitian~scalar! quantum field we need the solutions of~2.1! for small complex
initial in-data. First we rewrite the Eq.~2.1! in the integral form

u~ t,x!5uT~ t,x!2lE
T

tE R~ t2t,x2y!u3~t,y! dt d3y. ~2.2!

HereuT(t,x) is the complex solution of the free equation that corresponds to the complex Ca
data at the timeT, R(t,x) is the Riemann function of the linear equation, i.e., the free solution w
Cauchy dataR(0,x)50, Rt(0,x)5d(x). We remark that

R~ t,x!52R~2t,x!, R~ t,x!5
sin~ t~2D1m2!~1/2!!

~2D1m2!~1/2!
~x!,

and for t.0

R~ t,x!5
d~ t2uxu!

4p t
1

1

4p
u~ t2uxu! mJ1~m~ t22uxu2!1/2! ~ t22uxu2!21/2.

To construct the quantum field we need the solutions of the equation

u~ t,x!5uin~ t,x!2lE
2`

t E R~ t2t,x2y!u3~t,y! dt d3y ~2.3!

for small complexin-data. Hereuin is a solution of the free equation, corresponding to comp
in-data.

To construct the solutions of the Yang–Feldman equation~2.3! we extend Morawetz and
Strauss’ results14 on the case of small complex-valuedin-data.

In order to describe our results we define the energy norm

iu~ t !ie
25E ~ uut~ t,x!u21u¹u~ t,x!u21m2uu~ t,x!u2! d3x

and theF-norm14

iuiF
25sup

t
iu~ t !ie

21sup
t

sup
x

uu~ t,x!u21E
2`

`

sup
x

uu~ t,x!u2 dt ~2.4!
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for the Banach spaceFC of continuous complex-valued functions with finiteF-norm.
Define the Banach spaceF C of complex-valued solutions of the free equation

utt2Du1m2u50,

which is a subspace of the Banach spaceFC. For this purpose we define the subspaceF 1
C as the

space of the free solutions whose Cauchy data (w(x),p(x)) at the zero time are such thatw(x)
with its first and second derivatives belong toL1ùL2, and the third derivatives are inL1, p(x)
with its first derivatives are inL1ùL2 and second derivatives are inL1. A solution of the free
equation with initial data fromF 1

C has the uniform decay like (11utu)23/2 for t→` and has a
finite F-norm ~a complex free solution can be considered similar to the real one~see Appendix B
in Ref. 14!. DefineF C as the completion ofF 1

C in the F-norm. It is clear thatF C is a closed
subspace ofFC.

Let F andF denote the corresponding real subspaces of the spacesF C andFC.
To construct a solution for small complexin-data we formulate two lemmas, which we prov

in Sec. III.
To formulate these lemmas we introduce the notations that we need.
Let M5@a,b#,2`<a,b<1`, and in additionM5M1øM2, where M15@a,b#ù$tuut

2tu>d%, M25@a,b#ù$tuut2tu,d%, d.0.
We define

@@u##M5 sup
tPM

sup
x

uu~ t,x!u1H EM
sup

x
uu~ t,x!u2 dtJ 1/2

and

@@u##5@@u## (2`,`) .

We introduce the norm

^u&M5H sup
K
E

KùM
uuu2dS̃J 1/2

, ^u&[^u& (2`,`) ,

wheredS̃ denotes the measure on the surface of the coneK and K runs over all forward and
backward light cones in space–time. On the surface of the forward or backward light coK

5$(t,x)PKut22uxu2>0,6t>0% we use the measuredS̃, where dS̃5u(6t)d(utu2uxu)dtd3x
5u(6t) dtdSanddS5t2dv,uvu51 is the sphere measure on the sphere of radiust in R3.

Lemma 2.1:Let

I ~ t,x!5E
M1

E R~ t2t,x2y!u~t,y!v~t,y!w~t,y! dt d3y,

whereu, v, andw are arbitrary smooth complex-valued functions.
Then

uI ~ t,x!u2<c~d,a!^w&ME
M1

@ iu~t!i`
2 iv~t!ie1iu~t!i`iv~t!i`iu~t!ie#

iv~t!i2
122a iv~t!i`

2a ut2tu23/213adt.

Here 0<a< 1
2, andc(d,a) is a constant, depending ond anda only ~and, maybe, on the mas

which enters into the Riemann function!.
Lemma 2.2:Let u(t,x) and v(t,x) be a pair of arbitrary smooth complex-valued function

Let
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Ru~ t,x!5E
M
E R~ t2t,x2y!u3~t,y! dt d3y.

~a! For any 0<a, 1
6, we have

iRuiF<c@@u##M
11a iuiF,M

12a @ iuiF,M1^u&M#.

~b!

iRu2RviF<c~@@u##M1@@v##M !1/2~ iuiF,M1^u&M1iviF,M1^v&M !3/2

iu2viF,M
1/2 sup

tPM
iu~ t !2v~ t !ie

1/2.

Remark:The constants entering into Lemma 2.2 do not depend ofM.
For a solutionu5u(t,x) of Eq. ~2.1! we denote byuT5uT(t,x) the free solution whose

Cauchy data att5T agree with that ofu,

uT~T,x!5u~T,x!,
]uT

]t
~T,x!5

]u

]t
~T,x!,

and formulate now the theorems about solutions of Eqs.~2.2! and~2.3! for small complex initial
data andin-data.

Theorem 2.3 ~Cauchy problem!: There exists a strictly positiveu such that for eachS,
2`,S,`, anduSPF C,iuSiF,u, there exists a unique global solutionu of Eq. ~2.2! with finite
F-norm and whose Cauchy data at timeS equal that ofuS . In addition iuiF,2u. The free
solutionuT , whose Cauchy data at timeT equal that ofu, also belongs toF C. Furthermore,uT

depends continuously onuS in F C and iuTiF,2u.
There exists a unique free solutionuin and a unique free solutionuout such that

iuin~ t !2u~ t !ie→0 for t→2` and iuout~ t !2u~ t !ie→0 for t→1`,

in this caseuin ,uoutPF C and theF-norm of uin and ofuout is less than 2u.
Theorem 2.4 ~Cauchy problem att52`): There exists a strictly positiveu such that for

uinPF C andiuiniF,u there exists a unique global solutionu of Eq. ~2.3! with finite F-norm and
which converges in the energy norm touin for t→2`. In addition iuiF,2u. For eachT, 2`
,T,1`, the free solutionuT , whose Cauchy data at timet5T equal that ofu, also belongs to
F C and in this caseiuTiF,2u. There exists a unique free solutionuout such that iu(t)
2uout(t)ie→0 for t→1`. In additioniuoutiF,2u. Furthermore,uT ,uout depend continuously
on uin in F C. u(t,x) also depends continuously onuin in F C.

Remarks:~1! u depends on the mass and the coupling constant in the nonlinear Eq.~2.1! and
its ‘‘smallness’’ depends only on the value of constants in the bounds of Lemmas 2.1 and

~2! If u3 is replaced byF(u) in Eq. ~2.3!, this theorem depends only on the prope
uF9(u)u5O(uuu) asu→0.

Proof of Theorems 2.3 and 2.4:The proof of Theorem 2.3 is completely the same as the pr
of Theorem 2.4. Therefore, we restrict ourselves to the proof of Theorem 2.4.

First consider the uniqueness of a solution of the Cauchy problem att52`. For theu with
the initial datauin from F u

C[F Cù$uPF CuiuiF<u% and with finiteF-norm, iuiF<u, there is
the representation

uin~ t !5u~ t !1lE
2`

t

R~ t2t!* u3~t! dt.

If u andv are two solutions as in the statement of Theorem 2.4, then
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u~ t !2v~ t !52lE
2`

t

R~ t2t!* @u3~t!2v3~t!# dt.

Taking the energy norm, we get

sup
t<S

iu~ t !2v~ t !ie<
l

m
sup
t<S

iu~t!2v~t!ieE
2`

S

~ iu~t!i`1iv~t!i`!2 dt,

or

sup
t

iu~ t !2v~ t !ie<
l

m
sup

t
iu~ t !2v~ t !ieE

2`

`

~ iu~t!i`1iv~t!i`!2 dt.

Since

l

mE
2`

`

~ iu~t!i`1iv~t!i`!2 dt<
l

m
~ iuiF1iviF!2<

4lu2

m
,

choosing 4lu2/m2,1 we get

sup
t

iu~ t !2v~ t !ie50,

and, sinceu(t) and v(t) belong toFC and, thus, are continuous,u(t)5v(t). This proves the
uniqueness.

To construct the solutionu, we shall solve the integral equation. Since we shall requireuT

PF C, the construction must exhibitu as the limit of smooth functions. For this reason, we fi
solve the ordinary Cauchy problem with initial data at a timeS. Let uSPF C be a free solution
with complexC2 data of compact support.

Define

Ru~ t,x!52E
S

t

R~ t2t!* u3~t! dt.

We solve the equation

u5uS1lRu

by successive approximations:

u(0)5uS , u(n)5uS1lRu(n21), n51,2, . . . .

Eachu(n) is of classC2 becauseuS is.
We claim thatu is so small that ifiuSiF,u, then
( i )5iu(n)iF<u,
~ii ! 5^u(n)&<2u/m

for all n50,1,2, . . . .
We prove the claim by induction onn. If n50, ~i! is true by definition. The estimate (i i )

follows from the inequality~i! and the simple energy inequality^uS&< (2/m) iuSie . This energy
inequality can be proved with the help of relation~2.7! for the energy-momentum density~2.8!
and~2.9! in the same way as the energy inequality~2.10!. We note thatu(0)5uS is the solution of
the free equation and foruS the right side of~2.10! is equal to zero.

Next, we have
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iu(n)2uSiF<@by Lemma 2.2~a!# ciu(n21)iF
2 ~ iu(n21)iF1^u(n21)&!

<~by the induction assumption! lcS 11
2

mD u3. ~2.5!

Chooseu so small that

lc S 11
2

mD u3<
1

4
u.

With this choice ofu we then have (i ).
To prove (i i ), note thatu(n) is a solution of

utt
(n)2Du(n)1m2u(n)52l~u(n21)!3 ~2.6!

and therefore enjoys the energy inequality. To prove the energy inequality we use the follo
identity:

~utt2Du1m2u!ut* 1~utt* 2Du* 1m2u* !ut5
]E

]t
1div P, ~2.7!

where

E~ t,x!5uut~ t,x!u21u¹u~ t,x!u21m2uu~ t,x!u2, ~2.8!

P~ t,x!52¹u~ t,x!ut* ~ t,x!2¹u* ~ t,x!ut~ t,x!. ~2.9!

This identity is fulfilled for every~smooth! function u. Note that (E(t,x),P(t,x)) is given by the
components (T00(t,x),T0i(t,x)) of the energy-momentum tensor,~see Ref. 19 §XI.14 , Addition;
Ref. 20, Chap. 1, §2.2, p. 23; see also Ref. 21, Theorem 2.1!, and is the energy-momentum densi
of the complex field and not of a real one. To obtain the energy inequality we multiply the
~2.6! by ut

(n)* , add the conjugate term and integrate over the partK1 of the forward or backward
light cone. The equality~2.6! implies that the integral over the four-dimensional divergence@the
right side of~2.7!# is not greater than the right side of~2.10!. On the other hand, by the Gaus
theorem the integral over the four-dimensional divergence is equal to the energy-momentum
~2.8! and ~2.9! through the chosen part of the forward or backward light cone and is estim
from below by the left side of~2.10!. This gives

221/2m2E
K1

uu(n)u2dS̃2 sup
t

iu(n)~ t !ie
2<2lE E u~u(n21)!3ut

(n)* u dt d3x, ~2.10!

and finally we receive

221/2m2^u(n)&2 2 sup
t

iu(n)~ t !ie
2<2lE E u~u(n21)!3ut

(n)* u dt d3x. ~2.11!

Next, the right side of~2.11! is less than

2lsup
t

iut
(n)i2 iu(n21)i2E

2`

`

iu(n21)~ t !i`
2 dt. ~2.12!

Equation~2.5!, the choice ofu, and the induction assumption imply that~2.12! is not greater than

2l(iuSiF1 1
4 u)u3<

5
2

lu4, that is,
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^u(n)&2<21/2m22~u21 5
2 lu4!<4u2/m2

for 21/2(11 5
2 lu2)<4. This proves (i i ).

Next, we apply Lemma 2.2~b! to the difference

u(n)2u(n21)5lRu(n21)2lRu(n22).

Using (i ) – (i i ), we obtain

iu(n)2u(n21)iF<clu2S 21
4

mD 2

iu(n21)2u(n22)iF .

Choosing the coefficient on the right to be less than1
2, through choice ofu, $u(n)% becomes a

Cauchy sequence in theF-norm. Its limit is the solution (I 2R)21uS . Furthermore, this solution
is a C2 function ~if uS is! as a consequence of the estimate

iDu(n)~ t !i`<iDuS~ t !i`1cE
S

t

iDu(n21)~t!i` dt,

iDu1
(n)~ t !2Du2

(n)~ t !i`<iDu1,S~ t !2Du2,Si`1cE
S

t

iDu1
(n21)~ t !2Du2

(n21)~ t !i` dt,

whereD is the zero~that is, the identity operator!, or a first, or a second order derivative wi
respect to space variables.

If uS has compact support in space, so does the solution. This follows from the explicit
of the approximationu(n), from the fact that

suppu(n)~ t,• !,H xPR3udistS x,suppS uS~S,• !,
]uS

]t
~S,• ! D D<ut2SuJ

and from the convergence of the seriesu5(n(u(n11)2u(n)). Of course, these statements are va
for every t, 2`,t,`.

The convergence of the seriesu5(n(u(n11)2u(n)) and the restrictions onu imply that
iuiF,2u. Moreover, the convergence ofu(n) to u in theF-norm implies that̂ •&-norm ofu is also
restricted by 2u/m. This follows from the continuity ofu(n) andu and the convergence and th
uniform boundedness of the integral ofu(n)2 taken over the bounded part of the cone.

Now let uin,k be a sequence ofC2 smooth free solutions of compact support which tends
uin in F C, iuiniF,u. It is clear that there exists a sequence of suchuin,k . Let uk be the
constructed solution of~2.2! whose Cauchy data at timet52k equals that ofuin,k at time t
52k. The limit of uk ask→` will be the required solution. To prove the convergence ofuk we
consider the differenceuk(t)2ul(t). For k. l

uk~ t !2ul~ t !5~uin,k~ t !2uin,l~ t !!2lE
2 l

t

R~ t2t!* ~uk
3~t!2ul

3~t!! dt

2lE
2k

2 l

R~ t2t!* uk
3~t! dt. ~2.13!

Consider theF-norm. TheF-norm of the first term goes to zero. Lemma 2.2~b! and the uniform
estimatê uk&<2u/m imply that theF-norm of the second term is less thanclu2(21 4/m)2iuk

2ul iF, 1
2 iuk2ul iF . The estimate of this term we carry over on the left side.

The final term on the right is estimated as follows. Let«.0. Sinceuin,k converges inF C,
there exists anL5L(«) such that
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@@uin,k## (2`,2L]5 sup
t<2L

iuin,k~ t !i`1H E
2`

2L

iuin,k~ t !i`
2 dtJ 1/2

< sup
t<2L

iuin~ t !i`1H E
2`

2L

iuin~ t !i`
2 dtJ 1/2

12iuin2uin,kiF,«

for all k>L.
Lemma 2.2~a! and the equalityuk5uin,k1lRuk imply that

@@uk## (2`,2L]<@@uin,k## (2`,2L]1clu2S 11
2

mD @@uk## (2`,2L] .

For sufficiently smallu, clu2(11 2/m), 1
2 . So @@uk## (2`,2L],2«. Therefore, these argument

the uniform estimatêuk&<2u/m and Lemma 2.2~a! imply that theF-norms of the last term of
~2.13! are not greater than

clu2S 11
2

mD @@uk## (2`,2L]<«.

It follows from these estimates that$uk% is a Cauchy sequence in theF-norm.
Call the limit u. By passage to the limit we obtain

u~ t !5uin~ t !2lE
2`

t

R~ t2t!* u3~t! dt,

where

iu~ t !2uin~ t !ie→0 as t→2`.

This means that we have constructed the solutionu(t) for the initial in-datauin(t).
Now let uT be the free solution with the Cauchy data att5T equal to the Cauchy data ofu.

Let uk be defined as stated above, that is, it is a solution of~2.2!, with Cauchy data at time
t52k equal to the Cauchy data ofuin,k at time t52k. Let uk,T be the free solution with the
Cauchy data att5T equal to the Cauchy data ofuk . Thenuk,T is a smooth free solution given b

uk,T5uk~ t !2lE
2m

T

R~ t2t!* uk
3~t! dt.

Just as in the above argument, the right side converges inF C. If the limit of uk,T in F C is
calledv, thenvPF C and

v~ t !5uin~ t !2lE
2`

T

~R~ t2t!* u3~t! dt.

Since the Cauchy data of the free solutionv at t5T agree with those ofu, v5uT , that is,

uT~ t !5uin~ t !2lE
2`

T

R~ t2t!* u3~t! dt.

The continuous dependence ofuT in the F-norm is a consequence of the construction:u depends
continuously onuin , anduT on uin .

Now we construct the solutionuout . uout has been defined as a unique free solution such
iuout(t)2u(t)ie→0 for t→1`. We claim thatuout is given by the following formula,
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uout~ t !5uin~ t !2lE
2`

1`

R~ t2t!* u3~t! dt,

that means that the formula

uout~ t !5u~ t !2lE
t

1`

R~ t2t!* u3~t! dt

is valid also. Indeed, the right sides are defined correctly, have finite energy andu(t) converges to
uout in the energy norm ast→1`. Direct differentiation, in the weak sense, shows thatuout is a
free solution, so that it must coincide withuout . We need to show that not only theF-norm ofuout

is finite, but thatuoutPF C.
To prove the statement thatuoutPF C we approximateuin by smooth solutionsuin,k with

compact support and asuk we take the solution of~2.2!, whose Cauchy data at timet52k agree
with that of uin,k at time t52k. Then letuout,k be the free solution whose Cauchy data at ti
t5k agree with the Cauchy data ofuk at time t5k.

Of course the Cauchy data ofuk at any time are smooth and of compact support.
We have the integral representation

uout,k~ t !5uin,k~ t !2lE
2k

k

R~ t2t!* uk
3~t! dt,

where, fork. l , we have

uout,k~ t !2uout,l~ t !5~uin,k~ t !2uin,l~ t !!2lE
2 l

l

R~ t2t!* ~uk
3~t!2ul

3~t!! dt

2lE
2k

2 l

R~ t2t!* uk
3~t! dt2lE

l

k

R~ t2t!* uk
3~t! dt. ~2.14!

Consider theF-norm of the four terms on the right ask,l→`. The F-norm of the first term
goes to zero by assumption; the second term is less than

clu2S 21
4

mD 2

iuk2ul iF,
1

2
iuk2ul iF .

The latter two terms can be estimated analogously to the similar term of~2.13!. Let «.0. There
existsL5L(«) such that

@@uin,k## (2`,2L] ø[L,`)< sup
utu>L

iuin~ t !i`1H E
utu>L

iuin~ t !i`
2 dtJ 1/2

12iuin2uin,kiF,«

for all k>L.
By Lemma 2.2~a!

@@uk## (2`,2L]1@@uk## [L,`)<@@uin,k## (2`,2L]1@@uin,k## [L,`)

1clu2S 11
2

mD @@uk## (2`,2L)1clu2S 11
2

mD @@uk## [L,`) .

For sufficiently smallu, clu2(11 2/m), 1
2. So

@@uk## (2`,2L]1@@uk## [L,`),2«.
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Therefore, the sum of theF-norm of the last two terms of~2.14! is not greater than

clu2S 11
2

mD ~@@uk## (2`,2L]1@@uk## [L,`)!.

The obtained bounds imply thatuout,k is a Cauchy sequence in theF-norm. Call the limitv. By
passage to the limit we obtain

v~ t !5uin~ t !2lE
2`

1`

R~ t2t!* u3~t! dt,

wherev(t)5uout(t), as required. Theorems 2.3 and 2.4 are proved. h

III. RIEMANN FUNCTION ESTIMATES. PROOF OF LEMMAS 2.1 AND 2.2

Proof of Lemma 2.1: I(t,x) consists of an integralI S over the surface of a light cone and a
integralI C over the interior of the cone. SinceR(t,x)52R(2t,x), the integrals over forward and
backward light cones can be considered similarly. The integral over the surface of a light c
the following,

I S56
1

4pEM1,6

E
ux2yu5ut2tu

u~t,y!v~t,y!w~t,y! dS
dt

ut2tu
,

and over the interior

I C56E
M1,6

E
ux2yu,ut2tu

k~m! u~t,y!v~t,y!w~t,y! d3y dt,

where k(m)5cm21J1(mm), J1 is the Bessel function,m25(t2t)22ux2yu2 and M1,6

5M1ù$t u 6(t2t)>0%. The measuredS is defined before the formulation of Lemma 2.1.
To the surface integral we apply Schwarz’ inequality:

I S
2<S E E uwu2 dS dt D S E E uuu2uvu2~ t2t!22dS dt D ,

where the integrals are taken over the range

ux2yu5ut2tu, tPM1

anddS5r2dv, r[ux2yu, uvu51. The first factor on the right side is bounded by

^w&M
2 5sup

K
E

Kù(M3R3)
uwu2 dS̃.

As for the second factor, we first note that the integration by part gives

E
ux2yu5ut2tu

F~y! dS5E
ux2yu5ut2tu

F~y!ux2yuut2tu21 dS

5E
ux2yu,ut2tu

]

]r
~Fr3! ut2tu21 dr dv

5E
ux2yu,ut2tu

~rFr13F! ut2tu21 d3y. ~3.1!
                                                                                                                



rd

btain

e

770 J. Math. Phys., Vol. 41, No. 2, February 2000 Edward P. Osipov

                    
Applying this identity toF5uvu25vv* and usingr<ut2tu, we obtain

E
ux2yu5ut2tu

uvu2dS5E
ux2yu,ut2tu

~rvvr* 1rvrv* 13vv* !ut2tu21 d3y

<E
ux2yu,ut2tu

@ 2uvvru13uvu2 ut2tu21# d3y

<2iv~t!i2,* ivr~t!i213d21iv~t!i2,* . ~3.2!

Therefore,

I S
2<c~d!S E E uuu2 dS dt D E

M1

iu~t!i`
2 iv~t!ieiv~t!i2, * ~ t2t!22 dt.

Here and in the following the notationi•ip,* means theLp-norm of a complex-valued function
over the sphereux2yu,ut2tu.

Now consider the integralI C over the interior. The contribution of the forward and backwa
cones is estimated in the same way. Considering the light cone we use the notation

r5ux2yu, m25~ t2t!22r2, y2x5rv,

and introduce the light cone variables for the forward and backward light cone

j56~ t2t!1r, h56~ t2t!2r, tPM1,6 .

Thusm25jh. We also introduce a weight factor:

l ~h!5H h3/2 for h> 1
2 d,

h3/4 for 0,h, 1
2 d.

Estimating the contribution of the forward and backward cones by Schwarz’ inequality we o
for each such contributionuI Cu2<AB, where

A5E E l ~h!21uwu2 dt d3y,

B5E
M1,6

E l ~h! k~m!2 uuu2 uvu2 dt d3y.

Changing variables, (r,u)→(j,h), we have

A5
1

2E E l ~h!21E
uvu51

uwu2r2 dv dj dh

<
1

2E0

`F E
K(t,x,M6 ,h)

E
uvu51

uwu2r2 dv djG l ~h!21dh.

The integral in square brackets is precisely the integral ofuwu2 over a partK(t,x,M 6 ,h) of the
surface of the forward or backward light coneK6(t,x) with the top at (t,x). Here M 6

5Mù$t u 6(t2t)>0% and the partK(t,x,M 6,h), which is a part of the surface of the con
K6(t,x) is given by the conditiont57(j1h)/21tPM 6 , hP@0,1`). Sincel (h)21 is inte-
grable, the expression forA is bounded by
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A<c~d!sup
K
E

Kù(M63R3)
uwu2 dS̃,

whereK runs over all forward or backward light cones anddS̃ denotes the usual surface meas
on the surface ofK. The factorc(d) appears due to the integral ofl (h)21, which depends ond.
In the second factorB, we use the gross asymptotic behavior ofk(m)5cm21J1(mm),

k~m!2<cm23<c~hut2tu!23/2

~see Ref. 22, Section 8.45!. Therefore,

B<cE
M1,6

D~t!ut2tu23/2 dt,

where

D~t!5E l ~h!h23/2uuu2uvu2 d3y.

We estimateD(t), dividing the domain forh in two parts:h. 1
2 d andh, 1

2 d.
The part ofD(t) over h. 1

2 is less than

constiu~t!i`
2 iv~t!i2,*

2 .

For h, 1
2 d, we havel (h)h23/25h23/4. At each point we have the identity

h23/4uuu2uvu25divyS x2y

r
4h1/4uu* vv* D

14h1/4~~uur* 1uru* !uvu21uuu2~vrv* 1vvr* !!18r21h1/4uuu2uvu2.

Integration of this identity over the range 0,h, 1
2 d ~that is, over the spherical shellut2tu

2 1
2 d,r,ut2tu) gives

E
h,

1
2 d

h23/4uuu2uvu2 d3y54E
h5

1
2 d

d1/4uuu2uvu2 dS14E
h,

1
2 d

~h1/4~uur* 1uru* !uvu2

1h1/4uuu2~vrv* 1vvr* !12h1/4r21uuu2uvu2! d3y, ~3.3!

the contribution of the pointh50, that is, the contribution of the spherical shellr5ut2tu, is
equal to zero. To estimate the surface integral in~3.3! we use the identity~3.1! and, analogously
to ~3.2!, we obtain the estimate

E
h5

1
2 d

uuu2uvu2 dS<2iu~t!i`
2 iv~t!ieiv~t!i2,* 1~216d21!iu~t!ieiv~t!i2,* iu~t!i`iv~t!i` .

In the volume integral in~3.3! we useh< 1
2 d andr>d2h> 1

2 d. Therefore, we have

D~t!<c~d!$iu~t!i`
2 iv~t!ie iv~t!i2,* 1iu~t!i` iv~t!i` iu~t!ie iv~t!i2,* %.

Finally, we use the trivial estimate

iv~t!i2,* <civ~t!i`ut2tu3/2,
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which is raised to an arbitrary powera. This is used to estimate the terms withi•i2,* both in the
bound forD(t) and in the one forI S . Taking into account these estimates, we obtain the estim
of Lemma 2.1. Lemma 2.1 is proved. h

Proof of Lemma 2.2:Denote byW(t,x) the same integral asRu(t,x) except thatu3 is to be
replaced byuvw and we shall obtain the estimates for this term. These estimates yield
estimates of Lemma.

According to the definition of theF-norm,iWiF consists of three terms~2.4!. To estimate the
energy norm, we apply the energy relation

iR~ t2t!* f ie5i f i2 ,

the functionf 5uvw. We obtain

iW~ t !ie<E
M

iuvwi2 dt

<m21sup
tPM

iw~t!ieE
M

iu~t!i`iv~t!i` dt

<m21 sup
tPM

iw~t!ieS E
M

iu~t!i`
2 dt D 1/2S E

M
iv~t!i`

2 dt D 1/2

.

We shall obtain the required estimates for Lemma 2.2~a! by settingu5v5w. Using the relation
u32v35u2(u2v)1uv(u2v)1v2(u2v) and taking instead ofu,v,w, respectively,u,u,v, or
u,v,u2v, or v,v,u2v, we obtain the desired estimates of Lemma 2.2~b! for this term.

To estimate the rest ofF-norm we write

W5W11W2 ,

where

W15E
M1

E R uv w dt d3y, W25E
M2

E R uv w dt d3y

and

M15@a,b#ù$tuut2tu>1%, M25@a,b#ù$tuut2tu,1%.

To W1 we apply Lemma 2.1 withd51. Then

uW1~ t,x!u<c^w&M H E
M1

. . . dtJ 1/2

with the same integrand as in Lemma 2.1. Sincea, 1
6, ut2tu23/213a is integrable. Therefore

iW1~ t !i`1S E
2`

1`

iW1~ t !i`
2 dtD 1/2

<c^w&M sup
tPM

iv~t!ie
1/22a@@v##M

a $@@u##M
2 sup

tPM
iv~t!ie1@@u##M@@v##M sup

tPM
iv~t!ie%

1/2.

This implies Lemma 2.2~a! for W1 when we setu5v5w. Using the relationu32v35u2(u
2v)1uv(u2v)1v2(u2v) and taking instead ofu,v,w, respectively,u,u2v,u, or u,u
2v,v, or v,u2v,v and settinga50 we obtain the desired estimates of Lemma 2.2~b!.
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Finally, let us estimateW2(t,x). We write it asI S1I C , where I S is the integral over the
surface of the cone andI C is the integral over the interior of the cone. ForI S as in the proof of
Lemma 2.1, we use the integration by parts

E
r5ut2tu

F dS5E
0<r<ut2tu

]

]r
~Fr2! dr dv5E

0<r<ut2tu
S Fr12

F

r Dd3y,

and forF5uvw we have

I S5E
M2

E
r<ut2tu

S uvwr1uvrw1urvw1
2

r
uvwD d3y

dt

ut2tu
. ~3.4!

Applying Hölder’s inequality with exponents 3,6,2 or3
2, 6,6 to the inner integral in~3.4! and using

the estimates

iu~t!i3,* ut2tu21<ciu~t!i`

and

ir21u~t!i3
2 ,* ut2tu21<ciu~t!i`

for ut2tu<1, we obtain

uI Su<cE
M2

~ iu~t!i` iv~t!i6,* iwr~t!i2,* 1iu~t!i` ivr~t!i2,* iw~t!i6,*

1iv~t!i` iur~t!i2,* iw~t!i6,* 1iu~t!i` iv~t!i6,* iw~t!i6,* ! dt.

Taking into account thatJ1(mm)m215O(m23/2) ~see Ref. 22, Section 8.45! we have for the
integral over the interior of the cone

uI Cu<cE
M2

iu~t!i` iv~t!i2,* iw~t!i2,* dt.

As in the proof of Lemma 2.1 the asterisks indicate the integral in the norm overr<ut2tu only.
We take into account that forut2tu<1 iu(t)ip,* <ciu(t)i` , and that the integration is take
over M25@a,b#ù$tuut2tu,1% only. Then, we setu5v5w and obtain

uW2~ t,x!u<c1S E
M2

iu~t!i`
2 dt D sup

tP@a,b#

iu~t!ie

<c2S E
M2

iu~t!i`
2 dt D 1/2

sup
tPM

iu~t!i` sup
tPM

iu~t!ie .

Making in the integral overt,t the change of variables ont2t,t, we obtain

S E
2`

1`

sup
x

uW2~ t,x!u2dtD 1/2

<cS E
M

iu~t!i`
2 dt D 1/2

sup
tPM

iu~t!i` sup
tPM

iu~t!ie

<c@@u##M
2 iuiF,M .

This yields the part~a! of Lemma.
On the other hand, for the part~b! we use Sobolev’s inequality,iui6,* <ciuie and the relation
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E
M2

iu~t!i` dt<S E
M2

iu~t!i`
2 dt D 1/2S E

M2

dt D 1/2

.

Thus we get

uW2~ t,x!u<c1S S E
M2

iu~t!i` dt D sup
tPM

iv~t!ie sup
tPM

iw~t!ie

1S E
M2

iv~t!i` dt D sup
tPM

iu~t!ie sup
tPM

iw~t!ieD
<c2S S E

M2

iu~t!i` dt D 1/2

sup
tPM

iv~t!ie sup
tPM

iw~t!ie

1S E
M2

iv~t!i` dt D 1/2

sup
tPM

iu~t!ie sup
tPM

iw~t!ieD ,

where

E
2`

1`

uW2~ t,x!u2 dt<c~@@u##M sup
tPM

iv~tie sup
tPM

iw~t!ie

1@@v##M sup
tPM

iu~t!ie sup
tPM

iw~t!ie!.

Again using the relationu32v35u2(u2v)1uv(u2v)1v2(u2v) and taking instead ofu,v,w,
respectively,u,u,u2v, or u,v,u2v, or v,v,u2v, we obtain the estimate of Lemma 2.2~b!.
Lemma 2.2 is proved. h

IV. CONSTRUCTION OF THE QUANTUM FIELD AS A BILINEAR FORM

To construct the quantum field as a bilinear form we shall start from the quantum non
wave equation written in the from of integral Eq.~1.2!.

We begin with a brief sketch and an outline of the construction of solution of Eq.~1.2! and
then we turn to the description of the technical details.

We shall construct the solutionf(t,x) of Eq. ~1.2! as a bilinear form. This bilinear form is
defined in the Fock spaceHin of the free fieldf in and can be expanded in terms of creation a
annihilation operators. By :: in~1.2! we denote the normal ordering with respect to the free fi
f in , and, correspondingly, by product we mean the normal ordered product of the bilinear f
However, an operator-valued structure of the interacting field is unknown in advance.

Since, in fact, we come from the notion of wave operator, so the natural initial quantum
should be the free quantumin-field that enters into Eq.~1.2!.

Thus, we need to construct the bilinear form that corresponds to the interacting quantum
and is defined on the whole space-time, that is, to construct the unique solution in the larg
corresponds to the unique initialin-field ~see, for instance, Refs. 11–19, 21!.

A representation of the solution in the form of a limit of some iterative series is a natural
of the construction of this solution. We construct the iterative series as series expanded in te
Wick polynomials on the freein-field. Therefore, to obtain the solution in the large it is sufficie
to construct a bilinear form corresponding to the interacting field at any time. It can be cont
in the large by translation with the Hamiltonian. Nevertheless, we would like to obtain the sol
in the large defined as a bilinear form. It is convenient to approximate the solution by bil
forms defined for all times.

It turns out that it is possible. This is connected with the fact that coherent vectors a
eigenvectors of annihilation operators. Moreover, the Wick polynomial of the free field
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bilinear form, the free field is the sum of the creation and annihilation operators, and the cr
operator is conjugate to the annihilation operator. Taking this into account, we obtain th
matrix elements between coherent vectors are equal to the corresponding polynomial dep
on the sum of the corresponding eigenvalue of one coherent vector and the complex conju
the eigenvalue of another coherent vector.

Therefore, if we consider iterations of the right side of Eq.~1.2!, that is, the expressions

f ( l )~ t,x!5$f in1lNR$f in1lNR$ . . . $f in1lNR~f in!% . . . %%%( l )~ t,x!, ~4.1!

where

NR~f!52E
2`

t E R~ t2t,x2y!:f3~t,y!: dt d3y,

we approximate the quantum field by Wick polynomials, i.e., by bilinear forms. These bil
forms f ( l )(t,x) are defined on some sufficiently wide dense subspaces, in particular, o
subspace generated by linear combination of coherent vectors. Consider matrix elements
constructing bilinear form on the vectors that are equal to a finite linear combination of coh
vectors near to the vacuum; we reduce, in fact, these matrix elements to a linear combina
iterations. These iterations are the iterations of a corresponding solution of the classica
equation with small complexin-data. This allows us to use the theorems proved in Sec. II.

To prove the convergence of approximations we choose as a convenient subspace th
linear combinations of coherent vectors near to the vacuum~we denote it byDu). This subspace
is dense in the Fock space. We define explicitly the quantum field on this subspace and w
help of weak estimates of Secs. II and III we prove the convergence of the approximations~4.1!.
It is convenient to introduce in addition approximations with space-time and an ultraviolet
offs.

Bilinear forms generated by creation and annihilation operators was considered by Krist
Mejlbo and Poulsen,1–3 Baez in Ref. 10 stated and proved the results that we need about
polynomials as bilinear forms. These results can be applied to the approximations that w
sider. Note that we use slightly other notations in comparison with Baez.10

Therefore, we construct the quantum fieldf(t,x) as a bilinear form onDu3Du and approxi-
mate it by bilinear form corresponding to the iterations~4.1! ~with an ultraviolet and space–tim
cutoff!. The limit of these iterations and cutoffs converges and gives the bilinear form, that i
solution of ~1.1! and ~1.2!.

Let us pass to the detailed presentation. We introduce the notations that we need. LetHin be
the Fock Hilbert space of the freein-field. The fieldf in(t,x) in terms of the annihilationa and the
creationa1 operator has the following form~we shall use the notation of Ref. 23, Chap. X, §
and shall not write in the following the index ‘‘in ’’ for the creation and annihilation operators!:

f in~ t,x!5
1

~2p!3/2E ~e2 im(p)t1 ipxa~p!1e1 im(p)t2 ipxa1~p!!
d3p

A2m~p!
,

wherem(p)5(p21m2)1/2,

@a~p!, a1~p8!#5d~p2p8!,

@a~p!, a~p8!#5@a1~p!, a1~p8!#50.

In (t,x)-space it is convenient to introduce also the notation for positive and negative parts

f in
1~ t,x!5A1~ t,x!5

1

~2p!3/2E eim(p)t2 ipxa1~p!
d3p

A2m~p!
,
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f in
2~ t,x!5A~ t,x!5

1

~2p!3/2E e2 im(p)t1 ipxa~p!
d3p

A2m~p!
.

Let a pair of complex-valuedz1 ,z2PS(R3) be given, whereS(R3) is the Schwartz space o
rapidly decreasing smooth complex-valued functions onR3. Denote by

uin~ t,x,z1 ,z2!5~2p!23/2E ~e2 im(p)1 ipxz1
˜~p!1e1 im(p)2 ipxz2

˜~p!!
d3p

A2m~p!

the complex solution corresponding to a pair (z1 ,z2). This solution, or its initial data, define
uniquely a pair (z1 ,z2), which corresponds to the positive and negative parts ofuin(t,x,z1 ,z2),

z1~• !5221/2~2p!3/2~2D1m2!1/4uin~0,• !1 i221/2~2p!3/2~2D1m2!21/4u̇in~0,• !,

z2~• !5221/2~2p!3/2~2D1m2!1/4uin~0,• !2 i221/2~2p!3/2~2D1m2!21/4u̇in~0,• !.

Let u(t,x,z1 ,z2) denote the solution of~2.3! anduout(t,x,z1 ,z2) denote theout-data corre-
sponding to the initialin-datauin(t,x,z1 ,z2), or, equivalently, corresponding to the pair (z1 ,z2).

To define the bilinear forms we introduce the convenient dense subspaces in the Fock
spaceHin of the freein-field. Define first of all the coherent vectors. Let

uz&5exp~za1!V, V5u0&5vacuum. ~4.2!

Here za15* z̃ (k)a1(k) d3k, zPS(R3), and the tilde denotes the Fourier transform. Equat
~4.2! implies that the scalar product inHin of two coherent vectors is equal to

^z1uz2&5exp~ z̄1 ,z2!5expS E z̄1~x!z2~x! d3xD .

Let D be the subspace of all finite linear combinations of coherent vectors

D5 HxPHinUx5( a j uzj&, zjPS~R3!J .

We introduce also the subspaceDu of linear combinations of coherent vectors near to the vacu

Du5 HxPDux5( a j uzj&, zjPS~R3!, iuin~•,•,zj ,0!iF,u/4, iuin~•,•,0,zj !iF,u/4J .

It is clear that the subspaceDu is dense inHin . It is implied, for instance, by the fact tha
derivatives of coherent vectors are finite-particle vectors,

dn

dan uaz&ua505~za1!nV,

and any vectorHin can be approximated by finite-particle vectors~from Schwartz spaces!. De-
rivatives themselves can be approximated by linear combination of coherent vectors n
vacuum. Moreover, for all positive integern, Du,D(Hin

n ), whereHin is the free Hamiltonian of
the in-field. In addition, for all positiven, Hin

n is essentially self-adjoint onDu . The inclusion
Du,D(Hin

n ) is the consequence of the simple bound
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iuHin
n uz&i25(

k
I S (

i
m~pi ! D n z̃~p1! . . . z̃~pk!

k! 1/2 I 2

<(
k

1

k! S ( n!

n1! . . . nk! S sup
0< j <n

im~p! j z̃ ~p!i D kD 2

<(
k

k2n

k!
sup

0< j <n
i~2D1m2! j /2zi2k,`.

The self-adjointness of Hin
n on Du follows from Nelson’s theorem. A dense subspace of analyt

vectors for Hin
n is the space of linear combinations of coherent vectors near to the vacuum wit

functions with compact support in the momentum space.
Thus, we formulate the main theorem.
Theorem 4.1:Let

x15(
j 51

n1

a je
(v j a

1)V, x25 (
k51

n2

bke
(wka1)V, ~4.3!

where complex-valued functionsv j ,wkPS(R3) and for the constantu from Theorems 2.3 and 2.4

iuin~•,•,v j ,0!iF,
u

4
, iuin~•,•,0,v j !iF,

u

4
,

iuin~•,•,wk,0!iF,
u

4
, iuin~•,•,0,wk!iF,

u

4
, ~4.4!

for all j ,k.
Then the following expressions give bilinear forms:

f~ t,x!~x1 ,x2!5(
j ,k

ā jbke
( v̄ j ,wk)u~ t,x,v̄ j ,wk!, ~4.5!

:f3~ t,x!:~x1 ,x2!5(
j ,k

ā jbke
( v̄ j ,wk)u3~ t,x,v̄ j ,wk!, ~4.6!

fout~ t,x!~x1 ,x2!5(
j ,k

ā jbke
( v̄ j ,wk)uout~ t,x,v̄ j ,wk!. ~4.7!

These bilinear forms are symmetrical and are defined onDu3Du . Moreover, these bilinear form
satisfy the following equalities:

f~ t,x!5f in~ t,x!2lE
2`

t E R~ t2t,x2y!:f3~t,y!: dt d3y, ~4.8!

fout~ t,x!5f~ t,x!2lE
t

`

R~ t2t,x2y!:f3~t,y!: dt d3y

5f in~ t,x!2lE
2`

` E R~ t2t,x2y!:f3~t,y!: dt d3y

5f in~ t,x!1E
2`

1`

R~ t2t,x2y!~h1m2!f~t,y! dt d3y, ~4.9!
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andfout(t,x) satisfies the free equation

~h1m2!fout~ t,x!50.

In addition, onDu3Du the bilinear formf(t1T,x) converges to the bilinear formfout(t,x) as
T→1`,

f~ t1T,x!~x1 ,x2!→
i•ie

fout~ t,x!~x1 ,x2! for T→1`. ~4.10!

Proof of Theorem 4.1.To prove that~4.5!–~4.7! define a bilinear form we use the approx
mations~4.1!, spatial, time, and ultraviolet cutoffs. Then we obtain an approximation of bilin
form that is given by the solutions corresponding to the smooth initialin-data with compact
support, i.e., by solutions that are analogous to the solutions that appear in the proof of The
2.3 and 2.4 with initialin-data that belong toF C.

This approximation may be obtained in the following.
We change the integral over (2`,t# on the integral over@S,t#. This change corresponds t

the time cutoff. Letf in,s,L(t,x)5f in,s(t,x)L(x), where

f in,s~ t,x!5E f in~ t,x2y!s~y! d3y,

here real functionss,LPS(R3) and L(x) has a compact support. The change off in(t,x) on
f in,s,L(t,x) corresponds to an ultraviolet and volume cutoffs. These changes correspond
approximation by bilinear forms given by solutions with smooth initialin-data with compact
support. Finally, we approximate the field solution by bilinear formsfS,s,L

( l ) (t,x), where

fS,s,L
( l ) ~ t,x!5$f in,s,L1lNR,S$ . . . $f in,s,L1lNR,S~f in,s,L!% . . . %%( l )~ t,x! ~4.11!

and

NR,S~f!52E
S

tE R~ t2t,x2y!:f3~t,y!:dt d3y.

Equation~4.11! contains Wick polynomial off in,s,L . It is clear that these Wick polynomials ar
correctly defined bilinear forms~see, for instance, Ref. 4, Ref. 10, Theorem 3, Ref. 23, Chap
§7, and Ref. 24!.

Let us write how these bilinear forms generated by Wick polynomials act in the Fock s
These bilinear forms have the following Wick symbols. Letx1 ,x2PD`(Hin). Then for the bilin-
ear form :f in(t1 ,x1) . . . f in(tn ,xn): we have

:f in~ t1 ,x1! . . . f in~ tn ,xn!:~x1 ,x2!5 (
I ,$1, . . . ,n%

S)
i PI

A~ t i ,xi !x1 , )
i P$1, . . . ,n%\I

A~ t i ,xi !x2D ,

~4.12!

~see Ref. 10, Theorem 3, and Ref. 23, Chap. X, § 7!.
It is easy to see that

uin~ t,x,z11z2!5uin~ t,x,z1,0!1uin~ t,x,0,z2!,
~4.13!

uin~ t,x,z1 ,z2!5uin~ t,x,z̄2 ,z̄1!,

and

A~ t,x!e(za1)V5uin~ t,x,0,z!e(za1)V.
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The last relation is implied by the following simple calculation:

a~k!e(za1)V5a~k! (
n50

`
~za1!n

n!
V5 (

n50

` Fa~k!,
~za1!n

n! GV
5 (

n51

`

z̃ ~k!
~za1!n21

~n21!!
V5 z̃ ~k!e(za1)V,

~see, for instance, Ref. 23, Chap. X, § 7!.
Therefore, ifx15( ja j uv j& andx25(kbkuwk&, then~4.12! gives

:f in~ t1 ,x1! . . . f in~ tn ,xn!:~x1 ,x2!

5(
j ,k

ā jbk (
I ,$1, . . . ,n%

S)
i PI

uin~ t i ,xi ,0,v j !uv j&, )
i P$1, . . . ,n%\I

uin~ t i ,xi ,0,wj !uwj& D
5(

j ,k
ā jbk^v j uwk& )

i P$1, . . . ,n%
~ uin~ t i ,xi ,0,v j !1uin~ t i ,xi ,0,wk!!

5(
j ,k

ā jbk^v j uwk& )
i P$1, . . . ,n%

uin~ t i ,xi ,v̄ j ,wk!. ~4.14!

In particular, it follows from~4.14! that

:f in,s,L~ t1 ,x1! . . . f in,s,L~ tn ,xn!:~x1 ,x2!

5(
j ,k

ā jbk^v j uwk& )
i P$1, . . . ,n%

uin,s,L~ t i ,xi ,v̄ j ,wk!, ~4.15!

whereuin,s,L(t,x) is a free solution with the Cauchy data at time zero given by

uin,s,L~0,x,v̄,w!5L~x!E uin~0,x2y,v̄,w! s~y! d3y,

u̇in,s,L~0,x,v̄,w!5L~x!E u̇in~0,x2y,v̄,w! s~y! d3y.

The relations~4.14! and~4.15! imply that onD3D the bilinear forms-iterations~4.11! satisfy
the equality

fS,s,L
( l ) ~ t,x!~x1 ,x2!5(

j ,k
ā jbk^v j uwk& uS,s,L

( l ) ~ t,x,v̄ j ,wk!,

whereuS,s,L
( l ) (t,x,v̄ j ,wk) is thel th iteration of Eqs.~2.1! and~2.2! with the Cauchy data at timeS

equal to the Cauchy data of the free solutionuin,s,L(t,x,v̄ j ,wk).
Now we show that forl→` the bilinear formsfS,s,L

( l ) and :fS,s,L
( l )3 (t,x): converge onDu

3Du to the bilinear formsfS,s,L(t,x) and :fS,s,L
3 (t,x):, and on vectors~4.3! these bilinear forms

are equal to

fS,s,L~ t,x!~x1 ,x2!5(
j ,k

ā jbke
( v̄ j ,wk)uS,s,L~ t,x,v̄ j ,wk!, ~4.16!

:fS,s,L
3 ~ t,x!:~x1 ,x2!5(

j ,k
ā jbke

( v̄ j ,wk)uS,s,L
3 ~ t,x,v̄ j ,wk!, ~4.17!
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whereuS,s,L(t,x,v̄ j ,wk) is the solution of~2.1! and~2.2! with the Cauchy data at timeSequal to
the Cauchy data of the free solutionuin,s,L(t,x,v̄ j ,wk). In other words, these bilinear form
satisfy the following equation:

fS,s,L~ t,x!5f in,s,L~ t,x!2lE
S

tE R~ t2t,x2y!:fS,s,L
3 ~t,y!: dt d3y.

Really, first we note thatDu,D,D`(Hin) and, thus, the approximationsfS,s,L
( l ) are correctly

defined onDu3Du . Choose, then, an ultraviolet and space cutoffs such that for the states
Du3Du theF-norm ofuin,s,L(t,x,v̄ j ,wk) would be less thanu/2. For this purpose, we shall tak
real L with compact support and reals such thatisi1<1, iLi`<1, i¹Li`<m25@mass in
~2.1!#2 for L→1, s→ d-function inS8. It is obvious that suchL ands exist and with this choice

iuin,s,L~•,•,v̄ j ,wk!2uin~•,•,v̄ j ,wk!iF→0 ~4.18!

for L→1 andd→ d-function @our choice givesv j ,wkPS(R3)]. Moreover, the Young inequality
implies that

iuin,s,Li<S iLi`1
i¹Li`

m2 D i iniF<2iuiniF .

Therefore, the inequalities~4.4! for uin,s,L(•,•,v̄ j ,wk) are fulfilled for the states fromDu3Du

and with the changeu on 2u, and, thus, the conditions of Theorem 2.4 are fulfilled and
approximationsuS,s,L

( l ) (t,x,v̄ j ,wk) correspond to the initial data at timeS equal touin,s,L(•,
•,v̄ j ,wk). These initial data are smooth and have compact support. As in the proof of The
2.4, we obtain that the approximationsuS,s,L

( l ) (t,x,v̄ j ,wk) converge touS,s,L(t,x,v̄ j ,wk) for l
→`. This means that the bilinear forms

fS,s,L
( l ) ~ t,x! and :fS,s,L

( l )3 ~ t,x!:

converge to the bilinear forms~4.16! and ~4.17!.
Now let S→2`. We obtain, as in the proof of Theorem 2.4, that asS→2`

uS,s,L~ t,x,v̄ j ,wk!

converges to the solutionus,L(t,x,v̄ j ,wk) with in-datauin,s,L(•,•,v̄ j ,wk). OnDu3Du this gives
the convergence of the bilinear formsfS,s,L(t,x) and :fS,s,L

3 (t,x): to the bilinear forms
fs,L(t,x) and :fs,L

3 (t,x):, respectively.
On vectors~4.3! from Du these bilinear forms are equal to

fs,L~ t,x!~x1 ,x2!5(
j ,k

ābke
( v̄ j ,wk)us,L~ t,x,v̄ j ,wk!,

:fs,L
3 ~ t,x!:~x1 ,x2!5(

j ,k
ābke

( v̄ j ,wk)us,L
3 ~ t,x,v̄ j ,wk!,

where us,L(t,x,v̄ j ,wk) is the solution of~2.1! and ~2.2! with in-data uin,s,L(t,x,v̄ j ,wk), and
satisfies the equation

fs,L~ t,x!5f in,s,L~ t,x!2lE
2`

t E R~ t2t,x2y!:f3~t,y!:dt d3y.
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Finally let L tend to 1 ands to d-function. Since ~4.18! fulfills, so us,L(•,•,v̄ j ,wk)
→u(•,•,v̄ j ,wk) in F-norm as L→1, s→d-function. But this means thatfs,L(t,x) and
:fs,L

3 (t,x): converge onDu3Du to f(t,x) and :f3(t,x):.
Now we construct the bilinear form forfout(t,x). Equation ~4.9! definesfout(t,x) as a

bilinear form and~4.5! and ~4.6! and Theorem 2.4 imply that the bilinear form is given by t
equality ~4.7!. The same Theorem 2.4 implies the convergence~4.10! of the bilinear formf(t
1T,x) to fout(t,x) asT→1`.

The constructed bilinear forms~4.5!–~4.7! are Hermitian symmetric. Really, taking into a
count ~4.13!, we have that

u~ t,x,z1 ,z2!5( ~u( l 11)~ t,x,z1 ,z2!2u( l )~ t,x,z1 ,z2!!5u~ t,x,z̄2 ,z̄1!,

and so

uout~ t,x,z1 ,z2!5uout~ t,x,z̄2 ,z̄1!.

Hence forx15(a j uv j&, x25(bkuwk&,

f~ t,x!~x1 ,x2!5f~ t,x!~x2 ,x1!,

:f3~ t,x!:~x1 ,x2!5:f3~ t,x!:~x2 ,x1!,

fout~ t,x!~x1 ,x2!5fout~ t,x!~x2 ,x1!,

i.e., bilinear forms~4.5!–~4.7! are Hermitian symmetric. Theorem 4.1 is proved. h

The constructed bilinear form as a solution of the quantum equation satisfies the uniqu
condition of the following type. Let

f15f in1NR~f1!,

f25f in1NR~f2!.

Let f1 andf2 be bilinear forms defined onDu3Du and such that for

x1 ,x2PDu f1~ t,x!~x1 ,x2!PF C

andf2(t,x)(x1 ,x2)PF C. Let :f1
3(t,x): and :f2

3(t,x): be the bilinear forms and let the relatio

:f j
3~ t,x!:~ uv&,uw&)5e22(v̄,w)~f j~ t,x!~ uv&,uw&))3, j 51,2, ~4.19!

be fulfilled for any pair of coherent vectorsuv&,uw& ~a definition of normal ordering!!. When on
Du3Du f1(t,x) coincides withf2(t,x) and with our formf(t,x).

Here we do not consider the proof of the uniqueness and this definition of normal ord
We use the relation of the form~4.19! for a Wick polynomial only@see expressions~4.22!–~4.28!#.

We formulate yet without the proof the following assertion.
Theorem 4.2: The bilinear formsf(t,x), fout(t,x) transform as scalar under the Poinca´

transformation generated by thein-field

Uin~a,L!f~ t,x!Uin~a,L!215f~~a,L!~ t,x!!, ~4.20!

Uin~a,L!fout~ t,x!Uin~a,L!215fout~~a,L!~ t,x!!. ~4.21!

Remarks:
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~1! In particular, we note that the total Hamiltonian corresponding to the interacting fief
coincides with the total Hamiltonian corresponding to the free incoming fieldf in and with the
total Hamiltonian corresponding to the free outgoing fieldfout .

~2! Expressions~4.20! and ~4.21! are defined as bilinear forms for allaPR4 and L such that
U(0,L)DuPD2u , i.e., for L sufficiently near to 1. This is connected with the fact that o
bilinear form is defined only onDu3Du for sufficiently smallu, and the norm used for the
space of initialin-data is Lorentz noninvariant.

~3! It is possible to obtain analyticity of classical solutions for small complex initial data for
space of the initial dataF C. To derive this analyticity one can use the estimates of Lem
2.1 and 2.2 and the method analogous to Ref. 17 or given by Baez and Zhou18 for the case of
initial data, corresponding to the finite energy. This analyticity allows us to extend by c
nuity the equalities~4.20! and ~4.21! on the Poincare´-invariant subspace.

Expressions~4.5! and~4.7! of Theorem 4.1 for the bilinear formf andfout imply obviously
that the coupling constantl can be reconstructed uniquely by matrix elements of the interpola
field f or theout-field fout . Moreover, the following assertion is valid.

Theorem 4.3:The coupling constantl is determined uniquely by matrix elements~4.5! of the
interpolating field

l5 lim
«→0

«24 lim
T→`

S E ~f~ t,x!~ uv&,uv&))4 dt d3xD 21

^vuv&4

3E ~f~ t1T,x!~ u«v&,u«v&)ḟ~ t1T,x!~ u2«v&,u2«v&)

2f~ t1T,x!~ u2«v&,u2«v&)ḟ~ t1T,x!~ u«v&,u«v&)) d3x ~4.22!

5 lim
«→0

S E ~f~ t,x!~ uv&,uv&))4 dt d3xD 21

^vuv&4

3E ~fout~ t,x!~ u«v&,u«v&)ḟout~ t,x!~ u2«v&,u2«v&)

2ḟout~ t,x!~ u2«v&,u2«v&)fout~ t,x~ u«v&,u«v&)) d3x ~4.23!

for any complex-valuedv, uv&PDu , vPS(R3), vÞ0.
Proof of Theorem 4.3:For vPS(R3) the initial in-datauin(t,x,v̄,v) are real and belong toF,

and, thus,u(t,x,v̄,v) belongs toF also,u(t,x,v̄,v)Þ0.
Since

0,E u~ t,x,v̄,v !4 dt d3x

<S E sup
x

u~ t,x,v̄,v !2 dtD sup
t
E u~ t,x,v̄,v !2 d3x

<iuiF
4 ,

so (*u(t,x,v̄,v)4 dt d3x)21is correctly defined and, by Theorem 4.1, is equal to

S E ~f~ t,x!(uv&,uv&) !4 dt d3xD 21

^vuv&4.
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The same theorem implies the existence of the limit asT→1` and the right side~4.22!5~4.23!.
Taking into account that̂«vu«v&→^0u0&51 for «→0, the expressions~4.22! and ~4.23! are
equal tol. This is the consequence of the equality

l5 lim
«→0

«24S E u~ t,x,v̄,v !4 dt d3xD 21

3 S E ~uout~ t,x,« v̄,«v !u̇out~ t,x,2« v̄,2«v !

2uout~ t,x,2« v̄,2«v !u̇out~ t,x,« v̄,«v !!d3xD ,
which is proved in Ref. 15. Theorem 4.3 is proved. h

Remarks:

~1! It follows that the coupling constant is uniquely defined by matrix elements of theout-field
only.

~2! Expression~4.23! can be rewritten also in the form

l5 lim
«→0

«24S E :f4:~ t,x!~ uv&,uv&) dt d3xD 21

^vuv&E ~fout~ t,x!~ u«v&,u«v&)ḟout~ t,x!

3~ u2«v&,u2«v&)2fout~ t,x!~ u2«v&,u2«v&)ḟout~ t,x!~ u«v&,u«v&))d3x,

where :f4(t,x): is the bilinear form with matrix elements~4.27!.
The proved assertion about bilinear forms implies easily that onDu3Du the bilinear forms

fS,t,L
( l ) ~ t,x!, :ḟS,t,L

( l )2 ~ t,x!:, :fS,t,L
( l )2 ~ t,x!:, :~¹fS,t,L

( l ) !2~ t,x!:, :fS,t,L
( l )4 ~ t,x!:,

HS,t,L
( l ) 5

1

2E S :ḟS,t,L
( l )2 ~ t,x!:1:~¹fS,t,L

( l ) !2~ t,x!:1m2:fS,t,L
( l )2 ~ t,x!:1

l

2
:fS,t,L

( l )4 ~ t,x!: D d3x.

are correctly defined. Clearly that asl→`, S→2`, L→1, ands→d-function these bilinear
forms onDu3Du converge to the bilinear forms

:ḟ2~ t,x!:, :f2~ t,x!:, :~¹f!2~ t,x!:, :f4~ t,x!:,

H5
1

2E S :ḟ2~ t,x!:1:~¹f!2~ t,x!:1m2:f2~ t,x!:1
l

2
:f4~ t,x!: D d3x.

On Du3Du these bilinear forms satisfy the relations

:ḟ2~ t,x!:~x1 ,x2!5( ā jbk^v j uwk&u̇~ t,x,v̄ j ,wk!
2, ~4.24!

:f2~ t,x!:~x1 ,x2!5( ā jbk^v j uwk&u~ t,x,v̄ j ,wk!
2, ~4.25!

:~¹f!2~ t,x!:~x1 ,x2!5( ā jbk^v j uwk&~¹u~ t,x,v̄ j ,wk!!2, ~4.26!

:f4~ t,x!:~x1 ,x2!5( ā jbk^v j uwk&u~ t,x,v̄ j ,wk!
4, ~4.27!
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H~x1 ,x2!5( ā jbk^v j uwk&

1

2E S u̇~ t,x,v̄ j ,wk!
21~¹u~ t,x,v̄ j ,wk!!21m2u~ t,x,v̄ j ,wk!

2

1
l

2
u~ t,x,v̄ j ,wk!

4Dd3x. ~4.28!

Moreover, onDu3Du the bilinear formH is equal to the bilinear formHin ,

H~x1 ,x2!5Hin~x1 ,x2!5( ā jbk^v j uwk&

1

2E ~ u̇in~ t,x,v̄ j ,wk!
21~¹uin~ t,x,v̄ j ,wk!!21m2uin~ t,x,v̄ j ,wk!

2! d3x

5( ā jbk^v j uwk&E m~k!ṽ j~k!wk~k!d3kd3k.

Therefore, onDu3Du the bilinear formH(x1 ,x2) is positively definite andHin is a unique
positive self-adjoint operator, whose bilinear form onDu3Du coincides with the bilinear form of
H.

We remark that the expressions analogous to~4.24!–~4.28! can be written for the momentum
and angular momentum operators.

V. DISCUSSION

We mention first the review of Callaway25 about thef4
4 quantum field theory. This review

contains, in particular, arguments of Fro¨hlich26 and Aizenmanet al.27,28 concerning the triviality
of f4

4 . Fröhlich26 and Aizenmanet al.27,28assert that any construction offd
4 , d>5, obtained as a

limit of ferromagnetic lattice approximation, is trivial. Recently Pedersen, Segal, and Zhou29 gave
arguments for nontriviality of~massless! f4

4 , and, more generally, for nontriviality offd
q ~Ref. 29,

see also Refs. 30 and 31!. The usual perturbation theory claims thatf4
4 is a nontrivial and a

renormalizable theory.
We interpret the results of Fro¨hlich26 and Aizenmanet al.27,28 as an approximation of a

measure. This measure corresponds to the approximation, but this approximation do not ca
nonlinearity~and singularity! of the interaction. Its convergence corresponds to the converg
on the subspace of zero measure~for the true measure! ~see the analogous interpretation for mo
singular case32–34!.

Our approach obtains undoubtedly a nontrivial theory, in particular, the coupling const
uniquely determined by the matrix elements of the interpolating or the out-field~see Theorem 4.3!.
From the point of view of perturbation theory our construction corresponds to the considerat
all terms of perturbation theory including the nonlinear ‘‘tree’’ approximations and all loops

This construction is connected with the idea to construct the vacuum with the help
generalized density and/or its logarithmical derivative~see Refs. 35–42!. In our case the general
ized density is equal tor in(w21u), i.e., this generalized density corresponds to the vacuum
terms of the interacting field; it is defined on the~whole! spaceF. Herer in(•) is the generalized
density of the free vacuum andw is the incoming wave operator.r in(w21u) has to be considered
on finite-dimensional subspaces and then has to be extended on a space of generalized f
~as a measure generated by this generalized density!. The generalized density generates a uniq
state. This state can be obtained by extension from finite-dimensional subspaces of entir
morphic functions.11,35,36 In our case the complex is given by the variablew(x)2 i ((2D3

1m2)21/2p)(x). Some exceptional properties of the state in terms of complex variables
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described in Ref. 11. These properties are connected also with properties of the represent
the Weyl group in the space of holomorphic functions. In this case the Weyl group is a nu
infinite-dimensional Lie group.

The further progress will be connected with the possibility to extend a domain of definitio
the bilinear form and/or with the possibility to obtain the bounds connected with these bil
forms on some suitable rigging of Fock Hilbert space of thein-field. It is very important that the
total Hamiltonian of the interacting fieldf is correctly defined as an operator and this operato
essentially self-adjoint onDu and at the same time it can be expressed as the free Hamiltoni
terms of the incoming free fieldf in .
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Cluster expansion for P„f…2 : explicit estimates
E. Prodana)

Deptartment of Physics—MS 61, Rice University, 6100 Main Street,
Houston, Texas 77005-1892

~Received 14 June 1999; accepted for publication 18 October 1999!

We apply the tree expansion to the polynomial self-interacting quantum fields in
two dimension. In the range of small coupling constants, we show that the expan-
sion is also convergent when the full propagator is considered and the theory is
regularized by normal ordering. Explicit estimates of the convergency ranges are
given. © 2000 American Institute of Physics.@S0022-2488~00!00602-2#

I. INTRODUCTION

We were encouraged by the simplifications added by Ref. 1 to the cluster expansion
niques to attempt a numerical estimate of the convergency range for the ordinary cluster
sion. In Ref. 1, the tree expansion was applied to theories which were regularized by a cu
covariance. We show that, in 2-D, the expansion is also convergent when the full propag
considered and the theory is regularized by normal ordering. This is not a surprising resu
here, we are interested in finding an estimate of the range of convergence. Formally, ther
difference between the two situations. However, in the second case, the proof of conve
requires more estimates. Our calculations will cover the general case of interactions likegV(f),
whereV(f) is a polynomial of arbitrary even order with coefficients less than one. The pap
organized as follow. In Sec. II we present the tree expansion scheme in parallel with the pr
convergence in the limit of small coupling constant. The proof relies on two very technical re
which are proved in Secs. III and IV. There we closely follow Ref. 2. At their turn, these re
relay onLp and Sobolev estimates on covariance. These estimates are presented in Sec. V
is the original part of this paper. The numerical estimates are presented in Sec. VI.

II. TREE EXPANSION

We start by considering a Gaussian measure,m0 , corresponding to the covariance:C
5@2D11#21 and meanj ~possibly different from zero!. The mass can be brought to unity by
scaling transformation, so the particular form of the covariance does not restrict the gene
Also, one can play with the meanj, like in the mean field3 or Gaussian4 approximation, to find a
good starting point for future expansions. This is the reason we start with Gaussian measur
mean different from zero. Let us consider a spatial cutoff interaction:

gV~L!5gE
L

d2x(
n50

2N

an :f~x!n, ~1!

whereg normalizes the coefficients such that:uanu,1. The normal ordering in~1! is considered
with respect tom0 . We will concentrate in this paper only on the thermodynamic limit of
pressure: limL→R2 logZ(L)/L with

Z~L!5E expS 2gE
L

:V~f~x!!:d2xD dm0 . ~2!

a!Electronic mail: emprodan@rice.edu
7870022-2488/2000/41(2)/787/18/$17.00 © 2000 American Institute of Physics
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As in Ref. 1, we considerZ̃(L)5Z(L)/Z(D) uLu instead of~2!, whereD is a unit square. One
divides the areaL into squares of unit area, centered inZ2 , which form the latticeD. Formally, the
cluster expansion may be performed in the same manner as in Ref. 1:

Z̃~L!5 (
Y1 , . . . ,Yqdisjoint

1

q!
A~Y1! ¯ A~Yq!, ~3!

whereYq are subsets ofD of at least two squares. The expressions for the amplitudesA(Y) are

A~Y!5(
T8

1

Z~D!p E
0

1

¯ E
0

1

ds1¯ dsp21MT8~s!E dms

3H F )
k5p21

1 E
D i k

dxkE
D j k11

dykC~xk ,yk!
d

df~xk!

d

df~yk!
GexpS 2gE

Y
:V(f(x)):dxD J ,

~4!

where T8 are the ordered trees. The measurems corresponds to the covarianceCs , which is
constructed in Ref. 1 and the same meanj. We mention two important properties which will be o
great importance in what follow:Cs<C andCs.0, pointwise. The explicit expression ofCs is not
important here. From Ref. 5, it follows that the thermodynamic limit of the pressure exists

(
0PY

uA~Y!ueuYu,1. ~5!

It will follow that this condition is achieved for small enoughg. Briefly, this is the tree expansion
We now start the search for an explicit estimate ofgmax. For this, we need to find bounds o

the amplitudesA(Y) and then to apply the convergence criterion~5!. The derivatives in~2! may
be performed as usual.4 They will produce at most 2p factors. For a polymer,Y
5$D1 , . . . ,Dp%, the amplitudes, after derivation, can be expressed as

A~Y!5(
T8

(
$u%

S 1

Z~D! D
pE

0

1

¯ E
0

1

ds1 ¯ dsp21MT8~s!~2g!a11 ¯ 1ap

3E dmsE
(3D1)a1

dx1
(1)

¯ dxa1

(1)
¯ E

(3Dp)ap

dx1
(p)

¯ dxap

(p)

3 )
k51

p21

C~xa1( i k , j k11)
( i k) ,xa2( i k , j k11)

( j k11)
!:V(11u1

(1))(f~x1
(1)!: ¯ :V(11ua1

(1))~f~xa1

(1)!!

: ¯ :V(11u1
(p))~f~x1

(p)!!: ¯ :V(11uap

(p))~f~xap

(p)!!:expS 2gE
Y
:V(f(x)):dxD , ~6!

where the sum over$u% has at most 2p terms. We notice the following constraints:

0<uj
( i )<2N21 a i5di2u1

( i )2 ¯ 2ua i

( i )>1, ~7!

wheredi represents the number of links formed withD i . Let us first explain the notation. Along
this paper, the upper index of the coordinatexj

( i ) indicates that it belongs toD i . The links of the
trees will be indicated by (i k , j k11). The functiona( i k , j k11)5(a1( i k , j k11),a2( i k , j k11)) as-
signs to each link of the tree two integers:a1( i k , j k11)P$1,2,. . . ,a i k

% and a2( i k , j k11)
P$1,2,. . . ,a j k11

%, and V(n) denotes thenth derivative. The normal ordering of the powers
f(x) are the same forC andCs , so there is no confusion. We start now to bound the amplitu
A(Y). Supposingg,1:
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uA~Y!u<( T8S g

Z~D! D
pE dp21s MT8~s!2p

3sup$u%U E dmsE
(3D1)a1

da1x(1)•••E
(3Dp)ap

dapx(p)) k51
p21C~xa1( i k , j k11)

( i k) ,xa2( i k , j k11)
( j k11)

!

:V(11u1
(1))~f~x1

(1)!!: ¯ :V(11uap

(p))~f~xap

(p)!!:exp~2g*Y :V(f(x)):dx!U, ~8!

whereu anda satisfy the constraints~7!. There area11 ¯ 1ap<d11 ¯ 1dp52p22 factors

like: V(11u1
( i ))(f(x1

( i ))):, which are polynomials of order less than 2N21, with coefficients less
than (2N)!. Then we can continue,

uA~Y!u<( T8S g

Z~D! D
pE dp21s MT8~s!2p@~2N21!~2N!! #2p22

3sup$a,v%U E dmsE
(3D1)a1

da1x(1)•••E
(3Dp)ap

dapx(p)) k51
p21C~xa1( i k , j k11)

( i k) ,xa2( i k , j k11)
( j k11)

!

:f~x1!v1
(1)

: ¯ :f~xa1
!va1

(1)
: ¯ :f~x1!v1

(p)
: ¯ :f~xap

!vap

(p)
:exp~2g*Y :V(f(x)):dx!U,

~9!

where the supremum is taken now over independent$a% and $v% which fulfill a i<di and vk
( i )

<2N21. We can write the above inequality briefly by denoting:

R~wa ,v !5E
(3D1)a1

da1x(1)
¯ E

(3Dp)ap

dapx(p)) k51
p21C~xa1( i k , j k11)

( i k) ,xa2( i k , j k11)
( j k11)

!:f~x1!v1
(1)

: ¯ :f~xa1
!va1

(1)
: ¯ :f~x1!v1

(p)
: ¯ :f~xap

!vap

(p)
: . ~10!

Then,

uA~Y!u<( T8S g

Z~D! D
p

3E dp21s MT8~s!2p@~2N21!

3~2N!! #2p22sup$a,v%U E dmsR~wa ,v !e2gV(Y)U
<( T8S g

Z~D! D
pE dp21s MT8~s!2p@~2N21!~2N!! #2p22

3F E e22gV(Y)dmssup$a,v%E R~wa ,v !2dmsG1/2

. ~11!

It will follow from the next sections that:

E R~wa ,v !2dms<Bp/b2 exp~21/2(k51
p21 dist~D i k

,D j k11
!!, ~12!

E exp~22g*Y :V(f(x)):dx!dms<M p, ~13!
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whereB, b, andM depend only on the coefficients of the polynomial interaction. We are alm
ready to apply the convergence criterium. First we need the following result:

Proposition 1:

( uYu5p,0PY ( T exp~21/4(k51
p21 dist~D i k

,D j k11
!!<

pp22Dp21

p!
,

where the first sum goes over disjoint Y and the second goes over all unordered trees bu
Y. D is equal to32pe3&/4.

Proof: Let D1 denote the root of the trees. We can interchange the sums and, due
symmetry at translation, we can choose 0PD1 . Then:

( uYu5p,0PY ( T exp~21/4(k51
p21 dist~D i k

,D j k11
!!

5( T ( uYu5p,0PY exp~21/4(k51
p21 dist~D i k

,D j k11
!!

5(T

1

p! ( P(D2 , . . . ,Dp) exp~21/4(k51
p21 dist~D i k

,D j k11
!!, ~14!

whereP(•) means the positions of the cubes. We divide the sum over the positions of the
by considering the subsets:C0 , C1 , . . . given by the following scheme.C0 is the set of squares
which hook only with one other square.Ci do not include the root of the tree. ThenC1 is the set
of squares which hook with only one square which is not inC0 . By induction,Cj will be the set of
squares which hook with only one square which is not inC0ø ¯ øCj 21 . The inductive process
must stop after a finite number of steps,m, and, due to the structure of the trees,Y will be the
reunion ofC0 , . . . ,Cm . Then:

( uYu5p,0PY( T exp~21/4(k51
p21 dist~D i k

,D j k11
!!

5( T

1

p! ( P(Cm) ¯ ( P(C0) expS 21/4( k51
p21 dist~D i k

,D j k11
! D . ~15!

If D j belongs toC0 , it is hooked with one and only one square fromC1 , let us sayD i . Then:

( P(D j )
exp~21/4 dist~D i ,D j !!<( P(D j )ED j

d2x e2(uxi2xu23&/2)/4

5E
R2

d2x e2(uxi2xu23&/2)/4532pe3&/8, ~16!

wherexi represented the center ofD i . In consequence, after one sums overP(C0):

( P(Cm) ¯ ( P(C0) exp~21/4(k51
p21 dist~D i k

,D j k11
!!

5~32pe3&/4! uC0u( P(Cm) ¯ ( P(C1) exp~21/4(k8 dist~D i k8
,D j k811

!!, ~17!

wherek8 avoids the links betweenC0 andC1 . One can see that this step can be repeated, witC1

in place ofC0 . Then we can bound the sum over the positions of the cubes by

~32pe3&/4! uC0u1 ¯1uCm21u5~32pe3&/4!p21. ~18!
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For a givenp, there arepp22 unordered trees and this ends the proof. j

Returning to the convergence criterium~5!, let us calculate first:

(
0PY,uYu5p

uA~Y!u, (
0PY,uYu5p

(
T8

S g

Z~D! D
p

3E dp21s MT8~s!2p@~2N21!~2N!! #2p22

3~ABM/b!p exp~21/4(k51
p21 dist~D i k

,D j k11
!!

<@64pe3&/4g~2N21!2~2N! !2Z~D!21ABM#ppp22/p!

3~32pe3&/4b@~2N21!~2N!! #2!21, ~19!

by using the fact1 that (T(T8)5T*dp21s MT8(s)51 ~sum over ordered trees which are associa
with the same unordered tree! and the result of the above proposition. We can conclude that
cluster expansion converges if:

(
p52

`

@64pe113&/4g~2N21!2~2N! !2Z~D!21ABM#ppp22/p!<32pe3&/4b@~2N21!~2N!! #2.

~20!

This is our relation for calculus ofgmax. The numerical estimates that follow from~20! will be
presented in Sec VI.

III. ESTIMATES ON exp „2V„Y……

We prove in this section the estimate~13!. Here, our goal is to find an explicit expression f
the constantM .

Theorem 2: There exists a constant M, independent ofuYu and s, such that:

E expS 22gE
Y
:V~f~x!!:dxD dms,M uYu.

The result can be proven by following the same steps as in Ref. 2, even though the covariaCs

does not belong to the class of covariances considered there.
Proof: One considers a smeared potential:

Vk~x!5 (
n50

2N

an :f~hk~x2• !!n:s , ~21!

wherehk is chosen in the following way: consider a C` function, h, with supp(h) in the unit
square centered in (0,0), and*h(x)dx51. Thenhk(x) is given by: k2h(kx). For a technical
reason we chooseh to be of the form:h(x1 ,x2)5h1(x1)h1(x2). The normal ordering in~21! is
with respect to the covarianceCs ~and the meanj!, which is different now by the normal orderin
with respect toC due to the nonlocality of the smeared fields. Note that the integral in the the
is with respect toms and this is why we want the normal ordering to be with respect toCs . The
first task is to find lower bounds on this smeared potential.

Proposition 3: There exists a constant Le , independent of k or s, such that: Vk(x)
>2Lek

Ne, with e a positive number.
Proof: Expanding the Wick powers, it follows:
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Vk~x!5( n50
N a2nck

n( j 50
n ~21! j~2n!!

~2n22 j !!2 j j ! S f~hk!2j

Ack
D 2n22 j

1( n50
N21 a2n11ck

(2n11)/2( j 50
n ~21! j~2n11!!

~2n1122 j !!2 j j ! S f~hk!2j

Ack
D 2n1122 j

, ~22!

whereck5Cs(hk(x2•),hk(x2•)), which depends also ons andx. Consideringm5n2 j ,

Vk~x!5( n50
N a2nck

n(m50
n ~21!n2m~2n!!

~2m!!2n2m~n2m!! S f~hk!2j

Ack
D 2m

1( n50
N21 a2n11ck

(2n11)/2(m50
n ~21!n2m~2n11!!

~2m11!!2n2m~n2m!! S f~hk!2j

Ack
D 2m11

5(m50
N S ( n5m

N a2nck
n ~21!n2m~2n!!

~2m!!2n2m~n2m!! D S f~hk!2j

Ack
D 2m

1(m50
N21 S ( n5m

N21 a2n11ck
(2n11)/2 ~21!n2m~2n11!!

~2m11!!2n2m~n2m!! D S f~hk!2j

Ack
D 2m11

,

~23!

or, in short,

Vk~x!5(m50
2N AmS f~hk!2j

Ack
D m

.

We use the following inequality:

1

2N21
A2Nx2N1Amxm>2

~2N2m!A2N

~2N21!m S m~2N21!

2N U Am

A2N
U D 2N/(2N2m)

~24!

to continue:

Vk~x!>A02(m51
2N21 ~2N2m!A2N

~2N21!m S m~2N21!

2N U Am

A2N
U D 2N/(2N2m)

. ~25!

Moreover:

UA2m

A2N
U<( n5m

N Ua2n

a2N
U ~2n!!

~2m!!2n2m~n2m!!
ck

n2N ~26!

and:

UA2m11

A2N
U<( n5m

N21 Ua2n11

a2N
U ~2n11!!

~2m11!!2n2m~n2m!!
ck

(2n11)/22N . ~27!

The variablesck satisfy the following inequalities, fork>1 ~later we will letk vary from 1 to`!:

1
4 ck51u$s%5$1%<ck51<ck<cku$s%5$1% . ~28!

The first inequality can be proven as follow. From:Cs>C$s%5$0% one has:ck>cku$s%5$0% . At s
50, the squares ofD are totally decoupled. From the expression ofck :
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cku$s%5$0%5E hk~x2y!C$s%5$0%~y,z!hk~x2z!dydz, ~29!

one can see that the smallest value ofcku$s%5$0% is achieved whenx is infinitely close to a corner
of a squareD j , due to the particular choice of the functionh. In this case:cku$s%5$0%
5 1

4 cku$s%5$1% . The second inequality follows from the fact thatCs((x2y)/k,(x2z)/k) is mono-
tone increasing ink, for fixed x, y, and z. The last inequality is a direct consequence ofCs

<C. Then we can continue:

UA2m

A2N
U<( n5m

N Ua2n

a2N
U ~2n!! ~ck51

$s%5$1%/4!n2N

~2m!!2n2m~n2m!!
~30!

and:

UA2m11

A2N
U<( n5m

N21 Ua2n11

a2N
U ~2n11!! ~ck51

$s%5$1%/4!(2n11)/22N

~2m11!!2n2m~n2m!!
. ~31!

Moreover:

uA0u5U(m50
N a2n

~21!n~2n!!

2nn!
ck

nU<~ck
$s%5$1%!N( n50

N ua2nu
~2n!!

2nn!
~ck51

$s%5$1%/4!n2N. ~32!

At this stage we have

Vk~x!>2~ck
$s%5$1%!NH( n50

N ua2nu
~2n!!

2nn!
~ck51

$s%5$1%/4!n2N

1(m50
N21 a2N~2N22m!

2m~2N21!
S 2m~2N21!

2N ( n5m
N

ua2n /a2Nu~2n!! ~ck51
$s%5$1%/4!n2N

~2m!!2n2m~n2m!! D N/(N2m)

1(m50
N21 a2N~2N22m21!

~2m11!~2N21!
S ~2m11!~2N21!

2N

3( n5m
N21

ua2n11 /a2Nu~2n11!! ~ck51
$s%5$1%/4!(2n11)/22N

~2m11!!2n2m~n2m!! D 2N/(2N22m21)J . ~33!

The constantck
$s%5$1% can be bounded as in Ref. 2, by considering aC`(R2) functionu such that:

0<u<1 andu51 on$xPR2:dist(x,D0)<1%. Becauseck
$s%5$1% is independent ofx, we can fix it

in (0,0). Then:

ck
$s%5$1%5E dy dz hk~x2y!C~y2z!hk~x2z!

5E dy dzu~y!hk~x2y!C~y2z!hk~x2z!u~z!<i~hk^ hk!* @~u ^ u!C#i`

<i~hk!˜ ip
2i@~u ^ u!C#˜ ip8 , ~34!

wherep andp8 are Holder conjugate to each other. In this paper, a tilde will denote the Fo
transform. It will follow from Sec. V that there is a constantK1(p) such that:i@(u ^ u)C#˜ ip8
<K1(p). Moreover:

i~hk!˜ ip5ih˜ ~•/k!ip5ih˜ ipk2/p. ~35!

For largep, we can use Housdorf–Young inequality:
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ih˜ ip<~2p!(122/p)ihip8<2p max$ihiL1,ihiL2%52p max$1,ihiL2%,

by using the abstract interpolation.6 We will chooseh such thatihiL2.1. Denoting 4/p by e, will
follow: ck

$s%5$1%<(2p)2ihiL2
2 K1(4/e) ke. Then we can conclude that:Vk(x)>2Lek

Ne, where

Le5@~2p!2ihiL2
2 K1~4/e!#NH( n50

N ua2nu
~2n!!

2nn!
~ck51

$s%5$1%/4!n2N

1(m50
N21 a2N~2N22m!

2m~2N21!
S 2m~2N21!

2N ( n5m
N

ua2n /a2Nu~2n!! ~ck51
$s%5$1%/4!n2N

~2m!!2n2m~n2m!! D N/(N2m)

1(m50
N21 a2N~2N22m21!

~2m11!~2N21!
S ~2m11!~2N21!

2N

3( n5m
N21

ua2n11 /a2Nu~2n11!! ~ck51
$s%5$1%/4!(2n11)/22N

~2m11!!2n2m~n2m!! D 2N/(2N22m21)J ~36!

and this ends the proof of the proposition. j

For the particular choice:

h1~x!5exp~21/~1/42x2!!Y E exp~21/~1/42x2!!dx, ~37!

for uxu,1/2 and zero otherwise, we found, numerically:ihiL2,2 andck51
$s%5$1%'0.276. We also

need the following result:2

Lemma 4: Let kr5er and $nr%r PZ be an increasing sequence of even integers such tha0

50. Then:

exp~22gVk~D!!<( r 50
[log k]~2gVkr

~D!22gVk~D!!nr exp~2gLekr 11
Ne 11!,

whereD is an arbitrary unit square.
Now, the theorem can be proven as follows. Letp5uYu. Then,

e22gVk(Y)5) j 51
p e22gVk(D j )

<( r j 50
[log k] ) j 51

p ~2g!nr j~Vkr j
~D j !2Vk~D j !!nr j exp~2gLekr j 11

Ne 11!. ~38!

Let us take a closer look at the expression: (Vkr j
(D)2Vk(D))nr j. From:

Vkr j
~D j !2Vk~D j !5E dy xD j

~y!(m51
2N am :f~hkr j

~y2• !!m2f~hk~y2• !!m:s

5E dy xD j
~y!(m51

2N (b50
m21 am :f~~hkr j

2hk!~y2• !!

3f~hkr j
~y2• !!bf~hk~y2• !!m212b:s , ~39!

where the above sum hasN(2N11) terms, it follows:
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@Vkr j
~D j !2Vk~D j !#

nr j5(m151
2N

¯ (mnr j
51

2N (b150
m21

¯ (bnr j
50

m21 E )n51

nr j dyn amn
xD j

~yn!

3:f~~hkr j
2hk!~yn2• !!f~hkr j

~yn2• !!bnf~hk~yn2• !!nr j
2bn21:s .

~40!

The above expression is a sum of@N(2N11)#nr j terms of the form:

E dnr jyw~y1 , . . . ,ynr j
!) n51

nr j :) i 51
mn f~jn,i~yn2• !!:s , ~41!

where

jn,i5hkr j
2hk ,hkr j

or hk , ~42!

and iwiL2(Rnr j ),1, because the coefficients ofV are less than 1. Then) j 51
p (Vkr j

(D j )

2Vk(D j ))
nr j will be a sum of) j 51

p @N(2N11)#nr j terms of the form:

R~w(1)
^ ¯^ w(p),$j%,$mn%!5E ) j 51

p dnr jy( j )w( j )~y1
( j ) , ¯ ,ynr j

( j ) !

3)n51

nr j :) i 51
mn

( j )

f~jn,i
( j )~yn

( j )2• !!:s , ~43!

where all w( j ) have: iw( j )iL2
,1, mn

( j ),2N. The number of the concentration in each squ
satisfiesNj<2Nnr j

. Now we takeu*dms(•)u of both sides of~38!. After the right part of~38! is
expanded in terms like~43!, one can apply the Wick theorem to calculate the integral of each t

Due to the normal ordering, only factors likeCs(yn
( j ) ,yn8

( j 8)) will be generated, which are bounde

by C(yn
( j ) ,yn8

( j 8)). Becausew(1)
^ ¯ ^ w(p) does not change the sign, we can boundu*dms(•)u by

u*dmC(•)u, where, in the last integral, the normal ordering is changed from :•:Cs
to :•:C . This

step is extremely important, because, as we already mentioned,Cs does not fulfill the conditions
of Ref. 2~it is not smooth!. So, it is not clear from the beginning that those bounds@like ~44!# still
apply to our situation. The above reasoning proves that they do. Then we can bound each
the expansion by Ref. 2:

U E R~w(1)
^ ¯ ^ w(p),$j%,$mn%!dmsU

,) j 51
p ~Nj !! ~M r!Nj3iw(1)

^ ¯ ^ w(p)iL2

3)n51

nr j ) i 51
mn

( j )

ijn,i
( j )i1

12ri~jn,i
( j )!˜ ~11q2!2d/4i`

r , ~44!

whereM r will be defined in Sec. V. Moreover,ihki151; ihkr
2hki1<2,

ihk

˜
~q!~11q2!2d/4i`5ih˜ ~q/k!~11q2!2d/4i`,ih˜ ~q/k!i`<ihi151. ~45!

For each (n, j ), there is one and only onejn,i
( j ) equal tohkr j

2hk , for which:
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u~hk

˜
2hkr j

˜
!~q!~11q2!2d/4u

5u~~h˜ ~q/k!2h˜ ~q/kr j
!!~11q2!2d/4!u

5u~~h˜ ~q/kr j
•kr j

/k!2h˜ ~q/kr j
!!~11~q/kr j

!2kr j

2 !2d/4!u

5u~~h˜ ~p•kr j
/k!2h˜ ~p!!~11p2kr j

2 !2d/4!u

,u~h˜ ~p•kr j
/k!2h˜ ~p!!/pd/2ukr j

2d/2

5Uh˜ ~p•kr j
/k!2h˜ ~0!

~p•kr j
/k!d/2 ~kr j

/k!d/22
h˜ ~p!2h˜ ~0!

pd/2 Ukr j

2d/2 . ~46!

For kr,k, as in the expansion above, we can conclude:

i~hk

˜
2hkr j

˜
!~q!~11q2!2d/4i`,2i~h˜ ~p!2h˜ ~0!!/pd/2i`kr j

2d/2 . ~47!

Becauseh has support in the unit square centered in~0,0!, we can use:

2~h˜ ~p!2h˜ ~0!!/pd/251/pEdxEdy h1~x!h1~y!

3~cos~p1x!cos~p2y!21!/~p1
21p2

2!d/4

<1/pE dx E dy h1~x!h1~y!

3~cos~p1x!cos~p2y!21!/~@xp1#21@yp2#2!d/4

<1/pi~cos~x!cos~y!21!/~x21y2!d/4i<1/~2p!, ~48!

for d,4. It follows:

U E e22gV(Y)dmsU<( r j 50
[log k] ) j 51

p ~2g!nr j @N~2N11!#nr j

3~2Nnr j
!! ~M r!2Nnr j~212r~1/2p!rkr j

2rd/2!nr je2gLekr j 11
Ne

11

5S ( r 50
[log k] ~2g!nr@N~2N11!#nr~2Nnr !! ~M r!2Nnr

3~2122rp2rkr
2rd/2!nre2gLekr 11

Ne
11D p

5S ( r 50
[log k] ~2222rp2rgN~2N11!M r

2N!nr~2Nnr !!kr
2rdnr /2e2gLekr 11

Ne
11D p

.

~49!

Using the following bound on factorial:n!<2en ln 2n2n, valid for any positive integer, and th
explicit expression forkr5er , we can continue:
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U E e22gV(Y)dmsU<~2e!pH( r 50
[log k] expF2Nnr ln~2Nnr !

1~ ln~2222rp2rgN~2N11!M r
2N!22N!nr

2
rd

2
rnr12gLee

Ne(r 11)G J p

, ~50!

which is uniformly bounded ink if we choose: nr52ear , for r>1, a5rd/8N and Ne
,rd/8N. Denoting:

b52N ln~4N!1 ln~2222rp2rgN~2N11!M r
2N!22N, ~51!

it follows that the constantM is given by:

M5~2e!( r 50

`
expS berdr /8N2

rd

2
rerdr /8N12gLee

Ne(r 11)D , ~52!

whererP(0,1) will be specified later.

IV. ESTIMATES ON R„ˆa‰,V…

Here we prove the estimate~12!. Again, the main purpose is to give an explicit expression
the constantsB andb. The functionswa were defined by

wa~x!5) k51
p21 C~xa1( i k , j k11)

( i k) ,xa2( i k , j k11)
( j k11)

! ~53!

and

R~wa ,v !5E :f~x1
(1)!v1

(1)
: ¯ :f~xap

(p)!vap

(p)
:wa~x1

(1) , ¯ ,xap

(p)!duaux. ~54!

Because the normal ordering with respect toCs and C of f(x)n are the same~the two
covariances have the same ‘‘diagonal’’ part!, it will follow from the same argument we hav
already applied, that

E R2~wa ,v !dms<E R2~wa ,v !dm0 . ~55!

Here it was essentially thatwa are positive functions. Further

E R2~wa ,v !dms<E R2~wa ,v !dm0

5E R~wa ^ wa ,v % v !dm0

<) j ~Nj !! ~M0!Njiwa ^ waiL2

5) j ~Nj !! ~M0!NjiwaiL2

2

<@2~2N21!dj #! ~M0!2(2N21)iwaiL2

2 ~56!

by using again the estimates2 and
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Nj52~v1
( j )1 ¯ 1va j

( j )!<2~2N21!a j<2~2N21!dj . ~57!

Proposition 5:iwiL2
2 <exp(2(k51

p21dist(D i k
,D j k11

))) j 51
p cdj .

Proof: Suppose that this is true forp. If we add another square, let sayD j in our arbitrary
order,wa will be multiplied by a term like:

)
k,i k5 j or j k115 j

C~xa1( i k , j k11)
( i k)

2xa2( i k , j k11)
( j k11)

!2. ~58!

When theL2 norm is calculated, we have an additional integral:

E d2x1
( j )

¯ d2xa j

( j ) )
k,i k5 j or j k115 j

C~xa1( i k , j k11)
( i k)

2xa2( i k , j k11)
( j k11)

!2. ~59!

Using the following bound:

E
D j

d2xC~x2x1!2
¯ C~x2xn!2<c exp~2( i 51

n dist~D j ,D i !! , ~60!

for xiPD iÞD j , D iÞD i 8 . Here,c is given by: inf*D j
d2x) i<8C(x2xi)

2, where the infimum is
taken overxi , which belongs to separate neighbors ofD j . It follows that~taking in to account that
a j<dj !:

E d2x1
( j )

¯ d2xa j

( j ) ) k,i k5 j or j k115 j C~xa1( i k , j k11)
( i k)

2xa2( i k , j k11)
( j k11)

!2

<Cdj exp~2(k,i k5 j or j k115 jdist~D i k
,D j k11

!!, ~61!

which proves that the estimate holds also forp11. It is trivial to check that the statement of th
proposition is true forp52, which finishes the induction scheme. Numerically, we foundc
50.12. j

At this stage we found the estimate:

E R~wa ,v !2dms<exp~2(k51
p21dist~D i k

,D j k11
!!) j 51

p ~cM0
2(2N21)!dj~~4N22!dj !! ~62!

Let us consider a disc with radiusr , centered in the middle of a squareD i . All the squares which
intersect this disc must lie inside the circle with radiusr 1&. The numbern of squares which
intersect the disc is less than:p(r 1&)2. Thus, for a disc with radius:r 5Adi /2p2&, there will
be n,di /2 unit squares which intersect this disc. In conclusion,@di /2#11 squares which hook
with D i must lie outside of the circle with radiusAdi /2p2&. Thus:

E R~wa ,v !2dms<exp@21/2(k51
p21dist~D i k

,D j k11
!#) j 51

p ~cM0
2(2N21)!dj~~4N22!dj !!

3exp@2dj /8~Adj /2p22& !#

5exp@21/2(k51
p21dist~D i k

,D j k11
!#

3~cM0
2(2N21)e&/4!2p22) j 51

p ~~4N22!dj !! exp@2dj
3/2/8A2p#, ~63!

by taking in account that( jdj52p22. Usually, from here, the problem is solved by taking in
account that the expression ((4N22)n)!e2n3/2/8A2p is bounded uniformly inn. Taking the prod-
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uct over j , then one has a factor (ct)p which is what we need. However, this constant is ve
large, about 10107

, which makes the estimates useless. We found that the constraint( jdj52p
22 can be used to improve the estimate in the following way. We search for a constantA, such
that

~~4N22!n!! exp@2n3/2/8A2p#e2An<a. ~64!

Then we can continue:

) j 51
p ~~4N22!dj !! exp@2dj

3/2/8A2p#<) j 51
p aeAdj5ape2A(p21). ~65!

Using again:n! ,2 exp(n ln 2n2n), one can see that the left-hand side of~64! is bounded by two
times the exponential of the following function:

f ~x!52Ax12~2N21!x ln~4~2N21!x!22~2N21!x2x3/2/8A2p. ~66!

There are two solutions forf 8(x)50:

xm,M5H 2
64~2N21!A2p

3
W0,21F 23

64~2N21!A2p
expS A22~2N21!ln~4~2N21!!

4~2N21! D G J 2

,

~67!

as long as the argument of the Lambert functionsW0,21 is greater than2e21. In this case, the two
solutions correspond to a minimum and a maximum. When the two solutions exist,f (xM) is huge.
Then the solution is to takeA large enough, such that the argument ofW0,21 becomes equal to
2e21. In this case,xm,M collapse in 0, andf becomes monotone decreasing~thus negative! and
in consequence: expf(dj)<expf(1), for dj>1 as in our case. This leads to

~~4N22!dj !!exp@2dj
3/2/8A2p#<2eAdj 1 f (1). ~68!

The constantA is given by:

A52~2N21!@15 ln 222 ln 3221 ln p13 ln~2N21!#. ~69!

The conclusion is

E R~wa ,v !2dms<BuYu/b2 expS 21/2(
k51

p21

dist(D ik ,D j k11
) D , ~70!

where:b5cM0
2(2N21)e&/41A and:B52b2ef (1).

V. ESTIMATES ON COVARIANCE

The estimates of the previous sections depend crucially on the constants:K0 , K1 , andM r . In
fact, the estimates of Ref. 2 are true only for covariances for which these constants exis
constants mentioned above are defined as follows. ConsideruPC0

`(R2) which satisfies 0<u
<1 and is identically one on$xPR2:dist(x,D)<1%, D centered in~0,0!. Also, let u j (x)5u(x
2xj ), wherexjPZ2 . Then:

Theorem 6: There exists K0(p) and K1(p,d) such that:

i~u i ^ u j !CiBp8,d
<K1~p,d!,

i~u i ^ u j !CiLp<K0~p!exp~2uxi2xj u!
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with p85p(p21)21, i f iBr ,d
5i(11q2)d/2f˜ iLr (R4) .

Remark 1:One can use anyu’s for the definition of these constants, as long as the abo
mentioned conditions are fulfilled. However, we will search for that choice ofu which gives the
lowest value of this constants.

We are mostly interested here in the explicit expression of the two constants. In cont
tinction with Ref. 7, where the result is proven by usingLp estimates, we choose here a way whi
leads to explicit expressions for the two constants. First we prove a weaker estimate whic
help us to organize the calculations.

Proposition 7: For aC 0
`(R4) functionw, there is a constant K(w) such that

~wC!˜ ~pW !<
K~w!

21p2 .

Proof: Let pW 5(p1 ,p2), p5upu, p1,25up1,2u. It follows successively:

~wC!˜ ~p1 ,p2!5
1

~2p!2 E e2 i (xp11yp2)w~x,y!C~x,y!d2xd2y

5
1

~2p!2~21p2!
E e2 i (xp11yp2)~21D4!$w~x,y!C~x,y!%d2xd2y

5
1

~2p!2~21p2!
E e2 i (xp11yp2)$C~x,y!D4w~x,y!22¹W 4w•¹W 4C

1w~21D4!C%d2xd2y. ~71!

We already can conclude that the statement is true. However, it will be useful to make a few
further:

~71!5
2

~2p!2~21p2!
E e2 i (xp11yp2)w~x,x!d2x

2
1

~2p!2~21p2!
E e2 i (xp11yp2)C~x,y!D4w~x,y!d2xd2y

1
22i

~2p!2~21p2!
E e2 i (xp11yp2)pW ¹W 4w~x,y!C~x2y!d2xd2y

5
2

~2p!2~21p2!
E e2 i (xp11yp2)w~x,x!d2x

2
1

~2p!2~21p2!
E e2 i (xp11yp2)C~x,y!D4w~x,y!d2xd2y

2
2ipk

~2p!2~21p2! H 2

21p2 E e2 i (xp11yp2)wk~x,x!d2x

2
1

21p2 E e2 i (xp11yp2)C~x,y!D4wk~x,y!d2xd2y

2
2ipl

21p2 E e2 i (xp11yp2)wkl~x,y!C~x,y!d2xd2yJ . ~72!

Expanding:
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~wC!˜ ~p1 ,p2!5
2

~2p!2~21p2!
E e2 i (xp11yp2)w~x,x!d2x

2
4ipk

~2p!2~21p2!2 E e2 i (xp11xp2)wk~x,x!d2x

2
1

~2p!2~21p2!
E e2 i (xp11yp2)C~x,y!D4w~x,y!d2xd2y

1
2ipk

~2p!2~21p2!2 E e2 i (xp11yp2)C~x,y!D4wk~x,y!

2
4pkpl

~2p!2~21p2!2 E e2 i (xp11yp2)wkl~x,y!C~x,y!d2xd2y. ~73!

In what follows,w will be of the form:w1^ w2 . Then all terms above are of the form:

E e2 i (xp11xp2)w1~x!w2~x!d2x or E e2 i (xp11yp2)w1~x!C~x,y!w2~y!d2xd2y, ~74!

which are bounded by:iw1iL2(R2)iw2iL2(R2)5iwiL2. Then we can compress the calculations
considering:

uuuwuuuJ5sup$ i %i] i 1 . . . iJ
wiL2. ~75!

Then, usingupku/(21p2)<1/(2&) and upkpl u/(21p2)<1, we can take:

K~w!5
1

~2p!2 ~2uuuwuuu018/&uuuwuuu1136uuuwuuu2116/&uuuwuuu3!, ~76!

for w as above. j

Proposition 8: There exists A1(w) and A2(w) such that

u~wC!˜ ~p1 ,p2!u<
A1~w!

~21p2!@11~p11p2!2#
1

A2~w!

~21p2!2 .

Proof: In ~73!, all terms fulfill the conditions of the last proposition. Applying the last proposit
again, it follows:

u~wC!˜ ~p1 ,p2!u<
2

~2p!2

* u~11D2!w~x,x!ud2x12upku* u~11D2!wk~x,x!ud2x

~21p2!@11~p11p2!2#
1

K~D4w!

~21p2!2

1(
k

2upkuK~D4wk!

~21p2!3 1(
k,l

4upkpl uK~wkl!

~21p2!3

<
2i~11D2!w~x,x!iL112/&(ki~11D2!wk~x,x!iL1

~2p!2~21p2!@11~p11p2!2#

1
K~D4w!

~21p2!2 1
(kK~D4wk!

&~21p2!2
1

4(k,lK~wkl!

~21p2!3

5
1

~21p2!@11~p11p2!2#
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3H 2

~2p!2 i~11D2!w~x,x!iL11
&

~2p!2 (
k

i~11D2!wk~x,x!iL1J
1

1

~21p2!2 H K~D4w!1
1

&
(

k
K~D4wk!14(

k,l
K~wkl!J . ~77!

The proposition follows, with

A1~w!5
2

~2p!2 i~11D2!w~x,x!iL11
&

~2p!2 (
k

i~11D2!wk~x,x!iL1 ~78!

A2~w!5K~D4w!1
1

&
(

k
K~D4wk!14(

k,l
K~wkl!. j

Proof of theorem 6:By definition,

iF21@~21q2!~11~q11q2!2!#21iBp8,d

p8 5E d4q
~11q2!dp8/2

~21q2!p8~11~q11q2!2!p8
, ~79!

whereF21 indicates the inverse Fourier transform. After a change of variables: (z1 ,z2)5((q1

1q2)/&,(q12q2)/&),

~79!5E ~11z1
21z2

2!dp8/2

~21z1
21z2

2!p8~11z1
2!p8

d2z1d2z2

<S E ~11z1
2!p8(d/221)d2z1D 2

5S 2pE
0

`

~11x2!p8(d/221)xdxD 2

5S p

p8~12d/2!21D 2

~80!

as long asp8(12d/2)21.0, which enforces:d,2/p. We conclude:

iF21@~21q2!~11~q11q2!2!#21iBp8,d
<@p~p21!/~12pd/2!#2(p21)/p. ~81!

Moreover:

iF21~21q2!22iBp8,d

p8 ,E ~11q2!p8(d/222)d4q5p2~p21!/~42pd!, ~82!

as long asd,4/p. Then:

i~u i ^ u j !CiBp8,d
<iA1F21@~21q2!~11~q11q2!2!#21iBp8,d

1iA2F21~21q2!22iBp8,d

<A1@p~p21!/~12pd/2!#2(p21)/p1A2@p2~p21!/~42pd!# (p21)/p. ~83!

For the second inequality, we use the first one in the following way:

i~u i ^ u j !CiLp<~2p!(224/p)i@~u i ^ u j !C#˜ iLp8<~2p!(224/p)K1~p,0!, ~84!

which is a useful estimate for smalluxi2xj u. We consideru satisfying the conditions alread
stated and suppu in the square centered in (0,0) and width 9/4. To be exact, we choose:u5u1

^ u1 with u1 the convolutiong* x [ 25/2,5/2], where:

g~x!5exp~2550/~12x2!1/100!Y E exp~2550/~12x2!1/100! ~85!
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for uxu,1 and 0 otherwise. This choice ofu seems to led to the best values ofK0,1(p). Thus, for
uxi2xj u>10&, dist~suppu i ,suppu j ).1. Then we can use the fact that, forux2yu.1, C(x,y)
<e2ux2yu to conclude that, foruxi2xj u>10&:

i~u i ^ u j !CiLp<S E ~u i~x!u j~y!!pd2xd2yD 1/p

exp~2uxi2xj u19& !

,~9/4!4/pe9& exp~2uxi2xj u!. ~86!

We can combine~84! and~86! to finish the proof. However, because we already have big num
in these estimates, we prefer to use them separately:

i~u i ^ u j !CiLp,H ~2p!(224/p)K1~p,0!foruxi2xj u,10&

~9/4!4/pe9& exp~2uxi2xj u! for uxi2xj u>10&.
~87!

j

With this particular choice ofu, the constantsA1 and A2 can be taken as 20 and 2.33104

respectively. We end this section with the expression ofM r . This constant appears in the estima
~44! and it is closely related with the above estimates. The calculations in Ref. 2 were carrie
for the most general class of covariances. Of course the covarianceC satisfies those conditions
but we can improve the estimates if we particularize the results of Ref. 2 to our concrete situ
which leads to the following expression:

M r5K1~4N,d!r/2H(
u j u,10&

j PZ2 ~~2p!(221/N)K1~4N,0!!(12r)/2

1(
u j u>10&

j PZ2 ~~9/4!1/2Ne9&!(12r)/2 exp~2uxj u~12r!/2!J , ~88!

for r,1. In the numerical estimates of the next section we taker51/2.

VI. NUMERICAL ESTIMATES AND CONCLUSIONS

The value ofgmax can be easily evaluated by using the explicit estimates given in the prev
sections, for any arbitrary polynomial. The convergence criterium~20! can be simplified by using
pp22/p! ,ep. Then the sum in~20! can be calculated explicitly. Let denote bya the right hand
side of ~20!. Then the convergence criterium reads:

64pe213&/4g~2N21!2~2N! !2Z~D!21AB M,a~A114/a21!. ~89!

Z(D)21 can be bounded by using Jensen inequality:Z(D)21<ega0. However, because the fre
term of the potential does not affect the states, we could consider from the beginning that it i
Using the explicit expression ofa andB, one can see that~90! can be further simplified:

gAM,e2 f (1)/222/~4& !~A114/a21!'e2 f (1)/222/~2a& !, ~90!

which is the formula we have used in our numerical computations. The value ofgmax depends on
N and on the ratios:am /a2N . However, for ratios less than 106, the order of magnitude forgmax

is practically the same. We present below the numerical value forgmax for different N’s.
N 2 3 4 5

gmax 10259 102104 102151 102200

Of course the estimate can be improved in many ways. First, we have used at the very beg
that: ga11 . . . 1ap<gp. However, the exponent of the right hand side takes values betweenp and
2p. This makes us think that the real value of thegmax is somewhere between the values calc
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lated in the above table and the square root of them. Also,gmax calculated above is the limit wher
the cluster expansion is absolutely convergent, because we did not take into account an
changes when we evaluated the amplitudesA(Y). Also, because we tried to cover all polynomi
interaction, our estimates can be improved if a particular polynomial is concerned. We think
in order to make a major improvement to our estimates, one has to solve somehow the pr
mentioned above.

Finally, we want to mention that the calculations exposed here can be extended, witho
much effort, to the case when a discrete symmetry is broken or to (f4)3 theory. This is currently
under investigation by the author.
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An approach to Mel’nikov theory in celestial mechanics
G. Cicognaa) and M. Santopreteb)

Dipartimento di Fisica, Universita` di Pisa, Via Buonarroti 2, Ed. B, I-56127, Pisa, Italy

~Received 26 July 1999; accepted for publication 21 October 1999!

Using a completely analytic procedure—based on a suitable extension of a classical
method—we discuss an approach to the Poincare´–Mel’nikov theory, which can be
conveniently applied also to the case of nonhyperbolic critical points, and even if
the critical point is located at the infinity. In this paper, we concentrate our attention
on the latter case, and precisely on problems described by Kepler-type potentials in
one or two degrees of freedom, in the presence of general time-dependent pertur-
bations. We show that the appearance of chaos~possibly including Arnol’d diffu-
sion! can be proved quite easily and in a direct way, without resorting to singular
coordinate transformations, such as the McGehee or blowing-up transformations.
Natural examples are provided by the classical Gylde´n problem, originally pro-
posed in celestial mechanics, but also of interest in different fields, and by the
general three-body problem in classical mechanics. ©2000 American Institute of
Physics.@S0022-2488~00!00302-9#

I. INTRODUCTION

In a previous paper,1 we discussed a completely analytic procedure—based on a sui
extension of a classical method2—to introduce the Poincare´–Melnikov theory3–5 concerning the
appearance of chaotic behavior, which can be applied even to the case where the critical
not hyperbolic. The case of nonhyperbolic stationary points has been already considered b
eral authors, although with quite different methods or in different contexts; we mention here
6–11; some other references, more strictly related to our arguments, will be given in the fo
ing. In Ref. 1, we have also shown that our procedure may work even in some problems wh
critical point is locatedat the infinityof the real line, as occurs in the case of the classical Sitni
problem.12

In this paper, we want first of all to reconsider and refine this approach, concentratin
attention precisely on problems described by Kepler-type potentials, in the presence of
dependent perturbations of a very general form. An example is provided by the classical G´n
problem originally proposed in celestial mechanics, but also of interest in different fields~see Ref.
13!. We shall then extend this procedure to problems with 2 degrees of freedom and
presence of rotational symmetry, and show that the appearance of chaos~possibly including
Arnol’d diffusion14! can be proven quite easily and in a direct way, without resorting to sing
coordinate transformations, such as the McGehee transformations.15

Natural examples are provided by the general planar three-body problem in cla
mechanics.16–18

Let us remark that, although our procedure is quite general, we shall consider here—f
sake of definiteness and clarity—only the case of the Kepler potentialV(r )51/r . From the
following discussion it will appear completely clear that the method can be easily applied—
suitable minor adjustments—to different classes of problems, for instance to problems whe
Kepler potential is replaced by another ‘‘long range’’ potential, as, e.g.,V;1/r b.

a!Electronic mail: cicogna@difi.unipi.it
b!Present address: Department of Mathematics and Statistics, Victoria B.C., Canada. Electronic

msantopr@math.uvic.ca
8050022-2488/2000/41(2)/805/11/$17.00 © 2000 American Institute of Physics
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II. THE GYLDÉN-TYPE PROBLEMS

We start considering a 2-degrees of freedom problem described by a Hamiltonian of the

H5
1

2
p22

1

r
1eW~r ,t !, ~1!

wherep[(p1 ,p2), i.e., a standard~planar! Kepler problem plus a smooth perturbationeW(r ,t).
This problem can be easily reduced to a two-dimensional dynamical system for the two var
r, ṙ , and for this reason we shall treat first this case, not only for better illustrating our proce
but also in view of some direct and interesting applications, which include the classical G´n
problem.13

Consider the ‘‘parabolic’’ solution of the unperturbed (e50) problem~1!, which plays here
the role of the homoclinic solution corresponding to the critical point at the infinity, i.e.,r 5`,
ṙ 50; it satisfies the equations

ṙ 56
A2r 22k2

r
, u̇5

k

r 2 , ~2!

wherekÞ0 is the~constant! angular momentum, and the sign2 ~resp.1! holds for t,0 ~resp.
t.0). From~2! one gets

6t5
k21r

3
A2r 2k21const, u562 arctan

A2r 2k2

k
1const. ~3!

Let us denote by

R5R~ t ! and U5U~ t !, ~4!

the expressions giving the dependence ofr and ofu on the timet which are obtained ‘‘inverting’’
Eq. ~3! with the conditionsR(0)5r min5k2/2 andU(0)5p ~let us emphasize that it isnot nec-
essary, for our purposes, to have the explicit form of these functions!. It will be useful only to
remark thatR(t) is an even function andU(t) is a odd function of time. The choiceU(0)5p
corresponds to select the solution describing the parabola with axis coinciding with thex1 axis and
going to infinity whenx1→1`; the whole Hamiltonian~1!, including the perturbationW(r ,t), is
rotationally invariant, and therefore this choice is clearly not restrictive. We refer to the
section, where we shall consider symmetry-breaking perturbations, for some comment o
aspect.

The first point is now to find the negatively and positively asymptotic sets to the critical p
r 5`, ṙ 50 in the presence of the perturbationeW(r ,t); notice that this point would in fac
correspond to the critical pointx5y50 under the McGehee’s singular coordina
transformation,12,13,15

r 5
1

x2 , ṙ 5y, dt5
1

x3 ds, ~5!

but, instead of using this transformation~which usually requires quite cumbersome calculation!,
we introduce a direct method similar to the classical one used in Ref. 2~see also Ref. 1!. Precisely,
we want to show that some natural assumptions on the perturbationW(r ,t) may guarantee no
only the existence of smooth solutions approachingr 5`, ṙ 50 for t→6`, playing in this
context the role of stable and unstable manifolds of the critical point at the infinity, but als
possible presence of infinitely many intersections of these asymptotic sets on the Poinca´ sec-
tions.

It is important to remark that the critical point at the infinity is clearly not a hyperbolic po
and therefore the standard results of perturbation theory valid for hyperbolic points cann
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applied here. In particular, in order to be granted that the perturbation will preserve the prop
the point at the infinity of being a critical equilibrium, we have to impose that the perturba
vanishes at the infinity. We shall give the precise rate of this vanishing in the following@see Eq.
~18! below#.

Let us write problem~1! in the form

r̈ 5
k2

r 32
1

r 22e
]W~r ,t !

]r
, ~6!

and let us look for solutionsr (t) of the perturbed problem~6! ‘‘near’’ the family of the ho-
moclinic orbitsR(t2t0); we then put~see Ref. 2!

r 5R~ t2t0!1z~ t2t0!. ~7!

Inserting into~6! ~with the time shiftt2t0→t!, we obtain

z̈1S 3k2

R4 2
2

R3D z5G~z~ t !,t1t0!, ~8!

where the r.h.s.~which we will shortly denote byG(t,t0)! is given by

G~ t,t0![2e
]W~R~ t !,t1t0!

]r
1higher order terms inz~ t !. ~9!

Consider the homogeneous equation obtained puttinge50 in ~8!; one solution is clearlyṘ(t),
another independent solutionc(t) can be constructed with standard methods~see, e.g., Ref. 19! or
by direct substitution; these two solutions have a different behavior fort→6`, precisely,

Ṙ~ t !;utu21/3→0 and c~ t !;utu4/3→`. ~10!

As well known, the general solutionz(t) of the complete~nonhomogeneous! Eq. ~8! can be
written in the following integral form, withA,B arbitrary constants andt1 arbitrarily fixed,2,19

z~ t !5AṘ~ t !1Bc~ t !2Ṙ~ t !E
t1

t

c~s!G~s,t0!ds1c~ t !E
t1

t

Ṙ~s!G~s,t0!ds. ~11!

Let us now look for solutionsz(2)(t) ~and resp.z(1)(t)! of ~11! with the property of being
bounded fort→2` ~resp.t→1`!; these will provide solutions

r ~6 !~ t !5R1z~6 !

of ~6! which belong, by definition, to the unstable and stable manifolds of the pointr 5`, ṙ
50. From~11!, we have then to require that the two quantities

c~ t !S B1E
t1

t

Ṙ~s!G~s,t0!dsD and Ṙ~ t !S A2E
t1

t

c~s!G~s,t0!dsD ~12!

remain bounded ast→2` when looking for ther (2) solutions, and resp. ast→1` for the r (1)

solutions.
Consider now the linearization of the problem~11! around the solutionz(t)[0; this amounts

in particular to deleting the higher-order terms in the expression ofG in ~9!. Taking also into
account the different behavior given in~10! of the two fundamental solutionsṘ(t) andc(t), it is
easy to see that the above conditions on the quantities~12! are simultaneously satisfied both
t52` and att51` if for some t0 the following Mel’nikov-type condition:
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E
2`

1`

Ṙ~ t !
]W~R~ t !,t1t0!

]r
dt[M ~ t0!50 ~13!

is fulfilled, together with the additional one, i.e., that the quantity

Ṙ~ t !E
t1

t

c~s!
]W~R~s!,s1t0!

]r
ds ~14!

is bounded ast→6`. Once these conditions are satisfied, one can conclude that, as a c
quence of the implicit-function theorem2 ~or also thanks to a suitable version of the Lyapuno
Schmidt procedure, see, e.g., Ref. 20!, there exists a smooth and bounded solution of~8!.

Let us now discuss the two above conditions~13!–~14!.
The first one is identical to the usual Mel’nikov condition obtained under the standar

sumption that the critical point is hyperbolic;3–5 Eq. ~13! can therefore be viewed as an extensi
of the classical Mel’nikov formula to the present ‘‘degenerate’’ case, in which the critical poi
at the infinity. Let us now assume that the perturbationW(r ,t) is a smooth function, periodic in
the timet, with arbitrary periodT ~it is not restrictive to assumeT52p! and zero mean-valued

E
0

2p

W~r ,t !dt50. ~15!

Then one can consider its Fourier expansion,

W~r ,t !5 (
n51

`

~An~r !cosnt1Bn~r !sinnt! ~16!

and~thanks to the parity of the functionR(t)! write down the Mel’nikov functionM (t0) defined
in ~13! in the form

M ~ t0!5 (
n51

`

~an cosnt01bn sinnt0!, ~17!

where

an5E
2`

1`

Ṙ~ t !
dAn~R~ t !!

dr
sinntdt, bn5E

2`

1`

Ṙ~ t !
dBn~R~ t !!

dr
sinntdt. ~178!

From this expression, one can immediately conclude that the functionM (t0), being a smooth
periodic function with vanishing mean value, must certainly possess zeros, thus fulfilling con
~13!.

For what concerns the second condition, which requires the boundedness of~14! and which
appears here to compensate the lack of the ‘‘exponential dichotomy’’ peculiar of the hype
case, a simple estimate of the behavior asutu→` of the integral in~14!, using~10! and~16!, and
recalling from~3! that R(t);utu2/3 as utu→`, shows that it is sufficient to assume that the qua
tities An(r ), Bn(r ) in the expansion~16! vanish asr→` according to

An~r !;
an

r d , Bn~r !;
bn

r d , with d.1/2 ~18!

in order to be granted that the above condition on~14! is satisfied. It can be noticed that the sam
condition~18! would also guarantee that under the McGehee transformation12,13,15~5!, the pertur-
bation is not singular atx50.
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Changing now the point of view, and considering the Poincare´ sections of ther (2) and r (1)

solutions, the above arguments show that, once conditions~13!–~14! are satisfied, there occurs
crossing of the negatively and positively asymptotic sets on the Poincare´ section. One usually
imposes at this point that the zeros of the Mel’nikov function~13! are simple zeros, i.e., that

]M

]t0
Þ0 ~19!

which ensures the transversality of the intersections, recalling that the functionM (t0) expresses
the signed distance between the intersecting manifolds.4,5 Actually, it can be noted that it is no
strictly necessary to impose this condition, indeed—according to an interesting and useful
by Burns and Weiss21—it is sufficient that the crossing is ‘‘topological,’’ i.e., roughly, that the
is really a ‘‘crossing,’’ from one side to the other. But in our case this is certainly satis
becauseM (t0), being a smooth periodic and zero mean-valued function, must necessarily c
sign ~see also Ref. 22 for a careful discussion on nontransversal crossings!. Using then standard
arguments, which are not based on hyperbolicity, thanks to the periodicity of the perturbatio
immediately deduces2,4,5,21that there is an infinite sequence of intersections, leading to a situ
similar to the usual chain of homoclinic intersections typical of the homoclinic chaos.

The presence of such infinitely many intersections is clearly reminiscent of the chaot
havior expressed by the Birkhoff–Smale theorem in terms of the equivalence to a sym
dynamics described by the Smale horseshoes. Actually, this theorem cannot be directly use
present context because its standard proof is intrinsically based on hyperbolicity proper4,5

However, several arguments can be invoked even in the present ‘‘degenerate’’ situation. F
all, for the case of degenerate critical points at the infinity, we can refer to the classical argu
used in Ref. 12, and reconsidered by many others~see, e.g., Refs. 13, 16, 23!. More specifically,
see Ref. 24, where an equivalence to a ‘‘nonhyperbolic horseshoe’’ has been proven, in wh
contracting and expanding actions are not exponential but ‘‘polynomial’’ in time. Let us
notice, incidentally, that the presence of Smale horseshoes and of a positive topological e
has been proven by means of a quite general geometrical or ‘‘topological’’ procedure21 which
holds, in the presence of area-preserving perturbations, even in cases of nonhyperbolic equ
points ~i.e., not only in the case of degenerate critical points at the infinity, see Refs. 1,!.
Alternatively, in the general situation, one may possibly resort to the method of ‘‘blowing-
devised to investigate the properties of nonhyperbolic singularities by means of suitable ch
of coordinates.26,27

Finally, for what concerns the regularity of the solutions and of the asymptotic sets, s
particular, Refs. 23–25, 28.

Summarizing, we can state the following:
Proposition 1: Consider a Kepler-type problem as in (1), and assume that the perturb

W(r ,t) is a smooth time-periodic function with zero mean value (16). Assume that it vanishe
r→` in such a way that (18) are satisfied. Then there is a chaotic behavior of the solu
induced by a chain of infinitely many intersections in the Poincare´ section of the negatively an
positively asymptotic sets of the critical point at the infinity.

Let us conclude this section with the obvious remark that the case of the Gylde´n problem, for
which the perturbation is given by

W~r ,t !5
m~ t !

r
, ~20!

wherem(t) is a periodic function, satisfies all the above assumption and therefore exhibits c
behavior.13 The above discussion then generalizes this result to a larger class of problem
under weaker assumptions.
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III. PROBLEMS WITH 2 DEGREES OF FREEDOM

We now consider the case of planar Kepler-type problems as in~1! but in the presence o
perturbations of the more general formW5W(r ,u,t),

H5
1

2
p22

1

r
1eW~r ,u,t ![H01eW~r ,u,t !. ~21!

In this case the reduction of the problem as performed in Sec. II is no longer possible, and w
to handle the four variablesx1 ,p1 ,x2 ,p2 ~or r , ṙ ,u,u̇!. The first point to be remarked is that th
degeneracy of the critical point at the infinity,r 5`, ṙ 50, appears now even worse than befo
indeed we have here a ‘‘continuous family of points at the infinity,’’ due to the arbitrarity of
angle u; more precisely, the homoclinic manifold, i.e., the set of solutions of the unpertu
equation which are doubly asymptotic tor 5`, ṙ 50, is given here, for each fixed valuekÞ0 of
the angular momentum, by the two-dimensional manifold described by the family of parabo
equationsr 5R(t2t0), q5U(t2t0)1u0 , whereR(t), U(t) have been defined in Sec. II~see
~3!–~4!!, with arbitraryt0 ,u0 , or—in Cartesian coordinatesu[(x1 ,p1 ,x2 ,p2)—by

x[x~u0 ,t2t0![~R~ t2t0!cos~U~ t2t0!1u0!,

Ṙ~ t2t0!cos~U~ t2t0!1u0!2R~ t2t0!U̇~ t2t0!sin~U~ t2t0!1u0!,

R~ t2t0!sin~U~ t2t0!1u0!, ~22!

Ṙ~ t2t0!sin~U~ t2t0!1u0!1R~ t2t0!U̇~ t2t0!cos~U~ t2t0!1u0!).

In order to find conditions ensuring the occurrence of intersections of stable and unstable
folds for the perturbed problem, we follow a similar~suitably extended! procedure as in Sec. II
We first look for smooth solutions near the homoclinic manifold~see Sec. II; here, clearly,z
[(z1 ,z2 ,z3 ,z4)!

u5x~u0 ,t2t0!1z~u0 ,t2t0! ~23!

of the problem, which we now write in the form

u̇5J¹uH[F~u!1eJ¹uW ~24!

~J being the standard symplectic matrix!. Linearizing the problem along an arbitrarily fixed sol
tion x(u0 ,t2t0) in the family ~22!, we get the following equation forz(t):

ż5A~u0 ,t !z1G~u0 ,t,t0!, ~25!

where

A~u0 ,t !5~¹uF !~x~u0 ,t !!, ~26!

and

G~u0 ,t,t0!5eJ~¹uW!~R~ t !,U~ t !1u0 ,t1t0!. ~27!

All the solutionsz(t) of ~25! are given by~cf. Ref. 19; when not essential, the dependence
u0 ,t0 will be sometimes dropped, for notational simplicity!

z~ t !5zh~ t !1F~ t !E
t1

t

F21~s!G~s!ds, ~28!
                                                                                                                



ndard
for

the
ition
.

ng

to the
nd 31

811J. Math. Phys., Vol. 41, No. 2, February 2000 An approach to Mel’nikov theory . . .

                    
wherezh(t) is any solution of the homogeneous linear problem,

ż5A~u0 ,t !z, ~29!

and F is a fundamental matrix of solutions of~29!. There are certainly two solutions of~29!,
which are bounded for anytPR ~and vanish fort→6`!, namely

]x

]t
and

]x

]u
~30!

as one may easily verify~this also follows from general arguments29,30!. As seen in Sec. II, due to
the degeneracy of the critical point, instead of the exponential dichotomy, typical of the sta
hyperbolic case, we now get a power behaviorutus of the solutions, but the general arguments
controlling the behavior for largeutu of the solutionsz(t) in ~28! can still be used. Precisely~cf.
Ref. 29!, observing also that, for Hamiltonian problems, the matrixF21J is the transposed of a
fundamental matrix of solutions of the same problem~29!, one deduces from~28! and ~30! that
there exist bounded solutions of~25!, both for t→1` and for t→2`, if the two following
conditions are satisfied~cf. Refs. 29, 30!:

E
2`

1`S ]x~u0 ,t !

]t
,¹uW~R~ t !,U~ t !1u0 ,t1t0! Ddt[M1~u0 ,t0!50 ~31!

and

E
2`

1`S ]x~u0 ,t !

]u
,¹uW~R~ t !,U~ t !1u0 ,t1t0! Ddt[M2~u0 ,t0!50, ~32!

where~•, •! stands for the scalar product inR4. Proceeding just as in Sec. II, we assume that
perturbationW(r ,u,t) is a smooth time-periodic function, and we still assume to hold a cond
analogous to~18! in order to guarantee the boundedness ofz(t) at t56`, as already discussed
The above conditions~31!–~32! can be more conveniently rewritten in the following form, usi
~22!:

M1~u0 ,t0!5E
2`

` F Ṙ~ t !
]W~R~ t !,U~ t !1u0 ,t1t0!

]r
1U̇~ t !

]W~R~ t !,U~ t !1u0 ,t1t0!

]u Gdt50,

~33!

M2~u0 ,t0!5E
2`

1` ]W~R~ t !,U~ t !1u0 ,t1t0!

]u
50. ~34!

It can be significant to remark here that it is easy to verify that these conditions are identical
Mel’nikov conditions for the appearance of homoclinic intersections given e.g., in Refs. 5 a
in the standard hyperbolic case and deduced by means of a different procedure, namely,

E
2`

1`

~¹uH0 ,J¹uW!~x~u0 ,t !,t1t0!dt5E
2`

1`

$H0 ,W%~x~¯ !!dt50 ~35!

and

E
2`

1`

~¹uK,J¹uW!~x~u0 ,t !,t1t0!dt5E
2`

1`

$K,W%~x~¯ !!dt50, ~36!
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whereH0 is the unperturbed Hamiltonian, andK5x2p12x1p2 is the angular momentum~which
is indeed a constant of the motion forH0!. We can then say that, again and apart from
additional condition~18!, just as in Sec. II, our procedure provides an extension of these form
to the nonhyperbolic degenerate case we are considering here.

Notice also that, as a consequence of the vanishing of the perturbationW at t56`, the first
Mel’nikov condition ~33! can be written in the simpler form,

M1~u0 ,t0!5E
2`

1` ]W~R~ t !,U~ t !1u0 ,t1t0!

]t
dt50, ~338!

where clearly the derivative]/]t must be performed only with respect to the explicit tim
dependence ofW.

It is also clear that, when the perturbation is independent ofu, as in the cases considered
Sec. II, one consistently gets that the first condition~33! becomes just~13!, whereas the secon
one ~34! is identically satisfied.

Let us now introduce the ‘‘Mel’nikov potential’’W5W(u0 ,t0) ~cf. Ref. 32!, corresponding
to the perturbationW(r ,u,t),

W~u0 ,t0!5E
2`

1`

W~R~ t !,U~ t !1u0 ,t1t0!dt, ~37!

then one gets from this definition and from~338!–~34!,

M1~u0 ,t0!5
]W
]t0

50, M2~u0 ,t0!5
]W
]u0

50. ~38!

In other words, the two Mel’nikov conditions are equivalent to the existence of stationary p
for the Mel’nikov potentialW(u0 ,t0). On the other hand,W is a smooth doubly-periodic func
tion, and such a function certainly possesses pointsū0 , t̄ 0 where the two partial derivatives in~38!
vanish, and this implies that the two conditions~338!–~34! are certainly satisfied.

Now, exactly the same arguments~and with analogous remarks! presented in Sec. II show tha
the vanishing of the Mel’nikov functions entails the presence of a complicated dynamics
duced by the chain of the infinitely many intersections of the asymptotic sets, see, e.g., Refs
28 for a detailed description of this ‘‘multidimensional’’ case.

In this context, we can also consider the appearance of Arnol’d diffusion.14,33 Indeed, the
integrals of the Poisson brackets appearing in the Mel’nikov condition~35!–~36! give precisely
the total amount of the ‘‘variations’’ produced by the perturbation, fromt52` to t51`, to the
quantitiesH0 andK along the homoclinic solutionx. Proceeding in a similar way as in Ref. 14, w
can now look for the intersections of the asymptotic sets corresponding respectively fort→2`
and fort→1` to differentvaluesk1 andk2 of the angular momentumK. Observing that for both
these solutions the energyH0 is the same,H050, then—following a by now classical idea14—the
above Mel’nikov conditions must be replaced by conditions of the form,

M1~u0 ,t0!50, M2~u0 ,t0!1k12k250, ~39!

and, exactly as in Ref. 14, the conclusion is that, foruk12k2u small enough, intersections occu
even from homoclinic solutions corresponding to different values ofK. This argument is then
consistent with the occurrence of Arnol’d diffusion; actually, a complete argument would n
sitate a consideration of the role played, in the present ‘‘degenerate’’ situation, by the
‘‘nonresonance’’ conditions; anyway, we point out that, in the same situation, i.e., in the ca
general three-body problem, but using a different approach, the occurrence of Arnol’d diff
has been discussed in great detail by Xia.17,18 On the other hand, it is also known that th
phenomenon of Arnol’d diffusion requires a quite delicate treatment; see Ref. 34 for a com
dium of facts, remarks, related questions, and for a list of relevant references on this poin
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Let us remark incidentally that the introduction of the above Mel’nikov potentialW would be
in general impossible if the perturbation is not Hamiltonian, i.e., if the problem~24! has the form
of a general dynamical system,

u̇5J¹uH01eg~u,t ![F~u!1eg~u,t !, ~40!

where the perturbing termg(u,t) ~or g(r , ṙ ,u,u̇,t)! is ‘‘generic.’’ Then in this case the abov
arguments cannot be repeated, and in particular the two Mel’nikov conditions, which can n
written in the general form,

M1~u0 ,t0!5E
2`

1`

~¹uH0 ,g!~x~u0 ,t !,t1t0!dt50, ~41!

M2~u0 ,t0!5E
2`

1`

~¹uK,g!~x~u0 ,t !,t1t0!dt50, ~42!

give two ‘‘unrelated’’ restrictions onu0 ,t0 , and one then remains with the problem of discover
if there are or not someū0 , t̄ 0 which satisfy simultaneously both these conditions.

We can then summarize the above discussion in the following form:
Proposition 2: Let us consider a perturbed Kepler problem with Hamiltonian (21), wher

is a smooth, time-periodic function, vanishing at the infinity according to (18). Then, there
chaotic behavior (possibly giving rise also to Arnol’d diffusion), induced by an infinite sequ
of intersections in the Poincare´ section of the negatively and positively asymptotic sets of
critical point at the infinity. In the case where the perturbed problem has the form (40) w

non-Hamiltonian perturbation g(u,t), the same result is true if there are someū0 , t̄ 0 satisfying
simultaneously the two conditions (41)–(42).

IV. SOME APPLICATIONS AND FINAL REMARKS

We shortly consider here some applications of the discussion presented in Sec. III.
As a first particular case, assume that the perturbationW(r ,u,t) is of the form

W5W~r ,au1bt!, ~43!

wherea, b are arbitrary constants~the constanta should be clearly an integer, andbÞ0!, then the
two conditions~338!–~34! actually coincide; observing on the other hand that the Fourier ex
sion of such aW is a series as in~16! in terms of the single variableau1bt, then these two
conditions take the same form as in~17!, and the Mel’nikov function is a smooth periodic functio
of au01bt0 , leading thus directly to the same conclusions obtained above for what concer
existence of zeros, and of their properties as well~it is really not a restriction to assume thatW is
zero mean-valued, cf. Ref. 13!.

A specially important example of this situation is provided by the restricted circular th
body problem, in this case indeed the perturbation is given by16

W5
1

r
2

cos~u2t !

r 2 2
1

A11r 212r cos~u2t !
, ~44!

and therefore just one condition has to be considered. The presence of the chaos produce
chain of intersections of the asymptotic sets then is automatically granted by our discu
Notice that the above expression~44! is actually the first-order expansion of the full potential
terms of the parametere ~which in this case is given by the mass ratiom between two celestia
bodies!, but also the exact expression of this potential, as given in Ref. 16, is in fact a functi
u2t only.
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It is completely clear that, in the presence of a more general perturbation, e.g., of the
~just to give an example!

W~r ,u,t !5W~1!~r ,u2t !1W~2!~r ,u1t !,

one now obtains two different Mel’nikov conditions, and the presence of a chaotic beh
follows from the existence of simultaneous solutionsū0 , t̄ 0 , which is ensured by the argumen
shown in Sec. III.

The above results hold essentially unchanged if the perturbation depends on two~or more!
parameterse1 ,e2 ,..., i.e., if one assumes thatW may be written in the form~cf. Ref. 29!,

W5e1W~1!~r ,u,t !1e2W~2!~r ,u,t !1¯ . ~45!

A natural example is provided by the planar three-body problem, where one has to deal,
more general elliptic case, with a quite complicated expression of the perturbation containing
parameters~different masses and eccentricity17,18!. Let us remark, however, that, at least in t
simpler case of restricted elliptic problem, in which one has two parameters~e15m is one mass
ratio ande25e the eccentricity!, the perturbation cannot be written as in the above ‘‘first-orde
form ~45!, but rather it takes the form17

W5m~W~1!~r ,u,t !1eW~2!~r ,u,t !! ~46!

in which the eccentricity plays the role of a ‘‘second-order’’ perturbation. On the basis o
previous arguments, we can just say that the presence of zeros of the Mel’nikov functio
obtained above for the circular casee25e50, cannot be destroyed by the higher-order pertur
tion due to the eccentricity, and therefore chaos should be expected to persist in the ellipti
whereas Arnol’d diffusion should appear as a second-order effect. A complete study of the g
three-body problem, and a full discussion of its chaotic properties, including the appeara
Arnol’d diffusion, together with several other dynamical features, is given in Refs. 16–18.
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A systematic numerical study of the classical solutions to the combined system
consisting of the Georgi–Glashow model and the SO~3! gauged Skyrme model is
presented. The gauging of the Skyrme system permits a lower bound on the energy,
so that the solutions of the composite system can be topologically stable. The
solutions feature some very interesting bifurcation patterns, and it is found that
some branches of these solutions are unstable. ©2000 American Institute of
Physics.@S0022-2488~00!01102-6#

I. INTRODUCTION

The physical motivation of the present work is to set the framework for a semiclas
approach to describing the mechanism of monopole catalysis of baryon number decay, pr
by Rubakov1 and Callan.2 Here we are led by the work of Callan and Witten,3 where the baryon
is described as the soliton of the Skyrme4 model, in the background of the U~1! Maxwell field of
a monopole in the Dirac gauge. In the present work, the baryon is again described by a Sky
which in this case interacts with the full SO~3! non-Abelian Higgs model~the Georgi–Glashow
model! so that the Skyrmion we consider is gauged with the full SO~3! group and interacts with
the ’tHooft–Polyakov monopole.5 We will refer to this model as the monopole-Skyrmion mod
~MSM!.

The most important difference between the present work and that of Ref. 3 is that he
havetwo distinct topological charges—the first being the baryon number of the Skyrmion an
second, the monopole charge. The energy of our composite system therefore has a top
lower bound consisting of a combination of these two charges of rather different geom
natures, the baryon charge being adegreewhich cannot be expressed as a total divergence w
the monople charge is aflux by virtue of being descended from the second Chern–Pontry
class.

The most important feature of describing the interaction of the Skyrmion with the gauge
in our monopole-Skyrmion model is the prescription of gauging the Skyrme field with the d
onal SU~2!. This prescription was introduced in Ref. 6 for the gauged Skyrme model, wher
Higgs field and Higgs potential are present, and the resulting solutions were studied in Refs
8. Most importantly, this gauging permits a lower bound on the energy of the gauged Sky
unlike in the case when the usual gauging is from the left, e.g., in Ref. 9 where there is no
bound. In this paper, we shall refer to the models arising from the gauging prescription u

a!Electronic mail: Kleihaus@stokesl.thphys.may.ie
8160022-2488/2000/41(2)/816/19/$17.00 © 2000 American Institute of Physics
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Ref. 6 as gauged Skyrme models~GSM!. Since the topological lower bounds for the GSMs we
presented in detail in Refs. 6 and 7, and because all that we need to know here is that thes
we do not discuss them further here.

Now the presence of a topological lower bound is not a sufficient condition for the exis
of a topologically stable soliton. To illustrate this we refer to the graph of the energy ve
Skyrme coupling constant in Fig. 1 for the GSM studied in Refs. 7 and 8. Without being m
ematically rigorous one can suppose that the branchesAgS andBgS correspond to solutions, which

form local minima of the energy functional, whereas the connecting branchÃgS corresponds to
solutions which form saddle points.

The bifurcation structure in Fig. 1 is quite different from that appearing in models wher
Skyrme field is gauged as in Ref. 9 without a topological lower bound. The corresponding
to Fig. 1 in that case is given in the work of Ref. 10 featuring only two branches as opposed
three in Fig. 1. Of these two branches10 only one corresponds to stable solutions, as expected f
the work of Ref. 11. Thus a butterfly pattern of bifurcations with two stable branches seems
typical of GSMs with topological lower bounds. We will find in our study of the monopo
Skyrme model that the butterfly of Fig. 1 persists for some range of the parameters in the m

Having already presented the lower bound on the energy of monopole-Skyrme model i
8, we do not repeat it here and proceed straight away to the study the solutions numericall
a view to exposing some of their qualitative features that may be of some physical interes
model we employ here is a slightly modified version of the one in Ref. 8. It features a part
interaction term between the Higgs field and the chiral field in such a way that it also fixe
asymptotic values of the chiral field subject to the finite energy condition, and assuring in
baryon number. In Sec. II we present the model, discuss its spectrum, and discuss some
properties which will become pivotal in the subsequent numerical analysis. In Sec. III, we s
the system to spherical symmetry and give the classical equations to be integrated, the d
numerical results of which we give in Sec. IV. In Sec. V we analyze the normal modes o
radial fluctuations around the solutions to the MSM, characterized by those values of the p
eters for which the solutions display butterfly bifurcations, and verify that indeed the bran

corresponding toÃgS are unstable. A summary and discussion of our results are given in Sec

FIG. 1. The energy of the gauged Skyrmion as a function ofk in the region of the bifurcation.
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II. THE MODEL

The Lagrangian of the monopole-Skyrme model is given by

2L@A,F,U#5E S 1

2g2 Tr$FmnFmn%1
1

4
Tr$DmFDmF%1

l̃

2
Tr$~F22h2!2%

2
f p

2

4
Tr$DmUU†DmUU†%2

k̃2

8
Tr$@DmUU†,DnUU†#

3@DmUU†,DnUU†#%1V~F,U ! D d3r ~1!

with

V~F,U !5
g̃pF

2 f p
2

4
TrH F22F1

4
~$F,U%1$F,U†%!G2J . ~2!

The field strength tensor of the su~2! gauge potentialAm5Am
a (ta/2) is defined as

Fmn5]mAn2]nAm1 i @Am ,An#, ~3!

and the covariant derivatives for the Higgs fieldF5fata and the chiral matrixU5exp$ipa ta% are
defined as

DmF5]mF1 i @Am ,F#, ~4!

DmU5]mU1 i @Am ,U#, ~5!

respectively.g denotes the gauge coupling parameter,l the strength of the Higgs potential,h the
norm of the vacuum expectation value of the Higgs field,f p the pion decay constant, andk the
Skyrme coupling parameter. The parametergpF characterizes the direct coupling between t
Higgs boson and the chiral matrix.

The first three terms in~1! are the familiar Georgi–Glashow model which is characterized
the scaleh. The next two terms are the Skyrme model with covariant derivativesDmU allowing
for an interaction of the chiral matrix with the gauge potential. The first of these terms introd
another scale,f p . The last termV(F,U) describes a direct coupling of the chiral matrix with th
Higgs field, on which we will comment later.

The Lagrangian~1! is invariant under local SU~2! gauge transformationsg,

Am→gAmg211 i ]mgg21,

F→gFg21,

U→gUg21.

The vacuum of the theory is given by the following constant configuration;

Am[0, F[ht3 , U[1. ~6!

In order to identify the particle content of the model we expand around the vacuum,

Am5dam
a ta

2
, F5ht31dfata , U5S 12

dpadpa

2 D1 idpata , ~7!
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and insert into the equation of motion obtained from the Lagrangian~1!. Neglecting quadratic
terms indam

a , dfa, anddpa we find

]m]mdpa5g̃p
2 h2dpa, a51,2,3,

]m]mdf354l̃h2df3,

]m]mdan,350,

]m]mdān,a5g2h2dān,a, a51,2,

where we have defineddām
a 5dam

a 1(1/h)]mdfbea3b , and used the gauge fixing condition
]mdam,350 and]mdām,a50 for a51, 2. Thus we find for the masses of the gauge field, the ch
field, and the Higgs field,

mA5gh, mp5g̃pFh, mh52Al̃h, ~8!

respectively.~We take all parametersg, g̃pF , h, l̃ to be positive!. Clearly, the mass of the chira
field stems form the interaction term of the chiral matrix with the Higgs field, which breaks
chiral symmetry. However, the spontaneous symmetry breaking does not lead to a mass s
for the chiral fields.

In the following we will motivate the potential term~2! for the Higgs field and the chira
matrix. First consider the model without the potential term. From the finite energy condition
find for the chiral field and the Higgs field in the limitr→`,

DmF→0, DmU→0. ~9!

Let us assume that this condition is fulfilled for the radial component of the covariant deriva
and concentrate on the angular components. We decompose the Higgs field and the chira
in the form

F5hf̂, f̂5f̂ata with f̂af̂a51,
~10!

U`5cosf 11 i sin f û, û5ûata with ûaûa51,

respectively, whereh, f̂a and f, ûa are functions of the variablesr, u, w.

From the finite energy conditions it follows that at infinityuhu5h, f `5const. However,f̂a

and ûa may still be functions of the angular variablesu, w. The conditions~9! now become

DaF`5~]af̂1 i @Aa ,f̂# !u`50, DaU`5sin f `~]aû1 i @Aa ,ū# !u`50, ~11!

wherea5u,w. The first condition can be fulfilled withAau`5(( i /2)]af̂f̂1Aa
(f)f̂)u` , where

Aa
(f) is some function ofu, w. The second condition can be fulfilled either withf `50 or with

Aau`5(( i /2)]aûû1Aa
(u)û)u` , whereAa

(u) is again some function ofu, w. If the latter condition is
fulfilled, f ` may take arbitrary values. Hence, these configurations can be deformed continu
into configurations with trivial chiral matrix.

In order to avoid this problem we have introduced the potential~2! into the Lagrangian. Using
the general decomposition~10! the potential can be written asV(F,U)5 1

2 g̃pF
2 f p

2 h2 sin2 f, i.e., it
couples the modulus of the Higgs fielduhu and the chiral functionf, and does not depend on th

‘‘phases’’ f̂a,ûa. Consequently, the masses for the chiral fields, introduced by the potent
infinity, do not depend on the direction of the Higgs field in isospace. Furthermore, the
energy condition now forcesf `5np, wheren is an integer.
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The sum of the potentials in~1! has global minima atuhu5h, f 5np, and the matrix of the
second variations has only non-negative eigenvalues at the global minima, provided the
etersl and g̃pF

2 are positive.
In order to study the consequences of the two scalesf p andh we will take two points of view.

First we will fix f p and express all dimensionful quantities in units off p . Equivalently, we can fix
h and express all dimensionful quantities in units ofh. In each case, the ratio of the scales w
enter the equations of motion as a parameter.

We define the dimensionless quantitiesx5r f pg, F̂5F/ f p , h05h/ f p . Then the Hamil-
tonian becomes

H@A,F̂,U#5
f p

g E S 1

2
Tr$FmnFmn%1

1

4
Tr$DmF̂DmF̂%1

l

2
Tr$~F̂22h0

2!2%

2
1

4
Tr$DmUU†DmUU†%2

k2

8
Tr$@DmUU†,DnUU†#@DmUU†,DnUU†#%

1
gpF

2

4
TrH F̂22F1

4
~$F̂,U%1$F̂,U†%!G2J Dd3x, ~12!

where we have definedl5l̃/g2, k5k̃g, gpF5g̃pF /g. In terms of masses Eq.~8! the parameters
gpF and l can be expressed asgpF5mp /mA and Al52mh /mA , respectively. The paramete
h05 f p /h denotes the ratio of the scales. Apart from the last term the Hamiltonian~12! this is
equivalent to the Hamiltonian studied before in Ref. 8. The difference is that we now considh0

as a free parameter. In the limith0→0 the minimum of the Higgs potential allows for a vanishin
Higgs field. In this case we find the gauged Skyrme model considered before in Refs. 6–8

Fixing the scale parameterh we definex̄5hgr, F̄5hF, and j5 f p /h. Then the Hamil-
tonian becomes

H@A,F̄,U#5
h

g E S 1

2
Tr$FmnFmn%1

1

4
Tr$DmF̄DmF̄%1

l̄

2
Tr$~F̄221!2%

2
j2

4
Tr$DmUU†DmUU†%2

k̄2

8
Tr$@DmUU†,DnUU†#@DmUU†,DnUU†#%

1
ḡpF

2 j2

4
TrH F̄22F1

4
~$F̄,U%1$F̄,U†%!G2J D d3x̄, ~13!

with l̄5l̃/g25l, k̄5k̃g5k, andḡpF5g̃pF /g5gpF .

Comparing with the case of fixed scalef p we findj51/h0 , x̄5h0x, F̄5F̂/h0 . Because the
Hamiltonians~12! and~13! are equivalent, we can obtain the properties of~12! from ~13! and vice
versa by using these relations. In particular, for the dimensionless energiesE[(g/4p f p)H and
Ē[(g/4ph)H we haveĒ5E/h0 . We will opt to work with ~12! in the following.

III. STATIC SPHERICALLY SYMMETRIC EQUATIONS

The static spherically symmetric, purely magnetic ansatz for the gauge field is12,13

A050, Ar5c~x!
t r

2
, Au5~12a~x!!

tw

2
1b~x!

tu

2
,

~14!

Aw52sinuS ~12a~x!!
tu

2
2b~x!

tw

2 D ,
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where the su~2! matricesta , a5r ,u,w are defined in terms of the Pauli matricest1 ,t2 ,t3 by

t r5sinu~coswt11sinwt2!1cosut3 ,

tu5cosu~coswt11sinwt2!2sinut3 ,

tw52sinwt11coswt2 .

The spherically symmetric ansatz for the Higgs field is

F̂5h~x!t r , ~15!

and for the chiral matrix

U5cosf ~x!1 i sin f ~x!t r . ~16!

The ansatz is form invariant under the U~1! gauge transformations12

g5expH i
G

2
t r J , ~17!

where the gauge transformation functionG is an arbitrary function ofx. The gauge field functions
transform as

c~x!→c~x!2xG8~x!,

b~x!→cosG~x!b~x!2sinG~x!a~x!, ~18!

a~x!→cosG~x!a~x!1sinG~x!b~x!,

whereas the Higgs field functionh(x) and the chiral functionf (x) are invariant. To fix this gauge
freedom we first impose the conditionc(x)[0, which still allows for global transformations with
G5const Further, we find that the functionsa(x) andb(x) enter the Lagrangian only in the form
a82(x)1b82(x) anda2(x)1b2(x), which permits us to setb(x)[0.

With the ansatz~14!–~16! restricted to the gauge fixing conditions andb(x)[0 the Hamil-
tonian ~12! becomes

H@a,h, f #5
4p f p

g E S a821
~a221!2

2x2 1
x2h82

2
1a2h21l~h22h0

2!2x21
x2f 82

2

1a2 sin2 f 14k2a2 sin2 f S f 821
a2 sin2 f

2x2 D1
gpF

2 x2

2
h2 sin2 f Ddx. ~19!

The differential equations for the functionsa(x), h(x), and f (x) can now be obtained as th
variational equations which extremize the Hamiltonian~19!,

a95aH ~a221!

x2 1h21sin2 f F114k2S f 821
a2 sin2 f

x2 D G J ,

h9522
h8

x
1hH 2

a2

x2 14l~h22h0
2!1gpF

2 sin2 f J , ~20!
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f 95H 8k2a sin f Fa cosf S a2 sin2 f

x2 2 f 82D22 sinf a8 f 8G
12~sin f cosf a22x f8!1gpF

2 sin f cosf h2x2J 1

x218k2a2 sin2 f
.

These equations have to be solved due to boundary conditions which ensure regularity
solution at the origin and finite energy, i.e.,

x50:a51, h50, f 5p,
~21!

x→`:a→0, h→h0 , f→0.

IV. NUMERICAL RESULTS

We have constructed numerically solutions of the model for several values of the param
h0 , l, k, andgpF . In particular we investigated the dependence of the solutions on the pa
etersh0 andk.

In Figs. 2~a! and 2~b! we show the energyE5(g/4p f p)H as a function ofh0 for several
values ofk for l50 andgpF50. For large values ofh0 the energy is a monotonically increasin
function ofh0 . In the limit h0→` the energy increases linearly withh0 , such thatE/h0→1, i.e.,
the energy becomes equal to the monopole energy~in units of 4ph!. Indeed, this limit correspond
to the limit f p→0 where the chiral field becomes trivial,U521 everywhere except at infinity.

A. h!f p

For small values ofh0 the solutions develop bifurcations, corresponding to the ‘‘butterfl
structures in Fig. 2~a!, where for a fixed value ofh0 three solutions coexist. We observe from F
2~a! that the bifurcations occur only for a finite range of the parameterk, kcr

(1),k,kcr
(2) , where

kcr
(1) , kcr

(2) depend onl andgpF . For l50, gpF50 we findkcr
(1)'0.374 andkcr

(2)'0.4495. We
demonstrate the details of the bifurcations in Fig. 2~b! for k50.4 as an example. Figure 2~b!
suggests that the branchesB andA correspond to local minima of the energy functional, wher
the branchÃ corresponds to saddlepoint solutions.

The bifurcation pattern looks similar to the bifurcation pattern found recently in the ga
Skyrme model.8 Indeed, the bifurcations in the monopole-Skyrme model and the gauged Sk
model are closely related to each other. In the limith0→0 the Higgs potential allows for a
vanishing Higgs field. In this case we obtain the gauged Skyrmion model studied in Refs
Consequently, the monopole-Skyrmion solutions should approach the gauged Skyrmion s
in the limit of vanishingh0 . In Fig. 3 we show in a three-dimensional~3D! graph the energy of
the monopole-Skyrmion solutions as a function ofh0 andk together with the energy of the gauge
Skyrmion solutions. We observe that indeed the energy of the monopole-Skyrmion coincide
the energy of the gauged Skyrmion in the limith0→0.

In order to understand the behavior of the solutions for smallh0 , let us first discuss the
solutions of the Higgs-less gauged-Skyrme model. In this model the absence of the Higg
allows two possibilities for the value of the gauge field functiona(x) at infinity. For large values
of k the functiona(x) vanishes at infinity~branchBgS) whereas for small values ofk the function
a(r ) approaches the value one at infinity~branchesAgS andÃgS). These two cases correspond
the dashed and solid lines, respectively, plotted in theE–k plane in Fig. 3. For a certain range o
valueskB

cr,k,kA
cr three branches of solutions are present, reminding one of two local mi

~BgS andAgS) and a saddlepoint (ÃgS) of the energy functional.
Now consider the limith0→0 for the monopole-Skyrmion solutions. Ifk,kB

cr the monopole-
Skyrmion solution will approach the unique gauged Skyrmion solution represented by the
line in Fig. 3, belowkB

cr . However, if kB
cr,k,kA

cr there are three different gauged Skyrmio
solutions available. In this case each monopole-Skyrmion solutions of the branchesA, Ã, andB
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approaches the corresponding gauged Skyrmion solution on the branchesAgS, ÃgS, and BgS,
respectively. Fork.kA

cr the monopole-Skyrmion solutions on the branchesA and Ã monopole-
Skyrmion solutions cease to exist and the solutions on the remaining branchB tend uniquely to the
gauged-Skyrmion (BgS) solutions represented by the dashed line abovekA

cr in Fig. 3.
The limit h0→0 is nonuniform fork,kA

cr for the monopole-Skyrmion solutions on th
branchesA andÃ. This is expected because the asymptotic values of the gauge field functiona(x)
for the monopole-Skyrmion solutions and the gauged-Skyrmion solutions~branchesAgS andÃgS)
are different. For the latter the functiona(x) approaches the value one at infinity, whereas for
former onesa(x) vanishes at infinity. To illustrate the limith0→0 for small values ofk we
exhibit in Figs. 3~a!–3~c! as an example a sequence of field configurations of monopole-Skyr
solutions along the ‘‘butterfly’’ fork50.4 in Figs. 2~a! and 2~b!. We follow the branchB down to

FIG. 2. ~a! The dimensionless energy of the monopole-Skyrmion solutions is shown as a function ofh0 for several values
of k for fixed l50 andgpF50. ~b! The same as~a! for fixed k50.4,l50 andgpF50. h0

(1) andh0
(2) indicate the values

of h0 where the branchesB andA merge with the saddlepoint branchÃ, respectively.
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h0
(1) @see Fig. 2~b!#, continue with increasingh0 on the saddlepoint branchÃ up toh0

(2) and finally
we approachh050 on the branchA.

In Fig. 4~a! the profile of the gauge field functiona(x) is shown forh051.0 andh050.03 on
branchB, for h050.03 on branchÃ, and, forh050.03 andh050.0001 on branchA. While for
h051.0, h050.03 (B), andh050.03 (Ã), a(x) is a monotonically decreasing function ofx, it
develops a local maximum at some stage on the branchÃ while h0 increases. Passing to th
branchA, now with decreasingh0 , this local maximum persists. Along this path the local ma
muma(xmax) and its locationxmax increase and reacha(xmax5`)51 ash0 tends to zero, while the
asymptotic region, wherea(x) decays to zero, is shifted to infinity. Thus, in the limith0→0 the
gauge field function of the monopole-Skyrmion solution tends to the corresponding function
gauged Skyrmion solution for allx exceptat infinity. Therefore the convergence of the monopo
Skyrmion onA and Ã to the gauged-Skyrmion solutions onAgS and ÃgS is nonuniform.

In Fig. 4~b! we exhibit the profiles of the scaled Higgs functionh(x)/h0 for the same param
etersh0 like in Fig. 4~a!. We observe thath(x)/h0 is a monotonically increasing function ofx for
all h0 . However along the path of the above described values ofh0 , the magnitudes of the
functionsh(x)/h0 become progressively smaller on an increasing interval, while the asymp
region, whereh(x) approaches its vacuum valueh0 , is shifted to increasing values ofx. In the
limit h0→0 the functionh(x) vanishes everywhere, signaling the merging of the monop
Skyrmions to the~Higgs-free! gauged-Skyrmions in this limit.

In Fig. 4~c! we show the profiles of the chiral functionf (x) for the same values of paramete
h0 as in Figs. 4~a! and 4~b!. For all values ofh0 the functionf (x) in a monotonically decreasing
function of x. In contrast to the gauge field functiona(x) and the Higgs field functionh(x) the
chiral function f (x) does not change considerably withh0 .

The case discussed above in Figs. 4~a!–4~c! pertains tok,kA
cr . For kB

cr,k,kA
cr there are

gauged-Skyrmion solutions of both types, namely those on branchesAgS and ÃgS as well as on
branchBgS, so the convergence of the monopole-Skyrmion solutions to the gauged-Sky

FIG. 3. The dimensionless energy of the monopole-Skyrmion solutions is shown as a function ofh0 for several values of
k for fixed l50 andgpF50 together with the dimensionless energy of the gauged Skyrmion solutions as a functionk.

kB
cr andkA

cr indicate the values ofk where the branchesBgS andAgS merge with the branchÃgS, respectively.
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FIG. 4. ~a! The gauge field functiona(x) is shown for several values ofh0 for fixed k50.4, l50 andgpF50. ~b! The
same as~a! for the scaled Higgs field functionh(x)/h0 . ~c! The same as~a! for the chiral functionf (x). The different lines

correspond toh051(B), h050.03 (B), h050.03 (Ã), h050.03 (A), andh050.0001 (A) from top to bottom. The same
as ~a! for the scaled Higgs field functionh(x)/h0 .
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solutions can be both uniform and nonuniform. In that case the monopole-Skyrmion solutio
the branchesA andÃ approach the gauged-Skyrmion solutions on the corresponding brancheAgS

andÃgS in a nonuniformway, for the same reasons as previously described. However, the g
field function of the monopole-Skyrmion solutions of the branchB obey the same asymptoti
behavior as the corresponding function of the gauged Skyrmion solutions of the branchBgS. For
these solutions the convergence isuniform.

For k.kA
cr , there is only one type of gauged-Skyrmion solution, namely those on branchBgS

for which the asymptotic value of the gauge field functiona(x) equals zero like for the monopole
Skyrmion solution, and hence the convergence of these solutions ash0→0 is uniform.

B. h@f p

Let us now consider the case where the scaleh is much larger than the scalef p . In Fig. 5 we
show the field configurations forh052700 ~solid lines! and for h051 ~dashed lines! for com-
parison. We observe that the gauge field functiona(x) for h052700 approaches its asymptot
value at a very small distance from the origin. The same applies to the scaled Higgs field fu
h(x)/h0 , except for the long ranged tail, which is due to the power law decay for vanishing H
mass, i.e., forl50. The chiral functionf (x), however, extends to larger distances from the orig
This is in contrast to the configuration forh051, where the change in the profile of all function
is roughly on the same interval.

Note, thath052700 corresponds to the case where the parametersf p and h are of the
magnitude of the pion decay constant in low energy quantum chromodynamics~QCD! and the
vacuum expectation value of the Higgs field in the Weinberg–Salam model, respectively. F
energy of this solution we find 4pE52700.013 4p, i.e., roughly the energy of the BPS monopo
~4ph!. An appealing physical interpretation of this solution seems to be that a monopole res
the center of a baryon and dominates its mass.

This can also be seen in a different way using gauge invariant quantities like topolo
charges. We define the topological monopole charge density as

r̃MP5
1

4ph
Tr$Fi j DkF%e i jk , ~22!

and according to Refs. 6 and 7 the gauge invariant baryonic charge density as

FIG. 5. The profiles of the gauge field functiona(x), the scaled Higgs field functionh(x)/h0 , and the scaled chira
function f (x)/p are shown forh052700 ~solid lines! andh051 ~dashed lines! for fixed k50.4, l50 andgpF50.
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r̃B5
1

12p2 ~Dij
aD jj

bDkj
cjdeabcd23j4Fi j

a Dkj
a!e i jk , ~23!

where we have defined forU5exp(ipata)

j45cosupu, ja5sinupu
pa

upu
, Dij

a5] ij
a1eabgAi

bjg, Dij
45] ij

4, ~24!

with a,b,c,drun from 1 to 4 anda, b, g run from 1 to 3. For the spherically symmetric ansa
~14!–~16! and with the dimensionless coordinatex the scaled charge densities become

r̃MP5
@h~12a2!#8

4px2h0
, r̃B52

@ f 1~122a2!sin f cosf #8

4p2x2 . ~25!

For h050.0001 andh052700, with fixedk50.4,l50, gpF50, we show in Fig. 6 the functions
rMP54px2r̃MP ~solid lines! and rB54px2r̃B ~dashed lines! normalized by their respective
maxima. The values of the normalization constants are (4px2r̃MP)max52.113 and (4px2r̃B)max

511 080 forh050.0001, and (4px2r̃MP)max50.31 and (4px2r̃B)max50.113 for h052700, re-
spectively.

From Fig. 6 we observe that forh052700 the locationxmax
MP of the maximum of the function

rMP resides at a considerably smaller distance from the origin than the locationxmax
B of the

maximum of the functionrB . This confirms the interpretation as a monopole inside a bary
Note, that the functionrB possesses an additional local maximum at a larger distance from
origin than the global maximum and a minimum with vanishing magnitude between both ma
We found that half the baryonic charge stems from the area below the first peak and half fro
area below the second peak. This can be understood as follows. For distances larger than
the location of the minimumxmin the gauge field functiona(x) almost vanishes. Settinga(x)
50 in rB we find that the minimum corresponds tof (xmin)5p/2. Splitting the integral of the
baryonic charge density into two parts,

B5E
0

xmin
rB dx1E

xmin

`

rB dx ~26!

FIG. 6. The profiles of the normalized topological functionsrMP(x)/max(rMP) ~solid lines! andrB(x)/max(rB) ~dashed
lines! are shown forh052700 andh050.0001 for fixedk50.4, l50, andgpF50.
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we find for both parts the value 1/2.
Let us next discuss the charge densities forh050.0001. In this case we observe from Fig.

that the peaks ofrMP andrB are roughly at the same location. However, at a large distance
these peaks the functionrMP possesses a second local maximum. We found that the mag
charge stems mainly from this second local maximum, whereas the contribution from the
maximum is marginal. This behavior becomes plausible if we consider the profile of the g
field functiona(x) in Fig. 4~a!. For small values ofx the functiona(x) is close to one. Conse
quently, the magnetic charge density is small. For larger values ofx the functiona(x) develops a
local minimum, this leads to the first peak ofrMP. Whena(x) approaches again the value one, t
function rMP again becomes very small. At large distances the functiona(x) decays to its
asymptotic value. This leads to the second maximum ofrMP. However, the magnetic charg
density also depends on the Higgs field functionh(x), and one would expect that the charg
density has to be small ifh(x) is small, i.e., in the region where the gauge field function posse
its local minimum, see Figs. 4~a! and 4~b!. This is indeed the case. Note, that forh050.0001 the
normalization constants of the functionrB is several orders of magnitude larger than the norm
ization constant of the functionrMP. Thus, the monopole charge density at the first peak is ind
very small compared to the baryon charge density.

In analogy to the interpretation of a monopole inside a baryon for large values ofh0 , one
could interpret the solutions for small values ofh0 as a baryon inside a monopole. However, t
gauge field is nontrivial at the location of the baryon and the Higgs field is not in the vacuu
this region. Thus the baryon would reside in a nearly symmetric phase. One may specula
this scenario might be interesting in respect to the decay of the baryon.

C. g pF>0

In most calculations we fixed the parametergpF50. In view of the discussion in Sec. II thi
needs some clarification. The interaction term of the chiral matrix with the Higgs field
introduced into the model basically for ideological reasons as it fixes the value of chiral fun
at infinity, f `50 ~say!. Then we assumed that in the limitgpF→0 the asymptotic value of the
chiral function is stil fixed, and that the field configurations behave smoothly. Indeed, we f
from our numerical analysis that this is the case and that the assumption is justified.

Let us now discuss the case wheregpF is finite. As long asgpF is small, the dependence o
the solutions on the parametersh0 andk does not change considerably. In particular the bifur
tion pattern for small values ofh0 as shown in Fig. 3 persists for smallgpF . The reason is simply
that gpF enters the differential equations only as a factor of the Higgs field functionh(x). In the
limit h0→0 the Higgs field function vanishes and consequently the equations do not depe
gpF in this limit. To discuss the more general case of finiteh0 let us assume that for som
parametersk, l, h0 solutions on the branchesA, B, and Ã coexist and form a butterfly in the
E–h0 diagram forgpF50. Then the butterfly will persist for small values ofgpF . As gpF

increases, the butterfly shrinks in size and disappears at a critical value ofgpF , e.g.,gpF
cr '0.4 for

fixed k50.4 andl50. Thus, the bifurcation pattern is similar to Fig. 3, if we replacek by h0 , h0

by gpF and interchange the role ofA andB.
We now consider the case wheregpF becomes very large at fixed parametersk, l, h0 . In the

limit gpF→` the potential~2! becomes a constraint, which for the spherically symmetric an
~15! and ~16! becomes

h2~x!sin2 f ~x!→0 as gpF→`. ~27!

Note, that this constraint can neither be solved by a vanishing Higgs field function,h(x)[0,
because this violates the boundary conditionh(x→`)5h0 , nor by a constant chiral function
f (x)[0 or p, because this violates boundary conditions at the origin or at infinity. However,
is a third possibility. If the Higgs field function vanishes on the interval@0, x0# and the chiral
function vanishes on the interval@x0 ,`# then the functionh2(x)sin2 f(x) vanishes everywhere.
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In Fig. 7 we show the field configurations forgpF5104 and forgpF50 for comparison for
fixed parametersk50.4, l50, andh050.03 on the branchA. We observe that the Higgs fiel
function h(x) is indeed almost zero on the interval@0, x0#, with x0'23.65, while the chiral
function f (x) changes continuously fromf (0)5p to f (x0)'0. On the interval@x0 ,`# the chiral
function is almost zero and the Higgs field function changes continuously formh(x0)'0 to its
asymptotic valueh(`)5h0 . Figure 7 suggests that in the limitgpF→` the derivatives of the
functionsh(x) and f (x) will be finite but noncontinuous atx0 , whereas the gauge field functio
remains twice differentiable atx0 .

Taking into account the behavior of the functions for largegpF , we observe from the differ-
ential equation for the chiral functionf (x) ~20!, that thepF interaction term will be almost zero
for x,x0 . Assuming thath(x) increases linearly atx0 , we find for largegpF that for x.x0 the
chiral function decays exponentially with the exponent;2gpF . Hence, we find the following
scenario. Forx,x0 the interaction of the Higgs field with the chiral field vanishes, whereas
x.x0 the chiral field becomes increasingly massive. Consequently, the baryon is trapped
the monopole. On the other hand, because the magnetic charge density is proportional to th
field, there will be~almost! vanishing monopole density forx,x0 for largegpF and the monopole
is expelled from the baryon.

V. NORMAL MODES

To show the instability of a solution of Eq.~20! we determine the eigenvalues of the fluctu
tion matrix around that solution. The existence of a negative eigenvalue of a normalizable
tuation mode indicates that a deformation of the solutions in the direction of this mode lowe
energy. Hence this solution cannot be stable. Therefore, to show the instability of a solutio
sufficient to find a normalizable fluctuation mode with negative eigenvalue. For the discuss
the normal modes we will adopt the methods discussed in Refs. 14 and 15.

Here we consider only radial fluctuations around the solutions. We use the dimensi
coordinatex from the beginning. We introduce into the ansatz small space–time dependen
tuationsCa(x)eiwt, a5a,b,c,h, f ,

a~x!→a~x!1Ca~x!eivt,

b~x!→b~x!1Cb~x!eivt,

FIG. 7. The profiles of the gauge field functiona(x), the scaled Higgs field functionh(x)/h0 , and the scaled chira
function f (x)/p are shown forgpF5104 ~solid lines! andgpF50 ~dashed lines! for fixed k50.4,l50 andh050.03 and
the branchA.
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c~x!→c~x!1&Cc~x!eivt, ~28!

h~x!→h~x!1
Ch~x!

x
eivt,

f ~x!→ f ~x!1
C f~x!

x
eivt,

and expand the Hamiltonian and Lagrangian to second order in the fluctuation functionCa . As
we are interested in the fluctuations around the static solutions, we setb[0, c[0 and extremize
the Lagrangian in the background of the functionsa,h,f, i.e., whenever second derivatives of the
functions appear, they are replaced by the right-hand side of the differential equations~20!.

The form invariance of the ansatz~14!–~16!, expressed by Eqs.~17! and~18!, reflects itself in
the existence of normal modes with vanishing energy eigenvalue. These gauge zero mod
the conditions

Ca50, Cc5
x

&
S Cb

a D 8
, Ch50, C f50. ~29!

Because we are interested in the nonzero modes, we want to exclude the gauge zero mod
can be done by imposing the conditions that the normal modes have to be orthogonal to the
zero modes with respect to the metric

^C̃,C&bc5E ~C̃bCb1C̃cCc!1¯dx. ~30!

~We will give the complete form of the metric later!. This leads to the condition on the function
Cb ,Cc ,

K@Cb ,Cc#5~xCc!82&aCb50. ~31!

To exclude the gauge zero modes we addmK2 to the Lagrangian, wherem is a Lagrange multi-
plier.

From the system of differential equations we find that the functionsCb andCc couple to each
other, but not to the functionsCa , Ch and C f and vice versa. Thus, we have two decoup
systems of differential equations, which can be solved separately.

A. The system ˆCbCc‰

Let us first address the system$CbCc%. The differential equations become

Cc91v2Cc52
11a2

x2 Cc12&
xa82a

x2 Cb , ~32!

Cb91v2Cb5VbbCb12&
xa82a

x2 Cc , ~33!

and the corresponding static Hamiltonian is

Hbc@Cb ,Cc#5
4p f p

g E H VbbCb
21Cb8

21
112a2

x2 Cc
21Cc8

2

12
Cc8Cc

x
12&F S a

xD 8
CbCc2

a

x
~CbCc!8G J dx ~34!
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with

Vbb5S 3a221

x2 1h21sin2 f 14k2 sin2 f S f 821
a2 sin2 f

x2 D D , ~35!

where we have set the Lagrange multiplierm equal to1
2. The boundary conditions for the function

Cc andCb are given by

x50:Cc50, Cb50,
~36!

x→`:Cc→0, Cb→0.

For solutions of~32! and~33! we can evaluate the energy integral~34! by integration by parts
and using~32!, ~33!, and~36!. We find for the dimensionless energyEbc5(g/4p f p)Hbc ,

Ebc5v2, ~37!

if we assume that the functions are normalized with respect to the metric~30!. Thus,v2 denotes
the energy eigenvalue in units of 4p f p /g.

We solved the system~32!, ~33! for several values of the parametersh0 , k, l, andgpF and
found only solutions withv2 positive. For fixed values of the parameters we found sev
discrete normal modes which can be characterized by the number of nodesN of the fluctuation
function Cb . Their eigenvaluesvN

2 increase with the number of nodesN. The lowest positive
eigenvaluev1

2 corresponds to one node of the functionCb , see Fig. 8~inlet!. It seems to be likely
that the system$CbCc% possesses an infinite number of discrete positive eigenvalues, form
sequence with convergence toh0

2.
For largeN the eigenvaluesvN

2 can be well approximated by the formula

vN
2 5S h0

22
C

N2D 2

, ~38!

FIG. 8. The lowest positive eigenvaluev1
2 is shown as a function ofh0 for fixed k50.4, l50 andgpF50. The inlet

shows the fluctuation functionsCb(x) andCc(x) for h050.025 on the branchÃ.
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where C depends on the parametersh0 , k, l and gpF . In Table I we give the first eight
eigenvalues together with their fitted values forh050.032 andh050.026 on the branchÃ for
fixed k50.4, l50, and gpF50. For the constantsC we found C(h050.032)50.001 and
C(h050.026)50.000 35.

In Fig. 8 we show the lowest positive eigenvaluev1
2 as a function ofh0 for k50.4,l50 and

gpF50. For all branchesB, A, andÃ the eigenvalue is a monotonically increasing function ofh0

and vanishes in the limith0→0.

B. The system ˆCaChC f‰

For the system$CaChC f% the gauge zero modes are absent and we can calculate the d
ential equations and the static Hamiltonian directly. The system of differential equations is
by

Ca91v2Ca5F3a221

x2 1h21sin2 f 14k2 sin2 f S f 821
3a2 sin2 f

x2 D GCa

1F2ah

x GCh1F8k2a f8 sin2 f

x GC f81
2

x Fa cosf sin f 14k2a sin f

3S cosf f 822
sin f f 8

x
1

2a2 cosf sin2 f

x2 D GC f , ~39!

Ch91v2Ch5F2a2

x2 1gpF
2 sin f 14k2(3h22h0

2)GCh1F4ah

x GCa1[2gpF
2 cosf sin f h]C f ,

~40!

C f91v2C f5F 4

xG
~a cosf sin f x4132k4a2 sin4 f ~a3 cosf sin f 1a8 f 8x2!

14k2 sin f x2~2a3 cosf sin2 f 2a cosf f 82x212a sin f f 8x2a8 sin f f 8x2

2gpF
2 a cosf sin2 f h2x2!!GCa2F16k2

a sin2 f f 8x

8k2a2 sin2 f 1x2GCa8

1F2gpF
2 cosf sin f hx2

8k2a2 sin2 f 1x2GCh1F 1

x2G
~x4~2a21gpF

2 h2x2!~122 sin2 f !

164k4a3 sin2 f $a sin2 f ~a2~122 sin2 f !22!12a cosf sin f f 8x1a f82x2

TABLE I. The eight lowest positive eigenvalues forh050.032 andh0

50.026 on the sphaleron branchÃ for k50.4, l50 andgpf50 together
with the fitted eigenvalues.

N

h050.032 (Ã) h050.026 (Ã)

vN
2 (31023) Fit vN

2 (31023) Fit

1 0.9767 0.9608 0.660 33 0.657 85
2 1.0098 1.0080 0.671 65 0.671 44
3 1.0173 1.0169 0.674 00 0.674 00
4 1.0201 1.0200 0.674 86 0.674 86
5 1.0215 1.0214 0.675 27 0.675 27
6 1.0222 1.0222 0.675 49 0.675 49
7 1.0227 1.0227 0.675 63 0.675 63
8 1.0230 1.0230 0.675 71 0.674 71
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12a8x sin2 f %18k2ax2$a sin2 f ~a2~124 sin2 f !22!16a cosf sin f f 8x

12a sin2 f x2f 822ax2f 8224 cosf sin f a8 f 8x212 sin2 f a8x

2gpF
2 a sin2 f h2x2%!GC f1F16k2

xG
a sin f ~~x218k2a2 sin2 f !

3~a~sin f 2cosf f 8x!2sin f a8x!!GC f8 ~41!

with

G5x4116k2a2 sin f 2~x214k2a2 sin f 2!. ~42!

We now find for the dimensionless energy of the solutions of the differential equations

Eah f5v2E H Ca
21

Ch
2

2
1F11

8k2a2 sin2 f

x2 G C f
2

2 J dx. ~43!

From this form we can define an appropriate metric for the fluctuationsC by

^C̃,C&5E H C̃a Ca1C̃b Cb1C̃c Cc1
1

2 S C̃h Ch1F11
8k2a2 sin2 f

x2 GC̃ f C f D J dx. ~44!

Assuming the normalization of the fluctuation functions according to~44!, we find the energy of
the solutions to beEah f5v2, i.e., v2 is again the energy eigenvalue.

For the system$CaChC f% we found normalizable solutions only on the saddlepoint bra
Ã. For these normal modes the eigenvaluev2 is negative and vanishes at the bifurcation poin
Hence these normal modes represent an instability mode of the saddlepoint solutions.

In Fig. 9 we show the negative eigenvaluev2 as a function ofh0 for k50.4, l50, and
gpF50.

FIG. 9. The negative eigenvaluev2 is shown as a function ofh0 for fixed k50.4, l50, gpF50.
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VI. SUMMARY AND DISCUSSION

We have studied a model combining the Georgi–Glashow and the Skyrme systems inte
mainly through the so~3! gauge field, with an additional interaction term between the Higgs
chiral fields. This interaction term, which breaks the chiral symmetry and fixes the asym
value of the chiral field at infinity, exploits the nonvanishing VEV of the Higgs field in an esse
way.

The main emphasis of the study is the numerical analysis of the classical solutions
model, which may be relevant to the semiclassical approach to monopole catalysis of b
decay.3 The most interesting feature of these solutions, both intrinsically and for the phy
reason just mentioned, is the particular bifurcation patterns that they exhibit. These patte
connected to similar bifurcations in the solutions of the gauged Skyrme model, not involv
Higgs field, which has led us to make a systematic study of the relation between the soluti
these two models. This has been carried out by considering particular limits, in terms o
independent parameters involved in the monopole-Skyrme model, in which the solutions o
model merge with the solutions of the Higgs independent gauged Skyrme model.

The above-mentioned technical investigations form the center of gravity of the present
From the results obtained, some interesting observations of physical relevance can be ma

One is the particular shape of the bifurcations the solutions exhibit, namely what we
referred to as ‘‘butterfly’’ in the text. These are reminiscent of the kind of bifurcations appe
in first-order phase transitions. Unfortunately, in the present form of the model considere
have not been able to make a concrete description for this phenomenon. This aspect of th
is under consideration.

The other observation can be made more quantitatively. It was shown that in some limit
parameters, the baryon resides in the core of the monopole while in the other limit the con
namely that the monopole resides inside the baryon. In particular, for the values of the para
fixed by the phenomenological values of the Higgs VEV and the pion decay constants, exac
half of the baryon charge resides inside the monopole core, and the rest outside.
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On the geodesic form of second-order dynamic equations
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It is shown that any second-order dynamic equation on a configuration bundleQ
→R of nonrelativistic mechanics is equivalent to a geodesic equation with respect
to a ~nonlinear! connection on the tangent bundleTQ→Q. The case of quadratic
dynamic equations is analyzed in detail. The equation for Jacobi vector fields is
constructed and investigated by the geometric methods. ©2000 American Insti-
tute of Physics.@S0022-2488~00!01602-9#

I. INTRODUCTION

We are concerned with nonrelativistic mechanics on a configuration bundleQ→R, whereR
is the time axis. The corresponding velocity phase space is the first-order jet manifoldJ1Q of
sections ofQ→R. A second-order dynamic equation~called further simply a dynamic equation!
on a fiber bundleQ→R is defined as a first-order dynamic equation on the jet bundleJ1Q→R,
given by a holonomic connectionj on J1Q→R which takes its values in the second-order
manifold J2Q,J1J1Q.1–4 This connectionj is also called a semispray vector field,1 a SODE
field,5 and a special vector field6 because of the canonical imbeddingJ1J1Q→TJ1Q.

The fact thatj is a flat connection places a limit on the geometric analysis of nonrelativ
dynamic equations. It was proved that every dynamic equationj defines a connectiong on the
affine jet bundleJ1Q→Q, and vice versa.1,4–6 For the sake of simplicity, we callg a dynamic
connection, but this is not the terminology of Ref. 2, where this term stands for a linear conn
on the tangent bundleTJ1Q→J1Q, associated with each dynamic equationj ~see also Refs. 4–6!.
Here, we show that, due to the canonical imbeddingJ1Q→TQ, every dynamic connection yield
a ~nonlinear! connection on the tangent bundleTQ→Q, and vice versa. As a consequence, ev
dynamic equation onQ gives rise to an equivalent geodesic equation on the tangent bundleTQ
→Q in accordance with the following assertion.

Proposition 1:Let Q→R be a configuration bundle coordinated by (q05t,qi) and J2Q its
second-order jet manifold coordinated by (ql,qt

i ,qtt
i ). Any second-order dynamic equation

qtt
i 5j i~ t,qj ,qt

j ! ~1!

on Q→R is equivalent to the geodesic equation

q̈050, q̇051,
~2!

q̈i5K̃0
i 1K̃ j

i q̇ j ,

with respect to a connectionK̃ on TQ→Q which fulfills the conditions

K̃l
050, j i5K̃0

i 1qt
j K̃ j

i u q̇051,q̇i5q
t
i. ~3!

a!Electronic mail: mangiaro@camserv.unicam.it
b!Electronic mail: sard@grav.phys.msu.su
8350022-2488/2000/41(2)/835/10/$17.00 © 2000 American Institute of Physics
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Remark: In conservative mechanics, a second-order dynamic equation on a configu
manifold M is defined as a particular holonomic vector fieldJ on the tangent bundleTM. This
dynamic equation yields a connection onTM→M , but fails to be a geodesic equation in genera7

Nevertheless, every second-order dynamic equation onM gives rise to a dynamic equation on th
fiber bundleR3M→R, and can be written as a geodesic equation in accordance with Propo
1.

Since a configuration bundleQ→R is trivial, the existent formulations of nonrelativisti
mechanics often imply its preliminary splittingQ5R3M .1,7–9This is not the case of mechanic
systems subject to time-dependent transformations, including inertial frame transformation
general case, we need a connection on the configuration bundleQ→R which plays the role of a
nonrelativistic reference frame.4,10 Proposition 1 shows that, considered independently on a t
alization ofQ→R, second-order dynamic equations make the geometric sense of geodesic
tions. Treated in such a way, second-order dynamic equations can be examined by mean
differential geometric methods which involve the curvature of the connectionK̃.

In Secs. V–VIII, nonlinear quadratic dynamic equations are studied in detail. In this cas
corresponding dynamic connectiong on J1Q→Q is affine, while the connectionK̃ ~3! on TQ

→Q is linear. Then the equation for Jacobi vector fields along the geodesics of the connecK̃
can be considered. We will study the general case of quadratic Newtonian systems charac
by a pair~j, m! of a quadratic dynamic equationj and a Riemannian mass metricm which satisfy
a certain compatibility condition. Given a reference frame, a Riemannian mass tensorm is ex-
tended to a Riemannian metric on the configuration bundleQ. Then conjugate points of solution
of the dynamic equationj can be examined in accordance with the well-known geometric crit
@see the expression~34! below#. This expression differs from that obtained by the variatio
methods11 where a metric is independent of a dynamic equation.

II. TECHNICAL PRELIMINARIES

A configuration bundleQ→R of nonrelativistic mechanics is coordinated by (t,qi), wheret
is a Cartesian coordinate on the time axisR with the transition functionst85t1const. The tangen
bundle TQ is coordinated by (t,qi , ṫ ,q̇i). The velocity phase spaceJ1Q is provided with the
adapted coordinates (ql,qt

i). We will use the compact notation (ql505t,qi), ]l5]/]ql, ] i
t

5]/]qt
i , and ]̇l5]/]q̇l.

Recall that the first-order jet manifoldJ1Q comprises the equivalence classesj t
1c of sections

c of Q→R which are identified by their valuesci and the values of their partial derivatives] tc
i at

points tPR, i.e., qt
i( j 1c)5] tc

i .12–15 There is the canonical imbedding

l1 :J1Q�

Q
TQ, l15dt5] t1qt

i] i , ~4!

wheredt denotes the total derivative. From now on, we will identifyJ1Q with its image inTQ.
This is an affine bundle modelled over the vertical tangent bundleVQ of Q→R. As a conse-
quence, every connection

G:Q→J1Q, G5dt^ ~] t1G i] i !, ~5!

on the fiber bundleQ→R is identified with the nowhere vanishing vector field

G:Q→J1Q,TQ, G5] t1G i] i , ~6!

on Q.4,15 This is the horizontal lift of the standard vector field] t on R by means of the connectio
~5!. Conversely, any vector fieldG on Q such thatdtcG51 defines a connection onQ→R.
Accordingly, the covariant differential associated with a connectionG on Q→R reads
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DG:J1→
Q

VQ, q̇i+DG5qt
i2G i .

By J1J1Q is meant the first-order jet manifold of the jet bundleJ1Q→R, coordinated by
(ql,qt

i ,q(t)
i ,qtt

i ). The second-order jet manifoldJ2Q of the fiber bundleQ→R is the holonomic
subbundleqt

i5q(t)
i of J1J1Q, coordinated by (ql,qt

i ,qtt
i ). There are the imbeddings

J2Q→
l2

TJ1Q→
Tl1

T2Q,

l2 :~ql,qt
i ,qtt

i !°~ql,qt
i ,q̇051,q̇i5qt

i ,q̇t
i5qtt

i !, ~7!

Tl1+l2 :~ql,qt
i ,qtt

i !°~ql,q̇051,q̇i5qt
i ,q̈050,q̈i5qtt

i !,

where (ql,q̇l,q̈l) are holonomic coordinates onT2Q. By JQ
1 J1Q is meant the first-order je

manifold of the affine jet bundleJ1Q→Q. The adapted coordinates onJQ
1 J1Q are (ql,qt

i ,qlt
i ).

III. GEOMETRY OF NONRELATIVISTIC MECHANICS

This section is devoted to the proof of Proposition 1.
As was mentioned before, a dynamic equation on a configuration bundleQ→R is defined as

the geodesic equation KerDj,J2Q for a holonomic connectionj on the jet bundleJ1Q→R. It is
given by the coordinate expression~1!. Due to the morphism~7!, a holonomic connectionj is
represented by the horizontal vector field onJ1Q:

j5] t1qt
i] i1j i~qm,qt

i !] i
t . ~8!

Remark:A dynamic equationj is said to be conservative if there exists a trivializationQ
>R3M such that the vector fieldj ~8! on J1Q>R3TM is projectable ontoTM. Then this
projection

Jj5q̇i] i1j i~qj ,q̇ j !]̇ i

is a second-order dynamic equation

q̈i5Jj
i ~9!

on the typical fiberM of Q→R. Conversely, every second-order dynamic equationJ ~9! on a
manifold M can be seen as a conservative dynamic equation

jJ5] t1q̇i] i1J i ]̇ i

on the fiber bundleR3M→R. Recall that any second-order dynamic equation on a manifolM
yields a connectionG on the tangent bundleTM→M , but is a geodesic equation with respect
this connection iffG is a spray.7,16

Let us turn to the above-mentioned relationship between the holonomic connectionsj ~8! on
J1Q→R and the dynamic connections

g5dql
^ ~]l1gl

i ] i
t! ~10!

on the affine jet bundleJ1Q→Q.
Proposition 2:Any dynamic connectiong ~10! defines the holonomic connection

jg5] t1qt
i] i1~g0

i 1qt
jg j

i !] i
t ~11!
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on J1Q→R. Conversely, any holonomic connectionj ~8! on J1Q→R defines the dynamic con
nection

gj5dt^ @] t1~j i2 1
2 qt

j] j
tj i !] i

t#1dqj
^ @] j1

1
2 ] j

tj i] i
t#. ~12!

It follows that every dynamic connectiong ~10! yields the nonrelativistic dynamic equation

qtt
i 5g0

i 1qt
jg j

i ~13!

~1! on the configuration bundleQ→R. Different dynamic connections may lead to the sa
dynamic equation~13!. The dynamic connectiongj ~12!, associated with a dynamic equatio
possesses the property

g i
k5] i

tg0
k1qt

j] i
tg j

k ,

which implies the relation] j
tg i

k5] i
tg j

k . Such a dynamic connection is called symmetric. Letg be
a dynamic connection~10! andjg be the corresponding dynamic equation~11!. Then the connec-
tion ~12!, associated withjg , takes the form

gjg i
k 5 1

2 ~g i
k1] i

tg0
k1qt

j] i
tg j

k!, gjg i
k 5jk2qt

igjg i
k .

It is readily observed thatg5gj , if and only if g is symmetric.
Now let us turn to the proof of Proposition 1.
We start from the relation between the connectionsg ~10! on the affine jet bundleJ1Q→Q

and the connections

K5dql
^ ~]l1Kl

a]̇a! ~14!

on the tangent bundleTQ→Q. Let us consider the diagram

JQ
1 J1Q →

J1l1

JQ
1 TQ

g ↑ ↑ K

J1Q →
l1

TQ

~15!

where JQ
1 TQ is the first-order jet manifold of the tangent bundleTQ→Q, coordinated by

(ql,q̇l,q̇m
l ). The jet prolongation overQ of the canonical imbeddingl1 ~4! reads

J1l1 :~ql,qt
i ,qmt

i !°~ql,q̇051,q̇i5qt
i ,q̇m

0 50,q̇m
i 5qmt

i !.

We have

J1l1+g:~ql,qt
i !°~ql,q̇051,q̇i5qt

i ,q̇m
0 50,q̇m

i 5gm
i !,

K+l1 :~ql,qt
i !°~ql,q̇051,q̇i5q0

i ,q̇m
0 5Km

0 ,q̇m
i 5Km

i !.

It follows that the diagram~15! can be commutative only if the componentsKm
0 of the connection

K on TQ→Q vanish. Since the transition functionst→t8 are independent ofqi , a connection

K̃5dql
^ ~]l1Kl

i ]̇ i ! ~16!

with the componentsKm
0 50 can exist on the tangent bundleTQ→Q. It obeys the transformation

law
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Kl8
i5~] jq8 iKm

j 1]mq̇8 i !
]qm

]q8l . ~17!

Now the diagram~15! becomes commutative if the connectionsg and K̃ fulfill the relation

gm
i 5Km

i ~ql,q̇051,q̇i5qt
i !, ~18!

which holds globally since the substitution ofq̇i5qt
i into ~17! restates the coordinate transform

tion law of g. In accordance with this relation, a desired connectionK̃ is an extension of the loca
sectionJ1l1+g of the affine bundleJQ

1 TQ→TQ over the closed submanifoldJ1Q,TQ to a
global section. Such an extension always exists, but is not unique. Thus, it is stated the foll

Proposition 3:Every second-order dynamic equation~1! on the configuration bundleQ→R
can be written in the form

qtt
i 5K0

i +l11qt
jK j

i +l1 , ~19!

whereK̃ is a connection~16! on the tangent bundleTQ→Q. Conversely, each connectionK̃ ~16!
on TQ→Q defines the dynamic equation~19! on Q→R.

Let us consider the geodesic equation~2! on TQ with respect to the connectionK̃. Its solution
is a geodesic curvec which also satisfies the dynamic equation~1!, and vice versa. It state
Proposition 1.

IV. NONRELATIVISTIC REFERENCE FRAMES

Proposition 3 gives more than it is needed for the proof of Proposition 1, and we can pro
converse of Proposition 1.

Let us start from the notion of a reference frame in nonrelativistic mechanics. From
physical viewpoint, a reference frame on a configuration bundleQ→R sets a tangent vector a
each point ofQ, which characterizes the velocity of an ‘‘observer’’ at this point. Then a
connectionG on Q→R is said to be such a reference frame.2,4,10,17

Lemma 4:4,15 Each connectionG on a fiber bundleQ→R defines an atlas of local consta
trivializations ofQ→R whose transition functions are independent oft, and vice versa. One find
G5] t with respect to this atlas. In particular, there is one-to-one correspondence betwe
complete connectionsG ~6! on Q→R and the trivializations of this bundle.

By virtue of this Lemma, any coordinate atlas (t,qi) on Q→R whose transition functions ar
independent of time is also regarded as a reference frame. Using the notion of a reference
we can formulate a desired converse of Proposition 1.

Proposition 5:Given a reference frameG, any connectionK ~14! on the tangent bundleTQ
→Q defines the dynamic equation

j i5~Kl
i 2G iKl

0!q̇lu q̇o51,q̇i5q
t
i.

The proof follows at once from Proposition 3 and the following assertion.
Lemma 6:Given a connectionG on the fiber bundleQ→R and a connectionK on the tangent

bundleTQ→Q, there is the connectionK̃ on TQ→Q with the components

K̃l
050, K̃l

i 5Kl
i 2G iKl

0.

It is proved by the inspection of transition functions.

V. QUADRATIC DYNAMIC EQUATIONS

From the physical viewpoint, the most interesting dynamic equations are the quadratic
i.e.,
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j i5ajk
i ~qm!qt

jqt
k1bj

i ~qm!qt
j1 f i~qm!. ~20!

This property is coordinate independent due to the affine transformation law of coordinateqt
i .

Then it is readily observed that the corresponding dynamic connectiongj ~12! is affine:

g5dql
^ @]l1„gl0

i ~qn!1gl j
i ~qn!qt

j
…] i

t#,

and vice versa. This connection is symmetric if and only ifglm
i 5gml

i .
Lemma 7:There is one-to-one correspondence between the affine connectionsg on the affine

jet bundleJ1Q→Q and the linear connectionsK̃ ~16! on the tangent bundleTQ→Q.
This correspondence is given by the relation~18!, which takes the form

gm
i 5gm0

i 1gm j
i qt

j , gml
i 5Kml

i .

In particular, if an affine dynamic connectiong is symmetric, so is the corresponding line
connectionK̃.

Then we come to the following corollaries of Propositions 1 and 5.
Corollary 8: Any quadratic dynamic equation

qtt
i 5ajk

i ~qm!qt
jqt

k1bj
i ~qm!qt

j1 f i~qm! ~21!

is equivalent to the geodesic equation

q̈050, q̇051,
~22!

q̈i5ajk
i ~qm!q̇ j q̇k1bj

i ~qm!q̇ j q̇01 f i~qm!q̇0q̇0

for the symmetric linear connection

K̃5dql
^ ~]l1Kln

m ~qa!q̇n]̇m!

on TQ→Q, given by the components

Kln
0 50, K00

i 5 f i , K0 j
i 5K j 0

i 5 1
2 bj

i , K jk
i 5ajk

i . ~23!

Corollary 9: Conversely, any linear connectionK on the tangent bundleTQ→Q defines the
quadratic dynamic equation

qtt
i 5K jk

i qt
jqt

k1~K0 j
i 1K j 0

i !qt
j1K00

i ,

written with respect to a given reference frame (t,qi).
The connectionK̃, however, is not unique for the dynamic equation~21!.
Proposition 10:Any quadratic dynamic equation~20!, being equivalent to the geodesic equ

tion with respect to the linear connectionK̃ ~23!, is also equivalent to the geodesic equation w
respect to an affine connectionK̃8 on TQ→Q, which differs fromK̃ ~23! in a soldering forms on
TQ→Q with the components

sl
050, sk

i 5hk
i 1~s21!hk

i q̇0, s0
i 52shk

i q̇k2h0
i q̇01h0

i ,

wheres andhl
i are local functions onQ.

VI. FREE MOTION EQUATIONS

Let us point out the following interesting class of dynamic equations which we agree to
the free motion equations.
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We say that the dynamic equation~1! is a free motion equation if there exists a referen
frame (t,q̄i) on the configuration bundleQ→R such that this equation readsq̄tt

i 50. With respect
to arbitrary bundle coordinates (t,qi), a free motion equation takes the form

qtt
i 5dtG

i1] jG
i~qt

j2G j !2
]qi

]q̄m

]q̄m

]qj]qk ~qt
j2G j !~qt

k2Gk!, ~24!

whereG i5] tq
i(t,q̄ j ) is the connection associated with the initial frame (t,q̄i). One can think of

the right-hand side of the equation~24! as being the general coordinate expression of an ine
force in nonrelativistic mechanics. The corresponding dynamic connectiong on the affine jet
bundleJ1Q→Q reads

gk
i 5]kG

i2
]qi

]q̄m

]q̄m

]qj]qk ~qt
j2G j !, g0

i 5] tG
i1] jG

iqt
j2gk

i Gk.

It is affine. By virtue of Lemma 7, this dynamic connection defines a linear connectionK on the
tangent bundleTQ→Q whose curvature is necessarily equal to 0. Thus, we come to the follo
criterion of a dynamic equation to be a free motion equation.

Proposition 11:If j is a free motion equation, it is quadratic and the corresponding lin
symmetric connection~23! on the tangent bundleTQ→Q is flat.

This criterion fails to be a sufficient condition since it may happen that the components
curvature-free linear symmetric connection onTQ→Q vanish with respect to the coordinates o
Q which are not compatible with the fibrationQ→R. Nevertheless, one can formulate the ne
essary and sufficient condition of the existence of a free motion equation on a configuration
Q.

Proposition 12:4,5 A free motion equation on a configuration bundleQ→R exists if and only
if the typical fiberM of Q admits a curvature-free linear symmetric connection.

VII. QUADRATIC NEWTONIAN AND LAGRANGIAN SYSTEMS

A Lagrangian of a mechanical system onQ→R is defined as a function on the velocity pha
spaceJ1Q. Let us consider a nondegenerate quadratic Lagrangian

L5 1
2 mi j ~qm!qt

iqt
j1ki~qm!qt

i1 f ~qm!, ~25!

wheremi j is a Riemannian fiber metric in the vertical tangent bundleVQ, called a mass metric. As
for quadratic dynamic equations, this property is coordinate independent. Similarly to Lem
one can show that any quadratic polynomial onJ1Q,TQ is extended to a bilinear form onTQ.
Then the LagrangianL ~25! can be written as

L5 1
2 gamqt

aqt
m , qt

051,

whereg is the fiber metric

g0052 f , g0i5ki , gi j 5mi j ~26!

in the tangent bundleTQ, which is not necessarily nondegenerate. The associated Lagrange
tion takes the form

qtt
i 5~m21! ik$lkn%qt

lqt
n , qt

051,

where

$lmn%52 1
2 ~]lgmn1]ngml2]mgln!
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are the Christoffel symbols of the metric~26!. The corresponding geodesic equation~22! on TQ
reads

q̈050, q̇051,

q̈i5~m21! ik$lkn%q̇
lq̇n,

whereK̃ ~3! is a linear connection with the components

Kln
0 50, Kln

i 5~m21! ik$lkn%. ~27!

We have the relation

¹lmi j 5]lmi j 1mikKl j
k 1mjkKl i

k 50. ~28!

A Lagrangian system on a configuration bundleQ→R is a particular Newtonian system. Th
latter is defined as a pair (j,m) of a dynamic equationj and a fiber metricm in the fiber bundle
VQJ1Q→J1Q which satisfy the symmetry condition]k

t mi j 5] j
tmik and the compatibility condition

j cdmi j 1mikg j
k1mjkg i

k50, ~29!

wheregj is the dynamic connection~12!.4,15 Note that the compatibility condition~29! can be

written in an intrinsic way as¹̄jm50, where¹̄ is the covariant derivative with respect to th
canonical prolongation of the connectiongj onto the vertical cotangent bundleVQ* J1Q→J1Q.

We will restrict our consideration to nondegenerate quadratic Newtonian systems whenj is a
quadratic dynamic equation~20! andm is a Riemannian fiber metric inVQ, i.e.,m is independent
of qt

i . In this case, the dynamic equation~21! is equivalent to the geodesic equation~22! with
respect the symmetric linear connectionK̃ ~23!, while the compatibility condition~29! takes the
form ~28!.

Given the symmetric linear connectionK̃ ~23! on the tangent bundleTQ→Q, one can con-
sider the equation for Jacobi vector fields along geodesics of this connection, i.e., along so
of the nonrelativistic dynamic equation~21!. If Q is provided with a Riemannian metric, th
conjugate points of these geodesic can be investigated.

VIII. NONRELATIVISTIC JACOBI FIELDS

Let us consider the quadratic dynamic equation~21! and the equivalent geodesic equation~22!

with respect to the symmetric linear connectionK̃ ~23!. Its curvature

Rlmb
a 5]lKmb

a 2]mKlb
a 1Klb

g Kmg
a 2Kmb

g Klg
a

has the temporal component

Rlmb
0 50. ~30!

Then the equation for a Jacobi vector fieldu along a geodesicc reads

q̇bq̇m
„¹b~¹mua!2Rlmb

a ul
…50, ¹bq̇a50, ~31!

where¹m denote the covariant derivatives with respect to the connectionK̃.18 Due to the relation
~30!, the equation~31! for the temporal componentu0 of a Jacobi field takes the form

q̇bq̇m~]m]bu01Kmb
g ]gu0!50.

We choose its solution
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u050 ~32!

because all nonrelativistic geodesics obey the constraintq̇050.
Note that, in the case of a quadratic LagrangianL, the equation~31! coincides with the Jacobi

equation

ujdt~] j ]̇ iL !1dt~ u̇ j ]̇ i ]̇ jL !2uj] i] jL50

for a Jacobi field on solutions of the Lagrange equation forL. This equation is the Lagrange
equation for the vertical extension LV of the Lagrangian L4,15,19~see also Ref. 20!.

Let us consider a quadratic Newtonian system with a Riemannian mass metricmi j . Given a
reference frame (t,qi), this mass metric is extended to the Riemannian metric

ḡ0051, ḡ0i50, ḡi j 5mi j ~33!

on Q. However, the covariant derivative of this metric with respect to the connectionK̃ ~23! does
not vanish in general, namely,¹lg0iÞ0. Nevertheless, due to the relations~28! and ~32!, the
well-known formula

E
a

b

„mi j ~ q̇a¹aui)~ q̇b¹buj !1Rim j nuiuj q̇mq̇n
…dt1mi j q̇

a¹auiuj u t5a2mi j q̇
a¹auiuj u t5b50

~34!

for a Jacobi vector fieldu, which is perpendicular to a geodesicc, takes place. Note that this
expression is independent of the componentsḡ0l of the metric~33!, i.e., is frame independent.
Accordingly, the following assertions also remain true.18

Proposition 13:If the sectional curvatureRim j nuiuj q̇mq̇n is non-negative on a solutionc, this
geodesic has no conjugate points.

Proposition 14:If the sectional curvatureRim j nuiujvmvn, wherev is an arbitrary unit vector
field on a Riemannian manifoldQ that does not exceed2K,0, then, for any solutionc, the
distance between two consecutive conjugate points is at mostp/AK.

For instance, let us consider a one-dimensional time-dependent oscillator described by
Lagrangian

L5 1
2 @m~ t !~ q̇1!22k~ t !~q1!2#.

The corresponding Lagrange equation is the well-known Sturm equation. In this case, the me
~26! reads

g0052kx2, g0150, g115m.

Its Christoffel symbols are

$111%50, $011%5$110%52 1
2 ṁ,

$010%5$100%5kx, $101%5 1
2 ṁ, $000%52 1

2 k̇.

The connectionK̃ ~27! takes the form

Klm
0 50, K01

1 5K10
1 52

ṁ

2m
, K00

1 5
kx

m
.

Its curvature has the nonzero component
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R101052
k

m
2

m̈

2m
1

3

4 S ṁ

mD 2

.

Let us apply the Propositions 13 and 14 to this case. IfR1010>0 on a solutionc, this solution has
no conjugate points. This condition reads

~3ṁ!2

4m
>k1

1

2
m̈.

If R1010<2K,0, the distance between two consecutive conjugate points is at mostp/AK. This
condition takes the form

k

m
>K2

m̈

2m
1

3

4 S ṁ

mD 2

.

For instance, let us consider an oscillator wherem and k are independent oft. In this case,
R010152k, while the half-period of this oscillator is exactlyp/Ak in accordance with Proposition
14. Similarly, solutions for the oscillator with a constant massm and a functionk(t)>K.0 also
have conjugate points, and the distance between two consecutive conjugate points is a
p/AK.
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A new procedure for specifying nonradiating current
distributions and the fields they produce

Edwin A. Marengoa) and Richard W. Ziolkowski
Department of Electrical and Computer Engineering, The University of Arizona,
Tucson, Arizona 85721

~Received 8 February 1999; accepted for publication 24 September 1999!

This paper reports a new procedure for specifying monochromatic nonradiating
~NR! current distributions~NR sources! and the electric and magnetic fields they
produce~NR fields!. Vector spherical harmonics and a Fourier–Bessel series are
used to derive a new vector spherical-wave expansion for continuous NR fields
confined within a spherical volume. The analysis yields complete orthogonal sets in
terms of which all such NR fields can be expanded. By making use of a Maxwell
operator representation for NR current distributions, we obtain a new series expan-
sion for NR current distributions confined within a spherical volume. The analysis
also yields complete sets for such NR current distributions. The developed theory is
illustrated with special cases. ©2000 American Institute of Physics.
@S0022-2488~00!01202-0#

I. INTRODUCTION

Classical current distributions which do not radiate@nonradiating~NR! sources# have been
studied since the early days of electromagnetic theory~see Ref. 1 for a review and relevan
references!. Interest in such a class of sources originated from their connection with ce
aspects of classical electron theory, primarily the question of the electromagnetic self-forc
radiation reaction.2 NR sources were used in interesting papers by Schott3,4 and Bohm and
Weinstein5 and, more recently, by Goedecke,6 in efforts to model charged particles and atoms
manifestations of NR source states. In more recent years, most of the~renewed! interest in NR
sources has been linked to their role in inverse source and inverse scattering theories whe
arise as the null space of the mapping from the source~scatterer! to the field.7–9 Investigations on
this subject have addressed both scalar10–14 and electromagnetic sources,1,15–17 including both
deterministic and random sources.18–20 The vast majority of workers have focused on the sca
formulation, as opposed to the vector, electromagnetic formulation. The latter is the focus
presentation.

This paper reports a new procedure for specifying monochromatic NR current distribu
and the electric and magnetic fields they produce~NR fields!. Our analysis is based on standa
vector spherical harmonics and a Fourier–Bessel series and yields new representations a
functions for NR sources and fields confined within a spherical volume. The results derived
paper provide a systematic way to construct such wave objects and are therefore rele
computational aspects of inverse source/inverse scattering reconstruction. In fact, part
motivation for the research reported here was provided by the need for representational to
NR source components of scattering objects in certain source-type integral equation~STIE!
methods.21–23 In Ref. 23, basis functions to represent NR sources in rectangular coordinates
derived, and applied to the problem of reconstructing, via inverse scattering surveys, the
tutive properties of an unknown object. The spherical coordinate counterparts of the NR s
results in Ref. 23 were developed first for scalar, spherically symmetric sources in Ref. 1

a!Electronic mail: emarengo@ece.arizona.edu
8450022-2488/2000/41(2)/845/22/$17.00 © 2000 American Institute of Physics
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extended later to the nonspherically symmetric case in a recent contribution coauthored by
us ~E.A.M.!.24 The present work generalizes, to the electromagnetic case, that in Ref. 24.

The remainder of this paper is organized as follows. In Sec. II, localized NR current d
butions and the fields they produce are characterized as solutions of an overspecified bo
value problem of the inhomogeneous vector wave equation. This characterization is base
well-known Maxwell operator representation for NR current distributions derived first in Ref
In Secs. III and IV, a new method is developed for specifying NR current distributions and
fields confined within a spherical volume. In both sections we impose certain continuity
differentiability restrictions on NR sources and fields which can, however, be relaxed by de
with the various vector differential operators in a weak derivative or distributional sense. In
III, vector spherical harmonics and a Fourier–Bessel series are used to derive a new serie
sentation for continuous NR fields confined within a spherical volume. The analysis also
complete orthogonal sets in terms of which all such NR fields can be expanded. In Sec. I
derive a new series representation for the NR current distributions associated with the NR fi
Sec. III. Our analysis also yields complete sets for all such NR current distributions. In Sec.
general theory is applied to the special cases of spherically symmetric NR sources and NR s
with dipolar angular dependence~NR loops of current contained within a spherical region!. Sec-
tion VI contains our concluding remarks.

II. THE DEVANEY–WOLF REPRESENTATION

In Gaussian system of units, the Maxwell equations in free space reduce, under time-ha
conditions, to25

¹•E~r !54pr~r !,

¹•H~r !50,
~1!

¹3E~r !5 i
v

c
H~r !,

¹3H~r !5
4p

c
J~r !2 i

v

c
E~r !.

In Eq. ~1!, E(r ) and H(r ) are, respectively, the space-dependent parts of the time-harm
electric and magnetic fieldsE(r ,t)5R$E(r )e2 ivt% andH(r ,t)5R$H(r )e2 ivt%, whereR de-
notes the real part;r and t denote the position and time, respectively; andv is the frequency of
oscillation. In addition,c is the speed of light in vacuum and

r~r !5¹•J~r !/~ iv! ~2!

and J(r ) are, respectively, the space-dependent parts of the time-harmonic charge and
distributionsq(r ,t)5R$r(r )e2 ivt% andJ(r ,t)5R$J(r )e2 ivt%. For the sake of brevity, we sha
refer henceforth to the space-dependent partsE(r ) and H(r ) of the electric and magnetic field
E(r ,t) andH(r ,t), respectively, as ‘‘the electric and magnetic fields.’’ Similarly, we shall re
to J(r ) as ‘‘the current distribution.’’

It is a well established fact~see, e.g., Refs. 15 and 23! that any NR current distributionJNR(r )
of compact supports admits the representation~henceforth to be referred to as ‘‘the Devaney
Wolf representation’’!
                                                                                                                



i-

first by

tion

aved

ted
e

.

,
lds by

eth-
vector

e

847J. Math. Phys., Vol. 41, No. 2, February 2000 A new procedure for specifying nonradiating . . .

                    
JNR~r !5
1

4p i S c

kD @¹3¹3ENR~r !2k2ENR~r !#, ~3!

whereENR(r ) is a vector field of compact supports. Furthermore, with every NR current distr
butionJNR(r ) there is associated one and only one such fieldENR(r ) and this field is precisely the
electric field produced by the NR current distribution15 ~see also Ref. 23, pp. 1107–1108!. The
scalar counterpart of the Devaney–Wolf representation appears to have been derived
Friedlander26 and has been used extensively in inverse source/inverse scattering theory.8,10,11,23

To simplify the following analysis, in the remainder of this paper we will restrict our atten
to continuous NR electric and magnetic fields that are confined within a spherical volumeD:r
<a of radiusa.0, and that possess continuous curl and divergence on the boundaryr 5a of the
volumeD. We shall refer henceforth to NR fields obeying all of these properties as ‘‘well beh
NR fields.’’ Well behaved NR fields are seen to obey, in view of the Maxwell equations~1!, the
following overspecified boundary conditions:

ENR~r !ur 5a50,

¹3ENR~r !ur 5a50,
~4!

¹•ENR~r !ur 5a50,

¹3¹3ENR~r !ur 5a50.

The third and fourth conditions of Eq.~4! force the charge and current distributions associa
with well behaved NR fields to vanish on the boundaryr 5a of D. They thus ensure that th
associated NR charge and current distributions will possess compact support inD. The purpose of
Sec. III is to characterize all well behaved NR fields using~1! the vector spherical harmonics

Pl
m~u,f!5 r̂Yl

m~u,f!,

Bl
m~u,f!5

1

Al ~ l 11!
r̂3LYl

m~u,f!, ~5!

Cl
m~u,f!5

1

Al ~ l 11!
LYl

m~u,f!,

whereYl
m(u,f) is the spherical harmonic of degreel and orderm ~as defined in Ref. 25, pp

98–99! andL52 i r3¹ is the orbital angular momentum operator@see, e.g., Ref. 25, Eq.~16.25!#,
~2! a Fourier–Bessel series, and~3! the overspecified boundary conditions~4!. On the other hand
the goal of Sec. IV is to characterize all NR sources associated with well behaved NR fie
making use of the Devaney–Wolf representation Eq.~3!.

III. A PROCEDURE FOR SPECIFYING NR FIELDS

This section provides a new procedure for specifying well behaved NR electric fields. M
odologically, we use a spherical vector function expansion to represent any continuous
function that is confined within the spherical volumeD:r<a and vanishes on the boundaryr
5a of D. Later we impose the additional constraints¹3ENR(r )ur 5a50 and¹•ENR(r )ur 5a50.

We have the following theorem.
Theorem 1: Any continuous vector functionF(r ) that is confined within the spherical volum

D:r<a and vanishes on the boundaryr 5a of D can be represented, forr<a, in the form
                                                                                                                



key
ons

l

848 J. Math. Phys., Vol. 41, No. 2, February 2000 E. A. Marengo and R. W. Ziolkowski

                    
F~r !5 (
n50

`

(
l 50

`

(
m52l

l

@a~n,l ,m;n!Pl
m~u,f!1b~n,l ,m;n!Bl

m~u,f!

1c~n,l ,m;n!Cl
m~u,f!#cn;n~r !, ~6!

wherePl
m(u,f), Bl

m(u,f), andCl
m(u,f) are defined in Eq.~5! and

cn;n~r !5
A2/a3

u j n11~bn,n!u
j nS bn,n

r

aD , ~7!

where

j n~x!5Ap

2x
Jn11/2~x! ~8!

is the spherical Bessel function of the first kind of ordern, wheren is an arbitrary non-negative
integer. The parametersbn,n are consecutive zeros ofj n(x), i.e., j n(bn,n)50, n50,1,2, . . . . The
expansion coefficientsa(n,l ,m;n), b(n,l ,m;n), andc(n,l ,m;n) are given by

a~n,l ,m;n!5E
r<a

dr r 2cn;n~r !E
4p

dVPl
m* ~u,f!•F~r !

5E
r<a

dr r 2cn;n~r !E
4p

dVYl
m* ~u,f!@ r̂•F~r !#, ~9!

b~n,l ,m;n!5E
r<a

dr r 2cn;n~r !E
4p

dVBl
m* ~u,f!•F~r !

5
1

Al ~ l 11!
E

r<a
dr r 2cn;n~r !E

4p
dV@ r̂3LYl

m~u,f!#* •F~r ! ~10!

and

c~n,l ,m;n!5E
r<a

dr r 2cn;n~r !E
4p

dVCl
m* ~u,f!•F~r !

5
1

Al ~ l 11!
E

r<a
dr r 2cn;n~r !E

4p
dV@LYl

m~u,f!#* •F~r !, ~11!

wheredV5sinududf and an asterisk denotes the complex conjugate.
Proof: The proof of this result is straightforward and will not be given in detail. The

ingredients of the proof are~1! the completeness and orthogonality of the vector functi
Pl

m(u,f), Bl
m(u,f), andCl

m(u,f) over the unit sphere~see, e.g., Ref. 27, pp. 1898–1900!; ~2! the
Fourier–Bessel series, which one can use to represent any function ofr defined over the interva
@0,a# that is at least piecewise continuous and vanishes atr 5a ~see, e.g., Eq.~11.51! in Ref. 28!;
and~3! the orthogonality property of the set of ordinary Bessel functionsJn(bn,n (r /a)) for fixed
non-negative integern and variable indexn in the r interval @0,a# @see, e.g., Eq.~ 11.168! in Ref.
28#. The latter property ensures that@see, e.g., Eq.~11.169! in Ref. 28#

E
r<a

dr r 2cn;n~r !cn8;n~r !5dn,n8, ~12!
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wheredn,n8 is the Kronecker delta. The vector functionsPl
m(u,f), Bl

m(u,f), andCl
m(u,f) are

mutually perpendicular in view of the propertyr•L50 @see, e.g., Eq.~16.27! in Ref. 25#. They
obey the orthogonality conditions

E
4p

dVPl
m* ~u,f!•Pl 8

m8~u,f!5d l ,l 8dm,m8,

E
4p

dVBl
m* ~u,f!•Bl 8

m8~u,f!5d l ,l 8dm,m8, ~13!

E
4p

dVCl
m* ~u,f!•Cl 8

m8~u,f!5d l ,l 8dm,m8 .

Equation~13! follows from L2Yl
m(u,f)5l (l 11)Yl

m(u,f) @see, e.g., Eq.~16.24! in Ref. 25#.
Also, P0

0(u,f)51/A4p r̂ while B0
0(u,f)50 andC0

0(u,f)50.
The following result follows immediately from Theorem 1.
Theorem 2: Any well behaved NR electric fieldENR(r ) admits a representation of the form

Eq. ~6! @i.e., with F(r ) substituted byENR(r )# subject to the constraints

(
n50

`

a~n,l ,m;n!a~n;n!50,

(
n50

`

b~n,l ,m;n!a~n;n!50, ~14!

(
n50

`

c~n,l ,m;n!a~n;n!50,

where

a~n;n!5
1

u j n11~bn,n!u
d

dr
j nS bn,n

r

aD ur 5a .

Proof: That ENR(r ) is representable in the form Eq.~6! follows from Theorem 1 and the
above-imposed restrictions onENR(r ). After evaluating¹3ENR(r ) with ENR(r ) given by the
representation Eq.~6!, with F(r )5ENR(r ), we obtain, by enforcing the condition¹
3ENR(r )ur 5a50, the result

(
n50

`

(
l 51

`

(
m52l

l

@c~n,l ,m;n!a~n;n!Bl
m~u,f!2b~n,l ,m;n!a~n;n!Cl

m~u,f!#50, ~15!

where we have discarded unnecessary constants. In deriving Eq.~15! we have made use of th
results~see Appendix A!

¹3F j nS bn,n

r

aD r̂Yl
m~u,f!G52

i

r
j nS bn,n

r

aDLYl
m~u,f!,

¹3F j nS bn,n

r

aDLYl
m~u,f!G5

i l ~ l 11!

r
j nS bn,n

r

aD r̂Yl
m~u,f!1

1

r

d

dr F r j nS bn,n

r

aD G r̂
3LYl

m~u,f!, ~16!
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¹3F j nS bn,n

r

aD r̂3LYl
m~u,f!G52

1

r

d

dr F r j nS bn,n

r

aD GLYl
m~u,f!.

Similarly, by evaluating¹•ENR(r ) with ENR(r ) given by Eq. ~6!, with F(r )5ENR(r ), while
enforcing the condition¹•ENR(r )ur 5a50, one obtains

(
n50

`

(
l 50

`

(
m52l

l

a~n,l ,m;n!a~n;n!Yl
m~u,f!50. ~17!

In deriving Eq.~17! we have made use of the results~see Appendix A!

¹•F j nS bn,n

r

aD r̂Yl
m~u,f!G5F2

r
j nS bn,n

r

aD1
d

dr
j nS bn,n

r

aD GYl
m~u,f!,

¹•F j nS bn,n

r

aDLYl
m~u,f!G50, ~18!

¹•F j nS bn,n

r

aD r̂3LYl
m~u,f!G52

i l ~ l 11!

r
j nS bn,n

r

aDYl
m~u,f!.

Finally, Eq.~14! follows from Eqs.~15! and~17! and the orthogonality relations~13!. The fourth
of the overspecified boundary conditions Eq.~4!, i.e., ¹3¹3ENR(r )ur 5a50, is automatically
satisfied so long as Eq.~14! holds, as we will see in Sec. IV.

Now, n is an arbitrary non-negative integer. In the remainder of the paper we will restric
analysis to the special casen50, although the general theory applies to arbitrary non-nega
integersn.

A. Special case: n50

For n50 we obtain from Theorem 2

ENR~r !5 (
n50

`

(
l 50

`

(
m52l

l

@a~n,l ,m!Pl
m~u,f!1b~n,l ,m!Bl

m~u,f!1c~n,l ,m!Cl
m~u,f!#cn~r !,

~19!

where we have defined

a~n,l ,m!5a~n,l ,m;n50!,

b~n,l ,m!5b~n,l ,m;n50!,
~20!

c~n,l ,m!5c~n,l ,m;n50!,

cn~r !5cn;n50~r !5A2/a3b0,nj 0S b0,n

r

aD .

For this special case we obtain

b0,n5~n11!p, ~21!
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j 0S b0,n

r

aD5

sinS b0,n

r

aD
b0,n

r

a

~22!

and the constraint relations~14! reduce to

(
n50

`

~21!n11~n11!a~n,l ,m!50,

(
n50

`

~21!n11~n11!b~n,l ,m!50, ~23!

(
n50

`

~21!n11~n11!c~n,l ,m!50,

where we have discarded unnecessary constants.

B. An orthonormal basis for NR fields

We can now use the results established in Sec. III A to generate an orthonormal basis
well behaved NR electric fields. Following the vector counterpart of the procedure used in R
for scalar fields, we define the three sequences of NR electric fields$Ea

(p,l ,m)(r )%, $Eb
(p,l ,m)(r )%,

and$Ec
(p,l ,m)(r )%, with p51,2,. . . ; l 50,1,. . . ; andm52l ,2l 11, . . . ,l , where

Ea
(p,l ,m)~r !5Pl

m~u,f! (
n50

p

va
(p)~n!cn~r !,

Eb
(p,l ,m)~r !5Bl

m~u,f! (
n50

p

vb
(p)~n!cn~r !, ~24!

Ec
(p,l ,m)~r !5Cl

m~u,f! (
n50

p

vc
(p)~n!cn~r !,

where the expansion coefficientsva
(p)(n), vb

(p)(n), andvc
(p)(n) must obey, by analogy with Eq

~23!, the constraint equations

(
n50

p

~21!n11~n11!v j
(p)~n!50, j 5a,b,c. ~25!

Next, we impose the orthonormality conditions

E
D

d3rEj
(p,l ,m)* ~r !•Ej

(p8,l 8,m8)~r !5d l ,l 8dm,m8dp,p8 , j 5a,b,c. ~26!

In view of Eq. ~12!, Eq. ~13!, and Eq.~24!, the condition Eq.~26! yields

(
n50

p

v j
(p)* ~n!v j

(p8)~n!5dp,p8 , j 5a,b,c. ~27!
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It follows at once from Theorem 2 and the definitions and constraints forEa
(p,l ,m)(r ),

Eb
(p,l ,m)(r ), andEc

(p,l ,m)(r ) above that any well behaved NR electric fieldENR(r ) can be written
as

ENR~r !5 (
p51

`

(
l 50

`

(
m52l

l

@ua~p,l ,m!Ea
(p,l ,m)~r !1ub~p,l ,m!Eb

(p,l ,m)~r !

1uc~p,l ,m!Ec
(p,l ,m)~r !#, ~28!

where

uj~p,l ,m!5E
D

d3rEj
(p,l ,m)* ~r !•ENR~r !, j 5a,b,c. ~29!

Thus, the vector functionsEa
(p,l ,m)(r ), Eb

(p,l ,m)(r ), and Ec
(p,l ,m)(r ), with p51,2,. . . ; l

50,1,. . . ; and m52l ,2l 11, . . . ,l , form an orthonormal basis for all well behaved N
electric fields, so long as the expansion coefficientsv j

(p,l ,m)(n,l ,m) in Eq. ~24! satisfy the con-
straint relations~25! and the orthonormality conditions~27!.

Now we note that Eqs.~25! and~27! can be jointly satisfied, as follows from the fact that ea
basis field,Ej

(p,l ,m)(r ), j 5a,b,c, is defined from Eq.~24! by a sum ofp11 linearly independent
functions, while condition~27! only involves the firstp011 of these functions, wherep0 is the
lower of p,p8. This consideration leads to the following procedure for constructing the ortho
mal set. The basis fieldsEj

(1,l ,m)(r ), j 5a,b,c, are constructed withv j
(1)(0) andv j

(1)(1) chosen so
as to obey conditions~25! and ~27! with p5p851. The basis fieldsEj

(2,l ,m)(r ), j 5a,b,c, are
constructed withv j

(2)(0) andv j
(2)(1) selected so as to satisfy Eq.~27! with p51 andp852. This

leavesv j
(2)(2) arbitrary and also leavesv j

(2)(0) andv j
(2)(1) arbitrary up to a single multiplicative

constant. The multiplicative constant andv j
(2)(2) are then uniquely determined from the constra

equation~25! and the orthonormality condition~27! with p52 andp852. The above-outlined
step-by-step procedure is elaborated in Appendix B and can be used to construct the rem
basis fieldsEj

(p,l ,m)(r ), j 5a,b,c, i.e., those corresponding top.2. By means of this procedur
we have found the coefficientsv j

(p)(n) to be defined, for arbitraryp51,2,. . . , by theexpressions

v j
(p)~0!5H (

n50

p21

~n11!21
@(n50

p21~n11!2#2

~p11!2 J 21/2

, ~30!

v j
(p)~n!5~21!n~n11!v j

(p)~0!,0,n,p, ~31!

and

v j
(p)~p!5v j

(p)~0!
~21!p11(n50

p21~n11!2

p11
. ~32!

Finally, we note that the expansion coefficientsv j
(p)(n) obey, in view of Eqs.~25! and ~27!,

the same constraint equations fori 5a, b, andc. This enables us to use Eqs.~30!–~32! to express
Eq. ~24! in the convenient form

Ea
(p,l ,m)~r !5Fp~r !Pl

m~u,f!,

Eb
(p,l ,m)~r !5Fp~r !Bl

m~u,f!, ~33!

Ec
(p,l ,m)~r !5Fp~r !Cl

m~u,f!,

where
                                                                                                                



et.

s. By
t
ns

853J. Math. Phys., Vol. 41, No. 2, February 2000 A new procedure for specifying nonradiating . . .

                    
Fp~r !5 (
n50

p

v j
(p)~n!cn~r !, j 5a,b,c

5H (
n50

p21

~n11!21
@(n50

p21~n11!2#2

~p11!2 J 21/2

3H F( n50
p21 ~21!n~n11!cn~r !G1~21!p11

(n50
p21~n11!2

p11
cp~r !J . ~34!

Thus, we obtain from Eq.~34! and Eqs.~20! and ~21!

F1~r !5
2A2p

A5a3 F j 0S p
r

aD1 j 0S 2p
r

aD G ,
F2~r !5

3p

A35a3 F j 0S p
r

aD24 j 0S 2p
r

aD25 j 0S 3p
r

aD G ,
F3~r !5

2A2p

A105a3 F j 0S p
r

aD24 j 0S 2p
r

aD19 j 0S 3p
r

aD114j 0S 4p
r

aD G , ~35!

F4~r !5
p

A33a3 F j 0S p
r

aD24 j 0S 2p
r

aD19 j 0S 3p
r

aD216j 0S 4p
r

aD230j 0S 5p
r

aD G ,
F5~r !5

6A2p

A5005a3 F j 0S p
r

aD24 j 0S 2p
r

aD19 j 0S 3p
r

aD216j 0S 4p
r

aD
125j 0S 5p

r

aD155j 0S 6p
r

aD G
and so on. The result Eq.~34! is of great value since it gives explicit form to the orthonormal s

IV. A PROCEDURE FOR SPECIFYING NR CURRENT DISTRIBUTIONS

In this section we make use of the Devaney–Wolf representation Eq.~3! and the results of
Sec. III to characterize all NR current distributions associated with well behaved NR field
using the representation Eq.~3! with ENR(r ) given by Eqs.~19!–~22! subject to the constrain
conditions~23!, we obtain, forr<a, the following representation for the NR current distributio
associated with the NR electric fields in Sec. III:

JNR~r !5
1

4p i S c

kD @¹3¹3ENR~r !2k2ENR~r !#

5
1

4p i S c

kD (
n50

`

(
l 50

`

(
m52l

l

@Ra
(n,l ,m)~r !Pl

m~u,f!1Rb
(n,l ,m)~r !Bl

m~u,f!

1Rc
(n,l ,m)~r !Cl

m~u,f!#, ~36!

where
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Ra
(n,l ,m)~r !5A2/a3b0,nH a~n,l ,m!F l ~ l 11!

r 2
2k2G j 0S b0,n

r

aD
2b~n,l ,m!

iAl ~ l 11!

r 2

d

dr F r j 0S b0,n

r

aD G J , ~37!

Rb
(n,l ,m)~r !5A2/a3b0,nH b~n,l ,m!F F ~n11!p

a G2

2k2G j 0S b0,n

r

aD
2a~n,l ,m!

iAl ~ l 11!

r

d

dr
j 0S b0,n

r

aD J , ~38!

and

Rc
(n,l ,m)~r !5A2/a3b0,nc~n,l ,m! j 0S b0,n

r

aD H F ~n11!p

a G2

1
l ~ l 11!

r 2
2k2J . ~39!

In deriving Eqs.~38! and ~39! we have made use of the fact that24

¹2 j 0S b0,n

r

aD5
1

r 2

d

dr F r 2
d

dr
j 0S b0,n

r

aD G52F ~n11!p

a G2

j 0S b0,n

r

aD ~40!

and

¹2Yl
m~u,f!52

L2

r 2
Yl

m~u,f!52
l ~ l 11!

r 2
Yl

m~u,f!. ~41!

Also, in carrying out the manipulations leading to Eqs.~37!–~39! we have made use of th
following results~see Appendix C!:

¹3¹3F j 0S b0,n

r

aD r̂Yl
m~u,f!G5

l ~ l 11!

r 2
j 0S b0,n

r

aD r̂Yl
m~u,f!2

i

r

d

dr
j 0S b0,n

r

aD r̂3LYl
m~u,f!,

¹3¹3F j 0S b0,n

r

aDLYl
m~u,f!G5H F ~n11!p

a G2

1
l ~ l 11!

r 2 J j 0S b0,n

r

aDLYl
m~u,f!, ~42!

¹3¹3F j 0S b0,n

r

aD r̂3LYl
m~u,f!G52

i l ~ l 11!

r 2

d

dr F r j 0S b0,n

r

aD G r̂Yl
m~u,f!

1F ~n11!p

a G2

j 0S b0,n

r

aD r̂3LYl
m~u,f!.

The charge densityrNR(r ) corresponding to the NR current distributionJNR(r ) in Eq. ~36! is
evaluated by using the procedure employed to derive Eq.~18! in Appendix A. We obtain from
Eqs.~36! to ~39!
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rNR~r !5¹•JNR~r !/~ iv!

52
1

4pv S c

kD (
n50

`

(
l 50

`

(
m52l

l H 1

r 2

d

dr
@r 2Ra

(n,l ,m)~r !#2
i l ~ l 11!

r
Rb

(n,l ,m)~r !J Yl
m~u,f!,

~43!

where

1

r 2

d

dr
@r 2Ra

(n,l ,m)~r !#5A2/a3b0,nH a~n,l ,m!F F l ~ l 11!

r 2
2k2G d

dr
j 0S b0,n

r

aD2
2k2

r
j 0S b0,n

r

aD G
2b~n,l ,m!

iAl ~ l 11!

r 2

d2

dr2 F r j 0S b0,n

r

aD G J . ~44!

By referring to the constraint conditions~23!, JNR(r ) andrNR(r ), defined by Eqs.~36!–~39! and
Eqs.~43! and~44!, respectively, can be shown to vanish on the boundaryr 5a of D, as expected
from Eqs.~1! and ~4!.

We can apply now a procedure analogous to that used in Sec. III B to generate a~nonorthogo-
nal! basis for NR current distributions confined withinD. Thus, we build the three sequences
NR current distributions$Ja

(p,l ,m)(r )%, $Jb
(p,l ,m)(r )%, and $Jc

(p,l ,m)(r )% associated with the se
quences of NR fields$Ea

(p,l ,m)(r )%, $Eb
(p,l ,m)(r )%, and $Ec

(p,l ,m)(r )%, respectively, withp
51,2,. . . ; l 50,1,. . . ; andm52l ,2l 11, . . . ,l , where

Ja
(p,l ,m)~r !5

1

4p i S c

kD @¹3¹3Ea
(p,l ,m)~r !2k2Ea

(p,l ,m)~r !#

5
1

4p i S c

kDA2/a3(
n50

p

va
(p)~n!b0,nH F l ~ l 11!

r 2
2k2G j 0S b0,n

r

aDPl
m~u,f!

2
iAl ~ l 11!

r

d

dr
j 0S b0,n

r

aDBl
m~u,f!J , ~45!

Jb
(p,l ,m)~r !5

1

4p i S c

kD @¹3¹3Eb
(p,l ,m)~r !2k2Eb

(p,l ,m)~r !#

5
1

4p i S c

kDA2/a3(
n50

p

vb
(p)~n!b0,nH 2

iAl ~ l 11!

r 2

d

dr F r j 0S b0,n

r

aD GPl
m~u,f!

1F F ~n11!p

a G2

2k2G j 0S b0,n

r

aDBl
m~u,f!J ~46!

and

Jc
(p,l ,m)~r !5

1

4p i S c

kD @¹3¹3Ec
(p,l ,m)~r !2k2Ec

(p,l ,m)~r !#

5
1

4p i S c

kDA2/a3(
n50

p

vc
(p)~n!b0,nF F ~n11!p

a G2

1
l ~ l 11!

r 2
2k2G j 0S b0,n

r

aDCl
m~u,f!.

~47!
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In deriving Eqs.~45!–~47! we have made use of Eq.~42!. The expansion coefficientsva
(p)(n),

vb
(p)(n), andvc

(p)(n) are defined by Eqs.~30!, ~31!, and~32!.
Finally, by following a procedure analogous to that employed in deriving Eqs.~43! and~44!,

we find the charge densitiesra
(p,l ,m)(r ), rb

(p,l ,m)(r ), andrc
(p,l ,m)(r ) associated with the basis NR

current distributionsJa
(p,l ,m)(r ), Jb

(p,l ,m)(r ), andJc
(p,l ,m)(r ), respectively, to be given from Eqs

~45!, ~46!, and~47! by

ra
(p,l ,m)~r !5¹•Ja

(p,l ,m)~r !/~ iv!

5
1

4p
A2/a3(

n50

p

va
(p)~n!b0,nF d

dr
j 0S b0,n

r

aD1
2

r
j 0S b0,n

r

aD GYl
m~u,f!, ~48!

rb
(p,l ,m)~r !5¹•Jb

(p,l ,m)~r !/~ iv!

5
1

4pv S c

kDA2/a3(
n50

p

vb
(p)~n!b0,nH iAl ~ l 11!

r 2

d2

dr2 F r j 0S b0,n

r

aD G
1

i l ~ l 11!

r F F ~n11!p

a G2

2k2G j 0S b0,n

r

aD J Yl
m~u,f!, ~49!

and

rc
(p,l ,m)~r !5¹•Jc

(p,l ,m)~r !/~ iv!50. ~50!

V. SPECIAL CASES

In this section we examine the two simplest classes of NR current distributions that c
constructed from the results of Secs. III and IV. They are:~1! spherically symmetric NR curren
distributions, and~2! NR current distributions with dipolar angular dependence.

A. Spherically symmetric NR current distributions „case l 50…

We consider next the simple example of spherically symmetric NR current distributions.
NR current distributions are purely longitudinal, which automatically makes them NR. An
ample is provided by a spherically symmetric charge distribution undergoing oscillatory r
motion. Spherically symmetric NR current distributions can be constructed by using the
functionsJa

(p,0,0)(r ), Jb
(p,0,0)(r ), andJc

(p,0,0)(r ), corresponding to the casel 50, m50 in Eqs.~45!,
~46!, and~47!. In particular,

Ja
(p,0,0)~r !5

iv

~4p!3/2
A2/a3(

n50

p

va
(p)~n!b0,nj 0S b0,n

r

aD r̂ , ~51!

Jb
(p,0,0)(r )50 andJc

(p,0,0)(r )50. The coefficientsva
(p)(n) in Eq. ~51! are given by Eqs.~30!–~32!

while b0,n is defined by Eq.~21!. Then we obtain from Eq.~51!

Ja
(1,0,0)~r !5

iv

4
A 2

5pa3F j 0S p
r

aD1 j 0S 2p
r

aD G r̂ ,

Ja
(2,0,0)~r !5

3iv

8
A 1

35pa3F j 0S p
r

aD24 j 0S 2p
r

aD25 j 0S 3p
r

aD G r̂ ,

Ja
(3,0,0)~r !5

iv

4
A 2

105pa3F j 0S p
r

aD24 j 0S 2p
r

aD19 j 0S 3p
r

aD114j 0S 4p
r

aD G r̂ , ~52!
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Ja
(4,0,0)~r !5

iv

8
A 1

33pa3F j 0S p
r

aD24 j 0S 2p
r

aD19 j 0S 3p
r

aD216j 0S 4p
r

aD230j 0S 5p
r

aD G r̂ ,

Ja
(5,0,0)~r !5

3iv

4
A 2

5005pa3F j 0S p
r

aD24 j 0S 2p
r

aD19 j 0S 3p
r

aD216j 0S 4p
r

aD125j 0S 5p
r

aD
155j 0S 6p

r

aD G r̂ ,

and so on. On the other hand, the associated charge densitiesra
(p,0,0)(r ) are given from Eq.~48! by

ra
(p,0,0)~r !5

1

~4p!3/2
A2/a3(

n50

p

va
(p)~n!b0,nF2

r
j 0S b0,n

r

aD1
d

dr
j 0S b0,n

r

aD G . ~53!

Now we can represent any well behaved spherically symmetric NR current distributionJ(r )
as

J~r !5 (
p50

`

qa~p,0,0!Ja
(p,0,0)~r !, ~54!

where

qa~p,0,0!5E
D

d3rJa
(p,0,0)* ~r !•J~r !. ~55!

Finally, the NR fieldsEa
(p,0,0)(r ) produced by the NR current distributionsJa

(p,0,0)(r ) are found
from Eqs.~20!, ~24!, and~51! to be given by

Ea
(p,0,0)~r !52

4p i

v
Ja

(p,0,0)~r !. ~56!

Spherically symmetric NR current distributions are then seen to be, apart from a proportio
factor, identical to the NR fields they produce. It is not hard to show that this applies to
time-harmonic longitudinal NR current distribution.

B. NR sources and fields with dipolar angular dependence „case l 51, m 50…

We consider next the case of NR sources and fields with dipolar angular dependence, i
sources and fields described by series expansions overJc

(p,1,0)(r ) and Ec
(p,1,0)(r ), respectively,

corresponding to the casel 51, m50. Physically, NR current distributions of this kind a
similar to a loop of current confined within a spherical region. These NR current distribution
formed by superposing certain radiating magnetic dipole-like sources in a way that make
radiated fields cancel out forr .a by destructive interference, as we shall show in the followi
The electric counterpart of these NR collections of magnetic dipoles~i.e., NR collections of
electric dipoles! can be built, by duality, using the results of this section.

In this case we obtain from the Devaney–Wolf representation Eq.~3! and Eqs.~28!, ~29!, and
~47!

ENR~r !5 (
p50

`

uc~p,1,0!Ec
(p,1,0)~r !, ~57!

where
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uc~p,1,0!5E
D

d3rEc
(p,1,0)* ~r !•ENR~r ! ~58!

and

J~r !5 (
p50

`

qc~p,1,0!Jc
(p,1,0)~r ! ~59!

where

qc~p,1,0!5E
D

d3rJc
(p,1,0)* ~r !•J~r !. ~60!

By using

LY1
0~ r̂ !5 iufA 3

4p
sinu, ~61!

whereuf is the unit vector in the positivef direction, the basis fieldsEc
(p,1,0)(r ) are found from

Eqs.~33! and ~61! to be given by

Ec
(p,1,0)~r !5 iufA 3

8p
sinuFp~r !, ~62!

whereFp(r ) is defined by Eq.~34!. For example, forp51,2,. . . ,5, the basis fieldsEc
(p,1,0)(r ) are

given explicitly by Eqs.~35! and~62!. On the other hand, the associated NR current distribut
Jc

(p,1,0)(r ), defined from Eq.~47! as

Jc
(p,1,0)~r !5

1

4p i S c

ka3/2D LY1
0~u,f! (

n50

p

vc
(p)~n!b0,nF F ~n11!p

a G2

12/r 22k2G j 0S b0,n

r

aD ,

~63!

are found from Eqs.~21! and ~61! to be given by

Jc
(p,1,0)~r !5uf

c

4k
A 3

4pa3
sinu (

n50

p

vc
(p)~n!~n11!F F ~n11!p

a G2

12/r 22k2G j 0F ~n11!p
r

aG ,
~64!

where the coefficientsv i
(p)(n) are given by Eqs.~30!–~32!. By using Eq.~64! and Eqs.~30!–~32!

we obtain

Jc
(1,1,0)~r !5uf

c

2k
A 3

20pa3
sinuH F S p

a D 2

12/r 22k2G j 0S p
r

aD1F S 2p

a D 2

12/r 22k2G j 0S 2p
r

aD J ,

Jc
(2,1,0)~r !5uf

c

4k
A 3

280pa3
sinuH 3F S p

a D 2

12/r 22k2G j 0S p
r

aD
212F S 2p

a D 2

12/r 22k2G j 0S 2p
r

aD215F S 3p

a D 2

12/r 22k2G j 0S 3p
r

aD J ,
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Jc
(3,1,0)~r !5uf

c

4k
A 1

140pa3
sinuH 2F S p

a D 2

12/r 22k2G j 0S p
r

aD28F S 2p

a D 2

12/r 22k2G j 0S 2p
r

aD
118F S 3p

a D 2

12/r 22k2G j 0S 3p
r

aD128F S 4p

a D 2

12/r 22k2G j 0S 4p
r

aD J , ~65!

Jc
(4,1,0)~r !5uf

c

4k
A 1

88pa3
sinuH F S p

a D 2

12/r 22k2G j 0S p
r

aD24F S 2p

a D 2

12/r 22k2G j 0S 2p
r

aD
19F S 3p

a D 2

12/r 22k2G j 0S 3p
r

aD216F S 4p

a D 2

12/r 22k2G j 0S 4p
r

aD
230F S 5p

a D 2

12/r 22k2G j 0S 5p
r

aD J ,

Jc
(5,1,0)~r !5uf

c

4k
A 3

20020pa3
sinuH 6F S p

a D 2

12/r 22k2G j 0S p
r

aD
224F S 2p

a D 2

12/r 22k2G j 0S 2p
r

aD154F S 3p

a D 2

12/r 22k2G j 0S 3p
r

aD
296F S 4p

a D 2

12/r 22k2G j 0S 4p
r

aD1150F S 5p

a D 2

12/r 22k2G j 0S 5p
r

aD
1330F S 6p

a D 2

12/r 22k2G j 0S 6p
r

aD J ,

and so on. Finally, it follows from Eq.~50! that rc
(p,1,0)(r )50 for all p51,2, . . . .

We recall15 that a necessary and sufficient condition for a current distributionJNR(r ) localized
within D to be NR is the vanishing of the multipole moments

al ,m52
4p

l ~ l 11! S 1

cD E
D

d3rJNR~r !•$¹3@ j l ~kr !~LYl
m~u,f!!* #%50,

~66!

bl ,m5
4p i

l ~ l 11! S k

cD E
D

d3rJNR~r !•@ j l ~kr !~LYl
m~u,f!!* #50.

We show next that—as expected—the basis current distributions with dipolar angular depen
considered here obey the NR conditions~66!. By making the substitutionJNR(r )5Jc

(p,1,0)(r ), with
Jc

(p,1,0)(r ) given by Eq.~63!, into the first of the expressions~66! for the multipole moments while
using the second equation of Eq.~16! with n5l and the fact that the vector functionsr̂Yl

m(u,f),
LYl

m(u,f), and r̂3LYl
m(u,f) are mutually perpendicular one concludes thatal ,m50. Thus,

each of the basis current distributionsJc
(p,1,0)(r ) generates zero electric multipole momentsal ,m .

This is not surprising since, physically, each of the terms in the series expansion Eq.~63!, repre-
senting the basis current distributionsJc

(p,1,0)(r ), is essentially a radiating magnetic dipole. How
ever, when superposed, the fields produced by these radiating magnetic dipoles cancel
destructive interference in the region outside the source, i.e., forr .a, as we shall show next.

The magnetic multipole moments corresponding to the basis current distributionJc
(p,1,0)(r ) are

seen from Eqs.~63! and ~66! to be
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bl ,m5a23/2F (
n50

p

vc
(p)~n!b0,nI ~n;k,a!Gd l ,1dm,0 , ~67!

where we have made use of the orthogonality of the vector spherical harmonicsLYl
m(u,f) over

the unit sphere and where

I ~n;k,a!5E
0

a

dr r 2 j 1~kr !F F ~n11!p

a G2

12/r 22k2G j 0S b0,n

r

aD
5

p

2~kb0,n /a!1/2F F ~n11!p

a G2

2k2G E
0

a

dr rJ3/2~kr !J1/2S b0,n

r

aD
1

p

~kb0,n /a!1/2E0

a

dr~1/r !J3/2~kr !J1/2S b0,n

r

aD . ~68!

It is shown in Appendix D that

E
0

a

dr u~r !v~r !F r ~a22k2!2
~n22m2!

r G5aFu~a!
d

dr
v~r !ur 5a2v~a!

d

dr
u~r !ur 5aG , ~69!

where

u~r !5Jn~ar !,
~70!

v~r !5Jm~kr !,

where n,m,a,k are arbitrary real numbers. We can now obtain an expression for the int
I (n;k,a) in Eq. ~68! by using Eqs.~69! and ~70! for n53/2, m51/2, a5k, and k5b0,n /a
5 @(n11)p#/a. We obtain

I ~n;k,a!52
p

2~kb0,n!1/2
a3/2J3/2~ka!

d

dr
J1/2S b0,n

r

aD U
r 5a

. ~71!

Now we use J1/2(x)5A(2x/p) j 0(x) to express the value of the derivativ
(d/dr) J1/2(b0,n r /a)ur 5a in Eq. ~71! in terms of (d/dr) j 0(b0,n (r /a))ur 5a . We obtain

I ~n;k,a!52a3/2Ap

2k
J3/2~ka!

d

dr
j 0S b0,n

r

aD U
r 5a

52~21!n11A p

2ka
J3/2~ka!. ~72!

By substituting from Eq.~72! into expression~67! for the magnetic multipole momentsb1,0 and
imposing the constraint conditions~25! we obtain

b1,052S p3

2 D 1/2

k21/2a22J3/2~ka! (
n50

p

~21!n11~n11!vc
(p)~n!50. ~73!

Finally, it follows from Eqs.~67! and ~73! that, as expected, the magnetic multipole mome
bl ,m50 which confirms the NR nature of the basis NR current distributionsJc

(p,1,0)(r ).
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VI. CONCLUSION

The Devaney–Wolf representation for NR sources was introduced in Ref. 15 and has
played a key role in the inverse source/inverse scattering disciplines. In this paper we have
out a detailed analysis of this representation in a spherical coordinate system, obtainin
representations and basis functions for NR sources and fields associated with a given sp
domain. We have provided explicit expressions for the NR source representations and
functions in question. In so doing, we have enhanced their applicability to problems of o
reconstruction.

For the sake of clarity and to simplify some of our manipulations, we restricted our atte
to continuous NR fields obeying certain continuity and differentiability properties on the boun
r 5a of their spherical region of supportD ~well behaved NR fields!. The latter properties were
chosen in order to ensure the continuity of the associated NR charge–current distributions
boundary~such NR sources are therefore compactly supported inD, as desired!. The general
results developed in the paper can be extended to a broader class of NR sources and field
deals with the various vector differential operators in a weak derivative or distributional sens
plan to use elsewhere some of the results presented here in formulations of inverse source
scattering problems for sources/scatterers obeying prescribed continuity and differentiabilit
straints~smoothness constraints! in addition to localization constraints. A canonical example
provided by an inverse source problem wherein the unknown source is knowna priori to be
continuous on the boundaryr 5a of its region of localizationD. There the so-called minimum
energy solutions11 would not, in general, represent valid solutions~because of the continuity
constraint! and NR source components described by the results derived in this paper would
to be included.
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APPENDIX A: DERIVATION OF EQS. „16… AND „18…

Here we outline our derivation of Eqs.~16! and~18!. The first equation of Eq.~16! is obtained
via

¹3F j nS bn,n

r

aD r̂Yl
m~u,f!G52 r̂3¹F j nS bn,n

r

aDYl
m~u,f!G

52
i

r H 2 i r3¹F j nS bn,n

r

aDYl
m~u,f!G J

52
i

r
j nS bn,n

r

aDLYl
m~u,f!,

where we have usedL j n(bn,n r /a)50 and¹3 r̂50. The second of Eq.~16! is obtained via
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¹3F j nS bn,n

r

aDLYl
m~u,f!G

5¹ j nS bn,n

r

aD3LYl
m~u,f!1 j nS bn,n

r

aD¹3LYl
m~u,f!

5
d

dr
j nS bn,n

r

aD r̂3LYl
m~u,f!1 i j nS bn,n

r

aD @2r¹2Yl
m~u,f!1¹Yl

m~u,f!#

5
i l ~ l 11!

r
j nS bn,n

r

aD r̂Yl
m~u,f!1F d

dr
j nS bn,n

r

aD1

j nS bn,n

r

aD
r

G r̂3LYl
m~u,f!,

where we have used Eq.~41! and the operator identities~see Ref. 28, p. 109!

¹5 r̂
]

]r
2

i

r
r̂3L ~A1!

and

i¹3L5r¹22¹S 11r
]

]r D . ~A2!

The third equation of Eq.~16! is obtained by the manipulations

¹3F j nS bn,n

r

aD r̂3LYl
m~u,f!G5 i¹3F r j nS bn,n

r

aD¹Yl
m~u,f!G

5 i
d

dr F r j nS bn,n

r

aD G r̂3¹Yl
m~u,f!

52
1

r

d

dr F r j nS bn,n

r

aD G@2 i r3¹Yl
m~u,f!#

where we have usedr̂3LYl
m(u,f)5 ir ¹Yl

m(u,f) ~see Ref. 28, p. 109! and¹3¹50.
On using Eq.~2.45! in Ref. 28 and

L52 i r3¹5 i S uu

1

sinu

]

]f
2uf

]

]u D ,

whereuu anduf are the unit vectors in the positiveu andf directions, respectively, we obtain

¹•F j nS bn,n

r

aD r̂Yl
m~u,f!G5

1

r 2

d

dr F r 2 j nS bn,n

r

aD GYl
m~u,f!

5F2

r
j nS bn,n

r

aD1
d

dr
j nS bn,n

r

aD GYl
m~u,f!

and

¹•F j nS bn,n

r

aD r̂3LYl
m~u,f!G5

i

r sinu
j nS bn,n

r

aD F ]

]u S sinu
]

]u D1
1

sinu

]2

]f2GYl
m~u,f!.

The last expression can be simplified by using~see Ref. 28, p. 109!
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L252
1

sinu

]

]u S sinu
]

]u D2
1

sin2 u

]2

]f2

so that

¹•F j nS bn,n

r

aD r̂3LYl
m~u,f!G52

i

r
j nS bn,n

r

aDL2Yl
m~u,f!

52
i l ~ l 11!

r
j nS bn,n

r

aDYl
m~u,f!.

The above-mentioned divergence calculations correspond to the first and third equations
~18!. The second equation of Eq.~18! is obtained in a single step using the same procedure.

APPENDIX B: PROCEDURE TO EVALUATE THE COEFFICIENTS v J
„p …

„n …

It follows from Eq. ~25! that

v j
(1)~1!5 1

2v j
(1)~0!. ~B1!

On the other hand, Eq.~27! with p5p851 yields

uv j
(1)~0!u21uv j

(1)~1!u251. ~B2!

Without loss of generality we choosev j
(p)(0) to be a real and positive coefficient. Then we obta

from Eqs.~B1! and ~B2!

v j
(1)~0!52/A5,

~B3!
v j

(1)~1!51/A5.

Equation~27! with p51 andp852 yields

v j
(2)~1!522v j

(2)~0!. ~B4!

Equation~27! with p5p852 yields

uv j
(2)~0!u21uv j

(2)~1!u21uv j
(2)~2!u251. ~B5!

It follows from Eq. ~25! that

2v j
(2)~0!12v j

(2)~1!23v j
(2)~2!50. ~B6!

By solving simultaneously Eqs.~B4!, ~B5!, and ~B6! while requiring v j
(2)(0) to be real and

positive we obtain

v j
(2)~0!53/A70,

v j
(2)~1!526/A70, ~B7!

v j
(2)~2!525/A70.

APPENDIX C: DERIVATION OF EQ. „42…

The first equation of Eq.~42! is obtained from the first equation of Eq.~16!, with n50, and
Eqs.~41!, ~A1!, ~A2! via
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¹3¹3F j 0S b0,n

r

aD r̂Yl
m~u,f!G

52 i¹3F1

r
j 0S b0,n

r

aDLYl
m~u,f!G

52 i¹F1

r
j 0S b0,n

r

aD G3LYl
m~u,f!2

i

r
j 0S b0,n

r

aD¹3LYl
m~u,f!

52 i
d

dr F1

r
j 0S b0,n

r

aD G r̂3LYl
m~u,f!2

1

r
j 0S b0,n

r

aD ~r¹22¹!Yl
m~u,f!

52 i H d

dr F1

r
j 0S b0,n

r

aD G1
1

r 2
j 0S b0,n

r

aD J r̂3LYl
m~u,f!1

l ~ l 11!

r 2
j 0S b0,n

r

aD r̂Yl
m~u,f!

5
l ~ l 11!

r 2
j 0S b0,n

r

aD r̂Yl
m~u,f!2

i

r

d

dr
j 0S b0,n

r

aD r̂3LYl
m~u,f!.

The second equation of Eq.~42! follows from Eq.~16!, with n50, and Eq.~40! via

¹3¹3F j 0S b0,n

r

aDLYl
m~u,f!G

5¹3H i l ~ l 11!

r
j 0S b0,n

r

aD r̂Yl
m~u,f!

1
1

r

d

dr F r j 0S b0,n

r

aD G r̂3LYl
m~u,f!J

52
i

r F i l ~ l 11!

r
j 0S b0,n

r

aD GLYl
m~u,f!2

1

r

d

dr H r F1

r

d

dr F r j 0S b0,n

r

aD G G J LYl
m~u,f!

5
l ~ l 11!

r 2
j 0S b0,n

r

aDLYl
m~u,f!2

1

r

d2

dr2 F r j 0S b0,n

r

aD GLYl
m~u,f!

5H F l ~ l 11!

r 2
2¹2G j 0S b0,n

r

aD J LYl
m~u,f!

5H F ~n11!p

a G2

1
l ~ l 11!

r 2 J j 0S b0,n

r

aDLYl
m~u,f!.

The third equation of Eq.~42! follows from Eq.~16!, with n50, and Eq.~40! via

¹3¹3F j 0S b0,n

r

aD r̂3LYl
m~u,f!G

52¹3H 1

r

d

dr F r j 0S b0,n

r

aD GLYl
m~u,f!J

52
i l ~ l 11!

r H 1

r

d

dr F r j 0S b0,n

r

aD G J r̂Yl
m~u,f!2

1

r

d

dr H r F1

r

d

dr F r j 0S b0,n

r

aD G G J r̂

3LYl
m~u,f!
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52
i l ~ l 11!

r 2

d

dr F r j 0S b0,n

r

aD G r̂Yl
m~u,f!2¹2 j 0S b0,n

r

aD r̂3LYl
m~u,f!

52
i l ~ l 11!

r 2

d

dr F r j 0S b0,n

r

aD G r̂Yl
m~u,f!1F ~n11!p

a G2

j 0S b0,n

r

aD r̂3LYl
m~u,f!.

APPENDIX D: EVALUATION OF THE INTEGRAL IN EQ. „69…

Our starting point is the Bessel equations

xu9~x!1u8~x!1x~a22n2/x2!u~x!50,
~D1!

xv9~x!1v8~x!1x~k22m2/x2!v~x!50,

where

u~x!5Jn~ax!,
~D2!

v~x!5Jm~kx!,

wheren,m,a,k are arbitrary real numbers and the primes (8) are used to denote derivatives wi
respect tox. By multiplying the first equation of Eq.~D1! by v(x) and the second equation of Eq
~D1! by u(x) we obtain

xv~x!u9~x!1u8~x!v~x!1x~a22n2/x2!u~x!v~x!50 ~D3!

and

xv9~x!u~x!1v8~x!u~x!1x~k22m2/x2!u~x!v~x!50. ~D4!

By integrating both sides of Eq.~D3! and ~D4! from x50 to x5a and subtracting the resultin
equations one obtains after some manipulations the desired result Eq.~69!. The procedure is
similar to that used in Ref. 28, pp. 591–592, to derive the orthogonality relation for the B
functions.
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Convergence of PN approximation for the neutron
transport equation with reflective boundary condition

Guang-wei Yuana)

CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, People’s Republic of China
and Laboratory of Computational Physics, Institute of Applied Physics and
Computational Mathematics, P.O. Box 8009, Beijing 100088, People’s Republic of China

~Received 3 June 1999; accepted for publication 10 November 1999!

In this paper the spherical harmonic function method for the plane geometry neu-
tron transport equation with reflective boundary condition is discussed. The exis-
tence and uniqueness for the solution of the spherical harmonic approximation
(PN) equation are studied, and then the convergence of the solution of thePN

equation asN→` to the solution of the neutron transport equation is proved.
© 2000 American Institute of Physics.@S0022-2488~00!03002-4#

I. INTRODUCTION

The spherical harmonic expansion method is one of the most important and widely
approximate technique for solving the neutron transport equation, which has been propos
over fifty years by Wick~1943! and Chandrasekhar~1944! ~see Refs. 1–9!. There are many works
contributed to the low orderPN theory, in particularP1 diffusion theory~see Refs. 10–16!. These
studies mainly concentrate on the formal derivation of the diffusion-limit theory based
asymptotic diffusion scaling. The planar geometryPN equation as an asymptotic limit of transpo
theory has been investigated in Ref. 17, which shows that the boundary condition forPN equation,
corresponding to the reflective boundary condition for the neutron transport equation, is
mined by asymptotic boundary layer calculations. The asymptotic reflective boundary cond
for the PN equation agree with the conventional formulations. The reflective boundary cond
appear in some physical situations~e.g., see Refs. 1 and 2!.

For thePN approximation to the transport equation with reflective boundary conditions,
fundamental problems should be solved. One is the well-posedness of the solution of tPN

equation. The other is the convergence of the solution of thePN equation to the solution of the
transport equation asN→`. In the case of the time-independent neutron transport equation
convergence of the spherical harmonics method has been studied in Ref. 6 via the integra
tion for the neutron flux. In this paper we shall discuss the time-dependent neutron tra
equation, and establish the existence and uniqueness of the solution of thePN equation and theL2

weak convergence of the solution of thePN equation to the weak solution of the transport equat
asN→` in the case of the reflective boundary condition.

Consider the following one-group transport problem with isotropic scattering and anisot
source

1

v
]c

]t
1m

]c

]x
1s~x,t !c~x,m,t !5

1

2
ss~x,t !E

21

1

c~x,m8,t !dm81Q~x,m,t !, ~x,m,t !PM,

~1!

subject to the initial condition

c~x,m,0!5L~x,m!, ~x,m!P@0,l #3@21,1#, ~2!

and the reflective boundary condition

a!Electronic mail: yguangwei@hotmail.com
8670022-2488/2000/41(2)/867/8/$17.00 © 2000 American Institute of Physics
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c~0,m,t !5c~0,2m,t !, c~ l ,m,t !5c~ l ,2m,t !, ~m,t !P@21,1#3@0,T#, ~3!

whereM5@0,l #3@21,1#3@0,T#, andc(x,m,t) is the angular flux at positionx at time t trav-
eling with constant speedv in directionm5cosu, s(x,t) is the total cross section,ss(x,t) is the
scattering cross section,Q(x,m,t) is the interior source term,L(x,m) is the prescribed initial data

Note that a distinctive feature of the planar geometry transport equation@Eq. ~1!# is that it is
degenerate form50, which implies that the solution of@Eq. ~1!# may not be smooth even if th
initial and boundary data are smooth. The general results for the existence and uniquenes
solutions of the transport equation have been established by the method of semigroup theo~e.g.,
see Ref. 4!.

As usual we introduce thePN equation derived from Eqs.~1!–~3!.
Denotesa05sa0(x,t)5s(x,t)2ss(x,t), san5s(x,t) for n>1, and

fn~x,t !5E
21

1

c~x,m,t !Pn~m!dm, Qn~x,t !5E
21

1

Q~x,m,t !Pn~m!dm,

wherePn(m) is the Legendre polynomial of ordern.
Multiplying Eq. ~1! by thenth order Legendre polynomial and integrating overmP@21,1#,

we get an infinite coupled system of partial differential equations forfn . When the Legendre
moments ofc are ignored forn.N, i.e., the approximation

c~x,m,t !' (
n50

N
2n11

2
Pn~m!fn~x,t !,

is introduced, we obtain the (PN) system

1

v
]fn

]t
1

]

]x F S n11

2n11Dfn111S n

2n11Dfn21G1sanfn5Qn , 0<n<N, ~4!

wheref215fN1150, and the initial and boundary conditions are given by~see Ref. 13!.

fn~x,0!5Ln~x![E
21

1

L~x,m!Pn~m!dm, 0<n<N, ~5!

fn~0,t !5fn~ l ,t !50, n odd, 0<n<N. ~6!

Denote

f5~f0 ,f1 ,...,QN!8, q5~Q0,3Q1 ,...,~2N11!QN!8,

A05
1

v
diag~1,3,...,2N11!, A5S 0 1 0 0 ... 0 0 0

1 0 2 0 ... 0 0 0

0 2 0 3 ... 0 0 0

. . . . . . . .

0 0 0 0 ... 0 N21 0

0 0 0 0 ... N21 0 N

0 0 0 0 ... 0 N 0

D ,

B5diag~sa0,3sa1 ,...,~2N11!saN!,

M5diagS 0,1,0,1,...,0,1,...,N22FN

2 G D ,
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where the prime represents the transpose. Then thePN systems~4!–~6! can be rewritten as

A0

]f

]t
1A

]f

]t
1Bf5q, ~7!

f~x,0!5L0~x![~L0~x!,L1~x!,...,LN~x!!, ~8!

Mf~0,t !5Mf~ l ,t !50. ~9!

II. ASSUMPTION AND DEFINITION

Suppose the following conditions hold:
~i! s(x,t)PL`(@0,l #3@0,T#), s(x,t)>0;
~ii ! ss(x,t)PL`(@0,l #3@0,T#), ss(x,t)>0;
~iii ! Q(x,m,t)PL2(M);
~iv! L(x,m)PC1(@0,l #3@21,1#), L(0,m)5L(0,2m), L( l ,m)5L( l ,2m).
Remark:In physical problems, the conditionss(x,t)>0 andss(x,t)>0 are always satisfied

However, they are unnecessary for the proof of the conclusions here.
Denote

Lc5
1

v
]c

]t
1m

]c

]x
1s~x,t !c~x,m,t !2

1

2
ss~x,t !E

21

1

c~x,m8,t !dm8,

L* j52
1

v
]j

]t
2m

]j

]x
1s~x,t !j~x,m,t !2

1

2
ss~x,t !E

21

1

j~x,m8,t !dm8,

and ~~•,•!! is the inner product inL2(M).
We introduce the definition of the weak solution for problems~1!–~3! and the strong solution

for the problems~4!–~6!.
Definition: c(x,m,t)PL2(M) is called the weak solution of problems~1!–~3! if the follow-

ing equation holds:

~~c,L* j!!1
1

v E21

1 E
0

l

L~x,m!j~x,m,0!dxdm5~~c,Q!!, ~10!

for any jPL2(M) with j tPL2(M), mjxPL2(M), and j(x,m,T)50 for a.e. (x,m)P@0,l #
3@21,1#, and mj(0,m,t)PL2(@21,1#3@0,T#), and mj( l ,m,t)PL2(@21,1#3@0,T#), and
j(0,m,t)5j(0,2m,t) for a.e., (m,t)P@0,1#3@0,T#, and j( l ,m,t)5j( l ,2m,t) for a.e. (m,t)
P@21,0#3@0,T#.

Denote

Lf5A0

]f

]t
1A

]f

]x
1Bf, L* j52A0

]j

]t
2A

]j

]x
1Bj,

and V5@0,l #3@0,T#. Denote p be a subspace inRN11, p[$fPRN11uMf50%. Let Ap
5$AfufPp%, andp* 5(Ap)' the orthogonal complement ofAp. It is easy to verify thatp*
5p.

Definition: f(x,t)PL2(V) is the strong solution of problems~7!–~9! if there is a sequence
fk5(fk0 ,...,fkN)8PC(V̄)ùC1(V)ùW1,2(V) satisfying

Lfk5qk , ~11!

fk~x,0!5L0~x!, ~12!
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Mfk~0,t !5Mfk~ l ,t !50, ~13!

and

ifk2fiL2~V!→0, iqk2qiL2~V!→0, as k→`. ~14!

In the sequel, we shall denote byC various positive constants.
Our main results are as follows.
Theorem 1: Under the assumptions~i!–~iv!, the PN problems~7!–~9! has one and only one

strong solutionfPL2(V).
Theorem 2: DenotecN5(n50

N @(2n11)/2#Pn(m)fn(x,t), where f5(f0 ,...,fN)8 is the
strong solution of~7!–~9!. If the conditions~i!–~iv! hold, then problems~1!–~3! has one and only
one weak solution ofc, andcN→c weakly in L2(M).

III. PROOF OF THEOREMS 1 AND 2

Proof of Theorem 1:From the assumption~iv! L0(x) can be extended smoothly int
L* (x,t)PC1(V̄) such thatL* (x,0)5L0(x), and ML* (0,t)5ML* ( l ,t)50. The initial and
boundary conditions for the problem satisfied byf(x,t)2L* (x,t) is homogeneous. Under th
conditions~i! and ~ii !, the system~7! is a symmetric positive system. Furthermore the homo
neous boundary condition~9! is admissible sincep* 5p. Then, by applying the results of Refs
18 and 19, the conclusion of the Theorem 1 is obtained.

Proof of Theorem 2:Making the scalar product offk with Eq. ~11!, and integrating the
resulting equality overxP@0,l #, we get

E
0

l

fk•S A0

]fk

]t
1A

]fk

]x
1BfkDdx5E

0

l

fk•qkdx.

By applying integration by parts and using the boundary condition~13!, we have

1

2

d

dt E0

l

fk•A0fkdx5E
0

l

fk•qkdx2E
0

l

fk•Bfkdx,

which can be rewritten as

1

2

d

dt S (
n50

N
2n11

v E
0

l

ufknu2dxD 5 (
n50

N E
0

l

~fknqkn1~2n11!sanufknu2!dx, ~15!

whereqk5(qk0 ,...,qkN)8. By the conditions~i! and ~ii !

isaniL`~V!<~ isiL`~V!1issiL`~V!!.

The equality~15! implies

d

dt S (
n50

N

~2n11!E
0

l

ufknu2dxD<CS (
n50

N

~2n11!E
0

l

ufknu2dx1 (
n50

N
1

2n11 E0

l

uqknu2dxD .

From the Gronwall inequality it follows that:

(
n50

N

~2n11!E
0

l

ufkn~x,t !u2dx

<CS (
n50

N
1

~2n11!
E

0

tE
0

l

uqkn~x,s!u2dxds1 (
n50

N

~2n11!E
0

l

uLn~x!u2dxD , ~16!
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where the constantC is independent ofk and N, and C depends only on the upper bound
isaniL`(V) andv.

Denote

ckN5ckN~x,m,t !5 (
n50

N
2n11

2
fkn~x,t !Pn~m!,

RkN5RkN~x,m,t !5 (
n50

N
2n11

2
Qkn~x,t !Pn~m!, ~qkn5~2n11!Qkn!,

lN5lN~x,m!5 (
n50

N
2n11

2
Ln~x!Pn~m!.

Obviously there hold

ickN~•,•,t !iL2~ u0,l u3@21,1# !
2

5 (
n50

N
2n11

2 E
0

l

ufkn~x,t !u2dx,

iRkN~•,•,t !iL2~@0,l #3@21,1# !
2

5 (
n50

N
2n11

2 E
0

l

uQkn~x,t !u2dx,

ilN~•,• !iL2~@0,l #3@21,1# !
2

5 (
n50

N
2n11

2 E
0

l

uln~x!u2dx.

Consequently, by Eq.~16!, we get

ickN~•,•,t !iL2~@0,l #3@21,1# !
2

<CS E
0

t

iRkN~•,•,s!iL2~@0,l #3@21,1# !
2 ds1ilNiL2~@0,l #3@21,1# !

2 D . ~17!

For any z(x,m,t)PL2(M), let jn(x,t)5*21
1 z(x,m,t)Pn(m)dm, for almost everywhere

(x,t)PV. SettingzK5zK(x,m,t)5(n50
K @(2n11)/2#jn(x,t)Pn(m), then there holds

izK2ziL2~M!→0, as K→`.

Now we verify that

~~LckN ,zK!!5~~zK ,RkN!!, for any K>N. ~18!

The direct calculation yields that, if settingj5j(x,t)5(j0(x,t),j1(x,t),...,jN(x,t)),

1

v E21

1 E E
V

]ckN

]t
zKdxdtdm5

1

2 E E
V

A0

]fk

]t
•jdxdt, ~19!

E
21

1 E E
V

zKRkNdxdtdm5
1

2 E E
V

qk•jdxdt, ~20!

E
21

1 E E
V

zKS sTckN2
1

2
ssE

21

1

ckN~x,m8,t !dm8D dxdtdm5
1

2 E E
V

Bfk•jdxdt. ~21!

Note that
                                                                                                                



872 J. Math. Phys., Vol. 41, No. 2, February 2000 Guang-wei Yuan

                    
E
21

1 E E
V

m
]ckN

]x
zKdxdtdm

5E E
V

(
n50

K

(
m50

N
~2n11!~2m11!

4
jn~x,t !

]fkm

]x E
21

1

mPn~m!Pm~m!dm.

Using the recurrence formulas

~2n11!mPn~m!5nPn21~m!1~n11!Pn11~m!,

and the orthogonal relations

E
21

1

Pn~m!Pm~m!dm5H 2

2m11
if n5m

0 if nÞm

,

we have

E
21

1 E E
V

m
]ckN

]x
zKdxdtdm5

1

2 E E
V

A
]fk

]x
•jdxdt. ~22!

Then combining Eqs.~19!–~22! gives us Eq.~18!.
Let K→` in Eq. ~18!. It follows that, for anyzPL2(M)

~~LckN ,z!!5~~z,RkN!!. ~23!

Further, Eqs.~12! and ~13! imply

ckN~x,m,0!5lN~x,m!, ~24!

ckN~0,m,t !5ckN~0,2m,t !, ckN~ l ,m,t !5ckN~ l ,2m,t !. ~25!

Now we takez(x,m,t) to be the test function that occurs in the formulation~10!. Then, by
integration by parts

~~ckN ,L* z!!1
1

v E21

1 E
0

l

lN~x,m!z~x,m,0!dxdm5~~z,RkN!!. ~26!

From the estimates~17! and the uniform boundedness ofRkN and lN in L2(M) and
L2(@0,l #3@21,1#), respectively, we get that$ckN% is bounded inL`(@0,T#;L2(@0,l #3@21,1#))
uniformly with respect tok and N. It follows that for any fixedN, there are subsequences~still
denoted byckN ,RkN) such thatckN→cN andRkN→RN weakly in L2(M) ask→`. Moreover
cN andRN satisfy

~~cN ,L* z!!1
1

v E21

1 E
0

l

lN~x,m!z~x,m,0!dxdm5~~z,RN!!. ~27!

Furthermore, from Eq.~14! it follows that:

cN5cN~x,m,t !5 (
n50

N
2n11

2
fn~x,t !Pn~m!,
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RN5RN~x,m,t !5 (
n50

N
1

2
qn~x,t !Pn~m!.

By using Eq.~17! again, we have

icNiL2~M!
2 <C, ~28!

whereC is independent ofN. So there is a subsequencecNi
→c weakly in L2(M) as i→`.

Furthermore, by the conditions~iii ! and ~iv!, iRNiL2(M)
2 <C, ilNiL2(M)

2 <C. From Eq.~27! we
can conclude thatc is the weak solution of Eqs.~1!–~3!.

To complete the proof of the Theorem 2 we have to prove the uniqueness of the weak so
of problems~1!–~3!. Assume thatc i( i 51,2) are two weak solutions of Eqs.~1!–~3!. Let C
5c12c2 . Then

~~C,L* j!!50, ~29!

for any jPL2(M) appearing in Eq.~10!.
Consider the following adjoint transport problem:

L* j5Ce , 0,x, l , 21<m<1, 0,t,T, ~30!

j~x,m,T!50, 0<x< l , 21<m<1, ~31!

j~0,m,t !5j~0,2m,t !, j~ l ,m,t !5j~ l ,2m,t !, 21<m<1, 0<t,T, ~32!

whereCePC0
`(M), Ce→C in L2(M), ase→0.

Problems~30!–~32! have a unique strong solutionjPL2(M) satisfying j tPL2(M), mjx

PL2(M), and j(x,m,T)50 for a.e., (x,m)P@0,l #3@21,1#, and mj(0,m,t)PL2(@21,1#
3@0,T#), andmj( l ,m,t)PL2(@21,1#3@0,T#), and j(0,m,t)5j(0,2m,t) for a.e. (m,t)P@0,1#
3@0,T#, andj( l ,m,t)5j( l ,2m,t) for a.e. (m,t)P@21,0#3@0,T#. ~see Ref. 4 Chap.21, Sec. II!.

Now, Eq. ~29! implies

~~C,Ce!!50, for all small e.

Takinge→0 we can conclude thatC[0 in M, i.e.,c15c2 in M. Therefore, the uniqueness o
the weak solution of Eqs.~1!–~3! is proved.

From the uniqueness of the weak solution of problems~1!–~3! and the uniform boundednes
of $cN% in L2(M), it follows that the sequence$cN% itself converges weakly inL2(M) to the
weak solutionc of problems~1!–~3!.

The proof of the Theorem 2 is proved.
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Lie–Poisson structure for the homogeneous motion
of self-gravitating compressible fluids

A. San Miguela)
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In this paper we apply the theory developed by Marsden, Ratiu, and Weinstein for
the reduction of a Hamiltonian system defined on the cotangent bundle of a Lie
group to a Hamiltonian system in the coalgebra of a semidirect product to study the
motion of a self-gravitating homogeneous compressible ideal fluid with a variable
ellipsoidal boundary, assuming that the motions are given by invertible linear trans-
formations. The relation between the Lie–Poisson equations obtained and the clas-
sical Dyson equations is discussed, and the Hamiltonian structure for the homoge-
neous expansion of a free nonrotating ellipsoid is derived. ©2000 American
Institute of Physics.@S0022-2488~00!01502-4#

I. INTRODUCTION

The investigation of the hydrodynamical motions given by invertible linear transformatio
motions with homogeneous deformation or, simply, homogeneous motions in the terminolo
Truesdell and Toupin1—is a classical problem in hydrodynamics. For homogeneous motio
nongravitational compressible fluids, Dyson2 showed that the hydrodynamic equations are redu
to the equations of motion of a point particle in a potential field defined on the configuration
which is identified with the general linear group.

In this paper we discuss the Hamiltonian structure of the spatial representation of ho
neous motion of self-gravitating compressible fluids, assuming that the mass density is cons
space. In order to do this we make use of the theory developed by Marsdenet al.3 for the reduction
of a Hamiltonian system defined on the cotangent bundle of a Lie group to a Hamiltonian s
in the dual of the Lie algebra of a semidirect product. In this theory, using the symmetry of pa
relabeling, the noncanonical Poisson bracket in spatial representation is obtained as a re
from the canonical bracket in material representation. The semidirect product theory has
applied to derive Hamiltonian structures for a variety of continuum models, in particular, for fl
with a free boundary~see, for example, Refs. 4 and 5 and references therein!. A Hamiltonian
treatment of the free homogeneous motion was carried out, from the point of view of colle
motion, by Guillemin and Sternberg6 and applied to the compressible liquid drop. For this mod
they showed that the Hamiltonian function given by the kinetic energy is not invariant unde
left action of the linear group, so Arnold’s theory7 of symmetry reduction cannot be applie
Guillemin and Sternberg also showed how for a suitable choice of the initial configuration
may obtain a collective Hamiltonian.

This paper is organized as follows. In Sec. II, we derive the Hamiltonian function assoc
with the hydrodynamical problem considered, and analyze the right invariance of this fun
Using the parameters defined in terms of the initial configuration which appear in the Hamilto
we determine the subgroup of the linear group under which this Hamiltonian is right invaria
Sec. III, we show that, within the cotangent bundle of the semidirect product of the Lie g
GL~3! with the Abelian Lie group corresponding to the parameters space, the Hamiltonian
tion is a collective function, in the sense of Guillemin–Sternberg.7 Finally, in Sec. IV, we obtain

a!Electronic mail: asmiguel@maf.uva.es
8750022-2488/2000/41(2)/875/7/$17.00 © 2000 American Institute of Physics
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the Hamiltonian vector field associated with the Hamiltonian function defined on the dual o
Lie algebra of the semidirect product group, which leads to the Lie–Poisson equations
homogeneous motion in spatial coordinates. We compare the equation of motion obtained
classical equation deduced from Euler’s equation of motion, and study the Hamiltonian str
for the free expansion of a gaseous ellipsoid analyzed by Dyson.8

II. NOTATION AND DESCRIPTION OF THE MODEL

Consider a continuum medium moving inR3. A reference configurationB of the fluid is the
closure of an open set inR3. Points inB, denoted byxPB, are called material points. A configu
ration of B is an invertible linear mapf:B→R3. Choosing coordinates onR3 and B, each
configurationf t ~with tPR! is specified by an invertible matrixF. We consider motions ofB in
R3 given by

x5F~ t !X, ~1!

where the matrixF is constrained to be spatially uniform, that is, the components ofF are
functions of time alone. Let us assume that the boundary of the reference configuration
spherical shape, so each configurationf(B) is ellipsoidal.

The tangent vectorḞPTFGL~3! may be carried to the Lie algebragl(3) @identified with the
tangent spaceTIGL~3!, I being the identity element of the linear group# to get the convective and
spatial velocities. Then these velocities have the following expressions

ÃcªF21Ḟ, ÃsªḞF21, ~2!

respectively. We shall identify the tangent bundle TGL~3! with the product GL~3!3gl(3) by
means of a left trivialization. Thus in the material representation, the elements of TGL~3! are
written as pairs of the form (F,Ḟ).

The kinetic energy of the fluidK(F,Ḟ) for the motion with homogeneous deformation is

K~F,Ḟ !5 1
2 tr ~ ḞQ0ḞT!, ~3!

whereQ0 is in the spaceS2(R3) of contravariant symmetric two-tensors, which represents
moment of inertia tensor of the reference configuration.

As far as the thermodynamic behavior of the hydrodynamical model is concerned, we a
that the density of the fluid contained inf t(B) is a function,%(t), which depends on time alone
We shall also assume that the fluid is described by means of a polytropic equation o
expressible as

p5k1%
g, ~4!

wherep5p(x,t) is the fluid pressure andk1 andg are constants, withg>1. The internal energy
per unit mass is

«5k1~g21!%g21~ t !. ~5!

Therefore, the internal energy of the fluid is of the form

U5a0~detF !12g, ~6!

upon using the continuity equation, wherea0 is a constant defined by

a0ªk1~g21!21%0
g~0! vol ~B!, ~7!

and vol(B) represents the volume of the reference configuration.
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Finally, we assume that the only forces acting on the fluid are internal gravitational fo
The Newtonian self-gravitational potentialV of a matter distribution of uniform density within a
ellipsoid is well known. We use the expression ofV obtained by Carter and Luminet in Ref. 8. Th
self-gravitational energy depends on the symmetric tensorcªFTF and is specified by

V~c!5k2E
0

`

@det~c~ t !1lI#21/2dl, ~8!

wherek2 is a constant related to the self-gravitational energy in the reference configuration
From the kinetic energy~3!, the internal energy~6!, and the self-gravitational energy~8! one

can derive the Lagrangian functionL:TGL~3!→R in material representation corresponding to t
homogeneous motion in the form

L~F,Ḟ !5K~F,Ḟ !2U~F !2V~F !. ~9!

For this Lagrangian function, the Legendre transformationFL:gl(3)→gl(3)* leads to the follow-
ing relationship betweenacPgl(3) andḞPgl(3):

ac5QḞTF, ~10!

and, consequently, the HamiltonianH:T* GL~3!→R in material representation obtained from~9!
has the form

H~F,Ḟ !5K~F,Ḟ !1U~F !1V~F !. ~11!

Under right translations on GL~3! the Hamiltonian~11! is transformed as follows:

H~FA21,ḞA21!5 1
2 tr ~ ḞA21Q0A2TḞT!1det~FA21!a0

1k2E
0

`

@det„~FA21!~FA21!T1lI…#21/2dl, ~12!

which coincides with~11! if the conditions

A21Q0A2T5Q0, detA51, ATA5I; ~13!

@where A2T
ª(A21)T] are satisfied. The Hamiltonian function~11! depends smoothly on th

tensor Q0 and the scalara0 , so we can writeH (Q0,a0)
ªH to represent such a Hamiltonia

depending on the parametersQ0 ,a0 . If one restricts to the subgroup of GL~3! constituted by all
the linear maps in the set

GL~3!~Q0 ,a0!ª$APGL~3!uQ05AQ0AT ~detA!12ga05a0%, ~14!

then, the conditions~13! are satisfied if the reference configuration is chosen to be spheri
symmetric. LetS2(R3) be the space of contravariant symmetric tensors, and letVªS2(R3)3R be
a vectorial space whose dual spaceV* 5S2(R3)3R is the space of parameters (Q0 ,a0). The
pairing betweenV* andV is defined by

^•,•&:V3V→R, „~Q,a!,~Q̄,ā!…°tr ~QQ̄!1aā. ~15!

The group~14! may be regarded as the isotropy subgroup corresponding to the represen
r:GL~3!3V→V defined by

rA~Q̄,ā!ª„A2TQ̄A21,~detA!g21ā…. ~16!
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In the case of an initial configuration that is spherically symmetric, the convective mome
~10! is equivalent to

ac5~F21Ḟ !TQc , QcªFTF, ~17!

whereQc is the inertia tensor in convective representation. The spatial representation corre
ing to ~17! is given in terms of the coadjoint action of GL~3! on gl(3) asa5AdF21* ac , and,
hence,

a5Q~ ḞF21!T, QªFFT, ~18!

whereQ is the moment of inertia tensor in spatial representation. The tensorQ is time dependent,
and its evolution equation is given by the differential equation

Q̇5aT1a. ~19!

III. SPATIAL DESCRIPTION OF THE HOMOGENEOUS MOTION

Let SªGL~3!sV be the semidirect product of the Lie groups GL~3! andV for the represen-
tation ~16! of GL~3! on V, defined by the composition law:

~A1 ,Q̄1 ,ā1!s~A2 ,Q̄2 ,ā2!5„A1A2 ,~Q̄1 ,ā1!1rA~Q̄2 ,ā2!…, ~20!

and lets denote the Lie algebra ofS with the Lie bracket given by

v~j1 ,Q̄1 ,ā1!,~j2 ,Q̄2 ,ā2!bª„@j1 , j2#,rj1
8 ~Q̄2 ,ā2!2rj2

8 ~Q̄1 ,ā1!…, ~21!

where @j1 , j2# is the usual Lie bracket ingl(3), and rj8 :gl(3)→End (V) is the induced Lie
algebra representation defined by

rj8~Q̄,ā!ª
d

dtU
t50

rexp tj~Q̄,ā!5„2jTQ̄2Q̄j,~g21!ā tr~j!…. ~22!

The spatial description of the homogeneous motion is realized on the dual spaces* of the Lie
algebras, being given the duality relation betweens ands* by the bracket

Š^~a,Q,a!,~j,Q̄,ā!&‹ªtr ~aj!1tr ~QQ̄!1aā. ~23!

The dual spaces* can be endowed with the~1! Lie–Poisson~cf. Ref. 3! induced by the following
bracket on the spaceC`(s* ) of smooth real-valued functions ons* ,

$ f ,g%~a,Q,a!ªŠ^~a,Q,a!,v~da f ,dQf ,daf !,~dag,dQg,dng!b&‹, ~24!

where, in general, for a functionF:A3B→R, the symboldXF is used to denote the ordinar
partial functional derivative:

^X8,dXF~X,Y!&ª
d

dtU
t50

F~X1tX8,Y!, ~25!

for any X8PA, and similarly fordYf .
We now show that the Hamiltonian function~11! is a collective Hamiltonian~cf. Ref. 6!, in

the sense that this function can be written in the form

H5h+J, ~26!
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whereJ is the momentum map associated to a left translation onS, andh is a function ons* .
Let F denote the left translations on the Lie groupS. In terms of the representation~16!, F is

given by

F~A2 ,Q̄2 ,ā2!~A1 ,Q̄1 ,ā1!5„A2A1 ,Q̄21A2
2TQ̄11A2

21,~detA2!g21ā1…. ~27!

If the contangent bundleT* S is identified withS3s* , then the lift toT* S of the translation~27!
on S can be expressed as

F̂~A2 ,Q̄2 ,ā2!~A1 ,a,Q̄1 ,ā1 ,Q,a!5„A2A1 ,a,Q̄21rA2
~Q̄1 ,ā1!,rA2*

~Q,a!…, ~28!

whererA* ~that is, the dual map ofrA21! is the associated left representation of GL~3! on V* .
From the general expression of the momentum map associated to a left translation on a Lie
@cf. ~3.3! in Ref. 3# one obtains the momentum mapJFL

:T* S→s* in the form

JFL
~aA ,Q̄,ā,Q,a!5„~TIRA!* aA ,r

~Q̄,ā!
8* ~Q,a!,Q,a…, ~29!

whereaAPTGL~3!, RA represents the right translation on GL~3!, andr
(Q̄,ā)
8* is obtained from the

relation

^j,~r
~Q̄,ā!
8* ~Q,a!&gl~3!5^rj8~Q̄,ā!,~Q,a!&gl~3! , ~30!

stated in terms of the duality bracket ingl(3):

^j,h&gl~3!ªtr ~jh!. ~31!

Using ~15! and ~29!, it follows from ~30! that

r
~Q̄,ā!
8* ~Q,a!522QQ̄1~g21!āaI. ~32!

The reduction of the momentum map by the action ofV on T* S ~cf. Ref. 3! is a mapJ̃F on
T* GL~3!3S2(3)3R for which one finds that

J̃F~~F,ac!,Q0 ,a0!85„FacF
21,FQ0FT,a0~detF !12g

…5:~a,Q,a!Pgl~3!* 3S2~3!3R. ~33!

The parametera introduced in~33! is time dependent and its evolution equation has the form

ȧ5g tr ~F21Ḟ !a. ~34!

Furthermore, since the Hamiltonian~11! is right invariant under the action of the isotropy su
group ~14! on T* GL~3!, the family of Hamiltonian functionsH (I,a) induces~see theorem 3.4 in
Ref. 3! a Hamiltonian functionh:s* →R given by

h+~JFL
+ i ~I,a!!ªH ~I,a!, ~35!

wherei (I,a) :T* GL~3!�T* S is the embedding of Poisson manifoldsi (I,a)(F,a)ª(F,a,0,0,I,a).
From ~11!, ~33!, and~35! one finds that the Hamiltonian functionh corresponding to a fluid

moving with homogeneous deformation has the form

h~a,Q,a!5 1
2 tr ~aTQ21a!1a1V~Q!. ~36!

This shows that the Hamiltonian~11! is a collective function, and the associated Hamilton
function on the Poisson manifoldss* is given by~36!.
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IV. LIE–POISSON STRUCTURE FOR HOMOGENEOUS FLOWS

The Marsdenet al. reduction theory yields the Lie–Poisson equations of motion ons* cor-
responding to the Hamiltonian vector fieldXh of the function~36!. In the case of homogeneou
motion, the Hamiltonian vector field is

Xh~a,Q,a!5„2addah* ~a!1r~dQh,dah!8* ~Q,a!,rdah8* ~Q,a!…, ~37!

where the mapsr8 and (r8)* are~22! and~32!, respectively. The ad* -representation ofgl(3) on
gl(3)* , show in~37!, is obtained from the relation

^j,addah* ~a!&ª^addahj,a&5^@dah,j#,a& ~38!

@for all jPgl(3)#. Hence we obtain

addah* ~a!5a•dah2dah•a. ~39!

The computation of the functional derivatives appearing in~37! yields the following expres-
sions:

dah5aTQ21, ~40!

dQh52 1
2 Q21aaTQ211V~Q!, ~41!

and, lastly,

dah51. ~42!

In ~41! V(Q) is the function obtained differentiating the self-gravitating energy~7!, which can be
expressed as

V~Q!52
1

4
k2E

0

`

@det~Q1lI!#21/2~Q1lI!21 dl. ~43!

Since the integral curvesx(t)5„a(t),Q(t),a(t)… of the vector fieldXh must satisfy Hamil-
ton’s equation of motion in Poisson bracket form,

ẋi5$xi ,h%, ~44!

the Lie–Poisson equations corresponding to homogeneous motion of self-gavitating compr
fluids with uniform mass density and polytropic equation of state, which at the initial time
spherical shape, give rise to the following system of 16 differential equations for the 16 var
a(t),Q(t),a(t)

ȧ5aTQ21a22QV~Q!1~g21!aI, ~45!

Q̇5a1aT, ~46!

ȧ5~12g!tr~aTQ21!a. ~47!

Here Eqs.~46! and~47! correspond to the evolution equations~19! and~34! of the parametersQ
anda, respectively. On the other hand, Eq.~45! is equivalent to Euler’s equation of motion for th
self-gravitating homogeneous fluid~see Refs. 8 and 9! which generalizes to Dyson’s equations2

This equivalence can be checked by using expression~18!, from which it follows that

ȧ2aTQ21a[FF̈T. ~48!
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We now make use of the Lie–Poisson equations~45!–~47! to study the classical problem o
the free expansion of a gas within a nonrotating ellipsoid~see Ref. 2!. In this case the term
2QV(Q), on the right-hand side of~45!, vanishes. Furthermore, if one considers only axisymm
ric ellipsoids, then the instantaneous configuration is determined by a diagonal matrix

F5diag~d1 ,d1 ,d3!, ~49!

whered1 ,d3 denote the distinct semi-axes of the ellipsoid. We choose the reference frame a
to the axial symmetry of the ellipsoid, so that the inertia tensor can be expressed as

Q5diag~x3 ,x3 ,x4!, ~50!

wherex3ªd1
2 andx4ªd2

2. On the other hand, we denote the matrix~18! associated toa by

a5diag~x1 ,x1 ,x2!. ~51!

Under these conditions Eq.~47! can be readily integrated. Then one obtains for the parametera the
expression

a5k~x1
2x2!~1/2!~12g!, ~52!

wherek is an integration constant. Consequently, in this case the equations of motion~45! and~46!
lead to the system

ẋ15x1
2x3

211~g21!k~x3
2x4!~1/2!~12g!,

ẋ25x2
2x4

211~g21!k~x3
2x4!~1/2!~12g!, ~53!

ẋ352x1 , ẋ452x2 .

The Hamiltonian function~36! for the free expansion of a gas expressed as a function
pending on the variablesxi has the following form:

h~x1 ,x2 ,x3 ,x4!5x1
2x3

211 1
2 x2

2x4
211k~x3

2x4!~1/2!~12g!, ~54!

and it is an integral of the equations of motion~53!. Furthermore, for the special case of
polytropic gas with polytropic indexg5 5

3, the function

A~xi ,t !5x11 1
2 x22ht ~55!

satisfies the equation

Ȧ1$A,h%50, ~56!

so, it is a first integral for the system~53!. Function~55! is closely related to the first integra
obtained by Anisimov and Lysikov10 for Dyson’s equations.

1C. Truesdell and R. Toupin, ‘‘The classical field theories,’’ inHandbuch der Physik, Band III/1, edited by S. Flu¨gge
~Springer-Verlag, Berlin, 1961!.

2F. Dyson, J. Math. Mech.18, 91 ~1968!.
3J. E. Marsden, T. Ratiu, and A. Weinstein, Trans. Am. Math. Soc.281, 147 ~1984!.
4D. Lewis, J. E. Marsden, and T. Ratiu, J. Math. Phys.28, 2508~1987!.
5A. Mazer and T. Ratiu, J. Geom. Phys.6, 271 ~1989!.
6V. Guillemin and S. Sternberg, Ann. Phys.127, 220 ~1980!.
7V. I. Arnold, Ann. Inst. Fourier, Grenoble16, 319 ~1966!.
8B. Carter and J. P. Luminet, Mon. Not. R. Astron. Soc.212, 23 ~1985!.
9O. I. Bogoyavlenskii,Methods in the Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dyn
~Springer-Verlag, Berlin, 1985!.

10S. I. Anisimov and Iu. I. Lysikov, Prikl. Mat. Mekh.34, 926 ~1970!.
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Gravoelectric dual of the Kerr solution
Naresh Dadhicha)
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Post Bag 4, Ganeshkhind, Pune 411 007, India
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~Received 3 August 1999; accepted for publication 2 November, 1999!

By decomposing the Riemann curvature into electric and magnetic parts, we define
the gravoelectric duality transformation by interchange of active and passive elec-
tric parts which amounts to interchange of the Ricci and Einstein tensors. It turns
out that the vacuum equation is duality invariant. We obtain solutions dual to the
Kerr solution by writing an effective vacuum equation in such a way that it still
admits the Kerr solution but is not duality invariant. The dual equation is then
solved to obtain the dual-Kerr solution which can be interpreted as the Kerr black
hole sitting in a string dust universe. ©2000 American Institute of Physics.
@S0022-2488~00!02102-2#

I. INTRODUCTION

In analogy with the Maxwell electromagnetic field, it is also possible to resolve gravitat
field, i.e., the Riemann curvature into electric and magnetic parts relative to a timelike obser
general relativity~GR!, there are two kinds of gravitational charges; one nongravitational en
distribution and the other gravitational field energy. Thus the electric part would have fu
decomposition into active and passive parts corresponding to these two kinds.1–3 Electromagnetic
parts would be given by second rank tensors orthogonal to the resolving unit timelike v
Electric parts are symmetric and account for 12~6 each for active and passive! while the magnetic
part is trace free and accounts for the remaining 8 components of the Riemann curvatur
symmetric part of the magnetic part is equal to the Weyl magnetic part and antisymmetri
represents energy flux.

We consider a transformation which is the interchange of active and passive electric par1 and
we term it as electrogravity duality. It turns out that the vacuum equation is symmetric in a
and passive parts and hence is duality invariant. The vacuum solutions would thus remain
ant modulo sign of constants of integration. It does in fact happen that the Riemann curvatu
vacuum solutions changes sign under the duality transformation. That meansGM→2GM in the
Schwarzschild solution. Thus vacuum solutions are self-dual modulo change of sign ofG. This
can, however, be understood as follows. The active part is anchored on the nongravit
energy distribution while the passive part on the gravitational field energy.4 For an attractive field
the former is positive while the latter is negative and hence the interchange of active and p
parts must naturally requireG→2G.

Now the question arises, can the symmetry of the equation be broken to get distinc
solutions? It turns out that in obtaining the well-known and physically interesting black
solutions, there always remains one equation unused which is implied by the others.4 If we tamper
with this equation, vacuum solutions would remain undisturbed and the symmetry betwee
active and passive parts would be broken. This is precisely what happens,1,3,4 and it is then
possible to obtain distinct dual solutions. That is, it is possible to write an effective vac
equation in such a way that it gives the same vacuum solutions but it is not duality invariant.

a!Electronic mail: nkd@iucaa.ernet.in
8820022-2488/2000/41(2)/882/9/$17.00 © 2000 American Institute of Physics
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the dual equation would yield distinct solutions. Following this method, solutions dua
Schwarzschild, Reissner-Nordstro¨m, and NUT solutions have been obtained.1,3,5,6A dual solution
is obviously nonvacuum and it is also asymptotically nonflat. It gives rise to energy mome
distribution which agrees with string dust distribution or that of a global monopole at l
distance from the core. Thus duality transformation imbibes string dust or global monopole c
automatically, and dual space–time describes the original source sitting in a string dust univ7,8

or having a global monopole charge.9

Note that the duality transformation interchanges active and passive electric parts whic
respectively,~double! projections of the Riemann and its double~left and right! dual onto a
timelike observer. Since contraction of the Riemann is the Ricci while that of its double dual
Einstein tensor, the duality transformation would hence imply interchange between the Ric
Einstein tensors. The electrogravity duality implies the Ricci–Einstein duality. Thus the
equation would result when the Ricci components are replaced by the Einstein components
effective vacuum equation.

In this paper by application of the duality transformation we wish to obtain space–time
to the Kerr rotating black hole. As expected it would be quite involved and different from the
cases. First, manipulation of equations is very complicated and second, the dual equation,
the other cases, admits more than one solution. That is dual solution is not unique. Dual s
times could represent the Kerr black hole in a string dust universe, as the stresses generate
duality conform with that of string dust. They admit a horizon but it would not be ar 5const but
instead ber 5 f (u) surface. When string dust density is switched off they reduce to the Kerr b
hole.

In Sec. II we decompose the Riemann curvature in electromagnetic parts and then wr
vacuum equation and consider the duality transformation. This is followed in Sec. III by so
the dual equation for the axially symmetric metric to obtain dual solutions. In Sec. IV we dis
the string dust interpretation and conclude in Sec. V with a discussion on the general aspect
duality transformation.

II. ELECTROMAGNETIC DECOMPOSITION AND DUALITY

We first resolve the Riemann curvature relative to a timelike unit vector into electromag
parts as follows:1

Eac5Rabcdu
bud, Ẽac5* R* abcdu

bud, ~1!

Hac5* Rabcdu
bud5H ~ac!1H @ac# , ~2!

where

H ~ac!5* Cabcdu
bud, H @ac#5

1
2habceRd

eubud. ~3!

HereCabcd is the Weyl conformal curvature andhabcd is the four-dimensional volume elemen

Note thatEab andẼab are symmetric,Hab is trace-free and they are all orthogonal to the resolv
unit timelike vectorua. In terms of them, the Ricci curvature reads as

Rab5Eab1Ẽab1~E1Ẽ!uaub2Ẽgab1Hmn~hacmnub1hbcmnua!uc. ~4!

Then the vacuum equation for any timelike unit resolving vector would imply

E or Ẽ50, H @ab#50, Eab1Ẽab50, ~5!

which is symmetric inEab and Ẽab .
We define the electrogravity duality transformation by
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Eab↔Ẽab , H @ab#5H @ab# . ~6!

Obviously the vacuum equation is symmetric inEab and Ẽab and hence would remain invarian
under the duality transformation. It would give rise to the same vacuum solution. It turns ou
the Weyl curvature changes sign under the duality,2 which means the constants of integratio
representing physical parameters like mass, angular momentum, and NUT charge in the v
solutions must change sign. It is equivalent toG→2G. It can in fact be verified for the Kerr
solution by looking at the Riemann components as given in Ref. 10. The vacuum solutions
modulo sign ofG be self-dual. It turns out that while obtaining the Schwarzschild solution, th

remains one equation unused, which is implied by the others. In particular,H @ab#50, Ẽ50, and
E221Ẽ2250 determine the solution completely leavingE111Ẽ1150 free. In terms of the Ricci
components, this is equivalent toR01505R22,R0

05R1
1 with R0050 being free, which is implied

by the others. That is the setR01505R22,R0
05R1

1 suffices to give the unique Schwarzschi
solution. We take this as the effective vacuum equation which also yields the Schwarz
solution uniquely. The set dual to the effective vacuum equation would be obtained by cha
Ricci to Einstein, viz.G01505G22,G0

05G1
1. This dual set then admits the unique solution whi

can be interpreted as the Schwarzschild black hole with a global monopole charge9 or sitting in a
string dust universe.7,8 By this method of the duality transformation, the solutions dual to
Reissner–Nordstro¨m and the NUT solutions have also been obtained.1,3,5,6

In Sec. II we wish to apply this method to axially symmetric space–time to obtain solu
dual to the Kerr solution. It turns out that in this case the solution is not unique and we find
distinct solutions.

III. DUAL SOLUTIONS

We consider an axially symmetric line element in the form,10

ds252~du1g sinadb!dt2M2~da21sin2 adb2!22L~du1g sinadb!2. ~7!

HereM andL are functions ofu, a andt andg is a function ofa only. We useu, a, t, andb
as coordinates.

Introducing the tetrads

u15du1g sinadb, u25Mda,

u35M sinadb, u45dx2Lu1

we can express the metric~7! in the form

ds252u1u42~u2!22~u3!25g~ab!u
aub. ~8!

The componentsRab of the Ricci tensor for the metric~7! were obtained by Vaidya, Patel, an
Bhatt.11 We reproduce them in the following for ready reference, and they are given in the
frame as follows:

R2350,

R445
2

M FMxx2
f 2

M3G ,
R245

g

M F S Mx

M D
y

2S f

M2D
u
G ,
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R3452
g

M F S Mx

M D
u

2S f

M2D
y
G ,

R145
2

M FMxu1~LMx!x1S L f 2

M3 D G1Lxx , ~9!

R125LR241
g

M F S Lx1
Mu

M D
y

1S 2 f L

M2 D
u
G ,

R135LR341
g

M F2S Lx1
Mu

M D
u

1S 2 f L

M2 D
y
G ,

R225R335
1

M2 Fg2S Mu

M D
u

1g2S M y

M D
y

2112 f S M y

M D14S f 2L

M2 D2~M2!ux2~L~M2!x!xG ,

R115L2R441
1

M2 @g2~Luu1Lyy!12 f Ly12LuMMx14LMMxu22LxMMu12MMuu#.

In Eq. ~9!, the variabley replacesa, the defining relation being

gda5dy. ~10!

Here and in what follows a suffix denotes partial differentiation, e.g.,ga5]g/]a,
Ly5]L/]y, Mxu5]2M /]x]u, etc., andx5t. The symbol 2f stands for the expressionga

1g cota.
In the case of spherical symmetry it wasR0050 was free while in this case for the metric~7!

it is R1450 is free. That is it is implied by the others and is not used in obtaining the vac
solution. We shall thus consider the effective vacuum equation as

Rab50 except R14. ~11!

It can be verified from~9! that solution of the rest of the equation automatically impliesR1450
giving the vacuum Kerr solution.

The dual equation would be obtained by lettingRab→Gab and hence it would be

Gab50 except G14, ~12!

which would imply

Rab50 except R225R33. ~13!

To find the dual solution we have to solve the set~13! which would read as

R4450, R2450, R3450, ~14!

R1450 ~15!

R1250, R1350, ~16!

R2252r ~17!

R1150. ~18!

We proceed as follows.
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Equations~14!–~18! yield the general solutions

M25
f

Y
~X21Y2! ~19!

and

2L52
Yu

Y
X12G1

2AX12BY

X21Y2 , ~20!

whereX is a function oft, u, andy and Y, A, B, andG are functions ofu and y satisfying the
relations

Xt521, Xy5Yu , Xu52Yy , ~21!

B522YG2YYy ~22!

and

Bu5Ay , By52Au . ~23!

Equation~19! determines

r52
1

X21Y2 F2G1
Y

f S 1

2
g2¹2 logS Y

f D2 f y1113 f
Yy

Y D G , ~24!

where¹2[]2/]u21]2/]y2.
Now we assume thatY is a function ofy only. This leads from Eq.~21! to

X5au2t, Y52ay1b, ~25!

wherea andb are constants of integration, no additional constant is added inX because such
constant can always be incorporated in thet coordinate.

Equations~22!, ~23!, and~25! will then lead to

Y¹2G22aGy50, ~26!

of which we take the particular solution

2G5constant5c. ~27!

Equations~22! and ~25! then lead to

B5~a2c!Y, A5a~a2c!u1m, ~28!

wherem is again a constant of integration.
We now introduce the variableu and a functionh(u) as follows:

S f

YD 1/2

da5du, S f

YD 1/2

sina5h~u!. ~29!

Using ~10!, ~25!, and~29! we can show that

Y

f H g2¹2 logS Y

f D2 f y1113 f
Yy

Y J 522a2
huu

h
. ~30!
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The Kerr solution would follow if we takehuu /h521, which would implyf 5Y and give

2L5c1
2X@a~a2c!u1m#12~a2c!Y2

X21Y2 . ~31!

So far we have not used Eq.~18!, which would now implya5c, and finally we shall have

r5
12a

X21Y2 , ~32!

whereX andY are given by~25!.
Using Eqs.~10!, ~25!, and~29! we can write

2hY5~g sina!u , hYu52ag sina, ~33!

whereh5sinu. These relations together then give the following differential equation forY:

Yuu1
hu

h
Yu12aY50. ~34!

This integrates to giveY5k cosu for a51, whenr would vanish giving the Kerr solution
This is the Legendre equation which could give nonvacuum dual solution only when the in
aÞ1 but the solution would not include the Kerr solution as a particular case. This would how
be a dual solution for different integer values ofa.

If we wish to have a dual solution that includes the Kerr solution as a particular case, w
have to give up the relationf 5Y. In that case we can have the following two different solutio

Y5k cosu, h5sin2a21 u, g sina5
k

a
sin2a u,

~35!

r5
a21

X21Y2 @122~2a21!cot2 u#

and

Y5k cosa u, h5sinu cosa21 u, g sina5k sin2 u,
~36!

r5
a21

X21Y2 @22~a22!tan2 u#.

These are two distinct solutions. Thus dual solution to the Kerr solution is not unique. Of c
each has stresses corresponding to a string dust distribution of densityr, which will diverge at
u50 for the former and atu5p/2 for the latter. Both however reduce to the Kerr solution wh
a51. The metric would read as

ds252~du1g sinadb!dt2~R21Y2!~da21H2~u!db2!2Fa1
2mR

R21Y2G~du1g sinadb!2,

~37!

where we have definedX5R5(a21)t2ar as a new radial coordinate. For the two dual solutio
Y,h,g sina as given in~35! and~36!. The solutions go over to the Kerr solution whena51 with
m andk as mass and specific angular momentum.

The dual solutions do however admit horizon defined by the equation,

ah2~R21Y2!22mRh21~ag sina!250, ~38!
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which would for the solution~35! give the horizon as

R15
m

a
~11A12~k2/m2!~a2 cos2 u1sin2 u!!. ~39!

Thus horizon has unlike the Kerr black holeu dependence. This is so for the other solution as w
In other dual solutions,1,3,5 the basic character of the field remained unaltered while here it is
so as indicated by theu dependence of the horizon. In Sec. IV we shall show that these solu
could be interpreted as rotating black hole sitting in a string dust universe with the string
densityr given by~35! and~36!. It is true that the solutions obtained are rather complicated
unfortunately cannot be transformed to the Boyer–Lindquist form to gain more physical in
Since dual solution is not unique, it may be possible to find a simpler and physically
transparent solution. The search is on.

IV. STRING DUST INTERPRETATION

In terms of the electromagnetic parts, the effective vacuum equation~11! will take the form

Ẽ50,H @ab#50, Eab1Ẽab52~E1Ẽ!wawb , ~40!

which is no longer symmetric in active and passive parts. Herewa is a unit spacelike vecto
orthogonal toua and in the direction of acceleration vector. It would admit the same vac
solution but it is now not invariant under the duality transformation~6!.

The dual equation~12! would read as

E50,H @ab#50,Eab1Ẽab52~E1Ẽ!wawb , ~41!

which is equivalent to the set~14!–~18!. This is what we have solved for dual solution and it giv
rise to the only surviving stress component

T145r, ~42!

wherer is given by~35! or ~36!.
On the other hand a string dust distribution is characterized by7,8

Tab5r~uaub2wawb!. ~43!

For the metric~7! we choose the timelike and spacelike vectors as follows:

u~a!5~1,0,0,12!, w~a!5~1,0,0,2 1
2!. ~44!

Then Eq.~43! would imply the distribution~42!. Thus our dual solutions could represent
Kerr black hole sitting in a string dust universe, and the string density which is equal to r
tension is given by~35! and ~36! for the two solutions. When string density is switched off, t
Kerr solution follows.

V. DISCUSSION

The very first time one encounters the duality transformation is in electrodynamics wh
prescribes a relation between electric and magnetic fields under which the vacuum Ma
equation remains invariant. A similar kind of relationship between active and passive electric
and the magnetic part of the gravitational field in fact leads to the Einstein vacuum equation2 This
is because electromagnetic parts for gravity stem from the Riemann curvature and hence
the second derivative of the metric and consequently dynamics of the field. In the Maxwell th
they contain the first derivative of the gauge potential, and to get to the equation of motion
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need to be differentiated once. There is thus a basic difference between electromagnetic
the gravitational field and that of the Maxwell field. This basic difference should always be
in mind.

A dual is only defined for an antisymmetric tensor by the Hodge dual. The duality tran
mation represents in general a rotation. However we are here considering a relation betwee
and passive electric parts which are symmetric second rank 3-tensors. Thus our electro
duality transformation does not represent a duality rotation12 and is therefore different in characte
from the duality transformations considered in another context in GR13 as well as in other theorie
including the string theory.14 The duality is at the center stage of the current field theory rese
and has played a very important role in connecting different theories and situations.

At any rate, our duality, though different from the usual duality, is a relation between a
and passive electric parts and marks a symmetry of the vacuum equation. It is thus a
statement. The remarkable feature of this is in finding new dual solutions which imbibe g
monopole or string dust automatically. Its connection with the production of topological defe
rather intriguing and interesting, and this feature permeates in lower and higher dimensions
as in scalar tensor theories.15–17In the case of the Schwarzschild field, the duality simply resto
the gauge freedom in choosing zero of the potential one had in the Newtonian theory. The v
equation does not permit this freedom because the space–time is asymptotically flat a
potential could only vanish at infinity. This means that topological defects~dual solutions! thus do
not disturb the basic character of the field at the Newtonian level. However, we do not yet
understand the physical meaning and import of the electrogravity duality.

Physical features of the black hole with global monopole charge9 have been considered b
several authors.18–21 It has been argued that since the global monopole solution~and so are the
dual solutions in general!, is not asymptotically flat, hence its asymptotic regions would be cur
Note that positivity of ADM mass is proved only for isolated system that generates asym
Minkowski geometry. Objects with negative mass may therefore generate nonflat asym
regions.20 This suggests an association of duality with negative mass. Recall that we hav
cussed in Sec. I that duality would imply gravitational constant turning negative which m
gravitational mass turning negative. This is because the interchange of active and passiv
would imply interchange of positive nongravitational matter energy and negative gravita
field energy. This seems consistent with the strange and unusual thermodynamical beha
black holes with gauge cosmic strings and global monopoles.20,21 There appears to be a dee
connection between the electrogravity duality and the topological defects. It calls for a co
hensive study to probe it further and deeper.
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Polyakov conjecture on the supertorus
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~Received 26 March 1998; accepted for publication 12 November 1999!

We prove the Polyakov conjecture on the supertorus (ST2): We determine an
iterative solution at any order of the superconformal Ward identity and we show
that the Polyakov action that describes the~1,0! 2D~two-dimensional!-supergravity,
resums this perturbative series. The resolution of the super-Beltrami equation for
the Wess–Zumino field from which the Polyakov action is expressed, is done by
using on the one hand the Cauchy kernel techniques on ST2 defined in H. Kach-
kachi and M. Kachkachi, Class. Quantum Grav.11, 493 ~1994! and on the other
hand, the formalism developed in M. Kachkachi and S. Kouadik, J. Math. Phys.38,
4336~1997!. Hence, we determine then-points Green functions from the Polyakov
action expressed as a functional integral of the Beltrami superfieldm̂. © 2000
American Institute of Physics.@S0022-2488~00!03102-9#

I. INTRODUCTION

A consistent framework for studyingN51 supergravity is provided by the covariant RN
model of the superstring theory where Lorentz invariance is manifest, but space–time sup
metry is not.1 In this model superstring theory is formulated as the superfieldFm(z,u)5Xm(z)
1uCm(z), whereXm determines the position of the bosonic string andCm its supersymmetric
partner, coupled to the super-Zweibein which defines the geometry of the corresponding
gravity theory. However, any supergravity geometry in two dimensions is locally flat, w
means that there exist local coordinates in which the super-Zweibein becomes flat. Thes
complex coordinates together with superconformal transformations define a compact

Riemann surface~SRS! denoted byŜ. Then, when we consider interactions at a given loop

orderg, the world sheet of the superstring is the surfaceŜ. The corresponding action has a larg

gauge invariance symmetry: It is invariant under superdiffeomorphisms onŜ, the local supersym-
metry whose corresponding gauge field is the gravitino, it is also invariant under super
transformations as well as the local Lorentz transformations of the superzweibein.

In the Polyakov formalism,2 which is geometric and can thus treat global object, superst
quantization involves functional integration over the superfieldFm, that leads to a Gaussian, an
over the super-Zweibein that is nontrivial and leads to two different setting depending o
gauge we choose. In the superconformal gauge obtained after transforming the super-Zwei
superdiffeomorphisms and super-Weyl rescalings into a flat one, the functional integration
sis leads to the super-Liouville theory3 which represents the degree of freedom of the tw
dimensional supergravity.

One can choose the chiral gauge which has a single nonvanishing metric mode, the
Beltrami differential that represents the graviton–gravitino multiplet, and recasts the theor
local form by introducing the Wess–Zumino field defined by the super-Beltrami equation.
8910022-2488/2000/41(2)/891/7/$17.00 © 2000 American Institute of Physics
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field is the projective coordinate that represents the structure parametrized by the super-B

differential. Indeed, let us consider a SRSŜ ~without boundary! of genusg, with a reference

conformal structure$(z,F)% together with an isothermal structure$(Ẑ,Q̂)%. To be explicit, let us
review some results on the conformal geometry which are generalized to the supersym
case:A reference conformal structure, sayC0 on the Riemann surfaceS is a maximal atlas of loca
coordinates with holomorphic coordinate changes that is

z85z8~z!,

z̄85 z̄8~ z̄!, ~1.1!

whose generic coordinate isz.
The set Beltr~S! of Beltrami differentials on the Riemann surfaceS parametrizes the set of a

conformal structures onS: To any Beltrami differentialm in Beltr~S!, there is associated
conformal structure say,Cm on S whose generic holomorphic coodinateZ ( ]̄zZ50) is a local
solution of the Beltrami equation

~ ]̄2m]!Z50, ~1.2!

whereum(z,z̄)u,1.
This expresses the criterion for the conformality of the diffeomorphism

~z,z̄!→~Z~z,z̄!,Z̄~z,z̄!!. ~1.3!

Definition: A local system of complex coordinates (z,z̄) is isothermal if

ds25ur~z,z̄!u2udz2u, ~1.4!

wherer(z,z̄) is a conformal factor.
As Z is a function of (z,z̄) we have

dZ5]ZS dz1
]̄Z

]Z
dz̄D , ~1.5!

which, with the help of Eq.~1.2! can be rewritten as

dZ5]Z~dz1mdz̄!. ~1.6!

Then, the comparison of Eq.~1.6! with Eq. ~1.4! shows that

ds25U r

]ZU
2

udZu2. ~1.7!

This shows that the coordinates (Z,Z̄) are isothermal and parametrize the isothermal struct
Any change in the holomorphic atlas in the coordinates (Z,Z̄) preserves the relation~1.7!. The
diffeomorphism~1.3! is called a quasiconformal transformation because ifm50, Eq.~1.2! implies
that ]̄Z50 that is; the structure parametrized by (Z,Z̄) will be ~in this case! conformal with
respect to the reference structure (z,z̄). Thus, the diffeomorphism~1.3! is viewed as a deformation
of the reference structure by the parameterm. These results are generalized to the supersymm
case. Indeed, a quasisuperconformal transformation is parametrized in general by three
Beltrami differentials of which only two are linearly independent. There is a formalism in w
one of the independent differentials is set to zero, as it contains only nonphysical degr
freedom, thus ending up with only one super-Beltrami differential and this implies the existen
a superconformal structure on the SRS which is necessary for defining the Cauchy–Ri
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operator. This formalism is used in Refs. 4 and 5. However, it is natural from a geometrical
of view to work in another formalism that also reduces the number of super-Beltrami differe

to one by eliminating theū-dependence in the coordinates (Ẑ,Q̂) ~see Refs. 6 and 7! in addition
to the superconformal structure condition of the previous formalism. The superconformal str
thus defined is parametrized by a single super-Beltrami differentialm̂. More importantly, this
gauge allows for decoupling the super-Beltrami equations satisfied byẐ and by the Wess–Zumino

field Q̂ and then are more easily solved using the Cauchy kernel techniques. The solution
obtained enable us to write the Polyakov action as a functional of the super-Beltrami differ
m̂ from which we compute Green functions and the energy-momentum tensor whose ex
source ism̂. Furthermore, in this parametrization the super-Weyl invariant effective action s
into two terms, i.e.,

G@m̂,m̂̄;R̂0 ,R̄̂0#5GWZP@m̂,R̂0#1GWZP@m̂,R̂0#, ~1.8!

where R̂0 is a holomorphic background projective connection in the superconformal stru

$(z,u)%, i.e.,D ū R̂050, which is introduced to insure a good glueing of the anomaly onŜ. GWZP

is the Wess–Zumino–Polyakov action which describes the 2D induced quantum supergra
the light-cone gauge, i.e.;ds25(dz1m̂dz̄1udu)dz̄. It depends on the background conform
geometry parametrized by the pair (m̂,R̂0) and satisfies the superconformal Ward identity8,9

~ ]̄2m̂]2 3
2]m̂2 1

2 Dm̂D !
dGWZP

dm̂
5k]2Dm̂, ~1.9!

where k is the central charge of the model which is the remnant of the matter system
functional integration. It measures the strength of the superdiffeomorphisms anomaly. Solvi
~1.2! on a super-Riemann surface of genusg is the starting point for studying two-dimension
superconformal models thereon. A solution to this superconformal Ward identity was foun
Grundberg and Nakayama in Ref. 10 on the supercomplex plane. Then, the Polyakov con
on the supercomplex plane, which tells us that the Wess–Zumino–Polyakov~WZP! action resums
the iterative solution of the Eq.~1.2! is proved in Ref. 11. The generalization of this solution,
the third order to the perturbative series in terms ofm̂, to the supertorus was given in Ref. 12 a
that to ag-SRS was performed in Ref. 5.

In this work we prove the Polyakov conjecture on the supertorus (ST2) at any order of the
perturbative series and then, we compute then-points Green functions for genericn from the WZP
action on the ST2. To do this, we consider on the one hand the superelliptic Weierstrassẑ-function
~the supersymmetric extension of the Weierstrassz-function! constructed in Ref. 12 as th
]̄-Cauchy kernel on ST2 to solve the super-Beltrami equation~SBE!. On the other hand, we adop
here the formalism developed in Ref. 11 to get the perturbative series solution on the sup
plex plane.

II. RESOLUTION OF SBE ON ST2

The super-Beltrami equation in terms of the Wess–Zumino fieldQ̂ can be written as11,12

]̄L5 1
2]m̂1BDL, ~2.1!

whereB5m̂D1 1
2Dû, L5 ln DQ̂ andD5]01u]z . Then, using the generalized Cauchy formu

introduced in Ref. 12 that is

~ ]̄21F !~z1 ,u1!5E
ST2

dt2ẑ1,2F~z2 ,u2!, ~2.2!
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where

ẑ1,2[~u22u1!z~z12z2!, ~2.3!

dt2[
dz2`dz̄2

2ip
du2 , ~2.4!

E
ST2

dt2d3~a12a2!F~a2!5F~a1!, ~2.5!

andai[(zi ,z̄i ,u i) we get the solution of the super-Beltrami equation@Eq. ~2.1!# as a formal series

L5 (
n51

`

]̄21ln~z,u!, ~2.6!

with l15 1
2]m̂ andln5BD]̄21ln21 .

For n>2 we find, for then-term of the series~2.6! the following expression:

]̄21ln5~21!n~n21!/2E
ST2

)
j 51

n11

dt j )
i 51

n21

~ ẑ i ,i 11Bi 11Di 11!ẑn,n11l~an11!. ~2.7!

Bi means that the operatorB is evaluated at the pointai . The sign in front of the integral arise
from the commutation of the Cauchy kernelẑ with the product of measures) i 52

n11dt j . Here we
adopt the convention) i 51

0 ( ẑ i ,i 11BiDi 11)[1. One should note that formula~2.7! contains a
power of the super-Beltrami differentialm̂ and its derivatives. In order to express this equation
terms ofm̂ powers only, we rewrite Eq.~2.7! as follows:

]̄21ln~a1!5~21!
n~n21!

2 E
ST2

)
j 52

n11

dt j f 1,k21ẑk,k11]k11f k11,n21 .g

1~21!n~n21!/2E
ST2

)
j 52

n11

dt j f 1,k21ẑk,k11~Dk11m̂~ak11!!Dk11f k11,n21 .g,

~2.8!

where f l ,m5P i 51
m ( ẑ i ,i 11Bi 11Di 11), g5 ẑn,n11l1(an11) and where thek-term of the product

( ẑk,k11Bk11Dk11) was developed. The integration by parts of the second term in the r.h.s.o
~2.8! yields

]̄21ln~a1!5
~21!n~n21!/2

2n E
ST2

)
i 52

n11

dt iF )
i 51

n21

~ ẑ i ,i 11] i 112Di ẑ i ,i 11Di 11!]nẑn,n11)
l 52

n11

~al !G ,

~2.9!

and then, the summation over the indexn gives the superfieldL. For example, one can verify tha
L is given at the second order inm̂ by the relation

L~a1!5
1

2 EST2

dt2]1ẑ1,2m̂~a2!2
1

4 EST2

dt23@~ ẑ1,2]22D1ẑ1,2D2!]2ẑ2,3#m̂~a2!m̂~a3!,

~2.10!

wheredt23[dt2∧dt3 , that agrees with the solution given in Ref. 12.
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Hence, we have obtained the perturbative expression for the superprojective coord

(Ẑ,Q̂) in terms of the reference complex structure (z,z̄,u) on the supertorus.

III. THE n-POINTS GREEN FUNCTIONS FROM THE WZP ACTION ON ST2

The Wess–Zumino–Polyakov action on the supertorus ST2 that is introduced in Ref. 5 is
given by

GWZP@m̂;R0#5kE
ST2

dt1$2~R02R!m̂1~x2x0!Dxm̂%~a1!, ~3.1!

wherex52D ln DQ̂ is a superaffine connection,Dxm̂[(]22Dx1xD)m̂. R0 is the background
superprojective connection introduced to get the anomaly globally well defined on the supe
The superaffine connectionx0 appears in the action~3.1! to make it globally defined. However
this does not enter the superdiffeomorphism anomaly because it is not a fundamental param
the theory and does not contribute to the stress-energy tensor whose exterior source ism̂

T~a1!52k~R02R!. ~3.2!

R52]x2xDx is the superprojective connection. After some manipulations by considering
anti-commuting property ofx, the action~3.1! reduces to the expression

GWZP@m̂;R0#5F@x0 ,]L,m̂,Dm̂;R0#1kE
ST2

dt1]1D1L~a1!m̂~a1!, ~3.3!

whereF is some functional that does not contribute to then-points Green functions forn>2.
Furthermore, Eqs.~2.6! and ~2.9! enable us to express the action~3.3! in the following form:

GWZP5F1kp (
n51

`
~21!@n~n11!/2#

2n E
ST2

)
i 51

n11

dt iF ]1D1)
i 51

n11

~ ẑ i ,i 11

2Di ẑ i ,i 11Di 11!]nẑn,n11G )
l 51

n11

m̂~ l !. ~3.4!

Then, from this action, we derive then-points Green functions as follows:

^T~1!¯T~n!&[
~21!ndnGWZP

dm̂~1!¯dm̂~n!
U

ṁ~n!50

5k
~21!@n~n21!/2#

~2p!n21 (
perm~pÞ1!

~21!p]1D1)
i 51

n22

~ ẑ i ,i 11] i 11

2Di ẑ i ,i 11Di 11!]n21ẑn21,n . ~3.5!

The sum over all possible permutations, except forpÞ1, is inderstood and (21)p stands for the
sign of the permutation. Furthermore, after some algebraic calculations, we get the final exp
for the n-points Green functions of the induced~1, 0!-supergravity on the supertorus

^T~1!¯T~n!&5
k~21!@n~n11!/2#

2~2p!n21 (
perm~pÞ1!

~21!pF )
i 51

n22

~2ẑ i ,i 11] i 111Di 11ẑ i ,i 11Di 11

23] i ẑ i ,i 11!]n21
2 ẑn21,nG . ~3.6!

Then, we derive the corresponding Ward identity by applying the Cauchy operator on the
~left-hand-side! of Eq. ~3.6! that is
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]̄1^T~1!¯T~n!&5
k~21!@n~n11!/2#

2n (
perm~pÞ1!

~21!p~2d3~a1,2!]21D1d3~a1,2!D223]1d3~a1,2!!

3 )
i 52

n22

~2ẑ i ,i 11] i 111Di ẑ i ,i 11Di 1123] i ẑ i ,i 11!Dn21]n21
2 ẑn21,1, ~3.7!

wherea1,2[a12a2 .
For example, puttingn53 in the Eq.~3.7! we recover the results established in Ref. 12 for

three-points function and its associated Ward identity that are, respectively

^T~1!¯T~3!&5
k

2~2p!2 (
perm~pÞ1!

~21!3@2ẑ1,2]21D1ẑ1,2D223]1ẑ1,2#D2]2
2ẑ2,3, ~3.8!

]̄1^T~1!¯T~3!&5
k

2~2p!2 $@2d3~a1,2!]21D1d3~a1,2!D223]1d3~a1,2!#D2]2
2ẑ2,32~2↔3!%.

~3.9!

This shows that our formalism developed in Ref. 11 is general and applicable for any S
genusg.

IV. THE SOLUTION OF THE SUPERCONFORMAL WARD IDENTITY ON ST 2

Now, let us rewrite the superconformal Ward identity~1.2! in the form

]̄S dGWZP

dm̂ D5p11K
dGWZP

dm̂
, ~4.1!

with p15k]2Dm̂ andK5m̂]1 3
2]m̂1 1

2Dm̂D.
Then, using the iterative method given in Sec. II we get

dGWZP

dm̂
5 (

n51

`

]̄21pn , ~4.2!

wherepn5K ]̄21pn21 and

]̄21pn5
~21!@n~n21!/2#

2n22 kE
ST2

)
j 52

n11

dt j ẑ1,2)
i 52

n21 F m̂~ i !ẑ i ,i 11] i 111
3

2
] im̂~ i !ẑ i ,i 11

1
1

2
Di 11m̂~ i !Di ẑ i ,i 11]n11

2 Dn11m̂~n11!G . ~4.3!

Furthermore, to express Eq.~4.3! in terms of the superfieldm̂ only, the integration by parts mus
be considered and then, we obtain

]̄21pn5
~21!@n~n11!/2#

2n21 kE
ST2

)
j 52

n11

dt j )
i 51

n21

@~2ẑ i ,i 11] i 111Di ẑ i ,i 11Di 11

23] i ẑ i ,i 11!Dn]2ẑn,n11# )
l 52

n11

m̂~ l !. ~4.4!
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Hence, by using Eq.~4.2! we obtaindGWZP/dm̂(1) and the integration of the later gives th
n-points Green function which coincides with Eq.~2.6!. Furthermore, this result means that t
Polyakov action resums the perturbative series that is the solution of the superconformal
identity and then, the Polyakov conjecture on the supertorus is proved.

V. CONCLUSION AND OPEN PROBLEMS

In this paper we have proved the Polyakov conjecture on the supertorus by using on th
hand the solution of the SBE established with the help of the super-Weierstrassẑ-function intro-
duced in the Ref. 12 and, on the other hand by using the material developed in Ref. 11 to
n-points Green functions on the supercomplex plane.

However, one can use the formalism developed here and in the reference theorem to
~super!-Liouville action as a perturbative series of the~super!-Liouville field.3 Indeed, in the
~super!-chiral gauge the~super!-Beltrami (m̂)m is the exterior source of the energy-momentu
tensor

dGWZP@m#

dm
[Tzz. ~5.1!

In the ~super!-conformal gauge, the~super!-Liouville field will play the same role

dGL@c#

dc
[T, ~5.2!

and the passage from the chiral to the conformal one is done by expressing the Liouville fi
terms of the Beltrami differential by using the two expressions of the metric that are13

g5exp~2c!g0 , ~5.3!

wherec is the Liouville field andg0 is the constant curvature metric and

ds25r2~z,z̄!udz1mdz̄u2. ~5.4!
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On Killing vector fields and Newman–Penrose constants
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Asymptotically flat space–times with one Killing vector field are studied. The
Killing equations are solved asymptotically using polyhomogeneous expansions
~i.e., series in powers of 1/r and lnr), and solved order by order. The solution to the
leading terms of these expansions yields the asymptotic form of the Killing vector
field. The possible classes of Killing fields are discussed by analyzing their orbits
on null infinity. The integrability conditions of the Killing equations are used to
obtain constraints on the components of the Weyl tensor (C0 ,C1 ,C2) and on the
shear~s!. The behavior of the solutions to the constraint equations is studied. It is
shown that for Killing fields that are non-supertranslational the characteristics of
the constraint equations are the orbits of the restriction of the Killing field to null
infinity. As an application, the particular case of boost-rotation symmetric space–
times is considered. The constraints onC0 are used to study the behavior of the
coefficients that give rise to the Newman–Penrose constants, if the space–time is
non-polyhomogeneous, or the logarithmic Newman–Penrose constants, if the
space–time is polyhomogeneous. ©2000 American Institute of Physics.
@S0022-2488~00!01802-8#

I. INTRODUCTION

The Newman–Penrose~NP! constants1 are a set of five complex quantities, defined for a
ymptotically flat space–times with a smooth null infinity, with the remarkable property of b
absolutely conserved even in the presence of gravitational radiation. Recently,2,3 it has been shown
that in a more general setting—that of polyhomogeneous space–times—the NP constants
conserved, but nevertheless, an adequate generalization of them~logarithmic Newman–Penros
constants! can be constructed which are indeed conserved. Polyhomogeneous space–tim
space–times the metrics of which are expanded asymptotically in terms of combinations of p
of 1/r and lnr. The introduction of this more general kind of expansion carries a drawback:
infinity ~I ! is no longer smooth. For more details on these, and other aspects of polyhomog
we refer the reader to Refs. 2–5.

The physical meaning of the NP and logarithmic NP constants is still an open question
work of interpretation has not been easy for a number of reasons. One of them is a la
examples of exact solutions to the field equations representing physically sensible radiat
ymptotically flat space–times. No explicit radiative solution which satisfies all the requiremen
asymptotic flatness is known. The examples one can make use of reduce essentially to the
of boost-rotation symmetric space–times.6–8 These space–times have two commuting Killin
vectors, one of them axial, and the other one such that it leaves invariant the origin’s null
This family includes, among others, the Bonnor-Swaminarayan9 and the C metric. Bičák,
Hoenselaers, and Schmidt have given a systematic method of constructing these space–tim10,11

The solutions obtainable by this method are expandable in terms of the usual powers of 1/r . To the
best of my knowledge, there are no explicit examples of boost-rotation symmetric space–
that are also polyhomogeneous. Furthermore, as it is discussed in Sec. IV, nonpeeling
rotation symmetric space–times are not regular at the ‘‘north’’ and ‘‘south’’ poles.

a!Electronic mail: j.a.valiente@qmw.ac.uk
8980022-2488/2000/41(2)/898/26/$17.00 © 2000 American Institute of Physics
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Boost-rotation symmetric space–times describe ‘‘uniformly accelerated particles’’ tha
proach the speed of light asymptotically. The smoothness of the solution requires the space
to be reflection symmetric;8 therefore, at least two particles with opposite acceleration are pre
and future null infinity contains at least two singular points. The null infinity of a boost-rota
symmetric space–time can be global, in the sense that it admits spherical cuts, but the gen
are not complete. Ashtekar and Dray12 have shown that the C-metric admits a conformal comp
tion such that the cuts ofI are the two-sphereS2. However, the issue of the existence of radiati
asymptotically flat solutions to the Einstein–Maxwell field equations was settled time befo
Bičák.13 In this paper a general form for the news function of boost-rotation symmetric sp
times is found.

The boost-rotation symmetric space–times are usually given in a coordinate system
clearly exhibits their symmetries. The transformation between this coordinate system an
Bondi coordinates used in the asymptotic expansions of the gravitational field has to be gi
terms of series.14 These expansions are extremely messy, and usually only the leading term
be calculated explicitly. To add to the problem, the coefficients in terms of which the NP
logarithmic NP constants are defined are found deep into the series expansions. As a
observation, Kinnersley and Walker15 in a note added in proof mention that theC metric is a
counterexample to the claim that all algebraically special space–times have zero NP con
However, no expression for the conserved quantities is given.

Bičák and Schmidt,16 starting with a vacuum axially symmetric space–time, imposed an e
symmetry on the space–time. Expanding the Killing equations in powers of 1/r and solving order
by order, one finds an asymptotic expression for the new Killing field. The boost-rotation
metry appears playing a privileged role as the only other symmetry an asymptotically flat a
symmetric radiative space–time can have. A generalization of this work for the case of el
vacuum space–times with Killing vectors that need not be hypersurface orthogonal has bee
by Bičák and Pravdova´.17 More recently, the case when there is a translational Killing vector
been analyzed by the same authors.13

It is clear that if one wants to pose an initial value problem for a space–time that h
particular symmetry, the initial data cannot be arbitrary, for it should satisfy some const
imposed by the Killing vector field. For instance, if the space–time is bound to be axisymm
the initial data cannot depend onw. In the analysis by Bicˇák and Schmidt, these constrain
equations begin to appear when the expansions are carried to higher orders in 1/r . In Ref. 16, a
constraint for the news function was found, and in Ref. 17 another for the mass aspect.

In this article their approach will be generalized in two ways: first, it will not be assumed
the beginning that the space–time is axially symmetric, and, second, it will be assumed th
space–times can be expanded asymptotically using polyhomogeneous series. The Killing
tions will be solved using these expansions, and the constraints for the different quantit
interest will be deduced from the integrability conditions of the Killing equations. In particular
will be most interested in the constraint on the coefficient of order 6 in 1/r of C0 , as it is the one
from which the Newman–Penrose~and the logarithmic NP! constants are calculated.

As it will be shown, the structure of the constraint equations is very similar to that of
continuity equations of the classical mechanics of continuous media. This fact will allow
gain some insight on the behavior of the solutions to the constraint equations, and put forw
tentative interpretation of the physical mechanisms involved, although it may not be possi
calculate the explicit form of the solutions.

The article is organized as follows: in Sec. II, some preliminaries are discussed. These i
a brief note on the coordinate system and the null tetrad to be used, the Killing equations an
integrability conditions in the NP formalism, some comments on the hypothesis of polyhom
neity, and some remarks on the characteristic initial value that will prove of use in later di
sions. In Sec. III the Killing equations are solved to the first order, yielding the asymptotic
of the Killing fields compatible with asymptotic flatness. The case of axial symmetry is anal
The results by Bicˇák and Schmidt16 and Bičák and Pravdova´17 on the privileged role of the
boost-rotation symmetry in axisymmetric space–times is recovered. Section IV is devoted
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study of the constraint equations that can be deduced from the integrability conditions
Killing equations. The general form of these constraints is discussed, and some general rem
the behavior of their solutions are put forward. Some emphasis is put on the characteristic
of the differential equations. The constraints for the leading term of the shear (s2,0), the news
function (ṡ2,0), the mass aspect (ReC2

3,0), and the coefficientsC0
4,C0

5,C0
6 are calculated and

analyzed. The resulting expressions are applied to the particular case of boost-rotation sym
space–times. The final product of this analysis is the constraint equation for the coefficienC0

6,X

that gives rise to the NP constants. From these constraints, some remarks on the interpret
these quantities are made.

There are four appendices. Appendices A and B discuss the solutions to two partial dif
tial equations that will be used in the body of the article. In Appendix C, the orbits of
restriction of the Killing field to null infinity are studied, and a classification of them is do
Finally, in Appendix D, some spin-weighted spherical harmonics are listed for quick refere

II. PRELIMINARIES

A. Coordinates and tetrad

Most of the calculations will be done with the NP formalism. The coordinates and tetrad
are the same as the ones described in Stewart’s book.18 The coordinates (x0,x1,x2,x3)
5(u,r ,u,w) are such thatu is a retarded timelabelling the foliation of the space–timeM by null
hypersurfaces. Theaffine parameter rparametrizes the geodesic generators of the null hyper
faces, and the angular coordinates~u, w! are such that they are constants along the generatorsI

and along the geodesic generators of the null hypersurfaces. The freedom left in this coo
construction is a relabelling of the null hypersurfaces, a different choice of angular coordi
and a rescaling and setting of the origin for the affine parameterr.

The tetrad is constructed so thatl m is tangent to the geodesic generators of the null hyper
faces;nm is future pointing, and orthogonal to the two-surfacesu5const,r 5const(Su,r); andmm

and m̄m span the tangent space toSu,r„T(Su,r)…. The freedom left in this tetrad constructio
consists of a boostl m°Alm, nm°A21nm, which yields a rescaling ofr; and a spinmm°eiqmm.

It can be shown that

l m5d1
m , ~1!

nm5d0
m1Qd1

m1Cid i
m , ~2!

mm5j id i
m . ~3!

This tetrad is such thate5k50, t5p̄5ā1b, andr andm are real functions.
The freedom left in the construction of the vectorsmm and m̄m gives rise to the notion of

spin-weighted quantities. The derivativesZ andZp work as raising and lowering for the spin weig
of the relevant quantities. We will stick to Penrose and Rindler’s convention.19 The connection
between theZ andZp operators and the directional derivativesd and d̄ is given by

Zh5dh1s~ ā2b!h, ~4!

Zh5 d̄h2s~a2b̄ !h, ~5!

where h is a quantity of spin weights. A spin-weighted quantity on the sphere (S2) can be
expanded in terms ofspin-weighted spherical harmonics. These spherical harmonics are a co
plete and orthonormal set of eigenfunctions of the operatorZpZ.

When dealing with differential equations that contain the operatorsZ and Zp, the following
lemma will be most useful.18
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Lemma 1: Supposeh is continuous on the sphere and has spin weight s.0. Then ifZph50, it
follows thath50, and, if Zh50, then h is a linear combination of thesYs,m . The analogous

results hold for s,0 by interchangingZ and Zp.

B. Polyhomogeneity

In order to handle with ease polyhomogeneous expansions, some conventions will be ad
We will refer to the Newman–Penrose field equations, the Bianchi identities, and the
equations in the way they are labeled in Stewart’s book~~a!–~r !, ~Ba!–~Bk!, and~Fa!–~Ff !!. The
Killing equations,~16!–~22!, will be referred as~K1!–~K7!. A first subscript in the label of a
given equation will mean that we are just interested in that particular power of 1/r , and a second
subindex will refer to a particular power ofz5 ln r.

Otherwise stated, it will be assumed that all quantities~components of the Weyl tensor, sp
coefficients, tetrad functions, and coefficients of the Killing fields! are polyhomogeneous func
tions. We will say that a function is polyhomogeneous if in a neighborhood ofI it can be written
as

f 5 (
k51

`

f kr
2k5 (

k51

`

(
j 50

Nk

f k jr
2k lnj r , ~6!

where f k is a polynomial of degreeNk in z5 ln r, whereasf k j is a function of (u,u,f) –no
dependence onr left. Let # denote the degree of a polynomial. In the example given abovef k

5Nk . Sometimes, the degree of the polynomial will appear next to it in square brackets,f k@Nk#.
The Z operator has a polyhomogeneous expansion

Z5r 21Z1@0#1r 22Z2@N311#1¯ , ~7!

where

Z1h~u,w!5d1h~u,w!12sā1h~u,w!, ~8!

andZ1f (r )50.

C. The asymptotic characteristic initial value problem

The asymptotic characteristic initial value problem is usually set by supplyingC0 on an initial
null hypersurfaceN0 ,s2,0 on I 1 ~or I 2), and C1

4,0,C2
2,0,j1

i on Z05I 1ùN0 ~or Z0

5I 2ùN0). Kánnár20 has proven the well posedness and existence/uniqueness of the initial
problem for data that isC`. A similar theorem for polyhomogeneous initial data is not y
available. However, one can use Ka´nnár’s result as a sensible guide when formally solving t
initial value problem with polyhomogeneous data.

The most general form for the componentC0 of the Weyl tensor2 is given by

C05O~r 23 lnN3 r !, ~9!

that is,

C05C0
3@N3#r 231C0

4@N4#r 241C0
5@N5#r 251C0

6@N6#r 261¯ . ~10!

However, in order to ease the calculations, we will restrict our attention to space–times suc

C05Q~r 24 lnN4 r !. ~11!

This family of polyhomogeneous space–times are such that the leading term of the sheas2)
contains no logarithmic terms~finite shear atI !. Among this family, one finds the ‘‘minimal’’
polyhomogeneous space–times, which are those whose logarithmic terms are directly
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noncompliance with theoutgoing radiation condition. One has reasons to suspect that th
particular group of polyhomogeneous space–times are the ones with physical relevance.4,5 The
componentC0 for these ‘‘minimal’’ spacetimes has the form

C05C0
4r 241~C0

5,01C0
5,1ln r !r 251~C0

6,01C0
6,1ln r !r 261¯ , ~12!

while the non-polyhomogeneous space–times obey the Peeling theorem:

C05C0
5,0r 251C0

6,0r 261¯ . ~13!

Details on how to solve the NP hierarchy using polyhomogeneous expansions can be fo
Refs. 2 and 3. The results given there will be used whenever it is necessary.

The logarithmic Newman–Penrose constants are given in terms ofC0 by

Qk
X5E

S2
C0

6,X~2Ȳ2k! dS, ~14!

where X5max$N5,3N313,N31N412%.3 In the case of non-polyhomogeneous space–tim
~N35N452`, andN550 so thatX50), one recovers the original NP constants.

D. The Killing equations and their integrability conditions in the NP formalism

The Killing equations and their integrability conditions (LjmCnmlx50, whereCnmlx is the
Weyl tensor! written in the Geroch–Held–Penrose~GHP! formalism21 can be found for example
in the article by Kolassis and Ludwig22 ~a NP version had been worked out previously by Collis
and French,23 but it is known to have several typographical errors!. The equations given in the
present article were deduced from theirs, and particularized to the specific NP null tetrad th
described in a previous section.

Let jm be a Killing vector. It can be written in terms of the vectors of the null tetrad as

jm5alm1bnm2cmm2 c̄m̄m, ~15!

wherea,bPR have spin weight 0, andcPC has spin weight21. The Killing equations@equations
K1–K7# for the tetrad used in this article are

Db50, ~16!

Da1~g1ḡ !a5 n̄c1n c̄, ~17!

Zpc52s̄a1lb, ~18!

Db2~g1ḡ !b1Da50, ~19!

Zc1Zpc̄522ra12mb, ~20!

Dc1Zpb5pb2rc2s̄ c̄, ~21!

D c̄2~g2ḡ !c̄1Za52ta1l̄c1 n̄b1m c̄, ~22!

and the integrability conditions fors, C0 , C1 , andC3 @equations~IS!, ~I0!, ~I1!, ~I2!# are

aDs̄1bDs̄2cZs̄2 c̄Zps̄1bs̄g23bs̄ḡ5ZpQ2 t̄Q1~P12iS!s̄, ~23!

aDC01bDC02cZC02 c̄ZpC024bgC052~P2 iS!C024Q̄C1 , ~24!
                                                                                                                



rder
ge-

con-

oge-

ider-

:

903J. Math. Phys., Vol. 41, No. 2, February 2000 Killing vectors and NP constants

                    
aDC11bDC12cZC12 c̄ZpC122bgC15~P2 iS!C12Q̄8C023Q̄C2 , ~25!

aDC21bDC22cZC22 c̄ZpC2522Q̄8C122Q̄C3 , ~26!

where

Q5Zpb1 t̄b, ~27!

Q85Za2p̄a2 n̄b, ~28!

P52Da1p̄c1p c̄, ~29!

2iS5Zpc̄2Zc. ~30!

The equations~16!–~26! will be expanded in polyhomogeneous series, and then solved o
by order. This analysis will yield Killing vector fields that are consistent with the polyhomo
neous asymptotically flat space–times of Refs. 2–4. More importantly, it will also yield
straints for the quantities that are initial data atN0 , andZ ~i.e., C0 , ands2,0, C1

4,0, C2
3,0).

It will be assumed that the coefficients in the Killing field can be expanded as polyhom
neous series:

a5a21r 1a01a1r 211a2r 221a3r 231¯ , ~31!

b5b21r 1b01b1r 211b2r 221b3r 231¯ , ~32!

c5c21r 1c01c1r 211c2r 221c3r 231¯ , ~33!

where theai , bi , andci are polynomials inz5 ln r.

III. THE ASYMPTOTIC KILLING VECTOR

Solving the Killing equations to the leading order in 1/r yields the asymptotic form of the
Killing vector fields that are compatible with the asymptotically flat space–times under cons
ation. The expansions yield

] rb50, ~34!

]ua2150, ~35!

ð̄1c2150, ~36!

]ub1a211a82150, ~37!

ð1c211ð̄1c̄2152a21 , ~38!

c218 50, ~39!

]uc2150. ~40!

From Eqs.~34! and ~39! together with~37! one sees that

#a215#c2150, ~41!

and b is independent ofr. Hence, there are no logarithmic terms at this order. FromZp1c2150
~using Lemma 1! one finds thatc21 has to be a linear combination ofl 51 spherical harmonics
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c215 (
m521

1

~21!m11Am~21Y1,2m!, ~42!

c̄215 (
m521

1

Ām~1Y1,m!, ~43!

whereAmPC. Using the properties of spin-weighted spherical harmonics, one can readily fin

a215
1

2 (
m521

1

$Ām1~21!mA2m%~0Y1,m!, ~44!

and hence

b52
u

2 (
m521

1

$Ām1~21!mA2m%~0Y1,m!1a~u,w!, ~45!

wherea~u, w! is an arbitrary integration function. The asymptotic form of the Killing vector fi
is therefore

jm5S 2a21u1a~u,w!,a21r ,2
1

&
~ c̄211c21!,2

i cscu

&
~ c̄212c21!D . ~46!

Hence, all Killing vector fields compatible with asymptotic flatness can be constructed by pr
ing the three complex numbersA21 ,A0 ,A1 and the functiona~u, w!. Polyhomogeniety adds
nothing new at this order.

In the axisymmetric case, it has been shown that the integration functiona~u, w! can be
removed with a supertranslation.16,17 This suggests that a similar thing can be done in the gen
case. If one letsu85u1b, then the Killing vector field will transform as

j8u5ju2c21Z1b2 c̄21Zp1b, ~47!

j8r5j r , ~48!

j8u5ju, ~49!

j8w5jw. ~50!

In order to removea, one needs to find a solutionb to the partial differential equation

a5c21Z1b1 c̄21Zp1b. ~51!

As is shown in Appendix A, it is always possible to construct ab that satisfies Eq.~51!. This
shows that the functiona~u, w! is associated with supertranslational Killing vector fields, i.
fields of the form

jsup
m 5„a~u,w!,0,0,0…. ~52!

A. Axial symmetry

In an axially symmetric space–time, one expects all the quantities to be independent
coordinatew. This fact constrains the expansions in spherical harmonics of functions overS2, as
the only harmonics that are independent ofw are those withm50. Hence, in an axisymmetric
space–time a quantity of spin weights, h will be of the form
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h5(
k5s

hk~sYk,0!. ~53!

The Killing vector for axial symmetry is

hm5~0,0,0,1!, ~54!

so that

c5
2 i sinu

&
r ~55!

and

a5b50. ~56!

Now, we note that the vectornm can be chosen so that at the origin, its spacelike projec
lies in a plane containing the axis of symmetry. Due to the axial symmetry of the space–tim
projection will remain in this plane. Therefore,nm will have no components in the direction of]w .
HenceC350. The null vectorsmm and m̄m were constructed so that they spanT(Su,r). The
dimension ofT(Su,r) is 2, but the vectormm depends on four real functions of (u,r ,u). The two
extra functions are related to the freedom of performing a spinmm°eiqmm. Frommm andm̄m one
can construct two real vectors

e2
m5

1

&
~mm1m̄m!5~0,0,Rej2,Rej3!, ~57!

e3
m5

i

&
~mm2m̄m!5~0,0,Imj2,Im j3!. ~58!

Then, using the freedom left in the spin it is possible to set Rej35Im j250. In this waye3
m will lie

in the direction of]w , andj2 will be real andj3 will be pure imaginary. After this choice, all th
tetrad freedom will have been removed and all the spin-weighted quantities will have lost
spin weight. Ifj2 is real andj3 is pure imaginary, then from the frame equation~Fb!,

Dja5rja1sj̄a, ~59!

one deduces thats has to be real, and hence from the NP field equation~b!,

Ds52rs1C0 , ~60!

C0 is real. These results are summarized in the following lemma.
Lemma 2: For an axially symmetric space–time, it is possible to choose the tetrad so th

C350, j2, s, C0 are real andj3 is pure imaginary. Under this choice, there will be no sp
freedom left.

B. Boost-rotation symmetric space–times

If the space–time is axisymmetric (hm), and happens to possess another Killing vector (jm),
then the two Killing vector fields will form an Abelian algebra.16

If one assumes that the space–time is axisymmetric, then the coefficientsa21 , b, c21 , and
c̄21 for the other Killing vector,jm, are constrained to be

c215A0 sinu, ~61!
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c̄215Ā0 sinu, ~62!

a215
1

&
~A01Ā0!cosu, ~63!

b52
u

&
~A01Ā0!cosu. ~64!

Therefore, the asymptotic form of the extra Killing vector field has to be

jm5„2Re~A0!u cosu1a~u!,Re~A0!r cosu,2Re~A!sinu,2Im ~A0!…. ~65!

With any loss of generality one can set Im(A0) equal to zero as the vector„0,0,0,Im(A0)… is just a
multiple of the axial Killing field. Hence, Bicˇák and Schmidt’s16 and Bičák and Pravdova´17 result
has been recovered. The resulting vector is known as the boost Killing vector.

IV. CONSTRAINTS DUE TO THE PRESENCE OF A KILLING FIELD

A. General remarks

As has been seen in the previous section, the expansion of the Killing equations to ord21
in 1/r yields the asymptotic form of the Killing vector field. If one carries the expansions to fur
orders, one will expect to observe the interaction of the symmetry of the space–time wi
quantities that are initial data at a given null hypersurfaceN0 through the integrability conditions
of the Killing equations. The presence of the Killing vector field will require the initial data
satisfy some constraint equations that will be derived from the integrability conditions. The
straint equations fors2 , C0 , C1

4, andC2
3 can be deduced from the integrability conditions@~IS!,

~I0!, ~I1!, ~I2!#, Eqs.~23!–~26!. Looking at the integrability conditions, it is not difficult to see th
the generic form of the constraint equations will be

b]uX2c21Z1X2 c̄21Zp1X1HX5Q, ~66!

whereH andQ depend on quantities that have been calculated at previous orders in the e
sions. A number of observations can be made from this equation. The constraint equation~66! is
a linear partial differential equation for the~in principle! complex quantityX. The domain of the
solutions to this equation is at least a piece ofI 5R3S2. This fact suggests that one could u
separation of variables in order to try to solve the equation when the nonhomogeneous terQ is
not present. Hence, let us assume that

X~u,u,w!5U~u!V~u,w!. ~67!

Substitution into the homogeneous part of Eq.~66! yields

~2ua21!U8V2c21UZ1V2 c̄21UZp1V1HUV50. ~68!

Dividing by UV and collecting terms, one obtains

2u
U8

U
5

1

a21
S c21Z1V1 c̄21Zp1V

V
2H D . ~69!

Using the classical argument of separation of variables, one sees that the left-hand side d
only on u, while the right-hand side depends only on the angular coordinates~u, w!. Hence each
side has to be equal to a constantL5L11 iL2(L1 ,L2PR). Therefore,

U81LuU50, ~70!
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and

c21Z1V1 c̄21Zp1V2~H1a21L!V50. ~71!

Equation~70! can be solved, readily yielding

U~u!5CL1 ,L2
e2~1/2!~L11 iL2!u2

, ~72!

whereCL1 ,L2
is an integration constant. The structure of the functionU is extremely suggestive

The numberL1 is clearly a damping parameter, andL2 is a frequency~which we will assume to
be positive!. In principle, there is no mathematical restriction to the valuesL can take, but on
physical grounds one would like to restrict them to the first quadrant of the complex p
(L1 ,L2>0) as one expects the ‘‘background’’ gravitational field to damp the propagatio
gravitational radiation.

The solution of Eq.~71! will be ~in principle! an infinite series of spin-weights spherical
harmonics. A general solution for the constraint equation~66! is given by integrating over the
values of the parameterL:

X5E
0

`E
0

`

CL1 ,L2
e2~1/2!~L11 iL2!u2

VL1 ,L2
~u,w! dL2 dL1 . ~73!

Another interesting observation on the behavior of solutions to Eq.~66! can be obtained from
writing the Z1 andZp1 operators as ordinary partial derivatives. IfX is a quantity of spin-weights,
then

Z1X5
sins u

&
~]u2 i cscu]w!~~sin2s u!X!, ~74!

Zp1X5
sin2s u

&
~]u2 i cscu]w!~~sins u!X!, ~75!

and the differential equation~66! takes the form

~2a21u!]uX2
1

&
~ c̄211c21!]uX2

i cscu

&
~ c̄212c21!]wX1S H2

s cotu

&
~ c̄212c21!D X5Q.

~76!

Therefore the tangent vector field to the characteristics of Eq.~76! is given by

xm5S 2a21u1a,2
1

&
~ c̄211c21!,2

i cscu

&
~ c̄212c21!D , ~77!

that is, the restriction of the Killing vector fieldjm to I , jmuI . Hence, the characteristics of Eq
~66! are the orbits ofjmuI . The structure of the equations~66! and ~76! is very suggestive as i
resembles that of the continuity equations of mechanics of continuous media:r t1div J5F, where
F describes a source or a sink of the quantityr, andJ describes its flux.

From the theory of first-order linear partial differential equations, one knows that Eq.~76! is
equivalent to a system of four~nonlinear! ordinary differential equations:

du

dt
52a21u, ~78!
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du

dt
52

1

&
~ c̄211c21!, ~79!

dw

dt
52

i cscu

&
~ c̄212c21!, ~80!

dX

dt
52S H2

s cotu

&
~ c̄212c21!D X1Q, ~81!

with initial data u(0)5u0 , u5j, w5h „jP@0,p#, hP@0, 2p#…, andX(0)5 f (j,h). The first
three equations yield the characteristics/orbits of the restriction of the Killing vector field tI .
The functionf is therefore by construction an invariant along the orbits. Note that because w
solving the Killing equations and their integrability conditions order by order, then the cons
equations will form a hierarchy. It will be necessary to solve all the constraints up to order
k, in 1/r in order to be able to solve the constraints to orderk11. This procedure will give rise to
a set of functionally, independent invariants along the orbits from which it will be possib
construct all the spin-weighted quantities.

The characteristic curves are represented by the mapping (t,j,h)°(u,u,w) ~t is the param-
eter of the curve, andj andh are the coordinates of the end point of the curve at the initial cu
I ! which can be inverted as long as its Jacobian is different from zero. If this is indeed the
one can solve Eq.~81! to get the solution of the original partial differential equation. The solut
to the homogeneous part of Eq.~81! can be formally written as

Xh5 f ~j,h!e2*C„H2~1/& !s cot u~ c̄212c21!…, ~82!

where j and h are functions of~u, u, w! as discussed before, and the integration has to
understood as a line integral along the~unique! characteristic that goes through~u, u, f! and which
can be retrodicted up to the initial cut (Z05I ùN0). A particular solution to the equation~81! is
given by

Xp5e2*C„H2~1/& !s cot u~ c̄212c21!…E
C
Qe*C„H2~1/& !s cot u~ c̄212c21!…. ~83!

The complete solution will be therefore

X5Xh1Xp , ~84!

where the homogeneous term (Xh) is associated with the propagation of the initial dataf (u,w),
which will be damped due to the ‘‘interaction’’ of the quantityX with the background@represented
by the term „H2(1/&)s cotu(c̄212c21)…X#. The nonhomogeneous part will account for t
added effects~in time! of the source/sink.

B. Constraint on the news function

The shear~s! is a quantity of great physical interest as the derivative of its leading term
respect to the retarded timeu (ṡ2,0), known as thenews function, determines whether or not th
space–time is radiative. The outgoing radiation field for the asymptotically flat space–tim
determined by the leading term ofC4 , which itself depends on the news function (C4

1,052 s̈̄). In
order to obtain a constraint equation for the leading term of the shear~s!, one has to expand th
integrability condition~IS! @Eq. ~23!# to order 2 in 1/r . One directly finds that

ṡ2,0b2c21Z1s2,02 c̄21Zp1s2,02~a211Z1c212Zp1c̄21!s2,050. ~85!
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Differentiating the latter with respect tou, one obtains a constraint equation for the news funct
(ṡ2,0),

s̈2,0b2c21Z1ṡ2,02 c̄21Zp1ṡ2,022~Z1c21!ṡ2,050. ~86!

Once these constraint equations have been solved, one can proceed to solve the Killing eq
~16!–~22! at order 0 in 1/r ,

ȧ02 1
2 ~a218 1a21!50, ~87!

Zp1c01Zp2c2152s̄2a211l1b, ~88!

a0850, ~89!

Z1c01Zp1c̄01Zp2c̄211Z2c2152a02b, ~90!

Zp1b5c02c082s̄2c̄21 , ~91!

ċ̄01Z1a215l̄1c21 , ~92!

wherel15 ṡ̄2,0 and Z252s2,0Zp1 . Note that because ofC05O(r 24 lnN4 r), then #s250, and
hences25s2,0. The coefficientsc0 and a0 can be calculated from Eqs.~91! and ~90!, respec-
tively. It can be easily seen that #a05#c050.

1. Supertranslational Killing field

It is known that an axisymmetric space–time that admits a supertranslational Killing v
and a complete cross-section ofI is necessarily nonradiative.24,25,15,17Using Eq.~85! it is easy to
show that this assertion is still valid even if we remove the hypothesis of axial symmetry.
supertranslational Killing vector field we have that

c2150, ~93!

a150, ~94!

b5a~u,w!. ~95!

Therefore, the constraint equation fors2,0 is

ṡ2,0b50. ~96!

This clearly shows that ifaÞ0, then necessarilyṡ2,050. So we obtain the following propo
sition.

Proposition 1: If an asymptotically flat space–time admits a supertranslational Killing vecto

field and a complete section ofI , then it is nonradiative(ṡ2,050 for all retarded times!.

2. Boost-rotation symmetry

From the discussion in Sec.~2.7!, the leading terms of the boost Killing vector are given

c215A0 sinu, ~97!

a215&A0 cosu, ~98!

Z1c215&A0 cosu, ~99!
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b52u&A0 cosu, ~100!

whereA0PR. If one fixes the tetrad in the way prescribed by Lemma 2 in Sec. III A, thens2,0 is
real, and the constraint equations~85! and ~86! simplify to

~u cotu!]u~s2,0!1]u~s2,0!1~cotu!s2,050, ~101!

~u cotu!]u~ ṡ2,0!1]u~ṡ2,0!1~2 cotu!ṡ2,050. ~102!

Both partial differential equations can be solved easily using the method of characteristic
last equation is a particular case of the equationu cotu]ux1]ux1kcotux5H(u,u). This kind of
equation will appear many times more, therefore, a study of its solutions is made in Appen
The general solution of~101! is

s2,05~cscu!GS sinu

u D , ~103!

and that of Eq.~102! is

ṡ2,05
1

u2 F1S sinu

u D , ~104!

whereG andF1 are arbitrary functions of (sinu)/u, andF152G8. Hence, we have recovered th
results of Refs. 16 and 17.

C. Constraints on Re C2
3,0 and C0

4,N4

The next step in our study is to obtain constraint equations for ReC2
3,0 ~the mass aspect of th

space–time! and C0
4 ~the coefficient that gives rise to the logarithmic terms in the expansio!.

The constraint equation for ReC2
3,0 can be deduced either from the constraint equation~26! or

from the expansions of the Killing equations at order 1 in 1/r :

2n2c̄212 n̄2c211ȧ11Q1a211C2
a]aa211~g21ḡ2!a2150, ~105!

s̄3a211s̄2a01Zp1c11Zp2c01Zp3c215l2b, ~106!

C2
a]ab2~g21ḡ2!b5a1 , ~107!

Zp1c̄11Zp2c̄01Zp3c̄211Z1c11Z2c01Z3c2122m2b12r3a2152a1 , ~108!

s̄3c̄211s̄2c̄022c11c181r3c211Zp2b2p2b50, ~109!

Q1c̄212 1
2 c̄

0
81t2a211Z2a211Z1a02m2c̄211

1
2 c̄01 ċ̄11C2

a]ac̄21

2~g22ḡ2!c̄212l2c212l̄1c050,
~110!

where18,3

s5s2,0r
221s3@N4#r 231O~r 24 lnN5 r !, ~111!

n5Zp1Mr 221O~r 23 lnN411 r !, ~112!

Q52 1
22Mr 211O~r 22 lnN411 r !, ~113!
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C2
a]a52@~Z1s̄2,0!d11~Zp1s2,0!d̄1#r 221O~r 23 lnN411 r !, ~114!

g21ḡ252Mr 221O~r 23 lnN411 r !, ~115!

and M5ReC2
3,05 1

2 (C2
3,01C̄2

3,0). From ~107! one sees that #a150, and from Eq.~109! #c1

5#s35N4 . Using all these results, Eq.~105! reads

22Ma212 c̄21Zp1M1ȧ12Z1s̄2,0Z1a212Zp1s2,0Zp1a212c21Z1M50. ~116!

From Eq.~107! one obtains

a15Mb2Z1s̄2,0Z1b2Zp1s2,0Zp1b. ~117!

Combining the two equations, and recalling thatḃ52a21 , one finally obtains the desire
constraint equation,

bṀ2 c̄21Zp1M2c21Z1M13ḃM5~Z1ṡ̄2,0Z1b1Zp1ṡ2,0Zp1b!. ~118!

Note that this constraint equation has a sink term@(Z1ṡ̄2,0Z1b1Zp1ṡ2,0Zp1b)# that depends on the
news function (ṡ2,0), as one may expect from the Bondi mass formula~see, e.g., Ref. 18!. Once
M is determined, the coefficienta1 is readily found. Using the integrability condition~I0! @Eq.
~24!# at order 4 in 1/r , one can easily deduce the constraint equation forC0

4,

c21Z1C0
41 c̄21Zp1C0

412Z1c21C0
452a21C0

48 ; ~119!

in particular the coefficient of the highest lnr power (N4) should satisfy

c21Z1C0
4,N41 c̄21Zp1C0

4,N412Zc21C0
4,N450. ~120!

Note that there are no derivatives with respect to the retarded time, asC0
4 is a constant of motion.2

1. Boost-rotation symmetry

It can be shown that in the case of boost-rotation symmetric space–times, the con
equation for the mass aspectM reduces to the one found by Bicˇák and Pravdova´:16

u cotu]uM1]uM13 cotuM5u]u~]us2,012 cotus2,0!. ~121!

From Appendix B we learn that the homogeneous part of the solution of the previous equatio
be of the formMh5u23F(u21 sinu). A discussion of the behavior of the solutions to the co
straint equation, and their relation with the Bondi mass of the spacetime, can be found in R

The constraint equation forC0
4,0 ~in a ‘‘minimal’’ polyhomogeneous space–time! reduces to

an ordinary differential equation (C0
4 is a constant of motion2!,

d

du
C0

4,012 cotuC0
4,050, ~122!

whose solution is

C0
4,05C1 csc2 u. ~123!

Therefore,C0
4 is singular atu50,p. Note thatC0 is an invariant of the boost-rotation symmetr

space–time, as all the freedom in the tetrad has been removed. Hence, there are singulariti
‘‘north’’ and ‘‘south’’ poles. From this analysis one concludes that a polyhomogeneous b
rotation symmetric space–time withC05O(r 24 lnN4 r) can only have a ‘‘local’’I , i.e., I is not
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isomorphic toS23R.24,25 If one wishes to have a boost-rotation symmetric space–time wit
least a ‘‘piece’’ of I (I .S23R), then one must setC0

450. Note as well thatZp1C0
4,0

5C1Zp1(csc2 u)50. This fact will simplify future calculations.

D. Constraint on C1
4,0 and C0

5

The integrability condition~I1! @Eq. ~25!# expanded at order 4 in 1/r yields the constraint
equation forC1

4,0, while the constraint equation forC0
5 can be deduced from the integrabilit

condition ~I0! @Eq. ~24!# at order 5 in 1/r . In the theory of multipole expansions of stationa
space–times these coefficients are closely related to the dipole moment and the quadrup
ment respectively.26,27 For radiative space–times, these relations do not hold anymore; how
C1

4,0 is an indispensable ingredient of all the definitions of angular momentum for asymptot
flat space–times.28,29

The constraint equations are respectively

bĊ1
42c21Z1C1

42 c̄21Zp1C1
42~2a211Z1c21!C1

452a21C1
4823Z1bC2

3 ~124!

and

bĊ0
52c21Z1C0

52 c̄21Zp1C0
52~a2112Z1c21!C0

5

52a21C0
581~ 1

2 b2a0!C0
481~4a022b12t2c2112t̄2c̄211Z1c01Z2c21

2Zp1c̄02Zp2c̄21!C0
41c0Z1C0

41 c̄0Zp1C0
41c21Z2C0

41 c̄21Zp2C0
424Z1bC1

4. ~125!

Now, from Ref. 2 one knows thatC1
485Zp1C0

4, so that (N411)C1
4,N411

5Zp1C0
4,N4. Therefore, the

only new constraint equation one can deduce from~124! is that for C1
4,0 ~the equations for the

other coefficients are satisfied identically!. Therefore,

bĊ1
4,02c21Z1C1

4,02 c̄21Zp1C1
4,02~2a211Z1c21!C1

4,052a21Zp1C0
4,023Z1bC2

3,0. ~126!

This constraint is valid both for polyhomogeneous and non-polyhomogeneous space–times
be regarded as describing a process of transformation of dipole moment~angular momentum! into
mass monopole moment due to the gravitational radiative process.

For a non-polyhomogeneous space–time the constraint for the coefficientC0
5,0 reduces to

bĊ0
5,02c21Z1C0

5,02 c̄21Zp1C0
5,02~a2112Z1c21!C0

5,0524Z1bC1
4,0, ~127!

while for a ‘‘minimal’’ polyhomogeneous space–time the leading coefficient (C0
5,0) should satisfy

bĊ0
5,12c21Z1C0

5,12 c̄21Zp1C0
5,12~a2112Z1c21!C0

5,1524Z1bZp1C0
4,0. ~128!

In a similar way to what happened with the constraint equation forC1
4,0, these two last equation

can be interpreted as describing a process of interchange of mass quadrupole moment int
moment~angular momentum!. Note that for the ‘‘minimal’’ polyhomogeneous space–time the
will be two coefficients associated with the quadrupole, the logarithmic one being domina
away from the source.

As in the previous subsections, once the constraint equations have been solved, one ca
find the coefficientsa2 andc2 from the Killing equations~K5! and ~K6! @Eqs.~20! and ~21!# at
order 2 in 1/r :

Zp3c̄01Zp2c̄11Zp1c̄21Zp4c̄2112r3a012r4a2122m3b

1Z4c211Z3c01Z2c11Z2c11Z1c252a2 , ~129!
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r3c01r4c2123c21Zp3b1c282p3b1s̄2,0c̄11s̄4c̄211s̄3c̄050. ~130!

From these equations one can see that #a25#g35N411 and #c25N5 .

1. Boost rotation symmetry

The constraint equations forC1
4,0 are the same for non-polyhomogeneous and ‘‘minima

polyhomogeneous boost-rotation symmetric space–times:

u cotu]uC1
4,01]uC1

4,013 cotuC1
4,053uC2

3,0. ~131!

The constraint equation for the leading coefficients ofC0
5 for a non-polyhomogeneous space–tim

(C0
5,0) and a ‘‘minimal’’ polyhomogeneous space–time (C0

5,1) are respectively

u cotu]uC0
5,01]uC0

5,013 cotuC0
5,052uC1

4,0 ~132!

and

u cotu]uC0
5,11]uC0

5,113 cotuC0
5,150. ~133!

The homogeneous part of the solutions of all these equations will be of the formu23F(u21 sinu).
Note that in the ‘‘minimal’’ polyhomogeneous case, no source/sink term occurs. The so

in this case is, therefore,

C0
5,15

1

u3 F2S sinu

u D , ~134!

whereF2 is an arbitrary function of the argument. Now, using the evolution equation forC0
5,1 ~see

Ref. 2 or 3!, one finds that

Ċ0
5,15Z1C1

4,150, ~135!

whenceC0
5,1 will also be a constant of motion for boost-rotation symmetric space–times. H

C0
5,15C2 csc3 u. ~136!

Again one can see that polyhomogeneity in these class of space–times gives rise to a locI .

E. Constraints on C0
6 and the NP constants

Finally, we are able to deduce constraint equations forC0
6. As seen in Sec. II C, the loga

rithmic NP constants are given in terms of an integral ofC0
6,X , whereX5N5 if N352`. The

constraint equation will be much more complicated in this case. The expansion at order 6 inr of
the integrability condition~I0! @Eq. ~24!# gives an equation of the form

bĊ0
62c21Z1C0

62 c̄21Zp1C0
622~a211Z1c21!C0

65K, ~137!

whereK is a complicated expression depending onC0
4 andC0

5 and theirZ1 andZp1 derivatives, and
on C1

4,0,C2
3,0,a21 ,a0 ,a1 ,b, andc21 ,c0 ,c1 . In the particular case of the non-polyhomogeneo

space–time, the coefficient which yields the Newman–Penrose constantsC0
6,0 satisfies

bĊ0
6,02c21Z1C0

6,02 c̄21Zp1C0
6,022~a211Z1c21!C0

6,0

5~ 5
2 b18c̄21Z1s̄2,016c21Zp1s2,022Zp1c21s2,012Z1c̄21s̄2,0!C0

5,02c21s2,0Zp1C0
5,0
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1c0Z1C0
5,02 c̄21s̄2,0Z1C0

5,01 c̄0Zp1C0
5,024Z1bC1

5,014s2,0Zp1bC1
4,024bt2C1

4,0,
~138!

and the analogous coefficient (C0
6,1) for a ‘‘minimal’’ polyhomogeneous space–time has to satis

a similar constraint equation,

bĊ0
6,12c21Z1C0

6,12 c̄21Zp1C0
6,122~a211Z1c21!C0

6,1

5~ 5
2 b18c̄21Z1s̄2,016c21Zp1s2,022Zp1c21s2,012Z1c̄21s̄2,0!C0

5,12c21s2,0Zp1C0
5,1

1c0Z1C0
5,12 c̄21s̄2,0Z1C0

5,11 c̄0Zp1C0
5,114Z1bZp1C0

5,114s2,0Zp1bZp1C0
4,024bt2Zp1C0

4,0.

~139!

The source/sink terms in these two equations are much more complicated than those in p
sections, and hence their interpretation is not that clear cut.

Using the ideas and notation of Sec. IV A, one can splitC0
6,X into its homogeneous (C0

6,X)h

and nonhomogeneous parts (C0
6,X)p . From Eqs.~82! and~83! one finds that~as the path of the line

integrals reduces to a point!

~C0
6,X!huN0

5 f ~u,w!, ~140!

and that

~C0
6,X!puN0

50. ~141!

The Newman–Penrose constants can be evaluated on any null hypersurface, in particularN0 ,
therefore

Qk
X5E

S2
f ~u,w!~2Ȳ2,k! dS. ~142!

The conservation ofQk
X shows that the added effect over time of the complicated source term

Eqs.~138! and ~139! cancels exactly the damping of the initial dataf (u,w).

1. Boost-rotation symmetric

The constraint equations forC0
6,0 and C0

6,1 in the case of boost-rotation symmetry spac
times are of the form

u cotu]u~C0
6,0!1]u~C0

6,0!14 cotu~C0
6,0!5HX . ~143!

For the ‘‘minimal’’ polyhomogeneous space–time the nonhomogeneous term simplifi
@recall thats2,05u22F1(u21 sinu) andC0

5,15C2 csc3 u#

H152C2 csc3 ~u! cot~u!u22F1S sinu

u D . ~144!

Finally, the homogeneous part of the solutions to the constraint equations have the form

1

u4 F3S sinu

u D . ~145!
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V. CONCLUSIONS

We have seen that if an asymptotically flat space–time—polyhomogeneous or not—
sumed to have a Killing vector field, then, using the integrability conditions of the Killing eq
tions, it is possible to obtain constraints on the different components of the Weyl tensor a
news function. These extra equations together with the evolution equations derived fro
Bianchi identities suggest the existence, in nonstationary space–times, of processes of tr
mation of multipole moments of a given kind into others of a different class. Unfortunately,
interpretation is done in terms of quantities that can only be defined rigorously for statio
spacetimes.

Newman and Penrose1 found that for a stationary space–time the Newman–Penrose cons
have the structure

~dipole!22~monopole!3~quadrupole!. ~146!

If one considers a system that initially is stationary, and later undergoes a process of gravit
radiation, finally settling down into a stationary state, one can see that the NP constants im
‘‘selection rule’’ for the class of final states achievable. The idea of transformation of mult
moments discussed above fits with this idea, as the monopole moment of the source w
radiated according to Bondi’s mass loss formula, the dipole and quadrupole moments ch
accordingly in order to preserve the value of the NP constants.
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APPENDIX A: THE SOLUTION TO THE EQUATION a5c 21ð1b1 c̄ 21ð̄1b

The functionb is of spin weight zero, hence

Z1b5
1

&
H ]

]u
2

i

sinu

]

]wJ b. ~A1!

Write c215cr1 ic i . Then we see that

c21Z1b1 c̄21Zp1b5&S cr

]b

]u
1

ci

sinu

]b

]w D , ~A2!

hence the partial differential equation to be solved is

a5&S cr

]b

]u
1

ci

sinu

]b

]w D . ~A3!

Recall that botha andb can be expanded in terms of spherical harmonics as

a5(
l

(
m

a lmYlm , ~A4!
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b5(
l

(
m

b lmYlm . ~A5!

Now, the right-hand side of Eq.~A3! can also be expanded in terms of spin zero spher
harmonics as

(
L

(
M

f LM~Am ,b lm!YLM , ~A6!

where f LM is linear in theb lm . This gives rise to the following infinite set of linear equations
b lm :

aLM5 f LM~Am ,b lm!, ~A7!

which in principle can be solved to any desired order, yielding a solution to the equation~A3!.

APPENDIX B: THE SOLUTION TO THE EQUATION u cot uux1ux1k cot ux5H„u,u…

It is not very complicated to find the solution to the initial value problem

u cotu
]x

]u
1

]x

]u
1k cotux5H~u,u!, ~B1!

with initial data

x~1,u!5F~u!. ~B2!

The associated system of ordinary differential equations is

du

dh
5u cotu, ~B3!

du

dh
51, ~B4!

dx

dh
52k cotx1H~u,u!, ~B5!

with initial data

u~0!51, ~B6!

u~0!5j, ~B7!

x~0!5F~j!. ~B8!

Equation~B4! gives

u5j1h, ~B9!

and so we can solve now Eq.~B3! yielding

u5
1

sinj
sin~h1j!. ~B10!

Therefore, the characteristics of the differential equation are given by
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u5
1

sinj
sinu. ~B11!

It will be necessary to invert this last expression in order to havej as a function ofu andu. The
range of u is in principle @0,p#. There will be problems with the invertibility wheneveru
5sinu. The solution will break down there. This comes from the fact that the polar coordinate~u,
w! are not good coordinates for the sphere, and several coordinate patches are needed to

Equation~B5! is more involved:

dx

dh
52k cot~j1h!x1HS 1

sinj
sin~h1j!,j1h D . ~B12!

The solution to the homogeneous equation can be obtained directly by integration,

xh5
1

uk FS sinu

u D , ~B13!

while the particular solution to the nonhomogeneous equation is given in an integral form:

xp5csck~h1j!E
0

h
HS sin~ t1j!

sinj
,t1j D sink ~ t1j! dt. ~B14!

Then the solution to the differential equation is

x~u,u!5
1

uk FS sinu

u D1csck ~u!F E
0

u2j

HS sin~ t1j!

sinj
,t1j D sink ~ t1j! dtG

j5arcsin~sin u/u!

.

~B15!

The key to interpreting the solution~B15! is to regard Eq.~B1! as a continuity equation
completely analogous to ther ,t1¹•J5Sourcecontinuity equation of fluid mechanics. The term
u cotu]ux1]ux correspond to the time derivative plus divergence bit of the continuity equa
while the k cotu x term is a damping term due to the interaction of the gravitational field w
itself ~note that the constantk gives rise in the solution to a 1/uk term that diminishes the
amplitude of the initial data. Finally, the functionH works like a source/sink term.

APPENDIX C: THE ORBITS ON THE SPHERE OF THE KILLING VECTOR FIELDS

As seen in Sec. IV, the restriction of the Killing vector field toI is given by

jmuI 5S 2a21u1a,2
1

&
~ c̄211c21!,2

i cscu

&
~ c̄212c2!D . ~C1!

The integral curves of this vector field inI can be conveniently visualized as curves on the u
sphere parameterized by the retarded timeu. The structure of this Killing vector field is not ver
complicated, depending only on three spherical harmonics. Therefore, it is quite tempt
attempt a study of these orbits.

Throughout this article, we have been using the angular coordinates~u,w! on the cuts ofI ;
however the study of the orbits is more easily done using the stereographic coordinaz

5cot 1
2 ueiu), and working on the complex plane plus the point at infinity. The1Y1,m spherical

harmonics in stereographic coordinates are given by18

1Y1,152A 3

4p

z2

11zz̄
, ~C2!
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1Y1,052A 3

2p

z

11zz̄
, ~C3!

1Y1,2152A 3

4p

1

11zz̄
. ~C4!

Now, the critical points of the vector field correspond to the points on the sphere~complex plane!
where c2150. Using the spin-weighted spherical harmonics in spherical coordinates one
prove the following lemma.

Lemma 3: The restriction of a Killing vector field of an asymptotically flat space–time toI

vanishes at most in two points of the sphere (and at least in one).
The result follows, noting that ifc2150, then one has

A1z21A0z1A2150, ~C5!

a second degree equation inC. From the fundamental theorem of algebra, one knows that
equation has two roots.

The vector field will vanish at least in one point, so without loss of generality one can se
point to be the origin of the complex plane~the north pole of the sphere! and the other root~if
present! to lie on the real axis. Hence, one can write

c̄215eiv
az21bz

11zz̄
. ~C6!

Let z5x1 iy . Then

Rec̄215
„a~x22y2!1bx… cosv2~2axy1by!sinv

11x21y2 , ~C7!

FIG. 1. Spiral orbits on the complex plane and on the sphere.
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Im c̄215
„a~x22y2!1bx… sinv1~2axy1by!cosv

11x21y2 , ~C8!

and the orbits on the complex plane are given by

dy

dx
5

Im c̄21

Rec̄21
5

„a~x22y2!1bx… sinv1~2axy1by!cosv

„a~x22y2!1bx… cosv2~2axy1by!sinv
. ~C9!

There is no integrating factor for this equation for an arbitraryv; however, the form of the
orbits can be found readily by noting that they will have horizontal tangent at the ‘‘rota
hyperbola

a sinvx212a cosvxy2a sinvy21b sinv1b cosvy50, ~C10!

and vertical tangency at another hyperbola

a cosvx222a sinvxy2a cosvy21b cosvx2b sinvy50. ~C11!

These two curves intersect by construction only at~0, 0! and (2b/a,0) ~the critical points!. If
vÞ0, p/2, p, or 3p/2, then none of the hyperbolae are degenerate~i.e., they are not intersecting
lines!. The degenerate cases will be studied separately. Linearizing the differential equatio~C9!
around the origin, one obtains~if bÞ0)

dy

dx
5

sinvx1cosvy

cosvx2sinvy
. ~C12!

The solution of this equation is the logarithmic spiral~see Fig. 1!

x21y25Ce2 cotv arctan~y/x!. ~C13!

FIG. 2. ‘‘Electric dipole’’-like orbits on the complex plane and on the sphere.
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A similar result follows when linearizing around (2b/a,0). Therefore, ifa and b are different
from zero andvÞ0, p/2, p, or 3p/2, then the orbits spiral around~0, 0! and (2b/a,0).

In the case thatv50, p, then the differential equation for the orbits~C9! can be readily
solved, yielding

S x1
b

2aD 2

1S y2
C

2aD 2

5S C

2aD 2

1S b

2aD 2

. ~C14!

That is, the orbits are circles that intersect each other in the points~0, 0! and (2b/a,0) ~see
Fig. 2!.

Now, if a, bÞ0 andv5p/2, 3p/2, then the orbits are nonintersecting circles whose cen
lie on thex axis, and have a reflection symmetry along the linex52b/2a.

If b50, then the two critical points coincide, and one obtains a family of tangent circles a
origin. The anglev yields the orientation of the family~see Fig. 3!.

If a50, then one of the critical points is at the origin~north pole!, and the other at infinity
~south pole!. The generic orbit (vÞ0, p/2, p, 3p/2) is the logarithmic spiral described by Eq
~C13!. If v50, p, then one obtains lines that intersect at the origin and at infinity,

y5Cx. ~C15!

However, ifv5p/2, 3p/2, then the orbits are concentric circles~see Fig. 4!.
The previous discussion gives a complete classification of asymptotically flat space–

with one Killing vector field in terms of their orbits atI . The results are collected in the followin
proposition:

Proposition 2: Let M be an asymptotically flat space–time with completeI and one non-
supertranslational Killing vector field. Then the orbits of the restriction of the Killing field toI

(jmuI ) regarded as curves on S2 parameterized by u satisfy one of the following:

~1! There are two critical points, and the orbits spiral around them.

FIG. 3. Orbits with a single point on the complex plane and on the sphere.
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~2! There are two critical points, and the orbits connect the two points (‘‘electric dipole’’ str
ture).

~3! There are two critical points, and the orbits are periodic around them.
~4! There is one critical point, and the orbits are closed curves tangent at them.

Observe that the critical points are not necessarily antipodes~i.e., located at opposite points on th
sphere!.

APPENDIX D: SOME SPHERICAL HARMONICS

1. Spin weight 0

0Y0,05
1

A4p
, ~D1!

0Y1,152A 3

8p
sinueiw, ~D2!

0Y1,05A 3

4p
cosu, ~D3!

0Y1,215A 3

8p
sinue2 iw. ~D4!

FIG. 4. Periodic orbits on the complex plane and on the sphere.
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2. Spin weight 1

1Y1,15A 3

16p
~cosu11!eiw, ~D5!

1Y1,05A 3

8p
sinu, ~D6!

1Y1,2152A 3

16p
~cosu21!e2 iw. ~D7!

3. Spin weight 2

2Y2,253A 5

96p
~11cosu!2e2iw, ~D8!

2Y2,153A 5

24p
sinu~11cosu!eiw, ~D9!

2Y2,05
3

2
A 5

4p
sin2 u, ~D10!

2Y2,2153A 5

24p
sinu~12cosu!e2 iw, ~D11!

2Y2,2253A 5

96p
~12cosu!2e22iw. ~D12!
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17J. Bičák and A. Pravdova´, J. Math. Phys.39, 6011~1998!.
18J. Stewart,Advanced General Relativity~Cambridge U.P., Cambridge, 1991!.
19R. Penrose and W. Rindler,Spinors and Spacetime 1: Two-Spinor Calculus and Relativistic Fields~Cambridge U.P.,

Cambridge, 1983!.
20J. Kánnár, Proc. R. Soc. London, Ser. A452, 945 ~1996!.
21R. Geroch, A. Held, and R. Penrose, J. Math. Phys.14, 874 ~1973!.
22C. Kolassis and G. Ludwig, Gen. Relativ. Gravit.25, 625 ~1993!.
23C. D. Collinson and D. C. French, J. Math. Phys.8, 701 ~1967!.
24A. Ashtekar and B. C. Xanthopolous, J. Math. Phys.19, 2216~1978!.
25A. Ashtekar and B. G. Schmidt, J. Math. Phys.21, 862 ~1980!.
                                                                                                                



923J. Math. Phys., Vol. 41, No. 2, February 2000 Killing vectors and NP constants

                    
26R. O. Hansen, J. Math. Phys.15, 46 ~1974!.
27P. K. Kundu, J. Math. Phys.29, 1866~1988!.
28T. Dray and M. Streubel, Class. Quantum Grav.1, 15 ~1984!.
29R. Penrose, Proc. R. Soc. London, Ser. A381, 53 ~1982!.
                                                                                                                



f
ntial of
e

d an
uclid-

.

f. 4

ec. II

e-
elike

f the
Regge
imilar
y be
ntum

el for

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 2 FEBRUARY 2000

                    
Semiclassical limits of extended Racah coefficients
Stefan Davidsa)
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Nottingham NG7 2RD, United Kingdom
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We explore the geometry and asymptotics of extended Racah coefficients. The
extension is shown to have a simple relationship to the Racah coefficients for the
positive discrete unitary representation series of SU~1,1! which is explicitly de-
fined. Moreover, it is found that this extension may be geometrically identified with
two types of Lorentzian tetrahedra for which all the faces are timelike. The
asymptotic formulas derived for the extension are found to have a similar form to
the standard Ponzano–Regge asymptotic formulas for the SU~2! 6 j symbol and so
should be viable for use in a state sum for three dimensional Lorentzian quantum
gravity. © 2000 American Institute of Physics.@S0022-2488~00!00402-3#

I. INTRODUCTION

It is widely believed that the Ponzano–Regge state sum model for the group SU~2!1 is
equivalent to (211) Euclidean quantum gravity with zero cosmological constant.2 The state sum
is defined in terms of the 6j symbols, or Racah coefficients, of SU~2!, one for each tetrahedron o
the triangulation. The equivalence to quantum gravity arises when one recovers the expone
the Regge action of a tetrahedron from each 6j symbol in a suitable asymptotic limit. Thus w
have the equivalence principle discussed in Ref. 3.

There is a deeply unsatisfactory property of this state sum arising from the use of SU~2!. This,
as the double cover of SO~3!, indicates a Euclidean theory. As a possible consequence we fin
inversion of the usual relationship between the Euclidean and Lorentzian actions; thus the E
ean tetrahedra have an oscillatory action, while Lorentzian tetrahedra exponentially decay

In this paper we shall attempt to remedy this by a different choice of group; namely SU~1,1!
since this is the double cover of the three-dimensional Lorentz group SO~2,1!. In Sec. II an
extension to the SU~2! 6 j symbol is explicitly defined using the extended symmetries of Re
and shown to satisfy the orthogonality relation. The definition of the SU~1,1! 6 j symbol is given
in Sec. III for the positive discrete unitary series, by analogy to the SU~2! case, as well as an
explicit formula. It is shown to have a very simple relationship to the extension defined in S
and to satisfy a Biedenharn–Elliot type relation.

In Sec. IV the geometry determined by the extension of the 6j symbol ~or, in view of the
results of Sec. III, the SU~1,1! 6 j symbol! is explored in some detail. They are found to corr
spond to Lorentzian tetrahedra with timelike faces; the edges may be all spacelike or all tim
depending on the sign of the Cayley determinant. Finally, in Sec. V, the asymptotics o
exentension, corresponding to both types of tetrahedra, are derived using the Ponzano–1

formula and the results of Sec. II and IV. The two asymptotic formulas are found to have a s
form to the known SU~2! asymptotic formulas found by Ponzano and Regge and so ma
interpreted as a probability arising from a path integral for three-dimensional Lorentzian qua
gravity.

It is intended to pursue these ideas in a future work and develop a full state sum mod
three-dimensional Lorentzian quantum gravity.

a!Electronic mail: smd@maths.nott.ac.uk
9240022-2488/2000/41(2)/924/20/$17.00 © 2000 American Institute of Physics
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II. EXTENSIONS OF 6j SYMBOLS

In Refs. 4 and 5, the symmetries of 3j and 6j coefficients were extended beyond the us
symmetries, which respect the triangle inequality, to a new domain, which satisfies an antitr
inequality. The extension of the 6j symbol is related to the 6j symbol for the positive discrete
unitary representation series of SU~1,1!.

To be more precise, the extension of the 3j symbol discussed in Ref. 5 corresponds, within
phase, to the explicated calculated 3j symbol for the coupling of two elements of the discre
series of SU~1,1! given in Ref. 6. For the 6j symbol, the regions associated with the extension
antitriangle inequalities, discussed in Ref. 4, have been conjectured to be related to the 6j symbol
for the discrete unitary representation series of SU~1,1!. The precise relationship will be derived i
Sec. III.

In this section we shall explicitly compute a transformation of the 6j symbol to the region
conjectured to be associated to these discrete unitary representations using the symmetrie
4. We start with some definitions.

Definition 1: We shall use the symbolud e f
a b cuSU~2! to denote an ordered set of real numbe

numbers for which the ordered sets of real numbersuabcuSU~2! , ucdeuSU~2! , ua f euSU~2! , and
ubd fuSU~2! each satisfy mutual triangle inequalities (that is, 6a6b6c>0, where two plus signs
are chosen). We shall use the symbolud e f

a b cuSU~1,1! in a similar way, but hereuabcuSU~1,1! , etc.
satisfy c>a1b11, a<b1c, and b<a1c instead of mutual triangle inequalities. Both wi
satisfy the sum of the three elements being at least21. For the symbolsuabcuSU~2! , etc., this last
condition is redundant since one can show that the mutual triangle inequalities imply the
negativity of a, b, and c

Definition 2: The6 j symbol defines a map

R6→R

given by

Ua b c

d e f
U

SU~2!

°H a b c

d e fJ
SU~2!

,

while what we shall call the extension defines another mapR6→R given by

Ua b c

d e f
U

SU~1,1!

°H a b c

d e fJ
ext

.

The details of these two maps will be given later.
Definition 3: Define a map S:R6→R6,

a5 1
2 ~a81b82d81e8!, ~1!

b5 1
2 ~2a82b82d81e8!21, ~2!

c5c8, ~3!

d5 1
2 ~2a81b81d81e8!, ~4!

e5 1
2 ~a82b81d81e8!, ~5!

f 5 f 8. ~6!

It should be noted that if one shifts all the values of the variables by1 1
2 then this transformation

is an orthogonal linear map. The inverses to Eqs. (1)–(6) are
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a85 1
2 ~a2b2d1e21!, ~7!

b85 1
2 ~a2b1d2e21!, ~8!

c85c, ~9!

d85 1
2 ~2a2b1d1e21!, ~10!

e85 1
2 ~a1b1d1e11!, ~11!

f 85 f . ~12!

Proposition 4: For S defined in definition 3 we have

S:Ua8 b8 c8

d8 e8 f 8
U

SU~1,1!

→Ua b c

d e f
U

SU~2!

. ~13!

To prove this, consider the map acting on the ordered setsuabcuSU~2! associated withud e f
a b cuSU~2! .

We find

a1b2c5e82d82c821, ~14!

a2b1c5a81b81c811, ~15!

2a1b1c52a82b81c821, ~16!

a1b1c115e82d81c8, ~17!

c1d2e5c81b82a8, ~18!

c2d1e5a82b81c8, ~19!

2c1d1e5d81e82c8, ~20!

c1d1e115e81d81c811. ~21!

One should note that Eqs.~14!–~21! specify a transformation of five of the six variables amon
themselves. Geometrically we may associate triangles, for some choice of metric, to each
uabcu and can, thus, show the above equations graphically in Fig. 1, where the left-hand s
embedded into a space with a Minkowski signature metric and the edges are regarded as t
vectors. We shall discuss the geometry in more detail in Sec. IV.

Eight similar equations may be derived connectinga,b,d,e,fanda8,b8,d8,e8, f 8 to which may
be associated a very similar geometry to Fig. 1. Heref 5 f 8 is the shared edge.

FIG. 1. A graphic representation of Eqs.~14!–~21!.
                                                                                                                



p

res
that a

ign

tions of

927J. Math. Phys., Vol. 41, No. 2, February 2000 Semiclassical limits of extended Racah . . .

                    
The left-hand side of Eqs.~14!–~21!, and the analogous equations connectinga,b,d,e,fto
a8,b8,d8,e8, f 8, being positive is equivalent to the symbolud e f

a b c uSU~2! being defined, while posi-

tivity of the right-hand side is equivalent to the symbolud8 e8 f 8
a8 b8 c8 uSU~1,1! being defined. So the ma

is well defined and by definition the following antitriangle inequalities are enforced:

c8>a81b811, ~22!

e8>d81c811, ~23!

e8>a81 f 811, ~24!

f 8>b81d811. ~25!

We may also define the extension$d8 e8 f 8
a8b8 c8 %ext of the SU~2! 6 j symbol to the antitriangle inequality

domain via the mapS.
Definition 5:

H a8 b8 c8

d8 e8 f 8J
ext

ªH a b c

d e fJ
SU~2!

, ~26!

where

H a b c

d e fJ
SU~2!

5D~abc!D~cde!D~bd f !D~ae f !

3(
n

~21!n~n11!!

~n2a2b2c!! ~n2c2d2e!! ~n2b2d2 f !! ~n2a2e2 f !!

3
1

~a1b1d1e2n!! ~a1c1d1 f 2n!! ~b1c1e1 f 2n!!
, ~27!

where

D~abc!5A~a1b2c!! ~a2b1c!! ~2a1b1c!!

~a1b1c11!!
.

When any of the factorials are undefined$d e f
a b c%SU~2! is defined to be zero. This requirement ensu

the sum over n is finite, restricts the indices to non-negative half-integers and ensures
1b1c, etc. are always integer.

All symmetries of the ‘‘extended’’ 6j symbol may be reduced to permutations and s
changes in certain variables.4 Thus for the 6j symbol$d e f

a b c%, we define the variables

s15a1d11, s05d2a,

s35b1e11, s25e2b,

s55c1 f 11, s45 f 2c.

Then all permutations of thesi , or sign changes of an even number of thesi , give the total
number of extended symmetries of the associated 6j symbol. The Regge symmetries,7 by which
we mean the 144 symmetries that preserve the triangle inequalities, correspond to permuta
(s0 ,s2 ,s4) or (s1 ,s3 ,s5), and sign changes of any two of (s0 ,s2 ,s4). Let ss( i )8 5si , then the
symmetry that corresponds to the mapS above is simply the following permutation,s,
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s5S 0 1 2 3 4 5

0 2 3 1 4 5D
and from Eqs.~22!–~25! it is easy to see the transformationS takes us into the region characte
ized by antitriangle inequalities, conjectured to be the 6j symbol for the discrete unitary repre
sentations of SU~1,1!.

For $d
a

e
b

f
c%SU~2!

we have the well known orthogonality relation,

(
X

~2X11!H a b X

c d pJ
SU~2!

H a b X

c d qJ
SU~2!

5dpq

$apd%SU~2!$bcp%SU~2!

2p11
. ~28!

Our notation$apd% is a ‘‘triangular delta function,’’ by which we mean it is zero when t
corresponding symboluadpu is undefined and one when the symboluapdu is defined.

By transforming everything in this equation withS, it is easy to see a similar relation holds fo
$d

a
e
b

f
c%ext

. In the latter case, however, the right-hand side will be nonzero when antitriang

equalities are satisfied by the relevant three indices. In both cases one has the geometric i
tation of two tetrahedra, glued together along two common faces, for the left-hand side
equation.

Thus we may state
Proposition 6:

(
X8

~2X811!H a8 b8 X8

c8 d8 p8
J

ext
H a8 b8 X8

c8 d8 q8
J

ext

5dp8q8

$a8p8d8%SU~1,1!$b8c8p8%SU~1,1!

2p811
.

~29!

The other crucial relation, the Biedenharn–Elliot identity, is far less straightforward to see
will be proved in Sec. III.

III. THE RACAH COEFFICIENT FOR SU „1,1…

In order to derive the Biedenharn–Elliot identity for the extension we shall derive a form
for the 6j symbol of the positive discrete unitary representation series of SU~1,1! and show
explicitly its relation to the extension of the SU~2! 6 j symbol we have defined.

We shall start with two lemmas that will be of use later.
Lemma 7:

(
n

~21!n
~x1n21!!

~z2n!! ~y1n21!!n!
5~21!z

~x21!! ~x2y!!

z! ~y1z21!! ~x2y2z!!
.

Lemma 8:

(
n

1

~x2n!! ~y1n21!! ~z2n!!n!
5

~x1y1z21!!

x!z! ~x1y21!! ~y1z21!!
.

Lemma 7 follows from Gauss’ formula for summing the2F1 hypergeometric series8

(
n

~a1n21!! ~b1n21!! ~c21!!

~a21!! ~b21!! ~c1n21!!n!
5

~c2a2b21!! ~c21!!

~c2a21!! ~c2b21!!

with a5x, b52z, c5y.
Lemma 8 follows from the addition theorem for binomial coefficients by expanding both s

of (a1b)n(a1b)m5(a1b)n1m and equating powers ofa andb.
The Lie Algebrasu~1,1! is defined by generatorsJz , J1 , andJ2 with relations
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@Jz ,J6#56J6 ,

@J2 ,J1#2Jz .

The positive discrete series is characterized by the following action of the generators o
Hilbert spacesHj with basis$u j ,m&u j ,mP 1

2 N, m> j %,

Jzu j ,m&5mu j ,m&,

J6u j ,m&56A~m6 j !~m7 j 61!u j ,m61&.

The Clebsch–Gordan coefficients are defined as follows:

u j ,m&5 (
m1 ,m2

F j 1 j 2 j

m1 m2 mG u j 1 ,m1& ^ u j 2 ,m2&. ~30!

A specific formula may be derived by adapting the analysis of Ref. 9 to theq51 case. It is found
to be

F j 1 j 2 j

m1 m2 mG
5dm11m21m~21!m12 j 1D~ j 1 j 2 j !

3A~2 j 21!~m2 j !! ~m12 j 1!! ~m22 j 2!! ~m11 j 121!! ~m21 j 221!!

~m1 j 21!!

3(
z

~21!z

z! ~m2 j 2z!! ~m12 j 12z!! ~m11 j 12z21!! ~ j 2 j 22m11z!! ~ j 1 j 22m11z21!!

~31!

where

D~ j 1 j 2 j !5A~ j 2 j 12 j 2!! ~ j 2 j 11 j 221!! ~ j 1 j 12 j 221!! ~ j 1 j 11 j 222!!.

For SU~2! one defines the Racah coefficients via the recoupling identity

~32!

where each trivalent vertex is a graphical representation of a Clebsch–Gordan coefficient

~33!
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In terms of the Clebsch–Gordan coefficients for SU~2!, the recoupling identity may be written

(
j 12f12

~21! j 11 j 21 j 31 jA~2 j 1211!~2 j 2311!H j 1 j 2 j 12

j 3 j j 23
J

SU~2!

F j 1 j 2 j 12

f1 f2 f12
G

SU~2!

3F j 12 j 3 j

f12 f3 fG
SU~2!

5(
f23

F j 2 j 3 j 23

f2 f3 f23
G

SU~2!

F j 1 j 23 j

f1 f23 fG
SU~2!

, ~34!

where @f1

j 1
f2

j 2
f12

j 12 #SU~2! are the Clebsch–Gordan coefficients for the coupling of two unitary i

ducible representation of SU~2!. In analogy with the SU~2! case, the equivalent relation for th
SU~1,1! Clebsch–Gordan coefficients for the positive discrete series will be taken as the defi
of the Racah coefficient of this series. However for the SU~1,1! case the factor
A(2 j 1211)(2j 2311) will be replaced by a factorA(2 j 1221)(2j 2321). This to due to the fact
that the formula for the SU~2! Clebsch–Gordan coefficient has a factorA2 j 11 ~see, for instance
Ref. 10!, whereas that for the SU~1,1! Clebsch–Gordan coefficient has a factorA2 j 21 as in Eq.
~31!.

One should note that the Clebsch–Gordan coefficient in Eq.~31! is normalized in the sens
that

(
m1

F j 1 j 2 j

m1 m2m1 mGF j 1 j 2 j

m1 m2m1 mG51. ~35!

This relation may be used to bring the defining relation for the Racah coefficient into the follo
form:

A~2c21!~2 f 21!~21!a1b1d1eH a b c

d e fJ
SU~1,1!

F a f e

a f a1 f G
5(

b
F a b c

a b a1bGF c d e

a1b f 2b a1 f GF b d f

b f 2b f G . ~36!

Substitution of Eq.~31! into Eq. ~36! gives the following:

H a b c

d e fJ
SU~1,1!

5~21!a1b1d1e
D~abc!D~bd f !D~cde!

D~a f e!

3~e2a2 f !! ~e1a2 f 21!! ~ f 1a2e!!I~a!, ~37!

where

I~a!5(
btu

~21! t1u~a1b2c!!

t! ~a1b2c2t !! ~c2b2a1t !! ~c1b2a1t21!! ~a2a2t !! ~a1a2t21!!

3
1

u! ~a1 f 2e2u!! ~e2d2a2b1u!! ~e1d2a2b1u21!!

3
1

~a1b2c2u!! ~a1b1c2u21!!
.

I(a) may be reduced to a single summation as follows. Introduce two new summation vari
m andn, in place ofb andu such that

u5a1b2c2n,
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b5c2a1m1n.

Then,

I~a!5(
mnt

~21! t1m~m1n!!

t! ~ t1m1n!! ~c2b2a1t !! ~c1b2a1t21!! ~a2a2t !! ~a1a2t21!!

3
1

m! ~ f 2e1a2m!! ~e1d2c212n!!n! ~2c211n!! ~e2d2c2n!!
. ~38!

The sum overm, using lemma 7, is found to be

(
m

~21!m~m1n!!

m! ~m1n2t !! ~ f 2e1a2m!!
5

~21! f 2e1an! t!

~ f 2e1a!! ~n1 f 2e1a2t !! ~ t2 f 1e2a!!

and the sum may be written as

I~a!5(
nt

~21! f 2e1a2t

~c2b2a1t !! ~c1b2a1t21!! ~a2a2t !! ~a1a2t21!! ~e1d2c212n!!

3
1

~2c211n!! ~ f 2e1a!! ~n1 f 2e1a2t !! ~ t2 f 1e2a!! ~e2d2c2n!!
. ~39!

Now, transforming withn52c2d1e2s, we may rewrite Eq.~39! as

I~a!5(
ts

~21! f 1a2t2e

~c2b2a1t !! ~c1b2a1t21!! ~a2a2t !! ~a1a2t21!! ~2d211s!!

3
1

~c2d1e212s!! ~ f 2e1a!! ~ f 2c2d2s1a2t !! ~ t2 f 1e2a!!s!
. ~40!

The sum overs, using lemma 8, is found to be

(
s

1

~2d211s!! ~c2d1e212s!! ~ f 2c2d2s1a2t !!s!

5
~c1 f 222t1a!!

~c2d1e21!! ~ f 2c2d2t1a!! ~c1d1e22!! ~ f 2c1d2t1a21!!

andI(a) is reduced to a single summation,

I~a!5(
t

~21!a2t1 f 2e~e1 f 222t1a!!

~c2b2a1t !! ~c1b2a1t21!! ~a2a2t !! ~a1a2t21!! ~ f 2e1a!!

3
1

~ t2 f 1e2a!! ~c2d1e21!! ~ f 2c2d2t1a!! ~c1d1c22!! ~ f 2c1d2t1a21!!
.

~41!

If the summation variable is rewritten asz5a2a2t and substituted into Eq.~37! we find
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H a b c

d e fJ
SU~1,1!

5
~21! f 12a1b1dD~abc!D~bd f !D~cde!~e2a2 f !! ~e1a2 f 21!!

D~a f e!~c1d1e22!! ~c2d1e21!!

3(
z

~21!z~e1 f 221a1z!!

z! ~c2b2a2z!! ~c1b2a212z!! ~e2 f 2a2z!!

3
1

~2a211z!! ~ f 2c2d1a1z!! ~ f 2c1d1a1z21!!
. ~42!

The sum may then be brought into the following, more symmetrical, form:

H a b c

d e fJ
SU~1,1!

5
~21!a1b1d2e11D~abc!D~bd f !D~cde!~e2a2 f !! ~e1a2 f 21!!

D~a f e!~c1d1e22!! ~c2d1e21!!

3(
r

~21!r~r 11!!

~c2b1e1 f 232r !! ~c1b1e1 f 242r !! ~2e232r !!

3
1

~r 1a2e2 f 12!! ~r 2a2e2 f 13!! ~r 1d2c2e13!! ~r 2a2e2 f 13!!
.

~43!

It is of interest to establish the relationship between the Racah coefficients$d
a

e
b

f
c%SU~1,1!

and the

SU~1,1! region of the extended Racah coefficients$d
a

e
b

f
c%ext

.

Theorem 9:

H a11 b11 c11

d11 e11 f 11J
SU~1,1!

5~21!a1b1d2e11H a b c

d e fJ
ext

. ~44!

The proof is simply to transform Racah’s form for the SU~2! 6 j symbol @see, for instance, Eq
~27!# via the transformationS21 given by Eqs.~7!–~12! and compare that to Eq.~43!. This settles
the claim of D’Adda, D’Auria, and Ponzano, in Ref. 4, that the extension of the SU~2! Racah
coefficient was related to the SU~1,1! Racah coefficient and demonstrates the exact relations

Since $d
a

e
b

f
c%SU~1,1!

is the associator for the monoidal category of unitary positive disc

representations, it automatically satisfies the Biedenharn–Elliot identity in view of the Pen
relation for associators of monoidal categories. Theorem 9 implies the SU~1,1! region of the
extended 6j symbol also satisfies a Biedenharn–Elliot-type relation. The Pentagon relation fo
associator of a monoidal category is shown in Fig. 2. It asserts the equivalence of the two w
moving from (Va^ (Vb^ (Vc^ Vd))) to (((Va^ Vb) ^ Vc) ^ Vd) so that the diagram is commuta
tive.

One may read off the Biedenharn–Elliot relation for the SU~1,1! Racah coefficients from Fig
2. Once the appropriate normalization and phase, from the SU~1,1! version of the graphica
recoupling relation in Eq.~32!, is inserted for each 6j symbol the following may be derived:

Proposition 10 (Biedenharn–Elliot relation for SU~1,1!!:

(
X

~21!R~2X21!H b c X

d f eJ
SU~1,1!

H a X q

d r f J
SU~1,1!

H a b p

c q XJ
SU~1,1!

5H a b p

e r f J
SU~1,1!

H p c q

d r eJ
SU~1,1!

, ~45!

where R5a1b1c1d1e1 f 1p1q1r 1X.
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If one adopts the same geometric interpretation of 6j symbols being tetrahedra, as in th
SU~2! case, then this equation has the geometric interpretation of three tetrahedra glued a
common edge~labeled byX! being transformed into two tetrahedra glued along a common
~labeled bye, r, andp!. The exact geometric interpretation of each SU~1,1! 6 j symbol is discussed
in Sec. IV.

IV. GEOMETRY

We wish to explore the geometry of the extended 6j symbols for the SU~1,1! region. It is
known ~see Refs. 1 and 11! that the symbolud

a
e
b

f
cuSU~2!

may be identified with a Euclidean, o

spacelike Lorentzian, tetrahedron with edge lengths equal toj 125a1 1
2, etc. Here a spacelike

Lorentzian tetrahedra is one for which all faces and all edges are spacelike. We shall deno
a tetrahedron byT( j 12, j 13, j 14, j 34, j 24, j 23), and omit the edge lengths when these are not
evant. We shall also use subscripts, SU~2! and SU~1,1!, to indicate the region the tetrahedron
associated with when confusion can arise. Note that we shall impose the requirement that th
lengths in the symbolT be positive for the SU~1,1! case since whilej 12, j 13, etc. are always
positive for TSU~2! the same cannot be said forTSU~1,1! . An easy counterexample is gained b
mapping a regular tetrahedron to the SU~1,1! domain with Eqs.~7!–~12!. So this assumption is
necessary.

To fix notation we shall denote the length of the edge (h,k), formed by deleting thehth and
kth vertex~see Fig. 3!, as j hk . The areaAh denotes the area of the face,Th , obtained by deleting
the hth vertex from the tetrahedron. It is clear we may associate a geometric triangle,T, to each
symbol uabcu.

We shall denote byuhk the ~exterior! dihedral angle on the edge~h,k! between the two
outward normals of the facesTh andTk . In Euclidean space these are always bone fide real an
for Lorentzian space the situation is more subtle since the ‘‘angles’’ can turn out to be com
This situation has been analyzed in some detail in Ref. 11 and we shall say more about this
IV B.

Associated with eachT is a number,V2, given by the Cayley determinant which defines t
volume squared of the tetrahedron,

FIG. 2. The pentagon relation.
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V25
1

23~3! !2U 0 j 34
2 j 24

2 j 23
2 1

j 34
2 0 j 14

2 j 13
2 1

j 24
2 j 14

2 0 j 12
2 1

j 23
2 j 13

2 j 12
2 0 1

1 1 1 1 0

U . ~46!

TSU~2! is Euclidean if, and only if, the Cayley determinant is positive and Minkowskian when
negative. For edge lengths that are positive half-integers the Cayley determinant cannot v

For TSU~1,1! we claim that it may be identified with a tetrahedron whose faces are timelike
edges are either all spacelike or all timelike. These timelike triangles have one ‘‘long’’ side
two ‘‘short’’ sides. As such they obey antitriangle inequalities along the lines of

c>a1b,

wherec is the ‘‘long’’ side. The normals to such triangles are spacelike, and the triangles po
two interior ‘‘angles,’’ which are complex and may thus be identified with Lorentzian boosts
Ref. 11~opposite the ‘‘a’’ and ‘‘b’’ sides!, with the third interior angle being undefined. This thi
angle is undefined since if the edges are timelike it would involve boosting from the future
cone to the past light cone, which cannot be done, while if the edges are spacelike it in
boosting through either the past, or future, light cone. There is also one exterior ‘‘angle’’~for the
vertex opposite the ‘‘c’’ side! which may, again, be identified with a Lorentzian boost. The a
squared defined byA25 1

16 (a1b1c)(a1b2c)(a2b1c)(2a1b1c) is negative. The area, a
in the triangle inequality case, may be defined by taking the square root of the area squared,
A5 iAuA2u.

Equations~22!–~25! specify how to fit four such timelike triangles together. The result
object has one ‘‘super long’’ edge (j 24), two ‘‘long’’ edges (j 14 and j 23), and the remaining three
are ‘‘short’’ edges. An embedding of such an object into Minkowski space is shown in Fig.

Figure 3 is the general form for such a tetrahedron. If the edges are timelike there mus
strict time ordering~up to time reversal! of the vertices. Once we have choosen such an orde
~say 1,2,4,3 from future to past, where our choice of numbering comes from attempting to
serve conventions with Ref. 1! the ‘‘super long’’ edge connects vertex 1 to vertex 3, the two lo
edges connect vertex 1 to vertex 4 and vertex 2 to vertex 3, and the remaining vertic
connected by short edges.

FIG. 3. A Lorentzian tetrahedron with all edges and all faces timelike. Time increases vertically up the page
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One should note that if the symbolud e f
a b cuSU~2! has a ‘‘degenerate’’ triangle~i.e., a1b5c for

some triangleuabcu! then the corresponding tetrahedron,TSU~2! has an ‘‘almost degenerate’’ tri
angle, that isj 121 j 135 j 141

1
2. The11’s in Eqs.~22!–~25! ensure the same is true for the SU~1,1!

case.
We now state a proposition relatingTSU~1,1! andTSU~2! .
Proposition 11: Let T( j 12, j 13, j 14, j 34, j 24, j 23)SU~2! and T( j 128 , j 138 , j 148 , j 348 , j 248 , j 238 )SU~1,1! be

related by Eqs. (7)–(12).
Then the transformation preserves the Cayley determinant and the product of the asso

face areas.
Proof: Straightforward, if laborious, algebra.

There are two geometric cases to consider depending on whether the Cayley determi
positive or negative.

A. The case where V2>0

If the Cayley determinant is positive we choose an embedding ofTSU~1,1! in Lorentzian space
with metric signature~1, 2, 2! so that the timelike edges have a positive length squa
Moreover, since the normals to the faces span a spacelike plane, all the dihedral ang
defined, in contrast to the spacelike case discussed in Ref. 11.

We now wish to consider how the dihedral angles of the tetrahedra transform unde
~1!–~6! in this case. In contrast to the Regge symmetries the sum of dihedral angles time
lengths does not remain constant.

Theorem 12: Under Eqs. (1)–(6) the dihedral angles transform as

u125p2 1
2 ~u128 1u138 2u348 1u248 !, ~47!

u1352 1
2 ~2u128 2u138 2u348 1u248 !, ~48!

u145p2u148 , ~49!

u345p2 1
2 ~2u128 1u138 1u348 1u248 !, ~50!

u2452p2 1
2 ~u128 2u138 1u348 1u248 !, ~51!

u235p2u238 , ~52!

for V2.0.
The proof involves the following Euclidean trigonometric relations between dihedral an

and edge lengths,

2Crs516ArAs cosu rs rÞs, ~53!

3
2 V jrs5ArAs sinu rs rÞs, ~54!

where j rs is the shared side for the triangles whose areas are given byAr and As ,u rs is the
~exterior! dihedral angle between the outward normals to the facesTr andTs , andCrs is the~r,s!
algebraic minor of the Cayley determinant formed by deleting the row and the column comm
the ~r,s! matrix entry. Note that Eq.~54! does not distinguish exterior and interior dihedral angl
whereas Eq.~53! does.

To derive Eq.~54! for the Lorentzian case one must choose a square root of the identit

V25
4Ah

2Ak
2

9 j hk
2

sin2 uhk hÞk, ~55!
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so that the dihedral angle has the correct range, that is 0<uhk<p. Thus, since (Ah8)
2,0, we must

choose

V5
2uAh8uuAk8u

3 j hk8
sinuhk8 hÞk. ~56!

Now, since we want to use the fact that, from proposition 11,

A1A2A3A45A18A28A38A485uA18uuA28uuA38uuA48u ~57!

in the following proof, we must rewrite Eq.~53! in a similar way. Thus, forTSU~1,1! ,

2Crs8 516Ar8As8 cosu rs8 5216uAr8uuAs8ucosu rs8 516uAr8uuAs8ucos~p2u rs8 !. ~58!

Note that Eq.~58! now givesinterior dihedral angles. In the following we shall use the Euclide
formulas, Eqs.~53! and ~54!, for TSU~2! on the left-hand side of the following equations and t
Lorentzian formulas, Eqs.~56! and ~58!, for TSU~1,1! on the right-hand side of the following
equations, thus we get interior rather than exterior angles for the SU~1,1! case. To prevent con
fusion we shall denote an interior dihedral angle asūhk and so we havep2 ūhk5uhk .

We may show

sin~u121u34!5sin~ ū138 1 ū248 !, ~59!

sin~u122u34!5sin~ ū128 2 ū348 !, ~60!

sin~u131u24!5sin~ ū248 2 ū138 !, ~61!

sin~u132u24!5sin~2 ū128 2 ū348 !, ~62!

sinu145sinū148 , ~63!

sinu235sinū238 . ~64!

The proof is simple, if laborious, algebra; for instance, by using Eqs.~53!, ~54!, ~56!, ~58!, and
proposition 11. Eq.~59! may be reduced to showing

j 12C341 j 34C125 j 138 C248 1 j 248 C138 ~65!

which follows directly from algebra.
The same equations, with sines replaced by cosines, may be derived in a similar way;

conclude, since all theu i j ,u i j8 P@0,p#,

u121u345 ū138 1 ū248 , ~66!

u122u345 ū128 2 ū348 , ~67!

u131u245 ū248 2 ū138 12n1p, ~68!

u132u2452 ū128 2 ū348 12n2p, ~69!

u145 ū148 , ~70!
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u235 ū238 , ~71!

where theni51 or 0.
And hence that

u125p2 1
2 ~u128 1u138 2u348 1u248 !, ~72!

u1352p2 1
2 ~2u128 2u138 2u348 1u248 !1~n11n2!p, ~73!

u145p2u148 , ~74!

u345p2 1
2 ~2u128 1u138 1u348 1u248 !, ~75!

u245p2 1
2 ~u128 2u138 1u348 1u248 !1~n12n2!p, ~76!

u235p2u238 , ~77!

where we are now relating theexterior dihedral angles.
Now, the sum of the interior dihedral angles around any vertex for a Euclidean tetrahedr

greater thanp, while those for the top and bottom vertices of the SU~1,1! tetrahedron are less tha
p. Indeed for every vertex of a Euclidean tetrahedron one may associate a spherical triangle
interior angles correspond to the tetrahedron’s interior dihedral angles; each of the three tr
meeting at a given vertex defines a plane and the intersection of these planes with a sphere
the triangle. For aTSU~1,1! the top and bottom vertices define hyperbolic triangles via an inter
tion with hyperbolic space in much the same way.

Thus, from Eqs.~72!, ~74!, and~76!,

2p.~u121u241u14!53p2~u128 1u248 1u148 !1~n12n2!p, ~78!

where

u128 1u248 1u148 .2p.

Now consider a long thinTSU~1,1! that is on the verge of degenerating into a line. We havej 148
1 j 348 ' j 248 ' j 128 1 j 238 with u128 1u248 1u148 '2p which implies forTSU~2!j 121 j 13' j 14 and j 131 j 34

' j 23 so thatu121u241u14'2p.
Thus, in this case, we haven151 andn250. Now vary the edge lengthsj hk8 continuously.

Since the dihedral angles depend continuously on the edge lengths, the angles will vary c
ously between 0 andp. Thus, by continuity, the result holds generally; which concludes the p
of theorem 12.

B. The case where V2<0

If the Cayley determinant is negative, then we do not have the above embedding
Minkowski space. It is clear the metric has signature~1, 1, 2! or ~2, 2, 2!, but the latter, being
equivalent to an embedding into Euclidean space, cannot happen. Thus geometrically we em
a space–time with metric~1, 1, 2! and regard the edges of the tetrahedron as spacelike, w
the faces must still be timelike since they satisfy antitriangle inequalities.

If we define the dihedral angles in the same way to the previous discussion then, in both
they are complex. These complex angles will be called exterior or interior depending on wh
the defining equation gave exterior or interior dihedral angles in Sec. IV A.

The possible Lorentzian boosts that take the place of the dihedral angles in this case c
two flavors, either an interior boost is defined with no possible exterior boost, or vice versa.
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the normals to the faces and the edges are spacelike, the normals span a plane in Minkows
and there will be no exterior boost defined when two normals are separated by the lightco
similar criterion determines the existence of interior boosts.

There are only two patterns that may occur. Either one has three interior boosts, arou
face, with the remainder exterior. Here opposite edges have different flavors of boost. Or, o
two exterior boosts and four interior boosts, with opposite edges having the same flavor
should be compared to the spacelike Lorentzian case forTSU~2! ,

11 where an identical situation
arises for analogous reasons. In the following the first case will be referred to as atype 1tetra-
hedron and the second as atype 2tetrahedron for both theTSU~2! andTSU~1,1! cases.

We use the following conventions in making sense of these complex dihedral angles11 that
arise when one tries to use the Euclidean formula to define the dihedral angles.

For TSU~2! we choose an embedding into Lorentzian space–time with metric~2, 1, 1! ~so
that the sign of the Cayley determinant is preserved by the transformation!. Thus an interior
dihedral boost is given by

Uhk5cosh21~nh•nk!,

while an exterior dihedral boost is given by

Uhk52cosh21~2nh•nk!,

whereni is the outward normal to thei th triangle. In the first case the complex angleu, given by
the usual Euclidean formula, has the formuhk5p1 i Im uhk, while for the second it is purely
imaginary.

For TSU~1,1! we embed into a space–time as above. Here an exterior dihedral boost is giv

Uhk8 52cosh21~nh8•nk8!,

while the interior dihedral boost is given by

Uhk8 5cosh21~2nh8•nk8!,

since the normals are spacelike andn251 for a spacelike unit vectorn. Similarly we haveuhk8 as
pure imaginary for exterior angles, whileuhk8 5p1 i Im uhk8 for interior angles. In view of this we
make the obvious identificationUhk5Im uhk, whereUhk is a Lorentzian boost. Such a boost is
interior dihedral boost when it arises as the imaginary part of a complex angle given by the
Euclidean formula for interior angles. Otherwise it will be called an exterior dihedral boost.

We now state and prove a theorem about the transformation of these Lorentzian boos
Theorem 13: Under Eqs. (1)–(6) the boosts transform as

U1252 1
2 ~U128 1U138 2U348 1U248 !, ~79!

U1352 1
2 ~2U128 2U138 2U348 1U248 !, ~80!

U1452U148 , ~81!

U3452 1
2 ~2U128 1U138 1U348 1U248 !, ~82!

U2452 1
2 ~U128 2U138 1U348 1U248 !, ~83!

U2352U238 , ~84!

for V2,0.
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Our starting point will be the following equations relating complex exterior angles on the
to complex interior angles on the right, as in the previous case with the complex angles still
by the normal Euclidean formula:

sin~u121u34!5sin~ ū138 1 ū248 !, ~85!

sin~u122u34!5sin~ ū128 2 ū348 !, ~86!

sin~u131u24!5sin~ ū248 2 ū138 !, ~87!

sin~u132u24!5sin~2 ū128 2 ū348 !, ~88!

sin~u14!5sin~ ū148 !, ~89!

sin~u23!5sin~ ū238 !. ~90!

As before, the same equations with sine replaced by cosine are also valid. These follow
algebra using the expressions for the sine and cosine of dihedral angles as in Sec. IV A. W
then expand these using the standard trignometric formula for angle sums and discard the r
of Eqs.~85!–~90! ~which is clearly identically zero for both sides!.

Hence we are left with the following:

cos~Reu121Reu34!sinh~ Im u121Im u34!5cos~Reū138 1Reū248 !sinh~ Im ū138 1Im ū248 !, ~91!

cos~Reu122Reu34!sinh~ Im u122Im u34!5cos~Reū128 2Reū348 !sinh~ Im ū128 2Im ū348 !, ~92!

cos~Reu131Reu24!sinh~ Im u131Im u245cos~Reū248 2Reū138 !sinh~ Im ū248 2Im ū138 !, ~93!

cos~Reu132Reu24!sinh~ Im u132Im u24!5cos~2Reū128 2Reū348 !sinh~2Im ū128 2Im ū348 !, ~94!

cos~Reu14!sinh~ Im u14!5cos~Reū148 !sinh~ Im ū148 !, ~95!

cos~Reu23!sinh~ Im u23!5cos~Reū238 !sinh~ Im ū238 !. ~96!

We also gain the same equations with sinh replaced by cosh by taking the real part of the
versions of Eqs.~85!–~90!. It is clear, in the second case, that the result of the cosine must
the same sign for each side of the equations. From which we can deduce that the tetrahedr
is preserved by the transformation and derive~once we have replaced the interior complex ang
on the right-hand side by exterior complex angles!,

Im u1252 1
2 ~ Im u128 1Im u138 2Im u348 1Im u248 !, ~97!

Im u1352 1
2 ~2Im u128 2Im u138 2Im u348 1Im u248 !, ~98!

Im u1452Im u148 , ~99!

Im u3452 1
2 ~2Im u128 1Im u138 1Im u348 1Im u248 !, ~100!

Im u2452 1
2 ~ Im u128 2Im u138 1Im u348 1Im u248 !, ~101!

Im u2352Im u238 ~102!

which concludes the proof of theorem 13.
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For the transformation of the real part of the complex dihedral angle~as defined by the
Euclidean formula! we have the following result:

Theorem 14: Under Eqs. (1)–(6) the real parts of the dihedral ‘‘angles’’ transform as

Reu125p2 1
2 ~Reu128 1Reu138 2Reu348 1Reu248 !, ~103!

Reu1352 1
2 ~2Reu128 2Reu138 2Reu348 1Reu248 !, ~104!

Reu145p2Reu148 , ~105!

Reu345p2 1
2 ~2Reu128 1Reu138 1Reu348 1Reu248 !, ~106!

Reu2452p2 1
2 ~Reu128 2Reu138 1Reu348 1Reu248 !, ~107!

Reu235p2Reu238 , ~108!

for V2,0.
Indeed it is almost obvious that the real parts must transform in the same way as the d

angles for the tetrahedera with positive Cayley determinant. We argue as follows, the real p
the angles correspond to a least degenerate geometric configuration of the edges for an em
into the space in which we may legitimately embed the associated positive Cayley determ
tetrahedra.

Thus forTSU~2! , type 1 tetrahedra are characterized in Euclidean space by three of the
lying flat on one face and failing to meet at a vertex. It is clear that rotating the faces upwa
Euclidean space simply makes the configuration more degenerate. Thus the Euclidean ‘‘d
angles’’are given by the real part. The type 2 tetrahedra in this case consists of a pair of tria
lying flat on another pair of triangles in a least degenerate configuration as well. Again we fin
Euclidean ‘‘dihedral angles’’ given by the real part.

For TSU~1,1! we have an analogous situation. For instance a type 1 tetrahedron embedde
~1, 2, 2! Lorentzian space consists of three overlapping faces lying flat on one face. It is
that boosting the faces outwards makes them more degenerate since they overlap more. T
may apply theorem 12 to the real parts of the dihedral angles by regarding it as simply a
formation of two degenerate positive Cayley determinant tetrahedra to gain theorem 14
corollary.

V. ASYMPTOTICS

It is of interest to see if one can find a similar asymptotic formula to the Ponzano–R
formula for the SU~2! 6 j symbol. Their formula forV2.0, from Ref. 1, is

H a b c

d e fJ ;
1

A12pV
cosS (

h,k54

4

j hkuhk1
p

4 D , ~109!

whereuhk is defined as previously andV is the volume. There has never been a direct proof of
validity of this formula but a formula asymptotic to equation 109 has been proven in Refs. 1
13, and numerical results give a good indication of its validity. Indeed we have plotted
values in Fig. 4, which gives a clear cosine shape.

For the SU~1,1! extension we have been considering, one may, subject to the validity o
~109!, derive the following:

Proposition 15:

H a b c

d e fJ ;
1

A12pV
~21! j 128 1 j 148 1 j 348 12 j 248 1 j 238 cosS (

h,k54

4

j hk8 uhk8 2
p

4 D ~110!
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for V2.0.
In view of theorem 12, one should consider how the quantity(h,k50

4 j hkuhk transforms under
Eqs. ~7!–~12!. Using Eqs.~47!–~52! and the orthogonality of the transformation fromTSU~2! to
TSU~1,1! given by Eqs.~7!–~12!, it is easy to show that, forV2.0,

(
h,k50

4

j hkuhk52 (
h,k50

4

j hk8 uhk8 1~ j 128 1 j 148 1 j 348 12 j 248 1 j 238 !p. ~111!

This, since opposite edge lengths in the tetrahedron always sum to integers, completes th
We show the validity of this result in Fig. 5. One might be concerned by the regions tha

off more steeply than a cosine in the figure, however numerical results indicate that the tetr
in these regions have at least one face that is reasonably close to being degenerate, and as
might expect the above asymptotic formula to be a worse approximation here.

FIG. 4. A plot of (h,k50
4 j hkuhk ~x-axis! vs A12pV$6 j % ~y-axis!, whereuhk is defined as previously andV is the volume.

There has never been a direct proof of the validity of this formula but a formula asymptotic to equation 109 ha
proven in Refs. 12 and 13 and numerical results give a good indication of its validity. Indeed we have plotted some
in Fig. 4, which gives a clear cosine shape.

FIG. 5. A plot of 2(h,k50
4 j hk8 uhk8 1( j 128 1 j 148 1 j 348 12 j 248 1 j 238 )p ~x-axis! vs A12pV$6 j % ~y-axis!.
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One should note the phase factor in front of the cosine. As mentioned previously, the an
transformation for the SU~2! 3 j symbol only gives the 3j symbol for SU~1,1! up to a phase factor
Thus we would expect something similar to happen for the transformation of the 6j symbols.

For the caseV2,0 Ponzano and Regge’s exponentially decaying asymptotic formula fo
SU~2! 6 j symbol is

H a b c

d e fJ ;
1

2A12puVu
cosf expS 2U (

h,k50

4

j hk Im uhkU D , ~112!

where

cosf5~21!(~ j hk2
1
2!mhk ~113!

andmhk is 1 if uhk is an interior angle, and 0 otherwise.
There has been no proof of the validity of this formula, although numerical results pro

substantial agreement. Assuming its validity we may derive the following for the SU~1,1! exten-
sion:

Proposition 16:

H a b c

d e fJ ;
1

2A12puVu
cosf8 expS 2U (

h,k50

4

j hk8 Qhk8 U D ~114!

for V2,0 and f8 as in Eq. (117).
Applying theorem 13 and using the orthogonality up to sign of the transformation as b

we see

U (
h,k50

4

j hkQhkU5U (
h,k50

4

j hk8 Qhk8 U. ~115!

For the quantity

f5( S j hk2
1

2DReuhk , ~116!

FIG. 6. A plot of u(h,k50
4 j hk8 uhk8 u ~x-axis! vs (2A12puVu/cosf8$6j% ~y-axis!.
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we may use theorem 14 for the transformation of the real part and apply Eqs.~7!–~12! to the edge
lengths. The resulting transformations are orthogonal up to a shift depending on the edge
and we may derive the following:

f852(
hk

~ j hk8 2shk!Reuhk8 1~ j 128 1 j 148 1 j 348 12 j 248 1 j 238 23!p, ~117!

where

shk5H 0 for ~h,k!5~1,2!,~1,3!,~3,4!

2 1
2 for ~h,k!5~1,4!,~2,3!

21 for ~h,k!5~2,4!

. ~118!

We have plotted some values for this in Fig. 6 to show the validity of this result.
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Motivated by the classical studies on transformations of conjugate nets, we develop
the general geometric theory of transformations of their discrete analogs: the mul-
tidimensional quadrilateral lattices, i.e., latticesx:ZN→RM, N<M , whose elemen-
tary quadrilaterals are planar. Our investigation is based on the discrete analog of
the theory of the rectilinear congruences, which we also present in detail. We study,
in particular, the discrete analogs of the Laplace, Combescure, Le´vy, radial, and
fundamental transformations and their interrelations. The composition of these
transformations and their permutability is also investigated from a geometric point
of view. The deep connections between ‘‘transformations’’ and ‘‘discretizations’’
is also investigated for quadrilateral lattices. We finally interpret these results
within the ]̄ formalism. © 2000 American Institute of Physics.
@S0022-2488~99!04310-8#

I. INTRODUCTION

An interesting topic developed by distinguished geometers of the turn of the last century
theory of submanifolds equipped with conjugate systems of coordinates~conjugate nets!,1–3 i.e.,
mappingsx:RN→RM, N<M , satisfying the Laplace equations

]2x

]ui ]uj
5

1

Hi

]Hi

]uj

]x

]ui
1

1

H j

]H j

]ui

]x

]uj
, i , j 51,...,N, iÞ j , ~1.1!

whose compatibility forN.2 gives the Darboux equations

]2Hk

]ui ]uj
5

1

Hi

]Hi

]uj

]Hk

]ui
1

1

H j

]H j

]ui

]Hk

]uj
, iÞ j ÞkÞ j . ~1.2!

Imposing suitable geometric constraints on the conjugate nets, one obtains significant red
like the orthogonal systems of coordinates.4,2 It was recently shown by Zakharov and Manako5

that the Darboux equations can be solved using the]̄ method and that a suitable constraint on t

a!Electronic mail: doliwa@roma1.infn.it; doliwa@fuw.edu.pl
b!Electronic mail: santini@catania.infn.it; santini@roma1.infn.it
c!Electronic mail: manuel@dromos.fis.ucm.es
9440022-2488/2000/41(2)/944/47/$17.00 © 2000 American Institute of Physics
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associated]̄ datum allows one to solve its orthogonality reduction.6,7 These examples show onc
more the deep connections between geometry and integrability, which was observed in the
other cases.8,9

During the last years some of these results have been generalized to a discrete lev10–13

Based on a result by Sauer, which introduced the proper discrete analog of a conjugate n
surface,14 Doliwa and Santini introduced the notion of ‘‘Multidimensional Quadrilateral Lattic
~MQL!, i.e., a latticex:ZN→RM, N<M , with all its elementary quadrilaterals planar, which is t
discrete analog of a multidimensional conjugate net.15 Furthermore, they showed that the planar
constraint~which is a linear constraint! provides a way to construct the lattice uniquely, once
suitable set of initial data is given. Therefore this lattice, generated by a set of linear const
is ‘‘geometrically integrable.’’ They also found that the discrete nonlinear equations characte

the MQL had been already introduced, using the]̄ formalism, by Bogdanov and Konopelchenko16

as a natural integrable discrete analog of the Darboux equations.
Also, the orthogonality constraint has been successfully discretized. This discretization

sists in imposing that the elementary quadrilaterals of the MQL are inscribed in circles.
notion was first proposed in Refs. 17, 18 forN52, M53, as a discrete analog of surfac
parametrized by curvature lines~see also Ref. 12!; later, by Bobenko forN5M5319 and, finally,
for arbitraryN<M by Cieśliński, Doliwa, and Santini.20 These lattices are now called ‘‘Multidi
mensional Circular Lattices’’~MCL! or discrete orthogonal lattices. In Ref. 20 it was also sho
that the geometric integrability scheme for MQLs is consistent with the circularity reduction,
proving the integrability of the MCL in pure geometric terms. Soon after that, Doliwa, Mana
and Santini have proven in Ref. 21 the~analytic! integrability of the MCL generalizing to a
discrete level the method of solution, proposed in Ref. 7, for the Lame´ system and for other
reductions of the Darboux equations. More recently, Konopelchenko and Schief have obta
convenient set of equations characterizing the circular lattices inE3.22

An extensive literature exists on the classes of transformations of the conjugate nets,
provide an effective way to construct new~and more complicated! conjugate nets from given
~simple! ones. The basic classes of transformations of conjugate nets, listed for instance in
include the so-called Laplace, Combescure, Le´vy, radial, and fundamental transformations. T
transformations preserving additional geometric constraints were also extensively investiga
particular, the reduction of the fundamental transformation compatible with the orthogo
constraint is called the Ribaucour transformation.23 We finally remark that the classical transfo
mations of conjugate nets provide an interesting geometric interpretation to the basic ope
associated with the multicomponent KP hierarchy.24

Guided by Sauer’s definition of a two-dimensional~2-D! discrete conjugate net14 and by the
studies of Darboux on the Laplace transformations of two-dimensional conjugate nets,1,3 Doliwa
has found in Ref. 25 the discrete analog of the Laplace transform of a 2-D quadrilateral l
which provides the geometric interpretation of the Hirota equation26 ~discrete 2-D Toda system!.
Motivated by the general theory of transformations of conjugate nets, in this paper we m
detailed study of the geometric and analytic properties of the classes of transformations of M
These transformations turn out to be particular cases of a general algebraic formulation re
proposed by us in Ref. 27.

In order to construct the geometric theory of transformations of MQLs, one has fir
develop the discrete analog of the theory of rectilinear congruences, which we present in S
In Sec. II we also define two basic relations between quadrilateral lattices and congruencesfocal
lattices of a congruenceand lattices conjugate to a congruence. In the subsequent sections~Secs.
III–VII !, we construct and study~the discrete analog of! the Laplace, Combescure, Le´vy, adjoint
Lévy, radial, and fundamental transformations of MQLs, emphasizing the geometric signifi
of all the ingredients of these transformations and explaining the geometric steps involved
construction of a new MQL from a given one. These transformations are the natural analogs
corresponding transformations of the conjugate nets, and their definitions can be obtained fr
corresponding definitions, replacing the expressions ‘‘focal net’’ and ‘‘net conjugate to a co
ence’’ by ‘‘focal lattice’’ and ‘‘lattice conjugate to a congruence,’’ respectively. In Sec. VII,
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addition, we also give the geometric meaning of the composition of fundamental transforma
The interpretation of the Le´vy, adjoint Lévy, and Laplace transformations as geometrically d
tinguished limits of the fundamental transformation is also used to describe analytically
limits ~Sec. VIII!. In Sec. IX we show how all these transformations are particular cases o
general vectorial transformation obtained in Ref. 27. A very successful, but empirical, rule u
the literature28 to build integrable discrete analogs of integrable differential equations consis
finding the finite transformations of the differential systems and in interpreting them as integ
discretizations; the validity of this rule is confirmed as a consequence of our theory. Sectio
dedicated to the formulation of the geometric results of the paper within the]̄ formalism.

We remark that the Combescure and fundamental transformations of quadrilateral l
have been recently defined independently by Konopelchenko and Schief in Ref. 22~see Secs. IV
and VII of the present paper!; in that work they also found the discrete analog of the Ribauc
transformation.

In the rest of this introductory section, we recall the necessary results on MQLs. For d
see Refs. 15 and 27.

Consider a MQL; i.e., a mappingx: ZN→RM, N<M , with all elementary quadrilateral
planar.15 The planarity condition can be formulated in terms of the Laplace equations,

D i D jx5~TiAi j !D ix1~TjAji !D jx, iÞ j , i , j 51,...,N, ~1.3!

whereTi is the translation operator in thei direction andD i5Ti21 is the corresponding differ
ence operator, which are compatible only for the special class of dataAi j : ZN→R satisfying the
MQL equation,

DkAi j 5~TjAjk!Ai j 1~TkAk j!Aik2~TkAi j !Aik , iÞ j ÞkÞ i . ~1.4!

It is often convenient to reformulate equations~1.3! as first-order systems.15 To do so, we intro-
duce the suitably scaled tangent vectorsX i , i 51,...,N,

D ix5~TiHi !X i , ~1.5!

in such a way that thej th variation ofX i is proportional toX j only:

D jX i5~TjQi j !X j , iÞ j . ~1.6!

The compatibility condition for the system~1.6! gives the following new form of the MQL
equations,

DkQi j 5~TkQik!Qk j , iÞ j ÞkÞ i . ~1.7!

The scaling factorsHi , called the Lame´ coefficients, solve the linear equations,

D iHi j 5~TiHi !Qi j , iÞ j , ~1.8!

whose compatibility gives equations~1.7! again; moreover,

Ai j 5
D jHi

Hi
, iÞ j .

The Laplace equations~1.3! and the MQL equations~1.4! read as

D i D jx5Ti„~D jHi !Hi
21

…D ix1Tj„~D iH j !H j
21

…D jx, iÞ j , ~1.9!

D i D jHk5Ti„~D jHi !Hi
21

…D iHk1Tj„~D iH j !H j
21

…D jHk , iÞ j ÞkÞ i , ~1.10!

in terms of the Lame´ coefficients.
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In a recent paper27 we proved the following basic results.
Theorem 1.1: Let Qi j , i , j 51,...,N, iÞ j , be a solution of the MQL equations (1.7) andY i

andY i* , i 51,...,N, be solutions of the associated linear systems (1.6) and (1.8), taking valu
a linear spaceW and in its adjointW* , respectively. LetV@Y,Y* #PL(W) be a linear operator
in W defined by the compatible equations

D iV@Y,Y* #5Y i ^~TiY i* !, i 51,...,N. ~1.11!

If the potentialV is invertible, V@Y,Y* #PGL(W), then the functions

Q̂i j 5Qi j 2^Y j* uV21uY i&, i , j 51,...,N, iÞ j , ~1.12!

are new solutions of the equation (1.7), and

Ŷ i5V21Y i , i 51,...,N, ~1.13!

Ŷ i* 5Y i* V21, i 51,...,N, ~1.14!

are corresponding new solutions of the equations (1.6), (1.8). In addition,

V@Ŷ,Ŷ* #5C2V@Y,Y* #21, ~1.15!

where C is a constant operator.
Proposition 1.1: Consider a constant vector wPW and the projection operator P on an

M-dimensional subspaceV of W, then the vector functionx:ZN→V[RM, defined by

x5P~V@Y,Y* #w!, ~1.16!

defines an N-dimensional quadrilateral lattice whose Lame´ coefficients and scaled tangent vecto
are of the form

Hi5^Y i* uw&, ~1.17!

X i5P~Y i !. ~1.18!

As we shall see in the following sections, the vectorial transformations obtained in The
1.1 contain all the transformations studied in this paper as particular and/or limiting cases.

II. RECTILINEAR CONGRUENCES AND QUADRILATERAL LATTICES

It is well known that rectilinear congruences play a fundamental role in the theory of t
formations of multiconjugate systems.3 In this section we discretize the theory of congruenc
whose importance in the theory of transformations of MQLs will be evident in the follow
sections.

Study of families of lines was motivated by the theory of optics, and mathematicians
Monge, Malus, and Hamilton initiated the general theory of rays. However, it was Plu¨cker, who
first considered straight lines inR3 as points of some space; he also found a convenient wa
parametrize that space. In the second half of the 19th century, this subject was very popu
was studied, after Plu¨cker, by many distinguished geometers; to mention Klein, Lie, Bianchi,
Darboux only.29,23,1,3,30

It turns out ~see Chap. XII of Ref. 31 for more details! that, for a generic two-paramete
family of lines in R3 ~called rectilinear congruence!, there exist, roughly speaking, two surfac
~called focal surfaces of the congruence! characterized by the property that every line of t
family is tangent to both surfaces. This fact does not hold for bigger dimensions of the am
space and, by definition,a two-parameter family of straight lines inRM is called (rectilinear)
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congruence iff it has focal surfaces. One-parameter families of straight lines tangent to a curve
called developable surfaces; one can consider developable surfaces as one-dimensional co
ences. A three-parameter family of lines inR3 is sometimes also called line complex.

Our goal is to construct the theory ofN-dimensionalcongruences of straight lines within th
discrete geometry approach. In doing this, we use the idea ofconstructabilityof discrete inte-
grable geometries presented in Refs. 15, 20, and 32.

A. Congruences and their focal lattices

Definition 2.1: An N-dimensional rectilinear congruence (or, simply, congruence) is a m
ping l: ZN→L(M ) from the integer lattice to the space of lines inRM such that every two
neighboring linesl and Ti l, i 51,...,N, are coplanar.

Let us make a trivial, but important, remark: the planarity of two neighboring lines of
congruence allows for their intersection. When the lines are parallel, we consider their inters
in the hyperplane at infinity. In fact, as it was observed in Refs. 25 and 15, the quadrilateral la
should be considered within the projective geometry approach; i.e., the ambient space sh
the M-dimensional projective spacePM. Accordingly, the space of lines in the affine space mo
eled onRM should be then replaced by the space of lines inPM; that is to say, by the Grassman
nian Gr(2,M11).

One can associate with anyN-dimensional congruence in a canonical wayN lattices defined as
follows.

Definition 2.2: The ith focal latticeyi(l) of a congruencel is the lattice constructed out of th
intersection points of the linesl with Ti

21l.
In our paper we study the interplay between congruences of lines and quadrilateral la

and we shall show that the focal lattices of a ‘‘generic’’ congruence are indeed quadrilater
explain what a generic congruence is, let us consider any four lines:

l, Ti l, Tj l, Tkl, iÞ j ÞkÞ i ;

the congruence isgeneric if the linear spaceVi jk(l) generated by these lines is of the maxim
possible dimension: dimVi jk(l)54. The congruence is calledweakly genericif the linear space
Vi j (l) generated by any three linesl, Ti l, Tj l, iÞ j , is of maximal possible dimension
dimVi j (l)53.

Obviously, any generic congruence is also a weakly generic one. In our studies we
violate the genericity assumption, but wewe always assume we deal with weakly generic cong
ences.

Theorem 2.1:Focal lattices of a generic congruence are quadrilateral lattices.
Proof: The proof splits naturally into two parts. In the first part, illustrated in Fig. 1, we sh

the planarity of the elementary quadrilaterals with verticesyi , Tiyi , Tjyi , TiTjyi , wherej Þ i . In
the second part, illustrated in Fig. 2, we prove the same for the elementary quadrilateral
verticesyi , Tjyi , Tkyi , TjTkyi , where j ,kÞ i , j Þk.

FIG. 1. Planarity of (i j ) quadrilaterals.
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~i! Let us observe that the verticesyi , andTiyi are points of the linel. Similarly, the vertices
Tjyi andTiTjyi belong to the lineTj l. But the linesl andTj l are coplanar, which concludes th
first part of the proof.

~ii ! Consider the configuration of the four lines:

l, Tj l, Tkl, TjTkl,

contained in the three-dimensional spaceVjk(l), and the similar configuration of four lines:

Ti
21l, Ti

21Tj l, Ti
21Tkl, Ti

21TjTkl,

contained in a three-dimensional subspaceVjk(Ti
21l). We remark thatVi jk(Ti

21l)5Vjk(Ti
21l)

1Vjk(l).

Let us notice that corresponding lines of the two configurations have one point in com

yi5~Ti
21l!ùl, Tjyi5~Ti

21Tj l!ù~Tj l!,

Tkyi5~Ti
21Tkl!ù~Tkl!, TjTkyi5~Ti

21TjTkl!ù~TjTkl!;

these points are vertices of the quadrilateral whose planarity we would like to show. The poinyi ,
Tjyi , Tkyi define a planeVjk(yi), which is contained in both subspacesVjk(l) and Vjk(Ti

21l).
Since, for a generic congruence,

dim„Vjk~ l!ùVjk~Ti
21l!…5dimVjk~Ti

21l!1dimVjk~ l!2dimVi jk~Ti
21l!52,

then

Vjk~yi !5Vjk~ l!ùVjk~Ti
21l!,

and, therefore, alsoTjTkyiPVjk(yi); this proves the planarity of the quadrilateral under cons
eration. h

It turns out that even in the nongeneric case, if one of the focal lattices is quadrilateral
all the others are quadrilateral as well; to show it we need the following simple but basic f

FIG. 2. Planarity of (jk) quadrilaterals.
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Lemma 2.1: Consider, in the three-dimensional space, two different coplanar lines a a
and two different planespa and pb that contain the lines a and b, correspondingly: a,pa ,
b,pb . Then the common line (it exists and is unique) of the two planes contains the inters
point p of the two lines:p5(aùb)Ppaùpb ~see Fig. 3!.

Proposition 2.1: If one of the focal lattices of the congruence is quadrilateral, then the o
focal lattices are quadrilateral as well.

Proof: Let us assume that thei th focal lattice is planar. Therefore the linesa
5^Tjyi ,TjTkyi& and b5^yi ,Tkyi& intersect at p. From Lemma 2.1, the intersection lin
^Tjyj ,TjTkyj& of the planespa5^Tj l,TjTkl& andpb5^l,Tkl& passes through the pointp. Analo-
gously, also the linêTi

21Tjyj ,Ti
21TjTkyj& passes throughp. This proves the planarity of the

quadrilateralTi
21Tj$yj ,Tiyj ,Tkyj ,TiTkyj%. h

Corollary 2.1: The intersection points of the pairs of lineŝTiyi ,TiTkyi& with
^TiTjyi ,TiTjTkyi& and ^Tjyj ,TjTkyj& with ^TiTjyj ,TiTjTkyj& coincide.

B. Constructability of congruences

In this section we look at the congruences from the point of view of their constructability
recall that, in the case of quadrilateral lattices,15 given the pointsx, Tix, Tjx, Tkx in the general
position, and pointsTiTjxPVi j (x), TiTkxPVik(x), andTjTkxPVjk(x), then the pointTiTjTkx is
uniquely determined as the intersection point of the three planesVjk(Tix), Vik(Tjx), andVi j (Tkx)
in the three-dimensional spaceVi jk(x).

A similar procedure is valid also for congruences. Given the linesl, Ti l, andTj l, the admis-
sible linesTiTj l form a two-parameter space~any pair of points ofTi l andTj l may be connected
by a line!, like for the lattice case. This is actually another reason why one can view congru
of lines as dual objects to quadrilateral lattices.

In a generic situation, the ‘‘initial’’ linesl, Ti l, Tj l, Tkl, TiTj l, TiTkl, andTjTkl are contained
in the four-dimensional spaceVi jk(l). The lineTiTjTkl is therefore theuniqueline that intersects
the three linesTiTj l, TiTkl, andTjTkl @or, equivalently, the intersection line of the three spa
Vi j (Tkl), Vik(Tj l), andVjk(Ti l)#. Therefore genericity of the congruence and uniqueness of
construction are sinonimous, implying that the focal lattices are quadrilateral.

In the nongeneric case, when the linesTiTj l, TiTkl, and TjTkl are contained in a three
dimensional space, there exists a one-parameter family of lines intersecting the three give
and the construction is not unique. We remark that, in this situation, for any point of the
TjTkl, say, there exists a unique line passing through the other two linesTiTkl and TiTj l; such
family of lines forms a one-sheeted hyperboloid. Any element of this family is admissible
may not give rise to quadrilateral focal lattices.

However, in this nongeneric case, we may single out the lineTiTjTkl from the above one-
parameter family of lines by requiring that the intersection pointTiTjTkyi of TiTjTkl with the line
TjTkl belong to the planeVjk(Tiyi)5^Tiyi ,TiTjyi ,TiTkyi& or, equivalently, that thefocal lattice
yi be quadrilateral. We remark that this procedure does not depend on the focal lattice we co
~from Proposition 2.1!.

We have seen that, given anN-dimensional congruence, one can associate with itN focal

FIG. 3. The intersection point of two lines.
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~quadrilateral, in general! lattices. There is, of course, a dual picture, and one can associate w
lattice that is quadrilateralN ~tangent! congruences.

Definition 2.3: Given an N-dimensional quadrilateral latticex, its ith tangent congruence
ti(x) consists of the lines passing through the pointsx of the lattice and directed along the tange
vectorsD ix.

We remark that the planarity of the elementary quadrilaterals ofx implies that the tangen
congruence is a congruence of lines in the sense of Definition 2.1. Obviously, excluding d
erations, any congruencel can be viewed as thei th tangent congruence of itsi th focal latticeyi(l).

In the previous section we have shown that, for nongeneric congruences, the focal lattice
not be quadrilateral. However, for tangent congruences, due to Proposition 2.1, we ha
following.

Theorem 2.2:Focal lattices of tangent congruences are quadrilateral lattices.

C. Conjugacy of quadrilateral lattices and rectilinear congruences

The following mutual relation between a congruence and a quadrilateral lattice is of part
importance in our theory.

Definition 2.4: An N-dimensional quadrilateral latticex and an N-dimensional congruencel
are called conjugate ifx(n)Pl(n), for all nPZN.

In the definition of conjugate net~on a surface! conjugate to a congruence, first given b
Guichard,3 the developables of the congruence intersect the net in conjugate-parameter lin
focal nets of the congruence were excludeda priori from the definition.

In our approach, instead, we include focal lattices~and focal manifolds! in a natural way as
special limiting cases of generic lattices~manifolds! conjugate to the congruence; this observat
will be used in Sec. VIII.

We will show now that a quadrilateral lattice conjugate to a congruence may be conven
used to improve the construction of the congruence itself making it unique in the nongeneric

We first show that, for a generic congruencel, the construction of a quadrilateral latticex
conjugate to the congruence is compatible with the construction of the congruence itse
assume, for simplicity, that the points of the lattice are not the focal ones. We observe that,
three pointsx, Tix, andTjx, iÞ j , marked on the linesl, Ti l, andTj l, the pointTiTjx is then
uniquely determined as the intersection point of the planeVi j (x)5^x,Tix,Tjx& with the lineTiTj l
in the three-dimensional spaceVi j (l). In the dual picture, given the pointTiTjx, then the lineTiTj l
is the intersection line of the planes^Ti l,TiTjx& and ^Tj l,TiTjx&.

If we also give the pointTkx on Tkl, then the linesTiTkl andTjTkl allow us to find the points
TiTkx andTjTkx, and vice versa.

Now we can use the standard construction of the MQL lattice to find the eight pointsTiTjTkx
from the seven pointsx,...,TjTkx, and we can use the above presented construction of the
degenerate congruence to find the lineTiTjTkl from the seven linesl,..,TjTkl. At this point a
natural and important question arises:does the point TiTjTkx belong to the line TiTjTkl? If it does
not, then the notion of quadrilateral lattice conjugate to congruence would not be a very re
one.

To show that the answer is positive let us proceed as follows. Denote byz the unique
intersection point of the line TiTjTkl with the three-dimensional subspaceVi jk(x)
5^x,Tix,Tjx,Tkx& ~our congruence is a generic one!. Since Vjk(Tix),Vi jk(x) and
Vjk(Tix)ùTiTjTklÞB, then zPVjk(Tix). Similarly, zPVik(Tjx) and zPVi j (Tkx); which im-
plies thatz5TiTjTkx.

Remark:The above construction properties imply that, for a given generic congruen
quadrilateral lattice conjugate to it is uniquely defined, assigning its initial curves.

In the nongeneric case, we may again single out the lineTiTjTkl from the one-paramete
family of lines by the following requirement, which has been proved to hold in the gen
situation.
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~i! The line passes through the point TiTjTkx and meets the lines TiTj l, TiTkl, and TjTkl. If
such a line exists, for the construction to be the canonical one we would like also
additional conditions to be satisfied.

~ii ! The line does not depend on the particular positions of the initial pointsx, Tix, Tjx, and
Tkx.

~iii ! The new construction gives the same result as the previous one; i.e., the focal lattic
quadrilateral.

To check that the above construction is the canonical one, we first show that there e
unique line that satisfies conditions~i! and ~iii !; due to the uniqueness of the line satisfyin
condition ~iii !, the condition~ii ! will be also proven.

Assume we have pointsx,...,TjTkx satisfying the planarity conditions and belonging to t
corresponding linesl,...,TjTkl. Using the standard MQL construction, we find the pointTiTjTkx;
the pointTiTjTkyi is the intersection point of the planeVjk(Tiyi) with the lineTjTkl.

Denote byt the line passing throughTiTjTkx and TiTjTkyi ~see Fig. 4!. Our goal is to
demonstrate that the quadrilaterals$TiTkyi , TiTjTkyi , TiTkx, TiTjTkx% and $TiTjyi , TiTjTkyi ,
TiTjx, TiTjTkx% are planar; this would show that the linet meets linesTiTkl and TiTj l, which
would imply that the lineTiTjTkl5t satisfying condition~i! does exist.

Denote byt8 the intersection line of the planesVjk(x) andVjk(Tix). Obviously, the points
p15^x,Tjx&ù^Tix,TiTjx&5Vj (x)ùVj (Tix) andp25Vk(x)ùVk(Tix) belong tot8. The applica-
tion of Lemma 2.1 givesp1PVj (Tiyi) and p2PVk(Tiyi), which implies that the linet8 is con-
tained in the planeVjk(Tiyi).

Since the quadrilateral$Tkx, TkTjx, TiTkyi , TiTjTkyi% is planar then the linesVj (TiTkyi) and
Vj (Tkx) intersect in a pointq, which, according to the reasoning above, must belong to the lint8.
Since the linesVj (Tkx) and Vj (TiTkx) intersect also in a point oft8, then the pointq is the
intersection point of all the three lines. This implies that the quadrilateral$TiTkyi , TiTjTkyi ,
TiTkx, TiTjTkx% is planar. Similar reasonings show that the quadrilateral$TiTjyi , TiTjTkyi ,
TiTjx, TiTjTkx% is planar as well, which shows that the new construction of the congruen
indeed the canonical one.

The above reasoning allows us to formulate the following.
Proposition 2.2: If, for a nongeneric congruence, there exists a quadrilateral lattice conju

to it, then the focal lattices of the congruence are quadrilateral.
This result, together with Proposition 2.1, implies the following important corollary.

FIG. 4. Construction of a quadrilateral lattice conjugate to a congruence.
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Corollary 2.2: Focal lattices of congruences conjugate to quadrilateral lattices are qua
lateral lattices.

In the sequel we will need also the following result.
Proposition 2.3: Given two congruencesl1 , l2 conjugate to the same quadrilateral latticex,

then the lines defined by joining corresponding points of two focal latticesyi(l1) and yi(l2) form
a congruenceti conjugate to both focal lattices.

Proof: In Fig. 5, two congruencesl1 andl2 are represented, respectively, by dotted and das
lines. We have to prove that the linesti form a congruence. The linesti andTi

21ti are coplanar
because they belong to the plane of the two intersecting~in Ti

21x! lines Ti
21l1 andTi

21l2 .
To show that the linesti andTj

21ti , j Þ i , are coplanar, let us consider the quadrilateral w
verticesyi(l1), yi(l2), Tj

21yi(l1), andTj
21yi(l2). Due to Lemma 2.1 the lineŝyi(l1),Tj

21yi(l1)&
and ^yi(l2),Tj

21yi(l2)& intersect in the point̂ x, Tj
21x&ø^Ti

21x, Ti
21Tj

21x&, which proves the
planarity of the quadrilateral and, therefore, the coplanarity of the linesti5^yi(l2),yi(l2)& and
Tj

21ti5^Tj
21yi(l2),Tj

21yi(l2)& ~see Fig. 5!.

III. LAPLACE TRANSFORMATIONS

In Sec. II we considered congruences of lines and their focal lattices. In this section w
interested, in particular, in the relations between two focal lattices of the same congruence
relations are described by the Laplace transformations.

The Laplace transformations of conjugate nets were introduced by Darboux~see Refs. 1, 3,
and 33!. For N52 this transformation provides the geometric meaning of the transforma
~known already to Laplace! connecting solutions of two Laplace equations.

Definition 3.1 The Laplace transformLi j (x) of the quadrilateral latticex is the jth focal
lattice of its ith tangent congruence,

Li j ~x!5yj„t i~x!…. ~3.1!

In simple terms,Li j (x) is the intersection point of the line passing throughTj
21x andTj

21Tix with
the line passing throughx andTix

25 ~see Fig. 6!.
The points of the first line are of the form

p~ t !5Tj
21x1tTj

21X i , ~3.2!

which can be transformed, using~1.5! and ~1.6!, into

p~ t !5x1tX i2~H j1tQi j !Tj
21X j ; ~3.3!

FIG. 5. Two congruences conjugate to the same lattice.
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the intersection point of the two lines is therefore given by

t52
H j

Qi j
. ~3.4!

Therefore we have the following.
Proposition 3.1: The Laplace transformation of the quadrilateral latticex is given by

Li j ~x!5x2
H j

Qi j
X i5x2

1

Aji
D ix. ~3.5!

By direct calculations, one has the following.
Corollary 3.1: (i) The Laplace transformed A coefficients are of the form

Li j ~Ai j !5
Aji

TjAji
~TiAi j 11!21, ~3.6!

Li j ~Ajk!5Tj
21S TkLi j ~Ai j !

Li j ~Ai j !
~Ajk11! D21, ~3.7!

Li j ~Aik!5AjkTkS 12
Aki

Aji
D , kÞ i , j , ~3.8!

Li j ~Akl!5~Akl11!
Tk~12Aki /Aji !

~12Aki /Aji !
21, kÞ j ,i , lÞk. ~3.9!

(ii) The Lamécoefficients of the transformed lattice read as

Li j ~Hi !5
TiHi

Aji
5

H j

Qi j
, ~3.10!

Li j ~H j !5Tj
21

„H jLi j ~Ai j !…5Tj
21S Qi j D j S H j

Qi j
D D , ~3.11!

Li j ~Hk!5HkS 12
Aki

Aji
D5Hk2

Qik

Qi j
H j , kÞ i , j . ~3.12!

(iii) The tangent vectors of the new lattice read as

Li j ~X i !52D iX i1
D iQi j

Qi j
X i , ~3.13!

FIG. 6. The Laplace transformation.
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Li j ~X j !52
1

Qi j
X i , ~3.14!

Li j ~Xk!5Xk2
Qk j

Qi j
X i , kÞ i , j . ~3.15!

Finally, we remark that, apart from the identity

Li j +Lj i 5 id, ~3.16!

which follows just from the definition of the Laplace transformation~see also Ref. 25!, there are
two other identities:

Ljk+Li j 5Lik , ~3.17!

Lki+Li j 5Lk j ; ~3.18!

which follow from Corollary 2.1, or may be verified directly from the above equations.
Notice that, to construct a line of the new lattice, one needs a quadrilateral strip of th

lattice ~see Fig. 7!. Similarly, one (N21)-dimensional level of the new lattice can be construc
out of two (N21)-dimensional levels of the original lattice@i.e., out of a quadrilateral strip with
an (N21)-dimensional basis#. In fact, we may define the Laplace transform of a quadrilate
strip; this last observation will be used in the next sections.

IV. COMBESCURE TRANSFORMATIONS

In this section we study quadrilateral lattices related by parallelism of the tangent ve
Basically, we generalize to a discrete level the results about the Combescure transformat
the conjugate nets, as presented in the monograph.3 Definition 4.1 and Proposition 4.1 of Sec
IV A is also contained in Ref. 22.

A. Combescure transformations of quadrilateral lattices

Definition 4.1: A latticeC(x):ZN→RM is called the Combescure transform of (or parallel t
the quadrilateral latticex:ZN→RM if the tangent vectors of both lattices in the correspond
points are proportional:

D iC~x!5~TiCi !D ix, i 51,...,N. ~4.1!

We mention that the definition of the Combescure transformation makes use of the not
parallelism, which has an affine geometry origin and comes from fixing the hyperplan
infinity.34

The following results can be verified by direct calculation.
Proposition 4.1: (i) The proportionality factors Ci satisfy the equations

FIG. 7. The Laplace transformation of a quadrilateral.
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D jCi5Ai j Tj~Cj2Ci !, iÞ j . ~4.2!

(ii) The transformed lattice is a quadrilateral lattice with Combescure-transformed funct
of the form

C~Ai j !5Ai j

TjCj

Ci
, iÞ j ,

C~X i !5X i ,

C~Hi !5CiHi .

(iii) All the quadrilaterals with vertices$x,Tix,C(x),C(Tix)% are planar.
From the last property of Proposition 4.1, it follows that the latticesx andC~x! form a quadrilateral
strip with the N-dimensional basisx and the transversal direction given by the Combesc
transformC ~directionC!; see Fig. 8.

Therefore the recursive application of a Combescure transformation to theN-dimensional
quadrilateral latticex can be viewed as generating a new dimension~say, theN11st! of the
lattice. The corresponding data are simply

HN1151,

XN115xC ,

up to an arbitrary function ofnN11 , always present in the definition ofH andX ~see Ref. 15!.
We observe that the transversal vectorxC , given by

xC5C~x!2x, ~4.3!

satisfies the equations

D ixC5~Tis i !D ix5~Tiv i* !X i , ~4.4!

where the functionss i andv i* , i 51,...,N are given by

s i5Ci21, v i* 5~Ci21!Hi . ~4.5!

The following facts are easy to verify.
Corollary 4.1: (i) Functionsv i* satisfy the adjoint linear system (1.8).
(ii) Functionss i satisfy the equation

D js i5
D jHi

Hi
Tj~s j2s i !, iÞ j . ~4.6!

(iii) In the notation of Theorem 1.1, the vectorxC can be rewritten as

FIG. 8. The Combescure transformation.
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xC5V@X,v* #; ~4.7!

i.e., the functionxC :ZN→RM is a solution of the Laplace equation,

D i D jxC5S Ti

D jv i*

v i*
DD ixC1S Tj

D iv j*

v j*
DD jxC . ~4.8!

(iv) The latticexC is also a Combescure transform ofx.
From the above considerations we can extract the following construction of the Combe

transform, which will be used in the next sections.
Proposition 4.2: In order to construct a Combescure transform of the latticex, we

(i) find a scalar solutionv i* of the adjoint linear problem,

D jv i* 5~Tjv j* !Qji ;

(ii) the Combescure transform ofx is then given by

C~x!5x1V@X,v* #5V@X,H1v* #. ~4.9!

Given any scalar solutionf of the Laplace equation~1.3!, we define its Combescure tran
formed functionfC in terms off in the same way in whichxC follows from x:

D ifC5~Tis i !D if. ~4.10!

Equivalently, sincef defines a scalar solutionv i , i 51,...,N of the linear problem~1.6! via

D if5~TiHi !v i , ~4.11!

we have

fC5V@v,v* #. ~4.12!

B. Combescure congruences

Let us consider an important example of congruence obtained from a quadrilateral lattic
its Combescure-transformed lattice.

From Proposition 4.1~iii !, it follows that, given a pair of parallel lattices, the lines pass
throughx andC~x! define a congruence that we call Combescure congruence.

The focal lattices of this congruence can be found in the following way. Given a real fun
t:ZN→R, define a new latticey with points on the lines of the congruence,

y5x1txC ; ~4.13!

the tangent vectors of the new lattice are given by

D iy5„11Ti~s i t !…D ix1~D i t !xC . ~4.14!

When

t52
1

s i
, ~4.15!

then the line of thei th tangent vectorD iy is the line of the congruence and therefore the latti

yi5x2
1

s i
xC ~4.16!
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is the i th focal lattice of the Combescure congruence.
Corollary 4.2: All the latticesx, C~x!, yi , i 51,...,N, are conjugate to the same (Combescu

congruence.
The Combescure congruences will be used extensively throughout the paper due to t

lowing result.
Proposition 4.3: Any congruence conjugate and transversal to a quadrilateral latticex (i.e.,

not tangent to the lattice in the corresponding points) comes from a Combescure transformC~x!.
Proof: Geometrically, the construction of such a latticeC~x! is as follows. Mark on the line

l(0), 0PZN, of the congruence a pointC„x~0!… different from x~0!. The pointTiC„x(0)… is the
intersection of the lineTi l(0) with the line passing throughC„x~0!… and parallel to the line
^x(0),Tix(0)&. The compatibility of this construction, i.e.,TiTjC(x)5TjTiC(x), follows from the
fact thatTiTjC(x) is the intersection point ofTiTj l with the planê C(x),TiC(x),TjC(x)&.

Since this proposition is one of the most important in our paper, we give an altern
algebraic proof. A congruencel conjugate tox can be described by giving the vector functio
X:ZN→RM in the direction of the line of the congruence, which passes through the correspo
point x of the lattice. Our goal is to rescale the direction vector of the congruence by a functt,
such that the latticex1tX is parallel tox.

The coplanarity of the neighboring lines of the congruence implies that, ifD iXÞ0, thenD ix
can be decomposed into a linear combination ofX andD iX, i.e.,

D ixPSpan$X,D iX%. ~4.17!

This implies thatD i D jx is a linear combination ofX, D iX, D jX, andD i D jX. But since

D i D jxPSpan$D ix,D jx%,Span$X,D iX,D jX%, iÞ j , ~4.18!

then, there must exist a linear relation betweenX, D iX, D jX, andD i D jX, which can be written
in the form of the generalized Laplace equation,

D i D jX5~TiBi j !D iX1~TjBji !D jX1C~ i j !X, iÞ j . ~4.19!

The compatibility condition between~4.19! implies the existence of the logarithmic potentialsFi

~see also the discussion in Ref. 15!, such that

Bi j 5
D jFi

Fi
, iÞ j . ~4.20!

Let us consider functionsl i : ZN→R that describe the focal latticesyi of the congruence in term
of the reference latticex and of the direction vectorsX,

yi5x2l iX; ~4.21!

note that, due to the transversality of the congruence, the functionsl i never vanish. Sinceyi are
the focal lattices ofl, then the vectorsD iyi are directed alongX:

D iyi5r iX, ~4.22!

and this equation can be rewritten, using Eq.~4.21!, as

D ix5~Til i !D iX1m iX, ~4.23!

wherem i5r i1D il i .
The application of the partial difference operatorD j to Eq. ~4.23! and the Laplace equatio

~1.9! with Eq. ~4.23! give
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~TjTil i !D i D jX1~D jTi l i !D iX1~Tjm i !D jX1~D jm i !X

5S Ti

D jHi

Hi
D „~Til i !D iX1m iX…1S Tj

D iH j

H j
D ~~Tjl j !D jX1m jX!.

Rewriting this equation in the form of the generalized Laplace equations~4.19! allows us to
calculate the coefficientsBi j :

Bi j 5
D j~Hi /l i !

Hi /l i
⇒Fi5

Hi

l i
. ~4.24!

Comparing both expressions forBji , one obtains the following identity:

TiH j

H j
5

~Til i !~Til j !

l j~Til i2Til j !
S l j1m i

Til i
21D . ~4.25!

SinceC( i j ) should be symmetric with respect to the change of indices~see Ref. 15!, then, using
Eq. ~4.25!, one arrives at

m i

Til i
S Ti

m j

Tjl j
21D5

m j

Tjl j
S Tj

m i

Til i
21D , ~4.26!

which implies the existence of a potential functiont: Zn→R, such that

Tit

t
5S 12

m i

Til i
D 21

. ~4.27!

Now, we can scale the direction vectorX of the congruence multiplying it by the potentialt, and
check that

D i~ tX!5S Ti

t

l i
DD ix, ~4.28!

which asserts that the lattice with points given byx1tX is a Combescure transform ofx. We only
remark that an arbitrary scalar constant in the potentialt corresponds to the freedom in choosin
the initial pointC„x~0!…. h

V. LÉVY TRANSFORMATIONS AND THEIR ADJOINT

In this section we are interested in the relations between two quadrilateral lattices, in
one of the lattices is a focal lattice of the congruence conjugate to the other. In the conti
context, these transformations are called Le´vy transformations35 and are studied in detail in Refs
3 and 30. We remark that, in the limiting case when also the second lattice~net! is focal, we arrive
at the Laplace transformations considered in Sec. III.

A. Adjoint Le´vy transformations

Definition 5.1: The ith adjoint Lévy transformLi* (x) of the quadrilateral latticex is the ith
focal lattice of a congruence conjugate tox ~see Fig. 9!

Remark:Adjoint Lévy transformations are usually called in soliton theoryadjoint elementary
Darboux transformations.36–38

Assuming that we deal with a generic case, i.e., the congruence conjugate tox is transversal
to it, we construct this congruence via a Combescure transformation vectorxC of the latticex.
Combining Propositions 4.2 and 4.3 with formula~4.16! for the focal lattices of the Combescur
congruence, we obtain the following.

Proposition 5.1: (i) The adjoint Le´vy transform of the latticex is given by
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Li* ~x!5x2
1

s i
xC , ~5.1!

where the functionss i are solutions of Eq. (4.6).
(ii) The Lamécoefficients of the new lattice are of the form

Li* ~Hi !5Ti
21S Hi

D is i

Tis i
D , Li* ~H j !5H j S 12

s j

s i
D . ~5.2!

SinceD iLi* (x) is, by definition, proportional toxC , it is easy to check that

Li* ~x!5x1
1/s i

D i~1/s i !
D iLi* ~x!. ~5.3!

At this point we can also verify the result that we will use in the next section.
Lemma 5.1: The function1/s i satisfies the point equation of the latticeLi* (x).
It is convenient to reformulate our results in the notation of Theorem 1.1. Using the func

v i* defined in~4.5!, we have the following algebraic formulation of the adjoint Le´vy transforma-
tion.

Proposition 5.2: To construct the adjoint Le´vy transformLi* (x) of the quadrilateral latticex.
(i) Find a scalar solutionv i* of the adjoint linear problem,

D jv i* 5~Tjv j* !Qji ,

which defines the direction vectorsxC5V@X,v* # of a congruence conjugate tox.
(ii) Its i th focal lattice is the adjoint Le´vy transform:

Li* ~x!5x2
Hi

v i*
V@X,v* #. ~5.4!

(iii) The Lamécoefficients and the tangent vectors of the new lattice are of the form

Li* ~Hi !52Ti
21S v i* D i S Hi

v i*
D D , ~5.5!

Li* ~H j !5H j2
v j*

v i*
Hi , ~5.6!

FIG. 9. The adjoint Le´vy transformation.
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Li* ~X i !5
1

v i*
V@X,v* #, ~5.7!

Li* ~X j !5X j2
Qji

v i*
V@X,v* #. ~5.8!

Let us observe that the latticesx andx1xC form a quadrilateral strip with theN-dimensional
basisx and one transversal directionxC . The adjoint Le´vy transformationLi* of the latticex can
be interpreted as the Laplace transformationLCi of the strip.

We also remark that Proposition 2.3 can be formulated in the following way.
Proposition 5.3: Two lattices that have been obtained by the ith adjoint Lévy transformation

of the same quadrilateral lattice are conjugate to the same congruence.

B. Lévy transformations

Definition 5.2: The ith Lévy transformLi(x) of the quadrilateral latticex is a quadrilateral
lattice conjugate to the ith tangent congruence ofx ~see Fig. 10!.

Remark:In the soliton theory, Le´vy transformations of multiconjugate systems are usua
calledelementary Darboux transformations.36–38

It is evident from Definitions 5.2 and 5.1 that the Le´vy transform is in a sense the inverse
the adjoint Lévy transform. Therefore, in the notation of this section, formula~5.3! can be rewrit-
ten as

x5Li~x!1
1/s i

D i~1/s i !
D ix. ~5.9!

Finally, making use of Lemma 5.1, we may formulate the following result.
Proposition 5.4: (i) The Le´vy transformLi(x) of the quadrilateral latticex is given by

Li~x!5x2
f

D if
D ix, ~5.10!

where the functionf: ZN→R is a solution of the Laplace equation (1.3) of the latticex.
(ii) The Lamécoefficients of the new lattice read as

Li~Hi !5~TiHi !
f

D if
, Li~H j !5H j2

f

D if
D iH j . ~5.11!

Formula~5.10!, presented in the form coming from the]̄ approach, was first written in Ref. 16

FIG. 10. The Le´vy transformation.
                                                                                                                



trip

nt
way
is of a

e

962 J. Math. Phys., Vol. 41, No. 2, February 2000 Doliwa, Santini, and Mañas

                    
The geometric meaning of the functionf entering into formula~5.10! can be explained as
follows. Given an additional scalar solutionf: ZN→R of the Laplace equation~1.3!, we define a
new quadrilateral latticex̃: ZN→RM11 as

x̃:ZN→S x
f D . ~5.12!

The pointLi(x) is the intersection point of the linex̃1t D i x̃ with its projectionx1t D ix on theRM

space, therefore for the intersection parametert0 we have

S x
f D1t0S D ix

D if
D5S Li~x!

0 D , ~5.13!

which implies formula~5.10!.
Let us observe that the direction of the transversal vectorx̃2x is fixed; this implies that the

quadrilaterals with verticesx, Tix, x̃, Ti x̃ are planar. Then both lattices form a quadrilateral s
with an N-dimensional basis and one transversal directionL. The Lévy transformationLi of the
lattice x can be interpreted as the Laplace transformationLiL of this strip. Therefore the Le´vy
transformed latticeLi(x) is quadrilateral.

As we mentioned in Sec. IV, given a solutionf of the Laplace equation~1.3!, we have
automatically, via the formula~4.11!, the solutionv i of the linear problem~1.6!. Therefore we
may conclude this section with the following corollary.

Corollary 5.1: To construct a Le´vy transform of the latticex: (i) find a scalar solutionv i of
the linear problem (1.6); i.e.,

D jv i5~TjQi j !v j .

(ii) The Lévy transform is then given by

Li~x!5x2
V@v,H#

v i
X i . ~5.14!

(iii) The Lamécoefficients and the tangent vectors of the new lattice are of the form

Li~Hi !5
1

v i
V@v,H#, ~5.15!

Li~H j !5H j2
Qi j

v i
V@v,H#, ~5.16!

Li~X i !52D iX i1
D iv i

v i
X i , ~5.17!

Li~X j !5X j2
v j

v i
X i . ~5.18!

VI. RADIAL TRANSFORMATIONS

Given a quadrilateral latticex and a pointpPRM, consider lines passing through that poi
and the points of the lattice. The conditions of Definition 2.1 are obviously satisfied. In this
we obtain a special type of congruence, which we call radial congruence. Such congruence
very degenerate type—its focal lattices consist of the pointp only.

Without loss of generality we may assume that the pointp is the coordinate center, and w
define the radial congruencer~x! of x with respect to that point.
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Definition 6.1: The radial (or projective) transformP~x! of the quadrilateral latticex is a
quadrilateral lattice conjugate to the radial congruencer~x! of x ~see Fig. 11!.

Proposition 6.1: (i) The radial transformP~x! is given by

P~x!5
1

f
x, ~6.1!

wheref: ZN→R is a solution of the Laplace equation (1.3) of the latticex.
(ii) The Lamécoefficients of the new lattice read as

P~Hi !5
Hi

f
. ~6.2!

Proof: We first notice that the transformed lattice should consist of the points of the
given by ~6.1!, wheref must be such that the new lattice is quadrilateral. For an arbitraryf the
new latticex̃5(1/f)x satisfies the equation

D i D j x̃5~TiÃi j !D i x̃1~TjÃj i !D j x̃1C̃i j x̃, iÞ j , ~6.3!

with the coefficients

Ãi j 5~Tjf!21~Ai j f2D jf!5
D i~Hi /f!

Hi /f
, iÞ j , ~6.4!

C̃i j 5~TiTjf!21
„2D i D jf1~TiAi j !D if1~TjAji !D jf…. ~6.5!

Formula ~6.5! precises the form off, whereas~6.4! implies the form of the new Lame´ coeffi-
cients. h

VII. FUNDAMENTAL TRANSFORMATIONS OF THE MQL

The transformations studied in this section were introduced, in the continuous conte
Jonas39 as the most general transformations of conjugate nets on a surface satisfying the p
ability property. Eisenhart, who discovered these transformations independently, but a lit
later, called them fundamental transformations.3 The content of Proposition 7.1 and Corollary 7
can also be found in Ref. 22.

FIG. 11. The radial transformation.
                                                                                                                



drilat-

l

drilat-
r reduc-

hen
ation.
d via a
be

tion

e

itten

he

964 J. Math. Phys., Vol. 41, No. 2, February 2000 Doliwa, Santini, and Mañas

                    
A. Fundamental transformations

In the previous sections we considered transformations between multidimensional qua
eral lattices conjugate to the same congruence. We studied four particular cases:~1! both lattices
are focal lattices of the congruence~Laplace transformation!; ~2! one of the lattices is a foca
lattice~Lévy transformation and its adjoint!; ~3! parallel lattices~Combescure transformation!; and
~4! lattices conjugate to a radial congruence~radial transformation!.

In this section we study the most general transformation between multidimensional qua
eral lattices conjugate to the same congruence, which contains the above ones as particula
tions.

Definition 7.1: Two quadrilateral lattices are related by the fundamental transformation w
they are conjugate to the same congruence, which is called the congruence of the transform

Consider a generic case, when the congruence of the transformation can be constructe
Combescure transformation vectorxC of the lattice x. Since the same congruence should
constructed also via a Combescure transformation vectorF(x)C of the latticeF~x!, we have

F~x!C5
1

u
xC ; ~7.1!

i.e., both vectors are related by a radial transformation, where, by Proposition 6.1, the funcu
satisfies the point equation of the latticexC .

The transformed latticeF~x! is therefore necessarily of the form

F~x!5x2fF~x!C5x2
f

u
xC , ~7.2!

where the functionf is to be determined.
The first derivatives ofF~x! are reducible, due to Eqs.~4.3!, ~7.1!, and~7.2!, to the form

D iF~x!5S Tiu

Tis i
2Tif DD iF~x!C1S D iu

Tis i
2D if DF~x!C . ~7.3!

From these expressions it follows thatF(x)C is a Combescure transformation vector ofF~x! if and
only if u andf satisfy

D iu5~Tis i !D if. ~7.4!

The above equations imply thatf is a solution of the point equation of the latticex, whereasu
5fC is the Combescure transformed function off.

Proposition 7.1: (i) The fundamental transformF~x! of the quadrilateral latticex is given by

F~x!5x2
f

fC
xC , ~7.5!

where (i)f: ZN→R is a solution of the Laplace equation (1.3) of the latticex, (ii) xC is the vector
of the Combescure transformation ofx, and (iii) fC : ZN→R is the corresponding Combescur
transformed function off.

Corollary 7.1: In the notation of Theorem 1.1, the fundamental transformation can be wr
in the form

F~x!5x2V@X,v* #
V@v,H#

V@v,v* #
, ~7.6!

wherev i , and v i* , i 51,...,N, are solutions of the linear problem (1.6) and its adjoint (1.8). T
Lamécoefficients and the tangent vectors are transformed in the following way:
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F~Hi !5Hi2v i*
V@v,H#

V@v,v* #
, ~7.7!

F~X i !5X i2V@X,v* #
v i

V@v,v* #
, ~7.8!

and the corresponding transformation of the fields Qi j reads as

F~Qi j !5Qi j 2
v j* v i

V@v,v* #
. ~7.9!

The geometric meaning of the formula~7.5! can be explained as follows. Given an addition
scalar solutionf: ZN→R of the Laplace equation~1.3!, we define, like in the case of the Lev
transformation, a new quadrilateral latticex̃: ZN→RM11 as

x̃:ZN→S x
f D . ~7.10!

We construct then a Combescure transform of the latticex̃; i.e., we find the corresponding vecto
x̃C ,

x̃C5VF S x
v D ,v* G5S V@X,v* #

V@v,v* # D5S xC
fC

D . ~7.11!

The pointF~x! is the intersection point of the linex̃1t x̃C with its projectionx1txC on theRM

space; therefore, for the intersection parametert0 we have

S x
f D1t0S xC

fC
D5S F~x!

0 D . ~7.12!

Let us observe that the quadrilaterals with verticesx,x̃,x1xC ,x̃1 x̃C are planar. All the lattices
form a quadrilateral strip with theN-dimensional basis and two transversal directionsL andC. The
fundamental transformationF of the latticex can be interpreted as the Laplace transformationLCL
of the strip; see Fig. 12. Therefore the new latticeF~x! is quadrilateral.

Given a quadrilateral latticex and its fundamental transformF~x! conjugate to the congruenc
l, we are automatically given alsoN focal latticesyi of the congruence. Obviously,yi is the i th
adjoint Lévy transform of both latticesx and F~x!; moreover, the latticesx and F~x! are two

FIG. 12. Construction of the fundamental transformation.
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different i th Lévy transforms ofyi . This implies that the fundamental transformation can
considered as the superposition of an adjoint Le´vy and a Lévy transformations.

Corollary 7.2: In order to construct a fundamental transformF~x! of the quadrilateral lattice
x we may proceed in the following way:
(i) construct a congruencel conjugate tox;
(ii) find the ith focal latticeyi5Li* (x) of the congruencel;
(iii) construct its ith Lévy transform,

Li~yi !5Li„L i* ~x!…5F~x!. ~7.13!

Let us observe also that the transformationF~x! builds, from the latticex, a quadrilateral strip
with basisx and transversal directionF. If we define the latticezi as theLiFth Laplace transform
of this strip, thenzi is the i th Lévy transform of both latticesx andF~x!, while the latticesx and
F~x! are differenti th adjoint Lévy transforms ofyi . This observation, together with Propositio
5.3, provides a third way to construct the fundamental transformF~x! ~see Fig. 13!.

Corollary 7.3: In order to construct a fundamental transformF~x! of the quadrilateral lattice
x, we may proceed in the following way:
(i) we find the ith Lévy transformzi5Li(x) of x;
(ii) we construct a congruence conjugate tozi ;
(iii) we find the ith focal lattice of the congruence,

Li* ~zi !5Li* „Li~x!…5F~x!. ~7.14!

Remark:The fundamental transformation, superposition of Le´vy, and adjoint Le´vy transfor-
mations, is usually called, in the soliton theory,binary Darboux transformation.36–38

We end this section remarking that, from the previous observations, it is possible to int
the transformationx→F(x) as a generic addition of a new dimension@the (N11)st# to the
original latticex. We will discuss this interesting aspect of the fundamental transformations in
IX.

B. Superposition of fundamental transformations

In this section we consider vectorial fundamental transformations, which are nothing els
superpositions of the fundamental transformations. Generalizing the procedure of the pr
section, we considerK>1 solutionsfk, k51,...,K of the Laplace equation of the latticex, which
we arrange in theK component vectorf5(f1,...,fK) t; this allows us to introduce the quadr
lateral latticex̃5(f

x ) in the spaceRM1K. We also considerK Combescure transformation vecto
xC,k ; also, the Combescure transformation vectorsxC,k can be extended~this procedure involvesK
arbitrary constants! to the Combescure transformations vectorsx̃C,k5(fC,k

xC,k ) of the latticex̃, where

the K component vectorfC,k5(fC,k
1 ,...,fC,k

K ) t consists of the Combescure transformed functio
fC,k

l of f l ; each of the vectorsx̃C,k defines a Combescure transform of the latticex̃. TheK vectors
x̃C,k define theK-dimensional subspace,

FIG. 13. The fundamental transformation as a binary transformation.
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x̃1 (
k51

K

x̃C,kt
k5 x̃1~ x̃C,1 ,...,x̃C,N!S t1

]

tK
D 5 x̃1 x̃Ct5S x

fD1S xC
fC

D t. ~7.15!

The intersection point of this subspace withRM @in general, a K-dimensional and an
M-dimensional subspaces of the (M1K)-dimensional space intersect in a single point# defines the
new latticeT~x!

S T~x!

0 D5S x
fD1S xC

fC
D t0 . ~7.16!

The corresponding values of the parameterst0
k can be found from the lower part of the abov

equation,

05f1fCt0 , ~7.17!

and then inserted into the upper part, giving

T~x!5x2xCfC
21f. ~7.18!

In the notation of Theorem 1.1, we have

f5V@v,H#, fC5V@v,v* #, xC5V@X,v* #

and

T~x!5V@X,H#2V@X,v* #V@v,v* #21V@v,H#. ~7.19!

One can prove that the new latticeT~x! is also a quadrilateral one. This is a consequence
Theorem 1.1 and the proof can be found in Sec. IX. In that section it will also be shown th
vectorial fundamental transformation is the superposition ofK fundamental transformations.

In this section we consider only the simplest caseK52, emphasizing the geometric meanin
of all the steps involved in the construction.

Proposition 7.2: (i) The two component vectorial fundamental transformation is equivale
the superposition of two fundamental transformations:
(1) the transformationF1 of the latticex, with parametersf1 and xC,1 :

F1~x!5x2
f1

fC,1
1 xC,1 ; ~7.20!

(2) the transformationF2 of the latticeF1(x) with parametersf28, xC,28 :

T~x!5F2„F1~x!…5F1~x!2
f28

fC,2
28

xC,28 , ~7.21!

wheref28, xC,28 are nothing but the parametersf2 and xC,2 transformed by the first transforma
tion,

f285F1~f2!5f22
f1

fC,1
1 fC,1

2 ,

xC,28 5F1~xC,2!5xC,22
fC,2

1

fC,1
1 xC,1 ,

and, correspondingly,
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fC,2
285F1~fC,2

2 !5fC,2
2 2

fC,2
1

fC,1
1 fC,1

2 . ~7.22!

(ii) The result of the superposition ofF1 and F2 is independent of the order.
Proof: The proof is by direct calculation; we only remark that, by construction,f28 is a

solution of the Laplace equation of the latticeF1(x), and xC,28 is a vector of the Combescur
transformation of the same lattice.

One can look at the above superposition of the fundamental transformations as follow
~a! The fundamental transformation of the lattice

S x
0

f2
D

using the solutionf1 of the Laplace equation and the Combescure transformation vector

S xC,1

0
fC,1

2
D ,

which gives

S F1~x!

0
f28

D .

~b! The simultaneous transformation of the Combescure vector

S xC,2

0
fC,2

2
D ,

which gives the Combescure transformation vector

S xC,28

0
fC,2

2
D

of the lattice obtained in point~a!.
~c! The combination of the lattice inRM11 constructed in point~a! with the Combescure

transformation vector constructed in point~b! gives the latticeT~x! in RM. h

Corollary 7.4: The pointsx, F1(x), F2(x), andT(x)5F1„F2(x)…5F2„F1(x)… are coplanar.

VIII. ARE THE FUNDAMENTAL TRANSFORMATIONS REALLY FUNDAMENTAL?

The main goal of this section is to show explicitly that all the transformations discussed
previous sections are special cases of the fundamental transformations. Since focal lattices
viewed as limiting cases of generic lattices conjugate to the congruence, this statement is
obvious, from a geometrical point of view. Nevertheless, due to the fact that the Combe
transformation vectorxC is not suited well to describe tangent congruences, the consequent s
ties associated with the analytic limits require a detailed study.

A. Reduction to the Combescure and radial transformations

We first illustrate the straightforward reduction from the fundamental transformations t
Combescure and radial transformations.
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To obtain the Combescure transformation from the fundamental one we putv i50, i
51,...,N, in Corollary 7.1. This implies that bothf andfC are constants. The constantf/fC can
always be absorbed by the corresponding rescaling ofv i* .

In looking for the reduction of the fundamental transformation to the radial one, we
notice that, in the radial transformation, the Combescure vectorxC of the congruence must b
proportional to the lattice vectorx. This givesv i* 5Hi , xC5x and, therefore,fC is a solution of
the Laplace equation of the points of the latticex. This implies thatfC2f must be a constantc:

F~x!→ c

f1c
x, ~8.1!

and this formula is obviously equivalent to formula~6.1!.

B. Singular limit to the adjoint Le ´vy transformation

From Secs. V A and VII, it follows that the adjoint Le´vy transformationLi* (x) can be viewed
as the limiting case of the fundamental transformationF~x! in which the transformed lattice
becomes thei th focal lattice of the associated congruence.

As it was shown in Sec. VII, the construction ofF~x! is the following sequence of thre
geometric processes:~i! the extension of the latticex,RM to the lattice (f

x ),RM11;
~ii ! the Combescure transformation,

CS x
f D5S x1xC

f1fC
D ,

which gives the quadrilateral strip withN-dimensional basisx and two transversal directions
calledL andC; and ~iii ! the Laplace transformationLCL of the strip~see Fig. 14!.

In order to investigate the nature of the limitF(x)→Li* (x), it is convenient to study the
properties off whenx andF~x! are given. Iff is given in the initial point, thenTif is obtained
from the intersection point (Tif

Tix ) of the line passing through (0
Tix) in the (M11)th direction with

the line passing through the points (0
zi) and (f

x ), whereziPRM was defined in Sec. VII as the
intersection of thei th tangent line of the latticex with the corresponding tangent line ofF~x!.

By construction, the vectorx2zi is proportional toD ix:

x2zi5n D ix, nPR; ~8.2!

consequently,

Tif5
11n

n
f. ~8.3!

In the limit in which TiF(x)→TiLi* (x) we have alsozi→x andn→0. Therefore

FIG. 14. The singular limit from the fundamental transformation to the adjoint Le´vy transformation.
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Tif.n21f, unu!1. ~8.4!

We remark that, in formula~8.4!, the lattice functionn in the uniform limit F(x)→Li* (x) is of
ordere, ueu!1. This suggests the following ansatz for the asymptotics off:

f5e2nia„11O~e!…; ~8.5!

substituting~8.5! into the Laplace equations~1.9!, we obtain

D ja5
D jHi

Hi
a, D jDka5

D jHk

Hk
D ja1

DkH j

H j
Dka, iÞ j ÞkÞ i ,

which imply thata5Hi . From similar considerations we also obtain that

fC5e2niv i* „11O~e!…; ~8.6!

for completeness we also write down the asymptotics ofv i :

v i5e2ni
„e211Qii 1O~e!…,

v j5e2niQji ~11O~e!…,

where

D jQii 5~TjQi j !Qji .

Therefore, in the limite→0, the asymptotics of the lattice points, the Lame´ coefficients and the
tangent vectors read as

F~x!5x2
Hi

v i*
V@X,v* #1O~e!5Li* ~x!1O~e!,

F~X i !52e21
V@X,v* #

v i*
1O~1!,

F~X j !5X j2
V@X,v* #

v i*
Qji 1O~e!,

F~Hi !5eTi
21S v i* D i S Hi

v i*
D D 1O~e2!,

F~H j !5H j2
v j*

v i*
Hi1O~e!,

and agree~up to possiblee scalings! with the formulas of Sec. V A.

C. Singular limit to the Le ´vy transformation

In the limit when the fundamental transformationF~x! reduces to the Le´vy transformation
Li(x), the congruence of the transformation becomes thei th tangent congruence of the latticex;
i.e., xC becomes proportional toD ix.

On the other hand, iterating Eq.~4.3!, we obtain the formal series

xC52~Tis i !D ix2~Ti
2s i !Ti D ix2¯ , ~8.7!
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which, in the above limit, becomes asymptotic in some small parametere. This suggests the
following ansatz:

s i~n!;eni21b~n!„11O~e!…, ~8.8!

which gives

xC;2eni~Tib!D ix52eniTi~bHi !X i . ~8.9!

Applying the difference operatorD j to Eq. ~8.9! and using Eqs.~4.3! and ~1.7!, we infer that

b5
1

Hi
, s j;eni

Qi j

H j
; ~8.10!

i.e.,

xC52eni
„X i1O~e!…, s i5eni21S 1

Hi
1O~e! D , s j52eniS Qi j

H j
1O~e! D ,

which allow us to calculate the asymptotics of the other relevant objects:

v i* 5eni21
„12eQii 1O~e!…, v j* 52eni

„Qi j 1O~e!…, fC52eni
„v i1O~e!….

Therefore, in the limite→0, the asymptotics of the lattice points, of the Lame´ coefficients and of
the tangent vectors, read as

F~x!5x2
f

v i
X i1O~e!5Li~x!1O~e!,

F~X i !52eS D iX i2
D iv i

v i
X i D1O~e2!,

F~X j !5X j2
v j

v i
X i1O~e!,

F~Hi !5
1

e

f

v i
1O~1!,

F~H j !5H j2
Qi j

v i
f1O~e!,

and agree with the formulas of Sec. V B.

D. Singular limit to the Laplace transformations

The Laplace transformation can be considered as the special limit of the fundamental
formation such that both lattices are focal lattices of the congruence of the transformation.
fore it can be obtained combining the asymptotics presented in the previous Secs. VIII
VIII C. The corresponding asymptotics read as follows:
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F~x!5x2
H j

Qi j
X i1O~e!5Li j ~x!1O~e!,

F~Hi !52
1

e

H j

Qi j
1O~1!,

F~H j !5eTj
21S Qi j D j S H j

Qi j
D D1O~e2!,

F~Hk!5Hk2
Qik

Qi j
H j1O~e!,

F~X i !5eS D iX i2
D iQi j

Qi j
X i D1O~e2!,

F~X j !52
1

e

X i

Qi j
1O~1!,

F~Xk!5Xk2
Qk j

Qi j
X i1O~e!.

IX. CONNECTION WITH VECTORIAL DARBOUX TRANSFORMATIONS AND
PERMUTABILITY THEOREMS

A. Fundamental transformations from the vectorial formalism

Our main goal in this section is to show that the fundamental transformations and, ther
all the particular transformations discussed in the previous sections, are special cases
vectorial transformation described in Theorem 1.1 and introduced in Ref. 27.

Consider the following splitting of the vector spaceW of Theorem 1.1:

W5E% V% F, W* 5E* % V* % F* ; ~9.1!

if

Y i5~X i ,vi ,0!T, Y i* 5~0,vi* ,X* !, ~9.2!

then, the corresponding potential matrix is of the form

V@Y,Y* #5S IE V@X,v* # V@X,X* #

0 V@v,v* # V@v,X* #

0 0 IF
D , ~9.3!

and its inverse is

V@Y,Y* #215S IE 2V@X,v* #V@v,v* #21 2V@X,X* #1V@X,v* #V@v,v* #21V@v,X* #

0 V@v,v* #21 2V@v,v* #21V@v,X* #

0 0 IF
D .

~9.4!

This implies that
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Ŷ i5S X̂ i

v̂i

0
D 5S X i2V@X,v* #V@v,v* #21vi

V@v,v* #21vi

0
D ,

Ŷ i* 5~0,v̂i* ,X̂ i* !5~0,vi* V@v,v* #21,X i* 2vi* V@v,v* #21V@v,X* # !

and

Q̂i j 5Qi j 2vj* V@v,v* #21vi . ~9.5!

Theorem 1.1 implies, in particular, that, up to a constant operator,

V@X̂,X̂* #5V@X,X* #2V@X,v* #V@v,v* #21V@v,X* #. ~9.6!

The fundamental transformation can be obtained in the simplest case, by puttingF5V5R, E
5RM, w5(0,0,1)T and choosing the projection operator on the spaceE alongV% F. ThenX i*
5Hi , the scaled tangent vectors are justX i andx5V@X,H#; the transformation datavi andvi*
are scalar functions. The transformed lattice points and the transformed functionsQi j are given
then by formulas~9.6! and ~9.5!, which coincide with~7.6! and ~7.9!.

We recall that, in Sec. VII B, the geometric meaning of Eq.~9.6! was given in the case in
which F5R, V5RK, E5RM.

B. Permutability of the fundamental transformations

Let us assume that the transformation datum space split asV5V1% V2 , so that we write

V@v,v* #5S m11 m12

m21 m22
D ,

with mi j 5V@v( i ) ,v( j )* #: Vj→Vi . Correspondingly, we have the following decompositions:

vi5S v~1!,i

v~2!,i
D ,

vi* 5~v~1!,i* ,v~2!,i* !,

~9.7!
V@X,v* #5~M ~1! ,M ~2!!, M ~ i !5V@X,v~ i !* #,

V@v,X* #5S M ~1!
*

M ~2!
* D , M ~ i !* 5V@v~ i ! ,X* #.

If m22PGL(V2), we have the factorizations

V@v,v* #5S 1 m12m22
21

0 1
D S m112m12m22

21m21 0

m21 m22
D

5S m112m12m22
21m21 m12

0 m22
D S 1 0

m22
21m21 1D . ~9.8!

Using the formulas~9.7! and ~9.8!, together with~9.6!, we obtain

Q̂i j 5Qi j 2^v~2!, j* ,m22
21v~2!,i&

2^v~1!, j* 2v~2!, j* m22
21m21, ~m112m12m22

21m21!
21~v~1!, j2m12m22

21v~2!, j !&,
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X̂ i5X i2M ~2!m22
21v~2!,i2~M ~1!2M ~2!m22

21m21!~m112m12m22
21m21!

21~v~1!,i2m12m22
21v~2!,i !,

X̂ i* 5X i* 2v~2!,i* m22
21M ~2!

* 2~v~1!,i2m12m22
21v~2!,i !~m112m12m22

21m21!
21~M ~1!

* 2m22
21m21M ~2!

* !.

~9.9!

As we shall see, these formulas coincide with those coming from performing first a fu
mental transformation with the transformation data (V2 ,v(2) ,v(2)* ):

Qi j8 5Qi j 2^v~2!, j* ,m22
21v~2!,i&,

X i85X i2M ~2!m22
21v~2!,i ,

~X i* !85X i* 2v~2!,i* m22
21M ~2!

* ,

and then transforming with the data (V1 ,v(1)8 ,v(1)* )8), wherev(1)8 , v(1)* 8 are the datav(1) , v(1)* after
the first fundamental transform indicated by8. Therefore the resulting functions are

Qi j9 5Qi j8 2^~v~1!, j* !8,M „v8,~v* !8…21v~1!,i8 &,

X i95X i82M „X8,~v* !8…M ~v8,~v* !8…21v8,

~X i* !95~X i* !82~v~1!,i* !8M „v8,~v* !8…21M „v8,~X* !8….

To show this, it is important to use the relations~9.6! to realize that

V„X8,~v* !8…5M ~1!2M ~2!m22
21m21,

V„v8,~X* !8…5M ~1!
* 2m~12!m22

21M ~2!
* ,

V„v8,~v* !8…5m112m12m22
21m21,

so that the above equations for the second fundamental transformation are just~9.9!:

Qi j9 5Q̂i j ,

X i95X̂ i ,

~X i* !95X̂ i* .

Proposition 9.1: The vectorial Darboux transformation (9.9) with the transformation d
„V1% V2 ,(v(2)

v(1)),(v(1)* ,v(2)* )… coincides with the following composition of fundamental transform

tions: (1) First transform with data(V2 ,v(2) ,v(2)* ), and denote the transformation by8. (2) On the
result of this transformation apply a second one with data(V1 ,v(1)8 ,(v(1)* )8).

Corollary 9.1: Assuming that m11PGL(V1) and following the above steps, it is easy to sh
that this composition does not depend on the order of the two transformations.

Corollary 9.2: Applying the mathematical induction to Proposition 9.1, it is possible to s
that, assuming a general splittingV5 % i 51

K Vi of the transformation space, the final result does n
depend on the order in which the K transformations are made.

C. Fundamental transformations as integrable discretization

In Sec. VII B we have observed that the fundamental transformationF can be interpreted a
generating a new dimension@the (N11)st# of the latticex; more precisely, a single fundament
transformation can be interpreted as an elementary translation in this new dimension. Mor
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the Combescure vectorxC of the transformation can be viewed as the corresponding norma
tangent vectorXN11 . Obviously, in order to have an (N11)-dimensional quadrilateral lattice, w
have to apply recursively fundamental transformations.

The application of two fundamental transformationsF1 andF2 to the quadrilateral latticex
can be viewed as one step in the generation of two new dimensions; the permutability th
~Proposition 7.2! guarantees that these translations commute. Moreover, the elementary qua
eral,

$x,F1~x!,F2~x!,F1„F2~x!…5F2„F1~x!…%, ~9.10!

is planar~see Corollary 7.4!, which makes the theory self-consistent.
The statements about the permutability of the fundamental transformationsF1 andF2 , and

about the planarity of the elementary quadrilateral~9.10! are also valid in the limiting case in
which x represents a submanifold parametrized by conjugate coordinates~see Fig. 15!; this last
result, which was known to Jonas39 and Eisenhart.3

Therefore, the Darboux-type transformations of conjugate nets generate quadrilateral la
which are their natural discrete generalization, from both points of view of the integrability
geometric properties. Similar results have been obtained for many other geometrically re
integrable systems.28,40,10,41,20,13,22

For discrete integrable systems there is obviously no essential difference between
transformations’’ and new dimensions. This shows once more that, from the point of view o
theory of integrable systems, the discrete ones are more basic.

We finally remark that all the basic transformations we considered here: the Le´vy, adjoint
Lévy, and fundamental transformations can be considered as Laplace transformations of
lateral strips. This observation shows that, although the Laplace transformations are of
special type, they can be considered as the basic objects of the theory of transformati
lattices. This interpretation provides, for example, a very transparent geometric meaning
additional solutionf of the Laplace equation entering into the Le´vy transformation.

This formulation in terms of the Laplace transformations remains also valid in the limit f
the ‘‘quadrilateral latticex’’ to the ‘‘conjugate netx,’’ but, since the intermediate steps of th
transformation involve ‘‘differential-difference’’ nets, it was unknown to the geometers who s
ied conjugate nets only.

X. ̄ FORMALISM AND TRANSFORMATIONS

A. The ̄ dressing for the Darboux and MQL equations

The central role of the]̄ problem in the study of integrable multidimensional systems w
established in Ref. 42; soon after that, the]̄ problem was incorporated successfully in the dress
method, giving rise to the]̄ dressing method,5 which is a very general and convenient inver
method, based on the theory of complex analysis, introduced to construct:~i! integrable nonlinear

FIG. 15. Superposition of fundamental transformations of conjugate nets.
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systems of partial differential equations, together with large classes of solutions;~ii ! the finite
transformations~of a Bäcklund and Darboux type! between different solutions of these integrab
systems; and~iii ! the integrable discrete analogs of these integrable systems.

The Darboux equations~1.2! and their integrable discrete analogs, the MQL equations~1.10!,
provide a very precious illustrative example of the power and elegance of the]̄ dressing method.
Our goal in this section is to reconsider the main results of the previous sections, investiga
far from geometric and algebraic points of view, in the framework of the]̄ formalism. More
precisely, we shall present the]̄ formulation of the radial, Combescure, and fundamental tra
formations, together with their limiting cases: the Le´vy, adjoint Lévy, and Laplace transforma
tions; we shall also discuss the permutability theorem and the essential equivalence b
integrable discretizations of integrable PDEs and finite transformations of them. We shall fin
the main results of the previous sections have a very elementary interpretation in the framew
the ]̄ formalism. Although the]̄ formalism associated with the Darboux and MQL equations
scalar, we have decided to consider its matrix generalization because we expect that the
analog of the Darboux and MQL equations will find a geometric meaning.

Let us consider the following nonlocal]̄ problem:5

]l̄x~l!5]l̄h~l!1E
C
x~l8!R~l8,l!dl8∧dl̄8, l,l8PC, ~10.1!

for squareD3D matrices, whereR(l8,l) is a given]̄ datum, which decreases quickly enough
` in l andl8, and the functionh~l!, thenormalizationof the unknownx~l!, is a given function
of l and l̄, which describes, in particular, the polar behavior ofx~l! in C and its behavior at̀ :
x2h→0 as l→`. Therefore the]̄ problem ~10.1! is equivalent to the following Fredholm
integral equation of the second type:

x~l!5h~l!1
1

2p i EC

dl8∧ll̄8

l82l E
C
x~l9!R~l9,l8!dl9∧dl̄9. ~10.2!

We remark that the dependence ofx~l! andR(l,l8) on l̄ andl̄8 will be systematically omitted,
for notational convenience, throughout this section. Furthermore, it will be assumed that]̄

problem~10.1! be uniquely solvable; i.e., ifj~l! solves the homogeneous version of the]̄ problem
~10.1! andj(l)→0 asulu→`, thenj(l)50.

The dependence ofR(l8,l) @and, consequently, ofx~l!# on the continuousuPRN and dis-
cretenPZN space coordinates is assigned, respectively, through the following compatible
tions:

] iR~l,l8!5Ki~l!R~l,l8!2R~l,l8!Ki~l8!, i 51,...,N, ~10.3!

TiR~l,l8!5„11Ki~l!…R~l,l8!„11Ki~l8!…21, i 51,...,N, ~10.4!

where] i5]/]ui , i 51,...,N andKi(l), i 51,...,N are given commuting matrices constant inu and
n; in the following, for simplicity, the matricesKi(l) will be assumed to be diagonal. If we ar
interested in the construction of continuous~discrete! systems, we concentrate on~10.3! @on
~10.4!# only; but, in general, both dependences can be considered at the same time. Eq
~10.3! and ~10.4! admit the general solution

R~l,l8;u,n!5G~l!R0~l,l8!„G~l!…21,

where
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G~l!5expS (
i 51

N

uiKi~l!D )
j 51

N

„11K j~l!…nj .

We finally assume thatR0(l,l8) be identically zero in both variables in a neighborhood of
following points: the poles (l i) and the zeros of det„11Ki(l)…, i 51,...,N and the poles ofh~l!.
This restriction ensures the analyticity ofx2h at these points.43,16We briefly recall that, in the]̄
dressing method, a crucial role is played by thelong derivativesDui

, Dni
, i 51,...,N, defined,

respectively, by

Dui
x~l!ª] ix~l!1x~l!Ki~l!, i 51,...,N, ~10.5!

Dni
x~l!ªD ix~l!1„Tix~l!…Ki~l!, i 51,...,N, ~10.6!

which are the generators of the Zakharov–Manakov ring of operators;5 i.e., any linear combina-
tion, with coefficients depending only onu andn, of the operators

)
k

Duk

l k , )
k

Dnk

l k , l kPN, ~10.7!

transforms solutions of~10.1! into solutions of~10.1! ~corresponding, in general, to differen
normalizations!. For instance,

]l̄„Dni
x~l!…5„Tix~l!…]l̄Ki~l!1Dni

~]l̄h!1E
C
dl8∧dl̄8„Dni

x~l8!…R~l8,l!, ~10.8!

]l̄„Dni
Dnj

x~l!…5„TiDnj
x~l!…]l̄Ki~l!1„TjDni

x~l!…]l̄K j~l!1Dni
Dnj

~]l̄h!

1E
C
dl8∧dl̄8„Dni

Dnj
x~l8!…R~l8,l!. ~10.9!

The goal of the method is to use this ring of operators to construct a set of solutions$j~l!% of
~10.1! such thatj(l)→0 asl→` and use uniqueness to infer the set of equations:$j(l)50%,
which are equivalent to the integrable nonlinear system.

A given choice of the rational functionsKi(l) gives rise to solutions of a particular integrab
nonlinear system; for instance, the Darboux and MQL equations~1.2! and~1.4! correspond to the
following choice5,16 ~see Proposition 10.1 below!:

Ki~l!ª
a i

l2l i
, i 51,...,N, ~10.10!

wherea i are the constant diagonal matrices.
Different normalizations are associated instead with different solutions of such a non

system. As it was observed in Ref. 43, the richness of this mechanism of constructing solut
typical of multidimensional problems, since, in the case of thelocal ]̄ problem, arising in 111
dimensions, different normalizations are all gauge equivalent. In this paper we shall lim
considerations to bounded~in l and l̄! normalizations, which give rise to bounded~in l and l̄!

solutions of the]̄ problem~10.1!.
We first recall the basic results concerning the]̄ integrability of the Darboux and MQL

equations, obtained, respectively, in Refs. 5 and 16.
Proposition 10.1: Letw(l) be the solution of (10.1) corresponding to the canonical norm

ization h51. Then the complex function,
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c~l!5w~l!G~l!, ~10.11!

solves the continuous and discrete Laplace equations:

Li j @H#c~l!5L i j @H#c~l!50, i , j 51,...,N, iÞ j , ~10.12!

where

Li j @H#ª] i] j2~] jHi !Hi
21] i2~] iH j !H j

21] j , ~10.13!

L i j @H#ªD iD j2Ti„~D jHi !Hi
21

…D i2Tj„~D iH j !H j
21

…D j , ~10.14!

and the set of functions Hi , i 51,...,N, defined by

Hiªw~l i !Gi , ~10.15!

GiªexpS (
k51,kÞ i

N

ukKk~l i !D )
k51,kÞ i

N

„11Kk~l i !…
nk, ~10.16!

solve the matrix analogs of the Darboux (1.2) and MQL equations (1.10).

Proof: In the philosophy of the]̄ method, one shows that the solutionsL̃ i j w(l), L̃ i j w(l) of
the homogeneous version of the]̄ problem~10.1! go to zero asl→`, where

L̃ i j w~l!ªDui
Duj

w~l!2„Duj
w~l i !…w~l i !

21Dui
w~l!2„Dui

w~l j !…w~l j !
21Duj

w~l!,

L̃ i j w~l!ªDni
Dnj

w~l!2Ti~„Dnj
w~l i !…w~l i !

21!Dni
w~l!2Tj~„Dni

w~l j !…w~l j !
21!Dnj

w~l!.
~10.17!

Therefore, uniqueness implies that

L̃ i j w~l!5L̃ i j w~l!50,

or, equivalently, Eqs.~10.12!. Finally, evaluating Eq.~10.17! at l5lk , kÞ iÞ j Þk and using
~10.15!, we obtain the Darboux and MQL equations, respectively. h

The above functionc~l! allows one to construct theD3M matrix solutionx:

x~u,n!5E c~l!h~l!dl∧dl̄,

of the Laplace equations~10.12!, whereh(l) is an arbitrary localizedD3M matrix function ofl
and l̄ ~but independent of the coordinates!. If the ]̄ problem~10.1! is scalar, i.e.,D51, x is an
M-dimensional vector solution of the Laplace equations. Therefore, keepingn fixed, x describes
anN-dimensional manifold inRM, parametrized by the conjugate coordinatesu ~a conjugate net!.
Different values ofn can therefore be interpreted as defining anN-dimensional~quadrilateral!
sequence of conjugate nets. In the second interpretation we privilege, instead, the discrete
of the problem: keepingu fixed, x describes anN-dimensional quadrilateral lattice inRM, while
the continuous coordinatesu describe ‘‘isoconjugate’’ deformations of this lattice.

We finally remark that Eq.~10.8! can be viewed as the continuous limite→0 of ~10.9!, in
which eni→ui andTi;11e] i ~replacinga i by ea i!.

Exploiting completely the possible normalizations of the]̄ problem, one obtains more solu
tions of the Laplace equations, together with the relations between them. The radial~or projective!
and the Combescure transformations can be obtained in this way.
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B. Radial transformations

Proposition 10.2: LetwP(l) be the solution of (10.1) corresponding to the normalizationh
5f21, wheref is any solution of the continuous and discrete Laplace equations (10.12). D
the function

cP~l!ªwP~l!G~l!; ~10.18!

then we have the following.
(i) cP(l) is related to the functionc(l), defined in (10.11), through the radial (gauge

transformation:

cP~l!5f21c~l!. ~10.19!

(ii) cP(l) solves the Laplace equations,

Li j @P~H !#cP~l!5L i j @P~H !#cP~l!50, i , j 51,...,N, iÞ j , ~10.20!

where the functions

P~Hi !5wP~l i !Gi5f21Hi ~10.21!

solve the matrix Darboux and MQL equations.

Proof: The proof goes as in Proposition 10.1. The uniqueness of the]̄ problem implies the
following equations:

wP~l!2f21w~l!50,

L̃ i j wP~l!1f21~Li j @H#f!f21w~l!50,

L̃ i j wP~l!1~TiTjf
21!~L i j @H#f!f21w~l!50,

equivalent, respectively, to~10.3! and ~10.4!.
Therefore theD3M matrix,

P~x!5E
C
cP~l!h~l!dl∧dl̄, ~10.22!

satisfies the equations

Li j @P~H !#P~x!5L i j @P~H !#P~x!50, i , j 51,...,N, iÞ j ,

P~x!5f21x,

and, if the]̄ problem~10.1! is scalar (D51), it defines the radial transformP~x! of x ~see Sec.
VI !. h

C. Combescure transformations

We first introduce the basic, localized inl and l̄, solutions of the]̄ problem, corresponding
to the simple pole normalizationh5(l2m)21. These solutions were first used in a multidime
sional context in Ref. 43 and used extensively in Ref. 44. The following proposition can be
in Ref. 16.

Proposition 10.3: Letw(l,m) be the solution of (10.1) corresponding to the simple p
normalizationh5(l2m)21, mÞl i , i 51,...,N. Define the function
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c~l,m!ªG~m!21w~l,m!G~l!; ~10.23!

then we have the following.
(i) c(l,m) solves the Laplace equations

Li j @H~m!#c~l,m!5L i j @H~m!#~l,m!50, ~10.24!

and the functions

Hi~m!5G~m!21w~l1 ,m!Gi

solve the Darboux and MQL equations.
(ii) c(l,m) is a Combescure transform ofc(l), i.e., the following formulas hold:

] ic~l,m!5Ci~m!] ic~l!, D ic~l,m!5„TiCi~m!…D ic~l!, ~10.25!

where

Ci~m!5Hi~m!Hi
21 ~10.26!

and

] iH j~m!5Ci~m!] iH j , D iH j~m j !5„TiCi~m!…D iH j , iÞ j , ~10.27!

] iCj~m!1~Cj~m!2Ci~m!!~] iH j !H j
2150,

~10.28!
D iCj~m!1„TiCj~m!2TiCi~m!…~D iH j !H j

2150.

Proof: The uniqueness of the]̄ problem implies the following equations:

L̃ i j8 w~l,m!50,
~10.29!

Dni
8 w~l,m!2Ti~w~l i ,m!„w~l i !…

21!Dni
w~l!50,

and their continuous analogs, equivalent, respectively, to~10.24! and ~10.25!, whereL̃ i j8 is ob-
tained fromL̃ i j replacingDni

by

Dni
8 fªDni

f 2
a i

m2l i
f , i 51,...,N.

Equations~10.27! follow by multiplying Eq. ~10.29! by „11K j (l)…21 and then settingl5l j ;
Eqs.~10.28! are direct consequences of~10.27! and ~10.26!. h

Remark:The formula~10.25! suggests that one could start with the solution of~10.1! nor-
malized byh5(l2m)21G(m)21, avoiding in this way the introduction of the generalized o
eratorsDui

8 ,Dni
8 and simplifying the proof. This is actually a key observation in the follow

construction of more general solutions, bounded inl, of the Laplace equations.
The canonical and simple pole normalizations allow one to construct the prototype exa

of, respectively, bounded and localized solutions of the Laplace equations. This is due to th
that the corresponding normalizations:h51 andh5(l2m)21G(m)21 satisfy the equations

Dni
~]l̄h!5Dui

~]l̄h!50,

implying that the forcings of Eqs.~10.8!, ~10.9! do not depend onh. Observing that
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Dni
f 5Dui

f 50, i 51,...,N⇔ f 5g~l!G~l!21,

whereg~l! is an arbitrary function ofl,l̄, but constant in the coordinates, we infer that a gene
bounded inl,l̄, solution of the Laplace equations is obtained considering the solutionF~l! of the
]̄ problem~10.1! corresponding to the normalization

h5a1
i

2 EC

dm8∧dm̄8

l2m8
g~m8!G~m8!21⇒]l̄h5g~l!G~l!21, ~10.30!

whereg is any localized function ofl,l̄, constant in the coordinates anda is any constant~in l
and in the coordinates! matrix. The general solutionC(l)5F(l)G(l) of the Laplace equations
reduces to the solutionsc~l! andc~l,m!, corresponding to the canonical and simple pole norm
izations, through the following obvious specifications:

a51, g~l!50⇒C~l!5c~l!,

a50, g~l!5d~l2m!⇒C~l!5c~l,m!.

Proposition 10.4: LetF(l) be the solution of (10.1) corresponding to the normalizat
(10.30). Define the functionC(l) in the usual way:

C~l!5F~l!G~l!;

then we have the following.
(i) C(l) solves the Laplace equations

Li j @H#C~l!5L i j @H#C~l!50, i , j 51,...,N, iÞ j , ~10.31!

and the functions

Hi5F~l i !Gi ,

solve the Darboux and MQL equations.
(ii) If C ( l )(l)5F ( l )(l)G(l), l 51,2 are two different solutions of (10.31) corresponding

the different normalizations a( l ), g ( l )(l), l 51,2, then these solutions are related by the Comb
cure transformation, i.e.,

] iC
~2!~l!5Ci

~2,1!] iC
~1!~l!, D iC

~2!~l!5~TiCi
~2,1!!D iC

~1!~l!, i 51,...,N, ~10.32!

where the functions

Ci
~2,1!5Hi

~2!~Hi
~1!!21,

~10.33!
Hi

~ l !5F~ l !~l i !Gi , l 51,2,

satisfy the equations

] iH j
~2!5Ci

~2,1! ] iH j
~1! , D iH j

~2!5~TiCi
~2,1!!D iH j

~1! , iÞ j ,

] iCj
~2,1!1~Cj

~2,1!2Ci
~2,1!!~] iH j

~1!!~H j
~1!!2150,

D iCj
~2,1!1~TiCj

~2,1!2TiCi
~2,1!!~D iH j

~1!!~H j
~1!!2150.

(iii) The following relations hold:
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Dni
F~l!5F~l i !a iw~l,l i !, Dui

F~l!5„TiF~l i !…a iw~l,l i !, i 51,...,N. ~10.34!

(iv) If l0Þl i , i 51,...,N is an additional complex parameter associated with the additio
coordinates u0 and n0 :

]u0
R~l,l8!5

a0

l2l0
R~l,l8!2R~l,l8!

a0

l82l0
, i 51,...,N,

~10.35!

T0R~l,l8!5S 11
a0

l2l0
DR~l,l8!S 11

a0

l82l0
D 21

, i 51,...,N,

wherea0 is a diagonal matrix and R0(l8,l) is zero in a neighborhood ofl5l0 and l85l0 ,
thenw(l,l0) and F(l) are connected through the analogs of Eqs. (10.34):

Dn0
F~l!5F~l0!a0w~l,l0!, Du0

F~l!5„T0F~l0!…a0w~l,l0!,

equivalent to equations

Du0
C~l!5C~l0!a0c~l,l0!, Dn0

C~l!5„T0C~l0!…a0c~l,l0!. ~10.36!

Proof: As before, the uniqueness of the]̄ problem implies equations

L̃ i j @F~l!#50,

Dni
F~2!~l!2Ti~F~2!~l i !„F

~1!~l i !…
21!Dni

F~1!~l!50,

Dni
F~l!2„TiF~l i !a iw~l,l i !…50,

and their continuous analogs, equivalent, respectively, to Eqs.~10.31!, ~10.32!, and~10.34!. The
rest of the proof is as in the previous propositions. h

Remark:We remark that the localized solutionsF of ~10.1!, corresponding to the normaliza
tion ~10.30! with a50, can be obtained, integrating the simple pole solutions with an arbit
measure:

F~l!5
i

2p E
C
dm∧dm̄ g~m!G~m!21w~l,m!.

This formula establishes a contact with the class of Combescure related solutions of the L
equation obtained in Refs. 44 and 45.

Remark:The Combescure solutions introduced in this proposition form a linear space
instance, the solutionC~l!, corresponding to the normalization,

11
i

2 EC

dl8∧dl̄8

l2l8
g~l8!G~l8!21,

is the linear combination

C~l!5c~l!1cC~l!, ~10.37!

of the solutionc~l!, corresponding to the canonical normalization, and of the solutioncC(l),
corresponding to the normalization
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i

2 EC

dl8∧dl̄8

l2l8
g~l8!G~l8!21.

Therefore, theD3M matrix solutions

x~ l !~u,n!5E
C
C~ l !~l!h~l!dl∧dl̄, l 51,2,

of the Laplace equations,

Li j @H ~ l !#x~ l !5L i j @H ~ l !#x~ l !50, l 51,2, i , j 51,...,N, iÞ j ,

satisfy the Combescure relations

] ix
~2!5Ci

~2,1! ] ix
~1!, D ix

~2!5~TiCi
~2,1!!D ix

~1!, i 51,...,N.

At last, from Eq.~10.37! we have the relation

C~x!5x1xC ,

where

C~x!5E
C
C~l!h~l!dl∧dl̄,

xC5E
C
cC~l!h~l!dl∧dl̄.

In the scalar caseD51, theM-dimensional vectorsx( l ), l 51,2,C(x), x andxC are related by the
Combescure transformation formulas of Sec. IV.

D. Fundamental transformations and their composition

So far we have used only different normalizations of the]̄ problem. In order to generate mor
solutions of the Laplace equation, this mechanism must be combined with a more classic
discovered long ago46 in the context of 111-dimensional problems.

Proposition 10.5: Let us consider the (by assumption uniquely solvable)]̄ problem,

]l̄x̃~l!5]l̄h̃~l!1E
C
x̃~l8!R̃~l8,l!dl8∧dl̄8, l,l8PC, ~10.38!

where the]̄ datum R̃(l8,l) is related to R(l8,l) through the transformation

R̃~l8,l!5g~l8!R~l8,l!g~l!21, ~10.39!

where g(l) is a diagonal matrix [more generally—commuting with Ki(l)# and independent ofn,
u, and R0(l8,l) is assumed to be zero in a neighborhood of the zeros and poles ofdetg(l). Then
we have the following.

(i) If h̃ satisfies the equationDni
(]l̄h̃)50, then the corresponding solutions of (10.38

(10.39) give rise to solutions of the Laplace equations.

(ii) If x(l) solves the]̄ problem (10.1), then the functionx(l)g(l)21 solves the]̄ problem
(10.38), corresponding to the inhomogeneous term:

]l̄h̃5~]l̄h!g~l!211x~l!]l̄g~l!21. ~10.40!
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Proof: SinceR̃(l8,l) satisfies Eqs.~10.3! and~10.4!, then the results of Propositions~10.1!–
~10.4! apply also to this case.~ii ! follows from taking the]l̄ derivative ofx(l)g(l)21 and using
~10.1!. h

The matrix functiong(l) appearing in this proposition is usually chosen to be a ratio
function of l, such thatg(l)→1 as l→`, in order to preserve the properties at` of the ]̄
problem. We shall show now that the simplest nontrivial example of this type,

g~l!511
b

l2m
, ~10.41!

corresponds to the Fundamental Transformation of a quadrilateral lattice and conjugate ne
Proposition 10.6: LetF~l! and F̃(l) be the solutions of, respectively, the]̄ problems (10.1)

and (10.38) [with g(l) defined in (10.41)], corresponding to the normalizations

h5a1
i

2 EC

dm∧dm̄

l2m
g~m!G~m!21, h̄5a1

i

2 EC

dm∧dm̄

l2m
g~m!g~m!21G~m!21.

Let w~l,m! be the solution of the]̄ problem (10.1) corresponding to the normalizationh5(l
2m)21. Define the function

C̃~l!ªF̃~l!G~l!; ~10.42!

then we have the following.

(i) C̃(l) satisfies the Laplace equations,

Li j @F~H !#C̃~l!50, L i j @F~H !#C̃~l!50, i , j 51,...,N, iÞ j , ~10.43!

and the functions

F~Hi !ªF̃~l i !Gi , i 21,...,N, ~10.44!

satisfy the matrix Darboux and MQL equations.

(ii) C̃(l) is the fundamental transform ofC~l!, i.e.,

C̃~l!5@C~l!1Ac~l,m!#S 11
b

l2m D 21

, ~10.45!

where the matrix A is defined in the following two ways:

A52C~n!„c~n,m!…21, A5C̃~m!b,
~10.46!

„C~n!…lmªC lm~nm!, „c~n,m!…lmªc lm~nm ,m!, l ,m51,...,D,

and nm , m51,...,D are the zeros ofdetg(l).
Proof: ~i! is an immediate consequence of part~i! of Proposition 10.5. To prove part~ii !, first

remark that

]l̄„g~l!21
…5p(

k51

L

~nk2m!d~l2nk!Pk ,

where Pk , k51,...,D are the usual matrix projectors: (Pk) lm5d lkdkm . Then observe that the
matrix B, defined by the following generalized equation:

@F~l!1Bw~l,m!#g~l!2150,
                                                                                                                



ion of
ns

-

985J. Math. Phys., Vol. 41, No. 2, February 2000 Transformations of quadrilateral lattices

                    
is given by

B52F~n!„w~n,m!…21,

where

„F~n!…lm5F lm~nm!, „w~n,m!…lm5w lm~nm ,m!, l ,m51,...,D.

The uniqueness of the]̄ problem~10.1! implies that

F̃~l!2@F~l!1Bw~l,m!#S 11
b

l2m D 21

50. ~10.47!

In addition, sinceF̃(l) is analytic inl5m, it follows that B5F̃(m)b. Multiplying ~10.47! by
G(l) one obtains Eq.~10.45!, with A5BG(m). h

If the ]̄ problem is scalar (D51), then

C̃~l!5FC~l!2
C~n!

c~n,m!
c~l,m!G l2m

l2n
, n5m2b,

and the quadrilateral lattices~and conjugate nets!,

x5E
C
C~l!h~l!dl∧dl̄, xC~m!5E

C
c~l,m!h~l!dl∧dl̄,

F~x!5E
C
C̃~l!

l2n

l2m
h~l!dl∧dl̄,

are related through the Fundamental Transformation~see Sec. VII!,

F~x!5x2
C~n!

c~n,m!
xC~m!.

This result can be generalized in a straightforward way to the case of the composit
several fundamental transformations. In terms of the]̄ datum, the sequence of transformatio
reads as

R~l,l8!→R1~l,l8!5g1~l!R~l,l8!g1~l8!21→R12~l,l8!

5g2~l!R1~l,l8!g2~l8!21

5g1~l!g2~l!R~l,l8!„g1~l8!g2~l8!…21→¯→R12̄ L

5)
k51

L

gk~l!R~l,l8!)
k51

L

„gk~l8!…21,

where

gi~l!511
b i

l2m i
, i 51,...,L. ~10.48!

Therefore the sequence ofL fundamental transformationsgi(l) is equivalent to a single transfor
mation, in which
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g~l!5)
k51

L S 11
bk

l2mk
D . ~10.49!

Furthermore, the commutation of the diagonal matricesgi(l), i 51,...,L implies that the sequenc
of fundamental transformations does not depend on the order in which it is obtained~the famous
permutability theorem therefore has a very elementary interpretation in the]̄ formalism!. The
corresponding transformation in configuration space is described by the following.

Proposition 10.7: LetF~l! and F̃(l) be the solutions, respectively, of the]̄ problems (10.1)
and (10.38), (10.39), (10.49), withmkÞm j , kÞ j , corresponding to the normalizations,

h5a1
i

2 EC

dm∧dm̄

l2m
g~m!G~m!21, h̃5a1

i

2 EC

dm∧dm̄

l2m
g~m!g~m!21G~m!21.

Let w(l,mk), k51,...,L be the solutions of the]̄ problem~10.1! corresponding to the normaliza
tions h5(l2mk)

21, k51,...,L. Define the functionC̃(l) as in ~10.42!; then we have the fol-
lowing.

(i) The functionC̃(l) satisfies the Laplace equations,

Li j @H̃#C̃~l!50, L i j @H̃#C̃~l!50, i , j 51,...,N, iÞ j , ~10.50!

and

Hi5F~l i !Gi , H̃ i5F̃~l i !Gi , i 51,...,N.

(ii) The following relation holds:

C̃~l!5FC~l!1 (
k51

L

A~k!c~l,mk!G)
k51

L S 11
bk

l2mk
D 21

,

where the D3D matrices A(k), k51,...,L are defined in two independent ways; through t
following linear system of L equations for D3D matrices:

(
k51

M

A~k!c~ni ,mk!52C~ni !, i 51,...,L,

where

„C~ni !…lm5C lm~n im!, „c~ni ,mk!…lm5c lm~n im ,mk!, l ,m51,...,D,

and n im , m51,...,D are the zeros ofdetgi(l), and through the equations

A~k!5C̃~mk!bk )
l 51,lÞk

L S 11
b

mk2m l
D , k51,...,L.

Proof: The proof is a straightforward generalization of that of Proposition 10.6. h

In the scalar case, the above equations simplify to

C̃~l!5FC~l!1 (
k51

L

A~k!c~l,mk!G)
k51

L
l2mk

l2nk
, nk5mk2bk ,

(
k51

L

A~k!c~ni ,mk!52C~n i !, i 51,...,L.
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Therefore, theM-dimensional vector,

x̃5E
C
C̃~l!)

k51

L
l2nk

l2mk
h~l!dl∧dl̄,

obtained combining in an arbitrary orderL fundamental transformations described by the Com
escure vectors,

xC
~k!5E

C
c~l,mk!h~l!dl∧dl̄, k51,...,L,

satisfies the following equation:

x̃5x1 (
k51

L

A~k!xC
~k! ,

which agrees with Eq.~7.19!.

E. Lévy, adjoint Le´vy, and Laplace transformations

As we have seen in Sec. VIII, the fundamental transformation contains, as significan
metric limits, the Le´vy, adjoint Lévy, and Laplace transformations. Here we shall briefly disc
the analytic counterpart of these geometric limits, limiting our considerations to the scalar
Proposition 10.8: LetF~l!, F̃(l), andw~l,m! be the solutions of thescalar]̄ problems (10.1) and
(10.38), (10.39) considered in Proposition (10.6) and therefore connected by the fundam
transformation (10.45). Then we have the following.
(1) If n→l i , the fundamental transformationF reduces to the adjoint Le´vy transformationLi* :

C̃~l!→FC~l!2
Hi

Hi~m!
c~l,m!G l2m

l2l i
, n→l i ,

⇒F~x!→x2
Hi

Hi~m!
x~m!5Li* ~x!, n→l i . ~10.51!

(2) If m→l j , then the fundamental transformationF reduces to the Le´vy transformationLj :

C̃~l!→FC~l!2
C~n!

D jC~n!
D jC~l!G l2l j

l2n
, m→l j ,

⇒F~x!→x2
C~n!

D jC~n!
D jx5Lj~x!, m→l j . ~10.52!

(3) If n→l i and m→l j , then the Fundamental TransformationF reduces to the Laplace
TransformationLj i :

C̃~l!→FC~l!2
Hi

D jHi
D jC~l!G l2l j

l2l i
, n→l i , m→l j ,

⇒F~x!→x2
Hi

D jHi
D jx5Lj i ~x!, n→l i , m→l j . ~10.53!

Proof: We first observe that
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C~n!

c~n,m!
5

F~n!

G21~m!w~n,m!
——→

n→l i F~l i !

G21~m!w~l i ,m!
5

Hi

Hi~m!
,

implying Eq. ~10.51!. Equation~10.52! follows from

c~l,m!

c~n,m!
5

w~l,m!G~l!

w~n,m!G~n!
——→

m→l i w~l,l i !G~l!

w~n,l i !G~n!
5
* „Dni

F~l!…G~l!

„Dni
F~n!…G~n!

5
D iC~l!

D iC~n!
,

where the equality5
*

is a consequence of Eq.~10.34!. Finally, Eq.~10.53! follows from ~10.52!,
observing that

C~n!

D jC~n!
5

F~n!G~n!

D j„F~n!G~n!…
——→

n→l i Hi

D jHi
.

h

Remark:~i! The Lévy transformation was first derived, in the]̄ context, in Ref. 16, in the
particular case in whichC~l! is canonically normalized.

~ii ! We have seen that the limits of the fundamental transformation have a very eleme
interpretation in the]̄ formalism as limits on the zeros and poles of the corresponding tran
mation functiong(l); this is another indication of the power of this approach. As a consequ
of that, the basic identities~3.16!–~3.18! associated with the Laplace transformations have
following elementary interpretation in terms of multiplications of rational functions:

l2l i

l2l j

l2l j

l2l i
51⇒Li j +Lj i 5 id,

l2l j

l2lk

l2l i

l2l j
5

l2l i

l2lk
⇒Ljk+Li j 5Lik ,

l2lk

l2l i

l2l i

l2l j
5

l2lk

l2l j
⇒Lki+Li j 5Lk j .

F. Finite transformations versus discretization

We finally conclude this section with a short discussion, in the framework of the]̄ formalism,
on the connections28 between finite transformations of integrable continuous systems and
integrable discrete analogs of such continuous systems. It is enough to observe that the
mental transformation of a conjugate net, which, on the]̄ level, reads as

R̃~l8,l!5S 11
b

l82m DR~l8,l!S 11
b

l2m D 21

,

can be formally interpreted as the shift in the additional discrete variablen0 described in Eq.
~10.35!, after the identifications:b5a0 , m5l0 . It is a simple exercise to verify that the funda
mental transformation~10.45! is equivalent to the relation~10.36!.
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27M. Mañas, A. Doliwa, and P. M. Santini, ‘‘Darboux transformations for multidimensional quadrilateral lattices. I,’’ P

Lett. A 232, 99–105~1997!.
28D. Levi and R. Benguria, ‘‘Ba¨cklund transformations and nonlinear differential-difference equations,’’ Proc. Natl. A

Sci. USA77, 5025–5027~1980!.
29D. E. Rowe, ‘‘The early geometrical works of Sophus Lie and Felix Klein,’’ inThe History of Modern Mathematics,

edited by D. E. Rowe and J. McCleary~Academic, New York, 1989!, pp. 209–273.
30E. P. Lane,Projective Differential Geometry of Curves and Surfaces~University of Chicago Press, Chicago, 1932!.
31L. P. Eisenhart,A Treatise on the Differential Geometry of Curves and Surfaces~Ginn and Company, Boston, 1909!.
32A. Doliwa, ‘‘Discrete integrable geometry with ruler and compass,’’ in Ref. 19, pp. 122–136.
33E. V. Ferapontov, ‘‘Laplace transformations of hydrodynamic type systems in Riemann invariants: periodic seque

J. Phys. A30, 6861–6878~1997!.
34P. Samuel,Projective Geometry~Springer-Verlag, Berlin, 1988!.
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The structure ofr-fold tensor products of irreducible tame representations of
U(`)5 lim→ U(n) are described, versions of contragredient representations and in-
variants are realized, and methods of calculating multiplicities, Clebsch–Gordan,
and Racah coefficients are given using invariant theory on Bargmann–Segal–Fock
spaces. ©2000 American Institute of Physics.@S0022-2488~00!00502-8#

I. INTRODUCTION

Let Gk andGk
C denote the unitary group and the general linear group, respectively. The

inductive limits

G`5 lim
→

Gk5 ø
k51

`

Gk

and

G`
C 5 lim

→
Gk

C5 ø
k51

`

Gk
C

may be defined as follows:
G`

C 5$g5(gi j ) i , j PNug is invertible and all but a finite number ofgi j 2d i j 50% and

G`5$uPG`
C uu* 5u21%.

Representation theory ofG` andG`
C was first studied by Segal in Ref. 1, then by Kirillov in Re

2, followed by Stratila and Voiculescu in Ref. 3, Pickerell in Ref. 4, Ol’shanskii in Refs. 5
Gelfand and Graev in Ref. 8, and V. Kac in Ref. 9. This list is certainly not exhaustive, an
most complete list of references can be found in the comprehensive and important wo
Ol’shanskii.

Following Ol’shanskii we call a unitary representation ofG` tame if it is continuous in the
group topology in which the descending chain of subgroups of the type$(0

1k

*
0 )%, k51,2,3,...

constitutes a fundamental system of neighborhoods of the identity 1` . Assume that for eachk a
unitary representation (Rk ,Hk) of Gk is given and an isometric embedding~of Hilbert spaces!
i k11
k :Hk→Hk11 commuting with the action ofGk @i.e., i k11

k +Rk(u)5Rk11(u)+ i k11
k # is given. If

H` denotes the Hilbert space completion oføk51
` Hk , then there exists uniquely a unitary repr

sentationR` of G` on H` defined by

a!Electronic mail: hower@uwec.edu
b!Electronic mail: tonthat@math.uiowa.edu
9910022-2488/2000/41(2)/991/25/$17.00 © 2000 American Institute of Physics
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R`~u! f 5Rk~u! f if uPGk and f PHk .

The representation (R` ,H`) is called theinductive limitof the sequence (Rk ,Hk), and we have
the following Theorem~see Ref. 5 for a proof!.

Theorem I.1: If the representations(Rk ,Hk) are all irreducible then the inductive limi
(R` ,H`) is also irreducible.
Let

lGk
5~m1 ,...,mk!, m1>m2>...>mk>0, miPNø$0%, i 51,..,k.

Then Ol’shanskii proved the following.
Theorem I.2: All unitary irreducible tame representations of G` are the inductive limits of

the sequences of the form$rl , VlGk%, where in each(l)5(m1 ,m2 ...) the mi are equal to 0 for
sufficiently large i.

It follows from ‘‘Weyl’s unitarian trick’’ that all irreducible tame representations ofG` are
inductive limits of sequences of the form$rl , VlGk%. Following Ol’shanskii a representation o
G` is calledholomorphicif it is a direct sum~of any number! of irreducible tame representation

In this paper we consider the problem of decomposing anr-fold tensor product of unitary
irreducible tame representations ofG` . Such a problem was investigated in Refs. 2 and 8 for
simplest type of tame irreducible representations, namely the fundamental~or principal! ones. In
light of the recent interest in Physics in the representation theory of U` it is natural to consider
such an important problem in this theory.

The general problem can be stated as follows: Givenr tame irreducible (G` ,V(l i )
`
) modules,

choose a basisul i ,j i& for each i ~such a basis always exists, for example, in the general
Gelfand–Z̆etlin basis given in Ref. 8, but we do not limit ourselves only to this basis!. Form the
r-fold tensor product (l1)`

^¯^ (l r)
` and calculate the number of times the irreducible rep

sentation (l)` occurs in the tensor product. The first method to compute this multiplicity i
observe that the spectral decomposition~or Clebsch–Gordan series! stabilizes fork sufficiently
large and then apply the Weyl determinant formula for U(k) for sufficiently largek. This fact is
proved rigorously as a theorem in Sec. III. In Ref. 10 it was shown that this multiplicity@for
SU(k)# can be computed as solutions of Diophantine equations arising from the invarian
SU(k). The first part of our program which is similar to the strategy given in Ref. 10 is as follo
Instead of computing the multiplicity of (l)` in the tensor product (l1)`

^¯(l r)
` we look at

what is equivalent, the multiplicity of the identity representation in the augmented tensor pr
(l1)`

^¯^ (l r)
`

^ (l∨)` where (l∨)` is the contragredient representation of (l)`. But with
this approach we are facing two major difficulties. The first one pertains to the contragre
representation (l∨)`: as is well known~see, e.g., Ref. 7! an irreducible (G` ,V(l)`

) module can
be realized as a subspace of a generalized Bargmann–Segal–Fock space inn3` complex vari-
ables~see Sec. II for this realization!, but it is not known whether the irreducible (G` , V(l∨)`

)
module is likewise realizable. We prove in Sec. V that by ‘‘twisting’’ the action of the contra
dient representation and by using an appropriate embedding of Bargmann–Segal–Fock
Fn3k,Fn3(k11),¯ the (G` , V(l∨)`) module can also be realized as a submodule o
Bargmann–Segal–Fock spaceFn3` . The notable difference is that the signature of (l∨)` is
characterized by thelowest weightinstead of the highest weight and we will be dealing w
lowest weight vectorsinstead of highest weight vectors as in the case (G` , V(l)`

). Another
difficulty is that, realized as a submodule of the Bargmann–Segal–Fock spaceFn3` , it is not
clear that the tensor product (l1)`

^¯^ (l r)
`

^ (l∨)` considered as aG` module is a holomor-
phic representation; in particular, the identity representation might not occur in this tensor pr
Using a general reciprocity theorem for holomorphic representations of some infinite-dimen
groups ~see Ref. 11! we show that the tensor product (l1)`

^¯^ (l r)
`

^ (l∨)` is indeed a
holomorphic representation and that the multiplicity of the identity representation ofG` in this
augmented tensor product is indeed equal to the multiplicity of (l)` in the tensor product
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(l1)`
^¯(l r)

`. Having overcome this difficulty first, we still have to deal with a second ma
difficulty; the generators of SU(k) used in Ref. 10 which are determinants of matrices of ordek
become unmanageable whenk is large; furthermore, at the limit ask→` these determinants ar
certainly not members ofFn3` . Both of these problems can be dealt with as follows: instead
using the determinant-invariants of SU(k) we use the classical invariants of U(k) which are
generated by a system of algebraically independent polynomials, but more important, the n
of these polynomials depends only on the tensor product (l1)k^¯^ (l r)k^ (l∨)k and not onk;
in fact, the problems considered in Ref. 10 can be entirely solved using this new approach
it can be shown~see Ref. 12! that whenk→` these invariants tend to theirinverseor projective
limits which are infinite formal series of complex variables, but nevertheless remain algebra
independent and generate allG`

C ~or G`) invariants. By analogy with the definition ofrigged
Hilbert Spaces~cf., e.g., ‘‘Generalized functions’’ by Gelfand and Shilov, Vol. 4, p. 106! these
infinite formal series may be thought of as differential operators. Thus iff PFn3` andp is a G`

invariant then the inner product

^p, f &5p~D ! f ~ Z̄!uZ50

makes perfect sense sincef PFn3k for somek and those terms inp(D) whose column indices are
larger thank simply evaluate to zero. With this new interpretation of theG` invariants the method
of computing Clebsch–Gordan and Racah coefficients in Ref. 10 can be adapted to the
tensor products ofG` ; actually, both the Diophantine equations and the computations
Clebsch–Gordan coefficients are much simpler, since theG` invariants are much simpler.

II. PRELIMINARIES

Let Cn3k denote the vector space ofn row by k column matrices overC, the field of complex
numbers. IfZ5(Zi j ) is an element ofCn3k, we let Z̄ denote its complex conjugate, and write

Z5Xi j 1A21Yi j , 1< i<n, 1< j <k.

If dXi j ~respectively, dYi j ) denotes the Lebesgue measure onR we let dZ
5)1< i<n, 1< j <k dXi j dYi j denote the Lebesgue product measure onRnk. Define a Gaussian mea
suredm on Cn3k by

dm~Z!5p2nk exp@ tr~ZZ̄t!#dZ,

where tr denotes the trace of a matrix. A mapf :Cn3k→C is said to beholomorphic square
integrableif it is holomorphic on the entire domainCn3k and if

E
Cn3k

u f ~Z!u2dm~Z!,`.

The holomorphic square integrable functions form a Hilbert space with respect to the inner
uct

~ f 1 , f 2!5E
Cn3k

f 1~Z! f 2~Z!dm~Z!, ~1!

of which the polynomial functions form a dense subspace. The inner product~1! is equivalent to
the inner product

^ f 1 , f 2&5 f 1~D ! f 2~ Z̄!uZ50 , ~2!
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wheref (D) is the differential operator obtained by formally replacingZi j by the partial derivative
]/]Zi j . We denote this Hilbert space byFk5F(Cn3k). The natural embedding ofCn3k into
Cn3(k11) given by

Z°S 0

Z ]

0
D PCn3~k11!

induces an isometric embedding

i k11
k :Fk→Fk11 ,

so that the collection$Fk ,i k11
k % forms a directed system. We can then take theinductive limit

F`5 lim
→

Fk ~where the bar indicates closure with respect to the norm!, with the natural inclusion

i k :Fk→F` .

Formally, elements ofF` are realized as equivalence classes@ f a#, where

f a; f b whenever f b5 i b
a~ f a! and a<b, a,bPN.

Since in our case we haveFk,Fk11 , we can realize this space as

F`5 ø
k51

`

Fk.

If Gk5U(k) @or U(k)C5GL(k,C)# we also have the natural inclusion

j k11
k :Gk→Gk11

given by

g°S 0

g ]

0

0 ¯ 0 1

D PGk11 . ~3!

We can then take the inductive limitG`5 lim
→

Gk , with the natural inclusionj k :Gk→G` . Again

elements ofG` are formally defined as equivalence classes@gk#, where we identify somegk

PGk with its inclusions intoGk11 , Gk12 , etc. If we letRk denote the representation ofGk on Fk

given by right translation

Rk~g! f ~Z!5 f ~Zg!, ZPCn3k, gPGk ,

then the following diagram commutes

Gk3Fk →
Rk

Fk

j k11
k 3 i k11

k ↓ ↓ i k11
k ~4!

Gk113Fk11 →
Rk11

Fk11
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and so the representationR5 lim
→

Rk of G` on F` is well defined by

R~@gk# !@ f k#5@Rk~gk! f k#, ~5!

called theinductive limit of the representationsRk on F` , and we have commutativity of the
diagram

Gk3Fk →
Rk

Fk

j k3 i k↓ ↓ i k

G`3F` →
R

F` .

Let Dk,Gk be the diagonal subgroup. LetZk
1,Gk be the unipotent subgroup of uppe

triangular matrices with ones along the main diagonal and letZk
2 be the analogous lower trian

gular subgroup. If (M )5(M1 ,...,Mk) is any collection of integers, we define a holomorph
character

p~M !~d!5d11
M1d22

M2
¯dkk

Mk dPDk .

In this context an elementf PFk is said to be aweight vectorof the representationRk with weight
~M! if

@Rk~d! f #~Z!5 f ~Zd!5p~M !~d! f ~Z!, ;dPDk .

If f is a weight vector, and if

@Rk~z! f #~Z!5 f ~Zz!5 f ~Z!, ;zPZk
1

then f PFk is a said to be ahighest weight vectorof the representationRk . Similarly if f is a
weight vector, and if

@Rk~z! f #~Z!5 f ~Zz!5 f ~Z!, ;zPZk
2

then f PFk is a said to be alowest weight vectorof the representationRk . SinceGk5U(k) or
GL(k,C), each irreducible representation ofGk in Fk is finite dimensional and so admits
‘‘unique’’ ~up to multiplication by a nonzero scalar! highest weight vector with highest weigh
(m)5(m1 ,m2 ,...,mk), and a unique lowest weight vector with lowest weight (mk ,mk21 ,...,m1).
This highest~or lowest! weight then characterizes each irreducible representation ofGk , and is
called thesignatureof the representation. By the Borel–Weil theorem a necessary and suffi
condition for~m! to be the highest weight of an irreducible polynomial representation ofGk on Fk

is thatm1>m2>¯>mk>0. V(m) is then cyclically generated as aGk module by the action ofGk

on any one of its elements, in particular on its highest~or lowest! weight vector. LetBk,GL(k,C)
be the Borel subgroup of lower triangular matrices and for ak-tuple of non-negative integer
(m)5(m1 ,m2 ,...,mk) we define a holomorphic character

p~m!~b!5b11
m1b22

m2
¯bkk

mk, bPBk . ~6!

As a consequence of the Borel–Weil theorem~see, e.g., Ref. 13!, any irreducible holomorphic
representation ofGk with signature (m)5(m1 ,m2 ,...,mn) can be explicitly realized as the rep
resentationRk on the subspace of polynomial functions inFk5F(Cn3k) which satisfy the cova-
riant condition

f ~bZ!5p~m!~b! f ~Z!, bPBn . ~7!
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We denote this subspace byVk
(m) , the restriction ofRk to this subspace byRk

(m) , and where
necessary we explicitly designate this irreducible representation by the pair (Rk

(m),Vk
(m)).

For eachk51,2,..., letVk be a subspace ofFk , on which the representationRk of Gk is
irreducible. Suppose also that the following diagram commutes

Gk3Vk →
Rk

Vk

j k11
k 3 i k11

k ↓ ↓ i k11
k ~8!

Gk113Vk11 →
Rk11

Vk11

or equivalently, that the restriction ofRk11 to Gk contains a representation equivalent toRk . In
this case we writeVkdVk11 , and it is well documented in the literature that the representa
R5 lim

→
Rk of G` on V5 lim

→
Vk is also irreducible.~For detailed expositions of inductive limi

representations see Refs. 8, 2, and 5!.
If Vk is an irreducible representation ofGk with signature

~m!5~m1 ,m2 ,...,mk! with m1>m2>¯>mk>0,

and if Vk11 is an irreducible representation ofGk11 with signature (h)5(h1 ,h2 ,...,hn ,hn11) it
is also well known thatVkdVk11 or equivalently written (m)d(h) if and only if

hi>mi>hi 11 , i 51,...,k.

In particular, if (m1 ,m2 ,...,mk) is the signature of an irreducible representation ofGk and
(m1 ,m2 ,...,mk,0) is the signature of an irreducible representation ofGk11 , then

~m1 ,m2 ,...,mk!d~m1 ,m2 ,...,mk,0!

and it is easy to see that iff max is a highest weight vector for an irreducible representation ofGk

with highest weight (m1 ,m2 ,...,mk) then f max is also a highest weight vector of the irreducib
representation ofGk11 with highest weight (m1 ,m2 ,...,mk,0). We denote the inductive limit o
the representations

~m1 ,m2 ,...,mk!d~m1 ,m2 ,...,mk,0!d~m1 ,m2 ,...,mk,0,0!d¯

by

~m1 ,m2 ,...,mk,0,...!5~m1 ,m2 ,...,mk ,0W !5~m!`

and realize this representation as the submodule ofF` generated by the action ofG` on this
highest weight vector. In the sequel we may also require more explicit notation: If

is the signature of an irreducible representation ofGk call the integersm1 ,m2 ,...,ml ,0 theentries,
we sayl is thelengthof the signature~i.e., if the signature has at mostl nonzero entries! and write
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or just (m)k if it is unnecessary to specify the length. With this notation we denote the sign
of the inductive limit of the representations

~m1 ,m2 ,...,ml !d~m1 ,m2 ,...,ml ,0!d~m1 ,m2 ,...,ml ,0,0!d¯5~m! l
kd~m! l

k11d~m! l
k12d¯

by

~m! l
`5~m1 ,m2 ,...,ml ,0,0,0,...!5~ml ,m2 ,...,ml ,0W !.

III. STABILITY OF SPECTRAL DECOMPOSITIONS

We motivate this section with the following example. It is readily computed using one o
standard formulas~for e.g., Ref. 13! that the tensor product of the irreducible representation
G2 @5U~2! or GL(2,C)# decomposes as a direct sum

~1,0! ^ ~2,0! ^ ~2,0! ^ ~3,0!5~8,0!13~7,1!15~6,2!15~5,3!12~4,4! ~9!

and the tensor product of irreducible representations ofG4 ,

~1,0,0,0! ^ ~2,0,0,0! ^ ~2,0,0,0! ^ ~3,0,0,0!

5~8,0,0,0!13~7,1,0,0!15~6,2,0,0!15~5,3,0,0!12~4,4,0,0!13~6,1,1,0!

16~5,2,1,0!15~4,3,1,0!13~4,2,2,0!12~3,3,2,0!

1~5,1,1,1!12~4,2,1,1!1~3,3,1,1!1~3,2,2,1!. ~10!

But notice that the first line of~10! is just ~9!, the spectrum ofG2 embedded in the spectrum o
G4 . In this case we say that the spectrum ofG4 containsthe spectrum ofG2 , or that the spectrum
of G2 appears in the spectrum ofG4 . Furthermore, it is routine to check that the spect
decomposition of irreducible representations ofG5 is given by

~1,0,0,0,0! ^ ~2,0,0,0,0! ^ ~2,0,0,0,0! ^ ~3,0,0,0,0!

5~8,0,0,0,0!13~7,1,0,0,0!15~6,2,0,0,0!15~5,3,0,0,0!12~4,4,0,0,0!

13~6,1,1,0,0!16~5,2,1,0,0!15~4,3,1,0,0!13~4,2,2,0,0!12~3,3,2,0,0!

1~5,1,1,1,0!12~4,2,1,1,0!1~3,3,1,1,0!1~3,2,2,1,0! ~11!

and that the corresponding spectral decompositions ofG6 ,G7 ,... are thesame, i.e., compose
entirely of the embedding of the spectrum ofG4 . In this case we say the spectral decomposit
stabilizes.

Proposition III.1: If (a)k
k5(a1 ,a2 ,...,ak) and (b)k

k5(b1 ,...,bk) are the signatures of irre-
ducible representations of Gk , and if (a)k

k115(a1 ,a2 ,...,ak,0) and (b)k
k115(b1 ,...,bk,0) are

the signatures of irreducible representations of Gk11 , then the spectrum of(a)k
k

^ (b)k
k appears in

the spectrum of(a)k
k11

^ (b)k
k11. Furthermore, the spectrum of(a)k

K
^ (b)k

K stabilizes for K
sufficiently large.

Proof: We first note that, in the special case where

by Ref. 13 the spectral decomposition of (a)1
k

^ (b)k
k is given by the ‘‘Weyl formula,’’ which is

equivalent to applying the multiplierGa1
to the signature (b)k

k5(b1 ,...,bk) where

Ga1
~b1 ,...,bk!5 (

n11¯1nk5a1
0<n i 11<si

~b11n1 ,...,bk1nk!.
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Here, and in what follows of this proof, the Weyl formula also requires the condition th
<n i 11<si wheresi5mi2mi 11 , and we will refer to a multiplier of this type as asimple multi-
plier.

Now applying this simple multiplier to the signature (b)k
k11 we have

Ga1
~b1 ,...,bk,0!5 (

n11¯1nk1nk115a1
0<n i 11<si

~b11n1 ,...,bk1nk,01nk11!

5 (
n11¯1nk115a1

nk1150

~b11n1 ,...,bk1nk,01nk11!

1 (
v11¯nk115a1

nk11Þ0

~b11n1 ,...,bk1nk,0,nk11!.

But the first sum, withnk1150, is just the spectrum of (a)1
k

^ (b)k
k contained in the spectrum o

(a)1
k11

^ (b)k
k11.

We next note that a similar situation occurs when we apply a second simple multiplierGa2
to

the above-mentioned spectral decomposition (a)1
k11

^ (b)k
k11. That is, the sums are grouped in

those terms whose last entry is zero, and those terms whose last entry is nonzero;

Ga2
@~a!1

k11
^ ~b!k

k11#5Ga2
~Ga1

~b1 ,...,bk,0!!

5Ga2F (
n11¯1nk1nk115a1

nk1150

~b11n1 ,...bk1nk,01nk11!

1 (
n11¯nk1nk115a1

nk11Þ0

~b11n1 ,...,bk1nk,01nk11!G
5 (

n11¯1nk1nk115a1
nk1150

Ga2
~b11n1 ,...,bk1nk,0!

1 (
n11¯1nk1nk115a1

nk11Þ0

Ga2
~b11n1 ,...,bk1nk,01nk11!

5 (
n11¯1nk115a1

nk1150

(
m11¯1mn115a2

nk1150

~b11n11m1 ,...,bk1nk1mk,0!¥b f

1( ~other terms involving signatures whose last entry is nonzero!.

We then extend this idea to the general case where the spectral decomposition oa)k
k

^ (b)k
k is given by applying the multiplierGa

k
k to the signaturebk

k where Ga
k
k is a compound

multiplier computed as the ‘‘Weyl Determinant,’’13
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Ga
k
k5U Ga1

Ga111 ¯ Ga11~k21!

Ga221 Ga2 ¯ Ga21~k22!

] ¯ ]

Gak2~k21! Gak2~k22! ¯ Gak

U .

Here the simple multipliersGa are regarded as permutable operators and the determina
expanded in the usual way, withG051 andGa50 for a,0. From this last statement it is obviou
that the compound multiplierGa

k
k11 is equal toGa

k
k since thek11st row used to compute th

determinant corresponding toGa
k
k11 is just ~0,..., 0, 1!.

Now for notational convenience we set the simple multiplierG i , j5Ga i 2( i 2 j ) and using the
usual formula for determinant~summing overSk , the symmetric group onk symbols! we have

Ga
k
k115Ga

k
k5 (

sPSk

sgn~s!Ga1s~1!¯Gaks~k! .

So

~12!

~13!

But the sum~13! is just the spectrum of (a)k
k

^ (b)k
k appearing in the spectrum of (a)k

k11

^ (b)k
k11. Finally, the requirement that 0<v i 11<mi2mi 11 guarantees that the application of

simple multiplier to a signature (m1 ,...,ml ,0,...,0) extends the length of the signature by at m
one, since 0<n l 11<(ml 112ml 12)50. Thus, since there are onlyk sums in~12!, application of
a compound multiplier corresponding to a signature of lengthk decomposes the tensor produ
into a spectrum of signatures of length at mostl 1k, proving that the spectrum stabilizes. h

IV. A RECIPROCITY THEOREM

According to Ref. 11 we have the following theorem regardingdual representationsof
Bargmann–Segal–Fock spaces.

Theorem IV.1: Let

G1,G2,¯,Gk,Gk11,¯
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be a chain of compact classical groups. Let G` denote the inductive limit of the Gk’s. Let RG`
and

RG8
8 be given dual representations onFn3` . Let H` be the inductive limit of a chain of compac

subgroups

H1,H2,¯,Hk,Hk11,¯

with Hk,Gk , and let RH`
be the representation of H̀on Fn3` obtained by restricting RG`

to

H` . If there exists a group H8.G8 and a representation RH8
8 on Fn3` such that RH8

8 is the dual
to RH`

and RG8
8 is the restriction of RH8

8 to the subgroup G8 of H8 then we have the following

multiplicity free decompositions ofFn3` into isotypic components:

Fn3`5(
~l!

% In3`
~l! 5(

~m!
% In3`

~m! ,

where~l! is a common irreducible signature of the pair(G8,G`) and ~m! is a common signature
of the pair (H8,H`).

If lG`
~respectively, lG8

8 ) denotes an irreducible unitary representation of class~l! andmH`

~respectivelymH8
8 ) denotes an irreducible unitary representation of class

~m!, then the multiplicity

dim@HomH`
~mH`

: lG`uH`
!#

of the irreducible representationmH`
in the restriction to H̀ of the representationlG`

is equal

to the multiplicity

dim@HomG8~lG8
8 : mH8uG8

8 !#

of the irreducible representationlG8
8 in the restriction of the representationmH8

8 .
Note thatG8 andH8 are finite dimensional Lie groups and that we have a similar theorem

the pairs (G8,Gk) and (H8,Hk) whereG8 andH8 remain fixed for allk. It follows that

dim@HomH`
~mH`

: lG`uH`
!#

remains constant and the spectral decomposition oflGkuHk
stabilizes fork large. To apply this

theorem to our problem we first let

acting as exterior tensor product representations on

V~m1!`
^¯^ V~mr !`

,Fn3` ,

andG85U(p1)3¯U(pr) acting onFn3` .
ThenH`5U` is the interior tensor product representation on

V~m1!`
^¯^ V~mr !`

,

and H85U(n), where recall thatn5p11p21¯1pr . This gives the multiplicity of the repre
sentation of Ù with signature (m)` in (m1)`

^¯^ (mr)
` in terms of the multiplicity of the

representation of the corresponding representations of U(p1)3¯3U(pr) in the corresponding
representation on U(n). Next we let
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acting as exterior tensor product representations on

V~m1!`
^¯^ V~mr !`

^ V~m∨!`
,Fn3`

andG85U(p1)3¯3U(pr)3U(q) acting onFn3` . ThenH`5U` andH85U(p,q) wherep
1q5n, p11...1pr5p. This gives the multiplicity of the representation of U` with signature
(0,...,0,...)` in the tensor product (m1)`

^ ...^ (mr)
`

^ (m∨)` in terms of the multiplicity of the
representation with signature (m1)n

^¯^ (mr)
n

^ (m∨)n of U(p1)3¯3U(pr)3U(q) in the ho-
lomorphic discrete series of U(p,q) with signature~lowest highest weight!

Note that these two applications of this theorem can be used together to give another p
Theorem VI.1

V. REALIZATION OF THE CONTRAGREDIENT REPRESENTATION

A representationr of any groupG on a vector spaceV induces in a natural way a represe
tation r* ~said to becontragredientto r! on its dual spaceV* by

r* ~g!f~v !5f~r~g21!v !, fPV* , gPG.

In this section, by making a formal change of variable, we are able to realizeRk* ~the represen-
tation contragredient toRk) as the representationRk

∨ on a subspace of polynomial functions of th
Fock spaceFk

∨ .
Let ^u& be the inner product on the spaceFk given by~2! or the equivalent inner product~1!.

Then for anyf PFk and for eachk51,2,3,... the mapping

F:Fk→Fk*

given by

@F f #~h!5^hu f &, hPFk

is a conjugate linear isomorphism~or anti-isomorphism! from Fk onto its dual spaceFk* , and it is
routine to check~see Ref. 10! thatF intertwines the representationsRk andRk* . It follows that if

(Rk
(m) ,Vk

(m)) is an irreducible representation ofGk , and ifVk
(m* )5F(V(m)), then (Rk

(m* ) ,Vk
(m* )) is

also an irreducible representation ofGk . It is shown in Appendix A of Ref. 10 that the highe
weight vector of (Rk

(m) ,Vk
(m)) with highest weight (m1 ,m2 ,...,mk) is mapped to the lowest weigh

vector of (Rk
(m* ) ,Vk

(m* )) with weight (2m1 ,2m2 ,...,2mk), and the lowest weight vector o

(Rk
(m) ,Vk

(m)) with weight (mk ,...,m1) is mapped onto the highest weight vector of (Rk
(m* ) ,Vk

(m* ))

with weight (2mk ,...,2m1). We will realize (Rk
(m* ) ,Vk

(m* )) on a Fock spaceFk
∨ as the repre-

sentation (Rk
(m)∨

,V(m)∨
) constructed as follows.

Define (Cn3k)∨ as the vector space of complexn3k matrices with the reverse ordering

w5S wn,k ¯ wn,1

] ]

w1,k ¯ w1,1

D P~Cn3k!∨.
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Let s5sk be thek3k matrix with ones along the off diagonal and zeros elsewhere,

s5S 0 0 ¯ 0 1

0 • 0

] • ]

0 • 0

1 0 ¯ 0 0

D PCk3k. ~14!

For future reference one easily checks that if we set

Z5S w11 ¯ w1k

] ]

wn1 ¯ wnk

D
thatW5snZsk and thats5s215sT. We then letFk

∨ be the Hilbert space of holomorphic squar
integrable functions on (Cn3k)∨ and define the actionRk

∨ of Gk on Fk
∨ as

@Rk
∨~g! f #~w!5 f ~w!~sgs!∨)5 f ~w~sg∨s!!.

The embedding of (Cn3k)∨ into (Cn3(k11))∨ given by

W°S 0

] W

0
D PCn3~k11!∨

then induces an embeddingi k11
k∨

:Fk
∨→Fk11

∨ , we have commutativity of the diagram

Gk3Fk
∨→

Rk
∨

Fk
∨

j k11
k 3 i k11

k∨ ↓ ↓ i k11
k∨

Gk113Fk11
∨ →

Rk11
∨

Fk11
∨

as in~4!, and the inductive limit representationR∨5 lim
→

Rk
∨ of G on F`

∨5 lim
→

Fk
∨ is well defined as

in ~5!.
We remark here that the spaceF`

∨ defined above and the spaceF` defined in Sec. II, are
certainly equalas sets, but are somewhat different as algebraic objects, being induced by diffe
embeddings. In what follows, the arguments presented in developing properties of the v
inductive limit representations are readily modified to any situation.

Let f max be the highest weight vector of (Rk
(m) ,Vk

(m)) with highest weight (m1 ,m2 ,...,mk).
Then by definition

R~d! f max~Z!5d11
m1
¯dkk

mkf max~Z!5p~m1 ,m2 ,...,mk!~d! f max~Z!.

Define f min
∨ (W)ªfmax(snWsk)5fmax(Z), so thatf max(Z)5fmin

∨ (snZsk). Then
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Rk
∨~d! f min

∨ ~W!5 f min
∨ ~Wsd∨s!5 f max~sn~Wsd∨s!s! since snWs5Z and d∨5d21

5 f max~Zd21!5p~m1 ,m2 ,...,mk!~d21! f max~Z!5p~2m1 ,2m2 ,...,2mk!~d! f max~Z!

5p~2m1 ,2m2 ,...,2mk!~d! f min
∨ ~snZsk!5p~2m1 ,2m2 ,...,2mk!~d! f min

∨ ~W!.

And for zPZ2,

Rk
∨~z! f min

∨ ~W!5 f min
∨ ~Wsz

∨s!5 f max~sn~Wsz∨s!s!5 f max~Zz∨!5 f max~Z!5 f min
∨ ~W!,

since ifzPZ2, thenz∨PZ1. Thus f min
∨ is a lowest weight vector for the representationRk

∨ , so if

we let Vk
(m∨) be theGk submodule generated by the actionRk

∨ on f min
∨ , then (Rk

∨ ,Vk
(m∨)) is an

irreducible representation ofGk characterized by its lowest weight (2m1 ,2m2 ,...,2mk), and it
follows that this representation is equivalent to the contragredient representation on the dua

(Rk
(m* ) ,Vk

(m* )), with the same lowest weight (2m1 ,2m2 ,...,2mk). Furthermore, ifbPBn , and
if we set b̃5snbsn then, using an argument similar to the above-mentioned one, we see th

f min
∨ ~ b̃W!5p~m!~b! f min

∨ ~W!

and thus the space (Rk
∨ ,Vk

(m∨)) can be characterized as the subspace of polynomial functions
transform covariantly with respect to the Borel subgroup, as in~6!. We remark here that we refe
to f min

∨ as alowest weight vectorbecause it is invariant under right translation by the subgroupZ2

which corresponds to the notion of lowest weight using the usual lexicographic ordering
strictly a matter of choice whether or not to refer to it as a highest weight vector with respe
the reverse lexicographic ordering.

With this realization, if (m)5(m1 ,m2 ,...,mk) is the signature of an irreducible representati
of Gk , then its contragredient representation has signature (m∨)5(2m1 ,2m2 ,...,2mk), and it
is routine to check that

~2m1 ,...,2mk!a~2m1 ,...,2mk,0!a~2m1 ,...,2mk,0,0!a¯ , ~15!

i.e., the appropriate diagram@see~8!# commutes, and so the inductive limit of the irreducib
representations~15! is an irreducible representation ofG` with signature

~m∨!`5:~2m1 ,2m2 ,...,2ml ,0W !

generated by the actionR∨ on the vectorf min
∨ . We will adopt the convention of referring to this a

the representation contragredient to the irreducible representation with signaturem)`

5(m1 ,m2 ,...,mk ,0W ), although it is theinductive limit of contragredient representations. W
summarize with

Theorem V.1: If the irreducible representation of G̀with signature

~m1 ,m2 ,...,ml ,0W !

is the inductive limit of the representations

~m1 ,m2 ,...,ml !d~m1 ,m2 ,...,ml ,0!d~m1 ,m2 ,...,ml ,0,0!d¯

then the inductive limit of contragredient representations

~m1 ,m2 ,...,ml !* d~m1 ,m2 ,...,ml ,0!* d~m1 ,m2 ,...,ml ,0,0!* d¯

is also an irreducible representation of G̀with signature

~2m1 ,2m2 ,...,2ml ,0W !.
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We illustrate this idea with the following example. For eachk51,2,3,... considerFk

5F(C13k). If

f ~m!~Z!5z1
m , Z5~z1 ,z2 ,...,zk!PC13k

it is easy to check that

f ~m!~Zd!5d11
mz1

m5p~m,0,...,0!~d! f ~m!~Z!

and

f ~m!~Zz!5 f ~m!~Z!, zPZ1

so thatf (m)(Z) is a highest weight vector of the representation, with highest weight

Right translation off (m) by Gk generates the finite dimensional vector spaceP(m)(C13k), of
homogeneous polynomials of degreem, so thatV(m,0,...,0)5P(m)(C13m) is an irreducible represen
tation of Gk with signature

Now P(m)(C13k) embeds isometrically intoP(m)(C13(k11)), which is also generated as aGk117

module by right translation of the highest weight vectorz1
m , which now has highest weight

Taking the inductive limit of the irreducible representations

we obtainV(m,0W ), the irreducible representation ofG` with signature (m,0W )5(m,0,0,...), which is
realized inF` as the subspace of homogeneous polynomials of degreem, generated by the action
R of G` on the highest weight vectorf (m)(Z)5z1

m ;

V~m,0W !5P~m!~z1 ,z2 ,...!, ZPC13`.

Now if w5(wk ,...,w2 ,w1)PC13k∨ set f (2m)(w)5w1
m .

If d5diagonal (d11,...,dkk)PDk , then

@Rk
∨~d! f ~2m!#~w!5 f ~2m!~w~sd ˇ s!!5~d11

21w11!
m5d11

2mf ~2m!~w!5p~2m,0,...,0!~d! f ~2m!~Z!

and if zPZk
2 then

@Rk
∨~z! f ~2m!#~w!5 f ~2m!~w~sz ˇ s!!5~z11w11!

m5 f ~2m!~Z! since z1151.

Thus f (2m) is a lowest weight vector for the representationRk
∨ with lowest weight
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and since this holds for allk, we denote the signature of the inductive limit of the representat

by (2m,0,...)5(2m,0W ), and the irreducible representationV(2m,0W ) is realized as the space o
homogeneous polynomials of degreem on C13`∨, generated byf (2m).

V~2m,0W !5P~m!~ ...,w2 ,w1!, wPC13`∨.

VI. DECOMPOSING TENSOR PRODUCTS OF IRREDUCIBLE REPRESENTATIONS

We now use this construction to realize the tensor product of inductive limits of irredu
representations. For

Zi5S z11
i z12

i
¯ z1k

i

] ]

zpi1
i zpi2

i
¯ zpik

i
D PCpi3k

set

S Z
WD5S Z1

Z2

]

Zr

W

D 5S z11 z12 ¯ z1k

] ]

zp1 zp2 ¯ zpk

wqk ¯ wq2 wq1

] ]

w1k ¯ w12 w11

D PCp3k
% Cq3k∨,

where p11¯1pr5p and p1q5n. For economy of notation, we now letFk be the set of
holomorphic square integrable functions onCp3k

% Cq3k∨ and define a representation ofGk on Fk

by

@Rk^ Rk
∨~g! f #S S Z

WD D5 f S S Zg

W~sg ˇ s! D D . ~16!

We then obtain the inductive limit representationR^ R ˇ of the groupG` on F`5 lim
→

Fk as

the representation induced by the embedding of

Cp3k
% Cq3k∨→Cp3~k11!

% Cq3~k11!∨

given by
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S Z
WD°S z11 z22 ¯ z1k 0

] ]

zp1 zp2 ¯ zpk 0

0 wqk ¯ wq2 wq1

] ]

0 w1k ¯ w12 w11

D PCp3~k11!
% Cq3~k11!∨ ~17!

and the embedding ofGk→Gk11 given by ~3!.
If

is the signature of an irreducible representation ofGk , and if (m) ˇ 5(2m1 ,2m2 ,...,
2mq,0,...,0) is the signature of the representation contragredient tom)
5(m1 ,m2 ,...,mq,0,...,0) we form then-tuple of positive integers

m5~m1
1,m2

1,...,mp1

1 ,m1
2,...,mp2

2 ,...,m1
r ,...,mpr

r ,m1 ,m2 ,...,mq!. ~18!

If Bi , i 51,...,r is the Borel subgroup of lower triangular matrices ofGL(pi ,C) and if Bq is
the Borel subgroup ofGL(q,C), for bPBq we first setb̃5sbs, wheres5sq as in~14!, and then
setB̃q5$b̃ubPBq%. The groupB13B23¯3Br3B̃q can then be identified with the group of al
lower triangular block matricesb of the form

~19!

wherep11¯1pr5p and p1q5n. It is a consequence of the Borel–Weil Theorem~see, e.g.,
Ref. 10! that for k>n the tensor product of irreducibleGk modules

V~m1!k
^¯^ V~mr !k

^ V~m∨ !k
~20!

with the Gk action given by~16!, can be realized as the subspace of polynomial functionf
PFk which, using the terminology of this paper, satisfy the covariant condition

f S bS Z
WD D5p~m!~b! f S S Z

WD D ~21!

for m as in ~18! and wherep (m)(b)5(b1)
11
m1

1

¯(b)qq
mq, as in ~6!. Since this covariant condition

holds for allk>n, we realize the tensor product of irreducibleG` modules

V~m1!`
^¯^ V~mr !`

^ V~m∨ !`

as the inductive limit of irreducibleGk modules~20! induced by the embeddings~17! and ~3!,
whose elements transform according to the covariant condition~21!.
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For eachk, let I k denote the identity representation ofGk appearing in the tensor product

V~m1!k
^¯^ V~mr !k

^ V~m∨ !k
.

then I k has signature

and by definition there exists a nonzero element

f kPV~m1!k
^¯^ V~mr !k

^ V~m∨ !k

such that@Rk^ Rk
∨#(g) f k5 f k for all gPGk . This means thatf k is invariant under the actionRk

^ Rk
∨ of Gk . Now it is well known from the theory of invariants~see, e.g., Ref. 14! that the

algebra of polynomial invariants under thisGk action is generated by thepq algebraically inde-
pendent polynomial functions

Pab
k ~Z,W!5~ZsWT!ab5(

t51

k

Za,tWb,t , 1<a<p, 1<b<q. ~22!

By our realization of theV(mi )k
and V(m∨)k

as Gk modules we obviously have the isometr
embedding

V~m1!k
^¯^ V~mr !k

^ V~m∨ !k
,V~m1!k11

^¯^ V~mr !k11
^ V~m∨ !k11

of Gk modules intoGk11 modules. It is routine to check that the appropriate diagrams comm
and as in~4! and~8! we obtain the representationR^ R∨ of G` on V(m1)`

^¯^ V(mr )`
^ V(m∨)`

as
an inductive limit of representations ofGk , k51,2,3,... . But the case of the identity representat
is entirely different. For eachk let Ik denote the one-dimensional subspace ofV(m1)k

^¯

^ V(mr )k
^ V(m∨)k

spanned by the above-mentioned invariant vectorf k . Then we obviously canno
define the inductive limit ofI k. However we can define theinverseor projective limitof the family
$Gk ,I k,Ik% as follows: For each pair of indicesj,k with j <k define a continuous homomorphis
f j

k :Ik→Ij such that

~a! f j
j is the identity map for allj,

~b! if i< j <k, thenf i
k5f j

k+f i
j .

Here we can takef j
k as thetruncation homomorphism, i.e.,f j

k is defined on the generatorsPab
k by

f j
k~Pab

k !5Pab
j for j <k. ~23!

The inverse limitof the system$Ik,f j
k% is then formally defined by

I`
ª lim

←
Ik5H ~ f k!P)

k
IkU f i5f i

j~ f j ! whenever i< j J .

Concretely we can define the functions

PabªPab
` 5 lim

k→`

Pab
k 5(

t51

`

Za,tWb,t , 1<a<p, 1<b<q ~24!

and make the following observations for eacha, b.
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~1! Pa,b is well defined on

Cp3`
% Cq3`∨5 ø

k51

`

~Cp3k
% Cq3k∨!.

~2! Pa,b is not an element ofF` , but instead lies in lim← Fk , the projective limitor inverse
limit of the Bargmann–Segal–Fock spacesFk ~for details on the projective limit representations
G` see Ref. 15!.

It follows that anyf PI` has the form

f 5( CIJK) ~Pab!g, ~25!

where the functionsPab are as defined in~24! for 1<a<p, 1<b<q, the g are non-negative
integers, the sums and products in~25! are finite, and theCIJK are constants with multi-indicesI,
J, andK. Let pk :I`→Ik denote the projection ofI` ontoIk. Let I ` denote the representation o
G` on I` given by the following equation:

I `~g! f 5( CIJK) lim
k→`

@~R^ R∨~g!Pab
k !g# for gPG` , f PI`. ~26!

SincegPG` means thatgPGj for somej, and fork> j

@R^ R∨~g!#Pab
k 5Pab

k

Eq. ~26! implies thatPab are G` invariant, and henceI `(g) f 5 f for all f PI`. It follows that
pk(I

`(g) f )5pk( f ) for all gPG` and f PI`.
Recall that ifPk5P(Cn3k) denotes the subspace of all polynomial functions ofCn3k thenPk

is dense inFk . Let

P`5 ø
k51

`

Pk

denote the inductive limit ofPk , then clearlyP` is dense inF` . Let P*̀ ~respectively,F*̀ )
denote thedual or adjointspace ofP` ~respectively,F`). Then sinceP` is dense inF` , F*̀ is
dense inP*̀ . By the Riesz representation theorem for Hilbert spaces, every elementf * PF*̀ is of
the form^•u f & for somef PF` , and the mapf * ° f is an antilinear~or conjugate-linear! isomor-
phism. Thus we can identifyF*̀ with F` and obtain the rigged Hilbert space as the trip
P`,F`,P*̀ ~see Ref. 16 for the definition of rigged Hilbert spaces!. Typically an elementPab

defined by Eq.~24! belongs toP*̀ , and if f PF` then f PFk for somek, so we can define the
inner product

^Pab , f &5^pk~Pab!, f &5^Pab
k , f &, ~27!

in fact, in the calculation of

Pab~D ! f ~ Z̄!uZ50

the terms inPab whose column indices are larger thank drop off.
Theorem VI.1: Let V(m1)`

,...,V(mr )`
and V(m)`

be irreducible representations of G̀. Using

the convention of Sec. V, let V(m∨)`
be the representation contragredient to V(m)`

. Let I` be the

identity representation defined by Eq. (26). Then the multiplicity ofV(m)`
in the tensor product
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V~m1!`
^¯^ V~mr !`

is equal to the multiplicity of I` in the tensor product

V~m1!`
^¯^ V~mp!`

^ V~m∨ !`
.

Proof: From Ref. 10 we know that for sufficiently largek the multiplicity of V(m)k
in

V~m1!k
^¯^ V~mr !k

is equal to the multiplicity of the identity representationI k in the augmented tensor product

V~m1!k
^¯^ V~mr !k

^ V~m∨ !k
.

For eachk let hk denote the homomorphism sending the irreducible representation ofGk with
signature~0,...,0! into theGk module

V~m1!k
^¯^ V~mr !k

^ V~m∨ !k
.

Then

f j
k+hk5hj for j <k,

where the homomorphismsf j
k are defined as in~23!. Let (0,...,0)` denote the signature of th

representation ofG` as theinverse limitof irreducible representations ofGk with signature

Then we can define a homomorphism

h:V~0,...,0!`→V~m1!`
^¯^ V~mr !`

^ V~m∨ !`

by

h~v !5 lim
←

hk~pk~v !!, ~28!

where in Eq.~28!, pk denotes the projection ofV(0,...,0)̀ onto V(0,...0)k. Note thatV(0,...0)k or
V(0,...,0)̀ are just the trivialGk or G` modulesC, and that theG` module

V~m1!`
^¯^ V~mr !`

^ V~m∨ !`

is considered as aG` submodule of theG` moduleP*̀ . As remarked in Sec. III, the dimensio
of

HomGk
~V~0,...,0!k

,V~m1!k
^¯^ V~mr !k

^ V~m∨ !k
!,

the space of all homomorphisms intertwiningV(0,...0)k andV(m1)k
^¯^ V(mr )k

^ V(m∨)k
stabilizes as

k gets large. But this dimension is just the multiplicity ofI k in V(m1)k
^¯^ V(mr )k

^ V(m∨)k
which,

in turn, is equal to the multiplicity ofV(m)k
in V(m1)k

,...,V(mr )k
. It follows that at the~inductive!

limit we have
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dim@HomG`
~V~0,...,0!`

,V~m1!`
^¯^ V~mr !`

^ V~m∨ !`
!]

5dim@HomG`
~V~m!`

,V~mˇ !`
^¯^ V~mp!`

!]

or equivalently the multiplicity ofV(m)`
in the tensor product

V~m1!`
^¯^ V~mr !`

is equal to the multiplicity ofI ` in the tensor product

V~m1!`
^¯^ V~mr !`

^ V~m∨ !`
.

Let $ f j i

mi
%j i

be a basis of state vectors forV(mi )`
, i 51...r , let $ f j

m%j be a basis of state vector

for V(m)`
, and let$ f j*

m* %j* be a basis of state vectors forV(m∨)`
. Then

f j1

m1
^ f j2

m2
^¯^ f jr

mr

is a natural basis for the tensor product of irreducible representations

V~m1!`
^¯^ V~mr !`

and

f j1

m1
^ f j2

m2
^¯^ f jr

mr
^ f j*

m*

is a natural basis for the tensor product of irreducible representations

V~m1!`
^¯^ V~mr !`

^ V~m∨ !`
.

h

Let $Ih%h be a basis for theG`-invariant subspace which is ‘‘contained’’ in

V~m1!`
^¯^ V~mr !`

^ V~m∨ !`

in the sense described above. If we set

IhS S Z
WD D5Ih~Z,W!

and considerIh(Z,W) as a function ofW, and also note that any functionf PV(m∨)`
is a function

of W alone, then we can form the inner product, as defined in~27!

^Ihu f &W5Ih~Z,D ! f ~W̄!uW50 ~29!

and thereby obtain a function ofZ.
Considering the above-mentioned remarks, we adapt the statement and proof of Theor

of Ref. 10, to our situation as follows
Theorem VI.2: Let

f̃ j
m,h~Z!5^Ih~Z,W!u f j*

m* ~W!&W5Ih~Z,D ! f j*
m* ~W̄!uW50 .
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Then$ f̃ j
m,n%j is an isomorphic image of$ f j

m%j in V(m1)`
^¯^ V(mr )`

indexed by the multi-
plicity label h and we have the following relation of Clebsch–Gordan coefficients:

^ f̃ j
m,hu f j1

m1
f j2

m2
¯ f jr

mr
&5^Ihu f j1

m1
f j2

m2
¯ f jr

mr
f j*

m* &. ~30!

Proof: To first show thatf̃ j
m,h(Z) in fact lies inV(m1)`

^¯^ V(mr )`
it is sufficient to show~by

the Borel–Weil theorem! that if b5(b1 ,...,br)PB13¯3Br then, as in Eq.~21!,

f̃ j
m,h~bZ!5pm~m1!~b1!¯pm~mr !~br ! f̃ j

m,h~Z!.

But sinceIh ‘‘ lies’’ in

V~m1!`
^¯^ V~mr !`

^ V~m∨ !`

it transforms covariantly with respect to the Borel subgroup defined in Eq.~19! so we have

f̃ j
m,h~bZ!5^Ih~bZ,W!u f j*

m* ~W!&W

5^Ih~bZ,Id W!u f j*
m* ~W!&W where Id is theq3q identity matrix

5^pm~b!Ih~Z,W!u f j*
m* ~W!&W where b5b3Id

5pm~b!^Ih~Z,W!u f j*
m* ~W!&W the inner product is linear in the first argument

5pm~m1!~b1!¯pm~mr !~br ! f̃ j
m,n~Z! by Eq. ~21!, as desired.

We next show that the$ f̃ j
m,h%j transform under the representationR(m) in the same manner a

the $ f j
m%j . Since Ih(Z,W) is invariant with respect to the actionR^ R∨ of G` we have

Ih(Zg,W)5Ih(Z,Wsg21∨s) which can succinctly be written as R(g)Ih(Z,W)
5R∨(g21)Ih(Z,W). We also have that

R~m!~g! f j
m5(

j8
Djj8

m
~g! f j8

m ,

where theDjj8
m are theD functions for the representationR(m). Now for any gPG` we can

assume thatgPU(k) for somek, so thatg∨5ḡ. HenceDjj8
m (g∨)5Djj8

m (g), and it follows from
the definitions of the symbols involved that

R~m!∨~g! f j*
m* 5(

j* 8
Djj8

m
~g! f j* 8

m* .

Thus we seek to show that

R~m!~g! f̃ j
m,h5(

j8
Djj8

m
~g! f̃ j8

m,h .

By the preceding remarks and the definition off̃ j
m,h we then have

R~m!~g! f̃ j
m,h~Z!5^Ih~Zg,W!u f j*

m* ~W!&W

5^R~m!~g!Ih~Z,W!u f j*
m* ~W!&W

5^R~m!∨~g21!Ih~Z,W!u f j*
m* ~W!&W
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5^Ih~Z,W!uR~m!∨~g! f j*
m* ~W!&W since the representation is unitary

5K Ih~Z,W!U(
j* 8

Djj8
m

~g! f j* 8
m* ~W!L

W

5(
j8

Djj8
m

~g!^Ih~Z,W!u f j* 8
m* ~W!&W by conjugate linearity5(

j8
Djj8

m
~g! f̃ j8

m,h .

Finally we have

^Ihu f j1

m1
f j2

m2
¯ f jr

mr
f j*

m* &5^Ihu f j*
m* f j1

m1
f j2

m2
¯ f jr

mr
&

5Ih~D,D ! f j*
m* ~W̄! f j1

m1
~ Z̄!¯ f jr

mr
~ Z̄!u~Z,W!5~0,0!

5@Ih~D,D ! f j*
m* ~W̄!# f j1

m1
~ Z̄!¯ f jr

mr
~ Z̄!u~Z,W!5~0,0!

5 f̃ j
m,h~D ! f j1

m1
~ Z̄!¯ f jr

mr
~ Z̄!uZ505^ f̃ j

m,hu f j1

m1
f j2

m2
¯ f jr

mr
&,

which is Eq.~30!. h

VII. EXAMPLE

We illustrate the techniques described in this paper with the example

~7,1,0W !,~1,0W ! ^ ~2,0W ! ^ ~2,0W ! ^ ~3,0W !

considered in~11! of Sec. III. By the results of Theorem VI.2 and Equation~21! we seek alge-
braically independent polynomials of the form

PS S Z
WD D5( CIJK) ~Pab!g a51,2,3,4 b51,2 ~31!

that satisfy the covariant condition

PS bS Z
WD D5p~m!~b! f S S Z

WD D ~32!

wherem5(1,2,2,3,7,1) and

b5S b1

b2 0

b3

b4

0 b5 b*
b6

D bi ,b* PC.

If D is the diagonal subgroup andZ1 is the upper triangular unipotent subgroup, thenb
PDZ1 so we can first reduce the problem by solving~32! for the diagonal subgroupD which
consists of elements of the form
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d5S b1

b2 0

b3

b4

0 b5

b6

D , biPC.

Hence we seek polynomials of the form

P5P11
l 11P12

l 12P21
l 21

¯P41
l 41P42

l 42

that satisfy

PS dS Z
WD D5p~m!~d! f S S Z

WD D , ;dPD.

This leads us to the system

l 111l 1251,

l 211l 2252,

l 311l 3252,

l 411l 4253,

l 111l 211l 311l 4157,

l 121l 221l 321l 4251,

which gives us the following set of polynomials that transform covariantly with respect to
diagonal subgroupD;

P15P11P21P22P31
2 P41

3 ,

P25P11P21
2 P31P32P41

3 ,

P35P11P21
2 P31

2 P41
2 P42,

P45P12P21
2 P31

2 P41
3 .

Next, from ~31! and ~32! we seek functions of the form

P5C1P11C2P21C3P31C4P4 ~33!

that transform covariantly with respect to the upper triangular unipotent subgroupZ1 which
consists of elements of the form
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Z15S 1

1 0

1

1

0 1 b*
1

D b* PC.

Checking this condition onP1 , P2 , P3 , andP4 we see that

P1S Z1S Z
WD D5P11b* P11P21

2 P31
2 P41

3 ,

P2S Z1S Z
WD D5P21b* P11P21

2 P31
2 P41

3 ,

P3S Z1S Z
WD D5P31b* P11P21

2 P31
2 P41

3 ,

P4S Z1S Z
WD D5P41b* P11P21

2 P31
2 P41

3 .

In order that

PS Z1S Z
WD D5PS S Z

WD D ;Z1PZ1,

we must haveC11C21C31C450. Thus a convenient basis ofG` invariants in this tenso
product can be chosen as

I15P12P25P11P21P22P31
2 P41

3 2P11P21
2 P31P32P41

3 ,

I25P22P35P11P21
2 P31P32P41

3 2P11P21
2 P31

2 P41
2 P42,

I35P32P45P11P21
2 P31

2 P41
2 P422P12P21

2 P31
2 P41

3 .

Note that the space of invariants has dimension three, which is the multiplicity of (7,1,0W ) com-
puted earlier.

Now a natural basis for theG`-invariant subspace with signature (1,0W ) contained inF` as
described in Sec. VI is given by$Z1i% i 51

` . Similarly $Z2iZ2 j% i , j 51
` , $Z3iZ3 j% i , j 51

` , and

$Z4iZ4 jZ4k% i , j ,k51
` are natural basis for the subspaces (2,0W ), (2,0W ), and (3,0W ), respectively, and an

element of (7,1,0W )∨ is its lowest weight vectorw11
6 det (w12

w22
w11

w21). Thus an example of a bas

element for the tensor product

~1,0W ! ^ ~2,0W ! ^ ~2,0W ! ^ ~3,0W ! ^ ~7,1,0W !∨

would be

Z11Z21
2 Z31

2 Z41
3 ~W11

7 W222W11
6 W21! ~34!

and to compute a Clebsch–Gordan coefficient we compute the inner product of~34! with, for
exampleI1 ,
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^I1uZ11Z21
2 Z31

2 Z41
3 ~W11

7 W222W11
6 W21!&5@P11P21P22P31

2 P41
3 2P11P21

2 P31P32P41
3 #~D !

3Z11Z21
2 Z31

2 Z41
3 ~W11

7 W222W11
6 W21!u~Z,W!5~0,0! .

We remark that in the above computation, for example the product

P11P21P22P31
2 P41

3 ~D !5S (
t51

`

Z1tW1tD¯S (
t51

`

Z4tW1tD 3

~D !

need only be evaluated up tot52 since those terms whose column indices are larger than
evaluate to zero in the above inner product. This is routinely accomplished using a com
algebra system, such asMAPLE.

VIII. CONCLUSION

We have shown how the multiplicity problem the Clebsch–Gordan coefficients in the de
position of r-fold tensor products of irreducible tame representations of U~`! can be restated in
terms of U~`! invariants. Thus all the theorems for U(k) treated in Ref. 10 can be generalized
U~`!. Actually the computational aspect of the problems are much simpler with this new app
and one can use computers to obtain invariant polynomials, and by differentiating these p
mials compute Clebsch–Gordan and Racah coefficients.
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The moduli spaceNn of null-correlation bundles overCP2n11 has a natural
L2-Kähler metric. We explicitly describe that metric in terms of Appell–Lauricella
hypergeometric functions. The proof uses a Penrose twistor correspondence.
© 2000 American Institute of Physics.@S0022-2488~00!02001-6#

I. INTRODUCTION

In 1982 Kobayashi1 defined the Einstein–Hermitian connection on a Hermitian vector bu
E over a Kähler manifoldM of dimensionm. We denote byN(E) the moduli space of irreducible
Einstein–Hermitian connections¹ on E. This has a natural Ka¨hler structure, defined as follows
For each¹ we have anE-valued Doulbeault complex$V0,i(E),]̄A%. We denote byH¹

i the i th
cohomology group of the complex. Then Bismut and Freed2 showed that a determinant

^ ~ `
max

H¹
i !~21! i 11

forms a line bundle as¹ varies. They defined a connection on the determinant line bundle, w
curvature is a constant multiple of anL2-Kähler metric. The Ka¨hler metric induces a Ka¨hler
structure onN(E). However we had known no examples of the kind of natural Ka¨hler metric.

The purpose of this paper is to give an example of the natural Ka¨hler metric onN(E) in the
case whenM is an odd dimensional complex projective spaceCP2n11 andN is a null-correlation
bundle. Null-correlation bundles are a classical, well-known stable holomorphic vector b
give a definition here an exact sequence 0→O(21)→T* CP2n11

^ O(1)→N→0. Then we de-
note the moduli space of null-correlation bundles byNn . This moduli space can be identified wit
the homogeneous spacePSp(n11,C)\PGL(2n12,C) and to be compactified toCPn(2n13). It has
an open dense subsetN n

0 which has a fiber bundle structure whose fiber is (C* )n, on the flag
manifold F2,...,2(C

2n12). We shall write down the Ka¨hler metric onN n
0 in terms of Appell–

Lauricella hypergeometric functions of typeFD ~see Sec. VI!. The Kähler metric is decomposed
to two components of a fiber part and a base part. Both components are written withFD’s whose
variables only depend on a norm of the fiber (C* )n. This result is one of several natural gene
alizations of the explicit calculation of theL2-metric on the moduli space of 1-instantons on t
4-sphere.3–5

First we calculate anL2-metric on the moduli space of 1-instanton on quaternionic projec
spacesHPn. Secondly, we complexify the metric to a Ka¨hler metric onN n

0 using a twistor
correspondence.

a!Electronic mail: nitta@edu.mie-u.ac.jp
b!Electronic mail: taniguci@math.keio.ac.jp
10160022-2488/2000/41(2)/1016/10/$17.00 © 2000 American Institute of Physics
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II. PRELIMINARIES

We refer to 1, 6, 7, and 8 for this section. Let~X,h! be a compact Ka¨hler m-manifold with
Kähler form v andP the principalU(r )-bundle on~X,h!. We denote byE the associated vecto
bundle with holomorphic connection¹ and its curvatureR(¹). We denote byVp,q(EndE)
(resp.Vp(EndE)) the space of allEndEvalued smooth~p,q!-forms ~resp.p-forms! on X.

For a holomorphic connection¹ we define amean curvature K¹PV0(EndE) ^ C by

K¹5(
i 51

m

R~¹!~ei ,ēi !,

where (e1 ,...,em) is a local unitary frame field for the holomorphic tangent bundle onX.
Definition 2.1: We say a holomorphic connection¹ is an Einstein–Hermitian connectio

when

K¹5l~E!id

for some constantl(E).
We see that the constantl(E) is determined by the Chern–Weil formular (m

21)!vol Xl(E)52p*Xc1(E)`vm21.
As usual, the spaceV2(EndE) ^ C decomposes into~2,0!, ~1,1!, and~0,2! forms. The bundle

of ~1,1! forms splits further into the subbundleVv
1,1(EndE) of multiples ofv ^ id and its orthogo-

nal subbundle. In terms of these, we have

V2~EndE!5V1
2 ~EndE! % V2

2 ~EndE!,

whereV1
2 (EndE) is the real part ofV2,0(EndE)1Vv

1,1(EndE)1V0,2(EndE) and V2
2 (EndE) is

the real part of (Vv
1,1(EndE))'. Then there is a complex.

~* !:0→V0~EndE!→
d¹

V1~EndE!→
d¹

1

V1
2 ~EndE!→

d¹
0,3

V0,3~EndE!→
d¹

0,4

••• →
d¹

0,m

V0,m~EndE!→0,

whered¹
15p1+d¹ , andp1 :V2(EndE)→V1

2 (EndE).
We denote thei th cohomology of this complex byH¹

i (* ). The moduli spaceN(E) of
irreducible Einstein–Hermitian connections withH¹

2 (* )50 is a smooth Ka¨hler manifold with
respect to theL2-metric.6–10 The tangent space ofN(E) at the point@¹# is isomorphic toH¹

1 (* ).
On the other hand, let~M,g! be a real 4n-dimensional quaternion Ka¨hler manifold. On a

quaternion Ka¨hler manifoldM, the vector bundle of 2-forms is decomposed into three compon
S2H, S2E, and (S2H ^ S2E)', whereH and E are vector bundles associated with the stand
representations of Sp~1! and Sp(n), respectively.10,11Let F be an Sp(n)-vector bundle overM. We
denote byAp(EndF) the space of allEndF valued smooth̀ pE^ SpH-forms onM.

Definition 2.2:A connection¹ on F is anti-self-dual if and only if the curvature 2-formR(¹)
lies in EndF̂ S2E.

The moduli space of irreducible anti-self-dual connections has an analytic space str
defined by the elliptic complex6,7 in

~** !:0→A0~EndF!→
d¹

A1~EndF!→
d¹

2

A2→
d¹

3

¯→
d¹

2n

A2n~EndF!→0,

whered¹
r 5pr+d¹ and pr is the projection fromEndF̂ ` rT* M5Ar(EndF) % (Ar(EndF))' to

Ar(EndF).
If the second cohomology of the elliptic complex~** ! is equal to zero, the tangent space

the moduli space coincides withH¹
1 (** ), whereH¹

1 (** ) is the space constructed of harmon
1-forms. AnL2-metric onH¹

1 (** ) induces a natural Riemannian metric on the moduli spac
irreducible anti-self-dual connections.
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When a quaternion Ka¨hler manifoldM has a positive scalar curvature, the twistor space
naturally a Kähler–Einstein manifold.11 An anti-self-dual connection onF can be pulled back to
an Einstein–Hermitian connection on the pulled back vector bundle over the twistor space
pull-back of connections induces a natural injection from the moduli space of anti-self-dua
nections overM to the moduli space of Einstein–Hermitian connections of the twistor space.
known that the embedding is totally real.12

Let M be the quaternionic projective spaceHPn. Then the twistor space is the comple
projective spaceCP2n11 regarded as a Hopf fibrationp:CP2n11→HPn.

From now on, we setF5SP(n11)3rH
n for the projectionr:SP(1)3SP(n)→SP(n). F is

justE as a Hermitian vector bundle. We call anti-self-dual connections onF 1-instantonsand write
the moduli space of 1-instantons asMn . Let ¹0 be the unique invariant connection on th
homogeneous vector bundleF. Then ¹0 is anti-self-dual and called thebasic 1-instanton. The
action of PGL(n11,H) on HPn preserves theGL(n,H)•SP(1)-structure. Thus we have a
anti-self-dual connectiong* ¹0 on g* F for gPPGL(n11,H). Using anSP(n)-bundle equiva-
lencesg :F→g* F, we obtain a 1-instantonsg* g* ¹05¹0•g, which is unique up toSP(n)-gauge
transformations onF. Doi–Okai8 and Nitta13 proved that the action ofPGL(n11,H) is transitive
on Mn , that is,Mn5PSP(n11)\PGL(n11,H).

Let `15$l5diag(1,l1 ,...,ln):1>l1>•••>ln.0%. And let K(l) denote the centralize
of lP`1 in SP(n11). Setting h(l,K(l)g)5PSP(n11)lg for lP`1 and gPPSP(n
11), we have a homeomorphism14 h:`13(K(l)\SP(n11))→PSP(n11)\PGL(n11,H)
5Mn .

Definition 2.3: A holomorphic vector bundleN over CP2n11 is called a null-correlation
bundle if it has an exact sequence 0→O(21)→T* CP2n11

^ O(1)→N→0.
Let Nn be a moduli space of null correlation bundles onCP2n11. Then Nn5$BPGL(2n

12,C): tB52B%/C* 5PSP(n11,C)\PGL(2n12,C).13,15

The Lie groupPGL(n11,H) is naturally embedded inPGL(2n12,C). In particular, we
regard`1 as a subset ofGL(2n12,C). Then we have the Cartan decompositionsGL(n11,H)
5R* •SP(n11)•`1•SP(n11) andGL(2n12,C)5C* •SP(n11,C)•`1•U(2n12). If a null-
correlation bundleN is corresponding tolg(lP`1 ,gPU(2n12)), then g* p* l* ¹ is an
Einstein–Hermitian connection onN.

A null-correlation bundle is a classical well-known stable holomorphic vector bundle.
want to describe the natural metric on the moduli space.

III. TANGENT SPACE OF MODULI SPACE OF NULL-CORRELATION BUNDLES

In this section, we first write down the tangent space of the moduli spaceMn of 1-instantons
on HPn. The homogeneous manifold

is denoted byF(Hn11). The set̀ 1
0
ª$(1,l1 ,...,ln)u1.l1.¯.ln.0% is an open dense sub

set of`1 . The imageh(`1
0 3F(Hn11)), which we denote byMn

0, is open and dense inMn .
Proposition 3.1:

Mn
0.`1

0 3F~Hn11!.

Proof: Mn is a set of orbit spaces,

$ tḡ~diag~1,l1 ,...,ln!!g:gPSP~n11!,~1,l1 ,...,ln!P`1%.

For a natural projectionq:Mn→`1 , the fiber is the orbit spaceF(Hn11) in the case 1.l1

.¯.ln.0. Since`1
0 is contractible,Mn

0 is a product space of̀ 1
0 andF(Hn11). h

Let T@¹#Mn be a tangent space ofMn at @¹#PMn . The second cohomology of~* ! with
respect to the basic instanton¹0 is equal to zero~cf. Ref. 13, Lemma 4.1.2!. If ¹ is ¹0•g, then the
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action ofg induces a group isomorphism between second cohomologies with respect to¹0 and¹,
so the second cohomology for any¹ vanishes. Hence the tangent spaceT@¹#Mn is identified with
H1(* ).

Proposition 3.2:Eachv in

H05$APM ~n11;H!u tĀ5A, tr~A!50%

induces a vector field onHPn by V5(d/dt)(exptv)ut50 and

T@¹#Mn5H iVR~¹!UV5
d

dt
~exptv !U

t50

for vPH0J .

Proof: By Doi and Okai~Ref. 4, Proposition 1.1!, iVR(¹) is an element ofkerd¹* andkerd¹
2 .

Furthermore, the real vector space$iVR(¹):V5(d/dt)(exptv)ut50,vPH0% has dimR5n(2n13)
5dimRMn . Hence the spanned space coincides with the tangent space ofMn . h

We next describe the tangent space of the moduli spaceNn of null-correlation bundles on
CP2n11. Let Kn denote the space

According to the embedding̀ 1
0 in `1 , the moduli spaceNn has an open dense subsetN n

0,
which is a set of Einstein–Hermitian connections corresponding tol•g(lP`1

0 ,gPU(2n
12)). Thereal dimension ofKn is equal ton(4n15).

Proposition 3.3:

N n
0.`1

0 3Kn .

Proof: Using the notation,

skew~1,l1 ,l2 ,...,ln!5S 0 1

21 0 0 l1

2l1 0

� �

0 ln

2ln 0

D
the moduli spaceNn is written as a set of orbit spaces

$ tg~skew~1,l1 ,...,ln!!g:gPPU~2n12!,~1,l1 ,...,ln!P`1%.

There is a natural projectionq:N n
0→`1

0 , where the fiber is the orbit space which is diffeomo
phic to Kn . Since`1

0 is contractible,N n
0 is a product space of̀ 1

0 andKn . h

Using the natural embeddingsl(n11,H),sl(2n12,C), we can regard̀ 1 ,H and H0 as
subspaces ofsl(2n12,C), and can regard the complexificationH0% iH0 as the space$b
Psl(2n12,C): tb52b%. The moduli spaceMn is embedded inNn . From now on we conside
that Mn is a submanifold ofNn .

Proposition 3.4:For @¹#PMn,Nn ,

T@¹#Nn5H iVR~¹!:V5
d

dt
~exptv !U

t50

,vPH0% iH0J .
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Proof: This follows immediately from Proposition 3.2 because the tangent space of the m
space of Einstein–Hermitian connections is the complexification of the tangent space
moduli space of anti-self-dual connections~cf. Ref. 12, Theorem 3.1!. h

IV. RIEMANNIAN METRIC ON THE MODULI SPACE OF 1-INSTANTONS OVER HPn

The quaternionic projective spaceHPn is considered as the quotient space of the unit (n
13)-dimensional sphereS4n135$zPHn11: tz̄z51% obtained by identifyingz with za wherea
PH such thatuau51. The Fubini-study metriĉ,&HPn is the invariant metric such that the fiberin
p:S4n13→HPn is a Riemannian submersion. Define a mapf̃ :S4n13→H5$APM (n11,H): tĀ
5A% by

f̃ ~z!5ztz̄5S uz0u2 z0z̄1 ¯ z0z̄n

z1z̄0 uz1u2 ¯ z1z̄n

¯ ¯ ¯ ¯

znz̄0 znz̄1 ¯ uznu2

D
for z5(zi)PS4n13. Then f̃ induces a mapf :HPn→H such thatf̃ 5 f +p. Let H0 be $APM (n
11,H): tĀ5A,trA50%. As in Proposition 3.2, eachvPH0 induces a vector fieldV on HPn. This
is given on the embedded image ofHPn in H by

V5
d

dt
~exptv !u t50~ztz̄!

5
d

dt U
t50

~~exptv !z•iexptvi22
•

t~exptv !z!

5v~ztz̄!1z
d

dt U
t50

~ iexptvi22! tz̄1~ztz̄!v

5v~ztz̄!1~ztz̄!v22~ztz̄!v~ztz̄!.

Let prz denote the projection atztz̄ from H0 to vector fields onHPn, that is pr(ztz̄)5(ztz̄)v
1v(ztz̄)22(ztz̄)v(ztz̄). Hence the metriĉV,W&HPn is written down as follows:

^V,W&5^prztz̄!v,p pr(ztz̄)w

5^v,pr
~ztz̄!

2
w&

5^v,pr~zt,z̄!w&

5^v,~ztz̄!w1w~ztz̄!22~ztz̄!w~ztz̄!&

5tr~~vw1wv !~ztz̄!!22 tr~v~ztz̄!w~ztz̄!!. ~4.1!

We can now compute theL2-metric onMn , applied to elements ofT@¹#Mn . Then,
Lemma 4.1:For each¹5¹0•g,

^iVR~¹!,iWR~¹!&Mn
5E

HPn
g* g* ^V,W&dvHpn12E

HPn
tr~ t~g* !g* !g* ^V,W&dvHPn.

Proof: The curvatureR(¹0•g) is equal tosg* g* R(¹0). By Salamon,14 R(¹0) is identified
with the Killing form of sp(n) where we use a natural identificationS2(E)x.sp(n) andF.E.
Using an orthonormal basis ofsp(n), the curvatureR(¹0) is ( i 51

n(2n11)f i ^ f i . Hence,
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^iVR~¹0•g!,iWR~¹0•g!&15^iVg* R~¹0!,iWg* R~¹0!&1

5 (
i 51

n~2n11!

^g* f i~dgV!,g* f i~dgW!&2

5K dgV, (
i 51

n~2n11!

~ tf i
t~g* !g* f i !~dgW!L

3

,

where^,&1 , ^,&2 , and^,&3 are metrics onEnd F^ T* HPn, T* HPn andTHPn, respectively. For
aPH0 , ( tf̄ iaf i is equal toa12(tra) id by a direct calculation. Hence,

K dgV, (
i 51

n~2n11!

~ tf i
t~g* !g* f i !~dgW!L

3

5^dgV,t~g* !g* ~dgW!&312 tr~ t~g* !g* !~dgV,dgW&3

5g* g* ^V,W&312 tr~ t~g* !g* !g* ^V,W&3 .

The lemma follows by integration. h

Lemma 4.2:For V5(d/dt)(exptv)ut50 andW5(d/dt)(exptv)ut50 we have

^iVR~¹!,iWR~¹!&Mn
5trE

S4n13
~vw1wv !~g* g* A!dvS4n13

22 trE
S4n13

v~g* g* A!w~g* g* A!dvS4n1312 tr

1E
S4n13

tr~ tḡ* g* !~vw1wv !~g* A!dvS4n13

24 trE
S4n13

tr~ tḡ* g* !v~g* A!w~g* A!dvS4n13,

whereg5diag(1,l1 ,...,ln) andA5ztz̄, z5 t(z0 ,z1 ,...,zn)PS4n13,Hn11.
Proof: Substituting~4.1! into Lemma 4.1, we obtain the lemma. h

Using Lemma 4.2, we can describe explicitly the Riemannian metric onMn
0.

Theorem 4.1:The Riemannian metric gM
n
0 has the form,

gM
n
05(

i 51

n

w i~l!dl i
21 (

i< i , j <n
c i j ~l!gH

i j ,

wherel5(l1 ,...,ln), and gH
i j is a standard metric onH.

Proof: Using an othogonal basis, decomposeH0[R%¯% R% H%¯% H into its diagonal
part, which consists ofn copies ofR, and its off-diagonal part, which consists ofn(n11)/2 copies
of H. Under this decomposition, the metric onMn

0 is also divided into orthogonal components b
Lemma 4.2. But Sp(n11) acts isometrically onHPn and hence onMn . It follows that the metric
has the above form. h
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V. KÄHLER METRIC ON THE MODULI SPACE OF NULL CORRELATION BUNDLES

By complexifying the formula of Theorem 4.1 we obtain the Ka¨hler metric onN n
0.

Theorem 5.1:

gN
n
05(

i 51

n

w i~l!dm i ^ dm i1 (
1< i , j <n

c i j ~l!gC4
i j ,

wherew i(l),c i j (l) are functions of Theorem 4.1, and gC4
i j is a standard metric onC4.

Proof: Using an othogonal basis, decomposeH0% iH0[C%¯% C% C4
%¯% C4 into its di-

agonal part, which consists ofn copies ofC, and its off-diagonal part, which consists ofn(n
11)/2 copies ofC4. SinceT@¹#N n

0 is a complexification ofT@¹#Mn
0 for @¹#PMn

0, the Kähler
metric gN

n
0(x11Jy1 ,x21Jy2)(x1 ,x2 ,y1 ,y2PT@¹#Mn

0) is equal togM
n
0(x1 ,x2)1gM

n
0(y1 ,y2),

where J is the complex structure on Nn . Hence gN
n
05( i 51

n w i(l)dm i ^ dm i

1S1< i , j <nc i j (l)gC4
i j on L1

0 . The fiber is an orbit space ofPU(2n12) and the action is iso
metric on N n

0 by the definition of the L2-metric. The elements of the form
(u1 ,u1 ,u2 ,u2 ,...,un11 ,un11) form a subgroup ofU(2n12) whose quotient is a subgroup
PU(2n12) that is isomorphic to (U(1))n. In particular,gN

n
0 is invariant under the Lie group

(U(1))n whose orbit space is the set$skew (1,m1 ,...,mn):m iPC, whereum i u corresponds tol i%.
Thus the metric decompositiongN

n
05Sw i(l)dm i ^ dm i1Sc i j (l)gC4

i j is preserved globally on

N n
0 and the functions are the same in Theorem 4.1. h

The second termSc i j (l)gC4
i j is a homogenous Ka¨hler metric on

.

From Theorem 4.1, we obtain the Ka¨hler form of gN
n
0 as follows.

Theorem 5.2:The moduli spaceN n
0 is a fiber bundle on F2,...,2(C

2n12) whose fiber is

U~1!n3`1
0 .$~m1 ,...,mn!PCn:1.um1u.um2u.¯mnu.0%.

The Kähler form of gN
n
0 is

vN
n
05(

i 51

n

w i~l!dm i`dm i1 (
1< i , j <n

c i j ~l!vC4
i j ,

wherevC4
i j is a standard Ka¨hler form onC4.

Proof: An element (u1 ,u1 ,u2 ,u2 ,...,un11 ,un11)PU(1)n corresponds to

@diag(1,1,ei (u1 /2)
,ei (u1/2),...,ei (un/2)

,ei (un/2)
#PP~SU~2!3¯3SU~2!!\PU~2!3¯3U~2!!. A complexi-

fied element skew (1,m1 ,...,mn) is represented by t diag(1,1,...,ei (un /2)
),ei (un/2)

skew
(1,...ln)diag(1,1,...,ei (un/2),ei (un/2)5skew(1,l1eiu1,...,lneiun). Hencem j is equal tol je

iu j . Since
the complex structure onN n

0 coincides with the natural complex structure on the homogene
manifold, we obtain

v5( w j~l!~dl j1 il jdu j !`~dl j1 il jdu j !1( c jk~l!vC4
jk .

SincePU(2n12) acts onCP2n11 isometrically and the action lifts onNn canonically, the Ka¨hler
form is PU(2n12)-invariant by the definition ofL2-metric. h
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VI. HYPERGEOMETRIC FUNCTIONS AND THE COEFFICIENTS w i ,c i j

In this section, we calculatew i ,c i j in Theorems 4.1, 5.1, 5.2 and relatew i(l),c i j (l) to
Appell–Lauricella hypergeometric functions. We denote byFD Appell–Lauricella hypergeomet
ric functions of integral type~cf. Ref. 16, Eq.~3.1!!. These are functions onRn depending on
integersa and g and a vectorb5(b1 ,...,bn) of integers; they are defined by the followin
integral:

FD~a,~b l ! l 51,...,n ,g;~yi ! i 51,...,n!

5
G~g!

G~g2( l 51
n b lP l -1

n G~b l !

3E
D
)
l 51

n

ul
b l21S 12(

l 51

n

ul D g2( l 51
n b l21S 12(

l 51

n

ylul D 2a

du1 ...dun , ~6.1!

whereD5$(u1 ,...,un):( j 51
n uj<1,uj>0%. Then we obtain the following formula:

Proposition 6.1:

E
S4n13

)k50
n uzku2ik

~ uz0u21( j 51
n aj uzj u2! i dvS4n13

522n~2p2!n11
) l 51

n G~ i l12!G~ i 02n14!

G~( l 51
n i l1 i 01n14!

3FDS i ,~ i l12! l 51,...,n ,(
l 51

n

i l1 i 01n14;~12aj ! j 51,...,nD . ~6.2!

Proof: We denote an inhomogeneous coordinate ofHPn by j5(j1,j2,...jn). Substituting
z051/A11uju2, zi5j i /A11uju2 ( i 51,2,...,n), dvS4n135dvS3•(11uju2)2(2n12)dvHn into the
left-hand side of~6.2!, we have

E
S3

dvS3E
Hn

~11uju2!2(k50
n i k

•)
l 51

n

uj l u2i l
~11uju2! i 2~2n12!

~11( j 51
n aj uj j u2! i dvHn. ~6.3!

We put r i5uj i u. Since the volume ofS3 is equal to 2p2, ~6.3! is

~2p2!n11E
0

`

¯E
0

`

)
l 51

n

r l
2i l

~11( l 51
n r l

2!2(k50
n i k1 i 2~2n12!

~11( j 51
n aj r j

2!i )
j 51

n

r j
3dr1¯drn . ~6.4!

We choose the following variables:

ui5
r i

2

11( l 51
n r l

2 ,

whose Jacobian is

detS ]ui

]r j
D52n)

j 51

n

r j~11ur u2!122n,

and substitute them into~6.4!, getting
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22n~2p2!n11E
D
)
l 51

n

ul
i l11S 12(

j 51

n

uj D i 02n13S 12(
j 51

n

~12aj !uj D 2 i

du1¯dun , ~6.5!

where D5$(u1 ,...,un):( j 51
n uj<1,uj>0%. By definition of Appell–Lauricella hypergeometri

functionsFD , ~6.5! is equal to the right-hand side of~6.2!. h

In order to represent the right-hand side of Lemma 4.2 byFD , we shall calculate tr(t(g* )g* )
at gzPS4n13.

Lemma 6.1:

tr~ t~g* !g* !gz5
1

ugzu4 $~11ulu2!ugzu22ug2zu2%, ~6.6!

wheregPdiag(1,l1 ,...,ln)SP(n11) andl5(l1 ,...,ln).
Proof: For g5diag(1,l1 ,...,ln),

g* ~~dj1,...,djn!gz!5~dj1,...,djn!z diag~l1 ,...,ln!. ~6.7!

We denote a quaternion unitary frame ofT* HPn by (e1 ,e2 ,...,en), that is,

~dj1,...,djn!z5~e1 ,...,en!zHz ,

where

tH̄H5~^dj i ,dj j&T* HPn!. ~6.8!

Substituting~6.8! into ~6.7!, we have

g* ~~e1 ,...,en!gz!Hgz5~e1 ,...,en!zHz diag~l1 ,...,ln!.

Now g* ((e1 ,...,en)gz)5(e1 ,...,en)zHz diag(l1,...,ln)(Hgz)
21. Hence,

tr~ t~g* !g* !5tr~ tHz~diag~l1 ,...,ln!!~Hgz!
21!Hz~diag~l1 ,...,ln!!~Hgz!

21)

5tr~diag~l1 ,...,ln! tH̄zHz~diag~l1 ,...,ln!!~ t~Hgz!Hgz!
21. ~6.9!

By the definition of the Fubini study metric onHPn,

tH̄zHz5~11uju2!~d i j 1 j̄ ij j !,

~6.9! is equal to

tr~~11uju2!~d i j l il j1l ij il jj j !~11ugju2!22~~11ugju2d i j 2~l ij i !~l j j̄ j !!!

5~11uju2~11ugju2!22$~11ugju2!~11ulu2!2~11ug2ju2!%. ~6.10!

Writing ~6.10! with respect to a homogeneous coordinatez5(z0 ,...,zn), we obtain Lemma 6.1.h

Lemma 4.2, Proposition 6.1, and Lemma 6.1 imply the following:
Theorem 6.1:The coefficientsw i(l),c i j (l) are linear combinations of

FD~a,~b l ! l 51,...,n ,g;~12l j
4! j 51,...,n!,

a51,2, 2<b l<4, g5n15,n16,
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and

FD~a,~b l ! l 51,...,n ,g;~12l j
2! j 51,...,n!,

a52,3,4, 2<b l<5, g5n15,n16,n17.

Proof: We substitute Lemma 6.1 into Lemma 4.2,

trE
S4n13

F ~uw1wv !
g2zt~g2z!

ug2zu2
22

vg2zt~g2z!wg2zt~g2z!

ug2zu4
1

2

ugzu6

3$~11ulu2!ugzu22ug2zu2%~vw1wv !gzt~gz!2
4

ugzu8

3$~11ulu2!ugzu22ug2zu2%vgzt~gz!wgzt~gz!GdvS4n13. ~6.11!

By proposition 6.1, the first and second terms of~6.11! are written as linear combinations o
FD(a,(b l) l 51,...,n ,g;(12l j

4) j 51,...,n).
According to the same argument, the third and fourth terms are also linear combinatio

FD(a,(b l) l 51,...,n ,g;(12l j
2) l 51,...,n). h

SinceMn
0 is a totally real submanifold of the moduli spaceN n

0 of null correlation bundles, the
Kähler metric onN n

0 can be also written down as linear combinations of the Appell–Lauric
hypergeometric functionFD(a,(b l),g)1<a<4,2<b l<5,n15<g<n17.

Remark 6.1:In the case ofn52, Taniguchi17 calculates explicitly the abovew i(l) and
c i j (l).
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Mark Byrda)
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~Received 28 September 1999; accepted for publication 30 September 1999!

The first equation on page 6127, just above Eq.~2!, is the equation for theright
invariant vector fields~not the left invariant vector fields!. This makes several sign
changes in the Appendices that we present here. ©2000 American Institute of
Physics.@S0022-2488~00!00202-4#

APPENDIX A: INVARIANT VECTOR FIELDS

L1
r 52 i cos 2a cot 2b]12 i sin 2a]21 i

cos 2a

sin 2b
]3 , ~A1!

L2
r 51 i sin 2a cot 2b]12 i cos 2a]22 i

sin 2a

sin 2b
]3 , ~A2!

L3
r 52 i ]1 , ~A3!

L4
r 52 i

sinb

sin 2b
cotu cos~a1g!]11 i sinb cotu sin~a1g!]21 i cot 2b sinb cotu cos~a1g!]3

2 i
~22sin2 u!

sin 2u
cosb cos~a1g!]32 i cosb sin~a1g!]41 i2

cosb

sin 2u
cos~a1g!]5

1 i
cot 2b

sinu
sinb cos~a2g22a!]52 i

sinb

sinu
sin~a2g22a!]62 i

sinb

sinu sin 2b

3cos~a2g22a!]72
)

2
tanu cosb cos~a1g!L8 , ~A4!

L5
r 5 i

sinb

sin 2b
cotu sin~a1g!]11 i sinb cotu cos~a1g!]22 i cot 2b sinb cotu sin~a1g!]3

1 i
~22sin2 u!

sin 2u
cosb sin~a1g!]32 i cosb cos~a1g!]42 i2

cosb

sin 2u
sin~a1g!]5

2 i
cot 2b

sinu
sinb sin~a2g22a!]52 i

sinb

sinu
cos~a2g22a!]6

1 i
sinb

sinu sin 2b
sin~a2g22a!]71

)

2
tanu cosb sin~a1g!L8 , ~A5!

a!Electronic mail: mbyrd@physics.utexas.edu
10260022-2488/2000/41(2)/1026/5/$17.00 © 2000 American Institute of Physics
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L6
r 52 i

cosb

sin 2b
cotu cos~a2g!]12 i cosb cotu sin~a2g!]21 i cot 2b cosb cotu cos~a2g!]3

1 i
~22sin2 u!

sin 2u
sinb cos~a2g!]32 i sinb sin~a2g!]42 i2

sinb

sin 2u
cos~a2g!]5

1 i
cot 2b

sinu
cosb cos~a1g12a!]51 i

cosb

sinu
sin~a1g12a!]6

2 i
cosb

sinu sin 2b
cos~a1g12a!]71

)

2
tanu sinb cos~a2g!L8 , ~A6!

L7
r 52 i

cosb

sin 2b
cotu sin~a2g!]11 i cosb cotu cos~a2g!]21 i cot 2b cosb cotu sin~a2g!]3

1 i
~22sin2 u!

sin 2u
sinb sin~a2g!]31 i sinb cos~a2g!]42 i2

sinb

sin 2u
sin~a2g!]5

1 i
cot 2b

sinu
sinb sin~a1g12a!]52 i

cosb

sinu
cos~a1g12a!]6

2 i
cosb

sinu sin 2b
sin~a1g12a!]71

)

2
tanu sinb sin~a2g!L8 , ~A7!

L8
r 52 i)]31 i)]52 i ]8 . ~A8!

The right differential operators~the differential operators that correspond to this action wh
acting from the right! are different and are denotedL i

r . They are given here by the following
equations. These are theleft invariant vector fields,

L15 i cos 2c cot 2b]71 i sin 2c]62 i
cos 2c

sin 2b
]5 , ~A9!

L251 i sin 2c cot 2b]72 i cos 2c]62 i
sin 2c

sin 2b
]5 , ~A10!

L352 i ]7 , ~A11!

L45 i
sinb

sin 2b
cotu cos~c1a13h!]72 i sinb cotu sin~c1a13h!]6

2 i cot 2b sinb cotu cos~c1a13h!]51 i
~22sin2 u!

sin 2u
cosb cos~c1a13h!]5

1 i cosb sin~c1a13h!]42 i2
cosb

sin 2u
cos~c1a13h!]3

2 i
cot 2b

sinu
sinb cos~c2a22g13h!]31 i

sinb

sinu
sin~c2a22g13h!]2

1 i
sinb

sinu sin 2b
cos~c2a22g13h!]11

)

2
tanu cosb cos~c1a13h!L8

r , ~A12!
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L55 i
sinb

sin 2b
cotu sin~c1a13h!]71 i sinb cotu cos~c1a13h!]62 i cot 2b sinb cotu

3sin~c1a13h!]51 i
~22sin2 u!

sin 2u
cosb sin~c1a13h!]52 i cosb cos~c1a13h!]4

2 i2
cosb

sin 2u
sin~c1a13h!]32 i

cot 2b

sinu
sinb sin~c2a22g13h!]32 i

sinb

sinu
cos~c2a22g

13h!]21 i
sinb

sinu sin 2b
sin~c2a22g13h!]11

)

2
tanu cosb sin~c1a13h!L8

r , ~A13!

L652 i
cosb

sin 2b
cotu cos~c2a23h!]72 i cosb cotu sin~c2a23h!]6

1 i cot 2b cosb cotu cos~c2a23h!]51 i
~22sin2 u!

sin 2u
sinb cos~c2a23h!]5

2 i sinb sin~c2a23h!]42 i2
sinb

sin 2u
cos~c2a23h!]3

1 i
cot 2b

sinu
cosb cos~c1a12g23h!]31 i

cosb

sinu
sin~c1a12g23h!]2

2 i
cosb

sinu sin 2b
cos~c1a12g23h!]11

)

2
tanu sinb cos~c2a23h!L8

r , ~A14!

L75 i
cosb

sin 2b
cotu sin~c2a23h!]72 i cosb cotu cos~c2a23h!]6

2 i cot 2b cosb cotu sin~c2a23h!]52 i
~22sin2 u!

sin 2u
sinb sin~c2a23h!]5

2 i sinb cos~c2a23h!]41 i2
sinb

sin 2u
sin~c2a23h!]3

2 i
cot 2b

sinu
cosb sin~c1a12g23h!]31 i

cosb

sinu
cos~c1a12g23h!]2

1 i
cosb

sinu sin 2b
sin~c1a12g23h!]12

)

2
tanu sinb sin~c2a23h!L8

r , ~A15!

L852 i ]8 . ~A16!

Here,h5f/).

APPENDIX B: INVARIANT FORMS

The right invariant forms correspond to the right invariant vector fields on the group. The
given here explicitly,
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v r
15 idb sin~2a!2 idg cos~2a!sin~2b!1 idb cos~2a12g!cos~u!sin~2a!

1 idb cos~2a!cos~2b!cos~u!sin~2a12g!1
)

2
idf cos~2a!sin~2b!sin2~u!

2 ida cos~2a!sin~2b! 1
2~22sin2~u!!2 idc cos~2a!cos~2b!cos~2a12g!cos~u!sin~2b!

1 idc cos~u!sin~2a!sin~2b!sin~2a12g!2 idc cos~2a!cos~2b!sin~2b! 1
2~22sin2~u!!,

~B1!

v r
25 idb cos~2a!1 idg sin~2a!sin~2b!1 idb cos~2a!cos~2a12g!cos~u!

2 idb cos~2b!cos~u!sin~2a!sin~2a12g!2
)

2
idf sin~2a!sin~2b!sin2~u!

1 ida sin~2a!sin~2b! 1
2~22sin2~u!!1 idc cos~2b!cos~2a12g!cos~u!sin~2a!sin~2b!

1 idc cos~2a!cos~u!sin~2b!sin~2a12g!1 idc cos~2b!sin~2a!sin~2b! 1
2~22sin2~u!!,

~B2!

v r
35 ida1 idg cos~2b!1 idb cos~u!sin~2b!sin~2a12g!2

)

2
idf cos~2b!sin2~u!

1 ida cos~2b! 1
2~22sin2~u!!2 idc~cos~2a12g!cos~u!sin~2b!sin~2b!!

1 idc cos~2b!cos~2b! 1
2~22sin2~u!!, ~B3!

v r
45 idu cos~b!sin~a1g!2 idb sin~b!sin~2a2a1g!sin~u!2 1

2ida cos~b!cos~a1g!sin~2u!

2
)

2
idf cos~b!cos~a1g!sin~2u!1 idc cos~2a2a1g!sin~2b!sin~b!sin~u!

2 idc 1
2 cos~2b!cos~b!cos~a1g!sin~2u!, ~B4!

v r
55 idu cos~b!cos~a1g!1 idb cos~2a2a1g!sin~b!sin~u!1 1

2ida cos~b!sin~a1g!sin~2u!

1
)

2
idf cos~b!sin~a1g!sin~2u!1 idc sin~2b!sin~b!sin~2a2a1g!sin~u!

1 idc 1
2 cos~2b!cos~b!sin~a1g!sin~2u!, ~B5!

v r
65 idu sin~b!sin~a2g!2 idb cos~b!sin~2a1a1g!sin~u!1 1

2ida cos~a2g!sin~b!sin~2u!

1
)

2
idf cos~a2g!sin~b!sin~2u!1 idc cos~b!cos~2a1a1g!sin~2b!sin~u!

1 idc 1
2 cos~2b!cos~a2g!sin~b!sin~2u!, ~B6!

v r
752 idu cos~a2g!sin~b!1 idb cos~b!cos~2a1a1g!sin~u!1 1

2ida sin~b!sin~a2g!sin~2u!

1
)

2
idf sin~b!sin~a2g!sin~2u!1 idc cos~b!sin~2b!sin~2a1a1g!sin~u!

1 idc 1
2 cos~2b!sin~b!sin~a2g!sin~2u!, ~B7!
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v r
852

)

2
ida sin2~u!2

)

2
idc cos~2b!sin2~u!1 idf~12 3

2sin2~u!!. ~B8!

The left invariant forms correspond to the left invariant vector fields. They are given he

v15 ida cos~2c!sin~2b!2 idb sin~2c!2 idb cos~2a12g!cos~u!sin~2c!

2 idb cos~2b!cos~2c!cos~u!sin~2a12g!1 idg cos~2c!sin~2b! 1
2~22sin2~u!!

1 ida cos~2b!cos~2c!cos~2a12g!cos~u!sin~2b!2 ida cos~u!sin~2b!sin~2c!

3sin~2a12g!1 ida cos~2b!cos~2c!sin~2b! 1
2~22sin~u!!, ~B9!

v25 idb cos~2c!1 ida sin~2b!sin~2c!1 idb cos~2c!cos~2a12g!cos~u!

2 idb cos~2b!cos~u!sin~2c!sin~2a12g!1 idg sin~2b!sin~2c! 1
2~22sin2~u!!

1 ida cos~2b!cos~2a12g!cos~u!sin~2b!sin~2c!1 ida cos~2c!cos~u!sin~2b!

3sin~2a12g!1 ida cos~2b!sin~2b!sin~2c! 1
2~22sin2~u!!, ~B10!

v35 idc1 ida cos~2b!1 idb cos~u!sin~2b!sin~2a12g!1 idg cos~2b! 1
2~22sin2~u!!

2 ida cos~2a12g!cos~u!sin~2b!sin~2b!1 ida cos~2b!cos~2b! 1
2~22sin2~u!!,

~B11!

v45 1
2idg cos~b!cos~a1c1x!sin~2u!2 ida cos~a2c12g2x!sin~b!sin~2b!sin~u!

1 ida 1
2 cos~b!cos~2b!cos~a1c1x!sin~2u!1 idb sin~b!sin~u!sin~a2c12g2x!

2 idu cos~b!sin~a1c1x!, ~B12!

v55 idu cos~b!cos~a1c1x!1 idb cos~a2c12g2x!sin~b!sin~u!

1 1
2idg cos~b!sin~2u!sin~a1c1x!1 ida sin~b!sin~2b!sin~u!sin~a2c12g2x!

1 ida 1
2 cos~b!cos~2b!sin~2u!sin~a1c1x!, ~B13!

v65 1
2idg cos~a2c1x!sin~b!sin~2u!1 ida cos~b!cos~a1c12g2x!sin~2b!sin~u!

1 ida 1
2 cos~2b!cos~a2c1x!sin~b!sin~2u!1 idb cos~b!sin~u!sin~a1c12g2x!

2 idu sin~b!sin~a2c1x!, ~B14!

v75 idu cos~a2c1x!sin~b!1 idb cos~b!cos~a1c12g2x!sin~u!

1 1
2idg sin~b!sin~2u!sin~a2c1x!2 ida cos~b!sin~2b!sin~u!sin~a1c12g2x!

1 ida 1
2 cos~2b!sin~b!sin~2u!sin~a2c1x!, ~B15!

v85 idf2
)

2
sin2~u!idg1

)

2
cos~2b!sin2~u!ida. ~B16!
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The rigorous microscopic theory of equilibrium crystal shapes has made enormous
progress during the last decade. We review here the main results that have been
obtained, both in two and higher dimensions. In particular, we describe how the
phenomenological Wulff and Winterbottom constructions can be derived from the
microscopic description provided by the equilibrium statistical mechanics of lattice
gases. We focus on the main conceptual issues and describe the central ideas of the
existing approaches. ©2000 American Institute of Physics.
@S0022-2488~00!01003-3#
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I. INTRODUCTION

A. Phenomenological Wulff construction

1. Equilibrium crystal shapes

The phenomenological theory of equilibrated crystals dates back at least to the beginn
the century.1 Suppose that two different thermodynamic phases~say crystal and its vapor! coexist
at a certain temperatureT. Assuming that the whole system is in equilibrium, in particular, that
volumev of the crystalline phase is well defined, what could be said about the region this
occupies? Of course, the issue cannot be settled in the language of bulk free energies—t
not depend neither on the shape, nor even on the prescribed volumev of the crystal. Instead
possible phase regions are quantified by the value of the free energy of the crystal–vapor in
or by the total surface tension between the crystal and the vapor.~In this review, our point of view
is that of mathematical physics; for an exposition of the problem from the viewpoint of theore
physics, we refer to Ref. 2 and references therein.! Equilibrium shapes correspond, in this way,
the regions of minimal interfacial energy. This is an isoperimetric-type problem: The su
tension tb ~where, throughout the article,b denotes the inverse temperature,b51/T) is an
anisotropic function of the local direction of the interface. Thus, assuming that the crystal occ
a regionV,Rd, the corresponding contributionWb(V) to the free energy is equal to the integr
of tb over the boundary]V of V ~Fig. 1!.

The Wulff variational problem could then be formulated as follows:

~WP!v Wb~V!→min Given: vol~V!5v.

As in the usual isoperimetric case (WP)v is scale invariant,

;s.0, Wb„]~sV!…5sd21Wb~]V!.

Consequently, any dilatation of an optimal solution is itself optimal, and one really talks he
terms of optimal shapes.

The canonical way to produce an optimal shape is given by the following Wulff constru
~Fig. 2!: Define

K5 ù
nPSd21

$xPRd:x•n<tb~n!%. ~1.1.1!

FIG. 1. The free energy of the crystal–vapor interface is given by the integral of the anisotropic surface tensiontb over
]V. H(d21) is the (d21)-dimensional Hausdorff measure.
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It would be convenient to normalizeK as

K1,Ad 1

vol~K!
K.

We refer toK1 as to the normalized, or unit volume, Wulff shape. The variational theory
(WP)v , which we briefly address in the subsequent section, states that any solution to (WP)v can
be obtained by a shift of the corresponding dilatationKv,Ad vK1 of K1 .

2. Variational methods

The corresponding literature is rather rich and diverse, here we merely attempt to facilita
orientation of the reader and to introduce some notations that will be useful in the sequel.

Since the half-spacesHb(n) in ~1.1.1! are convex, so is the Wulff shapeK. Furthermore, in all
the problems we consider here, the surface tensiontb is bounded above and below,

0, min
nPSd21

tb~n!< max
nPSd21

tb~n!,`. ~1.1.2!

Accordingly, equilibrium crystal shapes are bounded and have nonempty interiors, 0P int(Kv).
The fact thatK is optimal follows from the general Brunn–Minkowski theory: Lettb** be the

support function ofK, tb** (x)5sup$y•xuyPK%. Of course, if the homogeneous extension oftb ,

tb~x!,ixi2tbS x

ixi2
D , ~1.1.3!

is convex, thentb andtb** coincide. In general,tb** is the convex lower-semicontinuous reg
larization oftb , in particular,tb** <tb . Nevertheless, for the Wulff shapeK,

Wb** ~K!,E
]K

tb** ~nx!dHx
~d21!5E

]K
tb~nx!dHx

~d21! ,

where, as before,nx is the outward normal to]V in x and H(d21) is the (d21)-dimensional
Hausdorff measure inRd.

On the other hand, the action of the regularized functionalWb** could be extended to an
compact setV,Rd in terms of the mixed volume,

Wb** ~V!5 lim inf
e→0

1

e
„vol~V1eK!2vol~V!…;

FIG. 2. Functiontb(n) ~left! with three half-spacesH(n1), H(n2), andH(n3), @for better visibility, onlyH(n1), has been
shaded#. The intersection ofall such half-spaces gives rise to the corresponding Wulff shape~right!.
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the latter definition coincides with the integral definition ofWb** for regular V. The Brunn–
Minkowski inequality,3

vol~A1B!>„vol~A!1/d1vol~B!1/d
…

d,

implies that for any regularV with vol(V)5vol(K),

Wb~V!>Wb** ~V!>d vol~K!5Wb~K!.

Of course, we have been rather sloppy above, and we refer the reader to the work of Re
for a comprehensive discussion and results, including the history of the variational Wulff pro
The language employed in the latter works is that of the geometric measure theory, a
proceed with setting up some of the corresponding notation, which will also turn out to be u
for theL1 approach to the microscopic justification of the Wulff construction, as described in
II of this review. In the latter case, the macroscopic state of the system will be determined
value of an order parameter that specifies the phase of the system. In the systems that
consider, the pure phases are characterized by their averaged density, which are encoded
values,r l(b) andrh(b), for example,rh for the crystal andr l for the vapor.@In fact, we shall
derive all the results in the symmetrized spin language, in which case the two values w
6m* (b), wherem* (b) is the spontaneous magnetization~see Sec. II! at the inverse subcritica
temperatureb.bc .] For a given temperature, it is convenient to replace this order paramet
a parameter with values61. We suppose that the macroscopic region ofRd where the system is
confined is the unit torusT̂d5(R/Z)d. The macroscopic system is described by a functionv taking
values61 and the fact thatv r51 for somer in T̂d means that locally atr the system is in
equilibrium in the phasem* 5m* (b).

For any measurable setV in T̂d, the perimeter ofV is defined by

P~V!5supH E
V

div f~x!dx U fPC1~ T̂d,Rd!, ufu<1J . ~1.1.4!

A function v with values61 is said to be of bounded variation inT̂d if the perimeter of the se

$v51% is finite. We denote by BV(T̂d,$61%) the set of functions of bounded variation onT̂d with
values61 ~see Ref. 7 for a review!. For anyv in BV( T̂d,$61%), there exists a generalized notio
of the boundary of$v51% called reduced boundary and denoted by]* v. If $v51% is a regular
set,]* v coincides with the usual boundary]v. Furthermore, a blow-up Theorem~see Ref. 7, p.
199! ensures that for allx in ]* v an approximate tangent plane can be defined locally. This
imply the existence of a unit vectornx called the measure theoretic unit normal to$v51% at x. For
any x in Rd and any vectorn, we define the half-spaces,

H1~x,n!5$yPRdu ~y2x!"n>0%,

H2~x,n!5$yPRdu ~y2x!"n<0%.

Then for allx in ]* v, there is a unit vectornx such that

lim
r→0

1

r d vol„B~x,r !ù$v51%ùH1~x,n!…50,

lim
r→0

1

r d vol„B~x,r !ù$v521%ùH2~x,n!…50,
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whereB(x,r ) is the ball of radiusr centered inx. The previous property shows that the reduc
boundary is not too wild~see Fig. 3!. In fact, it is possible to prove that a set of finite perime
has ‘‘measure theoretically aC1 boundary.’’

The functionalWb can be extended onL1(T̂d) as follows:

Wb~v !5H E
]* v

tb~nx!dHx
~d21! , if vPBV~ T̂d,$61%!,

`, otherwise.

~1.1.5!

Under the assumption that the homogeneous extension~1.1.3! of tb is convex, a result by Am-
brosio and Braides~see Ref. 8, Theorem 2.1! ensures thatWb is lower semicontinuous with
respect toL1 convergence. In certain cases~attractive interactions! the convexity oftb can be
derived from the properties of the corresponding microscopic system, as will be explained

To any measurable subsetA of T̂d, we associate the function1A51Ac21A and simply write
Wb(A)5Wb(1A). In this new setting, the isoperimetric problem is to find the minimizers of

minHWb~v ! U vPBV~ T̂d,$61%!, U E
T̂d

m* v r drU<mJ , ~1.1.6!

where m belongs to ]m̄(b),m* (b)@ . The parameterm̄ is chosen such that the minima of th
variational problem above are translates of the setKm deduced from the Wulff shapeK by
dilatation in order to satisfy the volume constraint. This restriction enables us to exclude p
logical minimizers that occur from the periodicity. Nevertheless, notice that the precise sha
the uniqueness of the minimizers of the variational problem will be irrelevant for the microsc
derivation of the Wulff construction.

3. Stability properties

In two dimensions Wulff solutions to (WP)v are stable in the metric of Hausdorff distance:
V be a connected and simply connected subset ofR2 with a rectifiable boundary]V. Assume that
Area(V)>1. Then,

min
x

dH~V, x1K1!<c1AWb~V!2Wb~K1!. ~1.1.7!

This result has been established in Ref. 9 as a generalization of the classical Bonnesen ine
If V consists of several connected and simply connected components,V5~ i 51

n Vi , and the
total surface tension ofV is close to the optimal,

Wb~V!5(
i 51

n

Wb~Vi !<Wb~K1!1e,

FIG. 3. Measure theoretic unit normal to$v51% at x.
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then, again assuming that Area(V)5( i 51
n Area(Vi)>1, an easy consequence of~1.1.7! implies

@see~2.9.7! and~2.9.8! in Ref. 9# that actually all but one components ofV are small, and that the
only large component, sayV1 , is close to a shift ofK1 . Namely

(
i 52

n

Area~Vi !<c2e2 and (
i 52

n

Wb~Vi !<c3e,

andV1 satisfies~1.1.7!.
These stability properties are indispensable for a sharp justification of the phenomeno

Wulff construction directly from the microscopic assumptions on the local interparticle inte
tions ~see Sec. III E!.

As far as we understand, stability properties of higher-dimensional isoperimetric problem
much less studied. Already in three dimensions the Hausdorff distance is, of course, n
adequate measure of stability. Trivial rate-free stability properties inL1 simply follow from the
uniqueness of Wulff solutions and the compactness of BV balls inL1 . On a more qualitative side
there are well-studied stability properties in the class of convex sets3 and, also, for sets with a
smooth boundary.10 We feel, however, that the statistical stability under the microscopic appr
mations in the problems we consider here might be better than the impartial stability o
corresponding variational problems. A result of this sort is supposed to appear in Ref. 11.

4. Winterbottom problem

The Wulff variational problem provides a description of an equilibrium crystal shape
inside a region filled with gas phase. If, however, the spatial extent of the system is finite, i
occur that the boundary of the surrounding vessel exhibits a preference toward the crystal
In such a situation, the equilibrium state may not be given by the Wulff shape anymore, bu
have the crystal attached to the boundary. We discuss briefly the simplest model of su
interaction between an equilibrium crystal and an attractive substrate. Suppose, for simplicit
our system is contained in the half-spaceH5$xPRd:x(d)>0%; the boundary of this half-space
the hyperplanew5$xPRd:x(d)50% represents the boundary of the vessel and is called thewall.
We also suppose to simplify the analysis, and because these assumptions will always be s
that tb(n)5tb(2n), and that the homogeneous extension oftb is convex.~In the models we
consider in this paper, this is a consequence of FKG inequality.!

To model the degree of attractiveness of the wall, we introduce a new thermodyna
quantity, thewall free energytbd(b,h), which depends on both the inverse temperatureb and the
‘‘chemical structure’’ of the wallh, and modify the free energy functional accordingly,

Wb,h~V!5Wb~V!1„tbd~b,h!2tb* …H~d21!~]Vùw!,

wheretb* 5tb(ed), edPRd with ed(k)5dkd . The wall free energy replaces therefore the surf
tension tb along the wall. At equilibrium, a thermodynamical stability argument shows
tbd(b,h)<tb* ~this can also be proved in some microscopic models; see Sec. IV!, so that this last
term is always nonpositive. The new variational problem is

~WBP!v Wb,h~V!→min Given:V,H, vol~V!5v.

It has first been studied in Ref. 12 and is called the Winterbottom variational problem. Let us
discuss what its solution looks like. It turns out that there are three cases to consider.

~1! tbd(b,h)5tb* . In this case,Wb,h(V)5Wb(V) and therefore the solution is the Wulff shap
associated totb . The equilibrium crystal is not attached to the wall. This can happen ev
a priori the chemical structure of the wall is such that it is energetically favorable for
crystal to lay on the wall; see Sec. IV for a discussion from a microscopic point of view

~2! utbd(b,h)u,tb* . Now the wall is really attractive for the crystal shape. The solution of
variational problem is given by a suitably rescaled version of the following set~see Fig. 4!:
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Kw,Kù$xPRd: x~d!>2tbd~b,h!%,
so that the volume constraint is satisfied~notice that this variational problem is still sca
invariant!; see Ref. 13 for a simple proof.

~3! tbd(b,h)52tb* . This is a somewhat pathological case. Indeed, the solution of the variat
problem is completely degenerate, the solution being unbounded. A minimizing sequen
for example,

Rn5$xPH: ux~k!u<n, k51,...,d21, 0<x~d!<n12dv%.

As n→`, Rn covers the whole wall with a film of vanishingly small width; the limiting value
the surface free energy functional is 0. This describes the regime of so-calledcomplete wetting,
where the wall so strongly prefers the crystal that it wants to prevent any contact with th
phase.

5. Microscopic justification

Microscopic models we consider here are simple lattice gas-type models~in the magnetic
interpretation!, which are going to be defined precisely in the next section. The prototype situ
when the Wulff construction is thought to be recovered as a law of large numbers as the size
microscopic system tends to infinity could be loosely described as follows: Suppose th
particles of a certain substance live on the vertices of the integer latticeZd, so that each vertex o
Zd could be either occupied by a particle or remain vacant. Thus, various particle configuratn

could be labeled by points of$0,1%Zd, where one putsni51 if there is a particle at sitei PZd, and
ni50, otherwise. These random configurations are sampled from a Gibbs distributionP, which
takes into account the assumptions on the microscopic interactions between the particle
strength of the interaction is quantified by the valueb51/T of the inverse temperature; the larg
theb ~respectively, the smaller the temperatureT!, the stronger the interaction. In many instanc
sufficiently low temperatures give rise to two stable phases—the low-density phase~which we call
vapor! with an average particle density per siter l and the high-density phase~crystal! with a
corresponding average densityrh , 0,r l,rh,1.

Suppose now that all the particles are confined to a large finite volume vesselLN,Zd, where
the subindexN indicates the linear size ofLN ; we put, for simplicity, uLNu5Nd. Let us fix
rP(r l ,rh) and ask what are the typical geometric properties of particle configurationsn under the
conditional measureP(•u( i PLN

ni5rNd). In other words, we fix the total number of particlesrNd

in such a way that it falls in between the two stable valuesr lN
d andrhNd.

The prototype law of large numbers result we have in mind is schematically:

FIG. 4. The Winterbottom shape is obtained by taking the intersection between the Wulff shape and the ha
$x(d)>2tbd(b,h)%, and rescaling the obtained body.
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Thus, with an overwhelmingP(•u( i PLN
ni5rNd)-probability particle configurationsn on

LN , nP$0,1%LN, obey the following phase segregation pattern:LN splits into two regions,
LN5LN

h ∨LN
l , whereLN

h is occupied by the high-density phase, and, respectively,LN
l by the

low-density one. The relative volume ofLN
h can be recovered from the canonical constraint,

rhuLN
h u1r l uLN

l u5rNd,

and the shape ofLN
h is asymptotically Wulff.

There is a long way even toward making the above statement precise—we should defi
microscopic models, quantify the notion of phases, in particular, of phases over finite vol
and explain how the surface tension is produced in the largeN limit.

B. Microscopic models

1. Models with finite-range ferromagnetic two-body interactions

We want to introduce mathematically precise realizations of the models discussed in
I A 5. As described there, our interest lies in models of lattice gases. For simplicity we restri
attention to a particular subclass of such models, which enjoy several nice properties, the
models with finite-range ferromagnetic two-body interactions.

It is rather convenient to work with another, equivalent, formulation of these models, in w
the symmetries present are more transparent; this is themagnetic interpretation. To do this, we
introduce a new family of random variabless i , i PZd, defined by

s i52ni21.

The random variabless i therefore take values in$21,1%; s i is called thespin at the sitei.
Expressed in these variables, the model is defined through the following Gibbs measure inL with
boundary conditionss̄P$21,1%Zd

:

mL,s̄,h
b ~s!5H 1

ZL,s̄,h
b expS b (

i PL
his i1b (

$ i , j %ùLÞB
Ji j s is j D , if s i5s̄ i , for all i ¹L,

0, otherwise,

wherehiPR are called themagnetic fieldsand thecoupling constants Ji j 5Ji i 2 j i1
satisfyJi j >0

andJi j 50 if i i 2 j i1.r . A configurations such thats i5s̄ i , for all i ¹L, is said to becompat-
ible with b.c.s̄ in L; the set of all such configurations is denoted byVL,s̄ . We are particularly
interested in the1 and 2 b.c. corresponding, respectively, tos̄[1 and s̄[21. The Gibbs
measure inL with free b.c. is the probability measure on ($21,1%L,FL), defined by

mL,h
b ~s!5

1

ZL,h
b expS b (

i PL
his i1b (

$ i , j %,L
Ji j s is j D .

Expected value w.r.t. these measures are denoted with brackets notations,^•&L,s̄,h
b ,... .
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In the magnetic formulation, thecanonical ensemblecorresponds to fixing the value of th
magnetization~density! m(s)51/uLu(( i PLs i) ,

mL,s̄,h
b ~•um~s!5m̃!,

wherem̃PRange(m). If hi[h for all i, then the~infinite-volume! Gibbs statesms̄,h
b for 1, 2 and

free b.c. can be shown to exist; it is always unique whenhÞ0. The phase transition stateme
takes now the following form: There exists̀.bc.0 such that

~i! for all b,bc , the Gibbs state is unique and^m&s̄,0
b 50,

~ii ! for all b.bc , m* (b)[^m&1,0
b .0.^m&2,0

b 52m* (b).

We will use the terminologyIsing modelsto refer to the lattice gases in the magnetic formulatio
Whenh50, we will generally omit it from the notations.

Ferromagnetic models are particularly well suited for nonperturbative analyses. Indeed
enjoy several very useful qualitative properties, most of which taking form of correlation ineq
ties. Of particular importance for us are the following statements (sA5) i PAs i):

^sA&L,h
b >0,

^sAsB&L,h
b >^sA&L,h

b ^sB&L,h
b ,

providedhi>0 for all i ~first and second Griffiths’, or GKS, inequalities14,15!; also,

]2

]hi ]hj
^sk&L,h

b <0,

for all i,j , andk, providedhl>0 for all l ~GHS inequalities16!; finally,

^ f g&L,h
b >^ f &l,h

b ^g&L,h
b ,

for any increasing functionsf and g, and any hPRL ~FKG inequality17!. @A function
f :$21,1%Zd→R is increasingif f (s)> f (s8) as soon ass i>s i8 , for all i; it is calleddecreasing
if 2 f is increasing.# Observe that any b.c. can be obtained, starting with free b.c. and app
suitable magnetic fields on the spins on the inner boundary ofL, where theinner boundaryof a
setA,Zd is defined as

] inA5$ i PA:' j ¹A,i; j %,

wherei; j means thatJi j Þ0. Similarly, we define the(exterior) boundaryof A by

]A5$ i ¹A:' j PA,i; j %.

2. Two-dimensional nearest neighbors ferromagnetic Ising model

A particularly simple member of the above-mentioned class of models is the two-dimens
nearest neighbors Ising model, in whichJi j 50 if i and j are not nearest neighbors, andJi j 51 if
they are. This model still has additional remarkable features. First, even though this only p
very marginal role in this review, it is the only one for which it is possible to compute explic
various quantities~free energy, surface tension, correlations,...!. Of more importance for our
purposes is the property ofself-dualitythat it enjoys.~The fact that this model isself-dual is very
convenient, but is not required anywhere. What we need is to be able to control precisely th
of the model; for example, the Ising model on the hexagonal lattice is not self-dual, but it w
be possible to prove the same kind of statements for this model as for the one on the
lattice.!
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The nearest neighbors model admit a geometric description in terms of very simple ob
the contours. To define contours in the present context, it is useful to introduce the notion
dual of the latticeZ2. The dual lattice is the set of dual sites

Z!
25H xPR2: x1S 1

2
,
1

2DPZ2J .

To each edgee5^x,y&,x,yPZ2, we associate a dual edgee* connecting nearest neighbors du
sites, which is the unique such edge intersectinge ~as subset ofR2).

Now, if we consider the Ising model inLbZ2 with b.c. s̄, a configurationsPVL,s̄ is
entirely determined by giving the following set of dual edges,

$e* :e* dual to e5^ i , j &,$ i , j %ùLÞB,s is j521%.

The maximal connected components of these dual edges, seen as closed line segments inR2, are
calledcontours. We denote byg (s) the contours of the configurations. The boundary]g of a
contourg is the set of all dual sites belonging to an odd number of the dual edges composg.
A contour is said to beclosedif ]g5B, otherwise it isopen.

A setLbZ2 is simply connectedif ø i PL$xPR2:ix2 i i`< 1
2% is a simply connected subset o

R2.
GivenL,Z2, its dual is L* 5$ i PZ!

2:' j PL,i j 2 i i`5 1
2%. A family of contours is said to be

L* compatibleif they are disjoint~as sets of bonds and sites! and are included inL* . A family
of contoursg is said to be (L,s̄) compatibleif there exists a configurationsPVL,s̄ such that
g (s)5g. It is easy to show that for simply connectedL, L* compatibility of a family of closed
contours is equivalent to~L, 1! compatibility.

The measuremL,s̄
b can be easily written in terms of these objects; for anysPVL,s̄ ,

mL,s̄
b ~s!5

1

Zs̄
b~L!

expH 22b (
gPg~s!

uguJ , ~1.2.1!

whereugu is the number of edges ing and

Zs̄
b~L!5 (

g ~L,s̄ ! comp.
expH 22b (

gPg
uguJ [ (

g ~L,s̄ ! comp.
)
gPg

w~g;b!. ~1.2.2!

We now discuss the property of self-duality. LetLbZ2 be simply connected. We consider th
model at inverse temperatureb* in the boxL*bZ!

2, with free boundary conditions. There exis
another graphical representation for this model, thehigh-temperaturerepresentation, which result
from writing

eb* s is j5coshb* ~11s is j tanhb* !,

opening all the brackets and expanding. After a simple summation overs, this yields

ZL*
b* 5C~L! (

g L* comp.
~ tanhb* !(gPgugu[C~L! (

g L* comp.
)
gPg

w* ~g;b* ![C~L!Zb* ~L* !,

~1.2.3!

whereC(L) is some constant that only depends on the setL. Setting tanhb*5e22b, we see from
~1.2.2! and~1.2.3! thatZ1

b (L)5Zb* (L* ), sinceL is simply connected. In the same way, we c
expand the two-point function, for example, and get the following very useful identity:

^s is j&L,1
b* 5 (

l: i→ j
qL*

b* ~l!, ~1.2.4!
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where the sum is over all open contoursl such that]l5$ i , j %, and

qL*
b* ~l!5w* ~l;b* !

Zb* ~L* ul!

Zb* ~L* !
,

Zb* ~L* ul!5 (
g closed

~g,l! L* comp.

)
gPg

w* ~g;b* !.

Identity ~1.2.4! is the so-calledrandom-line representationfor the two-point function of the Ising
model, and plays a basic role in the approach to the DKS theory of Sec. III~see Refs. 18, 19 for

much more details on this topic!. What is particularly useful is that the weightsqL*
b* , which we

have defined for an open contour, can be immediately extended to any family ofL* -compatible
contours~closed or open!. In particular, ifg is a family of L* -compatibleclosedcontours, then
the following identity holds:

qL*
b* ~g!5mL,1

b
„g # g~• !….

Applications and further results about the random-line representation are given in Sec. III D
Sec. IV. The results stated above also hold when the coupling constants are allowed to var
edge to edge, provided they remain ferromagnetic; if we denote byJ(e) the coupling constant a
edgee, then the duality relation takes the form

tanh„b* J* ~e* !…5e22bJ~e!. ~1.2.5!

3. Kac models

In the original van der Waals theory, the occurrence of phase transitions is due to long
attractive forces between molecules. In its statistical mechanics formulation, these forc
described by Kac potentials that depend on a positive scaling parametere that controls the strength
and the range of the potential~see Ref. 20!. The first probabilistic approach to this model w
made in the celebrated paper of Lebowitz and Penrose.21

In dimensiond, Ising systems with Kac potentials are defined by Gibbs measures with p
tials depending on a scaling parametere.0,

; i , j PZd, Ji , j
e 5edJ~ei i 2 j i2!,

andJ is a non-negative, smooth function supported by@0, 1# and normalized so that

E
Rd

dr J~ ir i2!51.

The Gibbs measure on the domainL is denoted byme,L
b . The constante will be so that the system

has a finite but long range interaction. It is convenient to consider interaction parameters
form e522m ~m is typically assumed to be large but fixed!.

This model bridges the finite range models and the mean field models. In particular,
range of the interaction, i.e.e21, is scaled proportionally to the number of spins then the statis
properties of the system can be recovered from a mean field functional. In the true thermody
limit, when e is kept fixed while the number of spins goes to infinity, the behavior of the sys
cannot be described by the mean field continuum limit. Nevertheless, by localizing in finite
regions it is possible to derive some information from the mean field functional. This strateg
used to recover the phase diagram of the model and to prove that it is arbitrarily close to th
of the mean field model whene goes to 0. More precisely, let us recall the following result that
been proven by Cassandro and Presutti22 and by Bovier and Zaharadnik23 ~see also Ref. 24!.
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Theorem 1.2.1: For any b.1, there is e0.0 such that for anye smaller thane0 a phase
transition occurs and there are at least two distinct pure phases, me

1 and me
2 .

If b.1, there is a breaking of symmetry and the spontaneous magnetization is deno
me

1(s0)5me* . Definem* 5 lime→0 me* . This theorem was proven via a renormalization pro
dure that we shall describe in Sec. II C 1.

4. Surface tension

We fix n a vector inSd21 and consider an orthonormal basis (e1 ,...,ed21 ,n). Let L̂(N,M ) be
the parallelepiped ofRd centered at 0 with side lengthN for the sides parallel to (e1 ,...,ed21) and
side lengthM for the sides parallel ton. The microscopic counterpart ofL̂(N,M ) is denoted by
L(N,M ). The boundary]L(N,M ) is split into two sets:

]n
1L~N,M !5$ i P]L~N,M ! u i"n>0%,

]n
2L~N,M !5$ i P]L~N,M ! u i"n,0%.

We fix the boundary conditions outsideL(N,M ) to be equal to 1 on]n
1L(N,M ) and to21 on

]n
2L(N,M ). The corresponding partition function onL(N,M ) is denoted byZL(N,M ),n,6

b .
Notice that any configurations contributing to the partition functionZL(N,M ),n,6

b contains a
6-contourg that crossesL(N,M ) under the ‘‘averaged’’ direction orthogonal ton ~Fig. 5!. Such
a contour is absent in the configurationss contributing to partition functionsZL(N,M ),1

b with pure
boundary conditions on]L(N,M ). This contour represents the microscopic6 interface under the
directionn.

Definition: The surface tension in the directionnPSd21 is defined by

tb~n!5 lim
N→`

lim
M→`

2
1

Nd21 log
ZL~N,M !,n,6

b

ZL~N,M !,1
b . ~1.2.6!

h

Remark:Notice that surface tension is sometimes defined with an extra multiplicative factorb.
The proof of the existence of the surface tension can be found in many papers~Refs. 25 and

26, to mention a few!. A general approach has been developed by Messager, Miracle-Sole
Ruiz.27 The core of their proof is the subadditivity of the sequence of finite-volume approxima
to tb(n) that is obtained by means of FKG inequality. The proof is also valid for a wide rang
models like Ising models with finite range interactions, Potts and SOS models. Furthermore

FIG. 5. Definition of the surface tension.
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showed that surface tension can be defined with parallelepipedsL(N,MN), whereMN is a func-
tion of N that diverges asN goes to infinity. More general domains can also be conside
provided they contain a parallelepiped of the typeL(N,MN).

The convexity of the homogeneous extension oftb @see ~1.1.3!# is a consequence of th
pyramidal inequality proven in Theorem 3 of Ref. 27: LetA0 ,...,Ad be d11 points ofRd and
denote by (D i) i<d the simplex defined by these points. Letni be the unit normal toD i anduD i u its
area. Then, the pyramidal inequality says

uD0utb~n0!<(
i 51

d

uD i utb~ni !.

Note also that the homogeneous extension oftb is continuous because it is locally bounde
and convex. Furthermore,tb is uniformly positive onSd21. This follows from the fact that the
surface tensiontb(n0) in the directionn05(1,0,...,0) is strictly positive asb is larger thanbc ~see
Lebowitz and Pfister28!.

C. Scope of the theory

The key notion behind the attempts to give a rigorous meaning to the type of the
segregation phenomena, which have been vaguely discussed in Sec. I A 5, is that ofrenormaliza-
tion or coarse graining. The energy~probability! competes with the entropy~number! of micro-
scopic configuration in the corresponding energy shells. Macroscopic quantities like surfac
sion are produced in the aftermath of the entropy/energy cancellation, which is to say that in
to derive large-N ~N-linear size of the system! asymptotics one should renormalize appropri
microscopic objects. The appropriate objects here are, of course, microscopic phase bou
which decouple between different ‘‘large’’ microscopic phase regions. These renormaliz
procedures could follow two different trends, depending on whether the renormalized~meso-
scopic! structures keep track of the microscopic or macroscopic state of the system.

1. Dobrushin –Kotecký –Shlosman theory

The coarse graining of the DKS theory closely follows microscopic phase segregation
terns. Basic tools comprise a fluctuation analysis of the microscopic phase boundaries an
uniform local limit estimates over domains encircled by such boundaries. Thus, the notion of
volume phases is quantified by the rate of the relaxation of the statistics of microscopic o
ables inside the microscopic phase regions toward the corresponding equilibrium values.

The theory has been developed using the low-temperature cluster expansions in the s
monograph.9 Our exposition in Sec. III is nonperturbative and follows the works of Refs. 26,
30, 18, 31 and 32. By and large the existing results are confined to the simplest two-dimen
models~percolation and nearest neighbor Ising!.

2. L1-theory

The renormalization approach of theL1-theory is, in a sense, opposite to that of DKS. In t
latter case the principal coarse grained objects~skeletons; see Sec. III! are built upon underlying
families of largemicroscopiccontours. Such information is waved out in theL1-approach, and the
basic renormalization objects here are the local~mesoscopic! order parameters or, in the spi
language, locally averaged magnetization on various length scales. The idea is that on suffi
large scales local averages of the magnetization are, with an overwhelming probability, cl
one of the two equilibrium values6m* . Thus, under the renormalization, configurations
characterized by their phase labels on different mesoscopic blocks. The objective of theL1-theory
is to describe typical mesoscopic magnetization profiles~or their phase labels! under a relaxed
canonical constraint of shell type. Unlike in the DKS case, the mesoscopic phase labe
classified by their proximity to variousmacroscopicstates. Combinatorial complexity of thi
approximation is reduced by an exponential tightness property of the mesoscopic phase lab~for
a general claim of this sort see Theorem 2.2.1!, which enables us to restrict attention only
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L1-compact subsets of feasible macroscopic states, namely to the phase sets of finite pe
The core of the compactness estimates is based on the renormalization decoupling tec
introduced in Ref. 33 and on the methods developed to control the phase of small conto
Refs. 30, 18, 31 and 32. These techniques are robust enough to be applied on a renormaliz
in any dimensions in a nonperturbative setting.

Our exposition in this review is based on the work of Ref. 34 with, though,
exception—we specifically stress that all the relevant estimates of theL1-theory are obtained on
appropriatefinite scales. The validity of Lemma 2.4.1 up to the slab percolation threshold fol
from the results of Ref. 35.

3. Boundary phenomena

In Secs. II and III we the provide a derivation of Wulff construction from the basic princi
of equilibrium statistical mechanics. In Sec. IV we are concerned with a study of the effect o
boundary conditions on the macroscopic geometry of the phase separation. In particula
shown how the interaction with the boundary of the vessel can be analyzed, and used to p
a derivation of the Winterbottom construction. The relationship between the macroscopic
etry in this case and the wetting transition is also discussed. The presentation follows Ref.
the two-dimensional~2D! case, and Ref. 11 for the higher-dimensional ones.

4. Bibliographical review

The rigorous investigation of the macroscopic geometry of phase separation under a ca
constraint certainly started with two seminal papers of Minlos and Sinai in 1967–1968.36,37 In
these papers, the authors considered nearest neighbor very low temperature Ising models
trary dimensionsd>2, even though they only wrote down the proof explicitly in the cased52.
Their results could be roughly stated in the following way: At sufficiently low temperatu
typical configurations of the Ising model in the exact canonical ensemble over finite vess
linear sizeN, consist of a single large contour whose shape is ‘‘nearly a square,’’ whereas th
of the contours are small, that is at most of the order logN. This is the picture of low-temperatur
excitations of canonical ground states, and it has been treated by the authors as such. In pa
the entropic factor has been frequently suppressed by the microscopic energy cost. Howeve
asymptotic results on the level of a microscopic justification of the Wulff construction dep
even at very low but still nonzero temperatures, on a nontrivial entropy/energy competition
hence, could not be derived in this way.

Then there followed 15–20 years of a relative stagnation, the only contributions to the
being confined to generalizations of Refs. 36 and 37 to more complicated models.38 A popular
interest to the problem has been revived toward the mid-1980s in the framework of an on
mingle between probability and statistical mechanics.39–42

A breakthrough occurred around 1989, when Dobrushin, Kotecky´, and Shlosman found a wa
to derive the Wulff shape in a scaling limit of the low-temperature 2-D Ising model. They fo
much more: Essentially the monograph9 sets up a comprehensive mathematical theory of ph
segregation. This theory happened to be an intrinsically probabilistic one. The DKS approa
above all, to quantify the phenomenon of phase separation in terms of probabilistic limit the
and, accordingly, to study the probabilistic structures related to the canonical states. Thu
sharp contrast with most of the preceding works, the ideology of Ref. 9 has been from the
very robust one and, actually, pertained to the whole of the phase transition region. It co
implemented, however, only at very low temperatures, since the authors used low-temp
cluster expansions as the principal tool for proving the corresponding probabilistic theorem

The ideas of Ref. 9 did not wait long to inspire a wave of investigations, even before the
of the work started to circulate. Two subsequent works of a fundamental importance are R
where an alternative simplified proof of parts of the DKS results has been given using techn
which are specific to the 2D Ising model, like self-duality, and Ref. 43, where the Wulff cons
tion has been derived in the context of the 2D Bernoulli percolation, but in a completely no
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turbative fashion, that is down to the percolation threshold1
2. In both instances the exact canonic

setting has been substituted by shell-type integral constraints, and, respectively, softer in
type limit results have been used instead of the local estimates of the original DKS theory

The results and techniques of Refs. 43 and 26 have been combined with the profound
malization ideas of Ref. 33 and lead to an extension of this weak integral approach to the
construction in the whole of the 2D Ising phase coexistence limit.29,30 Simpler proofs of some of
the basic estimates of these two works~e.g., estimates in the phases of small contours or skel
lower bounds! have been found in Refs. 44 and 45, and the integral version of the two-dimens
DKS theory has been essentially completed in Ref. 18, the estimates of the latter work
already optimal along the lines of the integral approach. Furthermore, Pfister and Velen46,18

investigated the effect of boundary conditions, and in particular, studied the effect of an arb
boundary magnetic field, thus providing a derivation of the Winterbottom construction.

In spite of these successes, a nonperturbative treatment of the full DKS theory was still
reach, because a key ingredient was missing: only rough estimates were available in the p
small contours. By proving a local limit theorem in the phase of small contours, Ioffe and Sc
mann were finally able to provide a nonperturbative version of the strong Wulff theory.32 The
techniques of Ref. 32 are based on improved versions of asymptotic expansions in met
cutoff phases developed in Ref. 31.

In principle, the two-dimensional DKS theory should lead to exact expansions of cano
partition functions up to zero-order terms. This, however, requires a superb control ove
statistical behavior of microscopic phase boundaries, which is currently beyond the reach
Ising model at moderately low temperatures. A certain progress, though, has been reported
low temperatures47,48 or either in the case of simplified models.49 Finally, it should be noted tha
at moderately low temperatures the success of the DKS theory in two dimensions has been
large confined to the Ising and percolation models, and that there are serious technical a
sibly theoretical challenges to extend it to more general two-dimensional models~see Sec. III F for
more on this!.

On the other hand, as it has been communicated to us, an appropriate version of th
temperature DKS theory~as originally developed in Ref. 9!, should apply to any two-phase mod
in the realm of the Pirogov–Sinai theory.50

There is a strong interplay between dynamical properties of the Ising model and its be
in equilibrium: in the absence of phase transition, the correlations at equilibrium are related
exponential relaxation of the system; instead, as a phase transition occurs, the dynamics is
by the evolution of droplets~nucleation, motion by mean curvature...!. We will not enter into
details and simply refer to the seminal paper on metastability by Schonmann and Shlosma31 and
to the lecture notes by Martinelli51 ~and references therein! for a survey of the recent works. Le
us just mention that, as far as phase coexistence is considered, many dynamical results a
valid in dimension 2 because of the absence of a precise description of the equilibrium pro
in higher dimensions.

If the 2D case was subject to rapid progress, the best results for higher dimensions rem
for a long time those of Minlos and Sinai.

The turning point of the latest developments should be traced back to the seminal wo
Pisztora33 and by Cassandro and Presutti,22 where crucial renormalization decoupling estima
have been established in the case of the nearest neighbor Ising and, respectively, Kac inter

The basic philosophy of theL1-approach has been originally developed in the works of R
52–55 in the context of the Ising systems with Kac potentials, and, in a less explicit way, ele
and ideas of the theory already appeared in Refs. 43, 33, 30 and 18.

Using an embedding of the renormalized observables into a continuum setting, Alberti
lettini, Cassandro and Presutti52,53 emphasized the appropriateness of geometric measure th
setting, introduced relevant analytic approximation procedures~see Sec. II F 1! and proved large
deviation bounds for the appearance of a droplet of the minority phase in a scaling limit whe
size of the domain diverges not much faster than the range of the Kac potentials. In this scal
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system can be controlled by a continuum limit via theG convergence of functionals associated
the spin system52 and by compactness arguments.53

The approach of Refs. 52 and 53 has been extended by Benois, Bodineau, Butt
Presutti54,55 to the case when the range of the interaction remains fixed and does not chang
the size of the system. The latter works are, already, structured in a way very similar to the o
expose here. Thus, the main steps of Refs. 54 and 55 comprise the coarse graining of the
magnetization profiles by theL1 proximity to various continuum sets of finite perimeter, surge
procedures to confine interfaces to tubes around the boundaries of such sets and exp
tightness arguments to reduce the combinatorial complexity of the rescaled problem. The es
model-related input has been provided by the decoupling estimates on the renorm
magnetization22,23 and by the result on the instanton structure of Kac interfaces.56,57 The latter
structure, however, yields only approximate bounds at each fixed finite interaction range. C
quently, the exact~van der Waals! surface tension could be recovered only when the range o
interaction tends to infinity, that is, only in the Lebowitz–Penrose limit. Nevertheless, at lon
finite range interactions one could say that the typical mesoscopic configurations concent
droplets withL1-almost spherical shapes.

A complete picture of the higher-dimensionalL1-Wulff construction has been, for the firs
time, grasped and worked out in a recent remarkable work,58 where the corresponding results ha
been established in the context of the supercritical three-dimensional Bernoulli bond perco
Using novel and unusual renormalization procedures based on the decoupling results of R
Cerf has essentially rediscovered all the main steps of theL1-approach, as described above. T
main turning point of Ref. 58 was the introduction of an alternative ingenious definition o
surface tension, which happened to be compatible with the setup ofL1-renormalization proce-
dures.~It should be noted, though, that despite relative technical simplicity of this observation
work58 most certainly prompted the completion of theL1-theory by many years.!

The work of Cerf58 triggered a wave of new investigations. In Ref. 34 his ideas on how
define and treat the surface tension have been combined with an appropriate adjustmen
renormalization approach of Refs. 54 and 55, which lead to a relatively short proof o
L1-Wulff construction for the nearest neighbor Ising model in three and higher dimensions a
sufficiently low temperatures. Most recently, a similar construction has been established up
FK slab percolation threshold in Ref. 35. In the latter article new and important techniques
been developed in order to go around mixed boundary conditions via bulk relaxation proper
the FK measures.

Although the techniques of theL1-theory might look ‘‘soft’’ when compared to the local limi
setting of the DKS approach, one should bear in mind that there is always a ‘‘hard’’ step n
to initialize theL1 machinery: The renormalized mesoscopic phase labels have to possess
ciently good decoupling properties. For the case of Kac models the corresponding estimate
been established in Refs. 22, 23, and 59, and in the case of percolation~including FK for the
nearest neighbor Ising model! models in dimensiond>3 in Ref. 33, on which both Ref. 58, 35
and 34 rely in a fundamental way.

Higher-dimensional Winterbottom-type shapes have been recovered in the context of ef
interface models60–63 following the original two-dimensional model defined and studied in R
64.

The results of these works have been also formulated in terms ofL1 concentration properties
but the corresponding approach is quite different from the one we expose here. Thus, the a
of Ref. 61. heavily relies on specific properties of Gaussian interactions. It should be n
though, that, unlike in the nearest neighbor higher-dimensional Ising case, there is better
into the fluctuation and relaxation properties of higher-dimensional microscopic interfaces.65,62On
the other hand, the shapes produced by the effective interface models are much less ‘‘phy
in particular, the equilibrium shapes are not scale invariant, and the corresponding surface
is not convex.
                                                                                                                



f con-
icro-

-
oscopic
c, per-

In

the

e
ct
e shall

In par-
ithout
pond-

1050 J. Math. Phys., Vol. 41, No. 3, March 2000 Bodineau, Ioffe, and Velenik

                    
II. L1-THEORY

On the macroscopic level the phenomenon of phase segregation is studied in terms o
centration properties of the locally averaged magnetization. Statistical properties of the m
scopic phase boundaries are waved out, and the backbone of theL1-theory are hard model
oriented renormalization estimates, which enable a sharp surface order analysis of the mes
magnetization profiles. An example of such coarse graining procedures in the case of Ka
colation, and Ising models are given in Sec. II C.

The averaging is performed on various mesoscopic scales:
Mesoscopic notation. All the intermediate scales are of the form 2k, kPN. For anyM52k fixed
we split the unit torusT̂d into the disjoint union of the corresponding mesoscopic boxes,

T̂d5 ~
xPT̂k

d

B̂k~x!, ~2.0.1!

whereT̂k
d is the scaled embedding of the discrete torusTM5$1,...,M %d into T̂d as

T̂k
d5T̂dùS 1

M
TM D ,

and, givenxPT̂d the boxB̂k(x)PT̂d is defined via

B̂k~x!5x1F2
1

2k11 ,
1

2k11D d

.

Let us useFk to denote the~finite! algebra of the subsets ofT̂d generated by the partition~2.0.1!.
Given the size of the systemN52n, the local magnetizationMk on theM52k<N scale is always
an Fn2k-measurable function. This notation should not be confusing: the subindexk in Mk

measures the ‘‘coarseness’’ of the mesoscopic magnetization profile. Thus,M0 corresponds to the
microscopic configuration, andMn identically equals to the averaged total magnetization.
general, the local magnetizationMk is a piecewise constant function onT̂d defined as

;xPT̂n2k
d , ;yPB̂n2k~x!, Mk~s,y!5

1

Md (
j PBM~2nx!

s j .

Notice that the microscopic counterpart of the boxB̂n2k(x) is the boxBM(2nx) of side lengthM
centered in 2nx.

We formulate all the results of Sec. II A for the nearest neighbor Ising model. Along with
supercritical Bernoulli percolation this is the only instance when a relatively completeL1-theory
has been developed. In both instances, the validity of theL1-theory hinges in a crucial way on th
validity of Pisztora’s coarse graining,33 which is by far the most profound model related fa
employed. Nevertheless, the approach itself is rather robust, and in subsequent sections w
try to distinguish between specific model-dependent properties and more general results.
ticular, compactness properties of local magnetization profiles are discussed in Sec. II B w
any reference to specific models. Instead we briefly indicate how the conditions of the corres
ing general exponential tightness theorem could be verified in several particular cases.

A. Results and the strategy of the proof

1. Main results

For simplicity, we restrict to the case of the torusTN and denote bymN the Gibbs measure
with periodic boundary conditions. Define the total magnetizationMTN

as
                                                                                                                



ly
is

l
pera-

ivial,
orem

ation,
orem
ometry
asure

e first
arithmic

1051J. Math. Phys., Vol. 41, No. 3, March 2000 Equilibrium crystal shapes

                    
MTN
5

1

Nd (
i PTN

s i .

Let us define also the setBp as

Bp5$b:Pisztora’s coarse-graining hold for the Ising model at inverse temperatureb%.

We refer to the original article, Refs. 33 and 35, for the precise relevant definitions~see also the
remark at the end of Sec. II C 3!. It is known thatBp contains all except for, at most, countab
many points of the interval ]b̃c ,`@ , whereb̃c is the so-called slab percolation threshold, which
conjectured to coincide withbc .

A compact way to state the main result of theL1-theory is the following.
Theorem 2.1.1:For any bPBp and m in] m̄,m* @ ,

lim
N→`

1

Nd21 logmN~ uMTN
u<m!52Wb~Km!,

where m̄5m̄(b) and Km were defined in Sec. I A 2.
Remark: The above theorem has been established forb@1 in Ref. 34. The only additiona
ingredient required for an extension of the results of the latter paper to the whole of the tem
ture rangeb̃c was the validity of Lemma 2.4.1. Such a statement happens to be highly nontr
and it has been proven in Ref. 35 along with an alternative derivation of the claim of The
2.1.1. h

Theorem 2.1.1 looks like a surface order large deviation principle. Such an appell
however, would not help to explain the structure of the underlying phenomena. In fact, The
2.1.1 is essentially equivalent to a seemingly stronger statement on the macroscopic ge
of the phase segregation of local magnetization profiles under the conditional me
mN(•uuMTN

u<m).

For any functionv in L1(T̂d,@21/m* ,1/m* #), thed neighborhood ofv is denoted byV(v,d),

V~v,d!5H v8PL1S T̂d,F2
1

m*
,

1

m* G D U E
T̂d

uvx82vxudx<dJ .

The L1-theorem on the phase separation says that forb large enough withmN(•uuMTN
u<m)

probability converging to 1, the functionMk is close to some translate of the Wulff shapem* 1Km
.

More precisely, fix a numbern,1/d.
Theorem 2.1.2:For anybPBp and m in] m̄,m* @ the following holds: For everyd.0, one can
choose a scale k05k0(b,d), such that

lim
N→`

min
k0<k<nn

mNS Mk

m*
P ø

xPT̂d

V~1Km1x,d! U uMTN
u<mD 51,

where m̄and Km were defined in Sec. I A 2.
The proofs of Theorems 2.1.1 and 2.1.2 are similar and are divided into two steps. Th

step amounts to prove a compactness theorem and the second one to derive precise log
asymptotics.
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2. Exponential tightness

Recall7 that for anya positive, the set

Ka5$vPBV~ T̂d,$61%! u P~$v51%!<a%,

is compact with respect to convergence inL1(T̂d).
Proposition 2.1.1: Letb be in Bp . Then there exists a constant C(b).0 such that for alld
positive one can find k0(d),

;a.0, lim sup
N→`

1

Nd21 max
k0~d!<k<nn

logmNS Mk

m*
PV~Ka ,d!cD<2C~b!a,

whereV(Ka ,d) is thed neighborhood of Ka in L1(T̂d).
This proposition tells us that only the configurations close to the compact setKa have a

contribution which is of the surface order. This statement reduces the complexity of the pro
asKa is compact, it is enough to derive the leading terms in the logarithmic asymptotics fo
probability of a finite number of events.

In Sec. II B, we prove that the analog of Proposition 2.1.1 holds for a broad class of mo

3. Precise logarithmic asymptotics

As the minimizers are known, it is sufficient to derive a lower bound for configurat
concentrated close toKm .
Proposition 2.1.2: Letb be in Bp and let m be in] m̄,m* @ ,

lim inf
N→`

1

Nd21 min
k0~d!<k<nn

logmNS Mk

m*
PV~1Km

,d! D>2Wb~Km!2o~d!,

where the function o(•) depends only onb and vanishes asd goes to 0.
According to Proposition 2.1.1, we will prove the upper bound only for a restricted cla

events.
Proposition 2.1.3: Letb be inBp . Then for allv in BV(T̂d,$61%) such thatWb(v) is finite, one
can choosed05d0(v), such that uniformly ind,d0 ,

lim sup
N→`

1

Nd21 max
k0~d!<k<nn

logmNS Mk

m*
PV~v,d! D<2Wb~v !1o~d!,

where the function o(•) depends only onb and v and vanishes asd goes to 0.
The propositions above ensure that given a precisiond, there is a finite scalek0(d) after which

the phases are uniformly segregated with this precision.

4. Scheme of the proof

The scheme of the proof is well known in the soft context of large deviations: one first pr
an exponential tightness property and then a weak large deviation principle~Proposition 2.1.2
holds also for any bounded variation function with a finite perimeter!. To be sure, the proof itsel
has nothing to do with the theory of large deviations: the central tools here are the renormal
estimates leading to Peierls-type bounds and estimate in the phase of small contours,
course, the identification methods to produce the macroscopic surface tension in the
logarithmic asymptotics.

Thus, Proposition 2.1.1 tells us that, under the appropriate renormalization, the occurre
many small contours or of very large contours is unlikely. It is a straightforward consequen
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the general exponential tightness, Theorem 2.2.1, which we state in Sec. II B. The statem
reminiscent to the results proven in Ref. 55, but the proof itself is based on the analysis
phase of small contours developed in Refs. 30, 44, and 18.

To prove Propositions 2.1.2 and 2.1.3, we first consider the macroscopic event$Mk /m*
PV(v,d)% and by using several localization procedures, we reduce to compute the probabi
microscopic events from which, adopting the procedure developed in Ref. 58, we can deri
exact surface tension factor. This enables us to avoid the computations related to the micro
phase boundaries at, however, a principal cost of losing track of the latter.

Since the most likely configurations in$Mk /m* PV(v,d)% are those for which both phase
coexist along the boundary of]* v, we would like to prove that a microscopic interface
localized close to the boundary. To derive the lower bound~Proposition 2.1.2!, one can enforce
such a microscopic interface and then recover the surface tension factor.

This is not the case for the upper bound~Proposition 2.1.3! because theL1 constraint
$Mk /m* PV(v,d)% imposed on the magnetization is not strong enough to localize the inte
close to]* v: there might be mesoscopic fingers of one phase percolating into the othe
circumvent this problem, we follow an argument developed in Ref. 54 and first prove a
localization on a mesoscopic level. This involves a surgery procedure called the minimal s
argument. This procedure ensures that one can chop off the mesoscopic fingers without ch
too much the probability of the event and therefore localize the interface on a mesoscopic
The renormalization is an essential feature of this proof. Once the interface is localized o
mesoscopic level, it remains to identify surface tension.

We now proceed by first defining a coarse graining and deducing the exponential tigh
from Theorem 2.2.1. Then we compute the logarithmic asymptotics.

B. Coarse graining and mesoscopic phase labels

At every mesoscopic scaleM52k the local magnetizationMk gives a coarse grained repre
sentation of the system. Statistical properties of the microscopic configurations are waved o
instead one keeps track only of the local order parameters over the corresponding mes
blocks. These are quantified by three values61 and 0 according to whether they are sufficien
close to one of the two equilibrium values6m* or not. Here 0-blocks play the role of th
mesoscopic phase boundaries, and the61 blocks of the corresponding mesoscopic phase regi
Thus, the outcome of the renormalization could be schematically represented as the fol
two-step diagram:

H Microscopic
configurationsJ→ H Local

magnetizationJ→ H Mesoscopic
phase labelsJ .

There are two principal results to be discussed in this section: we show that theL1 difference
between the local magnetization and the corresponding phase labels vanishes on the exp
scale, and we give a general exponential tightness criterion for families of$61,0%-valued phase
label functions. In Sec. II C, we will indicate how to construct phase labels in the case of
percolation, and nearest neighbor Ising models.

Definition: A $61,0%-valued functionu on T̂d is called a mesoscopic phase label, if the
existskPN, such thatu is anFk-measurable function.

1. Tightness theorem for mesoscopic phase labels

We fix now a sequence of non-negative numbers$rk%, such that

lim
k→`

rk50. ~2.2.1!

The following compactness result holds uniformly in the microscopic scalesN52n.
                                                                                                                



t
mmon

s,

scale
e

ntials

y: For

ls

g

l

1054 J. Math. Phys., Vol. 41, No. 3, March 2000 Bodineau, Ioffe, and Velenik

                    
Theorem 2.2.1: (Tightness of mesoscopic phase labels) Let N52n and assume tha
$uk(v,x)% is a sequence of random mesoscopic phase label functions defined on the co
probability space(VN ,AN ,PN), such that the realizations of ukPFn2k , k51,...,n, and for every
k the following two conditions hold.

~a! The distribution of the family of random variables$uuk(v,x)u%xPT̂
n2k
d is stochastically domi-

nated by the Bernoulli site percolation measurePperc
rk on T̂n2k

d . In particular,

PN~uk~x1!50,...,uk~xl !50!<~rk!
l . ~2.2.2!

~b! If for two different points x,yPT̂n2k
d the corresponding uk -phase labels have opposite sign

that is if uk(x)uk(y)521, then on any finer scale k8<k any * -connected chain ofB̂n2k8
blocks joiningB̂n2k(x) to B̂n2k(y) contains at least one block with a zero k8-label. Then for
every a.0 and d.0 there exists a finite scale k05k0(d), such that

1

Nd21 logPN„ukPV~Ka,2d!c
…<2c1~d!minH d 2n2dk,

a

2~d21!k0
,
d 2n2dk0

nd J , ~2.2.3!

for all k>k0 .
Remark:The proof of this general theorem is given in Appendix A. Notice that forN sufficiently
large we obtain a simpler surface order estimate, which, for everyn,1/d fixed, holds uniformly
in all mesoscopic scalesk0(d)<k<n logN,

1

Nd21 logPN„ukPV~Ka,2d!c
…<2c1~d!

a

2~d21!k0
. ~2.2.4!

Also, an inspection of the proof shows that the tightness of the phase labels on a certaink
does not depend on the validity of Assumptions~a! and ~b! of Theorem 2.2.1 on the successiv
scalesk8.k. In particular, the estimate~2.2.4! is valid on fixed~large! finite scalesk5k0 , once
assumption~a! is satisfied, and once any*-connected sign changing chain ofk0-blocks necessarily
contains a 0-block. This simplified version of Theorem 2.2.1 is used in the case of Kac pote
that we discuss in Sec. II C 1. h

2. Relation to magnetization profiles

The original Gibbs measure is related to the above abstract setting in the following wa
everyN52n, one constructs a~possibly enlarged! probability space (VN ,AN ,PN), on which both
the spin variablessP$21,11%TN and various indexed families$uk

z% of mesoscopic phase labe
are defined. Such construction should enjoy the following set of properties.

~C1! The marginal distribution ofs underPN is preciselymN .
~C2! For everyz.0 the family $uk

z% of mesoscopic phase labels satisfies assumption~a! of
Theorem 2.2.1 with the corresponding sequence$rk,z% of site percolation probabilities obeyin
~2.2.1!.

~C3! For everykP$0,...,n% andz.0 the local magnetization profileMk and the phase labe
uk

z are related as follows:PN a.s.,

uMk~x!2m* uk
z~x!u<z, whenever uuk

z~x!u51. ~2.2.5!

Notice that both functions above areFn2k measurable, that is,~2.2.5! should be verified over
the mesoscopic boxes indexed by the pointsxPT̂n2k

d .

Under conditions~C1!–~C3!, given anyd.0 one can choose the accuracyz of the coarse
graining, a finite scalek05k0(d,b), and a sequence of mesoscopic phase labels$uk

z%, such that
for everyn,1/d fixed,
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1

Nd21 logPNS max
k0<k<nn

iMk2m* uk
zi1.d D<2c2 2~12dn!n. ~2.2.6!

Notice that~2.2.6! holds uniformly in the size of the systemN52n, once assumptions~C1!–~C3!
do so.

Let us check~2.2.6!. By the very construction,

iMk2m* uk
zi1<z1

2

uT̂n2k
d u

(
xPT̂n2k

d
1u

k
z~x!50 .

Consequently, using the domination by the Bernoulli site percolation@assumption~a!#,

PN~ iMk2m* uk
zi1.d!<PNS 1

uT̂n2k
d u

(
xPT̂n2k

d
1u

k
z~x!50.

d2z

2 D
<Pperc

rk,zS 1

uT̂n2k
d u

(
xPT̂n2k

d
1u

k
z~x!50.

d2z

2 D
<expH 2c12d~n2k! log

d2z

2rk,z
J .

The latter estimate is of the super-surface order oncerk,z!(d2z)/2 andk,n/d.

C. Examples of mesoscopic phase labels

We show that mesoscopic phase labels can be constructed in the case of Kac, percolat
Ising models.

1. Kac potentials

For this model mesoscopic phase labels are defined on the original space of
sP$21,11%TN: the coarse graining is obtained by averaging locally the magnetization. R
that we are using dyadic length scalesN52n.

Phase labels are constructed in three steps. First, for any integerk andz.0, we introduce the
block spin variablesūk

z that label the boxesB̂n2k according to the averaged magnetization over
boxes of the linear sizeM52k. Theseūk

z are constant on each of the blocksB̂n2k(x) with
xPT̂n2k

d ,

ūk
z~s,x!5H 61, if U 1

Md (
i PBM~2nx!

s i7m*U,z,

0, otherwise .

In the Kac case we do not use Theorem 2.2.1 in its full generality; the object of the c
graining is to choose a finite scalek0 , such that the family of mesoscopic phase labels is ex
nentially tight inL1 . Recall that the scaling parameter is chosen such thate522m with m large
but fixed. Eventually finite renormalization scalesk0 are going to satisfyk05m1a0 , wherea0

depends onb andz, but not onm. The sign of thek0 label over a boxB̂n2k0
(x) depends on a more

refined information on the fluctuations of the magnetization inside the box: we choose an
scalel 0 ; l 05m2b0 , where, as in the case ofa0 , the scaleb0 will eventually depend only onb
andz, and define the family of modified block spins$ũk0

z % on thek0 scale as
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ũk0

z ~s,x!5H 61, if ūl 0
z ~s,y!561, ;yPT̂n2 l 0

d ùB̂n2k0
~x!,

0, otherwise .

Finally, we define the mesoscopic phase label functions$uk0

z (s,x)%. If ũk0

z (s,x)50, we set

uk0

z (s,x)50. If x,yPT̂n2k0

d are*-neighbors, but the corresponding modified blocks spins sa

ũk0

z (s,x)ũk0

z (s,y),0, thenuk0

z (s,x)5uk0

z (s,y)50. Otherwise, we setuk0

z (s,x)5ũk0

z (s,x).

A consequence of the Peierls estimate proven in Refs. 22 and 23 is that assumption~a! is
satisfied, namely the following.
Theorem 2.3.1:For anyb.1, there existsz05z0(b).0, such that the following holds: For any
z,z0 one can choosee05e0(z), a05a0(z) and b05b0(z), such that uniformly in the interac
tion parameterse522m,e0 ,

me,N„mk0

z ~x1!50,...,uk0

z ~xr !50…<expS 2
c0

ed r D ,

where, for every fixede522m,e0 , the mesoscopic phase labels uk0

z are constructed on the scale

k05m1a0(z) and l05m2b0(z).
Remark:A more refined statement implying exponential decay of correlations was proven in
59. Notice that conditions~C1!–~C3! of the previous section are satisfied by the definition of
mesoscopic phase label functions. Notice also that assumption~b! of Theorem 2.2.1 is automati
cally satisfied on thek0-scale. Thus, the family$uk0

z % is exponentially tight inL1 . h

A similar renormalization procedure was carried out by Lebowitz, Mazel, and Presutti66 for a
system of point particles inRd interacting with Kac potentials. In this case the study of ph
transition in the continuum is much more involved. Beyond a proof of the liquid–vapor p
transition, their results provide an accurate description of the system in terms of mesoscopic
labels that represent the liquid and the gaseous phases. Such a coarse graining should be h
obtain further results on phase coexistence in the continuum.

2. Bernoulli bond percolation

Bernoulli bond percolation exhibits features similar to the Ising model as phase transitio
surface order behavior in a regime of phases coexistence. Nevertheless, as the setting is d
from the Ising model, we briefly recall some notation. The set of edges isE5$$x,y%ux;y%, where
x;y means that the vertices are nearest neighbors. An edgeb in E is open ifvb51 and closed
otherwise. To any subsetLbZd, we associate@L#e the set of edges inL. The space of bonds
configurations inL is VL5$0,1%@L#e. For a givenp in @0, 1#, we define the Bernoulli bond
percolation measure onVL by

FL
p ~v!5 )

bP@L#e

~12p!12vbpvb.

For simplicity, FN
p denotes the measure onVN5VTN

.
Let v be a configuration inV, an open path (x1 ,...,xn) is a finite sequence of distinct neare

neighborsx1 ,...,xn such that on each edgev$xi ,xi 11%51. We write$A↔B% for the event such tha
there exists an open path joining a site ofA to one ofB. The connected components of the set
open edges ofv are calledv-clusters.

A phase transition is characterized by the occurrence of an infinite cluster. DefineQp by

Qp5 lim
N→`

FN
p ~$0↔]TN%!, ~2.3.1!
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then there is a critical valuepc in #0, 1@ such that for anyp below pc there is no percolation and
Qp50; instead for anyp abovepc the occurrence of an infinite cluster starting from 0 has posi
probability Qp . In the thermodynamic limit, there exists only one limiting Gibbs measure
almost surely a unique infinite cluster with local densityQp . In order to mimic the coexistence o
two phases in the finite domainsTN , we say that one phase is formed by the largest cluster and
other phase by the other clusters.

For this model, Pisztora introduced a renormalization procedure33,67,68that holds as soon a
p.pc and d>3. The mesoscopic phase labels$uk

z% will be defined for any mesoscopic sca
M52k, wherek is an integer that eventually depends onN. This construction requires two step
The first step is to retain only the main features of the typical configurations on finite size b
BM . Then we attribute a sign to the blocksB̂n2k according to the phase they represent.
M 852M . For anyx in T̂n2k

d , the following events depend only on configurations in the b
BM8(2

nx):

Ux5$vPVN u there is a unique crossing clusterC* in BM8~2nx!%.

A crossing cluster is a cluster that intersects all the faces of the box. Letl be an integer smalle
thank that will be fixed later:

Rx5Uxù$vPVN u every open path inBM8~2nx! with diameter larger than 2l

is contained inC* %,

where the diameter of a subsetA of Zd is supx,yPAix2yi1 . Finally, we consider an event tha
imposes that the density of the crossing cluster inBM(2nx) is close toQp with accuracyz.0,

Vx
z5Uxù$vPVN u uC* ùBM~2nx!uP@Qp2z,Qp1z#Md%,

whereu•u denotes the number of vertices in a set.
Each boxB̂n2k(x) is labeled by the variableũk

z(v,x),

;xPT̂n2k
d , ũk

z~v,x!5H 1, if vPRxùVx
z ,

0, otherwise.

Let $x1 ,...,xr% be vertices inT̂n2k
d not * -neighbors ofx, then Ref. 33 implies that for ever

p.pc , there existsk0(p,z), and l 0(p) such that for allk>k0 andk> l> l 0 ,

FN
p
„ũk

z~x!50uũk
z~x1!,...,ũk

z~xr !… < exp~2c12l !1exp„2c2~z!2k
….

From Ref. 69~Theorem 1.3!, we deduce that fork and l large enough, the random variable
$ũk

z(x)% are dominated by a Bernoulli site percolation measurePperc
rk ,

rk<exp„2c~z!2l
…. ~2.3.2!

A straightforward way to recover the previous statement is to partitionT̂n2k
d into c(d) sublattices

(T̂n2k21,i
d ) i<c(d) that are translates ofT̂n2k21

d . Any collection of vertices$x1 ,...,xr% in T̂n2k
d can

be rearranged intoc(d) subsets$x1
( i ) , ...,xr i

( i )%, such that each$x1
( i ) , ...,xr i

( i )% belongs toT̂n2k21,i
d .

Applying a Hölder inequality, we get

FN
p
„ũk

z~x1!50,...,ũk
z~xr !50…<)

i 51

c~d!

FN
p
„ũk

z~x1
~ i !!50,...,ũk

z~xr i

~ i !!50…1/c~d!.

As the vertices inT̂n2k21,i
d are not* -neighbors inT̂n2k

d , the domination by a Bernoulli produc
measure follows.
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We say that a blockB̂n2k(x) is regular ifũk
z(x)51. Finally, we define the mesoscopic pha

labelsuk
z to be equal to 1 on the regular blocks connected to the largest cluster and to21 on the

regular blocks disjoint from the largest cluster. Otherwise, we setuk
z(v,x)5ũk

z(v,x)50. From
~2.3.2!, the mesoscopic phase labels satisfy assumption~a!. Notice that ifx andy are*-neighbors
in T̂n2k

d the boxesBM8(2
nx) andBM8(2

ny) overlap. Choosing the parameterl<k23 we ensure
that if the boxesB̂n2k(x) andB̂n2k(y) are both regular, then the crossing clusters in these bo
are connected. This implies that assumption~b! is satisfied: two blocks withk-labels of different
signs cannot be*-connected.

The Bernoulli bond percolation model is precisely described by Pisztora’s coarse gra
namely on a sufficiently large scale 2k, the typical configurations have a unique crossing clus
surrounded by small islands of size smaller than 2l . According to Theorem 2.2.1, the family$uk

z%
is exponentially tight inL1.

3. Ising nearest neighbor

An extension of the preceding renormalization procedure applicable to the Ising mode
been also introduced in Ref. 33. Unlike the Ising model with Kac potentials, this coarse gra
is defined on an enlarged phase space via the FK representation. For a review of FK measu
refer the reader to Refs. 33, 70, and 71.

Let us recall the definition of the random cluster measures~or FK measures! that are a
generalization of the Bernoulli bond percolation measures with correlated bond distributio
any subsetL of Zd andp included in]L, we associate a set of edges,

@L#e
p5$$x,y%ux;y,xPL,yPLøp%,

and the space of configurations inL is VL
p5$0,1%@L#e

p
. The first step is to introduce a measure

VL
p . A vertexx of L is calledp-wired if it is connected by an open path top. We callp clusters

the clusters defined with respect to the boundary conditionp: a p-cluster is a connected set o
open edges inVL

p and we identify to be the same cluster all the clusters that arep-wired, i.e.,
connected top. For a givenp in @0, 1#, we define the FK measure onVL

p with boundary conditions
p by

FL
p,p~v!5

1

ZL
p,p S )

bP@L#e
p

~12p!12vbpvbD 2cp~v!,

whereZL
p,p is a normalization factor andcp(v) is the number of clusters that are notp-wired. If

p5]L @respp5f# then the boundary conditions are said to be wired@resp,r free] and the corre-
sponding FK measure onVL

w is denoted byFL
w,p @resp,f f ,p]. Finally, the periodic measure on th

torusTN is denoted byFN
per,p and the phase space byVN

per.
In order to recover the Gibbs measuremL , we fix the percolation paramete

pb512exp(22b) and generate the edges configurationv in VN
per according to the measur

FN
per,pb. Givenv, we equip randomly eachv-cluster with a color61 with probability 1

2 indepen-
dently from the others. This amounts to introducing the measurePN

v on $21,1%TN such that the
spins i has the color of the cluster attached toi. The Gibbs measuremN can be viewed as the firs
marginal of the coupled measurePN(s,v)5PN

v(s)FN
per,pb(v) on the space$21,1%TN^ VN

per. In
the case ofp-wired boundary conditions, the spins attached to thep-wired cluster are equal to 1

As a consequence of this representation, one has, for any increasing sequence of setLN ,

m* 5 lim
N→`

mLN

1 ~s0!5 lim
N→`

FLN

w,pb~$0↔]LN%!5Qpb
.

In the following, we usem* or Qpb
depending on the context. Furthermore, we suppose tha
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lim
N→`

FLN

f ,pb~$0↔]LN%!5 lim
N→`

FLN

w,pb~$0↔]LN%!5Qpb
. ~2.3.3!

This property is satisfied for allb outside a subset ofR that is, at most, countable~see Lebowitz72

and Pfister73!.
On the scaleM52k, we define, in the same way as for Bernoulli bond percolation,

variablesũk
z(v,x) that are piecewise constant on each boxB̂n2k(x) with x in T̂n2k

d . The mesos-
copic phase labels depend on the averaged magnetization in regular blocks. Define the l
B̂n2k(x) by

uk
z~s,v,x!5H sign~C* !, if ũk

z~v,x!51 and uMk~s,x!2sign~C* !m* u,2z,

0, otherwise,

whereC* is the crossing cluster inBM(2nx).
In a regular boxB̂n2k(x) @i.e., ũk

z(x)51], the averaged magnetization is controlled by t
random coloring of the small clusters included inBM(2nx), so that the averaged magnetization
a regular box is independent of the configurations in the neighboring boxes. In the case of th
model, the additional parameterl 5 l (k) is tuned in order to control the fluctuations of the ma
netization over the small clusters. As a consequence of this, assumptions~a!, ~b! and ~C1!–~C3!
are satisfied forpb above a certain nontrivial slab percolation thresholdpb̃c

, which is conjectured
to coincide withpbc

~see Ref. 33 for details!, and Theorem 2.2.1 holds.
Remark:Using the notations of this section, the setBp introduced in Sec. II A 1 could be define
as

Bp5$b: b.b̃c and ~2.3.3! holds%.

D. Surface tension

We are going to derive Propositions 2.1.2 and 2.1.3 for the Ising model with nearest nei
interaction. As explained before, the philosophy of the proof is to start from the macroscopic
and to localize successively on finer scales with the help of a coarse graining. The approac
is quite general. Nevertheless, the coarse graining is model dependent; therefore we will ne
to state an alternative representation of the surface tension in terms of the FK representa
order to use the estimates that will be obtained from Pisztora’s coarse graining. The idea o
definitions has been introduced by Cerf in Ref. 58.

1. FK representation

We fix n a vector inSd21 and studytb(n). Following the notation of Sec. I B 4, we conside
for any e positive, the parallelepipedL̂(N,eN) of Rd oriented according ton. Namely, the basis
of L̂(N,eN) with side lengths equal toN is orthogonal ton and the other sides have lengths equ
to eN. For simplicity its microscopic counterpartL̂(N,eN)ùZd will be denoted byLN(e).

By using the correspondence between the Ising model and the FK representation, o
rewritetb in terms of the bond model. Let$]1LN(e)}]2LN(e)% be the event such that there
no open path insideLN(e) joining ]1LN(e) to ]2LN(e). Then,

tb~n!5 lim
N→`

2
1

Nd21 logFLN~e!

w,pb
„$]1LN~e!}]2LN~e!%…. ~2.4.1!

Notice that the event$]1LN(«)}]2LN(«)% takes only into account the paths insideLN(«) and
not the identification produced by wired boundary conditions. The relation above will be u
only in the proof of Proposition 2.1.2.
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We are now going to state an approximate expression of the surface tension that is w
dependent on the boundary conditions. It will be used in the derivation of Proposition 2.1.3
LN8 («) be the parallelepiped,

LN8 ~«!5H i PLN~«! U i"nPF2
«

4
N,

«

4
NG J , ~2.4.2!

and denote by] topLN8 («) @resp,]botLN8 («)] the face of]1LN8 («) @resp,]2LN8 («)] orthogonal to
n. Let $] topLN8 («)}]botLN8 («)% be the event such that there is no open path insideLN8 («) con-
necting] topLN8 («) to ]botLN8 («). One has the following.
Lemma 2.4.1:@Ref. 34,b@1; Ref. 35,bPBp]. For any bPBp ,

tb~n!5 2
1

Nd21 logFLN~«!

p,pb
„$] topLN8 ~«!}]botLN8 ~«!%…1c«,N~p!, ~2.4.3!

where the function c«,N goes to 0 as N tends to infinity and« goes to 0, uniformly over the
boundary conditionsp and nPSd21.

As it will be explained in Sec. IV on the wetting phenomenon, the system is, in fact
tremely sensitive to boundary conditions. Nevertheless, in the above lemma, the interf
constrained to be inLN8 («), so that it does not feel the influence of the boundary: the boun
conditions are screened because the system relaxes to equilibrium in the regionLN(«)\LN8 («).

Let us first examine the influence of the boundary conditionsp on the faces ofLN(«)
orthogonal ton. As $] topLN8 («)}]botLN8 («)% is a decreasing event, the FKG inequality impli
that it is enough to check that

tb~n!5 lim
N→`

2
1

Nd21 logFLN~«!

f ,w,pb
„$]1LN8 ~«!}]2LN8 ~«!%…, ~2.4.4!

whereF
LN(«)
f ,w,pb is the FK measure with free boundary conditions on the faces orthogonal ton and

wired on the others. This can be proved by means of a Peierls argument forb large enough34 or
by an analysis of the relaxation of the clusters density forb in Bp .35

As already noticed in Ref. 58 in the context of percolation, the influence of the boun
conditions on the sides ofLN(«) parallel ton is negligible as« goes to 0. This explains that th
factor c«,N(•) vanishes uniformly over the boundary conditions.

2. Extended representation

We would like to stress that the previous treatment of the surface tension is not satisf
and a more coherent approach would be to consider a more general definition independen
model in terms only of mesoscopic phase labels. In fact, a definition of surface tension valid
abstract setting would be difficult to use because the surgical procedure of the minimal s
argument requires a precise knowledge of how the microscopic system is related to the
copic phase labels.

E. Lower bound: Proposition 2.1.2

The proof is divided into three steps. We first start by approximating the surface]* Km by a
regular surface]K̂ and imposing the condition that a mesoscopic interface exists close to]K̂.
Then, using the definition of surface tension~2.4.1!, we derive Proposition 2.1.2.

1. Step 1: Approximation procedure

A polyhedral set has a boundary included in the union of a finite number of hyperplanes
surface]* Km can be approximated as follows~see Fig. 6!.
Theorem 2.5.1:For any d positive, there exists a polyhedral set Kˆ such that
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1K̂PV~1Km
,d! and uWb~K̂ !2Wb~Km!u<d.

For any h small enough there are l disjoint parallelepipeds Rˆ 1,...,R̂l with basis B̂1,...,B̂l included

in ]K̂ of side length h and heightdh. Furthermore, the sets Bˆ 1,...,B̂l cover ]K̂ up to a set of

measure less thand denoted by Uˆ d5]K̂\ø i 51
l B̂i and they satisfy

U(
i 51

l E
B̂i

tb~ni !dHx
~d21!2Wb~Km!U<d,

where the normal to Bˆ i is denoted byni .
The proof is a direct application of Reshtnyak’s theorem and can be found in the pap

Alberti and Bellettini.74

Using Theorem 2.5.1, we can reduce the proof of Proposition 2.1.2 to the computation
probability of$Mk /m* PV(1K̂ ,d)%. According to~2.2.6! the estimates can be restated in terms
the mesoscopic phase labels. For anyd.0, there existsz5z(d) andk05k0(d) such that Propo-
sition 2.1.2 will be implied by

lim inf
N→`

1

Nd21 min
k0~d!<k<n n

logPN„uk
zPV~1K̂ ,d!…>2Wb~K̂ !2o~d!. ~2.5.1!

2. Step 2: Localization of the interface

The images ofK̂, R̂i , andÛd in TN will be denoted byKN , RN
i , andUN

d . In order to enforce
a mesoscopic interface across eachRN

i , we define the event

A5ù
i 51

l

$]1RN
i
}]2RN

i %.

We consider alsoB the set of configurations such that the bonds at a distance less than 10UN
d

are closed. Notice that these events depend only on bonds variables. One has

PN„uk
zPV~1K̂ ,d!… > PN„$uk

zPV~1K̂ ,d!%ùAùB…. ~2.5.2!

The interface imposed by the eventAùB decouplesKN from its complement, therefore th
system is in equilibrium inKN andKN

c : a proof similar to the one of Theorem 2.2.1 implies th
one can choosez85z8(d) andk085k08(d) such that

FIG. 6. Polyhedral approximation.
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lim
N→`

max
k08~d!<k<n n

PNS E
L

uuk
z8~x!21udx>

d

2
or E

L
uuk

z8~x!11udx>
d

2 UAùBD 50,

whereL stands forK̂ or K̂c. So that~2.5.2! can be rewritten forN large enough as

min
k0~d!<k<n n

PN„uk
zPV~1K̂ ,d!… >

1

8
FN

per,pb~AùB!. ~2.5.3!

3. Step 3: Surface tension

Combining the definition of surface tension~2.4.1!, inequality~2.5.3!, and Theorem 2.5.1, we
get

lim inf
N→`

1

Nd21 min
k0~d!<k<n n

logPN„uk
zPV~1K̂ ,d!… > 2(

i 51

l E
B̂i

tb~ni !dHx
d212o~d!.

We have also used the fact that the eventB is supported by, at most,c(d,d)Nd21 edges, where
c(d,d) vanishes asd goes to 0. Therefore the probability ofB is negligible with respect to a
surface order.

F. Upper bound: Proposition 2.1.3

The proof is divided into three steps. First we decompose]* v in order to reduce the proof to
local computations in small regions. Then in each region we localize the interface on the m
copic level via the minimal section argument. Finally, the last step is devoted to the compu
of the surface tension factor.

1. Step 1: Approximation procedure

We approximate]* v with a finite number of parallelepipeds~see Fig. 7!.
Theorem 2.6.1:For any d positive, there exists h positive such that there are l disjoint paral

epipeds Rˆ 1,...,R̂l included inT̂d with basis B̂1,...,B̂l of size h and heightdh. The basis Bˆ i divides

R̂i in two parallelepipeds Rˆ i ,1 and R̂i ,2 and we denote byni the normal to Bˆ i . Furthermore, the
parallelepipeds satisfy the following properties:

E
R̂i

uXR̂i~x!2v~x!udx<d vol~R̂i ! and U(
i 51

l E
B̂i

tb~ni !dHx
~d21!2Wb~v !U<d,

whereXR̂i51R̂i ,121R̂i ,2 and the volume of Rˆ i is vol(R̂i)5dhd.

FIG. 7. Approximation by parallelepipeds.
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This theorem is a rather standard assertion of the geometric measure theory. A variatio
has been formulated and applied in the context of theL1-theory of phase segregation in Ref. 5
along with a sketch of the proof, which, however, contained a gap~see Ref. 34 for a detailed proo
along the lines of Ref. 52!. A very clean alternative derivation of a similar result has been gi
by Cerf58 using the Vitali covering theorem.

Theorem 2.6.1 enables us to decompose the boundary into regular sets~see Fig. 7! so that it
will be enough to consider events of the type

H Mk

m*
Pù

i 51

l

V„R̂i ,d vol~R̂i !…J ,

whereV(R̂i ,«) is the« neighborhood ofXR̂i,

V~R̂i ,«!5H v8PL1~ T̂d! U E
R̂i

uv8~x!2XR̂i~x!udx<«J .

Using ~2.2.6!, we see that to derive Proposition 2.1.3, it is equivalent to prove the follow
statement for anyd positive andk05k0(d), z5z(d),

lim sup
N→`

1

Nd21 max
k0~d!<k<n n

logPNS uk
zPù

i 51

l

V„R̂i ,d vol~R̂i !…D <2Wb~v !1C~b,v !d.

2. Step 2: Minimal section argument

The microscopic domain associated toR̂i is RN
i 5NR̂iùTN . We also setRN

i ,15NR̂i ,1ùTN

andRN
i ,25RN

i \RN
i ,1 . At the scaleM52k, we associate to any configuration~s, v! the set ofbad

boxes that are the boxesBM intersectingRN
i labeled by 0 and the ones intersectingRN

i ,1 ~resp,
RN

i ,2) labeled by21 ~resp, 1!. Let cd be a constant depending on the dimension. For any inte
j, we setB̂i , j5B̂i1 jcd22n1kni and define

BN
i , j5$ j 8PRN

i u 'xPB̂i , j , i j 82Nxi1<10%.

Let Bi
j be the smallest connected set of boxesBM intersectingBN

i , j . Forcd large enough, theBi
j are

disjoint surfaces of boxes. Forj positive, letni
1( j ) be the number ofbad boxes inBi

j and define

ni
15minH ni

1~ j !: 0, j ,
dh

2cd
2n2kJ .

Call j 1 the smallest location where the minimum is achieved and define the minimal sect
RN

i ,1 asBi
j 1 . For j negative, we denote byBi

j 2 the minimal section inRN
i ,2 andni

2 the number of
bad boxes inBi

j 2 ~see Fig. 8!.
For any configuration~s, v! such thatuk

z(s,v) belongs to

ù
i 51

l

V„R̂i ,d vol~R̂i !…,

one can bound the number ofbad boxes in the minimal sections by

(
i 51

l

ni
11ni

2<dC1~v !2~d21!~n2k!. ~2.6.1!

Such an estimate implies that a mesoscopic interface is mainly located between the two m
sections and that only some mesoscopic fingers attached to the interface may percolate. A
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fingers will cross the minimal sections throughbad boxes, the strategy is therefore to modify th
configurationv on thebad boxes so that no fingers can percolate in the new configuration. M
precisely, we introduce the set

A5H vPVN
per u 's such thatuk

z~s,v!Pù
i 51

l

n„R̂i ,d vol~R̂i !…J ,

and for anyv in A definev̄ the configuration with closed edges on the boundary of thebadblocks
in the minimal sections and equal tov otherwise. Inequality~2.6.1! implies thatv and v̄ differ
only on, at mostdC2(v)Nd21 edges, so that we can control precisely the cost of the surg
procedure that consists in isolating thebad blocks in the minimal sections by closing the edg
around them:58

PNS uk
z~s,v!Pù

i 51

l

n„R̂i ,d vol~R̂i !…D <FN
per,pb~A!<exp„dC3~v,b!Nd21

… FN
per,pb~Ā!,

~2.6.2!

whereĀ5$v̄uvPA%.

3. Step 3: Surface tension estimates

Let R̂i8 be the parallelepiped included inR̂i with basisB̂i and height (d/2)h. Its microscopic
counterpart isRN

i 8. We are going to check now thatĀ is included inù i 51
l $] topRN

i 8}]botRN
i 8%.

This amounts to saying that not only the minimal section argument enables us to find a meso
interface inRN

i but that, in fact, this interface exists on the microscopic level. To see this, ch
any configurationv in A that contains an open pathC joining ] topRN

i 8 to ]botRN
i 8 and suppose tha

C crosses the minimal sections without intersecting abad box. ThenC intersects two regular

boxesBM(2nx1) andBM(2nx2) in Bi
j 1

andBi
j 2

. According to the definition of the coarse grain
ing, this would imply that the crossing clusters ofBM(2nx1) andBM(2nx2) are connected toC,
so thatũk

z(x1)5ũk
z(x2). Therefore one of these boxes has to be abad box.

From ~2.6.2!, we get

FIG. 8. Minimal sections.
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PNS uk
zPù

i 51

l

n„R̂i ,d vol~R̂i !…D < exp„dC3~v,b!Nd21) FN
per,pbS ù

i 51

l

$] topRN
i 8}]botRN

i 8% D .

Conditioning outside each domainRN
i and using~2.4.3!, we derive

lim sup
N→`

1

Nd21 max
k0~d!<k<nn

logPNS uk
zPù

i 51

l

n„R̂i ,d vol~R̂i !…D <2(
i 51

l E
B̂i

tb~ni !dHx1C4~b,v !d.

This concludes the proposition.

G. Open problems

We would like mention some open questions related to theL1-theory.

~1! Extention of theL1-theory to general finite range models and to the context of Pirogov–S
theory.

~2! Proof of the Wulff construction for continuum models in anL1 setting.
~3! Upgrade of the concentration properties to the Hausdorff distance, based on more d

versions of the minimal section argument; some results of this sort should appear in R
~4! A more challenging problem would be to provide an accurate description of phase segre

à la DKS. In particular, one should understand how to control phase boundaries and
local limit results with boundary conditions that are only statistically pure.

III. DOBRUSHIN–KOTECKÝ –SHLOSMAN „DKS… THEORY IN TWO DIMENSIONS

In this part we review and explain the results on phase separation in the two-dimen
nearest neighbor Ising model as enforced by the canonical constraint on the magnetization.9,32 The
theory is built upon sharp local estimates over finite volume vesselsLN and on the probabilistic
analysis of the random microscopic phase separation line. We focus here on the ‘‘free’’ s
geometry of the phase segregation, that is, disregarding the boundary effects. These effec
enter the picture in two different ways: in terms of the boundary conditions on]LN and in terms
of the geometry ofLN . In the former case the minority phase could be absorbed by part o
boundary]LN . This and related phenomena are discussed in Sec. IV. In the second case th
vesselLN might not be able to accommodate the corresponding optimal crystal shape. S
geometric constraint is, from the point of view of the microscopic theory, merely a tech
nuisance, though, on the macroscopic level, it might lead to formidable variational problem
go around this domain geometry issue by choosingLN to be of the Wulff shape itself,

LN5NK1ùZ2,

whereK1 is the unit area Wulff shape. Thus,LN accommodates any optimal shape of area sma
thanN2.

The corresponding finite volume canonical Gibbs measure is then defined by

mLN ,2
b ~•uMN~s!52N2m* 1aN!, ~3.0.3!

where MN,( i PLN
s i is the total spin,m* 5m* (b) is the spontaneous magnetization, andaN

points inside the phase transition region,aNP(0,2N2m* ). In the sequel we shall use the shortc
mN,2

b for the finite volume measuremLN ,2
b .

Notation: The values of positive constantsc1 ,c2 ,..., areupdated with each section.
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A. Main result

DKS theory gives a comprehensive solution to the following problem of phase separat
Problem 1:For b.bc andaNP(0,2N2m* ) characterize typical spin configurationss under the
canonical measure~3.0.3!.

An ostensibly simpler problem is the following.
Problem 2:For b.bc andaNP(0,2N2m* ) find sharp local asymptotics of

mN,2
b ~MN52m* N21aN!.

In fact, both problems are equivalent. In particular, the phenomenon behind the shift o
magnetization is inside the phase transition region not a bulk one~and hence is not in the realm o
the usual theory of large deviations!, and the crucial role is played by the spatial geometry
symmetry breaking.

1. Heuristics

Under the finite volume pure statemN,2
b the typical maximal size of6 contours is of order

logN. One could then visualize a typical microscopic configurations on LN in terms of an
archipelago of small~that is, of the maximal size; logN) ‘‘ 1’’ islands that could contain still
smaller ‘‘2’’ lakes, etc. This archipelago spreads out uniformly overLN , and the density of the
plus ‘‘soil,’’ which spells out in terms of the magnetizationMN(s) as„uLNu1MN(s)…/2uLNu, is
close to its equilibrium value,

uLNu1^MN&N,2
b

2uLNu
;

12m*

2
.

Thus, one could think of two different competing patterns behind theaN-shifts, aN>0, of the
magnetizationMN from its equilibrium valuê MN&N,2

b ;2m* uLNu

~1! The density of the archipelago increases in a spatially homogeneous fashion without, ho
altering the typical sizes of the islands.

~2! Spatial symmetry is broken, and an abnormally huge island of the ‘‘1’’ phase of excess area
;aN/2m* appears.

Heuristically, the first scenario corresponds to Gaussian fluctuations, and its price, in te
probability, should be of order

exp„2c1~b!aN
2 /N2

….

Phase segregation manifests itself in the second scenario, and the probabilistic pr
creating such a huge island is proportional to the length of its boundary,

exp„2c2~b!AaN….

A comparison between the two expressions above suggests that the first scenario should
ferred wheneveraN!N4/3, whereas large shiftsaN@N4/3 should result in the phase segregati
picture described in the second scenario. This indeed happens to be the case, and we refer
75 and 32 for a complete rigorous treatment.~The critical case ofaN;N4/3 is still an open
problem.!

For the sake of the exposition, we shall stick here to the possibly most interesting ca
aN;N2, which corresponds also to the macroscopic type of scaling discussed in Sec. II. The
theory gives then the following sharp characterization of the phase segregation in the can
ensemble: undermN,2

b (•uMN52m* N21aN) a typical spin configurations contains exactly one
abnormally large contourg that decouples between the ‘‘1’’ phase~insideg! and the ‘‘2’’ phase
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~outsideg!. In particular, the average magnetization inside~respectively, outside! g is close tom*
~respectively,2m* ), and the area encircled byg can be thus recovered from the canonic
constraint,

m* u int~g!u2m* „N22u int~g!u…'2m* N21aN⇒u int~g!u'
aN

2m*
.

Under the scaling ofLN by 1/N, that is into the normalized continuous shapeK,R2, the micro-
scopic phase boundaryg sharply concentrates around a shift of the Wulff shape of the corresp
ing scaled areaaN/2m* N2 ~Fig. 9!.

2. DKS theorem

More precisely, for anyr PR1 let Kr to denote the Wulff shape of the arear. Also given a
numbersPR1 , let us say that a microscopic contourg is s-large, if diam̀ (g).s.

Theorem 3.1.1: @Ref. 9; Ref. 32#: Let the inverse temperatureb.bc be fixed, and let the
sequence$aN%,2m* N21aNPRange(MN), be such that the limit

a5 lim
N→`

aN

N2 P „0,2m* ~b!…

exists. Then,

logmN,2
b ~MN52m* N21aN!52Wb~]KaN/2m* !„11O~N21/2 logN!….

Moreover, if K5K(b) is large enough, withmN,2
b (•uMN52N2m* 1aN) probability converging

to 1 as N→`, we have the following.
~1! There is exactly one K(b)logN–large contourg.
~2! This g satisfies

min
x

1

N
dH~g,x1]KaN/2m* ! < c1~b!N21/4AlogN, ~3.1.1!

and

min
x

1

N2 Area„int~g!D~x1KaN/2m* !… < c2~b!N23/4AlogN. ~3.1.2!

Remark:In the original monograph9 the corresponding results have been derived in the conte
the Ising model with periodic boundary condition.

FIG. 9. The DKS picture under the 1/N scaling: On the left the microscopicLN box with the uniqueK log N–large contour
g. On the right the continuous boxK1 with the scaled image ofg.
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3. DKS theory

The DKS theory views the production of the event$MN2m* N21aN% in terms of a two-step
procedure: On the first stage a length scales5s(N) is chosen, andall the microscopics-large
contours (g1 ,...,gn) are fixed. If the total area inside theses(N)-large contours is smaller tha
aN/2m* , then the total magnetizationMN still has to be steered toward the imposed va
MN52m* N21aN , but already under the constraint that all the6 contours different from
(g1 ,...,gn) are s(N) small. The probabilitymN,2

b (MN52m* N21aN) reflects the price of the
optical strategy along these lines.

We record the two steps of the DKS theory as follows.

~1! Study the statistics ofs(N)-large contours undermN,2
b .

~2! Give local limit estimates on the magnetization in thes(N)-restricted phases.

The introduction ofs(N)-cutoffs leads to the separation of the length scales, which h
double impact on the problem: it sets up the stage for the renormalization analysis of micro
phase boundaries, and it improves the control over the bulk magnetization inside the corre
ing microscopic phase regions. Let us try to explain this in more detail: As far as the statist
the s(N)-large contours is considered, we are interested in giving sharp estimates o
mN,2

b -probability of the events of the type

$s~N!-large contours ofs encircle a certain prescribed area%.

The point is that the contribution of any particular microscopic contour to the probability of
an event is negligible. In other words, one also has to take into account the entropy~number! of all
the contributing contours. The required entropy cancellation~and hence the production of th
relevant limiting thermodynamic quantity—surface tension! is achieved by means of a certa
coarse graining procedure, the so-called skeleton calculus, which we describe in Sec
Roughly, instead of studying the probabilities of individual microscopic contours one cons
the packets of all contours passing through the vertices of a given ‘‘s(N)-skeleton’’
S5(u1 ,u2 ,...,un) and staying within a distance of the orders(N) from the closed polygonal line
Pol(S) ~Fig. 10!. The distance between successive vertices ofS complies with the length scale
s(N),iui 112ui i`;s(N). Surface tension is produced on the level of skeletons. In fact,
probability of observing a6 contour compatible with a given skeletonS admits an asymptotic
~with s(N)↗`) description,

mN,2
b ~S!^_exp$2Wb„Pol~S!…%. ~3.1.3!

We quote the precise result in Sec. III D, which we devote to a general exposition of the sk
calculus.

FIG. 10. Two microscopic contoursg1 andg2 are compatible with the same skeletonS5(u1 ,...,un).
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Since the vertices ofS are s(N) apart, and the surface tensiontb is strictly positive for all
b.bc* , the energyWb„Pol(S)… controls the number #(S) of vertices ofS as

#~S! < c3~b!
Wb„Pol~S!…

s~N!
. ~3.1.4!

When combined with~3.1.3! this leads to the reduction of the combinatorial complexity of
problem: the number of different skeletons of a fixed energyŴ N does not compete with the
approximate probability exp$2 Ŵ N% to observe any such skeletons. Thus, the study of$MN5
2m* N21aN% reduces, in terms of skeletons, to the maximal term estimation. It shoul
stressed, however, that unlike the coarse graining procedures of theL1-theory, the mesoscopic
objects~skeletons! of the DKS theory closely follow the microscopic structure of phase bou
aries.

The local limit estimates in thes(N)-restricted phases are, therefore, required uniformly o
finite lattice domains whose boundaries are carved withs(N)-large contours compatible with no
too costly skeletons. This imposes a natural restriction on the length of these boundaries,
shall describe the appropriate family of domains in Sec. III B along with the exposition o
corresponding uniform local limit results. Intuitively, long contours are responsible for long r
dependencies between spins, and, therefore, thes(N)-cutoff constraint improves the mixing prop
erties of the system and helps to extend the validity of classical~Gaussian! behavior of moderate
deviations. In Sec. III C we quote the corresponding relaxation and decay properties that lie
heart of the local limit estimates. In Sec. III E we give an outline of the proof of the DKS theo

Finally, the~long! list of open problems is briefly addressed in Sec. III F.

B. Estimates in the phases of small contours

As it has been mentioned, the estimates in the phase of small contours should be d
uniformly over a family of lattice domains whose boundaries are composed of not too c
s(N)-large contours.
Definition: Basic familyDN of subsetsA#LN : We fix two numbersa ~small! andR ~big!:

APDN ⇔ aN2<uAu and u]Au<RN logN.
h

We fix a basic scales(N)5K logN of large contours, whereK5K(b) is a sufficiently large
number, so thatK logN contours are highly improbable under the pure statemN,2

b . Of course,
exactly the same numberK appears in the statement of Theorem 3.1.1. The upper bound on]A in
the definition of the familyDN states that the configurations with a total length ofK logN large
contour exceedingRN logN are ruled out. This conclusion is explained in more detail in Sec. I
~see the remark following Lemma 3.4.1!.

1. Structure of local limit estimates

Let us turn now to the structure of local limit estimates in thes(N)-restricted phases. First o
all, given anyA,Z2, thes-restricted phase onA is defined via

mA,2
b,s ~• !,mA,2

b ~•uAll 6 contours ares-small!.

We would like to study the probabilities of deviationsaN>0 of the total magnetizationMA from
the corresponding averaged value^MA&A,2

b,s . Let us define the set of feasible values of su
deviations as

MA
15$aN>0: ^MA&A,2

b,s 1aNPRange~MA!%.

Roughly, the cutoffs extends the validity of Gaussian moderate deviations for the follow
reason: The price of shifting the magnetization byaN on the expense ofs(N)-small contours is of
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the order (aN /s2)s;aN /s(N). This should be tested against the Gaussian moderate devi
exponent of the orderaN

2 /N2. Thus, the Gaussian behavior should prevail onceaN!N2/s(N). Of
course, the latter constraint onaN becomes less stringent ass(N) decreases. On the rigorou
mathematical part the classical approach to estimating

mA,2
b,s ~MA5^MA&A,2

b,s 1aN!,

amounts to first finding the value of the magnetic field,

g5g„A,s~N!,aN…,

such that the expected magnetization under theg-tilted state is precisely what we want,

^MA&A,2,g
b,s 5^MA&A,2

b,s 1aN , ~3.2.1!

and, then, to rewrite themA,2
b,s -probability in terms of themA,2,g

b,s one:

mA,2
s ~MA5^MA&A,2

b,s 1aN!5exp$2~^MA&A,2
s 1aN!g1 log^egMA&A,2

b,s %mA,2,g
b,s ~MA5^MA&A,2,g

b,s !

5expH 2E
0

gE
r

g

^MA ;MA&A,2,h
b,s dh dr J mA,2,g

b,s ~MA5^MA&A,2,g
b,s !.

~3.2.2!

One then tries to derive sufficiently precise estimates on the semi-invariants ofmA,2,h
b,s and to

prove a local CLT undermA,2,g
b,s . Thus, it is extremely important to understand how the mag

tization ^MA&A,2,g
b,s and other semi-invariants ofmA,2,g

b,s change with the magnetic fieldg in the
phase ofs(N)-small contours.

Breaking of the classical limit behavior in thes(N)-restricted phase manifests itself by th
jump of the magnetization that is related to the appearance of abnormally large6 contours.
Without cutoffs this jump occurs forg;1/N, and imposing thes(N) constraint would delay such
a jump.31 It is easy to imagine what should be the critical order of the magnetic fieldg, at which
those large contours should start to be favored in thes-restricted phase: for a6 contour of the
linear sizes(N) one wins;s2g on the level of magnetization and loses;s on the level of surface
energy. These two terms start to be comparable whensg;1. Therefore no particular deviatio
from the classical behavior should be expected as far asgs(N)!1. We refer to Ref. 32, where al
these heuristic considerations have been made precise.

2. Basic local estimate on the K log N scale

Actually,32 it is enough to consider only the basicK logN scale.
Lemma 3.2.1~Ref. 32!: Assume that a sequence of numbers$bN% satisfies

lim
N→`

bN logN

N2 50.

Then, on the basic scale s(N)5K logN, the estimate

mA,2
b,s ~MA5^MA&A,2

b,s 1aN!5
1

A2pxbuAu
expH 2

aN
2

2xbuAu
1OS aN

2

N3 S logN∨
aN

N D D J „11o~1!…,

~3.2.3!

holds uniformly in domains APDN and in aNPMA
1ù@0,bN#, wherexb is the susceptibility under

the pure statem2
b .
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3. Super-surface estimates in the restricted phases

Moderate deviations on the intermediate scaless(N)@ logN are, for the purposes of th
theory, controlled by the following super-surface order estimate in the phase of small contou~cf.
Lemma 2.5.1 in Ref. 32!.
Lemma 3.2.2: Let the large contour parameter s(N)@ logN be fixed. There exists a constant1

5c1(b).0, such that for all N.0, APDN and all aNPMA
1 ,

mA,2
b,s ~MA5^MA&A,2

b,s 1aN!<expS 2c1

aN
2

N2 `
aN

s~N!
D . ~3.2.4!

The idea of the proof is simple: either an area of orderaN/2m* is exhausted by theK logN
large contours, which, in the (mN,2

b,s )-restricted phase, should have a surface tension price with
exponent of the orderaN /s(N), or K logN large contours cover an area much less thanaN/2m* ,
which means that the remaining deficit of the magnetization should be compensated in the
K logN restricted phase, where we can use Lemma 3.2.1.

C. Bulk relaxation in pure phases

The term relaxation is used here in the equilibrium setting in order to describe the ap
mation of local finite volume statistics by the infinite volume ones. We successively describ
relaxation properties of pure ‘‘–’’ states with nonpositive and small positive magnetic fields
in the restricted phases of small contours.

1. Nonpositive magnetic fields h Ï0

The crucial property of low-temperature pure phases could be stated as follows: Let u
that the sites i and j are *-neighbors if i i 2 j i151. Given a spin configurations on

$21,11%Z2
, let us say that the sitesi andj are1 * -connected, if there exists a*-connected chain

of sitesi 1 ,...,i n ,i 15 i and i n5 j , such thats( i k)51 for everyk51,...,n.
Theorem 3.3.1: (Ref. 42) For everyb.bc there exists c15c1(b).0, such that uniformly in
subsets A#Z2,i , j PA and in magnetic fields h<0,

mA,2,h
b ~ i ↔

1*
j !<exp~2c1~b!i i 2 j i`!. ~3.3.1!

Remark:Of course, since$ i ↔
1* j % is a nondecreasing event, the uniformity follows from the FK

ordering, once~3.3.1! is verified for the infinite volume zero-field measurem2
b .

Corollary 3.3.1: (Relaxation of local observables) Fix kPZ. Uniformly in A#Z2, magnetic fields
h<0 and local observables f withusupp(f )u5k,

u^ f &A,2,h
b 2^ f &2,h

b u<c2~k!exp„2c3~b!dist̀ ~supp~ f !,]A!…. ~3.3.2!

Furthermore, we have the following.
Corollary 3.3.2: (Relaxation and decay of semi-invariants) Fix nPZ. Uniformly in A#Z2, mag-
netic fields h<0 and sites i1 ,...,i nPA,

u^s~ i 1!;...;s~ i n!&A,2,h
b 2^s~ i 1!;...;s~ i n!&2,h

b u<c4~n!exp~2c5~b!dist̀ ~$ i 1 ,...,i n%,]A!!
~3.3.3!

and

u^s~ i 1!;...;s~ i n!&A,2,h
b u<c6~n!expH 2c7~b!

diam̀ ~ i 1 ,...,i n!

n J . ~3.3.4!

Finally, we have the following.
Corollary 3.3.3: (Asymptotic expansions) Fix nPZ. Uniformly in A#Z2 and in iPA,
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U^s~ i !&A,2,h
b 2S 2m* ~b!1 (

k51

n

sk

hk

k! DU<c8~n!uhun111c9~n!exp~2c10~b!dist̀ ~ i ,]A!!,

~3.3.5!

where sk is the kth semi-invariant of the zero-field infinite volume measurem2
b ,

sk, (
i 1 ,...,i kPZ2

^s~0!;s~ i 1!;...;s~ i n!&2
b .

Remark:It is possible~and straightforward! to formulate~3.3.3!, ~3.3.4!, and~3.3.5! in the general
case ofn local observablesf 1 ,...,f n .

2. Positive magnetic fields h Ì0

Modifying ‘‘ 2’’ states by negative magnetic fieldsh,0 amounts to moving away from th
phase transition region. Relaxation properties ofmA,2,h

b with h.0 are radically different—
uniformity is lost, and the size of the domainA starts to play a crucial role. Indeed, the uniq
infinite volume measurem2,h

b 5mh
b stochastically dominatesm1

b whatever smallh.0 is. Thus, for
large domainsA, the configuration in the bulk is flipped undermA,2,h

b into the ‘‘1’’ dominated
state. It is easy to understand on the heuristic grounds what should be the order of the critic
of A for such a ‘‘flip’’ to occur: givenh.0, the surface energy of a6 contourg is of the order
ugu and it competes with the bulk gain inside the contour, which, in its turn, is proportion
h area(g). The latter factor wins~loses!, once the linear size ofg is much larger~respectively,
much smaller! than 1/h. Thus the sign of the dominant spin undermA,2,h

b should depend on
whetherA can accommodate large enough contours, or, in other words, on how the linear s
A relates to 1/h.

The important and remarkable fact is that exponential relaxation properties of finite vo
‘‘ 2’’ states are uniformly preserved for domains of the subcritical size.
Theorem 3.3.2 ~Refs. 31 and 32!: There exists a constant a5a(b).0 such that for any
h.0 fixed,

mA,2,h
b ~ i ↔

1*
j !<exp~2c1~b!i i 2 j i`!, ~3.3.6!

uniformly in domains A,Z such that any connected component of A has diameter bounded a
by a/h. As a consequence, exponential decay of semi-invariants (3.3.4) and the asympto
pansion estimate (3.3.5) hold uniformly in such domains as well.

3. Phases of small contours

Theorem 3.3.2 explains how the cutoff parameters(N) upgrades the regular behavior of ‘‘2’’
states with positive magnetic fieldsh: By the definition of the restricted phasemA,2

b,s the diameter
of any relevant microscopic domain is, at most, of the orders(N).
Theorem 3.3.3:(Refs. 31 and 32) There exists a constant a5a(b).0 such that for any h.0 and
s satisfying hs<a(b),

mA,2,h
b,s ~ i ↔

1*
j !<exp~2c1~b!i i 2 j i`!, ~3.3.7!

uniformly in domains A#Z.
Furthermore, the expectations in restricted phase are controlled as follows: for every kPZ,

u^ f &A,2,h
b,s 2^ f &AùLs~ f !,2,h

b u<c2~k!e2c3~b!s, ~3.3.8!
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uniformly in A#Z2 and in local functions f, usupp(f )u5k, where we have used the followin
notation:Ls( f ),$ i :dist̀ „i ,supp(f )…<s%. Finally, the decay of the semi-invariants is controlle
in the restricted phases as

u^s~ i 1!;...;s~ i n!&A,2,h
b,s u<c4~n!expH 2c5~b!

diam̀ ~ i 1 ,...,i n!

n
`sJ . ~3.3.9!

D. Calculus of skeletons

The renormalization analysis of large6 contours is performed on various cutoff scaless, the
appropriate choice ofs typically depending on the linear sizeN of the systems5s(N). We shall
state coarse graining estimates uniformly in finite domainsA,Z2 and in the cutoff scaless.

1. Definition

A 6 contourg is said to bes large if diam̀ (g)>s. Given a cutoff scalesPN and ans-large
6 contourg, we say thatS5(u1 ,...,un) is ans-skeleton ofg, g;S if the following occurs.

~1! All vertices of S lie on g.
~2! s/2<iui2ui 11i`<2s, ; i 51,...,n, where we have identifiedun11[u1 .
~3! The Hausdorff distancedH betweeng and the polygonal line Pol(S) through the vertices

of S satisfies

dH„g,Pol~S!… < s~N!.

Similarly, given the collection (g1 ,...,gn) of all s-large contours of a configurationsPVA,2, let
us say that a collectionS5(S1 ,...,Sn) of s-large skeletons is compatible withs, s;S, if g i

;Si for all i 51,...,n.
Of course, a configurationsPVA,2 has, in general, many different compatible collections

s-skeletons. Nonetheless, for each particularS, the probability

mA,2
b ~S!,mA,2

b ~s:s;S!, ~3.4.1!

is well defined.

2. Energy estimate

As the renormalization scales grows, the probabilities~3.4.1! start to admit a sharp charac
terization in terms of the energiesWb(S),

Wb~S!,(
i 51

n

Wb„Pol~Si !…,

for a collectionS5(S1 ,...,Sn). Below we give a precise version of this crucial statement in te
of the upper and lower bounds on the corresponding probabilities. The first important reno
ization energy estimates could be26 formulated as follows.
Lemma 3.4.1: (Ref. 26) On every skeleton scale s and independently of A,Z2,

mA,2
b ~S! < exp$2Wb~S!%. ~3.4.2!

Furthermore, uniformly in A,Z, r .0 and cutoff parameters s,

mA,2
b ~Wb~S!>r ! < expH 2r S 12

c1 loguAu
s D J . ~3.4.3!

Energy estimate~3.4.2! provides an upper bound on the probability of observing6 contours
in the vicinity of a skeleton. Before going to a complementary lower bound, let us dwell on
sample path structure of the contours that is hidden behind these renormalization estimate
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3. Calculus of skeletons
By definition, a contour is a self-avoiding closed path of nearest neighbor bonds ofZ2. For

every setA#Z2, the Ising measuremA,2
b induces a weight functionqA*

b*
on the space of such

self-avoiding polygons~see Sec. I B 2!,

q
A*
b*

~g!5mA,2
b ~sPV: g is a 6 contour of s!.

In terms of these weights the probability of observing a certain skeletonS5$u1 ,...,un% could be
written as

mA,2
b ~S!5 (

g;S
q

A*
b*

~g!.

Each microscopic contourg compatible withS, g;S, splits into the union of disjoint open
self-avoiding lattice pathsgk :uk→uk11 , k51,...,n. The analysis of limit properties ofmA,2

b

comprises two main steps that could be loosely described as follows.
~1! As the renormalization scales grows, the statistical behavior of different piecesgk de-

couple underq
A*
b*

, that is,

(
g;S

q
A*
b*

~g!')
k51

n S (
gk :uk→uk11

q
A*
b*

~gk! D . ~3.4.4!

~2! The kth term (k51,...,n) in the above product corresponds to a6 interface stretched in the
direction of the vectoruk112ukPR2, in other words,

q
A*
b*

~gk!'exp„2tb~uk112uk!…. ~3.4.5!

Thus, the skeleton calculus resembles a refined version of the sample path large de
principle for genuinely two-dimensional random curves. At very low temperatures, a very pr
local analysis of the phase separation line has been developed in Refs. 9 and 75 using the
of cluster expansions. Our approach here pertains to the whole of the phase transition
b.bc , but is strongly linked to the very specific self-duality properties of the two-dimensi
nearest neighbor Ising model. We refer to Sec. I B 2 and, eventually, to Refs. 18 and 19
comprehensive description and study of the relevant properties of the duality transformatio
output of these techniques could be recorded in the following form.
Lemma 3.4.2: (Probabilistic structure of the phase separation line18) Given any A,Z2 and any
two compatible self-avoiding pathsl1 and l2 ,

q
A*
b*

~l1øl2!>q
A*
b*

~l1!q
A*
b*

~l2!. ~3.4.6!

Furthermore,

exp~2c1~b!ug2u!<
q

A*
b*

~l1øl2!

q
A*
b*

~l1!
<exp~2c2~b!ul2u!. ~3.4.7!

On the other hand, given any A#Z2 and any three points u,v,wPA* , the qA*
b* weight of the paths

going from u tov through w is bounded above as18

(
l:u→v
wPl

q
A*
b*

~L!<S (
l1 :u→w

q
A*
b*

~l1! D S (
l2 :w→v

q
A*
b*

~l2! D . ~3.4.8!
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Finally, the weights q
A*
b*

are nonincreasing in A, and are related to the dual connectivities as

(
l:u→v

q
A*
b*

~l!5^s~u!s~v !&A* , f

b*
. ~3.4.9!

Relation~3.4.9! is the link to the surface tension: first of all, the impact of a particular seA
exponentially diminishes with the distance to]A,29

^s~u!s~v !& f
b*

2exp$c2~b!dist̀ ~$u,v%,]A!%<^s~u!s~v !&A* , f

b*
< ^s~u!s~v !& f

b*
,
~3.4.10!

uniformly in A* #Z2 and anyu,vPA* . Moreover, the following Ornstein–Zernike-type corre
tion formula76 holds uniformly inu,vPZ2:

exp$2tb~u2v !2c3~b!logiu2vi`% < ^s~u!s~v !& f
b*

< exp$2tb~u2v !%. ~3.4.11!

4. Skeleton lower bound

The energy estimate~3.4.2! is an immediate consequence of the~iterated! submultiplicative
property~3.4.8!, the representation formula~3.4.9!, and the rightmost inequalities in~3.4.10! and
~3.4.11!. In order to prove a lower bound, one essentially needs to reverse the inequality in~3.4.8!.
An indirect way to do so is to use the FK representation~see Refs. 45 and 32!. We shall briefly
present here a more direct approach that has been developed in Refs. 29 and 18. Qualita
gives the same order of corrections as the FK one, but has a clear advantage of being ex
related to the statistics of the microscopic phase boundaries at different length scales. Th
idea is that the phase separation line has rather strong mixing properties, in particular, pal1

andl2 on the right-hand side of~3.4.8! should interfere, in the case of~u,v,w! being in a general
position, only in a vicinity ofw. Thus, at a price of lower-order corrections~as we shall see thes
corrections are logarithmic with the skeleton scales! the inequality~3.4.8! could be reversed using
the supermultiplicativity property~3.4.6!. The notion of ‘‘general position’’ simply means tha
u,w, andv do not form too small an angle and live on the same length scale, and it is quan
by the following.
Definition: Given a skeleton scalesPN and a numbere.0, let us say that that a triple~u,w,v! of
Z2-lattice points is (s,e)-compatible, if

s

2
<min$iw2ui` ,iv2wi`%<max$iw2ui` ,iv2wi`%<2s,

whereas cos(w2u,v2w)>211e. h

We shall state the lower bound in terms of the limiting weightsqb*
(•), limA* ↗Z

*
2q

A*
b*

~which

exist by Lemma 3.4.2!.
Lemma 3.4.3: Fixe.0. Then there exists a scale s5s(e), such that

(
l:u→v
wPl

qb*
~l!>exp$2„tb~w2u!1tb~v2w!…2c1~b!logs%, ~3.4.12!

uniformly in all skeleton scales s>s(e) and in all (s,e)-compatible triples~u,w,v!.
We sketch the proof of this lemma in Appendix B. Iterating~3.4.12!, we arrive at the follow-

ing lower bound on the probability of observing a certain regular skeleton.
Definition: A skeletonS5(u1 ,...,un) is said to be (s,e)-regular, if any triple (ui 21 ,ui ,ui 11) of
successive points ofS is (s,e)-compatible, and the distance between any two non-neighbo
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intervals@ui ,ui 11# and @uj ,uj 11# exceedses. h

Lemma 3.4.4: For everye.0, there exists a number c25c2(e),`, such that uniformly in the
skeleton scales s and in all(s,e)-regular skeletons S,

mN,2
b ~' a6contour g: dH„g,Pol~S!…<K~b!As logs!>exp$2Wb„Pol~S!…2c2~e!#~S!logs%,

>expH 2Wb„Pol~S!…S 11c3~e,b!
logs

s D J , ~3.4.13!

where#(S) denotes the number of vertices in S, and the last inequality follows from~3.1.4!.
In fact, we need lower bounds only for a very specific set ofs-skeletons, namely on thos

approximating the Wulff shapeKaN/2m* . These skeletons always satisfy the conditions of
above theorem. An academic attempt to prove a lower bound for all possible shapes will l
annoying, though solvable, technicalities, but will fail to contribute much to the microsc
theory of phase separation, as we see it.

E. Structure of the proof

In order to give a probabilistic characterization of the microscopic canonical
mN,2

b (•uMN52m* N21aN) one first derives a sharpest possible lower bound on the probab
mN,2

b (MN52m* N21aN), and then rules out those geometric events~in terms of skeletons, bu
with an eventual translation to the language of microscopic spin configurations!, which happen to
qualify as improbable when compared with this lower bound.

1. Lower bound

The best lower bound comes as an outcome of the optimal combination of the basic loca
Lemma 3.2.1 and the skeleton lower bound~3.4.13!. We choose a skeleton approximation of t
corresponding Wulff shapeKaN/2m* , and using local limit estimates steer the magnetization
ward the desirable value2m* N21aN . Optimality reflects the choice of the best possible skele
scale: Notice that the estimate~3.4.13! becomes sharper with the growth of the cutoff parame
s(N). On the other hand, the area of the microscopic phase region is controlled, with respec
area insidePol(S);aN/2m* , up to aNAs(N) logs(N) correction~see Appendix B or Ref. 32!,
which, of course, makes the local limit step more expensive for large values ofs(N). It happens
that the bounds are balanced on the skeleton scales(N);A4 aN.
Theorem 3.5.1:(Ref. 32) Uniformly in aNPMN

1 , that is for all aN>0, such that2m* N21aN

PRange(MN),

mN,2
b ~MN52m* N21aN! > expH 2A aN

2m*
Wb~]K1!2c1~b!A4 aNlogNJ . ~3.5.1!

2. Upper bounds

First of all, one derives an upper bound on the shift of the magnetization. On any ske
scale,

mN,2
b ~MN52m* N21aN! < (

S
mN,2

b ~MN52m* N21aN ; S!. ~3.5.2!

Due to the intrinsic entropy cancellation under the skeleton coarse graining, and in view
lower bound~3.5.1! and the energy estimate~3.4.2!, one could, for example, shoot for the maxim
term in the above sum. If the phase volume~see Ref. 9 for the precise definition! of S is much less
than aN/2m* , then the deficit of the magnetization should be compensated in the pha
s(N)-small contours, which, by Lemma 3.2.2, exerts a super-surface price in the exponent.
other hand, if the phase volume ofS is close toaN/2m* , then by the isoperimetric inequality an
by the energy estimate~3.4.2!, the best possible price one should be prepared to pay is alr
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close to exp$2Wb(KaN/2m* )%. Again the resulting estimate is subject to an optimization vi
careful choice of the skeleton scales(N).
Theorem 3.5.2:(Ref. 32) Uniformly in aN;N2,

mN,2
b ~MN52m* N21aN! < expH 2A aN

2m*
Wb~]K1!1c1~b!A4 aNlogNJ . ~3.5.3!

A more delicate study9,32 of the typical sample properties of the microscopic configuratios
under mN,2

b (•uMN52m* N21aN) is again based on the analysis of~3.5.2!. At this point the
stability Bonnesen-type estimates~see Sec. I C! for the Wulff variational problem become
important—they enable us to quantify the conclusion that only those collectionsS, which are
close to the shifts of the Wulff shapeKaN/2m* , have a chance to survive a comparison with t
lower bound~3.5.1!. A step further, involving local limit estimates of Lemma 3.2.1, is to conclu
that all these collections actually contain exactly one large skeleton, which corresponds
unique large contour, as asserted by the DKS theorem.

F. Open problems

There are still important open problems, even in the nearest neighbor Ising case. Notab
knows how to control precise fluctuations of the phase separation line only at very low tem
tures, that is, using the method of cluster expansions.47 This is a serious gap in the theory, sinc
large scale statistics of microscopic phase boundaries are ultimately responsible for exact~up to
zero order terms! expansions of canonical partition functions.48 So far, qualitative probabilistic
results have been obtained either for very low-temperature models,48 or in the simplified setting of
self-avoiding polygons77,49 or Bernoulli bond percolation.78 Another interesting and apparent
important problem is to understand sample path properties of spin configurations in a sit
when a canonical constraint is imposed in the restricted phase. Apart from giving rise
potentially fascinating probabilistic structure, this question is closely related to the issue
dynamical spinodal decomposition.

There is absolutely no matching probabilistic study of the phase separation in multi
two-dimensional models, for example,q-states Potts models. Some results in this direction
reported in Ref. 79, but this issue is almost entirely open, even in the context of theL1-theory. In
particular, the corresponding phenomena are still not worked out on the level of macros
variational problems, see, however, Refs. 80, 81 and the references therein.

The key issue, however, which we feel is largely misunderstood is that at moderatel
temperatures the DKS theory of two-dimensional phase segregation, say in the general con
finite range ferromagnetic models with pair interactions is far from being complete. What
rently exists is an example of how these ideas could be implemented in the nearest neighb
At least from the mathematical point of view, the nearest neighbor case is a degenerate on
sense that it enables a reduction to pure boundary conditions over decoupled microscopic
even at temperatures only moderately below critical. This should not be the case for a
general range of interactions. In this respect the assertion that low temperature expansions
go through for general interactions much along the same lines as they do for the nearest n
model, seems to be rather irrelevant—the real issue is not to kill mixed boundary condition
to understand how they should be incorporated into the DKS theory.

IV. BOUNDARY EFFECTS

In the previous parts, we explained how the thermodynamical variational problem desc
the macroscopic geometry of coexisting phases can be derived in various lattice models of
tical physics. To simplify the analysis, we restricted our attention to periodic boundary cond
or to systems contained in a Wulff-shaped box, avoiding thus a discussion of the effec
confining geometry on the behavior of the system. In this part, we would like to explain
happens when we take such effects into account. Boundary conditions play a particularly
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tant role in the kind of problems presented in this review, since they concern the asym
behavior of large but finite systems and therefore the boundary cannot be simply ‘‘sent to
ity,’’ as usually done. We will see that taking care of boundary effects not only provid
complete description of the geometry of these constrained systems, thus allowing a rig
description of the interaction between an equilibrium crystal and a substrate, but also allow
study the effect of so-calledsurface phase transitions.

For simplicity, we only discuss the case of the Ising model with nearest neighbors intera

A. Wall free energy

The vessel containing the system has not only the property of confining it, but can also
an asymmetric way on the various phases inside, favoring some of them; indeed this is
happens typically in real systems. In fact, this is precisely the reason why one introduces bo
conditions in the first place: to impose the equilibrium phase the system realizes. It appear
convenient to have a parameter allowing a fine tuning of the asymmetry, interpolating be
pure1 or 2 boundary conditions. Let us now describe how this is done.

Let S5$ i PZd: i (d)50% andLd5$ i PZd: i (d)>0%. The vessel of our system is the box,

DN,M5$ i PLd: 2N< i ~n!<N, n51,...,d21, 0< i ~d!<M %,

and thewall is SN5DN,MùS.
Let hPR; we consider the following Hamiltonian:

HDN,M

h ~s!52 (
^ i , j &,Ld

^ i , j &ùDN,MÞB

s is j 2 h (
i PSN

s i .

Let s̄P$21,1%Ld
; the Gibbs measure inDN,M with boundary conditions̄ is the following prob-

ability measure on$21,1%Ld
,

mDN,M ,s̄
b,h ~s!5H ~ZDN,M ,s̄

b,h !21 exp@2bHDN,M

h ~s!#, if s i5s̄ i , ; i ¹DN,M ,

0, otherwise.

Remark: Note that we could equivalently considermDN,M ,s̄
b,h as a probability measure on

$21,1%Zd
by extending the b.c.s̄ by s̄ i51 for all i PZd\Ld; it is then possible to replace th

boundary magnetic fieldh by a coupling constant:hS i PSN
s i5hS^ i , j &: i PSN , j ¹Lds is j . This will

be used when dealing with a negative boundary field; see Sec. IV D 1.
We will usually use the short-hand notationsmN,M ,s̄

b,h , ZN,M ,s̄,
b,h ... . As usual, we write1 for

s̄[1 and2 for s̄[21. We therefore distinguish one of the sides of the boxDN,M ,SN , which we
call the ‘‘wall.’’ Notice that instead of usual boundary conditions, a boundary magnetic fieldh is
acting onSN ; since settingh51 produces1 b.c. on the wall, while settingh521 results in2
b.c., this provides the promised interpolation parameter. Of course, we could also conside
complicated situations, where~possibly inhomogeneous! boundary magnetic fields act on th
whole boundary of the box. However, for simplicity, we restrict our attention to this partic
case, which will turn out to be general enough that the basic phenomena induced by the
boundary fields can already be analyzed.

To quantify the preference of the wall toward one of the phases, it is convenient to intro
a new thermodynamic quantity, thewall free energy,

tbd~b,h!, lim
N→`
M→`

1

uSNu
log

ZN,M ,1
b,h

ZN,M ,2
b,h . ~4.1.1!
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The existence of this quantity, and the remarkable fact that the two limits can be taken i
order, has been established in Ref. 82; the proof relies on the simple identity

tbd~b,h!5 lim
N→`
M→`

bE
2h

h 1

uSNu (
i PSN

^s i&N,M ,1
b,n8 dh8. ~4.1.2!

We will return to this formula in the next section. The heuristics behind the definition oftbd(b,h)
is that the free energyFN,M ,1(2)

b,h 52 logZN,M ,1(2)
b,h of the1 ~2! phase can be decomposed in t

following way:

FN,M ,1
b,h 5 f b~b!uDN,Mu1 f s

1~b!u]DN,M\SNu1 f w
1~b,h!uSNu1o~ u]DN,Mu,uSNu!,

FN,M ,2
b,h 5 f b~b!uDN,Mu1 f s

2~b!u]DN,M\SNu1 f w
2~b,h!uSNu1o~ u]DN,Mu,uSNu!,

where

f b~b!,2 lim
N,M→`

uDN,Mu21 logZN,M ,s̄
b,h ,

f s
1~b!,2 lim

N,M→`

u]DN,Mu21
„logZN,M ,1

b,1 2 f b~b!uDN,Mu…,

f w
1~b,h!,2 lim

N,M→`

uSNu21
„logZDN,M ,s̄

b,h 2 f b~b!uDN,Mu2 f s
1~b!u]DN,M\SNu…

@and similarly forf s
2(b) and f w

2(b,h)]. As the notations suggest,f b(b) is independent ofh and
s̄, f s

1(b) is independent ofh, and by symmetryf s
1(b)5 f s

2(b). Therefore, we see tha
tbd(b,h)5 lim

M→`
N→` (1/uSNu)(FN,M ,2

b,h 2FN,M ,1
b,h )5 f w

2(b,h)2 f w
1(b,h) is nothing else than the

leading-order term of the difference in free energy between the two phases in the presence
wall.

The ultimate justification of~4.1.1!, however, is that this quantity plays exactly the role of
thermodynamical analog in the variational problem describing the macroscopic geometry of
coexistence; see Theorems 4.3.2 and 4.3.3 below.

The following theorem states basic properties oftbd(b,h); sincetbd(b,h) is obviously odd in
h, we just state them forh>0 @alsotbd(b,0)50].
Theorem 4.1.1:(Ref. 83) Lettb* 5tb(ed) and supposeh>0. Then we have the following.

~1! tbd(b,h) is a non-negative, increasing function ofb and h, concave inh; moreover, if
h.0,

tbd~b,h!.0 ⇔ b.bc .

~1! For all b and h, tbd(b,h)<tb* .
~2! For all b.bc , there exists1>hw(b).0, such that

tbd~b,h!,tb* ⇔ h,hw~b!.

In the case of the 2D Ising model,hw(b) can be computed explicitly; see Refs. 84, 85 a
Fig. 11.

The following terminology is standard~This terminology only makes sense once we ha
chosen one of the equilibrium phases as a reference; here it is the2 phase.!: whenh>hw(b), we
say that the system is in thecomplete dryingregime; whenuhu,hw(b), it is in thepartial wetting
regime; and whenh<2hw(b), it is in the complete wettingregime. The reason for this term
nology should become clear later.
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B. Surface phase transition

In this section, we will see that the boundary magnetic field can triggersurface phase tran-
sitions. The behavior of the system in the vicinity of the wall depends dramatically onuhu being
greater or smaller thanhw(b). A more detailed discussion of these issues can be found in Ref

The state of the system in the middle of a big boxDN,M is entirely determined by the boundar
conditions, and is independent of the value of the boundary field, so that the usual~infinite
volume! Gibbs state simply does not provide any information on the behavior of the system
to the wall. To analyze the behavior of the system ‘‘in the vicinity’’ of the wall, it is theref
useful to introduce the notion ofsurface Gibbs states; these differ from the Gibbs states usua
considered in these models by the fact that one does not work with a sequence of boxes c
ing to Zd, but instead converging only to the half-spaceLd. More precisely, the surface Gibb
states are the weak limits of the measuresmN,M ,s̄

b,h whenN,M→` ~observe thatDN,M↗Ld). Two
of them are of particular importance for our discussion,mLd,1

b,h , andmLd,2
b,h , obtained, respectively

by taking weak limits of the measures with1 and 2 boundary conditions. It is not difficult to
show82 that these two measures exist, are extremal, and are invariant under translations pa
the wall; moreover, there is uniqueness of the surface Gibbs state if and only ifmLd,1

b,h
5mLd,2

b,h .
There is a close relation betweentbd(b,h) and the behavior of the system near the wall; t

can be most easily seen from the following identity, that is a consequence of~4.1.2! and of
symmetry,82

tbd~b,h!5E
2h

h

^s0&Ld,1
b,h8 dh85E

0

h

~^s0&Ld,1
b,h82^s0&Ld,2

b,h8 !dh8. ~4.2.1!

Using~4.2.1!, it is possible to prove the following theorem, showing that a surface phase tran
occurs ath5hw(b); this is the so-calledwetting transition.
Theorem 4.2.1:(Ref. 83) There is a unique surface Gibbs state if and only ifuhu>hw(b).

Let us briefly discuss the heuristics behind this result. The1 and2 boundary conditions fix
the phase present in the bulk~i.e., in the middle of a big boxDN,M). However, Theorem 4.2.1
shows that whenh>hw(b), the surface Gibbs state is unique, and therefore the state o
system near the wall isindependentof the boundary condition, i.e., of the phase present in
bulk. The mechanism responsible for this is the following. Suppose thath,0 and consider1
boundary conditions; then it is natural to regard the boundary field as a negative b.c., and th
to introduce an open contour with boundary]SN separating the2 phase favored by the wall from
the 1 phase present in the bulk~see Sec. IV D for more details!. As long ash.21, there is a
competition between two effects: On the one hand it is energetically favorable for the
contour to follow the wall; on the other hand, this would lead to a loss in entropy, since the
less room for fluctuations. Whenh<2hw(b), the entropy wins: The contour is repelled aw
from the wall, at a distance diverging with the size of the box; this is the phenomenon ofentropic
repulsion. The surface Gibbs state then describes the behavior of the system below this s
i.e., a mesoscopic film of the2 phase along the bottom wall. The fact that the contour is sent a
from the wall explains why we recover the surface tension,tbd(b,h)5tb* . Whenh.2hw(b)
energy wins, and this modifies completely the behavior of the microscopic surface: it sticks
wall, making only small excursions away from it; in this case, the phase in the bulk can rea
wall and the surface Gibbs state depends on the choice of boundary conditions.

Part of these heuristics can be made quite precise in the 2D case. Consider1 boundary
conditions. When 0.h.2hw(b), one can prove that the probability that a connected pieceI of
the wall is not touched by the open contour is bounded above byK exp@2(tb* 2tbd(b,h)…uI u#,
showing that the phase separation line really sticks to the wall.18 The information available when
h<2hw(b) are much less precise; the magnetization profile computed in Ref. 84 show
there is a film of width of orderAN along the wall. A related, much more precise, result, wh
holds at sufficiently low temperature and forh521 is that the phase separation line, on
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suitably rescaled, converges weakly to the Brownian excursion;86 this should be true for any
h<2hw(b).

In higher dimensions, much less is known. Whenh.2hw(b), one can show that the prob
ability that the open contour touches the middle of the wall is bounded away from 0 uniform
the size of the box.83 Whenh<2hw(b), very little is known, except in the simpler case of SO
models. Also, if it is known in dimension 2 thathw(b),1 @since the exact expression forhw(b)
has been computed84#, this is an open problem in higher dimensions.

Theorem 4.2.1 gives a first explanation of the terminology introduced above: when the s
is in the complete drying regime, the equilibrium phase along the wall is the1 phase, whatever
the phase in the bulk is; when there is complete wetting, it is the2 phase; only in the regime o
partial wetting can both phases be present near the wall. The fact that the phase trans
determined by hw(b) ~i.e., the characterization of the partial wetting regime
tb* .utbd(b,h)u) is known asCahn’s criterion.

C. Derivation of the Winterbottom construction

In this section, we show how Winterbottom construction, describing the equilibrium sha
a crystal in the presence of an attractive substrate, can be recovered from a microscopic the
do this, we consider the measuremN,rN,1

b,h , for somer PR, conditioned with some canonica
constraint~exact or approximate; see below!. Of course, the situation here is more complicat
than the one described in the Introduction, since instead of an infinite wall, the system is con
in a finite vessel. This, of course, makes the problem more difficult: When the solution o
Winterbottom variational problem does not fit inside the box

D̂r
d,$xPRd: ux~n!u<1, n51,...,d21, 0<x~d!<r %,

the solution of the constrained problem will differ from the Winterbottom shape. In fact,
general solution of the constrained problem is not known. In the way we state them belo
derivation of this variational problem from statistical mechanics still applies in the case whe
solution is not known.

Before stating the main theorems of this part, we briefly describe how the wetting tran
manifests itself in the macroscopic geometry of phase separation. To do this, letb.bc be fixed,
and choose a valuem for the canonical constraint so that the corresponding Wulff shape is s
enough to be placed inside the boxD̂r

d . If h>hw(b), then tbd(b,h)5tb* , and the typical
configurations will consist of a macroscopic droplet of the2 phase, with a Wulff shape, immerse
in a background of the1 phase; in particular, the shape of the droplet is independent of the v
of the boundary field@Fig. 11~a!#. This behavior persists up to the valueh5hw(b). Notice that as
soon ash,1, it becomesenergeticallymore favorable for the droplet to touch the wall.
dimension 2, however, sincehw(b),1, the droplet stays away from the wall, because entr
loss is not compensated by energy gain untilh reaches the valuehw(b). It is an interesting open

FIG. 11. The case of the 2D Ising model. Left: The phase diagram; the region of nonuniqueness of the surface Gib
is shaded. In the other region, there is a single surface Gibbs state. Right: A sequence of equilibrium shapes.
                                                                                                                



of the
the

ged
um

-
transi-
copic

ying

the
ion of

asure

the
.1.1.

ef. 18

typical
oncen-
form,
s have
ays

rse,
f
e of

in the
e

1082 J. Math. Phys., Vol. 41, No. 3, March 2000 Bodineau, Ioffe, and Velenik

                    
problem to decide whetherhw(b)51 for d.2. When h,hw(b), the typical configurations
consist of a macroscopic droplet, with a Winterbottom shape, tied to the wall. The shape
droplet now depends on the value ofh, and decreasing the boundary field amounts to letting
droplet spread more and more@Figs. 11~b!—11~e!#. For some valueh̃, the droplet covers for the
first time the entire wall@Fig. 11~e!#. From this point on, the shape of the droplet is left unchan
whenh is decreased@Fig. 11~f!; the dashed line represents part of a possible ‘‘true’’ equilibri
shape for the unconstrained problem#.

From this discussion, we see that the wetting transition athw(b) has a macroscopic manifes
tation in the canonical ensemble. Because of the confined geometry, however, the second
tion, at h52hw(b) cannot be seen. To be able to detect it, one has to consider mesos
droplets~in the form of large moderate deviations, see the remark after Theorem 4.3.2!.

This also explains pretty well the terminology introduced previously: In the complete dr
regime, the droplet stays away from the wall, and so the wall is completely dry w.r.t. the2 phase;
in the partial wetting regime, the droplet touches the wall, and both the1 and 2 phase are in
contact with it~providedh.h̃). The complete wetting regime cannot be distinguished from
partial wetting regime in this setting, but see the remark after Theorem 4.3.2 for a discuss
this issue.

1. 2D Ising model

Let r PR. Our aim in this section is to describe the typical configurations under the me

mN,rN,1
b,h ~•uMN5muDN,rNu!,

wheremP(2m* ,m* ) and MN5( i PDN,rN
s i ; we will simplify the notations further by writing

simply mN,1
b,h ~r being kept fixed!. As in Sec. III, it is possible to obtain precise asymptotics for

large deviations, in the form of the following generalization of the first part of Theorem 3
Let Wb,h

! (m) be the infimum of the functionalWb,h on subsets ofD̂r
2 with volume

@(m* 2m)/2m* #uD̂r
2u.

Theorem 4.3.1:Let the inverse temperatureb.bc and the boundary magnetic fieldhPR be
fixed; let the sequence$aN%; 2m* uDN,rNu1aNPRange(MN), be such that the limit

m5 lim
N→`

aN

uDN,rNu
P „0,2m* ~b!…

exists. Then,

logmN,1
b,h ~MN5m* uDN,rNu2aN!52Wb,h

! ~m!„11O~N21/2 logN!….

A version of this theorem, in an approximate canonical ensemble@as in ~4.3.1!#, has been
proven in Ref. 18; this stronger version can be obtained by combining the techniques of R
and of Ref. 32; see Sec. IV D.

In Theorem 4.3.1, we have made no statement about the asymptotic description of the
configurations under the conditioned measure. The reason is the following: These strong c
tration results require the knowledge of stability properties of the variational problem in the
for example, of a Bonnesen inequality. However, in the present case, one does not alway
that much information about the variational problem; in fact, even its solution is not alw
known. This prevents us from translating the energy estimates on the skeletons@see ~4.4.8!,
~4.4.10!, and~4.4.11!# into strong concentration properties of the microscopic contours. Of cou
in the situations when such stability properties are known~Ref. 13 contains a simple derivation o
such a result for many situations!, it is possible to obtain statements of the same kind as thos
Sec. III.

This illustrates the fact that although the probabilistic theory in the 2D case is complete,
sense that all the relevant information on themicroscopic scaleis available, the sharpness of th
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statements one can make on the macroscopic scale still depends onmacroscopicstability proper-
ties, which are logically separated from the probabilistic aspect of the analysis.

However, even without information about the stability properties of the variational proble
is still possible to derive weak concentration properties, in aL1-setting close to the one of Sec. I
We present such a result in the way it is stated in Ref. 18. In this paper, an approximate can
ensemble was considered, i.e., the measure wasmN,1

b,h
„•uA(m;c)…, where

A~m;c!5 Hs: u uDN,rNu21MN~s!2mu<N2cJ , ~4.3.1!

with 2m* ,m,m* , andc is some real number not too large~see Theorem 4.3.2 below!. We are
going to prove that the phases concentrate near macroscopic droplets that belong to the seD(m),

D~m!5H V,D̂r
2: uVu5

m* 2m

2m*
uD̂r

2u, Wb,h~]V!5Wb,h
! ~m!J .

Recall that to eachVPD(m), we associate the function1V51Vc21V .
To state this phase segregation theorem, we use analogous notation to the mesoscop

introduced in Sec. II. Recall thatN52n. For any a,1, we define a magnetization profil
M@an#(s,x) at the 2@an# scale that is piecewise constant on boxesB̂n2@an#(x) with
xPD̂n

dù2@an#2nZd ,

M@an#~s,x!522d@an# (
i PB@an#~2nx!

s i . ~4.3.2!

We get the following.
Theorem 4.3.2:(Ref. 18) Letb.bc , hPR, 2m* ,m,m* and 1/4.c.0. Then there exist a
functiond(N) such thatlimN→` d(N)50, a real numberk.0, and a coarse graining paramete
1.a.0 such that for N large enough

mN,2
b,h S M@an#

m*
P ø

VPD~m!

V„1V ,d~N!…UA~m;c!D >12exp$2O~Nk!%.

Remark:In this case, it should also be possible to study the whole range of moderate devia
combining the techniques of Refs. 32 and 18, although this has not been done explicitl
briefly describe the results obtained for large deviations sufficiently close to volume order.79

As long ash.2hw(b), the results are similar to those obtained in the setting of Sec. III:
measure concentrates on configurations containing a single large droplet of the2 phase, with the
Wulff or Winterbottom shape depending onh; in particular, the order of the large modera
deviations is still exp$2O(AaN)%. There should not be any problem to extend this to the wh
large deviations regime (aN@N4/3).

More interesting is the caseh<2hw(b). For those values of the boundary field, the syst
is in the complete wetting regime@tbd(b,h)52tb* #, and the solution of the unconstrained var
tional problem is degenerate. The solution of the constrained variational problem inD̂r

2 is, how-
ever, still well defined for everyN; it is obtained by extracting the cap of a Wulff shape a
rescaling it so that the basis of the cap completely covers the wall and the rescaled cap
required volume. WhenN goes to infinity, this droplet spreads out to become a thin film in
limit ~covering the entire wall; hence the terminology complete wetting!, and the corresponding
value of the surface free energy functional goes to zero. As a result of this, the scale of the
moderate deviationsis not the same as whenh,hw(b); indeed the leading term of the asym
totics can again be computed explicitly, and is found to be of order exp$2O„(aN)2N23

…%. In
particular, we see that the large moderate deviations cannot extend up toaN;N4/3, since
(aN)2N23 is of order 1 already whenaN;N3/2. This should not be surprising since, in th
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complete wetting regime, the volume under the microscopic contour is expected to have
fluctuations of orderN3/2 ~this can be shown whenh521 andb is very large using the conver
gence to Brownian excursion stated in Ref. 86!. Therefore, typical fluctuations of magnetization
the complete wetting regime are not governed by bulk fluctuations anymore, but by fluctuati
the microscopic phase separation line. To prove that this behavior is valid up toaN;N3/2 might be
a nontrivial task. h

2. Ising model in d Ð3

Let r PR and letD(m) be the set of macroscopic droplets at equilibrium inD̂r
d ,

D~m!5H V,D̂r
d : uVu5

m* 2m

2m*
uD̂r

du, Wb,h~]V!5Wb,h
! ~m!J .

The rest of the notations were introduced in Sec. II. The main result is the following.
Theorem 4.3.3:(Ref. 11) For anyb in Bp , anyhPR, any m in(2m* ,m* ), the following holds:
For any d.0, there is k05k0(d) such that forn,1/d,

lim
N→`

min
k0<k<nn

mN,1
b,h S Mk

m*
P ø

VPD~m!

V~1V ,d!UMN<muDN,rNu D 51.

D. The tools

In this section, we explain how the procedures described in Secs. II and III have
modified to take into account the effect of the boundary.

1. 2D Ising model

We describe the main modifications one needs to apply to the proofs of Sec. III in order
the results stated in Theorems 4.3.1 and 4.3.2. We split this section into two parts, one d
with the lower bound onmN,2

b,h
„A(m;c)… or mN,2

b,h (MN52m* uDN,rNu1aN); the other one with the
upper bound.

The lower bound. The constrained variational problem is more difficult than the usual one. In
as noted above, the solution~anda fortiori its stability! is not known, in general, although it is i
many cases. This prevents us from proceeding as in Sec. III, where the lower bound follow
summing over large contours fluctuating around the Wulff shape. It would then appear nec
to make the same kind of proof, but for any configurations of droplets surrounding the
volume~all potential solutions to the variational problem!. This, however, would be tricky; indeed
since we want our results to hold for large, butfinite boxes, it is compulsory to obtain estimate
uniformover the droplet in the chosen set! Fortunately, properties of the surface tension an
free energy allow us to restrict our analysis to a small class of well-behaved droplets: The so
of the variational problem is necessarily taken on asingle convexdroplet. This is a consequenc
of the convexity oftb ~use the Jensen inequality! and the fact thattbd(b,h)<tb* , which implies
that replacing a droplet by its convex hull cannot increase the surface free energy; rescal
resulting droplet decreases the energy even more. It is thus enough to prove the following

Proposition 4.4.1: (Ref. 18) Letb.bc and hPR. There exists N05N0(b,h,m,c,r ) and a
constant C such that, for any simple closed rectifiable curveC which is the boundary of a conve

body of volumeuD̂r
2u(m* 1m)/2m* contained inD̂r

2, and for all N>N0 ,

mN,2
b,h

„A~m;c!…> exp$2Wb,h~C!N2bCN1/2 logN%.

A completely analogous statement holds in the case of the exact canonical ensemble.
The proof of Proposition 4.4.1 is similar to the proof of Theorem 3.5.1. We sketch now

main changes needed to deal with the boundary conditions. The caseh<0 requires a slightly
more complicated proof than the caseh.0 so we first consider the latter.
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First case:h.0. As in the usual case, we want to approximateC with some polygonal curve with
vertices on the dual lattice, and then sum over all contours going through the latter; this
allow us to extract, for each piece of the contour, the surface tension of the corresponding
the polygonal line. Here, however, we want to be able to extract the wall free energy whe
curveC follows the wall. There are some complications related to this: If two vertices are clo
the wall, but do not belong to it, the sum over the corresponding piece of contour might not
simply tb or tbd(b,h), but some complicated mixture, since typical such contours might firs
down to the wall, then follow it on some length, and only then go up to the other vertex, se
12; this kind of behavior has been studied in detail in Ref. 19.~Consider, for example, a family o
curvesC getting closer and closer to the wall; since we need estimates uniform in all such c
one has to be able to deal with such a situation.! It turns out that it is possible to construct
polygonal approximation to the curveC whose surface tension is not too large in comparison w
that of C, while removing these possible pathologies.

The idea is the following. LetdN5N21/2 logN, and set

D̂r
2~N!5$xPD̂r

2: min
y¹D̂r

2

iy2xi1.dN%.

Let V be the convex body with boundaryC and setCN5]„VùD̂r
2(N)… We first construct a

polygonal approximation for each of the components ofCNùD̂r
2(N) with segments of lengthdN

~apart from at most eight of them, which may be shorter!. Set @x,y#5$zPCN :z(2)5dN%. If
@x,y#ÞB, we connect the two corresponding pieces of polygonal lines by a broken line fromx to
„x(1),0…, then to„y(1),0…, and finally toy; we divide the segment between„x(1),0… and„y(1),0…
into segments of lengthdN/2 ~except possibly for the last one, which can be shorter!. We repeat
this construction for the three other sides of the box. The resulting closed polygonal line is de
by P̂N ~see Fig. 13!. Notice that by construction there exists an absolute constantC, such that

FIG. 12. Whentbd(b,h),tb* , the open contour connecting two sites close enough to the wall might not stay insi
elliptical set as in the bulk~dashed contour!, but instead might get pinned by the wall~full contour!. In such a case, the
exponential decay rate is, in general, not given bytb or tbd(b,h).

FIG. 13. Left: The curveC; the shaded area represents the convex body whose boundary isCN and the dashed line is the

boundary ofD̂r
2(N). Right: The polygonal approximationP̂N , the dots representing its vertices.
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Wb,h~C!>Wb,h~P̂N!2CbdN ,

uvol~C!2vol P̂Nu<CuD̂r
2udN .

We then rescale the polygonal lineP̂N by a factorN and if necessary move slightly the rescal
vertices so that they belong to the dual lattice; the rescaled polygons is denoted byPN . We then
define a classG of closed contours going through the vertices ofPN ~in the right order!, and
staying in some small boxes along its edges. For all edges of length smaller thanNdN , as well as
for the ~up to eight! pieces we added above to joinCN to the boundary, we impose that th
corresponding piece of the contour is a fixed length-minimizing path between the vertices.

The rest of the argument proceeds in a similar way as in the standard case. The estim
the phase of small contours carry over without any problems, since in that case the effect
boundary field cannot propagate far away from the wall.

We still have to explain how one can extract the correct surface tension forP̂N from the sum
over contours in the classG introduced above. To do this, we use several results about
random-line representation, proved in Refs. 18 and 19. To lighten the notation, we simply w

qN
b* ,h* instead ofqD

N,tN
!

b* ,h* ; b* andh* are the dual ofb andh; see~1.2.5!. The first inequality is

just the analog of~3.4.6! in our case, which turns out to be valid for arbitrary ferromagne
coupling constants: The weight of any high-temperature contourgPG satisfies~Ref. 18, Lemma
5.4!

qN
b* ,h* ~g!>) qN

b* ,h* ~gk!,

wheregk denotes the piece of the contourg between thekth andk11th vertices ofPN . The next

step is to replaceqN
b* ,h* (gk) by the corresponding infinite-volume quantity. First, for anygk

joining vertices not belonging toSN
!,$ i PDN,rN* : i (2)52 1

2% @note thatgk stays necessarily at
distanceO(NdN) from SN

! ],

qN
b* ,h* ~gk!>~12e2O~NdN!!qb* ~gk!;

second, for the piecesgk joining two sites ofSN
! , we use

qN
b* ,h* ~gk!>qL

!
d

b* ,h*
~gk!,

where L!
d,$ i PZ!

d : i (2)>2 1
2% ~both results are proved in Ref. 18, Lemma 5.3!. Finally, the

remaining pieces have a length of, at most, 8NdN , so that their total weight is larger tha
e2C O(NdN).

The last step is to extract the surface free energy. The basic tool to do this is, as in the
of Theorem 3.4.4, concentration properties for open contours between two fixed dual sites.
piecesgk not touching the boundary, we can use the usual infinite volume results based on~B3!,
settings5NdN . For the pieces along the boundary, one can use the following statement~Ref. 19,
Lemma 6.10!:

(
l: i→ j

l,NK~ i , j !ùL!
d

qL
!
d

b* ,h*
~l!>^s is j&L

!
d

b* ,h*
„11o~1!…, ~4.4.1!

whereNK( i , j ) is defined in Appendix B~with s5NdN). @In fact, ~4.4.1! can be strengthene
whenh,hw(b): in this case, the setNK( i , j )ùL!

d can be replaced by the set~Ref. 19, Lemma
6.13!
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$kPL!
d : „i ~1!∧ j ~1!…2K logdN<k~1!<„i ~1!∨ j ~1!…1K logdN , k~2!<K logdN%,

which is compatible with our picture of partial wetting.#
The result then follows from lower bounds on the corresponding two-point functions.

only new inputs are the following lower bounds on the boundary two-point function:

^s is j&Ld*
b* ,h*

>C
exp$2tbd~b,h!i j 2 i i%

i j 2 i i3/2 , ;h>hw~b!, ~4.4.2!

^s is j&Ld*
b* ,h*

>C exp$2tbd~b,h!i j 2 i i%, ;h>hw~b!, ~4.4.3!

for any i , j PS*,$kPL!
d : k(2)52 1

2%. ~4.4.3! is proved in Ref. 18, Prop. 7.1, while~4.4.2!
follows from exact computations in the caseh* 51 ~Ref. 85, and Ref. 18, Prop. 7.1!,

^s is j&Ld*
b* ,h*

>~ tanhb* !2^s is j&Ld*
b* ,1

, ;h>0.

Second case:h50. This is a somewhat marginal case. The apparent difficulty is that in this
h* 5`. However, this does not create any real complications. One just has to modify the
struction of the first case as follows: We replace the polygonal lineP̂N by the ~possibly open!
polygonal lineP̂N\$uPR2:u(2)50%; we then sum over contours going through the vertices
this polygonal line~contours that are open if the polygonal line is open!. This does not give any
contribution for the part ofC along the wall, which is what we want sincetbd(b,0)50.

Third case:h,0. This is slightly more tricky. In this situation, one may be even more pessimi
since the duality is simply not defined when nonferromagnetic interactions are present! How
this turns out to be a false problem. Indeed, we can use the following obvious identity to re
ferromagnetic interactions~see remark, p. 1078!

mN,1
b,h 5mN,6

b,uhu ,

where6 correspond to the boundary conditions̄ i51 if i (2)>0 ands̄ i521 otherwise.
We then constructP̂N as in the first step and setI 5P̂Nù$xPD̂r

2: x(2)50%. If I 5B, then we
subdivide the set$xPD̂r

2:x(2)50% into segments of lengthdN/2 ~except possibly for the last one
which might be shorter!; this defines a second~open! polygonal lineP̂N8 ~with all its vertices along
the wall! ~see Fig. 14!. We then introduce a class of pair of contours (g,g8), g going through the
vertices ofPN and defined as before, andg8 following the wall, going through the vertices ofPN8
and staying inside small boxes along its edges, similarly as for the other one (g8 is open!. By
construction,g andg8 are disjoint. Duality then implies the following identity:

FIG. 14. The construction forh,0. Left: I 5B ~two polygonal lines: one open and one closed. Right:IÞB ~one open
polygonal line!.
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mN,6
b,uhu

„$g,g8%,g~• !…5~ZN,6
b,uhu!21w~g!w~g8! (

z:
~z,g,g8!L* -comp.

w~z!

5~12e2O~N!!
ZN,1

b,uhu

ZN,6
b,uhu qN

b* ,uhu* ~g,g8!. ~4.4.4!

The factor (12e2O(N)) comes from the fact that we can apply duality only to simply connec
sets, and the exterior ofg is not simply connected. We must therefore forbid familiesz for which
duality does not hold; since such families must contain at least one contour surroundingg, we get
the above correction.

We can now proceed as in the first case. The only additional work to do is to analyze the
of partition functions in~4.4.4!, but this is easy, since by duality,

ZN,1
b,uhu

ZN,6
b,uhu 5~^s t l

s tr
&D

N,rN
!

b* ,uhu*
!21>etbd~b,uhu!~2N11!, ~4.4.5!

wheret l5(2L2 1
2,2

1
2) andt r5(L1 1

2,2
1
2) are the two dual sites at the lower left and lower rig

corners ofDN,rN
! , and the last inequality follows from the upper bound~see Ref. 18, for example!,

^s is j&D
N,rN
!

b* ,uhu*
<e2tbd~b,uhu!i j 2 i i, ~4.4.6!

valid for anyi , j PSN
! . We then see that the ratio of the partition function cancels the contribu

from the sum over the open contourg8, up to an error term exp$O(NdN)%.
If IÞB, the situation is simpler. Let us writeI 5@x,y#; then we define a new polygona

line P̂N
6 :P̂N

6 goes from the lower right corner ofD̂r
2 to a along the wall, then it follows

P̂N\$xPD̂r
2:x(2)50% up tob and finally goes fromb to the lower right corner ofD̂r

2 ~see Fig. 14!.
We subdivide as usual the part ofP̂N

6 along the wall into segments of lengthdN/2 and proceed as
in the first case, withP̂N

6 replacingP̂N , using ~4.4.4!. Summing over the open contour goin
through the vertices ofPN

6 produces~up to the usual error term! a term exp$2Wb,uhu(P̂N
6)N%.

Combining this with~4.4.5! and observing that

exp$2tbd~b,uhu!N%exp$2Wb,uhu~P̂N
6!N%5exp$2Wb,h~P̂N!N%,

the conclusion follows as in the usual situation.

The upper bound. Let us now turn our attention to the proof of the upper bound. The basic stra
is completely similar to that of the standard case; see Sec. III F 2. The only serious modifi
concerns the energy estimate, which should now associate the functionalWb,h to the probability
of skeletons. Again, the caseh>0 is somewhat simpler than the other, so we start with this o

First case:h>0. The basic problem we encounter when trying to make the energy estimate
same we met in the proof of the lower bound. Summing over an open contour connecting tw
sitesi andj might not yield a decay of order exp$2tb(j2i)% or exp$2tbd(b,h)i j 2 i i% if i andj are
close enough to the wall but not on it~see Ref. 19!. However, the following bound, proven in Re
18, Lemma 5.1, is sufficient to derive the energy estimate,

(
l: i→ j

lùE~SN
!

!5B

qN
b* ,h* ~l!<exp$2tb~ j 2 i !%, ~4.4.7!
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for any h>0; E(SN
! )5$e* ,SN

! %. The definition of skeletons will be done in such a way as
ensure that the additional constraintlùE(SN

! )5B is automatically satisfied; see below. We al
need to extract the wall free energy when summing over contours joining two dual sites belo
to SN

! ; this, however, is nothing else as~4.4.6!.
Let us now describe the construction of a skeletonS5(u1 ,...,un) of a closed contourg.

Remember that we have to define the skeletons in such a way as to ensure that~1! the piece of the
contour between two dual sites not both on the wall must be edge disjoint from the wall, an~2!
the Hausdorff distance between the contourg and the polygonal line Pol(S) is smaller than the
cutoff parameters(N).

For contoursg that do not touch the wall, the definition of skeletons is the same as in Sec
SupposegùE(SN

! )ÞB. Let us define (v1 ,...,v2m) as theminimal family of dual sites satisfying
the following properties.

~1! vkPSN
! ùg for k51,...,2m andvk(1),vk8(1) if k,k8.

~2! (v1 ,...,vm) split g into piecesg1 :v1→v2 ,...,g2m :v2m→v1 , such thatg2kùE(SN
! )5B

for all k51,...,m; dH„g2k ,$xPR2:x(2)52 1
2%….s(N) for all k51,...,m; and

dH„g2k11 ,$xPR2:x(2)52 1
2%…<s(N) for all k51,...,m.

We then say thatS5(u1 ,...,un) is ans skeleton ofg if all vertices ofS belong tog; v1 ,...,v2m

are vertices ofS; the only vertices ofS along g2k11 are v2k11 and v2k12 , for all k51,...,m;
the distance between any successive pair of verticesul ,ul 11 of S along g2k satisfies
s(N)/2<iul2ul 11i`<2s(N), for all k51,...,m; dH„g,Pol(S)…<s(N).

This definition has the nice property that eitherul andul 11 both belong toSN
! , or the part of

g between these two sites is edge disjoint fromSN
! ~see Fig. 15!. This allows us to use the

estimates~4.4.6! and ~4.4.7!. This yields the following extension of~3.4.2! ~Ref. 18!:

mD
N,rN
!

b* ,h*
~S!<exp$2Wb,h~S!%. ~4.4.8!

The analog of the energy estimate~3.4.3! then follows easily, sincetbd(b,h)>0 whenh>0 and
therefore it is still possible to control the number of vertices ofG in terms ofWb,h(G). This gives

mD
N,rN
!

b* ,h*
„Wb,h~S!>r …<expH 2r S 12

C logN

s~N! D J . ~4.4.9!

Using this and the estimates in the phase of small contours, which still hold in the presenc
boundary field, the upper bound follows easily.

Second case:h,0. As for the lower bound, we have to deal with the fact that, forh,0, the
duality is not defined. The solution is the same as there: We just change boundary condition
we look at the measuremN,6

b,uhu , which was defined when we dealt with the lower bound.

FIG. 15. Left: A contour touching the wall and the family (v1 ,...,v2m). Right: An s skeleton for the contour.
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Once we have done this, the main difference is that the family of low-temperature conto
any configurations compatible with these boundary conditions contains exactly one open co
with end pointst l5(2N2 1

2,2
1
2) andt r5(N1 1

2,
1
2). It is straightforward to generalize the notio

of a skeleton introduced in the preceding case to the present situation. What we get b
procedure is a family of skeletonsG65(S0 ,S1 ,...,Sn) containing exactly one skeleton,S0 , with
Pol(S0) open with end pointst l and t r .

Since we want to compare the corresponding families of polygonal lines with the soluti
the variational problem, i.e., with the boundary of a convex body inD̂r

2, it is convenient to
introduce another familyG of skeletons whose associated polygonal lines areclosed; G possesses
the same set of vertices~except fort l andt r ), but with a different set of edges, which is such th
its associated family of polygonal lines satisfies

Pol~S!5Pol~S6!D$xPR2: 2N/22 1
2<x~1!<N/21 1

2, x~2!52 1
2%,

whereD denotes symmetric difference~see Fig. 16!.
One then has the following relation:

Wb,h~S!5Wb,uhu~S
6!2~2N11!tbd~b,uhu!.

In particular, the following version of~4.4.8! holds:18

mN,6
b,uhu~S6!<K1 exp$2Wb,h~S!%, h.2hw~b!, ~4.4.10!

mN,6
b,uhu~S6!<K2 N3/2exp$2Wb,h~S!%, h<2hw~b!. ~4.4.11!

The energy estimate~4.4.9! is slightly more delicate now, since the wall free energy is negat
It turns out, however, that in the partial wetting regime,h.2hw(b), it is easy to reduce our
selves to a situation similar to the casetbd(b,h)>0. The caseh<2hw(b), i.e., complete wet-
ting, is more subtle, but happens not to give too many problems as long as we consider v
order large deviations~or, in fact, deviations close enough to volume order!.

Let us first consider the case of partial wetting; this regime is characterized
utbd(b,h)u,tb* . Let us writeWb,h(G)5T11T2, whereT1(T2) is the positive~negative! part
of the functional. Then, sinceT1>„tb* /tbd(b,h)…T2 and the number of vertices along the wall
at most two-third of the total number #~G!, we have

#~S!<
K

s~N!„tb* 1tbd~b,h!…
Wb,h~S!,

for some absolute constantK. This allows us to prove that

mN,2
b,h

„Wb,h~S!>r …<expH 2r S 12
C logN

s~N! D J . ~4.4.12!

FIG. 16. Left: The family of polygonal lines associated toG6. Right: The family ofclosedpolygonal lines associated
to G.
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Whenh<2hw(b), one cannot establish as good an upper bound. The best we can do is to u
fact thatT2>(2N11)tbd(b,h), which turns out to be enough to prove the following, weak
version of the energy estimate:

mN,2
b,h

„Wb,h~S!>r …<expH 2r S 12
C logN

s~N! D1C8
N logN

s~N! J . ~4.4.13!

The reason why such an estimate is still sufficient to get the desired result is that the re
values ofr are also of orderN, so that the first term can always be made to dominate the se
one.

Once we have~4.4.12! and~4.4.13!, the proof is concluded as usual, after observing that
estimate in the phase of small contours still applies in the presence of the boundary fielduhu.

2. Ising model in d Ð3

The proof of Theorem 4.3.3 is based on theL1 theory introduced in Sec. II. We simply explai
how the main ingredients of the proof should be modified and refer to Ref. 11 for details.

The arguments of geometric measure theory can be extended easily to this new set
particular, it is straightforward to check that the functionalWb,h is lower semicontinuous and tha
the approximation Theorems 2.5.1 and 2.6.1 hold.

The main problem is to define proper mesoscopic phase labels for the measures
boundary magnetic field. Ifh>0, then the mesoscopic phase labels introduced in Sec. II sa
the Assumptions~a! and~b! as well as Conditions~C1!–~C3! under the measuremN,1

b,h . Instead, if
h,0, some problems occur because theFK measure loses its ferromagnetic properties and
random coloring measures are more complicated to deal with. Nevertheless, it is still poss
define mesoscopic phase labels and to derive estimates as in Sec. II B.

Other difficulties have to be overcome in order to implement the general philosophy o
L1-theory. In the case of a negative boundary magnetic field, the interface induced by the
prevents us from applying directly the techniques developed to prove the exponential tigh
Theorem 2.1.1. Therefore an alternative approach similar to the one described in Sec. IV
required. The analysis of the surface tension also needs some care. We recall that the com
of surface tension is based on a localization procedure along the boundary of functions of bo
variation. For a given test function either locally its boundary is in the bulk and we recove
usual surface tension term or it intersects the wall and arguments similar to those used in th
enable us to derive the wall free energy. In this way the complexity of the problem is red
because the difficult analysis of the fluctuations of the microscopic interface between the wa
the bulk is replaced by softL1 estimates.

E. Open problems

As in the previous parts, there are still a lot of open problems. Most of those presented
have natural analogs in the present situation. In the following, we restrict ourselves to pro
intrinsically related to the topics discussed in this part.

2D nearest neighbors Ising model. The fact that one is still unable to analyze nonpertur
tively the fluctuations of the phase separation line is only strengthened when we would l
study boundary effects. Indeed, a general analysis of typical open paths with end points at g
positions with respect to the wall has not been done, even at low temperature. Problems re
this are the following.

~1! Give a nonperturbative proof that the probability measure of a suitably rescaled version
open contour with end points on the wall converges weakly to the measure of Brow
excursion whenh<2hw(b) ~as was sketched in the low-temperature case forh521 in Ref.
86!. This would provide a way of analyzing the typical fluctuations of magnetization in
complete wetting regime, and would complete the heuristic picture of the wetting transiti
the grand-canonical ensemble.
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~2! Establish Ornstein–Zernike behavior for the boundary two-point function without ha
recourse to explicit computations. Even weaker lower bounds, like those given in Re
have not been proved in such a constrained geometry.

Another open problem is to investigate the full range of moderate deviations. This
require an understanding of point~1! above.

Higher-dimensional nearest neighbors Ising models. If fluctuations of phase separation line
are not yet understood, the situation is only much worse when considering their h
dimensional counterparts; in fact, even perturbative results are not always available. Here
from exhaustive list of related open problems.

~1! Give a microscopic description of the behavior of phase boundaries in the partial and com
wetting regimes in the grand-canonical ensemble to put some flesh on the heuristics
above.

~2! Decide whetherhw(b)51 or not. The corresponding results for the SOS model87 suggest that
hw(b),1 in any dimension; numerical investigations confirm this in dimension 3.88

In fact, even much simpler problems related to the behavior of higher-dimensional inte
are still open: proof of the existence of a roughening transition ind53, proof of the unstability of
the ~1, 1, 1! interface,... .

In some simpler models of the SOS type some~but not all!! of these problems can be solve
but this does not seem to help in solving the original ones.

The wall. Another type of problem concerns properties of the wall. In particular, it migh
interesting to answer the following questions.

~1! What happens if the interaction with the wall is more complicated~say, non-nearest neighbor!.
~2! What happens if the boundary field is not homogeneous~for example, is a ‘‘random’’ con-

figuration ofh1 andh2 macroscopically equivalent to some well-chosen homogeneous bo
ary field h5h̄?).

APPENDIX A: PROOF OF THEOREM 2.2.1

Assumption~a! controls the number of zerouk-blocks, whereas assumption~b! is used to
control the geometry of the mesoscopic phase labels. The dependence ofk0 on d could be
described as follows: we choosek0 so large that

rk<
1

C~d!
d, for every k>k0 , ~A1!

whereC(d) is a large enough fixed constant. Three terms on the left-hand side on~2.2.3! corre-
spond to three different exponential estimates:

1. Estimate on the volume of zero u k-blocks

The domination by Bernoulli measure~2.2.2! implies that

PNS #$xPT̂n2k
d : uk~x!50%>dS N

2kD dD<c2 expH 2dS N

2kD d

log
d

rk
J . ~A2!

Each realization of the phase label functionuk splits T̂d into the disjoint union of three
mesoscopic regions:

T̂d5$x: uk~x!51%∨$x: uk~x!521%∨$x: uk~x!50%,A1∨A2∨A0 .

By the choice of the scalek0 in ~A1! the estimate~A2! is nontrivial for everyk>k0 , and, in view
of the target claim~2.2.3!, we can restrict attention only to such realizations ofuk for which
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uA0u5E
T̂d

1$uk~x!50%dx,d. ~A3!

This has the following important implication: ifukPV(Ka,2d)c, the area of the boundary of an
regular setA such thatA1#A#T̂d\A2 is bounded below as

u]Au>a. ~A4!

Using assumption~b! of the theorem, we are going to construct such setsA on the finitek0 scale;
APFn2k0

, and in such a fashion that all the boundaryk0-blocks ofA will necessarily have zero
uk0

-labels. This reduction enables a uniform treatment of all coarser scalesk>k0 .
So letk>k0 , and assume that~A3! holds. We denote byA2 ~resp.,A1) the set of all boxes

B̂n2k0
in A2 ~resp.,A1). We say thatxPT̂n2k0

d is 2* connected toA2 ; x↔2* A2 , if there exists

a *-connected chain of ‘‘2’’ uk0
-blocks leading fromB̂n2k0

(x) ~and including it! to A2 . Define
now the complementAc as follows:

Ac5A2 ø
x↔2* A2

B̂n2k0
~x!.

By the virtue of assumption~b!, A1#A. Moreover, by construction all thek0-blocks ofA attached
to the boundary]Ac have zerouk0

-labels. With a slight abuse of notation we proceed to den
this collection of boundaryk0-blocks as]A. By ~A4! the number ofk0-blocks in]A is bounded
below by

#k0
~]A!>

c~d!a

2~d21!k0
Nd21. ~A5!

Since, however, the total number ofk0-blocks in the corresponding decomposition ofT̂d equal to
Nd/2dk0 the estimate~A5! alone is not sufficient for giving the desirable upper bound on
probabilityPN„ukPV(Ka,2d)c

…. The required entropy cancellation stems from the fact that sm
connected contours of]A cannot surround too much volume.

Let us decomposeA to the disjoint union of its maximal connected components:

A5 ∨
i 51

l

Ai , respectively, ]A5 ∨
i 51

l

]Ai .

We shall quantify contours]Ai according to the size~or the number ofk0 blocks! in Ai . Namely,
the contour]Ai is called small, if

#k0
~Ai !<K~d!logN or uAi u<K~d!

2dk0

Nd logN, ~A6!

whereK(d) is a sufficiently large constant. Otherwise, the contour]Ai is called large.
We claim that under~A3! the following inclusion is valid:

$ukPV~Ka,2d!c%#H (
]Ai – small

uAi u.dJ øH (
]Ai – large

u]Ai u.aJ . ~A7!

Indeed, if the total volume inside small contours is less thand, then repainting all the smal
componentsAi into ‘‘ 21’’ and all the large componentsAj into ‘‘ 11’’ we produce a$61%-valued
function that is, at most, at theL1 distance 2d from uk and that, thereby, cannot belong toKa .
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2. Peierls estimate on the size of large contours

PNS (
]Ai – large

u]Ai u.aD 5PNS (
]Ai – large

#k0
~]Ai !.

c~d!a

2~d21!k0
Nd21D

<expH 2c3~d!
a

2~d21!k0
Nd21J . ~A8!

This immediately follows from assumption~a!, once the constantK(d) in ~A6! has been properly
chosen.

3. Estimate in the phase of small contours

The volume of small componentsAi is related to the total number ofk0-blocks in these
components as

(
]Ai – small

uAi u5S N

2k0D 2d

(
]Ai – small

#k0
~Ai !.

On the other hand, for everyl P@1,...,n2k0#;

(
]Ai – small

#k0
~Ai !5 (

xPT̂n2k0

d
(

]Ai – small
1$xPAi %

5 (
tP@0,...,2l !d

(
xPT̂n2k02 l

d
(

]Ai – small
1$u tD0

xPAi %
,

whereD0,2k02n is the step size on the embedded torusT̂n2k0

d , andu • is the shift on this torus.

Consequently,

PNS (
]Ai – small

uAi u.d D< max
tP@0,...,2l !d

PNS (
xPT̂n2k021

d
(

]Ai – small
1$u tD0

xPAi %
.dS N

2k01 l D dD . ~A9!

If, however, 2l.K(d)logN, then no two distinct points on the torusT̂n2k02 l
d ~or any shift of it!

can belong to the same small componentAi . This, in view of the domination by the independe
Bernoulli site percolation@assumption~a!# suggests an application of the B–K inequality. Sinc
by the choice of the scalek0 in ~A1!,

ek0
,P

perc

rk0 ~' a closed surface of zerouk0
-blocks aroundx!,d,

for everyxPT̂n2k0

d , we readily obtain that the right-hand side of~A9! is bounded above by

c4~d!expH 2dS N

2k01 l D d

logS d

ek0
D J .

The proof of Theorem 2.2.1 is concluded. h

APPENDIX B: PROOF OF THE THREE-POINT LOWER BOUND LEMMA 3.4.3

The proof of Lemma 3.4.3 is based on the following positive stiffness property of the su
tension89
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min
uP@0,2p#

H d2

du2 tb„n~u!…1tb„n~u!…J 5 min
uP@0,2p#

Rb„n~u!….0, ~B1!

where the unit normaln(u) is defined vian(u)5(cosu,sinu), andRb(n) is the radius of curvature
of ]K at the point supporting the tangent line orthogonal ton. An integral version of~B1! is the
sharp triangle inequality Ref. 29, 79: For anyu, vPR2

tb~u!1tb~v !2tb~u1v !>c1~b!~ iui21ivi22iu1vi2!. ~B2!

The latter inequality is used to control the fluctuations of the microscopic phase boundar~in
their random line representation of Sec. III D!.

Let now an~s, «!-compatible triple of points~u,w,v! be given. FixK5K(b) large enough and
define the ‘‘oval’’ neighborhoodNK(u,w) of $u,v% as

NK~u,w!5$zPR2: tb~z2u!1tb~w2z!2tb~w2u!<K logs%.

The oval neighborhoodNK(w,v) is defined exactly in the same fashion. Relations~3.4.8! and

~3.4.11! readily imply that the main contribution tôsusw& f
b* ~respectively, tô swsv& f

b* ) comes
from the pathsl1 ~respectively,l2) which stay in NK(u,w) @respectively,NK(w,v)]. More
precisely,

(
l1 :u→w

lPNK~u,w!

qb* ~l1!>^susw& f
b*
„11o~1!…, ~B3!

uniformly in all ~s, «!-compatible triples. Any such pathl15„l1(0),...,l1(n1)… could be decom-
posed as follows: Define

nw5max$k: lkPNK~u,w!\NK~w,v !%,

and setl1
u5„l1(0),...,l1(nw)…, l1

w5„l1(nw11),...,l1(n1)…; l15l1
u~l1

w . The decomposition
l25l2

u~l2
w is defined in a completely symmetric way. Notice that, by the construction, the p

l1
u andl2

v are disjoint and compatible, and, by~B2!,

max$il1~nw!2wi2 ,il2~nw!2wi2%<c2~«!logs.

The claim of the lemma follows now from~3.4.6! and ~3.4.7!. h
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I. INTRODUCTION

We shall give a summary of some of the main results known about phase transitio
nonamenable graphs. All terms will be defined as needed beginning in Sec. II. Among the
we consider, we pay special attention to transitive graphs and trees~regular or not!, as these are
the cases that arise most naturally. Both of these classes of graphs also have some fea
permits a satisfying analysis to be performed~or to be conjectured!: transitive graphs look the
same from each vertex, while trees lack cycles. Certain phenomena are known to occur
transitive nonamenable graphs, others are conjectured to hold for all transitive nonam
graphs, while still others depend on different aspects of the graph. The subject is quit
because of the interplay between probabilistic models and geometry. In particular, ther
greater variety of probabilistic behavior possible on nonamenable graphs than on am
graphs. The area is developing vigorously, but a great deal remains to be discovered. A num
parallels among different processes will be evident to the reader, and consequently, a num
questions will suggest themselves. We have, however, omitted all discussion of critical expo

The models we consider all involve a parameter. Changing the parameter leads to qua
changes of behavior. When such a change occurs, we shall say that there is aphase transition.
~Note: in some publications, a phase transition is said to occur for afixedparameter value when
there is more than one Gibbs measure at that value. By contrast, our term is not precisely d!
There is usually at least onecritical value for the parameter, i.e., a value separating two interv
of the parameter where there are different qualitative behaviors on each side of the critical
For the most basic phase transitions, those that usually occur on amenable graphs, Ha¨ggström47

showed that a phase transition occurs simultaneously in all or none of the following models o
given graph, assuming only that the graph has bounded degree: bond percolation, site perc

a!Electronic mail: rdlyons@indiana.edu
10990022-2488/2000/41(3)/1099/28/$17.00 © 2000 American Institute of Physics
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the Ising model, the Widom–Rowlinson model, and the beach model. However, what m
nonamenable graphs truly distinctive is often the presence of a second critical value that do
occur on amenable graphs. The extent to which such behavior is understood varies widel
model to model and from graph to graph.

There are various probabilistic characterizations known of nonamenability. The first
result was proved for the most basic probabilistic process, namely, random walk, in the the
Kesten.60,61 He showed that a countable groupG is amenable iff the spectral radius is 1 for som
~or every! symmetric group-invariant random walk whose support generatesG. The extension of
Kesten’s theorem to the setting of invariant random walks on transitive graphs involves u
dularity and has been studied by Soardi and Woess,107 Salvatori,98 and Saloff-Coste and Woess.97

We shall return to random walks, now with a parameter, in Sec. IX.
Due to a lack of time, we were unable to survey results concerning branching random

which has many similarities to results here and, indeed, has inspired many of them. We m
just one example: A groupG is amenable iff for some~or every! symmetric group-invariant
random walk with support generatingG and for some~or every! tree T with branching number
larger than 1, the associatedT-indexed random walk onG is recurrent. In particular, this is the cas
for branching random walk corresponding to any Galton–Watson branching process with
larger than 1. See Benjamini and Peres9 for definitions and a proof~which depends on Kesten’
theorem above!. This result inspired Conjecture 3.8 by means of an intuitive analogy betwee
range of a branching random walk and an infinite percolation cluster; see the proof of Theo
in Benjamini and Schramm10 for a direct relationship between branching random walk and p
colation.

We now give a somewhat more detailed preview of some of the results to be surveye
ordinary Bernoulli percolation on transitive amenable graphs, it is well known that when the
a.s. an infinite cluster, then there is a.s. a unique infinite cluster. This is now known to fail in
cases of transitive nonamenable graphs, and has been conjectured to fail in all transitive n
nable graphs. Moreover, it is known that the uniqueness and nonuniqueness phases, if not
determine single intervals of the parameter. This leads to the study of two critical paramete
usual one at the top of the regime of nonexistence of infinite clusters and a possibly new one
bottom of the uniqueness phase. It also leads to the study of the behavior of the infinite c
when there are infinitely many and how they merge as the parameter is increased.

One of the important new tools for studying percolation is the mass-transport principle a
use in invariant percolation. This provides some general results that allow one to manipula
clusters of Bernoulli percolation in a rather flexible fashion. In particular, nonamenability turn
to be more of an asset than a liability, as it provides for new thresholds that are trivial i
amenable case.

The Ising model is one of a natural family of models that includes Bernoulli percola
Additional complications, such as boundary conditions and the optional parameter of an ex
field, lead to questions that do not arise for Bernoulli percolation. Sometimes, they can be u
characterize exactly amenability. But the number of different phase transitions that are poss
the Potts models and the related random cluster models is sufficiently great that it has
precluded the kind of unified picture that is at least conjectured for percolation.

The contact process is now reasonably well understood on the Euclidean latticesZd. However,
some fundamental results there are still not known in the more general setting of ame
transitive graphs. For example, analogous to the number of infinite clusters in Bernoulli pe
tion are the phases in the contact process of extinction, weak survival, and strong survival. It
be that weak survival is impossible iff the transitive graph is amenable. Some results i
direction are known.

When we consider trees, we are often able to calculate precisely many critical valu
various processes, even for completely general trees without any regularity. In almost
stances, these critical values turn out to be functions of a single number associated to the
average branching number.
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II. BACKGROUND ON GRAPHS

The basic definitions of the terms pertaining to graphs are as follows. LetG5(V,E) be an
unoriented graph with vertex setV and symmetric edge setE#V3V. We write edges as@x,y#. If
x and y are the end points of an edge, we call themadjacentor neighborsand writex;y. All
graphs are assumed without further comment to be connected, denumerable, and locally fin
only exception is that random subgraphs of a given graph may well be disconnected. GivenK,V,
set ]VKª$y¹K;'xPK,x;y% and ]EKª$@x,y#PE;xPK,y¹K%. Define the vertex-
isoperimetric constantof G by

iV~G!ª infH u]VKu
uKu

;KøV is finite and nonemptyJ ,

and let theedge-isoperimetric constantof G be

iE~G!ª infH u]EKu
uKu

;KøV is finite and nonemptyJ .

A graphG is calledamenableif iE(G)50. If G has bounded degree, then this is equivalen
iV(G)50. An automorphismof G is a bijection ofV that induces a bijection ofE. The set of
automorphisms ofG forms a group denoted Aut(G). We say that a groupG#Aut(G) is transitive
or acts transitivelyif V has only one orbit underG, i.e., if for all x,yPV, there is somegPG such
that gx5y. We say thatG is quasitransitiveif G splits V into finitely many orbits. We call the
graphG itself (quasi)transitiveif Aut( G) is. Most results concerning quasitransitive graphs can
deduced from corresponding results for transitive graphs or can be deduced in a similar fa
but with some additional attention to details. For simplicity, we shall therefore ignore quas
sitive graphs in the sequel.~The extension of results to quasitransitive graphs is important, h
ever. Not only do they arise naturally, but they are crucial to the study of planar transitive gra!

Let G be a finitely generated group andS a finite symmetric generating set forG. The ~right!
Cayley graph G5G(G,S) of G is the graph with vertex setVªG and edge setEª$@v,vs#;v
PG,sPS%. Note thatG acts transitively onG by the translationsg:x°gx.

A tree is a graph without cycles or loops. A branching process with one initial proge
gives rise naturally to a random tree, its genealogical tree. When the branching proces
Galton–Watson process, we call the resulting tree aGalton–Watson tree.

We now review the modular function. Each compact group has a unique left-invariant R
probability measure, called Haar measure. It is also the unique right-invariant Radon prob
measure. A locally compact groupG has a left-invariants-finite Radon measureu•u; it is unique up
to a multiplicative constant. For everygPG, the measureA°uAgu is left invariant, whence there
is a positive numberm(g) such thatuAgu5m(g)uAu for all measurableA. The mapg°m(g) is
a homomorphism fromG to the multiplicative group of the positive reals and is called themodular
functionof G. If m(g)51 for everygPG, thenG is calledunimodular. In particular, this is the
case ifG is countable, where the Haar measure is a counting measure. See, e.g., Royden96 for more
on the Haar measure.

We give the automorphism group Aut(G) of a graphG the topology of pointwise conver
gence. By Corollary 6.2 of Benjamini, Lyons, Peres, and Schramm,6 if there is a transitive uni-
modular closed subgroup of Aut(G), then Aut(G) is also unimodular. In particular, this is th
case if G is the Cayley graph of a groupG. For this reason and for simplicity, we shall n
generally consider subgroups of Aut(G). However, the reader may wish instead to concentrate
translation-invariant measures on Cayley graphs, i.e., on the subgroupG of automorphisms of a
Cayley graphG of G. We call a graphG unimodularif Aut( G) is.

The stabilizer

S~x!ª$gPAut~G!;gx5x%
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of any vertexx is compact and so has a finite Haar measure. Note that ifgu5y, then S(y)
5gS(u)g21, whence

uS~y!u5uS~u!g21u5m~g!21uS~u!u.

Thus,G is unimodular iff for allx andy in the same orbit,uS(x)u5uS(y)u. In particular, ifG is
transitive, thenG is unimodular iff uS(x)u5uS(y)u for all neighborsx andy.

Unimodularity of Aut(G) is a simple and natural combinatorial property, as shown
Schlichting101 and Trofimov.109 Namely, if u•u denotes cardinality~for subsets ofG! as well as
Haar measure@for subsets of Aut(G)#, then for any verticesx,yPG,

uS~x!yu/uS~y!xu5uS~x!u/uS~y!u;

thus,G is unimodular iff for allx andy in the same orbit,

uS~x!yu5uS~y!xu. ~2.1!

If G is transitive, thenG is unimodular iff ~2.1! holds for all neighborsx,y.
An endof a graphG is an equivalence class of infinite nonself-intersecting paths inG, with

two paths equivalent if for all finiteA,G, the paths are eventually in the same connec
component ofG\A.

Example 2.1:Let G be the regular tree of degree 3. Fix an endj of G and letG be the set of
automorphisms preservingj. ThenG is a closed transitive subgroup of Aut(G) that is not unimo-
dular. For an example of a transitive graphG whose full automorphism group is not unimodula
add to the above tree, for each vertexx, the edge betweenx and itsj grandparent. These example
were described by Trofimov.109

Next, we review amenability. LetG be any locally compact group andL`(G) be the Banach
space of measurable real-valued functions onG that are essentially bounded with respect to
Haar measure. A linear functional onL`(G) is called ameanif it maps the constant function1 to
the number 1 and non-negative functions to non-negative numbers. Iff PL`(G) and gPG, we
write Lg f (h)ª f (gh). We call a meanm invariant if m(Lg f )5m( f ) for all f PL`(G) and g
PG. Finally, we say thatG is amenableif there is an invariant mean onL`(G). Følner @see
Paterson,86 Theorem 4.13! showed thatG is amenable iff for every nonempty compactB,G and
e.0, there is a nonempty compact setA,G such thatuBAnAu<euAu. In this case, one often
refers informally toA as a Følner set.

Now let G5(V,E) be a graph. Given a setK#V, let

uKu*ª (
xPK

uS~x!u.

Note thatu•u* is just counting measure ifG is unimodular and the Haar measure is normalized
that uS(o)u51. Say that a transitive graphG is u•u* -amenableif for all e.0, there is a finiteK,V
such thatu]VKu* ,euKu* . If G is unimodular, then this concept is the same as amenability oG.
A mean onl `(V) is calledinvariant if every f P l `(V) has the same mean as doesLg f @defined as
the function takingx° f (gx)# for everygPAut(G).

For automorphism groups of graphs, amenability has the following interpretations.
Theorem 2.2: (Benjamini, Lyons, Peres, and Schramm6) Let G be a transitive graph. The

following are equivalent:~i! Aut(G) is amenable;~ii ! G has an invariant mean;~iii ! G is u•u*
amenable.

Theorem 2.3: (Soardi and Woess107) Let G be a transitive graph. Then G is amenable
Aut(G) is amenable and unimodular.

As usual, for any setA, we write 2A for $0,1%A and identify it with the collection of subsets o
A. It is given the usual product topology and Borels-field.
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Let o be a fixed vertex inG. In caseG is a tree, theno will always designate theroot of G.
We denote byuxu the graph distance betweeno andx in G for xPV. Let B(x,n) denote the set of
vertices inG within a distancen of x. Write

gr~G!ª lim inf
n→`

uB~o,n!u1/n

for the~lower exponential! growth rateof G. WhenG is transitive, we could replace lim inf by lim
because

uB~o,m1n!u<uB~o,m!u•uB~o,n!u.

For any graphG, the fact thatiV(G)<u]VB(o,n)u/uB(o,n)u for eachn implies that 11iV(G)
<gr(G). In particular, ifG is nonamenable of bounded degree, then gr(G).1.

We shall sometimes have processes indexed by elements of a graph as well as by t
order to distinguish between invariance under graph automorphisms and under time, w
reserve the terminvariant for the former and usestationaryfor the latter.

III. BERNOULLI PERCOLATION ON TRANSITIVE GRAPHS

In Bernoulli(p) bond percolationon a graph, each edge isopen~or occupiedor retained! with
probabilityp independently. Those edges that are not open areclosed~or vacantor removed!. The
corresponding product measure on 2E is denotedPp . The percolation subgraphis the random
graph whose vertices areV and whose edges are the open edges. LetK(x) be theclusterof x, that
is, the connected component ofx in the percolation subgraph. We write

ux~p!ªPp@K~x! is infinite#.

On a transitive graph, the value ofux(p) is independent of the choice ofx, whence the subscrip
x is dropped. The event thatK(x) is infinite is often written asx↔`. We also writex↔y for
yPK(x) and

tp~x,y!ªPp@x↔y#.

Let

pcªpc~G!ª inf$p;u~p!.0%

be the critical probability for percolation.
Bernoulli site percolation is defined similarly with vertices replacing edges. We shall us

superscripts ‘‘bond’’ and ‘‘site’’ when needed to distinguish the two models. See Grimmett39 for
more information about Bernoulli percolation.

If G is a regular tree, thenK(o) is a Galton–Watson tree~except for the first generation!, so
its analysis is easy and well known. The first analysis of percolation on a nonamenable gra
is not a tree was carried out by Grimmett and Newman40 on the Cartesian product of the intege
and a regular tree of sufficiently high degree. They proved that for somep.pc , multiple infinite
clusters coexist, while for otherp, there is a unique infinite cluster. As a consequence of a me
for studying random walks, Lyons74 gave a threshold for Bernoulli percolation on transitive grap
of exponential growth~Theorem 3.1 below!. There followed the paper of Benjamini an
Schramm,10 which has spawned a considerable amount of continuing research.

The results that follow are valid for both bond and site percolation when not otherwise s
The only relations we shall state between site and bond percolation follow from the usual co
of the two processes~see, e.g., Grimmett and Stacey41 for the coupling!: pc

bond(G)<pc
site(G) for

every graphG, with strict inequality for most transitiveG proved by Grimmett and Stacey;41 and
pu

bond(G)<pu
site(G) for transitiveG, wherepu is defined in~3.1! and Theorem 3.7~i! is being used

to establish the inequality.
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It is well known that ifG is any infinite graph with the degree of each vertex at mostd, then
pc(G)>1/(d21). In the other direction, Lyons74 observed the following.

Theorem 3.1: If G is any transitive graph, then pc(G)<1/gr(G).
This also follows immediately from the following.
Theorem 3.2: (Aizenman and Barsky2) If G is any transitive graph and p,pc(G), then

Ep@ uK(o)u#,`.
~Aizenman and Barsky2 worked only onZd, but their proof works in greater generality.!
In particular, if G is nonamenable and transitive, then it has exponential growth, so th

,pc(G),1. The fact thatpc(G),1 was extended to nonamenable nontransitive graphs by B
jamini and Schramm,10 who showed the following.

Theorem 3.3: For any graph G, we have pc
bond(G)<1/„11iE(G)… and pc

site(G)<1/„1
1iV(G)….

Remark 3.4:The proof of Theorem 3.3 actually gives better bounds, withiE(G) and iV(G)
replaced by

iE* ~G!ª lim
n→`

infH u]EKu
uKu

;oPK,V, K is connected,n<uKu,`J
and

iV* ~G!ª lim
n→`

infH u]VKu
uKu

;oPK,V, K is connected,n<uKu,`J ,

respectively, theanchored expansion constantsintroduced in Benjamini, Lyons, and Schramm8

The next question concerns the number of infinite clusters when there is at least one. WG
is transitive, the argument of Newman and Schulman83 shows that for anyp, the number of infinite
clusters in Bernoulli~p! percolation is an a.s. constant, either 0, 1, or`. As p increases from 0 to
1, this constant goes from 0 tò to 1, possibly skipping̀ , as was shown by Ha¨ggström and
Peres48 in the unimodular case and by Schonmann103 in general.

Theorem 3.5: Let G be a transitive graph. Let p1,p2 . If there is a unique infinite cluste
Pp1

-a.s., then there is a unique infinite clusterPp2
-a.s. Furthermore, in the standard coupling o

Bernoulli percolation processes, if there exists an infinite clusterPp1
-a.s., then a.s. every infinite

p2-cluster contains an infinite p1-cluster.
Here, we refer to thestandard couplingof Bernoulli~p! percolation for allp, where, for bond

percolation, say, each edgeePE is assigned an independent uniform@0, 1# random variableU(e)
and the edges whereU(e)<p are retained for Bernoulli~p! percolation.

If we define

pu~G!ª inf$p; there is a unique infinite cluster in Bernoulli~p! percolation%, ~3.1!

then it follows from Theorem 3.5 that whenG is transitive,

pu~G!ªsup$p; there is not a unique infinite cluster in Bernoulli~p! percolation%.

It is not hard to show that whenG is a transitive graph with at least three ends, thenpu(G)
51. Since nonamenable transitive graphs cannot have only two ends, the remaining ca
under the following conjecture, suggested in a question of Benjamini and Schramm.10

Conjecture 3.6. If G is a transitive nonamenable graph with one end, then pu(G),1.
This conjecture has been confirmed in the following cases.

~i! G is a Cayley graph of a finitely presented group~Babson and Benjamini4!.
~ii ! G is planar~Lalley64 for site percolation on cocompact Fuchsian groups of genus at lea

and Benjamini and Schramm12 for percolation in general; the full result can also be d
duced from the argument of Babson and Benjamini4!.
                                                                                                                



theo-

.
any

here
name-

n

gree

least

oups
han 1.
n
ird,
the

au.

i
ge

Let

1105J. Math. Phys., Vol. 41, No. 3, March 2000 Phase transition on nonamenable graphs

                    
~iii ! G is the Cartesian product of two infinite graphs~Häggström, Peres, and Schonmann49!.
~iv! G is a Cayley graph of a Kazhdan group, i.e., a group with Kazhdan’s property T~Lyons

and Schramm78!.

Some additional information about the uniqueness phase is contained in the following
rem.

Theorem 3.7:Let G be a transitive graph.

~i! ~Schonmann103!

pu~G!5inf$p;sup
R

inf
x

Pp@B~o,R!↔B~x,R!#51%. ~3.2!

~ii ! ~Lyons and Schramm78! If G is unimodular andinfx tp(o,x).0, then there is a unique
infinite clusterPp-a.s.Therefore,

pu~G!5inf$p; inf
x

tp~o,x!.0%. ~3.3!

Equation~3.3! implies~3.2!, but it is unknown whether~3.3! holds in the nonunimodular case
As is well known, whenG is amenable and transitive, there can never be infinitely m

infinite clusters~Burton and Keane19 for Zd and Gandolfi, Keane, and Newman34 in general!,
whencepc(G)5pu(G). Behavior that is truly different from the amenable case arises when t
are infinitely many infinite clusters. This has been conjectured always to be the case on no
nable transitive graphs for an interval ofp.
Conjecture 3.8: (Benjamini and Schramm10) If G is a transitive nonamenable graph, the
pc(G),pu(G).

This has been confirmed in certain cases:

~i! if G is the product of any transitive graph with a regular tree of sufficiently high de
~Grimmett and Newman40 when the transitive graph isZ and Benjamini and Schramm10 in
general!.

~ii ! if G is planar~Lalley64 for site percolation on cocompact Fuchsian groups of genus at
2, and Benjamini and Schramm12 for percolation in general!.

~iii ! for bond percolation ifiE(G)/d>1/& and for site percolation ifiV(G)/d>1/&, whered
is the degree ofG ~Schonmann104!; this implies case~i! above.

~iv! if G is any Cayley graph of a group of cost larger than 1. This includes, first, free gr
of rank at least 2 and fundamental groups of compact surfaces of genus larger t
Second, letG1 andG2 be two groups of finite cost withG1 having cost larger than 1. The
every amalgamation ofG1 andG2 over an amenable group has cost larger than 1. Th
every HNN extension ofG1 over an amenable group has cost larger than 1. For
definition of cost and proofs that these groups have cost larger than 1, see Gabori32,33

The proof thatpc(G),pu(G) follows fairly easily from Theorem 3.11 below.

Case~iii ! above uses the following lower bound forpu(G) ~or the weaker bound of Benjamin
and Schramm,10 Theorem 4!. Here, asimple cycleis a cycle that does not use any vertex or ed
more than once.
Theorem 3.9: (Schramm105) Let G be a transitive graph and let an(G) be the number of simple
cycles of length n in G that contain o. Then

pu~G!> lim inf
n→`

an~G!21/n. ~3.4!

Proof: We give the proof for site percolation, the proof for bond percolation being similar.
U(x) be independent uniform@0, 1# random variables indexed byV. Take p.p8.pu>pc . In
order to show thatpu(G)> lim infn→` an(G)21/n, we shall show that(nan(G)pn5`. Let v be
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the open subgraph formed by the verticesx with U(x)<p. First, observe that sincev contains a.s.
a unique infinite cluster, that infinite clusterK has only one end, since otherwise removing a fin
number of edges would create more than one infinite cluster.

Second, with positive probability, there are two~edge- and vertex-! disjoint infinite rays inK.
Otherwise, by Menger’s theorem, for any vertexxPK, a.s. there would be infinitely many vertice
xn , each of whose removal would leavex in a finite open component. But givenv, given any such
vertex x, and given any such verticesxn ,U(xn).p8 a.s. for infinitely manyn. This means that
K(x) is finite Pp8-a.s. and contradictsp8.pc .

Therefore, with positive probability there are two infinite rays inv starting ato that are
disjoint except ato. SinceK has only one end, the two rays may be connected by paths inv that
stay outside arbitrarily large balls. In particular, there are an infinite number of simple cyclesv
througho, whence the expected number of simple cycles througho in v must be infinite. That is,
(nan(G)pn5`. j

Additional evidence for Conjecture 3.8 is provided by the following.
Theorem 3.10: (Pak and Smirnova-Nagnibeda85) For any finitely generated nonamenab

group G, there exists some Cayley graph G ofG with pc(G),pu(G).
The proof of Theorem 3.10 shows that the Cayley graph can be found so as to s

Schonmann’s condition above thati(G)/d>1/&.
We next discuss the behavior of percolation at the critical valuespc andpu . It has been long

conjectured that there are no infinite clusters at the critical valuepc(G) when G is a Euclidean
lattice, i.e.,u„pc(G)…50. Benjamini and Schramm10 extended this conjecture to all transitiveG.
This was confirmed in the unimodular nonamenable case.

Theorem 3.11: (Benjamini, Lyons, Peres, and Schramm6,5) If G is a unimodular non-
amenable transitive graph, thenu„pc(G)…50.

It follows from Theorems 3.5, 3.11, and a result of van den Berg and Keane110 that u(p) is
continuous inp on each nonamenable unimodular transitiveG. ~This was proved earlier by Wu113

for a graph that is not transitive but is similar to the hyperbolic plane.!
It is unknown how many infinite clusters there are atpu . It is known that there is a unique

infinite cluster atpu whenG is planar, nonamenable, and transitive~Benjamini and Schramm12!.
On the other hand, there cannot be exactly one infinite cluster atpu whenG is a Cartesian produc
~of infinite transitive graphs! with a nonamenable automorphism group@Schonmann102 in the case
of a tree crossZ and Peres93 in general# or whenG is a Cayley graph of a Kazhdan group~due to
Peres; see Lyons and Schramm78!.

Finally, we discuss briefly the nature of the infinite clusters when there are infinitely ma
them; see Benjamini, Lyons, and Schramm8 and Häggström, Schonmann, and Steif51 for more on
this topic. A basic result is that when there are infinitely many infinite clusters, they are ‘‘in
tinguishable’’ from each other:

Theorem 3.12:Let G be a transitive unimodular graph. LetA be a Borel measurable set o
subgraphs of G that is invariant under the automorphism group of G. Then eitherPp-a.s. all
infinite clusters are inA, or Pp-a.s. they are all outside ofA.
Theorem 3.12 was proved by Ha¨ggström and Peres48 for increasing setsA and for all but possibly
one value ofp, while it was proved in general~and for certain other percolation processes! by
Lyons and Schramm.78

For example,A might be the collection of all transient subgraphs ofG, or the collection of all
subgraphs that have a given asymptotic rate of growth, or the collection of all subgraphs tha
no vertex of degree 5.

If A is the collection of all transient subgraphs ofG, then Theorem 3.12 shows that almo
surely, either all infinite clusters ofv are transient~meaning that simple random walk on them
transient!, or all clusters are recurrent. In fact, Lyons and Schramm78 show that ifG is noname-
nable, then a.s. all infinite clusters are transient if Bernoulli percolation produces more tha
infinite component.~Benjamini, Lyons, and Schramm8 show that the same is true if Bernoul
percolation produces a single infinite component.!

We illustrate some uses of Theorem 3.12 by proving two theorems~though it should be noted
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that the original direct proofs of these theorems are simpler than the proof of Theorem!.
Theorem 3.12 is also used to prove Theorem 3.7~ii !.

Proof of Theorem 3.5 in the unimodular case:Suppose that there exists an infinite clus
Pp1

-a.s. Letv be the open subgraph of thePp2
process and leth be an independentPp1 /p2

process.
Thus,vùh has the law ofPp1

and, in fact, (vùh,v) has the same law as the standard coupl
of Pp1

andPp2
. By assumption,vùh has an infinite cluster a.s. Thus, for some clusterC of v, we

haveCùh is infinite with positive probability, hence, by Kolmogorov’s 0–1 law, with probabil
1. By Theorem 3.12, this holds for every clusterC of v. j

An extension to Theorem 3.5 in the unimodular case is as follows. It is unknown whet
holds in the nonunimodular case.

Theorem 3.13: (Häggström, Peres, and Schonmann49) Let G be a transitive unimodula
graph. Let p1,p2 be such that there are infinitely many infinite clustersPp1

-a.s. andPp2
-a.s. In

the standard coupling of Bernoulli percolation processes on G, a.s. every infinite p2-cluster
contains infinitely many infinite p1-clusters.

Proof: ~due to Schonmann! The number of infinitep1-clusters contained in ap2-cluster is a
random variable whose distribution is the same for each infinitep2-cluster by Theorem 3.12. In
fact, by an extension of Theorem 3.12 involving random scenery that is stated by Lyon
Schramm78 ~and that has the same proof!, this random variable is constant a.s. Thus, each infi
p2-cluster has the same number of infinitep1-clusters a.s. Since two infinitep2-clusters could
merge through the addition of finitely many edges, the number of infinitep1-clusters contained in
an infinitep2-cluster could change unless that number were infinite. j

Theorem 3.12 does not hold for nonunimodular graphs~Lyons and Schramm78!. However,
Häggström, Peres, and Schonmann49 have found a replacement that does hold without the unim
dularity assumption~as long asp.pc ; presumably, this caveat is not important since presuma
there are no infinite clusters atpc!. DefineA to berobust if for every infinite connected subgrap
C of G and every edgeePC, we haveCPA iff there is an infinite connected component ofC\$e%
that lies inA. For example, transience is a robust property.

Theorem 3.14: (Häggström, Peres, and Schonmann49) Let G be a transitive graph. Let p
.pc(G) and let A be a robust Borel measurable set of subgraphs of G. Assume thatA is
invariant under the automorphism group of G. Then eitherPp-a.s. all infinite percolation compo
nents are inA, or Pp-a.s. they are all outside ofA.

Finally, it should be noted that Benjamini and Schramm10 contains several interesting que
tions and conjectures about various families of graphs, including nontransitive and ame
graphs. One may consult Benjamini and Schramm11 for updates concerning progress on Bernou
percolation on general graphs.

IV. INVARIANT PERCOLATION ON TRANSITIVE GRAPHS

As we have mentioned in the Introduction, there are interesting and useful results
invariant percolation, especially on transitive nonamenable graphs. We give a sample o
results here that show their nature and how they can be used. In addition, we illustra
powerful mass-transport technique. All formally stated results in this section are from Benja
Lyons, Peres, and Schramm,6 which will be referred to simply as~BLPS99! throughout this
section.

A bond percolation processis a pair (P,v) wherev is a random element in 2E andP denotes
the distribution~law! of v. We shall say thatv is the configurationof the percolation. Asite
percolation process(P,v) is given by a probability measureP on 2V(G), while a ~mixed! perco-
lation is given by a probability measure on 2V(G)øE(G) that is supported on subgraphs ofG. If v
is a bond percolation process, thenv̂ªV(G)øv is the associated mixed percolation. In this ca
we shall not distinguish betweenv andv̂, and think ofv as a subgraph ofG. Similarly, if v is a
site percolation, there is an associated mixed percolationv̂ªvø„E(G)ù(v3v)…, and we shall
not bother to distinguish betweenv and v̂.
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If xPV(G) andv is a percolation onG, thecluster~or component! K(x) of x in v is the set
of vertices inV(G) that can be connected tox by paths contained inv. We shall not distinguish
between the clusterK(x) and the graph (K(x),„K(x)3K(x)…ùv) whose vertices areK(x) and
whose edges are the edges inv with end points inK(x).

A percolation process (P,v) in a graphG is calledinvariant if P is invariant under Aut(G).
Invariant percolation has proved useful for the study of Bernoulli percolation as well as
processes such as the random cluster model, as we shall see below. It is also interesting

We first present the very useful mass-transport principle. Early forms of the mass-tra
method were used by Adams1 and van den Berg and Meester.111 It was introduced in the study o
percolation by Ha¨ggström45 and developed further in~BLPS99!. Let j be some~automorphism-!
invariant process onG, such as invariant percolation, and letF(x,y;j)P@0,̀ # be a function of
x,yPV and j. Suppose thatF is invariant under the diagonal action of Aut(G); that is,
F(gx,gy;gj)5F(x,y,j) for all gPAut(G). We think of giving each vertexxPV some initial
mass, possibly depending onj, then redistributing it so thatx sendsy the massF(x,y;j). With
this terminology, one hopes for ‘‘conservation’’ of mass, at least in expectation. Of course
total amount of mass is usually infinite. Nevertheless, there is a sense in which mass is con
in the transitive unimodular setting, we have that the expected mass at a vertex before tra
equals the expected mass at a vertex afterward. More generally, mass needs to be w
according to the Haar measure of the stabilizer. SinceF enters only in expectation, it is convenie
to set f (x,y)ªEF(x,y;j). For the reader to whom this is new, it is recommended to cons
only the unimodular case; then all factors ofuS(x)u become 1 and all* ’s below can be omitted.

Mass-transport principle: If G is a transitive graph and f:G3G→@0,̀ # is invariant under
the diagonal action ofAut(G), then

(
xPV

f ~o,x!5 (
xPV

f ~x,o!uS~x!u/uS~o!u.

For a subgraphK,G, let degK(x) denote the degree ofx in K. If K is finite and nonempty,
put

aK*ª
1

uKu*
(
xPK

degK~x!uS~x!u;

this is the average~internal! degree inK, appropriately weighted if the graph is not unimodula
Then define

a* ~G!ªsup$aK* ;K,G is finite and nonempty%.

If G is a regular graph of degreed, then

a* ~G!1iE* ~G!5d, ~4.1!

where

iE* ~G!ª infH 1

uKu*
(

@x,y#P]EK
uS~x!u;K,V is finite and nonemptyJ .

For a random subgraphv of G and a vertexxPG, define

D* ~x!ª (
@x,y#Pv

uS~y!u/uS~x!u.

Let
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d*ª (
@o,y#PG

uS~y!u/uS~o!u.

We give two simple but useful applications of the mass-transport principle to illustrate
method. The first is quantitative, while the second is qualitative. Both were proved earli
Häggström45 for regular trees.@His paper was the original impetus for~BLPS99!.# Write

u~P!ªP@o↔`#. ~4.2!

Theorem 4.1: Let G be a nonamenable transitive graph andP be an invariant bond perco-
lation on G. Then

u~P!>@ED* ~o!2a* ~G!#/iE* ~G!. ~4.3!

In particular, if ED* (o).a* (G), thenu(P).0.
The intuition is that if the expected~weighted! degree of a vertex is larger than the avera

internal degree of finite subgraphs, then it must be carried by some infinite components.
Proof: Let I x be the indicator thatK(x) is finite. We put massD* (x)I x at eachxPV. In each

finite component, the masses are redistributed proportionally to the weightsuS(y)u ~for y in the
component! among the vertices in that component. SinceP is invariant, so is this mass transpo
Formally, we use the function

f ~x,y!ªEF I x1$yPK~x!%

D* ~x!uS~y!u
uK~x!u*

G ,
which is automorphism invariant. We have

(
zPV

f ~o,z!5E@D* ~o!I o#.

On the other hand,

(
yPV

f ~y,o!uS~y!u/uS~o!u5EF I o (
yPK~o!

D* ~y!uS~o!u
uK~o!u*

uS~y!u
uS~o!uG

5E@aK~o!
* I o#<a* ~G!„12u~P!….

SinceD* <d everywhere, the mass-transport principle implies that

ED* ~o!2du~P!<E@D* ~o!I o#5 (
zPV

f ~o,z!5 (
yPV

f ~y,o!uS~y!u/uS~o!u

<a* ~G!„12u~P!….

A little algebra using~4.1! completes the proof. j

Variations on this result have proved useful. For example~BLPS99!, if in addition to the
above hypotheses,G is unimodular,P has the property that all components are trees a.s.,
ED* (o)>2, thenu(P).0.

Our second application of the mass-transport principle helps us to count the ends
components in the configuration of a percolation that is invariant under a unimodular aut
phism group:

Proposition 4.2: Let G be a unimodular transitive graph. Letv be the configuration of an
invariant percolation on G such thatv has infinite components with positive probability. Almo
surely every component ofv with at least three ends has infinitely many ends.
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Proof: Let v1 be the union of the componentsK of v whose numbern(K) of ends is finite
and at least 3. Given a componentK of v1 , there is a connected subgraphA,K with minimal
uV(A)u such thatK\A hasn(K) infinite components. LetH(K) be the union of all such subgraph
A. It is easy to verify that any two such subgraphsA must intersect, and thereforeH(K) is finite.
Let H(v1) be the union of allH(K), whereK ranges over the components ofv1 .

Begin with unit mass at each vertexx that belongs to a componentK of v1 , and transport it
equally to the vertices inH(K). Then the vertices inH(v1) receive infinite mass. By the mass
transport principle, no vertex can receive infinite mass, which means thatv1 is empty a.s. j

Among the characterizations of amenability via invariant percolation that appear in~BLPS99!,
we single out one that relates to the absence of phase transition.

Theorem 4.3:Let G be a transitive graph. Then each of the following conditions implies
next one.

~i! G is amenable.
~ii ! There is an invariant random nonempty subtree of G with, at most, 2 ends a.s.
~iii ! There is an invariant random nonempty connected subgraphv of G that satisfies pc(v)

51 with positive probability.
~iv! Aut(G) is amenable.

If G is assumed to be unimodular, then all four conditions are equivalent.
To see one use of Theorem 4.3, we present the proof of part of Theorem 3.11.~In fact, here

we do not need the assumption of unimodularity.!
Corollary 4.4: If G is a transitive graph with a nonamenable automorphism group

Bernoulli~p! percolation produces a unique infinite cluster a.s., then p.pc(G).
Proof: Suppose thatp5pc(G) and that there is a unique infinite cluster a.s. Then the infi

clusterK haspc(K)51 a.s. Hence Aut(G) is amenable. j

Next, we present a characterization of unimodularity in terms of the expected degr
vertices in infinite components. Since any connected finite graph with vertex setV has an average
degree of at least 222/uVu, one might expect that for invariant percolation on a transitive grapG
with all components infinite a.s., the expected degree of a vertex is at least 2. This inequa
true whenG is unimodular, but surprisingly, wheneverG is not unimodular, there is an invarian
percolation where the inequality fails.

Theorem 4.5: Let G be a transitive graph. Let m be the minimum ofuS(x)u/uS(y)u for x,y
neighbors in G. Then for any invariant percolation that yields infinite components with pos
probability, the expected degree of o given that o is in an infinite component is at least11m. This
is sharp for all G in the sense that there is an invariant bond percolation on G with every v
belonging to an infinite component and having expected degree11m.

A forest is a graph all of whose components are trees. The following theorem conce
phase transition on percolation components was shown whenG is a tree by Ha¨ggström.45

Theorem 4.6: Let G be a unimodular transitive graph. Letv be the configuration of an
invariant percolation on G such thatv has infinite components with positive probability. If~i!
some component ofv has at least three ends with positive probability, then~ii ! some componen
of v has pc,1 with positive probability and~iii ! E@D* (o) zuK(o)u5`#.2.

If v is a forest a.s., then the three conditions are equivalent.
To show how Theorem 4.6 can be used, we now complete the proof of Theorem 3.1~A

more direct proof of Theorem 3.11 is provided by Benjamini, Lyons, Peres, and Schramm5!
Proof of Theorem 3.11:Let v be the configuration of critical Bernoulli percolation onG. Then

every infinite clusterK of v has pc(K)51 a.s. As we have mentioned, the number of infin
clusters ofv is equal a.s. to 0, 1, or̀ . Corollary 4.4 rules out a unique infinite cluster. If the
were more than one infinite cluster, then by opening the edges in a large ball, we see tha
would be, with positive probability, a cluster with at least three ends. In light of Theorem 4.6
would mean that with positive probability, some infinite clusterK and pc(K),1. This is a con-
tradiction. j
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V. ISING, POTTS, AND RANDOM CLUSTER MODELS ON TRANSITIVE GRAPHS

Ising and Potts models on graphs are defined using interaction strengths along bond~here
assumed identically 1!, Boltzmann’s constantkB, and the temperatureT. These last two quantities
always appear together in the expressionbª1/(kBT), called theinverse temperature. Given a
finite graphG and an integerq>2, let vP$1,2,...,q%V. Write I v(e) for the indicator thatv takes
different values at the end points of the edgee. Theenergy~or Hamiltonian! of v is

H~v!ª2(
ePE

I v~e!.

The Potts measureFPt(b)5FPtG(b) is the probability measure on$1,2,...,q%V that is propor-
tional to e2bH(v). In the caseq52, it is more customary to use$21,1%V in place of$1,2%V, and
the measure is called theIsing measure.

To define such measures on infinite graphsG, one can proceed viaexhaustionsof G, i.e.,
sequences of finite subgraphsGn that are increasing and whose union is all ofG. There are severa
ways to do this, in fact, and crucial questions are whether some of the limits they give a
same. One way to take a limit is simply to defineFPtG(b) to be the weak* limit of FPtGn(b); this
is called thefree Potts measureon G. Another way is as follows. LetPtk

Gn(b) be the probability
measureFPtGn(b) conditioned on havingv(x)5k for everyxP]V

intGn , where

]V
intKª$xPK;'y¹K, x;y%

denotes theinternal vertex boundaryof any subsetK,V. Then define thePotts measurePtk
G(b)

to be the weak* limit of Ptk
Gn(b). These limits always exist~see, e.g., Aizenman, Chayes, Chay

and Newman,3 referred to later as~ACCN!!. It will be convenient to define thewired Potts
measureWPtG(b) to be(k51

q Ptk
G(b)/q. Note that ifGn* denotes the graph obtained fromGn by

identifying all of the vertices in]V
intGn to a single vertex, thenWPtG(b) is the weak* limit of

FPtGn* (b).
To define Potts measures in general, writev�V8 for the restriction ofv to V8,V. For a finite

subsetV8,V, let G8 denote the subgraph ofG induced byV8, i.e.,G8ª„V8,(V83V8)ùE…. For
v8P$1,...,q%V8, write ]v8ªv8�]V

intG8. We callP a Potts measureon G at inverse temperatureb
if P is a Markov random field and for all finiteV8,V and allv8P$1,...,q%V8,

P@v�V85v8uv�]V
intG85]v8#5FPtG8~b!@v5v8uv�]V

intG85]v8#.

It is easy to verify that the measuresFPtG(b) andPtk
G(b) are Potts measures in this sense.

Potts measures are intimately connected to random cluster measures, introduced by
and Kasteleyn30 and Fortuin.28,29 See Ha¨ggström46 for a survey of the relationships an
Grimmett38 for more details on random cluster measures, especially onZd. Random cluster mea
sures depend on two parameters,pP(0,1) andq.0. We restrict ourselves toq>1 since the
measures withq,1 behave rather differently and are poorly understood; they are also unrela
Potts measures. Given a finite graphG andvP2E, write ivi for the number of components ofv.
Therandom cluster measurewith parameters~p,q! on G, denotedFRC(p,q)5FRCG(p,q), is the
probability measure onE proportional toqiviPp(v), i.e., the Bernoulli(p) percolation measurePp

biased byqivi ~and renormalized!. On infinite graphsG, there are again several ways to defi
random cluster measures. The ones that concern us are obtained by taking limits over exha
Gn of G. Namely, defineFRCG(p,q) to be the weak* limit of FRCGn(p,q); this is called thefree
random cluster measureon G. Define thewired random cluster measureWRCG(p,q) to be the

weak* limit of FRCGn* (p,q). These limits always exist@see, e.g.,~ACCN!#. Furthermore, they
have positive correlations and so the free random cluster measure is stochastically domin
the wired random cluster measure~ACCN!.
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Note that there is another use of ‘‘wired’’ in the literature, although whenG has only one end,
the meaning is the same as the present one. In the terminology of Grimmett,38 the above random
cluster measures are ‘‘limit random cluster measures.’’ We do not examine whether they
so-called Gibbs specifications.

Since all the above limits exist regardless of the exhaustion chosen, the limiting measu
invariant under all graph automorphisms.

The fundamental relation between Potts and random cluster measures is the following:G
be a finite graph andq>2 an integer. Suppose thatp512e22b.

~i! If vP$1,...,q%V is chosen with distributionFPt(b) and hP2E is chosen independentl
with distributionPp , then (12I v)h has the distributionFRC(p,q).

~ii ! ChoosehP2E with distribution FRC(p,q). For each component ofh, choose indepen-
dently and uniformly an element of$1,...,q%, assigning this element to every vertex in th
component. The resultingvP$1,...,q%V has distributionFPt(b).

See~ACCN! or Häggström46 for proofs. By taking weak* limits and using positive correlations
one obtains corresponding statements for infinite graphs@see the proof of Theorem 2.3~c! of
~ACCN!#: First, the two above statements hold as written for infinite graphs. Second, we ha
following.

~i! If vP$1,...,q%V is chosen with distributionWPt(b) and hP2E is chosen independentl
with distributionPp , then (12I v)h has the distributionWRC(p,q).

~ii ! ChoosehP2E with distribution WRC(p,q). For each component ofh, choose indepen-
dently and uniformly an element of$1,...,q%, assigning this element to every vertex in th
component, where all infinite components are regarded as a single component~‘‘connected
at infinity’’ !. The resultingvP$1,...,q%V has distributionWPt(b).

Third, we have the following.

~i! If vP$1,...,q%V is chosen with distributionPtk(b) andhP2E is chosen independently with
distributionPp , then (12I v)h has the distributionWRC(p,q).

~ii ! ChoosehP2E with distribution WRC(p,q). For each finite component ofh, choose in-
dependently and uniformly an element of$1,...,q%, assigning this element to every vertex
that component. Assign each vertex in an infinite component the colork. The resultingv
P$1,...,q%V has distributionPtk(b).

Recall the notation~4.2!. From the preceding relations, we obtain the following.
Proposition 5.1: Let G be any graph and q>2 an integer. Letb.0 and pª12e22b. Then

~i! ~Jonasson56! FPt(b)5WPt(b) iff FRC(p,q)5WRC(p,q); and~ii ! Ptk
G(b) is the same for all

k iff u„WRC(p,q)…50.
Proof: Part~ii ! is obvious, but part~i! needs some explanation. One implication of~i! is also

obvious from the above relations, namely, that ifFPt(b)5WPt(b), then FRC(p,q)
5WRC(p,q). Conversely, ifFRC(p,q)5WRC(p,q), then a.s. there cannot be more than o
infinite component. For if there were, then with positive probability there would be neighborx,y
belonging to distinct infinite components inE\$@x,y#%. Call this event Ax,y . We have
FRC(p,q)@@x,y#PvuAx,y#5p/@p1(12p)q#Þp5WRC(p,q)@@x,y#PvuAx,y#, which contra-
dicts FRC(p,q)5WRC(p,q).

Since there cannot be more than one infinite component, the above relations giveFPt(b)
5WPt(b). j

It seems reasonable to suppose that Conjectures 3.6 and 3.8 extend to random cluster
so that for eachq>1, there would be three phases on nonamenable transitive graphs with on
In the case of the graph formed by the product of a regular tree of sufficiently high degree aZd,
this follows from Newman and Wu.84

It is well known that RC(p,q) is stochastically increasing inp for each fixedq, where
RC(p,q) denotes eitherFRC(p,q) or WRC(p,q). Therefore, the set ofp for which
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u(RC(p,q)…50 is an interval for eachq. The same holds for the sets ofp for which the number
of infinite components is̀ or 1 by the following partial analog of Theorem 3.5.

Proposition 5.2:Let G be a transitive unimodular graph. Given q>1 and p1,p2,1, if there
is a unique infinite componentRC(p1 ,q)-a.s. on G, then there is a unique infinite compon
RC(p2 ,q)-a.s.

Proof: GivenvP2E andePE, write ve for the restriction ofv to E\$e%. A bond percolation
process (P,v) on G is insertion tolerantif P@ePvuve#.0 a.s. for allePE. Theorem 3.7~ii ! has
the following extension: IfP is any invariant ergodic percolation process onG that is insertion
tolerant, then there is a unique infinite componentP-a.s. if infx P@o↔x#.0 ~Lyons and
Schramm!.78 The converse holds as well when the percolation process has positive correla
since then a unique infinite component implies that

P@o↔x#>P@ uK~o!u5`#P@ uK~x!u5`#5P@ uK~o!u5`#2.

We have already noted thatRC(p,q) is invariant and has positive correlations. It is easy to
thatRC(p,q) is insertion tolerant, and ergodicity is proved by Borgs and Chayes17 ~for FRC! and
by Biskup, Borgs, Chayes, and Kotecky´15 ~for both measures!. Therefore, we may apply this
extension of Theorem 3.7~ii ! and its converse toRC(p1 ,q) andRC(p2 ,q). j

The ergodicity needed in this proof has itself a simple proof that seems to have been
looked. In fact,RC has a trivial tails-field on every graph, not merely on transitive graphs. To
this, let B be any increasing cylinder event and letA be any tail event. ApproximateA by a
cylinder event C depending only on edges thatB does not depend on. ThenFRC(B)
<FRC(BuC) and WRC(BuC)<WRC(B) becauseRC has positive correlations. Therefor
FRC(B)<FRC(BuA) andWRC(BuA)<WRC(B). Since the same holds with¬A in place ofA,
these inequalities are, in fact, equalities. That is,A is independent of every increasing cylind
event, whence of every cylinder event, whence of every event. In other words,A is trivial. ~A
similar proof appears for different measures in Benjamini, Lyons, Peres, and Schramm.7!

There are four possible phases in Potts models that are often investigated, i.e., four ty
behavior for different values ofb. We shall say that a Potts measure at inverse temperatureb is
extremeif, as an element of the convex set of all Potts measures onG at inverse temperatureb, it
is extreme. The four phases are:

~I! there is a unique Potts measure@equivalently,Ptk(b) does not depend onk#;
~II ! the free Potts measure is extreme and there are other Potts measures;
~III ! the free Potts measure is not extreme, nor equal to the wired Potts measure;
~IV ! the free Potts measure is equal to the wired Potts measure and there are othe

measures.

Newman and Wu84 showed the existence of three phases, namely,~I!, (II) ø~III !, and ~IV !,
each containing an interval of parameter values of positive length, for theq-state Potts model on
the graph formed by the product of a regular tree andZd, provided that the tree has sufficient
high degree depending onq. Schonmann104 extended this to show that for anyq, if G is a transitive
graph of degreed with iE(G)/d sufficiently close to 1 and withpu(G),1, then there are thes
same three phases in theq-state Potts model. Wu112 showed similar results for a graph that is n
transitive but is similar to the hyperbolic plane.

There are some partial results for other graphs. For natural Cayley graphs of coco
Fuchsian groups, an uncountable number of mutually singular Potts measures were constru
Series and Sina�.106

In the following results, we use ‘‘interval’’ to mean an interval of positive length.
Theorem 5.3: (Jonasson56) Let G be a nonamenable regular graph and q>2 be an integer.

Then for all sufficiently large q, there is an interval of p for whichFRC(p,q)5WRC(p,q) and
there is an interval of p for whichFRC(p,q)ÞWRC(p,q).
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@In fact, FRC(p,q)5WRC(p,q) holds for smallp and allq, since both measures are dominat
by Pp . It would be interesting to show thatFRC(p,q)5WRC(p,q) can occur for largep if, say,
G has one end.#

As a consequence of this and Proposition 5.1~i!, we obtain the following.
Theorem 5.4: (Jonasson56) Let G be a nonamenable regular graph and q>2 be an integer.

For all sufficiently large q, there is an interval ofb for which FPt(b)5WPt(b) and there is an
interval of b for which FPt(b)ÞWPt(b).

Both of the above theorems fail whenG is amenable and transitive~Jonasson56!.
The last result we mention also gives a characterization of amenability among tran

graphs, but it involves an external field. To define the Ising model with external fieldh on a finite
graphG, modify the energyH(v) to be

H~v!ª2(
ePE

I v~e!12h(
xPV

1$v~x!Þ1% .

Here, we takeq52. The corresponding probability measure on$21,1%V proportional toe2bH(v)

is denotedIsingG(b,h). For an infinite graphG, two limits over exhaustionsGn are particularly
important, namely,Ising6

G(b,h), the weak* limits of IsingGn(b,h) conditional onv�]V
intGn to be

a constant,61, respectively.
Theorem 5.5: (Jonasson and Steif57) If G is a nonamenable graph of bounded degree, th

for someb, there is an interval of h for whichIsing1
G(b,h)5Ising2

G(b,h) and there is an interval
of h for whichIsing1

G(b,h)ÞIsing2
G(b,h).

As Jonasson and Steif57 show, this is not true for any amenable transitive graph.

VI. PERCOLATION ON TREES

As we have already mentioned, ifT is a regular tree, then Bernoulli percolation produce
clusterK(o) that is a Galton–Watson tree~except for the first generation!, so its analysis is easy
and well known. In fact, it is not hard to find the critical value for percolation on Galton–Wa
trees.

Proposition 6.1: (Lyons72) Let T be the family tree of a Galton–Watson process with mea
m.1. Then pc(T)51/m a.s. given nonextinction.

In the proof, as well as below, we writeTx for the descendant subtree ofT from x, i.e., the tree
formed from allyPT such that the path fromo to y containsx.

Proof: Consider Bernoulli(p) percolation onT. We claim thatK(o) has the law~not condi-
tioned onT! of another Galton–Watson tree having meanmp: Let L be a random variable whos
distribution is the offspring law forT and letYi represent i.i.d. Bin(1,p) random variables that ar
also independent ofT. Then

EF(
i 51

L

Yi G5EFEF(
i 51

L

YiULG G5EF(
i 51

L

E@Yi #G5EF(
i 51

L

pG5pm.

HenceK(o) is finite a.s. ifmp<1. SinceE@P@ uK(o)u,`uT##5P@ uK(o)u,`#, this means
that for almost every Galton–Watson treeT, the component of its root is finite a.s. ifmp<1. In
other words,pc(T)>1/m a.s. given nonextinction. Similarly, the component of the root is infin
w.p.p. if mp.1, whence;p.1/m pc(T)<p w.p.p. It remains to show thatP@T is infinite and
pc(T)<p] 512q, the probability of nonextinction, forp.1/m. However, it is easy to see tha
the event$T is finite orpc(T).p% is inherited in the sense that ifT has this property, then so doe
Tx for each childx of the root ofT. It follows @e.g., see Lyons75# that P@pc(T).p#P$q,1%. We
have already seen that it is not equal to 1. j

Results for percolation on more general trees depend on the following notions. Define acutset
of a treeT to be a collectionP of vertices whose removal fromT would leaveo in a finite
component. Lyons72 defined thebranching numberof T to be
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br~T!ª infH l.1;inf
P

(
xPP

l2uxu50J ,

where the infimum is over cutsetsP. This is related to the Hausdorff dimension of the bound
of T: Theboundaryof T, denoted]T, is the set of infinite paths fromo that do not backtrack. We
put a metric on]T by letting the distance betweenj andh bee2n if the number of edges commo
to j and h is n. Then br(T)5edim ]T; Furstenberg31 was the first to consider dim]T. If T is
spherically symmetric~about o!, meaning that degx is a function only of uxu for xPT, then
br(T)5gr(T), while, in general, we have br(T)<gr(T).

The following theorem was first proved~in different but equivalent language! by Hawkes53 for
treesT with bounded degree and by Lyons72 in general.

Theorem 6.2: If T is any tree, then pc(T)51/br(T).
From this and Proposition 6.1, we find that br(T)5m a.s. for Galton–Watson trees with mea

m; this was first shown~in the language of Hausdorff dimension! by Hawkes.53

The issue of uniqueness of infinite clusters on trees was settled in folklore, but appea
print for the first time by Peres and Steif.94

Proposition 6.3: For any tree T and p,1, the number of infinite clusters on T isPp-a.s. 0 or
Pp-a.s.`.

Similarly, one can describe the number of ends of the clusters for percolation on trees
Theorem 6.4:(Pemantle and Peres89) If T is any tree and0,p,1, thenPp-a.s. either K(o)

is finite or K(o) has infinitely many ends.
In order to determine the behavior of percolation at the critical value, we need to introduc

notion of capacity. Letm be a probability measure on]T. For p,1, we define thep-energyof m
as

Ep~m!ªE E p2uj1`j2u dm~j1!dm~j2!,

where j1`j2 denotes the vertex inj1ùj2 that is farthest fromo. ~If j5h, we interpret
p2uj1`j2u

ª`.! The p-capacity of ]T, denoted cap(p)(]T), is the reciprocal of the minimum
Ep(m) over all probability measuresm on ]T. If T is spherically symmetric, then

cap~p!~]T!5S 11~12p! (
n51

`
1

pnuTnu D 21

,

whereTn denotes the set of verticesx with uxu5n.
The second part of the following theorem was shown by Fan26,27whenT has bounded degree

and the full theorem by Lyons,73 in general.
Theorem 6.5: If T is any tree with root o and0,p,1, then

cap~p!~]T!<uo~p!<2 cap~p!~]T!.

In particular, the probability of an infinite cluster is positive iffcap(p)(]T).0.
Using this result, it is easy to construct treesT for which u„pc(T)….0 or for whichu(p) is

discontinuous at otherp. Similarly, nothing like Theorems 3.13 or 3.12 hold for general trees
An extension and sharpening of Theorem 6.5 is known for arbitrary survival param

Given any survival parametersp(e) on the edgese of T, we define the corresponding energy

E~m!ªE E P@o↔j1`j2#21 dm~j1!dm~j2!

and define capacity as before, but using this energy. The following theorem was prov
Lyons,73 with the sharpening provided by the second inequality due to Marchal.79
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Theorem 6.6: If T is any tree and with any survival parameters p(•) and corresponding
capacitykªcap(]T), we have

k<P@o↔`#<12e22k/~12k!<2k.

Häggström, Peres, and Steif50 introduced a version of~bond! percolation on graphs tha
evolves in time. GivenpP(0,1), the set of open edges evolves so that at any fixed timet>0, the
distribution of this set isPp . Let the initial distribution at time 0 be given byPp , and let each edge
change its status~open or closed! according to a continuous-time, stationary two-state Mark
chain, independently of all other edges. Each edge flips~changes its value! at ratep when closed
and rate 12p when open. LetCp denote the probability measure for this Markov process, ca
dynamical percolationwith parameterp. This process is most interesting forp5pc(G) because of
the following general result.

Theorem 6.7: (Häggström, Peres, and Steif50) For any graph G, if p.pc(G), thenCp-a.s.
there is an infinite cluster for every time t, while if p,pc(G), then Cp-a.s. there is an infinite
cluster for no time t.

On trees, one can decide what happens at criticality by means of a capacity condition~that we
express for comparison via percolation instead of capacity!.

Theorem 6.8:(Häggström, Peres, and Steif50) Let T be a tree and0,p,1. Write P* for the
probability measure of percolation on T that independently retains each edge joining Tn21 to Tn

with probability p1p/n. Then there isCp-a.s. some time t.0 at which there is an infinite cluste
on T iff P* -a.s. there is an infinite cluster on T. If T is spherically symmetric, then thi
equivalent to

(
n51

`
1

npnuTnu
,`.

No reasonable necessary and sufficient condition is known so that withCpc(T)-probability 1,
there exists an infinite cluster forall timest.0. However, Peres and Steif94 have shown that when
p.pc(T), there are infinitely many infinite clusters for all timest simultaneouslyCp-a.s. This
follows from the proof of Proposition 6.3 together with Theorem 6.7.

VII. THE ISING MODEL ON TREES

We resume the notation of Sec. V. The Ising model on trees was first studied by K
Kikuchi, and Watari,63 who showed that ifT is regular of degreeb11, then its criticalb equals
coth21 b, meaning that there is a unique Ising measure forb.coth21 b, but not forb,coth21 b
@see also Preston95#. In other words, this is the boundary of phase~I! in the phase divisions given
in Sec. V. This calculation was extended to all trees by Lyons.71

Theorem 7.1: If T is any tree, then its criticalb equalscoth21 br(T).
Bleher, Ruiz, and Zagrebnov16 showed that the criticalb for the free Ising model on a regula

tree T of degreeb11 equals coth21Ab. This means that the free Ising measure is extreme
b,coth21Ab, but not for coth21Ab,b,coth21 b. This is the boundary of phase~II !. A simpler
proof was given by Ioffe.54 The result was extended to all trees by Evans, Kenyon, Peres
Schulman.24

Theorem 7.2: If T is any tree, then the critical value ofb for the free Ising model equal
coth21Abr(T).

Theorem 7.7 of Georgii35 shows that an Ising measure is extremal iff it has a trivial tail, a
Lemma 4.2 of Evans, Kenyon, Peres, and Schulman24 or Lemma 2 of Ioffe55 shows that, for the
free Ising measure, this is equivalent to the independence ofv(o) from the tail. Thus, anothe
interpretation of Theorem 7.2 involves asymptotic reconstruction ofv(o) given v(x) for all x
PTn asn→`.
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We next discuss Edwards–Anderson spin glasses. For a graphG, let J(e) be independent
uniform 61-valued random variables indexed by the edgesePE. If G is finite, define the energy
of a configurationvP$1,21%V to be

H~v!ª2(
ePE

J~e!I v~e!. ~7.1!

The corresponding probability measure at inverse temperatureb on $1,21%V is the one propor-
tional toe2bH(v), denotedSpGlG(b). Note that this measure depends on the values ofJ. We call
P a spin glass measureon an infinite graphG at inverse temperatureb and with interactionsJ(e)
if P is a Markov random field and for all finiteV8,V and allv8P$1,...,q%V8,

P@v�V85v8uv�]V
intG85]v8#5SpGlG8~b!@v5v8uv�]V

intG85]v8#.

Define

bc
SG~G!ªsup$b>0; for a.e. J~•!and for everyb8P@0,b#

there is a unique spin glass measure onG

at inverse temperatureb8 and with interactionsJ~•!%.

See Newman82 for background.
If T is a regular tree of degreeb11, then Chayes, Chayes, Sethna, and Thouless20 showed that

bc
SG(T)5coth21Ab. On trees, the spin glass model is equivalent via a gauge transformati

having random independent boundary conditions in the Ising model. Under this transformati
Pb denote the limiting Ising measure. The phase transition definingbc

SG is equivalent toPb going
from not being a.s. extreme to being a.s. extreme asb passes coth21Ab. This calculation was
extended to all trees by Pemantle and Peres.90

Theorem 7.3:If T is any tree, thenbc
SG5coth21Abr(T). Furthermore, there is a.s. more tha

one spin glass measure on T for everyb.bc
SG.

The critical cases in each of the above three theorems can be decided based on a c
criterion, although the capacity for Theorem 7.1 is not the usual double-integral type,
triple-integral type. These capacity criteria hold for varying interaction strengthsJ(e) as well.
@The interaction strengths affect the Hamiltonian as in~7.1!.# In order to state these criteria, w
shall use the following notation: For a vertexxPT and an edge or vertexaPT, write a<x if a is
on the path fromo to x. If xP]T, thena<x will mean aPx. Let

C~x!ª)
e<x

tanh„J~e!b…

and

k~x!ª (
oÞy<x

C~y!22.

Theorem 7.4:(Pemantle and Peres90) Let T be any tree without leaves (except possibly at
Let 0, infePE J(e)<supePE J(e),`.

~i! There is a unique Ising measure at inverse temperatureb iff there is a probability measure
m on ]T such that

E E E k~j1`j2`j3!dm~j1!dm~j2!dm~j3!,`.

If J(e)[J and T is spherically symmetric, then this is equivalent to
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(
n>1

1

@ tanh~Jb!#2nuTnu2
,`.

~ii ! The free Ising measure at inverse temperatureb is extreme iffPb is a.s. extreme iff there
is a probability measurem on ]T such that

E E k~j1`j2!dm~j1!dm~j2!,`.

If J(e)[J and T is spherically symmetric, then this is equivalent to

(
n>1

1

@ tanh~Jb!#2nuTnu
,`.

Yet another phase transition of the Ising model concerns themagnetic susceptibility,
limn→` Var„SxPB(o,n)v(x)…/uB(o,n)u, where Var is variance with respect to the free Ising m
sure. Matsuda80 and Falk25 showed that the magnetic susceptibility becomes infinite wheb
passes the critical value coth21Ab if T is a regular tree of degreeb11.

We turn now to models other than the Ising model. Pemantle and Steif92 have shown that the
location of a phase transition for theq-state Potts model on trees withq>3 depends on subtle
aspects of the structure of the tree, and most certainly not on br(T). However, the location of a
robust phase transition still depends only on br(T). Here, we are using the following notion. Give
a cutsetP of T, let P(o) denote the component ofo in (T\P)øP. For e.0, let sb(P,e) denote
the distribution ofv(o) with respect to the Potts measure onP(o) with inverse temperatureb,
interaction strengths

J~e!ªH e, if e has an end point inP,

1, if not,
~7.2!

and conditioned onv�]V
intP(o)[1. Then the critical value for arobust phase transitionis defined

to be

sup$b;;e.0 inf
P

isb~P,e!21/qi`.0%,

where the infimum is over all cutsetsP. ~Instead of considering arbitrarily small boundary inte
actions strengthse, one could instead keep the interaction strengths constant and use high
peratures at the boundariesP.!

Theorem 7.5: (Pemantle and Steif92) If T is any tree with bounded degrees and q>2, the
critical value ofb for a robust phase transition in the q-state Potts model on T is the unique v
of b satisfying

eb1~q21!e2b

eb2e2b 5br~T!.

In particular, the location for a robust phase transition in the Ising model is the same as f
usual phase transition.

Last, we consider some continuous models on trees. LetSd denote thed-dimensional unit
sphere inRd11. Given a finite graphG and interaction strengthsJ(e) for ePE, define the energy
of vP(Sd)V as

H~v!ª(
ePE

Hv~e!,
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where for any edgee5@x,y#, we writeHv(e)ª2J(e)v(x)•v(y). Thed-dimensional spherica
measureon G at inverse temperatureb is the probability measure proportional toe2bH(v)P(v),
whereP is the product measure on (Sd)V with marginals on each coordinate equal to the Lebes
measure~i.e., normalized surface measure! on Sd. Whend51, this is called the ‘‘rotor’’ measure
whend52, it is called the ‘‘Heisenberg’’ measure.

For a tree T and e.0, let sb(P,e) denote the density ofv(o) with respect to the
d-dimensional spherical measure onP(o) with inverse temperatureb, interaction strengths as in

~7.2!, and conditioned onv�]V
intP(o)[1̂, where1̂ denotes any fixed element ofSd. The critical

value for arobust phase transitionis defined to be

sup$b;;e.0 inf
P

isb~P,e!21i`.0%.

Theorem 7.6:(Pemantle and Steif92) If T is any tree with bounded degrees and d>1, the critical
value ofb for a robust phase transition in the d-dimensional spherical model on T is the un
value ofb satisfying

*21
1 ebr~12r 2!d/221 dr

*21
1 rebr~12r 2!d/221 dr

5br~T!.

VIII. THE CONTACT PROCESS ON TREES

Thecontact processwith parameterl on a graphG is a continuous-time Markov chainj t on
2V. The subsetj t#V is called the set ofinfected~or occupied! sites at timet, while V\j t is the set
of healthy ~or vacant! sites. Infected sites wait an exponential time with parameter 1 and
become healthy, while a healthy site becomes infected at a rate equal tol times the number of its
infected neighbors. The measurePl

A is the measure of the above Markov chain when the ini
state isj05A. The contact process is said goextinct if Pl

o@;tj tÞ0” #50. Otherwise, itsurvives.
We make the further distinction that itsurvives strongly~or survives locallyor is recurrent! if
Pl

o@;T 't.T oPj t#.0, while it survives weakly~or globally! if it survives but it does not
survive strongly. It is easy to couple two copies of this Markov chain with different param
values so that the infected sites corresponding to the larger value always contain the infecte
corresponding to the smaller value. Thus, we may define

l1ªl1~G!ªsup$l;Pl
o goes extinct%5 inf$l;Pl

o survives%.

We also define

l2ªl2~G!ª inf$l;Pl
o survives strongly%.

Thus, for any graph, we have 0<l1<l2<`.
It is well known and easy to show thatl1.1/d on any graph whose degrees are bound

above byd: just dominate the size of the infection started from a single site by a continuous
branching process with meanld. However, with rather small tails in the offspring distributio
one can getl15l250 a.s. on Galton–Watson trees~Pemantle88!.

It is significantly more difficult to study contact processes on trees than any of the mode
trees of the preceding sections.~One way to see why this should be true is to observe that
graphical representation of the contact process on a graphG involves partially oriented percolation
on G3R1.! Although this section is devoted to trees, we shall briefly discuss other graphs
end of the section.

The first graph for which it was shown that 0,l1,l2,` was a regular tree.
Theorem 8.1: If T is a regular tree of degree at least 3, then0,l1(T),l2(T),`.
This was proved for trees of degree at least 4 by Pemantle,88 then for trees of degree 3 b

Liggett.69 Stacey108 gave a simpler proof of this result that extends to certain other trees.
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The following theorem describes the behavior at the critical values.
Theorem 8.2:Let T be a regular tree of degree b11>3 and consider the contact process o

T.

~i! There is extinction atl1(T).
~ii ! There is weak survival atl2(T).

Part ~i! was shown by Pemantle88 for b>3 and by Morrow, Schinazi, and Zhang81 for b
52. Part~ii ! was proved by Zhang.114

A basic duality property of contact processes is that for anyA, B,G, we have

PA@j tùBÞ0” #5PB@j tùAÞ0” #

@see Liggett,68 Theorem 1.7, Chap. VI#. When j05G, the distribution ofj t is stochastically
decreasing in time, whence it has a limit,n̄, called theupper stationary measure. The lower
stationary measureis the probability measured0” concentrated on the empty configuration. Fro
duality, it follows that n̄5d0” iff the process goes extinct. One says thatcomplete convergenc
holds if for every initial configurationj0 , the distribution ofj t converges to a mixture of the lowe
and upper stationary measures. In particular, when complete convergence holds, there
stationary measures other than the lower and upper ones.

The argument of Harris52 extends to show that ifG is transitive, then the only automorphism
invariant external stationary measures are the lower and upper ones. However, there may
others that are not invariant.

Theorem 8.3:(Durrett and Schinazi,23 Zhang114) Let T be a regular tree of degree at least
The contact process on T forl<l1(T) has only one stationary measure; forl1(T),l
<l2(T), it has infinitely many extremal stationary measures; and forl.l2(T), it has only two
extremal stationary measures and complete convergence holds.

A simpler proof of the last part of Theorem 8.3 was given by Salzano and Schonmann99,100

Let un(l) be the probability that if the contact process on a regular tree starts with
infected site ato, then a given sitex at distancen from o will be infected at some time. It is eas
to see thatum1n(l)>um(l)un(l), whence

b~l!ª lim
n→`

un~l!1/n

exists. Of course,b(l)51 when the process survives strongly. Liggett70 conjectured thatb(l)
<1/Ab whenl<l2(T). This was established by Lalley and Sellke66 and the equality case wa
determined by Lalley.65

Theorem 8.4: If T is a regular tree of degree b11>3, thenb(l)<1/Ab for l<l2(T), with
equality iff l5l2(T).

Theorem 8.4 implies Theorem 8.2~ii !. Another proof thatb(l),1/Ab for l,l2(T) was
given by Salzano and Schonmann.100 Theorem 8.4 has the following beautiful consequence for
limit set of j t , by which we mean the set of boundary points ofT each of whose vertices i
infected at some time. We use the same metric on]T as in Sec. VI for defining Hausdorf
dimension on]T.

Theorem 8.5:(Lalley and Sellke,66 Lalley65) If T is a regular tree of degree b11>3, then the
contact process on T forl1(T),l<l2(T) has a limit set on]T whose Hausdorff dimension is
at most, 1

2 logb a.s. on the event of survival, with equality iffl5l2(T).
Is it the case thatl15l2 on amenable transitive graphs andl1Þl2 on nonamenable transi

tive graphs? It is known thatl15l2 on the usual Cayley graphs ofZd ~Bezuidenhout and
Grimmett14!.

Salzano and Schonmann99 give many results for general graphs. In particular, they prove
following.

Theorem 8.6:Let G be a graph of bounded degree.
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~i! If l.l1(Z), then the contact process on G survives and has complete convergen
particular, l2(G)<l1(Z),`.

~ii ! If G is transitive andl.l2(G), then there are exactly two extremal stationary measu.

Finally, Schonmann104 has proved the existence of two phase transitions on transitive gr
that are sufficiently nonamenable.

Theorem 8.7: If G is a transitive graph of degree of d withiE(G)/d>1/&, then 0
,l1(G),l2(G),`.

However, Pemantle and Stacey91 have exhibited nonamenable trees of bounded degree
l15l2 .

IX. BIASED RANDOM WALKS

Given l>1, we define a nearest-neighbor random walk onG denotedRWl as follows. Let
deg2 x stand for the number of edges@x,y# with uyu5uxu21. Then the transition probability from
x to an adjacent vertexy is

p~x,y!ªH l/~degx1~l21!deg2 x!, if uyu5uxu21,

1/„degx1~l21!deg2 x…, otherwise.

That is, from any vertexx, each edge connectingx to a vertex closer too is l times more likely
to be taken than any other edge incident tox. ~For l51, this is simple random walk.! Such
random walks were first studied on trees, by Berretti and Sokal,13 Krug,62 and Lawler and Sokal.67

These biased random walks are reversible and thus correspond to an electrical networG
~see, e.g., Doyle and Snell,22 Kemeny, Snell, and Knapp,59 Chap. IX, Sec. 10, or Lyons75!. The
conductances are given by

C~x,y!ªl2~ uxu`uyu!,

wherex andy are adjacent vertices.
Theorem 9.1: (Lyons74) Let G be a transitive graph. Ifl,gr(G), then RWl is transient,

while if l.gr(G), thenRWl is recurrent. Equivalently, ifl,gr(G), then the effective conduc
tance from o to infinity is positive, but not ifl.gr(G).

One may also consider therate of escapeof RWl from o when l,gr(G), i.e.,
limn→` uXnu/n, whereXn is the location of the random walk at timen. There are Cayley graph
with gr(G).1 but that have the surprising property that the rate of escape of simple random
is 0. One example is the ‘‘lamplighter’’ group denotedG1 by Ka�manovich and Vershik.58 For this
example, Lyons, Pemantle, and Peres77 showed that the rate of escape ofRWl is positive when
1,l,gr(G1). This lack of monotonicity of behavior is quite unusual for models on transi
graphs. It might be that for every transitive graphG, the rate of escape ofRWl is positive as long
as 1,l,gr(G).

The method of proof of Theorem 9.1 uses a corresponding result on trees.
Theorem 9.2: (Lyons72) Let T be any tree. Ifl,br(T), then RWl is transient, while ifl

.br(T), thenRWl is recurrent.
The critical case in Theorem 9.2 is decided by a capacity criterion.
Theorem 9.3: (Lyons72) Let T be any tree andl>1. ThenRWl is transient iff there is a

probability measurem on ]T such that

E E (
n50

uj1`j2u

ln dm~j1!dm~j2!,`.

If T is spherically symmetric, then this is equivalent to
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(
n>1

ln

uTnu
,`.

Of course, whenT is spherically symmetric, this reduces to a random walk onN and is well
known.

An interesting model for which few results are known is that ofedge-reinforced random walk
Xn (n>0) on a graphG with parameterl. We begin with weights on all edges equal to 1.
Xn5x, then @Xn ,Xn11# is an edge incident tox chosen with probability proportional to th
weights at timen of the edges incident tox. The weights of the edges at timen11 are the same
as those at timen, except that the weight of@Xn ,Xn11# is increased byl. We call edge-reinforced
random walkrecurrent if it returns to its starting position infinitely often a.s. andtransient if it
returns to its starting position only finitely often a.s. It seems reasonable to suppose thal
increases, the walk goes from transient to recurrent as long asG is nonamenable. The existenc
and location of a phase transition was completely solved on trees by Pemantle87 for regular and
Galton–Watson trees and by Lyons and Pemantle76 in general.

Theorem 9.4: There is a strictly increasing functionlE :@1,̀ )→@0,̀ ) with lE(1)50 such
that if T is any tree, then edge-reinforced random walk on T is transient forl,lE„br(T)… and is
recurrent forl.lE„br(T)….

X. DIRECTIONS OF CURRENT RESEARCH

We outline some of the themes that characterize much research in nonamenable pha
sitions and highlight some of the most important open questions.

One contemporary theme in geometry and combinatorial group theory is the investigat
rough-isometry invariants~see, e.g., Gromov44,43!. Here, a mapf:(X,d)→(X8,d8) between met-
ric spaces is called arough isometry~or quasi-isometry! if there are positive constantsa and b
such that for allx, yPX,

ad~x,y!2a<d8„f~x!,f~y!…<bd~x,y!1b,

and such that every point inX8 is within distanceb of the image ofX. Being roughly isometric is
an equivalence relation.

In the context of graphs, we use the usual graph distance as the metric on the vertex
an example, it is easy to see that different Cayley graphs of the same group are roughly iso
What properties of our models are invariant under rough isometry? For example, in the con
Bernoulli percolation, ispc(G),pu(G) invariant whenG is a transitive graph? If so, Theorem
3.10 would solve Conjecture 3.8 for Cayley graphs. As another example, are critical expo
invariant under rough isometry?~However, they may turn out to be the same for all nonamena
transitive graphs.! Potential-theoretic rough-isometry invariants are known, but no nontrivial o
are known in percolation theory.

If we specialize from rough isometries to changing generators for a fixed group, we enco
a more refined sort of question having to do with uniform properties: For example, it is easy
that if G is any finitely generated group, then infS pc„G(G,S)…50, where the infimum is over al
finite generating sets ofG and G(G,S) denotes the Cayley graph ofG with respect toS. But is
supS pc„G(G,S)…,1? This would follow for groups of exponential growth from Theorem 3.1 i
were known that infS gr„G(G,S)….1, but this latter is an open question~see Grigorchuk and de la
Harpe37 for what is known about this growth problem!. No nontrivial uniform properties are
known at present for, say, all nonamenable groups.

In the other direction, rather than specializing rough isometries, we may enlarge our e
lence classes from roughly isometric to various classes of groups, such as nonamenabl
hyperbolic~see Gromov42 or Coornaert and Papadopoulos21!, or Kazhdan~although this last is not
known to be invariant under rough isometries!. Thus, we may search for characterizations of th
classes of groups through Bernoulli percolation or through other models, similar to Theorem
~in combination with the theorem of Burton and Keane19 and Gandolfi, Keane, and Newman34! or
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Theorems 5.3, 5.4, and 5.5. Characterizations via invariant percolation, such as Theore
would also be interesting. As the astute reader will have observed, all of these characteri
are of amenability only. Particularly interesting would be a characterization of hyperbolicity
important probabilistic characterization of Kazhdan groups, though abstract from our po
view, is given by Glasner and Weiss.36

Another geometric theme concerns the appearance of spherical symmetry. Transitive
are almost never spherically symmetric, i.e., it is rare for a transitive graph to have the pro
that if uxu5uyu, then there is an automorphism fixingo that carriesx to y. This lack of spherical
symmetry can manifest itself in probabilistic models. As one clear example,tp(o,x) can decay to
0 asuxu→` in some directions while not decaying to 0 in other directions~on a given graph!; see
Lyons and Schramm78 for a Cayley graph with this property. What other results show the lac
spherical symmetry? On the other hand, Theorem 9.1 has a conclusion that holds for all
cally symmetric graphs: Here, the lack of spherical symmetry does not affect the critical va
l. Are there other results where one might expect the lack of spherical symmetry to play a ro
where it does not? For example, it was suggested in Sec. IX that for all transitive graphs, th
of escape ofRWl is positive as long as 1,l,gr(G).

Aside from the geometrically motivated questions above, there are a plethora of purely p
bilistic questions. The possibilities for the presence or absence of various phase transiti
random cluster and Potts models are barely understood. The results for contact processes
known for trees need to be examined for transitive graphs. Except for branching random
other interacting particle systems have barely been investigated.

For example, we often lack monotonicity results~such as Proposition 5.2! for processes othe
than Bernoulli percolation. In fact, some such results are known to fail on quasitransitive g
~see Brightwell, Ha¨ggström, and Winkler,18 for example!, although there are no known comp
rable failures on transitive graphs.

Finally, some of the most basic open questions for Bernoulli percolation are the followin
pc(G),pu(G) whenG is a nonamenable transitive graph? Ispu(G),1 whenG is a nonamenable
transitive graph with one end? Are Theorems 3.7~ii !, 3.11, and 3.13 valid in the nonunimodula
case? Which transitive graphs have a unique infinite cluster atpu? What other types of phas
transition are there, such as discontinuities oftp(o,x) as a function ofp for fixed x?

In most situations, planar graphs are much easier to analyze due to the availability of d
We expect considerably faster progress for planar graphs than for general transitive graph
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46O. Häggström, ‘‘Random-cluster representations in the study of phase transitions,’’ Markov Process. Relat. Fie4,
275–321~1998!.
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This is an invited survey on the relation between the partition function of the Potts
model and the Tutte polynomial. On the assumption that the Potts model is more
familiar we have concentrated on the latter and its interpretations. In particular we
highlight the connections with Abelian sandpiles, counting problems on random
graphs, error correcting codes, and the Ehrhart polynomial of a zonotope. Where
possible we use the mean field and square lattice as illustrations. We also discuss in
some detail the complexity issues involved. ©2000 American Institute of Phys-
ics. @S0022-2488~00!00203-6#

I. INTRODUCTION

The classical Potts model was introduced by Potts in 1952 and in its most basic form c
described as follows.

Consider a finite latticeLn of N sites or general graphG of N vertices and suppose that ea
site ~5vertex! can have associated with it a spin, which can have one ofQ values. The energy
between two interacting spins is taken to be zero if the spins are the same and equal to a c
if they are different.

In the simplest description of the Potts model withQ states$1,2,...,Q%, the HamiltonianH is
given by

H5J(
i; j

~12d~s i ,s j !!, ~1!

where the sum is over all nearest-neighbor pairs of sitesi, j ands i is the spin at sitei. HereJ is
the ~constant! interaction. The model isferromagneticwhen J.0 and antiferromagneticif J
,0.

The probability of finding the system in states is then given by

Pr@s#5e2bH~s!/Z, ~2!

whereZ, the normalizing constant, is thepartition functionandb51/kT, wherek is Boltzmann’s
constant andT is the temperature.

Thus the partition function is

Z~G;Q,K !5(
s

expS 2K(
i; j

~12d~s i ,s j !! D , ~3!

whereK5J/kT, the summation in the exponential is over all near-neighbor pairs~i,j!, and the first
summation is over all possible spin configurations.

The Ising model with zero external field is just the special case whenQ52 and then the spins
are usually taken to be61.

a!Electronic mail: dwelsh@maths.ox.ac.uk
b!Electronic mail: merino@maths.ox.ac.uk
11270022-2488/2000/41(3)/1127/26/$17.00 © 2000 American Institute of Physics
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The Tutte polynomial is less familiar and will be precisely defined in Sec. II. However in
basic form it is just a two-variable polynomialT(G;x,y) associated with any finite graphG. Its
relation with the classical Potts model onG as described previously is thatZ(G;Q,K) as given in
~3! is, up to an easy multiplicative constant, just an evaluation ofT along the hyperbola

HQ[~x21!~y21!5Q.

To see and remember this is not difficult. The reparametrization (Q,K)↔(x,y) is just given by

x511
Qe2K

12e2K 5
eK1Q21

eK21
,

y5eK.

Thus the Tutte polynomialT can be regarded as a natural continuation ofZ from the countable
set of hyperbolae$HQ%,Q51, 2, ..., to the whole plane.

The interpretation is quite easy and allows an easy specification of various places of in
For example the following correspondences are easy to check:

Q-state Potts Tutte polynomial

Ferromagnetism Positive branchHQ
1 of HQ

Antiferromagnetism Negative branchHQ
2 of HQ

restricted toy.0
High temperature both ferromagnetic
and antiferromagnetic

Portion ofHQ asymptotic to
y51

Low temperature ferromagnetic HQ
1 asymptotic tox51

Absolute zero antiferromagnetic x512Q, y50

A partial extension of the Potts model is therandom clustermodel introduced by Fortuin and
Kasteleyn in 1972. This extends the ferromagnetic Potts model to the whole of the regionQ.0
but again this is only a part of the Tutte plane. More precisely the random cluster partition fun
ZRC(Q,p) which we define in Sec. IV corresponds to the quadrantx.1, y.1 in the Tutte plane.

In what follows we highlight some of the many other specializations of the Tutte polynom
concentrating on those in the region of the Potts or random cluster models or those o
boundary of this region, notably the intriguing degenerate hyperbolaH0 corresponding toQ50.
We also treat in some detail a curious interpretation in terms of the weight enumerator of
wheneverQ is a prime power.

We close this introduction by pointing out another way of thinking of the Potts model w
is useful in what follows. This is in terms of coloring. The possible colors are the integers 1,
Q and the sum of the right-hand side of~3! is just a sum over all possibleQ colorings of the vertex
set ofG. Given a particular colorings we see that its contribution to the sum is the term

exp~2KuE\B~s!u!,

where we useB(s) to denote the set of edges which arebad, that is, have end points with th
same color, unders.

Hence, if we writebj (G;l) to denote the number ofl colorings ofG in which exactlyj edges
are bad, then

Z~G;Q,K !5e2KuEu(
j 50

`

bj~G;Q!~eK! j . ~4!
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In other words, if as in Ref. 1 we define thebad coloring polynomialto be the generating
function

B~G;l,s!5(
j

bj~G;l!sj , ~5!

then

Z~G;Q,K !5e2KuEuB~G;Q,eK!. ~6!

An excellent, accessible review of the Potts model can be found in Wu.2

II. THE TUTTE POLYNOMIAL

The Tutte polynomial is a polynomial in two variablesx,y which can be defined for a graph
matrix, or even more generally a matroid. Most of the interesting applications arise whe
underlying structure is a graph or a matrix, but matroids are an extremely useful vehic
unifying the concepts and definitions. For example each of the following is a special case
general problem of evaluating the Tutte polynomial of a graph~or matrix! along particular curves
of the ~x, y! plane:

~i! the chromatic and flow polynomials of a graph;
~ii ! the all terminal reliability probability of a network;
~iii ! the partition function of aQ-state Potts model;
~iv! the Jones polynomial of an alternating knot;
~v! the weight enumerator of a linear code overGF(q).

In this section we will briefly review the standard theory of the Tutte polynomial and in
V we list its well-known evaluations. The graph terminology used is standard. The ma
terminology follows Oxley.3 Further details of many of the concepts treated here can be foun
Welsh.1

First consider the following recursive definition of the functionT(G;x,y) of a graphG and
two independent variablesx, y.

If G has no edges, thenT(G;x,y)51, otherwise for anyePE(G).
2.1: T(G;x,y)5T(Ge8 ;x,y)1T(Ge9 ;x,y), whereGe8 denotes the deletion of the edgee from

G andGe9 denotes the contraction ofe in G, and the edgee is not a loop or an isthmus,
2.2: T(G;x,y)5xT(Ge9 ;x,y), whenevere is an isthmus, that is an edge whose remo

increases the number of connected components,
2.3: T(G;x,y)5yT(Ge8 ;x,y), whenevere is a loop.
From this, it is easy to show by induction thatT is in fact a two-variable polynomial inx,y,

which we call theTutte polynomialof G.
In other words,T may be calculated recursively by choosing the edges inany order and

repeatedly using 2.1–2.3 to evaluateT. The remarkable fact is thatT is well defined in the sense
that the resulting polynomial is independent of the order in which the edges are chosen.

Example:In Fig. 1 we show an example of computing the Tutte polynomial of the graphG,
that is K4 minus one edge. By adding the monomials at the bottom of Fig. 1, we get
T(G;x,y)5x312x21x12xy1y1y2.

Alternatively, and this is often the easiest way to prove properties ofT, we can show thatT
has expansion shown in Fig. 1.

First recall that ifA#E(G), the rank of A,r (A) is defined by

r ~A!5uV~G!u2k~A!, ~7!

where k(A) is the number of connected components of the graphG:A having vertex setV
5V(G) and edge setA.
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It is now straightforward to prove the following.
The Tutte polynomialT(G;x,y) can be expressed in the form

T~G;x,y!5 (
A#E

~x21!r ~E!2r ~A!~y21! uAu2r ~A!. ~8!

One feature of the Tutte polynomial which is rather surprising in view of the states m
expansion~8! is that for any graphT has an expansion of the form

T~G;x,y!5(
i , j

t i , j x
iy j ,

where thet i , j are non-negative integers. Typically thet i , j are represented in matrix form. Fo
example, the following table provides the matrix form for the graphK6 :

j \ i 0 1 2 3 4 5

0 0 24 50 35 10 1
1 24 106 90 20 0 0
2 80 145 45 0 0 0
3 120 105 15 0 0 0
4 120 60 0 0 0 0
5 96 24 0 0 0 0
6 64 6 0 0 0 0
7 35 0 0 0 0 0
8 15 0 0 0 0 0
9 5 0 0 0 0 0

10 1 0 0 0 0 0

It is easy and useful to extend these ideas to matroids and hence matrices.
A matroid M is just a generalization of a matrix and can be simply defined as a pair~E,r!

whereE is a finite set andr is a submodularrank functionmapping 2E→Z and satisfying the
conditions

FIG. 1. An example of computing the Tutte polynomial recursively.
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0<r ~A!<uAu, A#E,

A#B⇒r ~A!<r ~B!, and

r ~AøB!1r ~AùB!<r ~A!1r ~B!, A,B#E.

The edge set of any graphG with its associated rank function, as defined by~7!, is a matroid,
but this is just a very small subclass of matroids, known as graphic matroids.

A much larger class is obtained by taking any matrixB with entries in a fieldF, letting E be
its set of columns and forX#E defining the rankr (X) to be the maximum size of a linearl
independent set inX. Any abstract matroid which can be represented in this way is calledrepre-
sentableover F.

A matroid M is representable over every field if and only if it has a representation ove
reals by a matrixB which is totally unimodular. Such a matroid is calledregular. Every graphic
matroid is regular.

Given M5(E,r ), its dual matroidis M* 5(E,r * ), wherer * is defined by

r * ~E\A!5uEu2r ~E!2uAu1r ~A!. ~9!

Duality is of fundamental importance as it allows duality concepts to be extended to nonp
graphs. WhenM is the matroid of a planar graphG, M* is the matroid of any planar dual grap
of G. However whenG is not planar thenM* is not graphic but is still representable as a matr

A set X is independentif r (X)5uXu, it is a baseif it is a maximal independent subset ofE.
We now just extend the definition of the Tutte polynomial from graphs to matroids by

T~M ;x,y!5 (
A#E~M !

~x21!r ~E!2r ~A!~y21! uAu2r ~A!. ~10!

Much of the theory developed for graphs goes through in this more general setting and
are many applications as we shall see. For example, routine checking shows that

T~M ;x,y!5T~M* ;y,x!. ~11!

In particular, whenG is a planar graph andG* is any plane dual ofG, ~11! becomes

T~G;x,y!5T~G* ;y,x!.

III. INTERPRETATIONS IN TERMS OF THE ISING AND POTTS MODELS

We start this section with what it is called the ‘‘recipe theorem’’ from Oxley and Welsh.4 Its
crude interpretation is that whenever a functionf on some class of matroids can be shown
satisfy an equation of the formf (M )5a f(Me8)1b f(Me9), for anyePE(M ), thenf is essentially
an evaluation of the Tutte polynomial.

HereMe8 is therestriction of M5(E,r ) to the setE\$e% with r unchanged. Thecontraction
Me9 can be defined byMe95(M* )e8 or more usefully by its rank functionr 9(A)5r (Aøe)
2r (e) for A#E\$e% and is the exact analog of contraction in graphs. For matrices it corresp
to projectionalong the column vectore. A minor of M is any matroidN obtainable fromM by a
sequence of contractions and deletions. There is also a natural definition of thedirect sumof two
matroidsM andN, whereE(M ) andE(N) are disjoint sets. The rank function ofM % N is given

by r M % N(Aø̇B)5r M(A)1r N(B) for A#E(M ) andB#E(N). Finally, we define a loop~coloop!
as a single element matroid$e% with rank functionr 1(e)50(r c(e)51).

The recipe theorem can now be stated as follows:
Theorem 1: Let C be a class of matroids which is closed under direct sums and the takin

minors and suppose that f is well defined onC and satisfies
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f ~M !5a f~Me8!1b f~Me9!, ePE~M !, ~12!

f ~M1% M2!5 f ~M1! f ~M2!, ~13!

then f is given by

f ~M !5auEu2r ~E!br ~E!TS M ;
x0

b
,
y0

a D ,

where x0 and y0 are the values f takes on coloops and loops, respectively.
Any invariant f which satisfies~12! and ~13! is called aTutte–Grothendieck (TG)-invariant.
Thus, what we are saying is that any TG-invariant has to have an interpretation as an

ation of the Tutte polynomial. As examples we consider the Ising and Potts models.
Consider the bad coloring polynomial defined in~5!,

B~G;l,s!5(
i 50

uEu

sibi~G;l!.

Clearly b0(G;l) is the chromatic polynomial ofG and it is easy to check that the followin
relationships hold.

3.1. If G is connected, then providede is not a loop or coloop,

B~G;l,s!5B~Ge8 ;l,s!1~s21!B~Ge9 ;l,s!.

3.2. B(G;l,s)5sB(Ge8 ;l,s), if e is a loop.
3.3. B(G;l,s)5(s1l21)B(Ge9 ;l,s), if e is a coloop.
Combining these, we get the following by using the recipe theorem for the class of conn

graphs.

3.4. B~G;l,s!5l~s21! uVu21TS G;
s1l21

s21
,sD .

Consider now the relation with the Potts model. From~6! we get

ZPotts~G;Q,K !5Q~eK21! uVu21e2KuEuTS G;
eK1Q21

eK21
,eKD . ~14!

It is not difficult ~with hindsight! to verify thatT(G;x,y) can be recovered from the polyno
mial B and therefore from the Potts partition function by using the following formula:

T~G;x,y!5
1

~y21! uVu~x21!
B~G;~x21!~y21!,y!.

For connected graphs, the classical Ising model is just the caseQ52 in ~14!. WhenG hask
connected components then there is an extra factor ofQk21 on the right-hand side of~14!.

IV. THE RANDOM CLUSTER MODEL AND FERROMAGNETIC POTTS MODEL

The general random cluster model on a finite graphG was introduced by Fortuin and
Kasteleyn.5 It is a correlated bond percolation model on the edge setE of G defined by the
probability distribution,

m~A!5ZRC
21S )

ePA
~pe! D S )

e¹A
~12pe! DQk~A! ~A#E!, ~15!
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wherek(A) is the number of connected components~including isolated vertices! of the subgraph
G:A5(V,A),pe(0<pe<1) are parameters associated with each edge ofG, Q>0 is a parameter
of the model, andZRC is the normalizing constant introduced so that

(
A#E

m~A!51.

Then m(A) is interpreted as the probability that the set of edges ofG openin the random
cluster model is exactly the setA. The complementE\A is closed.

We will sometimes usev(G) to denote the random configuration produced bym, andPm to
denote the associated probability distribution.

Thus, in particular,m(A)5Pm$v(G)5A%. WhenQ51, m is what Fortuin and Kasteleyn ca
a percolation modeland when each of thepe are made equal, say top, thenm(A) is clearly seen
to be the probability that the set of open edges isA in classical ordinary bond percolation.

For an account of the many different interpretations of the random cluster model we re
the original paper of Fortuin and Kasteleyn5 or to Grimmett.6,7

Here we shall be concentrating on the percolation problem when each of thepe are equal, to
sayp, and henceforth this will be assumed.

Thus we will be concerned with a two parameter family of probability measurem
5m(p,Q) where 0<p<1 andQ.0, which are defined on the edge set of the finite graphG
5(V,E) by

m~A!5puAuquE\AuQk~A!/ZRC,

whereZRC is the appropriate normalizing constant, andq512p.
The reason for studying percolation in the random cluster model is its relation with p

transitions via the two-point correlation function. This was pointed out first by Fortuin and K
leyn and given further prominence by Edwards and Sokal8 in connection with the Swendsen
Wang algorithm9 for simulating the Potts model. We describe briefly the connection.

The key result is the following:
Theorem 2: For any pair of sites (vertices) i, j, and positive integer Q, the probability thats i

equalss j in the Q-state Potts model is given by

1

Q
1

~Q21!

Q
Pm$ i j %,

where Pm is the random cluster measure on G given by taking p512exp(2K), and $ i j % is the
event that underm there is an open path from i to j.

The attractive interpretation of this is that the expression on the right-hand side ca
regarded as being made up of two components.

The first term, 1/Q, is just the probability that under a purely randomQ-coloring of the
vertices ofG, i and j are the same color. The second term measures the probability of long
interaction. Thus we interpret the above as expressing an equivalence between long ran
correlations and long range percolatory behavior.

Phase transition~in an infinite system! occurs at the onset of an infinite cluster in the rand
cluster model and corresponds to the spins on the vertices of the Potts model having a lon
two-point correlation.

Thus the random cluster model can be regarded as the analytic continuation of the Potts
to nonintegerQ.0.

It is not hard to check that the relation of the random cluster model withT is that

ZRC~G;Q,p!5pr ~E!qr* ~E!Qk~G!TS G;11
Qq

p
,
1

qD , ~16!
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wherer * is the dual rank,k(G) is the number of connected components ofG, andq512p.
It follows that for any givenQ.0, determining the partition functionZRC reduces to deter-

mining T along the hyperbolaHQ given by (x21)(y21)5Q. However, since in its physica
interpretations,p is a probability, the reparametrization means thatZRC is evaluated only along the
positive branch of this hyperbola. In other words,ZRC is the specialization ofT to the quadrant
x.1, y.1.

The antiferromagnetic Ising and Potts models are contained inT along the negative branche
of the hyperbolaeHQ , but do not have representations in the random cluster model. For mo
this model and its relation toT see Ref. 1, Chap. 4.

V. SOME WELL-KNOWN INVARIANTS

Having shown in detail how the Potts, Ising, and random cluster models are related
Tutte polynomial we now collect together some of the naturally occurring interpretations o
Tutte polynomial. ThroughoutG is a graph,M is a matroid, andE will denote E(G), E(M ),
respectively.

In each of the following cases, the interesting quantity~on the left-hand side! is given~up to
an easily determined term! by an evaluation of the Tutte polynomial. We shall use the phr
‘‘ specializes to’’ to indicate this.

When talking about the Tutte polynomial and Potts model, it turns out that the hyperbolaHa

defined by

Ha5$~x,y!:~x21!~y21!5a%

seem to have a special role in the theory. We note several important specializations in the
ing.

~1! Along H1 , T(G;x,y)5xuEu(x21)r (E)2uEu.
~2! Along H2 , whenG is a graph,T specializes to the partition function of the Ising mod
~3! Along HQ , for general positive integerQ,T specializes to the partition function of th

Q-state Potts model.
~4! Along HQ for any positive, not necessarily integer,Q,Tspecializes to the partition functio

of the random cluster model discussed in Sec. IV.
~5! At ~1, 1!, T counts the number of bases ofM ~spanning trees in a connected graph!.
~6! At ~2, 1!, T counts the number of independent sets ofM ~forests in a graph!.
~7! At ~1, 2!, T counts the number of spanning connected subgraphs of the graphG.
~8! At ~2, 0!, T counts the number of acyclic orientations ofG.10

~9! Another interpretation at~2,0!, and this for any real matrix was discovered by Zaslavsky11

If $H1 ,...,Hr% is a set of hyperplanes ind-dimensional Euclidean space with nonempty inters
tion, thenT counts the number of unbounded regions of this hyperplane arrangement.

~10! At ~0, 2!, T counts the number of totally cyclic orientations, that is, those in which ev
edge of the graphG is contained in some directed cycle.

~11! At ~1, 0!, T counts the number of acyclic orientations with exactly one source.
~12! At ~0, 1!, if G is a directed graph having a fixed ordering on its edges,T counts the

number of totally cyclic reorientationst of G such that in each cycle oft the lowest edge is no
reoriented. IfG is planar,T counts the number of totally cyclic orientations in which there is
clockwise cycle.

~13! Whenl is a positive integerT(G;12l,0) gives the number ofl colorings because, the
chromatic polynomialx(G;l) is given by

x~G;l!5~21!r ~E!lk~G!T~G;12l,0!,

wherek(G) is the number of connected components.
~14! Similarly T(G;0,12l) counts the number of nowhere zero flows over any Abelian gr

of orderl. Then the flow polynomialF(G;l), is given by
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F~G;l!5~21! uEu2r ~E!T~G;0,12l!.

~15! The ~all terminal! reliability R(G;p) defined as the probability that when each edge
the connected graphG is independently deleted with probability 12p the remaining graph stay
connected is given by

R~G;p!5quEu2r ~E!pr ~E!T~G;1,1/q!,

whereq512p.
~16! At ~0, 22!, if G is a four-regular graph,T counts the number of ice configurations ofG.

An ice configurationof G is an orientation of the edges so that at each vertex exactly two e
are directed in and two out. It is easy to see that this counts exactly the number of nowher
three-flows onG.

~17! T(G;21,21)5(21)uEu(22)d(B) where B is the bicycle space ofG, see Read and
Rosenstiehl.12 When G is planar it also has interpretations in terms of the Arf invariant of
associated knot.

~18! The number of forests of sizei of G, f i(G), is related toT by the following:

(
i 50

uVu21

f i~G!si5suVu21TS G;
1

s
11,1D .

~19! Also, the generating function of connected subgraphs of sizek of G, ck(G), is related to
T by

(
k50

uEu2uVu11

ck~G!sk5suEu2uVu11TS G;1;
1

s
11D .

~20! Along Hq , whenq is a prime power, for a matrixM of column vectors overGF(q), T
specializes to the weight enumerator of the linear code overGF(q), with generator matrixM.
Equation ~11! relating T(M ) to T(M* ) gives the MacWilliams identity of coding theory, w
return to this in Sec. IX.

~21! Along the hyperbolaxy51 whenG is planar,T specializes to the Jones polynomial
the alternating link or knot associated withG. This connection was first discovered b
Thistlethwaite13 and is explained in Ref. 1.

Other more specialized interpretations can be found in the survey of Brylawski and Ox14

and the book of Welsh.1

VI. MEAN FIELD RESULTS

The mean field Potts model refers to the case where the underlying graph is the co
graph. This has been considered by Wu2 and Kesten and Schonmann15 for the classical Potts
model, and more generally for the random cluster model by Bolloba´s, Grimmett, and Janson.16

First, however, as a useful example to illustrate what is known, we consider the behav
Tn(x,y)5T(Kn ;,x,y) for some of the points and curves described in Sec. V.

First some easy and not so easy known evaluations.
~1! Along H1 , (x21)(y21)51,

Tn~x,y!5S x

x21D Sn2D
~x21!n21.

~2! Tn(1,1) is the number of trees onn vertices and hence

Tn~1,1!5nn22.
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~3! The number of acyclic orientations is

Tn~2,0!5n!.

~4! The number of acyclic orientations with exactly one source is

Tn~1,0!5~n21!!.

~5! The number ofk-colorings, for any fixedk, is given by the Stirling polynomials so

Tn~12k,0!5~21!n21k~k21!¯~k2n11!.

~6! The number of forests is

Tn~2,1!;Aenn22 as n→`.

See for example Renyi17 or Dénes.18

Hence this gives a good picture of the sort of asymptotics one might expect.
It would be nice if there was a compact useful formula for the Tutte polynomial of

complete graph as there is for the chromatic polynomial. Unfortunately this does not seem
the case and all that seems possible is to obtain a generating function expansion which is
useful. It was originally obtained by Tutte.19 Two different forms of this are in Refs. 20 and 2

Welsh20 gives

11~x21! (
n51

`
~y21!nsnTn~x,y!

n!
5S (

j 50

`
sjySn2D

j !
D ~x21!~y21!

. ~17!

Substituting (x21)(y21)nTn(x,y)5Bn(Q,y) we get the following generating function fo
the bad coloring polynomial or equivalentlyZ(Kn):

11 (
n51

`
snBn~Q,y!

n!
5S (

j 50

`
sjySn2D

j !
D Q

.

One way of obtaining this directly is the following.
Let

(
n50

`
Bn~Q;s1 ,...,sQ!

n!
un

be the generating function in which the coefficient of

s1
m1s2

m2
¯sQ

mQun

is the number of ways of coloringKn with Q colors$1, 2, ...,Q% wheremi is the number of edges
with both end points colored i, for 1< i<Q.

Then clearly as

B~Kn ;s1 ,...,sQ!5 (
k11¯1kQ5n

n!

k1!¯kQ!
s

1

S k1
2 D
¯s

Q

S kQ
2 D

we conclude that
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(
n50

`
B~Kn ;s1 ,...,sQ!

n!
un5)

i 51

Q S (
r 50

` si
S r
2D

r !
ur D .

Now, this gives more information than we are asking for and putting

s15s25¯5sQ5s

we get

(
n50

`
B~Kn ;Q,s!

n!
un5S (

r 50

`
sSn2D
r !

ur D Q

.

One of the annoying features of the above-mentioned expansions is that they seem to
little help in attacking problems we wish to solve. As an example of this consider the evalu
at x52, y51 which givesF(n) the number of forests in the complete graph. Direct substitu
in ~17! does not seem to give us anything useful, in particular, we do not see how to g
following result from~17!.

Takacs22 gives the following exponential generating function forF(n):

(
n51

`
F~n!

n!
sn5expF (

n51

`
nn22

n!
snG .

He also gives the more useful

F~n!5(
r 50

n S n
r Dnn2rHr 11~1!,

whereHn(x) is thenth Hermite polynomial defined by

Hn~x!5n! (
j 50

@n/2#
~21! j xn22 j

2 j j ! ~n22 j !!
.

An extension of this by Stanley23 gives the numberF( i ,n) of forests withi edges onKn as
having generating function

(
n>0

(
i

F~ i ,n!
si tn

n!
5expS nn22

sn21tn

n! D .

We now turn to the recent work of Bolloba´s, Grimmett, and Janson16 on the asymptotics of
the random cluster model. Recall that ifZ(n,p,Q) denotes the partition function ofZRC(Kn ;p,Q)
then this gives the Potts model onKn by the substitution

p512e2k

One of the main results~Theorem 2.616! is the following:
Theorem 3: If Q>1 and l.0, then

1

n
logZS n,

l

n
,QD→f~l,Q!

as n→`, where the free energyf(l,Q) is given by
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f~l,Q!5
g~u~l!!

2Q
2

~Q21!l

2Q
1 logQ

and where g(u) is defined by

g~u!52~Q21!~22u!log~12u!2$21~Q21!u% log$11~Q21!u%.

The functionu(l)(5u(l,Q)) is defined as

u~l,Q!5H 0 i f l,lc~Q!

umax if l>lc~Q!,

where

lc~Q!5H Q if 0 ,Q<2

2S Q21

Q22D log~Q21! if Q.2

and umax is the largest root of the equation

e2lu5
12u

11~Q21!u
.

This explains the asymptotics in the regionx>1, y>1 of the Tutte plane but note that it say
nothing about the antiferromagnetic part.

VII. THE COMPLEXITY OF THE TUTTE PLANE

We have seen that along different curves of thex,y plane, the Tutte polynomial evaluate
many diverse quantities. Since it is also the case that for particular curves and at particular
the computational complexity of the evaluation can vary from being polynomial time compu
to being #P-hard a more detailed analysis of the complexity of evaluation is needed in ord
give a better understanding of what is and is not computationally feasible for these sort of
lems. The main result of Jaeger, Vertigan, and Welsh24 is the following:

Theorem 4: The problem of evaluating the Tutte polynomial of a graph at a point (a,b
#P-hard except when (a,b) is on the special hyperbola

H1[~x21!~y21!51

or when (a,b) is one of the special points~1, 1!, ~21, 21!, ~0, 21!, ~21, 0!, (i ,2 i ), (2 i ,i ),
( j , j 2) and ( j 2, j ), where j5e2p i /3. In each of these exceptional cases the evaluation can be d
in polynomial time.

As far as the easy real points are concerned, with one exception, the explanation is st
forward. The hyperbolaH1 is trivial, ~1, 1! gives the number of spanning trees,~21, 0! and ~0,
21! give the number of two-colorings and two flows respectively, and are easy evaluations
antiferromagnetic Ising. The point~21, 21! is less well known but has been explained, see S
V. It lies on the four-state Potts curve but as far as we are aware has no natural explanation

Finally the complex points (i ,2 i )(2 i ,i ) lie on the Ising curve and the points (j , j 2)( j 2, j ) lie
on the three-state Potts. Again there seems to be no natural interpretation to explain wh
evaluation is easy. The only reason why they appear in Theorem 4 is that they ‘‘turn up
calculations.’’
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For planar graphs there is a significant difference. The technique developed using the P
to solve the Ising problem for the plane square lattice by Kasteleyn25 can be extended to give
polynomial time algorithm for the evaluation of the Tutte polynomial of any planar graph a
the special hyperbola

H2[~x21!~y21!52.

HoweverH3 cannot be easy for planar graphs since it contains the point~22, 0! which counts the
number of three-colorings and since deciding whether a planar graph is three-colorable is NP
this must be at least NP-hard. However it does not seem easy to show thatH4 is hard for planar
graphs. The decision-problem is after all trivial by the four-color theorem. The fact that
#P-hard is just part of the following extension of Theorem 4 due to Vertigan and Welsh.26

Theorem 5: The evaluation of the Tutte polynomial of bipartite planar graphs at a point (a
is #P-hard except when

~a,b!PH1øH2ø$~1,1!,~21,21!,~ j , j 2!,~ j 2, j !%

when it is computable in polynomial time.
It follows immediately from the fact that any graph can be represented as a totally unimo

matrix that if a problem is hard~in any formal sense! for graphs then it will be at least as hard fo
matrices.

VIII. APPROXIMATIONS

Since exact evaluation is provably hard, we turn to the possibility of obtaining good app
mations or Monte Carlo estimates.

For positive numbersa and r>1, we say that a third quantityâ approximates a within ratio
r or is an r-approximation to a, if

r 21a<â<ra. ~18!

In other words the ratioâ/a lies in @r 21,r #.
First consider what it would mean to be able to find a polynomial time algorithm which g

an approximation withinr to the number of three-colorings of a graph. We would clearly hav
polynomial time algorithm which would decide whether or not a graph is three-colorable. Bu
is NP-hard. Thus no such algorithm can exist unless NP5P.

The same argument can be applied to any function which counts objects whose existe
NP-hard to decide. Hence

Proposition 6: UnlessNP5P there can be no polynomial time approximation to T(G;1
2k,0) for integer k>3.

However this argument only applies to a few points of the Tutte plane and it seems a di
problem to decide on the existence of good approximations elsewhere.

We now consider a randomized approach to counting problems and make the follo
definition.

An e-d-approximation schemefor a counting problemf is a Monte Carlo algorithm which on
every input^x, e, d&, e.0, d.0, outputs a numberỸ such that

Pr $~12e! f ~x!<Ỹ<~11e! f ~x!%>12d.

Now let f be a function from input strings to the natural numbers. Arandomized approxima-
tion scheme for f is a probabilisticalgorithm that takes as an input a stringx and a rational numbe
e, 0,e,1, and produces as output a random variableY, such thatY approximatesf (x) within
ratio 11e with probability greater or equal 3/4.

In other words,
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Pr H 1

11e
<

Y

f ~x!
<11eJ >

3

4
. ~19!

A fully polynomial randomized approximation scheme~fpras! for a function f :(* →N is a
randomized approximation scheme which runs in time which is a polynomial function ofn and
e21.

Suppose now we have such an approximation scheme and suppose further that it w
polynomial time. Then we can boost the success probability up to 12d for any desiredd.0, by
using the following trick of Jerrum, Valiant, and Vazirani.27 This consists of running the algorithm
O(logd21) times and taking the median of the results.

We make this precise as follows:
Proposition 7: If there exists a fpras for computing f then there exists ane–d approximation

scheme for f which on input^x, e, d& runs in time which is bounded by O(logd21)poly(x,e21).
The existence of a fpras for a counting problem is a very strong result, it is the analog

randomized polynomial time~RP! algorithm for a decision problem and corresponds to the no
of tractability. However we should also note

Proposition 8: If f:(* →N is such that deciding if f is nonzero is NP-hard then there can
exist a fpras for f unless NP is equal to random polynomial time RP.

Hence we have immediately from the NP-hardness ofk-coloring, fork>3, that:
Unless NP5RP there cannot exist a fpras for evaluatingT(G;2k,0) for any integerk>2.
Recall now that along the hyperbola,HQ , for positive integerQ,T evaluates the partition

function of theQ-state Potts model.
In an important paper, Jerrum and Sinclair28 have shown that there exists a fpras for t

ferromagnetic Ising problem. Their result can be restated in our terminology as follows.
~1! There exists a fpras for estimatingT along the positive branch of the hyperbolaH2 .
However it seems to be difficult to extend the argument to prove a similar result fo

Q-state Potts model withQ.2 and this remains one of the outstanding open problems in this
A second result of Jerrum and Sinclair is the following:
~2! There is no fpras for estimating the antiferromagnetic Ising partition function un

NP5RP.
In the context of its Tutte plane representation this can be restated as follows.
~3! Unless NP5RP, there is no fpras for estimatingT along the curve

$~x,y!:~x21!~y21!52, 0,y,1%.

The following extension of this result is proved in Welsh.29

Theorem 9: On the assumption that NPÞRP, the following statements are true.
~a! Even in the planar case, there is no fully polynomial randomized approximation sc

for T along the negative branch of the hyperbola H3 , that is for the antiferromagnetic three-stat
Potts model.

~b! For Q52,4,5,...,there is no fully polynomial randomized approximation scheme fo
along the curves

HQ
2ù$x,0%.

It is worth emphasizing that the above-mentioned statements do not rule out the possib
there being a fpras atspecific pointsalong the negative hyperbolas. For example;

~1! T can be evaluated exactly at~21, 0! and ~0, 21!, which both lie onH2
2 .

~2! There is no inherent obstacle to there being a fpras for estimating the number ofk-colorings of
a planar graph for anyk>4.

Positive results:Mihail and Winkler30 have shown that there exists a fpras for counting
number of ice configurations in a four-regular graph. This is equivalent to the statement:
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There is a fpras for computingT at ~0, 22! for four-regular graphs.
The reader will note that all the ‘‘negative results’’ are about evaluations ofT in the region

outside the quadrantx>1, y>1. In Welsh1 it is conjectured that the following is true:
Conjecture 10: There exists a fpras for evaluating T at all points of the quadrant x>1, y

>1.
Some evidence in support of this is the following.
If we let Ga be the collection of graphsG5(V,E) such that each vertex has at leastauVu

neighbors, then we call a classC of graphsdenseif C#Ga for some fixeda.0.
Annan31 showed that:
Proposition 11: For any class of dense graphs, there is a fpras for evaluating T(G;x,1) for

positive integer x.
Extending this, Alon, Frieze, and Welsh32 show
Theorem 12:~a! There exists a fully polynomial randomized approximation scheme for ev

ating T(G;x,y) for all x>1, y>1, for any dense class of graphs.
~b! For any class of strongly dense graphs, meaning GPGa for a. 1

2, there is also such a
scheme for x,1, y>1.

Even more recently Karger33 has proved the existence of a similar scheme for the clas
graphs with no small edge cut set. This can be stated as follows.

For c.0 define the classGc by GPGc if and only if its edge connectivity is at leas
c loguV(G)u. A class of graphs iswell connectedif it is contained inGc for some fixedc.

Theorem 13: For any fixed (x,y), y.1, there exists c, depending on (x,y), such that for a
classC#Gc, there is a fpras for evaluating T(G;x,y).

Notice that though the properties of being well connected and dense are very similar n
property implies the other.

Notice also that part~a! of Theorem 12 can be loosely reinterpreted as~a! There is a good
Monte Carlo scheme for estimating the partition function of the random cluster model on any
of dense graphs.

Unfortunately there are several important classes of graphs, in particular lattices, whic
not dense.

IX. THE POTTS MODEL AND ERROR CORRECTING CODES

We now turn to a curious correspondence between the partition functions of theQ-states Potts
model wheneverQ is a power of a prime and the weight enumerator polynomial of linear co
over the finite field withQ elements. This correspondence is reasonably well known for the
Q52, the Ising model. It has been pointed out for example by Hoede34 and Rosengren and
Lindström.35 In Ref. 25 this correspondence was used to derive terms of the low temperature
expansion of the partition functionZ of the three-dimensional cubic lattice.

For the purpose of this section takeq to be any prime power and letC be alinear codeover
the field GF(q).

A compact description ofC is by a k3n generator matrix G. The code words ofC are all
linear combinations of rows ofG. Now let E5$e1 ,...,en% be the column vectors ofG and takeM
to be the matroid~E,r!, where each subsetA of columns has rankr (A) equal to the maximum
number of linearly independent columns inA as in Sec. II.

Theweightof a code word is the number of nonzero entries. Given a codeC, let Ai denote the
number of code words which have weighti. Theweight enumeratorof C is

A~C;t !5( Ait
i . ~20!

Then we have the following theorem of Greene.36

Theorem 14:Let C be a linear code of dimension k and length n over the fieldGF(q). Let G
be a k3n generator matrix ofC and let M be the matroid on the set of columns. Then the we
enumeratorA(C;t) is given by
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A~C;t !5~12t !ktn2kTS M ;
11~q21!t

12t
,
1

t D . ~21!

The proof of this is not that difficult and can be found for example in Ref. 37.
If we compare this with the expression~14! for the partition functionZPotts(G) we can rewrite

it as

ZPotts~G;Q,K !5Q~12e2K! uVu21e2K~ uEu2uVu11!TS G;
11~Q21!e2K

12e2K ,
1

e2KD
so that there is a direct translation via

Q→q5pa,

e2K→parametert.

Under this correspondence we get

A~C;t !5Q21ZPotts~e2K5t !.

Now let us consider what this means in the context of a graphic matroid. Given any
graph it is easy to find a representation of it as a generator matrix of a linear code over any
field.

The edges of the graph correspond to the columns of the matrix and a setA of columns is
linearly independent if and only if the corresponding edges form a forest.

Example:Working with the field GF~2!, K4 minus one edge has a representation

The resulting code generated by this matrix has eight code words of length 5 and w
enumerator 112z214z31z4.

Now lets consider how this can be interpreted in general. Writing the weight enumerator
~20!, we see that we have another expansion for the Potts partition function namely,

ZPotts~G;Q,K !5Q(
i 50

uEu

Aie
2Ki .

Note however that this only works whenQ is a prime power.

X. THE POTTS MODEL AND COUNTING IN RANDOM GRAPHS

Although the theory of random graphs is highly developed, less attention seems to hav
paid to counting problems. Here we give some results obtained in Welsh20 which give new
interpretations of the Tutte polynomial as the expected value of classical counting function

Given an arbitrary graphG and pP@0,1# we denote byGp the random subgraphof G
obtained by deleting each edge ofG independently with probability 12p.

This is a generalization of the standard random graph modelGn,p which corresponds to
(Kn)p .
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First an easy result to illustrate the notation. Iff (Gp) denotes the number of forests inGp

then, for G and p fixed this is a random variable and has an expectation which we deno
^ f (Gp)&.

Routine calculation gives that for any connected graphG,

^ f ~Gp!&5puVu21TS G;11
1

p
,1D .

Turning now to colorings, we have:
Theorem 15: For any connected graph G and0,p<1, the random subgraph Gp has chro-

matic polynomial whose expectation is given by

^x~Gp ;l!&5~2p! uVu21lT~G;12lp21,12p!.

For the flow polynomial there is a similar, but more complicated evaluation, namely
Theorem 16: For any graph G the flow polynomial F(Gp ;l) has expectation given by

~a! if pP(0,1
2)ø( 1

2,1), then

^F~Gp ;l!&5pr ~G!~q2p!r* ~G!TS G;qp21,11
lp

q2pD ,

whereq512p;
~b! if p5 1

2, then

^F~G1/2;l!&5l uEu2uVu1k~G!22uEu.

Notice that parametrized in terms of the Potts model these give interpretations in the a
romagnetic region.

XI. THE LIMIT AS Q\0

Several authors~See Wu2! have considered the formal limiting behavior of theQ-state Potts
model asQ→0. This makes more sense in the context of the random cluster model whic
recall is defined for allQ.0. Let us now consider this convergence in more detail.

Suppose in the random cluster model,p andQ both tend to zero withp/Q kept constant at 1.
Then easy calculations show that in this case

lim
ZRC~G;p,Q!

pr ~E! 5T~G;2,1!.

In other words, from Sec. V, the limit is the number of forests ofG.
There are various other cases to consider.
~a! If Q→0 with p fixed then

lim
Q→0

ZRC~G;p,Q!5cTS G;1,
1

12pD ,

wherec is a constant. In other words we are getting
~1! the reliability probability, which we have already mentioned and is a much studied t
~2! the chip-firing game~Abelian sandpile model!,

as two different realizations of this limiting behavior. We consider the latter in so
detail in Sec. XI B.

~b! For the other part of the hyperbolaH0 , consisting ofy51, x>1, it is clear that if we let
Q→0 in such a way thatQ/p is fixed ata.0, then in the random cluster model
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x511
Qq

p
→11a,

y5
1

12p
→1

and so

p2r~12p!2uEu1r ~E!ZRC~G;Q,p!→T~G;11a,1!.

We have already mentioned the casea51 where the limit is the number of forests. Mor
generally we have the interesting specialization

l rT~G;111/l,1!5 i ~P~G!,l!,

wherei is the Ehrhart polynomial of a particular family of zonotopesP(G) determined by a
graphG.
We now discuss in more detail these two separate problems areas.

A. The Ehrhart polynomial

Let Zn denote then-dimensional integer lattice inRn and letP be ann-dimensional lattice
polytope inRn, that is a convex polytope whose vertices have integer coordinates. Consid
function i (P;t) which whent is a positive integer counts the number of lattice points which
inside the dilated polytopetP. Ehrhart38 initiated the systematic study of this function by provin
that it was always a polynomial int, and that in fact

i ~P,t !5x~P!1c1t1¯1cn21tn211vol~P!tn.

Herec05x(P) is the Euler characteristic ofP and vol(P) is the volume ofP.
Until recently the other coefficients ofi (P,t) remained a mystery, even for simplices, see

example Diaz and Robins.39

However, in the special case thatP is a unimodular zonotope there is a nice interpretation
these coefficients. First recall that ifA is anr 3n matrix, written in the formA5@a1 ,...,an#, then
it defines azonotope Z(A) which consists of those pointsp of Rr which can be expressed in th
form

p5(
i 51

n

l iai , 0<l i<1.

In other words,Z(A) is theMinkowski sumof the line segments@0,ai #,1< i<n.
Z(A) is a convex polytope which, whenA is a totally unimodular matrix, has all intege

vertices and in this case it is described as aunimodular zonotope. For these polytopes a result from
Stanley40 shows that

i ~Z~A!;t !5 (
k50

r

i kt
k,

wherei k is the number of subsets of columns of the matrixA which are linearly independent an
have cardinalityk.

In other words, the Ehrhart polynomiali (Z(A);t) is the generating function of the number
independent sets in the matroidM (A). But from ~2.3! we know that for any matroidM, the
evaluation ofT(M ;x,y) along the liney51 also gives this generating function. Hence, combin
these observations we have the result
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Theorem 17: If M is a regular matroid and A is any totally unimodular representation of
then the Ehrhart polynomial of the zonotope Z(A) is given by

i ~Z~A!;l!5l rTS M ;11
1

l
,1D ,

where r is the rank of M.
Another new interpretation ofT follows from what is sometimes known as the Ehrhar

Macdonald reciprocity law. This states that for any convex polytopeP with integer vertices inRn

and for any positive integert, the functionk(P;t) counting the number of lattice points lyin
strictly insidetP is given by

k~P;t !5~21!ni ~P;2t !.

This gives
Corollary 18: If A is an r3n totally unimodular matrix of rank r then for any positive integ

l the number of lattice points ofRr lying strictly inside the zonotopelZ(A) is given by

k~Z~A!;l!5~2l!rTS M ~A!;12
1

l
,1D .

In particular we have the following new interpretations:
The number of lattice points strictly insideZ(A) is (21)r (M )T(M ;0,1).

B. Sandpiles

Self-organized criticality is a concept widely considered in various domains since Bak, T
and Wiesenfeld41 introduced it ten years ago. One of the paradigms in this framework is
Abelian sandpile model, introduced by Dhar.42

We start by recalling the definition of the general Abelian sandpile model on a set ofN sites
labeled 1, 2, ...,N, that we referred to as the system. At each site the height of the sandpile is
by an integerhi . The sethW 5$hi% is called theconfigurationof the system. For every sitei, a
thresholdHi is defined; configurations withhi,Hi are calledstable. For every stable configura
tion, the heighthi increases in time at a constant rate, this is called theloadingof the system. This
loading continues until at some sitei, its heighthi exceeds the thresholdHi , then the sitei topples
and all the valueshj , 1< j <N, are updated according to the rule:

hj5hj2D i j for all j , ~22!

whereD i j is an integer matrix satisfying

D i i .0, D i j <0, si5(
j

D i j >0.

If after this redistribution some height exceeds its threshold we apply the toppling rule~22! and so
on, until we arrive at a stable configuration and the loading resumes. The sequence of topp
called anavalanche. We assume that an avalanche is ‘‘instantaneous,’’ and thus, no loa
occurs during an avalanche.

The valuesi is called thedissipationat site i. It may happen that an avalanche continu
without end. We can avoid this possibility by requiring that from everynondissipativesite i, i.e.,
si50, there exists a path to adissipativesite j, i.e., sj.0. In other words, there is a sequen
i 0 ,...,i n , with i 05 i , i n5 j , andD i k21 ,i k

,0, for k51,...,n. In this case we said that the system
weakly dissipative.43 From now on, we assume that the system is always weakly dissipative
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When the matrixD i j is symmetric and the loading of the system at sitei equals the dissipation
at i, the Abelian sandpile model coincides with the chip-firing game on a graph.44 We now explain
this.

Every site of the Abelian sandpile model corresponds to a vertex in a graphG containingN
11 vertices, that is the number of vertices is one more than the number of sites in the syste
label the vertices 0, 1, ...,N. The graph has multiple edges, and the number of edges between
i andj, i andj both nonzero, equalsuD i j u. For all iÞ0, we connect sitei to site 0 usingu( j 51

N D i j u
edges.

Every vertexi, 1< i<N, has a number of chipsu i that represents its heighthi ~when seen as
a site of the system! at every moment of time and vertex 0 has a negative number of chips g
by ( i 51

N (2hi). A toppling at sitei corresponds tofiring vertexi, that is, to redistribute some of th
chips at vertexi according to the following rule: At vertexj, the new number of chips isu j

2D i j , for all j, that is, each neighbork of i in G receivesuD iku chips and vertexi losesD i i chips.
The loading of the system is represented by the firing of the vertex 0, in this case the height
i ~its number of chips inG! is increased by the number of edges from 0 toi. The vertex 0 may
~must! fire only when no ordinary vertex can fire.

This process of firing vertices in the graphG is called a chip-firing game. The process
infinite, although the number of firings corresponding to an avalanche in the system, tha
sequence of firings of the vertices 1, ...,N without firing the vertex 0, is finite. The number o
stable configurations is also finite, hence certain configurations arerecurrent, that is, a configu-
ration is recurrent if there exists an avalanche which starts and ends with it. A configurat
critical if it is recurrent and stable.

Using the chip-firing game it can be proved that this sandpile model has an important Ab
property, namely the stable configuration of the system after an avalanche, and the num
breaks at any site during an avalanche, do not depend on the order of breaks duri
avalanche.44 Even more, there is a close relation between the critical configurations of the sy
and the Tutte polynomial ofG. We now explain this more precisely.

The level of a configurationhW is defined by

level~hW !5(
iÞ0

hi1deg~0!2uE~G!u.

The theorem conjectured by Biggs45 and proved by Merino46 is the following
Theorem 19: If ci denotes the number of critical configurations of level i in a graph G w

special site 0, then

Pq~G;y!5(
i 50

`

ciy
i5T~G;1,y!.

A first, nontrivial consequence of this is that it showsPq(G;y) is independent of choice of th
vertex 0 inG.

Critical configurations possess some interesting mathematical properties: they form a
Abelian group whose order equals the number of spanning trees of the graphG. For the structure
of this group for planar graphs,n-wheels, and complete graphs, and in this case its relation
parking functions see Ref. 47.

XII. RESISTOR NETWORKS

The problem of finding the effective resistance in a network of resistors was solve
Kirchhoff ~1847! but Fortuin and Kasteleyn5 showed that it also appears naturally as a limit of t
Potts partition function asQ→0.

Suppose we letJi j , the interaction energy between neighbor verticesi, j , be given by
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Ji j ;2kTri j
21,

wherer i j is the resistance of the resistor connecting sitesi and j.
Now we wish to find the effective resistanceRkl between two fixed sitesk andl, wherek and

l are joined inG. Then the result in Ref. 5 can be stated as in Ref. 2, namely

Rkl5 lim
Q→0

]

]xkl
ln ZRC~G;Q,Qaxi j !,

wherexi j 5r i j
21 for each edge (i , j )PE(G) anda is arbitrary in the open interval~0, 1!.

As explained in Ref. 2 this is essentially obtained from a fairly well known interpretatio
the effective resistance in terms of aspanning tree polynomialwhich goes back to Kirchhoff. This
spanning tree polynomial which is denoted byS(G;xi j ) is multivariate and defined by

S~G;xi j !5 (
A#E

S (
T#G:A

S )
~ i , j !PT

xi j D D ,

where the variablesxi j are indeterminates associated with each edge and the inner sum is o
spanning treesT of the subgraphG:A5(V(G),A).

Then the claim@~Ref. 2!, 4.26# is that for anya, 0,a,1,

lim
Q→0

Qa~12N!21ZRC~G;Q,Qaxi j !5S~G;xi j !.

Taking xi j 5r i j
21 gives the result of Kirchhoff.

Now let us reappraise this in terms of the Tutte polynomial. First of all, we should emph
that because it is a general result with variablesr i j and hence variable interaction strengthsJi j , its
description cannot be exactly covered by the Tutte polynomial which is just two variable. H
ever the basic ingredients are there. It is well known and easy to prove that in the case wh
resistances are constant, say equal to 1, then the effective resistanceRe between two vertices ofG
which are joined by an edgee is given by

Re5
T~Ge9 ;1,1!

T~G;1,1!
.

Puttingxi j 5r 21 in S(G;xi j ) gives

SS G;
1

r D5r 2n11 (
A#E

T~GuA;1,1!5
2uEu2uVu11

r uVu21 T~G;1,1!.

Hence

T~Ge9 ;1,1!

T~G;1,1!
5r

S~Ge9 ;r 21!

S~G;r 21!
.

XIII. THE SQUARE LATTICE

For obvious reasons the two-dimensional lattice is a graph of fundamental importance
Potts model.

It is also the case that the square lattice is the fundamental separation point betwe
classes of graphs of bounded tree width and unbounded tree width, in the sense of Robert
Seymour.48
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Thus, in a very technical sense, it can be regarded as the separation point between h
easy problems as all evaluations of the Tutte polynomial are known to be in polynomial tim
graphs of bounded tree width~see Andrzejak49 and Noble50!. This was the motivation for the
Merino–Welsh paper51 which is the basis for the work of this section.

Here we review what is known about the Tutte polynomial on the square lattice.
The square lattice Ln is the set of ordered pairs$( i , j )PN2u0< i , j <n21%. There is an edge

between the vertices~i,j! and (i 8, j 8) if u i 2 i 8u1u j 2 j 8u51.
It is easy to show that asn→` for any fixed ~x,y!, T(Ln ;x,y) is O(un2

) for a suitableu
5u(x,y). We focus on the limit of the sequence

$~T~Ln ,i , j !!1/n2
%

for certain values of the integersi and j.
We note that we already know from the results of Grimmett52,53 and Biggs,54 that except in

certain special cases, these limits exist.
We first consider the trivial hyperbolaH1 where

T~Ln ;x,y!5xn221y~n21!2
.

We next highlight the special hyperbola (x21)(y21)52. On the positive branch of this
hyperbola, which corresponds to the ferromagnetic version of the Ising model, convergenc
the classical limit of the Onsager solution, see, e.g., Ref. 55.

Consider nowx(Ln ;k), the number ofk-colorings of the square latticeLn . Clearly the
number of two-colorings ofLn is 2. Hence

lim
n→`

~x~Ln ;2!!1/n2
51.

For k.2 the problem becomes much harder and exact results are not known. An easy
ment gives

k22<~x~Ln ;k!!1/n2
<k21.

For the rest of this section we assumen.2 to avoid trivialities. LetLn
T be the graph obtained

from the square latticeLn11 by identifying the boundary vertices (i ,0) and (i ,n), for 0< i<n,
and the vertices (0,j ) and (n, j ), for 0< j <n, and deleting any parallel edge. This is the toroid
square lattice. Letx(Ln

T ;k) be the number ofk-colorings ofLn
T . It is known56 that for a fixed

integerk>3 the limits of the sequences$(x(Ln
T ;k))1/n2

% and $(x(Ln ;k))1/n2
% are equal and we

call this limit x̂(k).
In a classical paper, Lieb57 showed that the number of ice configurations, see Sec. V, ofLn

T is
asymptotically (4/3)3/2. If we now assumeLn

T is self-dual, which is not strictly true because it
nonplanar, it is generally accepted~Ref. 56, p. 56! that the result of Lieb implies that

x̂~3!5~4/3!3/2'1.539 600 718.

Biggs and Meredith in Ref. 58 obtained the estimate

x̂~k!; 1
2~k231Ak222k15!.

Lower and upper bounds forx̂(k) were given by Biggs in Ref. 56. He used the transfer ma
technique to obtain

k223k13

k21
<x̂~k!<

1

2
~k221Ak224k18!.
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In Ref. 59, Nagel used an induced subgraph expansion for the chromatic polynomial to
the first terms of a power series that converges tox̂(k).

Kim and Enting60 gave a more accurate approximation of the same power series by comb
an expansion ofx̂(k) due to de Neef and the transfer matrix technique.

Numerical values obtained by using this approximation give for examplex̂(10);8.111... .
We uset(n) to denote the number of spanning trees ofLn . Let an be the number of one

factors or perfect matchings ofL2n . It is shown in Ref. 61 that

lim
n→`

ln an

n2 5
4

p2 E
0

p/2E
0

p/2

ln~4 cos2 x14 cos2 y!dx dy5c'1.166 243 696.

Now, let bn be the number of one-factors in the graphLn8 , which is obtained from the (2n
21)3(2n21) square lattice by taking out one corner vertex, that is,Ln85L2n21\(0,0). In Ref.
62, a bijection has been established between the one factors ofLn8 and the spanning trees ofLn .
Sincean /bn;1 asn→` we get

lim
n→`

~ t~n!!1/n2
5ec'3.209 912 556.

The number of spanning forests ofLn , which we denote byf (n), seems a much more elusiv
quantity to approximate accurately. Nowf (n) corresponds toT(Ln ;2,1) and the related point
T(Ln ;2,0) andT(Ln ;0,2) are the number of acyclic orientations ofLn ,a(n), and the number of
acyclic orientations with~0,0! as the only source,a0(n), respectively. In Ref. 51 we show

7
3< lim

n→`

~a0~n!!1/n2
< lim

n→`

~ t~n!!1/n2
'3.209 912 556,

22

7
< lim

n→`

~a~n!!1/n2
<3.709 259 278...,

and

3.209 912 556< lim
n→`

~ f ~n!!1/n2
<3.841 619 541... .

More recently, Calkinet al.63 have improved some of these upper bounds. By using
transfer matrix method, they obtain

lim
n→`

~a~n!!1/n2
<3.563 221 504 771 6...,

lim
n→`

~ f ~n!!1/n2
<3.746 981 401 399 4... .

Also, Merino and Noy64 have improved previous lower bounds by using generating func
techniques, their results are

lim
n→`

~a~n!!1/n2
>A131A61

2
'3.225 697 573 851 8...,

lim
n→`

~ f ~n!!1/n2
>21&'3.414 213 562 373 1... .
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By using the transfer matrix method together with the Perron–Frobenius Theorem, they hav
obtained the following improvements:

lim
n→`

~a~n!!1/n2
>3.413 580 975 034 92...,

lim
n→`

~ f ~n!!1/n2
>3.644 975 653 386 48... .

To sum up, the above-mentioned results give

7
3< lim

n→`

~a0~n!!1/n2
< lim

n→`

~ t~n!!1/n2
'3.209 912 556,

3.413 580 975 034 92...< lim
n→`

~a~n!!1/n2
<3.563 221 504 771 6...,

and

3.644 975 653 386 48...< lim
n→`

~ f ~n!!1/n2
<3.746 981 401 399 4... .

Our objective is to find exact results for other evaluationsT(Ln ;x,y) but this includes some
very difficult problems.

XIV. CONCLUSION

We hope that the above gives a reasonably coherent picture of the intimate relatio
between the Tutte polynomial and its physical interpretations associated with the Potts mo

One problem which has particularly engaged us is the question of whether there exists
Monte Carlo scheme for the ferromagnetic Potts or random cluster model. A recent attack o
problem in Ref. 65 works as follows.

For any graphG, thewin polytope WG is the convex polytope defined by

(
i PU

xi<e~U !, U#V, xi>0,

wheree(U) is the number of edges incident withU.
It has the property that its bounding base face is combinatorially equivalent toZ(A) whereA

is any totally unimodular representation of the graphG as in Sec. XI A. Now carry out simple
random walkXt in a slightly dilated version ofWG , call it WG8 . Associate with each lattice poin
a box of equal volume, ensuring that the boxes are disjoint but otherwise as large as possibl
let t be large enough, sayt5T so that the stopping pointXT is almost uniform inWG8 , and map
XT to the lattice point associated with the box containing it. Accept the output as an a
uniform point ofWG if it lies inside it. RepeatN times, whereN is large enough to ensure we hav
a good estimate of the number of lattice points insideWG . Ideally this process would work
successfully enough to enable us also to get a good estimate of the number of lattice point
bounding face and hence inZ(A).

Curiously, and somewhat depressingly, in order for the method to work in polynomial tim
need exactly the same density condition on the underlying graph as did Annan.31 This suggests
that it might be more profitable to look for a mathematical reason why good approxim
schemes should not exist forZ(G;p,Q) for generalp andQ.

Accordingly, problems which seem to us particularly interesting are the following:

~a! Settle the Conjecture 10 that in the ferromagnetic regionx>1, y>1 there is a good Monte
Carlo approximation forT(x,y).
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~b! Decide the question of whether the number of acyclic orientations has a good approxim
~c! Clarify, or at least explain more convincingly than the reasons given in Ref. 65 why it

hard to approximate the number of forests.
~d! Understand better the region of the Tutte plane where the random cluster model

positively correlated.
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We reconsider the percolation approach of Russo, Aizenman, and Higuchi for
showing that there exist only two phases in the Ising model on the square lattice.
We give a fairly short alternative proof which is only based on stochastic monoto-
nicity and avoids the use of symmetry inequalities originally needed for some
background results. Our proof extends to the Ising model on other planar lattices
such as the triangular and honeycomb lattice. We can also treat the Ising antifer-
romagnet in a homogeneous field and the hard-core lattice gas model onZ2.
© 2000 American Institute of Physics.@S0022-2488~00!00103-1#

I. INTRODUCTION

One of the fundamental results on the two-dimensional ferromagnetic Ising model i
following theorem obtained independently in the late 1970s by Aizenman1 and Higuchi2 on the
basis of the seminal work of Russo.3

Theorem: For the ferromagnetic Ising model onZ2 with no external field and inverse tem
peratureb.bc , there exist only two distinct extremal Gibbs measuresm1 and m2.

The basic technique initiated by Russo consists of an interplay of three features of the
model:

~1! the strong Markov property for random sets defined by geometric conditions involving
ters of constant spin,

~2! the symmetry of the interaction under spin-flip and lattice automorphisms, and
~3! the ferromagnetic character of the interaction which manifests itself in FKG order and po

correlations.

These ingredients led to a detailed understanding of the geometric features of typical co
rations as described by the concepts of percolation theory. In addition to these tools, the aut
Refs. 1–3 also needed the result that the limiting Gibbs measure with6 boundary condition is a
mixture of the two pure phases. This result of Messager and Miracle-Sole´4 had been had bee
obtained by quite different means, namely some correlation inequalities of symmetry type
spirit of Griffiths–Kelly–Sherman~GKS! and Lebowitz inequalities. While such symmetry i
equalities are a beautiful and powerful tool, they are quite different in character from the For´n–
Kasteleyn–Ginibre~FKG! inequality and have their own restrictions. It is therefore natural to
whether Russo’s random cluster method is flexible enough to prove the theorem without re
to symmetry inequalities. On the one hand, this would allow one to extend the theorem to m
with less symmetries, while on the other hand one might gain a deeper understanding of p
geometric features of typical configurations.

In this paper we propose such a purely geometric reasoning which is only based on th
above-mentioned features and avoids the use of the symmetry inequalities of Messag

a!Electronic mail: georgii@rz.mathematik.uni-muenchen.de
b!Electric mail: higuchi@math.kobe-u.ac.jp
11530022-2488/2000/41(3)/1153/17/$17.00 © 2000 American Institute of Physics
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Miracle-Solé.4 Despite this reduction of tools we could simplify the proof by an efficient com
nation of known geometric arguments. These include:

~1! the Burton–Keane uniqueness theorem for infinite clusters,5

~2! a version of Zhang’s argument for the impossibility of simultaneous plus- and mi
percolation inZ2 ~cf. Theorem 5.18 of Ref. 6!,

~3! Russo’s symmetry trick for simultaneous flipping of spins and reflection of the lattice,3 and
~4! Aizenman’s idea of looking at contour intersections in a duplicated system.1

We have tried to keep the paper reasonably self-contained, so that the reader will
complete proof of the theorem. As a payoff of the method we also obtain some generalizatio
the one hand, the arguments carry over to the Ising model on other planar lattices such
triangular or the hexagonal lattice. On the other hand, in the case of the square lattice the
cover the antiferromagnetic Ising model in an external field as well as the hard-core lattic
model.

II. SETUP AND BASIC FACTS

Although we assume that the reader is familiar with the definition of the Ising model, l
start by recalling a number of fundamental facts and introducing some notations. We a
throughout that the inverse temperatureb exceeds the Onsager thresholdbc , and that there is no
external field,h50. The main ingredients we need are as follows.

~1! Theconfiguration spaceV5$21,1%Z2
, which is equipped with the Borels-algebraF and

the locals-algebrasFL of events depending only on the spins inL,Z2.
~2! TheGibbs distributionsmL

v in finite regionsL,Z2 with boundary conditionvPV. These
enjoy theMarkov property, which says thatmL

v(A) for APFL depends only on the restriction o
v to the boundary]L5$x¹L:ux2yu51 for someyPL% of L, and thefinite energy property,
which states thatmL

v(A).0 whenBÞAPFL .
~3! The Gibbs measuresm on ~V,F! which, by definition, satisfym(•uFLc)(v)5mL

v for
m-almost allv and any finiteL; we writeG for the convex set of all Gibbs measures and exG for
the set of all extremal Gibbs measures.

~4! The strong Markov propertyof Gibbs measures, stating thatm(•uFGc)(v)5mG(v)
v for

m-almost allv whenG is any finiterandomsubset ofZ2 which isdetermined from outside, in that
$G5L%PFLc for all finite L, andFGc is thes-algebra of all eventsA outsideG in the sense tha
Aù$G5L%PFLc for all finite L. ~Using the conventionsmB

v 5dv and FBc5F we can in fact
allow thatG takes the valueB.! For a proof one simply splitsV into the disjoint sets$G5L% for
finite L.

~5! The stochastic monotonicity~or FKG order! of Gibbs distributions. Writingmdn when
m( f )dn( f ) for all increasing local~or, equivalently, all increasing bounded measurable! real

functionsf on V, we havemL
vdmL

v8 whenv<v8, andmL
vdmD

v whenD,L andv[11 on L\D
~the opposite relation holds whenv[21 on L\D!.

~6! The pure phasesm1,m2PG obtained as limits forL↑Z2 of mL
v with v[11 and21,

respectively, their invariance under all graph automorphisms ofZ2, the sandwich relationm2

dmdm1 for any othermPG, and the resulting extremality ofm1 andm2.
~7! The characterization of extremal Gibbs measures by theirtriviality on the tail s-algebra

T5ù$FLc:L,Z2 finite%; the fact that extremal Gibbs measures havepositive correlations; and
the extremal decompositionrepresenting any Gibbs measure as the barycenter of a mass dis
tion on exG.

A general account of Gibbs measures can be found in Ref. 7, and Ref. 6 contains an e
tion of the Ising model and its properties related to stochastic monotonicity.

We will also use a class of transformations ofV which preserve the Ising Hamiltonian, an
thereby the classG of Gibbs measures. These transformations are as follows.

~1! The spin-flip transformation T:v5(v(x))xPZ2→(2v(x))xPZ2.
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~2! The translationsqx ,xPZ2, which are defined byqxv(y)5v(y2x) for yPZ2, and in
particular the horizontal and vertical shiftsqhor5q (1,0) andqvert5q (0,1) , respectively.

~3! The reflectionsin lines l through lattice sites: For anykPZ we write

Rk,hor:Z
2{x5~x1 ,x2!→~x1,2k2x2!5Z2

for the reflection in the horizontal line$x25k%, and similarly Rk,vert for the reflection in the
vertical line $x15k%. For k50 we simply writeRhor5R0,hor and Rvert5R0,vert. All these reflec-
tions act canonically onV.

We will investigate the geometric behavior of typical configurations inhalf-planesof Z2.
These are sets of the form

p5$x5~x1 ,x2!PZ2:z2:xi>k%

with kPZ,i P$1,2%, or with ‘‘>’’ replaced by ‘‘<.’’ The line l 5$xPZ2:xi5k% is called the
associatedboundary line. In particular, we will consider the following

~1! The upper half-planepup5$x5(x1 ,x2)PZ2:x2>0%.
~2! The downwards half-planepdown5$x5(x1 ,x2)PZ2:x2<0%, and the analogously define

right half-planep right and left half-planep left . We will also work with
~3! The left horizontal semiaxisl left5$x5(x1 ,x2)PZ2:x1<0,x250%, and
~4! the right semiaxisl right5$x5(x1 ,x2)PZ2:x1>0,x250%.
In the rest of this section we state three fundamental results on percolation in the Ising m

By the symmetry between the spin values11 and21, these results also hold when the minus a
plus signs are interchanged. Similarly, all notations introduced with one sign will be used ac
ingly for the opposite sign.

We first recall some basic concepts of percolation theory. A finitepath is a sequencep
5(x1 ,x2 ,...,xk) of pairwise distinct lattice points such that, for anyi P$2,...,k%, xi 21 andxi are
nearest neighbors~i.e., have Euclidean distance 1!. The numberk is called thelengthof p, andx1

andxk are its starting and final point, respectively. A pathp is called apath in a subset S,Z2 if
all xi belong toS. We say thatp meets or touches Sif some xi is contained inS or a nearest
neighbor of a point inS. We will also speak of infinite paths (x1 ,x2 ,...) anddoubly infinite paths
(...,x21 ,x0 ,x1 ,...) in the obvious sense. A pathp is called acircuit if x1 and xk are nearest
neighbors, and asemicircuitin a half-planep if it is contained inp andx1 andxk belong to the
boundary line ofp. A regionC,Z2 is calledconnectedif for any x,yPC there exists a path in
C from x to y. A cluster in a regionS,Z2 is a maximal connected subsetC of S. It is called
infinite if its cardinality is infinite. Infinite clusters will be denoted by the letterI, with suitable
sub- and superscripts.

Given any configurationvPV, we consider the setS1(v)5$xPZ2:v(x)511% of 1 spins.
A path ~respectively, circuit, semicircuit, cluster! in S1(v) is called a1path ~respectively,
1circuit, 1semicircuit, 1cluster! for v, and two pointsx, y are said to be1connectedif there
exists a1path fromx to y.

We also need to work with the conjugate graph structure onZ2, for which two points are
considered as neighbors if their Euclidean distance is either 1 or&, i.e., if they are either neares
neighbors or diagonal neighbors. This graph structure is indicated by a star and leads
concepts of*paths,*circuits, *semicircuits,*connectedness,*clusters,1*paths,1*semicircuits,
and so on. Note that each path isa fortiori a *path, and each cluster is contained in some*cluster.

The starting point of the random cluster method is the following result of Refs. 8 and 3
E1 denote the event that there exists an infinite1cluster I 1 in Z2, and defineE2,E1* ,E2*
analogously. Note thatE1,E1* andE2,E2* . ~Throughout this paper we will use the letterE
to denote events concerning the existence of infinite clusters.!

Lemma 2.1 (Existence of infinite clusters): IfmPG is different fromm2, there exists with
positive probability an infinite1 cluster. That is,m(E1).0 whenmÞm2.

Proof: Suppose thatm(E1)50. Then any given squareD is almost surely surrounded by
2*circuit, and with probability close to 1 such a circuit can already be found within a sq
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L.D providedL is large enough. If this occurs, we letG be the largest random subset ofL which
is the interior of such a2*circuit. ~The largest such set exists because the union of such se
again the interior of a2*circuit.! In the alternative case we setG5B. By maximality, G is
determined from outside. The strong Markov property together with the stochastic monoto
mG

2dm2 therefore implies~in the limit L↑Z2! thatmdm2 on FD . SinceD was arbitrary andm2

is minimal we find thatm5m2, and the lemma is proved. h

The next lemma is a variant of another result of Russo.3

Lemma 2.2 (Flip-reflection domination): LetmPG and R be any reflection, and suppose th
for m-almost all v each finiteD,Z2 is surrounded by an R-invariant*circuit c such thatv
>R+T(v) on c. Thenmfm+R+T.

Proof: Another way of stating the assumption is that for any finiteR-invariantD andm-almost
all v there exists a finiteR-invariant random setG(v).D such thatv>R+T(v) on ]G(v).
Given anye.0, we can thus find anR-invariantL so large that with probability at least 12e such
an R-invariant G~v! exists withinL. Since the union of any two suchG~v!’s enjoys the same
properties, we can assume thatG~v! is chosen maximal inL; in the case when no suchG~v! exists
we setG~v!5B. The maximality ofG implies that the events$G5G% are measurable with respe
to FL\G . For any increasingFD-measurable functionf >0 we thus get from the strong Marko
property

m~ f !>m~m ˙̇
G~ f !1$GÞB%!.

However, ifG~v!ÞB thenv>R+T(v) on ]G~v!. By stochastic monotonicity, for suchv we have

mG~v!
v ~ f !>mG~v!

R+T~v!~ f !5mG~v!
v ~ f +R+T!,

where the identity follows from theR-invariance ofG and theR+T-invariance of the interaction
Hence

m~ f !>m~ f +R+T1$GÞB%!>m~ f +R+T!2ei f i` .

The lemma thus follows by lettinge→0 andD↑Z2. h

A third useful result of Russo3 is the following. To state it we need to introduce two notatio
First, let

u5m1~0PI 1* !

be them1-probability that the origin belongs to an infinite1*cluster. Lemma 2.1 implies tha
u.0. Second, for a half-planep with boundary linel and a*semicircuits in p we write Ints for
the unique subset ofZ2 which is invariant under the reflectionR in l and satisfiespù](Int s)
5s; we call Ints the interior ofs.

Lemma 2.3 (Point-to-semicircuit lemma): Letp be some half-plane with boundary line l, x
P l, ands a *semicircuit inp with interior L5Int s∋x. Let vPV be such thatv[11 ons. Then

mL
v~x is in L1* connected tos!>u/2.

Proof: By stochastic monotonicity we can assume thatv[21 on ]L\s. We then havev
>R+T(v) on ]L, and thereforemL

vfmL
v+R+T. To exploit this relation we letBx,s be the event

that there exists a1*path inL from x to s,Cx,s the event thatx is surrounded by a1*circuit in
Løs which is 1*connected tos, andDx,s5Bx,søCx,s . Then

mL
v~Dx,søRT~Dx,s!!51. ~1!

Indeed, suppose thatv(x)511, but Bx,s does not occur. Then the1*cluster containingx does
not meets. Its outer boundary belongs to a2*cluster, which either touchesR(s) so that
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R+T(Cx,s) occurs, or not—in which case we consider the1*cluster containing its outer boundary
and so on. After finitely many steps we see that eitherCx,s or R+T(Cx,s) must occur.~1! is an
immediate consequence. It follows thatmL

v(Dx,s)>1/2. Hence

mL
v~Bx,s!>mL

v~Bx,suCx,s!m~Dx,s!>mL
v~Bx,suCx,s!/2.

But if Cx,s occurs then there exists a largest random setG,L containingx such that]G forms a
1*circuit and is1*connected tos. Writing Bx,]G for the event thatx is 1*connected to]G and
using the strong Markov property we thus find that

mL
v~Bx,suCx,s!5mL

v~mG
1~Bx,]G!uCx,s!>u

becausemG
1(Bx,]G)>u by stochastic monotonicity. Together with the previous inequality

gives the result. h

III. PERCOLATION IN HALF-PLANES

In this section we will prove that there exist plenty of infinite clusters of constant spin in
half-planes ofZ2. In particular, this will show that all translation invariantmPG are mixtures of
m1 andm2. We will use two pearls of percolation theory, the Burton–Keane uniqueness the
for infinite clusters5 and Zhang’s argument for the nonexistence of two infinite clusters of opp
sign in Z2. ~In the present context, these two results were obtained first in Ref. 9!.

For a given half-planep we letEp
1 denote the event that there exists an infinite1cluster inp.

When this occurs, we will writeI p
1 for such an infinite1cluster in p. ~As we will see, such

clusters are unique, so that this notation does not lead to conflicts.! In the case of the standar
half-planes, we will only keep the directional index and omit thep; for example, we writeEup

1 for
Epup

1 . Similar notations will be used for1*clusters and for the minus sign instead of the plus si

Let us say that~p,p8! is a pair ofconjugate half-planesif p and p8 share only a common
boundary line. An associated pair (I p

1 ,I p8
1 ) or (I p

2 ,I p8
2 ) of infinite clusters of the same sign inp

and p8 will be called aninfinite butterfly. ~This name alludes to the assumption that the t
infinite ‘‘wings’’ have the same ‘‘color,’’ but is not meant to suggest that they are symmetric
connected to each other, although the latter will turn out to be true.! We will say that a statemen
holdsG-almost surely if it holdsm-almost surely for allmPG.

Lemma 3.1 (Butterfly lemma):G-almost surely there exists at least one infinite butterfly.
Proof: Suppose the contrary. By the extremal decomposition theorem and the fact th

existence of infinite butterflies is a tail measurable event, there is then somemPexG for which
there exists no infinite butterflym-almost surely. We will show that this is impossible.

Step 1. First we observe thatm is R+T-invariant for all reflectionsR5Rk,hor or Rk,vert, and in
particular is periodic under translations. Indeed, let~p,p8! be conjugate half-planes with commo
boundary linel andR the reflection inl mappingp ontop8. By the absence of infinite butterflies
at least one of the half-planesp and p8 contains no infinite2cluster, and this or the othe
half-plane contains no infinite1cluster. In view of the tail triviality ofm, we can assume tha
m(Ep

2)50. This means that form-almost all v every finite D,p is surrounded by some
1*semicircuit g in p. For such ag,c5gøR(g) is an R-invariant *circuit that surrounds
DøR(D) and satisfiesv>R+T(v) on c. By Lemma 2.2, this gives the flip-reflection dominatio
mfm+R+T. Since also m(Ep

1)50 or m(Ep8
1 )50, we conclude in the same way th

mdm+R+T, so thatm5m+R+T. Since bothqhor
2 andqvert

2 are compositions of two reflections, th
invariance under the translation group (qx)xP2Z2 follows.

Step 2. We now take advantage of the Burton–Keane uniqueness theorem,5 stating that for
every periodicm with finite energy there exists at most one infinite1 ~respectively,2! cluster,
and Zhang’s symmetry argument~cf. Ref. 6, Theorem 5.18! deducing from this uniqueness th
absence of simultaneous1 and2percolation.~In Ref. 5, the uniqueness of the infinite cluster
only stated for translation invariantm, but the argument works in the same way by applying
ergodic theorem to the subgroup (qx)xP2Z2. It is also not shown there that the finite ener
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property remains valid under ergodic decomposition. Although this follows from Theorem~14.17!
of Ref. 7 in the present setting, and a similar argument in general, we do not need thi
because ourm is extremal, and therefore (qx)xP2Z2-ergodic by Proposition~14.9! of Ref. 7!.

We start noting that, by the flip-reflection symmetry ofm, m is different fromm1 andm2, so
that by Lemma 2.1, the tail triviality ofm, and the Burton–Keane uniqueness theorem there e
both a unique infinite1cluster I 1 and a unique infinite2cluster I 2 in the whole planeZ2

m-almost surely. We now choose a squareL5@2n,n#2,Z2 so large thatm(LùI 1ÞB).
122212. Let ]kL be the intersection of]L with the kth quadrant, and letAk

1 be the increasing
event that there exists an infinite1path inLc starting from some site in]kL. DefineAk

2 analo-
gously. Since

$LùI 1ÞB%, ø
k51

4

Ak
1

andm ~as an extremal Gibbs measure! has positive correlations, it follows that

)
k51

4

m~V\Ak
1!<mS ù

k51

4

V\Ak
1D<m~LùI 15B !,2212,

whence there exists somekP$1,...,4% such thatm(V\Ak
1),223. For notational convenience w

assume thatk51. By the above-shown flip-reflection symmetry, we find that

m~A1
1ùA2

2ùA3
1ùA4

2!.124•22351/2,

which is impossible because on this intersection the infinite clustersI 1 and I 2 cannot be both
unique. This contradiction concludes the proof of the lemma. h

The butterfly lemma leads immediately to the following result first obtained by Message
Miracle-Solé4 by means of correlation inequalities of symmetry type; the following proof
peared first in Ref. 6.

Corollary 3.2 (Periodic Gibbs measures): Any periodicmPG is a mixture ofm1 and m2.
Proof: SupposemPG is invariant under (qx)xPpZ2 for some periodp>1. Conditioningm on

any periodic tail eventE we obtain again a periodic Gibbs measure. It is therefore sufficien
show thatm(E1ùE2)50. Indeed, the butterfly lemma then shows thatm(E1)1m(E2)51, and
Lemma 2.1 implies thatm(•uE1)5m1 andm(•uE2)5m2 whenever these conditional probabil
ties are defined. Hencem5m(E1)m11m(E2)m2.

Suppose by contraposition thatm(E1ùE2).0. SinceE1ùE2 is invariant and tail measur
able, we can in fact assume thatm(E1ùE2)51; otherwise we replacem by m(•uE1ùE2). By
the butterfly lemma, there exists a pair~p,p8! of conjugate half-planes, saypup andpdown, and a
sign, say1, such that both half-planes contain infinite clusters of this sign with positive prob
ity. Sincem(E2)51 by assumption, we can find a large squareD such that with positive prob-
ability D meets infinite1clusters inpup and pdown and also an infinite2cluster. This2cluster
leavesD either on the left or on the right between the two infinite1clusters. We can assume th
the latter occurs with positive probability. By the finite energy property, it then follows that
m(A0).0, where forkPpZ we writeAk for the event that the point (k,0) belongs to a two-sided
infinite 1path with its two halves staying inpup andpdown, respectively, and (k11,0) belongs to
an infinite2cluster.

Let A be the event thatAk occurs for infinitely manyk,0 and infinitely manyk.0. The
horizontal periodicity and Poincare´’s recurrence theorem@cf. Lemma~18.15! of Ref. 7# then show
that m(A0\A)50, and thereforem(A).0. But onA there exist infinitely many2clusters which
are separated from each other by the infinitely many ‘‘vertical’’1paths. This contradicts the
Burton–Keane theorem. h
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The preceding argument actually shows thatm(E2* ùE1* )50 whenevermPG is periodic.
Sincem1(E1)51 by Lemma 2.1 and tail triviality, this shows that in the1phase the1spins form
an infinite sea with only finite islands.

Corollary 3.3 (Plus-sea in the plus-phase):m1(E2* )50. Hence, m1-almost surely there
exists a unique infinite1cluster I1 in Z2 which surrounds each finite set.

We note that in contrast to Zhang’s argument~cf. Theorem 5.18 of Ref. 6! our proof of the
preceding corollary does not rely on the reflection invariance ofm1 but only on its periodicity,
and thus can be extended to the setting of Sec. VI.

We conclude this section with the observation that percolation in half-planes is not affect
spatial shifts.

Lemma 3.4 (Shift lemma): Letp and p̃ be two half-planes such thatp.p̃, i.e., p and p̃ are
translates of each other. Then Ep

15Ep̃
1 G-almost surely, and similarly with2 instead of1.

Proof: Since trivially Ep
1.Ep̃

1 , we only need to show thatEp
1,Ep̃

1 G-almost surely. For
definiteness we consider the case whenp5pup5$x2>0% and p̃5$x2>1%. Take anymPexG,
and suppose thatm(Ep̃

1)50. Then for almost allv and any n>1 there exists a smalles
2*semicircuitsn(v) in p̃ containingDnøsn21(v) in its interior; hereDn5@2n,n#3@1,n# and
s05B. Let xn(v)P l left andyn(v)P l right be the two points facing the two end points ofsn(v);
these areFp̃-measurable functions ofv, and the random sets$xn ,yn% are pairwise disjoint. LetAn

be the event that the spins atxn andyn take value21.
We claim thatAn occurs for infinitely manyn with probability 1. Indeed, fix anyN>1, x

P l left , yP l right and letBN,x,y5$xN5x,yN5y%ùùn.NAn
c . Then we can write

m~ANùBN,x,y!5m~m˙ $x,y%~v~x!5v~y!521!1BN,x,y
!>d2m~BN,x,y!

becauseBN,x,y only depends on the configuration outside$x,y%, and the one-point conditiona
probabilities ofm are bounded from below byd5@11e8b#21. Summing overx,y we obtain
m(ùn>N An

c)<(12d2)m(ùn.N An
c), and iteration givesm(ùn>N An

c)50. LettingN→` we get
the claim.

We now can conclude that with probability 1 each box@2n,n#3@0,n# is surrounded by a
2*semicircuit in pup, which means thatm(Eup

1 )50. As m(Ep̃
1) is either 0 or 1, the lemma

follows. h

IV. UNIQUENESS OF SEMI-INFINITE CLUSTERS

Our next subject is the uniqueness of infinite clusters in half-planes, together with the str
property that such clusters touch the boundary line infinitely often. This was already a key
of Russo.3

Lemma 4.1 (Line touching lemma): For any half-planep, there existsG-almost surely at mos
one infinite1 ~respectively1* ! cluster Ip

1 ~respectively, Ip
1* ! in p. When it exists, this infinite

clusterG-almost surely intersects the boundary line l ofp infinitely often, in the sense that outsid
any finiteD one can find an infinite path in this cluster starting from l.

Just as Russo did, we derive this lemma from the absence of percolation for the1phase in the
upper half-planepup with 2boundary condition inpup

c ~which implies the uniqueness of th
semi-infinite Gibbs measure, by the argument of Lemma 2.1!. But for the latter we will give here
a different argument using stochastic domination by a translation invariant Gibbs measu
Corollary 3.2. To state the result we write6 for the configuration which is11 onpup and21 on
pup

c , and consider the semi-infinite limit

mup
6 5 lim

D↑pup

mD
6 ~2!

which exists by stochastic monotonicity.
Lemma 4.2 (No percolation on a bordered half-plane)mup

6 (Eup
1* )50.
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Proof: To begin we note thatmup
6 is invariant under horizontal translations and stochastic

maximal in the set of all Gibbs measures onpup with 2boundary condition inpup
c . This follows

just as in the case of the plus-phasem1 on the whole lattice. In particular,mup
6 is trivial on the

pup-tail Tup5ù$Fpup\L :L,pupfinite%. We think ofmup
6 as a probability measure onV for which

almost all configurations are identically equal to21 on pup
c .

Next we consider the downwards translatesmn,2
1 5mup

6 +qvert
2n , n>0. Evidently,mn,2

1 is ob-
tained by an analogous infinite-volume limit in the half-plane$x2>2n%. This shows thatmn,2

1

dmn11,2
1 by stochastic monotonicity, so that the stochastically increasing limitm2

1

5 limn→`mn,2
1 exists. Clearlym2

1PG. Also, m2
1 inherits the horizontal invariance of themn,2

1 and
is in addition vertically invariant. Corollary 3.2 therefore implies thatm2

15am21(12a)m1 for
some coefficientaP@0,1#.

We claim thata.0. For n>1 let Bn denote the event that the origin is2*connected to the
horizontal line$x252n%. By the finite energy property and the horizontal ergodicity ofmn,2

1 ,
there exist formn,2

1 -almost all v some random integersmleft(v),0,mright(v) such thatv
[21 on

s~v!5$xPZ2:x1P$mleft~v!,mright~v!%,2n<xz<0%.

Together with a segment of the line$x252n21% on which v521mn,2
1 -almost surely,s~v!

forms a2semicircuit inpdown surrounding the origin. An immediate application of the stro
Markov property~applied to the largest suchs in a large box! and the point-to-semicircuit lemm
thus implies thatmn,2

1 (Bn)>u/2. Therefore, writingE0,m
2* for the event that the origin belongs t

some2* cluster of size at leastm we find mn,2
1 (E0,m

2* )>u/2 whenn>m. Letting firstn→` and
thenm→` we see thatm2

1(E2* )>u/2. Sincem1(E2* )50 by Corollary 3.3, it follows thata
>u/2, and the claim is proved.

To conclude the proof we observe that

mup
6 ~Eup

1* !<m2
1~E1* !512a,1,

again by Corollary 3.3. Sincemup
6 is trivial on Tup, the lemma follows. h

We are now able to prove Lemma 4.1 along the lines of Russo.3

Proof of Lemma 4.1:For definiteness we assume thatp5pup; other half-planes merely
correspond to a change of coordinates. We consider only infinite1clusters inpup; the case of
1*clusters is similar. It is also clear that any result proved for the1sign is also valid with the
2sign.

Uniqueness:The uniqueness of infinite1clusters inpup is a consequence of the secon
statement, the line-touching property for infinite2*clusters. Indeed, suppose there exists
infinite 2*cluster inpup; then each finite set inpup is surrounded by a1semicircuit, so that any
two infinite 1paths are necessarily1connected to each other. In the alternative case when
infinite 2*cluster I up

2* in pup exists, thisI up
2* meetsl left or l right infinitely often, so that each

infinite 1cluster must meet the other half-line infinitely often. Hence, two such1clusters must
cross each other, and are thus identical.

Line touching:Let mPexG andxPpup and consider the eventAx
1 thatx belongs to an infinite

1cluster inpup which does not touch the horizontal axisl hor. We will show thatm(Ax
1)50. Once

this is established, we can take the union over allx and use the finite energy property to see th
for each finiteD the event ‘‘an infinite1cluster inpup is not connected tol hor outsideD’’ also has
probability zero, which means that almost surely any infinite1cluster in pup must meetl hor

infinitely often.
Intuitively, if Ax

1 occurs then the infinite1cluster containingx is separated froml hor by an
infinite 2*path; but the spins ‘‘above’’ this path feel only the2boundary condition and thu
believe to be in the2phasem2, so that they will not form an infinite1cluster.

To make this intuition precise we fix some integerk>1 and consider the eventAx,k
1 that x

belongs to a1cluster of size at leastk which does not meetl hor. Take a boxD,pup containing
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x and so large that there exists no path of lengthk from x to Dc. For vPAx,k
1 we consider the

largest setG(v),D containingx such thatv521 on]G(v)\]upD, where]upD5]Dùpup. We
also consider the eventEx,k

1 thatx belongs to a1cluster inpup of size at leastk. Using the fact that
Ax,k

1 is contained in theFD-measurable event$G exists%ùEx,k
1 , we obtain by the strong Markov

property and the stochastic monotonicity of Gibbs distributions that

m~Ax,k
1 !<m~mĠ~Ex,k

1 !<mD
6~Ex,k

1 !,

where the6 boundary condition is defined as in~2!. Now, taking first the limitD↑pup as in ~2!
and then lettingk→` we find thatm(Ax

1)<mup
6 (Eup

1 ). But the last expression vanishes by Lemm
4.2. h

The butterfly lemma and shift lemma together still leave the possibility that all infinite
terflies have the same orientation, either horizontal or vertical. As a consequence of th
touching lemma, we can now show that both orientations must occur.

Lemma 4.3 (Orthogonal butterflies):G-almost surely there exist both a horizontal infini
butterfly inpup and pdown as well as a vertical infinite butterfly inp left and p right .

Proof: Suppose there exists somemPexG having almost surely no vertical infinite butterfly
By the first step in the proof of the butterfly lemma, it then follows thatm5m+Rk,vert+T for all
kPZ, and thusm5m+qhor

22. By the tail triviality, m is in fact ergodic underqhor
2 ; cf. Proposition

~14.9! of Ref. 7. By the butterfly lemma, horizontal infinite butterflies do exist, say of color1.
We now use an argument similar to that in Corollary 3.2, with the line touching lemm

place of the Burton–Keane theorem. Fix anyn>1. ForkPZ let Ak denote the event that all spin
along the straight pathpk,n5((k,l ): l 52n,...,n) are11, ~k, n! belongs to an infinite1cluster in
pn,up5$xPZ2:x2>n%, and (k,2n) belongs to an infinite1cluster inpn,down5$x2<2n%. Let A
be the event thatAk occurs for infinitely manyk,0 and infinitely manyk.0. The finite energy
property then shows thatm(A0).0, and the horizontal ergodicity and Poincare´’s recurrence theo-
rem~or the ergodic theorem! imply thatm(A)51. But the line touching lemma guarantees that
infinitely many doubly infinite ‘‘vertical’’ 1paths passing through the horizontal axis are c
nected to each other inpn,up andpn,down. As n was arbitrary, it follows that almost surely eac
finite set is surrounded by a1circuit, and an infinite2cluster cannot exist. In view of Lemma 2.1
this implies thatm5m1. But m1 is not invariant underRvert+T, in contradiction to what we
derived form. h

The preceding argument can be used to derive the result of Russo3 that m1 andm2 are the
only phases which are periodic in one direction. We will not need this intermediate result.

V. NONCOEXISTENCE OF PHASES

In this section we will prove the following proposition.
Proposition 5.1 (Absence of nonperiodic phases): Any Gibbs measuremPG is invariant under

translations, i.e.,m5m+qhor
21 and m5m+qvert

21.
Together with Corollary 3.2 this will immediately imply the main theorem that each G

measure is a mixture of the two phasesm1 andm2. Our starting point is the following lemma
estimating the probability that a semi-infinite cluster can be pinned at a prescribed point.

Lemma 5.2 (Pinning lemma): LetmPG, and suppose thatm-almost surely there exists a
infinite 1*cluster Iup

1* in pup which meets the right semiaxis lright infinitely often. Then for each
finite squareD5@2n,n#2 and xP l right we have

m~x is 1* connected in~Dø l left!
c to I up

1* !>u/4

provided x lies sufficiently far to the right. The same holds when ‘‘left’’ and ‘‘right’’ or ‘‘up’’ an
‘‘down’’ are interchanged.

Proof: By hypothesis, the infinite component ofI up
1* \D almost surely contains infinitely man

points of l right . Thus, if xP l right is located far enough to the right then, with probability exce
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ing 1/2, at least one such point can be found left fromx, and another such point can be found rig
from x. This means thatx is surrounded by a1*semicircuits in pup which belongs toI up

1* and
satisfiesDùInt s5B.

Let L be a large square box containingx. If L is large enough, a semicircuits as above can
be found withinL with probability still larger than 1/2. We then can assume thats has the largest
interior among all such semicircuits inL. Using the strong Markov property and the point-t
semicircuit lemma we get the result. h

Our main task in the following is to analyze the situation when a half-plane contains bo
infinite 1cluster and an infinite2cluster.~The line-touching lemma still allows this possibility!
In this situation it is useful to consider contours.

As is usually done in the Ising model, we draw lines of unit length between adjacent sp
opposite sign. We then obtain a system of polygonal curves running through the sites of th

lattice Z21( 1
2,

1
2). A contour g in the upper half-planepup is a part of these polygonal curve

which separates a2cluster inpup from a 1*cluster inpup. This corresponds to the conventio
that at crossing points the contours are supposed to bend around the2spins. ~The artificial
asymmetry between1 and2 does not matter, and we could clearly make the opposite con
tion.! On its two sides,g is accompanied by a1*quasipathf g

1 and a2quasipathf g
2 which will

be called, respectively, the1 and2face ofg; the prefix ‘‘quasi’’ indicates that the faces are n
necessarily self-avoiding but may contain loops.

Lemma 5.3 (Semi-infinite contours):G-almost surely on Eup
1* ùEup

2 there exists a unique
semi-infinite contourgup in pup. gup starts between two points of the horizontal axis lhor and
intersects each horizontal line inpup only finitely often.

Proof: Let I up
1* be the unique infinite1*cluster inpup, andI up

2 the unique infinite2cluster in
pup. For definiteness we assume thatI up

1* meetsl right infinitely often, andI up
2 meetsl left infinitely

often. Letx be the rightmost point ofI up
2 ù l hor andgup the contour inpup starting from the line

segment separatingx andy5x1(1,0). SinceI up
2 contains an infinite2path starting fromx which

cannot be traversed bygup,gup cannot return tol hor on the left-hand side ofx. But gup can also not
return to l hor on the right-hand side ofy, since otherwise the2face of gup would establish a
2connection inI up

2 from x to a point ofl hor to the right ofy, in contradiction to the choice ofx.
Hencegup can never end and must therefore be infinite.

Let g be any infinite contour inpup. Then the infinite2face f g
2 must belong toI up

2 , by the
uniqueness of the infinite2cluster. This implies thatf g

2 must lie on the ‘‘left-hand side’’ ofgup.
Likewise, the1* face f g

1* must belong to the ‘‘side on the right’’ ofgup. Henceg5gup, proving
the uniqueness ofgup.

Finally, let l 5$x25n%, n>1, be a horizontal line inpup andp5$x2>n% the half-plane above
l. By the shift lemma and the above,p contains a unique semi-infinite contourg starting from the
line segment between two adjacent pointsu andv of l. u andv belong to the infinite faces ofg and
therefore toI up

1* and I up
2 , respectively. By the line touching lemma, this means thatu andv are

1*connected and2connected, respectively, to the axisl hor. The unique continuation ofg can
therefore visit only finitely many sites ofpup, and thus must reachl hor after finitely many steps;
this continuation is then equal togup, by the uniqueness of the latter. This shows thatgup visits the
line l only finitely often. h

From now on we consider a fixed external Gibbs measuremPexG. We want to prove thatm
is horizontally invariant.~The proof of vertical invariance is similar.! To this end we consider its
horizontal translatem̂5m+qhor

21, as well as the product measuren̂5m ^ m̂ on V3V. It is conve-
nient to think of the latter as a duplicated system consisting of two independent layers
following lemma is a slight variation of a result of Aizenman1 in his proof of the main theorem
our proof differs in part.

Lemma 5.4 (Fluctuations of the semi-infinite contour): Supposepup contains a semi-infinite
contourgup m-almost surely. Then forn̂-almost all(v,v̂)PV2, gup(v) andgup(v̂) intersect each
other infinitely often.

Proof: By tail triviality, we can assume thatgup has its1face on the left-hand side almos
surely; the alternative case is analogous. For anyn>1 we let
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an5max$kPZ: ~k,n!PI pn,up

1* %

be the abscissa of the point at whichgup enters definitely into the half-planepn,up5qvert
n pup above

the heightn. Consider the product measuren5m ^ m and the event

F5$~v,v8!PV2:gup~v! and gup~qhorv8! meet each other only finitely often%.

We need to show thatn(F)50.
Suppose thatF occurs. Thengup(v) lies strictly on one side ofgup(qhorv8) above some

random leveln. Hence we have eitheran(v).an(qhorv8) eventually, oran(v),an(qhorv8)
eventually. Using the abbreviationdn(v,v8)5an(v)2an(v8)5an(v)2an(qhorv8)11, we thus
see that

F,AøB[$dn>0 eventually%ø$dn<0 eventually%.

Suppose now thatn(F).0. Then, by symmetry,n(A)5n(B).0. By the tail triviality ofm, it
follows thatn(A)5n(B)51. This is becauseA, B are measurable with respect to the ‘‘produc
tail’’ T(2)5ù$FLc^ FLc:L,Z2 finite% in V2, which is trivial by Fubini’s theorem.~One should
not be mistaken to believe thatA was measurable with respect to the smaller ‘‘tail-product’’T
^ T. It is only the case that thev-sectionAv of A belongs toT for any v, and the functionv
→m(Av) is T-measurable.! We thus conclude thatv(AùB)51, meaning thatdn50 eventually,
almost surely. The lemma will therefore be proved once we have shown that this is impos

To this end we claim first thatn(dn>1)>dn(dn1150) for all n and some constantd.0. To
see this letAk,n5$(v,v8):an11(v)5an11(v8)5k%, Dk,n the two-point set consisting of th
points ~k,n! and (k11,n), andBk,n the event thatv5(11,11) on Dk,n andv85(11,21) on
Dk,n ; see the following diagram:

We then have

n~Bk,nuFD
k,n
c ^ FD

k,n
c !~v,v8!5mDk,n

v
^ mDk,n

v8 ~Bk,n!>@11e8b#24[d

and thus

n~$dn>1%ùAk,n!>n~n~Bk,nuFD
k,n
c ^ FD

k,n
c !1Ak,n

!>dn~Ak,n!

becauseAk,n is an event inDk,n
c . Summing overk we get the claim.

Now, if dn50 eventually almost surely then

inf lim
n→`

n~dn>1!>d lim inf
n→`

n~dn1150!5d,

so that with positive probability we have simultaneouslydn>1 infinitely often anddn50 even-
tually. Since this is impossible, we conclude thatn(F)50. h

The following percolation result for the duplicated system with distributionn̂ was already a
cornerstone of Aizenman’s argument.1 We prove it here differently, avoiding his use of the fa
that the limiting Gibbs measure for the6boundary condition is translation invariant. We will sa
that a path inZ2 is a <path for a pair (v,v̂)PV2 if v(x)<v̂(x) for all its sitesx. In the same
way we define<*paths, and we can speak of<*circuits and<*clusters.
                                                                                                                



im

e

our

nce

ver,

1164 J. Math. Phys., Vol. 41, No. 3, March 2000 H.-O. Georgii and Y. Higuchi

                    
Lemma 5.5 (No (1, 2)percolation in the duplicated system):n̂-almost surely each finite
squareD5@2n,n#2 is surrounded by a<*circuit in Z2.

Proof: Consider any two pointsxP l left andyP l right . We claim that withn̂-probability at least
(u/4)2 there exists a<*path fromx to y ‘‘above’’ D, providedx andy are located sufficiently far
to the left and to the right, respectively. We distinguish three cases.

Case 1:m(Eup
1 )50. By Lemma 4.3,pup then almost surely contains an infinite-clusterI up

2 ,
and each finite subset ofpup is surrounded by a2*semicircuit inpup. In other words, an infinite
2*clusterI up

2* in pup exists and touches bothl left and l right infinitely often. By the pinning lemma
and the positive correlations ofm, with m-probability at least (u/4)2 bothx andy are2*connected
to I up

2* outsideD, and therefore also2*connected to each other by a2*pathp aboveD. However,
this 2*pathp on the first layer is certainly also a<*path for the duplicated system, and the cla
follows.

Case 2:m(Eup
2 )50. In this case we also havem̂(Eup

2 )50. Interchanging1 and2 and replac-
ing m by m̂ in Case 1, we find that withm̂-probability at least (u/4)2, there exists a1*path p̂ in
the second layer aboveD from x to y. Sincep̂ is again a<*path for the duplicated system, th
claim follows as in the first case.

Case 3:m(Eup
1 )5m(Eup

2 )51. Thenm-almost surely there exists a unique semi-infinite cont
gup, and by tail triviality we can assume~for definiteness! thatgup has its1face on the left-hand
sidem-almost surely, and thus alsom̂-almost surely. By the pinning lemma and the independe
of the two layers, the following event hasn̂-probability of at least (u/4)2:

~1! In the first layer,y is 2*connected offD to I up
2 (v), and thus to the2face f up

2 (v) of gup(v);
that is, there exists an infinite2*path py

2(v) from y outsideD eventually running along
gup(v).

~2! In the second layer,x is 1*connected offD to I up
1* (v̂), and thus to the1face f up

1 (v̂) of
gup(v̂); that is, there exists an infinite1*path px

1(v̂) from x outsideD eventually running
alonggup(v̂).

Sincegup(v) andgup(v̂) intersect each other infinitely often by Lemma 5.4, the union ofpy
2(v)

and px
1(v̂) contains a*path fromx to y which by construction is a<*path for the duplicated

system. This proves the claim in the final case.
To conclude the proof of the lemma, we letAx,y denote the event that there exists a<*path

from x to y aboveD, andBx,y the event that such a path exists belowD. The indicator functions
of these events can be written as increasing functionsf and g respectively of the difference
configurationv̂2v. Using the positive correlations ofv̂ andm we thus obtain

n̂~Ax,yùBx,y!5E m~dv!E m̂~dv̂ ! f ~v̂2v!g~v̂2v!

>E m~dv!m̂~ f ~•2v!!m̂~g~•2v!!

>n̂~Ax,y!n̂~Bx,y!>~u/4!4.

The last inequality follows from the claim and its analog for the lower half-plane. Howe
if Ax,yùBx,y occurs thenD is surrounded by a<*circuit for the duplicated system. LettingD↑Z2

we see that with probability at least (u/4)4 each finite set is surrounded by a<*circuit. Since this
event is measurable with respect to the product-tailT (2) on which n̂ is trivial, the lemma fol-
lows. h

It is now easy to complete the proof of Proposition 5.1 as in Ref. 1.
Proof of Proposition 5.1:Consider any squareD5@2n,n#2, and lete.0. By Lemma 5.5,D

is n̂-almost surely surrounded by a<*circuit, and with probability at least 12e such a<*circuit
can be found in a sufficiently large squareL. Let G be the interior of the largest such<*circuit;
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if no such<*circuit exists letG5B. Then we find for any increasingFD-measurable function
0< f <1, using the strong Markov property ofn̂ and the fact thatmG

vdmG
v̂ whenG(v,v8)ÞB,

m~ f !5 n̂~ f ^ 1!

<E
$GÞB%

dn̂~v,v8!mG~v,v8!

v
~ f !1e

<E dn̂~v,v8!mG~v,v8!

v8 ~ f !1e

5 n̂~1^ f !1e

5m̂~ f !1e.

Letting e→0 andD↑Z2 we find thatmdm̂. Interchangingm and m̂ ~i.e., the roles of the layers!
we get the reverse relation. Hencem5m̂, so thatm is horizontally invariant. The vertical invari
ance follows similarly by an interchange of coordinates.

VI. EXTENSIONS

Which properties of the square latticeZ2 entered into the preceding arguments? The o
essential feature was its invariance under the reflections in all horizontal and vertical line
integer coordinates. We claim that the theorem remains true for the Ising model on any con
graph L with these properties.~The Ising model on the triangular and hexagonal lattices
already been treated in Ref. 10.!

To be more precise, letR5$Rk,hor,Rk,vert:kPZ% denote the set of all reflections of th
Euclidean planeR2 in horizontal or vertical lines with integer coordinates, and supposeL is a
locally finite subset ofR2 which ~after suitable scaling and rotation! is R-invariant for all R
PR. Such anL is uniquely determined by its finite intersection with the unit cube@0,1#2, and it
is periodic with period 2. Suppose further thatL is equipped with a symmetric neighbor relatio
‘‘ ;’’ satisfying

~L1! eachxPL has only finitely many ‘‘neighbors’’yPL satisfyingx;y;
~L2! x;y if and only if Rx;Ry for all RPR;
~L3! ~L,;! is a connected graph.

If x;y we say thatx and y are connected by an edge, which is visualized by the straight
segment betweenx andy. The preceding assumptions simply mean that~L,;! is a locally finite
connected graph admitting the reflectionsRPR, and thereby the translationsqx ,xP2Z2, as
graph automorphisms. The fundamental further assumption is

~L4! ~L,;! is planar, i.e., the edges inR2 between different pairs of neighboring points ha
only end points in common.

The complement~in R2! of the union of all edges then splits into connected compone
called the faces of~L,;!.

As will be explained in more detail in the Appendix, the properties~L1! to ~L4! are sufficient
for all geometric arguments above. Some particular examples are as follows.

~1! The triangular lattice T. This is the R-invariant lattice satisfyingTù@0,1#2

5$(1,0),(0,1)% and (21,0);(1,0);(0,1);(2,1); the remaining edges result from~L2!.

~2! The hexagonal orhoneycomb latticeH. Here, for example,Hù@0,1#25$( 1
3,1),(2

3,0)% and

(2 1
3,1);( 1

3,1);( 2
3,0);( 4

3,0); all other edges are again determined by~L2!.
~3! The diced lattice. This is obtained from the honeycomb lattice by placing points in

centers of the hexagonal faces and connecting them to the three points in the west, northe
southeast of these faces; to obtain reflection symmetry an additional shift by~2 1

3,0! is necessary.
See p. 16 of Ref. 11 for more details.

~4! The covering lattice of the honeycomb lattice, theKagomélattice, cf. p. 37 of Ref. 11.
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As for the interaction, it is neither necessary that all adjacent spins interact in the same
nor that the interaction is invariant under the spin flip. Except for attractivity, we need onl
invariance undersimultaneousflip-reflections~which in particular implies periodicity with period
2!. As a result, we can consider any system of spinsv(x)561 with formal Hamiltonian of the
form

H~v!5(
x;y

Ux,y~v~x!,v~y!!1 (
xPL

Vx~v~x!!, ~3!

where for alla,bP$21,1% we haveUx,y(a,b)5Uy,x(b,a) and

~H1! Ux,y(1,•)2Ux,y(21,•) is decreasing on$21, 1%;
~H2! Ux,y(a,b)5URx,Ry(2a,2b) andVx(a)5VRx(2a) for all RPR.

Assumption~H1! implies that the FKG inequality is applicable, and~H2! expresses the invarianc
under simultaneous spatial reflection and spin flip. We thus obtain the following general re

Theorem 6.1: Consider a planar graph~L,;! as above and an interaction of the form (3
satisfying (H1) and (H2). Then there exist no more than two extremal Gibbs measures.

The standard case, of course, is the ferromagnetic Ising model without external field
corresponds to the choiceUx,y(a,b)52bab andVx[0.

But there is also another case of particular interest. ConsiderL5Z21( 1
2,

1
2), the shifted square

lattice with its usual graph structure.L is bipartite, in the sense thatL splits into two disjoint
sublattices,Leven and Lodd, such that all edges run from one sublattice to the other. If we
Ux,y(a,b)52bab and define a staggered external field

Vx~a!5H 2ha if xPLeven

ha if xPLodd

with hPR then the conditions~H1! and ~H2! hold; here we take advantage of the fact that
reflectionsRPR map Leven into Lodd and vice versa. But it is well-known that this model
isomorphic to theantiferromagnetic Ising model onZ2 with homogeneous external fieldh; the
isomorphism consists in flipping all spins inLodd. This gives us the following result.

Corollary 6.2: For the Ising antiferromagnet onZ2 for any inverse temperature and arbitrar
external field there exist at most two extremal Gibbs measures.

This corollary does not extend to nonbipartite lattice such as the triangular lattice. In fac
the Ising antiferromagnet onT one expects the existence of three different phases for suitabh.

Another repulsive model to which our arguments can be applied is the hard-core lattice g
Z2, which is also known as the hard square model. In this model, the values21 and 1 are
interpreted as the absence and presence of a particle, respectively, and no particles are al
sit on adjacent sites. Its Hamiltonian is of the form~3! with

Ux,y~a,b!5H ` if a5b51

0 otherwise,

Vx~a!5H 2 logl if a51

0 otherwise.

The parameterl.0 is called the activity. Interchanging the values61 on Lodd we obtain an
isomorphic attractive model to which our techniques can be applied, although the interaction
the value1` so that the finite energy condition does not hold as it stands. However, there ar
enough admissible configurations to satisfy all needs of the Burton–Keane theorem and ou
applications of the finite energy property; more details will be provided in the Appendix.
therefore can state the following theorem.

Theorem 6.3:For the hard-core lattice gas onZ2 at any activityl.0 there exist at most two
extremal Gibbs measures.
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APPENDIX

Here we explain in more detail how our arguments can be extended to obtain Theorem
and 6.3.

Comments on the proof of Theorem 6.1:~1! *Connections and contours. A basic consequence

of the planarity assumption~L4! is that ~L,;! admits a conjugate matching graph~L,;* ). As
indicated by the notation, this conjugate graph has the same set of vertices, but the relax

;
* y holds if eitherx;y or x andy are distinct points~on the border! of the same face of~L,;!.
~Note that this matching dual is in general not planar. An interesting exception is the trian

lattice T, which is self-matching.! The edges of~L,;* ) are then used to define the concept
*connectedness. The construction implies that every path in~L,;! is also a*path ~i.e., a path in

~L,;* ), and that the outer boundary of any cluster is a*path, and vice versa.~The latter property
holds for arbitrary matching pairs of graphs as defined in Kesten,11 for example. However, we also
used repeatedly the former property which does not extend to general matching pairs. In par
this means that our results do not apply to the Ising model on the matching conjugate ofZ2 having
nearest-neighbor interactionsand diagonal interactions.!

Another consequence of planarity is that we can draw contours separating clusters
*clusters. Such contours can either be visualized by broken lines passing through the ed
~L,;!, or simply as a pair consisting of a quasipath and an adjacent*quasipath, namely the two
faces of the contour.

~2! Half-planes and boundary lines. A half-planep in L is still defined as the intersection o
L with a set of the form$xPR2:xi>k%,kPZ,i P$1,2%, or with < instead of>. However, the
‘‘boundary line’’ l is now in general not a straight line but rather the setl 5$xPp:
x;y for somey¹p%5](pc). In particular, l is not necessarily a line of fixed points for th
reflectionRPR mappingp onto its conjugate half planep8. Rather, for eachxP l we have either
Rx5x or Rx;x. For example, forL5T, the triangular lattice,pup and pdown have a common
straight boundary line, but the boundaries ofp right and p left are not straight; besides a commo
part on the vertical axis they also contain the adjacent points (1,k) and (21,k), kP2Z, respec-
tively. For the honeycomb latticeH, pup andpdown have again a common straight boundary lin
but p right andp left have no common points.

Nevertheless, it is easy to see that Lemma 2.3~and thus also Lemma 5.2! are still valid, and
these are the only results in which fixed points of reflections show up. In all other places on
only to observe that the axesl hor andl vert get a different meaning according to which half-space
considered; so one has to distinguish between an ‘‘upper’’ horizontal axisl hor,up~being the bound-
ary ‘‘line’’ of pup! and a ‘‘lower’’ horizontal axisl hor,down, and similarly betweenl vert,left and
l vert,right.

~3! Construction of connections and paths. At various places we needed to establish p
scribed connections or to construct specific paths. For example, the key idea of Lemma 3.4
extend2*semicircuits inp̃ to the boundary line ofp. In the present setup, this will in gener
require a finite2path rather than a single2spin, so that one has to adapt the definition ofAn

accordingly. In view of~L3! this is obviously possible, and one will only end up with a high
power ofd. Similarly, the2semicircuits in the proof of Lemma 4.2 has in general to be redefin
using the geometry ofL, and the same is the case for the points~k, 0! in the definition ofAk in the
proof of Corollary 3.2, the pathspk,n in the proof of Lemma 4.3, and the setsDk,n in the proof of
Lemma 5.4; see also comment~5!.

~4! Flip-reflection invariance. In the standard Ising model onZ2 it is true that the phasesm1

andm2 are invariant under allRPR and related to each other by the spin flipT. However, we did
not make use of this fact, cf. the comments after Corollary 3.3. We only needed thatm15
m2+T for all RPR ~implying thatm1 andm2 are periodic, and that any flip-reflection invaria
m is different from these phases; the latter was used in Lemmas 3.1 and 4.3!. This, however,
already holds whenever the interaction is only invariant under simultaneous flip-reflection
stated in assumption~H2!. This property is also sufficient for flip-reflection domination and t
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point-to-semicircuit lemma, as their proofs only use the composed mappingR+T for RPR.
~5! Translations. Since the lattice and the interaction are in general only preserved by

translation subgroupqx , xP2Z2, we have to confine ourselves to this class of translations.
did this already in the proof of the butterfly lemma and its Corollary 3.2, and we can obvious
so in the proof of Lemma 4.2. The only statements needing discussion are Proposition 5
Lemma 5.4. The former now only asserts that each Gibbs measure is periodic with per
Accordingly, in Lemma 5.4 and below we have to replaceqhor by qhor

2 . In addition, the minimal
distance between distinct lattice points can be less than 1, and the origin does not nece
belong toL. So,an has to be defined as the abscissa of the rightmost point in the boundar
of pn,up which belongs toI pn,up

1* , and dn(v,v8)5an(v)2an(v8)5an(v)2an(qhor
2 v8)12. In

general, we then have only the inclusion

F,$dn.22 eventually%ø$dn,2 eventually%,

and we need to derive a contradiction from the assumption thatudnu,2 eventually almost surely
This means that we have to prescribe the configurations for the two layers on larger sets thDk,n

~depending onn and bothan(v) and an(v8)! to obtain the inequalityn(udnu>2)>dn(udn11

u,2) for somed.0. While this is tedious to write down in full generality, it should be clear h
it can be done.

Comments on the proof of Theorem 6.3:Just as in the case of the Ising antiferromagnet,

replaceZ2 by its translateL5Z21( 1
2,

1
2). So we make sure that all reflectionsRPR mapLeven

into Lodd and vice versa. Nevertheless, below it will be convenient to ignore the shift by~1
2,

1
2! and

to characterize the lattice points by integer coordinates. Performing a spin flip onLodd we obtain
an isomorphic model which is defined by setting

Ux,y~a,b!5H ` if a5e~x!,b5e~y!

0 otherwise,

Vx~a!5H 2 logl if a5e~x!

0 otherwise,

wheree(x)51 if xPLeven, ande(x)521 otherwise. This model satisfies both~H1! and ~H2!.
However, the finite energy condition is violated becauseUx,y takes the value1`. Let us see how
this obstacle can be overcome. The basic observation is that the ‘‘vacuum configuration’’2e can
occur in any finite region with positive probability.

~1! In the proof of the Burton–Keane theorem, the finite energy property is used to co
different 1clusters with positive probability. This is still possible because for any boxD, any x
PD, any finite number of pointsx1 ,...,xkP]D, and anyv with v(x1)5¯5v(xk)511 we
have

mD
v~x is 1connected tox1 ,...,xk!.0.

~2! A different use of the finite energy property is made in the proofs of Corollary 3.2
Lemma 4.3: the eventsAk there involve the existence of both1 and2paths. To adapt the proo
of Corollary 3.2 to the present case we redefineA0 as the event that a prescribed pointxPLodd

belongs to a two-sided infinite1path with its two halves staying inpup andpdown, respectively,
and a neighbor pointyPLeven belongs to an infinite2cluster; forkP2Z we setAk5qhor

2kA0 . A
1spin atx then does not interfere with a2spin aty. Therefore, ifD is a sufficiently large box and
u1 ,u2 ,u3P]D are three points belonging, respectively, to infinite1, 1, 2clusters meetingD, we
can find pathsp1 ,p2 in D from x to u1 resp.u2 and a pathp3 from y to u3 such thaty is the only
site of p3 which is adjacent top1øp2 . The configuration inD which is equal to11 on p1øp2 ,
21 on p3 , and2e otherwise then has positive conditional probability given the configuratio
Dc. This shows thatm(A0).0. The proof of Lemma 4.3 can be adapted in a similar manne
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~3! In Lemma 4.2 we used the finite energy property to make sure thatmn,2
1 (v[21 onp)

.0, where p5$0%3$2n11,...,0%. To obtain the same result here we simply setD
5pø]p\$x252n% and observe that

mD
v~v[21 on p,v[2e on D\p!.0

wheneverv(0,2n)521.
~4! Uniform lower bounds for conditional probabilities were used twice, in the proofs of

shift lemma and the contour fluctuation lemma. In the proof of Lemma 3.4, it is sufficien
replace the set$x,y% by D(x)øD(y), whereD(x)5$k21,k,k11%3$n21,n% when x5(k,n).
This is because forv(k,n11)521 we have the estimate

mD~x!
v ~v~x!521, v[2e on D~x!\$x%!>d[

l`1

~11l!6 .

More care is needed in the proof of Lemma 5.4 where we used a uniform estimate f
conditional probability ofBk,n given Ak,n . First, according to comment~5! on the proof of
Theorem 6.1 we have to specify the abscissasan(v),an(v8) by two parametersk,k8PZ with
uk2k8u<1. Note, however, that the point (an(v),n) necessarily belongs toLeven because other-
wisev5e at the adjacent points (an(v),n11) and (an(v)11,n11); but this is excluded by the
hard-core interaction. Therefore we have in factk5k8, and we can consider the eventsAk,n as
before. Next we redefineDk,n as the set$k21,...,k12%3$n21,n%, and Bk,n as the event tha
v(k,n)5v(k11,n)51 ~as before!, v8(k,n)5v8(k11,n)521 ~in variation of the former defi-
nition!, and anything else occurs at the remaining sites ofDk,n ~e.g., the vacuum configuratio
2e!. We then havedn>2 on Ak,nùBk,n , and for (v,v8)PAk,n we find

mDk,n

v
^ mDk,n

m8 ~Bk,n!>
l

~11l!8 [d

as above. We can thus argue as before.
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We consider the ferromagneticq-state Potts model, with each of theq spin values
coupled to an external field. We also introduce a generalized random cluster model,
which includes both the Potts model in arbitrary homogeneous external fields and
the nonintegerq random cluster model as special cases. We establish the FKG
property, the finite energy condition, uniqueness of the infinite cluster, and
Gibbsianness of limit states for this generalized model. Furthermore, we develop
the theory of Gibbs states for the Edwards–Sokal representation of the Potts model
in a field, and relate the phase structure in this representation to those in the spin
and random cluster representations. Finally, we characterize the possible color~s! of
the infinite cluster~s! and show that the correspondence between Edwards–Sokal
Gibbs states and their random cluster marginals is bijective, once the color of the
infinite cluster is fixed. ©2000 American Institute of Physics.
@S0022-2488~00!00803-3#

I. INTRODUCTION

In this paper, we study the ferromagneticq-state Potts model with each value of the sp
coupled to a distinct external field. The formal Hamiltonian of the model is

H~s!52J (
^x,y&

dsx ,sy
2 (

m51

q

(
x

hmdsx,m. ~1.1!

HeresxP$1,...,q% are the spin variables,J is a positive coupling constant,dsx ,sy
is the Kronecker

delta, (hm)m51
q are real numbers representing the external fields, and^x,y& denotes a nearest

neighbor pair onZd. The model~1.1! appears in many different different contexts. For example
arises in image processing, wheresx represents the color of the pixel labeled byx, and the fields
hm lead to differenta priori probabilities for different colors. Another example is a lattice gas
q species, withhm corresponding to the fugacity of the speciesm.

During the past 15 years, there has been a great deal of work on graphical representa
the Potts model in the absence of external fields~i.e., with hm[0!. In particular, the
Fortuin–Kasteleyn1 or random cluster~RC! representation has been used to prove various n
perturbative results about the Potts model using percolation-type methods~e.g., Refs. 2 and 3!. In
order to use the representation effectively, it was first necessary to establish certain basic f

a!Present address: Microsoft Research, One Microsoft Way, Redmond, Washington 98052-6399.
b!On leave from the Center for Theoretical Study, Charles University, Prague, Czech Republic.
11700022-2488/2000/41(3)/1170/41/$17.00 © 2000 American Institute of Physics
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of the resulting measure, including FKG monotonicity, existence of thermodynamic limits
properties of the Gibbs states~Refs. 2–5; see also Refs. 6 and 7 for reviews!.

Here we consider graphical representations of the Potts model in the presence of ar
external fields. This turns out to be significantly more complicated than the analysis in the ab
of external fields for a number of reasons. First, whenhm[0, it is easy to verify that the RC
representation has the FKG property, which is more difficult to establish here. Indeed, the
property does not even hold for certain boundary conditions. Second, forhm[0, symmetry break-
ing in the spin representation is equivalent to percolation in the RC representation. He
relationship between the phase structure of the spin model and percolation in the RC repr
tion is less direct; in some cases the percolation threshold corresponds to no phase transitio
in the spin model.8 Third, the absence of symmetry raises the question of the color~s! of the
infinite cluster~s!, a question that turns out to be quite intricate, and does not need to be add
for hm[0.

Our work was motivated by an attempt to understand the phase diagram of the mode~1.1!,
using both cluster expansion and percolation techniques; our results on the phase diagr
presented in a separate paper.8 In this paper we generalize known results on the properties
Gibbs states of the RC models to systems with external fields. In particular, for the RC mo
an arbitrary homogeneous magnetic field, we prove FKG properties, the existence of i
volume measures, and that these measures are Gibbs states. See also Refs. 8 and 9
graphical representations of Potts models in an external field.

In addition, we develop the theory of Gibbs states for the so-called Edwards–Sokal~ES!
measure, a measure on both spin and bond variables that was originally introduced in o
explain the Swendsen–Wang algorithm for sampling from the Potts model.10 In a finite volume,
the marginals of the ES measure are just the spin and the RC measures. Here we consideinfinite
volume ES measures as interesting and important probabilistic objects in their own rig
particular, we introduce the notion of ES Gibbs measures, and analyze whether~or under what
conditions! the marginals of such Gibbs measures are Gibbs measures of the correspondin
and random cluster models. We clarify this relationship, and in the process derive properties
spaces of Gibbs states for all three representations.

We believe that the rigorous analysis of properties of the Potts model in terms of th
representation will prove to be quite fruitful in future work. Indeed, while the ES represent
shares many of the more useful properties of the random cluster representation, it does no
all of its difficulties. In particular, the ES representation is quasilocal, while the RC represen
is not @Recall that quasilocality is the property of continuity~in the product topology! of finite
volume Gibbs states with respect to boundary conditions.# Much of the standard theory of Gibb
states~as well as its physical interpretation! requires quasilocality~Refs. 11–13!. Absence of this
property has been a major technical impediment in the analysis of Gibbs states for th
representation.

Finally, we consider the question of RC models in a field with noninteger values oq.
Although the spin representation of the Potts model~and therefore also the Edwards–Sokal re
resentation! only admits an integer number of spin states, it has been realized for some tim
the standard RC measure in the absence of a field is perfectly well defined for noninteger
of q. Provided thatq>1, the resulting finite volume measures with free and wired bound
conditions are FKG, which allows one to prove the existence of the corresponding infinite vo
measures. However, the most straightforward version of the RC model in a field reduce
model with integerq when we takehm[0. Explicitly, the RC model in a field defined on bon
configurationsh5$h^x,y&%,h^x,y&P$0,1%, has weights of the form

)
^x,y&:h^x,y&51

~ebJ21!dsx ,sy)C Q~C!, ~1.2!

where the second product is over all connected components of sites, and the weights
components are given by
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Q~C!5 (
m51

q

ehmuV~C!u. ~1.3!

Here uV(C)u denotes the volume of the clusterC. Notice that whenhm[0, the weights~1.2!
reduce to the more familiar weights,

~ebJ21!n~h!qc~h!, ~1.4!

where n(h) is the number of bondŝx,y& with h^x,y&51 in configurationh, and c(h) is the
number of connected components of sites inh. @Even the weights~1.4! may not be entirely
familiar to readers who know the RC weights as (12e2bJ)n(h)(e2bJ)v(h)qc(h), wherev(h) is the
number of bondŝx,y& with h^x,y&50 in configurationh. The only difference between the latte
weights and~1.4! is an overall normalization factor, which makes no difference in the resu
measure.#

Thus, we also propose a generalized random cluster~GRC! model with the weightQ(C) in
~1.2! replaced by

Q̃~C!5 (
m51

q

qmehmuV~C!u, ~1.5!

where theqm are noninteger parameters. Provided that theqm are positive and satisfy the conditio

(
m:hm5hmax

qm>1, ~1.6!

wherehmax is the maximum value of the component fieldshm , we will be able to prove that
resulting finite volume measures with certain boundary conditions are FKG, and hence th
corresponding infinite volume measures exist. We expect that many of our other results for t
model in a field hold also for this generalized model, but we have not explicitly verified this

Notice the following two special cases of the generalized model with the weights~1.5!. If we
takeqm51, m51,...,q, then we get~1.3!, i.e., the random cluster representation of the Potts mo
in an external field. On the other hand, if we takehm50 for all m, we get the weights~1.4! with
q replaced by(mqm , which is, in general, noninteger. Thus, the GRC model generalizes bot
nonvanishing external field case and the standard nonintegerq model.

It turns out that the set of ‘‘colors’’mP$1,...,q% with hm5hmax will play an important role in
the analysis of both of the above described random cluster models in a field. In the standard
~with hm[0!, it is well known that the extremal measures are obtained by applying free
‘‘wired’’ boundary conditions. The latter are the marginals of measures in which all spins o
boundary are set to a fixed colormP$1,...,q%, and thus identified as one component in the R
representation. In this work, we will find that the extremal measures are obtained by applyin
and what we call ‘‘maxwired’’ boundary conditions. Measures with maxwired boundary co
tions are the marginals of measures in which all spins on the boundary are set a colorm for which
hm5hmax. The other RC wired measures, i.e., those with boundary conditions set to a colorm for
which hm,hmax, are hard to analyze because they do not even obey the FKG inequality.

We end this section with a summary of our results. In Sec. II, we state our theorem
mappings between the sets of ES Gibbs states and spin and RC Gibbs states, respect
particular, Theorem II.1 implies that the relevant marginals of the infinite volume ES Gibbs s
are spin Gibbs states. The same is not true for the RC states unless we restrict to states
more than one infinite cluster, as we do in Theorem II.2. We also formulate results~Theorems II.3
and II.4! on the existence of infinite volume measures for the RC and ES representations wi
and maxwired boundary conditions. Finally, we state a result~Theorem II.5! relating the unique-
ness or nonuniqueness of Gibbs states to the absence or presence of infinite clusters.
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dimensions, we are able to prove more—namely that, away from the transition temperatu
RC Gibbs state is unique, and similarly for the ES state, provided there is only one colorm with
hm5hmax ~Theorem II.6!.

In Sec. III, we introduce the generalized random cluster~GRC! model and formulate its FKG
monotonicity properties. In particular, Theorem III.1 states that the free and maxwired GRC
are strong FKG, and hence that the corresponding infinite volume limits exists. This theorem
asserts that, in the FKG order, every GRC Gibbs state lies between these two infinite v
states. Finally, this theorem compares GRC states at different couplings and different s
external fields~with an appropriately defined partial order!. As a corollary, we prove various
properties of the relevant percolation probabilities, which are the order parameters for the
tion. Theorem III.2 deals with RC marginals of ES Gibbs states. In particular, it states tha
infinite volume RC maxwired measure dominates all such marginals, while the free RC me
is dominated by the marginals of all ES Gibbs states with at most one infinite cluster. Our
results establish uniqueness of the infinite cluster for translation-invariant GRC Gibbs and
states~Theorem III.3!, and give a stronger version of the DLR equation for any GRC Gibbs s
with a unique infinite cluster~Theorem III.4!.

Our results are proved in Secs. IV–X. In Secs. IV–VI we prove the theorems stated in S
~in the order of their appearance!. The theorems of Sec. II are proven in the remaining secti
~VII–X ! ~in the order II.4, II.5, II.6, II.1, and II.2!. Theorem II.3, which is an easy corollary of th
results of Sec. III, is proved at the end of Sec. VI.

II. GIBBS STATES IN THE EDWARDS–SOKAL, SPIN, AND RANDOM CLUSTER
REPRESENTATIONS

In this section we define Gibbs measures for joint probability spaces of spin and bond
ables, i.e., the Edwards–Sokal Gibbs measures. We then relate the set of Edwards–Soka
measures to the more standard sets of spin and random cluster Gibbs measures.

We begin with some notation. For any subsetL,Zd, we introduceB0(L) as the set of all
bondsb5^x,y& of nearest neighbors with both end points inL andB(L) as the set of all bonds
with at least one end point inL. For anyB,B0(Zd), we defineV(B) as the set of sites that belon
to at least one bond inB.

To motivate our definitions, we first derive the Edwards–Sokal representation for a finite
L,Zd with free boundary conditions. For free boundary conditions, the Gibbs factor of theq-state
Potts model in a general field is given by

e2bH~sL!5 )
^x,y&PB0~L!

ebJdsx ,sy )
xPL

ebh~sx!, ~2.1!

where (hm)m51
q PRq is a collection of arbitrary fields andh(sx) stands for

h~sx!5 (
m51

q

hmdsx ,m . ~2.2!

In order to derive the Edwards–Sokal~ES! and random cluster~RC! representation, we rewrite th
Gibbs factor by expanding each termebJdsx ,sy as 11(ebJ21)dsx ,sy

. Introducing bond configu-
rationshB0(L)5$hb%bPB0(L) with hbP$0,1%, we can write the Gibbs factor~2.1! as the sum

e2bH~sL!5 (
hB0~L!

)
b5^x,y&PB0~L!

h^x,y&51

~ebJ21!dsx ,sy )xPL
ebh~sx!. ~2.3!

The key point of this reformulation is thath can now be treated in the same way ass; one just
peels off the first sum in~2.3! and interprets the remainder as a joint weight ofs andh. In this
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manner one obtains the finite volume Gibbs measure of the Potts model as the spin margin
measure on both spin and bond configurations—the Edwards-Sokal measure. The bond c
ration marginal is then the random cluster measure.

So far we have considered only free boundary conditions. Instead of modifying the prec
argument for other boundary conditions, we directly introduce the notion of infinite volume G
measures on the joint space of spin and bond variables. To define the Gibbs ES states
introduce for any pair of~not necessarily related! finite setsL,Zd,B,B0(Zd), and any fixed
configurationssLc,hBc outside of them, the measuremL,B

ES (•usLc,hBc) by

mL,B
ES ~sL ,hBusLc,hBc!5

W~sL ,hBusLc,hBc!

( s̄L ,h̄B
W~s̄L ,h̄BusLc,hBc!

, ~2.4!

where the conventionmL,B
ES (sL ,hBusLc,hBc)50 is assumed for the case that the sum in

denominator vanishes, and where

W~sL ,hBusLc,hBc!5 )
^x,y&PBøB~L!

h^x,y&51

~ebJ21!dsx ,sy )xPL
ebh~sx!. ~2.5!

@Here we use the theory of Gibbs states as presented by Ruelle,13 who explicitly considers models
with configuration spaces determined by local restriction rules~hard cores!. See Sec. 1.1 and 1.
of Ref. 13.# The dependence on parametersJ and $hm% will be explicitly marked only when a
reference to them is needed.

Our first theorem concerns the relation between the ES and spin Gibbs measures. LetGES be
the set of all infinite volume Gibbs ES states defined by imposing the DLR equations
specification~2.4!. Namely,nPGES iff

n~ f !5E n~ds,dh!mL,B
ES ~ f usLc,hBc!, ~2.6!

for all pairs of finite setsL andB and any cylinder functionf depending only onsL andhB . Note
that the fact that the underlying ‘‘set of sites’’ contains both the setZd and the setB0(Zd) does not
prevent the abstract theory of Gibbs states—in the version that allows for ‘‘hard-core in
tions’’ ~cf. Refs. 13, 12 and 11!—from being applied. The important property, quasilocality of t
specification$mL,B

ES %, is clearly satisfied, implying, in particular, that the set of Gibbs statesGES is
not empty. Note also that quasilocality and consistency of the specifications imply that the
condition ~2.6! is equivalent to the~apparently stronger! statement that the conditional expect
tions of n are given by~2.4!, i.e.,

n~ f usLc,hBc!5mL,B
ES ~ f usLc,hBc!, n-a.s., ~2.7!

for all pairs of finite setsL andB and any cylinder functionf depending only onsL andhB .
Let GSPIN denote the set of all spin Gibbs states, defined by means of the DLR conditio

the Hamiltonian~1.1!, appropriately modified to incorporate the boundary condition. LetPS

denote the mapping that assigns the spin marginal to any infinite volume ES measure. It isa
priori obvious that the spin marginal of any infinite volume Gibbs ES state is an infinite vo
Gibbs spin state. However, it turns out that even a little more is true.

Theorem II.1: The mappingPS is a linear isomorphism between the Choquet simplicesGES

andGSPIN. When restricted to translation invariant measures, PS is an isomorphism between th
simplex of all translation-invariant Gibbs ES states and the simplex of all translation-inva
Gibbs spin states. In particular, uGESu51 if and only if uGSPINu51. @See, e.g., Refs. 13, 11, and 1
for the definition of Choquet simplices.#
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Remark:The last statement is false for the correspondence between ES Gibbs states an
RC marginals. For instance ford52 it is known that there are exactly two extremal Ising Gib
states below the critical temperature~Refs. 14–16! and, therefore, two extremal ES Gibbs stat
while the corresponding RC marginals are identical.

As alluded to in the Introduction, RC Gibbs measures have finite volume specification
are not quasilocal, which prevents the straightforward application of the general theory of
states. It therefore is often more convenient to consider ES Gibbs measures, whose finite
specifications are local, and study RC measures only as their marginals. The relation o
marginals to RC Gibbs measures as introduced in Refs. 17, 4, 5, and 3 for Potts models w
magnetic fields is the content of our next theorem.

First, however, we generalize the notion of RC Gibbs states to Potts models with ma
fields. To this end we introduce, for any configurationh on B0(Zd), the set of occupied bond
Bocc(h)5$bPB0(Zd):hb51% and the corresponding graph (Zd,Bocc(h)) with the vertex setZd

and the edge setBocc(h). For any connected componentC(h) of this graph~possibly a single
site!, we useV„C(h)… to denote the corresponding vertex set. We now define, for any finite s
bondsB and any configurationhBc, the measure

mB
RC~hBuhBc!5

WB
RC~hBuhBc!

( h̄B
WB

RC~h̄BuhBc!
, ~2.8!

with

WB
RC~hBuhBc!5~ebJ21! uBocc~h!ùBu )

C~h!:V„C~h!…ùV~B!Þ0”
(

m51

q

e2b~hmax2hm!uV„C~h!…u, ~2.9!

where the product runs over all connected componentsC(h) such that the vertex setV„C(h)…
intersects the setV(B), andhmax is used to denote

hmax5 max
mP$1,...,q%

hm . ~2.10!

Interpretinge2`50, any infinite clusterC(h) intersectingV(B) contributes just the factorq0

5uQmax(h)u, the size of the set

Qmax~h!5$mP$1,...,q%uhm5hmax%. ~2.11!

For future reference, we also defineN`5N`(h) as the random variable denoting the number
infinite clusters ofBocc(h), and useC`5C`(h) to denote the unique infinite cluster whenev
N`51.

As usual, one introduces the set of Gibbs statesGRC as the set of measuresm on $0,1%B0(Zd)

that satisfy the DLR equation,

m~ f !5E m~dh!mB
RC~ f uhBc!, ~2.12!

for any finiteB and any cylinder functionf with support inB. Note that, in contrast to Eqs.~2.6!
and~2.7!, here the DLR condition~2.12! does not imply that the conditional expectations of a R
Gibbs statem are given by the finite volume expectations~2.8! due to the lack of quasilocality
However, it turns out that uniqueness of the infinite cluster is enough to ensure that the
condition implies a statement of the form~2.7! ~see Theorem III.4!.

As already observed in Ref. 3, the above notion of RC Gibbs states does not accommod
‘‘naturally arising’’ limiting states. When reformulated in terms of the ES measures, not ever
marginal of an ES Gibbs measure is a RC Gibbs state. An example is the ES Gibbs state
sponding to the standard Dobrushin state with a stable interface between two ordered sta
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However, when restricted to the set of ES measures with at most one infinite cluste
situation changes. As it turns out, not only is the marginal of every such ES Gibbs measure
Gibbs measure, but also each RC Gibbs measure with at most one infinite cluster can be o
as a marginal of a suitable ES Gibbs measure. In addition, a natural refinement holds: u
choice of the ‘‘color’’ of the infinite cluster, the surjective correspondence between ES an
measures is actually one to one.

To state the next theorem, we useG<1
ES 5$nPGESun(N`<1)51% to denote the set of ES Gibb

measures such that with probability one there is at most one infinite cluster of occupied b
Similarly, let G<1

RC5$mPGRCum(N`<1)51%, Gk
ES5$nPGESun(N`5k)51%, and Gk

RC5$m
PGRCum(N`5k)51%, k50,1. Also, letG1,m

ES 5$nPGESun(A1,m
` )51%, whereA1,m

` is the event
A1,m

` 5$N`51 andsx5m for all xPV(C`)%. Finally, let PRC be the mapping that assigns R
marginals to ES Gibbs measures.

Theorem II.2: (1) The restriction of the mapPRC to G<1
ES is surjective ontoG<1

RC .
(2) EverynPG<1

ES has a unique decompositon,

n5l0n01 (
mPQmax

lmnm , ~2.13!

with n0PG0
ES, nmPG1,m

ES , l0 , lm>0, and l01(mPQmax
lm51.

(3)The restriction of the mapPRC to G0
ES is one to one fromG0

ES to G0
RC. If mPQmax(h), then

the restriction ofPRC to G1,m
ES is one-to-one fromG1,m

ES to G1
RC.

(4) If uQmax(h)u51, then the mappingPRC is a bijectionPRC:G<1
ES→G<1

RC .

Remarks:~i! As we will see in the next section, the setG<1
ES is nonempty. By the above

theorem, this implies that alsoG<1
RC is nonempty.

~ii ! Since$N`50% is a tail event, it follows from the standard theory of Gibbs states and
fact that the specifications~2.4! of the Edwards–Sokal measure are quasilocal, that the condit
measuren(•uN`5k), k50,1, is a Gibbs state for anynPG<1

ES with 0,n(N`50),1. Although
the corresponding statement is not knowna priori for a RC Gibbs statemPG<1

RC ~due to the lack
of quasilocality!, it is a consequence of statement~i! and the commutativity of the following
diagram:

n ——→
PRC

m
↓ ↓

n~•uN`5k! ——→
PRC

m~•uN`5k!

~2.14!

which, in turn, is a consequence of Theorem II.2~ii !.
Next, we state our results on the existence of thermodynamic limits for the extremal E

RC Gibbs measures with free and wired boundary conditions. We begin by introducin
relevant finite volume ES measures. Observing that, for a finite volumeL, the ES measure
mL,B(L)

ES (•usLc,hB(L)c) does not depend onhB(L)c, we define the measure

mL,m
ES ~• !5mL,B~L!

ES ~•usLc
m ,hB~L!c!, ~2.15!

wheresm is the constant configuration,sx
m5m for all xPZd, with mP$1,...,q%. In a similar way,

the measuremL,B0(L)
ES (•usLc,hB0(L)c) does not depend onsLc, provided that theh-boundary

condition is chosen ashB0(L)c5hB0(L)c
0 , whereh0 denotes the configuration withhb

050 for all

bPB(Zd). In this case we introduce the measure

mL,free
ES ~• !5mL,B0~L!

ES ~•usLc,hB0~L!c
0

!. ~2.16!
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Theh marginals of the measuresmL,free
ES andmL,m

ES are the RC measuresmL,free
RC andmL,m

RC with free
andm-wiredboundary conditions, respectively. A particular role will be played by the RC m
sures withm-wired boundary conditions, such thatmPQmax(h), i.e., hm5hmax. Note that the
measuresmL,m

RC are identical for all valuesmPQmax(h); we will use mL,maxwir
RC to denote any of

them.
Theorem II.3: Let b>0, J>0, and hmPR, m51,...,q.
(i) Let f be a quasilocal function on$0,1%B0(Zd). Then the limits

mmaxwir
RC ~ f !5 lim

L↗Zd

mL,maxwir
RC ~ f !, ~2.17!

and

m free
RC~ f !5 lim

L↗Zd

mL,free
RC ~ f ! ~2.18!

exist and are translation invariant.
(ii) The measuresmmaxwir

RC and m free
RC are RC Gibbs states with at most one infinite cluster.

Remarks:~i! The limit L↗Zd above~and hereafter! is taken in the sense of the limit along th
net $L,Zd finite% with the net ordering given by the set inclusion. However, when we talk ab
a general RC limit state, we will have a weaker notion in mind. Namely, we say that a measm

on $0,1%B0(Zd) is a RC limit state if there is a sequence of finite setsBn,B0(Zd) and a sequence o
configurationsh(n) such thatm( f )5 limn→` mB0

RC( f uhB0

(n)).

~ii ! We will prove the existence of the limit~2.17! by first establishing that themL,m
RC is strong

FKG if hm5hmax; see Theorem III.1. The requirementhm5hmax is crucial for our proof of
Theorem III.1, since the proof relies on the FKG property of the finite volume measuresmL,m

RC . In
fact, for b large enough, a contour argument indicates thatmL,m

RC with hm,hmax is not even FKG.
~iii ! The statements of Theorem II.3 are special cases of those of Theorem III.1~ii !, Theorem

III.3, and its corollary, which hold for the GRC models discussed in the introduction.
By using the general theorem on the uniqueness of the infinite cluster,18 the conclusion abou

the existence of the limiting RC measures can be strengthened to their ES preimages:

Theorem II.4: Let b>0 and hmPR, m51,...,q. If mPQmax(h), then the weak limits,

mm
ES5 lim

L↗Zd

mL,m
ES ~2.19!

and

m free
ES 5 lim

L↗Zd

mL,free
ES , ~2.20!

exist and are translation-invariant ES Gibbs states with at most one infinite cluster.

Remark:In contrast to Theorem II.3, the statement here that the limiting measures are
states is a trivial consequence of the general theory of Gibbs states for systems with qua
interactions.

Next, we state a theorem relating the uniqueness or nonuniqueness of Gibbs states
existence of an infinite cluster. To this end, we define the percolation probability,

P`~b,J,h!5 sup
mPG̃RC

m~ uC0u5`!, ~2.21!

and the auxiliary percolation probability,

P̃`~b,J,h!5 inf
mPG̃RC

m~ uC0u5`!, ~2.22!
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where C05C0(h) is the cluster that contains the origin 0PZd, and where we have restricte
ourselves to the setG̃RC of all translation-invariant RC Gibbs measures. As we will see in the n
section~the corollary to Theorem III.1!, the densityP`(b,J,h) is just the probability of percola-
tion in the measuremmaxwir

RC , and is a nondecreasing, right continuous function ofJ. Similarly,
P̃`(b,J,h) is the probability of percolation in the measurem free

RC . We also define the critica
coupling,

Jc~b,h!5 inf$J>0:P`~b,J,h!.0%. ~2.23!

It turns out that ifP`(b,J,h) is replaced byP̃`(b,J,h) in the definition above, the value o
Jc(b,h) is unchanged, again by the corollary to Theorem III.1.

Remark:For d>2 andq sufficiently large,P`(b,J,0) jumps from zero belowJc to a strictly
positive number atJc . This corresponds to the so-called temperature-driven first-order p
transition in the Potts model, whose existence was first proved in Ref. 22.

Theorem II.5: Let b>0 and hmPR, m51,...,q.
(i) For all J>0, there is at most one ES Gibbs measure with no infinite cluster.
(ii) If P `(b,J,h)50, then uGESu5uGRCu51. In particular, uGESu5uGRCu51 if J,Jc .
(iii) If P `(b,J,h).0, then the statesmm

ES, mPQmax(h), are extremal translation-invariant ES
Gibbs states withmm

ES(A1,m
` )51. In particular, there are at least q05uQmax(h)u different extremal

translation-invariant ES Gibbs states.

As mentioned above, the percolation probabilityP`(b,J,h) is nondecreasing inJ. The last
statement of the theorem therefore implies that there are at leastq0 extremal translation-invarian
ES Gibbs states whenJ.Jc . This raises the question of whether foruQmax(h)u51 the ES Gibbs
state is unique aboveJc . As the next theorem shows, this is indeed the case, at least ifd52.

Theorem II.6: Let b>0, and hmPR, m51,...,q, and d52.
(i) If JÞJc , then uGRCu51 and P̀ (b,J,h)5 P̃`(b,J,h).
(ii) If J ÞJc and, in addition, uQmax(h)u51, then uGESu51.

Remarks:~i! For the Ising model, the conditionuQmax(h)u51 means thathÞ0. Together with
FKG, the Lee–Yang theorem then implies that the claim~ii ! is valid for d>2 and all J>0,
includingJ5Jc . Even though one might conjecture that this statement holds for arbitraryq, since
only one spin direction is preferred ifuQmax(h)u51, this is, in fact, not true. Indeed, we show
Ref. 8 that theq-state Potts model has two coexisting phases atJc for sufficiently small fields,
preferring one of theq valuesmP$1,...,q% over all others, providedq is sufficiently large. How-
ever, we believe that forJÞJc , uQmax(h)u51 does imply uniqueness for allq, even whend.2.

~ii ! Theorem II.6~i! and part of the statement in Theorems II.5~ii ! refer to the RC model itself,
and not the relationship between the ES and the RC models. As we will see in the pro
Theorems II.5 and II.6 in Secs. VIII and IX, these statements remain true in the more ge
context of the GRC model introduced in Sec. I.

III. MONOTONICITY AND UNIQUENESS OF THE INFINITE CLUSTER

In this section, we define the generalized random cluster~GRC! model, and formulate severa
results concerning the FKG properties and uniqueness of the infinite cluster in this mode
GRC measuremL,free

GRC is obtained by normalizing the weights,

WL,free
GRC ~h!5~ebJ21! uhu )

C~h!
Q free„C~h!…, ~3.1!

for anyhP$0,1%B0(L). Hereuhu is the number of bonds in the set$bPB0(L):hb51%, the product
runs over all connected componentsC(h) of the graph„L,Bocc(h)ùB0(L)…, and
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Q free~C!5 (
m51

q

qmebhmuV~C!u, ~3.2!

for any connected componentC. @We recall thatBocc(h) denotes the set of bondsb with hb

51.] The factorsqm , m51,...,q, are assumed to be positive real numbers such that

(
mPQmax

qm>1. ~3.3!

Similarly, the measuremL,m
GRC is obtained by normalizing the weightsWL,m

GRC defined for anyh
P$0,1%B(L) by the formula

WL,m
GRC~h!5~ebJ21! uhu )

C~h!
QL,m„C~h!…, ~3.4!

whereuhu now stands for the number of bonds in the set$bPB(L):hb51%, the product runs over
all connected componentsC(h) of the graph„L̄,Bocc(h)ùB(L)…, L̄5Lø]L, andQL,m(C) is
defined as

QL,m~C!5H Q free~C!, V~C!ùLc50,

ebhmuV~C!u, otherwise.
~3.5!

As already pointed out for RC measures, the measuresmL,m
GRC are identical for all valuesm

PQmax(h); we will usemL,maxwir
GRC to denote any of them. Note also that the definitions~3.4! and

~3.5! reduce to the standard definition of wired measures for nonintegerq whenhm[0.
Finally, one can directly extend the definition~2.9! to get the weightsWB

GRC(hBuhBc),

WB
GRC~hBuhBc!5~ebJ21! uBocc~hB!ùBu )

C~h!:V~C~h!!ùV~B!Þ0”
(

m51

q

qme2b~hmax2hm!uV„C~h!…u, ~3.6!

yielding the measuresmB
GRC(hBuhBc) that define GRC Gibbs states with the help of DLR equatio

of the type~2.12!. GRC limit states are defined analogously to RC limit states; see Rema~i!
following Theorem II.3.

Remarks:
~i! It is easy to see that if we takeqm51, m51,...,q, then the measuresmL,free

GRC andmL,m
GRC are

just the RC marginalsmL,free
RC andmL,m

RC , respectively.
~ii ! It is instructive to consider the effects of particular boundary conditions on the mea

with weights~3.6!. If we takeB5B0(L) andhBc[0, then we get the free measuremL,free
GRC . If, on

the other hand, we takeB5B(L) andhBc[1, then we get the wired measuremL,maxwir
GRC , provided

Lc is connected. IfLc is not connected, i.e., ifL contains ‘‘holes,’’ then the boundaries of thes
holes will be not be wired to each other. In this case, it will often be convenient to intro
additional ‘‘ghost’’ bonds linking all the components of the boundary. If, in addition to the bo
in B(L)c, the ghost bonds are occupied, we get the maxwired state also in this case.

~iii ! Recall that in the standard RC model without magnetic fields it is possible to view
wired state as a free state on a modified graph in which all of the boundary sites in]L have been
identified. However, in the case of general external fields, the two prescriptions produce dif
states, i.e., setting all the sites at the boundary to a particular value produce a different sta
the free state on a graph in which all boundary sites have been identified. In the former ca
collection $Ci% of all components of„Lø]L,Bocc(h)ùB(L)… that touch the boundary acquire
the weightebhmax(iuV(Ci )u, while in the latter case, it acquires the weight(mebhm„11( i uV(Ci )\Lcu….
                                                                                                                



ll
tive

y
ven

-

at

1180 J. Math. Phys., Vol. 41, No. 3, March 2000 Biskup et al.

                    
Note that it is the former prescription that we use to define them-wired GRC measure. This
measure is natural for two reasons: it is the marginal of the corresponding ES measure if aqm’s
are one, and, formPQmax(h), this measure is maximal in the FKG order, whereas the alterna
one is not, at least in a finite volume.

To state our results on FKG properties, we introduce the standard partial ordera on $0,1%B(Zd)

by settinghah8 wheneverhb<hb8 for everybPB(Zd). Since we shall also study monotonicit
properties in dependence on (hm) we need to introduce a partial order on the external fields. Gi
two sets of fields (hm) and (hm8 ), we define

~hm!d~hm8 ! iff hk2hl<hk82hl8 , for all k,l 51,...,q with hk2hl.0. ~3.7!

Note thatd is indeed a partial order onq-tuples of real numbers, in particular, (hm)d(hm8 ) and
(hm8 )d(hm9 ) imply (hm)d(hm9 ).

Recall the following definition.
Definition: Let V be a measurable space endowed with the partial ordera. Then a measure

m on V is said to be FKG ifm(FG)>m(F)m(G) for all measurable functions F,G:V→R that
are increasing with respect toa. Moreover, ifV is of the formV53bPBVb , thenm is said to be

strong FKG ifm(•uA) is FKG for all cylinder events of the form A5$h:hb5ab;bPB̃%, where

B̃,B is finite andabPVb for all bPB̃.

Theorem III.1: Let b>0, J>0, hmPR and qm.0, m51,...,q, and suppose that the param
eters qm obey the condition (3.3). Then we have the following:

(i) For each finiteL,Zd, the measuresmL,free
GRC andmL,maxwir

GRC are strong FKG.
(ii) For each quasilocal function f, the limits

mmaxwir
GRC ~ f !5 lim

L↗Zd

mL,maxwir
GRC ~ f ! ~3.8!

and

m free
GRC~ f !5 lim

L↗Zd

mL,free
GRC ~ f ! ~3.9!

exist and are translation invariant.
(iii) Let m be a GRC limit state or a GRC Gibbs state. Then

m free
GRC <

FKG
m <

FKG
mmaxwir

GRC . ~3.10!

(iv) Suppose J1,J2 . Let mmaxwir
GRC,J1 denote the wired state at J5J1 and letm free

GRC,J2 denote the
free state at J5J2 . Then

mmaxwir
GRC,J1~• ! <

FKG
m free

GRC,J2~• !. ~3.11!

(v) Let (hm)d(hm8 ) be two sets of external fields. Then

m free
GRC,~hm!

~• ! <
FKG

m
free
GRC,~hm8 !

~• ! ~3.12!

mmaxwir
GRC,~hm!

~• ! <
FKG

m
maxwir
GRC,~hm8 !

~• !. ~3.13!

Remark:Note that~3.11! can be extended via~3.10! to any pair of GRC Gibbs measures
J5J1 , resp.,J5J2 .
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The following corollary is an immediate consequence of the above theorem. Before stat
we recall the definitions~2.21!, ~2.23!, and ~2.22! of P`(b,J,h), Jc , and P̃`(b,J,h), respec-
tively. For the GRC measures considered here, the definitions~2.21! and ~2.22! are obviously
modified by replacing the spaceG̃RC of translation-invariant RC Gibbs states by the spaceG̃GRC of
translation-invariant GRC Gibbs states.

Corollary: Let b>0, J>0, hmPR and qm.0, m51,...,q, and suppose that the paramete
qm obey the condition~3.3!. Then we have the following.

(i) P`(b,J,h)5mmaxwir
GRC (uC0u5`).

(ii) P̃ `(b,J,h)5m free
GRC(uC0u5`).

(iii) J °P`(b,J,h) is a nondecreasing, right continuous function.
(iv) J° P̃`(b,J,h) is a nondecreasing function, which is continuous and equal to P`(b,J,h)

whenever J°P`(b,J,h) is continuous.
(v) P`(b,J,h)5 P̃`(b,J,h)50 if J,Jc , while both P̀ (b,J,h).0 and P̃̀ (b,J,h).0 if

J.Jc .

The next theorem is the only statement in this section that cannot be generalized to th
models.

Theorem III.2: Let b>0, J>0, and hmPR, m51,...,q. Let nPGES be arbitrary and letm
denote itsh marginal. Then

m~• ! <
FKG

mmaxwir
RC ~• !. ~3.14!

If, in addition, eitheruQmax(h)u51 or m(N`<1)51, then

m~• ! >
FKG

m free
RC~• !. ~3.15!

The following theorem states our results on the uniqueness of the infinite cluster.

Theorem III.3: Let b>0, J>0, hmPR and qm.0, m51,...,q, and suppose that the param
eters qm obey the condition (3.3). Then all translation-invariant GRC Gibbs states and
translation-invariant GRC limit states have at most one infinite cluster with probability one.

Remark:We will prove the above theorem by first establishing the so-called finite en
condition form, and then using the results of Ref. 18. Unfortunately, we were unable to use
strategy to prove uniqueness of the infinite cluster for random cluster marginals of transl
invariant ES Gibbs measures. In fact, it is not hard to see that there are ES Gibbs states
random cluster marginals do not satisfy the finite energy condition. While these counterexa
stem from nontranslation-invariant ES Gibbs states obtained by so-called Dobrushin bou
conditions, we do not see how to use the additional assumption of translation invariance to
proof of the finite energy condition.

In Sec. VII we will use the uniqueness of the infinite cluster to prove that the finite vol
specifications ofm free

GRC andmmaxwir
GBC , and, more generally, of any translation-invariant GRC lim

state, are ‘‘almost surely quasilocal’’ in the terminology of Ref. 5 and 4. As a corollary of
statement, we will prove the following result.

Corollary: Let b>0, J>0, hmPR andqm.0, m51,...,q, and suppose that the paramete
qm obey the condition (3.3). Then all translation-invariant GRC limit states are GRC Gibbs st.

In the last theorem in this section we address the question under which conditions the
tional expectations of a GRC Gibbs statem are given by the measuresmB

GRC(•uhBc).

Theorem III.4: Let b>0, J>0, hmPR and qm.0, m51,...,q, and suppose that the param
eters qm obey the condition (3.3). Letm be a GRC Gibbs state withm(N`<1)51, let B be a finite
subset ofB0(Zd), and let f be a cylinder functions depending only on the configurationhB . Then

m~ f uhBc!5mB
GRC~ f uhBc!, m-a.s. ~3.16!
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IV. FKG PROPERTIES OF GENERALIZED RANDOM CLUSTER MEASURES

In this section we prove Theorem III.1. In the process we formulate and prove a le
concerning monotonicity of GRC states in the volume~Lemma IV.1!. We will also formulate and
prove a second result~Lemma IV.2! concerning domination of states with general bound
conditions, which will be used in the proof of Theorem III.2 in the next section.

Proof of Theorem III.1(i):We considerL to be fixed and omit it temporarily from the
notation. In order to prove the strong FKG property ofmL,free

GRC andmL,m
GRC, let us recall a necessar

and sufficient condition,1 the so-called lattice condition

Wfree
GRC~h~1!∨h~2!!Wfree

GRC~h~1!∧h~2!!>Wfree
GRC~h~1!!Wfree

GRC~h~2!!, ~4.1!

for any pair of configurationsh(1) andh(2), and similarly forWm
GRC. Hereh(1)∨h(2) denotes the

maximum andh(1)∧h(2) the minimum ofh(1) andh(2).
It turns out that to verify~4.1!, it suffices to considerh(1) and h(2) that differ just at two

bonds. Indeed~see, e.g., Ref. 19!, let

R~z,h!5
Wfree

GRC~z ∨h!

Wfree
GRC~z!

, ~4.2!

and note that~4.1! can be rewritten asR(h(1),h(2))>R(h(1)∧h(2),h(2)). Hence, the lattice con
dition ~4.1! is true once we verify thatR(z,h) is increasing inz, for any fixedh. Let us introduce,
for any bondb, the configurationh(b) by settinghb

(b)51 andhb8
(b)

50 for anyb8Þb. Ordering the
setBocc(h) into a sequence (b1 ,...,buBocc(h)u), we have

R~z,h!5 )
k51

uBocc~h!u

R~z ∨h~b1!∨¯∨h~bk21!,h~bk!!. ~4.3!

Hence, it suffices to prove monotonicity ofR(z,h) for any h that is zero, except possibly at on
bond. Moreover, it suffices to prove the growth when flippingz at a single bond from 0 to 1, i.e.
z with zb50 to z b5z ∨h(b). The verification of the needed bound,R(z b,h(b8))>R(z,h(b8)), for
any pair of bondsb andb8, now boils down to the special case of~4.1! with h(1)5z b andh(2)

5z ∨h(b8) that differ only at bondsb andb8. Sinceh(1)5h(2) if b5b8, we may further assume
without loss of generality thatbÞb8.

Thus, leth(1) andh(2) be such that

hb
~1!5hb

~2! , bÞb1 ,b2 ,
~4.4!

hb1

~1!5hb2

~2!50, hb2

~1!5hb1

~2!51.

Since the number of 1-bonds is equal on both sides of~4.1!, the nontrivial issue is therefore t
check ~4.1! for the product over the connected components. Let us suppose, without lo
generality, that there existdisjoint connected componentsA1 and A2 of h(1)∧h(2) ~possibly
isolated sites! that become connected whenb1 is flipped from 0 to 1, and, similarly,B1 , B2 for the
components connected by flippingb2 . @The only other possibility is that both end points ofb1 , or
alternativelyb2 , lie in a singlecomponent ofh(1)∧h(2), in which case the two sides of~4.1! are
equal.# With this proviso, there are only three generic situations:~a! V(A1)øV(A2) is disjoint
from V(B1)øV(B2), ~b! V(A1)5V(B1) but V(A2)ùV(B2)5B, and ~c! V(A1)5V(B1) and
V(A2)5V(B2). We will prove~4.1! separately for~a!, ~b!, and~c!. For notational brevity, we use
Q(C) for both Q free(C) andQm(C).

In the case~a! both sides of~4.1! reduce to the same term,

Q~A1øA2!Q~B1øB2!Q~A1!Q~A2!Q~B1!Q~B2!. ~4.5!
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Hence,~4.1! is fulfilled with the equality sign.
Next, consider~b!. We denote byC the common component~i.e., C5A15B1! and useA and

B to denote the other components. Then~4.1! boils down to the inequality

Q~C!Q~CøAøB!>Q~CøA!Q~CøB!. ~4.6!

Let us first consider thefree boundary conditions. Using, for anymP$1,...,q%, the notation

am5ebhmuV~A!u,

bm5ebhmuV~B!u, ~4.7!

cm5ebhmuV~C!u,

the condition~4.6! is equivalent to

S (
m51

q

qmcmD S (
m851

q

qm8am8bm8cm8D >S (
m51

q

qmamcmD S (
m851

q

qm8bm8cm8D . ~4.8!

Let us assume that the fields are ordered in an increasing order,h1<h2<¯<hq . As a conse-
quence,a1<a2<¯<aq andb1<b2<¯<bq . By writing the expression~4.8! as an inequality
for a bilinear form inqmcmqm8cm8 , the sufficient requirement that all the independent coefficie
of this form be non-negative reduces to

~am2am8!~bm2bm8!>0, ;m,m8, ~4.9!

which is immediate by our preceding assumptions.
Turning to m̄-wired boundary conditions,m̄PQmax(h), we will distinguish several cases.

V(A)ùLc5B, V(B)ùLc5B, as well asV(C)ùLc5B, we have exactly the same situation
for free boundary conditions. IfV(C)ùLcÞB, both sides of~4.6! are equal tocm̄am̄bm̄cm̄ . If
V(A)ùLc5B, V(C)ùLc5B, andV(B)ùLcÞB, we need to show that

S (
m51

q

qmcmD am̄bm̄cm̄>S (
m51

q

qmamcmD bm̄cm̄ . ~4.10!

This follows once we realize thathm̄5hmax impliesam<am̄ for anym; similarly, with the role of
A andB interchanged. Finally, ifV(C)ùLc5B, butV(A)ùLcÞB andV(B)ùLcÞB, we have
to verify that

S (
m51

q

qmcmD am̄bm̄cm̄>am̄cm̄bm̄cm̄ . ~4.11!

This is clearly true if we use the assumption that(mPQmax(h)qm>1 and the fact thatcm5cm̄

whenevermPQmax(h).
It remains to establish~4.1! under~c!. In this case, there are only two components in the ga

A and B. Inequality ~4.1! is then implied byQ(AøB)<Q(A)Q(B). Let us use the definitions
~4.7! of am andbm . We consider three cases. First, in the case of either free boundary cond
or wired boundary conditions with the additional conditionsV(A)ùLc5B andV(B)ùLc5B,
the relation we want boils down to the inequality

(
q

qmambm<S (
q

qmamD S (
q

qm8bm8D , ~4.12!

m51 m51 m851
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which is obviously satisfied sincebm<(m8PQmax(h)qm8bm̄. Second, for wired boundary condition
under the additional conditionsV(A)ùLc5B andV(B)ùLcÞB, we get the manifestly correc
inequality

am̄bm̄<S (
m51

q

qmamD bm̄ . ~4.13!

Finally, for wired boundary conditions with the additional conditionsV(A)ùLcÞB and
V(B)ùLcÞB, we get the identityam̄bm̄5am̄bm̄ . h

Remark:The necessity ofhm5hmax, for the strong FKG property ofmL,m
GRC to hold, arises from

~4.6!. Namely, suppose thatB connects to the boundary~i.e.,V(B)ùLcÞB), whereasA andC do
not. Then~4.6! reduces to~4.10!. It is not difficult to convince oneself that choosingC sufficiently
large one can make~4.10! be satisfied for allA only whenam̄5maxmam. Consequently,hm̄ must
be equal tohmax for the lattice condition~4.1! or, equivalently, the strong FKG condition to hold

Lemma IV. 1: Let b>0, J>0, hmPR and qm.0, m51,...,q, and suppose that the param
eters qm obey the condition~3.3!. Further, letL,D,Zd be two finite sets. Then

mL,free
GRC ~• ! <

FKG
mD,free

GRC ~• ! ~4.14!

and

mL,maxwir
GRC ~• ! >

FKG
mD,maxwir

GRC ~• !. ~4.15!

Proof: Using Theorem III.1~i!, the inequality~4.14! follows immediately from the fact that

mL,free
GRC ~• !5mD,free

GRC ~•uDL!, ~4.16!

whereDL is the FKG decreasing event,

DL5$h:hb50, ;bPB0~L!c%. ~4.17!

For maxwired boundary conditions, the proof is more complicated, since conditioning o
FKG increasing event,

OL5$h:hb51, ;bPB~L!c%, ~4.18!

leads to the statemL,maxwir
GRC only if L is a volume without ‘‘holes,’’ i.e., ifLc has only one~infinite!

component. IfLc has finite componentsH1 ,...,Hk , we use the following trick: for each ‘‘hole’’
Hi , we introduce an additional bondbi with one end point inHi and the other inDc. Setting

B* ~D!5B~D!ø$b1 ,...,bk%, ~4.19!

we then definem̄D,maxwir
GRC as the maxwired GRC measure on the graph„D̄,B* (D)…, where, as

before,D̄5Dø]D. With this definition we get

mD,maxwir
GRC ~• !5m̄D,maxwir

GRC
„•uhb50,;bPB* ~D!\B~D!…

<
FKG

m̄D,maxwir
GRC

„•uhb51,;bPB* ~D!\B~D!…

<
FKG

m̄D,maxwir
GRC ~•uhb51,;bP„B* ~D!\B~D!…øB~L!c!5mL,maxwir

GRC ~• !, ~4.20!
                                                                                                                



res,

otone
hed.

-

ts
f
ly

ite

1185J. Math. Phys., Vol. 41, No. 3, March 2000 Gibbs states of graphical representations . . .

                    
proving the desired inequality~4.15!. Here the first inequality uses that the strong FKG measu
conditioned on taking a fixed configurationhA in a setA, are FKG increasing inhA , while the
second inequality follows by the FKG property ofm̄D,maxwir

GRC . h

Proof of Theorem III.1(ii):As a consequence of~4.14! and ~4.15!, the net (mL,free
GRC ) @resp.,

(mL,maxwir
GRC )] increases~resp., decreases! asL increases~in the order defined by the set inclusion!,

yielding the existence of the desired limits as well as their translation invariance for all mon
quasilocal functions. Since the latter generate all quasilocal functions, the claim is establish

Proof of Theorem III.1(iii):We first prove that for any finite set of bondsB, the measure
mB

GRC(hBuhBc) is strong FKG. To this end, we expressmB
GRC(hBuhBc) as a limit of finite volume

measures, which can be expressed as conditionals of the finite volume measuresmD,free
GRC . Using

that mD,free
GRC is strong FKG we then will conclude thatmB

GRC(hBuhBc) is strong FKG.
Let D be a finite subset ofZd, let hP$0,1%B0(Zd), and let

hb
~D!5H hb , bPB0~D!,

0, otherwise.
~4.21!

Then we haveWB0(D)
GRC (hB0(D)

(D) uhB0(D)c
(D) )5e2bhmaxuDuWD,free

GRC (h(D)). Consequently,

mB0~D!
GRC ~•uhB0~D!c

~D!
!5mD,free

GRC ~•uhB0~D!c
~D!

!. ~4.22!

Since the latter measure is strong FKG and since (mB
GRC) from a consistent family of specifica

tions, mB
GRC(•uhBc

(D)) is strong FKG as well for anyB,B(D) ~use that conditioned strong FKG
measures are still strong FKG!. The strong FKG property of the measuremB

GRC(hBuhBc) now
follows from the fact thatmB

GRC(•uhBc
(D))→mB

GRC(•uhBc) as D↗Zd, which, in turn, is a conse-
quence of the observation that for eachh there is a finiteD such that the number of componen
of the graph„D,Bocc(h

(D))… that reach fromV(B) to the boundary ofD is equal to the number o
infinite components of„Zd,B0(h)… that touchV(B). ~Here we used that there are only finite
many infinite clusters connected toB.!

HencemB
GRC(•uhBc) is strong FKG for allh and all finite sets of bondsB. In particular,

mB
GRC(•uhBc) is increasing in the boundary condition~the specifications are consistent!, and

mB
GRC~•uhBc

~0!
! <

FKG
mB

GRC~•uhBc! <
FKG

mB
GRC~•uhBc

~1!
!, ~4.23!

whereh( i ) is the configuration withh( i )5 i for all bPB0(Zd). ChoosingB5B(L) and continuing
by further conditioning as in the proof of~4.14! and ~4.20!, we get

mL,free
GRC ~• ! <

FKG
mB~L!

GRC~•uhB~L!c! <
FKG

mL,maxwir
GRC ~• !. ~4.24!

If m is a Gibbs measure, the bound~4.24! and the DLR equation~2.12! imply that

mL,free
GRC ~• ! <

FKG
mGRC~• ! <

FKG
mL,maxwir

GRC ~• !. ~4.25!

Taking the limitL↗Zd, we get statement~iii ! for an arbitrary GRC Gibbs statem.
In order to prove statement~iii ! for a GRC limit state, we use that for any sequence of fin

setsBn with Bn↗B0(Zd), we can find a sequenceLn of finite subsets inZd such thatLn↗Zd and
B(Ln),Bn . Given such a sequence and a sequence of boundary conditionsh(n), we then proceed
as above to the bound

mLn ,free
GRC ~• ! <

FKG
mBn

GRC~•uhBn~L!c
~n!

! <
FKG

mLn ,maxwir
GRC ~• !. ~4.26!
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Taking the limitn→`, this proves statement~iii ! for an arbitrary RC limit state. h

Proof of Theorem III.1(iv):Let g be a monotone increasing function, depending only on bo
B0(D) for some finiteD. For each finiteL,Zd, define

gL5 (
x:tx~D!,L

g+tx, ~4.27!

wheret is the shift operator. LetmL,free
GRC,J1 ,a andmL,maxwir

GRC,J1 ,a be the GRC measures with a free a
maxwired boundary condition and couplingJ5J1 , however, with the weights in~3.1! and ~3.4!
multiplied by the functioneagL. We then consider the generating function,

ZL,free
~a! 5 (

hPB0~Zd!

eagL~h!~ebJ21! uhu )
C~h!

Q free„C~h!…, ~4.28!

where, as in formula~3.1!, the product runs over all connected componentsC(h) of the graph
„L,Bocc(h)ùB0(L)…. Similarly, we introduce the generating functionZL,maxwir

(a) for the moments
of gL with respect tomL,maxwir

GRC . Consider now a volumeL that is a disjoint union of two volumes
L1 andL2 . Then we have the following submultiplicative bound:

ZL,free
~a! >ZL1 ,free

~a! ZL2 ,free
~a! eO„auB~L1!ùB~L2!u…, ~4.29!

which can be easily obtained by restricting the sum in~4.28! to thoseh that are zero on the bond
in B(L1)ùB(L2), and observing that

gL5gL1
1gL2

1 (
x:tx~D!,L,

tx~D!ùL1Þ0”,

tx~D!ùL2Þ0”

g+tx. ~4.30!

By standard subadditivity arguments, it follows from~4.29! that the ‘‘free energy,’’

f ~a!5 lim
L↗Zd

1

uLu
logZL,free

~a! ~4.31!

exists and is convex ina. In ~4.31!, we assume that the limit is taken over cubes of the fo
Ln5$2n,...,n%d.

The same limit is obtained ifZL,free
(a) is replaced byZL,maxwir

(a) . Indeed, observing thatZL,maxwir
(a)

can be bounded from below by restricting the sum over configurations to those for whichh is 0 on
B(L)\B0(L), we get

ZL,maxwir
~a! >eO~au]Lu! ZL,free

~a! )
xP]L

QL,m~$x%!, ~4.32!

providedmPQmax. To get an upper bound onZL,maxwir
(a) , observe thatQL,m<Q free by our as-

sumption~3.3!. As a consequence,

ZL,maxwir
~a! <eO~au]Lu! Z

L̄,free

~a!
, ~4.33!

where, as before,L̄5Lø]L. While L̄ is not of the form$2n,...,n%d required for the existence
of the limit ~4.31!, it can easily be bounded by a term of this form times a boundary term with
help of~4.29!. We therefore have shown thatZL,maxwir

(a) andZL,free
(a) give rise to the same free energ

f (a).
Moreover, by differentiating, we find that
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limsup
L↗Zd

mL,maxwir
GRC,J1 S gL

uLu D<
df

da1 ~a1!<
df

da2 ~a2!< liminf
L↗Zd

mL,free
GRC,J1 ,aS gL

uLu D , ~4.34!

where 0,a1,a2,a are arbitrary.
SincegL is increasing, we have from~4.15! and the translation invariance ofmmaxwir

GRC,J1 that the

left-hand side of~4.34! equalsmmaxwir
GRC,J1(g). Thus, we just need to show that ifa is small enough

thenmL,free
GRC,J1 ,a is FKG dominated bymL,free

GRC,J2. To this end, recall that the second measure can

directly generated by the weightsWL,free
J2 defined in~3.1!, while the first one can be generated b

the weightseagLWL,free
J1 . As a consequence, we have

mL,free
GRC,J1 ,a

~• !5
mL,free

GRC,J2~•GL!

mL,free
GRC,J2~GL!

, ~4.35!

where

GL~h!5eagL~h!
WL,free

J1 ~h!

WL,free
J2 ~h!

. ~4.36!

Hence, it suffices to ensure that the functionh °GL(h) is monotone decreasing inh. Let us
define the variance ofg by the formula

var~g!5sup
b̄

sup
h,h8:hb5hb8;bÞb̄

ug~h!2g~h8!u. ~4.37!

Note that var(g) is the maximum amount thatg can change by flipping a single bond. Since

WL,free
J1

WL,free
J2

~h!5FebJ121

ebJ221G uhu

, ~4.38!

the monotonicity ofGL is guaranteed, for instance, byea var(g)uB0(D)u(ebJ121)<(ebJ221). For
J1,J2 , this, in turn, is achieved by takinga small enough. Thus, fora sufficiently small and
positive, we have

mmaxwir
GRC,J1~g!< lim inf

L↗Zd

mL,free
GRC,J1 ,aS gL

uLu D< lim inf
L↗Zd

mL,free
GRC,J2S gL

uLu D<m free
GRC,J2~g!, ~4.39!

where the last inequality follows frommL,free
GRC,J2 <

FKG
m free

GRC,J2 and the translation invariance o

m free
GRC,J2. Sinceg was arbitrary,~3.11! is established. h

Before proving item~v! of Theorem III.1, let us present an elementary argument showing
our definition of partial order on the external fields is the only correct one, at least provide
stipulate that it be independent of the volume,b.0, and the values of (qm) ~however, such that
the strong FKG condition is still satisfied!.

Let L5$x,y%, wherex andy are nearest neighbors, and consider the event$hb51% that the
bondb5^x,y& is occupied. Then

m
$x,y%,free
GRC,~hm!

~hb51!5 f S iai2

iai1
D , ~4.40!

where f (x)5x2/(11x2) and wherei•i1 and i•i2 are the l 1 and l 2 norms of the vectora
5(ebh1,...,ebhq) in the metric with weights (qm), i.e.,
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iai15 (
m51

q

qmebhm and iai2
25 (

m51

q

qme2bhm. ~4.41!

Sincex° f (x) is strictly increasing,m
$x,y%,free
GRC,(hm)

increases with (hm) if and only if iai2 /iai1 does.
If this is to hold independently of theqm’s, then also

lim
aqk5ql→`

qk

iai2
2

iai1
2 5

11ae22b~hk2hl !

@11ae2b~hk2hl !#2 ~4.42!

must be increasing for alla.0. ~In the above limit, we fix allqm’s with mÞk,l .!
We want to show that the condition

hk82hl8>hk2hl wheneverhk2hl.0 ~4.43!

is necessary for the claim~3.12!. To this end, we first show that the condition

hk82hl8>0 wheneverhk2hl.0 ~4.44!

is necessary for~3.12! to hold. To see this, assumehk.hl andhk82hl8,0. Then for large enough
b, the rhs of~4.42! is close to 1 for (hm) and close toa21 for (hm8 ). Takinga.1, we see that the
desired monotonicity ofm

$x,y%,free
GRC,(hm)

(hb51) is violated. Hence, the condition~4.44! is necessary.

Now takea51 in ~4.42!. This leads to the functionx° 1
2 cosh(x)@cosh(x/2)#21, which is even

and strictly increasing forx.0. Hence~4.42! increases under the replacement (hm)→(hm8 ) if and
only if uhk82hl8u>uhk2hl u, which together with~4.44! gives the necessity of~4.43!.

The following argument shows that the condition~4.43! is also sufficient.

Proof of Theorem III.1(v):Let (hm) and (hm8 ) be two sets of fields such that (hm)d(hm8 ). In
order to prove~3.12! and ~3.13!, we need to establish that the functions

h °
W

L,free
GRC,~hm8 !

~h!

WL,free
GRC,~hm!

~h!
5J free~h!, h °

W
L,m
GRC,~hm8 !

~h!

WL,m
GRC,~hm!

~h!
5Jm~h! ~4.45!

are monotone increasing withh ~the rest follows by~3.8!, ~3.9! and an inequality of the~4.35!
type!. It suffices to study the single-bond flips. Letb5^x,y& be a nearest-neighbor bond such th
hb50 and lethb be the configuration obtained by flippinghb to 1. There are two scenarios:~1!
x↔y in h; ~2! x}y in h.

In the case~1!, J free(h)5J free(hb), as follows by the inspection of~3.2!, and similarly for
the maxwired boundary condition. In the case~2!, there are two componentsA andB in h, each
at one end of the bondb. By flipping hb to 1, A andB become connected in one component th
we denote byC. Note thatuV(C)u5uV(A)u1uV(B)u. Since the remaining components are n
affected by this flip, it is easily seen that

J free~hb!

J free~h!
5

Q free
GRC,~hm!

~A!Q free
GRC,~hm!

~B!

Q
free
GRC,~hm8 !

~A!Q free
GRC,~hm8 !

~B!

Q
free
GRC,~hm8 !

~C!

Q free
GRC,~hm!

~C!
, ~4.46!

and similarly for the maxwired boundary condition. We are thus reduced to showing that th
of ~4.46! is no less than 1, and again similarly for maxwired.

We begin with the free boundary condition. Letam ,bm ,cm have literally the same meaning a
in ~4.7! and letam8 ,bm8 ,cm8 denote the corresponding quantities for (hm) replaced by (hm8 ). Note
that cm5ambm andcm8 5am8 bm8 . Then the condition that the rhs of~4.46! be no less than 1 read
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S (
j 51

q

qjaj8D S (
k51

q

qkbk8D S (
l 51

q

qlalbl D<S (
j 51

q

qjaj D S (
k51

q

qkbkD S (
l 51

q

qlal8bl8D . ~4.47!

We will prove this in two steps; first we ‘‘move’’ the prime fromaj ’ s in the first bracket on
the lhs to the ones in the last bracket and then do the same with the prime overbk in the second
bracket on the left. Consider the identity

aj8albl1al8ajbj5
1
2 ~aj8al1ajal8!~bl1bj !1 1

2 ~aj8al2ajal8!~bl2bj !. ~4.48!

Observing that (hm)d(hm8 ) implies

~aj8al2ajal8!~bl2bj !<0<~aj8al2ajal8!~bj2bl !, ~4.49!

we can bound the rhs of~4.48! by interchangingbl andbj . This allows us to conclude that

lhs of ~4.47!<S (
j 51

q

qjaj D S (
k51

q

qkbk8D S (
l 51

q

qlal8bl D . ~4.50!

In order to perform the same trick onbk8 , which will lead to the desired formula~4.47!, we will
need thathk82hl8.0 implies hk82hl8>hk2hl . After a moment’s thought, the latter is a trivia
consequence of our assumption~3.7!.

In the case of a maxwired boundary condition, let both measures be defined using thesame
boundary ‘‘value’’ m with hm5hmax and hm8 5hmax8 ~such a choice always exists, due to (hm)
d(hm8 )). We need to distinguish whether any of the componentsA, Bconnects to the boundary o
not. If V(A)ù]L5B andV(B)ù]L5B, we are in the same situation as for the free bound
condition. If V(A)ù]LÞB but V(B)ù]L5B, then we have to check the inequality

am8 ambmS (
k51

q

qkbk8D<am8 ambm8 S (
k51

q

qkbkD . ~4.51!

This is implied by the inequalitybmbk8<bm8 bk , which, in turn, follows from the assumptio
(hm)d(hm8 ) and the fact thathm5hmax and hm8 5hmax8 . In the case whenV(A)ù]LÞB and
V(B)ù]LÞB, ~4.47! ~modified for them-wired boundary condition! is fulfilled with the equality
sign. h

Proof of Corollary to Theorem III.1:Items~i! and~ii ! are direct consequences of~3.10!. Since
mL,maxwir

GRC (0↔Lc)↓mmaxwir
GRC (0↔`) by Lemma IV.1, the claim~iii ! follows from the fact that a

decreasing sequence of increasingcontinuousfunctions~of parameterJ in our case! has a right
continuous limit. To prove claims~iv! and~v!, we note that the mapJ° P̃(b,J,h) is nondecreas-
ing. By ~3.10! and~3.11!, one hasP̃(b,J,h)<P(b,J,h) for all J andP̃(b,J2 ,h)>P(b,J1 ,h) for
all J1,J2 , which implies the remaining part of~iv!. Combining the monotonicity ofP(b,J,h)
and P̃(b,J,h) with the above two inequalities, we get~v!. h

We close this section with a FKG domination lemma that will be used to prove Theorem
in the next section. We need some notation. First, for a finite setL and any subsetD,]L, where,
as before,]L5$xPZdudist(x,L)51%, we define theD-maxwired measure in the volumeL as the
measure

mL,D,maxwir
GRC ~• !5mL,maxwir

GRC
„•hb50,;bPB~L!\B0~LøD !…. ~4.52!

Note thatmL,D,maxwir
GRC (•) is identical to the free measuremL,free

GRC (•) if D5B and identical to the
maxwired measuremL,maxwir

GRC (•) if D5]L.
We also generalize them-wired measuremL,m

GRC. To this end we introduce, for any finit
volume L,Zd and any configurations:]L→$1,2,...,q%, a measuremL,s

GRC that is obtained by
normalizing the weight
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WL,s
GRC~h!5~ebJ21! uhu)

i , j
1$] iL}] jL%~h! )

C~h!
QL,s„C~h!…. ~4.53!

Here] iL is the set of allxP]L such thatsx5 i ,] iL}] jL is the event that the sets] iL and] jL
are not connected by a path of occupied bonds, and

QL,s~C!5H Q free~C!, V~C!ùLc50” ,

ebhmuV~C!u, V~C!ù]mLÞ0” .
~4.54!

It is not hard to see that for the standard RC model~with qm51 for all m51,2,...,q! mL,s
RC is, in

fact, the RC marginal ofmL,B(L)
ES (•usLc,hB(L)c), while mL,D,maxwir

RC is the RC marginal ofmL,B
ES

3(•usLc,hBc), providedB5B0(L)ø„B(L)ùB(D)…, hB(L)\B50, andsx5m for some~x inde-
pendent! mPQmax and allxPD.

The measuresmL,s
GRC andmL,D,maxwir

GRC satisfy the following FKG bounds.
Lemma IV.2: Let L be a finite set. Then for anys on Lc, we have

mL,s
GRC~• ! <

FKG
mL,maxwir

GRC ~• !. ~4.55!

Moreover, let D,]L. Then

mL,free
GRC ~• ! <

FKG
mL,D,maxwir

GRC ~• ! <
FKG

mL,maxwir
GRC ~• !. ~4.56!

Proof: Using the representation~4.53!, it is easy to see that the measuremL,s
GRC can be recast as

mL,s
GRC~• !5

mL,maxwir
GRC ~•g!

mL,maxwir
GRC ~g!

, ~4.57!

where

g~h!5)
i , j

1$] iL}] jL%~h!)
m

)
C:

V~C!ù]mLÞ0”

e2~hmax2hm!uV~C!u, ~4.58!

for any hP$0,1%B(L). It turns out that the functiong is FKG decreasing. Indeed, each indicat
1$] iL}] jL%(h) is clearly decreasing. The same is true for the remaining factor, as is seen by n
that the sum

(
C:

V~C!ù]mLÞ0”

uV~C!u, ~4.59!

being equal to the number of sites connected to]Lm , is an increasing function ofh. Since
hmax>hm and since the product of non-negative decreasing functions is decreasing, the m
nicity of g is established. SincemL,maxwir

GRC is FKG, ~4.55! is proved.
To prove~4.56!, it is enough to observe that the rhs of~4.52! is FKG increasing inD, since

mL,D,maxwir
GRC is FKG and the event$h:hb50;bPB(L)\B0(LøD)% is FKG decreasing. h

V. THE COLOR„S… OF THE INFINITE CLUSTER„S…

In this section we prove Theorem III.2. Since this result uses ES measures in its very f
lation, we return to the standard RC measures~with qm51, m51,...,q, in ~3.2!! and prove the
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results only for them. In addition to Lemma IV.2, the second part of Theorem III.2 requires
control of the possible values of the spins that can be assumed on the infinite clusters. To s
theorem precisely, we introduce the notationS(s,h) for the set of possible spin values assum
on the infinite clusters in a configuration~s, h!. ~Observe that sincen„$(s,h):sxÞsy ,h^x,y&
51%…50 for eachnPGES, each connected component has a constant spin value almost su!

Theorem V.1: Let nPGES. Then S#Qmax(h) n-almost surely.

Remark:We believe, but have not yet been able to prove, thatuSu<1 n-almost surely for all
translation-invariantnPGES.

Before we prove the above theorem, let us formulate a technical lemma.

Lemma V.2: Let (ak)k>1 be a sequence of numbers such that1<ak<Ckn for some constant

C,` and an integer n>0. Then for eache.0 and any k̄>C(n11)ne2(n11),

ak<e (
k8<k

ak8 , ~5.1!

holds for at least one kP$k̄,...,(n11)k̄%.
Proof: If n50, the statement follows from the observation that 1<ak<C and k̄>Ce21

implies ak̄<C<e k̄<eSk8<kak8 , which gives ~5.1! for k5 k̄. If n>1, suppose thatak

.eSk8<kak8 for all kP$k̄,...,(n11)k̄%. Sinceak8>1, this impliesak.e k̄ for all kP$k̄,...,2k̄%
and, using induction,ak.e l k̄l for all kP$l k̄,...,(l 11)k̄%, with l P$1,...,n%. In particular,
a(n11)k̄.en11k̄n11. However, this is in contradiction with the assumptiona(n11)k̄<C(n
11)nk̄n wheneverk̄>C(n11)ne2(n11). h

Proof of Theorem V.1:Let mP$1,...,q% with hm,hmax and suppose that there isnPGES with
n(mPS).0. SinceGES as well as the eventmPS are invariant wrt spatial shifts, we can suppo
without loss of generality that the event

Vm
0 5$~s,h!:'C~h!,uC~h!u5`,V„C~h!…{0, s05m% ~5.2!

has positive probability undern, i.e.,n(Vm
0 ).0. Let Lk be the box of side length 2k11 centered

at the origin and, for each (s,h)PVm
0 and eachk>1, let Vk(h) be the set of sites inLk that are

connected to the origin withinB0(Lk), and let

ak5ak~h!5uVk~h!ù]Lk21u. ~5.3!

Note that uVk(h)u>Sk8<kak8 and that 1<ak<u]Lk21u<2d(2k11)d21<3d dkd21, where we
have used thatk>1 in the final bound. Hence, by Lemma V.2, we know that for eache.0 and
eachk̄>(3d/e)d there is at least onek, with k̄<k<dk̄, such that

uVk~h!ù]Lk21u<euVk~h!u. ~5.4!

By ~5.4! and the subadditivity of the measure, we have fork̄>(3d/e)d that

n~Vm
0 !<m~ø k̄<k<dk̄Vm,k

0 !< (
k̄<k<dk̄

n~Vm,k
0 !, ~5.5!

with Vm,k
0 denoting the event,

Vm,k
0 5H ~s,h!:

s05m, 0↔]Lk21,

u$xP]Lk21 :x ↔
B0~Lk!

0%u<eu$xPLk :x ↔
B0~Lk!

0%uJ .
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Herex↔0
B0(Lk)

indicates that the connection occurs withinB0(Lk). As a result, for eache.0 there is

a deterministic setNe,N, uNeu5`, such that for anykPNe one has

n~Vm,k
0 !>

1

dk
n~Vm

0 !, ~5.6!

by the pigeon hole principle, as applied to~5.5!.
On the other hand, sinceVm,k

0 is a „Lk ,B0(Lk)…-cylinder event, we can estimaten(Vm,k
0 )

using the DLR equations~2.6!. Recall thatmLk,s
ES is the specification~2.4! with the special choice

L5Lk andB5B(Lk) and the spin boundary conditions ~the h boundary condition is irrelevan
in this case!. Then~2.6! reads as

n~Vm,k
0 !5E n~ds,dh!mLk,s

ES ~Vm,k
0 !. ~5.7!

Fix e.0 such thatdJe1hm,hmax and pickm̃ with hm̃5hmax. Then we claim that for anys,

mLk,s
ES ~Vm,k

0 !<mLk,s
ES S 1V

m,k
0 )

^x,y&:xPLk
c

yPVk

ebJ1$h^x,y&0%D
5mLk,s

ES S 1Vm̃,k
0 e2b~hmax2hm!uVku )

^x,y&:xPLk
0

yPVk

ebJ1$h^x,y&50%D
<mLk,s

ES ~1V
m̃,k
0 e2b~hmax2hm2dJe!uVku!<e2b~hmax2hm2dJe!k. ~5.8!

Here, in the first step we inserted the factorebJ in order to convert an arbitrary configuration at th
boundary bonds of the setVk to the vacant bond state. More explicitly, we used the follow
estimate:

(
h^x,y&50,1

„1$h^x,y&50%1~ebJ21!dsx ,sy
1$h^x,y&51%…

5~ebJ21!dsx ,sy
11<ebJ5 (

h^x,y&50,1
ebJ1$h^x,y&50%

5 (
h^x,y&50,1

ebJ1$h^x,y&50%„1$h^x,y&50%1~ebJ21!dsx ,sy
1$h^x,y&51%…, ~5.9!

at every boundary bond. Note that there is an unconstrained summation over the bond con
tion becauseVm̃,k

0 does not depend on these boundary bonds. The conversion of an arb
configuration at the boundary bonds of the setVk to the vacant bond state then allows us to flipsx

at eachxPVk from m to m̃, resulting in the exponential factor in the second line of~5.8!. The
proof of the claim~5.8! is finished by noting that, onVm̃,k

0 , the number of flipped bonds does n
exceedduVkù]Lk21u<deuVku and thatuVku>k.

By putting ~5.6!, ~5.7!, and~5.8! together, we get that

1

dk
n~Vm

0 !<n~Vm,k
0 !<e2b~hmax2hm2dJe!k, ;kPNe . ~5.10!

However, sinceuNeu5` and k can be arbitrarily large, this leads to a contradiction whene
n(Vm

0 ).0. Hence, no suchm with hm,hmax can exist andS#$m:hm5hmax% n-almost surely.h

Proof of Theorem III.2:Let us consider an ES Gibbs measuren and usem to denote itsh
marginal. Applying the DLR equations~2.6! for n, we get
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m~ f !5n~ f !5E n~ds,dh!mL,B~L!
ES ~ f usLc,hB~L!c!

5E n~ds,dh!mL,s
RC ~ f !<E n~ds,dh!mL,maxwir

RC ~ f !

5mL,maxwir
RC ~ f !, ~5.11!

for any increasing cylinder functionf (h) supported onB̃,B(L). Here, the inequality follows by
~4.55!. Applying now ~2.17!, we get~3.14!.

In order to prove~3.15!, we have to work a bit harder. Let (Dn)n>1 be an increasing sequenc
of boxes centered at the origin, and let

Ln~h!5$xPDn :x}Dn
c%ø$xPDn :x↔`%, ~5.12!

Dn~h!5]Ln~h!ù$x↔`%, ~5.13!

and

Dn
ext~h!5]Ln~h!ù$x ↔

B~Dn!c

`%. ~5.14!

Observe thatDn(h),]Dn .
Given L̄n,Dn , D̄n,]L̄nù]Dn , andDn

ext,D̄n , we will want the condition on the event,

En5$Ln~h!5L̄n%ù$Dn~h!5D̄n%ù$Dn
ext~h!5D̄n

ext%, ~5.15!

using the DLR condition~2.7! in (L̄n ,Bn), where

B̄n5B0~L̄n!ø„B~L̄n!ùB~D̄n!…. ~5.16!

To this end, we write the eventEn as the intersection of four events: the event

En
int5$x↔

B̄n

D̄n
ext,;xPD̄n\D̄n

ext%, ~5.17!

which depends only on the configuration inBn , and the events

En
~1!5$D̄n

ext5$xP]L̄n :x ↔
B̄~Dn!c

`%%, ~5.18!

En
~2!5$h^x,y&50,;^x,y&PB~L̄n!\B̄n%, ~5.19!

and

En
~3!5$x↔L̄n

c;xPDn\L̄n%ù$x}D̄n and x}
B̄n

c

` ;xPDn\L̄n%, ~5.20!

which depend only on the bonds inBn
c . To see thatEn is actually the intersection of these even

we first observe thatEn5$Ln(h)5L̄n%ùEn
(1)ùEn

int . Also, if En
(1)ùEn

int holds, then$Ln(h)5L̄n%
clearly impliesEn

(2)ùEn
(3) . So we have to show thatEn

(2)ùEn
(3) together withEn

(1)ùEn
int implies

$Ln(h)$L̄n% and $Ln(h)#L̄n%. The former is obvious, since the eventEn
(2) ensures that all
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points in L̄n that are connected toDn
c are actually connected toD̄n , and hence to infinity. The

latter follows by observing thatEn
(3) implies that allxPDn\L̄n are connected to the complement

Dn , but are not connected to infinity.
Let f be a non-negative FKG increasingB0(D)-cylinder function, whereD is a finite set. By

the assumption onm, eitherq051 or there is at most one infinite cluster. In both cases, the
on the infinite component~s! is uniquely defined:sx5m with hm5hmax for all x in D̄n . Since the
indicator function of the eventEn

int depends only on the configurationh B̄n
, while the indicator

function of the event

En
ext5En

~1!ùEn
~2!ùEn

~3! ~5.21!

depends only on the configurationh B̄
n
c, we may now use the fact the conditional expectations

the ES Gibbs measuren are given by~2.4! to write

m~ f !5n~ f !>n~ f 1$Ln~• !$D%!

5 (
L̄n$D

D̄n#]L̄nù]Dn

D̄n
ext

#D̄n

(
mPQmax

n„f 1$Ln~• !5L̄n%1$Dn~• !5D̄n%1$D̄n
ext~• !5D̄

n
ext%1$sDn

[m%…

5 (
L̄n$D

D̄n#]L̄nù]Dn

D̄n
ext

#D̄n

(
mPQmax

E n~ds,dh!1E
n
ext1$sDn

[m%mL̄n ,B̄n

ES
~ f 1E

n
intusL̄

n
c,hB̄

n
c!.

~5.22!

Under the condition thatsD̄n
[m, the RC marginal ofmLn ,Bn

ES (•usL̄
n
c,hB

n
c) in the above

equation is just the measurem
L̄n,D̄n,maxwir

RC
introduced in the last section. Since the eventEn

int is an

increasing event and sincem
L̄n,D̄n,maxwir

RC
is strong FKG~being given by conditioning from a stron

FKG measure!, we conclude that

m
L̄n ,B̄n

ES
~ f 1E

n
intusL̄

n
c,hB̄

n
c!5m

Ln ,D̄n ,maxwir

RC
~ f 1E

n
int!>m

L̄n ,D̄n ,maxwir

RC
~ f !m

L̄n ,D̄n ,maxwir

RC
~1E

n
int!

5m
L̄n ,D̄n ,maxwir

RC
~ f !m

L̄n ,B̄n

ES
~1E

n
intusL̄

n
c,hB̄

n
c!, ~5.23!

providedsD̄n
[m andhB̄

n
cPEn

ext. Observing finally that

m
L̄n ,D̄n ,maxwir

RC
~ f !>m

L̄n ,free

RC
~ f !>mD,free

RC ~ f !, ~5.24!

by ~4.56! and ~4.14!, we get that
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m~ f !>mD,free
RC ~ f ! (

L̄n$D

D̄n#]L̄nù]Dn

D̄n
ext

#D̄n

(
mPQmax

E n~ds,dh!1E
n
ext1$sD̄n

[m%mL̄n ,B̄n

ES
~1E

n
intusL̄

n
c,hB̄

n
c!

5mD,free
RC ~ f ! (

L̄n$D

D̄n#]L̄nù]Dn

D̄n
ext

#D̄n

n~1E
n
ext1E

n
int!5mD,free

RC ~ f !n~ˆLn~• !$D‰!. ~5.25!

Here in the first step we used the bounds~5.22!–~5.24!, in the second we used Gibbsianness ofn,
and in the third we used the fact that1E

n
ext1E

n
int is the indicator function of the event~5.15! to resum

over L̄n , D̄n , andD̄n
ext.

Sincen„$Ln(•)$D%… tends to 1 asn→` by the monotone convergence theorem, the proo
finished for f >0 by taking that limit followed byD↗Zd. Arbitrary cylinder f’s are handled by
noting thatf 2min f>0. h

VI. UNIQUENESS OF THE INFINITE CLUSTER

In this section we prove that GRC Gibbs measures and weak limits of finite volume
measures have at most one infinite cluster almost surely~Theorem III.3!. This is a direct conse-
quence of Theorem 1 from Ref. 20, once we show that the limiting measure satisfies thepositive
finite energy condition. Using a slightly stronger form of the condition than that in Ref. 20, we
that a GRC measurem has positive finite energy if for all bondsbPB(Zd), we have

m~hb51uBB~Zd!\$b%!.0, m-almost everywhere. ~6.1!

HereBB(Zd)\$b% is thes algebra generated by all cylinder functions on$0,1%B(Zd)\$b%.
We start with a lemma concerning GRC measures that are either Gibbs states or wea

points of finite volume GRC measures.

Lemma VI.1: Let m be a translation-invariant GRC measure that is either a Gibbs state o
is a weak limit of the formlimn→` mBn

GRC(•uhn). Then the measurem satisfies the positive finite

energy condition, providedbJ.0.

Proof: Consider a finite set of bondsB and the characteristic function1$h̄B% of the event

$huhB5h̄B%. The claim~6.1! will be proved once we verify that there exists a constantc.0 such
that for everyB,B(Zd)\$b% and everyh̄B , one has

E m~dh! 1$h̄B%~h!m~hb51uBB~Zd!\$b%!~h!>cE m~dh! 1$h̄B%~h!m~hb50uBB~Zd!\$b%!~h!.

~6.2!

Indeed,~6.2! implies that

m~hb51uBB~Zd!\$b%!~h!>cm~hb50uBB~Zd!\$b%!~h!, ~6.3!

almost surely, which in turn yields

m~hb51uBB~Zd!\$b%!~h!>
c

11c
, ~6.4!

almost surely, and thus~6.1!. Now, since1$h̄B% is BB(Zd)\$b% measurable, the inequality~6.2! is
equivalent to
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m~1$h̄B%1$hb51%!>cm~1$h̄B%1$hb50%!. ~6.5!

If mPG̃GRC, the inequality~6.5! is implied by

mD
GRC~1$h̄B%1$hb51%uhDc!>cmD

GRC~1$h̄B%1$hb50%uhDc!, ~6.6!

for at least oneD.Bø$b%. Indeed, it suffices to integrate~6.6! by m using the DLR equation
~2.12!.

If, on the other hand,m is obtained as a weak limit of finite volume GRC measuresm
5 limn→` mBn

GRC(•uhn), then the inequality~6.5! follows from ~6.6! as well, provided~6.6! holds

for all sufficiently largeD5Bn.Bø$b% and boundary conditionshB
n
c5hn . Indeed, for alle

.0 and all sufficiently largen we have

umBn

GRC~1$h̄B%1$hb51%uhn!2m~1$h̄B%1$hb51%!u<e, ~6.7!

and

umBn

GRC~1$h̄B%1$hb50%uhn!2m~1$h̄B%1$h̄b50%!u<e. ~6.8!

Combined with~6.6!, we get

m~1$h̄B%1$hb50%!>cm~1$h̄B%1$hb50%2e~11c!. ~6.9!

Sincee can be made arbitrarily small by choosingn large enough, we again obtain~6.5!.
To get ~6.6!, we evaluate the infimum of the ratio,

mD
GRC~hb51,hD\$b%uhDc!

mD
GRC~hb50,hD\$b%uhDc!

, ~6.10!

over allhD\$b% . Let us consider, for anyh with hb50, the componentsCx(h) andCy(h) attached
to the end pointsx andy of the bondb5^x,y&. If Cx(h)5Cy(h), using~3.6! we immediately see
that the ratio~6.10! equalsebJ21. On the other hand, ifCx(h) andCy(h) are different compo-
nents of the graph„Zd,Bocc(h)…, then

mD
GRC~hb51,hD\$b%uhDc!

mD
GRC~hb50,hD\$b%uhDc!

>~ebJ21!
SmPQmax

qm

~Sm51
q qm!2 , ~6.11!

since

Sm51
q qme2b~hm2hmax!~ uV~Cx~h!…u1uV„Cy~h!…u!

~Sm51
q qme2b~hm2hmax!uV„Cx~h!…u!~Sm51

q qme2b~hm2hmax!uV„Cy~h!…u!
>

(mPQmax
qm

~(m51
q qm!2 , ~6.12!

by the obvious fact that 0<e2b(hm2hmax)<1.

Proof of Theorem III.3:Since the positive finite energy condition has been established in
relevant cases, the result follows immediately from Theorem 1 in Ref. 20. h

In order to prove the corollary to Theorem III.3, we will prove a lemma that states tha
specificationsmB

GRC are ‘‘almost surely quasilocal’’ in the language of Refs. 4 and 5. For finite
L, D with L,D,Zd, let MD,L be the event

MD,L5$h:;x,yPL x↔Dc and y↔Dc implies x ↔
B0~D!

y%, ~6.13!

wherex↔y is the event that there is a path of occupied bonds inB0(D) connectingx andy.

B0~D!
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Lemma VI.2: (i) Let B,B0(Zd) be a finite set, and let f be a cylinder function depending o
on the bonds inB. Then the function

h °1MD,L
~h!mB

GRC~ f uhBc! ~6.14!

is quasilocal for any pair of finite setsD, L with D.L.V(B).
(ii) Let m is a GRC limit state or a GRC Gibbs state with at most one infinite cluster

L,Zd is finite, then

m~MD,L!↑1 as D↑Zd. ~6.15!

Proof: Recalling the definition ofmB
GRC(•uhBc) in terms of~3.6!, we note that it is enough to

prove that the functionh °1MD,L
(h)WB

GRC(h̄BuhBc) is quasilocal for allh̄BP$0,1%B. Let D̃.D,

and let h and hb be two configurations differing at a single bondbPB(D̃)c, hb50, hb
b51.

Suppose thathPMD,L is such that there is a clusterC connectingL with B(D̃)c. By the defini-
tion ~6.13! of MD,L , the configurationhb also satisfies these conditions, and the componentC of
„Zd,Bocc(h)… connectingL with B(D̃)c is unique. Moreover, the value ofWB

GRC(h̃BuhBc) is clearly
not affected by changing fromh to hb unlessV($b%)ùV(C)Þ0” . Suppose that the latter occu
and denote byCb the corresponding component underhb. Then

uWB
GRB~h̄BuhBc

b
!2WB

GRB~h̄BuhBc!u<~ebJ21! uBocc~h̄B!ùBu

3 (
m51

q

qmUeb~hm2hmax!uV~Cb!u2eb~hm2hmax!uV~C!uU.
~6.16!

It turns out that the rhs of~6.16! is exponentially small in dist(b,L). Indeed, for the terms
with hm,hmax, both terms between the absolute value signs go to zero exponentially fast,
for hm5hmax both terms tend exponentially fast to one as dist(b,L)→`. Thus, the rhs of~6.16!
is summable over the positions ofb. By the standard telescoping trick, this proves quasiloca
~i.e., continuity in the product topology! of the functionh °1MD,L

(h)WB
GRC(h̄BuhBc), as required

by ~i!.
~ii ! SinceMD,L↑ML , whereML is the set of configurations featuring at most one infin

component incident withL, we have thatm(MD,L)↑m(ML)51, by the assumption thatm has at
most one infinite cluster. h

Proof of Corollary to Theorem III.3:Let m5 limn→` mBn

GRC(•uhn) be a translation-invarian

GRC limit state. It is not hard to verify thatmn5mBn

GRC(•uhn) satisfies the DLR condition

mn~ f !5E mn~dh!mB
GRC~ f uhBc!, ~6.17!

for anyB-cylinder functionf and anyB,Bn . Since the specificationsmB
GRC( f u•) are not quasilo-

cal, this does not imply, however, that the limiting measurem satisfies the DLR equation. To
circumvent this problem, we follow the strategy of Refs. 5 and 4 involving the ‘‘almost
quasilocality’’ of mB

GRC( f u•).
Let B be a finite set of bonds, and letf be a boundedB-cylinder function. Since bothf and

1MD,V(B)
(•)mB

GRC( f u•) are quasilocal for allD.V(B), we have

m„1MD,V~B!
~• !mB

GRC~ f u• !…5 lim
n→`

mn„1MD,V~B!
~• !mB

GRC~ f u• !…, ~6.18!

and
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m~ f !5 lim
n→`

mn~ f !5 lim
n→`

mn„mB
GRC~ f u• !…, ~6.19!

where we have used~6.17! in the last step.
Let e.0. By Theorem III.3,m has a unique infinite cluster, which allows us to use~6.15!.

Combined with the boundedness ofmB
GRC( f u•), we can therefore chooseD1 , D2 , andn0 such that

um~mB
GRC~ f u• !!2m„1MD,V~B!

~• !mB
GRC~ f u• !…u<

e

2
~6.20!

and

umn„mB
GRC~ f u• !…2mn„1MD,V~B!

~• !mB
GRC~ f u• !…u<

e

2
, ~6.21!

providedD1,D,D2 andn>n0 . Combining~6.18!–~6.21!, we get

um~ f !2m„mB
GRC~ f u• !…u<e. ~6.22!

Sincee was arbitrary, we get thatm( f )5m„mB
GRC( f u•)…, i.e., mPGGRC. h

Proof of Theorem III.4:To prove Theorem III.4, we will prove that for all finite sets of bon
B1 andB2 with B1ùB250” , and for all bounded cylinder functionsf andg depending only on the
bonds inB1 andB2 , respectively, we have

m~g f !5m„gmB1

GRC~ f u• !…, ~6.23!

providedm has, at most, one infinite cluster with probability one.
In a first step, we use the DLR equation~2.11! and the consistency of the specificatio

$mB
GRC% to conclude that forB.B1øB2 we have

m~g f !5E m~dh!mB
GRC~g f uhBc!5E m~dh!mB

GRC
„gmB1

GRC~ f u• !uhBc…. ~6.24!

Next let D.V(B1), and let MD,V(B1) be the event introduced in~6.13!. Since bothg and

1MD,V(B1)
(•)mB1

GRC( f u•) are quasilocal, we have

lim
B↗B0~Zd!

E m~dh!mB
GRC

„g1MD,V~B1!
mB1

GRC~ f u• !uhBc…5m„g1MD,V~B1!
mB1

GRC~ f u• !…. ~6.25!

Here, we have used the fact that as a quasilocal function, the functiong1MD,V(B1)
mB1

GRC( f u•) can be

approximated arbitrarily well by local functions, and then we have applied the DLR equ
~2.11! for local functions. To complete the proof, we use thatm(MD,V(B1))↑m(N`<1)51 as
D↑Zd by Lemma VI.2. Sincef andg are bounded, we conclude that for alle.0 we can chooseD
in such a way that

U E m~dh!mB
GRC

„gmB1

GRC~ f u• !uhBc…2E m~dh!mB
GRC~g1MD,V~B1!

mB1

GRC~ f u• !uhBc!U< e

2
~6.26!

and

um„g1MD,V~B1!
mB1

GRC~ f u• !…2m„gmB1

GRC~ f u• !…u<
e

2
, ~6.27!
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providedB.B(D). Combined with~6.24! and ~6.25!, this proves that

um~g f !2m„gmB1

GRC~ f u• !…u<e. ~6.28!

Sincee was arbitrary, this completes the proof of~6.23! and hence the proof of Theorem III.4.h

Proof of Theorem II.3:As pointed out in the remark after Theorem II.3, the statements of
theorem are special cases of those in Theorem III.1~ii !, Theorem III.3, and its corollary. h

VII. WEAK LIMITS OF THE ES GIBBS MEASURES

Since by Theorem II.3~i! the limits ~2.17! and ~2.18! exist for every quasilocalf depending
only on the bond configurationsh, to prove Theorem II.4 we just need to extend this to functio
of both s and h. In this regard, it will turn out to be useful to swap thes dependence andh
dependence under the expectation wrt the ES Gibbs measures. Before we formulate this pr
let us give some definitions.

For any collection$Fi% i 51
q of pairwise disjoint finite setsFi,Zd, let us define

F $Fi %
free~h!5)

i , j
1$Fi}Fj %

~h! )
m51

q

)
C:

V~C!ùFmÞ0”

ebhmuV~C!u

Q free~C!
. ~7.1!

Here,1$Fi}Fj %
(h) is the indicator of the event that, underh, no point inFi is connected to any

point in Fj by a path of occupied bonds, the product overC runs over all components of the s
Bocc(h) with V(C)ùFmÞ0” , andQ free(C) is as in~3.2! ~with qm51!.

Similarly, given a finite setL with F5ø i 51
q Fi,L, let us define

FL,$Fi %
m̄ ~h!5)

i , j
1$Fi}Fj %

~h! )
m51

q

)
C:

V~C!ùFmÞ0”

ebhmuV~C!u

QL,m~C!
xL,m̄~C,m!, ~7.2!

for eachm̄P$1,...,q%, where we recall the definitions~3.5! and usexL,m̄(C,m) to denote

xL,m̄~C,m!5H 1, V~C!ùLc50” or m5m̄,

0, otherwise.
~7.3!

Remark:In the following, it will be important to remember explicitly from which value of th
boundary spin the measuremL,maxwir

RC originated. Therefore we shall temporarily writemL,m
RC in-

stead ofmL,maxwir
RC .

Lemma VII.1: Let A,Zd be a finite set and let f be a cylinder function in„A,B(A)…. Then
there are numbers(a$Fi %

), such that

mL,free
ES ~ f !5(

$Fi %
a$Fi %

mL,free
RC ~F $Fi %

free !, ~7.4!

mL,m̄
ES ~ f !5(

$Fi %
a$Fi %

mL,m̄
RC ~FL,$Fi %

m̄ !, ~7.5!

for each m̄P$1,...,q% and all L.A with B0(L).B(A). Moreover, a$Fi %
50 whenever there is an

xPF5ø i 51
q Fi with dist(x,A).1. In particular, both sums above are finite.

Proof: Let L be such thatL.A andB0(L).B(A). Then by using thatmL,free
ES andmL,m̄

ES are
Gibbs measures, we have

mL,free
ES ~ f !5mL,free

ES
„mA,B~A!

ES ~ f usAc,hB~A!c!…, ~7.6!
                                                                                                                



e

t

tios
n

der

e

e

nents
ge.

e

1200 J. Math. Phys., Vol. 41, No. 3, March 2000 Biskup et al.

                    
and similarly formL,m̄
ES ( f ). The finite volume specificationmA,B(A)

ES ( f usAc,hB(A)c) depends only on
spin variables at the exterior boundary]A of A, and not onhB(A)c. It therefore suffices to prove th
claim for functions of the spin variables that are supported inĀ5Aø]A.

Each such functionf can be uniquely recast as($Fi %
a$Fi %

f $Fi %
, wherea$Fi %

are real numbers

such thata$Fi %
50 wheneverFúĀ, and

f $Fi %
~s!5 )

m51

q

)
xPFm

dsx ,m . ~7.7!

It is now a matter of a direct computation to show that, for allm̄P$1,...,q%,

mL,free
ES ~ f $Fi %

uh!5F $Fi %
free~h!,

mL,m̄
ES ~ f $Fi %

uh!5FL,$Fi %
m̄ ~h!. ~7.8!

Namely, the componentsC of Bocc(h) such that V(C)ùFmÞ0” necessarily satisfy tha
V(C)ùFi50” for all iÞm. This gives rise to the indicators1$Fi}Fj %

. For h such that
) i , j1$Fi}Fj %

(h)51, the spin configuration can be integrated out, yielding the ra
ebhmuV(C)u/Q free(C), resp., ebhmuV(C)u/QL,m̄(C). However, one gets the latter only whe
V(C)ùLc50” or m5m̄. The claim is finished by taking the expectation wrth. h

It was shown in Lemma VII.1 thats-dependent cylinder functions can be interchanged un
the expectation forh-dependent functionsF $Fi %

free andFL,$Fi %
m . Unfortunately, the weak limits~2.17!

and~2.18! cannot yet be invoked to conclude the existence of~2.19! and~2.20!, the reason being
that theF $Fi %

’s are, in general, not quasilocal.~Moreover,FL,$Fi %
m even depends explicitly on th

expanding volume.! However, both functionsF $Fi %
free and FL,$Fi %

m turn out to be ‘‘almost surely’’

quasilocal, in the terminology of Ref. 5 and 4, which is still sufficient for the limits~2.17! and
~2.18! to exist.

For finite setsF, D with F,D, let MD,F be the event defined in~6.13!. Let further

MD,$Fi %
m 5$hPMD,F : xPF with x↔Dc implies xPFm%, ~7.9!

and recallq05#$m:hm5hmax%. For eachD, mP$1,...,q%, and$Fi% define also a random variabl
QD,$Fi %

m by putting

QD,$Fi %
m 5H q0 Fm↔Dc,

1 otherwise.
~7.10!

The remainder of the proof is based on an approximation ofF $Fi %
’s by quasilocal functions and

showing that the error incurred thereby upon the expectations ofF $Fi %
’s is negligible. These claims

are formulated in Lemma VII.2 and Lemma VII.3 below.

Lemma VII.2: For all finite D,Zd and any$Fi% with F5ø iFi we have the following.

(i) F $Fi %
free1M

D,$Fi %
m is quasilocal for all mP$1,...,q%.

(ii) F $Fi %
free1MD,F is quasilocal.

Proof: ~i! Let m be fixed and letL.D. Observe that1M
D,$Fi %
m P i , j1$Fi}Fj %

is a cylinder

function inB(L). Hence, only the contributions from the product over the connected compo
in ~7.1! can be altered by flipping a bondb¹B(L). Let us estimate precisely the incurred chan

Let h and hb be two configurations differing at a single bondbPB(L)c, hb50, hb
b51.

Suppose thathPMD,$Fi %
m is such that) i , j1$Fi}Fj %

(h)51 and that there is aC connectingFm

with B(L)c. By the definition~7.9! of MD,$Fi %
m , the configurationhb also satisfies these thre
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conditions, and by the definition~6.13! of MD,F , the componentC of „Zd,Bocc(h)… connectingFm

andB(L)c is unique. Moreover, the value ofF $Fi %
free is not affected by changing fromh to hb unless

V($b%ùV(C)Þ0” . Suppose that the latter occurs and denote byCb the corresponding componen
underhb. Then

F $Fi %
free~hb!2F $Fi %

free~h!u<UebhmuV~Cb!u

Q free~Cb!
2

ebhmuV~C!u

Q free~C!
U, ~7.11!

where we have estimated all ratios by 1, except for the one affected by flippingb. As in the proof
of Lemma VI.2, the rhs of~7.11! is exponentially small in dist(b,F). This proves~i!.

To prove~ii !, it clearly suffices to note that

F $Fi %
freeF1MD,F2 (

m51

q

1M
D,$Fi %
m G ~7.12!

is a cylinder event inB(D). Namely, the function in brackets is zero unless there is no compo
incident withF that reaches up toDc. In that case,F $Fi %

free depends only on bonds fromB(D), i.e.,

it is effectively a local function. h

The next lemma has two parts, both of which will be needed in the proof of Theorem II
turns out that the first part can be proved for the more general GRC model.

Lemma VII.3: Let $Fi%,F and m be such thatF5ø i 51
q Fi and hm5hmax.

(i) Then lim
D↗Zd

lim
L↗Zd

mL,free
GRC ~MD,F!51, ~7.13!

lim
D↗Zd

lim
L↗Zd

mL,m
GRC~MD,F!51. ~7.14!

(ii) In addition, let GL,D,m
$Fi % 5FL,$Fi %

m 1MD,F2QD,$Fi %
m 1M

D,$Fi %
m F $Fi %

free . Then

lim
D↗Zd

lim
L↗Zd

mL,m
RC ~GL,D,m

$Fi % !50. ~7.15!

Proof: ~i! The inner limits on the lhs exist becauseMD,F is a cylinder event, and the GRC
measures have a weak limit by Theorem III.1~ii !. The outer limit is then a consequence of the fa
thatMD,F↑MF, whereMF is the set of configurations featuring at most one infinite compon
incident with F. The limits are thus equal tom free

GRC(MF) and mm
GRC(MF), respectively. Now,

sincem free
GRC andmm

GRC are translation invariant~as already proved Theorem III.1! and are obtained
as weak limits of finite volume GRC measures, we can apply Theorem III.3 to assert tha
these measures have almost surely, at most, one infinite cluster. This meansm free

GRC(MF)51
5mm

GRC(MF). By putting these observations together,~7.13! and ~7.14! are proven.
To prove ~ii !, take $Fi% and D,L with D.F. Then the following three possibilities ca

occur for configurationshP$0,1%B(L): ~A! F}Dc; ~B! F↔Dc, but F}Lc; and ~C! F↔Lc.
Clearly, under~A!, the absence of components connectingF with the outside ofD implies

1M
D,$Fi %
m 51MD,F, QD,$Fi %

m 51, and FL,$Fi %
m 5F $Fi %

free , ~7.16!

by the inspection of~7.1! and~7.2!. Consequently, all terms in the definition ofGL,D,m
$Fi % cancel and

GL,D,m
$Fi % 50.

If ~C! occurs, then both terms contributing toGL,D,m
$Fi % are zero, unless there is a uniqu

component connectingF to ]L, and this component connectsFm to ]L. If we have such a
componentCm,L , we get
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1M
D,$Fi %
m 51MD,F, QD,$Fi %

m 5q0 , and FL,$Fi %
m 5F $Fi %

free Q free~Cm,L!

ebhmuV~Cm,L!u . ~7.17!

SinceQ free(Cm,L)/ebhmuV(Cm,L)u is equal toq0 plus an error term that is exponentially small in th
distance betweenFm and]L, this implies thatGL,D,m

$Fi % tends to zero asL↗Zd.
The proof of~7.15! therefore boils down to the analysis of~B!. Let PL,D

F denote the event~B!,
i.e.,PL,D

F 5$h:F↔Dc, butF}Lc%. Then, by the preceding reasoning,uGL,D,m
$Fi % u<q01P

L,D
F plus an

exponentially small error term that tends to zero asL↗Zd. Thus, it suffices to prove that

lim
D↗Zd

lim
L↗Zd

mL,m
RC ~PL,D

F !50. ~7.18!

We will establish this by proving that the events~A! or ~C! get the full mass under thes
limits. First we recall the well-known characterization,

mm
RC~F↔`!5 lim

L↗ Zd

mL,m
RC ~F↔Lc!. ~7.19!

This follows from the fact that for L,L̃ we have the inequalitiesmL,m
RC (F↔L̃c)

<mL,m
RC (F↔Lc)<mL,m

RC (F↔Lc), where the first one is due to monotonicity of$F↔Lc% in L
and the second one is due to~4.15!.

Since$F}Dc%↑$F}`% asD↗Zd, we easily get that

lim
D↗ Zd

lim
L↗ Zd

mL,m
RC ~$F}Dc%ø$F↔Lc%!51, ~7.20!

proving the desired claim. h

With Lemmas VII.2 and VII.3 in the hand, the proof of Theorem II.4 can be concluded

Proof of Theorem II.4:By Lemma VII.1, the existence of the limits~2.19! and~2.20! has been
reduced to the existence of the limits limL↗Zd mL, free

RC (F $Fi %
free) and limL↗Zd mL,m

RC (FL,$Fi %
m ). To prove

the existence of the latter, lete.0. Then there are finite setsL̄,D̄1 ,D̄2,Zd such that

mL,free
RC ~MD,F!>12e/2, ~7.21!

mL,m
RC ~MD,F!>12e/4, ~7.22!

2e/4<mL,m
RC ~FL,$Fi %

m 1MD,F2QD,$Fi %
m 1M

D,$Fi %
m F $Fi %

free !<e/4, ~7.23!

for any L.L̄ andD̄1.D.D̄2 , and anym such thathm5hmax. Since bothFL,$Fi %
m andF $Fi %

free are

bounded by one, this yields

umL,free
RC ~F $Fi %

free !2mL,free
RC ~F $Fi %

free1MD,F!u<e/2, ~7.24!

umL,m
RC ~FL,$Fi %

m !2mL,m
RC ~QD,$Fi %

m 1M
D,$Fi %
m F $Fi %

free !u<e/2. ~7.25!

Now the functionsF $Fi %
free1MD,F and QD,$Fi %

m 1M
D,$Fi %
m F $Fi %

free are quasilocal by Lemma VII.2 and be

causeQD,$Fi %
m is of finite support. Hence, by Theorem II.3, the limitL↗Zd can be performed on

the expectations of these functions. Consequently,

u lim sup
L↗ Zd

mL,free
RC ~F $Fi %

free !2 lim inf
L↗ Zd

mL,free
RC ~F $Fi %

free !u<e, ~7.26!
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u lim sup
L↗ Zd

mL,m
RC ~FL,$Fi %

m !2 lim inf
L↗ Zd

mL,m
RC ~FL,$Fi %

m !u<e. ~7.27!

The arbitrariness ofe finishes the claim. h

VIII. GIBBS UNIQUENESS AND ABSENCE OF PERCOLATION

Before proving Theorem II.5, we shall first establish three useful claims.

Lemma VIII.1: Let vPGES be a measure withv(uSu<1)51, and letm be its RC marginal.
ThenmPGRC.

Proof: It suffices to show that for all finite sets of bondsB and allB-cylinder functionf, we
have m( f uhBc)5mB

RC( f uhBc). Since m is the h marginal of n, it is enough to show tha
n( f uhBc)5mB

RC( f uhBc). By the definition of conditional probabilities, we have thatn-almost
surely,

n~ f uhBc!5E n~ds,dhBuhBc!n~ f usDc,hBc!, ~8.1!

for all finite D with V(B),D,Zd. GivenhBc, we now takeD large enough such that there is n
finite clusterC(hBc) connectingV(B) to Dc. With this choice, however, one easily computes t
n( f usDc,hBc)5mB

RC( f uhBc) for any B-cylinder function f, because by the assumption of th
lemma, all infinite clusters have almost surely the same color. SinceB is arbitrary, this implies
mPGRC and, in fact, it implies the stronger statement~3.16!. h

Lemma VIII.2: The measuresmmaxwir
GRC and m free

GRC are strongly mixing and, in particular,
ergodicwrt translations in any of the lattice principal directions.

Proof: Let t denote the translation in one of the lattice principal directions. We shall
show thatmmaxwir

GRC ( f g+tn)→mmaxwir
GRC ( f )mmaxwir

GRC (g) for all L2 functionsf andg. As is well known,
it actually suffices to verify this for cylinder functions~which are dense inL2! and, since we have
a space with a natural ordering, we can even restrict ourselves tof, g monotone.

Let D,Zd be a finite set with connected complementDc, and letf, g be non-negative mono
tone increasing cylinder functions supported inB(D). Let furthergn5g+tn andDn5tn(D). Then
f gn is also monotone increasing and hence for any integern such thatB(D)ùB(Dn)50” and any
L.DøDn , we have

mL,maxwir
GRC ~ f gn!<mL,maxwir

GRC ~ f gnu$hB~L!\„B~D!øB~Dn!…51%!

5mD,maxwir
GRC ~ f !mDn ,maxwir

GRC ~gn!5mD,maxwir
GRC ~ f !mD,maxwir

GRC ~g!. ~8.2!

Taking the limitL↗Zd followed by n→` andD↗Zd, we get

lim sup
n→`

mmaxwir
GRC ~ f g+tn!<mmaxwir

GRC ~ f !mmaxwir
GRC ~g!. ~8.3!

Since the complementary inequality follows from FKG, the strong mixing property ofmmaxwir
GBC is

established.
The case of the free measure is completely analogous; one just needs to takef andg positive

decreasing. h

To formulate the next lemma, we need some notation. For a finite connected clusterC of
configurationh, we define a measurepC on spin configurations onV(C) by

pC~sV~C!!5(
m

1

Q free~C!
e2bhmuV~C!u )

xPV~C!
dsx ,m . ~8.4!

For eachmPQmax(h) we also define an infinite volumecoloring measure,
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nm~suh!5 )
C~h!:uV„C~h!…u,`

pC~h!~sV„C~h!…! )
x↔`

dsx ,m . ~8.5!

Lemma VIII.3: Let mPQmax(h), and letnPGES with n(S#$m%)51. Let m be the RC mar-
ginal of n. Then for each cylinder function f ofs and h,

n~ f !5E m~dh!nm~ f uh!. ~8.6!

In particular, if n1 , n2PG1,m
ES are two measures with the same RC marginal, thenn15n2 .

Proof: Let f be a„L,B(L)… cylinder function. Invoking the argument after~8.1! with B50” ,
for n-almost allh ~those whose infinite cluster~s! have colorm!, we can findD.L large enough
but finite such thatn( f usDc,h) does not depend onsDc, in which case one easily verifies that

n~ f usDc,h!5nm~ f uh!. ~8.7!

The latter expectation depends only onh, hence~8.1! implies the desired representation ofn( f )
in terms ofnm( f uh) and the RC marginal ofn. h

Proof of Theorem II.5(i):We shall prove that anynPGES not exhibiting percolation is equa
to the limiting measurem free

ES whose existence was established previously. The proof of this c
goes along the lines of the argument in~5.12!–~5.25!, however, it is much simpler in this case du
to the absence of infinite clusters.

Let the sequences (Dn) and „Ln(h)… be defined as in~5.12!. Since there are no infinite
componentsn-a.s., we haveLn(h)5$xPDn :x}Dn

c% andBn(h)50” for all n>1 andn-almost all
h. Assumef is a cylinder function and givene.0, takeD large enough so thatf is supported in
„D,B0(D)… and

umV,free
ES ~ f !2m free

ES ~ f !u<e, ~8.8!

for all V.D. Since the indicator function of the event$Ln(•)5L̄n% does not depend on th
configuration in„D,B0(D)…, we have that

n~ f !5n~ f 1$Ln~• !.” D%!1 (
L̄n.D

n~m
L̄n ,free

ES
~ f !1$Ln~• !5L̄n%!, ~8.9!

by ~2.7!. Combined with~8.8!, this gives the estimate

n~ f 1$Ln~• !.” D%!1@m free
ES ~ f !2e#n~1$Ln~• !.D%!

<n~ f !<n~ f 1$Ln~• !.” D%!1@m free
ES ~ f !1e#n~1$Ln~• !.D%!. ~8.10!

Sincef is bounded andLn↗Zd n-a.s., the bounded convergence theorem yields

un~ f !2m free
ES ~ f !u<e. ~8.11!

The arbitrariness ofe finishes the claim. h

Proof of Theorem II.5(ii):If P`(b,J,h)50, thenmmaxwir
ES (N`.0)5mmaxwir

RC (N`.0)50 and
~3.14! implies the same is true for anynPGES. Thus GES5G0

ES5$m free
ES %. On the other hand

mmaxwir
RC (N`.0)50 implies that the same is true for allmPGRC by ~3.10!. Repeating the argumen

in the proof of Theorem II.5~i! for the RC measurem ~and using Theorem III.4 to guarantee th
analog of~2.7!!, we get thatm5m free

RC for all RC Gibbs measuresm, implying GRC5$m free
RC%. h
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Remark:Given Theorem III.4, which is stated for the more general GRC model, the se
part of the above proof remains valid for the GRC model. As a consequence, all GRC Gibbs
are equal to the measurem free

GRC if P`(b,J,h)50, implying that GGRC5$m free
GRC% whenever

P`(b,J,h)50.

Proof of Theorem II.5(iii):We first show that

mm
ES~sx5m̃ux↔`!5dm,m̃ , ~8.12!

providedP`(b,J,h).0 andmPQmax. Sincemm
ES(N`51)51 if P`(b,J,h).0, Eq. ~8.12! im-

plies thatmm
ES(A1,m

` )51.
To prove~8.12!, we recall the well-known fact that

mmaxwir
RC ~0↔`!5 lim

L↗Zd

mL,maxwir
RC ~0↔Lc!, ~8.13!

see Eq.~7.19! above. As a consequence, we get that for allmPQmax,

mm
ES~x↔`!5 lim

L↗ Zd

mL,m
ES ~0↔Lc!. ~8.14!

Combined with the fact thatmL,m
ES (0↔Lc, sx5m̃)5mL,m

ES (0↔Lc)dm,m̃ , this implies~8.12!. It
remains to show that the statemm

ES is extremal whenevermPQmax. To this end, let us assume th

lm
ES5ln11~12l!n2 , ~8.15!

with n i(A1,m
` )51 and 0,l,1. By Lemma VIII.1, the RC marginalsm i of n i are RC Gibbs states

which implies that~8.15! induces a similar decomposition formmaxwir
RC . However,mmaxwir

RC is ex-
ternal by Lemma VIII.2, which implies thatm15m25mmaxwir

RC . Using Lemma VIII.3, this implies
n15n2 , and hence extremality ofmm

ES. h

IX. RANDOM CLUSTER GIBBS MEASURES FOR dÄ2

Proof of Theorem II.6(i):The proof of Theorem II.6~i! remains again valid for the mor
general GRC model. ForJ,Jc , the statement has already been proven in the last section. L
therefore suppose thatJ.Jc and d52. Then the first condition~and item~iii ! of Corollary of
Theorem III.1! implies that there is percolation undermmaxwir

GRC,J . Moreover, sincemmaxwir
GRC,J satisfies

the following claims:~1! mmaxwir
GRC,J is separately ergodic in all lattice directions;~2! mmaxwir

GRC,J is
invariant under lattice reflections and rotations; and~3! mmaxwir

GRC,J is FKG, as has been prove
previously, the powerful result of Ref. 21 asserts that the infinite cluster is unique undermmaxwir

GRC,J .
Moreover, by a corollary to this result, the cluster contains an infinite series of nested circui
~eventually! encircle any point of the lattice.

Now, according to Theorem III.1~iii !, anymPGGRC at the coupling constantJ is FKG domi-
nating the measurem free

GRC,J . Let J.J1.Jc . Then

m~• ! >
FKG

m free
GRC,J~• ! >

FKG
mmaxwir

GRC,J1~• !, ~9.1!

where the second inequality is Theorem III.1~iv!. Thusall GRC Gibbs measures atJ exhibit an
infinite cluster as well as the above circuits about the origin, because the latter is a FKG incr
event.

The proof is concluded in a manner similar to the argument~8.8!–~8.11!. Thus, letf be a
cylinder function with support inB~D!, whereD is supposed to be sufficiently large so that

umV,maxwir
GRC ~ f !2mmaxwir

GRC ~ f !u<e, ~9.2!
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for anyV.D. Let $Dn% be an increasing sequence of boxes centered at the origin, and letVn be
the set of all configurationsh for which there exists a closed circuitG of occupied bonds sur
roundingD and connected to the infinite cluster, such that it is entirely contained inB0(Dn). Let
us useGn(h) to denote the outermost such circuit contained inB0(Dn) andVGn

(h) the set of its
interior sites. Let1Vn

be the characteristic function ofVn and, for a given circuitG, let 1$Gn5G%

denote the characteristic function of the set of all configurations such that the correspo
outermost circuitGn equalsG.

Using the fact that the function1$Gn5G% does not depend on the values of the GRC confi
ration onB(VG), we now apply Theorem III.4 withB5B(VG) to get

m~ f 1Vn
!5(

G
m~ f 1$Gn5G%!5(

G
m„mB~VG!~ f uhB~VG!c!1$Gn5G%…5(

G
m„mVG,maxwir~ f !1$Gn5G%…,

~9.3!

where the sum is over all closed circuitsG of occupied bonds surroundingD and contained wholly
in B0(Dn). Sincef is bounded andm(Vn)→1 asn→`, we have thatum( f 1Vn

)2m( f )u<e for n

sufficiently large. Using~9.2! for V5VG , we conclude that

um~ f !2mmaxwir
GRC ~ f !u<3e. ~9.4!

Sincee is arbitrary, we get the desired statement that each GRC Gibbs state necessarily eq
measuremmaxwir

GRC . h

Proof of Theorem II.6(ii):We again only need to prove the statement ofJ.Jc . Using
Theorem III.2, Eq.~3.15! instead of Theorem III.1~iii !, we obtain the bound~9.1! for the RC
marginalm of anynPGES with uQmaxu51. Let n be such a measure. Applying the steps leading
~9.3! to the measuren and a cylinder functionf with support in „D, B~D!…, we will have to
calculate the conditional expectationn( f usV

G
c ,hB(VG)c)5mVG ,B(VG)

ES ( f usV
G
c ,hB(VG)c). By Theorem

V.1 the value ofsx on the sitesxP]VG is constrained to be one of the colors inQmax. Since we
assumed thatuQmaxu51, we obtain thatn( f usV

G
c ,hB(VG)c)5mVG,m

ES ( f ), wherem is the unique spin

for which hm5hmax. Continuing as in the proof of~i!, we obtain thatn5mm
ES. h

X. MAPS BETWEEN ES, SPIN, AND RC GIBBS MEASURES

Proof of Theorem II.1:Let mL
SPIN(•usLc) denote the Gibbs measure on spins inL with

boundary conditionsLc. The proof is based on the crucial observations that, for the special ch
B5B(L), ~A! mL,B(L)

ES (•usLc,hB(L)c) does not depend onhB(L)c, ~B! The spin marginal of
mL,B(L)

ES (•sLc,hB(L)c) is preciselymL
SPIN(•usLc).

Let nownPGES, L,Zd be finite, and letf be a function depending only on the spin config
ration in L. Then, by~2.6!, ~A!, ~B!, and the definition of marginals, we have

~PSn!~ f !5n~ f !5E n~ds,dh!mL,B~L!
ES ~ f usLc,hB~L!c!

5E n~ds,dh!mL
SPIN~ f usLc!

5E ~PSn!~ds!mL
SPIN~ f usLc!, ~10.1!

proving thatPSnPGSPIN. Hence, indeed,PS is a map fromGES to GSPIN.
To prove thatPS is an isomorphism, let us first establish its surjectivity. We begin by no

that the set$„L, B~L!…% is cofinal in the set of all pairs$~L, B!%, ordered by inclusion.~Namely, for
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any ~L, B! there existL̄ such thatL,L̄ andB,B(L̄).) Then it is easy to see that the validity o
~2.6! for the pairs„L, B~L!… implies its validity for general~L, B! ~see Remark 1.24 of Ref. 11!.
Let now mPGSPIN and consider the following ES measure:

nL~• !5E m~ds!mL,B~L!
ES ~•usLc,hB~L!c!, ~10.2!

on the set of configurations in„L, B~L!…. Here the configurationhB(L)c is added only for the
formal completeness, since by~A! its value does not matter fornL . By taking into account the
consistency of the finite volume ES measures$mL,B

ES %, the measuresnL(•) satisfy the restricted
DLR equations,

nL~ f !5E nL~ds,dh!m
L̃,B̃
ES

~ f usL̃c,hB̃c!, ~10.3!

for any L̃,L, B̃,B(L), and anyL̃,B̃-cylinder functionf. Moreover, letL1.L2.L̃ be two
sets. Then for any such functionf ~as before!, we have

nL1
~ f !5E m~ds!mL1 ,B~L1!

ES ~ f usL
1
c,hB~L1!c!

5E m~ds!mL1 ,B~L1!
ES ~mL2 ,B~L2!

ES ~ f u• !usL
1
c,hB~L1!c!5E m~ds!mL1

SPIN~mL2 ,B~L2!
ES ~ f

u• !usL
1
c!

5E m~ds!mL2 ,B~L2!
ES ~ f usL

2
c,hB~L2!c!5nL2

~ f !. ~10.4!

Here the first equality is due to~10.2!, the second one follows from the fact thatmL1,B(L1)
ES is a

finite volume Gibbs measure, the third equality is established by applying~A! to the measure
mL2,B(L2)

ES ( f u•) and subsequently~B! to the expectation wrtmL1,B(L1)
ES , and, finally, the fourth

equality follows from the fact thatmPGSPIN. Consequently, asL↗Zd,nL( f ) is eventually a
constant for any cylinder functionf. In particular, the weak limitn5 limL↗Zd nL exists and, by
~10.3!, it satisfies~2.6!, i.e.,nPGES. Finally, PSn5m, since for anyL-cylinder functionf of spins

~PSn!~ f !5n~ f !5E m~ds!mL,B~L!
ES ~ f usLc,hB~L!c!

5E m~ds!mL
SPIN~ f usLc!5m~ f !, ~10.5!

proving thatPS is surjective.
In order to see thatPS is also injective, we notice that ifñPGES is such thatPSñ5m, then

ñ~ f !5 ñ„mL,B~L!
ES ~ f u• !…5~PSñ !„mL,B~L!

ES ~• !…5m„mL,B~L!
ES ~ f u• !…, ~10.6!

for any „L, B~L!…-cylinder function f. Here the first equation is the DLR equation forñ, the
second equation follows from~A!, and the third equation is the assumptionPSñ5m. Now, the
right-hand sides of~10.6! and~10.2! coincide, soñ5n, with n defined by taking the limitL↗Zd

of nL in ~10.2!. In particular, all measuresñ satisfyingPSñ5m are equal, yielding thus injectivity
of PS .

The part of the claim concerning translation invariant measures is proved in the same
because both constructions~10.1! and ~10.2! preserve translation invariance. h
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Proof of Theorem II.2(i). We first note that the marginal of any ES Gibbs state with at m
one infinite cluster is an RC Gibbs state by Lemma VIII.1. This proves thatPRC mapsG<1

ES into
GRC.

Next we show that the map is surjective onG<1
RC . Let mPG<1

RC . Recall the definition ofF $Fi %
free

in ~7.1!. It turns out thatF $Fi %
free satisfies the following identity:

(
m51

q

F $F1 ...,Fm21 ,Fmø$x%,Fm11 ,...,Fq%
free ~h!5F $Fi %

free~h!, ~10.7!

for each$Fi%, anyx¹F5ø iFi and anyh. Namely, letFi}Fj for iÞ j in h and supposex↔Fm

for somem. Then the sum on the lhs of~10.7! degenerates to themth entry, which is easily
identified with the rhs. On the other hand, ifx}Fm for all m, then the sum in~10.7! can be
propagated through the products in~7.1! up to the last term, where the desired identity th
follows by taking also~3.2! into account.

The relation~10.7! enables us to define a joint measure ons andh. Let mPGRC and letA$Fi %

denote the event

A$Fi %
5$s:sx5m,;xPFm%. ~10.8!

Note thatA$Fi %
is a cylinder event inF. Consider the set functionn, for the sets on the produc

space of configurations~s, h!, defined as

n~A$Fi %
3B!5m~F $Fi %

free1B!, ~10.9!

whereB stands for any cylinder event on configurationsh. Due to the fact thatm is a measure on
h and due to~10.7!, the set function defined in~10.9! satisfies the consistency condition for a
finite volume projections and, by the Kolmogorov theorem, it thus gives rise to a measu
~s, h!.

Using ~10.7!, the h marginal of n is m, so it, remains to show thatnPGES. Due to the
consistency of the ES specifications~2.4!, it is enough to show thatn-almost surely,

n~sD ,hB~D!usDc,hB~D!c!5mD,B~D!
ES ~sD ,hB~D!us]D ,hB~D!c!, ~10.10!

for all finite D,Zd. For that, it actually suffices to establish that

lim
L↗ Zd

n~sD ,hB~D!usL\D ,hB~D!c!5mD,B~D!
ES ~sD ,hB~D!us]D ,hB~D!c!. ~10.11!

To calculate the lhs, we shall evaluaten(sL ,hB(D)uhB(D)c). In order to keep the expressions sho
we assume without loss of generality thathmax50. Using~10.9! and the strong form of the DLR
equation~3.16!, we write

n~sL ,hB~D!uhB~D!c!5m~F $L i %
1$hB~D!%

uhB~D!c!5F $L i %
~h!mB~D!

RC ~hB~D!uhB~D!c!, ~10.12!

where (L i) is the partition ofL defined byL i5$xPLusx5 i %.
In order to evaluate the rhs, we use~7.1! and ~3.6! to get

F $L i %
free ~h!mB~D!

RC ~hB~D!uhB~D!c!5)
i , j

1$L i}L j %
~h! )

m51

q

)
V„C~h!…ùLmÞ0”

ebhmuV„C~h!…u

Q free„C~h!…

3
~ebJ21! uBocc~h!ùB~D!u

ZB~D!~hB~D!c! )
V„C~h!…ùV„B~D!…Þ0”

Q free„C~h!…,

~10.13!
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whereZB(D)(hB(D)c) is the normalization factor formB(D)
RC (•uhB(D)c). Rewriting

)
m51

q

)
V„C~h…ùLmÞ0”

ebhmuV„C~h!…u

Q free„C~h!…
3 )

V„C~h!…ùV„B~D!…Þ0”
Q free„C~h!…

5 )
m51

q

)
V„C~h!…ùLmÞ0”

V„C~h!…ùD̄50”

ebhmuV„C~h!…u

Q free„C~h!…
3 )

m51

q

)
V„C~h!…ùV„B~D!…Þ0”

V„C~h!…ùD̄Þ0”

ebhmuV„C~h!…u, ~10.14!

where we introducedD̄5Dø]D and D̄m5LmùD̄, and inserting the identity

ebhmuV„C~h!…u5ebhmuV„C~h!…ùDu ebhmuV„C~h!…ùDcu, ~10.15!

we can now extract all terms that depend onsD andhB(D) from the rhs of~10.13! to obtain the
Gibbs factorW(sD ,hB(D)us]D ,hB(D)c) times a term depending only onsL\D and hB(D)c. This
yields the representation

n~sL ,hB~D!uhB~D!c!5N~sL\D ,hB~D!c!mD,B~D!
ES ~sD ,hB~D!us]D ,hB~D!c!, ~10.16!

which, in turn, leads to the identity

n~sD ,hB~D!usL\D ,hB~D!c!5mD,B~D!
ES ~sD ,hB~D!us]D ,hB~D!c!, ~10.17!

provided thatsL\D is consistent withhB(D)c. Equation~10.17! immediately gives the desire
claim ~10.11! and hence~10.10!. h

Proof of Theorem 11.2 (ii)–(iv): Let nPG<1
ES . Since$N`50% is a tail event, there is a uniqu

decomposition ofn into l0n01l.0n.0 , where n0PG0
ES and n.0PG1

ES. The decomposition
~2.13! then follows by further conditioning upon the color of the spin on the infinite cluste
n.0 . This proves~ii !. To prove~iii !, we just invoke Theorem II.5~i!, Lemma VIII.3, and Theorem
II.2~i!. To prove~iv!, we need to realize that ifuQmax(h)u51, then the decomposition is complete
already by conditioning on the presence/absence of the infinite cluster, which works the sa
both G<1

ES andG<1
RC . h
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Absence of a wetting transition for a pinned harmonic
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We consider a free lattice field~a harmonic crystal! with a hard wall condition and
a weak pinning to the wall. We prove that in a weak sense the pinning always
dominates the entropic repulsion of the hard wall condition when the dimension is
a least three. This contrasts with the situation in dimension one, where there is a
so-called wetting transition, as has been observed by Michael Fisher. The existence
of a wetting transition in the delicate two-dimensional case was recently proved by
Caputo and Velenik. ©2000 American Institute of Physics.
@S0022-2488~00!00503-X#

I. INTRODUCTION

The so-called harmonic crystal is a Gaussian random field on ad-dimensional hypercubic
lattice whose covariance operator is given by the inverse of the discrete Laplacian, i.e
standard lattice Greens function. To be precise, letA be a finite subset ofZd. We denote byPA the
probability law onRA defined as follows:

PA~dxA!5
1

ZA
expS 2

1

8d (
i , j PAø]A
u i 2 j u51

~xi2xj !
2D dxA , ~1.1!

where xA5(xi) i PAdxA5P i PAdxi , ]A is the outer boundary ofA: ]A5$ j PZd\A:' i
PA with u i 2 j u51%, andxi[0 for i P]A. ZA is the normalizing constant

ZA5E
RA

expS 2
1

8d (
i , j PAø]A
u i 2 j u51

~xi2xj !
2D dxA . ~1.2!

Let VN5@2N,N#dùZd. We usually writePN andZN instead ofPVN
andZVN

.
We modify this measure now, by introducing a pinning to the ‘‘hard wall’’x[0.

P̂N,J~dxVN
!5

1

ẐN,J

expS 2
1

8d
(

i , j PVNø]VN
u i 2 j u51

~xi2xj !
2D )

j PVN

~dxj1eJd0~dxj !!, ~1.3!

whered0(dx) is the Dirac measure at 0 andJPR is a parameter regulating the strength of t
pinning. A slightly different model is obtained by defining

a!Electronic mail: eb@amath.unizh.ch
b!Electronic mail: deuschel@math.tu-berlin.de
c!Electronic mail: zeitouni@ee.technion.ac.il
12110022-2488/2000/41(3)/1211/13/$17.00 © 2000 American Institute of Physics
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P̂N,a,b~dxVn
!5

1

ẐN,a,b

expS 2
1

8d
(

i j PVNø]VN
u i 2 j u51

~xi2xj !
22 (

i PVN

c~xi !D )
j PVN

dxj ~1.4!

wherec is a symmetric functionR→R of finite support having a small dip near 0, for instan
c(x)52b1@2a,a#(x),a,b.0, see~Refs. 6 and 11!. The results we derive here apply to bo
models. We discuss in details the delta-pinned case defined by~1.3!, and will give the modification
needed to handled the other case~1.4! in Sec. III. The effect of this pinning force to the ‘‘wall’’
$x:xi[0% is quite marked. For all pinning parameters and for any dimension, the field bec
localized in a very strong sense, meaning that

sup
N

sup
i PVN

ÊN,J~Xi
2!,`, ~1.5!

~Xi are the coordinate mappings!, and there existsdJ.0 with

sup
N

sup
i , j PVN
u i 2 j u>k

ÊN,J~XiXj !<exp~2dJk!, ~1.6!

for k large enough. This had been proved for the model~1.4! in dimensions larger or equal to 3 i
Ref. 6. In the delicate two-dimensional case,~1.5! had been first been proved in Ref. 11, and th
the positivity of the mass, i.e.,~1.6! has been proved in Refs. 1 and 10, and finally under ra
general conditions in Ref. 13. A discussion of a discrete one-dimensional version of this pr
can be found in Refs. 5 and 15.

The main aim of the present paper, however, is to discuss what happens in the presen
so-called hard wall condition. This simply means that the field is conditioned to stay positive
for any setA,VN

VA
15$xPRVN:xi>0,; i PA%, VN

1
ªVVN

1

and

P̂N,J
1 5 P̂N,J~•uVN

1!.

We recall that under the hard wall condition but without pinning, i.e., whenJ52`, or b50, the
field is repelled at heightAlogN ~for d>3!, logN ~for d52!, andAN ~for d51!. That is,

ÊN,2`
1 ~X0!;S AlogN, d>3

logN, d52

AN, d51

,

cf. Refs. 3 and 8. A very interesting observation first made by Michael Fisher12 in a slightly
different model is that ford51, there is a transition from localization to delocalization if t
parameterJ varies: If J is large, then~1.5! and ~1.6! hold true, but ifJ is small, then the field
delocalizes, i.e.

ÊN,J
1 ~X0!;AN.

Such a transition is called a wetting transition. Fisher had considered a random walk ca
the results are the same in our Gaussian model. For the convenience of the reader, we will
a discussion of the simple one-dimensional case in Sec. IV.

This one-dimensional case raises the question if a similar wetting transition occurs a
higher dimensions. Unfortunately, we are not able to discuss that fully here. What we can a
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show here is that for dimensions at least three, there is always localization, at least in a som
weaker sense than expressed in~1.5! and~1.6!. To formulate our results, letjN be the number of
zeros of the field

jN5 (
i PVN

1Xi50 .

Then we have
Theorem 1: Assumed>3, and letJPR be arbitrary. Then there exist«J ,hJ.0 such that

P̂N,J
1 ~jN>«JuVNu!>12exp~2hJN

d!, ~1.7!

providedN is large enough.
It appears overwhelmingly plausible that a statement like~1.7! should imply~1.5! and ~1.6!,

but this seems to be a quite delicate question which we had not been able to settle. Fo
enough J such statements have actually been proved~in a slightly different setting! by
Lemberger16 using cluster expansion techniques. Probably his methods would carry over t
situation, but they appear to be powerless for proving the result also for smallJ.

Define the two partition functions

ẐN
15E

VN
1

expS 2
1

8d (
i , j PVNø]VN

u i 2 j u51

~xi2xj !
2D )

j PVN

dxj

and

ẐN,J
1 5E

VN
1

expS 2
1

8d (
i , j PVNø]VN

u i 2 j u51

~xi2xj !
2D )

j PVN

~dxj1eJd0~dxj !!,

then Theorem 1 is actually an easy consequence of part~b! of the following result:
Theorem 2: ~a! For anyJ, and any dimension

d j
15 lim

N→`

1

Nd
log

ẐN,J
1

ẐN
1

,

exists andJ:Rø$2`%→dJ
1 is a nonnegative convex function withd2`

1 50.
~b! For d>3,dJ

1.0 holds true for anyJ.
~c! For d51, there existsJ0PR such thatdJ

150 for J<J0 , anddJ
1.0 for J.J0•.

The existence of the limit in~a! is easy and has been proved ford52 in Ref. 4. The argumen
there~for this issue! does not depend on the dimension and carries over essentially verbati
we will not prove it here. Let

dN,J
1 5

1

Nd
log

ẐN,J
1

ẐN
1

,

then

]

]J
dN,J

1 5
1

Nd ÊN,J
1 ~jN!,

is the expected density of zeros of the field and
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]2

]J2 dN,J
1 5VarN,J

1 ~N2d/2jN!>0,

is the ~rescaled! variance. In particular this implies the convexity ofd .
1 . Also dJ

1.0 implies a
positive density of ‘‘pinned’’ configurations, that is the effect ofJ is felt at the thermodynamica
level.

As remarked above, the part~c! is essentially due to Fisher. We include the simple proof h
in Sec. IV. In dimension one it is actually very easy to prove the stronger statements~1.5! and
~1.6!, but we leave that to the reader.

Part ~b! is the main result of this paper and will be proved in Sec. II. Our method give
information in the two-dimensional case. After this paper was written, Caputo and Vel7

succeeded, by adapting a construction due to Chalker, to prove the existence of a wetting
tion in two dimensions.

We end this section by showing rigorously how the positivity ofdJ
1 implies the statement o

Theorem 1. First note that

1

Nd
log

ẐN,J
1

ẐN
1

5
1

Nd
log

ẐN,J
1

ZN

2
1

Nd
log

ẐN
1

Zn

,

whereẐN
1/ZN5PN(VN

1) satisfies

lim
N→`

2
1

Nd21 log PN~VN
1!,`,

cf. Ref. 8. On the other hand, expanding the product in~1.3! we see that

ẐN,J
1

ZN
5 (

A,VN

eJuA0u ZA

ZN
PA~VA

1!,

so that an alternative definition ofdJ
1 is given by

d j
15 lim

N→`

1

Nd log
ZN,J

1

ZN
5 lim

N→`

1

Nd log (
A,VN

eJuA0u ZA

ZN
PA~VA

1!.

Next, let«.0. By expanding again the product in~1.3!, we get

P̂N,J~jN,«uVNu,VN
1!5 (

A,VN
uAu.~12«!uVNu

eJuA0u ZA

ẐN,J

PA~VA
1!<

ZN

ẐN,J

(
A,VN

uAu.~12«!uVNu

eJuA0u ZA

ZN

.

On the other hand

P̂N,J~VN
1!5

ZN

ẐN,J

(
A,VN

eJuA0u ZA

ZN

PA~VA
1!.

If dJ
1.0, ~1.7! follows, therefore, easily once we have proved

lim
«→0

lim sup
N→`

1

Nd log (
A,VN

uAu.~12«!uVNu

eJuA0u ZA

ZN
50. ~1.8!
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Using the fact proved in Ref. 4, Lemma 2.3.1~a! ~note that the argument given there exten
to all d!

exp~2c~ uVNu2uAu!!<
ZA

ZN
<1, ~1.9!

for some constantc.0, ~1.8! follows from the estimate:

]$A,VN :uACu,«uVNu%<
uVNu«uVNu

~«uVNu!!
;

~1/«!«uVNue«uVNu

A2p«uVNu
,

by Stirling’s formula.

II. PROOF OF THEOREM 2„b…

The strategy of the proof is to construct enough pinning configurations for which a l
bound on the probability of the hard wall conditioning can be found. The pinning configura
we construct are rather regular, and form a small perturbation of a regular sub-grid ofVN of step
D. The desired lower bound then follows by a change of measure argument, which, as in R
and 9, needs first a variance reduction step in order to be tight. In this change of measu
transience of simple random walk in dimensiond>3 plays a crucial role, for it allows to push th
Gaussian field high enough even in the immediate vicinity of a pinned point without too la
penalty.

Turning to our construction, fixD.0, independent ofN, and letl N
D5$zi% i 51

u l N
Du

denote a finite
collection of pointsziPVN , such that for eachyPVNùDZd, there isexactlyonezP l N

D such that
uz2yu,D/10. Note that the number of different possible configurationsl N

D is bounded below by
(D/5)d@(2N11)/D#d5exp(@(2N11)/D#d(d logD1c0)). Let AlN

D5VN\ l N
D . Our main technical esti-

mate is the following:
Proposition 3:Assumed>3, and lett>0. Then there exists a constantc15c1(t).0 such

that, for allD integer large enough

lim inf
N→`

inf
$ l N

D%

1

~2N11!d log PAl N
D~Xi>t,i PAl

N
D!>2

d logD

Dd 1c1

log logD

Dd .

By choosingD large enough~depending onJ! andt50, and using~1.9!, it is evident that this
estimate provesdJ

1.0 for all JPR, i.e., part~b! of Theorem 2 follows.
Proof of Proposition 3:Fix a.d independent ofN, such thatDa is an integer, and fix a

particular configurationl N
D . All out constants below will be independent of the particular confi

ration l N
D .

For kPZd, let V̄a,D
(k) 5VDa1kDa, and letVa,D

(k) 5$ i PV̄a,D
(k) :dist(i ,(V̄a,D

(k) )C)>1%, and ]Va,D
(k)

5V̄a,D
(k) \Va,D

(k) ,

Va,D5$k:Va,D
~k! ,VN ,dist~Va,D

~k! ,]VN!>Da%.

The strategy of the proof is to coverVN with disjoint boxes$V̄a,D
(k) % and estimate from below the

probability of the eventEaª$Xi>t,i PAl
N
D% using Fortuin–Kasteleyn–Griffith~FKG! inequality

on each boxVa,D
(k) . In doing so, we will be able to use entropy inequalities on these boxes, w

were chosen such that on the one hand, the probability ofEa , restricted to a single box, after th
change of measure is close to 1~this forces the box not to be too large!, while on the other hand
the loss due to imposing zero boundary conditions on the boxes is negligible.

Note thatuVa,Du5@(2N11)/Da#d(11o(1)), where throughout this proofo(1),O(1) etc. are
taken with respect toN→`.
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Throughout, we let$X.% denote the free Gaussian field, of covariances(z,z8), and let$X.
0%

denote the free Gaussian field onZd pinnedat the pointsl N
D,a

ª l N
DùVN

c ùk]Va,D
(k) . That is,$X.

0% is
a zero mean Gaussian field withXz

050 for zP l N
D,a , whose covariances0(a,b) for a,b

PVN\ l N
D,a equals that ofX. conditioned ons(Xz :zP l N

D,a). By the usual random walk represen
tation, cf. Refs. 2 and 17 we have that

s0~a,b!5EaS (
n50

t

1$wn
a5b%D , ~2.1!

wherewn
a is a simple random walk onZd starting froma, andt5min$n:wnPlN

D,a%. Here and in the
sequel, we denote probabilities related town

a by Pa(•),Ea(•), etc. Because of~2.1!, s0(a,b)
>0, and hence, due to the FKG property

PªPAl N
D~Xi>t,i PAl

N
D!> )

kPVa,D

P~Xz
0>t,zPVa,D

~k! \ l N
D!• )

zPAl N
D\øk¹Va,D

Va,D
~k!

P~Xz>t !

3 )
zPøk]Va,D

~k!
P~Xz>t !. ~2.2!

BecauseE(Xz)50 and Var(Xz)>1 for anyzPAl
N
D, we have thatP(Xz>t)>c0 , for any suchz.

Hence

P>c0
4dDa~2N11!d21

)
kPVa,D

P~Xz
0>t,zPVa,D

~k! \ l N
D!. ~2.3!

Next, fix a boxVa,D
(k) , denoted hereafter asVa . On each boxVa we estimate the probability of the

repulsion following the approach of Ref. 9~Sec. IV!: We decomposeX05Y1Z, whereY, Zare
independent, zero mean Gaussian fields, withYa5Za50 on aP l N

DøVa
c , such thatZ has expo-

nentially decaying correlations whileY exhibits long-range dependence but is ‘‘small.’’ Mo
precisely, fora,bPVa\ l N

D ,

s̄0,«~a,b!ªE~YaYb!5s0~a,b!2~s0
211«2!21~a,b!,

E~ZaZb!5~s0
211«2!21~a,b!.

Here, withL̄2 denoting the space of functionsf PL2(Zd) with f u l
N
DøV

a
c 50, s0

21 is the operator on

L̄2 determined bys0
21f 5g if f 5s0g, and an explicit expression fors0

21 is s0
215I 2Q0 , where

Q0 is the transition matrix of simple random walk killed when hittingl N
DøVa

c . «5«~D! is taken as
«5(logD)2g for someg large enough~whose precise value will become clearer in the course
the proof!.

The idea of Ref. 9 is to lift the fieldY at a certain height. In our case, we have to take spe
care around the obstaclel N

D ~this is where transience will be crucial!. More precisely, fix 1.b.0
~the precise value ofb will also become clearer in the course of the proof!, and letR5Db, where
b is chosen such thatDb is an integer.

For eachxiPVaù l N
D , definebi5$zPZd:dist(xi ,z)<R%, and letb5ø i :xiPVaù l

N
Dbi .

We let x denote a fixed constant~eventually, we takex52ds2cg(log logD/ logD), where
cg5cg(a,b,g).0. The logarithmic correction term can be best understood as coming from
factor 1/x in ~2.5! below!. Let v(•):Zd→R denote thes0

21-harmonic function, solution of the
problem

H s0
21v50 on b\ l N

D

v50 on ~ l N
Dù]Va!

v51 on Va\b

.
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This harmonic function is used below to perform a Gaussian change of measure, while cont
the associated relative entropy. The following lemma plays a crucial role in our proof:

Lemma 4:There exists«1.0, independent ofD, a, b, g, such that

min
zPb\ l N

D

v~z!>«1 .

Proof: By the transience of the simple random walkwz. j

Returning to the proof of the Proposition, we compute

P~Xz
0>t,zPVa\ l N

D!5P~Yz1Zz>t,zPVa\ l N
D!

>P~Yz1Zz>t,Yz>v~z!Ax logD,zPVa\ l N
D!

>P~Zz>t2v~z!Ax logD,Yz>v~z!Ax logD,zPVa\ l N
D!

5P~Zz>t2v~z!Ax logD,zPVa\ l N
D!P~Yz>v~z!Ax logD,zPVa\ l N

D!, ~2.4!

due to the independent of the fieldsZ and Y. Note that the covariance ofZ corresponds to the
Green function of simple random walk, killed at rate«2. Hence, the entries of the covariance a
positive, and by the FKG property, using that Var(Zz)<s0(z,z)<s(z,z)5s, and denoting
F(x)5*x

`e2u2/2du/A2p

P~Zz.t2v~z!Ax logD,zPVa\ l
N
D!

> )
zPVa\ l N

D
P~Zz.t2v~z!Ax logD!

> )
zPVa\ l N

D
~12F~~v~z!Ax logD2t !/AVar~Zz!!!

>S 12
e2x log D/2s

czAx logD
D uVauS 12

e2«1
2x log D/2s

c2Ax logD
D ubu

,

where we used Lemma 4 and the inequality, valid for allx.1

F~x!<
e2x2/2

c3x
. ~2.5!

With uVau5(2D11)}d and ubu5c4D (a21)dDbd, we conclude that, for allD large enough

P~Zz.t2v~z!Ax logD,zPVa\ l N
D!>expS 2c5

D2x/2sDad

AlogD
D , ~2.6!

as soon asb,«1 ~recall thatx,2ds! !.
We next turn to the evaluation of the second term in~2.4!. Let Ŷz5Yz1v(z)Ax8 logD, where

Ax85Ax1(logD)22 and letP̂ denote the law of$Ŷz%zPZd. Clearly

H~ P̂uP!5
x8 logD

2
^v,s̄0,«

21v !Zd,

whereH(PuQ) denotes the relative entropy ofP with respect toQ. The following lemma is crucial
in the evaluation of~2.6!.
                                                                                                                



1218 J. Math. Phys., Vol. 41, No. 3, March 2000 E. Bolthausen and J. D. Deuschel

                    
Lemma 5:There exists aax5x(a,b,g).0 such that

^v,s̄0,«
21v&Zd<~s211D2x!

~2Da11!d

Dd .

Proof of Lemma 5:We write

^v,s̄0,«
21v&Zd5^v,~ s̄0,«

212s0
21!v&Zd1^v,s0

21v&ZdªI 1II . ~2.7!

Note that

^v,~ s̄0,«
212s0

21!v&Zd5K s0
21v,

v0
21

«2 vL 5
1

«2 ^s0
21v,s0

21v&Zd. ~2.8!

We next claim that

(
zP]bi

s0
21v~z!<

1

s
1

c6

Rd22 ~2.9!

and that

(
zP]bi

~s0
21v~z!!2<

c6

Rd22 . ~2.10!

Indeed, witht5min$n>1:wn
zP(]biø$xi%)% anduPZd such thatu5z2xi , it holds that

s0
21v~z!5Pz~wt

z5xi !5Pu~wt̃
u50!,

wheret̄5min$n>1:uwn
•u50 or uwn

• u5R% ~note that the definition oft̄ is the same for any starting
point of the random walkwn

• !. But, introducingsR(x,y)5Ex@Sn50
tR 1w

n
x5y# where tR5 inf$n

>0:uwn
0u5R%, we have in view of Ref. 14~1.38!

(
zP]bi

s0
21v~z!5 (

u:uuu5R
Pu~wt

u50!

5 (
u:uuu5R

(
n

P0~ t̄5n,wt̄
u50!

5 (
u:uuu5R

(
n

P0~wt̄
05u,t̄5n!

5(
n

P0~ uwt̄
0u5R,t̄5n!

5P0~ uwt̄
0u5R!5

1

sR~0,0!
<

1

s
1

c6

Rd22 ,

for some constantc6 , where in last inequality we have usedsR(0,0)>s(0,0)2c7R22d, cf. Ref.
14 Prop. 1.5.9. Lawler to see~2.10!, note that

(
zP]bi

~s0
21v~z!!2< max

zP]bi

s0
21v~z! (

zP]bi

s0
21v~z!.

But
                                                                                                                



erse

1219J. Math. Phys., Vol. 41, No. 3, March 2000 Absence of a wetting transition for a pinned . . .

                    
s0
21v~z!<Pz~wzhits xi !5

s~0,z2xi !

s~0,0!
<

c6

Rd22 ,

and ~2.10! follows @increasingc6 if necessary, and using~2.9!#.
Similarly, for zP]Va , we have that

s0
21v~z!<12S 1

2dD 2

.

Hence, since the contribution to~2.8! comes only fromzP]bø]Va , we have that

I<
1

«2 F ~2Da11!

D Gd

•S c6

Rd22D1
1

«2 F12S 1

2dD 2G2

2d~2Da11!d21.

while

II <F ~2Da11!

D Gd

•S 1

s
1

c6

Rd22D1F12S 1

2dD 2G2

2d~2Da11!d21.

Lemma 5 follows as soon asa.d. j

We remark that while~2.10! is not sharp the estimate in Lemma 5 is sharp as the rev
inequality holds true to the leading order~see Ref. 9 for a similar remark!.

Equipped with Lemma 5, let us complete the proof of the Proposition. Note first that

P̂~Ŷz.v~z!Ax logD,zPVa\ l N
D!>12 (

zPVa\ l N
D

P̂Ŷ~~z!<v~z!Ax logD!

>12 (
zPVa\ l N

D
P~Y~z!<v~z!~Ax2Ax8!AlogD!

>12 (
zPVa\ l N

D
c7 expS 2

«1

2 Var~Y~z!!~ logD! D .

Note that Var(Yi)5s̄0,«( i ,i )<c11«5c11(logD)2g, and choosingg large enough, we have that

P̂~Ŷz.v~z!Ax logD,zPVa\ l N
D!>12

1

D
. ~2.11!

We continue by an application of a specific entropy inequality~cf., e.g., Ref. 3, p. 421!

log
P~Yz.v~z!Ax logD,zPVa\N

D!

P̂~Ŷz.v~z!Ax logD,zPVa\ l N
D!

>2
H~ P̂uP!1e21

P̂~Ŷz.v~z!Ax logD,zPVa\ l N
D!

.

Using ~2.11! and Lemma 5, we see that

P~Yz.v~z!Ax logD,zPVa\ l N
D!>c8 expS 2

x8

2 S 11
1

D D logD~s211D2x!
~2Da11!d

Dd D .

Using now~2.3!, ~2.4!, ~2.6!, and the above, we obtain that
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P>exp~2O~Nd21!!FexpS 2c5

D2dDad

AlogD
~ logD!cg/2sD G ~N/Da!d

3Fc8 expS 2dS 11
1

D D ~ logD!

3S 11
D2x

s D ~d2Da11!d

Dd D3expS cg

2s
~ log logD!

~2Da11!d

Dd D
3expS c10

~2Da11!d

Dd ~D2x1D21!logD D G @~2N11!/~2Da11!#d

.

The claim follows at once, by choosingcg/2s,1/2. j

III. THE SQUARE POTENTIAL CASE

In this section we briefly show how the argument of the previous section should be adap
the so-called square potential case. More precisely, forb,a.0 consider the square potential

c~x!52b1@2a,a#~x!, xPR.

Next, denote byP̂N,b,a and P̂N,b,a
1 , the corresponding measures and let

jN5 (
i PVN

1uXi u<a ,

be the number of sites with values in the interval@2a,a#.
Theorem 6: Assumed>3, and letb,a.0 be arbitrary. Then there exist«b,a ,hb,a.0 such

that,

P̂N,b,a
1 ~jN>«b,aNd!>12exp~2hb,aNd!, ~3.1!

providedN is large enough.
Actually, we will see that«b,a andhb,a depend only on the strengthS(a,b)5((2a)∧1)(eb

21). Thus, if we leta↘0 andb↑` such thatJ5 logS(a,b)PR is kept fixed, then, with respect t
the weak convergence of measures

P̂N,b,a
1 ⇒ P̂N,J

1 ,

so that in some sense we could view Theorem 1 as a Corollary of Theorem 6.
Proof: Let us show that we can find«.0 such that

lim sup
N→`

1

Nd log P̂N,b,a~jN,«NduVN
1!,0. ~3.2!

The main idea in proving Theorem 6 is to write

expS (
i PVN

b1uxi u<aD 5 )
i PVN

~eb1uxi u<a11uxi ua
!5 )

i PVN

~~eb21!1uxi u<a11!,

and therefore

P̂N,b,a~• !5
ZN

ẐN,b,a

(
A,VN

~eb21! uACuPN~VAC~a!!PN~•uVAC~a!!,

where VAC(a)5$xPRVN:uxi u<a,i PAC%. Note that PN(•uVAC(a)) being a conditioning on
VAC(a)5ù i PACV$ i %(a) satisfies FKG, cf. Sec. VI of Ref. 10, and therefore
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P̂N,b,a~VN
1!5

ZN

ẐN,b,a

(
A,VN

~eb21! uACuPN~VAC~a!!PN~VN
1uVAC~a!!

>
ZN

ẐN,b,a

(
A,VN

~eb21! uACuPN~VAC~a!!PN~VA
1uVAC~a!!PN~VAC

1 uVAC~a!!.

Using again the FKG property ofPN(•uVAC(a)), we know that

PN~VAC
1 uVAC~a!!> )

i PAC
PN~Xi>0uVAC~a!!5exp~2 log 2uACu!.

An application of Lemma 6.2 of Ref. 10 shows that

PN~VA
1uVAC~a!!>PN~Xi>a,i PAuXj50,j PAC!5PAC~Xi>a,i PA!.

Next, note that ford>3, the variance ofXi remains bounded, thus in view of Lemmas 6.4 and
of Ref. 10, there exists a constantc.0 such that

PN~ uXi u<a,i ,PAC!>~c~~2a!∧1!! uA0u. ~3.3!

Putting things together, we see that

P̂N,b,a~VN
1!>

ZN

ẐN,b,a

(
A,VN

eJ8uACuPAC~Xi>a,i PA!,

whereJ85 logc1log((2a)∧1)2log 21log(eb21)5logS(a,b)1logc2log 2PR.
On the other hand, note that

PN~VA0~a!!<~~2a!∧1! uA0u.

This follows simply from the estimate, valid fori PVN\A:

sup
Xj , j Þ i

PN~ uXi u<auXj , j Þ i !<~2a!∧1,

sincePN(XiP•uXj , j Þ i ) is the normal distribution with variance 1 and mean (1/2d)S j :u i 2 j u51Xj .
Thus

P̂N,b,a~jN,«Nd;VN
1!

5
ZN

ẐN,b,a

(
A,VN ,uACu,«Nd

ebuACuPN~VAC~a!!PN~$uXj u.a, j PA%ùVN
1uVAC~a!!

<
ZN

ẐN,b,a

~~2a!∧1!eNd
e«bNd

]$A,VN :AC,«Nd%.

That is, witheJ5((2a)∧1)eb

P̂N,b,a~jN,«NduVN
1!<

eeJNd
]$A,VN :AC,«Nd%

(a,VN
eJ8uACuPAC~Xi>a,i PA!

,

and the result follows from Stirling formula and Proposition 3. j
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IV. THE ONE-DIMENSIONAL CASE

In this section we prove part~c! of Theorem 2. IfuACu5k, AC5$x1 ,x2 ,...,xk%, 2N<x1

,x2,¯,xk<N, and l 15x11N11, l 25x22x1 ,..., l k5xk2xk21 , l k115N2xk11, then

ZA5)
j 51

k11

zl j
, PA~VA

1!5)
j 51

k11

pl j

1 ,

where

zl5H 1 l 51

Z@1,l 21# , l .1

and

pl
15H 1 l 51

P@1,l 51#~V@1,l 21#
1 ! , l .1.

Evidently

zl5
~2Ap! l 21

Al
.

We will also use the fact that

pl
151/l . ~4.1!

We postpone the proof of this. Collecting these facts, we see that

%Nª (
A,VN

eJuACu ZA

ZN
PA~VA

1!5 (
k50

2N11

eJk~2Ap!2~k11! (
l 1 ,...l k11

S l j 52N12

A2N12

Al 1¯ l k11
)
j 51

k11

p1~ l j !.

If t.0, we conclude that

(
N50

`
%N

A2N12
t2N125e2J(

k51

` S eJ

2Ap
D kS (

l 51

`

t l
p1~ l !

Al
D k

.

For t51 andJ, log(2Ap)1 log(Sl51
` (p1(l)/Al )) this is convergent, and it follows thatdJ

150. On
the other hand, ifJ. log(2Ap)1 log(Sl51

` (p1(l)/Al )), thenSN50
` @%N /(A2N12)#t2N12 is diver-

gent for somet,1 sufficiently close to 1, as follows from the continuity ofSt lp1( l )/Al on @0, 1#.
From that it is evident thatdJ

1.0. We, therefore, see that the critical valueJ0 is

J05 log~2Ap!1 logS (
l 51

`
p1~ l !

Al
D 5 log~2Ap!1 log(

l 51

`

l 23/2.

We finally complete the proof of~4.1!. Let j1 ,...,j l be a random vector, whose joint distr
bution is the law of independent identical distributed Gaussian random variables of zero me
unit variance, conditioned onS i 51

l j i50. We use the fact that this distribution is invariant und
permutations, and in particular under cyclic permutations, and that almost surely,S i PIj iÞ0 for
any strict subsetI of $1,...,l %. Let
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Z5 min
a,bP1,...,l

(
i 5a

~a1b!mod l

j i .

Then, the minimum in the definition ofZ is achieved at exactly one pair~a, b!. Let j i
0

5j ( i 1a1b)mod l , and defineyj
05S i 51

j j i
05S i 51

j j ( i 1a1b)mod l . Then yj
0.0 for j Þ l and yl

050,
a.s., while for any other cyclic shift, i.e., for any sequenceyj

g5S i 51
j j ( i 1g)mod l such thatgÞ~a

1b!mod l, there exists somej with yj
g,0. It thus follows that, withu denoting a random variable

distributed uniformly on$1,...,l %:

PS (
i 51

t

j i>0,t51,...l D 5ES PS (
i 51

t

j~ i 1u!mod l>0,t51,...,l D D 5P~~a1b!5 l !51/l .

Equation~4.1! follows at once.
Remark 7:It is actually easy to see that forJ,J0 ~1.6! and ~1.5! are satisfied, and that fo

J.J0 the rescaled field

YN~ t !5
1

AN
X@Nt# , 21<t<1,

converges to a Brownian excursion on@21, 1#. We leave that to the reader.
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We consider a generald-dimensional quantum system of non-interacting particles
in a very large~formally infinite! container. We prove that, in equilibrium, the
fluctuations in the density of particles in a subdomainL of the container are de-
scribed by a large deviation function related to the pressure of the system. That is,
untypical densities occur with a probability exponentially small in the volume ofL,
with the coefficient in the exponent given by the appropriate thermodynamic po-
tential. Furthermore, small fluctuations satisfy the central limit theorem. ©2000
American Institute of Physics.@S0022-2488~00!01803-X#

I. INTRODUCTION

Statistical mechanics is the bridge between the microscopic world of atoms and the m
scopic world of bulk matter. In particular it provides a prescription for obtaining macrosc
properties of systems in thermal equilibrium from a knowledge of the microscopic Hamilto
This prescription becomes mathematically precise and elegant in the limit in which the size
system becomes very large on the microscopic scale~but not large enough for gravitationa
interactions between the particles to be relevant!. Formally this corresponds to considering neut
or charged particles with effective translation invariant interactions inside a container and
the infinite-volume or thermodynamic limit~TL!. This is the limit in which the volumeuVu of the
containerV grows to infinity along some specified regular sequences of domains, say cub
balls, while the particle and energy density approach some finite limiting value.1–4 This limit
provides a precise way for eliminating ‘‘finite size’’ effects.

It is then an important result~a theorem, under suitable assumptions! of statistical mechanics
that the bulk properties of a physical system, computed from the thermodynamic potentials v
of the commonly used Gibbs ensembles~microcanonical, canonical, grand canonical, etc.!, have
well-defined ‘‘equivalent’’ TLs.1–3 These free energy densities are furthermore proven to be
same for a suitable class of ‘‘boundary conditions’’~bc!, describing the interaction of the syste
with the walls and the ‘‘outside’’ of its container. When this independence of bc is ‘‘str
enough,’’ the bulk free energies also yield information about normal fluctuations and large d
tions ~LD!, in particle number and energy, inside regionsL that are macroscopically large bu
significantly smaller thanV. The restriction touLu!uVu means that we deal here withsemi-local,
rather than global, LD.

The purpose of this note is to study semi-local LD for quantum systems. This seems in
ing since the real world is quantum mechanical, with the classical description being an esse
uncontrolled approximation, albeit a very good one in many circumstances. For classical sy

a!Electronic mail: lebowitz@math.rutgers.edu
b!Electronic mail: lenci@math.rutgers.edu
c!Electronic mail: spohn@mathematik.tu-muenchen.de
12240022-2488/2000/41(3)/1224/20/$17.00 © 2000 American Institute of Physics
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the theory of such semi-local LD is well developed.5–7 In contrast, for quantum systems, on
results on global LD are available,1,8–10which are augmented by a theory of normal and anom
lous fluctuations for local observables.11–13

In this paper we consider the semi-local LD in the number of particles for the sim
continuum quantum systems, namely the ideal quantum fluids. Their normal fluctuations w
shown to be a corollary of our LD result.

A. Classical systems

We begin by considering a classical system ofN particles of massm in a domain, say a
cubical boxV,Rd, interacting with each other through a sufficiently rapidly decaying pair
tential f(r ), e.g., a Lennard-Jones potential. The Hamiltonian of the system is then given

H~N,V;b!5
1

2m (
i 51

N

pi
21

1

2 (
1<Þ j <N

f~r i j !1(
i 51

N

ub~r i !, ~I.1!

wherepiPRd, r iPV, r i j 5ur i2r j u, andub(r i) represents the interaction of thei th particle with
the world outside of the boundary ofV. This boundary interaction~indicated here and in the
sequel byb! is in addition to the action of the implicitly assumed ‘‘hard wall’’ which keeps t
particles confined toV. The dynamic effect of the latter is to reflect the normal component of
particle’s momentum when it hits the wall. However, sometimes it is convenient to replace it
periodic boundary conditions,14 dropping the boundary termub in ~I.1!.

For a macroscopic system in equilibrium at reciprocal temperatureb and chemical potentia
m, the grand canonical Gibbs ensemble then gives the probability density for finding exacN
particles insideV,Rd at the phase pointXN5(r1 ,p1 ,...,rN ,pN)5(RN ,PN)PGN5VN3RdN as

n~Xnub,m,V,b!5
~N! !21h2Nd exp@2b~H~N,V;b!2mN!#

J~b,muV,b!
. ~I.2!

HereJ is the grand canonical partition function

J5 (
N50

`

~N! !21lB
2dNebmNE

VN
dr1 . . . drNe2b/2(f~r i j !2b(ub~r i !5 (

N50

`

ebmNQ~b,NuV,b!,

~I.3!

andQ(b,NuV,b) is the canonical partition function. We usehdN, h being Planck’s constant, as th
unit of volume in the phase spaceGN , so lB5hAb/(2pm) is the de Broglie wave length. Th
finite-volume, boundary-condition dependent, grand canonical pressure is

p~b,muV,b!5~buVu!21 logJ~b,muV,b!. ~1.4!

Taking now the TL,V↗Rd, we obtain, for a suitable class of bc, an intrinsic~bc independent!
grand canonical pressurep(b,m). This is related to the Helmholtz free energy densitya(b,r) in
the canonical ensemble, obtained whenJ is replaced byQ21(b,NuV,b) in ~I.4! and the limit is
taken in such a way thatN/uVu→r, a specified particle density. The relation betweenp anda is
given by the usual thermodynamic formula involving the Legendre transform

p~b,m!5sup
r

@rm2a~b,r!#5p~b,r̄ !, ~I.5!

wherep~b, r! is the TL of the canonical pressure

p~b,r!52r2
]~a/r!

]r
~I.6!
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and

r̄~b,m!5
]p

]m
~b,m! ~I.7!

is the average density in the grand canonical ensemble.
At a first-order phase transitionm° r̄(b,m) is discontinuous and the left/right limits of th

derivative on the rhs of~I.7! give the density in the coexisting phases. In our discussion we s
restrict ourselves to values of the parametersb andm for which the system is in a unique phas
We can of course also go from the grand canonical pressure to the Helmholtz free energy
by the inverse of~I.5!,

a~b,r!5sup
m

@rm2p~b,m!#. ~I.8!

Let P(NVPDuVuub,m,V,b) be the probability of finding a total particle density inV ~i.e.,
NV /uVu) in the intervalD5@n1 ,n2#. Then, forb in the right class of bc, we have~almost by
definition! that

lim
V↗Rd

~buVu!21 log P~NVPDuVuub,m,V,b!5 sup
nPD

@a~b,r̄ !2a~b,n!1m~r̄2n!#, ~I.9!

were r̄ is given by~I.7!. In probabilistic language, this means that, up to a vertical transla
2a(b,n)2mn is the LD functional, or rate function, for density fluctuations.@Note thata(b,r)
may be infinite for some values ofr, i.e., whenf(r )5`, for r ,D, andr is above the close-
packing density of balls with diameterD.#

On the other hand, the fluctuations in all ofV are clearly bc and ensemble dependent~they are
nonexistent in the canonical ensemble! and therefore not an intrinsic property of the syste
Physically more relevant are the fluctuations not in the whole volumeV but in a regionL inside
V. Of particular interest is the case whenL is very large on the microscopic scale but still ve
small compared toV. The proper idealization of this situation is to first take the TL,V↗Rd, and
then let L itself become very large. We are thus interested in the probabilityP(NL

PDuLuub,m), for L a large region in an infinite system obtained by taking the TL. This pr
ability should now be an intrinsic property of a uniform single-phase macroscopic system
acterized either by a chemical potentialm or by a densityr.

A little thought shows that this probability corresponds to considering the grand cano
ensemble of a system of particles in a domainL with boundary interactions of the type

ub~r i !5 (
k51

`

f~ ur i2xku!, r iPL,xkPLc, ~I.10!

i.e., we imagine that the boundary interactions come from particles of the same type as
insideL, specified to be at positionsx1 ,x2 ,... outsideL. These positions must then be averag
over according to the infinite-volume Gibbs measure. It follows then, from the independen
the bulk properties of the system of the boundary conditions, that Eq.~I.9! is still correct, that is,

lim
L↗Rd

~buLu!21 log P~NLPDuLuub,m!5 sup
nPD

@a~b,r̄ !2a~b,n!1m~r̄2n!#. ~I.11!

This relation is indeed a theorem for classical systems, under fairly general conditions.3,15,6

B. Quantum systems

It is Eq. ~I.11! and similar formulas for fluctuations in the energy density which we wan
generalize to quantum systems. To do this, we begin by considering the boundary con
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imposed on theN-particle wave functionsC(r1 ,...,rNuV) for a quantum system in the domainV.
Usually this is done by requiring that whenever anyr i is at the boundary ofV, r iP]V, thenC is
equal toa times its normal derivative

C~r1 ,...,rNuV!5ani•
]

]r i
C~r1 ,...,rNuV! ~I.12!

with a50 corresponding to Dirichlet anda51` to Neumann boundary conditions.
Denote byba the elastic boundary condition~I.12!. The existence of the TL of the gran

canonical pressurep(b,muV,b0) has been proven for quantum systems with stable potentials,1 and
for positive potentials it is established that the pressure does not depend ona.16 But, as far as we
are aware, the dependence onub(r i) has not been studied systematically, with the exception of
regime covered by the low-density expansion of Ginibre.17,18This only shows that the dependen
on the boundary is not so well understood for continuous quantum systems.

To investigate the density fluctuations in quantum systems we note that the momentum
ables did not play any role in the derivation of~I.9! and~I.11! for classical systems. The only thin
relevant, when considering particle number fluctuations, is the probability density in the co
ration space. This is given for a classical system by integratingn in ~I.2! over the momentum
variables, whose distribution is always a product of Gaussians~Maxwellians!. For a quantum
system, where the analog of~I.2! is the density matrixn̂, the configuration probability density i
given by the diagonal elements ofn̂ in the position representation. For the grand canon
ensemble this can be written as

Ŵ~RNub,m,V,ba!5
ebmN(guCg~RNuV,ba!u2e2bEg

Ĵ
, ~I.13!

whereCg and Eg are the eigenstates and eigenvalues ofHN with the suitable statistics andba

bc.1,19

It is clear from the derivation of the TL1,2 that, whenf(r ) is superstable, the TL for the
canonical ensemble exists for allrP@n1 ,n2# with bc ba . Then ~I.9! carries over to quantum
systems. The real problem is how to prove~I.11! for these systems.Ŵ is no longer a Gibbs
measure with a pair potential as interaction and there is no good reason to expect it to be a
measure for any other ‘‘reasonable’’ many-body potential.15 @Even if the latter were the case, th
potential would almost certainly depend on the density and temperature of the system and
therefore not carry directly any information on~I.11!.# It might in fact appear that there is n
strong reason why~I.11! should hold for quantum systems. The reason for expecting it to be
is that it is a thermodynamic-type relation and such relations are in general unaffected
transition from the classical to the quantum formalism. More explicitly, we see the differ
between~I.9! and ~I.11! as involving only boundary-type quantities which should become ir
evant whenL is of macroscopic size. The proof of such a statement is however far from ob
~to us! and we therefore devote the rest of this note to proving it in the~technically! simplest case
where there are no interactions between the particles, i.e., the ideal gas with either Bose–E
or Fermi–Dirac statistics. It turns out that even in this case the proof requires a certain amo
work.

II. MAIN RESULTS

We consider ad-dimensional square boxV5@2 l /2,l /2#d. For computational convenience w
choose periodic boundary conditions, but we do not expect our results to depend on this pa
choice. ~In fact, we will restrict the thermodynamic parameters to the one-phase region.! In V
there is an ideal fluid~either Fermi or Bose! in thermal equilibrium, as described by the gra
canonical ensemble. We label the Bose fluid, shorthand BE, with the index1, and the Fermi fluid,
shorthand FD, with the index2, and introduce the Fock space
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F6
V 5C% %

n51

`

L6
2 ~Vn!, ~II.1!

where L6
2 (Vn) is the n-particle space of all symmetric, resp. antisymmetric, square-integr

functions onVn. Of course, forn51, L6
2 (V)5L2(V). In the sequel, in order to keep the notatio

light, we will often drop sub- or superscripts whenever there is no ambiguity.
Particles do not interact. Therefore the many-particle Hamiltonian in the boxV can be written

conveniently in the form

~II.2!

wherehV , the one-particle Hamiltonian onL2(V), is defined through the one-particle energye(k)
in momentum space. This means that, ifuk& denotes the momentum eigenvector@represented in
L2(V) ascV

(k)(x)5eik•x], thenhVuk&5e(k)uk& with kPV85(2pZ/ l )d, the dual ofV.
We assumee(k) to be continuous,e(0)50 as a normalization, ande(k).0 for kÞ0. Also

e(k)'ukug for small k ande(k)>ukua for largek, with a, g.0. Furthermore, we require

E ddxU E ddk eik•x
1

ebe~k!2bm2«
U,` ~II.3!

for «561, b.0, and suitablem. @One might note the similarities between~II.3! and the space-
clustering condition of Refs. 11 and 12, which ensures that generic observables there have
fluctuations.#

The standard example of a nonrelativistic, resp. relativistic, kinetic energy for a partic
massm is e(k)5k2/(2m), resp. e(k)5Am2c41k2c22mc2 ~having set Planck’s constant\
51). Both functions satisfy the above conditions. The relativistic case includesm50, although
this is not immediately obvious—cf. Appendix A 1 for details.

We observe thatHV may be rewritten as a quadratic form in the creation and annihila
operators on the Fock spaceF. Let ak* be the operator that creates a particle in the stateuk& andak

the corresponding annihilator. Then

HV5(
k

e~k!ak* ak5(
j ,k

^ j uhVuk&aj* ak5^auhVua&. ~II.4!

We fix b.0 andmPR for FD, resp.m,0 for BE. The grand canonical state in the volum
V is defined by

^A&6,m
V 5

TrF
6
V ~Ae2bHV1bmN!

J6
V ~m!

~II.5!

for every bounded operatorA onF6
V . N5NV is the operator for the number of particles in the b

V, NuL
6
2 (Vn)5n1L

6
2 (Vn) , and J6

V (m)5TrF
6
V (e2bHV1bmN) denotes the partition function. As i

well known ~see, for example, Ref. 19! we have

J1
V ~m!5)

k
~12e2be~k!1bm!21, ~II.6!

J2
V ~m!5)

k
~11e2be~k!1bm!. ~II.7!

The infinite-volume thermal state is defined through the limit
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^•&5 lim
V↗Rd

^•&V ~II.8!

when taking averages of local observables~Ref. 18, Sec. 2.6!.
Taking the infinite volume limit of~II.6! and ~II.7! one obtains the grand canonical pressu

p«~m!5 lim
V↗Rd

logJ«
V~m!

buVu
52

«

b~2p!d E ddk log ~12«e2be~k!1bm! ~II.9!

and the average density

r«~m!5
dp«

dm
~m!5

1

~2p!d E ddk
1

ebe~k!2bm2«
. ~II.10!

Herep2 is real analytic on the whole axis, whereasp1 is real analytic only form,0 and has a
finite limit as m→02 . For convenience, we definep1(m)5` for m.0. The slope ofp1 at 02

is related to the Bose–Einstein condensation. We set

rc5r1~02!5
1

~2p!d E ddk
1

ebe~k!21
. ~II.11!

By the properties ofe(k), rc5` for d<g, and is finite otherwise. Hererc is the maximal density
of the normal fluid and any surplus density is condensed into thek50 ground state. To simplify
the notation we userc also in the case of an ideal Fermi fluid, setting it equal to`.

The infinite system is assumed to be in a pure thermal state, obtained through the limi~II.8!
at the reference chemical potentialm. In this state the average density isr̄5r(m),rc . We define
the translated pressureby

g«,m~l!5g«~l!5p«~m1l!2p«~m!. ~II.12!

Hereg« is convex up, increasing,g(0)50, andg«8(0)5 r̄. For large negative values we have

lim
l→`

g«~l!52p«~m!, lim
l→2`

g«8~l!50, ~II.13!

whereas for positive values

lim
l→`

g2~l!5`, lim
l→`

g28 ~l!5` ~II.14!

in the case of fermions and

lim
l→2m

g1~l!5p1~0!2p1~m!, lim
l→2m

g18 ~l!5rc ~II.15!

for bosons, withg1(l)5` for l.2m.
We define therate function f« as the Legendre transform ofg« , i.e.,

f «,m~x!5 f «~x!5 inf
lPR

~g«~l!2lx!5g«~lo!2lox. ~II.16!

Herelo5lo(x) is the minimizer ofg(l)2lx, which is unique by convexity. Forx<0 we have
lo52`. For 0,x,rc , it is determined byg8(lo)5x, while for x>rc we havelo52m. This
shows thatf (x)52` on the half-line$x,0% and finite elsewhere. In particular,f is convex down,
strictly convex for 0,x,rc , and f 1(x)5p(0)2p(m)1mx, for x>rc , as a trace of the Bose–
Einstein condensation.
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Let us now consider a small subvolumeL of our ~already infinite! containerV. The precise
shape ofL plays no role, only the ‘‘surface area’’ should be small compared to its volumeuLu.
Thus, byL↗Rd we mean a sequence of subdomains such that for eachL there exists a subsetL8
of L with uL8u/uLu→1 and dist (L8,Rd\L)→`.

Let NL be the number operator for the particles inL. With respect tô •&, NL has some
probability distribution. We follow the usual practice and use the same symbolNL to denote also
the corresponding random variable. Its distribution is indicated byP, averages again bŷ•&.

We are now in a position to state the main result.
Theorem II.1: Let b.0 and m,0 for BE, resp. mPR for FD. Then, for any interval I

5@a,b#,

lim
L↗Rd

1

buLu
logP~$NLPuLuI %!5sup

xPI
f «,m~x!.

III. LARGE DEVIATIONS IN THE DENSITY

In this section we explain how Theorem II.1 follows from the asymptotic behavior of
generating function̂eblNL&« .

Lemma III.1: There exists almax(L) such that ^eblNL&«,` for all l,lmax(L) and
^eblNL&«5` for all l>lmax(L). For FD we havelmax(L)5`, whereas for BElmax(L),` with
lmax(L)↘2m, as L↗Rd.

Theorem III.2: The limit

lim
L↗Rd

log ^eblNL&«

buLu
5g«,m~L!, ~III.1!

including any finite number of derivatives, exists uniformly on compacts ofR for FD, resp. of
~2`, 2m! for BE.

These results are proved in Secs. IV and V.
Inferring Theorem II.1 from our information on the generating function is a standard argu

from the theory of LD7,6 ~at least for subcritical densitiesa,rc ; the casea>rc requires more
effort!.

The probability of the event in question can be rewritten as

QL5P~$NLPuLuI %!5^x uLuI~NL!&, ~III.2!

wherexA is the indicator function of the setA#R. To make this event typical we introduce th
modified average

^•&l5
1

Zl
^•eblNL&, ~III.3!

wherel,lmax and the partition functionZl5^eblNL&. With respect to this new state,~III.2! can
be expressed as

QL5Zl^e2blNLx uLuI~NL!&l . ~III.4!

The upper bound forQL comes from the exponential Chebychev inequality,

QL<^ebl~NL2auLu!&5Zle2blauLu ~III.5!

for any 0,l,lmax. As regards the lower bound we have to distinguish between two case
Case 1: a,rc . One uses~II.13!–~II.15! to show that there exists alo,lmax such that

g8(lo)5a. Differentiating~III.1! twice w.r.t.l we obtain
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lim
L↗Rd

^Nl&lo

uLu
5g8~lo!5r~m1lo!5a, ~III.6!

lim
L↗Rd

b

uLu @^NL
2 &lo

2~^NL&lo
!2#5

dr

dm
~m1lo!, ~III.7!

which is finite. This means that the event$NL'uLua% is typical for the new state and a law o
large numbers holds. Notice thatlo.0, sincer is strictly increasing inm. From ~III.4!, ;c
P(a,b),

QL>Zlo
^e2bloNLx uLu@a,c#~NL!&lo

>Zlo
e2blocuLu^x uLu@a,c#~NL!&lo

>aZlo
e2bloculu

~III.8!

for someaP(0,1) anduLu large. In fact,^x uLu@a,c#(NL)&l0
→ 1

2, asL↗Rd. Therefore we obtain
from ~III.17!, ~III.20! and Theorem III.2:

g~lo!2loc1o~1!<
logQL

buLu
<g~lo!2loa1o~1!. ~III.9!

SincecP(a,b) is arbitrary, we conclude that

lim
L↗Rd

logQL

buLu
5g~lo!2loa5 f ~a!5 sup

xP@a,b#

f ~x!, ~III.10!

wheref is the rate function defined in~II.16!. lo is the same as in the definition of the Legend
transform~II.16!, because of~III.6!. The last equality comes from the convexity off.

Case 2: a>rc . In this case the problem is that one cannot find afixedlo that verifies~III.6!.
As we will show later, it is nevertheless possible, for each finiteL, to choose alL such that the
average density isa, i.e., ^NL&lL

5auLu. However,a might not correspond to the typical densi
in the limit L↗Rd, in the sense that no law of large numbers like~III.7! is guaranteed. Therefore
establishing a lower bound forQL is not so immediate in this case, and we need the follow
lemma.

Lemma III.3: For every subdomainL,Rd and every a.0, there exists a uniquelL

5lL(a) such that̂ NL&lL
5auLu. If a>rc , then

lim
L↗Rd

lL52m; ~III.11!

lim
L↗Rd

logZlL

buLu
5g~2m!; ~III.12!

lim inf
L↗Rd

1

uLu
ln ^x@auLu,auLu11!~NL!&lL

50. ~III.13!

The above is proven in Sec. VI.
Now, the first two lines of~III.8! are still valid, withlL replacingl0 . Taking the log and

dividing by uLu, one obtains, via~III.13!, the first inequality in~III.9!, again forlL . The second
inequality comes for free from Case 1. Finally,~III.11! and ~III.12! are used to show that

lim
L↗Rd

logQL

buLu
5g~2m!1ma5 f ~a!5 sup

xP@a,b#

f ~x!, ~III.14!
                                                                                                                



.

h the
.

duce

or

djoint

y

.

1232 J. Math. Phys., Vol. 41, No. 3, March 2000 Lebowitz, Lenci, and Spohn

                    
yielding the linear part of the BE rate function. Q.E.D
Theorem III.2 also implies the central limit theorem for the density inL.
Corollary III.4: Under the assumptions of Theorem II.1, the moments of the variablejL

5(NL2^NL&)/uLu1/2 converge, asL↗Rd, to those of a Gaussian with varianceb21(dr/dm)
3(m).

Proof: The kth cumulant ofjL is given by

CL~k!5
1

bkuLuk/2 F dk

dlk log ^eblNL&G
l50

, ~III.15!

k>2. From Theorem III.2,CL(2)→b21g9(0)5b21(dr/dm)(m), whereas, fork.2, CL(k)
→0. Also CL(1)50. These limits are the cumulants of a centered Gaussian variable wit
specified variance. Q.E.D

IV. GENERATING FUNCTION

We derive a determinant formula for the generating function^eblNL&« . With its help we
prove the claims of Lemma III.1. We will see in the next section that it is convenient to intro
the variablesz5ebl and z̃5z21.

By ~II.4!, we have

2bHV1bmNV5^au~2bhV1bm1V!ua&5^auAVua&, ~IV.1!

blNL5^aublxLua&5^auBLua&, ~IV.2!

which defineAV and BL as linear operators onL2(V). Here and in the sequel the indicat
function xL stands for the corresponding multiplication operator, i.e., the projector ontoL2(L).
We use the following identity.

Lemma IV.1: Let A, B be self-adjoint and bounded from above. Then there exists a self-a
operator C such that eAeBeA5eC and

e^auAua&e^auBua&e^auAua&5e^auCua&

for both BE and FD.
Proof: See the Appendix.
Let us apply Lemma IV.1 withA5AV/2 andB5BL , after a symmetrization of the densit

matrix in ~II.5!. This and definition~II.8! yield

^eblNL&5 lim
V↗Rd

TrF
2
V ~e^auCua&!

TrF
2
V ~e^auAVua&!

. ~IV.3!

Evaluating the trace of a quadratic form inai* ,aj is a standard calculation for both BE and FD
Let us consider first the case of fermions. For a self-adjoint operatorA on L2(V) such thateA is
trace-class, we have

TrF
2
V ~e^auAua&!5detV ~1V1eA!5det~11xVeAxV!, ~IV.4!

where detV is the determinant onL2(V) and det the determinant onL2(Rd). We resort here to the
theory of infinite determinants, as found, e.g., in Ref. 20, Sec. XIII.17.eAV is obviously trace-
class, and so iseC, sinceeBL is bounded. Using the definition ofC, we obtain
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detV ~1V1eC!

detV ~1V1eAV!
5detV @~1V1eAV!21~1V1eAV/2eBLeAV/2!#

5detV @1V1~1V1eAV!21eAV/2~eBL21V!eAV/2#

5det@11 z̃xLDV,2xL#, ~IV.5!

where DV,25(11eAV)21eAV. We used the fact thateBL5(ebl21)xL115 z̃xL11 and the
cyclicity of the trace in the definition of the determinant. Finally, from~IV.3! and ~IV.5!,

^eblNL&25 lim
V↗Rd

det@11 z̃xLDV,2xL#. ~IV.6!

One would like to take the limit onV inside the determinant by replacingDV,2 with the
corresponding operator onL2(Rd) defined as

~D2ĉ !~k!5d2̂~k!ĉ~k!, ~D2c!~x!5E dy d2~y2x!c~y!, ~IV.7!

where ˆ denotes the Fourier transform and

d2̂~k!5
1

11eb„e~k!2m…

. ~IV.8!

Notice thatd2̂PL1(Rd) by our assumptions one(k) and sod2PL`(Rd). Moreover,~II.3! en-
sures thatd2PL1(Rd).

By Ref. 20, Sec. XIII.17, Lemma 4~d!, one has to establish thatxLDV,2xL tends toxLD2xL

in the trace norm.
Lemma IV.2: Let dˆ be a continuous integrable function onRd. We define D through~IV.7! as

a linear operator acting on L2(Rd). Furthermore, we define DV by DVuk&5d̂(k)uk& on L2(V) and
by DV50 on the orthogonal complement L2(Rd\V). Then, forL,V, xLDVxL and xLDxL are
trace class, and

lim
V↗Rd

TruxL~DV2D !xLu50.

Proof: See the Appendix.
We conclude that

^zNL&25det~11 z̃xLD2xL!, ~IV.9!

with z̃5z21.
For bosons we proceed in the same way, except that~IV.4! is replaced by

TrF
1
V ~e^auAua&!5detV ~1V2eA!21, ~IV.10!

requiring in additionieAi,1. In fact, forieAi>1, the lhs of~IV.10! is `, whereas the rhs migh
be finite if 1 is not an eigenvalue of the trace-class operatoreA. In our case, by assumptio
ieAVi,1. As for eC, the function

l°ieCi5i~ebl21!eAV/2xLeAV/21eAVi ~IV.11!

is increasing andlmax(L) is defined to be thatl which makes it equal to 1. Since the rhs of~IV.11!
is increasing inL and its sup iseblieAVi5eb(l1m), then one checks thatlmax(L)↘2m, as
L↗Rd. Therefore, following the computation for FD, we have
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^zNL&15 lim
V↗Rd

det~12eC!21

det~12eAV!21 5det~11 z̃xLD1xL!21, ~IV.12!

for l,lmax and ` otherwise. HereD1 , the limit of DV,15(eAV21)21eAV, is defined as in
~IV.7! with

d1̂~k!5
1

12eb„e~k!2m…

. ~IV.13!

Equation~IV.12! is the analog of~IV.9! and proves Lemma III.1.

V. INFINITE VOLUME LIMIT

Instead of the chemical potential, in this section we use the fugacityz5ebm, regarding it as a
complex variable. This will come in handy for the proof of Theorem III.2. The variablesz and z̃,
defined at the beginning of the previous section, will also be extended to the complex plane.
setup the translated pressure~II.12! becomes

gz~z!5p~zz!2p~z!, ~V.1!

where, with a slight abuse of notation, we keep the same name for the pressure as a functio
fugacity.

Expressions~II.9! and ~II.10! for the pressure and the average density define two ana
functions ofm in

E15$Rem,0%ø$Rem>0,ImmÞ2p j /b,; j PZ%, ~V.2!

E25$Rem,0%ø$Rem>0,ImmÞ~2 j 11!p/b,; j PZ%. ~V.3!

Henceg«(z) is analytic in

G15C\@z21,1`!; G25C\~2`,2z21#. ~V.4!

We proceed to give the proof of Theorem III.2. LetK,G« be a compact set in the comple
plane. We chooseK such thatL5KùR1 is also compact, since its image through the funct
z°l verifies the hypotheses of the theorem. Our argument, however, is valid for anyK. Without
loss of generality, we can assume that 1PK.

For z restricted toGeùR1, let us define

f«,z
L ~z!5

1

uLu
log ^zNL&«,z52

«

uLu
Tr log ~11 z̃xLD«xL! ~V.5!

according to~IV.9! and ~IV.12!. The proof of Theorem III.2 will be subdivided into three step

~1! f«
L can be analytically continued toG« .

~2! There is a positiver such thatfL(z) converges uniformly tobgz(z) for uz21u<r .
~3! ufLu is uniformly bounded onK. Therefore, by Vitali’s lemma~Ref. 21, Sec. 5.21!, fL and

any finite number of its derivatives converge uniformly onK.

Step 1:We leave the proof of the following lemma for the Appendix.
Lemma V.1: The functionf«

L(z), as defined by the trace in~V.5!, is analytic in G« .
Step 2:Expanding the log in~V.5! one has, foru z̃u,iD«i21,

f«
L~ z̃11!52

«

uLu
Tr (

m51

`
~21!m21

m
~ z̃xLD«xL!m. ~V.6!
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We would like to interchange the summation with the trace. To do so, we need domi
convergence for the series:

u z̃xLD«xLum<u z̃umiD«im21~xLD«xL!. ~V.7!

SinceuLu21 Tr (xLD«xL)5d«(0) ~see proof of Lemma IV.2 in the Appendix!, each term of~V.6!

is bounded by a term of an integrable series independent ofL. Therefore, for the samez̃ ’s as
above,

f«
L~ z̃11!52« (

m51

`
~21!m21z̃m

m

1

uLu
Tr ~xLD«xL!m. ~V.8!

Suppose that we are able to prove that

lim
L↗Rd

1

uLu
Tr ~xLD«xL!m5E dk @ d̂«~k!#m, ~V.9!

with a rest bounded above bymRm for some positive constantR. Then, using~IV.8! and~IV.13!,
we would have that, for anyr ,min $iDei21,R21%, uniformly for u z̃u<r ,

lim
L↗Rd

f«
L~ z̃11!52« (

m51

`
~21!m21z̃m

m E dk S 1

12«z21eb«~k!D m

52«E dk log S 11
z21

12«z21eb«~k!D
52«E dk log S 12«zze2b«~k!

12«ze2b«~k! D 5bgz~ z̃11!, ~V.10!

the last equality coming from~II.9!. This would complete Step 2.
Let us pursue this project. One sees that

~V.11!

The normalized integration overx1 is harmless since, by translation invariance, the integrand d
not depend on that variable. On the other hand, it is not hard to verify that

1

uLu
Tr ~xLD«xL!m5

1

uLu EL
dx1 ^x1u~xLD«xL!mux1&

5
1

uLu EL
dx1E

L
dx2 d«~x12x2! . . . E

L
dxm d«~xm212xm!d«~xm2x1!.

~V.12!

In view of ~V.9!, we want to compare~V.11! with ~V.12!. We observe that
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~V.13!

Subtracting~V.11! from ~V.12! leads then tom21 terms of the form

1

uLu EL
dx1E

Lc
dx2 d«~x12x2! . . . E

Am

dxm d«~xm212xm!d«~xm2x1!, ~V.14!

where the setsA3 ,...,Am can be eitherRd or L. Equation ~V.14! holds because, due to th
cyclicity of the integration variables, one can cyclically permute the order of integration wit
touching the integrand. We overestimate by switching to absolute values and integratingx3 ,...,xm

over Rd,

1

uLu EL
dx1 ~xLc2x1

ud«u!* ud«u* . . . * ud«u)~x1!5
1

uLu EL
dx1 uL~x1!, ~V.15!

which definesuL(x1). To estimate this function, we use recursively the relationi f * gi`

<i f i`igi1 and obtain

uL~x1!<id«i1
m21 sup

Lc2x1

ud«u. ~V.16!

Recalling now the definition ofL8 given before the statement of Theorem II.1, one sees tha
x1PL8 andyPLc2x1 , thenuyu→` asL↗Rd. Hence, from~V.16!,

sup sup
x1PL8 m>1

id«i1
2m11uL~x1!→0. ~V.17!

Also from ~V.16!, pointwise in x1 ,

sup
m>1

id«i1
2m11uL~x1!<id«i` . ~V.18!

When we average overx1PL, the last two relations and the properties ofL8 prove that

lim
L↗Rd

sup
m>1

id«i1
2m11 1

uLu EL
dx1 uL~x1!50. ~V.19!

This takes care of each term as in~V.14!, and we havem21 of these terms. Hence~V.9! holds
with R5id«i1 . This ends Step 2.

Step 3:Again we expand~V.5! in powers ofz̃, but this time about a genericz̃0PG«21 @see
~V.4!#. We obtain

1

uLu
Tr log ~11 z̃xLD«xL!5

1

uLu
Tr log ~11 z̃0xLD«xL!1

1

uLu
Tr (

m51

`
~21!m21

m

3~~11 z̃0xLD«xL!21xLD«xL!m~ z̃2 z̃0!m. ~V.20!

Let us estimate this series. First of all, using some spectral theory~Ref. 22, Sec. 7.4!,

i~11 z̃0xLD«xL!21i<@dist„1,s~2 z̃0xLD«xL!…#21<@dist„1,s~2 z̃0D«!…#21, ~V.21!

since we know from definitions~IV.7!, ~IV.8!, and~IV.13! that
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s~xLD2xL!,@0,ixLD2xLi #,@0,iD2i #5s~D2!5@0,1/~11z21!#, ~V.22!

s~xLD1xL!,@2ixLD1xLi ,0#,@2iD1i ,0#5s~D1!5@1/~12z21!,0#. ~V.23!

Repeating the same reasoning as in Step 2, we use the above to exchange the trace
summation in~V.20!—which is legal for smallu z̃2 z̃0u as to be determined shortly. This yields
new series, whosemth term is bounded above by

@dist„1,s~2 z̃0D«!…#2miD«im21d«~0!u z̃2 z̃0um5a~b~ z̃0!u z̃2 z̃0u!m, ~V.24!

whered«(0)5uLu21 Tr (xLD«xL). Hence, in view of~V.5!, ~V.20! implies

uf«
L~ z̃11!u<uf«

L~ z̃011!u1a
b~ z̃0!u z̃2 z̃0u

12b~ z̃0!u z̃2 z̃0u
<uf«

L~ z̃011!u1a, ~V.25!

for u z̃2 z̃0u<„2b( z̃0)…21.
The crucial fact is thatb( z̃)21 stays away from zero whenz̃ is away from the boundary o

G«21. This can be seen via the following argument, exploiting~V.24! and~V.22! and~V.23!. In
the FD cases(2 z̃0D2) is a segment that has one endpoint at the origin and the phase of2 z̃0 is
the angle it forms with the positive semi-axis. This means that, as long asz̃0 does not go anywhere
near the negative semi-axis, we are safe. Forz̃0P(2z2121,0) @see~V.4!#, s(2 z̃0D2) is con-
tained inRo

1 . However, notice from~V.22! that the other endpoint is located at2 z̃0 /(11z21)
,1. For BE the reasoning is analogous, except that in this case the phase ofz̃0 is the angle
betweens(2 z̃0D1) and Ro

1 . Therefore the ‘‘safe’’ span is the complement of the posit
semi-axis. Also, ifz̃0P(0,z2121) @again see~V.4!#, the ‘‘floating’’ endpoint ofs(2 z̃0D1) is
found atz̃0 /(z2121),1.

With the above estimate we can use~V.25! recursively. If u z̃0u<r , from Step 2,uf«
L( z̃0

11)u<M , for someM, sincef«
L converges uniformly there. Then, from~V.25!, we have that

uf«
L( z̃111)u<M1a, for any z̃1 such that u z̃12 z̃0u,„2b( z̃0)…21. Proceeding, we see tha

uf«
L( z̃k11)u<M1ka, wheneveru z̃k2 z̃k21u,„2b( z̃k21)…21. In this way we will coverK in

finitely many steps since it keeps at a certain distance from the boundary ofG« and the„b( z̃k)…
21

are bounded below. This completes Step 3, i.e.,f«
L(z) is bounded onK and Vitali’s lemma can be

applied. Q.E.D.

VI. SUPERCRITICAL DENSITIES

For bosons in high dimension, Theorem III.2 is not enough to establish the LD resu
supercritical densities. In this section we prove Lemma III.3. In particular, we derive a u
property of the distribution ofNL , w.r.t. the statê•&lL

, with lL chosen as stated in the lemm
«511 will be understood in the reminder.

Letting the chemical potential go to zero in such a way that the average density re
constant~and bigger thanrc) is the usual way to proceed in the theory of Bose–Einst
condensation.19,23,24 The limiting distribution of the global densityNV /uVu is called the Kac
distribution, and has been derived for several choices ofV, e(k), andd.23–26,9We do not go as far
in this paper. It is safe to say, however, that there is no reason to expect the distribution ofNL /uLu
to become degenerate@which would make~III.13! trivial#.

Proof of Lemma III.3:Using a sloppy notation, let us writefL(l) for fL(ebNL) @see defi-
nition ~V.5!#. Differentiating this function, we get the mean density in the modified state: Fl
,lmax,
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rL~l!5
dfL

dl
~l!5

1

uLu
^NLeblNL&

^eblNL&
5

^NL&l

uLu
, ~VI.1!

since, by virtue of Lemma III.1, we can use dominated convergence to differentiate insid
average. Likewise,

vL~l!5
drL

dl
~l!5

1

uLu @^NL
2 &l2~^NL&l!2#. ~VI.2!

Thus,rL(l) is increasing. The proof of Lemma III.1 gives that liml→lmax
rL(l)51`. It is also

clear that liml→2`rL(l)50. The above implies the existence and uniqueness oflL such that
rL(lL)5a.

Let us fix a>rc . Theorem III.2 states in particular that, ifL↗Rd, then rL(l)→r(l)
,rc , for l,2m. This and Lemma III.1 yield~III.11!.

Continuing, let us choose somel1,2m. From~III.11!, l1<lL , for L big enough. Using the
monotonicity offL andrL,

fL~lL!2fL~l1!5rL~l̄ !~lL2l1!<a~lL2l1!, ~VI.3!

where l̄P(l1 ,lL) is given by Lagrange’s mean value theorem. Due tol1 being arbitrary,
Theorem III.2 and~VI.3! imply

lim
L↗Rd

fL~lL!5 lim
l1→2m

bg~l1!5bg~2m!. ~VI.4!

This is precisely~III.22!.
The proof of ~III.13! is more elaborate. Looking at~IV.12! and the immediately following

definition of DV,1 , we can write

xLD1xL5~e2b~hL8 2m1L!21L!21e2b~hL8 2m1L!, ~VI.5!

which introduces a new one-particle HamiltonianhL8 on L2(L). By Lemma IV.2,xLDxL is
trace-class, hence it has discrete spectrum. With the help of~V.23!, we see that~VI.5! can be
solved forhL8 . Thus,hL8 is well defined and has the same spectral decomposition asxLDxL . In
particular,s(hL8 ) is discrete. The eigenvalues ofhL8 are indicated bye j85e j8(L), and are assumed
to be in increasing order.

The idea behind this definition is to eliminate the cutoffxL in Eq. ~IV.12!, which is respon-
sible for all the complications in the proof of Theorem III.2, and is the only manifestation tha
are dealing with LD inL. The effective HamiltonianhL8 allows one to think of a system of fre
bosons in the containerL and apply the available results for global fluctuations.23,27,9The draw-
back is that in general we have no precise information abouts(hL8 ). Even so, it is possible to
determine the ground state ofhL8 . In fact, by ~VI.5!,

1L1~ebl21L!xLDxL5~1L2e2b~hL8 2m1L!!21~1L2e2b~hL8 2~m1l!1L!! ~VI.6!

~cf. Step 2 in Sec. V!. SincexLDxL is negative, the inf of the lhs of~VI.6! ~in the sense of the
quadratic form! is a decreasing function ofl, and attains zero atlmax. This is so by the very
definition oflmax—see~IV.11! and~IV.12!. On the other hand, the inf of the rhs of~VI.6! is zero

if, and only if, e2b(e082m2l)51, where

e08~L!5lmax~L!1m.0. ~VI.7!

Let w j denote the eigenfunction relative toe j8 ,Pj the corresponding projector inL2(L), and
aj* the creation operator onFV. We introduceNL

( j )5aj* aj , the operator for the number of pa
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ticles in the statew j . $NL
( j )% is a commuting family andNL5( j 50

` NL
( j ) . We want to verify that

these operators behave like independent random variables w.r.t.^•&l . We can study their joint
generating function, employing the same techniques as in Sec. IV. In fact, forh j bounded, define
BL8 5( jh j Pj1blxL and replace~IV.2! with

^auBL8 ua&5(
j 50

`

h jNL
~ j !1blNL . ~VI.8!

One verifies that, inL2(V) or in L2(Rd),eBL8 5( je
h j 1blPj112xL . In particular eBL8 21

5xL(eBL8 21)xL . This allows us to proceed as in~IV.12!, and write

Zl^e( jh jNL
~ j !

&l5^e^auBL8 ua&&5 lim
V↗Rd

det@11~eBL8 21!xLDVxL#21. ~VI.9!

Taking the above limit is slightly more complicated than the corresponding computation in

IV. SinceeBL8 21 is bounded,

Tru~eBL8 21!xL~DV2D !xLu<ieBL8 21i TruxL~DV2D !xLu. ~VI.10!

One then applies Lemma IV.2 and Ref. 20, Sec. XIII.17, Lemma 4~d!, so that~VI.9! gives

^e( jh jNL
~ j !

&l5Zl
21 det@11~eBL8 21!xLDxL#21

5Zl
21 detL @1L1~eBL8 21L!~e2b~hL8 2m1L!21L!21e2b~hL8 2m1L!#21

5)
j 50

`
12e2b~e j82m2l!

12e2b~e j82m2l!1h j
, ~VI.11!

having used~IV.12! and ~VI.6! to expressZl .
This shows that theNL

( j )’s represent a set of independent, geometrically distributed ran

variables, with averages^NL
( j )&l5(eb(e j82m2l)21)21. At this point we can apply Ref. 27, Lemm

2, to NL
(0) andNL2NL

(0) . We obtain

^x@auLu,auLu11!~NL!&lL
>

1

auLu
e2b~e08~L!2m2lL!~auLu12!. ~VI.12!

Assertion~III.13! is derived from~VI.12! via ~III.11!, ~VI.7! and Lemma III.1. Q.E.D.
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APPENDIX: PROOFS

1. Relativistic massless particles

We prove that the energy dispersione(k)5cuku satisfies our assumptions. The only conditi
to be checked is~II.3!, that is, the Fourier transform ofk°(eb(cuku2m)2«)21 is in L1(Rd). This
is a consequence of the following.

Lemma A.1: Let f:@0,1`)→C be of Schwartz class. With the common abuse of notat

denote by fˆ (uju) the Fourier transform of f(uxu), for x, jPRd. Then, for some positive C,
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f̂ ~ uju!<
C

ujud11 .

Proof: For simplicity let us writej5uju. The Fourier transform of a radial function is

f̂ ~j!5
~2p!d/2

jd/221 E
0

`

dr f ~r !r d/2Jd/221~r j!, ~A1!

cf. Ref. 28, Chap. IV, Thm. 3.3, whereJn is the standard Bessel function of ordern.29 One has

Jn~x!'
xn

2nG~n11!
~A2!

for x→0, whereas

Jn~x!5A 2

px FcosS x2
2n11

4
p D1g~x!G , ~A3!

with g(x)→0 for x→`. Using the relation

E
0

x

dt tnJn21~ t !5xnJn~x!, ~A4!

we integrate~A1! by parts repeatedly, taking into account also~A2! and the hypothesis onf. After
n integrations we get, up to constants,n terms of the form

1

jd/21n21 E
0

`

dr f ~ i !~r !r d/22n1 iJd/21n21~r j!, ~A5!

with i 51,...,n. For our purposes it suffices to iterate up ton>d/212. In fact, if i is such that
d/22n1 i .2d, then in ~A5! we can estimate the Bessel function by a constant. The inte
converges by the rapid decay off ( i ) and the whole term is of the orderj2d21 or better. For
smaller values ofi, the estimate uses~A2!, for xP@0,a#, and~A3! otherwise. Sinceu f ( i )u<c, ~A5!
is bounded by

A

jd/21n21 E
0

a/j

dr r d/22n1 i~r j!d/21n211
B

jd/21n21 E
a/j

`

dr r d/22n1 i~r j!21/2'
1

jd1 i , ~A6!

the second integral being convergent because of the choice ofi. Q.E.D.

2. Proof of Lemma IV.1

As before, we set«561, according to either bosons or fermions. A generalf PL2(V) can be
expanded in the Fourier basis asf 5(kf kuk&. The corresponding creation operator is then defin
by

a~ f !* 5 (
kPV8

f kak* . ~A7!

For the sake of simplicity, we denoteA5^auAua&5( i j Ai j ai* aj ~same forB!. Recalling the ca-
nonical ~anti!commutation relations,

@ai , aj* #2«5aiaj* 2«aj* ai5d i j ;

~A8!
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@ai , aj #2«5aiaj2«ajai50,

one calculates that

@A, a~ f !* #5a~A f !* , ~A9!

and in exponential form

etAa~ f !* e2tA5a~etAf !* . ~A10!

Now, let u0& be the ground state ofFV. For nPN, and f 1 , f 2 ,...,f nPL2(V), the finite linear
combinations of the states

u f 1 , f 2 ,...,f n&5a~ f 1!* a~ f 2!* . . . a~ f n!* u0& ~A11!

are dense inF, which is another way of stating thatu0& is cyclic w.r.t. the algebra generated by th
creation operators. Therefore, we need only test our assertion on vectors of the type~A11!. Using
~A10! with t51, and observing thatAu0&50, we obtain

eAu f 1 ,...,f n&5eAa~ f 1!* e2A . . . eAa~ f n!* e2Au0&5a~eAf 1!* . . . a~eAf n!* u0&5ueAf 1 ,...,eAf n&.
~A12!

The existence ofC is a consequence of the spectral theorem. We callC the corresponding qua
dratic form inai* ,aj . Through the repeated use of~A12!, one checks that applyingeAeBeA to the
states~A11! is the same as applyingeC. The semiboundedness ofA andB ensures that the domai
of their exponentials is the wholeL2(V) and all quantities are well defined. Q.E.D

3. Proof of Lemma IV.2

For any symmetric operatorA,xL8 AxL<xLuAuxL . Hence uxLAxLu<xLuAuxL and
Tr uxLAxLu<TrL uAu. WhenA5DV , the convergence of the trace is proven by writing the furt
estimate TrLuDVu<TrVuDVu and then summing an integrable sequence of discrete eigenvalue
A5D, one uses the Dirac-delta representation of the trace to find out that TrL uDu
5uLu(2p)2d*dkud̂u. The first assertion of the lemma has been proven.

As for the second part, let us write

Tr ~ uxL~DV2D !xLu!5Tr ~UxL~DV2D !xL!5TrV ~UxLDVxL!2Tr ~UxLDxL!5Tl2T,
~A13!

whereU is the partial isometryL2(L)→L2(L) that realizes the spectral decomposition as in R
20, Thm. IV.10. It is convenient to use the position representation for the bases. So,c (k)(x)
5eik•x and, as defined in Sec. II,cV

(k)5c (k)xV . Let us work onTl : using the cyclicity of the trace
one obtains

Tl5
1

l d (
kPV8

^cV
~k!uxLUxLDVucV

~k!&

5
1

l d (
kPV8

d̂~k!^cV
~k!uxLUxLucV

~k!&

5
1

l d (
kPV8

d̂~k!^c~k!uxLUxLuc~k!&, ~A14!

the last equality being due to the presence of the indicator functionsxL . In complete analogy with
the above,
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T5
1

~2p!d E dk d̂~k!^c~k!uxLUxLuc~k!&. ~A15!

Sinceu^c (k)uxLUxLuc (k)&u<uLu, it is obvious that~A14! tends to~A15! for l→`. Q.E.D.

4. Proof of Lemma V.1

With regard to~IV.9! and ~IV.12!, det (11z̃xL D«xL) is entire in z̃ ~hence inz! by Ref. 20,
Sec. XIII.17, Lemma 4~c!. In order to evaluate its log~on the suitable Riemann surface! we need
to avoid the zeros. Using Ref. 20, Thm. XIII. 106, we want to make sure thats(2 z̃xLDexL) does
not hit 1. Step 3 in Sec. IV@see in particular formulas~V.22! and~V.23! and the last paragraphs#

shows that this is never the case ifz̃¹(2`,2z2121) for FD, or z̃¹@z2121,1`) for
BE. Q.E.D.

Actually, we can say more. Consider FD, just to fix the ideas. We see from~V.22! that the
‘‘floating’’ endpoint of s(2 z̃xLD2xL) is strictly contained in the segment„0,2 z̃/(11z21)…,
which means thatz̃ is allowed to exceed slightlyG221, as given by~V.4!, without any vanishing
of ~IV.9!. For bosons this is related to Lemma III.1. In this case the ‘‘forbidden region’

@ z̃max,1`), wherez̃max5eblmax21 ~see also the proof of Lemma III.3!.
In conclusion, for each finiteL, the domain of analyticity offe

L(z) is indeed strictly bigger
thanG« .
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The scaling limit of the incipient infinite cluster
in high-dimensional percolation. II. Integrated
super-Brownian excursion
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For independent nearest-neighbor bond percolation onZd with d@6, we prove that
the incipient infinite cluster’s two-point function and three-point function converge
to those of integrated super-Brownian excursion~ISE! in the scaling limit. The
proof is based on an extension of the new expansion for percolation derived in a
previous paper, and involves treating the magnetic field as a complex variable. A
special case of our result for the two-point function implies that the probability that
the cluster of the origin consists ofn sites, at the critical point, is given by a
multiple of n23/2, plus an error term of ordern23/22e with e.0. This is a strong
version of the statement that the critical exponentd is given byd52. © 2000
American Institute of Physics.@S0022-2488~00!00603-4#

1. INTRODUCTION

1.1. The incipient infinite cluster

We consider independent nearest-neighbor bond percolation onZd. For x5(x1 ,...,xd)PZd,
we write ixi15S j 51

d uxj u. A nearest-neighborbond is a pair $x,y% of sites in Zd with ix2yi1

51. To each bond, we associate an independent Bernoulli random variablen$x,y% , which takes the
value 1 with probabilityp, and the value 0 with probability 12p. A bond $x,y% is said to be
occupiedif n$x,y%51, andvacantif n$x,y%50. We say that sitesu,vPZd areconnectedif there is
a lattice path fromu to v consisting of occupied bonds. In this system, a phase transition oc
for d>2, in the sense that there is a critical valuepc5pc(d)P(0,1), such that forp,pc there is
almost surely no infinite connected cluster of occupied bonds, whereas forp.pc there is almost
surely a unique infinite connected cluster of occupied bonds~percolation occurs!.

It is widely believed that there is no infinite cluster whenp5pc , but, more than four decade
after the mathematical study of percolation was initiated by Broadbent and Hammersley1 and
after considerable study,2–5 there is still no general proof that this is the case. The absence o
infinite cluster atpc has been proved only ford52 ~see Ref. 2 and references therein! and, in high
dimensions, ford>19, and ford.6 for sufficiently ‘‘spread-out’’ models having long, but finite
range.6–9 We focus in this paper on the high-dimensional case, where the absence of perc
at pc has been established. This presents a picture where atpc there are extensive connection
present, on all length scales, but no infinite cluster. However, the slightest increase inp will lead
to the formation of an infinite cluster. This inchoate state of affairs atpc is often represented by a
appeal to the notion of the ‘‘incipient infinite cluster.’’

a!Address after 1 April 2000: Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602,
electronic mail: hara@ap.titech.ac.jp

b!Present address: Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2 Canada
electronic mail: slade@math.ubc.ca
12440022-2488/2000/41(3)/1244/50/$17.00 © 2000 American Institute of Physics
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The incipient infinite cluster is a concept admitting various interpretations. A constructio
the incipient infinite cluster as an infinite cluster in the two-dimensional latticeZ2 has been carried
out by Kesten,10 and, for an inhomogeneous two-dimensional model, by Chayes, Chayes
Durrett.11 Such constructions are necessarily singular with respect to the original perco
model, which has no infinite cluster atpc . Our point of view is to regard the incipient infinit
cluster as a cluster inRd arising in the scaling limit. More precisely, atpc we condition the size of
the cluster of the origin to ben, scale space byn21/4 ~for d.6!, and examine the cluster in th
limit n→`.

In this paper, we obtain strong evidence for our conjecture that this scaling limit is integ
super-Brownian excursion~ISE! for d.6. Our conjecture has been discussed in Ref. 12~see also
Refs. 13 and 14!. ISE can be regarded as the law of a random probability measure onRd, which
is almost surely supported on a compact subset ofRd. On the scale of the lattice, this compact s
corresponds to an infinite cluster, and we therefore regard the limiting object as the scalin
of the incipient infinite cluster.

In addition to providing the law of a random probability measure onRd, ISE contains more
detailed information including the structure of all paths joining pairs of points in the cluster.
is consistent with the interesting recent approach of15–18 defining the scaling limit in terms of a
collection of continuous paths. In Refs. 15–18, the continuous paths correspond to the oc
paths within all clusters within a large box. Another approach to the incipient infinite cluster
study the largest clusters present within a large lattice box without taking a scaling limit, as
work of Refs. 16 and 19. In contrast, our focus here is on a single percolation cluster, rathe
on many clusters.

In general dimensions, the appropriate spatial scaling of the lattice is presumablyn21/DH,
whereDH is the Hausdorff dimension of the incipient infinite cluster. We will scale space byn21/4

in high dimensions, consistent with the belief that the Hausdorff dimension of the incipient in
cluster is 4 ford.6. Theupper critical dimension6 was identified in 1974 by Toulouse20 as the
dimension above which the behavior of percolation models nearpc should no longer exhibit the
dimension-dependence typical of lower dimensions, adopting instead the behavior associat
percolation on trees.

ISE is defined by conditioning super-Brownian motion to have total mass 1. Super-Brow
motion is a basic example in the theory of superprocesses, modelling a branching Bro
motion in which branching occurs on all~arbitrarily short! time scales. Discussion of ISE can b
found in Refs. 21–26. ISE is almost surely supported on a set of Hausdorff dimension
dimensionsd>4, consistent withDH54 for d.6.

Our results concern scaling limits of the two-point and three-point functions, at the cr
point. Fix p5pc andx,yPRd. We prove that in sufficiently high dimensions, the probability th
a site@xn1/4#PZd is connected to the origin, conditional on the cluster size beingn, corresponds,
in the scaling limit, to the mean mass density function of ISE atx. This will be stated more
precisely in Theorem 1.1 below. An immediate consequence is that, atpc , the probability that the
cluster of the origin consists ofn sites is given by a constant multiple ofn23/2, plus an error
O(n23/22e) with e.0. This probability is believed in general to behave asn2121/d, so we have a
proof thatd52 in high dimensions.

We also prove that in sufficiently high dimensions, the probability that the origin is conne
to sites@xn1/4# and @yn1/4#, conditional on the cluster having sizen, corresponds, in the scalin
limit, to the joint mean mass density function for ISE atx,y. A precise statement will be given in
Theorem 1.2 below.

The proof of these results is based on the fact that two of the standard critical expone
percolation,h andd, jointly take their mean-field valuesh50 andd52 in high dimensions. Such
joint behavior was proven in a previous paper,27 which we will refer to as I. We will prove a
stronger statement concerning this joint behavior, for the nearest-neighbor model, in this
The connection of ISE as a scaling limit with these mean-field values for the critical expo
indicates a universal aspect to the occurrence of ISE as scaling limit. This connection is dis
in more detail in Refs. 13 and 14.
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The upper critical dimension arises in this work as the dimension above which the
generically no intersection between a four-dimensional ISE cluster and a two-dimensional B
ian ‘‘backbone.’’ This allows for an understanding of the critical dimension 6 as arising
12. The interplay between the backbone and cluster gives rise to triangle diagrams in bou
first observed in Ref. 6. This is in contrast to the situation for lattice trees, where the c
dimension 8 can be understood as 414, corresponding to the dimension above which there
generically no intersection of two four-dimensional clusters. For lattice trees, square dia
arise instead of triangle diagrams. It was shown in I that square diagrams also can ar
percolation, but they occur in conjunction with factors of the magnetization in a manner cons
with the upper critical dimension being 6 rather than 8.

Our results for the two- and three-point functions are restricted to sufficiently high dimen
~we have not computedhow high is sufficient!, rather than tod.6, in part because we use a
expansion method for which the inverse dimension serves as a small parameter ensuring
gence. There is an alternate small parameter that has been used in lace expansion metho
past, which removes the need for the spatial dimension to serve also as a small parame
allows for results in all dimensionsd.6. This involves the introduction of spread-out models,
which the nearest-neighbor bonds used above are enriched to a set of bonds of the form$x,y% with
0,ix2yi`<L. The parameterL is large, andL21 serves as a small parameter to make the l
expansion converge. The conventional wisdom, and an assertion of the hypothesis of unive
is that in any dimensiond the spread-out models have identical critical behavior for all finiteL
>1, and for any choice of norm which respects the lattice symmetries.

At present, our method is not adequate to prove that the scaling limit of the probability
connection of two points, or three points, is the corresponding ISE density for sufficiently sp
out models in all dimensionsd.6. This is due to a difficulty related to the occurrence of squ
diagrams mentioned above, and discussed further in Sec. 1.6. This difficulty prevents u
handling dimensions above but near 6 in such detail. Nevertheless, the results of I do sugg
ISE occurs as the scaling limit of the incipient infinite cluster, for sufficiently spread-out mo
in all dimensionsd.6, and we regard this difficulty as being of technical, rather than phys
origin.

It is interesting to compare our results with those of Aizenman16 for d.6 ~for related work in
the physics literature, see Refs. 28–30!. Aizenman’s results are based on the assumption that apc

the probability that 0 andx are connected is comparable touxu22d. This is a plausible statemen
that the critical exponenth is equal to zero, but it remains unproved in this form, and requ
more than the results for the Fourier transform of the two-point function obtained in Ref. 7
improved in this paper.~We intend to return to this issue in a future publication.! Given the
assumption, Aizenman proves that for percolation on a lattice withd.6 and with small spacinga,
in a window of fixed size in the continuum, the largest clusters have size of ordera24, and there
are on the order ofa62d of these maximal clusters. Our results suggest that, ford.6, such a
cluster of sizen5a24 in a lattice with spacinga5n21/4 will typically be an ISE cluster, in the
limit n→`.

Our method of proof involves an extension of the expansion methods derived in I. As i
double expansion will be used. Our analysis is based in part on the corresponding analy
lattice trees, for which a double lace expansion was performed in Ref. 31, and for which a
that the scaling limit is ISE in high dimensions was given in Refs. 13 and 32. We will also m
use of the infrared bound proved in Ref. 7 and of its consequence that, for example, the t
condition of Ref. 6 holds in high dimensions.

It would be of interest to extend the methods of Nguyen and Yang33,34 to draw connections
between the scaling limit of critical oriented percolation and super-Brownian motion, abov
upper critical dimensiond1155. There is work in progress by Hara, van der Hofstad, and S
on this problem. Recent work of Durrett and Perkins,35 reviewed in Ref. 36, proves convergen
of the critical contact process to super-Brownian motion for all dimensionsd>2, in the limit of an
infinite range interaction. This is a mean-field limit, in contrast to finite-range oriented percola
for which mean-field behavior is expected to hold only ford11.5.
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The results obtained in this paper were announced in Ref. 12.
Throughout this paper, we will use, for example,~I.1.1! to denote Equation~1.1! of I.

1.2. Main results

Consider independent nearest-neighbor bond percolation onZd with bond densityp. Let C(0)
denote the random set of sites connected to 0, and letuC(0)u denote its cardinality. Let

tp~0,x;n!5Pp~C~0!{x,uC~0!u5n! ~1.1!

denote the probability that the origin is connected tox by a cluster containingn sites. Then

qn~x!5
tp~0,x;n!

(xtp~0,x;n!
5

tp~0,x;n!

nPp~ uC~0!u5n!
5

1

n
Pp~C~0!{xuuC~0!u5n! ~1.2!

defines ap-dependent probability measure onZd. We will work with Fourier transforms, and fo
a summable functionf on Zd define

f̂ ~k!5 (
xPZd

f ~x!eik•x, kP@2p,p#d. ~1.3!

For kPRd, define

Â~2!~k!5E
0

`

te2t2/2e2k2t/2 dt. ~1.4!

This is the Fourier integral transformÂ(2)(k)5*RdA(2)(x)eik•x ddx of the mean mass densit
function

A~2!~x!5E
0

`

te2t2/2~2pt !2d/2e2x2/2t dt, xPRd ~1.5!

for ISE. Aspects of this formula are discussed in Refs. 21, 13, 37, 38, and 14. The follo
theorem shows that in the scaling limit, the Fourier transform of the two-point function o
incipient infinite cluster converges to the Fourier transform of the ISE two-point function
sufficiently high dimensions. The scaling ofk in the theorem corresponds to scaling the latt
spacing by a multiple ofn21/4.

Theorem 1.1:Let p5pc and kPRd. Fix anye, 1
2. For d sufficiently large, there are positiv

constants C,D~depending on d! such that

t̂pc
~kD21n21/4;n!5

C

A8pn
Â~2!~k!@11O~n2e!#, ~1.6!

with the error term bounded uniformly for k in a compact subset ofRd. In particular,

Ppc
~ uC~0!u5n!5

1

n
t̂pc

~0;n!5
C

A8p

1

n3/2@11O~n2e!# ~1.7!

and

lim
n→`

q̂n~kD21n21/4!5Â~2!~k!. ~1.8!
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Equation~1.7! asserts thatd52, whered is the critical exponent in the conjectured relatio
Ppc

(uC(0)u5n)'n2121/d. A weaker statement thatd52 in high dimensions, as an asymptot
statement for a generating function, was proved in I. Prior to I, a weaker statement involving
and lower bounds on the generating function was obtained in Refs. 7 and 39. The converge
Fourier transforms in~1.8! is equivalent to the assertion that the probability measure onRd placing
a point massqn(x) at xD21n21/4, for each xPZd, converges weakly to the measu
A(2)(x)ddx.

We now consider the three-point function. Let

tp
~3!~0,x,y;n!5Pp~C~0!{x,y,uC~0!u5n!. ~1.9!

For k,l P@2p,p#d, define

t̂p
~3!~k,l ;n!5(

x,y
tp

~3!~0,x,y;n!eik•xeil •y. ~1.10!

Observe that

t̂p
~3!~0,0;n!5(

x,y
tp

~3!~0,x,y;n!5n2Pp~ uC~0!u5n!. ~1.11!

We define a probability measure onZd3Zd by

qn
~3!~x,y!5

tp
~3!~0,x,y;n!

(x,ytp
~3!~0,x,y;n!

5
tp

~3!~0,x,y;n!

n2Pp~ uC~0!u5n!
5

1

n2 Pp~C~0!{x,yuuC~0!u5n!.

~1.12!

For k,l PRd, let Â(3)(k,l ) denote the Fourier transform of the ISE three-point function~with
branch point integrated out!:

Â~3!~k,l !5E
0

`E
0

`E
0

`S (
j 51

3

t j D e2~( j 51
3 t j !

2/2e2~~k1 l !2t11k2t21 l 2t3!/2 dt1 dt2 dt3 . ~1.13!

Aspects of this formula are discussed in Refs. 21, 37, 13, 38, and 14. This is the Fourier in
transform of

A~3!~x,y!5E
0

`E
0

`E
0

`E
Rd
S (

j 51

3

t j D e2~( j 51
3 t j !

2/2pt1
~u!pt2

~x2u!pt3
~y2u!du dt1 dt2 dt3 ,

~1.14!

wherept(v)5(2pt)2d/2e2v2/2t. The next theorem shows that in the scaling limit, the three-p
function of the incipient infinite cluster corresponds to that of ISE. The constantsC,D in the
theorem are the same as those appearing in Theorem 1.1.

Theorem 1.2:Let p5pc and k,l PRd. Fix any e, 1
2. For d sufficiently large,

t̂pc

~3!~kD21n21/4,lD 21n21/4;n!5
C

A8p
n1/2Â~3!~k,l !@11O~n2e!#, ~1.15!

with the error term bounded uniformly for k,l in compact subsets ofRd. In particular,

lim
n→`

q̂n
~3!~kD21n21/4,lD 21n21/4!5Â~3!~k,l !. ~1.16!
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For (k,l )5(0,0), ~1.15! follows already from~1.7! and ~1.11!, sinceÂ(3)(0,0)51. The con-
vergence of Fourier transforms in~1.16! is equivalent to the assertion that the probability meas
on Rd3Rd placing a point massqn(x,y) at (xD21n21/4,yD21n21/4) converges weakly to the
measureA(3)(x,y)ddxddy.

We expect that Theorems 1.1–1.2 should extend to generalm-point functions, including all
m>4, but as discussed at the end of Sec. 1.3, this has not been proven. This would ess
imply weak convergence of the incipient infinite cluster to ISE. We now give a precise state
of our conjecture that this weak convergence occurs for alld.6. A corresponding statement ha
been proved for lattice trees in high dimensions; see Ref. 14.

Let M1(Rd) denote the set of probability measures onRd, equipped with the topology of wea
convergence. ISE can be regarded as the law of a random measure onM1(Rd), i.e., it is a measure
m ISE on M1(Rd). Given a site lattice animalA containingn sites, one of which is the origin, defin
the probability measuremn

APM1(Rd) to assign massn21 to xD21n21/4, for eachxPA. We
define mn to be the probability measure onM1(Rd) which assigns probabilityPpc

(C(0)

5AuuC(0)u5n) to mn
A , for eachA as above. We then regard the limit ofmn , asn→`, as the

scaling limit of the incipient infinite cluster. Our conjecture is thatmn converges weakly tom ISE

for d.6.

1.3. Generating functions

The proofs of Theorems 1.1 and 1.2 rely heavily on generating functions, and we no
scribe this briefly for the two-point function. Define

tz,p~0,x!5 (
n51

`

tp~0,x;n!zn, uzu<1. ~1.17!

The parameterz is a complex variable. The generating function~1.17! converges absolutely i
uzu<1. For uzu,1 and anypP@0,1#, the Fourier transformt̂z,p(k) exists since

(
x

(
n51

`

tp~0,x;n!uzun5 (
n51

`

nPp~ uC~0!u5n!uzun< (
n51

`

nuzun5
uzu

~12uzu!2 ,`. ~1.18!

A similar estimate shows that the Fourier transformt̂z,p(k) exists also foruzu51 whenp,pc ,
using the fact thatPp(uC(0)u5n) decays exponentially in the subcritical regime.

WhenzP@0,1#, it is traditional to writez5e2h, with h playing the role of a magnetic field
and we usedh as our variable in I. However, since we will now be allowingz to be complex, we
will not adopt this notation here. ForzP@0,1#, we introduce a probability distribution on sites b
declaring a site to be ‘‘green’’ with probability 12z and ‘‘not green’’ with probabilityz. These
site variables are independent, and are independent of the bond occupation variables. We uG to
denote the random set of green sites. In this framework,tz,p(0,x) is the probability that the origin
is connected tox by a cluster of any finite size, but containing no green sites, i.e.,

tz,p~0,x!5 (
n51

`

Pp~C~0!{x,uC~0!u5n!zn5Pz,p~C~0!{x,C~0!ùG50” ,uC~0!u,`!,

~1.19!

wherePz,p denotes the joint bond/site distribution. This well-known probabilistic interpreta
~see e.g., Ref. 2! will play an important role in our analysis.

By Cauchy’s theorem,

t̂p~k;n!5
1

2p i R
G
t̂z,p~k!

dz

zn11 , ~1.20!
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whereG is a circle centered at the origin of any radius less than 1. This is our basic formu
the analysis oft̂pc

(k;n). We obtain sufficient control oft̂z,pc
(k) to allow for the evaluation of the

contour integral. The leading behavior of this quantity, in the important limitsk→0 andz→1, can
be anticipated in terms of critical exponents, as we now describe.

Assuming there is no infinite cluster atpc ,t1,p(0,x) is the probability that 0 is connected tox,
for any p<pc . Since t̂pc

(0;n)5nPpc
(uC(0)u5n), the conventional definitions of the critica

exponentsh andd ~see Ref. 2, Sec. 7.1! suggest that

t̂1,pc
~k!;

c1

k22h as k→0; t̂z,pc
~0!;c2(

n51

`
1

n1/d zn;
c3

~12z!121/d as z↑1. ~1.21!

In I, it was shown that for the nearest-neighbor model in sufficiently high dimensions, and fo
spread-out model withd.6 andL sufficiently large, the above relations holdjointly andasymp-
totically with the mean-field valuesh50 and d52, in the sense that forzP@0,1# and kP
@2p,p#d,

t̂z,pc
~k!5

C

D2k2123/2~12z!1/2@11e~z,k!#, ~1.22!

with

ue~z,k!u<ok~1!1oz~1! ~1.23!

asz→1 and/ork→0. Here,ok(1) denotes a function ofk that goes to zero ask approaches 0, and
oz(1) denotes a function ofreal zP@0,1) that goes to zero asz→1. This rules out the possibility
of cross terms, such asuku(12z)1/4, in the leading behavior oft̂z,pc

(k). Some such cross terms
presumably having different powers, could possibly occur ford,6. We rewrite~1.22! as

t̂z,pc
~k!5

C

D2k2123/2~12z!1/21Ez~k!, ~1.24!

and improve~1.23! for the nearest-neighbor model, in the following theorem. In both~1.24! and
Theorem 1.3, the termsk2 and (12z)1/2 should be regarded as being of roughly the same size
far as the critical behavior is concerned.

Theorem 1.3:Let p5pc , and fix anyeP(0,1
2). For the nearest-neighbor model in sufficient

high dimensions, ~1.24! holds with

U d

dz
Ez~k!U<OS 1

u12zu3/22e 1
k2

u12zu3/21
k214e

u12zu2D ~1.25!

uniformly in small kP@2p,p#d and in complex z withuzu,1. The constants C, D in the definitio
of Ez(k) in ~1.24! are those appearing inTheorem 1.1.

Integration of the bound of Theorem 1.3 shows thatuEz(k)u is bounded byu12zu times the
right-hand side of~1.25!.

Define the magnetization

Mz,p5Pz,p~C~0!ùGÞ0” !512 (
n51

`

Pp~ uC~0!u5n!zn, ~1.26!

and the susceptibility~the expected size of theG-free cluster of the origin!
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xz,p52z
d

dz
Mz,p5 (

n51

`

nPp~ uC~0!u5n!zn5 (
n51

`

nPz,p~ uC~0!u5n,C~0!ùGÞ0” !5 t̂z,p~0!.

~1.27!

Settingk50 in ~1.24!, it follows from Theorem 1.3 that

xz,pc
5

C

23/2~12z!1/21OS 1

u12zu1/22eD ~1.28!

and, by integration~usingM1,pc
50!, that

Mz,pc
5221/2C~12z!1/21O~ u12zu1/21e!, ~1.29!

uniformly in complexz with uzu,1. The above two equations improve the asymptotic relati
obtained in I for positivez, not only by obtaining error estimates, but by obtaining estimates v
for complex z. Equations~1.28! and ~1.29! are statements that the critical exponentd in the
relationMz,pc

'(12z)1/d is equal to 2. These statements improve the upper and lower boun
Mz,pc

with different constants, obtained for non-negativez in the combined results of Refs. 39 an
7.

Write

Ez~k!5 (
n50

`

en~k!zn. ~1.30!

To abbreviate the notation, forkPRd we write

kn5
k

Dn1/4. ~1.31!

We will show in Sec. 2 that it follows directly from Theorem 1.3 that

uen~kn!u<O~n2e21/2!. ~1.32!

With ~1.20! and ~1.24!, ~1.32! implies that

t̂p~kn ;n!5
C

2p i R
G

1

k2n21/2123/2~12z!1/2

dz

zn11 1O~n2e21/2!. ~1.33!

The square root here is evaluated using the branch for which (12z)1/2.0 for zP(2`,1). The
elementary contour integral in~1.33! can be analyzed by deforming the contourG to the branch
cut @1, `!. The asymptotic behavior has been obtained in@Ref. 13, Lemma 1#, and this can be
extended to show that the first term on the right-hand side of~1.33! is equal toC(8pn)21/2

3Â(2)(k)1O(n23/2). This proves Theorem 1.1, assuming the bound~1.32! on en(kn).
Although we have not carried out the detailed analysis, we expect that our methods c

used to extend Theorems 1.1 and 1.2 to anym-point function, if we taked sufficiently large
depending onm. However, our method appears inadequate at present to handle allm-point func-
tions simultaneously in any finite dimension. This is connected with difficulties in inver
generating functions. Our reliance on complex analysis to invert generating functions in The
1.1 and 1.2 is thus a serious hindrance. It may be that such difficulties can be avoided in
respects by using the new approach to the lace expansion recently formulated in Ref. 40,
uses neither generating functions nor complex analysis. However, an adaptation of this ap
to percolation would be nontrivial and would require new ideas.
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1.4. The infrared bound

The proofs of Theorems 1.1–1.3 rely on an expansion whose convergence requires a
parameter. As in Ref. 7, the small parameter can be expressed in terms of the critical t
diagram, defined below. The triangle diagram is bounded using the infrared bound given
following theorem. For the nearest-neighbor model, this bound was obtained for dimensid
>48 in Ref. 7, but this was subsequently improved to all dimensionsd>19.8

Theorem 1.4: For d>19, there is a constant c.0 ~independent of p, k! such that for all p
,pc and kP@2p,p#d,

0<t̂1,p~k!<
c

k2 .

It follows from Theorem 1.4 and the monotone convergence theorem that the triangle di

“~p!5(
x,y

t1,p~0,x!t1,p~x,y!t1,p~y,0!5E
@2p,p#d

t̂1,p~k!3
ddk

~2p!d ~1.34!

is finite at p5pc , for d>19. It was shown in Ref. 7 that, moreover,“(pc)21 is a small
parameter for larged.

A somewhat different statement of the infrared bound follows directly from~1.22!, namely
that for the nearest-neighbor model in sufficiently high dimensions, or for sufficiently sprea
models withd.6 andL sufficiently large, there is a constantc8.0 such that forkP@2p,p#d

andzP@0,1#,

t̂z,pc
~k!<

c8

k21~12z!1/2<
c8

k2 . ~1.35!

For z51, we are interpretingt̂1,pc
(k) as the limit limz↑1 t̂z,pc

(k). In Theorem I.1.1, this limit was
proven to exist, to be finite forkÞ0, and to obey

t̂1,pc
~k!5

C

D2k2 @11ok~1!#. ~1.36!

This promotes Theorem 1.4 to a statement atp5pc , as opposed to a bound uniform inp,pc .
Some care is required in discussing the Fourier transform of the critical two-point function,
it is expected thatt1,pc

(0,x) decays likeuxu22d for d.6, hence is not summable, and hence
summation defining its Fourier transform is problematic. However, the identity

t1,pc
~0,x!5 lim

z↑1
tz,pc

~0,x!5 lim
z↑1

E
@2p,p#d

t̂z,pc
~k!e2 ik•x

ddk

~2p!d 5E
@2p,p#d

t̂1,pc
~k!e2 ik•x

ddk

~2p!d ,

~1.37!

which follows from~1.35! and the dominated convergence theorem, justifies our interpretatio
t̂1,pc

(k) as the Fourier transform oft1,pc
(0,x).

Settingk50 in ~1.35! gives, forzP@0,1),

t̂z,pc
~0!5xz<

K

~12z!1/2, ~1.38!

whereK is a constant. We will make use of the fact, proved in Proposition I.3.1, thatK may be
taken to be independent ofd. Throughout this paper, we will useK to denote a generic positiv
constant that is independent ofd. The value ofK may change from line to line. A bound of th
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form ~1.38! was shown in Ref. 39 to be a consequence of the triangle condition, and hence is
~at least! for d>19, but the constant obtained in Ref. 39 was not shown to be uniform ind.

We will also make use of the bound

1<2 dpc<11O~d21! ~1.39!

of Ref. 7. This was improved to

pc5
1

2d
1S 1

2dD 2

1
7

2 S 1

2dD 3

1OS 1

2dD 4

in Ref. 41, but~1.39! suffices for our present needs.

1.5. The backbone

The variablest in ~1.4! and t i in ~1.13! can be understood as time variables for Brown
paths, and it is of interest to interpret our results in terms of a time variable. For this, we intro
the notion of thebackboneof a cluster containing two sitesx andy. This backbone depends onx,y.
We define the backbone to consist of those sitesuPC(x) for which there are disjoint self-
avoiding walks consisting of occupied bonds fromx to u and fromu to y. By disjoint, we mean
paths which have no bond in common, but they may have common sites. The backbone
depicted as a string of sausages fromx to y, with all ‘‘dangling ends’’ removed.

We believe it likely that our methods can be extended and combined with the methods o
32 to prove that~for high dimensions! in a cluster of sizen, backbones joining sitesbxn1/4c and
byn1/4c (x,yPRd) typically consist ofO(n1/2) sites and converge in the scaling limit to Brownia
paths, with the Brownian time variable corresponding to distance along the backbone. Ho
this study has not been carried out. Such a result has been proven for high-dimensional lattic
in Ref. 32, Theorem 1.2. In this interpretation, the integration variablest and t i appearing in
Â(2)(k) and Â(3)(k,l ) correspond to time intervals of backbone paths.

This concept of the backbone is relevant for an understanding of the nature of the
critical dimension 6. In our expansion, the leading behavior corresponds to neglecting int
tions between a backbone and a percolation cluster. Considering the backbone to correspo
two-dimensional Brownian path, and the cluster to correspond to a four-dimensional ISE c
intersections will generically not occur above 21456 dimensions. This points tod56 as the
upper critical dimension.

1.6. Discussion of 6 ËdÏ8

As was mentioned above, we have not proved a version of Theorem 1.1 or 1.2 for suffic
spread-out models in all dimensionsd.6. Nevertheless, we believe the results remain true in
context, and that the fact that~1.22! holds for sufficiently spread-out models whend.6 provides
strong evidence for this belief. In this section, we give a heuristic discussion of where the m
of this paper fails ford near 6.

Our method involves an expansion for the two-point function, with terms in the expan
estimated using Feynman diagrams. Whenz51, all diagrams that occur can be bounded in ter
of the triangle diagram, as was done in Ref. 7. However, for realz,1, or for complexz, new
diagrams emerge. This was already observed in I, where, among others, the diagram

occurred. The four lines in the square correspond to two-point functions, while the line conn
to G corresponds to a factor of the magnetization. More precisely, the diagram represents
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Mz,pc (
w,x,yPZd

t1,pc
~0,w!t1,pc

~w,x!t1,pc
~x,y!t1,pc

~y,0!5Mz,pc
E

@2p,p#d

ddk

~2p!d ~ t̂1,pc
~k!!4.

~1.40!

This is finite for d.8 by Theorem 1.4 and the monotone convergence theorem. We rega
occurrence of the square diagram as connected with the four-dimensional character of the in
infinite cluster, or, alternately, with the fact that ISE has self-intersections ford,8.

If at least one line in the square diagram representedtz(0,x), rather thant1(0,x), then~1.40!
would instead essentially be given by

Mz,pc
E

@2p,p#d

ddk

~2p!d S 1

k2D 3 1

k21A12z
. ~1.41!

As z↑1, the integral is logarithmically divergent ford58 and diverges as a multiple o
(12z)(d28)/4 for d,8. Since Mz vanishes like (12z)1/2 for d.6, ~1.41! behaves like
(12z)(d26)/4 for 6,d<8 ~with a logarithm factor ford58! and thus is harmless. In I, we wer
able to exploit this mechanism~or a related mechanism involving the dominated converge
theorem!, for realz, to avoid divergent diagrams for alld.6.

However, for complexz, the probabilistic interpretation is lost and our estimates rely m
heavily on settingz51 at intermediate stages of a bound. This destroys the above mechanism
we are unable to handle dimensions below 8. In view of this inability to achieve an optimal r
and the complicated nature of the diagrammatic estimates, we have simplified the estim
some places at the expense of also losing dimensions above and neard58. For this gain in
simplicity, we lose sight of a good estimate for the dimension above which our results cou
proven for sufficiently spread-out models. Henceforth, we restrict attention to the nearest-ne
model.

The above picture has an interesting parallel for the scaling behavior of large subc
clusters, again heuristically. Forp,pc , Pp(uC(0)u5n) decays exponentially and the critica
zc(p) giving the radius of convergence ofxz,p is now strictly greater than 1. In high dimension
we expect the Fourier transform of the subcritical two-point function to behave like (k21(1
2z/zc(p))1/2)21, and the same Feynman diagrams to appear. However, althoughM1,p50, it will
be the case thatMzc(p),pÞ0 at the criticalz, and the mechanism outlined above will not app
leading to square diagrams. In view of the fact that lace expansion methods have been a
predictors of the upper critical dimension for self-avoiding walks, lattice trees and lattice ani
and percolation, we interpret this as evidence for a Gaussian scaling limit for subcritical pe
tion clusters conditioned to have sizen, with space scaled byn21/4, only for d.8 and not for all
d.6. This is consistent with the suggestion of@Ref. 42, p. 62# that subcritical percolation cluster
scale like lattice animals rather than like critical percolation clusters.

1.7. Organization

This paper is organized as follows. In Sec. 2, we show how the proof of Theorems 1.1 a
can be reduced to~1.38! together with several bounds on quantities arising in a double expan
These bounds are summarized in Lemmas 2.1–2.3. Similarly, in Section 3, the proof of Th
1.2 is reduced to bounds on quantities arising in the expansions. These bounds are summa
Lemma 3.1. The first expansion, which is based on the expansion of I, is described in Sec.
necessary bounds on the first expansion are given in Sec. 5, where Lemmas 2.1 and 2.2 are
A second expansion is derived in Sec. 6. The necessary bounds on the second expan
obtained in Sec. 7 and 8, where Lemmas 2.3 and 3.1 are proved.

This paper can be read independently of I, apart from the fact that we apply some meth
diagrammatic estimation from I in Secs. 5, 7, and 8.
                                                                                                                



s
sing in
ved in

ore
two-
e
is an

5 to
f the
t
o

1255J. Math. Phys., Vol. 41, No. 3, March 2000 The scaling limit of the incipient infinite . . .

                    
2. REDUCTION OF PROOF OF THEOREMS 1.1 AND 1.3

In this section, we fixp5pc and omit subscriptspc from the notation. The purpose of thi
section is to reduce the proof of Theorems 1.1 and 1.3 to several bounds on quantities ari
our expansions. These bounds are summarized in Lemmas 2.1–2.3 below, and will be pro
Secs. 5, 7, and 8. We will also make use of the upper bound~1.38! on the susceptibility.

2.1. Required bounds on the expansion

In I, we derived two versions of an expansion, which we called the one-M and two-M
schemes. The results of these expansions are given in~I.3.88! and~I.4.24!. In the two-M scheme,
terms left unexpanded in the one-M scheme were expanded. In this paper, we perform a m
complete expansion, in which no terms are left unexpanded. To compare with the one- andM
schemes, the expansion in this paper could be called the infinite-M scheme, though we will not us
this terminology. The result of the expansion, which will be obtained in Secs. 4 and 5,
identity

tz~0,x!5gz~0,x!1 (
vPZd

Pz~0,v !tz~v,x!, ~2.1!

valid for p5pc and uzu,1, with gz(0,x) andPz(0,x) summable inx. Taking the Fourier trans-

form, and definingF̂z(k)512P̂z(k), this gives

t̂z~k!5
ĝz~k!

12P̂z~k!
5

ĝz~k!

F̂z~k!
. ~2.2!

The quantitiesĝz(k) andP̂z(k) are almost identical to each other and will be shown in Sec.
be analytic inuzu,1. We assume in this section that these quantities obey the bounds o
following lemma. In the statement of the lemma, and elsewhere in this paper,K denotes a constan
which is independent ofd, z, k. The precise value ofK is irrelevant and may change from line t
line. The norm appearing in the lemma is defined, for a power seriesf (z)5(n50

` anzn, by

i f ~z!i5 (
n50

`

uanuuzun. ~2.3!

Lemma 2.1: There is a dimension d0 such that for d>d0 the following hold. The quantities
(xigz(0,x)i , (xx

2igz(0,x)i , (xiPz(0,x)i , (xx
2iPz(0,x)i , (xx

4iPz(0,x)i are bounded by K

uniformly in uzu,1. In particular, this provides an extension, by continuity, of each ofP̂z(k),

ĝz(k) and“k
2P̂z(k) to uzu51. In addition, ĝ1(0)511O(d21) and 2“k

2P̂1(0)511O(d21).
We will also make use of the following auxiliary lemma, which guarantees that foruzu,1

with uz21u>a.0, F̂z(k) is bounded away from zero providedd is sufficiently large~depending
on a!. This will be improved in~2.49!. For the statement of the lemma, we define

D̂~k!5
1

d (
j 51

d

coskj . ~2.4!

Lemma 2.2: There is a dimension d0 such that for d>d0 , uzu,1 and kP@2p,p#d,

uF̂z~k!u>2Kd211
1

2e
Re@12zD̂~k!#. ~2.5!

For 0<z,1, z21xz is positive ~interpreted as a limit forz50!, and we defineĈz(k) and

Ĝz(k) by
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2z
d

dz
F̂z~k!5z

d

dz
P̂z~k!5xzĈz~k!, ~2.6!

z
d

dz
ĝz~k!5xzĜz~k!. ~2.7!

Our second expansion will allow us to prove in Secs. 7–8 that these new quantities ar
analytic in uzu,1, for d sufficiently large, and that they obey the bounds given in the follow
lemma.

Lemma 2.3: There is a dimension d0 such that for d>d0 the following hold. ~i! The quantities
SxiCz(x)i and Sxx

2iCz(x)i are bounded by K uniformly inuzu,1. This provides an extension

by continuity, ofĈz(k) to uzu51. Each of the above statements involvingC is also true forG.

Also, Ĉ1(0)>K21.
~ii ! For all uzu,1 and kP@2p,p#d,

I d

dz
Ĉz~k!I<Kx uzu . ~2.8!

A similar bound holds also forG.
We will show in Sec. 2.3 that Lemmas 2.1, 2.2, and 2.3 are sufficient for the proo

Theorems 1.1 and 1.3. In doing so, we will make use of the general power series method
2.2.

We note the following consequence of Lemma 2.1 for future use. Sincet̂1(0)5x1 is the
expected size of the connected cluster of the origin at the critical point, it is infinite. S
ĝ1(0)P(0,̀ ), it follows from ~2.2! that

F̂1~0!512P̂1~0!50. ~2.9!

By Lemmas 2.1 and 2.3, we can define the constants:

B152“k
2P̂1~0!, ~2.10!

B2
252ĝ1~0!Ĉ1~0!, ~2.11!

C5ĝ1~0!B2
2123/2, ~2.12!

D25~2d!21B1B2
2123/2. ~2.13!

By Lemmas 2.1 and 2.3,B2 is bounded away from zero uniformly ind. We define error terms for
the numerator and denominator of~2.2! by

ĝz~k!5ĝ1~0!1Eg~z,k!, ~2.14!

F̂z~k!5B1

k2

2d
1B2A12z1EF~z,k![F̂z

~0!~k!1EF~z,k!. ~2.15!

This gives~1.24!, namely

t̂z~k!5
C

D2k2123/2~12z!1/21Ez~k!, ~2.16!

with C andD as in ~2.12!–~2.13! and with
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Ez~k!5
Eg~z,k!

F̂z~k!
2

ĝ1~0!EF~z,k!

F̂z~k!F̂z
~0!~k!

. ~2.17!

We absorb the constantĝ1(0) into EF ; this has no effect on bounds.

We will show in Sec. 5.1 thatĝ1(k)5f̂h50(k) andP̂1(k)5F̂h50(k), wheref̂h(k) andF̂h(k)
are the functions occurring in the one-M scheme in~I.3.88!. This will follow easily from the fact
that the additional terms expanded beyond the one-M scheme all vanish whenz51. Therefore

“k
2P̂1(0)5“k

2F̂h50(0). Also, we will show in Sec. 7 thatĈ1(0)5K11K2 , whereK1 andK2 are
the constants of Propositions I.5.1 and I.5.2. In view of~I.5.3! and~I.5.10!, the constantsC andD2

of ~2.12!–~2.13! are therefore the same as the constantsC and D2 appearing in the neares
neighbor version of Theorem I.1.1.

2.2. A power series method

As was argued at~1.32!, to prove Theorem 1.1 it is sufficient to show that for anyeP(0,1
2) the

coefficients of the power seriesEz(k)5(n50
` en(k)zn obey

uen~kn!u<O~n21/22e!. ~2.18!

Lemma 2.4 below gives a general method which allows for the transfer of bounds on a gene
function to bounds on its coefficients. This lemma, which is a special case of Ref. 32, Lemm
incorporates improvements found in Ref. 43, Theorem 4 to Ref. 44, Lemma 6.3.3. It will b
main tool in converting bounds on error terms, such asEz(k), into bounds on their coefficients o
zn. The intuition behind the lemma is that if a power seriesf (z)5(n50

` anzn has radius of
convergenceR.0 and if u f (z)u is bounded above by a multiple ofuR2zu2b on the disk of radius
R, with b>1, thenan should be on the order ofR2nnb21.

Lemma 2.4:~i! Let f(z)5(n50
` anzn have radius of convergence at least R, where R.0.

Suppose thatu f (z)u<constu12z/Ru2b for uzu,R, for some b>1. Then uanu<constR2nnb21 if b
.1 and uanu<constR2n logn if b51, with the constants independent of n.

~ii ! Let j be a positive integer. Suppose thatu(dj /dzj ) f (z)u<constu12z/Ru2b for uzu,R, for
some b>1. Thenuanu<constR2nnb212j if b.1 and uanu<constR2nn2j logn if b51.

In our applications of Lemma 2.4, the hypotheses of the lemma will be supplied with the
of ‘‘fractional derivatives,’’ which we now discuss. Givene.0, we define theeth ~fractional!
derivative off by

dz
e f ~z!5 (

n51

`

neanzn. ~2.19!

Note that fore a positive integer, this gives (z(d/dz))e rather than the usual derivative. Th
following is a restatement of Ref. 44, Lemma 6.3.2. The norm in the lemma is given by~2.3!.

Lemma 2.5: LeteP(0,1), f (z)5(n50
` anzn, and R.0. If idz

e f (R)i,` @so in particular f(z)
converges absolutely foruzu<R#, then for any z withuzu<R,

u f ~z!2 f ~R!u<212eidz
e f ~R!iu12z/Rue. ~2.20!

The following lemma shows how bounds on the derivative off, on the positive axis, can b
combined with Lemma 2.5 to produce bounds onf in a complex disk.

Lemma 2.6: LeteP(0,1). Suppose that f(z)5(n50
` anzn has radius of convergence R.0,

and that

i f 8~z!i<M1~12z/R!e21 for 0<z,R. ~2.21!

Then for anyaP(0,e), there is a constant M2 ~depending only on M1 ,a,e!, such that
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u f ~z!2 f ~R!u<M2Ru12z/r ua for uzu<R. ~2.22!

Proof: Fix aP(0,e) andzP(0,R). By Ref. 44, Lemma 6.3.1,

dz
a f ~z!5

1

G~22a!
E

0

`

f 8~ze2l1/~12a!
!ze2l1/~12a!

dl, ~2.23!

whereG denotes the gamma function. Applying~2.21!, this gives

idz
a f ~z!i<

uzu
G~22a!

E
0

`

i f 8~ze2l1/~12a!
!ie2l1/~12a!

dl

<
M1uzu

G~22a!
E

0

` 1

u12zR21e2l1/~12a!
u12e

e2l1/~12a!
dl. ~2.24!

Letting z→R gives

idz
a f ~R!i<

M1R

G~22a!
E

0

` 1

u12e2l1/~12a!
u12e

e2l1/~12a!
dl. ~2.25!

The integral is finite sinceaP(0,e). Now ~2.22! follows from Lemma 2.5. h

2.3. Proof of Theorems 1.1 and 1.3 assuming Lemmas 2.1–2.3

In this section, we prove Theorems 1.1 and 1.3, assuming Lemmas 2.1–2.3.
To prove Theorem 1.1, it suffices to prove~2.18!. In view of Lemma 2.4~ii !, to prove~2.18!

it suffices to show that we can boundu(d/dz)Ez(k)u by terms such asu12zue23/2 or
n2eu12zu23/2, uniformly in uzu,1. Denoting derivatives with respect toz by primes, and omitting
arguments to simplify the notation, the derivative of~2.17! is

E85
Eg8

F
2

EgF8

F2 2
EF8

FF ~0! 1
EFF8

F2F ~0! 1
EF~F ~0!!8

F~F ~0!!2 . ~2.26!

The right-hand side can be bounded using the following two lemmas. We assume in this s
without further mention, thatd>d0 with d0 sufficiently large.

Lemma 2.7: For kP@2p,p#d and Re(12z)>0 ~in particular, for uzu,1!, we have

uF̂z
~0!~k!u5UB1

k2

2d
1B2~12z!1/2U>B1

k2

2d
1

1

&
B2u12zu1/2. ~2.27!

Proof: Write a5B1(k2/2d) and b5b11 ib25B2(12z)1/2. Then a>0, and since Re(12z)
>0, the principal value of the argument of (12z)1/2 lies in @2p/4,p/4#. Henceub2u<b1 , and so
ubu<&b1 . The lemma then follows from

ua1bu<Re~a1b!5a1b1>a1
1

&
ubu. ~2.28!

h

Lemma 2.8: Let d>d0 . Fix any eP(0,1
2) and kPRd. There are positive constants c~which

may depend on d, e! and K ~independent of d! such that foruzu,1,

uEg~z,kn!u>cn21/21cu12zue, ~2.29!

uEF~z,kn!u<cn21/22e1cu12zue11/2, ~2.30!
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uF̂z~kn!u>K21u12zu1/2, ~2.31!

uF̂z8~kn!u<cu12zu21/2, ~2.32!

uEg8~z,kn!u<cu12zu21/2, ~2.33!

uEF8 ~z,kn!u<cu12zue21/21cn21/2 u12zu21/2. ~2.34!

The above bounds are valid for all n, except~2.31! which is valid for n sufficiently large.
Our proof of Lemma 2.8 also gives~2.29!–~2.34! with kn replaced bykP@2p,p#d on the

left-hand sides andn2q replaced byk4q on the right-hand sides@with k small for ~2.31!#. With
Lemma 2.7 and~2.26!, this proves Theorem 1.3.

Using Lemma 2.4~ii !, it is straightforward to check that the bounds of Lemmas 2.7–2.8
sufficient to prove~2.18!. In the remainder of this section we will prove Lemma 2.8, assum
Lemmas 2.1–2.3. A basic mechanism in the proof is to use the bound~1.38!, which asserts tha
xz<K(12z)21/2 for zP@0,1), with K independent ofd, together with Lemma 2.6 to obtai
boundsvalid in the diskuzu,1.

The following lemma, which is an immediate consequence of~2.31! and the uniform bound
on ĝz(0) of Lemma 2.1, promotes~1.38! from a bound onxz5 t̂z(0) for zP@0,1) to a bound for
all uzu,1.

Lemma 2.9: Let d>d0 . There is a constant K~independent of d! such that, for alluzu,1,

uxzu<Ku12zu21/2. ~2.35!

Proof of (2.29)–(2.30):We now prove the bounds~2.29! and~2.30! on the error terms defined
in ~2.14! and ~2.15!. These error terms can be written as

Eg~z,k!5@ ĝz~k!2ĝ1~k!#1@ ĝ1~k!2ĝ1~0!# ~2.36!

and

EF~z,k!5S P̂z~0!2P̂z~k!1
k2

2d
“k

2P̂z~0! D1
k2

2d
~“k

2P̂1~0!2“k
2P̂z~0!!1~ F̂z~0!2B2A12z!.

~2.37!

We will prove that there is a positive constantK, independent ofd, such that foruzu,1 andk
P@2p,p#d,

uEg~z,k!u<Kk21Ku12zue, ~2.38!

uEF~z,k!u<Kk214e1Ku12zue11/2. ~2.39!

We begin with~2.38!, using ~2.36!. By Lemma 2.6, the first term on the right-hand side
~2.36! is bounded aboveKu12zue for uzu,1, provided thati(d/dz)ĝz(k)i<M1u12zue821 when
zP(0,1), for somee8P(e,1) andM1 independent ofd. But this last bound follows from~1.38!,
~2.7!, and Lemma 2.3~i!, with e85 1

2. @Note that~1.38! impliesz21xz5iz21xzi<Ku12zu21/2 for
zP@0,1), sincexz is a power series with non-negative coefficients and has a simple zero a
origin.#

For the second term on the right-hand side of~2.36!, we use the identityĝ1(k)2ĝ1(0)
52(xg1(x)@12cos(k•x)# and the fact thatu12cos(k•x)u<1

2(k•x)2<1
2k

2x2. This gives

uĝ1~k!2ĝ1~0!u<
1

2
k2(

x
x2ug1~x!u. ~2.40!
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The sum on the right-hand side is bounded by ad-independent constant, by Lemma 2.1. Th
completes the proof of~2.38!.

We now turn to the proof of~2.39!. To deal with the first term of~2.37!, we use

U12cos~k•x!2
~k•x!2

2 U< 1

24
~k•x!4<

1

24
k4x4. ~2.41!

Since(xx
4uPz(x)u is bounded by ad-independent constant by Lemma 2.1, the first term of~2.37!

is bounded above byKk4.
We obtain a boundKk2u12zue for the second term of~2.37!, by ~1.38! and Lemmas 2.6 and

2.1, sincei(d/dz)“2P̂z(0)i is bounded byi“2Ĉz(0)ixz for 0,z,1. Now

k2u12zue<k214e1u12zue11/2, ~2.42!

which follows by considering separately the casesk2<u12zu1/2 andu12zu1/2<k2. This then gives
terms of the appropriate form for~2.39!.

Finally, we consider the termF̂z(0)2B2A12z in ~2.37!. By Lemma 2.1 and~2.11!, uF̂z(0)
2B2A12zu<K. Hence, foruzu< 1

2, this is bounded above byKu12zu1/21e. We therefore restrict
attention, in what follows, to1

2,uzu,1. By ~2.9! and ~2.6!,

F̂z~0!25E
1

x d

dz8
F̂z8~0!2 dz85E

1

z

2F̂z8~0!
d

dz8
F̂z8~0!dz85E

z

1

2ĝz8~0!~z8!21Ĉz8~0!dz8.

~2.43!

Together with~2.11!, this implies

F̂z~0!22B2
2~12z!5E

z

1

2~~z8!21ĝz8~0!Ĉz8~0!2ĝ1~0!Ĉ1~0!!dz8. ~2.44!

To bound this for1
2<uzu,1, we note that by~2.14!, ~2.38!, and by~2.8!, Lemma 2.6 and Lemma

2.9,

uĝz8~0!2ĝ1~0!u<Ku12z8ue, ~2.45!

uĈz8~0!2Ĉ1~0!u<Ku12z8ue. ~2.46!

With the uniform bounds onĝz(0) andĈz(0) of Lemmas 2.1 and 2.3,~2.44!–~2.46! imply that

F̂z~0!25B2
2~12z!@11O~ u12zue!#, ~2.47!

with the error term bounded by ad-independent multiple ofu12zue. Hence, as required,

uF̂z~0!2B2A12zu<Ku12zu1/21e. ~2.48!

j

Proof of (2.31): We will prove the following stronger statement than~2.31!: There is a
constantK ~independent ofd! such that foruzu,1 and fork2 sufficiently small~depending ond!,

uF̂z~k!u>K21S k2

2d
1u12zu1/2D . ~2.49!

To prove this, we consider separately the cases whereu12zu is small, or not, beginning with the
former.
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Case 1:u12zu small. Denoting the constantK of ~2.39! by K1 , and using~2.15! and Lemma
2.7, we have

uF̂z~k!u>uF̂z
~0!~k!u2uEF~z,k!u>B1

k2

2d
1

B2

&
u12zu1/22K1k214e2K1u12zue11/2. ~2.50!

Thus we have

uF̂z~k!u>B1

k2

4d
1

B2

2
u12zu1/2 ~2.51!

for k2<@B1(4 dK1)21#1/2e and u12zu<@B2K1
21(1/&21/2)#1/e[d. The constantd is bounded

away from zero asd→`, becauseB2 is. Also, B1 is bounded away from zero, by Lemma 2.1
Case 2: u12zu large. Now consider the caseu12zu>d, so that zPW[$zPC : uzu<1,

u12zu>d%. We begin with the inequality~2.5!, which states that

uF̂z~k!u>2Kd211
1

2e
Re@12zD̂~k!#. ~2.52!

We further reduce our limit onk, if necessary, to ensureD̂(k)>0. Then forzPW,

Re@12zD̂~k!#>a~d!.0, ~2.53!

for some geometrical constanta(d) which is bounded away from zero asd→`, becaused is.
Therefore,

uF̂z~k!u>2Kd211
1

2e
a~d!>

1

3e
a~d! ~2.54!

for sufficiently larged. We now require thatk be sufficiently small thatk2/2d<22&, to ensure
that (k2/2d)1u12zu1/2<2. The bound~2.49! then follows, since

1

3e
a~d!>S k2

2d
1u12zu1/2D 1

6e
a~d!. ~2.55!

j

Proof of (2.32)–(2.34): Having proved~2.31!, we have also proved Lemma 2.9. It follow
from Lemma 2.9, together with the fact thatxz has a simple zero atz50 by its definition in~1.27!,
that

uz21xzu<cu12zu21/2 ~2.56!

uniformly in uzu,1. With ~2.6! and Lemma 2.3, this upper bound gives~2.32!. With ~2.7! and
Lemma 2.3, it gives the bound

U d

dz
ĝz~k!U<cu12zu21/2 ~2.57!

for uzu,1, which implies~2.33!.
To prove~2.34!, we first write

d

dz
EF~z,k!5

d

dz
@P̂z~0!2P̂z~k!#1

d

dz
@ F̂z~0!2B2A12z#. ~2.58!
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The first term on the right-hand side is

z21xz@Ĉz~0!2Ĉz~k!#. ~2.59!

By Lemma 2.3 and~2.56!, this isO(u12zu21/2k2). Also,

d

dz
@ F̂z~0!2B2A12z#52z21xzĈz~0!

B2

2A12z
. ~2.60!

By ~2.38!–~2.39!,

xz5
ĝz~0!

F̂z~0!
5

ĝ1~0!1Eg~z,0!

B2
A12z1EF~z,0!

5
ĝ1~0!

B2
A12z

1O~ u12zue21/2! ~2.61!

and by~2.8! and Lemma 2.6,

Ĉz~0!5Ĉ1~0!1O~ u12zue!. ~2.62!

Thus, by the definition ofB2 in ~2.11!, the second term in~2.58! is O(u12zue21/2). j

3. REDUCTION OF PROOF OF THEOREM 1.2

In this section, we reduce the proof of Theorem 1.2 to Lemmas 2.1–2.3, supplemente
the related bounds of Lemma 3.1 below. The proof of Lemma 3.1 will be given in Secs. 7 a

Throughout this section, we fixp5pc and drop subscriptspc from the notation. The basic
object of study is the Fourier transform of the three-point function, defined for complexz by

t̂z
~3!~k,l !5 (

n51

`

t̂~3!~k,l ;n!zn5 (
n51

`

zn(
x,y

t~3!~0,x,y;n!eik•xeil •y, uzu,1. ~3.1!

Given k, l P@2p,p#d, we will write

k~1!5k1 l , k~2!5k, k~3!5 l . ~3.2!

These variables are arranged in~3.1! schematically as

We will use the notation

kn5kD21n21/4, ln5 lD 21n21/4, kn
~ i !5k~ i !D21n21/4. ~3.3!

The proof involves showing that

t̂z
~3!~k,l !54C22)

i 51

3
C

D2~k~ i !!2123/2~12z!1/21Ez
~3!~k,l !, ~3.4!

whereEz
(3)(k,l )5(n50

` en
(3)(k,l )zn is an error term in the sense that

uEz
~3!~kn ,ln!u<OS 1

u12zu3/22e 1
n21/2

u12zu3/21
n21/22e

u12zu2 D ~3.5!
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for any eP(0,1
2), uniformly in uzu,1. It then follows from Lemma 2.4~i! that uen

(3)(kn ,ln)u
<O(n1/22e). The first term on the right-hand side of~3.4! is the main term. Replacingk( i ) by k ( i )

in the main term, an elementary extension of@Ref. 32,~2.15!#, to include an error estimate, give
as its coefficient ofzn the value

4C

2p i R
uzu5r ,1

)
i 51

3
1

D2~kn
~ i !!2123/2~12z!1/2

dz

zn11 5
C

A8p
n1/2A~3!~k,l !1O~n21/2!. ~3.6!

This yields Theorem 1.2. Thus it is sufficient to obtain~3.5!.
The factorization in the main term of~3.4! is a product of the leading behaviorC@D2(k( i ))2

123/2(12z)1/2#21 of three two-point functions, multiplied by a vertex factor 4C22. The diagram
above~3.3! illustrates this factorization.

To prove~3.5!, we will make use of a generalization of~2.1! to site-dependentz-variables.
More precisely, we associate to each siteuPZd a variablezuP@0,1#. We writezW for the collection
of zu , uPZd. The probability that a siteu is green becomes 12zu in this setting. Then we define

tzW~0,x!5P~C~0!{x& C~0!ùG50” !5K I @C~0!{x# )
uPC~0!

zuL . ~3.7!

The derivation of the expansion for this more general two-point function is not changed in
significant way, and we will prove in Sec. 5 an identity

tzW~0,x!5gzW~0,x!1 (
vPZd

PzW~0,v !tzW~v,x! ~3.8!

generalizing~2.1!, whenzuP@0,a) for all uPZd, for anyaP@0,1). Whenzu5z for all uPZd, we
often writez in place ofzW, e.g.,tzW(0,x)uzu[z5tz(0,x).

Now we apply the operatorzy(]/]zy) to ~3.8!. For the left-hand side, we have

zy

]

]zy
tzW~0,x!5tzW

~3!~0,x,y!. ~3.9!

Using this also for one contribution to the right-hand side, we obtain

tzW
~3!~0,x,y!5zy

]

]zy
gzW~0,x!1 (

vPZd
S zy

]

]zy
PzW~0,v ! D tzW~v,x!1 (

vPZd
PzW~0,v !tzW

~3!~v,x,y!.

~3.10!

For the two derivatives appearing explicitly on the right-hand side, we will use the follow
lemma.

Lemma 3.1:~i! Let aP@0,1). For x,yPZd and all zuP@0,a#, there existGzW
(3)(0,x,v8) and

CzW
(3)(0,v,v8) such that

zy

]

]zy
gzW~0,x!5(

v8
GzW

~3!~0,x,v8!tzW~v8,y! ~3.11!

and

zy

]

]zy
PzW~0,v !5(

v8
CzW

~3!~0,v,v8!tzW~v8,y!. ~3.12!
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For zu[z, the Fourier transformsĜz
(3)(k,l ) andĈz

(3)(k,l ) extend to complex z withuzu<1. In this

disk, iĈz
(3)(k,l )i is bounded, as is the norm of any second derivative ofĈz

(3)(k,l ) with respect to

k and /or l. The above bounds also apply toĜ (3). In addition, Ĉz
(3)(0,0)5Ĉz(0).

~ii ! For uzu,1 and k,l P@2p,p#d,i(d/dz)Ĉz
(3)(k,l )i<constxuzu . The same bound is obeye

by i(d/dz)Gz
(3)(k,l )i .

Substituting~3.11! and ~3.12! into ~3.10! gives

tzW
~3!~0,x,y!5(

v8
GzW

~3!~0,x,v8!tzW~v8,y!1 (
v,v8

CzW
~3!~0,v,v8!tzW~v8,y!tzW~v,x!

1(
v

PzW~0,v !tzW
~3!~v,x,y!. ~3.13!

We now takezu[zP@0,1), multiply byeik•x1 i l •y, sum overx,yPZd, and solve fort̂z
(3)(k,l ). The

result is

t̂z
~3!~k,l !5

1

12P̂z~k1 l !
Ĝz

~3!~k,l !t̂z~ l !1
1

12P̂z~k1 l !
Ĉz

~3!~k,l !t̂z~k!t̂z~ l ! ~3.14!

for zP@0,1). Since both sides of~3.14! extend to complexz with uzu,1, according to Lemmas 2.1
and 3.1,~3.14! therefore holds for complexz with uzu,1.

The first term on the right-hand side can be placed immediately into the error

Ez
(3)(k,l ). In fact, Ĝz

(3)(k,l ) is uniformly bounded by Lemma 3.1~i!, and the other two factors ca
be bounded using~2.49! and the upper bound onĝz( l ) of Lemma 2.1. Therefore

U 1

12P̂z~k1 l !
Ĝz

~3!~k,l !t̂z~ l !U<const
1

u12zu1/2
1

1

u12zu1/2
5const

1

u12zu
. ~3.15!

To extract the main contribution of the second term on the right-hand side of~3.14!, we first
write this term as

Ĉz
~3!~k,l !

ĝz~k1 l !
t̂z~k1 l !t̂z~k!t̂z~ l !. ~3.16!

Now

t̂z~k!5
C

D2k2123/2A12z
1Ez~k!, ~3.17!

and by Theorem 1.3~which we have shown to be a consequence of Lemmas 2.1–2.3!,

uEz~kn!u<O~ u12zue21/21n21/2u12zu21/21n21/22eu12zu21!. ~3.18!

Also,

Ĉz
~3!~kn ,ln!

ĝz~kn1ln!
5

Ĉ1~0!

ĝ1~0!
1O~ u12zue1n21/2!54C221O~ u12zue1n21/2!, ~3.19!

by ~2.29!, a combination of Lemma 3.1 with the methods of Sec. 2, and the fact that 4C22

5Ĉ1(0)/ĝ1(0) by ~2.11!–~2.12!. Thus we have
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t̂z
~3!~kn ,ln!54C)

i 51

3
1

D2~kn
~ i !!2123/2~12z!1/21OS 1

u12zu3/22e 1
n21/2

u12zu3/21
n21/22e

u12zu2 D ,

~3.20!

as required.

4. THE FIRST EXPANSION

Our method makes use of a double expansion. In this section, we derive the first of th
expansions, to finite order. In contrast to the expansions from I referred to as the one-M and two-M
schemes, the expansion derived here will be more fully expanded, and could be calle
‘‘infinite- M’’ scheme, although we will not use this terminology. Using the two-M scheme, we
were able in I to extract the leading behavior of the Fourier transform of the critical two-p
function, but we obtained minimal control on the error terms, and this was only for realz. In I, this
was carried out for sufficiently spread-out models in any dimensiond.6, and for the nearest
neighbor model in sufficiently high dimensions. Using the more complete expansion deriv
this section, we will be able to obtain stronger power law bounds on error terms, and these b
will be valid for complexz. However, our bounds on the expansion will not apply in dimensi
near 6, even for the spread-out model, and we will obtain results only for the nearest-ne
model in sufficiently high dimensions. Forp,pc andz51, the expansion derived here reduces
the expansion of Ref. 7. We will derive the expansion for the nearest-neighbor model, but it
more generally.

In Sec. 3, we generalized the magnetic field variablez to a site dependent fieldzuP@0,1#,
uPZd. The expansion will be derived in this general setting. Forp<pc and 0<zu<1, the two-
point function is given by

tzW,p~0,x!5PzW,p~C~0!{x,C~0!ùG50” !5K I @C~0!{x# )
uPZd

zuL . ~4.1!

This is the quantity for which we want an expansion. The angular brackets denote the
expectation with respect to the bond and site variables. There is, of course, no contributio
any infinite cluster whenp,pc , and for the high-dimensional models we are considering,
absence of an infinite cluster atpc is proven in the combined results of Refs. 39 and 7.

Before beginning the derivation of the expansion, we first repeat some definitions and le
from I that will play important roles.

4.1. Definitions and two basic lemmas

The following definitions will be used repeatedly in what follows.
Definition 4.1: ~a! A bond is an unordered pair of distinct sites$x,y% with iy2xi151. A

directed bondis an ordered pair~x,y! of distinct sites withiy2xi151. A path from x to y is a
self-avoiding walk fromx to y, considered to be a set of bonds. Two paths aredisjoint if they have
no bonds in common~they may have common sites!. Given a bond configuration, anoccupied
path is a path consisting of occupied bonds.

~b! Given a bond configuration, two sitesx andy areconnected, denotedx↔y, if there is an
occupied path fromx to y or if x5y. We writex↔” y when it is not the case thatx↔y. We denote
by C(x) the random set of sites which are connected tox. Two sitesx andy aredoubly connected,
denotedx⇔y, if there are at least two disjoint occupied paths fromx to y or if x5y. Given a bond
b5$u,v% and a bond configuration, we defineC̃b(x) to be the set of sites which remain connect
to x in the new configuration obtained by settingnb50. Given a set of sitesA, we sayx↔A if
x↔y for someyPA, and we defineC(A)5øxPAC(x) and C̃b(A)5øxPAC̃b(x).

~c! Given a set of sitesA,Zd and a bond configuration, we sayx↔y in A if there is an
occupied path fromx to y having all of its sites inA ~so in particular it is required thatx,yPA!,
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or if x5yPA. Two sitesx andy areconnected through A, denotedx ↔
A

y, if they are connected
in such a way that every occupied path fromx to y has at least one bond with an endpoint inA, or
if x5yPA.

~d! Given an eventE and a bond/site configuration, a bond$u,v% ~occupied or not! is called
pivotal for E if ~i! E occurs in the possibly modified configuration in which$u,v% is occupied, and
~ii ! E does not occur in the possibly modified configuration in which$u,v% is vacant. We say tha

a directed bond (u,v) is pivotal for the connection fromx to y if xPC̃$u,v%(u), yPC̃$u,v%(v) and

y¹C̃$u,v%(x). If x↔A then there is a natural order to the set of occupied pivotal bonds for
connection fromx to A ~assuming there is at least one occupied pivotal bond!, and each of these
pivotal bonds is directed in a natural way, as follows. Thefirst pivotal bond from x to Ais the
directed occupied pivotal bond (u,v) such thatu is doubly connected tox. If ( u,v) is the first
pivotal bond for the connection fromx to A, then the second pivotal bond is the first pivotal bo
for the connection fromv to A, and so on.

~e! Given a bond configuration in whichx⇔y, we refer toC(x) as asausage. If x↔y but x
is not doubly connected toy, denote the pivotal bonds for the connection, in order,

(u0 ,v0),(u1 ,v1),...,(ul ,v l). We define thefirst sausagefor the connection to beC̃$u0 ,v0%(x), and

the last sausage to beC̃$ul ,v l %(y). For 1, j , l , the j th sausageis C̃$uj ,v j %(x)ùC̃$uj 21 ,v j 21%(y).
We also define theleft and right endpointsof the j th sausage to be, respectively,v j 21 and uj ,
with v215x andul 115y. These definitions give rise to a picture in which the connection frox
to y is represented by a string of sausages.

~f! We say that an eventE is increasing if, given a bond/site configurationvPE, and a
configurationv8 having the same site configuration asv and for which each occupied bond inv
is also occupied inv8, then alsov8PE.

Definition 4.2:~a! Given a set of sitesS, we refer to bonds with both endpoints inSasbonds
in S. A bond having at least one endpoint inS is referred to as abond touching S. We say that a
sitexPS is in S or touching S. We denote bySI the set of bonds and sites inS. We denote byST

the set of bonds and sites touchingS.
~b! Given a bond/site configurationv and a set of sitesS, we denote byvuSI

the bond/site

configuration which agrees withv for all bonds and sites inS, and which has all other bond
vacant and all other sites nongreen. Similarly, we denote byvuST

the bond/site configuration

which agrees withv for all bonds and sites touchingS, and which has all other bonds vacant a
all other sites non-green. Given an eventE and a deterministic set of sitesS, the event$E occurs
in S% is defined to consist of those configurationsv for which vuSI

PE. Similarly, we define the

event$E occurs on S% to consist of those configurationsv for which vuST
PE. Thus we distinguish

between ‘‘occurs on’’ and ‘‘occurs in.’’
~c! The above definitions will now be extended to certain random sets of sites. Su

A,Zd. For S5C(A) or S5Zd\C(A), we havevuST
5vuSI

, since bonds touching but not inC(A)

are automatically vacant. For such anS, we therefore define$E occurs onS%5$E occurs inS%
5$v : vuST

PE%. For S5C̃$u,v%(A) ~see Definition 4.1~b!! or S5Zd\C̃$u,v%(A), we defineS̃T

5ST\$u,v% andS̃I5SI \$u,v%, and denote byvuS̃T
andvuS̃I

the configurations obtained by settin

$u,v% vacant invuST
andvuSI

, respectively. ThenvuS̃T
5vuS̃I

for these two choices ofS, and we

define$E occurs onS%5$E occurs inS%5$v : vuS̃T
PE%.

The above definition of$E occurs onS% is intended to capture the notion that if we restr
attention to the status of bonds and sites touchingS, thenE is seen to occur. A kind of asymmetr
has been introduced, intentionally, by our setting bonds and sites not touchingS to be respectively
vacant and non-green, as a kind of ‘‘default’’ status. Some examples are~1! $v↔x occurs inS%,
for which Definitions 4.1~c! and 4.2~b! agree,~2! $x↔G occurs inS} 5$$v : v↔x occurs in
S%ùGÞ0” %, and~3! $x↔” G occurs inS%5$$v : v↔x occurs inS%ùG50” %.

According to Lemma I.2.3, the notion of ‘‘occurs on’’ and ‘‘occurs in’’ preserve the ba
operations of set theory. Namely, given eventsE,F and random or deterministic setsS,Tof sites,
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we have$E occurs onS} c5$Ec occurs onS%, $(EøF) occurs onS%5$E occurs onS%ø$F occurs
on S%, and$$E occurs onS% occurs onT%5$E occurs onSùT%.

We now recall the statement of Lemma I.2.4, which is our basic factorization lemma. It
be used several times. Lemma I.2.4 appears in I for constantz but the generalization to site
dependentzu is immediate.

Lemma 4.3: Let p<pc . For p5pc , assume there is no infinite cluster. Given a bond$u,v%,
a finite set of sites A, and events E, F, we have

^I @E occurs on C̃$u,v%~A! & F occurs in Zd\C̃$u,v%~A! & $u,v% occupied#&

5p^I @E occurs on C̃$u,v%~A!#^I @F occurs in Zd\C̃$u,v%~A!#&&, ~4.2!

where, in the second line, C̃$u,v%(A) is a random set associated with the outer expectation
addition, the analogue of~4.2!, in which ‘‘$u,v% occupied’’ is removed from the left side and ‘‘p
is removed from the right side, also holds.

As an example of a situation in which an event of the type appearing on the left-hand s
~4.2! arises, we recall Lemma I.2.5, which states the following.

Lemma 4.4: Given a deterministic set A,Zd, a directed bond(a8,a), and a site y¹A, the
event E defined by

E5$~a8,a! is a pivotal bond fory→A% ~4.3!

is equal to the event F defined by

F5$a↔A occurs on C̃$a,a8%~A! & y↔a8 occurs in Zd\C̃$a,a8%~A!%. ~4.4!

4.2. Derivation of the expansion

In this section, we generate the expansion, which is essentially a convolution equation
two-point functiontzW,p(0,x)5PzW,p(0↔x,0↔” G). Throughout the discussion, we fixp,z with ei-
ther p,pc and uzu<1 or p5pc and uzu,1. The starting point for the expansion is to regard
cluster contributing totzW,p(0,x) as a string of sausages joining 0 tox and not connected toG. We
regard these sausages as interacting with each other, in the sense that they cannot inters
other. In high dimensions, the interaction should be weak, and our goal is to make an appr
tion in which the sausages are treated as independent. The approximation will introduce cor
terms, but these can be controlled in high dimensions.

We begin by defining some events. Given a bond$u8,v8%, let

E0~0,x!5$0↔x & 0↔” G%, ~4.5!

E08~0,x!5$0⇔x & 0↔” G%, ~4.6!

E09~0,u8,v8!5$E08~0,u8!occurs on C̃$u8,v8%~0!%, ~4.7!

E0~0,u8,v8,x!5E08~0,u8!ù$~u8,v8! is occupied and pivotal for 0↔x%. ~4.8!

Given a set of sitesA,Zd, we also define

tzW,p
A ~0,x!5^I @~0↔x & 0↔” G! occurs in Zd\A#&. ~4.9!

The first step in the expansion is to write

tzW,p~0,x!5^I @E0~0,x!#&5^I @E08~0,x!#&1 (
~u0 ,v0!

^I @E0~0,u0 ,v0 ,x!#&. ~4.10!
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We now wish to apply Lemma 4.3 to factor the expectation in the last term on the right-hand
For this, we note that by definition,E0(0,u0 ,v0 ,x) is the event thatE08(0,u0) occurs, that (u0 ,v0)
is occupied and pivotal for 0↔x, and thatC̃$u0 ,v0%(x)ùG50” . This can be written as the inter
section of the events thatE08(0,u0) occurs onC̃$u0 ,v0%(0), that $u0 ,v0% is occupied, and tha
(v0↔x & v0↔” G) occurs inZd\C̃$u0 ,v0%(0). Applying Lemma 4.3 then gives

^I @E0~0,u0 ,v0 ,x!#&5p^I @E09~0,u0 ,v0!#tzW,p
C̃$u0 ,v0%~0!~v0 ,x!&. ~4.11!

Therefore,

tzW,p~0,x!5^I @E08~0,x!#&1p (
~u0 ,v0!

^I @E09~0,u0 ,v0!#tzW,p
C̃$u0 ,v0%~0!~v0 ,x!&. ~4.12!

To leading order, we would like to replacetzW,p
C̃$u0 ,v0%(0)(v0 ,x) by tzW,p(v0 ,x), which would

produce a simple convolution equation fortzW,p and would effectively treat the first sausage in t
cluster joining 0 tox as independent of the other sausages. Such a replacement should c
small error provided the backbone~see Sec. 1.5! joining v0 to x typically does not intersect the
clusterC̃$u0 ,v0%(0). Above the upper critical dimension, where atpc we expect the backbone t
have the character of Brownian motion and the clusterC̃$u0 ,v0%(0) to have the character of an IS
cluster, this lack of intersection demands the mutual avoidance of a two-dimensional bac
and a four-dimensional cluster. This is a weak demand whend.6, and this leads to the interpre
tation of the critical dimension 6 as 412. As was pointed out in Ref. 6, and as we will sho
below, bounding errors in the above replacement leads to the triangle diagram, whose conve
at the critical point is also naturally associated withd.6. For simplicity, suppose for the momen
that zu5z for all u. When z51, all diagrams that emerge in estimating the expansion can
bounded in terms of the triangle diagram, as was done in Ref. 7, but forzÞ1 other diagrams,
including the square, also arise. The critical square diagram will diverge in dimensionsd<8 when
z→1, but we believe that square diagrams arise only when multiplied by the magnetiz
Mz,p5Pz,p(0↔G), with the product vanishing in the limitz→1 for d.6. Although we believe
it to be the case, as we discussed in Sec. 1.6, we are not able to implement this mecha
dimensions larger than but close to 6. In I, we avoided the difficulty by restricting ourselves t
z, and by employing the 2-M scheme of the expansion.

Let A be a set of sites. To effect the replacement mentioned in the previous paragrap
write

tzW,p
A ~v,x!5tzW,p~v,x!2@tzW,p~v,x!2tzW,p

A ~v,x!# ~4.13!

and proceed to derive an expression for the difference in square brackets on the right-han

Recall the notationv↔
A

x from Definition 4.1. Similarly,v↔
A

G ~read ‘‘v is connected toG
through A’’ ! will be used to denote the event that every occupied path fromv to any green site
must contain a site inA, or thatvPGùA. The above difference in square brackets is then gi
by

tzW,p~v,x!2tzW,p
A ~v,x!5^I @v↔x & v↔” G#&2^I @~v↔x & v↔” G! occurs in Zd\A#&

5^I @v↔x & v↔” G#&2^I @v↔x occurs in Zd\A & v↔” G#&

1^I @v↔x occurs in Zd\A & v↔” G#&

2^I @~v↔x & v↔” G! occurs in Zd\A#&

5^I @v↔
A

x & v↔” G#&2^I @v↔x in Zd\A & v↔
A

G#&. ~4.14!
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This can be rewritten as

txW ,p~v,x!2tzW,p
A ~v,x!5^I @v↔

A
x & v↔” G#&2^I @v↔x & v↔

A
G#&1^I @v↔

A
x & v↔

A
G#&.
~4.15!

Defining

F1~v,x;A!5$v↔
A

x& v↔” G%, ~4.16!

F3~v,x;A!5$v↔x& v↔
A

G%, ~4.17!

F4~v,x;A!5$v↔
A

x& v↔
A

G% ~4.18!

~the definitions ofF3 andF4 are different from those in I!, this gives

tzW,p~v,x!2tzW,p
A ~v,x!5^I @F1~v,x;A!#&2^I @F3~v,x;A!#&1^I @F4~v,x;A!#&. ~4.19!

Using the terminology of Definition 4.1~e!, we will decompose the eventF4(v,x;A) as a
disjoint union

F4~v,x;A!5F4,1~v,x;A!øF4,2~v,x;A!, ~4.20!

and combine F4,1(v,x;A) with F1(v,x;A) and F4,2(v,x;A) with F3(v,x;A). The event
F4,1(v,x;A) is defined to be the event that the following conditions hold:~i! F4(v,x;A) occurs.
~ii ! Let S denote the first sausage forv↔x whose left endpoint is connected to its right endpo
throughA. ThenSùG50” . ~iii ! All sausages followingS are G-free. The eventF4,2(v,x;A) is
defined to be the event thatF4(v,x;A) occurs and in addition, the last sausage connected toG has
its right endpoint connected tov through A. In particular, F4,1(v,x;A)ùF1(v,x;A)50” and
F4,2(v,x;A),F3(v,x;A). With these definitions,~4.20! holds. Now we define

E1~v,x;A!5F1~v,x;A!øF4,1~v,x;A!, ~4.21!

E2~v,x;A!5F3~v,x;A!øF4,2~v,x;A!c. ~4.22!

Then ~4.19! becomes

tzW,p~v,x!2tzW,p
A ~v,x!5^I @E1~v,x;A!#&2^I @E2~v,x;A!#&. ~4.23!

The eventsE1 , E2 can be described in words as follows:

E1(v,x;A) is the event thatv↔
A

x and the following holds. Let (b,b8) be the pivotal bond, if
there is one, leading into the first sausage forv↔x whose left and right endpoints are connect
through A. If there is such a pivotal bond, then we require thatC̃$b,b8%(x)ùG50” , and either

$v↔” G occurs inC̃$b,b8%(v)% or $v↔
A

G occurs inC̃$b,b8%(v)%. If there is no such pivotal bond, the
we require thatv↔” G.

E2(v,x;A) is the event thatv↔x, v↔
A

G, and the following holds. LetS be the last sausag
for v↔x that is connected toG. Then we require thatv be connected to the right endpoint ofS in
Zd\A.

Combining~4.23!, ~4.13!, and~4.12! gives
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tzW,p~0,x!5^I @E08~0,x!#&1p (
~u0 ,v0!

^I @E09~0,u0 ,v0!#&tzW,p~v0 ,x!2p (
~u0 ,v0!

^I @E09~0,u0 ,v0!#

3^I @E1~v0 ,x;C̃0
$u0 ,v0%

~0!!#&1&01p (
~u0 ,v0!

^I @E09~0,u0 ,v0!#

3^I @E2~v0 ,x;C̃0
$u0 ,v0%

~0!!#&1&0 . ~4.24!

Here, we have tacitly assumed that the series on the right-hand side converge. We will re
this point at the end of the section. Also, we have introduced subscripts on expectation
random sets to coordinate the two. In particular, the random setC̃0

$u0 ,v0%(0) corresponds to the
expectation̂ •&0 . Now we define

E18~v,x;A!5E1~v,x;A!ù$'” pivotal ~u8,v8! for v↔x such thatv↔
A

u8%, ~4.25!

E19~v,u8,v8;A!5$E18~v,u8;A! occurs on C̃$u8,v8%~v !%, ~4.26!

E1~v,u8,v8,x;A!5E18~v,u8;A!ù$~u8,v8! is occupied and pivotal forv↔x

& C̃$u8,v8%~x!ùG50” %, ~4.27!

E28~v,x;A!5E2~v,x;A!ù$x↔
A

G in~last sausage ofv→x!%, ~4.28!

E29~v,u8,v8;A!5$E28~v,u8;A! occurs on C̃$u8v8%~v !%, ~4.29!

E2~v,u8,v8,x;A!5E28~v,u8;A!ù$~u8,v8! is occupied and pivotal forv↔x

& C̃$u8,v8%~x!ùG50” %. ~4.30!

The eventsE18 andE28 are depicted schematically in Fig. 1.
Next we observe that forj 51,2,

^I @Ej~v,x;A!#&5^I @Ej8~v,x;A!#&1 (
~u8,v8!

^I @Ej~v,u8,v8,x;A!#&. ~4.31!

We now claim that Lemma 4.3 can be applied to conclude that forj 51,2,

^I @Ej~v,u8,v8,x;A!#&5p^I @Ej9~v,u8,v8;A!#tzW,p
C̃$u8,v8%~v !

~v8,x!&. ~4.32!

This can be seen as follows. By definition,Ej (v,u8,v8,x;A) is the event thatEj8(v,u8;A) occurs,
that (u8,v8) is occupied and pivotal forv↔x, and thatC̃$u8,v8%(x)ùG50” . It can be written as the

FIG. 1. Schematic depiction of the eventsE18 and E28 . Shaded regions represent the setA and dotted lines represen
possible but not mandatory connections inC(v). The dashed lines indicate that the inner regions areG-free.
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intersection of the events thatEj8(v,u8;A) occurs onC̃$u8,v8%(v), that $u8,v8% is occupied, and
that (v8↔x & v8↔” G) occurs inZd\C̃$u8,v8%(v). Applying Lemma 4.3 gives~4.32! as required.

We are now in a position to generate an expansion. First, we introduce some abbre
notation. We writeC̃n5C̃n

$un,vn%(vn21), with v2150, and let

Xn5I @E1~vn21 ,x;C̃n21!#2I @E2~vn21 ,x;C̃n21!#, ~4.33!

Xn85I @E18~vn21 ,x;C̃n21!#2I @E28~vn21 ,x;C̃n21!#, ~4.34!

Xn95I @E19~vn21 ,un ,vn ;C̃n21!#2I @E29~vn21 ,un ,vn;C̃n21!#. ~4.35!

In terms of this new notation,~4.24! can be written as

tzW,p~0,x!5^I @E08~0,x!#&01p (
~u0 ,v0!

^I @E09~0,u0 ,v0!#&0tzW,p~v0 ,x!

2p (
~u0 ,v0!

^I @E09~0,u0 ,v0!#^X1&1&0 . ~4.36!

In view of ~4.31! and ~4.32!,

^Xn&n5^Xn8&n1p (
~un ,vn!

^Xn9tzW,p

C̃n ~vn ,x!&n . ~4.37!

By ~4.13! and ~4.23!,

t
zW,p

C̃n ~vn ,x!5tzW,p~vn ,x!2^Xn11&n11 . ~4.38!

With ~4.37!, this gives

^Xn&n5^Xn8&n1p (
~un ,vn!

^Xn9&ntzW,p~vn ,x!2p (
~un ,vn!

^Xn9^Xn11&n11&n . ~4.39!

An expansion can now be generated by recursively substituting~4.39! into ~4.36!. To further
abbreviate the notation, in generating the expansion we omit all arguments related to sit
omit the products ofp with summations over (un ,vn) that are associated with each product. T
first few iterations then yield

t5^I @E08#&01^I @E09#&0t2^I @E09#^X1&1&0

5~^I @E08#&02^I @E09#^X18&1&0!1~^I @E09#&02^I @E09#^X19&1&0!t1^I @E09#^X19^X2&2&1&0

5~^I @E08#&02^I @E09#^X18&1&01^I @E09#^X19^X28&2&1&0!1~^I @E09#&02^I @E09#^X19&1&0

1^I @E09#^X19^X29&2&1&0!t2^I @E09#^X19^X29^X3&3&2&1&0 , ~4.40!

and so on.
To simplify expressions involving nested expectations, we will sometimes useE rather than

^•& to denote expectations. To organize the terms in the expansion, we introduce the foll
notation, forn>1:

gzW,p
~0!~0,x!5^I @E08~0,x!#&5EI @E08~0,x!#, ~4.41!

gzW,p
~n!~0,x!5~21!nE0I @E09#E1X19•••En21Xn219 EnXn8 , ~4.42!
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PzW,p
~0!~0,v0!5p(

u0

^I @E09~0,u0 ,v0!#&5p(
u0

EI @E09~0,u0 ,v0!#, ~4.43!

PzW,p
~n!~0,vn!5~21!np(

vn

E0I @E09#E1X19¯En21Xn219 EnXn9 , ~4.44!

UzW,p
~n!~0,x!5~21!nE0I @E09#E1X19¯En21Xn219 EnXn . ~4.45!

In the above, the notation continues to omit sums over (uj ,v j ) and factors ofp associated with
each product. The termsg(n) account for the terms in~4.40! whose innermost expectation involve
an X bearing a single prime, the termsP (n) account for the terms in~4.40! whose innermost
expectation involves anX bearing a double prime, andU (n) accounts for the single term whos
innermost expectation involves an unprimedX. For eachN>0, the expansion can then be writte
as

tzW,p~0,x!5 (
n50

N

gzW,p
~n!~0,x!1 (

n50

N

(
vn

PzW,p
~n!~0,vn!tzW,p~vn ,x!1UzW,p

~N11!~0,x!. ~4.46!

For zu[z51 the setG of green sites is empty, and the eventE2 , which requires connection
to G, cannot occur. Therefore all terms involvingE2 events vanish forz51. In this special case
~4.46! becomes the expansion of Ref. 7 and agrees also with the expansion of I.

Taking the Fourier transform of~4.46! and solving fort̂zW,p(k) gives, for eachN>0,

t̂zW,p~k!5
(n50

N ĝzW,p
~n!~k!1ÛzW,p

~N11!~k!

12(n50
N P̂zW,p

~n!~k!
. ~4.47!

Existence of all Fourier transforms appearing in the right-hand side of~4.47! will be shown in Sec.
5.1, forp5pc , zuP@0,a# with a,1, and ford sufficiently large. The bounds of Sec. 5.1 will als
provide the convergence of summations mentioned below~4.24! and tacitly assumed in the sub
sequent analysis. The bounds apply also to the simpler subcritical case ofp,pc , zuP@0,1#, but
we omit any explicit discussion of this case.

5. PROOF OF LEMMAS 2.1 AND 2.2

Throughout this section, we restrict attention top5pc , and drop subscriptspc from the
notation. We will definegzW(0,x) andPzW(0,x) obeying~3.8! for zuP@0,a#, for anyaP@0,1). This

also gives~2.1! for zP@0,1). For constantzu5z, ĝz(k) andP̂z(k) will be shown to obey~2.2!,
and to extend to complexz with uzu<1. This involves taking the limitN→` in ~4.47!, with the
termÛzW

(N11)(k) vanishing in the limit. This will then give~2.1! and~2.2! for uzu,1. We will prove
Lemmas 2.1 and 2.2 in Secs. 5.1 and 5.2, respectively.

5.1. Proof of Lemma 2.1

We begin by stating two lemmas providing the estimates needed to obtain the identities~2.1!,
~2.2!, and ~3.8!, and to prove Lemma 2.1. After stating the lemmas, we will show that th
identities hold and prove Lemma 2.1, assuming the two lemmas. Then the two lemmas w
proved. Throughout this section, we assume without further mention that the dimensiond is
sufficiently large. We remark that the use ofm254 in ~5.2! requires us to take at leastd>8, but
since we are not attempting to obtain estimates valid for alld.6 ~for spread-out models!, we have
not tried to do withoutm254.

Lemma 5.1:~i! For zuP@0,1# and n>0, uĝzW
(n)(k)u<SxugzW

(n)(0,x)u<O(d2n) and uP̂zW
(n)(k)u

<SxuPzW
(n)(0,x)u<O(d2n).
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~ii ! For n>0 and constant zu[z, ĝz
(n)(k) and P̂z

(n)(k) can be extended by continuity t
complex zwith uzu<1. For uzu<1, n>0, and m150,2, m250,2,4 their norms obey the bounds

i“k
m1ĝz

~n!~k!i<(
x

uxum1igz
~n!~0,x!i<~d2n!, ~5.1!

i“k
m2P̂z

~n!~k!i<(
x

uxum2iPz
~n!~0,x!i<O~d2n!. ~5.2!

Lemma 5.2: Let aP@0,1) and recall thatxa5 t̂a,pc
(0). For zuP@0,a#, kP@2p,p#d, and

N>0, the remainder term Uˆ
zW
(N11)(k) obeys the bound

uÛzW
~N11!~k!u<O~d2~N11!!~11xa!. ~5.3!

By Lemmas 5.1~i! and 5.2,~3.8! follows by taking the limitN→` in ~4.47! and then taking

the inverse Fourier transform. The functionsĝzW(k) andP̂zW(k) are given by

ĝzW~k!5 (
n50

`

ĝzW
~n!~k!, P̂zW~k!5 (

n50

`

P̂zW
~n!~k!. ~5.4!

Taking zu[zP@0,1) then gives

t̂z~k!5
ĝz~k!

12P̂z~k!
. ~5.5!

As power series inz, ĝz(k) andP̂z(k) converge absolutely foruzu<1, by Lemma 5.1~ii !. The
left-hand side of~5.5! is a power series that converges absolutely, and therefore defines an an
function, forz in uzu,1. The two series are therefore equal foruzu,1, and the right side extend
the left side touzu<1. This proves~2.2!, and by taking the inverse Fourier transform, also pro
~2.1!. Also, since~4.46! agrees with the expansion of I forz51, the claim at the end of Sec. 2.

that ĝ1(k)5f̂h50(k) andP̂1(k)5F̂h50(k), wheref̂h(k) andF̂h(k) are the functions occuring
in the one-M scheme in~I.3.88!, then follows.

Next, we prove Lemma 2.1, assuming Lemmas 5.1 and 5.2.
Proof of Lemma 2.1:The upper bounds of Lemma 2.1 are immediate consequences of Le

5.1, and we need only prove thatĝ1(0) and2“

2P̂1(0) are both equal to 11O(d21).

We begin withĝ1(0). By ~I.3.6!, ĝ1
(0)(0)5f̂h50

(0) (0)511f̂h50
(01) (0), and wehave

ĝ1~0!511f̂h50
~01! ~0!1 (

n51

`

ĝ1
~n!~0!. ~5.6!

The bound~I.3.20! can easily be improved touf̂h50
(01) (0)u<O(d21). With Lemma 5.1~ii !, this

gives

ĝ1~0!511O~d21!1 (
n51

`

O~d2n!511O~d21!. ~5.7!

Similarly, sinceI @E09(0,0,v)#51 whenz51, we have
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2“

2P̂1~0!5(
x

(
n50

`

uxu2Ph50
~n! ~0,x!

52dpc1pc (
~u,v !:uÞ0

uvu2^I @E09~0,u,v !#&1

1 (
n51

`

(
x

uxu2Ph50
~n! ~0,x!. ~5.8!

The first term is 11O(d21) by ~1.39!. The second term can be bounded using the weigh
bubble diagramWh50,pc

(2) of ~I.3.16!, which was shown to beO(d21) in Ref. 7. By Lemma 5.1, the

third term isO(d21). This gives the desired result2“

2P̂1(0)511O(d21). j

Proof of Lemma 5.1:The kinds of bounds obtained in part~ii ! of the lemma are actually
stronger than those needed for part~i!, and we discuss only the proof of part~ii ! here. Also, since
g andP are almost identical, we discuss onlyg.

To bound the norm in~5.1!, we will use the fact that for a power seriesf with real coefficients
an all of the same sign, the norm~2.3! obeys

i f ~z!i5 (
n50

`

uanuuzun5u f ~ uzu!u. ~5.9!

We will explain in more detail below that, as power series inz, gz
(n)(0,x) andPz

(n)(0,x) have real
coefficients of varying signs. To handle a power seriesf (z) with both positive and negative
coefficients, our strategy will be to decompose it into a sum of functionsf j (z) with coefficients of
definite sign. Then we use the triangle inequality and~5.9! to conclude

i f ~z!i<(
j

i f j~z!i5(
j

u f j~ uzu!u, ~5.10!

and thus reduce the problem of estimatingi f (z)i to that of estimatingu f j (uzu)u.
Beginning withgz

(0) , by definition

gz
~0!~0,x!5^I @E08~0,x!#&5^I @E0,b8 ~0,x!#zuC~0!u&b , ~5.11!

where E0,b8 (0,x) is the bond event$0⇔x% and ^•&b denotes expectation with respect to bo
variables only. This can be written as a power series inz with positive coefficients, and hence
extends to complexz within the disk of convergence. Using~5.9!, we argue using the BK inequal
ity as in ~I.3.36! to obtain

igz
~0!~0,x!i5^I @E0,b8 ~0,x!#uzu uC~0!u&b<t1~0,x!2. ~5.12!

Multiplying by uxum and summing overx then gives~5.1! for n50, uzu<1, using the methods o
Ref. 7. The casem54 ~which is needed forPz! did not occur in Ref. 7, but the methods the
apply if we associate a factoruxu2 to each factort1(0,x) on the right-hand side of~5.12!.

For n>1, we have

gz
~n!~0,x!5~21!nE0I @E09#E1X19¯En21Xn219 EnXn8 . ~5.13!

We insertX95I @E19#2I @E29# in the above, and similarly for the inner expectation withX8, and
expand the products to obtain a sum of61 times expectations involvingEj8 andEj9 . The bond
connections required by the eventsEj8 andEj9 are given in terms of the auxiliarybondevents
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E1,b8 ~v,x;A![$v↔
A

x& '” pivotal ~u8,v8! for v↔x such thatv↔
A

x%, ~5.14!

E1,b9 ~v,u8,v8;A![$E1,b8 ~v,u8;A! occurs on C̃$u8,v8%~v !%, ~5.15!

E2,b8 ~v,x;A![$v↔x in Zd\A& ~ last sausage ofv→x!↔A%, ~5.16!

E2,b9 ~v,u8,v8;A![$E2,b8 ~v,u8;A!occurs on C̃$u8,v8%~v !%. ~5.17!

The conditions due to the site variables, inEj8 andEj9 , can be expressed in terms of the subclust
Y1,Y2,Y3 depicted in Fig. 2 and defined as follows:

Y15~ last sausage ofv→x!ø$yPC~v !:y↔v in Zd\Å %, ~5.18!

Y25$yPC~v !:y↔v in Zd\A%, ~5.19!

Y35~ last sausage ofv→x!\Y2. ~5.20!

The above definitions are appropriate forE18 andE28 . For E19 andE29 , we define theY’s to be the
intersection of the above withC̃$u8,v8%(v).

Using these definitions, and using^•&s and^•&b for expectations with respect to the site a
bond variables, forzP@0,1# we have

^I @E18~v,x;A!#&s5I @E1,b8 ~v,x;A!#zuY1u, ~5.21!

^I @E28~v,x;A!#&s5I @E2,b8 ~v,x;A!#zuY2u~12zuY3u!, ~5.22!

^I @E19~v,u8,v8;A!#&s5I @E1,b9 ~v,u8,v8;A!#zuY1u, ~5.23!

^I @E29~v,u8,v8;A!#&s5I @E2,b9 ~v,u8,v8;A!#zuY2u~12zuY3u!. ~5.24!

Having expanded theX’s in ~5.13!, we insert~5.21!–~5.24!, leaving only bond expectations
For terms involvingE2 , we use

~12zuY3u!zuY2u5zuY2u2zuY2u1uY3u, ~5.25!

and further expand to obtain a sum of terms in which thez-dependence of each term is simply
power determined by theY’s. The result is a sum of terms, with coefficients61, of power series
in z having nonnegative coefficients. The number of terms resulting from these two expans
at most 4n. This provides a formula which extendsgz

(n)(0,x) to complexz within any disk in
which all the series converge. We will show that, in fact, when summed overx the series all
converge absolutely foruzu<1.

FIG. 2. Schematic depiction ofY1,Y2,Y3, and of the eventE38 defined under~6.14!. Shaded regions represent the setA and
dotted lines represent possible but not mandatory connections inC(v). For E38 , the dashed lines indicate that the inn
region isG-free.
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Explicitly, we demonstrate the convergence for two examples only.~For further details, see
Sec. I.3.2.! The other cases are similar, using standard diagrammatic estimation. First, we co
the term involving onlyE1-events. To bound

iE0,bI @E0,b9 #zuC̃0~0!uE1,bI @E1,b9 #zuY1
1u
¯En21,bI @E1,b9 #zuY1

n21uEn,bI @E1,b8 #zuYn
1ui , ~5.26!

we use~5.9! to effectively replacez by uzu, and then bounduzu by 1. We then bound the resu

using the BK inequality, exactly as was done forF̂(k) in Sec. I.3.2, and obtain Feynman diagram
having propagatortpc

(0,x). If we sum overx, we get diagrams which can be bounded by t
angles. With the presence ofuxu2, the situation is similar. Foruxu4, we can arrange that two
different two-point functions each receive a factoruxu2, and again standard methods apply.

For the diagrams involving at least oneE2 event, we proceed as outlined in the paragra
containing~5.25!, and then bound all factors ofuzu by 1. We are then left with bounding neste
bond expectations. We illustrate the method for bounding these nested bond expectati
considering a specific contribution to the casen52, given by

T~x!5pc (
~u0 ,v0!

pc (
~u1 ,v1!

^I @E0,b9 ^I @E2,b9 #^I @E1,b8 #&2,b&1,b&0,b . ~5.27!

The general case is similar, using the methods of Ref. 7. The analysis is simplified by the fa
we are taking the dimension to be large, so that we can use squares and higher order diag
our bounds.

In this approach, the use of~5.25! loses any factors ofMz that could be expected due t
connections toG, and this prevents us from obtaining bounds for sufficiently spread-out mode
all dimensionsd.6. We do not know how to avoid the loss of the factorsMz for complexz,
though we were able to exploit these factors in I for realz. As was mentioned previously, the ca
m254 in ~5.2! also prevents us from handling alld.6. In addition, we will be encountering
complicated diagrams in Secs. 7 and 8, which also will prevent us from handling dimen
above but near 6.

Let E+F denote the event thatE andF occur disjointly~see Ref. 2!. Using the BK inequality,
we bound the innermost expectation^I @E1,b8 (v1 ,x;C̃1

$u1 ,v1%(v0))#&2 of ~5.27! by

^I @'w1PC̃1
$u1 ,v1%

~v0!,'aPZd,~v1↔a!+~a↔w1!+~w1↔x!+~a↔x!#&2

< (
a,w1PZd

I @w1PC̃1
$u1 ,v1%

~v0!#t1~v1 ,a!t1~a,w1!t1~w1 ,x!t~a,x!. ~5.28!

By ~5.17!, we can bound̂ I @E2,b9 (v0 ,u1 ,v1 ;C̃0
$u0 ,v0%(0))#I @w1PC̃1(v0)#&1 above by

^I @'w0PC̃0
$u0 ,v0%

~0!#I @~v0↔u1!+~u1↔w0!#I @w1↔v0#&

< (
w0 ,t1PZd

I @w0PC̃0
$u0 ,v0%

~0!#~t1~v0 ,u1!t1~u1 ,t1!t1~ t1 ,w0!t1~ t1 ,w1!

1t1~v0 ,t1!t1~ t1 ,w1!t1~ t1 ,u1!t1~u1 ,w0!!. ~5.29!

Finally, we bound̂ I @E0,b9 (0,u0 ,v0)#I @w0PC̃0
$u0 ,v0%(0))#&0 above by

^I @~0↔u0!+~u0↔0!#I @w0↔0#&< (
t0PZd

t1~0,u0!t1~u0 ,t0!t1~ t0,0!t1~ t0 ,w0!. ~5.30!
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Combining~5.28!–~5.30!, we obtain as an upper bound forT2(x) the diagrams

Summed overx, these diagrams can be bounded using the triangle diagram. It is then rout
argue that, form50,2,4,

(
x

uxumiT2~x!i<O~d22!. ~5.31!

For the casem54, we require thatd>10.
Generaln can be handled similarly. For example, a typical contribution arising in boun

E0,bI @E0,b9 #E1,bI @E2,b9 #E2,bI @E2,b9 #E3,bI @E1,b9 #E4,bI @E2,b9 # is the diagram

Such diagrams can be bounded using the square diagram. The result, form52,3,4, is the bound

(
x

uxumigz
~n!~0,x!i<O~d2n!. ~5.32!

The casem54 is not needed for~5.1!, but it is used in~5.2!. Any value ofm can be handled, a
the cost of increasingd. For m54, we required>12. j

For the proof of Lemma 5.2, we will need the cut-the-tail Lemma I.3.5, which is restate
Lemma 5.3 below. Although stated in I for constantz, the proof of the cut-the-tail lemma extend
immediately to site-dependentzu . In its statement,MzW,p5PzW,p (0↔G).

Lemma 5.3: Let x be a site, $u,v% a bond, and E an increasing event. Then for a set of s
A with A{u, and for p<pc ~assuming no infinite cluster at pc! and zyP@0,1# for all yPZd,

^I @E occurs on C̃$u,v%~A!#tzW,p
C̃$u,v%~A!~v,x!&<

1

12pMzW,p
PzW,p~E!tzW,p~v,x!. ~5.33!

Proof of Lemma 5.2:Let p5pc . Beginning with the definition of the remainder term
~4.45!, and expanding the factors ofX using ~4.33!–~4.35! as in the proof of Lemma 5.1
UzW

(n)(0,x) can be estimated by

uUzW
~n!~0,x!u< (

s j 51,2
u^I 09^I 1,s1

9 ^¯^I n21,sn21
9 ^I n,sn

&n&n21¯&2&1&0u ~5.34!

whereI l ,s9 representsI @Es9 # on the level-l expectation, andI n,s representsI @Es# in the level-n
expectation. Combining~4.31! and ~4.32!, we have

^I @Ej~v,x;A!#&5^I @Ej8~v,x;A!#&1pc (
~u8,v8!

^I @Ej9~v,u8,v8;A!#tzW
C̃$u8,v8%~v !~v8,x!&. ~5.35!

This identity is used for the innermost expectation^I n,sn
&.

The first term of~5.35! is bounded as before, using the analogue of~5.21! and ~5.22! for
site-dependent variables. The result is
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u^I @E18~v,x;A!#&u5u^I @E1,b8 ~v,x;A!#PuPY1zu&bu<^I @E1,b8 ~u,x;A!#&b , ~5.36!

u^I @E28~v,x;A!#&u5u^I @E1,b8 ~v,x;A!#~PuPY2zu!~12PyPY3zy!&bu<2^I @E1,b8 ~v,x;A!#&b ,
~5.37!

where in the second line we usedu(Puzu)(12Pvzv)u<2. The remaining diagrammatic estimatio
is routine, and yields a boundO(d2n).

For the second term of~5.35!, we use the cut-the-tail Lemma 5.3. In preparation, we note
analogy with~5.23! and ~5.24! that

^I @E19~v,u8,v8;A!#tzW
C̃$u8,v8%~v !~v8,x!&<^I @E1,b9 ~v,u8,v8;A!#tzW

C̃$u8,v8%~v !~v8,x!&b , ~5.38!

^I @E29~v,u8,v8;A!#tzW
C̃$u8,v8%~v !~v8,x!&<2^I @E2,b9 ~v,u8,v8;A!#tzW

C̃$u8,v8%~v !~v8,x!&b . ~5.39!

To obtain increasing events for application of the cut-the-tail lemma, we note that

$E1,b8 ~u,u8,v8;A! occurs on C̃$u8,v8%%, ø
a,bPZd

$F̄1~v,u8,a,b;A! occurs on C̃$u8,v8%%,

~5.40!

$E2,b8 ~v,u8,v8;A! occurs on C̃$u8,v8%%, ø
a5Zd

$F̄2~v,u8,a;A! occurs on C̃$u8,v8%%,

~5.41!

where

F̄1~v,u8,a,b;A!5$~v↔b!+~b↔a!+~a↔u8!+~b↔u8!%ù$aPA%, ~5.42!

F̄2~v,u8,a;A!5$~v↔u8!+~u8↔a!%ù$aPA%. ~5.43!

Now in this form, we can use Lemma 5.3. After applying Lemma 5.3, we usetzW(v8,x)
<ta(v8,x). The remaining diagrammatic estimation is routine. Summation of the factorta(v8,x)
over x gives the factorxa in the statement of the lemma. j

5.2. Proof of Lemma 2.2

In this section, we prove Lemma 2.2, which asserts thatF̂z(k) obeys the bounduF̂z(k)u
>2Kd211(1/2e)Re@12zD̂(k)# for high d, when p5pc , uniformly in uzu,1, and kP
@2p,p#d.

By ~2.9!, P̂1(0)51, and henceF̂z(k)5P̂1(0)2P̂z(k). We write this asF̂z(k)5A11A2 ,
with A1 andA2 defined by

A15pc (
~0,v !

@^I @E09~0,0,v !#&12^I @E09~0,0,v !#&ze
ik•v#, ~5.44!

A25pc (
~u,v !:uÞ0

@^I @E09~0,u,v !#&12^I @E09~0,u,v !#&ze
ik•v#1 (

n51

`

@P̂1
~n!~0!2P̂z

~n!~k!#.

~5.45!

The first term on the right-hand side of~5.45! is O(d21) by Lemma I.3.4 and~1.39!, as

follows. In the notation of Lemma I.3.4, this term isF̂0
(01)(k)2F̂h

(01)(k), which is bounded above
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in absolute value byuF̂0
(01)(k)u1uF̂h

(01)(k)u. Thez-dependence of the second term is dominated
its value whenz5e2h51, and the bound of Lemma I.3.4 is easily seen to beO(d21), so that

uF̂0
(01)(k)u1uF̂h

(01)(k)u<O(d21). Therefore, by Lemma 5.1,

uA2u<O~d21!1 (
n51

`

O~d2n!5O~d21!. ~5.46!

The main termA1 is, by definition, given by

A15pc (
~0,v !

(
n51

`

^I @ uC̃$0,v%~0!u5n#&b~12zneik•v!. ~5.47!

First we bounduA1u below by ReA1. Since Re(12zneik•v)>0, we obtain a further lower bound b
discarding the termsn>2. The result is

uA1u>ReA1>pc (
~0,v !

P~ uC̃$0,v%~0!u51!Re@12zeik•v#52 dpc~12pc!
2d21 Re@12zD̂~k!#.

~5.48!

By ~1.39!, 2 dpc(12pc)
2d21>1/2e. Combined with ~5.48! and ~5.46!, this proves

Lemma 2.2. j

6. THE z-DERIVATIVE OF Pz : THE SECOND EXPANSION

The quantitiesGz andCz were defined in~2.6!–~2.7! to obey, forzP@0,1),

z
d

dz
gz~0,x!5xzGz~0,x!, z

d

dz
Pz~0,x!5xzCz~0,x!. ~6.1!

In addition,~3.11!–~3.12! require that we identify functionsGzW
(3) andCzW

(3) which obey

zy

]

]zy
gzW~0,x!5(

v
GzW

~3!~0,x,v !tzW ~v,y!, zy

]

]zy
PzW~0,x!5(

v
CzW

~3!~0,x,v !tzW~v,y!. ~6.2!

BecausegzW andPzW are almost identical, we consider onlyPzW andCzW explicitly. A similar analysis
will apply for gzW andGzW .

In this section, we will derive an expression forCzW
(3)(0,x,v). This will also provide an

expression forCz(0,x). In fact, using~6.1! and ~6.2!, it follows by summing overy and setting
zy[z that

(
y

zy

]

]zy
PzW~0,x!U

zy5z

5z
d

dz
Pz~0,x!5xzCz~0,x!5xz(

a
Cz

~3!~0,x,a!. ~6.3!

Therefore,

Cz~0,x!5(
a

Cz
~3!~0,x,a!, Ĉz~k!5Ĉz

~3!~k,0!. ~6.4!

In particular, this yields the claim in Lemma 3.1~i! that Ĉz
(3)(0,0)5Ĉz(0).

The quantitiesG andC will be defined by means of a second expansion, as in the diffe
tiation of Fz in Sec. I.5. However, in the differentiation ofFz the second expansion was pe
formed using the one-M scheme, whereas here we will employ the more extensive expansio
Sec. 4. Throughout this section, we considerzuP@0,a# with a,1, and we fixp5pc .
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6.1. The differentiation

In this section, we will derive an expression for the derivatives ofP in ~6.1! and ~6.2!. To
differentiatePzW(0,x), we recall from~4.44! that this is given as the sum overN of

PzW
~N!~0,x!5~21!Npc(

uN

E0I @E09#E1X19¯EN21XN219 ENXN9 ~N50,1,2,...!. ~6.5!

Here the nested expectations are performed from right to left,Xn95I @E19(vn21 ,un ,vn ;C̃n21)#

2I @E29(vn21 ,un ,vn ;C̃n21)#, summationspc( (u0 ,v0)¯pc( (uN21 ,vN21) are tacitly understood on
the right-hand side, and we writeE in place of^•& to denote a joint bond/site expectation. Ther
fore, PzW

(N)(0,x) is given by a sum of 2N terms involving

E0I @E09#E1I @Es1
9 #¯EN21I @EsN21

9 #ENI @EsN
9 #, ~6.6!

with eachsn equal to 1 or 2.
Before proceeding further, we recall an observation from Example I.4.5 that will be

repeatedly in what follows. By the definition of ‘‘occurs onC̃’’ in Definition 4.2~c!, an expecta-
tion involving Es9 can be written as aconditional expectation ofEs8 (vn21 ,un ;A), under the
condition that$un ,vn% is vacant. We will writeẼ or ^•&; for this conditional expectation. In th
conditional expectations, we may replaceEs9 events byEs8 , and we may drop the tilde from
C̃n

$un ,vn%(vn21), since Cn5Cn(vn21) is then equal toC̃n
$un ,vn%(vn21). Therefore~6.6! can be

rewritten as

E0I @E09#¯En21I @Esn21
9 #ẼnI @Esn

8 #Ẽn11I @Esn11
8 #En12I @Esn12

9 #¯ENI @EsN
9 #. ~6.7!

Our goal is to differentiate~6.7! with respect tozy . Its zy-dependence resides in th
zy-dependence of each of the nested expectations. For any individual expectation, the form
dependence is different fors51 ands52, and can easily be given explicitly with the help of th
clustersY1,Y2,Y3 depicted in Fig. 2. By definition,Y2 and Y3 are disjoint. To simplify the
notation, given a finite setY,Zd, we will write

zY5 )
uPY

zu . ~6.8!

The z-dependence of an expectation involvingE18 is zY1
, and that of an expectation involvingE28

is zY2
(12zY3

). The overallz-dependence of the nested expectation is thus a product of
factors, and the differentiation can be performed using the product rule, with one term arising
differentiation of thez-dependence associated with each of theN11 expectations. Each of the 2N

terms~6.7! thus gives rise, after application ofzy(]/]zy), to N11 terms of the form

E0I @E09#¯En21I @Esn21
9 #zy

]

]zy
ẼnI @Esn

8 #Ẽn11I @Esn11
8 #En12I @Esn12

9 #¯ENI @EsN
9 #, ~6.9!

with only thez-dependence of thenth expectation being differentiated. The casen50 involves no
new difficulties compared to the other values ofn, and will not be discussed explicitly in wha
follows.

WhenEsn
8 5E18 , differentiation gives

zy

]

]zy
zY1

5I @yPY1#zY1
, ~6.10!

while for E28 , differentiation gives
                                                                                                                



n. This
nsion
cond
ec. 7.

on.

r

e

1281J. Math. Phys., Vol. 41, No. 3, March 2000 The scaling limit of the incipient infinite . . .

                    
zy

]

]zy
zY2

~12zY3
!5I @yPY2#zY2

~12zY3
!2I @yPY3#zY2

zY3
. ~6.11!

The factorsI @yPY# appearing in the above entail a connection toy within the nth expectation.
We wish to ‘‘cut off’’ this connection at a suitable pivotal bond (a8,a), to extract a factortzW(a,x)
from ~6.9!. However, to do so requires dealing with the fact that this connection toy is not an
independent event, and we handle this by means of a second application of the expansio
second application of the expansion is in principle similar to the first application of the expa
in Sec. 4, but in practice it is more technical and complicated. The derivation of the se
expansion will be completed in Sec. 6.3. The second expansion will then be bounded in S
The analysis is similar to that of Sec. I.5.

After differentiation of thenth expectation, three possibilities occur for this expectati
Whensn51, thenth expectation contains

I @E18#I @yPY1#. ~6.12!

Whensn52, two terms result. The first term on the right-hand side of~6.11! produces

I @E28#I @yPY2#. ~6.13!

The second term on the right-hand side of~6.11! produces~with a minus sign!

I @E38#I @yPY3#, ~6.14!

for a new eventE38(vn21 ,un ;Cn21) which is defined as follows. LetSdenote the last sausage fo
the connection fromvn21 to un . Then

E38(vn21 ,un ;Cn21) is the intersection of the events:~i! vn21↔unPZd\Cn21 , ~ii ! SùG

50” , ~iii ! SùCn21ù0” ~i.e.,Y3 is not empty!, and~iv! if 'gP(C(vn21)\S)ùG, thenvn21 ↔
Cn21

g.
The eventE38 was depicted in Fig. 2. This unifies~6.12!–~6.14! and allows us to write~6.9! as

a sum of terms of the form

E0I @E09#¯En21I @Esn21
9 #ẼnI @En8#I @yPYn#Ẽn11I @Esn21

8 #En12I @Esn12
9 #¯ENI @EsN

9 # ~n51,2,3!.

~6.15!

6.2. The cutting lemma

Our task is to perform an expansion to cutoff a factor oftzW(a,y) corresponding to the
connection toyPYn in ~6.15!. This requires the identification of a ‘‘cutting bond,’’ where th
connection toy will be severed. We wish to cutoff aG-free connection toy, which will be possible
since by definitionYnùG50” for n51,2,3.

We begin by narrowing the focus in~6.15! to the two relevant expectations

¯ẼnI @En8#I @yPYn#Ẽn11I @Esn11
8 #¯ ~n51,2,3;sn1151,2!. ~6.16!

Note that the event$yPYn% only makes sense when it occurs in conjunction with the eventEn8 .
The (n11)st expectation is relevant, becauseEsn11

8 depends on the clusterCn . We apply Fubi-

ni’s theorem to interchange thenth and (n11)st bond/site expectations, to write~6.16! as

¯Ẽn11ẼnI @En8#I @yPYn#I @Esn11
8 #¯ . ~6.17!

We will work within the expectationẼn , regarding the clusters of levels 0,...,n21 andn11 as
being fixed.

The eventEsn11
8 can be decomposed as an intersection of events on levelsn andn11, as
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Esn11
8 ~vn ,un11 ;Cn!n115Esn11,0~vn ,un11!n11ùJcut

~sn11!
~Cn11!n , ~6.18!

where we have introduced an eventEsn11,0
which ensures thatCn11 contains certain bond con

nections and an eventJcut
(sn11)(Cn11)n which forcesCn to be compatible withCn11 . More pre-

cisely, the eventsEsn11,0
are defined by

E1,0~vn ,un11!n115$vn↔un11& C̃
n11
$un118 ,vn118 %

~un11!ùGn1150” %, ~6.19!

E2,0~vn ,un11!n115$vn↔un11& C̃
n11
$un118 ,vn118 %

~un11!ùGn11Þ0” %,

with (un118 ,vn118 ) the last pivotal bond for the level-(n11) connection fromvn to un11 . If there

is no such pivotal bond, thenC̃$un118 ,vn118 (un11) is to be interpreted asC(un11). The events
Jcut

(sn11)(Cn11)n are defined by

Jcut
~1!~Cn11!n5$Cn intersectsCn11 such that the level-~n11! connections satisfy:

~vn118 ⇔un11 through Cn!& ~vn↔un118 in Zd\Cn!

& ~ if 'gPC̃
n11
$un118 ,vn118 %

~vn!ùGn11 then vn118 ↔
Cn

g!%, ~6.20!

Jcut
~1!~Cn11!n5$Cn intersectsCn11 such that the level-~n11! connections satisfy:

~~un11↔
Cn

Gn11! in ~ last sausage ofvn↔un11!!& ~vn↔un11 in Zd\Cn!

& ~ if 'gPC̃
n11
$un118 ,vn118 %

~vn!ùGn11 then vn118 ↔
Cn

g!%. ~6.21!

If there is no pivotal bond (un118 ,vn118 ), then simply

Jcut
~1!~Cn11!n5$Cn intersectsCn11 such that the level-~n11! connections satisfy:

~vn118 ⇔un11 through Cn!%, ~6.22!

Jcut
~2!~Cn11!n5$Cn intersectsCn11 such that the level-~n11! connections satisfy:

~un11↔
Cn

Gn11!& ~vn↔un11 in Zd\Cn!%. ~6.23!

Thus we can rewrite~6.17! as

¯Ẽn11I @Esn11,0~vn ,un11!n11#ẼnI @En8#nI @yPYn#nI @Jcut
~sn11!

~Cn11!n#¯ . ~6.24!

Defining

Jn,sn11
~y!5En8~vn21 ,un ;Cn21!ù$yPYn%ùJcut

~sn11!
~Cn11!, ~6.25!

~6.24! can be rewritten as

¯Ẽn11I @Esn11,0~vn ,un11!n11#ẼnI @Jn,sn11
~y!n#¯ . ~6.26!

We now choose the ‘‘cutting bond’’ (a8,a). We recall the existence of an ordering of th
pivotal bonds for the connection from a site to a set of sites, as defined in Definition 4.1~d!. The
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cutting bond is defined to be the last pivotal bond (a8,a) for the connection y
→$vn21 ,un%øCn11øCn21 . It is possible that no such pivotal bond exists, and in that case
expansion will be required.~See Fig. 3.!

In choosing the cutting bond, we require it to be pivotal for$vn21 ,un% to preserve~on thea
side of the clusterCn! the backbone structure of the clusterCn which is required by
En8(vn21 ,un ;Cn21). We require the cutting bond to be pivotal forCn11 to ensure that we do no
cut off as a tail something which may be needed to ensure that the last sausage ofCn11 is
connected throughCn , or that a previous sausage ofCn11 is connected toGn11 throughCn .
Finally, we require the cutting bond to be pivotal for the connection toCn21 because connection
to G must pass throughCn21 and hence this realizes our goal to cut off aG-free connection toy.
The above choice of the cutting bond is simpler than that of Sec. I.5.3. We do not expe
choice here to allow for dimensions neard56 to be handled, but it will simplify our analysis.

Recall the definition ofC̃(a,a8)(A) given in Definition 4.1~b!. We now define several event
depending ony, vn21 , un , Cn21 , Cn11 , but to simplify the notation we make only th
y-dependence explicit in the notation. We also make the abbreviation

An5$vn21 ,un%øCn11øCn21 . ~6.27!

Let

Jn,sn11
8 ~y!n5Jn,sn11

~y!nù$y⇔An%, ~6.28!

Jn,sn11
9 ~a,a8!n5$Jn,sn11

8 ~a!n occurs on C̃n
$a,a8%~An!%, ~6.29!

Jn,sn11
~a,a8,y!n5Jn,sn11

~y!nù$~a8,a! is the last occupied pivotal bond fory→An%.
~6.30!

The overall level-n eventJn,sn11
(y)n can be written as the disjoint union

Jn,sn11
~y!n5Jn,sn11

8 ~y!nø̇S ø̇ Jn,sn11
~a,a8,y!nD . ~6.31!

FIG. 3. Two examples of the choice of cutting bond (a8,a). Solid lines representCn , dashed lines representCn21 ,
and bold dashed lines representCn11 .
~a,a8!

                                                                                                                



nd

tal

rtant

minor

rather
ote that

oint

1284 J. Math. Phys., Vol. 41, No. 3, March 2000 T. Hara and G. Slade

                    
In ~6.31!, configurations inJn,sn11
(y)n have been classified according to the last pivotal bo

(a8,a). The appearance ofJn,sn11
8 corresponds to the possibility that there is no such pivo

bond. For the configurations in which there is a pivotal bond, we will use the following impo
lemma.

Lemma 6.1: Forn51, 2, 3and sn1151,2,

Jn,sn11
~a,a8,y!n5Jn,sn11

9 ~a,a8!nù$~y↔a8& y↔” G! occurs in Zd\C̃n
$a,a8%~An!%

ù$$a,a8% is occupied%. ~6.32!

Before proving the lemma, we note that together with~6.31! and Lemma 4.3 it implies the
identity

^I @Jn,sn11
~y!n#&n

;5^I @Jn,sn11
8 ~y!n#&n

;1p (
~a,a8!

^I @Jn,sn11
9 ~a,a8!n#t

zW
C̃n

$a,a8%~An!
~a8,y!&n

˜ .

~6.33!

This will be the point of departure for the second expansion. We have actually employed a
modification of Lemma 4.3 to the conditional expectation^•&˜ , and initially the restricted two-
point function appearing in the above equation should be with respect to the conditional,
than the usual expectation. However, there is no difference between the two. To see this, n

the event thata8↔y in Zd\C̃n
$a,a8%(An) is independent of the bond$un ,vn%, since this bond

touches the setC̃n
$a,a8%(An). Therefore either expectation can be used for the restricted two-p

function, and for simplicity, we will use the ordinary unconditional expectation.
Proof of Lemma 6.1:To abbreviate the notation, we define

Epiv5$~a8,a! is pivotal for y→An%. ~6.34!

We will show below that

Jn,sn11
~a,a8,y!n5$Jn,sn11

~a!n occurs on C̃n
$a,a8%~An!%

ù$~y↔a8& y↔” G! occurs in Zd\C̃n
$a,a8%~An!%

ù$$a,a8% is occupied %ùEpiv . ~6.35!

By Lemma 4.4,Epiv5$a↔An occurs onC̃n
$a,a8%(An)%ù$y↔a8 in Zd\C̃n

$a,a8%(An)%. Thus~6.35! is
equivalent to

Jn,sn11
~a,a8,y!n5$Jn,sn11

~a!n occurs on C̃n
$a,a8%~An!%ù$$a,a8% is occupied%

ù$~y↔a8& y↔” G! occurs in Zd\C̃n
$a,a8%~An!%, ~6.36!

which is the desired identity~6.32!.
It remains to prove~6.35!. By definition ofJn,sn11

(a,a8,y)n ,

Jn,sn11
~a,a8,y!n5$$a,a8% is occupied%ùJn,sn11

~y!nù$a⇔An%ùEpiv . ~6.37!

Combining~6.37! and ~6.25!, we have

Jn,sn11
~a,a8,y!n5$$a,a8% is occupied%ù$yPYn%ùEn8~vn21 ,un ;Cn21!n

ùJcut
~sn11!

~Cn11!nù$a⇔An%ùEpiv . ~6.38!
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To see that this can be written in the form~6.35!, we will analyze the various events in the abo
expression.

First, we claim that

Jcut
~sn11!

~Cn11!nùEpiv5$Jcut
~sn11!

~Cn11!n occurs on C̃n
$a,a8%~An!%ùEpiv . ~6.39!

In fact, if the left side occurs, then the right side occurs because (a8,a) is pivotal for the connec-
tion y→Cn11 ~sinceEpiv occurs! and hence allCn’s intersections withCn11 are independent o
bonds not touchingC̃$a,a8%(A). Conversely, the right side is contained in the left side for the sa
reason.

Next, we claim that

$a⇔An%ùEpiv5$a⇔An occurs on C̃n
$a,a8%~An!%ùEpiv . ~6.40!

In fact, because$a⇔An% is increasing, the right side is contained in the left side. Conversely

a configuration on the left side, it must be the case that$a⇔An occurs onC̃n
$a,a8%(a)%, and since

C̃n
$a,a8%(a),C̃n

$a,a8%(An), the right side occurs.
Finally, we will prove that

En8~vn21 ,un ;Cn21!nù$yPYn%ùEpivù$$a,a8% is occupied%

5$En8~vn21 ,un ;Cn21! occurs on C̃n
$a,a8%~An!%ù$y↔” G in Zd\C̃n

$a,a8%~An!%

ù$y↔a8 in Zd\C̃n
$a,a8%~An!%ù$aPYn occurs on C̃n

$a,a8%~An!%

ù$$a,a8% is occupied%. ~6.41!

The eventJn,sn11
(a,a8,y)n is the intersection of the events occurring on the left sides of~6.39!,

~6.40! and~6.41!. Therefore it is the intersection of the events occurring on the right sides of t
equations. By~6.25! and ~6.28!–~6.29!, a rearrangement of these right side events then g
~6.35! and completes the proof. It remains to prove~6.41!.

In preparation for this, we first observe that

$y↔vn21%ùEpiv5$y↔a8%ù$$a,a8% is occoupied%

ù$a↔vn21 occurs on C̃n
$a,a8%~An!%ùEpiv . ~6.42!

In fact, the right side is clearly contained in the left side. Conversely, for a configuration on th
side, sincevn21PAn , the bond (a8,a) must also be pivotal fory↔vn21 , and this implies that

$y↔a8%, that $a8,a% is occupied, and thata↔v occurs on C̃n
$a,a8%(vn21). Since

C̃n
$a,a8%(vn21),C̃n

$a,a8%(An), this implies $a↔vn21 occurs onC̃n
$a,a8%(An)%. This proves~6.42!.

Now, by Lemma 4.4,Epiv is the intersection of the events$y↔a8 occurs inZd\C̃n
$a,a8%(An)% and

$a↔An occurs onC̃n
$a,a8%(An)%, and hence it follows from~6.42! that

$y↔vn21%ùEpiv5$$a,a8% is occupied%ù$a↔vn21 occurs on C̃n
$a,a8%~An!%

ù$y↔a8 occurs in Zd\C̃n
$a,a8%~An!%. ~6.43!

Returning to~6.41!, we first note that on the right-hand side of~6.41! we may add an inter-

section with $a↔vn21 occurs on C̃n
$a,a8%(An)% since this is a subset of$aPYn occurs on

C̃n
$a,a8%(An)%. Hence by~6.43!, ~6.41! is equivalent to
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En8~vn21 ,un ;Cn21!nù$yPYn%ùEpivù$$a,a8% is occupied%

5$~En8~vn21 ,un ;Cn21!ù$aPYn%! occurs on C̃n
$a,a8%~An!%

ù$y↔” G in Zd\C̃n
$a,a8%~An!%

ùEpivù$y↔vn21%ù$$a,a8% is occupied%. ~6.44!

To obtain~6.41!, it therefore suffices to prove~6.44!.
To prove~6.44!, we begin by supposing we have a configuration in the left side. To show

it is in the right side, it suffices to show that the first two events on the right-hand side mus

occur. For a configuration on the left side, we must haveaPYn occurs onC̃n
$a,a8%(a), and

thereforeaPYn occurs onC̃n
$a,a8%(An). Also, because (a8,a) is pivotal for y→Cn21 , it follows

that C̃n
$a8,a%(y)ùG50” . This in turn implies thaty↔” G in Zd\C̃n

$a,a8%(An). It remains to show that

$En8(vn21 ,un ;Cn21) occurs onC̃n
$a,a8%(An)%.

For this, consider firstn51. The connectionsvn8⇔un through Cn21 and vn21↔un8 in
Zd\Cn21 required byE18 are conditions on the backbone ofCn , which is not affected by turning

off all bonds not touchingC̃n
$a,a8%(An). Hence these connections occur onC̃n

$a,a8%(An). Also,
because (a8,a) is pivotal for y→G ~since connections toG are throughCn21,An!, the restric-
tions on connections toG imposed byE18 are unaffected by the status of bonds or sites

touching C̃n
$a8,a%(An). This implies $E18(vn21 ,un ;Cn21) occurs onC̃n

$a,a8%(An)%. The casesn
52,3 are similar. Therefore the left-hand side of~6.44! is contained in the right-hand side.

Conversely, given a configuration on the right-hand side of~6.44!, we need to show thatEn8
occurs and that yPYn. The fact that yPYn is a consequence of $a
PYn%ùEpivù$$a,a8% is occupied%. To see thatEn8 occurs, consider firstn51. Given that$E18

occurs onC̃n
$a,a8%(An)%, the only way thatE18 could fail to occur would be ifvn21↔un8 through

Cn21 , or if vn21↔G in Zd\Cn21 , or if it were not the case thatvn8⇔un throughCn21 , or if the
last sausage were connected toG. However, none of these connections can be made to occu

the connections present due to the eventy↔” G in Zd\C̃n
$a,a8%(An), on account ofEpiv . Similarly,

for n52 or n53, given that$En8 occurs onC̃n
$a,a8%(An)%, the pivotal nature of (a8,a) implies that

En8 occurs. The connections present due to the eventy↔” G in Zd\C̃n
$a,a8%(An) cannot prevent the

occurrence ofEn8 , on account ofEpiv .
This completes the proof of~6.44!, and hence of~6.41!. j

6.3. Definition of Cz¢
„3… : the second expansion

In this section, we derive an expression forCzW
(3)(0,x,a). As pointed out in~6.4!, we then have

Cz(0,x)5(aPZdCz
(3)(0,x,a). We begin with~6.26!, which gives

¯Ẽn11I @Esn11,0~vn ,un11!n11#ẼnI @Jn,sn11
~y!n#¯ ~6.45!

as a typical term arising in the derivative ofPzW . Using ~6.33!, we can rewrite the above expre
sion as

¯Ẽn11I @Esn11,0~vn ,un11!n11#ẼnI @Jn,sn11
8 ~y!n#¯

1pc (
~un,0 ,vn,0!

¯Ẽn11I @Esn11,0~vn ,un11!n11#ẼnI @Jn,sn11
9 ~un,0 ,vn,0!n#t

zW
C̃$un,0 ,vn,0%~An!

~vn,0 ,y!¯ .

~6.46!

The main term here is the second term, and we proceed just as in the derivation of th
expansion in Sec. 4. For this, we introduce the abbreviations
                                                                                                                



of

can be
lt into
f the

in

int

1287J. Math. Phys., Vol. 41, No. 3, March 2000 The scaling limit of the incipient infinite . . .

                    
C̃n,05C̃n
$un,0vn,0%~An!, ~6.47!

C̃n,m5C̃n,m
$un,m ,vn,m%

~un,m21! ~m>1!, ~6.48!

and, form>1,

Xn,m5I @E1~vn,m21 ,y;C̃n,m21!#2I @E2~vn,m21 ,y;C̃n,m21!#, ~6.49!

Xn,m8 5I @E18~vn,m21,y;C̃n,m21!#2I @E28~vn,m21 ,y;C̃n,m21!#, ~6.50!

Xn,m9 5I @E19~vn,m21 ,un,m ,vn,m ;C̃n21,m!#2I @E29~vn,m21 ,un,m ,vn,m ;C̃n21,m!#. ~6.51!

The bonds$un,m ,vn,m%(m>0) correspond to the successive ‘‘cutting bonds’’ in the derivation
the expansion. Then we use~4.38!, which gives

t
zW
C̃n,0~vn,0 ,y!5tzW~vn,0 ,y!2En,1Xn,1 . ~6.52!

The second term on the right-hand side is treated iteratively by employing~4.39!, to obtain

tC5t2En,1Xn,18 2En,1Xn,19 t1En,1Xn,19 En,2Xn,2

5t2En,1Xn,18 2En,1Xn,19 t1En,1Xn,19 En,2Xn,28 1En,1Xn,19 En,2Xn,29 t

2En,1Xn,19 En,2Xn,29 En,3Xn,3 , ~6.53!

and so on. It will be a consequence of bounds we obtain subsequently that this iteration
carried on indefinitely to obtain an infinite series on the right side. We then insert the resu
~6.46!. This leads to two kinds of terms. The main terms are those ending with a factor o
two-point functiont, and a secondary group of terms contain no factort and have a singly primed
event in their last expectationEn,M .

Thus we obtain an identity

zy

]

]zy
PzW~0,x!5 (

aPZd
CzY

~3!~0,x,a!tzW~a,y! ~6.54!

in which CzW
(3)(0,x,a) consists of two kinds of terms. The main terms are of the form

CzW
aY ~0,x,a!5E0I @E09#E1I @Es1

9 #¯En21I @Esn21
9 #Ẽn11I @Esn11,0#

3@ ẼnI @Jn,sn11
9 #En,1I @Esn,1

9 #¯En,MI @Esn,M
9 ##En12I @Esn12

9 #¯ENI @EsN
9 #,

~6.55!

for N>1, M>0. HenceaW represents the dependence onN, M, n, as well asn and thes j . The
number of possible values forn, n and thes’s is bounded by a constant to the powerN1M and
is no source of concern. The variablex is equal to the variablevN associated withEsN

9 , while a

is the variableun,M associated withEsn ,M9 . The secondary terms are of similar form, but conta

also a factorda,y , wherea5un,M . This Kronecker delta neutralizes the effect of the two-po
function tz(a,y), so that no factorxz arises when~6.54! is summed overy. We will concentrate
in the remainder of the paper on~6.55!, since the other terms involve no new ideas.
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7. BOUNDS ON Cz
„3… : PROOF OF LEMMAS 2.3 „i… AND 3.1„i…

In this section, we prove Lemmas 2.3~i! and 3.1~i!. These two lemmas involve bounds on bo
G andC, but because these two quantities are almost identical and can be treated using th
methods, we discuss only the bounds onC. Throughout the section, we fixp5pc and take the
dimensiond to be large.

To prove the upper bounds of Lemma 3.1~i!, it is sufficient to obtain bounds on
(x,yiCz

(3)(0,x,y)i and on similar sums involving an additional factoruxu2 or uyu2 under the
summation, with these bounds uniform in complexz with uzu,1. We will obtain such bounds

uniform also in highd. The uniformity in z permits the extension ofĈz
(3)(k,l ) to uzu51, by

continuity. The cases withuxu2 or uyu2 can be handled in the same way as when these factors
not present~at the cost of requiring higher dimension!, and for simplicity we will only discuss the
bound on(x,yiCz

(3)(0,x,y)i in what follows. In view of~6.4!, having such bounds uniform ind

then implies the upper bounds of Lemma 2.3~i!. Also by ~6.4!, the identityĈz
(3)(0,0)5Ĉz(0)

follows. This will complete the proof of Lemma 3.1~i!. We will then complete the proof of Lemm

2.3~i! by showing thatĈ1(0)5K11K2 , whereK1 andK2 are the constants of Propositions I.5

and I.5.2. These two propositions then imply that limd→` Ĉ1(0)51, which implies the lower

bound onĈ1(0) of Lemma 2.3~i!.
To obtain the required bound on(x,yiCz

(3)(0,x,y)i , it suffices to obtain a bound on th
summed norm of~6.55!, namely(x,yiCzW

aW (0,x,y)i , of the formcN1Md2(N1M ) with c independent
of d. The norm is handled exactly as in the proof of Lemma 5.1. In that proof, thez-dependence
of an expectation involving anE1 event was noted to be of the formzuY1u, while that of anE2

event was written in the form (12zuY3u)zuY2u5zuY2u2zuY2u1uY3u. However, before using this equa
ity, we insert a factorI @Y3Þ0” # to ensure that important bond connections are not lost—this le
the condition (last sausage ofv→x)↔A in ~5.16!. Explicitly, for s51,2 the bond connection
within the eventEs(vk21 ,uk ,vk ;A) are included in the event

$'wPA:~vk21↔uk!+~uk↔w!%. ~7.1!

Analogous expressions can be written for thez-dependence of the expectation involving the ev
Jn,sn11
9 . We then multiply out all thesez-dependent factors and bound the resulting sum term

term, settingz51 for an upper bound. This introduces a harmless factor 2N1M in the bounds. We
are left with bounding a nested bond expectation.

To bound such a nested expectation, we proceed as in Sec. I.5, although here there
simplification that we are content to obtain bounds valid in sufficiently high dimensions, r
than for alld.6, and we can therefore employ diagrams having higher critical dimension th
such as the square diagram. For a discussion of the notion of the critical dimension of a dia
as well as general power counting techniques for bounding diagrams, see Appendix I.A. W
make use of the constructions and terminology of Appendix I.A in what follows.

As a very rough bound on a contribution toiCzW
aW (0,x,y)i , after having dealt with the

z-dependence as outlined above, we can bound all the nested expectations at levels-~n, 1! to ~n, M!
of ~6.55! by 1. Glancing at~6.18!–~6.21! and~6.25!, it is apparent that the important connectio
that were originally present in the eventsEn8 andEsn11

8 remain present. Thus a crude upper bou

would be to use the diagrams employed to boundP̂z(0,x) also for Cz
(3)(0,x,y). However, this

crude bound is completely inadequate, as a sum overyPZd will lead to a divergent volume factor
We require better bounds, summable iny.

For this, we examine the additional bond connections that are required to be present b
Jn,sn11
9 and by the events occurring at levels-(n,1) to ~n,M!. First we note thatJn,sn11

9 additionally

requires the existence of disjoint connections fromun,0 to the setAn . For the caseM50, we
would haveun,05y. Diagrammatically, we would therefore have an additional pair of lines, w
one leading fromy to level-n and another leading to somewhere on levels-(n21), n, or (n11).
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In the worst case, this will correspond to two applications of construction 1 and one applicat

construction 2 of Appendix I. A, applied to a diagram boundingP̂z , and hence leads to
convergent diagram in sufficiently high dimensions. Explicitly, the line fromy to level-n termi-
nates at an additional vertex on a level-n line. Also, a connection fromy to level-(n21) ~say!
entails a level-n path fromy to some~new! vertex on level-(n21), which itself would be con-
nected generically within level-(n21) to the previously existing level-(n21) lines by a new line
joined to a new vertex. Overall, these three new lines plus three new vertices corresp
construction 1 followed by construction 2 followed by construction 1.

The caseM>1 can be handled in a similar fashion. The event at level-(n,1) is special, due to
the definition ofC̃n,0 . We use~7.1! as our upper bound, but hereA5C̃n,05C̃n,0

$un,0,vn,0%(An). This

implies disjoint connections$un,1↔vn,0%+$vn,0↔w%, with wPC̃n,0
$un,0 ,vn,0%(An). This latter connec-

tion can be bounded by a level-n connection fromw to somew8 lying on one of the diagrammatic
lines corresponding to level-(n21), n, or (n11). This corresponds to performing construction
followed by two applications of construction 1.

For M.1, the connections at levels-~n,m! for 2<m<M lead to connections like those en
countered in the diagrammatic estimates onP, and there is nothing new to comment on. A typic
diagram forN54 andM52, which would arise in bounding

E0I @E09#E1I @Es1
9 #Ẽ3I @Es3,0#@ Ẽ2I @Jn,s3

9 #E2,1I @Es2,1
9 #E2,2I @Es2,2

9 ##E4I @Es4
9 #, ~7.2!

is

In the diagram, thick lines are used for connections arising from expectations at levels-0
~2,2!, and thin lines are used for levels-1, 3,~2,1!. Standard diagrammatic estimates then lead t
bound of the required formcN1Md2(N1M ) in the general case, withc independent ofd. For
example , the sum overx,y of the above diagram can be bounded by a product of two triang
two squares and two pentagons, all of which areO(d21) due to the presence of pivotal bond
times a product of twoO(1) triangles from the two loops without pivotal bonds. There
combinatorial factors associated with the number of ways that diagrams can be drawn, bu
can be absorbed into the constantCN1M.

Finally, we come to the proof thatĈ1(0)5K11K2 , whereK1 andK2 are the constants o

Propositions I.5.1 and I.5.2. For this, we first note thatĈz(0)5Ĉ1(0)1oz(1), by dominated
convergence. Multiplying this equation byz21xz and then integrating with respect toz over the
interval @z,1# gives

12P̂z~0!5Ĉ1~0!Mz@11oz~1!#, ~7.3!

which in turn gives

t̂z~0!5
ĝz~0!

12P̂z~0!
5

ĝ1~0!

Ĉ1~0!Mz

@11oz~1!#. ~7.4!
                                                                                                                



e

s

ion

o
spirit

ng the

l
ose
r the
’s

now
esired
t-the-

th one

event
iffer-

1290 J. Math. Phys., Vol. 41, No. 3, March 2000 T. Hara and G. Slade

                    
Comparing with~I.5.7!, and usingĝ1(0)5f̂h50(0), weconclude thatĈ1(0)5K11K2 .

8. BOUNDS ON „d Õdz …Cz
„3… : PROOF OF LEMMAS 2.3 „ii … AND 3.1„ii …

Throughout this section, we fixp5pc and take the dimensiond to be large. We will focus on
bounding thez-derivative ofC and omit any discussion ofG, which can be handled with the sam
methods. We will prove the bound

i
d

dz
Ĉz,pc

~3! ~k,l !i<Kx uzu~pc!, uzu,1 ~8.1!

of Lemma 3.1~ii !, with K independent ofd. In view of ~6.4!, the bound of Lemma 2.3~ii ! then
follows immediately.

We focus our discussion on thez-derivative ofCz
aW (0,x,y) of ~6.55!. The z-dependence of

Cz
aW (0,x,y) resides in thez-dependence of each of the~doubly! nested expectations involved in it

definition. To differentiate, we apply Leibniz’s rule as we did in the differentiation ofP. This
leads to a sum overl , with the derivative applied to thel th expectation, wherel 51,...,n
21,n11,n,(n,1),...,(n,M ),n12,...N. In each case, the derivative is applied to an express
involving zuQu for some cluster of sitesQ, and again this will lead to a factoruQuzuQu

5(wPZdI @wPQ#zuQu. Diagrammatically, this corresponds to aG-free ‘‘tail’’ leading from a new
vertex on the diagram corresponding toCz

aW (0,x,y) to the sitew. This time, there is no need t
perform an expansion to cut off this tail, and a bound will suffice. The procedure is similar in
to that used in the proof of Lemma 5.2. The tail will give rise to the factorx uzu of ~8.1!. The
remaining diagram gives rise to the constant, after summation over the variables inaW , including
summation overN,M.

Although conceptually straightforward, the complicated nature of the definition ofCz
aW (0,x,y)

makes a detailed proof quite lengthy. We therefore content ourselves here with describi
salient features only, omitting most details. We will consider the following cases in turn:~i! l

P$0,...,n22,(n,2),...,(n,M ),n12,...,N%, ~ii ! l 5(n,1), ~iii ! l 5n21, ~iv! l P$n,n11%.
Case(i): l P$0,...,n22,(n,2),...,(n,M ),n12,...N%

When thez-derivative is applied to the expectation at one of these levelsl , prior to differentiation
thez-dependence is identical to that encountered in Sec. 6.1 for thez-dependence of a typical leve
of the nested expectations inPz . We perform the differentiation exactly as in Sec. 6.1, and cho
the cutting bond in the same way we did in Sec. 6.2, namely the last pivotal bond fo
connection fromw to $v l 21 ,ul %øCl 21øCl 11 . This choice requires an application of Fubini
theorem to interchange the expectations at levels-l andl 11. For thel ’s being considered, there
is no interference from the expectations that were modified at levels-n andn11 by the previous
differentiation, and the two differentations do not interfere with each other. There is no need
to perform an expansion, as our goal is a bound rather than an identity. To obtain the d
bound, we will use the cut-the-tail Lemma 5.3. This requires treatment of two issues: the cu
tail lemma applies only to increasing events, and we are dealing here with complexz and must
take the norm.

We first discuss the issue of the norm. We proceed exactly as described in Sec. 7, wi
exception. The exception is that we retain the factoruzu uQu in bounding the factoruQuuzu uQu

5(wPZdI @wPQ#uzu uQu described above. We choose a cutting bond (b,b8) exactly as was done in
differentiatingP in Sec. 6.2. LetT denote the ‘‘tail,’’ i.e., the subset ofQ which is on thew side
of the cutting bond. We then use the estimateuzu uQu<uzu uTu, which is then the overallz-dependence
of the upper bound. Thisz-dependence will allow us to cut off a factort uzu(b8,w).

To apply the cut-the-tail Lemma 5.3, we proceed as in Sec. 7 and obtain an increasing
by demanding only that certain bond connections occur. To illustrate, a diagram arising in d
entiating the level-4 expectation of~7.2! is
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~There are other possible topologies, but they can be handled similarly.! The diagram line termi-
nating atw corresponds to a factort uzu(b8,w). Summation overw leads to a factorx uzu . The
remaining diagram can be bounded by anO(1) triangle times the diagram encountered previou
in Sec. 7 with an additional added vertex. The added vertex makes no difference, sinced is large.
In this way, all diagrams arising in case~i! can be handled.

Case (ii): l 5(n,1). This case is identical to case~i!, apart from the fact that the setC̃n,0 is of
a different form. However, this is irrelevant for the differentiation and the procedure is as in
~i!. An example of a diagram contributing to the derivative of the expectation at level-~2, 1! of
~7.2! is

and the methods of case~i! apply.
Case (iii): l 5n21. In differentiating the expectation at level-(n21), thez-dependence is the

same as inPz , and the differentiation proceeds as in Sec. 6.1. To choose the cutting bon
interchange expectations using Fubini’s theorem, but because of the interchange of the e
tions at levels-n andn11 already performed in~7.2!, we interchange expectations twice to put t
expectations in the orderẼn11ẼnẼn21 . Then the choice of cutting bond is as in Sec. 6.2, nam
we choose the last pivotal bond for the connection fromw to $vn22 ,un21%øCn22øCn . Then the
methods of case~i! apply.

Case (iv):l P$n,n11%. To prepare for the case where the differentiation falls on level-n or
level-(n11), we write~6.55! in the form

CzY
aY ~0,x,a!5E0I @E09#E1I @Es1

9 #¯En21I @Esn21
9 #Ẽn11I @Esn11,0#

3@ Ẽ̃nI @Jn,sn11
8 #Ẽn,1I @Esn,1

8 #En,2I @Esn,2
9 #¯En,MI @Esn,M

9 ##

3Ẽn12I @Esn12
8 #En13I @Esn13

9 #¯ENI @EsN
9 #, ~8.2!

where the additional tilde at level-n denotes the expectation conditional also on$u0 ,v0% being
vacant. By~6.18!, ~6.25! and ~6.28!,

Esn11,0ùJn,sn11
8 5Esn11

8 ùEn8ù$yPYn%ù$y⇔An%. ~8.3!
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This entails the usualz-dependence at level-n11, while at level-n thez-dependence is as usual fo
n51,2 and iszuY1u for n53. We can then differentiate without difficulty.

We must then choose the cutting bond. When the differentiation has fallen on level-n, we
apply Fubini as before to interchange the expectations at levels-n and (n,1). We then choose the
cutting bond as the last pivotal bond for the connection fromw to
$vn21 ,un%øCn21øCn11øC(n,1) , and the bound proceeds as in the previous cases.

When the differentiation has fallen on level-(n11), we apply Fubini as usual to moveẼn12

to the left ofẼn11 . We would like also to move the level-n expectation to the left ofEn11 , so as
to have the bond configuration at level-n fixed for the definition of the cutting bond. To accom
plish this, some care is needed with the event$y⇔An%, which cannot be moved to the left ofEn11

because it involvesCn11 . However, given the configurations at levelsn21 andn, we can write
this event as the level-(n11) event that the bond connections ofCn11 are such thaty⇔An .
Having done so, we can define the cutting bond as the last pivotal bond for the connection
w to $vn ,un11%øCnøCn12 . The bound then proceeds as in the previous cases.
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On the effect of adding e-Bernoulli percolation
to everywhere percolating subgraphs of Zd

Itai Benjamini,a) Olle Häggström,b) and Oded Schrammc)
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Gothenburg, Sweden; and Microsoft Corporation, Redmond, Washington 98052
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We show that addinge-Bernoulli percolation to an everywhere percolating sub-
graph ofZ2 results in a graph which has large scale geometry similar to that of
supercritical Bernoulli percolation, in various specific senses. We conjecture simi-
lar behavior in higher dimensions. ©2000 American Institute of Physics.
@S0022-2488~00!01603-0#

I. INTRODUCTION

A subsetX of the edges of the standardd-dimensional cubic latticeZd is said to bepercolating
everywhereif every vertex ofZd is contained in an infinite connected component ofX. Examples
of such subgraphs are the horizontal lines, and spanning forests. In this note we study the e
adding small noise to the geometry of such subgraphs ofZd. We will argue that ifX is percolating
everywhere, then addinge-Bernoulli percolation acts as a unifying operation on the geome
structure of the subgraph; see Conjecture 1.2 and Theorem 1.3 below. By ‘‘addinge-Bernoulli
percolation,’’ we mean that each edge that is not inX, is added independently with probabilitye.

So far, we can prove our conjectures only in dimension two. Our proofs make crucial u
planar duality, so that new ideas clearly are needed to make progress in higher dimension

Here is some motivation for our study. Byp-Bernoulli percolation on an infinite graphG, we
mean the usual bond percolation process, where each edge is removed with probability 12p and
kept with probabilityp. By pc(G), we denote the infimum of allpP@0,1# such thatp-Bernoulli
percolation onG has infinite clusters with positive probability. An outstanding open problem
percolation theory~see, e.g., Grimmett1! is to determine whether at criticalityp5pc there are
infinite clusters; the answer is believed to be no for alld>2. Meditating over this problem, one i
naturally led to search for conditions onX,Zd which guaranteepc(X),1. If it could be shown
that infinite Bernoulli-percolation clustersW satisfypc(W),1, then it would follow that there are
no infinite clusters atp5pc . In particular, a negative answer to the following question wo
answer the problem of the existence of infinite clusters atpc .

Question 1.1: Is there an invariant finite energy percolation X onZd, which a.s. percolates
(that is, has an infinite connected component) and satisfies pc(X)51?

An invariant percolation is a random subgraph ofZd whose distribution is invariant unde
translationsz°z1v, wherevPZd. A percolation process is a said to havefinite energyif it is
both insertion tolerant and deletion tolerant, in the sense of Lyons and Schramm:2 deletion~resp.
insertion! tolerant means that the conditional probability that an edge is absent~resp. present!
given the status of all other edges is strictly positive. Finite energy percolation was first cons
by Newman and Schulman.3 One way of constructing examples of insertion-tolerant percolatio
to add independente-Bernoulli percolation to any given percolation process. In Sec. III, we
give an example of an invariant insertion tolerant percolation processX obtained via adding
e-Bernoulli percolation, which percolates but for whichpc(X)51.

a!Electronic mail: itai@wisdom.weizmann.ac.il; http://www.wisdom.weizmann.ac.il/˜ itai/
b!Electronic mail: olleh@math.chalmers.se; http://www.math.chalmers.se/˜olleh/
c!Electronic mail: schramm@wisdom.weizmann.ac.il; http://www.wisdom.weizmann.ac.il/˜schramm/
12940022-2488/2000/41(3)/1294/4/$17.00 © 2000 American Institute of Physics
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In that example, large chunks of vertices inZd are in finite connected components of th
percolation. This observation led us to

Conjecture 1.2: Let X be a fixed everywhere percolating subgraph ofZd, and let Y
5Y(X,e) be obtained from X by addinge-Bernoulli percolation. For anye.0, we have

(i) Y is connected a.s.
(ii) p c(Y),1 a.s.
(iii) Y percolates in the upper half-space a.s.
(iii) A renormalized version of Y dominates supercritical Bernoulli percolation.

Theorem 1.3: In dimension d52, with X, e, and Y as above, properties (i), (ii), (iii), and (iv
hold.

We need to explain what is meant by the renormalization in item~iv!. For a positive integer
n and a vertexxPZd, let L(x,n) denote the boxx1@2n/2,n/2#d of side-lengthn centered atx.
If x andy are nearest neighbors inZd, then the verticesnx andny are said to beclosely connected
~in Y! if there is a path inY from nx to ny insideL(nx,n)øL(ny,n). A renormalized versionỸn

of Y is defined as the percolation inZd where each edgêx, y& is included inỸn if and only if nx
andny are closely connected inY. Property~iv! then says that there existsp.pc(Z

d) andn, such
that Ỹn stochastically dominatesp-Bernoulli percolation onZd.

Our proof of Theorem 1.3~iv! will in fact show the stronger result that for anyp,1,Ỹn

dominatesp-Bernoulli percolation for all sufficiently largen.
Remark 1.4:If X is an everywhere percolating realization of some invariant percolation onZd,

then a.s. property~i! holds forY5Y(X,e). This follows from an easy adaptation of the encoun
points argument of Burton and Keane4 ~for instance, by modifying the definition of encount
point along the lines of Ha¨ggström5!.

Remark 1.5:Say that a subgraphX of Zd is densely percolating, if there is someR.0 such
that any ball of radiusR in Zd intersects an infinite connected component ofX. A straightforward
extension of our arguments show that an analog of Theorem 1.3 holds for densely perc
subsets ofZ2 ~note that property~i! of course has to be replaced by uniqueness of the infi
cluster, and the definition of renormalization in~iv! has to be modified slightly to allow, e.g., th
point nx to be replaced by some percolating point in itsR-neighborhood!.

II. PROOFS

A main ingredient in our proofs is the use of planar duality. For a~possibly random! edge
configurationX in Z2, let X* denote the edge configuration in the planar dualZdual

2 of Z2, where
each edge inZdual

2 is present if and only if the~unique! edge inZ2 that crosses it is absent fromX.
Proof of Theorem 1.3 (i):If X is percolating everywhere, then it contains no finite connec

components, so that the dualX* contains no circuits. Hence, for any fixedx,yPZdual
2 , there is at

most one self-avoiding path inX* connecting them. This path has, of course, length at le
ux2yu1 , whereu•u1 denotesL1-distance inR2.

That Y is obtained fromX via e-Bernoulli addition of edges, is the same as saying thatY* is
obtained fromX* by randomly deleting each edge inX* independently with probabilitye. Letting

↔
Y*

denote connectivity in theY* configuration, we get for anyx,yPZdual
2 that

P~x↔
Y*

y!<~12e! ux2yu1. ~1!

For any xPZdual
2 and anyk>1, there are exactly 4k vertices inZdual

2 at L1-distancek from x.
Summing~1! over all yPZ2, we get that the expected number of vertices that are connectedx
in Y* is at most
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k51

`

k~12e!k,`. ~2!

Hence the connected component ofY* containingx is finite a.s., andY* is therefore a.s. a fores
of finite trees. This implies thatY is connected a.s. Q.E.D.
Our next task will be to prove Theorem 1.3~iv!; once this is done, properties~ii ! and~iii ! will be
simple corollaries. For the proof of~iv!, the following lemma is useful:

Lemma 2.1: For any nearest neighbors x and y inZ2, let Ek
x,y denote the event that x and y ar

not connected by any path in Y that is contained in the boxL(x,k). There exists a constant c
.0 (depending only one) such that

P~Ek
x,y!<e2ck

for all k.
Proof: Here is a particular way of finding a path inY from x to y. If the edgê x, y& is present

in Y, then use that edge. If that edge is not present, then the corresponding edge^x,y&* is present
in Y* . We can then find a path fromx to y in Y by going around theY* -componentTx,y*
containing^x,y&* clockwise, following the outer boundary ofT* (x,y). If Tx,y* is contained in
L(x,k21), then the path we just constructed is contained inL(x,k). By inspecting the sum-
mands in~2!, we see that the probability thatTx,y* is not containedL(x,k21) decays exponen
tially in k, which is what we needed. Q.E.D.

Proof of Theorem 1.3 (iv):Let x andy be nearest neighbors inZ2, and letAn be the event that
nx and ny are closely connected. Letz05x,z1 ,z2 ,...,zn21 , zn5y be the vertices on the uniqu
shortest path fromnx to ny in Z2. Clearly,

An.¬~ø i 50
n21En

zi ,zi 11!,

so that

P~¬An!<P~ø i 50
n21En

zi ,zi 11!< (
i 50

n21

P~En
zi ,zi 11!<ne2cn

~wherec is as in Lemma 2.1!. HenceP(An)>12ne2cn, which tends to 1 asn→`. Therefore, the
probability that an edge in the renormalized processỸn is present tends to 1 asn tends to infinity.
This observation does not immediately imply the desired stochastic domination, because the
do not appear inỸn independently.

However,Ỹn is easily seen to be a1-dependentpercolation process, meaning the followin
if B1 ,B2,Z2 are two disjoint edge sets where no edge inB1 shares an endpoint with an edge
B2 , thenỸn(B1) andỸn(B2) are independent~this is simply becauseỸn(B1) andỸn(B2) depend
on disjoint edge sets inY!. Theorem 6.5 of Liggett, Schonmann, and Stacey6 tells us that for any
p,1, we can find ap8,1 such that any 1-dependent percolation processes with edge mar
greater thanp8 dominatesp-Bernoulli percolation. So now we only need to pickpP(pc(Z

2),1),
then pickp8 as in the Liggett–Schonmann–Stacey theorem, and finally pickn large enough to
guarantee that the edge marginals inỸn are greater thanp8. Q.E.D.

Proof of Theorem 1.3 (ii):Pick n large enough so that property~iv! holds, i.e., so thatỸn

dominatesp-Bernoulli percolation for somep.pc(Z
2). For qP(0,1), letWq be an independen

q-Bernoulli percolation onZ2, so thatYùWq is aq-Bernoulli percolation onY. Let Ỹn
q be the set

of all edgeŝ x, y& in Ỹn such that there is an edge in (L(y,n)øL(x,n))\Wq . It is easy to verify
that whenq is sufficiently close to 1, the processỸn

q dominates Bernoulli percolation with param
eter (p1pc(Z

2))/2, so it still percolates. But ifỸn
q percolates, then, clearly, so doesYùWq .

Q.E.D.
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Proof of Theorem 1.3 (iii):This is immediate from property~iv! and the fact that supercritica
Bernoulli percolation onZ2 percolates also in the upper half-plane; the latter result can be fo
e.g., in Kesten7 Q.E.D.

III. AN EXAMPLE

We finally present an example of an invariant percolationX,Zd(d>2), which has infinite
clusters, and nevertheless also has the property that for anyeP(0,pc(Z

d)), addinge-Bernoulli
percolation toX a.s. produces a graphY5Y(X,e) with pc(Y)51. Note thatY(X,e) is insertion
tolerant whene.0.

Vaguely speaking,X will be constructed by taking the full configuration~all edges present!,
and removing edges from large annuli~of drastically different sizes! in such a way that the outsid
and the inside connect only by a thin thread. The annuli are spread out randomly, in such
that the origin is a.s. surrounded by infinitely many of them.X then percolates, but the threads a
cut when doing Bernoulli-thinning ofX, and addinge-Bernoulli percolation does not help i
bridging the annuli.

The precise construction ofX is as follows. Consider independent random variab
$a(x,n):(x,n)PZd3$1,2,...%% where

P~a~x,n!51!522dn512P~a~x,n!50!.

Let

W~x,n!5L~x,2n!\L~x,2n22n/2!,

where, as before,L(x,n)5x1@2n/2,n/2#d. Let b(x,n) be the indicator of the event tha
a(y,k)50 for every (y,k)Þ(x,n) such thatk>n andW(y,k)ùW(x,n)ÞB. Let W8(x,n) be the
set of edges of the gridZd which are insideW(x,n), except those on the linex1R3$0%3¯

3$0%. Finally, let X consist of all edges ofZd that arenot in the set,

ø$W8~x,n!:~x,n!PZd3$1,2,...%,a~x,n!5b~x,n!51%. ~3!

It is immediate that a.s.X has an infinite connected component, and it is also straightforw
to verify that if in ~3! we replaceW8 with W, then a.s. no infinite cluster remains. Furthermo
using the~well-known, see, e.g., Grimmett1! exponential tail of the cluster size distribution fo
subcritical Bernoulli percolation onZd, we see that fore,pc(Z

d) the expected number of vertice
on the inner boundary of an annulusW(x,n) that have an open path to some vertex on the ou
boundary of the same annulus, tends to 0 asn→`. Hence, for suche, we have that the probability
of bridging an annulusW(x,n) tends to 0 asn→`. Since the origin is a.s. surrounded b
arbitrarily large such annuli, we get thatpc(Y(X,e))51 for anye,pc(Z

d).

1G. R. Grimmett,Percolation~Springer, New York, 1989!.
2R. Lyons and O. Schramm, ‘‘Indistinguishability of percolation clusters,’’ Ann. Probab.~to be published!.
3C. M. Newman and L. S. Schulman, ‘‘Infinite clusters in percolation models,’’ J. Stat. Phys.26, 613–628~1982!.
4R. M. Burton and M. S. Keane, ‘‘Density and uniqueness in percolation,’’ Commun. Math. Phys.121, 501–505~1989!.
5O. Häggström, ‘‘Uniqueness of the infinite entangled component in three-dimensional bond percolation’’~preprint,
1999!.

6T. Liggett, R. Schonmann, and A. Stacey, ‘‘Domination by product measures,’’ Ann. Prob.25, 71–95~1997!.
7H. Kesten,Percolation Theory for Mathematicians~Birkhäuser, Boston, 1982!.
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In this paper we consider theAB-percolation model onZ1
d andZd. Let pH

alt(Zd) be
the critical probability for AB-percolation on Zd. We show that pH

alt(Zd)
;1/(2d2). If the probability of a site to be in stateA is g/(2d2) for some fixed
g.1, then the probability thatAB-percolation occurs converges asd→` to the
unique strictly positive solutiony(g) of the equationy512exp(2gy). We also
find the limit for the analogous quantities for orientedAB-percolation onZ1

d . In
particular,pH

alt(Z1
d );2/d2. We further obtain a small extension to the two param-

eter problem in which even vertices ofZd have probabilitypA of being in stateA
and odd vertices have probabilitypB of being in stateB ~but without relation
betweenpA and pB!. The principal tools in the proofs are a method of Penrose
~1993! for asymptotics of percolation on graphs with vertices of high degree and
the second moment method. ©2000 American Institute of Physics.
@S0022-2488~00!01303-7#

I. INTRODUCTION AND MAIN RESULTS

Let G be an infinite connected graph with edge setE and vertex setV. To each vertex ofG
assign one of two states, sayA andB, with probabilityp and 12p, respectively, independently o
all other vertices. The corresponding product probability on the configurations of sites is de
by Pp ;Ep denotes expectation with respect toPp . The state ofv will be denoted byX(v). We

denote by$C↔
A

D% the event that there exists a self-avoiding pathv0 ,v1 ,...,vn with initial point
v0 in C and endpointvn in D and all of whose vertices are in stateA. We call such a path an
A-path. If D5$`% we require the path to be infinite instead of the requirementvnPD. For a fixed

vertexv0 , we say thatA-percolation occursfrom the vertexv0 if v0↔
A

`. Write uv0
(p,G) for the

probability thatA-percolation occurs fromv0 , that is

uv0
~p,G!5Pp$v0↔

A
` on G%.

It is well known that for reasonable graphsG there is a critical probabilitypc(G) strictly
between 0 and 1, such that

uv0
~p,G!H .0 if p.pc~G!

50 if p,pc~G!
.

For background, see Kesten~1982!1 or Grimmett~1999!.2 The model which we just described
usually called~Bernoulli! site-percolation. TheAB-percolation model is the following variant o
this classical model. AnAB-pathis a self-avoiding pathv0 ,v1 ,...,vn , the state of whose vertice

a!Electronic mail: kesten@math.cornell.edu
b!Electronic mail: zgsu@mail.hz.zj.cn
12980022-2488/2000/41(3)/1298/23/$17.00 © 2000 American Institute of Physics
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alternates betweenA andB, starting with anA, that is,v2i is in stateA andv2i 11 in stateB for
i>0. The definition of aBA-path is obtained by interchangingA andB in the preceding definition.

$C↔
alt

D% denotes the event that there exists anAB-path or aBA-path which starts inC and ends in
D ~‘alt’ here stands for alternating!. Again we make the obvious modifications whenD5$`%. For

a given vertexv0 , we say thatAB-percolation occurs whenv0↔
alt

`. We denote the probability o
AB-percolation fromv0 by

uv0

alt~p,G!5Pp$v0↔
alt

` on G%, ~1.1!

and define theAB-critical probability by

pH
alt~G!5 inf$p:uv0

alt~p,G!.0%. ~1.2!

The set in the right-hand-side here could be empty. In such a case we leavepH
alt undefined. This

will not arise in the high-dimensional situations which interest us here. It is easily seen thpH
alt

does not depend onv0 . We use here the notationpH rather thanpc for the critical probability
because the equality of several differently defined critical probabilities has not yet been prov
AB-percolation. Even onG5Zd we do not know that the probability for anAB-path of lengthn
from v0 decays exponentially inn whenp,pH

alt(Zd).
One fundamental difference between theA-percolation or classical site-percolation model a

the AB-percolation model is the latter’s lack of monotonicity. Analysis of the classical mo
depends heavily on certain correlation inequalities, including the FKG and BK inequalities~see
Secs. 2.2 and 2.3 of Grimmet~1999!2 for these inequalities!, which in turn depend on the fact tha

the classical model is ‘‘increasing:’’ The occurrence of events such as$v0↔
A

`% or $u↔
A

v% can
only be helped if the state of any collection of vertices is changed fromB to A. This monotonicity
is, in general, absent in theAB-model and can lead to rather unexpected phenomena. For exa
Appel and Wierman~1987!3 proved thatAB-percolation does not occur for any value of th
parameterp on a class of bipartite graphs, includingG5Z2. Also Łuczak and Wierman~1988!4

explicitly constructed a graph which exhibits multipleAB-percolation phase transitions. Thus th
definition ~1.2! is somewhat arbitrary. It is in general not true thatAB-percolation occurs forall
pP(pH

alt(G),1/2# ~note that the set ofp values for whichAB-percolation occurs is symmetric abo
1/2, by the symmetry betweenA andB!.

The AB-percolation model evidently has some appeal as a model of physical phenome
fact, this model was introduced independently by Mai and Halley~1980!5 in the context of
chemisorption and by Sevsˇek et al. ~1983!6 as antipercolation in the study of the model on a Be
lattice in connection with antiferromagnetism. Also, Wilkinson~1987!7 looked at a more genera
two parameter problem as a model for gelation processes;AB percolation is a special case of h
model. So far the study ofAB-percolation model in the references focuses on the question wh
it is possible to haveAB-percolation on specific graphsG ~such asZd, the hexagonal, triangula
lattice etc.! for any parameter value, and if so, for what values ofp AB-percolation does occur. In
addition to the result of Appel and Wierman~1987!3 which we mentioned above, Wierman an
Appel ~1987!8 and Wierman~1989!9 proved thatAB-percolation does occur on the triangul
lattice for p in some open interval around the value 1/2. IfG is bipartite, letH1 andH2 be the
following graphs: The vertex set ofHi consists of all verticesv for which there exists a path
(v0 ,v1 ,...,vn5v) on G with n odd for i 51 andn even fori 52, from the distinguishedv0 to v;
two verticesu andv, (uÞv) are adjacent onHi if and only if they are both adjacent onG to some
vertex w of G. Clearly the occurrence ofAB-percolation onG implies the occurrence o
A-percolation onH1 or on H2 . Therefore

pH
alt~G!>min~pc~H1!,pc~H2!!. ~1.3!
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Wierman~1988!10 shows that under very mild conditions this inequality is in fact a strict ineq
ity.

Also, if G is bipartite andpc(G),1/2 then for anypP(pc(C),12pc(C)), AB-percolation
occurs@see Wierman~1989!#.9 Further references can be found in Wierman~1989!.

AB-percolation in high dimensions seems to have received little attention. In this pap
shall mainly consider the graphsT d ~this is a rooted regulard-ary tree, i.e., a tree with a distin
guished vertexv0 , called the root, and such that each vertex other than the root hasd11
neighbors, whilev0 hasd neighbors; all edges are oriented away from the root, so that ther
d outgoing edges incident to each vertex!, Z1

d viewed as a directed graph~each edge is oriented
from a vertexv to v1j i for some 1< i<d, wherej i is the positivei th coordinate vector!, andZd.
For T d, Z1

d , andZd we always take the root and origin for the distinguished vertexv0 , respec-
tively. Our first result gives the asymptotic behaviors ofpH

alt(Z1
d ) and pH

alt(Zd). The result is not
unexpected, since a well-known branching process argument tells us that onT d, AB-percolation
occurs if and only ifp(12p).1/d2. Theorem 1 says that asymptotically for larged the AB-
percolation critical probability forT d and forZ1

d andZd differ only by a multiplicative constan
~but are of the same order ind!. Throughout this paper,f (d);g(d) will mean f (d)/g(d)→1 as
d→`.
Theorem 1:

pH
alt~Z1

d !;
2

d2 ~1.4!

and

pH
alt~Zd!;

1

2d2 . ~1.5!

The second theorem deals with the limit of theAB-percolation probability inZ1
d andZd when

we takep52g/d2 andp5g/2d2, respectively, for some fixedg.1, and letd go to `. This will
follow from the fact that around a fixed sitev the number of neighbors ofv connected tò is
close to its expected value~whend is large!.
Theorem 2: Let y(g) be the unique strictly positive solution of the equation

y512e2gy. ~1.6!

Then, forg.1, in the AB-percolation model

u0
altS 2g

d2 ,Z1
d D;

2gy~g!

d
~1.7!

and

u0
altS g

2d2 ,ZdD;
gy~g!

d
. ~1.8!

Remarks:~i! The proof which we give below actually proves the following, somewhat m
general, result. Call a vertexv5(v(1),...,v(d)) of Zd or Z1

d even(odd)if S i 51
d v( i ) is even

~respectively, odd!. Assume that each even site can be in two possible states,A or C, while each
odd site can be in the statesB or D. Let X(v) again denote the state ofv and let

P$X~v !5A%5pA512P$X~v !5C% if v is even ~1.9!

and

P$X~v !5B%5pB512P$X~v !5D% if v is odd. ~1.10!
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Assume theX(v) are independent as before and letg.1 be fixed. Then, if

pA>
2g

d2 , pB→1 as d→`, ~1.11!

AB-percolation occurs onZ1
d for larged. Similarly, if

pA>
g

2d2 , pB→1 as d→`, ~1.12!

thenAB-percolation occurs onZd for larged.
~ii !: As mentioned, Wierman~1989!9 showed thatAB-percolation occurs on a bipartite grap

G if pc(G),p,12pc(G), so that pH
alt(G)<pc(G). In the casesG5Z1

d and G5Zd this gives
asymptotically asd→`, pH

alt(Z1
d )<(11o(1))/d and pH

alt(Zd)<(11o(1))/(2d) @see Bolloba´s
and Kohayakawa~1994!,11 Cox and Durrett~1983!,12 Gordon~1991!,13 Hara and Slade~1990!,14

and Kesten~1990!#.15 It turns out that in these cases the lower bound in~1.3! is closer to the truth.
It follows from Theorem 1 and Remark~i! that asymptotically asd→`:

pH
alt~Z1

d !;pc~H2
1!, pH

alt~Zd!;pc~H2!,

whereH2
1(H2) are the graphs described before~1.3! for G5Z1

d (G5Zd).
The next section will largely be devoted to the proof of Theorem 1. ForAB-percolation on

Z1
d , we shall closely follow the argument of Cox and Durrett~1983!12 which uses the secon

moment method. On this graph one can explicitly find the expected number ofAB-paths starting
at 0 and of lengthn, and the second moment of this number can be well estimated. OnZd we shall
use the method of Penrose~1993!.16 Before we give these proofs we shall look atAB-percolation
on T d in the hope that the calculation for this simple example will give us insight into m
general situations. Related calculations on Galton–Watson trees~without asymptotics such asd
→`! have been carried out by Appel and Wierman~1992!.17 In fact, they even consider the tw
parameter problem of Remark~i! on Galton–Watson trees. In Sec. III we indicate how Theor
2 can be proven along the lines of Kesten~1991!18 or Penrose~1993!.16

II. RESULTS ON TREES AND PROOF OF THEOREM 1

Let us begin withAB-percolation onT d for which exact calculations are possible.
Theorem 3: ~i! For d>2

pc
alt~T d!~12pc

alt~T d!!5
1

d2 . ~2.1!

~ii ! Define

Ev0

A 5$at least one neighbor ofv0 is connected tò

by an AB-path which does not pass throughv0%

and

Ev0

B 5$at least one neighbor ofv0 is connected tò

by a BA-path which does not pass throughv0%.

Then forg.1, and y(g) as in ~1.6!
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uv0

altS g

d2 ,T dD;Pg/d2$Ev0

A %;
gy~g!

d
~2.2!

and

Pg/d2$Ev0

B %→y~g!, d→`. ~2.3!

Moreover, if

d2p→` but dp remains bounded, ~2.4!

then

uv0

alt~p,T d!;Pp$Ev0

A %;12e2dp ~2.5!

and

lim
d→`

Pp~Ev0

B !51. ~2.6!

Proof of Theorem 3:Let v0 be the root. For any vertexvPT there exists a unique oriented~and
hence selfavoiding! path (v0 ,v1 ,...,vh(v)5v) from v0 to v in T. We denote this path byp(v).
h(v) is the graph distance ofv from the root. In order to find the asymptotic behavior ofPp$Ev0

B %

asd→` and p5g/d2 or when~2.4! holds we first need a crude lower bound forPp$Ev0

B %. We

derive this bound by the second moment method. LetR2n be the set of all orientedBA-paths from
some neighborv1 of v0 and of length 2n, that is the set of allr5(v1 ,...,v2n) with v1 adjacent
to v0 ,h(v i)5 i and

X~v i !5H B if i is odd

A if i is even
.

@Recall thatX(u) is the state of the vertexu.# Denote the cardinality of a setA by uAu. Then it is
not hard to see that

EpuR2nu5d2n@p~12p!#n, ~2.7!

and ford2p(12p).1

EpuR2nu25 (
r5~v1 ,...,v2n!

r85~v18 ,...,v2n8 !

Pp$rPR2n and r8PR2n%

5(
l 50

2n

(
v1 ,...,v2n

v18 ,...,v2n8

v i5v i8 ,i< l but v l 11Þv l 118

Pp$rPR2n and r8PR2n%

<@d2npn~12p!n#2 (
m50

n

@d2p~12p!#2m

1@d2npn~12p!n#2 (
m50

n21

@d2p~12p!#2m@d~12p!#21
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<~EpuR2nu!2S 11
1

d~12p! D d2p~12p!

d2p~12p!21
. ~2.8!

In particular, by the Cauchy–Schwarz inequality

Pp$Ev0

B %5 lim
n→`

Pp$uR2nu.0%> lim inf
n→`

~EpuR2nu!2

Ep$uR2nu2%
>

1

11@1/d~12p!#

d2p~12p!21

d2p~12p!
, ~2.9!

and this is bounded away from 0, uniformly on$d2p>11d, p<d/2%, for any fixed 0,d<1/2.
Now setZ0

A5Z0
B51. For n>1 defineZ2n

A as the number of verticesv with h(v)52n such
that for the corresponding pathp(v)5(v0 ,v1(v),...,v2n(v)5v) one has

X~v i~v !!5H A if i is odd

B if i is even,iÞ0
. ~2.10!

Define Z2n
B by interchangingA and B in ~2.10!. It is easy to check thatZ2n

A ,n>0, is a Galton–
Watson process whose offspring distribution has generating function

f A~s!5 f A~s,p!5@12p1p~p1~12p!s!d#d. ~2.11!

Similarly, Z2n
B ,n>0, is a Galton–Watson process whose offspring distribution has the gene

function

f B~s!5 f B~s,p!5@p1~12p!~12p1ps!d#d. ~2.12!

The expected number of children per individual in each of these branching processes isd2p(1
2p). AB-percolation occurs fromv0 if and only if at least one of these branching processes
a strictly positive survival probability, that is, when

d2p~12p!.1,

@see Athreya and Ney~1972!,19 Theorem I.5.1#. This proves~2.1!
To prove~2.2! and~2.3! we defineqA andqB as the extinction probabilities of the process

$Z2n
A % and $Z2n

B %, respectively. It is well known@see Athreya and Ney~1972!,19 Theorem I.5.1#
that these are the smallest solutions in@0,1# of the equations

q* 5 f * ~q* !, * 5A or B. ~2.13!

Note that by our definitions

12q* 5Pp$Z2n* .0 for all n%5Pp$Ev0
* %. ~2.14!

It is not difficult to see from~2.13! and the explicit expression~2.12! for f B, that if we setp
5g/d2 for some fixedg.1 and letd→`, then

qB5 f B~q!5F12
g

d
~12qB!1O~d22!Gd

.

Therefore, ifd→` along some subsequence for whichqB has a limit,Q say, thenQ must satisfy

Q5e2g~12Q!.

~This is the equation for the extinction probability of a branching process with a meang Poisson
distribution.! Moreover, 12Q5 lim Pg/d2$Ev0

B % does not vanish, by virtue of~2.9!. Therefore, 1
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2Q5y(g), as defined in~1.6!. ~This is the only place in the proof of~2.3! for which we need
~2.9!.! This is independent of the subsequence through whichd→`. Therefore,~2.3! holds for
g.1.

It is obvious that for any fixedg andd→`

Pg/d2$Ev0

A %<Pg/d2$X~v !5A for some neighborv of v0%<d
g

d2 →0.

In the other direction

Pg/d2$Ev0

A %>Pg/d2$X~v !5A for some neighborv of v0%Pg/d2$Ev0

B %>
C1

d
, ~2.15!

for some constantC1.0 ~independent ofd!. ThenPg/d2$Ev0

A %512qA must satisfy

d~12qA!5d~12 f A~qA!!

5dH 12F12
g

d2 1
g

d2 S 12S 12
g

d2D ~12qA! D dGdJ
5dH 12F12

g

d
1

g

d S 12S 12
g

d2D ~12qA! D dG J 1O~d•d2~gd22!2!

5g~12exp@2~12g/d2!d~12qA!# !1o~1!.

This shows that ifd(12qA) converges along some subsequence toz, say, thenz5g(12e2z),
that is,z50 or z5gy(g). By virtue of ~2.15! only the second value is possible, so that

lim
d→`

dPg/d2$Ev0

A %5gy~g!. ~2.16!

Finally, for p5g/d2

uv0

altS g

d2 ,T dD5
g

d2 Pg/d2$Ev0

B %1S 12
g

d2D Pg/d2$Ev0

A %;
gy~g!

d
, ~2.17!

which proves~2.2!.
We also want to give a slightly different derivation of~2.3! which uses a consistency relatio

for the limit of Pp$Ev0

B %. Even though this basically is the same argument as used in the sta

derivation of~2.13!, it may be useful to help the reader understand the derivation of analo
results forZ1

d andZd in Theorem 2. LetI @v# be the indicator function of the event$at least one
neighbor ofv is connected tò by an orientedBA-path (v1 ,v2 ,...) with h(v i)>3 for all i>1%.
If h(v)52, then

Pp$I @v#51%5Pp$Ev0

B %, ~2.18!

because the tree of descendants ofv is isomorphic toT d Let

M5 (
w:h~w!52

I @w#,

and letw1 ,...,wM be all the vertices withh(w)52 andI @w#51. Denote byw8 the parent ofw in
T d, that is the vertex which just precedesw on p(w). Then
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Pg/d2$Ev0

B %5Pg/d2$for some i<M ,X~wi !5A and X~wi8!5B%

5Pg/d2$for some i<M ,X~wi !5A%

2O~Pg/d2$X~u!5A for some u with h~u!51%!.

Clearly the last probability is at mostd(g/d2)→0 asd→`. Now all theI @w# and theX(w) with
h(w)52 are independent. Therefore

Pg/d2$for some i<M ,X~wi !5A%

5E$Pg/d2$for some i<M ,X~wi !5A%uw1 ,...,wM%

512EH S 12
g

d2D MJ .

Also by the independence of theI @w# with h(w)52 and by~2.18! and the fact thatPg/d2$Ev0

B % is

bounded away from 0@see~2.9!#, we have

M

d22Pg/d2$Ev0

B %→
P

0. ~2.19!

Consequently, ifd→` along any subsequence for which the limit ofPg/d2$Ev0

B % exists, then this

subsequential limit must be a solution of~1.6!. Because of~2.9! this solution must bey(g) and not
the zero solution. This leads to~2.3! as before.

Next we turn to the case of~2.4!. The relation~2.6! is now immediate from~2.9!. Moreover

d~12qA!5dPp$Ev0

A %→`,

by the argument for~2.15!. We then find from the relation

qA512Pp$Ev0

A %5 f A~qA!5e2dp~11o~1!!,

that

Pp$Ev0

A %;12e2dp.

Finally, ~2.5! now follows as in~2.17!. j

Proof of Theorem 1 forZ1
d : Probably this case can be proven together with the cas

AB-percolation onZd by the method of Penrose~1993!16 as outlined in the next proof. Perhap
some of the other methods for studying the asymptotic behavior of the critical probabili
high-dimensional percolation@see Bolloba´s and Kohayakawa~1994!,11 Gordon~1991!,13 Kesten
~1990!,15 Hara and Slade~1990!14# also apply, but we have not checked this. However, the met
of the second moment of Cox and Durrett~1983!12 is simpler in the oriented case, so we sh
illustrate this method here. For simplicity we restrict ourselves to the case ofAB-percolation with
Pp$X(v)5B%512p and leave the more general case of~1.11! to the reader@the proof onZd

below does cover the case of~1.12!, though#. First observe thatZ1
d is bipartite. Indeed, if one can

take V1
15$vPZ1

d :uvuodd%,V2
15$vPZ1

d :uvueven% ~with uvu denoting thel 1-norm of v!, then
there are only edges between vertices ofV1

1 and ofV2
1 . Then, as in~1.3!

pH
alt~Z1

d !>pc~H2
1!, ~2.20!
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whereHi
1 is defined as in~1.3! for G5Z1

d and Hi
1 is oriented in the obvious way. Note tha

pc(H1
1)5pc(H2

1) in this case. In turn, a standard Peierls argument shows thatpc(H2
1)

>2/@d(d11)#, because each vertex hasd(d11)/2 outgoing edges inH2
1 . Therefore it is enough

to give an upper bound forpH
alt(Z1

d ).
As we already stated we follow Cox and Durrett~1983!. We restrict ourselves to merel

sketching the necessary changes. LetR2n be the set of all oriented pathsr5(0,v1 ,...,v2n) of
length 2n with X(v2i)5A andX(v2i 21)5B,i 51,2,...,n. Note that we do not specifyX„0… here.
Then we haveEpuR2nu5d2npn(12p)n and, as in~2.9!

Pp$0↔
alt

`%>pPp$uR2nu.0 for all n>1%5p lim
n→`

Pp$uR2nu.0%>p lim inf
n→`

@Ep$uR2nu%#2

EpuR2nu2
.

~2.21!

It, therefore, suffices to boundEuR2nu2. Observe that

EuR2nu25 (
r5~v1 ,...,v2n!

r85~v18 ,...,v2n8

Pp$rPR2n and r8PR2n%

5@E$uR2nu%#2~d2n!22(
r,r8

~12p!2 l 1~r,r8!p2 l 2~r,r8!, ~2.22!

where l i(r,r8) is the number of vertices common tor and r8 in Vi
1 . Now let S5(S1 ,S2 ,...)

and S85(S18 ,S28 ,...) be twoindependent oriented simple random walks onZ1
d , as in Cox and

Durrett ~1983!.12 Denote the probability measure which governs$St ,St8% by P, and let E be
expectation with respect toP. Let Fn be thes-field generated bySt ,St8 ,t<n. Further, lett1

,t2,¯ denote the successive random indices for whichSti
5Sti

8 . Note that this sequence onl

has finitely many members except on aP-null set whend>4. Define

t i5H 0 if t i is even

1 if t i is odd
.

SinceSti
5Sti

8PV1
1 if and only if t i51 andSti

5Sti
8PV2

1 if and only if t i50, we have

~d2n!22(
r,r8

~12p!2 l 1~r,r8!p2 l 2~r,r8!

< (
m50

`

E$~12p!2S i 51
m t ip2S i 51

m
~12t i !I @ tm,`#%

5 (
m50

`

(
h1 ,...,hmP$0,1%

EH )
i 51

m21

~~12p!2h ip2~12h i !I @ tm21,`,t i5h i ,i<m21# !

3E$~12p!2hmp2~12hm!I @ tm,`#,tm5hmuFtm21
%J .

Now let G(h,l) be an upper bound for

E$~12p!2lp2~12l!I @ t i,`,t i5l#uFt i 21
%,

on the event$t i 21,`,t i 215h%. Then we can continue the preceding inequality to get
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~d2n!22(
r,r8

~12p!2 l 1~r,r8!p2 l 2~r,r8!

< (
m50

`

(
h1 ,...,hmP$0,1%

EH S )
i 51

m21

~12p!2h ip2~12h i !I @ tm21,`,t i5h i ,i<m21# D J
3G~hm21 ,hm!<¯< (

lP$0,1%
(

m50

`

Gm~0,l!. ~2.23!

Let g1(d)5P$Sj5Sj8 for somej >1%,g2(d)5P$S2 j5S2 j8 butS2 j 21ÞS2 j 218 for somej >1%.
Then according to the argument of Cox and Durrett~1983!12

g1~d!;
1

d
, g2~d!;

1

d2 . ~2.24!

Now we take forG the following matrix:

G5S g2~d!

p

g1~d!

~12p!

g1~d!

p

g2~d!

~12p!

D . ~2.25!

A routine computation, together with~2.24! shows that as p↓0 and d→`, lG

ªthe largest eigenvalue ofG, is asymptotically equivalent to

1

2 F 1

pd2 1S 1

~pd2!2 1
4

pd2D 1/2G .
This is less than 1 wheneverp.(21e)/d2 for some fixede.0 andd sufficiently large. By the
Perron–Frobenius theorem@see Gantmacher~1960!,20 Section 13.2# the strictly positive matrixG
has an eigenvectorv corresponding to the eigenvaluelG , with all components strictly positive. In
fact, in our simple case we can explicitly calculate

v~0!5
g1~d!

~12p!@lG2g2~d!/p#
, v~1!51.

SinceGmv5@lG#mv, it follows that:

uGm~0,l!u<
v~0!

v~l!
@lG#m.

Thus, the right-hand-side of~2.23! is finite for p.(21e)/d2 andd large. Together with~2.21!,
~2.22! and~2.23! this shows that for each fixede.0,pH

alt(Z1
d )<(21e)/d2 for all larged. Since we

already have the lower boundpH
alt(Z1

d )>2/@d(d11)#, ~1.4! follows.
Proof of Theorem 1 forZd: The presence of circuits inZd as well as the fact that we have t

deal with the two parametersp and 12p for AB-percolation makes exact calculations impossib
Actually, we shall carry out this proof for the two parameter generalization described by~1.9!,
~1.10!. In this proof Pp will denote the measure under which the distribution of the vertice
given by ~1.9!, ~1.10!.

For a lower bound onpH we note that Zd is also bipartite. If we takeV15$v
PZd:uvuodd%,V25$vPZd:uvueven% then there are only edges between vertices ofV1 andV2 . If
H1 andH2 are defined as in~1.3! for G5Zd, thenH1 andH2 are isomorphic and there can be n
AB percolation unless
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pA>pc~H2!,

irrespective of the value ofpB. This time each vertex has 2d2 neighbors inH2 so that a Peierls
argument shows

pc~H2!>1/~2d2!.

Thus, no percolation can occur whenpA,1/(2d2). In particular,pH
alt(Zd)>1/(2d2).

In the other direction, we shall show thatAB-percolation occurs under the assumption~1.12!.
We shall further assume that

pA<
g

d2 . ~2.26!

This is no restriction since the percolation probability is increasing inpA. To simplify notation we
derive the upper bound only for evend. This actually suffices, because percolation in dimens
d21 implies percolation ind dimensions. We now more or less follow Penrose~1993!.16 Because
of our more complicated situation we have to redo a number of Penrose’s steps. It will s
useful to the reader to consult Penrose~1993!16 for the details of some estimates.L will be the
subgraph ofZ2 of all ~i,j! with i>0,u j u< i ,i 1 j even. We shall considerL as a directed graph, with
the edges between~i,j! and (i 11,j 61) directed from the former to the latter. On this direct
graph we shall consider a dependent mixed bond-site percolation. Edges and sites will be o
closed. We shall use a recursive procedure to decide the states of all sites and edges, start
the site~0, 0!. A site (i , j )PL will be open if the edge from (i 21,j 21) to ~i,j! or the edge from
( i 21,j 11) to ~i,j! is open. In turn, the edge from (i 21,j 21) @or from (i 21,j 11)# to ~i,j! can be
open only if (i 21,j 21) @respectively, (i 21,j 11)# is open. From this we see that, once we kno
the state of~0, 0!, the main step will be to decide when an edge is open. The states of the
will be determined one by one in the following order. An edge starting at (i 1 , j 1) precedes an edg
from (i 2 , j 2) if i 1, i 2 or if i 15 i 2 but j 1, j 2 . Finally the edge from (i 1 , j 1) to (i 111,j 121)
precedes the edge from (i 1 , j 1) to (i 111,j 111). The state of an edge will be a function of som
of the statesX(u) introduced before. For an edgeePL we denote byF(e) the s-field generated
by thoseX(v) which have been examined to determine the states of the edges precedinge in the
ordering of the edges ofL introduced above. One of the difficulties in this proof is to keep tra
of which vertices have been examined at any stage.

We will set things up so that for larged, for each edgeePL

Pp$e is openuF~e!%>125e, ~2.27!

on the event that the initial point ofe is open. Heree.0 is a fixed small number such that i
standard Bernoulli site percolation onL with each site open with probability 125e, percolation
occurs. Under~2.27! we can then couple our mixed bond-site percolation process with su
Bernoulli site percolation to conclude that our process onL also percolates@compare Lemma 1 in
Russo~1982!#.21

To relate the mixed bond-site percolation process to theAB-percolation process we need som
more notation. For any vertexv5(v(1),...,v(d))PV2 we defineL(v)PZ2 by

L~v !5S (
l 51

d/2

v~ l !, (
l 5d/211

d

v~ l !D .

We further define for (i , j )PL

B~ i , j !5L21~ i , j !5$vPV2 :L~v !5~ i , j !%.
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We remind the reader that vertices inV2(V1) are called even~odd! vertices. Positive integers
k,m,k2 will be chosen below such that~2.49! and ~2.50! hold. @We usek2 instead ofk1 to
distinguish this constant from Penrose’sk1 ; m and k are essentially the same as in Penro
~1993!.#16 These integers will be independent of the dimensiond. We shall also fix some arbitrary
ordering of the vertices ofZd. On a number of occasions it will be necessary to order some sub
of Zd. This will always be done according to this fixed ordering. We begin by choosing 2m even
verticesu(0,0,1),...,u(0,0,2m) in B(0,0) satisfying

uu~0,0,l !2u~0,0,l 8!u>4, lÞ l 8. ~2.28!

These vertices are otherwise arbitrary. We declare (0,0)PL open if X(u(0,0,l ))5A for all 1< l
<2m. In the sequel, whenever we declare a site (i , j )PL to be open we shall single out 2m
verticesu( i , j ,1)...,u( i , j ,2m) in B( i , j ), which we callspecialvertices. All these special vertice
will be even and haveX(u( i , j ,l ))5A and for each singled out vertexu( i , j ,l ) corresponding to an
open site~i,j! there will be anAB-path onZd from someu(0,0,l 8) to u( i , j ,l ). Thus if our mixed
bond-site model onL percolates, thenAB-percolation occurs.

We now discuss how to determine the state of an edge. For the sake of definitene
assume that the state of~i,p! has been determined for allupu< i with ( i ,p)PL, as well as of all
edges preceding the edgee from ~i,j! to (i 11,j 21). We now consider the state of this edgee. If
the site (i 11,j 21) is already open because the edge from (i , j 22) to (i , j 21) was declared
open, then the state of the edge from~i,j! to (i 11,j 21) has no influence on the further evolutio
of the states, so in this case, we may as well declare the edgee open. If the site~i,j! is closed, then,
as we stated before,e is also declared closed. We, therefore, only need to consider the case
~i,j! is open@and the edge from (i , j 22) to (i 11,j 21) is closed#. If ~i,j! is open, then we will
have chosen the special verticesu( i , j ,l ), 1< l<2m, in B( i , j ). Roughly speaking,e will be open
if there exist 2m distinct vertices inB( i 11,j 21) which are connected by anAB-path to one of
them special verticesu( i , j ,l )PB( i , j ), 1< l<m. In order to prove~2.27! recursively we need to
restrict these paths further. Our construction is such that when we come to decide on the s
e, we will also have chosen a collectionC(e) of AB-paths onZd with the following properties
~2.29!–~2.34!:

Each path inC~e! starts at one of the verticesu~0,0,l !,1< l<2m. ~2.29!

Let D be the collection of edges~of Zd! which appear in some path inC(e).

Then D is a forest. ~2.30!

If p5(u05u(0,0,l ),u1 ,...,up)PC(e), thenp<2k( i 11).
ur can be a special vertex only ifr is a multiple of 2k.
If 2kq,p ~or equivalently,u2kq is not the endpoint ofp!,
thenu2kq is a special vertex, sayu2kq5u(q, j q ,l q) for some (q, j q)PL.
This also holds if 2kq5p andupPB(s,t) with ~s,t! open.
Finally, it holds that j 050,u j q2 j q21u51,1< l q<2m. ~2.31!

For any special vertexu(q, j q ,l q), let n(q, j q ,l q) be the number of even vertices
w for which there exists a path (u0 ,u1 ,...,ur)PC(e) which passes first
throughu(q, j q ,l q) and then reachesw in at most 2k more steps.
Then n~q, j q ,l q!<k2 . ~2.32!

For any pathp5(u05u(0,0,l ),u1 ,...,up)PC(e), whose endpointup

is not a special vertex, set]p5$v:v has l 1-distance<2 to some even
vertex of p%. If the endpointup equals a special vertex, then set
]p5$v:v has l 1-distance<2 to some even vertex ofp other thanup%.
Then X~v ! has been examined only forvPp or vP]p for some pPC~e!. ~2.33!
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Each path inC(e) is anAB-path. Eachu(s,t,l ), 1< l<2m, with
(s,t)PL such thats< i or s5 i 11,t< j 21 and such that
~s,t! is already known to be open, is the endpoint of some path inC(e).
Moreover,uu(s,t,l )2u(s,t,l 8)u>4 for all such~s,t! and for lÞ l 8.
Finally, for 1< l<m,u( i , j ,l ) does not belong to any path ofC(e)
of which it is not the endpoint. ~2.34!

A few explanatory comments to these conditions may be helpful. Equation~2.30! means that
there are no circuits inD. More explicitly, there cannot be two verticesv andw with two disjoint
paths made up from edges inD from v to w. Roughly speaking, condition~2.31! says that exactly
every 2k steps a pathpPC(e) passes through a special point. The last part of~2.31! says that
(q, j q), q>0, runs through an oriented path onL. Finally, ~2.32! gives an upper bound on th
number of descendants in generations 2kq11,...,2k(q11) of u(q, j q ,l q) in the tree made up o
edges ofD which containsu(q, j q ,l q). We remind the reader that all these properties are assu
only when~i,j! is already known to be open.

The recursive step must be such that at the end we have a new collection of pathsC(e8) which
can be used for the examination of the next edgee8 @which runs from~i,j! to (i 11,j 11)#. This
C(e8) must have the properties~2.29!–~2.33! with e replaced bye8. It should also satisfy~2.34!
with the final condition modified to ‘‘form11< l<2m,u( i , j ,l ) does not belong to any path o
C(e8) of which it is not the endpoint.’’

As motivation for the steps to follow, note that we cannot choose the sameX(v) twice, so that
we must avoid visiting a sitev for which X(v) has already been examined in a previous step. T
will be achieved by only moving in ‘‘new coordinate directions,’’ as we explain now. First,
p5(u0 ,...,u2ki) be a path from someu(0,0,l )5u0 to some special vertexu( i , j ,p)5u2ki

PB( i , j ). Let p̃5(u0 ,...,u2ki ,u2ki11 ,...u2ki1r) be an extension byr<2k steps ofp. Denote the
piece (u2ki11 ,...,u2ki1r) which was added on byû. We want to know to which sites inp8ø]p8
with p8PC(e), u2ki1r can be equal. Ifu2ki1rPp8ø]p8, then there exists an evenwPp8 such
that uu2ki1r2wu<2 ~by definition of ]p8!. Let p85(w0 ,...,wq) and w5ws with 2kn,s
<2k(n11) ~whens50 taken50!. Then, by~2.31!, w2kn5u(n, j 8,p8) is a special vertex and we
must have

uu~ i , j ,p!2u~n, j 8,p8!u<uu2ki1r2u~ i , j ,p!u1uu2ki1r2wu1uw2u~n, j 8,p8!u<4k12.

Therefore,

u i 2nu1u j 2 j 8u<4k12.

Thus, there are at most (8k13)22m choices foru(n, j 8,p8). Moreover,w is a descendant in
generations of u(n, j 8,p8) in the tree of edges fromD which containsu(n, j ,p8). Hence, by
virtue of ~2.32!, there are at mostk2 possibilities forw onceu(n, j 8,p8) has been fixed. In tota
there are at mostK5(8k13)22mk2 possibilities forw. Each suchw hasl 1-distance tou( i , j ,p)
of at most uu2ki1r2u2kiu12<2k12 from u2ki . Therefore, there exists a setL0

5L0( i , j ,p),$1,2,...,d% of cardinality at most (2k12)K such that each possiblew satisfies

w~ l !5u2ki~ l ! for all l ¹L0 ,

~w( l ) is the l th coordinate ofw!. Now take

L5L~ i , j !5 ø
p51

2m

L0~ i , j ,p!.

Then uLu<2m(2k12)K. Moreover, any evenw which is within distance 2 of an extension o
length<2k of the path inC(e) to a u( i , j ,p), 1<p<2m, must satisfy

w~ l !5u~ i , j ,p!~ l ! for l ¹L. ~2.35!
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Note that such a setL can be determined by just knowingC(e), that is, by information from the
past. It will turn out that we can obtain~2.27! by restricting ourselves to extensionsû which satisfy
for some 1<p<2m

u2ki1t~ l !2u~ i , j ,p!~ l !50 for l PL,1<t<r , ~2.36!

that is to extensions which move only in coordinate directions outsideL.
We claim that if the extensionû of a path p to u( i , j ,p) satisfies ~2.36! and u2ki1r

Þu( i , j ,p), then

u2ki1r¹p8ø]p8 for all p8PC~e!. ~2.37!

To see this, assume thatu2ki1r5w or u2ki1r5w6ja or u2ki1r5w6ja6jb with wPp8, w
5ws an even vertex, as in the preceding paragraph, andja the ath coordinate vector~6ja and
6ja6jb represent the generic vectors ofl 1-norm 1 and 2!. Now u2ki1r( l )2u( i , j ,p)( l )50 for
l PL. On the other hand, by our choice ofL, w( l )2u2ki( l )5w( l )2u( i , j ,p)( l )50 for l ¹L. By
projecting on the coordinates outsideL we obtain that

u2ki1r2u~ i , j ,p!5projection of 0 or of6ja or of 6ja6jb . ~2.38!

This is impossible ifuu2ki1r2u( i , j ,p)u>3. If uu2ki1r2u( i , j ,p)u52, then this is possible only if
6ja6jb5u2ki1r2u( i , j ,p) and thenw5u2ki1r2(6ja16jb)5u( i , j ,p). However, this case is
excluded, becauseu( i , j ,p) lies on exactly one path inC(e), namely onp, by virtue of~2.30! and
~2.34!. In fact u( i , j ,p) is the endpoint ofp and we did not include the points within distance
from this endpoint in]p. A similar argument leads to a contradiction whenuu2ki1r2u( i , j ,p)u
51 and necessarilyu2ki1r2u( i , j ,p)Þ0. If u2ki1r5w6ja , then this leads again tow5u2ki ,
which we already excluded. On the other hand,u2ki1r5w6ja6jb is impossible. Indeed
uu2ki1r2u( i , j ,p)u51 can only be ifu2ki1r is an odd vertex, whilew is an even vertex. Since w
assumedu2ki1r2u( i , j ,p)Þ0 this takes care of all possibilities, so that~2.37! is indeed implied by
~2.36!.

It follows from the preceding paragraph that if we restrict ourselves to extensions satis
~2.36!, then the extensions will not go through pointsv whose stateX(v) has been determine
earlier. For the next part of the construction we shall, therefore, only consider paths with st

Wª$vPZd:v~ l !50 for l PL%.

Of course,W is isomorphic toZd2uLu, whereuLu denotes the cardinality ofL. We shall writed̄ for
d2uLu. We further write

W25V2ùW,

for the set of even vertices inW. In order to decide whether to declare the edgee from ~i,j! to
( i 11,j 21) open or not we are now going to look for suitable paths from theu( i , j ,l ), 1< l
<m, to B( i 11,j 21). When~i,j! is open@and the edge from (i , j 22) to (i 11,j 21) is closed#,
then we shall go through a specific procedure to construct a random forestM, that is, a subgraph
of Zd without circuits, with the following properties~2.39!–~2.43!:

If f is an edge inM with endpointsa and b, then b2aPW. ~2.39!

There exist 2m distinct even verticesu( i 11,j 21,l ), 1< l<2m,
in B( i 11,j 21) such that eachu( i 11,j 21,l ) is connected by
an AB-path of length 2k to one of them special verticesu( i , j ,p),
1<p<m. Moreover,uu~ i 11,j 21,l !2u~ i 11,j 21,l 8!u>4,lÞ l 8. ~2.40!

The total number of even vertices inM is at most k2 . ~2.41!
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All paths in M start at someu( i , j ,p),1<p<m,
They are AB-paths and have length<2k. ~2.42!

The forest M is determined by only theX(v) with vPM
or with vP(]p̂)ùW, where p̂ is any path inM which starts
at one of theu~ i , j ,p!,1<p<m, ~2.43!

and]p̂ is as in~2.33!. The construction ofM may or may not succeed.e is declared open~closed!
when the construction succeeds~or fails, respectively!. We have two tasks left. First, for the nex
edgee8 to be examined we must define a newC(e8) with the properties~2.29!–~2.34! whene is
replaced bye8. Second, we must prove~2.27!, which amounts to showing that the condition
probability, given the information on the previous steps, of the construction ofM succeeding is at
least 125e. We work on the second task first.

To constructM we need a further process$Zn%n>0 on W2 . This will be a branching random
walk, albeit not in the strict sense, because the displacements of the children of the same pa
not independent.Zn will count certain particles, which we refer to asnth generation particles. The
displacement of a particle from its parent will always be a vector inW2 . The locations of the
particles of thenth generation will be denoted byvn,1 ,...,vn,Zn

~in our fixed order for vertices of
Zd!. To construct$Zn% we need new random variablesX(r )(u), uPZd, r>1. For different~u,r!
these random variables are assumed independent. They will take the valuesA, B, C, or D and their
distribution is specified by

P$X~r !~u!5A%5pA512P$X~r !~u!5C% if u is even,

P$X~r !~u!5B%5pB512P$X~r !~u!5D% if u is odd. ~2.44!

We identifyX(1)(u) with X(u). For the zeroth generation of the process$Zn% we takem particles,
one each located atu( i , j ,l ), 1< l<m. Thus all the particles in theZ-process will have positions
in

ø
l 51

m

@u~ i , j ,l !1W2#.

For the time being the precise location of the initial particles is unimportant and we shall d
them byv0,l . The only important aspect of these locations is that

uv0,l2v0,l 8u>4, lÞ l 8, ~2.45!

which is a consequence of the requirements in~2.34!. By our choice for the zeroth generation w
also have

v0,lPV2ùB~ i , j !, 1< l<Z0 . ~2.46!

Assume that each particle of the zeroth generation has stateA, that is, X(v0,l)5A for 1< l
<Z0 . If ~i,j! is open, then this actually is the case, because eachu( i , j ,l ) is the endpoint of an
AB-path starting at an evenu(0,0,p); see~2.34!. Our construction will be such that all particles o
the Z-process have stateA. During the construction we shall check various of theX(r )(u). At the
start we only know theX(v0,l).

We shall only construct the firstk21 generations and part of thekth generation of the
Z-process. Later generations are not needed. Now assume that we have determined the si
nth generation and the locations and states of its particles. First considern11,k. To form the
(n11)th generation we then check successively forl 51,2,...,Zn a new state for each of th
W2-neighbors ofvn,l . More specifically, theW2-neighbors of a vertexv are the verticesv8 with
v82vPW2 and uv2v8u52. Let the neighbors of a givenvn,l be w1 ,...,wq . Assume that during
the construction so far the highestr-value for whichX(r )(wj ) was examined isr j . We then check
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the value ofX(r j 11)(wj ). We include in the (n11)th generation a particle at thosewj for which
X(r j 11)(wj )5A. These new particles are called the children of thenth generation particle atvn,l .
Note that more than one (n11)th generation particle may be born at a given vertexw, because
severalvn,l may havew as a neighbor and give birth to a child atw. When n115k we use
essentially the same procedure to construct thekth generation, except that we stop consideri
neighbors of the particles in the (k21)th generation as soon as we found 2m kth generation
particles. Of course we may not stop; the wholekth generation may contain fewer than 2m
particles. Next we apply the mapL to the positions of the particles in theZ-process. We obtain a
branching random walk onL. The nth generation of this new branching random walk hasZn

particles, located atL(vn,l), 1< l<Zn . Let us call the process onL theL-process. We remind the
reader that the dimension ofW equalsd̄5d2uLu. In addition we introduce

d1ªu$1,2,...,d/2%\Lu, d2ªu$d/211,...,d%\Lu.

Clearlyd/22uLu<d1 , d2<d/2, so thatdi /d→1/2. It is straightforward to check that for a partic
at (s,t)PL, the expected number of its children at (s6a,t6b) in the L-process equals

5
d1d2pA;

d2

4
pA if ~a,b!5~61,61!

1

2
d1~d121!pA1d1pA;

d2

8
pA if ~a,b!5~62,0!

1

2
d2~d221!pA1d2pA;

d2

8
pA if ~a,b!5~0,62!

@d1~d121!1d2~d221!#pA;
d2

2
pA if ~a,b!5~0,0!

. ~2.47!

Note that the expected number of children of an individual in this branching random walk onL is

~4d1d212d1
212d2

2!pA52d̄2pA<2g. ~2.48!

It is also straightforward that the second moment of the number of children of a given indiv
is bounded by some constantC1 , independent ofd @use~2.26!#.

Let v0,1,...,v0,mPB( i , j ). It will be helpful to introduce the event

A1~k,6 !5A1~k,6,v0,1,...,v0,m ,i , j !ª$there are at least 2m particles in B~ i 11,j

61! which are descendants in generationk of the Z-process of them

particles atv0,1,...,v0,m%.

We claim that if~1.12! and ~2.26! prevail andd is so large that the expected number of childr
per individual given by~2.48! is at least (11g)/2.1, then there exist integersk>4 andm such
that for any (i , j )PL and any m zeroth generation particles in theZ-process at positions
v0,1,...,v0,m it holds that

Pp$A1~k,6 !%>12e. ~2.49!

This holds for each of the choices of the sign inB( i 11,j 61) and uniformly in thev0,l . It is
important that one pairk, m can be chosen so that~2.49! holds for all larged. ~2.49! with this
almost uniformity ind can be proven as in lemmas 1 and 2 of Penrose~1993!.16 These rely only
on the local central limit theorem for the offspring distribution in theL-process and simple
moment estimates for Galton–Watson processes. Even stronger results have been proven
edly in the branching process literature; see for instance Asmussen and Kaplan~1976!.22 It is only
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to obtain this uniform estimate that theL-process has been introduced. For the remainder,k andm
are fixed such that~2.49! holds. We repeat that ifA1 occurs we do not construct the fullkth
generation. Only the first 2m particles of this generation are determined.

We need to intersectA1 with the event

A2~k!5A2~k,v0,1 ,...,v0,m ,i , j !ª$the total number of descendants in generations

0,1,...,k21 of the m particles atv0,1 ,...,v0,m is at most k222m%,

for a suitablek2 . When~2.26! holds, we can find an integerk2 such that

Pp$A1~k!ùA2~k!%>122e. ~2.50!

Again k2 can be chosen independent ofd. Indeed, since the expected number of children
individual in the Z-process or in theL-process is 2d̄2pA<2g for large d @under ~2.26!#, the
expected total number of individuals in the generations 0,1,...,k21 is at mostm( l 50

k21(2g) l . Thus
~2.50! follows from ~2.49! and Markov’s inequality. For the remainder of this proof we fix ak2 for
which ~2.50! holds.

We need a further restriction on the positions of the particles in the firstk generations of the
Z-process. We do not want any pair of particles other than a parent and its child to be adjac
W2 or to have the same position. More formally, define

A35$No pair of particles other than a parent-child pair, in the firstk generations of the

Z-process have positionsu1 ,u2 with uu12u2u<2%.

We claim that@under~2.26!#

P$A2\A3%→0 as d→`. ~2.51!

Of course we use~2.45! here; no two particles in the zeroth generation may be adjacent for~2.51!
to hold. To see~2.51!, let Y1 ,Y2 ,... be independent, identically distributed random variab
whose distribution is the uniform distribution on the 2d̄2 vectors ofl 1-norm 2 inW2 . In addition,
let Sn5( i 51

n Yi . Then

P$S250%5
1

2d̄2
,

sup
w:uwu52

P$S25w%<
C2d̄

d̄4
5

C2

d̄3
,

becauseY1 ,Y2 must contain the two unit vectors whose sum equalsw plus another unit vector and
its opposite. Similarly, forn>3

sup
w

P$Sn5w%<sup
w

P$S35w%<
C2

d̄3
,

for a suitable constantC2 . Let Sn8 andSn9 be two independent copies ofSn . Then these inequalities
show that the probability for a given particle in then0th generation of theZ-process to have two
different children, one of which has a descendant in then1th generation at someu1 and the other
of which has a descendant in then2th generation at someu2 , such thatuu12u2u<2 and n1

2n01n22n0>2 ~but n15n0 or n25n0 allowed!, is at most

~2g!n12n01n22n0P$uSn12n0
8 2Sn22n0

9 u<2%5~2g!n11n222n0P$uSn11n222n0
u<2%<

C3

d̄
.
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Equation ~2.51! follows from this; compare also the estimate forEp6 on p. 265 in Penrose
~1993!.16

Now each particle in theZ-process has associated to it a path inv0,l1W2 for some 1< l
<m. This is the path giving the locations of all its ancestors in order, starting atv0,l . Such a path
is of the form v0,l 0

,v1,l 1
,... with uv j ,l j

2v j 11,l j 11
u52. In the construction of theZ-process we

check at any stage only the state of theW2-neighbors of one of the particles already included
the family trees at an earlier stage. Thus ifA3 occurs, then the only way for a path associated
one of the particles to visit a vertex whose state has already been determined at an earlier s
by a so-called ‘‘immediate reversal,’’ that is by havingv j ,l j

5v j 12,l j 12
for somej. This can happen

if a particle at some vertexv has a child at somew and, in turn, this child has a child atv. Until
the first immediate reversal in the construction, a particle is placed at a vertexv only because the
original X(v)5X(1)(v)5A. Until then we do not useX(r )(u) with r>2 for any vertexu to get to
the particle atv. Therefore, if we exclude the occurrence of immediate reversals, then onA3 all
the verticesv which contain a particle of the firstk generations of theZ-process genuinely hav
stateA and the associated path is anA-path on

ø
1< l<m

$v0,l1W2%. ~2.52!

Further, an immediate reversal can occur only if the following eventA4 fails:

A4ª$each vertexv which is reachable from somev0,l , 1< l<m,

by an A-path in the set~2.52! of no more thank steps hasX~2!~v !5C%.

But the probability thatA4 fails is at most

(
1< l<m

Ep$number of A-paths onv0,l1W2 of length <k%pA<m(
l 50

k

~2g! l pA<e,

~2.53!

whend is sufficiently large.
The construction of theZ-process only involved vertices in somev0,l1W2 , and on the event

A1ùA2ùA3ùA4 we have foundA-paths on the set in~2.52! from $v0,1,...,v0,m% to the positions
of the particles in the branching random walk. We would like to make sure that there ac
exists anAB-path with steps inW from $v0,1,...,v0,m% to each of these vertices. This will actual
be the case if also the following eventA5 occurs:

A55$for each particle in the branching random walk there is a vertexu

PW which is adjacent to the particle and to its parent and withX~u!5B%.

Note that theu’s, which are required here, must be odd vertices and that we have not exam
X(u) for any odd vertex yet. Moreover, ifA2 occurs, then we need at mostk2 vertices to be in
stateB. Thus, given a realization of the firstk generations of theZ-process on whichA2 occurs, the
conditional probability ofA5 is at least (12pB)k2, and we may assumed so large that this is a
least 12e @see~1.12!#. Combining this with~2.50!, ~2.51!, and~2.53! we have that for larged

Pp$A1~k!ùA2~k!ùA3ùA4ùA5%>125e. ~2.54!

Finally we come to the forestM. When

A1~k,2,u~ i , j ,1!,...,u~ i , j ,m!,i , j !ùA2~k,u~ i , j ,1!,...,u~ i , j ,m!,i , j !ùA3ùA4ùA5

occurs, then we take forM the union of the edges in theAB-paths which we found in the las
paragraph, from the verticesu( i , j ,l ), 1< l<m, to any of the particles in the firstk generations of
the Z-process which we investigated~this means that thekth generation may be truncated at 2m
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particles!. This is indeed a forest, becauseA3 occurs. For theu( i 11,j 21,l ) required in~2.40! we
take the location of the 2m particles in thekth generation of theZ-process. They satisfy the las
condition in ~2.40! becauseA3 occurs~when two even particles havel 1-distance.2, then the
distance between them is at least 4!. The other conditions in~2.39!–~2.43! hold by construction. In
this case, whenA12A5 occur, we say that the construction ofM succeeded and declare the ed
e from ~i,j! to (i 11,j 21) to be open.

The construction of theZ-process only investigates the states of vertices in

ø
l 51

m

@u~ i , j ,l !1W#.

By condition ~2.33!, and the fact that~2.36! implies ~2.37!, none of these vertices had its sta
investigated before we came to the determination of the state ofe. Thus the conditional probability
in ~2.27! is at least equal to the left hand side of~2.54!. This shows that~2.27! holds.

The last step of the proof is the definition ofC(e8) for the edgee8 which succeedse in the
order of the edges ofL. If the vertex~i,j! is closed, or the edge from (i , j 22) to (i 11,j 21) is
open, then we did not investigate any vertices in order to decide on the state ofe. Accordingly we
do not changeC(e), that is we takeC(e8)5C(e). If ~i,j! is open and the edge from (i , j 22) to
( i 11,j 21) is closed, then we go through the construction described in this proof and ro
speaking takeC(e8) to be the union ofC(e) and the forestM. SinceM is not a collection of paths
we have to be more precise. Formally,C(e8) is the union ofC(e) and the collection of pathsp̃ of
the formp followed by p̂, wherepPC(e) is a path from one of theu(0,0,l ), 1< l<2m, to some
u( i , j ,p), 1<p<m, andp̂ is a path inM starting atu( i , j ,p).

We briefly check thatC(e8) satisfies~2.29!–~2.34! with e replaced bye8 @and the required
small modification in~2.34!#. ~2.29! is obvious from the definition ofC(e8). ~2.30! follows from
the fact that no circuits can be formed by means of the paths which have been added toC(e). In
turn, this is so because~2.36! implies ~2.37! and because the edges inM ‘move in directions of
W only, i.e.,~2.39!. Next ~2.31! also follows from the nature of the paths which have been ad
to C(e). To see this note that the partsp̂ which have been added have length<2k. Moreover,
apart from their initial point, they can contain only one special point, namely their endpoint
endpoint ofp̂ is a special point if and only ifp̂ has length equal to 2k. In addition, the initial
point of any suchp̂ is a special point inB( i , j ) and is therefore the 2kith point and endpoint of
some pathpPC(e) @see~2.31! and ~2.34!#. As for conditions~2.32!–~2.34! for C(e8), these are
immediate from the same conditions forC(e) and ~2.40!–~2.43!. Thus if we start withC(e0)50”
for e05the edge from~0,0! to ~1,21!, and increaseC according to the procedure just outlined
each step, then the resultingC(e) will have the properties~2.29!–~2.34! at each stage.

This completes the recursive step when we have to decide on the state of the edge fro~i,j!
to (i 11,j 21). When we want to decide on the state of the edge from~i,j! to (i 11,j 11) no
essential changes need to be made. Only, in this case the role of theu( i , j ,l ) with 1< l<m is taken
over by theu( i , j ,l ) with m11< l<2m. Thus, we try to connect the verticesu( i , j ,l ) with m
11< l<2m to B( i 11,j 11), and ignore theu( i , j ,l ) with 1< l<m. j

III. PROOF TO THEOREM 2

First we discuss~1.8!. We are now back to the case whenP$X(v)5A%5p512P$X(v)
5B%. In the case ofAB-percolation onZd the result can be proven by the ideas of Section 15
Penrose~1993!.16 The probability of an infiniteAB-path starting at the origin is at mostP$X(0)
5A%<p5O(d22). More precisely, this upper bound equalsp times the probability that a certai
Galton–Watson process$Ẑn% does not die out. The offspring distribution of this Galton–Wats
process is a binomial distribution corresponding to 2d2 trials with success parameterp. The
Ẑ-process starts with one individual. Intuitively,Ẑn counts the number of particle alive in thenth
generation of theZ-process of the preceding proof, except that we now drop the restriction tha
                                                                                                                



f
ose
of

ber

eding

a

tic

t

thod

1317J. Math. Phys., Vol. 41, No. 3, March 2000 Some remarks on AB-Percolation in high dimensions

                    
displacement of a child from its parent has to lie inW2 . The limsup of the survival probability o
the Ẑ-process~asd→`! is at most equal to the survival probability of a branching process wh
offspring distribution is Poisson with meang. This is so, because the distribution of the number
offspring of one particle in theẐ-process converges to a Poisson distribution with meang when
p5g/(2d2). The survival probability of such a process is they(g) of ~1.6!. This result implies
that the probability of aBA-path starting at the origin is in the limit at most the expected num
of neighbors of0 in Zd which have stateA timesy(g), that is

2d
g

2d2 y~g!5
gy~g!

d
.

This provides an upper bound for the left-hand-side of~1.8!.
To obtain a lower bound, we merely have to show that we can get started in the prec

proof. That is, we have to find 2m verticesu(0,0,l ), 1< l<2m, in B(0,0) which are connected to
the origin by AB-paths of length<C4 . When these paths are fixed, they use at most 2mC4 edges
which involve at most 2mC4 coordinates. This set of coordinates plays the same role asL in the
preceding proof. We can then obtain a continuation to infinity of at least one of theseAB-paths by
considering only paths which take no steps in these 2mC4 directions. The probability that such
continuation exists can be made as close to one as desired by takinge small ~and hencek,m large!
in the preceding proof. Thus, a lower bound for the left hand side of~1.8! is essentially given by
the probability that there exist 2m even points inB(0,0) which satisfy~2.28! and which are
connected to a neighbor of the origin by anAB-path. It is not hard to show that an asympto
lower bound for this is again the probability that at least one neighbor of0 has stateA times the
survival probabilityy(g) of a Galton–Watson process with a meang Poisson offspring distribu-
tion. Since the probability of0 having at least one neighbor in stateA is asymptotically equivalen
to g/d, this proves~1.8!.

We turn now toTheorem 2 in the oriented case. Presumably,~1.7!, can again be proven by
the method of Penrose~1993!,16 but we have not checked this. An alternative is to use the me
of Kesten~1991!.18 Because the probability ofAB-percolation is not obviously monotonic inp we
cannot simply copy the proof there, but need an extra step.

It is helpful for that to consider the two parameter problem described by~1.9!, ~1.10!. Write

uB~pA,pB,d!ªP$there is aBA-path on Z1
d from some neighbor of0 to `%. ~3.1!

The second moment method in the proof of Theorem 1 forZ1
d shows that for fixedg.1 there

exist h i5h i(g).0, i 51,2, such that for larged,

uB~pA,pB,d!>h1 , ~3.2!

if

pA;
2g

d2 ,pB>12h2 . ~3.3!

A closely related problem is that ofA-percolation onV2 , whenV2 is given the orientation
which it inherits fromZ1

d . There is an oriented edge from( i 51
d aij i to ( i 51

d bij i if and only if
bi>ai , 1< i<d, and( i 51

d (bi2ai)52. Even though the notation does not indicate this,V2 will
always be oriented in this way in this section. In this model a vertex ofV2 is in stateA with
probability pA. We define for this model

û~p!5Pp$there exists an orientedA-path on V2 from some neighbor of0 to `%.

We can also think of this as a situation in which all odd vertices are put in stateB with probability
1, and only the even vertices have random states. Thus
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û~pA!5uB~pA,1,d!.

The principal extra step is to show that if~1.11! prevails, then

uB~pA,pB,d!2uB~pA,1,d!5uB~pA,pB,d!2 û~pA!→0 as d→`. ~3.4!

Since the restriction toV2 of any BA-path onZ1
d starting at a neighbor of the origin is anA-path

on V2 , it is clear that

uB~pA,pB,d!<û~pA!,

so that we need a lower bound foruB(pA,pB,d), or equivalently, an upper bound on
2uB(pA,pB,d). To this end we defineC to be the ‘‘BA-cluster’’ of 0, that is,C consists of0 plus
all the vertices reachable by aBA-path onZ1

d starting at a neighbor of the origin;uCu will be the
number of vertices inC. We further defineLm5$zPZ1

d :uzu<m%. Then

12uB~pA,pB,d!5Pp$uCu,`%5(
C

Pp$C5C%, ~3.5!

where the sum overC runs over all finite possibilities forC, that is, over all finite subsetsC of Z1
d

such that every point ofC is reachable inC by a path from the origin. It was proved in Keste
~1991!18 @see lemmas 5–7, especially the estimate~3.9!# that

P$C contains a vertex outsideLn , but uCu,`%

can be made less than any prescribede.0 for all larged by takingn large enough. The proof in
Kesten~1991!18 is given for a slightly different situation, but basically the only changes nee
there are to consider only evenn in lemma 5~so thatnn there only counts vertices in stateA! and
to redefines in lemma 7 as

s~n,l !5min$s:s even, s.n,ns> l %.

Once we have this, we can fixn so that

12uB~pA,pB,d!<e1 (
C,Ln

P$C5C%, ~3.6!

for all larged.
Now let C2 be the set of vertices ofV2 which are connected by anA-path onV2 to a neighbor

on V2 of the origin. By simple path counting

EpAuC2ùLn12u< (
k50

~n12!/2 Fd~d11!pA

2 Gk

< (
k50

~n12!/2

~3g!k<C5 ,

for some constantC5 and all larged. If vÞ0 is a vertex inC2 , then there is an orientedA-path on
V2 from the origin tov. Call the predecessor ofv on this path a parent ofv. We saya parent,
because it is not necessarily unique. The probability that for eachvPC2ùLn12 , vÞ0, there is a
vertex ofZ1

d which is adjacent tov and to a parent ofv and which is in stateB is, for anyN
>1, at least

PpA$uC2ùLn12u<N%@pB#N>F12
C5

N G@pB#N. ~3.7!
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By choosingN large enough and then takingd large enough@and hencepB close to 1~see~1.11!#
we can make the right-hand-side of~3.7! at least 12e. Note that if eachvPC2ùLn12 and its
parent have a common neighbor in stateB, then all the vertices invPC2ùLn12 have anAB-path
leading to them from some neighbor of the origin. Thus in this caseC2ùLn12,C. If in addition
C,Ln , this implies that

C2ùLn12,Ln , ~3.8!

and this preventsC2 of getting out ofLn , because any path inC2 to the complement ofLn12

would have to jump fromLn to the complement ofLn12 by a step of size>3, which is impos-
sible. Thus~3.8! forcesC2 to be finite. Combined with~3.6! this shows that

12uB~pA,1,d!512 û~pA!5PpA$uC2u,`%>P$C,Ln%2e>12uB~pA,pB,d!22e.

Sincee.0 was arbitrary,~3.4! follows.
The probability ofA-percolation onV2 with probability p for a vertex to be in stateA is

increasing inp. One can, therefore, use the proof in Kesten~1991!18 to show that forpA

;(2g/d2) it holds that

û~pA!→y~g!.

Together with~3.4! this gives under~1.11! that

uB~pA,pB,d!→y~g!. ~3.9!

Finally, by the inclusion–exclusion principle,

(
uxu51

Pp$' infinite AB-path on Z1
d starting at x%5 (

uxu51
pAuB~pA,pB,d!

>Pp$' infinite AB-path on Z1
d starting at somex with uxu51%> (

uxu51
pAuB~pA,pB,d!

2 (
uxu51,uyu51,

xÞy

P$x and y have stateA%.

Thus,

Pp$' infinite AB-path on Z1
d starting at some neighbor of0%5dpAuB~pA,pB,d!

1O~d2@pA#2!;
2gy~g!

d
1OS 1

d2D .

~1.7! follows. j
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We consider a model of self-avoiding walks on the latticeZd with different weights
for steps in each of the 2d lattice directions. We find that the direction-dependent
mass for the two-point function of this model has three phases: mass positive in all
directions; mass identically2`; and masses of different signs in different direc-
tions. The final possibility can only occur if the weights are asymmetric, i.e., in at
least one coordinate the weight in the positive direction differs from the weight in
the negative direction. The boundaries of these phases are determined exactly. We
also prove that if the weights are asymmetric then a typicalN-step self-avoiding
walk has orderN distance between its endpoints. ©2000 American Institute of
Physics.@S0022-2488~00!02203-9#

I. INTRODUCTION

The self-avoiding walk has long been a standard model of a long linear polymer molec
a good solvent.1–3 The polymer is represented by a sequence of steps in a lattice; in the
isotropic model, steps in each lattice direction receive the same weight. However, the
situations in which the isotropic model is not appropriate. One basic example occurs w
polymer chain contains a dipole on each repeat unit, and the polymer is subject to an e
electric field. If each dipole is rigidly attached to the polymer backbone and parallel to it, the
individual dipole units add vectorially to create a single large end-to-end dipole. Then it is ea
an external field to stretch and orient the polymer when dissolved in a good solvent o
molecular weight~see Sec. 3.5 of Ref. 4!. The ability to orient polymers in solution by applyin
an electric field can greatly improve the information obtained by light scattering experimen5,6

Anisotropic self-avoiding walks have also been used as models of flux lines in Borgset al.
~1999!.7 This application will be described in more detail later in this section. But first we s
make precise definitions of our general model and some key quantities.

An N-step self-avoiding walk~SAW! on thed-dimensional hypercubic latticeZd is a sequence
v5(v(0),v(1),...,v(N)) of N11 distinct sites ofZd, such thatv( i ) andv( i 21) are nearest
neighbors for eachi 51,...,N. The vectorv( i )2v( i 21) is called thei th step ofv. We write
uvu5N to denote thelengthof the SAWv5(v(0),...,v(N)).

In the standard isotropic SAW model, all SAWs of a given length are weighted equally. In
paper, we consider the case where steps in different directions can have different weights. W
specify a vector of 2d non-negative weightsz5(z11 ,z1,2 ,...,zd2). Then we define the weight o
the N-step SAWv to be

a!Electronic mail: borgs@microsoft.com
b!Electronic mail: jchayes@microsoft.com
c!Electronic mail: king@neu.edu
d!Electronic mail: madras@mathstat.yorku.ca
13210022-2488/2000/41(3)/1321/17/$17.00 © 2000 American Institute of Physics
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zv
ª)

i 51

d

zi 1
Ni 1~v!zi 2

Ni 2~v! , ~1.1!

whereNi 1(v) andNi 2(v) denote the number of steps that the walkv takes in the positive and
negativei direction, respectively.

Our approach will focus on certain fundamental generating functions. Foru andv in Zd, let
Gz(u,v) be the generating function of all SAWs of all lengths that start atu and end atv,

Gz~u,v !5 (
v:u→v

zv, ~1.2!

wherev:u→v meansv(0)5u andv(uvu)5v. We callGz the two-point function.
For N>0, we definexN(z) to be the generating function of allN-step SAWs starting at the

origin 0PZd:

xN~z!5 (
v:v~0!50

uvu5N

zv. ~1.3!

The susceptibilityis defined as

x~z!5 (
N50

`

xN~z!5 (
vPZd

Gz~0,v !. ~1.4!

In Proposition 2.2 we shall show that the limit

l~z!ª lim
N→`

xN~z!1/N ~1.5!

exists, and thatx(z),` if and only if l(z),1.
Themassof the model is the exponential rate of decay of the two-point function. Becaus

the anisotropy of thez vector, we define the mass to be explicitly dependent upon direction. Lei•i
be a norm onRd. Let $v (n)% be a sequence of vectors inZd with norms tending to infinity. Assume
that v (n)/iv (n)i converges to a vectoraPRd. Then the mass in the directiona should be defined
as

m@a;z#5 lim
n→`

2 logGz~0,v ~n!!

iv ~n!i
. ~1.6!

For technical reasons, we shall usually work with the following simpler definition. Letv be a
nonzero vector inZd; then we define

m@v;z#5 lim
L→`

2 logGz~0,Lv !

L
. ~1.7!

The existence of this limit will be proven in Theorem 3.4, and the equivalence of~1.6! and~1.7!
is the subject of Corollary 3.6.

At this point let us review what is known for the isotropic case~see Secs. 1.2, 1.3 and 3.1
Ref. 2 for more details!. Suppose that all 2d components ofz are identical, i.e.,zi 15zi 25z0 for
every i for some positive real numberz0 . Then the weight~1.1! of a SAW v is simply z0

uvu . We
shall write x(z0), Gz0

(0,v), etc., when discussing this case; this notation conforms to tha

Madras and Slade.2 ThenxN(z0)5cNz0
N , wherecN is the number ofN-step SAWs that start at th

origin. SincecN
1/N converges to a constantm as N→`, we see thatl(z0)5mz0 . Therefore
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l(z0)51 if and only if z05m21; this valuem21 is the ‘‘critical point’’ of the isotropic SAW
model, often writtenzc . The casez0,zc @corresponding tol(z0),1# is the ‘‘subcritical’’ case;
here x(z0) converges, and the two-point functionGz0

(0,v) decays exponentially inv in all
directions~i.e., the massm@v;z0# is strictly positive forz0,zc!. Furthermore, the mass decreas
to 0 asz0 increases tozc . In the ‘‘supercritical’’ casez0.zc @corresponding tol(z0).1#, the
susceptibility is infinite and all masses are2` ~corresponding to two-point functions that do n
converge; see Ref. 8!.

We now return to the anisotropic model. If all components ofz are small, thenxN(z) decays
exponentially inN; in this case, long SAWs are rare in the ensemble of all SAWs and the m
are all positive. At the opposite extreme, if the components ofz are sufficiently large, then the
two-point functions are infinite, and the mass is2`. In the case of asymmetric weights, it turn
out that there is an intermediate third possibility: the masses are finite, but they arenegativein
some directions. This indicates exponential growth of the two-point function with distance~at least
in some directions!. We shall derive a precise description of the boundaries of these three ph
To describe them, we need to introduce symmetrized weights. Suppose all 2d components ofz are
strictly positive. Then we definez̄, the symmetrized weight vector, to be the vector
( z̄11 ,z̄12 ,...,z̄d2) whose components are given by

z̄i 15 z̄i 25Azi 1zi 2.

The definition becomes a bit complicated if some of the components ofz are zero~see Lemma
2.6!, but that is a special case that need not be considered yet.

It is not hard to show thatl( z̄)<l(z) ~see Lemma 2.6!. It turns out that thel function
describes the phase boundaries as follows.

Theorem 1.1: (i) If l(z),1, then m@v;z# is positive and finite for every nonzerov in Zd.
(ii) If l(z).1 and l( z̄),1, then m@v;z# is finite for everyv in Zd, but m@v;z# is positive for
some vectorsv and negative for others.
(iii) Finally, if l( z̄).1, then m@v;z# is 2` for every nonzerov.

Note that case (i i ) cannot occur ifzi 15zi 2 for every i ~in particular, in the isotropic case!.
Theorem 1.1 will follow immediately from Theorem 2.3 and Corollary 3.5 below.

Anisotropic self-avoiding walks were considered in Borgset al.7 as models of flux lines. In
that paper, collections of mutually avoiding SAWs that begin and end on the boundary of a
region modeled the penetration of flux lines through the region. In the model of primary in
there, the anisotropy in the weights modeled the influence of an external magnetic field. It
out that the flux lines model also has three phases. One phase boundary was the equatil(z)
51; the regionl(z),1 was shown to be a ‘‘Meissner phase’’ in which flux lines were unlik
to be long enough to penetrate the interior of the region. However, we could find no nonan
behavior of the flux line model on the surfacel( z̄)51, which is a phase boundary for the sing
SAW in the present paper. Rather, whenl(z).1 in the flux line model, we found many SAW
crossing the region in a direction in which the mass was negative; the second phase bo
described a transition to a maximally packed configuration of straight parallel lines.

In the present paper we also address the question of what a typical SAW looks like wh
weights are not symmetric, i.e., whenzi 1Þzi 2 for at least onei. By comparison with ordinary
random walks, one expects linear drift, i.e., the end-to-end distance of a typicalN-step SAW~with
weights given byz! is of the orderN. We prove the following version of this result in Sec. IV

Theorem 1.2:Fix a weight vector z with all weights nonzero. Assume that z is not symm
~i.e., zÞ z̄!. For each N, letvN* be the most likely endpoint of an N-step SAW. (That is, vN* is the
vector vPZd for which the generating function of all N-step SAWs from0 to v is maximized.)
Then (for any normi•i)

lim inf
N→`

ivN* i
N

.0.
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In the context of a linear polymer with repeated attached dipoles parallel to its back
Theorem 1.2 says that even a small external electric field is enough to stretch and orie
polymer so that its end-to-end distance is proportional to its molecular weightN, instead of
obeying the usual isotropic scaling behavior~which is'N0.6 in three dimensions!. This result was
predicted by Manna and Chakrabarti9 on the basis of exact enumeration data as well as a
space renormalization group analysis. We remark that symmetric models~satisfyingzi 15zi 2 for
every i! should be in the same universality class as the isotropic model.

The paper is organized as follows. Section II begins with some elementary results
anisotropic SAWs and then explores properties of a slightly different mass function,M @v;z#. This
mass function is for SAWs that start at the origin and end atLv, with the additional condition tha
they always stay between two parallel hyperplanes that pass through the origin andLv, respec-
tively. We use the term ‘‘slab’’ to denote the region between two such hyperplanes. Such S
in slabs are easier to work with than unrestricted SAWs primarily because two such SAW
always be concatenated. SAWs in slabs play a role analogous to bridges in Madras and2

~especially Sec. 4.1! and in Chayes and Chayes8 ~the latter reference uses the term ‘‘cylind
walks’’ for bridges!. The main results about the mass functionM are stated in Theorem 2.3. Th
rest of Sec. II is devoted to the proof of the various parts of this theorem. Section III prove
the massesM and m are equal in general, except perhaps on the critical surfacel( z̄)51. Thus
most of the results of Theorem 2.3 immediately extend to the massm, and in particular this
verifies the description of the three phases described in Theorem 1.1. The anisotropic ‘‘b
diagram’’ plays an important role here. Finally, Sec. IV uses the results of Secs. II and III to p
Theorem 1.2.

II. BASIC RESULTS AND MASSES OF WALKS IN SLABS

In this section we state and prove some basic results that generalize the well-known pro
of isotropic self-avoiding walks~SAWs! to anisotropic SAWs. Then we consider SAWs in sla
~which generalize the concept of ‘‘bridges’’ or ‘‘cylinder walks’’ that have been used elsewh
see Madras and Slade2 or Chayes and Chayes,8 as well as the proof of Lemma 2.8 below!, and
prove some important properties of their masses.

Notation:For a vectorv5(v1 ,...,vd) in Rd, we writeivi15uv1u1¯1uvdu to denote theL1

norm of v. If v5(v(0),...,v(N)) is a SAW, then2v5(2v(0),...,2v(N)). We writev i( j )
to denote thei th coordinate of thej th sitev( j ). If c5(c(0),...,c(M )) is another SAW, then the
concatenationv+c is defined to be the (N1M )-step SAW

~v~0!,...,v~N!,v~N!1c~1!2c~0!,...,v~N!1c~M !2c~0!!.

Let zmax ~respectively,zmin! denote the maximum~respectively, minimum! of the 2d weights
$z11 ,z12 ,...,zd2%. We then write logz to denote the vector (logz11 ,logz12 ,...,logzd2). To
avoid some trivial remarks, we shall generally assume thatzi 11zi 2.0 for everyi 51,...,d.

Lemma 2.1: Let U be a fixed set of vectors in Rd. For each uPU, let au be a non-negative
real number. Then the function

logS (
uPU

aueu•bD
is a convex function ofbPRd.

Proof: This is a well-known consequence of Ho¨lder’s inequality. Forb8, b9PRd and 0,l
,1, we have

(
uPU

aueu•@lb81~12l!b9#<S (
uPU

aueu•b8D lS (
uPU

aueu•b9D 12l

.

The lemma follows upon taking log of both sides. h
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Proposition 2.2: Let 0<zmin<zmax,`. Then

( i ) the limit

l~z!ª lim
N→`

xN~z!1/N ~2.1!

exists in@0,̀ !, and

l~z!5 inf
N<1

xN~z!1/N. ~2.2!

( ii ) l(z) is a log-convex function of log z. Hencel(z) is continuous on(0,̀ )2d.
( iii ) x(z),` if and only if l(z),1.
( iv) x(z)↑` as l(z)↑1.
(v) For any t.0, l(tz)5tl(z).

Proof: ( i ): Any (M1N)-step SAW can be expressed as the concatenation of anM-step and
an N-step self-avoiding walk. Therefore

xM1N~z!<xM~z!xN~z! for all M ,N>1. ~2.3!

Part (i ) now follows from the usual subadditivity~submultiplicativity! property~see Sec. 1.2 of
Ref. 2!, together with the observation that

zmax<l~z!<2dzmax, ~2.4!

which follows fromzmax
N <xN(z)<(2dzmax)

N. In particular, we note thatl(z) is nonzero unlessz is
identically 0.

( ii ) The convexity of logxN(z), and hence of logl(z), follows from Lemma 2.1. Convexity
implies continuity on the interior of the set where the function is finite.

( iii ) If l(z),1, then clearlyx(z)5SN xN(z) converges. And ifl(z)>1, thenxN(z)>1 for
everyN by ~2.2!.

( iv) If l(z),1, then by~2.2! we have

x~z!5 (
N50

`

xN~z!> (
N50

`

l~z!N5
1

12l~z!
. ~2.5!

Part (iv) follows.
(v) This follows fromxN(tz)5tNxN(z). h

We now need to introduce a direction-dependent mass for a restricted set of SAWs. Co
a weight vectorz and a~nonzero! lattice pointvPZd. Also, let u be a vector inRd such that
u•v.0. Let Slab(vuu) be the set of lattice points between the two hyperplanes through0 andv
that are normal tou; that is,

Slab~vuu!5$uPZd:0,u•u<v•u%.

See Fig. 1. LetBz(0,vuu) be the generating functions of all SAWs that start at0, end atv, and lie
entirely in 0øSlab(vuu). Then for all integersj ,k>1, we have

Bz~0, j vuu!Bz~0,kvuu!<Bz~0,~ j 1k!vuu!. ~2.6!

Again, we can use subadditivity to define the massM @v;z# ~actually, M @v;zuu#, but we shall
show in Lemma 2.4 thatM is independent ofu! via

M @v;z#5M @v;zuu#5 lim
L→`

2 logBz~0,Lvuu!

L
5 inf

L>1

2 logBz~0,Lvuu!

L
~2.7!
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~analogous to Proposition 4.1.8 of Ref. 2!. In particular, for everyL>1 we have

Bz~0,Lvuu!<e2LM @v;z#. ~2.8!

If zmin50, then we often have to restrict our choices ofv andu. Let

W~z!5$wPRd\$0%:wi<0 if zi 150, and wi>0 if zi 250%.

Thus a nonzero vectorvPZd is in W(z) if and only if there exists a SAWv from 0 to v such that
zv.0. It is easy to see that forvPZd\$0%, the massM @v;zuv# equals1` if and only if v is not
in W(z) @Lemma 2.4~i!#. To avoid some trivialities in the statements of some theorems, we
often requirevPW(z)ùZd, in addition to the condition thatu•v.0. Of course, ifzmin.0, then
W(z)5Rd\$0%, so there is no such restriction.

Before we state Theorem 2.3, which includes the main results of this section, we requir
more definitions. Using the fact that these masses do not depend onu, we define

M0~z!ª inf
vPZd\$0%

M @v;z#

ivi1
. ~2.9!

If z satisfies 0,zmin<zmax,`, then we definez̄ to be the ‘‘symmetrized’’ weight vector, whos
components are

z̄i 15 z̄i 25Azi 1zi 2.

~See Lemma 2.6 for the definition ofz̄ whenzmin50.!
Theorem 2.3: ( i ) M0 is a concave function oflogz, finite on

$z:0,l~ z̄!<1%

~which contains$z:0,l(z)<1%, sincel( z̄)<l(z)!;
( ii ) M0 is identically 2` on $z:zmin.0, l( z̄).1%. In fact, for every z in this set, M @v;z#5
2` for every nonzero v;
( iii ) M0(z).0 if l(z),1;
( iv) M0(z),0 if l(z).1;
(v) M0(z)505 limt↑1 M0(tz) if l(z)51.

This theorem will follow from several intermediate results, which will be collected in
proof that appears at the end of this section.

FIG. 1. A self-avoiding walk inZ2 from 0 to v that lies in SlabT(vuu). The boundary of Slab(vuu) is indicated by the two
angled solid lines, which are perpendicular to the vectoru. The dotted lines denote the boundary of TubeT(v); they are
parallel to the line segment from0 to v ~not shown!.
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We remark that (ii ) above is false in some cases if we omit the conditionzmin.0. For
example, supposezi 151 andzi 250 for every i. Then, by the definition ofz̄ in Lemma 2.6,z̄
5z so thatl( z̄)5l(z)5d.1, butBz(0,vuv)<divi1 for everyv, so M0(z)>2 logd.2`.

We now define ‘‘truncated’’ masses. For each nonzerovPZd, let 0v be the~infinite! line that
passes through the points0 and v. For each positive integerT.0, let TubeT(v) be the set of
points in Rd whose~Euclidean! distance from0v is at mostT. Next, for eachuPRd such that
v•u.0, let SlabT(vuu)5Slab(vuu)ùTubeT(v). Let Bz

T(0,vuu) be the generating function of a
SAWs that start at0, end atv, and lie entirely in0øSlabT(vuu). As above, we can use suba
ditivity to define the truncated mass

MT@v;z#[MT@v;zuu#5 lim
L→`

2 logBz
T~0,Lvuu!

L
5 inf

L>1

2 logBz
T~0,Lvuu!

L
. ~2.10!

Observe thatMT@v;z# is decreasing inT and is bounded below byM @v;z#.
The following lemma describes some basic properties of these masses. After provin

lemma we shall generally suppress theu in the notation for the massesM.
Lemma 2.4: (i) For each T, v and u such thatu•v.0, MT@v;zuu# is a finite concave (and

hence continuous) function oflogz, for zP(0,̀ )2d. If we fix some components of z to be0, then
MT@v;zuu# is a finite concave function of the logarithms of the nonzero components of z@provided
that v is in the appropriate W(z)#. Hence M@v;zuu#,1` under these conditions.

( ii ) For every T.ivi1 ,MT@v;zuu# does not depend onu, subject to the constraintu•v.0.
( iii ) M @v;zuu#5 limT→` MT@v;zuu#. Hence, M @v;zuu# does not depend onu. @If zmin50 in

parts ( ii ) and ( iii ), then we add the condition thatv is in W(z).#

Corollary 2.5: M0(z),1` for every nonzero z. For zP(0,̀ )2d,M0(z) is a concave func-
tion of logz. If we fix some components of z to be0, then M0(z) is a concave function of the
logarithms of the nonzero componentsof z.

Proof of Lemma 2.4:Concavity is again the result of Lemma 2.1. The proof of finiteness in~i!
and the proof of (iii ) are straightforward adaptations of the proof of Lemma 4.1.11 in Madras
Slade;2 see also the proof of Lemma 4.2 in Borgset al.7

For part (ii ): Fix v andu such thatu•v.0, and fixT.ivi1 . @If zmin50, thenv must be in
W(z).# We shall prove thatMT@v;zuu#5MT@v;zuv#.

First, choose a positive integerK such that the translated slabKv1SlabT(vuv) lies completely
in the half-space$wPRd:u•w.0%. Then we see that

kv1SlabT~ j vuv !,SlabT~~2k1 j !vuu! for every j 51,2,... andk5K,K11,... . ~2.11!

Let v* be the site inZd whose coordinates are

v i* 5H v i if u iv i.0

0 if u iv i<0
~ i 51,...,d!. ~2.12!

Let c be aivi1-step self-avoiding walk that starts at0, ends atv, and passes through the sitev*
~necessarily at theiv* i1

th step!. Let ĉ be the SAW from0 to v obtained by taking the steps ofc

in the reverse order, i.e., the SAW whose sites areĉ( j )5v2c(ivi12 j ), j 50,...,ivi1 . Also, for
s51,2,..., letc (s) ~respectively,ĉ (s)! denote the concatenation ofs copies ofc ~respectively,ĉ!.

First observe thatv•c( j ) is strictly increasing inj for 0< j <ivi1 , soc andĉ are both SAWs
from 0 to v that lie entirely in0øSlabT(vuv). In particular, we see thatc (k) and ĉ (k) are both
SAWs. Next, the definition ofv* shows thatu•c( j ) is strictly increasing inj for 0< j <iv* i1 ,
and nonincreasing foriv* i1< j <ivi1 . Since u•c(0)50, u•c(iv* i1)5u•v* .0, and
u•c(ivi1)5u•v.0, we conclude that

u•v* >u•c~ j !.0 for every j 51,...,ivi1 ~2.13!
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and hence

u•v2u•v* <u•ĉ~ j !,u•v for every j 50,...,ivi121. ~2.14!

Suppose thatI is an integer greater than (u•v* )/(u•v). Thenc @respectively, (I 21)v1ĉ# is a
SAW from 0 to v @respectively, from (I 21)v to Iv# which lies entirely in0øSlabT(Ivuu).
Furthermore, for any integers>1,c (s) lies entirely in 0øSlabT((I 211s)vuu), as does (I
21)v1ĉ (s). Now fix an integerI which is greater thanK and (u•v* )/(u•v). Let z5c (I 21)

+ĉ (I 21), and letI 852(I 21). Then we see thatz is a SAW from0 to I 8v which lies entirely in
0øSlabT(I 8vuu). Also, z lies in 0øSlabT(I 8vuv).

Now let j be any positive integer, and consider any SAWv from 0 to j v that lies entirely in
0øSlabT( j vuv). Thenz+v+z is a SAW from0 to (2I 81 j )v that lies entirely in0øSlabT((2I 8
1 j )vuu) @using ~2.11! with k5I 8#. Therefore

Bz
T~~2I 81 j !vuu!>~zz!2Bz

T~ j vuv !. ~2.15!

Since~2.15! holds for everyj >1, we conclude thatMT@v;zuu#<MT@v;zuv#.
We now need to showMT@v;zuu#>MT@v;zuv#. This is based on the following claim: Ifr is

a SAW from0 to j v that lies in0øSlabT( j vuu), thenz+r+z is a SAW from0 to (2I 81 j )v that
lies entirely in0øSlabT((2I 81 j )vuv). The analog of~2.15! and the rest of the proof follow from
this claim. To prove the claim, it suffices to show that ifwPSlabT( j vuu), then I 8v1w
PSlabT((2I 81 j )vuv). ChoosewPSlabT( j vuu); we need to show

0,~ I 8v1w!•v<~2I 81 j !v•v. ~2.16!

The point (2I 81 j )v1w is in TubeT(v) but not in SlabT((2I 81 j )vuu), so it follows from~2.11!
that (2I 81 j )v1w is not in I 8v1SlabT( j vuv); in fact, we must have ((2I 81 j )v1w)•v.(I 8v
1 j v)•v, from which we obtain the left inequality of~2.16!. Similarly, w2 j v is not in
SlabT((2I 81 j )vuu), so it is not inI 8v1SlabT( j vuv); we deduce that (w2 j v)•v<I 8v•v. This
gives the right inequality of~2.16!. This completes the proof of the lemma. h

Lemma 2.6: For a given weight vector z, let

I ~z!5$ i P$1,...,d%:min$zi 1 ,zi 2%.0%.

Let z̄ be the symmetrized weight vector with components

z̄i 15 z̄i 25Azi 1zi 2 i f i PI ~z!, and z̄i 15zi 1 and z̄i 25zi 2 i f i ¹I ~z!.

Then
( i ) l( z̄)<l(z).
( ii ) Supposev is an N-step self-avoiding walk, and letv(N)2v(0)5v. Then

zv5 z̄v )
i PI ~z!

S zi 1

zi 2
D v i /2

.

( iii ) Fix vPZd. Then for anyu, with u•v.0,

Bz~0,vuu!5Bz̄~0,vuu! )
i PI ~z!

S zi 1

zi 2
D v i /2

.

The same equation holds if we replace B.(0,vuu) by B.T (0,vuu) or by G.(0,v). Also,

M @v; z̄#5M @v;z#1
1

2 (
i PI ~z!

v i log~zi 1 /zi 2!.
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In particular, M @v;z# is finite if and only if M@v; z̄# is finite.
Proof: ( i ) Fix z. For a pointuPRd, let r @u# be the point whosei th coordinate is2ui if i

PI (z) and isui if i ¹I (z). For anN-step SAWv, let r @v# be the SAW (r @v(0)#,...,r @v(N)#).
Observe that

zvzr @v#5)
i 51

d

zi 1
Ni 1~v!1Ni 1~r [v] !zi 2

Ni 2~v!1Ni 2~r [v] !

5 )
i PI ~z!

~zi 1zi 2!Ni 1~v!1Ni 2~v! )
i ¹I ~z!

zi 1
2Ni 1~v!zi 2

2Ni 2~v!
5~ z̄v!2. ~2.17!

Therefore, using the arithmetic-geometric mean inequality,

xN~z!5 (
v:uvu5N,v~0!50

zv

5 (
v:uvu5N,v~0!50

S zv1zr @v#

2 D
> (

v:uvu5N,v~0!50
Azvzr [v]

5 (
v:uvu5N,v~0!50

z̄v5xN~ z̄!. ~2.18!

Part (i ) follows from Eq.~2.18!.
( ii ) Let v be anN-step SAW such thatv(0)2v(N)5v. Notice thatNi 1(v)2Ni 2(v)5v i

for eachi. Therefore

zv5)
i 51

d

zi 1
Ni 1~v!zi 2

Ni 2~v!
5 )

i PI ~z!
~zi 1zi 2!@Ni 1~v!1Ni 2~v!#/2zi 1

@Ni 1~v!2Ni 2~v!#/2zi 2
@Ni 2~v!2Ni 1~v!#/2

3 )
i ¹I ~z!

zi 1
Ni 1~v!zi 2

Ni 2~v!
5)

i 51

d

z̄i 1
Ni 1~v!z̄i 2

Ni 2~v! )
i PI ~z!

S zi 1

zi 2
D v i /2

,

and part (ii ) follows.
( iii ) This follows immediately from (ii ). h

Lemma 2.7: If l(z),1, then M@v;z#>2ivi1 logl(z).0 for every nonzerov. That is,
M0(z)>2 logl(z).

Proof: Fix a nonzerov and a vectoru such thatu•v.0. ChooseD such thatl(z),D,1, and
chooseA.0 such thatxn(z)<ADn for everyn>1. Then, for any integerL>1,

Bz~0,Lvuu!< (
n5Livi1

`

xn~z!<
ADLivi1

12D
.

Take2log, divide byL and letL→` to obtainM @v;z#>2ivi1 logD. Since this holds for every
D such thatl(z),D,1, the result follows. h

A weaker version of the following result@namely, thatM0(z),0 if l(z).1# can be deduced
from the proof of Lemma 4.2 of Borgset al.7 The extension to the casel(z)51 does not follow
simply from continuity, sinceM0(z) can equal2` for somez’s such thatl(z).1.

Lemma 2.8: If l(z)>1, then M0(z)<0.
Proof: Assume without loss of generality thatz11>z12 and z11.0. We begin with some

notation, following Madras and Slade.2 Let v be anN-step SAW (N>0). We say thatv is a
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half-spacewalk if v(0)50 and 0,v1( j ) for every j 51,...,N. We say thatv is a bridge if
v(0)50 and 0,v1( j )<v1(N) for every j 51,...,N. If v is a bridge, thenv1(N) is the span of
v.

Let v be anN-step half-space walk. The Hammersley–Welsh argument~see Hammersley and
Welsh,10 or Sec. 3.1 of Madras and Slade2! constructs a finite sequence of bridgesv (1),...,v (k),
having spansA1 ,...,Ak , such that

A1.A2.¯.Ak , and v5v~1!+~2v~2!!+v~3!+~2v~4!!+¯+~~21!k11v~k!!.

Sincez11>z12 , we have thatzv( i )
>z2v( i )

for each bridgev ( i ), and hence

zv5)
i 51

k

z~21! i 1av~ i !
<)

i 51

k

zv~ i !
for the half-space walkv. ~2.19!

Let Bz,A be the generating function of all bridges of spanA; let Bz andHz be the generating
functions for all bridges and half-space walks, respectively.~SoBz5(A50

` Bz,A!. Then, by~2.19!,

Hz< )
A51

`

~11Bz,A!< )
A51

`

exp~Bz,A!5eBz21.

Let j be the one-step SAW from0 to ~1,0,...,0!. For anyN-step SAWc, there is ann in $0,1,...,N%
such that (c(n),...,c(N))2c(n) andj+(c(n),...,c(0)) areboth half-space walks. Therefore

x~z!z11<~Hz!
2<e2Bz22.

So if l(z)>1, thenx(z) diverges, and henceBz diverges.
Next we have

Bz511 (
y:y1.0

Bz~0,yu~1,0,...,0!!<11 (
y:y1.0

e2M @y;z#<11 (
y;y1.0

e2iyi1M0~z!,

which is finite wheneverM0(z).0. So ifl(z)>1, then the conclusion of the preceding paragra
shows thatM0(z)<0. h

To state the next lemma, we introduce, for everyz with 0,l(z),`, its dualz* 5z/l(z)2.
Note thatz* is defined in such a way that

l~z* !l~z!51, ~2.20!

see Lemma 2.2(v).
Lemma 2.9: If l(z).1, then

M0~z!<2M0~z* !, ~2.21!

implying in particular that M0(z)<2 logl(z),0.
Proof: The concavity property ofM0 ~Corollary 2.5! shows that for every nonzeroz8 and

every t.0, we have

M0~z8!>
1

2
M0~ tz8!1

1

2
M0S 1

t
z8D .

Assumel(z).1. Let t5l(z)21 andz85tz. Thenl(z8)51 by Proposition 2.2(v), so M0(z8)
<0 by Lemma 2.8. Therefore

M0~z!5M0S 1

t
z8D<2M0~z8!2M0~ tz8!<2M0~z* !,
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where we have used thattz85t2z5z* in the last step. Also,l(z* )51/l(z),1 by ~2.20!, so

M0~z!<2M0~z* !< log~l~z* !!52 log~l~z!!

by ~2.21! and Lemma 2.7. h

Lemma 2.10:Assume z satisfies zi 15zi 2.0 for every i. If M @v;z#.0 for some nonzerov,
then M@u;z#52` for every nonzero u.

Proof: AssumeM @v;z#,0 for some nonzerov, and choosei such thatv iÞ0. By the sym-
metry assumption onz, we knowM @v;z#5M @2v;z#, so we can assume without loss of gene
ality that v i.0.

For eachi 51,...,d, let e( i ) be the unit vector in the positivei th coordinate direction. Letv8 be
the vector whose coordinates agree with those of2v except thatv i85v i . Thenv1v852v ie

( i ),
and for allk51,2,...,

Bz~0,kvue~ i !!Bz~0,kv8ue~ i !!<Bz~0,2kv ie
~ i !ue~ i !!. ~2.22!

Therefore M @v;z#1M @v8;z#>2v iM @e( i );z#. The symmetry of z implies that M @v8;z#
5M @v;z#, and soM @e( i );z#,0.

Our main step is to show the following assertion:

If M @e~k!;z#P@2`,0# for some k, then M @e~ j !;z#52` for all j Þk. ~2.23!

After ~2.23! has been proven, then we deduce from the preceding paragraph thatM @e( j );z#
52` for all j Þ i ; another application of~2.23! shows thatM @e( i );z#52` also. Then, for any
nonzero vectoru5( i uie

( i ), we have

Bz~0,Luuu!> )
k:ukÞ0

Bz~0,Luke
~k!uu!,

which implies

M @u;z#< (
k:ukÞ0

uui uM @e~ i !;z#52`.

So we see that the Lemma follows once~2.23! has been proven.
To prove ~2.23!, assumeM @e(k);z#,0, and fix j Þk. By Lemma 2.4 (iii ), there exists aT

such thatMT@e(k);zue(k)#,0; and by Eq.~2.10! there exists anL such that

Bz
T~0,Le~k!;zue~k!!.2.

For each integerr>1, consider the collection of all SAWs that go:
from 0 to 2Te( j ) in 2T steps, and then
from 2Te( j ) to 2Te( j )1rLe(k) inside 2Te( j )1SlabT(rLe(k)ue(k)), and then
to 2Te( j )1(rL 11)e(k) in 1 step, and then
to 5Te( j )1(rL 11)e(k) in 3T steps, and then
to 5Te( j )1e(k) inside 5Te( j )1(rL 11)e(k)1SlabT(2rLe(k)u2e(k)), and then
to 5Te( j ) in 1 step, and then
to 7Te( j ) in 2T steps.

The generating function of all such SAWs is less thanBz(0,7Te( j )ue( j )) and greater than

zj 1
7Tzk1

2 Bz
T~0,rLe~k!ue~k!!Bz

T~0,2rLe~k!u2e~k!!>zj 1
7Tzk1

2 Bz
T~0,Le~k!ue~k!!2r.zj 1

7Tzk1
2 22r .

Therefore Bz(0,7Te( j )ue( j )).zj 1
7Tzk1

2 22r for every r>1, which implies thatBz(0,7Te( j )ue( j ))
51`, and henceM @e( j );z#52`. This proves~2.23! and the Lemma. h

The following result follows immediately from Lemmas 2.9 and 2.10.
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Corollary 2.11: Assume z satisfies zi 15zi 2.0 for every i andl(z).1. Then M@v;z#
52` for every nonzerov.

We are finally ready to put the pieces together to complete the proof of the main theor
this section.

Proof of Theorem 2.3:( i ) Corollary 2.5 gives concavity and the fact thatM0(z),1` for
every nonzeroz. If l( z̄),1, then Lemma 2.7 shows thatM @v; z̄#>2ivi1 logl(z̄) for every
nonzerov; then Lemma 2.6 (iii ) tells us that

M0~z!<2 logl~ z̄!2
1

2
max

i PI ~z!

$u log~zi 1 /zi 2!u%. ~2.24!

ThereforeM0 is finite on$z:l( z̄),1%. It remains to show thatM0(z).2` whenl( z̄)51; this
will follow from ( v) below and Lemma 2.6(iii ).

( ii ) This follows from Corollary 2.11 and Lemma 2.6(iii ).
( iii ) This is Lemma 2.7.
( iv) This follows from Lemma 2.9.
(v) Fix z such thatl(z)51. For everyt.0, define

F~ t !ªM0~ tz!5 inf
v,T

MT@v;tz#

ivi1
.

For eachT andv @with vPW(z) if zmin50#, MT@v;tz# is decreasing int, and by Lemma 2.4(i ),
it is continuous int; thereforeF is left-continuous. SinceF(t).0 whenever 0,t,1 @by part (iii )
above#, we conclude thatM0(z)>0. Finally, M0(z)<0 by Lemma 2.8. h

III. THE MASS OF THE FULL TWO-POINT FUNCTION

In this section we shall prove that the massm@v;z# of the full two-point function, as defined
in Eq. ~1.7!, is well-defined, and that it equals the slab massM @v;z# except perhaps whenl( z̄)
51. The analog of this for isotropic walks was proved in Chayes and Chayes.8

A key quantity in our analysis is thebubble diagramB(z), which is defined as follows:

B~z!5 (
vPZd

Gz~0,v !Gz~v,0!.

This is an extension of the isotropic definition, which is usually writtenB(z0)5(v Gz0
(0,v)2. See

Sec. 1.5 of Madras and Slade2 for a discussion of the role of the bubble diagram, particularly
high dimensions.

Proposition 3.1: ( i ) B(z)5B( z̄) for every z.
( ii ) If l( z̄),1, thenB(z) is finite.
( iii ) If l( z̄).1 and zmin.0, thenB(z) is infinite.
Proof: ~i! For anyvPZd, we have

Gz~0,v !Gz~v,0!5Gz~0,v !Gz~0,2v !5Gz̄~0,v !Gz̄~0,2v ! ~by Lemma 2.6~ iii !!

5Gz̄~0,v !Gz̄~v,0!,

and part~i! follows.
( ii ) If l( z̄),1, thenx( z̄),` @by Proposition 2.2(iii )]. Moreover, using~i!, we have

B~z!5 (
vPZd

Gz̄~0,v !2<x~ z̄!2,`.
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( iii ) This follows from Theorem 2.3(ii ), which tells us thatGz(0,v) does not tend to 0 asv
tends to infinity. h

The proof of the following lemma is identical to the proof of its isotropic analog, which
Lemma 4.1.4 of Madras and Slade.2

Lemma 3.2: For any x, yPZd, and any z,

Gz~0,x!Gz~x,y!<B~z!Gz~0,y!.

Lemma 3.3: For everyv,wPZd @and in W(z) if zmin50#,

M @v1w;z#<M @v;z#1M @w;z#.

Proof: The result is obvious ifv or w is the zero vector, so assume both are nonzero.v
5tw for some positive rational numbert, then in factv andw are both integer multiples of som
vectoruPZd, and the result follows easily sinceM @ku;z#5kM@u;z# for every positive integerk.
If v52tw for some positive rational numbert, then the previous sentence proves the result foz̄
in place ofz; to derive the result for nonsymmetricz, simply use the formula of Lemma 2.6(iii ).

Now assume thatv and w are linearly independent. Letu be the vectorv/ivi21w/iwi2

~where i•i2 denotes Euclidean norm!. Thereforeu•v.0 andu•w.0, and so a concatenatio
argument shows that

Bz~0,Lvuu!Bz~0,Lwuu!<Bz~0,Lv1Lwuu!.

The lemma now follows from the definition of the massM and the fact thatM does not depend
uponu @Lemma 2.4(iii )]. h

Theorem 3.4:Assume thatl( z̄),1, or that zmin50. Then for every nonzerovPZd, the limit
m@v;z# [of Eq. (1.7)] exists and equals M@v;z#. Moreover, ifB(z),` @as is always the case
whenl( z̄),1#, then

Gz ,~0,v !<Be2m@v;z#. ~3.1!

Proof: We shall first dispense with the casezmin50. Assume without loss of generality tha
z11.z1250. Then every SAW from0 to v must stay between the hyperplanesx150 andx1

5v1 . ThereforeBz(2e(1),vue(1))5z11Gz(0,v), so the existence of the limitM @v;z# implies that
of m@v;z#, as well as their equality.

Now assumeB(z),` ~whether or notzmin is 0!. The existence of the limit~1.7! and the
inequality ~3.1! follow from Lemma 3.2 and subadditivity, exactly as in the proof of Theor
4.1.18 of Madras and Slade.2

It remains to prove the equality of the masses whenl( z̄),1 and zmin.0. Since
Bz(0,Lvuv)<Gz(0,Lv), we obviously haveM @v;z#>m@v;z#. Therefore we only need to prov
m@v;z#>M @v;z#.

By Lemma 2.6(iii ), it suffices to consider the casez5 z̄, i.e., zi 15zi 2.0 for every i. Ob-
serve thatM @v; z̄#.0 for every nonzerovPZd ~Lemma 2.7!, and that

M @kv; z̄#5ukuM @v; z̄# for every integerk. ~3.2!

We can use this equation to extend the definition ofM @v; z̄# to all vectorsv in Qd ~the set of
vectors inRd with rational coordinates!. Then for everyu, wPQd,

uM @u; z̄#2M @w; z̄#u<M @u2w; z̄#<2iu2wi1 logzmin ~3.3!

~the first inequality comes from Lemma 3.3, and the second from the fact thatzmin
ivi1<Bz̄(0,vuu)

<exp(2M@v;z̄#)). ThusM @•; z̄# is uniformly continuous onQd, and so it extends to a continuou
function on all ofRd, which we shall also writeM @•; z̄#. This function is a norm onRd @by ~3.2!
and Lemma 3.3#.
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Fix a nonzerovPZd and let

S@v#5$wPRd:M @w; z̄#<M @v; z̄#%.

This is a convex set withv on its boundary, so there exists a ‘‘supporting hyperplane’’ ofS@v# at
v; that is, there exists auPRd such thatu•v.0 and S@v# is contained in the half-spaceH
5$wPRd:u•w<u•v%. Now consider any SAWv from 0 to Lv ~whereL is a positive integer!.
We can breakv into three subwalks, as follows. Leti 0 be the largesti at which min$u•v(i):0
<i<uvu% is attained, and letj 0 be the largestj at which max$u•v(j):i0<j<uvu% is attained.@Observe
thatu•v( i 0)<0,u•(Lv)<u•v( j 0), and thatu•v( i 0),u•v(k)<u•v( j 0), for everyk between
i 0 and j 0 .# Let the first subwalk be the part ofv from 0 to v( i 0), the second fromv( i 0) to v( j 0),
and the third fromv( j 0) to v(uvu). This decomposition implies the following inequality:

Gz̄~0,Lv !< (
u:u•u<0

(
y:u•y>u•~Lv !

Gz̄~0,u!Bz̄~u,yuu!Gz̄~y,Lv !. ~3.4!

In the above sum, we know thatu•(y2u)>u•(Lv), so the vector (y2u)/L is not in the interior
of the half-spaceH. Therefore (y2u)/L is not in the interior ofS@v#, which implies that
M @(y2u)/L; z̄#>M @v;z#. From this we deduce

e2LM @v; z̄#>e2M @y2u; z̄#>Bz̄~u,yuu!

@where the last inequality follows from Eq.~2.8!#. Next we use this bound onBz̄(u,yuu) in ~3.4!,
and then bound the double sum in~3.4! by including allu’s andy’s in Zd, obtaining

Gz̄~0,Lv !<x~ z̄!2e2LM @v; z̄#.

This implies thatm@v; z̄#>M @v; z̄#, and so the proof is complete. h

Corollary 3.5: For everyvPZd, we have m@v;z#5M @v;z#, except perhaps whenl( z̄)51
and zmin.0.

Proof: By Theorem 3.4, the only case not yet proven isl( z̄).1 andzmin.0. But in this case,
Theorem 2.3 ~ii ! tells us that M @v;z#52`, so the corollary follows becausem@v;z#
<M @v;z#. h

Corollary 3.6: Assumel( z̄),1 and zmin.0. Let $v (n)% be a sequence of vectors in Zd and let
$tn% be a sequence of positive numbers tending to infinity, such thatv (n)/tn converges to a vecto
a in Rd. Then

lim
n→`

2 logGz~0,v ~n!!

tn
5m@a;z#,

where m@•;z# is the extension of the mass function to all of Rd, as described in the proof o
Theorem 3.4.

In particular, takingtn5iv (n)i gives Eq.~1.6!, and shows that the definition~1.6! does not
really depend on the choice of norm.

Proof: The proof is similar to that of Theorem 4.1.18 in Madras and Slade,2 which is the
isotropic analog of this result. By~3.1!, we know

2 logGz~0,v ~n!!>2 logB~z!1m@v ~n!;z#,

and therefore

lim inf
n→`

2 logGz~0,v ~n!!

tn
>m@a;z# ~3.5!
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by the continuity ofm@•;z#. So it suffices to prove the reverse inequality for the lim sup.
Fix e.0. Choose a vectorvPZd and a positive integerJ such thatia2J21vi1<e. Now

choose a sequence of positive integerskn such thatkn /tn converges toJ21. By Lemma 3.2 we
have

Gz~0,knv !Gz~knv,v ~n!!<B~z!Gz~0,v ~n!!. ~3.6!

Then we have

lim
n→`

2 logGz~0,knv !

tn
5J21m@v;z#5m@J21v;z#<m@a;z#2e logzmin @by ~3.3!#. ~3.7!

Next, using the trivial boundGz(u,w)>zmin
iw2ui1, we obtain

lim sup
n→`

2 logGz~knv,v ~n!!

tn
<2ia2J21vi1 logzmin<2e logzmin . ~3.8!

Finally, we combine~3.6!, ~3.7!, and~3.8! to obtain

lim sup
n→`

2 logGz~0,v ~n!!

tn
<m@a;z#22e logzmin .

Sincee.0 is arbitrary, this shows that lim supn2 logGz(0,v (n))/tn<m@a;z#. Together with~3.5!,
this completes the proof. h

IV. LINEAR EXTENSION OF SAWs WITH DRIFT

In this section we shall assumezmin.0.
A natural question is the following: Suppose thatz11.z12.0. This gives a directiona

preference among steps parallel to thex1 axis. Consider allN-step SAWs starting at0 weighted
according toz. Does the distance between the endpoints of a typicalN-step SAW grow linearly
with N?

There are several ways to formulate this question, and we shall discuss one way he
non-negative integersN and vectorsvPZd, let Gz

(N)(0,v) be the generating function of allN-step
SAWs from 0 to v. Let vN* be the v for which Gz

(N)(0,v) is maximized.~We suppress the
dependence ofvN* on z.! We would like to know whether

lim inf
N→`

ivN* i1

N
.0. ~4.1!

Theorem 1.2 says that~4.1! holds provided thatzmin.0 andz is not symmetric~i.e., zÞ z̄!. This
will be a direct consequence of Propositions 4.1 and 4.2 below.

Proposition 4.1: Assumel(z).l( z̄). Then (4.1) holds.
Proof: Observe that the definition ofvN* does not change if we multiply the vectorz by a

positive scalart. Also, (tz)5t z̄ for any scalart.0, so by Proposition 2.2(v) we can and shall
assume thatl( z̄),1,l(z).

There at most (2N11)d vectorsv for which Gz
(N)(0,v) is nonzero, so we haveGz

(N)(0,vN* )
<xN(z)<(2N11)dGz

(N)(0,vN* ). Therefore

lim
N→`

Gz
~N!~0,vN* !1/N5l~z!. ~4.2!

We also know
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Gz
~N!~0,vN* !<Gz~0,vN* !

<B~z!exp~2M @vN* ;z# ! ~by Theorem 3.4!

<B~z!exp~2ivN* i1M0~z!!. ~4.3!

We know thatB(z),` @Proposition 3.1~ii !# and2`,M0(z),0 @Theorem 2.3(i ,iv)]. Taking
Nth roots in ~4.3! and using~4.2! as well asl(z).1, we get

lim inf
N→`

ivN* i1

N
>

logl~z!

uM0~z!u
.0.

h

Proposition 4.2: Assume zmin.0 and zi 1Þzi 2 for some i. Thenl(z).l( z̄).
Proof: Without loss of generality, assumez11.z12.0. Also, scalingz as in the proof of

Proposition 4.1, assume thatl( z̄)51. Our goal is to prove thatl(z).1. To do this, it suffices to
prove thatM 0(z),0 @by Theorem 2.3(i i i ,v)].

We claim thatM @e(1); z̄#50 ~wheree(1) is the unit vector in the1x1 direction!. From this
claim, Lemma 2.6(iii ) show that M @e(1);z#52 log(z11 /z12),0; this immediately implies
M0(z),0.

So to prove the proposition, it suffices to prove the claim of the previous paragraph.
l( z̄)51, Theorem 2.3(v) tells us thatM0( z̄)50; henceM @e(1); z̄#>0. We must show that
M @e(1); z̃# cannot be strictly positive.

Consider the proof of Lemma 2.8, using ourz̄ instead of thez there. Everything in that proo
applies becausel( z̄)>1, z̄11> z̄12 , and z̄11.0 ~in fact, the first two hold with equality!. In
particular, the generating functionBz̄ of all bridges diverges atz̄. We shall use this fact and a ne
version of the final paragraph of that proof to complete the present proof.

We define the mass

M̃1~ z̄!5 lim
L→`

2 logBz̄,L

L
,

whereBz̄,L is the generating function of bridges of spanL, as defined in the proof of Lemma 2.8
By subadditivity, this limit exists and satisfies

Bz̄,L<e2LM̃1~ z̄! for every L>1,

exactly as in the anisotropic case; see Proposition 4.1.8 of Madras and Slade.2 This mass satisfies
M̃1( z̄)5M @e(1); z̄#; the proof of this relation is identical to the proof of the isotropic case, wh
is Lemma 4.1.12 of Madras and Slade.2 We remark that one property required for the proof
carry over is thatBz̄(0,vue(1))5Bz̄(0,2vue(1)), which follows from the fact thatz̄i 15 z̄i 2 for
every i.

Finally, we have

Bz̄511 (
L51

`

Bz̄,L<11 (
L51

`

e2LM̃1~ z̄!511 (
L51

`

e2LM @e~1!; z̄ #.

Since Bz̄ diverges, we conclude thatM @e(1); z̄# cannot be strictly positive. This concludes th
proof. h
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Long-range properties of spanning trees
Richard Kenyona)

Laboratoire de Topologie et Dynamique, UMR 8628, Baˆt. 425, Universite´ Paris-Sud,
91405 Orsay, France
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We compute some large-scale properties of the uniform spanning tree process on
bounded regions inZ2. In particular, we compute the distribution of the meeting
point of the branches of the tree issued from three boundary points. We also
compute the crossing probabilities of branches of the tree on rectangular and an-
nular regions, as well as the winding number of the branches of the tree. ©2000
American Institute of Physics.@S0022-2488~00!00303-0#

I. INTRODUCTION

On a finite connected graph, aspanning treeis a set of edges which is connected, has no cy
and passes through every vertex. The uniform spanning tree~UST! on a finite graphG is the
uniform measure on the set of all spanning trees ofG. The UST model is a well-known statistica
mechanical model, with connections to random walks, electrical networks, and potential th

Recent work by Pemantle,1 Burton and Pemantle,2 Benjaminiet al.3 and the present author4

give a precise understanding of both the local and long-range properties of the spannin
process in~large subgraphs of! Zd. However an important problem which remains open is
prove, in low dimensions (2<d<4), the existence of a ‘‘scaling limit,’’ that is, a unique limitin
process when the lattice spacing shrinks to 0. In particular, in Ref. 5, Aizenmannet al. prove the
existence ofsubsequentiallimits and give some of their properties, but cannot prove uniquenes
the limit.

For Z2, this limit is particularly interesting because it is conjectured to be conformally inv
ant, in the following sense. Given domainsU, V in C and a random spanning tree on a very fi
grid UùeZ2, the image of the tree under a conformal bijection fromU to V should be measure
theoretically indistinguishable~up to errors tending to zero withe! from the random spanning tre
on VùeZ2.

The purpose of this paper is to prove the conformal invariance ofcertain properties of the
UST in the plane. For example, on a bounded domainU we compute explicitly the distribution o
the unique meeting point of the tree branches joining three pointsx,y,zP]U. See Theorem 3.1
We verify that this distribution is conformally invariant.

Another set of quantities we compute are the ‘‘crossing probabilities’’ of rectangles
annuli. That is, for the UST process on the intersection ofeZ2 with a 13L rectangle, we compute
for eachk the probability of findingk disjoint tree branches running from the left side to the rig
side of the rectangle~more precisely, we compute the probability when the right boundar
‘‘wired’’ to a point!. Under the assumption of existence and conformal invariance of the sc
limit, Duplantier6 computed the asymptotic growth rate of these crossing probabilities. Ou
swer, which does not require these assumptions, agrees with that of Duplantier: The probab
k crossings is a constant timese2pLmk(11o(1)) asL→`, wheremk5(k22k)/2. See Theorem 4.3
Similarly, for an annulus of conformal modulusL, Duplantier predicted that the asymptotic pro
ability of k crossings~i.e., k disjoint tree branches running from one boundary to the other! was a
constant timese22pLmk(11o(1)) asL→`, with nk5(k221)/4. We prove this as well, again whe
one boundary is wired to a point. See Theorems 5.8 and 5.10.

A final computation is the asymptotic ‘‘winding number’’ of the branches of the tree. For

a!Electronic mail: kenyon@topo-math.u-psud.fr
13380022-2488/2000/41(3)/1338/26/$17.00 © 2000 American Institute of Physics
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UST onZ2, there is almost surely a unique branch from the origin to`.1 In the annulus of inner
radius r and outer radiusR concentric about the origin, we show that the total turning of t
branch about the origin has variance tending to (1/2p)log(R/r)1O(1) asR/r→` while r→`.
Surprisingly, this same variance holds even if the origin is conditioned on having two or
branches tò . See Sec. VI.

All of the computations done here rely on Refs. 7 and 4. We sketch the relevant resu
those papers in Sec. II.

II. BACKGROUND

A. Spanning trees and probabilities

Let U be Jordan domain inC with piecewise smooth boundary. Letb0P]U. For eache.0 let
Ue be the subgraph ofeZ2 whose vertices lie inU: an edge ofeZ2 is an edge ofUe if both end
points lie inUe . If U has some sharp corners thenUe may not be connected near them; in th
case discard all but the main component ofUe . Let be be a fixed vertex ofUe , lying on its
boundary, chosen so thatbe converges tob0 ase→0. In a spanning treeT on Ue , we will direct
the edges of the tree towardbe , that is, in the direction of the unique branch of the tree leading
the ‘‘root’’ be . Thedual treeof a treeT is the tree on the dual graph ofUe which uses those dua
edges which do not cross edges ofT. We direct the edges of the dual tree toward the outer fac
Ue ~the outer face will also be referred to as the ‘‘dual root’’!.

The Laplacian and the Green’s function:On a finite graph with verticesV, the Laplacian is
the operatorD on RV defined by

D f ~v !5 (
w;v

f ~w!2 f ~v !,

where the sum is over neighbors ofv. As is usual when discussing the combinatorial Laplaci
there is a question about choice of sign. Here we have taken the negative~semi! definite Laplacian,
so that on a fine grid for a smooth functionf its discrete Laplacian~when divided by the square o
the lattice spacing! converges to the standard Laplacian]2f /]x21]2f /]y2.

The basic tool we use to study the UST is theGreen’s functionon the graphUe . Since the
Laplacian on a finite graph is not invertible~constant functions are in the kernel of the Laplacia!,
the Green’s function, that is, the inverse of the Laplacian, is not defined. We can however
the difference of Green’s functions, and in particular for any vertexv there exists a unique~up to
an additive constant! function whose Laplacian isdv2dbe

~by dv2dbe
we mean the function

which is 1 atv, 21 atbe and zero elsewhere!. Let G(v,•) denote the unique such function whic
is zero atbe . For a directed edgee5v1v2 let dG(e,•)5G(v2 ,•)2G(v1 ,•) denote the unique
function ~on vertices ofUe! whose Laplacian is the functiondv2

2dv1
and which is zero atbe .

The functiondG(e,v) is harmonic as a function ofv except atv1 and v2 , and so it has a
harmonic conjugate dG˜(e, f ) which is defined on facesf of Ue in the following manner. First
define the value to be zero on the outer face. For any other facef, take a path of faces ofUe from
the outer face tof ~two adjacent faces on the path being adjacent across an edge ofUe exceptfor
the edgee!; if f 1 and f 2 are two adjacent faces on this path then the value atf 2 is determined by
the equationdG̃(e, f 1)2dG̃(e, f 2)5dG(e,v8)2dG(e,v), wherevv8 is the edge separating fac
f 1 from f 2 ~with f 1 on the left ofvv8!.

This definition ofdG̃(e, f ) is independent of the choice of face-path used, by harmonicit
dG and the fact that the value of the Laplacian ofdG(e,•) at v1 is the negative of the Laplacia
at v2 ~and we are not allowing the path to passbetweenv1 and v2!. FurthermoredG̃(e, f ) is
harmonic as a function on the dual graph, except on the two faces adjacent to the edgee.

SincedG̃ is a harmonic conjugate ofdG, the combinationdG1 idG̃ is a ‘‘discrete analytic
function.’’ We think of the combination as a single function from the union of the vertices
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facesVøF to C, which is equal todG(e,•) when we plug in a vertex, andidG̃(e,•) when we
plug in a face. When there is no risk of confusion we refer to this function simply asdG; it is
called thecoupling function onUe .

The utility of dG in the study of the UST is indicated by the following theorem.
Theorem 2.1: ~Reference 7! Let $v1 ,...,vk% be a set of vertices and/or faces of Ue ~distinct

from the root and dual root! and $e1 ,...,ek% be a set of edges of Ue such that for each j, ej is
incident tov j . Then the probability that in a random spanning tree and its dual, for each j
branch fromv j to the root~or dual root as the case may be! goes in the direction of ej ~or its dual
ej* !, is given by the absolute value of the determinant of the k3k matrix whose ij-entry is
dG(ei ,v j ).

In Ref. 7 this theorem is stated in slightly different terms, using the domino tiling m
~dimer model!. The bijection between domino tilings and spanning trees is due to Temperley
is discussed in Ref. 4, see also Ref. 8 and Sec. II E 2. The main results of this paper are ba
a generalization of Theorem 2.1, Theorem 2.5.

B. Asymptotic properties

Whene→0 the function (1/e)dG converges~as described in the following! to dg, the deriva-
tive ~with respect to the first variable! of the analytic Neumann Green’s function, defined
follows.

The real~as opposed to analytic! Neumann Green’s functiong1(w,z) on the domainU is the
function which satisfiesDg1(w,z)5dw(z)2db0

(z) whereD is the ~continuous! Laplacian with
respect toz, thed are Dirac delta functions,b0 is the base point on]U, and]g1

(w,z)/]y50 where
y is the normal direction to the boundary~and again the derivative is with respect to the seco
variable!. It is well-defined up to an additive constant. Letg2 be the harmonic conjugate~with
respect to the second variable! of g1 ; this is defined only up to an additive constant and moreo
is multiply valued, that is, it increases by 1 whenz turns counterclockwise aroundw. The com-
binationg(w,z)5g1(w,z)1 ig2(w,z) is by definition theanalytic Neumann Green’s function.

We define two functionsF1(w,z) and F2(w,z) by the two conditions of being zero whe
z5b0 and satisfying

2dg~w,z!5 1
4 F1~w,z!dw1 1

4 F2~w,z!dw̄, ~1!

where on the left-hand side we are taking the exterior derivative with respect to the first va
These functions are well defined and single valued. We similarly defineF0(w,z) andF1(w,z) by
the two conditions of being zero atb0 and satisfying

2dg~w,z!5 1
2 F0~w,z!dx1 1

2 F1~w,z!idy,

wherew5x1 iy . The functionsF05 1
2 (F11F2) andF15 1

2 (F12F2) have the following prop-
erties:

~1! They are analytic as functions ofz on U, except for having simple poles of residue 1/p at z
5w. In particular there are no other poles onUø]U.

~2! They are zero atb0 .
~3! The functionF0(w,z) is real whenzP]U and the functionF1(w,z) is pure imaginary when

zP]U.

Moreover F0 ,F1 are the unique functions onU with these properties.4 The functionF15F0

1F1 is analytic in both variables, and the functionF25F02F1 is analytic inz and antianalytic
in w. The functionsF0 ,F1 ~and sometimesF6! are called theasymptotic coupling functions on U.
Note that ifU, V are two regions andf :V→U is a conformal bijection mapping the base point
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V to the base point of U, then F1
V (w,z)5 f 8(w)F1

U ( f (w), f (z)) and F2
V (w,z)

5 f 8(w)F2( f (w), f (z)). These follow from the conformal invariance of the Green’s functi
gV(w,z)5gU( f (w), f (z)).

As an example of these functions, on the upper half plane rooted at` the Neumann Green’s
function is

g1~w,z!5
1

2p
logu~z2w!~z2w̄!u.

This is the function~of z! which satisfiesDg(w,z)5dw ~and has a logarithmic singularity at̀!,
and ]g1

(w,z)/]y50 whenzPR ~the derivative is with respect to they coordinate ofz!. Now
g1(w,z) is the real part ofg(w,z)5(1/2p)log((z2w)(z2w̄)). Exterior differentiation with respec
to that first variable gives

2dg~w,z!5
1

2p S dw

z2w
1

dw̄

z2w̄D ,

or

2dg~w,z!5
dx

2p S 1

z2w̄
1

1

z2w̄D1
idy

2p S 1

z2w
2

1

z2w̄D .

Note thatF0(w,z),F1(w,z) defined by this equation satisfy the above-mentioned three prope
Here is a simplified version of the convergence of the discrete coupling function to

continuous coupling function.
Theorem 2.2: ~Reference 4! For eache let v, e1 ,e2 , f be, respectively, a vertex, a right

oriented horizontal edge, an upwards-oriented vertical edge, and a face, of Ue , which converge
to distinct points (of the same names)v, e1 , e2 , f of U as e→0. Then the quantities
(2/e)dG(e1 ,v), (2/e)dG(e2 ,v), (2/e)dG(e1 , f ), and (2/e)dG(e2 , f ) converge respectively, to
2Re(F0(e1,v)), 2 i Im(F1(e2,v)), 2 i Im(F0(e1,f )), 2Re(F1(e2,f )). If e1 or e2 points in the op-
posite direction then the appropriate limit is negated.

C. Alternate boundary conditions

In certain situations, we will need to consider a regionU with more general boundary cond
tions. LetUe be a subgraph ofeZ2 as before andg a subinterval of its boundary. Add a new verte
b to Ue with edges fromb to every boundary vertex ing. In this situation we will always take the
root vertexb0 to beb. Spanning trees of this new graph are said to bewired alongg.2 The effect
that this has on the functiondG is that it turns the Neumann boundary conditions alongg to
Dirichlet boundary conditions, and vice versa. So in this case we have to deal with Gr
functions with mixed boundary conditions. Fortunately Theorem 2.2 extends to this case a
with g replaced with the appropriate Green’s function.

To be precise, letF0 ,F1 be defined as before except that whenzPg, F0(v,z) is pure
imaginary andF1(v,z) is real. Then Theorem 2.2 holds for theseUe and functionsF0 ,F1 . The
proof is the same as the proof of the previous case, and in particular involves only the conve
of the appropriate Green’s functions and their derivatives.

D. Nonsimply connected regions

The results of the above sections must be modified when the limiting regionU is not simply
connected.

Let us deal only with the case we will need later, whenU is an annulus. LetU be an annulus
with piecewise smooth boundaries. Letb0 be a point on the outer boundary andc0 a point on the
inner boundary.
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Let Ue be approximating graphs as in Sec. II A. Letbe be a vertex on the outer boundary
Ue , converging tob0 whene→0. Let ce be anedgeof the inner boundary ofUe , converging to
c0 .

In the definition of the dual graph ofUe there is a vertexv for the inner boundary componen
~face! of Ue . When the dual tree is oriented toward the outer face ofUe , the branch from this
vertexv points along an edge dual to one of the edges of the inner face. We will consider
those spanning trees whose dual tree~rooted at the outer face! contains the dual edgece , directed
away fromv. See Ref. 4.

The reason for doing this is that Temperley’s bijection~see the following! will still hold for a
fixed polyomino region constructed from the triple (Ue ,be ,ce). Furthermore the asymptotic cou
pling functions can still be defined using formula~1!, whereg2(w,z) is zero whenz is on either
boundary. A consequence is thatF0 ,F1 now may have~simple! poles atz5c0 .

Under these conditions,F0 ,F1 have the following properties~which uniquely define them!,
extending those of Sec. II A~Ref. 4!.

~1! They are analytic as functions ofz on the interior ofU, except for having simple poles o
residue 1/p at z5w.

~2! They are zero atb0 .
~3! The functionF0(w,z) is real whenzP]U and the functionF1(w,z) is pure imaginary when

zP]U.
~4! They have no poles on the boundary ofU except possibly atc0 ~and atw if wP]U!.

This result is used in Sec. V B 1. A different formulation is needed in Sec. V B 2. There
again have an annular region but we are interested not in counting spanning trees but in co
perfect matchings; furthermore the parity of the boundary lengths is different than it is i
above-mentioned case. As a consequence the boundary conditions onF0 ,F1 are again different.
We refer the reader to that section for details; see also Ref. 9.

E. Temperley’s trick, perfect matchings, and removing vertices

1. Matchings with holes

In this section we extend Theorem 2.1 to apply to a slightly more general situation, whe
vertices and faces of the$v1 ,...,vk% are not necessarily incident to the$e1 ,...,ek%. To understand
this extension, it is easier to first discuss the relation between trees and perfect matchings.
Theorem 2.1 as stated in Ref. 7 is about perfect matchings.

Recall that aperfect matchingof a graph is a set of edgesM such that each vertex is an en
point of exactly one edge inM. Kasteleyn10 showed how to count the number of perfect matchin
of any planar graphG with the Pfaffian~square root of the determinant! of a matrix related to the
adjacency matrix of the graph. This matrix, or one of its many variants, is called aKasteleyn
matrix of G. To obtain a Kasteleyn matrix for a planar graphG, orient the edges ofG so that
around every face the number of edges oriented counterclockwise is odd. The Kasteleyn m
then the matrix indexed by the vertices such thatK(v i ,v j ) is 1 if there is an edge oriented from
v i to v j , 21 if there is an edge oriented fromv j to v i , and zero otherwise. This~antisymmetric!
Kasteleyn matrix has the property that each term in the expansion of its Pfaffian correspon
perfect matching ofG, and moreover all these terms have the same sign. So its Pfaffian i
number of perfect matchings ofG. ~In the following we give a definition of an alternate Kasteley
like matrix in caseG is bipartite; its determinant is also the square of the number of pe
matchings.!

When one removes a set of verticesV from G one can ask to what extent the correspond
uG2Vu3uG2Vu submatrixof the Kasteleyn matrix forG is a Kasteleyn matrix for the new grap
G2V. In general, the submatrix will not be a Kasteleyn matrix forG2V. However a Kasteleyn
matrix for G2V can be obtained fromK by the following manipulation.10 Group the removed
verticesV into pairs. For each pairv1 ,v2 , choose a path of facesf 1 , f 2 ,...,f k from a face incident
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to v1 to a face incident tov2 ~so that two facesf i , f i 11 are adjacent along an edgeei!, and switch
the directions on each edgeei of all these paths. It is not hard to check using the above-mentio
definition that the result is now a Kasteleyn matrix forG2V.

Now, note that if we remove pairs of vertices from thesame face, then no edge directions nee
to be switched. Therefore the number of perfect matchings of the region with these rem
vertices is a subdeterminant of the original Kasteleyn matrix. We can now state a generaliza
Theorem 2.1~using the language of perfect matchings!.

Theorem 2.3: Let G be a planar graph and K be a Kasteleyn matrix forG as above. Let V
5$v1 ,...,v2k% be 2k vertices ofG. Suppose the vertices of V can be grouped into pairs so
each pair belongs to the boundary of some face ofG. Then the ratio of the number of perfe
matchings ofG2V and the number of perfect matchings ofG is the absolute value of the Pfaffia
of the2k32k matrix whose ij-entry is K21(v i ,v j ).

The proof follows from the above remarks and the fact that a ratio of a determinant
submatrix ofK and the determinant ofK is a determinant of the appropriate submatrix ofK21, see
Ref. 7.

In the caseG is a bipartite planar graph, that is, when all faces bound an even numbe
edges, one can define asymmetricKasteleyn matrix as follows.11 Put complex number weights o
the edges, in such a way that around each face the product of the weights on every other
plus or minus the product of the weights on the other half of the edges, where the ‘‘plus’’
if the number of edges around the face is 2 mod 4 and the ‘‘minus’’ holds if the number of e
around the face is 0 mod 4. Then a Kasteleyn matrixK is the adjacency matrix with these weigh
~the ij -entry is the weight on the edgeij or 0 if there is no edge!. The square root of its determinan
is the number of matchings. The advantage of this formulation is that whenG is bipartiteK can be
put in block form

K5S 0 B

Bt 0 D ,

and so in Theorem 2.3 we can replace a 2k32k Pfaffian with ak3k determinant.
The inverse Kasteleyn matrix is also known as the coupling function ofG; this is essentially

the same coupling function that we defined in Sec II A for subgraphs ofZ2. In that case we took
the inverse ofB, one of the blocks ofK, as the definition of the coupling function. We also us
a different edge-weighting scheme, see Ref. 4.

For an example of a Kasteleyn weighting of a bipartite graph, onZ2 put weights 1 on vertical
edges andi 5A21 on horizontal edges; see Ref. 11.

In Sec. II E 2 we interpret Theorem 2.3 for spanning trees.

2. Temperley’s bijection

A spanning tree and its dual provide a bijection between the union of the vertices and
~minus the root and the dual root, which we assume are adjacent! of Ue and the set of edges: to
vertex is associated the edge along which one must proceed to get to the root, and to a
associated the dual edge along which one must proceed to get to the dual root. This biject
be thought of as a perfect matching on a graphWe which is the superposition ofUe and its planar
dual ~when the root vertex and dual root are removed!. That is,We is the planar graph with a
vertex for every vertex, edge, and face ofUe except for the root and dual root, and edges ofWe

connect vertices whenever the corresponding structures inUe are an edge and one of its vertice
or a face and one of its bounding edges. This bijection was first noticed by Temperley,12 who
discovered that spanning trees of ann3m rectangle inZ2 were in bijection with perfect matching
~‘‘dimer coverings’’! of a (2n21)3(2m21) rectangle with a corner removed.~The corner
corresponds to the root.! See Ref. 8 for a generalization.

The computations which we encounter in the following all use spanning tree configuratio
graphs obtained fromUe by ‘‘removing’’ certain sets of vertices, faces, and edges. These
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figurations are more natural to describe from the point of view of perfect matchings onWe , since
they correspond to perfect matchings of a graph obtained fromWe by removing a certain numbe
of vertices.

To describe these configurations, we use the following notion of incidence. A vertex, ed
face of Ue is said to beincident with another vertex, edge, or face ofUe if the corresponding
vertices ofWe are in the boundary of the same face. InUe this corresponds to the following notio
of incidence: an edge is incident with a vertex if the vertex is an end point of the edge; an e
incident with a face if the edge lies on the boundary of the face; an edge is incident with an
edge if they share both a vertex and a face; a vertex is incident with a face if the vertex is
boundary of that face. Two vertices or two faces ofUe are not considered incident.

Lemma 2.4: Let$v1 ,...,vk% be k vertices and/or faces of Ue distinct from the root and dua
root. Let $e1 ,...,ek% be k edges of Ue . Suppose that the elements of the set$v1 ,...,vk ,e1 ,...,ek%
can be partially grouped into pairs so that the members of each pair are incident to each oth
the above sense, with the remaining elements incident to the root or dual root. Take a p
matching of We2$v1 ,...,vk ,e1 ,...,ek%. On Ue , this matching can be considered as a set
directed (primal) edges and directed dual edges. This set of edges has the following prop
The primal edges form a spanning forest (a set of edges without cycles) with one com
directed toward each vertex ofv1 ,...,vk and at be . The components in this forest do not use t
edges ei . Similarly, the dual edges form a forest, with one component rooted at each fa
v1 ,...,vk and at the dual root. These dual components do not use the edges dual to the ei .

We let S(v1 ,...,vk ,e1 ,...,ek) denote this set of spanning forests.
Proof: Each nonroot vertex ofUe2$v1 ,...,vk% has a unique outgoing edge~corresponding to

the edge to which it is matched inWe!. Following a directed edge path, one either eventually la
on a vertex of$v1 ,...,vk% or the root, or else the path eventually cycles. However we claim
the path cannot cycle: by Euler’s formula for a disk,V2E1F51 and soV1E1F[1 mod 2.
Therefore a cycle inUe encloses an odd number of vertices plus edges plus faces ofUe , that is,
an odd number of vertices ofWe . However the vertices ofWe enclosed by the cycle are eithe
matched to each other~if they are not in$v1 ,...,ek%! or come in pairs if they do, by hypothesi
So a cycle does not exist. Similarly the dual graph has no cycles. This completes the prooh

We can now state Theorem 2.3 in the language of spanning trees.
Theorem 2.5:Let v1 ,...,vk be a set of k vertices and/or faces and e1 ,...,ek be k edges of Ue .

Suppose elements of$v1 ,...,vk ,e1 ,...,ek% can be partially grouped into pairs so that the membe
of each pair are incident, with the remaining elements incident to the root or dual root. The
ratio of the number of configurations of S(v1 ,...,vk ,e1 ,...,ek) and the number of spanning tree
of Ue is given by the absolute value of the determinant of the k3k matrix(dG(ei ,v j )), where dG
is the coupling function on Ue .

3. A determinant

The following well-known determinant is due to Cauchy,13 and will be needed later.
Proposition 2.6 (Cauchy):Thedeterminantof then3n matrix whoseij -entry is 1/(xi1yj ) is

)1< i , j <n~xi2xj !~yi2yj !

)1< i , j <n~xi1yj !
.

III. TRIPOD DISTRIBUTION

Let U,C be a Jordan domain andy1 ,y2 ,y3 be three points on its boundary. LetUe be an
approximating graph ineZ2 as before, and letx1 ,x2 ,x3 be vertices ofUe converging toy1 ,y2 ,y3

ase→0. Consider the UST process onUe rooted atx1 .
In a spanning tree onUe , the three branches between pairs of the$x1 ,x2 ,x3% meet at a

common vertexx. The union of the three branches fromx to the xj is called thetripod of
x1 ,x2 ,x3 . We compute the distribution of the pointx in the limit e→0, as a function ofU and
y1 ,y2 ,y3 .
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Theorem 3.1:Under the above-mentioned hypotheses, ase→0 the probability density that the
tripod meets at x tends to

Pr~ tripod meets at x!udxu2

5
2u~ f ~y1!2 f ~y2!!~ f ~y2!2 f ~y3!!~ f ~y3!2 f ~y1!!uIm f ~x!

p2u~ f ~x!2 f ~y1!!~ f ~x!2 f ~y2!!~ f ~x!2 f ~y3!!u2
u f 8~x!u2

•udxu2,

where f is a Riemann map mapping U to the upper half plane (any such Riemann map wi.
Proof: Let x8,x9 be the two verticesx85x1e andx95x1 i e of Ue . Suppose first that from

x the branch of the tree leading tox2 starts along edgee15xx8, and the branch leading tox3 starts
out along edgee25xx9. Then the branch leading tox1 starts out in one of the other two direction

In the UST, the tripod branches are all directed toward the rootx1 . If we reverse the directions
on the branches betweenx8 andx2 and betweenx9 andx3 , then we obtain a spanning forest
S(x2 ,x3 ,e1 ,e2) in the notation of Sec. II~in other words, a perfect matching ofWe with holes at
x2 , x3 , e1 , ande2!. See Fig. 1.

Conversely, an element ofS(x2 ,x3 ,e1 ,e2) is a union of three trees, one rooted at each of
xj , and we claim that the three trees each contain exactly one ofx, x8, andx9. To see this, note
that from each ofx,x8,x9 there is a tree branch leading to one ofx1 , x2 , or x3 . No two of the tree
branches leading fromx, x8, andx9 can meet each other since then the branches of the dua
leading from faces centered atx1 1

2 (e1 i e), x1 1
2 (e2 i e) andx1 1

2 (2e1 i e) would not be able
to reach the outer face~the dual root!.

Therefore we have a bijection between the spanning forest processS(x2 ,x3 ,e1 ,e2) on Ue

~rooted atx1! and the spanning tree process onUe rooted atx1 whose tripod from thexj meets at
x, in such a way that of the three brances incident atx, two of them use the edgese1 ,e2 .

In particular by Theorem 2.5 the probability that the tripod meets atx in this way is given by
a determinant

Pr5US dG~e1 ,x2! dG~e1 ,x3!

dG~e2 ,x2! dG~e2 ,x3!
D U. ~2!

By Theorem 2.2, whene is small the probability~2! is approximated by

Pr5
e2

4 US ReF0~x,x2! ReF0~x,x3!

i Im F1~x,x2! i Im F1~x,x3!
D U1o~e2!. ~3!

To compute the probability thatx is the center of the tripod of the UST onUe , note that the
configuration under consideration accounts for half of all possible configurations, since the

FIG. 1. The shifted tripod configuration corresponds to a perfect matching with holes~here the perfect matching is
represented as a domino tiling of the dual graph!.
                                                                                                                



e

of the

perties

ion

1346 J. Math. Phys., Vol. 41, No. 3, March 2000 Richard Kenyon

                    
branches meeting atx use exactly three of the four edges incident tox: in the current configuration
the unused branch is either downwards or leftwards fromx. The remaining configurations, wher
the unused branch is upwards or rightwards fromx, have probability which is~asymptotically!
identical ~as can be seen be a similar calculation, or using the fact that the local structure
tree nearx only depends on the Burton–Pemantle measure4,2 which is independent ofx,x1 ,x2 ,x3 .

To compute~3!, assumeU is the upper half planeH rooted atx1 . We have

2dg~w,z!5
1

2p
dwS 1

z2w
2

1

x12wD1
1

2p
dw̄S 1

z2w̄
2

1

x12w̄D .

Therefore

F0~w,z!5
1

p~z2w!
2

1

p~x12w!
1

1

p~z2w̄!
2

1

p~x12w̄!

and

F1~w,z!5
1

p~z2w!
2

1

p~x12w!
2

1

p~z2w̄!
1

1

p~x12w̄!
.

~To check these, note that they satisfy the properties of Sec. II B, and recall that these pro
define the functions.! Plugging in to~3! yields

Pr5
e2

4p2 F S 1

x22x
2

1

x12x
1

1

x22 x̄
2

1

x12 x̄D S 1

x32x
2

1

x12x
2

1

x32 x̄
1

1

x12 x̄D
2S 1

x32x
2

1

x12x
1

1

x32 x̄
2

1

x12 x̄D S 1

x22x
2

1

x12x
2

1

x22 x̄
1

1

x12 x̄D G
5

e2u~x12x2!~x22x3!~x32x1!Im~x!u
p2u~x2x1!~x2x2!~x2x3!u2

.

Note that if we replacee2 with udxu2 and integrate over the upper half-plane, this express
integrates to1

2, as it should by the above comments.
Thus the tripod density on the upper half-plane is

2u~y12y2!~y22y3!~y32y1!uIm~x!

p2u~x2y1!~x2y2!~x2y3!u2 udxu2.

Now from the conformal invariance of the Green’s functiong ~or equivalently the transformation
rules forF6 of Sec. II B!, the tripod density is conformally invariant. That is, for a domainU let
f :U→H be a conformal bijection withyi5 f (yi8) andx5 f (x8) then replacingyi andx with f (yi8)
and f (x8) in the above expression~andudxu2 with u f 8(x8)u2udx8u2! gives the tripod density onU.
This completes the proof. h

IV. CROSSINGS OF A RECTANGLE

A. A combinatorial lemma

Let G be the graph obtained from them3n rectangle graph by adding another vertexb0

attached by an edge to each vertex of the right edge. Let$v1 ,...,vk% bek vertices on the left edge
of G, and$e1 ,...,ek% be k edges adjacent tob0 .

Lemma 4.1: Spanning trees ofG, rooted at b0 , with k disjoint branches from pointsv j to ej

for j P@1,k#, are in bijection with configurations SkªS(v1 ,...,vk ,e1 ,...,ek).
Proof: Given a spanning tree withk disjoint branches running from thev j to theej , reverse

the directions on each of thek branches betweenej and v j . This gives a configuration ofSk .
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Conversely, given an element ofSk , consider the directed branch starting from the left vertex
ej . This branch cannot end up atb0 since it would enclose a set of faces~the branches of the dua
tree starting at these faces cannot cross edgeej and so would be disconnected from the dual roo!.
Therefore each such branch leads to one of the rootsv j . Let f j be a face adjacent tob0 and
located between two edgesej andej 11 . If both ej andej 11 lead to the samev l , then the path in
the dual tree fromf j could not land on the dual root, a contradiction. So the branch from the
vertex ofej must lead to the rootv j . Reversing the directions on these paths gives a spanning
with k disjoint branches from thev j to theej . h

The probability that a spanning tree ofG hask disjoint branches running from thev j to theej

is then the ratio of the number of configurations inSk and the number of spanning trees ofUe .
This ratio can be computed by Theorem 2.5, since all removed vertices and edges are adja
either the root or dual root. It is the absolute value of the determinant of ak3k matrix whose
ij -entry isdG(ei ,v j ):

Prob5udet~dG~ei ,v j !!u. ~4!

Here note that in the definition ofdG the right boundary has wired boundary conditions, and
other boundaries are free.

B. Asymptotic coupling function for the rectangle

Here we compute the asymptotics of the entries of the determinant in~4!. Let U be the
rectangle@0,L#3@0,1#,R2 and Ue the subgraph ofeZ2 which approximatesU as before. As
above we add an extra vertexb0 to Ue which is connected to all the vertices on its right edge

By Theorem 2.2, theij -entry in ~4! can be approximated by (e/2)dg(ei ,v j )1o(e) ase→0,
wheredg is the derivative of the Green’s function with wired boundary conditions on the r
edge ofU ~and free boundary conditions on the remaining boundary!. Rather than compute thi
probability on the rectangle, we map via a conformal coordinate change to the quadrant, wh
computation is simpler.

We mapU to the quadrantQ5$zuRe(z)>0 and Im(z)>0%, mapping the right side of the
rectangle to the positivex axis @0,̀ #, and the lower left corner ofU to z5 i .

Lemma 4.2: Under the above-mentioned conditions, for large L the upper left corn
mapped to the point i(118e2pL1O(e22pL)).

Proof: The Weierstrass̀ -function for the latticeL5Z1 iLZ ~see Ref. 14!, defined by

`~z!5
1

z2 1 (
wPL

1

~z2w!22
1

w2 , ~5!

maps the rectangle with vertices

H 2
1

2
, 0,

iL

2
,2

1

2
1

iL

2 J
injectively onto the upper half-plane, with

`~0!5`,

`S 2
1

2D5
2p2

3
1O~e2pL!,

`S iL

2 D52
p2

3
1O~e2pL!,
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`S 2
1

2
1

iL

2 D52
p2

3
1O~e2pL!,

`S 2
1

2
1

iL

2 D2`S iL

2 D5216p2e2pL1O~e22pL!.

These identities can be computed from the expansion~5! using the identity

(
wPZ

1

~z2w!2 5
p2

sin2~pz!
,

see Ref. 15. Lettingf(z)5(211 iL )/22 iz/2 denote the affine mapping from@0,L#3@0,1# to
@2 1

2,0#3@0,L/2#, the composition

A `~f~z!!2`S 2
1

2D
`S 2

1

2D2`S 2
1

2
1 i

L

2D ~6!

is the desired mapping, and the proof follows. h

The analytic Green’s function on the positive quadrant, with Dirichlet boundary condition
the x axis and Neumann boundary conditions on they axis, is

g~w,z!5
1

2p
log

~z2w!~z1w̄!

~z1w!~z2w̄!
,

giving

2dg~w,z!5
1

2p
dwS 1

z2w
1

1

z1wD2
1

2p
dw̄S 1

z2w̄
1

1

z1w̄D ,

so that we have

F0~w,z!5
1

p~z2w!
2

1

p~z2w̄!
1

1

p~z1w!
2

1

p~z1w̄!

and

F1~w,z!5
1

p~z2w!
1

1

p~z2w̄!
1

1

p~z1w!
1

1

p~z1w̄!
.

To check this, note that whenzP iR, F0(w,z)PR andF1(w,z)P iR, and whenzPR, F0(w,z)
P iR andF1(w,z)PR. Furthermore as a function ofz,F0(w,z) has a unique pole in the quadran
and it has residue 1/p there. Similarly forF1 .

C. Crossing probability

For the quadrant we take the graph$(x,y)PeZ2ux>0,y>0%, along with an extra vertexb0

connected by an edge to all vertices along thex axis.
Let $e1 ,...,ek% be k edges leading from thex axis to the root vertexb0 . Let $v1 ,...,vk% be k

vertices on they axis, as in Fig. 2~this figure is a rectangle but one should think of it as a tili
of the whole quadrant!. We assume thev j are on the image of the left edge of the rectangle, t
is, betweeni and i 18ie2pL.
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The probability ofk crossings from thev j to ej in a spanning tree is, by Lemma 4.1, equal
the absolute value of det(dG(ei ,vj)). Now ei is a vertical edge, perpendicular to thex axis, so
dG(ei ,v j )52(e i /2)ImF1(ei ,vj)1o(e). We therefore have

udet~dG~ei ,v j !!u5
ek

2kUdetS i Im F1~e1 ,v1! ¯ i Im F1~ek ,v1!

] � ]

i Im F1~e1 ,vk! ¯ i ImF1~ek ,vk!
D U1o~ek!

5
ek

~2p!kU 4v1

v1
22e1

2 ¯

4v1

v1
22ek

2

] � ]

4vk

vk
22e1

2 ¯

4vk

vk
22ek

2

U1o~ek!.

For eachj factor 4v j out of row j. Then the remaining matrix is in the form of Cauchy
determinant~Proposition 2.6!. So the probability is

2kek

pk

) uv j u) i , j uv i
22v j

2u) i , j uei
22ej

2u
) i , j uv i

22ej
2u

1o~ek!.

Since thev j are all betweeni and i 18ie2pL ~up to negligible errors!, we have) uv j u51
1O(e2pL). Defining t j by v j5 i (118t je

2pL) we have ) uv i
22v j

2u5(16e2pL)(k22k)/2) ut i

2t j u(11O(e2pL)). We can similarly replaceuv i
22ej

2u by (11ej
2)(11O(e2pL)). Thus the

above expression ise2pL(k22k)/2(11O(e2pL)) times a function independent ofL.
Whene tends to zero, and we sum over the positions of theej , we can replace the sum wit

an integral, the factorek becomingde1de2¯dek . Thus we can think of the above-mentione
expression, without the factorek, as the probability density of thek crossings landing in@ej ,ej

1dej #. On our original rectangle@0,L#3@0,1# this probability density is the same expressio
multiplied by the product of the derivatives) j u f 8(ej )u, wheref (z) is the function in~6!, mapping
the rectangle to the quadrant. This follows from the conformal invariance of the Green’s func
grect(w,z)5gquad( f (w), f (z)).

FIG. 2. Computing the probability ofk crossings.
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Theorem 4.3:The probability density of k crossings of a rectangle from pointsv i on the left
edge, landing in@ej ,ej1dej # on the right edge, is

e2pL~k22k!/2F~ f ~v1!,...,f ~vk!, f ~e1!,...,f ~ek!!~11O~e2pL!!) u f 8~ei !ude1 ...dek ,

where F is independent of L (and F is given explicitly by the above-mentioned expression)
In particular when we integrate over the positions of theej the resulting probability only

depends on the conformal type of the domainU with marked pointsv1 ,...,vk and boundary
conditions.

We have calculated the probabilityp(v1 ,...,vk) of k crossings starting fromk specified points
v1 ,...,vk . To compute the probability ofk crossings starting anywhere requires the followi
observation. For each configuration with exactlyk crossings, the left edge of the rectangle
subdivided intok consecutive subintervals such that two points are in the same interval if and
if their tree branches lead to the same edge just before the rootb0 . Thesek subintervals are
separated byk21 vertical edgesz1 ,...,zk21 on the left boundary. Define a functio
h(z1 ,...,zk21) to be the probability that a configuration hask crossings and the correspondingk
subintervals of the left edge are delineated by thez1 ,...,zk21 . Since as thezj vary the
h(z1 ,...,zk21) describe disjoint events, we have

p~v1 ...,vk!5E
v1

v2
dz1E

v2

v3
dz2¯E

vk21

vk
dzk21h~z1 ,...,zk21!

plus lower order terms~terms involving more thank crossings!. WhenL is large these lower orde
terms are negligible and we can write

h~z1 ,...,zk21!5~21!k21
]k21p~z1 ,...,zk21 ,vk!

]z1]z2¯]zk21
.

Then the probability ofk crossings anywhere can be obtained by integratingh over all possible
positions of thez1 ,...,zk21 .

V. CROSSINGS OF AN ANNULUS

A. Combinatorial lemmas

Let m be an even positive integer andn be any positive integer. LetG5Gn,m be the cylindrical
graph obtained as a productI n3Cm whereCm is a cycle of lengthm andI n is an interval of length
n ~and edges connect nearest neighbors!. To each vertex on the ‘‘right’’ (x5n) boundary ofG
attach an edge to an additional vertexb0 . Let $v1 ,...,vk% be k vertices on the left (x51)
boundary of G, and $e1 ,...,ek% be k edges leading tob0 . Note that elements ofSk

ªS(v1 ,...,vk ,e1 ,...,ek) are defined by Lemma 2.4 to be spanning forests withk11 components,
one rooted at each ofv1 ,...,vk andb0 , in which the dual forest is a tree.

Lemma 5.1: For k>1, spanning trees ofG with k disjoint branches fromv j to ej for j
P@1,k# are in bijection with configurations SkªS(v1 ,...,vk ,e1 ,...,ek).

Proof: The proof is nearly identical to the proof of Lemma 4.1. From a spanning tree wk
crossings from thev j to theej , reverse the directions on the branches from theej to thev j to get
a configuration inSk .

Now consider a spanning forest inSk . For each face ofG, the branch of the dual tree lead
from that face to the dual root, that is, off of theleft edge ofG. Therefore, in the primal forest, th
directed branch from the left vertex of an edgeej cannot lead tob0 , since it would surround a se
of faces and disconnect the dual tree. So each branch from the left vertex of anej leads to some
root v j . The remainder of the proof is as in Lemma 4.1. h

The probability that a spanning tree ofG hask disjoint branches running from thev j to theej

is then the ratio of the number of configurations inS(v1 ,...,vk ,e1 ,...,ek) to the number of
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spanning trees ofG. This computation is more difficult than in the case of the above-mentio
rectangle since this ratio cannot in general be written in terms of the coupling function.

Let H0 be the graphI 2n3C2m . By Temperley’s trick, spanning trees ofGn,m rooted atb0 give
perfect matchings ofH0 , although in this case not all perfect matching gives spanning tr
Indeed, perfect matchings give graphs which are locally spanning trees but which may have
which wind around the annulus. However the following is true.

Lemma 5.2: Let Hk5H02$v1 ,...,vk ,e1 ,...,ek%. For k>1, Temperley’s trick gives a bijec
tion between perfect matchings of Hk and configurations Sk .

Proof: Using Temperley’s trick, a configuration inSk gives a matching ofHk . Conversely,
suppose we have a matching ofHk . Consider first the casek51. The directed tree branch startin
from any vertex ofG2$v1% either lands onv1 , onb0 , or eventually meets itself, forming a cycle
In this last case, this cycle must wrap around the annulus or else it would enclose an odd n
of vertices ofH1 ~see the proof of Lemma 2.4! and so could not arise from a perfect matching
H1 . However if the cycle wraps around the annulus, either side of the annulus contains a
number of vertices ofH1 by the same Euler characteristic argument, again a contradiction. T
fore all branches land onv1 or the root and the two-component forest has no cycles. Furtherm
the branch starting at the left vertex ofe1 must lead tov1 and not to the root, for if it led to the
root it would enclose an odd number of vertices ofH1 . This implies that the dual object has n
cycles, hence it is a tree. This completes the proof fork51. For generalk, the directed tree
branches starting from the left vertices of two adjacentej ’s cannot meet each other, for their unio
would enclose an odd number of vertices ofHk ~if they meet each other by encircling the annulu
each complementary region will have odd area unlessk is odd; but ifk is odd the path from one
of the remainingej ’s will meet this path without encircling the annulus, thereby enclosing an
area!. Neither path can cycle around the annulus, for that would force the other branch backb0

~and they cannot both cycle and still remain disjoint!. Therefore all these branches are disjoint, a
one must land on eachv j . This completes the proof. h

For k even, by Lemma 5.2 the ratio ofuSku and the number of perfect matchings ofH0 can be
computed by Theorem 2.3, sinceHk is obtained fromH0 ~which we can think of as a plana
graph! by removing an even number of vertices from the faces corresponding to each bound
H0 . The ratio is the determinant of thek3k matrix whosei j -entry isdG(ei ,v j ), wheredG is the
coupling function onH0 . See Sec. V C 2.

If k is odd, this ratio cannot be computed using Theorem 2.3, sinceHk removes an odd
number of vertices from each boundary of the cylinder. However the ratio of the number of p
matchings ofHk and H1 can again be computed by Theorem 2.3, sinceHk removes an even
number of vertices from each boundary ofH1 . The ratio is the absolute value of the determina
of the (k21)3(k21) matrix whosei j -entry isdG(ei ,v j ), wherei,j run from 2 tok, anddG is
the coupling function onH1 . See Sec. V C 1.

Finally, we can compute asymptotically the number of perfect matching ofH0 and ofH1 , so
as to be able to compare the two:

Lemma 5.3: When m is even, the number of perfect matching of H0 is

S )
j 50

2m21

)
k51

2n S 2 cos
2p~2 j 11!

4m
12i cos

pk

2n11D D 1/2

. ~7!

When m,n→` with m/n tending to a constantt, the logarithm of this number is asymptotical

2m~2n11!
G

p
2m log~11& !12 log

hS i t

4
1

1

2D
hS i t

2 D 1OS 1

nD ,

where G is Catalan’s constant G5121/3211/522¯ and h is the Dedekind eta-function~see
Ref. 14!.
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For H1 we have
Lemma 5.4: When summed over the possible positions of e1 , the number of perfect matching

of H1 is the number of spanning trees ofG, which is

)
j 50

m21

)
k50

n21 S 422 cos
2p j

m
22 cos

2p~2k11!

4n12 D . ~8!

As m, n→` with m/n→t, the logarithm of this number is asymptotically

2m~2n11!
G

p
2m log~11& !12 log

hS i t

4 D
hS i t

2 D 1OS 1

nD ,

whereh is Dedekind’s eta-function.
The second lemma applies tom even or odd. For the proofs of these two lemmas, see

Appendix. Note that for fixedm,nwith m even the ratio of perfect matchings ofH0 andH1 is

S hS i t

4
1

1

2D
hS i t

4 D D 2

~11o~1!!.

As t→0, this ratio is asymptotic toep/(2t)(11o(1)): this can be seen using the modular covarian
and the Fourier expansion ofh, see Ref. 14.

B. Asymptotic coupling functions

Here we compute the asymptotic coupling functions onH0 andH1 .

1. Coupling function on H 1

Fix L.0 and letL be the latticeL5Z14iLZ ~the reason for the 4 will be evident in th
following!. The quotient of the strip$z:0<Im(z)<iL% by z°z11 is the cylinderU; we take as
fundamental domain forU the rectangle with vertices$0,1,11 iL ,iL %. Any function onC which is
doubly periodic with respect toL restricts to a function onU. Indeed, the asymptotic couplin
functions onU will be restrictions of functions doubly periodic with respect toL. Here we
considerU to be the limit of the graphsH05I 2n3C2m whenm, n→` in such a way thatn/m
→L ~in particularL51/t for t as in Lemma 5.4.!

Recall thatH1 is obtained fromH0 by removing one point from each boundary compone
Let w0 be a point in@0,1! andz0 a point in@0,1)1 iL be the points inU to which these removed
points converge.

Let z(z)5zL(z) be the Weierstrass zeta-function, that is,

z~z!5
1

z
1 (

wPL\$0%

1

z2w
1

1

w
1

z

w2 . ~9!

Recall15 that z(z11)5z(z)1c1 andz(z14iL )5z(z)1c2 for constantsc1 ,c2 . The constantc2

is pure imaginary sinceL is rectilinear. The functionz(z) has poles exactly on points ofL, with
residues 1.

Define

H1~w,z!5
2

p S z~z2w!2z~z2w22iL !2
1

2
c2D ,
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and

H2~w,z!5
2

p S z~z2w̄!2z~z2w̄22iL !2
1

2
c2D .

These are elliptic~doubly periodic! functions ofz. Also define

F1~w,z!5H1~w,z!2
H1~w,z0!H1~w0 ,z!

H1~w0 ,z0!
, ~10!

F2~w,z!5H2~w,z!2
H2~w,z0!H2~w0 ,z!

H2~w0 ,z0!
. ~11!

Lemma 5.5: F1 ,F2 are the asymptotic coupling functions on U with base point at z0 .
Proof: We will check the four conditions of Sec. II D, withb0 ,c0 there beingz0 ,w0 here. First

note thatF1 ,F2 are elliptic functions ofz and so are well defined onU. Let F05 1
2 (F11F2) and

F15 1
2 (F12F2). For a fixedw these are analytic inz for zPU with a simple pole of residue 1/p

at w, and another pole only atz5w0 . They are both zero atz5z0 .
It remains to check the boundary conditions. We first compute the boundary values oH1

6H2 . WhenzPR,z(z2w)5z(z2w̄) sincez is a real function. Also

2z~z2w22iL !2z~z2w̄22iL !2c252z~z2w22iL !2z~z2w̄12iL !PR.

This shows that whenzPR, H1(w,z)1H2(w,z)PR andH1(w,z)2H2(w,z)P iR.
Whenz5 iL 1z8 andz8PR, regrouping the four terms in the other order we have

z~z81 iL 2w!5z~z81 iL 2w̄22iL !

and

2z~z81 iL 2w22iL !52z~z82w̄1 iL !,

so H1(w,z)1H2(w,z)P iR andH1(w,z)2H2(w,z)PR.
Notice also that sincew0PR,H1(w0 ,z)5H2(w0 ,z) for all z. Now

2F0~w,z!5~H1~w,z!1H2~w,z!!2
~H1~w,z0!1H2~w,z0!!H1~w0 ,z!

H1~w0 ,z0!
,

and whenzPR the termH1(w,z)1H2(w,z) is real, the termH1(w,z0)1H2(w,z0) is pure
imaginary, H1(w0 ,z0) is imaginary, andH1(w0 ,z) is real since it is half ofH1(w0 ,z)
1H2(w0 ,z). SoF0(w,z) is real. Similarly ifzP iL 1R, the termH1(w,z)1H2(w,z) is imagi-
nary andH1(w0 ,z) is also imaginary, soF0(w,z) is pure imaginary. The computation forF1 is
similar. h

2. Coupling function for H 0

As mentioned before Lemma 5.2, perfect matchings ofH0 are not in bijection with spanning
trees on a related graph. In particular the Kasteleyn matrix onH0 is not related in the same wa
as before to the Laplacian. For this reason the conditions defining of the coupling function
F0 ,F1 are different. We must go back to the definition of the Kasteleyn matrix forH0 . Define a
Kasteleyn matrix forH0 as follows. Weight the horizontal edges ofH0 with weight i 5A21 and
the vertical edges with weight 1, except that, on a single horizontal row of vertical edges ru
from one boundary to the other, puts weights21. LetK be the adjacency matrix forH0 with these
weights. ThenK is a Kasteleyn matrix forH0 ~see, e.g., Ref. 10!. ~The reason for this row of21’s
is that we chosem even; had we chosenm odd we would have had to put in this row of21’s for
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H1 instead.! The effect of this row of21’s on the coupling functiondG is that it changes sign
when crossing this row, in particular it is no longer discrete analytic across that row. A conve
way to deal with this sign change is to work on the double cover ofH0 , which is a cylinder of
twice the width. The coupling function can be lifted to a discrete harmonic function on the do
cover, which changes sign when changing sheets of the cover. In particular the asymptot
pling functions, which are not continuously defined onU, can be continuously defined on it
double cover~and they change sign when the second variable changes sheets of the cove!. The
asymptotic coupling functionsF0(w,z),F1(w,z) are uniquely defined by the following propertie

~1! They are analytic as functions ofz on U, except for having simple poles of residue 1/p at z
5w ~they have no other poles onU or on ]U!.

~2! The functionF0(w,z) is real whenzP]U and the functionF1(w,z) is pure imaginary when
zP]U.

~3! They are continuous on the double cover ofU and change sign whenz changes sheets of th
cover.

The graphH0 ~or rather its dual! is what is called anevenpolyomino in Ref. 4. In particular there
are analogous polyominos inZ2, whose asymptotic coupling functions have the same proper

Let L be the latticeL5Z12iLZ. The quotient of the strip$z:0<Im(z)<iL/2% by L is a
cylinder which is the double cover ofU; we take as the fundamental domain forU the rectangle
with vertices$0,1/2,1/21 iL /2,iL /2%. Note that this rectangle is 1/2 the size of the rectangle in
previous section. This is solely for computational convenience.

Let z(z)5zL(z) be the Weierstrass zeta-function for the latticeL.
Define

F1~w,z!5
2

p S z~z2w!2z~z2w2 iL !2zS z2w2
1

2D1zS z2w2
1

2
2 iL D D

and

F2~w,z!5
2

p S z~z2w̄!2z~z2w̄2 iL !2zS z2w̄2
1

2D1zS z2w̄2
1

2
2 iL D D .

Lemma 5.6: F1 ,F2 are the asymptotic coupling functions on U.
Proof: First, F1 ,F2 are elliptic functions~periodic underL! and so are well defined an

continuous on the double coverŨ of U. Let F05 1
2 (F11F2) andF15 1

2 (F12F2). For a fixed
w these are analytic forzPŨ with a simple pole of residue 1/p at w, and no other poles on th
fundamental domain forU. We also haveF0(w,z1 1

2)52F0(w,z) and similarly forF1 , that is,
F0 andF1 change sign when changing sheets of the double cover.

It remains to check the boundary conditions. WhenzPR, z(z2w)5z(z2w̄) and z(z2w

2 1
2)5z(z2w̄2 1

2) sincez is a real function. Furthermore

2z~z2w2 iL !52z~z2w̄1 iL !52z~z2w̄2 iL !2c2

and

2z~z2w2 1
22 iL !52z~z2w̄2 1

21 iL !52z~z2w̄2 1
22 iL !2c2.

This shows that whenzPR, F0(w,z)PR andF1(w,z)P iR.
Similarly, whenz5 iL /21z8 andz8PR, regrouping the four terms in the other order we ha

zS z81
iL

2
2wD5zS z81

iL

2
2w̄2 iL D ,
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zS z81
iL

2
2w2

1

2D5zS z81
iL

2
2w̄2 iL 2

1

2D ,

and

2zS z81
iL

2
2w2 iL D52zS z82w̄1

iL

2 D ,

2zS z81
iL

2
2w2 iL 2

1

2D52zS z82w̄1
iL

2
2

1

2D .

Thus whenzP iL /21R, F0(w,z)P iR andF1(w,z)PR. h

C. Crossing probabilities

1. Case k odd

Let wi ,zi be points ofU within O(e) of the edgesei and verticesv i , respectively. The
k-crossing probability is now obtained as a determinant of the matrix whosei j -entry is
2( i/2) ImF1(wi ,zj)521

4F1(wi ,zj) for i,j ranging from 1 tok21, andF1 given by~10!. Using~10!
we claim that we can rewrite this as ak3k determinant

ek21

4k21U H1~w0 ,z0! H1~w0 ,z1! ¯ H1~w0 ,zk21!

H1~w1 ,z0! H1~w1 ,z1! ]

] �

H1~wk21 ,z0! ¯ H1~wk21 ,zk21!

U
H1~w0 ,z0!

1o~ek21!. ~12!

To see this, for eachj .1 in the numerator of~12! subtractH1(w0 ,zj 21)/H1(w0 ,z0) times
column 1 from columnj.

Unfortunately we do not know how to evaluate this determinant with sufficient accurac
all choices ofwj ,zj . We will evaluate it only forwj andzj evenly spaced around the cylinde
This is enough to determine the dependence onL for generalwj ,zj , as we will see shortly.

For j P@0,k21# let zj5 j /k1 iL andwj5 j /k. SinceH1(w,z) only depends onz2w, and is
periodic H1(w,z)5H1(w,z11), the matrix~12! is a circulant, that is, thei j -entry mi j only
depends oni 2 j modk. The determinant of ak3k circulant matrix (mi 2 j ) is

)
j 50

k21

~m01e2p i j /km11¯1e2p i ~k21! j /kmk21! ~13!

~this is the product of the eigenvalues, whose corresponding eigenvectors
(1,e2p i j /k,...,e2p i (k21) j /k)!.

To evalute this product, we first compute the Fourier expansion ofH1(0,s1 iL ) for real s.
Lemma 5.7: For real s,

z~s1 iL !2z~s2 iL !5c24p i (
n51

`
e22pLn

11e24pLn cos~2psn!

for a constant c which is i(2Lp2/322p)1o(1) as L→`.
Proof: Start with the expansion~9!, and sum first over horizontal rows ofL. For a given row,

the last terms in the sum~9! give
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(
s1 iL

w2 2
s2 iL

w2

which is 2iL (2p2/6) for the first row and 2iLp2/ sin2(p4irL ) for the row at distance 4rL from the
x axis; the sum of these contributions is then 2ip2L/31o(1).

Using the identities~see Ref. 14!

p cot~pz!2p cot~pz8!5 (
nPZ

1

z2n
2

1

z82n
,

and p cot(p(x1iy))52pi(112Sn51
` e2pi(x1iy)) when y.0 ~and its complex conjugate wheny

,0!, we have

(
nPZ

1

s1 irL 2n
2

1

s2 irL 2n
522p i S 112(

n51

`

cos~2pns!e22pnrLD . ~14!

When r 51 this is the contribution~except for the constant terms! to the sum forz(s1 iL )
2z(s2 iL ) from the first row of the lattice. From this we must subtract the same expression
r 53 and add the expression withr 55 to obtain the contribution from the rowsZ14iL andZ
24iL . Similarly adding up all contributions to all rows replaces the terme22pnL in ~14! with

e22pnL2e22p3nL1e22p5nL2¯5
e22pnL

11e24pnL .

Finally, the constant contributions are22p i plus 2iLp2/3 plus exponentially small errors. h

Now the quantityS l 50
k21 e2p i l j /k cos(2pnl /k) is zero unlessj [6nmodk. Therefore in the

product~13! with

ml 5H1~zl 2w0!5
2

p S zS l

k
1 iL D2zS l

k
2 iL D2

c2

2 D ,

the j 50 term is (2/p)k(c2c2/2)1o(1) ~which is L times a nonzero constant, pluso(1)! and
for j .0 the j th term ise22pL min$uju,uj2ku%(11o(1)) times a constant independent ofL. That is, the
j th term is e22pL to the power of the j th element of $0,1,2,...,(k21)/2,(k21)/2,(k
23)/2,...,2,1%. The product of these terms isLe22pL(k221)/4(11o(1)) times a constant inde
pendent ofL. This is the product~13! and therefore also the determinant of the numerator in~12!.
The denominator in~12! is L(11o(1)) times a constant, so the quotient ise22pL(k221)/4(1
1o(1)).

This was the computation forv i andei evenly spaced around the cylinder. Now letv i8 ,ei8 be
points in arbitrary~generic! position. A lower bound on the crossing probability with pointsv i8 ,ei8
can be obtained by concatenating a cylinder of modulusL having a crossing from thev i to theei ,
with short cylinders of modulusO(1) with crossings from theei to theei8 , and from thev i to the
v i8 . The crossing probabilities of the short cylinders areO(1). Reversing the roles of thev i8 ,ei8
and thev i ,ei gives a matching upper bound on the crossing probability.

We have proved:
Theorem 5.8: Let T be a random spanning tree on an annulus of modulus L, with

boundary conditions on one boundary and wired boundary conditions on the other. For odd
probability density that T has k crossings, from pointsv i on the free boundary and landing i
intervals @ei ,ei1dei # on the wired boundary, is

e22pL~k221!/4F~L,v1 ,...,vk ,e1 ,...,ek!de1¯dek ,
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where F is a function which is bounded above and for fixedv1 ,...,vk ,e1 ,...,ek is bounded below
by a positive constant.
As in the case of the rectangle, the probability of ak-crossing somewhere can be obtained from
probability of a crossing from a specified set of points.

2. Case k even

As for the case ofk odd, we evaluate the crossing probability for a well-chosen set ofv j and
zj . For j P@0,k21# let v j5 j /2k andzj5 j /2k1 iL /2. The crossing probability is a determinant
the k3k matrix whosepq-entry is

i

2
Im F1~vp ,zq!5

1

4
F1~vp ,zq!

5
1

2p S zS q2p

2k
1

iL

2 D2zS q2p

2k
2

iL

2 D
2zS q2p2k

2k
1

iL

2 D1zS q2p2k

2k
2

iL

2 D D .

This matrix is a ‘‘signed’’ circulant, that is, thepq-entry only depends onp2q mod 2k and
satisfiesmpq5mp2q52mk1p2 mod 2k . For example the 434 signed circulant has the form

S m0 m1 m2 m3

2m3 m0 m1 m2

2m2 2m3 m0 m1

2m1 2m2 2m3 m0

D .

Such a circulant has eigenvectors (1,w,w2,...,wk21) wherew runs through roots ofwk521, and
so its determinant, which is the product of the corresponding eigenvalues, is

)
j 50

k21

~m01ep i ~2 j 11!/km11¯1ep i ~k21!~2 j 11!/kmk21!. ~15!

To evaluate this product, we compute the Fourier expansion ofF1(0,s1 iL ) for reals. Using
Lemma 5.7~replacingL there withL/2!, we have

Lemma 5.9: For real s,

zS s1
iL

2 D2zS s2
iL

2 D2zS s2
1

2
2

iL

2 D1zS s2
1

2
2

iL

2 D528p i (
n>1,n odd

e2pLn

11e22pLn cos~2psn!.

~16!

Now the quantityS l 50
k21 ep i (2 j 11)l /k cos(2pl n/k) is zero unless 2j 116n[0mod 2k. In the

product~15!, the j 50 term ise2pL(11o(1)) times a constant independent ofL, and in general
to compute thej th term, the first nonvanishing term in~16! is for n56(2 j 11)mod 2k, which
has coefficiente2pL min$u2j11u,u2k2(2j11)u% times a constant, up to lower order terms. So the prod
~15! has dominant term of ordere2pL to the power 113151¯1(k21)1(k21)1(k23)
1¯13115k2/2. Thus the ratio ofuSku to the number of matchings ofH0 is a constant inde-
pendent ofL timese2pLk2/2(11o(1)). Using the remark after Lemma 5.4, we find that the ra
of uSku to the number of spanning trees ofGn,m , that is, thek-crossing probability, to be a constan
independent ofL, timese2pLk2/2

•epL/25e22pL(k221)/4 up to lower order terms.
                                                                                                                



free
en k,

n

f a

.

tion of

d be

ows.
e
ng

nulus

e

1358 J. Math. Phys., Vol. 41, No. 3, March 2000 Richard Kenyon

                    
Theorem 5.10: Let T be a random spanning tree on an annulus of modulus L, with
boundary conditions on one boundary and wired boundary conditions on the other. For ev
the probability density that T has k crossings, from pointsv i on the free boundary and landing i
intervals @ei ,ei1dei # on the wired boundary, is

e22pL~k221!/4F~L,v1 ,...,vk ,e1 ,...,ek!de1 ...dek ,

where F is a function which is bounded above and for fixedv1 ,...,vk ,e1 ,...,ek is bounded below
by a positive constant.

Again the probability of ak-crossing somewhere can be obtained from the probability o
crossing from a specified set of points.

VI. WINDING VARIANCE

A fundamental constant associated with the UST onZ2 is the rate of winding of its branches
That is, given a pointx, at what rate, as you zoom in towardx, does the branch fromx to a
far-away point wind aroundx? More precisely, consider the UST on a lattice of mesh sizee on a
cylinder of circumference 1 and lengthL. Pick a point on each boundary; in the limit ase→0, how
many times does the branch between these two points wind around the cylinder, as a func
L?

In Ref. 4 it was shown that the variance of this winding number on a cylinder coul
computed using the asymptotic coupling functionsF1 ,F2 , in the following way. Take two
disjoint pathsg1 , g2 between the two boundary components. Then the variances2 of the winding
number is

s25
1

16S E
g2

E
g2

F1~z1 ,z2!F1~z2 ,z1!dz1 dz22E
g2

E
g2

F2~z1 ,z2!F2~z2 ,z1!dz1 dz2

2E
g2

E
g2

F2~z1 ,z2!F2~z2 ,z1!dz1 dz21E
g1

E
g2

F1~z1 ,z2!F1~z2 ,z1!dz1 dz2D . ~17!

The higher moments of the winding number have similar formulas.4

For the graphGn,m with one free boundary and one wired boundary, we proceed as foll
We considerGn,m to be an approximation to the cylinderU which is the quotient of the rectangl
$0,1,11 iL ,iL % by the translationz°z11, as in Sec. V B 1. We use the asymptotic coupli
functionsF1 ,F2 of ~10! and ~11!. We integrate along the pathsg1(t)5v11 iLt andg2(t)5v2

1 iLt for tP@0,1# for some fixedv1 ,v2 different fromv0 ,z0 . Using the approximation

H1~v,z!52 cotp~z2v !22 cot~z2v22iL !12i 1O~e22pL!, ~18!

H2~v,z!52 cotp~z2 v̄ !22 cot~z2 v̄22iL !12i 1O~e22pL!, ~19!

plugging in for F1 ,F2 in ~10! and ~11! and doing the integrals~17! yields varianceL/p
1O(1) ~we omit the long and uninteresting computation!.

We can do a similar computation for the variance of the winding number on the an
conditioned to have two or three crossings. We simply have to do the integrals~17! using the
asymptotic coupling functions onH2 or H3 .

To find the asymptotic coupling functions onH3 , proceed as follows. LetU be the cylinder as
above. Letv1 ,v2 be distinct points on~0, 1! ~and distinct fromv0! andz1 ,z2 distinct points on
(0,1)1 iL distinct from z0 . Then the asymptotic coupling function onH3 with edges removed
nearv1 andv2 , and vertices removed nearz1 andz2 , is given by a ratio of determinants. We hav
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F
1

H3~v,z!5

detS F1~v,z! F1~v1 ,z! F1~v2 ,z!

F1~v,z1! F1~v1 ,z1! F1~v2 ,z1!

F1~v,z2! F1~v1 ,z2! F1~v2 ,z2!
D

detS F1~v1 ,z1! F1~v2 ,z1!

F1~v1 ,z2! F1~v2 ,z2!
D ,

where the matrix entries are the coupling functions onH1 . Similarly

F
2

H3~v,z!5

detS F2~v,z! F1~v1 ,z! F1~v2 ,z!

F2~v,z1! F1~v1 ,z1! F1~v2 ,z1!

F2~v,z2! F1~v1 ,z2! F1~v2 ,z2!
D

detS F1~v1 ,z1! F1~v2 ,z1!

F1~v1 ,z2! F1~v2 ,z2!
D .

These may be checked as follows. Note thatF
1

H3 is analytic in both variables, andF
2

H3(v,z) is
analytic inz and antianalytic inv. As functions ofz they are zero whenz5z1 andz5z2 since two
rows of the matrix are equal. As functions ofz they have poles atz5v of residue 2/p, and other
poles only atv1 andv2 . Using properties of boundary behavior of the matrix entries one can s
that F05 1

2 (F
1

H31F
2

H3) is real whenzPR and pure imaginary whenzPR1 iL , and similarly

F15 1
2 (F

1

H32F
2

H3) is pure imaginary whenzPR and real whenzPR1 iL . ThusF
1

H3 andF
2

H3 are
indeed the asymptotic coupling functions forH3 .

The same formula holds forH2 , but with the matrix entries replaced by the asympto
coupling functions onH0 . Verification is left to the reader.

For H3 , the 333 determinant in the numerator can be replaced by a 434 determinant whose
entries areH1 , as described in Sec. V C 1. Similarly the denominator can be replaced with
33 determinant. Using the approximation~18!, after another computation one arrives at the sa
varianceL/p1O(1).

A similar computation for the caseH2 again arrives at the same answerL/p1O(1).
In all these cases, we can map the cylinder to the plane with the mappingz°exp(2piz), where

its image is an annulus of outer radius 1 and inner radiusR5e22pL. In terms ofR the winding
variance is (1/2p2)u logRu1O(1) in each case.

Theorem 6.1: Let T be a uniform spanning tree on an annulus of modulus L with one
boundary and one wired boundary. The variance in the winding number of branches of T fro
boundary to the other is L/p(11o(1)). The same variance holds when T is conditioned
having at least two or at least three crossings.

APPENDIX

1. Proof of Lemma 5.3

Weight all the horizontal edges ofG with weight i 5A21 and vertical edges with weight
except for a single horizontal row of vertical edges leading from one boundary to the other
is weighted21. Let K be the adjacency matrix ofG with these weights. ThenK is a Kasteleyn
matrix for G ~see Ref. 10!. The eigenvectors ofK are the functionsf j ,k whose value at vertex
(x,y)P@1,2n#3@0,2m21# is

f j ,k~x,y!5sin
pkx

2n11
expS 2p i ~2 j 11!y

4m D .

This is a straightforward verification. The corresponding eigenvector is thej,k-term of ~7!.
To evaluate the asymptotics of~7!, we use the identity
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)
z2m521

~z2a!S z2
1

a D5~11a2m!~11a22m!,

or equivalently

)
j 50

2m21 S 2 cos
2p~2 j 11!

4m
12xD5~11a2m!~11a22m!,

wherea11/a52x. With x5 i cospk/(2n11) in this identity the product~7! becomes

S )
k51

2n

~11ak
2m!~11ak

22m!D 1/2

, ~A1!

where

ak5cos
pk

2n11
1A11cos2

pk

2n11

~recall thatm is even so we can ignore the factori!. We haveaka2n112k51, so the product~A1!
can be replaced by

)
k51

n

~11ak
2m!~11ak

22m!,

without the square root. The log of this product is

(
k51

n

logak
2m12(

k51

n

log~11ak
22m!. ~A2!

To evaluate the first sum in~A2! we use the Euler–Maclauren summation formula~valid when
M /N;constant!

1

N (
k50

M21

f S k

ND5E
0

M /N

f ~x!dx2
1

2N S f S M

N D2 f ~0! D1
1

12N2 S f 8S M

N D2 f 8~0! D1O~N23!.

With N52n11, M5n11 and f (x)5 log(cospx1A11cos2(px)), we have f (0)5 log(11&),
f (M /N)52p/(4n12)1O(n22), andf 8(0)50, f 8(M /N)52p1O(1/n). Plugging in we have

(
k51

n

logak
2m522m log~11& !12m(

k50

n

f S k

ND
522m log~11& !12mNS E

0

M /N

f ~x!dx2
1

2N S 2
p

4n12
2 log~11& ! D

3
1

12N2 ~2p20!1O~N23! D .

To evaluate the integral, we have

E
0

1/2

log~cospx1A11cos2 px!dx5
G

p
,

whereG is Catalan’s constant~see Ref. 16!, and
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E
1/2

M /N

f ~x!dx5E
1/2

M /N

f S 1

2D1S x2
1

2D f 8S 1

2D1OS S x2
1

2D 2Ddx52
p

8~112n!2 1O~n23!.

The first sum in~A2! now totals to

2m~112m!
G

p
2m log~11& !1

pt

24
1OS 1

nD .

To evaluate the second summation in~A2!, note that log(11ak
22m) is exponentially small

unlessk is close ton; if k5n2l with l 5O(1) we have

an2l 5cos
p~n2l !

2n11
1A11cos2S p~n2l !

2n11 D511

pS l 1
1

2D
2n11

1OS 1

n2D ,

so that

11an2l
22n 511e22mp~ l 11/2!/~2n11!S l 1OS 1

nD D
and

2(
k51

n

log~11a22m!52 (
l 50

`

log~11q2l 11!1OS 1

nD , ~A3!

whereq5e2pt/2. This sum can be evaluated with the help of the Dedekind eta function14

h~ t !5e2p i t /24)
l 51

`

~12e2p i t l !,

and we get~A3! to be

2 log

2e2pt/4shS i t

4
1

1

2D
hS i t

2 D .

This completes the proof.

2. Proof of Lemma 5.4

Expression~8! is the determinant of the Laplacian ofG when we remove the row and colum
corresponding to the vertexb0 : the eigenvectors of the Laplacian aref j ,k where at vertex (x,y)
P@1,n#3@0,m21# we have

f j ,k~k,y!5cos
2p~2k11!x

4n12
e2p i j /n.

Expression~8! is the product of the eigenvalues.
To evaluate the asymptotics of~8!, we use the identity

)
j 50

m21 S 2x22 cos
2p j

m D5~am21!~12a2m!,
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wherea5x1Ax221. The product~8! becomes

)
h50

n21

~ak
m21!~12ak

2m!,

where

ak522cos
2p~2k11!

4n12
1AS 22cos

2p~2k11!

4n12 D 2

21.

The logarithm of this product is

(
k50

n21

logak
m12(

k50

n21

log~12ak
2m!. ~A4!

The first sum in~A4! can be treated with the appropriate Euler–Maclauren formula~valid when
M /N;const!

2

N (
k50

M21

f S 2k11

N D5E
0

2M /N

f ~x!dx2
1

6N2 S f 8S 2M

N D2 f 8~0! D1O~N23!.

Let N52n11, M5n and f (x)5 log(22cospx1A(22cospx)221), so thatf (1)5 log(31A8),
f 8(0)5p and f 8(2M /N)5O(1/N). Then the first sum in~A4! is

m(
k50

n21

logak5
mN

2 S E
0

2M /N

f ~x!dx2
1

6N2 ~02p!1O~N23! D .

To evaluate the integral, we have

E
0

1

f ~x!dx5
4G

p
,

and

E
1

2M /N

f ~x!dx5E
1

2M /N

f ~1!1~x21! f 8~1!1O~~x21!2!dx52
log~31A8!

2n11
1O~n23!.

To evaluate the second summation in~A4!, note that log(12ak
2m) is exponentially small

unlessk is close to 0. For constantk we have

ak511
p~2k11!

2n11
1O~n22!,

and so

2(
k50

n21

log~12ak
2m!52(

k50

`

~12q2k11!1OS 1

nD ,

whereq5e2pt/2. Using Dedekind’s eta function this can be written
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2 log

e2pt/48hS i t

4 D
hS i t

2 D 1OS 1

nD .

This completes the proof. A closely related computation can be found in Ref. 17.
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Geometric variational problems of statistical mechanics
and of combinatorics

Senya Shlosmana)

CNRS, Centre de Physique Theorique, Case 907, 163 Avenue de Luminy, 13288
Marseille, Cedex 20, France
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We present the geometric solutions of the various extremal problems of statistical
mechanics and combinatorics. Together with the Wulff construction, which pre-
dicts the shape of the crystals, we discuss the construction which exhibits the shape
of a typical Young diagram and of a typical skyscraper. ©2000 American Insti-
tute of Physics.@S0022-2488~00!01203-2#

I. INTRODUCTION
A. Statistical mechanics

The variational problems of statistical mechanics we are going to discuss here are
related to the formation of a droplet or a crystal of one substance inside another. The questio
is: What shape such a formation would take? The statement that such shape should be de
the minimum of the overall surface energy subject to the volume constraint was known fro
times immemorial. In the isotropic case, when the surface tension does not depend on the
tation of the surface, and so is just a positive number, the shape in question should be of
spherical~provided we neglect the gravitational effects!. In a more general situation the shape
question is less symmetric. The corresponding variational problem is called theWulff problem.
Wulff formulated it in his paper,1 where he also presented a geometric solution to it, called
Wulff construction~see Sec. II B below!.

This Wulff construction was considered by the rigorous statistical mechanics as just a
nomenological statement, though the notion of the surface tension was among its central n
The situation changed after the appearance of the book in Ref. 2. There it was shown tha
setting of the canonical ensemble formalism, in the regime of the first order phase transitio
~random! shape occupied by one of the phases has asymptotically~in the thermodynamic limit! a
nonrandom shape, given precisely by the Wulff construction! In other words, a typical m
scopic random droplet looks very close to the Wulff shape. The results of Ref. 2 are restric
the 2D~two-dimensional! Ising ferromagnet at low temperature, though the methods of the b
are suitable for the rigorous treatment of much more general two-dimensional low-tempe
models. Physical intuition is that as soon as there is phase coexistence, these results sh
valid. It was proven in Refs. 3–5 to be the case for the 2D Ising model at all subcritical tem
tures. Some results for the higher dimensional case were obtained in Refs. 6 and 7. F
independent percolation the corresponding results were obtained in Ref. 8 for the 2D case,
Ref. 9 in the 3D~three-dimensional! case.

B. Combinatorics

The main content of the present paper concerns the problems arising in combinatorics
this section we describe some of them in more details.

A partition p of an integerN is a collection of non-negative integersn1>n2>¯>nk>¯ ,
such that( i 51

` ni5N. It can be specified by the sequence$r k% of integers, withr k5 l iff exactly l
elements ofp equalk. It can also be described by the monotone function

a!Electronic mail: shlosman@cpt.univ-mrs.fr.
13640022-2488/2000/41(3)/1364/7/$17.00 © 2000 American Institute of Physics
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fp~y!5 (
k5 dye

`

r k .

Its graphG@fp# provides a graphical description ofp and is called a~2D! Young diagram.
Similarly, a plane partitionP of an integerN is a two-dimensional array of non-negativ

integersni j , such that for anyi we haveni1>ni2>¯>nik>¯ , for any j we haven1 j>n2 j

>¯>nk j>¯ , while again( i , j 51
` ni j 5N. One defines the corresponding functionfP(y1 ,y2) in

the obvious way. The functionfP(y1 ,y2) is monotone in each variable. Its graphG@fP# is called
a 3D Young diagramor a skyscraper.

Many more objects of a similar type can be defined. For example, one can put restrictio
how the steps of the stairG@fp# can look: they can not be longer than 3 units, and their heig
can be only 1, 2, or 5, say. The same freedom is allowed in 3D, and above.

Let us fix the numberN, choose the kind of diagrams we are interested in, and conside
corresponding setDN of all these diagrams. There are finitely many of them, so we can p
uniform probability distribution onDN . ~Here, again, variations are possible.! The question now
is the following: How the typical diagram from the familyDN looks like, whenN→`?

The first problem of that type was solved in Ref. 10, see also Refs. 11–13. It was found
that the typical 2D Young diagram under statistics described above, if scaled by the factor (1AN),
tends to the curve

expH 2
p

A6
xJ 1expH 2

p

A6
yJ 51. ~1!

More precisely, for everye.0 the probability that the scaled Young diagram would be wit
distancee from the curve~1!, goes to 1 asN→`.

The heuristic way to obtain~1! ~and similar results! is the following:
~i! Let A5(a1 ,a2), B5(b1 ,b2) be two points inZ2, with a1,b1 , a2.b2 . We can easily see

that the number #(A,B) of lattice staircases, starting fromA, terminating atB, and allowed to go
only to the right or down, is given by

S ~b12a1!1~a22b2!

~b12a1!
D .

Therefore, one concludes by using the Stirling formula that

lim
uB2Au→`

1

uB2Au
ln #~A,B!5h~nAB!. ~2!

Here nAB is the unit vector, normal to the segment@A,B#, and for n5(n1 ,n2),
a5n1 /(n11n2), theentropy function h(n)52(a ln a1(12a)ln(12a)).

~ii ! One argues that the number of Young diagrams of the areaN scaled byAN, ‘‘going
along’’ the monotone curvey5c(x)>0 with area one below it, is approximately given by

expH ANE hS 2
c8~x!

A11~c8~x!!2
,

1

A11~c8~x!!2DA11~c8~x!!2dxJ . ~3!

~iii ! Assuming that indeed the model under consideration exhibits under a proper scaling
typical behavior, described by a nice smooth nonrandom curve~or surface! C, one comes to the
conclusion that the curveC should be such that the integral in~3!, computed alongC, is maximal
compared with all other allowed curves.

In general case one is not able to write down the corresponding entropy function prec
The only information available generally is the existence of the limit of the type of~2!, by a
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subadditivity argument. It should be stressed that even when the variational problem for the
is known, the main difficulty of the rigorous treatment of the model is the proof that indeed it
exhibit a nontrivial behavior after a proper scaling.

The above program was realized in Refs. 11 and 12, see also Ref. 13, for the 2D
described above and for some other cases. In Ref. 14 a class of more general 2D proble
studied. The first 3D problem was successfully studied in Ref. 15. The method of the last
can also solve the skyscraper problem, as is claimed in Ref. 16.

When compared with the situation in statistical mechanics, the combinatorial program a
development looks very similar. The only difference is that the counterpart of the Wulff cons
tion was not designed in combinatorics, probably because there was no heuristic period th
this note we fill this lack of parallelism by presenting such a construction. It provides, like
Wulff one, the geometric solution to the corresponding variational problem under minimal re
tions on the initial data, and also proves the uniqueness of the solution.

In the next section we first remind the reader about the Wulff minimizing problem~Sec. II A!
and the Wulff construction~Sec. II B!, which solves this problem, and then present the co
sponding maximizing problem of combinatorics~Sec. II C! and the geometric construction for it
solution ~Sec. II D!, which is our main result. We give the proof in the Sec. III.

II. STATEMENT OF RESULTS

A. Wulff minimizing problem

Let Sd,Rd11 denote the unit sphere, and let the real functiont on Sd be given. We suppose
that the function is continuous, positive:t(•)>const.0, and even:t(n)5t(2n). Then for every
hypersurfaceMd,Rd11 we can define theWulff functional

Wt~Md!5E
Md

t~nx!dsx . ~4!

HerexPMd is a point on the manifoldMd, the vectornx is the unit vector parallel to the norma
to Md at x, andds is the usual volumed-form on Md, induced from the Riemannian metric o
Rd11 by the embeddingMd,Rd11. Of course, we need to assume that the normal toMd is
defined almost everywhere, i.e., thatMd is smooth enough. Let nowDq be the collection of all
closedhypersurfacesMd, embeddedin Rd11, and such that the volume vol (Md) inside Md

equalsq. TheWulff problemconsists in finding the lower bound ofWt over D1

wt5 inf
MPD1

Wt~M !, ~5!

as well as the minimizing surface~s! Wt , such thatWt(Wt)5wt , if it exists. It turns out that the
above variational problem indeed can be solved. It has a unique solution, which is given
following

B. Wulff construction „†W‡…

The minimizerWt can be obtained as follows. For everynPSd, l.0 define the half-space

Lt
,~n;l!5$xPRd11:~x,n!<lt~n!%, ~6!

and let

Kt
,~l!5 ù

nPSd

Lt
,~n;l!, ~7!

M t~l!5]~Kt
,~l!!. ~8!
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The bodiesKt
,(l) are called Wulff bodies. We define l1 as the value ofl, for which

vol(M t(l))51. Then we defineWt5M t(l1). The surfaceWt is called theWulff shape. This is
the minimizer we are looking for.

Reference 17 contains a simple proof thatWt(Wt)<Wt(M ) for everyMPD1 . The unique-
ness of the minimizing surface is proven in Ref. 18. It is known that in dimension 2 the min
ing surfaceWt of the functionalWt is not only unique, but also is stable in the Hausdorf met
for the proof, see Ref. 2, Sec. II D.

C. Maximizing problem

In a dual problem we again have a functionh of a unit vector, but this time it is defined onl
over the subsetDd5SdùR1

d11 of them, lying in the positive octant. We suppose again that
function is continuous and non-negative:h(•)>0. We assume additionally that

h~n!→0 uniformly as n→]Dd. ~9!

Let now G,R1
d11 be an embedded hypersurface. We assume that for almost everyxPG the

normal vectornx is defined, and moreover

nxPDd for a.e. xPG. ~10!

Then we can define the functional

Vh~G!5E
G

h~nx!dsx . ~11!

In analogy with the Sec. II A we introduce the familiesD̄q ,q.0, of such surfacesG as follows:

GPD̄q iff

~i! G splits the octantR1
d11 into two parts, with the boundary]R1

d11 belonging to one of them,
~ii ! the„(d11)-dimensional… volume of the bodyQ(G) enclosed between]R1

d11 andG, equalsq.
In what follows we denote the above volume by vol~G!.

For example, letf (y)>0 be a function onR1
d , nonincreasing in each ofd variables, and

G@ f #,R1
d11 be its graph. Then

vol~G@ f # !5E
R1

d
f ~y!dy, ~12!

so if *R
1
d f (y)dy5q, then G@ f # is an element ofD̄q , provided the functionf is sufficiently

smooth.
Our problem now is to find theupper boundof Vh over D̄1

vh5 sup
GPD̄1

Vh~G!, ~13!

as well as the maximizing surface~s! VhPD̄1 , such thatVh(Vh)5vh , if possible. Note that the
last problem differs crucially from~5!, since here we are looking for thesupremum. In particular,
this upper bound evidently diverges if taken over all surfaces, and not only over ‘‘monotone’
in the sense of~10!, unlike in the problem~5!.

It turns out that there exists a geometric construction, which provides a solution to the
tional problem~13!, in the same way as the Wulff construction solves the problem~5!.
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D. The main result

For everynPDd, l.0 define the half-space

Lh
. ~n;l!5$xPRd11:~x,n!>lh~n!%, ~14!

and let

Kh
. ~l!5 ù

nPDd

Lh
. ~n;l!, ~15!

Gh~l!5]~Kh
.~l!!. ~16!

Because of~9!, the surfacesGh(l) are graphs of functions,f h
l(y), yPR1

d , i.e., Gh(l)
5G@ f h

l#.
Theorem: Suppose the integrals vol(Gh(l)) [see Eq. (12)] are converging. Then the fun

tional Vh has a unique maximizer, Vh , over the set D̄1 . It is given by the above construction (16

Vh5~Gh~l1!![G@ f h
l1#,

wherel1 satisfies vol(Gh(l1))51, and the maximum of the functionalvh5Vh(Vh) [see (13)]. If
the integrals vol(Gh(l)) diverge, thenvh5`.

As we already said in the introduction, in all known cases the heuristic arguments of the
I B turn out to be correct, and are validated by corresponding~sometime quite hard! theorems
proven. For example, they are valid for the problem of finding the asymptotic shape of the Y
diagram, described in the Sec. I B, as was proven in Refs. 10–12. Therefore, the foll
statement holds:

Corollary: In the notations of the theorem above, the curveexp$2(p/A6)x%1exp$
2(p/A6)y%51 from the formula (1) coincides with the curve Gh(l1), given by our construction
applied to the functionh(n)5h(n) from the formula (2).

Of course, this statement can also be easily checked directly.

III. THE PROOF OF THE THEOREM

We start with the case of finite volumes: vol(Gh(l)),` for all l.
We will prove our theorem by showing that for any surfaceGPD̄1 , GÞVh , which coincides

with G@Vh# outside some big ball around the origin ofRd11, we have

Vh~G!.Vh~Vh!.

First, we need more detailed notation than in the previous section. For everyxPRd11, nPSd,
k.0 we define the half-spaces

L.~x,n;k!5$yPRd11:~y2x,n!>k%,

and the planes

L5~x,n;k!5$yPRd11 :~y2x,n!5k%.

Let C,Rd11 be a convex set, andxPC. Thesupport functiontx,C(•) is defined by

tx,C~n!5 inf$k:L.~x,n;k!ùC50” %;

we puttx,C(n)5` if L.(x,n;k)ùCÞ0” for all k. We denote byK the convex setKh
.(l5l1),

introduced in~15!, and we use the notationG for the surface](K).
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Let e.0. Introduce the setRe
d115$y5(y1 ,...,yd11)PR1

d11:yi>e%, and define K(e)
5KùRe

d11, G(e)5](K(e)). The family of the subsetsḠ(e)[(G(e)ùG),G is increasing,
with øe.0Ḡ(e)5G.

Let N5N(e) be so big, that the cubeBN5$y5(y1 ,...,yd11)PR1
d11:0<yi<N% contains the

set Ḡ(e). We denote byxN the vertex (N,...,N) of this cube. Consider the convex setŨ
5BNùK(e). We are going to define with its help a functionTN(n)[TN,e(n) on Sd. First, let
nP2(Dd); in other words,n has all coordinates nonpositive. Note that by definition the sup
planeL5(xN ,n;txN ,Ũ(n)) intersects the setḠ(e). In case when this intersection contains ‘‘inne

points ofḠ(e), i.e., points not in]Ḡ(e)[Gù](Re
d11), we put

TN~n!52~xN ,n!2h~2n!.0, ~17!

whereh is our initial function~9!. We use the same definition~17! for remainingn-s in 2(Dd),
for which the intersection

L5~0,2n;h~2n!!ùḠ~e!Þ0” .

For future use we denote the set ofn-s, where the functionTN is already defined, by (2(De
d));

note thatDe
d→Dd ase→0. For the remainingnP2(Dd\De

d) we defineTN(n)5txN ,Ũ(n). Forn-s
in Sd\Dd the functionTN(n) is defined by applying multiple reflections in the coordinate plan
In other words, the valuesTN(6n1 ,6n2 ,...,6nd11) do not depend on the choice of sign
Analogously, we define the convex setU as the union ofŨ and all its multiple reflections in
coordinate planes shifted byxN .

It follows from the definitions above that the setU is nothing else but the shift of the Wulf
body KTN

, ~1! by the vectorxN . According to what was said in the Sec. II B, for everyM

PDvol(]U) , MÞ]U

WTN
~]U !,WTN

~M !. ~18!

Consider now an arbitrary hypersurfaceH, such that]H5]Ḡ(e), while the setn(H) of its unit
normal vectors belongs to the subsetDe

d,Dd ~which is the case for the surfaceḠ(e) itself!. Then
for any suchH

Vh~H !1WTN
~H !5NAd vol~p~]Ḡ~e!!!, ~19!

wherep(]Ḡ(e)) is the projection of the ‘‘curve’’]Ḡ(e) ~of codimension 2! on the hyperplane

$y:y11¯1yd1150%,R1
d11, and where vol(p(]Ḡ(e))) is the ~(d21)-dimensional! volume

inside it. The relation~19! follows from ~17!. Therefore, the minimality property~18! of the
functionalWTN

on the surfaceḠ(e) implies the maximality property of the functionalVh on the
same surface!

The uniqueness statement forVh is, therefore, a corollary of the uniqueness forW.
It remains now to consider the question when the volumes vol(Gh(l)) are infinite for alll.

We are going to show that in that casevh5`. To make things look simpler, we restrict ourselv
to the 2D case. LetG,Gh ~1! be an arc, and consider the ‘‘triangle’’D(G),R2, made from all
the points of all the segments joining the origin to the curveG:

D~G!5 ø
xPG

@0,x#.

It is straightforward to see that

vol~D~G!!5 1
2 Vh~G!.
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We now will present the familyGgPD̄1 , such thatVh(Gg)→` asg→0. Namely, for everyl we
define the numberN(l) to be the size of the squareB(l)5$yPR2:0<yi<N(l)% for which
vol(Q(Gh(l))ùB(l))51, and we putGg to be the part of the boundary of the intersecti
Q(Gh(g))ùB(g), which is visible from the point (2N(g),2N(g)), say. The curveGg consists of
a certain arcḠg of the curveGh(g) and two small segments, joining its endpoints to the coo
nate axes. By construction, vol(D(Ḡg)).1/3. On the other hand, vol(D(Ḡg))5(g/2)Vh(Ḡg),
which implies that

Vh~Ḡg!.
2

3g
.

IV. CONCLUSION

In this paper we have described the explicit geometric construction, which predict
asymptotic shape of some combinatorial objects. It is worth mentioning that the method pre
should work whenever the underlying probability measure has certain locality property, na
that the distant portions of the combinatorial object under consideration are weakly depe
This locality property is in fact the key feature behind the results obtained in the papers
above. It also holds for the corresponding problems of statistical mechanics, like the validity
Wulff construction, and is crucial there as well.
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The FKG theorem says that thepositive lattice condition, an easily checkable
hypothesis which holds for many natural families of events, impliespositive asso-
ciation, a very useful property. Thus there is a natural and useful theory of posi-
tively dependent events. There is, as yet, no corresponding theory of negatively
dependent events. There is, however, a need for such a theory. This paper, unfor-
tunately, contains no substantial theorems. Its purpose is to present examples that
motivate a need for such a theory, give plausibility arguments for the existence of
such a theory, outline a few possible directions such a theory might take, and state
a number of specific conjectures which pertain to the examples and to a wish list of
theorems. ©2000 American Institute of Physics.@S0022-2488~00!01703-5#

PHILOSOPHY

The questions in this paper are motivated by several independent problems in combin
probability, stochastic processes, and statistical mechanics. For each of these problems, i
that progress will require~and engender! better understanding of what it means for a collection
random variables to be ‘‘repelling’’ or mutually negatively dependent. The temptation is to t
copy the theory of positively dependent random variables, since the FKG theorem and i
shoots give this theory a powerful footing from which to prove correlation inequalities,
theorems, and so on. Perhaps it is folly: no definition of mutual negative dependence has
one-tenth as useful as the lattice condition for positively dependent variables. The purpose
paper is to lay the groundwork for whatever progress is possible in this area. The main goa
state some conjectured implications which would bridge the gap between easily verifiable
tions and useful conclusions. A second purpose is to collect together examples and cou
amples that will be useful in forming hypotheses, and a third is to update previous surve
collecting the relevant known results and adding a few more. The scope of this paper is lim
binary-valued random variables, in the hope that eliminating the metric and order properties
real numbers in favor of the two point set$0, 1% will better reveal what is essential to the questio
at hand.

I. STATEMENT OF THE PROBLEM AND SOME MOTIVATION

A. Definition of positive and negative association

Let Bn be the Boolean lattice containing 2n elements, each element being thought of a
sequence of zeros and ones of lengthn, or as function from$1,...,n% to $0, 1%, or as a subset o
$1,...,n%. Let m be a non-negative function on the lattice with(xPBn

m(x)51. Thenm is a prob-
ability measure onBn and each coordinate function is a binary random variable, denotedXj , j
51,...,n. Sometimes we replace the base set$1,...,n% by a different index set arising naturally i
an application, such as the set of edges of a graph.

In order to make an analogy, we review the facts about positive dependence. The meam
is said to bepositively associated~cf. Ref. 1! if

a!Present address: Department of Mathematics, Ohio State University, 231 W. 18th Avenue, Columbus OH 4321
13710022-2488/2000/41(3)/1371/20/$17.00 © 2000 American Institute of Physics
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E f g dm>E f dmE g dm ~1!

for every pair of increasing functionsf andg on Bn . This is a strong correlation inequality from
which many others may be derived, and from which distributional limit theorems also follows
Ref. 2. Positive association is implied by the following local~and therefore often more checkabl!
positive lattice condition~Ref. 3; see also Ref. 4 for a more general proof!:

Theorem 1.1: (FKG) If the following condition holds, thenm is positively associated:

m~x~y!m~x`y!>m~x!m~y!. ~2!

In fact, one only needs to check this in the case wherex and y each coverx∧y ~an elementu
covers an elementv if u.u and if u>w>v implies wP$u,v%!. This immediately allows verifi-
cation of positive association for basic examples such as the ferromagnetic Ising model,
urn models, and, in the continuous case, multivariate normals, gammas, and many more d
tions. Furthermore, the class of measures satisfying the lattice condition~2! is easily seen to be
closed under Cartesian products, pointwise products, and, most importantly, under integrat
any of the variables@i.e., any projection ofm onto the space$0,1%E for E#$1,...,n% will also
satisfy ~2!#.

Negative dependence, by contrast, is not nearly as robust. First, since a random vari
always positively correlated with itself, one cannot expect all monotone functions to be nega
correlated. The usual definition ofnegative associationof a measurem ~cf. Ref. 5! is that

E f g dm<E f dmE g dm ~3!

for increasing functionsf andg, provided thatf depends only on a subsetA of then variables and
g depends only on a subset disjoint fromA. Second, whereas in the positive case one may h
EXiXj significantly greater thanEXiEXj for many i,j in the negative case the inequali
( i , jCovXiXj>0 prevents the typical term CovXiXj from having a significantly negative value
Third, thenegative lattice condition, namely~2! with the inequality reversed, is not closed und
projections. Thus one cannot expect it to imply negative association and indeed it does no

Contrasting the definitions of positive and negative association shows that the inequal~1!
comes from two sources. The first is from autocorrelation whenf and g depend on the sam
variable in the same direction; thus for independent random variables, strict inequality~1!
occurs iff andg both depend on a common variable. The second is from positive interdepen
of the variables which contributes even whenf and g depend on disjoint subsets. This lea
immediately to a question on positive association which, while not directly pertaining to
subject of negative dependence, might shed light on how to disentangle inter- and auto-corre

Question 1: If one assumes (1) only for f and g depending on disjoint subests of the var
does the inequality follow for all increasing f and g?

This elementary question has not, as far as I know, been posed or answered in print.
The reverse-inequality analog of~1! for product measures is the van den Berg–Keste

Reimer inequality:

m~AhB!<m~A!m~B!. ~4!

HereAhB is the event thatA andB happen for ‘‘disjoint reasons’’:vPAhB if there are disjoint
subsetsS(v) andT(v) of $1,...,n% such thatA contains the set of all configurations agreeing w
v on SandB contains the set of all configurations agreeing withv on T. This leads to a different
but also somewhat natural definition of negative association, denoted here BKRNA~Berg–
Kesten–Reimer negative association!: a measurem has the BKRNA property if~4! holds for all
setsA andB.
                                                                                                                



ince
t

ven in

is

t func-

l when

nce

l

ing
reasing

n

lly

bsec-
old if
present

1373J. Math. Phys., Vol. 41, No. 3, March 2000 Towards a theory of negative dependence

                    
The BKRNA has some claim to being ‘‘the negative version’’ of positive association, s
instead of reversing the inequality in~1! and then restrictingf and g, we choose a differen
inequality to reverse which holds in the independent case for allf andg. The BKRNA property has
been discussed in the literature, but has not been fruitful. This may be due to the fact that e
the independent case, where the proof of~1! has been known for 40 years~see Ref. 6!, the
inequality ~4! turned out to be quite hard to prove. A proof whenA andB are both up-sets~see
definition in the next paragraph! was given in Ref. 7, generalized to the case whereA andB had
the next level of complexity~up-set intersect down-set! by van den Berg and Fiebig,8 and then
proved in complete generality by Reimer9 in a manuscript yet to be published. In view of th
difficulty, it seems unlikely that proving~4! for some interesting nonproduct measurem will be
possible, let alone be the easiest way to establish a desired property ofm. Consequently, the
remainder of the paper deals with classical negative association, where we restrict the tes
tions f andg instead of changing the binary set operation.

B. Stochastic increase and decrease

The notions of stochastic domination and stochastic increase and decrease are usefu
defining positive and negative dependence properties, so we review them here. Letm and n be
measures on a partially ordered set,S. An eventA#S is said to beupwardly closed~or anup-set!
if xPA andy>x impliesyPA. OftenS5Bn , the Boolean lattice of rankn, in which case this is
the same asA being an increasing function of the coordinates. We say thatm stochastically
dominatesn ~written mfn! if m(A)>n(A) for every upwardly closed eventA. The condition
m1fm2f¯fmn is well known to be equivalent to the existence of a random seque
(X1 ,...,Xn) such thatXj

D5m j for eachj andXj>Xk for 1< j <k<n ~see, e.g., Ref. 10!. We say
that the random variableX is stochastically increasingin the random variableY if the conditional
distribution ofX given Y5y1 stochastically dominates the conditional distribution ofX given Y
5y2 whenevery1>y2 . The notationX↑Y will denote this relation, which is not in genera
symmetric. Similarly,X is stochastically decreasing inY ~denotedX↓Y! if one has (XuY5y1)
d(XuY5y2) whenevery1>y2 . A convention in use throughout this paper is that terms involv
inequalities are meant in the weak sense, so that for example ‘‘decreasing’’ means noninc
and ‘‘positively correlated’’ means non-negatively correlated.

The relationX↑Y is not in general symmetric, but impliesY↑X is a certain case, as given i
the following proposition.

Proposition 1.2: Let X be a$0, 1%-valued random variable and Y take values in any tota
ordered set. If X↑Y, then Y↑X. h

Proof: Chooset in the range ofY. SinceP(X51uY) is inceasing inY, it follows that

P~X51uY<t !<sup
s<t

P~X51uY5s!< inf
s.t

P~X51uY5s!<P~X51uY.t !.

ThusX and1Y.t are positively correlated andP(Y.tuX51)>P(Y.tuX50). This holding for all
t is equivalent toY↑X.

A counterexample to the converse is given by the following probabilities, where the~i,j!-cell
is the probability of (X,Y)5( i , j ):

1 2 3 4

0 9/40 4/40 6/40 1/40

1 1/40 6/40 4/40 9/40

C. Motivating examples

The property of negative association is reasonably useful but hard to verify. The next su
tion builds the case for ‘‘reasonably useful’’ by cataloging some consequences that would h
negative dependence could be established in some cases where it is conjectured. In the
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subsection, we list some examples of systems which are known or believed to have the n
association property. The examples that are conjectured motivate us to develop techniq
proving that measures have negative dependence properties. The point of including exam
measures already known to be negatively associated is that we can use them to study prop
negative association, which will help us refine our conjectures about the consequences of n
association. As seen in Sec. I E below, knowledge of the characteristics of negatively associa
variables will be helpful in proving criteria for negative association.

~1! The uniform random spanning tree. LetG be a finite connected graph, and letT be a
random spanning tree~i.e., a maximal acyclic set of edges ofG! chosen uniformly from among al
spanning trees ofG. It is easy to prove that the indicator functions$Xe% of the events thatePT
have the following property: for any edgese andf, Xe andXf are negatively correlated. Feder an
Mihail11 have shown that in fact this collection is negatively associated. As we will see later
concrete consequence of this is that the conditional measures givenePT and e¹T may be
coupled to agree except that the latter has precisely one more edge elsewhere.

A natural generalization is to consider weighted spanning trees. LetW:E(G)→R1 be a
function assigning positive weights to the edges ofG. Define the weightW(T) of a treeT to be the
productPePTW(e) of weights of edges inT. The probability measurem on $0,1%E(G) concentrated
on spanning trees whose weightsm(T) are proportional toW(T) is called the weighted spannin
tree measure. Everything known about the uniform spanning tree also holds for the we
spanning tree; in fact, a rational edge weight ofr /s may be simulated in the uniform spanning tr
setting by replacing the edgee by r parallel paths of lengths each.

~2! Simple exclusion. LetG be a finite graph, leth0 be a function fromV(G) to $0, 1%, and
let j t be the trajectory of a simple exclusion process starting fromj05h0 . The simple exclusion
process is the Markov chain described as follows. For each edgee independently, at times of a rat
1 Poisson process, the values ofh at the two endpoints ofe are switched. This is thought of as
particle moving across the edge but only if the opposite site is vacant. Fixt and letXv5j t(v) be
the indicator function of the occupation of the vertexv at time t. It is known12 that

EF )vPS
XvG< )

vPS
EXv ~5!

for any subsetSof the vertices ofG. Are the variablesXv negatively associated? The most natu
generalization of simple exclusion is to allow the Poisson processes on the different edges
different rates; the inequality~5! is known in this generality.

~3! Random cluster model withq,1. Let G be a finite graph. For any subseth of the edges,
viewed as a maph:E(G)→$0,1%, let N(h) denote the number of connected components of
graph represented byh. Given parameterspP(0,1) andq.0, define a measurem5mp,q on $0,1%E

by letting

m~h!5Cp(e
h~e!

~12p!(e
12h~e!

qN~h!. ~6!

HereC is the normalizing constant

C5F (
h:E~G!→$0,1%

p(e
h~e!

~12p!(e
12h~e!

qN~h!G21

.

When q.1, the variablesXeªh(e) are easily seen to be positively associated by checking
positive lattice condition and applying the FKG Theorem. Whenq,1, the negative lattice con
dition holds, but aside from this little is known about the extent of negative dependence. Ne
association and BKRNA are both conjectured to hold, but it is not even known whethe
variablesXeªh(e) are pairwise negatively correlated underm. The random cluster~RC! model
has the uniform spanning tree model as a limit asp,q and p/q go to zero~see Ref. 13!; thus
negative association in the RC model would in a way generalize what is known for spanning
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The RC model may be generalized by letting the factorp vary from edge to edge. Thus one has

function p:E(G)→(0,1) and the termp(h(e)
(12p)(12h(e)

is replaced by the more gener
)ep(e)h(e)

„12p(e)…12h(e).
~4! Occupation of competing urns. Letn urns havek balls dropped in them, where th

locations of the balls are elastic indirect~IID ! chosen from some distribution. LetXi be the event
that urn numberi is nonempty. It is proved in Sec. II C that these events are negatively assoc
Dubhashi and Ranjan14 consider this example at length and show negative association o
occupation numbers of the bins~numbers of bals in each bin!. From this follows negative asso
ciation of the indicators of exceeding any prescribed threshholdsai in bin i. Occupation numbers
of urns under various probability schemes have appeared many places. Instead of multi
probabilities, one can postulate indistinguishability of urns or balls and arrive at Bose–Einst
other statistics. Negative association seems only to arise in the multinomial models,
Mallows15 was one of the first to observe negative dependence.

D. Consequences of positive and negative association

One use that is reasonably general is that of classifying infinite volume limits of G
measures. The prototypical example is the ferromagnetic Ising model. The ferromagnetic
measure on a finite boxG with boundaryB and boundary conditionh:B→$21,1% is a measure on
spin configurationsj:G→$21,1% proportional to

expS bS (
x,yPG

j~x!j~y!1 (
xPG,yPB

j~x!h~y! D D .

The spin variables$j(x):xPG% are positively associated and stochastically increasing
$h(y):yPB%, from which it follows that there are a stochastically greatest and least infi
volume limit, corresponding to plus and minus boundary conditions, respectively. Thus th
nonuniqueness of the Gibbs state if and only if the plus and minus states differ.

Another example of this is the uniform spanning tree, which is almost Gibbsian excep
some configurations have infinite energy~are forbidden!. Let mn

(A) be the uniform spanning tre
measure on the finite subcube of thed-dimensional integer lattice centered at the origin w
semi-diametern. TheA refers to a specification of boundary conditions, i.e., of a partition of
vertices of the boundary of then-cube into components, so that the sample tree is uniform ove
spanning forests of the cube that become trees if each component ofA is shrunk to a point.
Pemantle16 shows that the measuresmn

(An) converge weakly to a measurem in the case whereAn

is the discrete partition, and uses electrical network theory to show that this same limit hol
anyAn . With the negative association result of Feder and Mihail11 it is easy to see this directly a
follows. Iterating the stochastic relation between the conditional measures givenePT and given

e¹T shows thatmn
(A)dmn

(A8) wheneverA8 refinesA. Thus the measuresmn
(A) are stochastically

sandwiched between the measures induced by ‘‘free’’ and ‘‘wired’’ boundary conditions~whereA
is respectively discrete or a single component!; thus the set of limits is sandwiched between
maximal and minimal limit measure; both must have the same one-dimensional margina~by
stationarity! and hence must coincide.

Negative association has the further consequence that the uniform spanning tree mea
very weak Bernoulli~VWB!. Briefly, this means that the conditional measures inside a large
given two independent realizations of the boundary can be coupled so as to make the ex
proportion of disagreements arbitrarily low. To see that the uniform spanning tree is VWB,
that the number of edges in a spanning tree is determined by the boundary conditions, so t
boundary conditions will always yield preciselyu]Bu21 more edges than wired boundary cond
tions, where]B denotes the set of vertices in the boundary of a setB. Given two boundary
conditionsA1 and A2 , we can construct a triple (T1 ,T* ,T2) such thatT1 is chosen from the
measure with boundary conditionsA1 ,T2 from boundary conditionsA2 , andT* from free bound-
ary conditions, and so thatT* containsT1 @construct (T1 ,T* ) from the coupling witnessingT1
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dT* and then constructT2 givenT* from a coupling witnessingT2dT* #. ThenT1 andT2 differ
in fewer than 2u]Bu places. Question: is there a simultaneous coupling of all boundary condi
such that the configuration with boundary conditionA is a subset of the configuration with boun
ary conditionA8 wheneverA8 refinesA? For the reason why this does not immediately follo
from stochastic monotinicity in the boundary conditions, see Ref. 10.

Positive and negative association may be used to obtain information on the distribut
functionals such as(eX(e). Newman2,17 shows that under either a positive or negative dep
dence assumption, of strength between cylinder dependence and full association, the join
acteristic function of the variables$Xe% is well approximated by the product of individual cha
acteristic functions. This allows him to obtain central limit theorems~CLT! for stationary
sequences of associated variables. In the positive association case one needs to assume s
covariances, whereas in the negative case one gets this for free. It is logical to ask what in
tion may be obtained from negative association without passing to a limit. For example, sinc
has a CLT or triangular array theorem in the independent case, can one prove that neg
associated events are at least as tightly clustered as independent events? In Sec. II D we
some conjectures along these lines. Here is a specific application of these conjectures.

Consider simple exclusion on the one-dimensional integer lattice, with initial configur
given by Xv51 for v<0 and Xv50 for v.0. What can one say about the numberNt

ª(v.0h t(v) of occupied sites to the right of the origin at timet? The meanENt is easy to
compute, and an upper bound ofO(t1/2) on the variance has been obtained by several peo
While this shows that (Nt2ENt)/t

1/4 is tight, it is a far cry from a limit theorem. It would be nic
to be able to obtain a central limit theorem, or, in lieu of that, Gaussian bounds on the tails oNt .
The conjectured chain of implications is: first, the exclusion model is negatively assoc
second, negatively associated measures have sub-Gaussian tails. Negative association i
~Ref. 14, Proposition 7! to imply the Chernoff–Hoeffding tail bounds; see Conjectures 4 an
below for other possible consequences of negative association.

E. Feder and Mihail’s proof

Feder and Mihail11 prove that a uniform random base for abalanced matroid, of which the
uniform spanning tree measure is a special case, has the negative association property.~This is
false for general matroids; see Ref. 18.! They use induction on the size of the edge setE, with the
specific nature of the measure entering through only two properties,~i! and~ii !. The logical form
of the proof is as follows. Choose an edgee appropriately and show that property~ii ! holds for
(mue). This together with property~i! for m and the induction hypothesis then imply thatm is
negatively associated.

This argument provides further motivation for deriving consequences of negative assoc
If we can prove, for example, that negative association implies property~ii !, then the step where
we verify property~ii ! drops out~by induction!! and the entire argument may be carried out us
only property ~i!. Proving something weaker than~ii ! for negatively associated measures s
reduces the work to proving~ii ! from this property. We make this all concrete by defining t
properties and stating the above as a theorem.

Let Sbe a class of measures on Boolean algebras which is closed under conditioning on
of the coordinate values. An example of such a measure is the uniform or weighted spanni
measure or the random cluster measure.

Property~i! pairwise negative correlation:eachmPS makes each pair of distinctXe and
Xf negatively correlated.
Property~ii ! some edge correlates with each up-set:for eachmPS and increasing even
A there is an edgee with m(Xe1A)>m(Xe)m(A).

Theorem 1.3:Let S be a class of measures closed under conditioning and under projec
(i.e., forgetting some of the variables) and suppose all measures in this class have pa
negative correlations. Then property (ii) forS (implied for example by Conjecture 8 below
implies that every measure inS is negatively associated.
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Proof of theorem:Pick m in Sand induct on the rankn of the lattice on whichm is a measure.
Whenn51 the statement is trivial. Now assume the conclusion for all measures inSon lattices of
size less thann. The remainder of the proof copies the Feder–Mihail argument. For brevity
show thatA andB are negatively correlated whenB5Xe andA is an arbitrary up-set not depend
ing on the variableXe .

If P(Xe5Xf51)50 for all f Þe the induction step is trivial, so assume not. By property~ii !
for (mue) there is somef Þe for which

m~AuXe5Xf51!>m~AuXe51!. ~7!

Now write

m~AuXe51!5m~Xf51uXe51!m~AuXe5Xf51!1m~Xf50uXe51!m~AuXe51,Xf50!,

m~AuXe50!5m~Xf51uXe50!m~AuXe50,Xf51!1m~Xf50uXe50!m~AuXe50,Xf50!.

Comparing terms on the right-hand sides, we see that

~i! m(Xf51uXe51)<m(Xf51uXe50) by the assumption that measures inS have pairwise
negative correlations;

~ii ! m(AuXe5Xf51)<m(AuXe50,Xf51) since the conditional law (muXf51) is assumed by
induction to be negatively associated and henceA andXe are negatively correlated give
Xf51;

~iii ! m(AuXe51,Xf50)<m(AuXe50,Xf50) by the induction hypothesis this time applied
(muXf50); and

~iv! m(AuXe5Xf51)>m(AuXe51,Xf50) by the choice off.

These four imply that the left-hand sides are comparable:m(AuXe51)<m(AuXe50). This com-
pletes the induction in the special case where one of the two upwardly closed events is a
event,$Xe51%. The case of a general upwardly closed event is similar~see the Exercise 6.10 in
Ref. 19!. h

II. PROPERTIES AND IMPLICATIONS

A. Obtaining measures from other measures

Before discussing negative dependence properties of various strengths, we consider w
obtaining a measurem8 from a given measurem in such a way as to preserve any known
conjectured negative dependence properties. The reason for discussing these beforehand i
perspective to some of the definitions: if the property is not closed under them°m8, either by
definition or by some argument, then perhaps it is not such a natural property. In the foregoi
fix a finite setE and a probability measurem on the space$0,1%E.

~1! Projection. GivenE8#E, let m8 be the projection ofm onto $0,1%E8. This corresponds to
integrating out~i.e., forgetting! the variables inE\E8. Clearly any natural negative depen
dence property is closed under projection.

~2! Conditioning. GivenA#E and hP$0,1%A, consider the conditional distribution (muXe

5h(e) for ePA!. It is reasonable to expect these sections of the measurem to be negatively
dependent ifm is. Several of the motivating examples, namely spanning trees, RC mode
the Ising model, are classes of measures closed under conditioning. Note that we a
allowing conditioning on a set larger than a single atom. To ask that the projection ofm onto
$0,1%E\A be negatively dependent, conditioned on the event^Xe :ePA&PS for arbitraryS is
significantly stronger.

~3! Products. Ifm1 andm2 are negatively dependent, then clearlym13m2 should be.
~4! Relabeling. The measurem8 defined by m8$Xe5h(e):ePE%5m$Xe5h„p(e)…:ePE%,

wherep is some permutation ofE, is of course just a relabeling ofm.
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~5! Extends the concept of negative correlation. WhenuEu52, any reasonable definition reduce
to negative correlation.

~6! External field. The name for this property is borrowed from the Ising model. LetW:E→R1 be
a non-negative weighting function and letm8 be the reweighting ofm by W. Specifically, let

m8$Xe5h~e!:ePE%5C)
ePE

W~e!h~e!m$Xe5h~e!:ePE%,

whereC is a normalizing constant. This corresponds to making a particular value for each
more or less likely, without introducing any further interaction between the edges. For exam
W(e)Þ1 for a uniquee, then the probability of$Xe51% is altered, but the conditional distribu
tions of (muXe) are unaltered. Many of the classes of measures which motivate our stud
closed under imposition of an external field. For spanning trees or for the RC model, this
sponds to the weighted case; for the Ising model it corresponds to an external field. Closure
external fields may seem far from a natural condition for models that are not thermodyn
ensembles, but this may be more natural than it seems. First, if one believes in closure
conditioning, then this is the canonical interpolation between conditioning onXe51 and condi-
tioning onXe50. Second, Karlin and Rinott20 in 1980 had already proposed a property they c
S-MRR2 which is essentially the negative lattice condition plus closure under projection
external fields~see the discussion preceding Conjecture 2!.

B. Negative dependence properties and their relations

We recall the definition of negative association:
Definition 2.1: $Xe :ePE% are negatively associated (NA) if for every A#E and every pair

of bounded increasing functions f:$0,1%A→R and g:$0,1%E\A→R, Ef g<Ef Eg .
Unfortunately, this property is not closed under conditioning or external fields~see Example

2 below!. This may be an indication that these two closures are not so natural after all, but,
other hand, it makes sense, at least for closure under conditioning, to make a new definiti

Definition 2.2: The measurem is conditionally negatively associated (CNA) if each meas
m8 gotten fromm by conditioning on some (or none) of the values of the variables is negat
associated.

Since the operation of conditioning is easy to understand in many of our motivating exam
this extension should not prove too unwieldy.

The weakest possible negative dependence property is pairwise negative corre
m(XeXf)<m(Xe)m(Xf). For real-valued random variables, there is a stronger pairwise prop
callednegative quadrant dependence~NQD! in Ref. 17, after Ref. 21. Say thatX andY are NQD
if

P~X>a,Y>b!<P~X>a!P~Y>b!

for all a andb. For binary-valued random variables, this reduces to simple correlation. A stro
property, callednegative regression dependence~in analogy with positive regression dependen
cf. Ref. 1!, is defined by requiring the conditional distribution ofX given Y to be stochastically
decreasing inY:P(X>tuY5s) is decreasing ins for eacht. For binary-valued variables this aga
reduces to negative correlation. WhenX andY are vectors,Xª^Xe :ePA&, Yª^xe :e¹A&, this
would say that the conditional joint distribution of$Xe :ePA% given $Xe :e¹A% should be sto-
chastically decreasing in the values conditioned on. Thus we have a definition:

Definition 2.3: Say that the variables$Xe :ePE% are jointly negative regression depende
(JNRD) if the vectorŝ Xe :ePA& and ^Xe :e¹A& are always negative regression depende
Equivalently, require that for any increasing event H measurable with respect to$Xe :ePA%,
m(Huxe :e¹A) is decreasing with respect to the partial order on$0,1%Ac

.
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Unraveling the definitions, one sees that conditional negative association implies JNRD
JNRD is simply CNA in the special case where one has conditioned on$Xe :ePAc%\$ f % and then
asks forXf to be negatively correlated with1H for any increasing eventH measurable with respec
to $Xe :ePA%.

The negative lattice condition

m~x~y!m~x`y!<m~x!m~y! ~8!

is closed under five of the six closure operations, but the missing one, projection, is crucia
is what makes the negative version of the FKG theorem fail. Accordingly, we have the follow

Definition 2.4: Say that$Xe :ePE% satisfy the hereditary negative lattice condition (h-NLC)
every projection satisfies the negative lattice condition.

It is easy to see that JNRD implies h-NLC, since h-NLC is the special case whereA is a
singleton.

None of the three properties CNA, JNRD or the hereditary NLC is closed under impositi
an external field~see Example 1 below!. Projecting from index setS to S8 and then imposing an
external field~on S8! is the same as imposing an external field which is trivial onS\S8 and then
projecting toS8. Thus any sequence of projections and external fields may be written as
external field followed by one projection. One may define three stronger properties, CN1,
JNRD1 and h-NLC1, which are that the corresponding properties hold for the given measure
for all measures obtained from the given measure by imposition of an external field and a p
tion; these properties are then by definition closed under external fields and projections.
these stronger properties are difficult to check directly, they appear to hold for the motiv
examples and are introduced in the hope that they do in fact hold there and are strong en
be useful in inductive arguments such as the proof of Theorem 1.3. The property h-NLC1 is
called S-MRR2 by Karlin and Rinott,20 according to terminology they develop mainly for co
tinuous random variables.

The terminology introduced thus far can be summarized with a diagram of implications

C. Conjectures, examples, and counterexamples

The vertical implications in Diag. 1 are strict, as shown by the examples which follow in
section. Whether the horizontal implications are strict is an open question:

Conjecture 2: All three properties CNA1, JNRD1 and h-NLC1 are equivalent.
Another immediate question is whether anything other than CNA is strong enough to

negative association.
Conjecture 3: Strong version: h-NLC implies NA. Weak version: h-NLC1 implies NA.
Examples showing the vertical implications are not equivalences are as follows~verified by

brute force!.
Example 1:Supposen53, and the probabilities for the various possible atoms are pro

tional to the following:

P~X150,X250,X350!516,
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P~X150,X250,X351!58,

P~X150,X251,X350!58,

P~X150,X251,X351!58,

P~X151,X250,X350!5121e,

P~X151,X250,X351!54,

P~X151,X251,X350!54,

P~X151,X251,X351!51.

When 0<e<0.8 then this measure satisfies CNA and hence JNRD and h-NLC. However,
e.0, then applying the external field~l, 1, 1! for any positivel,e/(12e) yields a measure in
which X2 andX3 are positively correlated, thus violating h-NLC and hence JNRD and CNA. T
shows the first three vertical implications in Diag. 1 are strict.

Example 2:Supposen53, and the probabilities for the various possible atoms are in
proportions

P~X150,X250,X350!50,

P~X150,X250,X351!51,

P~X150,X251,X350!51,

P~X150,X251,X351!510e,

P~X151,X250,X350!51,

P~X151,X250,X351!51,

P~X151,X251,X350!510e,

P~X151,X251,X351!5e.

Here the negative lattice condition fails on the four atoms havingX251; thus CNA, JNRD, and
h-NLC ~in fact NLC! all fail, whereas the variables are in fact negatively associated. Thus
lowest vertical implication in Diag. 1 is strict as well.

The following lemma will be useful on a number of occasions. The easy inductive pro
omitted.

Lemma 2.5: Let Y1 ,...,Yn be random variables taking values in a partially ordered set a
suppose they have the Markov property, namely that Y1 ,...,Yk21 are independent from
Yk11 ,...,Yn given Yk . Suppose also that each Yk11 is either stochastically increasing or decrea
ing in Yk . Then Yn is either stochastically increasing in Y1 or stochastically decreasing in Y1 ,
according to whether the number of indices k for which Yk11 is decreasing in Yk is even or odd.

h

We conclude this subsection with a proof that the competing urn model of Example
negatively associated. The result with general thresholds is proved in Ref. 14, but the proof
here is independent of that.

Proof that the urn model is negatively associated:Fix 1,r ,n and letA andA8 be up-events
measurable with respect to$Xi : i<r % and $Xi : i .r %, respectively. LetV and V8 be the total
number of balls dropped into urnsi with i<r and i .r , respectively. LettingY1 be the indicator
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function of A, Y4 be the indicator function ofA8, Y25V, and Y35V8, it is clear that
Y1 ,Y2 ,Y3 ,Y4 has the Markov property. I claim also thatA is stochastically increasing inV andA8
is stochastically increasing inV8. By symmetry, consider onlyA andV. Observe that conditiona
on V5m, the draws are exchangeable in the usual sense~definition below!, so we may condition
on the firstm draws being those that went in urnsi<r . Then the distribution of balls givenV
5m and the distribution of balls givenV5m11 may be coupled so that the latter is always t
former plus an extra ball somewhere. This establishes the claim. It is similarly easy to sho
V8 is stochastically decreasing inV. By Proposition 1.2,V is stochastically increasing inA. Then
the hypothesis of the above lemma is satisfied with stochastic increase fork51 andk53 and
stochastic decrease whenk52; it follows thatA8 is stochastically decreasing inA which proves
negative association. h

D. The exchangeable case and the rank sequence

The variables$X1 ,...,Xn% are said to beexchangeableif their joint distribution is invariant
under permutation. In the case of binary-values random variables, this is the same as say
m$Xk5h(k):1<k<n% depends only on(kh(k). A fair amount of intuition may be gained from
this special case. The conjectured equivalences in Diag. 1 are proved in this case, but
importantly, new conjectures come to light that ought to hold in the general case as well.

For a measurem on Bn , define therank sequence$ak :0<k<n% by akªm$( j 51
n Xj5k%.

Thus $ak :0<k<n% gives the total probabilities for then11 ranks of the Boolean latticeBn . If
the random variables$Xj% are exchangeable, thenm is completely characterized by its ran
sequence, withm$Xj5h( j ):1< j <n%5ak /(k

n) for k5( jh( j ). In this case, the negative lattic
condition~8! boils down to log-concavity of the sequence$ak /(k

n)% ~a positive sequence is said t
be log-concaveif ak

2>ak21ak11!. This motivates the following definition.
Definition 2.6: A finite sequence$ak :0<k<n% is said to be ultra-log-concave (ULC) if th

nonzero terms of the sequence$ak /(k
n)% from a log-concave sequence and the indices of

nonzero terms form an interval.
Convention:From now on, to avoid trivialities, we have included in the definition of lo

concavity that the indices of the nonzero terms form an interval. It will be useful later to note
log-concavity is conserved by convolutions and pointwise products.

The significance of ultra-log-concavity in the general case is still conjectural, but in
exchangeable case it is given by the following theorem whose proof appears at the end
section.

Theorem 2.7:Suppose that$Xj% are exchangeable. Then the six conditionsCNA1, JNRD1,
h-NLC1, CNA, JNRDandh-NLC (see Diag. 1) are equivalent to ultra-log-concavity of the ra
sequence$ak%. This is trivially equivalent to the negative lattice condition, (8).

Call the measurem ~not necessarily exchangeable! a ULC measure if its rank sequence
ULC, and use the term ULC1 to denote a measure such that any measure obtained from
external fields and projections is ULC. The following conjectures, if true, imply a large role fo
ULC property in the study of negative dependence. They have been checked only for latti
rank up to 4.

Conjecture 4: The strongest version of this conjecture is that any negatively associated
sure is ULC. For a weaker version, replace the hypothesis of NA by any of the other six str
conditions in Diag. 1.

Conjecture 5: In the RC model, the sum(ePSXe over any subset S has a ULC rank sequen
The same holds for the competing urns model. In the exclusion model, the total num
occupied sites in any set S at any time t has ULC rank sequence.

Remark:The ULC property for number of edges present from a given subset in a uniform~or
weighted! random spanning tree is a subcase of the conjecture for the RC model. For spa
trees, this would sharpen a result of Stanley22 showing that the rank sequence for a unifor
random base of a unimodular matroid~of which the uniform spanning tree is a special case! is
log-concave.
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Conjecture 4 or the weaker 5 would serve two purposes. First, the ULC property implie
estimates on a distribution. Second, Conjecture 4 would imply that the ULC property is a n
sary condition for negative association, which helps to narrow and define our search f
‘‘right’’ negative dependence property.

The fact that ULC implies CNA1 et al. in the exchangeable case leads one to believe
ULC1 might be enough to imply negative dependence in general:

Conjectures 6: Ifm is ULC1, thenm is CNA (hence CNA1) and in particularm is negatively
associated.

Unlike the previous two, this conjecture is not particularly useful, since the hypothes
ULC1 is hard to check. It would, however, have philosophical value: supposing there to
useful definition of negative dependence still lurking out there, we have been approxima
from the weak side, finding criteria that certainly hold for any such definition; the foreg
conjecture strengthens our previous approximation by adding the property ULC1.

A final philosophical observation belongs in this section. If ultra-log-concavity is, as con
tured, a property of all negatively dependent measures, then the class of ULC sequences
closed under convolution. Indeed, ifm1 andm2 are two exchangeable measures with ULC ra
sequences, then by Theorem 2.7 they are negatively dependent in all senses we can ima
their product must be as well. The rank sequence for the product is the convolution of the
sequences, so unless even our understanding of the exchangeable case is nil, the followi
jecture must be true. Embarrassingly, in the previously circulated draft of this paper, there w
proof of the following conjecture. It has recently been proved by Liggett.23

Conjecture 7: (now proved by Liggett) The convolution of two ULC sequences is ULC.
This section concludes with a proof of Theorem 2.7. Begin with the following two lemm
Lemma 2.8: Letm be an exchangeable measure with ULC rank sequence. Suppose the

surem8 is obtained fromm by imposing an external field at coordinates1,...,k @i.e., W( j )51 for
j .k# and then projecting onto coordinates r11,...,n for some r>k. Thenm8 is exchangeable
with ULC rank sequence.

Proof: The exchangeability ofm8 is clear. To see thatm8 has ULC rank sequence, it suffice
to consider the caser 51. ~Reason: definingm j to be the measure gotten by imposing the exter
field on the firstj coordinates and projecting onto the lastn2 j coordinates, one sees by inductio
on j that m r5m8 will have the desired property.! So we assume without loss of generality th
k5r 51.

Let l denoteW(1). Letaj ~respectivelyaj8! denote the rank sequence form ~respectivelym8!
and letqj ~respectivelyqj8! denoteaj /( j

n) @respectivelyaj8/( j
n21)#. Then

qj85C~qj1lqj 11!,

whereC is the normalizing constant for the external field. By assumption,$qj% is log-concave, and
hence for anyi , j ,qiqj<qi 11qj 21 . The proof is now a simple calculation:

C22@~qj8!22qj 218 qj 118 #5qj
212lqjqj 211l2qj 21

2 2qj 21qj 112lqj 22qj 112lqj 21qj2l2qj 22qj

5@qj
22qj 11qj 21#1l@qjqj 212qj 11qj 22#1l2@qj 21

2 2qjqj 22#.

This is the sum of three positive quantities, so it is positive, proving log-concavity of$qj8% which
is equivalent to$aj8% being ULC. h

Lemma 2.9: Letm* be a measure obtained from an exchangeable measurem8 with rank
sequence$ak8% by imposing an external field W. Let Y1 and Y4 be the respective indicator func
tions of A and A8, events measurable with respect to disjoint sets S and S8. Let Y25(ePSXe and
Y35(ePS8Xe . Then the sequence$Yi% is Markov. Furthermore, the conditional law
(m* u(X(e)5k) are stochastically increasing in k and the same holds for any projection ofm* in
place ofm* .

Proof: Let m8, m* , A, A8, S, S8, and$Yi% be as in the hypotheses. The probabilities form*
are given as follows, withC being a normalizing constant as usual:
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m* $Xe5h~e!, all ePS%5C)
e

W~e!h~e!
ak8

S n
kD ,

wherek5(eh(e). From this, one gets the conditional probability

m* ~Xe5h~e!:e¹S8uXe5h~e!:ePS8!5C8 )
e¹S8

W~e!h~e!
ak8

S n
kD .

This does not depend on the values ofh on S8 except through(ePS8h(e), which proves the
Markov property. For the stochastic increase, note that the conditional distribution ofm* given
(eX(e) are the same as the law of independent Bernoulli random variables withP„X(e)51…
5W(e)/„11W(e)…, conditioned on$(eX(e)5k%. The same holds for any projection ofm* .
There are elementary proofs that these laws increase stochastically ink, but in the context of this
paper, the easiest argument is to add an extra variableX(e* ) and apply the Feder–Mihail result t
the balanced matroid gotten by conditioning on(e* X(e)5k11 and to the conditional measure
given X(e* )50 andX(e* )51. h

Proof of Theorem 2.7:It is clear that ULC is equivalent to the negative lattice condition a
hence is implied by h-NLC. To show that ULC implies the other six conditions we work up
ladder. First, ifm is exchangeable and ULC, then Lemma 2.8 shows that all projections ofm are
as well, which means that the NLC holds hereditarily, giving h-NLC. In fact, the lemma is en
to give h-NLC1, since anym* obtained fromm may be described~after reordering of coordi-
nates! as some measurem8 as in the lemma, on which has been imposed an external field~that is,
any sequence of external fields and projections may be written as an external field that affec
those indices not appearing in the final measure, followed by a single projection, followed
external field!; Lemma 2.8 impliesm8 satisfies the negative lattice condition~8!; this is invariant
under external fields, som* satisfies~8! as well.

Next, we show that for any measurem* obtained from an exchangeable measurem by
external fields and projections, JNRD implies CNA. This will show that JNRD1 implies CNA1
as well as showing JNRD implies CNA. To show this, letm* be such a measure. LetA andA8 be
any up-events measurable with respect to disjoint sets of coordinatesSandS8. Define a sequence
of random variablesY1 ,Y2 ,Y3 ,Y4 by letting Y1 be the indicator ofA, letting Y4 be the indicator
of A8, letting Y25(ePSXe , and lettingY35(ePS8Xe . Apply Lemma 2.9 to see that$Yi% is
Markov. Lemma 2.5 finishes the argument once we know thatY2 is stochastically increasing in
Y1 ,Y3 is stochastically decreasing inY2 , andY4 is stochastically increasing inY3 . Applying the
last statement of Lemma 2.9 to the projection ofm* onto$0,1%S8, we see that the conditional join
law of $X(e):ePS8% given (ePS8X(e)5k increases stochastically ink, which says precisely tha
Y4 is stochastically increasing inY3 . The same argument withS in place ofS8 shows thatY1 is
stochastically increasing inY2 . By Proposition 1.2,Y2 is stochastically increasing inY1 . Finally,
to see thatY3 is stochastically decreasing inY2 , write the conditional distribution ofY3 given
$Y25k% as an integral

E Law ~Y3uX~e!5h~e!:ePS!dn~h!,

wheren is the mixing measure

n$h%5m* S X~e!5h~e!:ePSu(
ePS

X~e!5kD .
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We have seen thatn is stochastically increasing ink. By the hypothesis thatm* is JNRD, the
integrand decreases stochastically whenh increases in the natural partial order, and hence
integral stochastically decreases ink. This finishes the proof that JNRD implies CNA.

It remains to show that h-NLC~respectively h-NLC1! implies JNRD~respectively INRD1!.
The 1 case will be shown in Sec. III B, in the proof of Theorem 3.1, so we prove here only
ULC implies JNRD for exchangeable measures. It suffices to show that the conditional dis
tion of (eÞ fX(e) given X( f )50 stochastically dominates the distribution of(eÞ fX(e) given
X( f )51, since in the definition of JNRD, comparing the conditional probabilities of any
neighbors in the Boolean lattice$0,1%Ac

reduces to comparing conditional probabilities given o
valueX( f ) after conditioning on all other values ofX(g),gPAc, and such conditioning produce
another exchangeable ULC measure. It further suffices to show that(eÞ fXe is stochastically
decreasing inXf , since this is sufficient for the distribution of$X(e):eÞ f % given X( f ).

Let $aj% be the rank sequence for a ULC exchangeable measurem, and let $qj% be the
sequence$aj /( j

n)% as before. Then

mS (
eÞ f

Xe5r uXf50D 5
~ r

n21!qr

m~Xf50!

and

mS (
eÞ f

Xe5r uXf51D 5
~ r

n21!qr 11

m~Xf51!
.

Thus we need to show that for allk,n,

(
r 50

k
~ r

n21!qr 11

m~X~ f !51!
>(

r 50

k
~ r

n21!qr

m~X~ f !50!
.

Cross-multiply and replace the quantitiesm„X( f )5x… with the sum overs of m„X( f )
5x,(eÞ fX(e)5s… to transform this into

(
r<k;s<n21

S n21
r D S n21

s Dqr 11qs> (
r<k;s<n21

S n21
r D S n21

s Dqrqs11 .

Canceling terms appearing on both sides reduces the range of the sum tor<k,s. But for r
,s, log-concavity of$qj% implies thatqr 11qs>qrqs11 , which establishes the last inequality v
term-by-term comparison and finishes the proof that ULC implies JNRD. h

III. INDUCTIVELY DEFINED CLASSES OF NEGATIVELY DEPENDENT MEASURES

At this point it is worth examining the possibility that the many negative dependence p
erties in our desiderata are not mutually satisfiable. It is easy to see from the definition th
class of CNA1 measures is closed under products, projections, and external fields, so we h
least one existence result:

Let S0 be the smallest class of measures containing all exchangeable ULC measur
which is closed under products, projections, and external fields. ThenS0 is contained in the
class of CNA1 measures. h

Supposing there to exist a natural and useful class of ‘‘negatively dependent measures
contained in the class of CNA1 measures, and certainly contains the classS0 . This section aims
to improve the latter bound which seems, intuitively, to be further from the mark.

A. Further closure properties

The classS0 is trivial, since products commute with external fields, and thereforeS0 may be
seen to contain only products of exchangeable ULC measures, on which have been im
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external fields. We may enlarge the classS0 either by including more measures in the base se
by increasing the number of closure operations in the inductive step. I will begin the discu
with a list of additional candidates for closure properties to those already listed in Sec. II A

~7! Symmetrization. Given a measurem on Bn , let m8 be the exchangeable measure w
m8(( jXj5k)5m(( jXj5k). In other words,m85(1/n!) (pPSm

m+p. Since the measurem8 is
exchangeable, we know criteria form8 to be negatively associated, and therefore closure un
symmetrization boils down to the Conjecture 4 for the class of negatively dependent meas

~8! Partial symmetrization. One could strengthen the preceding closure property by allo
symmetrization of only a subset of the coordinates, for example, one could takem85(m1m
+p)/2 wherep is a transposition. If one broadens this to takingm85(12e)m1em+p, then by
iterating these withe→0, one obtains closure under an arbitrary time-inhomogeneous sti
operation. That is, let$p t :t>0% be aSn-valued stochastic Markov process, with transitions fro
p to t+p at ratesC(t,t) for each transpositiont, where the functionsC(t,t) are some arbitrary
real functions. FixT.0 and letm85m+pT . We require that our class of negatively depend
measures, if it containsm, it contain any suchm8.

One motivation for considering such a strong closure property is that we expect it to
whenm is a point mass, since thenm8 is the state of an exclusion process at a fixed time. It se
reasonable that if the initial state is random, chosen from a negatively dependent measurem, then
the state at timeT should still be negatively dependent. Another plausibility argument is that g
from m to (12e)m1em+t is akin to sampling without replacement. It is shown in Joag-Dev
Proschan@Ref. 5, example 3.2~a!# that the values of samples drawn without replacement fro
fixed ~real-valued! population are negatively associated. If the initial population is random wi
negatively dependent law, this should still be true.

~9! Truncation. Givenm on Bn , let m8 be m conditioned ona<( jXj<b. We say thatm8 is
the truncation ofm to @a,b#. We may ask that our class be closed under truncation. This seem
least controversial whena5b and we are conditioning on the sum( jXj . In fact, Block,et al.24

define a collection of random variables$X1 ,...,Xn% to satisfy ConditionN if there is some col-
lection $Y1 ,...,Yn11% of random variables satisfying the positive lattice condition~2! and some
numberk such that the law of$X1 ,...,Xn% is the law of $Y1 ,...,Yn% conditioned on( j 51

n11Yj

5k. They show that many examples of negatively dependent measures from Karlin and R20

can be represented this way, and that this implies negative association. In fact, Joag-D
Proschan~Ref. 5, Theorem 2.6! show that if any random variables$Xe :ePE% with law m satisfy

S mu(
e

Xe5k11D fS mu(
e

Xe5kD , ~9!

then (mu(eXe5a) is negatively associated; a result of Efron25 is that ~9! holds when the real-
valued variablesXe have densities that are log concave, which together with Joag-Dev
Proschan’s result yields the Karlin and Rinott result.

Conditioning on an entire interval@a,b# may seem less natural; it is a special case of the n
closure operation.

~10! Rank rescaling. Given a measurem on Bn and a log-concave sequenceq0 ,...,qn , define
the rank rescaling ofm by $qj% to be the measurem8 given by

m8~x!5
quxum~x!

(yPBn
quyum~y!

.

Here uyu denotes the rank ofy in Bn , that is, the number of coordinates ofy that are 1. When
qj51@a,b#( j ), this reduces to truncation. Another special case isqj5r j , which is the same as
imposing a uniform external field. Rank rescaling may be too strong a closure property to de
so we give two plausibility arguments. First, observe that rank rescaling commutes with ex
fields. Thus whenm is a product Bernoulli measure, the rank rescaling ofm by $qj% is just an
exchangeable ULC measure plus an external field, which we know to be CNA1. Second, Theo-
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rem 3.1 below shows that the closure ofS0 under rank rescaling is still contained in the cla
JNRD1. Unfortunately, since projections do not commute with rank rescaling, this class i
closed under projections, so we do not know whether adding rank rescaling to the list of c
operations results in measures that are negatively associated.

A concrete application in which we would like to have these closure properties is the ra
forest. LetG be a graph withn vertices and edge setE(G) and define theuniform random forest
h:E(G)→$0,1% to be chosen uniformly among subsets ofE(G) with no cycles. Thus we gener
alize the well-studied spanning tree model by allowing more than one component. Peter W
~personal communication! asks whether any negative dependence can be shown for this m
Together with closure under truncation, this would imply negative correlation inconstrained
random forests, the simplest one of these being whenh is chosen from acyclic edge sets wi
cardinality eithern21 or n22. There seems to be no negative correlation result known eve
this simple setting.

B. Building a class of negatively dependent measures from the inside

In this section we prove the following theorem, showing that asking for closure under
rescaling is reasonable.

Theorem 3.1: Let S be the smallest class of measures containing laws of single Bern
random variables and closed under products, external fields, and rank rescaling. Then
measure inS is JNRD1.

The theorem is proved in several steps.
Step 1: Represent eachm in S by a tree. Observe that external fields commute with produ

and rank rescaling. Since an external field changes a Bernoulli variable into another Bernou
measures inS are built from Bernoulli laws by products and rank rescaling. LetT be a finite
rooted tree, with each leafe labeled by a Bernoulli lawne , and each interior vertexv labeled by
a log-concave sequence$qj

(v)%, whose length is one more than the number of leaves belowv.
Associate a measuremv to each interior vertexv recursively, by lettingmv be the rank rescaling
by $qj

(v)% of the product of the measures associated with the subtrees ofv. Then the above
observation implies that every measure inS is the measure associated with the root of such a
T, so that if the measure is the law of$X(e):ePS%, then the set of leaves ofT is preciselyS. We
may assume without loss of generality that every interior vertex ofT has precisely two children
We also note that log-concavity is closed under convolution and pointwise products, and th
an easy induction the rank sequence for every measuremv associated with any vertexv of such a
tree is log-concave.

Step 2: Use Lemma 2.5. For any vertexv of T, defineYv to be the sum ofXe over all leaves
e lying below v ~the root is at the top!. Supposee and f are two leaves ofT and letv be their
meeting vertex, that is, the lowest vertex ofT having bothe and f as descendants. Lete
5e0 ,e1 ,...,ek ,v, f l ,...,f 05 f be the geodesic connectinge and f in T. I claim that the sequence
$Ye0

,...,Yek
,Yf l

,...,Yf 0
% is Markov, and that each is stochastically increasing in the previous

except thatYf l
is stochastically decreasing inYek

. The conclusion of this step, which follow
immediately from Lemma 2.5 once the claims are established, is thatXe and Xf are negatively
correlated.

Establishing the Markov property is a diagram chase. Use the notationg>v to denote that the
leaf g is a descendant of the vertexv. Slightly stronger than the Markov property is the fact th
the collection

$Xg :g>ej 21%

and the collection

are independent givenYej
. To see that this independence property holds, write
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m~Xg5xg :gPS!5C)
gPE

ng~xg! )
v interior

qyv

~v ! ,

whereyvª(g>vxg . Now observe that the only factors in the product depending both on valuexg

for

g>ej 21

and for

depend only on the totalyej
, giving us the desired conditional independence.

Step 3: Verify the part of the claim involving stochastic dependence. We first record a simple
lemma.

Lemma 3.2: Let$an%, $bn%, $cn% be finite sequences of non-negative real numbers, w
aibjci 1 j not identically zero. Let X and Y be random variables such that

P~X5 i ,Y5 j !5Kaibjci 1 j ~10!

for some normalizing constant, K. Then

(i) X↑(X1Y) if b is log-concave; Y↑(X1Y) if a is log-concave;
(ii) (X1Y)↑X if b is log-concave; (X1Y)↑Y if a is log-concave;
(iii) X ↓Y if c is log-concave; Y↓X if c is log-concave.

Proof: By symmetry it suffices to prove the first half of each statement. We use the fac
if m andn are probability measures on the integers withm(x)/n(x) increasing inx, thenmfn.

For statement~i!, let m be the conditional distribution ofX given X1Y5 j , and letn be the
conditional distribution ofX given X1Y5 j 11 ~we deal only with the interval of values ofj for
which we are conditioning on events of positive probability!. Thenm(x)5Caxbj 2xcj for some
constantC, while n(x)5C8axbj 112xcj 11 for someC8. Hencem(x)/n(x)5C9bj 2x /bj 112x ,
which is decreasing inx as long as$bj% is log-concave. Statements~ii ! and ~iii ! are proved
similarly. For ~iii !, let m be the conditional distribution ofX given Y5 j andn be the conditional
distribution of X given Y5 j 11. Thenm(x)/n(x)5Ccj 1x /cj 1x11 , which is increasing inx if
$cj% is log-concave. And for~ii !, let m be the conditional distribution ofX1Y given X5 j andn
be the conditional distribution ofX1Y givenX5 j 11. Thenm(x)/n(x)5Cbx2 j /bx2 j 21 , which
decreases inx when$bj% is log-concave. h

The stochastic increases in the sequence$Ye0
,...,Yek

,Yf l
,...,Yf 0

% are now easy to verify. Let
w be the child ofej 11 that is notej , let X5Yej

, and letY5Yw . Recall from the recursive
construction of the measures thatmej givesX a log-concave sequence of probabilities, call it$ai%,
that mw givesY a log-concave sequence of probabilities, call it$bi%, and thatmej 11 gives prob-
abilities as in~10! with ci5qi

ej 11. Replacingmej 11 by the measurem associated with the root o
the tree effectively alters the sequence$ci% but not$ai% or $bi%. Since the sequences$ai% and$bi%
are log-concave, parts~i! and~ii ! of the previous lemma imply thatX is stochastically increasing
in X1Y and vice versa. SinceX1Y5Yej 11

, and since the argument works equally well forf j

instead ofej , this gives all parts of the claim except the fact thatYf l
↓Yek

.
Let v be the common parent ofek and f l . As before, we see that under the lawmv, Yf l

is

stochastically decreasing inYek
, according to statement~iii ! of the lemma withci5qi

(v) which is
log-concave. Transferring this argument to the measurem is mostly a matter of using the righ
notation to make it clear that the new sequence$ci% is log-concave. Letv5v0 ,v1 ,...,v r be the
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path leading fromv to the root, and for 1< i<r , let wi be the child ofv i not equal tov i 21 . Let
ai5mek(Yek

5 i ) and bi5m f l(Yf l
5 i ). Let si

j5qi
(v j ) and let t i

j5mwj(Ywj
5 i ). Use the recursive

definition of the measuresmg to see that

m~Yek
5 i ,Yf l

5 j !5Kaibjci 1 j (
u1 ,...,ur

)
j 51

r

tuj

j si 1 j 1u11¯1uj

j .

The summation term may be written as

„~¯„~sr* t r !(sr 21
…* t r 21

¯(s1!* t1), ~11!

where * denotes convolution,( denotes pointwise product,̄ denotes reversal, andsj and t j

denote the sequences$si
j% and $t i

j%. Since convolution, pointwise product, and reversal prese
log-concavity, this shows that the third part of Lemma 3.2 still applies, and finishes the ve
tion.

Step 4: Negative correlation implies h-NLC1. Observe that the property h-NLC1 is the same
as NC1, where NC denotes pairwise negative correlation. To see this, note that an externa
with W(e)→0 or ` corresponds to conditioning onXe50 or 1, respectively. Thus NC1 is
equivalent to negative correlation of any pair of variables, given values of any others, unde
external field, which is h-NLC1. The conclusion of steps 2 and 3 were the NC property,
hence NC1, since the class is already closed under external fields.

Step 5: Modifying the argument to get JNRD1. Let e be a leaf ofT and letv0 ,v1 ,...,vk be
the path frome to the root, withv05e. Let wi be the child ofv i other thanv i 21 . I claim that the
vector (Yw1

,...,Ywk
) is stochastically decreasing inXe . This is shown by coupling, inducting o

i. We will define a sequence (Y1 ,...,Yk) to have the conditional distribution of (Yw1
,...,Ywk

)

givenXe50 and (Y18 ,...,Yk8) to have the conditional distribution of (Yw1
,...,Ywk

) givenXe51 so

that (Y12Y18 ,...,Yk2Yk8) has all coordinates zero except possibly for a single 1.
When i 51, we haveYw1

↓Xe by part ~iii ! of Lemma 3.2, using log-concavity of a sequen
analogous to~11!. Since alsoYw1

1Xe↑Xe by part~i! of the lemma and log-concavity of the ran

sequence forYw1
, this means we can defineY1 andY18 so thatY1 has the distribution ofYw1

given

Xe50, Y18 has the distribution ofYw1
given Xe51, andY1811>Y1>Y18 . If Y15Y1811, then

choose (Y2 ,...,Yk) to have the conditional distribution of (Yw2
,...,Ywk

) given Xe50 andYw1

5Y1 . This is the same as the conditional distribution of (Yw2
,...,Ywk

) given Xe51 and Yw1

5Y18 , so we may choose (Y28 ,...,Yk8)5(Y2 ,...,Yk). If Y15Y18 , then chooseY2 andY28 from the
conditional distribution forYw2

given respectively thatYv1
5Y111 andY1 . Again Y2811>Y2

>Y28 , and we continue, setting the remaining coordinates equal ifY25Y2811, and otherwise
choosingY3 andY38 and so on.

The collections$Xf : f >wi% are conditionally independent asi varies given$Ywi
:1< i<k%.

Thus we may write the conditional law of$Xf : f Þe% given Xe50 as a mixture over value
(r 1 ,...,r k) of (Y1 ,...,Yk) of product measures) j 11

k m j ,r j
wherem j ,r j

is the conditional law of

$Xe :e>wj% givenYwj
5r j . The conditional law of$Xf : f Þe% givenXe51 is the same, but with

a stochastically smaller mixing measure. Suppose the lawsm j ,r j
are stochastically increasing inr j .

Then by stochastic comparison of the mixing measures, we see that the conditional l
$Xf : f Þe% given Xe50 dominates the conditional law of$Xf : f Þe% given Xe51. The measures
m j ,r j

are in the classS ~S is not closed under projection but projections onto all variables i
subtree is OK!. Thus all that remains to verify JNRD1 is to prove the supposition, which is th
following lemma.

Lemma 3.3: For any measurem in the classS, the conditional distribution ofm given
(eXe5k11 stochastically dominates the conditional distribution given(eXe5k.
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To prove this we strengthen Lemma 3.2 a little. Recall that an element of a partially or
setcoversanother if it is greater and there is no element in between. Say that a measurem on a
partially ordered set covers the measuren if there are random variablesX;m andY;n such that
X5Y or X coversY.

Lemma 3.4: Under the hypotheses of Lemma 3.2, if$an% is log-concave, then(XuX1Y5k
11) covers (XuX1Y5k) and if $cn% is log-concave, then(X1YuX5k11) covers (X1YuX
5k).

Proof: The likelihood ratio of the law ofX conditioned onX1Y5k11 to the law ofX11
conditioned onX1Y5k, evaluated at the pointx, is equal toaxbk112xck11 /(ax21bk112xck)
5(ck11 /ck)(ax /ax21). This is decreasing inx by log-concavity of$an%. The likelihood ratio of
the law ofX1Y given X5k11 to the law ofX1Y11 givenX5k, evaluated at the pointz, is
ak11cz /(akcz21) which is decreasing inz by log-concavity of$cn%. h

Proof of Lemma 3.3:Induct on the height of the treeT. If T is a single leaf, then the stateme
is trivial. Now suppose the root ofT has childrenv and w and assume for induction that th
lemma holds formv andmw. Since the rank sequences forYv andYw are log-concave, part~i! of
Lemma 3.2 show thatYv andYw are each stochastically increasing inYv1Yw . By Lemma 3.4, in
fact the law ofYv given Yv1Yw5k11 covers the law ofYv given Yv1Yw5k, from which we
conclude that the pair (Yv ,Yw) is stochastically increasing inYv1Yw . By the inductive hypoth-
esis,$Xe :e>v% is stochastically increasing inYv and the same is true withv replaced byw. Since
$Xe :e>v% and $Xe :e>w% are conditionally independent givenYv and Yw , this finishes the
proof. h

C. Further observations and conjectures

Lemma 3.3 seems to be true in the following greater generality.
Conjecture 8: Ifm is CNA1, then the conditional distributionm given(eXe5k11 stochas-

tically dominates the conditional distributionm given(eXe5k.
Remark:The conclusion of this conjecture appears in Ref. 5 as a hypothesis implying neg

association. Does this condition fit into the theory of negative dependence better as a hypoth
a conclusion? The same could be asked about the ULC condition, cf. Conjectures 4–6.

Another conjecture that seems to be true is as follows.
Conjecture 9: Ifm on Bn is CNA1, then the conditional distribution onBn21 given Xn50

stochastically covers the conditional distribution given Xn51.
The conjectures may be strengthened by weakening the hypothesis to JNRD1 or h-NLC1,

but the1 condition is essential, at least for the second conjecture, as shown by the follo
example.

Example:Let m be the measure onB3 with equal probabilities15 for the points~0, 0, 0!, ~0, 0,
1!, ~0, 1, 0!, ~1, 0, 0!, and~1, 1, 0!. This is CNA but not h-NLC1 @impose an external field with
W(1) very small!. The measure (muX350) is stochastically greater than the measure (muX3

51), but is too much greater to cover it.
Question 10: Under what hypotheses onm can one prove that

S mu(
e

Xe5k11D fS mu(
e

Xe5kD? ~12!

An answer to this question would be important for the following reason. LetA be any up-set. If we
can establish~12!, thenA↑SeXe and in particular these have non-negative covariance. There
A andXe have non-negative covariance for somee and we have established property~ii ! of Sec.
I E. In particular, Conjecture 8 implies Conjecture 2.
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On the spectral gap of Kawasaki dynamics under a mixing
condition revisited
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We consider a conservative stochastic spin exchange dynamics which is reversible
with respect to the canonical Gibbs measure of a lattice gas model. We assume that
the corresponding grand canonical measure satisfies a suitable strong mixing con-
dition. We give an alternative and quite natural, from the physical point of view,
proof of the famous Lu–Yau result which states that the relaxation time in a box of
sideL scales likeL2. We then show how to use such an estimate to prove a decay
to equilibrium for local functions of the form 1/ta2e, where e is positive and
arbitrarily small anda5 1

2 for d51, a51 for d>2. © 2000 American Institute of
Physics.@S0022-2488~00!01103-8#

I. INTRODUCTION

The problem of computing the relaxation time of stochastic Monte Carlo algorithms
models of classical spin systems inZd has attracted in the last years considerable attention
many new rigorous techniques have been developed giving rise to nice progresses in pro
theory and statistical mechanics. If for simplicity we confine ourselves to61 ~or 0–1 in the lattice
gas picture! spins, the two most studied random dynamics have been nonconservative Gl
type algorithms, in which a spin at a time flips its value with a rate satisfying the detailed ba
condition w.r.t. the grand canonical Gibbs measure, and conservative dynamics in which n
neighbors spins exchange their values with a rate satisfying the detailed balance conditio
the canonical Gibbs measure.

It turns out that the conservation of the particles number~in the lattice gas picture, or of the
magnetization in the usual61 spin variables! makes the analysis of the relaxation properties
conservative dynamics much more difficult than in the nonconservative case with inter
analogies with the problem of the Goldstone mode in quantum mechanics.1

For Glauber dynamics the general picture is relatively clear for a wide class of models b
the one phase and in the phase coexistence region with the notable exception of the critica
~see, e.g., Ref. 2, and references therein!. In particular, for the two-dimensional Ising case wi
zero external field, the spectral gap of the generator of a Glauber dynamics does not go to
the thermodynamic limit for any temperature above the critical one, while below the cr
temperature the spectral gap in a box of sideL and free boundary conditions becomes expon
tially small in L with a precise rate related to the surface tension.

In the conservative case, instead, the fundamental results of Ref. 3 and 4 on the spec
and logarithmic Sobolev inequality of Kawasaki dynamics in the one phase region state that,
a suitable mixing condition on the grand canonical Gibbs measure which for the two-dimen
Ising model holds for any temperature above the critical one, the spectral gap in a box ofL
shrinks likeL22; while in the phase coexistence region, and at least for the two-dimensional

a!Electronic mail: nicoletta.cancrini@roma1.infn.it
b!Electronic mail: martin@mat.uniroma3.it
13910022-2488/2000/41(3)/1391/33/$17.00 © 2000 American Institute of Physics
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model with periodic or free boundary condition, it becomes exponentially small in the side o
box.5 The diffusive scalingL2 for the relaxation time~in what follows identified with the inverse
of the spectral gap of the generator! of Kawasaki dynamics proved in Ref. 3 is a key stone in
study of the hydrodynamical limit of the Ising model,6 and its proof required the development
a rather sophisticated~and intricate! technology which posed new, nontrivial, problems on t
theory of canonical Gibbs measures and their detailed equivalence to grand canonical on~see
also Refs. 7–11!.

Unfortunately, Ref. 3 and particularly Ref. 4 are quite difficult to study and the applicatio
their techniques to other related problems, for example, lattice gases with random interact
the so-called Griffiths phase, seems to require a considerable effort. With this motivatio
decided to reprove the result of Ref. 3 by different means and in a way that looks, at least
intuitively more appealing and natural to apply to other contexts.12 Although our proof would have
never found its way without some very nice ideas that we found in Refs. 3 and 4, we have tr
be completely self-contained apart from the necessary results on finite volume canonical
measures and on the equivalence of ensembles that we have developed in a separate pa9 We
have also added to the original result a simple proof of the power law relaxation to equilibriu
strictly local ~i.e., whose support is independent of the total volume! observables which, at least i
one and two dimensions, is arbitrarily close to the expectedt2d/2 result ~see also, Ref. 8!.

Let us now explain in simple terms the strategy behind our proof by first reviewing the
in which one can prove that the spectral gap for nonconservative Glauber dynamics do
shrink to zero with the volume in the high temperature phase.

Take a cubeQ2L of side 2L and divide it into two equal rectanglesRi(L,2L). Then, if
truncated correlations in the grand canonical Gibbs measure decay fast enough~typically expo-
nentially fast!, it is not difficult to see that the relaxation time for the original squareQ2L is not
larger than (11eL)3~relaxation time in each rectangle!, eL5O(L21/2), in strict analogy with
what happens at infinite temperature where the Glauber evolution becomes a product dyn
Thus the relaxation time only increases by a factor (11eL)2 when we double the scale and th
result follows~see Sec. IV of Ref. 2 for details!.

For a conservative dynamics like the Kawasaki dynamics such a reasoning does not
because the conservation of the number of particles introduces a global constraint in the
and even at infinite temperature the dynamics does not factorize into independent comp
More precisely, the relaxation time inQ2L is related to the relaxation time of the modifie
dynamics in which the two rectangles do not exchange particles but feel each other only th
the transition ratesand the relaxation time of the process of exchange of particles between the
halves ofQ2L . Such a simple observation suggests trying to separate the two effects whicha
priori , strongly interlaced and to analyze them separately. Technically this is possible and it
achieved if one plugs into the variational characterization of the spectral gap,
5 inf f@E( f , f )/Var(f )#, the formula of ‘‘conditional variance,’’

Var~ f !5E~Var~ f un!!1Var~E~ f un!!, ~1.1!

where Var(•), E(•,•), andE(•) denote, respectively, the variance, the Dirichlet form~quadratic
form of the generator!, and expectation w.r.t. the canonical Gibbs measure inQ2L with, e.g.,N
particles, while Var(•un) denotes the variance conditioned to haven of particles in, e.g., the uppe
half of Q2L . The latter should now be controlled by an argument similar to that used in
nonconservative case although special care needs to be taken because covariances in a
nonical Gibbs measure are quite different from their grand canonical analog.

In order to control the effects produced by the extra conservation law, i.e., to be able to
the last term in the r.h.s. of~1.1!, one is led naturally to study the distribution of the number
particles in half cube under the canonical Gibbs distribution inQ2L and in particular to prove a
Poincare´ inequality for it of the from Var(g(n))<k(N)E(((d/dn)g)2) for any g, k(N)5O(N),
where (d/dn) is the discrete derivative. Notice that (d/dn)g measures the effects on the functio
g of the exchange of one particle between the two rectangles. Once such a step has been
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out it is not too difficult to complete the scale reduction from 2L to L. The final result is that the
relaxation time for the original square Q2L is not larger than (11eL)
3~relaxation time in each rectangle! plus const3L2. This last term, which was absent in th
analysis of the Glauber dynamics, comes precisely from the second term in the r.h.s. of~1.1!. The
diffusive limit now follows at once. Let us conclude with a short roadmap of the paper.

In Sec. II we define the setting, the mixing condition we need and state the two main re
In Sec. III we collect several technical results that will be needed later on. A detailed descr
of these results is given at the beginning of the section. In Sec. IV we study in some deta
distribution of the number of particles in an atom of a given partition of a finite setL under a
multicanonical measure. In Sec. V we prove recursively theorem 2.3 on the diffusive scaling
spectral gap. In Sec. VI we prove theorem 2.4 on the power law relaxation to equilibrium of
observables. Finally in the Appendix we reprove with some simplifications the famous two-b
estimate of Ref. 3.

II. NOTATION AND RESULTS

In this section we first define the setting in which we will work~spin model, Gibbs measure
dynamics!, then we define the basic mixing condition on the Gibbs measure and subsequentl
the main theorem on this work.

A. The lattice and the configuration space

1. The lattice

We consider thed dimensional latticeZd with sitesx5(x1 ,...,xd) and norms

uxup5S (
i 51

d

uxi upD 1/p

p>1 and uxu5uxu`5 max
i P$1,...,d%

uxi u.

The associated distance functions are denoted bydp(•,•) andd(•,•). By QL we denote the cube
of all x5(x1 ,...,xd)PZd such thatxiP$0,...,L21%. If xPZd, QL(x) stands forQL1x. We also
let BL be the ball~w.r.t. d(•,•)! of radiusL centered at the origin, i.e.,BL5Q2L11((2L,...,
2L)). If L is a finite subset ofZd we writeL,,Zd. The cardinality ofL is denoted byuLu. F is
the set of all nonempty finite subsets ofZd. @x,y# is theclosed segmentwith end pointsx andy.
The edgesof Zd are thosee5@x,y# with x,y nearest neighbors inZd. The boundary of an edge
e5@x,y# is de5$x,y%. Theboundary of a set of edgesa is the setda of all sites that belong to
an odd number of edges ofa. A set of edges is calledclosedif its boundary is empty. We denot
by EL the set of all edges such that both endpoints are inL and byĒL the set of all edges with a
least one end point inL. On the contrary, for a set of edgesX, V(X) stands for the set of all site
which are end points of at least one edge inX.

Given L,Zd we define its interior and exterior boundaries as, respectively,]2L5$x
PL:d(x,Lc)<1% and]1L5$xPLc:d(x,L)<1%, and more generally we define the boundar
of width n as]n

2L5$xPL:d(x,Lc)<n%, ]n
1L5$xPLc:d(x,L)<n%.

2. Regular sets

A finite subsetL of Zd is said to bel-regular, l PZ1 , if L is the union of a finite number o
cubesQl(x

i), wherexiP lZd. We denote the class of all such sets byFl . Notice that any set is
1-regular, i.e.,Fl 515F.

3. The configuration space

Our configuration spaceis V5SZd
, whereS5$0,1%, or VV5SV for someV,Zd. The single

spin spaceS is endowed with the discrete topology andV with the corresponding product topo
ogy. GivensPV and L,Zd we denote bysL the natural projection overVL . If U, V are
disjoint,sUtV is the configuration onUøV which is equal tos on U andt on V. GivenVPF we
define thenumber of particles NV :V°N as
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NV~s!5 (
xPV

s~x!, ~2.1!

while thedensityis given byrV5NV /uVu.
If f is a function onV, D f denotes the smallest subset ofZd such thatf (s) depends only on

sD f
. f is called local if D f is finite. The l-support of a function D f

( l ) , l PZ1 , is the smallest
l-regular setV such thatD f,V. FL stands for thes-algebra generated by the set of projectio
$px%, xPL, from V to $21, 1%, where px :s°s(x). When L5Zd we set F5FZd and F
coincides with the Borels-algebra onV with respect to the topology introduced above. Byi f i`

we mean the supremum norm off. Thegradientof a functionf is defined as

~¹xf !~s!5 f ~sx!2 f ~s!,

where sxPV is the configuration obtained froms, by flipping the spin at the sitex. Finally,
Osc(f )5sups,hu f (s)2 f (h)u.

B. The interaction and the Gibbs measures

Definition 2.1:A finite range, translation-invariant potential$FL%LPF is a collection of real,
local functions onV with the following properties:

~1! FL5FL1x for all LPF and allxPZd;
~2! For eachL the support ofFL coincides withL;
~3! There existsr .0 such thatFL50 if diam L.r . r is called the range of the interaction;
~4! iFiªSL{0iFLi`,`.

Given a collection of real numberslI 5$lx%xPZd and apotentialF we defineFlI as

FL
lI ~s!5H ~h1lx!s~x! if L5$x%

FL~s! otherwise,

whereh is the chemical potential~one body part ofF!.
Given apotentialF (FlI ) andVPF, we define the HamiltonianHV

F :V°R by

HV
F~s!52 (

L:LùVÞB
FL~s!.

For s, tPV we also letHV
F,t(s)5HV

F(sVtVc) andt is called theboundary condition. For each
VPF, tPV the ~finite volume! conditional Gibbs measure on~V, F!, are given by

dmV
F,t~s!5H ~ZV

F,t!21 exp@2HV
F,t~s!# if s~x!5t~x!for all xPVc

0 otherwise,
~2.2!

whereZV
F,t is the proper normalization factor called partition function. Notice that in~2.2! we

have adsorbed in the interactionF the usual inverse temperature factorb in front of the Hamil-
tonian. In most notations we will drop the superscriptF if that does not generate confusio
Moreover, whenever we considerFlI instead ofF, we will write HV

t,lI for the finite volume
Hamiltonian andmV

t,lI for the corresponding finite volume Gibbs measure.
Given a measurable bounded functionf on V, mV( f ) denotes thefunctions°mV

s( f ) where
mV

s( f ) is just the average off w.r.t. mV
s . Analogously, for any eventX, mV

t (X)ªmV
t (1X), where1X

is the characteristic function ofX. mV
t ( f ,g) stands for the covariance ortruncated correlation

~with respect tomV
t ) of f andg. The set of measures~2.2! satisfies the DLR compatibility condi

tions
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mL
t ~mV~X!!5mL

t ~X! ;XPF ;V,L,,Zd. ~2.3!

Definiton 2.2: A probability measurem on ~V,F! is called Gibbs measure forF if

m~mV~X!!5m~X! ;XPF ;VPF, ~2.4!

see, e.g., Ref. 13.
We introduce thecanonical Gibbs measureson ~V, F! defined as

nL,N
t 5mL

t ~•uNL5N! NP$0,1,...,uLu%, ~2.5!

whereNL is the number of particles~i.e., spins equal to11! in L.

C. The dynamics

We consider the so-called Kawasaki dynamics in which particles~spins withs(x)511! can
jump to nearest neighbor empty (s(x)50) locations, keeping the total number of particles co
stant. ForsPV, let sxy be the configuration obtained froms by exchanging the spinss(x) and
s(y). Let txys5sxy and define (Txyf )(s)5 f (txys). The stochastic dynamics we want to stu
is determined by the Markov generatorsLV , V,,Zd, defined by

~LVf !~s!5 (
@x,y#PEV

cxy~s!~¹xyf !~s! sPV, f :V°R, ~2.6!

where¹xy5Txy21. The nonnegative real quantitiescxy(s) are thetransition ratesfor the pro-
cess.

The general assumptions on the transition rates are

~1! Finite range. cxy(s) depends only on the spinss(z) with d($x,y%,z)<r .
~2! Detailed balance. For all sPV and @x,y#PEZd

exp@2H$x,y%~s!#cxy~s!5exp@2H$x,y%~s
xy!#cxy~s

xy!. ~2.7!

~3! Positivity and boundedness. There exist positive real numberscm(b)cM(b) such that

cm<cxy~s!<cM ;x,yPZd,sPV. ~2.8!

We denote byLV,N
t the operatorLV acting onL2(V,nV,N

t ) ~this amounts to choosingt as the
boundary condition andN as the number of particles!. Assumptions~1!, ~2!, and~3! guarantee that
there exists a unique Markov process whose generator isLV,N

t , and whose semigroup we deno
by (Tt

V,N,t) t>0 . LV,N
t is a bounded operator onL2(V,nV,N

t ) and nV,N
t is its unique invariant

measure. MoreovernV,N
t is reversiblewith respect to the process, i.e.,LV,N

t is self-adjoint on
L2(V,nV,N

t ).
A fundamental quantity associated with the dynamics of a reversible system is the gap

generator, i.e.,

gap~LV,N
t !5 inf spec~2LV,N

t �1'!,

where1' is the subspace ofL2(V,nV,N
t ) orthogonal to the constant functions. We letE be the

Dirichlet form associated with the generatorLV,N
t ,

EV,N
t ~ f , f !5^ f ,2LV,N

t f &L2~V,n
V,N
t !5

1

2 (
@x,y#PEV

nV,N
t @cxy~¹xyf !2# ~2.9!
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and VarV,N
t is the variance relative to the probability measurenV,N

t . The gap can also be chara
terized as

gap~LV,N
t !5 inf

f PL2~V,nV,N
t

!,

VarV,N
t

~ f !Þ0

EV,N
t ~ f , f !

VarV,N
t ~ f !

. ~2.10!

D. Definition of the mixing condition and main results

In order to formulate our basic mixing condition on the two~or more! body part of the
interactionF we fix positive numbersC,m,l with l PN. We then say that a collection of rea
numberslI ª$lx%xPZd is l-regular if, for all i PZd and allxPQl(x

i), xiP lZd, lx5lxi.
Definition of property USMT(C,m,l ): For anyl-regular setL and any pair of bounded loca

functionsf andg,

sup
lI

lI is l -regular

sup
t

umL
t,lI ~ f ,g!u<C sup

t
mL

t,lI ~ u f u!m
LuD

f
~ l !

t,lI
~ ugu! (

xP]r
2D f

~ l !
(

yP]r
2Dg

~ l !
e2mux2yu

provided thatd(D f
( l ) ,Dg

( l ))> l .
Remark:The expert reader may have noticed that our condition is different, and in prin

stronger, than the one used in Refs. 3 and 4 because we require the exponential decay of
ances uniformly in the chemical potential even when the lattervariesover the atoms of a partition
of L while in the above mentioned papers the chemical potential is assumed to be constantL.
In two dimensions, following the ideas of Ref. 14, one can prove10 that the two conditions are
equivalent. In a higher dimension one can construct examples in which a kind of phase tra
occurs along the interface between two different atoms even if for alll-regular setsL the cova-
riances decay exponentially fast uniformly w.r.t. constant chemical potentials. Indeed the ex
provided in Ref. 10 refers to a nontranslationally invariant interaction; in Sec. VIII of Ref. 4 t
is instead a claim on the equivalence between the two conditions for translational invariant
actions although there is a gap in the proof. In our opinion it seems reasonable that one sh
able to find examples along the lines of Ref. 10 also for the translational invariant case.

We remark that the above mixing condition plays an important role also in other context
in the analysis of renormalization group pathologies.10

We are finally in a position to formulate the main results of this paper on the spectral g
the generator of Kawasaki dynamics in a finite volume.

Theorem 2.3:Assume that there exists positive numbers C,m,l, with lPN, such that property
USMT(C,m,l ) holds. Then there exists positive constants c1 ,c2 such that

c1L22<min
N,t

gap~LQL ,N
t !<max

N,t
gap~LQL ,N

t !<c2L22. ~2.11!

A nice consequence of the above estimate is an inverse polynomial bound on the time de
equilibrium in L2(dnL,N

t ) of local observables.
Theorem 2.4:Assume that there exists positive numbers C,m,l, with lPN, such that property

USMT(C,m,l ,) holds. Then for anyeP(0,1) and any local function f with0PD f there exists a
positive constant Cf ,e such that for any integer L multiple of l and any integer
P$1,...,(2L)d%,

VarL,N
t ~etLL,N

t
f !<Cf ,e

1

ta2e ,

whereLªBL anda5 1
2 in d51, a51 for d.1.
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Remark: In the infinite temperature case~simple exclusion model! ~see Ref. 7! the time
evolution of a local linear function of the formf (s)5Sxaxs(x), where$ax%xPZdP l 2(Zd), can be
computed exactly,etLL f 5Sx(e

tDLa)xs(x), whereDL is the discrete Laplacian onL with the
appropriate boundary conditions. In particular one gets in this case thatietLL f i2

2<Cft
2d/2. For the

zero-range process a beautiful detailed analysis is also possible~see Ref. 15! and the result is
ietLL f i2

25Cf(1/td/2)1o(1/td/2) with a precise constantCf . Our exponent is thus arbitrarily clos
to the correct one only ford51,2.

III. PRELIMINARY RESULTS

Here we collect several preliminary results that will be used in the future. Although the re
may skip this section during a first reading and come back when these results are needed,
think it is useful to give a short roadmap of the section.

In Secs. III A and III B we collect the necessary results on the comparison between
volume multicanonical Gibbs measures, namely, grand canonical Gibbs measures conditio
have a specified number of particles in the atoms of a given partition of a finite setL, and the
corresponding unconditioned measures.

In Sec. III C in strict analogy with a similar result for non conservative dynamics~see Sec. IV
of Ref. 2!, we prove a simple but important result whose physical meaning is roughly the fo
ing. Consider the Kawasaki dynamics in a boxL that is covered by two rectangles,L1 andL2 ,
each of size' (uLu/2) but such that their overlap is a long and thin strip whose size also s
like uLu. Besides the usual constraint that the total number of particles is conserved impo
additional constraint that the number of particles in each rectangleand in their overlap does no
change with time. Then the relaxation time of the dynamics is not larger than a constant cl
one times the largest among the relaxation times of the simple Kawasaki dynamics in each
two rectangles.

In Sec. III D we begin to discuss an important topic of our approach to the computation o
spectral gap of Kawasaki dynamics, namely, the distribution of the number of particles in an
of a given partition of a finite setL under a multicanonical measure. In this paragraph we o
give two simple results and we postpone a more detailed analysis to Sec. IV.

In Sec. III E we show how to prove a sharp Poincare` inequality for a symmetric, finite volume
one-dimensional random walk whose invariant measure is kind of bell-shaped around the
The reason of our interest in such a topic is that, as we will show in Sec. IV, the distribution o
number of particles in an atom of a given partition of a finite setL under a multicanonical measur
has exactly the above property and the Poincare` inequality is an effective tool to bound from
above the variance of a random variable.

In Sec. III F we recall and slightly extend a key result of Ref. 3 related to the so-called ‘
block estimate.’’ More precisely the result states that the covariance between an arbitrary fu
f and the spatial average of translationally covariant local functions can be bounded from ab
the inverse of the volume times an arbitrarily small constant times the variance off plus a large
constant times the Dirichlet form off ~see the Appendix for more details!.

Finally, in Secs. III G, III H, and III I, we first show how to compute and then how to estim
quantities likenL,N

t (@(d/dn)nL,N
t ( f uNV5n)#2), wherenL,N

t is a multicanonical measure over th
atoms$L i% i 51

k of a partition of a finite setL, V is a subset of a given atomL j , and (d/dn) is the
discrete derivative. As explained in Sec. V, terms like the one above naturally appear
recursive bound of the spectral gap and, roughly speaking, they measure the influence
relaxation time of Kawasaki dynamics of the exchange of particles between different atoms
partition.

A. Existence of the tilting fields

We begin by recalling the following quite general result on the relationship between
particle number and the chemical potential~see the appendix in Ref. 9!.

Let L5ø i 51
k L i , where the atomsL1 ,...,Lk are pairwise disjoint and such that there ex

x1 ,...,xk , xiPL i i 51,...,k, with miniÞj d(xi , xj)>2r. Then, for any possible valuesN1 ,...,Nk of
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the particle number inL1 ,...,Lk and for any boundary conditiont, there exists a unique choice o
(l1 ,...,lk) such thatmL

t,lI (NL i
)5Ni , i 51,...,k, where the chemical potentiallI is constant and

equal tol i insideL i .
Next we give a simple result on the dependence on the average particle number and

boundary condition of the chemical potential.
Lemma 3.1: Assume property USMT(C,m,l ). Let l5l(t,n) be the chemical potential suc

that the grand canonical Gibbs state onL5QL , L a multiple of the basic scale l, satisfie
mL

t,l(NL)5n, n5(0,uLu). Let aP(0,1). Then there exists a constant k independent on L s
that for any L large enough.

~1! For any function f such thatD f,L and d(D f ,] r
1L)>La

~i! sup
yP]r

1L

i¹ymL
t,l~ f !i`<ki f i`

uD f u
uLu

,

(ii) sup
yP]r

1L

i¹y

d

dn
mL

t,l~ f !i`<ki f i`

1

n

uD f u
uLu

.

~2! For any function f such thatD f,L,

~i! i
d

dn
mL

t,l~f !i`<kifi`

uDfu
uLu

,

~ii ! i
d2

dn2 mL
t,l~f !i`<kifi`

1

n

uDfu
uLu

.

Proof: Parts~i! of ~1! and ~2! follow immediately from the bounds,

sup
yP]r

1L

ul~ty,n!2l~t,n!u<
k1

n
,

u
dl~t,n!

dn
u5u

1

mL
t,l~t,n!~NL ,NL!

u<
k1

n
, ~3.1!

together with

u
d

dl
mL

t,l~t,n!~ f !u5umL
t,l~t,n!~NL , f !u<k2i f i`

nuD f u
uLu

for suitable constantsk1 ,k2 independent ofL ~see proposition 3.1 and Sec. VII A in Ref. 9!. Part
~ii ! of ~1! is a little bit tedious but it follows without problems from the boun
u¹ymL

t,l(NL ,NL)u<k3 which, together with~3.1!, implies thatu¹y(d/dn)l(t,n)u<(k4 /n2). Part
~ii ! of ~2! is straightforward if we observe that

U d2l~t,n!

dn2 U5U mL
t,l~t,n!~NL ,NL ,NL!

mL
t,l~t,n!~NL ,NL!

US dl~t,n!

dn D 2

<k5

1

n2

and

d2

dn2 mL
t,l~t,n!~ f !5mL

t,l~t,n!~ f ,NL!
d2l~t,n!

dn2 1mL
t,l~t,n!~ f ,NL ,NL!S dl~t,n!

dn D 2

~see again Proposition 3.1 in Ref. 9!. h
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B. Equivalence of ensembles

Here we recall some fine results on the finite volume comparison of ensembles that w
crucial in most of our future arguments. We refer the reader to Secs. V, VII B, and VII C of
9.

Fix d, eP~0,1!, e!1, and two integersk,l such thatdk,1. Let L1 ,...,Lk be large multiples of
the basic length scalel, let L5S iL i and assume thatL j>dL for any j. We then choose one
coordinate direction, e.g., thed direction, and we takeL5QL , L1 equal to the first slice ofL
orthogonal tod-direction of widthL1 , i.e.,L15$xPL:0<xd,L1%, L2 equal to the slice ofL on
top of L1 of width L2 and so on. Let alsoN5$Ni% i 51

k be a set of possible values ofNL

ª$NL i
% i 51

k and let us assume, for a given boundary conditiont, thatlI is constant on each setL i

and such thatmL
t,lI (NL i

)5Ni , i 51,...,k. We denote bynL,N
t the multi canonical Gibbs measur

mL
t,lI (•uNL i

5Ni ,i 51,...,k) and byVt the set of configurationst8 that coincide witht in the half
space$xPZd:xd,L%.

Next, givenM.0 andD,L, we say thatD is good if either
~a! D together with itsM loguLu neighborhood is entirely contained in some atomL i with

r iªNi /uL i u>uLu2e

or
~b! D together with itsM neighborhood is entirely contained in some atomL i with r i

<uLu2e. A set is bad if it is not good. For good setsD,L i , i 51,...,k, we define

D̄5H $xPL:d~x,D!<M loguLu% if r i>uLu2e

$xPL:d~x,D!<M % if r i<uLu2e

while for bad setsD

D̄5$xPL:d~x,D!<M loguLu%.

With these notation the results on the finite volume equivalence of ensembles that will be es
for the rest of this paper read as follows:

Proposition 3.2: Assume condition USMT(C,m,l ). Then, for any l, M large enough ande
small enough independent of$r i% i 51

k , there exist constants C85C8(C,m,iFi ,l ,d,M ,e), L0

5L0(C,m,iFi ,l ,M ,d,e) such that, if L>L0 ,

~1! Assume k51. Then for all local functions f,g with l-support contained inL such thatuD f
( l )u

<uLu12e and similarly for g,

unL,N
t ~ f ,g!u<C~ f ,g!rF 1

uLu
1e2md~D f

~ l ! ,Dg
~ l !

!G ,
where C( f ,g)5C8i f i`igi`uD f

( l )u2uDg
( l )u2. Moreover,

unL,N
t ~ f !2mL

t,l~ f !u<C8i f i`

uD f u
uLu

.

~2! Assume k>2. Then for all local functions f, g with l-support contained inL such thatuD f
( l )u

<uLu12e and similarly for g,

unL,N
t ~ f ,g!u<C~ f ,g!AL~ f ,g!

3H min$nL,N
t ~ u f u!,nL,N

t ~ ugu!% if D f
~ l ! and Dg

~ l ! are both good or bad

nL,N
t ~ u f u! if D f

~ l ! is bad

nL,N
t ~ ugu! if Dg

~ l ! is bad,
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where C( f ,g)5C8i f i`igi`uD f
( l )uuDg

( l )u and

AL~f,g!55
1

uLu
1e2md~Df

~l! ,Dg
~l!! if D f

~ l ! or Dg
~ l ! is good

1

uLu S uD̄g
~ l !u

uDg
~ l !u D

2S uD̄f
~ l !u

uD f
~ l !u D

2

1e2md~D f
~ l ! ,Dg

~ l !
! otherwise.

~3! Assume k>2 and DªD f
( l ),Ln , n<k. Then,

sup
t8PVt

unL,N
t ~ f !2nL,N

t8 ~ f !u<C8i f i`5 uDuF 1

uLu
1

1

Lk2n11G if D is good

uDu
uLu S uD̄u

uDu D
2

1maxj 5n,n61F uD̄ùL j u1/2

Lk2 j 11 G if D is bad

.

~4! Assume k>2 and D f
( l ),] r

2Lnù] r
1Ln11 . Let n̄5 bu(d21)/221u c11 and g(L)

5@((logL)2/L)1((logL)1/2/Ln̄112(d21)/2)#. Then,

sup
t8PVt

unL,N
t ~ f !2nL,N

t8 ~ f !u<C8 Osc~ f !g~L ! b~k2n11!/~n11!c,

whereOsc(f )ª maxs,huf(s)2f(h)u.
Remark:Actually the first part of the proposition holds in a much more general geom

context~see Sec. 7.3 of Ref. 9!.
For future purposes the next result is stated in a slightly more general form.
Proposition 3.3: Assume condition USMT(C,m,l ). Fix dP(0,1), LPFl and a partition ofL

into l-regular setsL1 ,...,Lk . Let f be such thatuL j \D f u>duL j u for any j51,...,k. Then for any
l large enough there exists a constant A depending only on C,m,iFi ,l ,k,d such that

nL,N
t ~ u f u!<AmL

t,lI ~ u f u!,

whereN and lI are as in the beginning of this paragraph. In particular,

nL,N
t ~ f , f !<AmL

t,lI ~ f , f !.

Proof: Following ~Ref. 9! @see formula~5.3! there# we write

nL,N
t ~ u f u!5

*
2T1

T1 dt1¯*
2Tk

Tk dtkmL
t,lI ~ei ( j ~ t j /s i !~NL j

~h!2Nj !u f u!

*
2T1

T1 dt1¯*
2Tk

Tk dtkF~ t1 ,...,tk!
, ~3.2!

wheres j
2
ªmL

t,lI (NL j
,NL j

), Tjªps j andF(t1 ,...,tk)ªmL
t,l(ei ( j (t j /s j )(NL j

(h)2Nj )).
With our assumptions the denominator of~3.2! is bounded from below by a suitable consta

depending only onC,m,iFi ,l ,k ~see lemma 5.2 in Ref. 9!. In order to bound from above th
numerator we observe that

mL
t,lI ~ei ( j ~ t j /s j !~NL j

~h!2Nj ! u f u!5mL
t,lI ~mL

t,lI ~ei ( i ~ t j /s j !~NL j
~h!2Nj !uFD f

!u f u! ~3.3!

and that, because of propositions 3.1, 3.3 of Ref. 9, for any choice oft jP@2Tj ,Tj #, j 51,...,k we

have imL
t,lI (ei ( j (t j /s j )(NL j

(h)2Nj )uFD f
)i`<e2a( j 51

k t j
2

for a suitable constanta depending only on
C,m,iFi ,l ,k,d. Notice that it is here that the hypothesisuL j \D f u>duL j u for any j 51,...k is being
used. The first statement of the proposition now follows at once. To prove the statement ab
variance we simply observe that
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nL,N
t ~ f , f !<nL,N

t ~~ f 2mL
t,lI ~ f !!2!.

h

C. A block dynamics bound

Here we give a result that is a key step in our recursive bound of the spectral gap of Kaw
dynamics. For simplicity we discuss our estimate in two dimensions and at the end we e
how to generalize it to higher dimensions.

Fix dP(0,1
4) and an integerl. Let LPZ1 be a multiple ofl and letL denote the rectangle

L5$~x1 ,x2!PZ2;0<x1< l 121,0<x2< l 221%, l 1 ,l 2PZ1

with min$l1,l2%>0.1 max$l1,l2% and max$l1,l2%>L.

Let L15$(x1 ,x2)PL;0<x2<( 1
212d) l 2%, L25$(x1 ,x2)PL;( 1

21d) l 2<x2< l 2%, and let
L35L1ùL2 .

Finally let Ni be possible values of the number of particles inL i , i 51,2,3, and letnL,N
t be the

multi canonical Gibbs measuremL
t (•uNL i

5Ni ,i 51,...,3). Then we have
Proposition 3.4: Assume condition USMT(C,m,l ). Then, for anye.0 there exists L0

5L0(e,C,m,iFi ,l ,d), such that, if L>L0 ,

nL,N
t ~ f , f !<~11e!nL,N

t ~VarL1 ,N1

h ~ f !1VarL2 ,N2

h ~ f !!,

whereVarL i ,Ni

h ( f ), i 51,2, denotes the variance of f w.r.t. the multicanonical measure onL i

with Ni particles, N3 of which are inL3 , and boundary conditionh on ] r
1L i .

Proof: Fix eP(0,1) and consider the continuous time reversible w.r.t.nL,N
t Markov chain on

VL ~block dynamics! in which, with rate one, eitherL1 or L2 is chosen and there the ‘‘old’
configurations is replaced by a ‘‘new’’ ones8 distributed according to the multicanonical Gibb
measure of the chosen block with total number of particles equal to eitherN1 or N2 , N3 particles
in L3 and boundary conditions outside. The above proposition simply says that the spectral
of our chain is larger than 1/(11e) provided thatL is large enough.

It is in fact easy to check that the associated Dirichlet form is given by

Eblock~ f , f !5nL,N
t ~VarL1 ,N1

h ~ f !1VarL2 ,N2

h ~ f !!

and that the action of the corresponding semigroupTblock(t) is given by~see, e.g., Sec. III of Ref
2!

Tblock~ t ! f 5 (
n50

`
~2t !n

n!
e22t

1

2n (
XP$1,2%n

nX1
¯nXn

~ f !, ~3.4!

where (n i f )(s)ªnL i ,Ni

s ( f uNL3
5N3), i 51,2. Since (n i)

25n i the last summation~over X! in

~3.4! can be written as

(
k50

n21 S n21
k D ~Âk111B̂k11! f , ~3.5!

where

Âk5~n1+n2! bk/2c+n1
k22bk/2c , B̂k5~n2+n1! bk/2c+n2

k22bk/2c .

If now f is an arbitrary bounded measurable function onVL , such thatnL,N
t ( f )50, we get
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in1n2n1f i`<inL,N
t n2n1f i`1inL,N

t n2n1f 2n1n2n1f i` . ~3.6!

By construction the first term on the r.h.s. of~3.6! is equal tonL,N
t ( f )50. Furthermore, since the

interaction has ranger and the number of particles is fixed in each setL i , i 51,2,3, the function
hªn2n1f is FLcø]

r
1L2

measurable. This fact implies that

inL,N
t n2n1f 2n1n2n1f i`< sup

s,hPV]r
1L1

un1~h!~s!2n1~h!~h!u. ~3.7!

Thanks to~4! of proposition 3.2, the r.h.s. of~3.7! is smaller thanC8ihi`(logL/L)1/2 which is
smaller than (e/(11e))3i f i` if L is large enough. Iterating this inequality we get

iÂkf i`<S e

11e D 3bk/3c
i f i` iB̂kf i`<S e

11e D 3bk/3c
i f i` . ~3.8!

Thus, the sup norm of~3.5! is not greater than

i f i`2S 11
e

11e D n21

which, inserted back into~3.4! yields

iTblock~ t ! f i`<i f i`4e2~12~e/11e!!t.

In other words the spectral gap of the block dynamics is larger than (12(e/(11e))) so that

nL,N
t ~ f , f !<S 12

e

11e D 21

Eblock~ f , f !5~11e!nL,N
t ~VarL1 ,N1

h ~ f !1VarL2 ,N2

h ~ f !!.

h

Remark:The restriction ofd52 comes from~2! of proposition 3.2. In fact, in e.g. thre
dimensions, the r.h.s. of~3.7! would have been bounded by onlyihi`AlogL which is a completely
useless bound! The way out is to divide the ‘‘safety belt’’L3 into several layers~just two in d
53! each one of width proportional todL, fix the number of particles in each one of them a
then use~3! of proposition 3.2. In other words, in higher dimensions the block dynamics has a
relaxation only if we prevent the exchange of particles also inside a certain number of lay
L3 .

D. On the distribution of the particle number

Here we provide some simple results on the distribution of the particle numbers in the
of a partition of a given setL. Throughout this subsection the setting will be as follows:
Let l PZ1 ,d,eP(0,1), and let us considerLPFl , L5ø i PIQl(x

i), such that u] l 21
2 Lu

<uLu(d211e)/d. Let I 1¯I k be a partition of I, let L i5ø j PI i
Ql(x

j ) and assume that 0,d
<uL i u/uLu and u] l 21

2 L i u<uLu(d211e)/d for all i 51,...,k.
Let alsoN5$Ni% i 51

k be a set of possible values ofNLª$NL i
% i 51

k . Given a boundary condi-

tion t, let lI be the chemical potential, constant on each atom, such thatmL
t,lI (NL)5N ~see above

for the existence oflI !. Then we have~see Lemma 5.2 in Ref. 9!,
Proposition 3.5: Assume property USMT(C,m,l ). Let s i

2
ªmL

t,lI (NL i
,NL i

) i 51,...,k. Then,

the following is true:

1

C8

1

) is i
<mL

t,lI ~NL5N!<C8
1

) is i
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for a suitable constant C85C8(C,m,l ,iFi`).1.
The next result concerns the way particles are distributed inside one block of the par

More precise results in this direction are given in the next section.
Pick j P@1,...,k# and divideL j into two subsetsV,W. Then we have

Proposition 3.6: For all nP@0,uVu21#,

~ uVu2n!~Nj2n!

~n11!~ uWu2Nj1n11!
e22iFi<

nL,N
t ~NV5n11!

nL,N
t ~NV5n!

<e2iFi ~ uVu2n!~Nj2n!

~n11!~ uWu2Nj1n11!
,

wherenL,N
t (•)ªmL

t,lI (•uNL5N).
Remark:It is important that the error ise2iFi and note2iFlI i.
Proof: We write

mL
t,lI ~NV5n11;NL5N!

5
1

~n11!~ uWu2Nj1n11! (
xPV
yPW

mL
t,lI ~1$NL5N%1$NV5n11%s~x!~12s~y!!!

5
1

~n11!~ uWu2Nj1n11! (
xPV
yPW

mL
t,lI ~e2~¹xyHL

t,lI
!~s!~12s~x!!s~y!1$NL5N%I$NV5n%!

<
~ uVu2n!~Nj2n!

~n11!~ uWu2Nj1n11!
e2iFimL

t,lI ~NV5n;NL5N!,

where we used the change of variables°txys to obtain the second equality andie2¹xyHL
t,lI

i`

<e2iFi for the last inequality. The lower bound is analogous. h

E. Spectral gap of one-dimensional discrete random walks

Proposition 3.7: Letg be a positive probability measure on the integersV5$N1 ,N1

11,...,N2% and let N* PV be the largest integer such that(n<N* g(n)< 1
2. Then, for all functions

f on V we have

Var~ f !<Cg (
n5N111

N2

~g~n!`g~n21!!@ f ~n!2 f ~n21!#2,

where

Cg54 maxF S sup
n<N* 11

(
j <n

g~ j !

g~n! D 2

,S sup
n>N*

(
j >n

g~ j !

g~n! D 2G .

Proof: We consider a continuous time Markov chain with transition rates

c~n, j !5H g~ j !

g~n!
`1 if j 5n61

0 otherwise.

~3.9!

Since the rates satisfy the detailed balance condition

g~n!c~n, j !5g~ j !c~ j ,n!, ~3.10!

the probability measureg is reversible with respect to the chain. The associated Dirichlet form
given by
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Eg~ f , f !5 (
n51

N

g~n!c~n,n21!@ f ~n21!2 f ~n!#2

5 (
n51

N

~g~n!`g~n21!!@ f ~n!2 f ~n21!#2.

If we denote byl the spectral gap of the generator of the chain, we have

Varg~ f !<
1

l
Eg~ f , f !5

1

l (
i 51

N

~g~n!`g~n21!!@ f ~n!2 f ~n21!#2.

To conclude the proof we need a lower bound forl. Cheeger’s inequality~see Theorem 2.1 in Ref
16! states that

l>
I 2

8M
,

whereM5supi(c(n,n11)1c(n,n21)) and

I 5 min
A,V

(~ j ,k!PA3Acc~ j ,k!g~ j !

g~A!~12g~A!!
.

With the choice~3.9! M<2. As the state spaceV is countable and connected, by Corollary 4.4
Ref. 16, the minimum can be taken over all subsetsA,V such thatA andAc are connected. Using
the symmetry betweenA andAc we can also imposeg(A)<1/2. We can thus write, using~3.10!
and ~3.9!,

2

I
<maxF sup

n<N*

( j <ng~ j !

g~n!`g~n11!
, sup
n>N* 11

( j >ng~ j !

g~n!`g~n21!G
<maxF S sup

n<N* 11

(
j <n

g~ j !

g~n! D ,S sup
n>N*

(
j >n

g~ j !

g~n! D G . ~3.11!

h

Proposition 3.8. In the same hypotheses of Proposition 3.7 assume that for some N1<N̄

<N2 and a.0(g( j 21)/g( j ))<e2a(N̄2 j ) for all j <N̄ and (g( j 11)/g( j ))<e2a( j 2N̄) for all j

>N̄. Then for all functions f onV we have

Var~ f !<C maxH 1

a
,1J (

n5N111

N2

~g~n!`g~n21!!@ f ~n!2 f ~n21!#2

for a suitable numerical constant C independent of f and all the other parameters.
Proof: Without loss of generality we can assumeN* <N̄. Using the hypothesis, for anyn

<N̄ we have
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(
j <n

g~ j !

g~n!
511(

j ,n
)

z5 j 11

n
g~z21!

g~z!

<11(
j ,n

)
z5 j 11

n

e2a~N̄2z!

<11(
j ,n

e2~a/2!~n2 j !2

<11
c

Aa

for a suitable numerical constantc. A similar inequality holds for( j >n(g( j )/g(n)),n>N̄. There-
fore, g(n)>$Aa/@2(c1Aa)#% and we have

sup
n<N* 11

(
j <n

g~ j !

g~n!
<c8 maxH 1

Aa
,1J

for a suitable numerical constantc8. Analogously

sup
n>N*

(
j >n

g~ j !

g~n!
<11

c

Aa
1 sup

nPVù@N* 11,N̄#

1

g~n!

<c9 maxH 1

Aa
,1J .

The proposition now follows from Proposition 3.7. h

F. A key bound on special covariances

Assume the same setting of Sec. III D. For any local functionf with 0PD f let f x be its
translate byxPZd. Then one has the following interesting result.

Lemma 3.9: Assume condition USMT(C,m,l ) and fix i, j P$1,...,k% with iÞ j . Let g,h be two
local functions with support containing the origin and of diameter smaller than2r , r being the
range of the interaction. Then for anye.0 there exists Ce such that for any f

nL,N
t S f ,

1

uL i uuL j u
(

xPL i
zPAj

gxhzD 2

<
Ce

uLu
nL,N

t S (
@x,z#PEL

cxz~¹xzf !2D 1
e

uLu
VarL,N

t ~ f !

provided thatuLu is larger than Ce .
Remark:When k51, namely the partition ofL is the trivial one, andg(h)ª1 the above

result is nothing but the so called ‘‘two-blocks estimate’’ of Lemma 4.4. of Ref. 3.
Proof: Fix e.0. In view of the above remark we can assume, without loss of generality,

nL,N
t (gx)50 for anyxPL i .

Let for notation simplicityGª(1/uL i u)(xPL i
gx , H5(1/uL j u)(zPL j

hz and let us writeH
5Hin1Hext whereHin is the sum over thosez’s in L j such thatDh(z),L j and Hext the rest.
Then, using the formula relating the covariance of two functionsf andg w.r.t. the measurenL,N

t to
the covariance w.r.t. the same measure conditioned to a subs-algebra, we get
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nL,N
t S f ,

1

uL i uuL j u
(

xPL i
zPL j

gxhzD 2

5nL,N
t ~ f ,GH!2

<2iHexti`
2 VarL,N

t ~G!VarL,N
t ~ f !

14iHini`
2 nL,N

t ~@nL,N
t ~ f ,GuFL

i
c!#2!

14@nL,N
t ~ f ,nL,N

t ~GuFL
i
c!Hin!#2

<
1

uLu FC8S u] r
1L j u
uL j u

D 2

1
e

2GVarL,N
t ~ f !

1
Ce

uLu
nL,N

t S (
@x,z#PEL

cxz~¹xzf !2D
14@nL,N

t ~ f ,nL,N
t ~GuFL

i
c!Hin!#2, ~3.12!

where we have used the hypothesis (uL i u/uLu)>d together with Lemma 4.4 of Ref. 3~see Propo-
sition A.1 for a simpler proof! to bound the term@nL,N

t ( f ,GuFL
i
c)#2 and Proposition 3.3 to ge

VarL,N
t (G)<C9/uLu.
The third term in the r.h.s. of~3.12! can be bounded from above by

inL,N
t ~GuFL

i
c!i`

2 VarL,N
t ~Hin!VarL,N

t ~ f !. ~3.13!

In turn, the second factor in the r.h.s. of~3.13!, using Proposition 3.3 together with the mixin
condition, is bounded from above by (C1 /uLu). The first factor in the r.h.s. of~3.13!, thanks to the
hypothesisnL,N

t (gx)50, to a simple telescopic argument and to part~1! of Proposition 3.2, is
bounded from above by

F sup
t,t8PV]r

1L i

1

uL i u
(

xPL i

unL i ,Ni

t ~gx!2nL i ,Ni

t8 ~gx!uG 2

<F sup
tPV]r

1L i

1

uL i u
(

xPL i
(

yP]r
1L i

e2iFiunL i ,Ni

t ~gx ,e2¹yHL i

t
!uG 2

<C8F u] r
1L i u
uL i u

G2

.

In conclusion, for anye.0, the first and third term in the r.h.s. of~3.12! can be bounded from
above by (e/2uLu)VarL,N

t ( f ) provided thatuLu is large enough. The proof is complete. h

G. Computing the gradient with respect to the particle number

Assume the same setting of Sec. III D and letV and W be such thatVùW5B and L j

5VøW for somej P$1,...,k%. Here we give a result that allows us to compute for any functiof
the gradient w.r.t.n of nL,N

t ( f uNV5n) and to bound it in terms of the Dirichlet form and th
variance off.

For x,zPZd, we define the events

Exz5$sPV:s~x!51,s~z!50%. ~3.14!

Then we have
Proposition 3.10: Let V and W be such that VùW5B and L j5VøW for some j

P$1,...,k%. Let g(n)5nL,N
t $NV5n%. Let also cn5n(uWu2Nj1n), that is number of particles in

V3 number of holes in W, and let cn85n(uVu2Nj1n). Then, for all functions f onV we have
~1!
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nL,N
t ~ f uNV5n!2nL,N

t ~ f uNV5n21!

5
1

cn

g~n21!

g~n! (
xPV
xPW

nL,N
t @~¹zxf !1Ezx

e2¹xzHLuNV5n21#

1
1

cn

g~n21!

g~n! (
xPV
xPW

nL,N
t @~e2¹xzHL21!1Ezx

, f uNV5n21#,

~2!

nL,N
t ~ f uNV5n!2nL,N

t ~ f uNV5n21!

5
1

cN2n118

g~n!

g~n21! (
xPV
zPW

nL,N
t @~¹xzf !1Exz

e2¹xzHLuNV5n#

2
1

cN2n118

g~n!

g~n21! (
xPV
zPW

nL,N
t @~e2¹xzHL21!1Exz

, f uNV5n#.

Remark:A similar statement is contained in Lemma 3.1 in Ref. 3.
Before the proof we note that givenL j ,V,W,Nj as above, letnmax, nmin be the maximum and

minimum value of the particle number inV under the constraint thatNL i
5Ni , ; i 51,...,k.

Let u5 br j uVu c, wherer j5Nj /uL j u and let, fornP@nmin ,nmax#,

A~n!55
1

cn

g~n21!

g~n! (
xPV
zPW

nL,N
t @~¹zxf !1Ezx

e2¹xzHLuNV5n21# if n<u

1

cN2n118

g~n!

g~n21! (
xPV
zPW

nL,N
t @~¹xzf !1Exz

e2¹xzHLuNV5n# otherwise,

~3.15!

B~n!55
1

cn

g~n21!

g~n! (
xPV
zPW

nL,N
t @~e2¹xzHL21!1Ezx

, f uNV5n21# if n<u

1

cN2n118

g~n!

g~n21! (
xPV
zPW

nL,N
t @~e2¹xzHL21!1Exz

, f uNV5n# otherwise.

With this definition we have immediately
Corollary 3.11: In the same setting of Proposition 3.10,

(
i

~g~n!∧g~n21!!@nL,N
t ~ f uNV5n!2nL,N

t ~ f uNV5n21!#2

<(
i

~g~n!∧g~n21!!@A~n!21B~n!2#.

Proof of the proposition:Adding and subtractingTxzf we can write

nL,N
t ~ f uNV5n!5

1

cn
(
xPV
zPW

nL,N
t @~ f 2Txzf !1Exz

uNV5n#1
1

cn
(
xPV
zPW

nL,N
t @~Txzf !1Exz

uNV5n#.

~3.16!
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After the change of variables°sxz and using the equalitynL,N
t ( f g)5nL,N

t ( f ,g)
1nL,N

t ( f )nL,N
t (g), we can write the first term in the r.h.s. of~3.16! as

1

cn

g~n21!

g~n! (
xPV
zPW

nL,N
t @~¹zxf !1Ezx

e2¹xzHLuNV5n21#,

while the second term becomes

1

cn

g~n21!

g~n! (
xPV
zPW

nL,N
t @~e2¹xzHL21!1Ezx

, f uNV5n21#

1
1

cn

g~n21!

g~n! (
xPV
zPW

nL,N
t @e2¹xzHL1Ezx

uNV5n21#nL,N
t ~ f uNV5n21!, ~3.17!

where we have exploit the fact thatnL,N
t (•uNV5n21)-almost surely(

zPW
xPV1Ezx

5cN2n118 in order

to subtract 1 from thee2¹xzHL term. Takingf 51 in Eq.~3.16! we obtain that the term multiplying
nL,N

t ( f uNV5n21) in ~3.17! is equal to one and the result is obtained.
The second equality follows from the first by interchangingV andW. h

H. Bound on ( i„g„n …†g„nÀ1……A „n …2

We now show how to bound from above the term( i(g(n)∧g(n21))A(n)2 of Corollary
3.11. We first need the following definition:

Definition 3.12:Given a finite connected subsetL of Zd a path choice inL is a collection
l5$lxz :(x,z)PL3L% such thatlxz is a self-avoiding path fromx to z insideL.

Given a path choicel in L j andV, W as above, we let

GV~l!5 max
eP«L

#$~x,z!PV3W:lxz]e%,

DV~l!5 max
~x,z!PV3W

ulxzu.

With this notation we have the following result:
Proposition 3.13:There exists someC depending only oniFi such that

Proof of Proposition 3.13:Assume for simplicity thatn<u. Then we observe that

1

cn

g~n21!

g~n! (
xPV
zPW

nL,N
t @e2¹xzHL1Ezx

uNV5n21#51

~see right after~3.17!! so that

e22iFi 1

cNj 2n118
<

1

cn

g~n21!

g~n!
<e2iFi 1

cNj 2n118
.

Moreover,
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1

cNj 2n11
8 (

~x,z!PV3W
nL,N

t @EzxuNV5n21#51.

We can thus use the Schwarz inequality and obtain

A~n!25F 1

cn

g~n21!

g~n! (
~x,z!PV3W

nL,N
t @e2¹xzH¹xzf uNV5n21,Ezx#nL,N

t @EzxuNV5n21#G2

<C
1

cNj 2u118 (
~x,z!PV3W

nL,N
t @~¹xzf !2uNV5n21,Ezx#nL,N

t @EzxuNV5n21#

<C
1

cNj 2u118 (
~x,z!PV3W

nL,N
t @~¹xzf !2uNV5n21#, ~3.18!

sincecn8 is increasing inn. Similarly, for n.u, we obtain

A~n!2<C
1

cu
(

~x,z!PV3W
nL,N

t @~¹xzf !2uNV5n#. ~3.19!

Notice thatcu>c8r j (12r j )uVuuWu and similarly forcNj 2u11
8 >C8r j uWu((12r j )uVu), wherec8 is

some suitable constant. Thus, by~3.18! and ~3.19!, we obtain

(
n5nmin

nmax

~g~n!∧g~n21!!A~n!2<C9
1

r j~12r j !uVuuWu (
~x,z!PV3W

nL,N
t @~¹xzf !2#. ~3.20!

Let now l be any path choice. Thanks to Lemma 4.3 in Ref. 4 we get that there existsC3(iFi)
such that

which, together with~3.20! and the definition ofGV(l) andDV(l), finishes the proof. h

I. Bound on (n„g„n …†g„nÀ1……B „n …2

Here we give an estimate of theB-term in Corollary 3.11 under a regularity assumption on
setsV andW. We refer to Sec. III G for all the necessary notations.

Proposition 3.14: Assume property USMT(C,m,l) and, without loss of generality, r j<1/2. Fix
e.0 and assume thatu] r

1VùL j u<euLu.

~1! There exists a constant K independent of f such that

(
n5nmin

nmax

~g~n!∧g~n21!!B~n!2<
K

uLu
VarL,N

t ~ f !.

~2! There exists Ce independent of f and C0 independent ofe and f such that

Proof:

~1! Let n<u whereu5 br j uVu c. Then, as in the proof of Proposition 3.13,
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B~n!2<e4iFi`nL,N
t S f ,

1

cNj 2u118 (
xPV
zPW

~e2¹xzHL21!1Ezx
uNV5n21D 2

. ~3.21!

Notice that (e2¹xzHL21)1Ezx
50 unless there are at least two particles in anr-neighborhood of

$x%ø$z%. Therefore, nL,N
t (u(e2¹xzHL21)1Ezx

u uNV5n21)<cr j
2 for a suitable constantc.

Schwartz inequality, part~2! of Proposition 3.2 together with the boundcNj 2u11>c8(d)r j (1
2r j )uL j u2 ~see the proof of Proposition 3.13! show that the r.h.s. of~3.21! can be bounded from
above by (K8/uL j u)nL,N

t ( f , f uNV5n21). Thus,

(
n<u

~g~n!∧g~n21!!B~n!2<
K8

uLju
nL,N~ f , f !<

K8

duLu
nL,N~ f , f !

because of the assumptionuL j u>duLu. Similarly one proceeds forn.u.

~2! Let gx(s)ªe2¹xHL
t (s)(12s(x)), hz(s)ªe2¹zHL

t (s)s(z). Notice that e2¹xzHL1Ezx

2gxhx50 unlessd(x,z)<r . Therefore,

B~n!2<e4iFi`nL,N
t S f ,

1

r j uVuuWu (
xPV
zPW

~e2¹xzHL21!1EzxUNV5n21D 2

<2e4iFi`nL,N
t S f ,

1

r j uVuuWu (
xPV
zPW

~e2¹xzHL1Ezx
2gxhz!UNV5n21D 2

12e4iFi`nL,N
t S f ,

1

r j uVuuWu (
xPV
zPW

gxhzUNV5n21D 2

, ~3.22!

where we have dropped the minus one from (e2¹xzHL21) because(
zPW
xPV 1Ezx

is constant under

nL,N
t (•uNV5n21).

The first term in the r.h.s. of~3.22!, using Schwartz inequality together with proposition 3
condition USMT and the assumptionu] r

2VùL j u<euLu, is bounded from above by

C9e

uLu
nL,N

t ~ f , f uNV5n21!

for a suitable constantC9.
The second term in the r.h.s. of~3.22!, using Lemma 3.9, is bounded from above by

Thus

for a suitable constantsC0 independent ofe. Similarly one proceeds for the casen.u. h
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IV. MORE ON THE DISTRIBUTION OF THE NUMBER OF PARTICLES INSIDE
ONE BLOCK

Fix dP(0,1) and an integerk>2 with dk,1. Let L1 ,...,Lk be large multiples of the basi
length scalel, let L5( iL i and assume thatL j>dL for any j. We then choose one coordina
direction, e.g., thed direction, and we takeL5QL , L1 equal to the first slice ofL orthogonal to
the d-axis of widthL1 , i.e., L15$xPL:0<xd,L1%, L2 equal to the slice ofL on top ofL1 of
width L2 and so on. Let alsoN5$Ni% i 51

k be a set of possible values ofNLª$NL i
% i 51

k and let us
assume, for a given boundary conditiont, that lI is constant on each blockL i and such that
mL

t,lI (NL i
)5Ni , i 51,...,k. We denote bynL,N

t the multicanonical Gibbs measuremL
t,lI (•uNL i

5Ni ,i 51,...,k).
Pick now j P$1,...,k% and consider the new finer partition ofL obtained from the previous on

by splitting L j into two slices orthogonal to thed-direction, V and W, in such a way thatd
<uVu/uWu<12d andV andW are still multiples of the basic length scalel. Assume without loss
of generality thatNj /uL j u<

1
2 and denote byN* the average number of particles inV according to

mL
t,lI . Let alsonmin5max$0,Nj2uWu% andnmax5min$uVu,Nj% be the smallest and the largest val

of NV(s) under the constraint thatNL j
(s)5Nj . It is easy to check thatc(d)21<(nmax

2N* )/N*<c(d) for a suitable constantc(d)>1 and similarly for (N* 2nmin)/N* .
In what follows we will consider the distribution of the number of particles inV under the

measurenL,N
t . More precisely we defineg5$g(n)% to be the probability measure onI 5$n

P@nmin, nmax]:n is an integer%, given by

g~n!ªnL,N
t ~NV5n!.

In order to obtain sharp bounds ong(n), nPI , we modify the chemical potentiallI in an
n-dependent way in such a way that the valuen becomes equal to the average ofNV . More
precisely, givennP@nmin ,nmax#, let lI (n)5$l1 ,...,l j 21 ,lV ,lW ,l j 11 ,...,lk% be a new chemica
potential constant on the atoms on the new partition and such that

mL
t,lI ~n!~NL i

!5Ni , i 51,...,k,

mL
t,lI ~n!~NV!5n, ~4.1!

mL
t,lI ~n!~NW!5Nj2n.

It is then easy to check thatg can be written in the Gibbsian form,g(n)5e2H(n)w(n), where

H~n!ª(
iÞ j

~l i~n!2l i !Ni1lVn1lW~Nj2n!2l jNj2 logS ZL
t,lI ~n!

ZL
t,lI D ,

w~n!ª
mL

t,lI ~n!~NL5N;NV5n!

mL
t,lI ~NL5N!

. ~4.2!

Finally, giveneP(0,1), we consider for technical reasons the ‘‘e-regularization’’ ofg defined by

g̃~n!ªH 1

Z
e2H~n! if nPI eª@N* 1e~nmin2N* !,N* 1e~nmax2N* !#ùI

g~n! otherwise

, ~4.3!

whereZª(nPI e
e2H(n)/(nPI e

g(n).
The following lemma shows that the relative density betweeng and its regularization is

bounded uniformly in the size ofI.
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Lemma 4.1: Assume property USMT(C,m,l). Then there exists C85C8(C,m,l ,d,e,iFi`)
>1 such that

~C8!21< inf
nPI

g~n!

g̃~n!
<sup

nPI

g~n!

g̃~n!
<C8.

Proof: By the definition~4.3! of g̃ we immediately have

g~n!

g̃~n!
<maxF sup

n,n8PI e

w~n8!

w~n!
,1G .

Thus we must prove

sup
n,n8PI e

w~n8!

w~n!
<C8. ~4.4!

Thanks to Proposition 3.5 and by the definition ofw(n) we have

w~n8!

w~n!
<C1

sV~n!

sV~n8!

sW~n!

sW~n8! )iÞ j

s i~n!

s i~n8!

for a suitable constantC1 , wheres i
2(n)ªmL

t,lI (n)(NL i
,NL i

) and similarly forsV
2(n), sW

2 (n). It is
one of the results of Proposition 3.1 of Ref. 9 that, under our mixing assumption, the varian
the number of particles in each atom can be bounded from above and below by a suitable c
times its average. Therefore,

sup
n,n8PI e

w~n8!

w~n!
<C2F sup

n,n8PI e

n~Nj2n!

n8~Nj2n8!G 1/2

<C8

for a suitable constantC8 because of the definition ofI and the assumption on the ratiouVu/uWu.
Similarly one proves the lower bound. h

The next lemma proves that the tails ofg are at least exponential.
Lemma 4.2:There exists a positive constante05e0(d,iFi`) such that;eP(e0,1),

g~n11!

g~n!
<

1

2
if nP@N* 1e~nmax2N* !,nmax#,

g~n21!

g~n!
<

1

2
if nP@nmin,N* 1e~nmin2N* !#.

Proof: Using the definition of the canonical measure and Proposition 3.6 we have

g~n11!

g~n!
<e2iFi`

~ uVu2n!~Nj2n!

~n11!~ uWu2Nj1n11!
. ~4.5!

Thus the r.h.s. of~4.5! is smaller thane2iFi`1d@(12e)/e#< 1
2 for any nP@N* 1e(nmax

2N* ),nmax#, provided thate is sufficiently close to 1, because of our assumption onV, W and the
definition of nmax. A similar reasoning applies tog(n21)/g(n) for nP@nmin ,N*1e(nmin2N* )#.

h

Our last result shows that thee-regularized version ofg is bell-shaped aroundn5N* with
width proportional toAN* .
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Lemma 4.3: Assume property USMT(C,m,l). Then there exists a positive consta9
5C9(C,m,l ,e,iFi`) such that

H~n11!2H~n!>C9
n2N*

N*
if nP@N* ,N* 1e~nmax2N* !#,

H~n21!2H~n!>C9
un2N* u

N*
if nP@N* 1e~nmin2N* !,N* !.

Proof: By the definition~4.2! we have

dH

dn
5lV~n!2lW~n!,

so that we can write

H~n11!2H~n!5E
n

n11

dn8E
N*

N8
dn9

d

dn9
~lV~n9!2lW~n9!!,

H~n21!2H~n!5E
n21

n

dn8E
N*

n8
dn9

d

dn9
~lV~n8!2lW~n9!!. ~4.6!

The integrand in~4.6! can be computed thanks to the following identities valid for anyiÞ j that
can be easily obtained by taking the derivative w.r.t.n of both sides of~4.1!,

¦

(
kÞ j

mL
t,lI ~n!~NL i

,NLk
!

d

dn
lk~n!1mL

t,lI ~n!~NV ,NL i
!

d

dn
lV~n!

1mL
t,lI ~n!~NW ,NL i

!
d

dn
lW~n!50,

(
kÞ j

mL
t,lI ~n!~NLk

,NV!
d

dn
lk~n!1mL

t,lI ~n!~NV ,NV!
d

dn
lV~n!

1mL
t,lI ~n!~NV ,NW!

d

dn
lW~n!51,

(
kÞ j

mL
t,lI ~n!~NLk

,NW!
d

dn
lk~n!1mL

t,lI ~n!~NV ,NW!
d

dn
lV~n!

1mL
t,lI ~n!~NW ,NW!

d

dn
lW~n!521.

~4.7!

In order to solve the above linear system we can use the following general bounds fo
covariances of the number of particles in the atoms of a partition ofL ~see Proposition 3.1 of Ref
9!,

mL
t,lI ~NL i

,NL i
!>A21r i uL i u,

umL
t,lI ~NL i

,NL i 61
!u<Ar ir i 61~ u] r

2L i uu] r
2L i 61u!1/2, ~4.8!

umL
t,lI ~NL i

,NL j
!u<AuL i uuL j ue2md~L i ,L j !,

wherer i5mL
t,lI (NL i

)/uL i u.
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If we apply the above bounds in our case we get that, forL large enough, we can solve~4.7!
by Neumann series and obtain

c1
21 1

sV
2~n!

<
d

dn
lV~n!<c1

1

sV
2~n!

,

c1
21 1

sW
2 ~n!

<2
d

dn
lW~n!<c1

1

sW
2 ~n!

,

wherec15c1(C,l ,m,r ,iFi`).0 is a suitable constant.
In particular (d/dn)(lV(n)2lW(n))>c1

21(1/sV
2(n)). Take nownP@N* ,N* ,e(nmax2N* )#.

If we use once more the fact thatsV
2(n) is comparable to the average number of particles inV, n

~see the proof of Lemma 4.1!, we get from~4.6!, the fact thatd<uVu/uWu<12d and some simple
considerations on the size ofnmax that

H~n11!2H~n!>c2E
n

n11

dn8E
N*

n8
dn9

1

N* 1e~nmax2N* !
>c3

~n2N* !

N*
.

A similar reasoning applies toH(n21)2H(n), whennP@N* 1e(nmin2N* ),N* ). h

We are finally in a position to state the main result of this section.
Theorem 4.4:Assume property USMT(C,m,l ). Then there exists c05c0(C,m,d,iFi) such

that for all f :VL°R that depend only on NV(s) the following Poincare´ inequality holds;

nL,N
t ~ f , f !<c0N* (

nPI
~g~n!`g~n21!!@ f ~n!2 f ~n21!#2.

Proof: Using Lemma 4.1 it is sufficient to prove the Poincare’ inequality for the regular
measureg̃(n). Pick e sufficiently close to one in such a way that Lemma 4.2 holds. Then, th
to Lemma 4.3 and the fact that (nmax2N* )/N*<c(d), there exists positive constantsc1 , c2 de-
pending onC,m,iFi ,d such that

g̃~n11!

g̃~n!
<H expS 2c1

n2N*

N* D if nPI ,n>N* and nÞ bN* 1e~nmax2N* !c
c2 if n5 bN* 1e~nmax2N* !c

, ~4.9!

and similarily for g̃(n21)/g̃(n),n<0. We can therefore apply Proposition 3.8 and get the
sult. h

Remark:The reader may worry about the fact that~4.9! is not, strictly speaking, identical to
the condition in Proposition~3.8!, because of the ‘‘spurious’’ pointn5 bN* 1e(nmax2N* )c, where
the original distributiong starts to agree with its regularizationg̃. However, as one can readil
check, the presence of this single point only affects the final result by a multiplicative con
depending onC,m,iFi ,d.

Remark:It is interesting to notice that, in the same hypotheses of Theorem 4.4 and usin
discrete version of the arguments described in Sec. VII of Ref. 17, one can prove18 a logarithmic
Sobolev inequality of the form,

nL,N
t ~ f 2 log f !<c08N* (

nPI
~g~n!`g~n21!!@ f ~n!2 f ~n21!#2

for any non-negative functionf that depends only onNV(s) and such thatnL,N
t ( f 2)51. This

observation is useful if one wants to bound from above the logarithmic Sobolev consta
Kawasaki dynamics19 following the same approach described in this paper.
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V. RECURSIVE ESTIMATE OF THE SPECTRAL GAP

In this section we prove the main result via a recursive analysis on the behavior of the sp
gap when the linear size of the volume under consideration is doubled.

For simplicity we carry out our analysis in two dimensions but the extension to hi
dimension is straightforward~see Remark at the end of Sec. III C!.

Let R( l 1 ,l 2) denote the rectangle

R~ l 1 ,l 2!5$~x1 ,x2!PZ2;0<x1< l 121,0<x2< l 221%; l 1 ,l 2PZ1

and letRL be the family of ‘‘fat’’ rectangles with ‘‘size’’ smaller thanL, namely those rectangle
R( l 1 ,l 2 ,x)ªR( l 1 ,l 2)1x, xPZ2, with l 1` l 2>0.1(l 1∨ l 2) and l 1∨ l 2<L.
Let also

g~L !5 min
RPRL

min
N,t

gap~LR,N
t !,

where gap(LR,N
t ) has been defined in~2.10!.

With the above notation we will prove the following recursive bound:
Theorem 5.1: Assume USMT(C,m,l ). Then there exists a positive constant

5k(d,r ,iFi) such that

g~2L !21< 3
2 g~L !211kL2

for all L large enough. In particular in f
L

g(L)L2.0.

Proof: Let us consider a rectangleLªR( l 1 ,l 2)PR2L and assume, without loss of generalit
that the longest side isl 2 . If l 2<L then, using the definition ofg(L), minN,t gap(LR,N

t )>g(L).
Thus we assumeL, l 2<2L.

We fix a small numberdP(0,1022) and we setd5 bdL c. Given an integerj P@1,b(1/10d) c#
we partitionL into three atoms$L i% i 51

3 as follows~we omit the indexj for simplicity!:

L15$xPL;0<x2< l 2/21 jd%,

L25$xPL; l 2/21~ j 21!d,x2< l 221%, ~5.1!

L35L1ùL2 .

Fix now a boundary conditiont outsideL and a number of particlesNP@0,...,uLu#. We will then
use twice the formula relating the variance of a functionf w.r.t. the measurenL,N

t to the variance
of f w.r.t. the measurenL,N

t conditioned to a subs-algebraF0 ,

nL,N
t ~ f , f !5nL,N

t ~nL,N
t ~ f , f uF0!!1nL,N

t ~nL,N
t ~ f uF0!,nL,N

t ~ f uF0!! ~5.2!

to write

nL,N
t ~ f , f !5nL,N

t ~nL,N
t ~ f , f uF1!!1nL,N

t ~ f 1 , f 1!

5nL,N
t ~nL,N

t ~ f , f uF1,3!!1nL,N
t ~nL,N

t ~ f 1,3, f 1,3uF1!!1nL,N
t ~ f 1 , f 1!, ~5.3!

where F1 and F1,3 are thes-algebras generated byNL1
and $NL1

,NL3
%, respectively, andf 1

ªnL,N
t ( f uF1), f 1,3ªnL,N

t ( f uF1,3). Formula~5.3! will represent our basic starting point. We wi
now examine separately each term in the r.h.s. of~5.3!.

A. Analysis of the first term in the r.h.s. of „5.3…

For any smalle and large enoughL, the first term in the r.h.s. of~5.3! can be bounded from
above using Proposition 3.4 by
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nL,N
t ~nL,N

t ~ f , f uF1,3!!<~11e!nL,N
t ~nL1 ,N1

h ~ f , f !1nL2 ,N2

h ~ f , f !!, ~5.4!

where the average is over the random variablesh, NL1
, andNL2

. Above we have used the boun

nL,N
t (nL1 ,N1

h ( f , f uNL3
))<nL,N

t (nL1 ,N1

h ( f , f )) which follows at once from~5.2!.

Let us now examine the spectral gap of the bottom rectangleL1 , the reasoning being simila
for the top one.

There are two cases to analyze:

~a! l 1< 3
2 L. In this case one easily verifies thatL1PR3

2 L .
~b! l 1. 3

2 L. In this caseL1PR2L but now thelongestside isl 1 and theshortestone is smaller
than (l 2/2)1 jd11 which in turn is smaller than 1.2L sincel 2<2L and jd<L/10.

Therefore min
h,N1

gap(LL1 ,N1

h )>min$g(3
2 L),ĝ(2L)%, where

ĝ~2L !5 min
RPR2L
l 1<1.2L

l 2>
3
2 L

min
t,N

gap~LR~ l 1 ,l 2!,N
t ! .

In conclusion we obtain that the r.h.s of~5.4! is smaller than

~11e!maxH gS 3

2
L D 21

,ĝ~2L !21J FEL,N
t ~ f , f !1

1

2 (
@x,y#PEL3

nL,N
t @cxy~¹xyf !2#G ~5.5!

uniformly in j P@1,(1/10d)#. Notice that the ‘‘spurious’’ term 1/2(@x,y#PEL3
nL,N

t @cxy(¹xyf )2#

comes from the fact thatL1 andL2 overlap.

B. Analysis of the second and third term in the r.h.s. of „5.3…

Here we bound from above the second and third term in~5.3!. The necessary steps a
identical in both cases and therefore, for shortness, we treat only the third term which is~nota-
tionally speaking! also the simplest. Later on we will state without further comments the an
gous result for the second one.

Let rª(N/uLu) and assume, without loss of generality, thatr< 1
2. Let also N1*

5mL
t,l(NL1

), mL
t,l being the grand canonical measure with average particle number equalN,

and letg(n)ªnL,N
t (NL1

5n). Then, using Theorem 4.4, we can write

nL,N
t ~ f 1 , f 1!<c0N1* (

n
~g~n!`g~n21!!@nL,N

t ~ f uNL1
5n!5nL,N

t ~ f uNL1
5n21!#2

<c0N1* (
n

~g~n!`g~n21!!@A~n!21B~n!2#, ~5.6!

whereA(n) andB(n) have been defined in~3.15!.
In order to estimate the first term in the r.h.s. of~5.6! we first need to fix apath choice~see

Proposition 3.13 and Definition 3.12 for the necessary notation!.
Our choice is the following: GivenxPL1 andzPL2\L1 , start increasing~or decreasing! the

first coordinate ofx until it is equal to the first coordinate ofz. Then adjust the second coordina
until you get toz. With this particular path choice it is easy to see thatGV(l)<(2L)3. Assume in
fact that the pathlxz contains the edgee5@u,v#, whereu andv differ in the j th coordinate. This
means thatxi5ui for all i . j andzi5ui for all i , j . So the number of possible pairs~x,z! is not
greater than (2L) j (2L)22 j 115(2L)3. Moreover with this geometryDV(l)<4L. Thanks to
Proposition 3.13 first term in the r.h.s. of~5.6! is smaller than
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CN1*
L4

r~12r!uL1iL2u
EL,N

t ~ f , f !. ~5.7!

Notice thatN1* <C8ruL1u ~see Proposition 3.1 of Ref. 9! so that

CN1*
L4

r~12r!uL1iL2u
EL,N

t ~ f , f !<C8L2EL,N
t ~ f , f !. ~5.8!

We now turn to the estimate of the second term in the r.h.s. of~5.6!. Using Proposition 3.14 we ge
that for anye.0 there exists a constantC(e) such that the second term in the r.h.s. of~5.6! is
smaller than

C~e!EL,N
t ~ f , f !1enL,N

t ~ f , f !. ~5.9!

In conclusion, for anye.0 there exists a constantC(e) such that the third term in the r.h.s. o
~5.3! is smaller than

nL,N
t ~ f 1 , f 1!<~C9L21C~e!!EL,N

t ~ f , f !1enL,N
t ~ f , f ! ~5.10!

for a suitable constantC9. A similar bound holds for the second term in the r.h.s. of~5.3!.

C. The recursion completed

We are finally in a position to complete the proof of Theorem 5.1. If we put together~5.10!

and ~5.5! we get that, for anyeP(0,1
2),

r.h.s. of ~5.3!<~11e!maxH gS 3

2
L D 21

,ĝ~2L !21J FEL,N
t ~ f , f !1

1

2 (
@x,y#PEL3

nL,N
t @cxy~¹xyf !2#G

12~C9L21C~e!!EL,N
t ~ f , f !12enL,N

t ~ f , f !, ~5.11!

that is,

nL,N
t ~ f , f !<S 11e

122e DmaxH gS 3

2
L D 21

,ĝ~2L !21J FEL,N
t ~ f , f !1

1

2 (
@x,y#PEL3

nL,N
t @cxy~¹xyf !2#G

1kL2EL,N
t ~ f , f ! ~5.12!

for a suitable constantk.
Finally we average w.r.t. to the indexj ~see~5.1!! and use the observation that, asj varies in

@1, ~1/10d!#, the stripsL3ªL3
( j ) are disjoint. In particular

1

2 (
j P@1,~1/10d!#

(
@x,y#PEL3

~ j !

nL,N
t @cxy~¹xyf !2#<EL,N

t ~ f , f !

so that

nL,N
t ~ f , f !<S 11e

122e D ~11 b10d c !maxH gS 3

2
L D 21

,ĝ~2L !21J EL,N
t ~ f , f !1kL2EL,N

t ~ f , f !.

~5.13!

In other words,

gap~LL,N
t !21<S 11e

122e D ~11 b10d c !maxH gS 3

2
L D 21

,ĝ~2L !21J 1kL2. ~5.14!
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Notice that if the original rectangleL was such thatl 1<1.2L while l 2> 3
2 L, i.e.,L was chosen in

the subclass ofR2L entering in the definition ofĝ(2L), then we would have obtained the inequa

ity ~5.14! with the factor max$g(3
2 L)21,ĝ(2L)21% replaced byg( 3

2 L)21 simply because case~b!
right after ~5.4! would have been impossible. Thus

ĝ~2L !21<S 11e

122e D ~11 b10d c !gS 3

2
L D 21

1kL2. ~5.15!

If we combine~5.14! with ~5.15! we finally get

gap~LL,N
t !21<S 11e

122e D 2

~11 b10d c !2gS 3

2
L D 21

1k8L2 ~5.16!

for another constantk8. Thus

g~2L !21<S 11e

122e D 2

~11 b10d c !2gS 3

2
L D 21

1k8L2

and two more iterations prove the recursive inequality of the theorem provided that the
parameterse, d were chosen small enough.

Finally, the fact that min
L
(g(L)L2).0 is a trivial consequence of the recursive bound. h

VI. PROOF OF THEOREM 2.4

Fix a local functionf with 0PD f and denote byEl the spectral projection associated with t
interval @0, l# for the self-adjoint operator2LL,N

t on L2(VL ,dnL,N
t ). Assume thatnL,N

t ( f )50.
Then we will prove that for anyeP(0,1) there exists a constantCf ,e independent ofL andN such
that

iEl f i2
2<Cf ,el

a2e, ~6.1!

wherei•i2 denote theL2(VL ,dnL,N
t )-norm anda5a(d) is as in the theorem. It is clear that onc

such an estimate is available then the result follows by the simple formula,

ietLL,N
t

f i2
2<(

j 50

`

e2 j iE~ j 11!/t f 2Ej /t f i2
2

<Cf ,e

1

ta2e (
j 50

`

e2 j~ j 11!a2e

<Cf ,e8
1

ta2e .

Let us prove ~6.1!. For any integerL8< 1
2 L multiple of l let FL8ªFL\BL8

and let f L8
ªnL,N

t ( f uFL8). If we use Proposition 3.3 together with the Glauber spectral gap inequality fo
grand canonical Gibbs measuremL

t,l ~the chemical potentiall here is, as always, such tha
mL

t,l(NL)5N),

mL
t,l~g,g!<C1mL

t,lS (
xPDg

@¹xg#2D
for any g and a suitable constantC1 depending onC,m,l ,iFi ~see Ref. 2!, we get
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VarL,N
t ~ f L8!<C1mL

t,lS (
xPBL8

@¹xf L8#
2D . ~6.2!

It is not difficult to check at this point, using the hypothesis USMT(C,m,l ) together with the
results on the equivalence of ensembles of Ref. 9 and Lemma 3.1, that uniformly inL, the r.h.s. of
~6.2! is bounded from above byCf@1/(L8)d# for some constantCf .

Observe now that, for any functiong and for any integerl 0< 1
2 L multiple of the basic length

scalel, the formula of the conditional covariance~see, e.g.,~5.2!! together with the definition of
spectral gap and the result of Theorem 2.3 give the following inequality:

nL,N
t ~g, f !2<2nL,N

t ~nL,N
t ~g, f uFl 0

!2!12 VarL,N
t ~g! VarL,N

t ~ f l 0
!

<2nL,N
t ~nL,N

t ~g, f uFl 0
!2!12Cf

1

l 0
d VarL,N

t ~g!

<Cf8F l 0
2EL,N

t ~g,g!1
1

l 0
d VarL,N

t ~g!G . ~6.3!

Notice that, if we takegªEl f , then~6.3! gives iEl f i2
2<Cf8@ l 0

2l1(1/l 0
d)# which, if we optimize

over the free parameterl 0 , becomesiEl f i2
2<Cf9l

d/(d12).
It is important to observe that the optimal choice isl 05O(l2@1/(d12)#)!L sincel>CL22

because of Theorem 2.3.
We will now use~6.3! as the starting point of a recursive procedure whose final result wi

a bound like~6.3! but with the factorl 0
2 replaced byl 0

g with g<e if d>2 andg<11e in d
51. Clearly such a bound will suffice to prove~6.1! because of the brief argument given abov

Lemma 6.1: Let bd50 if d>2 and bd51 if d51. In the same hypotheses of theorem 2
assume that for somebP@bd,2), some constant C( f ,b), all pairs l1< 1

2 l 2 multiples of l and all
N the following inequality holds:

nBl 2
,N

t ~g, f !2<C~ f ,b!F l 1
bEBl 2

,N
t ~g,g!1

1

l 1
d VarBl 2

,N
t ~g!G . ~6.4!

Then there exists a new constantC8( f ,b) such that the same inequality holds withb replaced by
b852b/(d1b).

Proof: Pick l 1< 1
2 l 2 and apply~6.3! to LªBl 2

and l 0ª l 1 to get

nL,N
t ~g, f !2<2nL,N

t ~nL,N
t ~g, f uFl 1

!2!12Cf

1

l 1
d VarL,N

t ~g!. ~6.5!

For anyl 3< 1
2 l 1 multiple of l we can bound the first term in the r.h.s. of~6.5! by

C~ f ,b!nL,N
t S F l 3

bEL,N
t ~g,guFl 1

!1
1

l 3
d VarL,N

t ~guFl 1
!G D<C1~ f ,b!F l 3

b1
l 1
2

l 3
dGEL,N

t ~g,g! ~6.6!

for a suitable constantC1( f ,b), where we have used theorem 2.3 to bound VarL,N
t (guFl 1

) in terms

of the Dirichlet formEL,N
t (g,guFl 1

).
We now chosel 35 1

2 l 1
2/(b1d)< 1

2 l 1 and get that the r.h.s. of~6.6! is bounded from above by

C8~ f ,b!l 1
2b/~d1b!EL,N

t ~g,g!5C8~ f ,b!l 1
b8EL,N

t ~g,g!

and the result follows. h
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Notice that the inequality of the lemma holds forb52 because of~6.3!. Moreover it is simple
to convince oneself that the sequencebn1152bn /(d1bn), b052 converges tobd from above.
Therefore, for anyeP(0,1) there exists a constantCf ,e such that, for all pairsl 1< 1

2 l 2 multiples of
l and allN,

nBl 2
,N

t ~g, f !2<Cf ,eH l 1
11eEBl 2

,N
t ~g,g!1

1

l 1
VarBl 2

,N
t ~g! if d51

l 1
eEBl 2

,N
t ~g,g!1

1

l 1
d VarBl 2

,N
t ~g! if d>2

. ~6.7!

The bound~6.1! on iEl f i2
2 then follows and, as a consequence, the statement of the theoreh

APPENDIX: PROOF OF LU-YAU’S TWO BLOCK ESTIMATE

Here we reprove, for completeness, Lemma 4.4 of Ref. 3 which played a key role i
estimates in Sec. III I. Our proof is close to the original one with some simplification due to
fact that we have at our disposal Proposition 3.3. For clarity of exposition we present it i
canonical case. The extension to the multicononical one is straightforward.

The setting is the following. We fixL5QL , L a multiple of the basic length scalel, an integer
NP@0,...,uLu# and a local functiong such that 0PDg and diam(Dg)<2r . As in Lemma 3.9 we let
G5(1/uLu)(xPLgx , wheregx is the translate ofg by xPL. Let alsorªN/uLu.

Proposition A.1: Assume property USMT(C,m,l ). Then for anye.0 there exists Ce such
that for any f,

nL,N
t ~ f ,G!2<

Ce

uLu
EL,N

t ~ f , f !1
e

uLu
VarL,N

t ~ f !

provided thatuLu is larger than Ce .
Proof: Fix e.0. If r!e or 12r!e the statement follows at once from the Schwartz

equality together with part~1! of Proposition 3.2. We will thus assume, without further notice, t
rP(e,12e).

We define$Ca%aPI to be a collection of cubes of sidel 0 multiple of l such that for anya
Þb dist(Ca ,Cb)> l 0

1/2, dist(Ca ,]L)>L1/2 and uL\UaCau< l 0
2(1/2)uLu. Clearly such a construc

tion is always possible.
Next we observe that, without loss of generality, we can replacegx by gx2ds(x),d being an

arbitrary constant independent ofx, because(xPLs(x)5N almost surely w.r.t.nL,N
t . Accord-

ingly we defineGdªG2d NL . Our choice ofd will be made later but we anticipate that it wi
be almost independent ofl 0 . We then set

Gd
int
ª

1

uLu (
xPUaCa

int
~gx2ds~x!! and Gd

ext
ªGd2Gd

in ,

whereCa
int5$xPCa :d(x,Ca

c )> l 0
1/4%. Notice that

VarL,N
t ~Gd

ext!<C8mL
t,l~Gd

ext,Gd
ext!<C9

uL\UaCau1(auCa\Ca
intu

uLu2
<C9l 0

2~1/2!
1

uLu
~A1!

because of Proposition 3.3, the mixing condition USMT and the definition of$Ca%aPI . In par-
ticular, for any givene.0,

nL,N
t ~ f ,Gd

ext!2<
e

uLu
VarL,N

t ~ f !

provided thatl 0@e22.
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We now turn to bound the relevant partnL,N
t ( f ,Gd

int)2. Let F0 be thes-algebra generated b
the random variables$s(x)%xPL\øaCa

,$Na%aPI , whereNa(s)ª(xPCa
s(x). Then we write

nL,N
t ~ f ,Gd

int!2<2nL,N
t ~nL,N

t ~ f ,Gd
intuF0!!212nL,N

t ~ f ,nL,N
t ~Gd

intuF0!!2

<2 VarL,N
t ~Gd

int!nL,N
t ~VarL,N

t ~ f uF0!!12nL,N
t ~ f ,nL,N

t ~Gd
intuF0!!2

<
C~ l 0!

uLu
EL,N

t ~ f , f !12 VarL,N
t ~ f !VarL,N

t ~nL,N
t ~Gd

intuF0!!, ~A2!

where we have used~A1! to boundVarL,N
t (Gd

int) by C8/uLu and the estimate

nL,N
t ~VarL,N

t ~ f uF0!!<C~ l 0!EL,N
t ~ f , f !

for some constantC( l 0), valid sincenL,N
t (•uF0) is the product of canonical Gibbs measures o

the cubesCa . Actually, using Theorem 2.1 of Ref. 5, the constantC( l 0) is not larger than
exp(cl0

d21). The key point is now to prove that, for anye.0, VarL,N
t (nL,N

t (Gd
intuF0)) is smaller

thane/uLu provided thatl 0 is large enough.
Notice thatnL,N

t (Gd
intuF0)(h) is the sum of local functions,

nL,N
t ~Gd

intuF0!~h!5
1

uLu (aPI
nCa ,Na~h!

h S (
xPCa

int
gx2ds~x!Dª 1

uLu (aPI
Ga

d ~h!.

Thus, if we order in an arbitrary way the setI, we can split the above sum into the sum of even a
odd a’s and apply Proposition 3.3 to each term and get

VarL,N
t ~nL,N

t ~Gd
intuF0!!<C8

1

uLu2
mL

t,lS (
a

Ga
d ,(

a
Ga

d D
for some constantC8 independent ofL and l 0 .

Now let ja
d (h)ªmCa

h,l(h)((xPC
a
int@gx2ds(x)#), where the chemical potentiall(h) is such

that mCa

h,l(h)(Na)5Na(h). In the ~rare! case in whichNa(h)50 (Na(h)5 l 0
d) the measure

mCa

h,l(h) will simply be the Dirac measure on the constant configuration identically equal to 0~1!.

Thanks to~1! of Proposition 3.2 we have suphuGa
d (h)2ja

d (h)u<C8. In particular, using the
mixing condition together with the fact that dist(Ca ,Cb)> l 0

1/2 for any aÞb, we get

1

uLu2
mL

t,lS (
a

Ga
d 2ja

d ,(
a

Ga
d 2ja

d D<
C

uLu2 (a mL
t,l~Ga

d 2ja
d ,Ga

d 2ja
d !

<C8
1

uLu l 0
d <

e

uLu

for l 0 large enough. It is therefore enough to boundmL
t,l((aja

d ,(aja
d ) ~this is the second poin

where our version of the two blocks estimate differs from the original one!.
If we use the Poincare` inequality mL

t,l( f , f )<C8mL
t,l((xPL(¹xf )2) valid because of the

mixing condition USMT(C,m,l ) ~see, e.g. Ref. 2! we get

mL
t,lS (

a
ja

d ,(
a

ja
d D<mL

t,lS (
yPL

F¹y(
aPI

ja
d G2D . ~A3!

Observe now that, by construction,¹yja
d 50 unless dist(y,Ca)<r . Thus,
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mL
t,lS (

yPL
F¹y(

aPI
ja

d G2D 5 (
aPI

(
yPL

dist~y,Ca!<r

mL
t,l~@¹yja

d #2!. ~A4!

Let us estimate a generic termmL
t,l(@¹yja

d #2). It is at this stage that the subtraction with the fr
parameterd made at the beginning becomes important. It is in fact clear that without su
subtraction generically one expects@¹yja

d #25O(1) ~take for instance the trivial casegx(s)
5s(x)! which would imply that the r.h.s. of~A.3! is of the order ofuLu. The way out in order to
gain a factor ofe is to choosed in such a way thatmL

t,l(@¹yja
d #2) becomes itself a variance whic

again can be bounded using the Poincare` inequality above~see Ref. 3!.

Let ¹̃yf (s)5(12s(y))¹yf 2s(y)¹yf and notice that

@¹yja
d #25@¹̃yja

d #25F ¹̃ymCa

h,l~h!S (
xPCa

int
gxD 2dG 2

.

Lemma A.2: AssumeUSMT(C,m,l ). Let C0 be the cube of side l0 centered at y* , the center
of L, and define

d*ªmL
t,lS ¹̃y* mC0

h,l~h!S (
xPC0

int
gxD D .

Then there exists two constants k1 ,k2 independent of L and l0 , and a.0 such thatd* <k1 and

mL
t,l~@¹yja

d* #2!<H k2 if yP] r
1Ca

k2

l 0
d if yPCa

.

Proof:; The fact thatd* is bounded from above uniformly inL,l 0 as well as the result for
yP] r

1Ca follow immediately from~1! of Lemma 3.1.

Let us now consideryPCa . In this case, under the flip of the variableh(y), the value ofja
d*

changes only because the number of particles ofh varies by61. Notice that

UmL
t,lS ¹̃ymCa

h,l~h!S (
xPCa

int
gxD D 2d*U<k6e2mAL

because of translation invariance, the mixing condition and the assumption dist(Ca ,]1L)
>L1/2. Thus,

mL
t,l~@¹yja

d* #2!<mL
t,l~¹̃yja

d* ,¹̃yja
d* !1k7e2mAL

< (
zPCaø]r

1Ca

k8mL
t,l~@¹̃z¹̃yja

d* #2!1k7e2mAL, ~A5!

where we have used once more the Poincare` inequality for the Glauber dynamics.

We are left with the estimate of¹̃z¹̃yja
d* (h). Suppose for definiteness thath(z)5h(y)50,

call Na(h)5n and letl(s)5l(h,s) the chemical potential such thatmCa

h,l(h,s)(Na)5s with s

P@0,l 0
d#. In what follows we will assume without further notice that 0,n, 1

2 l 0
d . If instead, e.g.,

n50 then we will simply boundu¹̃z¹̃yja
d* u by Cl0

d for a suitable constantC.
Let us first considerzPCa . Then a brief computation shows that
                                                                                                                



s

in the
nd L.
N.C.

ersity
ctive
who

mmer

ics,’’

s and

nder a

ns:

’’

trong

-range

tion

dex.

’’

1423J. Math. Phys., Vol. 41, No. 3, March 2000 On the spectral gap of Kawasaki dynamics . . .

                    
u¹̃z¹̃yja
d* ~h!u<E

n

n11

dsE
s

s11

dtU d2

dt2
mCa

h,l~ t !S (
xPCa

int
gxDU<k9

1

n
. ~A6!

Let us now takezP] r
1Ca . Then Lemma 3.1 gives

u¹̃z¹̃yja~h!u<E
n

n11

dsU¹̃z

d

ds
mCa

h,l~s!S (
xPCa

int
gxDU< k10

n
. ~A7!

If we now remember that the densityr belongs to the interval (e,12e), standard large deviation

bounds formL
t,l together with~A6! and ~A7! imply that mL

t,l(@¹̃z¹̃yja
d* #2)<k11(e)(1/l 0

2d). Thus
the r.h.s. of~A5! is smaller thank12(1/l 0

d) and the lemma follows. h
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In this paper we study metastability and nucleation for a local version of the
two-dimensional lattice gas with Kawasaki dynamics at low temperature and low

density. Letb.0 be the inverse temperature and letL̄,Lb,Z2 be two finite

boxes. Particles perform independent random walks onLb\L̄ and insideL̄ feel
exclusion as well as a binding energyU.0 with particles at neighboring sites, i.e.,

insideL̄ the dynamics follows a Metropolis algorithm with an attractive lattice gas

Hamiltonian. The initial configuration is chosen such thatL̄ is empty, while a total

of ruLbu particles is distributed randomly overLb\L̄ with no exclusion. That is to
say, initially the system is in equilibrium with particle densityr conditioned onL̄

being empty. For largeb, the system in equilibrium hasL̄ fully occupied because
of the binding energy. We consider the case wherer5e2Db for some D
P(U,2U) and investigate how the transition from empty to full takes place under
the dynamics. In particular, we identify the size and shape of thecritical droplet
and the time of its creation in the limit asb→` for fixed L and
limb→`(1/b) loguLbu5`. In addition, we obtain some information on the typical
trajectory of the system prior to the creation of the critical droplet. The choiceD
P(U,2U) corresponds to the situation where the critical droplet has side length

l cP(1,̀ ), i.e., the system is metastable. The side length ofL̄ must be much larger
than l c and independent ofb, but is otherwise arbitrary. Because particles are
conservedunder Kawasaki dynamics, the analysis of metastability and nucleation is
more difficult than for Ising spins under Glauber dynamics. The key point is to

show that at low density the gas inLb\L̄ can be treated as a reservoir that creates

particles with rater at sites on the interior boundary ofL̄ and annihilates particles

with rate 1 at sites on the exterior boundary ofL̄. Once this approximation has
been achieved, the problem reduces to understanding thelocal metastable behavior

insideL̄ in the presence of a nonconservative boundary. The dynamics insideL̄ is
still conservative and this difficulty has to be handled vialocal geometric argu-
ments. Here it turns out that the Kawasaki dynamics has its own peculiarities. For
instance, rectangular droplets tend to become square through a movement of par-
ticlesalong the borderof the droplet. This is different from the behavior under the
Glauber dynamics, where subcritical rectangular droplets are attracted by the maxi-
mal square contained in the interior, while supercritical rectangular droplets tend to
grow uniformly in all directions~at least for not too long a time! without being
attracted by a square. ©2000 American Institute of Physics.
@S0022-2488~00!01503-6#
14240022-2488/2000/41(3)/1424/75/$17.00 © 2000 American Institute of Physics
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1. INTRODUCTION AND MAIN RESULTS

In this paper we study metastability forconservative~C! dynamics. In particular, we study th
transition to the liquid phase of a supersaturated vapor described by a local version of th
dimensional lattice gas with Kawasaki dynamics at low temperature and low density.

Metastability is a relevant phenomenon for thermodynamic systems close to a first
phase transition. Suppose the system is in a pure equilibrium phase, corresponding to a poin
phase diagram close to a first-order phase transition curve. Suppose we change the thermo
parameters to values associated with a different equilibrium phase, corresponding to a point
opposite side of the curve. Then, in certain experimental situations, instead of undergoing a
transition the system can remain in the old equilibrium, far from the new equilibrium, for a
time. This unstable old equilibrium, calledmetastable state, persists until an external perturbatio
or a spontaneous fluctuation leads the system to the stable new equilibrium.

Examples of metastable states are supersaturated vapor and solutions, supercooled liqu
ferromagnets with a magnetization opposite to the magnetic field.

In Sec. 1.1 we recall some of the main features of metastability by describing some
known results obtained for anonconservative~NC! dynamics, namely Ising spins with Glaube
dynamics. In Sec. 1.2 we introduce a conservative model, namely the lattice gas with Kaw
dynamics, and discuss the main differences between C and NC. In Sec. 1.3 we propose a
fied model, where the interaction and the exclusion only act in afinite box, and formulate our main
theorem establishing metastable behavior for this model. In Sec. 1.4 we give an outline of t
ideas needed to prove this theorem, which are further developed in the remainder of the pa
Sec. 1.5 we collect some additional notation that is used throughout the paper.

1.1. The non-conservative case

1.1.1. Grand-canonical ensemble.Let L,Z2 be a large finite box centered at the origi
With each sitexPL we associate a spin variables(x), assuming the values11 or 21. With each
configurationsPX5$21,11%L we associate an energy

H~s!52
J

2 (
~x,y!PL*

s~x!s~y!2
h

2 (
xPL

s~x!, ~1.1!

whereL* is the set of bonds between nearest-neighbor sites inL, J.0 is the pair interaction,
h.0 is the magnetic field, and we assume periodic boundary conditions onL. The grand-
canonical Gibbs measureassociated with the HamiltonianH, describing the equilibrium propertie
of the system, is given by

m~s!5
e2bH~s!

Z
~sPX !, ~1.2!

whereZ is the partition function

Z5 (
sPX

e2bH~s! ~1.3!

and b.0 is the inverse temperature. The qualification ‘‘grand-canonical’’ is used here be
h plays the role of a chemical potential and the total magnetization(xPLs(x) is not constant
underm.

It is well known that for everyJ, h, b.0 in the thermodynamic limitL→Z2 a unique Gibbs
state with a positive magnetization exists~see e.g., Ruelle1 and Sinai2!. We will be interested in
the regime where

L is large but finite, hP~0,2J!, b→`. ~1.4!

Let
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% 5the configuration withs~x!511 for all xPL,

*5the configuration withs~x!521 for all xPL. ~1.5!

In the regime~1.4! the Gibbs measure will be concentrated around%, which is the unique ground
state ofH. Clearly, * is only a local minimum ofH, and it is therefore naturally related t
metastability.

For l PN, let

E~ l !5H~s l 3 l !2H~* !, ~1.6!

where s l 3 l is the configuration in which the~11!-spins form anl 3 l square, centered at th
origin, in a sea of~21!-spins. Thene2bE( l ) is the ratio of the probabilities to sees l 3 l , respec-
tively, * under the equilibriumm. It follows from ~1.1! that E( l )54Jl2hl2, which is maximal
for l 52J/h. This means that, even though an arbitrarily small nonvanishing magnetic field
termines the phase, its effect is relevant only on sufficiently large space scales, namelyl> l c with

l c5 d2J

h e. ~1.7!

Only on such scales the volume energy dominates the surface energy and a larger sq
~11!-spins is energetically favorable over a smaller square~see Fig. 1!. The choicehP(0,2J)
corresponds tol cP(1,̀ ), i.e., to a nontrivial critical droplet size.

This describes the metastable behavior from astatic point of view.

1.1.2. Glauber dynamics.In order to describe the metastable behavior from adynamicpoint
of view, we introduce a discrete-time stochastic dynamics by means of a Markov chain onX with
transition probabilitiesP(s,s8) satisfying thereversibility condition

m~s!P~s,s8!5m~s8!P~s8,s! ;s,s8PX, ~1.8!

wherem is the Gibbs measure in~1.2!, and theergodicitycondition

;s,s8PX 'tPN such that Pt~s,s8!.0, ~1.9!

wherePt is thet-step transition kernel. From the ergodic theorem for reversible Markov chai
follows thatPt(s,s8) converges tom(s8) as t→` for all s, s8PX.

FIG. 1. The energy of anl 3 l droplet ~NC!.
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An explicit construction of a Markov chain satisfying the above conditions can be given
instance, by the Glauber–Metropolis algorithm, which is defined as follows. ForsPX and x
PL, let

sx~y!5 Hs~y! if xÞy
2s~y! if x5y ~1.10!

and choose as transition probabilities

sÞs8: P~s,s8!5H 0 if s8Þsx ;xPL

1

uLu
e2b@H~sx!2H~s!#1 if s85sx 'xPL

~1.11!

s5s8: P~s,s!512 (
s8Þs

P~s,s8!.

This dynamics randomly selects a site fromL and flips the spin at this site with a probability equ
to the Boltzmann weight associated with the positive part of the energy difference caused
flip. We emphasize that the dynamics given by~1.11! is NC, in the sense that the total magne
zation isnot a conserved quantity.

1.1.3. Metastability. Suppose we consider the typical paths of the Markov chain define
~1.11!, starting from*, in the regime~1.4!. We can use a computer simulation and perform a la
number of independent runs~see e.g., Tomita and Miyashita3!. What we see is that in the sea o
~21!-spins small droplets of~11!-spins appear, which however shrink and disappear before
are able to become large. Only after a very long time, and under the effect of a large fluctu
a large enough droplet appears that grows without hesitation.

In order to understand this behavior, let us compare the probabilities of shrinking, respec
growing for a connected cluster of~11!-spins in a sea of~21!-spins. First of all, each cluster o
~11!-spins becomes rectangular after a finite time~independent ofb! with a probability of order
one following a sequence of transitions withH(sx)2H(s),0. Indeed, the rectangle is the on
shape such that:~i! all ~11!-spins have<2 nearest-neighbor~21!-spins;~ii ! all ~21!-spins have
,2 nearest-neighbor~11!-spins. Hence for the rectangle there are no spins that can be fli
with H(sx)2H(s),0.

Starting from a rectangular cluster of~11!-spins, toremovea row or column of length l costs
( l 21)h:

@H(sx)2H(s)#15@h#15h for each of the sites except the last one.
@H(sx)2H(s)#15@h22J#150 for the last site.

On the other hand, toadd a row or column of length l costs 2J2h:
@H(sx)2H(s)#15@2J2h#152J2h for the first site.
@H(sx)2H(s)#15@2h#150 for each of the sites except the first one.

This means that if the minimal side length l of the rectangular cluster is such thath( l 21).2J
2h, i.e., l> l c with l c given by~1.7!, then it tends to grow, while ifl , l c then it tends to shrink.

The above heuristic argument has been developed in a rigorous way by Neve
Schonmann4,5 ~see also Schonmann6–8!. Let (s t) tPN0

be the Markov process onX with transition
probabilities as in~1.11!. Write Ps , Es for its probability law and expectation on path space giv
s05s. Let

ts5min$tPN0 :s t5s% ~1.12!

be the first hitting time of the configurations. The main result for metastability reads:

Theorem 1.13: (Neves and Schonmann4,5) Fix hP(0,2J), with 2J/h not integer, put lc
5 d2J/he, and suppose thatL is sufficiently large.
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~a! Let R be the set of configurations where the~11!-spins form a rectangle in a sea o
~21!-spins. For sPR, let l1(s)3 l 2(s) be the rectangle of~11!-spins in s, and let l(s)
5min$l1(s),l2(s)%. Then, for anysPR,

l ~s!, l c : lim
b→`

Ps~t*,t % !51,

~1.14!
l ~s!> l c : lim

b→`

Ps~t % ,t*!51.

~b! Let R* be the set of configurations where the~11!-spins form an lc3( l c21) or ( l c

21)3 l c rectangle with a protuberance attached anywhere to one of the sides of length lc . Let
u*,% 5max$t,t% :st5*% and t*,R* ,% 5min$t.u*,% :stPR* %. Then

lim
b→`

P*~t*,R* ,% ,t % !51. ~1.15!

~c! Let G5G(J,h)54Jlc2h( l c
22 l c11). Then

lim
b→`

P*~e~G2d!b,t % ,e~G1d!b!51 ;d.0. ~1.16!

R* is the set of critical droplets, i.e., the set of saddle points between* and%, andG(J,h) is the
formation energy of a critical droplet under the Hamiltonian in~1.1!. Theorem 1.13 not only
identifies the size and shape of critical droplets~see Fig. 2!, it also shows thatR* is the ‘‘gate’’
of the transition from* to % and it identifies the transition time up to logarithmic equivalence
b.

1.1.4 Nucleation.The problem of identifying the typical path of nucleation, i.e., the p
betweenu*,% and t % , corresponds to the problem of the typical first exit of (s t) tPN0

from a
suitable region in the state spaceX. This problem is discussed in detail in Freidlin and Wentze9

Chap. 6, Schonmann,7 Olivieri, and Scoppola,10,11 Catoni and Cerf12 under rather general hypoth
eses on the Markov chain. We recall here the main result for the case of the Glauber Ising

A sequence of configurationss1 ,...,sn(nPN) is calledstandardwhen

~1! the ~11!-spins ofs i form a rectangular dropletRi5 l 1,i3 l 2,i ;
~2! Ri 11\Ri is a single row or a single column;
~3! if min$l1,i ,l 2,i%, l c , thenu l 1,i2 l 2,i u<1;
~4! R15232 andRn5 % .

FIG. 2. The critical droplet~NC!.
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The configurations in such a sequence arestable, since they are local minima ofH, i.e., H(s i)
,mins8;si

H(s8), wheres8;s if and only if P(s,s8).0. With eachs i it is possible to associate
a permanenceset Qi ~a suitable ‘‘environment’’ ofs i : a generalized basin of attraction ofs i

w.r.t. the dynamics atb5`) and apermanence time Ti5Es i
tQ

i
c ~the mean exit time ofQi starting

from s i). In this way we obtain astandard sequence of permanence sets~see Olivieri and
Scoppola13 for more precise definitions!.

For each standard sequence of permanence sets and eache.0 we can introduce a tube o
trajectoriesTe,b(Q1 ,...,Qn), defined as the set of paths of configurations visiting the orde
sequenceQ1 ,...,Qn and spending in each setQi a time that falls in the interval@Tie

2eb,Tie
1eb#.

In terms of these quantities the main result for the path of nucleation reads:

Theorem 1.17: (Schonmann,7 Olivieri and Scoppola13) For everyk,e.0 there exists ab0

5b0(k,e) such that for allb.b0:

P*„~s t! tP@u*,%
,t

%
#PTe,b~Q1 ,...,Qn! for some standard

sequence of permanence setsQ1 ,...,Qn….12e2kb. ~1.18!

Theorem 1.17 shows that the transition from* to % takes place in a narrow tube around recta
gular droplets that are squares or quasi-squares when the droplet is subcritical.

The main idea behind Theorem 1.17~which is actually valid in a much more general conte!
is the following. The Markov chain (s t) tPN0

is in the Freidlin–Wentzell regime, i.e., its state
space is finite and its transition probabilities satisfy the following estimates:

e2@V~s,s8!1gb#b<P~s,s8!<e2@V~s,s8!2gb#b ;s;s8, ~1.19!

whereV(•,•) is a non-negative function, and limb→` gb50. Indeed, this property trivially fol-
lows from ~1.11!, becauseL is fixed andV(s,s8)5@H(s8)2H(s)#1 . With the help of~1.19! it
is standard to obtain estimates onEs i

tQ
i
c andPs i

(stQi
c5s8) ~see Freidlin and Wentzell,9 Chap. 6!.

The main steps in the proof of Theorem 1.17 are the following:

~1! One must solve a certain sequence of variational problems defined in terms of the e
function H. These variational problems areminimax problemsnecessary to find the minima
saddle point energy between pairs of statess, s8 defined by

H~s,s8!5 min
f:s→s8

max
hPf

H~h!, ~1.20!

where f:s→s8 denotes a path froms to s8. The output of this first step is a standa
sequence of configurations.

~2! One must associate with each stable configuration a permanence set and a permanen
This can be done by using a so-calledcycle decomposition: indeed, the permanence sets a
generalized cycles. Cycles can be defined in the Freidlin–Wetzell regime~see Freidlin and
Wentzell,9 Chap. 6, Olivieri and Scoppola,13 Trouvé14!. In the case of the Glauber Ising mod
cycles turn out to be connected sets of configurations with energy below a given value

1.2. The conservative case

1.2.1. Canonical ensemble.In the present paper we want to study the metastable behavi
conservative systems. To that end we consider a lattice gas model defined as follows. LetLb,Z2

be a large finite box centered at the origin, with periodic boundary conditions. With eax
PLb we associate an occupation variableh(x), assuming the values 0 or 1. A lattice gas co
figuration is denoted byhPX5$0,1%Lb. We consider the interaction defined by the followin
Hamiltonian:
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H~h!52U (
~x,y!PLb*

h~x!h~y!, ~1.21!

whereLb* denotes the set of bonds inLb , i.e., there is a binding energyU.0 between neigh-
boring occupied sites. ForA,Lb , we let

NA~h!5 (
xPA

h~x!. ~1.22!

We fix the particle density inLb at

1

uLbu (
xPLb

h~x!5r5e2Db, ~1.23!

whereD.0 is an activity parameter. This corresponds to a total number of particles inLb equal
to

N5ruLbu. ~1.24!

On the set of configurations withN particles

NN5$hPX: NLb
~h!5N%, ~1.25!

we define thecanonical Gibbs measure

nN~h!5
e2bH~h!1NN

~h!

ZN
~hPX !, ~1.26!

where

ZN5 (
hPNN

e2bH~h!. ~1.27!

We see from~1.23! and~1.24! that in order to have particles at all we must pickuLbu at least
exponentially large inb. This means that the regime whereLb is fixed, considered in the NC-cas
has no relevance here. We will in fact be interested in the regime

DP~U,2U !, b→`, lim
b→`

1

b
loguLbu5`, ~1.28!

which takes over the role that~1.4! played in the NC-case.

1.2.2. Kawasaki dynamics.We define a stochastic dynamics in terms of a continuous-t
Markov chain (h t) t>0 with state spaceNN , given by the following generator:

~Lf !~h!5 (
~x,y!PLb*

c~~x,y!,h!@ f ~h~x,y!!2 f ~h!#, ~1.29!

where

h~x,y!~z!5H h~z! if zÞx,y

h~x! if z5y

h~y! if z5x

~1.30!
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and

c~~x,y!,h!5e2b@H~h~x,y!!2H~h!#1. ~1.31!

It is easily verified that the reversibility condition holds:

nN~h!c~~x,y!,h!5nN~h~x,y!!c~~x,y!,h~x,y!!. ~1.32!

The Markov chain (h t) t>0 can be represented as follows. With each bondb5(x,y)PLb* we
associate a random clock ringing at exponential times. When the clock atb rings, we consider the
configuration with the particles swapped alongb. This configuration is accepted with a Metropol
rate given by the Boltzmann factor in~1.31!. More formally, for each bondb put tb,050 and let
tb,i ,i PN, be the sequence of random times whose increments are i.i.d. exponentially distr
with mean 1. SinceuLbu,`, we have

P~'b,b8,i ,i 8: tb,i5tb8,i 8!50. ~1.33!

Now, if t5tb,i for someb and i, then we define

h t5H h t2 with probability 12e2b@H~h t2
b

!2H~h t2!#1

h t2
b with probability e2b@H~h t2

b
!2H~h t2!#1 ,

~1.34!

while between ringing times the configuration stays fixed.

1.2.3. Metastability. In order to see that for the regime in~1.28! one can expect metastab
behavior, let us consider the grand-canonical Gibbs measure associated with the model, i

ml~h!5
e2bHl~h!

Zl
, ~1.35!

where

Hl~h!5H~h!2lNLb
~h!, ~1.36!

lPR is an activity parameter, and

Zl5 (
hPX

e2bHl~h!. ~1.37!

It turns out that ifl52D, then for the description of metastability the canonical Gibbs mea
is equivalent to the grand-canonical Gibbs measure in the limit of largeb, provided they are
suitably restricted in the following way.

Consider the lattice gas at low temperature at its condensation point. Let

r l~b!5
11m* ~b!

2
, rg~b!5

12m* ~b!

2
~1.38!

denote the density of the liquid, respectively, gas phase. Herem* (b) is the spontaneous magne
tization in the spin language@see~1.44!#. Since

rg~b!5e22Ub@11o~1!# ~b→`!, ~1.39!

we see thate22Ub can be identified as the density of the saturated gas at the condensation po~in
the sense of logarithmic equivalence inb!. Suppose that we slightly increase the density, avoid
however the appearance of droplets of the liquid phase. Then we get a supersaturated gas
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be described in terms of arestricted ensemble~see Lebowitz and Penrose15 and Capocaccia
Cassandro, and Olivieri16!, namely, the grand-canonical Gibbs measure restricted to a sui
subset of configurations, for instance, where all sufficiently large clusters are suppressed.
temperature this supersaturated gas will stay rarified, so that its metastable state can be d
as a pure gas phase with strong mixing properties.

In these conditions, let us make a rough calculation of the probability to see anl 3 l droplet of
occupied sites centered at the origin. Under the restricted ensemble, which we denote bym* , we
have

m* ~ l 3 l droplet!'r l 2e2l ~ l 21!Ub, ~1.40!

sincer is the probability to find a particle at a given site andU is the binding energy betwee
particles at neighboring sites. Substitutingr5e2Db we obtain

m* ~ l 3 l droplet!'e2bE~ l !, ~1.41!

where

E~ l !52Ul 2~2U2D!l 2. ~1.42!

The maximum ofE( l ) is at l 5U/(2U2D). This means that droplets with side lengthl , l c have
a probability decreasing in l and droplets with side lengthl> l c a probability increasing in l, where

l c5 d U

2U2D e ~1.43!

~see Fig. 3!. The choiceDP(U,2U) corresponds tol cP(1,̀ ), i.e., to a non-trivial critical droplet
size.

Another way of understanding our choice ofD is the following. In the grand-canonical Gibb
measure the configuration can be represented in terms of spin variables. Indeed, after we m
substitutionh(x)5@„11s(x)…/2#, wheres(x)P$21,11% is a spin variable, we can write

Hl~s!52U (
~x,y!PLb*

11s~x!

2

11s~y!

2
2l (

xPLb

11s~x!

2

52
U

4 (
~x,y!PLb*

s~x!s~y!2
2U1l

2 (
xPLb

s~x!1const. ~1.44!

FIG. 3. The energy of anl 3 l droplet ~C!.
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So if l52D, then we have a spin Hamiltonian like~1.1! with pair interactionJ5U/2 and
magnetic fieldh52U2D. By the discussion developed in Sec. 1.1.3, we therefore expect m
stable behavior with a critical droplet size given by~1.43! @compare with~1.7!#. The metastable
behavior for the NC-case in the spin language occurs whenhP(0,2J). This corresponds precisel
to DP(U,2U).

In physical terms,DP(0,U) corresponds to the unstable gas,D5U to the spinodal point,
DP(U,2U) to the metastable gas,D52U to the condensation point, andDP(2U,`) to the stable
gas.

The above describes the metastable behavior from astatic point of view. A comparison of
Glauber vs Kawasaki dynamics in the spin language is indicated in Fig. 4. In Fig. 4 the bo
dashed lines represent the ‘‘metastable branches.’’ In the description with the restricted en
there is a specific value ofh that corresponds to a canonical metastable state with magnetizatim.
The horizontal dashed line~labeled withK! represents a Kawasaki transition towards a sta
equilibrium with the same global magnetization but with a ‘‘segregation’’ of the two stable
phases in the equilibrium grand-canonical ensemble ath50: the saturated gas and the condens
gas~or liquid! at the condensation point.

1.2.4. Local description.Let us now consider the metastable behavior from adynamicpoint
of view and see what happens locally. As discussed in the NC-case, we want to compa
probabilities of growing, respectively, shrinking for a rectangular cluster of particles. Again
argument will be very rough. Suppose we pick a large finite boxL̄, centered at the origin, an
start with anl 3 l droplet insideL̄. Suppose that the effect onL̄ of the gas inLb\L̄ may be
described in terms of thecreation of new particles with rater5e2Db at sites on the interior
boundary ofL and theannihilationof particles with rate 1 at sites on the exterior boundary ofL̄.
In other words, suppose that insideL̄ the Kawasaki dynamics may be described by a Metrop
algorithm with energy given by thelocal grand-canonical Hamiltonian:

H̄~h!5H~h!1DNL̄~h!. ~1.45!

Then the energy barriers for adding, respectively, removing a row or column of length l are
in terms of the local saddles ofH̄ ~see Fig. 5!:

energy barrier for adding 52D2U,

energy barrier for removing 5~2U2D!~ l 22!12U,
~1.46!

and the balance of the two barriers indeed gives the critical sizel c in ~1.43!.
Let us briefly discuss the main difficulties arising in the attempt to develop the above

rigorously and underline the main differences with the NC-case. As we already remarked,
C-case the Markov chain (h t) t>0 is not in the Freidlin–Wentzell regime, so we need new ide

FIG. 4. Relaxation to equilibrium for Glauber~G! and Kawasaki~K! dynamics.
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The real difficulty is to find the correct way to treat the gas inLb\L̄. The heuristic discussion
given above was based on the assumption that the dynamics insideL̄ is effectively described by
the local grand-canonical HamiltonianH̄ in ~1.45!. However, unlike the NC-dynamics, th
C-dynamics is not really local:Particles must arrive from or return to the gas, which acts as

reservoir.It is therefore not possible to decouple the dynamics of the particles insideL̄ from the
dynamics of the gas inLb\L̄. This means that the gas must be controlled in some detail in o
to prove that the above assumption is indeed a good enough approximation.

A second consequence of the non-local behavior of the C-dynamics is that the argumen
in the NC-case, based on the stability of configurations and on the corresponding partitio
cycles of the state space~see Sec. 1.1.4!, is completely lost in the C-case. In other words, w
cannot define the stability of a configuration insideL̄, since it depends on the configuration
Lb\L̄. A different aspect of the same problem is the following:What is the mechanism by whic

the gas remains in or close to equilibrium, so that its description in terms of H¯ is correct, even
over long time intervals during which exchange of many particles occurs?

1.3. A simplified model

Unfortunately, we are unable to handle the model described in Sec. 1.2. Instead, in the p
paper we solve the problem of metastability for a simplified model. Namely, weremove the

interaction outside the boxL̄05L̄\]2L̄, with ]2L̄ the interior boundary ofL̄, i.e., we replace
the interaction energy~1.21! by

H~h!52U (
~x,y!PL̄0*

h~x!h~y!. ~1.47!

Moreover, we alsoremove the exclusion outsideL̄, i.e., the dynamics of the gas outsideL̄ is that
of independent random walks~IRWs!. These two simplifications will allow us to control the ga
and to overcome the difficulties outlined in Sec. 1.2.4.

Our state space is

FIG. 5. Local saddles ofH̄.
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NN5$hPX: NLb
~h!5N%, ~1.48!

where X5$0,1%L̄3N0
Lb\L̄ , NLb

(h)5SxPLb
h(x), and N5ruLbu ~with r5e2Db). The local

grand-canonical Hamiltonian is

H̄~h!5H~h!1DNL̄~h!, ~1.49!

whereH is the Hamiltonian in~1.47!. Throughout the remainder of this paper we assume tha
are in the regime~1.28!.

Our main theorem reads as follows. Let

j5$hPX: h~x!51 ;xPL̄0%,
~1.50!

h5$hPX: h~x!50 ;xPL̄%.

For h̄PX̄5$0,1%L̄, let nh̄ denote the canonical Gibbs measure conditioned on the configur
inside L̄ being h̄, i.e.,

nh̄~h!5
n~h!1I h̄

~h!

n~ I h̄!
~hPX !, ~1.51!

where I h̄5$hPX: huL̄5h̄%, with huL̄ the restriction ofh to L̄, and n is the canonical Gibbs

measure defined in~1.24!–~1.27!. For h̄PX̄5$0,1%L̄, write Pnh̄
,Enh̄

to denote the probability law
and expectation for the Markov process (h t) t>0 on X following the Kawasaki dynamics with
Hamiltonian ~1.47! given that h0 is chosen according tonh̄ . Write h̄ to denote the empty
configuration inL̄, i.e., h5I h̄ . For A,X, let

tA5min$t>0:h tPA% ~1.52!

be the first hitting time of the setA.

Theorem 1.53:Fix DP( 3
2 U,2U), with U/(2U2D) not integer, put lc5@U/(2U2D)#, and

suppose thatlimb→` (1/b)loguLb u5`.
~a! Let R̄,X̄ be the set of configurations insideL̄ where the particles form a square o

quasi-square contained inL̄0 . For h̄PR̄, let l1(h̄)3 l 2(h̄) with u l 1(h̄)2 l 2(h̄)u<1 be the square

or quasi-square of particles inh̄, and let l(h̄)5min$l1(h̄),l2(h̄)%. Then, for anyh̄PR̄,

l ~ h̄ !, l c : lim
b→`

Pnh̄
~th,tj!51

~1.54!
l ~ h̄ !> l c : lim

b→`

Pnh̄
~tj,th!51.

~b! Let C̄* be the set of configurations defined in~4.21! (see Fig. 6 for an example). Le

uh,j5max$t,tj : htPh% and th,C̄* ,j5min$t.uh,j : htPC̄* %. Then

lim
b→`

Pnh̄
~tj,C̄* ,j,tj!51. ~1.55!

~c! Let G5G(U,D)52U(2l c
224l c12)1D( l c

22 l c12). Then

lim
b→`

Pnh̄
~e~G2d!b,tj,e~G1d!b!51 ;d.0. ~1.56!
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Theorem 1.53 is the analogue of Theorem 1.13. There are, however, a number of imp
differences.

The mechanisms for the evolution of clusters under the Kawasaki dynamics and the G
dynamics are different. In particular, under the Kawasaki dynamics there is a movement o
ticlesalong the borderof a rectangular droplet, leading to a~more stable! square droplet on a time
scale much shorter than the one needed to grow or shrink~of ordereDb). Moreover, the subcriti-
cality vs supercriticality of a rectangle~i.e., its tendency to reachh beforej or vice versa! is
related to its area. In contrast, under the Glauber dynamics the subcriticality vs supercritica
related to its minimal side length: a subcritical rectangle is attracted by the maximal s
contained in its interior, while a supercritical rectangle does not manifest any tendency tow
square shape.

Let us comment on Theorem 1.53:
Theorem 1.53~a!: We only identify the subcriticality vs supercriticality of squares and qua

squares. We believe that it is possible to show that, starting from anl 13 l 2 rectangle that is not
square or quasi-square, the system forms a square or quasi-square with volume. l 1l 2 in a time of
ordereDb and from there proceeds as described in~1.54!.

Theorem 1.53~b!: C̄* is the set of critical droplets, i.e., the set of saddle points betweenh and
j, that form the ‘‘gate’’ of the transition fromh to j. Let R̄* ,X̄ be the set of configuration
insideL̄ where the particles form anl c3( l c21) or (l c21)3 l c quasi-square with a protuberanc
attached anywhere to one of the sides of lengthl c and with a free particle anywhere else, a
contained inL̄0 ~see Fig. 6!. We will see in Sec. 4.2 thatC̄* consists of all configurations that ar
‘‘U-equivalent’’ to some configuration inR̄* , i.e., have the same energy and can be connected
a path with a ‘‘maximal saddle U.’’ In particular,C̄* .R̄* , but the full set is more complex~see
Fig. 9 in Sec. 5.2!. This complexity comes from the fact that under the Kawasaki dynam
particles can move along the border of a rectangular droplet at a cost U.

Theorem 1.53~c!: G(U,D) is the energy of a critical droplet under the local grand-canon
Hamiltonian in~1.49!.

The critical configuration in Fig. 6 has the same shape as in the NC-case~see Fig. 2!, but with
an extra free particle. This particle signals that the ‘‘gate’’ of the transition fromh to j has been
passed and that the droplet starts to grow without hesitation.

It is certainly feasible to also prove the analogue of Theorem 1.17 for the simplified m
However, in the present paper we will not address this issue for reasons of space.

FIG. 6. A critical configuration~C!.
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Remarks:
~1! Our proof of Theorem 1.53 shows that the convergence in~1.54!–~1.56! is exponentially

fast in b.
~2! As explained above, the removal of the interaction outsideL̄0 and the exclusion outsideL̄

allows us to mathematically control the gas. From a physical point of view this approxim
seems very reasonable, becauseb→` corresponds to a low density limit (r5e2Db) in which the
gas essentially behaves like an ideal gas.

~3! In the simplified model we are focusing on thelocal aspects of metastability and nucle
ation: the removal of the interaction outsideL̄0 forces the critical droplet to appear insideL̄0 . In
the original model with interaction and exclusion throughoutLb , if lim inf b→`(1/b)loguLbu is
large enough, then the decay from the metastable to the stable state is driven by the forma
many droplets far away from the origin, which subsequently grow, coalesce and reachL̄0 . This is
a much harder problem, which we hope to tackle in the future~see Deghampour and Schonmann17

for a description of this behavior for Ising spins under Glauber dynamics!. Also, in the original
model the question of the growth of largesupercriticaldroplets comes up, which is absent for th
simplified model becauseL̄0 is finite. For Kawasaki dynamics this poses new problems comp
to Glauber dynamics, because large droplets deplete the gas.

1.4. Outline of the paper

Our strategy to prove Theorem 1.53 will be the following. In Sec. 2 we show that, unde
measurenh̄(h̄PX̄ ), particle densities in suitable regions aroundL̄ are not too far from their
expected value. With the help of large deviation estimates we show that these density pro
are preserved under the dynamics over very long time intervals with a very large probabil
Sec. 3 we use this fact to control the gas, essentially via a series ofmixing propositions.Once the
gas behavior is under control, we start to tackle the metastability problem insideL̄. This is done
in Secs. 6–7 viarecurrenceand reduction.Namely, in Sec. 6 we show that certain subsets
configurations of increasing ‘‘regularity’’

X1.X2.X3 ~1.57!

are visited by the process on certain basic time scales

T15e0b!T25eUb!T35eDb. ~1.58!

This fact leads us in Sec. 7 to define areduced Markov chainwith state spaceX3 , whose
transition probabilities we can estimate in a way that allows us to control the metastable beh
In essence, we show that this reduced chain is ‘‘equivalent’’ in its metastable behavior to alocal

Markov chainwith state spaceX̄5$0,1%L̄ that is reversible w.r.t. the local grand-canonical Ham
tonianH̄ defined in~1.49!. This approximation is what drives the argument. In Sec. 5 we study
local Markov chain using general ideas from renormalization. The dynamics insideL̄ is still
conservative, and this difficulty has to be handled vialocal geometric arguments, as explained in
Sec. 4. Here we also show that the Kawasaki dynamics has its own peculiarities, which nee
understood in order to describe the evolution of droplets. The proof of our main result in The
1.53 comes in Sec. 8. Here the fact that the full Markov chain isreversible w.r.t. the canonica
Gibbs measureplays an important role. In the Appendix we prove the equivalence of the cano
and the grand-canonical ensemble for the simplified model in the regime~1.28!. This equivalence
is used in some of the calculations.

1.5. Additional notation

Before we start the proof of Theorem 1.53, we collect some additional notation be
~1.47!–~1.52!.
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We usecapital letters for subsets ofZ2, calligraphic capital letters for subsets of the config
ration spaceX, and boldfacecapital letters for events involving the Markov process and
clocks. This style is used consistently in order to keep different types of quantities apart. W
the symbolst,T for time, n for the canonical Gibbs measure with particle densityr5e2Db @recall
~1.24!–~1.27!#, andk for a generic positive constant.

For A,Z2, the set of~nearest-neighbor! bonds inA is

A* 5$b5~x,y!: x,yPA%. ~1.59!

For A,X, the base ofA is

BASE~A!5min$A,Z2: hPA⇒~zPA ;z such thatzuA5huA!%, ~1.60!

i.e., the minimal set of sites on which the configuration determines the eventA. For A,Z2, the
interior resp. exterior boundary ofA are

]2A5$xPA: 'b5~x,y!: y¹A%,
~1.61!

]1A5$x¹A: 'b5~x,y!: yPA% .

For l PN, the box with side length l centered at the origin is denoted byL l . The side length
of L̄0 , the local box appearing in the HamiltonianH in ~1.47!, is l 0 . We assume thatl 0@ l c , the
critical droplet size defined in~1.43!.

All quantities that live onL̄ are written with a bar on top, in order to distinguish them fro
quantities that live onLb or other boxes. A functionb° f (b) is calledsuperexponentially smal
~SES! if

lim
b→`

1

b
log f ~b!52`. ~1.62!

We frequently round off large integers, in order to avoid a plethora of brackets liked• e.

2. LD-ESTIMATES FOR CLOCKS AND EQUILIBRIUM

In this section we formulate several large deviation estimates that will be needed later

2.1. LD-estimates for clocks

Let tb,i ,i PN, denote the ringing times of the clock at bondb. For t.0, let r b(t)5max$i
PN : tb,i<t% denote the number of rings prior to timet. For m,nPN, put r b(n,n1m)5r b(n
1m)2r b(n). For A,Z2, T>0 andd.0, define

RT
d~A!5$;bPA* ;n<T ;m>edb : r b~n,n1m!P@ 1

2 m, 3
2 m#%. ~2.1!

Proposition 2.2 below shows that clocks ring regularly over long time intervals. This propos
will be needed to switch from continuous to discrete time.

Proposition 2.2: For all A,Z2, T>0 and d.0:

P~RT
d~A!c!<TuA* uSES. ~2.3!

Proof: Write

P~RT
d~A!c!5$'bPA* 'n<T 'm>edb: r b~n,n1m!¹@ 1

2 m, 3
2 m#%

<TuA* u (
m>edb

P~r b0
~0,m!¹@ 1

2 m, 3
2 m# !, ~2.4!
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whereb0 is any given bond. We have

r b0
~0,m!, 1

2 m ⇒ tb0,d 1
2

me.m,

~2.5!
r b0

~0,m!. 3
2 m ⇒ tb0 ,d 3

2
me,m.

Since tb0 ,m5X11¯1Xm , with (Xi) i PN i.i.d. exponential random variables with mean 1,
standard LD-estimate gives that the summand of the last term in~2.4! is <e2km for somek
.0. Hence the claim follows. QED

2.2. LD-estimates for equilibrium

2.2.1. Hitting times.Proposition 2.6 below gives us an estimate on the hitting time, unde
dynamics starting in equilibrium, of sets that have a small probability under the equilib
measure.

Proposition 2.6. LetA,X and tA5 inf$s>0:hsPA%. Then, for any t>0,

Pn~tA,t !5 (
hPX

n~h!Ph~tA,t !<3tuBASE~A!* un~A!. ~2.7!

The same holds whenn is replaced bynB5n1B /n(B) for any B,X.
Proof: Fix A. For s>0, let

Fs5$hsPA,hu¹A;0<u,s%. ~2.8!

Fix e.0 and define

Rs5$some clock in BASE~A!* rings during @s,s1e!%. ~2.9!

Then we have

Pn~tA,t !5Pn~'sP@0,t !: Fs!5Pn~'sP@0,t !: FsùRs!1Pn~'sP@0,t !: FsùRs
c!. ~2.10!

The first term equalsPn(tA,t)@12e2euBASE(A)* u#, because clocks have no memory. The seco
term is bounded above by

Pn~'0, i<t/e: h i ePA!<
t

e
n~A!, ~2.11!

where we use thatPn(h i ePA) does not depend oni becausen is the equilibrium measure
Combining the latter two observations with~2.10! we get

Pn~tA,t !<tn~A!F1

e
eeuBASE~A!* uG . ~2.12!

Optimize overe, i.e., picke51/uBASE(A)* u, to arrive at the claim. QED

2.2.2. Recurrence times.Proposition 2.13 gives us control over the successive times at w
the dynamics hits a certain set. This proposition will be needed later on to establish recu
properties to certain special sets.

Proposition 2.13: Let T<T8<T9 and let A,B,X. Suppose that there exists an eve
ET,X @0,T) such that

~ i ! ET,$'tP@0,T!: h tPA%,
~2.14!

~ i i ! min
h0PB

Ph0
~ET!>p.0.
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Then

Pn~'tP@0,T9!: hs¹A ;sP@ t,t1T8!!<T9@3uBASE~Bc!* un~Bc!1~12p!T8/T#. ~2.15!

Proof: Pick any tP@0,T9). Split the time interval@ t,t1T8) into pieces of lengthT. By
~2.14! ~i!–~ii !, on the event$tBc>T9%, if at the beginning of a piece the process is not inA, then
it has a probability at most 12p not to enterA during this piece. Hence the probability not
enterA during the time interval@ t,t1T8) is at most (12p)T8/T by the Markov property. Conse
quently,

Pn~'tP@0,T9!: hs¹A ;sP@ t,t1T8!!<Pn~tBc,T9!1T9~12p!T8/T. ~2.16!

Now use Proposition 2.6 to get the claim.QED

2.2.3. Particle density in annuli aroundL̄. Propositions 2.17, 2.20, and 2.23 below give
control over the number of particles in annuli aroundL̄ with a side length that is close to the mea
particle distance on an exponential scale. In the proofs we compute the estimates us
grand-canonical Gibbs measurem on Z2 with particle densityr, rather than the canonical Gibb
measuren on Lb with total particle numberruLbu. However, by the equivalence of ensembl
proved in the Appendix, the difference is SES under our assumption that limb→`(1/b)loguLbu
5` ~see the remark at the end of the Appendix!.

Proposition 2.17: Letg.0 and l15e(1/2)(D1g)b. Then, for allg8P(0,g),

n~$hPX: NL l 1
\L̄0

~h!<eg8b%!5SES. ~2.18!

Proof: AbbreviateM5eg8b. Let A5$hPX: NL l 1
\L̄(h)<M %. Then

m~A!<eM (
hPX

m~h!e2NL l 1
\L̄~h!5eM@e2~12e21!r# uL l 1

\L̄u5eM~11o~1!!exp@2~12e21!egb#,

~2.19!

where we use thatm outsideL̄ places particles according to a Poisson random field with den
r, and we note thatuL l 1

u5egb/r. QED

Proposition 2.20: Letg.0 and l25e(1/2)(D2g)b. Then

n~$hPX: NL l 2
\L̄0

~h!> logb%!5SES. ~2.21!

Proof: AbbreviateM5 logb. Let A5$hPX: NL l 2
\L̄(h)>M %. Then

m~A!<e2gbM (
hPX

m~h!egbNL l 2
\L̄~h!5e2gbM@e~egb21!r# uL l 2

\L̄u5e2gbM~11o~1!!,

~2.22!

where we note thatuL l 2
u5e2gb/r. QED

Proposition 2.23: Letg.0 and l25e(1/2)(D2g)b. Then, for all nPN,

n~$hPX: N2n11L l 2
\2nL l 2

~h!>~2n1122n!2 logb%!5~SES!22n
. ~2.24!

Proof: Abbreviate M5 logb. For nPN, let An5$hPX: N2n11L l 2
\2nL l 2

(h)>(2n11

22n)2M %. The same estimate as in~2.22! gives
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m~An!<e2g~2n1122n!2b log b~11o~1!! ~nPN! ~2.25!

with the error term uniform inn. QED

Define

X 0
15$hPX: NL l 1

\L̄~h!.eg8b%,

X 0
25$hPX: NL l 2

\L̄~h!, logb%, ~2.26!

X 0
3,n5$hPX: N2n11L l 2

\2nL l 2

~h!,~2n1122n!2 logb%,

and put

X 05X 0
1ùX 0

2ù Hù
nPN

X 0
3,nJ . ~2.27!

Proposition 2.28: LetAT5$h tPX 0 ;tP@0,T)%. Then

Pn~AT
c !5SES for all T<eCb with C arbitrarily large. ~2.29!

Proof: Estimate

Pn~AT
c !>Pn~t~X 0

1!c,T!1Pn~t~X 0
2!c,T!1 (

nPN
Pn~t~X 0

3,n!c,T! ~2.30!

and use Proposition 2.6 in combination with Propositions 2.17, 2.20, and 2.23. Here not
uBASE((X 0

1)c)* u, uBASE((X 0
2)c)* u and 222nuBASE((X 0

3,n)c)* u grow only exponentially fast
with b. QED

Proposition 2.28 will be crucial later on. Namely, it says that over the exponentially
intervals we are considering for the metastable behavior we may as well assume that the
(h t) t>0 never leavesX0 . The setX0 consists of those configurations where the gas outsideL̄ is
‘‘close to equilibrium.’’

3. LD-ESTIMATES FOR INDEPENDENT RANDOM WALKS

In this section we formulate several large deviation estimates that involve hitting time
particles performing independent random walks. We do the estimates pretending that the r
walks live onZ2 instead ofLb . However, this only causes an error that is SES because o
assumption that limb→`(1/b)loguLbu5`.

3.1. LD-estimates for a single random walk

3.1.1. Hitting times. Let

~j t! t>0 ~3.1!

be a simple random walk onZ2 with jump rate 1. LetPx denote its law on path space givenj0

5x. Let tL̄5min$t>0:jtPL̄%. Proposition 3.2 below gives us control overtL̄ when the random
walk starts fromxP]1L̄.

Proposition 3.2: There existk.0 and t0.0 such that, for all t.t0,

min
xP]1L̄

Px~tL̄.t !>
k

log t
. ~3.3!
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Proof: We begin by proving the analogous estimate for discrete time.
~1! Let (jn)nPN0

be a simple random walk onZ2. Let tL̄5min$n.0:jnPL̄% ~which does not
includen50), and put

un
L̄5max$0<m<n: jmPL̄%. ~3.4!

Pick xPL̄ and write

15 (
m50

n

Px~un
L̄5m!5 (

m50

n

(
yP]2L̄

Px~jm5y!Py~tL̄.n2m!. ~3.5!

Split the sum overm into two parts: 0<m<n@12(1/logn)# and the rest. The first part can b
bounded above by

u]2L̄uF11 (
m51

n@12~1/log n!#
k1

m G max
yP]2L̄

PyS tL̄.
n

lognD , ~3.6!

where we use that

max
zPZ2

P0~jm5z!<
k1

m
;m>1 ~3.7!

~see Spitzer18 Sec. 7!. The second part can be bounded above by

u]2L̄u (
m5n@12~1/log n!#11

n
k1

m
. ~3.8!

Combining the two bounds in~3.6! and ~3.8! with ~3.5!, we obtain, forn large enough,

max
yP]2L̄

PyS tL̄.
n

lognD>
k2

logn
. ~3.9!

~2! Since any two sites in]2L̄ can be connected by a path outsideL̄ of length at most
2(l 012), it follows that, uniformly inn,

min
yP]2L̄

PyS tL̄.
n

lognD>k3 max
yP]2L̄

PyS tL̄.
n

logn
2k4D . ~3.10!

Together with~3.9! this gives

min
xP]2L̄

PxS tL̄.
n

lognD>
k5

logn
, ~3.11!

which implies~3.3! for discrete time after replacingn by n logn.
~3! The extension to continuous time is trivial, via a standard LD-estimate on the clock o

random walk. QED

The bound in Proposition 3.2 decays very slowly witht because SRW onZ2 is only margin-
ally recurrent. This slow decay will be useful later on in estimates of probabilities of var
events where we want to keep particles away fromL̄.

3.1.2. Trapping times:Let A be a rectangular subset ofZ2. Let
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~ ĵ t
A! t>0 ~3.12!

be a simple random walk onZ2\A with jump rate 1 with the property that when it hits]1A it gets
‘‘trapped,’’ in the sense that a step from]1A to ]11A, the exterior boundary ofAø]1A, occurs
at ratee2Ub. Proposition 3.13 below gives us control over the time this random walk spends
trap ]1A starting fromxP]11A.

Proposition 3.13: There existk5k(A).0 andb0.0 such that, for alld.0, all b.b0 and
all t P@eUb,eCb# with U,C,`,

min
xP]11A

Px~ ĵ t
AP]1A!>

1

t
e~U2d!b

k

2~Cb!2 . ~3.14!

Proof: Again, we first prove the analogous estimate for discrete time. The proof use
following asymptotic result for simple random walk (jn)nPN0

on Z2. Let t05min$n.0:jn50%.
Then there exists ak1.0 such that

Px~t05n!;
k1

n log2 n
~;xPZ2,n→`! ~3.15!

~see Spitzer18 Sec. 7!.
~1! From ~3.15! it is easily deduced that for all rectangularA,Z2 there exists ak5k(A)

.0 such that

min
xP]11A

Px~t]1A5n!>
k

n log2 n
~n→`!, ~3.16!

wheret]1A5min$n.0:jnP]1A%.
~2! Let (ĵn

A)nPN0
be the discrete-time version of~3.12!. Let n05e(U2d)b!n. Then, for x

P]11A,

Px~ ĵn
AP]1A!>~11o~1!!Px~n2n0,t]1A<n!. ~3.17!

Here we throw away all the first hits of]1A at or prior to timen2n0 and require the random wal
to stay trapped for a time at leastn0 . The latter costs not more than (12e2Ub)n051
2e2db1o(b). But, by ~3.16!, we have

min
xP]11A

Px~n2n0,t]1A<n!> (
m5n2n011

n
k

m log2 m
;

kn0

n log2 n
~n→`!, ~3.18!

and so for allnP@eUb,eCb# andb sufficiently large,

min
xP]11A

Px~ ĵnP]1A!>
1

n
e~U2d!b

k

2~Cb!2 . ~3.19!

~3! The extension to continuous time is again trivial, via a standard LD-estimate on the
of the random walk. QED

Proposition 3.13 will be used to control the time that particles arriving from the gas
attached to a droplet insideL̄.

3.2. Mixing propositions for independent random walks

In the following propositions,X0 is the set of configurations defined in~2.26!–~2.27!.
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For h0PX0 , let C1
g(h0) denote the event that no particle inh0ù(Lb\L̄) entersL̄ within

time T5e@D2(g/2)#b and all of them are outsideL l 2
at timeT. We recall thatl 25e(1/2)(D2g)b.

Proposition 3.20: For all g.0 there exist k.0 and b0.0 such that for all b
.b0 : minh0PX0

Ph0
(C1

g(h0))>(k/b) log b.

Proof: Because outsideL̄ particles perform independent simple random walks@see~3.1!#, we
have

min
h0PX0

Ph0
~C1

h~h0!!>@ min
xP]1L̄

Px~tL̄.T,jT¹L l 2
!# log b, ~3.21!

where we use thatNL l 2
\L̄(h0)< logb for all h0PX0 , and that the probability between squa

brackets is minimal inxPL l 2
\L̄ whenxP]1L̄. We have

Px~tL̄.T,jT¹L l 2
!>Px~tL̄.T!2Px~jTPL l 2

!. ~3.22!

But, by Proposition 3.2, we know that

min
xP]1L̄

Px~tL̄.T!>
k1

logT
;

k1

S D2
g

2Db

, ~3.23!

while ~3.7! gives

max
]1L̄

Px~jTPL l 2
!<

k2uL l 2
u

T
5k2e2gb. ~3.24!

Insert ~3.23!–~3.24! into ~3.22! to get the claim. QED

For h0PX0 , let C2
g,d(h0) denote the event that no particle inh0ù(Z2\L l 2

) entersL̄ within
time T5e(D2d)b.

Proposition 3.25: For alld.g.0: minh0PX0
Ph0

(C2
g,d(h0))512SES.

Proof: We have

Ph0
~C2

g,d~h0!!5 )
xPZ2\L l 2

Px~tL̄.T!h0~x!5 )
xPZ2\L l 2

@12Px~tL̄<T!#h0~x!. ~3.26!

But, by Brownian approximation, we have

Px~tL̄<T!<exp@2kuxu2/T#!1 ~3.27!

uniformly in xPZ2\L l 2
. Hence, forb sufficiently large,

Ph0
~C2

g,d~h0!!>expH 2
1

2 (
xPZ2\L l 2

h0~x!exp@2kuxu2/T#J . ~3.28!

The sum in the exponent can be estimated from above by

(
n50

`

N2n11L l 2
\2nL l 2

~h0!exp@2k 1
2 22ne~d2g!b#. ~3.29!

Hence the claim follows via~2.26!. QED
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For h0PX0 , t1>e(D22g)b andx1P]2L̄, let

C3
g~h0 ;t1 ;x1! ~3.30!

denote the event that some particle fromh0ù(Z2\L̄) entersL̄ during the time interval@ t1 ,t1

11) at site x1 without having enteredL̄ during the time interval@ t12T1 ,t1) with T1

5e(D22g)b.

Proposition 3.31: For allg.0 there existk.0 and b0.0 such that for allb.b0 :

min
h0PX0

Ph0
~C3

g~h0 ;t1 ;x1!!<ke2~D22g!b logb ~3.32!

uniformly in T1<t1<T5eCb and x1P]2L̄, with C arbitrarily large.
Proof: Let us look at the particle configuration at timet12T1 . By Proposition 2.28 we know

that with a probability 12SES this configuration falls inX0 . Hence, using the Markov property a
time t12T1 , we get

max
h0PX0

Ph0
~C3

g~h0 ;t1 ;x1!!5SES1 max
h0PX0

(
hPX0

Ph0
~h t12T1

5h!Ph0
~C3

g~h0 ;t1 ;x1!uh t12T1
5h!.

~3.33!

But, by Proposition 3.25 and~3.7!, we have

max
hPX0

Ph0
~C3

g~h0 ;t1 ;x1!uh t12T1
5h!

<SES1 max
hPX0

(
xPL l 2

\L̄

h~x!Px~jT1
5x1!

<SES1
k1

T1
max

hPX0

NL l 2
\L̄~h!<SES1k1e2~D22g!b logb. ~3.34!

Substitution into~3.33! gives the claim. QED

Propositions 3.20, 3.25, and 3.31 will be needed to control the dynamics of the gas outsL̄.

4. LOCAL MARKOV CHAIN: DEFINITIONS AND SADDLE POINTS

In this section we introduce the local Markov chain that approximates our dynamics insidL̄,
and we study its geometric properties. In Sec. 5 we will study the recurrence properties o
Markov chain, which will be needed in Secs. 6–7 to study the metastable behavior of th
Markov chain.

4.1. Definition of the local Markov chain

We denote byb5(x,y) an orientedbond, i.e., anorderedpair of nearest-neighbor sites, an
define

]* L̄out5$b5~x,y!: xPL̄,y¹L̄%,
~4.1!

]* L̄ in5$b5~x,y!: x¹L̄,yPL̄%,

and]* L̄5]* L̄outø]* L̄ in. Two configurationsh̄,h̄8PX̄5$0,1%L̄ with h̄Þh̄8 are calledcommu-

nicating statesif there exists a bondbPL̄* ø]* L̄ such thath̄85Tbh̄, whereTbh̄ is the con-
figuration obtained fromh̄ as follows:
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•bPL̄* : Tbh̄ denotes the configuration obtained fromh̄ by interchanging particles alongb;
•bP]* L̄out ~i.e., b is exiting from L̄):

Tbh̄~z!5H h̄~z! ;zÞx,

0 z5x;
~4.2!

•bP]* L̄ in ~i.e., b is enteringL̄):

Tbh̄~z!5H h̄~z! ;zÞy,

1 z5y.
~4.3!

Definition 4.4: The local Markov chain(h̄ t) t>0 is the Markov chain onX̄5$0,1%L̄ with
generator

~Lf !~ h̄ !5 (
bPL̄* ø]* L̄

c~b,h̄ !@ f ~Tbh̄ !2 f ~ h̄ !#, ~4.5!

where H̄ is defined in~1.49! and

c~b,h̄ !5e2b@H̄~Tbh̄ !2H̄~ h̄ !#1. ~4.6!

Note that

bP]* L̄ in: c~b,h̄ !5e2Db,
~4.7!

bP]* L̄out: c~b,h̄ !51.

These rates do not depend onh̄ because there is no interaction between particles inL̄\L̄0 and
particles inL̄0 .

In a standard way the above dynamics can be realized with the help of Poisson cloc
study the transitions of the local Markov chain, we consider the discrete-time version th
obtained from the continuous-time version by looking at the process when some clo
L̄* ø]* L̄ rings. We denote byP̄(h̄,h̄8) the corresponding transition probabilities, i.e.,

P̄~ h̄,h̄8!5Ph̄~ h̄ t̄1
5h̄8! ~4.8!

with t̄1 the first ringing time of a clock inL̄* ø]* L̄. It is easy to verify that the stochasti
dynamics defined by~4.5!–~4.6! and ~4.8! is reversible w.r.t.H̄. In particular, the transition
probabilitiesP(h̄,h̄8) can be written in the form

P̄~ h̄,h̄8!5q~ h̄,h̄8!e2b@H̄~ h̄8!2H̄~ h̄ !#1, ~4.9!

whereq(h̄,h̄8) is an irreducible symmetric Markov kernel living on the set of communicat
states.

4.2. Geometric definitions

Let us recall some definitions from Olivieri and Scoppola.10

~1! A path f is a sequencef5f1 ,...,fn(nPN,f iPX̄ ) with P̄(f i ,f i 11).0 for i 51,...,n
21. We writef: h̄→h̄8 to denote a path fromh̄ to h̄8. A setA,X̄ with uAu.1 is connectedif
and only if ;h̄,h̄8PA 'f: h̄→h̄8 such thatf,A . Given A,X̄, we define itsboundary
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]A5$z̄¹A: P̄~ z̄,h̄ !.0%. ~4.10!

~2! The set ofminimaof the HamiltonianH̄ in A is

F~A!5$h̄PA: H̄~ h̄ !5min
z̄PA

H̄~ z̄ !%. ~4.11!

The communication heightbetweenh̄,h̄8PX̄ is

H̄~ h̄,h̄8!5 min
f:h̄→h̄8

max
z̄Pf

H̄~ z̄ !. ~4.12!

The set of configurations realizing theminimal saddlesbetweenh̄,h̄8PX̄ is

S~ h̄,h̄8!5$z̄PX̄: 'f:h̄→h̄8, f{ z̄: max
j̄Pf

H̄~ j̄ !5H̄~ z̄,h̄8!%. ~4.13!

Given two setsA,B,X̄, put

H̄~A,B!5 min
h̄PA,h̄8PB

H̄~ h̄,h̄8! ~4.14!

and

S~A,B!5$S~ h̄,h̄8!: h̄PA, h̄8PB, H̄~ h̄,h̄8!5H̄~A,B!%. ~4.15!

~3! Next we introduce a geometric description of the configurations in terms of cont
Given a configurationh̄PX̄, consider the setC(h̄),R2 defined as the union of the 131 closed
squares centered at the occupied sites ofh̄ in L̄0 . The maximal connected componen
C1 ,...,Cm(mPN) of C(h̄) are calledclustersof h̄. The centers of the unit squares of a clusterC
form a*-cluster~i.e., are within distance&!. The boundary of a clusterC is a polygon connecting

sites on the dual lattice (Z2)* 5Z21( 1
2,

1
2). At each site an even number of bonds of this polyg

meet: 0, 2 or 4. When this number is 4, we use some convention to ‘‘round off’’ the corners~e.g.,
by connecting the northeast and the southwest sides in a unit square!: in this way we obtain a
further decomposition of the boundary of a cluster into a setḡ1 ,...,ḡk of closed self-avoiding
contours~see e.g., Gallavotti19!.

~4! Let h̄ be such thath̄uL̄0
gives rise to a single contourḡ5ḡ(h̄). Define

n~ h̄ !5NL̄\L̄0
~ h̄ !. ~4.16!

In this case

H̄~ h̄ !5E~ ḡ !1Dn~ h̄ !, ~4.17!

where

E~ ḡ !5~22U1D!^ḡ&1
U

2
uḡu, ~4.18!

with ^ḡ& the area enclosed byḡ and uḡu the perimeter ofḡ. Indeed, it is easy to check tha
2^ḡ&2 1

2 uḡu is the number of nearest-neighbor bonds enclosed byḡ. ~Note that, since there is no
interaction insideL̄\L̄0 nor betweenL̄0 andL̄\L̄0 , for the computation ofE(ḡ), the ‘‘energy’’
of ḡ, everything is as if we had empty boundary conditions outsideL̄0 .)
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~5! We denote byR(ḡ) the rectangle circumscribing the contourḡ, and byl 1(ḡ),l 2(ḡ) the
lengths of its sides. We use the conventionl 1(ḡ)< l 2(ḡ) and collect the rectangles in equivalen
classes modulo translations and rotations. We denote byRl 1,l 2

the set of configurations whos
single contour is anl 13 l 2 rectangle. We callmonotonea contour ḡ such that its perimete
coincides with that of the circumscribed rectangle:uḡu52(l 1(ḡ)1 l 2(ḡ)). ~See Fig. 7.!

~6! Given integersl 1 ,l 2>2 with 0< l 22 l 1<1, we define:
•Dl 1,l 2

the set of configurations where the occupied sites form anl 13 l 2 square or quasi-squar

contained inL̄0 plus one free particle, i.e., a particle inL̄ not touching the rectangle.
•D̂l 1,l 2

2 the set of configurations obtained from a configuration inDl 1 ,l 2
by attaching the free

particle to one of the sides.
•Dl 1,l 2

2 the set of configurations given by

Dl 1 ,l 2
2 5$h̄8PX̄: 'h̄PD̂l 1 ,l 2

2 : H̄~ h̄,h̄8!<H̄~ h̄ !1U,H̄~ h̄ !5H̄~ h̄8!%. ~4.19!

In other words,Dl 1 ,l 2
2 is the set of configurationsh̄8 that can be connected to someh̄PD̂l 1 ,l 2

2 by

pathsf5f1,... ,fn(nPN) such that

f15h̄8, fn5h̄, max
1< i ,n

H̄~f i !<H̄~ h̄ !1U, H̄~ h̄ !5H̄~ h̄8!. ~4.20!

It is not hard to see thatDl 1 ,l 2
2 contains only configurations giving rise to a single monoto

contourḡ contained inL̄0 such that

^ḡ&5 l 1l 211;
R(ḡ) has side lengthsl 1(ḡ)< l 111 andl 2(ḡ)< l 211;
^ḡ& contains a square or quasi-square with side lengthsl 122,l 222,

i.e., all configurations that can be obtained fromD̂l 1 ,l 2
2 by moving particles along the border of th

droplet ~see Fig. 9 in Sec. 5.2!.
•Dl 1 ,l 2

0 the set of configurations obtained from a configuration inDl 2 ,l 2
2 by adding a free

particle.
•Dl 1 ,l 2

1 the set of configurations obtained from a configuration inDl 1 ,l 2
0 by attaching the free

particle to an external corner of the contour inDl 1 ,l 2
2 , i.e., an empty site with two occupie

neighbors. In particular,Dl 1 ,l 2
1 contains the set of configurations where the occupied sites form

l 13 l 2 square or quasi-square contained inL̄0 plus a 132 protuberance attached to one of t
sides. Note that the latter set can be obtained fromD̂l 1 ,l 2

2 by attaching a 131 square to the 1

31 protuberance, in an external corner.
~7! A particularly important set of configurations, which play the role of ‘‘critical configu

tions,’’ is given by

FIG. 7. A monotone contour.
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C̄* 5Dl c21,l c
0 ~4.21!

with

l c5 d U

2U2D e. ~4.22!

Recall that in the simple static analysis developed in Sec. 1.2.3 this value came out as the
droplet size. We denote byG5G(U,D) the energy of the critical configuration

G5H̄~ C̄* !52U~2l c
224l c12!1D~ l c

22 l c12!. ~4.23!

We recall thath̄ denotes the configuration whereL̄ is empty andj̄ the set of configurations
whereL̄0 is full.

4.3. Identification of saddle points

The following proposition is the key result of this section. It identifies the saddle points fo
transitions between rectangular droplets for the local Markov chain@compare with~1.46! and Fig.
5 in Sec. 1.2#.

Proposition 4.24: (i) For2< l , l c :

S~Rl ,l ,ø ~ l 1 ,l 2!Þ~ l ,l !Rl 1 ,l 2
!5S~Rl ,l ,Rl 21,l !5Dl 21,l

0 ,

H̄~Dl 21,l
0 !2H̄~Rl ,l !5~2U2D!~ l 22!12U,

~4.25!
S~Rl ,l 11 ,ø ~ l 1 ,l 2!Þ~ l ,l 11!Rl 1 ,l 2

!5S~Rl ,l 11 ,Rl ,l !5Dl ,l
0 ,

H̄~Dl ,l
0 !2H̄~Rl ,l 11!5~2U2D!~ l 22!12U.

(ii) For l > l c :

S~Rl ,l ,ø ~ l 1 ,l 2!Þ~ l ,l !Rl 1 ,l 2
!5S~Rl ,l ,Rl ,l 11!5Dl ,l

0 ,

H̄~Dl ,l
0 !2H̄~Rl ,l !52D2U,

~4.26!
S~Rl ,l 11 ,ø ~ l 1 ,l 2!Þ~ l ,l 11!Rl 1 ,l 2

!5S~Rl ,l 11 ,Rl 11,l 11!5Dl ,l 11
0 ,

H̄~Dl ,l 11
0 !2H̄~Rl ,l 11!52D2U.

(iii)

S~h̄,j̄ !5Dl c21,l c
0 ,

~4.27!
H̄~h̄,j̄ !2H̄~h̄ !5G.

Proof: Let

Nn5H h̄PX̄ : NL̄~ h̄ !5 (
xPL̄

h̄~x!5nJ . ~4.28!

We consider the foliation ofX̄ into manifolds of a constant number of particles:
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X̄5øn50
uL̄u Nn . ~4.29!

We will consider the setsNl 2,Nl ( l 11) for l>2 and investigate some of their geometric properti
Our proof will be based on the following lemma identifying certain sets of minima, mini
saddles and communication heights. After this lemma has been proved we give the proof
proposition.

Lemma 4.30: (i) For l>2:

F~N~ l 21!l !5Rl 21,l , F~Nl 2!5Rl ,l . ~4.31!

(ii) For l >2:

S~Rl 21,l ,Nl 2!5S~N~ l 21!l ,Nl 2!5Dl 21,l
0 ,

H̄~Rl 21,l ,Nl 2!5H̄~Dl 21,l
0 !5H̄~Dl 21,l

2 !1D,
~4.32!

S~Rl ,l ,Nl ~ l 11!!5S~Nl 2,Nl ~ l 11!!5Dl ,l
0 ,

H̄~Rl ,l ,Nl ~ l 11!!5H̄~Dl ,l
0 !5H̄~Dl ,l

2 !1D.

Proof: The proof uses isoperimetric inequalities.
~i! Fix l>2 and considern5( l 21)l or n5 l 2. Given anh̄PNn , the energy decreases if w

translate the clusters ofh̄ to join them into a single cluster contained inL̄0 . It further decreases
if we rearrange the 131 squares to get a single contourḡ ~i.e., if we fill the internal ‘‘holes’’ with
external 131 squares!. Since under these operations the total number of particles remains
to minimize the energy inNn we just have to find the contour~s! ḡ with minimal perimeteruḡu
among the ones witĥḡ&5n. It is clear that, starting from a contourḡ8, by rearranging the 1
31 squares inside we can construct a monotone contourḡ with R(ḡ)#R(ḡ8) without increasing
the energy. The energy associated with a monotone contourḡ with ^ḡ&5n is

E~ ḡ !5~22U1D!n1U~ l 1~ ḡ !1 l 2~ ḡ !!. ~4.33!

To minimize E(ḡ) in Nn , we have to find the rectangle with minimal perimeter among th
whose area is>n. From this the claim easily follows.

~ii ! Fix l>2.
~1! We first prove the claim when starting fromRl 21,l . We define a set of pathsf: Rl 21,l

→Nl 2 as follows.
Let

fup5fup~ l 21,l !: Rl 21,l→Dl 21,l
1 ~4.34!

be defined by

fup5f1 ,...,f2 ,...,f3 ,...,f4 ,...,f5 ~4.35!

with

f1PRl 21,l , f2PDl 21,l , f3PDl 21,l
2 , f4PDl 21,l

0 , f5PDl 21,l
1 , ~4.36!

where f usesf1 ,f2 ,f3 ,f4 ,f5 as a ‘‘skeleton’’ and the successive configurations inf are
obtained in the obvious way by successively adding or moving a suitable particle~see 6 in Sec.
4.2!. The maximal saddle infup is reached inDl 21,l

0 and is of heightH̄(Dl 21,l
0 )5H̄(Dl 21,l

2 )
1D.

Next, it is easy to see that there is a path
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fdown5fdown~ l 21,l !: Dl 21,l
1 →Nl 2 ~4.37!

such that maxiH̄(fi
down,f i 11

down),H(Dl 21,l
2 )1D. Indeed, to obtain this path it suffices to succe

sively introduce intoL̄ one new particle and fill up all the corners of the contours inDl 21,l
1 until

the arrival inRl ,l,Nl 2. Each time we add a particle, we have first an increase of energy b
amountD, but as soon as we put this particle into a corner of the cluster inL̄0 we have a decreas
of energy by an amount 2U.D.

Thus, for eachl>2, the path (fup( l 21,l ),fdown( l 21,l )) is a candidate to realize the min
max betweenN( l 21)l andNl 2.

~2! When starting fromRl ,l we proceed exactly in the same way to construct a p
(fup( l ,l ),fdown( l ,l )).

~3! From the proof of~i! it is immediate to see that

F~N~ l 21!l \Rl 21,l !5 min
h̄PN~ l 21!l \Rl 21,l

H̄~ h̄ !5H̄~Rl 21,l !1U. ~4.38!

From this it follows that for any path passing throughN( l 21)l \Rl 21,l , once it meetsN( l 21)l 11 it
gets an energy>H̄(Rl 21,l)1U1D, which is strictly larger than

max
i 51,...,5

H̄~f i !5H̄~Dl 21,l
0 !5H̄~Rl 21,l !12D2U. ~4.39!

This, in turn, implies that any path realizing the minimax betweenN( l 21)l andN( l 21)l 11 has to
pass throughRl 21,l . Moreover, any path realizing the minimax betweenRl 21,l andNl 2 has to
enterN( l 21)l 11 throughDl 21,l , which corresponds to the saddle betweenRl 21,l andN( l 21)l 11 .
~Similarly, any path realizing the minimax betweenNl 2 andNl ( l 11) has to pass throughR( l ,l and
Dl ,l .)

~4! At this point it is clear that paths realizing the minimax betweenRl 21,l andNl 2 also have
to pass throughD̂l 21,l

2 . Indeed, any move~with a change in energy! starting fromDl 21,l and
different from attaching the free particle to the rectangle would involve an energy incremen
leastU, i.e., large enough to pass over the saddle in the path (fup( l 21,l ),fdown( l 21,l )) because
U.D2U. Similarly, paths realizing the minimax betweenNl 2 andNl ( l 11) have to pass through
D̂l ,l

2 .
~5! Let n5( l 21)l 11, and consider a monotone contourḡ with ^ḡ&5n. The area of its

circumscribed rectangle has to be at least (l 21)(l 11), with a minimal perimeter of 4l . Simi-
larly, for n5 l 211 the area of a circumscribed rectangle has to be at leastl ( l 11), with a minimal
perimeter of 4l 12. From this it easily follows thatF(N( l 21)l 11) coincides with the set of con
figurations containing a single monotone contour inscribed in anl 3 l or an (l 21)3( l 11) rect-
angle and containing (l 21)l 11 particles. Similarly,F(Nl 211) coincides with the set of configu
rations containing a single monotone contour inscribed in anl 3( l 11) rectangle and containing
l 211 particles. In particular,

F~Nl ~ l 21!11!.Dl 21,l
2 , F~Nl 211!.Dl ,l

2 . ~4.40!

From this the claim follows. QED

We can now complete the proof of Proposition 4.24. Parts~i! and ~ii ! follow from Lemma
4.30. To prove part~ii !, note that since every pathf: h̄→j̄ has to cross all the manifold
Nl 2,Nl ( l 11) , the global saddleS(h̄→j̄) cannot be lower in energy than the sadd
S(N( l 21)l ,Nl 2), S(Nl 2,N( l 11)l), l>2. By direct inspection we see that the saddle w
maximal energy isS(N( l c21)l c

,Nl
c
2)5Dl c21,l c

0 . On the other hand, using a comparison w

the path (fup( l c21,l c),f
down( l c21,l c)) we see that H̄(S(h̄→j̄)) cannot exceed

H̄(S(N( l c21)l c
,Nl

c
2)). From this it follows thatS(h̄→j̄)5Dl c21,l c

0 . QED
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Remarks:
~1! We emphasize that, contrary to what happens under the nonconservative Glauber d

ics where the global saddle is ‘‘S(*,% )5D̂l c21,l c
2 , ’ ’ under the Kawasaki dynamics with creatio

and annihilation at]* L̄ the global saddle is more complex and does not correspond to a s

geometric shape~modulo translations and rotations!. Indeed, after reachingD̂l c21,l c
2 , we can,

before we add a next particle whose cost isD, perform all possible sequences of moves descri
by paths satisfying~4.20! and remain below the height of the global saddle, which
H̄(Rl c21,l c

)12D2U ~see Fig. 9 in Sec. 5.2 for an example of possible moves!. This global saddle

is reached when we add the next particle to the configuration containing a cluster inDl c21,l c
2 @with

energyH̄(Rl c21,l c
)1D2U], giving us a configuration inC̄* 5Dl c21,l c

0 . This is the set that appear

in Theorem 1.53 and that plays the role of the set of critical configurations.
~2! A typical h̄PDl 1 ,l 2

2 can in fact be quite asymmetric, i.e., quite different from square

quasi-square. However, there is always a path fromh̄ to a suitable square or quasi-square alo
which the energy does not exceedH̄(h̄). Thus, under the Kawasaki dynamics the squares
quasi-squares act as attractors on a time scaleeDb, which is much shorter than the time needed
grow or shrink.

~3! The specification that we included in the geometric characterization ofDl 1 ,l 2
2 , Dl 1 ,l 2

0 , and

Dl 1 ,l 2
1 is related to the fact that the above-mentioned moves can only be performed on the e

boundary of the rectangles circumscribing the clusters inD̂l 1 ,l 2
2 .

5. LOCAL MARKOV CHAIN: RECURRENCE

In this section we analyze the local Markov chain (h̄ t) t>0 on L̄ that was defined in Sec. 4.1
Since this Markov chain is finite, it falls in the Freidlin–Wentzel regime@recall ~1.19!# and the
analysis of metastability can in principle be carried out by using the general method in Olivie
Scoppola.10 The result obtained in Proposition 4.24 in Sec. 4.3, i.e., the solution of a ce
sequence of minimax problems, is the ‘‘model dependent’’ part of this method.

It is more convenient to use the renormalization procedure developed in Scoppola,20 i.e., an
analysis on suitably separated time scales, since it can be extended to the full Markov
(h t) t>0 . This procedure is based on the following idea:

~1! Group the configurations inX̄ into a sequence of subsets of configurations of increas

regularity:ÉX̄ .X̄1.X̄2.X̄3.••• .
~2! Prove a recurrence property of the Markov chain to these sets on an increasing sequ

time scales:T1!T2!T3!••• .
~3! Construct a sequence of Markov chains by observing the original Markov chain when it e

these sets, and estimate the corresponding transition probabilities.

Actually, we will not follow the renormalization procedure in full detail. Rather, we will ma
a construction that is adapted to our specific situation. In our case we need three

X̄1.X̄2.X̄3 . In Sec. 5.1 we define these sets, in Sec. 5.2 we give a geometric description o
configurations, and in Sec. 5.3 we prove the recurrence properties to these sets on the tim
T15e0b, T25eUb, T35eDb. Section 5.4 contains some results on so-called cycles.

The results obtained in this section will be extended to the full Markov chain (h t) t>0 in Secs.
6–7, and will be used in Sec. 8 to prove our main result in Theorem 1.53.

5.1. Definition of the recurrence sets

We begin by defining a notion of reduction of a configuration that will be needed to co
the dynamics.

Definition 5.1: A configurationh̄PX̄ is 0-REDUCIBLE if there exists a sequence of bon

b1 ,...,bkPL̄* ø]* L̄ (kPN) such that:
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~a! H̄(h̄ i 11)<H̄(h̄ i) for all 0< i ,k,

~b! H̄(h̄k),H̄(h̄),

whereh̄ i5Tbi
Tbi 21

¯Tb1
h̄, i>0.

Remarks:

~1! We can always extract a subsequence of bonds with lengthk<t05uL̄* ø]* L̄u2, again
satisfying~a! and ~b!, such thath̄ iÞh̄ j for all iÞ j . This is becauset0 is an upper bound for the

maximal number of moves insideL̄ needed to change anyh̄PX̄ into any h̄8PX̄.
~2! By definition, if h̄ is 0-reducible, then there exists a finite pathf: h̄→h̄8 with h̄8 being

a configuration that is not 0-reducible such thatH̄(f i 11)<H̄(f i) for all i. In fact, to construct
such a path it suffices to glue together the paths given by the definition of 0-reducible confi
tions until we arrive at a configuration that is not 0-reducible. The number of 0-reductions
essary to arrive at a configuration that is not 0-reducible is finite, because with each 0-red

the energyH̄ decreases by at leastU while H̄ is bounded from below.

Definition 5.2: The configurationsh̄,h̄8 are 0-EQUIVALENT if there exists a sequence o

bonds b1 ,...,bkPL̄* ø]* L̄ (kPN) such that H̄(h̄ i 11)5H̄(h̄ i) for all 0< i ,k and h̄k5h̄8.

Definition 5.3: A set of configurationsC,X̄ is a CYCLE if it is connected and satisfies

H̄~F~]C!!.max
h̄PC

H̄~ h̄ !, ~5.4!

whereF(]C) is the set of minima of H¯ in the boundary] C of C @recall ~4.10!–~4.11!#.

Next we generalize the idea of reduction as follows.

Definition 5.5: A V-PATH is a finite connected sequencef1 ,...,fk (kPN) of configurations
or sets (!) of configurations such that:

~a! If f i5C for some1, i ,k is a set of configurations, then C is a cycle with H̄(F(]C))

2H̄(F(C))<V, whereF~C! is the set of minima of H¯ in C, and f i 11 , f i 21 are single
configurations such thatf i 11PF(]C) and f i 21PC.

~b! If f i , f i 11 for some 1< i ,k are single configurations, then q(f i ,f i 11).0 and

H̄(f i 11)<H̄(f i) @recall ~4.9!#.

The reader should think of aV-path as a ‘‘downhill cascade’’ in which a sequence of ‘‘lakes’’
depth at mostV can be present.

Definition 5.6: A configurationh̄8 is V-REACHABLE from h̄ if there exists a V-path from
h̄ to h̄8. Two configurationsh̄ and h̄8 are V-EQUIVALENT if h̄ is V-reachable fromh̄8 and
vice versa.

Definition 5.7: A configurationh̄ is V-REDUCIBLE if there exists a configurationh̄8 that is

V-reachable fromh̄ such that H(h̄8),H̄(h̄).

With these notions we define the following sets:

X̄15$h̄PX̄: h̄ is not 0-reducible%,

X̄25$h̄PX̄: h̄ is not U-reducible%, ~5.8!

X̄35$h̄PX̄: h̄ is not D-reducible%.

We note that if V,V8, then a configuration that isV-reducible is alsoV8-reducible, so

X̄3,X̄2,X̄1 . We also define the following sets:
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E1~ h̄ !5$h̄8PX̄1 : h̄8 is 0-equivalent toh̄% ~ h̄PX̄1!,

E2~ h̄ !5$h̄PX̄2 : h̄8 is U-equivalent to h̄% ~ h̄PX̄2!, ~5.9!

E3~ h̄ !5$h̄PX̄3 : h̄8 is D-equivalent to h̄% ~ h̄PX̄3!.

5.2. Geometric description of the recurrence sets

Next we introduce some geometric objects that will be needed to characterize theX̄i ’s.

Definition 5.10:

~a! For xPL̄0 , let nn(x)5$yPL̄0 :ux2yu51% be the set of nearest-neighbor sites of x inL̄0 .

~b! A FREE PARTICLEis a site xPh̄ùL̄0 such that(yPnn(x)h̄(y)50.

~c! A PROTUBERANCEis a site xPh̄ùL̄0 such that(yPnn(x)h̄(y)51.

~d! For h̄PX̄, the EXTERNAL BOUNDARY ]h̄ is the set of occupied sites inh̄ that can be

connected to the ringL̄\L̄0 via a path along unoccupied sites inh̄.

~e! For h̄PX̄, an EXTERNAL CORNER is a site xP” h̄ such that there exist y,y8
P]h̄ùnn(x), yÞy8 ~see Fig. 8!.

~f! R( l h ,l v ,dn ,de ,ds ,dw) denotes theRECTANGLE in L̄0 of horizontal side length lh and

vertical side length lv , such that its north side is a distance dn from the north side ofL̄, and
so on.

~g! Rl 1 ,l 2
denotes a rectangle of side lengths l1 ,l 2 anywhere in the boxL̄, including all trans-

lations and rotations (with the convention l1< l 2). A rectangle Rl 1 ,l 2
is called aSQUAREor

a QUASI-SQUAREif l 1>2 and 0< l 22 l 1<1.
~h! L denotes the set ofLACUNARY SQUARES or LACUNARY QUASI-SQUARES i.e.,

configurations with an external boundary given by a square or quasi-square and with
such that the configuration is not U-reducible.

The following proposition is our main structural identification of the setsX̄1 , X̄2 , X̄3 .

Proposition 5.11:

~i! Configurations inX̄1 have no free particles nor free holes. Ifh̄ is connected with a

monotone contour, thenh̄PX̄1 .

~ii ! Configurations inX̄2 have no protuberances. Ifh̄ is connected with a monotone conto
obtained from a square or a quasi-square by removing m sites with0<m< l 122, then

h̄PX̄2 .

FIG. 8. Two examples of external corners.
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~iii ! Configurations inX̄3 can be characterized as follows:h̄PX̄3 ; if h̄PX̄3\$h̄%, then either
h̄ is a square or quasi-square, orh̄ is a lacunary square or quasi-square with side leng
. l 0/3. Moreover, ifmax$dn ,ds%.lv and max$de,dw%.lh , then h̄5R( l h ,l v ,dn ,de ,ds ,dw).

Remarks:

~1! The characterization ofX̄1 , X̄2 in Proposition 5.11~i!–~ii ! is not complete. Only those prop

erties are given that are needed to derive the complete characterization ofX̄3 in Proposition
5.11 ~iii !.

~2! The configurations inL need a separate treatment~see the end of Sec. 7.7!.
~3! It follows from the proof of Proposition 5.11~iii ! given below that ifE3(h̄) corresponds to a

‘‘small’’ cluster, i.e., a cluster of side length< l 0/3, then anyh̄8PE3(h̄) can be obtained from

h̄ by means of a rigid motion. For this reason we will denote the elements inE3(h̄)ùX̄3

corresponding to ‘‘small’’ clusters byRl 1 ,l 2
~with l 1>2 and 0< l 22 l 1<1).

To prove Proposition 5.11 we need the following lemma, which will also serve us late

For h̄PX̄ andVP$U,D,2U%, define

C̄h̄
V5$h̄8PX̄: H̄~ h̄,h̄8!2H̄~ h̄ !,V%. ~5.12!

The structure of this set is characterized as follows.

Lemma 5.13:

(i) If h̄PX̄1 , then C̄h̄
U is a cycle, h̄PF( C̄h̄

U) and C̄h̄
UùX̄15E1(h̄).

(ii) If h̄PX̄2 , then C̄h̄
D is a cycle, h̄PF( C̄h̄

D) and C̄h̄
DùX̄25E2(h̄). Moreover,

C̄h̄
D\F( C̄h̄

D),X̄ \X̄1 .

(iii) If h̄PX̄3 , then C̄ h̄
2U is a cycle, h̄PF( C̄ h̄

2U) and C̄ h̄
2UùX̄35E3(h̄). Moreover,

C̄ h̄
2U\F(C h̄

2U),X̄\X̄2 .

Proof: ~i! If h̄PX̄1 , thenh̄PF( C̄h̄
U). Indeed, if there existsh̄8P C̄h̄

U with H̄(h̄8),H̄(h̄), then

h̄ is 0-reducible, which contradictsh̄PX̄1 . Next, let D̄h̄
U be the maximal connected compone

containingh̄ of configurationsh̄8 such thatH̄(h̄8),H̄(h̄)1U. By definition, D̄h̄
U is a cycle. It

turns out thatC̄h̄
U5D̄h̄

U . Indeed, if h̄8P C̄h̄
U , then H̄(h̄8)<H̄(h̄8,h̄), so h̄8 is in the connected

component because the trajectory realizing the minimax gives the connection. Converselyh̄8

PD̄h̄
U , then there exists a pathf: h̄→h̄8 such that maxi H̄(fi)2H̄(h̄),U, while by the minimax

definition we have H̄(h̄,h̄8)<maxi H̄(fi). Hence H̄(h̄,h̄8)2H̄(h̄),U. Finally, if h̄8

P C̄h̄
UùX̄1 , then it is straightforward to show thath̄8PF( C̄h̄

U), via the same argument that wa

used to show thath̄PF( C̄h̄
U). This impliesH̄(h̄)5H̄(h̄8) and h̄8PE1(h̄).

~ii !–~iii ! The proof of the first part of~ii ! and~iii ! can be done in the same way. The seco

part of ~ii ! follows from the following remark. Ifh̄8PX̄1 , thenH̄(h̄8,h̄9)>H̄(h̄8)1U for all h̄9

with H̄(h̄9),H̄(h̄8). On the other hand, ifh̄8¹F( C̄h̄
D), then H̄(h̄8)5H̄(h̄)1U. But then

H̄(h̄8,h̄9)>H̄(h̄8)1U5H̄(h̄)12U, and soh̄8¹ C̄h̄
D . A similar argument works for the secon

part of ~iii !. QED

Proof of Proposition 5.11.~i! If h̄ has a free particle or a free hole, thenh̄ is obviously

0-reducible, i.e.,h̄¹X̄1 . If h̄ is a connected configuration with a monotone contour, then th
exist other configurations that are 0-equivalent toh̄ only if h̄ has at least one protuberance. In th
case all the configurations that are 0-equivalent toh̄ can be obtained fromh̄ by moving the
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protuberance along the side of the cluster. ThereforeH̄(Tbh̄)2H̄(h̄)>U for all bPL̄* ø]* L̄
such thatTbh̄¹E1(h̄).

~ii ! We divide the proof into three steps.
~1! If h̄ has a protuberance, then it is obvious thath̄ is U-reducible. To prove the secon

claim, we first show that ifh̄ is a connected configuration with a monotone contour obtained

removing 0<m< l 122 particles fromRl 1 ,l 2
, then to reach a configurationh̄8 with H̄(h̄8)

,H̄(h̄) we have to pass over a saddle

H̄~ h̄,h̄8!>H̄~ h̄ !1D. ~5.14!

The second claim follows from this inequality. Indeed, we only have to note that if there ex

U-pathf: h̄→h̄8, thenH̄(h̄,h̄8)<maxi maxzPfi
H̄(z)<H̄(h̄)1U, which contradicts~5.14!. Hence

h̄PX̄2 .
~2! Equation~5.14! says that@recall ~5.12!#

h̄PF~ C̄h̄
D!. ~5.15!

Let us use the description of the energyH̄ in terms of contours that was introduced in Sec. 4.2. F

h̄8PL̄ with contourḡ85ḡ8(h̄8) we have

H̄~ h̄8!5~22U1D!n08~ ḡ8!1
U

2
uḡ8u1n8~ ḡ8!D, ~5.16!

where n085n08(ḡ8) is the number of particles inL̄0 ~i.e., the area inside the contour! and n8

5n8(ḡ8) is the number of particles in the ringL̄\L̄0 . Our configurationh̄ hasl 1l 22 l 112<n0

< l 1l 2 , uḡu52(l 11 l 2) andn50.
~3! Denote by CR(n0) the set of all configurationsh̄8 such thatn085n0 and such that the

circumscribed rectangle is contained in the square or quasi-squareRl 1 ,l 2
. To prove~5.15! we first

note that

h̄PF~ C̄h̄
DùCR~n0!!. ~5.17!

Indeed, suppose that there exists a configurationh̄8P C̄h̄
DùCR(n0) with uḡ8u,uḡu. Let Rl

18 ,l
28

8 be

the rectangle circumscribingh̄8. ThenRl
18 ,l

28
8 'Rl 1 ,l 2

, and we have

l 18< l 1 , l 28< l 2 , l 181 l 28, l 11 l 2 , l 18l 28>n05 l 1l 22m ~5.18!

with 0<m< l 122. But l 18, l 1 implies l 18l 28<( l 121)l 2,n0 and l 28, l 2 implies l 18l 28< l 1( l 221)
,n0 , which contradicts~5.18!. The final step in the proof is to show that

C̄h̄
DùCR~n0!5 C̄h̄

D . ~5.19!

But this is an immediate consequence of the fact that in order to exit from CR(n0) the process has

to reach an energy>H̄(h̄)1D.

~iii ! We divide the proof into five steps. Namely, for everyh̄PX̄3 we show that

~1! ]h̄ is the boundary of a union of rectangles;
~2! these rectangles are squares or quasi-squares;
~3! squares or quasi-squares can move;
~4! ]h̄ is the boundary of a single square or quasi-square;
~5! a ‘‘small’’ square or quasi-square is not lacunary.
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~1! Suppose thath̄ has an external cornerx. Thenh̄ is D-reducible, because a particle can

created at costD at ]2L̄ and can be moved inside the external corner atx, which gives us aD-path

~recall from Lemma 5.13 thatC̄h̄
D is a cycle!. The only case in which]h̄ has no external corner

is when]h̄ is the boundary of a union of rectangles at distances.2 ~recall Fig. 8!.

~2! Suppose thath̄5R( l h ,l v ,dn ,de ,ds ,dw) with l h2 l v.1. We want to show thath̄¹X̄3 .
Also now we can find aD-reduction ofh̄ ~recall Definition 5.5: to each of the pictures in Fig.
in fact associate the full correspondingU-cycle, which is not drawn!. This type of movement is
studied in more detail in Peixoto.21

~3! By using the same kind of path as in Fig. 9, we can move the square or quasi-s
around. TheD-path achieving an upward movement is shown in Fig. 10.

~4! Since, by~3!, squares and quasi-squares can move around, any configuration with
than one square or quasi-square can beD-reduced by moving the pieces together.

FIG. 9. Movement of particles along the border: 533115434.

FIG. 10. Upward movement of a 333 square.
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~5! Again by ~3!, for lacunary squares or quasi-squares with max$dn ,ds%.lv and max$de,dw%
.lh there is sufficient room to move them up so as to create an opening for the internal stru
Indeed, Fig. 10 shows a motion of particles along the boundary where the holes in the clus
not move. QED

5.3. Recurrence

Let T15e0b,T25eUb,T35eDb, and lett X̄i
be the first hitting time of the local Markov chai

(h̄ t) t>0 to the setX̄i ( i 51,2,3). The following proposition is our main recurrence result, giv
an upper bound ont X̄i

.

Proposition 5.20:~‘‘ X̄i-recurrence’’! For everyd.0 there existsb0.0 such that, for allb
.b0,

max
h̄PX\X̄i

Ph̄~t X̄i
.Tie

db!5SES ~ i 51,2,3!. ~5.21!

Proof: We want to apply Proposition 2.13. Our task therefore is to define, for eai

51,2,3, an eventET
i ,X̄ @0,T) with T5Tie

(d/2)b such that

ET
i ,$'tP@0,T#: h̄ tPX̄i%,

~5.22!
min

h̄0PX̄
Ph̄0

~ET
i !>p.0

with p not exponentially small inb.
~1! As noted in Remark~2! following Definition 5.1:

For eachh̄PX̄ \X̄1 there exists a finite 0-pathf:h̄→h̄8PX̄1 .

For eachh̄PX̄ \X̄2 there exists a finiteU-pathf:h̄→h̄8PX̄2 .

For eachh̄PX̄ \X̄3 there exists a finiteD-pathf:h̄→h̄8PX̄3 .

If f is a 0-path, i.e.,H̄(f i 11)<H̄(f i) for all i, then for everyd.0 there existb0.0 anda
5a(d).0 such that, for allb.b0,

Ph̄~ h̄s5fs;sP@0,T1# !>a. ~5.23!

~2! We want to have a similar statement forU-paths andD-paths. To that end we make th
following observation, valid for cyclesC.

Proposition 5.24: (i) For everyd.0 there existb0.0 andk.0 such that, for allb.b0 and
h̄PC,

Ph̄~t]C,e@H~F~]C!!2H~F~C!!1d#b)>12e2kb. ~5.25!

(ii) There existd0.0, b0.0 and k.0 such that, for allb.b0 and h̄,h̄8PC,

Ph̄~th̄8,t]C ,th̄8,e@H~F~]C!!2H~F~C!!2d0#b!>12e2kb. ~5.26!

(iii) For every d.0 there existsb0.0 such that, for allb.b0 and h̄PC,h̄8P]C,

Ph̄~ h̄t]C5h̄8!>e2@H~ h̄8!2H~F~]C!!1d#b. ~5.27!

Proof: See Olivieri and Scoppola10 Proposition 3.7. QED
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It follows from Proposition 5.24~i! and ~iii ! that for everyd.0 and everyU-path f there
exist b0.0 anda5a(d).0 such that, for allb.b0,

Ph̄~ h̄s5f ;sP@0,T2edb!!>a ~5.28!

and similarly forD-paths withT2 replaced byT3 . So we have indeed generalized~5.23!.

~3! To conclude the proof of Proposition 5.20 we now pickh̄PX̄ \X̄i and take forET
i the

event where the process (h̄ t) t>0 follows the 0, U, D-path from h̄ to X̄i within time T

5Tie
(d/2)b. By ~5.23! and~5.28!, we have minh̄PX \Xi

Ph̄(ET
i )>e2d8b with d8,d/2. Hence Propo-

sition 2.13 gives

max
h̄PX̄ \X̄i

Ph̄~t X̄i
.Tie

db!<~12e2d8b!e~d/2!b
5SES. ~5.29!

QED

5.4. Additional results on cycles

In this section we collect some results on cycles and their relation to the recurrence seX̄i .
These results will be needed in Sec. 7.

Lemma 5.30: (i) Ifh̄1 ,h̄2PX̄1 with H̄(h̄1),H̄(h̄2), then H̄(h̄1 ,h̄2)2H̄(h̄2)>U.

(ii) If h̄1 ,h̄2PX̄2 with H̄(h̄1),H̄(h̄2), then H̄(h̄1 ,h̄2)2H̄(h̄2)>D.

Proof: Note that the two smallest positive values forH̄(h̄1 ,h̄2)2H̄(h̄2) areU andD.

~i! If h̄1 ,h̄2PX̄1 with H̄(h̄1),H̄(h̄2), thenh̄1¹ C̄h̄2

U because otherwiseh̄2 were 0-reducible.

But thenH̄(h̄1 ,h̄2)2H̄(h̄2)>U.

~ii ! If h̄1 ,h̄2PX̄2 with H̄(h̄1),H̄(h̄2), then h̄1¹ C̄h̄2

D because otherwiseh̄2 were

U-reducible. But thenH̄(h̄1 ,h̄2)2H̄(h̄2)>D. QED

For the lacunary squares or quasi-squares inX̄3 @recall Remark~2! in Sec. 5.2# we can prove
the following.

Lemma 5.31: Leth̄PL ~i.e., h̄ is a lacunary square or quasi-square!. Then there exists a

h̄8PX̄3\L with H̄(h̄8),H̄(h̄) such that there exists a2U-path fromh̄ to h̄8.
Proof: We define an external corner of the internal structure of an element ofL as a sitex

PL̄0 such thath(x)50,SyPnn(x)h(y)52 and such that there exists a path along occupied site
h̄ from x to the external boundary]h̄. The following 2U-path goes fromh̄ to h̄8 and reduces the
energy:

•f05 C̄ h̄
2U ;

•f1 ,...,f t1
is the sequence of configurations in which a hole that is an external corner o

internal structure ofh̄ goes to]h̄;

•f t111 ,...,f t2
is a D-path going toX̄3 ;

•f t2115 C̄ h̄t2

2U ;

•f t212 ,...,f t3
is the sequence of configurations in which a hole that is an external corn

the internal structure ofh̄ t2
goes to]h̄ t2

;
•and so on, until the complete removal of the internal structure. QED

For h̄PX̄3\L, h̄5Rl 1 ,l 2
, define

C̄h̄5$h̄8PX̄: H̄~ h̄8,h̄ !2H̄~ h̄ !,r ~ h̄ !1D%, ~5.32!

wherer (h̄) is defined by
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l 1, l c : r ~ h̄ !5~2U2D!~ l 121!,

l 1> l c : r ~ h̄ !5D2U. ~5.33!

The structure of this set is characterized as follows~compare with Lemma 5.13!.

Lemma 5.34: (i)C̄h̄ is the maximal connected component containingh̄ of configurationsh̄8

such that H̄(h̄8),H̄(h̄)1r (h̄)1D.

(ii) If h̄8P C̄h̄ù(X̄3\L), then h̄8PE3(h̄) and H̄(h̄8)5H̄(h̄).

(iii) If h̄8P C̄h̄ùL, then C̄h̄8
2U

, C̄h̄ and H̄(h̄8).H̄(h̄).

(iv) h̄PF( C̄h̄).

Proof: ~i! Let D̄h̄ be the maximal connected component containingh̄ of configurationsh̄8

such thatH̄(h̄8),H̄(h̄)1r (h̄)1D. If h̄8P C̄h̄ , thenh̄8PD̄h̄ . Indeed,H̄(h̄8)<H̄(h̄8,h̄) andh̄8
is in the connected component because the trajectory realizing the minimax gives the conn

Conversely, if h̄8PD̄h̄ , then there exists a pathf:h̄→h̄8 such that maxi H̄(fi)2H̄(h̄),r(h̄)

1D, while by the minimax definition we haveH̄(h̄,h̄8)<maxi H̄(fi). HenceH̄(h̄,h̄8)2H̄(h̄)
,r (h̄)1D.

~ii ! If h̄,h̄8PX̄3\L, then by the saddle point results in Proposition 4.24~i!–~ii ! we have

H̄(h̄,h̄8)2H̄(h̄)>r (h̄)1D.

~iii ! If h̄8P C̄h̄ùL, thenH̄(h̄8)12U2H̄(h̄),r (h̄)1D by Lemma 5.13. HenceC̄ h̄8
2U

, C̄h̄ and

every 2U-path starting fromh̄8 is contained inC̄h̄ . But then, by Lemma 5.31, there exists

configurationh̄9PX̄3\L that is an element ofC̄h̄ . By ~ii !, this is possible only ifh̄9PE3(h̄), and

in this caseH̄(h̄8).H̄(h̄9)5H̄(h̄).

~iv! Suppose that there existsh̄8P C̄h̄ such thatH̄(h̄8),H̄(h̄). If h̄8¹X̄3 , then there exists

h̄9PX̄3 with H̄(h̄9),H̄(h̄8) andH̄(h̄8,h̄9)2H̄(h̄8)<D. If h̄9PX̄3\L, then this contradicts~ii !

If h̄9PL, then by ~iii ! we have H̄(h̄9).H̄(h̄), which contradicts the inequalityH̄(h̄9)

,H̄(h̄8),H̄(h̄) coming from the reduction. QED

Remark:Throughout Secs. 4–5,D is a parameter in (U,2U) and l c(D)5 dU/(2U2D) e. If D
andD8 are such thatl c(D)5 l c(D8) and if we consider the two local Markov chains based on

valuesD, resp.,D8 for the creation rate along]* L̄ in @recall ~4.1!#, then all the results obtained i
Secs. 4–5 for these two Markov chains are equal up to a correction where in all the exp
containingD an error term of orderuD82Du is added. This observation is needed in Sec. 7, wh
we will need to perturbD. It also explains why in Theorem 1.53 we need to assume
U/(2U2D) is not integer.

6. FULL MARKOV CHAIN: RECURRENCE

In this section we extend the definitions ofX̄1.X̄2.X̄3 , which were used in Sec. 5 as th
recurrence sets for the local Markov chain, toX1.X2.X3 and we prove the recurrence properti
of the full Markov chain (h t) t>0 to these sets.

The setsXi ( i 51,2,3) are defined as follows@recall ~2.27!#:

X15$hPX0: huL̄PX̄1%,

X25$hPX0: huL̄PX̄2%, ~6.1!

X35$hPX0: huL̄PX̄3ùNL l 2
\L̄~h!50%.

Proposition 6.2 below shows that, up to a superexponentially small probability, the pr
(h t) t>0 returns toXi after time lapses of orderTi .
                                                                                                                



ch

s

f
t

nt
ility

1461J. Math. Phys., Vol. 41, No. 3, March 2000 Metastability and nucleation for conservative . . .

                    
Proposition 6.2:~‘‘ Xi-recurrence’’! Let T15e0b, T25eUb, T35eDb. For i 51,2,3 the following
estimate holds: There existd15d1(g).0, satisfyinglimg↓0d(g)50 andb0.0 such that, for all
b.b0,

Pn~'tP@0,T9!: hs¹Xi ;sP@ t,t1Ti8!!5SES ~6.3!

for all

Ti85Tie
db!T95eCb ~6.4!

with C.0 arbitrarily large.
Proof: We want to apply Proposition 2.13. Our task therefore is to define, for eai

51,2,3, an eventET
i ,X @0,T) with T5Tie

(d/2)b such that

ET
i ,$'tP@0,T#: h tPXi%,

~6.5!
min

h0PX0

Ph0
~ET

i !>p.0

with p not exponentially small inb.
i 51,2. The eventET

i is the following:

•During the time interval@0,T# no particle entersL̄.

•The process (h t) t>0 restricted toL̄ follows a 0-path (i 51), respectively, aU-path (i 52)

from h0uL̄ to X̄i within the time interval@0,T#.

SinceT5Tie
(d/2)b<eDb2(d/2)b for i 51,2 andd.0 sufficiently small we have, by Proposition

3.20 and 3.25,

min
h0PX0

Ph0
~during @0,T# no particles enterL̄ !>S k

b D log b

. ~6.6!

The estimate ofPh0
(ET

i ) can therefore be completed by using~5.23!, ~5.28!, Proposition 2.28, and
Proposition 2.2.

i 53. We cannot proceed in the same way as fori 51,2, since we cannot avoid the arrival o
particles over a time interval of lengthT5T3e(d/2)b. Actually, the arrival of particles is importan
to reachX3 . The eventET

3 is the following:

~i! The process (h t) t>0 restricted toL̄ follows a D-path from h0uL̄ to X̄3 within time
1
2 T3e(d/2)b.

~ii ! After that, the process within timeT3e2(g/2)b empties the annulusL l 2
\L̄, while keeping

the configuration inL̄ fixed and avoiding that particles enterL̄.

To complete the proof we have to show that the probabilities of~i! and~ii ! are not exponentially
small.

Estimate of~i!. For each segment of theD-path not containing cycles of depthD we can prove
~using the same argument as fori 51,2) that the probability for the process to follow this segme
within time T2e(d/2)b is not exponentially small. We therefore only have to control the probab
that the process follows the segments of theD-path containing cycles of depthD, i.e., we have to
control the probability that it exits from the set

Ch̄8
D

5$hPX: huL̄P C̄h̄8
D % for some h̄8PX̄2 ~6.7!

within a time larger thanT3e(d/3)b and that it exits at a configuration inF(] C̄h̄8
D ). This is done by

the following estimate.
                                                                                                                



1462 J. Math. Phys., Vol. 41, No. 3, March 2000 Hollander, Olivieri, and Scoppola

                    
Lemma 6.8: Ford.0 small enough and0,g,d/3 there exists c.0, depending ong, d but not
on b, such that

min
hPC

h̄8
D

ùX0

Ph~$t~C
h̄8
D

!c,T3e~d/3!b%ù$ht~C
h̄8
D

!cuL̄PF~] C̄h̄8
D

!%!>c. ~6.9!

Proof: The proof uses a splitting of events.

~1! From Lemma 5.13~ii ! we know that if h̄¹F( C̄h̄8
D ), then h̄PX̄ \X̄1 and there exists a

downhill path fromh̄ to F( C̄h̄8
D ). We can therefore require that the process (h t) t>0 follows this

path within a timeedb and that during this time no particle entersL̄. As before, this probability
is not exponentially small inb. It is therefore sufficient to show that, for allh08PX0 such that

h08uL̄PF( C̄h̄8
D ),

Ph
08
~$t~C

h̄8
D

!c,T3e~d/3!b%ù$ht~C
h̄8
D

!cuL̄PF~] C̄h̄8
D

!%!>c. ~6.10!

~2! Let t denote the first time a particle entersL̄. Then

Ph
08
~$t~C

h̄8
D

!c,T3e~d/3!b%ù$ht~C
h̄8
D

!cuL̄PF~] C̄h̄8
D

!%!>E
0

T3e~d/3!b

Ph
08
~tPdt,AtùBt!, ~6.11!

where

At5$t~C
h̄8
D

!c.t%,

~6.12!

Bt5$h t2uL̄PF~ C̄h̄8
D

!%.

The rhs of~6.11! equals

E
0

T3e~d/3!b

@Ph
08
~tPdt,At!2Ph

08
~tPdt,AtùBt

c!#. ~6.13!

Due to the recurrence property inX1 and due to the fact thatC̄h̄8
D

\F( C̄h̄8
D ),X̄ \X̄1 @recall Lemma

5.13 ~ii !#, we have that on the event$tPdt,AtùBt
c% a move of costU occurs during the time

interval @(t2edb)∨0,t#. HencePh
08
(AtùBt

cutPdt)<e2(U2d)b, and so

E
0

T3e~d/3!b

Ph
08
~tPdt,AtùBt

c!<e2~U2d!b. ~6.14!

On the other hand, since on the event$tPdt,At
c% a move of cost 2U occurs within timet, we have

E
0

T3e~d/3!b

Ph
08
~tPdt,At!5E

0

T3e~d/3!b

@Ph
08
~tPdt!2Ph

08
~tPdt,At

c!#

>E
0

T3e~d/3!b

Ph
08
~tPdt!2e2~2U2D2~d/3!!b. ~6.15!

~3! Finally, we use that$h08PX0%,$NL l 1

(h08)>1% @recall ~2.26!#. If d/3.g, then the prob-

ability for a particle starting inL l 1
to hit L̄ prior to time T3e(d/2)b is bounded from below by

somec.0, so that
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E
0

T3e~d/3!b

Ph
08
~tPdt!5Ph

08
~t<T3e~d/3!b!>c. ~6.16!

QED

Estimate of~ii !. We estimate the probability of the following events:

F: during the time interval@0,T3e2(g/2)b# no particle entersL̄;

G: at timeT3e2(g/2)b there are no particles inL l 2
\L̄;

H: during the time interval@0,T3e2(g/2)b# the configuration inL̄ does not change.

From Propositions 3.20 and 3.25 we obtain

min
h08PX0

Ph
08
~FùG!>S k

b D log b

. ~6.17!

Moreover,Ph
08
(HuFùG) can be estimated by considering the local Markov chain, and we ob

min
h08PX0 :h08uL̄PX̄3

Ph
08
~HuFùG!>~12e22Ub!T3e2~g/2!b

>12e2@2U2D1~g/2!#b, ~6.18!

because for all configurations inX̄3 a move costs at least 2U @see Proposition 5.11~iii !#. Combin-
ing ~6.17!–~6.18!, we arrive at

min
h08PX0 :h08uL̄PX̄3

Ph
08
~FùGùH!>@12e2@2U2D1~g/2!#b#S k

b D log b

. ~6.19!

This completes the proof of~i!–~ii ! for i 53 and hence of Proposition 6.2.QED

7. FULL MARKOV CHAIN: REDUCTION

In this section we derive all the key estimates for the full Markov chain that are need
study its metastable behavior. The computations are long and difficult.

7.1. Definition of the reduced Markov chain

We begin by defining thereduced Markov chainthat is obtained by observing the proce

only when it entersX3 after it exits a suitable cycle of depthD. For h̄PX̄3 , let

C̄h̄
D5$h̄8PX̄: H̄~ h̄8,h̄ !2H̄~ h̄ !,D%. ~7.1!

Extend this definition to the configurations inX in the obvious way: forhPX3 , let

Ch
D5$h8PX: h8uL̄P C̄huL̄

D %. ~7.2!

Definition 7.3: Let

t050,
~7.4!

s05min$t>0:h t¹Ch0

D %,

and, for iPN,

t i5min$t.s i 21 :h tPX3%,
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s i5min$t.t i :h t¹Cht i

D %. ~7.5!

Then

h i
R5ht i

, i PN0 , ~7.6!

defines a Markov chain(h i
R) i PN0

on X3 with transition probabilities

PR~h,h8!5Ph~ht1
5h8!. ~7.7!

For h̄PX̄, as before, letI h̄ be the set of configurationsh8PX such thath8uL̄5h̄. Note that

I h̄ is not a subset ofX3 . By an abuse of notation, forhPX3 and h̄8PX̄3 we write

PR~h,I h̄8!5 (
h9PI h̄8ùX3

PR~h,h9!. ~7.8!

Our main result in this section is the following proposition, which makes a comparison bet
the transition probabilities of the full Markov chain and the local Markov chain. Recall thatg is
the exponent in Propositions 2.17, 2.20, and 2.23.

Proposition 7.9: There existd5d(g), satisfyinglimg↓0d(g)50, and b0.0 such that for all
b.b0 :

(i) If h̄PRl 1 ,l 2
, h̄8PRl 111 ,l 2, then

min
hPI h̄ùX3

PR~h,I h̄8!>e2~D2U1d!b. ~7.10!

(ii) If h̄PRl 1 ,l 2
, h̄8PRl 1 ,l 221 , then

min
hPI h̄ùX3

PR~h,I h̄8!>e2@~2U2D!~ l 121!1d#b. ~7.11!

(iii) If h̄ is a lacunary square or quasi-square, i.e., h̄PL, then there exists a sequenc

h̄0 ,h̄1 ,...,h̄n(nPN) such thath̄05h̄, h̄ iPL for i 51,...,n21, h̄nPX̄3\L, and uh̄ i u>uh̄ i 21u for
all i 51,...,n21 for which

min
i 50,1,...,n21

min
h iPI h̄ i

ùX3

PR~h i ,I h̄ i 11
!>e2~2U2D1d!b. ~7.12!

(iv) Let

r ~ h̄ !5~2U2D!~ l 121! if h̄5Rl 1 ,l 2
and 0< l 22 l 1<1 with l1, l c ,

r ~ h̄ !5D2U if h̄5Rl 1 ,l 2
and 0< l 22 l 1<1 with l1> l c ,

~7.13!

r ~ h̄ !5~2U2D! if h̄PL.

Then

max
hPI h̄

max
h̄8PX̄3 : h̄8¹E3~ h̄ !

PR~h,I h̄8!<e2@r ~ h̄ !2d#b. ~7.14!

Using Proposition 7.9 we will in Sec. 8 conclude the proof of our main result, Theorem 1.5
constructing an event of nucleation and by controlling its probability.
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Note thatr (h̄)5minh̄8PX̄3\E3(h̄)H̄(h̄,h̄8)2D for everyh̄PX̄3 . TheD comes from the fact that, by
definition, a transition of the reduced Markov chain typically takes place after a time of o
T35eDb.

7.2. Outline

The remainder of this section is organized as follows. In Sec. 7.3 we prove the lower b
in Proposition 7.9~i!–~iii !. The proof of the upper bound in Proposition 7.9~iv! is much more
difficult. Indeed, to prove a lower bound it suffices to estimate the probability of a partic
realization of the event we are considering, but to prove an upper bound every possible rea
of the event must be controlled.

In the estimate for the upper bound we have to study in detail the behavior of the gas a

interaction with the dynamics in the boxL̄. It is clear that there are two classes of gas partic

with different behavior:~1! particles that have been inLb\L̄ for a long time~say of orderT3),

which we call green particles;~2! particles that exit fromL̄ and afterwards return toL̄ in a short
time ~say of order 1!, which we call red particles. We study separately the effect of green and

particles by introducing an auxiliary Markov chain (h̃ t) t>0 in which the arrival atL̄ of green

particles is simulated with a creation mechanism on]2L̄. In Sec. 7.4 we define the coloring an
the auxiliary Markov chain, as well as a coupling between the auxiliary Markov chain
(h t) t>0 . The effect of green particles is studied in Sec. 7.6 by comparing the two processe

The difficult part is developed in Sec. 7.7, where the effect of red particles is studie
particular, we have to control the red particles when the process exits a suitable cylindrical sCh̄ ,

with base inL̄ ~see Proposition 7.43!. The idea is the following:

•We analyze the cylindrical set by using the state classificationX̄1 ,X̄2 ,X̄3 ~Lemma 7.69! and
obtain in this way a partition of the setCh̄ and of the different ways of exit from this set in term
of the final exiting move.

•Using this partition, we classify the intervals of time spent by the process in the diffe
elements of the partition, by defining the ‘‘type’’ of the time interval in terms of the index of
corresponding element of the partition. In particular, the time intervals corresponding to

spent outsideX̄2 are called ‘‘instability intervals.’’ We can easily control the length of instabil
intervals by using the recurrence property~Lemma 7.75!.

•It turns out that, before the process exits the setCh̄ , red particles cannot arrive during a

instability interval, since their entry inL̄ would increase the energy and produce the exit of
process fromCh̄ . This means that the effect of red particlesbefore the exit from Ch̄ can be
essentially described by the appearence of instability intervals starting with the arrival of

particle. If at the end of such an instability interval a particle exits fromL̄, then we can ‘‘glue
together’’ the red particles at the entry and at the exit, thus obtaining the path of a sing

particle that spends some time inL̄ ~the instability interval!. On the other hand, if at the beginnin

of an instability interval no red particle entersL̄ and at the end a particle leavesL̄, then we call
the beginning of such an interval a ‘‘coloration timeak’’ of a red particle. If an instability interval

begins with the arrival of a red particle but ends with no particle leavingL̄, then in this time

interval a red particle has been absorbed by the boxL̄.
By following this kind of construction, we can associate with each red particle a color

time ak , a ‘‘quasi random walk’’ obtained by glueing together the trajectories of red part
entering and exiting during the same instability interval, and a ‘‘delay time’’ corresponding to
sum of instability intervals visited by this path.

We show that the behavior of quasi random walks is similar to that of random walks, a
this way we control the total number of instability intervals of each type by estimating the nu

of visits to L̄ of quasi random walks~Lemma 7.91!. This control on the behavior of quasi rando
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walks enables us also to estimate from above the probability that a red particle arrives inL̄ in a
given time interval~Lemma 7.93!.

•The effect of red particles in the exit of the process from the setCh̄ is then controlled by
introducing this probability estimate in the analysis of the possible ways of exit, as ment
above.

Section 7.8 contains the proofs of some lemmas that are needed along the way. In Sec.
collect some consequence of Proposition 7.9 that will be used in Sec. 8 to prove our main th

7.3. Lower bounds

In this section we prove Proposition 7.9~i!–~iii !.
Estimate~i!. The proof follows the same technique of construction of events as in Sec.
~1! Let h̄ i , 0< i< l 2 , be the configurations with monotone contour obtained fromRl 111,l 2

, by

removing l 22 i particles, so thath̄05h̄ and h̄ l 2
5h̄8. We know from Sec. 5 thath̄ iPX̄ 2 for i

50,2,...,l 2 . We construct our realization of thegrowing transition h̄5Rl 1 ,l 2
→h̄85Rl 111,l 2

by
using the following events:

For i 51:
•A1,t5$t (I h̄)c>t%;
•B1,t5$h t2uL̄5h̄%;

•for h9PI h̄ andxP]L̄,C1,h9,x is the event where the process, starting fromh91x, insideL̄
follows a path that brings the particle atx to the cluster, thus reachingI h̄1

.
For i 52:
•A2,t5$t (C

h̄
2U)c>t%;

•B2,t5$h t2uL̄PB̄h̄% with B̄h̄5 C̄ h̄
2UùX̄1ù$h̄9: NL̄(h̄9)5 l 1l 211%;

•for h9PI B̄h̄
and xP]L̄,C2,h9,x is the event where the process, starting ath91x, inside L̄

follows a path that takes the particle atx to the cluster, thus reachingI h̄2
.

For i 53,...,l 2 :
•A i ,t5$t (C

h̄
i 21D )c>t%;

•Bi ,t5$h t2uL̄PF(Ch̄ i 21

D )%;

•for h9PI F(C
h̄ i 21

D ) andxP]L̄, Ci ,h9,x is the event where the process, starting ath91x, inside

L̄ follows a path that brings the particle atx to the cluster, thus reachingI h̄ i
.

~2! As in Sec. 6, we define

F: during the time interval@0,T3e2(d0/2)b# no particle entersL̄;

G: at timeT3e2(d0/2)b there are no particles inL l 2
\L̄;

H: during the time interval@0,T3e2(d0/2)b# the configuration inL̄ does not change.

Let t5min$t>0: at timet a particle entersL̄% andT5T3ed1b/( l 111), whered1 is the parameter
appearing in Proposition 6.2. ForhPI h̄ we have

PR~h,I h̄8!>

E
0

T

Ph~tPdt1 ,A1,t1
ùB1,t1

! min
x1P]L̄,h9PI h̄

Ph̄91x1
„C1,h9,x1

)

E
eUb

T

Ph1
~tPdt2 ,A2,t2

ùB2,t2
! min

x2P]L̄,h9PI B̧h̄

Ph̄91x2
„C2,h9,x2

)

¯
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E
0

T

Ph i 21
~tPdti ,A i ,t i

ùBi ,t i
! min

xiP]L̄,h9PIF~C
h̄ i 21

D

Ph̄91xi
~Ci ,h9,xi

!

¯

E
0

T

Ph l 221
~tPdtl 2,A l 2 ,t l 2

ùBl 2 ,t l 2
! min

xl 2
P]L̄,h9PIF~c

h̄ l221

D
!

Ph̄91xl 2
~Cl 2 ,h9,xl 2

!

min
h9PI h̄8ùX0

Ph9„FùGùH), ~7.15!

whereX0 is the set defined in~2.27!.
~3! For anyi we have that the minimum of the probability ofCi ,h9,xi

can be estimated from
below by a constanta not exponentially small inb. As in Sec. 6, for eachi 51,3,...,l 2 we can write

E
0

T

Ph i 21
~tPdti ,A i ,t i

ùBi ,t i
!5E

0

T

@Ph i 21
~tPdti ,A i ,t i

!2Ph i 21
~tPdti ,A i ,t i

ùBi ,t i
c !#

~7.16!

and this expression can be estimated from below by a constantc independent ofb exactly as in the
proof of Lemma 6.8. Moreover, we again have that minh9PIh̄8ùX0

Ph9„FùGùH)>(k/b) log b. It

therefore remains to estimate the term corresponding toi 52.
~4! On the eventA2,t2

, before the arrival of the second particle the process is inCh̄
2U . This

means that for each times until that arrival we haveNL̄(hs)P$ l 1l 2,l 1l 211%, and if NL̄(hs)
5 l 1l 2, then h̄s5Rl 1 ,l 2

. This, in turn, implies that the process starting ath1 during the time
interval @0, t! can be described as follows:

•During the time intervals in whichNL̄(hs)5 l 1l 2, we have one particle moving as a SRW
the presence of a fixed rectangular cluster.

•During the time intervals in whichNL̄(hs)5 l 1l 211, the particle can be trapped by th

cluster, producing a configuration that insideL̄ falls in X̄ \X̄2 . In other words, during this time
interval the process behaves like a SRW with a trap at]1Rl 1 ,l 2

of escape ratee2Ub. We denote

this process by (ĵs)s>0 .
~5! We can now conclude our estimate:

E
eUb

T

Ph1
~tPdt2 ,A2,t2

ùB2,t2
!

5E
eUb

T

Ph1
„B2,t2

ut5t2 ,A2,t2
)Ph1

~tPdt2 ,A2,t2
!

>E
eUb

T

Ph1
~ ĵ t2

P]Rl 1 ,l 2
!Ph1

~tPdt2 ,A2,t2
!

>E
eUb

T 1

t2
e~U2d!bPh1

~tPdt2 ,A2,t2
!>

1

T
e~U2d!bE

eUb

T

Ph1
~tPdt2 ,A2,t2

!, ~7.17!

where the second inequality uses Proposition 3.13 and the last probability can be estimate
part ~3!.

Estimate~ii !.
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~1! The lower bound in the case ofshrinking transitions can be obtained by forcing th
transition to happen within a timeT3e22d0b and requiring that during this time no particles en

L̄. In this way the transition can be estimated as in the case of the local Markov chain.
precisely, leth̄5Rl 1 ,l 2

and h̄85Rl 1 ,l 221 . For hPI h̄ùX3 we have

PR~h,I h̄8!5Ph~ht1
PI h̄8!>Ph,h̄~AT3e22d0bùDT3e22d0bùD̄T3e22d0b!, ~7.18!

where
AT3e22d0b5$ht1

PI h̄8%ù$t1,T3e22d0b%;

DT3e22d0b is the event where during timeT3e22d0b no particles enterL̄;

DT3e22d0b is the event where during timeT3e22d0b no particles are created in]L̄.
The last term in the rhs of~7.18! is equal to

Ph,h̄~ĀT3e22d0bùDT3e22d0bùD̄T3e22d0b!, ~7.19!

whereĀT3e22d0b is the analog ofAT3e22d0b for the local Markov chain.

~2! We note that the eventsDT3e22d0b and ĀT3e22d0bùD̄T3e22d0b are independent, since the
involve different clocks and marks. Moreover,

Ph~DT3e22d0b!>S k

b D log b

~7.20!
Ph̄~D̄T3e22d0b!>~12p!T3e2d0b

1SES>e2e2d0b
,

and it is easy to show that

Ph̄~ĀT3e22d0buD̄T3e22d0b!>e2~2U2D13d0!b. ~7.21!

Estimate~iii !. A similar argument works for the transitions involving the lacunary configu
tions.

7.4. Definition of colors and the auxiliary Markov chain

Recall thatN5ruLbu is the total number of particles and that our state space is

NN5$hPX: NLb
~h!5N%, X5XN5$0,1%L̄3$0,1,2,...,N%Lb\L̄. ~7.22!

7.4.1 Dynamics.We begin by realizing the process (h t) t>0 in terms of a process in which
particles are distinguishable. This means that instead ofX we consider the spaceXd5Lb

N where a
configuration is given in terms of the positionj(n),L of each particlen51,...,N. Each configu-
ration hPX corresponds toN! different configurations inXd . We denote bynt(x) the set of
labels of the particles that are atx at time t:

nt~x!5$n51,...,N: j t~n!5x%, ~7.23!

so h t(x)5unt(x)u. We note that for anyxPL̄ the setnt(x) contains at most one element.
We can define a stochastic dynamics (j t) t>0 on Xd corresponding to our stochastic dynami

(h t) t>0 on X, provided we take the uniform distribution for the initial configurationj0 corre-
sponding to the initial configurationh0 , i.e., each particle initially gets a label drawn random
from $1,...,N%. The rules of this dynamics are straightforward and read as follows:
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For each oriented bondbPL̄* ø]* L̄out, define a sequence of i.i.d. random timestb,i ,i
PN, exponential with mean 1, and a sequence of i.i.d. marksmb,i ,i PN, uniform on@0, 1#.

For each oriented bondbP(Lb\L̄)* ø]* L̄ in and each label 1,...,N, define a sequence of i.i.d
timest(n)b,i ,i PN, exponential with mean 1.

InsideLb\L̄ particlen moves as an IRW with jump timest(n)b,i ,i PN,bP(Lb\L̄)* .

Inside L̄ particles move with exclusion and with interaction as follows:

When t5tb,i for someb5(x,y)PL̄* ,i PN:
•If nt(x)5$n%, nt(y)5B, then the proposed move is given byj t

prop(n)5y, j t
prop( j )

5j t( j ); j Þn. This proposed move is accepted if the corresponding markmb,i is less than

e2b@H(h t
prop)2H(h t#1, whereh t

prop andh t are the configuration inX corresponding toj t
prop, resp.,

j t .
•If nt(x)5B, nt(y)5$n%, then the proposed move is given byj t

prop(n)5x, j t
prop( j )

5j t( j ); j Þn. This proposed move is accepted if the corresponding markmb,i is less than

e2b@H(h t
prop)2H(h t#1.

•In all other cases there is no move.

When t5tb,i for someb5(x,y)P]* L̄out,i PN:
•If nt(x)5n, thenj t1(n)5y, j t1( j )5j t( j ); j Þn.
•If nt(x)5B, then there is no move.

When t5t(n)b,i for someb5(x,y)P]* L̄ in,i PN:
•If nt(x)5n andnt(y)5B, thenj t1(n)5y, j t1( j )5j t( j ); j Þn.
Otherwise there is no move.

7.4.2. Coloring of particles.Next we assign a color to each particle. This color depends
time and will later be used to distinguish between particles arriving from the gas and pa

returning toL̄0 after leaving it.

Definition 7.24: (a) Every particle inj tùL̄ is WHITE at time t.
(b) Every particle inj tùLb\L l 2

is GREENat time t.

(c) Particles inL l 2
\L̄ are GREEN or RED depending on their past in the following way. Fo

nPnt(x), let

u5u~n,t !5max$0<s,t: js~n!¹L l 2
\L̄%. ~7.25!

If ju(n)PL̄, then n is aRED particle at time t. Ifju(n)PLb\L l 2
, then n is aGREENparticle

at time t.

It is easy to see that if the process starts from a configurationhPX3 , then the timeu is

well-defined for each particlej t(n)PL l 2
\L̄.

The colors at different times are obviously correlated, since when a particle leavesL̄ it

become red. Green particles become white when they enterL̄. Red particles become white o

green when they leaveL l 2
\L̄.

In order to control the behavior of green and red particles, we separate their effec

introducing an auxiliary Markov chain (h̃ t) t>0 in which the arrival inL̄ of green particles is

simulated by a process of creation at]2L̄ with a rate of ordere2bD and a process of annihilatio

at ]1L̄ with rate 1.

7.4.3. Auxiliary Markov chain. We define the dynamics (h̃ t) t>0 by means of a proces

( j̃ t) t>0 of distinguishable particles. Fix a parameter
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p5
1

NT3
e2g0b with T35eDb, ~7.26!

whereg0 is small and will be chosen later. Let

X̃d5~L l 2
ø$g%!N. ~7.27!

This means that each particle in the auxiliary dynamics can be in a site ofL l 2
or in a state called

g ~for green!.
We can use the same ingredients as for the Markov chain (j t) t>0 for the bonds in

L l 2
* ø]* L l 2

out, but we need to add for each bondbP]* L̄ in a sequence of i.i.d. marksmb,i
c ,i

PN, uniform on @0, 1#. The stochastic dynamics (j̃ t) t>0 can be realized exactly as (j t) t>0 for

each bondb¹]* L̄ in. If t5t(n)b,i for someb5(x,y)P]* L̄ in,i PN, then we consider an addi
tional move of creation of a particle at sitey. The details are again straightforward and read
follows:

InsideL l 2
\L̄ particlen moves as an IRW with jump timest(n)b,i .

Inside L̄ particles move with exclusion and with interaction as for (j t) t>0 .

When t5tb,i for someb5(x,y)P]* L̄out,i PN:

•If nt(x)5$n%, then j̃ t1(n)5y,j̃ t1( j )5 j̃ t( j ); j Þn.
•If nt(x)5B, then there is no move.

When t5t(n)b,i for someb5(x,y)P]* L̄ in,i PN:

•If nt(x)5n andnt(y)5B, then j̃ t1(n)5y.

•If j̃ t(n)5g andnt(y)5B, then j̃ t1(n)5y whenmb,i
c ,p, otherwise there is no move.

When t5t(n)b,i for someb5(x,y)P]* L l 2

out,i PN:
•If nt(x)5n, then j̃ t1(n)5g, otherwise there is no move.

We will consider the discrete-time Markov chains corresponding to (j t) t>0 and (j̃ t) t>0 by
observing these processes when a clock rings inLb . From now on we will consider only thes
discrete versions. By Proposition 2.2 we know that the control of the discrete-time Markov
enables us to control the continuous-time Markov chain.

Now that the process (j̃ t) t>0 is defined, the definition ofh̃ t in terms ofj̃ t is given exactly as

h t in terms ofj t . The state spaceX̃ is

X̃5X̃N5$0,1%L̄3$0,1,2,...,N%~L l 2
\L̄ !ø$g%. ~7.28!

7.4.4. Coupling.We can define a coupling between the Markov chains (h t) t>0 and (h̃ t) t>0

by using the same clocks and marks for common bonds. Two events will be important.

Bh(t1 ,...,tk ;b1 ,...,bk ;n1 ,...,nk ;t) is the event for (h t) t>0 where during the time interval@0,

t# green particles enterL̄ through the bondsb1 ,...,bkP]* L̄ in at timest1 ,...,tk and their labels are
n1 ,...,nk .

Bh̃(t1 ,...,tk ;b1 ,...,bk ;n1 ,...,nk ;t) is the event for (h̃ t) t>0 where during the time interval@0,

t# particles are created through the bondsb1 ,...,bkP]* L̄ in at timest1 ,...,tk and their labels are
n1 ,...,nk .

Let us take two initial configurationsh0 and h̃0 , such thath0(x)50 for all xPL l 2
\L̄ and

h0(x)5h̃0(x) for all xPL l 2
. If both

Bh~ t1 ,...,tk ;b1 ,...,bk ;n1 ,...,nk ;t !
~7.29!

Bh̃~ t1 ,...,tk ;b1 ,...,bk ;n1 ,...,nk ;t !
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occur, then we have that for allsP@0,t# the red and the white particles ofhs coincide with the
particles ofh̃s , i.e., if

ns
w,r5$n51,..., N: n is a white or red particle at times%, ~7.30!

then

Pj,j̃„;sP@0,t#: $js~n!5 j̃s~n! ;nPns
w,r%ù$j̃s5g ;n¹ns

w,r%u

Bh~ t1 ,...,tk ;b1 ,...,bk ;n1 ,...,nk ;t !ù ~7.31!

Bh̃~ t1 ,...,tk ;b1 ,...,bk ;n1 ,...,nk ;t !…51.

In a trivial way we can define a coupling between (h̃ t) t>0 and the local Markov chain (h̄ t) t>0

defined in Sec. 4.1 by using the same clocks and marks for bonds inL0* ø]* L̄out and the same

clocks and creation marks for bonds inbP]* L̄ in. In particular, also for the Markov chain (h̄ t) t>0

we can realize the creation at the boundary ofL̄ by usingN clocks and the same ratep in ~7.26!
used for (h̃ t) t>0 .

Remark:
~1! If g0.0 in the definition ofp is such thatl c(D1g0)5 l c(D), then we can apply the

remark given at the end of Sec. 5. IfDP(U,2U) is such thatU/(2U2D) is not integer, then there
exists such ag0 .

~2! It is obvious that if no red particles enterL̄ during the time interval@0, t#, then h̃suL̄
5h̄suL̄ for all sP@0,t#.

~3! As in the case of the full Markov chain (h t) t>0 , we can define recurrence setsX̃1 ,X̃2 ,X̃3

and we can prove also for (h̃ t) t>0 the recurrence properties to these sets. In the same way we
define the reduced Markov chains (h̃ t

R) t>0 and (h̄ t
R) t>0 ~recall Definition 7.3!. The only differ-

ence is that for (h̃ t) t>0 we can only prove the recurrence toX̃3 in a time (pN)21ed1b

5T3e(g01d1)b rather than in a timeT3ed1b as in Proposition 6.2.

7.5. Upper bounds

The key to Proposition 7.9~iv! is the following @recall ~7.13!#.

Proposition 7.32: There existd5d(g), satisfyinglimg↓0 d(g)50, and b0.0 such that, for

all b.b0 and h̄PX̄3,

max
hPI h̄ùX3

Ph~tC
h̄
c ,T3ed1b!<e2@r ~ h̄ !2d#b, ~7.33!

whered1 is the parameter appearing in Proposition6.2, and

Ch̄5$h8PX: h8uL̄P C̄h̄% ~7.34!

with

C̄h̄5$h̄8PX̄: H̄~ h̄8,h̄ !2H̄~ h̄ !,r ~ h̄ !1D%. ~7.35!

Proof of Proposition 7.9 (iv):Let Mh denote the event that the transitionhR:h→h8 occurs
within time T3ed1b. By the recurrence property of the setX3 in Proposition 6.2, we have
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Ph~Mh
c !<SES. ~7.36!

Hence

max
hPI h̄

max
h̄8PX̄3 :h̄8¹E3~ h̄ !

Ph~hR: h→I h̄8!<max
hPI h̄

max
h̄8PX̄3 :h̄8¹E3~ h̄ !

Ph~hR: h→I h̄8ùMh!1SES

<max
hPI h̄

Ph~tC
h̄
c ,T3ed1b!1SES. ~7.37!

In fact, if h̄8PX̄3 and h̄8¹E3(h̄), thenh̄8¹ C̄h̄ by Lemma 5.34. QED

Proof of Proposition 7.32:Abbreviate for (h̃ t) t>0:

Ah5$tC
h̄
c ,T3ed1b% ~7.38!

and analogously for (h̃ t) t>0:

Ah̄5$t C̃
h̄
c ,T3ed1b%, ~7.39!

where

C̃h̄5$h̃8PX̃:h̃8uL̄P C̄h̄%. ~7.40!

Propositions 7.41 and 7.43 below imply Proposition 7.32.

Proposition 7.41: There existd5d(g), satisfyinglimg↓0 d(g)50, and b0.0 such that, for
all b.b0 andh8PX3,

Ph8~Ah!<Ph8~Ah̃!edb. ~7.42!

Proposition 7.43: There existd5d(g), satisfyinglimg↓0 d(g)50, and b0.0 such that, for
all b.b0 and h8PX3,

Ph8~Ah̃!<e2r ~ h̄ !b1db. ~7.44!
QED

The proof of Propositions 7.41 and 7.43 is given in Sec. 7.6, resp. Sec. 7.7.

7.6. Control of green particles

We henceforth suppress the lower index fromP when the initial configuration is obvious.

Proof of Proposition 7.41:The problem is to compare the effect of green particles versus
creation mechanism in the auxiliary dynamics.

~1! Fix kPN, t1 ,...,tk>0, b1 ,...,bkP]* L̄ in, and abbreviate

Bh5Bh~ t1 ,...,tk ;b1 ,...,bk ;n1 ,...,nk ;T3ed1b!,
~7.45!

Bh̃5Bh̃~ t1 ,...,tk ;b1 ,...,bk ;n1 ,...,nk ;T3ed1b!.

We begin by proving the following.

Lemma 7.46: There existd85d8(g), satisfyinglimg↓0 d8(g)50, andb0.0 such that, for all
b.b0 and h8PX3,

P~Ah̃ùBh̃!S e2~D2d8!b

N
D k

>P~Ah̃ùBhùBh̃!>P~AhùBhùBh̃!>P~AhùBh!S e2~D1d8!b

N
D k

.

~7.47!
                                                                                                                



the

1473J. Math. Phys., Vol. 41, No. 3, March 2000 Metastability and nucleation for conservative . . .

                    
Proof: ~1! Third inequality: LetCh̃ be the event that the number of rings by clocks on

bonds in]* L̄ in within time T3ed1b is less thanNT3e2d1b. Then

P~AhùBhùBh̃!>P~AhùBhùBh̃ùCh̃! ~7.48!

and

P~Ch̃!512SES. ~7.49!

We have

P~AhùBhùBh̃ùCh̃!>P~Bh̃uAhùBhùCh̃!P~AhùBhùCh̃!

>pk~12p!NT3e2d1b
P~AhùBhùCh̃!. ~7.50!

If g0 in the definition ofp in ~7.26! satisfiesg0.2d1 , then

P~AhùBhùBh̃ùCh̃!>pke2d1bP~AhùBh!1SES>pke22d1bP~AhùBh!. ~7.51!

~2! Second inequality: This immediately follows from the coupling between (h t) t>0 and
(h̃ t) t>0 .

~3! First inequality: This follows from Proposition 3.31. The argument runs as follows.
~3i! If t1<e(D22g)b, then

P~Ah̃ùBh̃ùBh!<P~Ah̃ùBh̄ùCh!5P~Ah̃ùBh̃!P~Ch! ~7.52!

with

Ch$' particle in hùL l 2

c hitting L̄ within time t1%. ~7.53!

By Proposition 3.25,P(Ch),SES.
~3ii! If t1.e(D22g)b and if there exist 1< i , j <k with ni5nj and t j2t i<e(D22g)b, then

P~Ah̃ùBh̃ùBh!<P~Ah̃ùBh̃!P~Ch! ~7.54!

with

Ch5$j t i
~ni !5xi ,j t~ni !PL l 2

c 'tP~ t i ,t j !,j t j
~ni !5xj%. ~7.55!

Again by Proposition 3.25,P(Ch),SES.
~3iii ! If t1.e(D22g)b and if t j2t i.e(D22g)b for all 1< i , j <k such thatni5nj , then

P~Ah̃ùBh̃ùBh!<P~Ah̃ùBh̃ùCh!2SES5P~Ah̃ùBh̃!P~Ch!2SES ~7.56!

with

Ch5H j t1
~n1!5x1 ,j t~n1!¹L̄ ;tP@ t12e~D22g!b,t1#

¯

j tk
~nk!5xk ,j t~nk!¹L̄ ;tP@ tk2e~D22g!b,tk#

J . ~7.57!

By using the independence of the random walks outsideL̄ and the fact that ifni5nj then t j

2t i.e(D22g)b, we have
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P~Ch!5)
i 51

k

P~j t i
~ni !5xi ,j t~ni !¹L̄ ;tP@ t i2e~D22g!b,t i # !. ~7.58!

By now using Proposition 3.31, we arrive at

P~Ch!<S e2~D2d8!b

N
D k

. ~7.59!

The factor 1/Nk comes from the fact that Proposition 3.31 gives an estimate for a process
indistinguishable particles and the probability that a given particle has a given label is 1/N. QED

~2! Continuing the proof of Proposition 7.41, we write out

P~Ah!5 (
k50

`

(
b1 ,...,bk

(
n1 ,...,nk

(
t150

T3ed1b

¯ (
tk50

T3ed1b

3P~AhùBh~ t1 ,...,tk ;b1 ,...,bk ;n1 ,...,nk ;T3ed1b!!, ~7.60!

and a similar expansion forP(Ah̃). By Lemma 7.46 we have

P~AhùBh!<P~Ah̃ùBh̃!e2d8kb, ~7.61!

and so we obtain

P~Ah!<(
k50

`

e2d8kbP~Ah̃ù$n5k%!5 (
k50

`

e2d8kbP~Ah̃u$n5k%!P~$n5k%!, ~7.62!

wheren is the number of particles created by the process (h̃ t) t>0 during the transition we are
considering. It is easy to see that there exists aK.0 independent ofb such that

P~n5k!<e2Kkb ;kPN0 ~7.63!

for b sufficiently large.
~3! Let a54d8/K, f 5P(Ahu$n5k%)P($n5k%)12a and g5e2d8kbP($n5k%)a. By applying

Hölder’s inequality withp51/(12a) andq51/a, we obtain

P~Ah!<S (
k50

`

f pD 1/pS (
k50

`

gqD 1/q

5S (
k50

`

P~Ah̃u$n5k%!1/~12a!P~$n5k%!D 12aS (
k50

`

e2d8kb/aP~$n5k%!D a

<C~a,K,d8!P~Ah̃!12a, ~7.64!

where the last inequality uses~7.63!. But a rough estimate gives

P~Ah̃!>e2~D l 22d9!b ~7.65!

for an arbitraryd9.0, obtained by creatingl 2 particles and bringing them to the cluster in a tim
of order one. Hence we get

P~Ah!<P~Ah̃!C~a,K,d8!ea~D1d9!l 2b, ~7.66!

which completes the proof of Proposition 7.41 after settingd5a(D1d9) l 2 . QED
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7.7. Control of red particles

We now come to the hardest part of the argument, because we have to control the effec
particles.

Proof of Proposition 7.43.In order to control every possible mechanism of exit from the

C̃h̃ , we analyze the final exit move. More precisely, we consider a partition of the setC̃h̃ ~essen-

tially in terms of its intersection with the setsX̄1 ,X̄2 ,X̄3). and we compute the cost~in term of the
difference of energy! of the final exiting move starting from an element of this partition. This fi

move can be obtained by the arrival of a red particle insideL̄ or by a move insideL̄0 . We
estimate the probability of the eventAh̃ in terms of the probability of this final move. As far as th
probability of the arrival of a red particle is concerned, we show that red particles essen
behave as IRW’s.

We divide this proof into several lemmas, the proof of which is deferred to Sec. 7.8. We

consider the caseh̄PX̄3\L.

~1! We recall from~5.16! that for a configurationh̄8 in L̄ with contourg85g8(h̄8):

H̄~ h̄8!5~22U1D!n081
U

2
ug8u1Dh8, ~7.67!

wheren08 is the total number of particles inL̄0 , n8 is the total number of particles in the rin

L̄\L̄0 . We will use this expression to classify the configurations inC̄h̄ in terms of the setsX̄1 ,X̄2

and in terms of the cost to exit fromC̄h̄ in one move, defined by

EC~ h̄8!5 min
h̄9¹ C̄h̄ :q~ h̄8,h̄9!.0

H̄~ h̄9!2H̄~ h̄8! ~ h̄8P C̄8h̄!, ~7.68!

where we put EC(h̄8)5` if q(h̄8,h̄9)50 for all h̄9¹ C̄h̄ .

Note that, by the definition of the setC̄h̄ in ~7.35!, the exit cost is strictly positive for al

h̄8P C̄h̄ and thus EC(h̄8) assumes the valuesU, D, 2U,3U.

Lemma 7.69: For allh̄PX̄3\L the following hold:

(i) If h̄8P C̄h̄ , then its contour is larger than or equal to that ofh̄ ~i.e., ug8u>ugu) and its
number of internal particles n08 belongs to the interval@n02 l 112, n011#, where n0 is the
number of internal particles ofh̄ and l1 is the minimal side length ofh̄.

(ii) Let h̄8P C̄h̄ , ug8u5ugu and n850. Then

n085n02 l 8 for some l 850,1,...,l 122. ~7.70!

Moreover, h̄8PX̄2 and

EC~ h̄8!53U if l 850,1,...,l 123,
~7.71!

EC~ h̄8!52U if l 85 l 122.

(iii) Let h̄8P C̄h̄ , ug8u5ugu12 and n850. If n08>n02 l 113, then h̄8¹X̄2 and EC(h̄8)

5D, while if n085n02 l 112, then h̄8PX̄\X̄1 and EC(h̄8)5U.

(iv) Let h̄8P C̄h̄ , ug8u5ugu14 and n850. Thenh̄8PX̄ \X̄1 and EC(h̄8)5U.

(v) Let h̄8P C̄h̄ and n851. Thenh̄8PX̄ \X̄1 and ug8u5ugu and EC(h̄8)5U.

(vi) If ug8u.ugu14 or n8.1, then h̄8¹ C̄h̄ .

~2! We next consider the following partition of the setC̄h̄ :
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C̄h̄5 C̄h̄,0ø C̄h̄,1aø C̄h̄,1bø C̄h̄,2 , ~7.72!

where

C̄h̄,05$h̄8P C̄h̄ùX̄2%,

C̄h̄,1a5$h̄8P C̄h̄ù~X̄ \X̄1!: ug8u5ugu12, n850%,
~7.73!

C̄h̄,1b5$h̄8P C̄h̄ù~X̄ \X̄1!: ug8u5ugu14, n850 or ug8u5ugu, n851%,

C̄h̄,25$h̄8P C̄h̄ù~X̄1\X̄2!%.

Definition 7.74:~a! An interval of time@ t1 ,t2# in @0,t C̄
h̄
c ∧T3ed1b# is an INSTABILITY IN-

TERVAL if h̃ tuL̄¹X̄2 for all t P@ t1 ,t2#.

(b) An interval@ t1 ,t2# contained in an instability interval is ofTYPE 1 if h̃ tuL̄PX̄ \X̄1 for all

tP@ t1 ,t2# and ofTYPE 2 if h̃ tuL̄PX̄1\X̄2 for all t P@ t1 ,t2#. A type 1 interval is ofTYPE 1A if

h̃ tuL̄P C̄h̄,1a and ofTYPE 1B if h̃ tuL̄P C̄h̄,1b .
(c) An instability interval can be the union of intervals of different types~i.e., 1a, 1b, and 2!.
(4) The remaining intervals of time in@0,t C̄

h̄
c ∧T3ed1b# that are not instability intervals are

called intervals ofTYPE 0.

An immediate consequence of the recurrence property of (h̃ t) t>0 to the setsX̃1 ,X̃2 is the
following:

Lemma 7.75: With probability12SES the instability intervals of type 1 are shorter tha
T1ed1b and the instability intervals of type 2 are shorter than T2ed1b.

~3! Let us now return to the estimate ofP(Ah̃). We have

Ah̃5Ah̃
r øAh̃

m , ~7.76!

where

Ah̃
r 5Ah̃ù$the final exit move is due to the arrival of a red particle%;

Ah̃
m5Ah̃ù$the final exit move is due to a move insideL̄%.

By Lemma 7.69, we can estimateP(Ah̃
m) after decomposing it according to the different kinds

exit through the set

C̃h̄5$h̃8PX̃: h̃8uL̄P C̄h̄% ~7.77!

by considering the starting point of the final exit move. More precisely, if we abbreviateh̄1

5h̃t C̃
h̃
c 21uL̄ , h̄25h̃t C̃

h̃
c uL̄ andDH̄1,25H̄(h̄2)2H̄(h̃1), then we have

P~Ah̃
m!5P~Ah̃

mù$h̄1P C̄h̄,0%ù$DH̄1,253U%!

1P~Ah̃
mù$h̄1P C̄h̄,1a%ù$DH̄1,2>D%!

1P~Ah̃
mù$h̄1P C̄h̄,1b%ù$DH̄1,2>U%!

1P~Ah̃
mù$h̄1P C̄h̄,2%ù$DH̄1,2>D%!

1P~Ah̃
mù$h̄1P C̄h̄,0%ù$DH̄1,252U%!

1P~Ah̃
mù$h̄1P C̄h̄,1a%ù$DH̄1,25U%!. ~7.78!
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The first term on the rhs of~7.78! can be easily estimated, since on the ev

Ah̃
mù$DH̄1,2Ah̃

mù$DH̄1,253U% we have a move of cost 3U in the interval@0,T3ed1b#, i.e.,

P~Ah̃
mù$h̄1P C̄h̄,0%ù$DH̄1,253U%!<e23UbT3ed1b. ~7.79!

The control of the last two terms is postponed to Lemma 7.98. As far as the estimate
remaining three terms is concerned, we can proceed in a similar way, provided we can estim
total length of the instability intervals of type 1a, 1b, 2. This means that we need to contro
number of instability intervals of the different types viaa priori SES probability estimates.

~4! Let us next consider the random timest i,T3ed1b∧t C̃
h̃
c , i PN, of arrival in L̄ of red

particles. By definition, eacht i is the initial point of an instability interval of type 1b. Indeed, b

Lemma 7.69,t i,T3ed1b∧t C̃
h̃
c implies thath̃t i21uL̄P C̄h̄,0 andh̃t i

uL̄P C̄h̄,1b . Namely, the arrival of

a red particle during an instability interval produces the exit from the cycleC̃h̄ .
In a similar way, let us denote bys j , j PN, the random times corresponding to the exit

particles fromL̄, ~i.e., the appearance of red particles! before the exit from the cycle. These time

must be thefinal point of an instability interval of type 1b, andh̃s j 11uL̄P C̄h̄,0 .

The interaction between red particles and particles inL̄ is active only during instability
intervals containing subintervals of type 1b. Now consider a realization of our process in the
interval @0,T3ed1b∧t C̃

h̃
c #. This means, in particular, that we have a realization of instability in

vals and of random timest i ands j . Let us look at the process from the point of view of the r
particles: this is a system of independentquasi random walks~QRW! given by the following rules:

•When a red particle entersL̄ at a timet i , it disappears as red particle during the instabil
interval starting att i . During this interval the red particle can be killed if the final time of th
instability interval is not a times j . Otherwise the particle reappears at a times i at some point in

]L̄.
•A new particle appears at a times j , which is the final point of an instability interval no

starting with at i . Call the starting point of such an instability interval acoloration timeak .

•OutsideL̄ red particles move like IRW’s.
Thus, the difference between our process and a process of IRW’s not only comes from the fa
particles can be created and annihilated~with a random law!, but also from the fact that particle

can disappear for random intervals of times when they touchL̄ and can reappear again at

different point in]L̄.
~5! More precisely, for each coloration timeak define a quasi random walk (QRW(ak)s)s>0

and a delay time DT(t,ak) as follows:

•Look at the particle exiting fromL̄ at the end, says j , of the instability interval starting with
ak . Let n1 be its label, (j(n1)s)s>0 its path, andtL̄ø]L l 2

(n1) the first time it hits the set

L̄ø]L l 2
. If tL̄ø]L l 2

(n1)>T3ed1b∧tC
h̄
c , then the QRW(ak) associated withak is (j(n1)s)s>s j

,

i.e.,

QRW~ak!s5j~n1!s1s j
;sP@0,~T3ed1b∧tC

h̄
c !2s j #, ~7.80!

and its delay time is

DT~ t,ak!5~ t∧s j !2ak , ~7.81!

corresponding to the time spent inL̄ up to timet.
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•If tL̄ø]L l 2

(n1),T3ed1b∧tC
h̄
c and the particlen1 hits ]L l 2

before L̄, then the particle is

annihilated when exitingL l 2
. So in this case QRW(ak)s5j(n1)s1s j

;sP@0,t]L l 2

(n1)2s j #

and DT(t,ak)5(t∧s j )2ak .

•If tL̄ø]L l 2

(n1),T3ed1b∧tC
h̄
c and the particlen1 hits L̄ before]L l 2

, thentL̄ø]L l 2

5t i 1
for

some indexi 1 and we look at the end of the instability interval starting att i 1
. If this end time is

not a times j 8 , then the red particle is annihilated in this instability interval, so QRW(ak)s

5j(n1)s1s j
;sP@0,t i 1

2s j # and DT(t,ak)5(t∧s j )2ak .
•If the end of the instability interval starting witht i 1

is a times j 1
, then we look at the red

particle exiting at this time fromL̄. We letn2 be its label~not necessarily equal ton1), and we
follow j t(n2) for t.s j 1

. As before, we have to distinguish between different possibilities
tL̄ø]L l 2

(n2)>T3ed1b∧tC
h̄
c , then

QRW~ak!s5H js1s j
(n1) for sP[0,t i 1

2s j ]

js1s j 1
2(t i 1

2s j )
(n2) for sP[ t i 1

2s j , (T3ed1b∧tC
h̄
c )2s j 1

1t i 1
2s j ],

~7.82!

and

Dt~ t,ak!5H ~ t∧s j !2ak for tP@ak ,t i 1
#

s j2ak1~ t∧s j 1
!2t i 1

for tP@t i 1
,T3ed1b∧tC

h̄
c #

. ~7.83!

•Similarly, we can iterate the previous construction in the other cases.
Roughly speaking, the process (QRW(ak)s)s>0 is obtained by glueing together the pieces

random walk performed by red particles outsideL̄, where the paths of two red particlesni and

ni 11 are glued together if particleni hits L̄ at the beginning of an instability interval ending wit

the exit of particleni 11 from L̄. The delay time DT(t,ak) is defined as the total length of th
union of the instability intervals cut out in this glueing procedure up to timet. By this construction

it is clear that, starting from a configuration inX̃3 , to each red particle we can associate a crea
time ak .

~6! By using the above construction of QRW’s, we will be able to control:

the number of instability intervals;
the probability of the arrival of a red particle in a given time interval.

To do so, we start with the following observation. For any pair of typess,s8 with sÞs8, we define
the transformation cost TC(s,s8):

TC~s,s8!5 min
h̄1P C̄h̄,s8 ,h̄2P C̄h̄,s

@H̄~ h̄1!2H̄~ h̄2!#1 ~7.84!

for s50, 1a, 1b, 2 ands851a, 1b, 2.

Lemma 7.85: The following hold:

TC~0,1a!5U, TC~0,1b!5D, TC~0,2!5`,

TC~1a,1b!5U, TC~1a,2!5`,
~7.86!

TC~1b,1a!50, TC~1b,2!50,

TC~2,1a!5`, TC~2,1b!5U.
                                                                                                                



r

y an

5

d

1479J. Math. Phys., Vol. 41, No. 3, March 2000 Metastability and nucleation for conservative . . .

                    
~The transitions that are not possible in one step get transition cost`.!

Lemma 7.85 implies that, starting fromC̃h̄,0 , the initial time of an interval of type 1b is eithe
a time t i or a time corresponding to a move of probability<e2Db. An instability interval
containing an interval of type 1b can also be realized by an interval of type 1a followed b
interval of type 1b. Also in this case Lemma 7.85 implies, by~7.86! and Lemma 7.75, that we
have two moves of probabilitye2Ub within a time interval of lengthed1b. Thus we may conclude
that each coloration timeak corresponds to a move~or a couple of moves! of probability smaller
thane2Db.

~7! We have the followinga priori estimates.

Lemma 7.87: Let n(T3ed1b,D) be the number of moves in@0,T3ed1b# of probability <e2Db.
Then, for alld.0,

P~n~T3ed1b,D!.e~d11d!b!5SES. ~7.88!

Lemma 7.87 implies that the number of red particles created in@0,T3ed1b# is less thane(d11d)b

with probability 12SES.

Lemma 7.89: Letn(t) be the number of visits toL̄ of a QRW describing a red particle during
a time t. Then

P~n~ t !.~ log t !3!,te2k~ log t !2
. ~7.90!

for somek.0.

From Lemmas 7.87 and 7.89 we obtain that with probability 12SES the number of instability
intervals containing intervals of type 1b is less thaned2b with d2.d1 arbitrary. In a similar way
we can prove the following:

Lemma 7.91: There existd3(d1 ,d2 ,g), satisfying limd1 ,d2 ,g↓0d3(d1 ,d2 ,g)50, and b0.0
such that for allb.b0 and t<T3ed1b with probability 12SES:
(i) The total number of instability intervals of type 1b in@0,t∧t C̄

h̄
c # is less than ed3b.

(ii) The total number of instability intervals of type 1a in@0,t∧t C̄
h̄
c # is less than e(D2U1d3)b.

(iii) The total number of instability intervals@ t1 ,t2# of type 1a in@0,t∧t C̄
h̄
c #, such that in@ t1

2e(D2U1d11d3)b,t1# there exists an interval of type 1b, is less than ed3b.
(iv) The total number of instability intervals of type 2 in@0,t∧t C̄

h̄
c # is less than ed3b.

~8! We now return to the estimate of the 2nd, 3rd, and 4th terms on the rhs of~7.78!. By
applying Lemmas 7.75 and 7.91 we obtain

P~Ah̃
mù$h̄1P C̄h̄,1a%ù$DH̄1,2>D%!<e~2U1d11d3!b1SES,

P~Ah̃
mù$h̄1P C̄h̄,1b%ù$DH̄1,2>U%!<e~2U1d11d3!b1SES, ~7.92!

P~Ah̃
mù$h̄1P C̄h̄,2%ù$DH̄1,2>D%!<e~U2D1d11d3!b1SES.

~9! Next we have to control the termP(Ah̃
r ). Let us denote byt i<T3ed1b∧t C̃

h̄
c the times of

arrival of red particles inL̄ up to timeT3ed1b∧t C̃
h̄
c ~including t C̃

h̄
c if the exit is due to the arrival

beforeT3ed1b of a red particle inside an instability interval!. We observe that, by Lemmas 7.7

and 7.91, for eacht i the delay time DT(T3ed1b∧t C̃
h̄
c ,ak) spent by the red particle insideL̄ is less

than e(U1d11d3)b with probability 12SES, whereak denotes the coloration time of the re
particle.
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Lemma 7.93: There existd4(d1 ,d3), satisfyinglimd1 ,d3↓0d4(d1 ,d3)50, andb0.0 such that,

for all b.b0 , t0.0 and T.0 with t01T<T3ed1b,

P~'t iP@ t0 ,t01T# !<@e2~D2U !b1e2DbT log t0#ed4b. ~7.94!

Let P~1a!, P~1b!, P~2! be the probabilities of the events where a red particle arrives durin
instability interval of types 1a, 1b, 2, respectively. Obviously,

P~Ah̃
r !<P~1a!1P~1b!1P~2!. ~7.95!

By using Lemmas 7.75, 7.91, and 7.93, we have

P~1b!<SES1P~' an interval @ t1 ,t2#,@0,T3ed1b∧t C̄
h̄
c # of type 1b

with t22t1<ed1 ,b and 't iP~ t1 ,t2!)

<SES12e2~D2U2d32d4!b,

P~2!<SES1P~' an interval @ t1 ,t2#,@0,T3ed1b∧t C̄
h̄
c # of type 2

with t22t1<Ub1d1b and 't iP~ t1 ,t2!)

<SES12e2~D2u2d12d32d4!b. ~7.96!

As far as the termP~1a! is concerned, we have to distinguish between two cases dependi
the existence of an interval of type 1b at a distance less thane(U1d11d3)b from the interval of type
1a we are considering:

P~1aù$' interval of type 1b in @ t12e~U1d11d3!b,t1#%!<2e2~D2U2d32d4!b,
~7.97!

P~1aù$'” interval of type 1b in @ t12e~U1d11d3!b,t1#%!<e2~D2U2d12d32d4!b.

Indeed, in this last case the first term in the estimate in Lemma 7.93 is absent, since it come
the event that there exists a creation timeak at a distance less thane(U1d11d3)b from the interval
of type 1a we are considering and this is forbidden by the event$'” interval of type 1b in@ t1

2e(U1d11d3)b,t1#%. @See~7.119! in the proof of Lemma 7.93 below.#
~10! It remains to estimate the probability of exit by contraction. This is given by the foll

ing.

Lemma 7.98: There existsd5(g) satisfyinglimg↓0d5(g)50 and b0.0 such that, for allb
.b0,

P~Ah̃
mù$h̃1P C̄h̄,0%ù$DH̄1,252U%!1P~Ah̄

mù$h̄1P C̄h̄,1a%ù$DH̄1,25U%!

<e2@~2U2D!~ l 121!2d5#b. ~7.99!

This completes the proof of Proposition 7.43 for the caseh̄PX̄3\L. QED
~11! For the caseh̄PL we can proceed in a similar way. We indicate here only the differen

with the caseh̄PX̄3\L.

The characterization of the setC̄ h̄
2U can be done as follows. By Lemma 5.13~iii !, we know

that F( C̄ h̄
2U)5 C̄ h̄

2UùX̄35 C̄ h̄
2UùX̄2 . A direct check shows thatH̄(h̄8)P$H̄(h̄),H̄(h̄)1D

2U,H̄(h̄)1U,H̄(h̄)1D% for any h̄8P C̄ h̄
2U . Moreover, configurations withH̄(h̄8)>H̄(h̄)1U
                                                                                                                



ch

xactly

ts

l

ist cost

1481J. Math. Phys., Vol. 41, No. 3, March 2000 Metastability and nucleation for conservative . . .

                    
are not inX̄1 . Indeed, if such anh̄8 is not 0-reducible, then this inequality implies that for ea

h̄9 with H̄(h̄9),H̄(h̄8) we haveH̄(h̄8,h̄9)>H̄(h̄8)1U, and so if we chooseh̄95h̄, then we

obtain H̄(h̄8,h̄)>H̄(h̄)1U1U, which contradictsh̄8P C̄ h̄
2U .

Thus the partition of the setC̄ h̄
2U uses

C̄ h̄,0
2U

5$h̄8P C̄ h̄
2UùX̄3%,

C̄ h̄,1a
2U

5$h̄8P C̄ h̄
2Uù~X̄\X̄1! with H̄~ h̄8!5H̄~ h̄ !1U%,

~7.100!
C̄ h̄,1b

2U 5$h̄8P C̄ h̄
2Uù~X̄\X̄1! with H̄~ h̄8!5H̄~ h̄ !1D%,

C̄ h̄,2
2U

5$h̄8P C̄ h̄
2Uù~X̄1\X̄2! with H̄~ h̄8!5H̄~ h̄ !1D2U%.

The exit costs in this case are given by

h̄8P C̄ h̄,0
2U : EC~ h̄8!52U,

h̄8P C̄ h̄,1a
2U : EC~ h̄8!5U,

~7.101!
h̄8P C̄ h̄,1b

2U : EC~ h̄8!5U,

h̄8P C̄ h̄,2
2U : EC~ h̄8!5D,

where we use that 2U2D,U/2. The transition costs are given by

TC~0,1a!5U, TC~0,1b!5D, TC~0,2!5`,

TC~1a,1b!5`, TC~1a,2!5`, TC~1b,1a!5`, ~7.102!

TC~1b,2!50, TC~2,1a!5`, TC~2,1b!5U.

We can prove also for this case the result in Lemma 7.91, and the rest of the proof follows e

the same calculations performed for the caseh̄PX̄3\L.

7.8. Proof of the lemmas in Sec. 7.7

In this section we prove the lemmas that were used in Sec. 7.7.

Proof of Lemma 7.69:~i! Let l 1 ,l 2 be the side lengths ofh, with 0< l 22 l 1<1, and letg be
its contour. For anyh̄8 such thatug8u,ugu, we haven08<n02 l 1 . On the other hand, by the resul

in Sec. 4 we know thatH̄(Nl 1l 2
,Nl 1( l 221))>r (h̄)1D1H̄(h̄), so that such a configurationh̄8 is

not in C̄h̄ . In the same way, by using the results in Sec. 4, we immediately see that ifn08>n0

12 or n08<n02 l 111, then the configurationh̄8 is not in C̄h̄ .
~ii ! Equation~7.70! follows from ~i! and the fact thatn0 is the maximal number of interna

particles given a contour of lengthugu. To prove thath8PX̄2 , we only have to observe thatg8
must be a monotone contour, after which we can apply Proposition 5.11. To evaluate the ex
of h8, note that

H̄~h8!5H̄~ h̄ !1 l 8~2U2D!, ~7.103!
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while, by the definition of EC in~7.68!,

H̄~ h̄8!1EC~ h̄8!2H̄~ h̄ !>r ~ h̄ !1D>~ l 121!~2U2D!1D. ~7.104!

So we obtain

EC~ h̄8!>~ l 1212 l 8!~2U2D!1D. ~7.105!

~iii ! We argue by contradiction. Suppose thatug8u5ugu12, n850 and h̄8P C̄h̄ùX̄2 . Then,
sincen08<n011, we have

H̄~ h̄8!>H̄~ h̄ !1U2~2U2D!. ~7.106!

But

H̄~ h̄8,h̄ !2H̄~ h̄8!>D. ~7.107!

Hence

H̄~ h̄8,h̄ !>D1D2U1H̄~ h̄ !>r ~ h̄ !1H̄~ h̄ !, ~7.108!

which contradicts the hypothesish̄8P C̄h̄ . So h̄8¹X̄2 . To compute EC(h̄8), we note that

EC~ h̄8!>H̄~ h̄ !2H̄~ h̄8!1r ~ h̄ !1D, ~7.109!

and since

H̄~ h̄ !2H̄~ h̄8!5~22U1D!~n02n08!2U, ~7.110!

we obtain the result.

~iv! In a similar way,H̄(h̄8)>H̄(h̄)12U2(2U2D), and if h̄8PX̄1 , then

H̄~ h̄8,h̄ !>D1U1H̄~ h̄ !>r ~ h̄ !1H̄~ h̄ !. ~7.111!

Now EC(h̄8)5U, since

H̄~ h̄8!1U2H̄~ h̄ !>D1U>r ~ h̄ !1D. ~7.112!

~v! Note that

H̄~ h̄8!5~22U1D!n081
U

2
ug8u1D>~22U1D!1

U

2
~ ug8u2ugu!1D1H̄~ h̄ !, ~7.113!

so if ug8u.ugu, then

H̄~ h̄8!>22U1D1U1D1H̄~ h̄ !52D2U1H̄~ h̄ !>r ~ h̄ !1H̄~ h̄ !, ~7.114!

while if ug8u5ugu and h̄8PX̄1 , then

H̄~ h̄8,h̄ !>U1H̄~ h̄8!>U12D22U1H̄~ h̄ !>r ~ h̄ !1H̄~ h̄ !. ~7.115!

Also in this case we have that EC(h̄8)5U, sinceH̄(h̄8)1U2H̄(h̄)>r (h̄)1D.
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~vi! If ug8u.ugu14 or n8.1, then H̄(h̄8)>U1D1H̄(h̄)>r (h̄)1H̄(h̄) or H̄(h̄8)>3D

22U1H̄(h̄)>r (h̄)1H̄(h̄). QED

Proof of Lemma 7.75:The claim is an immediate consequence of Proposition 6.2.QED

Proof of Lemma 7.85:
~1! Let s50, s851a. Thenug2u5ug1u12 andn0,15n0,2, since the moveh̄1→h̄2 has to be

inside L̄0 . ThereforeH̄(h̄2)2H̄(h̄1)5U. Analogously, lets50, s851b. Thenug2u5ug1u14

andn0,25n0,1 or ug2u5ug1u andn251, so thatH̄(h̄2)2H̄(h̄1)52U∧D5D.

~2! The transitionh̄1P C̄h̄,0→h̄2P C̄h̄,2 is not possible. Indeed, we haveH̄(h̄1)ÞH̄(h̄2), since

h̄1 is not 0-equivalent toh̄2 , and if H̄(h̄1),H̄(h̄2), then the moveh̄2→h̄1 shows thath̄2¹X̄1 ,

while if H̄(h̄1).H̄(h̄2), then the moveh̄1→h̄2 shows thath̄1¹X̄1 .
~3! If s51a, s851b, then we have two possibilities:

~1! ug2u5ug1u12 andn15n250, n0,15n0,2;
~2! ug2u5ugu,ug1u5ugu12 andn251, n150.

In the first caseH̄(h̄2)2H̄(h̄1)5U, in the second case the move must be betweenL̄0 and the

ring L̄\L̄0 , so n0,25n0,121 and H̄(h̄2)2H̄(h̄1)5(22U1D)(n0,22n0,1)1(U/2)(ug2u2ug1u)
1D5U.

~4! The transitionh̄1P C̄h̄,1a→h̄2P C̄h̄,2 is not possible. Indeed, we haveH̄(h̄1)ÞH̄(h̄2),
sinceh̄1 is not 0-equivalent toh̄2 , andug1u5ugu125ug2u andn0,15n0,2, sincen15n250, but
this is a contradiction.

~5! If s51b,s852, then we have a creation cost zero~as given, for instance, by the transitio
in which a particle reaches the square or quasi-square cluster!. A similar argument holds for the
cases51b,s851a.

~6! The transition 2→1a is forbidden by an argument similar to that used in the transi
1a→2.

~7! If s52, s851b, then we have two possibilities:

~1! ug2u5ugu14, ug1u5ugu12 andn15n250;
~2! ug2u5ugu,ug1u5ugu12 andn251, n150.

In both cases we haveH̄(h̄2)2H̄(h̄1)5U. QED

Proof of Lemma 7.87:This is an elementary large deviation estimate for a binomial distr
tion obtained by applying an exponential Chebyshev inequality.QED

Proof of Lemma 7.89:For anyt.1:

P~n~ t !.~ log t !3!

<P~'akP@0,t#: '~ log t !3 IRW’s starting at ]L̄ and returning toL̄ within time t !

<tS 12
k

log t D ~ log t !3

<te2k~ log t !2
, ~7.116!

where we use Proposition 3.2.QED

Proof of Lemma 7.91:
~i! Let N8(1b) be the number of instability intervals containing at least an interval of typ

within time T3ed1b∧t C̄ ¯
c . For anyd2.d1, let d5(d22d1)/2. We have

h
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P~N8~1b!.ed2b!<P~n~T3ed1b,D!.e~d11d!b!1P~n~T3ed1b!.edb!

1P~$N8~1b!.ed2b%ù$n~T3ed1b,D!<e~d11d!b%ù$n~T3ed1b!.edb%!.

~7.117!

By using Lemmas 7.87 and 7.89, we getP(N8(1b).ed2b)<SES.
In any instability interval containing intervals of type 1b, the maximal number of interval

type 1b ise(d11d)b with probability 12SES for anyd.0. This follows from Lemma 7.85 and th
analogue of Lemma 7.87 for the quantityn(T2ed1b,U). Thus, we have that the total numb
N(1b) of intervals of type 1b within timeT3ed1b∧t C̄

h̄
c is smaller thaned3b with probability 1

2SES ford3.2d1 .
~ii ! With similar arguments we can conclude that the numberN8(1a) of intervals of type 1a

starting from an interval of type 0 is, with probability 12SES, smaller thane(D2U1d11d)b, and
the number of intervals of type 1a contained in an instability interval containing intervals of
1b is less thanedb, for anyd.0, so thatN(1a)<N8(1a)1N8(1b)edb.

~iii ! By using thatN(1b)<ed3b, we can estimate the number of intervals of type 1a contai
in a union of intervals with total lengthe(D2U1d112d3)b by using the same argument as in~ii !.

~iv! The numberN(2) of intervals of type 2 is estimated byN(2)<N(1b), again by Lemma
7.85.

QED

Proof of Lemma 7.93:~1! Let ak be a coloration time. Ift0<eUb1(d11d3)b, then

P~'t iP@ t0 ,t01T# !<P~'akP@0,eUb1~d11d3!b1T# !

< (
k51

ed3b

(
s50

eUb1~d11d3!b1T

P~ak5s!1SES

<e2Db1d3b~eUb1~d11d3!b1T!1SES. ~7.118!

On the other hand, ift0.eUb1(d11d3)b, then

P~'t iP@ t0 ,t01T# !

5P~$'t iP@ t0 ,t01T#%ù$akP@ t02eUb1~d11d3!b,t01T#%!

1P~$'t iP@ t0 ,t01T#%ù$ak,t02eUb1~d11d3!b%!

< (
k51

ed3b

(
s5t02eUb1~d11d3!b

t01T

P~ak5s!1 (
k51

ed3b

(
s50

t02eUb1~d11d3!b

(
t5t0

t01T

3P~$ak5s% ù$QRWt2s2DT~ t,ak!~ak!PL̄%!1SES. ~7.119!

~2! For QRW similar estimates hold as for SRW, namely,

max
x

P~QRWt5x!<
k log t

t
. ~7.120!

Indeed, we can write

QRWt5SRWt1JPt , ~7.121!

where JPt is a sum of jumps
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JPt5 (
n50

n~ t !

Jn ~7.122!

with uJnu,2l 0 and withn(t) estimated in Lemma 7.89.
~3! From ~7.120!, using that DT(T3ed1b∧t C̄

h̄
c ,ak),e(U1d11d3)b with probability 12SES, we

obtain

P~'t iP@ t0 ,t01T# !

<e2~D2d3!b~eUb1~d11d3!b1T!

1 (
t5t0

t01T

(
s50

t02eUb1~d11d3!b

e2Db1d3b
1

t2s2e~U1d11d3!b 1SES

<e2~D2d3!b~eUb1~d11d3!b1T!1e2Db1d3bT log t01SES. ~7.123!
QED

Proof of Lemma 7.98:
~1! For m5n02 l 112,..., n011, define

C̄h̄~m!5 C̄h̄ùNm , ~7.124!

whereNm5$h̄8PX̄: n081n85m%. By Lemma 7.69,C̄h̄5øm5n02 l 112
n011 C̄h̄(m). We note that the

setsC̄h̄(m) are not necessarily connected. We write

C̄h̄~.m!5 ø
m85m11

n011

C̄h̄~m8!. ~7.125!

Let z j (m), j PN, denote the return times to the setC̄h̄(m) within T3ed1b∧t C̄
h̄
c , i.e.,

z1~m!5~T3ed1b∧t C̄
h̄
c !∧min$t>0:h̃ tP C̄h̄~m!%,

z j8~m!5~T3ed1b∧t C̄
h̄
c !∧min$t.z j~m!:h̃ tÞ C̄h̄~m!%, ~7.126!

z j 11~m!5~T3ed1b∧t C̄
h̄
c !∧min$t.z j8~m!:h̃ tP C̄h̄~m!%.

~2! Let m0 be the minimal indexm, i.e.,m05n02 l 112. We say that the process (h̃ t) t>0 exits

by contraction from the setC̄h̄(m0) if it exits without increasing the number of particles inL̄, i.e.,
if SxPL̄h̃ t(x)5m0 for all t<t C̄

h̄
c (m0). On the events

Ah̃
mù$h̄1P C̄h̄,0%ù$DH̄1,252U%,

~7.127!

Ah̃
mù$h̄1P C̄h̄,1a%ù$DH̄1,25U%,

the process (h̃ t) t>0 exits from C̄h̄ by visiting C̄h̄(m0) and then leaving it by contraction. So w
have the estimate
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P~Ah̃
mù$h̄1P C̄h̄,0%ù$DH̄1,252U%!1P~Ah̃

mù$h̄1P C̄h̄,1a%ù$DH̄1,25U%!

< (
i 51

ed3b

(
yP C̄h̄~m0!

P~$z i~m0!,T3ed1b∧t C̄
h̄
c %ù$h̃z i

5y%!

3 Py~~ h̃ t! t>0 exits by contraction fromC̄h̄~m0!!

1P~max$ i>1: z i,T3ed1b∧t C̄
h̄
c %.ed3b!. ~7.128!

~3! By using the coupling between (h̃ t) t>0 and (h̄ t) t>0 we obtain

sup
yPCh̄~m0!

Py„~ h̃ t!t>0 exits by contraction fromC̄h̄~m0!…

< sup
yP C̄h̃~m0!

Py~~ h̄ t! t>0 exits by contraction fromC̄h̃~m0!!. ~7.129!

On the other hand, by using reversibility we can estimate, for alld.0,

Py~~ h̃ t! t>0 exits by contraction fromC̄h̄~m0!!<e2~2U2D2d!b. ~7.130!

Moreover,

P~z i~m0!,T3ed1b∧t C̄
h̄
c !<P~t C̄h̃~m0!,T3ed1b∧t C̄

h̄
c !, ~7.131!

and thus we obtain

rhs of of ~7.128!<ed3bP~t C̄h̄~m0!,T3ed1b∧t C̄
h̄
c !e2~2U2D2d!b

1P~max$ i>1: z i,T3ed1b∧t C̄
h̄
c %.ed3b!. ~7.132!

~4! Each entrance into the setC̄h̄(m0), i.e., eachz i(m0), is a time at which a particle exits

from L̄ and so it is the endpoint of an interval of type 1b. So, by Lemma 7.91, we have tha
last term in~7.132! is SES. The proof of the lemma can now be concluded by iteration afte

note that on the event$t C̄h̃(m0),T3ed1b∧t C̄
h̄
c % the process (h̃ t) t<0 exits from the setC̄h̄(.m0) by

visiting C̄h̄(m011) and then leaving it by contraction.QED

7.9. Additional results

We close by collecting two consequences of Proposition 7.9 that will be needed in Sec.
first concerns the creation of a 232 droplet fromh, which is the start of the nucleation path.

Proposition 7.133: There existsd65d6(d1 ,g).0, satisfyinglimd1,g↓0d6(d1 ,g)50, and b0

.0 such that, for allb.b0,

min
hPhùX 3

Ph~tR2,2
,e~4D22U !b1d6b!.e2d6b. ~7.134!

Proof: We need the following lemma.

Lemma 7.135: LetNn5$hPX0: NL̄(h)5n%. Then there existsd75d7(d1 ,g).0, satisfying
limd1,g↓0d7(d1 ,g)50, and b0.0 such that, for allb.b0,
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min
hPN<3

Ph~tN4
,T3e2d1b!>e2~3D22U !b2d7b. ~7.136!

This result implies Proposition 7.133 as follows. For everyhPN4 we havePh(tR2,2
,T2ed1b)

.e2db for any d.0 andb large enough, and so for allhPhùX3,

Ph~tR2,2
,e~4D22U !b1d6b!>Ph~tN4

,e~4D22U !b1d8b!e2db ;0,d8,d6 ~7.137!

and the probability on the rhs of~7.137! is 12SES if d8.2d11d7 . Indeed, if tN4

>e(4D22U)b1d8b, then in any subinterval of lengthT3e2d1b contained in the interval@0,
e(4D22U)b1d8b] we have not yet reachedN4 . By ~7.136!, the probability of this event is SES i
d8.2d11d7 . QED

Proof of Lemma 7.135:
~1! By using the recurrence toX3 within time T3ed1b, we have, for allhPN<3,

Ph~tN4
,T3e2d1b!>Ph~$tN4

,T3e2d1b%ù$tN4
.tX3

%!

> min
h8PhùX 3

Ph8~tN4
,T3e2d1b2T3ed1b!Ph~tN4

.T3ed1b!2SES

~7.138!

sinceN<3ùX35hùX0.

~2! Let

A5$hPX0 : NL l 2
\L̄~h!>4%. ~7.139!

Then, for allhPhùX3 andb sufficiently large,

Ph~tN4
,T3e2d1b2T3ed1b!>Ph~$tA, 1

3 T3e2d1b%ù$tN>2
. 1

3 T3e2d1b%!

3 min
h8PAùN,2

Ph8~tN4
,T3e2g/2b!. ~7.140!

The first probability on the rhs of~7.140! can be estimated by recalling~2.27!, uL l 2
u5e(D2g)b and

uL l 1
u5e(D1d)b, namely, for allhPhùX3:

Ph~$tA, 1
3 T3e2d1b%ù$tN>2

. 1
3 T3e2d1b%!

>S uL l 2
\L̄u

1
3 T3e2d1bD 4

~12Ph~tN>2
< 1

3 T3e2d1b!!

>e2~g12d1!4bS 12
uL̄u2

1
2 T3e2d1bD >e2~d7/10!b. ~7.141!

The second probability on the rhs of~7.140! can be estimated by similar standard estimates
SRW. Indeed, the fact thath8PA allows us to estimate from below bye2Db2(d7/10)b the prob-

ability that a particle arrives inL̄ at time t, provided t. 1
3 T3e2(g/2)b. If we denote by

t18 ,t28 ,t38 ,t48 , the random times corresponding to the arrival of the first four particles, then
obtain
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min
h8PAùN,2

Ph~tN4
,T3e2~g/2!b!

> min
h8PAùN,2

(
t5

1
3 T3e2d8b

2
3T3e2d8b

(
t35t12

t1eUb2~d7/10!b

(
t45t311

t31eUb2~d7/10!b

Ph8~t185t,t285t11,t385t3,t485t4,D2,D3!

>e2~3D22U !b2~9d7/10!b, ~7.142!

whereD2 is the event that the first two particles form and stay a dimer until timeeUb2(d7/10)b and
D3 the same for a trimer.QED

The second consequence of Proposition 7.9 concerns some estimates for the transitio
abilities of the reduced Markov chain. Lett i ,i PN0 be as in Definition 7.3 and lett̄1

5min$ti : hti
¹E3(ht0

)%, i.e., the first timet i at which the reduced Markov chain changes co
figuration.

Proposition 7.143: Letd be as in Proposition 7.9.
(i) If h̄PRl 1 ,l 2

with l1, l c and h̄8PRl 111,l 2
, then

min
hPI h̄

Ph~$ht̄1
PI h̄8%ù$t̄1,e~2D2U1d!b%!>e2@D2U2r ~ h̄ !12d#b. ~7.144!

(ii) If h̄PRl 1 ,l 2
with l1> l c and h̄8PRl 111,l 2

, then

min
hPI h̄

Ph~$ht̄1
PI h̄8%ù$t̄1,e~2D2U1d!b%!>e22db. ~7.145!

(iii) If h̄ is a lacunary set andh̄ j , j 50,1,...,n(nPN), is the sequence of configurations defin
in Proposition 7.9 (iii), then

min
j 50,...,n21

min
h j PI h̄ j

Ph j
~$ht̄1

PI h̄ j 11
%ù$t̄1,e~2D2U1d!b%!>e22db. ~7.146!

Proof: ~i! Estimate

Ph~ht̄1
PI h̄8!5

PR~h,I h̄8!

12PR~h,I h̄!
>

PR~h,I h̄8!

C~ uL̄u!max
hPI h̄

max
h9PX3 ,h9¹E3~ h̄ !

PR~h,I h̄9!
, ~7.147!

whereC(uL̄u).0 is some constant depending only onuL̄u. By Proposition 7.9~i! and ~iv!, we
have

Ph~ht̄1
PI h̄8!>e2@D2U2r ~ h̄ !12d#b. ~7.148!

By Proposition 7.9~i!, we also have

Ph~ t̄1>e~2D2U !b1db!<SES1@PR~h,I h̄!#@e~2D2U1d!b/T3ed1b#

5SES1F12 (
h̄9¹E3~ h̄ !

PR~h,I h̄9!G @e~2D2U1d!b/T3ed1b#

<SES1@12PR~h,I h̄8!#
@e~2D2U1d!b/T3ed1b#5SES. ~7.149!
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Parts~ii ! and ~iii ! follow in the same way. QED

8. PROOF OF THE MAIN THEOREM

In this section we collect the results from Secs. 4–7 and prove Theorem 1.53.

8.1. Lower bound for the nucleation time

We begin by proving the lower bound in Theorem 1.53~c!, i.e.,

lim
b→`

Pnh̄
~tj,T2!50 ;d.0 with T25T2~b,d!5e~G2d!b. ~8.1!

~1! Let

A5$h8PX: H̄~h,h8!2H̄~h !,G%, ~8.2!

where H̄ is the local grand-canonical Hamiltonian defined in~1.49!, the communication heigh

H̄(h,h8) is the obvious extension of~4.12!, andH̄(h)50.
SinceG is the communication height betweenh and j, as was shown in Proposition 4.2

~iii !, we havet]A,tj and so

Pnh̄
~tj,T2!<Pnh̄

~t]A,T2!. ~8.3!

~2! To estimate the rhs of~8.3! we use reversibility. For that it is convenient to pass to

discrete-time setup. LetTi ,i PN0 , be the successive times at which some clock inL̄* ø]L̄*
rings. LetP* (h,h8) denote the transition probabilities of the Markov chain that is obtained
observing our process at these times:

P* ~h,h8!5Ph~hT1
5h8!. ~8.4!

Let

i * 5 inf$ i PN0 : hTi
P]A%,

N15#$0< i , i * : Ti 112Ti,a%, ~8.5!

N25#$0< i , i * : Ti 112Ti>a%,

wherea.0 is a constant that will be chosen shortly. Sincei * 5N11N2 and $t]A,T2%,$N2

,T2 /a%, we have, for anyMPN,

Pnh̄
~t]A,T2!<P~N1.M ,N2,T2 /a!1Pnh̄

~ i * ,M1T2 /a!. ~8.6!

Moreover,

P~N1.M ,N2,T2 /a!<PS N1

N11N2
>

M

M1T2 /aD . ~8.7!

Now pick a,M such that

P~T1,a!< 1
3, M5T2 /a. ~8.8!

Then the probability on the rhs of~8.7! equals the probability that among the firstN11N2 of a
sequence of Bernoulli trials with success probability< 1

3 a fraction at least12 is successful.
However, this probability is SES, and so we get
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Pnh̄
~t],A,T2!5SES1Pnh̄

~ i * ,2T2 /a!. ~8.9!

~3! Let us next consider the Markov chain obtained from our process when some clock

large volumeLb rings. Let P̂(h,h8) denote its transition probabilities. This Markov chain
easily seen to be reversible w.r.t. the same invariant measuren as the continuous-time proces
From this observation we deduce the reversibility of the Markov chain with transition probab
given byP* (h,h8) in ~8.4!. Indeed,

P* ~h,h8!5 P̂~h,h8!1(
t52

`

(
h1 ,...,h t21

h i uL̄5huL̄ ~ i 51,...,t21!

P̂~h,h1!3¯3 P̂~h t21 ,h8!

5
n~h!

n~h! F P̂~h8,h!1(
t52

`

(
h1 ,...,h t21

h i uL̄5huL̄~ i 51,...,t21!

P̂~h8,h t21!3¯3 P̂~h1 ,h!G
5

n~h!

n~h8!
P* ~h8,h!. ~8.10!

Hence we get

Pnh̄
* ~ i * ,2T2 /a!5

1

n~ I h̄! (
l 51

2T2 /a

(
h1 ,h2 ,...,h l 21PA

h lP]A

P* ~h1 ,h2!3¯3P* ~h l 21 ,h l !

<
2T2

a
sup

jP]A

n~j!

n~ I h̄!
. ~8.11!

From ~8.2!, ~8.9!, ~8.11!, Proposition 4.24~iii !, and Proposition A6 we get the result. Namely, w
replacen by m, making an error that is SES because limb→`(1/b)log uLbu5`, and we use that
supjP]A m(j)/m(I h̄)<e2Gb because of~8.2! @recall ~4.10!#.

8.2. Upper bound for the nucleation time

Next we prove the upper bound in Theorem 1.53~c!, i.e.,

lim
b→`

Pnh̄
~tj.T1!50 ;d.0 with T15T1~b,d!5eb~G1d!. ~8.12!

~1! The idea is to construct an eventEh,T leading from anyhPX to j in an appropriate time
T5T(b,d) and having a sufficiently large probability. Let us first describe this event in wo
The timeT will be chosen of the formT5e@4D22U1(d/2)#b for a suitably smalld.0. Note that, for
b sufficiently large,T/3.T3

1 with T3
15e@D1(d/2)#b. But, givenhPI h̄ , we know from Proposition

5.20 that within timeT3
1 our process visitsX̄3 with a large probability. Then, by Proposition 5.1

~iii ! and Remark~2! following it, either of the two following situations prevails:

~1! There exist l,l 8PN0\$1%, u l 2 l 8u<1 such that our process visitsRl ,l 8 within time T3
1 .

~2! The process passes through a configuration containing a large lacunary square or quas
@recall Remark~2! in Sec. 5.2#.

In case~2!, within another timeT/3 with a large probability our process goes to a large~highly
supercritical! square or quasi-square. Indeed, it follows from the results in Sec. 7 that fb
sufficiently large this happens within a timee@2U1(d/2)#b for anyd.0. But ford.0 small we have
T/3.e@2U1(d/2)#b.
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From the square or quasi-square present in each configuration inRl ,l 8 , we grow following a
sequence of squares or quasi-squares of increasing side lengths, leading eventually toj. Of
course, it may happen that the initial square or quasi-square is empty (l 5 l 850), i.e., the con-

figuration on which we fall during the first part of our event is justh̄.
~2! Let us now give precise definitions. We set

T3
15e@D1~d/2!#, T4

15e@2U1~d/2!#b. ~8.13!

For hPX, define the set of trajectories

Eh,T
3
1

~1!
5$f: f05h,'0<t<T3

1 : f tPX3%. ~8.14!

Let Q be the set of square or quasi-square configurations:

Q5ø l ,l 8Þ1:u l 2 l 8u<1Rl ,l 8 , ~8.15!

and recall thatQ5X3\L. For hPX3 , define the set of trajectories

Eh,T
4
1

~2!
5$f: f05h,'0<t<T4

1 : f tPQ% ~8.16!

and put

t̄25 t̄2~f!5 inf$t>0: f tPQ%. ~8.17!

Note that for anyhPX3\Q the intervalt̄22tX3
is strictly positive, while for anyhPX3ùRl ,l 8

with l, l 8PN\$1%,u l 2 l 8u<1 it is zero and the corresponding setEh,T
4
1

(2)
is trivial.

~3! Given l 1 ,l 2PN0\$1%,u l 12 l 2u<1, we next introduceERl 1,l 2 ,T

(3) as the set of trajectorie

starting fromRl 1 ,l 2
and passing~at the successive timest1 ,t2 ,... of return toX3 to a different

configuration inL̄) through the following sequencec5c1 ,c2 ,... of pairs of integers:

~ l 1 ,l 2!5~ l ,l !,l>2: c5~ l ,l !,~ l 11,l !,~ l 11,l 11!,...,~ l 0 ,l 0!.

~ l 1 ,l 2!5~ l ,l 11!,l>2: c5~ l ,l 11!,~ l 11,l 11!,~ l 11,l 12!,...,~ l 0 ,l 0!.

~ l 1 ,l 2!5~0,0!: c5~0,0!,~2,2!,~2,3!,~3,3!,...,~ l 0 ,l 0!.

More precisely, putt050 and, fori PN,

t i5min$t.t i 21 :h tPX3\I h̄ t
%, ~8.18!

where h̄ t5h tuL̄ . ~The t i are the random times at which the reduced Markov chain chan

configuration insideL̄; see Definition 7.3.! Let Rc be the sequence of sets of configurationsRl ,l 8
with ( l ,l 8) following the sequencec. Then we define

ERl 1 ,l 2
,T

~3! 5$f: ft0
PRl 1 ,l 2 ,ft i

PRc i
; i PN, maxi~t i 112t i !,e@4D22U1~d/2!#b%. ~8.19!

~4! Our eventEh,T can now be defined as

Eh,T5 ø
h1PX3 ,h2PQ

$Eh,T
3
1

~1!
ù$ht1

5h1%%ù$Eh1 ,T
4
1

~2!
ù$ht̄2

5h2%%ùEh2 ,T
~3! . ~8.20!

We will estimate the probability of each of the parts.
~5! We have, forb sufficiently large,
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inf
l 1 ,l 2

inf
hPRl 1 ,l 2

Ph~Eh,T
~3! !>e2@G24D12U2~d/4!#b. ~8.21!

Indeed, suppose first that (l 1 ,l 2)5(0,0). Then it follows from Proposition 7.133 and 7.143 th

Pn ~t1PR2,2,t1,e2~4D22U1d/2!b!^
_1,

~8.22!
min
hPc i

Pc i
~ht1

PRc i 11
,t1,e~r i1D1d/2!b!^

_e2~D2U2r i !b,

where^
_ denotes logarithmic equivalence inb and, forc i5( l ,l 11) or c i5( l ,l ) with l , l c , we

put r i5(2U2D)( l 21). If, on the other hand,l> l c , then we have by Proposition 7.143 that

Pc i
~ht1

PRc i 11
,t1,e~2D2U1d/2!b!^

_1. ~8.23!

The case (l 1 ,l 2)Þ(0,0) can be treated in a similar way: it turns out that the worst lower estim
corresponds to the case (l 1 ,l 2)5(0,0). Equation~8.21! follows from an immediate computation

~6! It follows from Propositions 6.2 and 7.9 that, for allhPX andh1PX3,

P~Eh,T3
1

~1! !^
_1, P~Eh1 ,T4

1
~2! !^

_1. ~8.24!

Thus, from~8.20!, ~8.21!, and~8.24! we get

P~Eh,T!>e2@G24D12U1~d/2!#b. ~8.25!

We can now apply Proposition 2.13 with

n5nh̄ ,

T5e@4D22U1~d/2!#b, T85T95e~G1d!b, ~8.26!

A5j, B5X, p5e2@G24D12U1~d/4!#b ,

to complete the proof.

8.3. The gate for the nucleation

In this section we prove Theorem 1.53~b!.
~1! Abbreviate

N~h!5NL̄~h!5 (
xPL̄

h~x! ~8.27!

and consider the sets

G5$hPX: N~h!, l c~ l c21!12%,

G25$hPX: N~h!5 l c~ l c21!11%, ~8.28!

G05$hPX: N~h!5 l c~ l c21!12%.

Given a pathf5f1 ,...,fm(mPN) with f15h, fm5j, let i 05 i 0(f) be the first hitting time
of G0:

i 05 inf$ i PN: f iPG0%. ~8.29!

Then
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H̄~f i0!5H~f i 021!1D, ~8.30!

sinceH̄ increases byD when we add a particle toL̄.
~2! We have

lim
b→`

Pnh̄
~htG0¹Dl c21,l c

0 !50. ~8.31!

Indeed, sincePnh̄
(tG0,tj)51, it follows from Theorem 1.53~c! that

lim
b→`

Pnh̄
~tG0.e~G1d!b!50 ;d.0. ~8.32!

On the other hand, from the results in Sec. 4.3 we know that

H̄~h,G2\Dl c21,l c
2 !<H̄~Dl c21,l c

2 !1U. ~8.33!

Using ~8.33! we can deduce, via an argument based on reversibility similar to the one us
prove ~8.11!, that

lim
b→`

Pnh̄
~uh,j,tG2\D

l c21,l c

2 ,e~G1U/2!b!50. ~8.34!

~3! The claim now follows from~8.32! and ~8.34! after choosingd sufficiently small.

8.4. Criticality for squares and quasi-squares

In this section we prove Theorem 1.53~a!.
~1! For l 1 ,l 2 with 0< l 1< l 2 and u l 12 l 2u<1, let R.( l 1 ,l 2) denote the set of all configuration

whose restriction toL̄ gives rise to a single square or quasi-square strictly larger thanRl 1 ,l 2
, i.e.,

R.~ l 1 ,l 2!5 ø
~ l̃ 1 , l̃ 2!.~ l 1 ,l 2!

R l̃ 1 , l̃ 2
, ~8.35!

where (l̃ 1 , l̃ 2).( l 1 ,l 2) ~with l̃ 1< l̃ 2 ,l 1< l 2) means eitherl̃ 1. l 1 , l̃ 2> l 2 or l̃ 15 l 1 , l̃ 2. l 2 . Let

R<~ l 1 ,l 2!5 H ø
~ l̃ 1 , l̃ 2!

R l̃ 1 , l̃ 2J \ H ø
~ l̃ 1 , l̃ 2!.~ l 1 ,l 2!

R l̃ 1 , l̃ 2J . ~8.36!

Similarly, we defineR,( l 1 ,l 2). andR>( l 1 ,l 2).
~2! Let us first consider the subcritical case. With the help of reversibility, like in~8.11!, we

can prove that, for everyd.0 and everyl 1 ,l 2 such that 0< l 1< l 2 , u l 12 l 2u<1, andl 1< l c ,

lim
b→`

PnRl1 ,l2

~tR.~ l 1 ,l 2!,e~2D2U2d!b!50. ~8.37!

Indeed, it follows from Proposition 4.24~ii ! that the saddle of exit fromR<( l 1 ,l 2), i.e., the
configurations realizing the communication height betweenR<( l 1 ,l 2) and X3\R<( l 1,l 2)

5R.( l 1,l 2)øL or R.( l 1 ,l 2), is 2D2U.
~3! For l 1 ,l 2 such that 0< l 1< l 2< l 111 and l 1< l c21, we define a shrinking eventEl 1 ,l 2

s

containing the set of trajectories starting fromRl 1 ,l 2
and passing, at the successive timest1 ,t2 ,...

defined in~8.18!, through the following sequencecs5c1
s ,c2

s ,... of pairs of integers:

~ l 1 ,l 2!5~ l ,l !,l>2: cs5~ l ,l !,~ l 21,l !,~ l 21,l 21!,...,~0,0!,
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~ l 1 ,l 2!5~ l ,l 11!,l>2: cs~ l ,l 11!,~ l ,l !,~ l 21,l !,~ l 21,l 21!,..., ~0,0!,

~ l 1 ,l 2!5~1,2!: cs5~1,2!,~1,1!,~0,0!,

~ l 1 ,l 2!5~1,2!: cs5~1,1!,~0,0!,

~ l 1 ,l 2!5~0,0!: cs is the trivial path with no move.

More precisely, we denote byRcs the sequence of sets of configurationsRl ,l 8 with ( l ,l 8) follow-
ing the sequencecs, and define

El 1 ,l 2
s 5$f: ft0

PRl 1l 2
,ft i

PRc
i
s ; i PN, maxi~t i 112t i !,e@~2U2D!~ l 122!12U1d#b%.

~8.38!

~4! Let us next consider the supercritical case. Again, with the help of reversibility lik
~8.11!, we can prove that, for everyd.0 and everyl 1 ,l 2 such thatl c< l 1< l 2< l 111,

lim
b→`

PnRl1 ,l2

~tR,~ l 1 ,l 2!,e@~2U2D!~ l c22!12U2d]b!50. ~8.39!

Indeed, it follows from Proposition 4.24~i! that the saddle of exit fromR>( l 1 ,l 2) is
e@(2U2D)( l c22)12U#b.

~5! For l c< l 1< l 2< l 111 we define a growing eventEl 1 ,l 2
g containing the set of trajectorie

starting fromRl 1 ,l 2
and passing, at the successive timest1 ,t2 ,..., through the following sequenc

cg5c1
g ,c2

g ,... of pairs of integers:

~ l 1 ,l 2!5~ l ,l !: cg5~ l ,l !,~ l 11,l !,~ l 11,l 11!,...,~ l 0 ,l 0!,

~ l 1 ,l 2!5~ l ,l 11!: cg5~ l ,l 11!,~ l 11,l 11!,...,~ l 0 ,l 0!,

~ l 1 ,l 2!5~ l 0 ,l 0!: cg is the trivial path with no move.

More precisely, we denote byRcg the sequence of sets of configurationsRl ,l 8 with ( l ,l 8) fol-
lowing the sequencecg, and define

El 1 ,l 2
g 5$f: ft0

PRl 1l 2
,ft i

PRc
i
g ; i PN, maxi~t i 112t i !,e~2D2U1d!b%. ~8.40!

~6! In the following we abbreviate

ds5
1
2 ~~2D2U !2@~2U2D!~ l c23!12U# !,

~8.41!
dg5 1

2 ~@~2U2D!~ l c22!12U#2~2D2U !!.

~7! In the subcritical case 0< l 1< l 2< l 111, l 1< l c we have, forb sufficiently large,

PnRl1 ,l2

~tj,th!<PnRl1 ,l2

~tR.~ l 1 ,l 2!,th!. ~8.42!

On the other hand, by~8.37! we have

PnRl1 ,l2

~tR.~ l 1l 2!,th!<PnRl1 ,l2

~e@2D2U2~ds/2!#b,tR.~ l 1 ,l 2!,th!1o~1!. ~8.43!

Moreover,
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PnRl1 ,l2

~e@2D2U~ds/2!#b,tR.~ l 1 ,l 2!,th!

<PnRl1 ,l2

~e@2D2U2~ds/2!#b

,tR.~ l 1 ,l 2! ,e@~2U2D!~ l 122!12U1~ds/2!#b,th!. ~8.44!

We know from Proposition 7.9 that if 0< l 1< l 2< l 111, l 1< l c , then for alld.0 andb suffi-
ciently large

PnRl1 ,l2

~El 1 ,l 2
s !.e2db. ~8.45!

The first claim in Theorem 1.53~a! now follows from~8.42!, ~5.25!, ~5.27!, ~8.45!, and Proposition
2.13 with

n5nRl 1l 2
,

T5e@~2U2D!~ l 122!12U1~ds/2!#b, T85T95e@2D2U2~ds/2!#b, ~8.46!

A5h, B5R.~ l 1 ,l 2!, p5e2~ds/4!b.

~8! In the supercritical casel c< l 1< l 2< l 111, we proceed in a similar way. We have

PnRl1 ,l2

~th,tj!<PnRl1 ,l2

~tR,~ l 1 ,l 2!,tj!. ~8.47!

On the other hand, by~8.39! we have

PnRl1 ,l2

~tR,~ l 1 ,l 2!,tj!<PnRl1 ,l2

~e@~2U2D!~ l c22!12U2~dg/2!#b,tR,~ l 1 ,l 2!,tj!1o~1!.

~8.48!

Moreover,

PnRl1 ,l2

~e@~2U2D!~ l c22!12U2~dg/2!#b,tR,~ l 1 ,l 2!,tj!

<PnRl1 ,l2

~e@~2U2D!~ l c22!12U2~dg/2!#b,tR,~ l 1 ,l 2! ,e@~2D2U !1~dg/2!#b,tj!. ~8.49!

We know from Proposition 7.9 that ifl c< l 1< l 2< l 111, then for alld.0 andb sufficiently large

PnRl1 ,l2

~El 1 ,l 2
g !.e2db. ~8.50!

The second claim in Theorem 1.53~a! now follows from ~5.29!, ~8.48!, ~8.50!, and Proposition
2.13 with

n5nRl 1 ,l 2
,

T5e@~2D2U !1~dg/2!#b, T85T95e@~2U2D!~ l c22!12U2~dg/2!#b, ~8.51!

A5j, B5R,~ l 1 ,l 2!, p5e2~dg/4!b.
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APPENDIX: COMPARISON OF ENSEMBLES

The grand-canonicalGibbs measure for our system on a torusL5Lb,Z2 with activity z is

mL,z~hL!5F )
xPL

zh~x!

h~x!! G exp@2bH~hL̄!#

Z~L,z,b!
~hLPXL!, ~A1!

whereXL5$0,1%L̄3NL\L̄, hL̄ is the restriction ofhL to L̄,

H~hL̄!52U (
~x,y!PL̄0

h~x!h~y! ~hL̄PXL̄!, ~A2!

XL̄5$0,1%L̄, and

Z~L,z,b!5ezuL\L̄u (
hL̄PXL̄

exp@2bH~hL̄!#z(xPL̄h~X!. ~A3!

The canonicalGibbs measure withn particles is

nL,n~hL!5F )
xPL\L̄

1

h~x!! G exp@2bH~hL̄!#

Z~L,n,b!
~hLPXL,n! , ~A4!

whereXL,n5$hLPXL : SxPLh(x)5n% and

Z~L,n,b!5 (
hLPXL,n

F )
xPL\L̄

1

h~x!! Gexp@2bH~hL̄!#. ~A5!

It is straightforward to verify that both these measures are reversible with respect to the Kaw
dynamics with HamiltonianH in ~1.47!.

We want to compare the expected values with respect to the above two measures of a

drical functionf with support inL̄. In what follows, we give an elementary estimate showing t
the difference between the two expectations is inversely proportional to the total volumeuLu.
With the help of asymptotic expansions, like the ones used to get a local central limit theor
would be possible to get better estimates, even in more complicated situations~see Yau22 and
Bertini, Cirillo, and Olivieri23!. However, for our purpose it suffices to have a rough estimate

Proposition A6: There exists c5c(L̄).0 such that, for all f: XL̄→R with i f i`< 1
4, all n

PN and all L.L̄,

unL,n~ f !2mL,z~ f !u<
c

uLu
when z5

n

uLu
. ~A7!

Proof: ~1! Put n5nL,n andm5mL,z . We have

un~ f !2m~ f !u5
mg~1N5n!

m~1N5n!
21, ~A8!
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whereN5N(h)5SxPLh(x), g5 f 2m( f ) andmg(h)5m((11g)h). Note thatmg is a probabil-
ity measure:mg(h)>0 andmg(1)51, igi`<2i f i`< 1

2 andg has mean zero underm.

~2! Let N̄5N̄(h)5SxPL̄h(x) and N̂5N̂(h)5SxPL\L̄h(x). From ~A1! we see that the
grand-canonical measure factorizes

m~hL!5mL̄~hL̄!mL\L̄~hL\L̄!,

mg~hL!5m
L̄

g
~hL̄!mL\L̄~hL\L̄!, ~A9!

where

mL̄~hL̄!5
exp@2bH~hL̄!#zN̄~hL̄!

(hL̄PX̄ exp@2bH~hL̄!#zN~hL̄! ,

~A10!

m
L̄

g
~hL̄!5

~11g~hL̄!!exp@2bH~hL̄!#zN̄~hL̄!

(hL̄PX̄ exp@2bH~hL̄!#zN~hL̄! ,

and

mL\L̄~hL\L̄!5e2zuL\L̄u )
zPL\L̄

lh~x!

h~x!!
. ~A11!

From ~A9! we have

m~1N5n!5m~N5n!5 (
n̄50

uL̄u

mL̄~N̄5n̄!mL\L̄~N̂5n2n̄!,

~A12!

mg~1N5n!5mg~N5n!5 (
n̄50

uL̄u

m
L̄

g
~N̄5n̄!mL\L̄~N̂5n2n̄!,

~3! Setk5uL\L̄u andm5n2n̄. Then from~A11! we get

mL\L̄~N̂5m!5
~zk!me2zk

m!
. ~A13!

Thus

mL\L̄~N̂5n2n̄!5mL\L̄~N̂5n2uL̄u!fL̄~ n̄! ~A14!

with

fL̄~h̄ !5
~zk! uL̄u2n̄

~n2n̄!~n2n̄21!3¯3~n2uL̄u11!
. ~A15!

Substitution of~A14! into ~A12! gives

mg~N5n!

m~N5n!
5

( n̄50
uL̄u m

L̄

g
~N5n!fL̄~ n̄!

( n̄50
uL̄u mL̄~N5n!fL̄~ n̄!

. ~A16!

From ~A15! it follows that there exists ac5c(uL̄u).0 such that for allL.L̄
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sup
0<n̄<uL̄u

ufL̄~ n̄!21u<
c

uLu
. ~A17!

~4! From ~A8!, ~A16!, and~A17! the result in~A7! follows. QED

Remark:It is clear from the above calculation that the assumptioni f i`< 1
4 does not represen

any loss of generality: in the generic case we get 4ci f i` instead ofc in the r.h.s. of~A7!.

Moreover, the same estimate holds when the supportL̄ of f is replaced by anyL8.L̄: we get a
different constantc5c(L8). It is easy to check thatc(L8)<kuL8u for somek.0.
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We consider the mixing properties of the Swendsen–Wang process for the two-
state Potts model or Ising model, on the completen vertex graphKn and for the
Q-state model on ana3n grid wherea is bounded asn→`. © 2000 American
Institute of Physics.@S0022-2488~00!00703-9#

I. INTRODUCTION

We consider the mixing properties of the Swendsen–Wang process for the Markov
Monte Carlo estimation of the partition function of the ferromagneticQ-state Potts model, for two
classes of graphs.

Gore and Jerrum1 obtain negative results for the mixing properties of the Swendsen–W
process on the complete graphKn on n vertices~the Curie–Weiss or mean-field model! for Q
>3 and certain values of the inverse temperatureb ~defined below!. For critical values ofb the
mixing rate is not rapid, but rather requires exp$V(An)% steps to move between the two mo
probable classes of states on the phase boundary.

Our first result is to show that whenQ52, the Ising model, the mixing rate is rapid onKn for
most values of the inverse temperature.

Theorem 1: Let

p512e2b,

where np<max$0,22e% or np>21e and whereueuA logn→`. The Swendsen–Wang process
applied to the Ising model on the complete graph is rapidly mixing for these values of p. The
mixing time is O(n0.51o(1)).

We define the Swendsen–Wang process and the term rapidly mixing later in the pape
The critical temperaturebc in this model satisfies limn→` nbc52. We note therefore tha

Theorem 1 allows us to approach within an arbitrarily small distance of the limiting critical c
but not at an arbirtrary rate. We do not obtain the tightest bounds on mixing time and only
with the casee→0 sufficiently slowly. We therefore leave some interesting open problems.

A recent paper by Borgset al.2 shows that whenQ is sufficiently large, the mixing rate of the
Swendsen–Wang process is exponential on largen3n grids and tori ind dimensions,d>2. Our
second result is to show that on narrow grids, i.e.,a3n grids wherea is bounded asn→`, the
mixing rate is polynomial inn.

Theorem 2: The Swendsen–Wang process mixes rapidly on a narrow grid for any posit
integer value of Q.

a!Electronic mail: alan@random.math.cmu.edu
14990022-2488/2000/41(3)/1499/29/$17.00 © 2000 American Institute of Physics
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We note that Cooper and Frieze,3 Huber4 have shown rapid mixing on grids for sufficientl
high temperature and Martinelli5 has shown rapid mixing for sufficiently low temperature.

II. MODELS

We introduce theQ-state Potts model~see Refs. 6–8! on an arbitrary graphG5(V,E), uVu
5n as follows. LetU5(V1 ,V2 ,...,VQ) be an ordered partition of~possibly empty! disjoint sub-
sets ofV, whose union isV. This defines aconfigurations5(s1 ,...,sn), wheres5s(U). If
v iPVj , the vertexv i is assigned colors i5 j . In the notation of theQ-state Potts model, a verte
is a site and a color is aspin. The typeof s is t(s)5(uV1u,uV2u,...,uVQu), the sizes of the color
classes. If an edge lies completely within a color class it is referred to as abond. The components
induced by the bond edges within the color classes are referred to asclusters.

Let D(s) denote the set of edges between color classes andd(s)5uD(s)u. The measure of
configurations is given by

m~s!5e2bd~s!.

The constantb is called the inverse temperature, although more preciselyubu51/kT, whereT is
absolute temperature andk is the Boltzmann constant. We assumeb is positive, which is the
ferromagneticmodel. The bond edges make no contribution to the measure of the configurat
the ferromagnetic model.

The setV of all configurationss is @Q#n. However, the measure assigned to configuration
far from uniform. The total measure ofV on G is denoted byZ(G) and is given by

Z~G!5 (
sPV

e2bd~s!.

The quantityZ(G) is known as thepartition functionof theQ-state ferromagnetic Potts model o
the graphG. The probability that the system is in states is given by

Pr~s!5
e2bd~s!

Z~G!
. ~1!

In order to assign the probabilities, in any specific instance, it is necessary to compute the p
function Z(G). If the estimation ofZ(G) is carried out using Markov chain Monte Car
~MCMC! methods~see Ref. 9!, the simplest approach is to move between configurations alte
one spin at a time, using a Metropolis rule. This Metropolis process is not known to con
rapidly in the ferromagnetic model and only known to converge rapidly in theantiferromagnetic
modelfor G if

Q>2D~12e2b!,

whereD is the maximum degree ofG. An alternative approach, the Swendsen–Wang proce10

offers the possibility of large-scale structural alterations at each move.
Swendsen–Wang process:
~SW1! Let B5E2D(s) be the set of bond edges induced within the color clas

(V1 ,...,VQ) of s. Delete each edge ofB independently with probability 12p, where p51
2e2b. This gives subsetA of B.

~SW2! The graph (V,A) consists of connected components. For each component a co
chosen uniformly at random from@Q# and all vertices within the component are assigned t
color. h

The applicability of the Swendsen–Wang process as a MCMC algorithm arises from th
that transitions using the Swendsen–Wang process preserve the steady-state probabilities
~1!. We prove this by showing the equivalence under certain conditions of theQ-state Potts mode
and therandom clustermodel of Fortuin and Kasteleyn,11 which we now describe.
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Given a graphG5(V,E), let G(A)5(V,A) denote the subgraph ofG induced by the edge se
A#E. In the random cluster model, the setA is regarded as the bond edges, andG(A) is a given
measure,

m„G~A!…5puAu~12p! uEu2uAuQc~A!,

wherec(A) is the number of components ofG(A) andp is a probability.
The relationship between the two models is nicely brought out in a paper by Edward

Sokal12 in which the Potts and random cluster models are defined on a joint probability s
@Q#n32E. The joint probabilityp(s,A) is defined by

p~s,A!5
1

Z )
~ i , j !PE

„~12p!~d~ i , j !¹A1pd~ i , j !PAds i5s j
!…,

whereZ is a normalizing constant. By summing overs or A we see that the marginal distribution
are correct and~remarkably! the normalizing constants in both Potts and cluster models, are
value ofZ given in the expression above.

The Swendsen–Wang process can be seen as givens: ~i! choose a randomA8 according to
p(s,A8), and then~ii ! choose a randoms8 according top(s8,A8).

III. MIXING TIME

Let M be an ergodic Markov chain on a finite state spaceV, with transition probabilities
P(x,y), x,yPV. For vPV, let p~v! denote the stationary probability ofv underM.

The variation distanceD(p1 ,p2) between two distributionsp1 ,p2 on V is defined by

D~p1 ,p2!5max
S#V

up1~S!2p2~S!u5
1

2 (
vPV

up1~v!2p2~v!u.

Let xPV be an arbitrary fixed state, and denote byPt,x(v) the probability that the system is i
statev at timet given thatx is the initial state. The variation distance at timet with respect to the
initial statex is then defined as

Dx~ t !5D~Pt,x ,p!.

We define the functiond(t)5maxxPV Dx(t) and themixing timet~j! by

t~j!5min$t:d~ t !<j%.

In particular, we lett5t(e21). By a useful property ofd(t) given in Ref. 13,

d~s1t !<2d~s!d~ t !.

By iterating this inequality we see that for anye,e21, t(e),t(e21)e exp(2 log 1/e).
For our purposes, the Swendsen–Wang process israpidly mixing, if the mixing time tSW

5tSW(G,b) is bounded by a polynomial inn , the number of vertices ofG.

A. Coupling

We prove our first result by acoupling argument. We have two copies (Xt ,Yt), t51,2,..., of
the chainM defined jointly but not necessarily independently onV3V. The relationship be-
tween the chains ensures that ifXt5Yt thenXs5Ys for all s>t. Coupling is a method for proving
convergence in distribution. This follows because

D~Pt,X0
,Pt,Y0

!<Pr~XtÞYt!, ~2!

whereX0 ,Y0 are the initial states of (Xt),(Yt), respectively.
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We can therefore prove rapid mixing by exhibiting a coupling such that ift>P~n! for some
polynomialP~n!, thenPr(XtÞYt)<e21.

1. Path coupling

Bubley and Dyer14 have recently introduced the notion ofpath coupling, a simple idea that
can greatly reduce the difficulty in the design and analysis of good couplings. We use the
version whereV5Sn for some setS and positive integern. Specifically, in Sec. IV F we takeS
5Q andn5uVu so thatV is the set of Potts configurations.

For x,yPV we define the Hamming distanceh(x,y)5u$ j :xjÞyj%u, so that Pr(XtÞYt)
<E„h(Xt ,Yt)…. Now suppose we define a coupling of the chains (Xt ,Yt) only for the case where
h(Xt ,Yt)51. Suppose then that

E„h~Xt11 ,Yt11!…<12a

wheneverh(Xt ,Yt)51. Then Theorem 1 of Ref. 14 yields a coupling, where

E„h~Xt11 ,Yt11!…<~12a!h~Xt ,Yt!, ~3!

in all cases. Ifa is not too small, then this gives rapid mixing. Indeed the mixing time
O(a21 logN), whereN5uVu.

Equation ~3! is shown by choosing an arbitrary sequenceXt5Z0 ,Z1 ,..., Zh5Yt , h
5h(Xt ,Yt), andh(Zi ,Zi 11)51. ThenXt115Z08,Z18 ,..., Zh85Yt11 can then be defined so that th
transformationZi→Zi8 has transition matrixP andE„h(Zi 218 ,Zi8)…<12a.

B. Conductance

We prove our second result by bounding theconductanceof the chain in question. The
conductanceF of M is defined by

F5min$FS :S#V,p~S!< 1
2%,

where, ifQ(x,y)5p(x)P(x,y),

FS5
1

p~S! (
xPS,y¹S

Q~x,y!,

Jerrum and Sinclair showed that if the chain isreversible, i.e., Q is symmetric, then the secon
eigenvaluel of the transition matrixP satisfies

l<12
F2

2
,

and that for allt>0 andx, yPV,

uPt,z~y!2p~y!u<SAp~y!

p~x!
D l t.

In our case we haveAp(y)/p(x)<ebuEu/2, and so

d~ t !<ebuEu/2S 12
F2

2 D t

.

The Swendsen–Wang chain~and the Wolff chain considered in Sec. V! are both reversible. To
prove rapid mixing it is therefore sufficient to prove thatF>1/P~n! for some polynomialP~n!.
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IV. ISING MODEL FOR THE COMPLETE GRAPH

We separate the proof of Theorem 1 into two cases, namelynp,c0 andnp>c0 , wherec0

.2 is a suitable constant. The casenp>c0 is based on a straightforward path coupling. T
analysis of this case, given in Sec. IV F, allows us to choosec054.

The analysis of the casenp,c0 follows below.

A. Introduction to the case npËc 0

Let X5Xt , Y5Yt denote two copies of the Swendsen–Wang process. Letk(X)<n/2 be the
size of the smaller color class,R(X), say. LetB(X)5@n#\R(X). We use the following coupling

Begin {Description of Coupling}:
~a! Run the two chainsindependentlyuntil k(Xt)5k(Yt).
~b! Oncek(Xt)5k(Yt) we maintain this relationship and couple the processes untilR(Xt)

5R(Yt). Let

P5R~Xt!ùR~Yt! Q5B~Xt!ùB~Yt!,

S5R~Xt\P T5B~Xt!\Q,

5B~Yt!\Q 5R~Yt!\P,

W5Wt5PøQ.

We define the following bijection:f t :Xt→Yt . If aPW then f (a)5a. Choose any bijection from
S to T. If aPS, bPT are such thatf (a)5b then choosef (b)5a in the bijection fromT to S.

We couple edge deletion (a,b)PX to „f (a), f (b)…PY as follows. We delete both edges~a,b!
in X and „f (a), f (b)… in Y with probability 12p and retain them both with probabilityp in the
application of step SW1 to the chains. We also couple the coloring of the resulting compone
that uR(Xt11)u5uR(Yt11)u. We choose colorscX(a)5cY„f (a)… with the following exception.
SupposeaPS,R(X) and b5 f (a)PT,B(X) become isolated after step~SW1!. Set cX(v)
5cY(v), v5a,b thus assuringuWt11u>uWtu12.

End {Description of Coupling}:
Theorem 1 forc,c0 follows from the following two lemmas.
Lemma 3:Pr„k(Xt)Þk(Yt), 1<t<n3/5uX0 ,Y0…5o(1).
Lemma 4: If k(Xt)5k(Yt) thenwhp Xt1t85Yt1t8 , where t852e2c logn.
The details of the proof are as follows: In Sec. IV B, Lemma 5, we find the most likely v

for k(X) in the steady state. We find that there is a valuea defined in the lemma such thatwhp
k(X)'an. We show in Lemma 15 that regardless of the initial state, using the Swendsen–
process,whp k(Xt) moves quickly to withinO(vAn) of an, where from now on

w5~ logn!1/3,

and tends to stay there. We then show in Lemma 16 that whilek(Xt),k(Yt) are both close toan,
there is a good chance thatk(Xt11)5k(Yt11). This will prove Lemma 3. The proof of Lemma
follows easily.

B. Most probable state of the Ising model

Assume from now on thatc,c0 , where it will turn out that we can takec054.
For convenience, we assign the colorsred andblue to the color classes, which are denotedR,

B. Let

Ak5$s:~ uRu,uBu!5~k,n2k!, or ~ uBu,uRu!5~k,n2k!%

be all partitions with the smallest set of sizek<n2k, so thatd(s)5k(n2k), and
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m~Ak!52S n
kDe2bk~n2k!.

Without loss of generality, we can assumeuRu<uBu in the discussions below. Lete2b512p,
wherep5c/n and leta5k/n,

m~Aan!52S n
anDe2cna~12a!2a~12a!~c2/2!2O~c3/n!.

As c<c0 , we have

m~Ak!5O~1!A 2

npa~12a! F 1

aa~12a!12a e2ca~12a!Gn

5O~1!A 2

npa~12a!
exp„nF~a!…,

where

F~a!52a loga2~12a!log~12a!2ca~12a!.

Lemma 5: The extrema ofF(a) are given by the solutions of

ace2ac5~12a!ce2~12a!c. ~4!

The maximum in@0,1
2# occurs at the unique value ofa given below.

~i! If c<2 thena5 1
2.

~ii ! If c.2 thena(c) is the unique solution in~0, 1
2! of c(a)5@1/(122a)# log@(12a)/a#.

Proof:

F8~a!52 loga1 log~12a!2c~122a!.

The values ofa given in the statement of the lemma satisfyF8(a)50. We see thatF8(a)
50 iff F8(12a)50, so the roots are paired. Let

f ~a!5aec~122a!1a21.

Note that~4! is equivalent tof (a)50. Next let

h~a!5ace2ac2~12a!ce2~12a!c.

Then

F8~a!50⇔ f ~a!50⇔ce2c~12a! f ~a!50⇔h~a!50.

Now

f 8~a!50⇒~2ca21!e2~2ca21!5e12c.

As xe2x,e21 for all xÞ1, f 8(a)50 has no solutions forc,2. Furthermore, there is one solutio

for c52. Thus, forc<2, f (a) is monotone increasing fromf (0)521 to f ( 1
2)50.

For c.2, 12c,21 and f 8(a) has exactly two solutions. We now show that whenc.2

there is a unique solution tof (a)50 in ~0, 1
2!. We know that f ( 1

2)50, and f (a)50 iff f (1
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2a)50. As f 8(a) has exactly two roots, by Rolle´’s theorem there is, at most, one root off (a) in
~0, 1

2!. We claim this root exists, becausef (0)521, whereasf (1/c).0 for c.2. This follows
because

c f~c21!5ec222„11~c22!….0,

asex.11x for x.0. h

For c.2,aP(0,1
2) satisfies~4!. An equation of the form

xe2x5ye2y

has no solutionsx,y,1 or 1,x,y. As 12a.a for c.2 we conclude that as a solutiona
exists, we must havex5ac,1 andy5(12a)c.1.

For future reference, we give the expansion ofc(a) abouta5 1
2.

Lemma 6: Leta5 1
2(12j), where0,j,1. Then

c52S 11
j2

3
1O~j4! D , ~5!

ca512j1
j2

3
1O~j3!, ~6!

c~12a!511j1
j2

3
1O~j3!. ~7!

In particular, if c521l then

l5 2
3 j21O~j4!. ~8!

Furthermore,

122a

2~12a!~12ca!
<

1

112j/3
. ~9!

Proof:

c5
1

j
log

11j

12j
52S 11

j2

3
1¯1

j2 j

2 j 11
¯ D . ~10!

Equations~5!–~9! follow immediately. Furthermore,

122a

2~12a!~12ca!
5

1

11
2j

3
1¯1j2 j 21S 1

2 j 21
2

1

2 j 11D1¯

.

h

C. Structure of the random graphs resulting from Step 1 of the Swendsen–Wang
process

Suppose that at the start of an iteration of the Swendsen–Wang process the color class
sizesgn and (12g)n, g< 1

2. After edge deletion with probability 12p, the graphs induced by
the color classes are distributed asGgn,p andG(12g)n,p , respectively. We establish some resu
on the likely structure of a random graphGN,p .

For d>1 let z5z(d) be defined by
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z<1 and ze2z5de2d, ~11!

and let

g5g~d!512
z~d!

d
,

so that

12g2e2dg50. ~12!

1. Component structure

The following lemma can be obtained from Refs. 15–17.
Lemma 7: Let p5d/N where 11e5d5O(1) and ueu logn→`. With probability 1

2O(N21), the random graph GN,d/N has the following component structure: For k0

5Ae22 logN, where A is a sufficiently large constant.

~i! If d,1 then all components are of size of, at most, k0 .
~ii ! If d.1 then there is a unique large component GIANT of size in the range@gN/2,N#.
~iii ! There are no components with sizes in the ranges@k0 ,gN/2#,

Let p5d/N. Let Tk be the number of isolatedk-vertex trees inGn,p . Similarly, letUk be the
number ofk -vertex unicyclic components andCk be the number ofk-vertex complex component
of size of, at most,k0 .

Lemma 8: Let p5d/N, where d511e5O(1), ueu logn→`. Then we have the following.

~i! Pr(Sk51
N k2Tk>3N/e2)5O(N21),

~ii ! Pr(Skk
2(Uk1Ck)>AN)5O(N21).

Proof: ~i!

E~Tk!5S N
k D kk22pk21~12p!k~N2k!1~2

k
!2k11

5
N

d

kk22

k!
~de2d!kS 11OS k2d

N D D
<

N

k2d
~de12d!k.

Consider the random variables

Z05 (
k51

k0

k2Tk and Z5 (
k51

N

k2Tk .

Then Lemma 7 implies

Pr~Z0ÞZ!5O~N21!. ~13!

Then,

E~Z0!<
N

d (
k51

`

~de12d!k5
Ne12d

12de12d <
2N

e2 .
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Now with probability 12O(N21)GN,d/N hasm5 1
2 dN1o(N) edges. Condition on this numberm

and consider the edge exposure martingale forGN,m . See, e.g., Alon and Spence18 for an expla-
nation of the following. Changing one edge ofGN,m changesZ0 by, at most, 2k0

2. Thus, inGN,m ,

PrS Z0>
2N

e2 1t D<expS 2
t2

2Bmk0
4D ,

for some constantB.0. Puttingt5N/e2 and using~13! yields ~a!.
~ii ! We calculate the expected number of such components and use the first m

method. h

2. The giant component

Our analysis requires an estimate of the probability that any large component deviates fr
mean size byvAN. We have not found this estimate in the literature and so we prove
necessary bounds in this section. Note that ife→0,

1<d511e implies z512e1O~e2!. ~14!

We note from~14! that if 1,d511e ande→0, then

g52e1O~e2!. ~15!

Lemma 9: Let p5d/N, 1<d511e5O(1), and

f ~ t !5~N21!„12~12p! t
…2~ t21!.

~i! Let t* be the maximum of f(t) on (0,N). Then t* 5N logd/d1O(1).
~ii ! Let t0P(0,N) satisfy f(t0)50. Then t0 is unique and given by t05gN1Q(1/e).
~iii ! If h5o(N), then

f ~ t01h!

h
5211z1OS h

ND .

~iv! If h5o(N), then

f ~h!511he1OS h

ND .

Proof: ~i! The functionf 8(t), given by

f 8~ t !52~N21!~12p! t log~12p!21, ~16!

is monotone decreasing fortP(2`,`) and has a unique root att* 5 log@(N21)log 1/(1
2p)#/ log 1/(12p)5N logd/d1O(1). By ~20!, f 9(t)<0 always, sot* corresponds to a uniqu
maximum of f (t).

As f (2`)52`, f (0)51, and f (N),0, there is a unique roott0 of f (t) in (0,N).
~ii ! Putting t̄ 5@gN#5gN2j, we obtain

f ~ t̄ !512g1
zgd

2
1j~12z!1O~n21!.0. ~17!

This implies thatt̄ ,t0 . Using ~16! we obtain

f 8~ t̄ !5z211O~N21!.
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We note next that

f 9~ t !52~N21!~12p! t
„log~12p!…2H 5O~N21!,

<0. ~18!

Puttingh5A/(12z) for an arbitrary constantA.0, we see that

f ~ t̄ 1h!5 f ~ t̄ !2A1OS h2

N
1

1

~12z!ND .

As Ne2→` we see from~17! that f „ t̄ 1A/(12z)….0 for A sufficiently small andf „ t̄ 1A/(1
2z)…,0 for A sufficiently large.~ii ! now follows from ~14!.

~iii !

f ~ t01h!5h f8~ t0!1
h2

2
f 9~ t0uh!, ~19!

whereuP@0,1#. Now

f 9~ t !52~N21!~12p! t
„log~12p!…2<0. ~20!

f (t0)50 implies that

~N21!~2p! t05~12g!N1O~1!. ~21!

Thus, from~16! and ~21! we get

f 8~ t0!52„~12g!N1O~1!…log~12p!21

5S z

d
1OS 1

ND D S d1OS 1

ND D21

5z211OS 1

ND . ~22!

Now from ~20! we obtain

f 9~ t !5OS d3

N D . ~23!

Part ~iii ! follows from ~19!, ~22!, and~23!.
~iv! If h5o(N) then

f ~h!5~N21!~12„12hd/N1O~h/N2!…!2~h21!5he111OS hd

N D .

h

Lemma 10: Let p5d/N where1<d511e5O(1) and e5V„(logN)2/N…1/3. Let h05vAN,
wherev5o(logn). Let t153e21AgN logN.

Let X5X(t);B„N21,12(12p) t
…. Let SL denote the natural numbers in the interv

(t1 ,t02h0) and let SU denote the natural numbers in the interval(t01h0 ,N#.
There exists a constant Cˆ .0 such that for sufficiently large N,

(
tPSLøSU

Pr„X~ t !5t21…<exp~2Ĉv2/e!.
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Proof: Let m(t)5E„X(t)…. We first consider the casetPSL . As f (t)5m(t)2(t21),

Pr~X5t21!5Pr„X5m~ t !2 f ~ t !…

,Pr„X<m~ t !2 f ~ t !…

<expS 2
f ~ t !2

2m~ t ! D , ~24!

by the Chernoff bound for the tails of the binomial.
For t>1, m(t) is a monotone increasing function oft and m(t0)5gN1O(1/e). We know

from Lemma 9~ii ! that f (t) increases fromf (0)51 to a maximum att* . For t.t* , f (t) is
monotone decreasing int to f (t0)50.

Let h152AgNlogN/(12z) and lett25t02h1 . In order to replacef (t) by f (t2) in ~24! for all
tP(t1 ,t2), we require thatf (t1). f (t2). Now from Lemma 9~iii ! we have

f ~ t2!5h1S 211z1OS h1

N D D .

Let F(d)5(12z)2/g5O(1). If d511e, then from~15!, F(d)5e/21O(e2) ase→0. Using the
value ofF(d), we see thath15o(gN), and so

h1

N
5o~e!5o~ u211zu!.

Thus, we have thatf (t2)52AgNlogN„11o(1)…. Using Lemma 9~iv!, we have

f ~ t1!53AgNlogN„12o~1!…. f ~ t2!,

as required. Thus, providedt1<t<t2 , we have

Pr„X~ t !5t21…<expS 2
h1

2~211z!2

2Ng„11o~1!…
D<exp„2~ logN!2

….

For t2,t,t02h0 , we estimatePr„X(t)5t21… directly using

Pr~X5t21!5S N21

t21 D u t21~12u!N2t5S N„11o~1!…

2pt~N2t ! D 1/2

e2~ t2Nu!2/„2Nu~12u!…. ~25!

Hereu512(12p) t;12e2dg5g and t215(N21)u1h.
This follows from substituting Stirling’s inequality into the estimate for a near central term

the binomial distribution, for example, Feller,19 Chap. VII ~2.5!–~2.7! gives this provided„(t
212(N21)u…/„u(12u)(N21)…→0, which is true sinceh5o(gN) here.

Thus,

(
tPSL

Pr„X~ t !5t21…<Ne2~ log N!2
1

A

~gN!1/2 (
h52h1

2h0

expS 2
h2

2Ng~12g! D , ~26!

which is less than 2Ag/v exp(2v2/„2g(12g)…), on summation@see, for example, Feller VII
~1.8!#.

The casetPSU is similar. f (t) is monotone decreasing, andm(t)<N, so we use Lemma 9~iii !
to deal witht>t01h1 and ~25! to deal witht01h0<t<t01h1 . h

Combining Lemma 10 with Lemma 7, we get the following.
Lemma 11: Let1<d511e5O(1) and e logn→`. Then, ifv5o(logn),
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Pr~ uuGIANTu2gNu>vAN!<exp~2Cv2/e!, ~27!

for some constant C.0.
Proof: In order to probabilistically bound the deviation of the size of any large componen

GN,d/N , we use the approach given in Ref. 18. LetX(t);B((N21),„12(12p) t
…), Y(t)

5X(t)2(t21) andT5min$t:Y(t)50%. The size of the component containing a fixed vertexv of
GN,d/N is distributed asT. Now,

Pr~T5t !<Pr„Y~ t !50…5Pr„X~ t !5~ t21!….

Let S85(SLøSU)ù@ t02h1 ,t01h1# and letv be chosen at random. Then

Pr~TPS8!> (
gPS8

gc~g!

N
Pr~GN,d/N has c~g!>1 components of sizeg!

>
t02h1

N
Pr~GN,d/N has some component of sizegPS8!.

Using ~26!, we get

Pr~GN,d/N has a component of size inS8!<
2

g
Pr~TPS8!<

2

g
exp~2Ĉv2/e!.

If S95(SLøSU)\S8, then a similar argument gives

Pr~GN,d/N has a component of sizegPS9!<N exp„2~ logN!2
….

h

D. One iteration

From now on the parameterse, v we use will satisfy

ueu21v5o~Alogn!, as n→`.

Suppose at some stage we have a partitionR,B, whereuRu5gn, uBu5(12g)n, andg< 1
2. We

need to compute the likely size of the parts of the new partition after one iteration o
Swendsen–Wang process. Let

f~g!5
z„~12g!c…

c
,

wherez is defined in~12!. If p5d/N.1, then, by Lemma 7, the random graphGN,p will most
likely have a unique giant component of size'N(12z/d). Where appropriate we assume this
be the case.

Lemma 12: Suppose c5O(1), uRu5gn, uBu5(12g)n, and g< 1
2. Suppose that after one

iteration of the Swendsen–Wang process the new partition is R,B, whereuR̂u5ĝn and ĝ< 1
2. Let

P1512O„exp(2Cv2)1n21
…, then we have the following cases.

~i! Case 1: c>21e, cg<12e/10, c(12g)>11e/10. With probability P1

ĝ5
g1f~g!

2
1OS v

eAn
D . ~28!

~ii ! Case 2: c<22e, cg,c(12g)<12e/10. With probability P1 ,
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ĝ5
1

2
1OS v

eAn
D . ~29!

~iii ! Case 3: c<22e, cg<12e/10, c(12g)>11e/10. With probability P1 ,

ĝ5
g1f~g!

2
1OS v

eAn
D .

~iv! Case 4: c<22e, cg<129e/10, 12e/10<c(12g)<11e/10. With probability P1 ,ĝ
fits Case 2.

~v! Case 5: c>21e, cg>11e/10, c(12g)>11e/10. With probability of at least1
2

2o(1),ĝ fits Case 1.
~vi! Case 6: c>21e, 12e/10<cg<11e/10, c(12g)>119e/10. With probability P1 ,ĝ

fits Case 1.
Proof:
Case 1:After step SW1 we will have created two random graphs distributed asGgn,p and

G(12g)n,p . With the required probability the second graph will have a giant component of
n5n„12g2f(g)…1O(vAn). Suppose this is colored blue in step SW2. Leta1 ,a2 ,...,ak be the
component sizes inG(12g)n,p other than the giant and letb1 ,b2 ,...,bl be the component sizes i
Ggn,p . It follows from Lemma 8 that with the required probability(ai

21(bj
2<6n/e2 and

max$a1,...,bl %5O(Ae22 logn). Now randomly color these components red and blue. The
pected number of red vertices is (n2n)/2. Applying Hoeffding’s theorem on the sum of bound
random variables we see that for anyt.0,

PrS UuR̂u2
n2n

2 U>t D<2 expS 2
2t2

a1
21¯1bl

2 D . ~30!

Putting t5ve21An yields Case 1.
Case 2: Here with the required probability, there is no giant component, and soE(uR̂u)

5n/2. A calculation similar to~30! finishes the proof.
Case 3:The same as case 1.
Case 4:We have not discussed the structure ofGN,d/N with d very close to 1. We need to

make some approximations to handle these cases. From Lemma 15 we see that the giant
nent ofG(12g)n,p ~if it exists! has size at most 2e/101O(e2), with the required probability. The
sum of squares of the components other than the giant is stochastically dominated by the
sponding sum inGN,(11e/10)N21 . Consequently, we can proceed as in case 1 for the small c
ponents. Thus, with probability 12e2Cv2

1O(n21),

ĝ>
1

2
2

e

10
1O~e2!.

So

c~12ĝ !<~22e!S 1

2
1

e

10
1O~e2! D512

3e

10
1O~e2!,

which completes this case.@The error termO(v/eAn) has been subsumed into theO(e2) term.#
Case 5:In this case bothGgn,p andG(12g)n,p will have giant components with the require

probability. If in step SW2 both components received the same color~blue say!, which they do
with ~conditional! probability 1

2, then the number of red vertices will be
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z~cg!1z„c~12g!…

2c
n1O~ve21An!.

Now z„c(12g)…<z(cg) asc(12g)>cg andz(cg)<1. Thus

z~cg!1z~c~12g!!

2c
<

z~cg!

c
<

1

c S 12
e

10D ,

from ~14!, so we are now in case 1. This completes the proof of case 5.
Case 6:Arguing as in case 4, we see that with the required probability,

ĝ5
g1f~g!

2
1

e

5
1O~e2!. ~31!

The terme/51O(e2) represents the possible contribution of a giant inGgn,p . Now

cf~g!5z„c~12g!…,

<zS 11
9e

10D ,

<12
9e

10
1O~e2!.

This combined with~31! yields cĝ<123e/51O(e2) and completes the proof of the lemma.h

We see immediately from the above lemma afterO(logn) steps of the Swendsen–Wan
process we willwhp be in one of cases 1, 2, 3. The next lemma will give enough properties o
function f to show thatg→a.

Lemma 13: Let c(a)5212( j >1@j2 j /(2 j 11)# wherej.0 is given bya51/2(12j). Sup-
pose cg,1,c(12g); then ~i!

g,a implies g,f~g!,a,

g.a implies g.f~g!.a.

~ii ! If F(g)5@g1f(g)#/2, then ~a! a is the unique fixed point ofF in @0, 1
2#; ~b! F8(a)

,1/(112j/3); ~c! if g0<1/2 is arbitrary and g i5F(g i 21) then for any a.0 there existsb
5b(a) such that ift5b logn thenugt2au<n2a.

Proof: ~i! The function

h~g!5~12g!ce2~12g!c2gce2gc

has roots in@0, 1
2# given by 1

2 and a of Lemma 5. Ash(0).0, h(g) is greater than zero forg

P@0,a) and h(g) is less than zero forgP(a, 1
2). Let x5cf, xP@0,1# be the solution ofxe2x

5(12g)ce2(12g)c. The functionye2y is monotone increasing foryP@0,1# so if gP@0,a) we

must havex.gc, and thusf.g. Similarly, if gP(a, 1
2) we must havex,gc and thusf,g.

Supposea,g. We prove thatf(g).a. As a,g<12g and cg<1, we have 1<(1
2g)c,(12a)c. As the functionye2y has a unique maximum aty51, this inequality implies
that ac,x5fc. A similar proof holds for the caseg,a.

~ii ! Part ~a! follows from Sec. IV B.
For part~b! we see thatf, g are implicitly related through the functionf (f,g)50, where
                                                                                                                



1513J. Math. Phys., Vol. 41, No. 3, March 2000 Mixing properties of the Swendsen–Wang . . .

                    
f ~f,g!5cfe2cf2~12g!ce2~12g!c,

so that we have thatdf/dg52 f g / f f . Thus

F8~g!5
12g2f

2~12g!~12cf!
.

Puttingf5a anda5 1
2(12j) and using Lemma 6 yields

F8~a!<
1

112j/3
.

~c! Parts~i! and~iia! imply thatg i→a. Using~iib!, we see that there existsi 0 ,d such that for
i> i 0 we haveg iP@a2d,a1d# and F8(g),h51/(11j/3),1 for gP@a2d,a1d#. Conse-
quently,ug i 01t2au<h tug i 0

2au and ~c! follows. h

Suppose first that we start in Case 3 and we go throught steps and the values ofg are denoted
g0 ,g1 ,...,gt . Then

ĝ5Ft~g0!1OS tv

eAn
D , Prob:12te2Cev2

1O~tn21!. ~32!

Now a5 1
2 here. So aftert5t(e) iterations we willwhp havec(12gt)<11e/10. We will be in

Case 4 or Case 2 and in the former we will be in Case 2 at the next stepwhp.
If we are in Case 1 or Case 2, then after furtherO(logn) iterations we will findgPI , where

I 5Fa2
Lv

eAn
,a1

Lv

eAn
G .

From the above discussion we see the following.
Lemma 14: Regardless of the initial partition, whp gPI after (O(logn) iterations. The next

lemma shows that the chain tends to stay inI.
Lemma 15; Assume Case 1 or Case 2 of Lemma 12. Then

Pr~ ĝPI ugPI !>12e2Cv2
. ~33!

Proof: Let K be the hidden constant for theO(v/eAn) terms of ~28!, ~29!. Let L5„1
11/(11z/3)…K. If Case 2 pertains, then~33! follows directly from~29!. If Case 1 pertains, then
wheng5a1u, ~28! implies

uĝ2F~a1u!u<
Kv

eAn
, Prob: 12e2Cv2

or

uĝ2„F~a!1uF8~a1lu!…u<
Kv

eAn
,

for some 0<l<1. Now F(a)5a and so we have

uĝ2au<uuF8~a1lu!u1
Kv

eAn
. ~34!
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Now F8(g) is a continuous function and so ifuuu<Lv/eAn then uF8(a1lu)u<uF8(a)
1o(1)u,1/(11j/3), from Lemma 13~iib!. Using this estimate in~34! yields the lemma. h

E. Coupling the process

We consider a pair of chainsX, Y run independently in tandem. LetgX ,gY , etc., refer to
values inX, Yspecifically.

Lemma 16:If gX ,gYPI then Pr(ĝX5ĝY)5V(n21/21o(1)).
Proof: Let r X ,r Y be the number of red vertices on components of size at least 2 in the pr

X, Y, respectively, and letu, v be the number of isolated vertices inX, Y.
If gX ,gYPI , then r Y5r X1D, where whpuDu5O(ve21An), v5u1d, where d

5O(ve21An) and u5n(ae2ac1(12a)e2(12a)c)1O(ve21An). If X receivesi 1D red iso-
lated vertices andY receivesi, thenuR(Xt11)u5uR(Yt11)u as required. Thus

Pr~ uR~Xt11!u5uR~Yt11!u!>(
i>0

S u
i 1D D S v

i D 1

2u1v5S u1v
u2D D 1

2u1v .

Now

S m

m

2
~12u!D >

1

3Am
2m expS 2S u2

2
1O~u3! DmD ,

so that

S u1v
u2D D 1

2u1v 5S u1v

u1v

2
S 12

2D1d

u1v
D D 1

2u1v

>
1

3An
e2O~e22v2!

5V~n21/21o~1!!.
h

Suppose now that we run both chains independently forn3/5 steps. It follows from Lemmas 14
and 15 that both chains willwhp spend„12o(1)…n3/5 time in I. Applying Lemma 16 we see tha
by the end of thesen3/5 steps the event thatuk(Xt)u5uk(Yt)u will have occurredwhp at some step
t. This completes the proof of Lemma 3. We now prove Lemma 4, which we re-state a
following.

Lemma 17: Ifuk(Xt)u5uk(Yt)u then part ~b! of the coupling of X, Y is such that R(Xs)
5R(Ys) after, at most, 2e2c logn iterationswhp.

Proof: The probability of the event thata,b are both isolated inX is at leaste22c indepen-
dently at any iteration. The probability that the equalization phase requires more than 2e2c logn
iterations isO(1/n). h

F. Path coupling for cÐc 0

We can deal with largep quite easily. Ifnp>3 logn, then with probability 12O(n21/2) the
vertices of the larger color classB will induce a connected graph after the execution of s
~SW1!. Each vertex in the smaller class will then have a probability1

2 of being recolored the sam
asB. Thuswhp there will be one nonempty color class for each chain afterO(logn) iterations and
then coupling is trivial in one step. So assume from now on thatnp<3 logn.
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We assume the processesZ5X,Y are run independently until they have partition siz
„aZn,(12aZ)n…, whereaZ<a1u<0.52u for a sufficiently small constantu. This is justified by
Lemma 14, but only forc5O(1). It is easy, however, to adapt the arguments of Lemma 1
show that forc>c15c1(u),c1 large, the smaller color class willwhp quickly have less thanun
elements. With high probability, the conditionaZ<a1u<0.52u will persist long enough so tha
we can make the two processes converge. We make the convention thatuR(X)u>uR(Y)u. It may
be thatR(Y)50”, but we assumeR(X)Þ0”. If R(X)5R(Y)50” then the processes converge in o
iteration.

There is a sequenceX5W0 ,W1 ,..., Wl5Y of partitions such thatWt is obtained fromWt21

by moving a single vertex and such thatuR(Wt)u<max(aXn,aYn). Applying the path-coupling
paradigm, we consider the case where the two processes differ in their partitions at a single
v. Specifically, we assume thatX has partition (Rø$v%,B) andY has partition (R,Bø$v%), where
uBu>uRu5gn. We use the following coupling.

~SW1! If x,yPRøB then we make the same choices inX, Y to keep or delete the edge~x, y!.
Edges involvingv occur in only one ofX, Yand are not coupled.
Suppose that after~SW1! the components of the graphs induced byR,B are

R1 ,...,Ra ,B1 ,...,Bb , where

~1! Bb is the giant components, if any, and thusuBbu5Q(n) whp.
~2! R1 ,...,Rs are adjacent tov in X.
~3! B1 ,...,Bt are adjacent tov in Y.
~4! Bb may or may not be adjacent tov in Y

~SW2! ~a! Give Bb the same~random! color in X, Y.
~b! Give Rs11 ,...,Ra ,Bt11 ,...,Bb21 the same~random! color in X, Y.
~c! If v is adjacent toBb in Y then inY give it the color determined in~a! and inX give it a

random color. Ifv is not adjacent toBb in Y then give it the same~random! color in X, Y.
~d! Give R1 ,...,Rs ~resp.,B1 ,...,Bt) a random color inY ~resp.,X!.
Let X8,Y8 denote the new states. Then

E„h~X8,Y8!…< 1
2 E„11uR1u1¯1uRsu1uB1u1¯1uBtu), ~35!

where the Hamming distanceh is defined in Sec. III A.
Now, sinceR1 ,...,Bt are not giant components, Lemma 7 implies that there existsA.0 such

that uR1u,...,uBtu,A logn with probability 12O(n22). Furthermore,

ES (
i 51

s

uRi u D< (
k51

A log n S gn
k D kk21pk21~12p!k~n2k!

•kp1o~1!

<„11o~1!…(
k51

`
kk

k!
cke2ck

<(
k51

`

~ce12c!k

5
ce12c

12ce12c .

Similarly,

ES (
i 51

t

uBi u D>
ce12c

12ce12c .

Going back to~35!, we see that
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E„h~X,Y!2h~X8,Y8!…>
1

2
2

ce12c

12ce12c >
1

10
,

for c>4. Thus, forc>c054 we have proved that the mixing time isO(logn).

V. NARROW GRIDS

In this section we consider the 23n grid with two colors andp<p0 , wherep0 is any constant
less than 1. We show that both the Swendsen–Wang process and a variant proposed by20

have mixing times polynomial inn. The proof for anya3¯3a3n grid and any constant numbe
of colors is essentially the same.

The Wolff process for two colors defines a Markov chainMG for a graphG5(V,E), with
state spaceVG52V ~the set of 2-colorings ofV), and transitions determined by the followin
procedure: At each step, we have the following.

~1! Remove fromG all edges joining vertices of different colors.
~2! Remove each of the remaining edges with probability 12p.
~3! Pick a vertexv at random, pick a random colorc, and change the color of the compone

containingv to c.

For the purposes of our analysis we also define a modified version of the Swendsen–
and Wolff process for graphs with some subset of nodes given a fixed coloring. For such g
we add to Step 3 in the Wolff process the condition that if any vertex in a component conta
a fixed vertex is chosen, the color of the component remains unchanged. Similarly, we add
Swendsen–Wang process the restriction that no component containing a vertex with a fixe
has its color changed. We call these restricted Wolff or Swendsen–Wang chains.

Let MSandMW be the Markov chains determined by running the Swendsen–Wang and W
processes, respectively, on a 23n grid. Let FS be the conductance ofMS, andFW the conduc-
tance ofMW. Theorem 2 follows from the discussion in Sec. III B and the following two th
rems:FH is defined later and shown to bounded below by a constant.

Theorem 18: FS5V„n219(FH)2 log n
….

Theorem 19: FW5V„n218(FH)2 log n
….

We prove Theorems 18 and 19 using a theorem of Madras and Randall21 that gives a bound
on the conductance of a Markov chain in terms of a set of overlapping subchains.

Let M be either a Swendsen–Wang or Wolff Markov chain on a 23n grid G, with state space
V, transition probabilitiesP, and stationary distributionp. Equivalently, M is a restricted
Swendsen–Wang or Wolff chain, with the set of fixed vertices equal to the empty set.

Let V1 ,...,Vm be the subsets ofV, each of which restricts two of the three colum
n/4,n/2,3n/4 to having a fixed 2-coloring. Thus,m548, andø i 51

m V i5V. ~Strictly speaking, we
should roundn/4, n/2, and 3n/4 to integers; we ignore this for the sake of simplicity.!

The restriction Mi of M to V i is a Markov chain defined on the state spaceV i .
Unfortunately, we need different definitions for the Swendsen–Wang and Wolff proces
Wolff process:The transition matrixPi is given by

Pi~x,y!5H P~x,y!, yÞxPV i ,

12 (
zPV i ,zÞx

P~x,z!, y5xPV i .

This was the definition used in Ref. 21.
Swendsen–Wang process:The transition matrixPi is given by

Pi~x,y!5P~x,y!/P~x,V i !, yPV i .
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Theprojectionof M with respect toM1 ,...,Mm is anm state Markov chainMH , with state space
$1,2,...,m% ~statei is associated with chainMi). The transition matrixPH of MH is defined to be

PH~ i , j !5H p~V iùV j !

Dp~V i !
, j Þ i P@m#,

12 (
kP@m#,kÞ i

PH~ i ,k!, j 5 i P@m#.

whereD5maxxu$i:xPVi%u.
The stationary distributionr of MH is given by

r~ i !5
p~V i !

S
,

whereS5S i 51
m p(V i) is the normalizing constant.

Let F i be the conductance ofMi . Let Fmin5mini Fi . Let FH be the conductance of th
projection chainMH . Then the conductance of the original chain satisfies the following.

Lemma 20 (Madras–Randall):21

F>
~FH!2FminS

6m3D2 .

@Note: the original version of Lemma 20 hasF>(FHFminS)/(3m2D2), but we believe there is a
minor mistake in the proof. See also Lemma 23 below. Furthermore, Madras and Randall22 have
now changed the focus of the result to obtain an estimate of the spectral gapgM of M in terms of
the spectral gapgH of MH and the spectral gapsg1 ,...,gm of M1 ,M2 ,...,Mm . g
>D22gH min$gi :1<i<m%. Importantly, the explicit dependence onm has been removed from th
expression.# For our chainsMS and MW and restricted state spacesV1 ,...,Vm , S5D53, and
m548. We will show that for both chainsFH is bounded below by a constant, and give
polynomial bound onFmin , proving Theorems 18 and 19.

Conductance of the Projection Chains. In both MSH andMWH , each statei ~corresponding
to Mi) has 16 edges with nonzero transition probabilities, each to a state fixing exactly one c
the same wayMi fixes it. For each edge~i,j! with nonzero probability, the transition probability
defined to be

P~ i , j !5
p~V iùV i !

Dp~V i !
5

p~V iùV j !

3p~V i !
. ~36!

Let ~i,j! be an adjacent pair of states. SupposexPV i \V j , and letc be the column fixed byM j but
not by Mi . Let x8PV iùV j be the state inV j obtained fromx by changing the colors of the
vertices in columnc appropriately. Nowud(x)2d(x8)u<5, and so from~1! we have

e25b<
p~x!

p~x8!
<e5b,

where we haveb<2 log(12p0).
Further, u$x8:x8PV iùV j%u5u$x:xPV i%u/4. Thus by ~36!, P( i , j ) is bounded below by a

constant. Since the number of states inMH is m548, and every cut inVH has at least one nonzer
edge, it follows thatFH is bounded below by a constant.

Conductance of the restricted chains. To give a bound on the conductance of the restric
chains, we exploit the fact that each restricted chain dividesM into three independent subchains o
smaller grids, each with one or both of its first and last columns given a fixed coloring. LetG1,m

be a 23m grid with the first~or equivalently, the last! column given a fixed coloring; letG2,m be
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a 23m grid with both first and last columns fixed, and letF i ,m be the conductance ofGi ,m . We
defineG0,m to be the 23m grid with no vertices having a fixed coloring; thusM[G0,n .

Each of the restricted state spacesV i divides G into three grids of the formGi ,n ,i
P$1,2%,nP$n/4,n/2%. The Wolff chain restricted toV i is the product of three chains on thos
smaller grids: at each step, the Wolff process picks one of the grids, with probability propor
to its length, and runs the Wolff process for one step on the state space restricted to that g
Lemma 21, stated and proven below,

F j ,n> min
i P$1,2%

nP$n/4,n/2%

H n

n
F i ,nJ , j 50,1,2.

Thus, by Lemma 20,

F>
mini , j P$1,2%$

1
4 F i ,n/4 , 1

2 F j ,n/2%~FH!2S

6m3D2 . ~37!

Applying Lemma 20 recursively to~37!, we get

Fw>
~FH!2 log n

•cw

n18 ,

wherecw is the conductance of a restricted Wolff chain on a constant sized~say, 23100) grid.
This establishes Theorem 19.

The Swendsen–Wang chain restricted toV i is also a product of three smaller chains, in
different sense of product: Each step of the Swendsen–Wang chain onV i is equivalent to running
the Swendsen–Wang process for one step independently on all three smaller grids. In this c
cannot prove a product theorem in terms ofF. Instead, we use a quantityF̂ introduced by Jerrum,
and reprove the Madras–Randall theorem forF̂ ~Lemma 23!. Define

F̂5 min
uÞA,B,V

Q~A,B̄!1Q~Ā,B!

p~A!p~Ā!1p~B!p~B̄!
.

By ~twice applying! a theorem of Jerrum, also stated and proven below~Lemma 22!, we get~in an
extension of previous notation!,

F̂j ,n>
1

4
min

i P$1,2%
nP$n/4,n/2%

$F̂i ,n%, j 50,1,2.

Then by Lemma 23~below!,

F̂>

~b/4! min
i P$1,2%

l P$n/4,n/2%

$F̂i ,l %~FH!2S

6m3D2 ,

where

b5 min
i P$m%
xPV i

P~x,V i !.

In our application we haveb bounded below by an absolute constant, for example in the 23n case
with Q colors we haveb>Q24.
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Applying Lemma 23 recursively, we get

F̂s>
~FH!2 log n

•cs

n18 ,

wherecs is F̂ of a restricted Swendsen–Wang chain on a constant sized~say, 23100) grid. We

can now boundFs in terms ofF̂. Let A,V be the set such thatFs5Q(A,Ā)/p(A). Then

Fs5
Q~A,Ā!

p~A!
5

Q~A,Ā!1Q~Ā,A!

2p~A!p~Ā!
>F̂.

This establishes Theorem 18.
If we were working with ana3¯3a3n grid andk colors, we define our restricted spaces

fixing the coloring for all vertices with a last component inn/4,n/2,3n/4. The number of restricted
state spaces would increase to 3k2ad21

~d being the dimension of the grid!, with a corresponding
increase of log(3k2ad21

)2log(48) in the exponent ofn in Theorems 18 and 19, everything els
being essentially the same.

A. Product theorems

The product theorem we use for the Wolff process is a minor modification of a theore
Houdréand Tetali.23 Our proof is essentially the same as theirs, but we include it for comp
ness. LetM1 ,M2 ,...,Mn be reversible, ergodic Markov chains with state spacesV i , transition
probabilities Pi , and stationary distributionsp i . Let 0,pi,1, and ( i pi51. We define the
product chainM to be the chain with state spaceV5V13V23•••3Vn , and transition prob-
abilities P given by the following procedure: at each step, pick one of the chainsM1 ,M2 ,...,Mn

at random, pickingMi with probability pi , and run the chosen chain according to its own tr
sition probabilities for one step. Thenp(x1 ,x2 ,...,xn)5) ip i(xi). ~In the original version of
Houdréand Tetali,pi51/n for all i.!

Lemma 21 (Houdre´-Tetali):

FM>min
i

piF i .

Proof: We prove the lemma for the casen52. A straightforward induction onn proves the
general case. Define

F̃5 min
uÞAÞ

,V

(xPA(y¹AQ~x,y!

2p~A!p~Ā!
.

Let C5min$p1F̃1 ,p2F̃2%. Let A,V. For all x1PV1 , defineA(x1)5$x2PV2u(x1 ,x2)PA%, and
for all x2PV2 , defineA(x2)5$x1PV1u(x1 ,x2)PA%. Then we have

(
xPĀ
yPA

Q~x,y!5 (
~x1 ,x2!PA
~y1 ,y2!¹A

P„~x1 ,x2!,~y1 ,y2!…p~x1 ,x2!

5 (
x2PV2

p2~x2! (
x1PA~x2!

y1¹A~x2!

p1Q1~x1 ,y1!1 (
x1PV1

p1~x1! (
x2PA~x1!

y2¹A~x1!

p2Q2~x2 ,y2!
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> (
x2PV2

p2~x2!~p1F̃1!•2p1„A~x2!…p1„Ā~x2!…1 (
x1PV1

p1~x1!~p2F̃2!

•2p2„A~x1!…p2„Ā~x1!…

>2CF (
x2PV2

p2~x2! (
x1PA~x2!

p1~x1! (
y1¹A~x2!

p1~y1!

1 (
x1PV1

p1~x1! (
x2PA~x1!

p2~x2! (
y2¹A~x1!

p2~y2!G
52C (

x1 ,y1PV1
x2 ,y2PV2

p1~x1!p1~y1!p2~x2!p2~y2!F1~x1 ,x2!PA

~y1 ,x2!¹A
11~x1 ,x2!PA

~x1 ,y2!¹A
G

5
C

2 (
x1 ,y1PV1
x2 ,y2PV2

p1~x1!p1~y1!p2~x2!p2~y2!F1~x1 ,x2!PA

~y1 ,x2!¹A
11~x1 ,x2!PA

~x1 ,y2!¹A
11~y1 ,x2! PA

~x1 ,x2!¹A

11~y1 ,x2!PA

~y1 ,y2!¹A
11~x1 ,y2!PA

~y1 ,y2!¹A
11~x1 ,y2!PA

~x1 ,x2!¹A
11~y1 ,y2!PA

~x1 ,y2!¹A
11~y1 ,y2!PA

~y1 ,x2!¹A
G

5
C

2 (
x1 ,y1PV1
x2 ,y2PV2

p1(x1)p1(y1)p2(x2)p2(y2)F S 1~x1 ,x2!PA

~x1 ,y2!¹A
11~x1 ,y2!PA

~y1 ,y2!¹A
D

1S 1~x1 ,y2!PA

~x1 ,x2!¹A
11~x1 ,x2!PA

~y1 ,x2!¹A
D1S 1~y1 ,x2!PA

~y1 ,y2!¹A
11~y1 ,y2!PA

~x1 ,y2!¹A
D

1S 1~y1 ,y2!PA~y1 ,x2!¹A11~y1 ,x2!PA

~x1 ,x2!¹A
D G

>2Cp~A!p~Ã!,

where 1X is the characteristic function for the setX. The last inequality follows from the fact tha
since exactly one of (x1 ,y2)¹A,(x1 ,y2)PA holds, we have

p~A!p~Ā!5 (
x1 ,y1PV1
x2 ,y2PV2

p1~x1!p1~y1!p2~x2!p2~y2!F1~x1 ,x2!PA

~y1 ,y2!¹A
G

< (
x1 ,y1PV1
x2 ,y2PV2

p1~x1!p1~y1!p2~x2!p2~y2!F1~x1 ,x2!PA

~x1 ,y2!¹A
11~x1 ,y2!PA

~y1 ,y2!¹A
G ,

and similarly for (x1 ,x2), (y1 ,y2), and (y1 ,x2).

Thus, we haveFM>F̃M>min$p1F1,p2F2%. h

For the Swendsen–Wang product chains, we use a theorem of Jerrum.24 We state and prove
it for the product of two chains, but a generalization ton chains is again straightforward b
induction onn.

Let X andY be two ergodic, reversible Markov chains with state spacesVX ,VY , transition
probabilitiesPX ,PY , and stationary distributionspX ,pY , respectively. LetM5(X,Y) be the
product ofX andY, in the sense that at each step ofM both XandY are run one step according t
their own transition probabilities. Thus,P„(x,y),(x8,y8)…5PX(x,x8)PY(y,y8). Let V5VX

3VY be the state space ofM. The stationary distribution ofM is p5pX3pY . Define
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F̂5 min
uÞA,B,V

Q~A,B̄!1Q~Ā,B!

p~A!p~Ā!1p~B!p~B̄!
.

Lemma 22 (Jerrum):

F̂> 1
2 min$F̂X ,F̂Y%.

Proof: For any setS,V let Sx5$yPVY :(x,y)PS%. Then

Q~A,B̄!1Q~Ā,B!5 (
x,x8PVX

QX~x,x8!@QY~Ax ,Bx8!1QY~Ax,Bx8!#

> (
x,x8PVX

QX~x,x8!F̂Y@pY~Ax!pY~Ax!1pY~Bx8!pY~Bx8!#

5F̂Y (
x,x8PVX

pX~x!PX~x,x8! (
y,y8PV

pY~y!pY~y8!S 1 ~x,y!PA
~x,y8!¹A

11 ~x8,y!PB
~x8,y8!¹B

D
5F̂Y (

xPVX

pX~x! (
y,y8PV

pY~y!pY~y8!S 1 ~x,y!PA
~x,y8!¹A

11 ~x,y!PB
~x,y8!¹B

D .
The last equation uses the reversibility ofX. Similarly,

Q~A,B̄!1Q~Ā,B!>F̂X (
yPVY

pY~y! (
x,x8PV

pX~x!pX~x8!S 1 ~x,y!PA
~x8,y!¹A

11 ~x,y!PB
~x8,y!¹B

D .
Thus

F̂>

1
2 min$F̂X ,F̂Y%

p~A!p~Ā!1p~B!p~B̄!
S (

xPVX

pX~x! (
y,y8PVY

pY~y!pY~y8!S 1 ~x,y!PA
~x,y8!¹A

11 ~x,y!PB
~x,y8!¹B

D
1 (

yPVY

pY~y! (
x,x8PVX

pX~x!pX~x8!S 1 ~x,y!PA
~x8,y!¹A

11 ~x,y!PB
~x8,y!PB

D D .

Thus,F̂> 1
2 min$F̂X ,F̂Y% if

p~A!p~Ā!< (
xPVX

pX~x! (
y,y8PVY

pY~y!pY~y8!1 ~x,y!PA
~x,y8!¹A

1 (
yPVY

pY~y! (
x,x8PVX

pX~x!pX~x8!1~x,y! PA
~x8,y!¹A

~38!

and

p~B!p~B̄!< (
xPVX

pX~x! (
y,y8PVY

pY~y!pY~y8!1 ~x,y!PB
~x,y8!¹B

1 (
yPVY

pY~y! (
x,x8PVX

pX~x!pX~x8!1~x,y! PB
~x8,y!¹B

. ~39!

We prove~38!; the proof of~39! is identical.
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For the left-hand side,

p~A!p~Ā!5 (
~x,y!~x8,y8!PV

pX~x!pY~y!pX~x8!pY~y8!•1 ~x,y!PA
~x8,y8!¹A

5
1

4 (
x,x8PVXy,y8PVY

pX~x!pX~x8!pY~y!pY~y8!S 1 ~x,y!PA
~x8,y8!¹A

11~x8,y!PA
~x,y8!¹A

11~x,y8!PA
~x8,y!¹A

11~x8,y8!PA
~x,y!¹A

D .

For the right-hand side,

(
xPVX

pX~x! (
y,y8PVY

pY~y!pY~y8!1 ~x,y!PA
~x,y8!¹A

1 (
yPVY

pY~y! (
x,x8PVX

pX~x!pX~x8!1 ~x,y!PA
~x8,y!¹A

5 (
~x,y!PV

~x8,y8!PV

pX~x!pY~y!pX~x8!pY~y8!•1~x,y!PA~1~x,y8!PA11~x8,y!PA!

5
1

4 (
~x,y!PV

~x8,y8!PV

pX~x!pY~y!pX~x8!pY~y8!•„1~x,y!PA~1~x,y8!¹A11~x8,y!¹A!

11~x8,y!PA~1~x8,y8!PA11~x,y!¹A!11~x,y8!PA~1~x,y!¹A11~x8,y8!¹A!

11~x8,y8!PA~1~x8,y!¹A11~x,y8!¹A!….

Settinga51(x,y)PA , b51(x,y8)PA , g51(x8,y)PA , andd51(x8,y8)PA , the right-hand side minus
the left-hand side is

1

4 (
~x,y!,~x8,y8!PV

pX~x!pY~y!pX~x8!pY~y8!~a1d2b2g!2>0.

h

B. The Madras–Randall theorem for F̂

Lemma 23:

F̂>
bF̂min~FH!2S

6m3D2 .

Proof: We follow the proof in Ref. 21~correcting a small error!. For anyS,V, defineSi

5SùV i , S̄i5S̄ùV i . Let p i(Si)5p(Si)/p(V i). Let A,B,V be sets such thatF̂5@Q(A,B̄)
1Q(Ā,B)#/(p(A)p(Ā)1p(B)p(B̄)). Assume without loss of generality thatp(A)<p(Ā) and
p(A)p(Ā)>p(B)p(B̄), and letI be such thatp(AI)5maxi p(Ai). For anyi,

Q~A,B̄!1Q~Ā,B!>b„Q~Ai ,B̄i !1Q~Āi ,Bi !…

5bp~V i !„V i~Ai ,B̄i !1Qi~Āi ,Bi !…, ~40!

where forX,Y#V i , Qi(X,Y)5p i(X)Pi(X,Y).
Case 1:Assume thatp(AI)<

1
2 p(V I). Then
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p~A!p~Ā!1p~B!p~B̄!<2p~A!p~Ā!

52p~A!•
p~Ā!

p~V I !
•

p~V I !

p~ĀI !
•p~ĀI !

<
4p~A!p~ĀI !

p~V I !

<
4m•p~AI !p~ĀI !

p~V I !

<
4m

p~V I !
„p~AI !p~ĀI !1p~BI !p~B̄I !…

54m•p~V I !„p I~AI !p I~ĀI !1p I~BI !p I~B̄I !…. ~41!

From ~40! and ~41!, we get

F̂>
F̂I

4m
>

F̄min

4m
. ~42!

Case 2:Assume that12<p(AI)/p(V I)<12e, where

e5
FHS

2mD2 <
D

4S

S

2mD2 5
1

8mD
<

1

3
. ~43!

Then

p~A!<mp~AI !<mp~V I !<
mp~ĀI !

e
.

Thus

p~A!p~Ā!1p~B!p~B̄!<2p~A!p~Ā!

<
2mp~ĀI !

e

p~Ā!

p~V I !
p~V I !

<
2mp~ĀI !

e

1

p~V I !
2p~AI !

<
4m

ep~V1!
„p~A1!p~ĀI !1p~BI !p~B̄I !…

5
4mp~V I !

e
„p I~AI !p I~ĀI !1p I~BI !p I~B̄I !…. ~44!

From ~40! and ~44! we get

F̂>
eF̂ I

4m
>

F̂minFHS

8mD2 . ~45!

Case 3:Assume thatp(AI)/p(V I)>12e. Let T,$1,...,m% be such thati PT iff p i(Ai)
>12e.
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~a! TÞ$1,2,...,m%.
Let J be such thatJPT̄ @i.e., pJ(ĀJ).e] and pJ(ĀJ) is maximal.
Our main task is to prove

p~A!<
3m2Dp~AJ!

FHS
, ~46!

p~Ā!<
p~ĀJ!

ep~VJ!
. ~47!

From which we get

p~A!p~Ā!1p~B!p~B̄!

<2p~A!p~Ā!

<
6m2D

eFHS

1

p~VJ!
p~AJ!p~ĀJ!

<
6m2D

eFHS
p~VJ!pJ~AJ!pJ~ĀJ!

<
6m2D

eFHS
p~VJ!„pJ~AJ!pJ~ĀJ!1pJ~BJ!pJ~B̄J!…. ~48!

Thus, by~48! and ~40!, we have

F̂>
eF̂JFHS

6m2D
>

F̂min~FH!2S2

6m3D2 . ~49!

It remains to deal with~46! and ~47!. Now ~47! follows from pJ(ĀJ)>e, i.e.,

p~Ā!5p~ĀJ!
p~Ā!

p~VJ!

p~VJ!

p~ĀJ!
<

p~ĀJ!

ep~VJ!
.

Equation~46! requires more work. We boundQ(T,T̄),r(T),r(T̄) to get an upper bound on
FH .

By definition, we have

Q~T,T̄!5(
i PT
j ¹T

r~ i !PH~ i , j !

5 (
i PT
j PT̄

p~V i !

S

p~V iùV j !

Dp~V i !

5 (
i PT
j ¹T

p~V iùV j !

DS

5 (
i PT
j ¹T

p~V iùV jùĀ!1p~V iùV jùA!

DS
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<
D( i PTp~Āi !1D( j PT̄p~Aj !

DS

<
e( i PTp~V i !1( j PT̄p~Aj !

S

<

e

12e
Dp~A!1( j PT̄p~Aj !

S
<

4

3
eDp~A!1mp~AJ!

S
. ~50!

We next boundr(T) andr(T̄) from below,

p~A!<mp~AI !<m Dr~ I !<m Dr~T!, ~51!

sinceI PT.

For r(T̄), we have

r~ T̄!5(
j PT̄

p~V j !

S

>(
j PT̄

p~Āi !

S

>
p~Ā!2( i PTp~Āi !

S

>
p~Ā!2@e/~12e!#( i PTp~Ai !

S

>
p~Ā!2@e/~12e!#Dp~A!

S

>
p~Ā!2 4

3 e Dp~A!

S

>
p~A!~12 4

3 eD!

S

>
p~A!

2S
. ~52!

Now by ~43!, ~50!, ~51!, and~52!,
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FH<
Q~T,T̄!

min$r~T!,r~ T̄!%

<

4
3 e Dp~A!1mp~AJ!

S

mD

p~A!

5

4
3 eD2p~A!m

Sp~A!
1

m2Dp~AJ!

Sp~A!

<
2

3
FH1

m2Dp~AJ!

Sp~A!
. ~53!

Equation~46! follows immediately.

~b! T5$1,2,...,m%.

Let p(ĀK)5maxi p(Āi). Then we have

1
2>p~Ai !>~12e!p~V i !, i P$1,2,...,m%,

and so

p~Ai !<
1

2~12e!
p i~Ai !, i P$1,2,...,m%.

Therefore

p~A!p~Ā!1p~B!p~B̄!

<2p~A!p~Ā!

<2S (
i 51

m

p~Ai !D S (
i 51

m

p~Āi !D
<2S 1

2~12e! S (i 51

m

p i~Ai !D Dmp~ĀK!

<
m2

~12e!2 pK~AK!p~ĀK!<
m2

~12e!2 p~VK!„pK~AK!p~ĀK!1pK~BK!p~B̄K!….

So from ~40!,

F̂>
bm2

~12e!2 F̄min .

Putting together Cases 1–3, by~42!, ~45!, and~49!, we have

F̂>
bF̂min~FH!2S

6m3D2 .

h
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On the definition of entropy production, via examples
Christian Maes,a) Frank Redig,b) and Annelies Van Moffaertc)

Instituut voor Theoretische Fysica, K. U. Leuven, B-3001 Leuven, Belgium

~Received 18 November 1999; accepted for publication 30 November 1999!

We present a definition of entropy production rate for classes of deterministic and
stochastic dynamics. The point of departure is a Gibbsian representation of the
steady state path space measure for which ‘‘the density’’ is determined with respect
to the time-reversed process. The Gibbs formalism is used as a unifying algorithm
capable of incorporating basic properties of entropy production in nonequilibrium
systems. Our definition is motivated by recent work on the Gallavotti–Cohen~lo-
cal! fluctuation theorem and it is illustrated via a number of examples. ©2000
American Institute of Physics.@S0022-2488~00!00403-5#

I. INTRODUCTION

One of the more obscure concepts in nonequilibrium statistical physics is that of entrop
its production. While most people adhere to the standard textbook formulation in the case o
to equilibrium processes, opinions start seriously deviating concerning the appropriate e
concepts when confronted with far from equilibrium steady states.

The question is of course in the first place not a mathematical one, but rather conceptu
field of nonequilibrium thermodynamics is still under construction and while various mathe
cally precise definitions make a lot of sensea priori, it needs to be seen how these definitio
relate to the phenomena. Yet, in the tradition of mathematical physics,1 a mathematical treatmen
of various examples or models hopefully clarifies the situation and may enable an algorithm
constructive setup, available and testable also in cases when the correct physical intuition
immediately available.

In the last several years, a lot of interest has been generated in understanding ‘‘e
production’’ ~or, entropy creation rate! in far from equilibrium steady states. In the context
certain dynamical systems, thermostatted systems in particular, entropy production app
synonymous with ‘‘phase space contraction rate.’’ In fact under certain assumptions, one
that the change of Shannon entropy in the steady state exactly equals~minus! that contraction
rate.2–4 The Gallavotti–Cohen theorem states a symmetry in the probability of fluctuations o
entropy creation rate, and while proven only for a limited class of systems~Refs. 5 and 6!, has
been observed in computer simulations in a variety of models, see, e.g., the motivating expe
~Ref. 7!. In all examples, the physical interpretation as entropy creation rate seems to be
firmed.

In Ref. 8 another approach to the definition of entropy production appeared. There on
siders the path space measure in the steady state and compares it~locally! with the path space
measure of the time-reversed process. If such a comparison can be made, the relative den
be defined~as the corresponding Radon–Nikodym derivative!. This density can be written as a
exponential of a ‘‘relative energy’’ for an interaction governing the path space measure
respect to the time-reversal transformation. This ‘‘relative energy’’ is extensive and only con
the space–time interactions that break the time reversal. Its density is what we call the e
production. Under various conditions, by the very nature of its ‘‘Gibbsian’’ definition, it satis
a fluctuation theorem. It is interesting to see that it coincides with the definition given in

a!Also at: Onderzoeksleider FWO, Flanders; electronic mail: Christian.Maes@fys.kuleuven.ac.be
b!Post-doctoraal Onderzoeker FWO, Flanders; electronic mail: Frank.Redig@fys.kuleuven.ac.be
c!Also at: Aspirant FWO, Flanders; electronic mail: Annelies.VanMoffaert@fys.kuleuven.ac.be
15280022-2488/2000/41(3)/1528/27/$17.00 © 2000 American Institute of Physics
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Gallavotti–Cohen setup when indeed the dynamics satisfies the conditions of their theorem
also gives a unifying description for more general dynamics if, at least for the purpose of
puting macroscopic properties, the space–time trajectories are distributed via the appr
~space–time! Gibbs measure. In particular, via this one and the same algorithm the entropy a
functionals for every example of stochastic dynamics appearing in Refs. 9 and 10 can be
puted.

The goal of this paper is to continue and to extend the analysis of Ref. 8 mostly via sp
illustrative examples. The main result is that it works: Both theoretical considerations as w
exact results for examples of far from equilibrium steady state dynamics confirm our defi
and the Gibbsian picture which is behind it. The material we work with here is mostly taken
Ref. 9 for the examples of stochastic dynamics, and for deterministic dynamics we mainly r
ourselves to the Gallavotti–Cohen setup.

The plan of the paper: We start in Sec. II with our Gibbsian setup and with an ab
definition of entropy production. It is then specified to the context of interacting particle sys
both stochastic and deterministic. For stochastic dynamics we consider spin flip, partic
change, and diffusion processes. There is also an example of a molecular motor. The discus
deterministic dynamics is more descriptive as we limit ourselves mostly to explaining the re
of the Gallavotti–Cohen work to the Gibbsian setup. Section II is devoted to a brief discuss
the transient~not steady state! regime and the mathematics behind the so-called nonequilibr
work relations.

By the nature of the presented material, the reader will be confronted at the same tim
elements of the Gibbs formalism, interacting particle systems, stochastic calculus, dyn
systems, and thermodynamics. We have tried to make the sections more or less self-contai
we have added many references to consult for background information.

II. DEFINITION AND MAIN PROPERTIES OF ENTROPY PRODUCTION

A. Path space measure: Gibbsian setup

We start with an informal description of the main algorithm used in the identification of
entropy production.

Suppose a system composed of many locally interacting components in a nonequil
steady state. The path space measure gives the microscopic distribution of the trajectories
system compatible with the macroscopic information that is available. We take as a hypo
that for the purpose of computing the macroscopic properties of the system, this path
measure in fact defines a Gibbs state on the space–time configurations. For the moment, w
how this Gibbsian description is obtained but we will come back to this in a following rema

For the sake of simplicity let us in fact consider the case where we are dealing with a
state for a lattice spin system, see Refs. 11–13 for background. The configurationss are then
elements ofV5GZd11

whereG, the single spin space, is finite ands5(s(n,i ),nPZ,i PZd) is a
space–time trajectory forn5discrete time, andi a spatial coordinate on thed-dimensional lattice
Zd. Physically, it is better to replace the infinite space–time latticeZd11 by a huge space–time bo
W, possibly with appropriately chosen boundary conditions but what follows is easily adap
that case. Furthermore, we have a family of macroscopic variables, formally,

Ha5(
A

UA
a , a50,...,m ~2.1!

each additive in ‘‘space–time potentials’’UA
a for which we assume thatUA

a is a real-valued
function only depending on the configuration in the finite setA, summable according to

(
A{x

supuUA~s!u,1`, xPZd11. ~2.2!
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Again, this condition is not strictly needed but it is the simplest choice for making sense o
differences

Ha~s!2Ha~h!5 (
AùLÞB

@UA
a~s!2UA

a~h!# ~2.3!

whens,hPV coincide outside a finite setL,Zd11. Moreover, thanks to the additive structur
we immediately get that~2.3! equals

(
xPL

(
A{x,A,L

1

uAu @UA
a~s!2UA

a~h!# ~2.4!

up to boundary termsO(u]Lu) whenL is a regular, say cubiclike, region. In the same way,
will be demanding translation invariance even though this is negotiable for some of what fo
In fact, it is good to split translations in spatial- and timelike translations. We denote the tra
tion over a lattice vectorxPZd11 by tx and the translation is timelike ifx5(n,0) for somen
PZ, spacelike ifx5(0,i ) for somei PZd. Since we are considering a system in its steady st
the condition that the potential~and the path space measure! is timelike translation invariant is a
natural requirement, but the spacelike invariance is often broken. All the same, we w
continue with the simplest setup and global translation invariance is part of this:UA(txs)
5UA1x(s), wheretxs(y)5s(x1y).

Gibbs distributions corresponding to the ensemble defined via~2.1! are probability measure
m on V whose conditional distributions to find the trajectorys in an arbitrary finite setV,Zd11

when the configurations is given outsideV is

m@s on Vus on Vc#5
1

ZV~s!
expF2(

a
Ea (

AùVÞB
UA

a~s!G . ~2.5!

Here, ZV(s) is the partition function depending on the valuess(x), xPVc and theEa are
conjugate variables. As a reference measure we take the product of counting measures oG.

Suppose now that we have a transformationu on G for which u251 and which leaves
invariant the counting measure onG. We fix a sequence of increasing space–time cubesLN,L

5$x5(n,i )PZd11,unu<N,u i u<L%. We can then define the transformationspLN,L
5pN,L on V

for which

~pN ,Ls!~n,i !5sN,L~n,i !5u~s~2n,i !! ~2.6!

when (n,i )PLN,L and (pN,Ls)(x)5s(x), xPLN,L
c . The time-reversal transformationp is then

defined on local observables~functions! as

f p~s!5 f +p~s!5 f ~pN,Ls!, ~2.7!

where for the localf with dependence setDf ~i.e., the smallest setA so that f (s)5 f (s(x),x
PA)), LN,L is the smallest box containingDf .

We assume thatUA
0(pN,Ls)5UA

0(s) wheneverA,LN,L . In other words,H0 in ~2.1! is put
as a reference ‘‘action’’ or ‘‘Hamiltonian’’ which is invariant under the time-reversal transfor
tion p. One should think of the Gibbs measuren;exp@2E0H

0# as the unperturbed equilibrium
steady state. The amplitudesEa should correspond to gradients of intensive variables each
jugate to time-reversal breaking macrovariablesHa, a51,...,m and they determine for each of th
m considered mechanisms the amount of driving away from equilibrium. Associated wit
transformationpN,L there is the Gibbs measurepN,Lm defined via

pN,Lm~ f !5m~ f +pN,L! ~2.8!
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for an observablef on V. In the present context, most important for us is that the measurepN,Lm
has a density with respect to the original path space measurem:

d~pN,Lm!

dm
5e2RN,L. ~2.9!

This is automatically so for Gibbs measures but the full glory of Gibbsian states is not need
we only require in~2.9! the existence of a density corresponding to the transformationspN,L . In
a more formal way~which does make sense however for a finite space–time latticeW5LN,L),
what we are doing is comparing the plausibility or weightm@s# in the path space measurem of a
trajectorys of the system with the weightm@sN,L# wheresN,L(n,i )5u(s(2n,i )). The condition
~2.9! then amounts to asking thatm@sN,L#50 wheneverm@s#50 with a well-defined ratio

m@sN,L#

m@s#
5e2RN,L. ~2.10!

At the risk of generating confusion, we will say that the path space measurem ~or, the
dynamics generating it via its steady state statistics! is dynamically reversibleif there exists a
transformationu for which this property~2.9! or ~2.10! is satisfied.~This should not be confuse
with the condition of detailed balance that we will meet later and which will makeRN,L a
boundary term, i.e., of orderLd.!

Continuing with our Gibbsian setup three properties ofRN,L are immediate.
Proposition 2.1: Given the above hypothesis for a translation invariant Gibbs measurem:
~1! (Extensivity) There exists a continuous function s˙ @constructed in (2.15)# so that ~with

ṡx5 ṡ+tx!

RN,L5 (
xPLN,L

ṡx1O~NLd211Ld! ~2.11!

with order uOu/N<cLd21 if L<N.
~2! (Symmetry) Let PN,L denote the law of RN,L as induced bym and let P̃N,L denote the law

of 2RN,L . Then,

dP̃N,L

dPN,L
~y!5e2y. ~2.12!

In particular, for each complex number zPC,

m~e2zRN,L!5m~e2~12z!RN,L!. ~2.13!

~3! (Positive expectation)

m~RN,L!>0 ~2.14!

with equality only if RN,L is zerom—almost surely.
Proof: The extensivity is a standard result of the Gibbs formalism. With the definition

ṡ5 (
A{0

1

uAu (
a51

m

Ea@UA
ap2UA

a# ~2.15!

it is readily checked, using~2.3! ~see also Ref. 8!, that

RN,L5 (
AùLN,LÞB

(
a

Ea@UA
apN,L2UA

a# ~2.16!
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can be written as a sum over thexPLN,L of translations ofṡ @as in~2.11!# up to boundary terms
of order u]LN,Lu.

The symmetry is a consequence of~2.9! and RN,LpN,L52RN,L . Furthermore, there is the
trivial identity

m~e2~12z!RN,L!5pN,Lm~ezRN,L!5m~e2zRN,L!. ~2.17!

Finally, since of coursem(e2RN,L)51, the positivity of the expectation value follows from Jen
en’s inequality.@Remark: In fact, all moments ofRN,L have non-negative expectation as is easy
find from the symmetry~2.13! in its characteristic function.# j

We define theentropy production~creation rate! as the expectation value ofṡ:

m~ ṡ!5 (
a51

m

Eam~Ja!, ~2.18!

where the currentsJa are

Ja5 (
A{0

1

uAu @UA
ap2UA

a#. ~2.19!

Morally, this entropy production is the expectation value of a random variable which is m
scopically defined as follows: Take the logarithm of the ratio of the calibers of a microsc
trajectorys and its time-reversalsN,L. By ‘‘caliber’’ of s we mean ‘‘the number of microscopi
trajectories that all give rise to the same macroscopic trajectory ass.’’ The rest of the paper is
devoted to explaining and motivating this definition. This will be done as follows. We first
some of the properties of our definition in the present setup. This is repeated in a somewha
abstract setting in Sec. II B which however can guide us in many different cases. We then illu
it via examples.

~2.18! attempts to define the entropy production directly as bilinear in thermodynamic fo
Ea and fluxesJa and it inherits the properties ofRN,L in Proposition 2.1:

Proposition 2.2: Under the above-mentioned hypotheses for a translation invariant G
measurem,

~1!

m~ ṡ!>0 ~2.20!

with equality only if s˙50 m—almost surely@in which casemp and m must be Gibbs measure
with respect to the same (physically equivalent) potential(UAp);(UA)#.

~2! If m is ergodic under spatial translations, then

m~ ṡ!5 lim
N,L

1

uLN,Lu
RN,L ~2.21!

m—almost surely.
~3! Let QN,L denote the law ofSxPLN,L

ṡx /uLN,Lu and let Q̃N,L denote the law of

2SxPLN,L
ṡx /uLN,Lu. Then,

lim
N,L

1

uLN,Lu
ln

dQ̃N,L

dQN,L
~y!52y. ~2.22!

In particular, the limit
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p~l,E!52 lim
N,L

1

uLN,Lu
ln mS expS 2 (

a,xPLN,L

laJx
aD D ~2.23!

exists and equals p(2E2l,E) for all l5(l1 ,...,lm), E5(E1 ,...,Em)PRm.
Proof: ~2.21! is a consequence of the law of large numbers using thatm is a translation

invariant extremal Gibbs state. The rest of the proof was already given in Ref. 8. j

The symmetry of~2.23! for the generating function ofṡ gives rise to relations betwee
correlation functions whenp(l,E) is differentiable with respect tol andE. Most important is the
following version of the Green–Kubo formula~also already proven in Ref. 8!

Corollary 2.1:

Lag5
]

]Ea
mS ]

]Eg
ṡD ~E50!5(

x
n~J0

gJx
a!. ~2.24!

Obviously,~2.24! is ~Onsager-! symmetric in interchanginga with g.
Remark:As far as we see there are two main approaches connecting the Gibbs formalism

nonequilibrium statistical mechanics. The first one is easiest to grasp for the ‘‘mechan
inclined.’’ It is obtained by the explicit construction of the path space measure of various dy
ics as a Gibbs measure. In fact~and fortunately!, the full identification of the interaction is no
needed for our purposes as we are only interested in a specific ‘‘relative energy’’@as in~2.9! and
~2.10!#. The second approach is more familiar to the ‘‘statistically inclined.’’ It involves ide
fying Gibbs measures as solutions of the maximum entropy principle, given space–time inf
tion on macroscopic variables such as steady state currents. It does not build the path
measure from the microscopic dynamics but instead tries to predict macroscopic behavior
Gibbs measure on the space–time trajectories which is statistically compatible with certa
perimentally available data. We refer to the method of Ref. 14 and to specific examples~in the
quantum domain! in, e.g., Ref. 15. In this paper, we deal exclusively with the first approac
should however be realized that, while the first approach works equally well for systems co
ing only few degrees of freedom, the stone-wall character of the laws of irreversible therm
namics can only be expected for systems containing a large number of degrees of freedom

B. Abstract definition

Here we start from an abstract probability space~V,F,m!. The setV has to be thought of as
the set of discrete or continuous time paths of a particle system. Next we consider an indexS,
< equipped with the partial order<, and an increasing family of sigma-fields$Fs ,sPS%, Fs,F,
;sPS, with F5s(øsPSFs). Typically S has to be thought of as some set of increasing spa
time windows, e.g.,

S5$@0,T#,T>0%

or

S5$V3@0,T#,T>0,V,Zd~finite!%

ordered by inclusion. Consider a set of transformations$ps ,sPS%, indexed byS such that the
following four conditions are satisfied:

~i! ps :V→V is Fs measurable for allsPS, i.e., ps
21(A)PFs for all APFs ;

~ii ! ;sPS, ;vPV, ps+ps(v)5v;
~iii ! ;sPS, psm is absolutely continuous with respect tom;
~iv! ;t.s, ;Fs measurablef :E( f +p tuFs)5 f +ps .

The transformationps has to be thought of as the time-reversal transformation in the win
indexed bysPS.
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By condition ~iii !, we can write the Radon–Nikodym derivative

d~psm!

dm
5e2Rs ~2.25!

and we immediately obtain, by the same proof, the analog of Proposition 2.1:
Proposition 2.3: For all complex numbers zPC,

m~e2zRs!5m~e2~12x!Rs! ~2.26!

and m(Rs)>0 with equality iff Rs50 m—almost surely.
In the examples that follow we will always identify the functionRs by means of a Girsanov

formula. The procedure is always to refer to a time-reversal invariant processn and to compute the
ratio

dm

dn
~ps~v!!Y dm

dn
~v!5e2Rs~v!. ~2.27!

Since we have not insisted on a natural notion of spatial translations in our abstract set
cannot expect to obtain an analog to~2.11! which for statistical mechanics is of prime importan
as it is related to the extensiveness of the entropy production. Note however that from con
~iv!

MtªEFd~p tm!

dm UFtG ~2.28!

is a martingale and henceE(2 logMt) is a nondecreasing function of timet (2 logMt is a non-
negative submartingale!. Most of the time, there will be a natural choice for an increasing func
a:S→R1 being a suitable normalization in the sense that supsPS a(s)51` and the limit~free
energy functional!

p~l!52 lim
s

1

a~s!
ln m~e2lRs! ~2.29!

exists~and is nontrivial! for lPR. By Proposition 2.3 we have automaticallyp(l)5p(12l), see
~2.23!. We then call

m~ ṡ!5 lim
s

1

a~s!
m~Rs!>0 ~2.30!

the entropy production corresponding to~V, F, m! and transformationsps . This is the analog of
~2.18!–~2.21! in the general context.

When we deal with ‘‘fluctuations of entropy production,’’ then we mean fluctuations of
random variableRs /a(s). In the identification ofRs , we always want to obtainRs ‘‘up to
boundary terms.’’ More precisely, given a suitable normalizationa, we defineRs8Rs8 iff for all
l.0

lim sup
s

1

a~s!
log E exp@~luRs2Rs8u!#dm50. ~2.31!

This of course implies thatRs andRs8 give rise to the same free energy functional. We also den
d(psm)/dm81 iff p(l)50 for all l>0. WhenRs80 we say thatRs is m-‘‘negligible.’’ In this
case, we say that the dynamics is time-reversal invariant.
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III. STOCHASTIC DYNAMICS

In this section we discuss a variety of examples. In each particular case, from the
representation of the path space measure of the stochastic process@as in ~2.9!–~2.10!#, we can
identify the entropy production by comparison with the time-reversed process. It is essen
realize that the choice of time-reversal transformation and hence the definition of entropy p
tion, depends on the choice of dynamical variables we consider in the system. That is, b
mere reflection of the time axis there could be applied an additional transformation on the le
the phase space and this depends on the type of variables one considers.

A. Molecular motor

We illustrate our method for a simple model of a molecular motor. This example was
gested to us via a reading of Ref. 16. Since, at the time of writing this paper, we also receiv
preprint17 which deals with a similar model, we omit giving context and motivation and we r
to Refs. 16–19 for details. Here, after defining the simplest variant of the model, we proce
once with our algorithm.

We consider a point particle that can jump on the one-dimensional lattice~Z! under the
influence of a periodic potentialU. This potentialU can take two different shapesU1 andU2 ~see
diagram! and it switches between them at a rateG. The state of the particle can be characteriz
by a couple (x,a) wherex describes the position of the particle andaP$1,2% specifies in which
potential the particle moves. The potentialU2 is symmetric and periodic with period 1 whileU1

has minima of two different heights bounded by asymmetric energy barriers. It is also period
with period 2.

To be concrete, let us put fornPZ, U2(n)50, U1(2n)5e52U1(2n11). The asymmetry
of the barriers implies that inU1 the rates for jumping to the right are different from those
jumping to the left. The transitions occur at the rates:

g15r ~~2n11,1!→~2n12,1!!,

d15r ~~2n11,1!→~2n,1!!,

g25r ~~2n,1!→~2n11,1!!,

d25r ~~2n,1!→~2n21,1!!, ~3.1!

G5r ~~x,1!→~x,2!!,

G5r ~~x,2!→~x,1!!,

g5r ~~x,2!→~x61,2!!.

In the figure above we have takend1,g1,g2,d2 . It is the combination of the energy differenc
and the height of the energy barrier between adjacent minima that determines the rate
concrete model.

We suppose that
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g2

d1
5

d2

g1
5e2e/Ts ~3.2!

for thermal transitions at the temperatureTs in the potentialU1 . Notice that from this condition of
detailed balance both potentials~separately! give rise to a time-reversal invariant dynamics. Ho
ever switching between the two potentials at rateG.0 destroys time-reversal invariance and c
produce a net to current and a nonzero entropy production. The physical reason is that the j
of the particle from site to site is a thermal process occurring at temperatureTs while the switching
between the two potentials is also a thermal process but occurring at a different temperaTr

51`. Through the system there is a net passage of heat from the reservoir at temperaturTr to
the system at temperatureTs . As we will now see, our algorithm nicely captures this. We dist
guish the following four different states:

~x,h!↔ ‘ ‘state’’

~2n11,1! 1,

~2n,1! 2, ~3.3!

~2n11,2! 3,

~2n,2! 4.

Denote bypi the probability to find the particle in statei. Then

dp1

dt
5~g21d2!p22~g11d1!p11G~p32p1!,

dp2

dt
5~g11d1!p12~g21d2!p21G~p42p2!,

~3.4!
dp3

dt
52g~p42p3!1G~p12p3!,

dp4

dt
52g~p32p4!1G~p22p4!.

From ~3.4! we easily obtain the following probabilities in the stationary measure:pi51/4
1(21)i 11ai , wherea15a25a anda35a45b, with

a5
1

4

~g21d22g12d1!~4g1G!

~4g1G!(14gG
, ~3.5!

b5
1

4

~g21d22g12d1!G

~4g1G!(14gG
, ~3.6!

andS5g11d11g21d2 .
Let us now introduce the particle current in the stationary state:

J15p1g12p2d21~p32p4!g ~3.7!

5p2g22p1d11~p42p3!g. ~3.8!
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Expression~3.7! is the net current to the right at odd and~3.8! at even lattice sites. Since there a
no sources or sinks both expressions must be equal~as they are!. Using the explicit expression fo
the stationary state we obtain

J15
1

2

gG~g11g22d12d2!

~4g1G!(14gG
. ~3.9!

Apart from this particle current we can introduce yet another current. It is the heat cu
measuring the amount of energy that is displaced through our system.

JQ5G~p42p2!e1G~p12p3!e ~3.10!

5GTs~p42p2!log
d2

g1
, ~3.11!

where we used~3.2! and stationarity.JQ is the rate at which energy or heat flows from t
reservoir to our system at temperatureTs .

Let us now turn to the setup of Sec. II B. We putV5D(@2T,T#,$1,2,3,4%) the set of paths on
the states~3.3!, S5$@2T,T#:T>0% the set of increasing time windows,

pT~v!~ t !5v~2t !, ~3.12!

and a(@2T,T#)52T. Let m be the space–time extension of the stationary stater
5(p1 ,p2 ,p3 ,p4). Then

RT~v!52 logFd~pTm!

dm
~v!G5E

2T

T

log
r ~v t2,v t1!

r ~v t1,v t2!
dNt , ~3.13!

whereNt denotes a mean one Poisson process.
Therefore the entropy production corresponding to~V, F, m! is

m~ ṡ!5 lim
T

1

2T
m~RT!

5p1Fg1 log
g1

d2
1d1 log

d1

g2
G1p2Fg2 log

g2

d1
1d2 log

d2

g1
G . ~3.14!

Usingg1g25d1d2 together with the explicit expression for the stationary state we can rewrite
as

m~ ṡ!5G@p42p2# log
d2

g1
5JQ•

1

Ts
. ~3.15!

The right-hand side, with the definition~3.10!, is indeed what we would write as thermodynam
entropy production. We recognize the form ‘‘current field,’’ where the role of the field is pla
by an inverse temperature difference. Since we have takenG constant independent of the partic
position, the effective temperature of the second reservoir isTr5` and thusm( ṡ)5JQ /Ts

5JQ /Ts2JQ /Tr . The particle currentJ1 does not contribute to the entropy production beca
we did not include an external load, see Ref. 17. Remark also thatm( ṡ)>0 with equality only if
JQ50. This happens whengG50 or g15d2 , d15g2 (e50) or g15d15g25d2 (Ts5`).

This shows that from our algorithm, the exact expression for the entropy production i
tained.
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B. Spin-flip dynamics

Spin-flip processes~SFP! are continuous time Feller processes taking values in the spaX

5$11,21%Zd
of Ising spin configurations. The spin at sitei PZd is flipped according to

Prob@s t1dt~ i !52j~ i !us t5j#5c~ i ,j!dt, ~3.16!

where the spin-flip ratec( i ,j) is assumed strictly positive, translation invariant, and local. T
main difference with the automata considered in Ref. 8 is the sequential updating where
‘‘discreteness’’ of time is replaced by the event times of a Poisson process. The generator o
is defined on local functions via

L f ~j!5 (
i PZd

c~ i ,j!~ f ~j i !2 f ~j!!, ~3.17!

wherej i denotes the configuration obtained fromj by flipping the spin ati, i.e., j i( j )52j( i ) if
j 5 i andj i( j )5j( j ) for j Þ i . See Ref. 20 for the existence of the process with generatorL and for
more details on SFP. A probability measurer on X is called invariant or stationary if for all loca
f, *dr L f 50. If we start the process fromr then we obtain of course a stationary process.
denote bym its path space measure. The spin-flip rates are satisfying the condition of de
balance if

c~ i ,j!

c~ i ,j i !
5exp@2~H~j i !2H~j!!#, ~3.18!

for some HamiltonianH ~at inverse temperatureb51! on X ~see Ref. 20 for more details!. If the
spin-flip rates satisfy the condition of detailed balance, then the Gibbs measures with respec
HamiltonianH are ‘‘microscopically reversible,’’ which means that the process started at on
them is time-reversal invariant. In order to apply the general formalism of Sec. II, we ident

VªVT0LL0
ªD~@2T0 ,T0#,$21,11%LL0!, ~3.19!

the set of cadlag trajectories of spin configurations in the finite volumeLL0
ª@2L0 ,L0#dùZd in

the finite time interval@2T0 ,T0#. Elements ofV are denoted byv, s. The time-reversal trans
formation is defined in windows@2T,T#3LL for T<T0 andL<L0 :

~pT,Ls! t~ i !5s2t~ i ! if tP@2T,T#,i PLL

5s t~ i ! otherwise. ~3.20!

Notice that this transformation does not preserve the right-continuity of the paths at the jum
times but we can modify the jumps ofpT,L(s) making it again an element ofV. With a slight
abuse of notation we writepT,L(s) for this cadlag modification of~3.20!.

Lemma 3.1:

dpT,Lm

dm
5exp~2RT,L!, ~3.21!

with

RT,L~s!5 (
i PLL

E
2T

T

log
c~ i ,ss!

c~ i ,ss
i !

dNs
i 1GT,L~s!, ~3.22!

where
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Ns
i 5

1

2 (
tP@2T,s#

us t1~ i !2s t2~ i !u

is the basic jump process, counting the number of flips at site i in the time interval@2T,s# and
GT,L is m-negligible in the sense (2.31).

Proof: This is a direct application of the Girsanov formula. We introduce the time-reve
invariant reference process of independent spin-flips, i.e., the process with generator

L0f ~j!5 (
i PLL0

@ f ~j i !2 f ~j!# ~3.23!

and denote bymj
0 its path space measure starting fromjP$21,11%LL0, i.e., s(t52T,•)

[s t52T[j. We also denote bym the path space measure of the process with generatorL starting
from its stationary measurer, and bym0 the same for the process with generatorL0 , starting from
the stationary measurer0 . From the Girsanov formula for point processes~see Ref. 21, p. 314! we
obtain

dmj

dmj
0 5expH(

i
E

2T

T

logc~ i ,ss!dNs
i 2F E

2T

T

c~ i ,ss!ds22TG J . ~3.24!

Using time-reversal invariance of the reference process we obtain:

RL,T52 log
d~pT,Lm!

dm

82 log
dm

dm0
+pT,L1 log

dm

dm0
. ~3.25!

8 (
i PLL

E
2T

T

log
c~ i ,ss!

c~ i ,ss
i !

dNs
i . ~3.26!

In the first step we put ‘‘8’’ because the processm0 satisfiesdpT,Lm0 /dm081, in the last step
because we omitted the term coming from the initial measures~r for the process, andr0 for the
reference process!.

For the entropy production we obtain, from Lemma 3.1,

m~ ṡ!5 lim
T,L

1

2TuLu
mS (

i PL
E

2T

T

log
c~ i ,ss!

c~ i ,ss
i !

dNs
i D . ~3.27!

Use thatNs
i 2*2T

s c( i ,s t)dt is a martingale. By stationarity and translation invariance ofr, we
obtain from~3.27!

m~ ṡ!5 lim
T,L

1

2TuLu
mS (

i PL
E

2T

T

log
c~ i ,ss!

c~ i ,ss
i !

dNs
i D

5E r~dj!c~0,j!log
c~0,j!

c~0,j0!
. ~3.28!

If m is time-reversal invariant, then~3.28! is zero: this is the case whenr is a Gibbs measure with
respect to the Hamiltonian of~3.18!, i.e., when

E r~ds!c~x,s!@ f ~sx!2 f ~s!#50, ~3.29!
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for all f local and for allxPZd.
Example (cf. Ref. 22):Consider the one-dimensional spin-flip dynamics with the follow

asymmetric rates:

c~x,s!5exp~2bs~x!s~x11!!. ~3.30!

The invariant measurer is the one-dimensional Ising model at inverse temperatureb/2. The
process starting fromr is not time-reversal invariant. For the entropy production we find, afte
easy calculation:

m~ ṡ!52b tanhS b

2 D.0. ~3.31!

C. Particle exchange dynamics

For particle exchange processes~PEP!, the configuration space isX5$0,1%Zd
, where j( i )

51,0 is interpreted as the presence~respectively, absence! of a particle at lattice sitei. A PEP is
a Feller process onX with generator given by

L f ~j!5 (
u i 2 j u51

c~ i , j ,j!@ f ~j i j !2 f ~j!#, ~3.32!

whereu i 2 j u5(a51
d u i a2 j au51 and

j i j ~k!5H j~ j !, k5 i

j~ i !, k5 j

j~k!, otherwise.

~3.33!

The exchange ratesc( i , j ,j) are strictly positive, local, and translation invariant. As for spin-fl
processes, we put

V5VL0T0
5D~@2T0 ,T0#,$0,1%lL0!, ~3.34!

pT,L~v! t~ i !5v2t~ i ! tP@2T,T#, i PLL

5v t~ i ! otherwise ~3.35!

whereT<T0 ,L<L0 . We then have the following analog of Lemma 3.1:

Lemma 3.2:

dpT,Lm

dm
5exp~2RT,L!, ~3.36!

with

RT,L~v!5 (
i , j PLL ,u i 2 j u51

E
2T

T

log
c~ i , j ,vs!

c~ i , j ,vs
i j !

dNs
i j 1GT,L~v!, ~3.37!

where

Ns
i j 5 (

tP@2T,s#

1

2
uv t1~ i !2v t1~ j !2v t2~ i !1v t2~ j !u, ~3.38!

and GT,L is m-negligible in the sense (2.31).
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Proof: The lemma follows again from the Girsanov formula. The basic jump processe
now indexed by nearest-neighbor bonds rather than by sites. As a time-reversal invariant re
process we choose the simple symmetric exclusion process with generator

L0f ~j!5 (
u i 2 j u51

@ f ~j i j !2 f ~j!#. ~3.39!

Again, mj andmj
0 denote the path space measures starting from a configurationjPX under the

original and reference dynamics, respectively, andm and m0 denote the path space measur
starting from a stationary measurer ~respectively,r0!. We obtain

dmj

dmj
0 5expH (

u i 2 j u51
E

2T

T

logc~ i , j ,vs!dNs
i j 2F E

2T

T

c~ i , j ,vs!ds22TG J , ~3.40!

and

d~pT,Lm!

dm
8expH (

u i 2 j u51,$ i , j %,LL

E
2T

T

2 log
c~ i , j ,vs!

c~ i , j ,vs
i j !

dNs
i j J . ~3.41!

j

The entropy production is

m~ ṡ!5 lim
T,L

1

2TuLu E dmS (
u i 2 j u51,$ i , j %,L

E
2T

T

log
c~ i , j ,ss!

c~ i , j ,ss
i j !

dNs
i j D

5 lim
L

1

uLu (
u i 2 j u51,$ i , j %,L

E r~dj!c~ i , j ,j!log
c~ i , j ,j!

c~ i , j ,j i j !
. ~3.42!

If r is translation invariant then

m~ ṡ!5
1

2 (
u i u51

E r~dj!c~0,i ,j!log
c~0,i ,j!

c~0,i ,joi!
. ~3.43!

Examples: Asymmetric exclusion processes. We consider the case of bulk driven diffusiv
lattice gases as was done in Ref. 9, see also Ref. 23. For the asymmetric exclusion proce
ring with periodic boundary conditions,

c~ i ,i 11,j!5j~ i !~12j~ i 11!!
eE/2

2
1j~ i 11!~12j~ i !!

e2E/2

2
. ~3.44!

The Bernoulli measurer, take it with particle densityq, is a stationary~nonreversible! measure.
Denoting bym its space–time extension, we find for the entropy production

m~ ṡ!5E c~0,1,j!log
c~0,1,j!

c~0,1,j01!
r~dj!5Eq~12q!sinhS E

2 D . ~3.45!

The particle current is defined by

j T,L5
1

2TLd (
$ i , j %,LL ,u i 2 j u51

E
2T

T

@vs~ i !2vs~ j !#dNs
i j . ~3.46!

Notice the relation
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]RT,L

]E
82TLdj T,L . ~3.47!

In the limit T,L↑`, the expectation of the particle current is precisely

j ~E!5E r~dj!c~0,1,j!~j~0!2j~1!!5q~12q!sinhS E

2 D . ~3.48!

This is also the quantity appearing as the current in the hydrodynamic equation which in thi
is the Burgers’ equation for a space–time density profileqt(r ),r PR:

]q

]t
52sinhS E

2 D ]

]r
~q~12q!!. ~3.49!

Hence the entropy production can be written in the form

m~ ṡ!5E• j ~E!, ~3.50!

which corresponds to the dissipated power. As soon as the process is not time-reversal in
~the field EÞ0 is not included as dynamical variable!, the entropy production~3.45! is strictly
positive.

To further illustrate the relation between particle current and entropy production we
consider the one-dimensional asymmetric exclusion process with generator

L f ~j!5 (
i , j PZ

p~ j 2 i !j~ i !~12j~ j !!@ f ~h i j !2 f ~h!#, ~3.51!

wherep:Z→R1 satisfies( i p( i )51, ( i ip( i )50 but p( i )Þp(2 i ). Then we find, starting from
the Bernoulli measurer with densityq:

m~ ṡ!5q~12q!(
i

~p~ i !2p~2 i !!log
p~ i !

p~2 i !
. ~3.52!

Hence, the mean entropy production is strictly positive whereas the particle current vanish

D. Diffusion processes

In this section we consider, following Ref. 9, three examples of diffusion processes. A
tuation theorem for diffusion processes was first discussed in Ref. 10. Via the Girsanov fo
we find a Gibbsian representation for the path space measure and we can apply our forma
obtain the entropy production. We will use a similar notation as in Ref. 9.

Example: Diffusion with drift:
Consider the stochastic differential equation~Ref. 21!

dxt5@~c~xt!2 1
2 a•¹U~xt!!1 1

2¹•a~xt!#dt1Aa~xt!dWt . ~3.53!

The covariance matrixa(x) is strictly positive, sufficiently smooth and bounded,Wt is Brownian
motion, andUPC2 satisfies*Rd exp(2U(x))dx,`. Furthermore we suppose that the driftc is such
that there exists a unique stationary probability measure which is absolutely continuous
respect to Lebesgue measure. To put ourselves in the context of Sec. II B we identify
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VªVTªC~@2T,T#,Rd!,

Sª$@2T,T#:T>0%,
~3.54!

pT~v!~s!ªv~2s!,

a~@2T,T# !ª2T.

The transformationpT is time reversal in the time window@2T,T#. As before we denote byr the
stationary measure of the processxt andm the corresponding path space measure.

Lemma 3.3:

dpTm

dm
5exp~2RT!, ~3.55!

with

RT~v!52E
2T

T

a21~vs!c~vs!+dvs1GT , ~3.56!

where+ stands for the Stratonovich integral and GT is m-negligible in the sense of (2.31).
Proof: If c[0 in ~3.53!, then the corresponding process$yt :tP@2T,T#% satisfying

dyt5@2 1
2 a•¹U~yt!1 1

2¹•a~yt!#dt1Aa~yt!dWt , ~3.57!

is time-reversal invariant when started~at t52T! from the stationary probability measure

r0~dx!ª
exp@2U~x!#dx

*Rd exp@2U~x!#dx
. ~3.58!

From the Girsanov formula~Ref. 21! we obtain the following expression for the Radon–Nikody
derivative of the path space measure of the process$xt :tP@2T,T#% with respect to the proces
$yt :tP@2T,T#%, starting at the same pointu5xt52T5yt52T :

dmu

dmu
0 ~v!5expH E

2T

T

a21~vs!c~vs!dvs2
1

2 E2T

T

a21~vs!

3@~c2 1
2 a•¹U1 1

2¹•a!2~vs!2~2 1
2 a•¹U1 1

2¹•a!2~vs!#dsJ . ~3.59!

In this expression the stochastic integrals are Ito-integrals, i.e.,

E
2T

T

f ~vs!dvs5 lim
n↑`,Ds↓0

(
j 51

n

f ~vsj 21
!~vsj

2vsj 21
!, ~3.60!

where 2T5s0,s1,...,sn5T, Dsj5sj2sj 21 , is a subdivision of the interval@2T,T#, such
that maxj Dsj↓0 for n↑`. The limit in ~3.60! has to be understood inL2-sense, and it is importan
to evaluatef in the pointsvsj 21

~the left end point! in order to obtain the Ito-integral. If we
evaluate in the midpoints we obtain the Stratonovich integral, i.e., for continuousf:
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E
2T

T

f ~vs!+dvsª lim
n↑`,Ds↓0

(
j 51

n

f S vsj 21
1vsj

2
D ~vsj

2vsj 21
!

5 lim
n↑`,Ds↓0

1

2 (
j 51

n

@ f ~vsj 21
!1 f ~vsj

!#~vsj
2vsj 21

!, ~3.61!

where+ stands for Stratonovich. The procedure to obtaind(pTm)/dm0 is now straightforward: We
plug in the time reversed pathpT(v) in the Girsanov formula, and use the reversibility
$yt :0<t<T% to obtain

d~pTm!

dm
~v!5

dm

dm0
~pT~v!!

dm

dm0
~v!

. ~3.62!

Next use the following:
Lemma 3.4:~1! @*2T

T f (vs)dvs#+pT522*2T
T f (vs)+dvs1*2T

T f (vs)dvs .
~2! @*2T

T f (vs)ds#+pT5*2T
T f (vs)ds.

Proof: ~1! Use expression~3.60! for the Ito integral:

S E
2T

T

f ~vs!dvsD +pT5F lim
n↑`,Ds↓0

(
j 51

n

f ~vsj 21
!~vsj

2vsj 21
!G +pT

52 lim
n↑`,Ds↓0

(
j 51

n

f ~vsj
!~vsj

2vsj 21
!

522E
2T

T

f ~vs!+dvs1E
2T

T

f ~vs!dvs , ~3.63!

where we used~3.61!.
~2! Trivial. j

From ~3.59!, ~3.62!, and this lemma we obtain finally

d~pTm!

dm
8expF22E

2T

T

a21~vs!c~vs!+dvsG , ~3.64!

where we put8 because we start the process$xt :2T<t<T% from its true stationary measure an
not from the reversible measure of the process$yt :2T<t<T%, hence we have to include an ext
factor of order one~asT↑`, since these two measures are absolutely continuous! in expression
~3.64!. This finishes the proof of Lemma 3.3. j

The entropy production corresponding to~V, F, m! is

m~ ṡ!52 lim
T

1

2T
ErF log

d~pTmu!

dmu
G

5 lim
T

1

T
ErF E

2T

T

a21~vs!c~vs!+dvsG
54E r~dx!F ~a21~x!c~x!!•c~x!1

1

2
¹•c~x!G . ~3.65!

Whenc52 1
2 a•¹Ũ we have
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22E
2T

T

a21~xs!c~xs!+dxs5Ũ~xT!2Ũ~x2T!, ~3.66!

which is a boundary term. Hence, in the case of a conservative driving force we getm( ṡ)50 as
it should since then the process$xt :2T<t<T% is time-reversal invariant.

Example: Langevin Equation with temperature gradient:Consider the following stochasti
differential equation:

dxt5v tdt,
~3.67!

dv t5F2
¹U

m
~xt!2g~xt!v tGdt1A2g~xt!

mb~xt!
dWt ,

which describes a particle subject to friction, a conservative force, and a random force. W
UPC2 and g,bPC2 positive, bounded and bounded away from zero. This guarantees the
tence of a unique stationary probability measure absolutely continuous with respect to Leb
measure. To apply the formalism of Sec. II B, we identifyV5VTªC(@2T,T#,Rd) the velocity
paths,Sª$@2T,T#:T>0%, a(@2T,T#)ª2T, and pTv(s)52v(2s). The minus sign in the
transformationpT comes from the fact thatv(t) is interpreted as the velocity at timet.

Lemma 3.5:

dpTm

dm
5exp~2RT!, ~3.68!

with

RT5E
2T

T 1

2
@mvs

21U~xs!#+db~xs!1GT , ~3.69!

where GT is m-negligible in the sense of (2.31).
Proof: We introduce the reference process

dXt5Vtdt,
~3.70!

dVt5F2
¹U

m
~Xt!2

g~Xt!

b~Xt!
VtGdt1A2g~Xt!

mb~Xt!
dWt .

In this process,$Vt ,t>0% is p-invariant when started from the measure

r0~dV!5
e2~1/2!mV2

dV

e2~1/2!mV2
dV

.

Let mu andmu
0 be the path measures in the two processes, starting at a common initial con

u5(x0 ,v0)5(X0 ,V0)PRd. From the Girsanov formula, we obtain

log
dmu

dmu
0 5E

2T

T 1

2
m~12b~Xs!!VsdVs

1
1

2 E2T

T

¹U~Xs!Vs~12b~Xs!!ds

1E
2T

T

F~Xs ,Vs!ds, ~3.71!
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where, in the last integral, we do not specifyF except for observing that

F E
2T

T

F~Xs ,Vs!dsG +pT5E
2T

T

F~Xs ,Vs!ds. ~3.72!

Hence, using Lemma 3.4,

RT8 log
dm

dm0
2 log

dm

dm0
+pT

8E
2T

T

m~12b~xs!!vs+dvs1E
2T

T

¹U~xs!vs~12b~xs!!ds

5E
2T

T 1

2
m~12b~xs!!+dvs

21E
2T

T

~12b~xs!!+dU~xs!

8E
2T

T F1

2
mvs

21U~xs!G +db~xs!, ~3.73!

where in the last line we have put ‘‘8’’ because we omitted the boundary terms of the par
integration. j

We obtain for the entropy production:

m~ ṡ!5 lim
T

1

2T
m~RT!5 lim

T

1

2T
ErF E

2T

T F1

2
mvs

21U~xs!G +db~xs!G ~3.74!

where once again,r is a stationary measure andm is its space–time extension.
Example 3: Langevin equation with nonconservative driving force.
We now putb constant in~3.67! and consider

dxt5v tdt,
~3.75!

dv t5F 1

m
F~xt!2g~xt!v tGdt1A2g~xt!

mb
dWt ,

where againF is supposed to be sufficiently confining so that the velocity processv t has a unique
stationary probability measure which is absolutely continuous with respect to Lebesgue me

Lemma 3.6: As in (3.5),

dpTm

dm
5exp~2RT!, ~3.76!

with now

RT5E
2T

T

bF~xs!vs ds1GT , ~3.77!

where GT is m-negligible in the sense of (2.31).
Proof: The reversible reference process now reads

dXt5Vtdt, ~3.78!
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dVt52g~Xt!Vtdt1A2g~Xs!

mb
dWt ,

i.e., in this process$Vt ,tP@2T,T#% is p-invariant when started from the measure

r0~dV!5
e2~1/2!mV2

dV

*e2~1/2!mV2
dV

.

From the Girsanov formula we obtain

log
dmu

dmu
0 5E

2T

T b

2g~Xs!
F~Xs!dVs2

1

2 E2T

T b

2mg~Xs!
F2~Xs!ds1

1

2 E2T

T

bF~Xs!Vsds

~3.79!

and thus

RT5 log
dm

dm0
2 log

dm

dm0
+pT8E

2T

T

bF~xs!•vs ds. ~3.80!

We used that for aC1 function f:Rd→Rd

F E
2T

T

f~Xs!dVsG +pT2F E
2T

T

f~Xs!dVsG50. ~3.81!

This can be seen from the following calculation:

US E
2T

T

f~Xs!dVsD +pT2E
2T

T

f~Xs!dVsU
5U lim

n↑`,DS↓0
(
i 51

n

f~Xsi
!~Vsi

2Vsi 21
!2 lim

n↑``,DS↓0
(
i 51

n

f~Xsi 21
!~Vsi

2Vsi 21
!U

5 lim
n↑`,DS↓0

(
i 51

n FfS E
2T

si
Vt dr D 2fS E

2T

si 21
Vt dr D G @Vsi

2Vsi 21
#

<if8i`~ sup
0<t<T

uVsu!A^V,V&T lim
n↑`,DS↓0

A(
i 51

n

~si2si 21!250, ~3.82!

where^V,V&T denotes the quadratic variation process:

^V,V&T5 lim
n↑`,Ds↓0

(
i 51

n

~Vsi
2Vsi 21

!2. ~3.83!

j

For this example we conclude that the entropy production corresponding to~V, F, m! is given by

m~ ṡ!5 lim
T

1

T E dmF E
2T

T

bF~xs!vs dsG . ~3.84!

If F is conservative, i.e.,F(Xs)52¹U(Xs), then the integral2*2T
T bF(Xs)Vs ds5U(XT)

2U(X2T) is a boundary term, makingm( ṡ)50, expressing the time reversal symmetry.
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Notice that~3.84! is not dependent ong, so that at least formally in the limitg→0 ~‘‘zero
noise limit’’!, we can use the same expression.

Remark: There is one generalization which we have not considered so far and whi
physically rather important. It concerns the case of dynamics with memory~cf. Ref. 24!. When the
time scales of a reservoir and a subsystem have not been infinitely separated, memory eff
present. Fortunately, in principle our setup can handle this case. After all, a Markovian dyn
just corresponds to a short range interaction in the time direction for our space–time
measure. If this interaction happens to be long range~but summable in the appropriate sense!, the
formalism still applies unchanged. Remark indeed that in order to apply the Girsanov formu
the stochastic differential equation~3.53!, we do not need that the drift is a functionct(x)
5c(xt); it suffices thatct is an adapted process, hencext does not need to be a Markov proces
The only problem is to find the correct analog of Lemma 3.4 which will now involve anticipa
stochastic integrals.

IV. DETERMINISTIC DYNAMICS

Dynamical systems:In recent years new ideas in nonequilibrium statistical mechanics h
emerged from the study of smooth dynamical systems, see, e.g., Ref. 4. In particular, the
character of a time evolution plays an important role and, depending on author and cont
argued to be responsible for the positivity of entropy production and for the positivity of tran
coefficients. This, at first sight, is paradoxical since the results obtained from the theory o
namical systems apply to small systems. It is certainly not the case that nonequilibrium be
~such as macroscopic irreversibility! is compatible with systems having only a few degrees
freedom. One suggestion to bridge this gap is contained in the Chaoticity Hypothesis of Gal
and Cohen.25,26,5,6We will come back to this below. We start with some general remarks.

Consider a discrete time dynamics on a compact connected Riemannian manifoldX defined
by the mapT:X→X. Extra conditions will have to be added but we prefer to postpone them
they are explicitly needed. Trajectories starting fromvPX are sequences (v,Tv,T2v,...). For
every trajectory segment (v1 ,v2 ,...,vn) we must havevk5Tvk21 .

We assume thatT is invertible and that there exists an involutionu on X which leaves the
Riemann metricdv on X invariant,u251, so thatu+T215T+u. This is called dynamic revers
ibility in the present context. To see the relation with~2.9! or ~2.10!, it is crucial to observe tha
the trajectory segment (v2n ,v2n11 ,...,vn) is allowed if and only if the trajectory segmen
(uvn ,uvn21 ,...,uv2n) is allowed. One of the segments is then of the fo
(T2nv,T2n11v,...,Tnv) and the other (uTnv,uTn21v,...,uT2nv) is allowed becauseT(uTkv)
5uTk21v. Another related consequence comes from the fact that ifTnv5v for a certainn, then
alsoTnw5w for w5uv. In other words,u is a bijection on the set ofn-periodic points FixTn

5$vPX,Tnv5v%.
Next, since we want to study steady state properties, comes considering time-invariant

Most of the time, there are plenty of them and it is important to select the natural ones. Th
of course only be decided from the~partial! information we have on the particular system we a
interested in~e.g., via initial conditions, symmetries, etc.!. At any rate, steady statesm describing
the statistics of trajectories are completely determined by the selection of an invariant mear
in the sense that the only randomness in a trajectory comes from the initial data. It is the
somewhat artificial to use another notation for an invariant measurer and for its corresponding
steady state~path space measure! m since, for an observablef that depends on the configuration
the system at timesn1 ,n2 ,...,nk , we have

m~ f ~vn1
,...,vnk

!!5r~ f ~v,Tn22n1v,...,Tnk2n1v !. ~4.1!

As far as we are aware, there are two main strategies to connect steady states to Gibbs m
getting the Gibbs formalism of Sec. II at work also for deterministic dynamics. The first stra
uses the concept of Markov partition and symbolic dynamics and, for our purposes, is most
for ~if not limited to! mixing Anosov diffeomorphismsT; we refer to Refs. 27–32 for older resul
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and newer extensions. The second strategy uses the definition of Capocacuia in Ref. 33,
equivalence of Gibbs states and equilibrium states for homeomorphisms satisfying expans
and specification, see, e.g., Ref. 34. Whatever strategy is taken, the entropy production wo
defined in a similar way as for stochastic dynamics: Suppose that we can find a functionṠN(v)
5(n52N

N ṡ(Tnv) with ṡ(u(Tv))52 ṡ(v) such that for all continuousf on X,

lim
N

sup
1

N
log

*r~dv ! f ~v !e2ṠN~v !

*r~dv ! f ~uv !
50, ~4.2!

then we callr( ṡ) the entropy production of the dynamicsT in the stater. This, again, should be
compared with the situation for Gibbs statesm̃ ~here, one-dimensional! with u in ~4.2! replacing
the p of Sec. II, see~2.9!. The main difference is that there~local! approximatorspN,L of p
appear, in the sense that limm( f +pN,L)5m( f +p) for all continuous functionsf and that was
constantly used for stochastic dynamics. Here however, in general, there is no obvious ca
for such approximatinguN for u.

Equation~4.2! is not yet sufficient to derive a fluctuation theorem forṠN since we would need
a functionf in ~4.2! depending onN. Suppose however that we have the following strengthen
of ~4.2!:

lim
N

sup
1

N
log

*r~dv !exp~NF~mN~v !!exp~2ṠN~v !!

*r~dv !exp~NF~mN~uv !!
50, ~4.3!

where

mN~v !5
1

2N11 (
i 52N

N

dTiv

is the empirical distribution andF is an arbitrary weakly continuous function on the space
probability measures onX. If ~4.3! holds, then the following symmetry relation holds:

lim
N

sup
1

N
log

*r~dv !exp~2lṠN~v !!

*r~dv !exp~2~12l!ṠN~v !!
50. ~4.4!

For Anosov systems this program can be completed.
Gallavotti–Cohen theorem:The Gallavotti–Cohen fluctuation theorem can be seen as a r

about a symmetry in the fluctuations of the phase space contraction rate in the theory of s
reversible dissipative dynamical systems, see Refs. 5, 6, and 4. It selects a class of dyn
systems~so-called mixing Anosov diffeomorphisms! where via the existence of Markov partition
and symbolic dynamics a one-to-one relation with a one-dimensional Gibbs measurem̃ with an
exponentially decaying interaction can be established.

Consider minus the logarithm of the Jacobian determinantJ which arises from the change o
variables implied by the dynamics. We writeṡ[2 logJ, the phase space contraction rate, and
object of interest is

wN~v ![
1

2r~ ṡ!N (
2N

N

ṡ~Tn~v !!, ~4.5!

for large timeN. r is the SRB measure of the dynamics which arises naturally from

r~ f !5 lim
N

1

N (
0

N

f ~Tnv ! ~4.6!
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corresponding to time averages for almost every randomly chosen initial pointvPX with respect
to the Riemann volume elementdv on X. One assumes~and sometimes proves! dissipativity:

r~ ṡ!.0. ~4.7!

The fluctuation theorem of Gallavotti and Cohen states thatwN(v) has a distributionrN(p) with
respect to the stationary~SRB! stater such that

lim
N

1

Nr~ ṡ!p
ln

rN~p!

rN~2p!
51 ~4.8!

always. In other words, the distribution ofwN for N large satisfies some general symmetry pro
erty. The reader will of course recognize the relation with~2.22!.

The technical~mixing Anosov! assumption assures the uniform hyperbolicity of the dyna
cal system. The use of symbolic dynamics converts the study of entropy production int
framework of statistical mechanics for one-dimensional lattice spin systems with an expone
decaying interaction. This is intrinsic in the proof of Refs. 5 and 6 and it was explicitly rema
in Sec. III of Ref. 35. The steady statem ~corresponding to the SRB-stater! is theg image of a
translation invariant Gibbs measurem̃ on VªGZ, corresponding to thed50 case of the previ-
ously considered interacting particle systems. The~de!codingg:V→X is continuous one-to-one
almost everywhere and satisfiesT+g5g+t wheret5t1 is the shift onZ. This is brought about via
a finite ~Markov! partition (I a ,aPG) of X from which we definel (v)5a if vPI a . Given s
5g21vPV, there are manywPX for which l (Tnw)5s(n),unu<N. In the same way there
could be manyw8 for which l (Tnw8)5l (u+T2nv)5l (Tn+uv),unu<N. What we are interested
in is to take the ratio of the corresponding weights according to our path space measurem @as in
~2.9! or ~2.10!#. Following our general scheme, the logarithm of this must be related to the en
production just as in~4.2!.

The reversibility plays as follows on the symbols. First of all, again because of the An
character ofT, we can choose the partition such thatl (uv)5 ũl (v),vPX for some involutionũ
on G. Definep5g21+u+g. In the same way we can define the local transformationpN(s)(n)
5 ũ(s(2n)),unu<N,5s(n) for unu.N and obviously,g+pN→g+p for continuousg on V. In
the same way

uN5g+pN+g21 ~4.9!

approximatesu. But now, ~4.2! relies on a statement about the Gibbs measurem̃ and the trans-
formationpN , just as in our Sec. II: we can apply the theory of large deviations for Gibbs st
see Ref. 36.

The reason why the phase space contraction appears as entropy production is that th
statem ~or, after transforming to symbolic sequences,m̃! is a Gibbs state with respect to th
interaction2 logJu ~which is Hölder continuous! whereJu.0 is the expanding or unstable Jac
bian. The Jacobian determinant satisfiesJ(u+T)5J21 and u interchanges the stable with th
unstable directions (Js(uTv)5Ju(v)21) so that

2 logJu~uTv !1 logJu~v !5 logJ~v !. ~4.10!

As a consequence, we recover the expression~2.15! where the entropy production is related to t
‘‘relative energy’’ after time-reversal:

(
k52N

N

logJ~Tkv !5 (
k52N

N

@~2 logJu~Tkuv !!2~2 logJu~Tkv !!#1O~1!, ~4.11!

where0(1)/N→0 asN↑`.
                                                                                                                



tate

part of
This
nary
oscopic
iments
ohen,
puter

systems
system
xample
ss of

an
briefly
d how

f

1551J. Math. Phys., Vol. 41, No. 3, March 2000 On the definition of entropy production, via examples

                    
The reason why the quantityṡ can be identified with the change of entropy in the steady s
follows from the following simple calculation. Define the~Shannon! entropy of a probability
distributionm(dv)5m(v)dv on X as

S~m!52E dv m~v !logm~v !. ~4.12!

If m is the density at timen, then, under the dynamics, the density at timen11 is

m8~v !5
m~T21v !

J~T21v !
~4.13!

and the change in entropy~gained by the system! is therefore

S~m8!2S~m!5E dv m~v !logJ~v !. ~4.14!

Takingn to infinity, the empirical probability distribution approaches the SRB distributionr, as in
~4.6!. Therefore, the amount of entropy produced by the system per time unit is~4.7!, see also
Refs. 2–4.

Even though the preceding discussion was mentioning mostly technical points that are
the theory of~Anosov! dynamical systems, this was certainly not the final goal of the authors.
is summarized via their chaoticity hypothesis: ‘‘A reversible many particle system in a statio
state can be regarded as a transitive Anosov system for the purpose of computing the macr
properties,’’ see also e.g., Refs. 5, 6, 26, 25, 37, and 38. In fact, various numerical exper
have shown extremely good agreement with the symmetries predicted by Gallavotti and C
e.g., in Ref. 35. The theorem originated from numerical evidence in Ref. 7. These com
experiments are carried out via so-called thermostatted systems. These are dynamical
where mechanical forces are replacing the action of reservoirs in keeping the energy of the
constant. More theoretically, the theorem has various interesting consequences. For e
Gallavotti26 has been extending Green–Kubo type formulas to arbitrary forcing fields for a cla
nonequilibrium dynamics, see also Ref. 4. We see it therefore as a major argument~and motiva-
tion! in favor of the suggested definition of entropy production.

V. TRANSIENT REGIME

So far we have been considering the~nonequilibrium! steady state. However, our setup c
just as well be applied to transient regimes as, e.g., described in Refs. 39 and 40. We
comment here on the mathematics behind the so-called nonequilibrium work relations an
they fit into our framework. Let us start with the mathematics in the easiest example of a~discrete
time! Markov chainsn on a finite configuration spaceX. Consider a probability measurer i on
X,41 r i(j).0,jPX, as the initial state and the corresponding path space measurePN on XN11 for
which

PN~ f ~s0 ,...,sN!!5Er i
@ f ~s0 ,...,sN!#

5( f ~s0 ,...,sN!p~sNusN21!¯p~s1us0!r i~s0! ~5.1!

with transition probabilitiesp(juj8).0,j,j8PX. It is immediately verified that for all pairs o
probability measuresr, r8 on X with r(j),r8(j).0,jPX, we have the relation

Er8@ f +pN#5Er@ f e2ṠN1 log r8~sN!2 log r~s0!#, ~5.2!

where (pNs)n5sN2n and
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ṠN~s!5 (
k51

N

log
p~skusk21!

p~sk21usk!
~5.3!

corresponds to the steady state entropy production, see Ref. 8:

ṠN~s!

N
→m~ ṡ!

m—almost surely, in the unique stationary measure. We now write

p~j!5
e2bH~j!

Z
, ~5.4!

r8~j!5
e2bH8~j!

Z8
, ~5.5!

and we choose

f ~s0 ,...,sN!5e~12l!@ṠN~s!2 log r8~sN!1 log r~s0!# ~lPC!. ~5.6!

Substitution in~5.2! gives

Er8@e2~12l!@ṠN~s!1b~H~sN!2H8~s0!!##5
Z

Z8
Er@e2l@ṠN~s!1b~H8~sN!2H~s0!!##. ~5.7!

In particular, forl51, we get

PN@e2@ṠN~s!1b~H8~sN!2H~s0!!##5
Z8

Z
~5.8!

where we started inr i5r. This is a variant of the nonequilibrium work relation appearing in Re
39 and 40. More generally, such relations are easy to produce in the context of stochastic d
ics ~as in Sec. III! by using the appropriate form of the trivial identity

mS d~pN,Lm!

dm D51.

Instead of considering a stochastic dynamics on our system, we could also consider a Ham
time evolution on our system plus reservoir. To be specific, let us take the configuration sp
the form X5Xs3Xr with a deterministic invertible transformationT:X→X. The momenta and
positions of the particles in the system are collected in the~first! variablev andw will stand for
the reservoir variable.T preserves the elementary volume:d(T21(v,w))/d(v,w)51,d(v,w)
5dv dw. Suppose that the initial stater i has a density

r i~v,w!5
e2H~v !/Ti

Zi
e2Si ~w! ~5.9!

with partition functionZi5*dv e2H(v)/Ti and*e2Si dw51. We also define

r f~v,w!5
e2H~v !/Tf

Zf
e2Sf ~w!. ~5.10!

Then,
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E f ~~v,w!,T~v,w!!r i~v,w!dv dw5E f ~T21~v,w!,~v,w!!
r i~T21~v,w!!

r f~v,w!
r f~v,w!dv dw

~5.11!

and thus, taking

f ~~v,w!,~v8w8!!5e2~12l!@H~v8!/Tf2H~v !/Ti1Sf ~w8!2Si ~w!#, ~5.12!

we have

r i@e2~12l!@H~v8!/Tf2H~v !/Ti1Sf ~w8!2Si ~w!##5r f@e2l@H~v21!/Ti2H~v !/Tf1Si ~w21!2Sf ~w!##
Zf

Zi
,

~5.13!

where (v i ,wi)5Ti(v,w), i 561. Takingl50 recovers the main relation of Ref. 40. Ifr f would
really correspond to the ‘‘final’’ state~the image ofr i underT! thenr f(Sf)2r i(Si) would be the
change in entropy and logZf /Zi5exp@2(Ff /Tf2Fi /Ti)# would correspond to a change in Helm
holtz free energyF.
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Improved bounds for sampling colorings
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We consider the problem of sampling uniformly at random from the set of proper
k-colorings of a graph with maximum degreeD. Our main result is the design of a
simple Markov chain that converges inO(nk logn) time to the desired distribution
whenk. 11

6 D. © 2000 American Institute of Physics.@S0022-2488~00!02003-X#

I. INTRODUCTION

A proper k-coloringof a graphG5(V,E) is a labelings of the vertices with colors from the
set C5$1,...,k% where neighboring vertices have different colors. We address the proble
sampling uniformly from the set of properk-colorings. This problem is interesting as a natu
combinatorial problem and also has applications in statistical physics. It corresponds to sa
configurations of the zero temperaturek-state anti-ferromagnetic Potts model.1

A natural approach to this sampling problem is to consider a Markov chain which has a
for each properk-coloring. We define the transitions of the chain so that its stationary distribu
is uniform over all states. In order to sample from the desired distribution, we run the follo
procedure: start at an arbitrary coloring, simulate the random walk defined by the chain un
sufficiently close to the stationary distribution, and output the final coloring of the walk.
required length of this random walk is traditionally referred to as themixing time.The Markov
chain is calledrapidly mixing if the mixing time is bounded by a polynomial inn5uVu and thus
gives an efficient sampling algorithm.

The ~heat-bath! Glauber dynamicsis perhaps the simplest possible Markov chain with
desired stationary distribution. From a colorings, its transitionss°s8 are defined as:

~i! Choose a vertexv uniformly at random.
~ii ! Let s8(x)5s(x) for all xÞv.
~iii ! Let S denote the set of colors that do not appear in the neighborhood ofv. Chooses8(v)

uniformly at random from the setS.

Mark Jerrum2 proved that the Glauber dynamics is rapidly mixing when the number of colors
least twice the maximum degreeD of the input graph.

This 2D barrier also arose in related work in the statistical physics community. Their f
was studying phase transitions in the zero-temperature anti-ferromagnetic Potts model.~There
appears to be some connection between rapid mixing and phase transitions, see Sec. V for
this topic.! We first need to introduce some notation before we can explain the notion of a p
transition. Consider thed-dimensional square latticeZd where edges connect vertices that differ
1 in exactly one component. Also,QL denotes the finited-dimensional cube ofZd with side length
2L11 centered at the origin, i.e., the induced subgraph ofZd on vertex setV5$2L,...,L%d, and
its boundary]QL refers to those vertices with at least one coordinate equal to6L. Let t denote
a coloring ofZd. Consider the probability measuremt5mt,L , which is uniform over the set o
proper k-colorings of QL conditional on the boundary having coloringt. We are interested in
whether the influence of the boundary on the origin dies out asL→`. In particular, we say the
system is in thedisordered phaseif, for all t and colorsc,

a!Electronic mail: vigoda@dcs.ed.ac.uk
15550022-2488/2000/41(3)/1555/15/$17.00 © 2000 American Institute of Physics
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m r~origin has colorc!→ 1

k
as L→`.

Otherwise, we say the system is in theordered phase.The system is said to undergo a pha
transition at a transition between the disordered and ordered phases. Roman Kotecky´ ~cited in Ref.
3, pp. 148, 149, 457! showed that the system is in the disordered phase when the number of
is greater than twice the degree of the lattice~i.e., k.2D54d!.

In both settings, this 2D barrier was broken in specific instances by computer-assisted p
which analyzed a huge number of cases. Jesus Salas and Alan Sokal broke the barrier for
two-dimensional lattices.4 They proved that the system is in the disordered phase for se
colorings of the square lattice, four-colorings of the hexagonal lattice, and six-colorings o
Kagome lattice. Their proof for the square lattice, for instance, requires the computer analy
78 cases.

Russ Bubley, Catherine Greenhill, and Martin Dyer5 proved rapid mixing of the Glaube
dynamics with five colors whenD is at most three and seven colors on triangle-free four-reg
graphs. Their proof relies on the computer solution of several hundred linear programs f
D<3 case, and over 40 000 programs for triangle-free four-regular graphs.

In this paper, we give a simple direct proof that break the 2D barrier for arbitrary graphs. We
consider a Markov chain which we call theflip dynamics, formally defined in Sec. III. This
Markov chain is reminiscent of the Wang–Swendsen–Kotecky´ ~WSK! algorithm~see Sec. VII for
a discussion about the WSK algorithm!. The transitions of our chain consist of ‘‘flipping’’ two
colored clusters. In particular, from a colorings, choose a vertexv and colorc uniformly at
random. Then consider the maximal cluster of vertices which containv and are colored withc or
s(v). With an appropriate probability, ‘‘flip’’ this cluster by interchanging colorsc ands(v) on
it. Our main result is the following.

Theorem 1: The flip dynamics is rapidly mixing, with mixing time O(nk logn), provided k
. 11

6 D.
This is the first proof to break the 2D barrier that is not computer assisted and also the first

arbitrary graphs of any given maximum degreeD>6. Moreover, rapid mixing of the flip dynamic
also implies rapid mixing of the Glauber dynamics.

Theorem 2: The Glauber dynamics is rapidly mixing, with mixing time O(n2k logn logk),
provided k. 11

6 D.
Whenk5 11

6 D our proof implies rapid mixing for constantD ~see the remark at the end of Se
IV !. In Sec III, we discuss some known connections between rapid mixing of the flip dyna
and the system lying in the disordered phase. In particular, these connections together w
result on the mixing time of the flip dynamics imply the following theorem.

Theorem 3: The k-state zero temperature anti-ferromagnetic Potts model onZd lies in the
disordered phase when k. 11

3 d.
This improves upon the previously known bound ofk.4d for generald. Moreover, the result

can easily be extended to other lattices that are commonly of interest, such as the hexago
Kagomélattice ~see Ref. 4 for illustrations of these lattices!.

II. BACKGROUND

Consider a discrete-time Markov chain with transition probability matrixP defined on a finite
state spaceV. A classical theorem of stochastic processes states that ifP has the following
properties:

~i! aperiodicity: for all i PV,gcd$t:Pt( i ,i ).0%51; and
~ii ! irreducibility: for all i , j PV, there exists at5t i j , such that there is a positive probabilit

of going from statei to statej after t steps, i.e.,Pt( i , j ).0,

then the chain has a unique limiting distribution, referred to as thestationary distributionp, i.e.,
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lim
t→`

Pt~ i , j !5p~ j ! for all i , j PV.

In fact, if P is symmetric@P( i , j )5P( j ,i ) for all i,j#, thenp is uniform over all states.
Our goal is to bound the time until the chain is sufficiently close to the stationary distribu

The standard measure of distance from stationarity istotal variation distance.From an initial state
i, the total variation distance fromp is

di~ t !5dTV„P
t~ i ,• !,p…5

1

2 (
j PV

uPt~ i , j !2p~ j !u.

We are interested in the following quantity,

t~e!5max min
i

$t:di~ t8!<e for all t8>t%.

It is sufficient to consider themixing time, defined as

t5t~1/2e!.

The constant 1/2e is arbitrary and only affects later constants that appear. A bound on the m
time implies a bound ont~e!:6

t~e!<~12 loge!t.

We use coupling to bound the mixing time. Coupling constructs a stochastic process (s t ,j t)
on V3V such that

~i! separatelys t , j t are copies of the original Markov chain, and
~ii ! if s t5j t , thens t115j t11 .

The goal is to define a coupling to minimize the expected time tills t5j t ,

Ti j 5min$t:s t5j tus05 i ,j05 j %.

The following fact illustrates the usefulness of coupling for bounding the mixing time.6 For s0

5 i , j05 j ,

dTV~s t ,j t!<Pr@s tÞj t#5Pr@Ti j .t#.

Bubley and Dyer’spath coupling7 is an important tool for helping to design couplings
complex examples. Using path coupling, we only need to define and analyze a coupling
subset ofV3V. For simplicity, we explain the technique for the case whenV#$1,...,k%V, such
as the set of properk-colorings.

We need to introduce several definitions before stating the theorem. We consider a p
statess,tPV neighborsif they only differ at a single vertex. This is denoted bys;t. Note that
theses, t are states of the Markov chain but the definition of neighbors has nothing to do wit
transitions of the chain. In fact, we could even have thats;t, buts andt are not accessible from
one another by one transition of the chain.

We call h5(h0 ,...,hk) a simple pathif all h i are distinct andh0;h-;¯;hk . Define
r(s,j)5$h:s5h0 ,j5hk ,h is a simple path%. The path coupling theorem is more general th
stated here, but this is sufficient for our purposes.

Theorem 4: (Bubley and Dyer7) Let F be an integer-valued metric defined onV3V which
takes values in$0,...,D% such that, for alls,jPV, there exists a pathhPr(s,j) with
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F~s,j!5(
i

F~h i ,h i 11!.

Suppose there exists a constantb,1 and a coupling(s t ,j t) of the Markov chain such that, fo
all s t;t t ,

E@F~s t11 ,t t11!#<bF~s t ,t t!. ~1!

Then the mixing time is bounded by

t<
log~2eD!

12b
.

Moreover, if (1) holds withb51 and in addition there exists ana.0 such that, for all t and
arbitrary s t ,j tPV,

Pr@F~s t11 ,j t11!ÞF~s t ,j t!#>a,

then the mixing time is bounded by

t5OS D2

a D .

III. MARKOV CHAIN

The state spaceV of the Markov chain for the flip dynamics is the set of all prop
k-colorings. We need some notation before specifying the transitions of the chain. For a co
s, we will refer to a pathv5x0 ,x1 ,...,xl5w as an alternating path between verticesv and w
using colorsc ands(v) if, for all i, (xi ,xi 11)PE, s(xi)P$c,s(v)%, ands(xi)Þs(xi 11). We let
Ss(v,c) denote the following cluster of vertices:

Ss~v,c!5 HwUthere exists an alternating path between
v and w using colorsc and s~v ! J .

Let Ss„v,s(v)…5B. For every vertexx in the clusterSs(v,c), notice thatSs(x,c)5Ss(v,c) if
s(x)5s(v) and otherwiseSs„x,s(v)…5Ss(v,c).

For a coloringsPV, the transitionss°s8 are defined as follows.

~i! Choose a vertexv and colorc uniformly at random from the setsV andC, respectively.
~ii ! Let a5uSs(v,c)u.

With probability pa /a, ‘‘flip’’ cluster Ss(v,c) by interchanging colorsc and s(v) on the
cluster.

The reason for dividing the flip probability bya is that, as observed above, there are exa
a ways to pick the cluster~one for each of its elements!. Thus, a cluster is actually flipped wit
weight pa . The parameterspa will be defined later.

Observe that for every vertexv, the flip of clusterSs„v,s(v)… does not changes. Thus, the
Markov chain is clearly aperiodic sinceP(s,s).0 for all sPV.

As for irreducibility, it is sufficient to assume flips of clusters of size one have positive we
i.e., p1.0 and k>D12. To go between an arbitrary pair of colorings, consider an arbit
ordering of the vertices and attempt to recolor the vertices in that order. When attempt
recolor a vertexv to colorc, suppose that some neighbors ofv have the desired colorc. For each
such neighborw, recolorw to an arbitrary color which does not appear in the neighborhood ow
~this requires thatk>D12!. Then, recolorv to color c and we are guaranteed that vertexv will
not interfere with the recoloring of later vertices in the ordering.
                                                                                                                



r

se

metric

es

chain.
h

so, if

ht
tates.
same

efine

ach

1559J. Math. Phys., Vol. 41, No. 3, March 2000 Improved bounds for sampling colorings

                    
To see that the chain is symmetric and thus the stationary distributionp is uniform, lets8
denote the coloring after a flip of clusterSs(v,c). Then it should be clear that a flip of cluste
Ss8„v,s(v)… recoverss.

To complete the description of the chain, we specify the parameterspa . They arep151,
p25 13

42 and, fora.2,

pa5maxS 0,
13

42
2

1

7 F11
1

2
1¯1

1

a22G D .

Specifically,p35 1
6, p45 2

21, p55 1
21, p65 1

84, andpa50 for a>7.
The key properties~which will emerge in the analysis! that determined the settings for the

parameters are

~i! 2(i 21)pi1p2i 11< 2
3, and

~ii ! ( j 21)(pj2pj 11)1 i (pi2pi 11)< 5
6.

This is true because (j 21)(pj2pj 11)< 1
7, i (pi2pi 11)<p12p25 29

42. Other useful properties
of these parameters that we utilize are thatipi<p151, (i 21)pi<2p35 1

3, (i 2c)pi,
1
4 for c>2.

IV. ANALYSIS

Recall the setting of the path coupling theorem. To use the theorem we need to define a
F on V3V such that there exists a path between an arbitrary pair of statess, h where the length
of the path is exactlyF~s, h!. We letF be the Hamming distance which is the number of vertic
that are colored differently in the two states. For neighboring statess, t, observe thatF(s,t)
51. Consider a pair of adjacent verticesv andw, and a pair of coloringss, h which are identical
except atv andw. Moreover, suppose thats(v)5h(w), s(w)5h(v). Thus,F(s,t)52 but the
shortest path inV between these states is of length three.

In order to apply the path coupling theorem, we redefine the state space of the Markov
Let the setV5CV, i.e., the set of all~not necessarily proper! k-colorings. Now there exists a pat
of length F~s, h! between an arbitrary pair of statess and h. The definition of the clusters
Ss(v,c) and the transitions of the chain are identical for this enlarged state space.

Observe that if we start the chain at a proper coloring, we only visit proper colorings. Al
we start at an improper coloring we eventually reach a proper coloring.~To see this simply
reconsider the earlier argument for irreducibility.! Therefore, the only states with positive weig
in the stationary distribution are proper colorings and the chain is still uniform over these s
Also, a bound on the mixing time of the chain on this enlarged state space will give the
bound on the mixing time of the chain restricted to just proper colorings.

To now use the path coupling theorem to get a bound on the mixing time we must first d
a coupling for neighboring statess, t. Then we need to show that the expected change inF
5F(s,t) under this coupling is negative. For the remainder of the analysis, lets andt denote a
pair of neighboring states such that they only differ at vertexv.

Recall that for every clusterSs(x,c) there is exactly one equivalent cluster indexed by e
vertexyPSs(x,c). Also, this cluster is flipped with total weightpa wherea5uSs(x,c)u. Thus,
when analyzingE@DF# we just have to consider this cluster being flipped with weightpa as
opposed to considering the cluster being flipped with weightpa /a for each vertexy in the cluster.

Consider when clustersSs(x,c),St(x,c) might be different, in the sense that eitherSs(x,c)
ÞSt(x,c), or Ss(x,c)5St(x,c), but s(y)Þt(y), for someyPSs(x,c). In order for either of
these cases to occur the cluster must involvev, eithervPSs(x,c) and/orvPSt(x,c). Recall that
if vPSs(x,c), then there is an equivalent way to index the cluster with vertexv. Suppose
v¹Ss(x,c),vPSt(x,c). We then know that the clusterS(x,c) is composed by colorst(v) and
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c8. Furthermore, there exists a neighborw of v such thatw has colorc8, St„w,t(v)…5St(x,c)
5St(v,c8), andSs„w,t(v)…5Ss(x,c). We can conclude that the setsD of clusters that might be
different in the two chains are

~i! Ss„w,t(v)…,St„w,s(v)… for any neighborw of v,
~ii ! Ss(v,c),St(v,c) for any colorc.

The moves that attempt to flip a cluster inD turn out to be the only moves that the analys
needs to consider. In particular, suppose the coupling between moves ins and t is simply the
identity, i.e., each chain attempts the same move. The flip of a clusterS¹D does not changeF
sinceS is the same in both chains before and after the move. Our coupling is in fact the id
for moves that flip clusters not inD. Before stating the coupling for all moves, we partition the
D as follows. Notice that the clusters inD are composed of colorss(v) or t(v) and at most one
other colorc. We partitionD into setsDc based on the other colorc as follows. Let

Gc5$wus~w!5c,w is a neighbor ofv%,

Dc5$Ss~v,c!,St~v,c!,$Ss„w,t~v !…,St„w,s~v !…%wPGc
%.

The only setsDc that might have nonempty intersection areDs(v) and Dt(v) which both
consist of clusters composed of colorss(v) andt(v). We ignore this issue for now, and addre
this special case~* ! in the analysis. Note that the setsDs(v) ,Dt(v) are simply a byproduct of
redefining the state space to all~not necessarily proper! colorings.

Before defining the coupling, observe that we can think of it as a functionf from a move ins
to a move int, i.e., we choose a move ins andf defines the coupled move int. From a move in
s that flips a clusterS, the couplingf is as follows.

~i! For S¹D, f (S)5S, i.e., moves that flip clusters not in the setD have the identity coupling.
~ii ! For SPDc , f (S)PDc . Moves in the setDc for s are coupled with moves in the same s

for t.

The specific coupling for flips of clusters in the setDc will be defined later in the analysis
Since flips of clusters inDc are coupled together for the chains, we can denote the effect of t
moves by

E@DDc
#5E@DFus and t flip clusters in Dc#.

Recall that for clustersS¹D, moves that flip these clusters do not changeF. We then have that

nkE@DF#5(
c

E@DDc
F#.

The key component of the analysis is the following lemma. Letdc5uGcu.
Lemma 5: For each color cPC,

~a! If dc50, then E@DDc
F#<21.

~b! If dc.0, then E@DDc
F#< 11

6 dc21.

Based on this lemma, we get our main result.
Proof of Theorem 1:Let d5d(v) denote the degree of vertexv. Observe that the number o

colors c with dc50, i.e., that do not appear in the neighborhood ofv, is exactly k2d
1(c8:dc8.0(dc821). Together with the lemma this implies that

nkE@DF#<2k1 11
6 d.
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Recall from the path coupling theorem that we need to boundb such thatE@F(s t11 ,t t11)#
<bF(s t ,t t) for all s t;t t . Letting s5s t ,t5t t , we have a bound onE@DF(s t ,t t)#. Since
E@F(s t11 ,t t11)#5F(s t ,t t)1E@DF(s t ,t t)# andF(s t ,t t)51, thusb<12(k2 11

6 D)/nk. Ap-
plying the path coupling theorem stated earlier we get the following bound whenk. 11

6 D,

t<
nk

k2 11
6 D

log~2en!.

j

Proof of Lemma 5:~a! Observe thatDc5$Ss(v,c),St(v,c)% and, furthermore,Ss(v,c)
5St(v,c)5$v%. Since each chain has only one cluster inDc , the coupling for the move that flips
the cluster inDc is obviously just the identity. This move might only changev and after the move
we know thats(v)5t(v)5c. Thus,E@DDc

F#521.
~b! Let w1 ,...,wdc

denote the setGc of neighbors ofv with color c. All of the clusters in the
setDc are composed of colorsc ands(v) or c andt(v). In fact, the clusters in the setDc have
the the following relationship:
For cÞs(v),

Ss~v,c!5$ø iSt„wi ,s~v !…%ø$v%.

For cÞt(v),

St~v,c!5$ø jSs„wj ,s~v !…%ø$v%.

Note that in the case whenc5s(v), we haveSs(v,c)5St„wi ,s(v)…50” . Similarly, c
5t(v) implies that St(v,c)5Ss„wj ,t(v)…50” . As mentioned earlier, it may also occur th
Ds(v)ùDt(v)Þ0” . We ignore this special case~* ! until the end of the proof.

Let ai5ai(c)5uSt„wi ,s(v)…u,A5A(c)5uSs(v,c)u<11( iai . In fact, A511( iai for
c¹$s(v),t(v)%. Similarly, let bj5bj (c)5uSs„wj ,t(v)…u, B5B(c)5uSt(v,c)u<11( jbj .

For a color c, all of the clusters in the setDc might not be distinct. It may occur tha
St„wi ,s(v)…5St(wi 8 ,s(v)… or similarly for Ss„wj ,t(v)…. We do the following to insure that we
consider the flip of each cluster exactly once. IfSt„wi 1

,s(v)…5St„wi 2
,s(v)…5¯

5St„wi 1
,s(v)…, redefineai l 8

50, for all 1, l 8< l . Similarly for Ss„wj ,t(v)… with bj .
To define our coupling, we need to distinguish the largest of the clustersSt„wi ,s(v)… and

also of the clustersSs„wj ,t(v)…. Let amax5maxi ai and i max is the corresponding index foramax

~similarly for bmax and j max!. For colorscÞs(v), note thatamax.0, while for cÞt(v), bmax

.0. In the case whenc5s(v) we haveA5amax50, and forc5t(v),B5bmax50.
We can now state the coupling for moves inMc . The idea is to couple the big flips,Ss(v,c)

andSt(v,c), with the largest of the other flips,St„wi max
,s(v)…,Ss„wj max

,t(v)…. Then for eachwi ,
couple together ~as much as possible! the remaining weights of the flips
Ss„wi ,t(v)…,St„wi ,s(v)…. More precisely, the coupling is the following:

~I! With weight pA , flip Ss(v,c) andSt„wi max
,s(v)….

~II ! With weight pB , flip St(v,c) andSs„wj max
,t(v)….

~III ! For eachwl , Let ql(ql8) denote the remaining weight of the flip ofSt„wl ,s(v)…
@Ss„wl ,t(v)… respectively#. Specifically, let

ql5H pal
2pA if l 5 i max,

pal
otherwise,

ql85H pbl
2pB if l 5 j max,

pbl
, otherwise.
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~IIIa! With weight min(ql ,ql8),

flip St„wl ,s~v !…,Ss„wl ,t~v !….

~IIIb ! With weight ql2min(ql ,ql8),

flip St„wl ,s~v !….

~IIIc ! With weight ql82min(ql ,ql8),

flip Ss„wl ,t~v !….

Let us analyze the effect of each of these coupled moves. After coupled move~I!, the color-
ings are still identical on the cluster which before the move wasSt„wi max

,s(v)…. Thus, their
Hamming distance has increased by at mostA2amax21. Similarly, coupled move~II ! increases
the Hamming distance by at mostB2bmax21.

For coupled move~IIIa!, since both flips affectwl this move increases the Hamming distan
by exactlyal1bl21, whereas moves~IIIb ! and~IIIc ! increase the distance byal andbl , respec-
tively. Let us use a functionf (wl) to denote the effect of moves~IIIa!–~IIIc !:

f ~wl !5alql1blql82min~ql ,ql8!.

We now have that

E@DDc
F#<~A2amax21!pA1~B2bmax21!pB1(

l
f ~v l !. ~2!

We divide the remainder of the analysis into three different cases depending on the va
dc .

~i! Suppose thatdc51.
The situation is fairly simple:A<a111,B<b111,q15pa1

2pA ,q185pb1
2pB . Without loss

of generality, assume thatq1>q18 . From ~2!, we get the following bound:

E@DDc
F#<a1~pa1

2pA!1~b121!~pb1
2pB!<a1~pa1

2pa111!1~b121!~pb1
2pb111!.

The second key property of the parameterspa gives us the intended bound

E@DDc
F#< 5

6.

~ii ! Supposedc52.
The following claim dramatically simplifies the situation.
Claim 6: Whendc52,E@DDc

F# is maximized for a15a25a<3 and b15b25b51.
We can now calculatef (w1), f (w2), and E@DDc

F# for the settingsa15a25a<3 andb1

5b25b51:

f ~w1!5~a21!pa1bpb ,

f ~w2!5~a21!~pa2pA!1b~pb2pB!,

E@DDc
F#<~A22a!pA1~B22b21!pB12~a21!pa12bpb

52~a21!pa1p2a1112.

From the first key property of the parameterspl , we have our intended bound onE@DDc
F#,

E@DDc
F#< 2

3125 11
6 dc21.
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~iii ! Suppose thatdc.2.
Consider the following definition,

g~wl !5alpal
1blpal

2min~pal
,pbl

!.

Notice thatg(wl)5 f (wl) for lÞ i max,lÞjmax. Let us look atf (wi max
),f(wimax

). Supposel 5 i max

5jmax:

f ~wl !5amax~pamax
2pA!1bmax~pbmax

2pB!2min~pamax
2pA ,pbmax

2pB!

<amax~pamax
2pA!1bmax~pbmax

2pB!2min~pamax
,pbmax

!1pA1pB

5g~wl !1pA~2amax11!1pB~2bmax11!.

Similarly, wheni maxÞjmax, we get that

f ~wi max
!1 f ~wj max

!<g~wi max
!1g~wj max

!1pA~2amax11!1pB~2bmax11!.

Thus, we can bound the sum off (wl) in terms of the sum ofg(wl),

(
l

f ~wl !<(
l

g~wl !1pA~2amax11!1pB~2bmax11!.

Plugging in this bound on the sum off (wl) into ~2! we get the following bound:

E@DDc
F#<~A22amax!pA1~B22bmax!pB1(

l
g~wl !. ~3!

We observed earlier that for our settings ofpi ,(i 2c)pi,
1
4 for c>2 ~or of course wheni

50!. Thus, (A22amax)pA ,(B22bmax)pB,1
4. We can also easily boundg(wl). Assumeal<bl and

thuspal
>pbl

. We then have

g~wl !5alpal
1~bl21!pbl

<p112p35 4
3.

Combining these bounds with~3! we can complete the casedc.2,

E@DDc
F#< 1

21 4
3dc<

11
6 dc21 for dc.2.

This completes the proof except for the special case~* ! when Ds(v)ùDt(v)Þ0” . Let
x1 ,...,xds(v)

andy1 ,...,ydt(v)
denote the respective setsGs(v) andGt(v) . If Ds(v)ùDt(v)Þ0” , then

there exists an 1< i<ds(v),1< j <dt(v) , such that

Ss„xi ,t~v !…5Ss„v,t~v !…,St„yj ,s~v !…5St~v,s~v !….

In order for this to occur there must exist an alternating path betweenxi andyj using colorss(v)
and t(v). In such a case, instead ofA„t(v)…5uSs„v,t(v)…u and aj„t(v)…5uSt„yj ,s(v)…u, we
redefine them asA„t(v)…5aj„t(v)…50. This insures we consider the flip of each cluster exa
once. Notice that the setDs(v) is still unchanged and, in fact, it is the same as previously analy
@with A„s(v)…5at„s(v)…5amax„s(v)…50] except that we now haveB„s(v)…5( jbj„s(v)…,1
1( jbj„s(v)…. The previous proof still holds in this case. For the setDt(v) , we now have that
A„t(v)…5aj„t(v)…50,B„t(v)…5bmax„t(v)…50; while for lÞ j ,1< l<dt(v) , we haveal(t(v))
>0 @note that as before, ifSt„yl ,s(v)…5St„yl 8 ,s(v)…, then we redefineal 8„t(v)…50#. For al

5al„t(v)…, we can complete the proof as follows:
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E@DDt~v !
F#< (

1< l<dt~v ! ,lÞ j
alpal

<~dc21!p1,
11

6
dc21.

j

Proof of Claim 6: Without loss of generality, assume thatpamax
2pA<pbmax

2pB and a1

5amax. Consideringf (w1),

f ~w1!5H ~a121!~pa1
2pA!1b1~pb1

2pB! if b15bmax,

~a121!~pa1
2pA!1b1pb1

otherwise.

Similarly, the other important quantities are

f ~w2!5H a2pa2
1b2~pb2

2pB!2min~pa2
,pb2

2pB! if b25bmax,

a2pa2
1b2pb2

2min~pa2
,pb2

!, otherwise,

E@DDc
F#<~A2a121!pA1~B2bmax21!pB1 f ~w1!1 f ~w2!.

Suppose thatb15x, b25y and we swap these values, i.e., letb15y and b25x. Then
E@DDc

F# might change only from the min (,) inf (w2). Thus, E@DDc
F# is maximized when

b25max(x,y),b15min(x,y). We assume from now on thatb2>b1 , which implies the following
simplified situation:

f ~w1!5~a121!~pa2
2pA!1b1pb1

,

f ~w2!5a2pa2
1b2~pb2

2pB!2min~pa2
,pb2

2pB!,

E@DDc
F#<~A22a1!pA1~B22b221!pB1~a121!pa1

1a2pa2

1b1pb1
1b2pb2

2min~pa2
,pb2

2pB!.

We can complete the proof by considering the two cases for min(pa2
,pb1

2pB).
~i! pa2

<pb2
2pB : We then have

E@DDc
F#<~a121!pa1

1~a221!pa2
1~A22a1!pA1b1pb1

1b2pb2
1~B22b221!pB .

Observe that (a121)pa1
is maximized fora153, while (A22a1)pA.0↔a15a2,3. Thus, the

terms involvinga1 and a2 are maximized fora15a2<3. Similarly, the termsb1pb1
,b2pb2

are
maximized forb15b251, while (B22b221),0 if b1Þb2 and (B22b221)50 if b15b2 .
Thus, the maximum ofE@DDc

# is whenb15b251 anda15a2<3 which completes the proof o
the claim in this case.

Before considering the next case, note that whena15a253,b15b251,

E@DDc
F~3,1,3,1!#<2p114p3 .

~ii ! pa2
.pb2

2pB : In this case,

E@DDc
F#<~a121!pa1

1a2pa2
1~A22a1!pA1b1pb1

1~b221!pb2
1~B22b2!pB .

The equation is symmetric in the pair (a1 ,a2) and (b2 ,b1). Considering the terms involving
a1 ,a2 we complete the proof as follows:
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~a121!paa1
1a2pa2

1~A22a1!pA<H 2p31p1 if a1Þa2 ,

0p11p11p3 if a15a2 ,

< 1
2E@DDc

F~3,1,3,1!#.

j

Remark:The proof showed thatE@DF#<0 whenk5 11
6 D. To show rapid mixing in this case

we need to bounda5Pr@DFÞ0#. The difficulty arises when a pair of statess, h are far apart in
terms ofF, sayF(s,h)5n. Each vertexv may have 2d(v) colors in its neighborhood and thu
no moves that decreaseF. By some recoloring of at most16d(v) neighbors of vertexv, we can
guaranteev has some color available. Thus,a>(1/nk)d(v)/611, which implies the chain is rapidly
mixing when the maximum degreeD is a constant andk5 11

6 D.

V. CONNECTIONS TO PHASE TRANSITIONS

The author’s thesis8 gives a more comprehensive introduction to phase transitions along
pointers to appropriate references. For completeness, we prove the following lemma which i
Theorem 3. A sketch of this argument was explained to us by J. van den Berg. Much st
results are contained in the work of Frigessi, Martinelli, and Stander9 and Stroock and
Zegarlinski.10 The following lemma refers to the flip dynamics defined on the set of pro
colorings.

Lemma 7: For k>2d11, a mixing time of O(n logn), where n5(2L)d, of the flip dynamics
on QL for all fixed boundary configurations implies that the k-state zero temperature
ferromagnetic Potts model onZd lies in the disordered phase.

This lemma implies Theorem 3 from the following observation.
Proof of Theorem 3:Our proof of Theorem 1 holds for a graph with a fixed configuration

a subset of vertices. Thus the conditions of Lemma 7 hold whenk. 11
3 d. j

Proof of Lemma 7:For QL5(V,E), fix a pair of coloringst,t8 of the boundary]QL . The
idea is to comparemt and mt8 by considering a pair of Markov chains (s t),(h t) with the flip
dynamics having the respective fixed boundary coloringst,t8 and thus stationary distributionsmt

andmt8 . We run these chains until they are close to their stationary distributions; meanwhil
chains are coupled to maintain~if possible! the same color at the origin. Observe that under
stated conditionk>2d11 there exists a pair of coloringss0 ,h0 , with respective boundary
coloringst,t8, such thats0(x)5h0(x) for all x¹]QL ; these are the initial states of the chain

Let mt(O),mt8(O) denote the marginal distribution of the color at the originO in stationarity,
and let

pt5Pr@s t~O!Þh t~O!#.

We run the chains forT steps, a time sufficient for both to get within variation distance 1/L of the
stationary distribution. We can then bound the variation distance betweenmt(O) andmt8(O) as
follows:

dTV$mt~O!,mt8~O!%<dTV$m r~O!,sT~O!%1pT1dTV$hT~O!,mt8~O!%<1/L1pT11/L,

where the second line follows from the triangle inequality. Therefore, in order to show tha
system is in the disordered phase, it is sufficient to show thatpT↓0 asL→`.

From a pair of coloringss, h, the coupled transitions for the two chains are as follows.
@F1# Choose a vertexv and colorc uniformly at random.
@F2# If the clustersSs(v,c)5Sh(v,c), then flip both~or neither! with the appropriate prob-

ability; otherwise the clusters flip independently.
Let v;w denote a pair of vertices within a distance at most 12 of each other inQL , where

distance refers to the number of edges in the shortest path. Consider the vertexv chosen in step
@F1# and suppose thats t21(v)5h t21(v) but s t(v)Þh t(v). In order for this to occur, there mus
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exist a vertexw;v such thats t21(w)Þh t21(w). Since initially the only vertices that differ ar
on the boundary, there must exist a ‘‘path of disagreement’’ from the boundary tov. More
formally, let P denote a path (w0;w1;¯;wi5O) such thatw0P]QL and, similarly, letA
denote a set of times (t1,¯,t i). We say the eventE(P,A) occurs if, for all 0, j < i ,

~i! s t j 21
(wj )5h t j 21

(wj ), ands t j
(wj )Þh t j

(wj );
~ii ! the vertexwj is chosen in step@F1# at time t j .

In order for a specific eventE(P,A) to occur, at each timet j , the vertexwj must be chosen
by the flip dynamics in step@F1#. The probability of this occurring is at most (1/2L)d, and thus
Pr@E(P,A)#<(1/2L) id. Let E(P) denote the event thatE(P,A) occurs for some set of timesA.
Since the number of such setsA is at most (i

T), we get the following bound:

Pr„E~P!…<S T
i D S 1

2L D id

<S Te

i ~2L !dD i

.

Finally, letE denote the event thatE(P) occurs for some pathP. The number of such paths o
length i is bounded by the number of walks~with neighbors defined by;! of lengthi that start at
the origin, which is exactly (2d21)12i . The minimum length of a path from the origin to th
boundary isL/12, and thus

Pr~«!< (
i>L/12

S Te~2d21!12

i ~2L !d D i

.

From our assumption about the mixing time of the flip dynamics we haveT
5O„d(2L)d log2 l…, which implies the following bound:

Pr~«!< (
i>L/12

S e~2d21!12 log2 L

i D i

.

Since this sum tends to 0 asL→`, the proof is complete. j

VI. COMPARISON WITH GLAUBER DYNAMICS

In this section, we prove Theorem 2 by bounding the mixing timetGD of the Glauber dynam-
ics in terms of the mixing timetflip of the flip dynamics. The proof relies on the comparis
theorem of Diaconis and Saloff-Coste11 ~see Ref. 12 for other examples that use this theorem!.

We present the comparison theorem in our specific setting where both chains have th
state spaceV, the set of proper colorings, and uniform stationary distribution. The theorem re
the underlying graphs associated with the transition matricesPflip andPGD of the flip and Glauber
dynamics, respectively. For a reversible Markov chain with transition matrixP, the underlying
graph isG5„V,E(P)…, where

E~P!5$~s,t!:P~s,t!.0%.

Note that reversibility implies thatG is undirected. For each move (s,t)PE(Pflip), we define
an associated path of moves inE(PGD). Instead of defining a canonical pathgst , we define a set
of fractional paths, called aflow ~see Ref. 13 for an analogous use of flows!. Let g denote a path
(h0 ,h1 ,...,hk), where each (h i ,h i 11)PE(PGD), with length ugu5k. For (s,t)PE(Pflip), let
Gst denote the set of paths froms to t,

Gst5$g:h05s,hk5t%.

A flow is a set of functionsf 5 f st :Gst→R1 where
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(
gPGst

f ~g!51.

The idea is to define flows to minimize the~fractional! number of paths that traverse an
particular edge. In particular, for (h,j)PE(PGD), we aim to minimize

Ahj5
1

PGD~h,j!
(

gPGst :
~h,j!Pg

ugu f ~g!Pflip~s,t!.

In our setting, observe thatPGD(h,j)>1/nk, while Pflip(s,t)<1/nk. In addition, we will
define flows such that iff (g).0, thenugu,K1 for a positive constantK1 . This will follow from
the fact that the flip dynamics only flips clusters of size at most 6. We can simplify the qua
Ahj as

Ahj<K1 (
gPGst:
~h,j!Pg

f ~g!. ~4!

We are interested in the maximum over all edges,

A5 max
~h,j!PE~PGD!

Ahj .

We use the following theorem of Diaconis and Saloff-Coste11 ~see Ref. 12 for the details o
adapting the original theorem into the form we present below!.

Theorem 8: (Diaconis and Saloff-Coste11)

tGD<O~Atflip log uVu!.

Proof of Theorem 2:SinceuVu<kn, in order to prove Theorem 2 it is sufficient to define a s
of flows such thatA5O(1).

Recall that a moves°t of the flip dynamics interchanges colorsc5cst andc85cst8 on a
maximal two-colored clusterS5TøT85TstøTst8 , wheres(v)5c for all vPT ands(v)5c8
for all v8PT8. A natural idea for a pathgst consisting of moves in the Glauber dynamics is
follows: recolor eachvPT to an arbitrary color, then recolor eachvPT8 to color c, and finally
recolor eachvPT to colorc8. The problem with such paths is that by choosing an arbitrary c
in the first stage, we have unnecessarily increased the ‘‘load’’ through particular edges
instance, suppose that we always try to choose color ‘‘yellow’’ as the arbitrary color; mean
we never choose ‘‘red,’’ if possible. An edgee of the Glauber dynamics that recolors a vertex
color yellow will have a large ‘‘load’’~i.e., largeAe!, while an edgee8 that recolors a vertex to
color red might have no paths that traverse it~i.e., Ae850!.

We instead divide the flow evenly among all such paths. In particular, denote the s
available colors for vertexv as

Fs~v !5C\ Hs~v !ø ø
wPG~v !

s~w!J .

Let c denote a set of colors for the setT wherec(v i)PFs(v i) for eachv iPT; the set of all such
setsc is denoted byCst . EachcPC defines a canonical pathgc as follows.~Fix an arbitrary
ordering on the verticesV.!

Stage i: Consider eachv iPT ~in order!, recolorv i to color c(v i).
Stage ii: For each vertexv8PT8 ~in order!, recolorv8 to color c.
Stage iii: Finally, for each vertexv iPT ~in order!, recolorv i to color c8.
For eachcPCst , we define the flow along the pathgc as
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f ~gc!51/uCstu.

Notice that the paths are of lengthuTu1uT8u1uTu. By the setting of the parameters for the fl
dynamics, we know thatuTu1uT8u<6 and thus all paths with positive flow are of constant leng

In order to bound the flowsf (), observe thatuFs(v)u>k2D, where D is the maximum
degree of the graph. Sincek> 11

6 D, we haveuCstu5V(kuTu) and hence

f ~gc!5O~k2uTu!. ~5!

For an edge (h,j)PE(PGD), we can simplify the quantityAhj by using the upper bound onf (g).
We partition the paths that traverse the edge based on the size of the associated setT. Let

Ri~h,j!5$gc :~h,j!Pgc ,cPC̄st ,uTstu5 i %.

Combining~4! and~5! we get the following bound. There exists a positive constantK2 such that

Ahj<K2(
i

uRi~h,j!u/ki . ~6!

It remains to bound the number of paths that traverse an edge (h,j)PE(PGD) @i.e.,
uRi(h,j)u#. Notice that a specific pathg is defined by the sets of verticesT, T8, colorsc, c8, set
of colorsc, as well as the colorss(x) for all x¹S ~whereS5TøT8!. From the coloringh, we
know s(x)5h(x) for all x¹S. We need to bound the number of setsT, T8, c and colorsc, c8
whose corresponding path traverses the edge~h, j!. It turns out that many of these sets or colo
are fixed. In particular, suppose the moveh°j recolors vertexvPV. For a pathg, consider the
stage during which we traverse this edge~h, j!:

Stage ii: In this case, notice thatc5j(v), c85h(v). In addition, we know thatvPT8. Recall
that the clusterS5TøT8 is a maximal two-colored connected component withuSu<6. The num-
ber of such clusters which containsv is at mostD5. Since all the vertices ofT8 have colorc or c8
in h, given a candidate setT the corresponding setT8 is fixed. There are at mostO(DTi) candidate
setsT whereuTu5 i . For a specific such setT, the associated colorsc are fixed~as well asT8!. In
particular, for eachwiPT, c(wi)5h(wi). Therefore, assuming that the edge~h, j! is traversed
during stage~ii ! of the path, thenuRi(s,h)u5O(D i).

Stage i: Observe thatc5h(v), vPT, andc(v)5j(v). There are at mostk possible choices
for the colorc8. Let T\$v%5T1øT2 where the vertices inT1 have already been recolored accor
ing to c, while the vertices inT2 have not yet been recolored. There are at mostO(D uT1u) choices
for the vertices inT1 . For eachwiPT1 , we knowc(wi)5h(wi). Each of the vertices in the se
T2 ~and T8! still have colorc ~and c8, respectively! in h. Thus, for a specific setT1 , we can
determine the setsT2 andT8. For the setT2 , there areO(kuT2u) choices for the associated colo
c. Combining the number of choices for the colorc8 and setsT1 , c, we have uRi(s,h)u
5O(k11uT1uD uT2u)5O(ki).

Stage iii: The situation is symmetrical with stage~i!.
In general, we haveuRi u5O(ki). Combining this with~6! impliesA5O(1), which completes

the proof of Theorem 2. j

VII. CONCLUSIONS

Consider the example of the flip dynamics in which the parameterspa are set topa5a, for
all a.0, i.e., the cluster selected in the transition is always flipped. This Markov chain is kn
as the Wang–Swendsen–Kotecky´ ~WSK! algorithm.14 The WSK algorithm is particularly appea
ing since it is ergodic on any bipartite graph with any number of colors. We can then stud
critical valuekc5kc(D) which we define as the minimum overk8, such that, for every bipartite
graphG and everyk.k8, the WSK algorithm onG is rapidly mixing withk colors. Our results
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imply that kc<
11
6 D ~this is straightforward using the approach in Sec. VI!, while, in joint work

with Thomas Łuczak, we prove thatkc.(logD/20D).15 It is interesting to determine whether, i
fact, kc,D.
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Self-testing algorithms for self-avoiding walks *
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We present a Markov chain Monte Carlo algorithm for almost uniformly generating
and approximately counting self-avoiding walks in rectangular latticesZd. These
are classical problems that arise, for example, in the study of long polymer chains.
While there are a number of Monte Carlo algorithms used to solve these problems
in practice, these are heuristic and their correctness relies on unproven conjectures.
In contrast, our algorithm is shown rigorously to produce answers with specified
accuracy and confidence. Only the efficiency of the algorithm relies on a widely
believed conjecture, and a novel feature is that this conjecture can betestedas the
algorithm proceeds. With this self-testing feature incorporated, the algorithm has
polynomially bounded running time and is completely reliable, in the sense that it
either outputs answers that are guaranteed to be within the specified accuracy and
confidence bounds, or finds a counter-example to the conjecture. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!02103-4#

I. INTRODUCTION

A. Background

A self-avoiding walkin a graph is a walk which starts at a fixed origin and passes thro
each vertex at most once. This paper is concerned with self-avoiding walks in lattices, in par
the d-dimensional rectangular latticeZd with origin 0.

Self-avoiding walks inZd have been studied by mathematicians and natural scientist
many years and are the subject of an extensive literature; for a comprehensive survey, see t
of Madras and Slade.1 ~See also the book by Lawler2 for related topics.! One of the most importan
applications is as a model for the spatial arrangement of linear polymer molecules in che
physics. Here the walk represents a molecule composed of many~perhaps 105 or more! monomers
linked in a chain, and the self-avoidance constraint reflects the fact that no two monomer
occupy the same position in space.

The lengthuwu of a self-avoiding walkw is the number of edges inw. For any fixed dimension
d, let Sn denote the set of self-avoiding walks of lengthn in Zd, and letcn5uSnu be the number of
walks of lengthn. The two most fundamental computational problems concerning self-avo
walks are:

~i! Count the number of walks of lengthn; i.e., computecn for any givenn.
~ii ! Determine the characteristics of a ‘‘typical’’ walk of lengthn; for example, compute the

mean-square displacement, which is the expected squared distance of the free end of
walk from the origin under the uniform probability distribution over walks of lengthn.

*A preliminary version of this paper appeared under the title ‘‘Testable Algorithms for Self-Avoiding Walks’’ in Proc
ings of the Fifth SIAM/ACM Symposium on Discrete Algorithms, 1994, pp. 593–602.

a!Electronic mail: randall@math.gatech.edu
b!Electronic mail: sinclair@cs.berkeley.edu
15700022-2488/2000/41(3)/1570/15/$17.00 © 2000 American Institute of Physics
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Despite much research in this area, and many heuristic arguments and empirical s
almost nothing is known in rigorous terms about the above problems for the most interesting
of low-dimensional lattices with 2<d<4. In higher dimensions rather more is known, essentia
because the self-avoidance constraint becomes less significant and the behavior resemble
simple ~non-self-avoiding! walks, which are well understood. Thus although the algorithmic
sults we present in this paper will be stated for arbitrary dimensionsd, they are of greatest interes
in the case of low-dimensional lattices with 2<d<4.

One key fact that holds in all dimensions was discovered in 1954 by Hammersley
Morton;3 they observed that limn→` cn

1/n5m exists, and that mn<cn5mnf (n), where
limn→` f (n)1/n51. This is a straightforward consequence of the obvious fact that the sequ
l n5 logcn is subadditive, i.e., l n1m<l n1l m for all n, m. Hammersley and Welsh4 later showed
that f (n)5O(an1/2

) for some constanta. It is a celebrated and long-standing conjecture thatf (n)
is in fact polynomially bounded, and more precisely that

cn5mnf̃ ~n!~11o~1!!

where

f̃ ~n!5H Ang21, d52,3

A~ logn!1/4, d54

A, d>5.

~C1!

Herem, A, andg are all dimension-dependent constants. The conjecture has in fact been p
for dimensionsd>5 by Hara and Slade.5,6 Note that the dominant behavior ofcn is the exponen-
tial functionmn; comparing this with the case of simple walks, whose number is precisely (2d)n,
we see that the effect of the self-avoidance constraint is to reduce the effective number of c
the walk has at each step from 2d to m. The dimension-dependent numberm is known as the
connective constant. This crude behavior is modified by the correction termf (n) of the form
conjectured in C1. Hereg is a so-calledcritical exponent. ~Note, however, thatg, unlike m, is not
even known to exist.!

Although unproven ford<4, conjecture C1 is supported by extensive~though nonrigorous!
empirical studies and ingenious heuristic arguments, which have also been employed to
numerical estimates for the constantsm and g. Elementary considerations showmP(d,2d21).
For d52, it has actually been proven thatmP(2.62,2.70).7,8 ~See also Ref. 9 for similar bound
in higher dimensions.! However, these rigorous bounds are much weaker than the nonrigo
estimates obtained by empirical methods, which are typically quoted to many decimal place
the most recent estimate form in two dimensions ism52.638 158 529 2760.000 000 000 01.10

There are even precise conjectured values for the critical exponentg in two and three dimension
~despite the fact thatg is not known to exist!: for d52, g is believed to be43

32, and ford53 it is
believed to be approximately 1.16.~See Ref. 1 for a detailed summary of numerical estimate!

Much effort has been invested in obtaining statistical estimates of the above-mentioned
tities using Monte Carlo simulations. However, the error bars on these estimates are only ju
heuristically. In this paper, we attempt to put such experiments on a firmer footing. We pr
Monte Carlo algorithms for approximating the number of self-avoiding walks of a given lengt
a given dimensiond and for generating self-avoiding walks of a given length almost uniforml
random. The running time of our algorithms is polynomial in the walk lengthn and grows only
slowly with parameters controlling the accuracy and confidence levels of the estimates. The
the first polynomial time algorithms where the statistical errors are rigorously controlled.
algorithms are based on modifications and extensions of a Monte Carlo approach studied
nally by Berretti and Sokal.11 In Sec. I B we sketch this approach and point out its limitatio
Then, in Sec. I C we summarize our algorithms and explain how they overcome these pro
                                                                                                                



tion

tputs
ion

f

ution
the

etes

ce
walks
ted

one
he
ved;

ty
ion

istri-

only
d

ck

ecture
re

poly-
timate

rlo

their

1572 J. Math. Phys., Vol. 41, No. 3, March 2000 D. Randall and A. Sinclair

                    
B. Monte Carlo methods

Monte Carlo simulations have proved to be a powerful tool for developing approxima
algorithms for a range of combinatorial problems. Briefly, the idea is as follows. LetS be a large
but finite set of combinatorial structures. It is well known that much information aboutS can be
gained by sampling elements ofS from an appropriate probability distributionp. This sampling
can be performed by simulating aMarkov chainwhose state space includesS and whose condi-
tional stationary distribution overS is p: To get a sample from a distribution very close top, one
simply simulates the chain for sufficiently many steps that it is close to stationarity, and ou
the final state if it belongs toS. In order for this method to be effective, the stationary distribut
must be reasonably well concentrated onS ~so that one gets a valid sample reasonably often!, and
the Markov chain must converge rapidly to its stationary distribution~so that the number o
simulation steps required is not too large!.

In the case of self-avoiding walks, we are interested in sampling from the uniform distrib
over the setSn of walks of lengthn. A natural Markov chain to use here has as its state space
set of all self-avoiding walks~of all lengths!: if the chain is currently at a walkw, it extends the
walk in an allowable direction with some probability, while with some other probability it del
the last edge and ‘‘backtracks’’ to a shorter walk. Note that the naı¨ve approach of simply growing
the walk one edge at a time~with no backtracking! breaks down because of the self-avoidan
constraint: the number of possible extensions of a given length can vary hugely for different
due to the possibility of walks ‘‘getting stuck.’’ This is why we require the more sophistica
dynamic scheme provided by the Markov chain.

The above type of Markov chain was considered by Berretti and Sokal,11 who used a single
parameterb<1 to control the relative probabilities of extending or contracting the walk by
edge. Given a walk of lengthi, one of the 2d lattice edges incident to the free end point of t
walk is chosen with equal probability. If this edge is the last edge of the walk, then it is remo
if the edge extends the walk so as to be self-avoiding, then it is added with probabilib;
otherwise, nothing is done.~Actually, these transition probabilities are a slightly simplified vers
of those used in Ref. 11, but this difference is inessential to the behavior of the chain.! Assuming
conjecture C1, Berretti and Sokal argue that, for any given value ofn, takingb sufficiently close
to ~but smaller than! m21, wherem is the connective constant, ensures that the stationary d
bution assigns reasonably high weight@i.e., 1/q(n) for some polynomialq# to Sn . Furthermore,
again assuming conjecture C1, Sokal and Thomas12 prove that with such values ofb the Markov
chain israpidly mixing, i.e., it gets very close to stationarity after a number of steps that is
polynomial inn ~see also Ref. 13!. In order to appreciate the role ofb here, consider a truncate
version of this Markov chain in which the length of a walk is never allowed to exceedn, so that
the stationary distribution is always well defined; ifb is too much smaller thanm21 then we will
only generate short walks, while ifb is too much larger then the Markov chain will not backtra
often enough and consequently will take a long time to reach stationarity. Thusb must be very
carefully chosen. Berretti and Sokal perform their experiments by ‘‘fine-tuning’’b and observing
the Markov chain until the observations suggest thatb is sufficiently close tom21.

Berretti and Sokal’s algorithm suffers from two drawbacks. First, one must assume conj
C1 ~for appropriate values of the constantsm, g, andA! in order to bound the time required befo
the Markov chain reaches stationarity. As long as conjecture C1 remains open~for any choices of
the above constants! there is no guarantee that the algorithm produces reliable answers in
nomial time. Second, in order to implement the algorithm it is necessary to have a good es
of m a priori, sinceb needs to be taken a little smaller thanm21. This leads to circularity, since
determiningm is one of the principal goals of the algorithm. While many similar Monte Ca
algorithms have been used to study self-avoiding walks~see Chap. 9 of Ref. 1 for a summary!, all
of these suffer from a similar lack of rigorous justification, and thus offer no guarantee that
results are reliable.
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C. Synopsis of results

In this paper we develop a Monte Carlo algorithm for self-avoiding walks by modifying
Markov chain used by Berretti and Sokal so as to overcome the difficulties discussed in Se
Our algorithm will have rigorously controlled statistical errors and a running time that grows
slowly ~i.e., as a low-degree polynomial! with the walk length and with the accuracy and con
dence parameters. The following definitions make these notions precise; they are standar
literature on efficient approximation algorithms for counting and uniform generation of com
torial structures~see, e.g., Refs. 14–16!.

Definition: ~i! A (randomized) approximation schemefor the number of self-avoiding walks in
some fixed dimensiond is a probabilistic algorithm which, on inputsn and e, dP(0,1) ~the
accuracyand confidenceparameters!, outputs a numberc̃ such that Pr$cn(11e)21< c̃<cn(1
1e)%>12d. The approximation scheme isfully polynomial if it is guaranteed to run in time
polynomial inn, e21, and logd21.

~ii ! An almost uniform generatorfor self-avoiding walks is a probabilistic algorithm which
on inputsn and eP(0,1) ~the bias parameter!, outputs a self-avoiding walk of lengthn with
probability at least 1/q(n) for a fixed polynomialq, such that the conditional probability distr
bution over walks of lengthn has variation distance at moste from the uniform distribution. The
generator isfully polynomialif it runs in time polynomial inn and loge21. h

Our algorithm will work with an increasing sequenceM1 ,M2 ,M3 ,... of Markov chains of the
Berretti–Sokal type, where the state space ofMn consists of all self-avoiding walks of length a
mostn. We make three elementary but important innovations. First, we introduce a bootstra
procedure whereby the number of steps required to simulate thenth Markov chainMn is deter-
mined by an experiment performed using the previous Markov chainMn21 . Second, we allow the
parameterb in the Berretti–Sokal algorithm to vary at each level of the Markov chain~i.e., the
transition probabilitybn between walks of lengthsn21 and n now depends onn!, and we
calculatean appropriate value forbn ~which is first used in the chainMn) from observations of
the previous chainMn21 . Thus we require no prior knowledge ofb. These two innovations
ensure the correctness of the algorithm without any assumptions; moreover, its running tim
be polynomially bounded inn under a widely believed conjecture~C2 below! about self-avoiding
walks. Our third innovation is a self-testing procedure whichguaranteesthat the algorithm runs in
polynomial time. The self-tester detects the validity of the conjecture in the region in which
being assumed: as long as the test passes, the outputs are guaranteed to be reliable, while
fails we gain strong evidence that the widely believed conjecture is incorrect. Either outco
useful.

Ignoring the self-testing component for a moment, the behavior of our algorithm ma
stated more precisely as follows. Fix a dimensiond. Then, on inputse, dP(0,1), the algorithm
outputs a sequence of numbersc̃1 ,c̃2 ,c̃3 ,..., such that, for eachn, c̃n approximatescn within ratio
(11e) with probability at least (12d). In other words, the algorithm is a randomized appro
mation scheme as defined previously. Moreover, oncec̃n has been computed, we will have co
structed a Markov chainMn which can be used as an almost uniform generator for self-avoi
walks of lengthn.

The algorithm operates in stages, so that the estimatec̃n is computed using Markov chain
Mn21 . The simulation length for the chainMn ~and hence the running time of the algorithm f
walks of lengthn! depends polynomially onn, e21, logd21 and a natural quantityan associated
with self-avoiding walks~see below for a definition!. Actually the quantityan is not known
analytically, but can be estimated using observations of the previous chainMn21 . Thus the values
of both an andbn are bootstrapped in successive stages. A particularly attractive feature o
algorithm is that it isinterruptible, in the sense that the valuesa i ,b i determined during early
stages of the algorithm can be reused at a future time without having to restart the program
scratch, should it be prematurely halted.

We now specify the quantityan , which plays a key role in our algorithm. For a fixe
dimensiond, define
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an5 min
j ,k

j 1k<n

cj 1k

cjck
. ~1!

This quantity has the following natural interpretation. For fixedj andk, cj 1k /cjck represents the
probability that a random self-avoiding walk of lengthj and a random self-avoiding walk of lengt
k can be ‘‘glued together’’ to form a self-avoiding walk of lengthj 1k. To be more precise, fo
self-avoiding walksw1 and w2 , define theconcatenation w1+w2 to be the walk formed by
translatingw2 so that its origin coincides with the free end point ofw1 and appending the
translated copy ofw2 to w1 . Note thatw1+w2 need not be self-avoiding. Ifw1 andw2 are selected
independently and uniformly at random fromSj and Sk respectively, then the quotient in~1!
represents the probability thatw1+w2 is self-avoiding.

With this definition in place, we may now state the properties of the basic version o
algorithm.

Theorem 1: For any fixed dimension d, there exists a randomized approximation schem
self-avoiding walks that runs in time polynomial in n, e21, logd21 and an

21, and an almost
uniform generator that runs in time polynomial in n, loge21, and an

21.
It is interesting to observe that this result, combined with the asymptotic bound oncn of

Hammersley and Welsh4 quoted in Sec. I A, immediately gives us approximation algorithms
self-avoiding walks whose running time is subexponential. Specifically, the bound of R
implies thatan

215O(an1/2
) for some constanta, so the linear dependence onan

21 in Theorem 1
~see Sec. II B! yields a randomized approximation scheme and an almost uniform generator w
running times grow withn only as exp(O(n1/2)).

If we assume a widely believed conjecture about self-avoiding walks, however, we may
a much stronger bound on the running time. The conjecture in question is as follows: For a
dimensiond, there exists a fixed polynomialg such that

cjck<g~ j 1k!cj 1k , ; j ,k. ~C2!

Thus in particular we havean
21<g(n), i.e., if we choose random self-avoiding walks of lengt

j and k5n2 j then the probability that their concatenation is self-avoiding is non-neglig
~inverse polynomial inn!. Conjecture C2 is no more restrictive than conjecture C1 of Sec. I A
which previous Monte Carlo methods, including that of Berretti and Sokal, rely. To see this
that cn;Amnng21 implies

cjck

cj 1k
;AS jk

j 1kD g21

<AS j 1k

4 D g21

.

Thus conjecture C2 is also widely believed to hold, and is known to hold in dimensionsd>5 by
the results of Hara and Slade mentioned earlier. Notice that conjecture C2 is in fact weake
conjecture C1 since it makes no claims about the precise rate of growth of the functionf̃ (n). @As
a simple example, supposef̃ (n)5n whenn is odd andf̃ (n)5n2 whenn is even; then conjecture
C2 would hold withg(n)5n2/2 but conjecture C1 would fail.# Moreover, for any given dimension
there is a precise conjectured value for the polynomialg: as the above calculation shows, it
essentially just the functionf̃ from conjecture C1, with appropriate values for the constantsm, g,
andA.

Corollary 2: Assuming conjecture C2, there exists a fully polynomial randomized app
mation scheme and a fully polynomial almost uniform generator for self-avoiding walks in
fixed dimension d. For dimensions d>5, the same holds without any assumptions.

In the self-testing version of our algorithm, we incorporate a procedure that increme
verifies conjecture C2 for successive values ofn ~for a specified polynomialg!. Meanwhile, it
assumes the correctness of the conjecture, but only for values ofn for which it has already been
tested. This allows us to give ana priori polynomial bound on the running time of the algorith
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so thateitherwe will gather strong evidence~in the form of a counter-example! that the conjecture
is false with the given polynomialg, or we will know that we can trust our simulations.

To make this more precise, fix a dimensiond and a polynomialg, and suppose first tha
conjecture C2 holds for thisg. Then, on inputse,dP(0,1), the algorithm outputs a sequence
numbersc̃1 ,c̃2 ,c̃3 ,... and is afully polynomial randomized approximation scheme, i.e., for ea
n, the time to outputc̃n is a polynomial function ofn, e21 and logd21 and, with probability at
least (12d), c̃n approximatescn within ratio (11e). If, on the other hand, the conjectur
happens to fail for some valuen5n0 , then with high probability an error will be reported and w
will know that the algorithm has the above-mentioned properties in the region previously exp
~i.e., for n,n0), but may be unreliable for larger values ofn. However, in this case the algorithm
will ~with high probability! have discovered a counter-example to the conjecture for the pol
mial g under consideration; since precise conjectured values forg exist, this in itself would be of
substantial interest in the theory of self-avoiding walks. The properties of the self-tester are s
out in more detail in Theorem 7 of Sec. III C. Note that, in the presence of the self-teste
answers output by our algorithm are always correct~with high probability!, and the algorithm is
guaranteed always to run in polynomial time. This notion ofself-testing, which either gives us
confidence in our results or warns us that they may be erroneous, has been previously stu
the context of program checking~see, e.g., Ref. 17!.

The remainder of the paper is structured as follows. In Sec. II we focus on the Markov
Mn for a particular value ofn, which lies at the heart of our algorithm. Our main task here will
to bound the rate of convergence ofMn to its stationary distribution. In Sec. III we assemble t
chainsMn for n51,2,3,... into our overall algorithm, whose running time depends on the qua
an ; this will verify Theorem 1 and Corollary 2 above. Finally, in Sec. III C we show how to m
the algorithm robust by adding a self-tester to verify conjecture C2, thus ensuring that the
rithm runs in time polynomial inn, e21, and logd21 independently of any assumptions. W
conclude by mentioning some open questions in Sec. IV.

II. THE MARKOV CHAIN Mn

As indicated in Sec. I, we consider a Markov chain that explores the space of self-avo
walks by letting a walk expand and contract randomly over time, under the influence of a w
ing parameterb. Rather than working with a single Markov chain and a global value of
parameterb, we incrementally construct Markov chainsM1 ,M2 ,..., thenth of which,Mn , has as
its state space the setxn5ø i 50

n Si of all self-avoiding walks of length at mostn. The transition
probabilities inMn depend on parametersb1 ,...,bnP(0,1), discussed below. In Sec. II A w
define the chainMn and deduce its basic properties, including its stationary distribution. We
go on to analyze its rate of convergence in Sec. II B.

A. Definition and basic properties

Transitions in the Markov chainMn are defined as follows. In statewPxn , a self-avoiding
walk of lengthi<n, choose one of the 2d edges incident to the free end point ofw uniformly at
random. If the chosen edge coincides with the last step ofw, remove this last edge fromw. If the
chosen edge extendsw to a walk which is self-avoiding and has length at mostn, add the edge to
w with probability b i 11 . Otherwise, leavew unchanged.

More precisely, define the partial ordera on the set of all self-avoiding walks bywaw8 if
and only if uwu,uw8u and the firstuwu steps ofw8 coincide withw. Also, definewa1w8 if w
aw8 anduw8u5uwu11 ~i.e., if w8 extendsw by one step!. Then the transition probabilitiesPn of
the Markov chainMn are defined by

Pn~w,w8!55
b uw8u/2d if wa1w8

1/2d if w8a1w

r ~w! if w5w8

0 otherwise,

~2!
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wherer (w) is chosen so as to make the probabilities sum to 1, andw,w8 are in the state spacexn

~i.e., uwu,uw8u<n).
Note that we may viewMn as a weighted random walk on the tree defined by the partial o

a. This tree has the trivial walk of length 0 at the root, and the children of walkw are walksw8
with wa1w8. Thus the tree hasn11 levels 0,1,...,n, with level i containing all walks of lengthi.
The transition probability from any state to its parent is 1/2d, and from a state at leveli to each of
its children isb i /2d. In the case thatb15¯5bn , this is a minor variant of the Markov chai
used by Berretti and Sokal,11 but truncated at leveln.

For technical convenience, we in fact modify the Markov chainMn by introducing a self-loop
probability of 1

2 at every state; i.e., at each step,Mn either~with probability 1
2! makes a transition

according to~2!, or does nothing. Note that this modification merely injects a delay into the c
and does not affect its essential structure. We do this in order to make use of a convenient
result about mixing times~Theorem 4 below!. In practice, one would not need to introduce su
a delay into the simulation.

It is evident that the Markov chainMn is irreducible~all states communicate! and aperiodic.
This implies that it isergodic, i.e., it converges asymptotically to a well-defined equilibrium
stationary distributionpn over xn . Thus, if Pt(x,w) denotes the probability that the chain is
statew after t steps starting in any specified initial statex, then Pt(x,w)→pn(w) as t→`, for
everywPxn . It is straightforward to show the following:

Proposition 3: The stationary distributionpn of the Markov chain Mn is given by

pn~w!5
1

Zn
)
i 51

uwu

b i for wPxn ,

where Zn is a normalizing factor.
Proof: It suffices to show that the chain isreversiblewith respect to the distributionpn , i.e.,

that it satisfies thedetailed balancecondition

pn~w!Pn~w,w8!5pn~w8!Pn~w8,w! ;w,w8Pxn .

This is readily verified from the definition ofPn given in ~2!. h

Note that the stationary distribution is always uniform over all walks of a given length, for
choice of values of the parametersb i . However, by choosing theb i carefully we can achieve a
distribution overlengthswhich assigns sufficiently high weight toSn . Ideally, the value we wan
for b i is the ratioci 21 /ci . ~The fact that this ratio is never greater than 1 was proven surprisi
recently by O’Brien.18! Of course, this is unrealistic since we do not know the quantitiesci 21 and
ci —indeed, these are precisely what we are trying to compute—but we will see in Sec. III
to determine good approximations to the ideal values ofb i before they are needed. For th
moment, we consider the behavior of the Markov chain assuming that eachb i is equal toci 21 /ci .

Under this assumption, Proposition 3 says that the stationary probability of any walkwPxn is

pn~w!5
1

Zn
)
i 51

uwu
ci 21

ci
5

1

Zncuwu
. ~3!

Thus the stationary distribution is uniform over lengths, and the probability of being at a wa
lengthi is 1/Zn51/(n11) for eachi. This means that the Markov chainMn has the first of the two
properties identified in Sec. I B that are required for the Monte Carlo approach to be effectiv
stationary distribution is reasonably well concentrated onSn , and uniform overSn . We may
therefore, at least in principle, generate random self-avoiding walks of lengthn by simulatingMn

until it has reached equilibrium, starting with, say, the empty walk, and outputting the final
if it has length n. The second property required of the Markov chain is that the numbe
simulation steps should be small. This is the key component in the running time of our algor
and is quantified in Sec. II B.
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B. The mixing time

The question of how many simulation steps are required to produce a sample from a
bution that is very close topn is precisely that of how long it takes for the Markov chain to g
close to equilibrium. This is often referred to as themixing time. Note that, if the overall running
time of our algorithm is to be polynomial inn, the Markov chainMn should berapidly mixing, in
the sense that its mixing time is very small compared to the number of states~which grows
exponentially withn!.

In recent years several useful analytical tools have been devised for analyzing the mixin
of complex Markov chains of this kind. In this paper we make use of the idea of ‘‘cano
paths,’’ first developed by Jerrum and Sinclair.19,16 Consider an ergodic, reversible Markov cha
with state spaceX, transition probabilitiesP, and stationary distributionp. We can view the chain
as a weighted undirected graphG with vertex setX and an edge between each pair of vertic
~states! x,y for which P(x,y).0. We give each oriented edgee5(x,y) a ‘‘capacity’’ Q(e)
5Q(x,y)5p(x)P(x,y); note that, by detailed balance,Q(x,y)5Q(y,x).

Now for each ordered pair of distinct verticesx,yPX, we specify acanonical pathgxy in the
graphG from x to y. Then, for any such collection of pathsG5$gxy :x,yPX,xÞy%, define

r~G!5max
e

1

Q~e! (
gxy{e

p~x!p~y!, ~4!

where the maximization is over oriented edgese. Thusr measures the maximum loading of an
edgee by paths inG as a fraction of its capacityQ(e), where the path fromx to y carries ‘‘flow’’
p(x)p(y). Note that the existence of a collection of pathsG for which r(G) is small implies an
absence of bottlenecks in the graph, and hence suggests that the Markov chain should be
mixing. This intuition can be formalized and a bound obtained on the mixing time in terms o
quantityr5minG r(G), using a measure known asconductance.20 However, we can get a slightly
sharper bound in this case by following an idea of Diaconis and Stroock21 and using the alternative
measurer̄5minG r(G)l (G), wherel (G) is the maximum length of a path inG. The appropriate
version of this bound can be found by combining Proposition 1 and Corollary 6 of Ref. 22 a
stated precisely in Theorem 4.

As a measure of rate of convergence, letPt(x,•) be the probability distribution of the Markov
chain at timet, starting in statex, and foreP(0,1) define

tx~e!5min$t:iPt8~x,• !2pi<e ;t8>t%.

Here i•i denotes variation distance: for distributionsn1 ,n2 over X, in12n2i5 1
2(xPXun1(x)

2n2(x)u5maxA#X un1(A)2n2(A)u.
Theorem 4: (Ref. 22) For an ergodic, reversible Markov chain with stationary distributionp

and self-loop probabilities P(y,y)> 1
2 for all states yPX, we have

tx~e!<r̄~ logp~x!211 loge21!.

We now use Theorem 4 to show that the mixing time of the Markov chainMn can be bounded
in terms of the quantityan defined in ~1!. Assuming conjecture C2, this will imply that th
Markov chain is rapidly mixing. For simplicity we will work with the idealized version ofMn

discussed at the end of Sec. II A, in which eachb i is exactly equal toci 21 /ci . It should be clear
that our analysis is not unduly sensitive to small perturbations in the values of theb i .

Theorem 5: For the ~idealized! Markov chain Mn , starting at the empty walk0, we have

t0~e!<Kdn2an
21~ logn1 loge21!

for some constant K.
                                                                                                                



he
f

tal
f a

two

ob-
he
bound

e

1578 J. Math. Phys., Vol. 41, No. 3, March 2000 D. Randall and A. Sinclair

                    
Proof: From ~3! we have thatpn(0)51/(n11). Also, since the graph corresponding to t
Markov chainMn is a tree, there is only one choice of~simple! paths between each pair o
vertices; we will denote this collection of pathsG5$gxy%. Since the depth of the tree isn, we have
l (G)52n. Therefore, the result will follow from Theorem 4 if we can show thatr(G)
<K8dnan

21 for some constantK8.
Now let e be any edge of the tree, and suppose the endpoints ofe are a walkw of lengthk and

a walkw8 of lengthk11. Let Sbe the subtree rooted atw8, andS̄5xn2S. Sincee is a cut edge,
it is clear that~4! becomes

r~G!5max
e

Q~e!21pn~S!pn~S̄!. ~5!

In what follows we will make essential use of the fact that the tree definingMn is a sub-
Cayleytree, so that the number of vertices at levell of any subtree is bounded above by the to
number of vertices at levell of the whole tree. This is evident since any initial segment o
self-avoiding walk is also self-avoiding. We have

Q~e!5pn~w8!Pn~w8,w!5
1

4dZnck11
,

@where the extra factor of12 in Pn(w8,w) comes from the self-loops#, and

pn~S!5 (
w̃>w8

pn~w̃!

5 (
j 5k11

n
1

Zncj
u$w̃fw8:uw̃u5 j %u

5
1

Znck11
(

j 5k11

n
ck11

cj
u$w̃fw8:uw̃u5 j %u

<
1

Znck11
(

j 5k11

n
ck11cj 2k21

cj

<
n

Znck11an
,

where the first inequality follows from the sub-Cayley property of the tree. Putting these
calculations together, we see thatQ(e)21pn(S)pn(S̄)<Q(e)21pn(S)<4dnan

21. Sincee was
arbitrary,~5! now gives us the required upper bound onr(G). h

Remark:A similar bound on the mixing time of the Berretti–Sokal Markov chain was
tained using ad-hoc methods by Sokal and Thomas.12 Again the essential feature that makes t
argument work is the sub-Cayley property of the tree underlying the chain. A rather weaker
was obtained by Lawler and Sokal,13 using the conductance~or Cheeger inequality!. This latter
proof is very similar in spirit to the one above; the main difference is that our proof replacesr2 by
r̄ in the bound of Theorem 4. h

III. THE OVERALL ALGORITHM

In this section, we show how to assemble the sequence of Markov chains (Mn) just described
into a single algorithm that outputs a sequence of numbers (c̃n), each of which is a good estimat
of the correspondingcn . The accuracy of the estimates is controlled by two parameters,e andd,
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exactly as in the definition of a randomized approximation scheme appearing in Sec. I C. W
see that the algorithm provides both an approximation scheme and an almost uniform ge
with the properties claimed in Theorem 1.

The main new ingredients in the algorithm are two bootstrapping procedures for estim
the quantitiesan which appear in the mixing time and the parametersbn governing the transition
probabilities of the Markov chains. Recall that our analysis so far has assumed that we knan

~the probability that two self-avoiding walks of total length at mostn can be glued together to
form a new self-avoiding walk!, and also thatbn5cn21 /cn for eachn. However, these values ar
not available to us; in fact, calculating the quantitiescn is one of our main objectives. Instead, o
overall algorithm computesestimatesof these ideal valuesan and cn21 /cn for eachn in turn,
using the previous Markov chainMn21 . This is consistent since the first time thatan andbn are
required is in the Markov chainMn . At the end of the section, we will show how to make t
algorithm self-testing.

We stress that, throughout the paper, our goal is to sketch conceptually simple argumen
justify polynomial running times. We deliberately omit low-level details~in particular, constant
factors! and make no attempt to optimize the time bounds. In any practical implementation o
algorithm, it would be necessary to refine the statistical procedures sketched here in order to
more practically useful bounds. We hope we have provided sufficient information for the
ested reader to undertake this task. For an example of some tuning of this kind, see Ref.

A. Bootstrapping an to determine the simulation time for Mn

In Theorem 5 of Sec. II we determined the mixing time of thenth Markov chainMn as a
function of n, e, d, and the unknown quantityan . Thus we need to know at least a reasona
upper bound onan

21 in order to determine the number of simulation steps required forMn . If we
are prepared to accept conjecture C2, which asserts thatan

21<g(n) for some polynomialg, then
we can simply substituteg(n) for an

21 in the bound of Theorem 5. However, we would like
have an algorithm which is independent of any conjectures. In this section we introduce a
strapping technique whereby we calculate an estimateãn of an , such thatan/4<ãn<an with
very high probability. Thus, from Theorem 5, simulatingMn for Kdn2ãn

21(logn1loge21) steps
suffices to sample from close to its stationary distributionpn , without appealing to any conjec
tures. Moreover, sinceãn

21<4an
21, the simulation time remains linear inan

21.
Recall from~1! thatan5minj1k<n(cj1k /cjck), and that for any fixedj andk this ratio is just the

probability that two random self-avoiding walks of lengthsj andk can be concatenated to form
new walk which is self-avoiding. Assuming inductively that we already know an upper boun
the mixing time of Markov chainMn21 , we can use it to generate walks of each lengthi ,n
~almost! uniformly. By sampling these smaller walks we can compute an estimate ofan , thereby
determining the number of steps for which we should simulate the next Markov chainMn to
guarantee that it is close to its stationary distribution.

This bootstrapping procedure, described in Fig. 1, works in detail as follows. Fix a dime
d. We assume first that we can generate walks of any given lengthi ,n ~almost! uniformly at
random, using Markov chainMn21 , in time polynomial inn, an21 , and loge21 ~wheree is the
bias tolerated!. This follows from the bound on the mixing time in Theorem 5, and the fact tha
stationary distributionpn21 of Mn21 assigns equal weight to walks of each lengthi ,n and is
uniform over lengths.~Actually the Markov chain we are simulating here is not precisely t
analyzed in Sec. II, since the branching probabilitiesb i will differ slightly from their ideal values.
However, we know from Proposition 3 that the stationary distribution is always uniform w
each level of the tree, and it should also be clear that, assuming we control the errors inb i

appropriately, the distribution over levels of the tree differs from the uniform distribution b
most a constant factor.! Thus to obtaint independent random walks of lengthi, it is sufficient to
generate 2nt independent samples frompn21 ; with high probability, at leastt of these will have
length i. ~Notice that 2nt samples are sufficient to producet samples of lengthi, even accounting
for the fact that the distribution over levels of the tree is only approximately uniform.! For
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definiteness, we will assume that our algorithm aborts if at any point it fails to gather en
samples in such a procedure. The very small probability of this event can easily be absorb
the confidence parameterd.

We assume also that we have previously calculatedãn21 such thatan21/4<ãn21<an21

~with high probability!. The valueãn21 is an estimate of the probability that the concatenation
two self-avoiding walks of total length strictly smaller thann is self-avoiding, so we now nee
only estimate this probability for walks whose total length equalsn. For each 0, i ,n, we
generatetn independent pairs of walks of lengthsi andn2 i , and letqn,i be the proportion of these
pairs whose concatenation is self-avoiding. Plainlyqn,i is an ~almost! unbiased estimator of the
ratio cicn2 i /cn . Now the 0/1 estimator theorem~see, e.g., Ref. 15! tells us that tn

5O(an
21 log(n/d)) samples suffice in order thatqn,i is within a factor of 2 of this ratio with

probability at least 12d/n2. Letting ãn5min(ãn21,mini qn,i/2), we get an estimate in the desire
range@an/4,an# with probability at least 12d. @The loss of a factor 1/n2 in the confidence come
from the fact thatãn depends onU(n2) independent random variablesqn,i . With more attention
to detail, these errors could be controlled more efficiently.#

The running time of EstAlpha is dominated by the time required to producetn samples of
walks of each lengthi ,n, using the Markov chainMn21 . The total number of samples require
is, with high probability, at mostO(tnn2) @actuallyO(tnn logn)], which from the above value o
tn is O(n2an

21(logn1logd21)). The time per sample is just~our estimate of! the mixing time of
Mn21 , which we know inductively to beO(n2an21

21 (logn1loge21)) for any fixed dimensiond,
wheree is the bias from uniformity. Hence the overall running time of EstAlpha isÕ(n4an

22),
where theÕ notation suppresses both constant and logarithmic factors.

B. Estimating the branching probabilities bn

Recall that the ideal value for the parameterbn is the ratiocn21 /cn . Like an , this quantity
may also be estimated by a bootstrapping procedure based on the Markov chainMn21 . Note that
in fact this ratio is precisly what one needs to computecn givencn21 , so our estimate forbn will
immediately yield our estimate forcn as well.

The overall algorithm is sketched in Fig. 2. The algorithm works in a sequence of stage
for each successive value ofn, corresponding to the iterations of thefor -loop in Fig. 2. We call
stage n good if it computes a valuebn that approximates the valuecn21 /cn within ratio
(11e/4n2), wheree is the accuracy input.

Let us consider the operation of stagen in detail. To compute a good approximationbn of the
ratio cn21 /cn , we randomly sample walks of lengthn21 using the Markov chainMn21 and
estimate the average number of one-step extensions of a walk: we can compute the num

FIG. 1. The subroutine for estimatingan .
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one-step extensions of any given walk by explicitly checking each of the 2d21 possibilities. Note
that, for a random walk, this is a bounded random variable taking values in@0,2d21# with mean
at least 1~sincecn>cn21). The sample size is controlled by the parameterTn . A simple gener-
alization of the 0/1-estimator theorem~see, e.g., Ref. 15! to handle non-negative, bounded rando
variables shows thatTn need not be too large to obtain a good estimate with sufficiently h
probability. Specifically, we get:

Lemma 6: In the algorithm of Fig. 2, assuming that stages1,2,...,n21 are good, stage n is
good with probability at least(12d/2n2), provided the sample size Tn is at least cn4e22(logn
1logd21) for a suitable constant c~which depends on the dimension d!.

The algorithm is designed so that, assuming all previous stages 1,2,...,n21 are good, stagen
will be good with probability at least (12d/2n2). The reason for this requirement is the followin
If all stages 1,2,...,n are good, then the valuec̃n5P i 51

n b i
21 output by the algorithm at the end o

stagen approximatesP i 51
n (ci /ci 21)5cn within ratio P i 51

n (11e/4i 2)<11e; moreover, this
happens with probability at leastP i 51

n (12d/2i 2)>12d. Thus our algorithm, run to stagen,
satisfies the requirements of a randomized approximation scheme forcn @see Definition~i!#, which
was one of our principal goals. Moreover, by the end of stagen we have computed valuesb i for
1< i<n; thus we have constructed a Markov chainMn which we can simulate to produce a
almost uniform generator for self-avoiding walks of any length up ton @see Definition~ii !#. This
was our second principal goal.

Ignoring EstAlpha for a moment, the running time of stagen of the algorithm is dominated by
the time required to produceTn ~almost! uniform random self-avoiding walks of lengthn21
using Markov chainMn21 . As in the analysis of EstAlpha in Sec. III A, we can bound this
O(Tnn2an21

22 (log n1loge21)) for any fixed dimensiond. ~Once again, we should point out tha
the analysis of Theorem 5 refers to the idealized Markov chain in which all valuesb i are exact.
However, it is a simple matter to check that, assuming all stages are good, the effect on the
time of these small perturbations of theb i is at most a constant factor.! Plugging in the bound on
Tn from Lemma 6, we deduce that the total running time of stagen is polynomial inn, an

21, e21,
and logd21. This is true also for the call to EstAlpha, as we saw in Sec. III A. Thus the appr
mation scheme forcn has the properties claimed in Theorem 1. By the same reasoning, simu
the Markov chainMn for O(n2ãn

21(logn1loge21)) steps can be used as the basis for an alm
uniform generator of walks of lengthn with the properties claimed in Theorem 1.

This algorithm is particularly well suited to applications where many samples of self-avo
walks of a given length are required. In order to produce just one sample, a fair amount of
is required in order to determine estimates for theb i anda i . However, once this work is done, th
Markov chainMn can be used to generate as many samples as desired much more efficient
worth noting that in this sense the algorithm is interruptible; as long as the estimates for eb i

and a i are stored~to specified accuracy and confidence!, this initial work does not have to be
repeated.

FIG. 2. The overall algorithm.
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C. Making the algorithm self-testing

In Sec. III B we presented an algorithm whose correctness is independent of any conje
however, to get ana priori bound on the running time of the algorithm we must appeal
conjecture C2. In this section we show how to place the algorithm on a firmer theoretical fo
by algorithmically testing conjecture C2, thus guaranteeing that the algorithm runs in polyn
time. This is a particular instance of what we believe is a generally useful idea of usingself-testing
to make an algorithm whose correctness depends on a conjecture more robust.

Recall that conjecture C2 states that, for allj andk,

cjck<g~ j 1k!cj 1k , ~6!

where g is some fixed polynomial. The point of this conjecture is that it immediately imp
an

21<g(n) for all n, which in turn gives us a polynomial upper bound on the mixing time of
Markov chainMn .

Clearly, to argue about the chainMn it is sufficient to establish condition~6! only for j 1k
<n. Thus, provided we can test the condition in this range using only information from
previous stagen21, we can be sure that stagen is reliable also. As it turns out, our procedure f
calculatingãn ~Fig. 1! at the end of stagen21 makes testing the conjecture in the above ran
almost immediate. Recall that in Sec. III A we derived statistical guarantees stating thatan/4
<ãn<an with high probability. Therefore, ifan

21<g(n), then our estimate must satisfyãn
21

<4g(n) with high probability. Conversely, if our estimate satisfies this condition then we
assert with high confidence thatan

2<4g(n). Thus our testing procedure, spelled out in Fig.
simply amounts to comparingãn

21 with 4g(n). In practice we could use forg(n) either the
polynomial implied by conjecture C1~which is essentially justf̃ , with a slightly different constant
A! or, to give ourselves a bit more room, a slightly larger polynomial. Note that our choiceg
will affect the running time, since we will be substitutingg(n) in place ofan

21 in our previous
analysis.

Summing up the above discussion, we have:
Theorem 7: The algorithm of Fig. 2 with the self-tester incorporated runs in time polynom

in n, e21, and logd21. Furthermore, assuming that no warning has been issued at any sta
,n, it satisfies the following properties:

(i) if an
21<g(n) ~i.e., conjecture C2 holds!, then the algorithm outputs a reliable numeric

answer with probability at least12d;
(ii) if an

21.4g(n) ~i.e., conjecture C2 fails ‘‘badly’’!, then the algorithm outputs an erro
message with probability at least12d;

(iii) if g (n),an
21<4g(n), then the algorithm either outputs an error message or output

reliable numerical answer.

Notice that in every case the algorithm runs in polynomial time, and any numerical answer
is output is reliable with high probability.

The idea of a tester has been used before, but in a much more restrictive sense. For e
Berretti and Sokal11 propose testing possible ‘‘errors in scaling’’ due to the conjecture thatf (n)
'Ang21 by trying other specific polynomial forms forf (n). This gives evidence thatf (n) might

FIG. 3. The self-tester.
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be of the correct form, but falls short of proving it probabilistically. In contrast, the tester
present is designed to verify exactly the conjecture we require, and therefore offers pre
quantified statistical evidence that our algorithm is operating as we expect.

IV. OPEN QUESTIONS

Our most obvious and compelling open problem is verifying conjecture C2 for dimens
d<4. This would constitute a substantial breakthrough in the classical theory of self-avo
walks. However, it is less well studied than conjecture C1, and its more elementary combin
nature should make this task more feasible. The results in this paper show that proving con
C2 for any polynomialg @even, say, forg(n)5An100] would yield the first provably polynomia
time Monte Carlo approximation algorithms for self-avoiding walks.

Another direction is to find other natural problems that can be approached using the M
Carlo techniques based on sub-Cayley trees described in this paper. For example, ma
~monomer–dimer coverings! in lattices can be uniformly generated using a Markov chain of
kind, and again the efficiency of the algorithm rests on a single combinatorial assumption. U
tunately, however, unlike conjecture C2, in this case the analogous conjecture seems unlike
true. Nevertheless, perhaps it is possible to further adapt the algorithm so as to obtain a
reasonable conjecture.

Finally, we predict that there are other applications in which the type of self-testing desc
in this paper can be used to convert heuristics into robust algorithms. It would be interest
explore the generality of this method for testing a conjecture in the region where it is sufficie
verify the correctness of an algorithm.
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2G. F. Lawler,Intersections of Random Walks~Birkhäuser, Boston, 1991!.
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Random sampling for the monomer–dimer model
on a lattice
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~Received 18 November 1999; accepted for publication 7 December 1999!

In the monomer–dimer model on a graph, each matching~collection of nonover-
lapping edges! M has a probability proportional tol uM u, wherel.0 is the model
parameter, anduMu denotes the number of edges inM. An approximate random
sample from the monomer–dimer distribution can be obtained by running an ap-
propriate Markov chain~each step of which involves an elementary local change in
the configuration! sufficiently long. Jerrum and Sinclair have shown~roughly
speaking! that for an arbitrary graph and fixedl and e ~the maximal allowed
variational distance from the desired distribution!, O(uLu2uEu) steps suffice, where
uEu is the number of edges anduLu the number of vertices of the graph. For
sufficiently nice subgraphs~e.g., cubes! of the d-dimensional cubic lattice we give
an explicit recipe to generate approximate random samples in~asymptotically!
significantly fewer steps, namely~for fixed l and e! O(uLu(lnuLu)2). © 2000
American Institute of Physics.@S0022-2488~00!01403-1#

I. INTRODUCTION

The monomer–dimer model, described below, originates from Statistical Physics, where
been used to study the absorption of oxygen molecules on a surface, and the properties of a
mixture. See Heilmann and Lieb8 for further background and references. More recently, the mo
has also drawn much attention in Operations Research, Combinatorics, and Graph Theo~see
Refs. 9 and 10!.

Throughout this paper, the size~number of elements! of a finite setA will be denoted byuAu.
Consider a finite, undirected graphG5(L,E), whereL is the set of vertices ofG andE is the

set of edges. Amatchingon G is a subsetM,E such that no two edges inM have a common end
point. Let l.0 ~this is the model parameter!. Now assign to each matchingM a probability
proportional tol uM u.

Alternatively, define the state spaceV5$0,1%E. Elements ofV ~calledconfigurationson E!
are typically denoted byv5(ve ,ePE). The monomer–dimer distribution forG ~with parameter
l! is then defined as

m~v!5
l uvuI ~v is allowable!

Z~l!
, ~1.1!

where ‘‘v is allowable’’ means that the set$e:ve51% is a matching,uvu denotes the size of tha
set, andZ(l) is the normalization factor~partition function!. It is clear that the two description
~one with state space the set of all matchings, the other with state space$0,1%E!, are equivalent,
and both descriptions will be used in this paper.

To continue, we need some more terminology and notation:
If two verticesi and j are adjacent, we writei; j . Thedegree deg~v! of a vertexv is defined

as the number of edges that havev as an end point. If two edgese1 ande2 share a common end
point, we writee1;e2 . Let, in the rest of this subsection,D be a subset ofE. We denote the se
$0,1%D by VD . Similarly, if vPV, thenvD denotes the ‘‘restriction’’ ofv to D, i.e., the element
(ve :ePD) of VD . If v, v8PVD we call an edgeePD an edge of disagreement~w.r.t. the pair
15850022-2488/2000/41(3)/1585/13/$17.00 © 2000 American Institute of Physics
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~v, v8!! if veÞve8 , and we denote the set of all such edges byV(v,v8). The boundaryof D,
denoted by]D, consists of all elementsePE\D such thate;e8 for somee8PD.

Let aPV]D , ~so a is a configuration on the boundary ofD!. The monomer–dimer distribu
tion for D with boundary conditiona is defined as follows:

mD
a~v!5

l uvuI ~v! is allowable w.r.t.a)

ZD~l!
, ~1.2!

where allowable with respect toa means that the set$ePD:ve51%ø$eP]D:ae51% is a match-
ing.

It is easy to check that the monomer–dimer model satisfies the following Markov prop
Let s denote a random configuration onE and letD,E. Then the conditional distribution ofsD ,
given sE\D , equalsmD

s]D ~and hence depends only ons]D ).
The paper by van den Berg~1999! shows that the monomer–dimer model on a lattice

certain very strong spatial mixing properties. In the present paper~see Sec. III! we show explicitly
how this can be used to improve, for ‘‘nice’’ subgraphs of a lattice, earlier results in the liter
concerning the generation of~approximate! random samples. Apart from a theorem by Jerrum a
Sinclair, which is stated without proof in Sec. II, and some easy to verify results on variat
distance and coupling~see also Sec. II!, this paper is practically self-contained.

II. PRELIMINARIES

In this section we give the background needed in Sec. III. First, we present some gene
quite well-known results on coupling and variational distance. Then we will state the e
mentioned result by Jerrum and Sinclair. Finally, we will present and prove a result which is
similar ~but more convenient for our purpose! to a result in van den Berg.5

Throughout this sectionV denotes an arbitrary finite set.

A. Coupling and variational distance

Suppose we have two probability distributionsm1 and m2 on V. The variational distance
dV(m1 ,m2) is defined by

dV~m1 ,m2!5
1

2
• (

vPV
um1~v!2m2~v!u. ~2.1!

Another ~but equivalent! definition of variational distance is the following:

dV~m1 ,m2!5max
A,V

um1~A!2m2~A!u. ~2.2!

This equivalence is quite easy to check.
Suppose we have two probability distributionsm1 andm2 on V. A couplingP of m1 andm2

is a distribution onV3V which has the following properties:

(
v1PV

P~v1 ,v2!5m2~v2! for all v2PV, ~2.3!

and

(
v2PV

P~v1 ,v2!5m1~v1! for all v1PV, ~2.4!
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i.e., the marginal distributions ofP arem1 andm2 . Similarly, one can define couplings of mor
than two probability distributions. A trivial example of a coupling is the product couplingm1

3m2 .
Define the event ‘‘unequal’’ as the set$(v1 ,v2)PV3V:v1Þv2%. Likewise, we define the

event ‘‘equal’’ as the set$(v1 ,v2)PV3V:v15v2%. The following results, Proposition 2.1
Lemma 2.2, and Proposition 2.3, are quite standard and not difficult to prove.

Proposition 2.1: Letm1 , m2 , andm3 be probability distributions onV, and letP1,2 andP2,3

be couplings ofm1 andm2 , and ofm2 andm3 respectively. Then there exists a couplingP1,3 of m1

and m3 with the following property:

P1,3~ ‘ ‘ unequal’ ’ !<P1,2~ ‘ ‘ unequal’ ’ !1P2,3~ ‘ ‘ unequal’ ’ !. ~2.5!

We proceed with a lemma that states some basic properties of variational distance.

Lemma 2.2: Letm, m8, and n be probability distributions onV. We have

~1! dV(m,n)>0,
~2! dV(m,n)5dV(n,m),
~3! dV(m,n)<dV(m,m8)1dV(m8,n),
~4! dV(g•m1(12g)•m8,n)<g•dV(m,n)1(12g)•dV(m8,n) for all gP@0,1#.

The following proposition relates the two notions of variational distance and couplings. R
the notions ‘‘equal’’ and ‘‘unequal’’ defined earlier.

Proposition 2.3: For all probability distributionsm and n on V,

dV~m,n!5min
P

P ~ ‘ ‘ unequal’ ’ !, ~2.6!

where the minimum is taken over all couplingsP of m and n.
A coupling that reaches the minimum in Proposition~2.3! is calledoptimal. For an extensive

treatment of coupling methods, see Ref. 11.

B. Mixing times and the Jerrum–Sinclair result

Suppose we have an ergodic Markov chain onV. Let p be the stationary distribution of thi
chain and letxPV. Let mx,t denote the distribution of the Markov chain at timet, when it has
started in initial statex. Let e.0. Define themixing time with respect to initial state xof the
Markov chain as follows:

tx~e!5min
t

$dV~mx,t8,p!<e for all t8>t%. ~2.7!

The (total) mixing timeof the Markov chain is defined by

t~e!5max
xPV

tx~e!. ~2.8!

Jerrum and Sinclair9 have studied the mixing time of a suitable Markov chain for the monom
dimer model. More precisely, they have proved the following: LetG5(L,E) be a finite graph,
and letV5$all matchings onG%. Consider the monomer–dimer distribution with parametel
.0 onV. Denote this distribution bypl . To sample from this distribution, they study a speci
Markov chainmcl whose stationary distribution ispl . A transitionM→M 8 in the Markov chain
mcl is described as follows:

~1! With probability 1
2 let M 85M ; otherwise
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~2! Choose uniformly at random an edgee5(u,v)PE.
DefineM 8 as follows:

M855
M1e if u,v unmatched inM ,

M2e if ePM ,

M1e2e8 if either u or v ~but noth both! is matched

and e8 is the matching edge,

M otherwise

.

~3! Move to M 8 with probability min$1,@pl(M 8)/pl(M )#%.

Note thatmcl is aperiodic becauseP(M ,M )> 1
2.0 for all matchingsM. It is also clear thatmcl

is irreducible~because all matchings communicate via the empty matching!, and easy to check tha
mcl satisfies the detailed balance condition,

pl~M !P~M ,M 8!5pl~M 8!P~M 8,M !. ~2.9!

We conclude thatmcl has stationary distributionpl and that, for any initial state, the distributio
of the chain converges topl . By a clever application of the so-called canonical path meth
Jerrum and Sinclair,9 obtained the following bound for the mixing time ofmcl .

Theorem 2.4:The mixing time of mcl satisfies

t~e!<4uEunl8~n ln 4n1n ln l8!1 ln~e21!), ~2.10!

wherel85max$1,l%, and n5@ uLu/2#.

@In fact, Proposition 12.4 of Jerrum and Sinclair,9 states

t~e!<4uEunl8~n~ ln n1 ln l8!1 ln~e21!!. ~2.11!

However, we could only verify the proof when the factor lnn is replaced by ln 4n, in ~2.11!.#

C. A result on the spatial dependencies of the monomer–dimer model

The following theorem is very similar to a result in Sec. III of Ref. 5~the ideas in which go
back ~Refs. 2–4!, but slightly stronger and more convenient for our purpose. Therefore, an
completeness, we give a fairly detailed proof. Recall the definitions ofV(v,v8) and deg(v) in
Sec. I.

Theorem 2.5:Let, for a given value ofl, m be the monomer–dimer distribution on a graph
G5(V,E). Let D,E and leta,bPV]D . Then a couplingPD,a,b of mD

a and mD
b exists such that

ED,a,b~ u$ePD:e edge of disagreement%u!<2cl•uV~a,b!u, ~2.12!

whereED,a,b denotes the expectation with respect toPD,a,b and c equalsmaxvPD$deg(v)%21.
Proof: Let D, a, and b be as in the statement of the theorem. We construct the de

couplingPD,a,b on VD3VD as follows: Letx andy be independent configurations with distrib
tion mD

a and mD
b respectively. Modify these configurations in the following way. For everyẽ

PV(a,b), define the set

ẽdiff~x,y!5$ePV~x,y!:'a sequenceẽ;e1;e2;¯;en5e of distinct edges inD,with ; i

P$1¯n%:xei
Þyei

. ~2.13!

We call such a sequence apath of disagreementof lengthn from v to e, wherev is the common
end point ofẽ ande1 . Let the set DIFFx,y,a,b be the union of paths of disagreement leaving fro
V(a,b)
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DIFFx,y,abª ø
ẽPV~a,b!

ẽdiff~x,y!. ~2.14!

The modified configurationsx̃ and ỹ are defined by

x̃e5H xe if ePDIFFx,y,a,b,

ye else,

ỹe5ye for all ePD. ~2.15!

Note that the configurationsx̃ and ỹ only differ from each other on DIFFx̃,ỹ,a,b and that this set
equals DIFFx,y,a,b . We definePD,a,b as the distribution of the pair (x̃,ỹ) constructed as above

Lemma 2.6: The distribution ofPD,a,b defined above is indeed a coupling ofmD
a and mD

b .
Proof: Since we have definedPD,a,b as the distribution of (x̃,ỹ) it is sufficient to prove that

x̃ has distributionmD
a and ỹ has distributionmD

b . Clearly, sinceỹ equalsy it has distributionmD
b .

It remains to show thatx̃ has distributionmD
a . To do this first introduce configurationsx̂ and ŷ as

follows: In words, (x̂,ŷ) is the pair of configurations obtained from~x,y! by exchangingx andy on
the set of edges that do not have a path of disagreement toV(a,b). More precisely,

x̂e5H xe if ePDIFFx,y,a,b ,

ye else,

ŷe5H ye if ePDIFFx,y,a,b ,

xe else.
~2.16!

By an appropriate use of the Markov property~see the proof of Lemma 1 in Ref. 5!, the pair (x̂,ŷ)
has the same distribution as the pair~x,y!. Finally, from the definitions ofx̂ and x̃, it follows that
x̂5 x̃. Hencex̃ has distributionmD

a . h

We now show that this couplingPD,a,b has property~2.12!. First recall~see the note before
Lemma 2.6! that the left-hand side of~2.12! is equal to the expected size of DIFFx,y,a,b , wherex
andy are drawn independently frommD

a andmD
b , respectively. Therefore we study the paths

disagreement for the pair~x,y!. So consider an edgeẽPV(a,b), sayẽ5(v1 ,v2). Observe that if
a path of disagreement of lengthk from v1 exists, then this path is unique.~Otherwise, as one can
easily check, there would be three distinct edges, which share a common endpoint, and on
which xÞy. But then at least two of these edges havex51, or at least two of these edges ha
y51, which contradicts the fact that thatx andy are allowable.! For v2 a similar statement holds
Define l 1(ẽ)( l 2(ẽ)) as the path of disagreement of maximal length, starting fromv1 ~v2 , respec-
tively!. From the above observations we conclude that the left-hand side of~2.12! is at most

(
ẽPV~a,b!

E@ u l 1~ ẽ!u1u l 2~ ẽ!u#5 (
ẽPV~a,b!

(
k51

`

P~ u l 1~ ẽ!u>k!1P~ u l 2~ ẽ!u>k!. ~2.17!

To complete the proof of Theorem 2.5 we must, in view of Eq.~2.17!, bound the probability

P~ l 1~ ẽ! has length>k!, ~2.18!

and its analog forl 2(ẽ). Before we do this, we first state a simple general lemma. Conside
monomer–dimer model on the very special ‘‘star-shape’’ graph, which consists ofn edges and
n11 vertices, one of which~the ‘‘center of the star’’! has one edge to each of the othern vertices.
It is clear that each allowable configuration has either 0 or 1 edge with value 1, and that the
has probabilityln/(11ln). Note that this is increasing inn. This observation, together with th
Markov property mentioned in Sec. I~below ~1.2!! implies immediately the following:
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Lemma 2.7: Consider the monomer–dimer model with parameterl on an arbitrary finite
graph G. Let v be a vertex of G and let A be a subset of the edges ofv. Then the conditional
probability that there exists an edge in A with value 1, given the values of all edges outside
at most

luAu
11luAu

.

We now proceed with the proof of Theorem 2.5. Suppose a path of disagreement of lek
exists. What is the conditional probability that a path of disagreement of lengthk11 exists? Let
e1;¯;ek5e be the~unique! path of lengthk leaving fromv1 , so thatẽ;e1 . By the uniqueness
property mentioned before, we have that the path of disagreement of lengthk11 ~if it exists! is an
extension of the path of lengthk. Define

Adj~e!5$bPD:b;e and b;” ek21%. ~2.19!

Note thatuAdj(e)u<c, with c as in the statement of the theorem.
By assumptionxe50 and ye51 or vice versa. Without loss of generality we assume

former. Sincey is a matching, we haveyb50 for every edgebPAdj(e). Hence we have a path
of disagreement of lengthk11, if and only if an edgeaPAdj(e) exists withxa51. By Lemma
2.7 above, the~conditional! probability of this event is at mostlc/lc11. Iterating the above we
get

PD,a,b~ l 1~ ẽ!has length>k!<S lc

lc11D k

. ~2.20!

The same result holds forl 2(ẽ).
Combining~2.20! with ~2.17!, it follows that the left-hand side of~2.12! is at most

2 (
ẽPV~a,b!

(
k51

` S lc

lc11D k

52lc•uV~a,b!u. ~2.21!

This completes the proof of Theorem 2.5.
Remark 2.8:In Sec. III A and III B, we will only work withd-dimensional hypercubesD. For

such setsD, each edge on the boundary]D has exactly one vertex in common with an edge in
box D. For these special cases, the above result is improved by a factor 2, so that

ED,a,b~#$ePD:e edge of disagreement%!<l~2d21!•uV~a,b!u, ~2.22!

for every hypercubeD.

III. RANDOM SAMPLING ON SUBGRAPHS OF THE d-DIMENSIONAL LATTICE

A. Description and motivation of the method

In Sec. III B we stated the Jerrum–Sinclair result. This result holds for general graphs.
present section we study certain specifically ‘‘nice’’ graphs, say ad-dimensional torus~described
more precisely below!. Suppose we want to sample~approximately! from the monomer–dimer
model for such a graph. According to the Jerrum–Sinclair result~Theorem 2.4! we can do this by
running the Markov chainmcl ~described in Sec. II B! a number of steps given by~2.11!. For the
torus this is, for fixedl ande, asymptotically of order (Volume)33 log~Volume!. Here Volume is
the number of edges in the graph~or the number of vertices, which for these graphs differ
constant factor from the number of edges!.

Can this, for these special graphs, be improved? There are several possibilities. One ap
is to use logarithmic Sobolev inequalities: the results on spatial dependencies in Sec. II C im
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mixing condition which, in turn, following a quite general theory developed by Stroock
Zegarlinski ~see Ref. 15!, could lead to a bound on the mixing time of order Volum
3 log~Volume!. ~We writecouldbecause there is an extra, quite subtle, condition which has t
checked to obtain such a bound from the Stroock–Zegarlinski theory; see Theorem 1 in the
paper,7 by Frigessi, Martinelli, and Stander.! This result would be very interesting, but when o
really wants to generate random samples, one not only wants to know theasymptotic orderof the
mixing time, but one needs anexplicit upper boundto carry out the algorithm. To get~reasonable!
explicit bounds from the Stroock–Zegarlinski theory is probably a lot of work which~in our
opinion! is certainly worth the effort.

However, in the present paper we follow a somewhat different approach, which is base
small modification of coupling and rescaling arguments which have become quite standar~see
Aizenman and Holley,1 and Martinelli and Olivieri.13 This approach has the advantage tha
gives, with relatively simple and few computations, an explicit bound whose asymptotic ord
‘‘only a little worse’’ than the above mentioned Volume3 log~Volume!. ~We get an extra factor o
order log~Volume!.!

Our approach is to combine~using rescaling and coupling arguments! the result of Jerrum and
Sinclair~Theorem 2.4! with the result on spatial dependencies in Sec. II C. Although this appro
applies to a larger class of graphs~see Remark 2 Sec. III C!, we concentrate for simplicity on a
graphG, which corresponds to ad-dimensional torus. More precisely, letN be a positive integer,
and defineG as the pair (LG ,EG) where the set of verticesLG is defined as

LGª$0,̄ ,N%d, ~3.1!

and the set of edgesEG is

EGª$~v1 ,v2!:v1 ,v2PLG and uv12v2u51~mod~N21!!%, ~3.2!

whereu•u denotes thel 1 distance. We would like to sample from the monomer–dimer distribu
pG with parameterl on this graph.

One way of approximate sampling from this distribution onG is the following: Letd.0. Let
D be a d-dimensional cube of lengthl. ~Here l depends onl and d; a suitable value will be
determined later.! More precisely,D is the following set of edges:

Dª$~v1 ,v2!:v1 ,v2P$0,...,l ,%d and uv12v2u51%. ~3.3!

Let X̂(t), t50,1,... be the Markov chain with state space$0,1%EG, which starts in somex0PG, and
of which the transitions are described as follows: SupposeX̂(t)5x. Choose u.a.r. a vertexi

PLG . Let D̃ be the boxD shifted overi in the torus, i.e.,

D5$~~v11 i !~modN!,~v21 i !~modN!!:~v1 ,v2!PD%. ~3.4!

Consider the monomer–dimer distribution onD̃ with boundary conditionx]D̃ ~and parameterl!,

denoted bym
D̃

x]D̃. Now sample a configurationx̃ from this distribution. At timet11 the state

becomes

X̂~ t11!e5H X̂~ t !e if ePD̃,

x̃e if ePD̃.
~3.5!

It can be proved, using the spatial mixing properties mentioned before, that forl sufficiently
large, the mixing time of this Markov chain for fixedl is of orderO(uLGu• loguLGu), i.e., of the
same order we mentioned above in connection with logarithmic Sobolev inequalities.
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However, a problem arises when one actually tries to execute this algorithm. How to com

the above mentioned distributionm
D̃

x]D̃? Even for relatively smallD, this is a huge problem. Fo

example, ifd52 and the lengthl of the hypercube is 10, the state space ofm
D̃

x]D̃ has already more

than 2100 elements. In practice, this algorithm cannot be used.
One way to proceed now would be to use certain comparison theorems to obtain a bou

the mixing time of the Markov chainmcl for this model from the bound on the mixing time of th
above ‘‘block dynamics’’~see Diaconis and Saloff-Coste,6 Randall and Tetali,14 and Martinelli12!.
However, these comparison arguments do not involve the two mixing times directly but indi
~via the spectral gap or logarithmic Sobolev constant!. Since the relation between the mixing tim
~2.7!–~2.8! and these quantities is not tight, this method would introduce a factor of order Vol
so the final result would be of order (Volume)2 log~Volume!.

Therefore we do the following: Instead of drawing a configurationexactlyfrom the distribu-

tion m
D̃

x]D̃ mentioned before, we will sampleapproximatelyfrom this distribution. In other words

we replace each~macro! step in the Markov chain by a number ofmicro steps where each micr

step corresponds with a transition of the Markov chainmcl ~on D̃, with boundary conditionx]D̃!
studied by Jerrum and Sinclair. It will turn out that~for fixed d andl!, the total number of micro
steps needed to obtain a ‘‘d-close’’ approximate sample frompG is at most of order Volume
(log(Volume))2 ~see Corollary 3.3 at the end of this section!.

More precisely, the modified Markov chain, which we denote byX(t), t50,1,..., has the sam
state space and initial state asX̂(t), but the transitions are now as follows: SupposeX(t)5x. As

before, choose u.a.r. a vertexi PG; determine the boxD̃, and consider the monomer–dime

distributionm
D̃

x]D̃. We will approximate this distribution. To do this, first define

e5S uDu2l~2d21!u]Du
uEGuuDu D d

2
. ~3.6!

The choice of this value will become clear later. Now consider the~auxiliary! Markov chainmcl

~with respect to the monomer–dimer model onD̃, with boundary conditionx]D̃! described in Sec.
II B. Although the initial state does not matter in the computations below, it is natural to ta
equal toxD̃ . Denote the distribution of this chain at timet by n

D̃

t,x
. Let D* be the set of vertices

which are endpoints of edges ofD. From Theorem 2.4 it follows thatn
D̃

t,x
converges tom

D̃

x]D̃, and

that, if the number of steps made by that Markov chain is at leastT, given by

TªuDuuD* ul8@ uD* u ln~2uD* u!1~ uD* u!ln l812 ln~e21!#, ~3.7!

then

dV~n
D̃

T,x
,m

D̃

x]D̃!<e. ~3.8!

Let x̃ be the configuration onD̃ after T transitions; this is a sample fromn
D̃

T,x
. Now take

X~ t11!e5H X~ t !e if e¹D̃

x̃e if ePD̃
. ~3.9!

This completes our description of a~macro! step in the Markov chainX.
In the next section we will give an upper bound for the number of macro steps after whic

variational distance betweenm t ~the distribution ofX(t) at time t! andpG becomes smaller than
d. The total number of micro steps needed then simply follows from multiplying this by
numberT in ~3.7!.
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B. A bound on the number of steps

In this section we will bound the number of steps of the Markov chainX(t) to approximately
reach the stationary distributionpG . First, we define a suitably coupled system (X(t),Y(t)), t
50,1,..., whereX(t) is the Markov chain introduced in the previous subsection, andY(t) is a
Markov chain with the same transition probabilities asX̂ ~which was also introduced in th
previous subsection!, but which starts with the stationary distributionpG ~and hence keeps thi
distribution!. Using the results in Sec. II, we will obtain an upper bound for the variatio
distance between the distributions ofX(t) andY(t) for every timet. This is done by studying the
number of edges of disagreementuV(X(t),Y(t))u.

More precisely, letX(0)5x0 and letY(0) be drawn from the distributionpG . Suppose at
time t,X(t)5x andY(t)5y. Now we follow the description of a transition ofX(t) given in the

previous subsection. However, instead of sampling a single configurationx̃ on D̃, we now sample

a pair (x̃,ỹ) as follows. First consider the following three distributions onVD̃ : n
D̃

T,x
, m

D̃

x]D̃ and

m
D̃

y]D̃. Let

Poptn
D̃

T,x
,m

D̃

x]D
˜ ~3.10!

be an optimal coupling ofn
D̃

T,x
andm

D̃

x]D̃, and

Pm
D̃

x]D
˜
,m

D̃

y]D
˜ ~3.11!

be a coupling ofm
D̃

x]D̃ andm
D̃

y]D̃ which satisfies Theorem 2.5. Finally, let

Pn
D̃

T,x
,m

D̃

y]D
˜ ~3.12!

be a coupling ofn
D̃

T,x
andm

D̃

y]D̃ obtained from the two previous couplings as described in the p

of Proposition 2.1. The expectation with respect to the distribution~3.10! is denoted by
Eopt,n

D̃

T,x
,m

D̃

x]D
˜ . The expectations for the other two couplings are denoted similarly. Now, sam

pair (x̃,ỹ) from this last coupling~3.12!. Now take

X~ t11!e5H X~ t !e if e¹D̃,

x̃e if ePD̃.
Y~ t11!e5H Y~ t !e if e¹D̃,

ỹe if ePD̃
. ~3.13!

This completes the description of the transitions of the pair (X(t),Y(t)). Note thatx̃ has been
drawn fromn

D̃

T,x
so that the Markov chainX(t) has indeed the same transition probabilities as

Sec. III A. Similarly, note thatY(t) has indeed distributionpG for eacht.
Let m t denote the distribution ofX(t). Let E(t) denote the expectation ofuV(X(t),Y(t))u.

Using Proposition 2.3 we have

dV~m t,pG!<P@X~ t !ÞY~ t !#<E~ t !. ~3.14!

Therefore we will studyE(t). In particular, we study the change in this quantity after one~macro!
step of the coupled Markov chain.

Using a property analogous to Eq.~2.5! in Proposition 2.1 we get
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En
D̃

T,x
,m

D̃

y]D
˜ ~ u$ePD̃:e edge of disagreement%u!

<Eopt,n
D̃

T,x
,m

D̃

x]D
˜ ~ u$ePD̃:e edge of disagreement%u!

1Em
D̃

x]D
˜
,m

D̃

y]D
˜ ~ u$ePD̃:e edge of disagreement%u!. ~3.15!

So we need upper bounds for the expectations in the right-hand side of~3.15!. By Theorem 2.5
~and Eq.~2.22!!,

Em
D̃

x]D
˜
,m

D̃

y]D
˜ ~ u$ePD̃:e edge of disagreement%u!<l~2d21!uV~x]D̃ ,y]D̃!u. ~3.16!

Because the couplingPopt,n
D̃

T,x
,m

D̃

x]D
˜ is optimal, we have

Eopt,n
D̃

T,x
,m

D̃

x]D
˜ ~ u$ePD̃:e edge of disagreement%u! <uD̃u•Popt,n

D̃

T,x
,m

D̃

x]D
˜ ~ ‘ ‘unequal’ ’ !

5uD̃u•dV~n
D̃

T,x
,m

D̃

x]D̃!

<e•uD̃u.
~3.17!

The last inequality follows from~3.8!. Together, Eqs.~3.15!–~3.17! yield

En
D̃

T,x
,m

D̃

y]D
˜ ~ u$ePD̃:e edge of disagreement%u!<e•uD̃u1l•~2d21!uV~x]D̃ ,y]D̃!u. ~3.18!

We now state and prove the following Lemma:

Lemma 3.1:

E~ t11!<b•E~ t !1euDu, ~3.19!

where

bª12
uDu2l~2d21!u]Du

uEGu
. ~3.20!

Proof: Let M (t)5uV(X(t),Y(t))u. Note that the expectation ofM (t) is equal toE(t). Sup-

pose thatX(t), Y(t), i and henceD̃ are known. Consider the conditional expectation of t
number of edges of disagreement that disappear during the transitiont→t11,

E@M ~ t !2M ~ t11!uX~ t !5x,Y~ t !5y,D̃5A#5uV~xA ,yA!u2En
A
T,x ,m

A

y]A~ uV~ x̃,ỹ!u!. ~3.21!

By ~3.18! this is larger than or equal to

uV~xA ,yA!u2euAu2l~2d21!uV~x]A ,y]A!u. ~3.22!

Averaging overA we get

E@M ~ t !2M ~ t11!uX~ t !5x,Y~ t !5y#>E~ uV~xD̃ ,yD̃!u!2euDu2l~2d21!E~ uV~x]D̃ ,y]D̃!u!,
~3.23!
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where the expectation in the right-hand side refers to the distribution ofD̃. Recall that this is the
uniform distribution, so that by symmetry each edge ofEG has the same probability,uDu/uEGu, to

belong toD̃. Similarly, the probability that a given edge belongs to]D̃ equalsu]Du/uEGu. Hence
the right-hand side of~3.23! equals

uDu
uEGu

•uV~x,y!u2euDu2l~2d21!
u]Du
uEGu

uV~x,y!u.

So we have

E@M ~ t !2M ~ t11!uX~ t !,Y~ t !#>M ~ t !S uD̃u2l~2d21!u]Du
uEGu D 2euDu. ~3.24!

Taking expectations in~3.24!, we get

E~ t !2E~ t11!>E~ t !S uDu2l~2d21!u]Du
uEGu D2euDu, ~3.25!

from which the lemma follows immediately. h

For the moment we assume that the following inequalities:

0,12
uDu2l~2d21!u]Du

uEGu
,1 ~3.26!

hold, and will come back to this later.
Iterating Eq.~3.19! we get

E~ t11!<bt11uEGu1euDu•(
i 50

t

bi5bt11uEGu1
~12bt11!

12b
euDu5bt11uEGu1~12bt11!

d

2
.

~3.27!

Here we use the definition ofe andb ~see Eqs.~3.6! and ~3.20!!, and the fact thatE(0)<uEGu.
With ~3.14! this gives

dV~m t,pG!<btuEGu1~12bt!
d

2
. ~3.28!

If we want to findt, such that the above mentioned variational distance is smaller thand, it suffices
to solve

btuEGu<
d

2
. ~3.29!

Taking logarithms on both sides of~3.29! and using that ln(12x)<2x for 0,x,1, we find that
~3.29! holds if

t>
~ ln~2uEGu!1 ln~d21!!•uEGu

uDu2l~2d21!u]Du
. ~3.30!

Recall that every step of the Markov chainX(t) is in fact a macro step which correspon

with T micro steps in some boxD̃, whereT is given by~3.7!. Hence the total number of micro
stepst~d! after which the distribution ofX(t) has variational distance<d from pG is at mostT
times the right-hand side of~3.30!, i.e.,
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t~d!<uDuuD* ul8•@ uD* u ln~2uD* u!1uD* u ln~l8!12 ln~e21!#3S ~ ln~2uEGu!1 ln~d21!!uEGu

uDu2l~2d21!u]Du D ,

~3.31!

wheree5e(d) is defined as in~3.6!. Optimization considerations on a simplified modification
the right-hand side of~3.31! lead to the following choice of the lengthl of D:

lª@l~4d12!#. ~3.32!

Note thatuD* u5( l 11)d, uDu5dl( l 11)d21, and u]Du52d( l 11)d21, so that, withl given by
~3.32!,

uD* u5~ dl~4d12!e11!d, ~3.33!

uDu5ddl~4d12!e~ dl~4d12!e11!d21, ~3.34!

u]Du52d~ dl~4d12!e11!d21. ~3.35!

Using ~3.33!–~3.35!, it is easy to check that, for everyl.0 and everyd>2, the above choice o
l implies the upper bound in~3.26!. The lower bound in~3.26! is satisfied ifuEGu.uDu, i.e. ~in
terms ofl andd! if uEGu is larger than the right-hand side of~3.34!. Using ~3.33!, ~3.34!, ~3.35!,
and~3.6!, we can now express the upper bound~3.31! on t~d! completely in terms ofd, l, d, and
uEGu.

Summary of the algorithm and the main result. Concluding, we can state the following: Le
0,d,1 and l.0. Consider the monomer–dimer distributionpG with parameterl on the
d-dimensional torusG, as described in Sec. III A. Takel 5 d(4d12)l e and letD be the hypercube
of length l as described in Sec. III A. Computee from ~3.6!. Finally, computeT for the above
choice ofl, as in~3.7!. Consider the Markov chainX(t) with state space$0,1%EG, with transitions

described as follows: Choose u.a.r. a vertexi PG and consider the boxD̃5( i 1D). On this box
~with the currentX(t) values on the boundary fixed! run the Markov chainmcl ~described in Sec.
II B ! for T steps. These steps are called micro steps. This completes one transition~macro step! in
the Markov chainX(t).

Theorem 3.2: In the algorithm described above, the number of micro stepst~d! after which
the distribution of X(t) has variational distance smaller than or equal tod from the stationary
distribution pG satisfies

t~d!<T•
~ ln~2uEGu!1 ln~d21!!uEGu

uDu2l~2d21!u]Du

5uDuuD* ul8•@ uD* u ln~2uD* u!1uD* u ln~l8!12 ln~e21!#

3S ~ ln~2uEGu!1 ln~d21!!uEGu
uDu2l~2d21!u]Du D , ~3.36!

where uD* u, uDu, u]Du and e are given by~3.33!, ~3.34!, ~3.35!, and ~3.6!, respectively, andl8
5max(l,1).

This result gives immediately~note the dependence ofe on uEGu!
Corollary 3.3: For the algorithm above, ifl, d andd are fixed,t~d! satisfies

t~d!5O~ uEGu~ ln~ uEGu!!2!. ~3.37!

Remark 3.4:From ~3.37! it follows that, for fixedl and d, on a large torus our bound i
considerably better than the bound of Jerrum and Sinclair~Theorem 2.4!. ~Note that on a torus, the
number of edges equals the dimension times the number of vertices, souEGu5duLGu.! However,
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our bound~3.31! involves a factorl2dl8, while the bound of Jerrum and Sinclair is linear inl8,
which is important for certain applications~see Ref. 9!. Hence if the size of the torus is relativel
small with respect tol, their bound is better than ours.

C. Remarks

~1! Since the definition of the Markov chainX(t) depends ond, it is, strictly speaking, not correc
to call t~d! in ~3.31! its mixing time.

~2! The algorithm in the previous section, was described for a torusG. A similar result is still
valid when the algorithm is applied to a sufficiently nice finite subset ofZd, for instance a
hypercubeG5(LG ,EG), where LG5$0,...,m%d and EG5$(v1 ,v2):v1 ,v2PLG anduv12v2

u51%. SinceG is not a torus, the boxD̃ must now be defined asD̃5( i 1D)ùEG , where the

vertex i is now the center of the boxD̃. The fact that in some casesD̃ consists of roughly
uDu/2d elements leads to an increase of the size of a suitableD. This in turn leads to a numbe
of micro steps needed in the procedure which is a constant~depending on the dimensiond!
larger than that for our torus.

~3! One may think of several modifications of our computations to improve~decrease! the right-
hand side of~3.36!. For instance it would be interesting and worth trying to improve Theo
2.5. As to alternative methods, see the remark about logarithmic Sobolev inequalities
beginning of this Section.
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A popular technique for studying random properties of a combinatorial set is to
design a Markov chain Monte Carlo algorithm. For many problems there are natu-
ral Markov chains connecting the set of allowable configurations which are based
on local moves, or ‘‘Glauber dynamics.’’ Typically these single-site update algo-
rithms are difficult to analyze, so often the Markov chain is modified to update
several sites simultaneously. Recently there has been progress in analyzing these
more complicated algorithms for several important combinatorial problems. In this
work we use the comparison technique of Diaconis and Saloff-Coste to show that
several of the natural single-point update algorithms are efficient. The strategy is to
relate the mixing rate of these algorithms to the corresponding nonlocal algorithms
which have already been analyzed. This allows us to give polynomial time bounds
for single-point update algorithms for problems such as generating planar tilings
and random triangulations of convex polygons. We also survey several other com-
parison techniques, along with specific applications, which have been used in the
context of estimating mixing rates of Markov chains. ©2000 American Institute
of Physics.@S0022-2488~00!01903-4#

I. INTRODUCTION

Random sampling of combinatorial structures such as tilings, colorings, and independe
of a graph has attracted the attention of researchers in combinatorics, theoretical computer s
and statistical physics in recent years. The Markov chain Monte Carlo method has played a
role in establishing efficient algorithms for almost uniform sampling of such structures an
yielding fully polynomial randomized approximation schemes for the corresponding countin
sampling problems~see, e.g., Refs. 1–3 for general surveys!.

Establishing such rigorous bounds for Markov chain Monte Carlo algorithms has prov
compelling challenge. In many cases, very simple algorithms based on local updates s
themselves, and they have been widely used in practice to study various physical systems
cally it is straightforward to design a Markov chain which connects the state space and
converges to the desired distribution over configurations~e.g., the Gibbs or the uniform distribu
tion!. These simple chains are commonly referred to asGlauber dynamics. The widespread use o
these algorithms is based on a belief that the algorithms converge quickly to their stat
distribution so that sampling after a small number of steps is representative of this lim
distribution. However, typically a rigorous analysis is omitted due to the difficulty in establis
such bounds.

Recently there has been great progress in developing analytical techniques for bound

*A preliminary version of this paper appeared inSpringer Lecture Notes in Computer Science, Vol. 1380, 1998, pp.
292–304.

a!Electronic mail: randall@math.gatech.edu
b!Electronic mail: tetali@math.gatech.edu
15980022-2488/2000/41(3)/1598/18/$17.00 © 2000 American Institute of Physics
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convergence rates of such chains where the underlying state space represents configurat
physical system or, more generally, elements of a combinatorial set. The first notable achiev
is the method for bounding theconductance~or discrete Cheeger constant! due to Jerrum and
Sinclair,4 which has been used to develop fully polynomial randomized approximation sch
for the partition function associated with many dimer systems5,6 and the Ising model.7 The second
significant advance is the coupling technique refined by Aldous,8 which has led to efficient ap
proximation algorithms for colorings,9,10 independent sets,11 and planar dimer models,12 as well as
problems of a more combinatorial nature~e.g., Refs. 13–15!. Further refinement, viapath cou-
pling, due to Bubley and Dyer13 has made the coupling technique by far the most successful
way to prove the rapid mixing of Markov chains.

While this explosion of results has been encouraging, many natural Markov chains whic
believed to be rapidly converging to stationarity continue to resist analysis. In fact, many o
solutions cited above have involved clever manipulations of the simplest Markov chains s
they still have the desired properties~i.e., they are easy to implement and have the des
stationary distributions! but they are enhanced with additional moves which enables a sim
analysis. These enhanced chains are inspired by heat bath algorithms, including the
moves’’ in the case of tilings,12 ‘‘edge moves’’ in the case of independent sets,11,16and ‘‘Kempe-
chain moves’’ for colorings.10

In this work we derive rigorous bounds for the Glauber dynamics for these problem
comparing these simpler chains to the enhanced chains which have already been shown
verge rapidly. We focus on two applications which best demonstrate the versatility of this me
generating lozenge tilings on the triangular lattice~a planar dimer model! and generating random
triangulations of a convex polygon. Further applications of this method to the case of do
tilings, colorings, and independent sets can be found in Ref. 17~see also Ref. 10!.

The proof technique uses a comparison theorem due to Diaconis and Saloff-Coste.18 Their
theorem yields a geometric comparison inequality that gives bounds on the eigenvalue
reversible Markov chain in terms of the eigenvalues of a second chain. The main applicat
Ref. 18 was to give a sharp upper bound on the second eigenvalue of the symmetric ex
process on a graph. The symmetric exclusion process on a graph is a certain generalizat
simple random walk on a graph and can be described as follows. Start with an arbitrary plac
of r particles onr vertices of a graph. At each discrete time step, a particle is chosen at ran
and then one of its neighboring vertices is chosen at random. If the neighbor is unoccupied~by a
particle!, then the chosen particle is moved there, otherwise the system stays as it was. The
case ofr 51 corresponds to the simple random walk on a graph. Diaconis and Saloff-Coste
the second eigenvalue of this chain by comparing it to a well-studied chain~the Bernoulli–Laplace
model for diffusion! whose eigenvalues are known.

Our approach is somewhat different in this paper since the Markov chains we work wit
much more combinatorial in nature; in particular, it is very hard to determine the second e
value of these chains or of related chains with the same stationary distributions. Howeve
‘‘known’’ chains in our applications are chains whose mixing times are known. Using the exi
literature on relating the time to reach equilibrium and the second eigenvalue~e.g., Refs. 4 and
19!, together with the comparison theorem, we derive an inequality relating the mixing tim
two chains. This allows us to estimate the rate of mixing of the ‘‘unknown’’ chains~based on
single site updates! mentioned above. Direct analysis of any of these chains seems challengin
might yield tighter bounds on the mixing times.

After describing our two main applications, we devote a section to survey other compa
techniques which have found useful applications in this topic. Perhaps the first person to
comparison technique in the context of Markov chain Monte Carlo was Holley.20 Holley’s hy-
pothesis, however, as we shall see in Sec. V, is too stringent for the kind of application
mention in this paper. Diaconis and Saloff-Coste also mention a few variants of the comp
theorem, one of which, using the notion offlows, is slightly more general than the version we u
in our two main applications here. Very recently Vigoda~see Ref. 10! managed to make use o
this generality in the context of samplingk-colorings of a graph. We describe this result briefl
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while referring the reader to Ref. 10 for the full details. We then describe the role of the log
mic Sobolev constant in bounding mixing times, and the corresponding comparison techn
following Ref. 21. Recently Dyer and Greenhill also used a different, simpler comparison
nique to argue that the Glauber dynamics for independent sets~i.e., the hardcore~lattice! gas
model on arbitrary graphs! is efficient.16 Their basic idea is nice, and is also a statement ab
comparison of eigenvalues~see Sec. V for details!. However, their method is not as widel
applicable and is only effective when the enhanced moves can be implemented using a~very
small! bounded number of Glauber moves; we will see that this is not the case for the two
applications given in this paper. Finally, there have been several results relating block dyn
and Glauber dynamics for certain problems, due to Martinelli,22 van den Berg and Brouwer,23 and
~indirectly! Madras and Randall.24,25

In Sec. II we describe relevant results from the theory of rapidly mixing Markov cha
including relations between mixing times and eigenvalues, and comparison inequalities. In
III and IV we describe in detail the application to lozenge tilings and triangulations. In Sec. V
describe briefly several other related comparison techniques.

II. THE COMPARISON THEOREM AND MIXING RATES

Let (V,P,p) denote an ergodic~i.e., irreducible and aperiodic! Markov chain with finite state
spaceV, transition probability matrixP, and stationary distributionp. Furthermore, we assum
that the chain is reversible, i.e., that we have the detailed-balance conditions,p(x)P(x,y)
5p(y)P(y,x), for all x,yPV. Assuming we are dealing with discrete-time Markov chains,
x,yPV, tPZ1, let Pt(x,y) denote thet-step probability of going fromx to y. Then the time a
Markov chain takes to be close to equilibrium can be measured using thevariation distance
betweenPt andp, where the variation distance is given by

Dx~ t !5
1

2 (
yPV

uPt~x,y!2p~y!u.

We also denote byD(t) the variation distance starting from the worst state, i.e.,D(t)
5maxxPV Dx(t).

A. Mixing time and the second eigenvalue

For e.0, themixing time, starting from statex, is defined by

tx~e!5min $t:Dx~ t8!<e, ;t8>t%.

Once again we denote byt(e) the mixing time starting from the worst state, i.e.,t(e)
5maxxPV tx(e). For the rest of the paper, when we refer tomixing time, we always meant(e).

Let 15l0.l1>l2>¯>l uVu21.21 denote the eigenvalues ofP. The following result of
Sinclair26 ~which is an extension of a key result from Ref. 14; see also Ref. 19! shows the
relationship between mixing times and the maximum eigenvalues. Strictly speaking,l1 in the
following theorem should be replaced bylmax5max (l1,uluVu21u), but in all our applications
below we make sure thatl1.ul uVu21u.0 by adding self-loops with weight12.

Theorem 1: For e.0, we have
~i! for all xPV, tx(e)<1/12l1 log (1/p(x)e);
~ii ! maxx tx(e)>l1/2(12l1)log (1/2e).

B. Mixing time and coupling time

Another method for bounding the mixing timet(e) is to construct acouplingfor the Markov
chain. A coupling is a new Markov chain on the state spaceV3V ~whereV is the original state
space, e.g., the set of three-colorings! with the following properties. Rather than updating tw
configurations independently, the coupled process correlates the random coin flips while
taining that each configuration, when observed in isolation, is just performing transitions o
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original Markov chain. In addition, we need that if the two configurations agree, the cou
process will force them to agree at all future times. Coupling is a crucial ingredient in all o
applications in Sec. III.

The following theorem states that the coupling time, which is the expected time it take
two configurations to meet starting from the worst starting point, provides a good bound o
mixing time. More formally, letx andy be the starting configurations. Then

Tx,y5min $t:Xt5YtuX05x,Y05y%,

and define thecoupling timeto beT5maxx,y ETx,y. The following result relates the mixing tim
and the coupling time~see Ref. 18!.

Theorem 2: t(e)<6T(11 ln e21).

C. Comparison of eigenvalues „via Dirichlet forms …

Let P̃ andP denote two reversible Markov chains on the same state spaceV with the same
stationary distributionp. Then Diaconis and Saloff-Coste~see Ref. 18! provide the following
geometric bound between the two eigenvaluesl1( P̃) andl1(P). Strictly speaking, the result in
Ref. 18 compares the Dirichlet forms associated withP̃ andP, thus yielding the following com-
parison result betweenall nontrivial eigenvalues, and not just the second eigenvalue.~Also, the
assumption that the stationary distributions be identical can be weakened to the stationary
butions be comparable.!

First we need some more notation. As we shall see, in applications,P̃ is the chain with known
eigenvalues~or known mixing time!, and P is the chain whose mixing time we would like t
bound by comparing withP̃. Let E(P)5$(x,y):P(x,y).0% andE( P̃)5$(x,y): P̃(x,y).0% de-
note the sets of edges of the two chains, viewed as directed graphs. For eachx,y with P̃(x,y)
.0, define a path gxy using a fixed sequence of states,x05x,x1 ,...,xk21 ,xk5y with
P(xi ,xi 11).0. The length (5k) of such a path will be denoted byugxyu. Further let

G~z,w!5$~x,y!PE~ P̃! such that ~z,w!Pgxy%

denote the set of paths which use the transition~z,w!.
Theorem 3: With the above notation, we have

„12l1~P!…>
1

A
„12l1~ P̃!…,

where

A5A~G!5 max
~z,w!PE~P!

H 1

p~z!P~z,w! (
G~z,w!

ugxyup~x!P̃~x,y!J .

It is worth noting that the quantityA above depends on our choice of paths$gxy%; thus these
paths play a role akin to that of thecanonical paths~introduced by Jerrum and Sinclair4,5! in
bounding theconductanceof a Markov chain. However, the crucial difference, as pointed ou
Ref. 18, is that we need only define these paths between pairs of states which are adjacen
known chain.

In the following our strategy is as follows. We begin with a bound on the mixing time
chain established, say, via the coupling method and Theorem 2. We then use part~ii ! of Theorem
1 above to lower bound the spectral gap of such a chain. Next we use the comparison th
~Theorem 3! to lower bound the spectral gap of an unknown chain by carefully bounding
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parameterA. This in turn provides us with a bound on the mixing time of the unknown chai
view of part ~i! of Theorem 1. The following technical proposition makes precise the aforem
tioned strategy, and is thus crucial to our results of the next section.

Let t̃(e) and t(e) denote the mixing times ofP̃ and P, respectively. Then withA as in
Theorem 3, we have the following comparison result relating the mixing times. Letp* denote
minxPV p(x).

Proposition 4: For0,e,1, and for all xPV, we have

t~e!<
4 log„1/~ep* !…

log ~1/2e!
At̃~e !.

Proof: For 0,e,1, from part~ii ! of Theorem 1, we have

t̃~e !>
l1~ P̃!

2„12l1~ P̃!…
log S 1

2e
D .

This implies that

„12l1~ P̃!…>
1

4t̃~e !
log S 1

2e D ,

wherein we also used the trivial bound,l1( P̃)> 1
2. Now using the comparison theorem, we g

that

12l1~P!>
1

A
„12l1~ P̃!…>

1

A

1

4t̃~e !
log S 1

2e D .

Finally, using part~i! of Theorem 1 we can bound the mixing time ofP, starting from any statex,

tx~e!<
4 log~1/„ep~x!…!

log ~1/2e!
At̃~e !,

completing the proof of the proposition.
Remark 1:The above proposition illustrates the fact that the comparison argument is effe

as long as we can control the factorA, which depends on the choice of paths in the unkno
chain. The dependence onp* , albeit not as crucial, can affect the mixing time by another fac
involving the size of the input, since 1/p* in most cases is at most exponential in the size of
input.

Remark 2:Note that Theorem 3 also holds with spectral gaps replaced by thelogarithmic
Sobolevconstants of the Markov chains, since the definitions of both the spectral gap an
log–Sobolev constant use the~same! Dirichlet form ~see Sec. V and also Ref. 21!. Although the
log–Sobolev constant offers a tighter upper bound on the mixing time~as defined here!, due to the
lack of an appropriate lower bound, we are not able to make use of the comparison of
Sobolev constants. However, this is certainly a useful avenue, if one is able to bound othe@e.g.,
L2(p)# notions of mixing time for the chain that one is comparing to~see comments following
Corollary 10 in Sec. V!.

III. LOZENGE TILINGS

Let R be a region of the triangular lattice. A lozenge tiling ofR is a covering of the region
with lozenges tiles, where each lozenge covers two adjacent cells inR and no two lozenges
overlap. Just looking at a lozenge tiling causes a three-dimensional surface to appear—in f
                                                                                                                



s in a
e shape

cube.
and if
x

ace is

s

w

oach

1603J. Math. Phys., Vol. 41, No. 3, March 2000 Analyzing Glauber dynamics by comparison of . . .

                    
set of lozenge tilings corresponds bijectively with the surfaces formed by placing unit cube
larger three-dimensional frame such that each cube is supported on its back three sides. Th
of the frame is uniquely determined from the regionR ~see Fig. 1!.

Given this equivalence, there is an obvious Markov chainMssu for generating tilings.
Namely, connect any two tilings whose surfaces differ by the addition or removal of a single
In the two-dimensional picture of a tiling this corresponds to choosing a hexagonal window
it is comprised of three tiles, rotate them by 60°~see Fig. 2!. More precisely, the transition matri
P(•,•) of Mssu is defined as

P~x,y!5H 1/2N, if x% y is a cube~or hexagon!,

12(
zÞx

P̃~x,z!, if y5x.

In Ref. 12 a modified algorithm based on tower moves was analyzed. Again the state sp
the set of all lozenge tilings. Two tilings differ by a tower of heightk if they differ by the addition
or removal of a 1313k vertical column of cubes. Letx andy be lozenge tilings of the regionR.
Let Mloz represent the Markov chain in which there is a move fromx to y if and only if the
symmetric difference of the edges ofx and y is a tower. Recall that the transition probabilitie
P̃(•,•) of Mloz are defined by

P̃~x,y!5H 1/2Nh, if x% y is a tower of heighth,

12(
zÞx

P̃~x,z!, if y5x,

whereN is the area of the region being tiled. Note that bothMssu and Mloz have the uniform
distribution as the stationary distribution. Wilson27 improves the analysis given in Ref. 12 to sho
that the Markov chain based on tower moves mixes in timeO„W2N logN log (2/e)…, whereW is
the width andN is the area of the triangular lattice region to be tiled. However, neither appr
gives the mixing time ofMssu.

A. Comparing Markov chains for tilings

We now define a set of paths and then boundA corresponding to these paths. For each~x,y!
which differ by a tower move of heighthxy ~and are thus adjacent in the known chain!, there is a

FIG. 1. A lozenge tiling viewed as a surface.

FIG. 2. A move in the Markov chainMssu.
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unique minimum length sequence of single-site update moves of lengthhxy which transformsx
into y. Such a sequence defines a pathgxy , in a natural way, using transitions ofP(•,•). Note that
the length of the path ishxy andP̃(x,y)51/2Nhxy . Consider an arbitrary~z,w! wherez andw are
lozenge tilings which differ by a single cube. Note thatP(z,w)51/2N. Furthermore, for a given
~z,w! the number of~x,y! such that the pathgxy uses~z,w! is at mostH2, whereH is the maximum
height of a tower.~This is because the bottom and the top of any tower containing a parti
single site can be chosen in at mostH ways.! This yields the following bound for the quantityA
from the comparison theorem:

A5 max
~z,w!PE~P!

H 1

p~z!p~z,w! (
G~z,w!

ugxyup~x!P̃~x,y!J
5 max

~z,w!PE~P!
H 2N

p~z! (
G~z,w!

hxyp~x!~1/2Nhxy!J
< (

G~z,w!
1<H2.

Theorem 5: Let R be a region in the triangular lattice whose convex hull has area N. T
the mixing time ofMssu for generating a lozenge tiling of R is given by

tssu5O„N4 logN1N3 logN log ~1/e!….

Proof: Clearly the number of lozenge tilings of a region of sizeN is at most 3N ~since we can
overcount by replacing each triangle in the underlying region with a triangle with one
identified—those configurations where identified edges line up are the set of valid tilings!. The
bound on the mixing time ofMloz given by Wilson27 is t(e)5O„W2N logN log (1/e)…, whereW
is the width of the region. Therefore, by Proposition 4,

tssu<
log „1/~ep* !…

log ~2/e!
~H2!„W2N logN log ~1/e!…

5O„N4 logN1N3 logN log ~1/e!…,

sinceH* W5O(N). h

B. Domino tilings and three-colorings

The single site algorithm for domino tilings and three-colorings~on regions with fixed bound-
ary conditions! follows exactly the same analysis. Starting from any domino tiling, e.g., choo
232 window; if there are two parallel dominoes, rotate them by 90°. This simple algorith
motivated by the linear time tiling algorithm of Thurston28 for generating a single tiling. In Ref. 12
a tower algorithm is presented which achieves a mixing time ofO(N3.5

„11 log (1/e)…), whereN
is the area of the Cartesian lattice region to be tiled. We can show thatA<H2, whereH is the size
of the maximal tower; for square regions this isO(N1/2) and in general, is at mostN. In addition,
the number of domino tilings is trivially bounded by 4N. Thus, the comparison theorem esta
lishes the efficiency of this local algorithm. The analysis for three-colorings~also referred to as
Eulerian orientations or the ice model! is completely analogous.

IV. TRIANGULATIONS OF CONVEX POLYGONS

The set of triangulations of a convexn-gon is a well-known characterization of the Catal
numbers$cn%. Two other common representations ofcn which will be useful in this discussion ar
Dyck pathsandbinary trees~see Ref. 29 for a general survey!:
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~i! A Dyck path from~0,0! to (2n,0) is a lattice path with steps~1,1! and~1,21! never falling
below thex axis.

~ii ! A binary tree of sizen is a rooted tree withn internal nodes~those with two descendants!
andn11 external nodesor leaves~those with no descendants!.

Each of these representations offers its own Glauber dynamics, which we refer to
‘‘interchange graphs.’’ The interchange graphs for the three representations are defined as
~see Fig. 3!:

~i! Triangulations:The set of triangulations forms the vertex set of the interchange graph
two triangulations are adjacent if one can be obtained from the other by a diagonal fl
described in Ref. 30. Every diagonal in a triangulation of a convex polygon defin
quadrilateral. A diagonal flip replaces that diagonal with the other diagonal of the
quadrilateral. Sleatoret al.30 show this move connects the state space and they obta
tight upper and lower bounds~of 2n26! on the diameter of this interchange graph a
other results on triangulations of the sphere~see Ref. 31 for a simpler proof!.

~ii ! Binary trees:Two binary trees withn internal nodes are adjacent if one can be transform
into the other by applying the rotation operation. A rotation at a node is defined as s
in Fig. 4. Sleatoret al. also showed that this graph is isomorphic to the previous one
triangulations of a convex (n12)-gon.

~iii ! Dyck paths:Similarly, in the collection of Dyck paths of length 2n, two elements are
adjacent if one may be changed into the other by flipping a peak into a valley@that is,
changing~1,1!, ~1,21! to ~1,21!, ~1,1!# or a valley into a peak@that is, changing~1,21!,
~1,1! to ~1,1!, ~1,21!#. It is easy to see that the diameter of this graph is preciselyn(n
21)/2.

The interchange graph on triangulations is of particular interest because it suggests a M
chain on a general planar point set, a problem of central interest in computer graphic
computational geometry. We will review the use of the comparison technique analyzed for
kov chain in the convex case by McShine and Tetali15 which shows thatO„n5 log (n/e)… are
sufficient to get close~within e in variation distance! to the stationary distribution, which in thi
case is uniform over triangulations. Previously Molloyet al.32 showed thatO„n23 log (n/e)… steps

FIG. 3. Local moves defining interchange graphs.

FIG. 4. Local moves on binary trees.
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are sufficient using a conductance argument. Their lower bound determiningv(n3/2) suggests that
there is still room for improving the upper bound on the convergence time.

Naturally there are known bijections between these representations for the Catalan num
was shown in Ref. 30 that the interchange graphs for triangulations and binary trees are i
phic. Thus, it follows that it is sufficient to bound the mixing rate of a Markov chain based on
interchange graph on binary trees~to establish the corresponding bound on a Markov chain
triangulations!. This is our first step.

The bijection between binary trees and Dyck paths is more interesting, and it is the re
between their interchange graphs which underlies our application of the comparison theo
Diaconis and Saloff-Coste. That is, we use the bound on the mixing time of the chain on
paths as established by Wilson27 and then use this to bound the mixing time of a chain on bin
trees.

A. Comparing chains based on interchange graphs

Let RG(n) denote the interchange graph on binary trees, where two trees are conne
they differ by a single rotation. The transition probabilities of the Markov chain onRG(n) are
defined as follows. For two distinct binary treesz andw,

P~z,w!51/@2~n21!#, if ~z,w!PE„RG~n!…,

P~z,z!5 1
2.

The transition probabilities of the Markov chain onDG(n), the interchange graph for Dyc
paths of length 2n, are defined as follows. For two distinct Dyck pathsx andy,

P̃~x,y!51/@2~2n23!#, if ~x,y!PE„DG~n!…,

P̃~x,x!512(
y;x

P~x,y!> 1
2.

It is easy to verify that the two Markov chains as defined above do indeed satisfy the re
ibility ~i.e., detailed-balance! condition and also that they share the uniform distribution as
stationary distributionp. So forxPṼ andzPV, we havep̃(x)5p(z)51/cn .

Let t(e) and t̃(e) denote the mixing times of the Markov chains onRG(n) and DG(n),
respectively. First we may deduce from Ref. 27 that the Markov chain onDG(n) has mixing time

t̃~e !5O„n3~ logn1 log 1/e!…, 0,e,1.

Our known chain,P̃, is the chain with the set of Dyck paths of length 2n as the state space
denotedṼ; our unknown chain,P, is the chain with the set of binary trees withn internal nodes
as the state space, denotedV. We would like to use Proposition 4 to get a bound on the mix
time t(e). First note that Proposition 4~and 2! requires the state spacesṼ and V of P̃ and P,
respectively, to be the same. In the present case, although they are not the same, the prop
are still applicable in view of the fact that we are able to define a bijectionf :Ṽ→V between them.

The bijection between binary trees and Dyck paths is easiest to describe through a bi
from each to another Catalan structure—the set of binary strings of length 2n with equal number
of 1’s and 0’s, wherein the number of 1’s in each string is always greater than or equal
number of 0’s as we count from left to right in the string~see Fig. 5!. Given a Dyck path of length
2n, a segment of slope11 corresponds to a 1 and a segment of slope21 corresponds to a 0
Given a binary string onn internal nodes, label theleft edges~edges leading to left descendant!
with a 1 and theright edgeswith a 0. Now the corresponding binary string is the one obtained
reading the labels as the tree is traversed, recursively, starting from the root, first visiting th
subtree and then the right subtree. We leave it to the reader to verify that this is indeed a bij
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The canonical pathgxy of the comparison technique is now a path inP, which can be
described as a sequence of states,f (x)5z0 ,z1 ,...,zk21 ,zk5 f (y), for (x,y)PE„DG(n)…. The
description of the paths will be simplified by using the above binary string representation of
paths from now on.

Following Ref. 30, we will state some definitions. Asubtreeof a binary tree is either a singl
node or a binary tree with at least one internal node. Subtrees will be denoted byTi , and this will
stand both for the subtree and the binary string representation ofTi . The depthof a node in a
binary tree is the length of the shortest path from the root to that node. It is convenient to
these binary trees as binary search trees with labels on the nodes, namely, with the prope
the label of a node is bigger than the labels of all the nodes in its left subtree, and smaller th
labels of the nodes in its right subtree. This gives a natural ordering on the nodes of a tre
rotation operation mentioned earlier preserves this node ordering, not surprisingly, since th
tions were invented as a way of restructuring binary search trees. Specifically, the rotation
tion is defined as shown in Fig. 4. SubtreesTi consist of single nodes or larger binary trees. Af
a rotation atY, the parent ofY becomes the parent ofX; if Y is the root of the tree, thenX becomes
the new root after the rotation.

Rotations do not change the number of internal nodes, and for a tree withn internal nodes,
there aren21 rotations possible at any time, one for each internal node, except for the root
rotation at a node brings the node one step closer to the root, thus decreasing the depth of th
by exactly one.

Referring to Fig. 4, a rotation atX ~called anX-rotation! decreases the depth of nodes
subtreeT1 by 1, increases the depth of nodes in subtreeT3 by 1, and leaves the depth of all oth
nodes the same. In the same way, a rotation atY ~called aY-rotation! decreases the depth of nod
in subtreeT3 by 1, increases the depth of nodes in subtreeT1 by 1, and leaves the depth of a
other nodes the same.

B. Canonical paths

We need to defineG5$gxy%, for (x,y)PE( P̃). This can be done in a natural way, once w
analyze a transition fromx to y in DG(n), according to whether it is a 01→10 flip or a 10
→01 flip, and interpret the flip in terms of the corresponding binary trees,f (x) and f (y).

The easy case is iff (x) and f (y) differ by a single rotation—iff (x); f (y) in P, thengxy is
simply the edge„f (x), f (y)…PE(P). But in general, (x,y)PE( P̃) does not imply„f (x), f (y)…
PE(P). Figure 6 characterizes the differences in two binary trees, which have adjacent rep
tations as Dyck paths. In such a case, we will define a unique sequence of rotations
transformsf (x) into f (y), and the corresponding sequence of edges inP which forms the corre-
sponding canonical pathgxy . We shall do this for the case whenx→y is a 01→10 flip, and in the
other case the path is just the reverse of the path in this case; we are justified in doing thi
the interchange graphs can be viewed asundirectedgraphs.

To simplify the discussion, we will now introduce some new terms which are illustrate
Fig. 3. Theroot of a subtreeTi , root (Ti), is the top vertex of that subtree. Theendof a subtree
Ti , end (Ti), is the rightmost vertex ofTi .

The following observation is key to understandingG and to boundingA(G). A 01→10 flip
moves a particular left subtree (T3 in Fig. 6! hanging from the right child of some nodeN to being
the rightmost subtree of the left child ofN. This is easy to verify by considering the binary strin

FIG. 5. Bijection via binary strings.
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corresponding tox andy, which differ in a 01→10 flip, and then by constructingf (x) and f (y).
We call such a subtree thecharacteristic subtreeof that particular 01→10 flip, since it uniquely

identifies the edge (x,y)PE( P̃). In Fig. 6,T3 is the characteristic subtree of the flip which tak
x to y. Note that such a subtree can also be a single node.

The canonical pathgxy is the unique sequence of rotations which transforms the binary
f (x) into f (y)—the first rotation is performed at the parent of the root of the characteristic sub
and then every subsequent rotation is at the sibling of the root of the characteristic subtree.@In Fig.
6 the black nodes denote the nodes at which rotations are performed; also for convenien
trees are calledx andy, rather thanf (x) and f (y).#

Claim: With G being the set of canonical paths as described above, the comparison
A(G)5O(n).

Proof: We will show thatA(G) is at mostO(n) by arguing that the length of a canonical pa
is at mostn, and that each rotation in a binary tree is used by at most one canonical pathgxy ,
wherex→y is a 01→10 flip, and by at most one canonical path corresponding to a 10→01 flip.

First notice that in a path corresponding to a 01→10 flip, the depth of the root of the
characteristic subtree remains the same after the first rotation, but increases by exactly o
every subsequent rotation. At mostn22 internal nodes can participate~by being siblings of the
root of the characteristic subtree! in increasing the depth—the grandparent of the character
subtree and any nodes in the right subtree of the right child of the grandparent are the node
a rotation is not performed in such a canonical path. This shows that the length of a canonic
can be at mostn21. ~The argument for a 10→01 flip is analogous.!

Second, consider an arbitrary rotation (z,w)PE(P). Whether it is anX-rotation or a
Y-rotation, there are always at most two choices for a subtree to play the role of a charac
subtree. Referring to Fig. 4, if~z,w! is anX-rotation, then eitherT3 is the characteristic subtree o
a 01→10 flip or T2 is the characteristic subtree of a 10→01 flip. The rotation~z,w! and the choice
of either T2 or T3 as the characteristic subtree uniquely identifies the pair~x,y! such that (z,w)
Pgxy . Referring once again to Fig. 4, if~z,w! is anX-rotation, thenT3 will eventually end up as
the right subtree of end (T2), giving usy. Knowing y and the fact thatT3 is the characteristic
subtree uniquely determinesx. If, on the other hand,T2 were to be the characteristic subtree, th
w is in fact y, andx can be uniquely determined given thatx→y is now a 10→01 flip.

Thus, for a fixed (z,w),uG(z,w)u<2, and when (z,w)Pgxy ,ugxyu<n21. We havep(x)

5p(z)5(n11)/(n
2n). Also, P(z,w)51/(2n22), for all (z,w)PE(P), and P̃(x,y)51/(4n

26), for all (x,y)PE( P̃). Thus,

FIG. 6. Canonical path fromx to y, differing in a 01–10 flip.
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A~G!5 max
~z,w!PE~P!

H 1

p~z!P~z,w! (
G~z,w!

ugxyup~x!P̃~x,y!J
<

n21

2n23
@2~n21!#5O~n!.

h

Applying Proposition 4, with the known bound on the mixing time ofP̃, we can now bound
the mixing time ofP, the Markov chain on binary trees:

t~e!<
4 log~1/ep* !

log ~1/2e!
n„n3~ logn1 log 1/e!…

5
4„log ~1/e!1 log ~cn!…n4~ logn1 log 1/e!

log ~ 1
2!1 log ~1/e!

5OS n5 logn

log ~1/e!
1n4 logn1n51n5 lognD5O„n5~ logn1 log 1/e!…,

thus establishing the following theorem.~See comments following Corollary 10 for a possible w
to improve this bound.!

Theorem 6: The mixing time of the Markov chain on triangulations of a convex(n12)-gon
(equivalently, on binary trees with n internal nodes) satisfies, for0,e,1,

t~e!5O„n5 log ~n/e!….

V. OTHER COMPARISON TECHNIQUES

A. Holley’s result

In his well-known paper20 on possible rates of convergence in finite range attractive
systems, Holley proved the following comparison type result as well. LetSdenote the finite set o
spins and letV5SZd

denote the state space corresponding toS-valued configurations onZd.
Holley considers finite-range, translation-invariant, attractive jump rates on the infinite vo
with the jump rates denoted byc(k,h,s) for site k with the spinh at time t to switch to spins.
Then Theorem 0.2 of Ref. 20 states the following.

Theorem 7: Let $c(k,•,•):kPZd% be the finite-range, translation-invariant, attractive jum
rates for an infinite system of interacting processes and suppose that the correspo
semi-group converges exponentially fast to its equilibrium. Then there is ad.0 such that if
$c̄(k,•,•):kPZd% is a similar collection of jump rates and

sup
hPV

(
sPS

uc~0,h,s!2 c̄~0,h,s!u,d,

then the semi-group generated by the jump rates c¯also converges to equilibrium exponential
fast.

Note that due to the translation invariance, it suffices to consider the jump rates at a fixe
such as 0. Holley uses this theorem in conjunction with the main theorem in his paper to co
that for the so-called contact process~see Ref. 33! at the critical value of the parameter, either th
process is not ergodic or it converges to the state0 at a rate which is at mostt2d. ~When
dimensiond51, this result was known due to Griffeath.33!

Loosely paraphrasing Holley’s result in our present context of discrete-time finite state
kov chains would be saying: if the dynamics generated byP is rapidly mixing, then a related
dynamicsP̃ is also rapidly mixing, provided
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max
x

(
y

uP~x,y!2 P̃~x,y!u<
d

n
,

for some fixedd.0, wheren is the size of the underlying input parameter~e.g., the number of
sites in the system or the number of vertices in a graph!, introduced by the sequentiality of th
Glauber dynamics considered in this paper. It can be checked that the above, although b
useful result in Holley’s considerations, demands in its hypothesis too stringent a condition
satisfied by the applications mentioned in the preceding sections.

B. Diaconis–Saloff-Coste comparison using flows and Vigoda’s result

Going back to the framework of Theorem 3, in applications sometimes one finds that th
more than one pathx5x0 ,x1 ,...,xk5y with P(xi ,xi 11).0 @i.e., (xi ,xi 11)PE(P)# between
pairsx,y such thatP̃(x,y).0 @i.e., (x,y)PE( P̃)#. In such situations one can reduce the comp
son factorA(G) by ‘‘distributing the weight’’ ~or routing the flow! overa set of paths, rather than
accounting for each nonlocal moveP̃(x,y) via a single~canonical! path. This is captured precisel
in the following theorem of Diaconis and Saloff-Coste.18 The following version is simpler, due to
our added assumption of identical stationary distributions. LetGxy denote the set of all simple
paths connectingx andy as before and setG5ø (x,y)PE( P̃)Gxy . Forg P G, let ugu denote its length.
A function f :G→R1 is called a (P,P̃) flow if for every (x,y)PE( P̃),

(
gPGxy

f ~g!51.

Then Theorem 2.3 of Ref. 18 yields the following.
Theorem 8: With the above notation, we have

„12l1~P!…>
1

A~ f ,G!
„12l1~ P̃!…,

where

A~ f ,G!5 max
~z,w!PE~P!

H 1

p~z!P~z,w! (
gPGxy :~z,w!Pg

ugu f ~g!p~x!P̃~x,y!J .

It is easy to see that Theorem 3 is a special case of the above theorem—simply route all th
through the chosen~canonical! pathgxy for each pair (x,y)PE( P̃). In Ref. 18 this theorem was
used in analyzing the exclusion process. Of course, Proposition 4 also holds withA replaced by
A( f ,G).

Very recently, Vigoda~see Ref. 10! found a nice application of this theorem in showing th
the Glauber dynamics for samplingk-colorings of ann-vertex graphG of maximum degreeD(G)
is at mostO„(k logk)n2 logn… as long ask.(11/6)D(G). @Vigoda also shows that the dynamic
is rapidly mixing whenk5(11/6)D, but the bound on the mixing time is worse.# In terms of rapid
mixing, the previously best-known bound on the number of colors wask>2D(G), as shown by
Jerrum.8 Racall that the Glauber dynamics for sampling colorings picks a vertex and a
uniformly at random and attempts to color the vertex with the chosen color~i.e., if none of the
neighbors of the vertex have the chosen color!. Direct analysis of Glauber for this problem fork
significantly less than 2D ~and still above, sayD12! seems an extremely difficult task, an
Vigoda succeeded in obtaining the modest improvement by using the so-called Kempe
moves: the transitions consist of flipping two-colored clusters in the following sense. Give
current colorings, pick a vertexv and a colors(v) uniformly at random; consider the maxima
clusterof vertices which containv and have colorc or s(v). ~By a cluster, we mean a connecte
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induced subgraph.! With a carefully chosen probability, flip this cluster by interchanging colorc
and s(v) on it. In his algorithm only clusters of size 6 or less are ever flipped. For this ch
Vigoda shows a mixing time ofO(kn logn) wheneverk.(11/6)D.

To bound the mixing time of Glauber dynamics, Vigoda uses the availability of extra c
~since k.D! to advantage and defines multiple paths, and manages to show thatA( f ,G)
5O(1), where the flowsf are simply chosen to be uniformly distributed over the available pa
The details can be found in Ref. 10. Do note that flows help here, since a straightforward
cation of Theorem 3 only givesA(G)5O(kD2) or so. However, the curse of log (1/p* ) cannot be
avoided, which in this application isO(n logk) @since there can beV(kn) proper colorings ofG#,
thus giving the aforementioned bound ofO„(k logk)n2 logn…, via Proposition 4.

C. Comparison using the log–Sobolev constant

It turns out that the extra factor log (1/p* ) can be avoided if one manages to bound theL2(p)
distance~of the known chain! from stationarity rather than the total variation distance. In sh
this is because the log-Sobolev constant captures the time to make theL2 distance small in a sharp
way—up to a factor of log log (1/p* ).

First recall a few definitions. We let (V,P,p) denote the standard triple from Sec. II. Th
logarithmic Sobolev constantr5r(P).0 is the optimal constant in the functional inequality: f
all f :V→R,

r Entp f2<
1

2 (
x,y

„f ~x!2 f ~y!…2P~x,y!p~x!,

where Entp fªEpf log f2Epf(logEpf). ~In some of the literaturer21 is referred to as the log–
Sobolev constant instead.! Also recall that the spectral gapl(P)ª12lmax has the variational
~functional! characterization as the optimal constantl.0 in

l Varp f <
1

2 (
x,y

„f ~x!2 f ~y!…2P~x,y!p~x!,

where Varp f denotes the varianceEp f 22(Ep f )2. Given that the comparison theorems
Diaconis–Saloff-Coste actually compare the Dirichlet forms ofP andP̃ ~i.e., the right-hand sides
of the above definitions!, it should come as no surprise that the analogs of Theorems 3 and 8
with the spectral gaps replaced by the log–Sobolev constants ofP and P̃.

The other key ingredient in the comparison method we have used was Theorem 1, a
need an analog in terms ofr rather thanl. Towards this, following Ref. 21, it is also useful t
define theLp-time, for 1<p<`, which captures the approach to stationarity using theLp(p)
norm. For 1<p,`, let

Im

p
21I

p,p

ªS (
x

Um~x!

p~x!
21Up

p~x! D 1/p

.

Also, let

Im

p
21I

`,p

ªS max
x

Um~x!

p~x!
21U D .

For e.0 andxPV, let

Tp~e!5max
x

min H t̂.0:IPt~x,• !

p~• !
21I

p,p

<e, ;t> t̂ J .
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Note that the total variation norm is one-half of theL1(p) norm, and sot(e)5T1(2e). For
convenience, we lete51/e, and letTp(1/e)5Tp . Then the analog of Theorem 1 asserts
following ~see Refs. 21 and 34 for a proof in continuous time, and Ref. 35 for a discrete
version!.

Theorem 9: Let (V,P,p) be as above. Then for2<p<`,

1

2r
<Tp<

1

2r
„c1 log log~1/p* !…,

where c.0 is a small absolute constant.
Remark 3:For p51, a case of special interest and relevance, the lower bound in Theor

is unfortunately not known to be true, even with a worse absolute constant. The upper bo
indeed true, withp51, and has an elementary proof, but is not directly useful for compariso
total variation mixing times.

It should be easy to see that an analog of Proposition 4 is possible relating theLp-times ofP
and P̃ which in addition to the comparison factor ofA(G) would only have a log log (1/p* )
factor. LetTp and T̃p denote theLp-times ofP and P̃, which are both reversible Markov chain
Then the analog of Theorem 3 for the log–Sobolev constant and Theorem 9 together yie
following.

Corollary 10: Given(V,P,p), (V,P̃,p), and A(G) as defined in Theorem 3, for2<p<`
we have

Tp<„c1 log log~1/p* !…A~G!T̃p ,

where c.0 is a small absolute constant.
The obvious difficulty in making direct use of the above theorem for comparison purpos

that one first needs a ‘‘known chain’’P̃ for which eitherr( P̃) or Tp , for p>2, should be known.
We briefly mention two examples where the log–Sobolev comparison theorem has yielde
proved bounds on mixing rates. Using Fourier techniques, Diaconis and Shashahani36 computed
all the eigenvalues of the Markov chain arising from random transposition shuffle. In Ref. 37
precise information of eigenvalues was used in the comparison ofL2-times of random walks on
groups. In particular,T2 of the ~random! adjacent transposition shuffle was shown to
O(n3 logn). It is very likely that one can use this information together with the connec
between permutations andthreshold functions~see Ref. 27! to show thatT2 of Dyck paths is
O(n3 logn). In turn, this would yield for theT2 ~and henceT1! of the chain on triangulations a
improved bound ofO(n4 log2 n), via Corollary 10.

D. Dyer–Greenhill result

Consider as in the previous sections, two~reversible! Markov chains with the same state spa
V and the same stationary distributionp. Then under the further assumption of a certainlinear

relationship between the entries of the two transition probability matrices~P andP̃! of the chains,
a corresponding linear relationship between the spectral gaps of the two matrices is derived
16. Once this is established, using Proposition 4 or a similar one~as done in Ref. 16!, the mixing
rates of the two Markov chains can also be related. The precise statement of the Dyer–Gr
result is as follows. Letp* 5maxxPV A„12p(x)…/p(x).

Theorem 11: Suppose that there exists ana such that0,a,1 and P>a( P̃). Then

~i! „12l1(P)…>a„12l1( P̃)…, and
~ii ! t(e)<2 log (p* /2e)a21t̃(1/e).

Notice that we can achieve a very similar result by taking trivial canonical paths consisti
single moves in the known chainP̃ and applying Proposition 4. However, the proof in Ref. 1
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which we omit here, offers a different and worthwhile perspective on the comparison techn
The basic idea behind~i! is to use the min–max characterization of eigenvalues in showing
the second largest eigenvalue of aconvex combinationof two symmetric matrices is bounded from
above by the convex combination of the second largest eigenvalues of the two matrices.

The main application of this technique in Ref. 16 was to show that the Glauber dynami
the hardcore lattice gas model with activityl on arbitrary graphs onn vertices with maximum
degreeD mixes rapidly inO(n2 logn) time as long asl,2/(D22). In reporting these bounds, w
suppress the dependence one, D, andl. Recall that in the hardcore model a valid configurati
prohibits two particles to reside on neighboring vertices, and each such~valid! configurationI has
the Gibbs measure proportional tol uI u, whereuIu denotes the number of particles inI.

To achieve this result, they first introduce a slightly different dynamicsM2 which, besides the
Glauber moves, also allows ‘‘sliding’’ the particle at an occupied site to a neighboring unocc
site, whenever the resulting configuration is a valid hardcore configuration. Using the path
pling technique, they derive bounds on the mixing time of this new dynamics, and then use
comparison technique to bound the Glauber dynamics. An interesting subtlety here is th
Glauber dynamics does not quite dominate the new dynamics in the sense of the linear relat
specified by Theorem 11; however, they replace GlauberM ~yet once more! by an equally fast
dynamicsM8 which runs two moves of Glauber at each step and also has a holding probabi
one-half;M8 has the same mixing time asM, but crucially,M8 does dominateM, allowing
them to use Theorem 11.

More recently, Luby and Vigoda38 have shown that the Glauber dynamics for the hardc
model mixes inO(n2 logn) time as long asl,2/(D22), andO(n2 logn) time whenl52/(D
22). Luby and Vigoda achieve this improvement through adirect analysis of the Glauber dy
namics using a more subtle coupling argument.

E. Other related methods

We merely mention here some other results related to the theme of this paper. The fir
results are in the framework of relating certain block dynamics to Glauber dynamics, both wi
same Gibbs distribution as the invariant distribution on some Ising-type configurations. To
this considerD5$V1 ,V2 ,...,Vm%, an arbitrary collection of finite setsViPF, and letV5ø iVi .
Then byblock dynamicswith blocks $V1 ,V2 ,...,Vm% one typically means the continuous-tim
Markov chain in which each block waits an exponential time of mean one and then the co
ration inside the block is replaced by a new configuration distributed according to the G
measure of the block, given the previous configuration outside the block.~Note that the tower
moves of Sec. IIIdo not fall under this category.!

The first result is mentioned as Proposition 3.4 in Martinelli’s lecture notes.22 This result
asserts that the spectral gap of the~single-site! Glauber dynamics is lower bounded by the spec
gap of the smallest of the spectral gaps of the same dynamics restricted to each of the bl
some block dynamicstimesthe spectral gap of the block dynamics itself. Note that if the size
the blocks is chosen to be at most a constant, indepedent of the size of the system (V), then this
guarantees that the spectral gap of the Glauber dynamics is at least a certain constant~strictly
between 0 and 1! times the spectral gap of the block dynamics. The proof is short and uses
again the variational characterization of the spectral gap. We refer the reader to Ref. 22
details.

The second one is fairly natural, although it appears in a rather specialized context. It
to van den Berg and Brouwer23 in the context of random sampling for the monomer–dimer mo
on thed-dimensional torus. These authors first use certain block dynamics to sample mat
~dimers! of thed-dimensional torus of ‘‘side length’’n ~viewed as a graph, this corresponds to t
Cartesian product ofd copies of ann-cycle!. They first show that the block dynamics has mixin
time O(n logn) ~fixing the monomer–dimer parameterl.0, dimensiond, ande in the definition
of mixing time!, through the analysis of spatial dependencies of the monomer–dimer model.
to get a bound on the original Glauber dynamics, they essentially simulate the block dyn
using several steps of the Glauber dynamics—each step of the block dynamics is replace
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number of ‘‘micro steps,’’ where each micro step is a Glauber move inside the block,fixing the
configuration on the boundary of the block. The number of such micro steps is chosen so
the end of such a run of micro steps, the configuration inside the block is distributedapproxi-
mately~rather than exactly! according to the correct distribution—the one that is used to run
block dynamics. The authors only pay a penalty of an extraO(logn) factor in the mixing time in
going from the block dynamics to the Glauber dynamics; most of their analysis is carried o
suitable coupling arguments.

Finally, we mention a decomposition technique due to Madras and Randall24,25which consid-
ers a decomposition of the state space of a Markov chain into overlapping pieces. The M
chain is compared to a family of ‘‘restricted Markov chains,’’ each representing the orig
Markov chain restricted to a piece of the state space, as well as a global Markov chain cap
how well the pieces are interconnected. The spectral gap of the original Markov chain c
bounded by a product of minimum of the spectral gaps of the restricted Markov chains tim
spectral gap of the global~interconnection! Markov chain. They apply this technique in th
context of sampling independent sets according to their Gibbs measure in the special cas
the size of the independent set is bounded byuVu/(2D11), whereuVu is the number of sites and
D is the maximum degree in the graph.25 Although this result is of a different flavor from th
comparison techniques mentioned here, it offers an alternative way to relate block and G
dynamics. Namely, we can decompose a chain defining Glauber dynamics into pieces corre
ing to block moves by only allowing those Glauber moves restricted to that block. The de
position theorem implies that if the Glauber moves are mixing within each block~i.e., the re-
stricted Markov chains quickly converge to the uniform distribution within blocks! and the pieces
are sufficiently well connected~i.e., the block dynamics are rapidly mixing!, then we can conclude
that the Glauber dynamics is mixing as well. This is an alternative formulation of Martine
result.

VI. CONCLUSIONS

In this paper we address the issue that although two Markov chains appear quite simila
often the case that only one admits a simple analysis using currently available tools. We en
that there are many other applications for comparison techniques.

For instance, the results on independent sets in Ref. 17 can be extended to relate the
rate of the single site updates to the mixing rate of a dynamics which would update all the s
a rectangle of fixed sizea3b. This so-called ‘‘heat bath’’ algorithm is used experimentally
statistical physics to study the uniqueness of the Gibbs state of the hardcore lattice gas
Using the method given here, we derive a bound on the mixing rate of this new Markov
which introduces a factor which depends exponentially on min (a,b).

Needless to say, direct analysis of several of the Glauber dynamics mentioned in this
remains elusive, and should lead to tighter bounds.
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Darboux transformation for the Schro ¨ dinger equation
with steplike potentials

Tuncay Aktosun
Department of Mathematics, North Dakota State University, Fargo, North Dakota 58105
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The one-dimensional Schro¨dinger equation is considered when the potential is
asymptotic to a positive constant on the right half line. The corresponding Darboux
transformation is established by showing how the scattering solutions, the scatter-
ing coefficients, and the potential change when bound states are added or removed.
The scattering coefficients are represented as certain integrals, from which their
properties can be directly extracted. ©2000 American Institute of Physics.
@S0022-2488~00!02304-5#

I. INTRODUCTION

Consider the one-dimensional Schro¨dinger equation,

c9~k,x!1k2c~k,x!5V~x!c~k,x!, xPR, ~1.1!

where the potentialV is real valued and satisfies

VPL1
1~R2!, V2c2PL1

1~R1!, ~1.2!

for somec>0. In our notation, the prime denotes the derivative with respect to the spatial va
x, R2:5(2`,0), R1:5(0,1`), andL1

1(I ) is the set of measurable functionsf on an intervalI
such that* Idx(11uxu)u f (x)u is finite. We will useC1 to denote the upper half complex plane a
C1:5C1øR.

Our main goal is to analyze the Darboux transformation for~1.1!, namely, to understand how
the scattering solutions, the scattering coefficients, and the potential change when bound st
added or removed. The Darboux transformation whenc50 in ~1.2! is well understood.1,2 For a
more general treatment of Darboux transformations, the reader is referred to Ref. 3 a
references therein. In the limitc→0, the transformation we present in Sec. IV reduces to
well-known case. The main difficulty whenc.0 is the analysis atkPC1 as x→1` of the
behavior off r(k,x), the Jost solution from the right defined in Sec. II. We overcome this diffic
by working with a regular solution of~1.1! analyzed in Sec. III.

The bound states of~1.1! are its square-integrable solutions, whereas the scattering sta
~1.1! correspond to solutions behaving likee6 ikx asx→2` and likee6 igx asx→1`, where

g:5Ak22c2, ~1.3!

in which the branch of the square-root function is used with Img >0. Thus,g is purely imaginary
whenkP(2c,c).

The reader is referred to Refs. 4–7 for the analysis of the direct and inverse sca
problems for~1.1!. For a more general analysis of the scattering problem, see also Refs. 8 a
and references therein. The inverse scattering problem for~1.1!, namely, the recovery ofV from
an appropriate set of scattering data, has important applications10–12 in the recovery of materia
properties of thin films. Thus, we expect our results to be useful in x-ray and ne
reflectometry.11–15
16190022-2488/2000/41(4)/1619/13/$17.00 © 2000 American Institute of Physics
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Our paper is organized as follows: In Sec. II we review some relevant properties o
scattering solutions and the bound states. In Sec. III, we obtain various properties of a r
solution of~1.1! that are needed in establishing the Darboux transformation. In Sec. IV we pr
the Darboux transformation and show how the bound states can be added or removed. Fin
Sec. V we evaluate the spatial asymptotics of the Jost solutions and present some integra
sentations of the scattering coefficients.

II. JOST SOLUTIONS AND SCATTERING COEFFICIENTS

Among the scattering solutions of~1.1! are the so-called Jost solutions with specific bound
conditions atx56`. The Jost solution from the left,f l(k,x), associated withV is the solution of
~1.1! satisfying

e2 igxf l~k,x!511o~1!, e2 igxf l8~k,x!5 ig1o~1!, x→1`, ~2.1!

whereg is the quantity defined in~1.3!. It satisfies the integral relation

f l~k,x!5eigx1
1

g E
x

`

dy sing~y2x! @V~y!2c2# f l~k,y!. ~2.2!

Similarly, f r(k,x), the Jost solution from the right, is defined as the solution of~1.1! satisfying

eikxf r~k,x!511o~1!, eikxf r8~k,x!52 ik1o~1!, x→2`, ~2.3!

and it satisfies the integral relation

f r~k,x!5e2 ikx1
1

k E2`

x

dy sink~x2y! V~y! f r~k,y!. ~2.4!

We later need the following known properties4,5 of the Jost solutions.
Proposition 2.1:AssumeV satisfies~1.2! for somec>0. Then, for each fixedxPR, the

functions f l(k,x), f l8(k,x), f r(k,x), and f r8(k,x) are analytic inkPC1 and continuous ink
PC1. Moreover, for each fixedkPC1, these four functions are continuous inxPR.

The transmission and reflection coefficients from the left,Tl andL, can be defined in terms o
the spatial asymptotics off l as

e2 ikxf l~k,x!5
1

Tl~k!
1

L~k!

Tl~k!
e22ikx1o~1!, x→2`, kPR\$0%. ~2.5!

Similarly, the transmission and reflection coefficients from the right,Tr andR, can be defined in
terms of the spatial asymptotics off r as

eigxf r~k,x!5
1

Tr~k!
1

R~k!

Tr~k!
e2igx1o~1!, x→1`, gPR\$0%. ~2.6!

Since~2.6! holds only forkPR\@2c,c#, one needs to use other means to defineR(k) andTr(k)
for kP@2c,c#. It turns out4,5 that

Tr~k!5
g

k
Tl~k!, kPC1\$0%, ~2.7!

R~k!52
L~k!* Tl~k!

Tl~k!*
, kPR, ~2.8!
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where the asterisk denotes complex conjugation. The reader is referred to Refs. 4, 5, and 7
small-k asymptotics of the scattering coefficients. The poles ofTl in C1 correspond4,5 to the
bound states of~1.1!. Under ~1.2! it is known4,5,7 that such poles are simple, confined to t
positive imaginary axis, and finite in number. Let us assume that there areN bound states atk
5 ik j with 0,k1,¯,kN .

Let @ f ;g#:5 f g82 f 8g denote the Wronskian. It is well known that the Wronskian of any t
solutions of~1.1! is independent ofx. From ~2.3! and ~2.5! it follows that

1

Tl~k!
5

1

2ik
@ f r~k,x!; f l~k,x!#, ~2.9!

and hencef l(k,x) and f r(k,x) are linearly dependent at the bound states and linearly indepen
otherwise. In fact,f l( ik j ,x) and f r( ik j ,x) decay exponentially4,5 to zero asx→6`. Thus, if we
let

m jª
f l~ ik j ,x!

f r~ ik j ,x!
, ~2.10!

then eachm j is independent ofx and is a real nonzero constant.
Proposition 2.2:AssumeV satisfies~1.2! for somec>0 with the bound states occurring a

k5 ik j for j 51,...,N. Then, bothf l( ik,x) and f r( ik,x) are strictly positive whenk>kN . In case
there are no bound states,f l( ik,x) and f r( ik,x) are strictly positive for allk.0.

Proof: The proof is similar to the case whenc50 and it can be obtained, e.g., by usin
Proposition 10.1 of Ref. 16. j

Proposition 2.3:AssumeV satisfies~1.2! for somec>0 with the bound states occurring a
k5 ik j for j 51,...,N. Then,

~i! Tl( ik).0 whenk.kN .
~ii ! (21) jTl( ik).0 whenkP(kN2 j ,kN2 j 11) for j 51,...,N21.
~iii ! (21)NTl( ik).0 whenkP(0,k1).

If there are no bound states, thenTl( ik).0 for k.0.
Proof: The proof is obtained by noticing4,5 that 1/Tl( ik) is real and continuous forkPR, it

has simple zeros atk5k j for j 51,...,N, and that it converges to 1 ask→1`. j

III. REGULAR SOLUTION

Let v(k,x) be the solution of~1.1! satisfying the boundary conditions

v~k,0!50, v8~k,0!51. ~3.1!

For each fixedxPR, v(•,x) is entire on the complex plane and hence it is a ‘‘regular’’ solutio
As in ~3.3! and ~3.5! of Ref. 7 we have the integral relations

v~k,x!55
singx

g
1

1

g E
0

x

dy sing~x2y! @V~y!2c2#v~k,y!, x>0,

sinkx

k
1

1

k Ex

0

dy sink~y2x!V~y!v~k,y!, x<0,

~3.2!

v8~k,x!55 cosgx1E
0

x

dy cosg~x2y! @V~y!2c2#v~k,y!, x>0,

coskx2E
x

0

dy cosk~y2x!V~y!v~k,y!, x<0,

~3.3!
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From ~3.1! and the constancy of the Wronskian of any two solutions of~1.1!, it follows that

@ f l~k,x!;v~k,x!#5 f l~k,0!, @ f r~k,x!;v~k,x!#5 f r~k,0!. ~3.4!

Let us fixk.kN (k.0 if ~1.1! has no bound states!. When a bound state is added to~1.1! at
k5 ik, we are interested in finding the potential, the scattering coefficients, and the Jost so
corresponding to the resulting Schro¨dinger equation. For this, we prove several propositions
are needed to establish the Darboux transformation formulas in Sec. IV.

From ~2.9!, ~3.4!, and Propositions 2.2 and 2.3, it follows that any two off l( ik,x), f r( ik,x),
andv( ik,x) are linearly independent. Thus, we have

f r~ ik,x!5A1~k! f l~ ik,x!1A2~k! v~ ik,x!, x>0, ~3.5!

f l~ ik,x!5A3~k! f r~ ik,x!2A4~k! v~ ik,x!, x<0, ~3.6!

where the coefficientsAj (k) are analyzed in the next proposition.
Proposition 3.1:AssumeV satisfies~1.2! for somec>0 and thatk.kN ~if there are no

bound states, letk.0). Then, all the fourAj (k) appearing in~3.5! and~3.6! are strictly positive.
Proof: Using ~2.9! and ~3.4!–~3.6! we get

A1~k!5
1

A3~k!
5

f r~ ik,0!

f l~ ik,0!
, ~3.7!

A2~k!5
2k

Tl~ ik! f l~ ik,0!
, A4~k!5

2k

Tl~ ik! f r~ ik,0!
. ~3.8!

By Propositions 2.2 and 2.3 all the three quantitiesf l( ik,0), f r( ik,0), andTl( ik) are strictly
positive, and hence each of the fourAj (k) is strictly positive. j

Let

u~x;k!ªH e2lxv~ ik,x!, x>0,

ekxv~ ik,x!, x<0,
~3.9!

wherel is the constant defined in terms ofk as

l5Ak21c2, ~3.10!

andc is the constant appearing in~1.2!. Even thoughv( ik,x) is unbounded asx→6`, we will
see thatu(x;k) has nicer properties that will be useful later on.

Proposition 3.2:Assume thatV satisfies~1.2! for somec>0 and thatk.kN ~if there are no
bound states, letk.0). Then,

~i! u(x;k) andu8(x;k) are continuous and bounded inxPR.
~ii ! The spatial asymptotics ofu(x;k) andu8(x;k) are given by

u8~x;k!5o~1/x!, x→6`, ~3.11!

u~x;k!5H f l~ ik,0!

2l
1o~1!, x→1`,

2
f r~ ik,0!

2k
1o~1!, x→2`.

~3.12!

Proof: Using ~3.1! and~3.9! in ~1.1! we see thatu(•;k) andu8(•;k) are both continuous and
satisfyu(0;k)50 andu8(0;k)51. Thus, from~3.2!, ~3.3!, and~3.9! we get
                                                                                                                



1623J. Math. Phys., Vol. 41, No. 4, April 2000 Darboux transformation for steplike potentials

                    
u~x;k!55
1

2l
@12e22lx#1

1

2l E
0

x

dy @12e22l~x2y!#@V~y!2c2#u~y;k!, x>0,

1

2k
@e2kx21#1

1

2k E
x

0

dy @12e22k~y2x!#V~y!u~y;k!, x<0,

~3.13!

u8~x;k!55 e22lx1E
0

x

dy e22l~x2y!@V~y!2c2#u~y;k!, x>0,

e2kx2E
x

0

dy e22k~y2x!V~y!u~y;k!, x<0.

~3.14!

The Volterra equation~3.13! can be solved by using iteration, and we get

uu~x;k!u<5
1

l
expS 1

l E
0

x

dy uV~y!2c2u D , x>0,

1

k
expS 1

k E
x

0

dy uV~y!u D , x<0.

~3.15!

Because of~1.2!, we see from~3.15! thatu(x;k) is bounded inxPR. Letting C denote a generic
constant and usinguu(x;k)u<C in ~3.14!, we see thatu8(x;k) is bounded inxPR. In fact, from
~3.14! we get the following estimates. Whenx.0 we have

uu8~x;k!u<e22lx1CE
0

x/2

dy e22l~x2y!uV~y!2c2u1
2C

x E
x/2

x

dy y e22l~x2y!uV~y!2c2u

<e22lx1Ce2lxE
0

x/2

dy uV~y!2c2u1
2C

x E
x/2

x

dy y e22l~x2y!uV~y!2c2u. ~3.16!

From ~1.2! it follows that the last integral in~3.16! is o(1) as x→1`, and henceu8(x;k)
5o(1/x) asx→1`. Similarly, whenx,0 we have

uu8~x;k!u<e2kx1CE
x/2

0

dy e22k~x2y!uV~y!u1
2C

uxu Ex

x/2

dy uyue22k~y2x!uV~y!u

<e2kx1CekxE
x/2

0

dy uV~y!u1
2C

uxu Ex

x/2

dy uyue22k~y2x!uV~y!u, ~3.17!

and since the last integral in~3.17! is o(1) as x→2`, it follows that u8(x;k)5o(1/x) as x
→2`. Thus,~3.11! has been established. Letting

ml~k,x!ªe2 igxf l~k,x!, ~3.18!

from ~2.1! we get

ml~ ik,x!511o~1!, ml8~ ik,x!5o~1!, x→1`.

The first Wronskian identity in~3.4! can be written as

f l~ ik,0!5ml~ ik,x!u8~x;k!1@2lml~ ik,x!2ml8~ ik,x!#u~x;k!. ~3.19!

Letting x→1` in ~3.19! and recalling thatf l( ik,0).0, with the help of~3.11! and~3.19!, we get
~3.12! asx→1`. Similarly, letting
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mr~k,x!ªeikxf r~k,x!, ~3.20!

from ~2.3! we get

mr~ ik,x!511o~1!, mr8~ ik,x!5o~1!, x→2`. ~3.21!

The second Wronskian identity in~3.4! can be written as

f r~ ik,0!5mr~ ik,x!u8~x;k!2@2kmr~ ik,x!1mr8~ ik,x!#u~x;k!. ~3.22!

Letting x→2` in ~3.22! and recalling thatf r( ik,0).0, using ~3.11! and ~3.21!, we establish
~3.12! asx→2`. j

Proposition 3.3:Assume thatV satisfies~1.2! for somec>0 and thatk.kN ~if there are no
bound states, letk.0). Thenu8(•;k) belongs toL1

1(R), whereu(x;k) is the quantity defined in
~3.9!.

Proof: As shown in Proposition 3.2~i!, u8(•;k) is continuous. Thus, as seen from~3.16! and
~3.17!, in order to prove thatu8(•;k) belongs toL1

1(R), it is enough to prove thatI 1 and I 2 are
finite, where we have defined

I 1ªE
2a

`

dx S 11
1

xD E
x/2

x

dy y e22l~x2y!uV~y!2c2u, ~3.23!

I 2ªE
2`

22a

dx S 11
1

uxu D Ex

x/2

dy uyue22k~y2x!uV~y!u, ~3.24!

for some positive constanta>1. Changing the order of integration in~3.23!, we get

I 1<2E
a

`

dy y e2lyuV~y!2c2u E
y

2y

dx e22lx5
1

l E
a

`

dy y@12e22ly#uV~y!2c2u,

and hence, because of~1.2!, I 1 is finite. Similarly, a change of order of integration in~3.24! gives
us

I 2<2E
2`

2a

dy uyue22kyuV~y!u E
2y

y

dx e2kx5
1

k E
2`

2a

dy uyu@12e2ky#uV~y!u,

and henceI 2 is also finite because of~1.2!. Thus, the proof is completed. j

For a.0 let us define

h~x;k,a!ª f l~ ik,x!1a f r~ ik,x!, xPR, ~3.25!

j~x;k,a!ª
h8~x;k,a!

h~x;k,a!
, xPR. ~3.26!

Proposition 3.4:AssumeV satisfies~1.2! for somec>0, and leta.0 andk.kN ~if there are
no bound states, letk.0). Then,

~i! j(x;k,a) is bounded and continuous inxPR.
~ii ! j(•;k,a)2l belongs toL1

1(R1) andj(•;k,a)1k belongs toL1
1(R2).

~iii ! j8(•;k,a) exists a.e. and belongs toL1
1(R).

Proof: Because of Proposition 2.1, bothh(x;k,a) and h8(x;k,a) are continuous inxPR.
From Proposition 2.2, it follows thath(x;k,a) is strictly positive, and hencej(x;k,a) is con-
tinuous inxPR. Using ~3.5! and ~3.6! in ~3.25!, with the help of~3.7!–~3.10!, we obtain
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h~x;k,a!5H @11a A1~k!# f l~ ik,x!1a A2~k!elxu~x;k!, x>0,

@a1A3~k!# f r~ ik,x!1A4~k!e2kxu~x;k!, x<0,
~3.27!

h8~x;k,a!5H @11a A1~k!# f l8~ ik,x!1a A2~k!elx@lu~x;k!1u8~x;k!#, x>0,

@a1A3~k!# f r8~ ik,x!1A4~k!e2kx@2ku~x;k!1u8~x;k!#, x<0.
~3.28!

Using ~2.1!, ~2.3!, ~3.11!, and~3.12! in ~3.27! and ~3.28!, we obtain

j~x;k,a!5H l1
u8~x;k!

u~x;k!
1

1

u~x;k!
O~e22lx!, x→1`,

2k1
u8~x;k!

u~x;k!
1

1

u~x;k!
O~e2kx!, x→2`.

~3.29!

As seen from~3.12!, u(x;k) is bounded and remains bounded away from zero asx→6`. Thus,
from ~3.12! and ~3.29! we get

j~x;k,a!5H l1
2lu8~x;k!

f l~ ik,0!
@11o~1!#1O~e22kx!, x→1`,

2k2
2ku8~x;k!

f r~ ik,0!
@11o~1!#1O~e2kx!, x→2`.

~3.30!

Using ~3.11! and Proposition 2.2 in~3.30!, we see thatj(x;k,a) is bounded for allxPR. Since
j(•;k,a) is continuous, theL1

1-properties stated in~ii ! follow from ~3.30! and theL1
1-property of

u8(x;k) established in Proposition 3.3. From~1.1! and ~3.26! we get

j8~x;k,a!5V~x!1k22j~x;k,a!2, xPR. ~3.31!

Using ~3.10! we can write~3.31! also as

j8~x;k,a!5V~x!2c21l22j~x;k,a!2, xPR. ~3.32!

Thus, because of~1.2!, as seen from~3.31! and~3.32!, in order to show thatj8(•;k,a) belongs to
L1

1(R), it is sufficient to show thatj(•;k,a)22l2 belongs toL1
1(R1) and j(•;k,a)22k2 be-

longs toL1
1(R2). However, these directly follow from~i! and ~ii !, as seen by writing

j~x;k,a!22l25@j~x;k,a!2l#@j~x;k,a!1l#,

j~x;k,a!22k25@j~x;k,a!1k#@j~x;k,a!2k#,

and using~ii ! and the boundedness ofj(x;k,a)1l andj(x;k,a)2k. j

IV. DARBOUX TRANSFORMATION

Let us use a tilde to denote the quantities associated with the resulting Schro¨dinger equation
when a bound state is added to~1.1! at k5 ik with k.kN ~with k.0 if ~1.1! has no bound states!.
That is,Ṽ is the resulting potential,f̃ l and f̃ r are the Jost solutions,T̃l andT̃r are the transmission
coefficients, andL̃ andR̃ are the reflection coefficients, from the left and from the right, resp
tively. We have the following result:

Theorem 4.1: AssumeV satisfies~1.2! for somec>0. If a bound state is added to~1.1! at
k5 ik with k.kN ~with k.0 if ~1.1! has no bound states!, then

Ṽ~x;k,a!5V~x!22j8~x;k,a!, ~4.1!
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f̃ l~k,x;k,a!5
1

i ~g1 il!
@ f l8~k,x!2j~x;k,a! f l~k,x!#, ~4.2!

f̃ r~k,x;k,a!5
i

~k1 ik!
@ f r8~k,x!2j~x;k,a! f r~k,x!#, ~4.3!

T̃l~k;k,a!5
g1 il

k2 ik
Tl~k!, L̃~k;k,a!52

k1 ik

k2 ik
L~k!, ~4.4!

T̃r~k;k,a!5
g1 il

k2 ik
Tr~k!, R̃~k;k,a!52

g1 il

g2 il
R~k!, ~4.5!

whereg is as in~1.3!, l is the constant in~3.10!, andj(x;k,a) is the function defined in~3.26!.
Proof: It can be verified directly thatf̃ l and f̃ r given in ~4.2! and ~4.3!, respectively, satisfy

~1.1! when the potentialV is replaced byṼ. Moreover, from the asymptotics asx→1` stated in
~2.1! and ~3.30!, it follows that f̃ l is the Jost solution from the left associated withṼ. Similarly,
from the asymptotics asx→2` stated in~2.3! and ~3.30!, it follows that f̃ r is the Jost solution
from the right forṼ. With the help of~2.5!, ~2.6!, ~3.11!, and~3.30!, we obtainT̃l andL̃ given in
~4.4!. Finally, by using~2.7!, ~2.8!, and~4.4!, we establish~4.5!. j

Proposition 4.2:AssumeV satisfies~1.2! for somec>0. If a bound state is added to~1.1! at
k5 ik with k.kN ~with k.0 if ~1.1! has no bound states!, thenṼ belongs to the same class a
V, namely,

ṼPL1
1~R2!, Ṽ2c2PL1

1~R1!. ~4.6!

Moreover, the positive constanta introduced in~3.25! is related to the ratio of the Jost solution
of Ṽ at the bound statek5 ik as

f̃ l~ ik,x;k,a!

f̃ r~ ik,x;k,a!
5

ak

l
, ~4.7!

wherel is the quantity defined in~3.10!. Furthermore,f̃ l( ik,x;k,a) and f̃ r( ik,x;k,a) are both
strictly positive for allxPR and decay exponentially to zero asx→6` with the asymptotics
given by

f̃ l~ ik,x;k,a!5H e2lx@11o~1!#, x→1`,

ak

l
ekx@11o~1!#, x→2`,

~4.8!

f̃ r~ ik,x;k,a!5H l

ak
e2lx@11o~1!#, x→1`,

ekx@11o~1!#, x→2`.

~4.9!

Proof: We get~4.6! by using~1.2!, ~4.1!, and Proposition 3.4~iii !. Evaluating~4.2! and ~4.3!
at k5 ik and using~3.26!, we obtain~4.7!. Sincef̃ l is asymptotic toeigx asx→1` as in~2.1! and
f̃ r to e2 ikx asx→2` as in ~2.3!, using~4.7! we obtain~4.8! and ~4.9!. j

In the next theorem we present the Darboux transformation when we remove from~1.1! the
bound state of the lowest energy. The proof is omitted because the technique used in the p
similar to that used in Theorem 4.1 and Proposition 4.2.
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Theorem 4.3: Assume thatṼ satisfies~4.6! for somec>0 and that its lowest bound-stat
energy corresponds tok5 ik for somek.0. Let f̃ l(k,x) and f̃ r(k,x) denote the Jost solutions fo
Ṽ, from the left and from the right, respectively. After the removal of the bound state atk5 ik, let
us denote the resulting potential byV with the corresponding Jost solutionsf l(k,x) and f r(k,x).
Then,

V~x!5Ṽ~x!22h8~x!,

f l~k,x!5
1

i ~g2 il!
@ f̃ l8~k,x!2h~x! f̃ l~k,x!#,

f r~k,x!5
i

~k2 ik!
@ f̃ r8~k,x!2h~x! f̃ r~k,x!#,

where g is as in ~1.3!, l is as in ~3.10!, and h(x)ª f̃ l8( ik,x)/ f̃ l( ik,x). Moreover, h(1`)
52l, h(2`)5k, h8PL1

1(R), andV belongs to the same class asṼ specified in~4.6!.
Using Propositions 4.1 and 4.2 in a recursive manner, we obtain the following result:
Corollary 4.4: Assume thatV satisfies~1.2! for somec>0 and it has bound states atk

5 ik j for j 51,...,N; let l j5Ak j
21c2. Then,

Tl~k!5Tl
@0#~k!)

j 51

N
g1 il j

k2 ik j
, Tr~k!5Tr

@0#~k!)
j 51

N
g1 il j

k2 ik j
, ~4.10!

L~k!5~21!NL @0#~k!)
j 51

N
k1 ik j

k2 ik j
, R~k!5~21!NR@0#~k!)

j 51

N
g1 il j

g2 il j
, ~4.11!

whereTl
@0# , Tr

@0# , L @0#, andR@0# are the scattering coefficients corresponding to the potentialV@0#

obtained fromV by removing all its bound states, andV@0# belongs to the same class asV does,
i.e., V@0#PL1

1(R2) andV@0#2c2PL1
1(R1).

Notice that if we letc→0 in ~4.2!–~4.5!, ~4.10!, and~4.11!, then we obtain the well-known
Darboux transformation formulas1,2 for the standard Schro¨dinger equation.

In certain applications11–14in materials science, the potentialV(x) has support inR1. In such
cases, we show in the next proposition that the constanta appearing in~3.25! must be chosen in
a unique manner in order not to change the potential forx,0.

Proposition 4.5:Assume thatV satisfies~1.2! for somec>0, vanishes forx,0, and has
bound states atk5 i k j for j 51,...,N. If a bound state is added toV at k5 ik with k.kN ~with
k.0 if ~1.1! has no bound states!, then Ṽ also vanishes forx,0 if and only if the constanta
appearing in~3.25! is chosen as

a52
L~ ik!

Tl~ ik!
. ~4.12!

Proof: WhenV vanishes forx,0, its Jost solutions onR2 are determined by the scatterin
coefficients as

f l~k,x!5
eikx1L~k!e2 ikx

Tl~k!
, f r~k,x!5e2 ikx, x<0. ~4.13!

Using ~3.25! and ~4.13! in ~3.26!, we get

j~x;k,a!52k
e2kx/Tl~ ik!2@a1L~ ik!/Tl~ ik!#ekx

e2kx/Tl~ ik!1@a1L~ ik!/Tl~ ik!#ekx , x<0,
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and hence, because of~4.1!, Ṽ vanishes forx,0, i.e.j(x;k,a) is a constant, if and only if~4.12!
is satisfied. j

V. REPRESENTATIONS FOR SCATTERING COEFFICIENTS

The integral relation~2.2! is not suitable to obtain the asymptotics off l(k,x) asx→2`. For
this we can use the representation

2ik f l~k,x!5B1~k!eikx1B2~k!e2 ikx1E
x

0

dy @eik~y2x!2e2 ik~y2x!#V~y! f l~k,y!, ~5.1!

where we have defined

B1~k!ª ik f l~k,0!1 f l8~k,0!, B2~k!ª ik f l~k,0!2 f l8~k,0!. ~5.2!

It can be easily checked thatf l(k,x) given in ~5.1! satisfies~1.1! and the appropriate boundar
conditions atx50. Letting

pl~k,x!ªe2 ikxf l~k,x!, ~5.3!

we can write~5.1! as

2ikpl~k,x!5B1~k!1B2~k!e22ikx1E
x

0

dy @e2ik~y2x!21#V~y!pl~k,y!. ~5.4!

By iterating ~5.4!, for x>0 we get

upl~k,x!u<
1

2uku @ uB1~k!u1uB2~k!u# expS 1

uku E2`

0

dy uV~y!u D , kPC1\$0%. ~5.5!

With the help of~2.5!, ~5.1!, ~5.2!, ~5.4!, and~5.5!, we obtain

2ik

Tl~k!
5 ik f l~k,0!1 f l8~k,0!2E

2`

0

dy V~y!pl~k,y!, kPC1\$0%, ~5.6!

2ikL~k!

Tl~k!
5 ik f l~k,0!2 f l8~k,0!1E

2`

0

dy e2ikyV~y!pl~k,y!, kPR\$0%. ~5.7!

For each fixedkPC1, letting x→2` in ~5.4! and using~5.6!, we get

2ikpl~k,x!5B1~k!2E
2`

0

dy V~y!pl~k,y!1o~1!5
2ik

Tl~k!
1o~1!, ~5.8!

and hence from~5.2! and ~5.8! we have

e2 ikxf l~k,x!5
1

Tl~k!
@11o~1!#, kPC1, x→2`.

In the integrand in~5.7!, whenkPC1, the factore2iky grows exponentially asy→2`; hence,
unlessV(y) decays faster, the integral does not converge and thusL(k) does not have an exten
sion from realk values to complex ones.

In a similar manner, in order to study the asymptotics off r(k,x) asx→1`, instead of~2.4!
we will use the integral relation
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2ig f r~k,x!5B3~k!eigx1B4~k!e2 igx1E
0

x

dy @eig~x2y!2e2 ig~x2y!#@V~y!2c2# f r~k,y!,

~5.9!

where we have defined

B3~k!ª ig f r~k,0!1 f r8~k,0!, B4~k!ª ig f r~k,0!2 f r8~k,0!. ~5.10!

It can be checked thatf r(k,x) given in ~5.9! satisfies~1.1! and the appropriate boundary cond
tions atx50. Letting

pr~k,x!ªeigxf r~k,x!, ~5.11!

we can write~5.9! as

2ig pr~k,x!5B3~k!e2igx1B4~k!1E
0

x

dy @e2ig~x2y!21#@V~y!2c2#pr~k,y!. ~5.12!

Iterating ~5.12!, for x>0 we get

upr~k,x!u<
1

2ugu @ uB3~k!u1uB4~k!u# expS 1

ugu E0

`

dy uV~y!2c2u D , gPC1\$0%. ~5.13!

Using ~2.6!, ~5.9!, ~5.10!, ~5.12!, and~5.13!, we obtain

2ig

Tr~k!
5 ig f r~k,0!2 f r8~k,0!2E

0

`

dy @V~y!2c2#pr~k,y!, gPC1\$0%, ~5.14!

2ig R~k!

Tr~k!
5 ig f r~k,0!1 f r8~k,0!1E

0

`

dy e22igy@V~y!2c2#pr~k,y!, gPR\$0%. ~5.15!

Using~2.7!, ~2.8!, ~5.6!, and~5.7!, we can extendR(k) andTr(k) to kP@2c,c# as well. In~5.12!,
for each fixedgPC1, letting x→1` we get

2ig pr~k,x!5B4~k!2E
0

`

dy @V~y!2c2#pr~k,y!1o~1!5
2ig

Tr~k!
1o~1!, ~5.16!

and hence from~5.11! and ~5.16! we get

eigxf r~k,x!5
1

Tr~k!
@11o~1!#, gPC1, x→1`.

In the integrand in~5.15!, whengPC1, the factore22igy grows exponentially asy→1`, and
hence unlessV(y)2c2 decays faster, the integral does not converge andR(k) does not have an
extension from realk values to complex ones.

Proposition 5.1:AssumeV satisfies~1.2! for somec>0. Then,pl(k,x) andpr(k,x) defined
in ~5.3! and ~5.11!, respectively, have the following properties:

~i! For eachxPR, pl(•,x) andpr(•,x) are analytic inkPC1 and continuous inkPC1.
~ii ! Uniformly in xPR2 we have

pl~k,x!511O~1/k!, pl8~k,x!5o~1!, k→` in C1.

~i! Uniformly in xPR1 we have
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pr~k,x!511O~1/k!, pr8~k,x!5o~1!, k→` in C1.

Proof: Because of~5.3! and ~5.11!, the analyticity and continuity properties stated in~i!
directly follow from Proposition 2.1. From~2.2! and ~5.3!, by proceeding1,2 as in the standard
Schrödinger equation withc50, we get

ml~k,0!511O~1/g!, ml8~k,0!5o~1!, g→` in C1,

and from~1.3! we haveg5k1O(1/k) ask→` in C1. Thus, with the help of~3.18!, from ~5.2!
we obtain

B1~k!5 i ~k1g!@11O~1/g!#1o~1!52ik1o~1!, k→` in C1, ~5.17!

B2~k!5 i ~k2g!@11O~1/g!#1o~1!5o~1!, k→` in C1, ~5.18!

Note thatue22ikxu<1 whenxPR2 andkPC1. Using iteration on~5.4!, we find that

pl~k,x!2
1

2ik
@B1~k!1B2~k!e22ikx#5O~1/k!, k→` in C1. ~5.19!

Thus, from ~5.17!–~5.19! we obtainpl(k,x)511O(1/k) as k→` in C1 uniformly for all x
PR2. From ~5.4! we obtain

pl8~k,x!52B2~k!2E
x

0

dy e2ik~y2x!V~y!pl~k,y!. ~5.20!

Iterating~5.20! and using~5.18! and~5.19!, we getpl8(k,x)5o(1) ask→` in C1 uniformly for
all xPR2. Thus, the proof of~ii ! is complete. The proof of~iii ! is similar to that of~ii !, and it is
obtained by using~2.4!, ~3.20!, ~5.11!, and~5.12!. j

The integral representations~5.6!, ~5.7!, ~5.14!, and ~5.15! can be used to establish variou
properties of the scattering coefficients such as their small-k and large-k asymptotics. For example
their large-k asymptotics can be obtained with the help of Proposition 5.1. However, such de
tions will not be given in this paper, and we let the interested reader extract such propertie
those integral representations.
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Field theory in SU q„2…
P. N. Bibikova)
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We study field theory on the quantum group SUq(2) which is considered as a
physical space. We construct deformed equations and Lagrangians for scalar,
Dirac, and gauge fields and study their properties. It seems important for us that
nontrivial structure of noncommutative differential calculus leads to an appearance
of an additional spin 0 gauge field. ©2000 American Institute of Physics.
@S0022-2488~99!01005-1#

I. INTRODUCTION

Noncommutative geometry1 attracts these days a great interest of many researchers
natural framework for quantization of space and time. One of the most promising results i
direction is the approach to gauge field theory developed in Ref. 2 where the standard mo
gauge interaction was obtained from noncommutativity of space–time. A review of diffe
deformations of Minkowski space which are connected with the corresponding deformatio
Lorentz and Poincare groups is given in Ref. 3.

The basic notion of the approach studied in Refs. 1 and 2 is the Connes triple (A,H,D),
whereA is in general framework a noncommutative*-algebra which is considered as an algeb
of operators in the Hilbert spaceH. HereD is a linear, possibly unbounded operator inH with
D* 52D.

In a classical case whenA5Fun (M ) is a commutative algebra of functions on the different
manifold M, the operatorD is the usual Dirac operator

D5g i] i . ~1!

In ~1! ] i are local derivatives and for eachxPM matricesg i(x) satisfying relations

g i~x!g j~x!1g j~x!g i~x!52gi j ~x! ~2!

are generators of a local Clifford algebra Cl (x). In Eq. ~2! gi j (x) are local components of metri
tensor.

The vector bundle overM whose fiber over each pointxPM is an algebra Cl (x) is called the
Clifford bundle overM.4 This bundle was assosiated in Refs. 1 and 2 with the space o
quantum differential forms overM; however, the space of all one-forms is a subbundle in Cl (M ),
whose fiber over each pointxPM is generated as a linear space by elementsg i(x). We shall call
it the Dirac bundle and denote by Dir (M ,D).

Noncommutative differential calculus on the Fun (M ) is defined by introduction of the exte
rior derivative operator which we shall denote bydc . For eachf PFun (M ) it has the form

dcf 5@D, f #. ~3!

According to~1! the formula~3! gives the following result:

dcf 5] i~ f !g i . ~4!

a!Electronic mail: bibikov@pdmi.ras.ru
16320022-2488/2000/41(4)/1632/15/$17.00 © 2000 American Institute of Physics
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Correspondence of the definition~3! with the usual external derivative

d f5] i~ f !dxi ~5!

follows from the isomorhism betweenT* (M ) and Dir (M ,D) or in algebraic framework betwee
their spaces of sectionsG and Dir„Fun (M ),D…. HereG is the space of differential one-forms ove
M or the space of sections of cotangent bundleT* (M ) and Dir„Fun (M ),D… is the space of
sections of Dir (M ,D). The isomorphism follows from the fact that all fibers ofT* (M ) and
Dir ( M ,D) as well as the corresponding gluing maps are isomorphic. This isomorphism m
expressed by the following commutative diagram

Fun~M !
——→

d f5] i ~ f !dxi

G

↓ id ↓dxi→g i

Fun~M !
——→

dcf 5@D, f #
Dir „Fun~M !,D…

~6!

As a bimodule over Fun (M ), Dir „Fun (M ),D… is generated by all sums of the form

(
i

f i@D, gi #. ~7!

According to the isomorphism~6!, the gauge connection one-formAidxi , which is used in
construction of pure gauge action, and the gauge interaction termAig

i in the Dirac equation for
spinor field have similar geometrical interpretations. So, studying deformations of field theo
quantum spaces it is natural to suppose that the diagram~6! has an analog also in the noncom
mutative case. We shall write the corresponding diagram in the form

A
——→
d: f→d f

G

↓ id ↓d f→dcf

A
——→

dcf 5@D, f #
Dir ~A,D !

~8!

where Dir (A,D) is a bimodule overA generated by all sums of the form~7!. We shall call it the
Dirac bimodule overA associated with the Dirac operatorD.

By its meaning the diagram~8! is much richer than the rather tautological diagram~6! be-
cause, in quantum cases, elements ofG as well as elements of Dir (A,D) have nontrivial com-
mutation relations with elements ofA.

When the Dirac operator is defined, the formula~3! gives an explicit construction for the
external differentialdc . However, for the most interesting class of noncommutative spaces w
appears in applications of quantum group theory,5 the noncommutative differential calculus ma
be defined in the purely abstract form.6 So in this case the commutativity of the diagram~8! means
an equivalence of the two approaches for construction of the noncommutative differential ca
according to Ref. 1 or 6. In the paper we show that this commutativity may be used as a po
tool for constructing the corresponding Dirac operator.

In the framework of Refs. 1 and 2 the Dirac equation for a massless spinor field coupled
gauge potential has the form

~D1V!c50, ~9!
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wherecPH andV is a noncommutative analog ofigAig
i whereg is a gauge charge. Accordin

to the isomorphism between the quantum Dirac and the quantum cotangent bundles supp
~8! it corresponds to the gauge connection quantum one-formt, which is the noncommutative
analog ofigAidxi .

We take the gauge transformation law for spinorial fields in the form

c→c̃5Uc, ~10!

whereU is a unitary element ofA,

UU* 5U* U51. ~11!

~Additional restriction onU will be discussed in the last section.! The transformation~10! for c is
compatible with the following transformation forV:

V→UVU* 1U@D, U* #, ~12!

which, according to~8!, is equivalent to the standard law fort:

t→ t̃5UtU* 1UdU* . ~13!

In the present paper we study the diagram~8!, constructing on the quantum group SUq(2) the
Dirac operator which corresponds to the 4D1 bicovariant differential calculus.7 In Ref. 8 we
started the investigation and have studied a Dirac operator which is very similar to the
proposed in this paper. However, the corresponding Fun„SUq(2)… Dirac bimodule does not admi
any SUq(2) coaction. For the Dirac operatorDq constructed in this paper the correspondi
bimodule Dir~Fun„SUq(2)…,Dq) admits a SUq(2)-coaction and is isomorpic as
SUq(2)-bicovariant bimodule to the space of differential one-formsG connected with the 4D1

differential calculus.
The paper is organized as follows. In Sec. II we study according to Ref. 8 the differe

geometry on SUq(2) which corresponds to 4D1 differential calculus.7 In Sec. III we derive on
SUq(2), considered as a physical space, the equations and Lagrangian of the scalar field.
IV we present on SUq(2) the Dirac operator and prove commutativity of the diagram~8!. In Sec.
V we construct on SUq(2) the equations and Lagrangian of the deformed gauge theory. It wi
proved that in the noncommutative case there is no such correspondence between the Lag
and equations of motion. Moreover, as it will be shown in Sec. V, the gauge invariance gro
field equations is much bigger than the gauge group of the proposed Lagrangian.

One of the most basic ideas of the scheme1,2 is that Higgs particles correspond to scalar gau
fields appearing due to noncommutativity of space–time. In Sec. IV we prove that the add
dimension of the space of differential one-forms on SUq(2) really is the origin of the appearanc
of new spin 0 gauge field.

This paper extends the study which was started in Ref. 8, however, some definition
notations are changed a little.

II. SUq„2… AS A QUANTUM MANIFOLD

Fun„SUq(2)…, the algebra of functions on the quantum group SUq(2), is an associative
* -algebra generated by two elementsa andb satisfying relations6,9 (l[q21/q)

ab5qba, ab* 5qb* a, b* b5bb* ,
~14!

a* a2aa* 5
1

q
lb* b, aa* 1b* b5I .

Comultiplication, counit, and antipode,
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D~a!5a^ a2
1

q
b^ b* , D~b!5a^ b1b^ a* ,

~15!

D~b* !5b* ^ a1a* ^ b* , D~a* !5a* ^ a* 2
1

q
b* ^ b,

«~a!5«~a* !51, «~b!5«~b* !50, ~16!

S~a!5a* , S~b!52
1

q
b, S~b* !52qb* , S~a* !5a, ~17!

define on it the structure of involutive Hopf algebra.
Dual to Fun„SUq(2)…, the quantum universal enveloping algebra10,11 suq(2) is an associative

algebra generated by four elementsk,k21,e, f (kk215k21k51) and relations

ek5qke, k f5q f k, k22k225l~ f e2e f!. ~18!

Comultiplication, counit, and antipode,

Dk5k^ k, Dk215k21
^ k21,

~19!
De5e^ k1k21

^ e, D f 5 f ^ k1k21
^ f ,

«~k!5«~k21!51, «~e!5«~ f !50, ~20!

S~k!5k21, S~k21!5k, S~e!52
1

q
e, S~ f !52q f , ~21!

define the structure of Hopf algebra on suq(2).
Element

Cq5
1

q
k21qk221l2f e5qk21

1

q
k221l2e f ~22!

generates the center of suq(2)
The pairing between Fun„SUq(2)… and suq(2) is given by

^k,a&5^k21,a* &5
1

Aq
,

^k,a* &5^k21,a&5Aq, ~23!

^e,b&51, ^ f ,b* &52q

~the other pairings vanishing!.
EveryjPsuq(2) may be represented as a left-invariant operator on Fun„SUq(2)… according to

the formula

j~x!5^~ id^ j!,D~x!&, ~24!

wherexPFun„SUq(2)… and the left invariance means

~ id^ j!D~x!5D„j~x!…. ~25!
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The invariant Haar measure on SUq(2) ~Ref. 9! is the positive linear functionalh:
Fun„SUq(2)…→C. Its SUq(2) invariance means that

~ id^ h!„D~x!…5~h^ id!~D~x!!5h~x!•1. ~26!

Using the functionalh it is natural to define on Fun„SUq(2)… the SUq(2)-invariant scalar product9

~x,y!5h~x* y!. ~27!

As it was shown in Ref. 8,

* +k+* 5k21, * +e+* 52
1

q
f , ~28!

where* means the involution in Fun„SUq(2)…. In Eq. ~28! the elements of suq(2) are considered
according to~24! as operators in Fun„SUq(2)…. From ~28! and ~19! follows that the Hermitian
conjugation corresponding to the scalar product~27! on suq(2) is defined by the formulas8

k* 5k, k21* 5k21, e* 5 f . ~29!

The 4D1 differential calculus on SUq(2) was completely studied in Ref. 7. The space
differential one-formsG is generated by the following basis of left invariant Cartan forms:

v15b* da2
1

q
adb* ,

v35a* da2ada* 1
1

q2 bdb* 2b* db,

~30!

v25a* db2
1

q
bda* ,

v05uS qa* da1
1

q
ada* 1

1

q
b* db1

1

q
bdb* D ,

where

u5
q~q11!

q321
~31!

and @n#q5(qn2q2n)/l. From the right covariance condition6,7

~d^ id!+FR5FR+d. ~32!

According to the right coaction of Fun„SUq(2)… on itself given by coproduct

FR~x!5D~x!, ~33!

we obtain the following form of SUq(2) coaction onG:

FR~v0!5v0
^ 1 ~34!

and

FR~v j !5v i
^ t i

j , ~35!
                                                                                                                



l

1637J. Math. Phys., Vol. 41, No. 4, April 2000 Field theory in SUq(2)

                    
wherei 51,3,2 or, in compact matrix form,

FR~v!5v ^ t, ~36!

wherev5(v1,v3,v2), and

t5S a2 2@2#qba 2
1

q
b2

b* a S 12
@2#q

q
b* bD a* b

2
1

q
b* 2 2@2#qa* b* a* 2

D . ~37!

Involution in G has the form7

~v6!* 52v7, ~v3!* 52v3, ~v0!* 52v0. ~38!

Commutation relations between the elements of Fun„SUq(2)… and G are given by the genera
formula6

v ix5 f j
i ~x!v j , ~39!

where the corresponding operatorsf j
i are7

f 1
15 f 2

251, f 2
15 f 1

250,

f 3
152

lAq

@2#q
ke, f 0

15
lAq

@2#q
ke,

f 1
3 5lAqk21f , f 1

0 5lAqk21f ,

f 3
252

lAq

@2#q
f k, f 0

25
lAq

@2#q
f k, ~40!

f 2
3 5lAqek21, f 2

0 5lAqek21,

f 0
35

l

@2#q
S qe f2

1

q
f eD , f 3

35
1

2
~k21k22!2

l2

2@2#q
~e f1 f e!,

f 3
05

l

@2#q
S 1

q
e f2q f eD , f 0

05
1

2
~k21k22!1

l2

2@2#q
~e f1 f e!.

From the condition v i(xy)5(v ix)y and Eqs. ~39! follows that for every x,y
PFun„SUq(2)…

f j
i ~xy!5 f k

i ~x! f j
k~y!, ~41!

or in an equivalent form

f j
i x5 f k

i ~x! f j
k . ~42!

Since all f j
i Psuq(2), then, according to~41!,
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D~ f j
i !5 f k

i
^ f j

k . ~43!

We take an expression for external derivative in the general form7

dx5] i~x!v i , ~44!

where

]25Aqek21, ]35
1

@2#q
S 1

q
e f2q f eD , ]15Aqk21f , ]05

1

l@2#q
~Cq2@2#q! ~45!

satisfy relations following from the general theory of bicovariant calculus:6,7

1

q
]3]22q]2]32l]2]05]2 ,

1

@2#q
@]2 , ]1#2l]3~]31]0!5]3 , ~46!

1

q
]1]32q]3]12l]1]05]1 .

Also as it follows from~29! and ~45!

]1* 5]2 , ]3* 5]3 , ]0* 5]0 . ~47!

From the Leibniz rule and relations~39! follows that

] i~xy!5x] i~y!1]k~x! f i
k~y!, ~48!

or

@] i ,x#5] j~x! f i
j . ~49!

Since all] i , f j
i Psuq(2), Eqs.~48! are equivalent to

D~] i !51^ ] i1]k^ f i
k . ~50!

According to~44! and from the right covariance condition~32! follows

~] i ^ id!D~x!~v i
^ 1!5D„] i~x!…FR~v i !, ~51!

or in equivalent form

~]k^ id!D~x!5D„] i~x!…1^ tk
i , ~52!

for j ,k51,3,2, and

~]0^ id!D~x!5D„]0~x!…. ~53!

Comparing Eqs.~53! and ~25! we see that the operator]0 ~as well asCq! is also right
SUq(2)-invariant.

The following elements2PG ^ G,

s25gi j v
i
^ v j , ~54!
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where

g125
@2#q

q
, g215q@2#q , g3351, g00521, ~55!

is SUq(2)-invariant:

FR~s2!5s2
^ 1 ~56!

@the left invariance conditionFL(s2)51^ s2 follows from the left invariance of Cartan form
~30!7#. Moreover, for everyxPFun„SUq(2)…,

s2x5xs2. ~57!

We assosiate withgi j covariant metric on SUq(2).
It can be proved according to~52! and ~53! that the operator

Dq5gi j ] i] j ~58!

is right invariant. The nonzero componentsgi j in ~58! are

g125
1

q@2#q
, g215

q

@2#q
, g3351, g00521. ~59!

We assosiate with the matrixgi j a contravariant metric on SUq(2). It is easy to check that

gi j g
jk5d i

k . ~60!

From ~18!, ~22!, and~45! also follows that

Dq5
2

l2@2#q
~Cq2@2#q!. ~61!

As we see the definition ofDq differs from the one suggested in Ref. 8~of course they have
the sameq→1 limit!. We have chosen the new variant in order to use in the noncommutative
the general formula~58!.

External multiplication onG may be defined by the system of relations.7 According to the
right SUq(2)-coaction we may write them as the two scalar relations,

v0`v050, v3`v31@2#qS 1

q
v1`v21qv2`v1D50; ~62!

the system of vector relations,k51,3,2,

v0`vk1vk`v05lak, ~63!

where

a15
1

@2#q
2 S qv3`v12

1

q
v1`v3D ,

a35
1

@2#q
2 „lv3`v31@2#q~v1`v22v2`v1!…, ~64!
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a25
1

@2#q
2 S qv2`v32

1

q
v3`v2D ;

and the system of tensor relations,

v6`v650, lv3`v32q2v1`v22
1

q2 v2`v150,

~65!

qv1`v31
1

q
v3`v150,

1

q
v2`v31qv3`v250.

We shall define the deformed Clifford algebra Cl~V! ~see also Ref. 12!, by generatorsg1, g3,
g2, g0, and 1. They will satisfy the same relations~63!–~65! as the generators ofG; however,
Eqs.~62! will be changed by

~g0!25
l2

4
1, ~g3!21@2#qS 1

q
g1g21qg2g1D5@3#q1. ~66!

We may construct the following representation of Cl~V!:

g15S 0 1

0 0D , g35S q 0

0 2
1

q
D , g25S 0 0

1 0D , g05
l

2 S 1 0

0 1D . ~67!

It is easy to see now that relations~66! are covariant under the right SUq(2)-coaction given by
~34! and ~36!.

From ~30! and ~39! follow the formulas for the exterior derivatives of one-forms:

dv15a1, dv35a3, dv25a2, dv050. ~68!

It will be convenient for us to take the basis ofG`2 from the tripletak and an additional triple

b15
1

@2#q
~v0`v12v1`v0!,

b35
1

@2#q
~v0`v32v3`v0!, ~69!

b25
1

@2#q
~v0`v22v2`v0!.

According to~34!, ~36!, ~37!, and~14!, the right SUq(2)-coaction on triplets (a1,a3,a2) and
(b1,b3,b2) has the form~36! and, as it can be checked by direct calculation using~39! and~40!,
the commutation relations between the elements ofG`2 and Fun„SUq(2)… have the following
form:

a ix5mj
i ~x!a j1nj

i ~x!b j ,
~70!

b ix5nj
i ~x!a j1mj

i ~x!b j ,

where
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m1
15

1

2
~k21k22!, m3

152
l

2Aq
k21e, m2

152
l2

2
e2,

m1
3 5

l@2#qAq

2
f k, m3

351, m2
3 5

l@2#qAq

2
ke,

n1
15

1

2
~k222k2!, n3

152
l

2Aq
k21e, n2

152
l2

2
e2, ~71!

n1
3 52

l@2#q

2
f k, n3

350, n2
3 5

l@2#q

2
ke,

n1
15

l2

2
f 2, n3

25
lAq

2
k21f , n2

252
1

2
~k22k22!.

Since the relations~70! as well as the SUq(2)-coaction are invariant under the exchangea↔b, we
may define the Hodge involution!:G`2→G`2,

!ak5bk, !bk5ak, ~72!

which is a homomorphism of SUq(2) bimodules. We shall need it in Sec. IV.
The one-dimensional spaceG`4 is generated by the anti-Hermitian element

v45
2

@2#q
v0`v3`v1`v2. ~73!

As it can be easily calculated according to~62!, ~63!, ~64!, ~66!, and~69!, the only nonvanishing
exterior products of the elements ofG`2 are

a1`b25b1`a25
1

q
v4,

a2`b15b2`a15qv4, ~74!

a3`b35b3`a35@2#qv4.

From Eqs.~70! and ~74! follows that everyf PG`2 commutes with the corresponding!f.
Also as it follows from~70!, ~71!, and~74!, for everyxPFun„SUq(2)…,

v4x5xv4. ~75!

From ~38!, ~64!, ~69!, and ~70! follows that the Hodge involution defined by~72! anticom-
mutes with the usual involution:

!+* 52* +!. ~76!

The algebra of quantum vector fields on SUq(2) ~Ref. 8! is defined by the four generators

l 15
1

@2#q
Aqke, l 35

1

@2#q
S qe f2

1

q
f eD , l 25

1

@2#q
Aq f k, l 05]0 . ~77!

From ~28! and ~45! we may obtain the following representation,m,n51,3,2:

l m52wmn* +]n+* , l 05* +]0+* , ~78!
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where nonzero components of the matrixw are

w115
1

q@2#q
, w3351, w225

q

@2#q
~79!

From ~46!, ~78!, and~79! follows8

ql3l 12
1

q
l 1l 35~11l l 0!l 1,

l~ l 3!21@2#q~ l 1l 22 l 2l 1!5~11l l 0!l 3, ~80!

ql2l 32
1

q
l 3l 25~11l l 0!l 2,

and

gi j l
i l j5Dq . ~81!

From ~52!, ~53!, and~78! follows

~ l 0
^ id!D~x!5D„l 0~x!…, ~ l ^ id!D~x!5~1^ wtcw21!D„l ~x!…, ~82!

where

l 5S l 1

l 3

l 2
D ,

and tmn
c 5(tmn)* .

It may be checked by direct calculation that

ttwtcw215I 3 , ~83!

wheretmn
t 5tnm and I 3 is a unit 333 matrix. From~52!, ~82!, and ~83! follows that the bilinear

operatorL:Fun„SUq(2)…^ Fun„SUq(2)…→Fun„SUq(2)… defined by the sum.m51,3,2;

L~x,y!5]m~x!l m~y!, ~84!

is right invariant @the left invariance follows from~24!#. This means that for everyx,y
PFun„SUq(2)…,

~L ^ id!„D~x!,D~y!…5D„L~x,y!…. ~85!

III. SCALAR FIELD ON SU q„2…

By analogy with the classical case let a scalar fieldw on SUq(2) be an element of
Fun„SUq(2)….

We take the corresponding action in the following form:

Ssc~w!5h„Lsc~w!…, ~86!

where the LagrangianLsc is

Lsc~w!521/4„L~w* ,w!1L~w,w* !1w* m2w1wm2w* …. ~87!
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The square mass operatorm2 is Hermitian and depends only on]0 . According to the representa
tion for L,

L~w* ,w!5
1

@2#q
„l 3~w!…* l 3~w!1q„l 1~w!…* l 1~w!1

1

q
„l 2~w!…* l 2~w!, ~88!

which follows from~78! and~79!, the LagrangianLsc is Hermitian and according to its definitio
~87! also is invariant under the involution ofw:

Lsc~w!5Lsc~w* !. ~89!

The actionS(w) is also Hermitian invariant under the involution ofw and, as it follows from
Eqs.~85! and ~26!, SUq(2)-invariant:

S~w* !5S~w!, ~S^ id!„FR~w!…5S~w! ^ 1. ~90!

Let dw be a small variation ofw. Then, according to~88!, ~81!, and~29!,

dS~w!5d1S1d2S1d3S1d4S, ~91!

where

d1S5h„dw* ~Dqw1m2w!…, d2S5h„dw~Dqw* 1m2w* !…,
~92!

d3S5h„~Dqw* 1m2w* !dw…, d4S5h„~Dqw1m2w!dw* …,

and the condition

dS50 ~93!

is satisfied whenw satisfies the following equation:

Dqw1m2w50. ~94!

We also may add to the Lagrangian~87! interaction terms with higher order inw. However, in
this situation, according to the noncommutativity of Fun„SUq(2)… it is not clear how to write
corresponding equations of motion. For example, for potential

w* ww* w, ~95!

variationdS contains the following ‘‘bad’’ terms,h(w* dww* w) andh(w* wdw* w).
From the other side we may add interaction terms to Eq.~94!, but then it is not clear how to

write the corresponding Lagrangian.

IV. DIRAC OPERATOR AND QUANTUM CLIFFORD BUNDLE

We shall take the anti-Hermitian Dirac operator on SUq(2) in the form

Dq5 igk]k , ~96!

wheregk and]k are given by~67! and~45!. It acts on the spaceC2
^ Fun„SUq(2)… supplied by the

scalar product~•,•! defined for everyw5(w2

w1) andc5(c2

c1) as

~w,c!5h~w1* ,c1!1h~w2* ,c2!. ~97!

From ~14!, ~23!, ~24!, ~45!, and ~49! may be obtained the following representation forvc
k ,

corresponding tovk elements of Dir~Fun„SUq(2)…,Dq):
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vc
k5 ig j f j

k . ~98!

According to ~42!, the commutation relations betweenvc
k and vk with the elements of

Fun„SUq(2)… have the similar form~39! and the correspondencevk→vc
k is an isomorphism of

bimodulesG and Dir~Fun„SUq(2)…,Dq) over Fun„SUq(2)…. So the diagram~8! is commutative.
From ~46! and ~67! follows thatDq satisfies the characteristic equation

Dq
21 iD q52

@2#q
2

4
DqS 11

l2

4
DqD ~99!

or

Dq
21 iD q52

1

4l2 ~Cq
22@2#q

2!. ~100!

Let now study the spectrum ofDq . As it was shown in Ref. 8 eigenvalues of the operatorCq are

lCq
~ l !5q2l 111q2~2l 11!, ~101!

where l 50,1
2,1,... . So, according to Eqs.~100! and ~101!, it follows that the spectrum ofDq

consists of two series of eigenvalues

l6~ l !5
i

2
~216@2l 11#q!. ~102!

As it follows from this formula, whenl goes to infinity the eigenvalues have an exponen
growth. This also means that, using the Dirac operatorDq , it is impossible to obtain for any finite
d a d-summableK-cycle in the sense of Refs. 1 and 2 and to useDq for the construction of a
noncommutative integration.

However, we do not need it because in the our case the Haar measure functionalh is yet
defined.9

As we see, our definitions ofDq differs from the one suggested in Ref. 8. The new definit
is better because in this case the diagram~8! corresponds to the 4D1 bicovariant calculus.

V. DEFORMED U„1… GAUGE THEORY

By analogy with the undeformed case we define gauge potentials as elemen
Fun„SUq(2)…. Let us introduce the U~1! gauge field by the anti-Hermitian gauge connecti
one-form

t5gAkv
k, ~103!

where Ak are deformed potentials. Fork51,3,2 they have the undeformed (q51) analogs.
However, an additional scalar gauge fieldA0 appears only in the quantum case and probably m
be interpreted as a Higgs field.1,2

According to~38!, the condition thatt must be anti-Hermitian is equivalent to

f i
0~A0* !1 f i

3~A3* !1 f i
1~A2* !1 f i

2~A1* !5Ai . ~104!

This equation~and it seems very important for us! mixesAk for k51,3,2 with A0 . The corre-
sponding tot in Clifford one-form

tc5gAkvc
k , ~105!

describes the gauge interaction in the Dirac equation,
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gk¹kc50, ~106!

where

¹k5]k1 igAj f k
j ~107!

~g is a gauge charge!.
Following Refs. 1 and 2 we define the gauge transformation ofc and t according to the

formulas~10!, ~11!, and~13!, so the gauge potentials transform as

Ãk5UAj f k
j ~U* !11/gU]k~U* !. ~108!

Defining the curvature form

Vg5dt1t`t, ~109!

we obtain, according to~13! and ~109!, the following transformation law for it:

Ṽg5UVgU* . ~110!

Since the spaceG`25V2(Fun„SUq(2)…) is six-dimensional, the formVg defines six com-
ponents of field strength tensor.

According to~109!, the covariant differential of the curvature formVg is zero:

DVg5dVg1t`Vg2Vg`t50. ~111!

We interpret this gauge-invariant condition as a deformed Bianchi identity.
For the dual~Hermitian! curvature form!Vg the gauge transformation law has the same fo

~110! as forVg . So, the equation

D!Vg5d!Vg1t`!Vg2!Vg`t50 ~112!

is gauge invariant and Eqs.~111! and~112! may be interpreted as a system of deformed Maxw
equations on SUq(2).

It will be interesting to derive~112! according to the same kind of variational principle, but
it was mentioned at the end of Sec. II, since this system of equations is nonlinear, this pr
becomes sufficiently more difficult in the deformed situation.

However, as in the scalar field case, we may search forLg , the deformation of the classica
Lagrangian, according to the relation

Lgv45Vg`!Vg . ~113!

From ~110! and ~75! follows the gauge transformation law forLg ,

L̃g5ULgU* . ~114!

Now, in order to obtain action fromLg , we have by analogy with the undeformed case to t
the integral over SUq(2),

Sg5h~Lg!. ~115!

The gauge symmetry group of this action is much smaller than the one corresponding t
~111! and~112!. It consists of allUPFun„SUq(2)… satisfying~11! and additionally preservingh,
so that for everyxPFun„SUq(2)…,

h~UxU* !5h~x!. ~116!
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VI. CONCLUSIONS

In this paper we have defined the Dirac operator on the quantum group SUq(2). It is very
similar to the one proposed in Ref. 8. We also defined deformed Klein–Gordon and Ma
equations and deformed Lagrangians. Since almost all of the main constructions used in the
including the proof of commutativity of the diagram~8! ~which follows from the general formula
~41! and ~49!!, constructions of the deformed Klein–Gordon and Maxwell equations~94! and
~111! and ~112! and deformed Lagrangians~87! and ~113! have a general form, we are sure th
our approach may be applied for many other examples of quantum spaces. In the forthc
paper we shall study in this framework thek-Minkowski space–time.
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Quantum field theory on the noncommutative plane
with Eq„2… symmetry
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We study properties of a scalar quantum field theory on the two-dimensional non-
commutative plane withEq(2) quantum symmetry. We start from the consideration
of a firstly quantized quantum particle on the noncommutative plane. Then we
define quantum fields depending on noncommutative coordinates and construct a
field theoretical action using theEq(2)-invariant measure on the noncommutative
plane. With the help of the partial wave decomposition we show that this quantum
field theory can be considered as a second quantization of the particle theory on
the noncommutative plane and that this field theory has~contrary to the com-
mon belief! even more severe ultraviolet divergences than its counterpart on the
usual commutative plane. Finally we introduce the symmetry transformations
of physical states on noncommutative spaces and discuss them in detail for the
case of theEq(2) quantum group. ©2000 American Institute of Physics.
@S0022-2488~00!02004-1#

I. INTRODUCTION

It is generally believed that the picture of space–time as a manifoldM should break down a
very short distances of the order of the Planck length. One possible approach to the descrip
physical phenomena at small distances is based on noncommutative geometry of spac
There have been investigations in the context of Connes’ approach1 to gravity and the Standard
Model of electroweak and strong interactions2,3 and in the framework of the string theory.4,5 It has
been shown that the noncommutative geometry naturally appears in string theory with a n
antisymmetricB-field. This result provides with a solid background for the study of field theo
on noncommutative space–times which supposedly correspond to the low energy limit o
strings theories. Another approach starting from study of a relation between measurements
small distances and black hole formations has been developed in the pioneering works.6 One more
possibility is based on Quantum Group theory~see, e.g., Ref. 7!.

The essence of the noncommutative geometry consists in reformulating first the geom
terms of commutative algebras and modules of smooth functions, and then generalizing th
their noncommutative analogs. If the notions of the noncommutative geometry are used d
for the description of the space–time, the notion of points as elementary geometrical entity
and one may expect that an ultraviolet cutoff appears.

As is well known from the standard quantum mechanics, a quantization of any compact
in particular a sphere, leads to finite-dimensional representations of the corresponding ope
so that in this case any calculation is reduced to manipulations with finite-dimensional ma
and thus there is simply no place for UV-divergences~see Refs. 8, 9, 10, and references there!.
Things are not so easy in the case of noncompact manifolds. The quantization leads to i
dimensional representations and we have no guarantee that noncommutativity of the spac

a!Permanent address: Nuclear Physics Institute, Moscow State University, 119899, Moscow, Russia.
b!Permanent address: Department of Theoretical Physics, Comenius University, Mlynska´ Dolina, SK-84215 Bratislava,

Slovakia.
16470022-2488/2000/41(4)/1647/25/$17.00 © 2000 American Institute of Physics
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coordinates removes UV-divergences. In our preceding paper11 we have shown that ultraviole
behavior of a field theory on a noncommutative space–time is sensitive to the topology
space–time, namely, to its compactness. We considered theories on a two-dimensional pla
Heisenberg-type commutation relations among coordinates~see also Refs. 6, 12, 13! and on a
noncommutative cylinder. While the former retains the divergent tadpoles~as an ordinary QFT!,
the latter proves to be UV-finite. We argued that the underlying reason for such an UV-beh
of the models is related to the properties of the complete coordinate-momentum quantu
chanical algebra and to the fact that the momenta degrees of freedom are associated to t
noncompactHeisenberg–Weyl group manifold in the first case and to the cylinder in the se
case~the cylinder has onecompactdimension!.

Using these qualitative arguments, we supposed that the quantum field theory construc
theq-deformed plane14,15,16with Eq(2)-symmetry also has UV-divergences. We have proven
indeed there are no kinematical reasons for this model to be UV-finite; the Green function
free theory on theq-plane is singular. Moreover, we have shown that the interaction with
external field does produce divergent tadpole. However, in the paper11 we used decomposition o
the fields on theq-plane in the so-called distorted plane waves~q-deformed exponential functions!.
This makes difficult matching theq-deformed field theory with the corresponding firstly quantiz
quantum mechanics of particles on theq-deformed plane and due to the absence of the additi
property for theq-exponentials, makes an explicit calculation of nontrivial~e.g., w4-! vertices
impossible. Thus the results of Ref. 11 have left open the possibility that the complete inter
theory on theq-plane is UV-finite because of~dynamical! properties of the correspondin
w4-vertices.

In this paper we use another decomposition of the fields, namely, the decomposition in
waves, similar to the recently proposed ‘‘spherical field theory’’17 on commutative spaces. Thi
decomposition together with the Haar (Eq(2)-invariant! measure andq-deformed integral used fo
the definition of the field theoretical action, allows to present the field theory on theq-deformed
plane as a lattice theory of infinite number of interacting one-dimensional fields~partial waves!.
The resulting field theoretical degrees of freedom are in transparent correspondence w
spectrum of operators in the firstly quantized version of the model. The calculation of the ta
with the account of thew4-vertex shows that UV-properties of the theory on theq-deformed plane
are even worse than those on the ordinary commutative plane. This fact confirms the conclu
the paper11 that the very transition to the noncommutative space–times does not guarante
finiteness.

It is worth to notice that as we discussed in Ref. 11~Sec. III D! and as it is advocated in th
recent paper,13 the transition to a noncommutative space–times even in the noncompact
opens, in general, a possibility for construction of a theory with an improved UV-behavior.
point is that a definition of an action functional for fields on a noncommutative space–
includes an operator ordering rule for the fields~due to the noncommutativity of coordinates, ev
before the second quantization!. Choosing a specific operator ordering for interaction terms in
case of a space–time with the Heisenberg-type commutation relations, one can achieve
proved UV-behavior of the corresponding QFT,11,13 while identical ordering for all terms in the
action leads to ultraviolet divergences.12,6,11An interesting feature of the theory on theq-plane is
that this ambiguity is not so essential for it; due to the homogeneous commutation relatio
coordinates on theq-plane ~see Eq.~8! below!, all natural operator orderings differ from eac
other by unessential numerical factors. Together with theq-integral fixed by theEq(2)-symmetry,
this allows to convert the theory on theq-plane into a uniquely defined latticelike theory and
study UV-properties by usual field theoretical methods.

The example of the plane with the most simple and natural Heisenberg-type commu
relations among coordinates was used in Ref. 11 also for study of symmetry transformati
noncommutative space–times with Lie algebra commutation relations for coordinates. The
commutative coordinates prove to be tensor operators, and we considered concrete exam
the corresponding transformations of localized states~analog of space–time point transform
tions!. In this paper, we extend this consideration to the much more involved case of qua
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group coaction on noncommutative space–times. More precisely, we derive the rules of tra
mations of particle states induced by the coaction of a quantum group.

The paper is organized as follows: In Sec. II we consider firstly quantized theory of par
on theq-deformed planePq

(2) with Eq(2)-symmetry. We derive representations of the algebra
coordinates and momenta on theq-plane and find spectra of the relevant operators. In Sec. III
field theory ~second quantization! on Pq

(2) is introduced and presented in the form of infini
number of interacting partial waves defined on a one-dimensional lattice, the partial wave
sites of the lattice~interpreted as creation and annihilation operators! being in one-to-one corre
spondence with spectra of the quantum mechanical operators found in Sec. II. Calculatio
tadpole diagram shows that the model has even more severe UV-divergences than the s
two-dimensional scalarw4-theory. In Sec. IV we are interested in transformation properties
system onPq

(2) under the coaction of the quantum groupEq(2). The point is that now the
coordinatesz̄,z are noncommuting operators andEq(2) provides only existence of coaction, i.e
homomorphism of the algebra of functions onPq

(2) into the direct productEq(2)^ Pq
(2) of algebras

of functions on the quantum group and plane. Then the question is: how does this co
influence states of a quantum system onPq

(2)? In other words, if a system is in some statec ~say,
with a definite value of one of the coordinate operators,z or z̄ or some their combination! we are
interested in determination of the state after theEq(2)-group coaction. In Sec. IV A we clarify a
general formulation of this problem and then~in Sec. IV B! give an explicit answer for theEq(2)
group. Section V is devoted to the summary of the results.

II. QUANTUM MECHANICS ON THE NONCOMMUTATIVE PLANE WITH QUANTUM
Eq„2… GROUP SYMMETRY

In this paper we consider Quantum Mechanics induced by a quantum group structure.
that in the case of ordinary Lie groupG, the group structure defines a unique symplectic struc
on the cotangent bundleTG* to the group manifoldG ~see, e.g., Ref. 18! and hence, the corre
sponding canonical quantization~via substitution of Poisson brackets by the corresponding c
mutators!. A similar construction with necessary generalizations, can be carried out for
Poisson groups, which after the quantization procedure become quantum groups~see, e.g., review
in Ref. 7, and references therein!.

In fact, the quantization of a system on a Lie group cotangent bundleTG* corresponds to
choice of the group manifold as a configuration space~i.e., group parameters as space coordina!
and left- ~or right-!invariant vector fields onG ~elements of the corresponding Lie algebra! as
quantum mechanical momenta. Instead of using a whole groupG, one can start from some of it
coset ~homogeneous! spaceG/H, where H is a subgroupH,G. In this approach the basi
problem of Quantum Mechanics, i.e., determination of possible representations of canonic
erators, is reduced to mathematically well-developed problem of construction of regular rep
tation ~or quasiregular, if one deals with a homogeneous space! and its decomposition into irre
ducible parts~see, e.g., Ref. 19!. In some particular cases this general construction becomes r
simple and quite familiar from elementary course on Quantum Mechanics. For example,
consider a two-dimensional Euclidean group

containing rotations and translations of a two-dimensional plane. Its homogeneous spacP(2)

5E(2)/U(1) is the Euclidean plane with the metrich i j 5diag$11,11% which is invariant with
respect toE(2)-transformations. This configuration space is parameterized by two coordi
x1 ,x2 , while left-invariant fields tangent to this homogeneous space are nothing but usual d
tives which up to the factor2 i\ correspond to the standard momentum operators. As is w
known, any representation of the algebra of coordinates and left-invariant vector fields onP(2) is
unitary equivalent to this representation by the coordinate functions and derivatives in the H
spaceH5L2(R2) of square integrable functions. Statesc(x)PH are transformed according t
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representations ofE(2) in the Hilbert spaceH. Since the coordinate operators are commuti
their eigenvalues are transformed under an action ofE(2)-group as their classical counterparts;
the convenient complex notation

z5x11 ix2 , z̄5x12 ix2 ,

the E(2) transformations read as

z→z85vz1t,
~1!

z̄→ z̄85 v̄ z̄1 t̄ ,

wherev,v̄ subjected to the constraintv̄v51, define two-dimensional rotation groupU(1) andt

5t11 i t 2 , t̄ 5t12 i t 2 parameterize translations.
For the simple case of the quantum mechanical systems on the Euclidean plane the und

mathematics related to cotangent bundle structures, regular representations, etc., seem
redundant. But for generalizations to more complicated homogeneous spaces, in particula
nonzero curvature and nontrivial topology, the group theoretical methods become quite actu
powerful.

In this work we are going to study another generalization: instead of starting from ord
E(2), weshall use its quantum versionEq(2).14,15,16Though in the case of quantum groups a
corresponding quantum homogeneous spaces~definition of the latter see, e.g., Ref. 16! group
parameters~coordinates! become noncommutative, the general scheme of quantization still ca
applied. The role of momentum operators is now attributed theq-deformed left-~or right-! invari-
ant generalizations of vector fields~see, e.g., Ref. 20!. Thus the Planck constant\ enters, as usual
the commutation relations~CR! for momenta and coordinates, while the group deformation
rameterq governs nontrivial coordinate-coordinate and momentum-momentum CR. There
first of all we have to construct possible representations of thiscombined q-deformed algebra of
noncommuting coordinates and momenta. For the particular case which we consider in this
~q-deformed quantum Euclidean planePq

(2)) this is not a very complicated problem and we sh
consider it in this section.

We start from the quantum groupEq(2) generated by elementsv̄,v, t̄ ,t with the defining
relations14

v̄v5vv̄51, t t̄ 5q2 t̄ t,
~2!

vt5q2tv, v̄t5q22t v̄, qPR.

Other commutation relations follow from the involution:v†5 v̄,t†5 t̄ . Imposing it, we obtain that
the parameterq must be a real number~as we shall see below, the parameterq is closely related
to lattice spacing in our model; therefore it seems to be physically meaningless to conside
of complex and, in particular, root of unity values ofq!. The comultiplication has the form

Dv5v ^ v, D v̄5 v̄ ^ v̄,
~3!

Dt5v ^ t1t ^ 1, D t̄ 5 v̄ ^ t̄ 1 t̄ ^ 1.

The explicit form of the other basic maps forEq(2) ~antipode, counity! will not be used in what
follows.

The unitary elementv can be parameterized with the help of the symmetric elementu,

v5eiu, u†5u,
~4!

Du5u ^ 111^ u.
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The corresponding quantum universal enveloping algebra~QUEA! Uqe(2) is generated by the
elementsJ,T̄,T which are dual to the generatorsu, t̄ ,t of the algebraEq(2) and, as a result of the
duality, satisfy the following commutation relations:

@J,T#5 iT, @J,T̄#52 i T̄,
~5!

TT̄5q2T̄T

~comultiplication and the other basic maps are also defined by the duality!.
The left action of elements from QUEAUqL of an arbitrary Lie algebraL on elements of the

corresponding quantum groupGq is defined by the expressions

l ~X! f 5~ id^ X!•D f [(
i

f ~1!
i ^^X, f ~2!

i &&, ~6!

or

l~X! f 5~S~X! ^ id!•D f [(
i

^^S~X!, f ~1!
i && f ~2!

i , ~7!

where XPUqL, f , f (1,2)
i PGq , ^^•,•&& denotes the duality contraction,S(X) is antipode and

where the comultiplication inGq is presented in the formD f 5( i f (1)
i

^ f (2)
i . An explicit calcula-

tion of this left action in the case ofEq(2) shows that the operatorsT̄,TPUqe(2) act on elements
of Eq(2) generated byt̄ ,t exactly in the same way as theq-deformed derivatives]̄q ,]q . In fact,
the elementst̄ ,t generate theq-deformed analogPq

(2)5Ep(2)/Uq(1) of the homogeneous spac
P(2), i.e., generate the algebra of functions on quantum Euclidean plane.16 We shall denote
elements of the algebraPq

(2) by z̄,z to distinguish them from elementst̄ ,t of the algebraEq(2).
The elementsz̄,z and ]̄q ,]q define theq-deformed algebra of functions onPq

(2) together with
the q-deformed left-invariant vector fields~derivatives!. Its defining relations read as

zz̄5q2z̄z, ]q]̄q5q2]̄q]q ,

]qz511q22z]q , ]̄qz̄511q2z̄]̄q , ~8!

]̄qz5q2z]̄q , ]qz̄5q22z̄]q ,

~the commutation relation for theq-derivatives is just the rewritten commutation relation forT̄,T
~5! and those for theq-derivatives and coordinates are derived from~6!!. If we put q51 and
definep52 i\],p̄52 i\]̄, the relations~8! become the usual canonical commutation relatio
for a particle in two-dimensional space. The requirement of consistency with antipode dictat
following conjugation rule for theq-derivatives15

]q
†52q2]̄q , ]̄q

†52q22]q . ~9!

We consider the relations~8! as aq-deformation of the canonical commutation relations a
is going to construct their representation in a Hilbert space.

To this aim let us introduce the operatorsN and N̄ defined by the relations,

@N;q22#5z]q , @N̄;q2#5 z̄]̄q , ~10!

@X;qa#[
qaX21

qa21
. ~11!
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These operators have simple commutation relations

qaNz5qazqaN, qaN̄z̄5qaz̄qaN̄,

qaN]q5q2a]qqaN, qaN̄]̄q5q2a]̄qqaN̄. ~12!

Using ~9! andz†5 z̄, we find

N†52N̄21, N̄†52N21. ~13!

The operatorsq2N̄,q2N allow us to construct commuting pairs of conjugate operators,

Z̄5qN2N̄z̄, Z5zqN2N̄,
~14!

P̄5qq2~N2N̄!]̄q , P52q21]qq2~N2N̄!,

with the commutation relations

PZ̄5Z̄P, Z̄Z5ZZ̄, ZP511q2PZ,
~15!

P̄Z5ZP̄, P̄P5PP̄, P̄Z̄511q2Z̄P̄.

If we were given only the algebra of the operatorsz̄,z,]̄q ,]q , we would reasonably name th
commuting operatorsZ̄,Z by coordinates andP̄,P by the corresponding lattice momenta and th
deal with two independent~commuting with each other! one-dimensional algebras on theq-lattice.
However, fields in NC-QFT depend on noncommutative~q-commuting! coordinatesz̄,z which are
more suitable to trace a result of coaction byEq(2). We have found convenient to use th
hermitian and unitary combination of the coordinate operators,

r 2[zz̄ ~Hermitian!, u[Az̄z21 ~unitary!, ~16!

together withq(N̄2N) ~Hermitian operator! andq2(N̄1N11) ~unitary operator! as a basic set of the
phase space operators. The commutation relations for this set of operators read as

@q2~N̄2N!,r 2#50, @q~N̄1N11!,u#50,

r 2u5q2ur2, @q2~N̄2N!,q~N̄1N11!#50, ~17!

q2~N̄2N!5q2uq2~N̄2N!, q~N̄1N11!r 25q2r 2q~N̄1N11!.

Now we are ready to construct a representation of this algebra in the spacel 2 ~i.e., infinite
dimensional matrix representation!,

r 2un,m& r 0 ,l 0
5r 0

2q2nun,m& r 0 ,l 0
,

q2~N̄2N!un,m& r 0 ,l 0
5 l 0q2mun,m& r 0 ,l 0

, ~18!

uun,m& r 0 ,l 0
5un11,m11& r 0 ,l 0

,

q~N̄1N11!un,m& r 0 ,l 0
5un11,m& r 0 ,l 0

. ~19!
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The constantsr 0 andl 0 mark different representations and from the eigenvalues ofr 2 andq2(N̄2N)

it follows that in the ranges@r 0 ,q4r 0) and @ l 0 ,q4l 0) the representations are nonequivalent. T

matricesr 2,q2(N̄2N) are Hermitian andu, q(N̄1N11) are unitary with respect to the scalar produ
defined by

r 0 ,l 0
^n,mun8,m8& r 0 ,l 0

5dnn8dmm8 .

Thus we have obtained that states of a particle on the quantum plane are character

discrete values of its radius-vector and discrete values of the operatorq2(N̄2N) which is obviously
related to deformation of the angular momentum operator. Indeed, from~10! we conclude that the
operator

Jq[@N̄2N;q2#5
q2~N̄2N!21

q221
, ~20!

~which differs fromq2(N̄2N) by multiplication and shifting by the constants! in the continuum
limit q→1 becomes the ordinary angular momentum operator. Therefore it is natural to co
Jq as an appropriate deformation of the latter. Of course, discreteness of values of an a
momentum operator is not peculiar feature ofq-deformed systems but general property of
quantum systems. Analogously, the naturalq-deformation of the dilatation operator reads as

Dq[@~N̄1N11!;q2#5
q2~N̄1N11!21

q221
. ~21!

Another possibility for the construction of representations of the algebra~17! which will be
convenient for us in the next section is to construct the representation in the basis of the u
operators,

u[ z̄z21, and q2~N̄1N11!, ~22!

which commute with each other and, hence, have common eigenvalues. This basis, certain
suitable for construction of a matrix representation of the kind presented above since the tw
~Hermitian! operators do not shift an eigenvector of the operators~22! exactly into another eigen
vector. However, this basis proves to be more suitable for the study of transformations of the
under the coaction of the quantum groupEq(2) which we shall carry out in Sec. IV.

III. QUANTUM FIELD THEORY ON Pq
„2… AS A ONE-DIMENSIONAL LATTICE THEORY

FOR AN INFINITE SET OF INTERACTING FIELDS

In this section we shall introduce the scalarw4-field theory on the noncommutative planePq
(2)

and present it in the form of infinite number of interacting partial waves defined on a
dimensional lattice.

A. Preliminaries on ‘‘the spherical field theory’’

The starting idea of the spherical field theory17 in a usual commutative space–time is t
representation of ad-dimensional Euclidean field theory as a theory for an infinite set of o
dimensional interacting fields. In what follows we shall confine ourselves with the simplest ca
two-dimensional scalar theory. The initial action is quite standard,

S5E d2xF ~] i w̄ !~] iw!1m2w̄w1
l

2
~ w̄w!22 j w̄2 j̄ w G . ~23!

Decomposingw(x) and j (x) into partial waves
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w~x!5w~r ,a!5
1

A2p
(

N52`

`

wN~r !eiNa, ~24!

j ~x!5 j ~r ,a!5
1

A2p
(

N52`

`

j N~r !e2 iNa, ~25!

one can rewrite~23! as

S5 (
N52`

` E
0

`

drF r
]w̄N

]r

]wN

]r
1

m2r 21N2

r
w̄NwN2r j Nw̄N2r j̄ NwNG

1
l

2 (
N,M ,K,L52`

` E
0

`

drr ~ w̄NwMw̄KwLdN2M1K2L,0!. ~26!

Let G̃(k) denote the usual Green function in the momentum representation

G̃~k!5E d2xeik•x^0uw̄~x!w~0!u0&. ~27!

Then the propagator for theNth partial wave proves to be

^0uw̄N~r 1!wN~r 2!u0&5E dkkJuNu~kr1!JuNu~kr2!G̃~k!. ~28!

HereJN(kr) is the Bessel function of the first kind andk[Ak1
21k2

2. For the scalar field theory the
propagator has the form

G̃~k!5
1

k21m2 , ~29!

so that~28! gives

GN~r 1 ,r 2![^0uw̄N~r 1!wN~r 2!u0&

5E dkkJuNu~kr1!JuNu~kr2!
1

k21m2

5u~r 12r 2!K uNu~mr 1!I uNu~mr 2!1u~r 22r 1!K uNu~mr 2!I uNu~mr 1!, ~30!

whereu(r ) is the step-function;I N ,KN are the modified Bessel functions of the first and seco
kind, respectively.

The principal aim of the ‘‘spherical field theory’’~SQFT! is the development of a nonpertu
bative approach to calculations in the standard QFT. We are interested in UV-behavior of p
bation expansion in the quantum field theory on the noncommutative plane~NC-QFT! which we
are going to present in the form similar to the SQFT. Thus to make a comparison, let us fir
out how the UV-divergences of the ordinary~two-dimensional, scalar! field theory reveal them-
selves in SQFT. To this aim, we consider the tadpole diagram depicted in Fig. 1. This diag
proportional to the factor

(
N52`

`

GN~r ,r !5 (
N52`

`

K uNu~mr !I uNu~mr !5K0~mr !I 0~mr !12 (
N51

`

K uNu~mr !I uNu~mr !. ~31!
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It is seen that the Green functionGN(r 1 ,r 2) for a fixed partial wave is not singular at coincidin
arguments;GN(r ,r ) has well-defined values for anyr andN50,61,62,... . However, the tadpole
diagram is still divergent; the divergence appears in the summation over the angular mom
numbersN. Indeed, let us for simplicity consider small values ofmr !1, so that we can use th
asymptotic expressions,

I N~mr !umr !1'
1

N! S mr

2 D N

, N50,61,62,...,

KN~mr !umr !1'
~N21!!

2 S 2

mr D
N

, uNu>1,

K0~mr !umr !1' ln
2

gmr
, ~g is the Euler constant!.

Thus formr !1 the tadpole is proportional to

(
N52`

`

GN~r ,r !5 ln
2

gmr
1 (

N51

`
1

N
→`,

so that it is~logarithmically! divergent as it should be. Of course, the same is true for any va
of mr , though an explicit demonstration of this fact becomes more involved.

In order to circumvent such a calculation with the special~Bessel! functions, we can presen
the action~26! in a modified form. First, if we are interested only in UV-properties of the mod
we can drop out the mass term. However, the massless theory in two dimension has the i
divergences which are also logarithmic for the tadpole diagram and may distort the true pict
the UV-behavior of the model. Thus, in the massless case we need some IR-regularization
achieve it, let us introduce into the~massless! action ~26! the additional term of the form

S~ IR!5E
0

`

dr
s2

r
w̄N~r !wN~r !. ~32!

Now the free action reads as

S~0!5 (
N52`

` E
0

`

drF r
]w̄N

]r

]wN

]r
1

N21s2

r
w̄NwNG , ~33!

and after an introduction of the new coordinatey defined by the relation

y5 ln~mr !, 2`,y,`, ~34!

it acquires the simple form of the standard one-dimensional scalar action,

S05 (
N52`

` E
2`

`

dyF]w̄N

]y

]wN

]y
1~N21s2!w̄NwNG . ~35!

FIG. 1. The tadpole diagram in the spherical field theory.
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The free Green function for this action can be easily found by the use of the Fourier transfor
proves to be the following:

GN~y12y2!5
1

2M
e2M uy12y2u, M[AN21s2, ~36!

or, in terms of the initial radial coordinates,

GN~r 1 ,r 2!5
1

2M Fu~r 12r 2!S r 2

r 1
D M

1u~r 22r 1!S r 1

r 2
D M G . ~37!

This explicit expression shows immediately that the tadpole diagram in Fig. 1 is proportion
the sum,

(
N52`

`

GN~r ,r !5 (
N52`

`
1

AN21s2
, ~38!

and, hence, logarithmically divergent. The IR-regularization parameters is inessetial for largeN
and does not influence on the UV-behavior of the model~as it should be!.

The form~35! of the action and the UV-behavior analysis following it will be useful for us
the noncommutative case as well. We are going to show that thew4-theory on theq-plane can be
rewritten as a theory of the partial waves on a one-dimensional~nonequidistant! lattice with the
behavior inN ~angular momentum number! being even worse, so that UV-divergences of t
NC-QFT are even more severe than those of the usual scalar theory.

B. Quantum field theory on the q-plane and its partial wave decomposition

Let us consider the generalization of the two-dimensional scalar field theory, induced b
noncommutativity~8! of the space coordinates on the planePq

(2) . The field action forw(z,z̄) can
be defined with the help of theq-deformed Haar~invariant! measure.21 For a functionFN(z,z̄)
5zNf (zz̄) on Pq

(2) one defines the linear functional~q-integral!,

Hr 0
@FN#[Eq

d2zzNf ~zz̄![dN,0r 0
2~q221! (

k52`

`

q2kf ~q2kr 0
2! ~39!

(r 0 labels the nonequivalent representations~18! of the q-deformed coordinate-momentum alg
bra!. In formula~39! and in what follows we assume, for definiteness, thatq2.1 ~the quite similar
construction can be carried out forq,1, cf. ~67!!. In order that the sum on the right-hand side
~39! be meaningful, the functionf (zz̄) must satisfy an appropriate conditions at infinity.21 We
shall assume that the set of the fields on theq-plane which we consider below does satisfy th
condition. Notice that ifN,0 in ~39!, the integrand can be rewritten asz̄uNu f 8(zz̄) ( f 8(zz̄) is some
modification of the functionf (zz̄)).

Using theq-integral ~39!, we can define the action on theq-plane as the straightforwar
generalization of the usualw4-action ~23!,

Sq5Eq

d2zF2w̄~z,z̄!]q]̄qw~z,z̄!1m2w̄~z,z̄!w~z,z̄!

1
l

2
„w̄~z,z̄!w~z,z̄!…22 j ~z,z̄!w̄~z,z̄!2 j̄ ~z,z̄!w~z,z̄!G . ~40!

Now our aim is to rewrite the action~40! in the form similar to~26! where the integral over radia
variables is substituted by the sum~39! while the sum over the angular momentum numb
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remains in theq-deformed case too. To achieve this, we decompose a field onPq
(2) into terms with

definite eigenvalues of theq-deformed angular momentum operatorJq ~cf. ~20!!,

w~z,z̄!5 (
N52`

`

zNr 2NwN~r !, r 2[zz̄. ~41!

Again, as in the case of the expression~39!, it is worth to notice that the terms withN,0 in the
sum ~41! can be rewritten in the form with positive powers ofz̄,

zNr 2N5q2uNu~ uNu21!z̄uNur 2uNu5q2N~N11!z̄2Nr N, ~N,0!. ~42!

Here we have used the relation,

zNz̄N5qN~N21!~zz̄!N[qN~N21!r 2N. ~43!

The next step is the substitution of the decomposition~41! into the action~40! and then use of
the definition ~39! to convert the action into a lattice one. In order to do this, one needs
following commutation relations which are derivable from~8!:

AzAz̄5AqAz̄Az, zNr 2N5q2N~N21/4!z̄2N/2zN/2,

zr5qrz, z̄r 5q21rz̄,

]qAz̄5q21Az̄]q , ]qAz5
1

q2111

1

Az
1q21Az]q ,

]̄qAz5qAz]̄q , ]̄qAz̄5
1

q11

1

Az̄
1qAz̄]̄q , ~44!

]qzN/25
@N;q21#

q2111
zN/2211q2NzN/2]q ,

]̄qz̄2N/252
@N;q21#

q~q11!
z̄2N/2211q2Nz̄2N/2]̄q ,

]q]̄qf ~r !5
1

21q1q21 F1

r
Dq21

~r ! rD q
~r !G f ~r !.

The Jackson derivatives in the last line are defined as follows:

Dq21
~r ! f ~r !5

f ~q21r !2 f ~r !

r ~q2121!
,

~45!

Dq
~r ! f ~r !5

f ~qr !2 f ~r !

r ~q21!

~these definitions imply that we are working with the representation where the operator is
diagonal!.

Use of these relations together with~39! and~41! allows to present the action~40! in the form
of the Jackson integral over the radial variabler 2,
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Sq5 (
N52`

` EJ

dr2H q2N~N11!w̄N~r 2!F2
q3

~q11!2 Dq1q2~N11!
@N;q21#2

~q11!2r 2

2qN11
@N;q21#

~q11!
~q2Dq2

~r 2!
2Dq22

~r 2!
!GwN~r 2!1m2q2N~N11!w̄N~r 2!wN~r 2!

1
l

2 (
M ,K52`

`

q2kq2N22K22M22MK1NK1NM2M2Kw̄N~r 2!wN~q2~N2M !r 2!w̄N~q2~N2M !r 2!

3wN~r 2!1q2N~N11! j̄ N~r 2!wN~r 2!1q2N~N11!w̄N~r 2! j N~r 2!J . ~46!

Here the Jackson integral for and arbitrary functionf (r 2) is defined in the standard way~see, e.g.,
Ref. 7!,

EJ

dr2f ~r 2![
def

r 0
2uq221u (

k52`

`

q2kf ~q2kr 0
2!, ~47!

and the Jackson derivatives are defined by~45! and by the following similar relations:

Dq22
~r 2! f ~r 2!5

f ~q22r 2!2 f ~r 2!

r 2~q2221!
,

~48!

Dq2
~r 2! f ~r 2!5

f ~q2r 2!2 f ~r 2!

r 2~q221!
.

The radial partDq of the q-deformed Laplacian reads as

Dq5
1

r
Dq21

~r ! rD q
~r 2! . ~49!

Notice that expression~46! for the actionSq in term of the Jackson integral is equally correct bo
for the caseq.1 and for q,1. For definiteness, we continue to discuss the caseq.1. The
consideration for the caseq,1 is essentially the same and we shall present for it only the re
~cf. ~67!!.

Since both the Jackson integral and the Jakson derivatives turn into their nondeformed~con-
tinuous! counterparts in the limitq→1, it is readily seen that the action~46! becomes in this limit
the usual action~26! for the two-dimensional scalar theory in the polar coordinates.

Now we proceed to study the UV-behavior of the field theory on theq-deformed plane.
Therefore, we again, similarly to the nondeformed case in the preceding subsection~cf. ~32!!,
substitute the mass term with the IR-regularizing term,

Sq
~IR!5 (

N52`

` EJ

dr2
q2N~N11!s2

r 2 w̄N~r 2!wN~r 2!. ~50!

The exponential dependence of the fields in~46!, ~47! on the space~discrete! variablek inspires to
make the substitution similar to that for the nondeformed model~cf. ~34!! and to denote

w̄Nk[w̄N~q2kr 0
2!, wNk[wN~q2kr 0

2!,

j̄ Nk[ j̄ N~q2kr 0
2!, j Nk[ j N~q2kr 0

2!.
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In this notation the action~46! in which the mass term is substituted by~50!, acquires the form of
an action for infinite number of scalar fields on a one-dimensional lattice,

Sq5Sq
~0!1Sq

~ int!1Sq
~e.s.! , ~51!

Sq
~0!5 (

N52`

`

AN (
k52`

` F ~wNk112wNk!
2

a
1aMN

2 w̄NkwNkG , ~52!

Sq
~ int!5

lr 0
2

2
~q221! (

M ,N,K52`

`

(
k52`

`

q2N22K22M22MK1NK1NM2M2Kq2k

3w̄MkwN~k1M2N!w̄K~k1M2N!w~M2N1K !k , ~53!

Sq
~e.s.!5r 0

2~q221! (
N,k52`

`

q2kq2N~N11!~ j̄ NkwNk1w̄Nkj Nk!,

where

AN5q2N214, ~54!

MN
2 5

RN

AN
, ~55!

RN5q2N~N11!14S @N;q#2

~q11!2 1
s2

q4 D , ~56!

a5q221. ~57!

It is obvious thatAN.0, RN.0 for all N50,61,62,... . This justifies the definition~55! and
shows that the quadratic part of the Euclidean action~40! is positively defined. The latter fact, in
turn, provides that the generating functional for Green functions in the model with the action~40!
~or, in the lattice form,~51!–~53!! given by the infinite dimensional integral~discrete lattice
analog of the path integral!,

Z@ j #5
*)N,kdw̄NkdwNk exp$2Sq%

*)N,kdw̄NkdwNk exp$2Squ j 5 j̄ 50%
, ~58!

can be calculated by the perturbation expansion. A few remarks are in order.

~1! The fields w̄N ,wN at points q2kr 0 , k50,61,62,..., i.e., the quantitiesw̄Nk ,wNk , can be
considered as the creation and annihilation operators of particles on the quantum planePq

(2) in
the states~18!. Thus the field model with the action~51! is the secondary quantized theory
the particles on the quantumq-planePq

(2) .
~2! The quadratic part~52! of the action~51! has the standard form of the lattice scalar theory~cf.

e.g., Ref. 22!, so that we can use the standard method of the Fourier transform in ord
diagonalize it.

~3! As a result of the nonequidistance of theq-lattice, the mass term in~46! ~the second line!
looks as if the model interacts with the external field, i.e., the mass term contains add
factorsq2k under the sign of the sum. This makes diagonalization of the complete qua
part of the action~46! rather involved problem.

~4! It is rather striking result that the action on theq-plane is not only latticelike but also nonloca
as is seen from the interaction term of the action in the form~53!.
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The quadratic partSq
(0) of the action can be diagonalized by performing the Fourier transfo

wNk5E
2p/a

p/a dp

2p
eiapkw̃N~p!. ~59!

Then,

Sq
~0!5 (

N52`

`

ANE
2p/a

p/a dp

2p
w̃̄N~p!F 2

a2 ~12cos~ap!!1MN
2 G w̃N~p!, ~60!

and the free Green functionGN(k2m) has the usual for the lattice field theories form~see, e.g.,
Ref. 22!,

GN~k2m!5E
2p/a

p/a dp

2p

eip~k2m!

ANFMN
2 1

2

a2 ~12cos~ap!!G . ~61!

Together with thew4-vertex of the action~53!, this free propagator defines the Feynman ru
for the model under consideration which are depicted in Fig. 2. We shall not carry out de
perturbative calculations; because of the nonequidistance of theq-lattice such calculations~espe-
cially in the case of nonzero mass! prove to be rather cumbersome. Notice, however, that th
peculiarities of theq-lattice seems to be not a difficulty for computer simulations. In this pape
shall demonstrate only that the UV-divergences retain in the scalar field theory on theq-deformed
plane. Let us consider the tadpole diagrams presented in Fig. 3. We confine our considera
diagram~a! in Fig. 3 because its analysis is a bit easier than that for the diagram~b!. Using the
generating functional~58! and the Feynman rules we find the following expression for the tad
3.a:

1

2
l~q221!q2M ~M11! (

l 52`

`

q2lGM~k2 l !GM~ l 2m! (
N52`

`

q2N~N11!GN~0!. ~62!

FIG. 2. Feynman rules~free propagator and the nonlocal vertex! for the scalar theory on the noncommutative planePq
(2) .

FIG. 3. Two types of the tadpole diagrams in the model under consideration.
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The partial wave propagatorGN(0) is finite at the coincident arguments~similar to the case of the
ordinary w4-model on a commutative plane, cf.~30!, ~31! and ~36!, ~37!! and is given by the
relation ~61!. The simple integration in~61! yields

GN~0!5
1

ARN~4AN1a2RN!
. ~63!

The divergence again appears in the summation over the angular momentum numbers; as i
from ~62!, the tadpole contribution is proportional to the factor

(
N52`

`

q2N~N11!GN~0!

which after substitution of~54! and ~56! into ~63!, reads as

(
N52`

`

q2N~N11!GN~0!5 (
N52`

`
q221

q4A@~qN21!21~q221!2s2/q4#@~qN11!21~q221!2s2/q4#
.

~64!

The terms in this series have the following asymptotics:

q221
q4A@~qN21!21~q221!2s2/q4#@~qN11!21~q221!2s2/q4#

——→
N→`

~q221!q2~N14!,

~65!
q221

q4A@~qN21!21~q221!2s2/q4#@~qN11!21~q221!2s2/q4#
——→
N→2`

q2-1
q41~q221!2s2 .

Since these terms tends atN→2` to a constant which is independent ofN, the series has the
linear divergence at the lower limit~the IR-regularization parameters again, as in the nonde
formed case, is inessential in theN→6` limit !. Notice that in the nondeformed limitq→1 the
series~64! turns into the following one:

(
N52`

`
1

AN21s2
, ~66!

and coincides with the nondeformed result~cf. ~38!! ~logarithmic divergence!. This difference in
the powers of the divergences in the cases of the usual and deformed theories is the cons
of noncommutativity ofq→1 andN→6` limits for the terms of the series~64!,

lim
q→1

lim
N→6`

q2N~N11!GN~0!Þ lim
N→6`

lim
q→1

q2N~N11!GN~0!.

Quite similar calculation in the caseq,1 shows that the tadpole diagram 3.a is proportio
to the series

(
N52`

`
12q2

q4A@~12qN!21~12q2!2s2/q4#@~qN11!21~12q2!2s2/q4#
, ~67!

which has the linear divergence at the upper limit.
Thus the perturbation theory for thew4-model on the noncommutative planePq

(2) with the
action constructed with the help of theEq(2)-quantum group invariant measure contains
UV-divergences and, hence, cannot be considered as a regularization of the usual scal
theory on the commutative plane.
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IV. TRANSFORMATION OF STATES ON THE NONCOMMUTATIVE PLANE Pq
„2…

INDUCED BY THE COACTION OF THE QUANTUM EUCLIDEAN GROUP Eq„2…

The central problem of this section is to determine transformation properties of a syste
Pq

(2) under a coaction of the quantum groupEq(2). In Sec. IV A we shall clarify a genera
formulation of this problem and in Sec. IV B, give an explicit answer forEq(2) group. In par-
ticular, we shall show that this coaction leads to nonlocal transformations of states.

A. Transformation of states in noncommutative geometry induced by a quantum
group coaction

Let a quantum groupGq coact on a noncommutative spaceXq , i.e., there exists the homo
morphic map

d:Funq~X!→Funq~G! ^ Funq~X!, ~68!

~the algebra Funq(X) of functions onXq is the configuration space subalgebra of the algebra o
operators of the given quantum system!. It is natural to say that the system is invariant with resp
to the quantum group transformations if all the properties of the system are independent
coaction mapd. In other words, the algebra Funq(X) can be realized as the subalgebra of multip
tensor product Funq(G) ^ Funq(G) ^¯^ Funq(X) and no measurements can distinguish the
scription based on the algebras with different numbers of the factors Funq(G).

At first sight, this definition of symmetry transformations may look unusual but, in fact,
a direct generalization of commutative transformations. Indeed, usual action of a groupG of
transformations of a manifoldM on a functionf PFun(M) is defined by the equality

Tgf ~x!ª f ~g21x!, gPG,xPM. ~69!

The right-hand side of this definition can be considered as the function defined onG3M. In other
words, the transformationsT defines the map

T:Fun~M!→Fun~G! ^ Fun~M!.

More customary mapf:G^ M→M is defined for points of the manifolds, which play th
role of the dual set of states for the commutative algebra of observables~functions! on usual
manifolds. Returning to the transformations with noncommutative parameters, let us defi
map23 which is dual to the transformations~68! of observables~operators!, i.e.,

S:HGq
^ HXq

→HXq
, ~70!

whereHGq
and HXq

are the Hilbert spaces ofall representations of the algebras Funq(G) and
Funq(X). The intertwining operatorS is implicitly defined by the equation

^^dAuC ^ c&&5^^AuS~C,c!&&, ~71!

whereC is arbitrary vector fromHG ,c is arbitrary vector fromHX andS(C,c)PHX and the
duality relation^^Auc&&:O^ HO→C between an operatorA from some algebraO and a vectorc
from the Hilbert spaceHO of the representations of this algebra, is defined by the ordinary m
value of A in the statec:^^Auc&&5^cuAuc&. In fact, the usual definition~69! of the action of
~classical, commutative! transformation groups in the space of functions on some homogen
manifoldM also has the general form~71!. Indeed, in this case the duality, relation between
algebra Fun(M) and states. i.e., points ofM, is defined as follows:

^^ f ux&&5 f ~x!, f PFun~M!,xPM.

The same is true for the group manifold,
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^^Tug&&5Tg , TPFun~G!, gPG.

Thus ~69! can be represented in the form,

^^d f ug^ x&&5^^T^ f ug^ x&&5Tgf ~x!5^^ f uS~g,x!&&5^^ f ug21x&&5 f ~g21x!,

where the third equality follows from~71! and in this special caseS(g,x)5g21x.
From ~70! it follows that the matrix elements of the operatorS in a chosen bases ofHGq

^ HXq
andHXq

play the role of generalized Clebsch–Gordan coefficients~GCGC!. If the multiple
index ~set of quantum numbers! $m% defines basis vectorsc$m% of HXq

, and the set$K% defines
basisC$K% of HGq

, one can write

c85S~C$K% ,c$m%!5(
$ l %

C$m%$ l %
$K% c$ l % , ~72!

whereC$m%$ l %
$K% are the set of GCGC. In this formula the vectorc$m% is a transformed state on th

quantum plane, and the vectorC$K% ~analog of a point on a group manifold in the case of ordin
Lie groups! defines ‘‘parameters’’ of the transformation ofc$m% .

One can apply analogous consideration to the very quantum groupGq which coacts on itself

M j8
i5DM j

i 5Mk
i

^ M j
k . ~73!

This leads to the corresponding transformation of vectors inHGq
,

C85S~C$K% ,C$N%![SC$K%
~C$N%!5(

$L%
C$N%$L%

$K% C$L% . ~74!

Two subsequent coactions of the form~73! induce composition of the transformations~74!
and general properties of algebra representations provide its associativity~or, equivalently, this
follows from the coassociativity of Hopf algebras!. This means that the transformations~74! form
the semigroup. The trivial representationC$0%PHGq

correspond to the identity transformatio
However, there is no inverse transformation for arbitrarySC$K%

. This means that the transforma
tions ~74!, ~72! do not form a group.

The mapS satisfies the obvious consistency condition which can be expressed as a re
ment of commutativity of the diagram in Fig. 4~in other words, an equivalence of the differe
ways through the diagrams along the arrows!. For the generalized Clebsch–Gordan coefficie
this consistency relation reads as

(
L,n

Cnr
L ^CLuM j

i uCK&^cnuxj ucm&1(
l

Cml
K ^c r uxi uc l& ~75!

~for the convenience and shortness we use Dirac bracket notation and drop curly bracke
cating thatK,m,... aremultiindices!. Equation ~75! must be completed by the normalizatio
conditions which follow from the normalization of vectorsuK& and um&.

Notice that Eq.~75! is an analog of the recursion equation used for determination of ordi
Clebsch–Gordan coefficients of the SU~2! group. However, in the case of quantum groups
problem of explicit solution of these equations proves to be much more difficult.23

B. Representations of the algebra of functions on Eq„2… and transformations of states
on Pq

„2…

In this section we shall be interested in construction of the cotransformations of the coor
subalgebra on a quantum plane and therefore, for shortness, drop the quantum numbers re
the angular momentumJq .
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According to the discussion in the preceding subsection, a transformation of a state
quantum plane depends on a vector from representation space for the algebra of functions
groupEq(2). Thus we need explicit construction of representations of the algebraEq(2) ~cf. ~2!!.
These representations have been presented in Ref. 14; in slightly different~more ‘‘physical’’! form
they read as

t5eAha, t̄ 5eAha†
, q25eh,

~76!
v5eifeAh~a2a†!, fP@0,2p#,

wherea,a† are usual creation and annihilation operators

@a,a†#51, ~77!

and hence can be represented in any well known way~e.g., coordinate, Bargmann–Fock, cohere
state, infinite matrix representations!. The factoreif in ~76! is an eigenvalue of the central eleme
I of the algebraEq(2),

I 5q21v t̄ t21, ~78!

so that different values offP@0,2p# separate different~though identical! irreducible representa
tions of theEq(2)-algebra. Notice thatI is unitary operatorI †I 51, that is why its eigenvalues ar
parameterized byeif.

For an explicit construction we may use the basis of coherent states

auz&5zuz&, zPC, ~79!

^z8uz&5ez̄8z,

so that

tuz&5eAhzuz&,

t̄ uz&5uz1Ah&, ~80!

vuz&5e2h/21 ifeAhzuz2Ah&, v̄5v21. ~81!

The algebra of functions onPq
(2) ~generated byz̄, z! has not a central element and its uniq

representation has the form~80! where t̄ ,t are substituted byz̄,z.
According to the general discussion in the preceding subsection, the coaction ofEq(2) on

Pq
(2) ,

FIG. 4. The diagrammatic representation of the consistency relation for the generalized Clebsch–Gordan maS.
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z̄→ z̄85d z̄[ v̄ ^ z̄1 t̄ ^ 1,
~82!

z→z85dz[v ^ z1t ^ 1,

induces transformations of states from the representation spaceHP
q
(2) of Pq

(2) depending on a state

from the representation spaceHEq(2) of the quantum groupEq(2),

uj&→uj8&5S~ uf,z&,uj&), ~83!

uf,j&PHEq~2! , uj&,uj8&PHP
q
~2!.

Explicitly this map can be written as follows:

uj8&5E dze2 j̄juj&^juf,z;j8&, ~84!

where the generalized Clebsch–Gordan coefficients for the coaction ofEq(2) onPq
(2) are denoted

as

^juf,z;j8&[^juSuf,z;j8&. ~85!

Thus to define transformations properties of the states onPq
(2) we should calculate the GCGC

~85!. The consistency relation given by the commutativity of the diagram in Fig. 5 leads to th
of equations,

^juf,z;j8&5e2Ahz^j1Ahuf,z;j8&2e2h/21 ifeAhj8^juf,z2Ah;j8&,

^juf,z;j8&5e2Ahj̄^juf,z1Ah;j8&2e2h/22 ife2Ah~z1 j̄ !^juf,z1Ah;j81Ah&, ~86!

^j1Ahuf,z;j8&5eh/2eAh~z2 j̄1j8!^juf,z2Ah;j82Ah&,

which must be accompanied by normalization conditions. As we mentioned in the prec
subsection, it is not easy to solve these equations straightforwardly. To circumevent the pr
it is helpful to consider the basis where the primitive elementsv̄,vPEq(2) are diagonal. The poin
is that a cotransformation for primitive elements has the form of a cotransformation for an
nary Lie algebra, thus the consistency conditions for them also have a most simple form.

Proceeding in this way, let us construct representation in the basis of the primitive elemv.
This is easy to do taking into account that in the parameterization~4! the commutation relations
for the Eq(2) takes the form

FIG. 5. The diagrammatic representation of the consistency relation for the generalized Clebsch–Gordan mapS in case of
coaction of the groupEq(2) on itself.
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@u,r2#52 i2hr2, ~87!

@u,n2#50, ~88!

where we have introduced, in analogy with the algebraPq
(2) ~cf. ~16!! the operators,

r2[ t̄ t, n2[ t̄ t21. ~89!

The only nontrivial commutation relations~87! is equivalent to that forigl (1,R) Lie algebra~Lie
algebra of translations and dilatations on a line!. Representations of this algebra are well know
~see, e.g., Ref. 24! and this allows to write immediately the required representation withv5eiu

being diagonal,

v f f~x!5eife22ihxf f~x!,

r2f f~x!5e2he2 i ] f f~x!, ~90!

n2f f~x!5eh/2e2ihxf f~x!. ~91!

From the form of the operators it is clear that the variablex takes values on a circle,x
P@0,2p/h#. Thus the functionsf f(x) are defined on the circle and form the Hilbert space w
the scalar product

^ f 1f~x!, f 2f~x!&5E
0

2p/h
dx f̄1f~x! f 2f~x!. ~92!

The consistency relations~commutativity of the diagram in Fig. 5! for the generatorst, t̄ result
again in still rather complicated recursion relations,

Dt5v ^ t1t ^ 1⇒@eif1e22ih~x11x2!ei ]2/21e2 ihx1ei ]1/22e2 ihxe2 i ]/2#^f,xuf1 ,x1 ;f2 ,x2&50,

D t̄ 5 v̄ ^ t̄ 1 t̄ ^ 1⇒@e2 if1e2ih~x11x2!ei ]2/21eihx1eih1/22eihxe2 i ]/2#^f,xuf1 ,x1 ;f2 ,x2&50.

But the relation for the primitive elementv̄ has quite simple form

D v̄5 v̄ ^ v̄⇒e2 i ~f122hx11f222hx2!^f,xuf1 ,x1 ;f2 ,x2&5e2 i ~f22hx!^f,xuf1 ,x1 ;f2 ,x2&.
~93!

Here ^f,xuf1 ,x1 ;f2 ,x2& denotes GCGC for the algebraEq(2) in the realization~90! and we
used the basisuf,x& of eigenfunctions of the operatore2ihx which are, of course,d-functions on
the circle,

uf,x0&5d~s!~x2x0!5
1

2ph (
k52`

`

e2ihk~x2x0!. ~94!

Relation~93! shows that the eigenvaluesx1 ,x2 of vectors in the representationsf1 andf2 under
the tensor product sign and the eigenvaluex in an irreducible partf of the resulting representatio
are connected by the relation,

2f112hx12f212hx252f12hx12pn, n50,1,2,... . ~95!

This is the analog of additivity of the magnetic quantum number in the case of su~2! Lie algebra,
m5m11m2 (m1 ,m2 areJ3

(1) ,J3
(2)-eigenvalues of two spins to be summed up andm is an eigen-

value ofJ35J3
(1)1J3

(2)!.
Let us consider the action of the central operatorI on the direct product of two representatio
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DI uf1 ,x1&uf2 ,x2&. ~96!

Acting in addition by the intertwining operatorS and denoting

uf1 ,x1 ;f2 ,x2&[uf1 ,x1&uf2 ,x2&,

we have

SDI uf1 ,x1 ;f2 ,x2&5ISuf1 ,x1 ;f2 ,x2&

5I E dfdyuf,y&^f,yuSuf1 ,x1 ;f2 ,x2&

5I E dfuf,y&C~f;f1 ,x1 ;f2 ,x2!

5E dfeifuf,y&C~f;f1 ,x1 ;f2 ,x2&. ~97!

where according to~95! we have defined

^f,yuSuf1 ,x1 ;f2 ,x2&[d~S!~f2f12f212h~x11x22y!!C~f;f1 ,x1 ;f2 ,x2!. ~98!

On the other hand, consider the concrete realization of the operatorsI andDI in L2(S) and in
the tensor productL2(S) ^ L2(S), respectively. To this aim we need an explicit form ofDn2 and
Dr2. Calculation in the representation~90! gives the reuslt,

Dr251^ r21r2
^ 11 v̄t ^ t̄ 1 t̄v ^ t

5e2he2 i ]@e2 i ]̃1ei ]̃1e2 if1e2h/2eihx1eif1eh/2e2 ihx#, ~99!

Dn25~ v̄t21
^ t̄ 1n2

^ 1!~1^ 11vt21
^ t !215eh/2eih~x1 x̃!

11e2h/2e2 if1eihxei ]̃

11e2h/2eif1e2 ihxei ]̃
. ~100!

Here we used the change of variables,

x5x11x2 , x̃5x12x2 , ~101!

inspired by the equality~95!. Now we can easily calculate the comultiplication for the cent
operator,

DI 5q21DvDn25ei ~f11f2!e2 ihxeih x̃
11e2h/2e2 if1eihxei ]̃

11e2h/2eif1e2 ihxei ]̃
. ~102!

In spite of their rather cumbersome form it is easy to check that the operatorsDr2 andDn2

indeed satisfy the commutation relations of theEq(2) algebra. In fact, this immediately follow
from their general form which can be written as follows:

Dr25const•e2 i ]F~x,]̃ !,

Dn25const•DIe2ihx

~hereF(x,]̃) is a function of onlyx and ]̃ explicit form of which is given in~99!!.
It is clear that if we start from some eigenvector of the operatorn2,
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n2uf2 ,x2&5eh/2e2ihx2uf2 ,x2& ~103!

~cf. ~90!! then, after the comultiplication, we have

Dn2uf1 ,x1&uf2 ,x2&5eh/2e2 i ~f11f2!e2ih~x11x2!DI uf1 ,x1&uf2 ,x2&. ~104!

Since in any irreducible component the central element is proportional to the unity operato

DIPf~ uf1 ,x1&uf2 ,x2&)5eifPf~ uf1 ,x1&uf2 ,x2&) ~105!

(Pf is a projector onto the irreducible component of the representation space corresponding
central element eigenvalueeif), relation~104! shows that for thef-component the eigenvalue o
Dn2 is

eh/2ei ~f2f12f212hx!, x5x11x2 . ~106!

This expression shows how the initial eigenvalueeh/2e2ihx2 of the operatorn2 is transformed
under the coaction ofEq

(2) with the stateuf1 ,x1& defining the ‘‘parameters’’ of the transformation
~cf. ~72!, ~74!!.

The thing which we have to do now is to find the decomposition of an arbitrary func
f (x1 ,x2)5 f (x,x̃)PHEq(2)^ HEq(2) into eigenvectors ofDI , i.e., into irreducible components. T
this aim we must solve the eigenvalue equation

DIgf~x,x̃!5eifgf~x,x̃!. ~107!

The solution written in terms of the Fourier transform

gf~x,x̃!5 (
k52`

`

g̃f~x,k!eikx̃, ~108!

has the form

g̃f~x,k!5ei ~f2f12f21hx!keid~x,k!, ~109!

d(x,k) being defined by the simple recursion relation

d~x,k11!5d~x,k!2l~x,k11!, d~x,0!50, ~110!

where

eil~x,k![
11e2h/2e2 if1eihxehk

11e2h/2eif1e2 ihxehk . ~111!

The solution of this recursion is obvious,

d~x,k!52 (
n51

k

l~x,n!, k.0,

d~x,k!5 (
n50

k11

l~x,n!, k,0,

eid~x,k!5 )
n51

k
11e2h/2eif1e2 ihxehn

11e2h/2e2 if1eihxehn , k.0, ~112!
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eid~x,k!5 )
n51

k
11e2h/2e2 if1eihxehn

11e2h/2eif1e2 ihxehn , k,0. ~113!

Solution ~109!, of course, is not a square integrable function but a distribution~like momen-
tum eigenvectors in ordinary Quantum Mechanics!.

Any function f (x,k) can be presented as a Fourier integral of the functionsgf(x,k),

f ~x,k!5
1

2p E dfc~f!gf~x,k!5
1

2p
e2 i ~f11f12hx2c~x,k!!E dfc~f!gf~x,k!eifk, ~114!

c~f!5(
k

ei ~f11f12hx2c~x,k!!e2 ifkf ~x,k!. ~115!

If we start from eigenvectors of the operatorn2 ~in each component of the tensor produ
L2(S) ^ L2(S)),

f ~x,x̃![uf1 ,x1&uf2 ,x2&5d~S!~x12X1!d~S!~x22X2!5
1

~2ph!2 (
m,n52`

`

eih@m~x2X!1n~ x̃2X̃!#,

X5X11X2 , X̃5X12X2

(X1 ,X2 are the representation variables, whilex1 ,x2 labels eigenvalues of the operatorn2:
n2d (S)(xi2Xi)5exp$h/212ihxi%d

(S)(xi2Xi)), its decomposition over the eigenfunctionsgf has
the form ~114! with the coefficients,

c~f,x,f1 ,f2!5d~S!~x2X! (
k52`

`

ei ~f11f22f2hx!k1 id~x,k!e22ihX̃k. ~116!

Thus

DI uf1 ,x1&uf2 ,x2&5
1

2p E dfeifc~f,x,f1 ,f2!gf~x,x̃!. ~117!

Comparison of~117! and~97! allow us to read off the expression for GCGC of the quantum gr
Eq(2),

^f,yuSuf1 ,x1 ;f2 ,x2&[d~S!~f2f12f212h~x11x22y!!C~f;f1 ,x1 ;f2 ,x2!,

C~f;f1 ,x1 ;f2 ,x2!5c~f,x,f1 ,f2!, ~118!

andc(f,x,f1 ,f2) is given by~116! and ~112!, ~113!.
The corresponding coaction on vectors onPq

(2) have quite the same form with the on
restrictionf250. Now we are ready to answer the question about transformations of the co
nate operators eigenvalues. The operatoru25 z̄z21PPq

(2) ~cf. ~16!! has the eigenvectors similar t
those ofn2,

u2ux2&5eh/2e2ihx2ux2&. ~119!

After the coactiond by Eq(2)-quantum group, we obtain the operatordu2 acting on vectors
uf1 ,x1&ux2&PHEq(2)^ HP

q
(2) and with a structure which is quite similar toDn2 ~cf. ~104!!,

~du2!uf1 ,x1&ux2&5eh/2e2 if1e2ih~x11x2!DI uf1 ,x1&uf2 ,x2&. ~120!
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This implies that the resulting vector can be decomposed into irreducible parts and, si
neously, into vectors with definite values of the coordinateu2 as follows:

~du2!uf1 ,x1&ux2&5
1

2p
eh/2E dfc~f,x,f1 ,f2!ei ~f2f112hx!gf~x,x̃!. ~121!

Expression~121! presents the form of transformation of position eigenvectors on a quan
planePq

(2) and shows that the coaction ofEq(2) induces nonlocal transformations of the state

V. CONCLUSION

We have shown that transition to a noncommutativeq-deformed plane does not lead to a
ultraviolet regularization of the scalarw4-quantum field theory. We start from the firstly quantiz
theory of quantum particles on the noncommutative plane. Then we have defined quantum
depending on noncommutative coordinates and the field theoretical action using the qu
analog of the Haar (Eq(2)-invariant! measure on the noncommutative plane. With the help of
partial wave decomposition we have shown that this quantum field theory can be considere
second quantization of the particle theory on the noncommutative plane and that it has~contrary to
the common belief! even more severe ultraviolet divergences than its counterpart on the
commutative plane.

We have discussed symmetry transformations on the noncommutative spaces and the
transformations of the states. In the case of Lie algebralike spaces the coordinates form a
operator x̂i→ x̂i85Mi j x̂j1bi5Ûgx̂i Ûg

21 and states of the field system are transformed by
operatorÛg . We considered the example of such transformations for the case of noncommu
Euclidean and Minkowski planes in the preceding paper.11 In theq-deformed case, we have show
that the quantum group coaction on a coordinate algebra induces nonlocal transformati
states in the coordinate space. These transformations are defined by the generalized C
Gordau coefficients, describing decomposition of tensor products of representations of alge
functions on quantum spaces and representations of the corresponding quantum group.
words, the coaction puts in correspondence to a pair of states on a group algebraGq and on a
quantum spaceXq some new state on the quantum space. We have considered such trans
tions for the case of theq-deformed plane with theEq(2)-symmetry.
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I. INTRODUCTION

In this paper we consider the canonical commutation relations~CCR! algebra and the canoni
cal anticommutation relations~CAR! algebra. To some extent it is possible to treat the t
algebras in parallel. This has been done in several places. Close to our spirit is Ref. 1.
reference the CCR and the CAR algebra are generalized to a superalgebra—the canonica
commutation relations~CSR! algebra, which describes charged particles in aZ2-graded fashion.

Related to these algebras is the concept of Schwinger terms.2,3 It is cocycles that arises whe
trying to implement Bogoliubov transformations in a physically important representation.
have been obtained for the CCR algebra in Ref. 4, for the CAR algebra in Ref. 5, and for the
algebra in Ref. 1, for example. Schwinger terms for neutral bosons and fermions have
calculated in Ref. 6.

What lacks is a calculation of aZ2-graded Schwinger term for neutral particles. In Sec. III
perform such a calculation on an abstract basis by deriving~in Sec. II! a Z2-graded generalization
of the fact7 the CAR algebra is* -isomorphic with the self-dual canonical anticommutation re
tions ~SDC! algebra, used to describe neutral particles. Finite Bogoliubov transformation
considered in Sec. IV. In Sec. V, a physical realization is made which allows concrete com
tions ofZ2-graded Schwinger term for neutral particles in odd dimensional space. Explicit re
are given for 1 and 3 space dimensions. Finally, in Sec. VI, the formalism is extended to in
Grassmann numbers.

II. THE SSR AND CSR ALGEBRA

Assume that the boson spaceh0̄ and the fermion spaceh1̄ are complex, infinite dimensiona
separable Hilbert spaces. We will in general be interested in theZ2-graded spaceh5h0̄% h1̄ . Its
scalar product will be denoted by (•,•). Let J be a conjugation inh ~an antilinear norm-preserving
operator whose square is the identity! that is even~i.e., it is commuting with the Klein operato
g5P0̄2P1̄ , whereg5P0̄2P1̄ andPa , a50̄,1̄, denotes the orthogonal projection ontoha). Let
P be an even orthogonal projection operator that satisfiesJP5(12P)J. The physical interpreta-
tion we have in mind is that particles are described by vectors inPh and anti-particles by vector
in (12P)h. Since the algebraic relations for creation and annihilation operators differ bet
bosons and fermions, it is useful to introduce the operatorq5P2g(12P). In terms of it, these
relations~considered in Ref. 6! can be extended to

B†~c1f 11c2f 2!5c1B†~ f 1!1c2B†~ f 2!,

B†~ f !5B~q f !* ,
~1!

@B~ f 1!,B†~ f 2!#s5~ f 1 , f 2!1,

B~ f !5B†~qJ f!,
16720022-2488/2000/41(4)/1672/9/$17.00 © 2000 American Institute of Physics
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with

deg~B†~ f !!5deg~ f !, ~2!

where the supercommutator has been used~basic definitions concerning super algebras can
found in the Appendix!. The asterix denotes the adjoint operation inh. Replacing the last equatio
in Eq. ~1! with the fact that the commutator of twoB operators vanish gives the well know
relations for the generators of the CSR algebra~which will be defined below for the ‘‘half’’-space
Ph). Our choice of the last equation in Eq.~1! relates the creation of a particle~anti-particle! with
the annihilation of a corresponding anti-particle~particle!. This means that Eq.~1! describes
neutral particles, see Ref. 8. We define the self-dual canonical super commutator relations~SSR!
algebraASSR over h to be the complex* -algebra generated by an identity1 and the symbols
B†( f ), B( f ); f Ph, obeying the relations generated by Eq.~1!. The reason for referring toB†( f )
andB( f ) as symbols is that we have not yet given any representation ofASSR in terms of which
they can be interpreted as creation and annihilation operators. To find such a representation
h̃5Ph ~we could equally well have definedh̃ to be (12P)h since any two complex infinite
dimensional separable Hilbert spaces are isomorphic! and define the canonical super commutati
relations~CSR! algebraACSR over h̃ to be the complex *-algebra generated by an identity1 and
the symbolsa†( f̃ ), a( f̃ ); f̃ Ph̃, obeying the relations generated by

a†~c1 f̃ 11c2 f̃ 2!5c1a†~ f̃ 1!1c2a†~ f̃ 2!,

a†~ f̃ !5a~ f̃ !* ,
~3!

@a~ f̃ 1!,a†~ f̃ 2!#s5~ f̃ 1 , f̃ 2!1,

@a~ f̃ 1!,a~ f̃ 2!#s50,

with

deg~a†~ f̃ !!5deg~ f̃ !. ~4!

This is recognized as the algebra that describes charged bosons and fermions when consi
vectors inh̃. Since it has been considered earlier in the literature1 we can find useful information
aboutASSR if it can be related toACSR. In fact, the following lemma holds:

Lemma 1:ASSR and ACSR are * -isomorphic
Proof: Define a mappingx by

x~B†~ f !!5a†~P f !2a~gJ~12P! f !. ~5!

It is then straight forward to check thatx can be extended to a *-isomorphism.
We will now consider a representation of the algebra in Eq.~3! called the Fock–Cook

representation.1 The representation space is the Fock spaceFg(h̃)5FB(h̃0̄) ^ FF(h̃1̄), h̃aªPah̃,
with the naturally inducedZ2-structure. In terms of the bosonic and fermionic creation and a
hilation operators~in the Fock–Cook representation!, the representation is given by

â†~ f̃ ![p~a†~ f̃ !!5âB
†~P0̄ f̃ ! ^ 11̄110̄^ âF

†~P1̄ f̃ !, ~6!

and â( f̃ )5â†( f̃ )* . The vacuumuV&5uVB& ^ uVF& is the vector characterized byâ( f̃ )uV&50,
; f̃ Ph̃. Through lemma 1 this construction provides us with a~physically interesting! represen-
tation of Eq.~1! according to

B̂†~ f !5â†~P f !2â~gJ~12P! f !,
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B̂~ f !5â~P f !1â†~J~12P! f !, ~7!

see Ref. 6 for the corresponding ungraded representation.

III. IMPLEMENTATION AND SCHWINGER TERMS

The implementation problem for the representation in Eq.~7! will now be considered. We will
prove a corresponding theorem to the one proved by Shale9 ~for charged bosons! and by Shale and
Stinespring10 ~for charged fermions!. However, the language of Ruijsenaars8 will be used.

Consider a bounded operatorX̃ on h̃ having the form

X̃5 (
n51

`

l̃nf̃ n~ g̃n ,• ! ~8!

with $ f̃ n%n51
` , $g̃n%n51

` orthonormal systems inh̃ and $l̃n%n51
` a set of complex numbers. Th

operator

X̃â†â5 (
n51

`

l̃nâ†~ f̃ n!â~ g̃n!, ~9!

is well defined on the dense subspaceD(h̃),Fg(h̃) defined as the linear span of elements

â†~ f̃ 1!â†~ f̃ 2!•••â†~ f̃ N0
!uV&, N0PN, f̃ nPh̃, ~10!

where the multiplication of the creation operators is either the symmetric or antisymmetric ex
product depending on the degree of the vectors under consideration. For a given conjugatioJ̃ on
h̃ we define

X̃â†â†5 (
n51

`

l̃nâ†~ f̃ n!â†~ J̃g̃n!,

X̃ââ5 (
n51

`

l̃nâ~ J̃ f̃ n!â~ g̃n!. ~11!

The following lemma was proven in1:
Lemma 2: Let X˜ be a bounded operator on h˜ . The necessary and sufficient condition for t

operators X̃ââ and X̃â†â† to be well defined onD(h̃) is that X̃ is a Hilbert–Schmidt operator.
Consider then bounded operatorsX on h of form

X5 (
n51

`

lnf n~gn ,• !, ~12!

where $ f n%n51
` and $gn%n51

` are orthonormal systems inh and $ln%n51
` is a set of complex

numbers. For a moment, we will restrict to the case whenX is an operator such that

1

2 (
n51

`

lnB̂†~ f n!B̂~gn!, ~13!

exists as an operator onD(h̃) and has finite vacuum expectation value. This is equivalent with

fact thatX is a trace class operator. The operatordĜ(•) is defined by
                                                                                                                



ctation

q.
ed

ficient

ell
ficient

midt

ll,

1675J. Math. Phys., Vol. 41, No. 4, April 2000 Neutral particles and super Schwinger terms

                    
dĜ~X!5:
1

2 (
n51

`

lnB̂†~ f n!B̂~gn!:, ~14!

where : : denotes normal ordering defined as the argument subtracted by its vacuum expe
value. It follows that:

dĜ~X!5dĜ~qJe~X!* qJ!, ~15!

where

eS (
n51

`

lnf n~gn ,• !D 5 (
n51

`

~21!^ f n ,gn&lnf n~gn ,• !, ~16!

and^ f n ,gn&ªdeg(f n)•deg(gn) ~see Appendix!. It is important to note that the last relation in E
~1! was necessary for the derivation of Eq.~15!. Thus, no corresponding relation exist for charg
particles. From now on, we will only consider operatorsX fulfilling the so-called self-duality
condition11

X5qJe~X!* qJ. ~17!

Inserting Eq.~7! into Eq. ~14! gives then:

dĜ~X!5~PXP!â†â1 1
2~PXJJ̃P!â†â†2 1

2~gPJ̃JXP!ââ, ~18!

where the relation

1

2 (
n51

`

lnâ†~P fn!â~Pgn!5:
1

2 (
n51

`

lnâ~gPJ fn!â†~PJgn!: ~19!

has been used. With this alternative form it is possible to extend the domain ofdĜ(•). For this, we
introduce the semigroupg2 of bounded self-dual operatorsX such thatPX(12P) and (1
2P)XP are Hilbert–Schmidt.

Proposition 1: Let X be a bounded self-dual operator on h. The necessary and suf

condition for dĜ(X) in Eq. (18) to be well defined onD(h̃) is that XPg2. Further, for X,Y
Pg2,

@dĜ~X!,B̂†~ f !#s5B̂†~X f !, ~20!

@dĜ~X!,dĜ~Y!#s5dĜ~@X,Y#s!2 1
2c~X,Y!1, ~21!

with Schwinger term

c~X,Y!5Str~~12P!XPY2~21!^X,Y&~12P!Y PX!, ~22!

whereStr(•)5Tr(g•) and Tr is the Hilbert space trace on h.

Proof: dĜ(X) is well defined if and only if all operators on the right-hand-side are w
defined. For the first term this is clear. According to lemma 1, the necessary and suf
condition for the last two to be well defined is thatPXJJ̃P andgPJ̃JXP are Hilbert–Schmidt.
The first part of the proposition follows now from the fact that the algebra of Hilbert–Sch
operators is an ideal in the set of bounded operators, see for example.12 By use of Eqs.~3!, ~7!, and
~18!, it is straight forward to verify Eq.~20!. The calculations are simple but long and wi
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therefore, be omitted. Similar, the relation in Eq.~21! can be proved by use of Eqs.~3! and~18!.
The Schwinger term can be obtained by observing that the first term on the right-hand-side
~21! has vanishing vacuum expectation value. It implies:

c~X,Y!522^Vu@dĜ~X!,dĜ~Y!#suV&, ~23!

from which Eq.~22! can be proven. Again, the long, but simple computations will be omitte
Notice that the Schwinger term that arises in Eq.~22! is precisely one-half of the correspond

ing term for charged particles. Another important distinction from the charged particle case
proposition 1 is only true for operators satisfying the self-duality condition. In fact, Eq.~15!
implies that

dĜ~X!5 1
2dĜ~X1qJe~X!* qJ!, ~24!

leading to

@dĜ~X!,B̂†~ f !#s5B̂†~ 1
2~X1qJe~X!* qJ! f !, ~25!

which is not equal toB̂†(X f) unlessX is self-dual. A similar argument can be made regarding E
~21! and ~22!.

By representing the neutral creation and annihilation operators in terms of the correspo
operators for charged particles, Eq.~7!, the question of the extension to unbounded operator
the results in this section is easy to answer. In fact, it is in complete analogy with the corres
ing extension for charged particles, considered in Ref. 1. The results in the next section and
VI can be extended to unbounded operators in the same way.

IV. BOGOLIUBOV TRANSFORMATIONS

The necessary and sufficient condition for an even operatorU on h to induce an automorphism
aU of ASSR such that

aU~B†~ f !!5B†~U f !, ~26!

is thataU preserves the relations in Eq.~1!, or equivalently, thatU commutes withJ and fulfills
qUqU* 51. We refer to the induced transformation as a Bogoliubov transformation. FurtheaU

is said to be unitary implementable~in the representation under consideration! if there exists a
unitary operatorĜ(U) such that

Ĝ~U !B†~ f !Ĝ~U !* 5B†~U f !. ~27!

It is known6 that this is equivalent with the condition that (12P)UP andPU(12P) should be
Hilbert–Schmidt operators. The following proposition was proved for the charged particle ca
Ref. 1.

Proposition 2: Let XPg2 be an even operator satisfying X* 5qXq.Then

eitdĜ(X)B†~ f !e2 i tdĜ(X)5B†~eitX f !, ~28!

eitdĜ(X)dĜ~Y!eitdĜ(X)5dĜ~eitXYe2 i tX!2 1
2b~ tX,Y!, ~29!

holds onD(h̃) for tPR, f Ph,YPg2, where

b~X,Y!5 i E
0

1

ds c~X,eisXYe2 isX!. ~30!
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Further, if YPg2 is even and fulfills Y* 5qYq then the following relation holds onD(h̃):

eitdĜ(X)eitdĜ(Y)e2 i tdĜ(X)5e2 i ~1/2! b(X,Y)eitdĜ( i tXYe2 i tX). ~31!

Proof: Using the operator relation

~32!

together with Eqs.~20!–~22!, the first three equations are easily seen to be true. The last rel
is obtained by exponentiation of Eq.~29! for t51. From the relation

dĜ~X!* 5dĜ~qX* q!, XPg2 ~33!

it is seen that ifX fulfills X* 5qXq thendĜ(X) is self-adjoint andeidĜ(X) is unitary. Thus, forX
as in the proposition, the operatorU5eitX defines a unitary implementable Bogoliubov transfo
mationaU .

V. A PHYSICAL REALIZATION

We will now consider the case whenh5L2(Rd) ^ V, where the finite dimensionalZ2-graded
spaceV induces a natural grading inh by: ha5L2(Rd) ^ Va . The Schatten idealB2p is defined as
the set of bounded operatorsX such that Tr(X* X)p is convergent, see Ref. 12 for instanc
Especially,B1 andB2 are the trace class and Hilbert–Schmidt operators, respectively. The tra
a pseudo-differential operator~PSDO! that is trace class can be calculated as

Tr~X!5
1

~2p!dE ddxddq trV s~X!~q,x!, ~34!

where trV is the trace onV ands(X) denotes the symbol ofX as a PSDO, see Ref. 13 for the bas
properties of PSDO’s. From this formula it follows that a PSDO with compact support in
figuration space is inB2p if and only if its symbol is of order less than2d/2p.

Assume that the decompositionh5Ph% (12P)h is determined by the signe of the Hamil-
tonian so thate51 onPh ande521 on (12P)h. On the space of eigenvectors belonging to t
zero eigenvalue, we definee to be 1. The condition that a bounded self-dual operatorX is in g2

can then be written as@e,X#PB2 . We will, from now on, only consider the case whenX repre-
sents an infinitesimal gauge transformation. We therefore assume that it is a multiplication
tor: X f(x)5X(x) f (x), that has compact support in the configuration space and commutes wi
gamma matrices. This implies thatX ande are PSDO of order 0 that commutes to highest ord
Thus, their commutator is a PSDO of order21 and@e,X#PBd11. Therefore,XPg2 is only true

for d51. This corresponds to the fact that the currentdĜ(X) is only well defined in 1 space
dimension. In higher dimensions, an additional renormalization, apart from the normal ord
has to be performed. This is in complete analogy with the case for charged particles.

We will now also take into account that the implementer of an infinitesimal gauge tran
mation is in fact not given by the current, but rather by the Gauss law commutators

G~x,e!5dĜ~X!1LX , ~35!

if we restrict to the considerXPg2. The Lie derivativeLX acts on functionalsm(e) as

~LXm!~e!5
d

dt
m~e1t@e,X# !u t50 . ~36!

In parallel with the charged particle case, it can be shown that up to coboundaries~this concept

will soon be explained!, Eq. ~22! is still true in 1 space dimension ifdĜ(X) is replaced with
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G(X,e). In fact, it can even be replaced withG(X,e0), where the currentdĜ(X,e0) is defined as
in Eq. ~18! but with P replaced with the orthogonal projectionP0 belonging to the sign of the free
Hamiltoniane0. This is equivalent to the well-known fact~at least for charged particles! that the
one-dimensional Schwinger term does not depend on the gauge potential. The difference b

dĜ(X) andG(X,e) becomes apparent first in higher dimensions. The basic ideas are the sa
all odd dimensions>3 so we restrict to only consider the case ford53. As in Ref. 14, the
physically important implementer in higher dimensions is given by

G̃~X,e!ªU* ~e!G~X,e0!U~e!. ~37!

The unitary operatorU(e) acting onFg(h) is by definition the operator which maps the vacuu
vector in the Fock space determined bye to the vacuum vector in the Fock space determined
e0. Thus,U(e) is only well defined fore such thate2e0PB2. If XPg2, then the same is true fo
G(X,e) andG̃(X,e). To circumvent the problem of restriction ofX ande, we consider the secon
quantized operators in Eq.~37! as sesquilinear forms15 and introduce a renormalized commutat
as in Ref. 16. This in analog with the situation for charged particles, allows a parallel treatm
Ref. 14. It gives the three-dimensional Schwinger term

c~X,Y;e!52 1
16 Str~~e2e0!2e0@@e0 ,X#,@e0 ,Y## !. ~38!

It can be shown thate2e0PB4 for d53 and this, together with the fact that@e0 ,X#PB4, implies
that the right-hand-side is well defined. For the cased51 the Schwinger term in Eq.~22! can be
rewritten in terms ofe0 according to

c~X,Y;e0!52 1
4 Str~e0@e0 ,X#@e0 ,Y# !. ~39!

From Eqs.~38! and ~39!, local forms of the Schwinger terms can be calculated as in Ref. 14
Finally, we recall the cohomological meaning of the Schwinger term. A coboundary is

change in the Schwinger term if adding a functionj5j(X,e) to G̃(X,e), namely

~dj!~X,Y!5j~@X,Y# !2LXj~Y!1~21!^X,Y&LYj~X!. ~40!

The defining equation for the Schwinger term implies that it has to satisfy

c~@X,Y#,Z;e!2LXc~Y,Z;e!1graded cyclic perm.50, ~41!

the so-called cocycle relation. If restricting to local expressions, then the set of cocycles m
the set of coboundaries defines the physically important cohomology for the Schwinger ter

VI. INCLUDING GRASSMANN NUMBERS

In this section we extend the formalism to contain Grassmann numbers. The motivatio
this is to make the formalism compatible with supersymmetric quantum mechanics models,
one considered in Ref. 17. For notations and basic definitions, see the Appendix.

We use the notationBN for the associative and commutative *- superalgebra overC generated
by $u i% i 51

N ,u i5u i* ,deg(u i)51̄. BN is 2N-dimensional and can be equipped with a homogene

basis$bm%m51
2N21. The ~left! BN-module BN^ h is by definition the linear space spanned by t

elementsf 5bm ^ Cf m , f mPh. For convenience, the symbol for the tensorproduct will often
omitted. We define the grading according to

deg~bm f m!5deg~bm!1deg~ f m! ~42!

and we extend the inner product inh to a product inBN^ h according to

~bm f 1,m ,bn f 2,n!5~21!^bm1bn , f 1,m&bm* bn~ f 1,m , f 2,n!. ~43!
                                                                                                                



e

that is
int out

place

1679J. Math. Phys., Vol. 41, No. 4, April 2000 Neutral particles and super Schwinger terms

                    
It carries a left action ofBN according to

bn~bm f m!5~bnbm! f m . ~44!

and a right action according to

~bm f m!bn5~21!^bn ,bm1 f 1,m&~bnbm! f m . ~45!

Of interest is also the *-superalgebraBN^ A, for A a complex involutive superalgebra. It is th
algebra generated by the elementsA5bm ^ CAm ,AmPA. The algebraic product is defined by

~bm ^ CA1,m!~bn ^ CA2,n!5~21!^bn ,A1,m&bmbn ^ C~A1,mA2,n!, ~46!

the grading by

deg~bmAm!5deg~bm!1deg~Am!, ~47!

and the involution by

~bmAm!* 5~21!^bm ,Am&bm* Am* . ~48!

Furthermore, in the case ofA,A(h), the set of linear operators onh, we define an action of
BN^ A on BN^ h according to

~bm ^ CAm!•~bn ^ Cf n!5~21!^bn ,Am&bmbn ^ C~Am f n!. ~49!

This implies

~ f 1 ,A f2!5~A* f 1 , f 2!. ~50!

The trace TrBN^ A on BN^ A,BN^ A(h) is the linear operator defined by

TrBN^ A~bmAm!5bmTrA~Am!. ~51!

Now, the structure of the formalism developed in the earlier sections is close to the one
obtained by including Grassmann numbers. We will go through the basic definitions and po
where things differ when Grassmann numbers are included.

BN^ CASSR is generated by the operatorsB†(bm f m)[bmB†( f m), B(bm f m)
[(21)^bm , f m&bm* B( f m) and an identity. The corresponding relations of Eq.~1! are fulfilled except
for the last which is replaced by

B~ f !5B†~qJK f!, ~52!

wheref is a linear combination of elementsbm f m andK is defined by

Kbm f m5~21!^bm , f m&bm* f m . ~53!

Similar, BN^ CACSR is generated by the operatorsa†(bm f̃ m)[bma†( f̃ m), a(bm f̃ m)
[(21)^bm , f̃ m&bm* a( f̃ m) and an identity. They obey the corresponding relations of Eq.~3!. The
*-isomorphism is defined as in Eq.~5!, but with J replaced by the nonantiunitary operatorJK.

Using the representations ofACSR defined in Sec. II we may follow the recipe of Eq.~49! to
define a corresponding representation ofBN^ CACSR in BN^ Fg(h̃). As before, this provides us
with a representation ofBN^ CASSR. The defining equation is Eq.~7! with J replaced byJK. It is
now straight forward to check that everything said in Sec. III goes through provided we re
every space withBN tensored with it and make the substitutionJ→JK. The results of Sec. IV can
be extended in a similar way, see Ref. 1 for the corresponding case for charged particles.
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APPENDIX: SUPER ALGEBRAS AND SUPER VECTOR SPACES

Some basic facts aboutZ2-graded vector spaces and algebras will be summarized here
elementv in a Z2-graded vector spaceV5V0̄% V1̄ is said to be homogeneous of degreea,
deg(v)5a, if vPVa , aPZ2[$0̄,1̄%. If V is also an algebra with grading preserving multiplic
tion, i.e., vPVa ,wPVb⇒vwPVa1b , then it is called aZ2-graded algebra. We define th
supercommutator@•,•#s : V3V→V by

@v,w#s5vw2~21!^v,w&wv, ~A1!

where the notation̂v,w& means deg(v)•deg(w). This definition is by linearity also well defined
for nonhomogeneous elements. Equipped with the supercommutator,V becomes a Lie superalge
bra. Every linear operatorX on V can be written in matrix form

X5S X0̄0̄ X0̄1̄

X1̄0̄ X1̄1̄
D , ~A2!

corresponding to the decompositionV5V0̄% V1̄ . Then deg(Xab)5a1b defines a grading which
provides every algebra of linear operators onV with a Z2-structure.
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We show how spin networks can be described and evaluated as Feynman integrals
over an internal space. This description can, in particular, be applied to the so-
called simple SO~D! spin networks that are of importance for higher-dimensional
generalizations of loop quantum gravity. As an illustration of the power of the new
formalism, we use it to obtain the asymptotics of an amplitude for theD simplex
and show that its oscillatory part is given by the Regge action. ©2000 American
Institute of Physics.@S0022-2488~00!02302-1#

I. INTRODUCTION

Spin networks were originally introduced by Penrose1 in an attempt to give a combinatoria
description of space–time. Since then they reappeared in many branches of mathematical p
see, e.g., Ref. 2 and references therein. In particular, spin networks are of fundamental imp
in the loop approach to quantum gravity.3,4 More recently, with the development of the formalis
of spin foam quantization,5–8 it was realized that spin networks that appear in the path inte
version of loop quantum gravity are of a very special type. In the case of four space
dimensions these special spin networks were discovered in Ref. 6 and 7. Their higher-dime
analogs were then described in Ref. 9. These spin networks can be calledsimple: They satisfy a
quantum analog of the simplicity constraint which requires a bivector to be a wedge produc
as was realized in Ref. 9, these are in a certain precise sense the simplest possible spin n
that can be constructed in a given dimension.

In this paper we give a new description of simple spin networks: We show that they c
viewed and evaluated as Feynman graphs. Our construction gives an interesting perspec
these objects, which are of fundamental importance in the loop approach to quantum gra
also gives us new technical tools: With the help of the Feynman graph description we will be
to obtain the asymptotics of an amplitude for aD simplex. We find the expected Regge acti
asymptotics for the amplitude.

The organization of this paper is as follows. In the rest of this section we remind the rea
the usual description of spin networks and give the main idea of our construction. It turns ou
the description of spin networks as Feynman graphs is quite general and relevant to gauge
other than SO~D! considered in Ref. 9. The main idea of our construction is quite simple e
when presented in its full generality. Thus, in this section, we do not restrict ourselves t
particular choice of the gauge group and present a general construction. It is then applied
II to simple SO~D! spin networks relevant for quantum gravity. As an illustration of the usefuln
of the new description we utilize it to derive the asymptotics of the evaluation of a simple S~D!
spin network in Sec. III.

a!Electronic mail: freidel@phys.psu.edu
b!Electronic mail: krasnov@phys.psu.edu
16810022-2488/2000/41(4)/1681/10/$17.00 © 2000 American Institute of Physics
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Let us now remind the reader of the standard description of spin networks, see, e.g., R
Definition 1: Given a Lie Group G (which we assume to be semisimple and compact)

network is a triple(G,r,I ), where:

~i! G is an oriented graph;
~ii ! r is a labeling of each edge e by an irreducible unitary representationre of G;
~iii ! I is a labeling of each vertexv of G by an intertwiner Iv mapping the tensor product o

incoming representations atv to the product of outgoing representations atv.

These data define a functionf (G,r,I ) on GE invariant under the action of the group at vertice
hereGE is the product of a number of copies of the groupG, one for each of theE edges ofG.
Thus, spin network can be described as a function which associates a number to each ass
of group elementsge to the edgese:

f~G,r,I ! :GE→C.

An explicit construction of this function proceeds as follows. First, for each edgee let us consider
the operator representing the group elementge in the representationre . Introducing a basis in the
corresponding representation space one can calculate the matrix elementsUre(ge)m

n . One then
takes a tensor product of all these matrix elements to obtain a tensorU(gE); it has one subscrip
and one superscript for each edgee. Then for each vertexv of G let S(v) be the set of edges
havingv as ‘‘source’’ and letT(v) be the set of edges havingv as ‘‘target.’’ The intertwiner is a
map ~commuting with the action ofG!:

I v : ^ ePT~v !re→ ^ ePS~v !re .

We can think ofI v as a tensor with one superscript for each edgeePT(v) and one subscript for
each edgeePS(v). One can then form the tensor product of all intertwiners to obtain a tensI,
and then take the tensor productU(gE) ^ I . Note now that each superscript inU corresponds to a
subscript inI and vice versa, because each edge ofG lies in S(v) for one vertexv and inT(w) for
one vertexw. Therefore, one can contract indices ofU(gE) ^ I to get a number. This is the valu
of the functionf (G,r,I ) . One can check that the function constructed is invariant under the a
of the groupG, where the group action is that at the vertices.

Before we present our construction we will need the standard notion of arepresentation of
class 1~see, e.g., Ref. 11!. Spin networks that can be represented as Feynman graphs are th
constructed using only these special representations ofG.

Definition 2: Letr be an irreducible representation of G, and let H be a subgroup of G. If
representation space Vr contains vectors invariant under H, and if all operators Ur(h),hPH are
unitary, thenr is called a representation of class 1 with respect to H.

The significance of these representations comes from the fact that they can be realized
space of functions on the homogeneous spaceH\G. As we describe in the following spin net
works that are constructed using only representations of class 1 with respect toH can be viewed
as Feynman graphs onH\G. The simple SO~D! spin networks of Ref. 9 are just such sp
networks. In this caseH5SO(D21) andH\G5SD21.

The realization of a representation of class 1 in the space of functions on a homoge
spaceH\G is a particular case of a general description of an irreducible representationr by shift
operators in the space of functions on the group. Let us remind the reader of this descr
Consider the matrix elements

Ux,a
r ~g!ª~Ur~g!x,a!,

where x,a are vectors from the representation spaceVr. Let us fix a. Then the functions
Ux,a

r (g),xPVr span a subspace in the spaceL2(G) of square integrable functions on the grou
One can then show that the right regular action of the groupG on this subspace gives an irredu
ible representation equivalent tor. The scalar product in the representation space is then give
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the integral over the group. In the case wherer is a representation of class 1 with respect toH, and
a is a vector invariant underH, the functionsUx,a

r (g) are constant on the right cosetsHg and can
be regarded as functions on the homogeneous spaceX5H\G. The scalar product is then given b
an integral overX.

We are now ready to describe spin networks constructed from representations of class
respect toH as Feynman graphs onX. Let us denote byP(r)n(x),xPX an orthonormal basis in the
representation spacer realized in the space of functions onX. The matrix elements of the grou
operators are then given by

Ur~g!m
n 5E

X
dx Pm

~r!~x!P~r!n~xg!,

wheredx is the invariant normalized measure onX. This gives realization of the matrix elemen
as integrals overX. The other building block necessary to construct a spin network is an i
twiner. Intertwiners can be characterized by their integral kernels. For ak-valent vertex one
defines the integral kernelI v(x1 ,...,xk) so that

I v m1¯mi

ni 11¯nk5E
X
dx1¯dxk I v~x1 ,...,xk!Pm1

~r1!
~x1!¯Pmi

~r i !~xi !P
~r i 11!ni 11~xi 11!¯P~rk!nk~xk!.

The integral kernelsI v(x1 ,...,xk) must satisfy the invariance propertyI v(x1g,...,xkg)
5I v(x1 ,...,xk). A special important set of intertwiners is given by

Ĩ v~x1 ,...,xk!5E
X
dx d~x,x1!¯d~x,xk!

or

Ĩ v m1¯mi

ni 11¯nk5E
X
dx Pm1

~r1!
~x!¯Pmi

~r i !~x!P~r i 11!ni 11~x!¯P~rk!nk~x!.

These special intertwiners are the ones that appear in the simple spin networks of Ref. 9. E
for such intertwiners it is possible to represent the spin network evaluation as a Feynman
Let us now introduce what can be called Green’s function:

G~r!~x,y!ª(
n

Pn
~r!~x!P~r!n~y!.

This Green’s function satisfies the ‘‘propagator’’ property:

E
X
dz G~r!~x,z!G~r!~z,y!5G~r!~x,y!.

Let us also introduce a propagator ‘‘in the presence of a source:’’

G~r!~x,y;g!ªE
X
dzG~r!~x,z!G~r!~zg,y!.

It is clear thatG(r)(x,y;e)5G(r)(x,y), wheree is the identity element of the group. One can no
check that, in the case all spin network intertwiners are of a special typeĨ v described previously,
the spin network functionf (G,r, Ĩ ) of the group elementsg1 ,...,gE is given by the Feynman grap
with the following set of Feynman rules:

~1! With every edgee of the graphG associate a propagatorG(re)(x,x8;ge).
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~2! Take a product of all these data and integrate over one copy ofX for each vertex.

These rules can be summarized by the following formula:

f~G,r, Ĩ !~g1 ,...,gE!5)
v
E

X
dxv)

e
G~re!~x,x8;ge!. ~1!

Thus, in the case intertwiners are given byĨ the evaluation of a spin network on a string of gro
elements is given by a Feynman graph: one associates the Green’s function to every ed
integrates over the positions of vertices.

Before we illustrate this general construction on the example of simple SO~D! spin networks,
let us note that this construction can be readily generalized to the case of an arbitrary spin ne
Indeed, the restriction of representations labeling the spin network to be those of class
respect to a fixed subgroupH was necessary only to guarantee that the resulting Feynman g
lives in the homogeneous spaceX5H\G. It can be dropped at the expense of Feynman gra
becoming graphs in the group manifold. The restriction of intertwiners to be of a special tyĨ v
can be dropped with the result that the above-specified set of Feynman rules changes: in th
one has to associate with every vertex the integral kernelI v(x1 ,...,xk) and then integrate over a
the arguments. Thus, in the case of arbitrary intertwiners, the evaluation formula takes the

f~G,r,I !~g1 ,...,gE!5)
v
E

X
dxv I v~xv!)

e
G~re!~x,x8;ge!. ~2!

Here xv stands for a string of argumentsx1 ,...,xk of a k-valent intertwiner, andx,x8 in the
argument of the Green’s functionG(re)(x,x8;ge) must be the same as those in two intertwinersx
must be the appropriate argument inI v ,ePS(v) and x8 must be the argument ofI (w),e
PT(w).

II. SIMPLE SO„D… SPIN NETWORKS

In this section we illustrate the general construction presented previously on the exam
simple SO~D! spin networks. Their relevance to quantum gravity inD dimensions was explaine
in Ref. 9.

Simple SO~D! spin networks are the ones constructed from special representations of S~D!.
As is well known, group SO~D! has a special class of representations, called spherical harmo
that appear in the decomposition of the space of functionsL2(SD21) on SD21 into irreducible
components. Some properties of these representations are described in Appendix A. Us
terminology introduced in Sec. I these representations of SO~D! can be described as represen
tions of class 1 with respect to SO (D21). They are characterized by a single parameter that
will denote byN in what follows;N is required to be an integer. These are the representations
were called simple in Ref. 9. A simple SO~D! spin network was defined in Ref. 9 as a sp
network which is constructed only from simple representations and whose intertwiners a
special intertwinersĨ introduced in Sec. I.

In the case intertwiners are given byĨ , the value of a simple spin network on a sequence
group elements can be evaluated using the general formula~1!. In what follows we will be
concerned only with the special case of a spin network evaluated on all group elements
equal to the identity element. This ‘‘evaluation’’ of a spin network gives a number that dep
only on the graph and on the labeling of its edges by integersNe . Evaluation of a spin network is
of special importance for quantum gravity because this is the way to obtain an amplitude
space–time simplex, see Refs. 6–8. Thus, according to our Feynman graph formula~1!, the
evaluation of a simple spin network is given by
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f~G,r!5)
v
E

SD21
dxv)

e
GNe

~x,x8!. ~3!

Here

GN~x,y!5(
K

xK~x!xK~y!, ~4!

where we have introduced an orthonormal basisxK, K5(k1 ,...,kD22)N>k1¯>kD23>ukD22u
in the representation space~see Appendix A for a construction of such a basis!. The invariance
property GN(xg,yg)5GN(x,y) implies that GN(x,y) depends only on the scalar productx
•y), and it is a standard result11 that

GN
~D !~x,y!5

D12N22

D22
CN

~D22!/2~x•y!, ~5!

whereCN
p is the Gegenbauer polynomial, see Appendix B for the definition. Expression~3! for the

evaluation of a simple spin network is a generalization of the result12 for the evaluation inD
54.

Example: Evaluation of theQ graph: Let us use the above-mentioned representation of
simple spin network evaluation to compute the evaluation of theQ graph. This is of importance
because the value of theQ graph appears in the normalization of trivalent vertices. According
~3! the evaluation is given by

Q~D !~N1 ,N2 ,N3!5E dx dy GN1
~x,y!GN2

~x,y!GN3
~x,y!. ~6!

Using the expression ofGN in terms of a Gegenbauer polynomial~5!, this integral can be com
puted. It is not equal to zero only ifg5(N11N21N3)/2 is an integer andg2Ni>0, i 51,2,3. In
this case one gets

Q~D !~N1 ,N2 ,N3!5
G~g12p!G~p11!

G~g1p11!G~2p! )i 51

3 S ~Ni1p!G~g2Ni1p!

G~p11!G~g2Ni11! D . ~7!

Herep5(D22)/2. To check this result one can check that~6! and~7! both satisfy the recurrenc
relation @implied by ~B3!#:

N111

N11p11
Q~D !~N111,N2 ,N3!1

N112p21

N11p21
Q~D !~N121,N2 ,N3! ~8!

5
N311

N31p11
Q~D !~N1 ,N2 ,N311!1

N312p21

N31p21
Q~D !~N1 ,N2 ,N321!, ~9!

and thatQ(N1 ,N2,0) reproduces the orthogonality relation~B5!. For D54 Eqs. ~8! and ~9!
simplify to

Q~4!~N1 ,N2 ,N3!5~N111!~N211!~N311!. ~10!

This result can be used to show that the intertwiner used in Ref. 9 to define simple
networks in the case ofD54 coincides with the one proposed in Ref. 6. Indeed, the four-va
interwiner of Ref. 9 reads:

I 2,2~P1,P2,Q1 ,Q2!5E dx P1~x!P2~x!Q1~x!Q2~x!.
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Using the kernel of the identity operator onL2(SD21) given by SN50
` GN we can expand the

four-valent vertex in terms of the sum of the product of two tri-valent ones:

I 2,2~P1,P2,Q1 ,Q2!5 (
N50

` E dx dyP1~x!P2~x!GN~x,y!Q1~y!Q2~y!.

In short this can be written as

I 2,2
~D !~N1 ,N2 ,N3 ,N4!5(

N
I 2,1

~D !~N1 ,N2 ,N!•I 1,2
~D !~N,N3 ,N4!

5(
N

@Q~D !~N1 ,N2 ,N!Q~D !~N,N3 ,N4!#1/2Ī 2,1
~D !~N1 ,N2 ,N!• Ī 1,2

~D !~N,N3 ,N4!,

where we have introduced the normalized intertwiner

Ī 2,1
~D !~N1 ,N2 ,N3!5~Q~D !~N1 ,N2 ,N3!!21/2I 2,1

~D !~N1 ,N2 ,N3!.

In the case ofD54, using the result~10! for the Q graph, we get

I 4
~D !~N1 ,N2 ,N3 ,N4!5@~N111!~N211!~N311!~N411!#1/2

3 (
N50

`

~N11! Ī 2,1
~D !~N1 ,N2 ,N!• Ī 1,2

~D !~N,N3 ,N4!.

Up to an overall normalization factor, this vertex is exactly the vertex given in Ref. 6.

III. LARGE SPIN ASYMPTOTICS

In this section we use the Feynman graph representation of the simple spin networks to
the asymptotics of aD-simplex amplitude for largeN. The results of this section generalize tho
of Ref. 13 to the case of arbitrary dimension. Most of the labor necessary to get the asym
is done in Appendix C. Here we simple use the asymptotics~C1! of the Gegenbauer polynomia
obtained there.

As is explained in Ref. 9, the amplitude for aD simplex is given by the evaluation of the sp
network that is dual to the boundary of the simplex. The (D22) simplices are labeled by simpl
representations of SO~D!, i.e., by integersN. The edges of the spin network dual to the bound
of the simplex are in one-to-one correspondence with the (D22) simplices, and inherit the label
of (D22) simplices. As one can easily check, all vertices of the spin network in questio
D-valent. All intertwiners are of the special type described in Sec. I, and, thus, the formula~3! can
be used for the evaluation. Using the asymptotics~C1! and formula~3! we present an asymptoti
evaluation of the amplitude: we will use the stationary phase approximation for the integra
discussion follows closely that of Ref. 13.

To get a feeling about the behavior of the amplitude, we will concentrate only on the o
latory part ofCN

p (cosu). Thus, dropping all multiplicative constants, which are unimportant for
we get

f~G,r!; (
$ekl%

S)
k, l

eklD E
SD21

dx1¯dxD11 expS i(
k, l

ekl~~Nkl1p!ukl1~12p!p/2! D ,

where the integral is taken over (D11) points—vertices of the spin network—on the unit (D
21) sphere, andk,l are indices labeling the verticesk,l 51,...,D11. Thus, a pairkl labels a spin
network edge, andukl :cosukl5xk•xl . The quantityekl takes values61 and the sum is taken ove
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both possibilities for every edge. The rest of the analysis is exactly the same as in Ref. 13.
into account the fact that the variation of the angles satisfy the following identity~see Ref. 13!:

(
k, l

Vkldukl50,

whereVkl are the volumes of (D22) simplices inside a geometricD simplex, one finds that allekl

are either positive or negative, and that the stationary phase values ofukl are the ones correspond
ing to a geometricD simplex determined byNkl1p interpreted as volumes of (D22) simplices.
Then, in the case the numberD(D11)/2 of edges in the simplex is even, we get

f~G,r!;cosS (
k, l

~Nkl1p!ukl1k
p

4 D , ~11!

whereukl are the higher-dimensional analogs of the dihedral angles of the geometricD simplex
determined byNkl1p and

k5
~D11!D

2
~42D !

is the integer determined byD. In the caseD(D11)/2 is odd one gets ‘‘sin’’ instead of ‘‘ cos’’
in the asymptotics~11!. Thus, the simplex amplitude has the asymptotics of the exponential o
Regge action, as expected.
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APPENDIX A: SIMPLE REPRESENTATIONS OF SO „D…

What is referred to in this paper as simple representations of SO~D! are the usual spherica
harmonics representations. They are irreducible representations of SO~D! of class 1 with respect to
the subgroup SO(D21) and, therefore, can be realized in the space of functions onSD21. This
partially explains their relevance for quantum gravity inD dimensions, where the (D21) sphere
has the geometrical meaning of the boundary of theD simplex. In this Appendix we review som
basic properties of these representations. For more information see, e.g., Ref. 11.

The spherical harmonics representations of SO~D! are the most obvious ones: They can
realized in the space of homogeneous polynomials of degreeN. Let us denote the space of suc
polynomials byVN

(D) . Then

dimVN
~D !5

~N1D21!!

N! ~D21!!
.

It turns out, however, that the representation in this space is not irreducible. The invarian
space inVN

(D) is given, as usual, by the space of polynomials satisfying the Laplace equati
RD. Thus, the irreducible representations of this type are realized in the space of homoge
harmonic polynomials of degreeN. Let us denote this space byHN

(D) . As one can show,

dimHN
~D !5

~2N1D22!~D1N23!!

~D22!!N!
. ~A1!
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As we have mentioned, these representations are of the class 1 with respect to SO(D21).
Choosing the upper-left-hand corner embedding of SO(D21) into SO~D!, the vector inHN

(D) that
is invariant under the action of SO(D21) is given ~up to normalization! by CN

p (xD) for x
5(x1 ,...,xD). Herep5(D22)/2 andCN

p (x) is the so-called Gegenbauer polynomial defined
Appendix B.

An explicit basis inHN
(D) can be constructed by choosing a string of embeddings

SO~2!,SO~3!,¯SO~D21!,SO~D !.

ThenHN
(D) decomposes into subspaces irreducible with respect to the action of the subgro

(D21). The latter again decompose into the irreducible subspaces with respect to the ac
SO(D22), etc. Finally, one arrives at SO~2! whose irreducible representations are one dim
sional. Thus, we have

HN
~D !5 %

k150

N

%
k250

k1

¯ %
kD2252kD23

kD23

VkD22
.

HereVk are one-dimensional representation spaces of SO~2!. Note thatkD22 in the last sum runs
over both positive and negative values. Thus, a basis inHN

(D) can be labeled by a string of integer

Kª~k1 ,k2 ,...,kD22!, N>k1>k2>¯>ukD22u.

APPENDIX B: PROPERTIES OF GEGENBAUER POLYNOMIALS

Gegenbauer polynomials are orthogonal polynomials satisfying many different properti
this Appendix we review some of them. For more information of Gegenbauer polynomials
e.g., Refs. 11 and 14.

Let p denote a quantity related to the dimensionD according top5(D22)/2, or D52p
12. A generating functional for the Gegenbauer polynomial is given by

~122xr1r 2!2p5 (
N50

1`

CN
p ~x!r N. ~B1!

Gegenbauer polynomials satisfy the Rodriguez formula:

CN
p ~x!5

~21!N~N12p21!~N12p22!¯~2p!

2NN! ~N1p2 1
2!~N1p2 3

2!¯~p1 1
2!

3~12x2!2p1~1/2!S d

dxD
N

~12x2!N1p2~1/2!,

~B2!

where the prefactor can also be written as

~21!N

2NN!

G~N12p!G~p1 1
2!

G~2p!G~N1 1
21p!

.

The recurrence formula is given by

~N11!CN11
p ~x!22~N1p!xCN

p ~x!1~N12p21!CN21
p ~x!50, ~B3!

with C0
p(x)51 andC1

p(x)5x. The polynomials satisfy the following differential equation:

H ~12x2!S d

dxD
2

2~2p11!x
d

dx
1N~N12p!J CN

p ~x!50.

A change of variablex5cosu puts this in the following form:
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H S d

du D 2

12p
cosu

sinu

d

du
1N~N12p!J CN

p ~cosu!50. ~B4!

The polynomials are normalized as

CN
p ~1!5

G~2p1N!

G~2p!N!
5dimHN

~D !
D22

2N1D22
,

where dimHN
(D) is given by~A1!. The polynomials satisfy the following orthogonality conditio

E
21

11

dx~12x2!p2~1/2!CN
p CM

p 5dN,M

pG~2p1N!

22p21N! ~N1P!G2~p!
. ~B5!

APPENDIX C: ASYMPTOTICS OF THE GEGENBAUER POLYNOMIAL

To get the asymptotics of the Gegenbauer polynomial for largeN we use the differential
equation~B4!. It can be put into a form similar to that of a wave equation by setting

CN
~p!~cosu!5 f ~u!sin2p u.

One gets:

d2f

du2 1 f F ~N1p!22
p~p21!

sin2 u G50.

For largeN one can neglect the second term in the square brackets andp as compared toN in the
first term. Thus, the largeN asymptotics is given by

CN
~p!~cosu!;

A

sinp u
sin@~N1p!u1f#,

wheref is a phase andA is a normalization factor, both arbitrary at this stage. It can be c
strained by using symmetry properties ofCN . From the expression for the generating function
one sees that

CN~2x!5~21!NCN~x!.

Thus,

CN
~p!~cos~p2u!!5~21!NCN

~p!~cosu!.

A simple analysis shows that this restrictsf to be

f5
~12p!

2
p1pk,

wherek is an arbitrary integer. Thus, the ambiguity ink is just the overall sign ambiguity. The
constantA can be determined from the normalization condition~B5!. One gets:

p

2
A25

pG~2p1N!

22p21N! ~N1p!G2~p!
,

or
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A56
1

2p21G~p! FG~2p2N!

N! ~N1p! G
1/2

.

For largeN this behaves as

A;6
Np21

2p21G~p!
.

Using the fact that

C2N
~p!~0!5

~21!N

N!

G~N1p!

G~p!
;

~21!N

G~p!
Np21,

and the expression for the derivative of the Gegenbauer polynomial

d

du
CN

p 522p sinuCN21
p11 ,

we can fix the overall sign to be plus. Thus, finally, we get

CN
~p!~cosu!;

Np21

2p21G~p!

1

sinp u
sin@~N1p!u1~12p!p/2#. ~C1!
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Chiral limit of the two-dimensional fermionic determinant
in a general magnetic field

M. P. Frya)

School of Mathematics, University of Dublin, Dublin 2, Ireland
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We consider the effective action for massive two-dimensional QED in flat Euclid-
ean space–time in the background of a general square-integrable magnetic field
with finite range. It is shown that its small mass limit is controlled by the chiral
anomaly. New results for the low-energy scattering of electrons in 211 dimen-
sions in static, inhomogeneous magnetic fields are also presented. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!00404-7#

I. INTRODUCTION

Fermionic determinants lie at the heart of gauge field theories with fermions. They ar
tained by integrating over the fermionic degrees of freedom in the presence of a backg
potentialAm , producing the one-loop effective actionSeff52ln det, where the fermionic determi
nant, det, is formally the ratio det(P”2A”1m)/det(P”1m) of determinants of Dirac operators. Th
coupling constante has been absorbed intoAm . This action is exact and appears in the calculat
of every physical process. Therefore, any truly nonperturbative calculation must deal withSeff in
its full generality. The main problem with calculatingSeff is that is must be known for generi
potentials, typically tempered distributions, if it is to be part of an effective measure forAm . A
summary of what is known aboutSeff in quantum electrodynamics in 111, 211, and 311
dimensions for general fields is given in Sec. I of Ref. 1. Recall thatSeff in QED only depends on
the field strength tensorFmn . It is seen that there are upper and lower bounds onSeff , with some
bounds holding only for restricted fields, such as unidirectional ones. After 50 years or so the
still no equalities in QED for general fields, except for massless QED in 111 dimensions—the
Schwinger model.2

In this paper an equality is obtained for the chiral limit ofSeff in two-dimensional, Wick-
rotated Euclidean QED for a general field, hereafter referred to as a static magnetic fieldB(r ). Of
courseB is not completely unrestricted. We described elsewhere1,3 precisely how rough potential
and fields are to be smoothed as part of the regularization process required to make the fun
integration overAm well-defined. It is sufficient to assume in this paper thatAm is differentiable
and thatB is square integrable with finite rangeR. ThenB is guaranteed to have finite flux,F,
sinceiBi>uFu/ApR, whereiBi25*d2rB(r )2 andF5*d2rB(r ). The author knows of no defi
nition of a determinant that can handle infinite flux fields; there is simply too much degene4

resulting in volumelike divergences~which are ignored! as in the constant field case. Furthermo
finite flux and range are consistent with the need to introduce a volume cutoff to define2
before taking the thermodynamic limit.

With the foregoing restrictions onB our result is

lim
m2→0

m2
]

]m2 ln det5
uFu
4p

, ~1.1!

wherem is the fermion mass. Together with the exact scaling relation

a!Electronic mail: mpfry@maths.tcd.ie
16910022-2488/2000/41(4)/1691/20/$17.00 © 2000 American Institute of Physics
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ln det~l2B~lr !,m2!5 ln det~B~r !,m2/l2!, ~1.2!

Eq. ~1.1! implies the strong field limit

ln det~l2B~lr !,m2! ;
l@1

2
uFu
2p

ln l1R~l!, ~1.3!

where liml→`(R(l)/ ln l)50. Note that the chiral limit in Eq.~1.1! implies that QED2’s fermionic
determinant behaves like (uFu/4p)ln m2 as m→0, which does not coincide with that of th
Schwinger model.

For nonwinding background fields withF50 one can prove continuity atm50. As a result,
massive QED2’s fermionic determinant does coincide with that of the Schwinger model am
50:

lim
m→0

ln det5
1

4p2 E d2r d2r 8B~r !B~r 8!lnur2r 8u. ~1.4!

This follows from results of Seiler5 and Simon6 as will be shown in a future paper.
It is reasonable to ask what is the relevance of QED2’s fermionic determinant, and its mas

dependence in particular, to physics? The answer is that the integral of this determinant o
fermion mass fully determines QED4’s fermionic determinant for the same magnetic fieldB(r ).7

This determinant is still unknown except for a constant field8,9 and a sech2(x/a) varying unidirec-
tional field.10

From the input parameters to the QED2 determinant one can form the dimensionless rat
eiBi /mc2 and\/mcR, wheree has been temporarily restored. This paper deals with the non
turbative, small mass regioneiBi /mc2, \/mcR@1. The large mass region can be dealt with by
derivative expansion of ln det.11 What remains in order to estimate QED4’s fermionic determinant
for general unidirectional fields are optimal upper and lower bounds on QED2’s determinant for
intermediate values of the mass.

The derivation of Eq.~1.1! is really just a problem in quantum mechanics dealing with
particle confined to a planar surface with an inhomogeneous magnetic field normal to it
proportionality of the limit in Eq.~1.1! to the two-dimensional chiral anomaly,F/2p, as well as
its sign and its connection with paramagnetism, are discussed in Ref. 12. Equation~1.1! was
established in Ref. 12 in finite volume for a unidirectional fieldB(r )>0. There is a missing
volume factor in Eq.~2.7! that was corrected in Ref. 13. These restrictions are dropped in
paper.

Finally, the chiral limit of QED2’s continuum fermionic determinant should provide a no
trivial test of algorithms for the determinant on large lattices. The reason is that chiral limits
topological invariants—the chiral anomaly in this instance—are notoriously difficult to calcu
on a lattice.14 Many of the results here on low-energy scattering in static, inhomogeneous
netic fields are new and are relevant to the physical case of electrons in such fields in11
dimensions.

In Sec. II we discuss how we will demonstrate Eq.~1.1!. Section III develops the essentials
low-energy scattering in inhomogeneous magnetic fields that will be required. In Sec. IV
crucial argument that central symmetry is sufficient to establish Eq.~1.1! is given. Finally, Sec. V
gives the fine points of the limit in Eq.~1.1!.

II. PRELIMINARIES

We adopt Schwinger’s proper time definition9 of the fermionic determinant for Euclidea
QED2:
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ln det5
1

2 E0

` dt

t
Tr~e2P2t2exp$2@~P2A!22s3B#t%!e2tm2

. ~2.1!

Then

]

]m2 ln det5
1

2
Tr@~D22s3B1m2!212~P21m2!21#, ~2.2!

whereD25(P2A)2 ands3 is the Pauli matrix. Now introduce the sum rule15

Tr@~D22B1m2!212~D21B1m2!21#5
F

2pm2 , ~2.3!

where the trace is over space indices only, and assume without loss of generality thatF.0. Then
Eqs.~2.2! and ~2.3! give

m2
]

]m2 ln det5
F

4p
1m2 Tr@~D21B1m2!212~P21m2!21#. ~2.4!

The continuum part of the spectrum of the negative chirality operatorD21B stretches down to
zero in the case of open spaces. BecauseF.0 the square-integrable zero modes are confine
the spectrum ofD22B.16 Although B has no definite sign, its flux does, andF, chirality and the
number of square-integrable zero modes of the supersymmetric pair of operatorsD26B are
correlated by the Aharonov–Casher theorem. At this stage the minor modifications one
make to deal with the case whenF,0 are already clear.

It might seem that Eq.~2.4! makes Eq.~1.1! self-evident. But if Eq.~2.3! is multiplied bym2

and the limitm250 taken, then the fractional part of the chiral anomaly is given by a differe
of zero-energy phase shifts of opposite chirality,17 demonstrating that the trace difference in E
~2.3! develops a 1/m2-type singularity at the bottom of the continuum. How, then, does one k
a priori that such a singularity is absent from the trace in Eq.~2.4!?

Our definition of the determinant in Eq.~2.1! leads us to define the trace in Eq.~2.4! by a
difference of diagonal heat kernels,

Tr@~D21B1m2!212~P21m2!21#5E
0

`

dte2tm2E d2r ^r ue2~D21B!t2e2P2tur &. ~2.5!

Denote the scattering states ofD21B corresponding to outgoing radial waves byc (1)(k,r )
5^r uk,in& whose eigenvalues areE5k2. These satisfy the normalization condition

E d2rc~1 !* ~k,r !c~1 !~k8,r !5d~k2k8!. ~2.6!

Assume thatB(r ) is noncentral. LetQ denote the direction of the incident beam with moment
k relative to an axis fixed in the scattering center. The asymptotic behavior ofc (1)(k,r ) for kr
@1 is

c~1 !~k,r !5
1

2p
eikr cos~u2Q!1

f ~u,Q!

2pAr
eikr1R, ~2.7!

where f is the scattering amplitude andR is the remainder in the large-r expansion ofc (1).
Equation~2.7! is obtained from the Lippmann–Schwinger equation
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c~1 !~k,r !5
1

2p
eik"r2

i

4 E d3r 8H0
1~kur2r 8u!V~r 8!c~1 !~k,r 8!, ~2.8!

whereH0
(1) is a Hankel function of the first kind and

V52P"A2A"P1A21B. ~2.9!

As we will show later, we can choose a gauge such that

A5
F

2pr
û, ~2.10!

for r sufficiently large, whereû is a unit vector orthogonal tor . Therefore, we are dealing with
long range (1/r 2) potential V, and this is what makes the proof of Eq.~1.1! nonroutine. The
completeness of the ‘‘in’’ states forD21B and Eq.~2.5! gives

Tr@~D21B1m2!212~P21m2!21#

5E
0

`

dte2tm2E d2r E
0

`

dk ke2k2tE
0

2p

dQ~ uc~1 !~k,r !u22uc0~k,r !u2!, ~2.11!

wherec0(k,r )5eik"r/2p. We are interested in the smallm2, high t limit of Eq. ~2.11! which is
determined by the low-energy end of the spectrum ofD21B. Therefore we cut off the energ
integral in Eq.~2.11! at M with MR!1 and consider, form2→0,

Tr@~D21B1m2!212~P21m2!21#

5E
0

`

dte2tm2E d2r E
0

M

dk ke2k2tE
0

2p

dQ~ uc~1 !~k,r !u22uc0~k,r !u2!1R~m2!. ~2.12!

The remainder,R, can be put in the form

E
0

`

e2t~m21M2!E d2r E
0

`

dp pe2p2tE
0

2p

dQ~ uc~1 !~Ap21M2,r ,Q!u22uc0~Ap21M2,r ,Q!u2!,

which makes the energy gap between 0 andM evident so that limm2→0 m2R(m2)50. Thus Eq.
~2.4! shows that Eq.~1.1! will be established if the integral in Eq.~2.12! multiplied bym2 vanishes
in the limit m250.

We will calculate in the Lorentz gauge]mAm50 which, in two dimensions, allows us to s
Am5emn]nf with

B~r ,u!52]2f~r ,u!, ~2.13!

andemn52enm with e1251. Assuming thatB has rangeR we can calculatef in a diskD of radius
a@R with f(a,u)50. A unique solution of Poisson’s equation with Dirichlet boundary con
tions requires that we also specifyf asr→`, which we will do by requiring thatf approach the
potential of a flux line through the origin. The construction of the Dirichlet Green’s function
this problem is standard, with the result
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f~r ,u!52
1

4p E
D

d2r 8B~r 8,u8!lnS r 21r 8222rr 8 cos~u82u!

a21
r 2r 82

a2 22rr 8 cos~u82u!D , r ,a

~2.14!

52
F

2p
ln~r /a!, r .a.

This potential results in a discontinuity in]f/]r at r 5a that is of orderiBiR2/a2 and which
vanishes in the limit of radial symmetry. This introduces a zero-flux, zero-range magnetic fie
a ring atr 5a that does not affect the low energy phase shifts. What is gained by this is r
symmetry forr .a.

From Eq.~2.12! it is evident that we will need the outgoing wave solution of

@~P2A!21B#c~1 !5k2c~1 !, ~2.15!

for k→0. This can be solved explicitly in the exterior regionr .a with overall normalization fixed
by Eq. ~2.7!. We can approximate the interior solution by the exact zero-energy solution o
~2.15! becausek2 is a regular perturbation ofD21B for r ,a. Then an interior solution of Eq
~2.15! can be expanded as a power series ink2. Following this the interior and exterior solution
are matched atr 5a.17

III. LOW-ENERGY SCATTERING STATES

Since the case of noncentral potentials may be unfamiliar we will parallel our discussion
the special case of radial symmetry in the interest of clarity.

A. Central field: rÌa

Expandc (1)(k,r ) in partial waves,

c1~k,r !5
1

&p
(

l 52`

`

c l~k,r !eil ~u2Q!. ~3.1!

Equations~3.1! and ~2.6! give the normalization condition

E
0

`

drrc l* ~k,r !c l~k8,r !5d~E2E8!. ~3.2!

Substitution of Eqs.~3.1! and ~2.10! in Eq. ~2.15! results in Bessel’s equation forc1 , with l
shifted tol 2F/2p for r .a. In order to include the case whenF/2p is an integer we choose a
linearly independent solutions the Hankel functionsH u l 2F/2pu

(6) (kr) whose asymptotic behavior fo
r→` is

Hn
~6 !~kr !;A 2

pkr
e6 i ~kr2np/22p/4!. ~3.3!

SettingW5u l 2F/2pu we constructc l as the following linear combination:

c l~k,r !5
e2 ipW/2eipu l u

2&
~HW

~2 !~kr !1eip~W2u l u!e2id l ~k!HW
~1 !~kr !!, ~3.4!

whereSl5e2id l is theS-matrix for the partial phase shiftd l . Recalling that in two dimensions
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eik"r5eikr cos~u2Q!5 (
l 52`

`

i lJl~kr !eil ~u2Q!, ~3.5!

and noting Eq.~3.3! we see that the normalization factors in Eq.~3.4! ensure that Eq.~3.1!
assumes the asymptotic form Eq.~2.7! as r→`.

B. General field: r Ìa

Although radial symmetry is present forr .a, the absence of rotational symmetry forr ,a
can cause the incident particle to scatter into a final state that is a superposition of a
momentum states. Thus theS-matrix is no longer diagonal inl :Sl→Sl ,L , whereL is the initial-
state angular momentum. Then Eq.~3.1! generalizes to

c~1 !~k,r !5
1

&p
(
l ,L

c l ,L~k,r !eil ue2 iLQ, ~3.6!

which, together with Eq.~2.6!, results in the normalization condition

(
l
E

0

`

drrc l ,L* ~k,r !c l ,L8~k8,r !5dL,L8d~E2E8!. ~3.7!

Equation~3.4! now generalizes to

c l ,L~k,r !5e2 ip~Wl1WL!/4eip~ u l u1uLu!/2 1

2&
~d l ,LHWl

~2 !~kr !1eip~Wl2u l u!/2Sl ,Leip~WL2uLu!/2HWl

~1 !~kr !!,

~3.8!

whereWl5u l 2F/2pu, etc. UnlessQ needs to be displayed, as in Eq.~3.6!, we suppress it in wha
follows. Again, the normalization factors in Eq.~3.8! are chosen so that Eq.~3.6! assumes the
asymptotic form of Eq.~2.7!. The scattering amplitude is given by

f ~k8,k!5
1

A2pk
(
l ,L

~Sl ,L2d l ,L!eil ue2 iLQeip~WL2Wl21!/4. ~3.9!

C. General field: rËa

We seek zero-energy solutions of Eq.~2.15! in the regionr ,a that are sufficiently regular to
maintain the Hermiticity ofD21B. This operator factorizes toL†L so that Eq.~2.15! at k250
reduces to

L†Lc50, ~3.10!

where

L5e2 iuS 1

i

]

]r
2

1

r

]

]u
2

1

r

]f

]u
2 i

]f

]r D . ~3.11!

One set of solutions is given by

Lc50, ~3.12!

whose solution by inspection is

c5e2f~r ,u!g~re2 iu!, ~3.13!
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whereg is analytic inre2 iu in and on the diskD. Solutions of the form Eq.~3.13! do not give all
of the regular solutions of Eq.~3.10!. This is evident in the limit of radial symmetry, for thenc is
a superposition of only negative or zero angular momentum states.

There are irregular solutions of Eq.~3.12! and hence Eq.~3.10! of the form

c5e2f~r ,u!h~r 21eiu!, ~3.14!

whereh may be expanded in a power series away from the origin. These solutions can be u
find additional regular solutions of Eq.~3.10! that reduce to superpositions of positive angu
momenta in the radial symmetry limit. Thus we look for regular solutions about the origin o
form

c5e2fh~r 21eiu!F~r ,u!. ~3.15!

Then Eq.~3.10! gives

L†Fe2fe2 iuh~r 21eiu!S ]F

]r
2

i

r

]F

]u D G50. ~3.16!

Again by inspection the solution of Eq.~3.16! is

e2fe2 iuhS ]F

]r
2

i

r

]F

]u D5efb~reiu!, ~3.17!

whereb is analytic inreiu in and onD. Actually, h is now an unnecessary complication. Lettin
F5 f (r ,u)/h, we get

] f

]r
2

i

r

] f

]u
5eiue2fb~reiu!, ~3.18!

and hence Eq.~3.15! becomes

c5e2f f . ~3.19!

Equation~3.18! indicates thatf is undetermined up to a function of the formp(re2 iu). But this is
the same asg in Eq. ~3.13!, and so we setp50. Also, the value ofc at the origin can be fixed by
g. So for definiteness we requiref (0)50. Noting that

¹25e2 iuS ]

]r
2

i

r

]

]u DeiuS 1

r
1

i

r

]

]u D , ~3.20!

the solution of Eq.~3.18! is, for rPD,

f ~r !5
1

2p
eiuS ]

]r
1

i

r

]

]u D E
D

d2r 8 lnur2r 8ue2f~r8!b~r 8eiu8!1C, ~3.21!

whereC is a constant fixed byf (0)50. Since

eiuS ]

]r
1

i

r

]

]u D lnur2r 8u52eiu8S ]

]r 8
1

i

r 8

]

]u8D lnur2r 8u, ~3.22!

f takes the final form

f ~r !52
1

2p E
D

d2r 8eiu8e2f~r8!b~r 8eiu8!S ]

]r 8
1

i

r 8

]

]u8D ln~ ur2r 8u/r 8!. ~3.23!
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Combining Eqs.~3.13!, ~3.19!, and~3.23!, the general solution of Eq.~3.10! is

c~r ,u!5e2f~r ,u!~g~re2 iu!1 f ~r ,u!!. ~3.24!

The functionsb, f, andg will be determined below when we join the regionr ,a with r .a. They
then acquire energy-dependent normalization factors that depend on scattering data, includ
initial-state angular momentumL. Thusc in Eq. ~3.24! has an implicit dependence onQ.

As discussed at the end of Sec. II,k2 is a regular perturbation ofD21B in Eq. ~2.15! in the
region r ,a. Hence the radial wave functionsc l ,L(k,r ) in Eq. ~3.6! may be expanded ink2 for
r ,a. Inserting the implicitQ-dependence ofc(r ,u in Eq. ~3.24! we expand it in partial waves

c~r ,u,Q!5(
l ,L

c l ,L~r !eil ue2 iLQ. ~3.25!

We set

c l ,L~k,r !/&p5c l ,L~r !~11k2x l ,L~r !1O~k4!!, ~3.26!

and thus

c~1 !~k,r !5c~r ,u,Q!1
k2

~2p!2 E
0

2p

du8E
0

2p

dQ8c~r ,u2u8,Q2Q8!x~r ,u8,Q8!1O~k4c!,

~3.27!

wherex can be expanded as in Eq.~3.25!. We will abbreviate Eq.~3.27! as

c~1 !~k,r !5c~r ,u!1k2c.x1O~k4c!, ~3.28!

where the star denotes convolution. An equation forx can be obtained by substituting Eq.~3.28!
in Eq. ~2.15! and retaining terms of orderk2. As we will see,x is not required in the general fiel
case.

To fix b and f define the operator

L5
]

]r
2

i

r

]

]u
, ~3.29!

and let it act onc (1) in Eq. ~3.28!, using Eq.~3.24!:

Lc~1 !52cLf1e2fLf 1k2Lc.x1O~k4Lc!. ~3.30!

Equation~2.14! gives

]uf~a,u!50, ~] rf~r ,u!!a52F/2pa1O~ iBiR2/a2!. ~3.31!

From now on the arbitrarily small correction to the radial derivative off at r 5a will be implicit
in what follows. Thus Eqs.~3.31! and ~3.18! applied to Eq.~3.30! at r 5a give

Lc~1 !~k,a,u!5Fc~a,u!/2pa1eiub~aeiu!1k2Lc.x1O~k4Lc!. ~3.32!

Denote the wave functions on either side ofa by c,
(1) andc.

(1) . Continuity ofc (1) andLc (1)

at r 5a and repeated use of Eq.~3.28! allow Eq. ~3.32! to be put in the form

eiub~aeiu!5~L2F/2pa!c.
~1 !2k2Fc.

~1 !.x/2pa1k2Lc.
~1 !.x1O~k4Lc.

~1 !!. ~3.33!

Sinceb(reiu) is analytic in and onD we can make the expansion
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b~reiu!5(
l 50

`

(
L52`

`

bl ,Lr leil ue2 iLQ, ~3.34!

where we have anticipated theQ-dependence ofb. From Eqs.~3.6!, ~3.33!, and~3.34! we get

&pbl 21,Lal 215S d

dr
1~ l 2F/2p!/r Dc l ,L

. ~k,r !~11k2x l ,L~r !1O~k4!!, ~3.35!

with r 5a after differentiating. Referring to Eq.~3.8! it is evident from Eq.~3.35! that the expan-
sion coefficientsbl ,L and henceb andf in Eq. ~3.23! will be determined to leading order ink2 once
Sl ,L is known.

There now remains the functiong in Eq. ~3.24!. Equations~3.24! and ~3.28! together with
continuity of c (1) at r 5a give

c.
~1 !~k,a,u!5g~ae2 iu!1 f ~a,u!1k2c.x~a,u!1O~k4c!. ~3.36!

Letting

f ~r ,u!5(
l ,L

f l ,L~r !eil ue2 iLQ, ~3.37!

and recalling thatg is analytic in and onD so that

g~re2 iu!5(
l 50

`

(
L52`

`

gl ,Lr le2 i l ue2 iLQ, ~3.38!

we obtain from Eqs.~3.6!, ~3.36!–~3.38!, for l>0,

c2 l ,L
. ~k,a!/&p5gl ,Lal1 f 2 l ,L~a!1k2c2 l ,L

. ~k,a!x2 l ,L~a!/&p1O~k4c2 l ,L
. !. ~3.39!

This simplifies on making the expansion

ln(r 21r 8222rr 8 cos(u2u8))5 ln r .
2 22(

l 51

`
1

l S r ,

r .
D l

cos@ l ~u2u8!#, ~3.40!

in Eq. ~3.23!, giving f 2 l ,L(a)50, l .0 and

f 0,L~a!5
1

2p E
0

a

drE
0

2p

dueiue2f~r ,u!(
l 50

`

bl ,Lr leil u. ~3.41!

Thusg is determined to leading order ink2 by Eqs.~3.38!–~3.39! onceSl ,L is known. We have
now fully determined the low-energy limit ofc (1)(k,r ) for general magnetic fields in terms of th
S-matrix.

D. Central field: rËa

Now everything is diagonal and we may seta5R. Refer back to Eq.~3.4! and define the
energy-dependent part,D l , of the phase shifts by

d l~k2!5p~ u l u2u l 2F/2pu!/21D l~k2!1mp, ~3.42!

wherem50,61,... Then Eq.~3.4! reduces to, forr .a,

c l~k,r !5221/2~21!mi u l ueid l~Jw~kr !cosD l2YW~kr !sinD l !, ~3.43!
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whereYW is the Bessel function of the second kind. Then atr 5a with ka!1 andWÞ0,

c l
.~k,a!5221/2~21!mi u l ueid l@~ka/2!W/G~W11!

1D lG~W!~ka/2!2W/p#~11O~k2,D l
2!!, ~3.44!

~r ] rc l
.!a5221/2W~21!mi u l ueid l@~ka/2!W/G~W11!

2D lG~W!~ka/2!2W/p#~11O~k2,D l
2!!. ~3.45!

It will be shown in Sec. IV thatD l5O(ka)2W at least. In Eqs.~3.44! and ~3.45! the remainder
term O(k2,D l

2) should be replaced withO((ka)2 ln ka) whenW51.
We can now calculatebl 21 in Eq. ~3.35!. For l .F/2p, Eqs.~3.35!, ~3.44!, and~3.45! give

bl 21al5p21~ l 2F/2p!~21!mi leid l~ka/2!W/G~W11!~11O~k2,D l
2!!, ~3.46!

and for 1< l ,F/2p,

bl 21al5p22~ l 2F/2p!~21!mi leid lD lG~W!~ka/2!2W~11O~k2,D l
2!!. ~3.47!

For the caseW50,

bl 21al52p22~21!mi leid lD l~11O~D l
2!!. ~3.48!

For gl , Eq. ~3.39! gives

gl5
c2 l

. ~k,a!

&pal
~12k2x2 l~a!1O~k4!!, ~3.49!

since Eq.~3.41! gives f 0,L(a)50 for the case of radial symmetry. Combining Eq.~3.49! with Eq.
~3.44!, we obtain, forl>0,

gl5~21!mi leid21~2pal !21@~ka/2! l 1F/2p/G~ l 111F/2p!

2p21D2 lG~ l 1F/2p!~ka/2!2~ l 1F/2p!#~11O~k2,D2 l
2 !!. ~3.50!

Referring to Eqs.~3.37!, ~3.40!, and~3.23! one finds forr<a,

f l~r !5bl 21r 2 lE
0

r

dxx2l 21e2f~x!, l>1

50, l<0. ~3.51!

In the radial symmetry limitc l ,L(r ) in Eq. ~3.26! becomes diagonal, with Eq.~3.24! now giving,
for r<a,

c l~r !5bl 21r 2 le2f~r !E
0

r

dxx2l 21e2f~x!, l>1

5g2 l r
2 le2f~r !, l<0. ~3.52!

Since it will be needed in what follows, we end this section by calculatingx l in Eq. ~3.26!.
Substitution of Eqs.~3.25! and ~3.26! in Eq. ~2.15! and matching terms ofO(k2) gives

S 2
d

dr
1

l 21

r
1f8D S d

dr
1

l

r
1f8Dc lx l5c1 . ~3.53!

Requiringx l(0)50, Eqs.~3.52! and ~3.53! fix x l for r<a to be
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x l52E
0

r

dxx22u l u21e2f~x!E
0

x

dyy2u l u11e22f~y!, l<0

52E
0

r

dxx2l 21e2f~x!S E
0

x

dww2l 21e2f~w!D 22E
0

x

dyy122le2f~y!S E
0

y

dzz2l 21e2f~z!D 2

,

l>1. ~3.54!

It is important to bound the growth ofx l for u l u→`. In the limit of radial symmetry Eq.~2.14!
reduces to

f~r !52E
0

a

dr8r 8B~r 8!ln~r . /a!, ~3.55!

for r<a. Then some easy estimates applied to Eqs.~3.54! and ~3.55! yield

uf~r !u<iBi~a2r !/2Ap, ~3.56!

and

ux~r !u<
eiBiaAp

4~ u l u11!
r 2, l<0

<
e6iBiaAp

4~ l 11!
r 2, l>1. ~3.57!

IV. LOW-ENERGY PHASE SHIFTS

In order to calculate Eq.~2.12! in the limit m2→0 the leading energy-dependent behavior
Sl ,L is required. The case of central fields is dealt with first.

A. Central fields

The calculation ofD l in Eq. ~3.42! proceeds by matching the log-derivativesg l5r ] ln cl at
r 5a, where again we can seta5R. Then Eq.~3.43! gives

tanD l5
g lJW~ka!2kaJW8 ~ka!

g lYW~ka!2kaYW8 ~ka!
, ~4.1!

whereg l denotesg l ~inside!. For ka!1 this reduces to

D l5p
W2g l

W1g l

~ka/2!2W

G~W!G~W11!
~11O~ka!2!, ~4.2!

for W5u l 2F/2puÞ0,1,... . Results for integer values ofW will be given below.
Now supposel>1. Then Eq.~3.35! reduces to

g l5F/2p2 l 1&pbl 21al /c l
,~k,a!1k2@~F/2p2 l 2g l !x l~a!2~r ] rx l !a#1O~k4!. ~4.3!

From Eqs.~3.6!, ~3.24!, and~3.26!,

c l
,~k,a!/&p5 f l~a!~11k2x l~a!1O~k4!!, ~4.4!

which, together with Eqs.~3.51! and ~4.3!, gives
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g l5F/2p2 l 1
a2l

*0
adrr 2l 21e2f~r !2k2ax l8~a!1O~k4!. ~4.5!

Note thatg l; l as l→`, as it should.
Next, let l<0. Equations~3.6!, ~3.24!, and~3.26! give

g i5F/2p2 l 1k3ax l8~a!1O~k4!, ~4.6!

since f l50 for l<0 by Eq.~3.51!. Equations~3.42!, ~4.2!, ~4.5!, and~4.6! determine the leading
energy dependence of the phase shifts forWÞ0,1,... .

Finally, let W50,1,... . There is nothing new in principle here; only the expansion ofYW for
ka!1 has to be modified. The whole calculation goes forward as above with the result th
W52,3,..., D l is still given by Eq. ~4.2!; for W51 replace O(ka)2 in Eq. ~4.2! by
O((ka)2 ln(ka)), and forW50,

D l5
p

2 ln~ka!
1O~1/ln2~ka!!. ~4.7!

It is interesting that the energy dependence ofD l for W50 specialized tol 50 is exactly the same
as that derived by Chandonet al.18 for a large class of nonmagnetic Schro¨dinger operators in 2
11 dimensions. Note that there is no smooth interpolation ofD l from WÞ0 to W50. This case
will, therefore, have to be considered separately in what follows.

B. General fields

The S-matrix Sl ,L appearing in Eq.~3.8! is obtained from

Sl ,L5d l ,L1&p i 2 l 21(
m

E
0

`

drrJl~kr !Vl 2m~r !cm,L~k,r !, ~4.8!

with c l ,L given by Eqs.~3.6! and ~2.8! and where

Vl 2m~r !5
1

2p E
0

2p

duV~r ,u!e2 i ~ l 2m!u, ~4.9!

with V as in Eq.~2.9!. An infinite set of coupled equations must be solved to extract the p
shifts in the general field case. In practice, only a few off-diagonal elements ofSl ,L are required to
obtain the phase shifts in the low energy limit.

Consider an incident low-energy particle (ka!1) with angular momentumL with respect to
the scattering center. It will encounter a high centrifugal barrier (l 2F/2p)2/r 2 to the spatially
asymmetric regionr ,a whereB(r ,u)Þ0. For values ofL;F/2p the barrier is minimized, and
so we expect the magnitude of the energy-dependent corrections to the Aharonov–Bohm
shifts, DL , will assume their maximum values, as Eqs.~4.2! and ~4.7! illustrate in the centrally
symmetric case. The intuition is thatSl ,L only has significant off-diagonal elements for values
l,L clustered aboutF/2p and that otherwiseSl ,L can be assumed diagonal with small error.

To test this hypothesis we will assume that

L,
F

2p
,L11, ~4.10!

and takeSl ,L to be a 232 matrix to include the transitionsL↔L11, and diagonal otherwise. Thi
S-matrix can be calculated for allF satisfying Eq.~4.10! using the results of the previous section
As one would expect, the mixing of angular momentum statesL and L11 is maximum at the
mid-interval valueF/2p5L11/2. Instead of reproducing this calculation it is more instructive
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set F/2p5L11/2, where the Hankel functions assume a simple form, and show thatDL and
DL11 have the same energy dependence as in the centrally symmetric case; only the nu
coefficients are modified. In the case of higher order transitionsuDLu.1 involving larger matrices,
we find that the relevant mixing parameters~see below! compared to theuDLu51 case are smalle
by factors of orderkuDLu21.

The calculation begins by noting that the potential in Eq.~2.9! is not time-reversal invarian
for a fixed magnetic field. Therefore,Sl ,L is not symmetric. We choose the parameterization

S5S e2idL cos 2e ieia sin 2e

ieib sin 2e e2idL11 cos 2e D , ~4.11!

where we expect the mixing parametere to vanish ask→0. Unitarity requiresa andb to be real
with

a1b52~dL1dL11!. ~4.12!

The definition of the phase shifts in Eq.~4.11! is that of Stappet al.,19 generalized here to includ
T-violation. Referring to Eq.~3.42! we can rewrite Eq.~4.11! as

S5S e2i ~DL2F/4! cos 2e iei ~DL1DL111l! sin 2e

iei ~DL1DL112l! sin 2e e2i ~DL111F/4! cos 2e
D , ~4.13!

which introduces a realT-violating parameterl. From Eqs.~3.8! and ~4.12! with F/2p5L
11/2, the matching of the interior and exterior log-derivatives atr 5a gives

gL,L5
kaH1/2

~2 !81e2iDLkaH1/2
~1 !8 cos 2e

H1/2
~2 !1e2iDLH1/2

~1 ! cos 2e
, ~4.14!

with gL11,L115gL(DL→DL11). Also

gL,L115gL1 l ,L5kaH1/2
~1 !8/H1/2

~1 ! . ~4.15!

Recalling that

H1/2
~6 !~z!57 iA 2

pz
e6 iz, ~4.16!

Eq. ~4.13! becomes,

gL,L5
~ 1

21 ika!e22ika1~2 1
21 ika!e2iDL cos 2e

e2iDL cos 2e2e22ika , ~4.17!

gL,L1152 1
21 iz. ~4.18!

To get the interior values ofg l ,L , refer to Eq.~3.35!. Then

gL,L5F/2p2L1
&paLbL21,L

cL,L
, ~k,a!

1O~ka!2. ~4.19!

From Eqs.~3.6! and ~3.36!–~3.38!,

cL,L
, ~k,a!/&p5 f L,L~a!1O~ka!2, ~4.20!

so that
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gL,L5F/2p2L1
aLbL21,L

f L,L~a!
~11O~ka!2!1O~ka!2. ~4.21!

Referring back to Eqs.~3.23!, ~3.37!, and~3.40! it follows that, forL.0,

f L,L~a!5
1

2paL E
0

a

drr LE
0

2p

duei ~12L !ue2f~r ,u! (
m50

`

bm,Lr meimu. ~4.22!

In the sum overbm,L in Eq. ~4.22!, only bL21,L and bL,L are nonzero as seen from Eqs.~3.8!,
~3.35!, and~4.13! since mixing is only assumed forL↔L11. Then Eqs.~4.21! and ~4.22! give

gL,L5
1

2
12pa2LS E

0

a

drr 2L21E
0

2p

due2f~r ,u!1
bL,L

bL21,L
E

0

a

drr 2LE
0

2p

dueiue2f~r ,u!D 21

3~11O~ka!2!1O~ka!2. ~4.23!

Repeating the above steps we find

gL11,L1152
1

2
12pa2L12S E

0

a

drr 2L11E
0

2p

due2f~r ,u!1
bL21,L11

bL,L11

3E
0

a

drr 2LE
0

2p

due2 iue2f~r ,u!D 21

~11O~ka!2!1O~ka!2. ~4.24!

We now calculate the ratios ofbl ,L in Eqs.~4.23! and ~4.24!. From Eq.~3.35!,

&palbl 21,L5~g l ,L1L2F/2p!c l ,L
. ~k,a!~11O~ka!2!. ~4.25!

Then Eqs.~4.25!, ~4.15!, and~4.18! give

bL,L /bL21,L5
ikcL11,L

. ~k,a!

~gL,L2 1
2!cL,L

. ~k,a!
~11O~ka!2!. ~4.26!

Equations~3.8!, ~4.13!, and~4.16! give

cL11,L
. ~k,a!/cL,L

. ~k,a!5
ei ~DL1DL112l2pL ! sin 2e

e22ika2e2iDL cos 2e
. ~4.27!

Likewise,

bL21,L11 /bL,L115
~ ika21!acL,L11

. ~k,a!

~gL11,L111 1
2!cL11,L11

. ~k,a!
~11O~ka!2!, ~4.28!

cL,L11
. ~k,a!/cL11,L11

. ~k,a!5
ei ~DL1DL111l2pL sin 2e

e2iDL11 cos 2e2e22ika . ~4.29!

Then solving Eqs.~4.23!, ~4.26!, and ~4.27! for gL,L and matching the result withgL,L in Eq.
~4.17! gives

~11 ika!e22ikaI L1~ ika21!I Le2iDL cos 2e

5e2iDL cos 2e2e22ika1 ikaJLei ~DL1DL112l2pL ! sin 2e1O~~ka!3,~ka!2DL!,

~4.30!
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where

I L5~2pa2L!21E
0

a

drr 2L21E
0

2p

due2f~r ,u!,

~4.31!

JL5~2pa2L11!21E
0

a

drr 2LE
0

2p

dueiue2f~r ,u!.

Similarly, Eqs.~4.24!, ~4.28!, ~4.29!, and~4.17! with DL replaced withDL11 give

ika~e22ika1e2iDL11 cos 2e!I L115e2iDL11 cos 2e2e22ika~12 ika!JL
!ei ~DL1DL111l2pL ! sin 2e

1O~~ka!3,~ka!2DL11!. ~4.32!

Equations~4.30! and ~4.32! can be solved forDL , DL11 , e andl with

l5l01l1ka1O~~ka!2!. ~4.33!

The results are

DL52ka/~11I L!1O~~ka!3!,

DL115@ I L11212~cosl0 Im JL2sinl0 ReJL!2/~11I L!#ka1O~~ka!3!,

05cosl0 ReJL1sinl0 Im JL , ~4.34!

l150,

e5~21!L~sinl0 ReJL2cosl0 Im JL!ka/~11I L!1O~~ka!2!.

Note thatDL andDL11 have the same energy dependence as in the centrally symmetric case
by Eq. ~4.2!.

V. CHIRAL LIMIT

We concluded in Sec. IV that general magnetic fields only modify the numerical coeffic
of the energy-dependent part of the phase shifts calculated in the centrally symmetric case
also noted that the off-diagonal elements ofSl ,L fall off as powers ofk. Therefore, inhomogeneou
fields of the type considered here do not result in special cases that are not already include
central symmetry limit. We therefore confine our discussion to central symmetry from here o
proceed to show that Eq.~1.1! is true by demonstrating that the integral in Eq.~2.12! satisfies

lim
m2→0

m2E
0

`

dte2tm2E d2r E
0

M

dkke2k2tE
0

2p

dQ~ uc~1 !~k,r !u22uc0~k,r !u2!50. ~5.1!

This integral can be divided between contributions from the regionsr ,a andr .a. We may set
a5R.

A. rËa

By inspection, the termuc0u2 in Eq. ~5.1! gives a contribution proportional to ln@(M2

1m2)/m2# and so vanishes in the indicated limit. This leaves an integral over partial wave
tained by substituting Eq.~3.1! in Eq. ~5.1!. We can obtain a bound onc l(k,r ) for all l from Eqs.
~3.26! and ~3.52! with bl 21 ,g2 l fixed by Eqs.~3.46!–~3.47! and ~3.49!, respectively. These
equations and the estimates
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r 2 le2f~r !E
0

r

dxx2l 21e2f~x!<
al

2l
e3aiBi /&p,

~5.2!

E
0

a

dxx2l 21e2f~x!>a2le2aiBi /Ap/2l ,

following from Eq. ~3.56! give

uc l~k,r !u<
e5aiBi /&p

&G~W11!
S ka

2 D W

~11O~k2!!, ~5.3!

where theO(k2) term symbolizes a remainder term that vanishes ask→0 for all l and that falls
off as k2/u l u for u l u@F/2p. Recall thatW5u l 2F/2pu. From Eq.~5.3!,

E
0

`

dte2tm2E
0

a

drr E
0

M

dkke2k2t(
l

uc l~k,r !u2<
a2

8
e5aiBi /Ap lnS M21m2

m2 D(
l

~Ma/2!2W

G2~W11!
,

~5.4!

for Ma!1, and hence the indicated limit in Eq.~5.1! is satisfied. The special case whenl
5F/2p51,2,... is dealt with by Eqs.~3.48! and~4.7!. For these special values ofl the integrals on
the left-hand side of Eq.~5.4! contribute a term of orderM2a2@(M21m2)ln2(Ma)#21, which
vanishes in the limit indicated in Eq.~5.1!

B. r Ìa

Equations~3.1!, ~3.43!, and the expansion~3.5! substituted into Eq.~5.1! result in the follow-
ing integral:

I 5E
0

`

dte2tm2E
a

`

drr E
0

M

dkke2k2t(
l

@JW
2 ~kr !2Jl

2~kr !

1JW~kr !YW~kr !sin 2D l1~YW
2 ~kr !2JW

2 ~kr !!sin2 D l #. ~5.5!

Consider the sum over the first two Bessel functions. Entries 5.7.11.6 of Ref. 20 and 6.53
Ref. 21 give the result

(
l

@JW
2 ~kr !2Jl

2~kr !#51/2Jf
2~kr !11/2J12 f

2 ~kr !2E
kr

`

dtt21@ f Jf
2~ t !1~12 f !J12 f

2 ~ t !#

[g~kr !, ~5.6!

whereF/2p5N1 f , 0, f ,1 andN50,1,... . Next Eq.~5.6! has to be integrated overk following
Eq. ~5.5!. For this we apply the weighted mean value theorem:22 Assumef andg are continuous
on @a,b#. If f never changes sign on@a,b# then, for somec in @a,b#,

E
a

b

f ~k!g~k!dk5g~c!E
a

b

f ~k!dk.

Let f 5ke2k2t and g equal the right-hand side of Eq.~5.6!. Then for somem satisfying 0,m
<M ,

E
0

M

dkke2k2t(
l

~JW
2 2Jl

2!5~12e2M2t!g~mr !/2t. ~5.7!
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The valuem50 is excluded since the energy integral is manifestlyr-dependent. Thet-integral in
Eq. ~5.5! can be done immediately, resulting in an overall factor of ln@(M21m2)/m2#.

It remains to be shown that the integration overr is bounded. The definition ofg in Eq. ~5.6!
for large argument gives

g~z!52
sinp f cos 2z

pz
1

~ f 22 f 2 1
4!sinp f sin 2z

pz2 1OS cos 2z,sin 2z

z3 D . ~5.8!

Substitution of Eq.~5.8! into Eq. ~5.7! and performing ther-integral in Eq.~5.5! results in

E
0

`

dte2tm2
lim

L→`
E

a

L

drr E
0

M

dkke2k2t(
l

@JW
2 2Jl

2#

5 lnS M21m2

m2 D lim
L→`

F2
sinp f

4pm2 sin 2mL1convergent asL→` G . ~5.9!

The leading term, although oscillating, is bounded and that is all that is required to satisfy the
indicated in Eq.~5.1!. For the special case whenF/2p51,2,..., the sum in Eq.~5.6! is zero.

Next we consider theJWYW terms in Eq.~5.5!. SinceJW
2 (kz)1YW

2 (kz) is a decreasing func
tion of z for any value ofW,23 then for r>a,

YW
2 ~kr !<JW

2 ~ka!1YW
2 ~ka!. ~5.10!

It follows that

U(
l

JW~kr !YW~kr !sin~2D l !U<(
l

usin~2D l !u@11YW
2 ~ka!#1/2, ~5.11!

where we useduJW(z)u<1 for W>0. From Eq.~4.2! together with Eqs.~4.5!, ~4.6!, and ~3.56!
one obtains for alll andF/2pÞ1,2,...

uD l u<p~eaiBi /Ap11!
~ka/2!2W

G~W!G~W11!
~11O~k2!!, ~5.12!

where theO(k2) terms fall off for largeulu at least like 1/u l u. Sinceka!1 and

YW~ka!;2
1

p
G~W!~ka/2!2W,

every term in the series on the left-hand side of Eq.~5.11! is bounded by a constant

23/2~eaiBi /Ap11!
~Ma/2!W

G~W11!
,

for all r .a and 0<k<M . It is, therefore, a uniformly convergent series of continuous functi
of k and can be integrated term by term. Applying the weighted mean value theorem aga
obtain

E
0

`

dte2tm2
lim

L→`
E

a

L

drr E
0

M

dkk(
l

JW~kr !YW~kr !sin 2D l~k!

5
1

2
lnS M21m2

m2 D lim
L→`

E
a

L

drr(
l

JW~mr !YW~mr !sin 2D l~m!, ~5.13!
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for somem in the interval 0,m<M . For u l u@F/2p, JW(mr )YW(mr );2(pu l u)21 which, to-
gether with Eq.~5.12!, implies each term in the series on the right-hand side of Eq.~5.13! is
dominated by a constant whosel-dependence is (ma/2)2u l u/(u l ! u)2 for all r .a. For all finite L
.a it is a uniformly convergent series of continuous functions ofr that can be integrated term b
term. From entry 5.11.10 of Ref. 23,

E
a

L

drrJW~mr !YW~mr !5 1
4L

2@2JW~mL !YW~mL !2JW21~mL !YW11~mL !

2JW11~mL !YW21~mL !#2~L→a!

[hl~L !2hl~a!. ~5.14!

There remains limL→` ( lhl(L)sin 2Dl(m). For u l u@F/2p,

hl~L !5
u l u

pm2 1OS 1

u l u D , ~5.15!

which, together with Eq.~5.12!, implies hl(L)sin 2Dl(m) is dominated by a term whos
l-dependence is (ma/2)2u l u/@(u l u21)!#2 for all finite L and ma!1. Therefore the series
( lhl(L)sin 2Dl is uniformly and absolutely convergent for all finite values ofL.a. But it does not
necessarily converge to a function continuous at the pointL5` sincehl(L) is not continuous at
L5`. In fact, for fixedl andmL@1,

hl~L !52
sin~2mL2pW!

2pm2 1OS 1

L D . ~5.16!

The remedy is now clear. Consider instead the two series

(
l

Fhl~L !1
sin~2mL2pW!

2pm2 Gsin 2D l2
1

2pm2 (
l

sin~2D l !sin~2mL2pW!.

Now the limit L→` and the sum can be interchanged in the first series, giving zero. The se
series is bounded for allL.a, and so the limit in Eq.~5.1! is true for theJWYW terms.

The special caseF/2p51,2,... requires Eq.~4.7! when l 5F/2p. This results in a term
J0(kr)Y0(kr)/ ln(ka), which is continuous fork on @0,M #. Therefore the weighted mean valu
theorem may be applied again to thek-integral, resulting in an overall factor of ln@(M2

1m2)/m2#. There remains an integration overrJ0(mr )Y0(mr ) betweena andL, giving an oscil-
lating but bounded term sin(2mL) asL→`. Again, Eq.~5.1! is satisfied for this special term.

Finally, consider the last two terms in Eq.~5.5!. Note that

uYW
2 ~kr !2JW

2 ~kr !u<YW
2 ~ka!1JW

2 ~ka!, ~5.17!

for r>a sinceJW
2 (z)1YW

2 (z) is a decreasing function ofz.23 Hence, forka!1, 0<k<M ,

uYW
2 ~kr !2JW

2 ~kr !usin2 D l<~eaiBi /Ap11!2
~Ma/2!2W

G2~W11!
~11O~~Ma!2,~Ma!2W!!, ~5.18!

so that the sum overl of the terms on the left-hand side of Eq.~5.18! converges uniformly for all
r>a, 0<k<M . As it is also a sum of continuous functions ofk for 0<k<M it can be integrated
term by term overk. Application of the weighted mean value theorem gives
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E
0

`

dte2tm2
lim

L→`
E

a

L

drr E
0

M

dkk(
l

@YW
2 ~kr !2JW

2 ~kr !#sin2 D l~k!

5
1

2
lnS M21m2

m2 D lim
L→`

E
a

L

drr(
l

@YW
2 ~mr !2JW

2 ~mr !#sin2 D l~m!, ~5.19!

for somem in the interval 0,m<M . For u l u@F/2p each term in the series Eq.~5.19! is domi-
nated by ar-independent constant whosel-dependence is (ma/2)2u l u/(u l ! u)2, for r>a and ma
!1. It is therefore a uniformly convergent series of continuous functions for all finiteL.a that
can be integrated term by term. Entry 5.54.2 in Ref. 21 gives

E
a

L

drr @YW
2 ~mr !2JW

2 ~mr !#5
L2

2
@YW

2 ~mL !2YW21~mL !YW11~mL !2JW
2 ~mL !

1JW11~mL !JW21~mL !#2~L→a![kl~L !2kl~a!. ~5.20!

Next, consider limL→` ( lkl(L)sin2 Dl(m). For mL@1,

kl~L !5
cos~2mL2pW!

pm2 1OS 1

L D , ~5.21!

and hence consider the series

(
l

Fkl~L !2
cos~2mL2pW!

pm2 Gsin2 D l1
1

pm2 (
l

cos~2mL2pW!sin2 D l .

The first series is a sum of continuous functions for allL.a. It is also a uniformly and absolutely
convergent series forL.a, first becauseuJWu<1 and, second, the combinationsYW

2 sin2 Dl and
YW21YW11 sin2 Dl are dominated by L-independent constants whosel-dependence is
(ma2)2u l u/(u l u!) 2 for u l u@F/2p. Hence the limitL→` and the sum can be interchanged in t
first series, giving zero. The second series is bounded for allL.a, verifying Eq.~5.1! for the last
series of terms in Eq.~5.5!.

The special caseF/2p51,2... is dealt with in the same way as in the case ofJWYW sinDl and
gives a contribution that vanishes in the limit indicated in Eq.~5.1!. Thus Eq.~1.1! is demon-
strated.
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Generic Bell correlation between arbitrary local algebras
in quantum field theory
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Department of Philosophy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
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We prove that for any two commuting von Neumann algebras of infinite type, the
open set of Bell correlated states for the two algebras is norm dense. We then apply
this result to algebraic quantum field theory—where all local algebras are of infinite
type—in order to show that for any two spacelike separated regions, there is an
open dense set of field states that dictate Bell correlations between the regions. We
also show that any vector state cyclic for one of a pair of commuting non-Abelian
von Neumann algebras is entangled~i.e., nonseparable! across the algebras—from
which it follows that every field state with bounded energy is entangled across any
two spacelike separated regions. ©2000 American Institute of Physics.
@S0022-2488~00!00504-1#

I. INTRODUCTION

There are many senses in which the phenomenon of Bell correlation, originally disco
and investigated in the context of elementary nonrelativistic quantum mechanics,1,2 is ‘‘generic’’
in quantum field theory models. For example, it has been shown that every pair of comm
non-Abelian von Neumann algebras possessessomenormal state with maximal Bell correlation3

~see also Ref. 4!. Moreover, in most standard quantum field models,all normal states are maxi
mally Bell correlated across spacelike separated tangent wedges or double cones.3,5–8 Finally,
every bounded energy state in quantum field theory sustains maximal Einstein–Podolsky–
correlations across arbitrary spacelike separated regions,9 and has a form of nonlocality that ma
be evinced by means of the state’s violation of a conditional Bell inequality.10 ~We also note that
the study of Bell correlation in quantum field theory has recently borne fruit in the introductio
a new algebraic invariant for an inclusion of von Neumann algebras.7,8!

Despite these numerous results, it remains an open question whether ‘‘most’’ states wil
some or other Bell correlation relative toarbitrary spacelike separated regions. Our main purp
in this note is to verify that this is so: for any two spacelike separated regions, there is an
dense set of states which have Bell correlations across those two regions.

In Sec. II we prove the general result that for any pair of mutually commuting von Neum
algebras of infinite type, a dense set of vectors will induce states which are Bell correlated
these two algebras. In Sec. III we introduce, following Ref. 11, a notion of ‘‘nonseparability
states that generalizes, to mixed states, the idea of an entangled pure state vector. We th
that for a pair of non-Abelian von Neumann algebras, a vector cyclic for either algebra indu
nonseparable state. Finally, in Sec. IV we apply these results to algebraic quantum field th

II. BELL CORRELATION BETWEEN INFINITE VON NEUMANN ALGEBRAS

Let H be a Hilbert space, letS denote the set of unit vectors inH, and letB~H! denote the set
of bounded linear operators onH. We will use the same notation for a projection inB~H! and for
the subspace inH onto which it projects. IfxPS, we letvx denote the state ofB~H! induced by
x. Let R1 ,R2 be von Neumann algebras acting onH such thatR1#R28 , and letR12 denote the
von Neumann algebra$R1øR2%9 generated byR1 andR2 . Following Ref. 7, we set

T12[$ 1
2@A1~B11B2!1A2~B12B2!#:Ai5Ai* PR1 ,Bi5Bi* PR2 ,2I<Ai ,Bi<I %. ~1!
17110022-2488/2000/41(4)/1711/7/$17.00 © 2000 American Institute of Physics
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Elements ofT12 are calledBell operatorsfor R12. For a given statev of R12, let

b~v![sup$uv~R!u:RPT12%. ~2!

If v5vxuR12
for somexPS, we writeb(x) to abbreviateb(vxuR12

). From~2!, it follows that the
mapv→b(v) is norm continuous from the state space ofR12 into @1,&# ~Ref. 7, Lemma 2.1!.
Since the mapx→vxuR12

is continuous fromS, in the vector norm topology, into the~normal!
state space ofR12, in the norm topology, it also follows thatx→b(x) is continuous fromS into
@1,&#. If b~v!.1, we say thatv violates a Bell inequality, or isBell correlated. In this context,
Bell’s theorem1 is the statement that a local hidden variable model of the correlations thv
dictates betweenR1 andR2 is only possible ifb~v!51. Note that the set of statesv on R12 that
violate a Bell inequality is open~in the norm topology! and, similarly, the set of vectorsxPS that
induce Bell correlated states onR12 is open~in the vector norm topology!.

We assume now that the pairR1 ,R2 satisfies theSchlieder property. That is, if APR1 and
BPR2 such thatAB50, then eitherA50 or B50. Let VPR1 and WPR2 be nonzero partial
isometries. Suppose that the initial spaceV* V of V is orthogonal to the final spaceVV* of V or,
equivalently, thatV250. Similarly, supposeW250. Consider the projections

E5V* V1VV* , F5W* W1WW* . ~3!

We show that there is a Bell operatorR̃ for R12 such thatR̃y5&y for some unit vectory
PEF, andR̃(I 2E)(I 2F)5(I 2E)(I 2F).

Let

A15V1V* , B15W1W* ,

A25 i ~V* 2V!, B25 i ~W* 2W!, ~4!

A35@V, V* #, B35@W, W* #.

Note that Ai
25E, the Ai are self-adjoint contractions inR1 , AiE5EAi5Ai , and @A1 , A2#

52iA3 . Similarly, Bi
25F, the Bi are self-adjoint contractions inR2 , BiF5FBi5Bi , and

@B1 , B2#52iB3 . If we let R denote the Bell operator constructed fromAi ,Bi , a straightforward
calculation shows that~cf. Ref. 4!

R25EF2 1
4@A1 , A2#@B1 , B2#5EF1A3B3 . ~5!

Note thatP[VV* Þ0 is the spectral projection forA3 corresponding to eigenvalue 1, andQ
[WW* Þ0 is the spectral projection forB3 corresponding to eigenvalue 1. SinceR1 ,R2 satisfy
the Schlieder property, there is a unit vectoryPPQ, and thusA3B3y5y. Since PQ,EF, it
follows from ~5! thatR2y52y. Thus, we may assume without loss of generality thatRy5&y. @If
RyÞ&y, then interchangeB1 ,B2 and replaceA1 with 2A1 . Note that the resulting Bell operato
R852R andR8y05&y0 , wherey0[(&y2Ry)/i&y2RyiPEF.#

Now for i 51,2, let Ãi5(I 2E)1Ai and B̃i5(I 2F)1Bi . It is easy to see thatÃi
25I and

B̃i
25I , so theÃi and B̃i are again self-adjoint contractions inR1 andR2 , respectively. If we let

R̃ denote the corresponding Bell operator, a straightforward calculation shows that

R̃5~ I 2E!~ I 2F !1~ I 2E!B11A1~ I 2F !1R. ~6!

Since the& eigenvectory for R lies in EF, we have R̃y5Ry5&y. Furthermore, since
Ai(I 2E)50 andBi(I 2F)50, we haveR̃(I 2E)(I 2F)5(I 2E)(I 2F) as required.

A special case of the following result, whereR1 andR2 are typeI ` factors, was proved in
Ref. 12, Prop. 1. Recall thatR is said to beof infinite typejust in case the identityI is equivalent,
in R, to one of its proper subprojections.
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Proposition 1: LetR1 ,R2 be von Neumann algebras acting onH such thatR1#R28 , and
R1 ,R2 satisfy the Schlieder property. IfR1 ,R2 are of infinite type, then there is an open den
subset of vectors inS which induce Bell correlated states forR12.

Note that the hypotheses of this proposition are invariant under isomorphisms ofR12. Thus,
by making use of the universal normal representation ofR12 ~Ref. 13, p. 458!, in which all normal
states are vector states, it follows that the set of states Bell correlated forR1 ,R2 is norm dense in
the normal state space ofR12.

Proof of the proposition:SinceR1 is infinite, there is a properly infinite projectionPPR1

~Ref. 13, Prop. 6.3.7!. SinceP is properly infinite, we may apply the halving lemma~Ref. 13,
Lemma 6.3.3! repeatedly to obtain a countably infinite family$Pn% of mutually orthogonal pro-
jections such thatPn;Pn11 for all n and (n51

` Pn5P. ~Halve P as P11F1 ; then halveF1 as
P21F2 , and so on. Now replaceP1 by P2(n52

` Pn ; cf. Ref. 13, Lemma 6.3.4.! Let P0[I
2P. For eachnPN, let Vn denote the partial isometry with initial spaceVn* Vn5Pn and final
spaceVnVn* 5Pn11 . By the same reasoning, there is a countable family$Qn% of mutually or-
thogonal projections inR2 and partial isometriesWn with Wn* Wn5Qn andWnWn* 5Qn11 . For
eachnPN, let

A1,n5Vn111Vn11* , B1,n5Wn111Wn11* ,
~7!

A2,n5 i ~Vn11* 2Vn11!, B2,n5 i ~Wn11* 2Wn11!,

and let

En5Vn11* Vn111Vn11Vn11* 5Pn111Pn12 ,
~8!

Fn5Wn11* Wn111Wn11Wn11* 5Qn111Qn12 .

Define Ãi ,n and B̃i ,n as in the discussion preceding this proposition, letR̃n be the corresponding
Bell operator, and let the unit vectorynPEnFn be the& eigenvector forR̃n .

Now, let x be any unit vector inH. Since ( i 50
n Pi<I 2En , we have (I 2En)→I in the

strong-operator topology. Similarly, (I 2Fn)→I in the strong-operator topology. Therefore, if w
let

xn[
~ I 2En!~ I 2Fn!x

i~ I 2En!~ I 2Fn!xi , ~9!

we have

x5 lim
n

~ I 2En!~ I 2Fn!x5 lim
n

xn . ~10!

Note that the inner product^xn ,yn&50, and thus

zn[~12n21!1/2xn1n21/2yn ~11!

is a unit vector for alln. Since limn zn5x, it suffices to observe that eachzn is Bell correlated for
R12. Recall thatR̃n(I 2En)(I 2Fn)5(I 2En)(I 2Fn), and thusR̃nxn5xn . A simple calculation
then reveals that

b~zn!>^R̃nzn ,zn&5~12n21!1n21&.1. ~12!

h
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III. CYCLIC VECTORS AND ENTANGLED STATES

Proposition 1 establishes that Bell correlation is generic for commuting pairs of infinite
Neumann algebras. However, we are given no information about the character of the corre
of particular states. We provide a partial remedy for this is the next proposition, where we
that any vector cyclic forR1 ~or for R2! induces a state that is not classically correlated; i.e.,
‘‘nonseparable.’’

Again, letR1 ,R2 be von Neumann algebras onH such thatR1#R28 . Recall that a statev of
R12 is called anormal product statejust in casev is normal, and there are statesv1 of R1 andv2

of R2 such that

v~AB!5v1~A!v2~B!, ~13!

for all APR1 ,BPR2 . Werner,11 in dealing with the case ofB(Cn) ^ B(Cn), defined a density
operatorD to beclassically correlated—the termseparableis now more commonly used—just i
caseD can be approximated in trace norm by convex combinations of density operators of
D1^ D2 . Although Werner’s definition of nonseparable states directly generalizes the tradi
notion of pure entangled states, he showed that a nonseparable mixed state need not viola
inequality; thus, Bell correlation is, in general, a sufficient, though not necessary, condition
state’s being nonseparable. On the other hand, it has since been shown that nonseparab
often possess more subtle forms of nonlocality, which may be indicated by measurement
general than the single ideal measurements which can indicate Bell correlation.14 ~See Refs. 12
and 15 for further discussion.!

In terms of the linear functional representation of states, Werner’s separable states are t
the norm closed convex hull of the product states ofB(Cn) ^ B(Cn). However, in the case of the
more general setup—i.e.,R1#R28 , whereR1 ,R2 are arbitrary von Neumann algebras onH—the
choice of topology on the normal state space ofR12 will yield, in general, different definitions of
separability. Moreover, it has been argued that norm convergence of a sequence of sta
never be verified in the laboratory, and, as a result, the appropriate notion of physical appro
tion is given by the~weaker! weak-* topology.16,17 And the weak-* and norm topologies do no
generally coincideevenon the normal state space.18

For the next proposition, then, we will suppose that the separable states ofR12 are those
normal states in the weak-* closed convex hull of the normal product states. Note thatb~v!51 if
v is a product state, and sinceb is a convex function on the state space,b~v!51 if v is a convex
combination of product states~Ref. 7, Lemma 2.1!. Furthermore, sinceb is lower semicontinuous
in the weak-* topology~Ref. 7, Lemma 2.1!, b~v!51 for any separable state. Conversely, any B
correlated state must be nonseparable.

We now introduce some notation that will aid us in the proof of our result. For a statev of the
von Neumann algebraR and an operatorAPR, define the statevA on R by

vA~X![
v~A* XA!

v~A* A!
, ~14!

if v(A* A)Þ0, and letvA5v otherwise. Suppose now thatv(A* A)Þ0 and v is a convex
combination of states:

v5(
i 51

n

l iv i . ~15!

Then, lettingl i
A[v(A* A)21v i(A* A)l i ,vA is again a convex combination

vA5(
i 51

n

l i
Av i

A . ~16!
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Moreover, it is not difficult to see that the mapv→vA is weak-* continuous at any pointr such
that r(A* A)Þ0. Indeed, letO15N(rA:X1 ,...,Xn ,e) be a weak-* neighborhood ofrA. Then,
taking O25N(r:A* A,A* X1A,...,A* XnA,d) andvPO2 , we have

ur~A* XiA!2v~A* XiA!u,d, ~17!

for i 51,...,n, and

ur~A* A!2v~A* A!u,d. ~18!

By choosingd,r(A* A)Þ0, we also havev(A* A)Þ0, and thus

urA~Xi !2vA~Xi !u,O~d!<e, ~19!

for an appropriate choice ofd. That is,vAPO1 for all vPO2 andv→vA is weak-* continuous
at r.

Specializing to the case whereR1#R28 , andR125$R1øR2%9, it is clear from the above tha
for any normal product statev of R12 and forAPR1 , vA is again a normal product state. Th
same is true ifv is a convex combination of normal product states, or the weak-* limit of such
combinations. We summarize the results of this discussion in the following lemma:

Lemma: For any separable statev of R12 and any APR1 , vA is again separable.
Proposition 2: LetR1 ,R2 be non-Abelian von Neumann algebras such thatR1#R28 . If x is

cyclic for R1 , thenvx is nonseparable acrossR12.
Proof: From Ref. 7, Lemma 2.1, there is a normal stater of R12 such thatb~r!5&. But since

all normal states are in the~norm! closed convex hull of vector states~Ref. 13, Thm 7.1.12!, and
since b is norm continuous and convex, there is a vectorvPS such thatb(v).1. By the
continuity of b ~on S!, there is an open neighborhoodO of v in S such thatb(y).1 for all y
PO. Sincex is cyclic forR1 , there is anAPR1 such thatAxPO. Thus,b(Ax).1, which entails
thatvAx5(vx)

A is a nonseparable state forR12. This, by the preceding lemma, entails thatvx is
nonseparable. h

Note that ifR1 has at least one cyclic vectorxPS, thenR1 has a dense set of cyclic vecto
in S.19 Since each of the corresponding vector states is nonseparable acrossR12, Proposition 2
shows that ifR1 has a cyclic vector, then the~open! set of vectors inducing nonseparable sta
acrossR12 is dense inS. On the other hand, since the existence of a cyclic vector forR1 is not
invariant under isomorphisms ofR12, Proposition 2 does not entail that ifR1 has a cyclic vector,
then there is a norm dense set of nonseparable states in the entire normal state space ofR12 ~cf. the
analogous discussion preceding the proof of Proposition 1!. Indeed, if we letR15B(C2) ^ I ,R2

5I ^ B(C2), then any entangled state vector is cyclic forR1 ; but, the set of nonseparable states
B(C2) ^ B(C2) is not norm dense.15,20However, if in addition toR1 or R2 having a cyclic vector,
R12 has a separating vector~as is often the case in quantum field theory!, then all normal states o
R12 are vector states~Ref. 13, Thm. 7.2.3!, and it follows that the nonseparable stateswill be norm
dense in the entire normal state space ofR12.

IV. APPLICATIONS TO ALGEBRAIC QUANTUM FIELD THEORY

Let ~M, g! be a relativistic space–time and letU be a unitalC* -algebra. The basic mathemat
cal object of algebraic quantum field theory~see Refs. 17, 21 and 22! is an association betwee
precompact open subsetsO of M and C* -subalgebrasU(O) of U. @We assume that eachU(O)
contains the identityI of U.# The motivation for this association is the idea thatU(O) represents
observables that can be measured in the regionO. With this in mind, one assumes the following

~1! Isotony: If O1#O2 , thenU(O1)#U(O2).
~2! Microcausality:U(O8)#U(O)8.

HereO8 denotes the interior of the set of all points ofM that are spacelike to every point inO.
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In the case where~M, g! is Minkowski space–time, it is assumed in addition that there
faithful representationx→ax of the translation group ofM in the group of automorphisms ofU
such that

~3! Translation covariance:ax„U(O)…5U(O1x).
~4! Weak additivity:For anyO#M , U is the smallestC* -algebra containing

øxPMU~O1x!.

The class of physically relevant representations ofU is decided by further desiderata suc
as—in the case of Minkowski space–time—a unitary representation of the group of trans
automorphisms which satisfies the spectrum condition. Relative to a fixed representationp, we let
Rp(O) denote the von Neumann algebrap„U(O)…9 on the representation spaceHp . In what
follows, we consider only nontrivial representations~i.e., dimHp.1!, and we letSp denote the set
of unit vectors inHp .

Proposition 3: Let$U(O)% be a net of local algebras over Minkowski space–time. Letp be
any representation in the local quasiequivalence class of some irreducible vacuum represe
(e.g., superselection sectors in the sense of Doplicher–Haag–Roberts23 or
Buchholz–Fredenhagen24). If O1 ,O2 are any two open subsets of M such that O1#O28 , then the
set of vectors inducing Bell correlated states forRp(O1),Rp(O2) is open and dense inSp .

Proof: Let O3 ,O4 be precompact open subsets ofM such thatO3#O1 , O4#O2 , and such
thatO31N#O48 for some neighborhoodN of the origin. In an irreducible vacuum representati
f, local algebras are of infinite type~Ref. 25, Prop. 1.3.9!, and sinceO31N#O48 , the Schlieder
property holds forRf(O3),Rf(O4).26 If p is any representation in the local quasiequivalen
class off, these properties hold forRp(O3),Rp(O4) as well. Thus, we may apply Proposition
to conclude that the set of vectors inducing Bell correlated states forRp(O3),Rp(O4) is dense in
Sp . Finally, note that any state Bell correlated forRp(O3),Rp(O4) is Bell correlated for
Rp(O1),Rp(O2). h

Proposition 4: Let (M, g) be a globally hyperbolic space–time, let$U(O)% be the net of local
observable algebras associated with the free Klein–Gordon field,22 and letp be the GNS repre-
sentation of some quasifree Hadamard state.27 If O1 ,O2 are any two open subsets of M such th
O1#O28 , then the set of vectors inducing Bell correlated states forRp(O1),Rp(O2) is open and
dense inSp .

Proof: The regular diamonds~in the sense of Ref. 28! form a basis for the topology onM.

Thus, we may choose regular diamondsO3 ,O4 such thatŌ3#O1 andŌ4#O2 . The nonfiniteness
of the local algebrasRp(O3),Rp(O4) is established in Ref. 28, Thm. 3.6.g, and the split prope
for these algebras is established in Ref. 28, Thm. 3.6.d. Since the split property enta
Schlieder property, it follows from Proposition 1 that the set of vectors inducing Bell corre
states forRp(O3),Rp(O4) @and thereby Bell correlated forRp(O1),Rp(O2)# is dense inSp .h

There are many physically interesting states, such as the Minkowski vacuum itself,
which Propositions 3 and 4 are silent. However, Reeh–Schlieder-type theorems entail tha
of these physically interesting states are induced by vectors which are cyclic for local alg
and thus it follows from Proposition 2 that these states are nonseparable across any sp
separated pair of local algebras. In particular, although there is an upper bound on th
correlation of the Minkowski vacuum~in models with a mass gap! that decreases exponential
with spacelike separation~Ref. 7, Prop. 3.2!, the vacuum state remains nonseparable~in our sense!
at all distances. On the other hand, since nonseparability is only anecessarycondition for Bell
correlation, none of our results decide the question of whether the vacuum state always
someBell correlation across arbitrary spacelike separated regions.
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We introduce and develop a systematic theory ofd8-sphere interactions formally
given by the HamiltonianH $R%5HD1Sm51

N ãmd8(uxI u2Rm); ãmPR,xI PR3,
Rm.0,1<m<N with boundary conditions of the second type, as a logical continu-
ation of the work performed@J. Math. Phys.40, 4255 ~1999!#. First, we give the
mathematical definition of the model, self-adjointness of the Hamiltonian, the in-
dicial equation, and the useful scattering elements. Next, we extend the model by
adding a Coulomb potential and provide useful mathematical definitions and cor-
responding stationary scattering elements. ©2000 American Institute of Physics.
@S0022-2488~00!00704-0#

I. INTRODUCTION

Exactly solvable models of sphere interactions in quantum mechanics have shown an
mous progress during the past ten years. An account of the modern techniques of treatin
models is to be found in Ref. 1. Some of these techniques have recently been used by a nu
authors2–17 to perform a systematic study of new exactly solvable models of sphere interactio
nonrelativistic quantum mechanics. Except for the recent works,16–18 this is not the case for the
relativistic quantum mechanics.

In our recent work,2 we introduced and provided a detailed study of thed8-sphere interaction,
formally given by2D1ad8(uxI u2R), xI PR3, R.0, aPR, and ofd8 plus a Coulomb interaction
and finitely manyd8-sphere interactions with support on concentric spheres. For these mode
gave basic properties, the stationary scattering theory and briefly discussed thed8-sphere interac-
tion of the second type. The purpose of the present paper is to extend our analysis to the
istic aspects of scattering theory for finitely manyd8-sphere interactions of the second typ
Besides, the relativisticd8-sphere plus a Coulomb interaction is systematically studied. So,
work stands for a logical continuation of our recent work.2

The paper is organized as follows. In Sec. II, we present the model by giving its pr
mathematical definition. Next, we give the resolvent of the extended Hamiltonian, deduc
generalized wave functions and useful scattering elements. We extend the model in Sec
adding a Coulomb potential and provide the main scattering elements.

II. d8-SPHERE INTERACTIONS SUPPORTED BY CONCENTRIC SPHERES

A. Characterization of the model

Let us consider in relativistic quantum mechanics and in physical three dimensions a n
particle of massM under the influence ofd8-sphere interactions supported by a finite set ofN
concentric spheres of radiiRm ; 1<m<N.

The quantum Hamiltonian describing formally this system then reads

a!Electronic mail: hounkon@syfed.bj.refer.org
17180022-2488/2000/41(4)/1718/17/$17.00 © 2000 American Institute of Physics
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H $R%5HD1 (
m51

N

ãmd8~ uxI u2Rm!, xI PR3, ~2.1!

whereHD is the free Dirac operator;ãmÞ0.
This Hamiltonian acts in the following Hilbert spaceH5L2(R3) ^ C4.

Our first task is to provide a rigourous mathematical definition of the above Hamiltonian. For
we use the method based on self-adjoint extensions of symmetric operators.1 Let us consider the
free Dirac operator16

Ḣ̄ $R%[HD , D~ Ḣ̄ $R%!5$cPH1,2~R3! ^ C4, c~SRm
!50%, ~2.2!

which reads after separation of variables

Ḣ̄ $R%5 %
j 5 1/2

`

%
l 5 j 2 1/2

j 1 1/2

U jl
21h̄̇ j l $R%U jl ^ 1. ~2.3!

Thus, the adjointḢ̄ $R%
! of Ḣ̄ $R% reads

Ḣ̄ $R%
! 5 %

j 5 1/2

`

%
l 5 j 2 1/2

j 1 1/2

U jl
21h̄̇ j l $R%

! U jl ^ 1, ~2.4!

whereU jl is the usual unitary transformation.16 h̄̇ j l $R% ~the quantum radial Hamiltonian,j and l
referring to quantum numbers that characterize the angular momenta!, reads

h̄̇ j l $R%5S Mc2 cS 2
d

dr
1

K jl

r D
cS d

dr
1

K jl

r D 2Mc2
D 5 h̄̇ j l $R%

! , ~2.5!

K jl 5(21) j 2 l 11/2( j 2 1
2), with the domain

D~ h̄̇ j l $R%
! !5$cPL2~~0,̀ !! ^ C2, c,c8PACloc~~0,̀ !\$R%!;

h̄̇ j l $R%cPL2~~0,̀ !! ^ C2%, ~2.6!

1<m<N, $R%ª$R1 ,R2 ,...,RN%.

c is the velocity of the light andACloc(V) denotes the set of locally absolutely continuo
functions onV,R.

The Hilbert space corresponding toḢ̄ j l $R% is

H5 %
j 5~1/2!

`

%
l 5 j 2~1/2!

j 1~1/2!

%
m52 j

j

Hj l m5 %
j 5~1/2!

`

%
l 5 j 2~1/2!

j 1~1/2!

Hj l ^ @V j l m#

5 %
j 5~1/2!

`

%
l 5 j 2~1/2!

j 1~1/2!

U jl
21@L2~~0,̀ !,dr ! ^ C2# ^ @V j l 2 j ,...,V j l j #, ~2.7!

consisting of the set of two-spinorsc5(g
f ). @V j l m(u,w)# is a space spanned by the spheric

spinors,19 m a quantum number characterizing the third component of the total angular mo
tum.
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The boundary conditions of the first type in accordance withãmÞ0 read3

H f j l ~k,Rm1!5 f j l ~k,Rm2![ f j l ~k,Rm!

gjl ~k,Rm1!2gjl ~k,Rm2!52
ãm

c

1

2
@ f j l8 ~k,Rm1!1 f j l8 ~k,Rm2!#1

C1

c
, C1Þ0

, ~2.8!

or

H f j l ~k,Rm1!2 f j l ~k,Rm2!5
b̃m

c

1

2
@gjl8 ~k,Rm1!1gjl8 ~k,Rm2!#1

C2

c
, C2Þ0

gjl ~k,Rm1!5gjl ~k,Rm2![gjl ~k,Rm!
. ~2.9!

The second type boundary conditions are obtained from Eqs.~2.8! and~2.9! by interchangingf and
f 8 ~g andg8!

H f j l8 ~k,Rm1!5 f j l8 ~k,Rm2![ f j l8 ~k,Rm!

gjl8 ~k,Rm1!2gjl8 ~k,Rm2!52
b̃m

c

1

2
@ f j l ~k,Rm1!1 f j l ~k,Rm2!#1Am , AmÞ0

, ~2.10!

or

H f j l8 ~k,Rm1!2 f j l8 ~k,Rm2!5
g̃m

c

1

2
@gjl ~k,Rm1!1gjl ~k,Rm2!#2Bm , BmÞ0

gjl8 ~k,Rm1!5gjl8 ~k,Rm2![gjl8 ~k,Rm!

. ~2.11!

From the above discussions it follows that all self-adjoint extensions of the second type of th
Dirac Hamiltonian supported byN concentric spheres may be fully characterized by the bound
conditions~2.10! and ~2.11! that we refer to as ‘‘separated boundary conditions.’’

B. Indicial equation and self-adjoint extensions

A crucial step in the self-adjoint extension of a given symmetric operator is the comput
of the deficiency indicies for the operator that one has to extend. This requires to solv
following differential equation of which the number of linearly independent solutions specifie
number of the deficiency indices. Thus, the indicial equation

h̄̇ j l $R%
! c5k2c, Im k.0, c5S f

gDPD~ h̄̇ j l $R%
! !, ~2.12!

has 2N linearly independent solutions;~for one sphere, we get two linearly independent solution!.
For the components of the first two-spinor ofc, the solutions result

f j l
~1!~k8,r !5H d

dr
@Gjl

~o!~k8,r !# r 5Rm
F jl

~o!~k8,r !; r ,Rm

0; r .Rm

, ~2.13!

f j l
~2!~k8,r !5H 0; r ,Rm

d

dr
@F jl

~o!~k8,r !# r 5Rm
Gjl

~o!~k8,r !; r .Rm

. ~2.14!

For the components of the second two-spinor, we get
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gjl
~1!~k8,r !5H d

dr
@G̃jl

~o!~k8,r !# r 5Rm
F̃ jl

~o!~k8,r !; r ,Rm

0; r .Rm

, ~2.15!

gjl
~2!~k8,r !5H 0; r ,Rm

d

dr
@ F̃ j l

~o!~k8,r !# r 5Rm
G̃jl

~o!~k8,r !; r .Rm

, ~2.16!

with 1<m<N,

F jl
~o!~k8,r !5S k8

2 D 2K jl 2~1/2!

GS K jl 1
3

2D r 1/2JK jl 1~1/2!~k8r !,

Gjl
~o!~k8,r !52 i

p

2

1

G~K jl 1~3/2!! S k8

2 D K jl 1~1/2!

r 1/2HK jl 1~1/2!
~2! ~k8r !,

~2.17!

F̃ j l
~o!~k8,r !5S k8

2 D 2K jl 1~1/2!

GS K jl 1
1

2D r 1/2JK jl 2~1/2!~k8r !,

G̃jl
~o!~k8,r !52 i

p

2

1

G~K jl 1~1/2!! S k8

2 D K jl 2~1/2!

r 1/2HK jl 2~1/2!
~2! ~k8r !, k825~k42M2c4!/c2.

Let us notice that since the physical constantsk andk8 are connected by the last relation, for
function f depending onk, we can either writef (k) or f (k8).

Jn(z) andHn
(2) are Refs. 19 and 20, respectively, the Bessel function and the Hankel fun

of second type of ordern.

Therefore,h̄̇ j l has deficiency indices (2N,2N) and consequently, all self-adjoint extensions

h̄̇ j l are given by a 4N2-parameter family of self-adjoint operators.21

In this paper, we consider two specialN-parameter familieshjl ,b̃ j l $R% ,hjl ,g̃ j l $R% of self-adjoint

extensions ofh̄̇ j l , obeying the boundary conditions~2.10! and ~2.11!.
~i! The first family is defined by

hjl ,b̃ j l $R%[S Mc2 cS 2
d

dr
1

K jl

r D
cS d

dr
1

K jl

r D 2Mc2
D ,

and its domain reads

D~hjl ,b̃ j l $R%!5$c~r !PL2~~0,̀ !! ^ C2,

f j l PACloc~~0,̀ !\$R%!, f j l8 PACloc~~0,̀ !!,
~2.18!

gjl ,gjl8 PACloc~~0,̀ !\$R%!,

gjl8 ~Rm1!2gjl8 ~Rm2!52
b̃m

c

1

2
@ f j l ~Rm1!1 f j l ~Rm2!#1Am ,

hjl ,b̃ j l $R%cPL2~~0,̀ !! ^ C2%, 1<m<N,

$R%ª$R1,R2, . . . ,RN%.
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~ii ! The second family is defined by

hjl ,g̃ j l $R%[S Mc2 cS 2
d

dr
1

K jl

r D
cS d

dr
1

K jl

r D 2Mc2
D ,

and its domain including the boundary condition~2.11! then reads

D~hjl ,g̃ j l $R%!5$c~r !PL2~~0,̀ !! ^ C2,

gjl PACloc~~0,̀ !\$R%!, gjl8 PACloc~~0,̀ !!,
~2.19!

f j l , f j l8 PACloc~~0,̀ !\$R%!,

f j l8 ~Rm1!2 f j l8 ~Rm2!5
g̃m

c

1

2
@gjl ~Rm1!1gjl ~Rm2!#2Bm ,

hjl ,g̃ j l $R%cPL2~~0,̀ !! ^ C2%, 1<m<N, $R%ª$R1,R2, . . . ,RN%.

Thus, all self-adjoint extensions ofH $R% are given inL2(R3) ^ C4 by

Ḣ̄ b̃$R%5 %
j 5~1/2!

`

%
l 5 j 2~1/2!

j 1~1/2!

U jl
21h̄̇ j l b̃ j l $R%U jl ^ 1, ~2.20!

Ḣ̄ g̃$R%5 %
j 5~1/2!

`

%
l 5 j 2~1/2!

j 1~1/2!

U jl
21h̄̇ j l g̃ j l $R%U jl ^ 1, ~2.21!

for the first and the second family, respectively; that provides the mathematical definitions
formal model~2.1! with D(hjl ,b̃ j l $R%) and D(hjl ,g̃ j l $R%) given by Eqs.~2.18! and ~2.19!, respec-
tively.

C. Scattering theory

The analytical obtention of the wave functions is subjugated to the calculation of the exte
radial Hamiltonian resolvent; this we are going to do immediately, only for the first family s
the same technique can be used for the second family.

1. Scattering theory for the pair „h jl ,b̃ j l ˆR‰
; h jlo …

The resolvent ofhjl ,b̃ j l $R% andH b̃$R% are given by the following Theorem.
Theorem 2.1:
~i! The resolvent ofhjl ,b̃ j l $R% is given by21

~hjl ,b̃ j l $R%2k2!215~hjl 02k2!211 (
m,m851

N

Q j l
mm8~k!~c j l

~m!~2 k̄!,.!c j l
~m8!~D!~k!,

k2Pr~hjl ,b̃ j l $R%!, Im k.0, ~2.22!

r(•) is the resolvent set, with
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Q j l
mm8~k!5

22~ b̃ j l
m/c!

2dmm81~ b̃ j l
m/c!gjl8 ~k,Rm ,Rm8!

S 1 0

0 1
D , dmm85H 0; mÞm8

1; m5m8
,

c j l
~m!~k!5S F jl

~o!~k,r !Gjl
~o!~k,Rm!1F jl

~o!~k,Rm!Gjl
~o!~k,r !

F̃ j l
~o!~k,r !Gjl

~o!~k,Rm!1F jl
~o!~k,Rm!G̃jl

~o!~k,r !
D ,

~2.23!

c j l
~m8!~D!~k!5S F jl

~o!~k,r !Gjl
~o!8~k,Rm8!1F jl

~o!8~k,Rm8!Gjl
~o!~k,r !

F̃ j l
~o!~k,r !Gjl

~o!8~k,Rm8!1F jl
~o!8~k,Rm8!G̃jl

~o!~k,r !
D ,

gjl8 ~k,Rm ,Rm8!5F jl
~o!~k,Rm!Gjl

~o!8~k,Rm8!1Gjl
~o!~k,Rm8!F jl

~o!8~k,Rm!.

~ii ! The resolvent ofH b̃$R% is given by

~H b̃$R%2k2!215~Ho2k2!211 %
j 5~1/2!

`

%
l 5 j 2~1/2!

j 1~1/2!

%
m52 l

1 l H (
m,m851

N

Q j l
mm8~k!

3~ u.u21c j l
~m!~2 k̄! ^ V j l m ,.!u.u21c j l

~m8!~D!~k! ^ V j l mJ , ~2.24!

where we have used the notation

A^ B5S ab

ãb̃D if A5S a
ãD , B5S b

b̃D .

j

From this point, we can say that the necessary mathematical basis is built for a cons
scattering theory.

Let us now define the function

Fj l ,b̃ j l
~k8,r !5S F1~k8,r !

F2~k8,r ! D5S a1F jl
~o!~k8,r !1a2Gjl

~o!~k8,r !

a1F̃ j l
~o!~k8,r !1a2G̃jl

~o!~k8,r !
D , ~2.25!

with

a1511 (
m,m851

N

Km,m8Gjl
~o!8~k8,Rm!, a25 (

m,m851

N

Km,m8F jl
~o!8~k8,Rm!,

Km,m85
22~ b̃ j l

m/c!

2dmm81~ b̃ j l
m/c!gjl8 ~k,Rm ,Rm8!

@F jl
~o!8~k8,Rm!1A1

m#,

A1
m5Gjl

~o!8~k8,Rm!E
0

Rm
@F jl

~o!~k8,r 8!2F̃ j l
~o!~k8,r 8!#F̃ j l

~o!~k8,r 8!dr8

1F jl
~o!8~k8,Rm!E

Rm

`

@Gjl
~o!~k8,r 8!2G̃jl

~o!~k8,r 8!#G̃jl
~o!~k8,r 8!dr8.

By inspection, we show that the functionFj l ,b̃ j l
fulfills the conditions defined byD(hjl ,b̃ j l

)
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5 F28~k,Rm1!2F28~k,Rm2!52
b̃ j l

m

c S 1

2
@F1~k,Rm1!1F1~k,Rm2!#1A1

mD ,

F18~k,Rm1!5F18~k,Rm2!,

hjl ,b̃ j l
Fj l ,b̃ j l

~k,r !5k2Fj l ,b̃ j l
~k,r !, k.0,

~2.26!

and constitutes a set of generalized eigenfunctions associated withhjl ,b̃ j l
; it represents the scat

tering wave function ofhjl ,b̃ j l
. As usual, the corresponding phase shifts may be obtained by ta

the asymptotic behavior of the generalized eigenfunction whenr→`. One has

Fj l ,b̃ j l
~k8,r ! →

k8.0H @C1
2~k8!1C2

2~k8!#1/2sinS k8r 2K jl

p

2
1d j l ,b̃ j l

~k8! D1o~1!

@D1
2~k8!1D2

2~k8!#1/2sinS k8r 2K jl

p

2
1 d̃ j l ,b̃ j l

~k8! D1o~1!
J , ~2.27!

with HC1~k8!5a1Ajl ~k8!2 ia2Bjl ~k8!

C2~k8!5a2Bjl ~k8!
and H D1~k8!52a2B̃j l ~k8!

D2~k8!5a1Ãj l ~k8!2 ia2B̃j l ~k8!
,

so that the phase shifts ofhjl ,b̃ j l $R%
may be expressed as

D j l ,b̃ j l
~k8!5S d j l ,b̃ j l

~k8!52arctan
C2~k8!

C1~k8!

d̃ j l ,b̃ j l
~k8!52arctan

D2~k8!

D1~k8!

D , ~2.28!

where the following notations are used14

Ajl 522K jl k8~2K jl 21!G~2K jl 12!G~K jl 11!21, Bjl 5
1

k8Ajl ~k8!

Ãj l 522K jl 11k8~2K jl !G~2K jl !G~K jl !
21, B̃j l 5

1

k8Ãj l ~k8!
.

The on-shell scattering matrix is given by

S~k8!5S exp@2id j l ,b̃ j l
~k8!#

exp@2i d̃ j l ,b̃ j l
~k8!# D , ~2.29!

and the corresponding effective range then reads

S @~2K jl 11!!! #2k82K jl 11 cotand j l ,b̃ j l
~k8!

@~2K jl 11!!! #2k82K jl 21 cotand̃ j l ,b̃ j l
~k8!D 5S 2a

jl ,b̃ j l

21
1 1

2 r j l ,b̃ j l
k821o~k84!

2ã
j l ,b̃ j l

21
1 1

2 r̃ j l ,b̃ j l
k821o~k84!D . ~2.30!

S ajl ,b̃ j l

ã j l ,b̃ j l
D

and
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S r j l ,b̃ j l

r̃ j l ,b̃ j l
D

are, respectively, the partial wave scattering length and the effective range parameters. Fina
on-shell scattering amplitude associated withH b̃$R% is defined by

Fb̃ j l $R%~k8,v,v8!54p %
j 5~1/2!

`

%
l 5 j 2~1/2!

j 1~1/2!

%
m52 l

1 l S exp~2id j l ,b̃ j l
~k8!!21

2ik8
V~ j l m!1

~v8!V~ j l m!1
~v!

exp~2i d̃ j l ,b̃ j l
~k8!!21

2ik8
V~ j l m!2

~v8!V~ j l m!2
~v!

D ,

~2.31!

V j l m~• !5S V~ j l m!1
~• !

V~ j l m!2
~• !D

v,v8PS2 ~S2 is the unit sphere inR3!.
The partial amplitudeFb̃ j l $R%

(k8) is given by

Fb̃ j l $R%~k8!5S exp~2id j l ,b̃ j l
~k8!!21

2ik8

exp~2i d̃ j l ,b̃ j l
~k8!!21

2ik8

D . ~2.32!

The scattering elements corresponding to the pair (hjl ,g̃ j l $R%
;hjlo) can be given mimicking step

by step the same technique. So, we obtain for the resolvent ofH g̃$R% ,

~H g̃$R%2k2!215~H02k2!211 %
j 5~1/2!

`

%
l 5 j 2~1/2!

j 1~1/2!

%
m52 l

1 l H (
m,m851

N
22~ g̃ j l

m/c!

2dmm81~ g̃ j l
m/c!@ g̃ j l8 ~k,Rm ,Rm8!#

3@ u.u21~ c̃ j l
~m!~2 k̄! ^ V j l m!,.#u.u21c̃ j l

~m8!~D!~k! ^ V j l mJ ,k2Pr~H g̃$R%!,

c̃ j l ~k!5S c̃~ j l !1

c̃~ j l !2

D . ~2.33!

The phase shifts ofhjl ,g̃ j l $R%
read

Q j l ,g̃ j l
~k8!5S u j l ,g̃ j l

~k8!52arctan
C̃2~k8!

C̃1~k8!

ũ j l ,g̃ j l
~k8!52arctan

D̃2~k8!

D̃1~k8!

D . ~2.34!

The on-shell scattering matrix is given by

Z~k8!5S exp@2iu j l ,g̃ j l
~k8!#

exp@2i ũ j l ,g̃ j l
~k8!# D , ~2.35!

and the corresponding effective range then reads
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S @~2K jl 11!!! #2k82K jl 11 cotanu j l ,g̃ j l
~k8!

@~2K jl 11!!! #2k82K jl 21 cotanũ j l ,g̃ j l
~k8!D 5S 2bjl ,g̃ j l

21 1 1
2 r j l ,g̃ j l

k821o~k84!

2b̃ j l ,g̃ j l

21 1 1
2 r̃ j l ,g̃ j l

k821o~k84 D , ~2.36!

and

S bjl ,g̃ j l

b̃ j l ,g̃ j l

D
and

S r j l ,g̃ j l

r̃ j l ,g̃ j l
D ,

are, respectively, the partial wave scattering length and the effective range parameters. Fina
on-shell scattering amplitude associated withH g̃$R% is defined by

Gg̃ j l $R%~k8,v,v8!54p %
j 5~1/2!

`

%
l 5 j 21~1/2!

j 1~1/2!

%
m52 l

1 l S exp~2iu j l ,g̃ j l
~k8!!21

2ik8
V~ j l m!1

~v8!V~ j l m!1
~v!

exp~2i ũ j l ,g̃ j l
~k8!!21

2ik8
V~ j l m!2

~v8!V~ j l m!2
~v!

D ,

~2.37!

where the partial amplitudeGg̃ j l $R%(k8) is given by

Gg̃ j l $R%~k8!5S exp~2iu j l ,g̃ j l
~k8!!21

2ik8

exp~2i ũ j l ,g̃ jL
~k8!!21

2ik8

D , ~2.38!

with H C̃1~k8!5b1Ajl ~k8!2 ib2Bjl ~k8!

C̃2~k8!5b2Bjl ~k8!
and H D̃1~k8!52b2B̃j l ~k8!

D̃2~k8!5b1Ãj l ~k8!2 ib2B̃j l ~k8!
,

and the following notations

b1511 (
m,m851

N

Km,m8
8 G̃jl

~o!8~k8,Rm!, b25 (
m,m851

N

Km,m8
8 F̃ j l

~o!8~k8,Rm!,

Km,m8
8 5

22~g j l
m/c!

2dmm81~ g̃ j l
m/c!g̃ j l8 ~k,Rm ,Rm8!

@ F̃ j l
~o!8~k8,Rm!2B1

m#,

B1
m5G̃jl

~o!8~k8,Rm!E
0

Rm
@ F̃ j l

~o!~k8,r 8!2F jl
~o!~k8,r 8!#F jl

~o!~k8,r 8!dr8

1F̃ j l
~o!8~k8,Rm!E

Rm

`

@G̃jl
~o!~k8,r 8!2Gjl

~o!~k8,r 8!#Gjl
~o!~k8,r 8!dr8,

g̃ j l8 ~k,Rm ,Rm8!5G̃jl
~o!~k,Rm8!F̃ j l

~o!8~k,Rm!1G̃jl
~o!8~k,Rm!F̃ j l

~o!~k,Rm8!.
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Concerning the scattering theory for a one-sphered8-interaction, the main results can b
easily deduced as particular cases of the above results. Namely, the corresponding reso
recovered from Eq.~2.22! putting m5m851, and the wave function and the scattering eleme
follow systematically.

III. RELATIVISTIC d8-SPHERE INTERACTION COUPLED WITH A COULOMB
POTENTIAL

Now we deal with the case of the Dirac–Coulomb Hamiltonian for one sphere formally g
by17

H5HD1
g0

r
1ãd8~r 2R!, ~3.39!

whereHD represents the free Dirac Hamiltonian,g0 anda are nonvanishing physical constants.
the absence of the delta–sphere interaction, this Hamiltonian reduces to that studied in R

The corresponding second type boundary conditions are given by3

g8~k,R1!2g8~k,R2!5
1

2

b̃

c
@ f ~k,R1!1 f ~k,R2!#1A

~3.40!
f 8~k,R1!5 f 8~k,R2![ f 8~k,R!

or

f 8~k,R1!2 f 8~k,R2!5
1

2

g̃

c
@g~k,R1!1g~k,R2!#2B

~3.41!
g8~k,R1!5g8~k,R2![g8~k,R!

where f (k,r ) and g(k,r ) are the components of the wave function;k, b̃, g̃, A, and B are
nonvanishing constants;c is the velocity of the light.

Since the whole analysis can be carried through as in Sec. II after replacing Eq.~2.1! by Eq.
~3.39!, we only sketch some facts and merely provide a collection of relevant formulas.

The closed symmetric operator is now

Hg0
[HD1

g0

r
, D~Hg0

!5$cPH1,2~R3! ^ C4, c~SR!50%. ~3.42!

With respect to the decomposition~2.7!, Hg0
reads

Hg0
5 %

j 5 1/2

`

%
l 5 j 2 1/2

j 1 1/2

U jl
21hjl g0

U jl ^ 1, ~3.43!

wherehjl g0
is the radial quantum Hamiltonian

hjl g0
5S Mc21

g0

r
cS 2

d

dr
1

K jl

r D
cS d

dr
1

K jl

r D 2Mc21
g0

r

D [tg0
, ~3.44!

with the domain
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D~hjl g0
!5$cPL2~~0,̀ !! ^ C2, c,c8PACloc~~0,̀ !\$R%!,

hjl g0
cPL2~~0,̀ !! ^ C2%. ~3.45!

From the equation

hjl g0

! c j l ~k!5k2c j l ~k!, Im k.0, ~3.46!

we can show thathjl g0
has deficiency indicies~2, 2! and the deficiency subspace is spanned

two linearly independent functions19

f ~ j l !5F jl g0

~0! ~k8,r !5C1S g0

2n~K jl 2n!
u12

1

2n
v1D ;r ,R

~3.47!

g~ j l !5Gjl g0

~0! ~k8,r !5C2S g0

2n~K jl 2n!
u22

1

2n
v2D ;r .R,

for the components of the first 2-spinor ofc, and

f ~ j l !5F̃ j l g0

~0! ~k8,r !5C18S 2
1

2n
u11

g0

2n~K jl 2n!
v1D ;r ,R

~3.48!

g~ j l !5G̃jl g0

~0! ~k8,r !5C28S 2
1

2n
u21

g0

2n~K jl 2n!
v2D ;r .R,

for the components of the second 2-spinor ofc. C1 , C2 , C18 , C28 are constants, and

u1~k8,r !5r m11 exp~2 ik8r !1F1S 11m2 i
k2g0

c2k8
;2~m11!;2ik8r D ,

~3.49!

u2~k8,r !5G@2~m11!#21GF S 11m2 i
k2g0

c2k8 D G~2ik8!2m11r m11

3exp~2 ik8r !US 11m2 i
k2g0

c2k8
;2~m11!;2ik8r D ,

v1~k8,r !5r m exp~2 ik8r !1F1S m2 i
k2g0

c2k8
;2m;2ik8r D ,

~3.50!

v2~k8,r !5G~2m!21GS m2 i
k2g0

c2k8 D ~2ik8!2m21r m

3exp~2 ik8r !US m2 i
k2g0

c2k8
;2m;2ik8r D ,

wherem is a parameter,k825(k42M2c4)/c2, n5Ac2K jl
2 2g0

2, 1F1(z) andU(z) are the hyper-
geometric functions of the first and second type, respectively.19,20 Therefore, all self-adjoint ex-
tensions ofhjl g0

are given by a four-parameter family of self-adjoint operators. Taking
account the boundary conditions~3.40! and ~3.41!, two special one-parameter families of se
adjoint extensions have to be considered.

With the boundary condition~3.40!, we can define the first family as follows:
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hjl g0 ,b̃ j l
[S Mc21

g0

r
cS 2

d

dr
1

K jl

r D
cS d

dr
1

K jl

r D 2Mc21
g0

r

D , ~3.51!

D~hjl g0,b̃ j l
!5$c~r !PL2~~0,̀ !! ^ C2;

f j l PACloc~~0,̀ !\$R%!, f j l8 PACloc~~0,̀ !!;

gjl ,gjl8 PACloc~~0,̀ !\$R%!;

gjl8 ~k,R1!2gjl8 ~k,R2!52
1

2

b̃ j l

c
@ f j l ~k,R1!1 f j l ~k,R2!#1A;

hjl g0 ,b̃ j l
cPL2~~0,̀ !! ^ C2, AÞ0, 2`,b̃ j l ,1`%. ~3.52!

The caseb̃ j l 50 coincides with the Coulomb Hamiltonianhjl g0
for fixed angular momentum~jl !.

The caseb̃ j l 5` leads to the Coulomb Hamiltonian with a Neumann boundary condition onSR .
The operatorH b̃ given in L2(R3) ^ C4 by

H b̃5 %
j 5~1/2!

`

%
l 5 j 2~1/2!

j 1~1/2!

U jl
21hjl g0 ,b̃ j l

U jl ^ 1, b̃5$b̃ j l , j 2 1
2< l< j 1 1

2,
1
2< j ,`%, ~3.53!

provides a mathematical definition of the formal expression~3.39!.
The second family can be easily defined, mimicking step by step the same technique. W

hjl g0 ,g̃ j l
[S Mc21

g0

r
cS 2

d

dr
1

K jl

r D
cS d

dr
1

K jl

r D 2Mc21
g0

r

D , ~3.54!

D~hjl g0 ,g̃ j l
!5$c~r !PL2~~0,̀ !! ^ C2, gjl ,gjl8 PACloc~~0,̀ !\$R%!;

f j l , f j l8 PACloc~~0,̀ !\$R%!, gjl8 ~k,R1!5gjl8 ~k,R2!;

f j l8 ~k,R1!2 f j l8 ~k,R2!5
g̃ j l

c

1

2
@gjl ~k,R1!1gjl ~k,R2!#2B;

hjl g0 ,g̃ j l
cPL2~~0,̀ !! ^ C2;

BÞ0;2`,g̃ j l ,1`%. ~3.55!

Finally let us provide the scattering theory for the pair (hjl b̃ j l
,hjl ,0), using the following

Theorem.
Theorem 3.1:
If b̃ j l Þ0, then the following holds.

~i! The resolvent ofhjl g0,b̃ j l
is given by
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~hjl g0 ,b̃ j l
2k2!215~hjl g0,02k2!21122

b̃ j l

cD S 1 0

0 1D ~c j l g0
~2 k̄!,.!c j l g0

~D! ~k!, ~3.56!

k2Pr~hjl g0 ,b̃ j l
!,Im k.0,

D52@F jl g0

~0!8~k8,R!G̃jl g0

~0!8~k8,R!2F̃ j l g0

~0!8~k8,R!Gjl g0

~0!8~k8,R!#

1
b̃ j l

c
@F jl g0

~0!8~k8,R!Gjl g0

~0! ~k8,R!1F jl g0

~0! ~k8,R!Gjl g0

~0!8~k8,R!#. ~3.57!

Gjl g0
5(hjl g0,0

2k2)21,Im k.0, is the free resolvent kernel

Gjl g0
~k8,r ,r 8!5F g̃ j l g0

~ I ! ~k8,r ,r 8! g̃ j l g0

~ I ! ~k8,r ,r 8!

g̃ j l g0

~ II ! ~k8,r ,r 8! g̃ j l g0

~ II ! ~k8,r ,r 8!
G , ~3.58!

where

g̃ j l g0

~ I ! ~k8,r ,r 8!5H Gjl g0

~0! ~k8,r !F jl g0

~0! ~k8,r 8!;r 8,r

F jl g0

~0! ~k8,r !Gjl g0

~0! ~k8,r 8!;r 8.r
~3.59!

and

g̃ j l 0
~ II !~k8,r ,r 8!5H G̃jl g0

~0! ~k8,r !F̃ j l g0

~0! ~k8,r 8!;r 8,r

F̃ j l g0

~0! ~k8,r !G̃jl g0

~0! ~k8,r 8!;r 8.r

. ~3.60!

F jl g0

(0) , F̃ j l g0

(0) , Gjl g0

(0) , and G̃jl g0

(0) are defined in Eqs.~3.47! and ~3.48!, with C15C25C185C28

51. c j l g0
(k8,r ) andc j l g0

(D) (k8,r ) are given by

c j l g0
~k8,r !5S F jl g0

~0! ~k8,r !Gjl g0

~0! ~k8,R!1F jl g0

~0! ~k8,R!Gjl g0

~0! ~k8,r !

F̃ j l g0

~0! ~k8,r !Gjl g0

~0! ~k8,R!1F jl g0

~0! ~k8,R!G̃jl g0

~0! ~k8,r !
D , ~3.61!

c j l g0

~D! ~k8,r !5S F jl g0

~0! ~k8,r !Gjl g0

~0!8~k8,R!1F jl g0

~0!8~k8,R!Gjl g0

~0! ~k8,r !

F̃ j l g0

~0! ~k8,r !Gjl g0

~0!8~k8,R!1F jl g0

~0! ~k8,R!G̃jl g0

~0! ~k8,r !
D , ~3.62!

~ii ! The resolvent ofH b̃ is given by

~H b̃2k2!215~H02k2!211 %
j 5~1/2!

`

%
l 5 j 2~1/2!

j 1~1/2!

%
m52 l

1 l

22
b̃ j l

cD

3@ u.u21~c j l g0
~2 k̄! ^ V j lm!,.#u.u21c j l g0

~D! ~k! ^ V j lm , ~3.63!

m stands for the third component of the total angular momentum.
Let us define the function j
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Fj l g0 ,b̃ j l
~k8,r !5S F1~k8,r !

F2~k8,r ! D5S a1F jl g0

~0! ~k8,r !1a2Gjl g0

~0! ~k8,r !

a1F̃ j l g0

~0! ~k8,r !1a2G̃jl g0

~0! ~k8,r !D , ~3.64!

with a1511KGjl g0

~0!8~k8,R!, a25KF jl g0

~0!8~k8,R!,

K5
22~ b̃ j l /c!@F jl g0

~0!8~k8,R!1A1#

D
. ~3.65!

A straightforward computations shows that the functionFj l g0,b̃ j l
(k,r ) satisfies the following con-

ditions:

F28~k,R1!2F28~k,R2!52
b̃ j l

c S 1

2
@F1~k,R1!1F1~k,R2!#2A1D ,

F18~k,R1!5F18~k,R2!, ~3.66!

hjl g0b̃ j l
~k,r !Fj l g0 ,b̃ j l

~k,r !5k2Fj l g0 ,b̃ j l
~k,r !, k>0,

A15Gjl g0

~0! ~k8,R!E
0

R

[ F̃ j l g0

~0! ~k8,r 8!2F jl g0

~0! ~k8,r 8)#F̃ j l g0

~0! ~k8,r 8!dr8

1F jl g0

~0! ~k8,R!E
R

`

@G̃jl g0

~0! ~k8,r 8!2Gjl g0

~0! ~k8,r 8)#G̃jl g0

~0! ~k8,r 8!dr8. ~3.67!

Therefore, $Fj l g0 ,b̃ j l
(k8,r )% constitutes a set of generalized eigenfunctions associated

hjl g0 ,b̃ j l
, that represents the scattering wave functions ofhjl g0 ,b̃ j l

. The phase shifts ofhjl g0 ,b̃ j l

may be obtained by taking the asymptotic behavior ofFj l g0 ,b̃ j l
(k8,r ) as r→`

Fj l g0 ,b̃ j l
~k8,r !

→
k8.0H @C1

2~k8!1C2
2~k8!#1/2sinS k8r 2

k82g0

c2k
ln~2k8r !2m

p

2
1dm,b̃ j l

~k8! D1o~1!

@D1
2~k8!1D2

2~k8!#1/2sinS k8r 2
k82g0

c2k
ln~2k8r !2m

p

2
1 d̃m,b̃ j l

~k8! D1o~1!
J .

~3.68!

The phase shifts are given by

D j l g0 ,b̃ j l
~k8!5S d j l g0b̃ j l

~k8!

d̃ j l g0b̃ j l
~k8!D , ~3.69!

where the following notations have been adopted

dm,b̃ j l
5d j l g0 ,b̃ j l

~k8!52arctan
C2~k8!

C1~k8!
, d̃m,b̃ j l

5 d̃ j l g0 ,b̃ j l
~k8!52arctan

D2~k8!

D1~k8!
, ~3.70!

with the coefficients defined as

C1~k8!5~a1A2 ia2B!cosdm
~0!2~a1A82 ia2B8!sindm8

~0!1a2B sindm
~0!1a2B8 cosdm8

~0! ,
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C2~k8!5~a1A2 ia2B!sindm
~0!1~a1A82 ia2B8!cosdm8

~0!1a2B cosdm
~0!2a2B8 sindm8

~0! ,

D1~k8!5~a1Ã2 ia2B̃!cosd̃m
~0!2~a1Ã82 ia2B̃8!sind̃m8

~0!1a2B̃ sind̃m
~0!1a2B̃8 cosd̃m8

~0! ,

D2~k8!5~a1Ã2 ia2B̃!sind̃m
~0!1~a1Ã82 ia2B̃8!cosd̃m8

~0!1a2B̃ cosd̃m
~0!2a2B̃8 sind̃m8

~0! .

According to Ref. 15, we can define the constants

A5
g0

2n~K jl 2n!
Am,g0

5
g0

2n~K jl 2n!
22mk82~m11!G~2m12!UGS m111

ik82g0

c2k D U21

epg0/4k8,

A85
21

2n
Am,g0

8 5
21

2n
22~m21!k82mG~2m!UGS m1

ik82g0

c2k D U21

epg0/4k8,

B5
g0

2n~K jl 2n!

1

k8Am,g0

, B85
21

2n

1

k8Am,g0
8

,

Ã5
21

2n
Ãm,g0

5
21

2n
22mk82~m11!G~2m12!UGS m111

ik82g0

c2k D U21

epg0/4k8,

Ã85
g0

2n~2nKjl 2n!
Ãm,g0

8 5
g0

2n~2nKjl 2n!
22~m21!k82mG~2m!UGS m1

ik82g0

c2k D U21

epg0/4k8,

B̃5
21

2n

1

k8Ãm,g0

, B̃85
g0

2n~2nKjl 2n!

1

k8Am,g0
8

,

dm
~0!5argGS m111

ik82g0

c2k D5 d̃m
~0! , dm8

~0!5argGS m1
ik82g0

c2k D5 d̃m8
~0! .

We can decompose~3.69!

d j l g0 ,b̃ j l
~k8!5S d j l g0 ,b̃ j l

~k8!

d̃ j l g0,b̃ j l
~k8!

D 5S d
j l g0 ,b̃ j l

~0!
~k8!1d

j l g0 ,b̃ j l

~c!
~k8!

d̃
j l g0 ,b̃ j l

~0!
~k8!1d

j l g0 ,b̃ j l

~c!
~k8!

D , ~3.71!

whered
j l g0 ,b̃ j l

(0)
(k8) and d

j l g0 ,b̃ j l

(c)
(k8) are the phase shifts ofhjl g0 ,b̃ j l

and the modified Coulomb

phase shifts, respectively. The on-shell scattering matrix is given by

( ~k8!5S exp@2id j l g0 ,b̃ j l
~k8!#

exp@2i d̃ j l g0 ,b̃ j l
~k8!#

D . ~3.72!

The on-shell scattering amplitude associated withH b̃ is defined by
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Fj l g0 ,b̃ j l
~k8,v,v8!

54p %
j 5~1/2!

`

%
l 5 j 2~1/2!

j 1~1/2!

%
m52 j

j S S exp~2id j l g0 ,b̃ j l
~k8!!21

2ik8
DV~ j lm !1

~v8!V~ j lm !1
~V!

S exp~2i d̃ j l g0 ,b̃ j l
~k8!!21

2ik8
D V~ j lm !2

~v8!V~ j lm !2
~V!

D ,

~3.73!

where the partial amplitudeFj l g0 ,b j l
(k8) is given by

Fj l g0 ,b̃ j l
~k8!5S exp~2id j l g0,b̃ j l

~k8!!21

2ik8

exp~2i d̄ j l g0 ,b̃ j l
~k8!!21

2ik8

D . ~3.74!

The scattering theory for the pair (hjl g0 ,g̃ j l
;hjl 0) can also be provided, following step by ste

the development given above. So, we merely give the main scattering elements. The phas
read

Q j l g0 ,g̃ j l
~k8!5S u j l g0 ,g̃ j l

~k8!

ũ j l g0 ,g̃ j l
~k8!

D , 5 um,g̃ j l
5u j l g0 ,g̃ j l

~k8!52arctan
C̃2~k8!

C̃1~k8!

ũm,g̃ j l
5 ũ j l g0 ,g̃ j l

~k8!52arctan
D̃2~k8!

D̃1~k8!

, ~3.75!

with the following coefficients:

C̃1~k8!5~b1A2 ib2B!cosdm
~0!2~b1A82 ib2B8!sindm8

~0!1b2B sindm
~0!1b2B8 cosdm8

~0! ,

C̃2~k8!5~b1A2 ib2B!sindm
~0!1~b1A82 ib2B8!cosdm8

~0!1b2B cosdm
~0!2b2B8 sindm8

~0! ,

D̃1~k8!5~b1Ã2 ib2B̃!cosd̃m
~0!2~b1Ã82 ib2B̃8!sind̃m8

~0!1b2B̃ sind̃m
~0!1b2B̃8 cosd̃m8

~0! ,

D̃2~k8!5~b1Ã2 ib2B̃!sind̃m
~0!1~b1Ã82 ib2B̃8!cosd̃m8

~0!1b2B̃ cosd̃m
~0!2b2B̃8 sind̃m8

~0! .

The on-shell scattering matrix is given by

Z~k8!5S exp@2iu j l g0 ,g̃ j l
~k8!#

exp@2i ũ j l g0 ,g̃ j l
~k8!# D , ~3.76!

and the on-shell scattering amplitude associated withH g̃ is defined by
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Gj l g0 ,g̃ j l
~k8,v,v8!

54p %
j 5~1/2!

`

%
l 5 j 2~1/2!

j 1~1/2!

%
m52 j

j S exp~2iu j l g0 ,g̃ j l
~k8!!21

2ik8
V~ j lm !1

~v8!V~ j lm !1
~v!

exp~2i ũ j l g0 ,g̃ j l
~k8!!21

2ik8
V~ j lm !2

~v8!V~ j lm !2
~v!

D .

~3.77!

Finally, the partial amplitudeGj l g0 ,g̃ j l
(k8) is given by

Gj l g0 ,g̃ j l
~k8!5S exp~2iu j l g0 ,g̃ j l

~k8!!21

2ik8

exp~2i ũ j l g0 ,g̃ j l
~k8!!21

2ik8

D . ~3.78!

ACKNOWLEDGMENT

This work is supported by the UNB/CUD-CIUF-IMSP/Belgian cooperation.

1S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden,Solvable Models in Quantum Mechanics, Texts and Mo
graphs in Physics~Springer, Berlin, 1988!.

2M. N. Hounkonnou, M. Hounkpe, and J. Shabani, J. Math. Phys.40, 4255~1999!.
3M. N. Hounkonnou, M. Hounkpe, and J. Shabani, J. Math. Phys.38, 2832~1997!.
4J.-P. Antoine, F. Gesztesy, and J. Shabani, J. Phys. A20, 3687~1987!.
5J. Shabani, J. Math. Phys.29, 660 ~1988!.
6J. Shabani, Nuovo Cimento Soc. Ital. Fis., B101, 429 ~1988!.
7L. Dabrowski and J. Shabani, J. Math. Phys.29, 2241~1988!.
8J. Shabani, Ann. Soc. Sci. BruxellesT105 ~3!, 105 ~1991!.
9T. Ikebe and S. Shimada, J. Math. Kyoto Univ.1-31, 219 ~1991!.

10T. Ikebe, J. Anal. Math.59, 39 ~1992!.
11J-P. Antoine, P. Exner, P. S˘eba, and J. Shabani, Ann. Phys.~Paris! 233, 1 ~1994!.
12J-P. Antoine, P. Exner, P. S˘eba, and J. Shabani, Operator Theory: Advances and Applications70, 79 ~1994!.
13P. S̆eba, Rep. Math. Phys.24, 111 ~1986!.
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For the model formally expressed asH $R%5HD1(m51
N amd(uxu2Rm); xPR3,am

PR, Rm.0, we give a precise mathematical definition, provide basic properties
and main scattering elements. ©2000 American Institute of Physics.
@S0022-2488~00!00804-5#

I. INTRODUCTION

There has been a lot of interest in studying Hamiltonians perturbed by singular intera
such thatd or d8 on a sphere. However, no long ago, most of studies were focused o
nonrelativistic case1–15 and the only exceptions seem to be the two papers of Dittrichet al.16,17

This gap has already been filled with our previous paper in the field, in which we studied in
the physical properties of the Dirac and Dirac–Coulomb Hamiltonians with ad-sphere interaction
supported by one sphere.18 In this work, we generalize the study to interactions with support
concentric spheres.

The paper is organized as follows. First, we present the model by giving its precise
ematical definition. Next, we give the resolvent of the extended Hamiltonian, deduce the g
alized wave functions and useful scattering elements.

II. d-SPHERE INTERACTION SUPPORTED BY CONCENTRIC SPHERES

A. Characterization of the model

Let us consider in relativistic quantum mechanics and in physical three dimensions a n
particle of mass M under the influence of ad-sphere interaction supported by a finite set of
concentric spheres of radiiRm ; 1<m<N.

The quantum Hamiltonian describing formally this system then reads

H $R%5HD1 (
m51

N

amd~ uxu2Rm!, xPR3, ~2.1!

whereHD is the free Dirac operator;amÞ0. This Hamiltonian acts in the following Hilbert spac
H5L2(R3) ^ C4.

Our first task is to provide a rigourous mathematical definition of the above Hamiltonian
that, we use the method based on self-adjoint extensions of symmetric operators.19

Let us consider the free Dirac operator16

Ḣ̄ $R%[HD , D~ Ḣ̄ !5$cPH1,2~R3! ^ C4, c~SRm
!50%, ~2.2!

which reads after separation of variables

a!Electronic mail: hounkon@syfed.bj.refer.org
17350022-2488/2000/41(4)/1735/10/$17.00 © 2000 American Institute of Physics
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Ḣ̄ $R%5 %
j 5(1/2)

`

%
l 5 j 2(1/2)

j 1(1/2)

U jl
21h̄̇ j l $R%U jl ^ 1. ~2.3!

Thus, the adjointḢ̄ $R%
! of Ḣ̄ $R% reads as

Ḣ̄ $R%
! 5 %

j 5(1/2)

`

%
l 5 j 2(1/2)

j 1(1/2)

U jl
21h̄̇ j l $R%

! U jl ^ 1, ~2.4!

whereU jl is the usual unitary transformation;16 h̄̇ j l $R% the quantum radial Hamiltonian reads,j and
l referring to quantum numbers that characterize the angular momenta

h̄̇ j l $R%5S Mc2 cS 2
d

dr
1

K jl

r D
cS d

dr
1

K jl

r D 2Mc2
D 5 h̄̇ j l $R%

! ,

~2.5!
K jl 5~21! j 2 l 1(1/2)~ j 2 1

2! ,

with the domain

D~ h̄̇ j l $R%
! !5$cPL2~~0,̀ !! ^ C2, c,c8PACloc~~0,̀ !\$R%!,

h̄̇ j l $R%cPL2~~0,̀ !! ^ C2%, ~2.6!

1<m<N, $R%ª$R1 ,R2 ,...,RN% .

ACloc(V) denotes the set of locally absolutely continuous functions onV,R andc is the velocity
of the light.

The Hilbert space corresponding toḢ̄ j l $R% is

H5 %
j 5(1/2)

`

%
l 5 j 2(1/2)

j 1(1/2)

%
m52 j

j

Hj l m5 %
j 5(1/2)

`

%
l 5 j 2(1/2)

j 1(1/2)

Hj l ^ @V j l m#

5 %
j 5(1/2)

`

%
l 5 j 2(1/2)

j 1(1/2)

U jl
21@L2~~0,̀ !,dr ! ^ C2# ^ @V j l 2 j ,...,V j l j #, ~2.7!

consisting of the set of two-spinors

c5S f
gD .

@V j l m# is a space spanned by the spherical spinors,20 m a quantum number characterizing the thi
component of the total angular momentum.

To get the boundary conditions which characterize the extensions of the free Dirac op
let us consider the radial Dirac equation for ad-sphere interaction supported by one sphere
radiusRm expressed ashjl $am%c5k2c. That explicitly writes

Mc2f j l ~k,r !2cg8~k,r !1
c

r
K jl gjl ~k,r !1amd~r 2Rm!5k2f j l ~k,r !, ~2.8!

c f jl8 ~k,r !
c

r
K jl f j l ~k,r !2Mc2gjl ~k,r !1amd~r 2Rm!5k2gjl ~k,r !. ~2.9!

Taking into account Eq.~2.8!, we assume thatf j l (k,r ) is continuous atr 5Rm , i.e.,
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f j l ~k,Rm1!5 f j l ~k,Rm2![ f j l ~k,Rm!. ~2.10!

This asumption implies thatgjl (k,r ) is discontinuous atr 5Rm , since otherwise the operato
hjl ,a j l

could coincide with the free radial Hamiltonianhjlo .

Therefore,*Rm2e
Rm1e

@gjl (k,r )/r #drÞ0. such that by integrating Eq.~2.8! from Rm2e to Rm

1e, and taking the limit whene→01, we get the following boundary conditions known as t
boundary first type conditions1

f j l ~k,Rm1!5 f j l ~k,Rm2![ f j l ~k,Rm!,

gjl ~k,Rm1!2gjl ~k,Rm2!5
a

c
f jl ~k,Rm!1

C1

c
, C1Þ0. ~2.11!

From Eq.~2.9!, we get by a similar discussion the following boundary conditions assuming
gjl (k,r ) and f j l (k,r ) are, respectively, continuous and discontinuous atr 5Rm , that expressed a

f j l ~k,Rm1!2 f j l ~k,Rm2!52
b

c
gjl ~k,Rm!1

C2

c
, C2Þ0

gjl ~k,Rm1!5gjl ~k,Rm2![gjl ~k,Rm!. ~2.12!

Remark that there will be no interaction if we assume f and g both continuous atr 5Rm .
Now, we get finally the boundary second type conditions by interchanging the roles off and

f 8 (g andg8) in Eqs.~2.11! and ~2.12! as1

f j l8 ~k,Rm1!5 f j l8 ~k,Rm2![ f j l8 ~k,Rm!

gjl8 ~k,Rm1!2gjl8 ~k,Rm2!5
b

c
f jl8 ~k,Rm!1

A

c
, AÞ0 ~2.13!

and

f j l8 ~k,Rm1!2 f j l8 ~k,Rm2!52
g

c
gjl8 ~k,Rm!1

B

c
, BÞ0

gjl8 ~k,Rm1!5gjl8 ~k,Rm2![gjl8 ~k,Rm!. ~2.14!

From the above discussions it follows that all self-adjoint extensions of the second type of th
Dirac Hamiltonian supported byN concentric spheres may be fully characterized by the bound
conditions~2.13! and ~2.14! that we refer to as ‘‘separated boundary conditions.’’

B. Indicial equation and self-adjoint extensions

A crucial step in the self-adjoint extension of a given symmetric operator is the comput
of the deficiency indices for the operator that one has to extend. This requires to solv
following differential equation of which the number of linearly independent solutions specifie
number of the deficiency indices. Thus, the indicial equation

h̄̇ j l $R%
! c5k2c, Im k.0, c5S f

gD PD~ h̄̇ j l $R%
! !, ~2.15!

has 2N linearly independent solutions;~for one sphere, we get two linearly independent solution!.
For the components of the first two-spinor ofc, the solutions read
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f j l
(1)~k8,r !5H d

dr
@Gjl

(o)~k8,r !# r 5Rm
F jl

(o)~k8,r !, r ,Rm

0, r .Rm

, ~2.16!

f j l
(2)~k8,r !5H 0, r ,Rm

d

dr
@F jl

(o)~k8,r !# r 5Rm
Gjl

(o)~k8,r !, r .Rm

. ~2.17!

For the components of the second two-spinor, we get

gjl
(1)~k8,r !5H d

dr
@G̃jl

(o)~k8,r !# r 5Rm
F̃ jl

(o)~k8,r !, r ,Rm

0, r .Rm

, ~2.18!

gjl
(2)~k8,r !5H 0, r,Rm

d

dr
@F̃jl

(o)~k8,r!#r5Rm
G̃jl

(o)~k8,r!, r.Rm

, ~2.19!

with 1<m<N,

F jl
(o)~k8,r !5S k8

2 D 2K jl 2(1/2)

GS K jl 1
3

2D r ~1/2!JK jl 1(1/2)~k8r !,

Gjl
(o)~k8,r !52 i

p

2

1

G~K jl 1~3/2!! S k8

2 D K jl 1(1/2)

r ~1/2!HK jl 1(1/2)
(2) ~k8r !,

~2.20!

F̃ j l
(o)~k8,r !5S k8

2 D 2K jl 1(1/2)

GS K jl 1
1

2D r ~1/2!JK jl 2(1/2)~k8r !,

G̃jl
(o)~k8,r !52 i

p

2

1

G~K jl 1~1/2!! S k8

2 D K jl 2(1/2)

r ~1/2!HK jl 2(1/2)
(2) ~k8r !, k825~k42M2c4!/c2.

Let us notice that since the physical constantsk andk8 are connected by the last relation, for
function f depending onk, we can either writef (k) or f (k8).

Jn(z) andHn
(2) are,20,21 respectively, the Bessel function and the Hankel function of sec

type of ordern.

Therefore,h̄̇ j l has deficiency indices (2N,2N) and consequently, all self-adjoint extensions

h̄̇ j l are given by a 4N2-parameter family of self-adjoint operators.22

In this paper, we consider two specialN-parameter familieshjl ,b j l $R% ; hjl ,g j l $R% of self-adjoint

extensions ofh̄̇ j l , following the boundary conditions~2.13! and ~21.4!.
„i… The first family is defined by

hjl ,b j l $R%[S Mc2 cS 2
d

dr
1

K jl

r D
cS d

dr
1

K jl

r D 2Mc2
D ,

and its domain reads

D~hjl ,b j l $R
%)5$c~r !PL2~~0,̀ !! ^ C2; f j l8 PACloc~~0,̀ !!,
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gjl8 PACloc~~0,̀ !\$R%!;

gjl8 ~Rm1!2gjl8 ~Rm2!5
bm

c
f jl8 ~Rm!1Am;

hjl ,b j l $R%cPL2~~0,̀ !! ^ C2%. ~2.21!

„ii … The second family is defined by

hjl ,g j l $R%[S Mc2 cS 2
d

dr
1

K jl

r D
cS d

dr
1

K jl

r D 2Mc2
D ,

and its domain including the boundary condition~2.14! then reads

D~hjl ,b j l $R
%)5$c~r !PL2~~0,̀ !! ^ C2, gjl8 PACloc~~0,̀ !!;

f j l8 PACloc~~0,̀ !\$R%!;
~2.22!

f j l8 ~Rm1!2 f j l8 ~Rm2!52
gm

c
gjl8 ~Rm!1Bm;

hjl ,g j l $R%cPL2~~0,̀ !! ^ C2%.

Thus, all self-adjoint extensions ofH $R% are given inL2(R3) ^ C4 by

Ḣ̄b$R%5 %
j 5(1/2)

`

%
l 5 j 2(1/2)

j 1(1/2)

U jl
21h̄̇ j l b j l $R%U jl ^ 1, ~2.23!

Ḣ̄g$R%5 %
j 5(1/2)

`

%
l 5 j 2(1/2)

j 1(1/2)

U jl
21h̄̇ j l g j l $R%U jl ^ 1, ~2.24!

for the first and the second family, respectively; that provides the mathematical definitions
formal model~2.21! with D(hjl ,b j l $R%) andD(hjl ,g j l $R%) given by ~2.21! and ~2.22!, respectively.

C. Scattering theory

The analytical obtention of the wave functions is subjugated to the calculation of the exte
radial Hamiltonian resolvent; this we are going to do immediately, only for the first family s
the same technique can be used for the second family.

1. Scattering theory for the pair „h jl ,b j l ˆR‰
; h jlo …

The resolvent ofhjl ,b j l $R% andHb$R% are given by the following theorem:
Theorem:
~i! The resolvent ofhjl ,b j l $R% is given by22

~hjl ,b j l $R%2k2!215~hjlo2k2!211 (
m,m851

N

k j l
mm8~k!~c j l

(m)~2 k̄!,.!c j l
(m8)~k!,

k2Pr~hjl ,b j l $R%! , Im k.0, ~2.25!
                                                                                                                



equent

1740 J. Math. Phys., Vol. 41, No. 4, April 2000 M. N. Hounkonnou and G. Y. H. Avossevou

                    
with

k j l
mm8~k!5

~b j l
m/c!

dmm82~b j l
m/c!g̃ j l

(I )8~k,Rm ,Rm8!
S 1 0

0 1D , dmm85H 0; mÞm8,

1; m5m8,

c j l
(m)~k!5S F jl

(o)~k,r !Gjl
(o)8~k,Rm!1F jl

(o)8~k,Rm!Gjl
(o)~k,r !

F̃ j l
(o)~k,r !Gjl

(o)8~k,Rm!1F jl
(o)8~k,Rm!G̃jl

(o)~k,r !
D ,

g̃ j l
(I )8~k,Rm ,Rm8!5F jl

(o)8~k,Rm!Gjl
(o)8~k,Rm8 !.

~2.26!

~ii ! The resolvent ofHb$R% is given by

~Hb$R%2k2)215~Ho2k2!211 %
j 5(1/2)

`

%
l 5 j 2(1/2)

j 1(1/2)

%
m52 l

1 l F (
m,m851

N

k j l
mm8~k!3~ u.u21c j l

(m)

3~2 k̄! ^ V j l m ,.!u.u21c j l
(m8)~k! ^ V j l mG , ~2.27!

where we have used the notation

A^ B5S ab

ãb̃
D , if A5S a

ã
D , B5S b

b̃
D .

From this point, we can say that the necessary mathematical basis is built for a cons
scattering theory.

Let us now define the function

Fj l ,b j l
~k8,r !5S F1~k8,r !

F2~k8,r !
D 5S a1F jl

(o)~k8,r !1a2Gjl
(o)~k8,r !

a1F̃ j l
(o)~k8,r !1a2G̃jl

(o)~k8,r !
D , ~2.28!

with

a1511 (
m,m851

N

Km,m8Gjl
(o)8~k8,Rm!, a25 (

m,m851

N

Km,m8F jl
(o)8~k8,Rm!,

Km,m85
~b j l

m/c!

dmm82~b j l
m/c!g̃ j l

(I )8~k,Rm ,Rm8!
@F jl

(o)8~k8,Rm!1A1
m#,

A1
m5Gjl

(o)8~k8,Rm!E
0

Rm
@ F̃ j l

(o)~k8,r 8!2F jl
(o)~k8,r 8!#F̃ j l

(o)~k8,r 8!dr8

1F jl
(o)8~k8,Rm!E

Rm

`

@G̃jl
(o)~k8,r 8!2Gjl

(o)~k8,r 8!#G̃jl
(o)~k8,r 8!dr8.

By inspection, we show that the functionFj l ,b j l
fulfills the conditions defined inD(hjl ,b j l

):

F 28~k,Rm1!2F 28~k,Rm2!5
b j l

m

c
@F 18~k,Rm!1A1

m#,

F 18~k,Rm1!5F 18~k,Rm2!, ~2.29!
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hjl ,b j l
Fj l ,b j l

~k,r !5k2Fj l ,b j l
~k,r ! , k.0

and constitutes a set of generalized eigenfunctions associated withhjl ,b j l
; it represents the scat

tering wave function ofhjl ,b j l
. As usual, the corresponding phase shifts may be obtained by ta

the asymptotic behavior of the generalized eigenfunction whenr→`. One has

Fj l ,b j l
~k8,r !

k8.0
→ H @C1

2~k8!1C2
2~k8!#1/2sinS k8r 2K jl

p

2
1d j l ,b j l

~k8! D1o~1!

@D1
2~k8!1D2

2~k8!#1/2sinS k8r 2K jl

p

2
1 d̃ j l ,b j l

~k8! D1o~1!
J ,

~2.30!

with H C1~k8!5a1Ajl ~k8!2 ia2Bjl ~k8!

C2~k8!5a2Bjl ~k8!
and H D1~k8!52a2B̃j l ~k8!

D2~k8!5a1Ãj l ~k8!2 ia2B̃j l ~k8!
,

so that the phase shifts ofhjl ,b j l
may be expressed as

D j l ,b j l
~k8!5S d j l ,b j l

~k8!52arctan
C2~k8!

C1~k8!

d̃ j l ,b j l
~k8!52arctan

D2~k8!

D1~k8!

D , ~2.31!

where the following notations are used14

Ajl 522K jl k8(2K jl 21)G~2K jl 12!G~K jl 11!21 , Bjl 5
1

k8Ajl ~k8!
,

Ãj l 522K jl 11k8(2K jl )G~2K jl !G~K jl !
21 , B̃j l 5

1

k8Ãj l ~k8!
.

The on-shell scattering matrix is given by

S~k8!5S exp@2id j l ,b j l
~k8!#

exp@2i d̃ j l ,b j l
~k8!#

D , ~2.32!

and the corresponding effective range then reads

S @~2K jl 11!!! #2k82K jl 11 cotand j l ,b j l
~k8!

@~2K jl 11!!! #2k82K jl 21 cotand̃ j l ,b j l
~k8!

D 5S 2ajl ,b j l

21 1 1
2r j l ,b j l

k821o~k84!

2ã j l ,b j l

21 1 1
2r̃ j l ,b j l

k821o~k84!
D , ~2.33!

S ajl ,b j l

ã j l ,b j l

D ,

and

S r j l ,b j l

r̃ j l ,b j l

D
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are, respectively, the partial wave scattering length and the effective range parameters. Fina
on-shell scattering amplitude associated withHb$R% is defined by

Fb j l $R%~k8,v,v8!54p % j 5(1/2)
` %

l 5 j 2(1/2)

j 1(1/2)

%
m52 l

1 l

3S exp~2id j l ,b j l
~k8!!21

2ik8
V ( j l m)1

~v8!V ( j l m)1
~v!

exp~2i d̃ j l ,b j l
~k8!!21

2ik8
V ( j l m)2

~v8!V ( j l m)2
~v!

D , ~2.34!

where the partial amplitudeFb j l $R%(k8) is given by

Fb j l $R%~k8!5S exp~2id j l ,b j l
~k8!!21

2ik8

exp~2i d̃ j l ,b j l
~k8!!21

2ik8

D , ~2.35!

with v,v8PS2 (S2 the unit sphere inR3). The scattering elements corresponding to the p
(hjl ,g j l $R% ;hjlo) can be given mimicking step by step the same technique. So, we obtain fo
phase shifts ofhjl ,g j l

Q j l ,g j l
~k8!5S u j l ,g j l

~k8!52arctan
C̃2~k8!

C̃1~k8!

ũ j l ,g j l
~k8!52arctan

D̃2~k8!

D̃1~k8!

D , ~2.36!

with
C̃1~k8!5b1Ajl ~k8!2 ib2Bjl ~k8!

C̃2~k8!5b2Bjl ~k8!
and

D̃1~k8!52b2B̃j l ~k8!

D̃2~k8!5b1Ãj l ~k8!2 ib2B̃j l ~k8!
,

b1511 (
m,m851

N

Km,m8
8 G̃jl

(o)8~k8,Rm!, b25 (
m,m851

N

Km,m8
8 F̃ j l

(o)8~k8,Rm!,

Km,m8
8 5

~g j l
m/c!

dmm82~g j l
m/c!F̃ j l

(o)8~k,Rm!G̃jl
(o)8~k,Rm8 !

@ F̃ j l
(o)8~k8,Rm!2B1

m#,

B1
m5G̃jl

(o)8~k8,Rm!E
0

Rm
@ F̃ j l

(o)~k8,r 8!2F jl
(o)~k8,r 8!#F jl

(o)~k8,r 8!dr8

1F̃ j l
(o)8~k8,Rm!E

Rm

`

@G̃jl
(o)~k8,r 8!2Gjl

(o)~k8,r 8!#Gjl
(o)~k8,r 8!dr8.

The on-shell scattering matrix is given by

Z~k8!5S exp@2iu j l ,g j l
~k8!#

exp@2i ũ j l ,g j l
~k8!#

D , ~2.37!

and the corresponding effective range reads
                                                                                                                



lly, the

ed as

1743J. Math. Phys., Vol. 41, No. 4, April 2000 Relativistic scattering theory for finitely . . .

                    
S @~2K jl 11!!! #2k82K jl 11 cotanu j l ,g j l
~k8!

@~2K jl 11!!! #2k82K jl 21 cotanũ j l ,g j l
~k8!

D 5S 2ajl ,g j l

21 1 1
2r j l ,g j l

k821o~k84!

2ã j l ,g j l

21 1 1
2r̃ j l ,g j l

k821o~k84!
D , ~2.38!

S ajl ,g j l

ã j l ,g j l

D ,

and

S r j l ,g j l

r̃ j l ,g j l

D ,

are, respectively, the partial wave scattering length and the effective range parameters. Fina
on-shell scattering amplitude associated withHg$R% is defined by

Gg j l $R%~k8,v,v8!54p %
j 51/2

`

%
l 5 j 21/2

j 11/2

%
m52 l

1 l

3S exp~2iu j l ,g j l
~k8!!21

2ik8
V ( j l m)1

~v8!V ( j l m)1
~v!

exp~2i ũ j l ,g j l
~k8!!21

2ik8
V ( j l m)2

~v8!V ( j l m)2
~v!

D , ~2.39!

where the partial amplitudeGg j l $R%(k8) is given by

Gg j l $R%~k8!5S exp~2iu j l ,g j l
~k8!!21

2ik8

exp~2i ũ j l ,g j l
~k8!!21

2ik8

D . ~2.40!

To conclude, let us point out that all results obtained in Ref. 18 can be easily deduc
particular cases of this work. Namely, when we deal with a one-sphered-interaction, the corre-
sponding resolvent is recovered from Eq.~2.25! putting m5m851.
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The Reeh–Schlieder property for thermal field theories
Christian D. Jäkela)

Dipartimento di Matematica, Via della Ricerca Scientifica,
Universitàdi Roma ‘‘Tor Vergata,’’ I-00133 Roma
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We show that the Reeh–Schlieder property w.r.t. KMS states is a direct conse-
quence of locality, additivity, and the relativistic KMS condition. The latter char-
acterizes the thermal equilibrium states of a relativistic quantum field theory. The
statement remains valid even if the given equilibrium state breaks spatial transla-
tion invariance. ©2000 American Institute of Physics.@S0022-2488~00!01004-5#

I. INTRODUCTION

In a relativistic quantum theory~even of massive particles!, the vacuum state, which is simpl
characterized by Poincare´ invariance and the spectrum condition, has a very rich intrinsic st
ture. The full content of the theory can be described in terms of vacuum expectation value
there are more surprises out there. While studying a relativistic quantum theory and its va
state, one encounters a number of most peculiar properties, which require a drastic departu
‘‘classical’’ quantum mechanics and its interpretation. The famous Reeh–Schlieder propert
be seen as one of the origins of these peculiarities; with astonishing consequences for the
and its interpretation. It somehow exploits the correlations between the vacuum expectation
of measurements in spacelike separated regions. According to the celebrated cluster theore
correlations decay exponentially~as long as the theory describes only massive particles!. There-
fore, the energy necessary to exploit them puts severe limits on the size of affortable e
Nevertheless, the Reeh–Schlieder theorem states that if there where no restrictions on th
able energy, then one could prepare any vector state with arbitrary accuracy using only
local operations; i.e., operations performed in an arbitrary bounded space–time region.~In the
mathematical description, the vacuum state is specified by a vectorV in the so-called vacuum
Hilbert spaceH and a local operation is modeled by a linear operator acing onH.!

The Reeh–Schlieder property for thermal equilibrium states was first proven by Jungla1 He
assumed that the thermal equilibrium state is locally normal w.r.t. the vacuum and his proof
on a result of Borchers concerning timelike cylinders in the vacuum representation. Only
translations were used and therefore the~standard! KMS condition, which characterizes equilib
rium states, was sufficient. Here we present a self-contained derivation of the Reeh–Sc
property, which does not rely on results concerning the vacuum sector, but instead takes ad
of the relativistic KMS conditionrecently proposed by Bros and Buchholz.2 We will introduce it
in the next section. We would like to emphasize that wedo notrequire that there exists a group o
unitary operators which implements spacelike translations in the thermal representation ass
with a given equilibrium state. In fact, our proof remains applicable even if the thermal
breaks translation or rotation symmetry. It uses Glaser’s theorem and exploits the charac
analyticity properties of an equilibrium state. The latter simply reflect the basic stability
passivity properties of an equilibrium state.

Remark:Recently the cluster theorem has been generalized to thermal states.3 By simply
combining the KMS condition with the locality assumption the author was able to show that
is a tight relation between the infrared properties of the generator of time translations an
decay of spatial correlations in any extremal KMS state, in complete analogy to the well u
stood case of the vacuum state. To be more precise, since the spectrum of the generato

a!Electronic mail: christian.jaekel@uibk.ac.at
17450022-2488/2000/41(4)/1745/10/$17.00 © 2000 American Institute of Physics
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time-evolution in the thermal sector does not have a mass gap, a new condition propo
Buchholz, which may be interpreted as a type of Ho¨lder continuity of the spectrum at the discre
eigenvalue zero, has been used to show that the correlations between two spacelike se
measurements decay like some inverse power of their spatial distance. The correlations
massless bosons in two dimensions saturate these bounds.

To conclude this introduction we line out the content of this paper. In Sec. II basic prop
of thermal quantum field theories and their representations are collected, including the rela
KMS condition of Bros and Buchholz. Section III contains the derivation of the Reeh–Schl
property for thermal equilibrium states. A brief outlook is given in the final section.

II. THERMAL QUANTUM FIELD THEORY

In the algebraic formulation4 a QFT is casted into an inclusion preserving map

O→A~O!, ~1!

which assigns to any open bounded regionO in Minkowski spaceR4 a unitalC* -algebraA(O).
The Hermitian elements of theabstract C* -algebraA(O) are interpreted as the observables wh
can be measured at times and locations inO. The netO→A(O) is isotonous, i.e., there exists
unital embedding

A~O1!→,A~O2! if O1,O2 . ~2!

For mathematical convenience the local algebras are embedded in theC* -inductive limit algebra

A5øO,R4A~O!C* . ~3!

The space–time symmetry of Minkowski space manifests itself in the existence of a represe

a:~L,x!°aL,xPAut~A!, ~L,x!PP1
↑ , ~4!

of the ~orthochronous! Poincare´ group P1
↑ . Lorentz-transformationsL and space–time transla

tions x act geometrically

aL,x~A~O!!5A~LO1x! ;~L,x!PP1
↑ . ~5!

Einstein causality is implemented by locality: observables localized in spacelike separated s
time regions commute, i.e.,

A~O1!,Ac~O2!, if O1,O28 . ~6!

Here O8 denotes the spacelike complement ofO and Ac(O) denotes the set of operators inA
which commute with all operators inA(O).

Remark:Let hPL1(R4,d4x) such that the Fourier-transformh̃ of h has compact support
Strong continuity of the group of automorphismsx°ax implies that the Bochner integral

ah5E d4xh~x!ax~a!, aPA, ~7!

exists inA and defines an entire analytic element for the translations.@If the mapx°ax fails to
be strongly continuous, then we may proceed by simply restricting the given netO→A(O) to the
subnet consisting of those elements ofA which comply with the continuity condition~see, e.g.,
Ref. 5, Proposition 1.18!.# Recall thatbPA is called an entire analytic element for the group
automorphismsx°ax , if there exists a functiong:C4→A such that

~i! g(x)5ax(b) for all xPR4;
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~ii ! z°v(g(z)) is entire analytic for all positive linear functionalsv overA. The algebraAa

of entire analytic elements is norm dense inA.
States are, by definition, positive, linear, and normalized functionals overA. It is an advantage

of the abstract setting that the thermal equilibrium states can be distinguished among the se
~physical! states by first principles such as time invariance, stability against small perturbatio
passivity properties~see Refs. 6 and 7!. Adding a few technical assumptions one usually ends
~see Refs. 8 and 9! with a precise mathematical selection criterion: The KMS condition. Today
KMS condition is generally accepted as the appropriate mathematical criterion for equilib
But only recently, Buchholz and Junglas have shown that the characterization of equilibrium
by the KMS condition applies even to a large class of relativistic models.10

Lorentz invarianceis always broken by a KMS state.11,12 A KMS state might also break
spatial translation or rotation invariance, but the maximal propagation velocity of signals, whi
is characteristic for a relativistic theory, is not affected by such a lack of symmetry. It was
recognized by Bros and Buchholz that a finite maximal propagation velocity of signals bas
implies that the KMS states of a relativistic QFT have stronger analyticity properties in con
ration space than those imposed by the traditional KMS condition.2 These properties are summ
rized in the following:

Definition 2.1:A statevb satisfies the relativistic KMS condition at inverse temperatureb
.0 if and only if there exists some positive timelike vectorePV1 , e251, such that for every
pair of elementsa,b of A there exists a functionFa,b which is analytic in the domain

2Tbe/23Tbe/2 , ~8!

whereTbe/25$zPC:JzPV1ù(be/21V2)% is a tube, and continuous at the boundary setsR4

3R4 and (R42( i /2)be)3(R41( i /2)be) with boundary values given by

Fa,b~x1 ,x2!5vb~ax1
~a!ax2

~b!!,

Fa,bS x12
i

2
be,x21

i

2
beD5vb~ax2

~b!ax1
~a!!, ;x1 ,x2PR4. ~9!

The relativistic KMS condition can be understood as a remnant of the relativistic spec
condition in the vacuum sector. It has been rigorously established2 for the KMS states constructe
by Buchholz and Junglas.10 In this letter we will show that together with the condition of add
tivity @see Eq.~13! below# it implies that the KMS state has the Reeh–Schlieder property.

Once a relativistic KMS statevb for some inverse temperatureb is fixed, the well known
GNS-construction provides a Hilbert spaceHb , a cyclic vectorVbPHb and a ‘‘thermal repre-
sentation’’pb of A such that

vb~a!5~Vb ,pb~a!Vp! ;aPA. ~10!

Due to the KMS condition the vectorVb is not only cyclic forRbªpb(A)9 but also separating
~Note thata priori the relativistic KMS condition only applies to elements ofA and in general it
will not extend toRb .! Thus any state, which is normal w.r.t.pb , is a vector state~see Ref. 9,
2.5.31!.

Remark:Our main concern may be formulated as follows: Given a statev:A→C, can we find
an elementav in A(O) ~representing a strictly local operation inO! such thativ2v̂i,e, where
v̂ is identified with the normal state induced byVv̂ªpb(av)Vb? Obviously, it is sufficient to
prove thatVv̂ can be chosen arbitrarily close toVv in the Hilbert space topology, whereVv is the
state vector associated with the statev. This will be a direct consequence of Theorem 3.9.

The representationpb assigns to anyO,R4 a von Neumann algebra

Rb~O!5pb~A~O!!9. ~11!
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The weak closure respects the local structure, i.e.,

Rb~O1!,Rb~O2!8, for O1,O28 . ~12!

Note thatRb(O)8 denotes the commutant ofRb(O) in the algebraB(Hb) of all bounded opera-
tors onHb . We emphasize thatRb(O)8 includes both the algebraRb8 , which itself is isomorphic
to Rb , andRb(O8) as subalgebras.

Definition 2.2:The netO→Rb(O) is calledadditive, if

ø i PIOi5O⇒∨ i PIRb~Oi !5Rb~O!. ~13!

Here I is some index set and∨ iRb(Oi) denotes the von Neumann algebra generated by
algebrasRb(Oi), i PI .

If vb is locally normal w.r.t. the vacuum representation, then additivity in the vacuum s
and additivity in the thermal sector are equivalent. As is well known, additivity in the vac
sector can be proven, if the net of local algebras is constructed from a Wightman field the

III. THE REEH–SCHLIEDER PROPERTY

We start with the following adapted and simplified version of Glaser’s theorem 1~see Ref. 13,
see also Refs. 14 and 15!:

Theorem 3.1:~Glaser!: Let aPA and letFa* ,a denote the function introduced in Eq.~9!. The
following properties are equivalent:

~i! There exists an open neighborhoodV of 0 in R4 and a pointz1PTbe/2 such thatz1

1V,Tbe/2 and such that for each complex-valued testfunctionf with support inV

E
R43R4

d4y1d4y2Fa* ,a~y11 z̄1 ,y21z1! f ~y1! f ~y2!>0. ~14!

~ii ! There exists a sequence$ f a
(n) :Tbe/2→C%nPN of functions holomorphic inTbe/2 such that

Fa* ,a~z1 ,z2!5 (
nPN

f a
~n!~ z̄1! f a

~n!~z2!, ~15!

holds in the sense of uniform convergence on every compact subset of2Tbe/23Tbe/2 .
The next step is to show that condition~i! is indeed satisfied, ifvb is a relativistic KMS state:
Proposition 3.2:Let vb be a state which satisfies the relativistic KMS condition at inve

temperatureb.0 and letV be an open neighborhood of 0 inR4.
It follows that for each complex-valued test functionf with support inV

E
R43R4

d4y1d4y2Fa* ,a~y12 ike,y21 ike! f ~y1! f ~y2!>0, ~16!

for all 0,k,b/2. Here e denotes the timelike vector distinguished by the relativistic KM
condition.

Proof: Let aPAa be an entire analytic element for the translations. Put

C fªE
V
d4y1f ~y1!ay1

~a ike~a!!VbPHb . ~17!

Exploring the definition~9! of Fa* ,a one finds

E
R43R4

d4y1d4y2Fa* ,a~y12 ike,y21 ike! f ~y1! f ~y2!5iC f i2>0. ~18!
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For generalaPA, choose a sequence$anPAa%nPN such that

iani<iai and pb~an!Vb→pb~a!Vb , as n →`. ~19!

Now define, fory1 , y2PR4 and 0,k,b/2,

Fn~y12 ike,y21 ike!ªFa
n* ,an

~y12 ike,y21 ike!. ~20!

The three-line Theorem~see Ref. 9, 5.3.5! implies that

uFn~y12 ike,y21 ike!2Fm~y12 ike,y21 ike!u, ~21!

assumes its maximum value on the boundary of its domain and fork50,b/2, the boundary values
the relativistic KMS condition yields

uFn~y12 ike,y21 ike!2Fm~y12 ike,y21 ike!u

<maxH sup
y1 ,y2PR4

uvb~ay1
~an* !ay2

~an!!

2vb~ay1
~am* !ay2

~am!!u, sup
y1 ,y2PR4

uvb~ay2
~an!ay1

~an* !!2vb~ay2
~am!ay1

~am* !!u J
< sup

y1 ,y2PR4

uvb~ay1
~an* !ay2

~an!!2vb~ay1
~an* !ay2

~am!!u1 sup
y1 ,y2PR4

uvb~ay1
~an* !ay2

~am!!

2vb~ay1
~am* !ay2

~am!!u1 sup
y1 ,y2PR4

uvb~ay2
~an!ay1

~an* !!2vb~ay2
~an!ay1

~am* !!u

1 sup
y1 ,y2PR4

uvb~ay2
~an!ay1

~am* !!2vb~ay2
~am!ay1

~am* !!u%

<2iai sup
yPR4

ipb~ay~an2am!!i12iai sup
yPR4

ipb~ay~am* 2an* !!i . ~22!

In the last inequality we have usediani5ian* i<iai and iVbi51. Strong continuity ofa now
implies that$Fn%nPN is a Cauchy sequence uniformly onŪ, where

Uª$~y12 ike,y21 ike!:y1 ,y2PR4,0,k,b/2%. ~23!

The limit functionF` is therefore continuous and bounded onŪ and analytic inU. Moreover

F`~y1 ,y2!5Fa* ,a~y1 ,y2!, for y1 ,y2PR4. ~24!

Thus, due to their analyticity properties, the functionsF` andFa* ,a must coincide onŪ. It follows
that:

E
R43R4

d4y1d4y2Fa* ,a~y12 ike,y21 ike! f ~y1! f ~y2!

5 lim
n→`

E
R43R4

d4y1d4y2Fn~y12 ike,y21 ike! f ~y1! f ~y2!>0. ~25!

h

The crucial step in the proof of the Reeh–Schlieder property is now summarized i
following:
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Proposition 3.3:For eachaPA the vector valued functionFa :R4→Hb ,

x°pb~ax~A!!Vb , ~26!

can be analytically continued from the real axis into the domainTbe/2 such that it is weakly
continuous forJz↘0.

Proof: Let a,bPA with iai51. Because of

pb~A!Vb5Hb , ~27!

the set of vectorsSª$pb(b)Vb :bPA% is dense inHb . Moreover, according to Theorem 3.1.~ii !
there exists a sequence$ f a

(n) :Tbe/2→C%nPN of functions holomorphic inTbe/2 which satisfies~15!.
This allows us to consider—forzPTbe/2 andaPA fixed—the mapf̂a,z :S→C

pb~b!Vb° (
nPN

f a
~n!~z! f b

~n!~0!. ~28!

@Recall thatVb is separating forpb(A). Hence the mapb°pb(b)Vb is injective and conse-
quently the mappb(b)Vb° f b

(n)(0) is well-defined.# Using iai<1

(
nPN

u f a
~n!~z!u25Fa* ,a~ z̄,z!, ~29!

and the Schwarz inequality, we find

U(
nPN

f a
~n!~z! f b

~n!~0!U2

<Fa* ,a~ z̄,z!•ipb~b!Vbi2. ~30!

By the Hahn–Banach theorem the mapf̂a,z :S→C extends to a~bounded! continuous linear
functionalfa,z on Hb . The Riesz Lemma ensures that there exists a vectorFa(z)PHb such that

fa,z~C!5~Fa~z!,C! ;CPHb . ~31!

The map

z°Fa~z! ~32!

is analytic forzPTbe/2 . ~This can be shown by an approximation argument similar to the
given in the proof of Proposition 3.2.! As can be seen more easily, the map~32! is also weakly
continuous at the boundary setJz50, where it satisfies

Fa~x!5pb~ax~a!!Vb ;xPR4. ~33!

Although we will not directly use it, we believe that it is worthwhile to spell out the followi
Corollary 3.4: Let a,bPA and let Fa , Fb denote the associated vector valued functio

introduced in~32!. It follows that:

Fa* ,b~ z̄1 ,z2!5~Fa~z1!,Fb~z2!!, ~34!

for all z1 ,z2PTbe/2 . HereFa* ,b denotes the analytic function introduced in~9!.
Proof: The l.h.s.~left-hand-side! as well as the r.h.s.~right-hand-side! defines a holomorphic

function on

2Tbe/23Tbe/2,C43C4. ~35!

Moreover, forJz1↘0 andJz2↘0 we find
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~Fa~x1!,Fb~x2!!5~pb~ax1
~a!!Vb ,pb~ax2

~b!!Vb!5vb~ax1
~a* !ax2

~b!!5Fa* ,b~x1 ,x2!

~36!

for all x1 ,x2PR4. Applying the edge-of-the-wedge theorem we conclude that the l.h.s. an
r.h.s. in Eq.~34! describe the same analytic function.

What remains to be proven in order to establish the Reeh–Schlieder property is fairly
dard. Borchers and Buchholz16 recently gave a nice and transparent formulation of this final p
of the argument and, therefore, we will simply reproduce their formulation here, up to m
notational differences.

Definition 3.5: Let O be any open region. The*-algebraB(O) is defined as the set o
operatorsbPA(O) for which there exists some neighborhoodN,R4 of the origin such that

ax~b!PA~O! ;xPN, ~37!

where the neighborhoodN may depend onb.
B(O) is a * -algebra and

A~Oo!,B~O!, ~38!

for any regionOo whose closure lies in the interior ofO.
Lemma 3.6:Let CPHb be a vector with the property that

~C,pb~b!Vb!50 ;bPB~O!. ~39!

It follows that for eachbPB(O) the function

R4{x°~C,pb~ax~b!!Vb! ~40!

vanishes.
Proof: Let bPB(O) and letN as in Eq.~37!. It follows from the definition ofB(O) and the

geometrical action~5! of the translations that there exists somee.0, which may depend onb,
such that

ax~b!PB~O! for uxu,e. ~41!

On the other hand the function

R4{x°pb~ax~b!!Vb ~42!

extends analytically to some vector-valued function in the domainTbe/2 by Proposition 3.3. Com-
bining Eq.~42! with Eqs.~41! and ~39! we find that

~C,pb~ax~b!!Vb!50 ~43!

for all xPR4.
Lemma 3.7:Assume that the additivity assumption~13! holds. It follows that:

∨xPR4pb~ax~B~O!!!95Rb . ~44!

Once again,∨xPR4pb(ax(B(O)))9 denotes the von Neumann algebra generated by the alge
pb(ax(B(O))9, xPR4.

Proof: Let Oo be an open subset ofO such that its closureŌo is contained in the interior of
O. It follows that:

∨xPR4pb~ax~B~O!!!9.∨xPR4pb~ax~A~Oo!!!9. ~45!
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Combining Eq.~5! with Eq. ~13! we conclude that the r.h.s. equalsRb .
Corollary 3.8: Let CPHb be a vector with the property that

~C,pb~b!Vb!50 ;bPB~O!. ~46!

It follows that C50.
Proof: First, we apply Lemma 3.6 and conclude from Eq.~40! that

C'∨xPR4pb~ax~B~O!!!Vb . ~47!

Then we recall that the orthogonal complement ofpb(ax(B(O)))Vb is closed; therefore it coin-
cides with the orthogonal complement ofpb(ax(B(O)))9Vb . Hence Lemma 3.7 implies

C'RbVb. ~48!

By constructionRbVb5Hb , thusC50. h

We will now show that for every vectorFPHb there exists an operator inpb(A(O)), which,
when applied toVb , generates a vector which is arbitrarily close toF:

Theorem 3.9:Consider a QFT as specified in Sec. II and letvb be a state, which satisfies th
relativistic KMS condition. If the additivity assumption~13! holds, then

Hb5pb~A~O!!Vb, ~49!

for any open space–time regionO,R4. Moreover, if the spacelike complement ofO is not
empty, thenVb is separating forRb(O).

Proof: We have to show that the orthogonal complement ofpb(A(O))Vb vanishes. Assume
that

C'pb~A~O!!Vb . ~50!

Obviously, this implies

C'pb~B~O!!Vb . ~51!

and then Corollary 3.8 yieldsC50. On the other hand, if the spacelike complementO8 of O is
not empty, thenVb is cyclic for Rb(O8).pb(A(O8)). SinceRb(O)8.Rb(O8), this implies
that Vb is cyclic for Rb(O)8 and, therefore, separating forRb(O). h

Similar to the situation whereb5`, in the so-called vacuum sector,Vb shares the Reeh–
Schlieder property with a large class of vectors inHb .

Theorem 3.10:There exists a dense setDa,Hb such that for allCPDa

Hb5pb~A~O!!C, ~52!

whereO,R4 is again an arbitrary open space–time region.
Proof: A setDa,RbVb of suitable entire analytic vectors inHb may be specified by putting

Da5H S 12
pb~a!

2iai DVb :aPAaJ . ~53!

Note thatDa is dense inHb :

Da5pb~Aa!Vb5pb~A!Vb5Hb . ~54!

The essential step is to show that for arbitrarybPA the function

R4{x°pb~ax~b!!C, ~55!
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extends to some analytic vector-valued function in the domainTbe/2 . The reader is invited to
check that Theorem 3.1 and Proposition 3.2 can easily be adapted and that the proofs given
valid if we replaceVb by some vectorCPDa . Finally, we note that (12a/2iai) is invertible in
A, thus

pb~A!S 12
pb~a!

2iai DVb5pb~A!Vb . ~56!

We conclude thatpb(A)C5Hb , which ensures that the arguments given in the proof of Co
lary 3.8 apply also in this slightly more general case. h

IV. OUTLOOK

Although both quantum statistical mechanics as well as quantum field theory can nice
formulated in terms of operator algebras, little is known about the thermal states of a relat
system. Of course, one should not forget to mention the beautiful progress that has recent
achieved in the Wightman approach to thermal field theory~see, e.g., Ref. 17!. In fact, only
recently the relativistic KMS condition, which provides the necessary substitute for the spe
condition, was formulated. As we have demonstrated, it allows us to treat the thermal t
independently from the vacuum theory. In a series of forthcoming papers by the author
results like the cluster theorem, the Schlieder property and the Borchers property have
derived. The nuclearity condition, which distinguishes theories with decent phase-space p
ties, was used to derive the split property, which expresses a strong form of statistical ind
dence of spacelike separated measurements. A rather involved argument, based on a
version of what is commonly called ‘‘doubling the degrees of freedom’’ in thermal field the
establishes the ‘‘convergence of local charges’’ in the thermal sector. These results use the
Schlieder property as a crucial input; and without the present result one would have to reco
the physically sound but unproven assumption that relativistic KMS states are locally normal
the vacuum representation.

Many other bricks are still missing in the wall, for instance a thermal Jost–Lehmann–D
representation. Scattering theory in the thermal context is one of the major challenges; in fa
author would like to emphasize that the severe problems encountered in perturbation theor
up a fair chance for the operator algebraic approach to attract some interest from outside, p
it can offer some progress on this topic in time.
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Relating Green’s functions in axial and Lorentz gauges
using finite field-dependent BRS transformations

Satish D. Joglekara) and A. Misrab)
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We use finite field-dependent BRS transformations~FFBRS! to connect the Green
functions in a set of two otherwise unrelated gauge choices. We choose the Lorentz
and the axial gauges as examples. We show how the Green functions in axial gauge
can be written as a series in terms of those in Lorentz gauges. Our method also
applies to operator Green’s functions. We show that this process involves another
set of related FFBRS transformations that is derivable from infinitesimal FFBRS.
We suggest possible applications. ©2000 American Institute of Physics.
@S0022-2488~00!01002-1#

I. INTRODUCTION

Strong, weak, and electromagnetic interactions are known to be described very well b
standard model~SM!1 which is a non-Abelian gauge theory. Calculations in non-Abelaian ga
theories require a choice of gauge. These can be chosen in many ways. There are many
of gauges that have been used in practical calculations. Lorentz-type gauges1 have been used in a
large number of calculations in SM on account of their covariance and availability of a free g
parameter that helps in the check of gauge independence. Another family of gauges, th
gauges,h•A50 have also been used extensively.2 These have the formal advantage of being fr
of ghosts, which leads to simplifications in calculations of Green’s functions, anomalous d
sions, etc. Special cases such as those withh250. viz. the light cone gauges have been us
extensively in perturbative quantum chromodynamics~QCD! calculations.3 Analogous gauges, the
planar gauges, have the advantage of the axial gauges and in addition have a simpler pro
and hence have also found favor.3 The radial gauges have found widespread use in the conte
QCD sum rules and operator product expansions in QCD.4 Certain quadratic gauges have be
found to simplify Feynman rules and calculations of diagrams in spontaneously broken
theories~SBGT!.1 Rj gauges have been extensively used in performing practical calculation
in formal arguments in SBGT.5 Thus, to summarize, various descriptions of gauge theories h
been found useful in various different contexts. It therefore becomes an important questio
the calculations in various~families of! gauge choices are related to each other.

Now, we expect the physical results to be independent of the choice of gauge. Indeed,
independence in a limited framework, has been proven in early days.6,7 For example, within the
Lorentz type of gauges, one establishes thel independence of the physical observable, etc.6 Such
proofs utilize theinfinitesimal gauge transformations responsible for gauge-parameter cha
Ways of connecting Green’s functions in a family of gauges~and establishing explicitly gaug
independence! has not been done until recently. Indeed, recently discrepancies have been re
in anomalous dimension calculations in the Lorentz-type and axial-type gauges.8

Thus, for these and further reasons detailed in the following, we consider it valuable to o
a procedure to connect the Green’s functions in different families of gauges. Certain pro
along these lines has already been made. In Ref. 9, we established a general proced
obtaining a field transformation that connects the vacuum-to-vacuum amplitudeW ~and also the

a!Electronic mail: sdj@iitk.ac.in
b!Electronic mail: aalok@iitk.ac.in
17550022-2488/2000/41(4)/1755/13/$17.00 © 2000 American Institute of Physics
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vacuum-expectation values of gauge invariant observables! in two sets of gauges. This was elab
rated by a set of examples given there. These transformations turned out to be a generaliz
the usual BRS transformations in which the anticommuting global parameter is~i! field dependent,
but x independent, and~ii ! finite rather than infinitesimal. These were thus named finite fie
dependent BRS~FFBRS! transformations. In view of the importance of the two families
gauges, viz. the Lorentz type and the axial type practical in calculations, we established s
FFBRS connections between these set of gauges.10,11

In this work, we establish a connection between arbitrary Green’s functions~or operator
Green’s functions! in two sets of gauges, and in view of their practical importance, we cho
these to be the Lorentz and the axial-type gauges. Of course, once a FFBRS is established
any two sets of gauges, an identical procedure would go through. We show that the re
procedure involves another FFBRS. We establish finally a compact result expressing an a
Green’s function/operator Green’s function in axial gauges with a closed expression invo
similar Green’s functions in Lorentz gauges. The expression can then be evaluated in princ
a power series ing to desired order.

We shall mention in passing a number of applications of this result. We can use the res
the axial gauge propagator in terms of the Lorentz gauge propagator as a way for obtain
prescription for the 1/(h•k) singularity. This is so since we understand how to deal with
Green’s functions in Lorentz-type gauges. We should also be able to eliminate the po
reported discreprancy between the anomalous dimensions of physical observables8 in the two sets
of gauges. These and other possible applications are under progress.

We now summarize the plan of the paper. In Sec. II, we review the background ne
together with the results of Refs. 9–11 on FFBRS transformations. In Sec. III, we show
Green’s functions in the two sets of gauges can be related. We show how this involves the
another FFBRS. The Appendix deals with FFBRS along the lines of Ref. 9. Section III giv
compact formula relating the Green’s functions in the two gauges. Section IV gives a s
example of the compact formula obtained in Sec. III. Section V deals with some future inte
applications and conclusions.

II. SUMMARY OF RESULTS ON FFBRS TRANSFORMATION BETWEEN LORENTZ AND
AXIAL-TYPE GAUGES

A. Notations and conventions

We start with the Faddeev–Popov effective action~FPEA! in linear Lorentz-type gauges:

Seff
L @A,c,c̄#5E d4xS 2

1

4
Fmn

a Fa,mnD1Sgf1Sgh, ~1!

where the gauge-fixing actionSgf is given by

Sgf
L 52

1

2l E d4x(
a

~]•Aa!2[2
1

2l E d4x(
a

~ f L
a@A# !2, ~2!

and the ghost actionSgh is given by

Sgh
L 52E d4xc̄aMabcb, ~3!

where

Mab@A~x!#[]mDm
ab~A,x!. ~4!

The covariant derivative is defined by
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Dm
ab[dab]m1g fabgAm

g . ~5!

In a similar manner, the FPEA in axial-type gauges, is given by

Sgf
A[2

1

2l E d4x(
a

~h•Aa!2[2
1

2l (
a

E d4x~ f A
a@A# !2. ~6!

We requirehm to be real, but otherwise unnrestricted, and

Sgh
A 52E d4xc̄aM̃abcb, ~7!

with

M̃ab5hmDm
ab . ~8!

In the l→0 limit,

eiSgf
A
;)

a,x
d~h•Aa~x!!. ~9!

Thus, in the presence of the delta function, theA-dependent term inM̃ can be dropped leading t
the formally ghost-free matrix. As is well known,Seff

L and Seff
A are invariant under the BRS

transformations:

dAm
a~x!5Dm

abcb~x!dL,

dca~x!52
g

2
f abgcb~x!cg~x!dL, ~10!

d c̄a~x!5
f a@A#

l
dL,

wheref a@A#5]•Aa or h•Aa, depending on whether one has written the action in the Lorent
the axial-type gauges.

B. FFBRS transformations

As observed by Joglekar and Mandal,9 in ~10!, dL need not be infinitesimal nor need it b
field independent as long as it does not depend onx explicitly for ~10! to be a symmetry of FPEA
In fact, the following finite field-dependent BRS~FFBRS! transformations were introduced:

A8m
a5Am

a1Dm
abcb~x!Q@f#,

c8a5ca2
g

2
f abgcb~x!cg~x!Q@f#, ~11!

c̄8a5 c̄a1
f a@A#

l
Q@f#,

or generically

f i8~x!5f i~x!1dBRSf i~x!Q@f#, ~12!
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whereQ@f# is anx-independent functional ofA, c, c̄ ~generically denoted byf i) and these were
also the symmetry of the FPEA. The transformations of the form~11! were used to connect action
of different kinds for Yang–Mills theory in Refs. 9 and 10. The FPEA is invariant under~11!, but
the functional measure is not invariant under the~nonlocal! transformations~11!. The Jacobian for
the FFBRS transformations can be expressed~in special cases dealt with in Refs. 9 and 1!
effectively as exp(iS1) and thisS1 explains the difference between the two effective actions. S
FFBRS transformations were constructed in Refs. 9 and 10 by integration of an infinite
field-dependent BRS~IFBRS! transformation:

df i~x,k!

dk
5dBRS@f~x,k!#Q8@f~x,k!#. ~13!

The integration of~13! from k50 to 1, leads to the FFBRS transformation of~12! with f(k
51)[f8 andf(k50)5f. FurtherQ in ~12! was related toQ8 by

Q@f#5Q8@f#
exp@ f @f##21

f @f#
, ~14!

where

f @f#5(
i
E d4x

dQ8

df i~x!
dBRSf i~x!. ~15!

FFBRS transformations of the type~12! were used to connect the FPEA in Lorentz-type gau
with gauge parameterl to ~i! the most general BRS/anti-BRS symmetric action in linear gau
~ii ! FPEA in quadratic gauges,~iii ! the FPEA in Lorentz-type gauges with another gauge par
eterl8 in Ref. 9. It was also used to connect the former to FPEA in axial-type gauges in Re
We shall now summarize the results of Ref. 10 in Sec. II C.

C. FFBRS transformation for Lorentz to axial gauge Seff

We give results for the FFBRS transformation that connects the Lorentz-type gauges~See Ref.
1! with gauge parameterl to axial gauges~See Ref. 6! with same gauge parameterl. ~The same
calculation can be used to connect it to axial gauges with another gauge parameterl8: one simply
rescalesh suitably.! They are obtained by integrating:

df i~k!

dk
5dBRS@f#Q8@f#, ~16!

with

Q85 i E d4xc̄a~]•Aa2h•Aa!. ~17!

The consequentQ@f# is given by~14! with

f @f#5 i E d4xF]•Aa

l
~]•Aa2h•Aa!1 c̄~]•D2h•D !caG . ~18!

The meaning of these field transformations is as follows. Suppose we begin with the va
expectation value of a gauge invariant functionalG@f# in the Lorentz-type gauges:

^^G@f#&&5E DfG@f#eiSeff
L

@f#. ~19!
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Now, we perform the transformationf→f8 given by ~12!. Then we have~with G@f8#5G@f#
by gauge invariance!

^^G@f#&&[^^G@f8#&&5E Df8J@f8#G@f8#eiSeff
L

@f8# ~20!

on account of the BRS invariance ofSeff
L . HereJ@f8# is the Jacobian

Df5Df8J@f8#. ~21!

As was shown in Ref. 9, for the special caseG@f#[1, the JacobianJ@f8# in ~21!, can be
replaced byeiS@f8# where

Seff
L @f8#1S1@f8#5Seff

A @f8#. ~22!

As shown in Sec. III, this replacement is valid for any gauge invariantG@f# functional ofA. If
one were to live with vacuum expection values of gauge invariant observables, the FFBRS in@Ref.
9# would be sufficient. But as seen in Sec. III, general Green’s functions need a modified
ment.

III. RELATION BETWEEN GREEN’S FUNCTIONS FOR AXIAL-TYPE AND
LORENTZ-TYPE GAUGES

In Ref. 9, we established a general procedure for writing down a FFBRS that transform
W in one kind of a gauge choice toW in another kind of a gauge choice. This procedure w
applied to the concrete example of the construction of a FFBRS connecting the axial-type g
and Lorentz-type gauges in Ref. 10. In order to bring out the need for a further treatment, w
elaborate on the meaning of this statement in some detail: We note that

WL[E DfeiSeff
L

@f# ~23!

of the Lorentz-type gauges is formally carried over~without altering its ‘‘value’’! to

WA[E Df8eiSeff
A

@f8#5WL ~24!

by the FFBRS transformation

f8~x!5f~x!1dBRS@f#Q@f# ~25!

constructed explicitly in~16!–~18!. We now want to use this transformation to understand how
Green’s functions in the two gauges, and not just the vacuum-to-vacuum amplitudes, are re
each other. This may at first sight seem trivial. We may expect a relation of the kind~condensed
notation used!:

Gi 1 ...i n
A [E Df8)

r 51

n

f i r
8 eiSeff

A
@f8#

5
? E Df)

r 51

n

~f i r
1d i r ;BRS@f#Q@f#!eiSeff

L
@f#[Gi 1 ...i n

L 1DGi 1 ...i n
L , ~26!

whereDGi 1 ...i n
L , containing the terms on the right-hand side involvingQ’s, gives the difference

between then-point Green’s functionsGi 1 ...i n
in the two sets of gauges. ThisDGi 1 ...i n

L then would
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be expressed in terms of the Green’s functions of the Lorentz-type gauges and may i
additional vertices corresponding to insertions of operatorsdBRS@f#. This however, turns out to be
incorrect and the technical reason for this is explained in the following.

In Refs. 9 and 10, we showed that the Jacobian for the FFBRS~25!, could be replaced by a
factor exp(iS1) within the expression forW if the condition

E Df~k!S 1

J

dJ

dk
2 i

dS1@f~k!,k#

dk Dexp@ i ~Seff
L 1S1!#50 ~27!

was fulfilled. This replacement then became valid forW ~i.e., without additional operators in th
integrand of the path integral!. A priori, it is not obvious that if~27! holds, an equation of the typ

E Df~k!O@f~k!#S 1

J

dJ

dk
2 i

dS1@f~k!,k#

dk Dexp@ i ~Seff
L 1S1!#50, ~28!

modified to include an operatorO@f(k)# would also hold. That it does not, in fact, hold genera
arises from the following fact. The verification of~27! in Refs. 9 and 10 made use of the antigho
equation of motion@See, e.g., the discussion below equation~3.20! of Ref. 10#. Thus, it is clear
that if O@f(k)# containsc̄, then the procedure would fail as it involves integration by parts
fact, the procedure does not work for any finite interval ofk for any operatorO. This is so since
O is evolving in form~ask is varied! on account of the IFBRS transformation of~16! which will
always inducec̄ dependence ask is varied even if atk50, one started out withO@A,c#, an
operator independent ofc̄ ~barring the gauge-invariant case as discussed in Sec. II!. For this
reason, the construction of the relation between Green’s functions for the two types of g
requires as elaborate a treatment as the original FFBRS construction itself. We begin
general Green’s function in one of the gauges, say, the axial gauge:

G5E Df8O@f8#eiSeff
A

@f8#. ~29!

Here, the form ofO is unrestricted; so that~29! covers arbitrary operator Green’s functions as w
as arbitrary ordinary Green’s functions. For example, with

O15Am
a8An

b8 ~30!

one has the gauge boson propagator; whereas with

O25Am
a8~x!cb8~y!c̄g8~z! ~31!

one has a three-point Green’s function; or with

O35Fmn
a8 ~x!Fs

n,a8~x!Ar
b8~u!Ag,s8~w! ~32!

one has the two-point Green’s function of an operator insertion of the twist two local ope
Fmn

a Fs
n,a , etc. We want to expressG entirely in terms of the Lorentz-type gauge Green’s functio

~and possibly involving vertices fromdBRS@f#). We, therefore construct the quantity

G~k![E Df~k!O@f~k!,k#eiSeff
L [f~k!] 1 iS1[f~k!,k] ~33!

anddefinethe form ofO@f(k),k# such that

dG

dk
50. ~34!
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@This is exactly analogous to the equationdW/dk50 of Ref. 9 that relatedW(1)[WA5W(0)
[WL together.# Then

G~1!5E Df8O@f8,1#eiSeff
A

@f8# ~35!

@f8[f(1)# with O@f8,1#[O@f8# gives the Green’s function~29!, whereas it is alternately
expressed as

G~0!5E DfÕ@f#eiSeff
L

@f#5G~1!, ~36!

where Õ@f#[O@f(0),0#. Equation ~36! gives the same quantity in terms of Lorentz gau
quantities. We, thus, need to determine howO@f(k),k# of ~33! should evolve so as to keepG(k)
independent ofk @Eq. ~34!#. To determine this, we perform the field transformation fromf~k! to
f(k1dk) via the IFBRS of~16!. We write, making due use of the BRS invariance ofSeff

L ,

G~k!5E Df~k1dk!
J~k1dk!

J~k! S O@f~k1dk!,k1dk#2dBRS@f#f iQ8
dO
df i

dk2
]O
]k

dk̇ D
3eiSeff

L
@f~k1dk!#1 iS1@f~k1dk!,k1dk#3S 12 i

dS1

dk
dk D

5E Df@k1dk#S 11
1

J

dJ

dk
dk D S O@f~k1dk!,k1dk#2dBRSf iQ8

dO
df i

dk2
]O
]k

dk D
3S 12 i

dS1

dk
dk D3eiSeff

L
@f~k1dk!#1 iS1@f~k1dk!,k1dk#

[G@k1dk# ~37!

iff

E Df~k!S F1

J

dJ

dk
2 i

dS1

dk GO@f~k!,k#2dBRSf iQ8
dO
df i

2
]O
]k D3eiSeff

L
@f~k̇ !#1 iS1@f~k!,k#[0.

~38!

@We have replacedf(k1dk)→f(k) in ~38! in view of the fact that the quantity on the left-han
side is multiplied bydk.# Thus the condition~incorrect one! ~28! is replaced by the correc
condition ~38!.

We shall now simplify the condition~38! and show that this condition is fulfilled if a certai
evolution equation is satisfied byO@f(k),k#. We then show how it can be solved. The proced
for the solution to the evolution equation will pertain to the introduction of another field tran
mation and we shall show that this is a FFBRS too.

We shall now simplify the first term on the right-hand side of~38!. To do this, we note tha
~27! is fulfilled and that we can use the explicit form ofS1@f(k),k# andQ8 of Ref. 10 to simplify
the combination (1/J)(dJ/dk)2 i (dS1 /dk). When this is done, this term reads:

2 i E DfO@f~k!,k#eiSeff
L

1 iS1@f~k!,k#

3E d4xS 1

l
k~]•A2h•A!@~12k!Mc1kM̃c#~x!Q82k

~]•A2h•A!2

l D . ~39!

Now we note that
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E Df~k!O@f~k!,k#E d4xF@A~x!#@~12k!Mc1kM̃c#~x!Q83eiSeff
L

1 iS1@f~k!,k#

5E Df~k!O@f~k!,k#E d4xF@A~x!# i
d

d c̄~x!
eiSeff

L
1 iS1Q8. ~40!

@F@A(x)#[(k/l)(]•A2h•A)#. Integrating by parts with respect toc̄ and taking due account o
the anticomuting nature ofc̄ and possiblyO, the right-hand side of Eq.~40! equals

E Df~k!E d4xS 2 iO dQ

d c̄
F@A~x!#Q82O@f~k!,k#F@A~x!#

dQ8

d c̄
D eiSeff

L
1 iS1. ~41!

Now, the term*d4x@dQ8/d c̄(x)#kF@A(x)# is precisely the factor that also arose in fulfillment
~38! ~i.e., whenO@f(k),k# was absent! and such a term, in the presence ofO cancels precisely
with the last term in~39! just as it did in~27! in the absence ofO. Using the above information
in ~38!, the required condition fork independence ofG reads:

E Df~k!eiSeff
L

1 iS1@f~k!,k#S ]O
]k

1E DmcQ8
dO

dAm
2

g

2 E ~ f cc!Q8
dO
dc

1E F]•A

l
1k

~h•A2]•A!

l GQ8
dO
d c̄ D50. ~42!

So far we have not spelled out thek dependence ofO. Now, if we constructanO@f(k),k# which
satisfies

]O
]k

1E DmcQ8
dO

dAm
2

g

2 E ~ f cc!Q8
dO
dc

1E F]•A

l
1k

~h•A2]•A!

l GQ8
dO
d c̄

50, ~43!

then ~42! would automatically be satisfied, thus leading to~36!. Thus, we have to know how to
solve ~43! to obtain O@f(k),k#. To this end, consider thesamefunction O with a different
argumentf̃(k), O@f̃(k),k# wheref̃(k) is defined via a new set of evolution equations:

dÃm~k!

dk
5Dm@Ã# c̃Q8@f̃~k!#,

dc̃

dk
52

g

2
f c̃~k!c̃~k!Q8@f̃~k!#, ~44!

dc̃̄~k!

dk
5

]•Ã~k!1k~h•Ã2]•Ã!

l
Q8@f̃~k!#,

or in short,

df̃~k!

dk
[d̃@f̃~k!,k#Q8@f̃~k!#, ~45!

together with the boundary condition:

f̃~1!5f85f~1!. ~46!

The condition~43! when expressed forO@f̃(k),k# instead ofO@f(k),k# as
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]O@f̃~k!,k#

]k
1E d̃ iBRS@f̃~k!,k#Q8@f̃~k!#

dO@f̃~k!,k#

df̃ i~k!
50, ~47!

i.e.,

dO@f̃~k!,k#

dk
[0. ~48!

Now, in view of the fact that

O@f̃~1!,1#5O@f~1!,1#5O@f8#, ~49!

we find

O@f̃~k!,k#5O@f8#. ~50!

Equation~50! tells us how the functionO@f(k),k# should evolve: We solve~45! for f8 in
terms off̃(k), expressO@f8#[O@f8(f̃(k),k)#5O@f̃(k),k#. This gives us the functionO. In
this we replace the argumentf̃→f to obtainO@f(k),k# which then will solve~43!. The value
of O@f(k),k# at k50, i.e.,O@f(0),0# will then give us the functionÕ@f# of ~36! involved in
the expression ofG(1) in terms of the Lorentz gauge quantities. Thus the evolution
O@f(k),k# with k is easy to obtain if the IFBRS~45! is solved. The IFBRS of~45! differs from
the IFBRS of~13! in that the transformation forc̃̄ involves thed̃@f(k),k# and is explicitlyk
dependent. The integration the IFBRS proceeds the same way as the basic IFBRS~13! as done in
Ref. 9; the only complication being thek-dependentd̃BRS@f̃(k),k# involved in dc̃̄/dk. The
integration is given in the Appendix. The result is

f85f1~ d̃1@f#Q1@f#1d2@f#Q2@f#!Q8@f#[f1df@f#. ~51!

Using ~51!, ~36!, ~49! and ~50!, we obtain the following result:

G~1!5G~0!5E DfÕ@f#eiSeff
L

@f#5E DfO~f1df@f#!eiSeff
L

@f#. ~52!

In view of the nilpotency ofd @f#, this leads to

G~1!5G~0!5E DfO@f#eiSeff
L

@f#1E Dfdf i@f#
dO
df i

eiSeff
L

. ~53!

Further, as done in the Appendix, the last term can be cast in a neat form; so that~53! can be
written as

^^O&&A5^^O&&L1E
0

1

dkE Df~d̃1@f#1kd̃2@f#!Q8@f#
dO
df

eiSeff
M

. ~54!

Our aim in this work was to establish formally the link between two gauges considered.
has been done in~53! and~54!. In this work, we shall content ourselves with some comments
concrete calculations. Concrete evaluation of~53! or ~54! can be carried out in two ways. Whil
the one based on~54! is much superior, we shall enumerate both for formal reasons.~I! We can
look upon the integrand on the right-hand side as an expansion ink ~and carry out thek integra-
tion!. Then each term gives a Green’s function of the operatorO ~and its BRS variation! in
Lorentz-type gauges. We can further regard each term in the expansion as an expansion ing. Then
to a given desired order only a finite number of terms in each need be kept. However, to any
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order ing, the infinite terms have to be summed. This, however, can be avoided with the h
the alternate expression~54! which turns out to be much superior for practical purposes.~II ! We
can alternately regard the evaluation of the functional integral on the right-hand side of~54! in
terms of the vertices and the propagators of the interpolating mixed gauge actionSeff

M . This
approach has many technical advantages. The last term on the right-hand side of~54! now consists
of usual Feynman diagrams, with one difference: The propagators of ghost and gauge fie
now k dependent and a final~overall! k integration is to be performed. To any given order ing,
there are only a finite number of Feynman diagrams to be evaluated on the right-hand side
example,O is a local polynomial operator, these are the Feynman diagrams with one ins
each of two local polynomial operators~or integrated local density!, dBRS@f i #(dO/df i) and
*d4xc̄(x)(]•A2h•A)(x), and can be evaluated by usual techniques. If, on the other hand,O is
a product ofn elementary fields at distinct space time points@such as in~30! and ~31!#, then the
right-hand side has~a finite number of! Feynman diagrams corresponding to the (n21)-point
functions with one insertion each ofdBRS@f i # and*d4xc̄(]•A2h•A)(x). ~We shall give a simple
example of this calculation in Sec. IV.! We can use such an expansion~especially approach II! to
correlate the axial gauge propagator in terms of Lorentz gauge quantities. Knowing how t
with the Lorentz gauge calculations should throw direct light on how to deal with axial g
calculations especially the prescription for the 1/(h•k)-type singularities in axial propagator.
should also help in resolving a number of existing problems with light cone gauge calcula
This work is found in Refs. 12 and 13.@We have also given a simplified derivation of~54! only
recently in Ref. 14.#

We expect such relations to resolve the discrepancy reported between the anomalous
sions of physical obervables in the two sets of gauges.13 We leave the issue to a further public
tion.

IV. AN EXAMPLE

In this section, we shall give a simple example of the relation~54!. Consider for example,

O@f#5Am
a~x!An

b~y!. ~55!

Then

^O@f#&A[^Am
a~x!An

b~y!&A5 iGmn
A ab~x2y! ~56!

is ~for the connected part! the axial gauge propagators. In obvious notations13

iGmn
A ab~x2y!5 iGmn

L ab~x2y!1 i E
0

1

dkE Dfexp(iSeff
M @f,k#2 i e*~A2/22 c̄c!d4x)

3~~Dmc!a~x!An
b~y!1Am

a~x!~Dnc!b~y!!E d4zc̄g~z!~]•Ag2h•Ag!~z!.

~57!

The right-hand side consists of one point functions of one insertion each of two local operato~or
integrated local density! Dmc and*d4xc̄(]•A2h•A)d4x. To any finite order, such terms can b
evaluated by drawing the appropriate Feynman diagram whose propagators and vertices ar
Seff

M @f,k#. The propagators are nowk dependent. We expect the results~53! and~54! to be useful
in this manner to be able to solve the number of problems mentioned in Sec. I~last-but-one
paragraph!. We now make brief comments on one such application as an example.

Equation~57! leads to, for the zero loop case,

Gmn
0A ab~x2y!5Gmn

0L ab~x2y!2 i E
0

1

dk@2 i ]m
x G̃0M~x2y!~]z

s2hs!G̃sn
0M ab

1~m,x,a!↔~n,y,b!#. ~58!
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The last term on the right-hand side involvesk-dependent functions for ghost and gauge field

G̃0M~x2y!5E d4q
e2 iq•~x2y!

~k21!q22 ikq•h2 i e
~59!

and

G̃sn
0M ab~x2y!5dabE d4ke2 ik•~x2y!G̃sn

0M~k! ~60!

with

G̃mr
0M~k!52

1

k21 i e F gmr1

S F @~12k!22l#2
h2k2

k21 i eGkmkr2 ik~12k!k[mhr]1
k2h•k

k21 i e
k[mhr] 1

1 i
k2e

k21 i e
hmhrD

S 2
k2

~k21 i e!
@~h•k!22h2k21~k21h2!~k21 i e!#12k2k2 i el2k2D G .

~61!

@It should be emphasized that~59! and~60! are only intermediate objects occurring in calculatio
and arenot the actual ghost and gauge propagators~even in intermediate gauges! as the latter must
be evaluated ultimately with a term likeeO18@f8,k# in the exponent.# We obtain:

G̃mn
0A2G̃mn

0L5
2i

~k21ie!2~12ij12ij2!~12ij21j1
21ij2j3!

3E
0

1

dk
FkmknSk1Fil2j1~12l!

j11ij3
GD~j11ij3!1hmknSk1F12ij2~12l!

212ij11ij2
GD~212ij11ij2!G

~k2a1!~k
222gk1b!

1~k→2k,m↔n! ~62!

with

j1[
h•k

k21 i e
, j2[

e

k21 i e
, j3[

h2

k21 i e
,

a1[
1

12 i j12 i j2
,

~63!

g[
~12 i j2!

12 i j21j1
21 i j2j3

[
12 i j2

D
,

b[
11 i j2~l21!

12 i j21j1
21 i j2j3

5g1
i j2l

D
.

For uh•ku@e one can show that~62! leads to the usual behavior of the axial propagator~see Refs.
12 and 13!, which then reads:

G̃mn
0A2G̃mn

0L 52
1

k2 kmknS ~lk21h2!

~hIk!2 1
~12l!

k2 D1
k[mhn] 1

k2h•k
. ~64!

Equation~62! has been used to deal with the singularity structure nearh•k50.12,13
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V. CONCLUSIONS AND FURTHER DIRECTIONS

In this work, we addressed the problem of relating calculations in two sets of uncorre
gauges. We took for concreteness the axial and the Lorentz-type gauges from the point of v
their common usage. We used the results of Ref. 9 applied to the concrete case of FFBRS f
and Lorentz-type gauges obtained in Ref. 10. We established a procedure for relating ar
Green’s functions in the two sets of gauges. We showed that this involved another but r
FFBRS, obtained by integration of an IFBRS as in Ref. 9. We found that the final result cou
put in a neat form~53! or ~54!. Form ~53! is particularly useful from calculational point of view
We expect our results to be useful in~i! deriving the correct prescription for 1/(h•k)-type singu-
larities in axial gauges;~ii ! providing insights into problems associated with existing prescripti
in axial/light cone gauges;~iii ! resolving existing discrepancies in the two sets of gauges.
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APPENDIX: MODIFIED FFBRS

For the modified IFBRS, we wish to show that it can be integrated along the lines of R
~Sec. III!. As done there, we can write with modification inf of ~3.6! of Ref. 9:

f @f̃,k#[ f 1@f̃#1k f 2@f̃#. ~A1!

Then,

dQ8@f̃~k!#

dk
5~ f 1@f̃#1k f 2@f̃# !Q8@f̃~k!#. ~A2!

Following Ref. 9, we notef i@f̃(k)#Q8@f̃(k)#5 f i@f̃(0)#Q8@f̃(k)#[ f i@f#Q8@f̃(k)#( i 51,2),
one gets:

dQ8@f̃~k!#

dk
5~ f 1@f#1k f 2@f#!Q8@f̃~k!#. ~A3!

Integrating~A3! from k50 to k5k,

Q8@f̃~k!#5Q8@f#expS E
0

k

f @f,k8#dk8D 5Q8@f#expS k f 1@f#1
k2

2
f 2@f# D . ~A4!

Similarly, one writes~45! as

df̃~k!

dk
[~d̃1@f̃~k!#1kd̃2@f̃~k!#!Q8@f̃~k!#5~ d̃1@f#1kd̃2@f#!Q8@f̃~k!#. ~A5!

Integrating~A5! from k50 to k51, one gets

f85f1~ d̃1@f#Q1@f#1 d̃2@f#Q2@f#!Q8@f#, ~A6!

where

Q1,2@f#[E
0

1

dk~1,k!expS k f 1@f#1
k2

2
f 2@f# D . ~A7!
                                                                                                                



tta, April

1767J. Math. Phys., Vol. 41, No. 4, April 2000 Green’s functions in axial and Lorentz gauges

                    
For the modified FFBRS of Sec. III,

f 1@f#[ i E d4xF]•Aa

l
~]•Aa2h•Aa!1 c̄~]•D2h•D !cG

~A8!

f 2@f#[2
i

l E d4x~]•Aa2h•Aa!2.

Now we apply the FFBRS of~A6! to the problem at hand. Consider the vev ofO in the axial
gauge:

E Df8O@f8#eiSeff
A

. ~A9!

Now,

O@f8#[O@f1~ d̃1Q11 d̃2Q2!Q8#5O@f#1~ d̃1Q11 d̃2Q2!Q8
dO
df

. ~A10!

We substitute~A10! in ~A9! to obtain~53!, viz.

GO
A[E Df8O@f8#eiSeff

A
5E DfO@f#eiSeff

L
1E Df~d̃1Q11 d̃2Q2!Q8

dO
df

eiSeff
L

. ~A11!

We now note the forms ofQ1 andQ2 in ~A7! and that

iSeff
L 1k f 1@f#1

k2

2
f 2@f#[ iSeff

M . ~A12!

This leads us to

^^O&&A5^^O&&L1E
0

1

dkE Df~d̃1@f#1kd̃2@f#!Q8@f#
dO
df

eiSeff
M

, ~A13!

which agrees with~54!.
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Non-Kolmogorov probability models and modified Bell’s
inequality

Andrei Khrennikov
Department of Mathematics, Statistics and Computer Sciences, University of Va¨xö,
S-35195, Sweden
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We analyze the proof of Bell’s inequality and demonstrate that this inequality is
related to one particular model of probability theory, namely Kolmogorov measure-
theoretical axiomatics from 1933. We found a~numerical! statistical correction to
Bell’s inequality. Such an additional termef on the right-hand side of Bell’s
inequality can be considered as a probability invariant of a quantum statef. This is
a measure of nonreproducibility of hidden variables in different runs of experi-
ments. Experiments to verify Bell’s inequality can be considered as just experi-
ments to estimate the constantef . It seems that Bell’s inequality could not be
used as a crucial reason to deny local realism. We consider deterministic as well
as stochastic hidden variables models. ©2000 American Institute of Physics.
@S0022-2488~00!01504-8#

I. INTRODUCTION

Experimental violations1 of Bell’s inequality2 are typically~see, for example, Refs. 1 and 3!
interpreted in one of two ways:~1! nonlocality: by changing the state of one particle in th
Einstein–Podolsky–Rosen~EPR! pair we change the state of the other particle or~2! death of
reality : realism could not be used as the philosophic base of quantum mechanics~‘‘properties’’ of
quantum systems are not objective properties, i.e., the properties of an object!. In particular,~2!
implies that the statistical interpretation of quantum mechanics~via Ref. 4! must be denied in
favor of the orthodox Copenhagen interpretation. Although such a viewpoint is dominating
quantum community, there are still some doubts that violations of Bell’s inequalitymust be
interpreted in such a way. In particular, many scientists thought~and continue to think! that
‘‘Bell’s paradox’’ has purely probabilistic origin~see, for example, Ref. 5!. Unfortunately, these
probabilistic considerations had merely philosophic character. In any case, they did not give
~Bell-like! inequality which has an experimental meaning.

Remark 1.1: The common opinion is that ‘‘Bell’s paradox’’~experimental violations of Bell’s
inequality! is just a reformulation of the EPR paradox. However, the problem is more complic
Bell’s probabilistic reformulation of the EPR paradox contains some additional assumption~on
probability distribution of hidden variables!.

In this note we follow to the general~probabilistic! attitude of Ref. 5. In fact, we generaliz
ideas of De Baere5 on connection of Bell’s inequality and ‘‘implicit reproducibility’’~we arrived
at such ideas independently by developing non-Kolmogorov probability formalisms6!. However,
we found some statisticalquantity ef which can be considered as a probability invariant o
quantum statef. It seems that the standard interpretation of violations of Bell’s inequality
consequence of neglecting this quantityef .

We analyze Bell’s proof and demonstrate that the possibility to derive Bell’s inequality
pends crucially on the use of a particular probabilistic model, namely the model based on
mogorov’s axiomatics7 ~so-called measure-theoretical approach to probability!. Of course, the
Kolmogorov model is the dominating mathematical model for probability theory. Therefore,
not surprising that J. Bell and many others used this approach to probability theory. How
there also exist numerous non-Kolmogorov probabilistic models~which are similar to non-
Euclidean geometrical models! ~see, for example, Ref. 8 and Accardi and Gudder in Ref. 5!. In
17680022-2488/2000/41(4)/1768/10/$17.00 © 2000 American Institute of Physics
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particular, I constructed probabilistic models6 which describe random phenomena in that t
standard law of large numbers is violated: relative frequenciesnN5n/N have no limit~stabiliza-
tion!, n→` ~numerous examples of such a random behavior can be found in Ref. 6!.

Remark 1.2:We want to underline that in physics the choice of the right probability mode
not less important than the choice of the right geometric model. The Kolmogorov model~as well
as Euclidean model! could not describe all physical phenomena.

In this note we analyze ‘‘Bell’s paradox’’ on the basis of the assumption that the law of l
numbers can be violated for hidden variables:nN(l) can fluctuate. From the physical viewpoin
this means that different runs of experiments~for example, for correlated particles! can produce
different ‘‘probability distributions’’ for hidden variables. In such a situation it would be imp
sible to define a Kolmogorov probability distributionP on the set of hidden variablesL. Kolmog-
orov’s model could not be applied. We introduce a numerical measure for fluctuationsef . It will
be shown that ‘‘general Bell’s inequality’’ must contain this probability invariant of a quan
state as an additional term.

Finally, we remark that all experimental calculations are, in fact, based not on the Kol
orov model~probability as a measure!, but on the von Mises9 model ~probability as frequency!.
‘‘Experimental covariation’’ of two observables,A,B, is calculated as a sequence mean val
^A,B& fr5(1/N)( i 51

N AiBi , where x5(A1 ,A2 ,...,AN) and y5(B1 ,B2 ,...,BN) are random se-
quences~collectives! generated by measurements ofA andB. Hence, in fact,̂ A,B& fr depends on
x andy: ^A,B& fr5^A,B&xy . However, J. Bell supposed that there exists a Kolmogorov probab
distributionP on the set of hidden variablesL and all covariations can be written as mean valu
with respect to this unique measure:^A,B&Bell/Kol5*LA(l)B(l) dP(l). This ~rather strong! as-
sumed statistical postulate has never been verified experimentally.

II. BELL’S PROOF

We reproduce the proof of Bell’s inequality. LetP5(V,F,P) be a Kolmogorov probability
space:V is a space of elementary events,F is an algebra of events, andP is a probability measure

Theorem 1: Let A,B,C561 be random variables onP. Then Bell’s inequality

u^A,B&2^C,B&u<12^A,C& ~1!

holds true
Proof: SetD5^A,B&2^C,B&. By linearity of the Lebesgue integral we obtain

D5E
V

A~v!B~v! dP~v!2E
V

C~v!B~v! dP~v!5E
V

@A~v!2C~v!#B~v! dP~v!. ~2

As A(v)251,

uDu5U E
V

@12A~v!C~v!#A~v!B~v! dP~v!U<E
V

@12A~v!C~v!# dP~v!. ~3!

Of course, this is the rigorous mathematical proof of~1! for Kolmogorov probabilities. How-
ever, the abstractness of Kolmogorov’s probability model induces serious problems, if we d
control carefully the dependence of probabilities on corresponding statistical ensembles of
cal systems. Bell did not control this dependence. In fact, the symbolP of probability which is
used in the proof must be regarded as different statistical ensembles.

III. FLUCTUATING DISTRIBUTIONS OF HIDDEN VARIABLES

To simplify our considerations, we suppose that the set of hidden variables is finitL
5$l1 ,...,lM%. For each physical observableU, the valuel of hidden variables determines th
valueU5U(l). Let U andV be physical observables,U,V561. We start with the consideratio
of the frequency~experimental! covariation^U,V&xUV

with respect to a random sequencexUV
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5(x1,x2,...,xN ,...), wherexi5(ui ,v i), which is induced by measurements of the pair (U,V). The
xUV is obtained by measurements for an ensembleSUV of physical systems~for example, pairs of
correlated quantum particles!. Our aim is to represent experimental covariation^U,V&xUV

as en-
semble covariation̂U,V&SUV

. Then we shall demonstrate that in the general case it is impos
to perform for ensemble covariations Bell’s calculations which have been performed for Kol
orov covariations. LetSUV5$d1 ,...,dN%, where thei th measurement is performed for the syste
di . Define a functioni→l( i ), the value of hidden variables fordi . We setnk(SUV)5u$di

PSUV :l( i )5lk%u and pk
UV5PSUV

(l5lk)5nk(SUV)/N. These are probabilities of hidden var
ables lk ,k51,2,...,M , in the statistical ensemble SUV . We have ^U,V&xUV

5(1/N)( i 51
N U„l( i )…V„l( i )…5(k51

M pk
UVukvk5^U,V&SUV

, where uk5U(lk) and vk5V(lk).
Thus

D5^A,B&xAB
2^C,B&xCB

5^A,B&SAB
2^C,B&SCB

5(
k

~pk
ABak2pk

CBck!bk

and

^A,C&xAC
5^A,C&SAC

5(
k

pk
ACakck .

We now suppose thatprobabilities oflk do not depend on statistical ensembles:

pk5pk
AB5pk

CB5pk
AC ~4!

~later we shall modify this condition to obtain statistical coincidence of probabilities, instead o
precise coincidence!. HenceD5(k51

M pk(ak2ck)bk and ^A,C&xAC
5(k51

M pkakck . We can now

apply Theorem 1 for the discrete probability distribution$pk%k51
M and obtain Bell’s inequality.

However, if condition~4! does not hold true, then equality~2! and, as a consequence, Bell
inequality can be violated. The violation of condition~4! is the exhibition of unstable statistica
structure on the level of hidden variables. Condition~4! is equivalent to a condition of implicit
reproducibility which was discussed by De Baere.5

Remark 3.1:~p-adic probability models, negative probabilities, and Bell’s inequality! All our
considerations were based on the statistical stabilization with respect to the real metric. In
we considered the statistical stabilization with respect to ap-adic metric. The field ofp-adic
numbersQp , wherep.1 is a prime number, can be constructed~as the field of real numbersR!
as a completion of the field of rational numbersQ. Thep-adic metric differs strongly from the rea
one. As for finite ensemblesS, ensemble probabilitiesPS(a)5n(a)/N are rational numbers; we
can study their behavior not only with respect to the real metric onQ, but also with respect to the
p-adic metric.p-adic probability theory gives numerous examples of ensemble probabilities
tuating in the real metric and stabilizing in thep-adic metric. However, thep-adic stabilization of
probabilities does not imply the possibility to repeat Bell’s proof forp-adic probabilities: these
probabilities may be negative rational numbers~see Ref. 6 and compare with Muckenheim in R
5!.

IV. MEASURE OF STATISTICAL DEVIATION BETWEEN RUNS OF AN EXPERIMENT

We introduce now a statistical analog of the precise coincidence of ensemble probabilit
hidden variables. LetE1 ,E2 be two ensembles of physical systems and letp be a property of
elements of these ensembles. Thep has values (a1 ,...,am). We define

dp~E1 ,E2!5(
i 51

M

uPE1
~a i !2PE2

~a i !u,
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wherePE(a i)5u$dPE:p(d)5a i%u/uEu are ensemble probabilities. We remark that the funct
d5dp is a pseudometric on the set of all ensembles whose elements have the propertyp : ~1!
d(E1 ,E2)>0; ~2! d(E1 ,E2)5d(E2 ,E1); and~3! d(E1 ,E2)<d(E1 ,E3)1d(E3 ,E2). In our model we
setp5l, hidden variables. The precise reproducibility of the probability distribution of hid
variables~4! can be written as

d~SAB ,SCB!5d~SAB ,SAC!50,

whered5dl . Of course, we need not use such a precise coincidence in probabilistic con
ations. Letf be a quantum state. Denote by the symbolTf the set of all statistical ensemblesE
which correspond tof ~can be obtained with the aid of some preparation procedure correspo
to f!. Set

ef5sup$d~E1 ,E2!:E1 ,E2PTf%.

Theorem 2: (‘‘general Bell’s inequality’’) Let f be a quantum state and let A, B, C b
physical observables such that pairs of observables (A, B), (C, B), and (A, C) can be mea
Then inequality

u^A,B&2^C,B&u<~112ef!2^A,C& ~5!

holds true.
Proof: We have

uDu5u^A,B&xAB
2^C,B&xCB

u

<U(
k51

M

pk
AB~ak2ck!bkU1U(

k51

M

~pk
AB2pk

CB!ckbkU
<ef1 (

k51

M

pk
ABuakbku~12akck!

<~11ef!2^A,C&SAC
1 (

k51

M

upk
AC2pk

ABuuakcku

<~112ef!2^A,C&SAC
.

We use the indexN to denote the cardinality of a statistical ensemble. If probabili
PS

UV
N (lk) stabilize whenN→`,

lim
N→`

PS
UV
N ~lk!5P~lk!,

thenef
N→0, N→`. This implies the precise Bell’s inequality~1!.

Experiments to verify Bell’s inequality can be considered as experiments to estimat
probability invariantef for some class of quantum states. It seems that the only lesson of
experiments is thatthere exist quantum statesf which have nonzero probability invariantef . It
may be that physical reality is nonlocal. It may be that it is even nonreal. However, it seem
Bell’s arguments implied neither nonlocality nor nonreality.

V. STOCHASTIC HIDDEN VARIABLES MODEL

In this section it is supposed that the result of a measurement depends not only on the
l of hidden variables, but also on the statevU of an equipmentMU which is used for measuring
of U. This is the empiricists~contextualistic realists! interpretation of quantum mechanics~see, for
example, W. De Muynck, W. De Baere, and H. Marten in Ref. 5!.
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A measurement deviceMU is a complex macroscopic system whose state depends o
huge number of fluctuating parameters. Denote the ensemble of all possible states ofMU by the
symbolSU :SU5$v1

U ,...,vLU

U %. The final valueU f of an observableu depends on bothl andv:

u5U~v,l!.

We call such a model astochastic hidden variables model. Our model of stochastic hidde
variables differs from the standard one~see Sec. VI!. The latter model is strongly connected wi
Kolmogorov’s probability model~existence of the probability distribution of hidden variabl
P(l) and conditional probabilitiesP(U,l) is postulated!.

Let U andV be physical observables,U,V561. We start again with the consideration of th
frequency covariation̂U,V&xUV

with respect to a collectivexUV induced by the measurement o
the pair (U,V). ThexUV is obtained by measurements for an ensembleSUV of physical systems.
Our aim is again to represent the experimental covariation^U,V&xUV

as ensemble covariatio

^U,V&SUV
. Then we shall demonstrate that in the general case it is impossible to perfor

ensemble covariations Bell’s calculations,~2! and ~3!.
Let SUV5$d1 ,...,dN%, where thei th measurement is performed for the systemdi . Define

functionsi→l( i ) ~the same function as above! andi→vU( i ), i→vV( i ), states of apparatusMU

andMV , respectively, at the instances,t i
U andt i

V , of measurements ofU andV for the i th system.
We have

^U,V&xUV
5

1

N (
i 51

N

U„vU~ i !,l~ i !…V„vV~ i !,l~ i !….

Set Dks
U 5$ i :l( i )5lk ,vU( i )5vs

U% and Dks
V 5$ i :l( i )5lk ,vV( i )5vs

V%, 1<k<M , 1<s<LU ,
1<q<LV . Set l ksq

UV5uDks
U ùDkq

V u. It is evident that

(
k51

M

(
s51

LU

(
q51

LV

l ksq
UV5N.

Hence

^U,V&xUV
5

1

N (
ksq

l ksq
UVuksvkq ,

whereuks5U(vs
U ,lk) and vkq5V(vq

V ,lk). We show that̂ U,V&xUV
can be represented as a

ensemble covariation for an appropriative ensemble of physical systems and states of m
ment devices. However, a choice of such an ensemble is a rather delicate problem.

First we note that̂U,V&xUV
Þ^U,V&L3SA3SB

~compare with Sec. VI!. For the latter covaria-
tion, we have

^U,V&L3SA3SB
5

1

MLALB
(
k51

M

(
s51

LU

(
q51

LV

uksvkq ,

and, in general,PL3SA3SB
(l5lk ,vU5vs

U ,vV5vq
V)51/MLALBÞ l ksq/N even approximately

for M ,N,LA , LB→`.
It is also evident that̂U,V&xUV

Þ^U,V&SUV
. The latter covariation is simply not well defined

because the ‘‘properties’’vU( i )5vs
U andvV( i )5vq

V are not objective properties of elements
the ensembleSUV . These ‘‘properties’’ are determined by fluctuations of parameters in the a
ratusMU andMV .
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To find the right ensemble, we have to introduce two new ensembles, namely, ensem
states of the apparatusMU andMV ~in the process of measurements for the ensemble of phy
systemsSUV!:

SMU
5$a1

U ,...,aN
U%, a j

UPSU , SMV
5$a1

V ,...,aN
V%,a j

VPSV ,

wherea i
U5vU( i ) anda i

V5vV( i ) are states ofMU andMV at the instances ofi th measurements
We set

SUV5diag~SUV3SMU
3SMV

!5$D1 ,...,DN%, D j5~dj ,a j
U ,a j

V!.

Thenp(D j )5„l( j ),vU( j ),vV( j )… is an objective property of elements of the ensembleSUV and

^U,V&xUV
5^U,V&SUV

5
1

N (
i 51

N

U„vU~ i !,l~ i !…V„vV~ i !,l~ i !….

We set

pksq
UV5PSUV

„D j :p~D j !5~lk ,vs
U ,vs

V!…5
u$D jPSUV :p~D j !5~lk ,vs

U ,vs
V!%u

uSUVu
.

Hence we obtained that

^U,V&xUV
5^U,V&SUV

5(
ksq

pksq
UVuksvkq .

Thus, in the general case, we have

D5^A,B&xAB
2^C,B&xCB

5^A,B&SAB
2^C,B&SCB

5(
ksq

pksq
ABaskbkq2(

ksq
pksq

CBcksbkq

and

^A,C&xAC
5^A,C&SAC

5(
ksq

pksq
ACaksckq .

We suppose now that probabilitiespksq
UV do not depend on ensembles:

pksq5pksq
AB 5pksq

CB5pksq
AC . ~6!

In particular, we suppose that all measurement devices have the same set of states~of parameters!:

S5SA5SB5SC ~and L5LA5LB5LC!. ~7!

Then we obtain

D5(
ksq

pksq~aks2cks!bkq .

However, we could not repeat trick~3! of the proof of Bell’s inequality. The equalityaks
2 51 does

not give the possibility of proceed with the proof. Of course, we have

uDu5u(
ksq

pksq~aks2aks
2 cks!bkqu<(

ksq
pksquaksbkqu~12akscks!<12(

ksq
pksqakscks .
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However, in general,(ksqpksqakscks is not larger than̂A,C&xAC
5(ksqpksqaksckq .

Therefore, if we keep to empiricism, then even stability condition~6! ~for combined en-
sembles of physical systems and states of measurement apparatus! does not imply Bell’s inequal-
ity. A new source of violation of Bell’s inequality is theinconsistencyof random fluctuations for
two measurement devicesMU andMV . In generalvU( i )ÞvV( i ).

Suppose that it could be possible to control states ofMU andMV and choosev for MU and
MV in the consistent way:

v5vU~ i !5vV~ i !.

Then the ensembleSUV would contain only triples of the form (lk ,vs ,vs) and

pksq
UV5PSUV

~lk ,vs
U ,vq

V!50, sÞq. ~8!

In such a case we obtain covariations:

^U,V& Ideal5
1

N (
i 51

N

U„vU~ i !,l~ i !…V„vV~ i !,l~ i !…5(
ks

pks
UVuksvks ,

wherepks
UV5pkss

UV . If we also suppose the validity of~6!, we obtain

uD Idealu5u(
ks

pks~aks2cks!bksu<12(
ks

pksakscks512^A,C& Ideal.

However, ideal covariations have no direct connection to experimental frequency covariati
Nevertheless, we can formulate the following mathematical theorem:
Theorem 3: Let statistical ensembles (physical systems/measurement apparatus) satisf

ditions (6) and (8). Then Bell’s inequality (1) holds true for covariations with respect to th
ensembles.

Therefore, to obtain Bell’s inequality in the empiricists framework, we have to suppose~1!
statistical repeatability of ensemble distribution of hidden variablesl in ensembles which are use
for measurements;~2! statistical repeatability of fluctuations of statesv in ensembles of an equip
ment; and~3! consistency of fluctuations of all measurement devices.

If the reader even denies the possibility of violations of~1! or ~2!, he must agree that conditio
~3! seems to be nonphysical: we could never control fluctuations of the huge number of para
in the equipment.

Instead of precise coincidence~6!, it is possible to consider@under the assumption~7!# the
statistical coincidence based on the quantity:

d~SAB ,SCB!5 (
k51

M

(
s51

L

(
q51

L

upksq
AB 2pksq

CBu

Here d5dp for the propertyp( i )5„l( i ),vU( i ),vV( i )…. We remark that condition~6! of the
precise coincidence can be written as

d~SAB ,SCB!50

for every two pairs of observable~A, B! and~C, B!. We also introduce a new quantity which is
statistical measure of the inconsistency of ensemblesSMU

andSMV
:

s~SUV!5(
sÞq

PSUV
~vU5vs ,vV5vq!5(

k
(
sÞq

pksq
UV .

Condition ~8! of the precise consistency for states ofMU andMV can be written in the form
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s~SUV!50.

Theorem 4: Let statistical ensembles (physical systems/measurement apparatus) satisf
ditions

d~SAB ,SCB!,d~SAB ,SAC!<e and s~SAB!,s~SCB!,s~SAC!<e8.

Then inequality

u^A,B&SAB
2^C,B&SCB

u<~112e13e8!2^A,C&SAC

holds true.
Proof: We have

uDu<e1U(
ksq

pksq
AB ~aks2cks!bkqU

<e12e81(
ks

pks
ABu~aks2cks!bksu

<e12e81(
ks

pks
AB~12akscks!

<e13e81(
ksq

pksq
AB ~12aksckq!

<~112e13e8!2(
ksq

pksq
ACaksckq .

j

We remark again that experiments to test Bell’s inequality can be interpreted as just e
ments to find an estimate for a constantC52e13e8. From this point of view the only result o
these experiments is thatC is essentially larger that zero. However, such a results could
expected: it would be rather strange if measures of statistical deviationsd ands would be equal to
zero despite of fluctuations of parameters of measuring devices.

VI. PROBABILITY DISTRIBUTIONS IN STOCHASTIC HIDDEN VARIABLE MODELS

Typically stochastic hidden variable models are defined as models with probabilitiese5
61)

P~U5e!5E
L

P~U5e/l!dr~l!, ~9!

wherer(l) is the probability distribution of hidden variables andP(U5e/l) is the conditional
probability to measure the valueU5e for the quantum system having the hidden statel. See, for
example, Ref. 10.

Then~see Ref. 11! the joint probability distribution can be defined~at least mathematically! as

P~U15e1 ,U25e2 ,U35e3!5E
L

P~U15e1 /l!P~U25e2 /l!P~U35e3 /l! dr~l!. ~10!

In fact, to derive Bell’s inequality in the Kolmogorov framework, it is sufficient to use
existence~on the mathematical level! of the joint probability distribution~10!. However, consid-
erations in the framework of the ensemble probability theory demonstrated that ‘‘probabili
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~9! has no physical meaning. These are probabilities with respect to the ensembleL3SU . How-
ever, physical probabilities are probabilities with respect to the ensembleSU5diag (SU3SMU

),
whereSU5$d1 ,...,dN% is the ensemble of quantum system used in the measurement. We no
physical arguments against existing of representation~9! were presented by W. De Muynck, W
De Baere, and H. Marten in Ref. 5. I think that results of this paper can strongly improve
considerations. We hope that our numerical description of the nonexistence of Kolmogorov
abilities could essentially clarify the problem.

VII. OTHER PROBABILISTIC MODELS WHICH DO NOT CONTRADICT TO LOCAL
REALISM

L. Accardi in Ref. 5 used a non-Kolmogorov model without Bayes’ formula to elimin
Bell’s inequality from considerations related to the spin model. Recently, he developed a
model which gives an explanation of violations of Bell’s inequality,~see Ref. 12!. In fact, to get
‘‘physical Bell’s inequality’’ we have to consider in Theorem 1 indexed random variablesU1 and
U2 corresponding to correlated particles, 1 and 2. ‘‘Physical Bell’s inequality’’ can be obta
only on the basis of the implicit anticorrelation:U152U2. Accardi discussed the role of thi
condition in Bell’s arguments.

I. Pitowsky in Ref. 5 discussed the possibility that some nonmeasurable sets can be p
events, i.e., some physical observables may be nonmeasurable. There is no Bell’s inequality
approach. Thus there is no problem with violations of Bell’s inequality. This model is consi
with known polarization phenomena and the existence of macroscopic magnetism. He als
posed a thought experiment which indicates a deviation from the predictions of quantum me
ics. We note that already A. N. Kolmogorov discussed ‘‘generalized probabilities’’ on the alg
of all subsets ofV. Mathematicians, in particular applied mathematicians, where reluctant to
nonmeasurable sets seriously. As a result there was no mathematical theory that relates n
surable distributions with relative frequencies. Such an extension of probability theory was c
by I. Pitowsky and then strongly mathematically improved by S. P. Gudder in Ref. 5. He i
duced the concept of a probability manifoldM. The global properties ofM inherited from its local
structure were then considered. It was shown that a deterministic spin model due to Pitows
within this general framework. Finally, Gudder constructed a phase-space model for nonr
istic quantum mechanics. These two models give the same global description as conve
quantum mechanics. However, they also give a local description which is not possible in co
tional quantum mechanics.
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The one-dimensional spinless relativistic Coulomb
problem
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Motivated by a recent analysis that presents explicitly the general solution, we
consider the eigenvalue problem of the spinless Salpeter equation with a~‘‘hard-
core amended’’! Coulomb interaction potential in one dimension. We prove the
existence of a critical coupling constant~which contradicts the assertions of the
previous analysis! and give analytic upper bounds on the energy eigenvalues. These
upper bounds seem to disprove the previous explicit solution. ©2000 American
Institute of Physics.@S0022-2488~00!04004-4#

I. INTRODUCTION: THE SPINLESS SALPETER EQUATION IN ONE DIMENSION

The spinless Salpeter equation arises either as a standard reduction of the well-known
Salpeter formalism1 for the description of bound states within the framework of relativistic qu
tum field theory or as a straightforward relativistic generalization of the nonrelativistic Sc¨-
dinger equation. This semirelativistic equation of motion with a static interaction described b
Coulomb potential~originating, for instance, from the exchange of a massless particle betwee
bound-state constituents! defines what we call, for short, the ‘‘spinless relativistic Coulomb pr
lem.’’ ~The present state of the art of the three-dimensional relativistic Coulomb problem has
reviewed, for instance, in Refs. 2–4.!

Recently, confining the configuration space to the positive half-line~and mimicking thereby
the effect of a ‘‘hard-core’’!, the relativistic Coulomb problem has been studied in o
dimension.5 This one-dimensional case may serve as a toy model that might prove to be in
tive for the analysis of the still unsolved three-dimensional problem. In view of its pote
importance, we reanalyze this nontrivial and delicate problem.

The spinless Salpeter equation may be regarded as the eigenvalue equation,

Huxk&5Ekuxk&, k51,2,3,...,

for the complete set of Hilbert-space eigenvectorsuxk& and corresponding eigenvalues,

Ek[
^xkuHuxk&

^xkuxk&
,

of a self-adjoint operatorH of Hamiltonian form, consisting of a momentum-dependent kine
energy operator and a coordinate-dependent interaction-potential operator:

H5T1V, ~1!

a!Electronic mail: wolfgang.lucha@oeaw.ac.at
b!Electronic mail: franz.schoeberl@univie.ac.at
17780022-2488/2000/41(4)/1778/10/$17.00 © 2000 American Institute of Physics
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whereT is the ‘‘square-root’’ operator of the relativistic kinetic energy of some particle of masm
and momentump,

T5T~p![Ap21m2, ~2!

andV5V(x) is an arbitrary, coordinate-dependent, static interaction potential. The action o
kinetic-energy operatorT on an elementc of L2(R), the Hilbert space of square-integrab
functions on the real line,R, is defined by@cf. also Eq.~3! of Ref. 5#

~Tc!~x!5
1

2p E
2`

1`

dpE
2`

1`

dyAp21m2 exp@ ip~x2y!#c~y!. ~3!

In Ref. 5, the domain ofH is restricted to square-integrable functionsC(x) with support on
the positive real line,R1, only, vanishing atx50 @cf. Eq. ~28! of Ref. 5#:

C~x!50, for x<0.

This restriction may be interpreted as due to the presence of a ‘‘hard-core’’ interaction pot
effective forx<0. Forx.0, the interaction potentialV is chosen to be of the Coulomb type, i
strength parametrized by a positive coupling constanta, i.e., a.0:

V~x!5VC~x!52
a

x
, for x.0.

Let the Coulomb-type semirelativistic HamiltonianHC be the operator defined in this way.

II. CONCERNS—DARK CLOUDS APPEAR AT THE HORIZON

Now, according to the analysis of Ref. 5, the point spectrum of the HamiltonianHC consists
of the set of eigenvalues@cf. Eq. ~33! of Ref. 5#,

Ẽn5
m

A11
a2

n2

, n51,2,3,... . ~4!

The corresponding eigenfunctionsCn(x) must be of the form@cf. Eq. ~28! of Ref. 5#

Cn~x!5cn~x!Q~x!, n51,2,3,..., ~5!

whereQ(x) denotes the Heaviside step function, defined here by

Q~x!51, for x.0,

Q~x!50, for x<0.

In particular, the~not normalized! eigenfunctionscn(x), n51,2,3, corresponding to the lowes
energy eigenvaluesẼn are explicitly given by@cf. Eqs.~37!–~40! of Ref. 5#

c1~x!5x exp~2b1x!,

c2~x!5xS x2
m2

S2
2b2

Dexp~2b2x!,
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c3~x!5xS x22
3m2

S3
2b3

x1
3m2~b3

21m2!

2S3
4b3

2 D exp~2b3x!, ~6!

with @cf. Eq. ~32! of Ref. 5#

bn[
ma

nA11
a2

n2

5
a

n
Ẽn , n51,2,3,...,

and the abbreviation@cf. Eq. ~26! of Ref. 5#

Sn[Am22bn
2, n51,2,3,... .

However, there are several facts that cause severe doubts about the validity of this so
Boundedness from below:For coupling constantsa larger than some critical valueac ~which

has yet to be determined!, the operatorHC is not bounded from below. This may be seen,
instance, already from the expectation value ofHC with respect to the~normalized! trial stateuF&
defined by the configuration-space trial function

F~x!5w~x!Q~x!,

with

w~x!52m3/2x exp~2mx!, m.0,

and satisfying the normalization condition

iuF&i2[^FuF&5E
0

`

dxuw~x!u251.

Apart from the arbitrariness of the variational parameterm, this trial functionF coincides, in fact,
with the ground-state solutionC1 , as given in Eqs.~5! and ~6!. The expectation value of the
Coulomb interaction-potential operatorVC with respect to the trial stateuF& reads as

^FuVCuF&52aE
0

`

dx
1

x
uw~x!u252ma.

There is a trivial~but nevertheless fundamental! inequality for the expectation values of a se
adjoint ~but otherwise arbitrary! operatorO5O† and its square, taken with respect to an arbitra
Hilbert-space stateuc& in the domainD(O) of this operatorO:

u^cuOuc&u
^cuc&

<A^cuO2uc&

^cuc&
, for all uc&PD~O!.

Application of this inequality to the kinetic-energy operatorT of Eq. ~2! allows us to get rid of the
troublesome square-root operator:

^FuTuF&<A^FuT2uF&[A^Fup2uF&1m2.

The expectation value ofp2 required here reads as

^Fup2uF&5m2.
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Thus, the expectation value of the Coulomblike semirelativistic HamiltonianHC with respect to
the trial stateuF& is bounded from above by

^FuHCuF&5^FuT1VCuF&<Am21m22ma. ~7!

When inspecting this inequality in the limit of largem, that is, form→`, one realizes that, fora
large enough, the operatorHC is not bounded from below. In fact, the expectation value of
kinetic-energy operatorT with respect to the trial stateuF&,

^FuTuF&5E
2`

1`

dx F* ~x!~TF!~x!5
4m3

p
E

0

`

dp
Ap21m2

~p21m2!2 , ~8!

is simple enough to be investigated explicitly. Form@m, this expectation value simplifies to

^FuTuF&5
2m

p
, for m@m.

Consequently, in the~ultrarelativistic! limit m→`, the expectation value ofHC behaves like

lim
m→`

^FuHCuF&
m

5
2

p
2a.

This clearly indicates that for the HamiltonianHC to be bounded from below the Coulom
coupling constanta has to be bounded from above by the critical value

ac<
2

p
.

~This upper bound onac is, in fact, identical to the critical coupling constantac found in the case
of the three-dimensional spinless relativistic Coulomb problem.6!

Upper bound on lowest eigenvalue:As rather a trivial consequence of the famous minimu
maximum principle,7 the expectation value,

^cuHuc&

^cuc&
,

of a self-adjoint operatorH bounded from below, with respect to some arbitrary stateuc& in the
domain of H, D(H), is always larger than or equal to the lowest eigenvalueE1 of H ~this
statement constitutes what is sometimes simply called ‘‘Rayleigh’s principle’’!:

E1<
^cuHuc&

^cuc&
, for all uc&PD~H !.

Accordingly, minimizing the expression on the right-hand side of inequality~7! with respect to the
variational parameterm yields a simple analytic upper boundÊ1 on the ground-state energ
eigenvalueE1 of the Coulomblike semirelativistic HamiltonianHC:

E1<Ê1 ,

with

Ê15mA12a2. ~9!
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The same analytic upper bound on the ground-state energyE1 has been found in the case of th
three-dimensional spinless relativistic Coulomb problem.8,9,4 The reality of this latter expressio
requires again the existence of a critical coupling constantac and indicates that this critical valu
of a is less than or equal to 1:

ac<1.

Moreover, at least for the energy eigenvalueE1 corresponding to the ground state of the Ham
tonianHC, the supposedlyexactvalue of Eq.~4!,

Ẽ15
m

A11a2
, ~10!

is in clear conflict with the naiveupper bound Eˆ 1 of Eq. ~9!:

Ê1

Ẽ1

5A12a4,

and therefore

Ê1,Ẽ1, for a.0.

For larger values of the Coulomb coupling constanta, the upper bound~9! on the ground-state
energy can be easily improved by fixing in the expectation value~8! of the kinetic-energy operato
T the variational parameterm to the valuem5m. In this case, this expectation value reads as

^FuTuF&5
4m

p
.

Accordingly, the ground-state energy eigenvalueE1 is bounded from above by

E1<S 4

p
2a Dm. ~11!

For the Coulomb coupling constanta in the range

2

p
2A1

2
2

4

p2 ,a<
2

p
,

the above expression represents a genuine improvement of the upper bound~9!.
Eigenstate expectation values versus eigenvalues:The expectation value~8! of the kinetic-

energy operatorT with respect to the trial stateuF& may be written down explicitly:

^FuTuF&5
2

p
mF m

m
1

arccos
m

m

A12
m2

m2

G .

Now, for
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m5b15
ma

A11a2
,

the trial functionF coincides with the normalized ground-state eigenfunctionC1 . In this case, the
corresponding expectation value of the HamiltonianHC becomes

^C1uHCuC1&5
m

A11a2 F 2

p
„a1~11a2!arccota…2a2G . ~12!

Unfortunately, the above expectation value does not agree with the ground-state energ~10!
deduced from Eq.~4!:

^C1uHCuC1&ÞẼ1 .

Orthogonality of eigenstates:Eigenstatesux i&, i 51,2,3,..., of some self-adjoint operatorH
corresponding to distinct eigenvalues ofH are mutually orthogonal:

^x i uxk&}d ik , i ,k51,2,3,... .

This feature is definitely not exhibited by the overlaps,

^C i uCk&5E
2`

1`

dx C i* ~x!Ck~x!5E
0

`

dx c i* ~x!ck~x!, i ,k51,2,3,...,

of the lowest eigenfunctionsC i(x), i 51,2,3, given in Eqs.~5! and~6!. For instance, the overlap
^C1uC2& of the ground stateuC1& and the first excitationuC2& is given by

^C1uC2&5
2@3S2

2b22m2~b11b2!#

~b11b2!4S2
2b2

,

revealing thus, beyond doubt, the nonorthogonality of the vectorsuC1& and uC2&.

III. EXACT ANALYTIC UPPER BOUNDS ON ENERGY LEVELS

In view of the above, let us try to collect unambiguous results for the one-dimensional sp
relativistic Coulomb problem. With the help of the definition~3! of the action of a momentum
dependent operator in coordinate space, it is easy to convince oneself of the validity
operator inequality,

T<TNR[m1
p2

2m
;

the relativistic kinetic-energy operatorT is bounded from above by its nonrelativistic counterp
TNR: when introducing the Fourier transformc̃(p) of the coordinate-space representationc(x) of
the Hilbert-space vectoruc&,

c̃~p![
1

A2p
E

2`

1`

dx exp@2 ipx#c~x!,

one finds
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^cuTNR2Tuc&5E
2`

1`

dx c* ~x!@~TNRc!~x!2~Tc!~x!#

5E
2`

1`

dpuc̃~p!u2S m1
p2

2m
2Ap21m2D

>0.

Hence, adding the Coulomb interaction potentialVC, the semirelativistic HamiltonianHC is, of
course, bounded from above by the corresponding nonrelativistic HamiltonianHC,NR:

HC<HC,NR[TNR1VC.

Now, upon invoking the minimum–maximum principle7 ~which requires the operatorHC to be
both self-adjoint and bounded from below! and combining this principle with the above operat
inequality, we infer that every eigenvalueEn , n51,2,3,..., ofHC is bounded from above by a
corresponding eigenvalueEn,NR, n51,2,3,..., ofHC,NR:

En<En,NR, for n51,2,3,... .

~The line of arguments leading to the general form of this statement may be found, for instan
Refs. 9 and 4. It is summarized in the Appendix. For a rather brief account of the applicat
these ideas to the three-dimensional spinless relativistic Coulomb problem, see, e.g., Ref.! It is
a simple and straightforward exercise to calculate the latter set of eigenvalues:

En,NR5mS 12
a2

2n2D , n51,2,3,... .

These upper bounds on the energy eigenvaluesEn may be easily improved by the same reason
as before. Introducing an arbitrary real parameterh ~with the dimension of mass!, we find a set of
operator inequalities for the kinetic energyT,9,4,10 namely,

T<
p21m21h2

2h
, for all h.0,

and, consequently, a set of operator inequalities for the Coulomb-type semirelativistic Hamil
HC:9,4

HC<ĤC~h![
p21m21h2

2h
1VC, for all h.0.

Accordingly, every eigenvalueEn, n51,2,3,..., ofHC is bounded from above by the minimum
with respect to the mass parameterh, of the corresponding eigenvalue,9,4

Ên,C~h!5
1

2h Fm21h2S 12
a2

n2 D G , n51,2,3,...,

of ĤC(h):

En<min
h.0

Ên,C~h!5mA12
a2

n2, for all a<ac .

For n51, this ~variational! upper bound coincides with the previous upper bound~9!. It goes

without saying that these upper bounds are violated by the energy eigenvaluesẼn given in Eq.~4!:
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1

Ẽn

min
h.0

Ên,C~h!5A12
a4

n4
,1, for aÞ0, for all n51,2,3,...,

means

min
h.0

Ên,C~h!,Ẽn , for aÞ0, for all n51,2,3,... !

Moreover, form5ma, our generic trial stateuF& becomes the lowest eigenstate of the no
relativistic HamiltonianHC,NR, corresponding to the ground-state eigenvalue

E1,NR5mS 12
a2

2 D ,

which may be easily seen:

~TNRw!~x!5S m2
1

2m

d2

dx2Dw~x!5S m2
m2

2m
1

m

m

1

xDw~x!, for x.0,

implies ~with m5ma)

HC,NRuF&5E1,NRuF&.

@The Coulomb problem involves no dimensional parameter other than the particle massm. There-
fore, both the energy eigenvaluesEn and the parameter~s! m have to be proportional tom.# It
appears rather unlikely that the same functional form represents also the eigenstate of th
relativistic HamiltonianHC.

IV. SUMMARY, FURTHER CONSIDERATIONS, CONCLUSIONS

In this work we are devoted to the study of the one-dimensional spinless relativistic Cou
problem on the positive half-line. Assuming a~dense! domain inL2(R1) such that the semirela
tivistic Coulombic HamiltonianHC defined in the Introduction is self-adjoint, analytic upp
bounds on the energy eigenvaluesEk , k51,2,3,..., have been derived:

Ek<mA12
a2

k2 , for all k51,2,3,... . ~13!

Surprisingly, the explicit solution presented in Ref. 5 does not fit into these bounds.
In order to cast some light into this confusing situation, let us inspect the action~3! of the

kinetic-energy operatorT in more detail. Consider the not normalized Hilbert-space vectorsuFn&,
n50,1,2,..., defined, as usual, by the coordinate-space representation

Fn~x!5xn exp~2mx!Q~x!, m.0, n50,1,2,... .

These vectors certainly belong to the Hilbert spaceL2(R) for all n50,1,2,..., since

iuFn&i2[^FnuFn&5E
2`

1`

dxuFn~x!u25E
0

`

dx x2n exp~22mx!5
G~2n11!

~2m!2n11,`.

However, the normiTuFn&i of the vectorsTuFn&, n50,1,2,..., may be found from

iTuFn&i25E
2`

1`

dxu~TFn!~x!u25
@G~n11!#2

2p E
2`

1`

dp
p21m2

~p21m2!n11 .
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This observation might be a hint that the vectoruF0&, that is,F0(x)5exp(2mx)Q(x), doesnot
belong to the domain of the kinetic-energy operatorT. If this is indeed true, it is by no mean
obvious how to make sense of Eq.~16! of Ref. 5 for the casen50.

Trivially, if Eq. ~16! of Ref. 5 is correct forn50, all these relations, for arbitraryn51,2,...,
may be obtained by a simple differentiation of the relation forn50 with respect to the~generic!
parameterm, taking advantage of

Txn exp~2mx!5S 2
d

dm D n

T exp~2mx!.

Similarly, it is somewhat hard to believe that Eq.~16! of Ref. 5 holds forn51. In our
notation, Eq.~16! of Ref. 5would read forn51,

~TF1!~x!5S S1
m

SxDF1~x!,

with

S[Am22m2.

Considering merely the norms of the vectors on both sides of this equation, we find, for the
of the vector on the left-hand side,

iTuF1&i25
m21m2

4m3 ,

but, for the norm of the vector on the right-hand side,

I S S1
m

SxD uF1&I 2

5
m41m4

4m3S2 .

These two expressions for the norms become equal only for the—excluded—casem50. Unfor-
tunately, precisely the above relation forms the basis for the assertion in Ref. 5 thatF1(x) with
m5b1 is the ground-state eigenfunction of the~‘‘hard-core amended’’! one-dimensional spinles
relativistic Coulomb problem, as defined in the Introduction.

In conclusion, let us summarize our point of view as follows: The energy eigenvaluesEk ,
k51,2,3,..., of the one-dimensional spinless relativistic Coulomb problem~with hard-core inter-
action on the nonpositive real line! are bounded from above by Eq.~13!. For the ground-state
energy eigenvalueE1 , this upper bound may be improved to some extent, by considering ap
priately the minimum of the bounds of Eq.~11!, Eq. ~12!, or Eq.~13! for k51, that is, Eq.~9!. To
our knowledge, these upper bounds represent the only information available at present ab
exact location of the energy levels of the~‘‘hard-core amended’’! one-dimensional spinless rela
tivistic Coulomb problem.
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APPENDIX: COMBINING MINIMUM–MAXIMUM PRINCIPLE WITH OPERATOR
INEQUALITIES „REFS. 9 AND 4…

There exist several equivalent formulations of the well-known ‘‘min–max principle.’’7 For
practical purposes, the most convenient one is perhaps the following.

~i! Let H be a self-adjoint operator bounded from below.
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~ii ! Let Ek , k51,2,3,..., denote the eigenvalues ofH, defined by
Huxk&5Ekuxk&, k51,2,3,...,

and ordered according to
E1<E2<E3<¯ .

~iii ! Consider only the eigenvaluesEk below the onset of the essential spectrum ofH.
~iv! Let Dd be somed-dimensional subspace of the domainD(H) of H: Dd,D(H).

Then thekth eigenvalueEk ~when counting multiplicity! of H satisfies the inequality

Ek< sup
uc&PDk

^cuHuc&

^cuc&
, for k51,2,3,... .

The min–max principle may be employed in order to compare eigenvalues of operators.

~i! Assume the validity of a generic operator inequality of the form
H<O.

Then

Ek[
^xkuHuxk&

^xkuxk&
< sup

uc&PDk

^cuHuc&

^cuc&
< sup

uc&PDk

^cuOuc&

^cuc&
.

~ii ! Assume that thek-dimensional subspaceDk in this inequality is spanned by the firstk
eigenvectors of the operatorO, that is, by precisely those eigenvectors ofO that correspond
to the firstk eigenvaluesÊ1 ,Ê2 ,...,Êk of O if the eigenvalues ofO are ordered according
to

Ê1<Ê2<Ê3<¯ .
Then

sup
uc&PDk

^cuOuc&

^cuc&
5Êk .

Consequently, every eigenvalueEk , k51,2,3,..., ofH is bounded from above by the correspon
ing eigenvalueÊk , k51,2,3,..., ofO:

Ek<Êk , for k51,2,3... .
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Becchi–Rouet–Stora–Tyutin invariant formulation
of spontaneously broken gauge theory
in a generalized differential geometry

Yoshitaka Okumuraa)

Department of Physics, Boston University, Boston, Massachusetts 02215
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Noncommutative geometry~NCG! on a discrete space successfully reproduces the
Higgs mechanism of the spontaneously broken gauge theory, in which the Higgs
boson field is regarded as a kind of gauge field on the discrete space. People also
know how to construct the generalized differential geometry~a GDG! as one ver-
sion of NCG on a discrete spaceM43ZN whereZN denotes theN points discrete
space. A GDG is a direct generalization of the differential geometry on the ordinary
manifold into the discrete one. In this paper, we attempt to construct the Becchi–
Rouet–Stora–Tyutin~BSRT! invariant formulation of spontaneously broken gauge
theory based on a GDG and obtain the BSRT invariant Lagrangian with the
’t Hooft–Feynman gauge fixing term. ©2000 American Institute of Physics.
@S0022-2488~00!04204-3#

I. INTRODUCTION

The standard model in particle physics has matched with all experimental data conduc
far. The only ingredient which remains undetermined is the Higgs boson field that caus
spontaneous breakdown of symmetry through its vacuum expectation value. The next go
future accelerators such as LHC and Tevatron II are to detect the Higgs boson and supersym
partners of particles and to find the breakthrough out of the standard model. Thus, the
concerns about the Higgs boson field will surely continue in the next decade.

Noncommutative geometry~NCG!1,2 on the discrete space successfully reproduces the H
mechanism of the spontaneously broken gauge theory, in which the Higgs boson field is re
as a kind of gauge field on the discrete space. Especially, the NCG approach does not requ
extra physical mode.

Since the original formulation of NCG by Connes,1 many versions of NCG2–4 have appeared
and succeeded in reconstructing the spontaneously broken gauge theories, especially the
model. Morita and the present author4 proposed a version of NCG@a generalized differentia
geometry ~GDG!# and reconstructed the Weinberg–Salam model. In this formulation onM4

3Z2 , following Sitarz in Ref. 3, the extra differential one-formx is introduced in addition to the
usual one-formdxm, and so this formalism is a generalization of the ordinary differential ge
etry on the compact manifold. This formulation was generalized to a GDG on the discrete
M43ZN

5,6 by introducing the extra one-formsxk(k51,2,...,N). It should be noted thatZN denotes
the N points discrete space and not the permutation group with degreeN. This generalization
enabled us to reconstruct the left–right symmetric gauge theory,6 SU~5! GUT,5 and SO~10! GUT7

as spontaneously broken gauge theories on the discrete spaceM43ZN .
It is also very important to reconstruct the gauge fixing and ghost terms in NCG in ord

ensure the quantization of gauge theory. Lee, Hwang, and Ne’eman8 succeeded in incorporatin
these terms in NCG in the matrix derivative approach based on the super-connection form9

They obtained the BRS/anti-BRS transformation rules of the theory by applying the horizon
condition10 in the super-connection formalism and constructed Becchi–Rouet–Stora–T

a!On leave of absence from Chubu University, Kasugai, 487-8501, Japan. Electronic mail: okum@bu.edu
17880022-2488/2000/41(4)/1788/13/$17.00 © 2000 American Institute of Physics
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~BRST! invariant Lagrangians including the gauge fixing and ghost terms. The present a
subsequently applied their idea to a GDG formulation of gauge theory onM43Z2 ~Ref. 11! and
obtained the BRST invariant formulation. In this article we apply a similar method to the m
general formulation of a GDG onM43ZN ~Ref. 12! based on a formulation of GDG.5

This article is organized as follows. The basic formulation is presented in Sec. II. Secti
is devoted to an application to the standard model of the basic formulation in Sec. II. Th
section is devoted to concluding remarks.

II. BRST TRANSFORMATION IN A GENERALIZED DIFFERENTIAL GEOMETRY

A generalized differential geometry~a GDG! on M43ZN was formulated5,6 to reconstruct the
gauge invariant Lagrangian of the spontaneously broken gauge theories such as the s
model, the left–right symmetric gauge theory, and SU~5! and SO~10! grand unified theories. In
this section, we incorporate BRST transformation in a GDG according to the super-field form
of BRST.13 This formulation11 was already done in a GDG on the discrete spaceM43Z2 . Here,
we generalize it toM43ZN wherexm andn (n51,2,...,N) are arguments inM4 andZN , respec-
tively.

Let us start with the equation of the generalized gauge fieldA(x,n,u,ū) written in one-form
on the discrete spaceM43ZN ,

A~x,n,u,ū !5
1

2 (
i

„bi
†~x,n,u,ū !dai~x,n,u,ū !1ai

†~x,n,u,ū !dbi~x,n,u,ū !…, ~1!

by adding the Grassmann numbersu and ū to xm andn to produce the ghost and antighost field
The constituentsai(x,n,u,ū) andbi(x,n,u,ū) are the square-matrix-valued functions with a su
script i which is a variable of the extra internal space. Now, we simply regardai(x,n,u,ū) and
bi(x,n,u,ū) as the more fundamental fields to construct gauge and Higgs fields because the
only mathematical meaning and never appear in final stage. The operatord in Eq. ~1! is the
generalized exterior derivative defined as follows:

d5d1 (
k51

N

dxk
1du1dū, ~2!

dai~x,n,u,ū !5]mai~x,n,u,ū !dxm, ~3!

dxk
ai~x,n,u,ū !5@2ai~x,n,u,ū !Mnk1Mnkai~x,k,u,ū !#xk , ~4!

duai~x,n,u,ū !5]uai~x,n,u,ū !du, ~5!

dūai~x,n,u,ū !5]ūai~x,n,u,ū !dū, ~6!

wheredxm is an ordinary one-form basis, taken to be dimensionless, in Minkowski spaceM4 , and
xk is the one-form basis, also assumed to be dimensionless, in the discrete spaceZN . du , dū are
also one-form bases in super-space. The operation ofd to bi(x,n,u,ū) is the same as in Eqs
~2!–~6!. We have introducedx-independent matrixMnk whose Hermitian conjugation is given b
Mnk

† 5Mkn . The matrix Mnk turns out to determine the scale and pattern of the spontan
breakdown of the gauge symmetry. Thus, the symmetry breaking mechanism is encoded
dx5Sk51

N dxk
operation. In order to find the explicit forms of gauge, Higgs, and ghost fi

according to Eqs.~1! and ~2!–~6!, we need the following important algebraic rule of a GDG:

xkf ~x,n,u,ū !5 f ~x,k,u,ū !xk , ~7!
                                                                                                                



n
e

-

gauge

to

at the
in Eq.

,

1790 J. Math. Phys., Vol. 41, No. 4, April 2000 Yoshitaka Okumura

                    
wheref (x,n,u,ū) is a field defined on the discrete space such asai(x,n,u,ū), gauge field, Higgs
field, ghosts or fermion fields. It should be noticed that Eq.~7! never expresses the relatio
between the matrix elements off (x,n,u,ū) and f (x,k,u,ū), but insures the product between th
fields expressed in differential form on the discrete space. Equation~7! realizes the noncommu
tativity of our algebra in the geometry on the discrete spaceM43ZN . Inserting Eq.~2!–~6! into
Eq. ~1! and using Eq.~7!, A(x,n,u,ū) is rewritten as

A~x,n,u,ū !5Am~x,n,u,ū !dxm1 (
k51

N

Fnk~x,u,ū !xk1C~x,n,u,ū !du1C̄~x,n,u,ū !dū, ~8!

where

Am~x,n,u,ū !5
1

2 (
i

„bi
†~x,n,u,ū !]mai~x,n,u,ū !1ai

†~x,n,u,ū !]mbi~x,n,u,ū !…, ~9!

Fnk~x,u,ū !5
1

2 (
i

$bi
†~x,n,u,ū !„2ai~x,n,u,ū !Mnk1Mnkai~x,k,u,ū !…

1ai
†~x,n,u,ū !„2bi~x,n,u,ū !Mnk1Mnkbi~x,k,u,ū !…%, ~10!

C~x,n,u,ū !5
1

2 (
i

„bi
†~x,n,u,ū !]uai~x,n,u,ū !1ai

†~x,n,u,ū !]ubi~x,n,u,ū !…, ~11!

C̄~x,n,u,ū !5
1

2 (
i

„bi
†~x,n,u,ū !]ūai~x,n,u,ū !1ai

†~x,n,u,ū !]ūbi~x,n,u,ū !…. ~12!

HereAm(x,n,u,ū), Fnk(x,u,ū), C(x,n,u,ū), andC̄(x,n,u,ū) are identified with the gauge field
in the flavor symmetry, Higgs field, and ghost and antighost fields, respectively. Thus, the
field Am(x,n,u,ū) and the ghost and antighost fieldsC(x,n,u,ū) andC̄(x,n,u,ū) are Lie algebra
valued. In order to identifyAm(x,n,u,ū) with true gauge fields, the following conditions have
be imposed:

(
i

bi
†~x,n,u,ū !ai~x,n,u,ū !51. ~13!

This equation is very important. It is often used in later calculations and may suggest th
variablei might be an argument in the internal space because the definition of gauge field
~9! is very similar to that in Berry phase.14 If we define the operator]k as

]kf ~x,n,u,ū !52 f ~x,n,u,ū !Mnk1Mnkf ~x,k,u,ū !, ~14!

the Higgs fieldFnk(x,u,ū) is written as

Fnk~x,u,ū !5
1

2 (
i

„bi
†~x,n,u,ū !]kai~x,n,u,ū !1ai

†~x,n,u,ū !]kbi~x,n,u,ū !…, ~15!

which is the same form as the ordinary gauge fieldAm(x,n,u,ū) in Eq. ~9!. For later convenience
we define the following one-form fields as

Â~x,n,u,ū !5Am~x,n,u,ū !dxm, ~16!
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F̂nk~x,u,ū !5Fnk~x,u,ū !xk , ~17!

Ĉ~x,n,u,ū !5C~x,n,u,ū !du, ~18!

CC ~x,n,u,ū !,5C̄~x,n,u,ū !dū. ~19!

Before constructing the gauge covariant field strength, we address the gauge transform
of ai(x,y,u,ū) andbi(x,y,u,ū) which are defined as

ai
g~x,n,u,ū !5ai~x,n,u,ū !g~x,n!, bi

g~x,n,u,ū !5bi~x,n,u,ū !g~x,n!, ~20!

whereg(x,n) is the gauge function with respect to the corresponding flavor unitary group. T
we can find from Eqs.~1! and ~20! the gauge transformation ofA(x,n,u,ū) to be

Ag~x,n,u,ū !5g21~x,n!A~x,n,u,ū !g~x,n!1g21~x,n!dg~x,n!, ~21!

where, as in Eqs.~2!–~4!,

dg~x,n!5S d1 (
k51

N

dxnkD g~x,n!5]mg~x,n!dxm1 (
k51

N

]kg~x,n!xk . ~22!

Using Eqs.~20! and ~21!, we can find the gauge transformations of gauge, Higgs, ghost,
antighost fields as

Am
g ~x,n,u,ū !5g21~x,n!Am~x,n,u,ū !g~x,n!1g21~x,n!]mg~x,n!, ~23!

Fnk
g ~x,u,ū !5g21~x,n!Fnk~x,u,ū !g~x,k!1g21~x,n!]kg~x,n!, ~24!

Cg~x,n,u,ū !5g21~x,y!C~x,n,u,ū !g~x,n!, ~25!

C̄g~x,n,u,ū !5g21~x,n!C̄~x,n,u,ū !g~x,n!. ~26!

Equation~24! is very similar to Eq.~23!, which is the gauge transformation of the genuine ga
field Am(x,n,u,ū), and so it strongly indicates that the Higgs field is a kind of gauge field on
discrete spaceM43ZN . From Eq.~22!, Eq. ~24! is rewritten as

Fnk
g ~x,u,ū !1Mnk5g21~x,n!„Fnk~x,u,ū !1Mnk…g~x,k!, ~27!

which makes it obvious that

Hnk~x,u,ū !5Fnk~x,u,ū !1Mnk ~28!

is an unshifted Higgs field whereasFnk(x,u,ū) denotes a shifted one with the vanishing vacuu
expectation value. Equations~25! and~26! show that ghost and antighost fields are transformed
the adjoint representation.

In addition to the algebraic rules in Eqs.~2!–~6! we add one more important rule, that

dx l
~Mnkxk!5~Mnlx l !∧~Mnkxk!5MnlM lkx l∧xk , ~29!

and, in addition, whenever thedxk
operation jumps overMnlx l , a minus sign is attached. Fo

example,
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dxk
„Mnlx la~x,n!…5~dxk

Mnlx l !a~x,n!2Mnlx l∧„dxk
a~x,n!…. ~30!

With these equations we can find the nilpotency ofdx5(k51
N dxk

. For the detailed proof, the
reader is referred to Ref. 6. Then, the nilpotency of the generalized exterior derivatived follows
under the natural conditions that

dxm∧xk52xk∧dxm, dxm∧du52du∧dxm, dxm∧dū52dū∧dxm,

xk∧du52du∧xk , xk∧dūdū52dū∧xk , ~31!

du∧dū5dū∧du, ]u]ū52]ū]u .

It should be noted thatxk∧x l is independent ofx l∧xk , so thatxk∧x lÞx l∧xk . This indepen-
dence is due to the noncommutative property of the generalized differential geometry. With
considerations we can construct the gauge covariant field strength:

F~x,n,u,ū !5dA~x,n,u,ū !1A~x,n,u,ū !∧A~x,n,u,ū !. ~32!

From Eqs.~21! and ~22! we can easily find the gauge transformation ofF(x,n,u,ū) as

Fg~x,n,u,ū !5g21~x,n!F~x,n,u,ū !g~x,n!. ~33!

Here, according to Ne’eman and Thierry-Mieg,10 we impose the horizontality condition10 on
F(x,n,u,ū) that

F~x,n,u,ū !uu5 ū505F~x,n!, ~34!

where F(x,n) is the generalized field strength not accompanying one-form basedu and dū.
Equation~34! yields the conditions that

duÂ~x,n!1dĈ~x,n!1Â~x,n!∧Ĉ~x,n!1Ĉ~x,n!∧Â~x,n!50, ~35!

dūÂ~x,n!1dCC ~x,n!1Â~x,n!∧CC ~x,n!1CC ~x,n!∧Â~x,n!50, ~36!

duF̂nk~x!1dxk
Ĉ~x,n!1F̂nk~x!∧Ĉ~x,n!1Ĉ~x,n!∧F̂nk~x!50, ~37!

dūF̂nk~x!1dxCC ~x,n!1F̂nk~x!∧CC ~x,n!1CC ~x,n!∧F̂nk~x!50, ~38!

duĈ~x,n!1Ĉ~x,n!∧Ĉ~x,n!50, ~39!

dūCC ~x,n!1CC ~x,n!∧CC ~x,n!50, ~40!

dūĈ~x,n!1duCC ~x,n!1Ĉ~x,n!∧CC ~x,n!1CC ~x,n!∧Ĉ~x,n!50, ~41!

which determine the BRST/anti-BRST transformations of each field together with the defin
that

duCC ~x,n!52B̂~x,n!, dūĈ~x,n!52BC ~x,n!. ~42!

It should be noticed that nilpotencies ofdu and dū are consistent with Eqs.~35!–~42! and, for
example,duĈ(x,n)5]uduĈ(x,n)52]uC(x,n)du∧du becauseu and C(x,n) are Grassmann
numbers. Thus,
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]uC̄~x,n!5B~x,n!, ]ūC~x,n!5B̄~x,n!. ~43!

From Eqs.~35! and ~36!, the BRST/anti-BRST transformations ofAm(x,n) follows as

]uAm~x,n!5DmC~x,n!5]mC~x,n!1@A~x,n!,C~x,n!#, ~44!

]ūAm~x,n!5DmC̄~x,n!5]mC̄~x,n!1@A~x,n!,C̄~x,n!#. ~45!

From Eqs.~17!–~19!, the BRST/anti-BRST transformations of the Higgs field are rewritten

]uFnk~x!5]kC~x,n!1Fnk~x!C~x,k!2C~x,n!Fnk~x!, ~46!

]ūFnk~x!5]kC̄~x,n!1Fnk~x!C̄~x,k!2C̄~x,n!Fnk~x!, ~47!

which by use ofHnk(x)5Fnk(x)1Mnk lead to

]uHnk~x!5Hnk~x!C~x,k!2C~x,n!Hnk~x!, ~48!

]ūHnk~x!5Hnk~x!C̄~x,k!2C̄~x,n!Hnk~x!. ~49!

Equations~48! and ~49! are the usual BRST/anti-BRST transformation of the Higgs field. Fr
Eqs. ~39! and ~40!, the BRST and anti-BRST transformations of ghost and antighost fields
obtained, respectively:

]uC~x,n!52C~x,n!C~x,n!, ~50!

]ūC̄~x,n!52C̄~x,n!C̄~x,n!, ~51!

and, from Eq.~41!, the restriction about the Nakanishi–Lautrup field follows as

B~x,n!1B̄~x,n!52C~x,n!C̄~x,n!2C̄~x,n!C~x,n!. ~52!

With these equations, we can proceed to obtain the BRST invariant Lagrangian of gauge
The BRST invariant Yang–Mills–Higgs Lagrangian is obtained by

LYMH52 (
n51

N
1

gn
2 Tr^F~x,n!,F~x,n!&1 (

n51

N
1

gn
2 i ]u]ū Tr^A~x,n,u,ū !,A~x,n,u,ū !&uu5 ū50

1 (
n51

N
1

gn
2

a

2
Tr^B̂~x,n,u,ū !,B̂~x,n,u,ū !&uu5 ū50 , ~53!

wheregn is a constant relating to the coupling constant of the flavor gauge field and Tr denot
trace over internal symmetry matrices. In order to express Yang–Mills Lagrangian, let us d
the explicit expressions of the field strengthF(x,n). The algebraic rules defined in Eqs.~2!–~4!,
~7!, and~13! yield

F~x,n!5
1

2
Fmn~x,n!dxm∧dxn1 (

kÞn
DmFnk~x!dxm∧xk

1 (
kÞn

Vnk~x!xk∧xn1 (
kÞn

(
lÞn,k

Vnkl~x!xk∧x l , ~54!

where

Fmn~x,n!5]mAn~x,n!2]nAm~x,n!1@Am~x,n!,Am~x,n!#, ~55!
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DkFnk~x!5]mFnk~x!1Am~x,n!„Mnk1Fnk~x!…2„Fnk~x!1Mnk…Am~x,k!, ~56!

Vnk~x!5„Fnk~x!1Mnk…„Fkn~x!1Mkn…2Ynk~x! for kÞn, ~57!

Vnkl~x!5„Fnk~x!1Mnk…„Fkl~x!1Mkl…2Ynkl~x! for kÞn, lÞn,k. ~58!

The Ynk(x) in Eq. ~57! andYnkl(x) in Eq. ~58! are auxiliary fields and expressed as

Ynk~x!5
1

2 (
i

„bi
†~x,n!MnkMknai~x,n!1ai

†~x,n!MnkMknbi~x,n!…, ~59!

Ynkl~x!5
1

2 (
i

„bi
†~x,n!MnkMklai~x,l !1ai

†~x,n!MnkMklbi~x,l !…, ~60!

respectively, and they may be independent or dependent ofFnk(x) and/or may be a constant field
In order to get the explicit expression ofLYMH in Eq. ~53! we have to determine the metri

structure of one-forms:

^dxm,dxn&5gmn, gmn5diag~1,21,21,21!,
~61!

^xk ,x1&52dkl , ^du,du&5^dū,du&51,

with the vanishing values of other combinations. From Eqs.~54!–~57!, the first term of Eq.~53!
that is denoted byLYMH is written as

LYMH52Tr (
n51

N
1

2gn
2 Fmn

† ~x,n!Fmn~x,n!1Tr (
n51

N

(
kÞn

N
1

gn
2 „DmFnk~x!…†DmFnk~x!

2Tr (
n51

N

(
kÞn

N
1

gn
2 Vnk

† ~x!Vnk~x!2Tr (
n51

N

(
kÞn

N

(
lÞn,k

N
1

gn
2 Vnkl

† ~x!Vnkl~x!, ~62!

where the third term on the right-hand side of Eq.~62! is the potential term of the Higgs particl
and the fourth term denotes the interaction between Higgs boson fields. The second an
terms of Eq.~53! give the ghost termLGH and the gauge fixing termLGF, respectively. The
calculation of the second term in Eq.~53! proceeds as

]u]ū Tr ^A~x,n,u,ū !,A~x,n,u,ū !&uu5 ū50

52]uuū Tr FAm~x,n,u,ū !Am~x,n,u,ū !1 (
k51

N

Fkn~x,u,ū !Fnk~x,u,ū !

1C~x,n,u,ū !C~x,n,u,ū !1C̄~x,n,u,ū !C̄~x,n,u,ū !G
u5 ū50

, ~63!

because Am(x,n,u,ū), C(x,n,u,ū), and C̄(x,n,u,ū) are anti-Hermite andFnk(x,u,ū)†

5Fkn(x,u,ū) together with the internal product^xk ,x l&52dkl . It should be noted that

]u$C~x,n,u,ū !C~x,n,u,ū !%50, ~64!

]ū$C̄~x,n,u,ū !C̄~x,n,u,ū !%50, ~65!

due to the nilpotency of BRST/anti-BRST transformation. Then, according to the BRST
BRST transformations in Eqs.~44!–~52!, LGH is expressed as
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LGH52i (
n51

N
1

gn
2 Tr ]mC̄~x,n!DmC~x,n!

1 i (
n51

N
1

gn
2 Tr (

nÞn

N

„]nC̄~x,k!DkC~x,n!1]kC̄~x,n!DnC~x,k!…, ~66!

where

DmC~x,n!5]mC~x,n!1@Am~x,n!,C~x,n!#, ~67!

]kC̄~x,n!52C̄~x,n!Mnk1MnkC̄~x,k!, ~68!

DkC~x,n!5]kC~x,n!1Fnk~x!C~x,k!2C~x,n!Fnk~x!

5Hnk~x!C~x,k!2C~x,n!Hnk~x!, ~69!

andLGF is expressed as

LGP5
a

2 (
n51

N
1

gn
2 Tr B~x,n!222i (

n51

N
1

gn
2 Tr ]mB~x,n!Am~x,n!

2 i (
n51

N
1

gn
2 Tt (

kÞn

N

„]nB~x,k!Fnk~x!1Fnk~x!]kB~x,n!…. ~70!

If we note the Hermitian conjugate conditions that

„]kC̄~x,n!…†5]nC̄~x,k!, „DkC~x,n!…†5DnC~x,k! „]kB~x,n!…†52]nB~x,k! ~71!

because ofB(x,n)†5B(x,n), C(x,n)†52C(x,n), andC̄(x,n)†52C̄(x,n), we easily find the
Hermiticity of Eqs.~66! and ~70!.

III. APPLICATION TO THE STANDARD MODEL

In this section we apply the previous formulation to the standard model as a typical sp
neously broken gauge model. The reconstruction of the standard model in a GDG was com
performed in Ref. 12 by adopting the discrete spaceM43Z2 on which the fermion fields are
represented as vectors in 24-dimensional internal space including weak isospin, hyperc
color, and generation indices. Corresponding to this fermion representation, gauge fields,
boson, ghost fields, and Nakanishi–Lautrup fields are expressed in 24324 matrix forms as gen-
erators in 24-dimensional space. Here, we omit the color gauge field because it does not br
significant difference from our results:

Am~x,1!52
i

2
X(

i 51

3

t iAm
i ~x! ^ 141aBm~x!C^ 13, ~72!

Am~x,2!52
i

2
bBm~x! ^ 13, ~73!

whereAm
i (x) denotes SU~2! adjoint gauge field andBm(x) is U~1! gauge field.a and b are the

U~1! hypercharge matrices corresponding to the left- and right-handed fermions expres
vectors in 24-dimensional space, respectively, and are denoted as

a5diag~ 1
3,

1
3,

1
3,21,1

3,
1
3,

1
3,21!, ~74!
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b5diag~ 4
3,

4
3,

4
3,0,2 2

3,2
2
3,2

2
3,22! . ~75!

It should be noted that we can incorporate the right-handed neutrino in the reconstruct
the standard model in this formulation. The Higgs field and the symmetry-breaking functionMnk

are assigned in 24324 matrix forms as

F12~x!5F21~x!†5S f0* f1

2f2 f0 D ^ 112, ~76!

M125M21
† 5S m 0

0 m D ^ 112. ~77!

For ghost and antighost fields which correspond with the gauge fields in Eqs.~72! and~73! we
take

C~x,1!52
i

2 S (
i 51

3

t iCi~x! ^ 141aC0~x!D ^ 13, ~78!

C~x,2!52
i

2
bC0~x! ^ 13, ~79!

and

C̄~x,1!52
i

2 S (
i 51

3

t i C̄i~x! ^ 141aC̄0~x!D ^ 13, ~80!

C̄~x,2!52
i

2
bC̄0~x! ^ 13. ~81!

Also for the Nakanishi–Lautrup field, we assign

B~x,1!5
1

2 S (
i 51

3

t iBi~x! ^ 141aB0~x!D ^ 13, ~82!

B~x,2!5 1
2 bB0~x! ^ 13, ~83!

and

B̄~x,1!5
1

2 S (
i 51

3

t i B̄i~x! ^ 141aB̄0~x!D , ~84!

B̄~x,2!5 1
2 bB̄0~x! ^ 13, ~85!

because]uC̄i5 iBi and]uC̄05 iB0. We can take the gauge transformation functions as

g~x,1!5g~x!eiaa~x!, g~x!PSU~2!, eiaa~x!PU~1!, ~86!

g~x,2!5eiba~x!, eiba~x!PU~1!. ~87!

The auxiliary fieldY(x,n) (n51,2) becomes unit matrix because of the assignments ofMnk in
Eq. ~77!. With these considerations, we can obtainLYMH , LGH, andLGF in Eqs.~62!, ~66!, and
~70!, respectively.
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After the rescaling of fields

Am
i ~x!→gAm

i ~x!, Bm~x!→g8Bm~x!, h~x!→gHh~x!, ~88!

with

g25
g1

2

12
, ~89!

g825
2g1

2g2
2

3g2
2 Tr a213g1

2 Tr b2 5
g1

2g2
2

16g1
214g2

2 , ~90!

gH
2 5

g1
2g2

2

24~g1
21g2

2!
, ~91!

we find the Yang–Mills–Higgs Lagrangian for the standard model:

LYMH52
1

4 (
i 51

3

Fmn
i ~x!•Fimn~x!2

1

4
Bmn

2 1„Dmh~x!…†„Dmh~x!…2l„h†~x!h~x!2m2
…

2,

~92!

where

Fmn
i ~x!5]mAn

i ~x!2]nAm
i ~x!1ge i jkAm

j ~x!An
k~x!, ~93!

Bmn~x!5]mBn~x!2]nBm~x!, ~94!

Dmh~x!5F ]m2
i

2
g(

i 51

3

t i
•Am

i ~x!2
i

2
g8Bm~x!Gh~x!, ~95!

with l5gH
2 and the rescaling ofm→AgHm. Except for color sector, Eq.~92! expresses the

Yang–Mills–Higgs Lagrangian of the standard model with the symmetry SU~2!L3U~1!Y sponta-
neously broken to SU~1!em.

Let us express the ghost and gauge fixing terms in Eqs.~66! and ~70! in the case of the
standard model. For simplicity, hereafter we abbreviate the argumentx in the respective fields
After the same rescaling of ghost and Nakanishi–Lautrup fields such as

Ci~C̄i !→gCi~C̄i !, C0~C̄0!→g8C0~C̄0!, ~96!

Bi~B̄i !→gBi~B̄i !, B0~B̄0!→g8B0~B̄0!, ~97!

we get the gauge fixing termLGF in Eq. ~66! as

LGF5(
i 51

2 H a

2
Bi

21Bi~]mAm
i 1mWf i !J

1H a

2
BZ

21BZ~]mZm1mZf3!J 1H a

2
BA

2 1BA]mAmJ , ~98!

wheremW andmZ are the charged and weak neutral gauge boson masses, respectively, aZm ,
Am , BZ , andBA are defined as
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Zm5
gAm

3 2g8Bm
0

Ag21g82
, Am5

g8Am
3 1gBm

0

Ag21g82
, ~99!

BZ5
gB32g8B0

Ag21g82
, BA5

g8B31gB0

Ag21g82
. ~100!

Heref i( i 51,2,3) is given by the following parametrization ofh:

h5
1

&
S c1v1 i(

i 51

3

t if i D S 0
1D ~101!

with v5&m. By use of the equations of motion of the Nakanishi–Lautrup fields, Eq.~98! leads
to

LGF52(
i 51

2
1

2a
~]mAm

i 1mWf i !22
1

2a
~]mZm1mZf3!22

1

2a
~]mAm!2, ~102!

which is the gauge fixed Lagrangian with the ’t Hooft–Feynman gauge15 whena51.
With the same notations of ghost and antighost fields as

CZ5
gC32g8C0

Ag21g82
, CA5

g8C31gC0

Ag21g82
,

~103!

C̄Z5
gC̄32g8C̄0

Ag21g82
, C̄A5

g8C̄31gC̄0

Ag21g82
,

we obtain the explicit expression of ghost terms in Eq.~66! as follows:

LGH52 i(
i 51

2

]mC̄iDmCi2 i ]mC̄ZDmCZ2 i ]mC̄ADmCA1 i(
i 51

2

mW
2 C̄iCi1 imZ

2C̄ZCZ

1
i

2
$mWg~C̄1C11C̄2C2!1mZAg21g82C̄ZCZ%c

1
i

2 H mZgC̄ZC22mW

~g22g82!

Ag21g82
C̄2CZJ f12

i

2 H mZgC̄ZC12mW

~g22g82!

Ag21g82
C̄1CZJ f2

1
i

2
mWg~C̄2C12C̄1C2!f31 imW

gg8

Ag21g82
~C̄1f22C̄2f1!CA , ~104!

where covariant derivatives of ghost fields are calculated through Eq.~103!. The ghost fields
become massive and the new interaction terms between ghost and Higgs fields appear. It sh
noted thatLGH coincides with that in the SU~2! Higgs–Kibble gauge modelg in the limit of g8
50 except for the U~1! ghost term.

It should be also noted that our definition of gauge fixing condition is connected with
prescription proposed by Kugo and Uehara16 as

LGH1GF52 i ]uF(
i 51

2

C̄i S ]mAm
i 1mWf i1

1

2
aBi D G

2 i ]u@C̄Z~]mZm1mZf31 1
2 aBZ!#2 i ]u@C̄A~]mAm1 1

2 aBA!# ~105!
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for the standard model. It is interesting that our definition naturally leads to the more ge
gauge fixing condition.

IV. CONCLUDING REMARKS

The reconstructions of the spontaneously broken gauge theories based on the gen
differential geometry on the discrete spaceM43ZN have performed consistently so far. Esp
cially, the standard model is nicely reconstructed in a GDG onM43Z2 ~Ref. 12! by introducing
the 24-dimensional internal space where chiral fermions are represented as 24-dimension
tors. It is well understood that the Higgs boson field is a connection on the discrete spaceZN and
an unified picture of the ordinary gauge fields and Higgs boson field as the generalized conn
is realized. This is a common feature of the NCG approach.

In this paper, BRST invariant formulation of the spontaneously broken gauge theory is
sented in our scheme of a GDG on the discrete spaceM43ZN . According to the super spac
formulation of BRST,13 we introduce the Grassmann numbersu and ū as the arguments in supe
space in addition toxm in M4 andn in ZN . The horizontality condition10 on the generalized field
strengthF(x,n,u,ū) determines the BRST transformation of every field including the Hi
boson field. By use of the generalized gauge fieldA(x,n,u,ū) and the Nakanishi–Lautrup field
B̄(x,n,u,ū), the gauge fixing and ghost terms are defined in Eq.~53! and written explicitly in Eqs.
~66! and~70!. The application to the standard model shows ghost fields to be massive and
the new interaction terms between ghosts and Higgs fields. This is natural because the
boson is a member of the generalized gauge field in a GDG on the discrete space in the sa
as ordinary gauge fields. Especially, our BRST formulation prefers the ’t Hooft–Feynman ga15

as the gauge fixing condition, so in this casea51 is required.
The reconstruction of the more complicated model such as the left–right symmetric g

model and the grand unified model in this formulation requires a discrete spaceM43ZN

(N>3). The application to such models seems to bring the same results as those in this
though more complicated. It will be addressed in the future.

The Higgs mechanism necessary for the spontaneously broken gauge theory is well
stood in the generalized differential geometry on the discrete space. In addition, the supe
formalism of BRST13 is nicely incorporated in this formulation to bring the BRST invaria
Lagrangian. It is possible to discuss the anomaly of the spontaneously broken gauge theor
present formulation as a future work. It is also an important purpose to incorporate the supe
metry in the present formulation. If it is possible, this approach would be more promising.
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Wave packet revivals and quasirevivals
in one-dimensional power law potentials

R. W. Robinett
Department of Physics, The Pennsylvania State University,
University Park, Pennsylvania 16802
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The harmonic oscillator and the infinite square well are two of the simplest one-
dimensional quantum systems which exhibit wave packet revivals~trivially so in
the case of the oscillator.! These two potentials can be thought of as special cases
of the general one-dimensional power-law potential given byV(k)(x)5V0ux/auk

~with k52 andk→` for the oscillator and square well, respectively.! Using an
autocorrelation function approach and the WKB approximation for the quantized
energy levels in such potentials, we exhibit numerical evidence for wave packet
revivals in the case of arbitraryk.0 which agree well with more analytic results.
We derive expressions for the revival and collapse time scales in terms of the
physical quantities of the system as well as the wave packet parameters. We find
that both times scale with the power-law exponentk as u(k12)/(k22)u. In this
way, we can explicitly exhibit the approach to the two familiar limiting cases. We
also briefly consider the case of a ‘‘half’’ well where an infinite wall in added at the
origin. © 2000 American Institute of Physics.@S0022-2488~00!03404-6#

I. INTRODUCTION

The problem of wave packet propagation in quantum mechanical bound state systems
an interesting area of study at the interface of classical and wave mechanics. One of th
intriguing aspects of such systems is that initially localized wave packets, which have a shor
time evolution which exhibits simple classical behavior, can later spread significantly after s
periods or orbits, entering a so-called collapsed phase, only to reform later in the form
quantum revival in which the spreading reverses itself and the wave packet relocalizes.
phenomena have been studied most directly in the context of atomic physics systems wh
behavior of Coulomb wave packets on circular1 or elliptical2–4 orbits has been examined theore
cally, but also experimentally tested extensively on Rydberg atom states.5

Similar revival effects are found in simpler, one-dimensional model systems, such a
harmonic oscillator and the infinite square well. The oscillator is a special case where on
easily show6 that the propagator explicitly exhibits the expected periodicity (t52p/v), so that
any initial wave packet reforms with the classical period. In the case of the infinite square w7–9

the revival phenomena exhibit a much richer structure, more consistent with the general pat
revivals and fractional revivals discussed in Ref. 4, but still yielding exact revivals where
initial wave packet is identically reformed at a later time. The existence of exact revivals in
cases is, of course, not surprising given the fact that the differences in the quantized
eigenvalues are integral multiples of a common value. More interestingly, however, these
tials are also related by the very familiar observation10 that they are two limiting cases of
general, one-dimensional power-law potential given by

V(k)~x![V0UxaU
k

~1!

with the oscillator and infinite well corresponding to the valuesk52 andk→`, respectively.
18010022-2488/2000/41(4)/1801/13/$17.00 © 2000 American Institute of Physics
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~This form, with two constants,V0 ,a, instead of one truly independent one, saya5V0 /ak, is
simply used to emphasize the limiting case wherek→` for convenience.!

We note that the question of wave packet revivals has also recently been studied in the c
of the so-called ‘‘quantum bouncer,’’11 a particle acting under the influence of gravity with a
infinite wall at the origin. This system is a special case of the general ‘‘half’’ power-law pote
defined by

Ṽ(k)~x!5H V(k)~x! for x.0

0 for x,0.
~2!

We will be able to include this variation in our study and find agreement with the special r
derived in Ref. 11 for the case ofk51 andV0 /a5mg treated there.

In this note we wish to examine the question of whether exact or quasirevivals exist i
general case~i.e., for arbitraryk), how the revival times~as well as the collapse times! scale with
k ~and other physical parameters!, and finally how the very different limiting cases correspond
to the oscillator and infinite well are realized. To this end, we will use an approach which doe
rely on explicit visualization of the quantum wave functions, but rather on an autocorrel
function3 which measures the degree of overlap of the wave packet at later times with its
value. Specifically, for a wave packet described by

c~x,t !5 (
n51

`

anun~x!e2 iEnt/\, ~3!

the standard autocorrelation function is defined via

C~ t ![E
2`

1`

c* ~x,t !c~x,0!dx

5E
2`

1`

f* ~p,t !f~p,0!dp

5 (
n51

`

uanu2eiEnt/\. ~4!

This last form is the one we will utilize, and it requires knowledge of the quantized en
eigenvalues in the model system. For the large quantum number wave packets we consi
can make use of WKB approximations10 to obtain theEn

(k) ~for n@1) to an excellent approxima
tion, for arbitrary values ofk.0. For the specific results presented here, we will make us
quasi-Gaussian expansion coefficients$an%, but note that many of our results are more general
do not depend on the explicit form of the$an%, citing cases where the specific form of the wa
packet does enter.~For example, the expression for the revival time in the general case wil
involve the detailed form of the initial wave packet, while the expression for the collapse
will. !

We note that while our emphasis is on the formal properties of these one-dimensiona
tems, the rapid progress in the fabrication of new quantum structures12 of controlled size and
shape~including square and parabolic wells, and even symmetric linear potentials (k51) of finite
size! might eventually allow for experimental tests of wave packet revivals in these more ge
power law potentials.

We first briefly review, in Sec. II, the revival properties of the oscillator and infinite w
systems, illustrating the usefulness of the autocorrelation functionC(t) ~and similar ones!. In Sec.
III, we derive an expression for the revival time in the general power-law potential in Eq.~1!,
including its dependence on the various dimensionful and dimensionless parameters of b
                                                                                                                



of the
the

ically
tion.

re as
er-
energy
m

havior
well
te

struct

illator
elow.

here

ods at

e

1803J. Math. Phys., Vol. 41, No. 4, April 2000 Wave packet revivals and quasirevivals in . . .

                    
system itself as well as the initial wave packet. We also discuss the scaling properties
collapse time as well. We exhibit the limiting behavior of the general results leading to
oscillator and infinite well cases, using the information contained inC(t) for both the short-term
and long-term behavior of the wave packets. While the majority of our results will be numer
derived, we will be able to compare our results for the revival time to a more analytic calcula

II. WAVE PACKETS IN THE HARMONIC OSCILLATOR AND INFINITE SQUARE WELL

The time-development of wave packets in a harmonic oscillator potential, defined he
V(x)5mv2x2/2 so thatk52 andV0 /a25mv2/2, is a deceptively simple case among the pow
law potentials due to the unique structure of the energy level spectrum, namely constant
level differences given byDEn5\v. This fact is reflected in the simplicity of the quantu
mechanical propagator13 which explicitly exhibits not only the expected periodicity (t52p/v),
but can also be used to show that any initial wave packet is recovered~up to a phase! after one full
period.6 In addition, an arbitrary wave packet is also reproduced~same size, shape, etc.!, but
inverted about the origin and with opposite momentum, one-half period later. This same be
can also be seen quite generally in terms of the uncertainties in position and momentum as14

with the expectation values ofx and p obeying the classical equations of motion. To illustra
these behaviors in the context of the autocorrelation function defined in Eq.~4!, we will evaluate
C(t) using an explicit quasi-Gaussian representation for the$an%. Specifically we will use

an5AaAp expF2
~p~n2n0!a!2

2
G ~5!

which is motivated by the form of the typical Gaussian momentum distribution used to con
explicit free-particle wave packet solutions. This form of the$an% gives

^n&5 (
n51

`

nuanu2'n0 and Dn5A^n2&2^n&2'
1

A2pa
. ~6!

~Even though explicit, closed-form Gaussian wave packet solutions are available for the osc
case,6 we will only use numerical results to be consistent with the general cases we study b!

Motivated again by the free-particle case, we can define an uncertaintyD x̄[a/A2
51/(2pDn) which is akin to the initial wave packet spread in position space, but defined
without dimensions. We can then systematically examine~numerically! the behavior of wave
packet solutions as one varies bothn0 anda/Dn as well as other~dimensional! physical param-
eters of the system. Because of the reformation of the oscillator wave-packet at half-peri
x→2x andp→2p, we are also led to consider the related correlation function

C̄~ t ![E
2`

1`

c* ~2x,t !c~x,0!dx5E
2`

1`

f* ~2p,t !f~p,0!dp. ~7!

The evaluation ofC̄(t) in terms of the expansion coefficients in Eq.~3! can be aided by using th
parity properties of the solutions in the symmetric potentials we are considering, namely,

un~2x!5~21!nun~x! and fn~2p!5~21!nfn~p!, ~8!

where

fn~p!5
1

A2p\
E

2`

1`

un~x!e2 ipx/\dx ~9!

are the momentum-space eigenfunctions. These can be used to show that
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C̄~ t !5 (
n51

`

~21!nuanu2eiEnt/\. ~10!

For explicit numerical values for this case~and others that follow! we will use the following
standard set of parameters, namely,

\52m5a5V051 ~11!

and

n05400, a50.05A2, Dn05
10

p
53.18, D x̄50.05. ~12!

We plot bothuC(t)u anduC̄(t)u in Fig. 1 ~upper half! for the harmonic oscillator case over the fir
ten classical periods and note the exact reformation or revival of the initial wave packet at in
values oft ~solid curves! as well as at half-integral values~dashed curves!.

The time-development of wave packets in the infinite well, defined here over the s
interval (2L,L) ~so thatk→`, a↔L, andV0 is irrelevant! has recently been examined in som
detail, with works focusing on the use of the autocorrelation function and revivals,7 fractional
revivals,8 and on the visualization of the short-, medium-, and long-term behavior of approp
expectation values and uncertainties.9 A classical particle in such a potential would have a per
given by t54L/v0 and for a wave packet where the expansion coefficients are highly pe
aboutn0, we can identifyv05p0 /m5n0p\/2mL which gives

t5
8mL2

n0\p
~13!

FIG. 1. Plots of the correlation functionsuC(t)u ~Eq. ~4!, solid curves! anduC̄(t)u ~Eqs.~7! and~10!, dashed curves! for the
harmonic oscillator (k52, top half! and infinite well (k→`, bottom half! vs t/t(k,n0) over the first ten classical periods
The classical periods are given byt52p/v and Eq.~13! for the oscillator and infinite well cases respectively. Qua
Gaussian wave packets with expansion coefficients as in Eqs.~5! and~12! are used in each case. Results for the case
kÞ2 are intermediate between these two cases.
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as an estimate of the wave packet period. Using the standard wave packet$an% and parameters in
Eqs. ~5! and ~12!, we evaluateuC(t)u and uC̄(t)u for the infinite well packet over the first te
classical periods~defined in this way! in Fig. 1 ~bottom half!.

The similarity between the two cases in Fig. 1 indicates that the infinite well wave packet
exhibit a short-term time dependence which is relatively classical,7,9 but the decrease inuC(t)u,
due to the spreading of the wave packet into its so-called collapsed phase, is also clear. It tu
that the behavior of wave packets for the 0,k,2 and 2,k,` cases are intermediate betwe
these two extremes and we will return to this short-term behavior to examine the so-calle
lapse time as well as deriving a quantitative measure of how the general case (kÞ2) approaches
the simple oscillator case.

The long-term time-dependence of infinite well wave packets leading to exact revivals7–9 is
dictated by the simple form of the energy dependence, namely, since

En5
\2p2n2

8mL2
~14!

any solution of the form in Eq.~3! will satisfy c(x,t1T)5c(x,t) when

e2 iEnT/\511 or T5
16mL2

\p
52n0t, ~15!

which we will call the true revival time. In addition, we can also note that we obtain reviva
T/2 since

c~2x,t1T/2!5 (
n51

`

anun~2x!e2 iEn(t1T/2)/\

5 (
n51

`

anun~x!e2 iEnt/\@~21!ne2 in2p#

5c~x,t ! ~16!

or c(x,t1T/2)5c(2x,t) with a similar result for the momentum space wave function, nam
f(2p,t1T/2)5f(p,t). Similarly to the oscillator case, the wave packet is reformed att5T/2,
but at the opposite side of the well, with its momentum reversed.

In order to visualize a typical revival period, we plot in Fig. 2 bothuC(t)u and uC̄(t)u vs t/t
~at integral values only! over one-half of a complete revival period~the plots are symmetric abou
t5T/2.! The exact revival of the wave packet att5T/2 is seen as the peak atuC̄(t)u51 indicating
that the revival occurs in position space at a location inverted about the origin relative to the
similarly, the revival atT/2 has its momentum reversed so that the quantum state is exactly o
phase with the classical motion.

The existence of fractional revivals for general systems has been discussed in Ref. 4 a
include ~as vertical dashed lines! indicators of some of the expected fractional revival perio
simply given by (p/q)T wherep,q are integers. There is clearly structure seen in eitherC(t) or
C̄(t) ~or both! at many of the expected values and these plots are an efficient way in whi
visualize this effect. The effect of varying such physical parameters as\,m,L is to simply rescale
t and T, while variations inn0 simply changet ~increasingn0 gives smallert so that more
periods are required to observe the sameT and so forth.! Variations inDn0 are more interesting
and we exhibit the effect of doubling/halving our standard value ofn0 in Fig. 3. There is no
change in the observed revival time, consistent with the simple expression in Eq.~15!. Including
a larger number of energy eigenstates~larger Dn0) clearly allows for the observation of mor
detailed structure of fractional revivals, while having fewern values decreases the availab
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FIG. 2. Plot ofuC(t)u ~upper plot! anduC̄(t)u ~lower plot! for integral values oft/t over the first half revival time for the
infinite square well (k→`); the curves are symmetric aroundt5T/25400t. The vertical dashed lines indicate values
some of fractional revival times, namely, (p/q)T for integralp,q. The standard set of wave packet parameters in Eq.~12!
are used.

FIG. 3. Same as for Fig. 2, but illustrating the effect of varyingDn0 to include twice/half the number of energy eigensta
~dotted/dashed curves! compared to the standard set in Eq.~12! ~solid curves!.
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‘‘resolution’’ to such effects. A different correlation is also indicated with these values as
namely, the rate at which the large initial correlation (uC(t*0)u&1) is lost as the wave packe
enters its collapsed phase. In this case, we note that large~small! values orDn0 correspond to
small~large! values ofD x̄ which is like the positional uncertainty of the initial wave packet. Sm
~large! wave packets spread faster~slower! and this correlation is reflected in the differing sho
term rates of decay/growth of the magnitude ofuC(t)u/uC̄(t)u, respectively. We will return to this
feature as a useful signal of the variation of the collapse time of the system~defined carefully
below! with k and wave packet parameters. Given this experience with the two special cas
turn our attention to wave packet revivals in the general power-law potential in Eq.~1!.

III. WAVE PACKETS IN THE GENERAL POWER-LAW POTENTIAL

If we wish to make use of the standard autocorrelation functionC(t) ~Eq. ~4!! or the related
C̄(t) ~Eqs.~7! and~10!! for the case of a general power-law potential with exponentk, we require
the quantized energy eigenvalues,En

(k) . Since we are dealing with situations in whichn@1, it will
be a good approximation to utilize the WKB energy quantization condition to evaluate theEn

(k) .
The standard version~which assumes wave-function matching at linear walls via Airy functio!
is given by

E
2x0

1x0A2m@En
(k)2V(k)~x!#dx5S n1

1

2D\p ~17!

with n50,1,2,. . . , andwhere

6x056S En

V0
D 1/k

a ~18!

are the classical turning points. This expression is known to be exact for the harmonic osc
When the boundary conditions at a given turning point are imposed by infinite walls wher
wave function must actually vanish, the appropriate matching coefficients areCL ,CR51/2 instead
of the CL ,CR51/4 for linear walls,15 so that for the infinite square well the right-hand side
replaced by (n11/2)→(n11) which also gives the exact answer for this case.~The combination
of the two to describe the ‘‘half-oscillator,’’ whereV(x)5mv2x2/2 for x.0 and an infinite wall
at the origin is then also given exactly with these two cases.! Using the standard WKB form for al
k,`, we find the energy quantization condition10

En
(k)5F ~n11/2!

\p

2aA2m
V0

1/k G~1/k13/2!

G~1/k11!G~3/2!G 2k/(k12)

~19!

~where (n11/2)→(n11) for k→`.! This reproduces the exact oscillator and infinite well e
amples in thek52 andk→` limits.

We expect revivals to be possible near times when the classical particle would be return
its initial location in phase space. Therefore, in order to evaluateC(t),C̄(t) at times corresponding
to classical periods of motion, we require a general expression for the period of a particle o
m and energyE in the general potential. We begin by noting that conservation of energy in
form,

E5 1
2 mv21V(k)~x! ~20!

can be rewritten as

dt5
dx

v~x!
5

dx

A~2/m!@E2V(k)~x!#
. ~21!
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The period can then be derived by integrating this over one back-and-forth traversal~half a period!
to obtain

T

2
5E

0

T/2

dt5Am

2 E2x0

1x0 dx

AE2V0ux/auk
~22!

or

tn
(k)5

2p\

En
(k) ~n11/2!S 21k

2k D[t~k,n!, ~23!

and this result reduces to the exact values for the oscillator and infinite well cases. This wo
the classical period of a particle with energyEn

(k) and should be roughly the same as that fo
wave packet peaked about a given value ofn. ~This result agrees with a general expression3 given
by tn52p\/uEn8u, whereEn85dEn /dn.!

Using our standard set of expansion coefficients and the quantized energies in Eq.~19!, we
can then evaluateC(t),C̄(t) for integral values of the period corresponding to a general valu
k and the specific value ofn5n0 used as the central value of the$an%. We plot these correlation
functions~over differentt/t(k,n0) time intervals! for several values ofkÞ2 in Fig. 4 and note
that the resulting patterns are strikingly similar to those in Fig. 2, simply scaled by the appro
total revival time. In each case~except thek→` one already considered!, the first obvious revival
~and subsequent recurrences at approximately integral multiples ofT) is not exact~sinceuC(T)u
,1), but the detailed structure allows us to unambiguously identify the approximate revival
as a multiple of the basic period in Eq.~23!.

FIG. 4. Plots ofCu(t)u anduC̄(t)u vs t/t(k,n0) over one revival time for the casesk51,4,10, and̀ ~infinite square well!
showing the similarity for cases in the general power-law potential. For the cases wherekÞ`, the revivals are not exac
(uC(T)u,1) but still very well-defined, at least for the first few revival periods. The structures corresponding to frac
revivals as in Fig. 2 are also apparent in each case.
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Using this technique, we can then systematically evaluate the revival time for a given va
kÞ2 in terms oft(k,n0). We plot these revival times~as a function ofk) for two values ofn0

(400 and 200) in Fig. 5. We find that the observed revival times are well described by the s
expression

T~k,n0!5Uk12

k22U2n0t~k,n0! ~24!

in all cases we have examined. This simple result reduces, of course, to the infinite well re
Eq. ~15! in the limit thatk→` and diverges ask→2 for the harmonic oscillator case. We note th
this result is not restricted to the specific choice of quasi-Gaussian expansion coefficients,
find the identical expression for a large number of other single-peaked forms for the$an% ~Lorent-
zian, etc.!. Specifically, it does not depend onDn.

It has been pointed out to the author16 that this result can be derived analytically. A gene
expression for the revival time in terms of the energy eigenvalue spectrum is given in Ref. 3
can be written in the formT(n)54p\/uEn9u. Making use of the WKB result for the energies in E
~19! and this expression we find that

T~k,n0!5Uk12

k22U2~n011/2!t~k,n0!, ~25!

where again we expect that (n011/2)→(n011) for k→`. The numerical results presented he
are therefore valuable in verifying the approximations made in the analytic results of Ref. 3.~This
analytic result also suggests that Eq.~24! might be more generally applicable, specifically fork
,0. Numerical evaluation ofC(t) for negative values ofk was not sensitive enough to confirm
this.!

While the revival structures seen in Fig. 4 for all values ofkÞ2 are clear over the first few
revival periods, they eventually degrade and we will illustrate this effect in Fig. 6 by plo

FIG. 5. Plot of approximate revival time,T/t(k,n0), ~derived from plots ofuC(t)u vs t/t(k,n0) such as in Fig. 4! as a
function of k.0 for two different values ofn0. The size of the plotting symbols roughly indicates the approximate e
in the value ofT in each case. The data agree very well with the simple formulaT52n0u(k12)/(k22)ut(k,n0) in Eq.
~24! which is indicated by the continuous curve in each case. This fit is in good agreement with the analytic result
~25!.
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uC(t)u and uC̄(t)u vs t/t(k,n0) over the first (0,T), second (T,2T), and tenth (10T,11T) revival
periods, for the case ofk54, indicating how the basic fractional revival structure in Fig. 2 slow
disappears.

Given the divergence in the revival time fork→2, we might expect the limit to the harmoni
case to also be characterized by a divergent collapse time as well. To examine the scalin
erties of the approach to the collapsed phase, we have studied the short-term time-depend
uC(t)u and how this scales with the physical system and wave packet parameters. Specifica
have found that for short times~defined below!

uC~ t !u'e2R(t/t)2
, ~26!

where once again we only consider integral values oft/t(k,n0) as we are not interested in th
periodic decrease/increase inuC(t)u between classical periods, as in Fig. 1.

In order to extract further information on the constantR value, we have found, by systemat
cally varying parameters numerically, that

2
ln~ uC~ t !u!

~ t/t!2
52R'Fk22

k12G2 4p2Dn4

~2n0!2
. ~27!

We can use this observation to define a collapse time via

TC[FUk12

k22U2n0t~k,n0!G 1

2pDn2
5

T

2pDn2
, ~28!

so that

FIG. 6. Plots ofCu(t)u anduC̄(t)u vs integral values oft/t(k,n0) over one revival time for the casek54. The first~top!,
second~middle!, and tenth~bottom! complete collapse/revival cycles are shown, illustrating the eventual degradation
revival patterns observed in Figs. 2 and 4.
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uC~ t !u'e2(t/TC)2
~29!

describes the initial collapse process. We find that this is an excellent approximation for all
satisfying t/TC&1. We recognize the revival time,T, and note that ask→2 the collapse time,
TC5T/(2pDn2), also diverges so that the system does not even enter the collapsed phase
harmonic limit.

In this case, the exact expression for the collapse time does depend on the detailed co
tion of the initial wave packet~via the Dn factor! consistent with our earlier observation th
initially wider ~narrower! wave packets with smaller~larger! values ofDn will spread, and hence
collapse, more slowly~more rapidly!. We also find that different functional forms for thean

expansion coefficients yield the same scaling behavior as in Eq.~27!, but with different numerical
coefficients~typically a simple expression, always of order'100) replacing the 4p2 factor in
each case.~We have been unable, however, to find a general expression for this constant f
case of an arbitrary initial wave packet or$an% set.!

The case of the ‘‘half’’ general-power law potential given by Eq.~2! is easily analyzed in the
same manner. The WKB energy quantization condition is applied at the classical turning
x51x0 andx50 with the result

Ẽn
(k)5F ~n13/4!

\p

aA2m
V0

1/k G~1/k13/2!

G~1/k11!G~3/2!G 2k/(k12)

~30!

with the factor (n13/4)→(n11) for k→`. ~Recall the discussion after Eq.~18! about the
appropriate matching coefficients for infinite wall boundaries.! The classical period is then give
by Eq.~23! with En

(k)→Ẽn
(k) and (n11/2)→(n13/4). We find that the same relationship betwe

revival time and classical period as in Eq.~24! holds and we note that our general result rep
duces the revival time found in the special case of the ‘‘quantum bouncer’’ considered in R
whenk51 andV0 /a5mg.

In conclusion, we have found numerical evidence of wave packet revivals in powe
potentials for all values ofk.0 studied, with the same pattern of fractional revivals as in
standard, infinite well case, viz., Fig. 4. The general expression for the revival time agree
analytic results of Ref. 3. The revival and collapse times,T and TC , for these wave packe
reformations both scale asu(k12)/(k22)u so that the exactly periodic case of the harmo
oscillator limit is achieved whenk→2 because the onset of both the collapse and revival ph
are infinitely delayed in that limit.

Finally, the study of such revival/collapse phenomena using the correlation functionC(t) in
Eq. ~4! makes it clear that systems with identical~or almost! identical energy spectra shoul
exhibit similar revival/collapse times. For example, superpartner potentials related by
dimensional supersymmetric quantum mechanics,17 which differ in their energy spectra only in th
ground state, would be expected to exhibit almost the identical pattern of wave packet re
since forn@1 the difference in spectra will be negligible. For the class of potentials discu
here, the similarity between most aspects of the solutions~energies, wave functions, etc.! of the
two superpartner partner potentials,V(2)(x) andV(1)(x), especially in the largen limit, is obvi-
ous. TheV(2)(x) potential, which is assumed to possess a zero-energy ground state so
c0(x), has a super-partner potential given by

V(1)~x!52V(2)~x!1
\2

m S c08~x!

c0~x!
D 2

. ~31!

The largex behavior of the bound state solutions in theV(2) potential will be dominated by the
factor
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c0~x!→expS 6A2m

\2 Ex
AV(2)~x!dxD ~32!

which gives

c08~x!;S 6A2m

\2
V(2)~x!D c0~x!, ~33!

so that in this limit we have

V(1)~x!→2V(2)~x!12V(2)~x!5V(2)~x! ~34!

and the two potentials are obvious very similar in form for largex ~and hence for largen.! In the
case of the harmonic oscillator, for example, we have the superpartner pairs,

V(2)~x!5
1

2
mv2x22

\v

2
,

V(1)~x!5
1

2
mv2x21

\v

2
. ~35!

Similar analytic results can be obtained for the symmetric linear potential correspondingk
51 since the ground state solution,c0(x), can be written in terms of Airy functions whos
asymptotic form is well known.18

In the case where theV(2)(x) potential includes an infinite wall boundary~for the infinite well
or any of the ‘‘half’’ well cases!, the divergence in theV(1)(x) potential at the same location i
due to the vanishing ofc0(x) at the position of the wall. For example, in the infinite well case,
ground state wave function will be proportional toc0(x)}cos(px/L) which gives a partner-
potential which goes as

V(1)~x!;
\2p2

mL2
cot2S px

L D ~36!

which also diverges asx→6L. It would be interesting to study examples of superpartner pote
pairs where the energy level degeneracy~except for the zero-energy ground state of theV(2)(x)
potential! is realized in a less trivial way and the equality of collapse/revival times is less obv
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Reduction of quantum systems on Riemannian manifolds
with symmetry and application to molecular
mechanics
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This paper deals with a general method for the reduction of quantum systems with
symmetry. For a Riemannian manifoldM admitting a compact Lie groupG as an
isometry group, the quotient spaceQ5M /G is not a smooth manifold in general
but stratified into a collection of smooth manifolds of various dimensions. If the
action of the compact groupG is free,M is made into a principal fiber bundle with
structure groupG. In this case, reduced quantum systems are set up as quantum
systems on the associated vector bundles overQ5M /G. This idea of reduction
fails, if the action ofG on M is not free. However, the Peter–Weyl theorem works
well for reducing quantum systems onM. When applied to the space of wave
functions onM, the Peter–Weyl theorem provides the decomposition of the space
of wave functions into spaces of equivariant functions onM, which are interpreted
as Hilbert spaces for reduced quantum systems onQ. The concept of connection on
a principal fiber bundle is generalized to be defined well on the stratified manifold
M. Then the reduced Laplacian is well defined as a self-adjoint operator with the
boundary conditions on singular sets of lower dimensions. Application to quantum
molecular mechanics is also discussed in detail. In fact, the reduction of quantum
systems studied in this paper stems from molecular mechanics. If one wishes to
consider the molecule which is allowed to lie in a line when it is in motion, the
reduction method presented in this paper works well. ©2000 American Institute
of Physics.@S0022-2488~00!01104-X#

I. INTRODUCTION

Symmetry has always played an important role in mechanics. When a Hamiltonian s
admits a symmetry group, the system reduces to a Hamiltonian system of less degrees of fr
Reduction of Hamiltonian systems with symmetry is established by Marsden and Weinstein1 and
is explained in a textbook.2 The reduction method has found a wide variety of applications
particular, the notion of moment map, which is a key word in the reduction method, has
introduced in differential geometry.

The reduction method is applicable to molecular mechanics, both classical and quant
fact, the translational invariance allows one to separate the relative motion of atoms fro
motion of the center of mass. Contrary to this, the rotational invariance of molecules is not a
separate the vibrational motion from the rotational motion of the whole molecular system, w
was shown by Guichardet.3 The nonseparability of vibration and rotation of a molecule is
underlying principle that allows cats to fall on their legs when launched in the air. While they

a!Electronic mail: stani@yukawa.kyoto-u.ac.jp
b!Electronic mail: iwai@amp.i.kyoto-u.ac.jp
18140022-2488/2000/41(4)/1814/29/$17.00 © 2000 American Institute of Physics
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zero angular momentum and is free from external torque during the fall, they can make a ro
after a vibrational motion. It was Guichardet3 who gave a decisive answer to this seeming
strange fact. He defined a natural connection on the center-of-mass system and thereby app
holonomy theorem to show that the existence of nonvanishing curvature results in the no
rability of vibration and rotation. It is to be noted here that the center-of-mass system is mad
a fiber bundle if collinear configurations of the molecule are gotten rid of. The connecti
defined on this restricted center-of-mass system.

In spite of the nonseparability of vibration and rotation, the reduction method is still a
cable. One of the authors~T.I.! applied the reduction method of Marsden and Weinstein to
molecular system by the use of conservation of angular momentum and gave a reduced
tonian system,4 according to which the ‘‘internal’’ motion of molecules is coupled with rotati
through a kind of gauge field. The expression of the reduced equation of motion in terms o
coordinates is given in Ref. 5. He also constructed the Schro¨dinger equation to describe th
internal motion of molecules in both two and three dimensions, using differential geomet
fiber bundles and connections.6–8 However, in the previous papers,6–8 collinear configurations of
the molecule in which all the atoms are aligned in a line inR3 were out of consideration for the
reason that the collinear configurations form a singular point set which prevents the center-o
system from being made into a principal fiber bundle. The bundle picture is extended
applicable to a system of rigid bodies. Classical and quantum mechanics for the system of
identical axially symmetric cylinders is treated in Ref. 9.

It is Kummer10 who first discussed the reduction of the cotangent bundle of a principal
bundle with a connection. He may have been aware of a use of the connection in many
systems. However, he did not refer to the center-of-mass system as a principal fiber bun
general, but referred to a planar three-body system as anS1-bundle. He claimed also that th
reduction method had been applied to the planar three-body system by Satzer.11 Guichardet is the
first who showed that the connection defined on the restricted center-of-mass system as a p
fiber bundle played an important role in the study of many body systems; he showed th
holonomy group of the connection coincides with the structure group by the use of the Amb
Singer holonomy theorem, along with the conclusion that any rotation can be realized as
lonomy associated with a closed loop in the base manifold~or a shape space!.

This paper has an aim to improve the previous theory so that it may be applicable o
whole center-of-mass system which includes the singular point set stated above. Since the
of-mass system is endowed with a natural Riemannian metric and admits the action of SO~3! as an
isometry group, a general setting to start with is that a configuration spaceM is a Riemannian
manifold on which a compact Lie groupG acts by isometry. For a quantum system onM with
symmetry Lie groupG, the reduced quantum system by symmetry is to be defined on the quo
spaceQ5M /G. However, a problem arises since theQ is not a smooth manifold in genera
which may include singular points. A part ofQ, denoted byQm , is a smooth manifold, which is
called the internal or shape space endowed with local coordinates describing the internal d
of freedom of the molecule. One can set up a reduced quantum system on the smooth m
Qm .6,7 However, if one considers the wholeQ, then a question arises as to how wave functions
internal coordinates should behave on the singular point set. This article will provide a ge
formulation to describe quantum mechanics of a reduced system with singular points take
account.

Let L2(M ) be the Hilbert space of square integrable functions on the Riemannian manifoM,
which is to be looked upon as the space of wave functions on the center-of-mass system
group actionG3M→M ; (g,x)°gx induces a unitary representation ofG in L2(M ) through the
action G3L2(M )→L2(M ); (g, f (x))° f (g21x). This representation will be decomposed in
irreducible ones to give rise to representation subspaces ofL2(M ) accordingly. To get an idea o
the decomposition ofL2(M ), the Peter–Weyl theorem on unitary representations of com
groups is of great help, since the theorem is understood to provide the decomposition
Hilbert spaces of functions on groups. The decomposition ofL2(M ) is then performed in a simila
manner, to define the spaces of equivariant functions onM according to respective irreducibl
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unitary representations ofG. These spaces will give rise to wave functions reduced by the us
the angular momentum conservation, since choosing an irreducible unitary representation
isometry group amounts to keeping an angular momentum eigenvalue fixed. The equiv
functions will be shown to satisfy a good boundary condition, in a natural manner, on the
singular points. The general formalism for reducing wave functions is applicable to mole
mechanics. In particular, a triatomic molecule will be studied in detail.

The idea of using the Peter–Weyl theorem for quantization is old; it dates back to Cas
work on quantum mechanics of rigid body in 1931. The idea of using the invariant functions
up a reduced quantum system by symmetry is also old; for example, the quantum theo
electromagnetism12 or gravitation13,14 are described by gauge invariant and reparametrization
variant states, respectively. The idea of using equivariant functions is not new, either;
already been introduced by T.I.~Refs. 8,7! in molecular quantum mechanics and by Landsman
Linden15 in quantization on homogeneous spaces, respectively. A point to make in the p
paper is to extend the concept of equivariant functions on a principal fiber bundle to any ma
on which a compact group dose not necessarily act freely.

There are other methods of reduction by symmetry. A more algebraic formulation was s
by Landsman16 and Wren,17 who used a representation theory ofC* algebras due to Rieffel.18 The
present formulation is rather geometric and comprehensible in applications. On the other ha
path integral formulation is compatible with a method of reduction by symmetry. It has
shown15,19,20that path integral over a Lie groupG is reduced to path integral over a homogeneo
spaceQ5G/H when the system possesses symmetry given by a subgroupH. However, this
method is only applicable to homogeneous spaces, which are free from singularity, whi
method proposed in the present paper will be applicable even when the quotient spQ
5M /G is not a smooth manifold, as will be shown later.

On the other hand, S´niatycki and Weinstein,21 and other people22 have studied reduction an
quantization of symplectic systems with symmetry. They consider reduction of symplectic
fold when the momentum map takes a singular value and therefore the level set does not
smooth manifold. In our context, singularity refers to points of a configuration space which a
larger isotropy groups than those at generic points. The subject to be considered here is d
from what has been considered in Refs. 22,21, and a relation between these subjects will
examined.

The plan of the present paper is as follows: In Sec. II, the Peter–Weyl theorem on u
representations of compact groups is reviewed briefly. This theorem is extended to be app
a unitary representation of a compact Lie groupG in a Hilbert spaceH in order to decomposeH
into a series of invariant subspaces. The decomposition procedure is then applied to the
representation ofG in the Hilbert spaceL2(M ). As far as the decomposition is concerned,M is
assumed only to be equipped with aG-invariant measure, and does not need to be a Rieman
manifold. The above stated decomposition ofL2(M ) proves to be a decomposition into a series
spaces of ‘‘equivariant’’ functions. Section III contains a study of geometric structure of
G-manifoldM, where the assumption is not yet made thatM is a Riemannian manifold. It will be
shown that the orbit spaceQ5M /G becomes not a smooth manifold but a collection of smo
manifolds of various dimensions, which structure is called stratification. With this stratifica
taken into account, a connection onM, equivariant functions onM, and covariant derivatives wil
be defined. In Sec. IV,M is assumed to be a Riemannian manifold, andG to act onM by isometry.
The Laplacian acting on smooth functions onM will be reduced to be defined on each space
equivariant functions according to the decomposition ofL2(M ), which will provide a reduced
quantum system onQ. The reduced systems are well defined. In fact, the equivalence cond
will provide a boundary condition on equivariant functions at singular points. As a simple
ample, the Laplacian onR2 will be studied. In Sec. V, the general formalism developed in
preceding sections is applied to molecular mechanics. A general setting forN-atomic molecules
will be established, and then triatomic molecules will be studied in detail. Sec. VI con
conclusions and discussions.
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II. REDUCTION OF QUANTUM SYSTEMS WITH SYMMETRY

A. The Peter–Weyl theorem

We start with a brief review of the Peter–Weyl theorem, which will provide a key idea to
reduction method for quantum dynamical systems with symmetry.

Let G be a compact Lie group. Then there is the unique Haar measuremG on G which is
normalized to satisfy*GdmG51. LetL2(G) denote the space of all the square integrable functi
on G, L2(G)ª$ f :G→C u *Gu f (g)u2dmG(g),`%, which is equipped with the inner product

^ f , f 8&ªE
G

f ~g! f 8~g!dmG~g! ~2.1!

for f and f 8 of L2(G).
Let rx:G→U(H x) denote an irreducible unitary representation ofG on a Hilbert spaceH x

of finite dimensiondx
ªdimH x, wherex is to label all of inequivalent irreducible unitary rep

resentations ofG, andU(H x) denotes the space of unitary operators onH x. By r i j
x (g) we denote

the matrix elements ofrx(g) with respect to some orthonormal basis ofH x, where indices range
over i , j 51,2, . . . ,dx.

The Peter–Weyl theorem then states that all the functions$Adx r i j
x (g)%x,i , j form a complete

orthonormal set~CONS! in L2(G). Namely, one has the orthonormality relations,

dxE
G

r i j
x ~g!rkl

x8~g!dmG~g!5dxx8 d ik d j l ~2.2!

along with the completeness condition that if

E
G

r i j
x ~g! f ~g!dmG~g!50 ~2.3!

for all x,i , j , then f [0. Hence, any functionf PL2(G) can be expanded in a Fourier series
$Adx r i j

x %x,i , j , so that one has

f ~h!5 (
x,i , j

dxr i j
x ~h!E

G
r i j

x ~g! f ~g!dmG~g!5(
x,i

dxE
G

r i i
x~hg21! f ~g!dmG~g!

5(
x,i

dxE
G

r i i
x~g! f ~g21h!dmG~g!. ~2.4!

The expansion formula~2.4! is put formally in a compact form,

(
x,i

dx r i i
x~g!5d~g!, ~2.5!

where d(g) is Dirac’s delta function onG with respect to the measuremG . The Peter–Weyl
theorem also implies that

L2~G!> % x~~H x!* ^ H x!, ~2.6!

where it is to be noted that (H x)* ^ H x is isomorphic with the direct sum ofdx copies ofH x.

B. Method of reduction

We now apply the Peter–Weyl theorem to a quantum dynamical system with symme
obtain a series of reduced systems. A quantum dynamical system is defined to be a pair (H,H) of
a Hilbert spaceH and a HamiltonianH, whereH is a self-adjoint operator onH. Suppose that the
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system (H,H) admits a compact Lie groupG as a symmetry group, namely, each elemeng
PG is represented as a unitary operatorU(g) which acts onH, commuting withH.

In view of ~2.4!, we define, for each label (x,i ), an operatorPi
x on H to be

Pi
x
ªdxE

G
r i i

x~g!U~g!dmG~g!, ~2.7!

which apparently commutes withH. From theG-invariance of the measuremG and from the
orthonormality relations~2.2!, it follows that

~Pi
x!†5Pi

x , Pi
xPj

x85dxx8d i j Pi
x . ~2.8!

Further, the completeness condition~2.5! implies that

(
x,i

Pi
x5 idH , ~2.9!

where idH is the identity operator onH. Equations~2.8! and~2.9! show that the set$Pi
x%x,i forms

a family of orthogonal projection operators onH, bringing about the orthogonal decomposition
H,

H5 % x,i Im Pi
x , ~2.10!

which is an analog to~2.6!. Moreover, each subspace ImPi
x is invariant under the action of th

Hamiltonian H. Thus the dynamical system (H,H) is broken up into a family of subsystem
(Im Pi

x ,H) labeled by (x,i ). We call each system (ImPi
x ,H) a reduced quantum dynamica

system.
In the language of physics, the pair (x,i ) labels conserved quantities associated with

symmetry groupG, and thereby define a closed dynamical system that consists of the state
the assigned conserved quantities. For example, if the original system hasG5SU~2! symmetry,
the angular momentum is conserved. The states labeled by (j ,m) have the total angular momen
tum and the component of the angular momentum fixed atJ25 j ( j 11) andJ35m, respectively,
and are described as vector-valued functions with 2j 11 components.

C. Characterization of the reduced system

To gain a deeper insight into the decomposition~2.10!, we introduce an operator onH by

Vi j
x
ªdxE

G
r i j

x ~g!U~g!dmG~g! ~2.11!

for each labelx and indicesi , j 51, . . . ,dx. In particular, one hasVii
x 5Pi

x . A straightforward
calculation shows that

~Vi j
x !†5Vji

x , Vi j
x Vkl

x85dxx8d jk Vil
x . ~2.12!

As an immediate consequence, one obtainsVi j
x Pk

x50 if kÞ j , so that the domain ofVi j
x reduces

naturally to ImPj
x on account of ~2.10!. Since (Vi j

x )†Vi j
x 5Vji

x Vi j
x 5Vj j

x 5Pj
x , it holds that

KerVi j
x 5Ker Pj

x . Similarly, from Vi j
x (Vi j

x )†5Vi j
x Vji

x 5Vii
x 5Pi

x , it follows that Ker (Vi j
x )†

5Ker Pi
x , and thereby that ImVi j

x 5(Ker (Vi j
x )†)'5(Ker Pi

x)'5Im(Pi
x)†5Im Pi

x . Therefore,Vi j
x

becomes a unitary transformation

Vi j
x :Im Pj

x→Im Pi
x . ~2.13!

As a collection ofVi j
x , we define another operatorVx:H x

^ H→H x
^ H by
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Vx
ªdxE

G
rx~g! ^ U~g!dmG~g!. ~2.14!

Then Eq.~2.12! implies that

~Vx!†5Vx, Vx Vx5dx Vx, ~2.15!

which shows thatVx/dx is a projection operator onH x
^ H. Further, it is easy to verify thatVx

satisfies, for anyhPG,

Vx~rx~h! ^ U~h!!5Vx, ~2.16!

~rx~h! ^ U~h!!Vx5Vx, ~2.17!

which implies that

Im Vx5~H x
^ H!G

ª$cPH x
^ H u ~rx~h! ^ U~h!!c5c, ;hPG%. ~2.18!

We call (H x
^ H)G the subspace of invariant vectors ofH x

^ H.
Let $e1

x , . . . ,edx
x % be an orthonormal basis ofH x, which defines an injectionei

x :C→H x by
l°lei

x for each i 51, . . . ,dx. Its adjoint operator (ei
x)†:H x→C is defined by a surjection

v°^ei
x ,v&,vPH x. The domain of respective maps extends to the tensor product space withH to

give rise toei
x :H→H x

^ H and (ei
x)†:H x

^ H→H. With these notations,Vi j
x is put in the form

Vi j
x 5(ei

x)† Vx ej
x . We then introduce an operator by

Sj
x
ª

1

Adx
Vx ej

x :H→H x
^ H. ~2.19!

The adjoint operator is expressed as

~Sj
x!†

ª

1

Adx
~ej

x!† Vx:H x
^ H→H. ~2.20!

Then the second relation of~2.15! yields

~Sj
x!†Sj

x5~ej
x!† Vx ej

x5Pj
x . ~2.21!

On the other hand, from~2.12!, we observe thatVx ej
x (ej

x)† Vx5Vx, and thereby obtain

Sj
x~Sj

x!†5
1

dx
Vx ej

x ~ej
x!† Vx5

1

dx
Vx. ~2.22!

SincePj
x andVx/dx are projection operators onH and onH x

^ H, respectively, Eqs.~2.21! and
~2.22! are put together to imply that the restricted map

Sj
x :Im Pj

x→̃ Im Vx5~H x
^ H!G ~2.23!

is a unitary transformation. Thus the subspace ImPj
x is characterized as (H x

^ H)G.
We turn to the HamiltonianH acting onH. It appears thatH is extended to an operato

idH x ^ H on H x
^ H. SinceH commutes withU(g) for eachgPG, the extended operator idH x

^ H commutes withVx and withSj
x as well, so that one has

Sj
xH5~ idH x ^ H !Sj

x . ~2.24!
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It then turns out that the reduced system (ImPj
x ,H) is identified with ((H x

^ H)G, idH x ^ H),
which will be investigated in the following sections in detail.

Before investigation into the reduced system, we wish to consider how the action ofG is
decomposed according to the decomposition ofH. In the below, the dual space (H x)* to H x is
taken as (H x)*ªHom (H x;C), irrespective of the inner product inH x. Then the map
Adx (Sj

x)†5(ej
x)† Vx:H x

^ H→H can be viewed as a mapTj
x :H→(H x)* ^ H in the manner as

follows: Using the identification EndH x>(H x)* ^ H x, we may regard the mapVx:H x
^ H

→H x
^ H as a mapVx:H→(H x)* ^ H x

^ H. Combining id(H x)* ^ (ej
x)†:(H x)* ^ H x

^ H
→(H x)* ^ H with Vx, we can expressTj

x as the map

Tj
x5~ id(H x)* ^ ~ej

x!†!Vx:H→~H x!* ^ H. ~2.25!

Then it can be verified that

~Tj
x!†Tj

x5(
k

Pk
x , Tj

x~Tj
x!†5 id(H x)* ^ Pj

x , ~2.26!

where (Tj
x)†:(H x)* ^ H→H is the adjoint operator. From this, it follows thatTj

x yields a unitary
transformation

Tj
x : %

k

Im Pk
x ——→

;

~H x!* ^ Im Pj
x . ~2.27!

Then the right invariance ofVx under theG action, expressed in~2.16!, makes the following
diagram commutative,

H 5 %
x,i

Im Pi
x ——→

Tj
x

~H x!* ^ Im Pj
x

U~h!↓ ↓ t
rx~h21! ^ id

H 5 %
x,i

Im Pi
x ——→

Tj
x

~H x!* ^ Im Pj
x ,

~2.28!

wheretrx(h21)5rx(h) is the contragredient representation ofG on (H x)* . As for the action of
the HamiltonianH, we obtain the following commutative diagram accordingly:

H 5 %
x,i

Im Pi
x ——→

Tj
x

~H x!* ^ Im Pj
x

H↓ ↓ id^ H

H 5 %
x,i

Im Pi
x ——→

Tj
x

~H x!* ^ Im Pj
x .

~2.29!

The commutative diagrams~2.28! and ~2.29! show that the decomposition of the representat
(G,H,U) is compatible with the spectral resolution ofH.

D. Equivariant functions

The general reduction method introduced in the previous section applies to a quantum
on a configuration spaceM which admits the action of a compact Lie groupG.

Suppose that a compact Lie groupG acts on a differentiable manifoldM by diffeomorphisms,
namely, we are given aC` mapG3M→M satisfyingex5x and (gh)x5g(hx) for any xPM
and anyg,hPG with the identity elementePG. Then M is called aG-manifold. In addition,
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suppose thatM is equipped with a measuremM which is invariant under the action ofG. Let H
5L2(M ) be the space of square integrable functions onM with respect to the measuremM . The
groupG is represented onH5L2(M ) by unitary operatorsU(h),hPG, through

~U~h! f !~x!ª f ~h21x!, f PL2~M !. ~2.30!

Then the reduction method applies toH5L2(M ) to yield the Hilbert subspace ImPj
x . The unitary

transformation Sj
x given in ~2.23! allows us to identify ImPj

x(,L2(M )) with (H x

^ L2(M ))G(,H x
^ L2(M )). The spaceH x

^ L2(M ) can be identified with the Hilbert space
L2(M ;H x), of square integrableH x-valued functions onM;

L2~M ;H x!ªH c:M→H x u E
M

uuc~x!uu2 dmM~x!,`J , ~2.31!

which is equipped with the inner product,

^f,c&ªE
M

^f~x!,c~x!&dmM~x!, f,cPL2~M ;H x!, ~2.32!

where^f(x),c(x)& denotes the inner product inH x. Then, the condition given in~2.18! along
with (2.30) implies thatcP(H x

^ L2(M ))G, when viewed as anH x-valued function, satisfies

c~hx!5rx~h!c~x!, hPG, ~2.33!

which shows thatc is equivariant under theG-action. We conclude therefore that the reduc
Hilbert space ImPj

x is identified with the space of square integrable equivariant functions, w
we denote byL2(M ;H x)G,

~H x
^ L2~M !!G>L2~M ;H x!G5$cPL2~M ;H x!uc~gx!5rx~g!c~x!,gPG%. ~2.34!

Here we have to note that according to the decomposition~2.10! along with ~2.23!, ~2.27!, and
~2.34!, the Hilbert spaceL2(M ) is decomposed into

L2~M !> % x~~H x!* ^ L2~M ;H x!G!. ~2.35!

So far we have characterized the reduced Hilbert space on theG-manifold M. We now have
to specify the Hamiltonian onL2(M ) and to reduce it. We will take a Hamiltonian as defined
be the sum of the Laplacian onM and a potential energy function onM. In the succeeding
sections, we will study the geometric structure ofM in order to analyze the Laplacian onM
according to the decomposition~2.35!.

III. GEOMETRIC SETTING ON G-MANIFOLDS

A. Stratification of G-manifolds

According to Davis,23 G-manifolds can be viewed as collections of fiber bundles. We h
make a brief review of his idea in a suitable form for our application. For more rigorous de
tions, see the literature.24

Let M be aG-manifold. For a pointxPM , we denote theisotropy subgroupat x and the
G-orbit of x by Gxª$gPG u gx5x% and byOxª$gx u gPG%, respectively. Then one hasOx

>G/Gx .
TakeGx andGy for two pointsx,yPM . If Gx is conjugate toGy by an inner automorphism

Ag :G→G; h°ghg21 with somegPG; Gy5g•Gx•g21, then the orbitsOx andOy are diffeo-
morphic to each other by the correspondence induced byAg . Of course, ify is in the orbitOx ,
namely, if there exists somegPG such thaty5gx, then Gy is conjugate toGx by Ag . The
conjugacy class ofGx is called the orbit type ofOx and denoted by@Gx# or t. We say that the
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point x itself also has the orbit typet, if Ox has the orbit typet. Let T(M ) denote the set of al
the orbit types appearing inM; T(M )ª$@Gx# u xPM %. For eachtPT(M ), we denote a represen
tative of the conjugacy class byGtPt.

One can introduce a partial order onT(M ) as follows: We say thatt1 is lower thant2

(t1 ,t2PT(M )), t1<t2 , if there are representativesGt1
Pt1 and Gt2

Pt2 such thatGt1
.Gt2

.
An orbit Ox is calledmaximalif its orbit typet is maximal with respect to this order. Orbits whic
are not maximal are calledsingular. We say also that a pointx is maximal or singular according
to whether the orbit type ofOx is maximal or singular. For each orbit typetPT(M ), we denote
by M tª$xPM u GxPt% the set of points with the same orbit typet, which becomes a smoot
manifold. ThusM is stratified into a collection of the smooth submanifoldsM t , M5qtM t ,
which is partially ordered by the system of orbit types (T(M ),<). Each manifoldM t is called a
stratum.

The set of orbitsQªM /G becomes a topological space with respect to the quotient topo
which is defined by demanding that the canonical projection mapp:M→M /G is continuous. The
spaceQ is called anorbit space. A point qPQ is also classified by the orbit type ofp21(q). The
point q is said to be maximal or singular according to whether the orbit is maximal or sing
The Q inherits differentiable structure fromM, if and only if all the orbits have the same orb
type. If otherwise,Q is stratified into a collection of smooth manifolds of various dimensio
SettingQtªp(M t), one hasQ5qtQt . The restriction ofp:M→Q onto each stratumpt :M t

→Qt defines a fiber bundle with fiberG/Gt . We then call the pentaplet (M ,G,Q,p,T(M )) a
stratified bundle.

If every point ofM has the same orbit type,p:M→Q is nothing but a usual fiber bundle. I
particular, if the groupG acts onM freely, namely,Gx5$e% for all xPM , then p:M→Q
becomes a principal fiber bundle with structure groupG. In this sense, we may regard th
G-manifold as a generalization of fiber bundles although the base spaceQ5M /G is not a smooth
manifold. Mechanics of molecules provides an example of a stratified bundle that is not a
bundle, as shown in the later section.

According to the principal orbit theorem,25,23 if the orbit spaceQ5M /G is connected, there is
the maximumorbit type inT(M ) with respect to the order<. Although the maximum orbit type
is also named the principal orbit type in Refs. 25 and 23, we will call it maximum in this pa
We assume thatQ is connected and that the maximum orbit exists. We denote the maximum
type bym. Moreover, the principal orbit theorem25,23states that the maximum stratumMm is open
and dense inM. Thus the setM singªM2Mm of all the singular points coincides with the boun
ary ]Mm . The image ofMm and ]Mm by the projectionp are denoted byQmªp(Mm) and
]Qmªp(]Mm), respectively. We put dimM5m and dimQm5n5m2p. Then the dimension of
the maximum orbit is dimG/Gm5p.

Though the orbit spaceQ is not a manifold, one can speak of differentiability of functions
Q. A function ofw:Q→R is called ofCr class whenw+p:M→R is a differentiable function ofCr

class. Clearly,w+p is a G-invariant function onM. Conversely, anyG-invariant functionf on M
is identified with a function onQ. We denote the space ofG-invariant functions onM of Cr class
by Cr(M )G5$ f :M→R u f (gx)5 f (x), ;gPG, ;xPM %.

A tangent vectorX to M at x is usually defined as a differential operator acting onC`(M );
X:C`(M )→R. A tangent vector onQ is defined as follows: We define an equivalence relation;
in the tangent vector spaceTxM by stating thatX;Y if X f5Y f for all f PC`(M )G. The equiva-
lence class ofX is denoted byp* (X), which defines a linear mapp* (X):C`(M )G→R. The set
TqQª$p* (X) u XPTxM ,p(x)5q% becomes a vector space through the structure of the ve
spaceTxM and is called a tangent vector space atqPQ.

B. Stratified connection

Let (M ,G,Q,p,T(M )) be the stratified bundle defined above. IfG acts onM freely, the
stratified bundle becomes a principal fiber bundle. Although the concept of connection is u
defined on principal fiber bundles, we would here like to define extended connections on str
bundles.
                                                                                                                



the
at

t

rm

the

sition

iously
t
b-

1823J. Math. Phys., Vol. 41, No. 4, April 2000 Reduction of quantum systems with symmetry

                    
Let us call a subspaceVxªTxOx of TxM a vertical subspaceat xPM . The action ofg
PG:M→M ; x°gx induces an actiong* :TxM→TgxM by differentiation. The complementHx

of Vx is called ahorizontal subspace. If the direct sum decompositionTxM5Vx% Hx is smooth
and if the family $Hx%xPM satisfies the invariance;Hgx5g* Hx , the decompositionTxM5Vx

% Hx defines aconnection. However, we should note that dimVx5dimOx and dimHx5dim M
2dimOx jump suddenly when the pointx passes singular points. Thus the smoothness of
decompositionTxM5Vx% Hx must be required on each stratumM t , so that one understands th
for any smooth vector fieldX which is decomposed intoX(x)5XV(x)1XH(x) according to
TxM5Vx% Hx , the componentsXV andXH are also smooth on eachM t . Then the assignmen
x°Hx for eachxPM is called astratified connectionover the stratified bundlep:M→Q.

The decompositionTxM5Vx% Hx induces a decomposition of the dual spaceTx* M5Vx*
% Hx* with Vx*ª$fPTx* M u f(v)50,;vPHx% andHx* 5$cPTx* M u c(u)50,;uPVx%.

Let g andgx denote the Lie algebras ofG andGx , respectively. The relationggx5Adggx is an
immediate consequence ofGgx5AgGx . The group actionG3M→M ; (g,x)°gx gives rise to
vector fieldsg3M→TM; (j,x)°jM(x) as infinitesimal transformations. Fixing a pointxPM ,
one obtains a linear mapux :g→TxM ; ux(j)5jM(x). It then follows that Kerux5gx and Imux

5Vx , and hence thatux :g→TxM induces an isomorphismũx :g/gx→̃ Vx .
The connection defined above is described in term of differential forms. A connection fov

is defined as the composition of the projectionTxM5Vx% Hx→Vx and the inverse map
( ũx)

21:Vx→̃ g/gx ,

vx :TxM5Vx% Hx→Vx→̃ g/gx ~3.1!

at each pointxPM . The formv is thus a one-form which takes values in quotient spaces of
Lie algebrag. It has the following properties:

v~ux~j!![j~modgx!, jPg, ~3.2!

~g* v!x5Adg vx , gPG, ~3.3!

whereg* is the pull-back associated with the mapg* :TxM→TgxM and Adg is to be understood
as a map Adg :g/gx→g/ggx . To verify ~3.3!, we need the formula thatugx(Adgj)5g* (ux(j)) for
jPg and that (ũgx)

21+g* 5Adg( ũx)
21. The properties~3.2! and ~3.3! are generalization of the

well-known defining properties of usual connection forms. It is also noted that the compo
map

u x̃+vx :TxM5Vx% Hx→Vx ~3.4!

is a projection, and that Eq.~3.2! is equivalently written asvx+ ũx5 idg/gx
.

C. Equivariant forms

Let cPC`(M ,H x)G be a smooth equivariant function, that is, one hasc(gx)5rx(g)c(x)
for gPG ~see~2.33!!. If a point xPM carries a nontrivial isotropy groupGx , then the value of
c(x) becomes invariant under the action ofGx ; c(x)5rx(g)c(x) for gPGx . For a subgroup
G1,G, we here define (H x)G1 to be amaximum subspace of invariant vectorsunder the action
of G1 , that is, (H x)G1

ª$vPH x u rx(g)v5v, ;gPG1%. With this notation, we then have
c(x)P(H x)Gx.

Properties of subspaces of invariant vectors are worth remarking. One has obv
(H x) $e%5H x. Further, one obtains (H x)G5$0%, if and only if there is no nontrivial invarian
vector. To a sequence of subgroups$e%,G1,G2(,G), there corresponds a sequence of su
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spacesH x.(H x)G1.(H x)G2(.$0%). For conjugate subgroupsG1 and AgG1 , it holds that
(H x)AgG15rx(g)(H x)G1. In particular, on an orbitOx , one has (H x)Ggx5rx(g)(H x)Gx on
account ofGgx5AgGx .

Like equivariant functions, we can define equivariant differential forms in a similar man
An equivariant k-formis defined as anH x-valued differentialk-form a:`kTM→H x satisfying
g* a5rx(g)a for any gPG. When an equivariantk-form a further satisfiesi (jM)a50 for any
jPg, it is called anequivariant horizontal k-form. While the set of all the differentialk-form on
M is denoted byVk(M ), the set of all theH x-valued differentialk-forms and the set of all the
equivariant horizontalk-forms are denoted byH x

^ Vk(M )>Vk(M ;H x) andVH
k (M ;H x)G, re-

spectively.
At each point xPM carrying a nontrivial isotropy groupGx , the equivariant hori-

zontal k-form a takes a restricted range as well as equivalent functions. It turns out
ax(X1 , . . . ,Xk)P(H x)Gx for any X1 , . . . ,XkPTxM whenGx is connected. The proof is give
below: LetLX denote the Lie derivation by a vector fieldX on M, andr

*
x denote a representatio

of the Lie algebrag on H x induced by differentiation of the representationrx of G. The defining
property of the equivariant formg* a5rx(g)a for gPG is differentiated to giveLjM

a

5r
*
x (j)a for jPg. This equation and the horizontal conditioni (jM)a50 for jPg are put

together with the Cartan formulaLjM
a5 i (jM)da1di(jM)a to provide

r
*
x ~j!a5 i ~jM !da, jPg. ~3.5!

If jPgx , one hasjM(x)50 and hencer
*
x (j)ax50 from ~3.5!, which implies thatrx(g)ax

5ax for gPGx if Gx is connected. Thus we conclude thataxP(H x)Gx.

D. Associated vector bundles

So far we have discussed equivariant functions and forms on the stratified bundle. W
wish to define vector bundles associated with the stratified bundle, like vector bundles ass
with principal fiber bundles.

Let us define an equivalence relation; in M3H x by the relation (x,v);(gx,rx(g)v) with
gPG. Let @x,v# denote the equivalence class with a representative (x,v). Then the vector bundle
associated with the stratified bundle (M ,G,Q,p,T(M )) by a representation (H x,rx) is defined to
be the quotient space,

M3rxH x
ª~ qxPM~$x%3~H x!Gx!!/;. ~3.6!

The projection mapM3H x→M naturally induces a projection mapprx:M3rxH x→Q;

@x,v#°p(x). Further, each pointxPM defines an isomorphismx̃:(H x)Gx→prx
21(p(x))5Ox

3rxH x by v° x̃(v)ª@x,v#. Note that, for each stratumQt , prx
21(Qt) is a vector bundle overQt

with fiber (H x)Gt, so that one hasM3rxH x5qtprx
21(Qt). In this sense, we may callM

3rxH x a stratified vector bundle. However, we will refer to it as theassociated vector bundlefor
simplicity. Moreover, each fiberprx

21(q) at qPQ inherits an inner product fromH x; for h,h8
Pprx

21(q), the inner product̂h,h8& is defined to be

^h,h8&ª^x̃21~h!,x̃21~h8!&, ~3.7!

where the RHS is the inner product defined onH x. It is easy to verify that the RHS is independe
of the choice ofxPp21(q).

A section of the associated vector bundle is a maps:Q→M3rxH x satisfying prx+s
5 idQ . An equivariant functionc defines a sectionc[ of the associated vector bundle throug
c[(p(x))5@x,c(x)#5( x̃+c)(x). The c[(q) is well-defined. In fact,c[(p(gx))5@gx,c(gx)#
5@gx,rx(g)c(x)#5@x,c(x)#5c[(p(x)) for gPG. Conversely, a sections defines an equiva-
riant functions] throughs](x)5( x̃21+s+p)(x). Thus we can identify sections of the associat
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vector bundle with equivariant functions. When the corresponding equivariant functions] is
differentiable as anH x-valued function onM, the sections is called differentiable, whileQ is not
a manifold in general. The set of all of the differentiable sections ofM3rxH x is denoted by
G(M3rxH x). Thus the space of sectionsG(M3rxH x) is in one-to-one correspondence with th
space of equivariant functionsC`(M ;H x)G.

To associate equivariant horizontalk-forms with certain sections, we should set up anot
vector bundle. The action ofgPG on the space of one-forms, (g21)* :Tx* M→Tgx* M , induces the
action on the space of horizontalk-forms, (g21)* :`kHx* →`kHgx* . This action is extended to
that on the space ofH x-valued horizontalk-forms `kH* ^ H x by the linear map generated by

f ^ vP`kHx* ^ H x°rx̃~g!~f ^ v !ª~g21!* f ^ rx~g!vP`kHgx* ^ H x. ~3.8!

We then take a subspace of invariant vectors

~`kHx* ^ H x!Gx
ª$zP`kHx* ^ H x u rx̃~g!z5z, ;gPGx% ~3.9!

and define an associated vector bundle, like~3.6!, through

M3rx̃~`kH* ^ H x!ª~ qxPM~$x%3~`kHx* ^ H x!Gx!/;, ~3.10!

where the equivalent relation; in M3(`kH* ^ H x) is defined as (x,z);(gx,rx̃(g)z). A pro-
jection mapprx̃ :M3rx̃(`kH* ^ H x)→Q is defined naturally as@x,z#°p(x). The space of
smooth sectionsG(M3rx̃(`kH* ^ H x)) is also in one-to-one correspondence with the spac
equivariant horizontal formsVH

k (M ;H x)G.

E. Covariant derivative

Covariant derivatives ofk-forms on the stratified bundle can be defined like those on
principal fiber bundle.Covariant derivationis a linear mapD:VH

k (M ;H x)G→VH
k11(M ;H x)G

defined through

Da~X1 , . . . ,Xk11!5da~X1
H , . . . ,Xk11

H !, XiPTxM ,i 51, . . . ,k11, ~3.11!

for aPVH
k (M ;H x)G, whereXi

H is the horizontal component ofXi5Xi
V1Xi

H .
The covariant derivativeDa can be expressed by using the connection formv. To anyXV

PVx , there corresponds an elementjPg such thatXV5jM(x) uniquely modulogx . By the
definition of the connection formv, we then havej[v(XV)[v(X) (modgx). With the help of
~3.5!, one hasi (XV)da5 i (jM)da5r

*
x (j)a5r

*
x (v(X))a. The last equality holds well in spite

of the ambiguity in the value ofv(X) since r
*
x (z)ax50 for zPgx . Putting together these

equations results in

Da~X1 , . . . ,Xk11!5da~X12X1
V , . . . ,Xk112Xk11

V !

5da~X1 , . . . ,Xk11!

1 (
i 51

k11

~21! ir
*
x ~v~Xi !!a~X1 , . . . ,Xî , . . . ,Xk11!, ~3.12!

whereXî means the removing ofXi . Thus our result is expressed as

Da5da2r
*
x ~v!`a. ~3.13!

We should note that smoothness of the covariant derivative is ensured only within each s
M t .
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IV. REDUCTION OF THE LAPLACIAN

A. Reduced Laplacians

We have characterized the Hilbert space of the reduced quantum system and stud
geometric structure of the manifold which is underlying the Hilbert space. Now we turn
attention to the Hamiltonian acting on the Hilbert spaceL2(M ). As was anticipated, the Hamil
tonianH we treat takes the formH5 1

2DM1V with the LaplacianDM and the potentialV.
First we give a precise definition of the Laplacian. We have been working with

G-manifold M equipped with theG-invariant measuremM . We assume thatM has no boundary.
In what follows, we make another assumption onM; M is assumed to be oriented and equipp
with a Riemannian metricgM which is invariant under the action ofG. The metricgM induces a
volume formvM , which is also invariant under the action ofG. We assume also thatmM is the
measure associated with the volume formvM . Let Cc

`(M ) be the set of all theC` functions onM
with compact support. Then the LaplacianDM :Cc

`(M )→Cc
`(M ) is defined through

E
M

uud f~x!uugM

2 vM5E
M

f ~x!~DM f !~x! vM , ~4.1!

whereuud f(x)uugM

2 denotes the norm ofTx* M induced by the metricgM . We note that the domain

of DM is extended inL2(M ) to makeDM a self-adjoint operator. Of course, in order that this
the case,M has to be assumed to be complete. Since both the metricgM and the volumevM are
G-invariant, the LaplacianDM is alsoG-invariant; namely,DM commutes withU(g) for any g
PG.

Next we turn our attention to the potential energyV(x). It is a smooth functionV:M→R
acting on f PL2(M ) by multiplication as (V f)(x)ªV(x) f (x). We assume thatV is also
G-invariant; V(gx)5V(x) for any gPG and xPM . Thus the action ofV also commutes with
U(g).

Since each term of the HamiltonianH5 1
2DM1V commutes withU(g) for anygPG, we can

apply the decomposition~2.10! and the commutativity~2.24! to bothDM andV separately. Hence
DM and V act as (idH x ^ DM) and (idH x ^ V) on the reduced Hilbert space (H x

^ L2(M ))G

>L2(M ;H x)G. The Laplacian (idH x ^ DM) with the domain restricted to (H x
^ L2(M ))G

>L2(M ;H x)G is denoted byDx, and is called areduced Laplacian. The reduced LaplacianDx is
also a self-adjoint operator. Then for an equivariant functioncPCc

`(M ;H x)G, the defining equa-
tion of the LaplacianDx takes the form

E
M

uudc~x!uugM

2 vM5E
M

^c~x!,~Dxc!~x!& vM , ~4.2!

where in the LHSuudc(x)uugM

2 denotes the norm ofH x
^ Tx* M induced from the metricgM .

B. Rotational and vibrational energy operators

To make further study ofDx, we make intensive use of the vertical–horizontal decomposi
TxM5Vx% Hx introduced in Sec. III. We have not chosen a specific connection yet. Now w
the connection by demanding the orthogonalityVx'Hx with respect to the metricgM(x). Then,
the G-invariance of the metric ensures thatg* Hx5Hgx , and hence a unique connection is det
mined. Since the set of maximum pointsMm is an open dense subset ofM as noticed previously
and since the connection is smooth when restricted toMm , the Laplacian onMm will be smoothly
decomposed into two, vertical and horizontal components, by the use of the connection.

According to the orthogonal decompositionTx* M5Hx* % Vx* , the integrand of the LHS of
~4.2! is also written as

uudc~x!uugM

2 5uu~dc~x!!HuugM

2 1uu~dc~x!!VuugM

2 . ~4.3!
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By the definition of the covariant derivative~3.11! and the expression~3.13! in terms of the
connection form, the above equation is put in the form

uudc~x!uugM

2 5uu~d2r
*
x ~vx!!c~x!uugM

2 1uur
*
x ~vx!c~x!uugM

2

5uuDc~x!uugM

2 1uur
*
x ~vx!c~x!uugM

2 . ~4.4!

The second term of the RHS of~4.4! proves to be expressed as

uur
*
x ~vx!c~x!uugM

2 5gM
21^r*

x ~vx!c~x!,r
*
x ~vx!c~x!&

52gM
21^c~x!,r

*
x ~vx! ^ r

*
x ~vx!c~x!&

5^c~x!,Lx
x c~x!&, ~4.5!

where we have to make remarks on the notations used; thegM
21^, & denotes the inner product o

T* M ^ H x, the productr
*
x (vx) ^ r

*
x (vx) is to be understood as a tensor product inT* M

^ T* M ^ EndH x and theLx
x is defined by

Lx
x
ª2gM

21~x!+~r
*
x ~vx! ^ r

*
x ~vx!!PEndH x, ~4.6!

with gM
21(x) taken as the inner product onT* M ^ T* M . We notice also that at the second line

~4.5!, we have used the fact that^r*
x (j)v,v8&52^v,r

*
x (j)v8& for any jPg and for anyv,v8

PH x. The equivariance of the connection form~3.3! and the invariance of the metric are p
together to imply that

Lgx
x 5rx~g! Lx

x rx~g21!. ~4.7!

Then we observe that the operatorLx acting onL2(M ;H x) through (Lx c)(x)ªLx
x c(x) leaves

L2(M ;H x)G invariant, so that one obtainsLx
xPEnd(H x)Gx. We can put theLx in another form.

Since the inner productgM(x):TxM ^ TxM→R gives rise to an isomorphismĝM(x):TxM

→Tx* M , its inverse ĝM
21(x):Tx* M→TxM induces an inner product on the cotangent sp

gM
21(x):Tx* M ^ Tx* M→R in the dual manner. HencegM

21 is viewed as a symmetric tensor fie
gM

21 :M→TM ^ TM. In terms ofgM
21 along with the connection formvx :TxM→g/gx and the

representation of Lie algebrar
*
x :g→EndH x, the tensor fieldLx:M→EndH x takes the form,

Lx
ª2~r

*
x

^ r
*
x !+~v ^ v!+gM

21 . ~4.8!

If rx is not a trivial representation and ifG acts onM nontrivially, thenLx is a positive definite
operator. We call theLx the rotational energy operator, the reason for which comes from mo
lecular mechanics withG5SO~3!. In fact, when applied to molecular mechanics, the quantity~4.5!
is interpreted as the rotational energy density.

We proceed to study the first term of the RHS of~4.4!. To this end, we have to make a revie
of Hodge’s star operator* M :Vk(M )→Vm2k(M ), which is defined through

a`* Mb5^a,b&gM
vM , a,bPVk~M !, ~4.9!

where ^a,b& in the RHS is the inner product oǹ kTx* M defined by the metricgM . Let
$e1 , . . . ,em% be a local orthonormal frame field onM with respect to the metricgM . Then the star
operator* M is explicitly given by

* Ma5
1

k! (
j 1 ,¯ j k51

m

~ i ~ej 1
!¯ i ~ej k

!a! ~ i ~ej 1
! . . . i ~ej k

!vM !. ~4.10!
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It is easily verified that* M* Ma5(21)k(m2k)a. The defining equation~4.1! of the LaplacianDM

is then rewritten as

E
M

uud f~x!uugM

2 vM5E
M

d f`* Md f5E
M

d~ f * Md f !2E
M

f d* Md f52E
M

f ~* M
21d* Md f ! vM ,

~4.11!

where we have used Stokes’ theorem to eliminate the first term on the second line. Th
Laplacian takes the form

DM f 52* M
21d* Md f52* Md* Md f . ~4.12!

In terms of local coordinates (x1, . . . ,xm) of M, the metric and the volume form are expressed
gM5( i , jgMi j (x) dxi

^ dxj and vM5vM(x) dx1`¯`dxm5AdetgMi j (x) dx1` . . . `dxm, re-
spectively. The LaplacianDM is then expressed as

DM f 52
1

vM~x! (
i , j 51

m
]

]xi S vM~x!~gM
21! i j ~x!

] f

]xj D , ~4.13!

as is well-known.
We examine~4.12! more closely, using the horizontal-vertical decompositionTxM 5Hx

% Vx . The measuremM of M projects to a measuremQ of Q throughp:M→Q;

E
Q

w~q!dmQ~q!ªE
M

~w+p!~x!dmM~x!, wPC0~Q!. ~4.14!

In what follows, we restrict ourselves to the maximum stratumMm , which is an open and dens
subset ofM. Let vQ be a volume form onQm associated with the measuremQ . We can define a
Riemannian metricgQ on Qm throughp* gQ5gMuH, wheregMuH denote the restriction of the
metric gM :TxM3TxM→R to the horizontal subspace;gMuH:Hx3Hx→R. Note that the defini-
tion of gQ is independent of the choice ofxPp21(p(x)), because of theG-invariance ofgM .
The mapp:(Mm ,gM)→(Qm ,gQ) then becomes a Riemannian submersion. It is to be noted
the volume formvQ does not coincides with the volume form induced from the metricgQ . We
denote the set of all the horizontal and the verticalk-forms onMm by

VH
k ~Mm!ª$aPVk~Mm! u i ~X!a50,;XPVx , ;xPMm%, ~4.15!

VV
k ~Mm!ª$aPVk~Mm! u i ~X!a50,;XPHx , ;xPMm%, ~4.16!

respectively. Note that we have already put dimM5m, dimQm5n5m2p. We define the hori-
zontal and the vertical volume forms,vHPVH

n (Mm) andvVPVV
p(Mm), throughvH5p* vQ and

vM5vH`vV , respectively. It appears that the formsvH and vV are uniquely determined an
G-invariant.

Moreover, it can be shown that bothvH andvV are closed forms. It is easy to verify thatvH

is closed;dvH5d(p* vQ)5p* (dvQ)50, sincevQ is a top form ofQm . To prove thatdvV50,
we use a local trivialization over an open setW,Qm ; p21(W),Mm is identified withW3F,
where FªG/Gm is the maximum orbit. The trivialization induces a surjective m
pF :p21(W)→F which is G-equivariant, that is,pF(gx)5gpF(x) for each gPG and x
Pp21(W). A restriction of the mappF to each fiber gives a diffeomorphismp21(q)>F for each
qPW. Let vF be aG-invariant volume form onF which is normalized as*FvF51. ThenvF is
uniquely determined. Now the definition~4.14! of the measuremQ is put in the form,
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E
W

w~q! vQ5E
p21(W)

~w+p!~x! vM

5E
p21(W)

~w+p!~x! vH`vV

5E
W

w~q! vQS E
p21(q)

vVD . ~4.17!

Sincew is arbitrary, this equation implies that the volume formvV restricted to each fiberp21(q)
is also normalized as*p21(q)vV51 for eachqPQm , so thatvV is a G-invariant normalized
volume form on each fiberp21(q). It then follows thatvV5pF* vF . As a consequence, one ha
dvV5pF* (dvF)50, sincevF is a top form ofF.

Using vH and vV , we define the horizontal and the vertical star operators* H :VH
k (Mm)

→VH
n2k(Mm) and* V :VV

k (Mm)→VV
p2k(Mm) through

* Ma5~* Ha!`vV , aPVH
k ~Mm! ~k<n!, ~4.18!

* Mb5~21!n vH`* Vb, bPVV
k ~Mm! ~k<p!, ~4.19!

respectively. According to the decompositionTx* M5Hx* % Vx* , we break upd f into d f5(d f)H

1(d f)V . Then* Md f is accordingly expressed as

* Md f5* H~d f !H`vV1~21!nvH`* V~d f !V . ~4.20!

SincedvH50 anddvV50, we obtain

d* Md f5~d* H~d f !H!`vV1vH`~d* V~d f !V!. ~4.21!

Thus Eq.~4.12! is expressed as

2DM f 5* M
21d* Md f5* H

21~d* H~d f !H!H1* V
21~d* V~d f !V!V , ~4.22!

which means that the LaplacianDM is decomposed into horizontal and vertical components.
The above argument can be extended toH x

^ Vk(Mm)>Vk(Mm ;H x) and toVH
k (Mm ;H x)G

straightforwardly; the star operators* M and* H are extended to be applicable toH x-valued forms
on Mm and toH x-valued horizontal forms onMm , respectively. Hence, for an equivariant fun
tion cPCc

`(Mm ;H x)G, Eq. ~4.22! gives rise to

2Dxc5* M
21d* Mdc5* H

21~d* H~dc!H!H1* V
21~d* V~dc!V!V . ~4.23!

For cPCc
`(Mm ;H x)G, we have (dc)H5Dc by the definition of the covariant derivatio

~3.11!. In view of the first term of the RHS of~4.23!, we are led to the definition of the adjoin
operatorD†:VH

k11(Mm ;H x)G → VH
k (Mm ;H x)G of D;

D†
ª2* H

21D* H52~21!k(n2k)* HD* H . ~4.24!

By using~4.2!, ~4.4!, ~4.5!, ~4.22!, and~4.24!, we accomplish the decomposition of the Laplaci
Dx into the horizontal and the vertical components,

Dxc5D†Dc1Lxc, cPCc
`~Mm ;H x!G. ~4.25!

We call theD†D the vibrational energy operatorfor the reason that the integral~4.2! is inter-
preted as the vibrational energy when our general formalism is applied to molecular mech
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As was noted above, the smoothness of the horizontal–vertical decomposition is ensure
in the open dense subsetMm,M , so that the RHS of~4.25! makes sense only inMm . However,
Dx is actually a self-adjoint operator onL2(M ;H x) by definition, so that the LHS of~4.2! holds
for c defined throughoutM. Hence we may expect that some boundary condition arises
]Mm5M sing to makeD†D1Lx into a self-adjoint operator onL2(M ;H x). Since the requiremen
imposed onc is thatc is to be equivariant, we obtain the boundary condition on]Mm ,

rx~g!c~x!5c~x!, gPGx , xP]Mm , ~4.26!

or, in the form of derivative,

r
*
x ~j!c~x!50, jPgx , xP]Mm . ~4.27!

In case ofGxÞ$e% for the maximum orbit typem, the equivariant functions are, of course, subje
to the conditionrx(g)c(x)5c(x) for gPGx ,xPMm . The condition~4.26! or ~4.27! states that
at singular points the equivariant functions are subject to a stronger condition since dimGx rises
up at singular points.

C. Angular momentum and inertia tensor

Now we wish to introduce the angular momentum and the inertia tensor, which are c
related with the connection form and the rotational energy operatorLx.

The angular momentumis a mapL:T* M→g* ; which is defined through

^Lx~p!,j&ª^p,ux~j!&, pPTx* M ,jPg, ~4.28!

where^•,•& ’s in the LHS and in the RHS denote the pairing betweeng* andg and that between
Tx* M and TxM , respectively, andux(j)(5jM(x)) is the infinitesimal generator induced byj
Pg. The angular momentumL:T* M→g* is a typical example of momentum maps due
Marsden and Souriau.26 By the use of the isomorphismĝM :TM→T* M , the angular momentum
can be rewritten as the mapL̂ªL+ĝM :TM→g* ; v°L̂x(v) , which is expressed as

^L̂x~v !,j&ªgM~v,ux~j!!, vPTxM ,jPg. ~4.29!

Namely,L̂ is a g* -valued one-form onM, which we call the angular momentum form.
The inertia tensoris a tensor fieldI :M→g* ^ g* ; x°I x , which is defined through

I x~j,z!ªgM~ux~j!,ux~z!!,j,zPg. ~4.30!

On account ofugx(Adg j)5g* (ux(j)) and ofg* gM5gM for anygPG, the inertia tensor trans
forms according to

I gx~Adg j,Adg z!5I x~j,z!. ~4.31!

In other words, the mapI :M→g* ^ g* is equivariant;g* I 5(Adg21* ^ Adg21* )I . For an arbitrary

xPM fixed, the quadratic formI x :g^ g→R can be regarded as a mapÎ x :g→g* , which has
Ker Î x5gx and ImÎ x5$fPg* u ^f,j&50,;jPgx%>(g/gx)* . Then it can give rise to an isomor
phism Ĩ x :g/gx→̃ (g/gx)* . Hence, there exists the inverse (Ĩ x)

21:(g/gx)* →̃ g/gx , which is iden-
tified with a quadratic form (Ĩ x)

21:(g/gx)* ^ (g/gx)* →R. The mapÎ x will be referred to as an
inertia operator. The inertia operator is called the locked inertia tensor by Simoet al.27 The inertia
operator was first introduced by Guichardet,3 and used in Refs. 8,7 to break up the total ene
into the sum of rotational and vibrational energies.

From definition, the angular momentum, the inertia tensor, and the connection form tu
to be related by
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L̂5 Î +v, ~4.32!

where each symbol is to be understood as follows:L̂x :TxM→g* , vx :TxM→g/gx , and Î x :g/gx

→g* . A proof of ~4.32! runs as follows: First, the identity

L̂+u5 Î , ~4.33!

can be proved by a straightforward calculation. In fact, for anyj,zPg, we have

^~ L̂+ux!~j!,z&5gM~ux~j!,ux~z!!5I x~j,z!5^ Î x~j!,z&. ~4.34!

Next, from the identity~4.33! it is deduced that

L̂+u+v5 Î +v. ~4.35!

From the definition of the angular momentum form~4.29!, it can be shown that KerL̂x5Hx , so
that Eq.~4.32! holds onHx . Moreover, sinceũx+vx :TxM5Vx% Hx→Vx is a projection as was
noted at~3.4!, Eq. ~4.35! shows that~4.32! holds onVx . The proof is thus completed. Sinc
Im L̂x>(g/gx)* , we may rewrite~4.32! asL̂5 Ĩ +v, so that the connection form is put in the for

v5 Ĩ 21+L̂. ~4.36!

This formula will be used to write out the connection formv in molecular mechanics.
Owing to the definition of the inertia tensor,I x5gM+(ux^ ux), the metricgMuV restricted to

the vertical subspace takes the form,

gMuV5I +~v ^ v!5^L̂,v&, ~4.37!

where use has been made ofũx+vxuVx5 id Vx
, another expression of~3.4!. Equation~4.37! can be

looked upon as describing the rotational energy in classical mechanics. Since the reduce
dratic form Ĩ x5gM+( ũx^ ũx):g/gx^ g/gx→R is nondegenerate, it has the inverse quadratic fo
( Ĩ x)

215gM
21+(vx* ^ vx* ):(g/gx)* ^ (g/gx)* →R, which is expressed as a tensor field,x°( Ĩ x)

21

Pg/gx^ g/gx ,

~ Ĩ x!
215~vx^ vx!+gM

21, ~4.38!

wheregM
21 is regarded as a symmetric tensor fieldM→TM ^ TM. From ~4.8! and ~4.38!, we

obtain a formula to expressLx, in terms of the inertia tensor, as

Lx52~r
*
x

^ r
*
x !+ Ĩ 21. ~4.39!

D. Coordinate representation

Now we wish to provide a coordinate representation of the reduced Laplacian given in~4.25!.
Take local coordinates (q1,q2, . . . ,qn) on an open subsetW of Qm . Then the metricgQ and the
volume formvQ take the formgQ5( i , jgQi j (q) dqi

^ dqj andvQ5vQ(q) dq1`¯`dqn, respec-
tively. For eachxPp21(W),Mm , we take a basis$j1(x), . . . ,jp(x)% of g/gx , where we have
used the same notation for elements ofg/gx as those forg for simplicity. Then the components o
the reduced inertia tensorĨ x are defined by

~ Ĩ x!abª Ĩ x~ja~x!,jb~x!!, a,b51, . . . ,p5dimg/gx , ~4.40!
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which gives a symmetric positive definite matrix of rankp. The components of its inverse ar
denoted by (Ĩ x

21)ab. Let s be a local section onW of the bundlep:Mm→Qm , that is, a differ-
entiable maps:W→Mm such thatp+s5 idW . Then an equivariant functioncPCc

`(M ;H x)G is
pulled back to a functions* c:W→H x of the coordinates (q1,q2, . . . ,qn). Our aim is to obtain
a coordinate expression ofs* Dxc, according to the decompositionDx5D†D1Lx. The covari-
ant derivative~3.13! with a5c is expressed, in terms of (q1,q2, . . . ,qn), as

~s* Dc!~q!5(
i 51

n S ]

]qi
2~r

*
x +v+s* )S ]

]qi D D ~s* c!~q!dqi . ~4.41!

It then turns out from~4.24!, ~4.25!, and~4.39! that

~s* Dxc!~q!52
1

vQ~q! (
i , j 51

n S ]

]qi
2~r

*
x +v+s* !S ]

]qi D D vQ~q!~gQ
21! i j ~q!

3S ]

]qj
2~r

*
x +v+s* !S ]

]qj D D ~s* c!~q!

2 (
a,b51

p

~ Ĩ s(q)
21 !ab~r

*
x +ja+s!~q!~r

*
x +jb+s!~q!~s* c!~q!. ~4.42!

It should be noted here thatv(s* (]/]qi)) and r
*
x (v(s* (]/]qi))) denote a component of

‘‘gauge potential’’ and its representation as a matrix acting onH x, respectively. Further,
r
*
x (ja(s(q))) denote a matrix representation of the infinitesimal generator~or the angular mo-

mentum operator! induced byja(x)Pg. Equation~4.42! is one of our main results.
If there exists a global sections:Qm→Mm , the fiber bundlep:Mm→Qm becomes a trivial

bundle;Mm>Qm3(G/Gm), ands* c becomes a smooth function over the entire domainQm . In
this case, the procedure of reduction is nothing but separation of variables. The reduction m
is a generalization of the method of separation of variables.

Equation~4.42! makes sense only in the maximum component,Qm , of the orbit spaceQ. At
a singular pointqP]Qm , the rank of the inertia tensorI s(q) decreases abruptly. As was notice
earlier, the equivariance condition provides the boundary condition imposed onc and hence on
s* c, which is put in the form

r
*
x ~j!~s* c!~q!50, jPgs(q) . ~4.43!

If gs(q)5$0% in Mm , this imposes no condition ons* c. At singular pointsqP]Qm , the dimen-
sion of the isotropy algebrags(q) jumps up, so that the value ofs* c is more strongly restricted
there. The operator~4.42! should be accompanied by the condition~4.43!. This is another one of
our main results.

E. Example: Quantum mechanics on a plane

Quantum mechanics in a two-dimensional Euclidean space provides a simple but non
example of the formulation constructed above.

First we takeM5R2 andG5SO~2!. Then SO~2! acts onR2 in the usual manner. Let (r ,f) be
the polar coordinate ofR2. Then the orbit space becomesQ5R>0 , which is nothing but the radius
coordinater>0. A point with rÞ0 has a maximum orbitS1. The originr 50 has a singular orbit,
that consists of a single point$0%. In this example we haveMm5R22$0%, ]Mm5$0%, Qm

5R.0 , and]Qm5$0%. SinceR22$0%>R.03S1, the fiber bundlep:Mm→Qm is trivial. Then
the reduction method becomes the method of separation of variables in this case.

The spaceR2 is equipped with the standard metricgM5dr21r 2df2 and the standard measu
dmM5rdrdf. Then the projected measure ofR>0 is dmQ52prdr . At each maximum pointx
PR2 with rÞ0, the vertical and horizontal subspaces are given by
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Vx5R
]

]f
, Hx5R

]

]r
, ~4.44!

respectively. At the singular pointr 50, one hasV05$0% and H0>R2. The metric onR.0 is
gQ5dr2, and thereby one obtains the Riemannian submersionp:Mm→Qm . It should be noted
that dmQ52prdr does not coincide with the metric volumedr.

Any irreducible unitary representation of SO~2! is one-dimensional. It is labeled by an integ
nPZ and defined by

rn :SO~2!→U~1!; S cosa 2sina

sina cosa D °eina. ~4.45!

Accordingly, an equivariant functionc:R2→C which satisfiesc(gx)5rn(g)c(x) becomes a
functioncn(r ,f) subject to the conditioncn(r ,f1a)5einacn(r ,f). Thus we can putcn in the
form cn(r ,f)5einf f n(r ). Here the decomposition~2.10! with the projection operators~2.7!
realizes the ordinary Fourier expansion in angular coordinate,c(r ,u)5(n52`

` einf f n(r ). Since
SO~2! is an isotropy group at the originr 50, smooth equivariant functionscn must satisfy

]

]f
cnU

r 50

50, ~4.46!

which has an alternative expression

n fn~0!50. ~4.47!

This boundary condition illustrates the general condition~4.43!.
We proceed to reduce the ordinary Laplacian. The metric on the cotangent bundleT* R2 is

expressed as

gM
215

]

]r
^

]

]r
1

1

r 2

]

]f
^

]

]f
. ~4.48!

To obtain the reduced Laplacian, we calculate the integral~4.2! for cn ,

E
R2

uudcnuugM

2 dmM5E
R2S U]cn

]r U2

1
1

r 2 U]cn

]f U2D rdrdf5E
0

`S Ud fn

dr U
2

1
n2

r 2
u f nu2D 2prdr

5F2pr f n

d fn

dr G
0

`

1E
0

`

f nS 2
1

r

d

dr
r

d fn

dr
1

n2

r 2
f nD 2prdr . ~4.49!

Since f n(r ) is bounded asr→0 from ~4.47!, and sincer (d fn /dr)→0 asr→0 from the RHS of
the first line, the boundary term atr 50 vanishes. The other term atr 5` vanishes because of th
assumption thatcn has a compact support. Thus we are left with the reduced Laplacian,

Dnf n52
1

r

d

dr
r

d fn

dr
1

n2

r 2
f n . ~4.50!

We note here that the boundary condition~4.47! says thatf n(0)50 for nÞ0 and thatf 0(0) is
bounded forn50. This result gives an example of the general formula~4.42!. An eigenfunction of
the LaplacianDn with an eigenvalueE.0 is thenth Bessel functionJn(AEr). The Neumann
function Yn(AEr) does not satisfy the boundary condition~4.47!.
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F. Rigid body

We have to notice here that our theory covers quantum mechanics of rigid bodies. In me
ics, a rigid body is defined as a collection of mass points in three dimensions, in which
mutual distances are kept fixed. In this case, the symmetry groupG is SO~3! and the configuration
spaceM becomes a singleG-orbit. Hence the orbit spaceQ reduces to a single point. When th
orbit is maximal,M becomes SO~3! and the inertia tensorI is nondegenerated. When the orbit
singular,M is isomorphic toS2 or a single point, and the inertia tensor is of rank two or ze
respectively. For a rigid body, the horizontal component of the Laplacian~4.25!, or the vibrational
energy operator, vanishes, and therefore the Laplacian reduces to the rotational energy op

Dx5Lx52~r
*
x

^ r
*
x !+ Ĩ 21, ~4.51!

which is the Casimir operator acting on the representation spaceH x up to a normalization con-
stant. In the language of physics, since the rigid body executes no vibrational motion, it ha
rotational energy, which is determined by the angular momentum. A simple example will be
in Sec. V.

V. QUANTUM MOLECULAR MECHANICS

A. Jacobi vectors

In the previous sections, we have set up a general formulation for reduction of qua
dynamical systems on the configuration spaceM with symmetryG. The Hilbert spaceL2(M ) is
decomposed into the orthogonal direct sum of the spaces of equivariant functions according
irreducible unitary representations ofG, as was shown in~2.35!. The LaplacianDM is accordingly
reduced to the operatorDx of ~4.25! acting on each space of equivariant functionsL2(M ;H x)G.
We have studied quantum mechanics onM5R2 with symmetryG5SO~2! to give a concrete
example. It was a well-known but nontrivial example in which reduction by symmetry serv
the method of separating variables.

Here, we wish to apply the general formulation to molecular mechanics, which is the or
problem that motivates us. We consider a molecular system consisting ofN atoms inR3. The
configuration of the molecule is described as an ennuple (x1 , . . . ,xN) of the position,xiPR3, of
each atom. Masses of the atoms are denoted by (m1 , . . . ,mN) with miPR.0 . Assume that we are
working with the center-of-mass system,

M5H ~x1 , . . . ,xN!P~R3!N u (
i 51

N

mixi50J , ~5.1!

which is a linear subspace of (R3)N. Let gPG5SO(3) act onx5(x1 , . . . ,xN)PM by gx
5(gx1 , . . . ,gxN). We callM andQ5M /SO(3) themolecular configuration spaceand theshape
space, respectively. We may regardx5(x1 , . . . ,xN) as a 33N matrix. According as the rank o
x is 3, 2, 1, or 0, the configurationx is called agenericconfiguration, aplanarone, acollinearone,
or a collision one, respectively. A generic or planar configuration has a maximum orbit whic
diffeomorphic to SO~3!. A collinear configuration, in which all the atoms are placed along a l
has a singular orbit which is diffeomorphic toS2. A collision configurationx5(0, . . . ,0) has
another singular orbit which consists of a single point. We are going to review a geometric s
on M in what follows. The topology of the shape spaceQ will be studied in the next subsection

While a tangent vectorvPTxM is denoted byv5(v1 , . . . ,vN)P(R3)N along with the con-
dition ( i 51

N miv i50, a cotangent vectorpPTx* M is denoted byp5(p1 , . . . ,pN)P(R3)N along
with the condition ( i 51

N pi50. The pairing betweenTxM and Tx* M is given by
^p,v&ª( i 51

N (pi ,v i), where (•,•) denotes the standard inner product ofR3. Each element of the
Lie algebrajPso(3) is identified with a vectorjPR3 and induces the infinitesimal transformatio
ux(j)5(j3x1 , . . . ,j3xN), where3 means the standard vector product inR3. Moreover, the
dual space of the Lie algebraso(3)* is also identified withR3.
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The space (R3)N is equipped with a Riemannian metricK,

Kª(
i 51

N

mi~dxi ,dxi !. ~5.2!

Although K is twice the kinetic energy, we will call it the kinetic energy simply. The subsp
M,(R3)N inherits the Riemannian metricK. From the definition~4.28!, the angular momentum
L:T* M→so(3)* >R3 is expressed as

~Lx~p!,j!5^p,ux~j!&,5(
i 51

N

~pi ,j3xi !5S (
i 51

N

xi3pi ,jD , ~5.3!

and hence takes the usual form

L5(
i 51

N

xi3pi . ~5.4!

According to~4.29!, the angular momentum formL̂:TM→so(3)* is expressed as

~ L̂x~v !,j!5K~v,ux~j!!5(
i 51

N

mi~v i ,j3xi !5S (
i 51

N

mixi3v i ,jD , ~5.5!

which implies that

L̂5(
i 51

N

mixi3dxi . ~5.6!

The Jacobi vectors are of great help in describing many-body systems. Let us remind us
definition of the Jacobi vectors. ByMiPR.0 andXiPR3 we denote the sum of the masses fro
the first to theith atom and the center-of-mass of the set ofi atoms, respectively,

Miª(
j 51

i

mj , Xiª
1

Mi
(
j 51

i

mjxj ~ i 51, . . . ,N!. ~5.7!

In particular, one hasX15x1 , andXN is equal to the center of mass of the whole system. Then
Jacobi vectors (r0

(N) ,r1
(N) , . . . ,rN21

(N) ) are defined by

r0
(N)

ªAMN XN , r i
(N)

ªS 1

Mi
1

1

mi 11
D 2~1/2!

~xi 112Xi ! ~ i 51, . . . ,N21!. ~5.8!

Of course, in the center-of-mass system, one hasXN5r0
(N)50. The Jacobi vectors

(r1
(N) , . . . ,rN21

(N) ) provide a coordinate system toM, and give rise to the isomorphismM
>(R3)(N21).

Good use is made of the Jacobi vectors to prove the additivity of the kinetic energyK and of
the angular momentumL̂ in the number of atoms. In fact, one can verify that

K (N)
ª(

i 51

N

mi~dxi ,dxi !5 (
i 50

N21

~dr i
(N) ,dr i

(N)!, ~5.9!

L̂(N)
ª(

i 51

N

mixi3dxi5 (
i 50

N21

r i
(N)3dr i

(N) . ~5.10!
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The additivity ofK (N) can be proved by induction with respect toN. A straightforward calculation
yields

K (N11)2K (N)5uudr0
(N11)uu21uudrN

(N11)uu22uudr0
(N)uu2

5MN11uudXN11uu21
MNmN11

MN1mN11
uudxN112dXNuu22MNuudXNuu2

5
1

MN11
uuMNdXN1mN11dxN11uu21

MNmN11

MN11
uudxN112dXNuu22MNuudXNuu2

5
MN

2 1MNmN112MNMN11

MN11
uudXNuu21

mN11
2 1MNmN11

MN11
uudxN11uu2

5mN11uudxN11uu2. ~5.11!

In a similar manner, the additivity of the angular momentum is verified as follows:

L̂(N11)2L̂(N)5r0
(N11)3dr0

(N11)1rN
(N11)3drN

(N11)2r0
(N)3dr0

(N)

5MN11XN113dXN111
MNmN11

MN1mN11
~xN112XN!

3~dxN112dXN!2MNXN3dXN

5
1

MN11
~MNXN1mN11xN11!3~MNdXN1mN11dxN11!

1
MNmN11

MN11
~xN112XN!3~dxN112dXN!2MNXN3dXN

5
MN

2 1MNmN112MNMN11

MN11
XN3dXN1

mN11
2 1MNmN11

MN11
xN113dxN11

5mN11xN113dxN11 . ~5.12!

In the following, we fix the number of atomsN and suppress the superscript (N).
According to the relations~4.33! and~5.10!, the inertia operatorÎ x :so(3)→so(3)* is defined

for eachjPso(3)>R3 by

Î x~j!5L̂~ux~j!!5 (
i 50

N21

r i3~j3r i !5 (
i 50

N21

~~r i ,r i ! j2~j,r i ! r i !. ~5.13!

According asx is a generic configuration, a planar one, a collinear one, or the collision one
rank of Î x is 3, 3, 2, or 0, respectively. Unfortunately, there is no concise expression for the in
( Ĩ x)

21 in general. However, the connection formv is expressed, from~4.36!, as

v5 Ĩ 21 (
i 51

N21

r i3dr i . ~5.14!

To formulate molecular mechanics, we need the invariant volume formvM of M associated
with the metricK,

vM5d3r1`¯`d3rN21 . ~5.15!
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Thus we have made a geometric setting to apply our formalism to molecular mechanics. Ho
before application we have to examine the topology of the orbit space~or shape space! Q
5M /G for N-atomic molecules.

B. Topology of the shape space

Let M (m,n) and M (m,n)k be the vector space ofm3n matrices overR, and the set ofm
3n matrices of rankk, respectively. ByS(n) we denote the set of all the positive semi-defin
symmetricn3n matrices, and setS(n)kªS(n)ùM (n,n)k . Of course,k<m,n. Let O(n) denote
the orthogonal group acting onRn as usual. Then O~m! and O~n! act onM (m,n) to the left and to
the right, respectively. We can verify now that

M ~m,n!k>
O~m!/O~m2k!3S~k!k3O~n2k!\O~n!

O~k!
~5.16!

from the observation of the fact that an arbitrary linear mapw:Rn→Rm of rankk can be expressed
as a compositionw5 i +s+p of three linear maps, wherep, s, andi are an orthogonal submersio
p:Rn→Rk, a positive-definite symmetric operators:Rk→Rk, and an orthogonal immersio
i :Rk→Rm, respectively. Here we call a linear mapp:Rn→Rk an orthogonal submersion, when
is surjective and satisfiesp+ tp5 id on Rk. Similarly, we calli :Rk→Rm an orthogonal immersion
when it is injective and satisfiesti + i 5 id on Rk. The set of all the orthogonal submersio
$p:Rn→Rk% is identified with a Stiefel manifold O(n2k)\O(n), while the set of all the orthogo
nal immersions$ i :Rk→Rm% is identified with another Stiefel manifold O(m)/O(m2k). An
equivalence relation; is defined on the triplet (i ,s,p) by the action ofgPO(k) through
( i ,s,p);( ig21,gsg21,gp). In particular, form5n5k, Eq. ~5.16! becomes

GL~n!5M ~n,n!n>S~n!n3O~n!, ~5.17!

which is nothing but the so-called polar decomposition of regular matrices.
Thus the configuration space of the molecule,M5(R3)N215M (3,N21), is identified with

M ~3,N21!>ø0<k<min(3,N21)

O~3!/O~32k!3S~k!k3O~N212k!\O~N21!

O~k!
. ~5.18!

Each component withk50,1,2,3 corresponds to the set of collision, collinear, planar, and gen
configurations, respectively. Note that a pointxPM is of the maximum type or of the singula
type, according ask52,3 ork50,1. Strata of the shape spaceQ5M/SO~3! are then given by

Qk
(N)>

SO~3!\O~3!/O~32k!3S~k!k3O~N212k!\O~N21!

O~k!
. ~5.19!

The topology of strata for few-body problems withN53 andN54 is already studied by one o
the authors7 and Narasimhan–Ramadas,28 respectively. Coordinates of theN-body problem are
also studied by Littlejohn and Reinsch.29 They also wrote a comprehensive review30 on gauge
fields in theN-body problem, and studied also complexes of rigid molecules.31

We write out topology withN52,3,4 to give definite examples. We denote byR.0 the
positive real numbers (0,`) and byDn, Sn, andRPn an n-dimensional disk, sphere, projectiv
space, respectively.

N52:

Q1
(2)>S~1!1>R.0 ,

Q0
(2)>$0%. ~5.20!

N53:
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Q2
(3)>S~2!2>R.03D2>R.03R2,

Q1
(3)>S~1!13

O~2!

O~1!3O~1!
>S~2!1>R.03RP1>R.03S1>R22$0%, ~5.21!

Q0
(3)>$0%.

N54:

Q3
(4)>

O~3!

SO~3!
3S~3!3>Z23R.03D5>R.03~S52S4!,

Q2
(4)>

S~2!23O~1!\O~3!

O~2!
>S~3!2>R.03~S42RP2!,

~5.22!

Q1
(4)>

S~1!13O~2!\O~3!

O~1!
>S~3!1>R.03RP2,

Q0
(4)>$0%.

In the case ofN53, the union ofQk
(3) , k50,1,2, forms the shape spaceQ>R23R>0 . The

maximum stratum isQ2
(3)>R23R.0 . For N54, the unionQ3

(4)øQ2
(4) is the maximum stratum

which is diffeomorphic toR.03(S52RP2).

C. Triatomic molecules

To make a practical application of the above general formalism, we concentrate on th
atomic molecules in the rest of the paper. The configuration space then becomesM5(R3)2

5$(r1 ,r2)%. The maximum stratumMm is diffeomorphic withM (3,2)2 , the space of 332 ma-
trices of maximal rank. The stratum of singular orbit type,]Mm , is the unionM (3,2)1øM (3,2)0 .
Dragt32 and his successors have introduced a useful coordinate system (a,b,g,r,x,f) of M by
setting

r15r S cos
x

2
cos

f

2
u31sin

x

2
sin

f

2
u2D , ~5.23!

r25r S cos
x

2
sin

f

2
u32sin

x

2
cos

f

2
u2D . ~5.24!

Here (u1 ,u2 ,u3) is an orthonormal basis ofR3 parametrized by the Euler angles (a,b,g) as

~u1 ,u2 ,u3!5g~e1 ,e2 ,e3!, g5eaJ3ebJ2egJ3, ~5.25!

where (e1 ,e2 ,e3) is the standard basis ofR3 and g is an element of SO~3! with (J1 ,J2 ,J3) the
standard basis ofso(3) defined byJiv5ei3v ( i 51,2,3) for eachvPR3. We notice here that the
orientation of the frame (u1 ,u2 ,u3) is different from that of the original article. We choose t
orientation to bring the collinear configurations into the direction ofu3 . The ranges of the coor
dinates are given by

0<a,2p, 0<b<p, 0<g<2p,

0<r, 0<x< ~p/2!, 0<f,2p. ~5.26!

The geometric meaning of (r,x,f) is clear on introducing coordinates (q1 ,q2 ,q3) by
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q1ªuur1uu22uur2uu25r2 cosx cosf, ~5.27!

q2ª2~r1 ,r2!5r2 cosx sinf, ~5.28!

q3ª2uur13r2uu5r2 sinx. ~5.29!

They are invariant under the action of SO~3! on M, and provide the projectionp: M→Q
5M /SO(3); (r1 ,r2)°(q1 ,q2 ,q3). With this expression ofp, it is easy to show thatQ is ho-
meomorphic to the upper half spaceR>0

3 5R23R>0 . The space,p(Mm), of maximum orbits is
diffeomorphic with R23R.0 . The boundary surface,R23$0%, determined byq350 or x50
describes the orbit space for collinear configurations, in which the atoms make a line alonu3 .
The origin (0,0,0) represents the collision configuration. These observations coincide with~5.21!.
On the other hand, the Euler angles (a,b,g) are regarded as a coordinate system of the fiber of
bundlep:Mm→Qm . Note that, in the set of singular points]Mm , one hasr15r cos (f/2) u3 ,
r25r sin (f/2) u3 with u35eaJ3ebJ2e3 , which shows that (a,b) serve as coordinates for the orb
diffeomorphic withS2, and that (r,f) are coordinates for]Qm>R2.

In terms of the coordinates introduced above, we are to write out the geometric objects
explicit form. It is also convenient for later use to introduce the Maurer–Cartan one-form;

g21dg5J1~sing db2sinb cosg da!1J2~cosg db1sinb sing da!1J3~ dg1cosb da!

5J1 Q11J2 Q21J3 Q3 . ~5.30!

Then the metricgM5K obtained in~5.9! takes the form,

gM5uudr1uu21uudr2uu2

5dr21 1
4 r2 dx21 1

4 r2 cos2x df21r2~Q12 1
2 sinx df!2

1r2 cos2
x

2
Q2

21r2 sin2
x

2
Q3

2 . ~5.31!

The angular momentum formL̂:TM→so(3)* >R3 obtained in~5.10! is expressed as

L̂5r13dr11r23dr25r2 u1~Q12 1
2 sinx df!1r2 cos2

x

2
u2 Q21r2 sin2

x

2
u3 Q3 . ~5.32!

The inertia operatorÎ x :so(3)>R3→so(3)* >R3 obtained in~5.13! is put in the form,

Î x~j!5r13~j3r1!1r23~j3r2!5r2~j,u1! u11r2 cos2
x

2
~j,u2! u21r2 sin2

x

2
~j,u3! u3 .

~5.33!

The connection formv:TM→so(3)>R3 is then written out, according to~4.36!, as

v5 Ĩ 21L̂5u1~Q12 1
2 sinx df!1u2 Q21u3 Q3 . ~5.34!

Hence the vertical component of the metric~4.37! is given by

gMuV5I +~v^ v!5~ L̂,v!5r2~Q12 1
2 sinx df!21r2 cos2

x

2
Q2

21r2 sin2
x

2
Q3

2 ~5.35!

and thereby the metricgQ such thatp* gQ5gMuH becomes

gQ5dr21 1
4 r2 dx21 1

4 r2 cos2 x df2. ~5.36!
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Then its inverse is a tensor field given by

~gQ!215
]

]r
^

]

]r
1

4

r2

]

]x
^

]

]x
1

4

r2 cos2 x

]

]f
^

]

]f
. ~5.37!

The volume form defined by~5.31! is of the form

vM5 1
16 r5 sin 2x dr`dx`df`Q1`Q2`Q3 . ~5.38!

Then the volume form associated with the measure~4.14! is

vQ5
p2

2
r5 sin 2x dr`dx`df, ~5.39!

since*Q1`Q2`Q358p2.
To describe quantum mechanics for the triatomic molecule, we need the Hilbert spa

sections of vector bundles associated with the stratification. Any irreducible unitary represen
of SO~3! is characterized by a nonnegative integerl and denoted byr l :SO(3)→U(C2l 11). We
put Ĵiª(r l)* (ei) for the standard basiseiPR3>so(3). Since the base space of the stratified fib
bundle p:M→Q>R23R>0 is contractible, the bundle is a trivial bundle. Through a glo
sections:Q→M with a5b5g50 in ~5.23!, ~5.24!, and ~5.25!, any equivariant functionc:M
→C2l 11 is pulled back to a functionCªs* c:R>0

3 →C2l 11. Then the boundary condition~4.43!
takes the form

Ĵ3 C50 for x50 ~5.40!

on M (3,2)1 and

Ĵ1 C5 Ĵ2 C5 Ĵ3 C50 for r50 ~5.41!

on M (3,2)0 , respectively, with the coordinate system defined at~5.27!, ~5.28!, and~5.29!. What
Eq. ~5.40! means is as follows: At a collinear configuration determined byx50, the molecule
lying in the line alongu3 has the vanishing angular momentum aboutu3 ; (r l)* (u3)c(x)50, so
that one hasr l(g)(r l)* (e3)r l(g21)c(gs(q))50 with u35ge3 , which is equivalent to~5.40!.
Since Ĵ35diag(l ,l 21, . . . ,0, . . . ,2 l ), the componentsCm of C with mÞ0 vanish, if lÞ0.
Furthermore, Eq.~5.41! means that at the collision configuration determined byr50, the mol-
ecule cannot carry nonzero angular momentum, so that the wave function can have a nonva
value only whenl 50. These conditions are analogs of that for the two-dimensional case~4.47!.
Now we have implemented the consideration of singular case by providing the boundary con
~5.40! and ~5.41! which we skipped in the previous work.7

In conclusion, we write down the Laplacian~4.42!, combining ~5.33!, ~5.34!, ~5.37!, and
~5.39!,

2DC~r,x,f!5
1

r5 sin 2x
H ]

]r
r5 sin 2x

]

]r
1

]

]x

4

r2
r5 sin 2x

]

]x

1S ]

]f
1

1

2
sinx Ĵ1D 4

r2 cos2 x
r5 sin 2xS ]

]f
1

1

2
sinx Ĵ1D J C

1
1

r2 H ~ Ĵ1!21
1

cos2~x/2!
~ Ĵ2!21

1

sin2 ~x/2!
~ Ĵ3!2J C
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5H ]2

]r2
1

5

r

]

]r
1

4

r2 S ]2

]x2
12cot2x

]

]x D 1
4

r2 cos2 x
S ]

]f
1

1

2
sinx Ĵ1D 2J C

1
1

r2 H ~ Ĵ1!21
1

cos2~x/2!
~ Ĵ2!21

1

sin2~x/2!
~ Ĵ3!2J C, ~5.42!

which reproduces the result of Ref. 7. The first and last terms of the RHS of~5.42! are vibrational
and rotational energy operators, up to sign, respectively. As was pointed out in Ref. 7,
vibrational energy operator is separated off, and if the internal coordinates (r,x,f) are fixed, the
operator1

2D reduces to the well known Hamiltonian for a rigid rotor of plane body.

VI. CONCLUDING REMARKS

In this paper we formulated the general method of reduction of quantum systems with
metry by the use of the Peter–Weyl theorem. Although the method is well-known impl
among Physicists, we developed it explicitly to give rigorous grounds to quantum mech
describing molecular motions. We studied the stratification of manifolds according to the act
a symmetry Lie group and then defined a stratified bundle and a stratified connection as ge
zation of fiber bundles and connections. Further, we showed that the reduced quantum sys
pair of the Hilbert space and the Hamiltonian which are the space of equivariant functions a
Laplacian expressed in terms of covariant derivation with the stratified connection, respec
We found the boundary condition that is imposed on the equivariant functions to make the re
Laplacian a self-adjoint operator. Finally, the general formulation for reduction was appli
N-atomic molecules, and triatomic molecules were examined in particular.

The stratified connection on the stratified bundle is newly introduced as a generalizat
connections on principal fiber bundles and is used to describe the reduced Laplacian. One
main results is to have determined the boundary condition for making the reduced Lap
self-adjoint. Emmrich and H. Ro¨mer33 analyzed Laplacians on orbifolds to study quantization
systems with gauge symmetry. They found that the Laplacian on an orbifold is not esse
self-adjoint and therefore its self-adjoint extension is not unique. According to our method
reduced Laplacian is self-adjoint by its definition and the boundary condition is accomp
automatically by the symmetry.

We would like to make some comments on remaining problems. First, although we b
general formulation to deal with quantum molecular systems, we do not obtain spectrum
reduced Hamiltonian. Even the three-body problem is difficult to solve. It is desired to devel
approximate method to solve the reduced eigenvalue problem of physically interesting sys

Second, for application to real molecules, electronic structure must be considered. Of c
spins and statistics of electrons and nucleus also must be taken into account. These are
future investigation.
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Exceptional Lagrangians for spin-2 field:
Standard variables

Luciane R. de Freitas
Universidade Federal do Rio de Janeiro, Instituto de Fı´sica Matema´tica,
Ilha do Fundão, Rio de Janeiro, Brazil

~Received 8 September 1998; accepted for publication 16 August 1999!

Exceptional Lagrangians for spin-2 field in terms of standard second order tensor
wmn may be obtained using the method proposed some years ago by Lax. We found
several nonlinear theories which can be used to describe the gravitational field.
Among them, we discovered a particularly interesting one which has~in a strike
analogy with Born model for spin one! an upper field value. ©2000 American
Institute of Physics.@S0022-2488~00!04504-7#

I. INTRODUCTION

The aim of this article is to obtain a set of alternative nonlinear theories of spin-2 field u
the standard variables that is a symmetric second order tensorwmn . We will not use an iterative
process as the usual way1 which would led us to Einstein General Relativity~GR!, but instead of
this we will apply it to another practical and efficient method suggested some years ago by2

Our ‘‘leitmotiv’’ to look for alternative nonlinear theories to spin-2 field is to describe the gra
tational field as a kind of Yang–Mills theory like other interactions, that is, as a theory in w
the field tensor is given by a linear combination of the first derivative of the fundamental var
Until now, we do not have~excluding the gravitational weak field case! a theory as good as GR
concerning the observations status and simultaneously satisfying the above impositions. Th
reason why we would like to widen the number of alternative nonlinear theories to submit th
be experimentally tested.

In order to follow such procedure we will introduce an auxiliar variableFabm that is con-
structed with first derivatives ofwmn , that is,

Fabm5wmua,bu . ~1!

Such a formulation will permit us to deal with a general Lagrangian constructed in term
the invariants of such field. Hence, let us synthesize the properties of this field tensorFabm . It is
an antisymmetric tensor in the first pair of indices, that is

Fabm52Fbam ~2!

and it obeys the cyclic condition

Fabm1Fmab1Fbma50. ~3!

This latter property is equivalent to state thatFabm is pseudotrace-free, that is,

Fab* b50 ~4!

in which, the dual~* ! is defined in the standard way by setting,

Fabm* 5 1
2 hab

reFrem . ~5!
18430022-2488/2000/41(4)/1843/11/$17.00 © 2000 American Institute of Physics
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In this formulahabrl5A2geabrl and eabrl is the totally antisymmetric Levi–Civita symbo
andg is the determinant of the background Minkowski metricgmn which is written in an arbitrary
coordinate system. Under these conditions, it follows thatFabm has only 20 independent compo
nents. Note that the tensorFabm has the same algebraic properties of the Fierz variables (Aabm).4

Now, let us describe the method proposed by Lax for arbitrary field theory, in orde
construct Exceptional Lagrangians. First of all, in order to obtain a well defined set of equatio
motion for a given field, let us recall that a standard field theory must satisfy three conditio

~1! The equations of motion must be of hyperbolic type;
~2! A well posed standard Cauchy problem must be defined;
~3! The stability property of arbitrary disturbances through any characteristic surface mu

satisfied.

Condition~1! guarantees that the velocity of disturbances is finite and real; condition~2! is the
basic requirement of any classical field theory; and finally the last condition is the true nove
Lax’s method. Let us review briefly this method. The main idea rests on an analysis o
behavior of the propagation of the successive wavefront. There are two different definitio
shock wave. One that states that shock waves are the wavefront~discontinuities! caused by an
external force on the field. Using this definition Lax’s method guarantees that the Excep
Lagrangians are those whose respective equations of motion always propagate shock wav
finite velocity.3 The second one defines shock wave as the undesirable result generated
propagation in which the growth of the velocity is unbounded. In this case we call excep
waves those that do not contain accelerating disturbances which generate this kind of shoc
We remark that in both cases the definition of exceptional waves do not change, but only w
exactly denominated a shock wave. The exceptional waves are some disturbances such t
associated velocities of propagation remain finite. Hence, the difficulties associated to unbo
growth of perturbed velocities are in such cases automatically excluded, using the second
tion for shock wave~that we are looking here for Lagrangians using the second definition
shock wave! whose perturbations do not contain accelerating disturbances that could be re
sible for the generation of shock waves. The most important reason to look for excep
theories, that is, those constructed with exceptional Lagrangians is, indeed, that if such limi
on the perturbations are not imposed, and a difficulty to treat the Cauchy problem in the sta
way appears, since it is not possible to propagate the initial data arbitrarily anymore.

We had already exhibited before4 two exceptional nonlinear theories to spin-two field in term
of the Fierz variables, constructed using the Lax criteria. In that case, where the dynamic
linear field is completely analogous to electrodynamics5,6 one of the theories obtained and
nothing but the similar reproduction of the Born–Infeld theory proposed in 1934 to spin-1 fi7

In 1963, Boillat showed a very appealing result, that is, using the possible invariants const
with Fmn ~the electromagnetic field! and restricting the theory by Lax’s criteria, the most gene
Lagrangian is the Born–Infeld’s one.8 It was a very interesting result, mainly because it was
used as a hypothesis in the original approach by Born and Infeld to choose that special f
Lagrangian. These authors were looking for a regular theory which did not contain singularit
any sort. Therefore, they argue that the electromagnetic field should have an upper limited
theory.

In the next section we review the general formalism to analyze the essence of Lax’s m
We study the hyperbolic and quasilinear system of equations to analyze some aspects of th
dynamic systems.

In Sec. III we introduce all the independent invariants constructed withFabm and rewrite the
usual linear theory for spin-2 field in terms of the standard variablewmn using two of these
invariants. This is once more very similar to Maxwell electrodynamics formulation.

Finally, in Secs. IV and V we construct a set of exceptional Lagrangians to which we sh
apply the traditional observational tests in the future.
                                                                                                                



ential
of the

inuous

ntal

imen-

ion

1845J. Math. Phys., Vol. 41, No. 4, April 2000 Exceptional Lagrangians for spin-2 field: . . .

                    
II. LAX’s METHOD

The field equations may always be written as a quasilinear system of partial differ
equations, i.e., a system of equations in which the coefficients of the highest derivatives
field depend only on the field and its lowest derivatives. Letu(xl) be an arbitrary tensor field
whose evolution is governed by a set of quasilinear differential equations represented by

Aa~u,xl!]au5f~u,xl!, ~6!

whereAa is an n3N matrix in which N is the number of components ofu. We defineS as a
hypersurface satisfying the equation

Sªw~x!50 ~7!

that represent a characteristic surface. The highest derivatives of the field are discont
throughS.

We define the discontinuity, denoted by the symbol@ #, through the hypersurfaceS in the
standard way,

F ]u

]wGª ]u

]wU
01

2
]u

]wU
02

. ~8!

Note, that hypersurface~7!, satisfies a characteristic equation given by the determina
condition

uAa]awu50. ~9!

Hence, we rewrite Eq.~6! as

Aa~u,xl!]au5Aa~u,xl!]aw
]u

]w
5f~u,xl!. ~10!

The discontinuity of this equation through hypersurfaces is given by

Aa~u,xl!]awF ]u

]wG50 ~11!

since the matrixA is independent of derivatives of the field.
Equation~11! is a system such that the number of the equations is determined by the d

sion of a vectorial fieldu. In this case, linearly independent solutions exist only if Eq.~9! is
satisfied, i.e., if this equation guarantees that alll’s are independent. The determinantal equat
can be rewritten like this,

uA~n!2lI u50, ~12!

where

A~n!5~A0!21A ini , ~13!

l5
]0w

u¹wu
, ~14!

and

n5
¹w

u¹wu
, ~15!
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sinceA is supposed to be a regular matrix in order to limit the speed.
When the equations of motion are nonlinear, a suitable choice of the initial disturbance

produce an accelerated wave. In this case the disturbances grow without limit generating a
wave and the field equations cease to be valid~Rankine–Hugoniot condition9–11!. However, there
is a class of wave for which this phenomenon does not arise, that is, the disturbances do no
to be finite. This fact, which seems to have been noticed first by Lax,2 requires that the velocity to
be continuous through the characteristic surface, i.e.,

F ]l

]wG5¹u•F ]u

]wG50. ~16!

If the equation is covariant, the characteristic equation~9! will be given by

c5Gabm¯nwawbwm¯wn , ~17!

where

waª]awªka ; a51,2,...,n. ~18!

Condition ~16! can be written as

¹uc•F ]u

]wG5u¹wu•F ]c

]w0
G¹ul•F ]u

]wG5¹Gabm¯n
•F ]u

]wGwawbwm¯wn50, ~19!

that is,

@Gabm¯n#wawbwm¯wn50. ~20!

This is the essence of Lax’s method. We will apply this method to spin-2 field equa
written in terms of the standard variable. Before, we will discuss briefly hyperbolicity, since
will apply this criteria only on hyperbolic equations.

III. HYPERBOLICITY: AN EXAMPLE IN TWO DIMENSIONS

Let us consider the following equation of a real scalar fieldu(x,t):

auxx1buxt1cutt5 f , ~21!

wherea, b, c, e, fare real functions ofx, t, u and of its first derivatives (ux andut).
This equation can represent a wave if a precise difference between perturbated states g

Eq. ~7! exists. In this case, we call this surface a wavefront.
In order to examine the equation ofw(x,t), we make a coordinate transformation in Eq.~21!.

Let us callj and w the new coordinates. The parameterj specifies the arc length of the curv
w(x,t)50. In this system of coordinates Eq.~21! turns out to be given by

Q~w,w!uww1Q~w,j!uwj1Q~j,j!ujj1@L#wuw1@L#juj5 f 8, ~22!

where

Q~w,j!5awxjx1 1
2 b~wxj t1w tjx!1cw tj t ~23!

and

@L#5a
]2

]x2 1b
]2

]t]x
1c

]2

]t2 . ~24!
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We consider that the highest derivatives are the only discontinuous quantities throuS,
hence,

@uw#5@uj#50, ~25!

@uwj#5@ujj#50, ~26!

@uww#Þ0. ~27!

For these conditions the discontinuity of Eq.~22! becomes

Q~w,w!@uww#50. ~28!

This is equivalent to

awx
21bwxw t11cw t

250, ~29!

that is the characteristic equation tow(x,t) corresponding to Eq.~9! of the vetorial case.~In the
general case it is easier to use the Hadamard method10 to obtain this expression.! We will now
analyze the velocity of propagation of the characteristic surface. From Eq.~29! it follows imme-
diately that,

cS w t

wx
D 2

1b
w t

wx
1a50, ~30!

hence, the velocityv is provided by

v52
dx

dt
5

w t

wx
5

2b1Ab224ac

2c
. ~31!

Equation~21! is of a hyperbolic type if the discriminant of~31! is positive, that is,

D5b224ac.0. ~32!

The hyperbolicity of the differential equation guarantees that the velocity of propagati
finite, because hyperbolas have an assintoc behavior, and they have limits.

Let us turn now to know the difference between conditions~32! and ~20!. The first one,
restricts the systems to those in which the velocity of propagation is finite. On the other han
second one, guarantees that, if this velocity is not perturbed, it will remain finite, independen
the choice of the initial perturbations.

IV. A NEW APPROACH TO LINEAR THEORY OF SPIN-2 FIELD

In this section we will introduce the invariants constructed with the field tensorFabm and we
will examine the standard linear theory of spin-2 field written in terms of this tensor. In ord
do this we will make use of these invariants.

As we defined previously~2!, the fieldFabm is written in terms of the standard variablewmn

as

Fabm5wm@a,b# . ~33!

Based on this definition, we can construct the following four invariants:

P5FabmFabm, ~34!

Q5Fabm* Fabm, ~35!
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F5FaFa, ~36!

G5Fabm* F* abm. ~37!

It will save a lot of work if we use the identities

Fabm* F* alm5 1
2 Pdb

l2FabmFalm, ~38!

FabmF* alm5 1
4 Fdb

l. ~39!

We remark that only two of these invariants are really independent, sinceP5G andQ5F.
The proof of this is straightforward.

Before constructing nonlinear theories for spin-2 field and analyzing its corresponding e
tional characteristics, we must guarantee that the linear approximation of these theorie
reproduce the usual Fierz’s theory. So, we need to investigate which relation betweenP and Q
gives us the Fierz linear theory of spin-2 field. In order to do this, by a straightforward way
necessary to compare the linear density Lagrangian as a function ofP andQ,

L ~L !~P,Q!5A2g~P1gQ! ~40!

with the Fierz’s linear density Lagrangian, that is,

L ~FL!5A2gwmnGmn
~L ! , ~41!

where

Gmn
~L !5hwmn1wa

a,m,n2w (m
a

,n),a2~hwa
a2wab

,a,b!gmn50. ~42!

In this algebraic process we determineg that is given by

g521.

Therefore theS(L)(P,Q) which we were looking for, are given by

S~L !5
1

2 E d4xA2g~P2Q!. ~43!

Varying the action above as function ofwmn we obtain the equation of motion in terms o
Fabm ,

Fb~mn!
,b50 ~44!

and by definition~33! we have,

F* b~mn!
,b50. ~45!

The reader can note the great resemblance between the set of Eqs.~44!, ~45! and the covariant
form of the Maxwell’s equations. This analogy give us the means to understand this theory
and also to construct the nonlinear theory.

As we pointed out before, Eq.~44! written in terms ofwmn takes the form of Fierz’s equatio
to spin-2 field, that is,

hwmn1w ,m,n2w (m
l

,n),l2~hw2wlb
,l,b!gmn50. ~46!

Since the equation for the tensorFabm ~as it is defined in~33!! is invariant under the following
transformation towmn :
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wmn→wmn8 5wmn1L~m,n! , ~47!

whereLm is an arbitrary vectorial field, we can setwm8
n

,n50 andw85wm8
m50 this is the standard

gauge fixing procedure. Using this in Eq.~46! we arrive at the simplified form,

hwmn50. ~48!

This is exactly the standard procedure. However, our new approach allows us to look
nonlinear theory to describe the gravitational field theory in an alternative way.

As it is well known Eq. ~48! means that, in this case, the wave is exceptional, sinc
propagates by null cones of thegmn metric that is continuous through the hypersurfaceS. How-
ever, we would like to show this known fact here using the Hadamard’s method to Eqs.~44!, ~45!
using the similitude with the Maxwell’s electrodynamic formulation.

Considering the derivatives of the field discontinuous through a hypersurfaceSwe can define

@Fabm,n#5 l abmkn , ~49!

where the propagation vectorkn was defined in~18!.
Using this definition in Eqs.~44!, ~45!, we obtain the equations of discontinuities,

l b~am!kb50, ~50!

l b~am!kn2 l n~am!kb1 l nbmka1 l nbakm50. ~51!

Fixing the gauge in these equations and making a few manipulations we obtain

k25kmkm50. ~52!

As one should expect, in this case, the disturbances propagate on the light cone.
We will not extend the analysis of this linear theory in this article, or analyze this simili

with the electromagnetic case, since it will be lengthly presented elsewhere.12,13 Let us go imme-
diately into our main subject, namely, the construction of a nonlinear model to spin-2 field
the Lax’s method, analogously to what was made by Boillat8 in the spin-1 case.

V. EXCEPTIONAL NONLINEAR THEORIES FOR SPIN-2 FIELD

We will construct now exceptional nonlinear theories by means of the study of arbi
Lagrangians which depend on the invariantsP and Q defined in~34! and ~36!. The actionS is
given in terms of the arbitrary LagrangianL(P,Q) as

S5E d4xA2gL~P,Q!. ~53!

The corresponding equation of motion is provided by

~LPFa~bm!1LQF* a~bm!! ;a50, ~54!

where

LP5
dL

dP
, LQ5

dL

dQ
. ~55!

In order to obtain an exceptional Lagrangian by the method described in Sec. II we
examine the behavior of the evolution of the disturbance of the fieldFabm . Since we present a
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covariant treatment, it is convenient to use the Hadamard’s method10 to analyze the discontinui
ties. Let us consider the case in which the field is discontinuous through the hypersurfaceSdefined
by ~7!. The Hadamard condition tells us that

@wmn,b#ªwmn,bu012wmn,bu025amnkb ~56!

in which kb is the propagation vector~gradient ofw! of this hypersurface.
Applying this definition in~54!, the equation of the evolution of these discontinuities is

@LP;b#Fabm1LP@Fabm
;b#1@LQ;b#F* abm50 ~57!

in which we have already considered the condition~45!, that is valid in general by means of th
definition of Fabm . Using the expression~56!, we can write the following relations:

@Fabm
;b#5aamk2, ~58!

@LP;b#5@LP#kb , ~59!

@LQ;b#5@LQ#kb , ~60!

wherek2[kbkb.
Note that we have used the gauge invariance~47! amnkm50 in Eq. ~58! and we are consid-

ering the geometry (gmn) as being continuous through the hypersurfaceS.
Substituting these relations in Eq.~57! we obtain

2LPaamk21@LP#kbFb~am!1@LQ#kbF* b~am!50. ~61!

Introducing the quantitiesYam andZam,

Yam5Fb~am!kb , ~62!

Zam5F* b~am!kb , ~63!

which have the same symmetries ofwam we can write

2LPaamk21@LP#Yam1@LQ#Zam50. ~64!

If k2Þ0, this equation shows thataam is a combination ofYam andZam,

aam5mYam1nZam ~65!

with

@LP#12mLPk250, ~66!

@LQ#12nLPk250. ~67!

From the Leibniz rule we have

@LP#5LPP@P#1LPQ@Q#, ~68!

@LQ#5LQP@P#1LQQ@Q#. ~69!

Using definitions ofP andQ we obtain that

@P#52Fabm@Fabm#54amaYma, ~70!
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@Q#52Fabm@Fabm* #54amaZma. ~71!

Thus, from Eq.~65! and relations~68! and~71! we will write the system of Eqs.~66! and~67!
in terms of products of the baseYmn andZmn , as

$2LPPa1 1
2 LPQQ1LP%m1$LPQP22LPQa%n50, ~72!

$2LPQa1 1
2 LQQQ%m1$ 1

2 LPQQ1LQQP12LP22LQQa%n50. ~73!

In these expressions,a satisfy the characteristic equation,

$Fm~ab!F ~ab!
n 2agmn%kmkn50. ~74!

The system of Eqs.~72!, ~73! has a nontrivial solution if

aa21ba1c50, ~75!

in which a, b, andc are given by

a54~LPQ
2 2LPPLQQ!, ~76!

b52 1
2 aP1QLPQLPP12LP~2LPP2LQQ!, ~77!

c5 1
4 Q2LPQ

2 1 3
2 QLPLPQ1PLPLQQ12LP

2 . ~78!

The roots of Eq.~75! have a physical interest in the case whose the discriminant is positiv
if it vanishes identically. When this discriminant is positive we have two speeds. The r
interesting here, it is when this discriminant is null because we have a unique solution. Fig
and 2 below show that the Lagrangian

L5A2n~P2Q!1n22n ~79!

satisfy our purpose except in a bounded range toP andQ near to zero. Into this region the functio
D diverges~it is not a physical region!. Otherwise, outside of this regionD50 to any~P, Q!.

This is a very interesting solution for our concerns because it has the Fierz equation as a
approximation and the wavefront has finite speed.

FIG. 1.
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The Lagrangian given above is indeed an exceptional one~good solution from the point of
view of Lax’s criteria!, i.e., the discontinuity of the characteristic equation becomes

@Gmn#kmkn50. ~80!

We can obtain several other nonlinear Lagrangians to the spin-2 field using Eq.~75!. We have
analyzed such a solution before, once it has the advantage of imposing a limitation on the fie
besides it has a close analogy of the Born Lagrangian to the spin-1 field. This choice is not u
We can, for instance, propose polynomial Lagrangians.

VI. CONCLUSION

Since 1992, we examined and proposed the use of the Lax’s method to reduce the
possible nonlinear spin-2 field theories as a very physical and efficient way. This method wa
applied by Boillat to electrodynamics. In that case a great surprise appears. Several years b
Lagrangian to electrodynamics had been proposed by Born and Infeld with the aim to lim
field, i.e., not to allow the field to have singularities. Coincidence or not, this Lagrangian prop
by Born and Infeld and the general one obtained by Boillat using the Lax’s method are the

In Ref. 4 we found a set of theories of spin-2 field using the Fierz potential as a fundam
variable. Here, we introduced the tensorFabm given by the identity~2! as a good tool to work on
this direction. Certifying that the solution of Eq.~75! has physical interest, that is, its discrimina
is positive or vanish identically, and satisfies the Lax’s criteria, we can obtain a class of non
solutions to the spin-2 field. If those solutions allow us to describe the gravitational interactio
not, we can only know future analysis of observational results. We have indeed propo
particular one elsewhere.12

In the present paper we gave an example that satisfies all of these above conditio
besides, its first approximation corresponds to the linear theory in terms of the standard v
wmn . The example that we gave here is similar to Born Lagrangian for electrodynamics and
describe spin-2 dynamics with self-interaction. This kind of theory has the advantage of hav
upper-limited field, which means that its corresponding energy is also limited. This is a
important property if we expect to have a future cosmology described by this kind of theor

FIG. 2.
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Precession of a freely rotating rigid body. Inelastic
relaxation in the vicinity of poles

Michael Efroimskya)

Department of Physics, Harvard University, Cambridge, Massachusetts 02138

~Received 19 July 1999; accepted for publication 6 December 1999!

When a solid body is freely rotating at an angular velocityV, the ellipsoid of
constant angular momentum, in the spaceV1 ,V2 ,V3 , has poles corresponding to
spinning about the minimal-inertia and maximal-inertia axes. The first pole may be
considered stable if we neglect the inner dissipation, but becomes unstable if the
dissipation is taken into account. This happens because the bodies dissipate energy
when they rotate about any axis different from principal. In the case of an oblate
symmetrical body, the angular velocity describes a circular cone about the vector of
~conserved! angular momentum. In the course of relaxation, the angle of this cone
decreases, so that both the angular velocity and the maximal-inertia axis of the
body align along the angular momentum. The generic case of an asymmetric body
is far more involved. Even the symmetrical prolate body exhibits a sophisticated
behavior, because an infinitesimally small deviation of the body’s shape from a
rotational symmetry~i.e., a small difference between the largest and second largest
moments of inertia! yields libration: the precession trajectory is not a circle but an
ellipse. In this article we show that often the most effective internal dissipation
takes place at twice the frequency of the body’s precession. Applications to pre-
cessing asteroids, cosmic-dust alignment, and rotating satellites are discussed.
© 2000 American Institute of Physics.@S0022-2488~00!03004-8#

I. INTRODUCTION

A complex rotational motion of a free solid body is an evidence of its rotation-axis’ wobb
about the angular momentum. Indeed, a solid body in a long-established regime of free ro
must have its axis of rotation parallel to the angular momentum: this configuration will mini
the kinetic energy, the angular momentum being fixed. The body achieves this minimizati
aligning both its axis of rotation and axis of maximal inertia parallel to the angular momentum
the end of this relaxation the body comes to steady spinning about its maximal-inertia axis
deviation from this regime witnesses either of the influence of the tidal forces, or~in the case of
comets! of the result of jetting, or an impact experienced by the body within its characteristic
of relaxation, or of the entire body being a wobbling fragment of an asteroid disrupted
collision.1–3 The contest between the impacts~or the tidal forces, or the cometary jetting! on the
one hand, and the relaxation mechanism~s! on the other hand, determines the dynamics of
body rotation.

A study of the rotation of asteroids and comets may thus provide valuable information
their recent history. Several examples of complex motion have already been registered. Amo
asteroids, 4179 Toutatis furnishes another example of wobble;4–6 ~see also http://
www.eecs.wsu.edu/hudson/asteroids.html!. Among the comets, P/Halley is certainly an examp
of such a tumbling object.7–11 Other examples are comet 46/P Wirtanen and co
Schwassmann–Wachmann 3. The former will be soon escorted by Rosetta spacecraft;12,13 the
latter will be explored by CONTOUR mission. Several other missions to comets are cur
being prepared, and these programs unavoidably include close observation of the spin s
may be good to carry out a whole series of such observations, by every mission, in or
register the precession damping. Our estimates14 show that the angular resolution of the curren

a!Electronic mail: efroimsk@fas.harvard.edu
18540022-2488/2000/41(4)/1854/35/$17.00 © 2000 American Institute of Physics
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available equipment gives to such sort of experiment a good chance of success, provid
experiment includes measurements performed at least half a year apart from one anoth
important factor influencing the success or failure of such an experiment is the jetting intens
the particular comet.

Another field of application for this study is the cosmic-dust alignment: some of the align
mechanisms are very sensitive to the coupling between the angular velocity and angular m
tum of the interstellar grains.15,16

The third possible application of the developed formalism could be spin stabilizatio
spacecrafts, including spacecrafts with a precession damper.17–19 An interest in studies of
nonrigid-body dynamics with applications to spacecraft motion emerged after launch of the
plorer’’ satellite in 1958.~I am thankful to Vladislav Sidorenko for drawing my attention to th
example.! The satellite was a very prolate body with four small deformable antennas on it. I
been supposed that it would rotate about its minimal-inertia axis. Instability of this motion w
major surprise for mission experts.20

On general grounds, the necessity of relaxation is evident: the system must reduce its
energy down to the value that is minimal available for a fixed angular momentum. What part
physical effects provide this relaxation? One phenomenon, relevant to tiny grains~like those of the
interstellar dust! but feeble for large samples, is the Barnett dissipation called into being by
oscillating ~due to the precession! remagnetization of the material, caused by the Barnett eff
~See, for example, Refs. 21, 22, and references therein.! Another process, relevant in small gra
ules, and overwhelmingly leading for large bodies, is the inelastic dissipation. It is produced
precession-caused alternating stresses and strains.

A pioneering paper on the inelastic dissipation was published by Burns and Safronov23 back
in 1973. Later the inelastic dissipation in small and in large freely rotating oblate bodies
addressed in Refs. 16 and 24, correspondingly. In the present article we shall tackle
dynamics of a body of arbitrary values of its moments of inertia. The issue is nontrivial.
example, a perfectly biaxial prolate spheroid has two axes of equal maximum moment of
and therefore, really does not have a stable rotation pole. For a triaxial figure of a shape s
deviating from a symmetrical prolateness, the situation is that the precession trajectory is
circle but an elongated ellipse, with a long axis around the ‘‘waist’’ of the ‘‘cigar’’ figure~Fig. 1!.
For the tumbling case, the spin axis circulates all the way around the body, and, in fac
circulation is more or less around the long axis. This leads to the curious effect, observ
computer simulations of the rotation of asteroid~433! Eros, that the body appears much of t
time to be spinning nearly about its long axis.25

In what follows we briefly review the main facts and formulas describing the solid-b

FIG. 1. The ellipsoid of constant angular momentum in the angular-velocity space (V1 ,V2 ,V3). Lines on its surface
denote its intersections with the ellipsoids appropriate to different values of the rotation energyTkin . Pole A corresponds
to the maximal value ofTkin and, thereby, to rotation about the minimal-inertia axis. Pole C corresponds to a com
relaxation, whenTkin is minimal and the body is spinning about its major-inertia axis. In the course of precessio
angular-velocity vectorV moves along the constant-energy lines, and slowly shifts from one line to another, i
direction from A to C. The above picture describes the case of an almost prolate body:I 3*I 2.I 1 . The trajectories are
circular near A and, in this case, remain almost circular all the way from A to the separatrix. Crossing over the se
may yield chaotic flipovers, whereafter the body will begin libration. The trajectories will again become circular only
closemost vicinity of C.
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rotation~Sec. II!, dwelling comprehensively upon the case of an almost symmetrical prolate
~Sec. III!. We divide the motion into four distinct stages~Sec. IV!. Then we discuss the relaxatio
rate ~Sec. V! and explain the nature of the nonlinearity emerging in this problem~Sec. VI!,
whereafter we compute the stresses arising in a precessing body, and calculate the energy
of the appropriate deformations~Sec. VII!. In Secs. VIII and IX we calculate the rate of intern
dissipation. In Sec. X we draw conclusions and mention some practical applications of th
malism developed. In Sec. XI we briefly account the vississitudes of the generic case.

II. NOTATIONS AND ASSUMPTIONS

We shall discuss free rotation of a solid body, using two Cartesian coordinate systems
with an origin at the center of mass of the body. The inertial coordinate system~X, Y, Z!, with unit
vectorseX ,eY ,eZ , will have its Z axis parallel to the~conserved! angular momentumJ. Coordi-
nates with respect to this frame are denoted by the same capital letters:X, Y, andZ. We shall also
use the body frame defined by the three principal axes of inertia: 1, 2, and 3, with coordinax,
y, zand unit vectorse1 ,e2 ,e3 .

We denote the angular velocity byV, while v will stand for the rate of precession. Comp
nents ofV in the body framewill be calledV1,2,3.

Due to the lack of an established convention on notations, Table I hopefully will pre
misunderstandings.

A free rotation of a body obeys the Euler equations,

d

dt
~ I iV i !5~ I j2I k!V jVk , ~2.1!

where (i , j ,k)5(1,2,3) ~with cyclic transpositions!, and the principal moments of inertia ar
assumed to obey

I 1<I 2<I 3 . ~2.2!

In the approximation of an absolutely solid body, the equations simplify to

I iV̇i5~ I j2I k!V jVk . ~2.3!

This neglect ofİ iV i againstI iV̇i does need a justification, because the inelastic relaxation we
going to describe is due to small deformations that yield nonzeroİ i . To validate the neglection

i.e., to prove thatİ i /I i!V̇i /V i , one must recall that for a rotational periodt,

V̇i /V i't21, İ i /I i't21e, ~2.4!

TABLE I. Notations used by different authors.

Principal
moments
of inertia

Components of
angular
velocity

Frequency of
precession

Purcell35

Lazarian and
Efroimsky16

Efroimsky14

Efroimsky and
I 3>I 2>I 1 V3 ,V2 ,V1 v

Lazarian24

present article

Synge and Griffith26 A>B>C v1 ,v2 ,v3 p

Black et al.25 C>B>A vc ,vb ,va n
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e being a typical value of the relative strain~which in real life rarely exceeds 1026!.
Conservation of the angular momentumJ and the kinetic energyTkin entails

I 1
2V1

21I 2
2V2

21I 3
2V3

25J2, ~2.5!

I 1V1
21I 2V2

21I 3V3
252Tkin . ~2.6!

In the context of our study~which is aimed at estimating the rate of relaxation!, Eq. ~2.6! is
applicable as long as we accept the adiabatic approach, i.e., assume the relaxation to be
process,’’ compared to the ‘‘fast processes’’ of rotation and precession. A rigorous formulat
this assertion is based on formulas~8.24! and ~9.15! obtained below. These formulas are
become the main result of our paper. They give the relaxation rated,sin2 u./dt, u being the
angle between the angular momentum and the major-inertia axis of the body, and averagin
performed over the precession period@Appendix A, formula~A1!#. The exact formulation of the
adiabatic approach will read as

2
d^sin2 u&

dt
!v, ~2.7!

v being the precession rate. This condition will adumbrate the applicability realm of the solu
~8.24! and ~9.15! to be derived.

Equations~2.5! and ~2.6! may be resolved with respect toV1
2 andV2

2:

V3
25P2QV2

2, P[
2I 1Tkin2J2

I 3~ I 12I 3!
, Q[

I 2

I 3

I 12I 2

I 12I 3
,

~2.8!

V1
25R2SV2

2, R[
2I 3Tkin2J2

I 1~ I 32I 1!
, S[

I 2

I 1

I 32I 2

I 32I 1
,

substitution whereof in~2.3!, for i 52, gives

V̇2
25S I 32I 1

I 2
D 2

~P2QV2
2!~R2SV2

2!. ~2.9!

It is possible26 to pick up such positive functionsb, v, k of the argumentsI 1,2,3, Tkin , J2 that the
rescaled time and second component of the angular velocity,

t8[vt, j[V2 /b, ~2.10!

satisfy

~dj/dt8!25~12j2!~12k2j2!, ~2.11!

with k,1. A solution to this equation is the Jacobian elliptic function sn(t8), so that

V25b sn@v~ t2t0!,k2#, ~2.12!

t0 being an arbitrary constant. It is known26 that substitution of the latter in~2.8! yields, for J2

.2I 2Tkin ,

V15g cn@v~ t2t0!,k2#, V35a dn@v~ t2t0!,k2#. ~2.13!

~Recall that what we callV3 , in Ref. 26, is calledv1 , while Blacket al.25 denote it asvc .! In the
above formulas,
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a5AJ222I 1Tkin

I 3~ I 32I 1!
, b5A2I 3Tkin2J2

I 2~ I 32I 2!
, g5A2I 3Tkin2J2

I 1~ I 32I 1!
,

v5A~J222I 1Tkin!~ I 32I 2!

I 1I 2I 3
, k5AI 22I 1

I 32I 2

2I 3Tkin2J2

J222I 1Tkin
, ~2.14!

while for J2,2I 2Tkin one arrives at

V15g dn@v~ t2t0!,k2#, V35a cn@v~ t2t0!,k2#, ~2.15!

where

a5AJ222I 1Tkin

I 3~ I 32I 1!
, b5AJ222I 1Tkin

I 2~ I 22I 1!
, g52A2I 3Tkin2J2

I 1~ I 32I 1!
,

v5A~2I 3Tkin2J2!~ I 22I 1!

I 1I 2I 3
, k5AI 32I 2

I 22I 1

J222I 1Tkin

2I 3Tkin2J2. ~2.16!

In some books~like, for example, in Abramovitz and Stegun27! notationm[k2 is used.
Mind that inSynge and Griffiths26 expression~14.116a! for g is given with a wrong sign. Our

expression forg, as given by our formula~2.14!, makes the expressions~2.12!–~2.13! coincide, in
the limit of oblate symmetry (I 15I 2), with the well-known Eulerian solution:

V15V' cosv~ t2t0!, V25V' sinv~ t2t0!, V35const,

for V3.0. Our choice of signs is correct since it leavesV parallel toJ in the relaxation limit.
Our ultimate goal is to compute the rate of inelastic dissipation caused by alternating st

in a wobbling body. To know the picture of stresses, one should begin with derivation o
acceleration experienced by a point~x, y, z! inside the body. We mean, of course, the accelera
with respect to the inertial coordinate system~X, Y, Z!, but for convenience of the further calcu
lations we shall express it in terms of coordinates~x, y, z! of the body frame~1, 2, 3!. The position,
velocity, and acceleration in the inertial frame will be denoted asr, v, a, while those relative to the
body frame~1, 2, 3! will be calledr8, v8, anda8 ~wherer 85r !. The proper acceleration~i.e., that
relative to the inertial frame! will read as

a5a81V̇Ãr 812VÃv81VÃ~VÃr 8!. ~2.17!

In the beginning of this section we justified, on the grounds of the strains being small, our n
of İ jV againstI jV̇. In a similar manner we shall justify the neglection of the first and third te
on the right-hand side of the above formula: rotation with a periodt, of a body of sizel will yield
deformationsd l'e l and deformation-caused velocitiesv8'd l /t'e l /t and accelerationsa8
'd l /t25e l /t2, e being the relative strain. We see thatv8 anda8 are much less than the velocitie
and accelerations of the body as a whole~that are aboutl /t and l /t2, correspondingly!. Hence-
forth,

a'V̇Ãr 81VÃ~VÃr 8!

5e1$@V̇2z2V̇3y#1V2~V1y2V2x!2V3~V3x2V1z!%

1e2$@V̇3x2V̇1z#1V3~V2z2V3y!2V1~V1y2V2x!%

1e3$@V̇1y2V̇2x#1V1~V3x2V1z!2V2~V2z2V3y!%

5e1$V̇2z2V̇3y2x~V2
21V3

2!1yV1V21zV1V3%
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1e2$V̇3x2V̇1z2y~V3
21V1

2!1zV3V21xV1V2%

1e3$V̇1y2V̇2x2z~V1
21V2

2!1xV1V31yV2V3%, ~2.18!

where, according to~2.8! and ~2.12!,

V3
21V2

25P1~12Q!b2 sn2@v~ t2t0!,k2#, ~2.19!

V1
21V2

25R1~12S!b2 sn2@v~ t2t0!,k2#, ~2.20!

V3
21V1

25~P1R!2~Q1S!b2 sn2@v~ t2t0!,k2#, ~2.21!

V3V15ag dn@v~ t2t0!,k2# cn@v~ t2t0!,k2#, ~2.22!

V̇25bv cn@v~ t2t0!,k2# dn@v~ t2t0!,k2#, ~2.23!

the derivative being written in compliance with Abramovitz and Stegun 1964,27 Eq. ~16.16.1!. The
other items emerging in~2.18! will read, for J2.2I 2Tkin , as

V3V25ab dn@v~ t2t0!,k2# sn@v~ t2t0!,k2#, ~2.24!

V2V15bg cn@v~ t2t0!,k2# sn@v~ t2t0!,k2#, ~2.25!

V̇152gv sn@v~ t2t0!,k2# dn@v~ t2t0!,k2#, ~2.26!

and

V̇352avk2 cn@v~ t2t0!,k2# sn@v~ t2t0!,k2#, ~2.27!

while for J2,2I 2Tkin ,

V3V25ab cn@v~ t2t0!,k2# sn@v~ t2t0!,k2#, ~2.28!

V2V15bg dn@v~ t2t0!,k2# sn@v~ t2t0!,k2#, ~2.29!

V̇152gvk2 sn@v~ t2t0!,k2# cn@v~ t2t0!,k2#, ~2.30!

and

V̇352av sn@v~ t2t0!,k2# dn@vy~ t2t0!,k2#. ~2.31!

III. ALMOST PROLATE BODY

Before pursuing the generic case, let us dwell for a minute on the case of an almost sym
prolate top ofI 3 and I 2 having close values:

I 3*I 2.I 1 , ~3.1!

i.e.,

I 32I 1*I 22I 1@I 32I 2*0. ~3.2!

As we saw above, the solution depends upon the sign of (J222I 2Tkin). According to~2.5!–~2.6!,
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J222I 2Tkin5V3
2I 3

22V3
2I 3I 21V1

2I 1
22V1

2I 1I 25V3
2I 3

2F I 32I 2

I 3
2

V1
2

V3
2

I 1

I 3

I 22I 1

I 3
G . ~3.3!

Based on~3.1!–~3.2!, one can introduce the following parameters:

q[
I 32I 2

I 3
, ~3.4!

and

s[
I 1

I 3
. ~3.5!

Besides, we shall use a time-dependent quantityV1
2/V3

2. It is not, of course, a geometrical pa
rameter worthy of the name, thoughformally one may consider it as a sort of parameter in~3.3!.
This wannabe parameter may be used as a measure of the system’s approaching the stead
if V1

2/V3
2!1 over the entire time of one wobble then the relaxation is almost over, and

angular velocityV is precessing aboutJ, with a small amplitude(i.e., describing a narrow cone).
Below, the meaning of the words likesmallandnarrow will become understandable. Meanwhil
one can write down~3.3! as

J222I 2Tkin5V3
2I 3

2Fq2
V1

2

V3
2 s~12s2q!G , ~3.6!

and easily find thatfor fixed values of qands ~i.e., for a particular prolate body! the narrowness
of the precession cone yields

J222I 2Tkin'V3
2I 3

2q. ~3.7!

This approximation becomes true at the late stage of relaxation, when

V1
2

V3
2 !q

1

s~12s2q!
~3.8!

holds through the duration of one wobble. Assume, following Ref. 25 that the moments of i
of asteroid~433! Eros relate asI 1 :I 2 :I 351:3:3.05. With these numbers plugged in, the abo
formula will give uV1 /V3u!0.4.Formally, ~3.7! was derived from~3.6! by keepingq ands fixed,
and making the ‘‘parameter’’V1

2/V3
2 approach zero. After this is done, one may consider a var

of geometries, and makeq approach zero. ThenJ222I 2Tkin will approach zero, always remainin
positive, so that the end of relaxation will be described by the solution~2.12!, ~2.13! with fre-
quencyv expressed by~2.14!.

On the other hand, one might as well perform a different, unphysical trick: for a fixedV1 ,
begin with a limitq→0, and only afterward choose the case of the small-amplitude wobble~i.e.,
considerV1

2/V3
2→0!. The first limit will give

J222I 2Tkin'2V3
2I 3

2
V1

2

V3
2 s~12s!. ~3.9!

After the second limit is taken,J222I 2Tkin will approach zero, always remainingnegative, so that
the final stage of relaxation would obey the solution~2.12!, ~2.15! with frequencyv expressed by
~2.16!.

We see that the operationsq→0 andV1
2/V3

2→0 do not commute. From the physical point
view, an observer studying, for a variety of samples, the end of relaxation should first fix the
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of the body~i.e., assume, for example, thatq is small enough but constant!. Only afterward he may
state that he is interested only in the final spin, i.e., assumeV1

2/V3
2!qs21(12s2q)21. As

explained above, this observer will see that the end of relaxation takes place at frequev
expressed by~2.14!.

An opposite order of limits would be physically meaningless, in that it would not help u
describe the behavior of a particular body.

We had to dwell on this issue so comprehensively because it would be very importa
understand better the following two statements made in Ref. 25.

~1! In the limit whereI 15I 2 , the circulation region around the maximal-inertia axis vanish
~2! All trajectories circulate around the minimal-inertia axis.~This statement is fortified by the

following argument: ‘‘the slightest perturbation would cause such an object to ‘‘roll’’ abou
long axis.’’!

To analyze this statement by Black, Nicholson, Bottke, Burns, & Harris,25 let us cast it in a
more exact form. First of all, we should understand which of the two possible sequencies of
these authors implied. In case their statement implied the limitq→0 taken first, and the relaxatio
limit V1

2/V3
2→0 taken afterward, then according to~2.16! the frequency of precessionv will read

as

v5A~2I 3Tkin2J2!~ I 22I 1!

I 1I 2I 3

5A„V2
2I 2~ I 32I 2!1V1

2I 1~ I 32I 1!…~ I 22I 1!

I 1I 2I 3

→A~ I 32I 1!~ I 22I 1!

I 2I 3
uV1u, for q→0 and V1 being fixed. ~3.10!

It will then approach zero asuV1u. However, as explained above, such a sequence of limits w
be unphysical, while a physical way is to fix the body shape first~i.e., to fix the difference (I 3

2I 2)!, then to take the relaxation limitV1
2/V3

2→0, and only after that to letq approach zero. In
this case,~2.14! will yield v approaching zero asAq, i.e., asAI 32I 2:

v5A~J222I 1Tkin!~ I 32I 2!

I 1I 2I 3

5A„V2
2I 2~ I 22I 1!1V3

2I 3~ I 32I 1!…~ I 32I 2!

I 1I 2I 3

→A~ I 32I 1!~ I 32I 2!

I 2I 3
uV3u, for V2→0 and the shape being fixed. ~3.11!

The above, physically meaningful, expression coincides with formula~2! in Ref. 25, which means
that the authors chose the right sequence of limits. We certainly agree with the first of the
two statements derived by the authors from this formula: in the limit ofI 35I 2 , the circulation
region around the maximal-inertia axis vanishes. To understand the second of the abo
statements made in Ref. 25, i.e., that ‘‘the slightest perturbation would cause such an object
‘roll’ about its long axis,’’ note that the relaxation limit was achieved in~3.11! by letting V2

vanish, with no assumptions made aboutV1 . This happened becausev remainsV1 independent
as long as~2.14! @and therefore~3.11!# may be used. These formulas may be used when
right-hand side of~3.3! @and that of~3.6!# is positive, i.e., when in~3.8! we have at least ‘‘,’’ ~not
necessarily ‘‘!’’ !. In the case of asteroid~433! Eros, for example, this will work as long as
approximately,uV1u,0.4uV3u. Thus, we must agree with the statement about ‘‘rolling’’ arou
the minimal-inertia axis, but we have to add an important comment to it.
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As long as this rolling is slow enough, it will leave the spinning body within the realm
solution (2.13), (2.14) appropriate to the final stage of relaxation. Too fast rolling will mak
obey a different solution, (2.15), withv expressed by (2.16).

As an illustration, let us consider, in the spaceV1 , V2 , V3 , the angular-momentum ellip
soid,

J25I 1
2V1

21I 2
2V2

21I 3
2V3

2, ~3.12!

and mark on its surface the lines of its intersection with the kinetic-energy ellipsoids,

2Tkin5I 1V1
21I 2V2

21I 3V3
2, ~3.13!

at different values of energy. Let, inFig. 1, the starting point of motion be somewhere close to
pole A: the vectorV initially is almost perpendicular to the major-inertia axis~3!. Precession of
the body will correspond to vectorV describing a constant-energy ‘‘circle’’ inFig. 1. The word
‘‘circle’’ is standing in quotation marks because this trajectory is circular as long as we d
approach the separatrix too close. In the case of the body rotation,V will be gradually changing
the ‘‘circles’’ it describes, and will eventually approach the separatrix,en routewhereto the
‘‘circles’’ will be getting more and more distorted. If the dissipation is slow, i.e., if the kine
energy loss through one precession period is less than a typical energy of an occasional inte
~like, say, a tidal-force-caused perturbation! then chaotic motion is possible whenV is crossing
the separatrix: the body may perform flipovers. After that the body will embark on the sta
tumbling. As one can see fromFig. 1, the tumbling will eventually turn into the final spin, i.e., int
an almost circular small-amplitude precession ofV around pointC. However, this point will never
be reached because the alignment ofV alongJ has a vanishing rate for small residual angles: i
evident from formulas~8.24! and ~9.15! below, that at the end of the relaxation process
relaxation rate approaches zero, so that small-angle nutations can persist for long times.

Now we understand that if the aforementioned ‘‘rolling’’ becomes too swift, this will look
a ‘‘jump’’ over the separatrix inFig. 1. If we assume that (I 32I 2)/I 3 is infinitesimally small, then
the separatrix will approach poleC infinitesimally close, and the smallest tidal interaction will b
able to push the vectorV across the separatrix. In other words,the body, during the most part o
its history, will be precessing about its minimal-inertia axis. For the first time this fact was pointe
out in Ref. 25.

Dependent upon the particular value of (I 32I 2)/I 3 and upon the intensity of the occasion
tidal interaction, the vectorV will be either driven from poleC back to the separatrix, withou
crossing it, or will be forced to ‘‘jump’’ over it. In the latter case, chaotic flipovers will eme
while V is crossing the separatrix.

As already mentioned,V will never approach poleC too close because in the vicinity ofC the
relaxation rate asymptotically vanishes. The behavior ofV after its crossing the separatrix will b
determined by two factors: on the one hand, occasional tidal interactions will pushV toward or
over the separatrix; on the other hand, the inelastic-dissipation process will always driveV in the
direction of poleC ~though, once again, it will never manage to bring it too close toC, for the
above-mentioned reason!. Sometimes this regime will be interrupted by collisions that may dr
V far away from the separatrix, in the direction of poleA.

IV. STAGES OF MOTION

We shall consider motion of a freely rotating body moving through four stages of relaxa
The first stage will be called ‘‘the initial spin.’’ It begins when the body rotates about s

axis ~almost! perpendicular to that of major inertia. This motion is characterized by nega
(J222I 2Tkin), so that the frequencyv and parameterk are expressed by~2.16!. The initial spin
starts whenV3

2 is small. Namely, according to~3.3!,
                                                                                                                



to the

d

ll be

gono-

called

tric

: on the
nd its
inity

space,

the

1863J. Math. Phys., Vol. 41, No. 4, April 2000 Precession of a freely rotating rigid body . . .

                    
V1
2

V3
2 .

I 32I 2

I 22I 1

I 3

I 1

5
q

s~12q2s!
. ~4.1!

Note thatV2
2 does not enter this condition at all.

Now suppose that the body starts its rotation about an axis that is, for example, close
minimal-inertia axis, so thatV2

2 is much less thanV1
2. Then, according to~2.5!, ~2.6!, and~2.16!,

v5AS I 32I 1

I 2
V1

21
I 32I 2

I 1
V2

2D I 22I 1

I 3

5AS 12s

12q
V1

21
q

s
V2

2D ~12s2q!'uV1u~12s! ~4.2!

and

k25
I 32I 2

I 22I 1

I 2~ I 22I 1!V2
21I 3~ I 32I 1!V3

2

I 1~ I 32I 1!V1
21I 2~ I 32I 2!V2

2 ,1, ~4.3!

the inequality ensuing from~3.1!. In particular, for

V2
2!V1

2 I 1

I 2

I 32I 1

I 32I 2
5V1

2 s

12q

12s

q
~4.4!

and

V3
2!V1

2 I 1

I 3

I 22I 1

I 32I 2
5V1

2s
12s2q

q
, ~4.5!

one gets

k2!1. ~4.6!

The initial spin comes to its end when the~negative! quantityJ222I 2Tkin approaches zero, an
k→1. The next, second stage will be precession in the vicinity of separatrix~though without
crossing it yet!. Crossing of the separatrix may result in chaotic flipovers. The third stage wi
called tumbling. It begins when (J222I 2Tkin)50 andk51. It ends when (J222I 2Tkin).0 andk
is smaller than unity, though not small enough to approximate the Jacobi functions by tri
metric functions. Mind that the transition from the initial spin to tumbling leaves parametersa, b,
g, v, andk continuous: none of these undergo a stepwise change. The fourth stage will be
‘‘the final spin:’’ it takes place when the relaxation is almost over andk→0. At this stage~as well
as during the initial spin! the Jacobi functions may be well approximated by trigonome
functions.

As explained in the previous section, the suggested scenario is, of course, too idealized
one hand, small occasional interactions will easily force a nearly prolate body to rotate arou
minimal-inertia axis for most time; on the other hand, the relaxation rate will vanish in the vic
of pole C, so that the perfect relaxation will never be achieved.

V. DYNAMICS OF A FREELY PRECESSING BODY. RELAXATION RATE

We are interested in the rate at which a freely spinning body changes its orientation in
i.e., in the rate of alignment of the maximal-inertia axis along the~conserved! angular momentum.

In the case of an oblate body (I 3.I 25I 1), one could start with a trivial formuladu/dt
5(dTkin /du)21(dTkin /dt), whereu stands for the angle between the major-inertia axis and
angular momentum.24 This formula would work, since in the oblate caseu remains approximately
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unchanged through a precession cycle. Unfortunately, in the general case of a triaxial rotato
in the absence of dissipation, this angle evolves in time. Luckily though, its evolution is per
@formulas~A1!–~A4! in Appendix A#, so that instead of usingu one can use its average over
cycle. In practice, it turns out to be easier to operate with the time average of sin2 u:

d^sin2 u&
dt

5
d^sin2 u&

dTkin

dTkin

dt
. ~5.1!

As shown in Appendix A, formula~A10!,

J2^sin2 u&5
I 1

I 32I 1
~2I 3Tkin2J2!

1I 2I 3

I 22I 1

I 32I 1
b2

1

2 S 11
k2

8
1

k4

16
1O~k6! D . ~5.2!

A substitution of~2.14! for b andk into the above formula entails@see Appendix A, Eq.~A12!#

J2S d^sin2 u&
dTkin

D
~near C!

5
I 3~ I 1I 31I 2I 322I 1I 2!

~ I 32I 1!~ I 32I 2!
1

1

4

2I 3Tkin2J2

J222I 1Tkin
S I 22I 1

I 32I 2
D 2 I 3

2

~ I 32I 1!
1O~k4!,

~5.3!

while a substitution of~2.16! into ~5.2! yields @Appendix A, formula~A15!#:

J2S d^sin2 u&
dTkin

D
~near A!

5
I 1I 3

I 32I 1
2

1

4

I 1I 3~ I 32I 2!

~ I 32I 1!~ I 22I 1!

J222I 1Tkin

2I 3Tkin2J2 1O~k4!. ~5.4!

Formulas~5.3! and ~5.4! explain how the losses of the kinetic energy of rotation make^sin2 u&
change. Since the kinetic energy decreases because of the inelastic dissipation,

Ṫkin5Ẇ, ~5.5!

what we have to find is the rate of the elastic-energy lossesẆ, quantity W being the time-
dependent part of the elastic energy stored in the body due to the alternating stresses. Th
aid of ~5.1!, ~5.3!, and~5.4!, we shall compute the rate of alignment:

d^sin2 u&
dt

5
d^sin2 u&

dTtin

dW

dt
. ~5.6!

The next four sections will be devoted to the calculation of the dissipation ratedW/dt.

VI. ESSENTIAL NONLINEARITY IN THE PRECESSION-CAUSED DISSIPATION. CASES
OF HOT AND COLD BODIES

Our goal now is to describe the kinetic-energy dissipation caused by the deformations
body, experienced in the course of its precession. The deformation of body is neither purely
nor purely plastic, but is a superposition of the former and the latter. It is then to be describ
the tensore i j of viscoelasticstrains and by the velocity tensor consisting of the time derivati
ė i j . The stress tensor will consist of two components: the elastic stress and the plastic~viscous!
stress. In the simpliest, so-called Maxwell–Voigt model, the components are additive:28

s i j 5s i j
~e!1s i j

~p! , ~6.1!

where the components of the elastic stress tensor are interconnected with those of the
tensor:29
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e i j 5d i j

Tr s~e!

9K
1S s i j

~e!2
1

3
d i j Tr s~e!D 1

2m
, ~6.2!

s i j
~e!5Kd i j Tr e12mS e i j 2

1

3
d i j Tr e D , ~6.3!

m and K being theadiabatic shear and bulk moduli, and Tr standing for the trace of a ten
Components of the plastic stress are connected with the strain derivatives as

ė i j 5d i j

Tr s~p!

9z
1S s i j

~p!2
1

3
d i j Tr s~p!D 1

2h
, ~6.4!

s i j
~p!5zd i j Tr ė12hS ė i j 2

1

3
d i j Tr ė D , ~6.5!

whereh andz are the shear and stretch viscosities.
Dissipation may be taking place at several modes:

Ẇ5(
vn

Ẇ~vn!52(
vn

vnW0~vn!

Q~vn!
5 22(

vn

vn^W~vn!&
Q~vn!

, ~6.6!

Q(v) being the so-called quality factor of the material, andW0(vn) and ^W(vn)& being the
maximal and the average~over a period! values of the appropriate-to-vn fraction of elastic energy
stored in the body. The average~over the precession cycle! of the total elastic energy reads as

^W&5
1

2 E dV^s i j e i j &, ~6.7!

and it must be decomposed in a sum over the frequencies:

^W&5(
n

^W~vn!&. ~6.8!

For example, in the case of a symmetrical oblate body, studied in Refs. 16 and 24, both the
tensors and the strain tensore contain only the precession frequencyv. Therefore their contrac-
tion s i j e i j contains two frequencies:v and 2v, and hence in this casedW/dV5dW(v)/dV
1dW(2v)/dV.

All in all, the general expression~6.6! entails

Ẇ522(
vn

E dVH vn

Q~vn!

d^W~vn!&
dV J , ~6.9!

where the integral is taken over the entire volumeV of the body. In the latter expression we ha
deliberately put the quality factor under the integral, implying its possible coordinate depend
The coordinate dependence of attenuation should be taken into account whenever one is
with precession of an inhomogeneous body. We mean, for example, the problem of rota
stability of a spacecraft. Wobble of a strongly inhomogeneous asteroid is another exam
relevance of the coordinate dependence ofQ.

Returning to~6.6!, it is important to stress thatthe dissipation process is essentially nonlinea
the generation of the higher modes in (6.6) is no way to be a higher-order correction. Inste
is the higher-than-v frequencies that contribute the overwhelming share of the entire effect. This,
crucial circumstance had gone unnoticed in the preceding studies,23,35 and was studied only this
year in Refs. 16 and 24. In the latter two articles we were considering a simple case
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symmetrical oblate body (I 15I 2). In that case, the second mode was generated due to the
dratic dependence of the centripetal acceleration upon the angular velocityV: since the angular
velocity of an oblate body precesses at a ratev5(h21)V3 ~whereh[I 3 /I 15I 3 /I 2!, the emer-
gence of double-frequency terms in the expression for acceleration~and therefore, in the expres
sions for stresses, strains, elastic energy, and, finally, in the expression for the relaxation! is
unavoidable. For the first time the presence and role of the double-frequency terms was dis
in Ref. 16 in the context of cosmic-dust alignment, and in Ref. 24, in the context of cometar
asteroid wobbling. It turns out that this second mode often gives a leading input into the di
tion process. This is an example of a nonlinearity giving birth to a leading-order effect. It rem
a puzzle as to why this leading effect had not been studied thitherto. It would be unfair thou
say that the effect had gone completely unnoticed. After our two articles had been publ
Sidorenko drew our attention to the fact that the second mode had been mentioned back
1950s by Prendergast 195830 and then forgotten. Prendergast took into account the centrip

acceleration but missed the termV̇Ãr in his analysis. He also ignored the emergence of the hig
modes. Anyway, we would credit Prendergast for first noticing the nonlinear nature of the pr
In 1973 Peale published an article41 dealing with inelastic relaxation of nearly spherical bodi
and there he did take the second harmonic into account.

Since in the case of an oblate symmetrical body only two modes are present, formula~6.6! for

Ẇ simplifies a lot: Ẇoblate5Ẇ(v)1Ẇ(2v)522@v^W(v)&/Q(v)12v^W(2v)&/Q(2v)#
'22v^W(v)12W(2v)&/Q(v), where we used the fact that the quality factor depends upon
frequency very slowly:Q(2v)'Q(v). This neglect of the frequency dependence ofQ is cer-
tainly valid when we consider inputs from frequencies differing from one another by a factor
However, in the generic case, when a broader band of frequencies comes into play, the fre
dependence of the quality factor in~6.6! must be respected. This dependence may be crucial i
body is a composite structure with resonant eigenfrequencies of its own: attenuation at the
be especially effective.

As we shall see below, whenever the rotation axis is~almost! parallel either to the maximal
or minimal-inertia axis of the body, the dissipation is taking place on two frequencies solev
and 2v. This situation will be reminiscent of the above-mentioned case of a symmetrical o
body. Relaxation in the vicinity of the separatrix is a far more complicated case; in that
numerous frequencies will be generated, and the frequency dependenceQ(v) will be relevant.

The quality factorQ is empirically introduced in acoustics and seismology to make up for
inability to describe the total effect of a whole variety of the attenuation mechanisms.31–34 A
discourse on the frequency and temperature dependence of theQ factor is given in Appendix B.

Another issue worth touching here is that of elasticity and plasticity demonstrated by ma
at various temperatures. In order to calculate the terms entering~6.8!, one must know the stres
tensor~that can be found from knowing the acceleration of an arbitrary point of the body! and the
strain tensor@that depends upon the stress tensor through the system of equations~6.1!, ~6.3!, and
~6.5!#. In general, it is difficult to resolve the system~6.1!, ~6.3!, and ~6.5! with respect to
e i j (x,y,z). Fortunately, in two simple practical cases the system solves easily. These are the
of cold and hot~plastic! body.

As well known, at low temperatures materials are fragile: when the deformations exceed
critical threshold, the body will rather break than flow. At the same time, at these temperatur
materials are elastic, provided the deformations arebeneaththe said threshold: the sound absor
tion, for example, is almost exclusively due to the thermal conductivity rather than to the visc
These facts may be summarized like this: at low temperatures, the viscosity coefficienth has,
effectively, two values: one value—for small deformations~and this value is almost exactly zero!;
another value—for larger-than-threshold deformations~and that value is high!. ~Effectively, it may
be put infinity because, as explained above, the body will rather crack than demonstrate flu!
Therefore, within the range from the absolute zero up to at least several hundred degr
Celsius the plastic part of the stress tensor may be well neglected.

At high temperatures materials become plastic, which means that the shear viscosityh gets its
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single value, deformation-independent in the first approximation. On the one hand, this valu
be far from zero~so that the scattering of vibrations will now be predominantly due to
viscosity, not due to the thermal conductivity!. On the other hand, this value will not be that hig
a plastic body will rather yield than break. All this is certainly valid for the stretch viscosityz as
well. As a result, at temperatures higher than about two thirds of the melting temperature on
neglect the elastic part of the stress tensor, compared to its plastic part.~I am deeply thankful to
Shun-Ichiro Karato for a consultation on this topic.!

To simplify the stress tensor, we model the body by a rectangular prizm of dimensiona
32b32c. The tensor must obey three demands. First, it must satisfy the relation

] is i j 5raj , ~6.10!

aj being the time-dependent parts of the acceleration components, andraj being the time-
dependent parts of the components of the force acting on a unit volume. Second, tensors i j must
be symmetrical and, third, it should obey the boundary conditions, i.e., the product of the
tensor and the normal unit vector,s i j nj , should vanish on the boundaries of the body~this
condition was not fulfilled in Ref. 35!.

It would be important to emphasize that the above assumption of the body being a
brings almost no error into calculations performed for real irregular-shaped physical object
asteroids or cosmic-dust grains. The reason for this is that an overwhelming share of dissip
anyway taking place not near the surface but in the depth of the body. This is especially e
from formulas~8.7!–~8.17!, and it is just another manifestation of Saint-Venant’s principle
elasticity.~I am grateful to Mark Levi for drawing my attention to this fact.! So, whether the body
is indeed a rectangular prism or more like an ellipsoid, will not make much difference fo
estimate of the relaxation time. Mind though that for shells Saint-Venant’s principle doe
work, so that in the case of spinning spacecrafts the subtleties of their shape may be rele

VII. THE ELASTIC ENERGY OF ALTERNATE DEFORMATIONS

Unless the temperature is too high, the bodies manifest, for small deformations, no vis
(vh;vz!m;K), so that the stress tensor is approximated to a very high accuracy by its e
part: instead of the system~6.1!–~6.5! one may write

e i j 5d i j

Tr s

9K
1S s i j 2

1

3
d i j Tr s D 1

2m
. ~7.1!

This will enable us to derive an expression for the elastic energy stored in a unit volume
processing body:

d^W&
dV

5
1

2
^e i j s i j &5

1

4m H S 2m

9K
2

1

3D ^~Tr s!2&1^s i j s i j &J
5

1

4m H 2
1

11n21 ^~Tr s!2&1^sxx
2 &1^syy

2 &1^szz
2 &12^sxy

2 1syz
2 1szx

2 &J ,

~7.2!

where we have made use of the expressions connecting the shear and bulk moduli with the
modulusE and Poisson’s ration: sinceK5E/@3(122n)# andm5E/@2(11n)# then 2m/(9K)
21/352n/(11n). As Poisson’s ration is, for cold solids, typically about 0.25, one may safe
put 2m/(9K)2 1

3'2 1
5.

The above expression~7.2! must be decomposed into a sum like~6.8!. In what follows we
shall be interested in the energies averaged over the precession period. For this reason, in~7.2! all
s i j

2 ’s are averaged.~See Appendices C and D for details.!
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VIII. RELAXATION RATE IN THE VICINITY OF POLE C: THE RELAXATION IS ALMOST
COMPLETED AND THE BODY IS SPINNING ALMOST ABOUT ITS
MAXIMAL-INERTIA AXIS

Near the poles parameterk is close to zero. This justifies the following simple asymptotics
elliptic functions@Abramovitz and Stegun 1964, formulas~16.13.1-3!27#:

cn~u,k2!5cosu1 1
4 k2~u2sinu cosu!sinu1O~k4!, ~8.1!

sn~u,k2!5sinu2 1
4 k2~u2sinu cosu!cosu1O~k4!, ~8.2!

dn~u,k2!512 1
2 k2 sin2 u1O~k4!. ~8.3!

In the vicinity of poleC, i.e., during the ‘‘final spin’’~whenV is almost aligned along or opposit
J!, we substitute~2.12!–~2.14! and ~2.19!–~2.27! into ~2.18!. Then we must use the asymptotic
~8.1!–~8.3!, neglecting terms of order higher thank2. Mind that, forJ2.2TkinI 2 , the parameters
b andg are of the same order ask @as evident from~2.14!#, while R is of orderk2 @according to
~2.8!#. This will give us

a~near C!
~ t ! 5e1$2x@P1~12Q!b2 sn2@u,k2##1y~avk21bg!sn@u,k2#cn@u,k2#

1z~bv1ag!cn@u,k2#dn@u,k2#%1e2$x~bg2avk2!sn@u,k2#cn@u,k2#

2y@P1R2~Q1S!b2 sn2@u,k2##1z~ab1gv!sn@u,k2#dn@u,k2#%

1e3$x~2bv1ag!cn@u,k2#dn@u,k2#1y~ab2gv!sn@u,k2#dn@u,k2#

2z@R1~12S!b2 sn2@u,k2##% ~8.4!

5e1$
1
2 x~12Q!b2 cos 2u1 1

2 y~avk21bg!sin 2u1z~bv1ag!cosu%

1e2$
1
2 x~bg2avk2!sin 2u2y 1

2 ~Q1S!b2 cos 2u1z~ab1gv!sinu%

1e3$x~2bv1ag!cosu1y~ab2gv!sinu1z 1
2 ~12S!b2 cos 2u%

1$time-dependent k2-order terms originating from the k2-order

terms in expansions (8.1)–(8.3)%

1$time-independent terms%, ~8.5!

whereu[v(t2t0). In the further calculations we shall ignore the time-independent terms em
ing in ~8.5! because, in order to calculate the inelastic-dissipation rate, we need only the
dependent part of the stress tensor.

Dissipation is taking place in two modes, one of which has the frequency of precession,
another one is of twice that frequency.@If one plugs into~8.4! all the high-order terms from
~8.1!–~8.3! they will give an infinite amount of the higher harmonics in~8.4!. In the vicinity of
poles, we neglect the high-order terms in~8.1!–~8.3!, and thereby neglect harmonics higher th
second.# As already mentioned in Sec. VI, the second mode originates from the centripetal te
~2.17!. This fact is understood especially easily if we assume that the body is oblate and sy
ric. In this case one component ofV ~the one parallel to the axis of maximal inertia! will stay
unchanged, while the other two will be proportional to sinvt and cosvt ~which simply means tha
V is precessing at ratev about the maximal-inertia axis!. Quite evidently, squaring ofV in ~2.17!
yields the double frequency. Mathematically speaking, in the case of an oblate body the re
applicability of the solution~2.15!–~2.16! shrinks to a line, so that the solution~2.13!–~2.14!
accounts for the entire process. As evident from~2.14!, in the oblate casek50 and therefore
formulas~8.1!–~8.3! contain only terms of orderk0.
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So we shall strip~8.4!–~8.5! off its time-independent terms, and shall plug thetime-dependent
terms into~6.10!. Integration thereof will then give us expressions for thetime-dependentcom-
ponents of the stress tensor:

sxx52
r

2
~12Q!b2~x22a2!$sn2@v~ t2t0!,k2#2^sn2@v~ t2t0!,k2#&% ~8.6!

52
r

2
~12Q!b2~x22a2!H 2

1

2
cos 2@v~ t2t0!#1O~k2!J , ~8.7!

syy5
r

2
~S1Q!b2~y22b2!$sn2@v~ t2t0!,k2#2^sn2@v~ t2t0!,k2#&% ~8.8!

5
r

2
~S1Q!b2~y22b2!H 2

1

2
cos 2@v~ t2t0!#1O~k2!J , ~8.9!

szz52
r

2
~12S!b2~z22c2!$sn2@v~ t2t0!,k2#2^sn2@v~ t2t0!,k2#&% ~8.10!

52
r

2
~12S!b2~z22c2!H 2

1

2
cos 2@v~ t2t0!#1O~k2!J , ~8.11!

sxy5
r

2
$~bg1avk2!~y22b2!1~bg2avk2!~x22a2!%

3$sn@v~ t2t0!,k2#cn@v~ t2t0!,k2#2^sn@v~ t2t0!,k2#cn@v~ t2t0!,k2#&% ~8.12!

5
r

2
$~bg1avk2!~y22b2!1~bg2avk2!~x22a2!%$ 1

2 sin 2@v~ t2t0!#1O~k2!%,

~8.13!

sxz5
r

2
$~bv1ag!~z22c2!1~2bv1ag!~x22a2!%

3$dn@v~ t2t0!,k2#cn@v~ t2t0!,k2#2^dn@v~ t2t0!,k2#cn@v~ t2t0!,k2#&% ~8.14!

5
r

2
$~bv1ag!~z22c2!1~2bv1ag!~x22a2!%$cos@v~ t2t0!#1O~k2!%, ~8.15!

syz5
r

2
$~ab1vg!~z22c2!1~ab2vg!~y22b2!%

3$dn@v~ t2t0!,k2#sn@v~ t2t0!,k2#2^dn@v~ t2t0!,k2#sn@v~ t2t0!,k2#&% ~8.16!

5
r

2
$~ab1vg!~z22c2!1~ab2vg!~y22b2!%$sin@v~ t2t0!#1O~k2!%. ~8.17!

The symbol^¯& stands for averaging over the mutual periodt of functions sn and cn.~See
Appendix A.! In the above expressions, it might be better to writes i j

(t) instead ofs i j , in order to
stress that we are considering only the time-dependent part, but we would rather omit the
scripts for brevity. The above expressions~8.5!, ~8.7!, ~8.9!, ~8.11!, ~8.13!, ~8.15!, ~8.17! coincide,
in the limit of oblate symmetry (I 15I 2), with formulas~19!–~23! from our previous article.16
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The expression~8.5! is exact, while the formulas~8.6!–~8.17! implement the polynomial
approximation to the stress tensor. This approximation keeps the symmetry and obeys~6.10!. The
boundary conditions are satisfied exactly for the diagonal components, and are satisfie
approximately for the off-diagonal components. This approximation very considerably simp
calculations and yields only minor errors in the numerical factors~8.26!–~8.28!. A comprehensive
analysis of the polynomial approximation will be presented elsewhere.

To calculate the dissipation rate, we shall need averaged over the precession period sq
the above stresses,^s i j

2 &, as well as^(Tr s)2&. Moreover, for our goals we shall need the
calculated up to terms of orderk2 inclusively. This demand makes it necessary to have the ab
expressions~8.7!, ~8.9!, ~8.11!, ~8.13!, ~8.15!, ~8.17! with all thek2-order terms written explicitly.
How to get these terms? On the face of it, the answer is trivial and looks like this. In the a
formulas we approximated the elliptic functions using onlyk0-order terms of~8.1!–~8.3!; now, let
us keep also thek2-order terms. Surprisingly, this is the case when the simpliest shortcut lea
a wrong answer. Plugging of the contained in~8.1!–~8.3! k2-order terms into~8.7!, ~8.9!, ~8.11!,
~8.12!, ~8.14!, ~8.16!, with the further squaring thereof, will give birth to secular terms in
expressions for̂s i j

2 &, i.e., to terms linear inu[v(t2t0). Averaging of these terms will entai
ambiguities: one will get into an illusion that it does matter whether to integrate from 0 througp
or, say, from 2p through 4p. The secular terms have been long known in nonlinear mechanics
astronomy, where they often tarnish calculations and sometimes become a real pain. Luc
our case we can sidestep this obstacle by employing directly the fundamental definition
elliptic functions:

sn~u,k2![sinf, cn~u,k2![cosf, dn~u,k2![~12k2 sin2 f!1/2, ~8.18!

the auxiliary quantityf being connected tou like that:

u[E
0

f du

~12k2 sin2 u!1/2. ~8.19!

This will give us the key to a correct calculation of the averaged-over-period quadratic
quadratic forms. For example, the average^sn2 u dn2 u& will read as

^sn2~u,k2!dn2~u,k2!&[
1

t E0

t

sn2~u,k2!dn2~u,k2!du

5
1

4K E
0

2p

sin2 f~12k2 sin2 f!
du

df
df

5
1

4K E
0

2p

sin2 f~12k2 sin2 f!1/2df

'
2p

4K

1

2p E
0

2p

sin2 fS 12
k2

2
sin2 f D

'

1
22k2/16

11k2/4
df'

1

2 S 12
3

8
k2D , ~8.20!

where we used~A7!. The squared and averaged in the above manner stress componen
presented in Appendix C, expressions~C2!, ~C4!, ~C6!, ~C8!, ~C10!, ~C12!, and~C14!. Substitu-
tion thereof into~7.2! will lead us to the expression for dissipation per unit volume:

d^W&
dV

5
d^W~2v!&

dV
1

d^W~v!&
dV

, ~8.21!
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where the first term stands for the dissipation of oscillations at frequency 2v:

d^W~2v!&
dt

5
1

4m H 2
1

11n21 ^~Tr s!2&1^sxx
2 &1^syy

2 &1^szz
2 &12^sxy

2 &J , ~8.22!

while the second term expresses the dissipation at the principal frequency:

d^W~v!&
dt

5
1

4m
$2~^syz

2 &1^szx
2 &!%. ~8.23!

Expressions ford^W(v)&/dV and d^W(2v)&/dV in terms of I 1,2,3 are presented in the Appendi
@formulas ~C20! and ~C21!#. These expressions should be now multiplied by 2v/Q(v) and
4v/Q(2v), correspondingly, and integrated over the volume of the body, as in~6.9!. The out-
come of this integration will be the total dissipation rateẆ that must be plugged, together wit
~5.3! into ~5.1!. Here follows the result,

d^sin2 u&
dt

52
2I 3r2

mQ~v!

~2I 3Tkin2J2!

J2 H v~J222I 1Tkin!H1F I 1I 31I 2I 322I 1I 2

~ I 32I 1!~ I 32I 2!

1
1

4

I 3~ I 22I 1!2

~ I 32I 1!~ I 32I 2!2

2I 3Tkin2J2

J222I 1Tkin
G2vH0~2I 3Tkin2J2!

12v
Q~v!

Q~2v!
~2I 3Tkin2J2!H2

I 1I 31I 2I 322I 1I 2

~ I 32I 1!~ I 22I 1!
1O~k4!J . ~8.24!

The ratioQ(v)/Q(2v) is typically close to unity, unless the structure of the body or the pr
erties of the material provide resonances. Terms withH0 and H1 are due to the dissipation o
oscillations at frequencyv, while the term withH2 is due to the vibrations at 2v.

Numerical coefficientsH0 , H1 , andH2 emerging in~8.24! are geometrical factors that de
pend upon the moments of inertia and dimensions of the body. General expressions forH0,1,2 are
given in Appendix C. Obviously,H0 vanishes in the oblate case.

Equation~8.24!, together with~2.14!, and with the equation

J2^sin2 u&~near C!5
1

2

I 1I 31I 2I 322I 1I 2

~ I 32I 1!~ I 32I 2!
~2I 3Tkin2J2!1O~k4!, ~8.25!

connectingTkin with ^sin2 u&, makes a system of equations describing relaxation in the vicinit
pole C. @Equation~8.25! is a truncated version of~5.2!. For details see~A11! in Appendix A.#

Let us elaborate on the factorsH0 , H1 , and H2 . In the case of a homogeneous body
dimensions 2a32b32c, expressions for the factors read~see the end of Appendix C! as

H15
317

m4

abc5

~b21c2!~a42c4!~a21b2! S b4

b42c4 1
a4

a42c4D , ~8.26!

H25
100

m4

a9b9c2a9b5c52a5b9c510.21a9bc910.19a5b5c910.21ab9c9

~a21b2!2~a42c4!2~b42c4!2 , ~8.27!

and

H05
237

m4 abc5~a22b2!
~2.67a4b42a4c421.67b4c4!~a41b422c4!

~a21b2!~a22c2!~b22c2!~a42c4!2~b42c4!2 . ~8.28!

The denominators of~C22!–~C24! contain expressions (I 32I 1) and (I 32I 2); as a result, the
denominators of~8.26!, ~8.27!, and ~8.28! contain (a42c4)2 and (b42c4)2. It would be appro-
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priate to make sure that nothing wrong happens whena→c or a→b. We assumed from the
beginning thatI 3>I 2>I 1 , i.e., that ~for a prism! a>b>c. Therefore it would be enough to
investigate the case ofa→b. Recall also that the parameterk given by ~2.14! and ~2.16! never
exceeds unity:k50 at the poles andk51 at the separatrix. From~2.14! we see that, for (I 3

2I 2);(b22c2)→0, the conditionk<1 is fulfilled only if V1
2/V3

2,„I 3(I 32I 2)…/„I 1(I 22I 1)…. In
other words, making (I 32I 2) and (b2c) infinitesimally small leads to infinitesimal squeezing
the region around poleC between the separatrices in Fig. 1. Thus, the region where the appro
solution is applicable, shrinks into a point.

In our analysis it is possible to get rid of the variableTkin completely: one should express
through^sin2 u& by means of~8.25!, and plug the result into~8.24!. This will give us what we
would call the master equation, a differential equation for^sin2 u&:

d^sin2 u&
dt

52
4J2r2

mQ~v!

I 32I 1

I 1I 31I 2I 322I 1I 2
^sin2 u&H vH1F122^sin2 u&

I 1~ I 32I 2!

I 1I 31I 2I 322I 1I 2
G

3F I 1I 31I 2I 322I 1I 21
1

2

~ I 22I 1!2I 3
2^sin2 u&

~ I 1I 31I 2I 322I 1I 2!22^sin2 u&I 1~ I 32I 2!
G

2vH02I 3~ I 32I 2!^sin2 u&14vH2

Q~2v!

Q~v!
^sin2 u&I 3~ I 32I 2!J 1O~k4!, ~8.29!

where, according to~2.14! and ~8.25!,

v5
uJu
I 3
A~ I 32I 2!~ I 32I 1!

I 1I 2
F122^sin2 u&

I 1~ I 32I 2!

I 1I 31I 2I 322I 1I 2
G . ~8.30!

Equation~8.29! is one of the main results of our study. It describes the relaxation in the vic
of pole C corresponding to rotation about the maximal-inertia axis. Simply from looking at
equation one can understand several important features of the relaxation process. To start
follows from ~8.29! that d^sin2 u&/dt vanishes in the limit of (I 32I 1)→0, which naturally illus-
trates the absence of relaxation in the case of all moments of inertia being equal to one a
Second, the overall factor̂sin2 u& standing before the brackets on the right-hand side of~8.29!
evidences of a gradual decrease in the relaxation rate: the major-inertia axis will be appro
the angular momentum vector but will never align along it exactly.

Technically, the master equation~8.29! becomes a self-consistent differential equation,
scribing the time evolution of̂sin2 u&, only after the expression~8.30! for v is plugged into it. We
did not bother to do this not only for the sake of brevity. In fact, Eq.~8.29!, as it stands, is of more
practical interest than the self-consistent differential equation. It enables, for example, an a
mer to use the measurable quantitiesv and^sin2 u&, to predict the relaxation rate in the short ru
In the real life ‘‘short run’’ means the time span during which the currently available resolutio
the optical or radio equipment makes it possible to notice the narrowing of the precession
Nowadays spacecraft-based equipment provides an angular precision of 0.01° and even
This gives us a chance of observing precession damping within a period varying from s
months to several years, for different objects.14 Soon the Rosetta mission will give it the firs
try.12,13

Now let us briefly dwell on the limit of an oblate body (I 25I 1). In this case, the precessio
is known to be circular,24 so the averaginĝ̄ & may be omitted. The simplified master equati
will then look like

S d~sin2 u!

dt D ~oblate!

52
4J2r2

mQ~v!

I 32I 1

I 1
sin2 uH vH1I 1 cos2 u12vH2

Q~2v!

Q~v!
I 3 sin2 uJ 1O~k4!,

~8.31!

where
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v5
uJu
I 3

S I 3

I 1
21D cosu. ~8.32!

For an oblate homogeneous rectangular prism, the latter and the former, with~8.26! and ~8.27!
plugged in, will give

S du

dt D ~oblate!

52
3

24 sin3 uF63S c

aD 4

cot2 u120
122~c/a!410.61~c/a!8

122~c/a!41~c/a!8 G a2V0
3r

mQ~v!

3@11~c/a!2#241O~k4!

52
3

24 sin3 uF63~c/a!4 cot2 u120

@11~c/a!2#4 G a2V0
3r

mQ~v!
1O„k4,~c/a!8

…, ~8.33!

where

V0[
J

I 3
, ~8.34!

and it is assumed thatQ(v)'Q(2v). This perfectly coincides with the exact formula obtained
Efroimsky and Lazarian 2000,24 by a rigorous treatment possible in the oblate case:

S du

dt D
~E&L 2000!

~oblate!

52
3

24 sin3 uF63~c/a!4 cot2 u120

@11~c/a!2#4 G a2V0
3r

mQ
. ~8.35!

Now let us see what happens with the master equation~8.29! when the shape of the body is almo
prolate (I 3*I 2):

S d^sin2 u&
dt D ~prolate!

'2
4J2r2

mQ~v!
^sin2 u&H vH1~ I 32I 1!S 11

1

2
^sin2 u& D2vH02~ I 32I 2!

14H2v^sin2 u&~ I 32I 2!J 1O~k4!. ~8.36!

Even though the term containingH2 contains also multiplier (I 32I 2), it diverges in the limit of
prolate symmetry@see~C23!#. However, there is nothing bad about it, as explained in Sec. III:
should not make (I 32I 2) approach zero for fixedu, but rather fix some value of (I 32I 2), small
but finite, and then makeu decrease to zero. As already mentioned@see the comment after~8.27!#,
as the shape approaches the prolate symmetry, the applicability region of the solution s
Still, the fact is that within the applicability region~called in Sec. III the final spin! the second-
mode term will not necessarily be much less than the first one. The ratio of these term
depend upon sin2 u, which means that the typical time of relaxation may be a steep function o
angle. This typical time must be proportional, for dimensional reasons, tomQ/„2J2vr2(I 3

2I 1)…, but the numerical factor may be quiteu dependent, due to the presence of the second t
in ~8.36!. We had to dwell on this subtlety due to its practical relevance. In the recent liter
they sometimes use the formula for relaxation time, derived for oblate bodies, in order to es
relaxation of a tumbling prolate rotator. We did this in Ref. 24 when discussing asteroid
Toutatis, while Blacket al. 199925 employed this estimation for asteroid 433 Eros. We see n
that this was wrong, even for the final spin about poleC. The more so, it was absolutely unjustifie
to use this estimate for a tumbling body~i.e., in the vicinity of the separatrix!, as done in the said
articles.
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IX. RELAXATION RATE IN THE VICINITY OF POLE A: THE BODY IS SPINNING
ALMOST ABOUT ITS MINIMAL-INERTIA AXIS

In the vicinity of poleA, i.e., during the ‘‘initial spin’’~when the angular velocityV is almost
perpendicular to the maximal-inertia axis, andV3'0!, we substitute asymptotics~8.1!–~8.3! into
~2.13! ~2.15–2.16!, ~2.19–2.23! and~2.28–2.31!, the results to be plugged into~2.18!. This leads
to the following expression for the acceleration:

a~near A!
~ t ! 5e1$x@P1~12Q!b2 sn2 u#1y~av1bg!sn@u,k2#dn@u,k2#

1z~bv1ag!cn@u,k2#dn@u,k2#%

1e2$x~bg2av!sn@u,k2#dn@u,k2#

2y†P1R2~Q1S!b2 sn2@u,k2#‡1z~ab1gvk2!sn@u,k2#cn@u,k2#%

1e3$x~2bv1ag!dnu cn@u,k2#1y~ab2gvk2!sn@u,k2#cn@u,k2#

2z@R1~12S!b2 sn2@u,k2##% ~9.1!

5e1$
1
2 x~12Q!b2 cos 2u1y~av1bg!sinu1z~bv1ag!cosu%

1e2$x~bg2av!sinu2 1
2 ~Q1S!yb2 cos 2u1 1

2 z~ab1gvk2!sin 2u%

1e3$x~2bv1ag!cosu1 1
2 y~ab2gvk2!sin 2u2z 1

2 ~12S!b2 cos 2u%

1$time-dependent terms of order k2%1$time-independent terms%. ~9.2!

En routefrom ~9.1! to ~9.2!, we employed asymptotics~8.1!–~8.3!, then separated out the time
independent terms~which may be dropped, because they do not influence the inner dissipa!,
and we also neglected terms of order higher thank2 @we are reminded that, according to~2.16!, for
J2,2TkinI 2 , the parametersb and a are of orderk#. In the above expression,u[v(t2t0).
ParametersS andQ are expressed by~2.8!. Parametersa, b, g, v, andk are expressed by~2.16!
and thus are different froma, b, g v, and k used in the preceding section@where they were
expressed by~2.14!#.

Similarly to the preceding section, we shall use Eq.~6.10! and expression~9.2! to compute the
stress tensor. This will lead us to

sxx52
r

2
~12Q!b2~x22a2!$sn2@v~ t2t0!,k2#2^sn2@v~ t2t0!,k2#&% ~9.3!

52 1
2 r~12Q!b2~x22a2!$2 1

2 cos 2@v~ t2t0!#1O~k2!%, ~9.4!

syy5
r

2
~S1Q!b2~y22b2!$sn2@v~ t2t0!,k2#2^sn2@v~ t2t0!,k2#&% ~9.5!

5 1
2 r~S1Q!b2~y22b2!$2 1

2 cos 2@v~ t2t0!#1O~k2!%, ~9.6!

szz52
r

2
~12S!b2~z22c2!$sn2@v~ t2t0!,k2#2^sn2@v~ t2t0!,k2#&% ~9.7!

52 1
2 r~12S!b2~z22c2!$2 1

2 cos 2@v~ t2t0!#1O~k2!%, ~9.8!
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sxy5
r

2
$~bg1av!~y22b2!1~bg2av!~x22a2!%

3$sn@v~ t2t0!,k2#dn@v~ t2t0!,k2#2^sn@v~ t2t0!,k2#dn@v~ t2t0!,k2#&% ~9.9!

5 1
2 r$~bg2av!~x22a2!1~bg1av!~y22b2!%$sin@v~ t2t0!#1O~k2!%, ~9.10!

sxz5
r

2
$~bv1ag!~z22c2!1~2bv1ag!~x22a2!%

3$dn@v~ t2t0!,k2#cn@p~ t2t0!,k2#2^dn@v~ t2t0!,k2#cn@p~ t2t0!,k2#&% ~9.11!

5 1
2 r$~bv1ag!~z22c2!1~2bv1ag!~x22a2!%$cos@v~ t2t0!#1O~k2!%, ~9.12!

syz5
r

2
$~ab1vgk2!~z22c2!1~ab2vgk2!~y22b2!%

3$cn@v~ t2t0!,k2#sn@v~ t2t0!,k2#2^cn@v~ t2t0!,k2#sn@v~ t2t0!,k2#&% ~9.13!

5 1
2 r$~ab1vgk2!~z22c2!1~ab2vgk2!~y22b2!%$ 1

2 sin 2@v~ t2t0!#1O~k2!%, ~9.14!

wherefrom we obtain the~averaged over the precession period! quantities that emerge in th
expression~7.2! for the dissipation rate:s i j

2 and (Trs)2. These expressions are written down
Appendix D. Substitution thereof into~7.2!, with the further integration gives the total energyW
of alternating stresses.

Similar to ~8.6!–~8.17!, the above formulas give a polynomial approximation to the str
tensor.@See the comment after Formula~8.17!.#

All the further schemes of calculation exactly repeat those from the preceding section. E
W consists of two components: one on the principal frequency, another on the second mode
should be multiplied by 2v/Q(v) and 4v/Q(2v), correspondingly@as in formula~6.6!#. It will
give us the overall dissipation rateẆ. Plugging this rate, along with~5.4!, into ~5.6! yields

d^sin2 u&
dt

52
2r2

mQ~v!J2

I 1I 3

I 32I 1
~J222I 1Tkin!H v~2I 3Tkin2J2!S1F12

1

4

I 32I 2

I 22I 1

J222I 1Tkin

2I 3Tkin2J2G
2v~J222I 1Tkin!S012v

Q~v!

Q~2v!
~J222I 1Tkin!S2J , ~9.15!

where the geometrical factorsS0 , S1 , andS2 are given in Appendix D.
In the case of a homogeneous rectangular prism of dimensions 2a32b32c, the factorsS0 ,

S1 , andS2 read~see Appendix D! as

S1[
86.5

m4

abc

~a21b2!~b21c2!~a42c4! Fa811.7a4b41b8

a42b4 1
a811.7a4c41c8

a42c4 G , ~9.16!

S2[
21

m4

abc

~b21c2!2~a42c4!2~a42b4!2

3@a8b812.8a8b4c424.8a4b8c41a8c824.8a4b4c814.8b8c8#, ~9.17!

and

S05
32.4

m4 abc
~a811.67a4c41c8!~b22c2!

~a42b4!~a42c4!2~b21c2!
. ~9.18!
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As explained in the end of the preceding section, multipliers like (I 32I 1) and (I 22I 1) in the
denominators of the expressions forS0 , S1 , S2 presented in Appendix D, as well as multiplie
(a42c4)2 and (a42b4)2 in the denominators of~9.16!, ~9.17!, and~9.18!, are harmless.

Similarly to poleC, in ~9.15! we have two contributions: the one withS0 andS1 originates
from the dissipation of oscillations at frequencyv, while the one withS2 comes from 2v. Often
it is the second mode that dominates the dissipation. For the case of an oblate body (I 3.I 1

5I 2) this fact was proven in Ref. 24. In the case of an almost prolate rotator, the importance
second mode can be easily understood simply from looking at Fig. 1. We see that the traje
described by the vectorV remain more or less circular up to a close vicinity of the separatrix,
that the trigonometric approximation of the Jacobi functions is valid through a fairly large re
In this region, therefore, our formalism does work. Let us estimate the input of the second
at pointsD andF in Fig. 1. PointD depicts the situation whenV350 andV2 /V15 1

2, while point
F corresponds toV2 /V15 1

7. Following Blacket al. 199925 we have prepared the picture so th
it corresponds to an example from real life, asteroid~433! Eros. To that end we assumedI 2

53I 1 ,I 353.05I 1 , which is the same asa52.19c, b51.05c. A simple calculation using~9.16!–
~9.17! and~2.5!–~2.6! shows that at pointD the second-mode term in~9.15! is less than one-tenth
of the principal-mode term withS1 ~S0 being negligibly small!:

2S2

S1
S J222I 1Tkin

2I 3Tkin2J2D
D

50.08. ~9.19!

At point F, though, the second-mode contribution slightly dominates:

2S2

S1
S J222I 1Tkin

2I 3Tkin2J2D
F

51.02, ~9.20!

though in reality the nonlinear input atF is higher; first, because of the less-than-unity multipl
accompanyingvS1 in ~9.15! and, second, because of the higher-than-second harmonics.
perhaps pointless to approach the separatrix closer thanF, because the higher-frequency term
omitted in~8.1!–~8.3! will become relevant. Anyway, their relevance will only add to the nonl
earity.

Equation~9.15!, along with~2.16!, and the equation

J2^sin2 u&~near A!5
I 1

I 32I 1
~2I 3Tkin2J2!1

1

2

I 3

I 32I 1
~J222I 1Tkin!1O~k4! ~9.21!

that follows from~5.2! @see also formula~A14! in Appendix A#, constitute a self-consistent syste
of equations describing relaxation in the vicinity of poleA. By means of the latter equation, on
may expressTkin through^sin2 u& and plug the result into~9.15!. This would yield a differential
master equation for̂sin2 u&:

d^sin2 u&
dt

52
4r2J2

mQ~v!
~ I 32I 1!~12^sin2 u&!H vS1F2^sin2 u&212

1

2

I 32I 2

I 22I 1

I 1

I 3
~12^sin2 u&!G

2vS0

2I 1

I 3
~12^sin2 u&!12vS2

Q~2v!

Q~v!

2I 1

I 3
~12^sin2 u&!J , ~9.22!

where, according to~2.16! and ~9.21!,

v5
uJu
I 1
A~ I 32I 1!~ I 32I 2!

I 2I 3
A2^sin2 u&21. ~9.23!
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For sin2 u50, i.e., forV parallel to axis~1!, the relaxation rated^sin2 u&/dt vanishes. This mean
that vectorV will be leaving the unstable-equilibrium point~pole A in Fig. 1! infinitesimally
slowly.

When (I 32I 1)→0, the expressions~D18!–~D20! for S0,1,2 diverge as (I 32I 1)22. Therefore
the right-hand side of~9.22! will diverge as (I 32I 1)21, instead of approaching zero as one mig
expect on physical grounds. The reason for this would-be divergence is that our analy
applicable, as explained in Sec. II, only in the adiabatic approximation. Therefore~9.22!, as well
as ~8.29!, works as long as inequality~2.7! holds.

Similarly to the master equation~8.29!, the master equation~9.22! becomes a self-consisten
differential equation for̂ sin2 u& only after~9.23! is substituted into it. Similarly to~8.29!, here we
have deliberately abstended from plugging~9.23! into ~9.22!, because without this substitutio
~9.22! is of more practical use.@See the explanation at the end of Sec. VIII, between Eqs.~8.30!
and ~8.31!.#

X. CONCLUSIONS AND PRACTICAL APPLICATIONS

Formulas~9.22!, for pole A, and ~8.29!, for pole C, constitute the main result of this pape
These are differential equations for the relaxation rate of a precessing homogeneous b
arbitrary moments of inertia. The relaxation rate is defined as the rate at which the major-
axis approaches the angular momentum about which it is precessing.

Formula ~8.29! describes the relaxation rate of a body spinning approximately abou
maximal-inertia axis~pole C!, while ~9.22! describes the relaxation of a body rotating almo
about its minimal-inertia axis~pole A!.

In these formulas the contributions of the modesv and 2v are manifestly separated~v being
the precession rate!. Often the dissipation at 2v gives considerable input@as shown in the example
~9.20! at the end of Sec. IX#, or even dominates, as in the case of an oblate body, w
I 15I 2—see Ref. 24.

Our formulas~9.22! and ~8.29! were derived in the assumption of parameterk being small.
When does this assumption work? To get a simple answer to this question, let us look again
1. The approximation is valid on the part of the ellipsoid surface that is covered with al
circular trajectories; a divergence of the trajectory shape from a circle signals inacceptability
approximation~8.1!–~8.3!. We see from the picture that, for example, for an almost prolate b
our approximation remains valid, not only in the vicinity of poleA, but almost all the way up to
the separatrix. However, after the separatrix is crossed and the body begins librations, o
proximation will regain its validity, only in the nearest vicinity of poleC. Our formula~8.29!
coincides, in the limit of oblate symmetry, with the exact formula~8.35! derived for oblate bodies
in Ref. 24.

The developed formalism has two immediate applications we know of. First of all, it is
study of wobbling asteroids~Harris 1998!.36 Wobbling may provide valuable information on th
composition and structure of asteroids and on their recent history of external impacts. Astron
observing precessing asteroids often ask the following: ‘‘Why do we have so few excited ro
in the Solar System?’’37 One of the reasons for this deficiency is that, due to the dissipation in
second mode24 and higher modes, the effectiveness of the inelastic relaxation turns to be
higher that thought previously.

Another obvious application of our formalism is the problem of cosmic-dust alignment. W
they talk in astrophysics about the cosmic-dust alignment, they imply not the alignment ofV or
the major-inerta axis along the angular momentumJ, but the alignment of the major-inerta ax
relative to the interstellar magnetic field. This is a well-known phenomenon that manifests
through the observable polarization of starlight. There exists a whole bunch of physical m
nisms that make the cosmic dust align with respect to the magnetic field. Different types of
mechanisms dominate under different physical conditions, but all of them are based on th
that cosmic-dust granules are swiftly precessing about the magnetic field lines. This preces
called into being by the interaction of the magnetic moment of the granule with the field.
magnetic moment is created by the Barnett effect and is thus parallel to the angular velocV.
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Some of the known mechanisms of cosmic-dust alignment are very sensitive to the co
betweenV and J, and this is when the inelastic relaxation comes into play. Until recently,
Barnett relaxation was believed to be the leading relaxation mechanism. This viewpoin
expressed in the longstanding article by Purcell.35 Remarkably, Purcell underestimated the effe
tiveness of the inelastic relaxation in the same manner as Burns and Safronov23 did it for asteroids:
he missed the input provided by the second mode. Besides, he failed to satisfy the bo
conditions on the stresses. As a result, he underevaluated the effectiveness of the inelast
pation by several orders~see Lazarian and Efroimsky 200024!. A study of the role of the inelastic
dissipation in various mechanisms of cosmic-dust alignment is now on the way, and some
have already been published by Lazarian and Draine 1999.15

There may be a possibility that the developed formalism finds its third application in
research on spacecraft-rotation damping.

XI. THE GENERIC CASE

In the article thus far we have studied the dissipation in the vicinity of poles, i.e., the
when the body rotates about an axis that is close either to that of minimal or maximal inerti
our formulas were derived up toO(k4), the parameterk being small near polesA andC ~Fig. 1!.

In the general case,k is not small. For example, near the separatrix~see Fig. 1! it approaches
unity. We have solved the general case in terms of the elliptic integrals. In particular, i
vicinity of the separatrix the solution may be expanded over the small parameterk85A12k2.
These results will be published elsewhere.
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APPENDIX A: DERIVATION OF EQS. „5.2…–„5.4…

In this appendix we shall compute the derivatived^sin2 u&/dTkin . Angle u is the one between
the angular momentum vectorJ and the plane determined by the body’s minor- and middle-ine
axes, 1 and 2. In the case of an oblate body, this angle remains virtually unchanged thr
period of precession, and changes slowly through many cycles.24 In the general case of a triaxia
body, this angle is not preserved through a precession period, through after one period of w
it returns~almost! to its initial value. The word ‘‘almost’’ is in order here because in the course
many cycles angleu slowly decreases and thus deviates from the exact periodicity.

In the body frame (e1 ,e2 ,e3) associated with the principal axes~1, 2, 3!, the angular momen-
tum components look likeJi5V i I i . Hence, according to~2.8!,

uJusinu5AI 1
2V1

21I 2
2V2

25AI 1
2R1~ I 2

22I 1
2S!V2

2. ~A1!

This shows that the angleu evolves with the same period asV2
25b2 sn2@v(t2t0);k2#. We are

reminded that the periods of sn@v(t2t0);k2# and cn@v(t2t0);k2# are equal to

t54K~k2![4E
0

p/2

~12k2 sin2 u!21/2du'2pS 11
k2

4 D1O~k4!, ~A2!

which is twice the period of dn@v(t2t0);k2#. @See formula~16.1.1! in Abramovitz and Stegun
1964.27# The k2 approximation on the right-hand side of~A2! follows from the expansion~A7!
below. The periods of the squares of sn and cn are equal to
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t

2
52K~k2![2E

0

p/2

~12k2 sin2 u!1/2du, ~A3!

which is easy to understand from Fig. 16.1 in Abramovitz and Stegun 1964.27

Squaring and averaging of~A1! yields

J2^sin2 u&5I 1
2R1~ I 2

22I 1
2S!^V2

2&5
I 1

I 32I 1
~2I 3Tkin2J2!1I 2I 3

I 22I 1

I 32I 1
b2^sn2 u&, ~A4!

whereu[v(t2t0). The trajectories described by the angular velocity vectorV on the surface of
the constant-J ellipsoid ~Fig. 1! are cyclic. The averaging may be performed over one such cy
i.e., over the period 4K given by ~A2!. We shall, though, average over one-quarter of the to
period, i.e., overK. This will be sufficient since in the above expressions~A1! and~A4! we have
only squared components ofV. Thus,

^sn2 u&5
Sn~K !

K
, ~A5!

where the function Sn is, by definition@formula~16.25.1! in Abramovitz and Stegun27#, squared sn
integrated from zero toK. According to formula~16.26.1! in Abramovitz and Stegun 1964,27

Sn(K)5„2E(K)1K…/k2 whereE„K(k2)…[*0
p/2(12k2 sin2 u)1/2du. Hence,

^sn2 u&5
1

k2 H 12
E~K !

K J . ~A6!

Series expansions@formulas~17.3.11! and ~17.3.12! in Abramovitz and Stegun27#,

K~k2!5
p

2 F11S 1

2D 2

k21S 1•3

2•4D 2

k41S 1•3•5

2•4•6D 2

k61¯G ~A7!

and

E~k2!5
p

2 F12S 1

2D 2

k22S 1•3

2•4D 2 k4

3
2S 1•3•5

2•4•6D 2 k6

5
2¯ G , ~A8!

entail

^sin2 u&5
1

2
1

1

16
k21

1

32
k41O~k6!, ~A9!

so that

J2^sin2 u&5I 1
2R1~ I 2

22I 1
2S!^V2

2&

5
I 1

I 32I 1
~2I 3Tkin2J2!1I 2I 3

I 22I 1

I 32I 1
b2

1

2 S 11
k2

8
1

k4

16
1O~k6! D . ~A10!

It follows from ~A10! and ~2.14! that in the vicinity of poleC,

J2^sin2 u&~near C!5
1

2

I 1I 31I 2I 322I 1I 2

~ I 32I 1!~ I 32I 2!
~2I 3Tkin2J2!1

1

16

I 3~ I 22I 1!2

~ I 32I 1!~ I 32I 2!2

~2I 3Tkin2J2!2

J222I 1Tkin

1
1

32

I 3~ I 22I 1!3

~ I 32I 1!~ I 32I 2!3

~2I 3Tkin2J2!3

~J222I 1Tkin!2 1O~k8!, ~A11!
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wherefrom

J2S d^sin2 u&
dTkin

D
~near C!

5
I 3~ I 1I 31I 2I 322I 1I 2!

~ I 32I 1!~ I 32I 2!
1

1

4

2I 3Tkin2J2

J222I 1Tkin
S I 22I 1

I 32I 2
D 2 I 3

2

I 32I 1
1O~k4!.

~A12!

Together, the former and the latter yield

J2S d^sin2 u&
dTkin

D
~near C!

5
I 3~ I 1I 31I 2I 322I 1I 2!

~ I 32I 1!~ I 32I 2!

1
1

2

~ I 22I 1!2

~ I 32I 2!~ I 32I 1!

I 3
2^sin2 u&

I 2I 32I 2I 122~ I 32I 2!I 1^sin2 u&
1O~k4!.

~A13!

Now we shall derive similar formulas for the vicinity of pole A. Plugging~2.16! into ~A10!, we
get

J2^sin2 u&~near A!5
I 1

I 32I 1
~2I 3Tkin2J2!1

1

2

I 3

I 32I 1
~J222I 1Tkin!

1
1

16

~J222I 1Tkin!2

~2I 3Tkin2J2!

~ I 32I 2!I 3

~ I 32I 1!~ I 22I 1!

1
1

32

I 3~ I 32I 2!2

~ I 32I 1!~ I 22I 1!2

~J222I 1Tkin!3

~2I 3Tkin2J2!2 1O~k8!. ~A14!

This enables us to write down the derivative we need:

J2S d^sin2 u&
dTkin

D
~near A!

5
I 1I 3

I 32I 1
2

1

4

I 1I 3~ I 32I 2!

~ I 32I 1!~ I 22I 1!

J222I 1Tkin

2I 3Tkin2J2 1O~k4!. ~A15!

In the limit of oblate (I 3.I 25I 1) or prolate (I 35I 2.I 1) symmetry, expressions~A13! and~A15!
simplify a lot:

J2S d^sin2 u&
dTkin

D
~near C!

oblate

5
2I 3I 1

I 32I 1
, J2S d^sin2 u&

dTkin
D

~near A!

prolate

5
I 1I 3

I 32I 1
. ~A16!

In the general case of a triaxial rotator, it ensues from~A14! and ~A15! that

J2S d^sin2 u&
dTkin

D
~near A!

5
I 1I 3

I 32I 1
2

1

2

I 1
2

I 22I 1

I 32I 2

I 32I 1

12^sin2 u&
2^sin2 u&21

1O~k4!. ~A17!

APPENDIX B: SEVERAL WORDS ON THE QUALITY FACTOR

In some situations it is possible to calculate the quality factorQ(v) exactly. These are
situations when one particular mechanism of attenuation dominates the others. For examQ
may be derived analytically for sound dissipation in a viscous liquid. It is said in Ref. 29 tha
calculation of the quality factor in a solid body would basically follow the same steps as i
case of a viscous liquid, in faith whereof the authors even present some laborious thermod
cal calculations. Unfortunately, in many cases this is not true, and the viscosity of solids co
utes almost nothing to the attenuation~unless the body is warmed up to a plastic state!. A much
larger contribution to the attenuation is brought, in many materials, by phonon scatterin
defects, and by a whole variety of related quantum effects.30 In rocks, the attenuation is dete
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mined predominantly by the displacement of defects. The numerous phenomena participa
the attenuation are subtle and bear a complicated dependence upon the temperature and fr
Also, mind a dramatic dependence ofQ upon the humidity, as well as upon the presence of so
other saturants. In many minerals, including, for example, silicate rocks, several monolay
water may decreaseQ by a factor of about 55.38 It is for this reason that the moonquakes cause
echo that keeps propagating and reflecting for long, almost without any attenuation. The
would be dumped much faster, should the lunar lithosphere contain even a tiny fraction of
Presumably, the moisture affects the intergrain interactions in minerals. Another factor influe
Q is the confining pressure, but the pressure dependence is very weak within a broad~several
orders! interval of pressures, and may be neglected.

Returning to the frequency dependence, we would say that, fortunately, the overall freq
dependence ofQ is normally very smooth and slow, like, for example, in the case of geolog
materials. Here follows the empirical temperature and frequency dependence of the quality
well supported by a vast experimental evidence.39

Q;@v exp~A* /RT!#a, ~B1!

whereA* may vary from 150–200 kJ/mol~for dunite and polycristalline forsterite! up to 450
kJ/mol ~for olivine!. This interconnection between the frequency and temperature depend
tells us that whenever we lack a pronounced frequency dependence, the temperature dep
is absent too. At room temperature and pressure, at low frequencies (1023– 1 Hz), the shearQ
factor is frequency independent for granites, and almost frequency independent~except some
specific peak of attenuation, that makesQ increase twice! for basalts~Brennan40!. It means that
within this range of frequencies,a is close to zero, andQ may be assumed also temperatu
independent. For higher frequencies~10 Hz–1 MHz!, the powera is remarkably frequency in-
sensitive~and equals approximately 0.25 for most silicate rocks!. For a recent discussion an
references on theQ factor of asteroids see Efroimsky and Lazarian.24 As for theQ factor of the
cometary nuclei, its value is unknown. Presumably, it should be close to the values of theQ factor
that are typical for snow and firn: between 0.5 and 5.

APPENDIX C: AVERAGED OVER THE PRECESSION PERIOD SQUARES OF THE
COMPONENTS OF THE STRESS TENSOR, IN THE VICINITY OF POLE C

Formulas~8.7!–~8.17! trivially yield

^sxx
2 &5

r2

4
~x22a2!2~12Q!2b4J1 ~C1!

5
r2

32
~2I 3Tkin2J2!2H I 3~ I 12I 3!2I 2~ I 12I 2!

I 2I 3~ I 12I 3!~ I 32I 2! J 2

~x22a2!2$11O~k4!%, ~C2!

^syy
2 &5

r2

4
~y22b2!2~S1Q!2b4J1 ~C3!

5
r2

32
~2I 3Tkin2J2!2H I 3~ I 32I 2!2I 1~ I 12I 2!

I 1I 3~ I 32I 1!~ I 32I 2! J 2

~y22b2!2$11O~k4!%, ~C4!

^szz
2 &5

r2

4
~z22c2!2~12S!2b4J1 ~C5!

5
r2

32
~2I 3Tkin2J2!2H I 1~ I 32I 1!2I 2~ I 32I 2!

I 1I 2~ I 32I 1!~ I 32I 2! J 2

~z22c2!2$11O~k4!%, ~C6!
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^sxy
2 &5

r2

4
$~bg1avk2!~y22b2!1~bg2avk2!~x22a2!%2J2 ~C7!

5
r2

32

~2I 3Tkin2J2!2

I 1I 2I 3
2~ I 32I 1!~ I 32I 2!

$~ I 31I 12I 2!~x22a2!

1~ I 31I 22I 1!~y22b2!%2$11O~k4!%, ~C8!

^sxz
2 &5

r2

4
$~bv1ag!~z22c2!1~2bv1ag!~x22a2!%2J3 ~C9!

5H r2

8

~2I 3Tkin2J2!~J222I 1Tkin!

I 1I 2
2I 3~ I 32I 1!2 $~z22c2!~ I 31I 22I 1!1~x22a2!

3~ I 11I 22I 3!%22
3

8

r2

8

~2I 3Tkin2J2!2~ I 22I 1!

I 1I 2
2I 3~ I 32I 1!2~ I 32I 2!

$~z22c2!

3~ I 31I 22I 1!1~x22a2!~ I 11I 22I 3!%2J $~11O~k4!%, ~C10!

^syz
2 &5

r2

4
$~ab1vg!~z22c2!1~ab2vg!~y22b2!%2J4 ~C11!

5H r2

8

~2I 3Tkin2J2!~J222I 1Tkin!

I 1
2I 2I 3~ I 32I 1!~ I 32I 2!

$~ I 11I 32I 2!~z22c2!1~ I 12I 31I 2!

3~y22b2!%22
5

8

r2

8

~2I 3Tkin2J2!2~ I 22I 1!

I 1
2I 2I 3~ I 32I 1!~ I 32I 2!2 $~ I 11I 32I 2!~z22c2!

1~ I 12I 31I 2!~y22b2!%2J $11O~k4!%, ~C12!

^~Tr s!2&5
r2

4
b4$~x22a2!~Q21!1~y22b2!~Q1S!1~z22c2!~12S!%2J1 ~C13!

5
r2

32

~2I 3Tkin2J2!2

I 1
2I 2

2I 3
2~ I 32I 2!2~ I 32I 1!2 $@ I 1I 2~ I 12I 2!2I 1I 3~ I 12I 3!#~x22a2!

1@ I 2I 3~ I 22I 3!2I 2I 1~ I 22I 1!#~y22b2!1@ I 3I 1~ I 32I 1!2I 3I 2~ I 32I 2!#

3~z22c2!%2$11O~k4!%. ~C14!

In the above formulas, factorsJ1 , J2 , J3 , andJ4 stand for averaged powers of the ellipt
functions:

J1[^~sn2~u,k2!2^sn2~u,k2!&!2&5^sn4~u,k2!&2^sn2~u,k2!&25 1
81O~k4!, ~C15!

J2[^„sn~u,k2!cn~u,k2!2^sn~u,k2!cn~u,k2!&…2&

5^sn2~u,k2!cn2~u,k2!&2^sn~u,k2!cn~u,k2!&25 1
81O~k4!, ~C16!

J3[^~cn~u,k2!dn~u,k2!2^cn~u,k2!dn~u,k2!&!2&

5^cn2~u,k2!dn2~u,k2!&2^cn~u,k2!dn~u,k2!&25 1
2 ~12 3

8 k2!1O~k4!, ~C17!
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J4[^~sn~u,k2!dn~u,k2!2^sn~u,k2!dn~u,k2!&!2&

5^sn2~u,k2!dn2~u,k2!&2^sn~u,k2!dn~u,k2!&25 1
2 ~12 5

8 k2!1O~k4!, ~C18!

where the averaging implies

^¯&[
1

t E0

t

¯du,

t being the period expressed by~A2!. The approximations were obtained by the trick~8.18!–
~8.20! explained in Sec. VIII.~Expansions ofJ i over kn cannot be obtained by plugging~8.1!–
~8.3! into ~C15!–~C18! because this would produce secular terms.!

Plugging of ~C2!, ~C4!, ~C6!, ~C8!, ~C10!, ~C12!, and ~C14! into ~7.2! will lead us to the
following expression for dissipation per unit volume:

d^W&
dV

5
d^W~2v!&

dV
1

d^W~v!&
dV

, ~C19!

where the first term stands for the dissipation associated with oscillations at the second m

d^W~2v!&
dV

5
1

4m H 2
1

11n21 ^Tr s!21^sxx
2 &1^syy

2 &1^szz
2 &12^sxy

2 &J
5

1

4m

r2

32
~2I 3Tkin2J2!2

1

I 1
2I 2

2I 3
2~ I 32I 2!2~ I 32I 1!2 H 2

1

11n21 @~x22a2!„I 1I 2~ I 12I 2!

2I 1I 3~ I 12I 3!…1~y22b2!„I 2I 3~ I 22I 3!2I 2I 1~ I 22I 1!…1~z22c2!„I 3I 1~ I 32I 1!

2I 3I 2~ I 32I 2!…#21~x22a2!2@ I 1I 2~ I 12I 2!2I 1I 3~ I 12I 3!#21~y22b2!2

3@ I 2I 3~ I 22I 3!2I 2I 1~ I 22I 1!#21~z22c2!2@ I 3I 1~ I 32I 1!2I 3I 2~ I 32I 2!#2

1I 1I 2~ I 32I 1!~ I 32I 2!@~ I 31I 12I 2!~x22a2!1~ I 31I 22I 1!~y22b2!#2J 1O~k6!,

~C20!

while the second term stands for the dissipation at the frequency of precession:

d^W~v!&
dV

5
1

4m
$2~^sxz

2 &1^syz
2 &!%5

1

2m

r2

8

1

I 1I 2I 3~ I 32I 1!
~2I 3Tkin2J2!~J222I 1Tkin!

3H 1

I 2~ I 32I 1!
@~ I 32I 1!~z22x21a22c2!1I 2~z21x22a22c2!#21

1

I 1~ I 32I 2!
@~ I 3

2I 2!~z22y21b22c2!1I 1~z21y22b22c2!#2J 2
1

2m

r2

8

1

I 1I 2I 3~ I 32I 1!
~2I 3Tkin

2J2!2
I 22I 1

I 32I 2
H 1

I 2~ I 32I 1!

3

8
@~ I 32I 1!~z22x21a22c2!1I 2~z21x22a22c2!#2

1
1

I 1~ I 32I 2!

5

8
@~ I 32I 2!~z22y21b22c2!1I 1~z21y22b22c2!#2J 1O~k6!.

~C21!
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As expected, we have obtained the result,~C20!–~C22!, in the spectral form~6.8!. After integra-
tion @like ~6.9!# this result must be plugged into~5.4!, which will lead to~8.24!. It follows from
~C20! and ~C21! that the geometrical factors emerging in~8.24! will read as

H15
1

8

1

I 1I 2I 3~ I 32I 1!
E

2a

a

dxE
2b

b

dyE
2c

c

dzH 1

I 2~ I 32I 1!
@~ I 32I 1!~z22x21a22c2!1I 2~z21x2

2a22c2!#21
1

I 1~ I 32I 2!
@~ I 32I 2!~z22y21b22c2!1I 1~z21y22b22c2!#2J , ~C22!

H25
1
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1

I 1
2I 2

2I 3
2~ I 32I 1!2~ I 32I 2!2 E

2a

a

dxE
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b
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2c

c

dzH 2
1

11n21 @~x22a2!„I 1I 2~ I 12I 2!

2I 1I 3~ I 12I 3!…1~y22b2!„I 2I 3~ I 22I 3!2I 2I 1~ I 22I 1!…1~z22c2!„I 3I 1~ I 32I 1!

2I 3I 2~ I 32I 2!…#21~x22a2!2@ I 1I 2~ I 12I 2!2I 1I 3~ I 12I 3!#21~y22b2!2@ I 2I 3~ I 22I 3!

2I 2I 1~ I 22I 1!#21~z22c2!2@ I 3I 1~ I 32I 1!2I 3I 2~ I 32I 2!#21I 1I 2~ I 32I 1!~ I 32I 2!

3@~ I 31I 12I 2!~x22a2!1~ I 31I 22I 1!~y22b2!#2J ~C23!

and

H05
1

64

I 1I 31I 2I 322I 1I 2

~ I 32I 1!2~ I 32I 2!2

I 22I 1

I 1I 2I 3
E

2a

a

dxE
2b

b

dyE
2c

c

dzH 3

I 2~ I 32I 1!
@~z22c2!~ I 31I 22I 1!

1~x22a2!~ I 11I 22I 3!#21
5

I 1~ I 32I 2!
@~z22c2!~ I 11I 32I 2!1~y22b2!~ I 11I 22I 3!#2J .

~C24!

For a homogeneous prism of dimensions 2a32b32c:

H15
317

m4

abc5

~b21c2!~a42c4!~a21b2! S b4

b42c4 1
a4

a42c4D , ~C25!

H25
100

m4

a9b9c2a9b5c52a5b9c510.21a9bc910.19a5b5c910.21ab9c9

~a21b2!2~a42c4!2~b42c4!2 , ~C26!

and

H05
237

m4 abc5~a22b2!
~2.67a4b42a4c421.67b4c4!~a41b422c4!

~a21b2!~a22c2!~b22c2!~a42c4!2~b42c4!2 . ~C27!

CalculatingH1 andH2 , we assumed that the quantity 1/(11n21) emerging in~7.2! and~8.22! is
1
5 ~as it normally is for solid materials!. We also used the standard formulas for the moment
inertia:

I 15
m

3
~b21c2!, etc., ~C28!

m being the mass of the homogeneous body.
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APPENDIX D: AVERAGED OVER THE PRECESSION PERIOD SQUARES OF THE
COMPONENTS OF THE STRESS TENSOR, IN THE VICINITY OF POLE A

By squaring each of the expressions~9.4!–~9.14!, and averaging the result, one will easi
arrive at the following formulas:

^sxx
2 &5

r2

4
~12Q!2b4~x22a2!2J1 ~D1!

5
r2

32

~J222I 1Tkin!2

I 2
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3~y22b2!2$11O~k4!%, ~D4!
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~12S!2b4~z22c2!2J1 ~D5!

5
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2I 2
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4
$~bv1ag!~z22c2!1~2bv1ag!~x22a2!%2J3 ~D9!

5H r2

8

~2I 3Tkin2J2!~J222I 1Tkin!

I 1I 2
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3

8
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8
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3$~ I 32I 1!~x22z21c22a2!1I 2~z21x22a22c2!%2J
3$11O~k4!%, ~D10!
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^syz
2 &5

r2

4
$~ab1vgk2!~z22c2!1~ab2vgk2!~y22b2!%2J4 ~D11!

5
r2

32

~J222I 1Tkin!2

I 1
2I 2I 3~ I 32I 1!~ I 22I 1!

$~ I 11I 32I 2!~z22c2!1~ I 12I 31I 2!~y22b2!%2$11O~k2!%,
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^~Tr s!2&5
r2

4
b4$~x22a2!~Q21!1~y22b2!~Q1S!1~z22c2!~12S!%2J1 ~D13!
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where J1,2,3,4 are given by~C15!–~C18!. Just as in the preceding case of poleC, the above
expressions~D2!, ~D4!, ~D6!, ~D8!, ~D10!, ~D12!, ~D13! form poleA are to be plugged in~7.2!. It
will entail

d^W&
dV

5
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dV
1
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, ~D15!
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Integration of the two above expressions over the volume of the body gives expressions
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two components of the time-dependent elastic energy deposited in the body:W(v) and W(2v),
plugging whereof into~6.6! will yield ~9.15!. Expressions for the geometrical factors emerging
~9.15! are
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The factorS0 is equal to
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and becomes negligibly small in the case of the body approaching the prolate symmetry (I 32I 2

→0).
For a homogeneous prism of sizes 2a32b32c, the factors much simplify:
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Dual Lagrangian field theories
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We investigate how, under suitable regularity conditions, first-order Lagrangian
field theories can be recasted in terms of a second-order Lagrangian, called thedual
Lagrangian of the theory, depending on canonical conjugate momenta together
with their derivatives. The necessary and sufficient conditions which allow such a
~local! reformulation, obtained through a suitable generalization of the Legendre
transformation, are analyzed. The global geometric framework is also investigated
in detail. As an example, we apply the dual Lagrangian formulation to the Hilbert
Lagrangian and to Euclidean self-dual gravity. ©2000 American Institute of
Physics.@S0022-2488~00!03204-7#

I. INTRODUCTION

In this paper we analyze, from a mathematical viewpoint, the possibility of reformulati
given physical model, the dynamics of which is governed through a variational principle
given first-order Lagrangian, in terms of a new set of configuration variables defined by a
endre transformation mechanism and defining a second-order ‘‘dual variational principle.’’
lems of this kind are not new in the physical literature. In classical relativistic field theories a
effort was addressed, for example, to the investigations on gravitational theories alterna
Einstein’s General Relativity, in order to reformulate it as a ‘‘gaugelike theory.’’ Two exam
may be cited which proceed along different directions.
~A! The variational formulation of General Relativity due to Hilbert1 and Einstein2 considers a

metric tensor on a four-dimensional manifold as gravitational potential. In his search fo
unified theory, Einstein invented purely-affine theories,3 where the gravitational potential i
a symmetric connection, and metric-affine theories,4 where one has both a metric and
connection as gravitational potentials. Following Einstein,3 purely-affine theories may be
described by a first-order Lagrangian depending on the symmetric connection whi
metric is recovered as a part of the conjugate momentum. The equivalence between
of purely-affine and a class of metric-affine theories was proved by Kijowski.5 The equiva-
lence between the same class of metric-affine theories and Hilbert–Einstein theor
proven in Refs. 6 and 7. As a consequence purely-affine theories may be considered
equivalent affine formulation of General Relativity. Further generalizations to affine the
depending on connections with torsion were studied in detail by several people and
tually led to the geometric unification of gravitation and electromagnetism.8

~B! The metric-free Lagrangian reformulation, by Capovilla, Dell, and Jacobson~CDJ! ~see
Refs. 9–12! of the self-dual description of gravity due to Ashtekar.13 A new action was
proposed in which the only gravitational variables are a connection of the gauge group~3,
C! ~SO~3, R! for the case of Euclidean Gravity! and a scalar density Lagrangian multiplie
The CDJ formulation had the advantage of leading to the discovery of the general so
to all the diffeomorphism constraints~see also Refs. 14, 15, and references quoted ther!.

a!Electronic mail: ferraris@dm.unito.it
b!Electronic mail: francaviglia@dm.unito.it
c!Electronic mail: raiteri@dm.unito.it
18890022-2488/2000/41(4)/1889/27/$17.00 © 2000 American Institute of Physics
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In both these approaches the space–time metric does not appear in the action in any fo
configuration variables being replaced by suitable connections. Nevertheless, the metric
built following given prescriptions from canonical conjugate momenta.

Close to these attempts to express theories of gravitation as gaugelike theories some w
been done in the opposite direction in order to describe gauge theories in terms of gauge in
variables. In some cases the result is a kind ofGeneral Relativityliketheory or, at least, a metric
theory. Pioneering work dates back to the field-strength formulation of Yang–Mills non-Ab
theories developed by Halpern.16–18 Subsequently a suitable SU~2! three-dimensional reformula
tion of Yang–Mills theory as a metric theory was analyzed by Lunev.19 More general results on
this subject may be found in Ref. 20. Interesting works are also devoted to SU~2! four-dimensional
gauge theories. Also in this situation a metric over space–time arises in a natural way
attempting to give a gauge-invariant description to the theory~see Refs. 21 and 22!. This metric,
first discovered by Halpern16 and rediscovered in a different context by Urbantke,23 turns out to be
deeply related to the metric formula in the CDJ connection formulation.

All the above efforts addressed to the understanding of the interplay between gaug
gravitational theories fall within the mathematical machinery we are going to develop in
paper; they are in fact particular applications of a general transformation rule suitable to dea
any ~sufficiently regular! Lagrangian field theory.

The main framework which is at the basis of the present work is what we call ‘‘genera
Legendre transformation,’’ which has been developed with the aim of applications to geom
field theories. Roughly speaking, momenta conjugated to configuration variables are defi
derivatives of the Lagrangian density with respect to all the partial derivatives of the fi
entering the description of dynamics, and not only with respect to time derivatives. This geo
cal Hamiltonian approach to field theories is also known as the multisymplectic~or polysymplec-
tic! generalization of the usual Hamiltonian formalism for analytical mechanics to fibered m
folds over a base manifold of dimension larger than one.24,25,26It treats all the coordinates on a
equal footing and thus differs from the standard (311)-splitting of the conventional Hamiltonian
machinery. The covariant approach in the multisymplectic description and the analysis
geometric structure of the bundle in which the Hamiltonian formulation takes place, wit
possible splittings, allow us to find a ‘‘dual’’ variational principle which is formulated in terms
canonical momenta together with their derivatives. In this way an equivalent representation
theory can be obtained.

In order to help the reader in understanding the ideas presented in this paper we believe
be useful to shortly summarize how the same ideas work in classical mechanics. This exam
a straightforward generalization of the mechanical examples presented in Refs. 27, 6, 7~and, apart
from minor details, it is of course the kind of theory which has been applied to construct
examples!.

Let us then consider a dynamical system, the evolution of which is governed by a Hamilt
H:R3T* Q→R, whereQ is the configuration space. Denoting by (qi ,pi) a canonical coordinate
system inT* Q, we have the well-known Hamilton equations,

q̇i5
]H~qj ,pj ;t !

]pi
, ~1!

ṗi52
]H~qj ,pj ;t !

]qi . ~2!

It is well known that the same set of evolution equations may be obtained, as Lagrange equ
from a first order LagrangianLH on T* Q, which we shall call theHelmholtz Lagrangian LH :R
3T(T* Q)→R defined by

LH~qi ,pi ,q̇i ;t !8pi q̇
i2H~qj ,pj ;t !. ~3!
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If the regularity condition detu]2H/]pi]pjuÞ0 holds globally, we can explicitly solve Eq.~1! with
respect to the variablesp, obtaining the relations,

pi5 p̄i~qj ,q̇ j ;t !. ~4!

Inserting these functions into~3! we get the usual Lagrangian description of the theory through
first-order LagrangianL:R3TQ→R defined by

L~qi ,q̇i ;t !8LH~qi ,p̄i~qj ,q̇ j ;t !,q̇i ;t !. ~5!

Now the evolution of the system is governed by Lagrange equationsdL/dq50 which are equiva-
lent to the set of Eq.~2! once the substitution~4! is performed. Moreover the first set of Hamilto
equations~1! is the Legendre map of the LagrangianL. But, if the further regularity condition
detu]2H/]qi]qjuÞ0 is fulfilled, the role of coordinatesqi and momentapi can be exchanged in th
previous procedure. We can locally solve Eq.~2! with respect to the variablesqi , expressingqi in
terms ofpi and ṗi ,

qi5q̄i~pj ,ṗ j ;t !. ~6!

Inserting this expression into~3! we obtain a new LagrangianL* , which is a function of momenta
pi and their derivatives up to second-order,

L* ~pi ,ṗi ,p̈i ;t !8pi

d

dt
@ q̄i~pj ,ṗ j ;t !#2H~ q̄i~pj ,ṗ j ;t !,pi ;t !. ~7!

We shall callL* the dual Lagrangianof the theory. Its Lagrange equations are mapped, thro
the dual Legendre map~6!, into the first set of Hamilton equations~1!. In this way we have
recognized that also this last set of equations has a variational nature and we have been
exhibit the appropriate Lagrangian.

The dual LagrangianL* has the apparent disadvantage of being a second-order one. In
of this fact, the way second-order derivatives of momentapi enterL* reveals that the order ofL*
may be lowered by subtracting a total time-derivative,

U~pi ,ṗi ;t !8L* 2
d

dt
@piq̄

i~pj ,ṗ j ;t !#52q̄i~pj ,ṗ j ;t ! ṗi2H~ q̄ j~pk ,ṗk ;t !,pj ;t !. ~8!

This dual Lagrangian formulation can be given a global meaning if the phase spaceR3T* Q splits
as a product (R3Q)3R(R3P).R3(Q3P) of two bundles over the real line. If this hypothes
is met we have thenL* :R3T2P→R and the dual Legendre map~6! establishes a morphism
fL* :R3TP→R3Q which is ‘‘dual’’ to the morphism~4!, i.e., fL :R3TQ→R3P. By means
of these two morphisms it is clear that we may exhibit the solution of one theory once we
the corresponding solution of the dual counterpart.

Extending these ideas to classical field theories we may describe a given physical
through three different but dynamically equivalent Lagrangian densities. In these alternativ
tings the roles of configuration variables and conjugate momenta are interplayed; equations
are merely the definition of momenta for a LagrangianL, i.e., the Legendre map associated w
L, on the dual side become the dynamical equations of the theory and vice versa. The equiv
among the different approaches is then established through what we call ageneralized Legendre
transformation.

To make the paper self-contained, Sec. II contains the notation we shall use in the rest
paper. In Sec. III we give a short review of what we call Legendre transformation and Hamilt
formulation for field theories with regular Lagrangians. A particular attention is devoted to
Poincare´–Cartan form since it plays a fundamental role in globalization procedures when we
with the geometric framework of field theories~see, e.g., Refs. 28–31 for the proof of the ex
tence of global Poincare´–Cartan forms for higher-order theories!. Once the Hamiltonian descrip
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tion of a theory has been developed, we are in position to extend to regular field theories th
just outlined in the context of classical mechanics. In this case the regularity conditions
allow to give a dual description are easily detected. Unfortunately~or probably it would be better
to say fortunately!, physical theories usually fail to be regular~because of general covarianc
gauge covariance or other invariance requirements!, so that in Sec. IV we are forced to build
Hamiltonian description suitable to deal with a well-defined kind of constrained systems; w
thence led to introduce a set of dynamical variables living on theprimary Hamiltonian constraint.
In this situation the inverse problem is more subtle to investigate. Nevertheless, we give a
condition which is necessary and sufficient to solve it and to exhibit the dual Lagrangian. W
investigate when it is possible to globalize the procedure.

Finally, after these ideas have been enlarged in Sec. V to ‘‘partial’’ transformations ab
deal with Lagrangian systems depending on two or more sets of dynamical variables, Sec
devoted to show how the formalism applies to the metric-free formulations of General Rela

We hope that, far from being just a mathematical curiosity, this paper may be helpful
alternative basis to better understand the analogies between different, and apparently un
theories~in particular the relations between metric and gauge theories!. We also believe that it
may serve as an operative scheme to study the solutions of a given physical model startin
known solutions of its dual counterpart.

II. NOTATION

We assume the reader is familiar with the standard concepts and the language of diffe
geometry on fibered manifolds, jet prolongation theory, and calculus of variations on fib
manifolds.

Let Y5(Y,M ,p) be a fibered manifold, where the basisM, of dimension dimM5m, is the
space of physical parameters~usually space–time! and the total spaceY is interpreted as the
configuration spaceof the theory; its local sections, the set of which will be denoted byG(Y),
represent classical fields. We also setn5dimY2dim M .

OverY we use only fibered charts (U,xl,yi), l51,...,m, i 51,...,n, whereU is an open subse
of Y projecting onto the domainW of a chart (W,xl) of M.

The r th order jet prolongation ofY will be denoted byJr
†Y‡5(JrY,M ,p r). The adapted

fibered chart onJr
†Y‡, induced by the chart (U,xl,yi) on Y will be (JrU,xl,ynI

i ), with nI a
multi-index of lengthunI u, with 0<unI u<r . As usual, the zeroth order jet prolongationJ0

†Y‡ will
be identified to the fibered manifoldY itself.

Denoting by F(Y) the ring of smooth real-valued functions overY, we define a
F(Y)-submoduleVp

0(p) of the moduleVp(Y) of p-forms overY according to the following
prescription:vPVp

0(p) iff i Jv50 for any vertical vectorfieldJ. The forms belonging toVp
0(p)

are calledhorizontal p-formsover (Y,M ,p).
Moreover ifJr

†Y‡ is ther th order jet prolongation ofY we say thatvPV1(JrY) is acontact
1-form for the projectionp r :JrY→M if the condition (j rs)* v50 holds for all local sections
sPG(Y).

Denoting byps
r the canonical projectionps

r :JrY→JsY, with r>s, we recall that for any
q-form vPVq(JrY), q<m, there exists a unique invariant decomposition,

~p r
r 11!* v5h~v!1k~v! ~9!

into thehorizontal part h(v)PVq
0(p r 11) and thecontact part k(v)PVq(Jr 11Y). In particular,

given a functionf PF(JrY), in any fibered chart we haveh(d f )5(dl f )dxl, where the coeffi-
cientsdl f 5 i ]l

h(d f ) denote the formal partial derivatives with respect to the coordinatesxl, i.e.,

dl f 5]l~ f +p r
r 11!1 (

unI u50

r

ynI 11I l

i ] i
nI ~ f +p r

r 11!. ~10!

In our notation the symbol]S
L denotes the partial derivative with respect to~multi! indicesL

S .
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III. DUAL LAGRANGIAN: THE REGULAR CASE

According to the standard geometric approach to field theories a first order Lagrangia
base-preserving fibered morphism,

L:J1Y→Am
0 ~M !, ~11!

whereAm
0 (M ) denotes the vector bundle of them-forms overM. In local fibered coordinates its

expression is

L5L~xl,yi ,ym
i !ds, ~12!

with ds5dx1`dx2`¯`dxm the local volume form onM associated with the local cha
(W,xl). Alternatively,L may be seen as a horizontalm-form overJ1Y, that isLPVm

0 (p1). For
every sectionsPG(Y) we obtain, via pull-back, the inducedm-form ( j 1s)* L on M. The action
functional is then defined by

AD~s!5E
D

~ j 1s!* L5E
D

~L+ j 1s!ds, ~13!

where D#M is any compact domain, and thecritical sections are those local sectionss
PG(Y) which make stationary~in the sense of calculus of variations! all the action functionals
whenD ranges through all compact domains ofM.

In the first order formulation, associated with a given Lagrangian there is a globally de
m-form U(L)PVm

0 (p0
1), horizontal with respect to the fibrationJ1Y→Y. It is uniquely defined

by the following three conditions:

~1! the m-form U(L)2L is a contact form, i.e.,AD(s)5*D( j 1s)* U(L);
~2! for any pair of vector fields (X1 ,X2) vertical with respect to the fibrationJ1Y→M we have

iX2
iX1

U~L!50;

~3! for any vector fieldJ, vertical with respect to the fibrationJ1Y→Y, them-form i JdU(L) is
a contact form.

We call them-form U(L) the Poincaré–Cartan formassociated withL. In local fibered coordi-
nates it has the following expression:

U~L !5pi
lv i`dsl1Lds ~14!

beingpi
l5] i

lL, where we have denoted byv i5dyi2ym
i dxm the natural basis of contact 1-form

over J1Y anddsl5 i ]l
ds. The Poincare´–Cartan form allows to single out the critical sections

L by means of the following rule: a~local! sectionsPG(Y) is a critical section iff

~ j 1s!* @ i JdU~L !#50 ~15!

for any vertical vector fieldJ of the projectionJ1Y→M . This is equivalent to say that the imag
of an open setUPM under j 2s belongs to the kernel of the Euler–Lagrange morphisme(L)
which is a global second order operator overY,

e~L !:J2Y→V* ~Y! ^

J2~Y!

Am
0 ~M !,

e~L !5ei~L !dyi`ds ~16!

(V* (Y) denotes the dual of the vertical tangent bundle ofY! and it is defined through the hori
zontal part ofi JdU(L) by the rule
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h~ i JdU~L !!5^e~L !,J&. ~17!

Its local expression is

ei~L !5] iL2dl~] i
lL!. ~18!

Equation~15! is equivalent to the well known second order Euler–Lagrange equations fo
sections; solutionss of ~15! extremize the action functionalAD for any compact domainD#M
and assume the familiar expression,

F] iL2S ]

]xl 1
]s j

]xl

]

]yj 1
]2s j

]xl]xm

]

]ym
j D ] i

lLG + j 1s50. ~19!

We say that the LagrangianL is regular in an open subsetU of J1Y if

detU ]2L
]ym

i ]yn
j UÞ0 ~20!

in any natural fibered chart (W1 ,xl,yi ,ym
i ) with W1PU. WhenL is regular~on a fibered chart

W1! we define a local coordinate transformation inJ1Y,

fL :~xl,yi ,ym
i !°~xl,yi ,pi

l~xs,yj ,ys
j !5] i

lL!, ~21!

and a local functionH:W1→R by setting

H~xm,yi ,pi
m!5ym

i ~xs,yj ,pj
s!pi

m2L~xa,yk,ya
k ~xs,yj ,pj

s!!. ~22!

In this coordinate system the Euler–Lagrange equations~18! may be rewritten as

dmyi2
]H
]pi

m 50, ~23!

dmpi
m1

]H
]yi 50, ~24!

which is a reduction of the original second order equations to a system of first order on~in
normal form! in the variables (yi ,pi

m). We call the map~21! the Legendre map, we call the
function ~22! theHamiltonianand we call Eqs.~23! and~24! theHamilton equations. The equiva-
lence between the Euler–Lagrange equations and the Hamilton equations is established
regularity condition~20!.

We now discuss the structure of the Hamilton equations from a global viewpoint. Giv
LagrangianL and restricting the tangent mapTL to the vertical subbundleV(p0

1) of T(J1Y) with
respect to the projectionJ1Y→Y we have a morphism overJ1Y,

VL:V~p0
1!→

J1Y

J1Y3
Y

Am
0 ~M !. ~25!

Owing to the canonical splitting,

V~p0
1!5J1Y3

Y
~VY^

Y
T* M !, ~26!

we obtain the linear morphism overY, called theLegendre mapfL ,

FL :J1Y→
Y

L~Y!, ~27!
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L~Y!5V* Y^

Y
TM ^

Y
Am

0 ~M !>V* Y^

Y
Am21

0 ~M !. ~28!

We call L(Y) the Legendre bundle. A natural fibered chart onL(Y) will be denoted by
(xl,yi ,pi

m). In this adapted chart the Legendre map~27! is given by~21!. Condition~20! is clearly
equivalent to the requirement that the Legendre map~21! be a local diffeomorphism betweenJ1Y
andL(Y). If fL turns out to be a global diffeomorphism ofJ1Y onto its image inL(Y) we shall
say that the LagrangianL is hyper-regular~in this case the Legendre mapfL is an embedding!. If
L is hyper-regular we can take the image of the Poincare´–Cartan form under the Legendre mapfL

itself,

U~H !8~fL!* U~L !,

U~H !5pi
ldyi∧dsl2H~xl,yi ,pi

m!ds, ~29!

whereH is defined in~22! and this operation gives usthe Hamiltonian m-formU(H) overL(Y).
Given a vertical vectorfieldJ over the projectionL(Y)→M the horizontalm-form h( i JdU(H))
generates a first order differential operator overL(Y),

e~H !:J1~L~Y!!→Am
0 ~M ! ^

J1~L~Y!!

V* ~L~Y!!,

e~H !5~yl
i 2]l

i H!dpi
l∧ds2~pil

l 1] iH!dyi∧ds, ~30!

the kernel of which coincides with the Hamilton equations~23!, ~24! and is globally well defined
by the condition,

h~ i JdU~H !!50 ~31!

for any vertical vector fieldJ.
Remark III.1:We recall that, although the Hamilton equations are globally well defined

condition~31! the Hamiltonian functions, defined in each chart by~22!, cannot be patched togethe
to define a global function. Nevertheless, since the HamiltonianH is built into U(H) by Eq.~29!,
there is no need to consider it on its own and to globalize it separately from the Hamilt
m-form itself.

We also stress that a local Hamiltonian formalism exists for regular Lagrangians which a
hyper-regular. We have seen that Eq.~22! still have a meaning in each fibered chart wherefL is
invertible. Them-form U(H)PVm(Im fL), the expression of which is given locally by~29!, still
satisfies the relationU(L)5fL* (U(H)). This is a particular case of the situation, described in
next section, which occurs whenfL is a map of constant rank. L

Remark III.2:A variational principle can be associated with the Hamilton equations~23!, ~24!
by means of a LagrangianLH , called theHelmholtz Lagrangian,

LH :J1~L~Y!!→Am
0 ~M !, ~32!

which is defined to be the horizontal part of the pullback (h0
1)* U(H) of the m-form U(H) over

J1(L(Y)) through the canonical projectionh0
1:J1(L(Y))→L(Y). By definition (h0

1)* U(H) is
just the Poincare´–Cartan form associated with the Helmholtz Lagrangian,

ULH
8~h0

1!* U~H !5pi
lv i∧dsl1LH~xm,yj ,pj

n ,yn
j !ds, ~33!

LH~xm,yj ,pj
n ,yn

j !5pi
nyn

i 2H~xm,yj ,pj
n!. ~34!
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The Legendre morphismfL establishes a dynamical equivalence between the original~first order!
variational principle onY associated to the Lagrangian~12! and the~first order! variational prin-
ciple onL(Y) governed by the Lagrangian~34!.

The formulation of dynamics by means of the Helmholtz Lagrangian will be a crucial p
for our next introduction of a ‘‘dual’’ variational principle formulated in terms of the momentapi

m

and their jet prolongations only. L
Let us now revert to the analysis of the set of Hamilton equations~23! and~24!. Owing to the

regularity conditions~20! we can locally solve~23! with respect to the variablespi
m and we obtain

the Legendre mapfL written in ~21!,

pi
m5pi

m~xn,yj ,yn
j !.

Inserting this expression into~24! we have a system of second order equations overY which
reproduces the Euler–Lagrange equations~18!. Now, our next step is to revert the reasoning
setting the following question: can we handle Eq.~24! as a new Legendre map for a ‘‘dual
LagrangianL* , the equations of which are equivalent to the system~23!? Clearly this new
Lagrangian will be a function of the momentapi

m and their jet prolongations only. If the answe
will be affirmative we shall reach the objective to describe the original physical system with a
set of dynamically equivalent variables.

If, in addition to the regularity condition~20!, also the ‘‘dual’’ regularity condition holds

detU ]2H
]yi]yjUÞ0, ~35!

we can locally solve Eq.~24! with respect to the variablesyi and get a local diffeomorphismc
which is expressed by

c:~xl,yi ,pi
m!°~xl,pi

m ,yi~xs,pj
n ,pj n

n !!. ~36!

Here and in the sequel (pim
l ,pimn

l ) denote the jet prolongations of the variablespi
l , while Eq.~24!

is implicitly written as pim
m 5dmpi

m52] iH. Substituting these equations into~23! we obtain a
system of second order equations in the momentapi

m ,

dn@yi~xl,pj
m ,pj m

m !#5
]H~xl,yi ,pk

a!

]pi
n U

y5y~ j 1p!

, ~37!

wherey( j 1p) is a shortcut foryi(xl,pj
s ,pj s

s ). The following holds then true:
Theorem 1: The system of Eq. (37) is a system of Euler–Lagrange equations for the (local

second order ‘‘dual’’ Lagrangian densityL* 5LH+ j 1c,

L* ~xl,pi
l ,pim

l ,pimn
l !5pi

ndn@yi~xl,pj
m ,pj m

m !#2H~xn,yi~xl,pj
m ,pj m

m !,pi
n!. ~38!

~We postpone until the next section the case when we can give a global setting to the statem
this proposition.!

Outline of proof:It is a straightforward calculation to show that

dL*

dpi
l 5

]L*

]pi
l 2

d

dxm S ]L*

]pim
l D 1

d2

dxmdxn S ]L*

]pimn
l D 5dm@yi~xl,pj

n ,pj n
n !#2

]H
]pi

mU
y5y~ j 1p!

once we use the morphism~36!, defined by~24!, and definition~38!. L
Remark III.3:A first glance at the dual Lagrangian~38! reveals that it is linear in the secon

order variables and it can be always reduced to a first order~non covariant! Lagrangian densityU
by subtracting a divergence,
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L* 5dn@pi
nyi~xl,pj

s ,pj s
s !#1U~xl,pi

m ,pim
m !,

U~xl,pi
m ,pim

m !52@pin
n yi1H~xl,yi ,pj

n!#y5y~ j 1p! . ~39!

We also remark that in the local Lagrangian densityU the dependence on first order variablespin
m

factors only through the subset formed by the ‘‘diagonal’’ variablespim
m . Owing to the definition

~36! ~equivalent to~24!!, we obtain the original configuration variables ‘‘y’’ as the new momenta
of the Lagrangian~39!,

yi~xl,pi
m ,pim

m !52
]U~xl,pi

m ,pim
m !

]pin
n .

L

Until now we have described the same physical theory through three different Lagran
where each one is a function of a different set of dynamical variables; the equivalence amo
three relies on the regularity conditions~20! and~35!. However, in most field theories, additiona
physical requirements on the Lagrangian, such as general covariance or gauge invariance,
restrictions on the derivatives of the fields which appear in our starting Lagrangian~12! so that this
last fails to be regular. Nevertheless we shall see how to give a dual description also for a
class of these theories.

IV. DUAL LAGRANGIANS FOR CONSTRAINED SYSTEMS

If the regularity condition~20! is not fulfilled the Hamiltonian description previously de
scribed fails to work. The Hamiltonianm-form ~29! is explicitly obtained by a push-forward
morphism over the Legendre map, which is defined only iffL is ~at least locally! a diffeomor-
phism. As we have just pointed out at the end of the previous section, in most of the re
physical theories the Legendre mapfL has not maximal rank owing to covariance requiremen
however, in general, it has constant rank and its imageC8Im fL is a fibered submanifold o
L(Y)→Y of fiber dimensionk5dimC2dimY, 0,k<n•m5dimL(Y)2dimY. We shall callC
the primary Hamiltonian constraint. The method to overcome the difficulties arising from no
regularity conditions is then to construct the Hamiltonianm-form directly on the Hamiltonian
constraintC in such a way that its pull-back viafL is exactly the Poincare´–Cartan form onJ1Y.

To perform this task we are forced to require at least the following usual weaker regu
conditions:

~A! C5Im fL is a fibered submanifold ofL(Y)→Y;
~B! The Legendre morphismfL is a surjective submersion ofJ1Y onto C,L(Y).

Condition ~B! implies that, if (xl,yi ,pA), A51,...,k<m•n with k the ~constant! rank of the
Jacobianu]2L/]ym

i ]yn
j u, is a coordinate system in a neighborhood of a pointqPC, we can perform

a coordinate transformation overJ1Y,

~xl,yi ,ym
i !°~xl,yi ,pA ,vS!

A51,...,k, S5k11,...,n•m

yl
i 5wl

i ~xm,yi ,pA ,vS!

~40!

adapted to the fibrationJ1Y→C in such a way thatfL reads now as the projectionf̄L ,

~xm,yi ,pA ,vS!°

f̄L

~xm,yi ,pA!. ~41!
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This means that in terms of the original variables (xm,yi ,ym
i ) overJ1Y the Legendre map which

with an abuse of notation, will be still denoted byf̄L , is represented by

~xm,yi ,ym
i !°

f̄L

~xm,yi ,pA5p̄A~xm,yj ,ym
j !! ~42!

and satisfies the following conditions:

tA] j
np̄A~xm,yi ,ym

i !50⇔tA50 ~43!

for any set ofk parameterstAPR. Now, substituting expression~40! into the equations,

pi
m5] i

mL~xm,yj ,yn
j !,

we obtain the local description of the immersioni C of C into L(Y),

i C :~xm,yi ,pA!°~xm,yi ,pi
m5 p̄i

m~xl,yj ,pA!!. ~44!

Condition ~A! states instead that the following holds:

sA]Ap̄i
m~xm,yi ,pB!50⇔sA50 S ]A5

]

]pA
D ~45!

for any set of parameterssA .
We can resume the previous description of the physical model through the commu

diagram

J1Y ——→
f̄L

C ——→
i c

L~Y!

↓ ↓ ↓

Y ——→
id

Y ——→
id

Y

together with the equation,

] i
mL5 p̄i

m~xl,yi ,p̄A~xn,yj ,ya
k !!. ~46!

Let us now return to the Poincare´–Cartan form~14!. We have

U~L !5] i
mLdyi`dsm2H~xn,yj ,ya

k !ds, ~47!

H~xn,yj ,ya
k !5ym

i ] i
mL2L~xn,yj ,ya

j !. ~48!

Proposition 1: The Poincare´–Cartan formU(L) is f̄L-projectable ontoC.
Proof: The formU(L) is f̄L-projectable iff the Lie derivative £XU(L)5(diX1 i Xd)U(L) is

equal to zero for any vector fieldX which is vertical with respect to the fibrationJ1Y→C, i.e., for
any vectorfield which belongs to KerTf̄L . X is a vector field vertical with respect to the fibratio
J1Y→C if it is of the form X5Xn

k]k
n and it fulfills

X~] i
mL!5Xn

k]k
n~] i

mL!50. ~49!

In fact, by ~46!, this last condition can be recast into the following:

Xn
k]k

np̄A]Ap̄i
m50,
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which, owing to~45!, impliesXn
k]k

np̄A50 and ensures thatX belongs to KerTf̄L . Now, it is easy
to verify that

X~H!5X~ym
i ] i

mL2L!5Xn
k]k

n~] i
mL! 5

~49!

0. ~50!

Equations~49! and ~50! together imply that for any vertical vector fieldXPKerTf̄L the Lie
derivative £XU(L) vanishes. L

Rewriting condition~50! in the adapted coordinate system introduced in~40!, it turns out that
there exists a unique functionH(xl,yi ,pA) such that

H~xl,yi ,yl
i !5H~xl,yi ,p̄A~xs,yj ,ys

j !!, ~51!

and, by means of~46! and ~51!, we may rewrite the Poincare´–Cartan formU(L) as follows:

U~L !5 p̄i
m~xl,yk,p̄A~xs,yj ,ys

j !!dyi`dsm2H~xl,yk,p̄A~xs,yj ,ys
j !!ds.

Then, sincef̄L is surjective, there is a unique well definedm-form overC,

U~H !5 p̄i
m~xl,yk,pA!dyi`dsm2H~xl,yk,pA!ds, ~52!

such that its pull-back viaf̄L is exactly the Poincare´–Cartan formU(L),

~f̄L!* U~H ! 5
~42!

U~L !. ~53!

We also point out that, in general, the local functionH introduced in~51! cannot be extended to
the whole Hamiltonian constraintC in order to define a global function. In fact, under a coordin
transformation,

xl→x8l~xm!,

yi→y8 i~xm,yj !,

pi
l→p8 i

l8J21
]x8l

]xm pj
m ]yj

]y8 i , J5detU]x8l

]xm U,
we have the following transformation rule:

H85J21S H1pj
m ]yj

]y8 i

]y8 i

]xm D .

On the contrary them-formsU(H), the expression of which is given in each coordinate system
~52!, can be patched together to define a globalm-form over the Hamiltonian constraint itself.

Owing to the statement of the proposition and from definitions~48!, ~46!, ~51! we can write
the original LagrangianL as

L5 p̄i
m~xl,yi ,p̄A~xs,yj ,ys

j !!ym
i 2H~xl,yi ,p̄A~xs,yj ,ys

j !!. ~54!

The variation ofL, once condition~43! is taken into account, allows us to rewrite the Eule
Lagrange equations~18! in terms of the functionH,

~ym
i ]Ap̄i

m2]AH !up5p̄~ j 1y!50, ~55!

~~]m1ym
k ]k1pAm]A! p̄ j

m2] j p̄i
mym

i 1] jH !up5p̄~ j 1y!50, ~56!
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wherep5p̄( j 1y) is a shortcut forpA5p̄A(xs,yk,ys
k )) and]A5]/]pA . Equations~55! are just

the definition of the Legendre mappi
m5] i

mL, while Eqs.~56! are the expression of the equatio
dm(] i

mL)5] iL.
Remark IV.1:The system of Eqs.~55! and ~56! may be considered as a reduction of t

original second order Euler–Lagrange equations overY to a system of first order differentia
equations,

f A~xl,yj ,yl
j ,pB!50, ~57!

f i~xl,yj ,yl
j ,pB ,pBm!50, ~58!

over the Hamiltonian constraintC. We do not deal with the problem of extendingU(H) to the
whole Legendre bundleL(Y). It is well known that there is no preferred principle to carry o
such an extension out ofC, where the equations of motion would read as gauge-type condi
over the fields. We stress that the Hamiltonianm-form ~52! is uniquely defined only over the
Hamiltonian constraintC itself, where all the possible extensions ofU(H) coincide. Strictly
speaking, we are considering only the physical part of the theory under examination, ga
away the dynamically meaningless variables~which belong to KerfL!.

We also remark that when the rankk of the Jacobianu]2L/]ym
i ]yn

j u is maximal, i.e., equal to
m•n, we recover the regular case of the previous section. L

Remark IV.2:Also for these nonregular theories an alternative variational principle ma
associated with Eqs.~55! and ~56! by means of the Helmholtz Lagrangian,

LH :J1C→Am
0 ~M !. ~59!

It is now defined as the horizontal part of the pull-back (h̄0
1)* U(H) of them-form ~52! overJ1C

through the canonical projectionh̄0
1: J1C→C,

ULH
8~ h̄0

1!* U~H !5 p̄i
l~xm,yj ,pA!v i`dsl1LH~xm,yj ,pA ,yn

j !ds, ~60!

LH~xm,yj ,pA ,ym
j !8 p̄i

l~xm,yj ,pA!yl
i 2H~xm,yj ,pA!. ~61!

The dynamical equivalence between the original variational principle onY associated to the
Lagrangian~12! and the variational principle onC governed by the Lagrangian~61! is now
established by the Legendre mapf̄L given in ~42!. L

To have a dual description of the theory we try to mimic the trick of the previous section
consider Eq.~56! as the equation of a dual Legendre map~i.e., as the defining equations of th
original configuration variables ‘‘y’’ in terms of the momenta ‘‘p’’ ! and we would like to show
that Eq.~55! is a Lagrange equation for a suitable LagrangianL* . A glance at the system of Eqs
~55! and ~56! shows that neither one of these equations is in normal form. This means th
most, we could have solutions only in a submanifold of the Hamiltonian constraintC and, in
general, these solutions will not be unique. In this paper we shall not deal with the analy
these kind of problems but we shall only consider the inverse problem, of a purely alge
nature, of constructing the dual Lagrangian starting from Eqs.~55! and ~56! undera priori as-
sumptions which are mild enough to cover many physical examples. First of all we rewrit
~56! as

]mp̄i
m~xl,yj ,pB!1pAm]Ap̄i

m~xl,yj ,pB!1] iH5ym
j @] i p̄ j

m~xl,yj ,pB!2] j p̄i
m~xl,yj ,pB!#.

~62!

To reach our goal we have to investigate when the right-hand side~rhs! of ~62! is identically equal
to zero, in such a way that the dependence of the equations on the variablesym

i disappears. A
sufficient and necessary local condition for the vanishing of the rhs, for arbitrary values o
variablesym

i , amounts to require that there exist local functionshm: C→R such that
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p̄i
m~xl,yj ,pA!5] ih

m~xl,yj ,pA!. ~63!

A stronger condition, which is very commonly satisfied in most relevant physical theories~for
example gauge theories and Relativity!, is to require that the momentapi

m do not depend on the
configuration variables of the theory, i.e.,pi

m5 p̄i
m(xl,pA). The occurrence of this property relie

on the fact that the Legendre bundle of these theories admits a splitting overM,

L~Y!5Y3
M

P ~64!

with P→M a suitable fibered manifold overM with local fibered coordinates (xl,pi
m), and that

also the Hamilton constraintC admits a similar splitting

C5Y3
M

P̄ ~65!

with P̄ a fibered submanifold ofP→M locally endowed with fibered coordinates (xl,pA). If the
immersion mapī : P̄→P is given in fibered coordinates by the expression

ī :~xl,pA!°~xl,p̄i
m~xs,pB!!, ~66!

then we have for the immersion ofC into L(Y),

C5Y3
M

P̄ °
id3 ī

Y3
M

P5L~Y!

~67!
~xl,yi ,pA!°~xl,yi ,p̄i

m~xl,pA!!.

Remark IV.3:The typical situation in which condition~64! is a priori fulfilled occurs when
the configuration bundleY admits a vertical splitting,

VY.Y3
M

Ȳ, ~68!

where Ȳ→M is a vector bundle. In particular every affine bundleY→M modeled on a vector
bundleȲ→M has a canonical decomposition~68!. In this situation we have a canonical splittin
for the Legendre bundle,

L~Y!5Y3
M

P, P5Ȳ* ^

M
Am21

0 ~M !. ~69!

L

If the hypotheses~67! are satisfied Eq.~62! becomes

f i~xl,yj ,pA ,pAm!5]mp̄i
m~xs,pB!1pAm]Ap̄i

m~xs,pB!1] iH~xl,yj ,pB!50. ~70!

If the regularity condition

detU ]2H

]yi]yjUÞ0

is fulfilled, Eq. ~70! can be solved with respect to the original configuration variables to g
~local! fibered morphism overM,

c:J1P̄→Y
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~xl,pA ,pAm!°~xl,yi5 ȳi~xl,pA ,pAm!!. ~71!

Inserting expression~71! into the set of Eq.~55!, or ~57!, we obtain a system of second ord
differential equations in the momenta ‘‘p’’ alone, of the kind,

FA5 f A+c150,
~72!

FA~xs,pB ,pBs ,pBsl!5 f A~xl,ȳi~xs,pB ,pBs!,dl~ ȳi~xs,pB ,pBs!!,pC!50,

wherec1 denotes the restriction toJ2P̄ of the first order prolongationj 1c of the mapc.
We are now in position to formulate the analogous of Theorem 1.
Theorem 2: The system of Eq. (72) is a system of Euler–Lagrange equations for the secon

order dual Lagrangian densityL* 8LH+c1 ,

L* ~xl,pA ,pAm ,pAmn!8 p̄i
l~xs,pA!dl@ ȳi~xs ,pA ,pAs!#2H~xs,ȳi~xl,pB ,pBl!,pA!.

~73!

Outline of the proof:In a completely analogous way to the proof of Theorem 1 we hav
show that the variation

]L*

dpA
5

]L*

]pA
2

d

dxm

]L*

]pAm
1

d2

dxmdxn

]L*

]pAmn
50

reproduces Eq.~72! once we take into account the dual Legendre map~70!. L
Moreover, if the splitting~67! occurs and the morphism~71! is globally well defined we can

give a global description for the dual counterpart of the theory. We consider the pull-back
m-form ~52! through the morphism,

c̄:J1P̄→C5Y3
M

P̄,

~74!
c̄:p°~c~p!,t0

1~p!!,

wherep is an arbitrary element ofJ1P̄ and t0
1:J1P̄→ P̄ is the canonical fibered projection. Th

form (c̄)* U(H) belongs toV(J1P̄). Its lift ( t1
3)* (c̄)* U(H) over J3P̄ can be split into its

contact and horizontal parts,

~ c̄+t1
3!* U~H !5k~U!1h~U!, ~75!

with

k~U!5 p̄i
m~xl,pB!@]Aȳi~xl,pB ,pBm!vA1]Asȳi~xl,pB ,pBm!vAs#`dsm , ~76!

h~U!5L* ~xl,pA ,pAm ,pAmn!ds, ~77!

having setvA5dpA2pAndxn and vAs5dpAs2pAsndxn. A first analysis shows us that (c̄
+t1

3)* U(H) is just one of the possible~not the canonical one! Poincare´–Cartan forms associate
with the dual LagrangianL* 5L* ds.

Remark IV.4:We recall that a Poincare´–Cartan form associated with a given second or
LagrangianL5Lds:J2P̄→Am

0 (M ) belongs toVm(J3P̄) and it is not uniquely defined. Neverthe
less there is a standard procedure to build a canonical ‘‘symmetric’’ one~see, e.g., Ref. 28!,
denoted byU(L), which in a system of fibered coordinates (xl,pAmI ), 0<umI u<3 is given by

U~L !5 f AnvA`dsn1 f AmnvAm`dsn1Lds ~78!
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with

f Amn5]AmnL5 f A~mn!,
~79!

f An5]AnL2dm]AmnL.

All the other ‘‘nonsymmetric’’ Poincare´–Cartan formsŪ(L) differ from the canonical one by the
formal divergence of a contact term~see, e.g., Ref. 32!,

Ū~L !5U~L !1 f A@mn#vAm`dsn2dn f A@mn#vA`dsm , ~80!

which, for any choice of the skew-symmetric coefficientsf A@mn#, do not contribute once we deriv
Euler–Lagrange equations. In the case described by~75! we have

~ c̄+t1
3!* U~H !5U~L* !1ZAmnvAm`dsn2dnZAmnvA`dsm ,

~81!
ZAmn5ZA@mn#52 1

2~ p̄k
m]Anȳk2 p̄k

n]Amȳk!.

Hence, the comparison between~81! and~80! shows, as previously stated, that (c̄+t1
3)* U(H) may

be considered as a ‘‘nonsymmetric’’ Poincare´–Cartan form of the LagrangianL* L
Again we point out that the dual LagrangianL* 5LH+c1 depends linearly on the variable

pAmn owing to the fact that the first jet prolongationj 1c of the fibered morphismc is an affine
morphism overc. Moreover, following the steps of the previous section, we can reduceL* to a
first order Lagrangian densityU by the rule,

L* ~xl,pA ,pAm ,pAmn!8dl@ p̄i
l~xs,pA!ȳi~xs,pA ,pAs!#1U~xl,pA ,pAm!,

~82!
U~xl,pA ,pAm!82@yidlp̄i

l~xm,pA!1H~xl,yj ,pA!#y5 ȳ~ j 1p! .

Remark IV.5:Also under the weaker condition~63! the local dual Lagrangian densityL* ,

L* ~xl,pA ,pAm ,pAmn!8@~ p̄i
l~xs,yi ,pA!dl~ ȳi~xs,pA ,pAs!!

2H~xs,yi ,pA!] uy5 ȳ~ j 1p! ~83!

can be lowered of order. From definition~63! we have

yl
i p̄i

l5dlhl2]lhl2pAl]Ahl.

Inserting this expression into~83! we obtain

L* ~xl,pA ,pAm ,pAmn!8dl@hl~xs,yi ,pA!uy5 ȳ~ j 1p!#1Ū~xl,pA ,pAm!,

Ū~xl,pA ,pAm!82@]lhl~xs,yi ,pB!1pAl]Ahl~xs,yi ,pB!1H~xs,yi ,pB!#y5 ȳ~ j 1p! .

It is an easy verification to prove that the variation,

dŪ
dpA

8]AŪ2dm~]AmŪ!5ym
i ] i]

Ahm2]AH

5ym
i ]Ap̄i

m2]AH

reproduces Eq.~55!. L
Remark IV.6:Let gL be a local section of the fibered manifoldY→M . Let gL be a solution of

the Euler–Lagrange equations of the Lagrangian~12! and letf̄:J1Y→ P̄ be the map induced by
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the Legendre map~42!. We have shown that the compositionf̄+ j 1gL :M→ P̄ is a solutiongL* of
the Euler–Lagrange equations of the dual LagrangianL* . On the contrary the morphismc in ~71!
sends first order jet prolongationsj 1gL* of local solutionsgL* of the Euler–Lagrange equations o
L* into local solutionsgL5c+ j 1gL* :M→Y of the starting LagrangianL. Hence we have the
commutative diagrams,

J1Y ——→
f̄

P̄

j 1gL↑ gL*↑

M ——→
;

M

J1P̄ ——→
c

Y

j 1gL*↑ gL↑

M ——→
;

M

~84!

which enable us to know the solutions of a given theory once we have found the solutions
equivalent dual description of the same physical theory. L

V. PARTIAL LEGENDRE TRANSFORMATION

To give a complete treatment of dual theories we now shortly comment on the more g
physical situation in which the configuration bundle is the fibered product overM of two fibered
manifoldsY5(Y,M ,pY) andZ5(Z,M ,pZ) and the Lagrangian is a fibered morphism,

L:J1~Y3
M

Z![J1Y3
M

J1Z→Am
0 ~M !. ~85!

If ( xl,yi ,ym
i ) and (xl,za,zm

a ) are local fibered coordinates on open sets ofJ1Y andJ1Z, respec-
tively, projecting onto the same chart (U,xl) of M, we have

L5L~xl,yi ,ym
i ,za,zm

a !ds. ~86!

We may perform a total Legendre transformation

J1~Y3
M

Z!→L~Y3
M

Z!, ~87!

but also a partial Legendre transformationfL :J1Y3
M

J1Z→L(Y) is a priori possible~and gen-

erally preferable in many concrete applications!,

fL :~xl,yi ,ym
i ,za,zn

a!°~xl,yi ,pi
m5 p̄i

m~xs,yj ,yn
j ,za,zn

a!!,

p̄i
m~xs,yj ,yn

j ,za,zn
a!5] i

mL. ~88!

Setting nowC8Im(fL) we assume again that the regularity conditions~A! and~B! of the previous
section are fulfilled and that the splittings~64! and ~65! occur, with immersion map given by

ī : P̄→P,

ī :~xl,pA!°~xl,p̄i
m~xs,pA ,za,zn

a!!. ~89!

A further simplification can be made if we require that momentapi
m do not depend on the

variablesz, i.e.,

pi
m5 p̄i

m~xs,pA!. ~90!

Remark V.1:This situation, which is apparently very exceptional from a mathematical v
point, is fulfilled, for example, both by General Relativity~see next section! and gauge theories
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We refer the reader to Ref. 33 for details. In these cases the functional dependence ofL on the
variablesym

i factors entirely through a set ofk functionally independent functionsKA(xl,yi ,ym
i ),

L~xl,yi ,ym
i ,za,zm

a !5L̄~xl,yi ,KA~xs,yj ,yn
j !,za,zm

a ! ~91!

satisfying the regularity condition detu]2L̄/]KA]KBuÞ0. The functionsKA are affine combinations
of the variablesym

i , of the form,

KA~xl,yi ,ym
i !5LA

i
mym

i 1TA~xl,yi !, ~92!

where LA
i
m is a k3(n•m) constant matrix of rankk. Hence, we may definepA

5p̄A(xs,yj ,yn
j ,zb,zn

b)5]L/]KA and the immersion~90! becomes

p̄i
m~pA!5LA

i
m]AL5LA

i
mpA . ~93!

L

Following step by step the calculations of the previous section, under the assumption~90!, the
Helmholtz Lagrangian~61! now has the following expression:

LH~xl,yi ,pA ,ym
i ,za,zm

a !5 p̄i
m~xl,pA!ym

i 2H~xl,yi ,pA ,za,zm
a !, ~94!

whereH(xl,yi ,pA ,za,zm
a ) is defined by

H~xl,yi ,p̄A~xs,yj ,yn
j ,zb,zn

b!,za,zm
a !8ym

i ] i
mL2L. ~95!

HereH plays the role of a ‘‘Routh function’’ rather then the role of a local Hamiltonian: it depe
on the configuration variablesyi together with their momentapA but contains the variablesza

together with their ‘‘velocities’’zm
a .

If the regularity condition holds

detU ]2H

]yi]yjUÞ0, ~96!

then from the analog of Eq.~70!, i.e., from the second set of Hamilton equationsdmp̄i
m5] iH, we

may construct, at least locally, the Legendre mapJ1( P̄3Z)→Y given by

yi5 ȳi~xl,pA ,pAm ,za,zm
a !. ~97!

This expression, inserted back into~94!, generates the second-order Lagrangian,

L* ~xl,pA ,pAm ,pAmn ,za,zm
a ,zmn

a !5LHuy5 ȳ~ j 1p, j 1z! . ~98!

Again, the dependence on both second order variablespAmn andzmn
a may be factorized through a

divergence,

L* ~xl, j 2p, j 2z!5dm~ p̄i
mȳi !1U~xl, j 1p, j 1z!, ~99!

U~xl, j 1p, j 1z!52@yidmp̄i
m~xs,pA!1H~xl,yj ,pA ,za,zm

a !#y5 ȳ~ j 1p, j 1z! . ~100!

VI. EXAMPLES

To see how the ideas described in previous sections do work in practice, we shall co
here two physical examples. The first example we consider deals with purely-metric, purely-
and metric-affine theories of gravitation. In the second example we shall instead consider se
gravity.
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A. Relativistic theories of gravitation

The mathematical procedure for showing that a purely-affine theory admits an equiv
description in terms of a purely-metric theory, in which the metric can be possibly couple
additional matter fields, was skillfully described by Einstein himself in Ref. 3. Such a proce
consists of defining the metric tensor through the momentum canonically conjugated to the
metric part of the Ricci tensor of the connection. This is the key for the physical interpretati
purely-affine theories, which was based by Einstein on a ‘‘Legendre transformation’’ of the
of the transformation relatingL andH described in Sec. IV. In the rest of this example we sh
closely follow the presentation given in Refs. 6 and 7, where the equivalence of purely-metr
metric-affine theories was proved.

As is well known, field equations of General Relativity coupled with external matter fi
may be deduced, through a variational principle, from the Hilbert Lagrangian1 called, from now
on, thepurely-metric Lagrangian density,

LPM~ j 2g, j 1w!82
1

2k
gmnr mn~ j 2g!1V~ j 1g, j 1w!, ~101!

wherek58pG/c4 denotes the gravitational constant,g5(gmn) is a metric tensor of Lorentzian
signature~1, 2, 2, 2!, gmn5udet(grs)u1/2gmn denote the contravariant components of the me
tensor density,w5(wa) is an external matter field, the nature of which is not specifieda priori and
therefore we do not specify the nature of the indexa. Finally, r mn( j 2g) denotes the components o
the Ricci tensor ofg, while V is a scalar density, which we shall call thepurely-metric matter
Lagrangian density, describing the interaction of gravity with the matter fieldsw.

The configuration variables are the gravitational potential, which is described via the m
tensor, and the matter fieldw. In the sequel, we shall perform a ‘‘partial’’ Legendre transformat
only with respect to the metric tensor itself and we shall not take into account the mom
conjugated to the matter field, i.e., we shall perform a sort of Routh transformation.

Remarking that the Lagrangian density~101! depends linearly on second-order derivatives
the metric tensor one is forced to consider it as the analogue of the dual Lagrangian densit~98!.
Following this approach we may expect that, after the Legendre transformation has bee
formed, the role played by the Lagrangian~85! in this context will be encoded into a first orde
covariant Lagrangian, which depends only on the momenta conjugated to the metric itse~and
obviously on the matter fieldswa together with their derivatives]lwa!. We shall see that a
torsionless connectionGa

bm , which differs in general from the Levi-Civita metric connectio
ga

bm , appears in a natural way as the momentum conjugated to the gravitational potentiagmn .
This way we obtain a first order Lagrangian densityLPA( j 1G, j 1w) which we shall call the
purely-affine Lagrangian density. Therefore, Einstein equations may be rewritten in terms of
connectionG and its derivatives. Between these two equivalent theories of gravitation we hav
analog of the Helmholtz Lagrangian~94!, where we have two gravitational potentials, the met
tensorg and the symmetric connectionG. We shall call this Lagrangian themetric-affine Lagrang-
ian of the theory and we shall denote it byLMA(g, j 1G, j 1w).

The first step in order to perform the partial Legendre transformation described in the pre
section consists of reducing the order of the Hilbert Lagrangian and constructing the analog
local Lagrangian densityU appearing in~99!. It is a well known fact, discovered by Einstein i
1916,2 that in the domain of a coordinate system one can write

LPM52
1

2k
da~gbmga

bm2gamgb
bm!1U~ j 1g, j 1w!, ~102!

whereU is the noncovariant first-order Lagrangian density,

U5
1

2k
gmn~gb

baga
mn2ga

bmgb
an!1V~ j 1g, j 1w!. ~103!
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Apart from the fact that one has an infinite family of first-order Lagrangian densitiesU which can
be defined only locally, from the point of view of field equations the two Lagrangians~102! and
~103! are perfectly equivalent.

For future convenience we shall use the components of the contravariant metric densitygmn as
configuration variables. It is also useful to introduce, for any given symmetric connectionGl

mn ,
the following object:

ul
mn~G!5Gl

mn2 1
2~dm

l Gs
sn1dn

lGs
sm! ~104!

which satisfies the obvious symmetry conditionul
mn5ul

nm . Being ~104! invertible, it defines a
coordinate transformation in the bundleCs(M ) of symmetric connections, with inverse given b

Gl
mn~u!5ul

mn2 1
3~dm

l us
sn1dn

lus
sm!. ~105!

Settingūl
mn5ul

mn(g), it is easy to see that we can rewrite~102! as follows:

LPM52
1

2k
dl@gmsūl

ms#1U~ j 1g, j 1w!. ~106!

Now, if we define the following objects:

Ua
bm~ j 1g, j 1w!52k

]U
]ga

bm , Ubm~ j 1g, j 1w!52k
]U

]gbm ,

Va
bm~ j 1g, j 1w!52k

]V

]gbm
a

, Vbm~ j 1g, j 1w!52k
]V

]gbm , ~107!

Fa
l~ j 1g, j 1w!5

]U
]wl

a , Fa~ j 1g, j 1w!5
]U
]wa ,

we have

dU5
1

2k
~Ubmdgbm1Ua

bmdgbm
a!1Fadwa1Fa

ldwl
a . ~108!

Taking into account~101! and ~106!, an easy calculation shows that

Ua
bm~ j 1g, j 1w!5ūa

bm1Va
bm ,

~109!
Umn~ j 1g, j 1w!5ga

sngs
ma2ga

asgs
mn1Vmn .

Owing to the bijection~105! and the tensorial character of the objectVa
bm there exists a unique

symmetric connectionGa
mn such that

ua
mn~G!5Ua

mn~ j 1g, j 1w!5ūa
mn1Va

mn . ~110!

From definition~105! it then follows:

Ga
mn~ j 1g, j 1w!5ga

mn1Va
mn2 1

3~dm
aVg

gn1dn
aVg

gm!. ~111!

Instead of the quantityUa
mn we can consider the symmetric connectionGa

mn as the ‘‘canonical
momentum’’ conjugated to the gravitational potentialgmn. In other words, the ‘‘partial’’ Legendre
map of the theory is the application,

~xl,gab,gab
l ,wa,wl

a!°~xl,gab,Ga
mn~ j 1g, j 1w!,wa,wl

a!, ~112!
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the expression of which is given by~111!.
It is very important to notice that the canonical momentumGbm

a coincides with the metric
connectiongbm

a if and only if the tensorVbm
a vanishes, i.e., if and only if the matter Lagrangia

densityV does not depend on the derivatives ofg.
It is also noteworthy that, once we define the symmetric tensor

Kbm~ j 1g, j 1w!8Ubm2Ug
abUa

gm1 1
3U

a
abUg

gm ~113!

Einstein equations

05
dU

dgbm 5
1

2k
~Ubm2daUa

bm! 5
~109! 1

2k
~2r bm1Vbm2daVa

bm! ~114!

may be rewritten as

Kbm~ j 1g, j 1w!5@daGa
bm2d~mGa

b)a1Gs
bmGa

sa2Gs
abGa

smuG5G~ j 1g, j 1w! . ~115!

Hence, Einstein equations are equivalent to the statement that the symmetric tensorKbm , defined
by ~113!, is the symmetric part of the Ricci tensor of the connectionGa

bm defined by~111!.
If the partial Legendre transformation~111! is ‘‘well-behaved,’’ i.e. if it is possible to solve it

with respect to the variablesgab
m ,

gab
m5gab

m~g,G, j 1w!, ~116!

then we may obtain~as it was shown in Refs. 6 and 7! an equivalent description of the theor
starting from the metric-affine Lagrangian density,

LMA~g, j 1G, j 1w!52
1

2k
gbmKbm~ j 1G!1W~g,G, j 1w!, ~117!

where now the metric densityg and the symmetric connectionG are independent variables and

Kmn5]aGa
mn2]~nGa

m)a1Ga
saGs

mn2Ga
snGs

ma ~118!

is defined to be the symmetric part of the Ricci tensor constructed starting from the connecG.
The Lagrangian densityW will be called themetric-affine matter Lagrangian density. Its link with
the purely-metric matter Lagrangian densityV( j 1g, j 1w) is given by

W52
1

2k
gbmS Va

sbVs
am2

1

3
Va

abVs
smD1V, ~119!

where the right-hand side has to be expressed in terms of the correct variables by inserting
the functions~116!. We stress that the metric-affine Lagrangian density~117! is equivalent to the
Helmholtz Lagrangian density~94!, whereW plays now the role ofH. According to this point of
view, the first term2(1/2k)gbmKbm( j 1G) may be considered aspq̇ term of the theory, whileW,
as previously explained, is a kind of Routh function; depending on the configurationwa and their
‘‘velocities’’ wl

a it plays the role of a Lagrangian with respect to the matter fieldw, while it is a
sort of a Hamiltonian with respect to the gravitational field~in the sense that it depends o
configurations and momenta of the gravitational field!.

If we define then

Jbm
a~g,G, j 1w!5

]W

]Ga
bm

, Abm~g,G, j 1w!5
]W

]gbm ,
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Fa~g,G, j 1w!5
]W

]wa , Fa
l~g,G, j 1w!5

]W

]wl
a , ~120!

the variation ofLMA turns out to be

dLMA5S 2
1

2k
Kbm1AbmD dgbm2

1

2k
gbmdKbm1Ja

bmdGa
bm1Fadwa1Fa

ldwl
a . ~121!

Using the definition~118! we have the following field equations:

2
1

2k
Kmn1Amn50, ~122!

¹agbm12k@Ja
bm2 1

3~Js
sbda

m1Js
smda

b!#50, ~123!

Fa2dlFa
l50. ~124!

Solving ~123! with respect toG ~i.e, expressing the ‘‘nonmetricity’’ ofG in terms ofJa
bm! and

inserting the resulting expression back into~122! we recover Einstein equations~115! once the
relation ~119! is fulfilled.

On the other hand, as it was proved by Kijowski in Ref. 5, if suitable regularity conditions
met, we can instead consider Eq.~122! as the equations of a new Legendre map, i.e., as
implicit definition of the metric densitygmn in terms of the symmetric connectionGa

bm and its
derivatives. This way we may describe the same theory by means of a third, purely-affin
grangian densityLPA( j 1G, j 1w). Its Euler–Lagrange equations will be equivalent to~123!.

Roughly speaking, the transition from the metric-affine description to the purely-affine pi
consists in a new partial Legendre transformation. We solve Eq.~122! with respect tog,

gbm5gbm~G,K, j 1w! ~125!

and we set

LPA~G,K, j 1w!8LMA~g~G,K, j 1w!, j 1G, j 1w!52
1

2k
gbm~G,K, j 1w!Kbm

1W~G,g~G,K, j 1w!, j 1w!. ~126!

In this last type of theory, the gravitational potential is a symmetric connectionGa
bm and its

derivatives enter only through the symmetric partKbm of its Ricci tensor.
Conversely, to prove the equivalence between a purely-affine theory of gravitation des

by a Lagrangian densityLPA(G,K, j 1w) and the metric-affine description of the same theory~see
Ref. 5!, we follow Einstein’s prescription3 and we naturally define a symmetric controvaria
tensor density as the momentum canonically conjugated to the connectionG,

gmn~G,K, j 1w!822k
]LPA

]Kmn
. ~127!

Then we interpret it as the contravariant metric tensor density of a metric tensorgab , defining the
~Lorentzian! structure of the space–time manifold, by the prescription,

gmn~G,K, j 1w!5@2det~gab!#21/2gmn. ~128!

Solving Eq.~127! with respect to the tensorKmn ,

Kmn5Kmn~g,G, j 1w!, ~129!
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and exchanging the ‘‘velocities’’Kmn with the momentagmn we obtain the metric-affine matte
Lagrangian densityW(g,G, j 1w) through the rule,

W~g,G, j 1w!5
1

2k
Kmn~g,G, j 1w!gmn1LPA~G,K~g,G, j 1w!, j 1w!. ~130!

In conclusion we have the following theorem, the proof of which is implicitly given in Re
6 and 7.

Theorem 3: The purely-metric, purely-affine, and metric-affine theories of gravitational
teractions, described, respectively, by the Lagrangian densities (101), (117), and (126
equivalent, i.e., they admit the same solutions(g(x),G(x),w(x)) of the corresponding field equa
tions. Transitions between them are partial Legendre transformations.

B. Self-dual Euclidean gravity

We consider now three different kinds of Lagrangians, which all describe~modulo particular
degenerate cases! the theory of self-dual Euclidean gravity. We stress that all the results of
section are well-known as they follow from previous works~see Refs. 9–12!. Our purpose is only
to recast these results in our geometrical framework.

In order to simplify the exposition we consider only the case of Euclidean gravity, i.e., in
sequel~M, g! will denote a four-dimensional Riemannian manifold. For the generalizatio
Lorentzian signature, i.e., to complex self-dual gravity, and for more detailed calculations we
the reader to Refs. 9–12.

Our starting point is the so-called self-dual Hilbert–Palatini Lagrangian density coupled
cosmological constant,

LHP~e, j 11A!8 1
4«

mnab«ABCDem
Aen

BS 1Fab
CD2

L

6
ea

Ceb
DD . ~131!

Capital lettersA,B,... range from 1 to 4 and denote internalso(4) indices. They are raised
~lowered! with the metricdAB(dAB). LHP is the analog of the Helmholtz Lagrangian~61!. It
depends on two independent fields; the role of the configuration variables ‘‘y’’ is played by the
self-dual components1Am

IJ of a so(4) connection 1-formAm
IJ , while the momenta are a syste

of co-tetrad fieldsem
A , i.e., gmn5dABem

Aen
B . In the sequel we speak of duality only with respe

to internal indices,

1Am
IJ5 1

2~Am
IJ1* Am

IJ!, ~132!

where the* operator is defined, as usual, by

~* Am! IJ5 1
2«

IJKLAmKL . ~133!

In ~131!, 1Fab
IJ is the self-dual part of the curvature 2-form of the connectionAm

IJ or, equiva-
lently, the curvature of the self-dual connection1Am

IJ ,

1Fab
IJ5]a~1Ab

IJ!2]b~1Aa
IJ!1@1Aa ,1Ab# IJ. ~134!

The coefficient in front ofLHP is taken in agreement with Ref. 15.
Variations of~131! with respect to the ‘‘conjugated’’ fieldsem

I and1Am
IJ give, respectively,

1
2«

mnab«ABCDen
B1Fab

CD5LeeA
m , ~135!

1Dn@1~eI
@meJ

n] !e#50, ~136!

where1Dn denotes the covariant derivative with respect to1An
IJ .
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In order to write the second-order dual LagrangianL* ( j 2e) of the theory we consider~136!
as the Legendre map, i.e., as the defining equation of momenta1Am

IJ in terms of configuration
variablesem

I together with their derivatives. This amounts to solve~136! with respect to the
self-dual connection1A. An easy calculation reveals that1Am

IJ is equal to the self-dual part o
the unique torsion-free spin-connectionvmI

J compatible with the tetrad fieldsem
I ,

1AmI
J51vmI

J~ j le!. ~137!

It then follows that the self-dual field strength1F is the self-dual part of the curvature of th
spin-connection,

1Fmn
IJ51Rmn

IJ~v!5 1
2~Rmn

IJ1 1
2«

IJKLRmnKL!. ~138!

Inserting~138! into ~131!,

L* ~ j 2e!5 1
8«

mnab«ABCDem
Aen

B~Rab
CD1 1

2«
CDEFRabEF!2Le

5 1
8«

mnab«ABCDem
Aen

BRab
CD2Le

5 1
2Ag~R22L! ~139!

owing to the fact that the term

«mnab«ABCDem
Aen

B«CDEFRabEF

vanishes because of Bianchi identities, we have that the dual LagrangianL* is exactly the Hilbert
Lagrangian for Euclidean general relativity coupled with a cosmological constant. Then Eq.~135!,
once we take~138! into account, reproduces Einstein equations with a cosmological consta

Thus, although~131! differs from the standard Hilbert–Palatini Lagrangian density~the field
strengthFmn

IJ being replaced by1Fmn
IJ! for a term which is not a divergence, it gives rise to t

same space of solutions~assuming the metric to be nondegenerate!. The advantage of introducing
the notion of self-duality becomes evident instead when we perform a Hamiltonian 311 splitting
of ~131! à la ADM. In the 311 Hamiltonian formulation~131! leads in fact to the Ashteka
variables~see Refs. 15 and 14!.

As repeatedly claimed, at least at the theoretical level, we obtain a third Lagrangian de
tion of the theory, which plays the role of our initial Lagrangian~12!, if we solve ~135! with
respect to the tetrad fieldsem

I in terms of the components1Fmn
IJ of the curvature 2-forms.

This approach would lead to a pure, metric-free, gauge formulation of General Rela
Unfortunately the calculations involved are not so easy to perform~see Ref. 34 for this kind of
Lagrangian, even if it is obtained with a different approach!. Despite of this, there is a differen
way to proceed which lead to the so-called CDJ Lagrangian formulation of General Relativ

The first step is the introduction of the following objects:

Fmn
IJ8e IJ

KLem
Ken

L , ~140!

1Fmn
IJ8 1

2@Fmn
IJ1~* Fmn! IJ#5 1

2~dM
I dN

J 2dM
J dN

I 1e IJ
MN!em

Men
N . ~141!

Then, owing to the identities,

FmnIJ
1Fab

IJ51FmnIJ
1Fab

IJ , ~142!

e5
1

4!
1Fmn

IJ1FabIJemnab, ~143!

we may rewrite~131! as
                                                                                                                



.
t
ts into

tion,

1912 J. Math. Phys., Vol. 41, No. 4, April 2000 Ferraris, Francaviglia, and Raiteri

                    
LHP~e, j 11A!5
1

4
emnabF1FmnIJ

1Fab
IJ2

L

6
1Fmn

IJ1FabIJG . ~144!

The second step amounts to observing that in~144! only so ~4! self-dual objects are involved
Then we can make use of the isomorphismso(4).so(3)3so(3) ~i.e., we make use of the fac
that the six-dimensional vector space of 2-forms over a four-dimensional vector space spli
the self-dual part and the orthogonal anti-self-dual part! to introduce the projection operator from
so~4! to so~3!,

1pi
AB8 1

2@e i
AB1dA

i dB
42dB

i dA
4 #, ~145!

where lower-case indices belong toso~3!, i.e., i 51, 2, 3, ande i
AB5e i

AB4 .
Equation~145! establishes an isomorphism between the self-dual sub-Lie algebra ofso~4! and

the Lie algebraso~3!, as it becomes evident from the following relations:

1
2

1pi
ABeABIJ51piIJ , ~146!

@1pi ,1pj #AB5e i j
k

1pk
AB , ~147!

1paCD1paAB5 1
4~dCD

AB1eCD
AB!, ~148!

1pa
AB

1piAB5dai. ~149!

If we define then

Fmn
a 81pa

ABem
Aen

B , ~150!

Fmn
a 81pa

AB
1Fmn

AB , ~151!

we may rewrite~144! as

LHP~e,J1A!5
1

2
emnab FFmn

a Faab2
L

3
Fmn

a FaabG . ~152!

Now, only theso~3!-valued 2-formsF i and the curvature componentsFmn
a of theso ~3! potential,

Am
i 51pi

ABAmn
AB ~153!

appear into the Lagrangian~152!. Then the idea should be to perform the Legendre transforma
‘‘dual’’ to the Legendre map~137!, varying the Lagrangian density~152! with respect to the fields
F i and solving the equations obtained in terms ofF i themselves, i.e.,F i5F i(F j ). But the
variablesFmn

i in ~152! still depend on the tetrad fields through the relations~150! and in order to
consider them as independent variables we are forced to add Lagrange multiplier terms to~152!,

L~F,A,c,m!5 1
2e

mnabFmn
a Faab2 2

3LZi
i1c i j Z

i j 2mc i
i , ~154!

where the (333) matrix (Zi j ) is defined by

Zi j 5 1
4Fmn

i Fab
j emnab. ~155!

The independent fields in~154! are the 2-formsF i and the connection 1-formsAi , plus the
Lagrange multipliersc andm.

Variation with respect tom gives
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c i
i50, ~156!

i.e., it guarantees that thec matrix is trace-free. Then, variation with respect toc gives

Zi j 2 1
3d

i j Za
a50. ~157!

Equations~157! are necessary and sufficient conditions for~150! to hold ~see Ref. 10!, i.e., they
assure that there exist tetrad fieldsem

I such that~150! is fulfilled. They also assure that the metr
gmn5dABem

Aen
B is positive-definite.

If condition ~157! holds it is also possible to express the metricgmn directly in terms of theF
fields,

Aggmn52 2
3 e i jkFma

i Frg
j Fbn

k ergab. ~158!

This is the well-known Urbantke formula~see Ref. 23! and it gives, apart from an arbitrar
conformal factor, the metric with respect to which the three independent 2-formsF i are self-dual.
In this context the 2-formsF i may be considered as the cubic-root of the metric and t
‘‘capture’’ the metric information contained in the theory described by the Lagrangian~154!.

The pull-back of~154! itself on the solution space of~156! and ~157! gives the original
Lagrangian density~131!. The Lagrangian density~154! is known as thePlebański Lagrangian
density~see Ref. 35! and it is the starting point of the metric-free CDJ formulation of the theo
This last is reached if we eliminate the fieldsF i andc i j from ~154!, expressing both of them in
terms ofFmn

i and the Lagrange multiplierm through their variational equations~see Refs. 9, 15, 14
for detailed calculations!. The final result, in theL50 case, is

LCDJ~h, j 1A!5h~V j
i V i

j2 1
2~V i

iV j
j !!, ~159!

where we have set

V i j 8 1
4Fmn

i Fab
j emnab, ~160!

h822m1/2~detV!21/2. ~161!

The Lagrangian density~159! represents the third description of self-dual~Euclidean! gravity.
Depending only on the components of the curvature of theso ~3! connection 1-formsAi , plus the
~arbitrary! Lagrange multiplierh, it fulfills the requirements of general and gauge covariance

Since the steps which have allowed to write~159! requirec i j to be invertible,

detuc i j uÞ0 ~162!

in theL50 case, the three descriptions~159!, ~154! ~and hence~131!! and~139! are equivalent if
~162! holds ~for vanishing cosmological constant, condition~162! amounts to require that th
self-dual part of the Weyl tensor, thought as a three by three matrix, be nondegenerate, see!.
In this case the 2-formsF i ~and hence the tetrad fields! and theso ~3! connection 1-formsAi are
variables conjugated to each other and we may describe the same theory using either one s
other as configuration variables; the different choices correspond, respectively, to the du
grangian densities~139!, with L50, and~159!.

VII. CONCLUSIONS AND PERSPECTIVES

The construction of dual Lagrangian in field theories, when applied to General Relativity~Sec.
VI A ! leads to the purely-affine formulation of Einstein gravity. The metric densitygmn and the
torsionless connectionGbm

a defined by~111! play the role of configuration variables or momen
of the gravitational field and, in any case, they are variables conjugated to each other. Exam
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purely-affine Lagrangians for physically important external matter fields interacting with
gravitational fields, such as the Klein–Gordon field, the Maxwell field and gravitating barot
ideal fluids, may be found in Refs. 5, 6, 27, and 36.

Moreover we stress that in the purely-affine formulation the connection~111! is torsionless
and its derivatives enter into the Lagrangian only through the symmetric part of the Ricci t
~118!. An interesting generalization of the ideas previously described, involving a connection
torsion and a more general dependence of the Lagrangian on irreducible components
Riemann tensor other thenKmn , has shown that a Lagrangian exists such that the correspon
dual metric formulation generates the coupled Einstein–Maxwell field equations.8 In Ref. 37 one
can find a review of the results of Einstein, Eyraud, Schro¨dinger on purely-affine theories with o
without torsion, together with the result that there exists a whole one-parameter fam
Lagrangians giving rise to Einstein–Maxwell equations.

The second example we discussed~self-dual Euclidean gravity! shows how the~metric!
theory of gravitation can be turned into a sort of gauge theory~of the group SO~3!! via a mecha-
nism which is nothing but a particular case of the Legendre transformation discussed h
detail.

We remark that in a previous paper of ours~see Ref. 20! we considered a sort of ‘‘dual’’
problem, i.e., how to transform a three-dimensional gauge theory of the group SO~3!, or possibly
SO~2,1!, over a three-dimensional space–time, into a purely-metric Einstein-type theory of
ity.

In a forthcoming paper21 we shall consider the much more involved generalization of the s
problem to gauge theories over a four-dimensional space–time.

1D. Hilbert, Königl. Gesel. Wiss. Go¨ttingen. Nachr., Math. Phys. Kl. 394~1915!.
2A. Einstein, Sitzungsber. K. Preuss. Akad. Wiss. 1111~1916!.
3A. Einstein, Sitzungsber. K. Preuss. Akad. Wiss. 137~1923!.
4A. Einstein, Sitzungsber. K. Preuss. Akad. Wiss. 414~1925!.
5J. Kijowski, Gen. Relativ. Gravit.9, 857 ~1978!.
6M. Ferraris and J. Kijowski, Rend. Sem. Mat. Univers. Politecn. Torino.41, 169 ~1983!.
7M. Ferraris and J. Kijowski, Gen. Relativ. Gravit.14, 165 ~1982!.
8M. Ferraris and J. Kijowski, Gen. Relativ. Gravit.14, 37 ~1982!.
9R. Capovilla, T. Jacobson, and J. Dell, Phys. Rev. Lett.63, 2325~1989!.

10R. Capovilla, T. Jacobson, J. Dell, and L. Mason, Class. Quantum Grav.8, 41 ~L1991!.
11R. Capovilla, T. Jacobson, and J. Dell, Class. Quantum Grav.8, 59 ~1991!.
12R. Capovilla and T. Jacobson, Mod. Phys. Lett. A7, 1871~1992!.
13A. Ashtekar,New Perspectives in Canonical Gravity~Bibliopolis, Napoli, 1988!.
14P. Pelda´n, Class. Quantum Grav.9, 2079~1992!.
15J. Romano, Gen. Relativ. Gravit.25, 759 ~1993!.
16M. B. Halpern, Phys. Rev. D16, 1798~1977!.
17M. B. Halpern, Phys. Rev. D16, 3515~1977!.
18M. B. Halpern, Phys. Rev. D19, 517 ~1979!.
19F. A. Lunev, Phys. Lett. B295, 99 ~1992!.
20M. Raiteri, M. Ferraris, and M. Francaviglia,General Relativity as a Gauge Theory of Orthogonal Groups in Th

Dimensions, in Gravity, Particles and Space–Time, edited by P. Pronin and G. Sardanashvily~World Scientific, Sin-
gapore, 1996!.

21M. Ferraris, M. Francaviglia, and M. Raiteri, ‘‘Dual Lagrangian Formulation of Gauge Theories’’~in preparation!.
22F. A. Lunev, hep-th/9503133.
23H. Urbantke, J. Math. Phys.25, 2321~1984!.
24J. Kijowski and W. Szczyrba, Commun. Math. Phys.46, 183 ~1976!.
25M. J. Gotay, inMechanics, Analysis, and Geometry: 200 Years After Lagrange, edited by M. Francaviglia~Elsevier

Science, Amsterdam, 1991!, pp. 203–235.
26G. Sardanashvily,Generalized Hamiltonian Formalism for Field Theory~World Scientific, Singapore, 1995!.
27M. Ferraris and J. Kijowski, Lett. Math. Phys.5, 127 ~1981!.
28M. Ferraris, inProceedings of the Conference on Differential Geometry and its Applications (Nove´ Město na Moraveˇ,
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A new look at the Schouten–Nijenhuis,
Frö licher–Nijenhuis, and Nijenhuis–Richardson brackets

E. Gozzia) and D. Mauro
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Strada Costiera 11, P.O. Box 586, Trieste, Italy
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In this paper we re-express the Schouten–Nijenhuis, the Fro¨licher–Nijenhuis, and
the Nijenhuis–Richardson brackets on a symplectic space using the extended Pois-
son brackets structure present in the path-integral formulation of classical mechan-
ics. © 2000 American Institute of Physics.@S0022-2488~00!02502-0#

I. INTRODUCTION

Some time ago apath-integral formulation of classical mechanics~CM! appeared in the
literature.1 This formulation was nothing else than the path-integral counterpart of theoperatorial
version of CM provided long ago by Koopman and von Neumann.2 From now on we will refer to
the formulation contained in Ref. 1 as CPI~‘‘classical path integral’’!.

Calling the phase space of the system asM, one had that in the CPI, besides the 2n phase-
space variables:wa5(q1

¯qn,p1
¯pn), the measure in the path-integral contained a set ofn

auxiliary variables which were indicated as (la ,ca,c̄a). All together these 8n variables
(wa,la ,ca,c̄a) labeled a superspace whose geometrical meaning was studied in Ref. 3. It
out to be what is called the cotangent bundle to the reversed-parity tangent bundle to phas
and is indicated in brief asT* (PTM). Being a cotangent bundle this superspace had a Poi
structure which was called in Ref. 1 extended Poisson brackets~or EPB! to distinguish it from the
standard Poisson brackets defined on the phase-spaceM. Via these EPB and the 8n variables
indicated previously it was shown1 that all the standard variables~forms, multivectors, etc.! could
be mapped into functions of our 8n variables and the standard operations~exterior derivative,
interior contraction, Lie-brackets, Lie-derivative, etc.! of the Cartan calculus4 could be obtained by
inserting those functions into chains of EPB.

What had not been mapped into this formalism of the CPI and of the EPB were
generalizations of the Lie-brackets known8,10 as the Schouten–Nijenhuis~SN! brackets, the
Frölicher–Nijenhuis~FN! brackets, and the Nijenhuis–Richardson~NR! ones. In this paper we
will derive the above-mentioned mapping for these backets.

The paper is organized as follows. In Sec. II we will briefly review the path integral
classical mechanics~CPI! and explain the EPB structure present there. In Sec. III we will sh
how to do the Cartan calculus via our variables and the associated EPB structure. In Secs
VI we will map the SN brackets, the FN brackets, and the NR ones into operations done with
the EPB brackets with inserted different functions of our variables. In Appendix A we will re
the main formulas of the Cartan calculus while the calculations of Secs. IV–VI are given in
in Appendices B–D.

II. PATH INTEGRAL FOR CLASSICAL MECHANICS „CPI…

The idea is to give apath integralfor CM which will reproduce theoperatorialversion of CM
as given by theLiouville operator2 or by theLie derivativeof the Hamiltonian flow.4 We will be
brief here because more details can be found in Ref. 1.

a!Also at: INFN, Sezione di Trieste; electronic mail: gozzi@trieste.infn.it
19160022-2488/2000/41(4)/1916/18/$17.00 © 2000 American Institute of Physics
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Let us start with a 2n-dimensional phase spaceM whose coordinates are indicated aswa

(a51,...,2n), i.e.,wa5(q1
¯qn,p1

¯ pn). Let us indicate the Hamiltonian of the system asH(w)
and the symplectic matrix asvab. The equations of motions are then:

ẇa5vab
]H

]wb . ~1!

We shall nowsuggest, as path integral for CM, one that forces all paths inM to sit on the
classical ones. TheclassicalanalogZCM of the quantum generating functional would be

ZCM@J#5NE Dwd̃ @w~ t !2wcl~ t !#expE Jw dt, ~2!

wherew are thewaPM,wcl are the solutions of Eq.~1!, J is an external current andd̃@ # is a
functional Dirac-delta which forces every pathw(t) to sit on a classical onewcl(t). Of course
there are all possible initial conditions integrated over in~2!. One should be very careful in
properly defining the measure and the functional Dirac delta. This careful analysis has bee
in the literature5 for stochastic evolution equations and it applies to Hamiltonian determin
equations as well.

We should now check if the path integral of Eq.~2! leads to the well-known operatoria
formulation2 of CM done via the Liouville operator and the Lie derivative. To do that let us
rewrite the functional Dirac delta in~2! as

d̃@w2wcl#5 d̃@ ẇa2vab]bH#det@db
a] t2vac]c]bH#, ~3!

where we have used the analog of the relation

d@ f ~x!#5
d@x2xi #

U] f

]xU
xi

. ~4!

The determinant which appears in~3! is always positive and so we can drop the modulus signu u.
The next step is to insert~3! in ~2! and write thed̃@ # as a Fourier transform over some ne
variablesla , i.e.,

d̃F ẇa2vab
]H

]wbG5E Dla expi E laF ẇa2vab
]H

]wbGdt ~5!

and to re-write the determinant det@db
a]t2vac]c]bH# via Grassmannian variablesc̄a ,ca:

det@db
a] t2vac]c]bH#5E DcaDc̄a exp2E c̄a@db

a] t2vac]c]bH#cb dt. ~6!

Inserting~5!, ~6!, and~3! in ~2! we get

ZCM@0#5E DwaDlaDcaDc̄a expF i E dt L̃G , ~7!

whereL̃ is

L̃5la@ẇa2vab]bH#1 i c̄a@db
a] t2vac]c]bH#cb. ~8!

One can easily see that this Lagrangian gives the following equations of motion:
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ẇa2vab]bH50, ~9!

@db
a] t2vac]c]bH#cb50, ~10!

db
a] tc̄a1 c̄avac]c]bH50, ~11!

@db
a] t1vac]c]bH#la52 i c̄avac]c]d]bHcd. ~12!

One notices immediately the following two things:

~1! L̃ leads to the same Hamiltonian equations forw asH did;
~2! cb transforms under the Hamiltonian vector fieldh[vab]bH]a as aform dwb does.

From the above-mentioned formalism one can get the equations of motion~9!–~12! also via

an HamiltonianH̃:

H̃5lavab]bH1 i c̄avac~]c]bH !cb ~13!

and via some super-extended Poisson brackets~EPB! defined in the space (wa,ca,la ,c̄a). They
are:

$wa,lb%EPB5db
a , $c̄b ,ca%EPB52 idb

a . ~14!

The equations of motion~9!–~12! are then reproduced via the formula (d/dt)A5$A,H̃%EPB where
A is one of the variables (wa,ca,la ,c̄a). All the other EPB are zero; in particular$wa,wb%EPB50
and so these are not the standard Poisson brackets onM which would give$wa,wb%PB5vab.

Since~7! is a path integral one could also introduce the concept ofcommutatoras Feynman
did in the quantum case. If we define the graded commutator of two functionsO1(t) andO2(t) as
the expectation valuê & under our path integral of some time-splitting combinations of
functions themselves, as:

^@O1~ t !,O2~ t !#&[ lim
e→0

^O1~ t1e!O2~ t !6O2~ t1e!O1~ t !&, ~15!

then we get immediately from~7! that the only expressions different from zero are

^@wa,lb#&5 idb
a , ^@ c̄b ,ca#&5db

a . ~16!

We notice immediately two things
~1! There is an isomorphism between the extended Poisson structure~14! and the graded

commutator structure~16!: $•,•%EPB→2 i @•,•#.
~2! Via the commutator structure~16! one can ‘‘realize’’la and c̄a as

la52 i
]

]wa , c̄a5
]

]ca . ~17!

Now, using ~17!, we can check that actually what we got as weight in~7! corresponds to the

operatorial version of CM. In fact take, for the moment, only the bosonic~B! part of H̃ in ~13!:

H̃B5lavab]bH. ~18!

This one, via~17!, goes into the operator:
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Ĥ̃B[2 ivab]bH]a , ~19!

which is the Liouville operator of CM. If we had added the Grassmannian part toH̃B and inserted
the operatorial representation ofc̄ ~17!, we would have obtained the Lie derivative of the Ham
tonian flow as we will see in Sec. III. So this proves that the operatorial version of CM co
from a path-integral weight that is just a Dirac delta on the classical paths. Somehow this
classicalanalog of what Feynman did forquantummechanics where he proved that the Sch¨-
dinger operator of evolution comes from a path-integral weight of the form expiS.

III. CARTAN CALCULUS

We have seen in Sec. II thatca transform asdwa, that is as the basis of generic form
a[aa(w)dwa or as thecomponentsof tangent vectors:Va(w)(]/]fa). The space whose coor
dinates are (wa,ca) is referred to in Ref. 6 as thereversed-parity tangent bundle, indicated as
PTM. The ‘‘reversed-parity’’ specification is because theca are Grassmannian variables. As th
(la ,c̄a) are the ‘‘momenta’’ of the previous variables@see Eq.~19!#, we conclude that the 8n
variables (wa,ca,la ,c̄a) span the cotangent bundle to the reversed-parity tangent bun3

T!(PTM). For more details about this we refer the interested reader to Ref. 3. So our s
space is a cotangent bundle and this is the reason why it has a Poisson structure which is
we found via the CPI and indicated in Eq.~15!.

In the remainder of this section we will show how to reproduce all the abstract Cartan ca
via our EPB and the Grassmannian variables. Let us first introduce five charges which ar

served under theH̃ of Eq. ~13! and which will play an important role in the Cartan calculus. Th
are:

QBRS[ icala , ~20!

Q̄BRS[ i c̄avablb , ~21!

Qg[cac̄a , ~22!

K[ 1
2vabc

acb, ~23!

K̄[ 1
2v

abc̄ac̄b , ~24!

wherevab are the matrix elements of the inverse ofvab. The next thing we should observe is th
c̄a transforms under the Hamiltonian flow as the basis of vector fields, see Eq.~11!, while la does
not seem to transform as a vector field, Eq.~12!, even if it can be interpreted as]/]wa. The
explanation of this fact is given in Ref. 3.

Now sinceca transforms7 as basis of formsdwa andc̄a as basis of vector fields]/]wa, let us
start building the following map, called the caret map∧:

a5aadwa→̂â[aaca, ~25!

V5Va]a→̂V̂[Vac̄a . ~26!

It is actually a much more general map between formsa, antisymmetric tensorsV, and functions
of w,c,c̄:

F ~p!5
1

p!
Fa1¯ap

dwa1∧¯∧dwap→̂F̂ ~p![
1

p!
Fa1¯ap

ca1
¯cap, ~27!
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V~p!5
1

p!
Va1¯ap]a1

∧¯∧]ap
→̂V̂[

1

p!
Va1¯apc̄a1

¯ c̄ap
. ~28!

Once the correspondence~25!–~28! is extablished we can easily find out what corresponds to
various Cartan operations known as the exterior derivatived of a form, or interior contraction
between a vector fieldV and a formF. It is easy to check that, see Ref. 1,

dF~p!→̂ i $QBRS,F̂ ~p!%EPB, ~29!

ivF ~p!→̂ i $V̂,F̂ ~p!%EPB, ~30!

pF~p!→̂ i $Qg ,F̂ ~p!%EPB, ~31!

whereQBRS, Qg are the charges of~20!–~22!. At the same level we can translate in our langua
the usual mapping4 between vector fieldsV and formsV[ realized by the symplectic two-form
v(V,0)[V[, or the inverse operation of building a vector fielda] out of a form:a5(a])[.
These operations can be translated in our formalism as follows:

V[→̂ i $K,V̂%EPB, ~32!

a]→̂ i $K̄,â%EPB, ~33!

where againK, K̄ are the charges~23! and ~24!. We can also translate the standard operation
building a vector field out of a functionf (w), and also the Poisson brackets between two functi
f andg:

~d f !]→̂ i $Q̄BRS, f %EPB, ~34!

$ f ,g%PB5d f@~dg!]#→̂2$$$ f ,QBRS%,K̄%,$$$g,QBRS%,K̄%,K%%EPB. ~35!

The next thing to do is to translate the concept of Lie derivative which is defined
LV5diV1iVd. It is easy to prove that

LVF ~p!→̂$2H̃V ,F̂ ~p!%EPB, ~36!

whereH̃V5laVa1 i c̄a]bVacb; note that, forVa5vab]bH,H̃V becomes theH̃ of ~13!. This con-

firms that the fullH̃ of Eq. ~13! is the Lie derivative of the Hamiltonian flow as we said at the e
of Sec. II. Finally the Lie brackets between two vector fieldsV, W are reproduced by

@V,W#Lie brack→̂$2H̃V ,Ŵ%EPB. ~37!

We will collect in Appendix A all the important formulas we mentioned in this section.
course the abstract Cartan calculus, the Lie brackets, and all the generalized brackets
introduced for any differentiable manifoldM without the need of a symplectic structure on
What is needed in our construction is only the EPB structure which would exist even with
symplectic structure onM.

IV. SCHOUTEN–NIJENHUIS „SN… BRACKETS

These brackets are a generalization of the Lie brackets between vector fields: in fact t
are brackets betweenmultivector fieldsand they become the usual Lie brackets in case of ve
fields. As Lie brackets associate with two vector fieldsX andY another vector field@X,Y#, so SN
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brackets associate with two multivector fields of rankp (P5X(1)∧¯∧X(p)) and
r (R5Y(1)∧¯∧Y(r )) a multivector field of rankp1r 21 via the following rule:8

@•,•#SN:V p~M !3V r~M !→V p1r 21~M !,
~38!

@P,R#SN[(
i 51

p

~21! i 11X~1!∧¯∧ X̂̂~ i !¯∧X~p!∧@X~ i ! ,R#,

where theV s indicates the space of mutivector fields of ranks and the double caretX̂̂( i ) indicates
that we have removed theX( i ) , while @X( i ) ,R#5LX( i )

R is the Lie derivative of a multivector
defined as

LX~ i !
R5(

j 51

r

Y1∧¯∧@X~ i ! ,Y~ j !#∧¯∧Y~r ! . ~39!

This Lie derivative is reproduced via our extended Poisson brackets~EPB! as

LX~ i !
R→̂2$H̃X~ i !

,R̂%EPB, ~40!

where we have defined:H̃X( i )
5$X̂( i ) ,QBRS%EPB. The SN brackets become then in our notation

@P,R#SN→̂2$H̃P ,R̂%EPB, ~41!

where

H̃P5$Q,X̂~1!¯X̂~p!%5(
i 51

p

~21! i 11X̂~1!¯ X̂̂~ i !¯X̂~p!H̃X~ i !
~42!

and

R̂5Y
~1!

j 1 c̄ j 1
¯Y

~r !

j r c̄ j r
. ~43!

The quantities which one has in Eqs.~40!–~42! are those written in terms ofca or c̄a as explained
in Sec. III.

The extended Poisson brackets~EPB!, besides allowing us to write complicated formulas in
very compact way, can also be used to prove some properties of the Schouten–Nijenhuis b
as we will show in Appendix B.

V. FRÖLICHER–NIJENHUIS „FN… BRACKETS

These are brackets which associate with twovector-valued forms9 KPVk11(M ;TM) of de-
greek11 andLPV l 11(M ;TM) of degreel 11 a vector-valued form of degreek1 l 12:

@•,•#FN:Vk11~M ;TM!3V l 11~M ;TM!→Vk1 l 12~M ;TM!. ~44!

They are defined in the following manner:10

~a! Let us first define the interior contractioniK not with a vector field but with a vector
valued formK of degreek11, and apply it on a formv of degreel. As K is a (k11)-form, iKv
can eatk1 l vector fields, i.e., when we applyiKv to k1 l vectors, we obtain the following
number:
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~iKv!~X~1! ,...,X~k1 l !![
1

~k11!! ~ l 21!! (
$sPSk1 l %

~signs!v@K~Xs~1! ,...,Xs~k11!!,

Xs~k12! ,...,Xs~k1 l !], ~45!

whereSk1 l is the set of permutations of thek1 l vector fieldsX(1)¯X(k1 l ) . We note how the
k11 vector-valued formK, acting onk11 vector fields, produces another vector field.

~b! Having defined this generalized interior productiK , we can also define a generalized L
derivative as

LK5@iK ,d#, ~46!

where@•, •# is the usual graded commutator andKPVk11(M ;TM).
~c! Now, having done~a! and~b!, the FN brackets are defined in the following implicit wa

@LK ,LL#[L@K,L#FN
, ~47!

where@LK ,LL# is the usual graded commutator among Lie derivatives.
Now if K andL are written in our language as

K→̂ 1

~k11!!
Ki 1i 2¯ i k11

i @ci 1ci 2
¯ci k11#@ c̄i #,

~48!

L→̂ 1

~ l 11!!
L j 1 j 2¯ j l 11

j @cj 1cj 2
¯cj l 11#@ c̄ j #,

then the FN brackets become

@K,L#FN→̂2$H̃K ,L̂%EPB, ~49!

where

H̃K5
1

~k11!!
~l jK j 1 j 2¯ j k11

j 1 i c̄ j~]dK j 1 j 2¯ j k11

j cd!!cj 1
¯cj k11. ~50!

The calculational details are given in Appendix C.

VI. NIJENHUIS–RICHARDSON „NR… BRACKETS

They are brackets defined among two vector-valued forms:KPVk11(M ;TM) and
LPV l 11(M ;TM) and they give ak1 l 11 vector-valued form defined in the following implic
way:

@•,•#NR:Vk11~M ;TM!3V l 11~M ;TM!→Vk1 l 11~M ;TM!,
~51!

i@K,L#NR
[@iK ,iL#,

whereiK andiL are the generalized interior contractions defined in Sec. V. The definition~51! can
also be expressed in a more explicit way as

@K,L#NR5iKL2~21!kliLK. ~52!

Now with our calculus andK̂ and L̂ defined as in~48! we can show that

@K,L#NR→̂ i $K̂,L̂%EPB. ~53!
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The calculational details are provided in Appendix D.
We can now summarize all SN, FN, NR brackets in the following very compact way:

@P,R#SN→̂2$H̃P ,R̂%EPB,

@K,L#FN→̂2$H̃K ,L̂%EPB, ~54!

@K,L#NR→̂ i $K̂,L̂%EPB,

where

R5Y~1!∧¯∧Y~r !→̂Y
~1!

j 1 c̄ j 1
¯Y

~r !

j r c̄ j r
,

H̃P5$Q,X̂~1!¯X̂~p!%5(
i 51

p

~21! i 11X̂~1!¯ X̂̂~ i !¯X̂~p!H̃X~ i !
,

H̃K5
1

~k11!!
~l jK j 1 j 2¯ j k11

j 1 i c̄ j~]dK j 1 j 2¯ j k11

j cd!!cj 1
¯cj k11, ~55!

KPVk11~M ;TM!→̂ 1

~k11!!
Ki 1i 2¯ i k11

i @ci 1ci 2
¯ci k11#@ c̄i #,

LPV l 11~M ;TM!→̂ 1

~ l 11!!
L j 1 j 2¯ j l 11

j @cj 1cj 2
¯cj l 11#@ c̄ j #.

VII. CONCLUSIONS

The reader may ask what is the use of all this. Our answer is that by looking at Eq.~54! one
immediately realizes that we have reducedthreedifferent and complicated brackets, like the S
FN, and NR brackets, to onlyone bracket, which is our extended Poisson bracket~or EPB! in
which the entries are different functions of our variables. So instead of changing the brack
just have to change the entries to reproduce all three SN, FN, and NR brackets. This un
structure is not only appealing but it may also indicate something more profound which m
worth investigating in the future.
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APPENDIX A: CARTAN CALCULUS

The correspondence between the standard Cartan calculus4 and our formulation is provided
below:

QBRS[ icala , Q̄BRS[ i c̄avablb , ~A1!

Qg[cac̄a , ~A2!

K[ 1
2vabc

acb, K̄[ 1
2v

abc̄ac̄b , ~A3!
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$wa,lb%EPB5db
a , $c̄b ,ca%EPB52 idb

a , ~A4!

a5aadwa→̂â[aaca, ~A5!

V5Va]a→̂V̂[Vac̄a , ~A6!

F ~p!5
1

p!
Fa1¯ap

dwa1∧¯∧dwap→̂F̂ ~p![
1

p!
Fa1¯ap

ca1
¯cap, ~A7!

V~p!5
1

p!
Va1¯ap]a1

∧¯∧]ap
→̂V̂[

1

p!
Va1¯apc̄a1

¯ c̄ap
, ~A8!

dF~p!→̂ i $QBRS,F̂ ~p!%EPB, ~A9!

iVF ~p!→̂ i $V̂,F̂ ~p!%EPB, ~A10!

pF~p!→̂ i $Qg ,F̂ ~p!%EPB, ~A11!

V[→̂ i $K,V̂%EPB, ~A12!

a]→̂ i $K̄,â%EPB, ~A13!

~d f !]→̂ i $Q̄BRS, f %EPB, ~A14!

~A15!

LVF ~p!→̂2$H̃V ,F̂ ~p!%EPB, ~A16!

@V,W#Lie brack.→̂2$H̃V ,Ŵ%EPB. ~A17!

APPENDIX B: CALCULATIONAL DETAILS REGARDING THE SN BRACKETS

We report here some more detailed calculations about the SN brackets and we follow R
From now on all the curly brackets mean EPB brackets andQ indicates the BRS charge tha
previously we indicated asQBRS. Since we will use it widely, we want first to return to th
formula regarding the Lie brackets between two vector fields, of which the SN brackets are
a generalization. As we have seen in~A17! the correct translation in our language of the L
brackets is

@V,W#Lie brack.→̂2$H̃V ,Ŵ%. ~B1!

In fact,

2$H̃V ,Ŵ%52$laVa1 i c̄a~]bVa!cb,Wcc̄c%5Vac̄c]aWc2 c̄a~]bVa!Wb

5@Vb~]bWa!2Wb~]bVa!# c̄a . ~B2!

So we have obtained, correctly, a vector field whose components are just the components
Lie brackets betweenVac̄a andWac̄a , see Ref. 10.

Next we extend the concept ofinterior contraction: the interior product between
p-multivector fieldP5X(1)∧¯∧X(p) and anl-form v is defined as
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iPv~¯ !5v~X~1! ,X~2! ,...,X~p! ,...!. ~B3!

Now from the definition itself of interior product we have:

iX~p!
iX~p21!

¯iX~1!
v~¯ !5iX(p21)

¯iX~1!
v~X~p! ,...!5iX~p22!

¯iX~1!
v~X~p21! ,X~p! ,...!

5¯5v~X~1! ,X~2! ,...,X~p! ,...!5iPv~¯ !. ~B4!

In this way we can transform the interior product with a multivector into a set of interior con
tions with normal vector fields:

iPv5iX~p!
iX~p21!

¯iX~2!
iX~1!

v. ~B5!

Let us remember that we know which is the∧ map of an interior contraction between a form a
a vector:

iVv→̂ i $V̂,v̂%. ~B6!

So, applying the previous formula over and over again, we obtain from~B5! and ~B6!:

~B7!

One could have been tempted to make the∧ correspondence not with the right-hand side of~B7!,
but with something proportional to

$X~1!

i 1 c̄i 1
X

~2!

i 2 c̄i 2
¯X

~p!

i p c̄i p
,v i j ¯ lc

icj
¯cl% ~B8!

but it would be wrong. In fact, while~B7! is an (l 2p)-form, that is an (l 2p)-string ofc, ~B8! is
not a string of onlyc.

Now we notice that the interior contraction with a 2-vector can be expressed as a combi
of well-known objects, such as Lie brackets, exterior derivatives, and interior contractions
normal vector fields. In fact, according to our formalism, we have

iV∧Wdv→̂2 i $Ŵ,$V̂,$Q,v̂%%%, ~B9!

whereV andW are vector fields,v is a one-form, andQ is the usual BRS charge. Using the Jaco
identity, we can write:

2 i $Ŵ,$V̂,$Q,v̂%%%5 i $Ŵ,$Q,$V̂,v̂%%%1 i $Ŵ,$v̂,$Q,V̂%%%. ~B10!

The last term of~B10! can be rewritten again using the Jacobi identity:

1 i $Ŵ,$v̂,$Q,V̂%%%51 i $v̂,$$Q,V̂%,Ŵ%%2 i $$Q,V̂%,$Ŵ,v̂%%. ~B11!

Let us now manipulate the last term of~B11!:

2 i $$Q,V̂%,$Ŵ,v̂%%51 i $$Ŵ,v̂%,$V̂,Q%%

52 i $V̂,$Q,$Ŵ,v̂%%%2 i $Q,$$Ŵ,v̂%,V̂%%. ~B12!
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The last term of~B12! is identically zero, in fact:

$$Ŵ,v̂%,V̂%5$$Wac̄a ,vbcb%,Vdcd%5$2 iWava ,Vdcd%50. ~B13!

Collecting all the previous results in~B9! we obtain:

iV∧Wdv→̂ i $Ŵ,$Q,$V̂,v̂%%%1 i $$$Q,V̂%,Ŵ%,v̂%2 i $V̂,$Q,$Ŵ,v̂%%%

5~2iWd~iVv!2i@V,W#v1iVd~iWv!!∧. ~B14!

So we have obtained the formula:

iV∧Wdv52iWd~iVv!2i@V,W#v1iVd~iWv!, ~B15!

which can be generalized to the case of multivector fields; we can in fact express interio
traction with a multivector field using exterior derivatives, interior contractions with multivec
of lower rank, and the SN brackets according to the formula:

iP∧Rdv52iRd~iPv!2i@P,R#SN
v1iPd~iRv!, ~B16!

whereP andR are multivector fields of rankp and r, respectively, andv is a p1r 21 form. A
proof of ~B16!, that is the natural generalization of~B15!, can be found in Ref. 11.

Following Ref. 8, we can define the Schouten–Nijenhuis brackets between two multiv
fields P5X(1)∧X(2)∧¯∧X(p) and R5Y(1)∧Y(2)∧¯∧Y(r ) as the (p1r 21)-multivector field
given by

@P,R#SN5(
i 51

P

~21! i 11X~1!∧¯∧X9 ~ i !∧¯∧X~p!∧@X~ i ! ,R#, ~B17!

whereX̂̂( i ) meansX( i ) is missing and where

@X~ i ! ,R#5LX~ i !
R5(

j 51

r

Y~1!∧¯∧@X~ i ! ,Y~ j !#∧¯∧Y~r ! . ~B18!

In the previous formula@X( i ) ,Y( j )# are the usual Lie brackets between vector fields. Now~B18!,
which is the Lie derivative along a vector field of a multivector, can be translated in our lang
as

LX~ i !
R→̂$2H̃X~ i !

,R̂%52$$X̂~ i ! ,Q%,R̂%. ~B19!

In fact,

$2H̃X~ i !
,R̂%5$2H̃X~ i !

,Ŷ~1!Ŷ~2!¯Ŷ~r !%

5$2H̃X~ i !
,Ŷ~1!%Ŷ~2!¯Ŷ~r !1Ŷ~1!$2H̃X~ i !

,Ŷ~2!%Ŷ~3!¯Ŷ~r !

1¯1Ŷ~1!Ŷ~2!¯Ŷ~r 21!$2H̃X~ i !
,Ŷ~r !%

5(
j 51

r

Ŷ~1!Ŷ~2!¯~@X~ i ! ,Y~ j !# !∧
¯Ŷ~r !5~LX~ i !

R!∧. ~B20!

We note that the extended Poisson brackets automatically take into account the sum overj which
appears in the definition of Lie derivative of a multivector.

Now we can consider the SN brackets. According to their definition we have
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@P,R#SN→̂(
i 51

p

~21! i 11X̂~1!¯X9 ~ i !¯X̂~p!$2$X̂~ i ! ,Q%,R̂%. ~B21!

The previous formula can be written in a very compact way as

@P,R#SN→̂2$$Q,P̂%,R̂%. ~B22!

In fact,

2$$Q,P̂%,R̂%52$$Q,X̂~1!¯X̂~p!%,R̂%

52$$Q,X̂~1!%X̂~2!¯X̂~p! ,R̂%1$X̂~1!$Q,X̂~2!%X̂~3!¯X̂~p! ,R̂%2¯

52$ X̂̂~1!X̂~2!¯X̂~p!$Q,X̂~1!%,R̂%1$X̂~1!X̂̂~2!¯X̂~p!$Q,X̂~2!%,R̂%2¯

5(
i 51

p

~2 ! i 11X̂~1!¯ X̂̂~ i !¯X̂~p!$2$Q,X̂~ i !%,R̂%5@P,R#SN
∧ . ~B23!

So we do not need any sum or any strange factor if we use the EPB brackets to represent
brackets. On the right-hand side of~B22! we have the images, via the∧ map, of the multivectors
P andR, which appear on the left-hand side of the same equation, and the usual BRS chargeQ that
appears naturally also in this context.

Like in the case of vector fields, whereH̃X5$X̂,Q%5$Q,X̂%, we can also define a sort o
Hamiltonian associated with a multivector in the following way:

H̃P5$Q,X̂~1!¯X̂~p!%5(
i 51

p

~21! i 11X̂~1!¯ X̂̂~ i !¯X̂~p!H̃X~ i !
. ~B24!

In this way we can finally write:

@P,R#SN→̂2$H̃P ,R̂%. ~B25!

From expressions~B24! and ~B25! we also notice how the SN brackets become the usual
brackets in case of vector fields.

Besides this, we can use the properties of the EPB and of Grassmannian variables to
strate immediately some other properties, or alternative definitions, of the Schouten–Nije
brackets. If we start from~B21! and we take into account the definition of Lie derivative of
multivector, we obtain:

@P,R#SN→̂(
i 51

p

~21! i 11X̂~1!¯ X̂̂~ i !•••X̂~p!$2H̃X~ i !
,R̂%

5(
i 51

p

(
j 51

r

~21! i 11X̂~1!¯ X̂̂~ i !¯X̂~p!Ŷ~1!¯Ŷ~ j 21!~ @X~ i ! ,Y~ j !# !∧
¯Ŷ~r ! . ~B26!

Remembering that the Lie bracket of two vector fields is a vector field~and so it is Grassmannia
odd in our language! we can write:
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@P,R#SN→̂(
i 51

p

(
j 51

r

~21! i 1 j 1p11~@X~ i ! ,Y~ j !# !∧X̂~1!¯ X̂̂~ i !¯X̂~p!Ŷ~1!¯ Ŷ̂~ j !¯Ŷ~r !

5S ~21!p11(
i 51

p

(
j 51

r

~21! i 1 j@X~ i ! ,Y~ j !#∧X~1!∧¯∧

X̂̂~ i !∧¯∧X~p!∧Y~1!∧¯∧ Ŷ̂~ j !∧¯∧Y~r !D ∧

. ~B27!

In the same way we can start from~B27! and we can use properties of Grassmannian variable
obtain the formula:

@P,R#SN→̂~21!pr(
i 51

p

(
j 51

r

~21! i 1 j Ŷ~1!¯ Ŷ̂~ j !¯Ŷ~r !@Y~ j ! ,X~ i !#
∧X̂~1!¯ X̂̂~ i !¯X̂~p!

5~21!pr(
j 51

r

~21! i 1 j Ŷ~1!¯ Ŷ̂~ j !¯Ŷ~r !(
i 51

p

~21! i 21X̂~1!¯~@Y~ j ! ,X~ i !# !∧
¯X̂~p!

5S ~21!pr(
j 51

r

~21! j 11Y~1!∧¯∧ Ŷ̂~ j !∧¯∧Y~r !~LYj
P!D ∧

. ~B28!

In this way we have obtained two other properties of the SN brackets that may be conside
alternative definitions of the brackets themselves, as one can see from Ref. 8.

APPENDIX C: CALCULATIONAL DETAILS REGARDING THE FN BRACKETS

In this section we will handle vector-valued formsKPVk11(M ;TM). Usually we indicate
(k11)-forms withVk11(M ), but when we indicate inV alsoTM we mean vector-valued forms
Via our ∧ mapK becomes

K→̂ 1

~k11!!
Ki 1i 2¯ i k11

i @ci 1ci 2
¯ci k11#@ c̄i #. ~C1!

Following Ref. 10 we can introduce the interior product between vector-valued forms and
forms v. If KPVk11(M ;TM) and vPV l(M ), then iKv is a (k1 l )-form, so it can eat multi-
vectors of degreek1 l and it is defined as

~iKv!@X~1! ,...,X~k1 l !#[
1

~k11!! ~ l 21!! (
$sPSk1 l %

signsv@K~Xs~1! ,...,Xs~k11!!,

Xs~k12! ,...,Xs~k1 l !#. ~C2!

Which is the∧ map of iKv? We expect, as in the case of interior contraction with vector fie
that

iKv→̂ i $K̂,v̂%, ~C3!

but we have to control that~C3! is in accordance with the general definition~C2!. If K5a ^ X
then we can rewrite~C2! in the following way:
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~iKv!@X~1! ,...,X~k1 l !#[
1

~k11!! ~ l 21!! (
$sPSk1 l %

signsv@a~Xs~1! ,...,Xs~k11!!X,

Xs~k12! ,...,Xs~k1 l !#

5
1

~k11!! ~ l 21!! (
$sPSk1 l %

signsa~Xs~1! ,...,Xs~k11!!

v@X,Xs~k12! ,...,Xs~k1 l !#

5
1

~k11!! ~ l 21!! (
$sPSk1 l %

signsa~Xs~1! ,...,Xs~k11!!ix@Xs~k12! ,...,

Xs~k1 l !#

5a∧iXv~X~1! ,...,X~k1 l !!, ~C4!

whereaPVk11(M ) and iXvPV l 21(M ). From the previous equalities we deduce that we c
translate the interior contraction between a form and a vector-valued form as the exterior p
between two forms:

iKv5a∧iXv. ~C5!

Now we want to prove that, ifaPVk11(M ) andbPV l 21(M ) are two differential forms, we
can represent their exterior product as

~a∧b!→̂âb̂. ~C6!

The definition of the exterior product of differential forms is

a∧b~X~1! ,...,X~k1 l !![
1

~k11!! ~ l 21!! (
$sPSk1 l %

signsa~Xs~1! ,...,Xs~k11!!

b~Xs~k12! ,...,Xs~k1 l !!. ~C7!

We can start translating via the∧ map the right-hand side of~C7!:

~C8!

In the last step we have employed the fact thatat( j 1)¯t( j k11)5signt a j 1¯ j k11
and that the

number of permutations inSk11 is just (k11)! In the same way we have

b~Xs~k12! ,...,Xs~k1 l !!→̂Xs~k1 l !
j k1 l

¯Xs~k12!

j k12 b j k12¯ j k1 l
. ~C9!

So, from the definition itself of exterior product, we must have

a∧b~X~1! ,...,X~k1 l !!→̂
1

~k11!! ~ l 21!! (
$sPSk1 l %

signs Xs~k1 l !
j k1 l

¯Xs~k12!

j k12

•Xs~k11!

j k11
¯Xs~1!

j 1 a j 1¯ j k11
b j k12¯ j k1 l

. ~C10!
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Now we can say that~C6! is correct if it reproduces~C10!. So we have to evaluate:

~C11!

The last terms of~C10! and~C11! are equal; so we can conclude that the correct representatio
∧ map ofa∧b is just âb̂.

At this point we have all the elements to translate in our language the operationiKv. In fact,

iKv5a∧iXv→̂â~ iXv!∧. ~C12!

Using ~A10! and the fact that$â,v̂%50 we can go on writing:

â~ iXv!∧5 i â$X̂,v̂%5 i $âX̂,v̂%5 i $K̂,v̂%. ~C13!

So, as we had expected, we have proved that

iKv→̂ i $K̂,v̂%. ~C14!

At this point, having defined the concept of interior contraction with a vector-valued form
can go on introducing the Lie derivative associated with a vector valued formK:

LK5@iK ,d#5iKd1~21!k11diK . ~C15!

Since we know how to translate in our language both the interior contraction and the ex
derivative, we can write:

LKv→̂ i $K̂,~dv!∧%1~21!k11i $Q,~iKv!∧%52$K̂,$Q,v̂%%1~21!k$Q,$K̂,v̂%%

52$$K̂,Q%,v̂%, ~C16!

where, in the last step, we have used the Jacobi identity. So we have

LKv→̂2$H̃K ,v̂%, ~C17!

where we have defined, as usual,H̃K5$K̂,Q%. From the definition itself and making use of~C1!

it follows that the explicit expression ofH̃K is

H̃K5
1

~k11!!
~l jK j 1 j 2¯ j k11

j 1 i c̄ j~]dK j 1 j 2¯ j k11

j cd!!cj 1
¯cj k11. ~C18!

From the previous expression we note that ifk is even thenH̃K is Grassmannian odd and ifk is

oddH̃K is even. Moreover, from~C17!, the Grassmannian parity ofH̃K coincides with that of the
correspondent Lie derivativeLK .
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Finally we have all the elements to translate in our language the Fro¨licher–Nijenhuis brackets
They are defined10 in an implicit way from the equation:

@LK ,LL#5L@K,L#FN
. ~C19!

Now if we think of the left-hand side of~C19! as applied on a generic formv we have

@LK ,LL#v5~LK LL!v2~21!@H̃L#@H̃K#~LLLK!v, ~C20!

where we indicate with@~•!# the Grassmannian parity of~•!. Via our mapping we have

@LK ,LL#v→̂$H̃K ,$H̃L ,v̂%%2~21!@H̃L#@H̃K#$H̃L ,$H̃K ,v̂%%

5$H̃K ,$H̃L ,v̂%%1~21!@H̃K#~@H̃L#1@v#!$H̃L ,$v,H̃K%%

5$$H̃K ,H̃L%,v̂%, ~C21!

where in the last step we have used, as usual, the Jacobi identity. The right-hand side of~C19! can
be translated as follows:

L@K,L#FN
v→̂2$H̃@K,L#FN

,v̂% ~C22!

so, from the comparison of~C21! and ~C22!, we have the following important relation:

H̃@K,L#FN
5$~@K,L#FN!∧,Q%52$H̃K ,H̃L%. ~C23!

Now, if we want to have the correct representation of the FN brackets, we have to

$H̃K ,H̃L% as$(•),Q%. This is not difficult to do, in fact,

$H̃K ,H̃L%5$$$K̂,Q%,L̂%,Q%. ~C24!

To demonstrate~C24! we can start from its right-hand side and employ the Jacobi ident

$$$K̂,Q%,L̂%,Q%5$$H̃K ,L̂%,Q%5$H̃K ,H̃L%2~21!k1 l$$Q,H̃K%,L%. ~C25!

So~C24! is proved if$Q,H̃K%50. But this is easy to demonstrate, since every BRS exact t
has zero EPB withQ. In fact,

$Q,H̃K%5$Q,$K̂,Q%%. ~C26!

The Jacobi identity in this case is

$Q,$K̂,Q%%1$Q,$K̂,Q%%1$K̂,$Q,Q%%50. ~C27!

From the nilpotency ofQ we can conclude that

$Q,$K̂,Q%%5$Q,H̃K%50 ~C28!

and so~C24! is proved. Substituting~C24! into ~C23! we obtain finally:

@K,L#FN→̂2$H̃K ,L̂%. ~C29!
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From ~C29! we notice how, ifK andL are zero vector-valued forms, i.e., if they are vec
fields, then the FN brackets reduce to the usual Lie brackets. In a certain sense we can say
the SN brackets generalize the Lie brackets in the case of multivector fields, so the FN br
generalize the Lie brackets in the case of vector-valued forms.

APPENDIX D: CALCULATIONAL DETAILS REGARDING THE NR BRACKETS

The Nijenhuis–Richardson brackets are defined between two vector-valued f
KPVk11(M ;TM) andLPV l 11(M ;TM) and they give a vector-valued form of degreek1 l 11
defined10 in an implicit way as

i@K,L#NR
[@iK ,iL#. ~D1!

If we apply a generic formvPVm(M ) on the left-hand side of~D1! then, via our∧ map, it
becomes

i@K,L#NR
v→̂ i $~@K,L#NR!∧,v̂%, ~D2!

while the right-hand side of~D1! becomes

@iK ,iL#v5iK~iLv!2~21!kliL~iKv!→̂ i $K̂,~iLv!∧%2~21!kli $L̂,~iKv!∧%

52$K̂,$L̂,v̂%%1~21!kl$L̂,$K̂,v̂%%. ~D3!

Using the Jacobi identity we obtain:

@iK ,iL#v→̂2$$K̂,L̂%,v̂%. ~D4!

We can write, from the comparison of~D2! with ~D4!

@K,L#NR→̂ i $K̂,L̂%. ~D5!

So the NR brackets between two vector-valued forms are just proportional to the extended P
brackets of the vector-valued forms themselves.

Now we can use properties of the extended Poisson brackets to find a more explicit defi
of NR brackets. In fact,

i $K̂,L̂%5
i

~ l 11!! ~k11!!
$Ki 1¯ i k11

i ci 1
¯ci k11c̄i ,L j 1¯ j l 11

j cj 1
¯cj l 11c̄ j%

5
i

~ l 11!!
$K̂,L j 1¯ j l 11

j cj 1
¯cj l 11%c̄ j

1
i

~ l 11!! ~k11!!
L j 1¯ j l 11

j cj 1
¯cj l 11$Ki 1¯ i k11

i ci 1
¯ci k11c̄i ,c̄ j%~21!~ l 11!k

5
i

~ l 11!!
$K̂,L j 1¯ j l 11

j cj 1
¯cj l 11%c̄ j

2
i

~ l 11!! ~k11!!
L j 1¯ j l 11

j cj 1
¯cj l 11$c̄ j ,Ki 1¯ i k11

i ci 1
¯ci k11%c̄i~21! lk

5
i

~ l 11!!
$K̂,L j 1¯ j l 11

j cj 1
¯cj l 11%c̄ j2~21! lk

i

~k11!!
$L̂,Ki 1¯ i k11

i ci 1
¯ci k11%c̄i .

~D6!
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SinceiK(v ^ X)[iK(v) ^ X we can write:

i $K̂,L̂%5~iKL !∧2~21! lk~iLK !∧. ~D7!

From the comparison of~D5! with ~D7! we obtain:

@K,L#NR5iKL2~21!kliLK, ~D8!

which can be interpreted as a more explicit definition of NR brackets~see also Ref. 10!.
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Highly localized solutions of the wave equation
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Simple explicit solutions of the linear wave equation in three dimensions are pre-
sented which describe wave packets exponentially localized near a point moving
with the wave speed. For large values of a certain free parameter these new solu-
tions are localized in Gaussian manner with respect to longitudinal and transverse
variables and time. This agrees with considerations by Babich–Ulin and Ralston
who have presented an asymptotic description of solutions exhibiting such local
behavior. Global estimates and large-time asymptotics of these solutions are given.
© 2000 American Institute of Physics.@S0022-2488~00!00904-X#

I. INTRODUCTION

Interest in the problem of finding packetlike solutions to the linear wave equation

uxx1uyy1uzz2
1

c2 utt50, ~1!

can be traced at least to Bateman’s unsuccessful attempts in the early 1900s.1 Then it was pure
scientific curiosity. Nowadays there are important applications, such as optical communica
monitoring, imaging, etc. All of these stimulate a number of work intended to present localiz
space and time explicit solutions demonstrating packetlike behavior. Beamlike solutions, t
Gaussian beams, or focus wave modes, were described in Refs. 2–4. They were slowly lo
in longitudinal direction and had infinite energy. Solutions with finite energy though localize
the longitudinal direction only in the power-law manner, were presented first in Ref. 5. In R
other solutions were found termed Bessel–Gauss pulses also localized in a power-law way
longitudinal direction. Later a number of papers were published~e.g., Refs. 7–9 and reference
therein! concerning construction of various packetlike solutions and their experimental imple
tations.

In this paper we present simple explicit solutions of Eq.~1! with the constant propagatio
speed, which describe wave packets highly localized at each moment in all directions.

Remarkable results, concerning asymptotic localized solutions to the wave equation
smoothc(x,y,z) were presented by Babich and Ulin10 and Ralston.11 The degree of localization
was ruled there by a free large parameter,k, in the ray expansion

u5exp~ ikt!(
j >0

uj

~2 ik ! j , k→`, ~2!

a!Electronic mail: apk@snark.ipme.ru and/or kiselev@pdmi.ras.ru
b!Electronic mail: perel@mph.phys.spbu.ru
19340022-2488/2000/41(4)/1934/22/$17.00 © 2000 American Institute of Physics
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with t5t(x,y,z,t) anduj5uj (x,y,z,t). A description was given of asymptotic solutions of E
~1! which were localized at each moment of time in anO(k21/2) neighborhood of a point running
along a ray with the propagation speedc.

We will describe very briefly the leading term of this asymptotic expression10 in the case of
c5const. Formally, this will be employed neither in finding new explicit solutions, nor in inv
tigation of their properties. This is, however, important in motivation of our research and w
referred to in the discussion of the results. The result of Ref. 10 can be presented forc5const as
follows. Assuming, for definiteness, that the wave packet propagates along thez axis, the phase
function in Eq.~2! can be presented in the vicinity of the moving point, described byx5y50,z
5ct, and viewed as a center of the wave packet, by a quadratic form12

ikt' ikFz2ct1 i
x21y2

z1ct2 i e
1

i

4
~z2ct!2G

5 ikFz2ct1
z1ct

~z1ct!21e2 ~x21y2!G2kF e~x21y2!

~z1ct!21e2 1
~z2ct!2

4 G , ~3!

wheree is an arbitrarily fixed positive number. The leading amplitude term in Eq.~2! was found
to be

u0'
1

z1ct2 i e
. ~4!

This construction was valid inside a small vicinity of the center and for moderate values of
The formula~3! demonstrates the Gaussian-type localization of the solution around its c
More general expression was presented by Ralston,11 demonstrating anisotropy in transverse d
rections, i.e., the different rates of its Gaussian decay inx and y. The theory by Babich–Ulin–
Ralston was generalized by several authors, e.g.,3,13,14in different directions, and it found variou
applications, including that in numerics.14

So far explicit solutions exhibiting such behavior, which could be regarded as refe
solutions for asymptotic findings of Refs. 10 and 11 were unknown. They are described
present paper. The mathematical technique which we employ is very simple. We just c
properly an arbitrary function in a general solution found first by Bateman1 and modified later by
Hillion.4,15

Some packetlike solutions from the Bateman–Hillion class were found earlier. First,2,3 the
wave packet was found strongly localized in Gaussian manner in transverse directions~i.e., in x
andy!. However, it was localized in respect to longitudinal variable so weakly, that its energy
infinite. In Ref. 4 a hypothesis was put forward that no solutions from the Bateman–Hillion
with finite energy can exist at all. Nonetheless such examples were presented in Ref. 5.

We present here simple explicit solutions of the wave equation@Eq. ~1!# with the constant
speed of propagation,c5const, which describe wave-packets moving along a straight line. T
amplitudes decrease exponentially with distance in all directions from the center of the p
which is a point moving with the wave velocityc. Degree of their localization is higher than fo
all the explicit solutions already known. In case when certain combination of free paramet
these solutions is large, they exhibit Gaussian localization in the vicinity of the center. It is
tricky job to describe then the properties of the solutions, which is found to agree with asym
findings by Ref. 10. We find also reference solutions for more general asymptotic loca
solution by Ralston11 demonstrating anisotropy in transverse directions. For this purpose
generalize Bateman–Hillion class to nonaxisymmetric phases. We term all these new so
Gaussian Packets.

Our consideration which are restricted for the definiteness to the case of three spatial d
sions,D53, can be extended to any dimension in a obvious way. This is because Bate
Hillion solutions can be easily extended toD.1. ~For D51 the D’Alembert’s solution16 can
demonstrate any degree localization, it can be even a finite function ofz2ct.!
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The paper is organized as follows. First we discuss briefly the so-called nondispersive
solutions~Sec. II!. A particular sub-class of nondispersive waves which we call Bateman–Hi
class is described in Sec. III. The crucial step is done in Sec. IV where we choose an ar
function in the general Bateman–Hillion solution. We present the results of computations
onstrating its localization and its development in time. Then we study this solution analyt
near its peak~Sec. V!, and present its large-time asymptotics~Secs. VI and VII!. We demonstrate
that it exhibits Gaussian behavior under the additional condition on free parameterske→`. In
Sec. VIII we observe, forke→`, the matching of the expressions found earlier for moderate
for large values of time. A wider class of highly localized Bateman–Hillion solutions with sim
properties is described in Sec. IX. We observe there, that local Babich–Ulin–Ralston nea
behavior ~2!–~4! of a solution cannot guarantee neither that it is globally limited nor that
energy is finite.

In Sec. X we briefly describe generalization of the above results to the solutions demo
ing anisotropic behavior with respect to the transverse variables. The expressions we prese
perfectly agree with the version of asymptotic theory presented by Ralston.11 This generalization
is based on finding a new class of explicit solutions to Eq.~1! of which the Bateman–Hillion class
is a particular case.

All tedious calculations intended to derive rigorous estimates, are given in Appendixes

II. ‘‘NONDISPERSIVE WAVES’’

Courant and Hilbert16 discussed the so-called ‘‘relatively undistorted progressive waves,
‘‘nondispersive waves’’4,15 which were the solutions of Eq.~1! of the form

u~r ,t !5g~r ,t ! f ~u!, ~5!

where r5(x,y,z) stands for the spatial variables. Hereu5u(r ,t) is a certain solution of the
space–time eikonal equation

ux
21uy

21uz
22

1

c2
u t

250, ~6!

and f (u) is an arbitrary function. Only for very specialu simple explicit solutions of this form
were found earlier.

The best known examples of such solutions are15,16

~i! plane waves when

u5z2ct, and g5const,

~ii ! simple spherical waves in which case

u5R2ct and g5Const/R,

where R5Ax21y21z2. The solutions of the form~5! present a very particular class of th
space–time ray series~2!17 which reduce to their zero-order term, and all higher-order amplitu
vanish identically. Therefore the theory of nondispersive waves can be understood as par
ray analysis.

III. BATEMAN–HILLION CLASS OF NONDISPERSIVE WAVES

The third class of solutions to the wave equation of the form,16 known as Bateman–Hillion
class1,4 can be described by takingu as follows:

u5a1
r2

b2 i e
, ~7!
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wherea andb are both characteristic variables for wave propagation in longitudinal direction,
is alongz axis

a5z2ct, b5z1ct, ~8!

r25x21y2, ande is an arbitrary constant of the dimension of length. Then the function

u~r ,t !5
1

b2 i e
f ~u!, ~9!

is a solution of Eq.~1! with f (u) an arbitrary function of one variable. We assume further th

e.0.

As easy to see,u takes the values in the upper half-plane and on the real axis andf (u) must be
thus defined in the closed upper half-plane.

In the first attempts to describe packetlike solutions2,3 f (u) was chosen to be

f ~u!5exp~ iku!, ~10!

wherek was a real parameter. Separating imaginary and real parts we get

iku5 ikS a1
br2

b21e2D 2
ke

b21e2
r25 i S ka1

br2

eD'
2 D 2

r2

D'
2

, ~11!

where

D'5Ab21e2

ke
, ~12!

is the transverse width of the packet. Thus

u5
1

b2 i e
expi S ka1

b

e

r2

D'
2 D expS 2

r2

D'
2 D . ~13!

The absolute value of the first exponent in Eq.~13! equals unity. The solution is localized aroun
z axis in the transverse directions in Gaussian manner~i.e., in x andy! but it is weakly localized
in respect to the longitudinal variableb near the pointz52ct, or b50, because of the facto
1/(b2 i e). The energy of this solution is infinite. The characteristic width of the beam,D' which
depends onb is of the order ofO(1/Ake), and becomes small whenke@1. More discussion of
this and some other interesting solutions, singular ones in particular, can be found in Ref.

In Sec. X we will generalize the Bateman–Hillion solutions to the case of nonaxisymmetu.

IV. AN EXAMPLE OF A GAUSSIAN PACKET

Now we will describe a particular Bateman–Hillion solution which we call the simp
Gaussian wave packet. We take the functionf (u) in the general solution~9! as follows:

f ~u!5exp 2ik~Ai eu2e212ke!5expF2keS 12A12
iu

e D G , ~14!

wherek is a free parameter, which will be taken real. It is seen thatk has a physical meaning o
a wave number. We thus get the solution of the wave equation
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u~r ,t !5
1

b2 i e
expF2keS 12A12

iu

e D G . ~15!

The branch of the square root in Eq.~15! with the positive real part will be understood. Th
normalization factor exp(2ke) is introduced in Eq.~14! to make the solution foru50 independent
of the parameterke, which will be interesting to take large. In Appendix A we show that t
exponential factor which rules the behavior of Eq.~15!, never exceeds unity. Its absolute val
decreases whenuuu increases, and it has its only maximum whenu50, or, equivalently,a5r
50. The solution exponentially decreases away from this peak point, as follows from the est

uuu<
1

Ab21e2
expF2ke2

~ke!~3/4!r

A2eD'

2kAeuau
2 G , ~16!

which holds for all positive values ofk and e and for sufficiently small values oft, cutu<e. It
quantities the degree of decrease of the solution for larger anduau. This estimate will be derived
at Appendix B. An estimate forutu>e/c will be given in Sec. VI.

It is easily seen from~16! that the energy of the solution~15! is finite.

V. BABICH–ULIN–RALSTON NEAR-PEAK BEHAVIOR FOR LARGE k e AND
MODERATE t

The behavior of the solution~15! is ruled by the exponent which peaks at the pointr50,z
5ct. This point is viewed as the center of the packet and it moves along thez axis with the
propagation speedc. In the vicinity of this point the solution can be described by expanding
expression in the exponent in Eq.~14! in the powers ofa andr up to quadratic terms, inclusively
As will be seen, in the case ofke@1, such expansion provides a description of the solution in
area where the absolute value of Eq.~14! varies from unity to exponentially small values.

Denoting the dependence onu in the exponent in Eq.~14! by

F~u!52ke~12A12 iu/e!, ~17!

we have

F~u!52keS 1211
iu

2e
2

u2

8e2 1O((u/e)3) D5 iku2keu2/4e21O~ke~u/e!3!.

It is convenient to introduce the characteristic scale in the longitudinal direction by

D i52Ae

k
. ~18!

In terms ofD i andD' we can write

F~u!5 iku2
k

4e
S a1

b1 i e

b21e2
r2D 2

1OS ke
u3

e3D
5 ikS a1

b1 i e

keD'

r2D 2F a

D i

1
b/e1 i

2Ake

r2

D'
2 G 2

1OS ke
u3

e3D
5 i F ka1

b

e

r2

D'
2 G2

a2

D i
2

2
r2

D'
2

1E, ~19!
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whereE5E(a/D i ,r/D' ,b/e,ke) is a remainder. As will be seen in Appendix C,E is small in a
vicinity of the center of the packet provided thatke is large. In the meantime we just note th
when the nondimensionalized variablesr/D' , a/D i , and b/e are all O(1), as ke→`, the
estimate holds

E5OS 1

Ake
D . ~20!

However, this estimate fails when any of the above mentioned nondimensional variables be
sufficiently large. We also note here thatt, or equivalently,z cannot be taken here too larg
otherwiseE will not be small.

Assuming thatke@1 we get that near the peak

u'
1

b2 i e
expF i S ka1

b

D'
2 e

r2D GexpF2
a2

D i
2

2
r2

D'
2 G , ke→`. ~21!

The expression~21! perfectly agrees with asymptotic findings by Ref. 10, see Eqs.~2!–~5!.
Conditions of its validity are discussed in Appendix C.

The expression~21! describes a wave packet filled with oscillations; its envelope decreas
a Gaussian manner away from its center. As easy to see, Eq.~21! differs from Eq.~13! only with
the factor exp@2(a/Di)2# providing the Gaussian longitudinal localization. The longitudinal wid
D i is evidently constant. The transverse width,D' , changes during propagation: It grows wi
time, taking its minimal value

d5Ae/k, ~22!

when t50.
Figure 1 shows the Gaussian Packet solution~15! in two moments of time forkd52p. It is

seen that fort50 there is no oscillations inr. Whent grows oscillations withr arise and the first
exponent in Eq.~21! starts to describe oscillations corresponding to a spherical wave front.
will be discussed in the following sections.

VI. LARGE-TIME EXPANSION, t\¿`

We will consider the behavior of the solution~15! for t→1`. First this will be done without
any restriction on the values of the free parametersk ande. It will be shown thatu is localized
near an outward expanding sphereR5ct. Second, we will consider the case ofke@1. It will be
seen thatu demonstrates then Gaussian behavior with respect to new natural variables. The
the distance along the radius from the expanding sphere centered at the origin

A5R2ct, R5Ar21z2, ~23!

and the anglex which the vectorr5(x,y,z) makes with the positivez axis,

x5arctanS r

zD , 0<x<p. ~24!

So r5R cosx, andz5R sinx. The under root function in the exponent in Eq.~15!

12
iu

e
52S i

e D z21r22~ct2 i e!2

z1ct2 i e
, ~25!

can be rewritten as follows:
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12
iu

e
5

~12 iA/e!~A12ct2 i e!

2ct cos2~x/2!1A cosx2 i e
. ~26!

Now we taket large in Eq.~26! keepingA and x fixed. Dividing there both numerator an
denominator by 2ct we get

12
iu

e
5

~12 iA/e!~11~A2 i e!/2ct!

cos2~x/2!1~A cosx2 i e!/2ct
. ~27!

The small time-dependent item in the numerator can be omitted for

t@
e

c
, t@

uAu
c

. ~28!

The same can be done in the denominator under the additional restrictions

FIG. 1. Ru for kd52p andx50, at two moments of time~a! t50, ~b! t56e/c in conventional units.
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up2xu,A2e

ct
, up2xu,A2A

ct
, ~29!

that is outside a vicinity of the negativez axis. We then get

12
iu

e
'

12 iA/e

cos2 x/2
. ~30!

The amplitude factor in Eq.~15! can be presented for large positivet as follows:

1

b2 i e
5

1

R cosx1ct2 i e
5

1

A cosx12ct cos2 ~x/2! 2 i e
'

1

2ct cos2 ~x/2!
. ~31!

We get the following expression for the large-time asymptotic in the vicinity of the outw
expanding sphere, see the condition~28!:

u'
1

2ct cos2 ~x/2!
expF2keS 12

1

cos~x/2!
A12

iA

e
D G . ~32!

We remind that the branch of the square root with positive real part is understood.
This formula remains consistent forx→p because in this case the exponential factor in E

~32! exponentially tends to zero while the amplitude term grows only as (p2x)22 and thus

lim
x→p

u50.

Therefore the restrictions~29! can be dropped.
Taking into account Eqs.~23! and~28! we can replacect with R in the amplitude and rewrite

the expression~32! near the sphereR5ct in the form

u'
1

R
F1~R2ct,x!, ~33!

with

F1~A,x!5
1

2 cos2 ~x/2!
expF2keS 12

1

cos~x/2!
A12

iA

e D G . ~34!

This agrees perfectly with the general results by Ref. 18 concerning the asymptotic behavi
general solution of the wave equation. The expression~32! describes a spherical wave of whic
the directivityF1(R2ct,x) is vanishing around the backward direction, that is the direction
the negativez axis.

Now we will simplify the expression~32! assuming the parameterke large. From Eq.~32! we
see that the absolute value of the solutionu monotone decreases whenA andx increase. IfA and
x are both small we expand expression~32! in Taylor series and obtain

2keS 12
1

cos~x/2!
A12

iA

e
D ' ikA2

A2

D i
2

2
x2

Dx
2

, ~35!

whereD i was defined by Eq.~18! and
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Dx5
2

Ake
, ~36!

characterizes the angular width of the packet.
Whenke is large, the large-time expression reduces, in the vicinity of thez axis, to

u'
exp~ ikA!

2R
expF2

A2

D i
2

2
x2

Dx
2G , t→`, ke→`. ~37!

This is a packet, in which the envelope decreases in a Gaussian manner with distance fr
front of an outward radiating spherical wave,R5ct. The amplitude decreases also in a Gauss
manner with growth of the anglex. The longitudinal width is constant and it is the same one as
moderatet. All these can be seen from the Fig. 2, where the photographs of the solutio
presented at successful moments time for two values of nondimensional parameterkd. Roughly
speaking, the packet is localized at each moment in the intersection of a spherical annulus
constant width around the front and the cone of the angular widthDx . Note that the angular width
is related to the minimal transverse width of the packet by the relation

kdDx52,

which is very much like the classical uncertainty principle.
The above results describe the behavior of the solution~15! in some vicinity of the outward

expanding sphere. We will bring about the estimate

uuu<
1

Ab21e2
expS 2ke2keCAx2k

AeuAu
2 D , ~38!

where

C5A4 min~R,ct!

5p2ct
,

valid for all values ofke.0, x,y,z under the only condition

FIG. 2. Ru on the plane (y,z) for x50 in successive moments of time fromt522 to t56 in conventional units. The
stronger field is shadowed darker. Dashed lines indicate the cone inside which the packet propagates.~a! kd56p, ~b!
kd518p.
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ct>e. ~39!

This estimate will be established in Appendix D.
In Sec. VIII we will show that the near-peak expressions~21! and ~37! match if ke@1 and

z@r.

VII. LARGE-TIME EXPANSION, t\À`

The behavior of the packet ast→2` is very much alike. The natural variables are now

B5R1ct, ~40!

which describe the distance betweenr and inward expanding sphereR52ct, and

x̃5p2x, ~41!

the angle made byr and the negativez axis. In terms ofB and x̃ we have

12
iu

e
5 i e

~B22ct1 i e!~B2 i e!

2ct cos2~ x̃/2!2B cosx̃2 i e
. ~42!

By reasoning similar to that of the previous section we get the uniform inke, ke.0, asymptotic
expression of the form

u'
F2~R1ct,x̃ !

R
, ~43!

with

F2~R1ct,x̃ !52
1

2 cos2 ~ x̃/2!
expF2keS 12

1

cos~ x̃/2!
A11

i ~R1ct!

e D G . ~44!

The relationship betweenF2 andF1 is observed to be

F1~R,x!52F2~2R,p2x!, ~45!

which agrees with general result by Ref. 18 for an arbitrary solution with finite energy.
For the case ofke@1 ~43!, ~44! reduces to

u'2
exp~2 ikB!

2R
expF2

B2

D'
2

2
x̃2

Dx
2G . ~46!

An estimate similar to Eq.~38! for ct<2e but involvingB andx̃ instead ofA andx will be
omitted.

VIII. MATCHING OF NEAR-PEAK AND LARGE-TIME ASYMPTOTICS

We will demonstrate that the near-peak and far-field expressions~21! and ~37! match when
ke→1`. This occurs at some intermediate region around the positivez axis for some range o
large z and t. We will observe that the localized packet described by Eq.~21! turns into the
outgoing spherical wave given by Eq.~37! when

z'ct'b/2@e, uau!b,

and
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r!z or x!1.

We start with the amplitude item in Eq.~21!, noticing that the above inequalities imply that

1

b2 i e
'

1

2ct
'

1

2R
. ~47!

Now we will discuss the first, oscillating exponent in Eq.~21!. Observing thatR5Az21r2'z
1r2/2z, we get

a1r2/2z5z2ct1r2/2z5R2ct5A.

The expression in the first exponent becomes

ika1 i
b

e S r

D'
D 2

5 ikS a1
br2

b21e2D' ikS a1
r2

b D' ikS a1
r2

2zD' ikA, ~48!

what coincides with the first exponent in Eq.~37!.
We are coming to the first of the Gaussian items in the second exponential factor in Eq~21!.

As easy to see

a/D i'A/D i2r2/2zD i
2 .

Further

r2

2zD i
5S r

D'
D 2 D'

2

2zD i
5S r

D i
D 2 b21e2

4zeAke
'S r

D'
D 2 z

eAke
.

In terms of Appendix C the area where matching occurs can be quantified as follows. Assu
in accordance with Eq.~C7! that r/D'!(ke)1/6, we can omit this item forz< e(ke)z, wherez
,1/6. Then we get that

S a

D i
D 2

'S A

D i
D 2

. ~49!

The second item in the second exponent is

S r

D'
D 2

5ke
r2

b21e2 'ke
r2

4z2 'ke
tan2 x

4
'S x

Dx
D 2

. ~50!

Combining together the formulas~47!–~50! we observe the desired matching.
The matching of Eq.~21! with the expression derived at Sec. VII for negative values tim

very similar and we omit it.

IX. MORE GENERAL BATEMAN–HILLION GAUSSIAN PACKET SOLUTIONS

In this Section we will consider more general Bateman–Hillion solutions of the wave equ
than Eq.~15! where the square root will be replaced with an arbitrary power function. We tak
Eq. ~9!

f ~u!5expH 2ke
12s

s F12S 12
iu

2~12s!e D sG J . ~51!
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The branch of the square root in Eq.~51! with the positive real part will be understood ands will
be a positive constant. The coefficients here are taken in such a way, that the expressions~51! and
~15! would coincide whens51/2. Fors51 we get, up to a constant multiplier, the focus wa
mode solution2,3 which has infinite energy, but is limited whenke→`.

Simple reasoning similar to that of the Appendix A, shows that for

0,s,1, ~52!

the solution is limited and its energy is finite. Really, sinceu is in upper half-plane, thenR$1
2 iu/2(12s)e%>1. The absolute value of$12 iu/2(12s)e%s increases with the increase ofuuu,
and it argument is inside a sector in the right half plane

UargS 12 i
u

2e~12s! D
sU< ps

2
.

Therefore, the absolute value of the exponent in Eq.~51! decreases whenuuu grows and has a
maximum whenu50.

Similarly, for s.1 it is seen that the expression (12 iu/2e(12s))s can take values at the
left half plane and solution exhibits exponential growth. Its energy is, therefore, infinite.

Assuming now thatke@1 we easily observe that the peak value of the exponent is take
the center pointz5ct, r50. The near-peak asymptotic expressions precisely coincides with
~21!. This formula is true for any of solution~51!, with the only exception ofs51.

The near-peak Gaussian asymptotic forms of solution~51! are indistinguishable. However, fo
the range of values given by Eq.~52! the wave field outside the small vicinity of the center
exponentially small. On the contrary, fors.1 they exponentially grow at some distance. T
envelopes of solution~51! for s51/2 investigated above and fors52, discussed earlier in Ref. 1
is presented at Fig. 3. It is seen that they are very similar locally, near the peak point, but cru
differ globally.

X. NONDISPERSIVE WAVES WITH NONAXISYMMETRIC PHASES

All the above consideration can be generalized to the case of solutions more general th
Bateman–Hillion ones. We will define now the functionu by

u5a1
x2

b2 i e1
1

y2

b2 i e2
, ~53!

wheree1 and e2 are arbitrary constants, which will be assumed positive. As will be show
Appendix E, the function given by

u~r ,t !5
1

Ab2 i e1Ab2 i e2

f ~u!, ~54!

is a solution of the wave equation@Eq. ~1!# for an arbitraryf (u), which is defined in the closed
upper half plane. The square roots can be understood here arbitrarily. This solution reduces
~9! when we takee15e2[e. This new nonaxisymmetric phase function also takes values in
closed upper half plane and has very similar properties to the one we dealt with above.

We will restrict ourselves with presenting analogues of asymptotic formulas for the ‘‘sq
root’’ solution ~15!. We are taking in Eq.~54! the functionf (u) in accordance with Eq.~14! where

e5
e11e2

2
, ~55!

k is still real positive constant, and the branch of the root with positive real part is underst
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Similarly to the Sec. V, assuming that

ke1→`, ke2→`, ~56!

we get, after some calculation, the near-peak asymptotic formula

FIG. 3. The absolute values of solution~51! at t50 for ~a! s51/2 and~b! s52.
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u'
1

Ab2 i e1Ab2 i e2

expF i S ka1
bx2

e1D1
2 1

by2

e2D2
2D GexpF2

x2

D1
2 2

y2

D2
2 2

a2

D i
2G . ~57!

Here D i , defined by Eq.~18!, is the longitudinal width of the packet andD1 and D2 are the
transverse widths of the packet in directions ofx andy axes

D15Ab21e1
2

ke1
and D25Ab21e2

2

ke2
. ~58!

The expression~57! perfectly agrees with the asymptotic construction by Ralston.11

The large-time asymptotic behavior of this solution near the outward expanding sphR
5ct can be obtained similarly to the calculation given in Sec. VI. In terms of the spherical a
x, andf, wherex was introduced by Eq.~24!, and

x5R sinx cosf, y5R sinx sinf, z5R cosx,

under conditions~28! and ~29! we find

u'
A

cos2 ~x/2!
1 i tan2

x

2
@2e2e1 sin2 f2e2 cos2 f#.

After some calculations it follows:

u'
F1~A,x,f!

R
, ~59!

with

F1~A,x,f!5
1

2 cos2 ~x/2!
expF2keS 12

1

cos~x/2!

3A12
1

e S iA2sin2
x

2
~e2e2 cos2 f2e1 sin2 f! D D G . ~60!

This expression can be rewritten in the form of

F1~A,x,f!5
1

2 cos2 ~x/2!
expF2keS 12

1

cos~x/2!
A12

1

e S iA2d sin2
x

2
cos 2f D D G , ~61!

where

d5
e12e2

2
. ~62!

For d50 this coincides with Eq.~32!.
Under the additional assumption~56! we easily get from here the asymptotic expression

small x

u'
1

2ct cos2 ~x/2!
expS ikA2

A2

D i
2 2

x2

Dx
2~f! D'

1

2R cos2 ~x/2!
exp~ ikA!expF2

A2

D i
2 2

x2

Dx
2~f!G ,

~63!
t→1`, ke→`,

where
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Dx~f!5
2

Ak~e1 cos2 f1e2 sin2 f!
5

2

Ak~e1d cos 2f!
. ~64!

The asymptotics fort→2` dual to Eqs.~61! and ~63! are

u'
F2~B,x,f!

R
, ~65!

with

F2~B,x,f!52
1

2 cos2 ~ x̃/2!
expF2keS 12

1

cos~ x̃/2!
A11

1

e
~ iB1d sin2 x̃ cos 2f! D G ,

~66!

and

u'2
1

2R cos2 ~ x̃/2!
exp~2 ikB!expF2

B2

D i
2 2

x2

Dx
2~f!G , t→2`, ke→`. ~67!

It can be observed that

F2~R,X,f!52F1~2R,p2X,p1f!. ~68!

The asymptotic expressions~63! and~67! for directivitiesF6 are very similar to those found
in Ref. 19 for an asymptotic time harmonic solution.

XI. CONCLUSION

To summarize, we have presented highly localized solutions to the wave equation, an
that they agree with an asymptotic construction by Refs. 10 and 11. We succeeded in desc
of the large-time behavior of these solutions and in finding estimates for them at such area
they are exponentially small. This hardly can be done when dealing with the asymptotic app
It is observed that Gaussian Packet solutions having very similar behavior near the cente
crucially differ at some distance. This note is warning to those researchers14 who employ
asymptotic solutions with Gaussian localization as a tool in numerics.

It is interesting to note that the above explicit construction were found within the s
complex space–time ray theory which have been employed by Babich and Ulin10 and by Ralston11

for their asymptotic findings.
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APPENDIX A: CRUDE ESTIMATES FOR THE SIMPLEST GAUSSIAN PACKET †EQ. „15…‡

Lemma 1:The absolute value of the exponential factor in Eq.~15! ~i! never exceed unity,~ii !
monotone decreases whenuuu increases~iii ! has its only maximum whenu50, or equivalently
r50, a50.
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Proof: We have already observed in Sec. III thatu takes the values in the closed upper h
plane. Thus the values of the under root expression in Eq.~15!

Q512 iu/e, ~A1!

are inside the right half plane andRQ>1. Therefore,RAQ>1, and the expression in the expo
nent in Eq.~15! cannot be positive and the absolute value of the exponent itself never ex
unity, which combined with Eq.~15! proves~i!.

Further, we have

uargAQu,p/4. ~A2!

In order to describe the dependence ofuQu on uuu, we consider

uQu25S 11
Iu

e D 2

1S Ru

e D 2

511
uuu2

e2 12
uuusin~argu!

e
, ~A3!

whence

]uQu
]uuu

5
1

uQu S uuu
e2 1

sin~argu!

e D5
1

uQu S uuu
e2 1

Iu

euuu D.0,

for uuuÞ0. This proves~ii !.
For u50 it is seen thatQ51, and the exponential factor in Eq.~15! takes the value 1. From

the definition ofu ~7! this is seen to occur only at the center point described byr5a50. The
proof of the Lemma 1 is completed.

We also note the inequality

RAQ<AuQu cos
p

4
<AuQu

2
, ~A4!

which follows from ~A2!.

APPENDIX B: DERIVATION OF THE ESTIMATE †EQ. „16…‡

We will deal here with sufficiently small values oft

uctu<e. ~B1!

We start with considering the expression in the exponent in the formula~17!. Evidently,

Q512
iu

e
511

r2

b21e2 2
i

e S a1
b

b21e2 r2D , ~B2!

and thus

uQu25
1

e2 S a1
b

b21e2 r2D 2

1S 11
r2

b21e2D 2

, ~B3!

or, after some calculation

uQu25S a21
r412~ab1e2!r21e2~b21e2!

b21e2 D 1

e2 . ~B4!

Lemma 2:For all values ofr, a, andb satisfying Eq.~B1! the inequality holds
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AuQu>
r

~ke!~1/4!AeD'

. ~B5!

Proof: By omitting positive items in the sum in Eq.~B4!, we get

uQu>
r2

e~b21e2!
5

r2

AkeeD'

, ~B6!

whence the Lemma 2 follows.
Lemma 3:For cutu<e the inequality is valid

AuQu>Auau
e

. ~B7!

Proof: The desired inequality is equivalent to the following one:

uQu>
uau
e

, ~B8!

which we start proving now. We will consider separately the cases ofab>0 andab,0.
1. Consider first the case ofab<0. As seen from Eq.~B4! we must establish that

r412~ab1e2!r21e2~b21e2!>0.

Equivalently, the discriminant of the above expression, considered as a quadratic trinomiar2

is nonpositive

~ab1e2!22e2~b21e2!5ab~a212cta1e2!22ctbe2<0.

This holds, becauseab<0, 22ctb5(a2b)b5ab2b2<0, and also

a212cta1e2>0.

This last inequality is valid because of Eq.~B1!.
2. In the opposite case ofab>0 the inequality~B8! easily follows from Eq.~B3! by omission

of some positive terms in the right-hand side. The inequality~B8! is now established.
Lemma 3 is proved.
Corollary: The estimate~16! holds.
Actually from Eq.~A4! and Lemmas 2 and 3 we have

22keRAQ<2&keAuQu52
1

&
keAuQu2

1

&
keAuQu<2~ke!~3/4!

r

A2eD'

2keAuau
2e

.

~B9!

The estimate follows from Eq.~15!, the definition ofQ @Eqs.~B2! and ~B9!#.

APPENDIX C: ESTIMATES FOR THE REMAINDER IN EQ. „35…

Here we will discuss the conditions of smallness of the remainderE in Eq. ~19!. It will be
assumed throughout this Appendix thatke→`. We introduce dimensionless variables

a5a/D i , r 5r/D' , b5b/e, K5ke, ~C1!

and rewrite Eq.~19! as follows:
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F~u!5 iku2S a1
b1 i

2AK
r 2D 2

1OS 1

AK
S a1

b1 i

2AK
r 2D 3D .

The cubic term, (a1s)3, where

s5~b1 i !r 2/2AK,

can be estimated in terms ofa3 ands3, becauseua1su3<4(uau31usu3). We are thus getting

F~u!5 iku2a21E, ~C2!

where

E5O~as!1O~s2!1O~a3/AK !1O~s3/AK !. ~C3!

It is interesting to find such a vicinity of the center where~i! E is small and~ii ! a and r can
take large values and thus Gaussian decrease of the absolute value of the solution~15! away from
its center can be observed. In the case of limitedb, ~ii ! reduces to

uau@eAke and r@eAke.

We will quantify the values of the dimensional variable~C1! in terms of powers ofke as
follows

r<C1KP, uau<C2KQ, ubu<C3KT,

whereC1 , C2 , andC3 are arbitrary positive constants. We can now rewrite Eq.~C3! in the form
of

E5O~KT12P21/2!1O~K2T14P21!1O~K3Q21/2!1O~K3T16P22!. ~C4!

The items in the right-hand side of Eq.~C4! are all small when

Q1T12P< 1
2, T12P< 1

2, and 3Q< 1
2. ~C5!

We consider first the case of moderateb, whenT50. Then, as easy to see,E will be small
under the conditions

Q, 1
6 and P, 1

6, ~C6!

which allows large values of nondimensionalized variablesa and r . Equivalently

r,C1eK21/3 and uau,C2eK21/3. ~C7!

Assuming in addition that the values ofa and r limited, we obtain the estimate~20!.
Assuming a bit stronger restrictions onr anda than the above, we come to the following:
Theorem 1:Under the conditions

ubu<const ~C8!

and

Q, 1
8 and P, 1

8, ~C9!

or, equivalently,

r,C1eK23/8 and uau,C2eK23/8, ~C10!
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the estimate holds

E5OS 1

A8 ke
D . ~C11!

This result follows from Eq.~C4! via a simple calculation. The immediate corollary is th
under the above condition~21! is an asymptotic formula.

We will not enter into exhaustive discussion of relationships betweenP, Q, and T which
ensure the smallness ofE in the case of largeb ~similar discussion for a simpler time-harmon
case was presented in Ref. 19!. We just note that when takingb too large, e.g.,b5O(K1/2),
neither a nor r , can be allowed large, otherwiseE will not be small. This means that th
asymptotic representation~21! becomes inconsistent for too largeb, or equivalently, for too large
z/e. This equivalence follows from the formula:

z5~b2a!/25b/21O~eK21/4!.

Similarly, the expansion~21! cannot be valid for too larget.

APPENDIX D: DERIVATION OF THE ESTIMATE „38…

We will prove here
Theorem 2:The inequality holds

uuu<
1

Ab21e2
expS 2ke2keCAx2kAeuAu

2 D , where C5A4 min~R,ct!

5p2ct
, ~D1!

under the condition

ct>e. ~D2!

The proof will be based on three lemmas.
Lemma 4:Under the above condition~D2! the estimate holds

R~2ke~12AQ!!<2keS 12
1

&
A4 uQu221D , ~D3!

whereQ was defined in Eq.~A1!.
Proof: We remind that the real part ofQ satisfies the inequality~A4!, and therefore

R2ke~12AQ!<2keS 12
1

&
AuQu D .

Further from Eq.~A3! we get thatuQu>1 andAuQu>A4 uQu221 where Eq.~D3! follows.
Lemma 5:The under root expression in Eq.~D3! can be written in the form

uQu2215
N11N2

D
, ~D4!

where

N15S A

e D 2

~~A12ct!21e2!, N25~A1ct!2sin2 x14ct~ct1A!sin2
x

2
, ~D5!

and
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D5~A cosx1ct cosx1ct!21e2. ~D6!

Proof: This statement follows from:

uQu25
~R22~ct!21e2!214e2~ct!2

e2@~~A1ct!cosx1ct!21e2#
, ~D7!

which itself follows from Eq.~25! and the definitions ofA, x, andQ, @Eqs.~23!, ~24!, and~B2!#.
Lemma 6:For all values ofA, x, andt

A4 N1

D
>AuAu

e
. ~D8!

Proof: This follows from the estimate of the denominator:

D<~ u~A1ctuucosxu1ct!21e2<~ uA1ctu1ct!21e25~A12ct!21e2. ~D9!

We used here thatuA1ctu5uR2ct1ctu5R>0.
Lemma 7:For ct>e

A4 N2

D
>A4 4

5p2 minS R

ct
,1DAuxu. ~D10!

Proof: We consider separately two cases.
Case 1.u(A1ct)cosxu>ct and thusR>ct.
We estimate the denominator from above using thate,ct

D<~ u~A1ct!cosxu1ct!21e2,4~A1ct!2cos2 x1~ct!2<5~A1ct!2cos2 x.

For the numerator we have

N2>~A12ct!2sin2 x>~A1ct!2sin2 x

becauseA1ct>0 andt.0. Therefore

N2

D
>

1

5
tan2 x.

1

5
x2. ~D11!

This estimate is even stronger than that in question.
Case 2.u(A1ct)cosxu,ct.
For the numerator we have

N2>4ct~ct1A!sin2
x

2
.

The denominator is estimated as follows:

D<~ u~A1ct!cosxu1ct!21e2,4~ct!21e2,5~ct!2.

Thus we have using that sin(x/2)>x/p

N2

D
>

4~ct1A!

5ct
sin2

x

2
>

4~ct1A!

5p2ct
x25

4R

5p2ct
x2.

If A.0 or equivalentlyR.ct
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N2

D
>

4

5p2 x2.

If A<0 or equivalentlyR<ct, then

N2

D
>

4R

5p2ct
x2. ~D12!

The last inequality shows that whenR becomes small than the dependence on the angle bec
less marked.

The result of Lemma 7 follows by taking the fourth root of Eqs.~D11! and ~D12!.
We are getting the result~D1! of the Theorem 2 employing Lemmas 4, 6, and 7 and

inequality

A4 uQu221>
1

2 SA4 N1

D
1A4 N2

D D . ~D13!

Formulation and derivation of the estimate fort<2e/c similar to Eq.~D1! is omitted.

APPENDIX E: DERIVATION OF NONDISPERSIVE SOLUTIONS WITH
NONAXISYMMETRIC PHASE FUNCTION

Assuming that the solution of the form~5! satisfies~1! we get

hu5@~¹u!22c22~u t!
2# f 9~u!1@2~¹u¹g2c22u tgt!1ghu# f 8~u!1 f ~u!hg50,

where

h5¹22c22]2/]t25]2/]x21]2/]y214]2/]a]b.

Arbitrariness off (u) implies, first, that the eikonal equation@Eq. ~6!# holds, then, second, that th
transport equation

2~¹u¹g2c22u tgt!1ghu50, ~E1!

is satisfied, and, third, thatg satisfies the wave equation

hg50. ~E2!

As easy to check, the functionu defined by Eq.~53! satisfies the eikonal equation. Further, by
simple calculation we find that

hu5
2

b2 i e1
1

2

b2 i e2
.

We assume now thatg5g(b) is a function of one variable, where it follows, first, that Eq.~E2!
holds, and, second, that

2~¹u¹g2c22u tgt!54g8~b!,

where Eq.~E1! becomes

2g8~b!1 S 1

b2 i e1
1

1

b2 i e2
D g~b!50,
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Thusg can be taken in the form of

g5g~b!5
1

Ab2 i e1Ab2 i e2

,

what proves that Eq.~54! is a solution of the wave equation.
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Dynamical electromagnetic modes for an expanding
sphere
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Institute for Physical Research, Armenian National Academy of Sciences,
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The problem of dynamical modes for an expanding–contracting spherical cavity
with metallic boundary conditions is considered, which is exactly solvable if the
cavity surface is growing–decreasing with constant velocity. Explicit results are
given for the normalized modes inside and outside the cavity. ©2000 American
Institute of Physics.@S0022-2488~00!02204-0#

I. INTRODUCTION

Presently there is a growing interest in the dynamical Casimir effect for the Electromag
Field ~EMF!1–5 and it may also play a role in dynamical phenomena at the boundary bet
different thermodynamic phases.6 The main point of this effect is the influence of moving boun
aries on the field inside a cavity; the vacuum state of EMF may become unstable which res
the emission of photons. Though this phenomenon has already been known for thirty year7 it is
well investigated in the one-dimensional case only where the conformal invariance of the
equation gives the opportunity to explicitely calculate the mode-functions. The only t
dimensional problem which has been exactly treated sofar is the uniform motion o
Casimir-plates.8

In this paper we present a set of dynamical modes for an ideal expanding–contracting s
cal cavity of radius

R~ t !5AR0
212R0V0t, 0<t,1`, ~1!

where 0,V0,1 is the velocity of the expanding surface area~in units of the light velocity!. For
a collapsing sphere,V0,0, one has to consider negative times2`,t<0. The main reason
studying this case is the possibility to construct an analytical solution. A possible physical
cation would be the compression of radiation in a collapsing sphere.

The paper is organized as follows. Section II gives the formalism of the description of sp
cally symmetric EMFs and the boundary value problem for the Debye-potentials will be sta
Sec. III. Then, the expanding sphere problem is formulated in Sec. IV, whereas Sec. V pr
explicit results for the dynamical orthonormalized modes.

II. BACKGROUND

The EMF tensor in vacuum satisfies the covariant Maxwell equations9

] iF jl 1] jFli 1] lFi j 50,
1

A2g
] i~A2gFji !50, ~2!

a!Electronic mail: vem@aua.am
b!Electronic mail: baltz@tkm.physik.uni-karlsruhe.de
19560022-2488/2000/41(4)/1956/5/$17.00 © 2000 American Institute of Physics
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whereg is the determinant of the metric tensorgik . In spherical coordinatesxi5(t,r ,u,w) we
have

ds25dt22dr22r 2du22r 2 sin2udw2,

from which gik can be read-off. Any solution to Eq.~2! may be represented as a linear combin
tion of two independent transverse electric and magnetic tensorsF(l),l5TE,TM.

Ftr
~TE!50, Ftu

~TE!5
1

sinu
]w] t~rP~TE!!,

Ftw
~TE!52sinu]u] t~rP~TE!!, Fru

~TE!5
1

sinu
]w] r~rP~TE!!,

Frw
~TE!52sinu]u] r~rP~TE!!, Fuw

~TE!52sinuDu,w~rP~TE!!,
~3!

Ftr
~TM!52

1

r 2 Duw~rP~TM!!, Ftu
~TM!5]u] r~rP~TM!!,

Ftw
~TM!5]w] r~rP~TM!!, Fru

~TM!5]u] t~rP~TM!!,

Frw
~TM!5]w] t~rP~TM!!, Fuw

~TM!50.

Duw is the angular part of the Laplacian in spherical coordinates

Duw5
1

sinu

]

]u S sinu
]

]u D1
1

sin2 u

]2

]w2 ,

andP (l) are the generalized Debye-potentials,10 which satisfy the scalar wave-equation

1

A2g
] i~A2g gi j ] jP

~l!!50. ~4!

The relations between the EMF tensor and the natural components of the fieldsĒi ,H̄ i are

Ēr5Ftr , Ēu5
1

r
Ftu , Ēw5

1

r sinu
Ftw ,

H̄r52
1

r 2 sinu
Fuw , H̄u5

1

r sinu
Frw , H̄w52

1

r
Fru .

Note, our definition of the~TE! mode is different by a minus sign with respect to Born a
Wolf’s10 magnetic waves. The advantage of Eq.~3! is, however, that the symmetry between t
~TE! and ~TM! modes becomes more explicit.

Instead of the field componentsFik(xi) it is convenient to use the four-potentialAi
(l) . For

TE-polarization, the potential can be read-off directly from Eq.~3!

Ai
~TE!5S 0,0,

1

sinu
]w ,2sinu]uD ~rP~TE!!, ~5!

which already fullfills the Lorentz-gauge condition
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1

A2g
] i~A2gA~TE!i !50.

For TM polarization the situation is more complicated. First, comparison ofFik
(TE) with Fik

(TM)

uncovers the following symmetry property:

F* ~TM!5F~TE!~P~TE!→P~TM!!,

whereF* (TM) is dual tensor ofF(TM). This implies

F~TM!~E,H!5F~TE!~2H,E!.

Hence, theTM-potential is likewise represented by Eq.~5!, if the following identifications are
made:

E~TM!5curlA~TM!, H ~TM!5] tA
~TM!.

A set of partial solutions for the Debye potentials can be found by separating variables in te
a product ofxL

(l)(r ,t), and spherical harmonicsYLM(u,w)

PLM
~l! ~r ,t !5XL

~l!~r ,t !YLM~u,w!,

wherexL
(l)(r ,t) satisfies the equation

H ] t
22

1

r 2 ] r~r 2] r !1
L~L11!

r 2 J xL
~l!~r ,t !50. ~6!

As a result, the four-potentials are given by

ALM ,i
~l! 5S 0,0,

r

sinu
]w ,2r sinu]uDxL

~l!~r ,t !YLM~u,w!. ~7!

III. BOUNDARY CONDITIONS

We assume an ideal spherical cavity of radiusR(t) with a metallic surface. In the intrinsic
frame of reference the EMF satisfies the boundary conditions

Eu5Ew5Hr50, ~8!

on the walls of the cavity.
By applying the Lorentz-transformation to the components ofE andH, we obtain the follow-

ing relations for the Debye-potentials at the surface of the cavity in laboratory system

XL
~TE!~r ,t !ur 5R~ t !50, @] r1R8~ t !] t#~rxL

~TM!~r ,t !!ur 5R~ t !50. ~9!

In this way, the problem of dynamical modes for moving spherical cavity is reduced to
solution of Eq.~6! for the Debye-potentials imposing the boundary conditions Eq.~9!.

IV. THE EXPANDING SPHERE PROBLEM

Let us consider a new set of orthogonal coordinatesh, j, u8, w8 which are defined as

t5 1
2 ~j21h2!2 1

2 ~j0
21h0

2!, r 5jh, u5u8, w5w8,

wherej0
25R0V0 ,h0

25R0 /V0 . In the new coordinates the line-element is
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ds25~h22j2!~dh22dj2!2j2h2du22j2h2 sin2 udw2,

from which the new metric can be read-off. The Debye-potentials obey the following equ
with separable variables:

~ L̂j2L̂h!xL
~l!~j,h!50,

whereL̂x is the Bessel operator.

L̂x[
1

x2 ]x~x2]x!2
L~L11!

x2 . ~10!

The cavity trajectoryr 5R(t) corresponds to the linej5j0 , and the boundary conditions Eq.~8!
become

xL
~TE!~j,h!uj5j0

50, ]j@jxL
~TM!~j,h!#uj5j0

50. ~11!

In other wordsxL
(TE) andjxL

(TM) satisfy the Dirichlet and Neumann boundary conditions, resp
tively. As a result the boundary value problem Eqs.~10! and ~11! is separable.

Inside the cavity, 0<j<j0 ,Aj0
21h0

2<h,1` the general solution of the problem is give
by

xLn
~l!~j,h!5CLn

~l! j L~QLn
~l!j !zL~QLn

~l!h!,

where j L(x) denotes a spherical Bessel-function of the first kind,zL(x) is a general spherica
Bessel-function, andQLn

(l) are the roots of the transcendental equations

j L~QLn
~TE!j0!50, @QLn

~TM!j0 j L~QLn
~TM!j0!#850.

The prime denotes differentiation with respect to the argument of the Bessel-functions andCLn
(l) is

a suitable normalization factor which will be fixed later.
Outside the cavity, we havej21h2>j0

21h0
2;j>j0 ,h>j0 and the general solution is give

by

xLQ
~l!~j,h!5CLQ

~l!@hL
~2!~Qj!1BLQ

~l!hL
~1!~Qj!#zL~Qh!. ~12!

HerehL
( j )(x)( j 51,2) are spherical Hankel functions andQ is a positive number, 0<Q,1`. BLQ

(l)

provide fulfillment of the boundary conditions and are given by expressions

BLQ
~TE!52

hL
~2!~Qj0!

hL
~1!~Qj0!

, BLQ
~TM!52

@Qj0hL
~2!~Qj0!#8

@Qj0hL
~1!~Qj0!#8

. ~13!

V. DYNAMICAL MODES

When quantizing the EMF, the following orthonormalization properties of the four-pote
are conveniently imposed:11

~AN,i
~l! ,AN8

~l!i
!5dNN8 , ~AN,i

~l!* ,AN8
~l!* i

!52dNN8 , ~AN,i
~l!* ,AN8

~l!i
!50, ~14!

where (A,B)[2 i *SA2g(A* ]↔ jB)njdS is the covariant scalar product,S denotes a spacelike
hypersurface, andnj is unit vector normal toS
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~A* ]↔ jB![A* ] jB2B] jA* , ~15!

N[L,M ,n inside andN[L,M ,Q outside the cavity, anddQQ8→d(Q2Q8).
For the normalization of the modes inside the cavity it is convenient to useh5const asS.

Using the Wronskian of the Hankel-functions,12 i.e.,

h~1!~x! ]↔h~2!~x!52
2i

x2 ,

we obtain

xLn
~l!~j,h!5CLn

~l! j L~QLn
~l!j !hL

~2!~QLn
~l!h!, ~16!

CLn
~TE!5F QLn

~TE!

L~L11!j0
3G1/2 1

j L8~QLn
~TE!j0!

, ~17!

CLn
~TM!5FQLn

~TM!
„QLn

~TM!2j0
22L~L11!…

L~L11!j0
3 G1/2 1

@QLn
~TM!j0 j L~QLn

~TM!j0!#9
. ~18!

Outside the cavity, we chooset5const asS. As a result, we obtain

xLQ
~l!~j,h!5

1

2 F Q3

pL~L11!G
1/2

$hL
~2!~Qj!1BLQ

~l!hL
~1!~Qj!%hL

~2!~Qh!. ~19!

In conclusion, we derived the dynamical modes inside and outside the expanding sph
given by Eq.~7! together with Eqs.~13!, and~16!–~19!.
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On the K-property of quantized Arnold cat maps
S. V. Neshveyeva)

Institute for Low Temperature Physics and Engineering,
Lenin Ave 47, Kharkov 310164, Ukraine

~Received 23 February 1999; accepted for publication 7 September 1999!

We prove that some quantized Arnold cat maps are entropic K-systems. This result
was formulated by H. Narnhofer@J. Math. Phys.33, 1502–1510~1992!#, but the
fact that the optimal decomposition for the multi-channel entropy constructed there
is not strictly local was not appropriately taken care of. We propose a strictly local
decomposition based on a construction of Voiculescu. ©2000 American Institute
of Physics.@S0022-2488~00!02501-9#

I. INTRODUCTION

The concept of K-system is very important in ergodic theory. Narnhofer and Thirring1 intro-
duced a noncommutative analog of this notion. In Ref. 2 V. Ya. Golodets and the author p
the following sufficient condition for the K-property: a W*-system~M, f, a! is an entropic
K-system if there exists a W*-subalgebraM0 of M such thatM0,a(M0), ùnPZa

n(M0)5C1,
ønPN„a

2n(M0)8ùan(M0)… is weakly dense inM. This condition and the observation that
subsystem of a K-system invariant under the modular group is a K-system too, allow
construct a large class of quantum K-systems~see, in particular, Refs. 2–4!. We know only one
class of quantum systems for which the K-property is obtained by different arguments. T
quantized Arnold cat maps. This result was formulated in Narnhofer’s paper.5 The decompositions
contructed in the course of the proof there are not strictly local, which leads to a factor that
could only be controlled by using asymptotic Abelian arguments. So the essential interest
the construction of a completely positive map that is strictly local and can be well controlled
generalized in a larger context.

II. THE K-PROPERTY OF QUANTIZED CAT MAPS

Let G be a discrete Abelian group,v:G3G→T a bicharacter. Consider the twisted grou
C*-algebraC* (G,v) generated by unitariesug , gPG, such that

uguh5v~g,h!ug1h .

The canonical tracet on C* (G,v) is given byt(ug)50 for gÞ0. It is known that the uniquenes
of the trace is equivalent to the simplicity ofC* (G,v), and is also equivalent to the nondege
eracy of the pairing (g,h)°v(g,h)v̄(h,g). In particular, if G is countable and the pairing i
nondegenerate, thenpt„C* (G,v)…9 is the hyperfinite II1-factor. Eachv-preserving automorphism
T of G defines an automorphismaT of C* (G,v), aT(ug)5uTg .

The noncommutative torusAu (uP@0, 1)) is the algebraC* (Z2,vu), where

vu~g,h!5eipus~g,h!, s~g,h!5g1h22g2h1 .

The following theorem was formulated in Ref. 5.
Theorem 1: Let TPSL2(Z), SpecT5$l,l21%. Supposeulu.1 (so that l is real) and u

P@0,1)ù(2Zl212Z). Then„pt(Au)9,t,aT… is an entropic K-system.
We will prove the following more general result.

a!Electronic mail: neshveyev@ilt.kharkov.ua
19610022-2488/2000/41(4)/1961/5/$17.00 © 2000 American Institute of Physics
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Theorem 2: Let T be an aperiodicv -preserving automorphism of G. Suppose that

(
nPZ

u12v~g,Tnh!u,` ;g,hPG.

Then(pt„C* (G,v)…9,t,aT) is an entropic K-system.
It was proved in Ref. 5, Theorem 3.8, that under the assumptions of Theorem 1, fo

g,hPZ2, we have

u12v~g,Tnh!u<Culu2unu,

so Theorem 1 really follows from Theorem 2. The key observation for that estimate wa
equality

Tnh5
1

l221 (
i 50

2

~ln1 i1l2n2 i !h̄i1l2nh̄ ~nPN!,

whereh̄iPZ2 and h̄PR2 depend only onh andT, which is obtained by computations in a bas
diagonalizing T. Since s(g,h̄i), s(g,h), and ln1 i1l2n2 i5Tr Tn1 i are all integers andu
[2s(l221) mod 2Z for somesPZ, we have

us~g,Tnh![l2n2s~l221!s~g,h̄!mod 2Z,

whenceu12v(g,Tnh)u<ulu2n2pusu(l221)us(g,h̄)u.
Starting the proof of Theorem 2, consider a unital completely positive mappingg:A

→pt(C* (G,v))9 of a finite-dimensional C*-algebraA. By definition,1 we have to prove that

lim
n→`

lim
k→`

1

k
Ht~g,aT

n+g,...,aT
n~k21!+g!5Ht~g!.

For a finite setX, we denote by Mat (X) the C*-algebra of linear operators onl 2(X). Let
$exy%x,yPX be the canonical system of matrix units in Mat (X). For X,G, we define a unital
completely positive mappingi X :Mat (X)→C* (G,v) by

i X~exy!5
1

uXu
uxuy* 5

v̄~x2y,y!

uXu
ux2y .

As follows from Ref. 6~see Lemmas 5.1 and 6.1 there!, there exists a net$Xi% i of finite subsets
in G and, for eachi, a unital completely positive mappingj Xi

:C* (G,v)→Mat (Xi) such that
i( i Xi

+ j Xi
)(a)2ai→

i
0 ;aPC* (G,v). From this we may conclude that any partition of unit

pt„C* (G,v)…9 can be approximated in strong operator topology by a partition of the f
$ i X(ak)%k , where$ak%k is a partition of unit in Mat (X). Hence, for any«.0, there exist a finite
subsetX,G and a finite partition of unit 15( i PIai in Mat (X) such that, forbi5 i X(ai), we have

Ht~g!,«1(
i

ht~bi !1(
i

S~t„g~• !…,t„g~• !bi…!,

wherehx52x logx. SetXnk5( l 51
k Tn( l 21)(X).

The following lemma was proved in Ref. 5 forG5Z2.
Lemma: Let G be a discrete Abelian group, T an aperiodic endomorphism of G, KerT50,

and Y a finite subset of G, 0PY. Then there exists n0PN such that if
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(
l 51

k

Tn~ l 21!yl50 ~1!

for some y1 ,...,ykPY, n>n0 , kPN, then y15¯5yk50.
Proof: First consider the case whereG is finitely generated. Then the periodic part ofG is

finite. SinceT acts on it aperiodically, it is trivial, soG>Zn for somenPN. ThenT is defined by
a nondegenerate matrix with integral entries, which we denote by the same letterT. It is known
that the aperiodicity is equivalent toTùSpecT5B. Let SpecT5$l1 ,...,lm%, Vi,Cn be the
root space corresponding tol i , andPi the projection ontoVi along % j Þ iVj . Then~1! is equiva-
lent to the system of equalities

(
l 51

k

Tn~ l 21!Piyl50, ~2!

i 51,...,m. Fix i. Suppose, for definiteness, thatul i u,1, and choosed, 0,d,12ul i u. SinceTVi
is

a sum of Jordan cells, there exists a constantC such that

iTnuVii<C~ ul i u1d!n, ;nPN.

There exists also a constantM.0 such that, foryPY, we have eitherPiy50 or M 21<iPiyi
<M . Finally, chooseniPN such that

(
n5ni

`

MC~ ul i u1d!n,M 21.

Then if the equality~2! holds withn>ni , thenPiy150. Since KerT50, we can rewrite~2! as
( l 51

k21Tn( l 21)Piyl 1150. Thus we sequentially obtainPiy15¯5Piyk50. So we may taken0

5maxi ni .
We prove the general case by induction onuYu using the same method as in Ref. 7 to redu

the proof to the case considered above.
Let H0 be the group generated byY,TY,T2Y,... . SetHn5TnH0 , H`5ùnHn , and Y8

5YùH` . SupposeY8ÞY. There existsn1PN such thatY85YùHn1
. If the equality~1! holds

with n>n1 , then y1PHn1
ùY5Y8,H` . Then ( l 52

k Tn( l 21)ylPH` . Since KerT50 andTH`

5H` , we conclude that( l 51
k21Tn( l 21)yl 11PH` . Thus we sequentially obtain thaty1 ,...,yk

PY8. SinceuY8u,uYu, we may apply the inductive assumption.
If Y85Y, then Y,H1 , hence there existsnPN such that ifH̄ is the group generated b

Y,TY,...,TnY, thenY,TH̄. Then H̄ is a finitely generated group andT21 an aperiodic endo-
morphism ofH̄. For this case the Lemma is already proved.

j

Applying the Lemma to the setY5X2X we see that the mapping

Xk→Xnk , ~x1 ,...,xk!°(
l 51

k

Tn~ l 21!xl

is a bijection for allkPN and for allnPN sufficiently large. This bijection induces an isomo
phism of Mat (Xk) onto Mat (Xnk). Composing it withi Xnk

:Mat (Xnk)→C* (G,v) and identifying
Mat (Xk) with Mat (X) ^ k we obtain a unital completely positive mapping

snk :Mat ~X! ^ k→C* ~G,v!.

Setb(n,k) i 1...i k
5snk(ai 1

^ ...^ ai k
). By definition,8 we obtain
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1

k
Ht~g,aT

n +g,...,aT
n~k21!+g!>

1

k (
i 1 ,...,i k

ht~b~n,k! i 1 ...i k
!

1
1

k (
l 51

k

(
i l

S„t„g~• !…,t~g~• !aT
2n~ l 21!

„b~n,k! i l
~ l !
…!…,

where

b~n,k! i l
~ l !5 (

i 1 ,...,ı̂l ,...,i k

b~n,k! i 1 ...i k
.

If we denote bytY the unique tracial state on Mat (Y), then tY5t + i Y , so that t +snk

5tX
^ k , whence

t~b~n,k! i 1 ...i k
!5)

l 51

k

tX~ai l
!5)

l 51

k

t~bi l
!.

So the first term in the inequality above is equal to( iht(bi), and in order to prove Theorem 2
remains to show that

iaT
2n~ l 21!

„b~n,k! i l
~ l !
…2bi l

i ——→
n→`

0

uniformly on k,l PN ( l<k) and i lPI . Let u l be the embedding of Mat (X) into Mat (X) ^ k

defined by

.

Thenb(n,k) i l
( l )5(snk+u l)(ai l

). Thus we just have to estimate

iaT
2n~ l 21!+snk+u l2 i Xi .

Using the facts thatv is bilinear andT-invariant we obtain

snk~ex1x1
^¯^ exl 21xl 21

^ exy^ exl 11xl 11
^ ...^ exkxk

!

5
1

uXuk
v̄S Tn~ l 21!~x2y!,Tn~ l 21!y1 (

i 51,iÞ l

k

Tn~ i 21!xi D uTn~ l 21!~x2y!

5S )
i 51,iÞ l

k
v̄(x2y,Tn( i 2 l )xi)

uXu D v̄~x2y,y!

uXu
uTn~ l 21!~x2y! ,

so that

i~aT
2n~ l 21!+snk+u l2 i X!~exy!i5

1

uXu U (
x1 ,...,x̂l ,...,xk

S )
i 51,iÞ l

k
v̄~x2y,Tn~ i 2 l !xi !

uXu D 21U
5

1

uXu U )
i 51,iÞ l

k S 1

uXu (zPX
v̄~x2y,Tn~ i 2 l !z! D 21U.

We must show that the latter expression tends to zero asn→` uniformly on k,l PN ( l
<k). This follows from
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(
nPZ

U12
1

uXu (zPX
v~x2y,Tnz!U,`.

So the proof of Theorem 2 is complete.

III. CLASSICAL CASE

If v[1, thenC* (G,v)5C(Ĝ), the algebra of continuous functions on the dual groupĜ. It
is known that an automorphismT of G is aperiodic iff the dual automorphism ofĜ is ergodic.
Thus we obtain a classical Rohlin’s result7 stating that ergodic automorphisms of compact Abel
groups have completely positive entropy. Note that in this case we have

b~n,k! i 1 ...i k
5bi 1

aT
n~bi 2

!¯aT
n~k21!~bi k

!,

so what is really necessary for the proof is the Lemma above and the possibility of approxim
in mean measurable partitions of unit by partitions consisting of trigonometric polynomials, w
can be proved by elementary methods without appealing to Voiculescu’s completely po
mappings.
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A bistatic inverse scattering problem
for electromagnetic waves

Jenn-Nan Wanga)
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In this paper we discuss a bistatic inverse scattering problem for Maxwell’s equa-
tions. We show that both the electric permittivity and magnetic permeability can be
uniquely recovered from the knowledge ofS(s,u,u8) for all sPR and special pairs
of orthonormal vectors (u,u8) provided that they are close to constants, where
S(s,u,u8) is the scattering kernel associated with Maxwell’s equations. In other
words, in this scattering experiment, measurements are made on a set of a priori
arranged pairs of incoming and reflected directions. ©2000 American Institute of
Physics.@S0022-2488~00!03304-1#

I. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

This paper is to investigate a special type of inverse scattering problem for Maxwell’s e
tions. LetE(x,t) andH(x,t) denote the electric and magnetic fields, respectively. The propag
of electromagnetic waves in an inhomogeneous medium is described by Maxwell’s equation

e] tE5¹3H, m] tH52¹3E ~1.1!

and

¹•~eE!5¹•~mH !50, ~1.2!

wheree5e(x).0 is the electric permittivity andm5m(x).0 is the magnetic permeability. W
assume, throughout this article, that

e~x!5m~x!51 for uxu>r.0. ~1.3!

By comparing with the homogeneous Maxwell’s equations,

] tE5¹3H, ] tH52¹3E

and

¹•E5¹•H50,

we can establish a scattering theory for Eqs.~1.1! and ~1.2! by the Lax–Phillips theory.1 Let
S(s,u,u8) with u,u8PS2,sPR be the associatedscattering kernel. It is a 333 matrix-valued
distribution. Actually, the kernelS(s2s8,u,u8) for uÞu8 is the Schwartz kernel of the scatterin
operator conjugation with the Lax–Phillips modified Radon transform. The inverse scat
problem for Maxwell’s equations~1.1! and~1.2! consists of the determination of medium para
eterse(x) and m(x) by S(s,u,u8) for a certain set of$s,u,u8%. For example, if we takeu8
52uPS2 and sPR, then we have the inverse backscattering problem. In Ref. 2, the au
considered this problem for the nonmagnetic medium, i.e.,m(x) is a constant. It was pointed ou
in Ref. 3 that knowing only the backscattering data is not enough to simultaneously dete

a!Electronic mail: jnwang@math.ncku.edu.tw
19660022-2488/2000/41(4)/1966/13/$17.00 © 2000 American Institute of Physics
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both e(x) and m(x). A natural question arises: can one recover both parameters by kno
S(s,u,u8) for sPR and a set of pairs of (u,u8) with u8Þ2u ~not arbitraryu andu8)? We call
this the bistatic inverse scattering problem. The term ‘‘bistatic’’ is commonly used in Ra
community when transmitters and receivers are separate~see Ref. 4!. On the other hand, the
backscattering problem is calledmonostaticdue to the fact that transmitters and receivers
located at the same positions. This article is devoted to solve this bistatic inverse proble
electromagnetic waves. It turns out one can show that both medium parameterse(x) andm(x) can
be uniquely determined byS(s,u,u8) for sPR and special pairs of (u,u8) with u'u8 provided
that they are a priori close to constants. Before stating our main result, we want to clearly de
the acquisition geometry, i.e., how u and u8 are arranged. First of all, assume thathPS2 is
chosen. In the following, we will use the spherical coordinates with respect toh, i.e., leth and
other two unit vectors be mutually orthogonal withh being thez-axis. Let 0,d,p/4 be a
sufficiently small constant andvPGd(h)5$(sin(w)cos(q),sin(w)sin(q),cos(w))PS2:0<w<p,0
<q<2p,wÞp/4,3p/4, andd,w,p2d%, then we set

u~v!5~sin~w2p/4!cos~q!,sin~w2p/4!sin~q!,cos~w2p/4!! ~1.4!

and

u8~v!5~sin~w1p/4!cos~q!,sin~w1p/4!sin~q!,cos~w1p/4!!. ~1.5!

The reason for taking outw5p/4,3p/4 in Gd(h) is that we want to avoid the case in which on
u ~or u8) will infinitely match the number ofu8’s ~or u’s!. It should be noted thatu(v) andu8(v)
depend smoothly onvPGd(h) and

u1u85&v, u'u8.

Finally, we letA5$(u,u8)PS23S2:u,u8 are defined by~1.4!, ~1.5! for all vPGd(e1)øGd(e2)%,
wheree15(1,0,0) ande25(0,1,0). Now the main result of this article is stated as follows.

Main Theorem: Assume that(e i(x),m i(x))PW12,̀ (R3) satisfy (1.3) and Si(s,u,u8) is the
associated scattering kernel, i 51,2. Then there exists a sufficiently small«.0 such that if

ie i~x!21iW12,̀ ~R3!,« and im i~x!21iW12,̀ ~R3!,«, i 51,2, ~1.6!

and S1(s,u,2u8)5S2(s,u,2u8) for all sPR and (u,u8)PA, then we have thate1(x)5e2(x)
and m1(x)5m2(x).

Here it is necessary to comment on the choices ofu and u8. In fact, for a given incoming
directionu, it suffices to measure at most two reflected directionsu8’s which are perpendicular to
u. Therefore, intuitively, the amount of information we need to solve this bistatic proble
‘‘slightly’’ larger than that of the monostatic~backscattering! problem. However, according to th
design of acquisition geometryA, the data we collect for the bistatic problem depends on th
variables, i.e.,vPS2 andsPR. Therefore, formally, it is ‘‘equivalent’’ to the monostatic proble
in the sense that both data depend on the same number of variables. Also, it should be no
this bistatic inverse scattering problem is clearly not equivalent to the inverse scattering pr
at a fixed energy because the latter requires the knowledge of all incoming and reflected dire
The main idea in solving the bistatic inverse scattering problem originates from the propa
property of electromagnetic waves in free space where the direction of propagation,E andH are
mutually orthogonal. Different types of inverse problems for electromagnetic waves have
extensively studied recently. The interested reader is referred to the monograph5 and references
therein.

In Sec. II, we will review the Lax–Phillips scattering theory for the inhomogeneous M
well’s equations~1.1! and~1.2! and derive a useful identity which plays a key role in the proof
main theorem. In Sec. III, we discuss the construction of scattering solutions for~1.1! and ~1.2!
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~defined in Sec. II! by using techniques from the geometrical optics. Finally, the proof of m
theorem is thoroughly explained in Sec. IV. Throughout this paper,C is a general constant. It
value may vary from line to line.

II. SCATTERING THEORY AND THE MAIN IDENTITY

The arguments in Ref. 2, Secs. II and III can be directly applied to the problem here w
further modifications. So we will omit all proofs in this section. The reader is referred to Ref.
details. From the compactness assumption of the inhomogeneity~1.3!, the Lax–Phillips scattering
theory can be easily applied to Maxwell’s equations~1.1! and~1.2! by combining results in Refs
6 and 7. Note that the Lax–Phillips scattering theory for Maxwell’s equations in a nonmag
medium is also reviewed in Ref. 2. It is readily seen that the same arguments can be exte
deal with the case of inhomogeneousm(x). Therefore, letS be the scattering operator andR be
the Lax–Phillips modified Radon transform~or translation representation!, then the Schwartz
kernel ofRSR21 is written as

d~s2s8!d~u2u8!I 1S~s2s8,u,u8!,

whereI is the 333 identity matrix. Now the scattering kernel is defined byS(s,u,u8).
Next we will derive a formula forS12S2 , whereSi is the scattering kernel related to (e i ,m i),

i 51,2. LetE(t,x,u) andH(t,x,u) be two 333 matrix-valued distributions satisfying the follow
ing matrix equations:

H e] tE5P~¹!H
m] tH52P~¹!E ~2.1!

with the behavior att!0,

H E5Qd~ t2x•u!

H5Q2d~ t2x•u!
, ~2.2!

whereP(¹) is a matrix differential operator defined by

P~¹!5S 0 2]3 ]2

]3 0 2]1

2]2 ]1 0
D , ] j5]xj

, j 51,2,3,

and

Q5S 0 2u3 u2

u3 0 2u1

2u2 u1 0
D , u5~u1 ,u2 ,u3!,uuu51.

The existence ofE andH is proved in Ref. 2. Now using exactly the same techniques from R
2, one can show that~see Lemma 3.1 and Proposition 3.1 in Ref. 2 for the proof!

Proposition 2.1: Let(Ei ,H i) be the solution of (2.1) and (2.2) associated with(e i ,m i),i
51,2. Then,

~S12S3!~s,u,u8!5
1

8p2 ]s
3E E $~e12e2!E2

t ~ t,x,2u8!E1~2s2t,x,u!

1~m12m2!H2
t ~ t,x,2u8!H1~2s2t,x,u!%dxdt, ~2.3!

where At denotes the transpose of the matrix A. The integral (2.3) is interpreted in the dist
tional sense.
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Since qeªe12e2 and qmªm12m2 are compactly supported, ifS1(s,u,2u8)
5S2(s,u,2u8) for all sPR and for any (u,u8)PS23S2, then we have from~2.3! that

E E $qeE2
t ~ t,x,u8!E1~s2t,x,u!1qmH2

t ~ t,x,u8!H1~s2t,x,u!%dxdt50, ~2.4!

for all sPR. Now let (E(t,x,u,p),H(t,x,u,p)) be the scattering solution of Maxwell’s equation
~1.1! and ~1.2!, i.e., ~E, H! satisfies~1.1!, ~1.2! with

H Eu t!05u3pd~ t2x•u!,
Hu t!05u3~u3p!d~ t2x•u!, ~2.5!

where pPR3 is a polarization vector. Here we observe thatE(t,x,u,p)5E(t,x,u)p and
H(t,x,u,p)5H(t,x,u)p. Also, it should be noted thatUp5u3p andU2p5u3(u3p). There-
fore, by multiplyingpt andp on the left and right of~2.4!, respectively, we get that

E E $qeE2~ t,x,u8,p!•E1~s2t,x,u,p!1qmH2~ t,x,u8,p!•H1~s2t,x,u,p!%dxdt50,

~2.6!

where (Ei ,Hi) is the scattering solution of Maxwell’s equations~1.1!, ~1.2! associated with
(e i ,m i),i 51,2 ~for i 52, u is replaced byu8). The identity~2.6! will be used subsequently to
prove the main theorem.

To motivate our approach, we consider the formal linearization of~2.6!. In other words, we
take (E1 ,H1)5(u3p,u3(u3p))d(t2x•u) and (E2 ,H2)5(u83p,u83(u83p))d(t2x•u8) in
~2.6! and obtain

E $qe~u3p!•~u83p!1qm~u3~u3p!!•~u83~u83p!!%d~s2x•~u1u8!!dx50. ~2.7!

Now we first letvPGd(h) andu~v!, u8(v) be defined by~1.4!, ~1.5!, respectively. Then we hav
that

u'u8 ~2.8!

and

u1u85&v ~2.9!

for all vPGd(h). By taking p5v and using~2.8!, we can easily obtain that

~u3p!•~u83p!52 1
2 and ~u3~u3p!!•~u83~u83p!!50 ~2.10!

for all vPGd(h). Hence, it follows from~2.7! that

E qed~s2&x•v!dx50 ~2.11!

for all sPR andvPGd(h). Applying the Fourier transform on~2.11! with respect tos, we get
that

q̂e~j!50, ;
j

uju
PGd~h!, ~2.12!

where ˆ is the Fourier transform inxPR3. Now choosingh5e1 and h5e2 in ~2.12!, respec-
tively, we conclude that
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q̂e~j!50, ;
j

uju
PGd~e1!øGd~e2!. ~2.13!

Let d.0 is sufficiently small such that

S2\M5Gd~e1!øGd~e2!, ~2.14!

where M5$vPS2:ang(v,ei)5p/4 or ang(v,ei)53p/4,i 51,2% is a measure zero set. Her
ang(u,v) denotes the angle between two unit vectorsu andv. Therefore, combining~2.13! and
~2.14! yields

q̂e~j!50 a.e. ~2.15!

Sinceqe is compactly supported,~2.15! implies thatqe50, i.e. e15e2 .
To getm15m2 , i.e., qm50, we takep(v) to be the unit normal vector to the plane spann

by u~v! andu8(v). With this choice ofp, we observe that

~u3p!•~u83p!50 and ~u3~u3p!!•~u83~u83p!!51 ~2.16!

for all vPGd(h). Following the same procedures as above, we can conclude thatq̂m(j)50 a.e.
and henceqm50.

III. SCATTERING SOLUTIONS

In this section we would like to derive the scattering solution~E, H! of Maxwell’s equations
in a form of progressing waves expansion with remainders. That is, let~E, H! satisfy

e] tE5¹3H, m] tH52¹3E ~3.1!

with

Eu t!05u3pd~ t2x•u!, Hu t!05u3~u3p!d~ t2x•u!, ~3.2!

then ~E, H! can be expressed as

E~ t,x,u,p!5 (
k521

1

E~k!~x,u,p!hk~ t2f~x,u!!1Er~ t,x,u,p! ~3.3!

and

H~ t,x,u,p!5 (
k521

1

H ~k!~x,u,p!hk~ t2f~x,u!!1Hr~ t,x,u,p!, ~3.4!

wherehk(s)5s1
k /k! for k>0 andh21(s)5d(s). Notice that the divergence-free condition~1.2!

is redundant for the scattering solution since this condition is satisfied att!0. It is well-known
that the phase functionf(x,u) will satisfy theeikonalequation,

u¹f~x,u!u25e~x!m~x!

with

f~x,u!ux•u,2r5x•u.

In view of the smallness conditions~1.6!, one can easily show that if« is taken sufficiently small,
thenf can be solved inB4r , a ball centered at the origin with radius 4r, and satisfies
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if~x,u!2x•uiW11,̀ ~B4r3S
u
2!<C0« ~3.5!

~see Ref. 8!. DenoteT5r1T0«. Now we can establish the following result:
Proposition 3.2: Assume thate(x) and m(x) satisfy (1.3), (1.6). Then there exists a consta

C.0 such that for allutu<3T anduPS2, the solution (E, H) of (3.1) and (3.2) is of the form (3.
and (3.4) and E(k), H (k), k521,0,1 and Er , Hr depend linearly (hence smoothly) on p satisfyi

iE~21!2~u3p!iW9,̀ ~B4r3S
u
2!<C«,iH ~21!2u3~u3p!iW9,̀ ~B4r3S

u
2!<C«, ~3.6!

iE~0!iW7,̀ ~B4r3S
u
2!<C«,iH ~0!iW7,̀ ~B4r3S

u
2!<C«, ~3.7!

iE~1!iW5,̀ ~B4r3S
u
2!<C«,iH ~1!iW5,̀ ~B4r3S

u
2!<C«, ~3.8!

iEr iL`1i] tE
r iL2<C«,iHr iL`1i] tH

r iL2<C«, ~3.9!

and

Er~ t,x,u,p!5Hr~ t,x,u,p!50 for t<2T. ~3.10!

Proof: Let ~E, H! be the solution of~2.1! and~2.2!. Then from Ref. 2~see Ref. 2, Corollary
4.1! we obtain that if« is sufficiently small, then there exists a constantC.0 such that forutu
<3T and alluPS2, ~E, H! satisfies

E~ t,x,u!5 (
k521

1

E~k!~x,u!hk~ t2f~x,u!!1Er~ t,x,u!

and

H~ t,x,u!5 (
k521

1

H~k!~x,u!hk~ t2f~x,u!!1Hr~ t,x,u!

with the following estimates:

iE~21!2UiW9,̀ ~B4r3S
u
2!<C«,iH~21!2U2iW9,̀ ~B4r3S

u
2!<C«,

iE~0!iW7,̀ ~B4r3S
u
2!<C«,iH~0!iW7,̀ ~B4r3S

u
2!<C«,

iE~1!iW5,̀ ~B4r3S
u
2!<C«,iH~1!iW5,̀ ~B4r3S

u
2!<C«,

and

iEr iL`1i] tEr iL2<C«,iHr iL`1i] tH
r iL2<C«.

As explained before, Corollary 4.1 in Ref. 2 can be extended easily to cover the case whe
magnetic permeability is not a constant. Now, by notingE5Ep and H5Hp, we get thatE(k)

5E(k)p, H (k)5H(k)p for k521,0,1 andEr5Erp, Hr5Hrp. Thus, we immediately have th
required estimates~3.6!–~3.9!. The property~3.10! is obvious. h

IV. PROOF OF MAIN THEOREM

In this section we will use the identity~2.6! to prove the main theorem. To begin with, let u
choose an appropriate cut-off function. Letxh(v)PC`(S2), wherehPS2 is a fixed vector, so
that
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xh~v!5 H0 if vPOd/2~h!

1 if vPS2\Od~h!
,

where Od(h)5$vPS2:ang(v,h),d or ang(v,2h),d%. Let vPsuppxh be given and
u(v),u8(v)PS2 be defined in~1.4!, ~1.5!, respectively. As noted before,u~v! and u8(v) are
smooth functions ofvPsuppxh . Actually, we need to exclude a measure zero set from supxh

when we considervPsuppxh . However, since we are mainly dealing with integrals in th
section, we can ignore the effect of this measure zero set. Thus, for simplicity, we will sta
following results without explicitly indicating ‘‘a.e.’’ Now letpPS2 be a polarization vector and

denoteu3p5up , u83p5up8 , u3(u3p)5 ũp , andu83(u83p)5 ũp8 . In the following, we will
take differentp’s andh’s as we did in Sec. II.

First of all, let p5v, then the scattering solution~E, H! constructed in Proposition 3.2
satisfies

iE~21!2up~v!iW9,̀ ~B4r3S
v
2 !<C«,iH ~21!2 ũp~v!iW9,̀ ~B4r3S

v
2 !<C«, ~4.1!

iE~0!iW7,̀ ~B4r3S
v
2 !<C«,iH ~0!iW7,̀ ~B4r3S

v
2 !<C«, ~4.2!

iE~1!iW5,̀ ~B4r3S
v
2 !<C«,iH ~1!iW5,̀ ~B4r3S

v
2 !<C«, ~4.3!

and

iEr iL`1i] tE
r iL2<C«,iHr iL`1i] tH

r iL2<C«, ~4.4!

where all estimates above are valid forvPsuppxh . Note that the constantC in ~4.1!–~4.4! may
depend ond, but it is a fixed constant as long asd is fixed. Denote (E1 ,H1) and (E2 ,H2) the
scattering solutions described above associate with (e1 ,m1) and (e2 ,m2), respectively. Let us se
f(x,v)5f1(x,u(v))1f2(x,u8(v)), (E1 ,H1)(t,x,u(v),p(v))5(E1 ,H1)(t,x,v), and
(E2 ,H2)(t,x,u8(v),p(v))5(E2 ,H2)(t,x,v). Now in view of the Parseval’s formula for th
Radon transformR, i]sR fiL2(R3S2)54pi f iL2(R3) , we substitute (Ei ,Hi), i 51,2 into the identity
~2.6!, differentiate~2.6! in s and multiply the new identity byxh(v). Then we get that

2]sxhE qeE1
~21!

•E2
~21!d~s2f!dx5T11T21T3 , ~4.5!

where

T15]sxhE qmH1
~21!

•H2
~21!d~s2f!dx,

T25xhE $qe~E1
~21!

•E2
~0!1E1

~0!
•E2

~21!!1qm~H1
~21!

•H2
~0!1H1

~0!
•H2

~21!!%d~s2f!dx,

T35xhE $qe~E1
~21!

•E2
~1!1E1

~0!
•E2

~0!1E1
~1!
•E2

~21!!1qm~H1
~21!

•H2
~1!1H1

~0!
•H2

~0!

1H1
~1!
•H2

~21!!%h0~s2f!dx1xhE $qe~E1
~0!
•E2

~1!1E1
~1!
•E2

~0!!1qm~H1
~0!
•H2

~1!

1H1
~1!
•H2

~0!!%h1~s2f!dx1xhE E $qe~E1
~1!
•E2

~1!!1qm~H1
~1!
•H2

~1!!%h1~ t2f1!

3h0~s2t2f2!dtdx1xhE $qe~E1
~21!

•]sE2
r ~s2f1!1E2

~21!
•]sE1

r ~s2f2!!1qm~H1
~21!
                                                                                                                



t

1973J. Math. Phys., Vol. 41, No. 4, April 2000 A bistatic inverse scattering problem for . . .

                    
•]sH2
r ~s2f1!1H2

~21!
•]sH1

r ~s2f2!!%dx1xhE $qe~E1
~0!
•E2

r ~s2f1!1E2
~0!
•E1

r ~s2f2!!

1qm~H1
~0!
•H2

r ~s2f1!1H2
~0!
•H1

r ~s2f2!!%dx1xhE E $qeE1
~1!
•]sE2

r ~s2t !qmH1
~1!

•]sH2
r ~s2t !%h1~ t2f1!dtdx1xhE E $qeE2

~1!
•]E1

r ~s2t !1qmH2
~1!
•]sH1

r ~s2t !%

3h1~ t2f2!dtdx1xhE E $qeE1
r
•]sE2

r ~s2t !1qmH1
r
•]sH2

r ~s2t !%dtdx. ~4.6!

Sinceqe vanishes outside ofBr , the left-hand side of~4.5! is supported onusu,2T, whereT
is given in Proposition 3.2. Hence, it is also true for the right-hand side of~4.5!. In view of this
fact, we will squarely integrate both sides of~4.5! over the region@22T,2T#3S2. We first look
at the left-hand side of~4.5!. Observe that

i]sxh~v!E qe~x!a~x,v!d~s2f!dxiL2~@22T,2T#3S2!

5i]sxh~v!E qe~x!a~x,v!d~s2f!dxiL2~R3S2! ~4.7!

5
1

A2p
ilxh~v!E eilf~x,v!qe~x!a~x,v!dxiL2~Rl3S2! ,

wherea(x,v)5E1
(21)(x,v)•E2

(21)(x,v). Sinceqe(x) is real-valued, by settingj5lv,l.0,v
PS2, the integral in~4.7! can be rewritten as

i]sxh~v!E qe~x!a~x,v!d~s2f!dxiL2~@22T,2T#3S2!5
1

Ap
iPaqeiL2~R

j
3! ,

where

Paqe~j!5E eif~x,j!xh~j!a~x,j!qe~x!dx. ~4.8!

Here xh(j), f(x,j), and a(x,j) have been extended toj¹S2 by definingxh(j)5xh(j/uju),
f(x,j)5ujuf(x,j/uju), anda(x,j)5a(x,j/uju) for jÞ0. To state what estimatesf anda will
satisfy, we adopt a notation from Ref. 9. We say thata5a(x,j)PSk

m iff there exists a constan
C.0 such that

u]x
a]j

ba~x,j!u<Cujum2ubu, uau1ubu<k, for xPBr , jPR3\$0%. ~4.9!

The optimal constant in~4.9! defines a norm inSk
m anda5O(«) in Sk

m means thata satisfies~4.9!
with C5O(«). Now it follows from ~3.5! that

f~x,j!5&x•j1O~«! in S11
1 for jPsupp xh~j!, ~4.10!

and from the first part of~4.1! that

a~x,j!5up~j/uju!•up8~j/uju!1O~«!521/21O~«! in S9
0 for jPsupp xh~j!. ~4.11!

Now we want to estimatePaqe . We can show that
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Proposition 4.3: Let« be sufficiently small, then there exists an«-independent constant C
.0 such that

iPaqeiL2~R
j
3!>S 1

128D
1/4S 1

2p D 3/2

i q̂eiL2~Vd~h!!2C«iqeiL2~R3! ,

whereVd(h)5$jPR3:j/ujuPGd(h)%.
Proof: Consider

Pa* Paqe~y!5E E ei ~f~y,j!2f~x,j!!xh
2~j!a~y,j!a~x,j!qe~x!dxdj.

Now we set

f~y,j!2f~x,j!5&~y2x!•z~x,y,j!,

where

z~x,y,j!5
1

&
E

0

1

~¹xf!~x1t~y2x!,j!dt.

It should be noted that forjPsuppxh(j),z is homogeneous of degree one inj and z5j
1O(«) in S10

1 . Thus, the equationz5z(x,y,j) can be solved forj, when« is sufficiently small
andjPsuppxh(j), (x,y)PBr

2. Moreover, the solutionj5j(x,y,z) satisfiesj5z1O(«) in S10
1 .

By performing a change of coordinatesj→z, we have that

Pa* Paqe~y!5E E ei&~y2x!•zã~x,y,z!qe~x!dxdz,

where

ã~x,y,z!5xh
2~j~x,y,z!!a~y,j~x,y,z!!a~x,j~x,y,z!!J~x,y,z!

andJ(x,y,z) is the Jacobian of the transformj→z. Now it is readily to check that

J511O~«! in S9
0

and from~4.11! we get that

ã~x,y,z!5 1
4 xh

2~z!1O~«! in S9
0. ~4.12!

To continue the proof, we recall a result in Ref. 8.
Lemma 4.1: (Ref. 8) Let the operator A be defined by

A f~y!5E E e2 i ~x2y!•jq~x,y,j! f ~y!dxdj.

Assume that

(
uau1ubu<m

E E u]x
a]y

bq~x,y,j!udxdy<M ~4.13!

for m>7. ThenA:L2(R3)→L2(R3) is a bounded operator with the norm<CM for some con-
stant C.0, i.e.,
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iA fiL2~R3!<CMi f iL2~R3!

for all f PL2(R3).
Now let s(x)PC`(R3) be a cutoff function withs51 on B̄r ands50 for xPR3\B2r , then

~4.12! implies thats(y)(ā(x,y,z)2 1
4 xh

2(z))s(x) satisfies~4.13! with M5O(«). Therefore, let
x̃h(z)5xh(z/&), then we get from Lemma 4.1 that

UiPaqeiL2~R3!

2
2

1

8&
S 1

2p D 3

i x̃hq̂eiL2~R3!

2 U
5U K E E ei&~y2x!•zs~y!(ã~x,y,z!2

1

4
xh

2~z!)s~x!qe~x!dxdz,qe~y!L U ~4.14!

<C«iqeiL2~R3!

2 .

Now in view of the structure ofxh , this proposition is an easy consequence of~4.14!. h

From Proposition 4.3, it is obvious that

Ci q̂eiL2~Vd~h!!2C«iqeiL2~R3!<i]sxh~v!E qe~x!a~x,v!d~s2f!dxiL2~@22T,2T#3S2! .

~4.15!

We now turn our attention to the right-hand side of~4.5!. Let us first take care of the termT1 .
As before, letb(x,v)5H1

(21)(x,v)•H2
(21)(x,v), we can get that

i]sxh~v!E qm~x!b~x,v!d~s2f!dxiL2~@22T,2T#3S2!5
1

Ap
iPbqmiL2~R

j
3! ,

where the operatorPb is defined as in~4.8! with a being replaced byb. Here b(x,j) is also
extended tojÞS2 with b(x,j)5b(x,j/uju). Now from the second part of~4.1!, the amplitude
b(x,j) satisfies

b~x,j!5 ũp~j/uju!• ũp8~j/uju!1O~«!5O~«! in S9
0 for jP supp xh~j!. ~4.16!

By mimicking the proof of Proposition 4.3, we can easily show that

iPbqmiL2~R
j
3!<C«iqmiL2~R3! . ~4.17!

Indeed, combining Lemma 4.1 and the estimate~4.16! and using the same change of coordina
~i.e., j→z), we can get that

iPb* PbqmiL2~R3!<C«iqmiL2~R3! ,

which obviously implies~4.17!. Now the estimate~4.17! leads to

iT1iL2~@22T,2T#3S2!<C«iqmiL2~R3! . ~4.18!

To deal with the termT2 , we use estimates~4.1! and ~4.2! and the fact thatqe ,qm are
compactly supported to derive that
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iT2iL2~@22T,2T#3S2!<C«H IxhE uqeud~s2f!dxI
L2~R3S2!

1 IxhE uqmud~s2f!dxI
L2~R3S2!

J
<C«H I ]sxhE uqeud~s2f!dxI

L2~R3S2!

1 I ]sxhE uqmud~s2f!dxI
L2~R3S2!

J
<C«$iP1qeiL2~R3!1iP1qmiL2~R3!%,

whereP1 is defined in~4.8! with a51. Using the same techniques as above, we can show

iP1giL2~R3!<CigiL2~R3! for gPL2~R3! supp g,Br .

Therefore, we have that

iT2iL2~@22T,2T#3S2!<C«~ iqeiL2~R3!1iqmiL2~R3!!. ~4.19!

Finally, we will handle the termT3 . To this end, we observe thatT3 can be rewritten as

T35E KE~s,v,x!qe~x!dx1E KH~s,v,x!qm~x!dx,

where forusu,2T andxPBr ,

KE~s,v,x!5xh~E1
~21!

•E2
~1!1E1

~0!
•E2

~0!1E1
~1!
•E2

~21!!h0~s2f!1xh~E1
~0!
•E2

~1!1E1
~1!
•E2

~0!!

3h1~s2f!1xhE
2T

3T

~E1
~1!
•E2

~1!!h1~ t2f1!h0~s2t2f2!dt

1xh~E1
~21!

•]sE2
r ~s2f1!1E2

~21!
•]sE1

r ~s2f2!!1xh~E1
~0!
•E2

r ~s2f1!

1E2
~0!
•E1

r ~s2f2!!1xhE
2T

r12T

E1
~1!
•]sE2

r ~s2t !h1~ t2f1!dt

1xhE
2T

r12T

E2
~1!
•]sE1

r ~s2t !h1~ t2f2!dt1xhE
2T

r12T

E1
r
•]sE2

r ~s2t !dt ~4.20!

andKH(s,v,x) is given as~4.20! with E being replaced byH. Sinceusu,2T andxPBr , we have
that us2f1u<3T andus2f2u<3T for vPsuppxh(v). Moreover, if2T,2r,t,r12T, then
we have25T,s2t<3T. Hence we see that the argument ofEi

r(t) and Hi
r(t), i 51,2 in the

above integral lies inside the estimate region of Proposition 3.2. Now using all estima
Proposition 3.2 we can derive that

E
22T

2T E
S2
E

Br

uKE~s,v,x!u21uKH~s,v,x!u2dxdvds<~C«!2. ~4.21!

It follows from ~4.21! that

iT3iL2~@22T,2T#3S2!<C«~ iqeiL2~R3!1iqmiL2~R3!!. ~4.22!

Combining the estimates~4.15!, ~4.18!, ~4.19!, ~4.22!, we immediately have that

Ci q̂eiL2~Vd~h!!<C«~ iqeiL2~R3!1iqmiL2R3!). ~4.23!

Now let the fixed constantd.0 be small such that

S25Gd~e1!øGd~e2! ~a.e.!
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and therefore

R35Vd~e1!øVd~e2! ~a.e.!. ~24!

Thus, in view of~4.24!, we obtain that

CiqeiL2~R3!5Ci q̂eiL2~R
j
3!<C~ i q̂eiL2~Vd~e1!!1i q̂eiL2~Vd~e2!!<C«~ iqeiL2~R3!1iqmiL2~R3!!.

~4.25!

Next we want to prove the following estimate similar to~4.25!,

CiqmiL2~R3!<C«~ iqeiL2~R3!1iqmiL2~R3!!. ~4.26!

To this end, we choosep(v)PS2 with p(v)'u(v) andp(v)'u8(v). Thus, we have that

~u3p!•~u83p!50 and ~u3~u3p!!•~u83~u83p!!51 ~4.27!

for all vPGd(h). We now rearrange the formula~4.5! such that

2]sxhE qmH1
~21!

•H2
~21!d~s2f!dx5T̃11T21T3 ,

where

T̃15]sxhE qeE1
~21!

•E2
~21!d~s2f!dx

andT2 andT3 are defined as in~4.6!. With this choice ofp, the scattering solutions (E1 ,H1) and
(E2 ,H2) constructed in Proposition 3.2 with respect to (e1 ,m1) and (e2 ,m2) will satisfy the same
estimates~4.1!–~4.4!. From these estimates and~4.27!, we observe that

H1
~21!

•H2
~21!511O~«! in S9

0 ~4.28!

and

E1
~21!

•E2
~21!5O~«! in S9

0 ~4.29!

for jPsuppxh(j). Therefore, by noting~4.28! and ~4.29!, we can go over the above argumen
again and obtain~4.26! ~also takingh5e1 and e2 , respectively!. Combining~4.25! and ~4.26!
yields

C~ iqeiL2~R3!1iqmiL2~R3!!<C«~ iqeiL2~R3!1iqmiL2~R3!!.

Thus, by taking« to be sufficiently small, we immediately have thatqe50 andqm50, i.e., e1

5e2 andm15m2 .
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Functional and graphical methods for classical statistical
dynamics. I. A formulation of the Martin–Siggia–Rose
method

Hans C. Andersen
Department of Chemistry, Stanford University, Stanford, California 94305

~Received 20 January 1999; accepted for publication 15 November 1999!

A formulation of the Martin–Siggia–Rose~MSR! method for describing the sta-
tistical dynamics of classical systems is presented. The present formulation is very
similar in structure to the original MSR ‘‘operator’’ formalism and very different
from the alternative functional integral formalism of Janssen, de Dominicis, Peliti,
and others. The need for imposing certain boundary conditions in the MSR formal-
ism, as pointed out by Deker, is clarified. The basic results of this paper include: a
construction of the MSR formalism in a way that demonstrates its internal consis-
tency; a definition of a functional whose functional derivatives give all the corre-
lation functions and response functions of an ensemble of mechanical systems; a
graphical expression for the correlation functions and response functions; a graphi-
cal expression for the Legendre transform of the functional and of the resulting
vertex functions; and a graphical derivation of the appropriate Dyson equation. The
present formulation is applicable to systems with highly non-Gaussian statistics,
including systems of classical particles described in terms of the particle density in
single-particle phase space. In this paper, we consider only the case of ensembles of
systems whose coordinates are continuous and whose time evolution is described
by deterministic first order differential equations that are local in time. The method
is easily extended to systems whose dynamics is governed by stochastic differential
equations and to spin systems. ©2000 American Institute of Physics.
@S0022-2488~00!00104-3#

I. INTRODUCTION

A. The Martin–Siggia–Rose method

In 1973, Martin, Siggia, and Rose~MSR!1 proposed a formalism for the calculation of d
namical properties of certain types of classical systems, a formulation that is very similar
Schwinger formulation of quantum field theory. In particular, it made us of a generating funct
for the time dependent correlation functions and response functions of the system, the Le
transformation of the generating functional, and graphical methods for analyzing the vertex
tions that result from the Legendre transformation. The motivation for the formalism was wo
Kadanoff and Swift, Kawasaki, and Re´sibois on mode coupling theories of transport near
critical point and work of Kraichnan, Wyld, and Edwards on turbulence~see Ref. 1 for refer-
ences!. The most important single idea of the MSR approach was that for classical system
calculation of correlation functions of dynamical variables should be expanded to include c
lation of response functions, i.e., functions that describe the response of the system to e
fields that act directly on the coordinates of the system. The expanded, integrated calcula
the correlation and response functions has formal properties that are much more amenabl
use of functional and graphical methods than a calculation of the correlation functions alon
calculation was accomplished by regarding the coordinates of the system as time-depend
erators~calledc! and introducing additional adjoint operators~calledĉ! that do not commute with
thec and that are used to calculate response functions. This ‘‘operator doubling’’ is describ
MSR as crucial to the development of a completely renormalized theory of classical many
correlation functions.
19790022-2488/2000/41(4)/1979/42/$17.00 © 2000 American Institute of Physics
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The MSR paper stimulated a great deal of research, which can be characterized as fo
along two lines of development.

~1! The first was an elaboration and correction of the basic MSR approach, by Deke
Haake2–4 and Phythian.5,6 The characteristic of this line of development is the use of noncomm
ing objects, usually called operators, as in the original MSR paper. Following Jensen,7 we shall
refer to this as the operator formalism. This line of development is discussed more fully b
~Closely related to this is an independent development by Kawasaki8 of an approach that gav
similar results.!

~2! The second line of development was a functional integral~or path integral! formulation for
problems of continuous fields that satisfy stochastic differential equations, due to Janssen,9 Bausch
et al.,10 Phythian,11 and De Dominicis and Peliti.12 In this approach, a field is used to character
the system of interest, but an additional field is introduced and plays a role in the calculat
response functions. Thus, here we have what might be called field doubling, rather than o
doubling, but the same purpose is served. The analogy with the original MSR approach is
enough that Janssen refers to this approach as a Lagrangean formulation of the theory of
Siggia, and Rose. Following Jensen,7 we shall refer to this as the functional integral formalis
~Note that the wordfunctionalby itself is not useful for distinguishing between these two lines
development. Both the operator method and the functional integral method usegenerating func-
tionals to calculate correlation and response functions, but only the functional integral m
usesfunctional integrals.!

The functional integral formulation of the MSR approach is applicable only to clas
continuous fields satisfying linear or nonlinear Langevin equations. It has been very exten
used for a variety of problems including critical phenomena, turbulence, crystal growth, flu
ing hydrodynamic models for supercooled liquids, diffusion in disordered, media, and un
growth.13 When the MSR method is discussed in the literature, it is usually this functional int
formulation that is being referred to. The limitations of the functional integral formulation h
some practical implications:~1! The formalism cannot be applied to spin systems with disc
states; instead the spins must be converted to soft spins with continuous values of th
variables.~2! There are great difficulties in applying the formalism to the kinetic theory of ga
or liquids, in which the relevant field is the density in single-particle phase space. The statis
this density are highly non-Gaussian, with nonzero cumulants of all orders, even for an ideal14

Thus a re-examination of the operator formalism is in order in the hope of extending the
of problems that can be approached.

B. The operator formalism

Three basic, but interrelated, difficulties with the operator formalism have been noted.
~1! The method as originally formulated by MSR did not take into account properly

possibility of non-Gaussian initial statistics. The existence of the problem was recognized
original authors15 and later clarified by Deker.4 The origin of the problem, according to Deker,
that MSR failed to include the effect of some subtle contributions to the generating function
performing the Legendre transformation~i.e., the transformation from the original generatin
functional of the correlation and response functions to the generating functional of the v
functions!. This additional term would yield additional spurious vertices that could not be obta
by MSR. Deker found a way around this problem by applying certain boundary conditions t
time dependent operators and inventing another way of introducing the desired initial correla

~2! When MSR applied their method to the calculation of the kinetic equation for the de
autocorrelation function of an atomic fluid and specialized to the case of weak interparticle
actions, they could not verify the previously known weak coupling result of Forster and Mar16

~3! The mathematical basis for the MSR operator formalism is not clear from their orig
paper. In particular, if thec and ĉ are operators, what do they operate on? Do they operat
members of a vector space? an inner product space? or what? MSR described their appr
using the Heisenberg picture, suggesting that they are Heisenberg operators that act on a
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space. In fact, MSR acknowledged that they have not demonstrated the consistency of their
They also wrote: ‘‘Our procedure is far from rigorous from a mathematical point of view. Ce
formal steps are involved that areeven less well justifiedthan those physicists call mathematics
~emphasis added!.

Phythian5,6 attempted to provide a consistent mathematical basis for the operator forma
Phythian considered the special case of the dynamics being deterministic and governed by
ential equations that are first order in time and local in time5 and later extended the result t
systems of this type that are also subject to certain types of random forces. In this approachc

andĉ are Heisenberg operators on a Hilbert space of functions. The definition of the Heise
operators requires the existence of an operator that is the inverse of the analog of the Li
operator for the dynamics. Phythian assumed the existence of this inverse without comme
fairly easy to construct simple counterexamples of systems with nonlinear dynamics for
such an inverse does not exist.~See Appendix A for such an example.! Thus, the foundation
provided by Phythian for the operator formalism is not applicable to as wide a class of pro
as claimed. In particular, this formulation is valid~because the inverse clearly exists! for deter-
ministic Hamiltonian mechanics provided that canonical coordinates and momenta are u
describe the system. However, when the single-particle phase space density is used as th
mental variable, it is not clear that the inverse exists, and for this and other problems in whi
equations of motion are nonlinear the existence of the inverse will have to be addressed on
by case basis.

C. The present work

In this paper, we present a mathematical justification of the operator formalism of MS
the important special case of dynamics being governed by differential equations that are
ministic, first order in time, and local in time~i.e., the class of problems considered by Phythian5!.
~Extension of the method to the case of stochastic differential equations with various typ
noise is straightforward.! In the present approach, thec andĉ are not operators on a Hilbert spac
but the set of all such quantities for all times are members of a complex algebra, which is a s
more general construct than the set of all operators on a Hilbert space. This algebra is ex
constructed. The commutation relations of thec and ĉ objects are a generalization of those
MSR. A mapping of members of the algebra onto the set of complex numbers is defined
mapping plays the role of a statistical average and can be used to calculate correlation fu
and response functions. The time derivative of a member of the complex algebra is define
way that facilitates calculating the time derivatives of the correlation and response function
usual MSR equations of motion of thec and ĉ are obtained. The generating functional of t
correlation and response functions is defined. We perform a Legendre transformation o
generating functional to get the generating functional of the vertex functions. We find tha
boundary condition imposed by Deker is not merely a device to avoid some difficulties in c
lating all the vertex functions but is rather a necessary condition for being able to perform
Legendre transformation in the first place. We then use Deker’s procedure to introduce the d
initial correlations. A consequence of the use of the boundary conditions is that the gene
functional, its Legendre transform, and all their functional derivatives can be expressed com
in terms of graphs in much the same way as in the Mayer cluster theory of classical ga
equilibrium. In this method, initial correlations with arbitrarily many cumulants are easily inclu
in the formal manipulations.

In Sec. II we formulate the class of problems of interest. In Sec. III we construct the alg
derive the commutation relations, define a statistical average of members of the algebr
derive the equations of motion of the fields. In Sec. IV we define the moments and cumula
the fields as well as their generating functionals, and we obtain an equation of motion for th
functional derivative of the generating functional for the moments. In Sec. V we discus
Legendre transformation from the generating functional of the moments to the generating
tional of the vertex functions. In Sec. VI we express the correlation and response functio
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terms of diagrams. In Sec. VII, we obtain graphical expressions for the Legendre transf
functional and its functional derivatives, the vertex functions. In Sec. VIII we express the c
lants of the fields in terms of diagrams with no articulation points. In Sec. IX we derive the
of the Dyson equation that arises from the formalism. Section X concludes with some com
and discussion of how the present results can be used.

II. FORMULATION OF THE PROBLEM OF INTEREST

A. Deterministic equations of motion

We consider problems in which the state of the system at any time is characterized
~continuous! values of a discrete set of coordinates,x(a) for a51,2,... . Herea labels the coor-
dinates andx(a) is the value of the coordinate. The value of a coordinate at timet will be denoted
x(at). For quantities that should have a variable labela, the symbol for the quantity without the
a will be used to denote the complete set. Thusx will denote the set ofx(a) for all a; x(t) will
denote the set ofx(at) for all a. The equations of motion are of the form

ẋ~a1t !5U~a1t;x~ t !!

5U1~a1t !1(
a2

U2~a1a2t !x~a2t !

1 (
a2a3

U3~a1a2a3t !x~a2t !x~a3t !1¯1 (
a2 ...an

Un~a1¯ant !x~a2t !¯x~ant !1¯ .

~2.1!

The equations of motion are deterministic, first order differential equations in time, and loc
time. In many cases of interest, only a finite number of terms appear in the power series,
many cases theU functions are independent of time. For example, for the case of the kin
theory of atomic liquids with pairwise additive interatomic forces,a denotes a point in a dis
cretized phase space for a single atom~we would take the limit of a continuous phase space at
end of the calculation!, x(a) denotes the one body density at that point in phase space, thU2

term is the flow term,U3 describes the interactions,U1 andUn for n>4 are zero, and all theUn

are time independent. We shall use an implied summation convention for repeateda indices, so
this equation can be written as

ẋ~a1t !5U1~a1t !1U2~a1a2t !x~a2t !1U3~a1a2a3t !x~a2t !x~a3t !1¯

1Un~a1¯ant !x~a2t !¯x~ant !1¯ .

For functions with more than one argument, we shall often omit commas between the argu
if the meaning is clear.

For technical reasons to be discussed later, we shall assume that the equation of motio~2.1!
for x(a1) does not havex(a1) itself on the right side in a nonlinear term. That is,

Un~a1¯an!50 for n.2 ~2.2!

if a1 is equal to one or more of thea2¯an. In many problems of interest, this will automatical
be the case. If this is not the case, the equations of motion can be reformulated by, for ex
inventing new coordinates that are powers of the old coordinates and writing equations of m
for the combined set of old and new coordinates.

We are concerned with a statistical ensemble of similar systems all with the same
variables and the same equations of motion. We want to calculate the properties of the en
of systems for times between2T andT. The ensemble is characterized by a distribution funct
of states at the initial time. Lety(a)5x(a,2T) for all a. The distribution function of the
variables at the initial time isP2T(y). Any property of the system at any time is implicitly
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function of the initial conditions since the equations of motion are first order and deterministic
will be interested in various dynamical properties of the system averaged over these initia
ditions using this distribution function; for example, the various moments^x(a1t1)& and
^x(a1t1)x(a2t2)&, where^¯& denotes the average over the initial conditions.

In order to define the type of response functions we need, we add to the equations of m
the effects of an external time dependent field that acts on each of the coordinates. Th
equations of motion are

ẋ~a1t !5F~a1t !1U1~a1t !1U2~a1a2t !x~a2t !1U3~a1a2a3t !x~a2t !x~a3t !1¯

1Un~a1¯ant !x~a2t !¯x~ant !1¯ .

Note that the augmentation may be unphysical, depending on the nature of the degrees of fr
If the degree of freedom is a momentum, the field that couples to it can be regarded as an e
force. But if the degree of freedom is a phase space density, then the external field has th
of creating fractional particles; i.e., it gives a phase space density that does not correspond
statistical distribution of discrete particles. Nevertheless, even though the augmentation
physical, the equations of motion are well defined and the solutions are presumably well de

The external forces are the same for all members of the ensemble. Each different cho
time dependent external forceF(t) defines a different time dependent ensemble of systems.
average of any property of the systems over such an ensemble is a functional of the applied
because each trajectory is a functional of the applied fields. Let averages over the ensemble
applied field isF(t) be denoted bŷ¯&F .

Each statistical average of the coordinates is a functional of the applied fields. We can
fore define response functions as functional derivatives. For example,

d^x~a1t1!&F

dF~a2t2!
.

Such a response function is clearly zero fort1<t2 , because of the causal nature of the equati
of motion.

B. Reformulation as a nonstationary Markov process

It will be convenient for the following development to regard the problem of interest
nonstationary Markov process. The dynamical problem, in the absence or the presence
external fieldF, is a special case of a Markov process, one that is deterministic.

1. Calculation of moments

Let W(x2t2 ;x1t1 ;F) for t2.t1 be defined as the transition probability density for the syst
to be in statex2 at timet2 given that it was in statex1 at timet1 . Its dependence onF is only on
the behavior ofF(t) for t1,t,t2 . Then statistical averages can be calculated in the follow
way

^x~a1t1!&F5E dx1 dy x1~a1!W~x1t1 ;y,2T;F !P2T~y!.

For t1.t2 ,

^x~a1t1!x~a2t2!&F5E dx1 dx2 dy x1~a1!W~x1t1 ;x2t2 ;F !x2~a2!

3W~x2t2 ;y,2T;F !P2T~y!. ~2.3!

More complicated moments can be calculated in a similar way. ForT.tn.tn21.¯.t1.2T,
we have
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^x~antn!x~an21tn21!¯x~a1t1!&F5E dxn¯dx1 dy xn~an!W~xntn ;xn21tn21 ;F !

3xn21~an21!W~xn21tn21 ;xn22tn22 ;F !

3¯x1~a1!W~x1t1 ;y,2T;F !P~y!. ~2.4!

2. Calculation of response functions

The response function is

d^x~a1t1!&F

dF~a2t2!
5

d

dF~a2t2!
E dx1 dy x1~a1!W~x1t1 ;y,2T;F !P~y!.

Let us first consider the case thatt2,t1 . The functional derivative can be calculated by calcul
ing the response to a set of external fieldsF(at)1ld(aa2)d(t2t2), differentiating with regard
to l, and then settingl50. @Here, d(a1a2) is a Kronecker delta function.# The effect of the
additional term in the applied field is to cause a discontinuous jump~of valuel! in the value of
x(a2) at timet2 . It causes no change in the other coordinates, and it has no effect on the tran
probability for intervals that are completely before or completely aftert2 . An elementary calcu-
lation gives

d^x~1t1!&F

dF~2t2!
5E dx1 dx2 dy x1~a1!W~x1 ,t1 ;x2 ,t2 ;F !

3S 2
]

]x2~a2! DW~x2 ,t2 ;y,2T;F !P2T~y!.

The response function evaluated for zero applied field is

d^x~1t1!&F

dF~2t2!
U

F50

5E dx1 dx2 dy x1~a1!W~x1 ,t1 ;x2 ,t2 ;0!

3S 2
]

]x2~a2! DW~x2 ,t2 ;y,2T;0!P2T~y!. ~2.5!

Comparing Eqs.~2.3! and~2.5!, we can see that calculating a response function~evaluated at zero
applied field! is like calculating a correlation functionin zero fieldwith x2(a2) replaced by
2]/]x2(a2) in the parts of the integrand that do not involveW.

The preceding discussion was fort2,t1 . If t2.t1 , a similar result holds. However, the
integrating by parts onx2(a2) we get zero, which is the right answer for the response functio
this case.

C. A slightly more general class of dynamical problems

We now consider a more general class of dynamical problems that includes the previou
but also includes the possibility of additional stochastic effects. There is the possibility
random force acting on the system at one timet50. The random force has no effect on th
transition probabilities for time intervals that do not includet50. The force has the character th
it adds random increments to the existing values of the dynamical variables in a way t
uncorrelated with their previous values~the reason for including such forces will be clearer fro
the later discussion!:

W~x1,01;x2,02;F !5P0~x12x2!,
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whereP0 is some nonnegative normalized distribution function for the randomincrementsapplied
to the coordinates att50. In the calculation of any moments or response functions that req
knowing W for a time interval that includest50, we use the following result. Ift2.0.t1 , then

W~x2t2 ;x1t1 ;F !5E dx3 dx4 W~x2t2 ;x3,01;F !P0~x32x4!W~x4,02;x1t1 ;F !.

III. AN ALGEBRA OF FIELDS AND THEIR EQUATIONS OF MOTION

A. Properties of the algebra

In this section, we describe a mathematical construct that has the properties assumed b
We are concerned with mathematical objects denoted byc(at) andĉ(at), wherea is one of the
possible labels for the coordinates of the problem, andt is a time between2T andT. Following
MSR, we also introduce a spinor notation and defineF(1at)5c(at) andF(2at)5ĉ(at). We
shall refer to these objects as fields. We would like to construct a mathematical structure in
objects like these fields can be added together and multiplied by one another. Moreov
multiplication process should be associative and have certain desired commutation relatio
the structure should be closed under addition and multiplication and under scalar multiplicat
structure that is appropriate for these purposes is a complex algebra,17 which can be described a
a vector space for which multiplication of two vectors is defined and that is closed under m
plication.

We shall now state the properties of the complex algebra. A proof of the consistency of
properties is outlined in Appendix B.

The complex algebra consists of a set of objects that is closed under three operations: a
multiplication of an object by a complex number, and multiplication of two objects together.
set contains

~1! a multiplicative unity, denoted 1;
~2! an additive zero, denoted 0;
~3! each of the fields,c(at) and ĉ(at) for all a and t in the appropriate range;
~4! products of the fields in any order~e.g.,c(a1t1)ĉ(a2t2)c(a3t3)!;
~5! linear combinations of such products with complex coefficients.

The multiplication process for two objects

~1! is associative and distributive;
~2! satisfies the following commutation relations:

@c~a1t1!,ĉ~a2t2!#5d~a1a2!1 if t15t2 ~3.1!

50 if t1Þt2 ~3.2!

@c~a1t1!,c~a2t2!#50 ~3.3!

@ĉ~a1t1!,ĉ~a2t2!#50, ~3.4!

whered(a1a2) denotes a Kronecker delta function.
Thus the algebra can be loosely described as the set of all polynomials of the fields

complex coefficients. Some features of the algebra are worth noting:

~1! Fields with different timesalways commute.
~2! Fields with the same spinor anda arguments but different time arguments, e.g.,c(a1t1) and

c(a1t2), should be regarded as entirely different objects in the algebra, not merely the
object or function evaluated at two different times.
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~3! The fieldsc(at) and ĉ(at) should be regarded as distinct objects in the algebra andnot as
adjoints of one another.

~4! The first commutation relation does not contain a Dirac delta functiond(t12t2). The com-
mutator is finite~i.e., it equals the multiplicative unity! when the two times are equal and ze
when they are not.

~5! The field c(at), which is a member of this algebra, should not be confused with the
dependent coordinatex(at), which is a real number. It would make no sense to equate
two, e.g., to writec(at)5x(at), since the left and right sides of this equation are objects
an entirely different mathematical nature. The two quantities are related, however, in a
that will be discussed below.

The first two features noted above, together with the time dependence of the commu
relations, make this algebra very different from the set of Heisenberg operators on a Hilbert

We will use a lower case lettera to denote the triplet of quantities needed to specify a fie
namely: a spinor indexs ~which takes on the values1 or 2!, a coordinate labela, and a timet.
Such a triplet will be called a field index. Then the commutation relations can be stated
following way:

@F~a1!,F~a2!#5sK~a1a2!, ~3.5!

wheresK(a1a2)5s(s1s2)d(a1a2)d(t1t2). The subscriptK is used to denote that the third facto
on the right is a Kronecker delta function of its time arguments. Herea15(s1 ,a1 ,t1) and a2

5(s2 ,a2 ,t2). s is a 232 spinor matrix:

s~12 !52s~21 !51,

s~11 !5s~22 !50.

If, for any spinorg(s), we defineg̃(s)52s(ss8)g(s8), with summation over the repeateds8
implied, then the commutation relations can be written in very compact form as

@F̃~a1!,F~a2!#5dK~a1a2!, ~3.6!

wheredK(a1a2)5d(s1s2)d(a1a2)d(t1t2).

B. Standard ordering and time ordering of products of fields

We define a time ordering of the factors in a product of fields. A product of fields,
F(a1)F(a2)F(a3)¯ , is said to be time ordered ift1>t2>t3¯ .

An arbitrary product of fields can always be brought into a time ordered form by rearran
the order of the factors. This rearrangement does not change the value of the product, beca
the commutation rules above, fields with different time arguments always commute.Every product
of fields is equal to some time ordered product of the same fields. This time ordered product mus
for each time, preserve the ordering of the fields as they appear in the original product.

We also define a standard ordering of the factors in a product of fields. To do this, we
invent a standard ordering of the coordinate labels, mapping them onto the integers, so that
pair of unequal labels,a1Þa2 , we can decide which is smaller, i.e., whethera1,a2 or a1

.a2 .
Then we define a standard ordering of the field indices~e.g.,a1 ,a2 ,...! in the following way.

If a1Þa2 , we say thata1,a2 if

~1! t1,t2 ; or
~2! t15t2 anda1,a2 ; or
~3! t15t2 , a15a2 , ands151 ands252.
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Otherwisea2,a1 .
A product of fields, e.g.,F(a1)F(a2)F(a3)¯ , is said to be standard ordered ifa1>a2

>a3>¯ . In other words, a product is standard ordered if

~1! it is time ordered;
~2! for each time, the coordinate labels are in standard order; and
~3! for each time and coordinate label, thec factors are to the right of theĉ factors.

An arbitrary product of fields that is not standard ordered can be expressed in ter
standard ordered products by rearranging the order of the factors and using the commutatio
In many cases, the operators whose order needs to be reversed actually commute. In case
they do not, the commutator is unity. By carrying through this evaluation process we find
product of fields not in standard order can be expressed as a linear combination of st
ordered products. Since the general member of the algebra is a linear combination of prod
fields, any member of the algebra can be expressed as a linear combination of standard
products. The set of all products of fields in standard order plays an important role in the a
because this set represents a basis for the vector space that is the algebra.~This idea was used in
Appendix B in the construction of the algebra.! Hence, every member of the algebra can
expressed in auniqueway as a linear combination of products of fields in standard order.

C. The statistical average of a member of the algebra

We now want to define a complex valued function of members of the algebra that will
the role of a statistical average. Such a definition can be consistently constructed by first d
the statistical average of any standard ordered product of fields. By the last statement
preceeding subsection, the extension of the definition to arbitrary members of the alge
straightforward.

The average will be defined for a specific ensemble of interest for problems of the
defined above. We shall use the symbol^¯&F

(a) for the statistical average of a member of t
algebra, since it is closely related to the ensemble average of functions of the coordinates, d
^¯&F .

For a standard ordered productF(an)F(an21)¯F(a1), the statistical average
^F(an)F(an21)¯F(a1)&F

(a) will be defined by referring to Eq. ~2.4! for
^x(antn)x(an21tn21)¯x(a1t1)&F . In that expression, the times that appear are in nonincrea
order, from left to right. There is a clear one-to-one correspondence between thexi(a i) factors in
Eq. ~2.4! and theF(sia i t i) factors in the standard ordered product. For eachF(sia i t i) factor, we

~1! make no change in the integral ifsi51;
~2! replacexi(a i) by 2]/]xi(a i) if si52.

Thus

^F~an!F~an21!¯F~a1!&F
~a!

[E dxn¯dx1 dy@ #W~xntn ;xn21tn21 ;F !@ #¯@ #W~x1t1 ;y,2T;F !P2T~y! ~3.7!

where each@ # containsxi(a i) or 2]/]xi(a i), according to whether the corresponding spin
index is1 or 2.

Equation ~3.7! defines the statistical average for standard ordered products. It straig
wardly follows from this definition that the same process for constructing the statistical aver
also directly applicable to products that are merely time ordered, rather than standard ordere
follows because for any one timet, the fieldsc(ant) andĉ(ant) as members of the algebra hav
the same commutations relations under multiplication as doxn(an) and2]/]xn(an) when they
appear in integrals of this type.
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D. The time derivative of a field

In the algebra as we have constructed it, fields at different times have no relationship
another, other than that they are distinct and that they commute. We now ask what it me
calculate the time derivative of a field and write differential equations for the fields, as is do
the MSR operator approach. The most naive definition of a time derivative would be

Ḟ~s1a1t1![ lim
h→01

F~s1 ,a1 ,t11h!2F~s1a1t1!

h

but since we do not have a metric or an inner product in this algebra, the limit cannot be de
There might be several consistent approaches to this problem. We now present a very sim
that is adequate. The real purpose of having a differential equation for the fields is to cal
time derivatives of statistical averages involving the fields. Thus we will base the definition o
time derivative of a field on the time derivative of a statistical average. Since the latter
complex number, its derivative makes sense.

The time derivative of a fieldF(a1), if it exists, will be denotedḞ(a1). It is defined as a
member of the algebra that is a linear combination of products of fields with the same
argumentt1 that satisfies

]

]t1
^WF~a1!V&F

~a!5^WḞ~a1!V&F
~a! ~3.8!

for all pairs of members of the algebraW andV that do not contain the time argumentt1 in any
of their terms. Note that there is no guarantee of either the existence or uniqueness of the
tive. For the problems we are considering, the existence of derivatives of fields will be de
strated by explicitly finding the derivative and verifying that it has the desired properties
never need to prove or even assert uniqueness.

The derivative of a field, if it is known, together with the commutation relations allow the t
derivative of statistical averages to be calculated completely. This is best illustrated by consi
a specific example. Consider^F(a1)F(a2)F(a3)&F

(a) for fixed values oft2 and t3 , with t2.t3 .
Suppose we knowḞ(a1); i.e., we have an expression forḞ(a1) as a linear combination o
products of fields evaluated at timet1 . Then, using Eq.~3.8!, the following equation:

]

]t1
^F~a1!F~a2!F~a3!&F

~a!5^Ḟ~a1!F~a2!F~a3!&F
~a!

is valid for T.t1.t2 , for t2.t1.t3 , and for t3.t1.2T. The average might undergo jum
discontinuities att15t2 and att15t3 . The magnitude of the jump discontinuity att15t2 is

lim
e→01

@^F~s1 ,a1 ,t21e!F~a2!F~a3!&F
~a!2^F~s1 ,a1 ,t22e!F~a2!F~a3!&F

~a!#

5 lim
e→01

@^F~s1 ,a1 ,t21e!F~a2!F~a3!&F
~a!2^F~a2!F~s1 ,a1 ,t22e!F~a3!&F

~a!#

5^F~s1a1t2!F~a2!F~a3!&F
~a!2^F~a2!F~s1a1t2!F~a3!&F

~a!

5^@F~s1a1t2!,F~a2!#F~a3!&F
~a!

5s~s1s2!d~a1a2!^F~a3!&F
~a! . ~3.9!

The first equality is justified because fields at different times commute. The second equa
justified provided the dynamics is continuous at timet2 . The third equality is justified by the
linearity of the statistical average. The fourth equality is justified by the commutation rules
net result is that
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]

]t1
^F~a1!F~a2!F~a3!&F

~a!

contains the following contribution:

s~s1s2!d~a1a2!^F~a3!&F
~a!d~ t12t2!5s~a1a2!^F~a3!&F

~a! ,

wheres(a1a2)[s(s1s2)d(a1a2)d(t12t2). There is a similar contribution att15t3 . The final
result is

]

]t1
^F~a1!F~a2!F~a3!&F

~a!5^Ḟ~a1!F~a2!F~a3!&F
~a!1s~a1a2!^F~a3!&F

~a!

1s~a1a3!^F~a2!&F
~a! .

This equation gives the entiret1 derivative of the statistical average and holds for all values ot1

for which Ḟ(a1) exists, provided the dynamics is continuous enough at timest2 and t3 such that
the two limits after the first equality of Eq.~3.9! exist. ~Note that the finite value of the commu
tator at equal times implies that each nonzero jump in the statistical average is finite and
place over an instant of time, which then implies a Dirac delta function contribution to the
derivative of the statistical average. However, there is no Dirac delta function of time in
commutator itself.!

E. Equations of motion of the fields

1. Equation of motion for c„at …

According to the definition of the derivative of a field,ċ should be obtained by considerin
that t derivative of an average of the form̂Wc(at)V&F

(a) for timest that are different from those
contained withinW andV. Using Eq.~3.7!, we see that an average of the form^Wc(at)V&F

(a) is
a multiple integral containing the following:

E dxl W~xl 11t l 11 ;xl t !xl~a!W~xl t;xl 21t l 21!, ~3.10!

wheret l 11.t.t l 21 , and these factors contain all thet dependence.
We first consider the case thatt l 21 and t l 11 are both positive or both negative. FortÞ0, the

motion of the system is deterministic. Hence we can write

W~xt;x8t8!5d~x2G~ txt8!!,

whereG(txt8) is the solution of the equations of motion at timet for a system whose coordinate
at time t8 werex.

dG~atxt8!

dt
5U~at;G~ txt8!!1F~at !,

G~at8xt8!5x~at8!.

A straightforward calculation shows that the time derivative of~3.10! is

E dxlW~xl 11t l 11 ;xl t !@U~at;xl !1F~at !#W~xl t;xl 21t l 21!.

When this result is substituted into the expression for^Wc(at)V&F
(a) from which ~3.10! was

obtained, the result is exactlŷW@U(at;c)1F(at)#V&F
(a) , whereU(at;c) is a member of the
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algebra that is the same polynomial of the fieldsc(t) thatU(at;x) is of the coordinatesx(t), and
F(at) is to be interpreted as the functionF(at) times the multiplicative identity of the algebra.
follows that

ċ~at !5U~at;c!1F~at !. ~3.11!

The fieldsc(t) obey the same equations of motion as the coordinates, fortÞ0. This is, of course,
one of the basic assumptions of the MSR method.

We next consider the case thatt l 11.0.t l 21 . It is straightforward to show that Eq.~3.11!
holds for tÞ0. But ~3.10! also undergoes a discontinuous jump att50. A straightforward calcu-
lation of the value of the jump gives

E dx dx8 W~xl 11t l 11 ;x,01 !@x~a!2x8~a!#P0~x2x8!W~x8,02;xl 21t l 21!.

Using a lemma discussed in Appendix C, we find this is equal to

E dx dx8 W~xl 11t l 11 ;x,01 !F (
n50

`
1

n! (
a2¯an11

cn11~aa2¯an11!

3S 2
]

]x~a2! D¯S 2
]

]x~an11! D P0~x2x8!W~x8,02;xl 21t l 21!

5E dx dx8W~xl 11t l 11 ;x,01 !F (
n50

`
1

n! (
a2¯an11

cn11~aa2¯an11!

3S 2
]

]x~a2! D¯S 2
]

]x~an11! D GW~x,01;x8,02 !W~x8,02;xl 21t l 21!,

where thecn are cumulants of theP0 distribution functions. When this is substituted into th
expression for̂Wc(at)V&F

(a) from which~3.10! was obtained, the result is exactly what would
obtained if the following statistical average were being evaluated.

K WS (
n50

`
1

n! (
a2¯an11

cn11~aa2¯an11!ĉ~a2,01 !¯ĉ~an11,01 !DVL
F

~a!

.

~Here ‘‘01’’ is an abbreviation for ‘‘01e in the limit thate→0 from above.’’! This is the amount
by which^Wc(at)V&F

(a) jumps att50. Therefore, there is an additional term inċ(at) of the form

(
n50

`
1

n! (
a2¯an11

cn11~aa2¯an11!ĉ~a2t !¯ĉ~an11t !d~ t2~01 !!.

The final result for the time derivative is

ċ~at !5U~at;c!1F~at !1d~ t201 ! (
n50

`
1

n! (
a2¯an11

cn11~aa2¯an11!ĉ~a2t !¯ĉ~an11t !,

~3.12!

where thecn are the cumulants of the distribution function of the stochastic process that occ
t50.
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2. Equation of motion for ĉ„at …

To calculateċ(at), we consider thet derivative of^Wĉ(at)V&F
(a) . Such an average contain

instead of~3.10!, the following integral.

E dxl W~xl 11t l 11 ;xl t !S 2
]

]xl~a! DW~xl t;xl 21t l 21!.

A straightforward calculation shows that this is equal to

2E dxl W~xl 11t l 11 ;xl t !(
b

S 2
]

]xl~b! D ]U~btxl !

]xl~a!
W~xl t;xl 21t l 21!.

Note that sinceU(btxl) is a polynomial in thexl(a) variables, the partial derivative ofU that
appears here is also a polynomial. Hence the time derivative of^Wĉ(t)V&F

(a) is equal to

K WS 2(
b

ĉ~bt !
]U~btc~ t !!

]x~a! DVL
F

~a!

,

where the partial derivative ofU in this expression is to be interpreted as a member of the alg
that is a polynomial in the fields. A detailed calculation shows that the impulsive stochastic
at t50 makes no contribution to the time derivative of^Wĉ(t)V&F

(a) at t50.
Thus we have

ċ̂~at !52(
b

ĉ~bt !
]U~btc~ t !!

]x~a!
. ~3.13!

3. Comments

Equations~3.12! and~3.13! are the final results for the equations of motion of the fields. T
first two terms on the right of~3.12! correspond to the MSR result for thec fields. In the MSR
formulation, the distinction we have made between the physical coordinatesx(at) and the fields
c(at) is not made, and it is a basic postulate of the MSR method that thec fields obey the same
equations of motion as the coordinates. The MSR formulation did not have the last term of~3.12!
because they did not recognize the need for the random impulsive forces, as we shall
below. Equation~3.13! corresponds to the MSR result. MSR do not present a derivation of
~3.13!, but it appears that~3.13! for the ĉ fields is sufficient, when combined with~3.12! for the
c fields, to imply formally that the commutator@c(a1t),ĉ(a2t)# is independent oft, and we
presume that this is their basis for~3.13!.

In the present approach, both equations of motion are derived from a consistent defini
the fields as members of an algebra, a well defined concept of the derivative of a field,
correspondence between the algebra and the physical ensemble that is based on the s
average.

F. Hamiltonian form of the equations of motion

Following MSR, we now define a time dependent ‘‘Hamiltonian’’H(t) that is a member of
the algebra and a polynomial of the fields all evaluated at the same timet.

H~ t !5ĉ~a1t !U~a1t;c~ t !!1d~ t201 ! (
n51

`
1

n!
cn~a1¯an!ĉ~a1t !¯ĉ~ant !. ~3.14!

~Note the use of the implied summation convention. Note also that from here on we omit co
eration of the external fieldF(t). We have already established how responses to this external
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can be calculated using the dynamics in the absence of the external field.! It is then straightforward
to prove that the equations of motion~3.12! and ~3.13! can be rewritten as

ċ~at !5@c~at !,H~ t !#,

ċ̂~at !5@ĉ~at !,H~ t !#, ~3.15!

Ḟ~a1!5@F~a1!,H~ t1!#.

In the last equation,a1 should be interpreted ass1a1t1 ; i.e., the time argument ofH on the right
is the same as the time component ofa1 on the left.

In almost all the contributions to the Hamiltonian, the various fields commute with
another. This is true for alln in the second term, since these terms contain onlyĉ fields. It is true
for the first term for theUn contributions forn.2 because of Eq.~2.2!. It is trivially true for the
n51 term, as well as theU2(a1a2) terms for a1Þa2 . The only contributions toH(t) that
contain noncommuting fields isĉ(a1t)U2(a1a1t)c(a1t).

The Hamiltonian, since it is a polynomial in the fields can always be reexpressed i
following form:

H~ t !5 (
n51

`
1

n!
gn~s1a1¯snan ;t !F~s1a1t !¯F~snant !. ~3.16!

Here we are using an implied summation convention for repeateds indices as well as repeateda
indices. Thegn(s1a1¯snan ;t) functions are~real or complex! functions that are totally symmet
ric under simultaneous identical permutation of thes and a arguments; e.g.,g2(s1a1s2a2 ;t)
5g2(s2a2s1a1 ;t). This follows for most of the contributions toH because any polynomial o
commuting objects can be reexpressed in a form with symmetric coefficients. The terms inH that
contain noncommuting fields can also be symmetrized, at the cost of adding a time depende
c- and ĉ-independent term toH(t). Such a term would not be of relevance for the dynamics
can be seen from Eq.~3.15!, and it is omitted.

Eachgn(a1¯an ;t) is a sum of two parts.

gn~s1a1¯snan ;t !,

5gnd~s1a1¯snan ;t !1gnc~s1a1¯snan ;t !, ~3.17!

where

gnc~s1a1¯snan ;t !

5cn~a1¯an!d~s1 ,2 !¯d~sn ,2 !d~ t2~01 !! ~3.18!

is derived from the sum in Eq.~3.14!, andgnd(s1a1¯snan ;t) is derived fromUn(t) that appears
in the equations of motion. In the notationgnd and gnc , the subscriptn denotes the number o
arguments,d denotes that the quantity derives from the dynamical equations, andc denotes that
the quantity derives from the cumulants or correlations of the impulsive stochastic forces
shall refer to thegnd andgnc as dynamical vertices and correlations vertices, respectively. N
that dynamical vertices are nonzero only when one of the spinor index arguments is2 and all the
others are1. @This follows from the fact that when theU andF terms in Eq.~3.14! are expressed
as polynomials, each term contains precisely oneĉ factor and zero or morec factors.# The
correlation vertices are nonzero only when all the spinor index arguments are2. In ~3.16!, as in
~3.14!, in the terms that are nonzero, the fields that appear all commute with one another.

Then, using Eqs.~3.6!, ~3.15!, and~3.16!, the equations of motion can be written as
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F8 ~a1!5F8 ~s1a1t1!5g1~s1a1 ;t1!1 (
n52

`
1

~n21!!
gn~s1a1s2a2¯snan ;t1!

3F~s2a2t1!¯F~snant1!. ~3.19!

IV. FIELD MOMENTS AND THEIR GENERATING FUNCTIONALS

The fundamental moments associated with the fieldsF(a) are ^F(a1)&,
^F(a1)F(a2)&,¯,^F(a1)¯F(an)&,... . Asdiscussed above, some of these moments are e
to moments of the distribution function of the coordinatesx(at) and some are response functio
evaluated forF50.

We will define various generating functionals for these moments and other related quan
To do so, we consider the class of real valued continuous functions ofa5(sat), for s51 or 2,
a varying over the range defined by the physical problem, and2T,t,T. The generic member o
this class will be denotedh(a). ~Note that the class does not include such singular functions a
Dirac delta function.!

Let V be an arbitrary member of the algebra and leth be a function in the class defined abov
ThenS(V;h) is a ~real or complex! function of V and a functional ofh defined as

S~V;h![ (
n50

`
1

n!
h~a1!¯h~an!^VF~a1!¯F~an!&

5^V&1 (
n51

`
1

n! (
s1a1

E
2T

T

dt1¯(
snan

E
2T

T

dtn

3h~a1!¯h~an!^VF~a1!¯F~an!&. ~4.1!

We adopt a summation/integration convention for repeatedai arguments, the second line of th
equation giving an explicit representation of what is implied in the first line. Note that in
evaluation of this,V contains fields that have time arguments~except in the special case thatV is
the multiplicative identity!. These arguments have nothing to do with the time arguments tha
integrated over here, except that instantaneously a time variable that is integrated over ma
a time variable inV. The commutation relations, as noted above, have no Diracd function
behavior in time. Thus, for the calculation ofS, the fieldsF(1)¯F(n) within the angular
brackets on the right side of this equation can be regarded as commuting with each otherand with
the fields in V, but the fields inV must be regarded as satisfying the usual commutation relat
among themselves.

Using S, we define a new type of statistical average of members of the algebra, one t
h-dependent and denotedR(V;h). If V is any member of the algebra, then

R~V;h![S~V;h!/S~1;h!, ~4.2!

where the first argument of theS in the denominator is the multiplicative unity of the algebra.
follows from Eq.~4.1! that such averages, evaluated forh50, are the usual ensemble average

R~V;0!5^V&.

We will be especially interested in the moments of the fields, as calculated with this ave
e.g.,R(F(a1):h),R(F(a1)F(a2);h), etc. The generating functionalg(h) associated with these
new field moments is

g~h![S~1;h!511 (
n51

`
1

n!
h~a1!¯h~an!^F~a1!¯F~an!&.
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We define

gn~a1¯an ;n!5
1

g~h!

dng~h!

dh~a1!¯dh~an!
.

It follows that this quantity is a symmetrized combination of the new moments.

gn~a1¯an ;h!5
1

n! (S~a1¯an!
SR~F~a1!¯F~an!;h!. ~4.3!

HereS(a1¯an) is a permutation operator for then arguments, the sum is over alln! permuta-
tions, andSR in the summand means that the permutation operation should be applied toai

arguments before theR average is calculated. Also

gn~a1¯an ;0!5
1

n! (S~a1¯an!
S^F~a1!¯F~an!&.

In particular

g1~a1 ;h!5R~F~a1!;h!,
~4.4!

g1~a1 ;0!5^F~a1!&.

For n>2, if the n fields happen to commute, we would of course have

gn~a1¯an ;h!5R~F~a1!¯F~an!;h!,

gn~a1¯an ;0!5^F~a1!¯F~an!&.

We will also be especially interested in the cumulants associated with these new mo
The generating functional of the cumulants isG(h)[ ln g(h). Its functional derivatives will be
denoted

Gn~a1¯an ;h![
dnG~h!

dh~a1!¯dh~an!
.

The Gn(a1¯an ;h) are related to thegn(a1¯an ;h) in the usual way that cumulants are relat
to moments.

gn~a1¯an ;h!5 (P~a1¯an!
)

i
Gn~Pi ;h!. ~4.5!

HereP(a1¯an) is a partition of the indicesa1¯an into nonempty subsets, and the sum is ov
all distinct partitions;Pi is the i th subset in the partitionP, and the product is over all subsets
P. In particular, it follows that

G1~a1 ;h!5g1~a1 ;h!,

G2~a1a2 ;h!5g2~a1a2 ;h!2g1~a1 ;h!g1~a2 ;h!.

From the definition it follows that theGn(a1¯an ;h) are totally symmetric in theira1¯an

arguments. Settingh50, we find that theGn(a1¯an ;0) are the cumulants of the~symmetrized!
moments of the physical averages^F(a1)¯F(an)&. Thus the primary goal of the theory tha
follows is to calculate the cumulantsGn(a1¯an ;0), and toward this end we develop forma
expressions forGn(a1¯an ;h) and seth50 toward the end of the calculation.
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We start by obtaining an expression for the time derivative ofg1(a1 ;h). Using Eqs.~4.4! and
~4.2!, we find

g1~a1 ;h!5
1

S~1;h!
S~F~a1!;h!

5
1

g~h! F ^F~a1!&1 (
n51

`
1

n!
h~a2!¯h~an11!^F~a1!¯F~an11!&G .

To calculate the derivative of this with regard tot1 , we make use of the methods in Sec. III D. W
get

]g̃1~a1 ;h!

]t1
5h~a1!1

1

g~h! F ^F8 ~a1!&1 (
n52

`
1

n!
h~a2!¯h~an11!^F8 ~a1!¯F~an11!&G

5h~a1!1g1~s1a1 ;t1!1 (
n51

`
1

~n21!!
gn~s1a1¯snan ;t1!

3R~F~s2a2t1!¯F~snant1!;h!

5h~a1!1g1~s1a1 ;t1!1 (
n52

`
1

~n21!!
gn~s1a1¯snan ;t1!

3gn21~s2a2t1¯snant1 ;h!. ~4.6!

In getting the third equality, we used the fact that the fields in theR functional all commute for
those terms for which thegn factors are nonzero.

This procedure could be continued to obtain differential equations for the higher mom
gn(a1¯an ;h), thus generating a hierarchy of coupled differential equations. As an aid in co
with the hierarchy, the MSR procedure introduces a Legendre transformation.

V. THE LEGENDRE TRANSFORMATION AND THE CONDITIONS UNDER WHICH IT
CAN BE PERFORMED

A. Introduction to the Legendre transformation

To perform the Legendre transformation of interest here, there are several steps:

~1! We note thatG1(a1 ;h), which is a function ofa1 , is also a functional ofh.
~2! We assume that the relationship betweenG1(a1 ;h) and h is invertible; i.e., that given any

function f (a1) there exists a unique functionh such thatf (a1)5G(a1 ;h) for all a1 . This
means thath can be regarded as a functional ofG1 , and we denote this ash(a1 ;G1).

~3! We define the functionalG5G1(a1 ;h)h(a1)2G(h). Since, by the previous item above.h is
a functional ofG1 . G can be regarded as a functional ofG1 , which we denoteG(G1).

~4! The functional derivatives ofG with regard toG1 , denoted

Gn~a1¯an ;G1![
dnG~G1!

dG1~a1!¯dGn~an!

are then well defined. These functions are called vertex functions. In particularG1(a1 ;G1)
5h(a1 ;G1).

The second requirement is a nontrivial one, and the possibility of being able to perform
Legendre transformation is entirely dependent on it. If this requirement is not satisfied.G can still
be defined, but it can not be regarded as a unique functional ofG1 ; moreover, arbitrary variations
of G1 , which are necessary for the functional derivative definition of the vertex functions, ar
possible, and hence the vertex functions are not well defined.
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For problems of the complexity that makes them interesting, it is difficult or impossib
prove that the relationship betweenG(a1 ;h) and h is invertible. However it is possible to find
some simple situations for which it can be explicitly shown that the relationship is definitelynot
invertible. Such counterexamples can provide at least some guidance as to how to procee
more general case. We now consider two such special cases.

B. The uncoupled correlated system

We consider the case of a set of degrees of freedomx that satisfy Eq.~2.1! with Un50 for all
n. The distribution functionP2T(y) of initial conditions at time2T can be arbitrarily compli-
cated. Its cumulants will be denotedcn

@2T#(a1¯an). The dynamics is then trivial, each coordina
retaining the value it had at2T, unless some external forceF is applied.

The moments of the fields forh50 are the physical moments, which are straightforward
calculate since they are the time-dependent moments of the coordinates, and the respon
tions. We find

G1~1a1t1 ;0!5c1
@2T#~a1!, ~5.1!

G2~1a1t11a2t2 ;0!5c2
@2T#~a1a2!, ~5.2!

G2~2a1t11a2t2 ;0!5d~a1 ,a2!Q~ t22t1!, ~5.3!

G2~1a1t12a2t2 ;0!5d~a1 ,a2!Q~ t12t2!, ~5.4!

G2~2a1t12a2t2 ;0!50. ~5.5!

We restrict our attention to small values ofh. An elementary calculation starting from th
definition of G1 gives

G1~a1 ;h!5G1~a1 ;0!1G2~a1a2 ;0!h~a2!1O~h2!. ~5.6!

Evaluating the spinor components of this we find

G1~1a1t1 ;h!5c1
@2T#~a1!1c2

@2T#~a1a2!E
2T

T

dt2h~1a2t2!1E
2T

t1
dt2h~2a1t2!1O~h2!,

~5.7!

G1~2a1t1 ;h!5E
t1

T

dt2h~1a1t2!1O~h2!. ~5.8!

Comparing the second term on the right of~5.7! with the first term on the right of~5.8!, we have

G1~1,a1 ,2T;h!5c1
@2T#~a1!1c2

@2T#~a1a2!G1~2,a2 ,2T;h!1O~h2!. ~5.9!

There is a relationship betweenG1(1a1t1 ;h) andG1(2a1t1 ;h) for this system with the mos
trivial of dynamics. In particular,G1(1,a1 ,2T;h) can not be varied, keepingG1(2,a2 ,
2T;h) fixed, if c2

@2T#(a1a2)Þ0. Thus there are functionsf (a1) such that there is no functionh
that satisfies the equationf (a1)5G1(a1 ;h) if some or all of thec2

@2T# cumulants are nonzero. In
other words, in a problem with nonzeroc2

@2T# cumulants, there are some functional forms for t
first momentG1(a1 ;h) that can not be achieved for any choice ofh. In that case, the spino
components ofG1(a1) can not be independently varied, and functional derivatives of the L
endre transform function with respect toG1 are not well defined.

In order for the Legendre transformation to be possible for this system, it must be true th
the second order cumulantsc2

@2T#(a1a2) are zero. If they are zero, it is trivial to solve Eqs.~5.7!
and ~5.8! to express the two spinor components ofh in terms of those forG1 and thereby
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demonstrate explicitly the invertibility of the relationship betweenG1 and h. In order for the
second cumulants to be zero, the distribution functionP(y) must be of the formd(y2y0), where
y0(a) is the common value ofxa(2T) for all members of the ensemble.

C. The general problem for small h

The analysis of the previous subsection can be carried out for a more general proble
small h, starting from Eq.~5.6!. The result~details of the derivation are straightforward and w
be omitted! is a generalization of Eq.~5.9! that states that there is a relationship betwe
G1(1,a1 ,2T;h) andG1(2,a2 ,2T;h) if G2(1,a1 ,2T,1,a2 ,t2 ;0)Þ0 for any values ofa1 ,
a2 , andt2 . Thus a necessary condition for invertibility of the relationship betweenG1(0) andh
is thatG2(1,a1 ,2T,1,a2 ,t2 ;0)50 for all values ofa1 , a2 , andt2 . It is hard to imagine how
such a strong condition could be satisfied for complicated dynamical problems other th
demanding that the distribution function ofxa at time2T be a delta function, thereby guarante
ing no fluctuations in that quantity from its mean.

D. Procedure for carrying out the Legendre transformation

It thus appears that a Legendre transformation can be carried out only if the statistics
ensemble of systems at the initial time2T is especially simple—all members of the ensem
must have the same values of thexa for all a. For problems in which randomness of the initi
conditions is important, we can not have this randomness present at the initial time2T but instead
must turn it on at some later time, such as with the random impulsive forces discussed in Se

Thus, we adopt the following procedure.~1! At time 2T, every member of the ensemble h
all coordinates equal to zero:xa(2T)50 for all a. ~2! For t,0, all theU(t) functions in the
equations of motion~2.1! are zero.~3! At t50, the stochastic impulsive processes discusse
Sec. II C turn on the physically important initial correlations.~That is,P0 which determines the
cumulantsc, is chosen to be the initial distribution function of physical interest.! ~4! For t.0, the
U(t) functions in the equations of motion are the physically appropriate functions.~5! Thus the
correlations of the fields, fort.0 only, represent results for the physical system.

This procedure is the same as that introduced by Deker. Deker imposed certain bo
conditions on the averages of the fields in order to eliminate from the problem certain con
tions to the generating functional that would be difficult or impossible to evaluate. In the pr
case, as we shall see, the same boundary conditions arise as a result of assuming very
statistics for the ensemble at time2T. This simple statistics must be assumed in order for
Legendre transformation to be possible in principle.

We have not been able to prove in general that the procedure discussed above must le
formulation in which the Legendre transformation is always possible~i.e., possible for all choices
of the equations of motion and all choices ofh!. However, it does avoid an otherwise plausib
procedure~that of having the physical correlations present at the earliest time! that would in fact
make the Legendre transformation impossible in principle. We shall proceed under the assu
that the Legendre transformation is possible for problems of interest if the procedure disc
above is used.~See Appendix D for a further discussion of the significance of creating
ensemble initially with trivial values of the coordinates and then turning on the physically im
tant correlations at a later time.!

The choice of initial statistics has some immediate implications for the values of al
h-dependent moments. In particular, from Eqs.~4.1!, ~4.2!, and~4.3! it is easily shown that

gn~a1¯an ;h!505Gn~a1¯an ;h! ~5.10!

if, for any i, t i52T and si51. This is equivalent to the boundary conditions introduced
Deker.4 For completeness, we state another set of boundary conditions, which follow from
structure of the theory, namely

gn~a1¯an ;h!505Gn~a1¯an ;h! ~5.11!
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if, for any i, t i5T and si52, and all other time arguments havet j,T. This follows, using
integration by parts, from the result that any statistical average containingĉ(aT) is zero ifc(aT)
does not appear in the quantity being averaged.

E. The uncoupled, uncorrelated system

Since, in the present formulation, the physical initial correlations, as well as the phy
dynamics, are generated by the equations of motion, a physical problem with arbitrarily co
cated dynamics and complicated initial correlations is, in effect, always regarded as a per
version of a very simple problem, one in which all equations of motion areẋ(at)5F(at) with no
nonzeroU terms and all coordinates are zero initially for all members of the ensemble. We
refer to this system as theuncoupled, uncorrelated system. In this section, we discuss the prop
erties of this zeroth order system as a basis for the discussion of more general problems.
the superscript~u! to denote properties of this system.

First we calculate theGn
(u) cumulants. The equation of motion forG1

(u)(a1 ;h) can be obtained
from Eq. ~4.6! by noting thatG15g1 and setting all theg functions equal to zero.

]G̃1
~u!~a1 ;h!

]t1
5h~a1!. ~5.12!

The spinor components of this equation are easily obtained and solved using the bounda
ditions above. The results are

G1
~u!~1a1t1 ;h!5E

2T

t1
dt8h~2a1t8!,

G1
~u!~2a1t1 ;h!5E

t1

T

dt8h~1a1t8!.

Functional differentiation of these results with regard toh gives

G2
~u!~1a1t11a2t2 ;h!5G2

~u!~2a1t12a2t2 ;h!50, ~5.13!

G2
~u!~2a1t11a2t2 ;h!5G2

~u!~1a2t22a1t1 ;h!5Q~ t22t1!d~a1a2!. ~5.14!

Since the right sides of these equations are independent ofh, subsequent cumulants,Gn
(u) for n

>3, are all zero. We note, for future reference, that these results imply that the gene
functional of the cumulants for the uncoupled, uncorrelated system is simply

G~u!~h!5h~a1!G2
~u!~a1a2 ;0!h~a2!/2 ~5.15!

and that the uncoupled, uncorrelated system has purely Gaussian statistics. In fact, wh
system has infinitely many degrees of freedom, the uncoupled, uncorrelated system is, in e
Gaussian field theory.

Next we carry out the Legendre transformation, starting with an alternative form of Eq.~5.12!.

h~a1!52s~a1a2!D~a2a3!G1~a3 ;h!, ~5.16!

where

s~a1a2![s~s1s2!d~a1a2!d~ t12t2!,

D~a1a2![d~s1s2!d~a1a2!d8~ t12t2!.
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For future reference, we also define

d~a1a2![d~s1s2!d~a1a2!d~ t12t2!.

Note the presence of a Dirac delta function of time and its derivative on the right in these
equations. They are needed to make Eq.~5.16! correct, with its implied integrations overt2 and
t3 . Note thats andD are odd under interchange of their arguments and have noh dependence.
Moreover, regarded as matrices, they commute. That is,s(a1a2)D(a2a3)5D(a1a2)s(a2a3). It
follows that their matrix product is symmetric. That is,s(a1a2)D(a2a3)5s(a3a2)D(a2a1).
Since

h~a1!5
dG~G1!

dG1~a1!
,

it follows that

G~u!~G1!52 1
2G1~a1!s~a1a2!D~a2a3!G1~a3!1constant,

where the constant is independent ofG1 , and the second functional derivative ofG is

G2
~u!~a1a2 ;G1!52s~a1a3!D~a3a2!52s~s1s2!d~a1a2!d8~ t12t2!

and is actually independent ofG1 . All vertex functionsGn
(u) for n>3 are then clearly zero.

SinceG2
(u) andG2

(u) are independent ofh andG1 , respectively, for simplicity in the following
discussion we shall omit theirh andG1 arguments.

When Legendre transformations are performed~for functions or functionals!, the second de-
rivative of the transformed function~al! ~in this caseG2

(u)! and the second derivative of the origin
function~al! ~in this caseG2

(u)! are inverses of one another in some sense. SinceG2
(u) is a derivative

operator, the sense in which these functions are inverses in the present problem must be e
carefully. We begin with the following lemma.

Lemma:A function f (a1) satisfies

f ~1,a,2T!50, ~5.17!

f ~2,a,T!50, ~5.18!

] f̃ ~a1!

]t1
5h~a1! or G2

~u!~a1a2! f ~a2!5h~a1! ~5.19!

if and only if

f ~a1!5G2
~u!~a1a2!h~a2!.

@The proof is straightforward. It follows from the usual result that the time derivative of a func
plus the value of the function at one time is sufficient to determine the function uniquely.
equivalent to the statement thatG2

(u) is the appropriate Green’s function for solving the different
equation~5.19! subject to the boundary conditions~5.17! and ~5.18!.#

Theorem: G2
(u) is a left inverse of G2

(u) ; i.e., G2
(u)(a1a3)G2

(u)(a3a2)5d(a1a2); i.e.,
G2

(u)(a1a3)G2
(u)(a3a2)h(a2)5d(a1a2)h(a2)5h(a1) for any h. G2

(u) is not in general a left in-
verse ofG2

(u) . However, whenG2
(u) acts on a functionf that satisfies the boundary conditions

Eqs. ~5.17! and ~5.18!, G2
(u) is, in effect, a left inverse; i.e.,G2

(u)(a1a3)G2
(u)(a3a2) f (a2)5 f (a1)

for any f that satisfies~5.17! and~5.18!. ~The first part of this theorem follows by direct evaluatio
of G2

(u)G2
(u) . The second part of this theorem follows from the previous lemma.!
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VI. GRAPHICAL EXPRESSIONS FOR THE CUMULANTS

We now proceed to a graphical formulation for theh-dependent cumulants. Our starting poi
will be Eq. ~4.6!, the equation of motion forg1 or G1 . To solve this equation we use the theore
above, noting that Eqs.~5.10! and~5.11! provide the needed boundary conditions for applicat
of the theorem.

Applying this theorem to solve Eq.~4.6!, we get

G1~a1 ;h!5g1~a1 ;h!

5G2
~u!~a1a2!h~a2!1G2

~u!~a1a2!g1~s2a2 ;t2!

1 (
n52

`
1

~n21!!
G2

~u!~a1a2!gn~s2a2¯sn11an11 ;t2!

3gn21~s3a3t2¯sn11an11t2 ;h!.

The interaction functiongn in this equation depends onn spinor variables,n coordinate labels, and
one time variable. We now define an interaction functiongn(a1¯an) that depends onn field
indices:

gn~a1¯an![gn~s1a1¯snan ;t1!d~ t22t1!¯d~ tn2t1!. ~6.1!

We use the same symbolgn for the two functions, relying on the number and type of argume
to distinguish between them. The newgn is totally symmetric under permutation of itsn field
index arguments. Then we have

G1~a1 ;h!5G2
~u!~a1a2!h~a2!1G2

~u!~a1a2!g1~a2!

1 (
n52

`
1

~n21!!
G2

~u!~a1a2!gn~a2¯an11!gn21~a3¯an11an11 ;h!. ~6.2!

At this point, we have an expression forG1(a1 ;h) that is of a form that allows us to introduc
a diagrammatic language. The language will be very useful for the subsequent formal de
ment. The diagrammatic formulation we will use is closely analogous to those used in the
librium cluster theory of classical fluids; see, for example, Refs. 18–23.~It is related to diagram-
matic formulations often used to discuss critical phenomena in classical statistical mechanic
for example, Refs. 24–26.! The diagrams have: rooted points~which we shall call roots!, repre-
sented by open circles, labeled with field indices to indicate dependence of the diagram
field indices; free points, represented by closed circles, that are not labeled and that, wh
graph is evaluated, are assigned dummy field indices that are summed and integrated over;
with one or more points on them, represented by a closed geometric figure with points
boundary, which correspond to functions of the indices associated with their points; and
between pairs of points, represented by lines, which correspond to functions of the indic
signed to their points. In the present problem, the graphs have a somewhat more limited to
cal structure than those appearing in the cluster theory of fluids. In particular, they hav
following two characteristics: every root has one vertex or one bond attached to it, and eve
point has two things attached to it, typically either two vertices or one vertex and one bond
shall refer to diagrams with this structure as msr diagrams.

In the case of Eq.~6.2!, each term on the right is represented by a single diagram. See F
Each diagram has a root labeled 1~an abbreviation fora1!. We representG2

(u) by a line connecting
two points. We representh as a circle with the symbolh inside it and one point on its boundary
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We representgn(a1¯an) as a circle with the symbolg inside it withn points on its boundary. We
representgn(a1¯an) as a closed loop with the symbolg inside it with n points on its boundary.
Then Eq.~6.2! is equivalent to the following:

G1~a1 ;h!5the sum of all topologically different connected msr diagrams with:

one root labeled 1, one or more free points, oneh vertex or one

g vertex, zero or oneg vertex, and oneG2
~u! bond; such that theG2

~u!

bond is attached to the root and to a point on theh or g vertex. ~6.3!

Both gn(a1¯an) andgn(a1¯an) are totally symmetric functions of theirn arguments. Therefore
we represent each as a vertex in which then points are totally equivalent. The placement of then
points on the boundary is irrelevant for the topological structure of the diagram.

We now summarize the graph theoretic definitions and conventions used throughou
paper. They are consistent with those used by several previous authors,19–22 although different
authors uses slightly different terms.~1! In the diagrams that appear in the theoretical devel
ment, each root has a distinct integer label associated with it, and the free points are unl
Such diagrams are conventionally referred to as unlabeled diagrams~to indicate that the free
points are unlabeled!. ~2! The procedure for evaluating an unlabeled diagram involves assign
set of integer labels to the free points. The labels that are assigned should be distinct from
other and from the labels attached to roots. A diagram with labels assigned to the free po
referred to as a labeled diagram.~Labeled diagrams are introduced only as a device for defin
topological equivalence and evaluating unlabeled diagrams.! ~3! Two labeled diagrams are topo
logically equivalent if there is a one-to-one correspondence between the points, bonds, an
ces of the two diagrams such that: corresponding points have the same labels, corresp
vertices are of the same type and have points with the same labels attached, and corres
lines have the same type and have points with the same labels attached.27 ~4! The symmetry
number of an unlabeled diagram is obtained by converting to a labeled diagram and count
number of ways of permuting the labels on the free points in such a way as to give a topolog
equivalent labeled diagram.~5! The rules for evaluating an unlabeled diagram are the stan
ones: convert it to a labeled graph, construct a summand/integrand containing the functio
responding to all the bonds and vertices in the diagram, integrate and sum over the field
assigned to the free points~the time integrations go from2T to T!, and divide by the symmetry
number of the diagram.~6! Two unlabeled graphs are topologically equivalent if there is so
way of assigning the same set of labels to the free points of each so that the resulting l

FIG. 1. The original graphical series forG1(a1 ;h) in terms ofg vertices. See Eq.~6.3!. In addition to the first term
containingh, there is one diagram for each value ofn for which gn is nonzero. In these diagrams and in the following on
a root point is a small open circle, anh vertex is a large circle withh written inside and one point on its periphery, agn

~or gn or Gn! vertex is a large circle withg ~or g or G! written inside andn points on its periphery, and aG2
(u) bond is

represented by a line between two points.
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diagrams are topologically equivalent.~7! Two unlabeled graphs are topologically different if the
are not topologically equivalent.~8! A diagram is connected if it is possible to go from any po
to any other point along a series of vertices and bonds.

The term in the sum in Eq.~6.2! with a specific value ofn corresponds to a diagram withn
free points, which can be labeled 2,...,n11. See Fig. 1. The free point that is attached to the r
by a G2

(u) bond is topologically distinct from the others, but any permutation of the labels o
n21 other field points~i.e., those attached to both thegn and thegn21 vertex! leads to a
topologically equivalent labeled graph. Thus the symmetry number is (n21)!, and thereciprocal
of this is indeed the numerical factor that appears explicitly in Eq.~6.2!. Thus, each term in this
series is precisely equal to the value of a diagram, when the value of a diagram is defined
evaluation rules given above. This validates Eq.~6.3! that expressesG1 as a sum of diagrams.

Now, using Eq.~4.5!, we can express thegn functions in terms of theGn functions using the
diagrammatic language:

gn~a1¯an ;h!5the sum of all topologically different msr diagrams with:n roots

~labeled 1̄ n!, no free points, andG vertices. ~6.4!

These diagrams are shown in Fig. 2. This result is an exact restatement of Eq.~4.5!. In this
case, since there are no field points, all symmetry numbers are unity. The requirement tha
diagram be an msr diagram implies that each root must be on aG vertex.

FIG. 2. Graphical expressions for the momentsgn(a1 ...an) in terms of their cumulantsGn(a1 ...an). See Eq.~6.4!. Note
that these diagrams are not necessarily connected.
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This graphical result forgn can be substituted into the previous graphical result forG1 , and
we conclude that

G1~a1 ;h!5the sum of all topologically different connected msr diagrams with: one ro

~labeled 1!, one or more free points, oneG2
~u! bond, oneh vertex or one

g vertex, andG vertices; such that: theG2
~u! bond is attached to the root

and to a point on theh or g vertex, and every free point is attached to

the g or h vertex. ~6.5!

We adopt the convention that when no specific number of a feature is mentioned~e.g., here we
state that the diagrams containG vertices! this means that the diagram may contain zero or m
of such a feature. These diagrams are shown in Fig. 3. The fact that the final result is expr
in terms of the values of a set of topologically different diagrams is neither obvious nor trivi
results from a generalization of some remarkable theorems of Morita and Hiroike.19

Thus we have a graphical expression forG1(a1 ;h), in terms of the higher cumulant
Gm(a1¯am ;h), that expresses the dynamics associated with the equations of motion. Func
differentiation of this expression with regard toh then lets us obtain the corresponding expressi
for Gm itself.

When we functionally differentiate each of the diagrams inG1 with regard toh(a2), we
generate one or more terms, each of which is expressible in terms of topologically dif
diagrams.19 Moreover, diagrams obtained by differentiating topologically different diagrams m
also be topologically different. So the overall derivative can be expressed as the sum of a
topologically different diagrams.

The functionh appears in the diagrams in two ways: in the one diagram whereh appears
explicitly, and in theh dependence of theG vertices that appear in the other diagrams.

FIG. 3. The graphical series forG1(a1 ;h) in terms ofGn vertices obtained by substituting the graphical expressions
gn in terms ofGn in Fig. 2 into the diagrams of Fig. 1. See Eq.~6.5!.
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Let us calculateG2(a1a2 ;h)5dG1(a1 ;h)/dh(a2). The diagram in whichh appears explic-
itly has the valueG2

(u)(a1a2)h(a2). The functional derivative of this with regard toh(a2) is
clearly G2

(u)(a1a2). The same result can be obtained graphically be deleting theh vertex and
converting its free point to a root labeled 2.

SincedGm(a1¯am ;h)/dh(am11)5Gm11(a1¯amam11 ;h), the functional derivative of a
Gm vertex with regard toh(am11) is obtained by adding a root, labeledm11 to theGm vertex to
get a Gm11 vertex. The overall functional derivative of a diagram with regard toh(am11) is
obtained by adding one such root to theGm vertices in all possible ways.

Thus the contribution toG2(a1a2 ;h) obtained from functionally differentiating the diagram
in G1 that haveG vertices is the sum of all topologically different diagrams that can be obta
by adding a root labeled 2 to one of theGm vertices in the diagrams inG1 .

This procedure can be continued to obtain higher functional derivatives. The general
for n>1 is

Gn~a1¯an ;h!5Gn
~u!~a1¯an ;h!

1the sum of all topologically different connected msr diagrams with:

n roots ~labeled 1....,n), one or more free points, oneG2
~u! bond,

one g vertex, andG vertices; such that: theG2
~u! bond is attached to

the root labeled 1 and to a point on theg vertex, each other root is

attached to aG vertex, and every free point is attached to theg vertex.
~6.6!

This series is illustrated in Fig. 4 forG2 and Fig. 5 forG3 .
Equation~6.6! for all values ofn>1 is a formal set of closed equations for the cumulants

we regard theg vertices as a perturbation on the uncoupled, uncorrelated system, the pertur

FIG. 4. The graphical series forG2(a1a2 ;h) obtained by functional differentiation of the diagrams in Fig. 3 with rega
to h. See Eq.~6.6!.
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solutions can be obtained by iteration. If one carries out the calculation to the first few ord
perturbation theory, the specific results suggest the following general result.

Gn~a1¯an ;h!5the sum of all topologically different connected msr diagrams with:

n roots ~labeled 1....,n), field points. G2
~u! bonds, andg and h

vertices; such that each point has oneG2
~u! bond attached and every

free point is attached to anh or g vertex. ~6.7!

This series is illustrated in Fig. 6 forG1 and Fig. 7 forG2 . The perturbation analysis
generates diagrams with the topological structure described in Eq.~6.7!. It is less clear from the
perturbation calculation that all topologically different diagrams with this structure are gene
for eachGn and that each diagram with the correct characteristics appears only once in the
series. We note, however, that the equations in~6.7! have the appropriate topological structure th
is consistent with the fact that eachGn11 is the functional derivative ofGn with regard toh. In
fact, if ~6.7! is correct, then we must have the following result for the generating functional o
cumulants.

G~h!5the sum of all topologically different connected msr diagrams with: no roots

field points, G2
~u! nonds, andg and h vertices; such that each point has one

G2
~u! bond attached and every free point is attached to ag or h vertex.

~6.8!

FIG. 5. The graphical series forG3(a1a2 ;h) obtained by functional differentiation of the diagrams in Fig. 4 with rega
to h. See Eq.~6.6!.
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This series is illustrated in Fig. 8. This result, as well as Eq.~6.7!, which have been suggeste
by the previous discussion, can be shown to be correct in the following way. We take~6.8! as a
trial solution for the generating functional of the cumulants. Functional differentiation with re
to h implies Eqs.~6.7! for the cumulants themselves, using the theorems of Morita and Hiro
Eqs.~6.7! can then be used to derive Eqs.~6.6! using standard topological reduction techniqu
Thus the cumulants that are generated by assuming Eq.~6.8! satisfy the equations for thos

FIG. 6. The graphical series forG1(a1 ;h) in terms ofh andg vertices andG2
(u) bonds that is an explicit formal solution

for this h-dependent cumulant. See Eq.~6.7!.

FIG. 7. The graphical series forG2(a1a2 ;h) in terms ofh andg vertices andG2
(u) bonds that is an explicit formal solution

for this h-dependent cumulant. See Eq.~6.7!.
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cumulants, i.e., Eqs.~6.6!, that are implied by the equations of motion. The perturbation the
solution of Eqs.~6.6! is unique. Therefore, Eq.~6.8! and its consequences Eqs.~6.7! represent the
unique perturbation theory solution for the cumulants.

Equations~6.8! and~6.7! are, in some sense, the most important results of this paper. The
a complete formal solution to the problem of calculating all the cumulants for the dynam
problem. Each cumulant is given explicitly as a series of diagrams that contain only the k
quantities that define the dynamical and statistical problem, namely theg vertices that follow from
the form of the equations of motion and from the physical initial correlations. By settingh50 in
this series, i.e., by omitting diagrams that have one or moreh vertices, the physical cumulants ca
be obtained. These physical cumulants give the cumulants of all the correlations of the dyn
variables as well as all the response functions.

This result is formally analogous to the result in the cluster theory of equilibrium gases
liquids that expresses the particle correlation functions in terms of a series in the activityz. Both
series are expressed in terms of diagrams that are connected but not necessarily multip
nected. In the cluster theory of gases, the next step is to do a topological reduction to elim
articulation circles, and we proceed to do the analogous operation here. This will lead u
graphical interpretation of the vertex functions.

VII. GRAPHICAL EXPRESSIONS FOR THE VERTEX FUNCTIONS

A connecting point~in a connected diagram! is defined as a point whose removal separates
diagram into two or more disconnected pieces in such a way that at least two pieces contain
If a connected diagram contains no connecting points, we say that the diagram is at-least
connected.~If a connected diagram has no connecting points, then for any pair of points tha
not directly connected by a bond or vertex, there exist two independent paths connecting
Two paths are independent if they have no points in common except the starting and e
point.! Let us consider the connecting points in the diagrams of the previous series forG1 ~see Fig.
6!.

The first two diagrams, with only one free point, do not have a connecting point. In al
remaining diagrams, the free point directly attached to the root by aG2

(u) bond is a connecting
point; that point is also attached to ag vertex. In some of these remaining diagrams, there are
other connecting points. Any such diagram with no connecting point must also have noh vertex.
~If an h vertex is present in such a diagram, the field point on theh vertex is also attached to
G2

(u) bond. The point at the other end of the bond is a connecting point. It follows that absen
a connecting point in such a diagram implies absence of anh vertex.!

FIG. 8. The graphical series forG(h), the generating functional of the cumulants. See Eq.~6.8!.
                                                                                                                



ectly

g
e

he
d, the
utes to

oints to
ne or

ith

h
rita

2008 J. Math. Phys., Vol. 41, No. 4, April 2000 Hans C. Anderson

                    
Thus, we find

G1~a1 ;h!5G2
~u!~a1a2!@h~a2!1g1~a2!1l~a2!1the sum of all topologically

different connected msr diagrams with: one root~labeled 2!,

free points, G2
~u! bonds, andg and h vertices:

such that the root is attached to agn vertex with n>2,

each free point has oneG2
~u! bond attached,

every free point is attached to ag or h vertex,

and there is at least one connecting point. ~7.1!

In this result, l(a2) is independent ofh, and G2
(u)(a1a2)l(a2) is the sum of all the~h-

independent! diagrams in the previous series whose only connecting point is the point dir
connected to the root.

In the diagrams of the series in square brackets in Eq.~7.1!, there are two types of connectin
points: those that, when removed, leave theG2

(u) to which it was attached still connected to th
root and those that, when removed, leave theG2

(u) to which it was attached disconnected from t
root. It can easily be seen that when a connecting point of this second type is remove
fragment of the diagram that become disconnected from the root is a diagram that contrib
G1(h) @i.e., it is aG1(h) diagram whose root is removed#.

The general diagram in this series can be regarded as a diagram with no connecting p
which a member of theG1 series has been attached at various free points, thereby creating o
more connecting points. By using standard topological reduction techniques,19–21 we obtain the
result that the series can be expressed in terms of diagrams with no connecting points but wG1

vertices:

G1~a1 ;h!5G2
~u!~a1a2!@h~a2!1g1~a2!1l~a2!1the sum of all topologically different

at-least doubly connected msr diagrams with: one root labeled 2,

free points, G2
~u! bonds, one or more G1 vertices,

and g vertices ~ for n>2!; such that each point is attached to a

g vertex and each free point is attached

to a G1 vertex or a G2
~u! bond.

We now apply the theorem above stating thatG2
(u) is a left inverse ofG2

(u) . Multiplying both
sides byG2

(u) and rearranging to solve forh, we find

h~a1!52g1~a1!2l~a1!1G2
~u!~a1a2!G1~a2 ;h! 2the sum of all topologically different

at-least doubly connected msr diagrams with: one root labeled 1,

free points, G2
~u! bonds, one or moreG1 vertices,

and gn vertices ~ for n>2!; such that each point is attached

to a g vertex and each free point is attached

to a G1 vertex or a G2
~u! bond.

Since h(a1)5dG(G1)/dG1(a1), G(G1) is the function whose functional derivative wit
regard toG1(a1) is the result just above. A straightforward application of the methods of Mo
and Hiroike19 gives
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G~G1!52@g1~a1!1l~a1!#G1~a1!1G1~a1!G2
~u!~a1a2!G1~a2!/22S~G1!, ~7.2!

where

S~G1!5the sum of all topologically different at-least doubly connected msr

diagrams with: no roots, free points,G2
~u! bonds, two or moreG1 vertices,

and gm vertices ~ for m>2!; such that: each point is attached to a

g vertex and each free point is attached to a

G1 vertex or a G2
~u! bond.

~In this result, we have omitted an unimportant constant of integration.! The series forS is
illustrated in Fig. 9. This result, containing at-least doubly connected diagrams is analogous
series for the Helmholtz free energy as a function of the density. It is an explicit formal expre
for the Legendre transform functional in terms of the quantities that define the dynamica
statistical problem.

Functional differentiation of this result with regard toG1 allows us to obtain the vertex
functions:

G2~a1a2 ;G1!5G2
~u!~a1a2!2S2~a1a2 ;G1!, ~7.3!

where

S2~a1a2 ;G1!5d2S~G1!/dG1~a1!dG1~a2!

5the sum of all topologically different at-least doubly connected msr

diagrams with: two roots~labeled 1 and 2!, free points, G2
~u! bonds,

G1 vertices, andgn vertices ~ for n>2!; such that each point is

attached to ag vertex and each free point is attached

to a G1 vertex or a G2
~u! bond. ~7.4!

The vertex functions forn>3 are

Gn~a1¯an ;G1!52Sn~a1¯an ;G1!

where Sn is given by a series with the same topological specifications asS2 except that the
diagrams haven roots.

FIG. 9. The graphical series forS(G1). See Eq.~7.4!.
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VIII. HIGHER ORDER CUMULANTS EXPRESSED IN TERMS OF DIAGRAMS WITH NO
ARTICULATION POINTS

The right side of Eq.~6.7! for theGn(h) cumulants contains diagrams that haveh vertices, as
well as g1 vertices. For some applications it is convenient to have a representation of thGn

cumulants forn>2 in terms of diagrams that instead haveG1(h) vertices. This can be readily
achieved by using a topological reduction that eliminates articulation points.

An articulation point~in a connected diagram! is a point whose removal separates the diagr
into two or more disconnected pieces in such a way that at least two pieces contain points
least one of these pieces contains no root point. In other words, an articulation point is a
whose removal disconnects the diagram and leaves at least one free point unconnected to
point.

We now consider Eq.~6.7! for G2(a1¯an ;h). See Fig. 7 for some of the diagrams forn
52. In these diagrams, a root can not be an articulation point, because removal of one root
leaves all the free points still connected to all the other roots. For similar reasons, a free
directly attached to a root by aG2

(u) bond can not be an articulation point. However, some of
free points may be articulation points. If a free point is an articulation point, the point to whi
is directly connected by aG2

(u) bond must be both a free point and an articulation point. For
such pair of articulation free points, the two points can be distinguished by the fact that re
of one of them disconnects the bond between them from the roots but removal of the other
that bond still connected to the roots. If we remove a free articulation point of the first type
fragment of the diagram that is no longer connected to the roots is one of the diagrams in Eq~6.7!
for n51; see Figs. 6 and 7. By performing a topological reduction similar to the one we
formed in obtaining the graphical representation of the vertex functions, we can express the
for Gn for n>2 in terms of diagrams with no articulation points and withG1(h) vertices but no
h or g1 vertices.

We find, forn>2.

Gn~a1¯an ;h!5the sum of all topologically different connected msr diagrams with:

n roots ~labeled 1,....n), field points, G2
~u! bonds, G1~h! vertices,

and gm vertices for m>2; such that each root is attached to

one G2
~u! bond, each free point has either oneG2

~u! bond or

one G1~h! vertex attached, and there are no articulation points.
~8.1!

Examples of these diagrams forG2(h) are in Fig. 10. This expression for then>2 cumulants in
terms ofn51 cumulant is analogous to the expression for the equilibrium correlation functio
a fluid in powers of the density.

IX. THE DYSON EQUATION

The Dyson equation in formalisms involving a Legendre transformation is an inverse
tionship between the second order cumulant@in the present caseG2(a1a2 ;h)# and the second
functional derivative of the Legendre transform@in the present caseG2(a1a2 ;G1)#.

By graphical means, it is straightforward to derive the following Dyson equation:

G2~a1a2 ;h!5G2
~u!~a1a2!1G2

~u!~a1a3!S2~a3a4 ;G1~h!!G2~a4a2 ;h!. ~9.1!

The procedure for doing this is to examine the diagrams in Eq.~8.1! for G2 , and identify all free
points whose removal would disconnect the roots from each other. The part of aG2 diagram
between such a pair of points is either aG2

(u) bond or a more complicated structure related
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diagrams inS2 . The details of the derivation will be omitted. We note that this is an equation
G2(a1a2 ;h), and thus it is an equation for the second order cumulants of the fluctuations o
dynamical variables as well as the response functions.

We multiply on the left byG2
(u) and use the fact that this function is a left inverse ofG2

(u) . We
obtain

G2
~u!~a1a3!G2~a3a2 ;h!5d~a1a2!1S2

~u!~a1a3 ;G1~h!!G2~a3a2 ;h!

or

G2~a1a3 ;G1~h!!G2~a3a2 ;h!5d~a1a2!

Thus, not surprisingly,G2(G1(h)) is a left inverse ofG2(h). It is not, in general, also a righ
inverse, as is clear for from the special case of the uncoupled, uncorrelated~u! system.

X. DISCUSSION

In this paper we have provided a consistent mathematical formulation of the operator fo
ism of Martin, Siggia, and Rose. In the present formulation, despite the fact that the fieldsc(at)
and ĉ(at) are not actually operators but rather are members of a complex algebra, all o
significant elements of the msr theory are present: the commutation relations, the equat
motion for thec(at) that are of the same form as those for the physical coordinates, an equ
of motion for ĉ, the commutation relations, the spinor formulation, the derivation of the equa
of motion from a Hamiltonian, a generating functional for the correlation functions and
cumulants, a Legendre transform, vertex functions that are functional derivatives of the Leg
transform function, a second functional derivative of the Legendre transform function that
inverse of the second order cumulant, and a representation of the vertex functions in te
diagrams to low order in perturbation theory in the interactionsg.

FIG. 10. G2(a1a2 ;h) as a diagrammatic series containingG1(h) vertices. See Eq.~8.1!.
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The present formulation goes well beyond that of Martin, Siggia, and Rose, in the follo
respects:~1! The mathematical consistency of the theory is established by explicit constructi
the complex algebra.~2! Proper accounting for nongaussian initial correlations is included.~3! A
complete diagrammatic representation of all the cumulants and all the vertex functions is ob

Our final graphical results for the cumulants and vertex functions are merely the starting
for further analysis and then application to specific problems. In the next paper of this serie
will exploit the spinor characteristics of the various vertices to obtain results that are more
in calculations for specific systems. We will also investigate the simplifications that arise
this method is applied to stationary systems, such as systems in thermodynamic equilibriu
will apply the results to the kinetic theory of fluctuations in liquids.

Since our final results are complete and formally exact graphical expressions for a
correlation functions and vertex functions, we hope that they will form a firm basis for
application of various topological reduction and renormalization techniques to the soluti
classical dynamical problems. The present formulation is easily extended to systems with co
ous coordinates subject to random forces, which is the usual class of systems to which t
method is applied. It is also easily extended to spin systems with discrete states, and so pr
in classical spin dynamics will also be approachable with this formalism.

To close, we consider the question of why the msr method works. Why is it that the integ
calculation of correlation functions and response functions leads to a formalism that gives ex
graphical expressions for the correlation functions and their cumulants, rather than me
hierarchy of equations of motion? Part of the answer may be a consequence of the fact t
zeroth order theory~i.e., a formulation that is of zeroth order in the interactionsU that appear in
the equations of motion! for just the correlation functions is trivial and of no utility~all cumulants
of the fluctuations, other than the first, are identically zero!; however, a zeroth order theory of th
correlation functions and response functions~what we have called the uncoupled, uncorrela
system! is a simple, exactly solvable, Gaussian theory. Thus, in the msr method, for the cl
problems we have been considering in this paper, every problem, no matter how complica
initial correlations or the dynamics, is a perturbed version of a Gaussian theory~a Gaussian field
theory, in the case of problems with infinitely many degrees of freedom!. While we have not made
any explicit use of a Wick’s theorem in our formulation but have instead relied on diagramm
methods more familiar from the cluster theory of liquids, the presence of a zeroth order Ga
theory at the heart of the method should make it less surprising that the exact solution c
expressed completely in terms of diagrams.
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APPENDIX A: PHYTHIAN’S FORMULATION OF THE OPERATOR METHOD

Phythian5 made an early attempt to put the operator formalism of msr on a consistent m
ematical footing. In this appendix we show that Phythian’s method is less general than
originally claimed and cannot be the basis for justifying the msr formalism for the clas
problems we are considering.

Phythian considered the same set of problems we consider, namely dynamical probl
which the first time derivatives of the coordinates are functions of the coordinates and the
The equations of motion plus the initial values of the coordinates at timet50 determine the time
evolution of a system. The initial values of the coordinates are random variables with a spe
distribution function.

Phythian defined a Hilbert space of functions of the initial coordinates, using the i
distribution function in the definition of the inner product. Any function of the coordinates at
t.0 can be regarded as a member of this Hilbert space, since the coordinates at timt are
functions of the initial values of the coordinates.
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Let us consider a one dimensional case for simplicity, and let us restrict our attenti
equations of motion that are time independent. Let the coordinate bex. The equation of motion is
ẋ(t)5U(x(t)) subject to the initial conditionx(0)5f. The formal solution of this can be writte
as x(t)5F(t,f). The Hilbert space is the set of all functions off whose norm is finite.~The
definition of the norm is not relevant for the following argument.!

Let f (x) be an arbitrary function of the coordinates. Thenf (x(t)) can be regarded as
function of t and of the initial coordinates, sincef (x(t))5 f (F(t,f)). Since this is a function of
f, it is a member of the Hilbert space and could be denotedf t(f). But f (f) is also a member of
the Hilbert space. Phythian defined an operator on the Hilbert space, denotedE(t), for all t>0,
such that

f t~f!5E~ t ! f ~f!

for any functionf. Phythianassumedthat the inverse of the operatorE(t) exists and used both
E(t) and E21(t) in defining the time dependent operatorsc(t) and ĉ(t), much like in the
Heisenberg formulation of quantum mechanics. In this formulation, the msr operatorsc(t) and
ĉ(t) are time dependent Heisenberg operators on the Hilbert space of functions of the
coordinates.

Phythian did not prove the existence of the inverse operator, but his formulation de
crucially on its existence. For certain types of classical problems, the inverse clearly exist
example, suppose we describe the system using complete set of canonical coordinates a
menta and suppose the motion is generated by a time independent Hamiltonian. Then the o
E(t) is the classical propagator in phase space, or the exponential of the Liouville operator,
is straightforward to prove the existence of its inverse. However, for certain types of problem
for alternative formulations of this same problem, the inverse does not necessarily exist.

Consider the simple one dimensional system with the following equation of motion:ẋ5
2x2, subject to the initial conditionx(0)5f. @We also demand thatf>0 for all systems. It will
be clear thatx(t)>0 for all t as well.# The solution of the equation of motion is

x~ t !5
f

11ft

and the time evolution operator satisfies

f t~f!5E~ t ! f ~f!5 f S f

11ft D .

In order for the inverseE21(t) to exist as an operator on the Hilbert space, it is necessary
for any functiong(f), defined for positivef, and anyt.0, there exists a unique functionh(f),
defined for positivef, such that

E~ t !h~f!5g~f! for f.0

or

hS f

11ft D5g~f! for f.0.

As f varies from 0 to`, the argument of the function on the left varies from 0 to 1/t. The
dependence ofh on its argument is not completely determined by this relationship. Given ah
that satisfies this equation, i.e., that is a candidate forE21(t)g, one can construct other equal
suitable possibilities by changing the function for large values of its argument. HenceE21(t)g is
not unique, and the inverse does not exist as a well defined operator on the Hilbert space
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Phythian’s formulation is valid only for systems for whichE21(t) exists. This counterexam
ple shows that the existence of the inverse can not be taken for granted for the class of pr
under consideration.

APPENDIX B: PROOF OF THE CONSISTENCY OF THE COMPLEX ALGEBRA

In this appendix we shall outline an explicit construction of the complex algebra. The
struction thereby constitutes a proof of the consistency of the various properties of the algeb
we use in the development of the theory.

To do this, we first construct a set of objects we will call lists. We also define an associ
noncommutative multiplication for any two lists, such that the set of lists is closed under m
plication. A specific subset of these sets of lists will be chosen as the basis set for a vector
We will define an associative, noncommutative product of members of the vector space
vector space will then be the complex algebra we want to construct, and it will have a
properties given in Sec. III A.

We use the symbolai to denote a field index, i.e., a triplet consisting of a spinor indexsi , a
coordinate labela i , and a timet i in the range between2T andT.

We define a standard ordering of the field indices using the rules in Sec. III B, which wil
be repeated here. This is a one dimensional ordering of all the field indices such that for an
distinct indicesa1 anda2 , we have a well defined rule that decides whethera1.a2 or a2.a1 .
Moreover,a1.a2 anda2.a3 implies a1.a3 .

A list is defined as an ordered set of zero or more field indices. The empty set will be de
f. Other examples of lists are:a1 , a1a2 , a1a1 , a2a1 , a3a3a1a2a4 . Two lists are equal if and
only if they have the same entries in the same order.

The product of two lists is defined as the concatenation of the lists. For example, (a1a2a3)
3(a4a5a6)5a1a2a3a4a5a6 . f is a multiplicative identity, e.g., (f)(a1a2)5(a1a2)(f)5a1a2 .
We shall use letters likeL, M, N as generic symbols for lists.

The standard ordering of a list, denoted by the symbolS, is another list containing exactly th
same set of field indices with their order permuted so that they appear in increasing order
from right to left. Examples:~1! S(f)5f. ~2! S(a1)5a1 . ~3! S(a1a2)5a1a2 if a1.a2 . ~4!
S(a1a2)5a2a1 if a2.a1 . ~5! S(a1a1)5a1a1 .

Consider the set of all distinct objects of the following type:ufu, ua1u, ua1a2u for all a1

.a2 , ua1a2a3u for all a1.a2.a3 , etc. Each of these objects is a standard ordered list appe
between two vertical lines. To each such object we assign a symbol of the formBi , and the set of
all such objects isB1 ,B2 ,B3 ,... . ~We reserve the symbolB1 for ufu.! We use the set of allBi as
a basis set for defining a vector space. The general member,V, of the vector space can b
expressed uniquely as a linear combination of basis vectors.

V5(
i

v iBi .

In order to clarify the relationship between the lists and basis vectorsBi , we note that:~1! If
L is a list in standard order, thenuLu is a basis vectorBi for somei. ~2! If Bi is some basis vector
there is a unique listL, in standard order, such thatBi5uLu. ~3! If L is a list that is not in standard
order, uLu is not defined.

In order to convert this vector space into a complex algebra, we need to define an asso
multiplication operation for pairs of members of the vector space. To accomplish this, we
only define a multiplication operation for pairs of basis vectors and then extend the definit
pairs of vectors using the property of associativity.

The product of two basis vectors is defined by the following rules:
If one or both of the basis vectors isB15ufu, then B1Bi5BiB15Bi . ~This is actually a

special case of the following rule.!
                                                                                                                



g

a

is to be

tandard

with
in

fining
econd
ade.
hen the
s gen-

nd the

rs in

para-
.

roduct.
that

2015J. Math. Phys., Vol. 41, No. 4, April 2000 Functional and graphical methods for classicial . . .

                    
If Bi5uLu and Bj5uM u, and if the concatenationLM is in standard order, thenBiBj

5uLM u, the latter being another basis function.~This, in turn, is a special case of the followin
rule.!

If Bi5uLu5ua1¯anu andBj5uM u5uan11¯an1mu:
Identify all distinct pairs of field indices in the concatenationLM that have the samet and the

samea such that the index on the left has a spinor index of1 and the index on the right has
spinor index of2. ~A specificai might be in more than one such pair. BecauseL andM are each
in standard order, for each such pair the1 member is inL and the2 member is inM. If L and/or
M contain more than one appearance of the same field index, each such appearance
regarded as distinct for the purpose of identifying distinct pairs.!

Identify all subsets of such pairs~including the empty subset! such that noai in either list
appears in more than one pair.

For each such subset, remove the members of the pairs in the subset, perform a s
ordering on the remaining concatenation, and find the corresponding basis function.

Add the basis functions obtained in this way. The result is the desired productBiBj . Thus, the
product of two basis functions is always equal to a linear combination of basis functions,
nonnegative integer coefficients.~Note the similarity between this process and what is done
field theoretic calculations using Wick’s theorem.!

The multiplication of basis vectors is associative. That is, (B1B2)B35B1(B2B3). To see this,
note that in calculating the product on the left, we first delete pairs of indices in the lists de
B1 and B2 , and then we delete pairs whose first member is in this product and whose s
member is in the list definingB3 . The general term in the result is defined by the choices m
But whatever combined set of choices is made, that same set of choices can be made w
product on the right is calculated. There is a one-to-one correspondence between the term
erated in calculating the left side and the terms generated in calculating the right side, a
corresponding terms are equal. It follows that the two results are equal.

We can use this multiplication of basis vectors to define multiplication of any two vecto
the vector space. If

V5(
i

v iBi

and

W5(
i

wiBi ,

then the product is

VW5(
i j

v iwjBiBj .

This multiplication can easily be shown to be associative, using the results of the previous
graph. It is also distributive and satisfies the following relationship with scalar multiplication

c~UV!5U~cV!5~cU!V,

wherec is a complex number.
It follows that the~infinite dimensional! vector space of all linear combinations of theBi is a

complex algebra. Note that it is not a Hilbert space, because we have not defined an inner p
With the complex algebra constructed, we now identify the members of that algebra

correspond to the objects in the msr theory.
We use the symbol 1 forufu. This is the multiplicative identity in the complex algebra.
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We use the symbolF(a1) for ua1u for all values ofa1 . It follows that if L5a1a2¯an is a list
in standard order, then

uLu5ua1a2¯anu5ua1uua2uu¯uuanu5F~a1!F~a2!¯F~an!.

We definec(a1t1)5F(1a1t1) and ĉ(a1t1)5F(2a1t1) for all a1 ,t1 .
The commutation relations of theF, c, andĉ quantities are easy to evaluate.

F~1a1t1!F~2a1t1!5u1a1t1uu2a1t1u

5uS~1a1t12a1t1!u1uS~f!u

5u2a1t11a1t1u11

F~2a1t1!F~1a1t1!5u2a1t1uu1a1t1u.

In calculating the product at the right of the first line, we could either choose to delete one p
no pairs, leading to the two terms in the answer on the next line. Hence

@F~1a1t1!,F~2a1t1!#51,

where, on the right, 1 isufu5B1 , i.e., the multiplicative unity in the complex algebra. On t
other hand, it is trivial to show that

@F~a1!,F~a2!#50

if a1Þa2 and/ort1Þt2 and that

@F~a1!,F~a1!#50,

where, on the right, 0 is the additive zero in the complex algebra. These commutation relatio
summarized by Eq.~3.5!. When expressed in terms of theĉ and c quantities, the equivalen
results are in Eqs.~3.1!–~3.4!.

APPENDIX C: LEMMA NEEDED FOR THE DERIVATION OF THE EQUATION OF
MOTION FOR c

In deriving the equation of motion for thec(at) fields, we need a lemma involving cumulan
of a multidimensional probability distribution function. In this appendix, we state the one dim
sional theorem, outline its derivation, and then state the multidimensional generalization.

Let P(x) be a normalized probability distribution function for a real variablex. Let ^& denote
an average over this distribution.

The moments of the distribution are

mn5^xn&5E dx xnP~x!.

The generating function of the moments is obtained by inventing a~real or complex! variableh
and defining

Z~h![^exp~hx!&5 (
n50

`
1

n!
mnhn.

The cumulantscn of the distribution are defined by identifying their generating function with
logarithm ofZ.
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W~h![ ln Z~h!5 (
n50

`
1

n!
cnhn.

SinceZ(h)5expW(h), we have the result that

dZ~h!

dh
5

dW~h!

dh
Z~h!.

If we differentiate this resultq times with regard toh and then seth50, we obtain the following
relationship between the moments and the cumulants:

mq115 (
n50

q
q!

n! ~q2n!!
cn11mq2n . ~C1!

Now consider the following function:

F~x![Fx2c12 (
n51

`
1

n!
cn11S 2

d

dxD
nGP~x!.

Using Eq.~C1!, it is straightforward to show that all moments ofF are zero.

E dx xnF~x!50 for all integersn>0.

It follows that F(x)50. Thus, we have established the following lemma.
Lemma:If P(x) is a normalized probability distribution function for a real variablex, with

cumulantsc1 ,c2 ,..., then

Fx2c12 (
n51

`
1

n!
cn11S 2

d

dxD
nGP~x!50.

The multidimensional generalization of this can be obtained using analogous reasonin
Let x be a multidimensional random variable, whose components arex(a) for the relevant

range of values ofa and whose probability distribution function isP(x). The moments of this
distribution are defined as

mn~a1¯an!5E dx x~a1!¯x~an!P~x!.

To define generating functions, we invent a multidimensional~real or complex! variableh whose
components areh~a! for all values ofa. The generating function of the moments is

Z~h!511 (
n51

`
1

n! (
a1¯an

mn~a1¯an!h~a1!¯h~an!.

The generating function of the cumulants is

W~h!5 ln Z~h!511 (
n51

`
1

n! (
a1¯an

cn~a1¯an!h~a1!¯h~an!.

Lemma:For such a multidimensional distribution function.
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Fx~a1!2 (
n50

`
1

n! (
a2¯an11

cn11~a1¯an11!3S 2
]

]x~a2! D¯S 2
]

]x~an11! D GP~x!50.

~The proof is entirely analogous to the one dimensional case and will be omitted.!

APPENDIX D: FURTHER COMMENTS ON THE LEGENDRE TRANSFORMATION

In order to be able to carry out the Legendre transformation, we adopted a procedur
involves creating an ensemble of states with trivial initial conditions~i.e., all coordinates are zero!
at the initial time~chosen att52T!, letting the system propagate with trivial equations of motio
then turning on the physically interesting correlations with a stochastic impulsive process at
later time~chosen ast50!, and then letting the system propagate with the physically approp
equations of motion. This procedure appears to be only trivially different from that of sim
creating the initial ensemble of states with the desired physically important correlations an
letting the system evolve according to the physical equations of motion. We have shown th
latter procedure in general makes it impossible to perform the Legendre transformation bu
asserted that the former procedure does make the Legendre transformation possible. In
pendix, we discuss the importance of having a nonzero time interval between the time wh
ensemble is created~with trivial initial conditions! and the time when the physically importa
correlations are turned on.

Let us consider how the procedure works for the simple example of the uncoupled corr
system that was discussed in Sec. V B. If we turn on the desired correlations att50, the first and
second moments of the fields forh50 are

G1~1a1t1 ;0!5c1~a1!Q~ t1!,

G2~1a1t11a2t2 ;0!5c2~a1a2!Q~ t1!Q~ t2!,

G2~2a1t11a2t2 ;0!5d~a1 ,a2!Q~ t22t1!,

G2~1a1t12a2t2 ;0!5d~a1 ,a2!Q~ t12t2!,

G2~2a1t12a2t2 ;0!50.

Here c1 and c2 are the cumulants of the correlations that are turned on att50. These are the
physically interesting correlations. Compare Eqs.~5.1!–~5.5!, which hold when the interesting
correlations are turned on at the same time that the ensemble is created, i.e., att52T. Equation
~5.6! is general and holds for the present problem. The spinor components of this equation
the present case,

G1~1a1t1 ;h!5c~a1!Q~ t1!1c2~a1a2!Q~ t1!E
0

T

dt2 h~1a2t2! ~D1!

1E
2T

t1
dt2 h~2a1t2!1O~h2! ~D2!

G1~2a1t1 ;h!5E
t1

T

dt2 h~1a1t2!1O~h2! ~D3!

which should be compared with~5.7! and~5.8!. Noting the relationship between the integral in t
second term on the right of~D2! and the integral in the first term on the right of~D3!, we find
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G1~1a1t1 ;h!5c~a1!Q~ t1!1c2~a1a2!Q~ t1!G1~2a20,h!1E
2T

t1
dt2 h~2a1t2!1O~h2!.

If we evaluate this att1501, i.e., just after the physically interesting correlations are turned
we get

G1~1,a1,01;h!5c~a1!1c2~a1a2!G1~2a20,h!1E
2T

0

dt2 h~2a1t2!1O~h2!. ~D4!

This should be compared with Eq.~5.9! which holds just after the physically interesting corre
tions are turned on at2T. Equation~5.9! imposes a strong relationship between the1 and 2
spinor components ofG1 just after the physical correlations are turned on. The relationshi
strong in the sense that it cannot be altered by first order changes inh. This relationship precludes
the possibility of regarding these two spinor components as independent variables for a Le
transformation. Equation~D4! imposes no such relationship. Equation~D4! makes it clear that the
1 spinor component ofG1 at time 01 is affected by the2 spinor component ofh(t) for 2T
<t<0. The existence ofh for timesbeforethe time at which the physically interesting correl
tions are turned on is important for the possibility of having the two spinor components ofG1 be
independently variable functions rather than being strictly related to one another as in~5.9!. Thus
the seemingly trivial maneuver of having a time delay between the creation of the initial ens
and the turning on of the physically interesting correlations is essential to the possibility
Legendre transformation.~The other essential ingredient is that the initial ensemble must h
trivial statistical properties.!

This analysis can be carried out in such detail only for simple systems, like the unco
correlated system for smallh. As noted in the text, we have not been able to prove in general
this procedure makes it possible to perform a Legendre transformation for any system~i.e., for any
equations of motion!, but it does avoid a procedure that clearly makes the Legendre transform
impossible in principle.
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On the mathematical structure of thermodynamics
T. Matolcsia)

Department of Applied Analysis, Eo¨tvös Loránd University,
1088 Múzeum krt 6-8, Hungary
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A mathematically exact dynamical theory of classical thermodynamics of homoge-
neous bodies is presented in which processes are time-dependent functions, gov-
erned by an ordinary differential equation. The fundamental objects of the math-
ematical structure of a thermodynamical system are the dynamical law, the
thermodynamical force, and the constraints; all the other usual notions, too, such as
substances, bodies, linear approximation by Onsager, etc. have got a mathematical
definition. Equilibria are the constant processes; their stability is investigated by
Lyapunov’s method. ©2000 American Institute of Physics.
@S0022-2488~00!01304-9#

I. INTRODUCTION

Classical mechanics is based on the Newtonian equation and constraints that define t
cesses unambiguously; then classical mechanics becomes an elegant mathematical theor
use of contact or symplectic manifolds. Quantum mechanics is based on the Schro¨dinger equation
that defines the processes unambigously; Hilbert spaces orC* algebras offer a complete math
ematical formulation of quantum mechanics. Classical electrodynamics is based on the M
equations that define processes unambiguously; differential forms on manifolds admit a
mathematical formulation of classical electrodynamics. Continuum~irreversible! thermodynamics
is based on the balance equations, partial differential equations that define processes un
ously by boundary conditions and initial values.1–5

All these theories are mathematically well defined and have a clear mathematical structu
physical notions have an exact mathematical definition.

Classical~equilibrium! thermodynamics is a theory to which—at present—no clear m
ematical structure is assigned and many physical notions are intuitive ones without a mathe
definition, e.g., equilibrium, processes, reversible, irreversible, quasistatic, trend to equilibri
is well known how intuitive notions can mislead us~Richard paradox6!, which can be demon-
strated by an excellent example taken from thermodynamics, too. In usual treatments of th
dynamics one ‘‘proves’’ that the Kelvin–Planck formulation and the Clausius formulation o
second law are equivalent;7 a rigorous mathematical examination shows, however, that
Kelvin–Planck formulation follows at once if the heating has an integrating factor and thus
not necessarily presume or imply thermodynamic axioms of any kind.8

Several attempts have been made for a mathematically correct theory of thermodyn
starting from different points of view.9–13 Though some relations have been clarified and obtai
an elegant form, the whole theory cannot be treated in those ways satisfactorily. The reaso
following. The physical theories enumerated above—in particular, continuum thermodynam
aredynamical theories: they describe what will happen under given circumstances. On the
trary, in spite of its name, classical thermodynamics—either in its usual treatments or
mentioned mathematical approaches—does not involve dynamics.

In order to have a satisfactory formulation and to find a convenient mathematical struct
thermodynamics, we must establish a dynamical theory in which processes are describe
differential equation. We know that the Onsager formalism describes nonequilibrium proc

a!Electronic mail: matolcsi@ludens.elte.hu
20210022-2488/2000/41(4)/2021/22/$17.00 © 2000 American Institute of Physics
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near equilibria and the relation between forces and fluxes outlines a strong mathematical str
However, the Onsager formalism is only a linear approximation, and the approximation proc
is not well clarified from a mathematical point of view.

Recently a nonlinear theory has been proposed,14–19 called ordinary thermodynamics, in
which the fundamental notion is the process governed by an ordinary differential equation
the dynamical law; thus processes, solutions of the dynamical equation, are functions in
Equilibria are constant processes. The well-defined linear approximation of the dynamica
gives the usual Onsager formalism in special cases.

To clarify the physical meaning of ordinary thermodynamics, we make the following c
ments; further details can be found in Ref. 14.

Let us consider a continuous medium consisting of identical, spinless, chargeless partic
process of such a medium is the field (u,e,v), the velocity, the specific internal energy, and t
specific volume as functions defined in space–time. If the body force and the body heati
taken to be zero, then the balances of momentum, energy, and mass yield the partial diffe
equations,

Duu52v“"P,

Due52v~“"k1P:“u!,

Duv5v“"u,

whereDu denotes the the ‘‘substantial time derivative’’ with respect to the velocity fieldu, k and
P are the heating flux and the pressure tensor, respectively, given by constitutive relatio
functionals of (u,e,v).

The process (u,e,v) can be determined, at least in theory, from initial and boundary value
these balance equations that form a complete dynamical law.

In ordinary thermodynamics we consider the bodies as homogeneous i.e., all quantiti
pend only on time, not on space. Let us insert the conditions“u50,“e50,“v50,“k50,“P
50 into the equations of continuum thermodynamics; we find that the quantities do not depe
time either, that is, nothing happens. There is no nonconstant homogeneous process.Ordinary
thermodynamics cannot be obtained from continuum thermodynamics as a special case. Perhaps
one could even say then that the theory of homogeneous bodies is meaningless, because
experimental fact as well that bodies out of equilibrium are never homogeneous; for examp
temperature of a cooling body is always lower on the surface than in the interior of the
However, we know as well that a rigid body does not exist: all bodies are deformed under f
still, certain bodies in certain circumstances can be considered as rigid. The rigid body mo
simple, much simpler than the model of deformable bodies, and it is suitable for many pur
Similarly, ordinary thermodynamics offers simpler models than continuum thermodynamic
they are applicable for a large class of phenomena. The theory of ordinary thermodynamics
a good approximation when the inner motion of the bodies is insignificant, and it has the a
tage that we can use ordinary differential equations that are much simpler than partial diffe
equations. Of course, the homogeneous model is rougher than the continuum model; how
derives results in several questions where the continuum theory seems useless becaus
complexity.

A similar point of view is accepted in the theory of chemical reactions that are mo
described by ordinary differential equations20,21 as if the materials in chemical reactions we
homogeneous though, evidently, they are far from being homogeneous. Nevertheless, a
basic features of chemical reactions are well reflected in such a description. Some other pro
of course, can be deduced only from a continuum theory.22 Then comparing the results we can s
clearly where the inhomogeneity plays a fundamental role. In reaction kinetics the differ
equations concern only the concentrations, that is, only the concentrations are conside
dynamic variables; thermodynamical properties of reactions are taken into account in anothe
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The theory of chemical reactions in ordinary thermodynamics involves the dynamical descr
of all thermodynamical quantities, so it is an extension of usual reaction kinetics.

Ordinary thermodynamics was formulated and applied in Refs. 14–18 to particular syste
homogeneous bodies~one body in an environment, interacting bodies, phase transitions!. Now a
general mathematical framework will be given and investigated for systems consisting of s
component bodies. Sections II and III are devoted to the basic notions; Definition 5 includes
special systems considered in the earlier papers and can be applied for diffusion processes
that have not yet been treated. The thorough examination of thermodynamic forces leads u
conclusion that we have to make a clear distinction between nominal forces and effective
and suggests how we have to formalize constraints, which is one of the main results of the p
paper. In Sec. IV, we present the abstract mathematical structure of ordinary thermodyn
which can be summarized briefly as follows. There are given an open subset of a vector spa~the
set of states!; a covector field on the set of states~the nominal thermodynamical force!; a vector
field on the set of states~the dynamical quantities!, satisfying some conditions, the most importa
of which is the dissipative property; and a subspace field on the set of states~the constraint!.

The effective thermodynamical force is the restriction of the nominal force onto the cons
subspaces; the dynamical quantities determine the dynamical law, a differential equation
solutions are the processes. The fundamental properties of this structure are demonstrated
IV. In Sec. V general theorems on the stability of equilibria are proved.

II. SUBSTANCES, PHASES, BODIES

Let us recapitulate the most important notions and results indispensable for the mathem
treatment.

To have a mathematically exact and unambiguous formulation, we shall take into accou
‘‘physical dimension’’ of the quantities that will be measured in SI units. For instance, the va
of energy are real multiples ofJ5Joule, i.e., they are elements of

~J!ª$aJuaPR%.

Similarly, we shall use the notations (m3)1,(K)1 for the~positive! values of volume, temperature
etc. An exact mathematical meaning can be given23 to the product and quotient of units o
measurements~e.g., toJ/K).

For the sake of perspicuity, here we shall consider the mathematical description of s
component materials. A generalization to multicomponent materials is straightforward fr
conceptual point of view~but its composition is more complicated!.

The attribute ‘‘specific’’ will mean ‘‘per particle’’~molecule!.
Definition 1: A single-component substanceis a quintet~D,T,P,m,R!, where
~i! D, called theconstitutive domain, is a nonvoid subset of (J)13(m3)1; the first and second

variables inD ~usually denoted bye andv, respectively!, are thespecific internal energyand the
specific volume, respectively; the elements ofD are calledstatesof the substance;

~ii ! T:D→~K!1, the temperature, P:D→~Pa!, the pressure, m:D→~J!, the chemical poten-
tial, theconstitutive functions, are continuous.

~iii ! R, theregular constitutive domain, the subset ofD on which the constitutive functions ar
continuously differentiable and

]T

]e
.0,

]P

]v
]T

]e
2

]P

]e

]T

]v
,0, ~1!

holds is an open set dense inD.
Definition 2: Let ~D,T,P,m,R! be a single-component substance. Then

s:D→~J/K !, ~e,v !°
e1P~e,v !v2m~e,v !

T~e,v !
~2!
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is thespecific entropy. The substance is calledentropic if Ds5(1/T,P/T) on the regular domain
Here and in the following D denotes the derivative of functions.
Note that if the substance is entropic then the specific entropy is twice continuously diff

tiable on the regular domain and its second derivative is negative-definite.
Definition 3: A phaseof a single-component substance (D,T,P,m,R) is a connected open

subsetZ of R such that~i! ~T,P! is injective onZ.
~ii ! Z is maximal with this property~i.e., if N is a connected open subset ofR containingZ and

(T,P) is injective onN, thenN5Z).
Proposition 1: Every point of the regular domain is in a phase.24

The injectivity of ~T,P! in a phase implies that there the specific internal energy and
specific volume can be given as functions of temperature and pressure. In particular, to
phaseZ we can define the chemical potential of the phase by

mZªm+„~T,P!uZ…
21. ~3!

The phase connections~‘‘transitions’’! have been examined and classified in Ref. 17.
A body means a certain amount of a substance: the triplet of variables (e,v,N) describes a

body where (e,v) is an element of the constitutive domain andN is the particle number, an
arbitrary positive number.

Definition 4: A body consisting of a single-component substance (D,T,P,m,R) is (D
3R1,T,P,m,R); the elements ofD3R1 are called thestatesof the body.

It turns out that the description of processes of bodies in which mass varies will be simp
instead of the variablese and v we use thetotal internal energy Eand thetotal volume, V,
respectively. More precisely, we establish the smooth bijection,

~J!13~m3!3R1→~J!13~m3!13R1,

~e,v,N!°~Ne,Nv,N!5:~E,V,N!,

whose inverse,

~E,V,N!°~E/N,V/N,N!,

is smooth as well.
We find convenient to introduce the notation

R1* Hª$~Ne,Nv,N!u~e,v !PH,NPR1%, ~4!

for an arbitrary subsetH of D.
Using the variables (E,V,N), we define

T̂~E,V,N!ªT~E/N,V/N!, ~5!

and similar expressions forP̂ andm̂ as well. For the sake of brevity and perspicuity, an abuse
notations will be applied further on: the simple symbolT, etc. will be written instead ofT̂, etc.,
i.e., two different functions will be denoted by the same letter. Then we easily derive that

]T

]E
5

1

N

]T

]e
,

]T

]V
5

1

N

]T

]v
, ~6!

holds onR1* R, where, according to the previously accepted abuse of notations, it is under
that the variables on the left-hand side and on the right-hand side are (E,V,N) and (e,v)
5(E/N,V/N), respectively. Moreover, we have
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]T

]N
52

E

N

]T

]E
2

V

N

]T

]V
, ~7!

and similar formulas forP andm as well.
For thetotal entropy,

S~E,V,N!ªNs~E/N,V/N!, ~8!

we get the usual equalities if the substance is entropic:

]S

]E
5

1

T
,

]S

]V
5

P

T
,

]S

]N
52

m

T
. ~9!

Then the second derivative of the total entropy is

D2S52
1

T2 S ]T

]E

]T

]V

]T

]N

P
]T

]E
2T

]P

]E
P

]T

]V
2T

]P

]V
P

]T

]N
2T

]P

]N

2m
]T

]E
1T

]m

]E
2m

]T

]V
1T

]m

]V
2m

]T

]N
1T

]m

]N

D . ~10!

Proposition 2:D2S(E,V,N) is negative semidefinite for all(E,V,N)PR1* R, having a one-
dimensional kernel spanned by(E,V,N).

As usual, we call energy, volume, and mass theextensive variables, temperature, pressure, an
chemical potential theintensive variables.

III. AN OUTLINE OF ORDINARY THERMODYNAMICS

A. Heuristic considerations

In this paragraph we use rather loose notations.
The state of a body is the triplet (E,V,N); a process of a body is a function that assigns sta

to instants:t°„E(t),V(t),N(t)…. We assume that the domain of a process is a time interval
The first law of thermodynamics is expressed in the form

Ė5Q1W1L,

whereQ is theheating, Wis theworking, andL is thetransferring; this last quantity expresses th
energy change of the body due to the particle change. The quantities on the right-hand side
equation are time rates, thus, e.g., the heating is the heat per unit time; working is the wo
unit time.

We shall deal with the ideal case only, i.e., when

W52PV̇, L5mṄ.

The first law is conceived as a differential equation. Of course, this single equation i
sufficient to determine processes consisting of three functions. Therefore we suppose that w
equations for the time change ofV andN as well:

V̇5F, Ṅ5G,
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whereF andG are called thespringingand theconverting, respectively. The quantitiesQ, W, L,
F, andG are supposed to be given as functions of the state (E,V,N); so we have a complete se
of differential equations.

If n>2 bodies interact, then a process of the system of interacting bodies is the joint
processes of the bodies:t°„(Ei(t),Vi(t),Ni(t)u i 51,...,n….

The processes are supposed to be governed by a system of differential equations,

Ėi5Qi1Wi1Li , V̇i5Fi Ṅi5Gi ,

~Wi52PiFi , Li5m iGi , i 51,...,n!,

called thedynamical law, where thei th heatingQi , etc. are given as functions of the states. La
we examine the properties of these functions.

The bodies can be in contact with an environment, which may be thought as an ‘‘infin
large’’ body whose process is prefixed~e.g., its temperature and pressure is constant!, whose state
does not change in the interaction~i.e., the environment acts on the bodies, the bodies do no
on the environment!. This means that the environment is always characterized by its given
peratureTa , pressurePa , and chemical potentialma , which can vary with time.

The heating of a body consists of the heatings from the other bodies and from the en
ment, so

Qi5 (
k50

n

Qik ,

where the subscript 0 refers to the environment. Similarly, we have

Fi5 (
k50

n

Fik , Gi5 (
k50

n

Gik ,

Wi (
k50

n

Wik , Li5 (
k50

n

Lik .

It is convenient to introduce the notation

AikªQik1Wik1Lik , Aiª(
k50

n

Aik .

Qik , etc. are called thesystem constitutive functionsor thedynamical quantities.
Evidently, the particle number passed from thei th body to thekth body is the opposite to the

particle number passed from thekth body to thei th body, and a similar statement is true for th
energy change and volume change of thei th body due to thekth body. Thus we accept—
roughly—thatAik52Aki , Fik52Fki , Gik52Gki . The exact formulation of these requiremen
will be given later.

We underline that the heatings need not have the above property, which is a well-know
in classical thermodynamics: the ‘‘noncompensated heating’’Qik1Qki is not necessarily zero. A
similar remark is valid for workings and transferrings.

It is reasonable to suppose~as it is done in mechanics, too! that the interaction of two bodie
can be characterized by the properties of the two bodies only, which means that the dyn
quantities between two bodies depend only on the states~i.e., on the extensive variables! of the
two bodies. Moreover, according to our experience, we accept that the dynamical qua
depend on the extensive variables through the intensive variables and the particle numbers
the intensive variables do not characterize the state~the same intensive values can belong
different states in different phases!, the dynamical quantities depend on phases, too, which co
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sponds to a trivial experimental fact: the heat conduction at a given temperature and pr
between two ice bodies is different from that between two water bodies.

The second law must be reflected in the properties of the dynamical quantities. The diss
inequality~Clausius–Duhem inequality! in nonequilibrium thermodynamics expresses the sec
law ~positive entropy production!; an analogon of this exact relation can be well defined
ordinary thermodynamics, too.25

B. Thermodynamical systems

On the base of the heuristic considerations of the previous paragraph we can formul
exact definition.

Definition 5: Let n be a given positive integer.A thermodynamical systemof n bodies in a
given environment consists of the following.

~1! A family of simple substances, (Di ,T i ,Pi ,mi ,Ri) ( i 50,...,n); the zeroth substance i
called the environment; the body corresponding to thei th substance is called thei th body of the
system.

~2! A given phaseZ0 of the environment, and the given temperature and pressure o
environment, as a continuous function defined on a time interval:t°„Ta(t),Pa(t)…P(T0 ,P0)
@Z0#.

~3! The dynamical quantities, given for all phasesZi and Zk of the i th and thekth body
( i ,k50,1,...,n), respectively,

QZiZk
:F i3Fk→~J/s!, FZiZk

:F i3Fk→~m3/s!, GZiZk
:F i3Fk→~1/s!, ~11!

where

F iª~T i ,Pi !@ Z̄iùDi #3R1; ~12!

these functions are continuous; moreover, they are continuously differentiable on the inte
their domain.

The dynamical quantities satisfy for alli ,k50,1,...,n.
~i! The compatibility property: QZi ,Zk

and QZ
i8Z

k8
, etc. are equal on the intersection of the

domain for all phasesZi , Zi8 andZk , Zk8 ; furthermore, with the notations

WZiZk
~Ti ,Pi ,Ni ,Tk ,Pk ,Nk!ª2PiFZiZk

~Ti ,Pi ,Ni ,Tk ,Pk ,Nk!,

LZiZk
ª~Ti ,Pi ,Ni ,Tk ,Pk ,Nk!ªmZi

~Ti ,Pi !Gik~Ti ,Pi ,Ni ,Tk ,Pk ,Nk!,

AZiZk
ªQZiZk

1WZiZk
1LZiZk

,

and then~for the sake of brevity! with the subscriptsik instead ofZiZk and

@ i ,k#ª~Ti ,Pi ,Ni ,Tk ,Pk ,Nk!PF i3Fk ,

the dynamical quantities satisfy the following.
~ii ! The mutuality property,

A ik~@ i ,k# !52Aki~@k,i # !, Fik~@ i ,k# !52Fki~@k,i # !, Gik~@ i ,k# !52Gki~@k,i # !. ~13!

~iii ! The dissipative property:

2
Qik~@ i ,k# !

Ti
~Ti2Tk!2

W ik~@ i ,k# !

Pi
~Pi2Pk!2

L ik~@ i ,k# !

m i~Ti ,Pi !
„m i~Ti ,Pi !2mk~Tk ,Pk!…>0,

~14!
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where equality holds if and only ifQik(@ i ,k#)50, W ik(@ i ,k#)50, L ik(@ i ,k#)50; this inequality
can be rewritten in the form

A ik~@ i ,k# !S 1

Ti
2

1

Tk
D1Fik~@ i ,k# !S Pi

Ti
2

Pk

Tk
D1Gik~@ i ,k# !S 2m i~Ti ,Pi !

Ti
1

mk~Tk ,Pk!

Tk
D>0,

~15!

where equality holds if and only ifA ik(@ i ,k#)50, Fik(@ i ,k#)50, Gik(@ i ,k#)50.
~4! The dynamical law,

Ėi5Qi1Wi1Li V̇i5Fi , Ṅi5Gi ~ i 51,...,n!, ~16!

where

Qi5 (
k50

n

Qik , Wi5 (
k50

n

Wik , Li5 (
k50

n

Lik,

Fi5 (
k50

n

Fik , Gi5 (
k50

n

Gik ,

and

QikªQZiZk
„Ti~Ei ,Vi ,Ni !,Pi~Ei ,Vi ,Ni !,Ni ,Tk~Ek ,Vk ,Nk!,Pk~EkVk ,Nk!,Nk…,

if kÞ0 and

Qi0ªQZiZ0
„T i~Ei ,Vi ,Ni !,Pi ,~Ei ,Vi ,Ni !,Ni ,Ta ,Pa ,N0…,

etc., whereZi andZk are the phases whose closure contains (Ei /Ni ,Vi /Ni) and (Ek /Nk ,Vk /Nk),
respectively.

Remarks:The dynamical quantities with subscripts 0i do not appear in the dynamical law
thus they are superfluous; we involved them only for an economic formulation. If the the dyn
cal quantities with subscriptsi0 are given, puttingQZ0Zi

(@0#,@ i #)ª2QZiZ0
(@ i #,@0#), etc. we

make all the requirements satisfied.
The particle numberN0 of the environment is irrelevant to the interaction~the environment is

‘‘infinitely large’’ !, the dynamical quantities do not depend onN0 ; it is involved as a dummy
variable only for an economic formulation.

The dynamical quantities with subscriptsii are zero by the mutuality property.
The condition imposed on the equality in the dissipative property is a strong requireme

the dynamical quantities, because equality holds evidently ifTi5Tk , Pi5Pk , and m i(Ti ,Pi)
5mk(Tk ,Pk), so these relations must imply that the dynamical quantities take the zero val

Since all the bodies are supposed to be single component, it is understood that ifGZiZk
Þ0

then the substance of thei th body coincides with that of thekth body.
Definition 6: A constant solution of the dynamical law—i.e., a state at which the right-h

side of the dynamical law takes a zero value—is called astandstill. A standstill is anequilibrium
if all the dynamical quantities take a zero value at the corresponding state.

Proposition 3: If at least one of the dynamical quantities does depend on the process
environment, then standstill can exist only if the process of the environment is constant.

C. Thermodynamical forces and the conductivity matrix

For the sake of brevity, in the following the subscriptsZiZk will be substituted byik.
The coefficients of the dynamical quantities in the dissipative inequality~15! are known as the

thermodynamical forces; more precisely, we accept the following definition.
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Definition 7: The function

S 1

T i
2

1

Tk
,
Pi

T i
2

Pk

Tk
,2

mi

T i
1

mk

Tk
D :Di3Dk→~1/K !13~Pa/K !3~J/K !,

is called thethermodynamical forcebetween thei th andkth body.
Definition 8: The dynamical quantitiesQik ,Fik ,Gik are calledquasilinearif

S Qik

Fik

Gik

D 5S l ik k ik q ik

a ik b ik g ik

r ik s ik w ik

D S 1

Ti
2

1

Tk

Pi

Ti
2

Pk

Tk

2
m i~Ti ,Pi !

Ti
1

mk~Tk ,Pk!

Tk

D , ~17!

wherel ik , etc. are continuous function defined onF i3Fk . Equivalently,

S A ik

Fik

Gik

D 5S l̃ ik k̃ ik q̃ ik

a ik b ik g ik

r ik s ik w ik

D S 1

Ti
2

1

Tk

Pi

Ti
2

Pk

Tk

2
m i~Ti ,Pi !

Ti
1

mk~Tk ,Pk!

Tk

D , ~18!

where

l̃ ikªl ik2Pia ik1m ir ik , k̃ ikªk ik2Pib ik1m is ik , q̃ ikªq ik2Pig ik1m iw ik .

The matrix vector on the right-hand side of equality~18! is called theconductivity matrix
between thei th and thekth body.

Note that the conductivity matrix is, in fact, a matrix-valued function. It is a simple fact
the conductivity matrix is not uniquely defined. To see this, it suffices to show that

S l̃ k̃ q̃

a b g

r s w
D S 1

Ti
2

1

Tk

Pi

Ti
2

Pk

Tk

2
m i~Ti ,Pi !

Ti
1

mk~Tk ,Pk!

Tk

D 50, ~19!

can hold if the matrix above—which represents the difference of two conductivity matrice
not zero. This is the case, for example, ifl̃ªPi /Ti2Pk /Tk , k̃ª21/Ti11/Tk , and the other
entries are zero.

Of course, if the conductivity matrix is constant then it is uniquely determined.
Proposition 4: Suppose (19) holds and the bodies are entropic; ifm i(T,P)5mk(T,P), then

we have

l̃~T,P,Ni ,T,P,Nk!1k̃~T,P,Ni ,T,P,Nk!P1q̃~T,P,Ni ,T,P,Nk!„m i~T,P!1Tsi~T,P!…50,

a~T,P,Ni ,T,P,Nk!1b~T,P,Ni ,T,P,Nk!P1g~T,P,Ni ,T,P,Nk!„m i~T,P!1Tsi~T,P!…50,
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r~T,P,Ni ,T,P,Nk!1s~T,P,Ni ,T,P,Nk!1w~T,P,Ni ,T,P,Nk!~m i~T,P!1si~T,P!T!50,

k̃~T,P,Ni ,T,P,Nk!2q̃~T,P,Ni ,T,P,Nk!vi~T,P!50,

b~T,P,Ni ,T,P,Nk!2g~T,P,Ni ,T,P,Nk!vi~T,P!50,

s~T,P,Ni ,T,P,Nk!2w~T,P,Ni ,T,P,Nk!vi~T,P!50,

wheresi and vi are the specific entropy and the specific volume of the ith body as a function of
temperature and pressure in the corresponding phase.

Proof: Let PªPiªPk ,TªTkÞTi , divide ~19! by Ti2T, and take the limitTi→T. Accord-
ing to our hypothesism i(T,P)5mk(T,P) and to the Gibbs–Duhem relations, we have

lim
Ti→T

m i~Ti ,P!2mk~T,P!

Ti2T
52si~T,P!,

from which we infer the first three equalities. The further ones follow fromTªTiªTk , PªPk

ÞPi , and

lim
Pi→P

m i~T,Pi !2mk~T,P!

Pi2P
5vi~T,P!.

h

The elements (T,P,Ni ,T,P,Nk)PF i3Fk for which m i(T,P)5mk(T,P) holds will be called
central.

We see that if the bodies cannot change particles—i.e.,q̃50,g50,r50,s50, w50—then
the values of the conductivity matrix are uniquely defined at the central values; otherwise th
not.

Definition 9:The conductivity matrix between thei th andkth body is~1! strictly Onsagerian
if it is constant and symmetric,~2! Onsagerian if its every value is symmetric,~3! weakly Onsa-
gerian if its values at central elements are symmetric.

Usually one considers strictly Onsagerian conductivity matrices; however, the Onsa
formalism is said to be a linear approximation around equilibrium, so the usual Onsager m
corresponds to a value of our conductivity matrix at a central element. Thus, the usual form
corresponds, in fact, to the weakly Onsagerian case.

It is a remarkable result26 that if a twice continuously differentiable conductivity matrix
weakly Onsagerian then—using its nonuniqueness—we can take it to be symmetric in a
borhood of the central values.

IV. GENERAL MATHEMATICAL FORMULAS

A. The dynamical law and the nominal thermodynamical force

A state of a system consisting ofn bodies,

xª~xiª~Ei ,Vi ,Ni !u i 51,...,n!, ~20!

is in

XDªÃ
i 51

n

~R1* Di !, ~21!

which is a subset of the vector space,

Xª„~J!3~m3!3R…n. ~22!
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Now we find it convenient to considerkT instead of the temperatureT, where k is the
Boltzmann constant. The physical dimension ofkT is that of energy, i.e.,kTP(J).

The dual of a one-dimensional vector space is its ‘‘reciprocal’’27 and the duality map is the
~tensorial! multiplication that is well reflected in our present notation: an element from (1J)
multiplied by an element from~J! results in a real number. The dual of a Cartesian produc
identified with the Cartesian product of the duals by the usual rule: take the sum of the pro
of the components.

Thus we have that the intensive quantities are elements in the dual space of the ex
quantities, namely,

yªS yiªS 1

kTi
,

Pi

kTi
,
m i~Ti ,Pi !

kTi
D U i 51,...,nDPX* 5S S 1

JD3S 1

m3D 3RD n

. ~23!

Consequently, the constitutive functions map from the state space into its dual:

yªÃ
i 51

n

yiªÃ
i 51

n S 1

kT i
,

Pi

kT i
,2

mi

kT i
D :X→X* , ~24!

whose domain isXD .
Using the notation

y0ª~1/kT0 ,P0 /kT0 ,2m0~T0 ,P0!/kT0!PZ0 ,

let us introduce

Rik~xi ,xk!ª~A ik ,Fik ,Gik!„yi~xi !,yk~xk!…,
~25!

Ri0~xi ,y0!ª~A i0 ,Fi0 ,Gi0!„yi~xi !,y0…,

for xPXD ,i ,k51,...,n.
Note that in these notations the mutuality property of the dynamical quantities become

Rik~xi ,xk!52Rki~xk ,xi ! ~xPXD ,i ,k51,...,n!. ~26!

Putting

R~x,y0!ªS Ri~x!ªRi0~xi ,y0!1 (
k51

n

Rik~xi ,xk!U i 51,...,nD , ~27!

for xPXD andy0PZ0 , we can rewrite the dynamical law~16! in the form

ẋ5R~x,ya!. ~28!

Note that ift°x(t) is a function defined in time and having values inX, thenẋ has values in
X/s, wheres denotes ‘‘second.’’ Thus,R(x,y0)PX/s for all x andy0 .

The collection of the thermodynamical forces between the bodies and the environmen
play and important role that is why we introduce the following notion.

Definition 10:The function

F:XD3Z0→X* , F~x,y0!ª„yi~xi !2y0u i 51,...,n…, ~29!

is called thenominal thermodynamical forcein the system.
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B. The dissipative property and its consequences

The dissipative property of the dynamical quantities in the previously introduced co
notations reads as follows:

„y~xi !2yk~xk!…•Rik~xi ,xk!>0 ~xPXD ,i ,k51,...,n!,

„yi~xi !2y0…•Ri0~xi ,y0! ~xPXD ,y0PZ0 ,i 51,...,n!,

where equality holds if and only ifRik(xi ,xk)50 andRi0(xi ,y0)50; the dot denotes the sum o
the product of the components.

Proposition 5: The dissipative property of the dynamical quantities imply

F~x,y0!•R~x,y0!>0 ~xPXD ,y0PZ0!, ~30!

where equality holds if and only Rik(xi ,xk)50 and Ri0(xi ,y0)50 for all i ,k51,...,n.
Proof: Let us introduce the formal quantitiesRi0(xi ,x0)ª2R0i(x0 ,xi)ªRi0(xi ,y0), and let

us putykªyk(xk) for the sake of brevity. Then we have

~yi2yk!•Rik~xi ,xk!>0 ~ i ,k50,1...,n!,

from which we infer by the mutuality property of the dynamical quantities that

0<
1

2 (
i ,k50

n

~yi2yk!•Rik~xi ,xk!

5
1

2 (
i ,k50

n

~yi2y0!•Rik~xi ,xk!2
1

2 (
i ,k50

n

~yk2y0!•Rik~xi ,xk!

5 (
i ,k50

n

~yi2y0!•Rik~xi ,xk!

5(
i 51

n

~yi2y0!•(
k50

n

Rik~xi ,xk!,

where equality holds if and onlyRik(xi ,xk)50 for all i ,k50,1,...,n. The last formula coincides
with the left-hand side of~30!.

Of course, equality holds ifR(x,y0)50; thus we have the following.
Proposition 6: R(x,y0)50 if and only if Rik(xi ,xk)50 and Ri0(xi ,y0)50 for all i ,k

51,...,n.
This has an interesting and important consequence.
Proposition 7: Every standstill of the dynamical law (28) is an equilibrium.
Proof: There can be a standstill if and only if either all the dynamical quantities are inde

dent of the environment orya ~the process of the environment! is constant. In both cases the sta
x is a standstill if and only ifR(x,ya)50 that is equivalent by the previous result to the fact t
all the dynamical quantities take a zero value atx, i.e., x is an equilibrium.

C. The quasilinear case

Let Cik denote the conductivity matrix between thei th andkth body as a function of the
extensive variables@i.e., putTiªT i(Ei ,Vi ,Ni), etc. in them#. Then we have forxPXD and y0

PZ0 ,

Rik~xi ,xk!5Cik~xi ,xk!•„yi~xi !2yk~xk!…, Ri0~xi ,y0!5Ci0~xi ,y0!•„yi~xi !2y0…,

for i ,k51,...,n. It follows from the mutuality property that
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Cik~xi ,xk!•„yi~xi !2y~xk!…52Cki~xk ,xi !•„yk~xk!2yi~xi !5Cki~xk ,xi !•„yi~xi !2yk~xk!…,

which does not imply

Cik~xi ,xk!5Cki~xk ,xi ! ~xPXD ,i ,k51,...,n!; ~31!

since these matrices play a role only when multiplied byyi(xi)2yk(xk), we do not restrict the
generality by requiring equality~31!.

Moreover, we have that

Ci0„yi~xi !,y0…•„yi~xi !2y0…1(
i 51

n

Cik~xi ,xk!•„yi~xi !2yk~xk!…5(
i 51

n

Bik~x,y0!•„yk~xk!2y0…,

where

Bik~x,y0!ªH Cik~xi ,xk!, if iÞk,

Ci0~xi ,y0!1(
i 51

n

Cik~xi ,xk!, if i 5k.
~32!

Thus, introducing

B~x,y0!ª„Bik~x,y0!u i ,k51,...,n…, ~33!

and using the nominal thermodynamical force defined in~29!, we get

R~x,y0!5B~x,y0!•F~x,y0!, ~34!

and the dynamical law has the form

ẋ5B~x,ya!•F~x,ya!. ~35!

Definition 11: The functionB:XD3Z0→Lin(X* ,X/s) defined in~33! is called thenominal
conductivity matrixin the system.
Proposition 8: If Cik(xi ,xk) and Ci0(xi ,y0) are symmetric for all i,k51,...,n for a given x and
y0 , and (31) holds, then B(x,y0) is symmetric as well.

D. Constraints

1. Heuristic considerations

A system of interacting bodies, in general, is subjected to some constraints. As examp
us consider the following systems.

~1! A body with a constant particle number in a given constant environment, the press
the body is held constant, equaling the pressurePa of the environment; then

Ṅ50,
]P~E,V,N!

]E
Ė1

]P~E,V,N!

]V
V̇50.

~2! A heat insulated body with a constant particle number in a given environment,

Ṅ50, E52P~E,V,N!V̇. ~36!

~3! A body with constant volume in a given environment,

V̇50.
                                                                                                                



rn the
ed to
e
the

the two

e

e

ter-

of the

ines

2034 J. Math. Phys., Vol. 41, No. 4, April 2000 T. Matolcsi

                    
~4! Two bodies that are totally insulated from the environment,

Ė11Ė250, V̇11V̇250, Ṅ11Ṅ250. ~37!

The constraints are not characterized completely by the previous formulas that conce
‘‘fluxes,’’ i.e., the time derivative of the extensive variables. Constraints are intimately relat
forces, too. Namely, the real driving forces in the examples are~1! the temperature differenc
between the body and the environment;~2! the pressure difference between the body and
environment;~3! the temperature difference between the body and the environment;~4! the tem-
perature difference, the pressure difference, and the chemical potential difference between
bodies.

Now we shall show how we get these real forces from the nominal one.
The nominal thermodynamical force for the examples~1!–~3!, taken at the process of th

environment is—in a loose notation—

S 1

kT
2

1

kTa
,

P

kT
2

Pa

kTa
,2

m

kT
1

ma

kTa
D .

~1! Equality ~36! and the first lawĖ5Q2PaV̇ result in that the heating is proportional to th
springing,Q5aF, thus the dynamical equation becomes

Ė5~a2Pa!F, V5F, N50.

The right-hand side of the equation is a multiple of the vector (a2Pa,1,0).
Let us apply the nominal thermodynamical force~as an element of the dual space! to this
vector:

S 1

kT
2

1

kTa
D~a2Pa!1SPa

kT
2

Pa

kTa
D5aS 1

kT
2

1

kTa
D.

We have got~a multiple of! the really acting thermodynamical force whose zero value de
mines the equilibrium if the environment is constant.

~2! In the case of a heat insulated body with a constant particle number, the right-hand side
dynamical law,

Ė52PF, V̇5F, Ṅ50,

is a multiple of the vector (2P,1,0).
Applying the nominal thermodynamical force to this vector, we get

S 1

kT
2

1

kTa
D~2Pa!1S P

kT
2

Pa

kTa
D5 1

kt
~P2Pa!,

which is ~a multiple of! the really acting thermodynamical force whose zero value determ
the equilibrium if the environment is constant.

~3! In this example the dyamical law has the form

Ė5Q1mG, V̇50, Ṅ5G,

whose right-hand side is spanned by the multiple of the vectors~1, 0, 0! and ~0, 0, 1!.
Applying to these vectors the nominal thermodynamical force, we get

S 1

kT
2

1

kTa
,2

m

kT
1

ma

kTa
D ,
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which is the really acting thermodynamical force whose zero value determines the equili
if the environment is constant.

~4! In this example the dynamical law has the form

Ė15Q12P1F11m1G1 , V̇15F1 , Ṅ15G1 ,

Ė25Q22P2F21m2G2 , V̇25F2 , Ṅ25G2 ,

moreover, relation~37! holds; thus the right-hand side of the dynamical equation is spanned b
multiple of the vectors~1, 0, 0,21, 0, 0!, ~0, 1, 0, 0,21, 0!, and~0, 0, 1, 0, 0,21!. Applying to
these vectors the nominal thermodynamical force,

S 1

kT1
2

1

kTa
,

P1

kT1
2

Pa

kTa
,2

m1

kT1
1

ma

kTa
,

1

kT2
2

1

kTa
,

P2

kT2
2

Pa

kTa
,2

m2

kT2
1

ma

kTa
D ,

we get

S 1

kT1
2

1

kT2
,

P1

kT1
2

P2

kT2
,2

m1

kT1
1

m2

kT2
D ,

which is the really acting thermodynamical force whose zero value determines the equilibr

2. Mathematical formulation of constraints

Definition 12:We say that the dynamical law~28! is subjected to a constraint if there is a s
G of continuous mapsXD→X* , such that$p(x)upPG% is linearly independent for allxPXD ;
p(x) ẋ50 holds for allpPG and for all processesx @solutions of the dynamical law~28!#, which
is equivalent to

R~x,ya!PK~x!/s ~xPXD!, ~38!

where

K~x!ª ù
pPG

Ker p~x!. ~39!

is the constraint subspaceat x; R(x,ya)50 if and only if F(x,ya)uK(x)50.
The function

XD→X* , x°FG~x,ya!ªF~x,ya!uK~x! , ~40!

is called theeffective thermodynamical forcecorresponding to the constraint.
Now we apply well-known notions of the theory of manifolds. IfU is a u-dimensionalCr

submanifold inXD , then a parametrization~the inverse of a local coordinatization! of U around
x0PU is a mapp:Ru→X, such thatx0PRanp,U; p is injective,p21 is continuous;p is r times
continuously differentiable; Dp(x) is injective for allxPDomp.

One of the most important relations is that Ran Dp(x)5Tx(U), where the last symbol denote
the tangent space ofU at x.

A submanifold will mean aC1 submanifold.
A submanifoldU in XD is called aconstraint manifoldif Tx(U)5K(x) for all xPU. A

constraint manifoldU is invariant for the dynamical law, i.e., every process starting fromU
remains inU.

If the constraint is a foliation i.e., for everyx in the interior of XD there is a~maximal!
constraint manifold containingx then the interior ofXD is the disjoint union of constraint mani
folds.
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The constraint is calledholonom, if for all pPG there is aFp :XD→R, continuously differ-
entiable on the interior ofXD , such thatp.DFp . Then the constraint is a foliation and th
constraint manifolds are the subsets thatFp is constant on for allpPG.

If G5B then there is no constraint, i.e.,K(x)5X for all xPXD , and there is a single
constraint manifold; the interior ofXD .

In the quasilinear caseR(x,ya)5B(x,ya)F(x,ya)PK(x)/s does not imply, in general, tha
RanB(x,ya),K(x)/s even if F(x,ya)Þ0. Moreover, in general,R(x,ya) cannot be given as a
quasilinear function of the effective thermodynamical force. That is why we introduce the fo
ing notion.

Definition 13:The nominal conductivity matrixfits the constraintif for all xPXD there is a
BG(x,ya)PLin„K(x)* ,K(x)/s…, such that

B~x,ya!F~x,ya!5BG~x,ya!FG~x,ya!. ~41!

In this case the mapx°BG(x,ya) is called theeffective conductivity matrix.
The relation between the nominal conductivity matrix and the effective conductivity m

can be expressed by the canonical embeddingi (x):K(x)→X and its transposei (x)* :X*
→K(x)* as follows:

i ~x!BG~x,ya!i ~x!* 5B~x,ya! ~xPXD!. ~42!

Then we have the following results.
Proposition 9: (i) The nominal conductivity matrix fits the constraint if and only if for al

PXD we haveRanB(x,ya),K(x)/s andKerB(x,ya).(K(x))°, which is equivalent to the fac
that p(x)B(x,ya)50 and B(x,ya)p(x)50 for all pPG, where„K(x)…°ª$yPX* u i (x)* y50% is
the annullator of K(x).

(ii) The nominal conductivity matrix fits the constraint ifRanB(x,ya),K(x) and B(x,ya) is
symmetric for all xPXD .

Proof: ~i! If the kernel ofB(x,ya) contains the annullator ofK(x), then BG(x,ya) is well
defined byBG(x,ya) i (x)* yªB(x,ya)y (yPX* !; so the stated relations are sufficient. The sta
ment concerning the necesssity is trivial.

It is evident that the annullator ofK(x) is spanned by$p(x)upPG%, thus the equivalent
statement holds true as well.

~ii ! If B(x,ya) is symmetric, then its kernel contains the annullator of its ran
Simple arguments prove the following statements, too.

Proposition 10: Let the nominal conductivity matrix fit the constraint and use the prev
notations. Then for all xPXD : ~i! KerBG(x,ya)5$0% if and only if KerB(x,ya)5(K(x))0;
BG(x,ya) is symmetric if and only if B(x,ya) is symmetric; ~iii ! BG(x,ya) is positive semidefinite
if and only if B(x,ya) is positive semidefinite.

SinceR(x,ya)PK(x)/s, inequality~30! can be rewritten in the form

FG~x,ya!R~x,ya!>0 ~xPXD!, ~43!

where equality holds if and only ifR(x,ya)50, which is equivalent toFG(x,ya)50 by the
definition of constraints.

In the quasilinear case if the effective conductivity matrix exists then the above inequ
becomes

FG~x,ya!BG~x,ya!FG~x,ya!>0 ~xPXD!, ~44!

where equality holds if and only ifFG(x,ya)50.
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E. Onasager formalism

We call the constraintaffineif every constraint subspace is the same: there is a linear subs
K of X such thatK(x)5K for all xPXD . The constraint is affine in the previous examples 3 a
4 and is not affine in the examples 1 and 2.

Note the important fact that the effective conductivity matrix cannot be constant if the
straint is not affine; indeed,BG(x,ya) is a linear map fromK(x)* into K(x)/s; thus, if K(x)
ÞK(x8) thenBG(x,ya)ÞBG(x8,ya).

If the constraint is affine then the effective conductivity matrix can but evidently need n
constant.

Let us consider an affine constraint with constraint subspaceK. Let x0 be an equilibrium. Put
y0ªy(x0) andya

n
ª(ya ,...,ya). Then

05F~x0 ,ya!uK5~y02ya
n!uK ,

consequently,

FG~x,ya!5FG~x,y0!ª„y~x!2y0…uK ,

i.e., in this case the effective thermodynamical force can be expressed by the deviation
intensive quantities from their equilibrium values. In the quasilinear case the effective cond
ity matrix BG(x,ya) mapsK into K for all x; near the equilibriumx0 it can be approximated by its
equilibrium value, which is a linear mapK→K, too; thus the dynamical law can be approximat
by

ẋ5BG~x0 ,ya!FG~x,y0!.

This is the usual form of the Onsager formalism: the conductivity matrix is constant, the the
dynamical force is expressed by the difference between the intensive variables and their e
rium values~and the fluxes correspond to the time derivatives of the extensive quantities!.

On the other hand, if the constraint is not affine thenFG(x,ya)Þ„y(x)2y0…uK(x) , i.e., the
effective thermodynamical force cannot be expressed by the the deviation of the intensive
tities from their equilibrium values. Moreover, any approximation ofBG(x,ya):K(x)→K(x)/s
must be a mapK(x)→K(x)/s; thus the effective conductivity matrix cannot be approximated
its equilibrium valueBG(x0 ,ya):K(x0)→K(x0)/s. All these mean that the Onsger formalism do
not work for nonaffine constraints.

V. STABILITY

A. Some comments

One of the main problems of thermodynamical systems is the stability of equilibria.
stability investigations of classical thermodynamics are not satisfactory because stability
defined in a mathematically exact way and, indeed, the results concern only some cons
properties of the substances~intrinsic stability! and do not take into account dynamical propert
~which are formulated here by the dissipative property!. In continuum~irreversible! thermody-
namics the notion of stability is defined in a mathematically exact way referring to the ba
equations; however, the investigations are very hard from a mathematical point of view be
the equations describing the processes are partial differential equations.28–33

In ordinary thermodynamics stability investigations are based on mathematically corre
tions, and are much more easier than in continuum thermodynamics because here ordinary
ential equations govern the processes. Trend to equilibrium—a fundamental concept—corre
to the asymptotic stability of equilibria.
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B. Notions and results from the theory of stability

For the sake of simplicity, from now on we omitya from the notations of the function
introduced up to now, i.e., we writeR(x), B(x), F(x), etc. instead ofR(x,ya), B(x,ya),
F(x,ya), etc.; then, in particular, the dynamical law has the form

ẋ5R~x!.

Recall thatx0 is an equilibrium if and only ifR(x0)50.
Definition 14: Let U be a subset invariant for the dynamical equation~in particular, a con-

straint manifold!.

~1! An equilibrium x0PU is stable with condition Uif for each neighborhoodN of x0 there is a
neighborhoodG of x0 such that for every process starting fromGùU proceeds inNùU.

~2! An equilibrium x0PU is asymptotically stable with condition Uif it is stable with condition
U and there is a neighborhoodV of x0 such that for every processr starting fromVùU we
have limt→` r (t)5x0 .

~3! A set E,U of equilibria isstrictly asymptotically stable34 with condition Uif every equilib-
rium in E is stable with conditionU; every equilibrium inE has a neighborhoodV such that
if r is a process starting fromVùU then limt→` r (t) is in the closure ofE.

Besides the well-known and fundamental results of stability theory;35 we shall apply a less
common one,36 which reads in our formulation as follows.

Consider the differential equation

j̇5F~j!,

in Ru, whereF is continuously differentiable. LetD be the set of its equilibria and suppose~i!
there is a nontrivial linear subspaceZ,Ru, an elementa of Ru such thatD5(a1Z)ùDomF; ~ii !
for all jPD:—Ker DF(j)5Z,—the algebraic multiplicity and the geometric multiplicity of th
zero eigenvalue of DF(j) are equal—the real part of the nonzero eigenvalues of DF(j) is
negative.

ThenD is strictly asymptotically stable.

If L is a differentiable scalar-valued function defined inXD , thenL• (x)ªDL(x)R(x) is called
the derivative of L along the dynamical equation.

Proposition 11: Let U be a submanifold in XD , invariant for the dynamical law (in particular,
a constraint manifold). If x0PU is an equilibrium and there is a continuously differentiab
real-valued function L, defined in a neighborhood of x0 , such that (i) L has a strict local maxi

mum at x0 with condition U, i.e., L(x),L(x0) for all xPU in a neighborhood of x0 ; (ii) L• has a
(strict) local minimum at x0 with condition U, then the equilibrium x0 is (asymptotically) stable
with condition U.

Proof: Let u be the dimension ofU and take a local parametrizationp:Ru→U aroundx0 .
Then the restriction of the dynamical law onto the invariant submanifoldU is reduced to the
differential equation

j̇5Dp~j!21R„p~j!…, ~45!

for the functionjªp21+x.
Then j0ªp21(x0) is an equilibrium of the reduced dynamical equation. It is trivial thatL

ªL+p is a continuously differentiable function that has a strict maximum atj0 .
Since DL5(DL+p)Dp, the derivative ofL along the reduced equation,

L
•

5~DL+p!~R+p!5L• +p, ~46!

has a~strict! minimum atj0 .
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These imply by Lyapunov’s theory thatj0 is an ~asymptotically! stable equilibrium of the
reduced equation from which it follows thatx0 is an ~asymptotically! stable equilibrium with
conditionU.

Proposition 12: Let U be a submanifold, invariant for the dynamical equation (in particu
a constraint manifold) and let E be the set of equilibria in U. Suppose that~1! E is a submanifold;
~2! for all xPE, the linear mapDR(x)uTx(U) :Tx(U)→Tx(U) has the following properties: (i) its

kernel is Tx(E); (ii) the algebraic multiplicity and the geometric multiplicity of its zero eigenva
coincide; (iii) its nonzero eigenvalues have negative real part.

Then E is strictly asymptotically stable with condition U.
Proof: Let e andu be the dimensions ofE andU, respectively. There is a local parametriz

tion p:Re3Ru2e→U such thatp(•,0):Re→E is a parametrization ofE. Then

Ran„Dp~h,0!uRe3$0%…5Tp~h,0!~E!.

The set of equilibria of the reduced dynamical equation~45! is the manifold

p21~E!5Re3$0%ùDomp,

whose tangent space at~h, 0! equals

Re3$0%5Dp~h,0!21@Tp~h,0!~E!#.

The derivative of the right-hand side of the reduced dynamical equation at an equilibriu~h,
0!, is

D~h,0!ªDp~h,0!21DR~p~h,0!!Dp~h,0!.

As a consequence, the spectral properties ofD(h,0) coincide with those ofDR„p(h,0)… ~i.e.,
they have the same eigenvalues and multiplicities!; moreover,

KerD~h,0!5„Dp~h,0!…21@Ker DR~p~h,0!…#5Re3$0%.

Thus, according to the theorem cited above, the set of equilibria of the reduced dynamical
tion is strictly asymptotically stable, which implies that our assertion is true.

C. Stability in ordinary thermodynamics

There are nice stability results for several phenomena, including phase transitions~see Refs.
14–19!. It is remarkable that some of them is obtained without the use of entropy. The en
property, however, admits general results on stability.

The entropy of the environment—in a loose notation—is

S05
E01P0V02m0N0

T0
.

The total energy, the total volume and the total particle number of the bodies, and the
ronment together are constant,

(
i 50

n

Ei5const, (
i 50

n

Vi5const, (
i 50

n

Ni5const.

Let us suppose that the temperatureTa , the pressurePa ~thus the chemical potentialma , too!,
in the given process of the environment are constant~which is a necessary condition of th
existence of equilibrium if at least one of the dynamical quantities is not independent o
environment!. Then
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Lª(
i 51

n S Si2
Ei1PaVi2maNi

Ta
D

is the total entropy of the bodies and the environment together, up to an additive constant
Using the notations introduced previously, we can write the above function in the form

L~x!5(
i 51

n

„Si~xi !2ya•xi… ~xPXD!. ~47!

Further on we refer frequently to the set of states corresponding to the regular domain

XRª X
i 51

n

~R1* Ri !. ~48!

Suppose the bodies of the thermodynamical system are entropic. ThenL is twice differentiable
on XR ; the derivative ofL equals the nominal thermodynamical force,

DL~x!5F~x!, ~49!

for xPXR . Moreover,

D2L~x!5(
i 51

n

D2Si~xi ! ~50!

is negative semidefinite; its kernel is spanned by the vectors (x1,0,0,...,0),
(0,x2,0,...,0)̄ (0,0,0,...,xn).

Proposition 13: Let U be a constraint manifold and let us apply the previously introdu
notations. Let x0 be an equilibrium in UùXR . If (i) the bodies are entropic; (ii) L has a stric
local maximum at x0 with condition U, then x0 is asymptotically stable with condition U.

Proof: Condition ~ii ! implies thatx0 has a neighborhood in whichFG(x)55DL(x)uTx(U)

Þ0 for x0ÞxPU. As a consequence, the derivative ofL along the dynamical law,L
•

5(DL)R
5FR5FGR has a strict local minimum atx0 by ~43!; hence we infer the desired result fro
Proposition 11. h

Next, we give easily verifiable relations, which imply condition~ii ! and will be useful in
applications.

Proposition 14: Let the constraint manifold U be a C2 submanifold. Suppose x0 is an equi-
librium in UùXR and ~i! Ker„D2L(x0)…ùTx0

~U!50; (ii) there is a parametrization of U around

x0 such thatDL(x0)D2p„p21(x0)… is negative semidefinite; then L has a strict local maximum
x0 with condition U.

Proof: The functionLªL+p is twice differentiable, and

DL~j!5DL„p~j!…Dp~j!, ~51!

D2L~j!5D2L„p~j!…+„Dp~j!3Dp~j!…1DL„p~j!…D2p~j!, ~52!

for all jPDom p.
Put j0ªp21(x0). Since x0 is an equilibrium, we have DL(x0)uTx0

(U)50, consequently

DL(j0)50. Moreover, atj5j0 , the first term on the right-hand side of~52! is negative definite
by ~i!; the second one is negative semidefinite by~ii !, so the sum is negative definite.

As a consequence,L has a strict maximum atj0 that is equivalent to thatL has a strict
maximum atx0 with conditionU. h
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Property~ii ! in the previous proposition holds ifU is a subset of an affine subspace; thenp can
be taken to be affine and its second derivative is zero.

Proposition 13 can be applied when every body has a constant particle number. Indee
the third, sixth, ninth, etc. components of the elements inK(x) are zero, thus only the zero is bot
in K(x) and in the kernel of D2L(x). A similar assertion holds when everybody has const
volume.

Asymptotic stability of an equilibrium implies that the equilibrium is locally unique. In g
eral, e.g., in the first-order phase transitions and in diffusions when the particle number a
volume of the bodies changes, equilibria are not locally unique; they constitute a nonzero d
sional submanifold.37 Then instead of the previous proposition we can apply the following o

Proposition 15: Let the constraint manifold U be a C2 submanifold and let E be the set o
equilibria in UùXR . If (i) the bodies are entropic, (ii) the dynamical quantities are quasiline
and the nominal conductivity matrix fits the constraint, (iii) E is a submanifold; and for al0

PE, (iv) BG(x0) is symmetric and positive definite, (v)Ker„D2L(x0)…ùTx0
(U)5Tx0

(E), (vi)

there is a parametrization p of U around x0 such thatDL(x0)D2p„p21(x0)… is negative semidefi
nite; then E is strictly asymptotically stable with condition U.

Proof: The dynamical equation is of the form

ẋ5BG~x!~DL !G~x!

and

E5$xPUu~DL !G~x!50%.

Let x0 be an arbitrary element ofE and letp be a parametrization ofU aroundx0 . Then for
the functionLªL+p andj0ªp21(x0) we have the equalities~51! and ~52!.

The dynamical equation reduced by the parametrization becomes

j̇5C~j!DL~j!, ~53!

where

C~j!ªDp~j!21BG„p~j!…„Dp~j!* …21.

The set of equilibria of the reduced dynamical equation is

fª$jPDompuDL~j!50%. ~54!

Now we show that

Tj0
~f!5Ker D2L~j0!.

The relation, follows from ~54! trivially. The relation. can be verified as follows: ifp has
property~vi! andv is in the kernel of D2L(j0), then~52! implies that Dp(j0)vPTp(j0)(U) is in
the kernel of D2L(x0), thus it is an element ofTx0

(E) according to property~v!; this is equivalent
to thatvPTj0

(f).
The derivative of the right-hand side of the reduced dynamical equation~53! at j0 equals

C~j0!D2L~j0!.

Property~iv! implies thatC(j0) is symmetric and positive definite, and according to~52! and
property~vi!, D2L(j0) ~which is necessarily symmetric! is negative semidefinite. Therefore th
kernel ofC(j0)D2L(j0) equals the kernel of D2L(j0), which is the tangent space off at j0 ;
and38 the geometric multiplicity and the algebraic multiplicity of the zero eigenvalue
C(j0)D2L(j0) coincide, all the nonzero eigenvalues ofC(j0)D2L(j0) are negative.

As a consequence of Proposition 12, the set of equilibria of the reduced dynamical equa
strictly asymptotically stable~without a condition!, which implies thatE is strictly asymptotically
stable with conditionU.
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Property~iv! in the previous proposition is equivalent to~see Proposition 10! ~iv! B(x0) is
symmetric, positive semidefinite and KerB(x0)5Tx0

(U) +, which is very useful in practice.

VI. DISCUSSION

A general mathematical theory of thermodynamical systems consisting of single-comp
homogenous bodies has been expounded. Substances, phases, bodies, systems, thermo
forces, constraints, etc., all the usual notions have got a mathematical definition. The basic
is the dynamical law, a differential equation whose solutions are the processes of the s
Equilibria are the constant processes. The first law is a part of the dynamical law~as in continuum
thermodynamics, where the first law is one of the balance equations!; the second law is expresse
by a condition imposed on the dynamical quantities, called the dissipative property~an analogon
of the Gibbs–Duhem relation in continuum thermodynamics!; the dissipative property is some
thing like positive entropy production but is formulated without the notion of entropy and ca
applied for some systems of nonentropic bodies, too.39 Constraints can be treated by the notions
manifolds. The Onsager formalism is a well-defined linear approximation of the dynamica
around equilibrium if and only if the constraint is affine. General results on~strict! asymptotic
stability ~trend to equilibrium! are obtained for a system of entropic bodies.
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Counterexamples to Parker’s theorem
Oleg I. Bogoyavlenskija)

Department of Mathematics, Queen’s University, Kingston K7L 3N6, Canada
and Steklov Mathematical Institute, Moscow, 117 966 Russia
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Two families of exact global solutions to the equations of plasma equilibrium are
derived. These solutions have no singularities, are localized, and are quasiperiodic
in variablez; each family depends on an arbitrary number of free parameters. The
solutions model a wide variety of magnetic field phenomena that might occur in
laboratory plasmas, in astrophysical jets, and in solar corona. The same solutions
describe global equilibria of an ideal incompessible fluid. In addition, these families
provide counterexamples to a well-known theorem of Parker. ©2000 American
Institute of Physics.@S0022-2488~00!00802-1#

I. INTRODUCTION

The pursuit of the global plasma equilibria satisfying the equations

J3B5gradp, div B50, J5
1

m
curlB, ~1.1!

was going on during the last four decades since Eqs.~1.1! were first applied to the controlled
thermonuclear fusion1–4 and to the astrophysical problems5,6. However, up until now, all found
exact solutions to Eqs.~1.1! which are not translationally invariant either have singularities
unboundedly grow at infinity7–11 or are not localized.12–14 Such solutions have a very restricte
applicability in astrophysics. HereB is the magnetic field,J—the electric current density,p—the
plasma pressure, andm—the magnetic permeability.

As was noted first by Lundquist,15 Eqs. ~1.1! are equivalent to the ideal fluid equilibrium
equations

V3curlV5gradS p

r0
1

V2

2 D , div V50. ~1.2!

Therefore the search for the global solutions to Eqs.~1.1! is important also for fluid dynamics.
The classical Proudman theorem states that any small perturbation of az invariant uniformly

rotating ideal fluid is alsoz invariant. The theorem was proved by Proudman16 and Taylor17 and
later confirmed by Taylor experimentally.18 The Proudman theorem was generalized by Parker19,20

for the plasma equilibrium equations~1.1!.
The primary purpose of this paper is to report some new exact solutions of the p

equilibrium equations that model astrophysical jets in the comoving frame of reference and
prominencies.22 Such equilibria have to be global, which means they have to satisfy the follo
necessary physical conditions.

~a! The magnetic fieldB, the currentJ, and the plasma pressurep are smooth and bounde
functions everywhere in the Euclidean spaceR3.

~b! At r→`, the magnetic fieldB→0, the current densityJ→0, the pressurep→p1 .
~c! All magnetic field lines and current lines are bounded in the radial variabler in the cylin-

drical coordinatesr ,f,z.

a!Electronic mail: bogoyavl@oib.mast.Queensu.ca
20430022-2488/2000/41(4)/2043/15/$17.00 © 2000 American Institute of Physics
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We derive two families of exact global axially symmetric plasma equilibria which depen
an arbitrary number of free parameters. The first one is defined in the whole Euclidean spR3

and the second one in the half spacez>0. These exact plasma equilibria model the variety
magnetic fields observed in astrophysical jets and in solar corona.22. The asymptotic value of
pressurep1 in condition~b! is the average pressure in the astrophysical outflow or in solar cor
plasma. As usual, the gravitational force2r gradC is included in the pressure gradient in~1.1!,
in the approximation of constant densityr. The plasma equilibria are localized in the sense that
total magnetic energy in any layerc1,z,c2 is finite. For the solutions of the second class, t
total magnetic energy in the half spacez>0 is finite.

The generic equilibrium solutions inR3 are quasiperiodic in variablez with N21 frequencies
which are proportional to the numbers

1, &, ),...,AN21 ~1.3!

with the commom factorA8b. It is proved that there are approximately 6N/p2 rationally inde-
pendent square roots in sequence~1.3!. Therefore the magnetic fieldB and currentJ are truly
quasiperiodic in variablez.

It is remarkable that the classical number theoretical problem on the rank of the sequenc~1.3!
over the rationals first has arises from the study of the global plasma equilibria. The proble
natural extension of the Pythagoras problem on the irrationality of&.23

Another important property of the exact solutions is that they form the (2N21)-dimensional
linear spaces. Any linear combination of the corresponding magnetic fieldsB is again an exact
solution. However, the law of addition of the plasma pressurep has a more complex quadrat
form. These properties resemble those of theN-soliton solutions of integrable equations of plasm
physics: the Korteweg–de Vries, KP, and NLS equations.24,25

The first of the exact solutions is the Gaussian distributionB5exp(2br2)êz . The Gaussian
distribution plays a crucial role in the derived global plasma equilibria~1.1!. The solutions de-
crease atr→` as rapidly ascN exp(2br2)r2N, that implies a high collimation of the jet.

The exact solutionB5exp(2br2)êz , J54b2r exp(2br2)êf /m has theu-pinch geometry. The
other exact solutions with cylindrical symmetry have the screw-pinch geometry; their mag
surfaces are cylindersr 5const. For the exact nontranslationally invariant plasma equilibria,
magnetic surfaces are either cylinders or nested tori with circular magnetic axes. The distri
of these toroidal magnetic surfaces is quasiperiodic in variablez. The magnetic axes are linke
with the closed magnetic field lines in the neighboring toroidal domains.

The derived exact plasma equilibria provide a family of dynamical systems inR3 that define
dynamics of magnetic field lines. These dynamical systems are integrable in thebroad senseof
paper.26 The generic magnetic field lines either are quasiperiodic windings on the toriT2 or move
on cylindersR13S1.

As a secondary purpose, I would like to point out that the two families of equilibr
solutions reported on provide a counterexample to the well-known Parker’s theorem19–21 that
concerns the small perturbations of thez-invariant plasma equilibria and that has been around
more than 25 years. In Ref. 19, Parker considered a special case of the problem: small pe
tions of the uniform magnetic fieldB5B0êz , B05const, p5const. The perturbations of th
generalz-invariant equilibria were studied in Chapter 14 of Ref. 20. Parker writes~p. 374!:
‘‘ Consider a magnetic field Bi(x,y)1«bi(x,y,z) in the neighborhood of the general equilibrium
field Bi(x,y); ’’ and after a detailed study arrives at the conclusion on p.377:

‘‘ Thus, in the general case, we are led to the conclusion that the invariance]bi /]z50
(14.51) is a necessary condition for equilibrium. Any field in which winding pattern changes a
the field, so that (14.51) is excluded by the topology, cannot be in equilibrium.’’

In Refs. 28 and 31, this conclusion is calledParker’s theorem. The absence of exact globa
solutions to Eqs.~1.1! made an independent verification of Parker’s theorem impossible. M
consequences and generalizations were produced assuming that the theorem is true, s
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27–34 and Parker’s 1994 book.21 It was generally thought that ‘‘It is well known that all well-
behaved MHD equilibria extending to all space need to be translationally symmetric,’’ see Ref.
33, p. 2158.

We present counterexamples to Parker’s theorem which satisfy all of Parker’s conditions~Ref.
20, pp. 359–391!, and the above-mentioned physical conditions~a!, ~b!, ~c!. We construct a family
of global z-invariant plasma equilibria, eachNth equilibrium possesses a (2N21)-dimensional
linear space of global perturbations. The most important feature of these exact solutions
they dodependon variablez and hence they arenot z-invariant.

The z-quasiperiodicity of the equilibrium solutions implies that they are very far not o
from being z-invariant but even from beingz-periodic. In view of thez-quasiperiodicity, the
‘‘ winding pattern’’ of the magnetic field lines is continuously changing along the variablez and
does not repeat. In Sec. VI, we indicate one of the origins of the discrepancy with Parker’s r
of Chapter 14 of Ref. 20.

II. NONTRANSLATIONALLY INVARIANT GLOBAL PLASMA EQUILIBRIA

To derive the exact plasma equilibria we consider Eqs.~1.1! for an axially symmetric mag-
netic fieldB:1–3

B5
cz

r
êr2

c r

r
êz1

I

r
êf , ~2.1!

wherec(r ,z) is the flux function,cx5]c/]x, and vectorsêr ,êz ,êf are the coordinate unit orts
The current densityJ has the form

J5
1

m
curlB52

I z

mr
êr1

I r

mr
êz1

F

mr
êf , ~2.2!

whereF5c rr 2r 21c r1czz. The plasma equilibria equations~1.1! are equivalent to the equali
ties I 5I (c), p5p(c) and the Grad–Shafranov 1958 equation1,2

c rr 2
1

r
c r1czz1I ~c!I 8~c!1mr 2p8~c!50, ~2.3!

where I (c) and p(c) are arbitrary smooth functions. Equation~2.3! implies F52I (c)I 8(c)
2mr 2p8(c). For the fluid equilibrium equations~1.2!, reduction to Eq.~2.3! was found by Bragg
and Hawthorne in 1950.35

Theorem 1: There exists an infinite family of z-invariant global plasma equilibria param-
etrized by an integer N>0 and a realb.0. For N>2, each equilibrium is contained in a(2N
21)-dimensional linear space of global plasma equilibria which are not translationally invari
These exact solutions are either quasiperiodic or periodic in variable z.

Proof: ~1! We suppose that functionI (c) is linearI (c)5ac and functionp(c) is quadratic
p(c)5p122b2c2/m, wherep1.(2b2/m)max(c2(x,y,z)) anda andb.0 are arbitrary constant
@the p1 does not enter the plasma equilibrium equations~1.1!#. The linear form ofI (c) and
quadratic form ofp(c) were employed in Refs. 12–14 and 36–38. However, the exact solu
derived in the present paper are more general than the solutions found in Refs. 12–14 and
The current~2.2! becomes

J52
a

m
B1

4b2

m
cr êf . ~2.4!

The formulas~2.1! and ~2.4! imply the asymptoticsJ'2aB/m at r→0 andaÞ0. The Grad–
Shafranov equation~2.3! in the new variablex52br 2 takes the form
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xcxx1
1

8b
czz1

1

8b
a2c2

1

4
xc50. ~2.5!

An inspection proves that the Gaussian distribution

c~r ,z!5
1

2b
e2br 2

5
1

2b
e2x/2 ~2.6!

is an exact solution to Eq.~2.5! for a50 andb.0. The corresponding parametersB, J, andp have
the form

B5e2br 2
êz , J5

2b

m
e2br 2

r êf , p5p12
1

2m
e22br 2

. ~2.7!

Hence the Gaussian distribution~2.6! defines az-invariant global plasma equilibrium.
Substitutingc(x,z)5e2br 2

u(x,z) into Eq. ~2.5!, we derive

xuxx2xux1
1

8b
~a2u1uzz!50.

Separating variables byu(x,z)5P(x)T(z), we get

xP92xP81
a21l

8b
P50, T95lT. ~2.8!

For l52v2, we haveT(z)5a cos(vz)1bsin(vz). For the first equation of~2.8!, we are inter-
ested only in the polynomial solutionsP(x). Such solutions exist if and only if (a22v2)/8b
5n, wheren>0 is an integer. Hence we obtain a finite spectrum of admissible valuesv
5v0 ,...,vN :

vn5Aa228bn, n50,1,...,N, N5F a2

8b G . ~2.9!

The first equation of~2.8! results in the formxP92xP81nP50. Differentiating, we obtain
xL91(12x)L81(n21)L50, whereL(x)5P8(x). This equation defines the classical Lague
polynomialsLn21(x):39

Lm~x!5
1

m!
ex

dm

dxm ~e2xxm!.

Hence the polynomialsP(x) are primitive functions of the Laguerre polynomials. We denote th
Ln* (x):

Ln* ~x!5E
0

x

Ln21~ t !dt52
x

n!
ex

dn

dxn ~e2xxn21!, L0* ~x!521,

~2.10!

Ln* ~x!5x1 (
k51

n21
~21!k~n21!!

k! ~k11!! ~n2k21!!
xk11.

Hence we obtain the exact solutions to Eq.~2.5!:

cn~r ,z!5
1

2b
e2br 2

~an cos~vnz!1bn sin~vnz!!Ln* ~2br 2!. ~2.11!

For any fixed constantsa and b, the formulas~2.9! and ~2.11! defineN exact solutions to the
linear equation~2.5!. These solutions satisfy the above-mentioned conditions~a! and ~b!. How-
ever, condition~c! is not met because the magnetic surfacecn(r ,z)50 is unbounded in variable
r for it contains an infinite number of planesz5zk5z012pk/vn .
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~2! To derive the global solutions satisfying the three conditions~a!, ~b!, ~c!, we takea2

58bN. ThenvN50 and exact solution~2.11! takes the form

cN~r !5
aN

2b
e2br 2

LN* ~2br 2!, ~2.12!

which turns into the Gaussian distribution~2.6! at N50. The corresponding magnetic field~2.1!,
the current~2.4!, and the pressurep have the form

BN5aNe2br 2S ~LN* ~x!22LN*
8~x!!êz1

A2N/b

r
LN* ~x!êfD , ~2.13!

JN52
A8bN

m
BN1

4b2

m
cN~r !r êf , p5p12

aN
2

2m
e22br 2

LN*
2~2br 2!. ~2.14!

This is az-invariant global plasma equilibrium.
Taking a linear combination of the flux functions~2.11! and ~2.12!, we obtain the

(2N21)-dimensional linear space of exact solutions to Eq.~2.5!:

c~r ,z!5
1

2b
exp~2br 2!

3S aNLN* ~2br 2!1 (
n51

N21

~an cos~vnz!1bn sin~vnz!!Ln* ~2br 2!D , ~2.15!

wherevn5A8b(N2n), the coefficientsan ,bn are arbitrary andaNÞ0. The pressurep(c)5p1

22b2c2/m is a quadratic function of the coefficientsan ,bn ,aN . Formulas~2.10! imply that the
exact solutions~2.15! at r→0 have the asymptotic forms

c~r ,z!'CN~z!r 2,
~2.16!

CN~z!5aN1 (
n51

N21

~an cos~vnz!1bn sin~vnz!!.

Hence the magnetic field~2.1! and the current density~2.4! have the smooth asymptotics atr
→0,

B'CN8 ~z!r êr22CN~z!êz1A8bNCN~z!r êf , J'2
A8bN

m
B.

The poloidal projections of the magnetic field lines coincide with the level curvesc(r ,z)
5const.1,2 Formula~2.15! implies that these curves approach the straight linesr 5const whenr
@1 because its leading term is2aN(22br 2)N exp(2br2)/(2bN!). Hence all magnetic field lines
and all current lines are bounded in the radial variabler . Thus the exact solutions~2.15! at aN

Þ0 satisfy the three conditions~a!, ~b!, ~c!.
For N52, solutions~2.15! are periodic functions ofz with periodT5p/A2b. For N>3, the

generic solutions ~2.15! are quasiperiodic functions ofz. Indeed, the frequenciesvn

5A8b(N2n) for n5N21,N22,...,1 areproportional to the sequence of the square roots~1.3!
that evidently contains the rationally independent ones. Hence the generic solutions~2.15! are
quasiperiodic functions ofz, for example ifaN21Þ0, aN22Þ0. h

Remark 1:For b→0 andr ,C,1/Ab, uzu!1/A8bN , the flux function~2.15! takes the form
c(r ,z)5CNr 2, CN5a11¯1aN . This flux function defines the uniform magnetic field
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B522CNêz , J50, p5p1 . ~2.17!

Hence we obtain that the plasma equilibria~2.15! in the limit b→0 turn at r ,C,1/Ab, uzu
!1/A8bN into the uniform equilibrium~2.17!. The same is true for the Gaussian distributi
~2.7! and for thez-invariant plasma equilibria~2.12!.

III. EXAMPLES OF THE QUASIPERIODIC AND PERIODIC PLASMA EQUILIBRIA

The first six polynomialsLn* (x) ~2.10! have the form

L0* ~x!521, L1* ~x!5x, L2* ~x!52 1
2 x21x, L3* ~x!5 1

6 x32x21x,

L4* ~x!52 1
24 x41 1

2 x32 3
2 x21x, L5* ~x!5 1

120x52 1
6 x41x322x21x,

L6* ~x!52 1
720x61 1

24 x52 5
12 x41 5

3 x32 5
2 x21x.

It is evident that polynomialsLn* (x) ~2.10! have alternating coefficients. Hence all their real ro
are positive or zero.

Using the known identity39,40 for the Laguerre polynomialsLn118 (x)5Ln8(x)2Ln(x), we
derive the identity

~n11!Ln11* ~x!5~n2x!Ln* ~x!1xLn*
8~x!. ~3.1!

By the induction, this relation implies that positive roots of polynomialsLn11* (x) and Ln* (x)
separate each other and hence every polynomialLn* (x) hasn21 distinct positive roots. Hence a

roots of the polynomialsLn* (x) andLn*
8(x) are simple, as well as for the Laguerre polynomi

Ln(x). Let xn be the greatest root of the polynomialLn* (x) andyn be its smallest positive root. We
havex25y252, x3531), y3532). The above-mentioned properties imply the inequalit

¯,yn,¯,y3,y25x2,x3,¯,xn,¯ . ~3.2!

Using the recurrence formula (n11)Ln112(2n112x)Ln1nLn215039,40 for the Laguerre
polynomials, we prove thatxn.2n23. The functionsLn* (2r 2)exp(2r2) which define the exac
solutions~2.12! and ~2.15! are rapidly decreasing atr→`, see their plots in Fig. 1.

FIG. 1. Plots of the functionsL5* (2r 2) exp(2r2) andL6* (2r 2) exp(2r2).
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Example 1. The astrophysical jets model. Figure 2 shows the distribution of the quasiperiod
level curvesc(r ,z)5const for the following concrete exact solution~2.15! for N53, b50.1,
a2524b:

c~r ,z!5
1

2b
exp~2br 2!3~L3* ~2br 2!1 1

20 sin~2A2bz!L2* ~2br 2!

1 1
20 sin~4Ab~z21!!L1* ~2br 2!!. ~3.3!

The level curvesc(r ,z)5const coincide with the poloidal projections of magnetic lines a
current lines. These curves are quasiperiodic in variablez because the frequencies 2A2b and 4Ab
in ~3.3! are rationally independent. The curves are practically parallel to the axisz already forr
.9. Hence the length scalel in variabler of the perturbations of thez-invariant equilibrium in
~3.3! is ,9. Rotating curves in Fig. 2 around the axisz, one obtains magnetic surfaces compos
continuous families of cylinders and nested tori. The innermost tori are circular magnetic
The distribution of these invariant toroidal domains and their magnetic axes is quasiperio
variable z. The magnetic field topology is rather complex: the closed magnetic field lines
dense in each toroidal domain and in general are linked with each other.

Figure 3 represents the density of magnetic energyB2(x,y,z)/2m for plasma equilibrium~3.3!
for y50, z50.5 andb50.1, m50.5. It is evident thatB2(r ,z)Þ0 everywhere and thatB2(r ,z)
→0 at r→`. The magnetic energy is concentrated near the axis of symmetry. This pro
means that the above-mentioned exact solution models an astrophysical jet in the comoving
of reference.

Figure 4 shows the plasma pressurep5p122b2c2(r ,z)/m for the equilibrium~3.3!, where
we putp158.2, b50.1, z50.5, m50.5. It is evident thatp'p1 for r .10 and forr ,0.5. The
constantp1 is the average pressure in the corresponding outflow.

We consider a subset of solutions~2.15! where the nonzero coefficientsanÞ0 correspond to
n5n(k)5N2k2. Let L5@AN21#. Then the function~2.15! takes the form

c~r ,z!5
1

2b
exp~2br 2!

3S aNLN* ~2br 2!1 (
k51

L

~an(k) cos~A8bkz!1bn(k) sin~A8bkz!!Ln~k!
* ~2br 2!D . ~3.4!

FIG. 2. Quasiperiodic magnetic field lines for the astrophysical jets model.
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This function has the form of the Fourier series with arbitrary coefficientsan( j ) , aN . Hence the
exact solutions~3.4! for any r 5r 0 approximate any smooth functionc̄(r 0 ,z) that is (p/A2b)
periodic in variablez. Thus even the subset of thez-periodic exact solutions~3.4! represents rathe
generic global axially symmetric plasma equilibria.

Example 2. The simplestz-periodic plasma equilibrium has the flux function

c~r ,z!5
1

2b
e2br 2

~L2* ~2br 2!1a1 sin~A8bz!L1* ~2br 2!!. ~3.5!

The corresponding level curvesc(r ,z)5const are shown in Fig. 5 forb50.1, a150.1. Figure 5
shows that the length scalel in variabler of the perturbations of thez-invariant equilibrium in
~3.5! is ,9.

FIG. 3. Density of magnetic energyB2(x,0,0.5)/2m for the astrophysical jets model.

FIG. 4. Plasma pressurep(x,0,0.5) for the astrophysical jets model.
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IV. QUASI-PERIODICITY OF THE GLOBAL PLASMA EQUILIBRIA

The dependence of the flux functions~2.15! on thez variable is defined by theN21 frequen-
ciesvn5A8b(N2n) which belong to the segmentI N between the minimalvN215A8b and the
maximalv15A8b(N21) ones. The distribution of the frequenciesvn on the segmentI N is not
homogeneous. Inside each of the equal intervals (kA8b,(k11)A8b),I N , there are 2k frequen-
cies vN2k2,...,vN2(k11)2. Therefore, the frequency densityD(v) has the form D(v)
'v/(4b). This property shows that the solutions~2.15! are very different from the Fourier serie
for which all frequencies are multiples of the basic one.

The analytical complexity of thez-quasiperiodic functionc(r ,z) ~2.15! is defined by the
exact number of rationally independent frequenciesvn or by the number of rationally independe
square roots in the sequence~1.3!. We denote this numberd(N). The functiond(N) is rather
nontrivial. For example forN519, the sequence~1.3! takes the form

1,&,),2,A5,A6,A7,2&,3,A10,A11,2),A13,A14,A15,4,A17,3&.

Hence the functiond(N) for N52,3,...,19 has thefollowing subsequent values:

d~N!51,2,3,3,4,5,6,6,6,7,8,8,9,10,11,11,12,12.

Hence the number of rationally independent frequenciesA8b(N2n) for N519 is 12.
It is evident that ifm15p1

k1
¯pn

kn then the square rootAm1 is rationally dependent withAm0

wherem05pi 1
¯pi k

. Hence the basis of rationally independent roots in~1.3! is not greater than

the set of rootsAp1¯pn wherepj are distinct primes. The square rootsAp1¯pn are rationally
independent. Indeed, suppose thatpn is the first prime such that there exists a rational depende
betweenApj 1

¯pj m
where distinct primespj<pn . Then an equation

ApnS (
a

caApa(1)¯pa(k)D 5(
b

cbApb(1)¯pb(m) ~4.1!

holds, whereca , cb are rationals andpa( j ) , pb(k),pn . Equation~4.1! implies thatApn belongs
to the algebraic extension of the field of rationalsQ generated by the square roo
&,),...,Apn21. The classical theorem on ramifications41 states that this is not true. The obtaine
contradiction proves that all numbersAp1¯pn are rationally independent.

FIG. 5. Thez-periodic poloidal magnetic field lines.
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Thus the functiond(N) is equal to the number of the square-free integersp1¯pn,N. The
asymptotics of this function atN→` is known from number theory:d(N)'6N/p2, see Ref. 42.
Hence we obtain that approximately three-fifths of all frequenciesvn in ~1.3! are rationally
independent.

V. GLOBAL PLASMA EQUILIBRIA IN THE HALF SPACE

Let us apply the developed methods to the problem of plasma equilibria in the half spz
>0. The problem is known in the theory of solar prominences.8 Putting in ~2.8!

l5kn
2 , kn5A8bn2a2, n5N,N11,̄ , N>

a2

8b
,

we find for a2<8bN the exact solutionsPn(x)5Ln* (x), Tn(z)5exp(2knz). Hence we find that
the linear equation~2.5! has the exact solutions

c~r ,z!5e2br 2

(
n5N

N1m

an exp~2A8bn2a2z!Ln* ~2br 2!, ~5.1!

wherea, b.0, andan are arbitrary constants andm>0, N>0 are arbitrary integers. The solu
tions ~5.1! are defined in the half spacez>0 and rapidly tend to zero atr→` and atz→` if
a2,8bN. The plasma pressurep has the form p(c)5p122b2c2/m, where p1

.(2b2/m)max(c2(r,z)), z>0. The corresponding magnetic field~2.1!, current~2.4!, and pressure
p have no singularities in the half spacez>0. Hence the exact solutions~5.1! satisfy the physical
conditions~a! and~b!. They satisfy also the condition~c! if sign an5(21)n because then all term
in the sum~5.1! have the same sign atr @1 that implies the boundedness inr of all magnetic
surfaces. Hence these solutions define the global plasma equilibria in the half spacez>0.

The most important physical property of the exact solutions~5.1! for a2,8bN is that the
corresponding total magnetic energy

Em5E B2

2m
dV

in the half spacez>0 is finite. These global plasma equilibria model the solar prominences
asymptotic valuep1 is the average pressure in the solar coronal plasma.

Example 3. The solar prominences model. Figure 6 represents the poloidal magnetic field lin
for the exact solution

c~r ,z!5e2br 2
~e24AbzL2* ~2br 2!20.5e22A6bzL3* ~2br 2!! ~5.2!

for a50 andb510. The corresponding magnetic field~2.1! and current~2.4! have the form

B5
cz

r
êr2

c r

r
êz , J5

4b2rc

m
êf . ~5.3!

The magnetic fieldB ~5.3! is pure poloidal and the currentJ ~5.3! is pure circular. All magnetic
field lines are anchored atz50 ~solar photosphere boundary!. The three-dimensional structure o
the magnetic fieldB is obtained from Fig. 6 by rotation around the axisz.

For a258bN, the flux functions~5.1! take the form

c~r ,z!5e2br 2S aNLN* ~2br 2!1 (
n5N11

N1m

an exp~2A8b~n2N!z!Ln* ~2br 2!D . ~5.4!
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These exact solutions form an (m11)-dimensional linear space of perturbations of the cylind
cally symmetric plasma equilibrium~2.12! in the half spacez>0. At z→`, these solutions tend
to equilibrium ~2.12!.

VI. COUNTEREXAMPLES TO PARKER’S THEOREM

The z-invariant plasma equilibria~2.12! have the following important property. The corr
sponding magnetic fieldBN ~2.13! and the electric currentJN ~2.14! are nowhere zero in the whol

Euclidean spaceR3. Indeed, if componentBNf(x1)50 ~2.13! then LN* (x1)50, henceLN*
8(x1)

Þ0 because all roots of the polynomialLN* (x) are simple and therefore componentBz(x1)Þ0.
Hence in any domain 0<r<R, we have

uBNu.B~R!uaNu.0, uJNu.J~R!uaNu.0. ~6.1!

For exact solutions~2.15!, the magnetic field variationB2BN and the current variationJ2JN are
defined by the flux function

c2cN5
1

2b
e2br 2

(
n51

N21

~an cos~vnz!1bn sin~vnz!!Ln* ~2br 2!. ~6.2!

Using formulas~2.1!, ~2.15!, and~6.2!, we obtain~the same forJ!

uB2BNu
uBNu

,
uB2BNu
B~R!uaNu

,AN

C~R!

B~R!
, AN5

1

uaNu (
n51

N21

~ uanu1ubnu! ~6.3!

in the domain 0<r<R, whereC(R) is some smooth function. The formulas~6.1! and~6.3! imply
that the inequalities

uB2BNu
uBNu

!1,
uJ2JNu

uJNu
!1 ~6.4!

are true in the domain 0<r<R provided thatAN!1.
For r→`, the flux functioncN ~2.12! and its variationc2cN ~6.2! have the following

asymptotics:

FIG. 6. Magnetic field lines for the solar prominences model.
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cN~r ,z!'2
aN~22br 2!N

2bN!
e2br 2

, ~6.5!

c2cN'2
~22br 2!N

2bN!
e2br 2

(
n51

N21
N!

n! ~22br 2!N2n ~an cos~vnz!1bn sin~vnz!!.

Hence we get

c2cN

cN
→0 at r→`. ~6.6!

In view of ~6.6!, the ratios~6.4! tend to zero whenr→`. Hence the inequalities~6.4! are true also
for r .R and thus everywhere in the Euclidean spaceR3 provided thatAN!1.

Let us estimate the length scalel in variabler of the perturbations presented by the sum
formula~2.15!. As shown in Sec. III, every polynomialLn* (x) hasn21 distinct positive roots and
uanu51/n! for its highest coefficient. Hence we getuLn* (x)u,xn/n!. If x.N then we have
xn/n! ,xN21/(N21)! for all n,N21. Hence forx.N, we get

uL1* ~x!u1¯1uLN21* ~x!u,
xN21

~N22!!
.

For the flux functionc ~2.15!, we obtain

uc2cNu,uaNuANe2br 2 xN21

~N22!!
. ~6.7!

For x.xN , we haveLN* (x).(x2xN)N/N! wherexN is the greatest root ofLN* (x). Hence

ucNu.uaNue2br 2 ~x2xN!N

N!
. ~6.8!

Formulas~6.7! and ~6.8! imply

uc2cNu
ucNu

,AN

N~N21!xN21

~x2xN!N ,AN

N2

x~12xN /x!N . ~6.9!

Hence forx.N2xN , we obtain

uc2cNu
ucNu

,AN .

The same inequality holds for the magnetic field and the electric current. Thus forAN!1, the
perturbations~2.15! can be significant only forx,N2xN . Substitutingx52bl 2, we find for the
length scalel in variabler of the perturbations~2.15!:

l <NAxN

2b
. ~6.10!

For example for the equilibrium~3.3!, we haveN53, x3531), b50.1, A350.1. Hence the
length scale of the perturbationsl <3Ax3/2b'14.59. This follows also from Fig. 2.

Inequalities~6.4! mean that the plasma equilibria~2.15! at AN!1 are small perturbations in
the whole Euclidean spaceR3 of thez-invariant equilibrium~2.12!. Hence we obtain that Parker’
condition that ‘‘the local perturbation to the field is small compared to the total field’’ ~Ref. 20, p.
361! is satisfied everywhere. Parker’s condition that the length of the flux tubeL is ‘‘ large
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compared to the characteristic transverse scale of variationl of the field’’ ~Ref. 20, p. 362! is
satisfied becausel <NAxN/2b and the flux tube lengthL can be taken arbitrarily large for th
z-invariant equilibrium~2.12!. HenceL@l . Parker’s condition that ‘‘the magnetic field is ana
lytic in its deviatione from the invariant field Bi(x,y)’’ ~Ref. 20, p. 378! is satisfied because th
exact solutions~2.15! are linear functions of small parametersa1 ,b1 ,...,aN21 ,bN21 . All pertur-
bations ~2.15! are not z invariant. Hence the plasma equilibria~2.15! are counterexamples t
Parker’s theorem.

The plasma equilibria~5.4! are perturbations of thez-invariant equilibria~2.12! in the half
spacez>0. The corresponding inequalities~6.4! are true at

AN5
1

uaNu ~ uaN11u1¯1uaN1mu!!1.

The estimationl <NAxN/2b for the length scalel of the perturbations~5.4! is true atAN!1.
Parker’s condition of analyticity in small parametere is evidently satisfied. All perturbations~5.4!
are not zinvariant. Hence the exact solutions~5.4! in the half spacez>0 are counterexamples t
Parker’s theorem.

One of the origins of the discrepancy with Parker’s results. In his book, Parker writes~Ref.
20, p. 369!: ‘‘ We suppose for convenience that, although Bz(x,y) may vary widely, it does no
vanish and change sign’’ and arrives at the statement:

‘‘ The result can be written

]

]x

1

Bz
2

]C

]x
1

]

]y

1

Bz
2

]C

]y
1

]

]z

1

Bz
2

]C

]z
50.

This form is totally elliptic. In an infinite space its only bounded solutions are constants, C
5C. ’’

The proof of Parker’s theorem on pp. 369 and 370 of Ref. 20 and the proof of its gen
alization for magnetohydrodynamics@Eq. ~62! of Ref. 30 on p. 837# are based on this statemen
We present a counterexample to this statement also. Let functionBz(x,y) be

Bz~x,y!5F~h~x,y!!,
]2h

]x2 1
]2h

]y2 5Dh50, ~6.11!

whereh(x,y) is an arbitrary harmonic function andF(u) is an arbitrary smooth function that i
positive for allu and has bounded integral

E
2`

1`

F2~u!du,C1 .

For example,F(u) can be the above-employed Gaussian trial functione2bu2
andh(x,y) can be

ax1by1cxy. The functionBz(x,y) ~6.11! is positive for allx,y. We define functionC by the
formula:

C~x,y,z!5E
2`

h(x,y)

F2~u!du.

It is evident that

]

]x

1

Bz
2

]C

]x
5

]2h

]x2 ,
]

]y

1

Bz
2

]C

]y
5

]2h

]y2 ,
]

]z

1

Bz
2

]C

]z
50.

Hence in view ofDh50, the functionC(x,y,z) does satisfy the above-mentioned elliptic equ
tion. It is evidently bounded andnonconstant.
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VII. CONCLUSION

We have presented two families of the exact axially symmetric solutions to the plasma
librium equations,~2.15! and~5.1!. By the isomorphism between Eqs.~1.1! and~1.2!, the family
~2.15! also describes global equilibria of an ideal incompressible fluid inR3. The equilibrium
solutions depend on an arbitrary number of parameters which can be adjusted so that the to
of the magnetic field becomes arbitrarily complex. The fields are a combination of nested
drical magnetic surfaces and nested toroidal surfaces. The generic solutions in the family~2.15!
are quasiperiodic inz, which implies that the magnetic field lines never repeat in thez direction,
but can have a structure arbitrarily close to the initial data. Their ‘‘winding pattern’’ changes
continuously withz, and does not repeat.

The equilibrium solutions~2.15!, ~5.1!, ~5.4! are global, and everywhere smooth. There are
discontinuities, and there are no current sheets. These solutions model the variety of magne
phenomena that have been observed in the astrophysical jets~in the comoving frame of reference!
and in the solar coronal plasma. The quasiperiodic behavior, which is ergodic inz, is the best
available analytical description of the spatial distribution of the magnetic field and curre
astrophysical jets.

Each of these families,~2.15! and~5.4!, form counterexamples to Parker’s theorem which w
formulated over 25 years ago, and has been the starting point of a large body of work that ha
published since that time. The most recent papers which use Parker’s theorem in an essen
are the 1996 paper34 and Parker’s 1994 book.21
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A hierarchy of nonlinear evolution equations,
its bi-Hamiltonian structure, and finite-dimensional
integrable systems
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An isospectral problem and the associated hierarchy of nonlinear evolution equa-
tions is presented. As a reduction, a new generalized nonlinear Schro¨dinger equa-
tion is obtained. It is shown that the hierarchy possesses bi-Hamiltonian structure
and is integrable in Liouville sense. Moreover, the eigenvalue problem can be
nonlinearized as a finite-dimensional completely integrable system under the Barg-
mann constraint between the potentials and the eigenvalues. ©2000 American
Institute of Physics.@S0022-2488~00!00304-2#

I. INTRODUCTION

It is an important task to find new integrable systems such as those connecting with
known physical meaning equations. The demonstration of a bi-Hamiltonian structure for a s
of partial differential equations is a direct and elegant method of proving its com
integrability.1–5 If a set of partial differential equations can be formulated as a Hamiltonian sy
in two distinct but compatible ways, then by a theorem of Magri,1 they give rise to an infinite
sequence of conserved Hamiltonians which are in involution with respect to either one of
two symplectic structures. Recently other two effective approaches that produce in
dimensional and finite-dimensional integrable Hamiltonian systems, respectively, have als
developed. The first one is the trace identity,6 which is poweful for constructing infinite-
dimensional Liouville integrable Hamiltonian systems. Starting from a properly isospectral
lem, many integrable hierarchies and their Hamiltonian structure~e.g., AKNS, TC, TA, BPT,
Yang! have been obtained by applying this method.6–8 The second one is the so-called nonline
ization technique,9,10 which is also proved to be a powerful tool for obtainning new fini
dimensional integrable Hamiltonian systems from various soliton hierarchies. Under the
mann or Neumann contraints between the potentials and the eigenvalues, which play a cen
in the process of nonlinearization, the eigenvalue problem is nonlinearized as a finite-dimen
completely integrable system. The list covered the eigenvalue problems associated with
known soliton hierarchies such as the KdV, AKNS, Jaulent–Miodek, Kaup–Newell exam
etc.9–13 Another important application of this method is that the solution of the soliton equa
associated with an eigenvalue problem is reduced to solving the compatible system of no
ordinary differential equations.9–15Later, this approach was developed further as a general me
to treat the higher-order constraints and to obtain the associated infinitely many hierarch
finite-dimensional integrable Hamiltonian systems.16–18

In this article we present a similar extension of the Kaup–Newell hierarchy. We introduc
following isospectral problem:

a!Electronic mail: faneg@fudan.edu.cn
20580022-2488/2000/41(4)/2058/8/$17.00 © 2000 American Institute of Physics
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yx5S 2l21aqr lq

lr l22aqr D y, ~1!

whereq and r are two potentials,l is a spectral parameter, anda is an arbitrary constant. From
which we derive a generalized Kaup–Newell hierarchy. It is shown that the evolution hierarc
Liouville integrable, and its bi-Hamiltonian structure is established by trace identity. Thro
nonlinearization of the eigenvalue problem Eq.~1!, a finite-dimensional completely integrab
system in the Liouville sense is also obtained.

II. THE GENERALIZED KAUP–NEWELL HIERARCHY AND ITS BI-HAMILTONIAN
STRUCTURE

Solving the adjoint representation of Eq.~1!

Vx5@U,V#5UV2VU, V5S a b

c 2aD
leads to

ax5qcl2rbl,

bx522bl222qal12aqrb,

cx52cl212ral22aqrc.

Substituting

a5(
j >0

ajl
2 j , b5(

j >0
bjl

2 j , c5(
j >0

cjl
2 j

into the above equations gives the following recursive formulas:

a2 j 115b2 j5c2 j50,

a2 jx5qc2 j 112rb2 j 115aqr~qc2 j 212rb2 j 21!1 1
2 ~qc2 j 21x1rb2 j 21x!,

b2 j 1152 1
2 b2 j 21x2qa2 j1aqrb2 j 21 ,

c2 j 115 1
2 c2 j 21x2ra2 j1aqrc2 j 21 .

From these equations we can successively deduce

a0521, b15q, c15r ,

a25 1
2 qr, b352 1

2 qx2 1
2 ~122a!q2r ,

c35 1
2 r x2 1

2 ~122a!r 2q, a45 1
4 ~qrx2rqx!2 3

8 q2r 21aq2r 2,

S c2 j 11

b2 j 11
D5L1S c2 j 21

b2 j 21
D , j 51,2,. . . , ~2!

where
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L15
1

2 S D22arD 21q2r 2rD 21qD12aqr 2arD 21qr22rD 21rD

22aqD21q2r 2qD21qD 2D12aqD21qr22qD21rD 12aqr D .

Consider the auxiliary problem

yt5V(n)y, ~3!

where

V(n)5S Dn 0

0 2Dn
D 1(

j 50

n S a2 jl
2(n2 j )12 b2 j 11l2(n2 j )11

c2 j 11l2(n2 j )11 2a2 jl
2(n2 j )12 D .

Then the compatiblity condition between Eqs.~1! and ~3! gives the zero curvature equationUt

2Vx
(n)1@U,V(n)#50, that is,

a~qr ! t5a~qtr 1r tq!5Dnx ,

qt5b2n11x22aqrb2n1112qDn ,

r t5c2n11x12aqrc2n1122rDn ,

from which we obtain

Dn5aD21~qc2n11x1rb2n11x!12a2D21qr~qc2n112rb2n11!

and the hierarchy of evolution equations

S qt

r t
D5L2S c2n11

b2n11
D5L2L1S c2n21

b2n21
D5L2L1

nS r
qD , n51,2,. . . , ~4!

L25S 2aqD21qD14a2qD21q2r D 22aqr12aqD21rD 24a2qD21qr2

D12aqr22arD 21qD24a2rD 21q2r 22arD 21rD 14arD 21qr2 D .

In the following we will establish the bi-Hamiltonian structure for the hierarchy Eq.~4! and
show they are integrable in Liouville’s sense. In order to apply the trace identity,6,7 we need to
rewrite Eq.~4! in another form. We introduce

G2 j 11
(1) 5c2 j 1112ara2 j , G2 j 11

(2) 5b2 j 1112aqa2 j .

Noting thata2 j5D21(qc2 j 112rb2 j 11), we have

S c2 j 11

b2 j 11
D5L3G2 j 11 , ~5!

where

G2 j 115S G2 j 11
(1)

G2 j 11
(2) D , L35S 122arD 21q 2arD 21r

22aqD21q 112aqD21r D .

Combining Eq.~2! with Eq. ~5! gives

JG2 j 115KG2 j 21 ,

where J5L2L3 , K5L2L1L3 . A series of calculations shows thatJ and K are two skew-
symmetric operators, that is,
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J* 52J, K* 52K.

Finally the evolution hierarchy Eq.~4! can be rewritten in the form

ut5JG2 j 115KG2 j 215JLnG1 , ~6!

whereG15((112a)r ,(112a)q)T, u5(q,r )T, L5L3
21L1L3 .

Following the notation used in Refs. 6, 7, we take the Killing–Cartan form^A,B& as tr(AB).
Then direct calculation gives

K V,
]U

]q L 5cl12ara, K V,
]U

]r L 5bl12aqa,

K V,
]U

]l L 524al1rb1qc.

By using trace identity, we have

d

du
~24al1rb1qc!5l2g

]

]l
~lg~cl12ara,bl12aqa!T!.

Substituting

a5 (
n>0

a2nl22n, b5 (
n>0

b2n11l22n21, c5 (
n>0

c2n11l22n21

into the above equation leads to

d

du
~24a2n121rb2n111qc2n11!5~22n1g!G2n11 . ~7!

To fix the g, we letn50 in Eq. ~7! and findg50. Therefore we conclude that

G2n115
dH2n

du
, ~8!

where

H05qr, H2n5
4a2n122rb2n112qc2n11

2n
, n>1. ~9!

Combining Eq.~6! with Eq. ~8! gives the desired bi-Hamiltonian structure of the hierarchy
~6!

ut5J
dH2n

du
5K

dH2n22

du
, n51,2,. . . .

Since

J* 52J,

JL5L2L3L3
21L1L35K52K* 52~L3

21L1L3!* ~L2L3!* 52L* J* 5L* J.
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Therefore according to the theorem in Ref. 6, it is shown that the hierarchy Eq.~6! is integrable in
Liouville’s sense and possesses a common series of conserved densities$H2n% in involution in
pairs.

Example 1:When n51, the evolution hierarchy Eq.~6! is reduced to a new generalize
derivative Schro¨dinger equation19,20

qt52 1
2 qxx2

1
2 ~q2r !x22aq~qr !x2 1

2 aq3r 2,

r t5
1
2 r xx2

1
2 ~r 2q!x22ar ~qr !x2 1

2 aq2r 3,

which are Liouville integrable and possess the bi-Hamilton structure

ut5J
dH2

du
5K

dH0

du
,

where

H05qr, H25
qrx2rqx2q2r 214aq2r 2

4
.

Remark 1:As a50, the spectral problem Eq.~1! reduces to the Kaup–Newell spectr
problem18,19

cx5S 2l2 lq

lr l2 Dc,

and the hierarchy of evolution equations~6! leads to the well-known Kaup–Newell hierarchy

ut5L2L1
nS r

qD5JLnS r
qD , n51,2,. . . , ~10!

where

L15
1

2 S D2rD 21qD 2rD 21rD

2qD21qD 2D2qD21rD D ,

L25S 0 D

D 0 D , L35S 1 0

0 1D ,

and therefore

J5L2L35L2 , L5L3
21L1L35L1 ,

K5L2L1L35
1

2 S 2DqD21qD 2D22DqD21rD

D22DrD 21qD 2DrD 21rD D .

ObviouslyJ andK are two skew-symmetric operators. The Kaup–Newell hierarchy Eq.~10! can
be cast in bi-Hamiltonian forms

ut5J
dH2n

du
5K

dH2n22

du
, n51,2,. . . ,

whereH2n andH2n22 satisfy Eq.~9!.
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III. A FINITE-DIMENSIONAL INTEGRABLE SYSTEM

Let l j ( j 51, . . . ,N) be N different eigenvalues of Eq.~1!, and (c j ,f j ) be associated eigen
functions. Then the functional gradientl j with respect tou is

dl j

du
5S dl j

dq
,
dl j

dr D T

5g j
21~l jf j

212arc jf j ,2l jc j
212aqc jf j !

T,

whereg j5*(qf j
22rc j

214l jc jf j )dx.
Propositon 1: JandK are Lennard’s pair of operators, that is,

K
dl j

du
5l j

2J
dl j

du
. ~11!

Proof: Making use of Eq.~1!, direct verification indicates that

L3

dl j

du
5l j S f j

2

2c j
2D , ~12!

L1S f j
2

2c j
2D 5l j

2S f j
2

2c j
2D . ~13!

Substituting Eq.~12! into Eq. ~13! and multiplying L2 on both sides of it, then Eq.~11! is
obtained.

Consider the Bargmann constraint

G15(
j 51

N

g j

dl j

du
,

that is,

q52
^`c,c&

112a22a^c,f&
, r 5

^`f,f&
112a22a^c,f&

, ~14!

wherec5(c1 , . . . ,cN)T,f5(f1 , . . . ,fN)T,`5diag(l1, . . . ,lN), and^•,•& is the standard inne
product inRN. Under the Bargmann constraint Eq.~14!, Eq. ~1! is nonlinearized into a finite-
dimensional Hamiltonian system

cx52`2c2
ac^`c,c&^`f,f&
~112a22a^c,f&!2 2

`f^`c,c&
112a22a^c,f&

52
]H

]f
, ~15!

fx5`2f1
af^`c,c&^`f,f&
~112a22a^c,f&!2 1

`c^`c,c&
112a22a^c,f&

5
]H

]c
, ~16!

whose Hamiltonian functionH is

H5^`2c,f&1
^`c,c&^`f,f&

2~112a22a^c,f&!
.

The Poisson bracket of the two functions in sympletic space (R2N,dc`df) is defined as

~F,G!5(
j 51

N S ]F

]c j

]G

]f j
2

]F

]f j

]G

]c j
D5 K ]F

]c
,
]G

]f L 2 K ]F

]f
,
]G

]c L ,
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which is skew-symmetric, bilinear, and satisfies the Jacobi identity. In particular,F and G are
called in involution if (F,G)50. Now we consider the function system

Fm5~112a22a^c,f&!^`2m12c,f&1
1

2 (
j 50

m U^`2(m2 j )11c,c& ^`2(m2 j )12c,f&

^`2 jc,f& ^`2 j 11f,f&
U,

m50,1,. . . . ~17!

Proposition 2:The inner product̂]Fm /]c , ]Fn /]f & is symmetrical aboutm andn, i.e.,

K ]Fm

]c
,
]Fn

]f L 5 K ]Fn

]c
,
]Fm

]f L . ~18!

Proof: Noticing that

]Fm

]c
522af^`2m12c,f&1~112a22a^c,f&!`2m12f

1(
j 51

m

~^`2(m2 j )11f,f&`2 j 11c2^`2(m2 j )12c,f&`2 jf!, ~19!

]Fn

]f
522ac^`2n12c,f&1~112a22a^c,f&!`2n12c

1(
j 51

m

~^`2(n2 j )11c,c&`2 j 11f2^`2(n2 j )12c,f&`2 jc!, ~20!

through a series of direct calculations, it is easy to see that^]Fm /]c , ]Fn /]f & is the sum of the
symmetrical items aboutm andn. So Eq.~18! is proved.

Proposition 3:The functions defined by Eq.~17! are in involution in pair

~Fm ,Fn!50.

Proof: By proposition 2, we have

~Fm ,Fn!5 K ]Fm

]c
,
]Fn

]f L 2 K ]Fm

]f
,
]Fn

]c L
5 K ]Fn

]c
,
]Fm

]f L 2 K ]Fm

]f
,
]Fn

]c L 50.

Proposition 4:(H,Fm)50.
Proof: As before, making use of Eqs.~15!, ~16!, ~19!, and~20! and through direct calculation

we have

~H,Fm!5 K ]H

]c
,
]Fm

]f L 2 K ]H

]f
,
]Fm

]c L 50.

So finally we conclude the following theorem:
Theorem:The Hamiltonian system defined by Eqs.~15! and~16! is completely integrable in

the Liouville sense in the symplectic manifold (R2N,dc`df).
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The motion of surfaces in geodesic coordinates
and 2¿1-dimensional breaking soliton equation
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The system of evolution equations for general motion of surfaces in geodesic co-
ordinates is analyzed to reduce the number of variables as well as equations. A
special choice for some variants deduces that the surface and the motion of surface
correspond to a nonlinear Schro¨dinger equation and a 211-dimensional breaking
soliton equation; respectively. We also study some geometric properties corre-
sponding to the integrals of the motion of surface and the motion of the curve on
the surface. The spectral parameter is introduced. ©2000 American Institute of
Physics.@S0022-2488~00!04704-6#

I. INTRODUCTION

Dynamics of surfaces, interfaces, and front is an important ingredient of numerous non
phenomena in classical physics.1–4 In some cases, many dynamics can be modeled by the no
ear partial differential equations which describe an evolution of surfaces in time.3–5 Moreover, a
local evolution law may be established in terms of a velocity field on the surface.4 In addition,
interesting papers by Nakayamaet al.,5,6 Mclachlan and Segur,7 Konopelchenko,8,9 and
Szwabowicz10 have concerned the motion of surfaces and link it to solitonic equations. In
paper, we shall study the motion of surfaces in geodesic coordinates with arbitrarily pres
velocity field.

To study the evolution of two-dimensional surfaces arbitrarily embedded in three dimen
a natural approach is to describe the surfaces purely intrinsically, that is, in terms of the s
metrics and curvature tensors.6 However, there is a class of evolution problems where the intrin
geometry of the evolving surfaces is not sufficient, and we have to determine the evolution
extrinsic geometry. A. Symet al.11–13 developed the theory of soliton surface which provided
geometrical interpretation for many integrable physical systems and is very useful to con
explicitly large classes of surfaces. Bobenko14 reformulated it in a form familiar to the soliton
theory, which made it easier to apply the analytical methods of this theory to integrable cas
S. Fokaset al.15 have shown that the problem of the immersion of a two-dimensional surface
a three-dimensional Euclidean space is related to the problem of studying surfaces in Lie
and Lie algebras and proposed a more general formula for surface immerse into Lie a
Cieslinskiet al.16 generalized it and proved that many results concerning immersion on Lie
bra can be reduced to or interpreted within the soliton surfaces approach. We find that the m
mentioned above can be used to study the motion of surfaces and the integrable system. Y17

consider the motion of surfaces with constant negative curvature in asymptotic coordinates
one important step is to determine the independent equations as well as variants. In this pa
shall generalize this approach to discuss the evolution of surfaces immersed in Lie algeb
shall identifyR3 with su~2!. After considering three 211-dimensional linear equations, we co
struct explicit formulas for the immersion of the motion of surfaces. We only use the compati
conditions continuously to reduce the number of equations and variants. We prove tha
20660022-2488/2000/41(4)/2066/11/$17.00 © 2000 American Institute of Physics
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choosing the velocity and some variants, the surface and its evolution can be expresse
nonlinear Schro¨dinger equation~NLS! and a breaking soliton equation, respectively.

It has been known that the breaking soliton equation has two hierarchies of conserved
tities. In this paper, we shall clarify the geometric interpretation for these variants and the int
of the motion of surfaces. It is similar to the discussion of the motion of curve by Langer
Perline.18 In addition, the spectral problem corresponding to the NLS and the breaking so
equation has also been introduced.

In Sec. II, we describe the correspondence betweenR3 and su~2! and analyze the system o
evolution equations for general motion of surfaces in geodesic coordinates. In Sec. III, the s
of evolution equations is reduced to a smaller but equivalent system. The fundamental theo
proved under suitable conditions. In Sec. IV, given special values for some variants, the NL
a breaking soliton equation are obtained from the theorem, which recovers the relation be
the motion of surfaces and the soliton equations. In Sec. V we are concerned with the integ
motion.

II. THE MOTION OF SURFACES IN GEODESIC COORDINATES

Let F(x,y) be a smooth surface in a three-dimensional Euclidean space, which is given
vector-valued function

F5~F1 ,F2 ,F3!:R2→R3.

When the surface moves,F is related to the time, that is,F5F(x,y;t). To construct and inves
tigate surface inR3 by analytical methods, we use 232 matrices instead of 333 matrices. More
explicitly, we characterize the surface in terms of su~2!. Let $e1 ,e2 ,e3% be the orthonormal base
of R3 and$ f 1 , f 2 , f 3% be the orthonormal bases of su~2!:

f 15
1

2 S 0 i

i 0D , f 25
1

2 S 0 21

1 0 D , f 35
1

2 S i 0

0 2 i D .

Thens j522i f j ( j 51,2,3) are Pauli matrices. Map the vector spaceR3 with su~2!:

F5(
j 51

3

F jej°(
j 51

3

F j f j

~the inner product

^F,G&522trF •G

defines a Euclidean scalar product inR3 and the Lie bracket corresponds to the vector produc
R3). So we identify three-dimensional Euclidean space with su~2!. In the sequel we will follow
the notation of Ref. 15.

Similar to the method which Fokas and Gelfand mentioned in Ref. 15, in geodesic co
nates, the first fundamental form of surfaces can be expressed by

I5dx21g2dy2,

where

Fx5c21f 1c, Fy5c21g f2c, N5c21f 3c, ~1!

andcPSU~2! satisfies the equations

cx5Uc, cy5Vc, ~2!
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U5(
j 51

3

uj f j , V5(
j 51

3

v j f j ~3!

@uj , v j , ( j 51,2,3) be functions of~x, y!#. Then the second fundamental form of surface can
got that

II5Ldx212Mdxdy1Ndy2,

L52^Fx ,Nx&5u2 , N52^Fy ,Ny&52gv1 , ~4!

M52^Fx ,Ny&52^Fy ,Nx&5v2 .

To discuss the motion of surfaces, we assume the velocity of the motion as

Ft5c21Cc5uFx1vFy1wN ~5!

andc satisfies

c t5Wc1 W5(
j 51

3

wj f j , ~6!

whereu,v,w,wj ( j 51,2,3) are functions of~x, y, t!. HereN is the normal vector of surfaces, an
u, v, w are projections ofFx , Fy , N, respectively. When we discuss the motion of surfaces, th
functions ofuj , v j ( j 51,2,3) andg are related to the timet. In conclusion, we have introduced 1
functionsu, v, w, g, uj , v j , wj ( j 51,2,3) so far. From the compatibility conditions ofFx , Fy ,
Ft , cx , cy , andc t , they can be determined by 18 equations. That is, the 13 functions sh
satisfy 18 equations. It is a super-determined problem. In the following, we will discuss
reduction of this problem.

More explicitly, from the compatibility condition ofFxy5Fyx , it can be found that

u350, v352gx , v252gu1 . ~7!

From the compatibility conditions ofFxt5Ftx andFyt5Fty , w1 , w2 , w3 can be expressed by th
seven functionsu, v, w, g, u1 , u2 , v1 as

w152
wy

g
1u1u1v1v, ~8!

w25wx1uu22u1vg, ~9!

w352wu12~vg!x . ~10!

Meanwhile, from other compatibility conditions, it is easy to prove that the seven functionsu, v,
w, g, u1 , u2 , v1 should yield the following 12 equations

ux5wu2 , ~11!

uy52g2vx22gwu1 , ~12!

gt5~vg!y1ugx1wv1 , ~13!

u1y2v1x2u2gx50, ~14!

u2y1~gu1!x1u1gx50, ~15!
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u1t2w1x1u2w350, ~16!

u2t2w2x2u1w350, ~17!

~gu1! t1w2y1gxw11v1w350, ~18!

gxx1v2u12u2v150, ~19!

gxt1w3y2v1w22gu1w150, ~20!

w3x2u1w21u2w150, ~21!

v1t2w1y2gu1w31gxw250. ~22!

We know, when we study the motion of surfaces, one of fundamental problems is to fin
independent equations from a number of equations. Here we will prove a series of lemma
to prove the following theorem.

III. THE FUNDAMENTAL THEOREM

Theorem 1: If u2Þ0, wyÞ0, and w1 , w2 , w3 are defined by Eqs. (8)–(10), then these Eqs
(18)–(22) can be derived from the seven equations (11)–(17), i.e., in geodesic coordinates, th
motion of surfaces depends on seven functions u, v, w, g, u1 , u2 , andv1 , which satisfy the seven
fundamental equations (11)–(17).

Lemma 1: From Eqs. (11), (12), and (15), it yields

wyu21g~2u1wx1wu1x1vxxg12vxgx!50. ~23!

Proof: From the compatibility conditionuyx5uxy , it is easy to prove this lemma. h

Remark 1:Lemma 1 will be used to prove Lemmas 3 and 5.
Lemma 2: Equation (18) can be deduced from Eqs. (11)–(16).
Proof: From Eqs.~13! and ~16!

~gu1! t5u1@~vg!y1ugx1wv1#1gu2@wu11vxg1vgx#

1gS u1xu1u1ux1v1xv2v1vx2
wxy

g
1

wygx

g2 D . ~24!

Meanwhile, from Eqs.~9!, ~12!, ~14!, and~15!, it can be obtained that

2wxy52w2y1u2~2g2vx22gwu1!1u@2u1gx2~gu1!x#2vg~v1x1u2gx!2u1~vg!y .
~25!

Substituting Eq.~25! into Eq. ~24!, we have

~gu1! t52w2y2gxw12v1w3 .

Equation~18! satisfies and Lemma 2 is proved. h

Lemma 3: If wyÞ0, Eq. (19) can be deduced from Eqs. (11)–(17).
Proof: From Eqs.~15!, ~16!, and~13!,

u2yt52~gu1!xt1~u2w32w1x!gx2u1@~vg!yx1~ugx!x1~wv1!x#. ~26!

Meanwhile, from Eqs.~17! and ~14! and Lemma 2,

u2ty52@~gu1! t1gxw11v1w3#x1u1w3y1~v1x1u2gx!w3 . ~27!
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Comparing~26! with ~27!, we get

2u1@~vg!yx1uxgx1wxv11wv1x#1gxxS v1v2
wy

g D
5v1@wxu11wu1x1~vg!xx#2u1@wyu11wu1y1~vg!xy#. ~28!

Then, by using Eqs.~11! and ~14!, Eq. ~28! can be rewritten as

wy

g
gxx2wyu1

21v1~2u1wx1wu1x12vxgx1vxxg!50.

Using Lemma 1, it can be proved that ifwyÞ0, Eq. ~19! is satisfied. h

Lemma 4: If wyÞ0, Eq. (20) can be deduced from Eqs. (11)–(17).
Proof: From Eq.~13!, we get

gtx5~vg!yx1gxxu1gxux1wv1x1wxv1 . ~29!

BecausewyÞ0, so Lemma 3 is satisfied. Using it and Eqs.~11! and~14!, Eq. ~29! can be written
as Eq.~20!. h

Lemma 5: If wyÞ0, Eq. (21) can be deduced from Eqs. (11)–(17).
Proof: BecausewyÞ0, Lemma 3 can be used. So, from Eq.~10!, we have

w3x52wxu12wu1x2vxxg22vxgx2v~gu1
21u2v1!.

Then using Lemma 1, this lemma can be proved. h

Lemma 6: If u2Þ0 and wyÞ0, Eq. (22) can be deduced from Eqs. (11)–(17).
Proof: BecausewyÞ0, Lemmas 3 and 4 are satisfied. From the compatibility conditiongxxt

5gxtx we have

u2v1t2gu1u2w35u2w1y2w2u2gx .

So, if u2Þ0, Eq. ~22! is satisfied. Lemma 6 is proved. h

From Lemmas 1–6, the theorem is proved.
Remark 2:Note that the first three equations of the seven equations~11!–~17! in the theorem

are deduced from the compatibility conditions ofFx , Fy , Ft and the remaining four are deduce
from cxy5cyx andcxt5c tx .

In the following section, we will get the NLS and a breaking soliton equation by giving
functionsu2 , v, w special values.

IV. THE NLS AND BREAKING SOLITON EQUATION OF THE ABLOWITA-KAUP-
NEWELL-SEGER „AKNS … SYSTEM

Proposition 1: Given

u25g ~30!

and letting

q5 1
2ge2 i *xu1 dx8, ~31!

then q yields the NLS equation

iqy5qxx12uqu2q. ~32!

Proof: From Eq.~30!, Eq. ~15! can be rewritten as

gy522u1gx2u1xg. ~33!
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In addition, Eqs.~14! and ~19! can be rewritten as

u1y5~ 1
2g

21v1!x , ~34!

v152u1
21

gxx

g
. ~35!

If we take the integral constant to be zero, then we get

Ex

u1y dx85
gxx

g
2u1

21
1

2
g2. ~36!

Then, by direct calculation, this proposition can be proved. h

This proposition implies that the surfaces are Hasimoto surfaces.19,20

Proposition 2: Suppose the same conditions as Proposition 1 and let

w5gx , v5u1 . ~37!

Then q satisfies the breaking soliton equation21–26

iqt1qxy12qEx

uquy
2 dx50. ~38!

Proof: From ~11!, we get

u5 1
2g

2, ~39!

where we take the integral constant to be zero. From Eqs.~8!–~10! and ~36!, we have

w152
gxy

g
1u1Ex

u1y dx8,

w25gEx

u1y dx8, w35gy .

Then Eqs.~13! and ~17! can be reduced as

gt5~gu1!y1gxEx

u1y dx8.

Then Eq.~12! can be rewritten as Eq.~33!, and Eq.~16! can be rewritten as

u1t5w1x2u2w352Fgxy

g
2u1Ex

u1y dx8G
x

2ggy . ~40!

Meanwhile, by direct calculation,

qt5
1

2 S gt2 iqEx

u1t dx8 De2 i *xu1 dx8,

qxy5
1

2 S gxy2 igyu12 igu1y2 igxEx

u1y dx82gu1Ex

u1y dx8 De2 i *xu1 dx8,

2qEx

uquy
2 dx5gEx

ggy dx8e2 i *xu1 dx8.
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By using Eqs.~31! and ~40! and

Ex

u1t dx852Fgxx

g
2u1Ex

u1y dx8G2Ex

ggy dx8,

that is, the integral constant is zero, this proposition is proved. h

In conclusion, the seven fundamental equations in Theorem 1 are reduced to the inte
equations—the NLS and the breaking soliton equation~38! after we suppose Eqs.~30! and ~37!
are satisfied and introduce the new variantq.

V. INTEGRALS OF MOTION AND GEOMETRICAL INTERPRETATION

Y. S. Li25 has proved that Eq.~38! has two hierarchies of conserved quantities,

I n
15E

0

1

^f1
21Kn

1~rv!,v& dr ~n50,1,2,...!,

I m
2 5E

0

1

^f1
21Kn

2~rv!,v& dr ~m50,1,2,...!, ~41!

where

f15S 0 21

1 0 D , f5S ]x22q]x
21r 22q]x

21q

2r ]x
21r 2]x12r ]x

21q
D , ~42!

Kn
15fnK0

1, Kn
25fnK0

2, ~43!

K0
15S 2q

r D ,K0
25S qy

r y
D , v5S q

r D , ~44!

^A,B&5E E
2`

1`

BTA dx dy. ~45!

Because the conservation laws of equations correspond to the conserved quantities
motion of surfaces, using Eqs.~41!–~45!, we can get two sets of integrals of motion in evoluti
of the Hasimoto surface. Furthermore, becauser 52q* ,q5 1

2ge2 i *5yx dx8, we can derive an infi-
nite number of integrals of motion from the two sets. For example, from Eqs.~41!–~45!, the first
few conserved quantities are as follows:

I 0
15E E

2`

1`

g2 dx dy, ~46!

I 1
15I 0

25E E
2`

1`

u1g2 dx dy, ~47!

I 2
15E E

2`

1`S gx
21u1

2g22
1

4
g4D dx dy,

~48!

5E E
2`

1`S 2ggxx1u1
2g22

1

4
g4D dx dy,
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I 1
25E E

2`

1`Fggxy2gu1gxx1g2u1
32

1

2
g4u11

1

4
g2]x

21~g2!yG dx dy. ~49!

So, surfaces have an infinite number of integrals of motion and Eq.~38! allows the infinite number
of integrals of motion as a consequence of integrability. Furthermore, we should notice tha
integrals of motion are only related to the variantsu1 and u2 . We will clarify the geometrical
meaning of the two invariances and give the geometrical interpretation of Eqs.~2!, ~3!, and~6! in
geodesic coordinates as well as Eqs.~41!–~49!.

Consider Eqs.~1! and ~5! again. Because

Fx5c21f 1c;e1 ,
Fy

g
5c21f 2c;e2 ,

N5c21f 3c;e3 .

So,

e1x;u2e3 , e2x;2u1e3 , e3x;u1e22u2e1 ,

that is,

S e1

e2

e3

D
x

5S 0 0 u2

0 0 2u1

2u2 u1 0
D S e1

e2

e3

D . ~50!

On the other hand,27

S e1

e2

e3

D
x

5S 0 kgx 2knx

2kgx 0 tgx

knx 2tgx 0
D S e1

e2

e3

D , ~51!

wherekgx is the geodesic curvature of thex-curve,knx is the normal curvature of thex-curve, and
tgx is the geodesic torsion of thex-curve. Comparing Eq.~50! with Eq. ~51!, we get

u152tgx, u25g52knx , kgx50. ~52!

Similarly, we can get

v152tgy , v252gu152kny , v352kgy52gx , ~53!

wherekgy is the geodesic curvature of they-curve,kny is the normal curvature of they-curve, and
tgy is the geodesic torsion of they-curve. So, the geometric interpretation of Eqs.~2!, ~3!, and~6!
is clear. Moreover, Eqs.~41!–~45! imply that some combinations of the geodesic torsion and
normal curvature compose the infinite integrals of motion of surfaces. Equations~46!–~49! are the
first few cases.

VI. INTRODUCING THE SPECTRAL PARAMETER

From the soliton equation, Sym11,12 introduced a formulaF5c21cl̄ to study the soliton
surface. We shall prove that this formula is valid for the motion of surfaces. At first we intro
the notation

c̄5c̄~x,y;t;l̄ !, c̄u l̄505c. ~54!
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Consider the spectral problem

c̄x5Ūc̄, Ū5~ l̄1u1! f 11u2f 2 ,u25g, ~55!

c̄y5V̄c̄, V̄5 v̄1f 11 v̄2f 21 v̄3f 3 ,
~56!

v̄15l̄21v1 , v̄25gl̄1v2 , v̄35v3 ,

c̄ t5W̄c̄2l̄c̄y , W̄5w̄1f 11w̄2f 21w̄3f 3 ,
~57!

w̄15w11l̄]x
21u1y , w̄25w2 , w̄35w3 .

Lemma 7: Equations (55) and (56) are the Lax pair of the equations

u1y2v1x1u2v350,

u2y2v2x1u1v350, ~58!

2v3x1v2u12u2v150.

Proof: From the compatibility conditionc̄xy5c̄yx , it yields

~ l̄1u1!y2 v̄1x1u2v̄350,

u2y2 v̄2x2~ l̄1u1!v̄350,

2 v̄3x1~ l̄1u1!v̄22u2v̄150.

Substitutingv̄1 , v̄2 , v̄3 into them, Eq.~58! is satisfied. h

Lemma 8: From the compatibility condition of Eqs. (55) and (57), it yields the equation

u1t2w1x1u2w350,

u2t2w2x2u1w350, ~59!

2w3x1u1w22u2w150.

Proof: From Eqs.~55! and ~57!, we have

c̄xt5Ūtc̄1Ū~W̄c2l̄c̄y!5W̄xc̄1W̄Ūc̄2l̄c̄yx5W̄xc̄1W̄Ūc̄2l̄~Ūyc̄1Ūc̄y!.

It yields

Ūt1ŪW̄5W̄x1W̄Ū2l̄Ūy .

The three components of this equation read

~ l̄1u1! t2w̄1x1u2w̄31l̄u1y50,

u2t2w̄2x2~ l̄1u1!w̄31l̄u2y50,

2w̄3x1~ l̄1u1!w̄22u2w̄150.

Substitutingw̄1 ,w̄2 ,w̄3 into these equation yields Eq.~59!. h
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Proposition 3: Let

F5c̄21c̄ l̄u l̄50 . ~60!

If c̄ satisfies Eqs. (55)–(57), then

Fx5c21f 1c, Fy5c21g f2c,
~61!

Ft5uFx1vFy1wN.

Proof: Note that

Ū l̄u l̄505 f 3 , V̄l̄u l̄505g, W̄l̄u l̄505Ex

u1y dx8.

Then, it is easy to prove that

Fx5@2c̄21Ūc̄ l̄1c̄21~Ū l̄c̄1Uc̄ l̄!#l̄505c21f 1c,

Fy5c21g f2c

Ft5@c̄21~2V̄1f 12V̄2f 22V̄3f 3!c̄1c̄21W̄l̄c̄ # l̄50

5c21S 1

2
g2f 11gu1f 21gxf 3Dc5uFx1vFy1wN.

h

Note that Eqs.~58! and ~59! coincide with the compatibility conditions ofcxy5cyx , cxt5c tx ,
and Eqs.~61! coincide with Eqs.~1! and~5!. So it is easy to known that the Lax pair of Eqs.~31!

and ~38! are Eqs.~55! and ~56! (l̄y50) and Eqs.~55! and ~57! (l̄ t52l̄l̄y), respectively.
Moreover, since the spectral parameter is introduced, we deduce the connection betwe
motion of surfaces and the spectral problem.

VII. CONCLUSION

We have obtained the motion equations from the compatibility conditions of three l
equations. Because there are many compatibility equations among them, we reduced the
of equations in geodesic coordinates and proved Theorem 1. The fundamental theorem dis
that under suitable conditions, the evolution of surfaces in geodesic coordinates can be de
by the seven functionsu,v,w,g,u1 ,u2 ,v1 , which satisfy seven equations@Eqs.~11!–~17!#. Note
that the first three functions are the components of arbitrarily prescribed velocity and the re
ing four are related to the fundamental forms of surfaces. Then, giving the unknown func
special value, we obtained the NLS and a breaking soliton equation, that is, Propositions 1
After introducing the spectral parameter, we give the formula~60! for the motion of surfaces. The
integrals of motion and their geometrical interpretation are also discussed.

However, many questions deserve investigation further. For instance, the geometric in
tation of the spectral parameterl is unclear. But its introduction is important. Based on it, wh
q is solution of the AKNS system, the spectral problem of Eqs.~55!–~57! can be solved, and from
Eq. ~60!, the exact expression of the motion of the Hasimoto surface can be obtained. In ad
different from the cases of Propositions 1 and 2, the unknown functions can be given a
value to get other surfaces. Based on Eqs.~4! and ~7!, if we give L51, M50, it is a helicoidal
surface; if we giveL5N50, it is a ring surface and this case is different from the case of Theo
1. These cases are being pursued further, too. Moreover, the application of this method in g
coordinates, for example, in orthogonal coordinates and in isothermal coordinates, can a
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studied. Furthermore, we also can extend this method toR2,1. Meanwhile, the relation betwee
this method and the other methods of studying the motion of surfaces is one meaningful qu
Especially, we can compare the results in Ref. 28 with ours.
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In this paper the difference in the asymptotic dynamics between the nonlocal and
local two-dimensional Swift–Hohenberg models is investigated. It is shown that
the bounds for the dimensions of the global attractors for the nonlocal and local
Swift–Hohenberg models differ by an absolute constant, which depends only on
the Rayleigh number, and upper and lower bounds of the kernel of the nonlocal
nonlinearity. Even when this kernel of the nonlocal operator is a constant function,
the dimension bounds of the global attractors still differ by an absolute constant
depending on the Rayleigh number. ©2000 American Institute of Physics.
@S0022-2488~00!01204-4#

I. INTRODUCTION

Fluid convection due to density gradients arises in geophysical fluid flows in the atmosp
oceans, and the earth’s mantle. The Rayleigh–Benard convection is a prototypical model fo
convection, aiming at predicting spatio-temporal convection patterns. The mathematical mo
the Rayleigh–Benard convection involves nonlinear Navier–Stokes partial differential equ
coupled with the temperature equation. When the Rayleigh number is near the onset
convection, the Rayleigh–Benard convection model may be approximately reduced to an
tude or order parameter equation, as derived by Swift and Hohenberg.1

In the current literature, most work on the Swift–Hohenberg model deals with the follo
one-dimensional equation forw(x,t), which is a localized, one-dimensionalized version of t
model originally derived by Swift and Hohenberg,1

wt5mw2~11]xx!
2w2w3. ~1!

The cubic termw3 is used as an approximation of a nonlocal integral term. For the~local!
one-dimensional Swift–Hohenberg equation~1!, there has been some recent research on pr
gating or steady patterns~e.g., Refs. 2–4!. Mielke and Schneider5 proved the existence of th
global attractor in a weighted Sobolev space on the whole real line. Hsiehet al.6,7 remarked that
the elemental instability mechanism is the negative diffusion term2wxx .

Roberts8,9 recently re-examined the rationale for using the Swift–Hohenberg model
reliable model of the spatial pattern evolution in specific physical systems. He argued th

a!Author to whom correspondence should be addressed. Electronic mail: duan@math.clemson.edu; Fax:~864!656-5230.
20770022-2488/2000/41(4)/2077/13/$17.00 © 2000 American Institute of Physics
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though the localization approximation used in~1! makes some sense in the one-dimensional c
this approximation is deficient in the two-dimensional convection problem and one should u
nonlocal Swift–Hohenberg model,1,8,9

ut5mu2~11D!2u2uG* u2 , ~2!

where

G* u25E
D

G~A~x2j!21~y2h!2!u2~j,h,t !djdh ,

u5u(x,y,t) is the unknown amplitude function,m measures the difference of the Rayleigh nu
ber from its critical onset value,D5]xx1]yy is the Laplace operator,G(r ) is a given radially
symmetric function (r 5Ax21y2), and* denotes the convolution. The equation is defined fot
.0 and (x,y)PD, whereD is a bounded planar domain with smooth boundary]D.

The two-dimensional version of the local Swift–Hohenberg equation foru(x,y,t) is

ut5mu2~11D!2u2u3 . ~3!

Hereu3 is used to approximate the nonlocal term in~2!.
Roberts8,9 noted that the range of Fourier harmonics generated by the nonlinearities is f

mentally different in two dimensions than in one dimension. This difference requires a
sophisticated treatment of two-dimensional convection problem, which leads to nonlocal n
earity in the Swift–Hohenberg model. He also argued that nonlocal operators naturally app
systematic derivation of simplified models for pattern evolution, and nonlocal operators
permit symmetries which are consisitent with physical considerations.

In this paper, we discuss the difference between nonlocal and local two-dimensional S
Hohenberg models~2!, ~3!, from a viewpoint of asymptotic dynamics. We show that the bou
for the dimensions of the global attractors for the nonlocal and local Swift–Hohenberg m
differ by an absolute constant, which depends only on the the Rayleigh number, and upp
lower bounds of the kernel of the nonlocal nonlinearity. Even when this kernel is a con
function, the dimension bounds of the global attractors still differ by a constant depending o
Rayleigh number. In Secs. II and III, we consider the nonlocal Swift–Hohenberg model
positive or non-negative kernels, respectively. We discuss the local Swift–Hohenberg mo
Sec. IV. Finally in Sec. V, we summarize the results.

II. NONLOCAL SWIFT–HOHENBERG MODEL WITH POSITIVE KERNEL

In this section, we discuss the global attractor and its dimension estimate for the no
Swift–Hohenberg model~2! with positive kernelG.0. We will discuss the model with non
negative kernelG>0 in the next section. In the following we use the abbreviationsL2

5L2(D), L`5L`(D), Hk5Hk(D) andH0
k5H0

k(D) (k is a non-negative integer! for the standard
Sobolev spaces. Let~•,•!, i•i[i•i2 denote the standard inner product and norm inL2, respec-
tively. The norm forH0

k is i•iH
0
k. Due to the Poincare´ inequality,iDkui is an equivalent norm in

H0
k .

We rewrite the two-dimensional nonlocal Swift–Hohenberg equation~2! as

ut1au12Du1D2u1uG* u250 , ~4!

wherea512m. This equation is supplemented with the initial condition

u~x,y,0!5u0~x,y! , ~5!

and the boundary conditions
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uU]D50,
]u

]nU
]D

50 , ~6!

wheren denotes the unit outward normal vector of the boundary]D.
In this section, we assume the following conditions for everyt>0 and (x,y)PD:

0,b<G~Ax21y2!<a, and G, ¹G, DGPL`~D ! , ~7!

wherea,b.0 are some positive constants~i.e., G.0 is a positive kernel! and¹5(]x ,]y) is the
gradient operator. We then comment on the model with a special non-negative kernel~i.e., G
>0 or b50) in the next section. In the following we denoteK15i¹Gi` andK25iDGi` .

To study the global attractor, we need to derive somea priori estimates about solutions.
Lemma 1: Suppose u is a solution of (4)–(6). Then u is uniformly (in time) bounded, and th

following estimates hold for t.0:

iu~x,y,t !i2<iu0~x,y!i2 exp~22mt !1
m

b
, ~8!

and thus

lim supt→1`iu~x,y,t !i<Am

b
[R , ~9!

where R5Am/b.
Proof: Taking the inner product of~4! with u, we have

1

2

d

dt
iui21iDui212~Du,u!1aiui21~u2,G* u2!50 . ~10!

Note that

2u~Du,u!u<2iDuiiui<iDui21iui2 ,

~u2,G* u2!>bE
D

u2~x,y!dxdyE
D

u2~j,h!djdh5biui4 .

Then from~10! we get

d

dt
iui212~a21!iui212biui4<0 . ~11!

It is easy to see that ifa>1, i.e., m<0, then all solutions approach zero inL2. We will not
consider this simple dynamical case. In the rest of this paper we assume thatm.0, i.e.,a,1.

Thus we have, for any constante.0 ,

d

dt
iui212eiui212~a212e!iui212biui4<0 , ~12!

or

d

dt
iui212eiui21F ~a212e!

A2b
1A2biui2G 2

<
~a212e!2

2b
. ~13!

So,
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d

dt
iui212eiui2<

~a212e!2

2b
. ~14!

By the usual Gronwall inequality10 we obtain

iui2<iu0i2 exp~22et !1
~a212e!2

4be
. ~15!

Whene512a5m, we get the optimal or tight estimate

iui2<iu0i2 exp~22mt !1
m

b
. ~16!

This completes the proof of Lemma 1. j

Moreover, higher order derivatives ofu are also uniformly bounded.
Lemma 2: Suppose u is a solution of (4)–(6). Theni¹ui and iDui are uniformly (in time)

bounded.
In order to prove this lemma, we recall a few useful inequalities.
Uniform Gronwall inequality~Ref. 10!. Let g,h,y be three positive locally integrable func

tions on@ t0 ,1`) satisfying the inequalities

dy

dt
<gy1h ,

with * t
t11gds<a1 , * t

t11hds<a2 and* t
t11yds<a3 for t>t0 , where theai( i 51,2,3) are positive

constants. Then,

y~ t11!<~a21a3!exp~a1!, for t>t0 .

Gagliardo–Nirenberg inequality~Ref. 11!. Let wPLqùWm,r(D), where 1<q, r<`. For
any integerj , 0< j <m, j /m<l<1,

iD jwip<C0iwiq
12liDmwi r

l

provided

1

p
5

j

n
1lS 1

r
2

m

n D1
12l

q
,

andm2 j 2 (n/r ) is not a non-negative integer Ifm2 j 2 (n/r ) is a non-negative integer, then th
inequality holds forl5 ( j /m).

Poincaréinequality ~Ref. 12!. For wPH0
1(D),

l1iwi2<i¹wi2 ,

wherel1 is the first eigenvalue of2D on the domainD, with zero Dirichlet boundary condition
on ]D.

Proof of Lemma 2:Due to the boundary condition~6! on ¹u and the Poincare´ inequality, we
get i¹ui2<l1

21iDui2. Hence it is sufficient to prove thatiDui is bounded. We first show tha
* t

t11iDui2ds is bounded. In fact, using

2u~Du,u!u<2iDuiiui< 1
2 iDui212iui2 ,

in ~10!, we get
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d

dt
iui21iDui212~a22!iui212biui4<0 . ~17!

Since

2biui412~a22!iui25biui212bS iui41
2a242b

2b
iui2D

5biui212bS iui21
2a242b

4b D 2

2
~2a242b!2

8b

>biui22
~2a242b!2

8b
,

we conclude

d

dt
iui21iDui21biui2<

~2a242b!2

8b
5

~212m1b!2

8b
. ~18!

Integrating~18! with respect tot from t to t11 and noting Lemma 1, we see that* t
t11iDui2ds

is bounded.
Now, multiplying ~4! by D2u and integrating overD, it follows that

1

2

d

dt
iDui21iD2ui212E

D
DuD2udxdy1aiDui21E

D
uG* u2D2udxdy50 . ~19!

Note that the third term in~19! can be estimated by

2U E
D

DuD2udxdyU< 1
2 iD2ui212iDui2 , ~20!

and the fourth term in~19! can be estimated by

U E
D

uG* u2D2udxdyU
5U E

D
~Du!2G* u2dxdy1E

D
uDuDG* u2dxdy12E

D
¹u•Du¹G* u2dxdyU

<~aiui212l1
2 ~1/2! i¹Gi`iui21 1

2 iDGi`iui2!iDui21 1
2 iDGi`iui4

<~a12l1
2 ~1/2! K11 1

2 K2!iui2iDui21 1
2 K2iui4 ,

wherea, K1 , K2 are various upper bounds ofG defined in~7!, andR is the L2 bound of the
solutionu as in Lemma 1. Hence by~19! we get

d

dt
iDui2<2F S a12l1

2 ~1/2! K11
1

2
K2D iui22a12G iDui21K2iui4 . ~21!

Finally, applying the uniform Gronwall inequality~21! and noting Lemma 1, we conclude th
iDui2 is uniformly bounded for allt>0. This proves Lemma 2. j

We now have the following global existence and uniqueness result:
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Theorem 1: Let u0(x,y)PL2(D) and G satisfies~7!, then the initial-boundary value problem
~2!, ~5!, ~6! has a unique global solution uPL`(0,̀ ;H0

2(D)). Moreover, the corresponding
solution semigroup S(t), defined by

u5S~ t !u0 ,

has a bounded absorbing set

B05$uPH0
2~D !:~ iui21i¹ui21iDui2!1/2<R̃% ,

where R̃is a postive constant, depending on the uniform bound ofiui , i¹ui , iDui . Finally, the
solution semigroup S(t), when restricted on H0

2(D), is continuous from H0
2(D) into H0

2(D) for
t.0.

Proof: The global existence, uniqueness, and absorbing property follow from standard
ments~e.g., Refs. 10, 13–15, 11! together with Lemmas 1, 2 above. The absorbing property
follows from these two lemmas.

We now prove thatS(t) is continuous inH2(D)ùH0
1(D).

Suppose thatu0 , v0PH0
2(D) with iDu0i , iDv0i<2R1 , we denote byu(t), v(t) the corre-

sponding solutions, i.e.,u(t)5S(t)u0 , v(t)5S(t)v0 . Let w(t)5u(t)2v(t). Thenw(t) satisfies

wt1D2w12Dw1aw1wG* u21vG* @~u1v !w#50 . ~22!

Applying the Gagliardo–Nirenberg inequality,

iui`<C0iDui ,

and the Poincare´ inequality,

iwi<
1

l1
iDwi ,

we obtain~similar to the proof of Lemma 2!,

d

dt
iDwi2<C1iDwi2 ,

which implies thatiDw(t)i2<iDw0i2 exp(C1t) for some positive constantC1 . This shows that
S(t) is continuous. j

This theorem implies that~4!–~6! defines an infinite dimensional nonlocal dynamical syste
In the rest of this section, we consider the global attractor for the nonlocal dynamical s

~4!–~6!. We will establish the following result about the global attractor:
Theorem 2: There exists a global attractorA for the nonlocal dynamical system (2), (5), (6

The global attractor is thev-limit set of the absorbing set B0 (as in Theorem 1), and it has th
following properties:

~i! A is compact and S(t)A5A, f or t.0;
~ii ! for every bounded set B,H0

2(D), limt→` d(S(t)B,A)50;
~iii ! A is connected in H0

2(D), where d(X,Y)5supxPX in f yPYix2yiH
0
2(D) is the Hausdorff

distance.

Moreover, the global attractorA has finite Hausdorff dimension dH(A)<m, where

m;CS 11A2am

b D ,
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where C.0 is a constant depending only on the domain D, and a.0,b.0 are the upper, lower
bounds of the kernel G, respectively.

Proof: The existence and properties ofA are quite standard now~see Refs. 10, 14, and
references therein!. We omit this part, and only estimate the dimensions below.

As in Ref. 10, we may use the so-called Constantin–Foias–Temam trace formula~which
works for the semiflowS(t) here! to estimate the sum of the global Lyapunov exponents ofA.
The sum of these Lyapunov exponents can then be used to estimate the upper boundsA’s
Hausdorff dimension,dH(A). To this end, we linearize Eq.~4! about a solutionu(t) in the global
attractor to obtain an equation forv(t) and then use the trace formula to estimate the sum of
global Lyapunov exponents. Doing so, we obtain

v t1L~u~ t !!v50 , ~23!

where

L~u~ t !!v5D2v12Dv1av1vG* u212uG* @uv# .

This equation is supplemented withv(x,y,0)5j(x,y)PH0
2(D). Denote byj1(x,y),..., jm(x,y),

m linearly independent functions inH0
2(D), and v i(x,y,t) the solution of ~23! satisfying

v i(x,y,0)5j i(x,y), i 51,...,m. Let Qm(t) represent the orthogonal projection ofH0
2(D) onto the

subspace spanned by$v1(x,y,t),...,vm(x,y,t)%.
We need to estimate the lower bound of Tr(L(u(t)Qm(t))), which gives bounds on the sum

of global Lyapunov exponents. Note that in Ref. 10, the linearized equation like~23! is written as
v t5L(u(t))v and in that case one needs to estimate the upper bound of Tr(L(u(t)Qm(t))).
Suppose thatf1(x,y,t), . . . ,fm(x,y,t) is an orthonormal basis (if j i51) of the subspace
Qm(t)H0

2(D) for any t.0.
Now we estimate the lower bound of Tr(L(u(t)Qm(t))). It is easy to see that

Tr~L~u~ t !Qm!!5(
j 51

m

~D2f j12Df j1af j1f jG* u2,f j !1(
j 51

m

~2uG* @uf j #,f j ! .

Since (2Df j ,f j )>2(1/e iDf j i21eif j i2) for any constante.1, we get

Tr~L~u~ t !Qm!!>(
j 51

m F S 12
1

e D iDf j i21bif j i2iui21~a2e!if j i2G
1(

j 51

m

2E
D

uf jG* @uf j #dxdy

>(
j 51

m S 12
1

e D iDf j i21(
j 51

m

~biui21a2e22aiui2!

5(
j 51

m S 12
1

e D iDf j i21@12m2e1~b22a!iui2#m . ~24!

We introduce notationf (x,y)5( j 51
m uf j u2. Note thatm5*Df (x,y)dxdy. By the generalized

Sobolev–Lieb–Thirring inequality,10,13

E
D

f 3~x,y!dxdy<K0(
j 51

m

iDf j i2 ,

whereK0.0 depending only on the domainD. Moreover, due to the fact thatL3(D)
�

L1(D),
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m35S E
D

f ~x,y!dxdyD 3

<C2E
D

f 3~x,y!dxdy<K0C2(
j 51

m

iDf j i25C(
j 51

m

iDf j i2

for some constantsC2.0,C.0 depending only on the domainD.
Thus,

S 12
1

e D (
j 51

m

iDf j i2>S 12
1

e D 1

C
m3 . ~25!

Therefore, by~24!–~25! we have

Tr~L~u~ t !Qm!!>

12
1

e

C
m32~m211e1~2a2b!iui2!m

>

12
1

e

C
m32S m211e1~2a2b!

m

b Dm.0 ~26!

whenever

m.AFm211e1~2a2b!
m

b G C

12
1

e

. ~27!

The right-hand side of~27! has the minimal value of

m;CS 11A2am

b D ~28!

whene511A(2am/b).
As in Ref. 10 we conclude that the Hausdorff dimension ofA is estimated as in~28!. This

proves Theorem 2. j

III. NONLOCAL SWIFT–HOHENBERG MODEL WITH NON-NEGATIVE KERNEL

The analysis in the last section for positive kernels does not appear to work for non-ne
kernels. However, for a special non-negative kernel, we can still work out the estimate o
nonlocal effects. In this section, we consider the nonlocal Swift–Hohenberg model with a s
kernalG which satisfiesG>0, i.e.,G has the lower boundb50 in ~7!.

Define

J~r !5H c expS 2
1

12r 2D if r ,1

0 if r>1

, ~29!

where

c5S E
D1

expS 2
1

12r 2DdxdyD 21

, ~30!

r 5Ax21y2 andD15$(x,y)PR2;r ,1%,D. We further define ford.0,
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Jd~r !5d22JS r

d D .

Let C0(D̄) be the space of continuous functions with compact support inD. For any f

PC0(D̄), we define the mollifier off (x,y) as in Ref. 12 by the convolution,

Jd* f 5E
D

Jd~A~x2x0!21~y2y0!2! f ~x0 ,y0!dx0dy0 . ~31!

It is known that12

iJd* f 2 f iC0(D̄)→0 as d→0 . ~32!

Thus for any given«1.0, there exists ad05d0(e1).0, such that

Jd0* f > f 2«1 . ~33!

We consider a special kernelG(r )5Jd0
(r ), with the same family ofd05d0(e1) as in~33!, for the

nonlocal Swift–Hohenberg equation~2!. ThenG satisfies

0<G<
c

d0
2 , ¹G, DGPL`~D ! . ~34!

Note that the lower bound ofG is b50, so the derivation in the proof of Lemma 1 does not app
But due to the nice property~33! for the special kernelG(r )5Jd0

(r ), we can still get similar
energy estimates~see Lemma 4 below and the remarks following the proof of Lemma 4! and thus
the estimate of the Hausdorff dimension of the attractor.

The result on the global existence and uniqueness of the solution for the nonlocal S
Hohenberg equation~2! with the special kernelG(r )5Jd0

(r ) can be obtained as in Refs. 15, 1
10 ~note that this result does not require the time-uniform estimates as in Lemma 1!, and we state
it in the following lemma.

Lemma 3:Let u0(x,y)PL2(D) and G5Jd0
(r ). Then the problems~4!–~6! have a unique

solutionu(x,y) such that

uPC~@0,T#;L2~D !!ùL`~~0,T!;H0
2~D !! ,

for t.0.
By Lemma 3 and a standard regularity argument as in Refs. 15, 11 with the Sobolev e

ding theorem,12 we also have

u~ t,x,y!PC0~D̄ !, ;t>t0.0 .

Thus ~33! implies that

G~r !* u2>u2~x,y!2«1 . ~35!

Now we proceed to estimate the dimension of the global attractor for the nonlocal S
Hohenberg model with the special non-negative kernalG>0. As we learned from the last sectio
we can obtain the estimate for the dimension of the attractor as long as we can obtain
estimates in Lemma 1 for our specialG. These estimates are collected in the following lemm

Lemma 4:For any solution as mentioned in Lemma 3, we have
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iui2<exp~22t1~41uau!t0!iu0i21
~«1131uau!2uDu

4
, t>t0 ,

and

E
t

t11
iDu~s!i2ds<exp~22t1~21uau!t0!iu0i21

3~«1131uau!2uDu
4

, t>t0 .

Proof: Taking the inner product of~4! with u, we get

1

2

d

dt
iui21iDui212~Du,u!1aiui21E

D
u2~x,y!G* u2~x,y!dxdy50 .

Using ~33! or ~35! and the Young’s inequality,10

2~Du,u!.2 1
2 iDui222iui2 ,

we have

1

2

d

dt
iui21

1

2
iDui21iui22~«1131uau!iui21E

D
u4dxdy<0 .

Since

E
D

@u42~«1131uau!u2#dxdy5E
D

@u22 1
2 ~«1131uau!#2dxdy2

~«1131uau!2uDu
4

.

Therefore,

d

dt
iui21iDui212iui2<

~«1131uau!2uDu
2

, t>t0 .

Lemma 4 is thus proven by using the Gronwall inequality. j

The nice property for the special kernelG(r )5Jd0
(r ), i.e.,~33! or ~35!, is crucial in the above

estimates in Lemma 4, which are required for the estimate of the Hausdorff dimension
global attractor below. With this nice property, the issue of dividing byb50, as in the proof of
Lemma 1, is prevented.

Similarly, following the discussion in the last section, we have global attractorAd0
for our

special non-negative kernelG(r ), and the estimate for the Hausdorff dimension ofAd0
is

dH~Ad0
!<AC~11m!@4md0

21c~«1131uau!2uDu#
2md0

2 , ~36!

where the constantC.0 depends only on the domainD andc is defined in~30!.
It is interesting to note that for the special non-negative kernelG(r )5Jd(r ), we have

Jd(r )* u2(x,y)→u2(x,y) as d→0; see~32!. So the nonlocal Swift–Hohenberg model~2! ap-
proaches the local Swift–Hohenberg model~3! formally asd→0. However, as we see in~36! and
in Theorem 3 in the next section, there is still a difference between the dimensions of the
attractors in these two models.
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IV. LOCAL SWIFT–HOHENBERG MODEL

Similarly, for the two-dimensional local Swift–Hohenberg equation~3!, we can obtain the
existence of the global attractorÃ. We omit this part and will only estimate the dimension ofÃ.

Theorem 3: There exists the global attractorÃ for the local dynamical system~3!, ~5!, ~6!.
The Hausdorff dimensiondH(Ã) of Ã is finite, and dH(Ã)<m1;C(11Am), where C is a
constant depending only on the domain D.

Proof: As in the proof of Theorem 2, we consider the linearized equation of~3!, defined by

v t1L1~u~ t !!v50,

where

L1~u~ t !!v5D2v12Dv1av13u2v.

Then we estimate

Tr~L1~u~ t !Qm!!5(
j 51

m

~D2f j12Df j1af j13u2f j ,f j !

5(
j 51

m

@ iDf j i212~Df j ,f j !1aif j i213~u2f j ,f j !#

>(
j 51

m S 12
1

e D iDf j i21(
j 51

m

~a2e! ,

where we have used the fact that 3(u2f j ,f j )>0. Noting again thatm3<C( j 51
m iDf j i2 and a

512m, we have

Tr~L1~u~ t !Qm!!>

12
1

e

C
m32~m211e!m.0 , ~37!

whenever

m.A~m211e!
C

12
1

e

. ~38!

The right-hand side of~38! has the minimal value of

m;C~11Am! ~39!

whene511Am. This completes the proof. j

V. DISCUSSIONS

In this paper, we have discussed the Hausdorff dimension estimates for the global attrac
the two-dimensional nonlocal and local Swift–Hohenberg model for Rayleigh–Benard co
tion.

The Hausdorff dimension for the global attractor of the nonlocal model with positive ke
G.0 is estimated as
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m;CS 11A2am

b D ,

while for the local model this estimate is

m;C~11Am! ,

whereC.0 is an absolute constant depending only on the fluid convection domain, andm.0
measures the difference of the Rayleigh number from its critical convection onset value. No
a,b.0 are the upper and lower bounds, respectively, of the kernelG of the nonlocal nonlinearity
in ~2!.

The two dimension estimates above differ by an absolute constant (2a2b) (m/b), which
depends only on the the Rayleigh number throughm, and upper and lower bounds of the kernelG
of the nonlocal nonlinearity. Moreover, if the kernelG is a constant function~thus,a5b5G),
then the dimension estimate for the nonlocal model becomes

m;C~11A2m! ,

which still differs from the dimension estimate for the local model by a constant depending o
Rayleigh number throughm.

For a special non-negative kernelG(r )5Jd(r )>0, the nonlocal Swift–Hohenberg model~2!
approaches the local Swift–Hohenberg model~3! formally sinceJd(r )* u2(x,y)→u2(x,y) as d
→0. However, as we see in~36! and in Theorem 3 above, there is still a difference between
dimensions of the global attractors in these two models.16,17
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The geometrical theory of constraints applied to the
dynamics of vakonomic mechanical systems:
The vakonomic bracket

Sonia Martı́nez,a) Jorge Cortés,b) and Manuel de Leónc)

Instituto de Matema´ticas y Fı́sica Fundamental, Consejo Superior de Investigaciones
Cientı́ficas, Serrano 123, 28006 Madrid, Spain
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A vakonomic mechanical system can be alternatively described by an extended
Lagrangian using the Lagrange multipliers as new variables. Since this extended
Lagrangian is singular, the constraint algorithm can be applied and a Dirac bracket
giving the evolution of the observables can be constructed. ©2000 American
Institute of Physics.@S0022-2488~00!02802-4#

I. INTRODUCTION

There are two different approaches to Lagrangian systems subjected to nonholonom
straints. The first one is based on the d’Alembert principle1–5 and the corresponding equations
motion are termed nonholonomic. The second approach is purely variational and was propo
Kozloz.6 Arnold, Kozlov, and Neishtadt1 coined the name of vakonomic~mechanics of variationa
axiomatic kind! to refer to that sort of mechanics. Interesting comparisons between both
proaches can be found in Refs. 3, 7, and 8.

Both topics have received a lot of attention in recent years in the context of geom
mechanics. Nonholonomic mechanics has been studied from a Hamiltonian point of vie9–11

from a Lagrangian one,12–17 and even from a Poisson one.18–20 Several papers are devoted
highlighting the equivalence among these viewpoints.21–23 Indeed, nonholonomic mechanics h
many applications to engineering~robotics, control of satellites, etc.!, since it seems appropriate t
model the dynamical behavior of phenomena like rolling, etc.~see Ref. 2, and references therein!.
On the other hand, vakonomic mechanics is applied to study problems of optimal control t
~being related to sub-Riemannian geometry!,24,25 economic growth theory,26 motion of microor-
ganisms at low Reynolds number,27 etc. A geometric unified approach was recently develope
Ref. 28.

The aim of this paper is to study the equations of motion of vakonomic mechanical syste
the framework of singular Lagrangian theories. As is well known, a vakonomic system give
a Lagrangian functionL5L(qA,q̇A) and constraintsF i(q

A,q̇A)50, can be equivalently describe
by the extended LagrangianL5L(qA,l i ,q̇A,l̇ i)5L(qA,q̇A)1l iF i ~see Ref. 1!. This new La-
grangian is obviously singular, and its dynamics can be studied using Dirac’s machine
constraints.29 A first step in this direction is due to Carin˜ena and Ran˜ada,30 where they considered
a global constraint function and treated the problem in the Lagrangian formalism.

Our program here is to apply the geometric version of the Dirac–Bergmann constraint
rithm due to Gotay and Nester31–33 to the extended LagrangianL. For that purpose, we firs
enlarge the original space of velocitiesQ to P5Q3Rm, and then we apply Gotay–Nester
procedure toL. We assume thatL is a natural Lagrangian, that is,L5T2U whereT is the kinetic
energy derived from a Riemannian metric onQ, andU is the potential energy. In addition, th
constraints are supposed to be linear in the velocities. With these assumptions, we find t
algorithm stabilizes at the second step or, in other words, there are only secondary cons

a!Electronic mail: ceem304@imaff.cfmac.csic.es
b!Electronic mail: ceec306@imaff.cfmac.csic.es
c!Electronic mail: mdeleon@imaff.cfmac.csic.es
20900022-2488/2000/41(4)/2090/31/$17.00 © 2000 American Institute of Physics
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Moreover, all the constraints are second class in according with Dirac’s terminology. This la
implies that the final constraint submanifoldM2 is symplectic with respect to the canonic
symplectic structure onT* P and the symplectic structure induced there provides a Pois
bracket that is just the same induced by the ambient Dirac bracket.29,34 A first result is that this
procedure ‘‘reduces’’ the phase space fromT* P to M2 .

Furthermore, the final constraint submanifold is diffeomorphic withM̄3Rm, whereM̄ is the
image inT* Q by the Legendre transformation ofM. An interesting consequence of this identi
cation is the possibility of defining a Poisson bracket on functions onM̄ which produces a
function onM2 ~since we have to take account of the Lagrange multipliers!. We are then impelled
to call this bracket the vakonomic bracket, in distinction with the so-called nonholonomic br
in nonholonomic mechanics.19,20,21,23,35Indeed, the vakonomic bracket gives the evolution of
observables of the vakonomic system.

If we consider a more general kind of constraints or Lagrangian not necessarily re
~situations which are more common in applications!, the process is of course very much involve
since tertiary and higher order constraints will appear. We leave this problem for further res

The paper is organized as follows. In Sec. II, we review the two kinds of mechanics,
holonomic and vakonomic mechanics, from a unified variational approach. The constraint
rithm in its geometric version is described in Sec. III and applied to vakonomic mechanics in
IV and V. In Sec. VI, we study the second-order differential problem and in Sec. VII, we cla
the constraints according to Dirac. In Sec. VIII, we discuss what happens if the constraints a
globally defined onTQ.

II. VARIATIONAL METHODS IN MECHANICS

In this section we shall give a brief account of the variational principles involved in
derivation of the equations of motion in classical mechanics. For a more extended discussi
for instance, Refs. 3, 8, 28 and 36.

Let Q be ann-dimensional configuration manifold, andL:TQ→R an autonomous Lagrangia
function. If (qA) are coordinates onQ, we denote by (qA,q̇A) the natural bundle coordinates o
TQ such that the tangent bundle projectiontQ :TQ→Q reads astQ(qA,q̇A)5(qA).

Given two pointsx,yPQ we define the manifold of twice differentiable curves joiningx and
y as

C2~x,y!5$c:@0,1#→Q / c is C2, c~0!5x and c~1!5y%.

Let c be a curve inC2(x,y). As is well known, the tangent space ofC2(x,y) at c is given by

TcC2~x,y!5$X:@0,1#→TQ / X is C1, X~ t !PTc~ t !Q,X~0!50 and X~1!50%.

We will assume here thatL is subjected to nonholonomic linear constraints given by a subm
fold M of TQ. Alternatively, the submanifoldM can be viewed as the total space of a vec
subbundle ofTQ, or, equivalently, as a distribution onQ which will be denoted by the same lette

Therefore, if the annihilatorM° of M is locally spanned bym independent one-forms
$v1 ,...,vm%, wherev i5m iAdqA, we have that the constraint functions$F1 ,...,Fm% are just the
evaluation functions of this basis, that is,F i(vq)5^vq ,v i(q)& for all vqPTqQ, 1< i<m. Now,
we introduce the submanifold ofC2(x,y) which consists of those curves which are compati
with the constraint submanifoldM,

C̃2~x,y!5$c̃PC2~x,y! / c8 ~ t !PMc̃~ t ! , ;tP@0,1#%.

Given a curvec̃P C̃2(x,y), the constraints allow us to consider a special vector subspac
Tc̃C2(x,y),

Vc̃5$XPTc̃C2~x,y! / v i~X!50, 1< i<m%,
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which are the allowed variations. Then, ifX5XA(]/]qA), we deduce thatXPVc̃ if and only if

m iAXA50, ;1< i<m, ~1!

along the curvec̃.
Next, define a functionalJ by

J:C2~x,y!→R

c°E
0

1

L~ ċ~ t !!dt.

A direct computation using integration by parts shows that~see Ref. 8!

dJ~c!~X!5E
0

1S ]L

]qA2
d

dt
S ]L

]q̇AD DXAdt

for cPC2(x,y) andXPTcC2(x,y).

A. Unconstrained systems

In this case,M5TQ. The Hamilton principle states that a curvecPC2(x,y) is a motion of the
Lagrangian system defined byL if and only if c is a critical point ofJ; that is, iff dJ(c)(X)
50 for all XPTcC2(x,y), or

E
0

1S ]L

]qA2
d

dt
S ]L

]q̇AD DXAdt50, ;XA.

This condition is equivalent to the Euler–Lagrange equations

d

dt
S ]L

]q̇AD 2
]L

]qA 50, 1<A<n.

B. Nonholonomic mechanics

In this case, a curvec̃P C̃2(x,y) is a motion if and only if it satisfiesdJ( c̃)(X)50, for all
XPVc̃ , that is,

E
0

1S ]L

]qA2
d

dt
S ]L

]q̇AD DXAdt50,

for all XA satisfying Eq.~1!.
As before, we deduce thatc̃ is a motion if and only if

S ]L

]qA2
d

dt
S ]L

]q̇AD DXA50, ~2!

for all XA satisfying Eq.~1!, which is just the statement of d’Alembert’s principle. Therefore,c̃ is
a motion for the nonholonomic system if and only if

d

dt
S ]L

]q̇AD 2
]L

]qA 52l im iA , 1<A<n, ~3!

for some Lagrange multipliersl1,...,lm.
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C. Vakonomic mechanics

In vakonomic mechanics, a curvec̃P C̃2(x,y) is a motion if and only ifdJ( c̃)(X̃)50, for all
X̃PTc̃C̃2(x,y), i.e., the motions are the extremals of the restriction of the functional to the cu
satisfying the constraints.

Now, using the Lagrange multipliers theorem in an infinite dimensional context, we de
~see Refs. 1, 3, 8, and 36! that c̃ is an admissible regular motion if and only if there existm
functionsl1,...,lm, l i :@0,1#→R such that

d

dt S ]L

]q̇AD2
]L

]qA 52l i S ]m iA

]qB q̇B2
]m iB

]qA q̇BD2
dl i

dt
m iA , 1<A<n. ~4!

An alternative approach to vakonomic mechanics is the following. From~4! we deduce that a
curve c̃5(qA(t)) in C̃2(x,y) is a solution of the vakonomic equations if and only if there ex
local functionsl1,...,lm on R such thatc̄(t)5(qA(t),l i(t)) is an extremal for the extende
Lagrangian

L:T~Q3Rm!→R, L5L1l iF i ,

i.e., it satisfies the Euler–Lagrange equations

d

dt S ]L
]q̇AD2

]L
]qA 50, 1<A<n,

d

dt S ]L
]l̇ i D 2

]L
]l i

5F i~qA,q̇A!50, 1< i<m

~see Refs. 1, 3, 8, and 36 for details!.

III. THE CONSTRAINT ALGORITHM

First of all, let us recall the geometric formulation for Lagrangian mechanics~see Ref. 37!.
Let S5]/]q̇A

^ dqA be the canonical almost tangent structure onTQ and D5q̇A(]/]q̇A) the
Liouville vector field onTQ. From the LagrangianL, we construct the Poincare´–Cartan two-form
vL52dS* (dL) and the energyEL5D(L)2L.

Then, the equations of motion can be equivalently written as

i xvL5dEL . ~5!

Indeed, if the LagrangianL is regular, i.e., its Hessian matrix Hess(L)5(]2L/]q̇A]q̇B) is not
singular, thenvL is symplectic, and~5! has a unique solutionGL which is a second-order differ
ential equation~SODE!. The solutions ofGL are just the ones of the Euler–Lagrange equations
L is not regular, then~5! has no solution in general, and even if a solution exists, it will not
unique or a SODE.

In order to treat with this kind of system, Gotay and Nester31–33 developed a constrain
algorithm ~a geometrization of the Dirac–Bergmann algorithm!, applicable in the general frame
work of presymplectic manifolds as is described in the following. A presymplectic system
triple, ~M, v, a!, that consists of a smooth manifoldM, a closed two-formv with constant rank,
and a closed one-forma.

We are interested in searching the possible solutions of

i xv5a. ~6!

Let [:TM→T* M be the map defined by[(X)5 i Xv. If v is not symplectic, then[ is not
surjective and, consequently,~6! has no global solution onM in general.
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Consider the points ofM where~6! has a solution and assume that this set is a subman
M2 of M15M ~this will be our case, since we are assuming thatv has constant rank!. It could
still happen that the solutions onM2 are not tangent toM2 . In consequence, we take a subma
fold M3 of M2 where the solutions are tangent toM2 . Continuing with this process repeatedl
we generate a sequence of submanifolds

¯�Mi¯�M2¯�M15M,

in such a way that if the algorithm stabilizes for somek, i.e.,Mk5Mk11[Mf , then there exists
a vector fieldG on Mf such that

~ i Gv5a! /Mf
.

Notice that if we finish the process at the stepk51, it will mean that there is a global solutionG
on the whole ofM.

Alternatively, the above submanifolds can be obtained as follows:

Mi5$xPM / a~x!~z!50, ;zPTxMi 21
' %,

where

TxMi 21
' 5$zPTxM / v~x!~v,z!50, ;vPTxMi 21%.

We callM2 the secondary constraint submanifold,M3 the tertiary constraint submanifold, and
generalMi will be the i-ary constraint submanifold. If the algorithm stabilizes, thenMf will be
the final constraint submanifold. Accordingly, the~local! functions defining these submanifold
will be termed secondary constraints, ternary constraints, and so on.

IV. THE LAGRANGIAN FORMALISM

Let Q be ann-dimensional manifold representing the configuration space of a mecha
system described by a Lagrangian functionL:TQ→R and subjected to linear nonholonom
constraints given by a submanifoldM of TQ.

We shall assume that the Lagrangian is of natural type, that isL5T2U, whereT is the
kinetic energy of a Riemannian metricg on Q, andU:Q→R is a potential energy.

In bundle coordinatesL reads as

L~qA,q̇A!5 1
2 gAB~q!q̇Aq̇B2U~q!.

As we have seen earlier, the constraint submanifoldM is locally defined as the zero set ofm
independent linear nonholonomic constraintsF i(q

A,q̇A)5m iA(q)q̇A.
For the sake of simplicity, we shall assume that the constraintsF i are globally defined on the

whole TQ. Later, we shall consider the general case.
Consider the product manifoldP5Q3Rm with local coordinates (qA,l i). As we have seen in

Sec. II, the equations of motion corresponding to the vakonomic problem given byL andM can be
formulated in terms of the extended lagrangianL:TP→R, L5L1l iF i .

In what follows, we will identifyTP with TQ3TRm, and denote byp1 :TQ3TRm→TQ and
p2 :TQ3TRm→TRm the canonical projections ofTQ3TRm onto TQ andTRm, respectively.

The Poincare´–Cartan two-formvL associated toL is

vL5S ]gAC

]qB q̇C1l i
]m iA

]qB DdqA∧dqB1m iAdqA∧dl i1gBAdqA∧dq̇B.
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Notice thatvL is not symplectic because of the singular character ofL. Indeed,]L/]l̇ i50.
However, it still has constant rank as shows its Hessian matrix

Hess~L!5S ]2L
]q̇A]q̇B

]2L
]l̇ i]q̇B

]2L
]q̇A]l̇ j

]2L
]l̇ i]l̇ j

D 5S Hess~L ! 0

0 0
D .

Therefore, we have

rank~vL!5rank~Hess~L!)5rank~Hess~L !)5rank~vL!52n.

We deduce that the triple (TP,vL ,dEL) is a presymplectic system, withEL5D(L)2L the
energy ofL.

In this presymplectic framework the equations of motion are written as

i XvL5dEL . ~7!

Next, we will apply Gotay and Nester’s algorithm described in Sec. III to find a solution of~7!.
Put P15TP, then

P25$xPP1 /^dEL ,Z&~x!50,;ZP~TxP1!'%,

where

~TxP1!'5$ZPTxP1 /vL~Z,W!50,;WPTxP1%5$ZPTxP1 /[L~Z!50%.

Thus, to obtainP2 we need first to calculate ker[L .
A direct computation shows that

i]

]l̇ i
vL 50.

Moreover, we also have

iZivL50,

where

Zi5
]

]l i2gBCm iC

]

]q̇B , 1< i<m.

Therefore, since the vector fields$]/]l̇ i ,Zi% are linearly independent and rankvL52n, we
deduce that they generate ker[L , that is,

ker[L5spanH Zi ,
]

]l̇ iJ .

Remark IV.1:It is not difficult to see that

dim~ker[L)52 dim~V~TP!ùker[L!,
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where V(TP) is the vertical bundle overP. Therefore,L is a singular Lagrangian of Type I
according to the classification in Refs. 38 and 39.

Notice thatEL5(p1)* (EL), whereEL is the energy corresponding to the LagrangianL. In
what follows, we will writeEL instead of (p1)* (EL), for brevity.

Now, in order to compute the constraint functions which defineP2 , we calculate
(dEL)x(]/]l̇ i) and (dEL)x(Zi), 1< i<m,

~dEL!S ]

]l̇ i D 5
]EL

]l̇ i
50,

~dEL!~Zi !5Zi~EL!5S ]

]l i
2gBCm iC

]

]q̇BD S ]L

]q̇A
q̇A2L D

52gBCm iC

]L

]q̇B
1gBCm iC

]L

]q̇B
2gBCm iCgABq̇A52m iAq̇A,

which are the original constraints.
Thus, we have

P25$xPP1 /F i~p1~x!!50,1< i<m%.

Next, we shall computeTP2 . TakeX a vector field tangent toP2 , that is, if

X5X1
A ]

]qA
1X2

i ]

]l i
1X3

A ]

]q̇A
1X4

i ]

]l̇ i
,

we have

X~F i !5X1
Aq̇B

]m iB

]qA 1X3
Am iA50, ; i . ~8!

The matrix (m iA) has rankm, so we can assume that the submatrix (m i j ), 1< i , j <m is invertible,
with inverse matrix (m j i ). Equation~8! can be written as

X3
j m i j 1X3

am ia52X1
Aq̇B

]m iB

]qA ,

where 1< i , j <m andm11<a<n. Now, multiplying by (m j i ) we obtain that

X3
j 52m j i X1

Aq̇B
]m iB

]qA 2m j i X3
am ia .

Consequently, we deduce thatTP2 is spanned by the vector fields

H ]

]l i
,

]

]l̇ i
,

]

]qA
2q̇B

]m iB

]qA
m j i

]

]q̇ j
,

]

]q̇a
2m j i m ia

]

]q̇ jJ .

Next, we want to computeTP2
' . Consider a vector fieldY,

Y5Y1
A ]

]qA
1Y2

i ]

]l i
1Y3

A ]

]q̇A
1Y4

i ]

]l̇ i
,
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such thatYPTP2
' . After some calculations, we obtain that

Y1
A50,

Y3
A52gEAm iEY2

i .

Then

dEL~Y!5gABq̇BY3
A52gABq̇BgEAm iEY2

i 52q̇Em iEY2
i 5F iY2

i 50, ~9!

on P2 and, therefore,P35P2 . This means that the algorithm stabilizes atP2 , andP2 is the final
constraint submanifold.

Our aim in the rest of this section is to get explicit expressions for the solutions of Eq.~7!. For
that purpose, take an arbitrary vector fieldG on TP locally written as

G5AA
]

]qA
1Bi

]

]l i
1CA

]

]q̇A
1Di

]

]l̇ i
,

and assume that it satisfies

i GvL5dEL .

A straightforward computation shows that

i GvL5FABF S ]gBC

]qA 2
]gAC

]qB D q̇C1l i S ]m iB

]qA 2
]m iA

]qB D G2Bim iA2CBgABGdqA

1AAm iAdl i1AAgABdq̇B,

dEL5F1

2

]gBC

]qA q̇Cq̇B1
]U

]qAGdqA1gABq̇Bdq̇A.

Comparing the coefficients ofdq̇B anddl i we deduce that

ABgAB5q̇BgBA , AAm iA50,

which impliesAA5q̇A, 1<A<n, and

m iAq̇A50, 1< i<m. ~10!

Comparing now the coefficients ofdqA, we find thatBi andCB are related as follows:

Bim iA1CBgAB5l i q̇DS ]m iD

]qA 2
]m iA

]qD D1S 1

2

]gDC

]qA 2
]gAC

]qD D q̇Cq̇D2
]U

]qA ,

or, equivalently,

CB5gABq̇DFl i S ]m iD

]qA 2
]m iA

]qD D1S 1

2

]gCD

]qA 2
]gAC

]qD D q̇CG2gAB
]U

]qA2gABm iABi . ~11!

Moreover, sinceG has to be tangent toP2 , we get

CBm jB1q̇Aq̇B
]m jB

]qA 50. ~12!

Introducing the expression forCB obtained in~11! into ~12!, we have
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gABm jBm iABi5q̇Aq̇B
]m jB

]qA 1m jBgABq̇DFl i S ]m iD

]qA 2
]m iA

]qD D
1S 1

2

]gCD

]qA 2
]gAC

]qD D q̇CG2m jBgAB
]U

]qA .

But the matrixD5(Di j ), with

Di j 5gABm iAm jB , ~13!

is regular~see Refs. 16 and 17!, soBi is explicitly given as

Bi5Di j q̇Aq̇B
]m jB

]qA 1Di j m jBgABq̇DFlkS ]mkD

]qA 2
]mkA

]qD D
1S 1

2

]gDC

]qA 2
]gAC

]qD D q̇CG2Di j m jBgAB
]U

]qA , ~14!

where (Di j ) is the inverse matrix ofD.
Therefore, from~11! we obtain an explicit formula forCB,

CB5gABq̇DFlkS ]mkD

]qA 2
]mkA

]qD D1S 1

2

]gCD

]qA 2
]gAC

]qD D q̇CG2gAB
]U

]qA2gABm iAFDi j q̇Eq̇F
]m jF

]qE

1Di j m jFgEFq̇DFlkS ]mkD

]qE 2
]mkE

]qD D1S 1

2

]gDC

]qE 2
]gEC

]qD D q̇CG2Di j m jFgEF
]U

]qEG . ~15!

Summing up, a vector fieldG with local expression

G5q̇A
]

]qA
1Bi

]

]l i
1CA

]

]q̇A
1Di

]

]l i
, ~16!

satisfies the conditions

~ i GvL5dEL! uP2
,

~17!
GPTP2 ,

if and only if the coefficientsBi and CB satisfy ~14! and ~15!, respectively. The parametersDi

remain undetermined and give rise to a familyGD of vector fields satisfying the above-mentione
system.

Remark IV.2:The solutions we have obtained do not satisfy the SODE condition alongP2

sinceS(G)ÞD, that is,BiÞl̇ i , 1< i<m. In the next sections, we will find a submanifoldS of P2

and a vector fieldG̃ on it such that (i G̃vL5dEL) uS and (S(G̃)5D) uS hold simultaneously. The
existence of this submanifold can be ensured if a certain admissibility condition is fullfilled~see
Refs. 31 and 33!.

We are now in a position to make a first comparison between what we have obtaine
(TP,vL ,dEL) by means of the presymplectic formalism and the vakonomic formulation for
original LagrangianL.

First of all, the final constraint submanifoldP2 and M are closely related. Indeed,P2 and
M3TRm are diffeomorphic in a natural way. Moreover, letG be a vector field onP2 such that
i GvL5dEL . SinceTP2 is diffeomorphic toTM3TTRm, then G splits asG5(X,Z), with X
5Xl :M→TM and Z5Z(q,q̇) :TRm→TTRm vector fields onM and TRm depending on the pa
rametersl and (q,q̇), respectively.
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The obstacle for the above-mentioned splitting to be ‘‘clean,’’ that is,X being independent o
l and Z being independent of (q,q̇), is the coupling of the coordinates (q,q̇) and l in the
vakonomic equations, a fact that can also be seen in the explicit expressions forBi5Bi(q,l,q̇)
andCB5CB(q,l,q̇) @see~14! and~15!#. A look to these local expressions shows that if the cros
terms]m iB /]qA2]m iA /]qB vanish, then we will be able to project ‘‘cleanly’’G onto a vector
field X independent of parameters. Of course, this is just the case when the constrain
holonomic.8

On the other hand, this can also be done for some mechanical systems subjected to n
nomic constraints: for example, whenever we can get an expression for the Lagrange mul
(l i(t)) along solutions (qA(t),q̇A(t)). This is the case of the vertical rolling disk~see Example
VII.4!. In fact, we have thatXl0(t)5GL,M , where (l0

i (t)) is a special curve of Lagrange mult
pliers andGL,M is the nonholonomic vector field alongM. Consequently, the solutions of th
nonholonomic problem may be regarded as a subset of the vakonomic ones.8,24 As a by-product of
the application of the Gotay and Nester algorithm, we have found a geometric characteriza
this fact. However, it will not be true in general as pointed out in Ref. 8 and the question of
this can be done is still unanswered.

V. THE HAMILTONIAN FORMALISM

In this section, we will discuss the vakonomic system within the framework of the cotan
bundle T* P. First of all, note that the LagrangianL is almost regular, so we are just in th
assumptions of Gotay and Nester.31,32

Our interest in developing this formulation is to classify the constraints appeared in
process following Dirac’s criterion and, then, to define a Dirac bracket giving the evolutio
dynamical variables.

Consider the Legendre transformation ofL,

FL:TP→T* P.

As is well known, the Legendre mapping is a fibered mapping overP, i.e., pP+FL5tP , where
pP :T* P→P is the canonical projection. In local coordinates the Legendre transformation
as

FL~qA,l i ,q̇A,l̇ i !5S qA,l i ,S ]L

]q̇AD
~qA,q̇A!

1l i S ]F i

]q̇AD
~qA,q̇A!

,0D .

Therefore, if (qA,l i ,p̂A ,p̂i) are bundle coordinates inT* P we have

p̂A5gABq̇B1l im iA , p̂i50,

along the image ofFL.
Next we will prove thatL is almost regular according to the definition in Refs. 31 and 3
Proposition V.1: The following statements are true
( i ) FL(TP)5M1 is a submanifold of T* P.
(ii) FL is a submersion on its image and its fibers are connected submanifolds of TP. T

fore, L is almost regular.
Proof: The Jacobian matrix ofFL is

S I n 0 K 0

0 I m K̄ 0

0 0 Hess~L ! 0

0 0 0 0

D ,
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whereK5@ q̇C(]gBC /]qA)1l i(]m iB /]qA)# and K̄5(m iA). Then, rankFL52n1m at everyx
PTP, and from the rank theorem we deduce thatM1 is a submanifold ofT* P. Moreover, with
this differentiable structure the mappingFL:TP→M1 is a submersion.

Next, we will prove thatFL21(y)5span$(]/]l i)pP(y)%, for all yPM1 . In this case, the fibers
of FL would be connected. Indeed, letx1 ,x2PFL21(y). Then both are in the same fiber ofTP,
i.e., tP(x1)5tP(x2), and from the definition ofFL we deduce thatFL(p1(x1))5FL(p1(x2)).
Thereforep1(x1)5p1(x2) sinceFL is a diffeomorphism. Consequently,x1 andx2 differ only in
their componentsl̇ i . Thus, we have completed the proof. h

Notice thatM1 is locally defined by the equationsp̂i50 for all i. Denote byv15 j 1* vP ,
wherevP5dqA∧dp̂A1dl i∧dp̂i is the canonical symplectic form onT* P and j 1 :M1→T* P is
the canonical inclusion. Then

v15dqA∧dp̂A

is a closed two-form onM1 with constant rank 2n,dim M1 .
SinceL is almost regular, the energyEL is constant along the fibers ofFL and it induces a

well-defined functionh1 :M1→R by the relationh1+FL5EL . In fact,

h1~qA,l i ,p̂A,0!5 1
2 gAB~ p̂A2l im iA!~ p̂B2l jm jB!1U~q!.

Thus, the system (M1 ,v1 ,dh1) is presymplectic and we can apply to it the constraint algorith
It should be noticed that Gotay and Nester’s equivalence theorem~see Refs. 31 and 32! implies
that this algorithm will stabilize at a submanifoldM2 of M1 so that the following diagram

P15TP →
FL

T* P

i 1↑ ↘
FL1 ↑ j 1

P2 M1

↘
FL2 ↑ j 2

M2

is conmutative. Here,i 1 and j 2 are the canonical inclusions, andFLk5FLuPk
are submersions on

their imagesMk for k51,2.
The primary constraints are those definingM1 , that is, p̂i50. In order to calculate the sec

ondary constraints which in turn defineM2 , we first compute

ker~v1!y5~TyM1!'5$zPTyM1 /~v1!y~z,h!50,;hPTyM1%.

In terms of the induced coordinate system onM1 , the tangent space ofM1 aty is locally generated
by

H S ]

]qAD
y

,S ]

]l i D
y

,S ]

] p̂A
D

y
J .

If

z5z1
AS ]

]qAD
y

1z2
i S ]

]l i D
y

1z3
AS ]

] p̂A
D

y

PTyM1 ,
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h5h1
AS ]

]qAD
y

1h2
i S ]

]l i D
y

1h3
AS ]

] p̂A
D

y

PTyM1 ,

then we have

~v1!y~z,h!5~dqA∧dp̂A!y~z,h!5z1
Ah3

A2z3
Ah1

A50, ;h1
A ,h3

A .

Thusz1
A5z3

A50, which implies that

~TyM1!'5spanH S ]

]l i
D

y
J .

Thendh1(]/]l i)5(]h1 /]l i)52x i provides the new constraints

x i5m iAgAB~ p̂B2l jm jB!, 1< i<m.

Consequently,M2 is defined by the constraintsp̂i(y)50 andx i(y)50,1< i<m.
One can directly check thatM25FL(P2). As we already know,M2 is the final constraint

submanifold, that is,M25M f with the usual notations. Observe that we can introduce lo
coordinates inM2 as follows. Sincex i50, for all i, we have

l i5Di j m jAgABp̂B , 1< i<m.

Thus, we can take local coordinates (qA,p̂A) in M2 . More precisely, the mapping

~qA,p̂A!°~qA,Di j m jAgABp̂B ,p̂A,0!

definesM2 as a submanifold ofT* P.
We summarize the above results in the following diagram:

P15TP5T~Q3Rm! →
FL

T* P

i 1↑ ↘
FL1 ↑ j 1

P2[^F i50& M1[^ p̂i50&

↘
FL2 ↑ j 2

M2[^ p̂i50,x i50&.

Remark V.2:Observe thatv25 j 2* vP is in fact a symplectic form onM2 since

rank~v2!52n5dim M2 .

Then, we have that (M2 ,v2 ,h2) is a symplectic Hamiltonian system, whereh2 denotes the
restriction ofh1 to M2 . In local coordinates,

h25 1
2 gABp̂B~ p̂A2DikmkCm iAgCDp̂D!1U.

Let us denote byM̄5FL(M ) the submanifold ofT* Q obtained by means of the Legend
transformation associated toL. Indeed,M̄ is defined by the linear constraintsm iAgABpB , where
(qA,pA) stand for the bundle coordinates inT* Q. Notice thatM̄ is a vector subbundle ofT* Q
sinceFL is a vector bundle isomorphism overQ.
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To end this section, we will investigate the relation betweenM2 andM̄ , and will comparev2

with vQ , the canonical symplectic form onT* Q.
Let g:M3TRm→P2 be the global diffeomorphism betweenM3TRm and P2 , which is

induced from the canonical diffeomorphismTQ3TRm→T(Q3Rm). By means ofg, we define
the global mapping

d: M̄3Rm→M2

~ ȳ,l!°FL~g~FL21~ ȳ!,l,0!!.

In local coordinates we have

d~qA,pA ,l i !5~qA,l i ,pA1l im iA,0!.

Proposition V.3:d is a diffeomorphism.
Proof: Indeed, it is differentiable and its inverse is

M2→M̄3Rm,

~qA,p̂A!°~qA,p̂A2l im iA ,l i !,

wherel i5Di j m jAgABp̂B . Obviously,d21 is differentiable, too. h

Via d one obtains that

d* v25vQ2d~l im iA!∧dqA.

VI. THE SODE PROBLEM

In this section we will discuss the problem of finding a vector fieldG̃ satisfying the equations

~ i G̃vL5dEL! uS ,

~SG̃5D! uS ,

on some submanifoldS of P2 . That is, we are looking for a solution satisfying the SOD
condition, since our problem is variational and it requires second-order equations.

First of all, let us recall that points in the same fiber ofFL2 only differ one from each othe
in their componentsl̇ i . Indeed, ify0 is a point inM2 with local coordinates (q0

A ,l0
i ,p̂0A,0) then

we have

FL2
21~y0!5$~q0

A ,l0
i ,g0

AB~ p̂0B2l0
i m0iB!,l̇ i !/l̇ iPR%#P2 .

This fact implies that, if

GD
0
i 5q̇A

]

]qA
1Bi~q,l,q̇!

]

]l i
1CA~q,l,q̇!

]

]q̇A
1D0

i ]

]l̇ i

is an arbitrary solution of Eq.~17!, then it is projectable byFL onto a vector fieldḠ tangent toM2

defined by

Ḡ~y!5FL* ~GD
0
i ~x!!, xPFL21~y!,

sinceBi andCA do not depend onl̇ i .

Moreover, sinceḠ is such that (i Ḡv15dh1) uM2
, we deduce
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i Ḡv25dh2 ,

andḠ is the Hamiltonian vector field associated toh2 , i.e., Ḡ5Gh2
. For eachyPM2 , with local

coordinates (qA,l i ,p̂A,0) we have

Ḡ~y!5FL* ~GD
0
i ~x!!

5gAB~ p̂B2l im iB!S ]

]qAD
y

1Bi~x!S ]

]l i D
y

1S S ]gAD

]qB q̇D1l i
]m iA

]qB D
y

gBC~ p̂C2l im iC!1~Bim iA!~x!1~CBgAB!~x! D S ]

] p̂A
D

y

5gAB~ p̂B2l im iB!S ]

]qAD
y

1Bi~x!S ]

]l i D
y

1
]L
]qA S ]

] p̂A
D

y

,

wherex is an arbitrary point inFL21(y).
Now, we define the mappings:M2→P2 by putting

s~y!5s~qA,l i ,p̂A,0!5~qA,l i ,gAB~ p̂B2l im iB!,Bi~x!!, yPM2 , xPFL21~y!,

wherel i5Di j m jAgABp̂B . It is not difficult to see thats is well defined and that it does not depen
on the choice of the local coordinates onM2 . In fact, one can defines by taking the value ofGD

0
i

at x and then project the result by the canonical projection fromTP ontoP ~see Refs. 31 and 33!.
Moreover, we have thats(y)PFL2

21(y), for eachyPM2 sos is a differentiable section ofFL2 .
Then, S5s(M2)#P2 is a submanifold ofP2 , and hence ofTP as well. Observe that on thi
submanifold,GD satisfies the SODE condition: indeed, we have

~SGD2D! uS5S ~Bi2l̇ i !
]

]l̇ i D
uS

50.

However, in general, one cannot ensure thatGD is tangent toS.
This problem is solved by transporting the vector fieldḠ from M2 to S by using the global

diffeomorphisms:M2→S, that is, we define

G̃5s* Ḡ.

Therefore,G̃ will verify the SODE condition because of the form ofs and, in addition, the
equation

~ i G̃vL5dEL ! uS .

Next, we will obtain a local expression forG̃. Let x be a point inS; sinces is injective, there
is a unique pointyPM 2 such thats(y)5x. Then,

G̃~x!5s* y~ Ḡ~y!!.

As we know from the above discussion,q̇x
A5gAB( p̂B2l im iB)y and l̇x

i 5Bx
i , so that we have
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G̃x5q̇x
AS ]

]qAD
x

1l̇x
i S ]

]l i D
x

1S q̇x
Aq̇x

DS gCD

]gBC

]qA D
x

2q̇x
Alx

i gx
BCS ]m iC

]qA D
x

2~ l̇ igBCm iC!x

1gx
BAF S ]gEA

]qD
q̇E1l i

]m iA

]qD D
x

q̇x
D1~ l̇ im iA!x1~CDgAD!xG D S ]

]q̇BD
x

1S q̇x
AS ]Bi

]qAD
x

1l̇x
j S ]Bi

]l j D
x

1
]L
]qA S ]Bi

] p̂A
D

x
D S ]

]l̇ i D
x

.

This expression can be simplified as follows:

G̃x5q̇x
AS ]

]qAD
x

1l̇x
i S ]

]l i D
x

1Cx
BS ]

]q̇BD
x

1S q̇x
AS ]Bi

]qAD
x

1l̇x
j S ]Bi

]l j D
x

1 ṗ̂AS ]Bi

] p̂A
D

x
D S ]

]l̇ i D
x

5q̇x
AS ]

]qAD
x

1l̇x
i S ]

]l i D
x

1Cx
BS ]

]q̇BD
x

1Ḃx
i S ]

]l̇ i D ,

taking into account that

q̇AgCDq̇D
]gBC

]qA 1q̇Dq̇EgBA
]gEA

]qD 5q̇Dq̇E
]

]qD ~gBCgCE!50.

Remark VI.1:We have obtained a vector fieldḠ on M2 , and a vector fieldG̃ onS, both vector
fields solving the dynamics of the singular LagrangianL. It should be noticed that, since th
equations of motion forL are the same as the equations of motion for the vakonomic problem

have obtained a sort of reduction of the latter problem. Indeed, the integral curves ofḠ ~or

equivalently, ofG̃) give the vakonomic dynamics. ButM2 ~or, if we want,S! has dimension 2n
and we have started with a state systemTP with dimension 2n12m.

Recall that we have provedḠ5Gh2
. In addition, the vector fieldG̃ on S is also a Hamiltonian

vector field. In fact,G̃ is the Hamiltonian vector field corresponding to the restriction ofEL and
with respect to the restriction ofvL to S. Both Hamiltonian vector fields are related by th
symplectomorphisms.

VII. CLASSIFICATION OF THE CONSTRAINTS ACCORDING TO DIRAC

The application of the Dirac–Bergmann–Gotay–Nester algorithm has produced the follo
constraints:

~i! the primary constraints,p̂ j50, 1< j <m,
~ii ! and the secondary constraints,x j50, 1< j <m,

which together define the final constraint submanifoldM2 .
In according with Dirac’s terminology,29 the constraints can be classified into first class a

second class constraints. Let us recall that a constraint is said to be first class if its bracke
all the other constraints vanish; otherwise, it is said to be second class.

Here the bracket is the canonical one provided by the canonical symplectic formvP on T* P,

$ f̄ ,ḡ%5
] f̄

]qA

]ḡ

] p̂A
1

] f̄

]l i

]ḡ

] p̂i
2

] f̄

] p̂i

]ḡ

]l i2
] f̄

] p̂A

]ḡ

]qA ,
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for all pair of functionsf̄ ,ḡ:T* P→R.
We construct the matrixC5(Cab), with Cab5$wa ,wb%, where 1<a<2m andwa5 p̂a for

1<a<m andwa5xa2m if m11<a<2m. Then we have

~Cab!5S $ p̂i ,p̂ j% $ p̂i ,x j%

$x i ,p̂ j% $x i ,x j%
D 5S 0 Di j

2Di j Ni j
D ,

with

Ni j 5$x i ,x j%5 p̂CgABS m jA

]~m iDgCD!

]qB 2m iA

]~m jDgCD!

]qB D1gABlkS m iA

]Dk j

]qB 2m jA

]Dki

]qB D .

A straightforward computation shows that the matrixC is invertible with inverse

C215~Cab!5S D21ND21 2D21

D21 0 D .

Therefore, all the constraints are second class.
Thus, the Dirac bracket is

$ f̄ ,ḡ%D5$ f̄ ,ḡ%2$ f̄ ,wa%Cab$wb ,ḡ%,

for all pair of functionsf̄ and ḡ on T* P.
An important observation is the following. Since the constraints become Casimir func

with respect to the Dirac bracket, then it can be restricted toM2 . Indeed, for all pairs of functions
f ,gPC`(M2) the bracket$ f̄ ,ḡ%DuM2

does not depend on the choice of the extensionsf̄ ,ḡ to T* P.

Consequently, we will denote$ f ,g%* 5$ f̄ ,ḡ%DuM2
.

As Dirac proved, the bracket$,%D provides the evolution of any observable, that is,

ḟ̄ 5$ f̄ ,h̄%D ,

for some convenient extensionh̄ of the projected Hamiltonianh1PC`(M1). In particular,
$ f ,h2%* gives the evolution off :M2→R.

As we have noticed in Sec. V, (M2 ,v2) is a symplectic submanifold ofT* P. Let us denote
by $,%M2

the Poisson bracket induced byv2 . We are interested in knowing which is the relatio
between both brackets,$,%* and$,%M2

. This is solved in the following.
Proposition VII.1: The bracket$,%* coincides with$,%M2

, that is, we have that

$ f ,g%* 5$ f ,g%M2
,

for all f ,gPC`(M2).
Proof: As (M2 ,v2) is a symplectic submanifold ofT* P, we have the following decomposi

tion:

TM2
~T* P!5TM2% TM2

' ,

with associated projectors

P:TM2
~T* P!→TM2 ,

Q:TM2
~T* P!→TM2

' .
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It is proved in Ref. 34 that our Dirac bracket is precisely

$ f̄ ,ḡ%D5vP~P~Xf̄ !,P~Xḡ!!

for f̄ ,ḡPC`(T* P). Let us denote byYf the Hamiltonian vector field onM2 associated with a
function f :M2→R with respect tov2 . A careful computation shows thatj 2* Yf5P(Xf̄), wheref̄
is an extension toT* P of f PC`(M2). Consequently, we have

$ f ,g%* 5vP~P~Xf̄ !,P~Xḡ!!5vP~ j 2* Yf , j 2* Yg!5v2~Yf ,Yg!5$ f ,g%M2
. h

If we denote byp:M̄3Rm→M̄ the canonical projection, we can define a Poisson bracket a
p̃5p+d21 as follows:

$ f ,g%vak5$ f +p̃,g+p̃%* ,

which is a function defined onM2 . Therefore, we have a bracket

$,%vak: C`~M̄ !3C`~M̄ ! ——→ C`~M2!

~ f ,g! ——→ $ f ,g%vak

,

which is in fact a bracket alongp̃. This bracket$,%vak enjoys similar properties to those o
ordinary Poisson brackets.

Definition VII.2: The bracket$,%vak on M̄ along p̃ will be called the vakonomic bracke.
The vakonomic bracket produces a function onM2 from two functions defined onM̄ , since we
need to specify the corresponding Lagrange multipliersl i in the equations by means of th
above-mentioned diffeomorphism betweenM2 andM̄3Rm.

A careful computation shows that, in local coordinates, the expression for the vakon
bracket is

$ f ,g%vak5$ f +p̃,g+p̃%* 5
]~ f +p̃ !

]qA

]~g+p̃ !

] p̂A
2

]~ f +p̃ !

] p̂A

]~g+p̃ !

]qA 1
] f̄

]l i DikNjl D
l j

]ḡ

]l j , ~18!

where f̄ ,ḡPC`(T* P) are arbitrary extensions off +p̃ andg+p̃, respectively.
Moreover, if Ḡ is the ‘‘reduced’’ vakonomic vector field onM2 , then, for anyf :M̄→R, we

have

$ f ,H uM̄%vak5$ f +p̃,H uM̄+p̃%* 5Ḡ~ f +p̃ ![ ḟ ,

whereH:T* Q→R is the Hamiltonian defined byEL , that is,H+FL5EL .
Remark VII.3:It should be noticed thatM2 has a vector bundle structure overM̄ with rankm.

Indeed, it is a vector subbundle ofpr1 :T* P[T* Q3R2m→T* Q, that is,
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In this way, a vakonomic motion (q(t),l(t)) in M2 can be viewed as a motion in the total spa
of that vector bundle, with base componentsq(t) in M̄ and fiber componentsl(t) in Rm. Roughly
speaking, the Lagrange multipliers can be considered as a sort of internal variables in add
position variables.

Example VII.4: The vertical rolling disk. Let us consider the following problem for a disk o
radiusR and unit massm51 which rolls on a horizontal plane.

The configuration space for this system can be identified withQ5R23S13S1. By (x,y)
PR2 we denote the coordinates of the point of contact of the disk with the plane and (u,w)
PS13S1 give, respectively, the angle between the disk and thex axis, and the angle of rotation
between a fixed diameter in the disk and they axis.

Given q0 ,q1PQ, i.e., initial and final position variables, we want to find the trajectories
the disk connecting such points that minimize the energy expenditure. Of course, we want th
to roll without slipping. This situation can be seen as an optimal control problem.36 A problem of
optimal control is described by the following data: a configuration spaceB giving the states
variables of the system, a fiber bundlep:N→B whose fibers describe the control variables
vector fieldY:N→TB along the projectionp, and a ‘‘Lagrangian’’ functionL:N→R. Now the
solutions of the optimal control problem will be those pathsg:I→N such thatp+g has fixed end
points, which extremize the action

E
g
L~g~ t !!dt

and satisfy the differential equation

d

dt
~p+g!5Y+g,

which rules the evolution of the state variables.
It is easy to show that this is indeed a vakonomic problem on the manifoldN. The constraint

submanifoldM,TN, given by the above-mentioned differential equation is

M5$vnPTN/p* ~vn!5Y~n!%.

In the problem under consideration, we identifyB5Q, N5TQ, and p:TQ→Q as the natural
projectiontQ . The LagrangianL:TQ→R is given by

L5 1
2 ~ ẋ21 ẏ21I 1u̇21I 1ẇ2!,

with I 1 , I 2 the moments of inertia~notice that the potential energy is not included since it
constant!. The vector field alongtQ is

Y: TQ ——→ TQ

~x,y,u,w,d1 ,d2 ,d3 ,d4! → ~x,y,u,w,R cosud4 ,R sinud4 ,d3 ,d4!.

Notice thatY is simply a tensor~1, 1! on the manifoldQ.
In fact, in this framework, we are considering the velocities as the ‘‘control’’ variab

Solving this optimal control problem is precisely the same as considering the vakonomic pr
associated with the vertical rolling disk for the extended LagrangianL:T(Q3R2)→R,

L5L1lf1mc.

where

f5 ẋ sinu2 ẏ cosu,
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c5 ẋ cosu1 ẏ sinu2Rẇ

are the constraint functions determiningM. Note that we have chosen a linear combination of
usual constraints

f̄5 ẋ2Rẇ cosu,

c̄5 ẏ2Rẇ sinu.

In Sec. VIII, we will discuss how this change of constraints affects the final result. In add
as is stated in Refs. 8 and 24, the vakonomic solutions for this problem are also solutions
nonholonomic problem if the initial conditions for the Lagrange multipliers are properly cho

We have that

vL5dx∧dẋ1sinu dx∧dl1cosu dx∧dm1~l cosu2m sinu!dx∧du1dy∧dẏ2cosu dy∧dl

1sinu dy∧dm1~l sinu1m cosu!dy∧du1I 1 du∧du̇1I 2dw∧dẇ2R dw∧dm,

is the Poincare´-Cartan two-form in local coordinates.
The final constraint submanifold is

P25$~x,y,u,w,l,m,ẋ,ẏ,u̇,ẇ,l̇,ṁ !PT~Q3R2!/f50,c50%.

Let G be a general solution of equationi GvL5dEL and tangent toP2 . In local coordinates, we
have

G5 ẋ
]

]x
1 ẏ

]

]y
1 u̇

]

]u
1ẇ

]

]w
1Bl

]

]l
1Bm

]

]m
1Cx

]

] ẋ
1Cy

]

] ẏ
1Cu

]

]u̇
1Cw

]

]ẇ
1Dl

]

]l̇
1Dm

]

]ṁ
.

The coefficients satisfy the following equations:

Cx52Bl sinu2Bm cosu2 u̇~l cosu2m sinu!,

Cy5Bl cosu2Bm sinu2 u̇~l sinu1m cosu!,

Cu5
R

I 1
lẇ,

Cw5
R

I 2
Bm ,

and the tangency conditions

G~f!5Cx sinu2Cy cosu1Ru̇ẇ50,

G~c!5Cx cosu1Cy sinu2RCw50.

Therefore, we get

S 1 0

0 S 11
R2

I 2
D D S Bl

Bm
D5S u̇~Rẇ1m!

2lu̇
D ,

which leads to
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Bl5Ru̇ẇ1mu̇,

Bm5alu̇,

wherea52(11(R2/I 2))21. In turn, the expressions for the other coefficients ofG become

Cx52~11a!lu̇ cosu2Rẇu̇ sinu,

Cy52~11a!lu̇ sinu1Rẇu̇ cosu,

Cu5
R

I 1
lẇ,

Cw5
Ra

I 2
lu̇.

Continuing with the described process, we have that the submanifoldS is given by

S5$~x,y,u,w,l,m,ẋ,ẏ,u̇,ẇ,l̇,ṁ !PT~Q3R2!/f50,c50,Bl5l̇,Bm5ṁ%,

and G̃ is

G̃5 ẋ
]

]x
1 ẏ

]

]y
1 u̇

]

]u
1ẇ

]

]w
1l̇

]

]l
1ṁ

]

]m
1Cx

]

] ẋ
1Cy

]

] ẏ
1Cu

]

]u̇
1Cw

]

]ẇ
1Dl

]

]l̇
1Dm

]

]ṁ
,

with

Dl52lu̇21
R2

I 1
lẇ21

R

I 1
mlẇ,

Dm5aRẇu̇21amu̇21
aR

I 1
l2ẇ.

Observe that the equations for the Lagrange multipliers

l̇5 u̇~Rẇ1ṁ !,

ṁ5alu̇,

can be integrated to give

l5A sinu2B cosu,

m5A cosu1B sinu2Rẇ,

whereA andB are constants which depend on the initial conditionsl~0!, m~0!. This allows us to

project G̃ (A,B) to a vector fieldX(A,B) on M giving different vakonomic solutions for each choic
of ~A, B!. In particular

X~0,0!5 ẋ
]

]x
1 ẏ

]

]y
1 u̇

]

]u
1ẇ

]

]w
2Rẇu̇ sinu

]

] ẋ
1Rẇu̇ cosu

]

] ẏ
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is just the nonholonomic vector field,GL,M , corresponding to the vertical rolling disk~see the
discussion at the end of Sec. IV!.

Now, the Legendre transformationFL:T(Q3R2)→T* (Q3R2) is given by

FL~x,y,u,w,l,m,ẋ,ẏ,u̇,ẇ,l̇,ṁ !5~x,y,u,w,l,m,p̂x ,p̂y ,p̂u ,p̂w ,p̂l ,p̂m!,

where

p̂x5 ẋ1l sinu1m cosu,

p̂y5 ẏ2l cosu1m sinu,

p̂u5I 1u̇,

p̂w5I 2ẇ2Rm,

p̂l50,

p̂m50.

So the presymplectic system (M1 ,v1 ,h1) becomes

M15FL~T~Q3R2!![R10,

v15dx∧dp̂x1dy∧dp̂y1du∧dp̂u1dw∧ p̂w ,

h15
1

2 S ~ p̂x2l sinu2m cosu!21~ p̂y1l cosu2m sinu!21
1

I 1
p̂u

21
1

I 2
~ p̂w1Rm!2D .

Applying Gotay–Nester’s algorithm we get the secondary constraints

xl52l2 p̂y cosu1 p̂x sinu,

xm5a21m1 p̂y sinu1 p̂x cosu2
R

I 2
p̂w ,

through which we obtain the symplectic Hamiltonian system (M2 ,v2 ,h2)

M25FL~P2![R8,

v25dx∧dp̂x1dy∧dp̂y1du∧dp̂u1dw∧dp̂w ,

h25
1

2 S ~11a!cos2 u p̂x
21~11a!sin2 u p̂y

21
1

I 1
p̂u

22
a

I 2
p̂w

2

1~11a!sin 2u p̂xp̂y22
Ra

I 2
cosu p̂xp̂w22

Ra

I 2
sinu p̂yp̂wD .

As we have said, the natural bracket associated with the two-formv2 allows us to construct the
vakonomic bracket. This is, for anyf ,g:M̄→R we have

$ f ,g%vak5$ f +p̃,g+p̃%M2
,

wherep̃:M2→M̄ is
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p̃~z!5S x,y,u,w,~11a!cos2 u p̂x1~11a!sinu cosu p̂y2
Ra

I 2
cosu p̂w ,

~11a!sinu cosu p̂x1~11a!sin2 u p̂y2
Ra

I 2
sinu p̂w , p̂u ,2a~R cosu p̂x1R sinu p̂y1 p̂w! D .

If H uM̄ is the restriction ofH to M̄ , sinceH uM̄+p̃5h2 we have

$ f ,H uM̄%vak5$ f +p̃,h2%*

5
]~ f +p̃ !

]x S ~11a!cos2 u p̂x1~11a!sinu cosu p̂y2
2Ra

I 2
cosu p̂fD

1
]~ f +p̃ !

]y S ~11a!sin2 u p̂y1~11a!sinu cosu p̂x2
2Ra

I 2
sinu p̂fD

1
]~ f +p̃ !

]u

p̂u

I 1
2

]~ f +p̃ !

]w S a

I 2
p̂f1

Ra

I 2
cosu p̂x2

Ra

I 2
sinu p̂yD

2
1

2

]~ f +p̃ !

] p̂u
S 2~11a!sin 2u p̂x

21~11a!sin 2u p̂y
21~11a!2 cos 2u p̂xp̂y

1
2Ra

I 2
sinu p̂xp̂w2

2Ra

I 2
cosu p̂yp̂wD .

VIII. CONSISTENCY OF THE LOCAL CONSTRUCTION

In the previous sections we have assumed that the constraint functionsF i were globally
defined on the whole ofTQ. Under this assumption, we have defined the extended LagrangiL
on TP and, by means of the constraint algorithm, we have obtained an equivalent descript

vakonomic dynamics in terms of the vector fieldsG̃ and Ḡ, on S and M2 , respectively. An
alternative description was provided by the bracket$,%vak.

In this section, we will discuss the validity of the above results when a change of const
or a change of local coordinates is performed. We accomplish the two tasks at the sam
Suppose thatV andV̄ are two coordinate neighborhoods in the configuration manifoldQ such that
VùV̄ÞB, and denote by (qA) and (q̄A) the corresponding coordinate functions. Let

F i :TV→R, F i5m iAq̇A,

F̄ j :TV̄→R, F̄ j5m̄ jBqG B,

be two sets of constraints definingMùTV and MùTV̄, as in Sec. II. Notice that both sets o
constraints are obtained by taking two local basis$v i% and$v̄ i% of the codistributionM° on V and
V̄, respectively.

Then, for each one, we have the extended Lagrangians

L:T~V3Rm!→R, L5L1l im iAq̇A,

L̄:T~V̄3Rm!→R, L̄5L1l im̄ iAqG A,

and we can apply the constraint algorithm. In this way, we obtain the constraint submanifolP2

and P̄2 ,

P2[~TVùM !3TRm
�P1[T~V3Rm!,
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P̄2[~TV̄ùM !3TRm
� P̄1[T~V̄3Rm!.

Assume now that

v i5m iA~q!dqA, v̄ i5m̄ iA~ q̄!dq̄A.

Then, there exist differentiable functions

L i
j :VùV̄→R2m,

L̄ j
k :VùV̄→R2m,

which give the matrices of the change of basis at each point inVùV̄,

L i
jv j5v̄ i , L̄ j

kv̄k5v j , L i
jL̄ j

k5d i
k .

Consequently, we have

L i
jm jA5m̄ iB

]q̄B

]qA ,

L̄ j
km̄kA5m jB

]qB

]q̄A .

As a first result we deduce that

F̄ i5L i
jF j .

Therefore,P2ø P̄2 can be glued to form a new submanifold ofP1ø P̄1 , which is in turn a
submanifold ofT(Q3Rm).

Remark VIII.1:In spite of this, there is no way to extendL or L̄ to the whole ofP1ø P̄1 , so
we will have to consider the process for each neighborhood.

Next, define the transformation

L̄: P1ù P̄1→P1ù P̄1

~qA,l i ,q̇A,l̇ i !°~ q̄A,L̄ i
jl i ,q̇̄A,L̄ i

j l̇ i !,

which permits us to relate the extended Lagrangians as

L̄uP1ù P̄1
+L̄5L1L̄ i

jl iF̄ j5L1l iF i5LuP1ù P̄1
.

This implies that onP1ù P̄1 we have

S* ~L̄* dL̄!5S* ~d~L̄* L̄!!5S* ~dL!,

and therefore the Poincare´–Cartan two-forms verify

vL5L̄* ~v L̄!,

on P1ù P̄1 . Since the energy associated with both extensions is the same,EL , we deduce that if
GD is a solution onP2 for the constrained system defined byL, thenL̄* (GD) is a solution for the
constrained system defined byL̄. In other words, ifGD satifies the equation
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~ i GDvL5dEL! uP2
,

then we will have

~ i L̄
*

GDv L̄5dEL̄! uP̄2
.

In terms of their integral curves, we have that an integral curve of a fixed vector fieldGD
0
i of the

family of solutionsGD is transformed byL̄ into an integral curve ofḠD̄
0
j on P2ù P̄2 , where

D̄0
j +L̄5L̄ i

jD0
i 1q̇Al̇ i(]L̄ i

j /]qA).
Indeed, if

g~ t !5~gA~ t !,g i~ t !,g̃A~ t !,g̃ i~ t !!

is an integral curve ofGD
0
i on P2ù P̄2 , then

ḡ~ t !5S gA~ t !
]q̄B

]qA ,g i~ t !L̄ i
j~ t !,g̃A~ t !

]q̄B

]qA ,g̃ i~ t !L̄ i
j~ t ! D ,

will be an integral curve ofḠD̄
0
j on P2ù P̄2 . It is very important to observe that, althoug

different, the projections ofg(t) and ḡ(t) to M coincide.
Remark VIII.2:If S ~respectively,S̄) denotes as above the submanifold ofP2 ~respectively,

P̄2) where a SODE solutionG̃ ~respectively,Ḡ̃) exists, then

L̄* G̃5 Ḡ̃+L̄ ~19!

holds on points inSùS̄, that is,G̃ and G̃
¯ are L̄ related on the overlapping. This can be seen

follows. Recall thatG̃5GD
0
j PGD with D0

i 5GD
0
j (Bi). SinceBi does not depend onl̇ i , we have

that GD
0
j (Bi)5GDj(Bi) for all GDjPGD and we can computeD0

i choosing any member of th

family GD . The same is true for the familyḠD̄ . Then, takingGDj and ḠD̄k such thatL̄* GDj

5ḠD̄k+L̄, we can check that

D̄0
i 5ḠD̄k~B̄i !5ḠD̄k~ l̇ i !5GDj~L̄ j

i l̇ j !5L̄ j
i D0

j 1q̇Al̇ j
]L̄ j

i

]qA ,

or, in other words, Eq.~19! holds.
Remark VIII.3:Given a ‘‘vakonomic motion,’’c̃(t)5(qA(t)), there are different curves in

P2ù P̄2 that project to (c̃(t), ċ̃(t))PM . Indeed, if we take (q0
A ,q̇0

A)PMùTVùTV̄ and (l0
i ,l̇0

i )

as initial conditions for the Lagrange multipliers, we can consider the integral curve ofG̃ starting

from (q0
A ,l0

i ,q̇0
A ,l̇0

i ). Now, the curveḡ5L̄+g will be an integral curve ofḠ̃ starting from
(q0

A ,L̄ i
j (q0

A)l0
i ,q̇0

A ,L̄ i
j (q0

A)l̇0
i ). Both curves project to the same solution of the vakonomic eq

tions of motion. Therefore, in order to determine an unique curve onM3TRm whose projection
is (c̃(t), ċ̃(t)), we are forced to specify not only the initial conditions for the Lagrange multipli
but also the set of constraint functions such that (q0

A ,l0
i ,q̇0

A ,l̇0
i )PP2 .

We have seen what happens in the Lagrangian formalism when changing constraint fun
Next, we accomplish the same task in the Hamiltonian context. As a consequence, we wi
later a relation of the above-mentioned integral curves with the solutions of vakonomic equ
of motion. By the Legendre transformationsFL andFL̄ associated toL andL̄, respectively, we
obtain the presymplectic systems (M1 ,v1 ,h1) and (M̄1 ,v̄1 ,h̄1), where
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M15FL~P1!, v15 j 1* ~v!, h1+FL5EL , h15 1
2 gAB~ p̂A2l im iA!~ p̂B2l jm jB!1U,

M̄15FL̄~ P̄1!, v̄15 ̄1* ~v!, h̄1+FL̄5EL̄ , h̄15 1
2 ḡAB~ p̂̄A2l im̄ iA!~ p̂̄B2l j m̄ jB!1U,

with the obvious notations.
Notice thatM1øM̄1 can be provided of a differentiable structure such that it is a subman

of T* (VøV̄)3Rm. We also have that the restriction of the standard symplectic form ofT* (Q
3Rm) to M1øM̄1 is the natural extension of the two-formsv1 ,v̄1 . However, there is no canoni
cal extension toM1øM̄1 of the projected Hamiltoniansh1 and h̄1 .

Define the transformations

L̄: M1ùM̄1→M1ùM̄1

~qA,l i ,p̂A,0!°S q̄A,L̄ i
jl i ,p̂B

]qB

]q̄A ,0D ,

such that the following diagram is commutative:

P1ù P̄1→
FL

M1ùM̄1

L̄↓ ↓ L̄ ~20!

P1ù P̄1→
FL̄

M1ùM̄1

We have

L̄* ~v̄1!5v1 , h̄1+L̄5h1 .

Applying the algorithm to both presymplectic systems, we obtain the secondary constrain
manifolds

M25$yPM1 /x i~y!50%, x i5m iAgAB~ p̂B2l jm jB!,

M̄25$yPM̄1 /x̄ j~y!50%, x̄ j5m̄ jAḡAB~ p̂̄B2lkm̄kB!.

Observe that

x i~y!52S ]h1

]l i D
y

52S ]~ h̄1+L̄ !

]l i
D

y

52L̄ i
k~y!S ]h̄1

]lkD
L̄~y!

5L̄ i
k~ x̄k~L̄~y!!,

that is,

L j
i x i5x̄ j +L̄.

As a consequence, the setM2øM̄2 does not define in general a submanifold
M1øM̄1#T* ((VøV̄)3Rm). However, we have a nice relation between both submanifolds
deed,

L̄~M2ùM̄1!5M̄2ùM1 .
                                                                                                                



,

inter-

2115J. Math. Phys., Vol. 41, No. 4, April 2000 The geometrical theory of constraints . . .

                     
It is important to observe thatM2ùM̄1 is an open submanifold ofM2 . Therefore, on restricting
the symplectic formv2 to M2ùM̄1 , we do not lose its symplectic character.

Remark VIII.4:A careful computation shows thatL̄ uM2ùM̄2
is just the identity. Consequently

we have, for example, that

~ h̄2! uM2ùM̄2
5~h2! uM2ùM̄2

.

In addition, using~20! and the relations:

FL~GD!5ḠM2
, FL̄~ ḠD̄!5Ḡ M̄2

, L̄* GD5ḠD̄+L̄,

we deduce that the vector fieldsḠM2
and Ḡ M̄2

fulfill along M2ùM̄1

L̄* ḠM2
5Ḡ M̄2

+L̄. ~21!

We see that the integral curves ofGM2
andḠ M̄2

on M2ùM̄2 are, in principle, different. However,

one can easily check that their projections ontoM̄ by

p̃:M2→M̄ , ~qA,l i ,p̂A,0!°~qA,p̂A2l im iA!,

p̃̄:M̄2→M̄ , ~ q̄A,l i , p̂̄A,0!°~ q̄A, p̂̄A2l im̄ iA!,

coincide, since

p̃̄+L̄ uM2ùM̄1
5p̃ uM2ùM̄1

.

We will now investigate the relation between the corresponding Dirac brackets, and more
esting, about the induced brackets on the final constraint submanifoldsM2 andM̄2 ,

$ , %DuM2
5~$ , %2$ ,wa%Cab$wb , %! uM2

,

$ , %DuM̄2
5~$ , %2$ ,w̄a%C̄ab$w̄b , %! uM̄2

.

Recall thatL̄* (v̄1) uM1ùM̄1
5(v1) uM1ùM̄1

. This fact implies thatL̄* (v̄2) uM̄2ùM1
5(v2) uM2ùM̄1

.

Consequently, we have for each pair of functions,f ,g:M̄2→R that

$ f ,g%*¯+L̄ uM2ùM̄1
5$ f̃ ,g̃%* +k, ~22!

where k:M2ùM̄1�M2 is the canonical inclusion andf̃ ,g̃:M2→R are extensions toM2 of
L̄ uM2ùM̄1

+ f uM̄2ùM1
,L̄ uM2ùM̄1

+guM̄2ùM1
, respectively.

As a consequence, when defining the vakonomic brackets for functionsf, g on M̄ we have the
following two possibilities:

$ f ,g%vak5$ f +p̃,g+p̃%M2
,

$ f ,g%vak5$ f + p̃̄,g+ p̃̄%M̄2
.

However, the relationp̃̄+L̄ uM2ùM̄1
5p̃ uM2ùM̄1

and ~22! imply that
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$ f ,g%vak+k5$ f +p̃,g+p̃%M2
+k5$ f + p̃̄,g+ p̃̄%M̄2

+L̄ uM2ùM̄1
5$ f ,g%vak+L̄ uM2ùM̄1

,

which is coherent with the above-mentioned formulaL̄* ḠM2
5Ḡ M̄2

+L̄.
Remark VIII.5:Therefore, although different, both brackets give the same valid informa

about the evolution of a dynamical variable along ‘‘vakonomic curves’’ onM̄ . In fact, given a
‘‘vakonomic’’ curve on M̄ ,c̄(t)5(qA(t),pA(t)), we take g(t)5(qA(t),l i(t),p̂A(t),0) on
M2ùM̄1 andL̄+g(t)5(q̄A(t),L̄ i

jl i(t), p̂̄A(t),0) on M̄2ùM1 projecting onto it. Then, the evolu
tion of f onto this curve onM̄ will be

d

dt
~ f ~qA~ t !,pA~ t !!!5

d

dt
~ f + p̃̄~ q̄A~ t !,L̄ i

jl i~ t !, p̂̄A~ t !,0!!5
d

dt
~ f +p̃~qA~ t !,l i~ t !,p̂A~ t !,0!!,

that is,

f̄̇ uc̄[Ḡ uM̄2
~ f + p̃̄ ! uL̄+g5ḠM2

~ f +p̃ ! ug[ ḟ uc̄ ,

or, equivalently,

f̄̇ [$ f ,H uM̄%vak+L̄5$ f ,H uM̄%vak[ ḟ .

Example VIII.6: The vakonomic particle. We consider the case of a particle of unit ma
moving through the spaceQ5R3 subjected to the global nonholonomic constraintF5 ż2yẋ. In
order to illustrate the precedent discussion, we will take, instead ofF, the following constraints:

f:TU→R,f~x,y,z,ẋ,ẏ,ż!5x~ ż2yẋ!,

c:TV→R,c~x,y,z,ẋ,ẏ,ż!5z~ ż2yẋ!,

where

U5$~x,y,z!PR3 / xÞ0%,

V5$~x,y,z!PR3 / zÞ0%.

Here, the LagrangianL is the kinetic energyL5 1
2 ( ẋ21 ẏ21 ż2), so the extended Lagrangian

are

Lf :T~U3R!→R, Lf5 1
2 ~ ẋ21 ẏ21 ż2!1l~xż2xyẋ!,

Lc :T~V3R!→R, Lc5 1
2 ~ ẋ21 ẏ21 ż2!1l~zż2zyẋ!.

Since (x/z)c5f in TUùTV, the transformationL̄ is given by

L̄: T~~UùV!3R! → T~~UùV!3R!

~x,y,z,l,ẋ,ẏ,ż,l̇ ! ° S x,y,z,
x

z
l,ẋ,ẏ,ż,

x

z
l̇ D .

The two-forms of Poincare´–Cartan are, respectively,

vLf
5dx∧dẋ2xy dx∧dl2lx dx∧dy1dy∧dẏ1dz∧dż1l dz∧dx1x dz∧dl,

vLc
5dx∧dẋ2zy dx∧dl2lz dx∧dy2ly dx∧dz1dy∧dẏ1dz∧dż1z dz∧dl.
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Let Gf ,Gc be the vector fields onP2
f ,P2

c satisfying

i Gf
vLf

5dEL , i Gc
vLc

5dEL .

Then, the coefficients must fulfill the following equations:

Cx
f5~l ẏ1yBl

f!x1l ż, Cx
c5~l ẏ1yBl

c!z1lyż,

Cy
f52lxẋ, Cy

c52lzẋ,

Cx
f52l ẋ2Bl

fx, Cz
c52lyẋ2Bl

cz.

The tangency conditionsGf(f)50,Gc(c)50 are reduced to

Cz
f2 ẏẋ2yCx

f50, Cz
c2 ẏẋ2yCx

c50.

It is easy to see now that in each case we obtain

Bl
f52l

ẋ

x
2

ẏ~ ẋ1lxy!

x~11y2!
,

Bl
c52l

ż

z
2

ẏ~ ẋ1lzy!

z~11y2!
,

so that we have

Cx
f5lxẏ2

yẏ~ ẋ1lxy!

11y2 , Cx
c5lyż2

yẏ~ ẋ1lzy!

11y2 ,

Cy
f52lxẋ, Cy

c52lzẋ,

Cz
f5

ẏ~ ẋ1lxy!

11y2 , Cz
c5

ẏ~ ẋ1lzy!

11y2 .

Consequently, we have determined the familiesGD
f and GD

c . If we denote bySf,Sc the
submanifolds ofP2

f ,P2
c , respectively,

Sf5H yPT~U3R3! / l̇52l
ẋ

x
2

ẏ~ ẋ1lxy!

x~11y2! J ,

Sc5H yPT~V3R3! / l̇52l
ż

z
2

ẏ~ ẋ1lzy!

z~11y2! J ,

we have proved that there is a vector fieldG̃f ~respectively,G̃c) of GD
f ~respectively,GD

c ) satis-
fying the SODE condition and tangent toSf ~respectively,Sc). These vector fields are determine
by

Dl
f52l̇S ẋ

x
1

yẏ

11y2D1S ẋ

xD 2S l1
ẏ

11y2D1
2yẋẏ2

x~11y2!2

1l
ẏ2~y221!

~11y2!2 2Cx
fF ẏ

x~11y2!
1

l

xG2Cy
fF ẋ

x~11y2!
1

ly

11y2G ,
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Dl
c52l̇S ż

z
1

yẏ

11y2D1S ż

zD
2S l1

ẏ

y~11y2! D1
2yẏ2~ ẋ1lzy!

~11y2!2

2l
ẏ2

~11y2!22
l

z
Cz

c2Cx
c ẏ

z~11y2!
2Cy

cF ẋ

z~11y2!
1

ly

11y2G .
A straightforward but tedious computation shows that

L̄* G̃f5G̃c+L̄.

We pass now to the Hamiltonian description of the problem. The Legendre transform
are

FLf : T~U3R! ——→ T* ~U3R!

~x,y,z,l,ẋ,ẏ,ż,l̇ ! ° ~x,y,z,l,ẋ2lxy,ẏ,ż1lx,0!,

FLc : T~V3R! ——→ T* ~V3R!

~x,y,z,l,ẋ,ẏ,ż,l̇ ! ° ~x,y,z,l,ẋ2lzy,ẏ,ż1lz,0!.

Therefore, we have that

M1
f5FLf~T~U3R!!5$xÞ0,p̂l50%[R7/$x50%,

M1
c5FLc~T~V3R!!5$zÞ0,p̂l50%[R7/$z50%,

with Poincare´–Cartan two-forms and Hamiltonian functions given by

vf5dx∧dp̂x1dy∧dp̂y1dz∧dp̂z ,

h1
f5 1

2 @~ p̂x1lxy!21 p̂y
21~ p̂z2lx!2#,

vc5dx∧dp̂x1dy∧dp̂y1dz∧dp̂z ,

h1
c5 1

2 @~ p̂x1lzy!21 p̂y
21~ p̂z2lz!2#.

It is inmediate to see thath1
c+L̄5h1

f . The corresponding secondary constraints are

xf52
]h1

f

]l
5x~2~ p̂x1lxy!y1 p̂z2lx!,

xc52
]h1

c

]l
5z~2~ p̂x1lzy!y1 p̂z2lz!,

and, in fact, we verify that (z/x)xf5xc+L̄. The final constraint submanifolds in the Hamiltonia
side are

M2
f5H wPM1

f / l5
p̂z2yp̂x

x~11y2!J [R6/$x50%,

M2
c5H wPM1

c / l5
p̂z2yp̂x

z~11y2!J [R6/$z50%,

with two-forms and Hamiltonians
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vf5dx∧dp̂x1dy∧dp̂y1dz∧dp̂z ,

vc5dx∧dp̂x1dy∧dp̂y1dz∧dp̂z ,

h2
f5h2

c5
1

2 S ~ p̂x1yp̂z!
2

11y2 1 p̂y
2D .

Note thatvf andvc are not the same two-form, because they are defined on different mani
that is,M2

f andM2
c , respectively.

To define the vakonomic brackets, we have

p̃f : M2
f ——→ M̄

~x,y,z,p̂x ,p̂y ,p̂z! ° S x,y,z,p̂x1y
p̂z2yp̂x

11y2 ,p̂y ,p̂z2
p̂z2yp̂x

11y2 D ,

p̃c : M2
c ——→ M̄

~x,y,z,p̂x ,p̂y ,p̂z! ° S x,y,z,p̂x1y
p̂z2yp̂x

11y2 ,p̂y ,p̂z2
p̂z2yp̂x

11y2 D .

Given f ,g:M̄→R, we have onM2
fùM1

c that

$ f ,g%vak
f 5$ f +p̃f ,g+p̃f%M

2
f5$ f +p̃c ,g+p̃c%M

2
c+L̄5$ f ,g%vak

c +L̄.
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Dynamical symmetries, bi-Hamiltonian structures,
and superintegrable nÄ2 systems
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The theory of dynamical but non-Cartan~or non-Noether! symmetries and the
existence of bi-Hamiltonian structures is studied using the symplectic formalism
approach. The results are applied to the study of superintegrable systems. It is
shown that certain families ofn52 superintegrable systems related with the har-
monic oscillator~as, e.g., the so-called Smorodinsky–Winternitz system! are bi-
Hamiltonian systems endowed with dynamical symmetries of non-Cartan class.
© 2000 American Institute of Physics.@S0022-2488~00!04404-2#

I. INTRODUCTION

It is known that there is a close relation between integrability and existence of more tha
Hamiltonian formulation. Some particular integrable systems admit a bi-Hamiltonian stru
and, conversely, a system that admits two different Hamiltonian formulations, and satisfies c
technical conditions, is integrable.

A superintegrable system is a system that is integrable~in the Liouville–Arnold sense! and
that, in addition to this, possesses more constants of motion than degrees of freedom.1–16 If the
numberN of independent constants takes the valueN52n21 ~n is the number of degrees o
freedom!, then the system is called maximally superintegrable. There are three classic and
known cases of this very particular class of systems, namely, the free particle~that can be con-
sidered as trivial!, the Kepler problem, and the harmonic oscillator with rational frequencies
these cases all the orbits become closed for the case of bounded motions. This high de
regularity ~existence of periodic motions! is a consequence of the superintegrable character.

The main objective of this article is to present a study concerning the following three to
dynamical symmetries, bi-Hamiltonian structures, and superintegrable systems.

The article is organized as follows: In Sec. II we first analyze the different classes of
metries and then we study the relation between non-Hamiltonian symmetries and bi-Hamil
structures. Section III has two subsections. In the first one we obtain bi-Hamiltonian structur
some superintegrable systems with quadratic constants of motion, and in the second subse
study the relations between the Cartan and the non-Cartan symmetries. In Sec. IV we anal
Lie derivatives and the tensor fieldR. Finally, in Sec. V we make some final comments.

II. DYNAMICAL SYMMETRIES AND BI-HAMILTONIAN STRUCTURES

The Hamiltonian phase spaceM is the 2n-dimensional cotangent bundleM5T* Q of the
n-dimensional configuration spaceQ. Cotangent bundles are manifolds endowed, in a natura
canonical way, with a symplectic structurev0 that, in coordinates$(qj ,pj ); j 51,2,...,n%, is given
by17–19

v05dqj∧dpj , v052du0 , u05pjdqj

a!Electronic mail: mfran@posta.unizar.es
21210022-2488/2000/41(4)/2121/14/$17.00 © 2000 American Institute of Physics
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~we write all the indices as subscripts and we use the summation convention on the re
index!. Given a differentiable functionF5F(q,p), the vector fieldXF defined as the solution o
the equation

i ~XF!v05dF

is called the Hamiltonian vector field of the functionF. Two important properties are the follow
ing.

~1! The Hamiltonian vector field of a given function is well defined without ambiguities. T
uniqueness is a consequence of the symplectic character of the two-formv0 .

~2! Suppose that we are given a Hamiltonian H5H(q,p). Then the dynamics is given by th
Hamiltonian vector fieldGH of the Hamiltonian function. That is,i (GH)v05dH.

At this point we recall that the general expression for a vector fieldY defined onT* Q is

Y5aj

]

]qj
1bj

]

]pj
, aj5aj~q,p!, bj5bj~q,p!

in such a way that it determines a flow onT* Q represented by the following~first order ine!
one-parameter transformation law

q̄ j5qj1eaj~q,p!,

p̄ j5pj1ebj~q,p!.

A particular case is when we start with a vector fieldX defined on the base spaceQ,

X5aj

]

]qj
, aj5aj~q!,

and we lift it to the contangent bundleT* Q.17 In this case we obtain the so-called natural liftX*
of X that, in coordinates, is given by

X* 5aj

]

]qj
1bj

]

]pj
, bj52S ]ak

]qj
D pk .

Concerning the theory of symmetries, there are two different ways of approaching them. Fir
symmetries of the dynamical vector fieldGH , and second, the symmetries of the Hamiltoni
system (T* Q,v0 ,H).

In differential geometric terms, a dynamical symmetry of the dynamics is a vector fieY
defined onT* Q and such that@Y, GH#50. This property means that the one-parameter grou
transformations generated byY preserves the set of all the integral curves ofGH ~it maps integral
curves into integral curves!. If Y is the natural lift toT* Q of a vector field previously defined o
Q, thenY is a Lie symmetry~Lie symmetries are projectable toQ!.

Concerning the symmetries of the system (T* Q,v0 ,H), we distinguish between two differen
classes. A Noether symmetry is a complete vector fieldX defined on the spaceQ such that its
natural lift X* to T* Q is a symmetry of the Hamiltonian, that is,X* (H)50. A Cartan symmetry
is a vector fieldX directly defined onT* Q and such that it satisfies the following two propertie
~i! LXu0 is exact and consequentlyLXv050 ~this means thatX is a symmetry of the symplectic
form!, and~ii ! X is a symmetry of H.

The property~i!, fundamental for the Cartan case, is omitted for the Noether case sin
diffeomorphism inT* Q preservesu0 if and only if it is the lifting of a diffeomorphism onQ. It
is clear that the idea of Cartan symmetry is just an extension of the idea of Noether symmet
conversely, a Noether symmetry can be considered as a Cartan symmetry that is proje
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Notice that symmetries of Noether class are related with one-parameter groups of point tra
mations. The transformations generated by Cartan vector fields are much more general~some
authors use the name Noether for both classes of symmetries, and the name Cartan for sym
of the time-dependent one-formUH5u02Hdt).

The Hamiltonian version of the Noether theorem states that every Noether symmetry
mines an integral of motionI 5 i (X* )u0 for H. This property can be extended to the more gene
case of Cartan symmetries as follows: ifX is a Cartan symmetry andf is the function such tha
LXu05d f , then the functionI given by I 5 i (X)u02 f is an integral of motion~this is sometimes
called ‘‘generalized Noether theorem’’ or ‘‘Noether theorem for hidden symmetries’’!.

An important point is that every Cartan symmetry is a symmetry of the dynamical vector
GH . Nevertheless, the converse of this property is not true. So Cartan~and Noether! symmetries
are in fact a subclass of the dynamical symmetries.

The theory of symmetries has been extensively analyzed but most of the studies hav
focused on the Noether symmetries~Noether theorem! and on the Cartan symmetries~Noether
theorem for hidden symmetries!. Our present objective is to develop a study concerning
Hamiltonians endowed with ‘‘dynamical but non-Cartan symmetries.’’

A system of differential equations is called bi-Hamiltonian if it can be written in two differ
ways in Hamiltonian form.20–24Suppose a manifoldM is equipped with two different symplecti
structuresv0 and v1 . A vector fieldG on M is said to be a bi-Hamiltonian vector field if it i
Hamiltonian with respect to both symplectic structures

i ~G!v05dH0 and i ~G!v15dH1.

In some cases the only symplectic form is the first one (v1 is closed two-form but nonsymplectic!.
A natural extension of this idea is to consider a manifoldM equipped with two different Poisso
tensorsL0 andL1 .

Then we have the following proposition.
Proposition 1: LetH be a Hamiltonian function andGH the associated Hamiltonian vecto

field. Suppose that Y is a dynamical but non-Cartan symmetry. Then
(i) the function Y(H) is a constant of motion and
(ii) the dynamical vector fieldGH is a bi-Hamiltonian system.

A proof of this proposition can be found in Ref. 15. Next we just give a sketch of the p
The vector fieldY does not preservev0 . So it is a noncanonical transformation determini

a new two-formvY defined byvY5LYv0 (LY denotes de Lie derivative with respect toY!. Then
the dynamical vector fieldGH is Hamiltonian with respect to the original symplectic two-formv0

and also with respect to the new structurevY . The particular form ofvY depends onY and, in
some cases, it can be just a constant multiple ofv0 ~trivial bi-Hamiltonian system!. In some other
casesvY will be a nonsymplectic two-form with a nontrivial kernel~these cases can be studie
making use of Poisson tensors!. In any case the vector fieldGH is a dynamical system solution o
the following two equations:

i ~GH!v05dH and i ~GH!vY5d@Y~H!#.

Therefore, the function HY5Y(H), which is a constant of motion, can be considered as a
Hamiltonian forGH .

A similar result has been studied in Refs. 25–28 in relation to the existence of altern
Lagrangians. Nevertheless, we remark that Lagrangian symplectic forms, which are defined
tangent bundleTQ, must satisfy certain additional properties related to the vertical subspac29

Because of this, when using this approach, the Lagrangian theory of bi-Hamiltonian syste
mainly related with non-Noether Lie symmetries of the Lagrangian vector field.

In what follows we will study the existence of bi-Hamiltonian structures forn52 systems
with configuration spaceQ5R2 and Hamiltonian functions of standard form
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H5T1V, T5 1
2 ~px

21py
2!, V5V~x,y!.

According to Proposition 1, we must look for non-Hamiltonian vector fields with vanishing
bracket withGH .

We begin with a vector field~or family of vector fields! with the particular following expres-
sion:

Y5a
]

]x
1GH~a!

]

]px
, ~1!

a5 f ~x,y!px1g~x,y!py , ~2!

wheref andg are undetermined functions.
Notice that the functiona depends on the momenta so that the vector fieldY cannot be a lift

generating point transformations~it will be impossible for it to be a Noether symmetry!. More-
over, the particular form ofY, with derivatives only with respect tox and px , together with the
dependence of the functiona on the coordinatey and on the momentumpy , guarantees the
non-Hamiltonian character ofY. That is, if f yÞ0, or gÞ0, thenY cannot be Hamiltonian~that is,
d@ i (Y)v0#Þ0), so that it will be impossible for it to be a Cartan symmetry.

The property of dynamical symmetry forY with respect toGH leads to the following equa
tions:

~i! The two functionsf andg cannot be arbitrary but must satisfy the equations

f xx50,

2 f xy1gxx50,

f yy12gxy50,

gyy50.

~ii ! The potentialV must be a solution of

Vxy50,

gVxy13 f xVz1~ f y12gx!Vy50, ~3!

g~Vxx2Vyy!2 f Vxy2~2 f y1gx!Vx23gyVy50.

The first set of four equations, which are independent of the potentialV(x,y), determine the
possible forms forf andg. By direct integration we obtain

f ~x,y!5 f 01 f 10x1 f 01y1 f 11xy2g11y
2,

g~x,y!5g01g10x1g01y1g11xy2 f 11x
2,

where$ f 0 , f i j ,g0 ,gi j % are real constants. Every choice of these parameters determines a sys
three partial differential equations forV and, hence, a particular potential~or family of potentials!.
Nevertheless, in most cases, the three equations are not compatible and the only solutio
trivial one, that is,V50.

III. BI-HAMILTONIAN STRUCTURES AND SUPER-INTEGRABLE SYSTEMS

Most of the known integrable systems are Hamilton–Jacobi separable, that is, systems
associate Hamilton–Jacobi equation that can be solved by separation of variables after an
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priate coordinate system has been found. In 1965 Friset al.1 studied the two-dimensional Hamil
tonians with standard Euclidean kinetic term for which the Hamilton–Jacobi equations sepa
more than one coordinate system inR2 and obtained four different families, each with a potent
which is a ‘‘linear superposition’’ of three simpler potentials. This Hamilton–Jacobi method
also been used by other authors such as Evans,5 Groscheet al.,8,9 and Kalninset al.10,11

An important point is that all these Hamilton–Jacobi separable systems have consta
motion which are at most quadratic in the velocities~or momenta!. An alternative procedure~see
Refs. 12 and 16! has been the direct approach to the conditions for the existence of two qua
independent integrals~further than the energy!. When using this approach the superintegra
potentials are obtained as solutions of a system of two linear second-order partial diffe
equations.

A. Four particular bi-Hamiltonian systems

There are four particular cases in which the system~3! reduces to a simpler system of on
two equations. Next we analyze each of these four cases. Notice that all of them satis
equationVxy50 and correspond, therefore, to a direct sum of one-degree-of-freedom syste

( f 01) Supposef 01Þ0. Thena52ypx2xpy ~that is, f 52y,g52x) and the vector fieldY
becomes

Y5~2ypx2xpy!
]

]x
1GH~2ypx2xpy!

]

]px
.

In this case the new two-formvY , which is symplectic, is given by

vY5LYv05]x~xVx!dx∧dy1pxdx∧dpy12pxdy∧dpx1xdpx∧dpy ,

and the new Hamiltonian HY5Y(H) becomes

HY5px
2py1~xVy!px2~xVx!py .

The general system~3! becomes the following system of only two equations:

Vxy50,

x~Vxx2Vyy!12yVxy13Vx50. ~4!

These are just the same equations obtained in Refs. 14 and 16 for the first one of th
dimensional superintegrable systems. The potential, which for consistency with Ref. 14 w
denoted byVa, has the form

Va5k1V1
a1k2V2

a1k3V3
a ,

V1
a5S 1

2D ~x214y2!, V2
a5y, V3

a5
1

x2 ,

whereki ,i 51,2,3, are three arbitrary constants.
The symplectic form and the new Hamiltonian, now denoted byva andHY

a , become

va52S k1x1
2k3

x3 Ddx∧dy1pxdx∧dpy12pxdy∧dpx1xdpx∧dpy ,

HY
a5px

2py1~4k1y1k2!xpx1S 2k3

x2 2k1x2D py ,
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and the bi-Hamiltonian structure for Ha5T1Va is given by

i ~GH
a !v05dHa and i ~GH

a !va5dHY
a .

(g01) Supposeg01Þ0. Thena5ypy ~that is, f 50,g5y) and the vector fieldY becomes

Y5ypy

]

]x
1~py

22yVy!
]

]px
.

In this case the new symplectic formvY and the new Hamiltonian HY are given by

vY5LYv052]y~yVy!dx∧dy12pydx∧dpy1pydy∧dpx2ydpx∧dpy ,

HY5Y~H!5pxpy
22~yVy!px1~yVx!py .

The original system~3! becomes the following system of only two equations:

Vxy50,

y~Vxx2Vyy!23Vy50. ~5!

The potential, which will be denoted byṼa, is

Ṽa5k1Ṽ1
a1k2Ṽ2

a1k3Ṽ3
a ,

Ṽ1
a5S 1

2D ~4x21y2!, Ṽ2
a5x, Ṽ3

a5
1

y2 ,

whereki ,i 51,2,3, are three arbitrary constants. This family is equivalent toVa, the transforma-
tion relating them being simply the interchange (x,y)↔(y,x) that geometrically is the reflection
in the linex5y.

The new symplectic form and the new Hamiltonian~now denoted byṽa and HY
a) become

ṽa522S k1y1
2k3

y3 Ddx∧dy12pydx∧dpy1pydy∧dpx2ydpx∧dpy ,

H̃Y
a5pxpy

21S 2k3

y2 2k1y2D px1~4k1x1k2!ypy .

(g11) Supposeg11Þ0. Thena5y2px2xypy ~that is, f 5y2,g52xy) and the vector fieldY
becomes

Y5~y2px2xypy!
]

]x
1GH~y2px2xypy!

]

]px
.

The new symplectic formvY is given by

vY5LYv05pxpydx∧dy2]y~y2Vx2xyVy!dx∧dy1~ypx22xpy!dx∧dpy

1~2ypx2xpy!dy∧dpx1xydpx∧dpy ,

and the new Hamiltonian HY5Y(H) is given by

HY5~ypx2xpy!pxpy1xy~Vypx2Vxpy!.
                                                                                                                



at the
inte-
lator.

2127J. Math. Phys., Vol. 41, No. 4, April 2000 Dynamical symmetries, bi-Hamiltonian structures . . .

                    
The linear equations for the potential are

Vxy50,

xy~Vxx2Vyy!1y2Vxy13yVx23xVy50. ~6!

The solution of these equations, which will be denoted byVb, is

Vb5k1V1
b1k2V2

b1k3V3
b ,

V1
b5S 1

2D ~x21y2!, V2
b5

1

x2 , V3
b5

1

y2 ,

where, as in the previous cases,ki ,i 51,2,3, are three arbitrary constants. This functionVb is the
so-called Smorodinsky–Winternitz potential first study~from the quantum viewpoint! in Ref. 1,
generalized forn.2 in Refs. 5, 6 and 10 and also studied in Refs. 12 and 16.

The symplectic form and the new Hamiltonian~now denoted byvb and HY
b) become

vb5pxpydx∧dy14S k2y

x3 1
k3x

y3 Ddx∧dy

1~ypx22xpy!dx∧dpy1~2ypx2xpy!dy∧dpx1xydpx∧dpy ,

H1
b5px

2py1k1~ypx2xpy!xy1
2k2ypy

x3 2
2k3xpx

y3 ,

and the bi-Hamiltonian structure for Hb5T1Vb is given by

i ~GH
b !v05dHb and i ~GH

b !vb5dHY
b .

(g0) Supposeg0Þ0. Thena5py ~that is, f 50,g5g0) and the vector fieldY becomes

Y5py

]

]x
2Vy

]

]px
.

The two linear equations are

Vxy50,

Vxx2Vyy50, ~7!

and the solution is just

Ve5k1~ 1
2!~x21y2!1k2x1k3y,

whereki ,i 51,2,3, are three arbitrary constants.
The symplectic form and the new Hamiltonian~now denoted byve and HY

e) become

ve52~k1dx∧dy1dpx∧dpy!,

HY
e5k1~xpy2ypx!1k2py2k3px .

Let us summarize.
We have started with the properties of the non-Cartan symmetries and we have arrived

existence of four different bi-Hamiltonian potentials that just coincide with the four super
grable systems with quadratic constants of motion which are related to the harmonic oscil
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One important point is that in all the cases the first one of the two equations isVxy50. This
property must be considered as a direct consequence of the particular form given by Eq.~1! for the
vector fieldY. Other expressions forY will lead to other~not so simple! systems of equations.

The family Ve was not considered in Refs. 1, 8, and 12~nor in Ref. 5 which analyzes then
53 systems!, but it is studied in Ref. 16. It can be considered as rather simple since the ge
potential inVe is just an isotropic oscillator with center at an arbitrary point. Nevertheless, in
approach it appears as a bi-Hamiltonian system by itself with a bi-Hamiltonian structure diff
from that ofVb.

B. Cartan symmetries and non-Cartan symmetries

In order to understand all these results more fully, we will now investigate the way in w
the Cartan and the non-Cartan symmetries are related. We make the analysis for the tw
fundamental cases, that is,f 01Þ0 corresponding toVa andg11Þ0 corresponding toVb.

1. Family V a

The potentialVa is superintegrable with three quadratic constants of motion,I r
a ,r 51,2,3.

SinceVxy50, the two first constants of motion areI 1
a5Hx

a , andI 2
a5Hy

b . ConcerningI 3
a , it takes

the following form:

I 3
a5~xpy2ypx!px1k1x2y1S 1

2D k2x222k3S y

x2D .

We know thatI 3
a must arise from a Cartan symmetry. This symmetry is geometrically represe

by the Hamiltonian vector fieldX3
a of the functionI 3

a :

i ~X3
a!v05dI3

a , X3
a~Ha!50.

The important point is that the non-Cartan symmetryYa turns out to be the (x,px)-dependent part
of X3

a :

Ya5~2ypx2xpy!
]

]x
1GH~2ypx2xpy!

]

]px
5

]I 3
a

]px

]

]x
2

]I 3
a

]x

]

]px
.

Thus if we denote byYa8 the (y,py)-dependent part,

Ya85~xpx!
]

]y
1GH

a ~xpx!
]

]py
5

]I 3
a

]py

]

]y
2

]I 3
a

]y

]

]py
,

we get thatX3
a can be rewritten as follows:

X3
a5Ya1Ya8 , @Ya ,GH

a #50, @Ya8 ,GH
a #50.

Thus the Cartan symmetryX3
a can be decomposed as a sum of two different ‘‘dynamical

non-Cartan symmetries’’ in such a way that we have the following properties:

~i! LYa
v052LY

a8
v05va ,

~ii ! Ya(Ha)52Ya8(H
a)5HY

a5I 4
a ,

~iii ! GH
a (I 4

a)50.

2. Family V b

The potentialVb is superintegrable with three quadratic constants of motion,I r
b , r 51,2,3.

Same as forVa, the two first constants of motion are the two one-dimensional energies, i.eI 1
b

5Hx
b and I 2

b5Hy
b . In this case the third quadratic integral is given by
                                                                                                                



wo

itrary

of two

2129J. Math. Phys., Vol. 41, No. 4, April 2000 Dynamical symmetries, bi-Hamiltonian structures . . .

                    
I 3
b5S 1

2D ~xpy2ypx!
21k2S y

xD 2

1k3S x

yD 2

.

Let us denote byX3
b the Cartan symmetry from whichI 3

b arises:

i ~X3
b!v05dI3

b , X3
b~Hb!50.

ThenYb turns out to be the (x,px)-dependent part. Thus if we denote byYb , Yb8 , the following
two vector fields

Yb5~y2px2xypy!
]

]x
1GH

b ~y2px2xypy!
]

]px
,

Yb85
]I 3

b

]py

]

]y
2

]I 3
b

]y

]

]py
,

then we have

X3
b5Yb1Yb8 , @Yb , GH

b #50, @Yb8 ,GH
b #50.

Consequently, the canonical Cartan symmetryX3
b can also be decomposed as a sum of t

different ‘‘dynamical but noncanonical symmetries’’ in such a way that

~i! LYb
v052LY

b8
v05vb ,

~ii ! Yb(Hb)52Yb8(H
b)5HY

b5I 4
b ,

~iii ! GH(I 4
b)50.

The following proposition generalizes this property for the more general case of an arb
constant of motion.

Proposition 2: Let Jr be an arbitrary constant of motion forHr5T1Vr , r 5a,b, involving
the two degrees of freedom. Then the associated canonical Cartan symmetry is a sum
dynamical symetries of non-Cartan class.

Proof: If Jr is a constant of motion for Hr5T1Vr , r 5a,b, then it arises from a Cartan
symmetry of the Hamiltonian system. Let us denote byXJ

r the vector field such that

i ~XJ
r !v05dJr , XJ

r ~Hr !50.

In the following, and for ease of notation, we will omit the indexr.
In coordinates we have

XJ5YJ1YJ8 ,

YJ5
]J

]px

]

]x
2

]J

]x

]

]px
,

YJ85
]J

]py

]

]y
2

]J

]y

]

]py
.

The integralJ must be a function ofI 1 , I 2 , I 3 , that is,J5J(I 1 ,I 2 ,I 3). Therefore,

YJ5J18X11J38Y3 , YJ85J28X21J38Y38 ,

whereJi8 , i 51,2,3, denote the derivatives ofJ with respect toI i ; the vector fieldsX1 , X2 , are the
Cartan symmetries associated toI 15Hx , andI 25Hy ; andY3 , Y38 , are given by
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Y35
]I 3

]px

]

]x
2

]I 3

]x

]

]px
,

Y385
]I 3

]py

]

]y
2

]I 3

]y

]

]py
.

The Lie bracket ofYJ with the dynamical vector fieldGH is given by

@YJ , GH#5J18@X1 , GH#1J38@Y3 , GH#2GH~J18!X12GH~J38!Y3 .

We recall thatX1 andY3 are dynamical symmetries, and thatJ18 andJ38 are constants of motion
So, we have

@YJ , GH#50.

ThusYJ is dynamical symmetry ofGH . This property is also true forYJ85XJ2YJ .
The new symplectic form and the new Hamiltonian~now denoted byvJ and HJ) become

vJ5LYJ
v05dJ18∧dI11dJ38∧ i ~Y3!v01J38v3 ,

HJ5YJ~H!5J38Y3~H!,

wherev3 is the Lie derivative ofv0 with respect toY3 (va andvb in the previous subsection!.
Thus we conclude that bothYJ andYJ8 , are non-Cartan symmetries.

To conclude, we have found that the integral of motionJ determines the following bi-
Hamiltonian system:

i ~GH!v05dH and i ~GH!vJ5dHJ .

These two equations extend, and include as a particular case, the expressions obtaine
previous subsection.

IV. ADDITIONAL BI-HAMILTONIAN STRUCTURES

A. Lie derivatives

By iteration of the Lie derivative with respect to the vector fieldY we obtain a sequence o
two-forms v0 ,vY

(1) ,vY
(2) ,vY

(3) ,..., and asequence of functions H0 ,HY
(1) ,HY

(2) ,HY
(3) ,..., asfol-

lows:

vY
~1!5LYv0 , vY

~2!5LYvY
~1! , vY

~3!5LYvY
~2! , ...,

HY
~1!5LYH0, HY

~2!5LYHY
~1! , HY

~3!5LYHY
~2! , ... .

Consequently making use of this procedure we obtain the following multi-Hamiltonian struc

i ~G0!v05dH0, i ~G0!vY
~1!5dHY

~1! , i ~G0!vY
~2!5dHY

~2! , i ~G0!vY
~3!5dHY

~3! , ... .

Next we consider the two particular cases ofVa andVb.

1. Family V a

va
~2!52XS 4k3

x3 D py22k1xpy2k2pxCdx∧dy12S 2k1xy1k2x2
4k3y

x3 Ddx∧dpy

12~2pxpy1k2x!dy∧dpx18I 1
ady∧dpy14ypxdpx∧dpy ,
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Ha
~2!52~4I 1

aI 2
a1k2I 3

a!.

2. Family V b

vb
~2!52F ~xpy2ypx!py

21S 4k3

y D px1S 2k2y2

x3 2
6k3x

y2 D pyGdx∧dy

12F ~xpy2ypx!ypy2
2k2y3

x3 2
2k3x

y Gdx∧dpy22F ~xpy2ypx!ypy1
4k3x

y Gdy∧dpx

18I 3
bdy∧dpy22~xpy2ypx!y

2dpx∧dpy ,

Hb
~2!54~ I 2

bI 3
b22k3I 1

b!,

vb
~3!528k3vb

~1! ,

Hb
~3!528k3Hb

~1! .

So, in this case, the equationi (GH
b )vb

(3)5dHb
(3) reduces toi (GH

b )vb
(1)5dHb

(1) ~up to a multiplica-
tive constant!.

B. Tensor R

Let v0 andv1 be two symplectic forms defined inT* Q. Then the equation27,28,30

v15R+v0 ,

or equivalently

v1~X,Y!5v0~RX,Y!, ;X,YPX~T* Q!,

defines a~1-1!-type tensor fieldRPT1
1(T* Q). Notice that sincev0 is nondegerate,R is well

defined. Ifv1 is closed but nonsymplectic, then the kernel ofR defined by

KerR5$XPX~T* Q! such that RX50%

is given by

KerR5Kerv1 .

We will use the notationR* instead ofR when it acts on∧1(T* Q).
We have the following two properties: First, the tensor fieldR satisfies the symmetry cond

tion

v0~RX,Y!5v0~X,RY!, ;X,YPX~T* Q!.

Second, the tensor fieldR determines a sequence of two-formsv2 ,v3 ,v4 ,... asfollows:

v2~X,Y!5v1~RX,Y!5v0~R2X,Y!,

v3~X,Y!5v2~RX,Y!5v1~R2X,Y!5v0~R3X,Y!, ;X,YPX~T* Q!.

If we denote byG1 ,G2 ,G3 ,... thefollowing vector fields,

G05GH , G15RGH , G25RG15R2GH , G35RG25R2G15R3GH ,

then the bi-Hamiltonian system
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i ~GH!v05dH0 and i ~GH!v15dH1

determines the following sequence of equations:

i ~GH!v05dH0,

i ~GH!v15 i ~G1!v05dH1, dH15R* ~dH0!,

i ~GH!v25 i ~G1!v15 i ~G2!v05a2 , a25R* ~dH1!,

i ~GH!v35 i ~G1!v25 i ~G2!v15 i ~G3!v05a3 , a35R* ~a2!.

Thus, if G05GH is bi-Hamiltonian, thenG1 satisfy the following two equations

i ~G1!v05dH1 and i ~G1!v15a2 .

If the subsetB1(T* Q) of exact one-forms onT* Q is invariant underR, thena2 will become an
exact one-form. This property can be true fora2 ~as a particular case! even if B1(T* Q) is not
preserved. In this particular case there exists a function H2 such thatdH25R* (dH1) and the
vector fieldG1 becomes a bi-Hamiltonian system.

In the general casea2 is not exact~neither closed! andG1 is not a bi-Hamiltonian system. An
interesting case corresponds to the existence of two functionsF2 , H2, such thata25F2dH2.
ThenG1 can be considered as a bi-Hamiltonian system up to an integrating factorr251/F2 . If
this is the case, thenG1 is called a quasi-bi-Hamiltonian system.23

Next we consider the two potentialsVa andVb.

1. Family V a

The tensor fieldRa such that

va~X,Y!5v0~RaX,Y!, ;X,YPX~R23R2!,

is given by

Ra5pxS ]

]x
^ dy1

]

]px
^ dpyD12pxS ]

]y
^ dx1

]

]py
^ dpxD

12S k1x1
2k3

x3 D S ]

]px
^ dy2

]

]py
^ dxD1xS ]

]y
^ dpx2

]

]x
^ dpyD .

We obtain

G25RaG15Ra
2GH

a 5~4I 1
a!GH

a ,

a25Ra* ~dH1!5Ra*
2~dHa!5~4I 1

a!dHa,

v25Ra+va5Ra
2+v05~4I 1

a!v0 .

Consequently the vector fieldG1 ,

G15X4
a5~2pxpy14k1xy1k2x!

]

]x
1S px

22k1x21
2k3

x2 D ]

]y

2F ~4k1y1k2!px22S k1x1
2k3

x2 D pyG ]

]px
24k1xpx

]

]py
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is a quasi-bi-Hamiltonian system

i ~G1!v05dHY
a and i ~G1!va5~4I 1

a!dHa.

Thus the two functions, Ha5T1Va and HY
a5Ya(Ha), are constants of motion for both dynamic

systems: the originalG05GH
a andG15X4

a .

2. Family V b

The tensor fieldRb such that

vb~X,Y!5v0~RbX,Y!, ;X,YPX~R23R2!,

is given by

Rb5~ypx22xpy!S ]

]x
^ dy1

]

]px
^ dpyD1~2ypx2xpy!S ]

]y
^ dx1

]

]py
^ dpxD

1Xpxpy14S k2y

x3 1
k3x

y3 D CS ]

]px
^ dy2

]

]py
^ dxD1xyS ]

]y
^ dpx2

]

]x
^ dpyD .

We obtain

G25RbG15Rb
2GH

b 5~4I 3
b!GH

b ,

a25Rb* ~dH1!5Rb*
2~dHb!5~4I 3

b!dHb,

v25Rb+vb5Rb
2+v05~4I 3

b!v0 .

Consequently the vector fieldG15X4
b is a quasi-bi-Hamiltonian system:

i ~G1!v05dHY
b and i ~G1!vb5~4I 3

b!dHb.

Thus the two functions, Hb5T1Vb and HY
b5Yb(Hb), are constants of motion for both dynamic

systems: the originalG05GH
b andG15X4

b .

V. FINAL COMMENTS AND OPEN QUESTIONS

The two n52 superintegrable potentials,Va and Vb, belong to the restricted subfamily o
integrable systems admitting bi-Hamiltonian structures. Moreover, we have proved that, in
two cases, this property arises as a consequence of the fact that the canonical Cartan sym
generating constants of motion are, in fact, a sum of two dynamical symmetries of non-C
class.

A question that immediately arises is if these two properties can be translated to some
other superintegrable systems~e.g., general rational harmonic oscillator, systems related with
Kepler problem, Calogero–Moser system, Higgs oscillator, etc!. We think that these are ope
questions that must be investigated.
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Nonlinear Hamiltonian equations with fractional damping
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~Received 31 August 1999; accepted for publication 8 November 1999!

Existence and uniqueness are proved for a class of Hamiltonian nonlinear differ-
ential equations of second order with a Caputo fractional derivative of orderl
P]0,2@ . For nonintegerl the rate of convergence of solutions to a critical point is
algebraic. For 0,l<1 a non-negative dissipation function is constructed. Forl
52 the equation is Hamiltonian. The solution is an analytic function ofl for 0
,l,1 and for 1,l,2. Numerical studies of nonlinear pendulum and the Duffing
equation with a fractional derivative term replacing the usual damping show strik-
ing differences between ordinary differential and fractional differential equations.
© 2000 American Institute of Physics.@S0022-2488~00!03202-3#

I. INTRODUCTION

Fractional time derivatives have been considered in connection with anomalous diffusi1–7

nonexponential relaxation ~cf. references in Refs. 8 and 9!, viscoelasticity and
poroelasticity10–14,9,15as well as damping in finite-dimensional mechanical systems.16–18 A very
interesting application of ordinary fractional differential equations in mechanics is Bas
problem.8

The purpose of this paper is a study of the effects of fractional derivative terms in non
Hamiltonian systems. Papers on nonlinear fractional differential equations are scarce. A num
study of chaos in a nonlinear equation of order 2,l<3 in Ref. 19 demonstrates changes of t
attractor structure for varyingl. A very particular nonlinear problem involving fractional deriv
tives is considered in Ref. 20.

A distinctive feature of fractional differential equations as opposed to ordinary differe
equations is an algebraic rate of convergence of trajectories to critical points. This property
a nodelike behavior of critical points where a corresponding ordinary differential system w
have stable focus.

We consider fractional differential equations of the form

D2u1CDlu1F~u!50, ~1!

whereDl denotes the fractional derivative in the sense of Caputo~Sec. II! of order l, with 0
,l<2. ForC50 Eq. ~1! is Hamiltonian with the Hamiltonian function

H~u,v !5 1
2 v21V~u!, ~2!

where V(u) is a primitive function ofF(u). In particular the following cases will be studie
numerically:

V~u!5
K

2
u22

A

4
u4 ~Duffing oscillator21,22!, ~3!
21350022-2488/2000/41(4)/2135/22/$17.00 © 2000 American Institute of Physics

                                                                                                                



ution is
onal

ec.
or
of the
d an

f the

2136 J. Math. Phys., Vol. 41, No. 4, April 2000 M. Seredyńska and A. Hanyga

                    
V~u!52
K

2
u21

A

4
u4 ~Duffing twin well!, ~4!

V~u!5K~12cosu! ~nonlinear pendulum! ~5!

with K,A.0. Equation~3! can be viewed as an approximation of~5!.
The following initial-value problem~IVP! for Eq. ~1! will be considered here:

u~01 !5u0,
~6!

Du~01 !5v0 .

For 0,l<2 the IVP~1!, ~6! has aC2 solutionu defined on an interval@0,T# with T.0. The
assumption that the fractional derivative is defined in the Caputo sense is essential. The sol
not C2 smooth if the Caputo fractional derivative is replaced by the Riemann–Liouville fracti
derivative.

For 0,l<1 the second term in Eq.~1! results in dissipation in a weak sense defined in S
IV. Numerical tests show that for 1,l,2 the solutions exhibit a weakly dissipative behavior f
some initial data and escape to infinity in the remaining cases. The temporal evolution
energyE(t)5H(u(t),v(t)) is a superposition of a monotone decay to the minimal value an
oscillation. Local maxima ofE(t) correspond to the zeros ofDu(t) and, in some cases, ofDlu.

In order to examine dissipativity of Eq.~1! we define a function

D~ t !ªCDu~ t !Dlu~ t !. ~7!

Equation~1! implies the identity

dH

dt
52D. ~8!

The functionD(t) can be identified as the energy dissipation rate provided every solution o
IVP ~1!, ~6! satisfies a weak dissipation condition

E
0

t

D~s!ds>0, ;t.0. ~9!

Note that the total accumulated dissipation is non-negative but the dissipationD(t) can change
sign.

For some values ofl and some initial conditions the dissipation condition~9! is not satisfied.
In particular, in the limitl→22 the functionD becomes an additional kinetic energy rate

D5
d

dt

C

2
~Du!2. ~10!

In the limit l→22 the differential operator in Eq.~1! tends to (11C)D2 and Eq.~1! is Hamil-
tonian with a new Hamiltonian function

H2~u,v !5~1/2!~11C!v21V~u!. ~11!

In this case Eq.~1! has one-parameter families of periodic solutions and the functionD(t) oscil-
lates periodically changing sign.

In the limit l→11 the functionD(t) depends explicitly on the initial velocity:

D~ t !5C@Du~ t !2v0#Du~ t !, ~12!
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wherev05Du(01). The first term of~12! is the ordinary dissipation rate, while the second te
can be taken into account by redefining the Hamiltonian

H~u,v !→H1~u,v !5H~u,v !2Cv0u, ~13!

so that Eq.~1! reduces toDu5v, Dv52]H1 /]u2Cv.
An appropriate definition of the fractional derivative is also required for dissipativity.

Riemann–Liouville fractional derivativeDRL
l ~Sec. II! has the propertyDRL

l 1Þ0, which would
entail that dissipation does not vanish for a system in equilibrium. Furthermore, it will be sh
that for 0,l<1 andC>0 the dissipation condition is satisfied provided the fractional deriva
is understood in the sense of Caputo, but it is not satisfied for the Riemann–Liouville frac
derivatives.

For nonintegerl the solution of the IVP~1!, ~6! tends to the equilibrium at an algebraic ra
~for l51 the convergence is exponential!. This entails that for larget the velocity decreases muc
faster thanu and in the phase space the trajectory approaches the equilibrium horizontally~Sec.
VII and Appendix A!.

In Sec. V we show that the solutionu(l) of the problem~1!, ~6! is an analytic function ofl in
#0, 1@ and #1, 2@ with values in the Banach spaceC(@0,T#).

The Caputo and Riemann–Liouville fractional derivatives involve time convolutions ove
interval @0,t#. Since it would be difficult to give a physical justification of a memory extending
a fixed time in the past it is implicitly assumed that the system was at restu50 for t,0.

II. BASIC FACTS FROM FRACTIONAL CALCULUS

For our purposes fractional integrals are defined by a generalization of the Cauchy formu
a repeated indefinite integral

~ I nf !~ t !5E
0

t

@~ t2t!n21/n! # f ~t!dt[E
0

t

@tn21/n! # f ~ t2t!dt, ~14!

whereIf is a primitive function off:

~ I f !~ t !ªE
0

t

f ~t!dt ~15!

and I n denotes thenth power ofI.
For an arbitrary real numberm.0 and a sufficiently regular functionf on R,

~ I m f !~ t !ªE
0

t

@~ t2t!m21/G~m!# f ~t!dt. ~16!

For arbitrary complex numbersm, Eq. ~16! can be expressed in terms of the distribution23

um~ t !5t1
m /G~m11! ~17!

in the form

I m fªum21* f 1 , ~18!

where f 1(t)ªu(t) f (t) andu(t) is the Heaviside step function. The convolution~denoted by the
asterisk! is understood in the distributions sense.

For realm.21 the distributiont1
m is defined by the formula

t1
m 5H 0 for t,0

tm for t.0.
~19!
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For other values ofm the distributiont1
m is defined either by analytic continuation or by regula

ization of divergent integrals.23 The distributionum is an entire function of the exponentm. The
distributionsum satisfy the identitiesDum5um11 and

um* un5um1n11 . ~20!

For an arbitraryl.0 the Riemann–Liouville fractional derivative24,25of orderl is defined by

DRL
l f 5DlI l 2l f , ~21!

wherel is the smallest integer greater or equal thanl. The Caputo derivative26,27 is defined by the

Dl f 5I l 2lDl f ~22!

with the same restriction onl.
For l,0 we shall setDl

ªI 2l.
Substituting the definition~18! in ~21! it is readily seen that

DRL
l f 5u2l21* f 1 . ~23!

It is obvious that the Riemann–Liouville fractional derivative is an entire function of its expon
For the Caputo derivative integration by parts yields a more complicated expression:

Dl f 5u2l21* f 12 (
k50

l 21

Dkf ~01 !uk2l , ~24!

where the integerl has the same meaning as before. The regularization, implicit in the defin
of um , eliminates potentially divergent contributions from the integration limit att5t.

From Eq.~24! it is clear that the Caputo derivative is a left continuous function of its ordel
with discontinuities at integer values ofl.

The Laplace transform of a Caputo fractional derivative4 is a straightforward generalization o
the Laplace transform of an integer-order derivative:28

~LDl f !~s!5sl~Lf !~s!2 (
k50

l 21

sl212kDkf ~01 !. ~25!

An analogous formula for the Riemann–Liouville fractional derivative involves initial value
fractional derivatives off at t50. This indicates that Caputo fractional derivatives are m
appropriate for formulating initial-value problems.

Equation~25! follows from the identity

Lu2g21~s!5sg. ~26!

From Eq.~26! it is clear thatsg>0 for reals>0. Sinceu2g21(t)[0 for t,0, the functionsg is
defined on the Riemann sheet2p,args,p with a cut along the negative real axis.

III. EXISTENCE, UNIQUENESS, AND CONTINUOUS DEPENDENCE ON DATA

Uniqueness, existence, and continuous dependence on data for the initial-value proble~1!,
~6! will be proved by reduction to a functional-differential system of equations in the sense of
and Verduyn Lunel:29

dU

dt
5 f ~ t,Ut!, ~27!
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where f is a continuous function defined on an open subset ofR3C, C denotes the space o
continuous functions on a fixed interval@0,R# with the sup norm,

Ut~s!:[U~ t2s!, 0<s<R ~28!

denotes the history ofU at time,t, andU5@u,v#T.
In our case the functionalf (t,Ut) does not depend on the values of the functionU(t) prior to

t50. Consequently, the functionU(t) can be replaced by the continuous function

Ǔ~ t !5H Fu~01 !1v~01 !t
v~01 ! G for t,0

U~ t ! for t>0
~29!

and the sup norm in the existence and uniqueness theorems of Hale and Verduyn Lunel~Chapter
2 in Ref. 29! can be replaced by the sup norm restricted to the positive times.

Consider the solutionU(t) defined on an interval@0,T#. The results of Ref. 29 can be applie
in our case by settingR5T. The initial historyU0 need not be included in the initial data.

We shall assume that the functionF(u) is uniformly Lipschitz continuous on compact subse
of R.

The cases 0,l<1 and 1,l,2 will be considered separately.
For 0,l<1 the initial-value problem~1!, ~6! can be reduced to the initial-value problem f

the functional-differential equation

Du5v,
~30!

Dv52Cu2l* v2F~u!,

with the initial datau(0)5u0 , v(0)5v0 . Continuity of the right-hand side of~30! with respect to
the historyv t in the sup norm follows from the fact thatu215d and u2lPL1(@0,T#) if l,1.
This is sufficient to guarantee existence of solutions~Ref. 29, Chapter 2!. SinceF(u(t)) is a
Lipschitz-continuous function ofu:@0,T#→R the solutions of the IVP for Eq.~30! are unique. The
Banach closed graph theorem30 implies continuous dependence on data.

We are ready to prove the existence theorem for 0,l<1:
Theorem 1: Let 0,l<1.
Let F:I→R be a continuous function on an interval I of the real line, uniformly Lipsch

continuous on every finite segment in I.
For every compact subsetK of R2 there is a number T.0 such that for every(u0 ,v0)PK

there is a unique solution inC1 of the IVP~1!, ~6! defined for0<t,T.
The solution belongs toC2(@0,T#).
Proof: Existence follows from Theorem 2.1 in Chapter 2 of Ref. 29.
For the uniqueness, note that the functionalu→F(u(t)) is uniformly Lipschitz continuous on

every bounded subset ofC. Sinceu2lPL1(@0,T#), the linear functionalv→u2l* v(t) is uni-
formly Lipschitz continuous on finite segments@0,T# of R. The hypotheses of Theorem 2.3
Chapter 2 of Ref. 29 are thus satisfied. The proof of Theorem 2.3 in Ref. 29 is incorrect, hen
outline the existence proof tailored for our case.

Let tP@0,T#. For any two solutionsU (1)(t),U (2)(t) of the same IVP~1!, ~6! we have
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uU ~1!~ t !2U ~2!~ t !u<U E
0

t

@ f ~s,Us
~1!!2 f ~s,Us

~2!!#dsU
<ME

0

t

iUs
~1!2Us

~2!ids

<Mt sup
0<s<T

iUs
~1!2Us

~2!i , ~31!

where M denotes the Lipschitz constant off on a bounded subset ofR13C containing
$(t,U ( j )(t))u0<t<T, j 51,2%. Let T8,min$T,1/M %. For 0<t<T8,

uU ~1!~ t !2U ~2!~ t !u<g sup
0<s<T8

uU ~1!~s!2U ~2!~s!u ~32!

with g5MT8,1, which is a contradiction unlessU (1)(t)5U (2)(t) for 0<t<T8. Repeating the
same argument successively for the intervals@(n21)T8,nT8#, uniqueness is proved for the se
ment @0,T#.

Sinceu,vPC, the solutionuPC1. SinceulPL1, the functionu2l* v is continuous. Equation
~30! implies thatuPC2.

Continuous dependence on initial data follows from existence and uniqueness by the B
closed graph theorem.30

We now turn to the uniqueness theorem for 1,l,2.
Theorem 2: Let 1,l,2 and suppose that the function F(x) is uniformly Lipschitz continu-

ous on finite segments ofR.
The problem (1), (6) has at most one solution.
The proof is based on three lemmas.
Lemma 3: Let K(t) denote the inverse Laplace transform of H(s)ª1/(11se), with 0,e

,1.
The function K(t) is non-negative, KPL1(R) and K(t)50 for t,0.
The proof of Lemma 3 is based on the following lemma~stated in Ref. 31!:
Lemma 4: Let h(s)5g(q(s)), where g,qPC`,q>0 and the functions g,q8 are completely

monotone:32,33

~21!kg~k!>0, ~33!

~21!kq~k11!>0, ~34!

for k50,1,... .
The function h is completely monotone.
The superscript in parentheses indicates the order of the derivative.
Proof of Lemma 3:The functiong(x)ª1/(11x) is completely monotone, whilese is non-

negative and its first derivative is completely monotone provided 0,e,1.
By Bernstein’s theorem32,33 this proves that the functionK(t) is integrable and non-negative
Causality follows from the fact thatH(s) is holomorphic in the right-half of the comple

s-plane.
This finishes the proof.
Proof of Lemma 4:To begin with we note thath>0, h8[g8q8<0.
Proceeding by recursion, we assume that

h~n!5~21!n(
l<k

g~ l !)
r 51

Nn,l

q~mn,l ,r !, ~35!
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whereNn,l ,mn,l ,r are some positive integers and all the terms in the sum on the right-hand sid
non-negative. The (n11)st derivative is then

h~n11!5(
l<k

H g~ l !(
r 51

Nn,l

@q~mn,l ,r11!/q~mn,l ,r !#)
s51

Nn,l

q~mn,l ,s!1g~ l 11!q8)
r 51

Nn,l

q~mn,l ,r !J . ~36!

On account of the assumptions abouth(n) and the hypothesis of the lemma (21)n11h(n11)>0.
Lemma 5: Let0,e,1, e522l and

L~ t !5C1/eK~C1/et !. ~37!

The operatorV defined by the equation

Vg5g2L* g ~38!

satisfies the identity

V~D2h1CDlh!5D2h, ~39!

where h is an arbitrary twice-differentiable function on@0,T#.
Proof: Extendh to a Laplace transformable function onR1 .
The Laplace transform ofL is C/(C1se). The Laplace transform of the left-hand side of E

~39! is

S 12
C

C1seDL~D2h1CDlh!5s2~Lh!~s!2sh~01 !2~Dh!~01 !5~LD2h!~s!

@use Eq.~25!#. The result applies to an arbitrary continuous functionh defined on an interval@0,T#.
Remark 1: By Lemma 3 and Karamata’s Tauberian theorem32 *0

t K(t)dt;te/G(e11) for t
→0, which indicates that K(t) is unbounded for t→01. K(t) can be expressed in terms of th
Mittag–Leffler function Ee :K(t)52(d/dt)Ee(2te) ~Ref. 27!. Since Ee(2te) is convex, we also
have K(t);te21/G(e) by a lemma in Ref. 28.

Remark 2: Fore51/2 the function K(t)51/Apt2et erfc(At).
The asymptotic behavior of K(t) at 0 and at the infinity is K(t);(1/Ap)t21/2 and K(t)

;1/(2Ap)t23/2, respectively.
Proof of Theorem 2:Let uPC(@0,T#) be a solution of Eq.~1! with the initial data~6!.
Applying the operatorV to Eq. ~1! we conclude thatu satisfies the equation

D2u1F~u!2L* F~u!50, ~40!

which can be reduced to a first-order system by introducing the variablev5Du.
SinceLPL1 andF(x) is uniformly Lipschitz continuous on finite intervals of the real line, w

have for arbitraryu1 ,u2PC(@0,T#) mapping@0,T# to a finite intervalI:

uF~u1~ t !!2F~u2~ t !uu<C1uu1~ t !2u2~ t !u<C1iu12u2i , ~41!

iL* F+u12L* F+u2i<iLiL1C1iu12u2i , ~42!

wherei•i denotes the sup norm on@0,T# andC1 is the Lipschitz constant forF on I. By Theorems
2.3 in Chapter 2 of Ref. 29 the IVP~40!, ~6! has at most one solution on@0,T#.

This proves uniqueness of the solutionuPC(@0,T#) of the IVP ~1!, ~6!.
Using two technical lemmas, we shall prove the following existence theorem for 1,l,2:
Theorem 6: Let 1,l,2. The IVP~1!, ~6! has a solution uPC2(@0,T#).
Lemma 7: Let0,e,1. The function L(t) satisfies the equation
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~De1C!D21L~ t !5Cu~ t !. ~43!

Proof of the lemma:By the definition of the Caputo derivative

DeD215I 12eDD215I 12e.

Hence

L~DeD21L !~s!5se21L~L !~s!. ~44!

The Laplace transform ofL is C/(C1se), which shows that expression~44! is C/s, the Laplace
transform of the right-hand side of Eq.~43!.

Lemma 8: For every function f such that f(t)50 for t,0 and fuR1PC` the following identity
is satisfied:

D2eDDeD21f 5 f . ~45!

Proof of the lemma:We have

D2eDDeD21f 5I eDI 12eDD21f 5I eDI 12e f 5ue21* Du2e* f 15ue21* u2e21* f 15u21* f 1

5 f 15 f .

Proof of the theorem:We know from Ref. 29 that the IVP~40!, ~6! has a solution@u,v#T

PC(@0,T#)2 for someT.0.
Applying the operatorD2eD(De1C)D21 to the left-hand side of Eq.~40! and applying

Lemmas 7, 8 we conclude thatu satisfies Eq.~1! on @0,T#.
SinceLPL1, the functionsF(u(t)) and L* F(u) are continuous and Eq.~40! implies that

uPC2.

IV. DISSIPATION

For l51 the functionD is non-negative providedC>0.
In the case 0,l,1 a weaker result will be obtained.
Theorem 9: Let 0,l,1.
An arbitrary function u(t) having a locally integrable derivative satisfies the dissipati

condition (9). The equality in Eq. (9) implies that Du(t)50 almost everywhere.
Remark 3: According to Theorem 9 value of energy E(t)5H(u(t),v(t)) at any time t.0 is

always lower than at time0. Numerical tests show that it decays to a minimum with so
oscillations. Forl→12 the energy decay is monotone. Forl→11 the energy H1 defined by Eq.
(13) decays monotonely.

Lemma 10: For0,l,1 the quadratic functional

Q~w![E
0

t

dxE
0

t

dy
ux2yu2l

G~12l!
w~x!w~y!

is positive definite.
Proof of Theorem 9:By Lemma 10

E
0

t

D~u!~t!dt[CE
0

t

dt Du~t!E
0

t

ds
s2l

G~12l!
Du~t2s!

[
C

2 E
0

t

dtE
0

t

ds
ut2su2l

G~12l!
Du~t!Du~s!>0 ~46!

with an equality ifDu(t)50 for almost alltP@0,t#.
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Proof of Lemma 10:Let g,uxu2l* gPL2(R) and let 0,l,1. Using a formula for the Laplace
transform of the distributionuxu2l from Ref. 23 and Parseval’s theorem we have

E
2`

`

dx g~x!E
2`

`

dy g~y!
ux2yu2l

G~12l!
5A2

p
sinS lp

2 D E
2`

`

djuĝ~j!u2ujul21>0, ~47!

where ĝ denotes the Fourier transform ofg. The lemma is proved by substitutingg(x)
5u(x)u(t2x)w(x).

Remark 4: The dissipation inequality is not valid for the Riemann–Liouville fractional de-
rivative. Indeed, in this case, assuming0,l,1, the energy dissipation accumulated at time t

E
0

t

DRL~t!dt5CE
0

t

Du~t!Dt@u2l* u1#dt

[CE
0

t

Du~t!u2lDu~t!dt1Cu~01 !E
0

t

u2l~t!Du~t!dt, ~48!

where DRL(t)ªCDu(t)DRL
l (t). The first term on the right-hand side is non-negative. Forl

→12 the accumulated dissipation tends to

CF E
0

t

Du~t!2dt1u~01 !Du~01 !u~ t !G .
For u0,0, v0.0 and sufficiently small t.0 this implies that*0

t DRL(t)dt,0.
Dissipativity of Eq.~1! with 0,l<1 can be used to show that the solution~1!, ~6! can be

continued to infinity in time.
Indeed, suppose that 0,l<1, the level curveG:H(u,v)5H(u0 ,v0) is closed and the interio

V of G is contained in the set$(u,v)uH(u,v)<H(u0 ,v0)% while H(u,v).H(u0 ,v0) in a neigh-
borhood ofG outsideGøV. In view of Theorem 9 the curveU(t)5@u(t),Du(t)#T, tP@0,T@ ,
whereu(t) is the solution of~1!, ~6!, is contained inV and the functionU(t),tP@0,T@ is bounded
in the sup norm. Considert, t1DP@0,T@ for someT.0 and letM be theL1 norm of u2l

restricted to@0,T#. The functionU is uniformly continuous on@0,T# since

uU~ t1D!2U~ t !u<U E
t

t1D

f ~s,Us!dsU<D max$sup
V

uvu, M sup
V

@ uvu1uF~u!u#% ~49!

and by the Ascoli–Arzela` theorem the trajectory$U(t)u0<t,T% is contained in a compact set o
C. By the argument of Theorem 3.1 in Chapter 2 of Ref. 29 this suffices to disprove the hypo
that U(t) is not continuable beyondt5T. ConsequentlyU(t) is defined for allt.0.

Remark 5: Theorem 9 does not extend to1,l,2. Numerical tests for nonlinear pendulum
(Sec. VII) show that for1,l,2 and Du(01)50 as well as for Du(01)Þ0 and l,1 or l
.lcr , wherelcr is a number in ]1, 2[, the trajectory is bounded. For Du(01)Þ0 and 1,l
,lcr the trajectory escapes to infinity.

V. ANALYTIC DEPENDENCE ON l

In this section we shall assume that the functionF is analytic.
The operator on the left-hand side of Eq.~1! is an analytic function ofl in #0, 1@ and in#1, 2@.

We shall show that the solutionu(l) of the IVP ~1!, ~6! is an analytic function oflP]0,1@ and
lP]1,2@ .

By Theorem 2.1 in Chapter 2 of Ref. 29 for an arbitrarylP]0,1@ or P #1, 2@ there is a
positive numberT.0 and a neighborhoodU such that for everylPU the solutionu(l) of ~1!, ~6!
                                                                                                                



for

ef.

f

a

2144 J. Math. Phys., Vol. 41, No. 4, April 2000 M. Seredyńska and A. Hanyga

                    
is defined over@0,T#. The problem defines a mapping fromU into VªC(@0,T#)3C(@0,T#). In
order to prove that this mapping is analytic we shall apply the implicit function theorem
holomorphic functions.34

The IVP ~1!, ~6! can be formulated in the operator form

G~U,l!50, ~50!

where the mappingG:V3U→V is defined by

G~U,l!~ t !ªU~ t !2U02E
0

t

f ~s,Us!ds 0<t<T ~51!

with f 1(t,U)5U2(t) and

f 2~ t,U !5H 2Cu2l* U22F~U1~ t !! for 0,l<1

2F~U1~ t !!1L~ t !* F~u1~ t !! for 1<l,2,

whereU05@u0 ,v0#T, the subscripts ‘‘1’’, ‘‘2’’ denote the components ofU,f, and the function
L(t) is defined by Eq.~37!. The Fréchet derivative ofG with respect to the first argument is

dG~U,l!@Ū#~ t !5Ū~ t !2E
0

t

d f ~s,Us!@Ūs#ds, ~52!

whered f denotes the Fre´chet derivative off (s,Us) with respect to the history:

d f 1~ t,F!@C#5C2~ t !, ~53!

d f 2~ t,F!@C#~ t !5H 2u2l~ t !* C2~ t !2F8~F1~ t !!C1~ t ! for 0,l<1

2F8~F1~ t !!C1~ t !2L~ t !* ~F8~F1~ t !!C1~ t !! for 1<l,2.
~54!

The operatorG is an analytic function of both arguments.
Let u(l)(t), 0,t,T, be the solution of~1!, ~6! for somelPU, v (l)5Du(l). The function

U (l)(t)5@u(l)(t),v (l)(t)#T satisfies Eq.~50!. By the uniqueness theorem 2.1 in Chapter 2 of R
29 the initial value problem

Ū~0!50, ~55!

DŪ~ t !5d f ~ t,Ut
~l!!@Ū# for 0<t<T, ~56!

equivalent to the operator equation

dG~U,l!@Ū#50 ~57!

has only the trivial solution Ū(t)[0. Furthermore, the solutionŪg of the problem
dG(U,l)@Ū#5gPC satisfies the estimateiŪgi<Rigi for some constantR by the continuous
dependence theorem~Theorem 2.2 in Chapter 2 of Ref. 29!. Consequently the inverse o
dG(U,l) is bounded.

By the implicit function theorem,35 u(l)PC is an analytic function oflPU.
A series expansion of the solution in powers of (l2l0) can be formally constructed by

series expansion of the fractional differential operator. Series expansions ofDlu can be obtained
by applying the series expansions ofum ,m52l21,m5k2l ~Ref. 23! to Eq. ~24!.
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VI. A NEGATIVE RESULT FOR RIEMANN–LIOUVILLE DERIVATIVES

Solutions of Eq.~1! with the fractional derivative in the sense of Riemann–Liouville

D2u1CDRL
l u1F~u!50 ~58!

are not C2 smooth and their second-order derivatives are unbounded att→0. Existence and
uniqueness for Eq.~58! can be proved rather easily by reducing it to the functional differen
equations of neutral type:29

dDU

dt
1F 2v

F~u!G50

with a stable operatorD,

DUªF u
v1Cu2l* uG .

In order to show that the solution of Eq.~1! is not C2 smooth, we shall need a lemma.
Lemma 11: Letm, l.0, f (t)5tmg(t)/G(m11) and suppose that g(t) is an analytic function,

possibly with a branching point at0, g(t)Þ0.
The limit limt→01 DRL

l f (t) is finite for l5m and

lim
t→01

DRL
l f ~ t !5H 0 for l,m

6` for l.m.
~59!

Proof: Suppose thatg(t)5a1btn1...,n.0,aÞ0. From Eqs.~23! and ~20!,

f ~ t !5aum2l~ t !1b8um1n2l~ t !1¯ ,

which implies the assertion of the lemma.
In particular, Eq.~20! implies thatDRL

l 15u2l andDRL
l t5u12l .

Let u(t) be a solution of Eq.~58!. If the solutionuPC2(@0,T#), then

u~ t !5u01tv01t2g~ t ! ~60!

for some continuous functiong. By Lemma 11,DRL
l (t2g(t))50. Consequently the function

DRL
l u(t) is unbounded att50 if eitheru0Þ0 or v0Þ0 and 1,l,2. Equation~58! and the initial

conditions~6! imply that D2u is unbounded in these cases.
For comparison with the Caputo derivatives we shall prove the following lemma.
Lemma 12: Letm>l.0 and f(t)5tmg(t). Then

DRL
l f ~01 !5Dl f ~01 !. ~61!

Proof: For every integerk,l<m we haveDkf (01)50, hence Eq.~61! follows from ~24!
and ~21!.

Equation~24! implies thatDl150 and

Dlt5H 0 if l.1

1 for l51

u12l~ t ! if l,1.

Hence, applyingDl to u expressed in the form~60!, it is obvious thatDlu(01) is finite.
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VII. NUMERICAL EXAMPLES: NONLINEAR PENDULUM AND DUFFING EQUATIONS
WITH FRACTIONAL-ORDER DAMPING

For C50 the Duffing equation~1! with the potential~3! ~nonlinear oscillator! or ~4! ~twin
well! has a one-parameter family of periodic solutions that can be expressed in terms of Ja
elliptic functions.21,22

The classical Duffing equation has a dissipation termC Du, which corresponds to the limi
l512 in Eq. ~1!. In this section the results of a numerical investigation of the solutions of
Duffing equation with fractional values oflP]0,2@ are presented.

The numerical algorithm involves a symplectic integrator for the Hamiltonian part36 plus a
finite-difference approximation of the dissipation term:

un115un1hFvn2
h

2
F~un!G ,

~62!

vn115vn2
h

2
@F~un!1F~un11!#2CXn

~l! ,

where

X~l!5H Dlu for 0,l,1

Dl21v for 1,l,2
~63!

andXn
(l) denotesX(l) evaluated at thenth grid point. For 1,l,2 the identity

Dl21v5Dl21Du5I 22lD2u5Dlu ~64!

has been applied. Numerical evaluation ofX(l) is based on the formula

Dl f ~ t !5DRL
l f ~ t !2 f ~01 !t1

2l/G~12l! ~65!

valid for 0,l,1.
The Riemann–Liouville fractional derivative can be approximated by finite differences u

its alternative definition as a Gru¨nwald–Letnikow derivative.25 In fact

lim
h→0

h2l (
k50

@ t/h#

~21!kS l
k D f ~ t2kh!5DRL

l f ~ t !, ~66!

where the limit is understood in theLp(@0,T#) topology with p>1, T.0 and f is assumed to
belong to the range of the fractional integralI l in Lp(@0,T#) ~Ref. 25, Theorems 20.6 and 13.2!.
The symbol@x# denotes the integer part ofx ~the largest integern<x).

In particular, a functionf belongs toI l(Lp(@0,T#)) if 0 ,l,1, f (t)5t2ng(t) and g(t) is
uniformly Hölder continuous on@0,T# with a Hölder exponentm.l and 2l,n,1. These
conditions are satisfied forf 5u,v, where uPC(@0,T#) is a solution of~1!, ~6! and v5Du.
Indeed, for 0,l,1 Eq. ~30! implies thatDu,Dv are uniformly bounded on@0,T#. For 1,l
,2 Eq. ~40! implies thatDu,Dv are uniformly bounded on@0,T#. This proves Eq.~66! for
f 5u,v.

In the numerical tests reported below the values of the parameters areK51.2,A51,C51.
In Fig. 1~a! the phase portrait of the solution of~1! for the nonlinear pendulum withl50.5

and the initial datau051, v050 is shown. The Hamiltonian and the velocity are shown in F
1~b!. An ordinary damped pendulum (l512) would spiral down to the equilibrium. The equ
librium would thus be a stable focus. The memory effect forl50.5 leads to a more comple
behavior: An initial spiraling goes over into a slow linear decay with one or two small loops.
small loops are unrelated to the Hamiltonian. In particular they do not encircle the equilib
Figure 2 shows that the equilibrium has a nodelike appearance. This fact is a consequenc
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fact that the ultimate decay rate of the solution for nonintegerl is algebraic:u(t);At2g, v(t)
;2gAt2g21 for t→` ~Appendix A!. The Hamiltonian does not decrease monotonely, as wo
be the case for the ordinary dissipationl→12. In accordance with Theorem 9 fort.0 the
Hamiltonian does not exceed its initial value. Additionally, an asymptotic decay to 0 is appar
Fig. 1~b!. Local maxima ofH(t) correspond to the zeros of the velocity.

The corresponding case ofl51.5 is shown in Fig. 3~a!. The trajectory initially spirals down
to the equilibrium but in the final stage the convergence is monotone and slow@Fig. 3~b!#.

The numerical solution forl51.0001 with the initial datau051, v050 is shown in Fig. 4.
The extreme cases ofl51.999 are illustrated in Fig. 5 for the Duffing oscillator and in Fig. 6
the Duffing twin well (u051, v050). For l51.999 the effective HamiltonianH2(u,v)(11) is
different from H(u,v) and H(u,v) oscillates periodically. The coefficient sin(1.999p) of the
asymptotic contribution of the cut, cf Eq.~A9!, is small and the pole contribution initially domi
nates over the contribution of the cut. The trajectory initially spirals down to the minimum
H2(u,v) at a very slow pace. Fort.Tsw the algebraically decaying cut contribution dominat
and the trajectory approaches the equilibrium horizontally. The switching timeTsw can be esti-
mated by comparing the amplitude of the pole contribution with the asymptotic cut contrib

FIG. 1. Nonlinear pendulum forl50.5,u051, v050. ~a! Phase space: The trajectory for (u0 ,v0)5(0,1) and isolines of
the Hamiltonian.~b! Time evolution of the Hamiltonian Ham and velocityv.
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for large times~Appendix B!. For the values of the parameters used in the case under con
ation Eq.~B4! yields the estimateTsw;46 000.

Unbounded solutions can appear for 1,l,2. For the nonlinear pendulum the solutions a
unbounded ifv0Þ0 and 1,l,lcr . In this case the pendulum rotates with an oscillating veloc
In Fig. 7 the trajectories foru050, v051, andl51.001, 1.2, 1.33, and 1.3325 are shown. T
critical valuelcr of l lies between 1.33 and 1.3325. Theoretical investigation of the effect ofl on
the boundedness of the solution for 1,l,2 is beyond the scope of this paper.

VIII. CONCLUSIONS

Hamiltonian ordinary differential equations of the Duffing and damped nonlinear pend
types have been embedded in a one-parameter family of equations with the damping term re
by a fractional derivative of orderl P#0, 2#.

The fractional derivative causes energy decay for 0,l<1 and for some initial data if 1
,l,2. For initial data withDu(0)Þ0 and 1,l,lcr the solution escapes to infinity. Fo

FIG. 2. Trajectories of the nonlinear pendulum forl50.5. ~a! Four trajectories in the (u,v) plane for (u0 ,v0)
5(0,1),(1,1)/&,(1,3)/A10,(1,0) and isolines of the Hamiltonian.~b! Detail of ~a!.
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nonintegerl the decay rate is algebraic, while forl51 the decay rate is exponential. Forl52
the equation is Hamiltonian with a modified mass.

Well-posedness of the nonlinear IVP~1!, ~6! has been proved. The solutions areC2 smooth if
the fractional derivative is interpreted in the Caputo sense. Solutions of the same problem
Riemann–Liouville fractional derivatives have a singularity att50.

Solutions are analytic functions of the order of the fractional derivative except at in
values.
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FIG. 3. Nonlinear pendulum forl51.5, u051, v050. ~a! Phase portrait.~b! Detail of the trajectory.
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APPENDIX A: ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF LINEAR EQUATIONS WITH
CAPUTO FRACTIONAL DERIVATIVES

Asymptotic behavior of nonlinear dissipative differential equations is topologically equiva
to the behavior of equations obtained by their linearization, provided hyperbolicity condition
satisfied.21 There is no corresponding result for functional differential equations and fracti
differential equations. Numerical results described in Sec. VII can, however, be explain
considering linearized Eq.~1!:

D2u1CDlu1ku50 ~A1!

with C, k.0.
The Laplace transform of the solution of the IVP~A1!, ~6! is given by

ũ~s!5
~11Csl22!~su01v0!

s21Csl1k
~A2!

FIG. 4. Nonlinear pendulum forl51.001,u051, v050. ~a! Phase portrait.~b! Time evolution of the Hamiltonian, angle
u, and velocityv.
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for 1,l,2 and by

ũ~s!5
~11Csl22!su01v0

s21Csl1k
~A3!

for 0,l,1, wheresl is defined on the principal Riemann sheetP: 2p,args,p.
We shall prove that onP the denominatorG(s)[s21Csl1k of ũ(s) has no zeros in the

right-half of the complex plane. Substitutings5reif in the equationG(s)50 we have in particu-
lar an equation

r 2 sin~2f!1Crl sin~lf!50 ~A4!

which cannot be satisfied for 0,f<p/2 or for 2p/2<f,0 except fors5r 50. s50 is not a
zero ofG(s). For f50 the equationG(s)50 reduces to

r 21Crl1k50, ~A5!

FIG. 5. Duffing oscillator forl51.999, u051, v050. ~a! Phase portrait.~b! Time evolution of the Hamiltonian and
velocity.
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which has no solutions.@Applying a generalized Rouche´’s theorem it can be additionally show
thatG(s) has exactly one pair of complex-conjugate simple zeros in the left half-plane ofP ~Ref.
16!.#

The Bromwich contour for the inverse Laplace transformation coincides with the imag
axis. We shall deform it to the Hankel contour encircling the cut Ims50, Res,0 ~Fig. 8! adding
the contributions of the poles in the left half of thes plane. Substitutingsl5e2 ilps on the lower
branch of the Hankel contour andsl5eilps on the upper branch, withs ranging from 0 tò , the
solutionu(t) of ~A1!, ~6! assumes the following form:

u~ t !5 (
k51

N

~aku01bkv0!e2bkt cos~akt1gk!1u0g0~ t !1g0g1~ t ! ~A6!

with bk.0 and

gl~ t !5E
0

`

cl~s!e2stds ~A7!

FIG. 6. Duffing twin well for l51.999,u051, v050. ~a! Phase portrait.~b! Time evolution of the Hamiltonian and
velocity.
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for l 50,1. For 0,l,1 the functionscl are given by the following expressions:

c0~s!5
kc1~s!

s
,

~A8!

c1~s!5
C

p
sin~lp!sl/D~s!

with D(s)5@s21k1Csl cos(lp)#21C2s2l@sin(lp)#2. For 1,l,2,

c0~s!52sc1~s!,
~A9!

c1~s!52
Ck

p
sin~lp!sl22/D~s!.

For large t the solution is dominated by the subexponentially decreasing termsu0g0(t)
1v0g1(t). An Abelian theorem33 applied to the Laplace transformations~A7! yields the following
asymptotic estimates:

FIG. 7. The phase trajectory for nonlinear pendulum withu050,v051 and several values ofl showing the unbounded
solutions and the transition atlcr . ~a! l51.001.~b! l51.2. ~c! l51.33. ~d! l51.3325.
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g0~ t !;
C

pk3 sin~pl!G~l!t2l, g08~ t !;2
C

pk3 sin~pl!G~l11!t2l21,

~A10!

g1~ t !;
C

pk4 sin~pl!G~l11!t212l, g18~ t !;2
C

pk4 sin~pl!G~l12!t2l22

for 0,l,1 and

g0~ t !;
C

pk3 sin~pl!G~l!t2l, g08~ t !;2
C

pk3 sin~pl!G~l11!t2l21,

~A11!

g1~ t !;2
C

pk3 sin~pl!G~l21!t12l, g18~ t !;
C

pk3 sin~pl!G~l!t2l,

for 1,l,2. Sincev(t)5Du(t), it follows thatv(t)/u(t);constt21 and the phase space traje
tory approaches the equilibrium point horizontally. More specifically

v/u;H 2l/t if u0Þ0

2~l11!/t if u050,v0Þ0
~A12!

for 0,l,1 and

v/u;H 2l/t if v0Þ0

2~l21!/t if v050,u0Þ0
~A13!

for 1,l,2.
Note that for integerl the expressions on the right-hand side of Eqs.~A10! and~A11! vanish

and an exponentially damped pole contribution dominates the asymptotics:u,v}exp(2bmaxt) and
the trajectory spirals down to the equilibrium point.

FIG. 8. A Hankel contour and two complex conjugate poles.
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APPENDIX B: AN ESTIMATE OF THE TRANSITION TIME BETWEEN EXPONENTIAL
AND ALGEBRAIC DECAY FOR lÄ2Àe

Close to the equilibrium pointu` the nonlinear termF(u) can be replaced byk(u2u`), with
k5F8(u`). For simplicity we shall setu`50. The exponential decay rateb1 and frequencya1 of
the oscillating term are given by the zeros052b11 ia1 of the functions21Csl1k. For l52
2e,e!1, the decay rateb15O@e#. The frequency and decay rate can be estimated from

2~a1
212ia1b1!@11C2eC ln a12 ieCp/22 ieCb1 /a1#1k50 ~B1!

whence

a1>A k

11C
, ~B2!

b1>e
Ca1p

4~11C!
. ~B3!

The amplitudeua1u01b1v0u of the oscillating term is equal to the absolute value of
expression

Aª
11Cs0

l22

s0~21Cls0
l22!

~s0u01v0!>
1

2
~u01v0 /ia1!.

The amplitude of the pole contributionuAue2b1t and the asymptotic contribution of the cu
2C(pk3)21pe(u02tv0)t22 are comparable at timet satisfying

e2b1tt25e
C

k3 U 2~u02tv0!

u01v0 /~ ia1!
U ~B4!

~the approximations sin(pl)>2pe and t2l>t22 have been applied here!.
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The nonlinearization method is used on the soliton hierarchy associated with the
434 AKNS eigenvalue problem, from which a new finite-dimensional Hamil-
tonian system is obtained by nonlinearization of the eigenvalue problem and its
ajoint one. A Lax representation is deduced for the system. The Lax operator
admits the representation of anr-matrix. The 4N functionally independent and
involutive integrals of motion are obtained via ther-matrix, which shows that the
system is completely integrable in the Liouville sense. ©2000 American Institute
of Physics.@S0022-2488~00!01702-3#

I. INTRODUCTION

Since the first of the 1990s, the technique of the so-called nonlinearization of Lax pairs1–3 has
been developed and applied to various soliton hierarchies, from which a large class of inte
finite-dimensional Liouville integrable Hamiltonian systems have been obtained. Recently
method was generalized to discuss the nonlinearization of Lax pairs and adjoint Lax pa
soliton hierarchies.4–9 However, most results were presented for the cases of 232 matrix spectral
problems, except some for cases of 333 matrix spectral problems.7–11

The r-matrix method is an important tool for studying the finite-dimensional integrable
tems. From ther-matrix formula the commutativity of motion integrals generated from the L
operator can be easily obtained.12 An r-matrix also allows one to canonically construct the mat
M of the Lax pair.13

The present paper is devoted to the nonlinearization for the case of a 434 AKNS matrix
spectral problem. In the next section, we construct the soliton hierarchy associated wi
eigenvalue problem. In Sec. III, a constraint between the potential and the eigenfunct
introduced.4–11 Under the constraint, a new finite-dimensional Hamiltonian system is obtaine
nonlinearization of the eigenvalue problem and its adjoint one. In Sec. IV, the Lax represen
is deduced for the system. Anr-matrix is established from the Lax operator. In the last section,
obtain 4N functionally independent integrals of motion in involution via ther-matrix, and show
that the system is completely integrable in the Liouville sense.14

II. THE SOLITON HIERARCHY

Let us consider the 434 eigenvalue problem,

cx5U~u,l!c, c5S c1

c2

c3

c4
D , U5S a1l u12 u13 u14

u21 a2l u23 u24

u31 u32 a3l u34

u41 u42 u43 a4l

D , ~2.1!

where the potential vectoru5(u12,u21,u13,u31,u14,u41,u23,u32,u24,u42,u34,u43)
T, l is a con-

stant spectral parameter, anda i ’s(1< i<4) are four distinct constants. In order to derive t
isospectral hierarchy associated with~2.1!, we first solve the stationary zero-curvature equatio
21570022-2488/2000/41(4)/2157/10/$17.00 © 2000 American Institute of Physics
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Vx5@U, V#, V5~Vi j !434 , ~2.2!

whereV5S l>0Vll
2 l ,Vl5(Vi j

( l ))434 , and~2.2! leads to the following recursion relations:

Viix
~0!50, Vi j

~0!50, ~ iÞ j !,

Vi jx
~ l ! 1ui j ~Vii

~ l !2Vj j
~ l !!1 (

k51
kÞ i , j

4

~uk jVik
~ l !2uikVk j

~ l !!2~a i2a j !Vi j
~ l 11!50, iÞ j , ~2.3!

Viix
~ l !5 (

k51
kÞ i

4

~uikVki
~ l !2ukiVik

~ l !!, 1< i , j <4, l>0.

By ~2.3! we have

Vii
~0!5b i~const!, Vi j

~0!50, iÞ j ,

Vii
~1!50, Vi j

~1!5
b i2b j

a i2a j
ui j , iÞ j , ~2.4!

and require that

b iÞb j~ iÞ j !, Vi j
~ l !uu5050, l>1,

which means constants of integration are put to be zero. ThenVi j
( l )’s are uniquely determined by

~2.3!. For instance, it is easy to see that

Vi j
~2!5

b i2b j

~a i2a j !
2 ui jx1

1

a i2a j
(
k51
kÞ i , j

4 S b i2bk

a i2ak
2

bk2b j

ak2a j
Duk juik , iÞ j ,

~25!

Vii
~2!5 (

k51
kÞ i

4
bk2b i

~ak2a i !
2 uikuki.

Equations~2.3! can be equivalently written as the Lenard form

KGl 215JGl , ~2.6!

Gl 215~V21
~ l ! ,V12

~ l ! ,V31
~ l ! ,V13

~ l ! ,V41
~ l ! ,V14

~ l ! ,V32
~ l ! ,V23

~ l ! ,V42
~ l ! ,V24

~ l ! ,V43
~ l ! ,V34

~ l !!T, l>1,

G05S b22b1

a22a1
u21,

b12b2

a12a2
u12,

b32b1

a32a1
u31,

b12b3

a12a3
u13,

b42b1

a42a1
u41,

b12b4

a12a4
u14,

b32b2

a32a2
u32,

b22b3

a22a3
u23,

b42b2

a42a2
u42,

b22b4

a22a4
u24,

b42b3

a42a3
u43,

b32b4

a32a4
u34,D T

,

with the conditionGl uu5050. HereJ andK are two skew-symmetric operators:

J5~Ji j !12312, K5~Ki j !12312, Ki j* 52K ji

with

J1252J215a12a2 , J3452J435a12a3 , J5652J655a12a4 , J7852J875a22a3 ,

J9,1052J10,95a22a4 , J11,1252J12,115a32a4 , Ji j 50, for other i j ;

K1152u12]
21u12, K125]22u12]

21u21, K135u12]
21u13, K145u322u12]

21u31,

K155u12]
21u14, K165u422u12]

21u41, K1752u132u12]
21u23, K185u12]

21u32,
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K1952u142u12]
21u24, K1,105u12]

21u42, K1,115K1,1250,

K2252u21]
21u21, K2352u232u21]

21u13, K245u21]
21u31,

K2552u242u21]
21u14, K265u21]

21u41, K275u21]
21u23, K285u312u21]

21u32,

K295u21]
21u24, K2,105u412u21]

21u42, K2,115K2,1250,

K3352u13]
21u13, K345]22u13]

21u31, K355u13]
21u14, K365u432u13]

21u41,

K375u13]
21u23, K3852u122u13]

21u32, K395K3,1050,

K3,1152u142u13]
21u34, K3,125u13]

21u43,

K4452u31]
21u31, K4552u342u31]

21u14, K465u31]
21u41,

K475u212u31]
21u23, K485u31]

21u32, K495K4,1050, K4,115u31]
21u34,

K4,125u412u31]
21u43, K5552u14]

21u14, K565]22u14]
21u41, K575K5850,

K595u14]
21u24, K5,1052u122u14]

21u42, K5,115u14]
21u34,

K5,1252u132u14]
21u43, K6652u41]

21u41, K675K6850,

K695u212u41]
21u24, K6,105u41]

21u42, K6,115u312u41]
21u34,

K6,125u41]
21u43, K7752u23]

21u23, K785]22u23]
21u32, K795u23]

21u24,

K7,105u432u23]
21u42, K7,1152u242u23]

21u34, K7,125u23]
21u43,

K8852u32]
21u32, K8952u342u32]

21u24, K8,105u32]
21u42, K8,115u32]

21u34,

K8,125u422u32]
21u43, K9952u24]

21u24, K9,105]22u24]
21u42,

K9,115u24]
21u34, K9,1252u232u24]

21u43, K10,1052u42]
21u42,

K10,115u322u42]
21u34, K10,125u42]

21u43, K11,1152u34]
21u34,

K11,125]22u34]
21u43, K12,1252u43]

21u43.

Now we consider the auxiliary problem of the spectral problem~2.1!,

c tm
5V~m!c, V~m!5V~m!~u,l!5~lmV!1 , m>0, ~2.7!

where the symbol1 stands for the choice of non-negative power ofl. The compatibility condition
between~2.1! and~2.7! leads to the zero-curvature equation,Ut2Vx1@U, V#50. This implies the
following soliton hierarchy,

utm
5Xm , m>0, ~2.8!

whereXl5JGl . The first typical nonlinear system in the hierarchy is

ui jt 1
5

b i2b j

a i2a j
ui jx1 (

k51
kÞ i , j

4 S b i2bk

a i2ak
2

bk2b j

ak2a j
Duk juik , iÞ j , 1< i , j <4. ~2.9!
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III. A FINITE-DIMENSIONAL HAMILTONIAN SYSTEM

In this section we will nonlinearize the spectral problem. First, we calculate the funct
gradient of the eigenvalue with respect to the potentials. To this end, we introduce the a
spectral problem of~1.1! as in Refs. 4–11:

wx52U~u,l!Tw,w5~w1,w2,w3,w4!T. ~3.1!

Let l1 ,l2 ,...,lN be N mutual distinct eigenvalues. The systems associated with~2.1! and ~3.1!
can be written in the form

~ql
1,ql

2,ql
3,ql

4!x5~ql
1,ql

2,ql
3,ql

4!U~u,l l !
T,

~3.2!
~pl

1,pl
2,pl

3,pl
4!x52~pl

1,pl
2,pl

3,pl
4!U~u,l l !,

whereql
i5c i(l l), pl

i5w i(l l), 1<i<4, l< l<N, are eigenfunctions. A direct calculation give
the functional gradient of the eigenvaluel l with regard to the potentialu:

¹l l5S dl l

du12
,

dl l

du21
,

dl l

du13
,

dl l

du31
,

dl l

du14
,

dl l

du41
,

dl l

du23
,

dl l

du32
,

dl l

du24
,

dl l

du42
,

dl l

du34
,

dl l

du43
D T

5~ql
2pl

1,ql
1pl

2,ql
3pl

1,ql
1pl

3,ql
4pl

1,ql
1pl

4,ql
3pl

2,ql
2pl

3,ql
4pl

2,ql
2pl

4,ql
4pl

3,ql
3pl

4!T. ~3.3!

Such a gradient satisfies the following equation:

K¹l l5l lJ¹l l . ~3.4!

Now we consider the Bargmann constraint

G05(
l 51

N

¹l l , ~3.5!

which implies

ui j 5
a i2a j

b i2b j
^qi ,pj&, iÞ j , 1< i , j <4, ~3.6!

where ^.,.& is the standard inner-product inRN,qi5(q1
i ,q2

i ,...,qN
i )T,pi5(p1

i ,p2
i ,...,pN

i )T,
1< i<4. Substituting~3.6! in ~3.2!, we obtain a finite-dimensional Hamiltonian system

qx
i 5

]H

]pi , px
i 52

]H

]qi , 1< i<4, ~3.7!

with the Hamiltonian

H5a1^Lq1,p1&1a2^Lq2,p2&1a3^Lq3,p3&1a4^Lq4,p4&1
a12a2

b12b2
^q1,p2&^q2,p1&

1
a12a3

b12b3
^q1,p3&^q3,p1&1

a12a4

b12b4
^q1,p4&^q4,p1&1

a22a3

b22b3
^q2,p3&^q3,p2&

1
a22a4

b22b4
^q2,p4&^q4,p2&1

a32a4

b32b4
^q3,p4&^q4,p3&,
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whereL5diag (l1,l2,...,lN).

IV. r-MATRIX

In this section we will deal with ther-matrix of system~3.7!. By the calculation same as Re
15, we have the following.

Theorem 1: Equation~3.7! has the Lax representation

L~l!x5@M ~l!, L~l!#, ~4.1!

where

L~l!5„Li j ~l!…43451
b11 (

k51

N qk
1pk

1

l2lk
(
k51

N qk
1pk

2

l2lk
(
k51

N qk
1pk

3

l2lk
(
k51

N qk
1pk

4

l2lk

(
k51

N qk
2pk

1

l2lk
b21 (

k51

N qk
2pk

2

l2lk
(
k51

N qk
2pk

3

l2lk
(
k51

N qk
2pk

4

l2lk

(
k51

N qk
3pk

1

l2lk
(
k51

N qk
3pk

2

l2lk
b31 (

k51

N qk
3pk

3

l2lk
(
k51

N qk
3pk

4

l2lk

(
k51

N qk
4pk

1

l2lk
(
k51

N qk
4pk

2

l2lk
(
k51

N qk
4pk

3

l2lk
b41 (

k51

N qk
4pk

4

l2lk

2
~4.2!

and

S a1l
a12a2

b12b2
^q1,p2&

a12a3

b12b3
^q1,p3&

a12a4

b12b4
^q1,p4&

a22a1

b22b1
^q2,p1& a2l

a22a3

b22b3
^q2,p3&

a22a4

b22b4
^q2,p4&

a32a1

b32b1
^q3,p1&

a32a2

b32b2
^q3,p2& a3l

a32a4

b32b4
^q3,p4&

a42a1

b42b1
^q4,p1&

a42a2

b42b2
^q4,p2&

a42a3

b42b3
^q4,p3& a4l

D . ~4.3!

A simple calculation gives

$Lik~l!,L jl ~m!%

55
0, when j Þk,iÞ l or i 5 j 5k5 l ;

1

m2l
„L jk~l!2L jk~m!…, when j Þk,i 5 l ;

1

m2l
„L j j ~l!2L j j ~m!2Lii ~l!1Lii ~m!…, when j 5kÞ i 5 l .

Using the notations in Ref. 16,L1(l)5L(l) ^ I ,L2(l)5I ^ L(l), I is the 434 unit matrix, and
$L1(l) ^ L2(m)% is a 16316 matrix composed of various Poisson brackets of the matrix elem
of L1(l) andL2(m),$L1(l) ^ L2(m)% i j ,kl5$L1(l) ik ,L2(m) j l %.

A direct computation gives the following.
Theorem 2: Lax operatorL(l) satisfies ther-matrix relation as follows:

$L1~l! ,̂ L2~m!%5F 1

m2l
P,L1~l!1L2~m!G , ~4.4!

whereP is the permutation matrix.
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V. INTEGRALS OF MOTION AND THE INTEGRABILITY

In this section, we apply ther-matrix theory to obtain the integrals of motion and to show t
the system~3.7! is completely integrable in the Liouville sense.

According to ther-matrix theory,12 from ~4.4! we have

$tr Ln~l!,tr Lm~m!%50,;n,m51,...,4, ~5.1!

which insures the involution property of the integrals of motion obtained from expandingLn(l),
n51,...,4, in powers ofl. Explicity,

tr L~l!5b11b21b31b41(
l 51

N
1

l2l l
I l

~1! , ~5.2a!

1

2
„tr2 L~l!2tr L2~l!…5b1b21b1b31b1b41b2b31b2b41b3b41(

l 51

N
1

l2l l
I l

~2! ,

~5.2b!

1
6 tr2 L~l!1 1

3 tr L3~l!2 1
2 tr L~l! tr L2~l!

5b1b2b31b1b2b41b1b3b41b2b3b41(
l 51

N
1

l2l l
I l

~3! , ~5.2c!

detL~l!5 1
24 tr4 L~l!2 1

4 tr L4~l!1 1
8 „tr L2~l!…22 1

4 tr2 L~l!tr L2~l!1 1
3 tr L~l! tr L3~l!

5b1b2b3b41(
l 51

N
1

l2l l
I l

~4! , ~5.2d!

where

I k
~1!5qk

1pk
11qk

2pk
21qk

3pk
31qk

4pk
4, ~5.3a!

I k
~2!5~b21b31b4!qk

1pk
11~b11b31b4!qk

2pk
21~b11b21b4!qk

3pk
31~b11b21b3!qk

4pk
4

1Gk
~12!1Gk

~13!1Gk
~14!1Gk

~23!1Gk
~24!1Gk

~34! , ~5.3b!

I k
~3!5~b2b31b2b41b3b4!qk

1pk
11~b1b31b1b41b3b4!qk

2pk
21~b1b21b1b41b2b4!qk

3pk
3

1~b1b21b1b31b2b3!qk
4pk

41~b31b4!Gk
~12!1~b21b4!Gk

~13!1~b21b3!Gk
~14!

1~b11b4!Gk
~23!1~b11b3!Gk

~24!1~b11b2!Gk
~34!1Yk

~123!1Yk
~124!1Yk

~134!1Yk
~234! ,

~5.3c!

I k
~4!5b2b3b4qk

1pk
11b1b3b4qk

2pk
21b1b2b4qk

3pk
31b1b2b3qk

4pk
41b3b4Gk

~12!1b2b4Gk
~13!

1b2b3Gk
~14!1b1b4Gk

~23!1b1b3Gk
~24!1b1b2Gk

~34!1b4Yk
~123!1b3Yk

~124!1b2Yk
~134!

1b1Yk
~234!1Vk ; ~5.3d!

G l
i j 5 (

k51
kÞ l

N
~qk

i ql
j2ql

iqk
j !~pk

i pl
j2pl

ipk
j !

l l2lk
, ~5.4a!
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Y l
~ i jk !5 (

s51
sÞm

N

(
m51
mÞ l

N Alms
~ i jk !

~l l2lm!~lm2ls!
, Alms

~ i jk !5U ql
i ql

j ql
k

qm
i qm

j qm
k

qs
i qs

j qs
k
UU pl

i pl
j pl

k

pm
i pm

j pm
k

ps
i ps

j ps
k
U . ~5.4b!

V l5 (
s51
sÞm

N

(
m51
mÞ l

N

(
k51
kÞ l

N
Clkms

~l l2lk!~lk2lm!~lm2ls!
, ~5.4c!

Clkms5U ql
1 ql

2 ql
3 ql

4

qk
1 qk

2 qk
3 qk

4

qm
1 qm

2 qm
3 qm

4

qs
1 qs

2 qs
3 qs

4

UU pl
1 pl

2 pl
3 pl

4

pk
1 pk

2 pk
3 pk

4

pm
1 pm

2 pm
3 pm

4

ps
1 ps

2 ps
3 ps

4

U .

From ~5.1! we instantly have

$I k
~ i ! ,I l

~ j !%50, ; i , j 51,...,4;k,l 51,...,N. ~5.5!

Moreover, it is easy to prove thatI k
( i ) , k51,...,N; i 51,...,4, are 4N functionally independent in

R8N.
Let

Fm
~ i !5(

l 51

N

l l
mI l

~ i ! , 1< i<4, 0<m<N21, ~5.6!

i.e.,

Fm
~1!5^Lmq1,p1&1^Lmq2,p2&1^Lmq3,p3&1^Lmq4,p4&, m>0, ~5.7!

F0
~2!5~b21b31b4!^q1,p1&1~b11b31b4!^q2,p2&

1~b11b21b4!^q3,p3&1~b11b21b3!^q4,p4&, ~5.8a!

Fm
~2!5~b21b31b4!^Lmq1,p1&1~b11b31b4!^Lmq2,p2&1~b11b21b4!^Lmq3,p3&

1~b11b21b3!^Lmq4,p4&1 (
1< i , j <4

(
l 51

m U^L l 21qi ,pi& ^Lm2 lqi ,pj&

^L l 21qj ,pi& ^Lm2 lqj ,pj&
U, m>1,

~5.8b!

F0
~3!5~b2b31b2b41b3b4!^q1p1&1~b1b31b1b41b3b4!^q2p2&

1~b1b21b1b41b2b4!^q3p3&1~b1b21b1b31b2b3!^q4p4&, ~5.9a!

F1
~3!5~b2b31b2b41b3b4!^Lq1p1&1~b1b31b1b41b3b4!^Lq2p2&1~b1b21b1b41b2b4!

3^Lq3p3&1~b1b21b1b31b2b3!^Lq4p4&1 (
1< i , j <4

(
k51
kÞ i , j

bkU^qi ,pi& ^qi ,pj&

^qj ,pi& ^qj ,pj&
U, ~5.9b!
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Fm
~3!5~b2b31b2b41b3b4!^Lmq1p1&1~b1b31b1b41b3b4!^Lmq2p2&

1~b1b21b1b41b2b4!^Lmq3p3&1~b1b21b1b31b2b3!^Lmq4p4&

1 (
1< i , j <4

(
l 1n5m21

l ,n>0

(
k51
kÞ i , j

bkU^L lqi ,pi& ^Lnqi ,pj&

^L lqj ,pi& ^Lnqj ,pj&
U

1 (
1< i , j ,k<4

(
l 1n1s5m22

l ,n,s>0

U ^L lqi ,pi& ^Lnqi ,pj& ^Lsqi ,pk&

^L lqj ,pi& ^Lnqj ,pj& ^Lsqj ,pk&

^L lqk,pi& ^Lnqk,pj& ^Lsqk,pk&
U , m>2, ~5.9c!

F0
~4!5b2b3b4^q

1p1&1b1b3b4^q
2p2&1b1b2b4^q

3p3&1b1b2b3^q
4p4&, ~5.10a!

F1
~4!5b2b3b4^Lq1p1&1b1b3b4^Lq2p2&1b1b2b4^Lq3p3&1b1b2b3^Lq4p4&

1 (
1< i , j <4

)
k51
kÞ i , j

bkU^qi ,pi& ^qi ,pj&

^qj ,pi& ^qj ,pj&
U, ~5.10b!

F2
~4!5b2b3b4^L

2q1p1&1b1b3b4^L
2q2p2&1b1b2b4^L

2q3p3&1b1b2b3^L
2q4p4&

1 (
1< i , j <4

)
k51
kÞ i , j

4

bkS U^Lqi ,pi& ^qi ,pj&

^Lqj ,pi& ^qj ,pj&
U1U^qi ,pi& ^Lqi ,pj&

^qj ,pi& ^Lqj ,pj&
U D

1 (
1< i , j ,k<4

b102 i 2 j 2kU ^qi ,pi& ^qi ,pj& ^qi ,pk&

^qj ,pi& ^qj ,pj& ^qj ,pk&

^qk,pi& ^qk,pj& ^qk,pk&
U , ~5.10c!

Fm
~4!5b2b3b4^L

mq1p1&1b1b3b4^L
mq2p2&1b1b2b4^L

mq3p3&1b1b2b3^L
mq4p4&

1 (
1< i , j <4

(
l 1n5m21

l ,n>0

)
k51
kÞ i , j

4

bkU^L lqi ,pi& ^Lnqi ,pj&

^L lqj ,pi& ^Lnqj ,pj&
U

1 (
1< i , j ,k<4

(
l 1n1s5m22

l ,n,s>0

b102 i 2 j 2kU ^L lqi ,pi& ^Lnqi ,pj& ^Lsqi ,pk&

^L lqj ,pi& ^Lnqj ,pj& ^Lsqj ,pk&

^L lqk,pi& ^Lnqk,pj& ^Lsqk,pk&
U

1 (
l 1n1s1 l 5m23

l ,n,s,t>0
U ^L lq1,p1& ^Lnq1,p2& ^Lsq1,p3& ^L tq1,p4&

^L lq2,p1& ^Lnq2,p2& ^Lsq2,p3& ^L tq2,p4&

^L lq3,p1& ^Lnq3,p2& ^Lsq3,p3& ^L tq3,p4&

^L lq4,p1& ^Lnq4,p2& ^Lsq4,p3& ^L tq4,p4&

U , m>3.

~5.10d!

Equation~5.5! implies the following fact.
Theorem 3: The functions$Fm

( i )%, 1< i<4, 0<m<N21, are in involution in pairs, i.e.,
$Fk

( i ) ,Fl
( j )%50, 1< i , j <4, 0<k, l<N21.

From the independence ofI k
( i ) , 1< i<4, 1<k<N, we have the following.

Theorem 4: The 4N one-formsdFm
( i ) , 1< i<4, 0<m<N21, are linearly independent.

Proof: Assume that there are 4N constantsbm
( i ) , 1< i<4, 0<m<N21, so that
                                                                                                                



ot

2165J. Math. Phys., Vol. 41, No. 4, April 2000 A finite-dimensional integrable system and . . .

                    
(
m50

N21

~bm
~1!dFm

~1!1bm
~2!dFm

~2!1bm
~3!dFm

~3!1bm
~4!dFm

~4!!50. ~5.11!

Substituting the expression ofFm
( i ) ~5.6! into ~5.11! and noting the independence of thedIk

( i ) , 1
< i<4, 1<k<N, we have

(
m50

N21

bm
~ i !l l

m50, 1< i<4, 1< l<N,

which impliesbm
( i )50, 1< i<4, 0<m<N21, by utilizing that Vandermonde determinant is n

zero. The proof is complete.
It is easy to see that the Hamiltonian function of system~3.7! can be rewritten as follows:

H5g1F1
~1!1g2F1

~2!1g3F1
~3!1g4F1

~4!1g5~b1
3F0

~1!2b1
2F0

~2!2b1F0
~3!1F0

~4!!~b2
3F0

~1!2b2
2F0

~2!

2b2F0
~3!1F0

~4!!1g6~b1
3F0

~1!2b1
2F0

~2!2b1F0
~3!1F0

~4!!~b3
3F0

~1!2b3
2F0

~2!2b3F0
~3!1F0

~4!!

1g7~b1
3F0

~1!2b1
2F0

~2!2b1F0
~3!1F0

~4!!~b4
3F0

~1!2b4
2F0

~2!2b4F0
~3!1F0

~4!!1g8~b2
3F0

~1!

2b2
2F0

~2!2b2F0
~3!1F0

~4!!~b3
3F0

~1!2b3
2F0

~2!2b3F0
~3!1F0

~4!!1g9~b2
3F0

~1!2b2
2F0

~2!2b2F0
~3!

1F0
~4!!~b4

3F0
~1!2b4

2F0
~2!2b4F0

~3!1F0
~4!!1g10~b3

3F0
~1!2b3

2F0
~2!2b3F0

~3!1F0
~4!!~b4

3F0
~1!

2b4
2F0

~2!2b4F0
~3!1F0

~4!!,

where

g15@a1b1
3~b22b3!~b22b4!~b32b4!1a2b2

3~b12b3!~b12b4!~b42b3!1a3b3
3~b12b2!

3~b12b4!~b22b4!1a4b4
3~b12b2!~b12b3!~b32b2!#/~b12b2!~b12b3!~b12b4!

3~b22b3!~b22b4!~b32b4!,

g25@a1b1
2~b22b3!~b22b4!~b42b3!1a2b2

2~b12b3!~b12b4!~b32b4!1a3b3
2~b12b2!

3~b12b4!~b42b2!1a4b4
2~b12b2!~b12b3!~b22b3!#/~b12b2!~b12b3!~b12b4!

3~b22b3!~b22b4!~b32b4!,

g35@a1b1~b22b3!~b22b4!~b32b4!1a2b2~b12b3!~b12b4!~b42b3!1a3b3~b12b2!

3~b12b4!~b22b4!1a4b4~b12b2!~b12b3!~b32b2!#/~b12b2!~b12b3!~b12b4!

3~b22b3!~b22b4!~b32b4!,

g45@a1~b22b3!~b22b4!~b42b3!1a2~b12b3!~b12b4!~b32b4!1a3~b12b2!~b12b4!

3~b42b2!1a4~b12b2!~b12b3!~b22b3!#/~b12b2!~b12b3!~b12b4!~b22b3!~b2

2b4!~b32b4!,

g55
a22a1

~b12b2!3~b12b3!~b12b4!~b22b3!~b22b4!
,

g65
a12a3

~b12b2!~b12b3!3~b12b4!~b22b3!~b32b4!
,
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g75
a42a1

~b12b2!~b12b3!~b12b4!3~b22b4!~b32b4!
,

g85
a32a2

~b12b2!~b12b3!~b22b3!3~b22b4!~b32b4!
,

g95
a22a4

~b12b2!~b12b4!~b22b3!~b22b4!3~b32b4!
,

g105
a42a3

~b12b3!~b12b4!~b22b3!~b22b4!~b32b4!3 .

Hence the integrability of system~3.7! is established resorting to the Theorems 3 and 4.
Theorem 5: The finite-dimensional Hamiltonian system~3.7! is completely integrable in the

Liouville sense.
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Classification of curvature collineations of plane
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A complete classification of curvature collineations of static plane symmetric
spacetimes is obtained and then a comparison between isometries and Ricci Col-
lineations of the corresponding metrics is given. ©2000 American Institute of
Physics.@S0022-2488~00!02404-X#

I. INTRODUCTION

In General Relativity~GR! there exists a large body of literature on classification of spa
times according to their isometries or Killing vectors~KVs!, and the groups admitted by them1

Killing vectors give these isometries. Another important symmetry, initially introduced by Pe
and later by Katzinet al.,2 is the Ricci Collineation~RC!. Whereas KVs provide information abou
the symmetries of the underlying spacetime, the RCs relate to symmetries of the matter
field. Apart from KVs and RCs, Katzin also pioneered work2 on symmetries admitted by th
Reimann curvature tensor, called curvature collineations~CCs!. In their work it was suggested tha
these symmetries are worth investigating and may also provide an understanding not gi
KVs or RCs. In this connection they gave various results on the existence of such symm
without actually classifying spacetimes according to their CCs.

A procedure for completely classifying spacetimes admitting a minimal isometry group
cording to their KVs3 and RCs4 was developed and applied to various spacetimes. By using
full list of spacetimes, or classes of spacetimes, possessing symmetries higher than the m
was obtained. A complete classification of spherically symmetric static spacetimes accord
their CCs is available in the literature.5 In this paper, we address the same problem for pl
symmetric static spacetimes. It turns out that plane symmetric static spacetimes admit a C
algebra of 10, 7, 6, 5, and 4 dimensions~as could be expected! apart from the infinite dimensiona
algebras.

A CC satisfies the equation

Rbcd, f
a j f1Rf cd

a j ,b
f 1Rb f d

a j ,c
f 1Rbc f

a j ,d
f 2Rbcd

f j , f
a 50, ~Xbcd

a !,

and a plane symmetric static spacetime can be expressed in the form

ds25ev~x!dt22dx22em~x!~dy21dz2!.

In order to classify the CCs, we first consider Eqs. (X001
3 ) and (X212

3 ). Putting 2v91v82

2m8v85 f (x), they give rise to the four possibilities

~A! m950, f ~x!50, j ,1
3 Þ0;

~B! m950, f ~x!Þ0, j ,1
3 50;

~C! m9Þ0, f ~x!50, j ,1
3 50;

a!Associate Member of Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.
b!Senior Associate of Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.
21670022-2488/2000/41(4)/2167/6/$17.00 © 2000 American Institute of Physics
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~D! m9Þ0, f ~x!Þ0, j ,1
3 50.

In cases~A! and~B! we clearly havem851/a, wherea is an arbitrary constant~not equal to zero!
with dimensions of length. To illustrate the procedure of dealing with these cases, for workin
CCs, we give some details in case~A!, and only state the results in the remaining ones. The fi
case, when all three terms are zero merely provides the other option ofj ,1

3 50 for the same
spacetimes as in case~A!.

II. THE CLASSIFICATION

Considering Eqs. (X101
3 ) and (X202

3 ), gives (v821/a)j ,0
3 /a50. If a is infinite, we have the two

cases

~1! v850, j ,0
3 Þ0; ~2! v8Þ0, j ,0

3 Þ0,

and if a is finite we have the two cases

~3! v821/a50, j ,0
3 Þ0; ~4! v821/aÞ0, j ,0

3 50.

~A1!: The metric in this case becomesev(x)5em(x)5constant, which is the Minkowski metric
admitting maximal symmetry. Further, being Riemann and Ricci flat, all the CC and RC equa
are trivially satisfied for any vector as a CC or RC.
~A2!: In this case the metric takes the formev(x)5(x/X)2, em(x)5constant, whereX is a constant
with dimensions of length. It is the Minkowski spacetime in different coordinates and doe
provide a new case.
~A3!: Solving the differential constraints in this case instantly givesev(x)5em(x)5ex/a, wherea is
a constant with dimensions of length. This is the anti-DeSitter spacetime and has RCs an
identical with its KVs.1

~A4!: Eqs. (X101
0 ) and (X112

2 ) give v9j150, which is satisfied only ifv950, j1Þ0. Now v5dx
1k, m5b1x/a, and f (x)5d(d21/a)50. Sincev821/aÞ0 implies thatdÞ1/a, therefore,d
50. We can chooseb5k50 without loss of generality. The metric in this case takes the fo
em(x)5ex/a, ev(x)51. This is the anti-Einstein universe. It can easily be verified that its CCs
identical with its RCs, which are

j05j0~ t !, i.e., j0 is an arbitrary function of time,

j152c4y1c5z1c0 ,

j25F2ae2x/a1
1

4a
y22

1

4a
z2Gc42S yz

2aD c52S y

2aD c02c3z1c1 ,

j35Fae2x/a1
1

4a
y22

1

4a
z2Gc52S yz

2aD c42S z

2aD c02c3y1c2 ,

while it has 7 KVs.1

For case~B!, Eqs. (X101
3 ) and (X202

3 ) give (2v91v8221/a2)j ,0
3 50 and (v821/a)j ,0

3 /a50.
This leads to the results summarized in Table I.

For case~C!, Eqs. (X101
3 ) and (X202

3 ), give

@2m91m822~2v91v82!#j ,0
3 50, m8~m82v8!j ,0

3 50,

and usingf (x)50, we write

~2m91m822m8v8!j ,0
3 50, ~m82v8!j ,0

3 50, for m8Þ0.
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There arise two possibilities depending on the coefficient ofj ,0
3 50: ~C1!; and ~C2!

For ~C1!, considering 2v91v822m8v850 andem/25(a/2)*ev/2dx1b, we get

~ev/2!85
ac

2 E ev/2dx1bc.

Solving the above equation we getev/25(a coshAac/2x1b sinhAac/2x), wherea and b are
arbitrary constants. The consistency check, givesbc50. There arise three possibilities summ
rized in Table II. For case~C2!, comparing Eqs. (X101

0 ) and (X112
2 ) gives

Fm-1m9m8

2m91m82 2
v-1v8v9

2v91v82 Gj1505g~x!j1.

It gives rise to two possibilities summarized in Table III.
For case~D!, Eqs. (X101

3 ) and (X202
3 ) give

@2m91m822~2v91v82!#j ,0
3 505h~x!j ,0

3 , ~m82v8!j ,0
3 50, for m8Þ0.

These equations yield 3 cases,~D1!, ~D2!, ~D3!. For case~D1!, Eqs. (X213
1 ), (X203

0 ), and
(X223

2 ) give rise to two possibilities:~a! 2v91v8250, and~b! 2v91v82Þ0.
For case~D1b!, Eqs. (X101

0 ) and (X101
3 ), give (v8v-22v92)j1505 l (x)j1. Two cases arise here

~i! l (x)50, j1Þ0; and~ii ! l (x)Þ0, j150; summarized in Table IV. For case~D2!, Eqs. (X101
0 )

and (X112
2 ), give, @2(v-1v8v9)/(2v91v82)#2@(m-1m8m9)/2(m91m82)#j1505p(x)j1, and

TABLE I. Summary of results in case~B!. For case~B3!, solving the constraints, we find thata is infinite andn8Þ0.

~B1!

m851/a, (n821/a)/aÞ0, 2n91n8221/a2Þ0, j ,0
3 50

Metric: en(x)5ex/b, em(x)5ex/a, bÞ6aÞ0. Remarks

CCs: j052
c4

2b
t1c0 , j15c4 ,

Rab}gab

~Einstein space!

j252S c4

2aDy2c3z1c1,

j352S c4

2aDz2c3y1c2.

5 CCs5RCs5KVs.

~B2!
m851/a, (n821/a)/aÞ0, 2n91n8221/a250, j ,0

3 50
Same as in case~B1! with b52a.

~B3! m851/a, (n821/a)/a50, 2n91n8221/a2Þ0, j ,0
3 50

Metric: Arbitrary in n andem(x)5constant,
CCs: 31j2(y,z), j3(y,z).

TABLE II. Summary of results in case~C! which is:n82m8Þ0, 2m91m822m8n850, andj3,050. In case~C1ii!, b has
been absorbed in the definition of the metric.

~C1!

Metric: em/25
a

2 E en/2dx1b, en/25~a coshAac/2x1b sinhAac/2x!.

~i!
b50, cÞ0

Metric: Same as above, 4 CCs5RCs5KVs.

~ii !
bÞ0, c50

Metric: em(x)5(x/X)2, en(x)5constant.
CCs: (j0(t,x), j1(t,x), c3z1c1 , 2c3y1c2).

~iii !
b50, c50

Same as in case~ii !.
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there arise two possibilities:~a! and ~b!. Also for ~D2b!, p(x)50 implies that 2m91m82

5a(2v91v82), wherea is an arbitrary constant. Using 2m91m825a(2v91v82) in h(x)Þ0,
we get (a21)(2v91v82)Þ0. This leads to two more cases:~i! (2v91v82)Þ0, aÞ1; and~ii !
a50, 2m91m8250. For ~i! considering Eqs. (X212

0 ) and (X202
1 ) we get the only possibility 2m9

1m822m9v8Þ0, j ,0
1 505j ,1

0 . Subcases of~D2! are summarized in Table V.
Case~D3! arises as a consequence ofm82v8Þ0, h(x)50, j ,0

3 Þ0, considering Eqs. (X001
1 )

and (X002
2 ) gives,$@2(v-1v8v9)/(2v91v82)#2(m9/m8)2(v9/v8)%j1505m(x)j1. We get~1!

m(x)Þ0, j150. In this case the metric is arbitrary and, 4 CCs5RCs. ~2! m(x)50, j150, is a
special case of~1!.

III. SUMMARY AND CONCLUSION

As mentioned earlier, every KV is a CC and every CC an RC, but the converse need
true.1 Despite the fact that the CC symmetry is sandwiched between KV and RC symmetri
governing system of partial differential equations is much more complex than the KV an
systems. Nevertheless, some recent breakthroughs have been made in solving this sy
equations and procedures are now available to classify spacetimes according to their CCs5

It has already been found that spherically symmetric static spacetimes do not admitproper
CCs, in the sense that they are distinct from both KVs and RCs for that spacetime.5 The question
arises whether there exist any other spacetimes, admitting proper CCs. In this pursuit w

TABLE III. Summary of results in case~C! which is: n82m8Þ0, 2m91m822m8n8Þ0, andj ,0
3 50. The CCs, in case

~C2i! reduce to KVs withc450.

~C2!
~i!

g(x)50, j1Þ0. Remarks
Metric: em(x)5(x/a)2, en(x)5(x/a)4.

Proper
CCs.

CCs: j052c4

t

a
1c0 , j15c4

x

a
,

j252c3z1c1 , j352c3y1c2 .

RCs: j052
1

a S c4

t2

2
1c5t D2

c4

3 S x

aD 22

1c0 ,

j15~c4t1c5!
x

a
, j252c3z1c1 , j352c3y1c2 .

KVs: 4, CCs: 5, RCs: 6.
~ii ! g(x)Þ0, j150

Metric: Arbitrary, 4 RCs5CCs.

TABLE IV. Summary of results in case~D! which is: m82n850, h(x)50, andj ,0
3 Þ0.

2n91n8250
Metric: en(x)5em(x)5(x/X)2.~a!
CCs:j052c4z1c5y1c0 , j15j1(x),
j25c5t2c3z1c1 ,

j35c4t1c3y1c2 .
RCs are same as CCs exceptj15j1(xa). KVs56.

~D1! 2n91n82Þ0
Metric: en5em5(x/X)B.

j052c6xt1c5y1c4z1c0 , j15c6x,~i!
j252c6xy1c5t2c3z1c1 ,
j352c6xz1c4t1c3y1c2 .

~b! x5
B22

2
, BÞ2. 7 CCs5RCs, KVs56.

Metric: en(x)5em(x).
~ii ! n(x) arbitrary butÞ(x/X)B.

ja as in case~i! with c650. 6 CCs5RCs5KVs.
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been able to find at least one example of a plane symmetric static spacetime@in case~C2i!#
admitting proper CCs satisfying the relations KV,CC,RC. The matter collineations for thi
spacetime are the same as its CCs. The surviving components of the stress energy tensor,
by using Einstein’s field equations~taking L50!, are given by

T0052x2/ka4, T1155/kx2, T225T3354/ka2,

wherek is the coupling between matter and geometry.
The spacetimes in~B1! and ~D2bi! are conformally related by the transformationx̃

5a ln(x/X), where a and X are arbitrary constants. Using this transformation the spacet
become

ds25ex̃/adt22dx̃22ex̃/b~dy21dz2!,

ds25~x/X!Adt22~a2/x2!dx22~x/X!B~dy21dz2!,

wherea/a5A anda/b5B.
The CC system always contains the four generators of the minimal symmetry

k05
]

]t
, k152z

]

]y
1y

]

]z
, k25

]

]y
, k35

]

]z
,

satisfying the Lie algebra

@k1 ,k3#52k2 , @k1 ,k2#5k3 , @ki ,kj #50, otherwise~ i , j 50,1,2,3!.

In case~B1! there is a fifth generatork452(a/b)t(]/]t)12a(]/]x)2y(]/]y)2z(]/]z), which
satisfies the additional commutation conditions

@k0 ,k4#52
a

b
k0 , @k4 ,k2#5k2 , @k4 ,k3#5k3 , @k4 ,k1#50,

and in case~D2bi!, there is a fifth generatork552@(B22)/(A22)#t(]/]t)1@x/(A22)#(]/]x)
2y(]/]y)2z(]/]z), which satisfies the same algebra with different structure constants

@k0 ,k5#52
B22

A22
k0 , @k5 ,k2#52k2 , @k5 ,k3#52k3 , @k5 ,k1#50.

These spacetimes also have different curvature invariances. The first three are given by

R15
3a212ab1b2

2a2b2 , R25
3a412a2b21b4

4a4b4 , R35
3a612a3b31b6

8a6b6 ,

TABLE V. Summary of results in case~D! which is: m82n8Þ0, h(x)Þ0, andj ,0
3 50.

~a!

p(x)Þ0, j850
Metric: Arbitrary, 4 CCs5RCs

p(x)50, j1Þ0
en5(x/X)B, em5(x/X)A, AÞBÞ2.

~D2! ~b! ~i!
j052c4

B22
2

t1c0 , j15c4x,

j252c4

A22
2

y1c3z1c1 , j352c4

A22
2

z2c3y1c2.
5 CCs5RCs, KVs54.

~ii ! Same, exceptA52 in case~i!.
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for the former and by

R15
24A13A222B12AB1B2

2x2 ,

R25
8A228A313A414B212A2B224B31B4

4x4 ,

R35
216A3124A4212A513A628B312A3B3112B426B51B6

8x6 ,

for the latter.
The spacetimes admitting four CCs must all admit the four isometry minimal group

The spacetimes arising in case~B2! possess 5 trivial CCs~KVs5CCs5RCs! and admit the
isometry algebra

SubstitutingA5B in the case~D2bi!, the metric becomes that of case~D1bi!, given in Table IV,
admitting seven CCs, with the algebra

The metric in case~D1bii!, admits six CCs, (CCs5RCs) which satisfy the Lie algebra of th
three-dimensional Poincare group

Lastly, the constraint equations corresponding to the case of ten CCs@case~A3!# hold true in the
case of the anti-De Sitter metric.
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Non-existence of time-periodic solutions of the Dirac
equation in a Reissner-Nordstro ¨ m black hole background

Felix Finstera)

Max Planck Institute for Mathematics in the Sciences, Inselstr. 22-26, 04103 Leipzig,
Germany

Joel Smollerb)

Mathematics Department, The University of Michigan, Ann Arbor, Michigan 48109

Shing-Tung Yauc)

Mathematics Department, Harvard University, Cambridge, Massachusetts 02138

~Received 12 October 1999; accepted for publication 25 October 1999!

It is shown analytically that the Dirac equation has no normalizable, time-periodic
solutions in a Reissner–Nordstro¨m black hole background; in particular, there are
no static solutions of the Dirac equation in such a background metric. The physical
interpretation is that Dirac particles can either disappear into the black hole or
escape to infinity, but they cannot stay on a periodic orbit around the black hole.
© 2000 American Institute of Physics.@S0022-2488~00!01804-1#

I. INTRODUCTION

In recent years, there has been much interest in the gravitational collapse of matter to a
hole. Although both analytical1 and intensive numerical studies~see, e.g., Ref. 2! have given some
understanding of how the event horizon and the singularity form, little is known abou
asymptotic form of the black hole ast→`. This is mainly due to the fact that standard numeri
methods become unreliable after the solutions have formed singularities. Since all matte
microscopic level is formed out of Dirac particles, it seems especially interesting to stud
asymptotic collapse of a ‘‘cloud’’ of spin-1

2-particles. As a first step towards this goal, in this pap
we study Dirac particles in a Reissner–Nordstro¨m background field.

We remark that considerable work has been done in the study of quantum mechanica
equations in the presence of black holes. The papers which are most related are Refs. 3
where a massless Dirac particle is considered in a Schwarzschild metric background
asymptotic completeness is shown for the scattering states near the event horizon and at
However, the most physically interesting case of a massive Dirac particle near a charged
hole has not yet been considered. As we will see here, both the rest mass of the Dirac parti
the charge of the black hole lead to interesting physical effects and require new analytical

In polar coordinates (t,r ,q,w), the Reissner–Nordstro¨m metric has the form

ds25S 12
2r

r
1

q2

r 2 Ddt22S 12
2r

r
1

q2

r 2 D 21

dt22r 2~dq21sin2 q dw2!, ~I.1!

whereq is the charge of the black hole andr its ~ADM ! mass. Furthermore, we have an extern
electromagnetic potentialA of the formA5(2f,0W ) with the Coulomb potential

f~r !5
q

r
. ~I.2!

a!Electronic mail: Felix.Finster@mis.mpg.de
b!Electronic mail: smoller@umich.edu
c!Electronic mail: yau@math.harvard.edu
21730022-2488/2000/41(4)/2173/22/$17.00 © 2000 American Institute of Physics
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If q,r, the metric has two horizons; this is the so-callednonextreme case. If q5r, the metric has
only one horizon atr 5r; this extreme casedescribes a black hole at zero temperature; cf. R
5–7. Forq.r, the metric does not describe a black hole, and thus this case will not be co
ered.

We describe the Dirac particles with ‘‘classical’’ wave functions~i.e., without second quan
tization!. Both the gravitational and electric fields are coupled to the Dirac particles.We do not
assume any spatial symmetry on the wave functions. Near a collapsing black hole, it seem
reasonable that some of the Dirac particles could get into static or time-periodic states. Ou
result is to show that this is not possible.

In the following we will restrict to time-periodic solutions, noting that static solutions ar
special case. For classical point particles, the time-periodic solutions describe closed or
particles rotating around the black hole. Our goal is to investigate how this classical p
changes by the introduction of relativistic wave mechanics and spin. Since the phase of the
wave functionC is of no physical significance, we say thatC is periodic with period Tif

C~ t1T,r ,U,w!5e2 iVTC~ t,r ,q,w! ~I.3!

for some realV. Our main result in the nonextreme case is the following theorem:
Theorem I.1: In a nonextreme Reissner–Nordström black-hole background, there are n

normalizable, periodic solutions of the Dirac equation.
In the extreme case, we prove a slightly weaker statement:
Theorem I.2: In an extreme Reissner–Nordström background, every normalizable, tim

periodic solution of the Dirac equation vanishes identically for r.r.
This surprising result shows that the classical picture breaks down completely; for

particles, there are no periodic solutions. This means that Dirac particles which are attracte
Reissner–Nordstro¨m black hole either ‘‘fall into’’ the singularity or escape to infinity, but the
cannot stay on a periodic orbit around the black hole. The result can also be applied to the
particles of the matter in the gravitational collapse; it then indicates that all the matter
eventually disappear in the black hole.

Basically, our result is a consequence of the Heisenberg uncertainty principle and
particular form of the Dirac current. As a preparatory step, we analyze the behavior of the
wave functions near the event horizon and we derive conditions which relate the wave fu
outside and inside the horizon. It is essential for our methods and results that the particle
spin. This shows that the spin is an important effect to be taken into account in the stu
gravitational collapse.

In the remainder of this section, we give some basic formulas needed to describe
particles in curved space–time~for a more detailed introduction to the classical Dirac theory
curved space–time see Ref. 8!. In this paper, the Dirac equation is always of the form

S iG j~x!
]

]xj 1
i

2
~¹ jG

j !~x!1eGj~x!Aj~x! DC~x!5mC~x!, ~I.4!

wherem is the rest mass of the particle,A5Ajdxj is the electromagnetic potential, ande is the
electromagnetic coupling constant~see Refs. 9 and 10 for a derivation of this equation!. The Dirac
matricesGj (x) are real linear combinations of the usualg-matrices. We work in the Dirac repre
sentation

g05S 1 0

0 21D , g i5S 0 s i

2s i 0 D , i 51,2,3, ~I.5!

wheres i denote the Pauli matrices. The Dirac matrices are related to the Lorentzian metric v
anticommutation relations

gik~x!5 1
2$G

j~x!,Gk~x!%. ~I.6!
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The term¹ jG
j in ~I.4! is the divergence with respect to the Levi–Civita connection; it can

easily computed via the standard formula

¹ jG
j5

1

Augu
] j~AuguGj !. ~I.7!

For the normalization of the wave functions, one takes a spacelike hypersurfaceH with normal
vector fieldn and considers the scalar product

~CuF!5E
H

C̄GjFn j dm, ~I.8!

whereC̄5C* g0 is the adjoint spinor, and wheredm is the invariant measure onH induced by
the Lorentzian metric. On solutions of the Dirac equation, we impose the normalization con

~CuC!51.

Current conservation

¹ jC̄GjC50 ~I.9!

implies that this normalization condition remains unchanged if the hypersurfaceH is continuously
deformed.

II. THE DIRAC OPERATOR IN A SCHWARZSCHILD BACKGROUND

We begin by analyzing the Dirac operator in a Schwarzschild background metric. Our a
to analyze the behavior of the spinors near the event horizon. To do this, we must consid
Dirac equation in different coordinate systems.

A. The Dirac operator in polar coordinates

In polar coordinates (t,r ,q,w), the Schwarzschild metric is

ds25S 12
2r

r Ddt22S 12
2r

r D 21

dr22r 2~dq21sin2 qdw2!,

wherer is the ~ADM ! mass. The metric has an event horizon atr 52r. In order to derive the
Dirac operator, we first choose Dirac matricesGj (x) satisfying the anticommutation relation
~I.6!. The Dirac operator is then obtained by calculating the divergence~I.7! and substituting into
~I.4!. @We point out that the choice of the Dirac matrices is not canonical; there are differen
linear combinations of theg-matrices which satisfy~I.6! However, the Dirac operators corre
sponding to different choices of the Dirac matrices are equivalent in the sense that they
obtained from each other by a suitable local transformation of the spinors~see, e.g., Ref. 8!. For
this reason, we can simply choose theGj in the way which is most convenient to us.#

Outside the horizon, we can satisfy the anticommutation relations~I.6! by choosing the Dirac
matrices in the form

Gt5
1

S
g t, Gr5Sg r , Gq5gq, Gw5gw ~r .2r! ~II.1!

with
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S~r !5U12
2r

r U1/2

,

whereg t, g r , gq, andgw are the ‘‘g-matrices in polar coordinates’’

g t5g0,

g r5g3 cosq1g1 sinq cosw1g2 sinq sinw, ~II.2!

gq5
1

r
~2g3 sinq1g1 cosq cosw1g2 cosq sinw!, ~II.3!

gw5
1

r sinq
~2g1 sinw1g2 cosw!. ~II.4!

The divergence of the Dirac matrices is computed to be

¹ jG
j5S S81

2

r
~S21! Dg r .

Substituting into~I.4!, we obtain for the Dirac operator,Gout, in the regionr .2r

Gout5
i

S
g t

]

]t
1g r S iS

]

]r
1

i

r
~S21!1

i

2
S8D1 igq

]

]q
1 igw

]

]w
. ~II.5!

For the normalization, we integrate over the hypersurfacet5const; i.e.,

~CuC!out
t
ªE

R3\B2r

~C̄g tC!~ t,xW !S21 d3x, ~II.6!

whereB2r denotes the ball of radius 2r around the origin. This normalization integral is pro
lematic near the event horizon, as will be discussed in detail later. Inside the horizon, we mu
into account that the radial directionr is timelike, whereast is a space coordinate. So, in th
region, to obtain the Dirac matrices, we reverse the roles of the matricesg t andg r ,

Gt5
1

S
g r , Gr52Sg t, Gq5gq, Gw5gw ~r ,2r!. ~II.7!

The divergence of the Dirac matrices now has the form

¹ jG
j52

2

r
g r2S S81

2

r
SDg t.

Thus the Dirac operator,Gin , in the regionr ,2r is given by

Gin5g r S i

S

]

]t
2

i

r D2g tS iS
]

]r
1

i

r
S1

i

2
S8D1 igq

]

]q
1 igw

]

]w
. ~II.8!

According to~I.8!, the naive extension of the normalization integral~II.6! to the interior of the
horizon is

~CuC! in
t
ªE

B2r

~C̄g rC!~ t,xW !S21 d3x; ~II.9!
                                                                                                                



le local
ign of
t we

for

t the

lso
rface

ac

s
rity
rac

als.

ar
and

a
ave

e

l, the
ct

is no

s
spond-
t it is
these
g to

2177J. Math. Phys., Vol. 41, No. 4, April 2000 Non-existence of time-periodic Dirac solutions

                    
this will also be discussed in detail later.
Notice that as a particular freedom in the choice of the Dirac matrices, the signs in~II.1! and

~II.7! are arbitrary. As remarked above, this arbitrariness can be compensated by a suitab
transformation of the spinors. However, this transformation of the spinors may change the s
the scalar product~I.8!. This is a subtle point which needs some explanation. Assume tha
consider the spacelike hypersurface outside the horizon

H15$t5const,r .2r%. ~II.10!

Its normal vector fieldn is only determined up to a sign. Depending on whether we choosen
the future- or past-directed normals, the corresponding scalar product~I.8! will ~for a fixed choice
of the Dirac matricesGj ! be either positive or negative~semi-!definite. However, the overall sign
of the scalar product is of no physical relevance; e.g., we could just redefine~I.8! by inserting a
minus sign. In order to fix the sign convention, we will in the following always assume tha
scalar product~I.8! is positive for the future-directed normal vector field@this convention is
consistent with our choices~II.1! and ~II.6!#. The situation becomes more interesting if we a
look at the region inside the horizon. For this, we consider the ‘‘cylindric’’ spacelike hypersu

H25$r 5r 0 ,t0<t<t1% ~II.11!

for some fixedr 0,2r and t0,t1 . A short computation shows that, for our choice of the Dir
matrices~II.7!, the scalar product~I.8! corresponding toH2 is positive if we choose forn the inner
normal ~pointing towards the singularity atr 50!. According to our sign convention, this mean
that the inward radial direction points to the future. Thus the particles ‘‘fall into’’ the singula
as time progresses, and we have ablack hole. On the other hand, we could have chosen the Di
matrices such that the scalar product corresponding toH2 is positive for the outer normal@e.g., by
changing the sign ofGr in ~II.7!#. In this case, increasingr would correspond to going forward in
time, and we would have awhite hole. Notice that this argument is consistent with time revers
Namely, the replacementt→2t forces us to change the sign of the scalar product~I.8! @in order
that ~I.8! is still positive forH5H1 and future-directed normals#. As a consequence, the scal
product corresponding toH2 changes sign. This means that black holes become white holes
vice versa. We conclude that the Dirac operatorsGout andGin distinguish between a black and
white hole. This is a peculiar effect of the Dirac operator. It is quite different from, e.g., the w
operator describing scalar fields~the Klein–Gordon operator!, which does not determine th
direction of time inside the horizon.

Our description of the spinors in polar coordinates is not quite satisfactory. First of al
normalization integral inside the horizon,~II.9!, is not definite. This is a consequence of the fa
that thet-variable is spacelike inside the horizon. From the mathematical point of view, this
problem; it seems tempting to just integrate across the horizon by adding~II.6! and~II.9!. On the
other hand, it is a conceptual difficulty that the integrand in~II.9! is not positive and therefore doe
not have the interpretation as a probability density. Furthermore, the Dirac equations corre
ing to Gout andGin separately describe the wave functions outside and inside the horizon. Bu
not clear how to match the wave functions on the horizon. For a better understanding of
issues, it is useful to remove the singularity of the metric on the horizon by transformin
Kruskal coordinates.

B. Kruskal coordinates

According to Ref. 11, we introduce Kruskal coordinatesu andv by

u55A
r

2r
21er /4r coshS t

4r D for r .2r,

A12
r

2r
er /4r sinhS t

4r D for r ,2r,

~II.12!
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u55 A
r

2r
21er /4r sinhS t

4r D for r .2r,

A12
r

2r
er /4r coshS t

4r D for r ,2r,

~II.13!

The regionsr .2r outside andr ,2r inside the horizon are mapped into

O15$u.0,uvu,u%

and

I 15$v.0,uuu,v,v22u2,1%,

respectively~see Fig. 1!. The horizonr 52r corresponds to the originu505v, and the linesv
56u are reached in the limitt→6`. Finally, the singularity atr 50 corresponds to the hyper
bola v22u251, v.0.

In Kruskal coordinates (v,u,q,w), the Schwarzschild metric takes the form

ds25 f 22~dv22du2!2r 2~dq21sin2 qdw2!

with

f 225
32r3

r
e2r /2r.

This metric is regular except at the singularityv22u251; it can be extended to the entire regio
v22u2,1.

Since the metric is regular at the origin, we can smoothly extend the Dirac operator acro
horizon. To do this, we simply viewv and u as the time and space variables, respectively.
choose for the Dirac matrices

Gv5 f g t, Gu5 f g r , Gq5gq, Gw5gw.

A straightforward computation yields for the Dirac operator

FIG. 1. Kruskal coordinates.
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G5g tS f i
]

]v
1

i

r
f ~]vr !2

i

2
]v f D1g r S f i

]

]u
1

i

r
„f ~]ur !21…2

i

2
]uf D1 igq]q1 igw]w .

~II.14!

The normalization integrals~II.6! and~II.9! on the surfacet50 correspond in Kruskal coordinate
to the integral~I.8! with

H5$u50,0<v<1%ø$v50,u.0%.

We choose the normaln as in Fig. 1. Using the current conservation~I.9!, one can continuously
deform the hypersurfaceH without changing the value of the normalization integral. In particu
we can avoid integrating across the horizon by choosing the hypersurfaceĤ in Fig. 1. This is a
major advantage of Kruskal coordinates; it gives a physically reasonable positive normali
integral even inside the event horizon. However, this method must be done with care wh
considered solution of the Dirac equation has singularities near the origin. Unfortunately
time-periodic solutions of the Dirac equation will, after transforming to Kruskal coordinate
general be highly singular at the origin. Therefore, the deformation of the hypersurface as
1 would be problematic, and we will not use this method. In order to avoid any difficulties o
normalization integral near the horizon,we shall only consider the normalization integral outsi
and away from the event horizon.

C. Transformation of the Dirac operator

We now consider how the Dirac operator~II.5! and~II.8! in polar coordinates transforms int
the Dirac operator~II.14! in Kruskal coordinates. This transformation consists of transform
both the space–time coordinates and the spinors. For clarity, we perform these transforma
two separate steps. Under the transformation of the space–time coordinates, the partial der
transform as

]

]t
5

]v
]t

]

]v
1

]u

]t

]

]u
5

1

4r S u
]

]v
1v

]

]uD ,

]

]r
5

]v
]r

]

]v
1

]u

]r

]

]u
5H 1

4rS2 S v
]

]v
1u

]

]uD , for r .2r,

2
1

4rS2 S v
]

]v
1u

]

]uD , for r ,2r

.

Substituting into~II.5! and~II.8! gives for the Dirac operatorsGout andGin in Kruskal coordinates

Gout5
i

4rS
~ug t1vg r !

]

]v
1

i

4rS
~vg t1ug r !

]

]u

1S i

r
~S21!1

i

2
S8Dg r1 igq

]

]q
1 igw

]

]w
, ~II.15!

Gin5
i

4rS
~vg t1ug r !

]

]v
1

i

4rS
~ug t1vg r !

]

]u

2S i

r
S1

i

2
S8Dg t2

i

r
g r1 igq

]

]q
1 igw

]

]w
. ~II.16!

These Dirac operators do not coincide with~II.14!, and we must therefore perform a furth
transformation; namely a transformation of the spinors. Under general coordinate transform
the wave functions transform according to
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C~x!→U~x!C~x!; ~II.17!

in the case considered here,U is the time-dependent (434) matrix

U~ t !5coshS t

8r D 11sinhS t

8r Dg tg r . ~II.18!

Under this transformation, the Dirac operatorsGout/in transform as

Gout/in→UGout/inU
21. ~II.19!

This gives the Dirac operator~II.14! in Kruskal coordinates,

G5UGoutU
215UGinU

21,

and this can be verified as follows: Under the transformation~II.19!, the Dirac matrices behav
like

Gj~x!→U~x!Gj~x!U~x!21.

Using the form of the Dirac matrices in~II.15! and~II.16! and the explicit formula~II.18!, a short
calculation shows that the Dirac matrices of the operatorsUGout/inU

21 coincide with the Dirac
matricesf g t, f g r , gq, andgw in ~II.14!. According to~I.4!, the Dirac operator in the gravitationa
field is formed from the Dirac matrices and their covariant derivatives; it is thus compl
determined by the Dirac matrices. Therefore, the operatorsUGout/inU

21 must coincide withG.
~One can also verify explicitly that the zeroth-order terms of the operatorsUGout/inU

21 andG are
equal. This is a longer computation, however.! We conclude that the Dirac operatorsGout andGin

can be identified with the Dirac operatorG in the regionO1øI 15$u1v.0,v22u2,1%.
We remark that it is not possible to map the interior of the horizon into the region

I 25$v,0,uuu,2v,v22u2,1%

and still match the Dirac operatorGin with G, because this would contradict the fact discussed
the previous section that the Dirac operator distinguishes between black and white holes.

Finally, we note that the transformation~II.17! and ~II.19! of the spinors can be viewed as
local U ~2, 2! gauge transformation; see Ref. 8.

D. Matching of the spinors on the horizon

We now come to the question of how the wave functions inside and outside the horizo
related to each other. For this, we analyze the behavior of solutions of the Dirac equation
origin in Kruskal coordinates. After transforming back to polar coordinates, this will give ma
ing conditions for the wave functions on the event horizon. The physical situation which we
in mind is a Dirac particle attracted by a Schwarzschild black hole. It suffices to do the mat
for static solutions~and not time-periodic solutions!, since in Sec. IV, we reduce the problem
static solutions.

Let C be a static wave function, i.e., in polar coordinates

C~ t,r ,q,w!5e2 ivtC~r ,q,w!.

We assume thatC(r ,q,w) is a smooth function both inside and outside the horizon, i.e., in
regions r ,2r and r .2r; this will be justified later by a separation of variables techniq
Furthermore, we assume thatC is a solution of the Dirac equations (Gin2m)C50 and (Gout

2m)C50, respectively. According to the transformation rules~II.17! and~II.18!, the wave func-
tion C in Kruskal coordinates takes the form
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C~u,v,q,w!5U~ t !e2 ivtC~r ,q,w!, ~II.20!

wherer and t are given implicitly in terms ofu andv by

S r

2r
21Der /2r5u22v2, ~II.21!

tanhS t

4r D5H v
u

for r .2r,

u

v
for r ,2r.

~II.22!

With this procedure,C is only defined inO1øI 1 , the upper right half of the Kruskal domain.
solves the Dirac equation

~G2m!C50 ~II.23!

in the open setO1øI 1 . If C is to be a physically reasonable solution of the Dirac equation, it m
be possible to extend it to the entire regionv22u2,1 between the two hyperbolas. If th
extended wave function was not zero in the regionu1v,0, our system would be connected to
white hole or to another universe~through a worm hole!, and the Dirac particle would have
certain probability to be in these extensions of space–time. Since we are only interested in
holes, this is not the situation we want to consider. Therefore, we demand that the extensioC
must vanish identically in the half-planeu1v,0. We conclude that in Kruskal coordinates, w
must analyze a solutionC of the Dirac equation~II.23! of the form

C~u,v,q,w!5H U~ t !e2 ivtC~r ,q,w! for u1v.0,uÞv,

0 for u1v,0.
~II.24!

This wave function may be singular on the linesu56v; in this case,C must solve the Dirac
equation in a generalized weak sense.

For the calculation of the weak derivatives ofC, we rewrite the wave function in the form

C5U~u1v !U~u2v !CO1U~v1u!U~v2u!C I ,

whereCO5C uO1
and C I5C uI 1

are the components ofC outside, resp. inside, the horizon@U
denotes the Heaviside functionU(x)51 for x>0 andU(x)50 otherwise#. SinceC satisfies the
Dirac equation inO1øI 1 , we need only consider the singular contributions on the lineu
56v. A formal calculation gives

05~G2m!C 5
~ II.14!

f i ~g t1g r !d~u1v !„U~u2v !CO1U~v2u!C I… ~II.25!

2 f i ~g t2g r !d~u2v !U~u1v !~CO2C I !. ~II.26!

If CO and C I were smooth up to the boundary ofO1 , resp.I 1 , this equation would be wel
defined in the distributional sense. In general, however,CO andC I might be singular in the limit
u→6v. In order to treat this general case, we multiply~II.25! and ~II.26! with test functions
h(u,v) which, asu→6v, decay so fast that the integral over the resulting expression is
defined. Since the matrices (g t1g r) and (g t2g r) are linearly independent, we get the tw
conditions

E
R2

h f d~u1v !~g t1g r !„U~u2v !CO1U~v2u!C I… dudv50, ~II.27!
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E
R2

h f d~u2v !~g t2g r !U~u1v !~CO2C I ! dudv50. ~II.28!

In ~II.27!, we compensate the possible divergence ofC for u→2v by choosingh in the region
O1øI 1 to be of the formh uO1øI 1

5(11u(g t1g r)Cu)21g with a smooth functiong. Then the
integrand in~II.27! is of the formd(u1v)3g3~bounded function!, and the integral makes sens
Sinceg is arbitrary, we conclude that the integrand on the lineu52v must vanish, which implies
that

lim
u→2v

~g t1g r !C~u,v,q,w!50. ~II.29!

In ~II.28!, we can proceed similarly; namely, ifC is singular on the lineu5v, we compensate the
divergence of the integrand in~II.28! by choosingh to have an appropriately fast decay near t
line u5v. One must keep in mind, however, thath cannot be chosen independently inO1 andI 1 ,
because the smoothness ofh on the lineu5v may impose restrictions onh. For example, ifCO

andC I have poles nearu5v,

C I~u,u1«,q,w!5c1~u,q,w!«2p1¯ ,

CO~u,v2«,q,w!5c2~u,q,w!«2q1¯ , ~«.0!,

then we must chooseh in the form

h~u,u1«,q,w!5c3~u,q,w!«max~p,q!1¯ ~«.0 or «,0!.

Thus the asymptotic behavior ofh nearu5v in O1 and I 1 must be the same. In the integr
~II.28!, this means that the leading order singularities ofCO andC I may cancel each other for an
choice ofh. Therefore, the condition for the leading order singularity takes the form

~g t2g r !~C~u,u1«,q,w!2C~u,u2«,q,w!!

5o„11u~g t2g r !C~u,u1«,q,w!u… as«→0. ~II.30!

If the singularity ofC on the lineu5v is worse than polynomial or of different form, there ma
be no obstructions for the choice ofh in O1 and I 1 . In this case,~II.30! will still be a necessary
condition. It will no longer be the strongest possible condition, but this is irrelevant for
purposes. For simplicity, we will use~II.30! in the general case.

Next we evaluate the conditions~II.29! and ~II.30! for our wave functionC(u,v,q,w) in
~II.24!. Using ~II.18!, we have inO1øI 1

~g t1g r !C~u,v,q,w!5~g t1g r !et/8pe2 ivtC~r ,q,w!,

~g t2g r !C~u,v,q,w!5~g t2g r !e2t/8pe2 ivtC~r ,q,w!.

The explicit formulas~II.12! and~II.13! enable us to write the time exponential in terms ofu and
v as

e6t/8r5Uu1v
u2vU

61/4

.

Using the relation~II.21! betweenr, u, andv, the condition~II.29! in polar coordinates takes th
form

lim
«→0

~g t1g r !u«u1/4C~ t,2r1«,q,w!50. ~II.31!
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Similarly, condition~II.30! can be written in polar coordinates as

~g t2g r !u«u1/4
„C~2r1«,q,w!2C~2r2«,q,w!…

5o„11u«u1/4u~g t2g r !C~2r1«,q,w!u… as«→0. ~II.32!

In order to simplify this formula, we consider the decomposition ofC in the form

u«u1/4C5 1
2g

t~~g t1g r !u«u1/4C1~g t2g r !u«u1/4C!. ~II.33!

According to condition~II.31!, the first summand in the bracket in~II.33! vanishes on the horizon
r 52r. Since the matrixg t is invertible, we conclude thatC and (g t2g r)C are of the same orde
on the horizon. Thus we can take out the matrices (g t2g r) in ~II.32! and finally obtain the
equivalent condition

u«u1/4
„C~ t,2r1«,q,w!2C~ t,2r2«,q,w!…5o„11u«u1/4C~ t,2r1«,q,w!… ~II.34!

as«→0. The relations~II.31! and ~II.34! are ourmatching conditions.
We briefly explain what these matching conditions mean, without being mathematically

cise. First of all, we point out that the matrix (g t1g r) in the first matching condition~II.31! is not
invertible. Therefore,~II.31! does not imply thatu«u1/4C(2r1«,q,w) goes to zero in the limit
«→0; in general, this limit need not even exist. Although the matching conditions have a
special form, they can be understood intuitively if one considers the Dirac current in polar
dinates. We first look at the total normalization integral~II.6!1~II.9!:

~CuC!out1~CuC! in5E
B2r

C̄~g r1g t!C dm2E
B2r

C̄g tC dm1E
R3B2r

C̄g tC dm.

The condition~II.31! ensures that the integral of the first summand is small near the hor
Using the matching condition~II.34!, one sees that the integrals in the second and last summ
behave similarly near the horizon. Because of the opposite sign of the second and third sum
this tends to make the normalization integral finite even ifC is singular on the horizon~if the
current had a pole, for example, one could define the normalization integral as a principal v!.
Thus our matching conditions ‘‘regularize’’ the normalization integral across the horizon. It is
interesting to look at the current in radial direction. For this, we consider the normaliz
integral through the hypersurfaceH2 , ~II.11!. For the outer normaln, this gives inside the horizon

~CuC!H2
52E

H2

C̄g tC dm ~r ,2r!. ~II.35!

For r .2r, on the other hand, we get the expression

~CuC!H2
5E

H2

C̄g4C dm5E
H2

C̄~g r1g t!C dm2E
H2

C̄g tC dm ~r .r!. ~II.36!

According to~II.31!, the first integral in~II.36! is small near the horizonr 52r. The matching
condition ~II.34! gives that the second summand in~II.36! behaves similar to~II.35! near the
horizon. Thus our matching conditions tend to make the normalization integral throughH2 a
continuous function inr 0 on the horizonr 052r. Since the integrand of the normalization integr
has the interpretation as the ‘‘probability density’’ or ‘‘probability current,’’ this means physic
that a particle which disappears in the event horizon must reappear in the interior of the ho
This is in accordance with our physical assumption that there are no other universes or white
where the particle could disappear into or emerge from.
                                                                                                                



parate
plane

wski

tor

-

ors. In

2184 J. Math. Phys., Vol. 41, No. 4, April 2000 Finster, Smoller, and Yau

                    
III. SEPARATION OF THE ANGULAR AND TIME DEPENDENCE

We next study Dirac particles in the external Reissner–Nordstro¨m background fields~I.1! and
~I.2!. Since the external fields are spherically symmetric and time independent, we can se
out the angular and time dependence of the wave functions via spherical harmonics and
waves, respectively. This is done in a manner similar to the central force problem in Minko
space~see e.g., Ref. 12!.

We start with a compilation of some formulas involving the angular momentum operaLW

52 i (xW3¹W ) ~see, e.g., Ref. 13!. Its square is

L252DS25L1L21Lz
22Lz5L2L11Lz

21Lz

with L65Lx6 iL y . The spherical harmonicsYl
k , l 50,1,...,k52 l ,...,l , are simultaneous eigen

functions ofL2 andLz , namely,

L2Yl
k5 l ~ l 11!Yl

k , LzYl
k5kYl

k . ~III.1!

They are orthonormal,

E
S2

Yl
k* Yl 8

k85d l l 8d
kk8,

and form a basis ofL2(S2). The operatorsL6 serve as ‘‘ladder operators,’’ in the sense that

L6Yl
k5Al ~ l 11!2k~k61!Yl

k61. ~III.2!

In preparation for the four-component Dirac spinors, we consider two-component Pauli spin
analogy to~II.2!–~II.4!, we denote the ‘‘Pauli matrices in polar coordinates’’ bys r , sq, andsw;
i.e.,

s r5s3 cosq1s1 sinq cosw1s2 sinq sinw,

sq5
1

r
~2s3 sinq1s1 cosq cosw1s2 cosq sinw!,

sw5
1

r sinq
~2s1 sinw1s2 cosw!.

We have

sq]q1sw]w5sW ¹W 2s r] r5
s r

r
~sW xW !~sW ¹W 2s r] r !5

s r

r
~r ] r1 isW ~xW3¹W !2r ] r !52

s r

r
sW LW ,

~III.3!

and thus

sW LW 52rs r~sq]q1sw]w!. ~III.4!

For j 51/2,3/2,... andk52 j ,2 j 11,...,j , we introduce the two-spinors

x j 21/2
k 5Aj 1k

2 j
Yj 21/2

k21/2S 1
0D1Aj 2k

2 j
Yj 21/2

k11/2S 0
1D ,

x j 11/2
k 5Aj 112k

2 j 12
Yj 11/2

k21/2S 1
0D2Aj 111k

2 j 12
Yj 11/2

k11/2S 0
1D .
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These spinors form an orthonormal basis ofL2(S2)2. They are eigenvectors of the operatorK

5sW LW 11. More precisely,~III.1! and ~III.2! imply that

Kx j 21/2
k 5S Lz11 L2

L1 2Lz11D x j 21/2
k 5S j 1

1

2Dx j 21/2
k , ~III.5!

Kx j 11/2
k 52~ j 1 1

2!x j 11/2
k . ~III.6!

Furthermore, multiplication withs r again gives an eigenvector ofK; namely,

Ks rx j 21/2
k 5

~ III.4 !

„2rs r~sq]q1sw]w!11…s rx j 21/2
k

52s rx j 21/2
k 2rs r~sqs r]q1sws r]w!x j 21/2

k

52s rx j 21/2
k 2s r~sW LW !x j 21/2

k

52s rKx j 21/2
k 52~ j 1 1

2!s
rx j 21/2

k .

Taking into account the normalization factors, we obtain the simple formula

s rx j 21/2
k 5x j 11/2

k . ~III.7!

Finally, we choose for the Dirac wave functions the two ansatz

C jkv
1 5e2 ivt

S21/2

r S x j 21/2
k F jkv1

1 ~r !

ix j 11/2
k F jkv2

1 ~r ! D , ~III.8!

C jkv
2 5e2 ivt

S21/2

r S x j 11/2
k F jkv1

2 ~r !

ix j 21/2
k F jkv2

2 ~r ! D , ~III.9!

with the two-spinorsF jkv
1 andF jkv

2 . A general solution of the Dirac equation can be written
a linear combination of these wave functions~this is because one can obtain every combination
spherical harmonics in the four spinor components!.

In the regions where thet-variable is timelike, we choose the Dirac matrices again in the fo
~II.1!, whereby the functionS is now given by

S~r !5U12
2r

r
1

q2

r 2U1/2

. ~III.10!

According to ~I.4!, the formula for the Dirac operator is obtained by inserting the Coulo
potential into~II.5!,

G5g tS i

S

]

]t
2

e

S
f D1g r S iS

]

]r
1

i

r
~s21!2

i

2
S8D1 igq

]

]q
1 igw

]

]w
. ~III.11!

The identity~III.3! allows us to rewrite the angular derivatives of the Dirac operator in term
the operatorK. If we substitute the ansatz~III.8! and~III.9! into the Dirac equation and apply th
relations~III.5!–~III.7!, we obtain the two-component Dirac equations

S
d

dr
F jkv

6 5F S 0 21

1 0 D ~v2ef!
1

S
6S 1 0

0 21D 2 j 11

2r
2S 0 1

1 0DmGF jkv
6 . ~III.12!

In the regions where thet-direction is spacelike, we obtain the generalization of~II.8! for the Dirac
operator; namely,
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G5g r S i

S

]

]t
2

i

r
2

e

S
f D1g0S iS] r1S

i

r
1

i

2
S8D1 igq]q1 igw]w . ~III.13!

We again choose the ansatz~III.8! and ~III.9!. This gives the two-component Dirac equations

S
d

dr
F jkv

6 5F S 0 21

1 0 D ~v2ef!
1

S
6 i S 0 1

1 0D 2 j 11

2r
1 i S 1 0

0 21DmGF jkv
6 . ~III.14!

IV. NONEXTREME REISSNER–NORDSTRÖM BACKGROUND

In this section, we consider the caseqÞr, so that the metric coefficientS(r ), ~III.10!, has two
zeros

r 05r2Ar22q2 and r 15r1Ar22q2.

These zeros are transversal,S8(r j )Þ0; in addition, the potentialf(r ) is regular atr 5r j . Since
our matching conditions~II.31! and~II.34! for the Schwarzschild metric only depend on the loc
behavior of the external field around the horizon, they are also valid for the Reissner–Nord¨m
horizons~for the inner horizon, we must reverse ther-direction!. We will show in this section that
these matching conditions do not admitnormalizable, time-periodic solutions of the Dirac equa
tion. More precisely, we will show that for every~nontrivial! solution of the Dirac equation~I.4!,
the normalization integral outside and away from the horizons,

~CuC!`
t
ªE

R3B2r 1

C̄g tCS21 d3x, ~IV.1!

is infinite for somet. Notice that for a normalized wave function, the integral~IV.1! gives the
probability that the particle lies outside the ball of radius 2r 1 , which must be smaller than one
Thus, if ~IV.1! is inifinite, the wave function cannot be normalized.

Suppose that we have a periodic solution~I.3! of the Dirac equation with periodT. Expanding
the periodic functioneiVtC(t,r ,q,w) in a Fourier series gives the representation ofC ~as the
Bloch wave!

C~ t,r ,q,w!5e2 iVt (
nPZ

Cn~r ,q,w!e22p int/T. ~IV.2!

Decomposing the functionsCn in the basis~III.8! and ~III.9! and substituting into~IV.2! gives

C~ t,r ,q,w!5 (
n, j ,k,s

C jkv~n!
s ~ t,r ,q,w!, ~IV.3!

where the indexs56, and wherev is related ton by

v~n!5V1
2pn

T
.

Using the orthonormality of the two-spinorsx j 61/2
k , the normalization integral takes the form

~CuC!`
t 5E

R3\B2r 1

(
n,n8

(
j ,k,s

C jkv~n!
s g tC jkv~n8!

s
S21 d3x.

The integrand has an oscillating time dependence of the form exp (i„v(n)2v(n8)…t). In order to
eliminate the oscillations, we take the average over one period (0,T), giving
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1

T E
0

T

~CuC!`
t dt5 (

n, j ,k,s
~C jkv~n!

s uC jkv~n!
s !` .

For a normalizable wave functionC, this expression is finite. Since the scalar product (.u.)` is
~semi-!positive definite, we conclude that all the summands must be finite; thus

~C jkv~n!
s uC jkv~n!

s !,` ~IV.4!

for all s56, j ,k,n.
This inequality allows us to turn our attention to the individual wave functionsC jkv

s . As a
first step we show that the wave functionsF6 in the ansatz~III.8! and~III.9! are not zero on the
horizon.

Lemma IV.1: The functionuF jkv
6 (r )u2 has finite boundary values on the horizon. If it is ze

on a horizon r5r 0 or r 5r 1 , thenF jkv
6 vanishes identically.

Proof: For ease in notation, we omit the indicesj, k, andv. For a givend, 0,d,r 0 , the
t-direction is timelike in the regions (d,r 0) and (r 1 ,`). In these regions, the Dirac equation
~III.12! give

S
d

dr
uF6u2~r !5 K S

d

dr
F6,F6L 1 K F6,S

d

dr
F6L

56
2 j 11

r
~ uF1

6u22uF2
6u2!24m Re„~F1

6!* F2
6
…,

and thus

2cuF6u2<S
d

dr
uF6u2<cuF6u2

with c52m1(2 j 11)/d. Dividing by uF6u2 and integrating yields, ford,r ,r 8,r 0 , or r 1,r
,r 8, the inequality

2cE
r

r 8
S21< log uF6u2ur

r 8<cE
r

r 8
S21. ~IV.5!

In the regionr 0,r ,r 1 , the Dirac equations~III.14! give similarly

S
d

dr
uF6u2~r !5 K S

d

dr
F6,F6L 1 K F6,S

d

dr
F6L 50,

since the square bracket in~III.14! is an anti-Hermitian matrix. ThusuF6u2 is constant in this
region, and, so,~IV.5! also ~trivially ! holds for r 0,r ,r 8,r 1 .

Notice thatS21 is integrable on the event horizons. Therefore, the inequality~IV.5! implies
that the left- and right-sided boundary values ofuF6u2 on the horizon are finite, and are nonze
unlessF6 vanishes identically in the corresponding region (d,r 0), (r 0 ,r 1), or (r 1 ,`).

Next we consider the matching condition~II.34!. If we substitute the ansatz~III.8! and~III.9!,
we get forF6 the conditions

F6~r j1«!2F6~r j2«!5o„11uF6~r j1«!u… at «→0,j 50,1.

Since we have already shown thatuF6(r )u2 has two-sided limits asr 5r j , this last equality shows
that the left- and right-sided boundary values ofuF6u2 must coincide,

lim
0,«→0

uF6~r j1«!u25 lim
0,«→0

uF6~r j2«!u2, j 50,1.
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We conclude that the wave function can only be zero on one of the horizons if it vanishes
whole interval~d, `!. Taking the limitd→0 gives the result. j

We point out that this lemma does not imply that the wave functionF is continuous on the
horizon. In general,F(r ) will oscillate faster and faster asr approaches a horizon. Nevertheles
its absolute valueuFu tends to a finite value in this limit.

The next step is to use current conservation for analyzing the decay ofC jkv(n)
s at infinity.

Theorem IV.2 „radial flux argument…: Either C jkv
s vanishes identically, or the normaliza

tion condition (IV.4) is violated.
Proof: To simplify the notation, we again omit the indicess, j, k, andv. Assume thatC is not

identically zero. Forr 1,r ,R and T.0, let V5(0,T)3(B2R\B2r) be an annulus outside th
horizon. As a consequence of the current conservation, the flux integral over the boundaryV is
zero, thus

05E
V

1¹ j~C̄GjC!Augu d4x

5E
0

T

dt r2S~r !E
S2

~C̄g rC!~ t,r !2E
0

T

dt R2S~R!E
S2

~C̄g rC!~ t,R!

2E
2r

2R

ds s2S21~s!E
S2

~C̄g tC!~ t,r !u t50
t5T ,

where*S2 denotes the integral over the angular variables. Since the integrand is static, th
integral vanishes, and we obtain that the radial flux is independent of the radius,

r 2S~r !E
S2

~C̄g rC!~r !5R2S~R!E
S2

~C̄g rC!~R!. ~IV.6!

We want to show that the radial flux is not zero. For this, we first substitute the ansatz~III.8!
and ~III.9! into the right side of~IV.6! and get

r 2S~r !E
S2

~C̄g rC!~r !5E
S2

F* ~r !S 0 i

2 i 0DF~r !. ~IV.7!

According to Lemma IV.1,uFu has finite, nonzero boundary values on the horizonr 1 . Expressed
in F, the matching condition~II.31! gives

lim
r 1,r→r 1

S 1 i

i 21DF50.

Using this equation, we take the limitr→r 1 in ~IV.7!,

lim
r 1,r→r 1

r 2S~r !E
S2

~C̄g rC!~r !5 lim
r 1,r→r 1

E
S2

FF* S 1 i

2 i 1DF2uFu2G
5 lim

r 1,r→r 1

E
S2

FF* S 1 0

0 21D S 1 i

i 21DF2uFu2G
52 lim

r 1,r→r 1

E
S2

uFu2Þ0,

where we used Lemma IV.1 in the last inequality
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Now we consider the radial flux for largeR. Since the flux is nonzero and independent ofR,
we have

0, lim
R→`

uR2S~R!E
S2

~C̄g rC!~R!u.

Using the positivity of the formC̄g tC and the fact that the Reissner–Nordstro¨m metric is
asymptotically Minkowskian, we get~using the Cauchy–Schwarz inequality! the estimate

0, lim
R→`

uR2S~R!E
S2

~C̄g rC!~R!u< lim
R→`

uR2S~R!E
S2

~C̄g tC!~R!u

5 lim
R→`

uR2S21~R!E
S2

~C̄g tC!~R!u

We have shown that the integrand of our normalization integral

~CuC!`5E
2r 1

`

dR R2S21~R!E
S2

~C̄g tC!~R!

converges to a positive number. Thus the normalization integral must be infinite.
j

This theorem shows that the wave functionsC jkv
s in the decomposition~IV.2! and ~IV.3!

must all be identically zero. Thus there are no normalizable solutions of the Dirac equation
proves Theorem I.1.

Remark IV.3:We point out that the radial flux argument is based only on our match
conditions for the wave functions and on the Dirac current conservation. Therefore, it can i
diately be applied to more general static, spherically symmetric background fields. This ge
zation may, for example, be relevant if the coupling of the gravitational and electric field to m
or other force fields is taken into account. Although the exact formulas of the Reissner–Nord¨m
solution will then no longer be valid, the qualitative behavior of the fields on the horizons may
be the same. To give an example of the possible generalizations, we state the following th
which can be proved with very similar methods:Let gi j be a static, radially symmetric back
ground metric,

ds25gi j dxidxj5
1

T2~r !
dt22

1

A~r !
dr22r 2~dq21sin2 qdw2!,

whereby the metric coefficient A(r ) has N zeros at r5r 1 ,..., r N,0,r 0,¯,r N . Assume the
following conditions hold:

(1) The zeros of A are all transversal,

A8~r j !Þ for j 51,...,N.

(2) The determinant of the metric is regular except at the origin,

T22~r !A21~r !PC`~0,̀ !.

Furthermore, assume there is a spherically symmetric electric fieldf(r ) which is regular except
at the origin,fPC`(0,̀ ). Then there are no normalizable, time-periodic solutions of the Di
equation with these background fields.
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V. EXTREME REISSNER–NORDSTRÖM BACKGROUND

We now consider the caseq5r of an extreme Reissner–Nordstro¨m background field, i.e.,

S5
r 2r

r
.

The metric coefficientSnow has only one zero atr 5r; the t-direction is timelike both inside and
outside the horizon. This situation can be thought of as the limiting case that the two horizor 0

andr 1 considered in the previous section come arbitrarily close. Unfortunately, the argumen
the nonexistence proof do not carry over in this limit, so we must rely on a different metho

Since thet-direction is always timelike, thet-component of the currentC̄GtC is positive and
has the usual interpretation as probability density. Therefore, the normalization integral

~CuC! t5E
R3

C̄g tCS21 d3x

causes no conceptual difficulties.
Suppose that we had a normalizable, periodic solution~I.3! of the Dirac equation with period

T. Again, using the representation as the Bloch wave~IV.2! and averaging over one period give

`.
1

T E
0

T

~CuC! t dt5 (
n, j ,k,s

~C jkv~n!
s uC jkv~n!

s !.

Substituting the ansatz~III.8! and ~III.9! yields

1

T E
0

T

~CuC! t dt5E
0

`

dr S22~r ! (
n, j ,k,s

uF jkv~n!
s u2.

Using the positivity of the summands, we obtain the conditions

E
0

`

dr S22~r !uF jkv~n!
s u2,` ~V.1!

for all s, j, k, andn.
We will now study the individual functionsF jkv

s for r .r. To simplify the notation, we again
omit the indicesj, k, andv. Our first task is to consider under which conditions on the parame
v, j, andm the normalization integral~V.1! can be finite nearr 5r. We first discuss the situation
qualitatively: SinceS22(r )5r 2/(r 2r)2 has a nonintegrable singularity on the horizon, the n
malization integral will only be finite ifFs becomes small nearr 5r. For generic paramete
values, the dominant term in the Dirac equation~III.12! nearr 5r is the first summand, i.e.,

d

dr
F6'

v2ef

S2 S 0 21

1 0 DF6.

Since, in this limiting case, the eigenvalues of the matrix on the right are purely imaginary
Dirac equation describes fast oscillations of the wave function. The eigenvalues of the seco
third summands in~III.12! are real; they describe an exponential increase or decay ofF. If the
oscillating term is dominant, we expect thatF will not go to zero in the limitr→r. In the
following lemma, these ideas are made mathematically precise in a slightly more general s

Lemma V.1: LetF(x), x.0, be a nontrivial solution of the ODE

F8~x!5Fa~x!S 0 21

1 0 D 1b~x!S 1 0

0 21D 1c~x!S 0 1

1 0D GF~x! ~V.2!
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with smooth, real functions a,b,cPC`(0,̀ ) and aÞ0. If, near the origin, the quotients b/a and
c/a are monotone and

b~x!21c~x!2,a~x!2, ~V.3!

then uFu2(x) is bounded from above and from below near x50,

0, lim
0,x→0

inf uF~x!u2< lim
0,x→0

supuF~x!u2,`.

Proof: Let ~0,«! be an interval where the functionsb/a andc/a are monotone and where~V.3!
holds. Assume thatF is a nontrivial solution of~V.2!. According to the uniqueness theorem f
the solutions of ODEs,F(x) is nonzero for all 0,x,`. Now consider the functional

F~x!5^F~x!,A~x!F~x!& with A~x!5S 11b/a 2c/a

2c/a 12b/aD .

According to~V.3!, the matrixA is close to the identity; i.e., there is a constantc,1 with

u12A~x!u,c for all x with 0,x,«.

Thus the functionalF is uniformly bounded inuFu2 on ~0, «!,

1

C
uF~x!u2<F~x!<CuF~x!u2 ~V.4!

for someC.0. Using the special form ofA and of the differential equation~V.2!, the derivative
of F takes the simple form

F8~x!5^F8,AF&1^F,AF8&1^F,A8F&5^F,A8F&. ~V.5!

The sup-norm of the matrixA8 is bounded by

$A8%<US b

aD 8U1US c

aD 8U. ~V.6!

Putting together~V.4!–~V.6!, we get the bounds

2CS US b

aD 8U1US c

aD 8U DF~x!<F8~x!<CS US b

aD 8U1US c

aD 8U DF~x!.

Now we divide byF(x) and integrate. Sinceb/a and c/a are monotone, we can just integra
inside the absolute values,

2CS UbaU1UcaU D U
x

y

< logFux
y<CS UbaU1UcaU D U

x

y

. ~V.7!

Since the extreme left and right sides of this inequality converge in the limitx→0, we conclude
that logF(x) is bounded from above and below near the origin. After exponentiating and su
tuting ~V.4!, the result follows. j

Applied to ~III.12!, this lemma says thatuF6(r )u2 is bounded away from zero nearr 5r
unless

v2ef~r!50. ~V.8!

Thus we can turn our attention to this special case.
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If we substitute the condition~V.8! into ~III.12!, the Dirac equation simplifies to

U12
r

r U d

dr
F6~r !5F S 0 21

1 0 D e6S 1 0

0 21D 2 j 11

2r
2S 0 1

1 0DmGF6. ~V.9!

We want to study how the solutions of this equation behave for smallr 2r.0. For this, we
rewrite the equation in the new variable

u~r !52r 2r ln ~r 2r!,

which gives

d

du
F6~u!5F2S 0 21

1 0 D e7S 1 0

0 21D 2 j 11

2r
1S 0 1

1 0DmGF6. ~V.10!

The region nearr 5r corresponds to large values ofu. The matrix in the bracket in~V.10! depends
smoothly onu and converges in the limitu→` to a finite limit, in view of the definition ofu given
above. According to the stable manifold theorem~Ref. 14, Thm. 4.1!, the solutions of~V.10!
which are not bounded away from zero for largeu tend exponentially to zero. After transformin
back to the variabler, this justifies the power ansatz

F1
6~r !5F10

6 ~r 2r!s1o„~r 2r!s
…, F2

6~r !5F20
6 ~r 2r!s1o„~r 2r!s

… ~V.11!

with constantsF10
6 , F20

6 and a parameters.0. Substituting into~V.9! yields the system of linea
equations

„s7~ j 1 1
2!…F10

6 52r~m1e!F20
6 , ~V.12!

„s6~ j 1 1
2!…F20

6 52r~m2e!F10
6 , ~V.13!

which can be solved forF10
6 and F20

6 . In this way, we have found a consistent ansatz for
spinors nearr 5r. However, the corresponding solutions of the Dirac equation are all not
malizable, as the following theorem shows.

Theorem V.2: Every nontrivial solutionF6(r ), r.r, of the Dirac equation (V.9) with the
boundary conditions (V.11) violates the normalization condition (V.1).

Proof: Let F6 be a nontrivial solution of the Dirac equation. Since the Dirac equation has
coefficients, we can assume thatF6 are real. In the new variableu5r 21, the Dirac equation
~V.9! takes the form

u12ruu
d

du
F6~u!5F2

e

u2 S 0 21

1 0 D 7
2 j 11

2u S 1 0

0 21D 1
m

u2 S 0 1

1 0D GF6.

If e.m, Lemma V.1 yields thatuF6(u)u2 is bounded from above and below nearu50. Thus
uF6(r )u2 does not decay at infinity, and the normalization integral~V.1! will diverge. We con-
clude that we must only consider the casem>e.

In the casem5e, the system~V.12! and ~V.13! yields that eitherF10
6 or F20

6 is zero. Fur-
thermore, the Dirac equation~V.9! shows that eitherF1

6 or F2
6 vanishes identically. SinceF6(r )

has no zeros for finiter ~otherwise, the uniqueness of the solution yields thatF6 vanishes
identically!, we can assume that the vectorF6(r ) will lie in the fourth quadrant,

F6~r !P$~x,y!ux>0,y<0% ~V.14!

for all r.
Next we want to show that~V.14! also holds in the casem.e. In this case, from~V.12! and

~V.13!, we can assume thatF10
6 is positive, whereasF20

6 is negative. Thus~V.14! holds for small
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r 2r.0. In order to show that the fourth quadrant is an invariant region forF6, first notice that
F6(r ) cannot become zero for a finite value ofr. Thus, ifF6(r ) leaves the quadrant for somer,
we have either

F1
6~r !50, ~F1

6!8~r !<0, and F2
6~r !,0

or

F1
6~r !.0, F2

6~r !50, and ~F2
6!8~r !>0.

However, the Dirac equation gives in the first case that (F1
6)8.0 and in the second case th

(F2
6)8(r ),0, which is a contradiction.
We conclude thatF6(r ) lies for all r in the fourth quadrant. Figure 2 shows the flow of E

~V.9! for larger. From this one sees immediately that the origin is repelling, so thatuF6u2 will be
bounded away from zero for larger. j

It follows that our periodic solutionC must vanish identically outside the horizon. Th
proves Theorem I.2.

We point out that in contrast to the situation in Sec. IV, we do not make any statement o
behavior of the wave function forr ,r. Indeed, it appears that the extreme Reissner–Nordst¨m
background does admit periodic solutions forr ,r; these can be constructed by taking the bou
ary conditions~V.11! on the horizon and solving the Dirac equation backwards inr.
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APPENDIX: JUSTIFICATION OF TIME PERIODICITY INSIDE THE HORIZON

Throughout this paper, we have considered a Dirac wave function~I.3! which is time periodic
both inside and outside the event horizon. Since an outside observer has no knowledge ab
physical situation in the interior of the event horizon, the assumption of time periodicity insid
horizon might not seem physically reasonable. In this short appendix, we clarify why time
odicity inside the horizon is natural to assume. Namely, we show that every solutionC(t,r ,q,w)

FIG. 2. Flow ofF6 for large r, schematic.
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of the Dirac equation which is time periodic outside the event horizon and~locally uniformly!
bounded int, gives rise to a solutionC̃ of the Dirac equation, which coincides withC outside the
horizon and is also time periodic inside. Using this argument, the results of this paper co
immediately generalized to Dirac wave functions which are only time periodic outside the
horizon.

Let C(t,r ,q,w) be a solution of the Dirac equation which is time periodic outside the e
horizon,

C~ t1T,r ,q,w!5e2 iVTC~ t,r ,q,w! for r .r 1 , ~A1!

and locally uniformly bounded int,

uC~ t,r ,q,w!u<F~r ! with FPC0
„~0,r 0!ø~r 0 ,r 1!… ~A2!

~r 0 andr 1 again denote the Cauchy and event horizons, respectively!. We consider forN>1 the
functions

C̃N~ t,r ,q,w!5
1

2N11 (
n52N

N

C~ t1nT,r ,q,w!.

Since our Dirac operator is static, the functionsC̃N satisfy the Dirac equation. Time-periodicit
~A1! implies thatC̃N andC coincide outside the event horizon. Inside the event horizon, one
use the bound~A2! to show that theC̃N form a Cauchy sequence. Thus we can take the li
N→`; we setC̃5 limN→` C̃N . Again using~A2!, we conclude that the functionC̃ is time
periodic,

C̃~ t1T,r ,q,w!2C̃~ t,r ,q,w!5 lim
N→`

1

2N11
~C„t1~N11!T,r ,q,w…2C~ t2NT,r ,q,w!!50,

and satisfies the Dirac equation,

~G2m!C̃5 lim
N→`

~G2m!C̃N50.
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Bondi-type systems near spacelike infinity and the
calculation of the Newman–Penrose constants
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We relate Bondi systems near spacelike infinity to another type of gauge condi-
tions. While the former are based on null infinity, the latter are defined in terms of
Einstein propagation, the conformal structure, and data on some Cauchy hypersur-
face. For a certain class of time symmetric space–times we study an expansion
which allows us to determine the behavior of various fields arising in Bondi sys-
tems in the region of space–time where null infinity touches spacelike infinity. The
coefficients of these expansions can be read off from the initial data. We obtain, in
particular, expressions for the constants discovered by Newman and Penrose in
terms of the initial data. For this purpose we calculate a certain expansion intro-
duced by Friedrich@J. Geom. Phys.24, 83–163~1998!# up to third order. ©2000
American Institute of Physics.@S0022-2488~00!02602-5#

I. INTRODUCTION

Most studies of gravitational fields near null infinity are based on the use of ‘‘Bondi-ty
coordinates. In the first investigations of the behavior of the field near null infinity~cf., Refs. 1–3!
Bondi-type coordinates played a crucial role in the specification of the fall-off behavior o
field. The characterization of the asymptotic behavior of gravitational fields near null infini
terms of the conformal geometry subsequently suggested by Penrose4,5 does not require the use o
such a specific class of coordinates. Nevertheless, Bondi-type coordinates are usually a
ployed in this context because they allow us to exploit in a convenient way certain features
null cone structure. If the gravitational field is, however, to be analyzed in detail in the re
where future and past null infinityJ 6 ‘‘touch’’ spacelike infinity, and if this is to be done suc
that J 2 and J 1 are treated on an equal footing, Bondi-type coordinates are not particu
helpful. Already in the simplest nontrivial case, that of the Schwarzschild solution, the u
double null coordinates leads to difficulties.

In Ref. 6 an initial value problem for the conformal vacuum field equations has been fo
lated which is designed to analyze near spacelike and null infinity the Einstein propagat

asymptotically flat data on a Cauchy hypersurfaceS̃ in a finite picture. In this setting, which is
based on certain conformally invariant structures, spacelike infinity is represented by a cy
I .] 21,1@3S2 such that the setsJ6.R3S2, representing, respectively, future and past n
infinity, ‘‘touch’’ the cylinder at its two boundary componentI 65$61%3S2. Though the under-
lying facts about the evolution equations which have been used here hold for much more g
situations, the picture has been analyzed so far under certain simplifying assumptions on the
data. The data are assumed to be time symmetric and the conformal structure, which then
sents the free datum, is assumed to extend smoothly through spacelike infinity such that th

is represented by a pointi in an extended manifoldS5S̃ø$ i %. The cylinderI is obtained by

a!Electronic mail: kannar@rmki.kfki.hu
21950022-2488/2000/41(4)/2195/38/$17.00 © 2000 American Institute of Physics
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blowing up the pointi to a sphereI 0.$0%3S2 and by smoothly extending the solution in
particular geometric gauge.

It can be seen already under these assumptions on the data that the new picture allow

relate nearI 6 properties of the data onS̃, which touchesI at I 0, to properties of the field on nul
infinity by solving a hierarchy of differential equations onI. These equations have been used
Ref. 6 to derive certain ‘‘asymptotic regularity conditions’’ for the initial data whose imposi
prevents a certain class of logarithmic singularities of the field at the setsI 6 from arising. How-
ever, it still has to be shown that the asymptotic regularity conditions ensure a time evolut
the data which extends near spacelike infinity smoothly to null infinity.

In the present article we analyze the consistency of the early investigations of fields ne
infinity with the picture developed in Ref. 6 and we demonstrate to some extent the efficien
the latter in calculating near spacelike infinity quantities on null infinity from the given data.
this purpose we make two different types of assumptions. On the one hand, we shall co
space–times arising from time symmetric vacuum data as described previously which sati
asymptotic regularity conditions. Our calculations of fields on the cylinderI rely only on these
assumptions. On the other hand, we shall assume that these data develop into solution
admit a smooth conformal structure at null infinity and that the gauge conditions proposed i
6 extend in a smooth and regular way toJ6. We expect that our analysis will contribute info
mation on the solution process which in the end will allow us to remove the second ty
assumptions and to show that the existence of the smooth evolution can be derived sole
assumptions on the initial data.

The present article can be divided into three different, though related, parts.
~1! In Ref. 6 an expansion of the field near spacelike infinity in terms of a ‘‘radial’’ coordin

r, which vanishes on the cylinderI representing spacelike infinity, has been introduced.
calculate the coefficients of this expansion to third order. This calculation is not only of int
because it allows us to study the Newman–Penrose~NP! constants, which will be discussed in th
following, but also because it provides some information on the smoothness of the evolutio
null infinity for fields arising from data subject only to our first type of assumptions. Though
asymptotic regularity conditions referred to previously exclude certain types of logarithmic
gularities in the evolution nearI, there exists another potential source of singularities. To sh
that in fact no further singularities can arise at any order, it is clearly of interest to understa
situation for the first few orders of the expansion. The potential singularities should show u
the first time at the order of our calculation. Our calculations show that at this order they are
excluded by the asymptotic regularity conditions.

We note that our expansion of the field near spacelike and null infinity, which we carry o
terms of the conformally rescaled fields and associated gauge conditions, can be translated
expansion of the field near spacelike infinity in terms of the ‘‘physical’’ field and suitable c
dinates. We shall not carry out such a translation because the main point of our consideratio
fact that we can relate quantities on null infinity to the data onS̃.

~2! Bondi-type coordinates and certain related frame fields~cf. the definition of the ‘‘NP
gauge’’ in the following! are based on the structure of null infinity. The gauge conditions in R
6 ~cf. the definition of the ‘‘F gauge’’ in the following! are based on Cauchy data, the Einste
equations, and certain properties of conformal structures. We discuss in general terms
construct near null infinity the transformation from theF gauge into the NP gauge. Using th
expansion referred to previously we then obtain expansions nearI 1 of various quantities given in
the NP gauge in terms of the coordinates arising in theF gauge and coefficients which are give
directly in terms of the initial data onS. We note that these expansions imply expansions
quantities of physical interest on null infinity such as the Bondi-energy-momentum, the an
momentum~cf. Ref. 7 for various suggestions!, the radiation field, etc., in terms of the coordina
r on null infinity, which vanishes atI 1, and coefficients derived from the initial data.

Since we need, for our considerations quite detailed information on the structure of the
data near spacelike infinity, our explicit calculations are done only for time-symmetric
However, many of our considerations apply also to more general situations and as soon a
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cient information on data with nonvanishing extrinsic curvature becomes available~cf. Ref. 8!, we
shall be able to derive by similar calculations relations between fields onJ 2 and J 1. These
relations will contain nontrivial information on the evolution process.

~3! As a specific application of this discussion we reconsider the constants which have
associated by Newman and Penrose with asymptotically simple space–times~cf. Refs. 9 and 10!.
The NP constants are given by certain integrals over spherical cuts of null infinity and have
shown to be absolutely conserved in the sense of being independent of the choice of c
derive for them expressions in terms of the initial data onS̃. Such expressions have been giv
already in the static case in Ref. 10. We derive analogous expressions for a much more
class of space–times arising from time-symmetric initial data. For these data the time evolu
the field is in general not known explicitly as is the case in the presence of a timelike K
vector field. The fact that we can nevertheless obtain expressions in terms of the data illustr
some extent the efficiency of the new picture. Though various authors~cf. Refs. 11–13! discuss
these constants from different points of view, no consensus has been found concernin
geometrical/physical significance. Whether our discussion will help clarify the meaning of th
constants remains to be seen. One of our main reasons for looking at them is the expectat
they may play a role in the construction of space–times. In numerical calculations they
certainly provide a check on the numerical accuracy.

II. RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY

We begin by giving an outline of thefinite, regular initial value problem near spacelik
infinity. This has been introduced in Ref. 1, which we refer to for more details. It involves a g
which we refer to as theF gauge. We then recall the NPgauge, employed in Ref. 10, to discus
the gravitational field near null infinity. Finally, we discuss how the NP gauge is related toF
gauge.

A. The regular finite initial value problem near spacelike infinity

We want to discuss asymptotically flat solutions (M̃ ,g̃) to Einstein’s field equationsR̃mn

50 in a neighborhoodM̃a of spacelike infinity which covers parts of future and past null infini
The solutions arise from asymptotically flat data on a smooth spacelike Cauchy hypers
S̃,M̃ which are such that the intrinsic conformal structure onS̃ admits an extension with a certai
smoothness to a smooth compact manifoldS obtained fromS̃ by adjoining a pointi which
represents spacelike infinity,S5S̃ø$ i %. We assume that the solution, i.e., the evolution in time
these data, possesses a smooth conformal extension (M ,g,Q) such that we can writeM
5M̃øJ 2øJ 1, whereJ 6.R3S2 represent, respectively, future and past null infinity andQ

denotes a smooth ‘‘conformal factor’’ onM such thatQ.0 and g5Q2g̃ on M̃ while Q50,
dQÞ0 on J6.

To analyze in detail the consequences of the field equations in a neighborhood of spa
infinity which covers parts ofJ6, the above-mentioned situation has been discussed in Ref.
terms of a certain principal fiber bundleMa8→Ma with projectionp, four-dimensional base spac
Ma , and bundle spaceMa8 which is a five-dimensional manifold with boundary and edges.
describe this setting further we need to introduce some notation.

We employ the two-components spinor and space-spinor formalisms as used in Ref. 6
eab ,eab are the antisymmetric spinors withe0151, e0151. We settaa85e0

aē08
a81e1

aē18
a8. By

SU~2! will be denoted the group of 232 matricest5(ta
b) satisfying

eact
a

bt d
c 5ebd , tact b

a t d
c 5tbd ,

and by U~1! its subgroup of diagonal matrices. A basis of the Lie algebra of SU~2! is then given
by the 232 matrices
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u15
1

2 S 0 i

i 0D , u25
1

2 S 0 21

1 0 D , u35
1

2 S i 0

0 2 i D , ~II.1!

of which u3 generates U~1!.
In the following will be described in detail the regular finite initial value problem at space

infinity formulated in Ref. 6. Though we shall remark in passing on the construction o
manifold Ma8 and the underlying gauge conditions, we refer for the full details to the orig
article. The manifoldMa8 is given by

Ma85S ~t,r,t !PR3R3SU~2!u0<r,a,2
v

r
<t<

v

r D ,

wherea is a positive real number andv5v(r,t) a smooth non-negative function, given in th
following, such thatv/r extends to a smooth positive function withv/r→1 asr→0. By r, and
t will also be denoted the projections ofMa8 onto the first and second component, respectively
R3R3SU~2!. Then any coordinate system on SU~2! will define together with the functionsr and
t a coordinate system onMa8 . There will, however, arise no need for us to introduce coordina
on SU~2!. We denote the projection onto the third component ofR3R3SU~2! by t and regard the
SU~2!-valued functiont as a ‘‘coordinate’’ onMa8 .

The natural action on the right of U~1! on SU~2! induces a smooth action of U~1! on Ma8 . The
quotientMa8/U~1! under this action will be denoted byMa and the induced projection ofMa8 onto
Ma by p. We shall writeN5p(N8) for any subsetN8 of Ma8 . The following subsets ofMa8 will
be important for us:

J865S t56
v

r
,r.0D.R3S3,

I 85$utu,1,r50%.R3S3, I 865$t561,r50%.S3,

C85$t50%, I 805$t50,r50%5C8ùI 8.S3.

Because they cover only a part of null infinity close to spacelike infinity, we should have de
the first sets more precisely byJa8

6 but we dropped the subscripta for convenience. By definition
the part of the physical manifoldM̃ which is covered by Ma is given by M̃a

5Ma\(J2øJ1øI øI 2øI 1) the setsJ6 representfuture and past null infinity, respectively,
while the setI representsspacelike infinityfor M̃a and the metric induced on it byg̃. ThusM̃a

covers a neighborhood of spacelike and null infinity inM̃ . The edgesI 6.S2 of Ma at which
future and past null infinity, respectively, touches spacelike infinity will play an important ro
the following. We shall refer to the setC as theinitial hypersurfacesince by definitionCùM̃a

5C\I 05S̃ùM̃a . There exists a neighborhoodBa of i in S and smooth surjective mapp8:C
→Ba which is injective onC\I 0 and which mapsI 0 onto i.

As described in Ref. 6, the manifoldMa8 is obtained essentially by liftingMa into the bundle
of normalized~with respect toeab) spin frames. The setI 80.SU~2! corresponds to the set o
normalized~with respect toeab andtab) spin frames at the pointi. With each such spin frame w
associate a unit tangent vector ofSat i. With this vector we associate in turn a curve throughi in
Ba and extend the spin frame along this curve by a certain transport process. Thus we obta
frames at each point ofBa\$ i %. These frames are transported offBa\$ i %.C\I 0 into the space–time
Ma by a certain propagation law along conformal geodesics orthogonal toC. The latter are given
in our description ofMa8 by the curvesr5const,t5const witht a natural parameter along them
Since for given unit tangent vector ati the spin frame defining it is determined up to a pha
factor, the spin frames at points ofMa\(I øI 2øI 1) are also given up to multiplications by phas
                                                                                                                



r
of the

ifold
nder

auge
the

e
on
induce

al

n

n

d

2199J. Math. Phys., Vol. 41, No. 4, April 2000 Bondi-type systems near spacelike infinity . . .

                    
factors, which correspond to the action of the group U~1!. The transport laws as well as furthe
details of the gauge conditions are encoded in the form of the data and certain properties
unknowns for the reduced equations.

Since it turns out to be most convenient, we will carry out all our calculations on the man
Ma8 and use for the subsets ofMa8 introduced previously the same names as for their images u
p.

We denote byZui
the vector field generated byui and the obvious action of SU~2! on Ma8 and

define complex vector fieldsX152(Zu2
1 iZu1

), X252(Zu2
2 iZu1

), X522iZu3
which satisfy

the following commutation relations:

@X,X1#52X1 , @X,X2#522X2 , @X1 ,X2#52X. ~II.2!

The conformal field equations, in the form used in Ref. 6, are given in a particular g
~coordinate and frame! which is explained, together with the equations, most naturally in
context ofnormal conformal Cartan connections~cf. Ref. 14!. Again, we shall not go through th
complete argument but just describe the unknowns and equations. To obtain the equationsMa8 ,
we use the fact that the solder and the connection forms on the bundle of spin frames
corresponding formssaa8,va

b on Ma8\I 8 which extend smoothly toMa8 . The metric
eabēa8b8s

aa8sbb8 on Ma8 is degenerate because^saa8,X&50 ~the angle brackets denoting the du
pairing!, but it descends to the Lorentz metricg on p(Ma8\I 8).

The equations are written as equations for the ‘‘vector’’-valued unknown

u5~c0
ab ,c ab

1 ,c6
ab ,x~ab!cd ,jabcd, f ab ,Q~ab!cd ,Qg

g
ab ,fabcd!,

whose components have the following meaning. We consider the smooth vector fields

caa85c0
aa8]t1c1

aa8]r1c1
aa8X11c2

aa8X2 ,

which satisfy ^saa8,cbb8&5eb
aēb8

a8 on Ma8\I 8. All fields are written in space spinor notatio
based on the vector field&]t5taa8caa8 . Sincetaa8caa8 is invariant under the action of U~1! it
descends to a vector field onp(Ma8\I 8) which is timelike, has normtaa8t

aa852, and is orthogonal
to S̃. We have

caa85
1

&
taa8]t2tb

a8cab ~II.3!

with cab[t (a
b8cb)b85c ab

0 ]t1c1
ab]r1c ab

1 X11c ab
2 X2 . The connection defines connectio

coefficientsGabcd5tb
a8Gaa8cd5tb

a8^vcd,caa8& which can be decomposed in the form

Gabcd5
1

&
~jabcd2xabcd!5

1

&
~jabcd2x~ab!cd!2

1

2
eabf cd ,

with fields satisfyingxabcd5xab(cd) , jabcd5j (ab)(cd) , f ab5 f (ab) . The curvature is represente
by the rescaled conformal Weyl spinor fieldfabcd5f (abcd) and by a spinor fieldQabcd

5Qab(cd) which is the Ricci spinor field of a certain Weyl connection forg̃.
The pull backp* Q, again referred to as the conformal factor and denoted byQ, extends

smoothly toMa8 and is known in our gauge explicitly. It is given by

Q5
V

r S 12t2
r2

v2D , ~II.4!

and appears, together with the one-form
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dab52r
Uxab2rDabU2r2DabW

~U1rW!3 ,

~with xab as given in Appendix 2! which characterizes in a certain way the difference between
Levi-Civita connection ofg and the above-mentioned Weyl connection, as coefficient in
conformal field equations. We have set here

V5
r2

~U1rW!2 ,

v[2V~2DabVDabV!21/25r~U1rW!$U212rUxabDabU2r2DabUDabU12r2UxabDabW

22r3DabUDabW2r4DabWDabW%21/2, ~II.5!

where the smooth functionsU5U(r,t), W5W(r,t,) which satisfyU51 andW5 1
2mADM on I 0,

are given as part of the initial data on the initial hypersurfaceC8, on whichDab is the intrinsic
covariant derivative. Note that the fieldsV, v, dab do not depend ont. The conformal factor
satisfies the relations~cf. Ref. 14!

Q.0 on Ma8 , $Q50%5J82øI 82øI 8øI 81øJ81,
~II.6!

caa8~Q!Þ0, eabēa8b8caa8~Q!cbb8~Q!50 on J86.

In the following we shall refer to the coordinatest, r, t, the frame$caa8%, and the conformal gauge
defined by~II.4! as theF gauge.

1. The conformal evolution equations

We recall here a few general features of the conformal field equations and refer again t
6 for more details. The conformal field equations imply onMa8 evolution equations of the form

$A0]t1A1]r1A1X11A2X2%u5Cu, ~II.7!

whereA0,A1,A6,C denote matrix-valued functions which depend onu and the coordinates. Th
system is, foru close to the data given in the following and for the coordinates taking value
Ma8 nearC8, symmetric hyperbolic. Writingu5(v,f) with

v5~c ab
0 ,c ab

1 ,c ab
6 ,x~ab!cd ,jabcd, f ab ,Q~ab!cd ,Qg

g
ab!, f5~fabcd!, ~II.8!

the evolution equations forv are obtained, with our assumptions on the gauge, from the struc
equations of the normal conformal Cartan connection associated withg. They read explicitly

]tc
0

ab52x~ab!
e fc e f

0 2 f ab ,

]tc
a

ab52x~ab!
e fc e f

a , a51,1,2,

]tjabcd52x~ab!
e fje f cd1

1

&
~eacx~bd!e f1ebdx~ac!e f! f e f2&x~ab!(c

ef d)e

2
1

2
~eacQ f

f
bd1ebdQ f

f
ac!2 iQmabcd,

]t f ab52x~ab!
e ff e f1

1

&
Q f

f
ab , ~II.9!
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]tx~ab!cd52x~ab!
e fxe f cd2Q~cd!ab1Qhabcd,

]tQ~ab!cd52x~cd!
e fQ~ab!e f2]tQhabcd1 i&de

(amb)cde,

]tQg
g

ab52x~ab!
e fQg

g
e f1&de fhabe f ,

where habcd5
1
2(fabcd1fabcd

1 ) and mabcd52( i /2)(fabcd2fabcd
1 ), with

ta
a8tb

b8tc
c8td

d8f̄a8b8c8d85fabcd
1 , denote the electric and the magnetic part offabcd, respec-

tively. These equations are of the form

]tv5K~v !1Q~v,v !1L~f!, ~II.10!

with a linear functionK and a quadratic functionQ of v, both with constant coefficients, and
linear functionL of f with coefficients which depend on the coordinates. We haveL50 on I 8.
The evolution equations forf, derived from the Bianchi identities, are genuine partial differen
equations. They will be considered in more detail in the following.

2. The initial data

Consequences of the finite regular initial value problem have been worked out so f
Cauchy data which are time symmetric and admit a smooth extension through spacelike in
In fact, it has been assumed in Ref. 6, as will be done in the following, that the conformal stru
is analytic near spacelike infinity. We note that this condition is imposed only for convenienc
could be relaxed. The free Cauchy data onS̃ are then given by the conformal structure of a smo
metric h on S which is analytic in someh-normal coordinates neari.

We assumeh to be given neari in a certain conformal gauge, the cngauge~cf. Ref. 6!. This
reduces the freedom of performing conformal rescalingsh→u2h to the choice of the four rea
parametersu( i ),u ,a( i ), the value ofu in a neighborhood ofi then being determined by th
conformal gauge. We assume thatBa is a convexh-normal neighborhood ofi and thatr descends
to a radial normal coordinate onBa .

The metrich̃ induced byg̃ on S̃ is related toh by a rescalingh̃5V22h, where the conformal
factor V satisfiesrV21/2→1 asr→0 and the Lichnerowicz~Yamabe! equation

~DaDa2 1
8r !~V21/2!50. ~II.11!

HereD denotes the covariant derivative andr the Ricci scalar ofh. The form~II.5! of V in terms
of the functionsU andW is a consequence of this equation and the required asymptotic beh
of V, which ensures thath̃ is asymptotically flat.

The initial data onC8 for the conformal field equations are derived fromh andV. They are
given by

c0
ab50, c1

ab5rxab , c ab
1 5zab1r č ab

1 , c ab
2 5yab1r č ab

2 ,

x~ab!cd50, jabcd5&rǧabcd, f ab5xab , ~II.12!

Qabcd52
r2

V
D (abDcd)V1

1

12
r2rhabcd, fabcd5

r3

V2 ~D (abDcd)V1Vsabcd!,

with xab , yab , zab , and the expressionhabcd of the metrich in space spinor notation as given
Appendix 2, andsabcd5s(abcd) the trace free part of the Ricci tensor ofh.

In chapter Sec. IV A we shall discuss how the coefficientsčab
6 ,ǧabcd defining the frame and

the connection coefficients are determined onC8 by the ~three-dimensional! structure equations
from r andsabcd. The observation~cf. Ref. 6! that the above-mentioned data extend smoothly
I 80,C8 is most important for our construction.
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3. The transport equations on I

At first sight it may appear that the initial data onS̃, thus in particular onC8, should be
complemented by boundary data onI 8 for the solutions of Eq.~II.7! to be uniquely determined
However, it turns out that for any smooth solution to the evolution equations onMa8 which
coincides onC8 with the above-mentioned initial data, we have the important relation

A150 on I 8. ~II.13!

As a consequence, Eq.~II.7! reduces to a symmetric hyperbolic system of the form$A0]t

1A1X11A2X2%u5Cu on I 8, which allows us to determine the unknownu on I 8 uniquely in
terms of the value ofu on I 80. Thus we find, as was to be expected, that any smooth solutio
~II.7! on Ma8 taking onC8 our initial data is determined uniquely by its data onS̃.

More generally, by applying repeatedly the derivative operator]r to the evolution equations
restricting toI 8, and observing~II.13!, we obtain symmetric hyperbolic transport equations

$A0]t1A1X11A2X2%up5Cpup1gp on I 8, p50,1,2,..., ~II.14!

for the quantitiesup5(]r
pu)u I 8 . Here the matrix-valued functionCp and the vector valued func

tion gp depend onp and the quantitiesu0,...,up21, but the matricesA0,A6 are universal in the
sense that they depend neither onp nor on the initial data. We shall employ the above-mention
notation more generally, such that applying it to the fieldssabcd andr on the Cauchy hypersurfac
we havesabcd

p 5(]r
psabcd)u I 80, andr p5(]r

pr )u I 80, respectively.
To integrate the transport equations~II.14! on I 8, we expand all fields in terms of the matri

elements of unitary representations of SU~2! which are given, in terms of the matrix elemen
(t b

a )a,b50,1 of the two-dimensional standard representation oftPSU~2!, by the complex-valued
functions

SU~2!{t→Tm
j
k~ t !5S m

j D 1/2S m
k D 1/2

t (b1
(a1

¯tbm) j
am)k

, T0
0

0~ t !51,

j ,k50,...,m, m51,2,3,... . ~II.15!

Here, as in the following, setting a string of indices into brackets with a lower indexk is meant to
indicate that the indices are symmetrized and thenk of them are set equal to 1 while the remainin
ones are set equal to 0. The functionsAm11Tm

j
k(t) form a complete orthonormal set in th

Hilbert spaceL2(m,SU~2!), where m denotes the normalized Haar measure on SU~2!. Under
complex conjugation we have

Tm
j
k~ t !5~21! j 1kTm

m2 j
m2k~ t !, tPSU~2!,

and, for 0<k, j <m, m50,1,2,..., we have withbm, j5$ j (m2 j 11%1/2,

XTm
k

j5~m22 j !Tm
k

j , X1Tm
k

j5bm, jTm
k

j 21 , X2Tm
k

j52bm, j 11Tm
k

j 11 . ~II.16!

A function f satisfying a relationX f52s f with an integer or half-integer numbers, is said to have
spin weights. We note the spin raising~lowering! property of the action ofX6 on such functions
implied by ~II.2!, i.e., X X6 f 52(s61)X6 f . By construction of the manifoldMa8 any function
occurring in our formalism has a well-defined spin weight. This leads to a simplification o
expansion in terms of the functionsTm

k
j . The general form of these expansions has been

cussed in detail in Ref. 6 and will be assumed here without further explanation.
The quantitiesu0,u1,u2 have been determined in Ref. 6. They are given here~with a correc-

tion and a useful change of notation! at the beginning of Sec. IV A. The functionsu3 will be
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calculated in Sec. IV A. The quantitiesup, p52,3,... have been shown~cf. Ref. 6! to develop a
certain type of logarithmic singularity on the setsI 86 unless the free datumh on S satisfies the
asymptotic regularity condition

D (aqbq
¯Da1b1

babcd)~ i !50, ~II.17!

for q50,1,2,..., where the spinor fieldbabcd5b(abcd) represents the Cotton tensor ofh. The values
of the functionsup, p<3, which will be given in the following, have been calculated onI 8 under
the assumption that~II.17! is satisfied forq<1. The analysis of the quantitiesup, to the extent to
which it has been carried out in Ref. 6, indicates another potential source for a singular be
of the fieldsup, p>3, at I 86. This will be discussed further in Sec. IV A.

B. The NP gauge

For simplicity we restrict our discussion now to the future ofS̃ in M, we refer to future null
infinity simply as to null infinity and we denote it byJ. In the following we shall describe a
certain class of gauge conditions on~M, g! near null infinity, referred to as the NPgauge, which
comprise certain requirements on the conformal gauge, certain coordinates, and a certain
normal frame field. Though this gauge is known, our description will be quite detailed, becau
will have to refer to it later. The Levi-Civita connection induced by the conformal metricg will be
denoted by¹.

Suppose$Ead8
+ % is a smooth frame field, satisfyingg(Eaa8

+ ,Ebb8
+ )5eabēa8b8 , which is defined

in a neighborhood of null infinity. We call it an ‘‘adapted frame,’’ if it satisfies the followi
conditions. The vector fieldE118

+ is tangent to and parallel propagated along null infinity. On
neighborhood on which the frame is given there is exists a smooth functionu+ which induces an
affine parameter on the null generators ofJ such thatE118

+ (u+)51, which is constant on nul
hypersurfaces transverse toJ, and which satisfiesE008

+a
5gab¹bu+. Thus E008

+ is tangent to the
hypersurfaces$u+5const% and geodesic. The fieldsE118

+ ,E008
+ as well as the fieldsE018

+ ,E108
+ which

are necessarily tangent to the slices$u+5const%ùJ, are parallelly propagated in the direction
E008

+ .
In terms of its NP-spin coefficients~note the slight difference of our notation with that of Re

2!

Gaa8bc
+

5 1
2$Eaa8

+a Eb18
+b ¹aEc08b

+
1Eaa8

+a Ec18
+b ¹aEb08b

+ %, ~II.18!

an adapted frame is characterized by the properties

G10811
+

50, G11811
+

50 on J,

~II.19!

G10800
+

5Ḡ0180808
+ G11800

+
5Ḡ0180818

+
1G01801

+ , G008ab
+

50, a,b50,1 near J.

The first of these conditions tells us thatJ is shear free. This well-known fact follows from th
equation for the trace free partsab of the Ricci tensor of the conformal vacuum metricg,

Qsab5 1
2gab¹g¹gQ22¹a¹bQ. ~II.20!

Transvection withE108
+a E108

+b and restriction toJ givesG10811
+ E008

+ (Q)50, while E008
+ (Q)Þ0 onJ.

We shall combine now the construction of an adapted frame with the freedom to perform r
ings

g→g!5u2g, Q→Q!5uQ ~II.21!
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with some positive functionu, to obtain another adapted frame$Eaa8
• % for which we get further

simplifications besides~II.19!. We start with an adapted frame$Eaa8
+ % as described previously. Fo

arbitraryu.0 and for arbitrary functionp.0 which is constant on the generators ofJ we set

E118
•

5u22pE118
+ and u•~u+!5E

u
*
+

u+

u2~u8!p21~u8!du81u
*
• on J, ~II.22!

where the integration is performed along the generators ofJ. ThenE118
• will be parallelly propa-

gated andE118
• (u•)51 will hold. We assume thatu+5u

*
+ andu•5u

*
• on C and set

E008
•

5p21E008
+ , E118

•
5u22pE118

+ , E018
•

5u21E018
+ on C. ~II.23!

SinceC is diffeomorphic toS2 and thus carries~up to diffeomorphisms! precisely one Rie-
mannian conformal structure, we can fix coordinatesx35q, x45w as well as the functionu on C
such that the metrich! induced by g! on C is given by the standardS2-metric h!5dq2

1sin2 qdw2. Using the transformation lawsG10800
•

5p21@G10800
+

2E008
+ (logu)# and G01811

•

5pu22@G01811
+

1E118
+ (logu)# on C, we can achieve, by suitable choice ofdu andp,

G10800
•

50, G01811
•

50, E008
•

~Q!!5constÞ0 on C. ~II.24!

The transformationsab
! 52(2/u)$(¹a¹bu22/u¹au¹bu)2 1

4gab(¹g¹gu22/u¹gu¹gu)%1sab

of the trace free partsab of the Ricci tensor under the rescaling~II.21! implies a transformation of
F225

1
2sabE118

+a E118
+b into F22

! 5 1
2sab

! E118
•a E118

•b which yields, with the assumption thatF22
! 50 onJ,

on the generators ofJ the ordinary differential equation~ODE!

E118
+

~E118
+

~u!!2
2

u
~E118

+
~u!!22uF2250. ~II.25!

Equation~II.25! can be rewritten as a linear ODE foru21 which can be solved on the generato
of J with u.0. Using the initial datau, E118

+ (u) on C determined previously, we solve foru to
obtain

F22
! 50, G01811

•
50 on J. ~II.26!

Here the second equation is a consequence of the first, the field equations, and~II.24!. We assume
in the following ~II.22!. We observe that the induced metric on the sections$u•5const% is given
as a consequence everywhere onJ by theS2-standard metric.

Onceu and E118
• have been fixed onJ, the vector fieldE018

• ~whenceE108
• ) tangent to$u•

5const% is determined up to rotations. We choose some smooth fieldE018
• onJ, solve the equation

E118
•

~c!52 iE108
•a E118

•b ¹b
!E018a

• ~II.27!

for the functionc with initial value c50 on C and replaceE018
• by eicE018

• to achieve

G11801
•

50 on J. ~II.28!

Observing the above-mentioned simplifications, we contract the analog of~II.20! for g! with
E018

•a E108
•b to conclude that¹a

!¹!aQ!50 on J. A further contraction withE008
•a E118

•b gives

E118
•

~E008
•

~Q!!!50, i.e., E008
•

~Q!!5const on J, ~11.29!

while a contraction withE008
•a E018

•b yields nowE018
• (E008

• (Q!))5G11800
• E008

• (Q!), which implies
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G11800
•

50 on J. ~II.30!

To fix alsodu on J, we use the conformal transformation law for the Ricci scalar, i.e.,

R@g!#5
1

u2 R@g#1
12

u2 ¹a
!u¹!au2

6

u
¹a

!¹!au. ~II.31!

If we require thatR@g!#50 alongJ, this equation takes on the generators of the null hypersur
J the form

E118
•

~E008
•

~u!!2
2

u
E118

•
~u!E008

•
~u!5F!, ~II.32!

of a linear ODE for the unknownE008
• (u), where the right-hand side

F!5ReH E018
•

~E108
•

~u!!22G01801
• E108

•
~u!2

2

u
E018

•
~u!E108

•
~u!1

1

12u
R@g#J

is given in terms of quantities which have been determined already onJ. Using the initial value
E008

• (u)5p21uG10800
+ uC , fixed onC by ~II.24!, we can integrate the equation to achieve

R@g!#50, G10800
•

50 on J, ~II.33!

where the second equation follows again from our previous results and the field equations
We do not require conditions of higher order on the conformal gauge. Assuming a conf

gauge as described here, we shall refer to an adapted frame$Eaa8
• % satisfying the above-mentione

conditions as a NP frame, and to a normalized spin frameea
•A[$o•A,i •A% which implies a NP

frame as to a NP-spin-frame.
We extend the coordinatesx3,x4 to J such that they are constant on the null generators oJ.

As described previously, we define null hypersurfaces$u•5const% transverse toJ and we denote
by r • the affine parameter on the null generators of these hypersurfaces which satisfiesE008

• (r •)
51 and, onJ, r •50. The coordinatesx3,x4 are extended such that they are constant on the
generators of$u•5const%. Thus we get aBondi-type system(u•,r •,x3,x4) in some neighborhood
of null infinity. Occasionally we shall change from the coordinatesq, w, to a complex stereo-
graphical coordinate given byz5eiwctg(q/2). We write the volume element and the volum
form alternatively

ds252~dq21sin2 q dw2!52P~z!22dzdz̄, e5sinq dq`dw5@2P~z!#22dz`dz̄,

where we setP(z)5 1
2(11zz̄). We shall refer to the conditions on the conformal scaling,

frame field, and the coordinates as theNP gauge.

C. Relating The NP gauge to the F gauge

While the NP gauge is hinged on null infinity, the F gauge is based on a Cauchy hypers
and these gauge conditions are in general completely different. In the following we will stud
transformation which relates one to the other. It is important for this that the conformal factQ,
whenceJ, is known explicitly in the F gauge.

The vector fields$caa8% tangent to the five-dimensional bundle spaceMa8 are not directly

related to the NP gauge on the subsetMa\I of M. Let S2.U{p→
s

5s(p)PSU~2! be a smooth
local section, defined on some open subsetU of S2, of the Hopf fibration SU~2!→SU~2!/U(1)

.S2. It induces a smooth sectionU3R3R{(p,t,r)→
s

(s(p),t,r)PMa8 . We denote the image
of S by Ma* . The vector fields tangent tos(U) which have projection identical to that ofX6 are
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of the formX61a6X with some smooth functionsa6 on s(U), satisfyinga252ā1 . Because
of ~II.2! a6 cannot vanish on open subsets ofs(U). Consequently, the tangent vector fieldscaa8

*

of Ma* satisfyingp* (caa8
* )5p* (caa8) are given onMa* by

caa8
!

5caa81~a1c aa8
1

1a2c aa8
2

!X,

with functionsa6 which are independent oft andr. The connection coefficients defined onMa*
by the connection formv c

b and the vector fieldscaa8
* are given by

Gaa8
* b

c5Gaa8
b

c1~a1c1
aa81a2c2

aa8!~e0
bec

02e1
bec

1!.

In the remaining part of this section we shall work onp(Ma8) and denote the projection of th
vector fieldscaa8

* , which define a smooth orthonormal frame field onp(Ma* \I 8), and the pull-
back ofGaa8

* b
c by Sagain bycaa8

* andGaa8
* b

c . Similarly, the projection ofJ8ùMa* andI 81ùMa*
will be denoted byJ and I 1.

The frame field$caa8
* %, which is in general not adapted to null infinity, will now be relat

close toI 1 to an adapted frame$Eaa8
+ %. On J the vector fieldE118

+ must be of the form

E118
+a

5 f ¹aQ, ~II.34!

where¹ andQ denote the Levi-Civita connection and the conformal factor associated with t

gauge. The requirement 05E118
+b ¹bE118

+a
5 f ¹bQ¹b f ¹aQ1 f 2¹b( 1

2¹aQ¹aQ) thatE118
+a be paral-

lelly propagated, gives after contraction with a vector fieldZ transverse toJ the ODE

¹aQ¹a~ log f !52
Z~ 1

2¹bQ¹bQ!

Z~Q!
~II.35!

for f on the generators ofJ. To fix f, we setf 5 f 05const.0 on some sectionC of J. The function
u+ satisfyingE118

+a (u+)51 on J andu+5u
*
+ on C can be now be determined.

Let lb
aPSL(2,C) satisfy

Eaa8
+

5l a
b l̄a8

b8cbb8
* . ~II.36!

Rewriting ~II.34! in the formE118
+

5 f cbb8
* (Q)eabēa8b8caa8

* , we find the relations

l 1
0 l̄08

185 f c118
* ~Q!, l 1

0 l̄18
1852 f c108

* ~Q!, l 1
1 l̄18

185 f c008
* ~Q!. ~II.37!

From ~II.36! we obtainl 1
0 E 018

+
5l 0

0 E118
+

2l̄0818c108
* 2l̄18

18c118
* . Applying this to the function

u+, we get

l 0
0 5l̄08

18c108
* ~u+!1l̄18

18c118
* ~u+!. ~II.38!

Together with the condition det(l b
a )51 the relations~II.37!, ~II.38! allow us to determine the

matrix elementsl b
a on J up to replacementsl b

a →l b
a h c

b with (h b
a )5diag(eia,e2ia)PU(1).

After making here an arbitrary choice, the adapted frame$Eaa8
+ % is determined uniquely nearJ.

To determine a NP frame$Eaa8
• % nearJ, we need to find an appropriate rescaling~II.21! and

a scaling factorp. We set

caa8
!

5u21caa8
* , Eaa8

•
5L a

b L̄b8
a8cbb8

! ~II.39!

with Lb
aPSL(2,C). Assuming~II.22!, we haveE118

•a
5 f !¹!aQ! with
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f !5
f p

u
, E008

•
~Q!!5

1

f ! on J. ~II.40!

We choose nowu, du, and coordinatesx3,x4 such that the induced metric onC is given by the
S2-standard metric and, withp chosen such thatp5u on C, conditions~II.24! are satisfied with
E008

• (Q!)5 f 0
21.

Following the procedure of Sec. II B, we can determine the conformal factoru on J such that
~II.26! is satisfied. The transformationL b

a can be determined in the same way asl b
a . Imposing

condition ~II.28!, we determineL b
a up to U~1! transformations onC. Conditions~II.29!, ~II.30!

will now be satisfied as well and we can determinedu on J such that~II.33! holds. Extending the
tetrad to a neighborhood ofJ such that it is parallelly propagated in the direction ofE008

• , we get
the desired NP frame.

In our later calculations we will need the quantitiesE008
• (L b

a ). Using our gauge condition
G008ab

•
50 and the transformation laws for the connection coefficients,

Gaa8bc
!

5
1

u
$Gaa8bc

* 1ea(bcc)a8
* ~ logu!%,

Eaa8
•

~Lb
c!52L f

aL̄ f 8
a8L

h
cG f f 8

! b
h1Lb

dGaa8
• d

c ,

whereGaa8bc
! denotes the connection coefficients with respect to¹! and$caa8

! %, we find

E008
•

~Lb
c!52L f

0L̄ f 8
08L

h
cG f f 8

! b
h . ~II.41!

In the above-mentioned considerations we had to fix various quantities by prescribing d
the sectionC. When we shall determine later the expansion of a NP frame nearI 1, it will be
natural to try pushingC to I 1. A priori it is not clear, however, whether this can be done in
continuous way. We shall see, that for certain quantities the limits toI 1 do exist, while other
quantities can only be described in terms of their growth behavior nearI 1.

III. THE NP CONSTANTS

In 1965 Newman and Penrose discovered certainnontrivial quantities, defined by certain
integrals over a two-dimensional cross section ofJ1, which are absolutely conserved in the sen
that their values do not depend on the choice of the section~cf. Refs. 9 and 10!. The interpretation
of these ten real NP constants is still open. In the case where the space–time admits a
conformal extension containing a pointi 1 ~‘‘future timelike infinity’’ ! whose past light cone
representsJ1, these constants are essentially given by the five complex components o
rescaled conformal Weyl spinor~cf. Refs. 10 and 15!. However, these quantities do not allow u
a simple interpretation either. More interesting is the case of stationary vacuum space–tim
this case the constants have been calculated and have been given in the formmass)
3(quadrupole moment)2(dipole moment)2 ~cf. Refs. 10 and 16!.

If the evolution of the field in time is not given explicitly as in the presence of a time
Killing vector field, there appears to be no obvious way to calculate the NP constants. It turn
however, that under suitable assumptions on the asymptotic behavior of the field near sp
infinity the constants can be calculated by integrating the transport equations onI 8 to a sufficiently
high order. In the following we shall derive a formula for the constants in terms of quan
which can be determined by solving the transport equations.

To explain the original formula~cf. Ref. 10!, which is given in the Bondi–Sachs–Newman
Penrose framework, let~u, r, q, w! denote Bondi coordinates on the physical space–time, w
r denotes an affine parameter along the generators of the null hypersurfaces$u5const% and the
generators are labeled by the standard coordinates~q, w! on the two sphere. The null frame$Ẽaa8%
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as well as a corresponding spinor dyad$õA, ĩA%, both defined on the physical space–time, a
normalized with respect to the physical metricg̃. They are adapted to the Bondi coordinates su
that Ẽ0085] r .

We assume that the conformal space–time with metricg!
ªr 22g̃ admits a smooth extensio

as r→` to a smooth Lorentz space with boundaryJ15$r •50% and that the functionsu•
ªu,

r •
ªr 21, q, andw extend such as to define a smooth system of Bondi-type coordinates neaJ1.

Furthermore, we assume that the frame$Eaa8
• % and the spinor dyad$o•A,i •A%, defined by

Eaa8
•

5r 22a2a8Ẽaa8 ,

~III.1!
o•A5rõA, i •A,5 ĩA,

such that they are normalized with respect tog!, extend to smooth frame, respectively, dyad ne
J1. The results of Newman and Unti~cf. Ref. 17! then imply that$Eaa8

• % defines in fact a NP
frame.

Under our assumptions the componentc05cABCDõAõBõCõD of the conformal Weyl spinor
has an expansionc05c0

0r 251c0
1r 261O(r 27) with coefficientsc0

p which are independent ofr.
In terms of the physical space–time the NP constants are given with this notation by the int

Gm5 R 2Ȳ2,mc0
1 sinq dq dw, ~III.2!

which are calculated for fixed value ofu. The functions2Y2,m ,m522,21,0,1,2, denote spin-2
spherical harmonics~cf. Ref. 18! which are obtained from the standard spherical harmonics

2Y2,m5
1

2A6
E018

•a E018
•b dadbY2,m5

1

2A6
Z2Y2,m . ~III.3!

Here d and Z denote the standard covariant differential operator on the unit two-sphere an
‘‘edth’’ operator, respectively. In evaluating~III.2!, it will be important that the operatorZ is
defined with respect to the complex null vector fieldE018

• ~cf. Ref. 19!.
We reexpress the constants in terms of the fieldsg!,Eaa8

• ,o•A,i •A satisfying the NP gauge, in
particular ~II.33!. Using the componentf05rcABCDo•Ao•Bo•Co•D of the rescaled conforma
Weyl spinor, and performing the obvious lift toM 8, we obtain for the NP constants the formu

Gm52
1

2p R 2Ȳ2,mE008
•

~f0!dS da. ~III.4!

HeredS5sinq dq dw denotes the surface element on the cross section$r •,u•5const%,J1 anda
denotes a parameter on the fibers of the principal fiber bundleM 8→M . The second integration
can be performed without changing the result because the integrand is independent of the v
a.

The values of these integrals are independent of the value of the constant defining the
section as well as of the choice of the Bondi coordinateu• itself. Thus they are invariant unde
supertranslations~cf. Ref. 10!.

We shall determine the NP constants by integrating the transport equations onI 8. Since these
equations and their unknowns are given in the F gauge we express~III.4! in this gauge. Using
~II.39!, we obtain in the notation of Sec. II

Gm52
1

2p R 2Ȳ2,m

1

u4 $Lb
0Lc

0Ld
0Le

0@La
0L̄a8

08caa8
* ~fbcde!23fbcdeE008

•
~u!#

14uLb
0Lc

0Ld
0E008

•
~Le

0!fbcde%dS da. ~III.5!
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This is the expression for the NP constants which will be used in the calculations of Sec.

IV. TIME SYMMETRIC SPACE–TIMES

In this section we will use the assumptions of the regular finite initial value problem
spacelike infinity and thus restrict our considerations to time symmetric space–times. We be
solving the third-order transport equations onI 8. This calculation is of interest for two quite
different reasons. First of all, it will give us a first insight into the potential source of sing
behavior of the quantitiesup pointed out in Sec. II A 3. Further, besides giving information on t
question of principle, the calculation will allow us to analyze the relation between the NP
stants and the initial data for asymptotically flat solutions. Under our assumptions, we will be
to evaluate the integral~III.5! in terms of quantities derived from the initial data.

A. Solving the third-order transport equation

The solutionsup of Eq. ~II.14! have been given in Ref. 6 forp<2. Since they will be used in
the following calculations we reproduce them here, in a notation, though, which is more c
nient for a systematic discussion of the higher order expansion coefficients. We also ta
opportunity to correct a misprint in Ref. 6.

The solutionu0 of the transport equations~II.14! has the form

~cab
0 !052txab , ~cab

1 !050, ~cab
1 !05zab , ~cab

2 !05yab , jabcd
0 50,

~IV.1!
x~ab!cd

0 50, f ab
0 5xab , ~Qg

g
ab!

050, Q~ab!cd
0 50, fabcd

0 526m«abcd
2 ,

where m5mADM denotes the ADM mass of the initial data set. The spinors appearing on
right-hand side of these and the following formulas are listed in Eq.~A10! of the Appendix. The
solutionu1 is given by

~cab
0 !15c01~t!xab , ~cab

1 !15xab , ~cab
1 !15c61~t!zab ,

~cab
2 !15c61~t!yab , jabcd

1 5S1~t!~eacxbd1ebdxac!, x~ab!cd
1 5K1~t!«abcd

2 ,

~IV.2!
f ab

1 5F1~t!xab , ~Qg
g

ab!
15t1~t!xab , Q~ab!cd

1 5T1~t!«abcd
2 ,

fabcd
1 5f1

1~t!X1W1«abcd
1 1@f2

1~t!1F3
1~t!W1#«abcd

2 2f1
1~2t!X2W1«abcd

3 ,

while u2 takes the form

~cab
0 !25@c1

02~t!1c2
02~t!W1#xab1c3

02~t!@X2W1yab1X1W1zab#,

~cab
1 !25c12~t!xab,

~cab
1 !25@c1

62~t!1c2
62~t!W1#zab1c3

62~t!X2W1xab ,

~cab
2 !25@c1

62~t!1c2
62~t!W1#yab1c3

62~t!X1W1xab ,

jabcd
2 5@S1

2~t!1S2
2~t!W1#~eacxbd1ebdxac!1S3

2~t!~eacybd1ebdyac!X2W1

1S3
2~t!~eaczbd1ebdzac!X1W11S4

2~t!~«abcd
1 X1W11«abcd

3 X2W1!,
~IV.3!

x~ab!cd
2 5@K1

2~t!1K2
2~t!W1#«abcd

2 1K3
2~t!habcd1K4

2~t!~eacybd1ebdyac!X2W1

2K4
2~t!~eaczbd1ebdzac!X1W11K5

2~t!~«abcd
1 X1W12«abcd

3 X2W1!,
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f ab
2 5@F1

2~t!1F2
2~t!W1#xab1F3

2~t!~X2W1yab1X1W1zab!,

~Qg
g

ab!
25@ t1

2~t!1t2
2~t!W1#xab1t3

2~t!~X2W1yab1X1W1zab!,

Q~ab!cd
2 5@T1

2~t!1T2
2~t!W1#«abcd

2 1T3
2~t!habcd1T4

2~t!~eacybd1ebdyac!X2W1

2T4
2~t!~eaczbd1ebdzac!X1W11T5

2~t!~«abcd
1 X1W12«abcd

3 X2W1!,

fabcd
2 5f1

2~t!X1X1W2«abcd
0 1@f2

2~t!X1W11f3
2~t!X1W2#«abcd

1 1@f4
2~t!1f5

2~t!W1

1f6
2~t!W2#«abcd

2 2@f2
2~2t!X2W11f3

2~2t!X2W2#«abcd
3 1f1

2~2t!X2X2W2«abcd
4 .

The t-dependent functions in these expressions are polynomials which are given in Appen
The calculation ofu3 is facilitated by the following properties of the transport equatio

~II.14!. For p>1 they are of the form

]tv
p5Lpvp1 l p , Ba]afp5M pfp, ~IV.4!

where, using the notation~II.8!, we setvp5(]r
pv)u I 8 , fp5(]r

pf)u I 8 and denote byLp and l p a
matrix and vector-valued function respectively, of the quantitiesu0,...,up21, while M p denotes a
matrix-valued function which depends on the variablesu0,...,up21,vp. The matricesBa neither
depend onp nor on the initial data. Thus, given the quantitiesuq,q<p21, we can integrate the
first of equations~IV.4!, which is an ODE. To integrate the second equation, we expand
quantitiesup in terms of the functionsTm

k
j given in ~II.15! and use~II.16! to reduce the integra

tion to that of a system of ODEs.
To determine the initial data foru3 on I 80, we have to expand the unknowns~II.12! in terms

of r. Instead of prescribing the conformal metrich on the initial slice, which represents the fre
datum, we shall prescribe, in a fashion consistent with the three-dimensional Bianchi iden
certain curvature quantities and use the three-dimensional structure equations and the Y
equation to determine the remaining quantities.

The conformal factor, which appears in the expressions~II.12!, is given in~II.5! in terms of
the functionsU andW. The functionU, which is determined locally byh near spacelike infinity,
is given, by a procedure explained in Ref. 6, in the form

U5 (
p50

`

Upr2p, ~IV.5!

with r-dependent coefficientsUp . As shown in Ref. 6, the Taylor expansion ofU in terms ofr
has in our gauge the form

U511 (
k54

`
1

k!
ûkr

k. ~IV.6!

For our calculations we shall need the coefficientÛ4 , which will be determined later in this
section.

The functionW, which contains global information on the free initial data, is determined
solving the Yamabe equation on the initial hypersurface. We shall consider here a larger c
functions which are subject to the Yamabe equation only in a small neighborhood of spa
infinity. The coefficients in the Taylor expansionW5W01W1r1 1

2W2r21(1/3!)W3r31O(r4)
have expansion~cf. Ref. 6!.

Wi5 (
m50

2i

(
k50

m

Wi ;m,kTm
k
~m/2! .
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They are restricted by the requirement that the Yamabe equation (habDaDb2 1
8r h)@W#50 holds

near$r50%, which implies the simplification

Wi5 (
k50

2

Wi ;2i ,kT2i
k
i , i<3. ~IV.7!

We get for the conformal factor and the trace-free part of its second covariant derivative

V5r22mr31@ 3
4m

222W1#r41@2 1
2m

313mW12W2#r5

1@ 5
16m

423m2W113W1
21 3

2mW22 1
3W32 1

12Û4#r61O~r7!,

~IV.8!

D (abDcd)V5@26m«abcd
2 #r1@~12m2236W1!«abcd

2 212~«abcd
1 X12«abcd

3 X2!W1#r2

1@~215m3196mW1236W2!«abcd
2 1~«abcd

1 X12«abcd
3 X2!~24mW128W2!

2 1
2~«abcd

0 X1X11«abcd
4 X2X2!W2#r31@~156W1

22150m2W1115m4181mW2

220W324Û41 1
12X1X2Û426X1W1X2W1!«abcd

2

1~«abcd
1 X12«abcd

3 X2!~30W1
2230m2W1115mW22 10

3 W32 5
6Û4!

1 1
2~«abcd

0 X1X11«abcd
4 X2X2!~3W1

21 3
2 mW22 1

3W32 1
12Û4!2 2

3xe(agbc
3 e

d)#r
4

1O~r5!.

From this we obtain as initial data foru3 on I 80,

~cab
0 !350, ~cab

1 !350, ~cab
1 !350, ~cab

2 !350,

jabcd
3 50, x~ab!cd

3 50, f ab
3 50, ~Qg

g
ab!

350,

~IV.9!

Q~ab!cd
3 53X1X1W2«abcd

0 1~272mX1W1148X1W2!«abcd
1 1~27m32288mW11216W2!«abcd

2

1~72mX2W1248X2W2!«abcd
3 13X2X2W2«abcd

4 ,

fabcd
3 5~«abcd

0 X1X11«abcd
4 X2X2!~9W1

22 3
2mW22W32 1

4Û4!

14~«abcd
1 X12«abcd

3 X2!~9W1
22 3

2mW225W32 5
4Û4!16«abcd

2 ~12W1
223mW2220W3

24Û41 1
12X1X2Û426X1W1X2W1!24xe(agbc

3 e
d)13sabcd

2 ,

wheregabcd5(2r)21(eacxbd1ebdxac)1ǧabcd denote the connection coefficients onC8.
We determine now how the functionsÛ4 , gabcd

3 andsabcd
2 are related to the free data on th

initial hypersurfaceC8. As shown in Ref. 6, the structure equations onC8, which relate the
connection coefficients to the curvature, read

1

&
H ]rǧ00ab1

&

r F ǧ0000zab2ǧ0011yab1
1

&
ǧ00abG J

5ǧ0000ǧ11ab2ǧ0011ǧ00ab2
1

2
sab002

1

6&
ryab ,
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1

&
H ]rǧ11ab1

&

r F ǧ1100yab2ǧ1111yab1
1

&
ǧ11abG J

5ǧ1100ǧ11ab2ǧ1111ǧ00ab1
1

2
sab112

1

6&
rzab ,

and the components ofǧabcd have Taylor expansions

ǧ01ab50, ǧ00ab5
1

3!
ǧ00ab

3 r31O~r4!, ǧ11ab5
1

3!
ǧ11ab

3 r31O~r4!.

From this we get

ǧ0001
3 52

3

4&
s0001

2 , ǧ1101
3 5

3

4&
s0111

2 , ǧ0000
3 52

3

5&
s0000

2 ,

ǧ1100
3 5

3

5&
s0011

2 2
1

10&
r 2, ǧ0011

3 52
3

5&
s0011

2 1
1

10&
r 2, ǧ1111

3 5
3

5&
s1111

2 ,

and thus obtain for the quantityFabcd524xe(agbc
3 e

d)13sabcd
2 the concise expressions

F05 9
5s0

2, F153s1
2, F25 17

5 s2
22 1

15r
2, F353s3

2, F45 9
5s4

2, ~IV.10!

where we setFi5F (abcd) i
,si5s(abcd) i

, using the notation introduced in~II.15!.
In the cn gauge the curvature vanishes at zeroth and first order at spacelike infinity. At s

order this is in general not true and the prescription of the free data onS in terms of curvature
quantities has to be consistent with the cn gauge, the Bianchi identity, and the regularity con
~II.17! for q51. The content of the cn gauge is expressed in second order in the curvature
conditions

DabD
abr 50, DabD

abscde f52 5
4DcdDe fr , D (abDcdse f gh)50 at i .

It follows that the spinor

tabcd e f gh5DabDcdse f gh2
1
3habcdDhse f gh,

whereDh denotes the Laplacian corresponding to the metrich, is symmetric in the first and the las
four indices separately. Using the Bianchi identity

Dabsabcd5
1
6Dcdr ,

we thus get

1
6DabDcdr 2 1

3Dhsabcd5te f
abcde f5ta

e
b

f
cde f5Da

eDb
fscde f1

1
6Dhsabcd,

whence

Da
eDb

fscde f5
19
24DabDcdr .

No further conditions are implied ati on the Ricci scalarr at this order. Finally, we get from
~II.17! for q51

Dh
(aDbcsde f)h50 at i .
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The above mentioned relations imply that the expansion oftabcd e f gh in terms of symmetric
spinors andeab’s can be expressed completely in terms of symmetrized twofold contraction
this spinor, which in turn can all be expressed in terms of the symmetric spinorDabDcdr . Work-
ing out this expansion we get

DabDcdse f gh5h~ab
~e fD

cd
gh)r 2 5

15h
abcdDe fDghr at i , ~IV.11!

in our gauge. Going through the procedure described in Sec.~3.5! of Ref. 6 we gets(abcd) j

5sj
2r21O(r3) and r 5r 2r21O(r3) with

sj
25

3u22 j u

12 (
k50

4

Rk* S 4
j D 21/2

T4
k

j , r 25
2

A6
(
k50

4

Rk* T4
k
2 , ~IV.12!

where we setRk* 5 1
2(k

4)1/2D (abDcd)k
r * , with the star indicating that the quantities are given in o

gauge ati. The five real real numbersRk* contain precisely the information on the metrich which
can at this order be freely specified in the cn gauge.

We note that the Cotton spinor is then given ati by

Dabbcde f52 5
8$ea~bDcdDe f!r 1eb~aDcdDe f)r ,

and the deviation ofh from conformal flatness ati is encoded at this order in the symmetric spin
DabDcdr ( i ).

From ~IV.10!, ~IV.12! we obtain

F05
27

20(
k50

4

Rk* T4
k
0 , F15

3

8 (
k50

4

Rk* T4
k
1 , F25

3

20A6
(
k50

4

Rk* T4
k
2 ,

F35
3

8 (
k50

4

Rk* T4
k
3 , F45

27

20(
k50

4

Rk* T4
k
4 .

Finally, we will calculate the coefficientÛ4 in the Taylor series~IV.6!. Only the coefficients
U0 , U1 , andU2 of the expansion~IV.5! contribute toÛ4 . These functions have the followin
expansions~cf. Ref. 6 for the defining integrals!:

U05expH 1

4 E0

r

~Dr8216!
dr8

r8 J 511
1

4!
@&g1100

3 #r41O~r5!, ~IV.13!

where we used the expansion

Dr25261
2&

3
g1100

3 r41O~r5!.

Further we have, withL denoting the Yamabe operator,

U15
U0

2r E
0

r L@U0#

U0
dr85

1

2 F2
7&

36
g1100

3 2
1

48
r 2Gr21O~r3!. ~IV.14!

Finally, observing~IV.12!, we obtain

U252
U0

2r2 E
0

r L@U1#r8

U0
dr85O~r!.

Collecting results, we arrive at the expansion
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U511
1

4! F2
4&

3
g1100

3 2
1

4
r 2Gr41O~r5!

511
1

4! F2
3

10A6
(
k50

4

Rk* T4 2
k Gr41O~r5!. ~IV.15!

Since the initial datum for the conformal Weyl spinor is a nonlinear function of the b
quantities and the transport equations are quadratic in the unknowns, we have to make us
Clebsch–Gordan expansions of products likeT2

k
mT2

l
n . These are readily calculated by using t

definition ~II.15!. For the quantities relevant in our calculation we thus obtain

X2W1X1W152 (
k50

4

akT4
k
212b, W1

25 (
k50

4

akT4
k
21b,

W1X2W152
A6

2 (
k50

4

akT4 3
k , W1X1W15

A6

2 (
k50

4

akT4 1
k , ~IV.16!

~X2W1!25A6(
k50

4

akT4 4
k , ~X1W1!25A6(

k50

4

akT4 0
k ,

with coefficients

a05
2

A6
W1;2,0

2 , a15
2

)
W1;2,0W1;2,1, a25

2

3
~W1;2,0W1;2,21W1;2,1

2 !,

~IV.17!

a35
2

)
W1;2,2W1;2,1, a45

2

A6
W1;2,2

2 , b52
2

3 S W1;2,0W1;2,22
1

2
W1;2,1

2 D .

It was shown in Ref. 6 that the quantityf i
3 has an expansion of the form

f i
35 (

m5u422i u

q

(
k50

m

f i ;m,k
3 Tm

k
m/2221 i . ~IV.18!

Using the above-mentioned results in the last equation of~IV.9!, this expansion reduces to

f i ;m,k
3 50 for i 5$0,...,4% and m>8,

f0;6,k
3 522A30W3;6,k , f1;6,k

3 5210)W3;6,k , f2;6,k
3 5220W3;6,k ,

f3;6,k
3 5210)W3;6,k , f4;6,k

3 522A30W3;6,k ,

f0;4,k
3 518A6ak23A6mW2;4,k1 3

2 Rk* , f1;4,k
3 59A6ak2 3

2A6mW2;4,k1 3
4 Rk* , ~IV.19!

f2;4,k
3 518ak23mW2;4,k1

3

2A6
Rk* , f3;4,k

3 59A6ak2
3

2
A6mW2;4,k1

3

4
Rk* ,

f4;4,k
3 518A6ak23A6mW2;4,k1 3

2 Rk* ,

f i ;2,k
3 50 for i 5$1,2,3%, f2;0,0

3 50.
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Given these data onI 80, we are in the position to solve the transport equations onI 8. The first of
the systems~IV.4! can be integrated step by step with the result

~cab
0 !35@c1

03~t!1c2
03~t!W11c3

03~t!W2#xab1@c4
03~t!X1W11c5

03~t!X1W2#zab

1@c4
03~t!X2W11c5

03~t!X2W2#yab ,

~cab
1 !35@c1

13~t!1c2
13~t!W1#xab1c3

13~t!@X1W1zab1X2W1yab#,

~cab
1 !35@c1

63~t!X2W11c2
63~t!X2W2#xab1@c3

63~t!1c4
63~t!W11c5

63~t!W2#zab

1c6
63~t!X2X2W2yab ,

~cab
2 !35@c1

63~t!X1W11c2
63~t!X1W2#xab1@c3

63~t!1c4
63~t!W11c5

63~t!W2#yab

1c6
63~t!X1X1W2zab ,

jabcd
3 5S1

3~t!X1X1W2«abcd
0 1@S2

3~t!X1W11S3
3~t!X1W2#«abcd

1 1@S2
3~t!X2W1

1S3
3~t!X2W2#«abcd

3 2S1
3~t!X2X2W2«abcd

4 1@S4
3~t!1S5

3~t!W11S6
3~t!W2#~eacxbd

1ebdxac!1@S7
3~t!X1W11S8

3~t!X1W2#~eaczbd1ebdzac!1@S7
3~t!X2W11S8

3~t!X2W2#

3~eacybd1ebdyac!, ~IV.20!

x~ab!cd
3 5K1

3~t!X1X1W2«abcd
0 1@K2

3~t!X1W11K3
3~t!X1W2#«abcd

1 1@K4
3~t!1K5

3~t!W1

1K6
3~t!W2#«abcd

2 2@K2
3~t!X2W11K3

3~t!X2W2#«abcd
3 1K1

3~t!X2X2W2«abcd
4

1@K7
3~t!1K8

3~t!W1#habcd1@K9
3~t!X2W11K10

3 ~t!X2W2#~eacybd1ebdyac!

2@K9
3~t!X1W11K10

3 ~t!X1W2#~eaczbd1ebdzac!,

f ab
3 5@F1

3~t!1F2
3~t!W11F3

3~t!W2#xab1@F4
3~t!X2W11F5

3~t!X2W2#yab

1@F4
3~t!X1W11F5

3~t!X1W2#zab ,

~Qg
g

ab!
35@ t1

3~t!1t2
3~t!W11t3

3~t!W2#xab1@ t4
3~t!X2W11t5

3~t!X2W2#yab

1@ t4
3~t!X1W11t5

3~t!X1W2#zab ,

Q~ab!cd
3 5T1

3~t!X1X1W2«abcd
0 1@T2

3~t!X1W11T3
3~t!X1W2#«abcd

1

1@T4
3~t!1T5

3~t!W11T6
3~t!W2#«abcd

2 2@T2
3~t!X2W11T3

3~t!X2W2#«abcd
3

1T1
3~t!X2X2W2«abcd

4 1@T7
3~t!1T8

3~t!W1#habcd1@T9
3~t!X2W11T10

3 ~t!X2W2#

3~eacybd1ebdyac!2@T9
3~t!X1W11T10

3 ~t!X1W2#~eaczbd1ebdzac!.

The t-dependent functions in these expressions are given in Appendix 3.
We now turn to the second of the transport equations~IV.4!, which is a partial differential

equation. The system for the expansion coefficientsf i
3 of the rescaled conformal Weyl spinor o

I 8 has the form

~11t!]tf0
31X1f1

32f0
35R0 ,

]tf1
31 1

2X2f0
31 1

2X1f2
31f1

35R1 ,
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]tf2
31 1

2X2f1
31 1

2X1f3
35R2 , ~IV.21!

]tf3
31 1

2X2f2
31 1

2X1f4
32f3

35R3 ,

~12t!]tf4
31X2f3

31f4
35R4 ,

where the right-hand sides are given by

R05A1~t!X1X1W21A2~t!~X1W1!2,

R15B1~t!X1W11B2~t!W1X1W11B3~t!X1W2 ,

R25C1~t!1C2~t!W11C3~t!~W1!21C4~t!W21C5~t!X1W1X2W1 , ~IV.22!

R35B1~2t!X2W11B2~2t!W1X2W11B3~2t!X2W2 ,

R452A1~2t!X2X2W22A2~2t!~X2W1!2,

with t-dependent functionsAi(t),Bj (t),Ck(t) which are listed in Appendix 3. These function
have been calculated from the lower order expansion coefficients~IV.1!–~IV.3! and from~IV.20!.
The symmetry inherent in these expressions reflects the time-symmetry of the underlying s
time.

Using the expansion~IV.18! and corresponding expansions of the above-mentioned terms
decompose~IV.21! into the following equations. Form>6 the coefficientsf i ;m,k

3 , k50,...,m,
satisfy the homogeneous system

~11t!]tf0;m,k
3 2f0;m,k

3 1AS m

2
21D S m

2
12Df1;m,k

3 50,

]tf1;m,k
3 1f1;m,k

3 2
1

2
AS m

2
21D S m

2
12Df0;m,k

3 1
1

2
Am

2 S m

2
11Df2;m,k

3 50,

]tf2;m,k
3 2

1

2
Am

2 S m

2
11Df1;m,k

3 1
1

2
Am

2 S m

2
11Df3;m,k

3 50, ~IV.23!

]tf3;m,k
3 2f3;m,k

3 2
1

2
AS m

2
11D m

2
f2;m,k

3 1
1

2
AS m

2
12D S m

2
21Df4;m,k

3 50,

~12t!]tf4;m,k
3 1f4;m,k

3 2AS m

2
12D S m

2
21Df3;m,k

3 50.

The coefficientsf i ;4,k
3 , k50,...,4, solve

~11t!]tf0;4,k
3 2f0;4,k

3 12f1;4,k
3 52A6A1~t!W2;4,k1A6A2~t!ak ,

]tf1;4,k
3 1f1;4,k

3 2f0;4,k
3 1 1

2A6f2;4,k
3 5 1

2A6B2~t!ak1A6B3~t!W2;4,k ,

]tf2;4,k
3 2 1

2A6f1;4,k
3 1 1

2A6f3;4,k
3 5@C3~t!2C5~t!#ak1C4~t!W2;4,k , ~IV.24!

]tf3;4,k
3 1f3;4,k

3 1f4;4,k
3 2 1

2A6f2;4,k
3 52 1

2A6B2~2t!ak2A6B3~2t!W2;4,k ,

~12t!]tf4;4,k
3 1f4;4,k

3 22f3;4,k
3 522A6A1~2t!W2;4,k2A6A2~2t!ak ,
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with the coefficientsak defined in~IV.17!. The functionsf i ;2,k
3 , k50,1,2, satisfy

]tf1;2,k
3 1f1;2,k

3 1
1

&
f2;2,k

3 5&B1~t!W1;2,k ,

]tf2;2,k
3 2

1

&
f1;2,k

3 1
1

&
f3;2,k

3 5C2~t!W1;2,k , ~IV.25!

]tf3;2,k
3 2f3;2,k

3 2
1

&
f2;2,k

3 52&B1~2t!W1;2,k ,

while f2;0,0
3 is subject to

]tf2;0,0
3 5C1~t!1@C3~t!12C5~t!#b, ~IV.26!

with b as defined in~IV.17!.
These ordinary differential systems have to be integrated for the initial data~IV.19! at t

50. Since the equations are already quite complicated, we used the program MapleV.4 f
purpose. Synthesizing the result of these integrations according to~IV.18!, we obtain the following
concise expressions forf i

3 on I 8:

f0
352~11t!~12t!5X1X1W31 1

12f 0~t!mX1X1W21 1
6g0~t!~X1W1!21 1

4h0~t!X1X1r 2,

f1
3525~11t!2~12t!4X1W31 1

6 f 1~t!mX1W2

1 1
3g1~t!W1X1W11 1

2h1~t!X1r 21 1
2k1~t!m2X1W1 ,

f2
35220~11t!3~12t!3W31 f 2~t!mW21g2~t!~W1!2

13h2~t!r 21k2~t!m2W11p~t!m41@q~t!2g2~t!#b, ~IV.27!

f3
355~11t!4~12t!2X2W32 1

6 f 1~2t!mX2W2

2 1
3g1~2t!W1X2W12 1

2h1~2t!X2r 22 1
2k1~2t!m2X2W1 ,

f4
352~11t!5~12t!X2X2W31 1

12f 0~2t!mX2X2W2

1 1
6g0~2t!~X2W1!2

1 1
4h0~2t!X2X2r 2,

with t-dependent functions which can be found in Appendix 3. All the functionsf i
3 have poly-

nomial dependence ont.
The most interesting feature of this solution is its smoothness att561, which, in view of the

singular behavior of Eqs.~IV.23!, ~IV.24! at these points, was not to be expected from
beginning. To explain its significance we indicate the argument which led to the asym
regularity condition~II.17!. The Bianchi equations, which were used to obtain the evolu
equations for the rescaled conformal Weyl spinor and, consequently, the second of the tra
equations~IV.4!, form an overdetermined system. Thus there are further equations, to whic
refer as to the constraints. In the present case the constraints take the form

t]tf1
31 1

2~X1f2
32X2f0

3!23f1
35S1 ,

t]tf2
31 1

2~X1f3
32X2f1

3!23f2
35S2 , ~IV.28!
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t]tf3
31 1

2~X1f4
32X2f2

3!23f3
35S3 ,

where

S15F1~t!X1W11F2~t!W1X1W11F3~t!X1W2 ,

S25G1~t!1G2~t!W11G3~t!~W1!21G4~t!W21G5~t!X2W1X1W1 , ~IV.29!

S352F1~2t!X2W12F2~2t!W1X2W12F3~2t!X2W2 ,

with functions which are given in Appendix 3. As before, we obtain equations for the coeffic
in the expansion~IV.18!. Together with~IV.23!, ~IV.24! these equations imply the systems

~11t!~5t213!]tf0;6,k
3 1~5t325t215t17!f0;6,k

3 25~t21!3f4;6,k
3 50,

~IV.30!
~12t!~5t213!]tf4;6,k

3 1~5t315t215t27!f0;6,k
3 25~t11!3f4;6,k

3 50,

and

4~31t2!~11t!]tf0;4,k
3 22~12t!3f0;4,k

3 12~12t!3f4;4,k
3 5T1~t!ak1T2~t!W2;4,k ,

~IV.31!
24~31t2!~12t!]tf4;4,k

3 22~11t!3f4;4,k
3 12~11t!3f0;4,k

3 5T1~2t!ak1T2~2t!W2;4,k ,

with functionsT1 andT2 ~given in Appendix 3! derived from the functionsRi andSj .
It turns out that once these equations have been solved, the remaining expansion coe

in ~IV.18! can be obtained either by purely algebraic operations or by solving ODEs whic
regular fortP@21,1#. This situation is the same for all ordersp>3 in ~IV.4!. The solutionsy(t),
with y denoting in the above-mentioned case the column vector with entries given by th
unknowns of~IV.30! and ~IV.31!, can then be given forp>3 in the form~suppressing here al
indices!

y~t!5X~t!X~0!21y01X~t!E
0

t

X~t8!21b~t8!dt8, ~IV.32!

with X(t) denoting a fundamental matrix of the system of ODEs under study. The vector-v
function b(t) is built from solutions which are obtained by solving the equations of lower or
In Ref. 6 the equations~written there in a slightly different form! have been discussed in gener
and the fundamental matricesX(t) have been derived. As in the case of~IV.30!, ~IV.31!, there
occur homogeneous as well as inhomogeneous systems for generalp>3. Thus for certain values
of the indices~i.e.,p and the indices which arise from expandingup in terms of the functionsTm

i
j )

the functionsb(t) vanish and the solutions are of the formy(t)5X(t)X(0)21y0 . In these cases
some of the entries ofX(t) have logarithmic singularities. The latter drop out of the final expr
sion precisely if the asymptotic regularity conditions~II.17! are satisfied. In the remaining cas
the entries of the matricesX(t) are polynomials int but det(X)5cf(t)(12t2)p22 with some
constantcÞ0 and some polynomialf (t) satisfyingu f (t)u>1 for utu<1. Furthermore, the column
vectorb(t) has poles. However, it has no logarithmic singularities if the solutions of the equa
of lower order have no logarithmic singularities. Assuming condition~II.17!, the remaining po-
tential source of singularities ofup, p>3, at utu561 are the integrals on the right-hand sides
the expressions~IV.32!. These have not been analyzed yet. To understand the general situat
is clearly of interest to study the problem for the first few values ofp. Remarkably, in the presen
case,p53, we find that the integrand in~IV.32! has poles atutu561 and also outside the interva
@21, 1#, that the integral has poles and no logarithmic terms, but that the final solution
polynomial int.
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B. The detailed transformation formulas

In this section we will determine expansions for the conformal scale factoru and the
SL(2,C)-valued functionL b

a which define the transformation from theF gauge into the NP gaug
as described in Sec. II C. To calculate the NP constants in terms of the initial data we
determine the values of the integrals defining these quantities by taking their limits asr→0. The
gauge in which these integrals are given is based on a sectionC of the generators ofJ`. We shall
try to push this section toI 1. The usefulness of this procedure depends, of course, on the res
form of the ODEs onJ` which were used in II C to fix theF gauge.

Near I 1 the hypersurfaceJ6 can be given as the graph$t5ts, r.0% of the functionts

5ts(r,t b
a ) which is given by

ts5
2V

r
@2DabVDabV#21/2. ~IV.33!

Substituting the expansions~IV.8! of V and those of the frame vectors into the Eq.~IV.33!, we get
the expansion

ts511 1
2mr12W1r21O~r3!. ~IV.34!

Setting in~II.35! Z5]t , we obtain for the right-hand side of this equation the expansion

Z~ 1
2¹bQ¹bQ!

Z~Q!
5

5

3
mr22S 229

63
m22

24

5
W1D r31O~r4!. ~IV.35!

SupposeT5T0]t1T1]r1T1X11T2X2 is a vector field defined near and tangent toJ`. De-
note byT* the vector field which is induced by it onJ`. If r andt b

a are used as coordinates o
J`, one finds forT* the expressionT* 5T1]r1T1X11T2X2 . Applying this to the gradient of
Q on J`, we find that the left-hand side of~II.35! is given by

~$22r21 19
3 mr31O~r4!%]r1$ 36

5 X2W1r31O~r4!%X11$ 36
5 X1W1r31O~r4!%X2!~ log f !.

Thus, dividing~II.35! on both sides byr2, we get a differential equation of the formT* (log f )
5g on J` with a vector fieldT* and a functiong which extend smoothly toI 1 such thatT*
522]r1O(r) nearI 1. For given datumf 0 on I 1 this equation has a unique smooth soluti
which can be expanded in terms ofr. As shown in our general discussion, the value off 0 has to
be constant onC to fulfill the NP-gauge conditions. We choose

f 052
1

2&

on I 1 and find for the solution of~II.35! the expansion

f 52
1

2&
H 11

5

6
mr1S 191

252
m21

6

5
W1D r21O~r3!J . ~IV.36!

To obtain the matrix elementsl b
a of ~II.36! by using~II.37! we have to calculate the deriva

tives caa8
* (Q) of the conformal factor. Using the expansion coefficients derived in Sec. IV A

get

c008
* ~Q!5O~r4!,

c018
* ~Q!5&$X1W1r31O~r4!%, c108

* ~Q!5&$X2W1r31O~r4!%, ~IV.37!
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c118
* ~Q!5&$22r13mr21~8W123m2!r31O~r4!%.

Substituting these expressions into the formulas~II.37! the matrix elementsl 1
0 andl 1

1 can be
calculated explicitly up to a U~1! phase transformation. Since the choice of the latter is
important for the following we choose it suitably to obtain

l 1
0 5r1/2$12 1

3mr1~2 7
5W11 113

252m
2!r21O~r3!%, l 1

1 5r5/2$ 1
2X1W11O~r!%,

~IV.38!

which allows us to determine also the expansion

E118
+

5&$ 1
4mr21~2 7

12m
212W1!r31O~r4!%]t1&$ 1

2r
22 7

6mr31~ 577
252m

22 31
5 W1!r4

1O~r5!%]r1&$2 9
5X2W1r31O~r4!%X11&$2 9

5X1W1r31O~r4!%X2 . ~IV.39!

To solve the differential equation for the affine parameter on the generators ofJ`, we observe
that already in the case of Minkowski space–time this parameter is a singular function ofr, given
by u+52&r211u

*
+ . The inspection of the expansion~IV.39! suggests to search for a solution

the form

u+5w1&S 2
1

r
1

7

3
m logr D . ~IV.40!

This ansatz does indeed lead to a smooth regular equation forw nearI 1. It allows us to calculate
the expansion

u+5&H 2
1

r
1 7

3m logr1u
*
+ 1~ 109

126m
21 62

5 W1!r1O~r2!J , ~IV.41!

whereu
*
+ denotes an arbitrary constant initial datum onI 1. As described in Sec. II C, the matri

elementsl 0
0 andl 0

1 can now be determined. We obtain the expansions

l 0
0 5r3/2H 77

10
X2W11O~r!J , l 0

1 5r21/2$212 1
3mr1O~r2!%. ~IV.42!

Knowing the matrix l b
a on null infinity, we can calculate the limits of the NP-spin

coefficientsG01811
+ andG10800

+ at I 1 asr→0. Substituting our expansions into the formula for t
connection coefficients

Gad8bc
+

5l a
f l̄ f 8

a8l b
g l c

h G f f 8gh
* 2eghl b

g Eaa8
+

~l c
h !, ~IV.43!

we arrive at the expressions

G01811
+ u I 15 lim

r→0
G01811

+
50, G10800

+ u I 15 lim
r→0

G10800
+

5
11

6&
m. ~IV.44!

The next step is to calculate the conformal scale factoru by solving Eq.~II.25!. To determine
the Ricci spinor componentF225

1
2RabE118

+a E118
+b , we have to determine the Ricci tensorRab of

the metricg. The components of the tensor

Qabª
1
2R̂~ab!2

1
12gabR̂1 1

4R̂@ab# ~IV.45!
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in the frame$caa8
* %, whereR̂ab and R̂ denote, respectively, the Ricci tensor and the curvat

scalar induced by the Weyl connection¹̂ with coefficientsĜag
b 5Gag

b 1da
b f g1dg

b f a2gag f b ~cf.
Ref. 14!, are among the variables of the conformal field equations. Thus they are known to
order in ther coordinate. From the general transformation law

R̂ab5Rab22¹~a f b)12 f a f b2gab~¹g f g12 f g f g!14¹@a f b] , ~IV.46!

we get the relation

Qab5 1
2~Rab2 1

6gabR!2¹b f a1 f a f b2 1
2gab f g f g. ~IV.47!

From this we derive the expression

F225QabE118
+a E118

+b
1E118

+
~E118

+a f a!2~E118
+a f a!2. ~IV.48!

Substituting here~IV.39! and the expansion of the one-formf obtained from the solution of the
field equations we get the expansion

F225
5
6 mr31~2 167

42 m21 18
5 W1!r41O~r5! ~IV.49!

on J`.
On I 1 is induced in our gauge the standardS2 metric. Therefore we solve Eq.~II.25! with the

initial condition

lim
r→0

u51. ~IV.50!

For the conformal scale factor we obtain then the expansion

u511 5
6mr1~ 6

5W11 191
252m

2!r21O~r3!. ~IV.51!

By the choice of the initial value for the conformal factor the scale functionp appearing in the
gauge transformations is also fixed with

p[1 on J`. ~IV.52!

In the conformal gauge characterized by the conformal factorQ!
ªuQ the generators of nul

infinity are expansion free. Proceeding as indicated before, we construct the NP frame$Eaa8
• %.

Observing the expansions~II.36! and ~II.39! of the null vectorsE118
+ and E118

• respectively, and
taking into account the properties of the conformal rescaling we get the relations

L 1
0 5u21/2l 1

0 eic, L 1
1 5u21/2l 1

1 eic, ~IV.53!

with function c, characterizing the phase freedom, which will be fixed later. Using~IV.38! and
~IV.51! we get the expansions

L 1
0 5r1/2$12 3

4mr1~ 15
32m

222W1!r21O~r3!%eic, L 1
1 5r5/2$ 1

2X1W11O~r!%eic,
~IV.54!

from which we derive in turn the expansion

E118
•

5&$ 1
4mr21~2m212W1!r31O~r4!%]t1&$ 1

2r
222mr31~ 253

56 m22 37
5 W1!r41O~r5!%]r

1&$2 9
5X2W1r31O~r4!%X11A2$2 9

5X1W1r31O~r4!%X2 , ~IV.55!
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of the vector fieldE118
• tangent to the null generators ofJ`. Furthermore the new affine paramet

has the form

u•5&H 2
1

r
14m logr1u

*
• 1S 195

28
m21

74

5
W1D r1O~r2!J , ~IV.56!

with a free constantu
*
• . Using the formula analogous to~II.38! we derive

L 0
0 5r1/2$2 101

10 X2W1r1O~r2!%e2 ic, L 0
1 5r21/2$212 3

4mr1O~r2!%e2 ic. ~IV.57!

To determine the phase factore6 ic we solve equation~II.27! along the generators of null infinity
Expanding the right-hand side, we get

E118
•

~c!52Im$L̂ 1
f L̂̄ f 8

18L̂ 1
g L̂ 0

h G f f 8gh
!

2L̂ 0
0 E118

•
~L̂ 1

1 !1L̂ 0
1 E118

•
~L̂ 1

0 !%, ~IV.58!

whereL̂ b
a has been obtained from the above-mentioned matrixL b

a by settingc50. Substituting
the known data into Eq.~IV.58!, the solutionc which is needed to satisfy the gauge conditi
G11801

• uJ50, is found to have an expansion

c5O~r2!, ~IV.59!

which entails the expansions

eic511O~r2!, E118
•

~eic!5O~r3!, E018
•

~eic!5O~r2!. ~IV.60!

The matrix elementsL b
a are now determined on null infinity to the precision needed in

later calculations, but in the definition~III.5! of the NP constants appear some of the transve
derivativesE008

• (L b
a ) of the matrix elements as well. Using the general formulas~II.41! we get

the expansions

E008
•

~L0
0!5&r1/2$ 113

40 X2W11O~r!%, E008
•

~L1
0!5&r23/2$ 1

41 85
48mr1O~r2!%,

~IV.61!
E008

•
~L0

1!5&r21/2$ 1
41 67

48mr1O~r2!%, E008
•

~L1
1!5&r3/2$2 47

40X1W11O~r!%,

where we have taken into account the expressions~IV.60! for the phase factor.
The transversal derivative of the conformal scale factorE008

• (u) is fixed on null infinity by the
requirementR@g!#uJ`50. Thus it has to satisfy equation~II.32! with initial datum

E008
•

~u!u I 15 lim
r→0

up21G10800
+

5 lim
r→0

G10800
+ . ~IV.62!

Given the matrixL b
a and the conformal scale factoru, all the terms appearing in Eq.~II.32! can

be calculated in a straightforward way, with the exception of the curvature scalarR@g#, whose
calculation requires some explanation. Contracting Eq.~IV.47! we get the identity

R@g#56~Qaa8bb81¹aa8 f bb81 f aa8 f bb8!e
abēa8b8, ~IV.63!

where

¹aa8 f bb85caa8
* ~ f bb8!2~Gaa8cb

* ēb8c81Ḡaa8c8b8
* ebc! f cc8.

Expanding these quantities we get

R@g#5~ 23
3 m22 168

5 W1!r21O~r3!,
~IV.64!
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F!5~ 23
36m

224W11 6
5a2X1W12 6

5a1X2W1!r21O~r3!,

which entail with~II.32! the expansion

E008
•

~u!5&$ 11
12m1~ 13

6 m224W11 6
5a2X1W12 6

5a1X2W1!r1O~r2!%. ~IV.65!

Given the above-mentioned expansion, we can calculate expansions of various quant
physical interest, such as the Bondi energy momentum, the angular momentum, and the ra
field on J`. Since the coefficients in these expansions are given directly in terms of the i
data on the Cauchy hypersurfaceS, the expansions contain information about the evolution of
field over an infinite range. As an example we will calculate in the following the NP consta

We close this section with a remark on the BMS group, the group of transformation bet
different Bondi-type systems. It was shown in Ref. 20 that for solutions for which the the c
tion lim

u•→2`
G@e#01800

•
50 could be realized at spacelike infinity, where the subscript ‘‘e’’ is to

denote the electric part of the considered spin-coefficient, one can single out the inhomog
Lorentz group as the group of transformations preserving this condition. It turns out that und
assumptions, which include in particular the time-symmetry of the solution, the even str
condition lim

u•→2`
G01800

•
50 is satisfied. This means that for our solutions there is a natural

to single out the inhomogeneous Lorentz group as asymptotic symmetry group.

C. The NP constants in time symmetric space–times

Using the formulas of the previous sections we can express the NP constants in terms
initial data for the corresponding time symmetric solutions. All the quantities appearing in
integral ~III.5! are known in terms of the initial data to the precision needed to perform the
r→0.

We have to express the spin-2 spherical harmonics2Ȳ2,m in terms of the functionsTm
j
k . By

~III.3! the definition of theZ operator is based on the choice of the complex null vector fieldE018
• .

In Appendix 1 we have applied the standard choice and derived the relations between the
tors X1 andZ and between the spin-2 spherical harmonics2Y2,m and the functionsTm

j
k . By this

choice we should have

E018
•

5
i

&
X1

on I 1. However, calculating the vectorE018
• in the previous conventions used, we get

E018
• u I 15

1

&
X2 . ~IV.66!

There are two causes of the difference. We fixed the phase factor such as to simplify the
lations and the conventions used in the F gauge and the NP gauge are such that one has
the two spinors of the dyad to get from one to the other convention. The form~IV.66! of E018

•

corresponds to2 i&m̄, if m denotes the standard complex null vector used in Appendix 1.
means that~IV.66! corresponds to the operator2 i Zp instead ofZ discussed in the Appendix
Observing this and~A9! in ~III.4! we obtain the formula

Gm5 i 22m~5p!1/2 R T̄4
22m

4E008
•

~f0!m for m522,...,2, ~IV.67!

wherem5(1/4p2)dS da is the Haar measure on SU~2!.
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To calculate~IV.67! we expand the integrand in terms ofr and take the limit asr→0. For this
we have to determine forE008

• (f0) only the terms of orderO(1). In thelimit only these terms
give a contribution while the terms of orderr21 cancel each other. Using the explicit results of t
previous sections we arrive after some lengthy but straightforward calculations at the expr

Gmu I 15 lim
r→0

Gm

5 i 22m~10p!1/2

3 R T̄4 4
22mS 2

5

32
X2X2r 21

635

8
mX2X2W22

1905

2
~X2W1!21

16

3
X2X2W3Dm.

~IV.68!

Expanding the functions in the brackets in terms of the functionsTm
k

j and using the orthogonality
relations satisfied by these functions we can perform the integration. All terms except the la
give some contributions. Using the formulas~IV.7!, ~IV.12!, and~IV.16! we get the final expres
sion

Gmu I 15
i 22m

2
~15p!1/2H 127~mW2;4,22m26a22m!2

1

2A6
R22m* J , ~IV.69!

where the coefficientsa22m , which are quadratic inW1;2,k , are given by~IV.17!. We note that the
structure of this more general expression is essentially the same as that of the expression o
by Newman and Penrose in the case of static and stationary solutions.

V. CONCLUDING REMARKS

We have seen that, under the assumptions explained previously, certain fields which are
near spacelike infinity in terms of Bondi-type systems can be expressed in a straightforwar
in terms of the gauge conditions used in Ref. 6 and can thus be related directly to the struc
the Cauchy data which give rise to the space–times by Einstein evolution. The calcul
involved are quite lengthy but taking into account that we relate quantities which are obtain
a nonlinear evolution over an infinite domain of space-time to the data from which they aris
overall structure of the argument is surprisingly simple.
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APPENDIX: DEFINITIONS AND GENERAL IDENTITIES

1. X¿ and the Z operator

In this section we describe the relation between the operatorsZ, Zp, introduced in Ref. 20 and
the operatorsX1 , X2 , X used in Ref. 6.

Consider on the group SU~2!, which is diffeomorphic toS3, coordinates$x,y,a% such that
outside a set of measure zero the general group elementt b

a PSU~2! is given by

tb
a5

1

A11zz̄
S eia ie2 iaz

ieiaz̄ e2 ia D , ~A1!
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with z5x1 iy . Thena is a parameter andx andy are constant on the orbits of the the subgro
U~1!. The tangent vectors]x , ]y , and ]a , respectively, at the unit element coincide with t
generatorsu1 , u2 , and u3 of the Lie algebra of SU~2!. Writing P5 1

2(11zz̄), we get for the
corresponding left invariant vector fields the expressions

Zu1
5P cos~2a!]x1P sin~2a!]y1 1

2@x sin~2a!2y cos~2a!#]a ,

Zu2
52P sin~2a!]x1P cos~2a!]y1 1

2@y sin~2a!1x cos~2a!#]a , ~A2!

Zu3
5 1

2]a ,

whence

X152Zu2
2 iZu1

5e2iaH 2 i&S m2
i

2&
z̄]aD J , X522iZu3

52 i ]a ,

~A3!

X252Zu2
1 iZu1

5e22iaH i&S m̄1
i

2&
z]aD J ,

where the vectorsm5&P]z and m̄5&P]z̄ define a complex dyad tangent to the surfaces$a
5const% which is null with respect to the standardS2-metric ds25P22dz dz̄ on these surfaces.

We may identify SU~2! with the spin frame bundle over the base manifoldS2 with structure
group U~1!. The section$a50% can be identified with the base manifold~with a point omitted!.
Here we take the complex null frame$m,m̄% defined previously, where a group elementua

b

5diag(eia,e2ia)PU(1) acts asu($m,m̄%)5$e2iam,e22iam̄%. A function h on S3 is said to have
spin weightN, if it can be decomposed ashuz,a5e2Niah0 , where the functionh0 , is independent
of the parametera along the fibers. TheZ operator is defined by the complex null vectorm and
acts on a spin-N function as

Zhuz,a5&$m~h0!1Nh0m̄gmbdbmg%e2~N11!ia5&H m~h0!1
1

&
Nz̄h0J e2~N11!ia, ~A4!

where d denotes the Levi-Civita differential operator induced by the standardS2 metric. This
means thatZh has spin weightN11. ~This treatment of the functions with spin weight and theZ
operator is a bit different from the one which can be found in the literature~cf. Refs. 20, 18, and
19!, where the expressions are evaluated on some cross section ofS3).

The horizontal lift of the vectorm defined with respect to the Levi-Civita connectiond is
given by

mHuz,a5m2
i

2&
z̄]a . ~A5!

This means that theZ operator onS3 is given by

Zuz,a5&e2iamH . ~A6!

Comparing the formulas~A3!, ~A5!, and~A6! we get the relations

X152 i Z, X25 i Zp, X52@Z,Zp#. ~A7!

The spherical harmonicsYl ,m are defined as an orthogonal function system on the sphereS2.
They can be extended toS3 as functions with zero spin weight, i.e., they became independen
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the parameter along the fibers. This means that they can be expanded asYl ,m5(k, j ck jT2k
j
k in

terms of the functionsTm
j
k . The spherical harmonics satisfy the equationZZpYl ,m52 l ( l

11)Yl ,m , so using the relations~A7! and ~II.16! we arrive at the relation

Yl ,m5(
j

cjT2l
j
l . ~A8!

Taking into account the explicit coordinate expressions of the group elements one could det
the expansion coefficientscj . Using the definition of the spin harmonicssYl ,m ~cf. Ref. 18! and
Eqs.~II.16!, ~A7!, and~A8! one can also derive the relation between the functionssYl ,m and the
functionsTm

j
k . We shall only need the transformation formulas

Y2,m5~2 i !42mS 5

4p D 1/2

T4 2
22m ,

~A9!

2Y2,m5~2 i !22mS 5

4p D 1/2

T4 0
22m , 22Y2,m5~2 i !22mS 5

4p D 1/2

T4 4
22m .

2. Some useful spinor identities

Here we describe irreducible decompositions of spinors with four unprimed indices in t
of the ‘‘primary spinors’’«abcd

i , habcd, xab , yab , zab andeab , where

xab5&e (a
0eb)

1, yab52
1

&
ea

1eb
1, zab5

1

&
ea

0eb
0,

~A10!
«abcd

i 5e (a
(eeb

fec
ged)

h) i, habcd52ea~ced)b .

It is well known that a spinorAabcd satisfyingAabcd5A(ab)(cd)52Acdab can be decomposed i
the form Aabcd5eacAbd1ebdAac with Aab5 1

2Aa f b
f5A(ab) and that a spinorSabcd satisfying

Sabcd5S(ab)(cd)5Scdab can be written in the formSabcd5S(abcd)1
1
3habcdS with SªSe f

e f . It
follows from this that an arbitrary four index spinor with symmetriesXabcd5X(ab)(cd) can be
expanded in terms of«abcd

i , eacxbd1ebdxac , eacybd1ebdyac , eaczbd1ebdzac andhabcd.
The following relations were frequently used in the calculations:

yabxcd52«abcd
3 2

1

2&
~eacybd1ebdyac!, zabxcd5«abcd

1 1
1

2&
~eaczbd1ebdzac!;

xabx
ab521, xaby

ab50, xabz
ab50, yaby

ab50, yabz
ab52 1

2, zabz
ab50;

xa
fxb f5

1

2
eab , ya

fxb f5
1

&
yab , za

fxb f52
1

&
zab ,

ya
fyb f50, ya

fzb f52
1

2
ea

1eb
0, za

fzb f50;

«abcd
0 xcd50, «abcd

0 ycd52zab , «abcd
0 zcd50, «abcd

1 xcd52 1
2zab ,

«abcd
1 ycd52 1

4xab , «abcd
1 zcd50, «abcd

2 xcd52 1
3xab , «abcd

2 ycd5 1
6yab ,

«abcd
2 zcd5 1

6zab , «abcd
3 xcd5 1

2yab , «abcd
3 ycd50, «abcd

3 zcd5 1
4xab ,
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«abcd
4 xcd50, «abcd

4 ycd50, «abcd
4 zcd52yab;

x(abxcd)52«abcd
2 , x(abycd)52«abcd

3 , x(abzcd)5«abcd
1 ,

y(abycd)5
1
2«abcd

4 , y(abzcd)52 1
2«abcd

2 , z(abzcd)5
1
2«abcd

0 ;

x(a
f «b)cd f

0 5
1

&
«abcd

0 , x(a
f «b)cd f

1 5
1

2&
zabxcd , x(a

f «b)cd f
2 5

1

12
~eacxbd1ebdxac!,

x(a
f «b)cd f

3 5
1

2&
yabxcd , x(a

f «b)cd f
4 52

1

&
«abcd

4 , hab(c
fxd) f5

1

2
~eacxbd1ebdxac!;

y(d
f «c)ab f

2 52
1

2&
«abcd

3 1
1

24
~eacybd1ebdyac!, z(d

f «c)ab f
2 52

1

2&
«abcd

1 1
1

24
~eaczbd1ebdzac!;

«2
ab

e f«cde f
1 52

1

12
«abcd

1 1
1

8&
~eaczbd1ebdzac!,

«2
ab

e f«cde f
3 52

1

12
«abcd

3 1
1

8&
~eacybd1ebdyac!;

«abcd
2 «2 abcd5 1

6, «2
ab

e f«cde f
2 52 1

6«abcd
2 1 1

18habcd.

3. The detailed expressions for u p, pÄ0,...,3

The t-dependent functions occurring in~IV.2!,

c01~t!5m~ 4
3t

32 1
3t

5!, c61~t!5m~t22 1
6t

4!, S1~t!5&m~ 1
2t

22 1
4t

4!,

K1~t!5m~212t14t3!, F1~t!5 1
3mt4, t1~t!5&4tm,

T1~t!56m~12t2!, f1
1~t!5212~12t!2, f2

1~t!52m2~18t223t4!,

f3
1~t!5236136t2.

The t-dependent functions occurring in~IV.3!,

c1
02~t!5m2~22t323t51 8

7t
72 1

7t
9!, c2

02~t!516t32 26
5 t51 6

5t
7,

c3
02~t!58t32 7

5t
52 3

5t
7, c12~t!5m~24t21 2

3t
4!,

c1
62~t!5m2~22t213t42 8

9t
61 1

14t
8!, c2

62~t!512t223t41 3
5t

6,

c3
62~t!526t22 1

2t
41 3

10t
6, S1

2~t!5&m2~ 4
3t

42 2
9t

62 1
28t

8!,

S2
2~t!5&~6t22 5

2t
41 9

10t
6!, S3

2~t!5&~2 5
4t

413t22 9
20t

6!,

S4
2~t!5236t2111t41 3

5t
6, K1

2~t!5m2~24t28t314t52 4
21t

7!,

K2
2~t!52144t172t32 108

5 t5, K3
2~t!5m2~2 20

3 t31 8
3t

52 20
63t

7!,
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K4
2~t!52&2t3, K5

2~t!5248t1 36
5 t5,

F1
2~t!5m2~22t21 1

3t
42 4

9t
61 1

7t
8!, F2

2~t!52t42 6
5t

6,

F3
2~t!53t41 3

5t
6, t1

2~t!5&m2~212t2 8
3t

31 4
3t

5!,

t2
2~t!5&~48t216t3!, t3

2~t!5&~24t18t3!,

T1
2~t!5m2~212112t2210t41 2

3t
6!, T2

2~t!572272t2136t4,

T3
2~t!5m2~4t22 8

3t
41 4

9t
6!, T4

2~t!52&6t2,

T5
2~t!524212t4, f1

2~t!52~211t!4,

f2
2~t!54m~ 37

10t
62 41

5 t52 41
2 t4146t3218t2!, f3

2~t!516~11t!~211t!3,

f4
2~t!56~2 8

21t
81 14

3 t6215t416t2!m3, f5
2~t!56m~2 46

5 t6162t4272t2!,

f6
2~t!5272~11t!2~211t!2.

The t-dependent functions occurring in~IV.20!,

c1
03~t!5~3t3118t51 283

21 t72 1510
189 t91 2972

2079t
112 74

693t
13!m3,

c2
03~t!5~244t32 588

5 t51 268
7 t72 58

7 t91 6
5t

11!m,

c3
03~t!548t32 96

5 t51 312
35 t72 12

7 t9,

c4
03~t!5~220t326t51 439

70 t72 573
280t

92 1
40t

11!m,

c5
03~t!516t324t52 4

7t
71 4

7t
9,

c1
13~t!5~12t2115t42 14

3 t61 3
7t

8!m2,

c2
13~t!5272t2118t42 18

5 t6,

c3
13~t!5236t213t41 9

5t
6,

c1
63~t!5~18t2112t42 31

5 t61 3
2t

82 3
40t

10!m,

c2
63~t!5212t21 4

5t
62 2

7t
8,

c3
63~t!5~ 9

2t
22 33

2 t41 50
3 t62 515

84 t81 25
27t

102 34
693t

12!m3,

c4
63~t!5~248t21105t42 453

10 t61 2847
280 t82 7

8t
10!m,

c5
63~t!536t2212t41 24

5 t62 6
7t

8,

c6
63~t!523t222t41 3

5t
61 1

14t
8,

S1
3~t!529t222t41 13

5 t61 1
14t

8,
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S2
3~t!5~108t22168t4186t62 39

5 t82 3
20t

10!m,

S3
3~t!5272t2148t42 72

5 t62 4
7t

8,

S4
3~t!5~2 9

4t
22 37

4 t41 19
2 t62 827

168t
81 355

378t
102 6

77t
12!&m3,

S5
3~t!5~6t21 69

2 t42 333
20 t61 1999

560 t81 13
80t

10!&m,

S6
3~t!5~18t226t41 24

5 t62 9
7t

8!&,

S7
3~t!5~23t22 33

2 t41 177
20 t62 379

112t
81 1

40t
10!&m3,

S8
3~t!5~6t222t41 3

7t
8!&m,

K1
3~t!526t28t31 18

5 t51 4
7t

7,

K2
3~t!5~144t112t32 351

5 t51 237
5 t72 17

4 t9!m,

K3
3~t!5296t116t31 72

5 t52 64
7 t7,

K4
3~t!5~254t112t32216t51 796

7 t72 440
21 t91 16

11t
11!m3,

K5
3~t!5~576t2216t31 1962

5 t52 714
5 t71 23

2 t9!m,

K6
3~t!52432t1288t32 864

5 t51 288
7 t7,

K7
3~t!5~40t3216t51 100

21 t72 160
189t

91 20
693t

11!m3,

K8
3~t!5~2240t31 582

5 t52 218
7 t71 23

6 t9!m,

K9
3~t!5~9t32 33

20t
52 13

20t
71 1

80t
9!&m,

K10
3 ~t!5~24t31 6

5t
5!&,

F1
3~t!5~9t212t42 7

3t
61 26

7 t82 20
21t

101 74
693t

12!m3,

F2
3~t!5~260t2136t4212t61 106

35 t82 6
5t

10!m,

F3
3~t!52 24

5 t61 12
7 t8,

F4
3~t!5~212t226t41 7

2t
61 169

56 t81 1
40t

10!m,

F5
3~t!54t42 4

5t
62 4

7t
8,

t1
3~t!5~36t120t3146t52 296

21 t71 272
189t

9!&m3,

t2
3~t!5~2312t224t32 72

5 t52 40
7 t7!&m,

t3
3~t!5~144t296t31 144

5 t5!&,

t4
3~t!5~296t212t31 294

5 t52 86
35t

7!&m,

t5
3~t!5~48t2 48

5 t5!&,
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T1
3~t!5319t223t42t6,

T2
3~t!5~272236t2181t42 423

5 t61 33
4 t8!m,

T3
3~t!548224t2116t6,

T4
3~t!5~27218t21180t42134t61 204

7 t82 16
7 t10!m3,

T5
3~t!5~22881216t22558t41 1326

5 t62 243
10 t8!m,

T6
3~t!52162216t21216t4272t6,

T7
3~t!5~224t2116t42 20

3 t61 32
21t

82 4
63t

10!m3,

T8
3~t!5~144t22102t41 178

5 t62 57
10t

8!m,

T9
3~t!5~27t22 81

4 t42 11
20t

61 9
80t

8!&m,

T10
3 ~t!5~212t216t4!&.

The t-dependent functions occurring in~IV.22!,

A1~t!5~36t278t2182t32 97
2 t41 6

5t
51 169

5 t62 208
7 t71 54

7 t8!m,

A2~t!52648t11728t221692t31432t41 2592
5 t52 2286

5 t61 756
5 t72 162

5 t8,

B1~t!5~108t2234t22396t311503t42579t52 14939
20 t61 11 682

35 t71 40 413
560 t82 2591

70 t9

1 177
80 t10!m2,

B2~t!52648t11404t22540t32810t41 1404
5 t51 1458

5 t62108t71 108
5 t8,

B3~t!5~272t1168t2124t32274t41120t51 306
5 t6232t71 6

7t
8!m,

C1~t!5~227t1342t32696t51 2598
7 t72 4555

63 t91 1079
231 t11!m4,

C2~t!5~504t23492t31 17 607
5 t52 41 289

35 t71 16 559
140 t9!m2,

C3~t!521296t12376t32 4752
5 t51216t7,

C4~t!5~2432t1792t32 3072
5 t51 816

7 t7!m,

C5~t!52216t1108t31 648
5 t51 324

5 t7.

The t-dependent functions occurring in~IV.27!,

f 0~t!52181216t22240t3118t4248t51204t62144t7130t8,

f 1~t!5292216t21696t32198t42 2544
5 t51 984

5 t61 936
7 t72 411

7 t8,

f 2~t!5232216t21372t42 936
5 t61 219

7 t8,

g0~t!510821944t214752t325724t41 19 008
5 t52 6264

5 t61 864
5 t72 108

5 t8,

g1~t!5542972t211620t31378t42 11 448
5 t51 5778

5 t61 108
5 t72 108

5 t8,
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g2~t!5182540t21972t42 2808
5 t61 108

5 t8,

h0~t!5 3
2, h1~t!5 3

4, h2~t!5 1
4,

k1~t!5108t22276t32129t41 4077
5 t52 3289

10 t62 9439
35 t71 32 803

280 t81 463
20 t92 2721

280 t10,

k2~t!5252t22942t41 3614
5 t62 6341

35 t81 99
7 t10,

p~t!52 27
2 t21 171

2 t42116t61 1299
28 t82 911

126t
101 1079

2772t
12,

q~t!5 216
5 t82 576

5 t61648t42864t2.

The t-dependent functions occurring in~IV.29!,

F1~t!5~72t22 1071
2 t41 4077

5 t52 2639
20 t62 18 878

35 t71 113 287
560 t8

1 1389
20 t92 15 087

560 t10!m2,

F2~t!52864t211584t32810t42 1296
5 t51 882

5 t61 432
5 t72 108

5 t8,

F3~t!5~236t2240t31156t42 888
5 t51 194

5 t61 456
7 t72 198

7 t8!m,

G1~t!5~ 27
2 t21 171

2 t42348t61 6495
28 t82 911

18 t101 1079
308 t12!m4,

G2~t!5~2144t221071t41 3679
2 t62 220 837

280 t81 24 999
280 t10!m2,

G3~t!51116t42468t61 648
5 t8,

G4~t!5174mt42 1824
5 mt61 684

7 mt8,

G5~t!5432t22234t41 306
5 t61 316

5 t8.

The t-dependent functions occurring in~IV.31!,

T1~t!5246 656t1124 416t22138 240t3151 840t4131 104t52 133 056
5 t6112 096t7

2 50 112
5 t81 10 368

5 t9,

T2~t!5~5184t23456t225088mt326048t4112 288t51384t624128t711824t8

21344t91384t10!m.
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W-algebras from canonical transformations
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It is shown howW-algebras emerge from very peculiar canonical transformations
with respect to the canonical symplectic structure on a compact Riemann surface.
The action of smooth diffeomorphisms of the cotangent bundle on suitable gener-
ating functions is written in the BRS framework while aW-symmetry is exhibited.
Subsequently, the complex structure of the symmetry spaces is studied and the
related BRS properties are discussed. The specific example of the so-called
W3-algebra is treated in relation to some other different approaches. ©2000
American Institute of Physics.@S0022-2488~00!00204-8#

I. INTRODUCTION

In the last decade, a large body of literature has been devoted to the study of the so
W-algebras. These algebras were first introduced as higher spin extension of the Vi
algebra,1,2 through the operator product expansion~OPE! of the stress-energy tensor and prima
fields in two-dimensional conformal field theory~CFT!. Whenever the OPE of some~primary!
fields is needed for dynamical analysis, the associated CFT provides the computational a
and selects the monomials of the expansion. Since a way of extending the bidimensional c
mal symmetry yields the notion ofW-algebras, in this context CFT arises as a perturbative gro
state around which one expands the theory.W-algebras have been widely used in two-dimensio
physics, such as the 2d anisotorpic oscillator, Coulombian and generalized Hartmann poten
gravitation~W-gravity!, condensed matter~quantum Hall effect!, integrable models~Kurteweg–de
Vries, Toda!, phase transitions in two dimensions, intermediate statistics, and solitary waves
the intrinsic intertwining between internal and space–time symmetries realized in these al
provide an amazing landscape to discuss dynamics in a physical context. The interested re
referred to some review papers such as, e.g., Refs. 3–6, and many others which hav
implicitly quoted for the sake of brevity.

However, it turns out that the OPE mechanism is not the most natural way to get an al
Indeed, the discovery of composition laws in products between quantum fields at coin
points, when inserted in Green functions of complete sets of states, do not allow one to de
algebra. Beyond them, further mathematical properties have to be imposed, so that a
mathematical verifications, spread throughout the literature, have to be performed. In any
the role played by CFT in all the basic aspects ofW-algebras is crucial for these reasons and th
mathematical aspects and geometrical origin are important issues.7

Furthermore, the distinctive feature of the~local! conformal symmetry in two dimensions i
that it provides an infinite number of conservation laws. It turns out that this infinite symmetr
several consequences as was first shown in Ref. 8; a conformal symmetry is a~local! diffeomor-
phism~i.e., a locally smooth and invertible map! which acts on the Hilbert space of the theory
a symmetry.

a!Electronic mail: beppe@genova.infn.it
b!Electronic mail: sel@cpt.univ-mrs.fr
22330022-2488/2000/41(4)/2233/18/$17.00 © 2000 American Institute of Physics
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For all the above-mentioned reasons one can ask whether a more canonical approach,
the ones leading to Noether’s theorem in Lagrangian field theory, or canonical transforma
may provide the construction of a certain type ofW-algebras. Indeed, if we can find some kind
space–time transformations~due to the local character of these algebras! where all the formal
requirements~associativity, existence of inverse, etc.! are fulfilled, then the usual calculatio
artillery of field theory allows a realization of these algebras. In doing so, greater insight int
intrinsic nature of this symmetry could be achieved.

Already Witten9 has suggested that these algebras could have a space–time origin a
plectic diffeomorphisms, and Hull10 gave some examples in terms of diffeomorphisms acting
fields ~the so-calledW-matter!.

In this paper we shall construct some of theseW-algebras fromonly coordinate symmetrieson
the cotangent bundle. In particular, we shall derive generating functions for a very restrictive
of canonical transformations whose reduction will provide in general an infinite chain of sm
changes of coordinates from a background and to new coordinate frames.

In mathematical terms, we shall study a realization of the algebra of diffeomorphisms o
cotangent bundle over a world-sheetS, Diff 0(T* S), which extends theW-algebra. Particular
attention will be devoted to the complex structure mappings induced by these canonical tra
mations.

In Sec. II we shall describe the geometrical approach which will lead to BRS transforma
as they will be given in Sec. III.

The general reduction toW-symmetry will be described in Sec. IV and in particular thew`

symmetry will be derived. Particular attention will be paid to the role of the complex structu
each two-dimensional graded space whose diffeomorphism algebra will generate theWn algebras.
In particular, the generalization of the Beltrami differential parameters will also be discussed
approach will be complementary to those given in Refs. 11–13.

In order to illustrate the construction, we shall discuss theW3 case in Sec. V. Two differen
diffeomorphism symmetries will give rise to two kinds ofW3-algebras, respectively. First,
geometrical meaning will be given for theW3-algebra already discussed by Carvalho, Quei
Villar, and Sorella14 and found through the OPE mechanism by many authors.15 Second, it will be
shown how theW3 algebra16 given by Garajeau, Lazzarini, and Grimm,17 and Ader and
co-workers,18,19 arises from the construction.

II. THE GEOMETRICAL APPROACH

Given a smooth compact 2d-surfaceS, we shall right away choose prescribed local comp
analytic coordinates (z,z̄). On the smooth cotangent bundleT* S, we will use throughout the
paper local adapted complex coordinates (z,z̄;yz ,ȳz̄), with fiber coordinates (yz ,ȳz̄)

20 for the
natural coframe associated with the holonomic coordinates (z,z̄). The former will be denoted by
~z,y!. The canonical one-form,u on T* S then is locally written in the local chartU(z,y) of T* S,

uuU~z,y!
5yzdz1 ȳz̄dz̄. ~II.1!

The fundamental two-form,V[du, reads in local adapted coordinates onT* S,

VuU~z,y!
[dyz∧dz1dȳz̄∧dz̄, ~II.2!

and is closed. By Stokes theorem, one also has

E
S
V5E

]S
u, ~II.3!

which vanishes ifS is without boundary.
Let us now consider a smooth change of local coordinates onT* S, (Z,Z̄YZ ,ȲZ̄), or ~Z,Y! for

short. The canonical form then locally reads
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uuU~Z,Y!
5YZdZ1ȲZ̄dZ̄, ~II.4!

and the corresponding fundamental two-form,

VuU~Z,Y!
5du5dYZ∧dZ1dȲZ̄∧dZ̄. ~II.5!

This smooth change of local coordinates onT* S turns out to be a canonical transformation if th
fundamental two-form remains invariant, which means that, onU(z,y)ùU(Z,Y) ,

VuU~z,y!
5VuU~Z,Y!

. ~II.6!

This condition selects particular coordinate transformation laws which are usually called can
transformations.21 Equation~II.6! implies that onU(z,y)ùU(Z,Y) ,

uuU~z,y!
2uuU~Z,Y!

5dF, ~II.7!

whereF is a generating function in the base coordinates (z,z̄,Z,Z̄) on pU(z,y)ùpU(Z,Y) , which is
diffeomorphic toR23R2, andp is the projection onS. It will be however more convenient to us
the local coordinates~z,Y! by introducing the generating functionF(z,Y) through a Legendre
transformation ofF,

dF~z,Y![d~F~z,Z!1YZZ1ȲZ̄Z̄!5yzdz1 ȳz̄dz̄1dYZZ1dȲZ̄Z̄. ~II.8!

The functionF(z,Y) is the generating function of the canonical transformation (z,y)→(Z,Y). It
is locally defined~up to a total derivative! in the independent coordinates~z,Y! of the smooth
trivial bundleS3R2 and has a nonsingular Hessian,

I ]2F

]z]YIÞ0.

On S3R2 the total differential is

d5dz]z1dz̄]̄ z̄ 1dYZ

]

]YZ

1dȲz̄

]

]ȲZ̄

[dz1dYZ
, ~II.9!

andd250 yieldsdz
25dYZ

2 5dzdYZ
1dYZ

dz50, or in local coordinates,

F]z ,
]

]YZ
G50, F ]̄ z̄ ,

]

]YZ
G50, ~II.10!

with the complex conjugate expressions. Sinced2F50 we get the important identities

]̄yz5] ȳz̄ ,
]

]ȲZ̄

Z5
]

]YZ

Z̄,
]

]YZ

yz5]Z,
]

]ȲZ̄

yz5]Z̄ ~II.11!

~and their c.c.!. ~From now on, we shall reserve]’s for ][]z , ]̄[]̄ z̄ .) The generating functionF
induces the following canonical transformation defined by

~z,z̄!5~z,z̄!, yz~z,Y!5]F~z,Y!, ~II.12!

Z~z,Y!5
]

]YZ
F~z,Y!, ~YZ ,ȲZ̄!5~Y2 ,ȲZ̄!, ~II.13!
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also with the complex conjugate coordinates. On account of this choice of generating fun
((z,z̄);yz ,ȳz̄) becomes a family of local smooth sections of the cotangent bundleT* S param-
etrized byY and overpU(z,y)ùpU(Z,Y) .

As is well known, by the implicit function theorem, Eq.~II.12! is locally solved inY(z,y) and
plugging into Eq.~II.13! one ends with

Z~z,y!5S ]

]YZ
F~z,Y! D U

Y5Y~z,y!

. ~II.14!

One also checks that

uuU~z,y!
5dzF~z,Y!uY5Y~z,y! , ~II.15!

where the one-form,dzF(z,Y), on S3R2, is evaluated on a solutionY(z,y) of Eq. ~II.12!.
Accordingly, the fundamental two-form simply reads

VuU~z,y!
5duuU~z,y!

5dy~dzF~z,Y!uY5Y~z,y!!5~dYdzF~z,Y!!uY5Y~z,y! , ~II.16!

where the right-hand side may be viewed as the restriction onto solutionsY(z,y) of a two-form
exact on each factor of the productS3R2. An important remark is in order. Due tod2F50, the
two-formsdYZ

Z∧dYZ1dYZ
Z̄∧dȲZ̄ or dzyz∧dz1dzȳz̄∧dz̄ identically vanish inV. This yields two

very particular classes of canonical transformations, in particular, those which allow repara
zations ofZ(z,Y) in the YZ fiber coordinate only. One has the following theorem:

Theorem 1: On the smooth trivial bundleS3R2, the vertical holomorphic change of loca
coordinates,

Z~~z,z̄!,~YZ ,ȲZ̄!!→Z~~z,z̄!,F~YZ!,ȲZ̄!, ~II.17!

where F is a holomorphic function in YZ , while the horizontal holomorphic change of loc
coordinates,

yz~z,z̄,~YZ ,ȲZ̄!!→yz~ f ~z!,z̄,~YZ ,ȲZ̄!!, ~II.18!

where f is a holomorphic function in z, are both canonical transformations.
The latter type of canonical transformations states that the fundamental two-form re

unchanged under local holomorphic changes of the localz coordinate on the basis, namely hol
morphic changes of charts. In the former, one can restrict oneself to a very particular situ
Since any smooth change of local complex coordinates on the base Riemann surfaceS, (z,z̄)
→(Z(z,z̄),Z̄(z,z̄)), can be obtained by the generating function,

F~z,Y!5Z~z,z̄!YZ1Z̄~z,z̄!ȲZ̄ , ~II.19!

one may consider more generally onS3R2 the following holomorphically split generating func
tion in the vertical direction, namely,

F~z,Y!5F1~~z,z̄!,YZ!1F̄1~~z,z̄!,ȲZ̄!. ~II.20!

Considering the expansion aroundYZ5ȲZ̄50, the generating functionF will be written in
formal power series,
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F~z,Y!5 (
n>1 F 1

n!
YZ

nS ]

]YZ
D n

F1~z,Y!U
YZ50

G1 (
n>1 F 1

n!
Ȳ

Z̄

nS ]

]ȲZ̄
D n

F̄1~z,Y!U
ȲZ̄50

G
[ (

n>1
@YZ

nZ~n!~z,z̄!#1 (
n>1

@Ȳ
Z̄

n
Z̄~n!~z,z̄!#, ~II.21!

where we have setF(z,Y)uYZ ,ȲZ̄5050 @setting ratherF(z,Y)uYZ ,ȲZ̄505F0(z,z̄), induces that
one-formy is defined up to the coboundarydF0 . Also F is connected to the identity mapzYZ

1 z̄ȲZ̄# and introduced together with its complex conjugate counterpart,

Z~n!~z,z̄![F 1

n! S ]

]YZ
D n

F1~z,Y!GU
YZ50

~II.22!

as the jet coordinates ofF at Y50 with respect toY parametrized by (z,z̄). Making use of these
jet coordinates will provide a new scenario for generatingW-algebras. Note also that takingY
50 impliesy50.

We shall now introduce some quantities which will be useful in the sequel. Let us den

l~z,Y!5]z

]

]YZ
F~z,Y!, l~z,Y!m~z,Y!5 ]̄ z̄

]

]YZ
F~z,Y!,

~II.23!

l̄~z,Y!5 ]̄ z̄

]

]ȲZ̄

F~z,Y!, l̄~z,Y!m̄~z,Y!5]z

]

]ȲZ̄

F~z,Y!.

Before being restricted to the solutionsY5Y(z,y), the globally defined fundamental two-form
~II.16! can be rewritten in the~z,Y! independent local coordinates,

V~z,Y!5~ldYZ1l̄m̄dȲZ̄!∧dz1~ l̄dȲZ̄1lmdYZ!∧dz̄

5dYZ∧l~dz1mdz̄!1dȲZ̄∧l̄~dz̄1m̄dz! ~II.24!

from which one can read off by construction

dzZ~z,Y!5l~z,Y!~dz1m~z,Y!dz̄!,
~II.25!

dYyz~z,Y!5l~z,Y!S dYZ1
l̄~z,Y!m̄~z,Y!

l~z,Y!
dȲZ̄D

~and the c.c. expressions!. The latter reveal a parametrization of complex structures by a Belt
differential depending on the vertical coordinateY, m(z,Y), on the base surfaceS according to the
complex coordinates (z,z̄), and by@ l̄(z,Y)m̄(z,Y)#/@l(z,Y)# on the vertical fiber when (YZ ,ȲZ̄)
complex coordinates are used. The restriction conditiondVuY5Y(z,y)50 gives
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dVuU~z,y!
5 ]̄l~z,Y!dz̄∧dz∧dYZ1 ]̄~ l̄~z,Y!m̄~z,Y!!dz̄∧dz∧dȲZ̄1]~l~z,Y!

3m~z,Y!!dz∧dz̄∧dYZ1]l̄~z,Y!dz∧dz̄∧dȲZ̄1dȲZ̄∧
]

]ȲZ̄

~l~z,Y!

3~dz1m~z,Y!dz̄!!∧dYZ1dYZ∧
]

]YZ

~ l̄~z,Y!~dz̄1m̄~z,Y!dz!!∧dȲZ̄50,

~II.26!

and yields the Beltrami identities,

]̄l~z,Y!5]~m~z,Y!l~z,Y!!,
]

]ȲZ̄

l~z,Y!5
]

]YZ

~ l̄~z,Y!m̄~z,Y!!, ~II.27!

together with their complex conjugate expressions. The Liouville theorem follows from

detU]Z~z,Y!

]z U5l~z,Y!l̄~z,Y!~12m~z,Y!m̄~z,Y!!5detU]y~z,Y!

]Y U. ~II.28!

Therefore, one can consider two distinct smooth changes of local coordinates which are
strictly related through the given generating functionF. The former on the base (z,z̄)→(Z,Z̄) for
fixed (YZ ,ȲZ̄), and the latter on the fiber over (z,z̄), (yz ,ȳz̄)→(YZ ,ȲZ̄),

Accordingly, the transformation laws of the derivative operators on each factor of the ba
on the cotangent fiber, respectively, read

]Z5
]z2m̄~z,Y!]̄ z̄

l~z,Y!~12m~z,Y!m̄~z,Y!!
, ~II.29!

]

]YZ
uY5Y~z,y!5l~z,Y!S ]

]yz
1m~z,Y!

]

] ȳz̄
D U

Y5Y~z,y!

[l~z,Y!uY5Y~z,y!Dz ~II.30!

~with their c.c. expressions! and where the combinationDz of the vertical derivatives with respec
to the (yz ,ȳz̄) fiber coordinates has been introduced. First, it has to be noted that Eq.~II.27! infers
the following important identity;

Dz ln l̄~z,Y!uY5Y~z,y!5
D̄z̄m~z,Y!uY5Y~z,y!1m~z,Y!uY5Y~z,y!Dzm̄uY5Y~z,y!~z,Y!

12m~z,Y!uY5Y~z,y!m̄~z,Y!uY5Y~z,y!
, ~II.31!

with, of course, the c.c. formula, and second, from Eq.~II.10! one gets

@]z ,Dz#52]z logl~z,Y!uY5Y~z,y!Dz,
~II.32!

@ ]̄ z̄Dz#52 ]̄ z̄ logl~z,Y!uY5Y~z,y!Dz52~]m~z,Y!uY5Y~z,y!Dz2m~z,Y!uY5Y~z,y!@]z ,Dz# !

~and the c.c. expressions!, and

@Dz,D̄z̄#5~Dzm̄~z,Y!uY5Y~z,y!!
]

]yz
2~D̄z̄m~z,Y!uY5Y~z,y!!

]

] ȳz̄
, ~II.33!

from which one verifies thatyz and ȳz̄ turn out to be independent fiber coordinates,
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F ]

]yz
,

]

] ȳz̄
G50. ~II.34!

III. THE SMOOTH DIFFEOMORPHISM ACTION

So far we have considered canonical transformations as changes of local coordinates
cotangent bundleT* S while those generated by holomorphically split generating functions in
vertical coordinates have been preferred. Since our strategy amounts to choosing~z,Y! as indepen-
dent local coordinates with generating functionF(z,Y), it is recalled thatyz5]F(z,Y) defines a

section of the cotangent bundleT* S→
p

S. One may wonder howF(z,Y) is affected by the action
of smooth diffeomorphisms of the trivial bundleS3R2 as a manifold with coordinates~z,Y!. In
order to implement the diffeomorphism action, the BRS differential algebra setting will be u
see, e.g., Ref. 22. We consider the action of smooth diffeomorphisms homotopic to the id
map,w t5 idS1tc1o(t), where

c5jz~z,Y!]1j z̄~z,Y!]̄1hz~z,Y!
]

]YZ

1h̄ Z̄~z,Y!
]

]ȲZ̄

[j•]1h•
]

]Y

is the smooth Faddeev–Popov ghost associated with vector field with respect to the back
complex coordinates (z,Y), sz5sY50. ~Mathematically speaking,c is the generator of the Grass
mann algebra of the dual of the Lie algebra of smooth differomorphisms.! The corresponding
infinitesimal action on fields over the cotangent bundle is obtained by a~graded! Lie derivative
encoded in a nilpotent BRS operationS[Lc5 i cd2dic , S250.

Then at the infinitesimal level, the BRS variation ofF(z,Y) is locally written as

SF~z,Y!5LcF~z,Y!5j~z,Y!•y~z,Y!1h~z,Y!•Z~z,Y![L~z,Y!, ~III.1!

whereL(z,Y) is a Grassmann function subject toSL(z,Y)50. The variation of the fundamenta
two-form ~II.16! in U(z,y),U(Z,Y) is written as

SV~z,Y!5dYZ
dzL~z,Y!, ~III.2!

and for the canonical one-form one has, by virtue of Eq.~II.15!,

SuuU~z,y!
5dzL~z,Y!uY5Y~z,y! ,

~III.3!

SuuU~Z,Y!
5FdS YZ

]

]YZ

L~z,Y!1ȲZ̄

]

]ȲZ̄

L~z,Y!D 2dYZ
L~z,Y!GU

z5z~Z,Y!

in such a way that the invariance ofV andu is written as

SE
S
V5SE

]S
u50. ~III.4!

To the general canonical transformations given by Eqs.~II.12! and~II.13! preserving the symplec
tic form V as stated in Eq.~II.6!, there will, respectively, correspond the infinitesimal variatio

Syz
~z,Y!5]zL~z,Y!, SZ~z,Y!5

]

]YZ
L~z,Y![YZ~z,Y!, ~III.5!
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and their complex conjugates. The latter is the infinitesimal transformation of the new

holomorphic coordinateZ in terms of the ghost vectorc5YZ]Z1Y Z̄] Z̄ expressed in the new
system (Z,Z̄). We also have

Sl~z,Y!5
]

]YZ

]zL~z,Y!, S~ l̄~z,Y!m̄~z,Y!!5
]

]ȲZ̄

]zL~z,Y!. ~III.6!

In order to restore the explicit dependence in theY coordinates, from Eqs.~III.5! and~II.30!, one
defines

SZ~z,Y![YZ~z,Y!5
]

]YZ
L~z,Y![l~z,Y!C~z,Y!, ~III.7!

so that

C~z,Y!5
1

l~z,Y!
YZ~z,Y!. ~III.8!

We now restrict ourselves to the solutionsY5Y(z,y) according to the strategy defined in E
~II.30!,

C~z,Y!uY5Y~z,y!5Dz~L~z,Y!uY5Y~z,y!!5c~z,y!1m~z,Y!uY5Y~z,y!c̄~z,y!, ~III.9!

where we have set

c~z,y!5
]

]yz
~L~z,Y!uY5Y~z,y!!, c̄~z,y!5

]

] ȳz̄
~L~z,Y!uY5Y~z,y!!. ~III.10!

Thus Eq.~III.8! when restricted to the solutionsY5Y(z,y) is given by ~III.9! in terms of a
derivative of L with respect the background (yz ,ȳz̄) local fiber coordinates. This ansatz is
course strongly supported by the implicit function theorem which is supposed to be understo
now. Moreover, one has the following identity:

@S,Dz#52C~z,Y!]z logl~z,Y!Dz2]C~z,Y!Dz5C~z,Y!@],Dz#2]C~z,Y!Dz, ~III.11!

which yields the following variations:

Sl~z,Y!5]~l~z,Y!C~z,Y!!, ~III.12!

Sm~z,Y!5C~z,Y!]m~z,Y!2m~z,Y!]C~z,Y!1 ]̄C~z,Y!, ~III.13!

SC~z,Y!5C~z,Y!]C~z,Y!, ~III.14!

Sc~z,y!5~c~z,y!]1 c̄~z,y!]̄ !c~z,y! ~III.15!

~and their c.c. expressions!.

IV. TOWARD A W-ALGEBRA PRESENTATION

We have previously chosen canonical transformations described by the change of loca
plex coordinates parameterized byY,

Z~z,z̄!→Z~~z,z̄!,YZ!5Z~z,z̄!1 (
n<2

nZ~n!~z,z̄!YZ
n21, ~IV.1!
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whereZ(n)(z,z̄) has been defined in Eq.~II.22!. The choice ofYZ as an independent variable
accordingly gives that the mappings,

~z,z̄!→~Z~n!,Z̄~n!!, n>1, ~IV.2!

generate a tower of smooth changes of local complex coordinates on the base Riemann
each of which will be shown to be local solutions of a Beltrami-type-equation.

A. The complex structures underlying the Z „n … local complex coordinates

It is now shown how each (Z(n),Z̄(n)) coordinate defines new complex coordinates pertain
to a complex structure. Indeed, by construction one can write

dzZ
~n!~z,z̄!5F 1

n! S ]

]YZ
D n

]F~z,Y!dz1
1

n! S ]

]YZ
D n

]̄F~z,Y!GU
YZ50,ȲZ̄50

[lz
Z~n!

~z,z̄!@dz1m z̄
z~~z,z̄!,n!dz̄#, ~IV.3!

where we have introduced

lz
Z~n!

~z,z̄![F 1

n! S ]

]YZ
D n

]F~z,Y!GU
YZ50,ȲZ̄50

[]Z~n!~z,z̄!, ~IV.4!

lz
Z~n!

~z,z̄!m z̄
z~~z,z̄!,n!5F 1

n! S ]

]YZ
D n

]̄F~z,Y!GU
YZ50,ȲZ̄50

[]̄Z~n!~z,z̄!. ~IV.5!

Since the generating function is supposed to be complex analytic inY, both the convergence of th
series~II.21! and the requirement that the mappings (z,z̄)→(Z(n),Z̄(n)) preserve the orientation
lead to the conditionum z̄

z((z,z̄),n)u<1.
A Beltrami identity is immediately recovered for each leveln,

F 1

n! S ]

]YZ
D n

]]̄F~z,Y!GU
YZ50,ȲZ̄50

5 ]̄lz
Z~n!

~z,z̄!5]~lz
Z~n!

~z,z̄!m z̄
z~~z,z̄!,n!!. ~IV.6!

The expression forlz
Z(n)

is nonlocal inm z̄
z((z,z̄),n). It is now clear that the quantitym z̄

z((z,z̄),n)
encodes the complex structure of the spaceZ(n). From the very definitions, a direct computatio
yields the following expansion:

m z̄
z~n,~z,z̄!!5 (

k51

n

v~k21!~n,~z,z̄!!m z̄
~k!~z,z̄!, ~IV.7!

in terms of local (2n,1)-conformal fields (m z̄
z(n,(z,z̄))5m z̄

(1)(z,z̄)[m(z,z̄) for n51),

m z̄
~n!~z,z̄!5F 1

n!
~Dz!n]̄F~z,Y!GU

YZ ,ȲZ̄50

[F 1

n!
~Dz!n21m~z,Y!GU

YZ ,Z̄Z̄50

~IV.8!

and with coefficients (k21,0)-conformal fields, nonlocal in them z̄
z((z,z̄),m) of ordersm<n,

v~k21!~n,~z,z̄!![k! S )
j 51

k
lz

~Z(pj )aj )
~z,z̄!

aj !lz
Z~n!

~z,z̄!
DU

(
i 51
k ai5k, and (

i 51
k pi pi5n,

with n>p1.¯.pn>0

. ~IV.9!
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with v0(z,z̄)51. From Eq.~IV.7! we can state the following theorem:
Theorem 2: The complex structure of the(Z(n),Z̄(n)) can be described by paramete

m z̄
z((z,z̄),n) which extend to these spaces the Beltrami multipliers. The parametersm z̄

z((z,z̄),n)
(for a given n), depend in a nonlocal way on their partnersm z̄

z((z,z̄), j ) for j <n.
This important geometrical statement is the basis for the physical discussion of the pro
The previous arguments show that the quantitiesm z̄

(n)(z,z̄) parametrize the change of th

complex structure of the (Z(n),Z̄(n)) in terms of the indexn.
The role of the parametersm z̄

( j )((z,z̄)) can be understood from Eq.~IV.7! since it is easy to

realize that the coordinate system (Z(n),Z̄(n)) will have a local complex structurem as (Z,Z̄) does,
if and only if m z̄

( j )((z,z̄))50 for 2< j ,n.
Obviously few examples can better clarify this point; this will be performed in the m

simple cases in Sec. IV B.
We do not pretend to exhaust and to classify all theW-algebras in our context~more examples

and a deeper insight into critical situations will be needed!, but we hope to reduce to a uniqu
geometrical setting the more commonW-algebras studied in the literature.

B. The W-symmetry

We derive now aW-symmetry from the previous construction combining both the diffeom
phism action and the canonical transformations via the BRS machinery. For eachn we define the
diffeomorphism action on the local complex coordinateZ(n) by

SZ~n!~z,z̄![Y~n!~z,z̄![F 1

n! S ]

]YZ
D n

L~z,Y!GU
YZ ,ȲZ̄50

, ~IV.10!

which are invariant ghost functions since theS nilpotency gives

SY~n!~z,z̄!50. ~IV.11!

In more detail, one has

Y~n!~z,z̄!5F 1

n! S ]

]YZ
D n21

~l~z,Y!C~z,Y!!GU
YZ ,Z̄Z̄50

5lz
Z~n!

~z,z̄!(
k51

n

v~k21!~n,~z,z̄!!C~k!~z,z̄!,

~IV.12!

where we have introduced the following (2n,0)-conformal ghost fields:

C~n!~z,z̄!5F 1

n!
~Dz!nL~z,Y!GU

YZ ,Z̄Z̄50

, n51,2,..., C~1!~z,z̄![C~z,z̄!, ~IV.13!

and where the nonlocal coefficientsvk21(n,(z,z̄)) have been previously introduced in Eq.~IV.9!.
From the very definitions one obtains the obvious law of transformation under diffeo

phisms,

SC~n!5(
r 51

n

rC~r !]zC~n2r 11!. ~IV.14!

Moreover, one can see that the (2n,1)-conformal fields~IV.8! are also given by

m z̄
~n!5

]

] c̄
C~n!, ~IV.15!
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so that by a trick related to diffeomorphisms,23 namely,$S,]/] c̄%5 ]̄, one easily obtains their BRS
variations,

Sm z̄
~n!~z,z̄!5 ]̄C~n!~z,z̄!1(

r 51

n

r ~C~r !~z,z̄!]m z̄
~n2r 11!~z,z̄!2m z̄

~r !~z,z̄!]C~n2r 11!~z,z̄!!.

~IV.16!

For the nonlocal fields one gets

Slz
Z~n!

~z,z̄!5F 1

n! S ]

]YZ
D n

]L~z,Y!GU
YZ ,Z̄Z̄50

5F]S 1

n! S ]

]YZ
D ~n21!

~l~z,Y!C~z,Y!! D GU
YZ ,ȲZ̄50

[]~lz
Z~n!

~z,z̄!Kz~~z,z̄!,n!!, ~IV.17!

where the new ghost vector field,

Kz~~z,z̄!,n!5 (
k51

n

v~k21!~n,~z,z̄!!C~k!~z,z̄! ~IV.18!

has as variation,

SKz~~z,z̄!,n!5Kz~~z,z̄!,n!]Kz~~z,z̄!,n!, ~IV.19!

and since by construction

S @lz
Z~n!

~z,z̄!m z̄
z~~z,z̄!,n!#5S]̄Z~n!5 ]̄Y~n!5 ]̄~lz

Z~n!
~z,z̄!Kz~~z,z̄!,n!!, ~IV.20!

one finally gets

Sm z̄
z~~z,z̄!,n!5Kz~~z,z̄!,n!]m z̄

z~~z,z̄!,n!2m s̄
z~~z,z̄!,n!]Kz~~z,z̄!,n!1 ]̄Kz~~z,z̄!,n!.

~IV.21!

For eachn a diffeomorphism BRS structure with a ghostKz((z,z̄),n) ~nonlocal in the complex
structure parameters! can be put into evidence.

While the casen51 identifies the diffeomorphism symmetry, we show now that for e
sector of the gradingn51,... we shall individualize aW symmetry.

The new ghost fields defined by

c~p,q!~z,z̄!5F 1

p!

1

q! S ]

]yz
D pS ]

] ȳz̄
D q

L~z,Y!GU
YZ ,ȲZ̄50

~IV.22!

with c(1,0)(z,z̄)5cz(z,y)uy50 , transform as

Sc~p,q!~z,z̄!5 (
r 50,...,p
s50,...,q
r 1s.0

~rc ~r ,s!~z,z̄!]zc
~p2r 11,q2s!~z,z̄!1sc~r ,s!~z,z̄!]̄ z̄c

~p2r ,q2s11!~z,z̄!!.

~IV.23!
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Notice that the variations ofc(p,q) contain the fieldsc(r ,s) with degreesr<p and s<q. The
previous transformations~IV.23! induce the following commutation relations, for currents defin
through the nilpotent functional BRS operator,

d[E
S
dz̄∧dzS c~p,q!~z,z̄!T~p,q!~z,z̄!1Sc~p,q!~z,z̄!

d

dc~p,q!D , ~IV.24!

namely,$d,d%50 leads to

@T~p,q!~z,z̄!,T~r ,s!~z8,z̄8!#5p]z8d
~2!~z82z!T~p1r 21,q1s!~z,z̄!2r ]zd

~2!~z2z8!T~p1r 21,q1s!

3~z8,z̄8!1q]̄z8d
~2!~z82z!T~p1r ,q1s21!~z,z̄!2s]̄ z̄d

~2!

3~z2z8!T~p1r ,q1s21!~z8,z̄8!, ~IV.25!

which turns out to be a realization of the so-calledW`-algebra according to Ref. 10, if no limit i
put on the grading indices. Otherwise, if a truncation criterium is given@by fixing a suitable upper
limit on the series in Eq.~II.21!# a Wn-algebra~with n obviously finite! can be constructed as wi
be seen in Sec. V for the most simple examples.

V. THE W3 EXAMPLE

In the literature there exist two types ofW3-algebra, namely the former is obtained by a fie
realization10,14 which is on-shell, while the latter is given by reduction.7,15–17 It will be shown
down in the following how those two realizations ofW3-algebra will be reobtained from ou
construction only grounded on the combination of canonical transformations and diffeo
phisms.

A. The chiral W3-gravity

We have seen in Sec. IV how the sequences of smooth changes of local complex coor

~z,z̄!→~Z~n!,Z̄~n!!, n51,2,...,̀ ~V.1!

generate theW` algebra. By the way we can arbitrarily truncate the series to a nonempty s
~or at least only one! of these invariance laws and see the physical consequences it will imply
simplest example is obtained by considering only the smooth change of local complex coord

~z,z̄!→~Z~2!,Z̄~2!!, ~V.2!

while neglecting the previous one of the lower order,

~z,z̄!→~Z,Z̄!. ~V.3!

This will show, upon imposing the diffeomorphism invariance, the coordinate origin of the c
w3 algebra previously obtained by Carvalho, Queiroz Villar, and Sorella.14

Following the notation of Sec. IV we have successively

lz
Z~2!

5]Z~2!, l5]Z, ~V.4!

SZ~2!5Y~2!5lz
Z~2!C1l2C~2![lz

Z~2!Kz~z!,
~V.5!

Slz
Z~2!

5]Y~2!5]~lz
Z~2!Kz~2!!,
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Kz~2!5C1
~lz

Z!2

lz
Z~2! C~2![C1

bz

2
C~2!, ~V.6!

where we have set

bz5
2~lz

Z!2

lz
Z~2! . ~V.7!

The nilpotency condition onSZ(2) gives

SKz~2!5Kz~2!]Kz~2!. ~V.8!

The decomposition of the ghostKz(2) turns out to be so useful to see how the underly
coordinateZ behaves under the cotangent diffeomorphisms.

In fact while theC term is the usual ghost of the (z,z̄)→(Z,Z̄) mapping, the (bz/2)C(2) term
upgrades the diffeomorphism to the (z,z̄)→(Z(2),Z̄(2)) level. The parameterbz does contain the
relative change of theZ coordinate with respect to the background (z,z̄) used to describe the
(Z(2),Z̄(2)) invariance. So the independent study of the behavior ofKz(2) and (bz/2)C(2) under
Eq. ~V.8! gives more details on the realization of the diffeomorphism. In order to have a
precise geometrical information we shall fix theC(2) BRS transformation to be

SC~2!5C]C~2!12C~2!]C, ~V.9!

in order to deduce the consistent transformation ofbz and to derive the consistent breaking of t
symmetry (z,z̄)→(Z,Z̄).

Now, in terms of theK(2) ghost the previous Eq.~V.9! can be written as

SC~2!5Kz~2!]C~2!12C~2!]Kz~2!2 3
2bC~2!]C~2!, ~V.10!

where Eq.~V.6! has been used. In particular we get

S~C~2!]C~2!!5Kz~2!]~C~2!]C~2!!23C~2!]C~2!]Kz~2!. ~V.11!

The nilpotency condition onC(2) reads

05S2C~2!5~SKz~2!2Kz~2!]Kz~2!!]C~2!22C~2!]~SKz~2!

2Kz~2!]Kz~2!!2 3
2~Sb2]~bKz~2!!!C~2!]C~2!. ~V.12!

Modifying in a consistent way the BRS transformations of bothC and l while preserving Eq.
~V.6!, allows one to set

SC5C]C1X, ~V.13!

where, from the nilpotency condition,

SX5C]X2]CX. ~V.14!

Now from S2C(2)50 we obtain

X]C~2!52C~2!]X, ~V.15!

which can be solved by setting

X5C~2!]C~2! 16
3 T1a~]C~2!]2C~2!2 2

3C~2!]3C~2!!, ~V.16!
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where we have been forced to introduce a spin~2, 0!-conformal fieldT. SinceX has to satisfy Eq.
~V.14!, T is subject to the consistency condition

ST5C]T12]CT1]C~2!W1 2
3C~2!]W1a]3C, ~V.17!

which allows us to introduce a spin~3, 0!-conformal fieldW whose BRS behavior can be calc
lated from the nilpotency condition applied on~V.17!. To sum up, we have computed the mo
general deformation of theC ghost field compatible with the fixed variation~V.9! of C(2).

From the very definition~V.6! of Kz(2), andafter using~V.10!, the variationSKz(2) can be
expressed in terms of both theKz(2) andC(2) ghosts only. One gets

~SKz~2!2K~z!~2!]Kz~2!!2S SS bz

2 D2]S bz

2
Kz~2! D D C~2!5X2C~2!]C~2!S bz

2

2 D . ~V.18!

Requiring the diffeomorphism symmetry implemented by~V.8!, on the one hand, Eq.~V.12!
reduces to

~C~2!]C~2!!@S~bz!2]~bzKz~2!!#50 ~V.19!

and on the other hand, by plugging~V.16! into ~V.18!, one gets

C~2!S SS bz

2 D2]S bz

2
Kz~2! D D5C~2!]C~2!S 16

3
T2

bz
2

2 D 1aS ]C~2!]2C~2!2
2

3
C~2!]3C~2!D .

~V.20!

A direct comparison shows thata50, and thus

S bz

2
5]S bz

2
Kz~2! D1]C~2!S 16

3
T2

bz
2

2 D 1SC~2!, ~V.21!

whereS is a ghost graded zero quadratic differential which labels aF–P ambiguity. The nilpo-
tency allows one to compute the BRS variation ofS. However, as mentioned previously, the latt
will be exhibited up to aF–P ambiguity and so on. The closure of a minimal BRS algebra w
be achieved by imposing

16

3
T5

bz
2

2
, S50, ~V.22!

so that we are left with

S bz

2
5]S bz

2
Kz~2! D . ~V.23!

From Eq.~V.17! we derive

W5S 3

2D 3/2S bz

4 D 3

, ~V.24!

showing that both the fieldsT andW are non local fields. Finally for the sake of consistency, o
checks,

S~bKz~2!!50. ~V.25!
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In the case~V.19! the smooth change of complex coordinates (z,z̄)→(Z(2),Z̄(2)) will be
preserved under diffeomorphisms and the ghostKz(2) transforms as a factorized ghost vect
field, while

Slz
Z5]~lz

ZKz~2!!. ~V.26!

The parameterlz
Z is compatible with the complex structure defined by theZ(2) coordinates,

and the geometrical quantitieslz
Z ,lz

Z(2)
are covariant; in particular the object:

J[
lz

Z~2!

lz
Z ~V.27!

transforms as

SJ5Kz~2!]J. ~V.28!

The latter implies

~ ]̄2m~~z,z̄!,2!]!J[
]

]Z~2!

J50 ~V.29!

so thatJ is holomorphic inZ(2). So we can parametrize:

l5
b

2J , lz
Z~2!

5
b

2J2
. ~V.30!

In conclusion the well-defined~chiral! BRS algebra~already treated in Ref. 14 in a BR
framework!, defined by

SC5C]C1 1
2b

2C~2!]C~2!, SC~2!5C]C~2!12C~2!]C, Sb5]~b~c1 1
2C~2!b!! ~V.31!

describes a diffeomorphism symmetry hidden in the choice of the parameters which lead
diffeomorphism ghostKz(2)5C1(bz/2)C(2).

The bz parameter describes the relative tuning between the change of complex coord
(Z,Z̄)→(Z(2),Z̄(2)) with respect to the same (z,z̄) background, namely

bz5
]Kz~2!

]C~2! . ~V.32!

B. The induced W3-gravity

According to Theorem 1, one considers as a canonical transformation the following ve
smooth change of coordinatesZ(z,Y)→Z8(z,Y), whereZ(z,Y)5]YZ

F(z,Y) and whereZ8(z,Y)
is defined by the following replacement:

Z~2!~z,z̄!→Z~2!~~z,z̄!,YZ![
1

2 S ]

]YZ
D 2

F~z,Y!5 (
n>0

~n12!~n11!

2
YZ

nZ~21n!~z,z̄!

~V.33!

in the expansion~IV.1! of the Z(z,Y) coordinate. One has

Z8~z,Y!5Z~z,z̄!12YZZ~2!~z,z̄!1 (
n>2

~n11!2YZ
nZ~n11!~z,z̄!, ~V.34!
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showing that the corresponding generating functionF8 coincides withF up to second order in
YZ . Furthermore,Z(2)((z,z̄),YZ) has a BRS variation

SZ~2!~~z,z̄!,YZ!5
1

2 S ]

]YZ
D 2

L~z,Y!

[
1

2 (
n>0

~n12!~n11!YZ
nY~n12!~z,z̄!

5lz
Z~2!

~z,z̄!C~z,z̄!1l2~z,z̄!C~2!~z,z̄!1SZ~2!
~~z,z̄!,YZ!

[lz
Z~2!

~~z,z̄!,YZ!K28
z~~z,z̄!,YZ!, ~V.35!

where in complete analogy with the construction given in Sec. III we have

SK28
z~~z,z̄!,YZ!5K28

z~~z,z̄!,YZ!]K28
z~~z,z̄!,YZ!. ~V.36!

Now it is easy to realize that

lz
Z~2!

~~z,z̄!,YZ![]Z~2!(~z,z̄!,YZ5lz
Z~2!

~z,z̄!1 (
n<1

~n12!~n11!YZ
nlz

Z~21n!
~z,z̄! ~V.37!

from which, similar to the previous example, it follows that

K28
z~~z,z̄!,YZ!5C~z,z̄!1

l2~z,z̄!

lz
Z~2!

~~z,z̄!,YZ!
C~2!~z,z̄!1vz~~z,z̄!,YZ!

[C~z,z̄!1
bz8~~z,z̄!,YZ!

2
C~2!~z,z̄!1vz~~z,z̄!,YZ!. ~V.38!

Therefore if we impose the condition Eq.~V.36! together with Eqs.~V.13! and~V.9!, the previous
conditiona50 can be avoided since the BRS variations ofbz8((z,z̄),YZ) andvz((z,z̄),YZ) are at
our disposal for this purpose. We do not write these variations since they are unimportant
treatment. But it has to be noted that in the (z,z̄) plane~with no YZ dependence! only the couple
of ghost fieldsC(z,z̄), C(2)(z,z̄) will survive and whose BRS variations are given by

SC5C]C1C~2!]C~2! 16
3 T1a~]C~2!]2C~2!2 2

3C~2!]3C~2!!,

~V.39!
SC~2!5C]C~2!12C~2!]C,

where for the sake of definitenessT turns out to be a projective connection, in contrast to
quadratic differential constructed in the previous example. The nilpotency condition infers
gether thatT is assigned a well-defined transformation law

ST5C]T12]CT1]C~2!W1 2
3C~2!]W1a]3C, ~V.40!

in terms of a cubic differentialW, whose variation is

SW5C]W13]CW1
2

3
T]~C~2!T!1

a

24
~a]5C~2!1C(2)]3T

110T]3C~2!115]T]2C~2!19]2T]C~2!!, ~V.41!

and finally the nilpotency condition on theW field will be assured only fora51. Thus we get the
well-defined exact differential system,
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SC5C]C1 16
3 C~2!]C~2!T1~]C~2!]2C~2!2 2

3C~2!]3C~2!!,

SC~2!5C]C~2!12C~2!]C,
~V.42!

ST5C]T12]CT124]C~2!W116C~2!]W1]3C,

SW5C]W13]CW1 2
3T]~C~2!T!1 1

24~]5C~2!1C~2!]3T110T]3C~2!115]T]2C~2!19]2T]C~2!!.

This BRS algebra has already been described in a different context by Refs. 17 and 18.

VI. CONCLUSIONS

In this paper we have introduced a systematic approach toW-algebras based on canonic
transformations by means of an abstract symplectic structure. It is however as claimed by
and Hull, the action of diffeomorphisms of the cotangent bundle which generates
W-symmetries. Our construction provides a BRS formulation of a local symmetry which is
ognized to be that ofW-algebras~see Bilal, Fock, and Kogan in Ref. 7, and Refs. 11 and 14–!
but without any care about the OPEs of primary fields. It may also shed some new light o
study of their geometrical structure.7

As shown for theW3 specific examples, variousW-algebras may emerge from the constru
tion. Moreover, one may ask oneself about the link between the truncation procedure in tYZ

variable~which fixes the ‘‘rank’’ of the algebra! and the relative conformal weights of the prima
fields whose OPEs give rise to the algebras. One answer to this question might originate fr
locality principle of QFT and the intrinsic symplectic structure introduced through the cano
quantization scheme. Indeed, by fixing the maximum order of the coframe in theYZ coordinate,
the relative ‘‘field momentum representation’’ in the associated Field theory carries this ope
in its tensorial content, but the mechanism is not completely understood by the authors yet.
paper, we have also presented a possible space–time origin of these algebras which oug
useful in the study of inducedW-gravity. Although most of our discussion has been rather co
plete and general, the absence of a physical-phenomenological framework is the more im
limit of the present treatment.

More examples are needed for further investigations in the role played by such symmet
physics, as recalled in Sec. I. This requires either a Lagrangian or a Hamiltonian appro
which the quantization procedure can be performed according to the physical context. The
will be studied elsewhere.
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Deformations of surfaces associated with integrable
Gauss–Mainardi–Codazzi equations
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Using the formulation of the immersion of a two-dimensional surface into the
three-dimensional Euclidean space proposed recently, a mapping from each sym-
metry of integrable equations to surfaces inR3 can be established. We show that
among these surfaces the sphere plays a unique role. Indeed, under the rigid SU~2!
rotations all integrable equations are mapped to a sphere. Furthermore we prove
that all compact surfaces generated by the infinitely many generalized symmetries
of the sine-Gordon equation are homeomorphic to a sphere. We also find some new
Weingarten surfaces arising from the deformations of the modified Kurteweg–de
Vries and of the nonlinear Schro¨dinger equations. Surfaces can also be associated
with the motion of curves. We study curve motions on a sphere and we identify a
new integrable equation characterizing such a motion for a particular choice of the
curve velocity. © 2000 American Institute of Physics.@S0022-2488~00!02104-6#

I. INTRODUCTION

Let F:V→R3 be an immersion of a domainVPR2 into R3. Let (u,v)PV. The surface
F(u,v) is uniquely defined to within rigid motions by the first and second fundamental forms
N(u,v) be the normal vector field defined at each point of the surfaceF(u,v). Then the triple
$Fu ,Fv ,N% defines a basis ofR3 on S parametrized byF(u,v). The motion of this basis onS is
characterized by the Gauss–Weingarten~GW! equations. The compatibility of these equations
the well-known Gauss–Mainardi–Codazzi~GMC! equations. The GMC equations are coupl
nonlinear partial differential equations for the coefficientsgi j (u,v) anddi j (u,v) of the first and
second fundamental forms. For certain particular surfaces these equations reduce to a sing
a system of integrable equations. The correspondence between the GMC equations and t
grable equations has been studied extensively, see, e.g., Refs. 1–28.

Recently a more systematic approach to surfaces, GMC equations, and integrable eq
has been established by defining surfaces on Lie algebras and on their Lie Groups.1,2 In particular
this approach provides an explicit relation between symmetries of integrable equations an
faces inR3. Let the SU~2! valued functionF(u,v,l) satisfy the Lax pair associated with som
nonlinear integrable equation for the scalar functionu ~see Refs. 29–32!. Define the su~2! valued
function F(u,v,l) by

F~u,v,l!5F21S a~l!
]F

]l
1M ~u,v,l!F1F8~f! D , ~1!

a!Electronic mail: ceyhan@fen.bilkent.edu.tr
b!Permanent address: Department of Mathematics, Imperial College, London, SW72BZ, UK; electronic

a.fokas@ic.ac.uk
c!Electronic mail: gurses@fen.bilkent.edu.tr
22510022-2488/2000/41(4)/2251/20/$17.00 © 2000 American Institute of Physics
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wherea~l! is an arbitrary function of the complex constantl, M (u,v,l) is an arbitrary su~2!
valued function of (u,v),f(u,v) is a symmetry of the nonlinear equation satisfied byu(u,v), and
F8 denotes the Freche´t derivative of F with respect tou. Then F(u,v,l) is the immersion
function of a surface (x1 ,x2 ,x3), in R3,

xi5 f i~u,v,l!, i 51,2,3, F~u,v,l!5 iS i 51
i 53f i~u,v,l!s i , ~2!

wheres i , i 51,2,3, are the Pauli sigma matrices.
The investigation of some of the consequences of Eq.~1! is the main subject of this paper.
In Sec. II we give a short review of some of the results of Refs. 1 and 2 and also show

a5f50 andM is a constant su~2! matrix, then the surface with immersion functionF is a sphere.
In Sec. III we investigate the case thatu satisfies the sine-Gordon equation

]2u

]u]v
5sinu. ~3!

In particular we show the following.~a! If a5M50 and F describes an oriented, compa
connected surface, then this surface is homeomorphic to a sphere. This result gives a
example to the studies of the global properties of the associated surfaces.16–19,33–37~b! If f50 and
M5( ip/2)s1 , wherep is a constant, thenF describes a surface of constant negative curvatu

In Sec. IV we investigate the case whereu satisfies either the elliptic sinh-Gordon or

]2u

]u2 1
]2u

]v2 1
1

4
~H0

2e2u2e22u!50, ~4!

or the Liouville equation. In particular we show that special cases of Eq.~1! can be used to
generate linear Weingarten surfaces.

In Secs. V and VI we use Eq.~1! and Lax pairs associated with the nonlinear Schro¨dinger and
with the modified Korteweg–de Vries~KdV! equations to characterize certain nonlinear Weing
ten surfaces including

2m2H2~m2K2n!5~3m2K14l222n!2, ~5!

K2
2

9
H21

4l2

9m2 50, ~6!

whereK andH denote the Gaussian and mean curvatures, respectively, andm, l, n are constants.
Surfaces can also be constructed from the motion of curves, see Appendices A and B.

VII we study curve motions on a sphere. By choosing a particular velocity vector, we obtai
new integrable equation

u t2uu cosu]u
21 S sinu

~cosu!2 u tD1
1

2
~uu cosu!31cosu@cosu~uu cosu!u#u50. ~7!

Equation~7! reduces to the modified KdV equation in the limit that the curvature of the cu
approaches a constant.

In Sec. VIII we give explicit formulas which associate a curve evolution to a given surf

II. SURFACES OF INTEGRABLE EQUATIONS

In this section we follow the notations of Refs. 1 and 2.
Theorem 2.1: ~Ref. 1! Let U(u,v;l),V(u,v;l),A(u,v;l),B(u,v;l) be su~2! valued differ-

entiable functions ofu, v for (u,v)PV,R2 andlPC. Assume that these functions satisfy

Uv2Vu1@U,V#50, ~8!
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and

Av2Bu1@A,V#1@U,B#50. ~9!

Define an SU~2! valued functionF(u,v;l) and an su~2! valued functionF(u,v;l) by

Fu5UF, Fv5VF, ~10!

and

Fu5F21AF, Fv5F21BF. ~11!

Then for eachl, F(u,v;l) defines a two-dimensional surface inR3,

xj5F j~u,v;l!, j 51,2,3, F5 i (
k51

3

Fksk , ~12!

wheresk are the usual Pauli matrices

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D . ~13!

The first and second fundamental forms ofS are

~dsI!
25^A,A&du212^A,B&du dv1^B,B&dv2, ~14!

~dsII !
25^Au1@A,U#,C&du212^Av1@A,V#,C&du dv1^Bv1@B,V#,C&dv2, ~15!

where

^A,B&52 1
2 trace~AB!, uAu5A^A,A&, ~16!

and

C5
@A,B#

u@A,B#u
. ~17!

A frame on this surfaceS, is

F21AF, F21BF, F21CF. ~18!

The Gauss and mean curvatures ofS are given by

K5det~G!, H5trace~G!, G5S d11 d12

d12 d22
D S g11 g12

g12 g22
D 21

. ~19!

The following theorem gives an explicit construction of functionsA, B and of the immersion
function F from the symmetries of Eqs.~8! and ~10!:

Theorem 2.2: ~Ref. 2! Suppose thatU(u,v) andV(u,v) can be parametrized in terms ofl
and of the scalar functionu(u,v) in such a way that Eq.~8! is equivalent to a single PDE fo
u(u,v) independentof l. This equation, which by definition is calledintegrable PDE, possesses
the Lax pair defined by Eq.~10!. Define the su~2! valued functionsA(u,v,l) andB(u,v,l) by

A5a
]U

]l
1

]M

]u
1@M ,U#1U8f, ~20!
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B5a
]V

]l
1

]M

]v
1@M ,V#1V8f, ~21!

wherea(l) is an arbitrary scalar function ofl, M (u,v;l) is an su~2! valued arbitrary function of
u, v, l, the scalarf is a symmetry of the partial differential equation~PDE! satisfied by the
function u(u,v), and the prime denotes Fre´chet differentiation. Then there exists a surface w
immersionF(u,v;l) defined in terms ofA, B and F by Eqs.~20! and ~21!. Furthermore,F to
within an additive constant, is given by

F5F21S a
]F

]l
1MF1F8f D . ~22!

Example:Let

M5 f 1U1 f 2V1M0 , ~23!

whereM0 is an su~2! valued constant matrix anda(l), f 1(l), f 2(l) are scalar functions of the
arguments indicated. Then Eqs.~20!–~21! and ~22! become

A5a~l!
]U

]l
1

] f 1

]u
U1 f 1

]U

]u
1

] f 2

]u
V1 f 2

]U

]v
1 f 3@M0 ,U#1U8f, ~24!

B5a~l!
]V

]l
1

] f 1

]v
U1 f 1

]V

]u
1

] f 2

]v
V1 f 2

]V

]v
1 f 3@M0 ,V#1V8f, ~25!

F5F21S a
]F

]l
1 f 1]uF1 f 2]vF1M0F1F8f D . ~26!

We now study the surfaces generated by constant matrixM0 which corresponds to constant SU~2!
rotations ofF.

Theorem 2.3:Let A5@M0 ,U# andB5@M0 ,V#, whereM0 is an su~2! constant matrix. Then
K51/uM0u2 andH522e/uM0u, wheree561 anduM0u5A^M0 ,M0&. Hence all such deformed
surfaces are spheres with radiiuM0u.

Proof: It is easy to prove that

@A,B#5aM0 , ~27!

wherea is the scalar defined bya5mW •(uW 3vW ). HeremW , uW , andvW are the corresponding three
vectors of the matricesM05( i /2)( j 51

3 mjs j , U5( i /2)( j 51
3 ujs j , V52( i /2)( j 51

3 v js j . Letting
e5a/uau, we find

C5
e

uM0u
M0 ,

hence

^Au ,C&5^Av ,C&5^Bv ,C&50. ~28!

Using these equations it follows that

di j 52
e

uM0u
gi j . ~29!

Hencedg215(2e/uM0u)I , whereI is the identity matrix. Hence
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K5det~dg21!5
1

uM0u2
, ~30!

H5tr~dg21!52
2e

uM0u
. ~31!

QED

This theorem implies that the rigid SU~2! rotations define a map from all integrable equations
the surface of the sphere with a parametrizationF such that the coefficients of the first fundame
tal form takes the form

gi j 5
1
4 @m2uW i•uW j2~mW •uW i !~mW •uW j !#, ~32!

wherem25mW •mW , anduW i5(uW ,vW ). The immersion function is given byF5F21M0F.

III. DEFORMATION OF SINE-GORDON SURFACES

Consider the motion of the curve with curvaturer5uu and constant torsiont5l. It is shown
in example B.1 that if the velocity of this curve is given by~0,2~1/l!sin u,~1/l!cosu!, the motion
of this curve is characterized by the sine-Gordon equation

]2u

]u]v
5sinu, ~33!

whereu(u,v) is a real scalar function and time is denoted byv. DefineU(u,v,l), andV(u,v,l)
by

U5
i

2
~2uus11ls3!, V5

i

2l
~sinus22cosus3!. ~34!

Let w be a symmetry of Eq.~33!, i.e., letw be a solution of

]2w

]u]v
5w cosu. ~35!

Solutions of ~35! contain the geometrical and generalized symmetries of the sine-Go
equation.38,39 Then for eachw, theorem 2.2~with a50, M50! implies the surface constructe
from

A52
i

2

]w

]u
s1 , B5

i

2l
w~cosus21sinus3!, ~36!

where the immersion function is given byF5F21F8(w). Equation~33! is an integrable equation
and hence it admits infinitely many symmetries usually referred to as generalized symm
Indeed, there exist infinitely many explicit solutions of Eq.~35! in terms ofu and its derivatives.
The first few are

uu ,uv ,uuuu1
uu

3

2
,uvvv1

uv
3

2
,... . ~37!

We now study the surfaces corresponding to these generalized symmetries.
Lemma 3.1:Let S be the surface generated by a generalized symmetry of the sine-Go

equation. That is, letSbe the surface generated byU, V, A, B defined by Eqs.~34!–~36!. The first
and second fundamental forms, the Gaussian, and the mean curvatures of this surface are
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dsI
25

1

4 S wu
2 du21

1

l2 w2 dv2D , dsII
25

1

2 S lwu sinu du21
1

l
wuv dv2D , ~38!

K5
4l2uv sinu

wwu
, H5

2l~wuuv1w sinu!

wwu
. ~39!

An immediate corollary of the above lemma is:
Corollary 3.2: Let S be the particular surface defined in Lemma 3.1 corresponding tw

5uv . This surface is the sphere with

dsI
25

1

4 S sin2 u du21
uv

2

l2 dv2D , dsII
25

l

2 S sin2 u du21
uv

2

l2 dv2D , ~40!

K54l2, H54l. ~41!

Let S be a surface generated by the symmetries of the sine-Gordon equation and defined
mappingF:V→R3. HereV,R2 is defined by the regular solutions of the sine-Gordon equa
~33!. We now present a global result regarding such surfaces.

Theorem 3.3: Let S be a regular surface defined in lemma~3.1! in terms of a generalized
symmetry of the sine-Gordon equation. IfS is an oriented, compact, and a connected surface
it is homeomorphic to a sphere.

Proof: All compact connected surfaces with the same Euler–Poincare characte
homeomorphic.40 For compact surfaces the Euler–Poincare characterx is given by

x5
1

2p E
V
E Adet~g!K du dv. ~42!

Sinceg5detgij5w2wu
2/l2, i , j 51,2, then the integrandAgK in ~42! simply becomes

AgK5luv sinu. ~43!

Hencex is independent of the deformationsw, i.e.,

x5
l

2p E
V
E uv sinu du dv. ~44!

This proves thatx has the same value for all generalized symmetries and hence for all sine-G
deformed surfaces. Thus in order to calculatex it is enough to choose the simplest case. Accord
to Corollary 3.2 the choicew5uv leads to a sphere with radius 1/2l, wherex52. Hence all
deformed surfaces have the Euler–Poincare characterx52. Therefore they are all homeomorph
to a sphere. This completes the proof of the theorem. Q

Compact connected surfaces withK.0 are calledovaloids. They all havex52. Hence we
have a corollary to theorem 3.3 concerning such surfaces.

Corollary 3.4: Surfaces defined in Theorem 3.3 are also homeomorphic to ovaloids.
Solitonic solutions of the sine-Gordon equation satisfy the rapidly decaying condit

u~6`!50, uu(6`)50, uv(6`)50,... . Then for such a case we have the following lemma.
Lemma 3.5:Let S be the surface defined in Lemma~3.1!. Suppose that this surface is no

compact. If the associated solutionu(u,v) of the sine-Gordon equation satisfies the conditions t
u,uu ,uv ,... tend to zero asu→6`, then

E
2`

`
Adet~g!K du50.
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We now consider a different class of surfaces which are also constructed from solutions
sine-Gordon equation.

Lemma 3.6:Let S be the surface constructed fromU, V given by Eq. ~27! and from A
5m(]U/]l), B5m(]V/]l) wherem is a scalar depending onl. This surface has the following
fundamental forms and curvatures:

dsI
25

m2

4 S du21
2

l2 cosu dv dv1
1

l4 dv2D , dsII
256

m

l
sinu dv dv, ~45!

K52
4l2

m2 , H56
4l

m
cot~u!. ~46!

Corollary 3.7: Let u be a rapidly decaying solution of the sine-Gordon equation andS be the
surface defined in Lemma~3.6!. Then

E
2`

`
Adet~g!K du50.

Proof: This is a consequence of

Adet~g!K52sinu52uuv .
QED

We now consider yet a different class of surfaces associated with solutions of the sine-G
equation.

Lemma 3.8:Let S be the surface constructed fromU andV defined by Eq.~34! and from

A5m
]U

]l
1

ip

2
@s1 ,U#, B5m

]V

]l
1

ip

2
@s1 ,V#, ~47!

wherem andp are scalars depending onl. The immersion functionF is given by

F5F21Fm ]F

]l
1

ip

2
s1FG . ~48!

This surface is parallel to a surface of negative constant curvature. The distance betwee
surface isp/4.

Proof: A straightforward but lengthy calculation implies that for this surface

~m21l2p2!K12pl2H14l250. ~49!

Let K0 andH0 be the Gaussian and mean curvatures of a surfaceS0 with constant curvatureK0

and letS be parallel toS0 , then40

K05
K

122aH1a2K
, H05

H2aK

122aH1a2K
, ~50!

wherea is a constant. Hence comparing the first equation in Eq.~50! and ~49! we find that

a5
p

4
, K052

16l2

3p214m2 .

HenceS is parallel to a surfaceS0 with negative constant curvature.p/4 is the distance betwee
the surfaces.

There exists a particular case where the geometrical quantities become simpler:
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Lemma 3.9:Let S be the surface in Lemma~3.8! with m5lp. Then

dsI
25

p2

2 S l2 du222 sinu du dv1
1

l2 dv2D , ~51!

dsII
25

p

2 Fl2 du222~sinu1cosu!du dv1
1

l2 dv2G , ~52!

K52
2

p2 tanu, H5
2

p
2

2

p
tanu. ~53!

The curvature densityAdet(g)K has a form similar to the one in Corollary 3.7. ThusAdet(g)K
52sinu52uuv .

The following corollary of the Lemma~3.9! is for solitonic solutions of the sine-Gordo
equation:

Corollary 3.10:Let u be a rapidly decaying solution of the sine-Gordon equation andSbe the
surface defined in Lemma~3.9!. Then

E
2`

`
Adet~g!K du50.

IV. SURFACES ASSOCIATED WITH THE SINH-GORDON EQUATION

The sinh-Gordon equation is defined by

]2u

]u2 1
]2u

]v2 1
1

4
~H0

2e2u2e22u!50, ~54!

where u(u,v) is a real scalar function andH0Þ0 is a real constant. This equation is usua
associated with surfaces of constant mean curvatureH0 . In what follows we will show that this
equation can also be used to construct several other classes of interesting surfaces.

Lemma 4.1:Let the real scalar functionu(u,v) be a solution of the hyperbolic sine-Gordo
equation~54!, whereH0Þ0 is a real constant. Define the su~2! valued functionsU, V, A, B by

U5
i

4
@cosl~H0eu1e2u!s12sinl~H0eu2e2u!s212uvs3#, ~55!

V52
i

4
@sinl~H0eu1e2u!s11cosl~H0eu2e2u!s212uus3#, ~56!

A52m
]U

]l
1

ip

2
@s3 ,U#, B52m

]V

]l
1

ip

2
@s3 ,V#, ~57!

wherem andp are real constants. The immersion functionF is given by

F5F21F2m
]F

]l
1

ip

2
s3FG . ~58!

The associated surfaceS has the following fundamental forms and curvatures:

g115
1

16e2u ~@e2uH0
2~2m1p!1~p22m!#214H0~4m22p2!sin2 le2u!, ~59!
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g125
H0~4m22p2!sin 2l

8
, ~60!

g225
1

16e2u ~@e2uH0
2~2m1p!2~p22m!#224H0~4m22p2!sin2 le2u!, ~61!

d115
2H0

2e4u~p12m!2p12m22pH0 cos 2le2u

8e2u , ~62!

d225
2H0

2e4u~p12m!2p12m12pH0 cos 2le2u

8e2u , ~63!

d125
pH0 sin 2l

4
, ~64!

K54
e4uH0

221

e4uH0
2~2m1p!22~2m2p!2 , ~65!

H524
e4uH0

2~2m1p!1~2m2p!

e4uH0
2~2m1p!22~2m2p!2 . ~66!

It is easy to show thatK andH satisfy the following Weingarten relation:

~p224m2!K12pH1450. ~67!

There exists some interesting particular limiting cases. Ifp562m, S is a surface of constan
mean curvature

p52m, H52
1

m
, K5

e4uH0
221

4m2H0
2e4u , ~68!

p522m, H5
1

m
, K52

e4uH0
221

4m2 . ~69!

If p50, S is a surface of constant Gaussian curvature,

K5
1

m2 , ~70!

H52S 2

m D H0
2e4u11

H0
2e4u21

. ~71!

If m50, S is a sphere.
Surfaces Associated with the Liouville equation:The Liouville equation can be obtained from

the sinh-Gordon equation in the limitH050,

]2u

]u2 1
]2u

]v22
1

4
e22u50. ~72!

Lemma 4.2:Let the real scalar functionu(u,v) be a solution of the Liouville equation~72!.
DefineU, V, A, B by
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U5
i

4
~e2u cosls11e2u sinls212uvs3!, ~73!

V52
i

4
~e2u sinls12e2u cosls212uus3!, ~74!

whereA andB are given in~57! with pÞ62m. The immersion functionF is given in ~58! with
H050. Then the associated surfaceS has the following fundamental forms and curvatures:

dsI5
1

16 e22u~2m2p!2~du21dv2!, ~75!

dsII52 1
8 e22u~2m2p!~du21dv2!, ~76!

K5
4

~2m2p!2 , ~77!

H52
4

2m2p
. ~78!

Thus for anym, p with pÞ2m, S is a sphere.

V. DEFORMATIONS OF THE NONLINEAR SCHRÖ DINGER SURFACES

The nonlinear Schro¨dinger ~NLS! equation is an equation for a complex functionu(u,v).
Letting u(u,v)5r (u,v)1 is(u,v), the real valued functionsr ands satisfy

r v5suu12s~r 21s2!, ~79!

sv52r uu22r ~r 21s2!. ~80!

The associatedU andV matrices defining its Lax pair are given by

U5
i

2 S 22l 2~s2 ir !

2~s1 ir ! 2l
D , ~81!

V52
i

2 S 24l212~r 21s2! v12 iv2

v11 iv2 4l222~r 21s2!
D , ~82!

where

v152r u14ls, v2522su14lr . ~83!

Lemma 5.1:Let U and V be defined by Eqs.~81! and ~82!, wherer,s satisfy the integrable
nonlinear equations~79! and ~80! and v1 ,v2 are defined by~83!. Let A, B be defined byA
5m(]U/]l), B5m(]V/]l), wherem is a real constant, i.e.,

A5
i

2 S 22m 0

0 2m D , B52
i

2 S 28lm 4m~s2 ir !

4m~s1 ir ! 8lm D . ~84!

Let the new variablesq andf be defined in terms ofr ands by

r 5q cosf, s5q sinf. ~85!

In terms of these variables the NLS equations~79! and ~80! become
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qfv52quu22q31qfu
2, ~86!

qv5qfuu12qufu . ~87!

Then the geometrical quantities of the surfaceS associated with the su~2! valued functions
U,V,A,Bdefined in~81!, ~82!, and ~84! can be expressed in terms of the new variablesq andf
through the following equations:

dsI
25m2@~du24l dv !214q2 dv2#, ~88!

dsII
2522mq@du2~2fu12l!dv#212mquu dv2, ~89!

K52
quu

m2q
, ~90!

H5
quu2q~fu12l2!24q3

2mq2 . ~91!

The immersion function is given byF5F21m(]F/]l). In particular iff5nv, wheren is a real
constant,q5q(u), thenq(u) satisfies~Fig. 1!

quu522q32nq. ~92!

Lemma 5.3:Let U,V,A,B be defined by Eqs.~81!, ~82!, and ~84! where r 5q(u)sin(nv), s
5q(u)cos(nv), l,n,m are constants andq(u) satisfies~92!. Then the associated surfaceS is a
Weingarten surface satisfying the relation

2m2H2~m2K2n!5~3m2K14l222n!2. ~93!

If n524l2 the above-mentioned Weingarten relation becomes quadratic,

K2
2

9
H21

4l2

9m2 50. ~94!

FIG. 1. Weingarten surfaces of the form~94! with l50.
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VI. DEFORMATIONS OF THE MODIFIED KORTEWEG–DE VRIES SURFACES

Let r(u,v) satisfy the so-called modified Korteweg–de Vries~mKdV! equation

rv5ruuu1
3
2 r2ru . ~95!

The associatedU andV matrices defining its Lax pair are given by

U5
i

2 S l 2r

2r 2l
D , ~96!

V52
i

2 S 2
lr2

2
1l3 v12 iv2

v11 iv2
lr2

2
2l3

D , ~97!

where

v15ruu1
r3

2
2l2r, v252lru . ~98!

Lemma 6.1:Let U andV be defined by Eqs.~96! and ~97! where the scalar functionr(u,v)
satisfies the mKdV equation~95! andv1 ,v2 are defined by Eq.~98!. Let A andB be defined by
A5m(]U/]l), B5m(]V/]l), wherem is a real constant, i.e., let

A5
i

2 S m 0

0 2m D , ~99!

B52
i

2 S 2mr2

2
13ml2 22mlr1 imru

22mlr2 imru
mr2

2
23ml2

D . ~100!

The geometrical quantities of the surfaceS associated with theseU,V,A,Bare given by

K5
4l2

m2~ru
214l2r2!2 @4r3ruuuu24r2ruruuu24r2~ruu!

214rru
2ruu24l2r3ruu14r5ruu2ru

4

18r4ru
2#, ~101!

H5
4l

m~ru
214l2r2!3/2@2rruuuu1ruruuu23l2rruu2r3ruu12l2ru

223r2ru
224l4r224l2r4#,

~102!

dsI
25

m2

4 F S du1
1

2
~r226l2!dv D 2

1~ru
214l2r2!dv2G , ~103!

dsII
25

lm

~ru
214l2r2!1/2

@2r2 du21~22rruu1ru
212l2r22r4!du dv1 1

4 ~24rruuuu14ruruuuu

112l2rruu28r3ruu24l2ru
226r2ru

224l4r214l2r42r6!dv2. ~104!
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The immersion function is given byF5F21m(]F/]l). A particular reduction of the above
mentioned surface is a Weingarten surface with a complicated Weingarten relation.

Lemma 6.2:Let U, V be defined by Eqs.~96! and~97! wherel, m, a are constants andr(u)
satisfies

ruu5ar2
r3

2
. ~105!

Then the associated surfaceS is a Weingarten surface satisfying the relation

m2H2r2@4~a14l2!2r2#3516l2@r426r2~a14l2!28l2~a14l2!#2, ~106!

where

r254~a14l2!1
16l2

m
A a14l2

K14l2/m2. ~107!

It is interesting that using a different Lax pair for Eq.~105! it is possible to obtain a Wein
garten surface simpler than the above:

Lemma 6.3:Let U, V be defined by

U5
i

2 S l 2r

2r 2l
D , ~108!

V52
i

2 S r2

2
2~a1al1l2! ~a1l!r2 iru

~a1l!r1 iru 2
r2

2
1~a1al1l2!

D , ~109!

where l, a are constants andr(u) satisfies Eq.~105!. Let A and B be defined byA
5m(]U/]l) andA5m(]V/]l), wherem is a constant, i.e., let

A5
i

2 S m 0

0 2m D , ~110!

B52
i

2 S 2~am12ml! mr

mr am12ml
D . ~111!

The geometrical quantities of the surfaceS associated with theseU,V,A,Bare given by

K5
2

m2 @r222a#, H5
1

mr
@3r212~l22a!#, ~112!

dsI
25

m2

4
@~du1~a12l!dv !21r2dv2#, ~113!

dsII
25

mr

2
@du1~a1l!dv#21

mr

4
~r222a!dv2. ~114!

The immersion function is given byF5F21m(]F/]l). This surface is a Weingarten surfac
satisfying the relation

2m2H2~m2K14a!5@3m2K14l218a#2. ~115!
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In the special casea5l2, this relation becomes

2m2H259@m2K14l2#. ~116!

VII. INTEGRABLE SPHERICAL CURVES

Consider the motion of a curve on a sphere of radius 1/l. Assume thatruÞ0. Then, using the
results of Proposition A.1 it follows that its motion is characterized by

u t5
c0

l
cosuuu1

1

l
cosuV2u1l]u

21S V2

cosu D1uu cosu]u
21S sinu

~cosu!2 u t1
1

l
V2uuD , ~117!

where

r5
l

cosu
, t5uu . ~118!

The velocitiesV1 andV3 are given in terms ofV2 andu by

V15]u
21S l sinu

cos2 u
u t1V2uuD1c0 , V352

cosu

l
~V2u1V1uu!, ~119!

wherec0 is an arbitrary constant.
Proof: Spherical curves can be parametrized by~118!, since for spherical curves,41

S ru

r2t D 2

1
1

r2 5
1

l2 . ~120!

The last equation in~144! can be written asV352(V2u1V1t)/r, which is the second equatio
~119!. The first two equations in~144! imply ~117! and the first equation of~119!. QED

An integrable motion of a spherical curve. The motion of the curve on a sphere of radius~1/l!
is characterized by Eqs.~117!–~119!, whereV2 is an arbitrary function. Hence each choice of th
function yields a spherical surface. Let the velocity componentV2 of this curve be given by

V252l cosu~uu cosu!u , ~121!

and letc05l3, thenu evolves according to the integrable equation

u t2uu cosu]u
21S sinu

~cosu!2 u tD1
1

2
~uu cosu!31cosu@cosu~uu cosu!u#u50. ~122!

It seems that Eq.~122! has not appeared before in the soliton literature. We note that in the s
u limit this equation reduces to the potential modified KdV equation.

We note that the motion of curves on a sphere was studied recently in Ref. 8 by dema
that the geodesic curvature of these curves is constant and equal to 1/l. It can be shown that this
requirement is equivalent tor51/l, ~i.e., ru50!. Thus the integrable evolutions obtained in R
8 coincide with the modified KdV hierarchy.

VIII. CURVES FROM SURFACES

Appendices A and B show that it is possible to construct surfaces from the motion of cu
It is also possible to associate a curve evolution with a given surface. For this purpose it is
suitable to introduce the Darboux frame on curves.40
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Let S be an oriented regular surface anda:I→S be a curveC parametrized by its arc length
At the point p5a(s) consider the following three unit vectors, called theDarboux trihedron:
T(s) is the tangent vector toC at p, n(s) is the normal vector toS at p, and b(s)5n(s)
3T(s). These vectors satisfy the Darboux equations

dT

ds
5rgb1rnn, ~123!

db

ds
52rgT1tgn, ~124!

dn

ds
52rnT2tgb, ~125!

whererg5rg(s), rn5rn(s), tg5tg(s), sPI . The geometrical meaning of these coefficients
the following: The scalartg52dN/ds•b is called the geodesic torsion of the curveC. This curve
is a line of curvature ofS if and only if tg50. rn andrg are the normal and geodesic curvatur
of C, respectively, at a pointpPS.

Let r be the curvature ofa(s) at p which is defined bydT/ds5rN, andN be the principle
normal to the curve atp. Using the first equation~123! in the Darboux equations~123!–~125! we
find

r25rg
21rn

2 . ~126!

Since the tangent vectorT to the curveC is common in both frames it is possible to pass from
Frenet trihedronto the Darboux trihedronby a special local SO~3! transformation. LetT, b, n
define the Darboux trihedron andT, N, B denote the Frenet–Serret triad of orthogonal vecto
Then

n5sinuN1cosuB, b5cosuN2sinuB. ~127!

This enables us to connect the torsiont and curvaturer of the curveC to its geodesic torsiontg ,
geodesic and normal curvaturesrg ,rn .

This transformation induces a local SU~2! gauge transformation on the Lax equations~145!:
Letting F85SF, we find

U85SUS211SuS21, ~128!

V85SVS211SvS21. ~129!

The matrixS is given as

S5
1

&
S e2 iu/2 2eiu/2

e2 iu/2 eiu/2 D . ~130!

In what follows we given an example of how a curve motion can be identified from a g
surface.

Proposition 8.1:Consider the surface described in Theorem 2.2 of Ref. 1. This surfa
associated with the motion of a curve with curvature and torsion given by

r2~s,t !5S U2

a D 2

1S U3

a D 2

, ~131!
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t~s,t !5
U1

a
2

S U2

U3
D

s

11S U2

U3
D 2 , ~132!

wheret5v anda5ds/du. Heres denotes the arc length. The componentsV1 , V2 , andV3 of the
velocity of this curve are defined in terms ofr and t by the differential equations~A1!. An
orthogonal frame on this curve is

T5
]F

]s
52 iF21s1F, B52 iF21s2F, N52 iF21s3F. ~133!

Proof: Usinga5ds/du and the definitions ofF andF to computeFss andNs , it follows that

^Fss,N&5
U2

a
, ^Ns ,B&5

U1

a
, ^Fss,B&52

U3

a
. ~134!

Let T, b, n define the Darboux trihedron associated with the matricesFs ,B,N defined in
~133!. Using the Frenet–Serret equations

Ts5rN, Ns52rT1tB, Bs52tN, ~135!

it follows that

^Fss,N&5Ts•n5rn•~sinuN1cosuB!5r sinu, ~136!

^Fss,B&5Ts•b5r cosu , ~137!

^Ns ,B&5ns•b5~sinuN1cosuB!•~cosuN2sinuB! ~138!

5us2t. ~139!

Comparing these equations with~A4!, we find

U1

a
5us2t,

U2

a
5r sinu,

U3

a
5r sinu. ~140!

Eliminating u, Eqs.~131! and ~132! follow. It is now possible to identify the geodesic curvatu
rg , the normal curvaturern , and the geodesic torsiontg of the curveC in terms of the parameter
of S:

rg5r cos~u!5
U3

a
, ~141!

rn52r sin~u!5
U1

a
, ~142!

tg5u82t5
U1

a
. ~143!
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APPENDIX A: THE MOTION OF CURVES

Let u denote the arclength of a curve inR3. This curve can be uniquely characterized, with
a rigid motion inR3, by its curvature and its torsion. This characterization is expressed by
classical Frenet–Serret equations which define the dependence of the associated frame ou.3–9

Proposition A.1:Let the scalar real functionsr(u,t) and t(u,t), which are differentiable
functions ofu andt for every~u,t! in some neighborhood ofR2, denote the curvature and torsio
of a curve with arclength denoted byu. Let the real scalar functionsVj , which are differentiable
functions ofu andt for every~u,t! in some neighborhood ofR2, denote the velocity of this curve
The motion of this curve is defined by

]r

]t
2

]V1

]u
1V2t50,

]t

]t
1

]V3

]u
2V2r50,

]V2

]u
1V1t1V3r50. ~A1!

These equations are the compatibility conditions of the following equations for the SU~2! valued
function F(u,t),

]F

]u
5

i

2 S t 2r

2r 2t DF,
]F

]t
52

i

2 S V3 V12 iV2

V11 iV2 2V3
DF. ~A2!

Proof: Let xj , j 51,2,3, be a point on a curve inR3 whose arclength is denoted byu. This
leads to

(
j 51

3 S ]xj

]u D 2

51.

The Serret–Frenet frame is a triad of orthonormal vectors,T, N, B, whereT is the tangent vector
N is the principal normal unit vector, perpendicular toT which lies in the oscillating plane of the
curve, andB is the binormal unit vector, perpendicular to bothT andN. The components of thes
vectors satisfy the condition

Tj
21Nj

21Bj
251, j 51,2,3, ~A3!

and the classical Frenet–Serret equations

]

]u S Tj

Nj

Bj

D 5S 0 r 0

2r 0 2t

0 t 0
D S Tj

Nj

Bj

D , j 51,2,3. ~A4!

Suppose that the above curve is allowed to evolve in time and that it does not stretch duri
motion. Since the frame is orthogonal, its time evolution is given by

]

]t S Tj

Nj

Bj

D 5S 0 V1 2V2

2V1 0 V3

V2 2V3 0
D S Tj

Nj

Bj

D , j 51,2,3. ~A5!

Using the su~2! representation of so~3!, these equations yield~A2!.
Proposition A.2:Let the complex valued functionsc(u,t,l) andV(u,t,l), be differentiable

functions ofu and t for every ~u,t! in some neighborhood ofR2. Assume thatc andV satisfy

c t5Vu1 isc2 ilV, ~A6!

wheres is defined by
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su5
2 i

2
~V̄c1Vc̄ !. ~A7!

Equations~A6! and~A7! are the compatibility conditions of the following equations for the SU~2!
valued functionF(u,t,l):

]F

]u
5

1

2 S il c

2c̄ 2 il D F,
]F

]t
5

1

2 S is V

V̄ 2 is D F. ~A8!

Equations~A6! and~A7! describe the motion of a curve withr5ucu,t5(argc)u1l. The velocity
of this curve satisfies

V11 iV25V exp@2 i ]u
21t2 ilu#, V3u52t t1su .

Proof: Substituting the relations

c5rei ]u
21t1 ilu, V5~V11 iV2!ei ]u

21t1 ilu, ~A9!

into Eqs.~A6! and ~A7! we find ~A2! and

]u
21t t5

V2u1V1t

r
1s, su5V2r, ~A10!

where]u
21 denotes integration with respect tou. Eliminatings from these equations we find tha

the equation obtained from the equations in~A2! after eliminatingV3 .
Example A.1:~Constant torsion! The motion of a curve of constant torsiont5l is character-

ized by

r t52lV22
1

l
~]u

21r21ru]u
21r!V2 , ~A11!

where the velocitiesV1 andV3 can be expressed in terms ofV2 andr by

V152
1

l
~V2u1r]u

21~V2r!!, V35]u
21~V2r!. ~A12!

Proof: If t5l Eq. ~A2! becomes

rt5V1u2lV2 , V3u5V2r, V152
1

l
~V2u1rV3!. ~A13!

These equations yield Eq.~A11!.

APPENDIX B: INTEGRABLE CURVE MOTIONS

It is well known that there exist many curve evolutions which are integrable. We call a c
evolution integrable if the motion is defined in terms of an integrable PDE. Integrable evolu
of curves have been studied extensively in the recent literature3–8. It turns out that for particular
velocities, the motion of curves is defined by certain integrable equations, which includ
sine-Gordon, the modified Korteweg-de Vries, the nonlinear Schro¨dinger, and the Hirota equa
tions. An obvious approach for obtaining integrable curve evolutions is to choose the functioVj

in such a way that the nonlinear equations~A1! @or ~A6! and ~A7!# are independent ofl.
Example B.1:~Integrable evolutions of curves with constant torsiont! The motion of curve

with constantt5l is characterized by Eqs.~A11! and ~121!. Let its velocity be specified as
follows:
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Case 1:If

V150, V252
1

l
sinu, V35

1

l
cosu, ~B1!

thenr evolves according to the sine-Gordon equation,

r5uu , uut5sinu. ~B2!

Case 2:If

V15ruu1 1
2 r32l2r, V252lru , V352 1

2 lr21l3, ~B3!

thenr evolves according to the modified KdV equation,

r t5ruuu1
3
2 r2ru . ~B4!

Case 3:If l51 and

V15ruu1 1
2 r32r, V252ru , V352 1

2 r211, ~B5!

thenr evolves according to the Painlave II equation

r5t 1/3W~j!, j5u~ t !21/3, Wjj1 1
3 jW1 1

2 W35C, ~B6!

whereC is a constant.
Example B.2:~Integrable curve evolutions associated with the NLS! Let

V5 icx2lc,s5 1
2 ucu21l2, ~B7!

in Eqs.~A7! and ~A8!, thenc evolves according to the nonlinear Schro¨dinger equation,

c t5 icxx1
i

2
cucu2. ~B8!

This describes the integrable curve motion withr5ucu, t5]u arg(c)1l.
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In this paper we study extensions between two finite-rank irreducible conformal
modules over the Neveu–Schwarz algebra. ©2000 American Institute of Physics.
@S0022-2488~00!01904-6#

I. INTRODUCTION

Finite-rank conformal modules over the Virasoro, the current, and the Neveu–Schwarz
bras were studied in Ref. 1. In particular, finite-rank irreducible conformal modules over
~super!algebras were classified using the equivalent languages of conformal superalgebr
extended annihilation algebras. However, conformal modules are in general not completely
ible, and thus one needs to consider the extension problem. In Ref. 2 we classified exte
between two finite-rank irreducible conformal modules over the Virasoro algebra. The purpo
the present paper is to do the same for the Neveu–Schwarz algebra. The method here, as
2, is based on the theory of conformal superalgebras.1,3 Since the Virasoro algebra is the even p
of the Neveu–Schwarz algebra, we use heavily the classification of extensions of Virasor
formal modules obtained in Ref. 2.

The organization of this paper is as follows. We first review the notion of a formal distribu
Lie superalgebra and that of a conformal superalgebra and describe their connection wit
other.3 After that we describe briefly the aspects of representation theory of the Virasoro an
Neveu–Schwarz algebras~and the associated conformal superalgebras! that will be important for
the rest of the paper. In particular the two main tools, namely the classification of the irredu
conformal modules over the Neveu–Schwarz~conformal! algebra1 and the classification of exten
sions of conformal modules over the Virasoro~conformal! algebra,2 will be recalled. Section III is
then devoted to classification of extensions of Neveu–Schwarz conformal modules in th
when one of the modules involved in the extension is one-dimensional. In the last section th
when both modules involved in the extension are non-one-dimensional is considered. Thro
our discussion all vector spaces, tensor products, and algebras are assumed to be over the
complex numbersC.

II. PRELIMINARIES

A. Formal distributions and conformal superalgebras

A formal distributionwith coefficients in a vector spaceU is a generating series of the form

a~z!5 (
nPZ

a@n#z
2n21,

a!Electronic mail: chengsj@mail.ncku.edu.tw
b!Electronic mail: kac@math.mit.edu, kac@ihes.fr
c!Electronic mail: wakimoto@math.kyushu-u.ac.jp
22710022-2488/2000/41(4)/2271/24/$17.00 © 2000 American Institute of Physics
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wherea@n#PU andz is an indeterminate.
Two formal distributionsa(z) andb(z) with coefficients in a Lie superalgebrag are called

~mutually! local if for someNPZ1 one has

~z2w!N@a~z!, b~w!#50. ~2.1!

Consider theformal delta function

d~z2w!5z21(
nPZ

S z

wD n

.

Then condition~2.1! is equivalent to the operator product expansion:

@a~z!, b~w!#5(
j 50

N

~a~ j !b!~w!]w
~ j !d~z2w! ~2.2!

@here]w
( j ) stands for (1/j !) ] j /]wj # for some formal distributions (a( j )b)(w) ~Ref. 3, Theorem 2.3!,

which are determined by the formula

~a~ j !b!~w!5Resz ~z2w! j@a~z!, b~w!#. ~2.3!

Formula~2.3! defines aC-bilinear producta( j )b for eachj PZ1 on the space of all formal distri
butions with coefficients ing.

The space of all formal distributions with coefficients ing is naturally a~left! module over
C @]z#. We have]za(z)5(n(]a) @n#z

2n21, where (]a) @n#52na@n21#.
A Lie superalgebrag is called aformal distribution Lie superalgebra, if there exists a family

F of pairwise local formal distributions whose coefficients spang. We will write ~g, F! for such a
Lie superalgebra.

A well-known example is the~centerless! Virasoro algebra, the Lie algebraV with basis
Ln(nPZ) and commutation relations

@Lm , Ln#5~m2n!Lm1n .

It is spanned by the coefficients of the local formal distributionL(z)5(nPZLnz2n22 satisfying

@L~z!, L~w!#5]wL~w!d~z2w!12L~w!]wd~z2w!. ~2.4!

Of particular interest in the present paper is the simplest superextension of the Vir
algebra, the~centerless! Neveu–Schwarz algebraN which, apart from even basis elementsLn ,
has odd basis elementsGr , r P 1

21Z, with commutation relations

@Gr , Ln#5S r 2
n

2DGr 1n , @Gr , Gs#52Lr 1s .

The algebra N is spanned by the formal distributionsL(z)5(nPZLnz2n22 and G(z)
5( r P1/21ZGrz

2r 23/2. The operator product expansions are given by@in addition to~2.4!#

@L~z!, G~w!#5]wG~w!d~z2w!1 3
2G~w!]wd~z2w!,

~2.5!
@G~z!, G~w!#52L~w!d~z2w!.

Given a formal distribution Lie superalgebra~g, F!, we may always includeF in the minimal
family Fc of pairwise local distributions which is closed under]z and all products~2.3! ~Ref. 3,
Section 2.7!. Then Fc is a conformal superalgebrawith respect to the products~2.3! in the
following sense:3
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A conformal superalgebrais a leftZ2-gradedC @]#-moduleR with a C-bilinear producta(n)b
for eachnPZ1 such that the following axioms hold@a,b,cPR; m,nPZ1 and] ( j )5(1/j !) ] j #:

(C0) a(n)b50, for n@0,
(C1) (]a)(n)b52na(n21)b,
(C2) a(n)b5(21)p(a)p(b)( j 50

` (21) j 1n11] ( j )(b(n1 j )a),
(C3) a(m)(b(n)c)5( j 50

` ( j
m)(a( j )b)(m1n2 j )c1(21)p(a)p(b)b(n)(a(m)c).

Note that~C1! and~C2! imply thata(n)]b5](a(n)b)1na(n21)b, and thus] is a derivation of all
products~2.3!.

Conversely, assuming for simplicity thatR5 % i PIC @]#ai is a free as aC @]#-module confor-
mal superalgebra, we may associate toR a formal distribution Lie superalgebra„g(R),F… with
basisa@m#

i ( i PI ,mPZ) andF5$ai(z)5(nPZa@n#
i z2n21% i PI with bracket@cf. ~2.2!#:

@ai~z!, aj~w!#5 (
kPZ1

~a~k!
i aj !~w!]w

~k!d~z2w!,

so thatFc5R. This formula is equivalent to the commutation relations~m,nPZ; i , j PI !:

@a@m#
i , a@n#

j #5 (
kPZ1

S m
k D ~a~k!

i aj !@m1n2k# .

The conformal algebra associated to the Virasoro algebra is theVirasoro conformal algebra
R(V)5C @]# ^ L with products@cf. ~2.4!#

L ~0!L5]L, L ~1!L52L, L ~ j !L50, for j .1..

The conformal superalgebra, associated toN, is the Neveu–Schwarz conformal algebra
R(N)5(C @]# ^ L) % (C @]# ^ G) with additional nonzero products@cf. ~2.5!#:

L ~0!G5]G, G~0!L5 1
2]G, L ~1!G5G~1!L5 3

2G, G~0!G52L.

B. Conformal modules

Let ~g, F! be a formal distribution Lie superalgebra. LetV be ag-module and suppose thatV
is spanned overC by the coefficients of a familyE of formal distributions such that alla(z)PF are
local with respect to allv(z)PE. Then we call (V,E) a conformal module over~g, F!.

Example 2.1:V of course is the Lie algebra of regular vector fields onC3, whereLn5
2tn11d/dt, nPZ. For a, DPC let

FV~a,D!5C @ t, t21#e2atdt12D.

The Lie algebraV acts on the spaceFV(a,D) in a natural way:

S f ~ t !
]

]t Dg~ t !dt12D5„f ~ t !g8~ t !1~12D!g~ t ! f 8~ t !…dt12D, ~2.6!

where f (t)PC @ t, t21# and g(t)PC @ t, t21#e2at. Letting v @n#5tne2atdt12D and v(z)
5(nPZv @n#z

2n21, ~2.6! is equivalent to

L~z!v~w!5~]w1a!v~w!d~z2w!1Dv~w!]w]~z2w!.

Hence this module is conformal.
Example 2.2:Similarly N is a subalgebra of the Lie superalgebra of regular vector fields

C3 with N51 extended symmetry described below. Letj be the odd indeterminate andW(1,1) be
the Lie superalgebra of regular vector fields on the circle withN51 extended symmetry. ThenN
is spanned by~nPZ and r P 1

21Z!
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Ln52tn11
]

]t
2

n11

2
tnj

]

]j
, Gr52t r 11/2j

]

]t
1t r 11/2

]

j
.

Equivalently, consider the contact form

v5dt2jdj.

ThenN5$DPW(1,1)uDv5 f Dv, for somef DPC @ t, t21, j#%. It is well known~see, e.g., Ref. 4!
that every elementDPN is of the form

Du52u
]

]t
1~21!p~u!S j

]u

]t
1

]u

]j D S j
]

]t
1

]

]j D ,

with uPC @ t, t21, j#. One hasDuv52(]u/]t)v. As in ~2.6!, N acts on the space~a, DPC!

FN8 ~a,D!5C @ t, t21, j#e2atv12D,

in a natural way, via (f PC @ t, t21,j#e2at):

Du~ f v12D!5Du~ f !v12D1~21!p~ f !p~u!~12D! f v2DDu~v!,

which is equivalent to

Du~ f v12D!5S Du~ f !12~12D!
]u

]t
f Dv12D. ~2.7!

Let v(z)5(nPZt
ne2atv12Dz2n21 andvj(z)5(nPZt

nje2atv212Dz2n21. Then~2.7! gives

L~z!v~w!5~]w1a!v~w!d~z2w!1Dv~w!]wd~z2w!,

L~z!vj~w!5~]w1a!vj~w!d~z2w!1~D2 1
2!v

j~w!]wd~z2w!,

G~z!v~w!5~]w1a!vj~w!d~z2w!1~2D21!vj~w!]wd~z2w!,

G~z!vj~w!5v~w!d~z2w!.

The parity onFN8 (a,D) is defined in a natural way:p„v(z)…5p„vj(z)…11̄50̄. Reversing the
parity we obtain a module, denoted byFN(a,D2 1

2). Obviously both modules are conformal.
One can show5 that the familyE of a conformal module (V,E) over ~g, F! can always be

included in a larger familyĒ, which is still local with respect toF̄, and such that] Ē, Ē and
a( j )Ē, Ē for all aPF̄ and j PZ1 . One checks that fora, bPF̄ andvP Ē(m,nPZ1):

@a~m! , b~n!#v5(
j 50

m S m
j D ~a~ j !b!~m1n2 j !v, ~]a!~n!v5@], a~n!#v52na~a21!v.

Therefore, it follows that any conformal module (V,E) over a formal distribution Lie super
algebra ~g, F! gives rise to a moduleM5 Ē over the conformal algebraR5F̄, defined as
follows.1,3 It is a ~left! Z2-gradedC @]#-module equipped with a family ofC-linear mapsa
→a(n)

M of R to EndCM , for eachnPZ1 , such that the following properties hold fora, bPR and
m, nPZ1 :

(M0) a(n)
M v50, for vPM andn@0,

(M1) @a(m)
M , b(n)

M #5( j 50
m ( j

m)(a( j )b)(m1n2 j )
M ,

(M2) (]a)(n)
M 5@],a(n)

M #52na(n21)
M .
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Conversely, suppose that a conformal superalgebraR5 % i PIC @]#ai is a freeC @]#-module
and consider the associated formal distribution Lie superalgebra„g(R),F…. Let M be a module
over the conformal algebraR and suppose thatM is a freeC @]#-module withC @]#-basis$va%aPJ .
This gives rise to a conformal moduleMc over g(R) with basisv @n#

a , wherei PI , aPJ, andn
PZ, defined by

ai~z!va~w!5 (
j PZ1

~a~ j !
i va!~w!]w

~ j !d~z2w!.

In the general case one definesMc as the quotient of the space% j PZM @ j # , whereM @ j # is a copy
of M, by the C-span of $(]v) @n#1nv @n21#uvPM , nPZ%, and letE5$v(z)5(nPZv @n#z

2n21uv
PM %. The conformal module (Mc,E) is called themaximalconformal module over„g(R),F…
associated to theR-module M. The correspondence which associates to anR-module M the
collection of quotients of the module (Mc,E) by submodules having a trivial intersection withE is
bijective.3

The above discussion reduces the classification of finite conformal modules over a f
distribution Lie superalgebra~g, F! to the classification of finite modules over the correspond
conformal superalgebra.

Introducing the generating series

alb5 (
n50

`

a~n!b
ln

n!
and al

M5 (
n50

`

a~n!
M ln

n!
,

which lie in C @l# ^ CR andC @l# ^ EndC(M ) due to~C0! and~M0!, respectively, identities~M1!
and ~M2! can be written as

@al
M , bm

M#5~alb!l1m
M , ~]a!l

M5@], al
M#52lal

M . ~2.8!

Let M be aC @]#-module. The following is immediate from~2.8!.
~a! An R(V)-module structure onM is given byLl

MPC @l# ^ EndC(M ) such that

@Ll
M , Lm

M#5~l2m!Ll1m
M , ~2.9!

@], Ll
M#52lLl

M . ~2.10!

~b! An R(N)-module structure is given byLl
M ,Gl

MPC @l# ^ EndC(M ) satisfying in addition
to ~2.9! and ~2.10!

@Ll
M , Gm

M#5S l

2
2m DGl1m

M , ~2.11!

@Gl
M , Gm

M#52Ll1m , ~2.12!

@], Gl
M#52lGl

M . ~2.13!

A conformal module (V,E) ~respectively moduleM! over a formal distribution Lie superal
gebra~g, F! ~respectively over a conformal superalgebraR! is calledfinite, if Ē ~respectivelyM! is
a finitely generatedC @]#-module.

A conformal module (V,E) over ~g, F! is calledirreducible if there is no nontrivial invariant
subspace which contains allv @n# ,nPZ, for some nonzerovP Ē. Clearly a conformal module is
irreducible if and only if the associated moduleĒ over the conformal superalgebraF̄ is irreducible.

Example 2.3:Example 2.1 gives a family ofR(V)-modulesV(a,D)5C @]# ^ CvD with

LlvD5~]1a1Dl!vD .
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Example 2.4:Example 2.2 gives two families ofR(N)-modules. Namely,FN8 (a,D) gives rise
to N8(a,D)5C @]#vD8 1C @]#vD8

j with p(vD8 )5p(vD8
j)11̄50̄ and

LlvD8 5~]1a1Dl!vD8 , LlvD8
j5„]1a1~D2 1

2!l…vD8
j ,

~2.14!
GlvD8 5„]1a1~2D21!l…vD8

j, GlvD8
j5vD8 .

The moduleFN(a,D) gives rise toN(a,D)5C @]#vD1C @]#vD
j with p(vD)5p(vD

j )11̄50̄ and

LlvD5~]1a1Dl!vD, LlvD
j 5„]1a1~D1 1

2!l…vD
j ,

~2.15!
GlvD5vD

j , GlvD
j 5~]1a12Dl!vD .

We note that the notation we have chosen here for the modulesN(a,D) andN8(a,D) is such that
the ‘‘conformal weight’’ of the corresponding even vectorvD is D. Therefore, reversing the parit
of N8(a,D) does not giveN(a,D), but ratherN(a,D2 1

2).
Theorem 2.1:1 The following is a complete list of non-one-dimensional (overC) finite irre-

ducible modules over the conformal superalgebras R(V) and R(N):

~a! V(a,D), wherea,DPC with DÞ0, and
~b! N(a,D) and N8(a,D8), wherea,D,D8PC with DÞ0 and D8Þ1

2.

C. Extensions of Virasoro conformal modules

We first review the notion of an extension. Given two modulesV and W over a conformal
superalgebra~or a Lie superalgebra! R, an exact sequence ofR-modules of the form

0 ——→ V ——→
i

F ——→
p

W ——→ 0

is called anextensionof W by V. Two extensions 0——→ V ——→
i

F ——→
p

W ——→ 0 and

0 ——→ V ——→
i 8

F8 ——→
p8

W ——→ 0 are said to beequivalentif there exists a commuta

tive diagram of of the form

0 ——→ V ——→
i

F ——→
p

W ——→ 0

↓1V ↓c ↓1W .

0 ——→ V ——→
i 8

F8 ——→
p8

W ——→ 0,

where 1V :V ——→ V and 1W :W ——→ W are the respective identity maps andc:F ——→ F8
is a homomorphism of modules.

The direct sum of modulesV% W obviously gives rise to an extension. Extensions equiva
to it are calledtrivial extensions. In general an extension can be thought of as the direct sum
vector spacesE5V% W, whereV is a submodule ofE, while for w in W we have

a•w5aw1fa~w!, aPR,

where fa :W→V is a linear map satisfying the cocycle condition:f@a,b#(w)5fa(bw)
1afb(w)2(21)p(a)p(b)

„fb(aw)1bfa(w)…,bPR. The set of these cocycles form a vect
space overC. Cocycles corresponding to the trivial extension are calledtrivial cocycles. They
form a subspace and the dimension of the quotient space by it is called thedimensionof the space
of extensions ofW by V.
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According to Theorem 2.1 every finite non-one-dimensional~overC! irreducible module over
the Virasoro conformal algebraR(V) is of the formV(a,D) with DÞ0. Let Cca ,aPC, denote
the one-dimensional vector space overC on which we have an action ofR(V) defined by

Llca50, ]ca5aca .

It is easy to see thatCca are the only one-dimensional modules overR(V). ThusV(a,D) with
DÞ0, together withCca , form a complete list of finite irreducible modules over the Viraso
conformal algebra.

In Ref. 2 extensions overR(V) of the following types have been classified (D,D8Þ0):

0→Cca→E→V~b,D!→0, ~2.16!

0→V~a,D!→E→Ccb→0, ~2.17!

and

0→V~a,D8!→E→V~b,D!→0. ~2.18!

As a module overC @]#, E in ~2.16! is isomorphic toCca % V(b,D), where Cca is an
R(V)-submodule, andV(a,D)5C @]#vD with

LlvD5~]1b1Dl!vD1 f ~l!ca , f ~l!PC @l#. ~2.19!

Theorem 2.2:2 Nontrivial extensions of the form (2.16) exist if and only ifa1b50 and
D51,2. In these cases they are given, up to equivalence, by (2.19), where

~i! f (l)5a2l2, for D51 and a2Þ0,
~ii ! f (l)5a3l3, for D52 and a3Þ0.

Furthermore, all trivial cocycles are given by scalar multiples of the polynomial f(l)5a1b
1Dl.

Proof: That ~i! and~ii ! are the only nontrivial extensions of the form~2.16! is proved in Ref.
2. Here we will concentrate on finding the formula of the trivial cocycles. We will omit sim
calculations in the future.

Suppose~2.19! represents a trivial cocycle. This means that the exact sequence~2.16! is split
and hence there existsv85g(])vD1bcaPE, wherebPC, such that

Llv85~]1b1Dl!v8,

which gives

Llv85~]1b1l!g~]!vD1b~]1b1l!ca .

It follows from ~2.10! and ~2.19! that

Llv85g~]1l!~]1b1l!vD1g~]1l! f ~l!ca .

Comparing both expressions forLlv8, we see thatg is a constant andf (l) is a scalar multiple of
]1b1Dl.

Remark 2.1:In what follows we shall often employ ashift byaPC of an equationE50 on
f (]), which amounts to introducing a new indeterminate]̃5]1a and a new functionf̄ ( ]̃)
5 f ( ]̃2a). Denote byẼ50 the resulting equation. Obviously, iff ( ]̃) is a solution ofẼ50, then
f (]1a) is a solution ofE50 and vice versa. We shall writef in place of f̄ and] in place of]̃.

As a vector space,E in ~2.17! is isomorphic to V(a,D) % Ccb . Here V(a,D) is an
R(V)-submodule and we have
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Llcb5 f ~],l!vD , ]cb5bcb1a~]!vD , ~2.20!

where f (],l)PC @],l# anda(])PC @]#. Applying ~2.9! to vD and applying a shift bya gives
the identity

~]1Dl! f ~]1l,m!2~]1Dm! f ~]1m,l!5~l2m! f ~],l1m!, ~2.21!

while applying~2.10! gives

~]1Dl!a~]1l!5„]2~a1b!1l…f ~],l!. ~2.22!

Solutions to~2.21! and ~2.22!, corresponding to nontrivial extensions, are given by the
lowing theorem.

Theorem 2.3:2 Nontrivial extensions of the form (2.17) exist if and only ifa1b50 andD51.
These extensions are given, up to equivalence, by (2.20), where f(],l)5a(])5a0 , a0Þ0. Fur-
thermore, all trivial extensions correspond to pairs of the form f(],l)5(]1a1Dl)h(]1l) and
a(])5(]2b)h(]), where h is any polynomial.

Let E be an extension of the form~2.18!. As aC @]#-module,E5C @]#vD8% C @]#vD , where
C @]#vD8 is anR(V)-submodule ofE. We have

LlvD5~]1b1Dl!vD1 f ~],l!vD8 , ~2.23!

for some polynomialf (],l).
Theorem 2.4:2 (cf. Ref. 6) Nontrivial extensions of the form (2.18) exist only ifa5b and

D2D850,1,2,3,4,5,6. The following is a complete list of values ofD and D8 along with the
corresponding polynomials f(],l), whose nonzero scalar multiples give rise to nontrivial ext

sions( ]̃5]1a):

~i! D5D8, f 1( ]̃,l)5rl1s,(r ,s)Þ(0,0).
~ii ! D51,D850, f 2( ]̃,l)5r ]̃l1sl21t ]̃, where(r ,s,t)Þ(0,0,0).
~iii ! D2D852, f 3( ]̃,l)5l2(2]̃1l).
~iv! D2D853, f 4( ]̃,l)5 ]̃l2( ]̃1l).
~v! D2D854, f 5( ]̃,l)5l2(4]̃316]̃2l2 ]̃l21D8l3).
~vi! D55,D850, f 6( ]̃,l)55]̃4l2110]̃2l42 ]̃l5.
~vi8! D51,D8524, f 68( ]̃,l)5 ]̃4l2210]̃2l4217]̃l528l6.
~vii ! D5 7

26A19/2,D2D856, f 7( ]̃,l)5 ]̃4l32(2D813)]̃3l423D8]̃2l5

2(3D811)]̃l62(D81 9
28)l

7.

Furthermore, all trivial cocycles are given by f(],l)5(]1a1D8l)h(]1l)2(]1b
1Dl)h(]), where h is a polynomial.

III. EXTENSIONS INVOLVING ONE-DIMENSIONAL MODULES

Let aPC and letCca be the even one-dimensional module overR(N) given by

Llca5Glca50, ]ca5aca .

Reversing the parity we obtain theR(N)-moduleCea . In this section we will consider extension
betweenN(b,D) andCca and betweenN(b,D) andCea . From our classification of such exten
sions, extensions betweenN8(b,D) andCca and betweenN8(b,D) andCea are then obtained by
reversing parity.

Let

0→Cca→E→N~b,D!→0, ~3.1!
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be an exact sequence ofR(N)-modules. As aC @]#-module we haveE>Cca % N(b,D), where
N(b,D)5C @]#vD % C @]#vD

j , Cca is anR(N)-submodule ofE, and the action ofR(N) is given
by

LlvD5~]1b1Dl!vD1 f ~l!ca , LlvD
j 5„]1b1~D1 1

2!l…vD
j ,

~3.2!
GlvD5vD

j , GlvD
j 5~]1b12Dl!vD1g~l!ca ,

where f (l),g(l)PC @l#.
The following lemma is straightforward.
Lemma 3.1: All trivial extensions of the form (3.1) are of the form (3.2), where f(l) and g(l)

are scalar multiples (by the same scalar) ofa1b1Dl and a1b12Dl, respectively.
Applying ~2.12! to the vectorvD we obtain

g~l!1g~m!52 f ~l1m!. ~3.3!

Puttingm50 in ~3.3! we get

f ~l!5 1
2g~l!1const,

from which we obtain, plugging this back into~3.3!,

f ~l!1 f ~m!5 f ~l1m!1const.

Hence f (l) is a linear function, from which we conclude, using Theorem 2.2, thatf (l) must
correspond to the trivial cocycle. But then by Lemma 3.1 we may assume from the very beg
that f (l)50. But then~3.3! implies thatg(l)50 and so the extension is equivalent to the triv
extension. Thus we have proved the following.

Proposition 3.1: There are no nontrivial extensions of the form (3.1).
Consider extensions ofR(N)-modules of the form

0→Cea→E→N~b,D!→0. ~3.4!

As a C @]#-module we haveE>Cea % N(b,D), whereN(b,D)5C @]#vD % C @]#vD
j . We have

LlvD5~]1b1Dl!vD , LlvD
j 5„]1b1~D1 1

2!l…vD
j 1 f ~l!ea ,

~3.5!
GlvD5vD

j 1g~l!ea , GlvD
j 5~]1b12Dl!vD ,

where f (l), g(l)PC @l#.
Again we first compute trivial cocycles corresponding to extensions of the form~3.4!.
Lemma 3.2: All trivial extensions of the form (3.4) correspond to scalar multiples of the

f (l)5a1b1(D1 1
2)l and g(l)51 in (3.5).

Applying ~2.9! to the vectorvD
j we obtain

„a1b1~D1 1
2!m1l…f ~l!2„a1b1~D1 1

2!l1m…f ~m!5~l2m! f ~l1m!, ~3.6!

while applying~2.11! to the vectorvD we get

f ~l!2~a1b1m1Dl!g~m!5S l

2
2m Dg~l1m!. ~3.7!

Puttingm50 in ~3.6! we obtain, ifa1bÞ0, that

f ~l!5S f ~0!

a1b D Xa1b1S D1
1

2DlC.
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Hence by Lemma 3.2 we may subtract a trivial cocycle and assume thatf (l)50. Now if f (l)
50, we let m50 in ~3.7! and getg(l)5a0 is a constant. Furthermore, ifg(l)Þ0, then~3.7!
gives D52 1

2 and a1b50. But then Lemma 3.2 implies that such an extension is a tri
extension.

Hence we may assume thata1b50 andf (l)5l3 andD5 3
2, or elsef (l)5l2 andD5 1

2 by
Theorem 2.2. Since the equation~3.7! is homogeneous, we see thatg(l)5al2 in the first case
andg(l)5al in the second case (aPC). Settingm50 in ~3.7! we get 2f (l)5lg(l), so that
we end up with the following two nontrivial solutions:

Theorem 3.1:Extensions of the form (3.4) exist if and only ifa1b50 and D is either 3
2 or

1
2. In these cases they are given, up to equivalence, by

~i! f (l)5a3l3, g(l)52a3l2 in the caseD5 3
2, where a3Þ0; and

~ii ! f (l)5a2l2, g(l)52a2l in the caseD5 1
2, where a2Þ0.

Remark 3.1:As conformal modules these two extensions are as follows: It is more conve
to reverse the parity. Letf (t)PC @ t, t21#, g(t)PC @ t, t21#e2at, and c2a be an even vector
Theorem 3.1~i! corresponds to the moduleC @ t, t21, j#e2atv21

% Cc2a with action ofN given
by

D f ~ t !g~ t !v215„f ~ t !g8~ t !2 f 8~ t !g~ t !…v211Rest50 „f-~ t !g~ t !…c2a ,

D f ~ t !g~ t !jv215S f ~ t !g8~ t !2
f 8~ t !g~ t !

2 D jv21,

Dj f ~ t !g~ t !v215„f ~ t !g8~ t !22 f 8~ t !g~ t !…jv21,

Dj f ~ t !g~ t !jv2152 f ~ t !g~ t !v2112 Rest50 „f 9~ t !g~ t !…c2a ,

while Theorem 3.1~ii ! corresponds to the vector spaceC @ t, t21, j#e2at
% Cca with action

D f ~ t !g~ t !5 f ~ t !g8~ t !1Rest50 „f 9~ t !g~ t !…c2a ,

D f ~ t !g~ t !j5Xf ~ t !g8~ t !1
f 8~ t !g~ t !

2
Cj,

Dj f ~ t !g~ t !5 f ~ t !g8~ t !j,

Dj f ~ t !g~ t !j52 f ~ t !g~ t !12 Rest50 „f 8~ t !g~ t !…c2a .

These two extensions of course are extensions of the adjoint module and the module of fu
by an even trivial module. Note that the conformal module, corresponding to theR(N)-module of
Theorem 3.1~i! in the case whena50, is isomorphic, as anN-module, to the unique centra
extension ofN.

Next consider extensions of the form

0→N~a,D!→E→Ccb→0. ~3.8!

As a vector space we haveE5N(a,D) % Ccb , whereN(a,D) is an R(N)-submodule and the
action oncb is given by

Llcb5 f ~],l!vD , Glcb5g~],l!vD
j , ]cb5bcb1a~]!vD . ~3.9!

Lemma 3.3: All trivial extensions of the form (3.8) are given by (3.9) with triples f(],l),
g(],l), and a(]) of the form (]1a1Dl)h(]1l), h(]1l), and (]2b)h(]), respectively, where
h is a polynomial.
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Applying ~2.9! to the vectorcb we obtain~2.21!, while applying~2.10! and~2.13! gives~2.22!

a~]1l!5~]1l2b!g~],l!, ~3.10!

respectively. Ifa50, we havef 50 andg50 by ~2.22! and ~3.10!, respectively.
Hence we may assume thataÞ0. Combining~2.22! and ~3.10! we obtain

f ~],l!5g~],l!~]1a1Dl!. ~3.11!

Puttingm50 in ~2.21! and we get, after a shift bya ~see Remark 2.1!,

~]1Dl! f ~]1l,0!5~]1l! f ~],l!.

We may assume thatf is homogeneous in] andl and consider first the case whenf is not a
constant. Then

f ~],l!5~]1Dl!h~]1l!, ~3.12!

whereh(]1l)5@ f (]1l,0)#/(]1l) is a polynomial. Substituting~3.12! into ~2.22! and ~3.11!
we obtain, respectively,

a~]1l!5„]1l2~a1b!…h~]1l!, ~3.13!

g~],l!5h~]1l!. ~3.14!

However, this is the trivial extension by Lemma 3.3.
Thus we may assume thatf 51 andD51 by Theorem 2.3. But then~2.22! implies thata

1b50 anda51. But this contradicts~3.10!. Hence we have proved the following.
Proposition 3.2: There are no nontrivial extensions of the form (3.8).
Finally consider extensions of the form

0→N~a,D!→E→Ceb→0. ~3.15!

As a vector space we haveE5N(a,D) % Ceb with R(N)-submoduleN(a,D) and

Lleb5 f ~],l!vD
j , Gleb5g~],l!vD , ]eb5beb1a~]!vD

j , ~3.16!

where f (],l), g(],l)PC @], l# anda(])PC @]#.
Lemma 3.4: All trivial extensions of the form (3.15) are given by (3.16), where f(],l)5„]

1a1(D1 1
2)l…h(]1l), g(],l)5(]1a12Dl)h(]1l), a(])5(]2b)h(]), and h is a poly-

nomial.
Applying ~2.9! and ~2.12! to the vectoreb we get, respectively~after a shift bya!,

„]1~D1 1
2!l…f ~]1l,m!2„]1~D1 1

2!m…f ~]1m,l!5~l2m! f ~],l1m!, ~3.17!

g~]1l,m!1g~]1m,l!52 f ~],l1m!. ~3.18!

Hence we may assume thatf is homogeneous in] andl.
Applying ~2.10! and ~2.13! to eb , respectively, gives

„]1l2~a1b!…f ~],l!5a~]1l!„]1~D1 1
2!l…, ~3.19!

„]1l2~a1b!…g~],l!5a~]1l!~]12Dl!. ~3.20!

Setm50 in ~3.17! we get

f ~]1l,0!„]1~D1 1
2!l…5~]1l! f ~],l!,
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and hence iff is not a constant, then

f ~],l!5„]1~D1 1
2!l…h~]1l!, ~3.21!

whereh(]1l)5@ f (]1l,0)#/(]1l). Substituting~3.21! into ~3.19! we get, after simplification,

a~]1l!5„]1l2~a1b!…h~]1l!. ~3.22!

We now combine~3.22! and ~3.20! and find that

g~],l!5~]12Dl!h~]1l!. ~3.23!

However,~3.21!–~3.23! is a trivial cocycle by Lemma 3.4.
Therefore, we may assume thatf 51. By ~3.19! a1b50, D5 1

2, and a51. Furthermore,
~3.18! implies thatg51. This extension is nontrivial.

Theorem 3.2: Nontrivial extensions of the form (3.15) exist if and only ifa1b50 and D
5 1

2. In this case, the unique extension is given by (3.16), where

f ~],l!5g~],l!5a~]!5a0 , a0Þ0.

Remark 3.2:The extension of Theorem 3.2 is given as follows: It is more convenien
reverse the parity and consider theR(N)-module N(a,0)5Cv % Cvj. It is easy to check tha
N(a,0) contains an irreducible submodule generated by the vector (]1a)v, which is isomorphic

to N8(a,1). @Recall that reversing the parity ofN8(a,1) givesN(a, 1
2).# Thus we have an exac

sequence

0→N8~a,1!→N~a,0!→Cc2a→0.

The corresponding conformal module can be realized as follows: ConsiderEc

5C @ t, t21, j#e2atdtdj and the residue functionr:Ec→C, which assigns to each element inEc

its coefficient oft21jdtdj. It is readily checked that the kernel ofr is spanned by elements of th
form tme2atdtdj and (tn2atn11/(n11))je2atdtdj with n,mPZ andnÞ21, and is a submod-
ule of codimension 1.

IV. EXTENSIONS OF NON-ONE-DIMENSIONAL NEVEU–SCHWARZ MODULES

In this section we classify extensions between two non-one-dimensional finite-rank irred
modules overR(N). We distinguish two cases, namely extensions betweenN(a,D8) and
N8(b,D), and betweenN(a,D8) andN(b,D).

We first consider the case of

0→N~a,D8!→E→N8~b,D!→0. ~4.1!

We write N(a,D8)5C @]#v1C @]#vj andN8(b,D)5C @]#w1C @]#wj. Here, as usual, the su
perscriptj is to denote that the vector under consideration is an odd vector. As aC @]#-module,E
is isomorphic toN(a,D8) % N8(b,D), so that we may make this identification.N(a,D8) is an
R(N)-submodule with action given by~2.15!. R(N) acts onw andwj as follows:

Llw5~]1b1Dl!w1 f ~],l!v,

Llwj5„]1b1~D2 1
2!l…w

j1g~],l!vj,
~4.2!

Glw5„]1b1~2D21!l…wj1R~],l!vj,

Glwj5w1S~],l!v,
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where f (],l), g(],l), R(],l), andS(],l) are polynomials in] andl.
Trivial cocycles are given as follows:
Lemma 4.1: All trivial extensions of the form (4.1) are given by (4.2), where

f ~],l!5~]1a1D8l!h~]1l!2~]1b1Dl!h~]!,

g~],l!5„]1a1~D81 1
2!l…k~]1l!2„]1b1~D2 1

2!l…k~]!,

R~],l!5h~]1l!2„]1b1~2D21!l…k~]!,

S~],l!5~]1b12D8l!k~]1l!2h~]!,

and h and k are polynomials.
Applying ~2.9!, ~2.11!, and~2.12! to w andwj we obtain the following six identities:

~l2m! f ~],l1m!5~]1b1l1Dm! f ~],l!1~]1a1D8l! f ~]1l,m!

2~]1b1m1Dl! f ~],m!2~]1a1D8m! f ~]1m,l!, ~4.3!

~l2m!g~],l1m!5„]1b1l1~D2 1
2!m…g~],l!1„]1a1~D81 1

2!l…g~]1l,m!

2„]1b1m1~D2 1
2!l…g~],m!2„]1a1~D81 1

2!m…g~]1m,l!,

~4.4!

S l

2
2m DR~],l1m!5„]1b1l1~2D21!m…g~],l!1„]1a1~D81 1

2!l…R~]1l,m!

2~]1b1m1Dl!R~],m!2 f ~]1m,l!, ~4.5!

S l

2
2m DS~],l1m!5 f ~],l!1~]1a1D8l!S~]1l,m!2„]1b1m1~D2 1

2!l…S~],m!

2~]1a12D8m!g~]1m,l!, ~4.6!

2 f ~],l1m!5„]1b1l1~2D21!m…S~],l!1~]1a12D8l!R~]1l,m!

1„]1b1m1~2D21!l…S~],m!1~]1a12D8m!R~]1m,l!, ~4.7!

2g~],l1m!5R~],l!1S~]1l,m!1R~],m!1S~]1m,l!. ~4.8!

Now if aÞb, Theorem 2.4, Lemma 4.1,~4.3!, and ~4.4! tell us that we may assume tha
f (],l)5g(],l)50. Settingm50 in ~4.5! we then get

l

2
R~],l!5„]1a1~D81 1

2!l…R~]1l,0!2~]1b1Dl!R~],0!. ~4.9!

Puttingl50 in ~4.9! we see that (a2b)R(],0)50, which we may then plug in back into~4.9! to
conclude thatR(],l)50.

Now g(],l)5R(],l)50 in ~4.8! gives ~with m50!

S~]1l,0!1S~],l!50. ~4.10!

We setl50 in ~4.10! and conclude thatS(],0)50, which implies thatS(],l)50 due to~4.10!.
Thus our discussion above shows that for our problem we may assume from now ona

5b. Replacing]1a by ] we may rewrite~4.3!–~4.8! in homogeneous form:
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~l2m! f ~],l1m!5~]1l1Dm! f ~],l!1~]1D8l! f ~]1l,m!

2~]1m1Dl! f ~],m!2~]1D8m! f ~]1m,l!, ~4.11!

~l2m!g~],l1m!5„]1l1~D2 1
2!m…g~],l!1„]1~D81 1

2!l…g~]1l,m!

2„]1m1~D2 1
2!l…g~],m!2„]1~D81 1

2!m…g~]1m,l!, ~4.12!

S l

2
2m DR~],l1m!5„]1l1~2D21!m…g~],l!1„]1~D81 1

2!l…R~]1l,m!

2~]1m1Dl!R~],m!2 f ~]1m,l!, ~4.13!

S l

2
2m DS~],l1m!5 f ~],l!1~]1D8l!S~]1l,m!2„]1m1~D2 1

2!l…S~],m!

2~]12D8m!g~]1m,l!, ~4.14!

2 f ~],l1m!5„]1l1~2D21!m…S~],l!1~]12D8l!R~]1l,m!

1„]1m1~2D21!l…S~],m!1~]12D8m!R~]1m,l!, ~4.15!

2g~],l1m!5R~],l!1S~]1l,m!1R~],m!1S~]1m,l!. ~4.16!

The first task now is to determine solutions to~4.11!–~4.16! in the case whenf (],l)
5g(],l)50.

Lemma 4.2: Let F(],l) be a nonzero homogeneous polynomial of degree m satisfying

S l

2
2m DF~],l1m!5„]1~D81 1

2!l…F~]1l,m!2~]1Dl1m!F~],m!, ~4.17!

whereD8,DPC. ThenD2D85m, m<2 and all the solutions (up to a scalar) are given by

~i! m50 and F(],l)51;
~ii ! m51 and F(],l)5]1(2D811)l;
~iii ! m52, D5 3

2, D852 1
2, and F(],l)5]212]l; and

~iv! m52, D51, D8521, and F(],l)5]22l2.

Proof: SubstitutingF(],l)5( i 50
m ai]

m2 il i andm50 into ~4.17! we obtain

l

2 S (
i 50

m

ai]
m2 il i D 5„]1~D81 1

2!l…a0~]1l!m2~]1Dl!a0]m. ~4.18!

Taking the coefficient of]ml we see that12a05a0(m1D82D1 1
2). Hence ifa0Þ0, we must have

m5D2D8.
On the other hand, ifa050, we haveF(],l)50 by ~4.18!, and so we may assume thata0

Þ0 andm5D2D8.
Solving ~4.18! for other coefficients give

1

2
ai5a0S m

i 11D1a0~D81 1
2!S m

i D , 1< i<m. ~4.19!

SubstitutingF(],l)5( i 50
m ai]

m2 il i into ~4.17! we have
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S l

2
2m D(

i 50

m

ai]
m2 i~l1m! i5„]1~D81 1

2!l… (
i 50

m

ai~]1l!m2 im i2~]1Dl1m!(
i 50

m

ai]
m2 im i .

~4.20!

The coefficient oflmm in ~4.20! with m>2 gives (m/2)am2am5(D81 1
2)a1 , and hence by

~4.19! a0(m/221)(D81 1
2)5(D81 1

2)„2a0(2
m)12a0(D81 1

2)m…, which in the case whenD811
2Þ0

gives

m21~2D82 1
2!m1150. ~4.21!

Similarly collecting the coefficient ofl2mm21 with m>2 gives@using ~4.19! again#

m21~2D821!m1250. ~4.22!

Therefore, it follows from~4.21! and ~4.22! that m52. Hence we have proved that ifD81 1
2Þ0

andm>2, thenm52.
Suppose now thatD81 1

250 andm>3. In this case the coefficient of]lm21m in ~4.20! gives
@am21(m21)/2#2am215a1 , from which we conclude, using~4.19!, that

a0~m21!22a05a0m~m21!.

Sincea0Þ0, we have thenm222m1350, which certainly cannot happen, sincem would not be
an integer.

Thus we have only three possible cases form, namely,m50, 1, 2.
Suppose thatm50. ThenD5D8 andF(],l)5constant is a solution to~4.17!.
Next suppose thatm51. Then again it is easily checked thatF(],l)5]1(2D811)l is a

unique, up to a constant, solution to~4.17!.
Finally, consider the casem52. By ~4.19! we may assume that

F~],l!5]21~414D8!]l1~2D811!l2.

Plugging this back into~4.17! we obtain

S l

2
2m D ~]21~4D814!]~l1m!1~2D811!~l1m!2!

5„]1~D81 1
2!l…„~]1l!21~4D814!~]1l!m1~2D811!m2

…

2~]1Dl1m!~]21„4D814!]m1~2D811!m2
…. ~4.23!

Collecting the coefficient ofl2m in ~4.23! gives, after simplification,

~2D811!~2D812!50,

which implies thatD8521 or D852 1
2.

Proposition 4.1: Let f(],l), g(],l), R(],l), and S(],l) satisfy (4.11)–(4.16). Suppose tha
f (],l)5g(],l)50. Then the extension of the form (4.1) associated to these polynomials
trivial extension.

Proof: Substitutingf (],l)50 andg(],l)50 in ~4.13! and ~4.14! we see that

S l

2
2m DR~],l1m!5„]1~D81 1

2!l…R~]1l,m!2~]1m1Dl!R~],m!,

S l

2
2m DS~],l1m!5~]1D8l!S~]1l,m!2„]1m1~D2 1

2!l…S~],m!.
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Now if R(],l)50, it follows easily from~4.16! that S(],l)50, and vice versa. Therefore, w
may assume that bothR(],l) andS(],l) are nonzero, and hence by~4.16! R(],l) andS(],l)
are homogeneous of the same degree. However, Lemma 4.2 only allows three possible c

In the first case we haveD5D8 with R(],l)5c andS(],l)5d, wherec,dPC. By ~4.16! we
havec52d. This, however, is a trivial extension by Lemma 4.1~h5c, k50!.

In the second case we haveD2D851 and R(],l)5c„]1(2D811)l… and S(],l)5d(]
12D8l), c,dPC. Again ~4.16! tells us thatc52d. However, this is also a trivial extension b
Lemma 4.1~h50, k5c!.

In the last case we must haveD8521
2 and D53

2 with R(],l)5c(]212]l) and S(],l)
5d(]22l2), c,dPC. Again ~4.16! implies thatc52d. This can be seen to be a trivial extensio
by Lemma 4.1~h50, k52c]!.

Suppose now that„f (],l),g(],l)…Þ(0,0). We may assume thatf (],l), g(],l), R(],l),
andS(],l) are homogeneous polynomials of degreem11, m, m, andm, respectively, wherem
>0. @The casem521 is ruled out by~4.15!.# We write

R~],l!5(
i 50

m

ai]
m2 il i , S~],l!5(

i 50

m

bi]
m2 il i .

We setm50 in ~4.13! and ~4.14! and obtain

l

2
R~],l!5~]1l!g~],l!1„]1~D81 1

2!l…a0~]1l!m2~]1Dl!a0]m2 f ~],l!, ~4.24!

l

2
S~],l!5 f ~],l!2]g~],l!1b0~]1D8l!~]1l!m2b0„]1~D2 1

2!l…]
m. ~4.25!

Note that~4.24! and~4.25! imply thatR(],l) andS(],l) are uniquely determined by the pa
„f (],l),g(],l)…. Since„f (],l),g(],l)… is given by polynomials in the list of Theorem 2.4 wit
degf (],l)5degg(],l)11 due to Lemma 4.1,~4.11!, and~4.12!, we may use~4.24! and~4.25!
to defineR(],l) and S(],l), and then use Eqs.~4.13!–~4.16! to check for consistency. This
computation was carried out by Maple V and below we will first give all such p
„f (],l),g(],l)… and then give the solutions.

All possible pairs of„f (],l),g(],l)… are given~up to a constant factor! as follows ~see
Theorem 2.4 for notation!:

~1! m57, D81 1
25(256A19)/2, D2 1

25(76A19)/2, f (],l)50 andg(],l)5 f 7(],l) with
D8 replaced byD81 1

2.
~2! m56.

~i! D85(256A19)/2,D5(76A19)/2, f (],l)5 f 7(],l), andg(],l)50.
~ii ! D2 1

255, D81 1
250, f (],l)50, andg(],l)5 f 6(],l).

~iii ! D2 1
251, D81 1

2524, f (],l)50, andg(],l)5 f 68(],l).

~3! m55 andD2D855.

~i! f (],l)50 andg(],l)5 f 5(],l) with D8 replaced byD81 1
2.

~ii ! D55, f (],l)5 f 6(],l), g(],l)5c f5(],l) with D8 replaced byD81 1
2, cPC.

~iii ! D51, f (],l)5 f 68(],l), g(],l)5c f5(],l) with D8 replaced byD81 1
2, cPC.

~4! m54, D2D854, f (],l)5c1f 5(],l), and g(],l)5c2f 4(],l), c1 ,c2PC with (c1 ,c2)
Þ(0,0).

~5! m53, D2D853, f (],l)5c1f 4(],l), and g(],l)5c2f 3(],l), c1 ,c2PC with (c1 ,c2)
Þ(0,0).

~6! m52, D2D852.

~i! f (],l)5 f 3(],l) andg(],l)50.
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~ii ! D2 1
251, D81 1

250, f (],l)5c1f 3(],l), andg(],l)5c2]l1c3l2 with c1 ,c2 ,c3PC and
(c2 ,c3)Þ(0,0).

~7! m51.

~i! D51, D850, f (],l)5c1]l1c2l2, g(],l)5c3l, where c1 ,c2 ,c3PC with (c1 ,c2)
Þ(0,0).

~ii ! D2 1
25D81 1

2, f (],l)50, g(],l)5l.
~iii ! D2 1

251, D81 1
250, f (],l)50, g(],l)5].

~8! m50.

~i! D5D8, f (],l)5l, g(],l)50.
~ii ! D51, D850, f (],l)5], g(],l)5c, wherecPC.

The solutions to~4.11!–~4.16! are as follows:
There are no solutions for cases 1–4, 7~ii !, 7~iii !, and 8~i!.
~5! c153c2 and the unique~up to a scalar! solution is given by

f ~],l!53]l2~]1l!, R~],l!52l~l22]2!,

g~],l!5l2~2]1l!, S~],l!52]l~]12l!.

~6i! D8Þ2 1
2 and the unique~up to a scalar! solution is

f ~],l!5l2~2]1l!, R~],l!5
2

2D811
~]212]l!,

g~],l!50, S~],l!5
2

2D811
~l22]2!.

~6ii! c15c3 , c250, and the solutions are~up to a scalar! given by

f ~],l!5l2~2]1l!, R~],l!5c~]212]l!22]l, cPC

g~],l!5l2, S~],l!5c~l22]2!12~]l1l2!.

~7i! c15c3 and the solutions are

f ~],l!5c1]l1c2l2, R~],l!5c3~]1l!12~c12c2!l,

g~],l!5c1l, S~],l!52c3]12c2l, c1 ,c2 ,c3PC.

~8ii! c51 and the unique~up to a scalar! solution is

f ~],l!5], R~],l!51,

g~],l!51, S~],l!50,

We summarize the above discussion in the following theorem.
Theorem 4.1: Nontrivial extensions of the form (4.1) exist only ifa5b and D2D851,2,3.

The following is a complete list of values ofD and D8 along with the quadruple of polynomial

f ( ]̃,l), g( ]̃,l), R( ]̃,l), and S( ]̃,l) whose nonzero scalar multiples give rise to nontriv
extensions(]5]1a):

~i! D51, D850, and
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f ~ ]̃,l!5c1]̃l1c2l21c3]̃, g~ ]̃,l!5c1l1c3 ,

R~ ]̃,l!5c4~ ]̃1l!12~c12c2!l1c3 , S~ ]̃,l!52c4]̃12c2l,

wherec1 ,c2 ,c3 ,c4PC, and (c1 ,c2 ,c3 ,c4)Þ(0,0,0,0).
~ii ! D5 3

2, D852 1
2, and

f ~ ]̃,l!5l2~2]̃1l!, g~ ]̃,l!5l2,

R~ ]̃,l!5c~ ]̃212]̃l!22]̃l, S~ ]̃,l!5c~l22 ]̃2!12~ ]̃l1l2!, cPC.

~ii 8! D2D852, D8Þ2 1
2, and

f ~ ]̃,l!5l2~2]̃1l!, g~ ]̃,l!50,

R~ ]̃,l!5
2

2D811
~ ]̃212]̃l!, S~ ]̃,l!5

2

2D811
~l22 ]̃2!.

~iii ! D2D853,

f ~ ]̃,l!53]̃l2~ ]̃1l!, g~ ]̃,l!5l2~2]̃1l!,

R~ ]̃,l!52l~l22 ]̃2!, S~ ]̃,l!52]̃l~ ]̃12l!.

The space of extensions is four-dimensional in the case (i), two-dimensional in the cas
one-dimensional in the case (ii8) and (iii), and trivial for all other values ofD and D8.

Below we provide a formula to translate the extensions obtained above into the langu
conformal modules. The conformal module ofE will be denoted byEc. As a vector spaceEc

5C @ t, t21, j#e2atv1/22D8% C @ t, t21, j#e2atv12D, where the parity is given byp(v (1/2)2D8)
51 andp(v12D)50. On the spaceC @ t, t21, j#e2atv (1/2)2D8N acts as in Example 2.2, while o
the space C @ t, t21, j#e2atv12D the action is as follows $ f (t)PC @ t, t21#,g(t)
PC @ t,t21#e2at%:

D f ~ t !g~ t !v12D5„f ~ t !g8~ t !1~12D! f 8~ t !g~ t !…v12D1(
i ,k

aik~21! i

3X(
j 50

i S i
j D f ~k1 i 2 j !~ t !g~ j !~ t !Cjv~1/2!2D8,

D f ~ t !g~ t !jv12D5„f ~ t !g8~ t !1~ 3
22D! f 8~ t !g~ t !…jv12D1(

i ,k
bik~21! i

3X(
j 50

i S i
j D f ~k1 i 2 j !~ t !g~ j !~ t !Cv~1/2!2D8,

Dj f ~ t !g~ t !v12D5„f ~ t !g8~ t !1~222D! f 8~ t !g~ t !…jv12D1(
i ,k

cik~21! i

3X(
j 50

i S i
j D f ~k1 i 2 j !~ t !g~ j !~ t !Cv~1/2!2D8,
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Dj f ~ t !g~ t !jv12D52 f ~ t !g~ t !v12D1(
i ,k

dik~21! i X(
j 50

i S i
j D f ~k1 i 2 j !~ t !g~ j !~ t !Cjv1/22D8,

where f ( ]̃,l)5( i ,kaik]̃ ilk, g( ]̃,l)5( i ,kbik]̃ ilk, R( ]̃,l)5( i ,kcik]̃ ilk, and S( ]̃,l)
5( i ,kdik]̃ ilk. Hereh( i )(t) denotes thei th derivative of the polynomialh(t) with respect tot. The
proof of these formulas are exactly the same as the proof for formula~3.13! in Ref. 2 and hence
will be omitted.

Finally, consider extensions of the form

0→N~a,D8!→E→N~b,D!→0. ~4.26!

We haveE>N(a,D8) % N(b,D) asC @]#-modules and we writeN(a,D8)5C @]#v1C @]#vj and
N(b,D)5C @]#w1C @]#wj. The action ofR(N) on the vectorsv and vj is given by ~2.15!,
while on the vectorsw andwj it is given by

Llw5~]1b1Dl!w1 f ~],l!v,

Llwj5„]1b1~D1 1
2!l…w

j1g~],l!vj,
~4.27!

Glw5wj1R~],l!vj,

Glwj5~]1b12Dl!w1S~],l!v,

where f (],l), g(],l), R(],l), andS(],l) are polynomials in] andl.
Lemma 4.3: All trivial extensions of the form (4.26) are given by (4.27), where

f ~],l!5~]1a1D8l!h~]1l!2~]1b1Dl!h~]!,

g~],l!5„]1a1~D81 1
2!l…k~]1l!2„]1b1~D1 1

2!l…k~]!,

R~],l!5h~]1l!2k~]!,

S~],l!5~]1a12D8l!k~]1l!2~]1b12Dl!h~]!,

and h and k are polynomials.
Applying ~2.9!, ~2.11!, and~2.12! to w andwj we obtain

~l2m! f ~],l1m!5~]1b1l1Dm! f ~],l!1~]1a1D8l! f ~]1l,m!

2~]1b1m1Dl! f ~],m!2~]1a1D8m! f ~]1m,l!, ~4.28!

~l2m!g~],l1m!5„]1b1l1~D1 1
2!m…g~],l!1„]1a1~D81 1

2!l…g~]1l,m!

2„]1b1m1~D1 1
2!l…g~],m!2„]1a1~D81 1

2!m…g~]1m,l!,

~4.29!

S l

2
2m DR~],l1m!5g~],l!2 f ~]1m,l!1„]1a1~D81 1

2!l…R~]1l,m!

2~]1b1m1Dl!R~],m!, ~4.30!

S l

2
2m DS~],l1m!5~]1a1D8l!S~]1l,m!2„]1b1m1~D1 1

2!l…S~],m!

1~]1b1l12Dm! f ~],l!2~]1a12D8m!g~]1m,l!, ~4.31!
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2 f ~],l1m!5S~],l!1~]1a12D8l!R~]1l,m!1S~],m!

1~]1a12D8m!R~]1m,l!, ~4.32!

2g~],l1m!5S~]1l,m!1~]1b1l12Dm!R~],l!1S~]1m,l!

1~]1b1m12Dl!R~],m!. ~4.33!

Now if aÞb, we may assume by Theorem 2.4, Lemma 4.3,~4.28!, and ~4.29! that f (],l)
5g(],l)50. We putm50 in ~4.30! and conclude that

l

2
R~],l!5„]1a1~D81 1

2!l…R~]1l,0!2~]1b1Dl!R~],0!. ~4.34!

Now puttingl50 in ~4.34! gives (a2b)R(],0)50, and henceR(],0)50, from which it follows
from ~4.34! again thatR(],l)50.

With f (],l)5g(],l)5R(],l)50 we have by~4.32!

S~],l!1S~],m!50,

which givesS(],l)50.
Thus we may assume from now on thata5b. Using a shift bya as before, we may rewrite

~4.28!–~4.33! in homogeneous form:

~l2m! f ~],l1m!5~]1l1Dm! f ~],l!1~]1D8l! f ~]1l,m!

2~]1m1Dl! f ~],m!2~]1D8m! f ~]1m,l!, ~4.35!

~l2m!g~],l1m!5„]1l1~D1 1
2!m…g~],l!1„]1~D81 1

2!l…g~]1l,m!

2„]1m1~D1 1
2!l…g~],m!2„]1~D81 1

2!m…g~]1m,l!, ~4.36!

S l

2
2m DR~],l1m!5g~],l!2 f ~]1m,l!1„]1~D81 1

2!l…R~]1l,m!

2~]1m1Dl!R~],m!, ~4.37!

S l

2
2m DS~],l1m!5~]1D8l!S~]1l,m!2„]1m1~D1 1

2!l…S~],m!

1~]1l12Dm! f ~],l!2~]12D8m!g~]1m,l!, ~4.38!

2 f ~],l1m!5S~],l!1~]12D8l!R~]1l,m!1S~],m!1~]12D8m!R~]1m,l!,
~4.39!

2g~],l1m!5S~]1l,m!1~]1l12Dm!R~],l!1S~]1m,l!1~]1m12Dl!R~],m!.
~4.40!

Proposition 4.2: Let f(],l), g(],l), S(],l), and R(],l) satisfy (4.35)–(4.40) with f(],l)
5g(],l)50. Then an extension of the form (4.26) associated to such a quadruple of polyno
is a trivial extension.

Proof: Substitutingf (],l)5g(],l)50 into ~4.37! and ~4.38! we get respectively

S l

2
2m DR~],l1m!5„]1~D81 1

2!l…R~]1l,m!2~]1m1Dl!R~],m!,
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S l

2
2m DS~],l1m!5~]1D8l!S~]1l,m!2„]1m1~D1 1

2!l…S~],m!.

Now it is easy to see in our situation from~4.40! thatR(],l)50 if and only if S(],l)50. Hence
we may assume thatR(],l)Þ0 and S(],l)Þ0. Thus we have degS(],l)5degR(],l)11.
However, then Lemma 4.2 only leaves three possibilities.

In the first case we haveD5D8, R(],l)52c, and S(],l)5c(]12D8l), where cPC.
However, this corresponds to the trivial extension by Lemma 4.3 withh50 andk5c.

In the second case we haveD51 andD850 with R(],l)5c(]1l) and S(],l)52c(]2

12]l),cPC. By Lemma 4.3 this is a trivial extension (h5c],k50).
Finally, in the last case we haveD5 1

2 and D852 1
2 with R(],l)5c] and S(],l)52c(]2

2l2). By Lemma 4.3 again this is a trivial extension (h50,k52c]).
Equations~4.35!–~4.40! allow us to assume thatf (],l), g(],l), S(],l), and R(],l) are

homogeneous polynomials in] andl of degreem,m,m, andm21, respectively. We setR(],l)
5( i 50

m21ai]
m212 il i and S(],l)5( i 50

m bi]
m2 il i . Letting m50 in ~4.37! and ~4.38! we obtain

respectively

l

2
R~],l!5g~],l!2 f ~],l!1a0„]1~D81 1

2!l…~]1l!m212a0~]1Dl!]m21, ~4.41!

l

2
S~],l!5b0~]1D8l!~]1l!m2b0„]1~D1 1

2!l…]
m1~]1l! f ~],l!2]g~],l!. ~4.42!

ThusR(],l) andS(],l) are uniquely determined byf (],l) andg(],l). Now we may assume
that f (],l) and g(],l) are given by those polynomials in Theorem 2.4 with degf (],l)
5degg(],l) due to~4.35!, ~4.36!, and Lemma 4.3, and we may use~4.41! and ~4.42! to define
R(],l) and S(],l). After that we may then check if the quadruple so defined satisfies~4.37!–
~4.40!. Again we have resorted to Maple V to perform this computation and below we will
write down these pairs of„f (],l),g(],l)… that are allowed and then discuss solutions to each s
pair.

The admissible pairs are as follows.
~1! m57.

~i! D2D856, D85(256A19)/2, f (],l)5 f 7(],l), andg(],l)50.
~ii ! D2D856, D81 1

25(256A19)/2, f (],l)50, g(],l)5 f 7(],l) with D8 replaced byD8
1 1

2.

~2! m56.

~i! D55, D850, f (],l)5 f 6(],l), g(],l)50.
~ii ! D51, D8524, f (],l)5 f 68(],l), g(],l)50.
~iii ! D5 9

2, D852 1
2, f (],l)50, g(],l)5 f 6(],l).

~iv! D5 1
2, D852 9

2, f (],l)50, g(],l)5 f 68(],l).

~3! m55, D2D854, f (],l)5c1f 5(],l), g(],l)5c2f 5(],l), where in g(],l) D8 is re-
placed byD81 1

2,(c1 ,c2)Þ(0,0).
~4! m54, D2D853, f (],l)5c1f 4(],l), g(],l)5c2f 4(],l),(c1 ,c2)Þ(0,0).
~5! m53, D2D852, f (],l)5c1f 3(],l), g(],l)5c2f 3(],l),(c1 ,c2)Þ(0,0).
~6! m52.

~i! D51, D850, f (],l)5c1]l1bl2, g(],l)50, (c1 ,c2)Þ(0,0).
~ii ! D5 1

2, D852 1
2, f (],l)50, g(],l)5c1]l1c2l2, (c1 ,c2)Þ(0,0).

~7! m51.
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~i! D5D8, f (],l)5c1l, g(],l)5c2l, (c1 ,c2)Þ(0,0).
~ii ! D51, D850, f (],l)5], g(],l)50.
~iii ! D5 1

2, D852 1
2, f (],l)50, g(],l)5].

~8! m50, D5D8, f (],l)5c1 , g(],l)5c2 , (c1 ,c2)Þ(0,0).
The solutions are as follows.
There are no solutions for cases 1, 2, 6, 7~ii !, and 7~iii !.

~3! Solutions exist if and only ifD85(276A33)/4 andc15@(6D811)/4#c2 . In this case the
unique~up to a scalar! solution is given by

f ~],l!52~6D811!l2~4]316]2l2]l21D8l3!,

g~],l!54l2
„4]316]2l2]l21~D81 1

2!l
3
…,

R~],l!5~2D821!]418~2D811!]3l12~2D8111!]2l2232~2D811!]l32~46D8113!l4,

S~],l!5~122D8!]528D8]4l28]3l2116~5D813!]2l318~15D814!]l418~7D812!l5.

~4! Solutions exist if and only ifD53 andD850 or D5 1
2 andD852 5

2. In the first case we
must havec256c1 , while in the second case we must havec156c2 . In the caseD53 andD8
50 the unique~up to a scalar! solution is

f ~],l!5]l2~]1l!, R~],l!52]31]2l15]l22l3,

g~],l!56]l2~]1l!, S~],l!5]412]3l14]l3.

In the caseD5 1
2 andD852 5

2 the unique solution is

f ~],l!56]l2~]1l!, R~],l!52]324]2l14l3,

g~],l!5]l2~]1l!, S~],l!5]412]3l26]l325l4.

~5! Solutions exist if and only if (D811)(2D813)c15D8(2D811)c2 . The unique~up to a
scalar! solution is

f ~],l!5D8~2D811!l2~2]1l!,

R~],l!5~D811!~2D813!l2~2]1l!,

g~],l!523]214D8]l1~2D813!l2,

S~],l!53]312~D813!]2l12D8~4D817!]l214D8~D812!l3.

~7i! Solutions exist if and only ifc15c2 . The unique~up to a scalar! solution is given by

f ~],l!5l, R~],l!52c, cPC,

g~],l!5l, S~],l!5c~]12D8l!12l.

~8! Solutions exist if and only ifc15c2 . The unique~up to a scalar! solution is

f ~],l!51, R~],l!50,

g~],l!51, S~],l!51.

We summarize the above discussion in the following theorem.
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Theorem 4.2:Nontrivial extensions of the form (4.26) exist only ifa5b andD2D850,2,3,4.
The following is a complete list of values ofD and D8 along with the quadruple of polynomial

f ( ]̃,l), g( ]̃,l), R( ]̃,l), and S( ]̃,l), whose nonzero scalar multiples give rise to nontriv

extensions( ]̃5]1a):
~i! D5D8,

f ~ ]̃,l!5c1l1c2 , g~ ]̃,l!5c1l1c2 ,

R~ ]̃,l!52c3 , S~ ]̃,l!5c3~ ]̃12D8l!12c1l1c2 ,

c1 ,c2 ,c3PC with (c1 ,c2 ,c3)Þ(0,0,0).
~ii ! D2D852,

f ~ ]̃,l!5D8~2D811!l2~2]̃1l!,

R~ ]̃,l!5~D811!~2D813!l2~2]̃1l!,

g~ ]̃,l!523]̃214D8]̃l1~2D813!l2,

S~ ]̃,l!53]̃312~D813!]̃2l12D8~4D817!]̃l214D8~D812!l3.

~iii ! D51
2, D8525

2,

f ~ ]̃,l!56]̃l2~ ]̃1l!, R~ ]̃,l!52 ]̃324]̃2l14l3,

g~ ]̃,l!5 ]̃l2~ ]̃1l!, S~ ]̃,l!5 ]̃412]̃3l26]̃l325l4.

~iii 8! D53, D850,

f ~ ]̃,l!5 ]̃l2~ ]̃1l!, R~ ]̃,l!52 ]̃31 ]̃2l15]̃l22l3,

g~ ]̃,l!56]̃l2~ ]̃1l!, S~ ]̃,l!5 ]̃412]̃314]̃l3.

~iv! D2D854, D85(276A33)/4),

f ~ ]̃,l!52~6D811!l2~4]̃316]̃2l2 ]̃l21D8l3!,

g~ ]̃,l!54l2
„4]̃316]̃2l2 ]̃l21~D81 1

2!l
3
…,

R~ ]̃,l!5~2D821!]̃418~2D811!]̃3l12~2D8111!]̃2l2232~2D811!]̃l32~46D8113!l4,

S~ ]̃,l!5~122D8!]̃528D8]̃4l28]̃3l2116~5D813!]̃2l318~15D814!]̃l418~7D812!l5.

The space of extensions is three-dimensional in the case (i), one-dimensional in the case (i–(iv),
and trivial for all other values ofD and D8.

In conclusion we provide a formula to translate the extensions thus obtained into the lan
of conformal modules. As a vector spaceEc is isomorphic to C @ t, t21, j#e2atv (1/2)2D8

% C @ t, t21, j#e2atv (1/2)2D with p(v (1/2)2D8)51 andp(v (1/2)2D)51. C @ t, t21, j#e2atv (1/2)2D8

is anN-submodule ofEc and on the spaceC @ t, t21, j#eatv (1/2)2D the action is given by„f (t)
PC @ t, t21#,g(t)PC @ t, t21#e2at

…:
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D f ~ t !g~ t !v~1/2!2D5„f ~ t !g8~ t !1~ 1
22D! f 8~ t !g~ t !…v~1/2!2D

1(
i ,k

bik~21! i X(
j 50

i S i
j D f ~k1 i 2 j !~ t !g~ j !~ t !Cv~1/2!2D8,

D f ~ t !g~ t !jv~1/2!2D5„f ~ t !g8~ t !1~12D! f 8~ t !g~ t !…jv~1/2!2D

1(
i ,k

aik~21! i X(
j 50

i S i
j D f ~k1 i 2 j !~ t !g~ j !~ t !Cjv~1/2!2D8,

Dj f ~ t !g~ t !v~1/2!2D5„f ~ t !g8~ t !1~122D! f 8~ t !g~ t !…jv~1/2!2D

1(
i ,k

dik~21! i X(
j 50

i S i
j D f ~k1 i 2 j !~ t !g~ j !~ t !Cjv~1/2!2D8,

Dj f ~ t !g~ t !jv12D52 f ~ t !g~ t !v~1/2!2D

1(
i ,k

cik~21! i X(
j 50

i S i
j D f ~k1 i 2 j !~ t !g~ j !~ t !Cv~1/2!2D8,

where f ( ]̃,l)5( i ,kaik]̃ ilk, g( ]̃,l)5( i ,kbik]̃ ilk, R( ]̃,l)5( i ,kcik]̃ ilk, and S( ]̃,l)
5( i ,kdik]̃ ilk. Here, as beforeh( i )(t) denotes thei th derivative of the polynomialh(t) with
respect tot.

Remark 4.1:Of course extensions of the types

0→N8~a,D8!→E→N~b,D!→0

and
0→N8~a,D8!→E→N8~b,D!→0

are obtained from Theorems 4.1 and 4.2 by reversing parity.
Remark 4.2:We would like to make the following correction in Ref. 2. The second sente

after ~5.5! should be replaced by: Ifw1,050, thencjk50 for k>1. ThusLlu5(]1b1Dl)u
1 f (l)u8, whereu→u8 is a g-module isomorphism fromU to V. Since f (l) must satisfy~3.2!,
we get from the list of Theorem 3.1 the following possibilities:

~i! f~l!5a01a1l in the caseD5D̄, (a0,a1)Þ(0,0),
~ii ! f~l!5al2 in the caseD51 andD̄50, aÞ0,
~iii ! f~l!5al3 in the caseD2D̄52, aÞ0.

These three examples should be added to the list in Proposition 5.3 and Theorem 5.1 in th
U>V.
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A relation between anomaly coefficients and the group G2

R. W. Cutler III and T. W. Kephart
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235
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We show that in 4D the anomaly coefficients for SU~3! irreps are equal to the
dimensions ofG2 irreps. This allows the direct calculation of 4D anomalies for any
group in terms of the Weyl dimension formula forG2 . We also give results for 6D
and comment on theD.6 case. ©2000 American Institute of Physics.
@S0022-2488~00!01604-2#

Chiral anomalies have played an important role in the study of gauge theories and in p
lar, in fixing the standard model and in constraining its extensions. In four dimensions~4D!, only
the SU(N) groups have local gauge anomalies and the fermionic irreducible representatio~ir-
reps! used~that have potential anomalies! in model building are usually limited to totally anti
symmetric irreps~single column Young tableaux!. Occasionally fermions in symmetric or mixe
tensor irreps are used but exotic states in addition to normal family states usually result.

Light fermions~massless before spontaneous symmetry breaking! are required by most mod
els. Naturalness then requires these chiral fermions to be in complex irreps of the gauge g
all real irreps in 4D allow bare fermionic mass terms. While the real irreps are always ano
free, complex SU(N) irreps are in general anomalous, and methods for calculating t
anomalies1 already exist.~The complex irreps of SO(4k12) andE6 are free of chiral anomalies
in 4D.! Searches have been made for anomaly free complex SU(N) irreps.2 Such irreps are rare
and do not occur at all for SU~3!. The smallest such irrep occurs in SU~6! at dimension 374 556
but since this dimension is so large, these irreps are mainly of academic interest. Howeve
are anomalies in higher space–time dimensions,3 and relatively small potentially anomalous irrep
can have vanishing leading anomaly coefficients with the nonleading anomalies cancelling
Green–Schwarz mechanism.4 It is these irreps that have played a prominent role in string the
and recently several new leading anomaly free irreps have been found in various dimens5,6

Further considerations along these lines have led us to reanalyze the 4D case in hopes of
new insight into higher dimensional anomalies. This has in fact taught us more about th
anomalies as we now describe.

Here we give a convenient general formula for finding the anomaly of any complex S~3!
irrep and show that all these anomaly coefficients, properly normalized, are equal to the dim
of irreps ofG2 ~up to a sign!. For SU(N) with N.3 the anomaly of any irrepR can be found by
decomposingR into irreps of SU~3! via the SU(N)→SU(N21)→¯→SU~3! ~maximal if U~1!
factors were included! subgroup chainR→S iRi and then adding up the dimensions of theG2

irreps corresponding to the SU~3! irreps, Ri . For the sake of clarity we first demonstrate th
relationship and then procede with the proof, after which we give results for 6D and b
comment onD.6.

Let us arrange the irreps of SU~3! vertically according to the number of contravariant indic
and horizontally according to the number of covariant indices in the irrep. This scheme i
played in Table I with the corresponding irrep labeled by their dimensions shown in Table II
also useful to write this in terms of highest weight irreps.

Straightforward application of the product identity,

RA3RB5R11R21¯ ~1!

and the sum rule

D~RA!A3~AB!1D~RB!A3~RA!5A3~R1!1A3~R2!1¯ ~2!
22950022-2488/2000/41(4)/2295/4/$17.00 © 2000 American Institute of Physics
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allows us to calculate the corresponding anomaly coefficients~see also the extensive tables
Refs. 7, 8, 9! which are in Tables III and IV.

We observe that all the entries~except the zeros! correspond~up to a sign! to the dimensions
of the irreps ofG2 and we write theseG2 irreps in Table V, where we are using square brack
for heighest weightG2 irreps to distinguish them from SU~3! irreps.

Let us now state and prove the following:
Theorem: The anomalyA3( i ,n) of the highest weight SU~3! irrep ~i,j! is given by the

dimensionDG of the following irreps ofG2 :

A3~ i , j !5DG~@ j 2 i 21, i # ! for i , j ,

A3~ i ,i !50,

A3~ i , j !52DG~@ i 2 j 21, j # ! for i . j .

Proof: First note that the self-conjugate~real! representations~i,i! have a vanishing anomaly
To apply Eqs.~1! and ~2! we need the dimensions of the SU~3! irrep ~i,j! which is given by

D~ i , j !5 1
2~ i 11!~ i 1 j 12!~ j 11!.

Taking RA5( i , j ) andRB5(1,0)53 in Eq. ~2! leads to the recursion relation

A3~ i 11, j !1A3~ i 21, j 11!1A3~ i 21, j 21!23A3~ i , j !5D~ i , j !.

A similar relation usingRA5( i , j ) andRB5(0,1)53̄ in Eq. ~2! yields the recursion relation

A3~ i , j 11!1A3~ i , j 21!1A3~ i 21, j !23A3~ i , j !5D~ i , j !.

These equations are not difficult to solve in general and we find

TABLE II. Irrep dimensionsD(i,j) for SU~3!.

→ j
0 1 2 3 4

0 3̄ 6̄ 10 15
↓ 1 3 8 158 24
i 2 6 158 27

3 10 24
4 15

TABLE I. Young tableaux.
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A3~ i , j !5
1

5!
@~ i 11!~ i 1 j 12!~ j 11!~2i 1 j 13!~ i 12 j 13!~ i 2 j !#

5
2

5!
@~2i 1 j 13!~ i 12 j 13!~ i 2 j !#3D~ i , j !.

From this equation we can immediately recognizeA3( i , j ) as the Weyl dimension formula fo
G2 . Q.E.D.

The same methods can be applied to find the leading anomaly coefficients for all SU(N) irreps
in higher space–time dimensions, i.e., we use the sum rule to generate a set of recursion r
which are then solved for the anomaly. Since the complications involved in this process
rapidly with dimension, we have only explicitly solved for the complete polynomial in the 6D
where we now must consider the box diagram for SU~4! with the leading anomaly coefficien
designatedA4 . The result for the highest weight irrep~i,j,k! of SU~4! is

A4~ i , j ,k!5
12

7!
3P~ i , j ,k!3D~ i , j ,k!,

whereD( i , j ,k) is the dimension of the SU~4! irreps andP( i , j ,k) is defined as

P~ i , j ,k!53~ i 1k!418~ j 13!~ i 1k!312@~ j 24!ik1 j 2115j 127#~ i 1k!2

2@6ik~1114 j !112j 3150j 2134j 224#~ i 1k!

26 j 4248j 32122j 22104j 222ik~514 j 1 j 2!26~ ik !2.

Note thatA4( i , j ,k)5A4(k, j ,i ) as expected since we are in 6D, whereA4(R)5A4(R̄). Again the
SU(N) anomalies forN.4 in 6D can be determined from the maximal subgroup reduction
SU~4!.

Note that unlike the 4D case, the leading 6D anomaly cannot be identified with the dime
of another semisimple group. The fact that the polynomial does not factorize and so is not a
dimension polynomial is one demonstration of this. More straightforwardly, we can also se
this is true if we compare the values ofA4 with the tabulated dimensions of group irreps. We ha

TABLE III. Highest weight irreps(i,j) .

→ j
0 1 2 3 4

0 ~0,1! ~0,2! ~0,3! ~0,4!
↓ 1 ~1,0! ~1,1! ~1,2! ~1,3!
i 2 ~2,0! ~2,1! ~2,2!

3 ~3,0! ~3,1!
4 ~4,0!

TABLE IV. Anomaly coefficientA3( i , j ) for SU~3!.

→ j
0 1 2 3 4

0 21 27 227 277 2182
↓
i

1 1 0 214 264 2189
2 7 14 0 277
3 27 64 77
4 77 189
5 182
                                                                                                                



simple

pen
orted

.

ching

le Lie

2298 J. Math. Phys., Vol. 41, No. 4, April 2000 R. W. Cutler III and T. W. Kephart

                    
yet to find a deeper relationship between theA3 anomaly of SU~3! and the dimensions ofG2

irreps. In addition, by computing specific cases in higher dimensions we found that no such
relation exists for the leading SU(k11) anomaly inD52k dimensions throughD516, however,
we speculate that the dimension of the SU(N) irrep always factorizes out of theAN polynomial for
that irrep.
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The generalized Casimir operator and tensor
representations of groups
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per. Nauchny 13, Dnepropetrovsk, 320625 Ukraine
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A new method of the constructing of the basic functions for spaces of tensor
representations of the Lie groups, with the help of the generalized Casimir operator,
has been proposed. In the definition of the operator there we used the Lie deriva-
tives instead of the corresponding infinitesimal operators. When introducing the
generalized Casimir operator we used the metric for which a group being consid-
ered will be isometry that follows from the invariance condition for the generalized
Casimir operator. This allows us to formulate the eigenvalue and eigenfunction
problems correctly. The invariant projection operators have been constructed in
order to separate irreducible components. The cases of the Bianchi typeG3IX and
G3II groups are considered as examples. ©2000 American Institute of Physics.
@S0022-2488~00!02402-6#

I. INTRODUCTION

One of the ways to construct basic functions, for the space of representation of the groG,
is to solve the eigenvalue problem for some complete set of the invariant commutative C
operators.1,2 These operators are defined in the space of scalar functions. Note, that the C
operators defined in a usual way in the space of functions with tensor values are not invarian
To construct basic functions for the space of the tensor representation of the groupG, one
decomposes objects, being considered, into irreducible components, which, in their turn, a
the eigenfunctions of the Casimir operator. Thus basic functions for the rotation group SO~3! are
the eigenfunctions of the Laplacian on two-sphereS2, although the irreducible components of th
tensors are eigenfunctions of the Laplacian on the group SU~2!.3

In the work4 there was introduced the generalized Casimir operatorG, which is invariant in
the space of tensor functions. This made it possible to formulate correctly and solve the eige
and tensor eigenfunction problems, and, thereby, to construct tensor representations of
groups. However, in this approach, the system of differential equations appears with ‘‘tan
components of tensor functions. That is why the direct solving of the tensor eigenfunction
lem, generally speaking, is impossible. Moreover, due to the decomposibility of the tensor
sentation into irreducible ones, the spectrum of the generalized Casimir operator is, in the g
case, degenerate. Thus it is necessary to decompose invariantly and to disentangle the m
system. It means that we need to go over to the set of differential equations for indiv
components or for their combinations. This reduces, first, to the separating of the irred
combinations of the components for a given tensor field and to the classification of
combinations,5 and, second, to the decomposition of the generalized Casimir operator into
ducible parts.

On the other hand in a number of works,6–9 the authors constructed the theory of spl
structuresHr on the pseudo-Riemannian manifoldMn and considered its applications. The theo
of split structures is a general approach to the decomposition of the tangent bundle of p
Riemannian manifolds intor sub-bundles and the associated decomposition of geometric ob

a!Electronic mail: gladush@ff.dsu.dp.ua
22990022-2488/2000/41(4)/2299/11/$17.00 © 2000 American Institute of Physics
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There have been considered split-structures induced by groups of isometries and introdu
notion of the split-structure compatible with a given group of isometry. It turns out that the th
of split-structures on manifolds give us an accurate and natural technique for solving o
problems arising when finding the tensor eigenfunctions. The technique makes it poss
‘‘disentangle’’ the corresponding system of differential equations, and in fact, gives us the m
for invariant decomposition of the generalized Casimir operator into irreducible parts. In
words, the method separates variables in a tensor differential equation in partial derivative
erated by a given generalized Casimir operator when dealing with the tensor eigenfunction
lem.

In the present work we consider applications of the notions and methods developed in4–9 to
the construction of tensor representations for groups acting on a given manifoldMn as groups of
isometries.

The method can be applied in physics to the invariant defining and constructing of t
multipoles~tensor harmonics! as well as to the obtaining of expansions of tensor physical field
terms of multipoles, in fact, for any continuous groups. This finds its application to the cla
cation and computing of all linear perturbations of a gravitational field for spaces of Ge
Relativity with determined symmetries.

The work is organized in the following way. In Sec. II one defines the generalized Ca
operator. The latter differs from the usual Casimir operator. In the definition of the genera
Casimir operator the Lie derivatives with respect to the infinitesimal generators are used ins
the infinitesimal generators of a group. These generators are the tangent vectors to th
parameter subgroup, or, in other words, are curves inMn. The invariance condition of the gen
eralized Casimir operator yields the equation for the metric which is used in this oper
definition. Hence it follows that the vectors being considered will be the Killing’s vectors for s
metric. Then we formulate the eigenvalue and tensor eigenfunction problems for the gene
Casimir operator.

In Sec. III the problem of diagonalization of the generalized Casimir operator is solve
using of a split-structureHr compatible with the groupGr . The decomposition of the correspon
ing system of differential equations, for tensor eigenfunctions into invariant irreducible differe
subsystems, is constructed in order to disentangle the system. For the separating of the irre
components of tensor eigenfunctions we use the technique of the invariant projection operat
a result, the generalized Casimir operator splits into the set of the invariant operators fo
irreducible component.

In Sec. IV the generalized Casimir operator are constructed for the rotation group SO~3! in the
three-dimensional Euclidean space. The construction of the spherical tensor symmetric har
of type ~2,0! and weightl is given as an instance.

In Sec. V we deal with nonunitary representations for noncompact groupsG3II according to
the Bianchi classification. There we construct the generalized Casimir operator and give
ample of the construction of a point series of the representation.

II. THE GENERALIZED CASIMIR OPERATOR AND TENSOR REPRESENTATIONS OF
GROUPS

Let Mn be ann-dimensional manifold andGr be anr-parameter transformation group onMn.
For any differentiable vector fieldsX, Y, Z, j, ea on Mn the Lie bracket@X,Y#52@Y,X# obeys the
Jacobi identity

@X,@Y,Z##1@Y,@Z,X##1@Z,@X,Y##50. ~2.1!

The Lie derivatives of a functionw, vector fieldY, and one-formv with respect to a vectorX are
given by the formulas

LXw5Xw, LXY5@X,Y#, ~LXv!•Z5X~v•Z!2v•@X,Z#, ~2.2!
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wherev•Z5v(Z) is an inner product of a one-formv and vectorZ. The Lie derivativeLXT of
a tensorT of type ~p,q! with respect to a vectorX is given by

~LXT!~Y1 ,...,Yq!5LX~T~Y1 ,...,Yq!!2(
i 51

q

T~Y1 ,...,Yi 21 ,LXYi ,Yi 11 ,...,Yq!. ~2.3!

The Lie algebra of the groupGr is represented by the vector fieldsj i ( i 51,2,...,r ), which are
tangent to the one-parameter subgroups and have the properties

@j i ,j j #5Ci j
k jk . ~2.4!

HereCi j
k are the structure constants satisfying the condition

Ci j
k 52Cji

k , Cis
p Cjk

s 1Cjs
p Cki

s 1Cks
p Cl j

s 50. ~2.5!

Using the Jacobi identity we can easily find the relations for the commutators of the Lie de
tives.

@Lj i
,Ljk

#5L @j i ,jk#5Cik
j Lj j

, ~2.6!

@Lj i
,@Lj j

,Ljk
##1@Lj j

,@Ljk
,Lj i

##1@Ljk
,@Lj i

,Lj j
##50. ~2.7!

Thus the operatorsLj i
, i 51,2,...r form the representation of the Lie algebra for the groupGr .

However, unlike the Lie algebra of the tangent vectorsj i , defined only on functions, the Lie
derivatives, defined on tensors of an arbitrary type and rank, are invariant operators und
general coordinate transformations. Hence we obtain the way of construction of the gene
Casimir operator of the second order

G5gikLj i
Ljk

, ~2.8!

wheregik ( i ,k51,2,...r ) are contravariant components of some unknown metric, which is sub
to be determined. By its definition this operator commutes with all the operatorsLj i

of the
representation. Hence it follows:

~Lj j
g21! ik[j jg

ik1Cjl
i glk1Cjl

k gil 50. ~2.9!

Here the tensor

g215gikj i ^ jk ~rangig21i5s!, ~2.10!

defines the metric on covectors which belong to the surfaces of transitivityMs,Mn(s<r ,s
<n), where the symbol̂ denotes the tensor product. In accordance with~2.9!, the groupGr on
the surfaces of transitivity is a group of isometries, wherej i are the Killing’s vectors. Solutions o
the Killing’s equation@Eq. ~2.9!# gives us the metric for the generalized Casimir operator~2.8!.

It turns out that for semisimple groups that will be enough to consider only constant solu
of ~2.9!. Indeed, in this case the Cartan tensor

gik5 1
2Ci j

l Clk
j , ~2.11!

satisfying the equation

Ci j
l glk1Cik

l gjl 50, ~2.12!

is nondegenerate.2 Therefore there is the inverse of the tensorgik:(gikgk j5d j
i ), for which the

condition ~2.12! yield
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Cjl
i glk1Cjl

k gil 50. ~2.13!

Comparing~2.13! and~2.9! we can conclude thatj jg
ik50 andgik are constants on the surfaces

transitivity.
In the general case the consideration of the constant solutions of~2.9! will be inadequate for

construction of the generalized Casimir operatorG, which is nondegenerate onMs.
Let T be a tensor of type~p,q! on Ms. Then we have

T5Tb1¯bq

a1¯apea1
^¯^ eap

^ eb1^ ¯^ ebq, ~2.14!

whereea(a51,2,...,s) is some vector basis onMs, andea, ea(eb)5db
a , is a co-vector basis on

Ms. HereTb1¯bq

a1¯ap are the components of the tensorT with respect to the basisea . It will be the

eigenfunction tensor of the generalized Casimir operatorG, provided the equation

GT[gikLj i
Ljk

T5lT ~2.15!

is satisfied. This equation can be rewritten in the following form:

GTb1¯bq

a1¯ap[gikLj i
Ljk

Tb1¯bq

a1¯ap5lTb1¯bq

a1¯ap, ~2.16!

whereGTb1¯bq

a1¯ap[(GT)b1¯bq

a1¯ap are representations of the generalized Casimir operator acting o

tensorT in the basisea . The representation of the Lie derivative is determined by the formu

Lj i
Tb1¯bq

a1¯ap[~Lj i
T!b1¯bq

a1¯ap5Tb1¯bq ,c
a1¯ap j i

c1Tc,b2¯bq

a1¯ap j i ,b1

c 1¯1Tb1¯bq21c
a1¯ap j i ,bq

c 2Tb1¯bq

ca2¯apj i ,c
a1 2¯

2Tb1¯bq

a1¯ap21c
j i ,c

ap . ~2.17!

It is difficult to solve Eq.~2.16! directly, because the Lie operators tangle components oT.

III. A SPLIT-STRUCTURE ON A MANIFOLD AND DIAGONALIZATION OF THE
GENERALIZED CASIMIR OPERATOR

In order to solve the system of equations~2.16! it is necessary to disentangle components
the tensorT in the equations, i.e., to diagonalize the operatorG. By means of decomposition th
technique of the diagonalization of the generalized Casimir operatorG can be realized invariantly
Herewith the tensor equations@Eq. ~2.16!# split into the system of scalar differential equations f
irreducible components of the tensorT. Now some additional definitions we used will be give
below.8,9

A linear operatorL on the tangent bundleT(M ) is a tensor of type~1.1! which acts according
to the relationL•X[L(X)PT(M ), ;XPT(M ). Then the formula

~LT
•v!~X!5~v•L !~X![v~L~X!!, ;XPT~M !, ~3.1!

determinesLT, a transpose of an operatorL, which acts on a one-formv.
The product of two linear operators.L•H is defined by (L•H)•X5L•(H•X)PT(M ), ;X

PT(M ). An operatorH is called a symmetric one if

~H•X,Y!5~X,H•Y!,;X,YPT~M !.

We shall say thata split structure Hs is introduced onM if the s linear symmetric operators
Ha(a51,2,...s) of a constant rank with the properties
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Ha
•Hb5dabHb, (

a51

s

Ha5I , ~3.2!

whereI is the unit operator (I •X5I , ;XPT(M )), are defined onT(M ).
Then we can obtain the decomposition the tangent bundleT(M ) and cotangent bundleT* (M )

into the (n11n21¯1ns) subbundlesSa,Sa* , so that

T~M !5 %
a51

s

Sa, T* ~M !5 %
a51

s

Sa* . ~3.3!

Then arbitrary vectors, covectors, and metrics and decomposed according to the sche

X5 (
a51

s

Xa, v5 (
a51

s

va , g5 (
a51

s

ga, g215 (
a51

s

ga
21, ~3.4!

where

Xa5Ha
•X, Hb

•Xa50, Xa
•Xb50, ~aÞb!, ~3.5!

va5v•Ha, va~Xb!50, ~aÞb!. ~3.6!

Using this scheme we can obtain the decomposition of more complex tensors.
Let us now introduce an auxiliary definition. We shall say that a split structureHs is com-

patible with a group of isometries if the conditions of invariance ofHs are satisfied, i.e., if

Lj i
Ha50, ~ i 51,2,...r ;a51,2,...s!. ~3.7!

Equations~3.2! and ~3.7! define the invariant projection tensors. The integrability conditions
Eq. ~3.7! are satisfied for solutions of Eq.~3.7! owing to Eq.~3.2!.

In order to construct the projectors we require that there exist such dual vector$ea% and
covector$eb% bases onMs, that

ea•eb5da
b , Ha5ea^ ea. ~3.8!

From now on we shall not sum on repeating indicesa andb. The invariance condition of Eq.~3.7!
yields

~Lj i
ea!•eb50, ~aÞb!. ~3.9!

Hence it follows:

Lj i
ea5m i

aea, ~3.10!

where the factors of proportionalitym i
a are some functions, satisfying the equation

j imk
a2jkm i

a5Cik
j m j

a , ~3.11!

which follows from the integrability condition of Eq.~3.10!. Using Eqs.~2.2! and~3.10! we find

Lj i
ea52m i

aea . ~3.12!

Thus, the problem of the construction of the invariant projectors reduces to construction
dual vector$ea% and covector$eb% bases satisfying the system of equations~3.10!–~3.12!. Some
of the factorsm i

a , or even all of them in some cases, can vanish. Then the projectors are
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structed by means of the invariant basis$ea :Lj i
ea50%. Thus in the case of a simply transitiv

group (r 5s), the invariant vector basis$ea% can be expressed in the form

ea5La
bjb , ~detiLa

biÞ0!. ~3.13!

The factorsLa
b satisfy the equations

jbLd
a1Cbq

a Ld
q50. ~3.14!

The integrability conditions of these equations are satisfied owing to the Jacobi identity.
If the invariant vector basis$ea% on Ms is determined then the inverse metric~2.10! in the

case of the Riemannian manifolds can be constructed by the formulas

g215dabea^ eb5gabja^ jb , gab5Lc
aLd

bdcd. ~3.15!

Using Eq.~3.14! it can easily be seen that the tensorg21, constructed in accordance with E
~3.15!, actually satisfies the Killing’s equations~2.9!.

In any case of bases$ea ,eb% the initial tensorT can be expanded in the series

T5(
A,B

T̂B
A5(

A,B
TB

AêA
B , ~3.16!

where$êA
B%5$ea1

^¯^ eap
^ eb1^¯^ ebq% is the tensor basis,T̂B

A5TB
AeA

B is the tensor monomia

andTB
A5Tb1¯bq

a1¯ap is its component.A5$a1 ,...,ap% andB5$b1 ,...,bq% are collective indices. The

sum in Eq.~3.16! comprises the complete set of indicesA,B. It is easy to show that since th
projectorsHa are invariant, the eigenvalue equations~2.15! and ~2.16! split into the set of inde-
pendent eigenvalue invariant equations for monomials

GT̂B
A[gikLj i

Ljk
T̂B

A5lT̂B
A .

Using this relation together with Eqs.~3.10! and ~3.11! we obtain

GTB
A[gikLj i

Ljk
TB

A5gik~j i2f iB
A !~jk2fkB

A !TB
A5lTB

A . ~3.17!

Here

f iB
A 5 (

k51

p

m i
ak2 (

n51

q

m i
bp, A5$a1 ,...,ap%, B5$b1 ,...,bq%. ~3.18!

Thus in order that the tensor equation~2.15! could go over into the invariantly split equation
~3.17! for the irreducible componentsTB

A , we must make a change

T→TB
A , Lj i

→Lj i
5j i2f iB

A .

Equation~3.17! can be rewritten in the form

GTB
A5@K22gikf iB

A jk2gikj ifkB
A 1gikf iB

A fkB
A #TB

A5lTB
A , ~3.19!

where

K5gikj ijk , ~3.20!

is the standard Casimir operator defined in the space of scalar functions. The solutions o
~3.19!, ~3.10!, and ~3.11! give us the basic tensor functionsT̂B

A5TB
AêA

B in the space of a tenso
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representation of the groupGr ~or, in other words, tensor harmonics!. Note that if there is the
invariant basis~3.13!, then the generalized Casimir operator~2.15! with respect to this basis
reduces to the standard Casimir operatorK, and in order to construct the tensor basis of repres
tation that will be enough to determine the basis of representation in the space of scalar fun

IV. THE GENERALIZED CASIMIR OPERATOR FOR THE ROTATION GROUP AND ITS
TENSOR REPRESENTATIONS

Let us consider, as an example and comparison with the known results, the case of the r
group SO~3! in the three-dimensional Euclidean space. The Lie algebra of this group in term
the spherical coordinate system is represented by the following tangent vectors:10

j15sinw
]

]u
1ctgu cosw

]

]w
, j252cosw

]

]u
1ctgu sinw

]

]w
, j352

]

]w
. ~4.1!

The Lie bracket is@j i ,j j #5e i jkjk , wheree i jk are the Levi-Civita’s symbols. As a usual on
should go over into the vectors generating the creation and annihilation operators.

Hs5eiswS s
]

]u
1 ictgu

]

]w D , H352 i
]

]w
, s561. ~4.2!

In the case being considered the surfaces of transitivityM25S2: r 5const are two-
dimensional, although the space of the group is three-dimensional. The Cartan tensor~2.11! is
nondegenerate in this case, andgik5gik5d ik . Therefore, we can take the operator

K5j1
21j2

21j3
252~H11H211H3

22H3!5
1

sinu

]

]u S sinu
]

]u D1
1

sin2 u

]2

]w2 . ~4.3!

as the standard Casimir operator~3.20!. Commutation relations for the Lie operator generated
the vectors~4.2! have the form

@LHs
,LH3

#52sLHs
, ~s561!, @LH11

,LH21
#52LH3

. ~4.4!

The operatorsLHS
are the creation and annihilation operators for tensor functionsT̂B

A , which, in
their turn, are the eigenfunctions of the operatorLH3

. Following Ref. 10 we can show that there

the set of tensor functionsT(m)B
( l )A for which

LH3
T~m!B

~ l !A 5mT~m!B
~ l !A ~m52 l ,2 l 11,...,l !, ~4.5!

LHs
T~m!B

~ l !A 5Al ~ l 11!2m~m1s!T~m!B
~ l !A , ~4.6!

where l is the weight of the representation. Here with the tensor eigenfunction equations
~2.16! can be written in the form

2GT~m!B
~ l !A 5~LH11

LH21
1LH3

LH3
2LH3

!T~m!B
~ l !A 5 l ~ l 11!T~m!B

~ l !A ~4.7!

Suppose that we need to consider the spherical tensor symmetric harmonics of type~2,0! and
of weight l, which we shall denoteTl . With respect to the initial differential basis$er , dx1

5du, dx25dw% they can be written in the form

Tl5Trr
~ l !er

^ er1Tra
~ l !~er

^ dxa1dxa
^ er !1Tab

~ l !dxa
^ dxb. ~4.8!
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Note, that the covectorer5dr is invariant with respect to the rotation group. In order to split
system of equations~4.7! for the tensor~4.8!, into the irreducible components, one should go o
into the basis of one-forms on the surfaces of transitivityS2 satisfying the condition~3.10!. It turns
out that the covectors

es5du1 is sinudw ~s561!, ~4.9!

are required. Herewith, the condition of invariance of a split structure~3.7! for the Lie operators
associated with the vectors~4.2! stipulates the relation

ms8
s

5
seis8w

sinu
, m3

s50 ~s,s8561!. ~4.10!

By using Eq.~4.9! the relation~4.8! can be rewritten in the form

Tl5Trr
~ l !er

^ er1Trs
~ l !~er

^ es1es
^ er !1Tss8

~ l ! es
^ es8. ~4.11!

where the sum ons561 is implied. Then, if we suppose

Trr
~ l !5hrr t

l , Trs
~ l !5hrts

l , Tss8
~ l !

5hts1s8
l , ~4.12!

wherehrr ,hr ,h are functions ofr, then for the functiontn
l (n50,...,s,...,s1s8) we obtain

H 1

sinu

]

]u
sinu

]

]u
1

1

sin2 u S ]2

]w222in cosu
]

]w
2n2D1 l ~ l 11!J tn

l 50. ~4.13!

Owing to Eq.~4.5! we find

tn
l 5eimwPnm

l , ~4.14!

where the functionsPnm
l satisfy the ordinary differential equation following from Eq.~4.13!

H 1

sinu

d

du
sinu

d

du
2

m222mncosu1n2

sin2 u
1 l ~ l 11!J Pnm

l 50. ~4.15!

The solutions of the obtained equations are the functionsPnm
l (cosu),11 which appear in the theory

of representation of the rotation group and are proportional to the Jacobi polynomialsPk
(a,b) .

Recurrent relations forPnm
l follow from Eqs.~4.5! and ~4.6!.

V. THE GENERALIZED CASIMIR OPERATOR FOR THE BIANCHI TYPE G3 II GROUP
AND ITS TENSOR REPRESENTATIONS

Let us consider, briefly, the case of nonunitary representations for noncompact group
shall take as an example the three-parameter non-Abelian group acting onM3 with the coordinates
$x,y,z%, i.e., G3 II according to the Bianchi classification.12 The Lie algebra of this group is
represented by the vectors

j15
]

]x
, j25x

]

]x
1

]

]y
, j35

]

]z
, @j1 ,j2#5j1 . ~5.1!

If we, for simplicity, make a substitution (x,y,z)→(v5xe2y,y,z), then

j15e2y
]

]v
, j25

]

]y
, j35

]

]z
, @j1 ,j2#5j1 . ~5.2!
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Since the Cartan tensor~2.11! is degenerate in this case, then in order to find the nondegen
metric onM3 it is necessary that the Killing’s equations~2.9! be solved atC12

1 51;C12
2 50;C12

3

50. This can easily be done by the constructing of the invariant vector basis$ea%, which satisfies
the equationsLja

eb50. The solution of the equation of the invariance can be expressed in
form

e15
]

]v
5eyj1 , e25]y2v

]

]v
5j22veyj1 , e35j3 . ~5.3!

The required metric, according to Eq.~3.15!, is written in the form

g215e1^ e11e2^ e21e3^ e3

5~11v2!e2yj1^ j12vey~j1^ j21j2^ j1!1j2^ j21j3^ j3 . ~5.4!

Hence, omitting the symbol of the tensor product, we obtain the generalized Casimir opera
In the case being considered the finding of the tensor harmonicsT̂(mn)B

(l)A 5T(mn)B
(l)A êA

B , where
T(mn)B

(l)A 5hB
Atmn

l , reduces to the construction of the scalar harmonicstmn
l . The latter are the eigen

functions of the operators

j2tmn
l 5

]

]y
tmn
l 5mtmn

l , ~5.5!

j3tmn
l 5

]

]z
tmn
l 5ntmn

l , ~5.6!

Ktmn
l [F ~11v2!

]2

]v222v
]2

]v]y
1v

]

]v
1

]2

]y2 1
]2

]z2G tmn
l 5ltmn

l , ~5.7!

wherem andn are the eigenvalues of the operatorsj2 and j3 , respectively. These relations a
analogies of Eqs.~4.5! and ~4.7! for the group SO~3!. From Eqs.~5.5! and ~5.6! one finds

tmn
l 5 f mn

l emy1nz, ~5.8!

where f mn
l 5 f mn

l (v) satisfies the ordinary differential equation that follows from Eq.~5.7!

F ~11v2!
d2

dv2 1~122m!v
d

dv
1m21n2G f mn

l 5l f mn
l . ~5.9!

Since the indexn comes algebraically into Eq.~5.9! we can rewrite Eq.~5.9! in the following
form:

F ~11v2!
d2

dv2 1~122m!v
d

dv
1m2Gwm

s5swm
s , ~5.10!

where we used the substitution:f mn
l 5Amn

l wm
s , Amn

l 5const, s5l2n2. The general solution of Eq
~5.10! can be written in the form

w~v !5A2F1~@2m2A2m22s#/2,@2m1A2m22s#/2,1/2,2v2!1Av2B2F1~@212m

2A2m22s#/2,@12m1A2m22s#/2,3/2,2v2!, ~5.11!

whereA andB are constant, and the hypergeometric function2F1(a,b,c,z) is the solution of the
following equation:
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z~12z!
d2F

dz2 1@c2~a1b11!z#
dF

dz
2abF50. ~5.12!

It is easy to show from the commutation relation~5.2! that

tm21,n
l 5j1tmn

l . ~5.13!

Hence it follows:

d

dv
f mn

l 5 f m21,n
l . ~5.14!

Since the groupG3 II is noncompact, then the spectra of operators~5.5! and~5.7! are continuous.
Here we shall consider, as one more example, point series of the representation ofG3 II . For this
purpose we shall takes5n2. Then for the case ofm5n from Eq. ~5.10! we obtain

wn
n2

5CE ~11v2!n21/2dv, ~5.15!

where C is the constant of integration~an additive constant is omitted!. Applying the relation
~5.14! to ~5.15! n2m21 times one has

wm
n2

5C
dn2m21

dvn2m21 ~11v2!n21/2 ~m,n!. ~5.16!

Then we immediately obtain the particular solutions of Eq.~5.9! f mn
l as Amn

l wm
s when s5n2,

m5n,l5n21n2. That this relation is really the solution of Eq.~5.9! one can easily verify by the
differentiating of Eq.~5.9! n2m21 times under initial valuess5m25n2.

In the conclusion we shall write, for instance, the tensor eigenfunctions of the gener
Casimir operatorG and of the Lie operatorLj2

for the covector harmonicA(mn)
(l) . Using the

invariant basis of the one-forms

e15dv1vdy5e2ydx, e25dy, e35dz,

which is dual to the basis~5.3!, we find

A~mn!
~l! 5@a~mn!1

~l! e2ydx1a~mn!2
~l! dy1a~mn!3

~l! dz#tmn
l , ~5.17!

where

tmn
n2

5eym1zn
dn2m21

dvn2m21 ~11v2!n21/2, v5xe2y, ~5.18!

a(m)(n)1
(l) , a(m)(n)2

(l) , a(m)(n)3
(l) are constant.

VI. CONCLUSION

In such a way, the possibilities of our method have been considered for the Bianch
G3 IX5SO(3) andG3 II groups. Nonetheless it is evident that the present method, in fact, m
it possible to construct tensor representations of any continuous groupG.

The question remains is whether it is possible to generalize this method not only for tens
also for spinor fields. The notion of the Lie derivative of spinor fields was introduced by Kosm
~see Ref. 13!. In Ref. 14 by extending the spinor representation of the Lorentz group to
representation of the general linear group GL~4! the spinor fields are considered in arbitra
frames, and thus there were defined the Lie derivatives of the spinor fields with respect
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arbitrary vector field. Recently a geometric definition of the Lie derivative for spinor fields, m
general than Kosmann’s one, has been proposed in Ref. 15. When choosing special infini
lift ~namely, for Kosmann vector fields! their definition coincides with that given by Kosmann

The essential property we used in our method is that the commutator of the Lie derivati
tensor fields with respect to vector fields equals to the Lie derivatives of tensor fields with re
to the commutator of the vector fields. However, for spinor fields, as it follows from Refs. 13
14, this is not so. In this connection it seems alluring to give a new definition~if it is possible! of
the Lie derivative for spinor fields that will satisfy this requirement.
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A class of quadratic matrix algebras arising
from the quantized enveloping algebra Uq„A 2nÀ1…

Hans Plesner Jakobsena) and Hechun Zhangb)

Københavns Universitet, Matematisk Afdeling, 2100 Kobenhaven 0”, Denmark

~Received 10 December 1998; accepted for publication 22 November 1999!

A natural family of quantized matrix algebras is introduced. It includes the two best
studied such. Located insideUq(A2n21), it consists of quadratic algebras with the
same Hilbert series as polynomials inn2 variables. We discuss their general prop-
erties and investigate some members of the family in great detail with respect to
associated varieties, degrees, centers, and symplectic leaves. Finally, the space of
rank r matrices becomes a Poisson submanifold, and there is an associated tensor
category of rank<r matrices. ©2000 American Institute of Physics.
@S0022-2488~00!01704-7#

I. INTRODUCTION

Over the past few years many articles have constructed and investigated multipara
quantum groups.1–14 Most of the time this has been done from the point of view of quant
function algebras. A central feature has always been that the algebra in question should be
algebra; indeed, many may feel that this is a requirement for using the terminology ‘‘qua
group.’’ Nevertheless, we now introduce yet another multiparameter family for which the fol
ing hopefully will serve as arguments in favor of including them among the objects of ‘‘quan
mathematics’’—even though they need not even be bialgebras. They are all, however, suba
of a fundamental bialgebra. Our point of view will be that the underlying classical space shou
a Hermitian symmetric space rather than a~reductive! Lie group. In the present context we wi
only consider the Hermitian symmetric space corresponding toSU(p,q) and thus end up by
quantizedp3q matrices. Actually, we will only considerp5q5n, though it is a strength of this
approach thatp andq may be different. All members of the family are quadratic algebras with
same Hilbert series as polynomials inn2 variables.

Our family is contained inside the quantized enveloping algebra ofsu(n,n). It includes the
standard~or ‘‘official’’ ! quantum matrix algebraMq(n) as well as the so-called Dipper Donki
algebraDq(n), and has indeed a sizable overlap with all previous families. But the way
appear is new. Actually, all members are cross sections of a semidirect product of any one o
with the Abelian algebraC@L1 ,...,L2n21#, whereL1 ,...,L2n21 are the generators of the quantu
enveloping algebra corresponding to the fundamental weights.

The inclusion of the mentioned algebras in our family shows that some members m
closely related to Hopf algebras, but this is by far true for all of them. But there may be
ingratiating features such as ‘‘nice varieties,’’ ‘‘nice representations,’’ or, simply, ‘‘nice r
tions.’’ Along with the two mentioned, we pay special attention to three more, explicitly defi
quadratic algebras:Jq

n(n) @which like Mq(n) andDq(n) define a Poisson Lie group structure o
GL(n,C)#, Jq

z(n) @which, through its Poisson structure, is related toDq(n)#, andJq
0(n) @which is

related toJq
n(n)#.

For these specific algebras, we determine the varieties, degrees, centers, and disc
dimensions of the symplectic leaves. For the general members we discuss the symplectic
tures and the relation to a symplectic structure onM (n,C)3T2n21. Specifically, the projections o

a!Electronic mail: jakobsen@math.ku.dk
b!Permanent address: Department of Applied Math, Tsinghua University, Beijing, 100084, People’s Republic of C
23100022-2488/2000/41(4)/2310/27/$17.00 © 2000 American Institute of Physics
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the symplectic leaves inM (n,C)3T2n21 onto the first factor~according to some splitting! gives
what we call the symplectic stacks; orbits of symplectic leaves under a 2n21-dimensional scaling
group. Also quantum determinants are investigated, and some representation theory is in
Finally, we discuss the rankr matrices.

More specifically: in Sec. II we introduce the algebras and prove that they are iterate
extensions. We then list briefly some major results of De Concini and Procesi about the deg
an algebra and also discuss the quantum determinants and Laplace expansions. In Sec
study the Poisson structures. For use, among other things, in determining degrees, we stud
modules in Sec. IV. We have affixed the name Verma to these~but they are defined in terms of th
opposite diagonal!. In Sec. V we introduce the specific algebrasDq(n), Jq

n(n), Jq
0(n), andJq

z(n)
and we find their canonical forms. The associated varieties~in the terminology of quadratic
algebras! are determined in Sec. VI, and in Sec. VII we discuss the symplectic leaves. The c
are determined in Sec. VIII, the quantum algebraC@L1

61,...,L2n21
61 #3sMq

`(n) is analyzed in Sec.
IX and, finally, in Sec. X the rankr matrices are considered.

II. DEFINITIONS, ORE, BACKGROUND

Fix an n3n Cartan matrixA5(ai j ) of finite type. Then there exists a vector (d1 ,d2 ,...,dn)
with relatively prime positive integral entriesdi such that (diai j ) is symmetric and positive
definite. LetP5$a1 ,...,an% denote a choice of simple roots and let the usual symmetric bilin
form on the root latticeQ be given as

~a i ua j !5diai j .

Let P denote the weight lattice generated by the fundamental dominant weightsl1 ,...,ln , where

~l i ua j !5d i j dj .

Let qPC* be the quantum parameter. As usual, fornPZ anddPZ1 we let

@n#d5~qdn2q2dn!/~qd2q2d!, @n#d! 5@1#d@2#d¯@n#d , ~2.1!

S n
j D

d

5@n#d!/ @n2 j #d! @ j #d! for j PZ1\$0%, S n
0D

d

51. ~2.2!

We shall omit the subscriptd whend51.
Following Ref. 15, letg be the finite dimensional simple Lie algebra with Cartan matrix (ai j ).

The enveloping algebraUq(g) is theC algebra on generatorsEi ,Fi(1< i<n),Li5Ll i
,i 51,...,n,

and the following defining relations:

LiL j5L jLi , LiLi
215Li

21Li51,

LiEj5qi
d i j EiLi , LiFi5qi

2d i j F iLi ,

EiF j2F jEi5d i j

Ka i
2K2a i

qdi2q2di
, i , j 51,2,...,n, ~2.3!

(
s50

12ai j

~21!sS 12ai j

s D
di

Ei
12ai j 2sEjEi

s50, if iÞ j ,

(
s50

12ai j

~21!sS 12ai j

s D
di

Fi
12ai j 2sF jFi

s50, if iÞ j ,
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where forj5(nil iPP, LjªP jL j
nj , Ka i

5P jL j
aji , andqi5qdi.

Let us now specializeg to be a finite-dimensional Lie algebra corresponding to an irreduc
noncompact Hermitian symmetric space. We have

U~g!5U~p2!U~k!U~p1!, ~2.4!

wherep2 andp1 are abelian subalgebras ofg, which are, furthermore, invariant under the ma
mal compact subalgebrak, and where

g5p2
% k% p1. ~2.5!

In Ref. 16, a quantum version of the above decomposition was found:

Uq~g!5A1Uq~k!A2, ~2.6!

whereA2 andA1 are quadratic algebras. We will describe the quadratic algebrasA1 explicitly
in case ofsu(n,n); the construction ofA2 is similar. For a simple compact root vectorEm and
Wa, an arbitrary element ofUq(g) of weight a, set

~adEm!~Wa!5EmWa2q^a,m&WaEm , ~2.7!

where, as usual,̂a,m&52(a,m)/(m,m).
In case ofA2n21[su(n,n), the set of simple compact roots breaks up into two orthogo

sets:

( c 5$n1 ,n2 ,...,nn21%ø$m1 ,m2 ,...,mn21%.

Thus

Em i
En j

5En j
Em i

,

for all i,j .
Assume, moreover, that these roots have been labeled in such a way that

^b,m1&5^b,n1&5^m i ,m i 11&5^n i ,nn11&521, for all i , j ,

whereb is the unique noncompact simple root.
We can then define

Zi , j5~adEm i 21
!¯~adEm1

!~adEn j 21
!¯~adEn1

!~Eb!, for i , j 51,2,...,n. ~2.8!

In Ref. 8, it was proved that the quadratic algebraA1 is generated byZi , j ,i , j 51,...,n, and is
isomorphic to the standard quantized matrix algebraMq(n), whose defining relations are

Zi , jZi ,k5qZi ,kZi , j , if j ,k,

Zi , jZk, j5qZk, jZi , j , if i ,k,
~2.9!

Zi , jZs,t5Zs,tZi , j , if i ,s,t, j ,

Zi , jZs,t5Zs,tZi , j1~q2q21!Zi ,tZs, j , if i ,s, j ,t,

wherei , j ,k,s,t51,2,...,n, andqPC is the quantum parameter.
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Definition 2.1: Let`5(z1 ,...,zn ,j1 ,...,jn)PP2n. Let Z̃i , j5Zi , jLz i
Lj j

. Let Mq
`(n) be the

subalgebra generated by Z˜
i , j for all i , j 51,2,...,n. The algebra Mq

`(n) is called a modification of
Mq(n), or a modified algebra.

Observe that according to this terminology,Mq(n) itself is also a modified algebra.
Let m i5m11¯1m i 21 for i 52,3,...,n,m150 andn j5n11¯1n j 21 for j 52,3,...,n,n150.

We denote bya i , j5m i1b1n j the weight ofZi j in the enveloping algebra.
The generators ofMq

`(n) satisfy the following relations:

Z̃i j Z̃i ,k5q~a i ,kuz i1j j !2~a i , j uz i1jk!11Z̃i ,kZ̃i , j , if j ,k,

Z̃i , j Z̃k, j5q~ak, j uz i1j j !2~a i , j uzk1j j !11Z̃k, j Z̃i , j , if i ,k,
~2.10!

Z̃i , j Z̃s,t5q~as,tuz i1j j !2~a i , j uzs1j t!Z̃s,tZ̃i , j , if i ,s and t, j ,

Z̃i , j Z̃s,t5q~as,tuz i1j j !2~a i , j uzs1j t!Z̃s,tZ̃i , j1~q2q21!q~as,tuz i1j j !2~as, j uz i1j t!Z̃i ,tZ̃s, j ,

if i ,s and j ,t.

For later use we consider the following relations:

xi , j xi ,k5q~a i ,kuz i1j j !2~a i , j uz i1jk!11xi ,kxi , j , if j ,k,

xi , j xk, j5q~ak, j uz i1j j !2~a i , j uzk1j j !11xk, j xi , j , if i ,k,
~2.11!

xi , j xs,t5q~as,tuz i1j j !2~a i , j uzs1j t!xs,txi , j , if i ,s and t, j ,

xi , j xs,t5q~as,tuz i1j j !2~a i , j uzs1j t!xs,txi , j , if i ,s and j ,t.

Definition 2.2: The algebraMq
`(n) that is generated by the elements xi , j with i, j 51,...,n and

whose defining relations are those of (2.11) is called the associated quasipolynomial algeb.
Definition 2.3: Write the equations (2.11) in the form xi , j xs,t5qh@ i , j #,@s,t#xs,txi , j . The n23n2

matrix,

M„Mq
`~n!…5$h@ i , j #,@s,t#%,

is called the defining matrix of Mq
`(n).

Theorem 2.4: Let Mq
`(n) be any modified algrbra. Then Mq

`(n) is, in fact, an iterated Ore
extension and hence a domain. Its Hilbert series is the same as that of the commutative poly
ring in n2 variables. Hence, (2.10) are the defining relations of the modified algebra Mq

`(n).
Proof: To prove thatMq

`(n) is an iterated Ore extension, we start from the base fieldC and
add generatorsZ̃i , j one by one according to lexicographic ordering. For each (s,t), let M (s,t) be
the subalgebra ofMq

`(n) generated byZ̃i , j with ( i , j ),(s,t). Then by the relations of the algebr
Mq

`(n), the subalgebraM (s,t) is spanned by the ordered monomials in that set of generators
S5M (s,t)@ Z̃s,t#. By the PBW theorem for quantum enveloping algebras~Refs. 17 and 18!, we
see thatM (s,t),S andS is a freeM (s,t) module with basis 1,Z̃s,t ,Z̃s,t

2 ,... . By ~2.10!, we see
that for eachaPM (s,t) we have

Z̃s,ta5ss,t~a!Z̃s,t1Ds,t~a!. ~2.12!

Again, by the PBW theorem, we see thatss,t(a) andDs,t(a) are uniquely determined and ther
fore ss,t is an automorphism ofM (s,t) andDs,t is a ss,t derivation. Hence,

S5M ~s,t !@ss,t ,Ds,t ,Z̃s,t#.
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This completes the proof. h

The main tool used to compute the degree ofMq
`(n) is the theory developed in Ref. 19 by D

Concini and Procesi. Indeed, our situation~cf. Theorem 2.4! is such that we may specialize the
result into the following.

Corollary 2.5: The degree of Mq
`(n) is equal to the degree of the associated quasipolynom

algebra Mq
`(n).

It is well known that a skew-symmetric matrix overZ such as our matrixM„Mq
`(n)… can be

brought into a block diagonal form by an elementWPSL(Z). Specifically, there is aW
PSL(Z) and a sequence of 232 matricesS(mi)5(mi

0
0
2mi), i 51,...,N, with miPZ for eachi

51,...,N, such that

W•M„Mq
`~n!…•Wt5H diag„S~m1!,...,S~mN!,0… with N5

~n221!

2
, if n is odd

diag„S~m1!,...,S~mN!… with N5
n2

2
, if n is even

.

~2.13!

Definition 2.6: Any matrix of the form of the right-hand side in (2.13) will be called
canonical form ofM„Mq

`(n)….
Thus, a canonical form ofM„Mq

`(n)… reduces the associated quasipolynomial algebra to
tensor product of twisted Laurent polynomial algebras in two variables with commutation re
xy5qryx. As a special case of Ref. 19, Proposition 7.1, it follows, in particular, that the de
of a twisted Laurent polynomial algebra in two variables is equal tom/(m,r ), where~m,r! is the
greatest common divisor ofm and r. The formula for the general case follows easily from this

The quantum determinant detq of Mq(n) is defined as follows~Ref. 20!:

detq5 (
sPSn

~2q! l ~s!Z1,s~1!Z2,s~2!¯Zn,s~n!. ~2.14!

Definition 2.7: An element xPMq(n) is called covariant if for any Zi , j there exists an intege
ni , j such that

xZi j 5qni , jZi , j x.

Clearly, Z1,n and Zn,1 are covariant.
Let p<n be a positive integer. Given any two subsetsI 5$ i 1 ,i 2 ,...,i p% and J

5$ j 1 , j 2 ,...,j p% of $1,2,...,n%, each having cardinalityp, it is clear that the subalgebra ofMq(n)
generated by the elementsZi r , j s

with r, s51,2,...,p is isomorphic toMq(p), so we can talk abou
its determinant. Such a determinant is called a subdeterminant of detq , and will be denoted by
detq(I,J). If I 5$1,2,...,n%\$ i %, J5$1,2,...,n%\$ j %, detq(I,J) will be denoted byA( i , j ).

Clearly, there is an element detq
`PMq

`(n), such that

detq
` )

i , j
L2z i

L2j j
5detq . ~2.15!

The element detq
` is called the modified determinant ofMq

`(n). Similarly, we define the modified
subdeterminant detq

`(I,J) of Mq
`(n) and, if I 5$1,...,n$ i % and J5$1,...,n%$ j %, A`( i , j )5detq

`(I,J).
Let wi , j be the weight ofA`( i , j ) in Uq(g). It follows easily from the Laplace expansion formula
of Parshall and Wang~Ref. 20! ~their q is our q21! that we have
                                                                                                                



ots

2315J. Math. Phys., Vol. 41, No. 4, April 2000 A class of quadratic matrix algebras arising . . .

                    
d i ,k detq
`5(

j 51

n

~2q! j 2kq2~wi , j ,z i1j j !Z̃i , jAq
`~k, j !

5(
j 51

n

~2q! i 2 jq2~ak, j ,SrÞk,tÞ j ~zr1j t!Aq
`~ i , j !Z̃k, j5(

j 51

n

~2q! j 2kq2~wj ,k ,z j 1j i !Z̃j ,iAq
`~ j ,k!

5(
j 51

n

~2q! i 2 jq2~a j ,k ,SrÞ j ,tÞk~zr1j t!Aq
`~ j ,i !Z̃j ,k . ~2.16!

The above formulas are called the modified quantum Laplace expansions.
By using induction ons it is easy to prove the following.
Lemma 2.8: If i,k and j, l , then

Z̃i , j
s Z̃k,l5qs~ak,l ,z i1j j !2s~a i , j ,zk1j l !Z̃k,l Z̃i , j

s 1q~ak,l ,z i1j j !2~ak, j ,z i1j l !~q2q122s!Z̃i , j
s21Z̃i ,l Z̃k, j .

Corollary 2.9: If q is an mth root of unity, then Z˜
i , j
m is central for all i, j 51,2,...,n.

III. SYMPLECTIC STRUCTURES

We denote bylb ,ln1
,...,lmn21

the fundamental weights corresponding to the simple ro

b,n1 ,...,mn21 . Let l i be any one of these, letcPC* , and define a mapľ i(c):Mq
`(n)°Mq

`(n)
by

ľ i~c!~ Z̃s,t!5c~as,tul i !Z̃s,t . ~3.1!

Observe thatľ i(q)(Z̃s,t)5LiZ̃s,tL i
21.

Let Smult denote the group generated by the mapsľb(c1),ľn1
(c2),...,ľmn21

(c2n21) for
c1 ,...,c2n21PC* . Obviously we have the following.

Lemma 3.1:Smult is contained in the automorphism group of Mq
`(n), is independent of q and

`, and is isomorphic to(C* )2n21.
Observe thatSmult also acts onM (n,C) via ~3.1!.
Lemma 3.2: Forx5(c1 ,c2 ,...,cn ,f1 ,f2 ,...,fn)P(C* )2n, let the automorphismx̌ of

Mq
`(n) be given by

x̌~ Z̃i , j !5c if j Z̃i , j for all i , j 51,2,...,n.

Thenx̌ is implemented by an element of Smult .

We considerM e
`(n), wheree is a primitive mth root of unity for some positive integerm

Þ2. Let Ze
` denote the part of its center generated by the elementsẐi , j

m . For ann3n matrix a
5$ai , j% let R(a) denote the quotient

R~a!5M e
`~n!/I ~ Z̃i , j

m 2ai , j !, ~3.2!

and letpa denote the canonical projection.
This gives us a bundle of algebras over the linear spaceM (n,C) of n3n matrices, andM e

`(n)
may be considered as a space of global sections of this bundle by the prescription
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M e
`~n!{Z̃: Z̃~a!5pa~ Z̃!PR~a!. ~3.3!

For aPM (n,C), let theC-algebra homomorphismCa :Ze
`°M (n,C) be defined as

Ca~ Z̃i j
m!5ai j . ~3.4!

Similar to Ref. 21, we obtain for eachM e
`(n) a Poisson structure$•,•%` on M (n,C) defined

by ~identifying coordinates and coordinate functions!

$ai j ,ast%`~a!5CaS lim
q→e

1

m~qm21!
@ Z̃i , j

m ,Z̃s,t
m # D , ~3.5!

where the right-hand side commutator is computed inMq
`(n).

We shall occasionally denote the Poisson structure fromMq(n) @corresponding to`
5(0,...,0)# as$•,•%0 . Let

R5
1

2 (
1< i , j <n

ei , j∧ej ,i , ~3.6!

where$ei , j% denotes the standard basis ofM (n,C). Then it is easy to see that the Poisson ten
p(g) at gPM (n,C) is given asp(g)522(l g* R2r g* R). The factor22 is of no practical impor-
tance, but we wish to keep this difference between the structure defined by~3.5! and the one~on
the regular points! considered in Refs. 22 and 23, Appendix A. Specifically, the present Poi
structure is given as follows:

$Zi , j ,Zi ,k%05Zi ,kZi , j if j ,k,

$Zi , j ,Zk j%05Zk, jZi , j if i ,k,
~3.7!

$Zi , j ,Zs,t%050 if i ,s, t, j ,

$Zi , j ,Zs,t%052Zs,tZi , j , if i ,s, j ,t.

The Hamiltonian vector fieldu i j corresponding toai j is then given by

u i j ~ast!5$ai j ,ast%` , ~3.8!

hence

u i j 5(
st

$ai j ,ast%`

]

]ast
.

The Hamiltonian vector fieldu f corresponding to an arbitraryC` function f may then be defined
as

u f52(
st

ust~ f !
]

]ast
, ~3.9!

or, equivalently,

u f5(
i j

S ] f

]ai j
D u i j . ~3.10!

It is clear that the assignmentD to eacha of a subspace inTa(Mq(n)), given by
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M ~n,C!{a°D~a!5$u f~a!u f PC`%, ~3.11!

is an involutive distribution.
Definition 3.3: By a symplectic leafL we mean a maximal integral manifold ofD. By a

symplectic stack we mean a set of the formSmult(L) whereL is a symplectic leaf.
It is well known~see, e.g., Ref. 23! ~and is also elementary to see directly here! that the action

by Smult normalizes the Hamiltonian action.
Along with the Hamiltonian vector fieldsu i j we may also consider derivationsd i j of M e

`(n),
defined by

d i j ~ Z̃!5 lim
q→e

1

m~qm21!
@ Z̃i , j

m ,Z̃#, ~3.12!

for an arbitrary elementZ̃PM e
`(n).

If we think of Z̃ as a section of the above bundle, it is clear thatd i j is a lifting of u i j . More
generally, for anyC` function f and any sectionZ̃ we may define

d f~ Z̃!5(
st

S ] f

]ast
D dst~ Z̃!, ~3.13!

and we write

¹u f
Z̃5d f~ Z̃!. ~3.14!

Proposition 3.4: Parallel transport along an integral curve of a Hamiltonian vector field gi
rise to an algebra isomorphism between fibers.

Proof: The above¹ is a connection along symplectic leaves, hence the following argum
makes sense: Consider two parallel sections,s1 ands2 , along an integral curve of a Hamiltonia
vector fielduH . Then

¹uH
~s1•s2!5dH~s1•s2!5~¹uH

s1!s21s1~¹uH
s2!50.

Thus, parallel transport yields the isomorphism. h

We wish to show now that the symplectic stacks for the various quantizations ofn3n
matrices are the same. In order to do that, we introduce an auxiliary Poisson manifoldM (n,C)
3(C* )2n21. Actually, this Poisson manifold seems to be of fundamental importance.

Consider the subalgebra ofUq(g) generated by the elementsZi , j , i , j 51,...,n and Li , i
51,...,2n21. This may be viewed, in an obvious way, as a semidirect product,

C@L1
61,...,L2n21

6 #3sMq
`~n!,

for any `PP2n. Using this, a construction analogous to~3.5! makesM (n,C)3(C* )2n21 into a
Poisson manifold, where, ifl 1 ,...,l 2n21 denote the standard coordinate functions on (C* )2n21,
and l[( l 1 ,...,l 2n21),

$ai j ,ast%`~a,l !5$ai j ,ast%`~a! ~as it were!,

$ l k ,ai j %`~a,l !5~lkua i j !ai j l k , ~3.15!

$ l r ,l s%`~a,l !50.

Lemma 3.5: A symplectic stack in M(n,C) defined by the Poisson structure$•,•%` is equal to
the projection onto the first factor in M(n,C)3(C* )2n21 of a symplectic leaf in the full space.

Proof: The flow of the Hamiltonian vector fieldu l k
is as follows:
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~$ast%,l !°~$e~lkuas,t!ast%,l !, ~3.16!

while the flow of uast
on (a,l 1 ,...,l 2n21) is equal to the old flow in the first factora5($ai j %)

while l k°e(lkuas,t)l k for k51,...,2n21. h

If `5(z1 ,...,zn ,j1 ,...jn) write

j i5 (
j 51

2n21

j i
jl j for i 51,...,n, ~3.17!

and

z i5 (
j 51

2n21

z i
jl j for i 51,...,n,

Define, for i , j 51,...,n the functionsc i
` andf j

` on (C* )2n21 by

c i~ l !5 )
J51

2n21

l
j

z i
j

~3.18!

and

f i~ l !5 )
J51

2n21

l
j

j i
j

.

Observe that if we define the functionsãi j (a,l )5ai j (a)c i( l )f j ( l ), then we may write

$ãi j ,ãst%05 (
~a,b!,~c,d!

c~a,b!,~c,d!
~ i , j !,~s,t ! ãabãcd ,

where the coefficientsc(a,b),(c,d)
( i , j ),(s,t) are the constants in

$ai j ,ast%p5 (
~a,b!,~c,d!

c~a,b!,~c,d!
~ i , j !,~s,t ! aabacd .

The following is then obvious either from the above or from the way the different algebra
constructed.

Lemma 3.6: The Poisson structure on M(n,C)3(C* )2n21 obtained from` is equal to that
corresponding tò 50 expressed in the coordinate system($ãi j %,l )(a,l )5($ai j c i( l )f j ( l )%,l ).

Proposition 3.7: The symplectic stacks are the same in M(n,C) for all choices of̀ .
Proof: This follows directly from Lemma 3.5 and Lemma 3.6 since$ai j c i( l )f j ( l )% according

to Lemma 3.2 can be obtained from$ai j % through the action ofSmult . h

We shall investigate further the various Poisson structures in Sec. IX.

IV. VERMA AND CYCLIC MODULES

We now introduce and study some modules that turn out to be very useful.
Definition 4.1: For an integer m set

m85H m if m is odd,

m

2
, if m is even.

Definition 4.2: Suppose our modified algebra Mq
`(n) satisfies
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; i , j :Z̃i ,n112 i Z̃ j ,n112 j5Z̃j ,n112 j Z̃i ,n112 i . ~4.1!

Let L5(l1 ,...,ln)PCn and let I(L) be the left ideal in Mq
`(n) generated by the elements Z˜

i , j

with i1 j >n12 together with the elements Z˜
k,n112k2lk for k51,...,n and Z̃i , j

m8 with i1 j <n.
The restricted Verma moduleM `(L) is defined as

M `~L!5Mq
`~n!/I ~L!.

We denote byvL the image of 1 in the quotient.
Remark 4.3: It seems natural to affix the name Verma to these modules since they d

much of the flavor of the usual ones. Notice, however, that what corresponds to the C
subalgebra is here the opposite diagonal.

Theorem 4.4: Let m.2 be an integer. Then the restricted Verma moduleM `(L) with the
highest weightL5(l1 ,l2 ,...,ln) is irreducible if and only ifl iÞ0 for all i .

Proof: This was proved for the case ofMq(n) in Ref. 24. We can extend this result to th
present situation by considering the induced module,

M `~L!↑5„C@L1
61,...,L2n21

61 #m3sMq
`~n!…^ M

q
`~n!M `~L!,

whereC@L1
61,...,L2n21

61 #m denotes the quotient ofC@L1
61,...,L2n21

61 # generated by the elemen

Li
m21 for i 51,...,2n21. Consider the image inM `(L)↑ of the subspaceS5C@L1

61,...,L2n21
61 #

^ CC•vL . We know thatMq(n) is a subalgebra of

C@L1
61,...,L2n21

61 #3sMq
`~n!,

and it follows that the commutative algebra$Zi ,n112 i u i 51,...,n%,Mq(n) leavesS invariant.
Hence, there is a common eigenvectorv L̃ , and it follows easily thatS equals the image o
C@L1

61,...,L2n21
61 # ^ CC•v L̃ and thatL̃5(l̃1 ,...,l̃n) with all l̃ iÞ0. In fact,

C@L1
61,...,L2n21

61 #3sMq
`~n! ^ M

q
`~n!M `~L!5C@L1

61,...,L2n21
61 #3sMq~n! ^ Mq~n!M0~L̃ !.

Finally, observe that

$xPM `~L!↑uZ̃i j •x50;Z̃i , jPMq
`~n! with i 1 j >n12%

5$xPM `~L!↑uZi j •x50 ;Zi , jPMq~n! with i 1 j <n12%,

and that this set of primitive vectors is invariant under the subalgebras generate

$Z̃i ,n112 i u i 51,...,n%, $Zi ,n112 i u i 51,...,n%, andC@L1
61,...,L2n21

61 #, respectively. h

Corollary 4.5: RankM„Mq
`(n)…>n22n, where M„Mq

`(n)… is the defining matrix of the
algebra Mq

`(n), provided Mq
`(n) satisfies (4.1).

V. SOME QUADRATIC ALGEBRAS

We now introduce four quantized matrix algebras; each has its own justification. We sha
that they all are modifications ofMq(n). We further compute their degrees as functions ofn and
m.

The so-called Dipper Donkin quantized matrix algebraDq(n) is an associative algebra ove
the complex numbersC generated by elementsDi , j ,i , j 51,2,...,n subject to the following rela-
tions:

Di , jDs,t5qDs,tDi , j if i .s and j <t,

Di , jDs,t5Ds,tDi , j1~q21!Ds, jDi ,t , if i .s and j .t, ~5.1!

Di , jDi ,k5Di ,kDi , j for all i , j ,k.
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Second, letJq
0(n) be the associative algebra generated by elementsJi , j for i , j 51,...,n and

defining relations:

Ji , j Js,t5qs1t2 i 2 j Js,tJi , j , if ~s2 i !~ t2 j !<0, ~5.2!

q12t1 j Ji , j Js,t5qs2 i 21Js,tJi , j1~q2q21!Ji ,tJs, j , if s. i and t. j . ~5.3!

Third, letJq
z(n) be the associative algebra generated by elementsMi , j ,i , j 51,2,...,n subject to

the following relations:

Mi , jMs,t5Ms,tM i , j , if ~s2 i !~ t2 j !<0,
~5.4!

qMi , jMs,t5q21Ms,tM i , j1~q2q21!Mi ,tMs, j , if i ,s and j ,t,

wherei , j ,k,s,t51,2,...,n.
Finally, let Jq

n(n) be the associative algebra generated by elementsNi , j subject to the follow-
ing relations:

Ni , jNs,t5qs2t2 i 1 j 22Ns,tNi , j , if s> i and t,J,

Ni , jNs,t5qs2 iNs,tNi , j , if s. i , and t5 j , ~5.5!

qt2 j 21Ni , jNs,t5qs2 i 21Ns,tNi , j1~q2q21!Ni ,tNs, j , if s. i and t. j .

To each simple rootgP$b,m1 ,...,mn21 ,n1 ,...,nn21% we have a generatorLg as in~2.3!. To
make it easier to write up the following relations, we define the symbolsL(lmn

) andL(lnn
) to be

the real number 1.
Proposition 5.1: Let

Di , j̃5Zi , jL~lm i
!21L~ln j

!, i , j 51,2,...,n.

Let Dq(n)̃ be the subalgebra generated by these elements. Then Dq(n)̃ is isomorphic to Dq22(n).
Proof: By direct calculations we see that theDi , j̃ ’s satisfy the defining relations ofDq(n)

with the quantum parameterq22. By the PBW theorem for the enveloping algebra, the Hilb
series ofDq(n)̃ is equal to that of the Dipper Donkin quantized matrix algebra. This complete
proof. h

Similarly, we have the following.
Proposition 5.2: The algebra Jq

0(n) is isomorphic to the algebra generated by the eleme

Ji , j5Zi , jL~lb!2~ i 1 j !L~lm i
!21L~ln j

!21,

the algebra Jq
z(n) is isomorphic to the algebra generated by the elements

Mi , j5Zi , jL~lm i
!21L~ln j

!21, i , j 51,2,...,n,

and the algebra Jq
n(n) is isomorphic to the algebra generated by the elements

Ni , j5Zi , jL~lb!2 i 1 jL~lm i
!21L~ln j

!, for i , j 51,...,n.

The degrees of the algebrasMq(n) andDq(n) were computed in Refs. 24 and 25. They a
mn21(m8)(n22)(n21)/2 andm@n2/2#, respectively. We now sketch a computation of the degree
Jq

0(n), Jq
z(n), andJq

n(n). We denote the defining matrices of these algebras byMq
0(n), Mq

z(n),
andMq

n(n), respectively.
To deal with the case ofJq

0(n), especially whenm is even, we now introduce the concept
a ‘‘restricted minimally generalized Verma module forJq

0(n). ’’
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Definition 5.3: LetL5(l1 ,...,ln)PCn, let fPC, and let I0(L,f) be the left ideal in Jq
0(n)

generated by the elements Z˜
i , j with i1 j >n12 together with the elements Z˜

k,n112k2lk for k

51,...,n and the element Z˜
n21,1
m 2f. Let I 0(L,f) denote the left ideal in Jq

0(n) generated

by I0(L,f) together with the elements Z˜
i , j
m8 for i 1 j 5n [except( i , j )5(n21,1)] . The restricted

minimally generalized Verma moduleM0(L,F) is given as

M0~L,f!5Jq
0~n!/I 0~L,f!.

We denote byvL,F the image of 1 in the quotient.
Theorem 5.4:The moduleM0(L,f) is irreducible forf51 andL5(1,...,1). It has dimen-

sion m•(m8)(n22n22)/2.
Proof: This follows by a mixture of the proofs of Theorem 3.7 and Theorem 3.11 in Ref

By the irreducibility of the Baby Verma module for the case ofJq
0(n21) ~based on the generator

Z̃i , j with i 51,...,n21 and j 52,...,n!, it follows that any invariant subspace must contain a prim
tive vectorvp of the form

vp5Z̃1,1
i 1 Z̃2,1

i 2
¯Z̃k,1

i k Z̃n21,1
a

•vL,f1¯ ,

where the powera may be 0 orm8.
By looking at the action ofZ̃n,2 , it follows that

vp5~ Z̃1,1
i 1 Z̃2,1

i 2
¯Z̃k,1

i k 1b•Z̃1,1
i 1 Z̃2,1

i 2
¯Z̃k,1

i k21Z̃n21,1Z̃k,2!•Z̃n21,1
a

•vL,f1¯ .

It is now easy to see that the assumption thatvp is primitive leads to the same contradiction
as those in the proof of Theorem 3.7 in Ref. 24.

Observe thatZ̃n21,1
m8

•vL,F is a primitive vector that is different fromvL,F if m is even.
However, it does not generate a nontrivial invariant subspace since we can multiply it

Z̃n21,1
m8 and thus get back to the highest weight vector. Also, observe that we can sepa

from the highest weight vector sinceZ̃n,1Z̃n21,1
m8 52Z̃n21,1

m8 Z̃n,1 . h

Remark 5.5: The modulesM0(L,f) are generically irreducible.
Remark 5.6: One may wonder why the generalized Verma modules of Ref. 24 no long

irreducible. (If they were, one would get a contradiction with the degree.) The reason is tha
vector

Z̃n21,1
m8 Z̃n22,2

m8
¯Z̃1,n21

m8
•vL,f

is a nontrivial primitive vector.
Remark 5.7: The modulesM0(L,f) may, of course, be defined for a wide class of algebr

The irreducibility result will hold, provided that there are nontrival relations Zi , jZi 1a, j

5q* Zi 1a, jZi , j with q* Þ1 and likewise in the column variable; Zi , jZi , j 1b5q* Zi , j 1bZi , j . This
condition is not satisfied by Jq

z(n).
Lemma 5.8: Consider the quasipolynomial algebraJq

0(n). Let

X~1!5x1,1x2,2¯xn,n

and

X~ j !5x1,j x2,j 11¯xn2 j 11,nxn2 j 11,1xn2 j 12,2¯xn, j for j 52,3,...,n.

Then we have

xs,tX~1!5q~n22!~n112s2t !X~1!xs,t for all s,t51,2,...,n
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and

xs,tX~ j !5q~n21!~n112s2t !X~ j !xs,t , for all s,t51,...,n and j 52,3,...,n.

Hence X( j )x1,n
rm2n11 and X(1)x1,n

rm2n12 are central elements of the quasipolynomial algeb
Jq

0(n) for all j 52,3,...,n, where r is the smallest positive integer such that rm2n11>0.
Proof: This follows by checking directly the four casess vs n2 j 11, andt vs j, where vs,

either is< or .. h

Theorem 5.9:Let D15(21 0
0 1) and Dj5(22 0

0 2) for j 52,...,(n22n)/2. A canonical form of
Mq

0(n) is diag(D1,D2,...,D(n22n)/2,0,...,0).
Proof: By the central elements we already found, we know that

rankMq
0~n!<n22n.

Thus, by Corollary 4.5, rankMq
0(n)5n22n. Next, it is easy to see by direct inspection of t

defining matrix that in casem52, the degree is 2. But it then follows by Theorem 5.4 that
entries of a canonical form ofMq

0(n) all are powers of the integer 2, except 1, which can only
D1 . Indeed, by Theorem 5.4 the form must be as stated. h

Now let us consider the algebraJq
z(n).

Proposition 5.10:rankMq
z(n)5n22n.

Proof: Let I (n)5$@ i , j #u i , j 51,2,...,n% with lexicographic order. The skew-symmetric matr
Mq

0(n) can be written as follows:

Mq
0~n!5H12Mq

z~n!,

whereH5(h@ i , j #,@s,t#) i , j ,s,t51
n andh@ i , j #,@s,t#5s1t2 i 2 j .

We have already proved that rankMq
0(n)5n22n. Obviously, the rows ofH can be generated

by T5(1,1,...,1) andW, which is the (1,n)th row of H. If we sum up all the rows ofMq
z(n) we

get a vectorX5(xi , j )PCn2
, where xi , j5#$@s,t#PI (n)us. i ,t. j %2#$@s,t#PI (n)us, i ,t, j %

5(n2 i )(n2 j )2( i 21)( j 21)5(n21)(n112 i 2 j ). This means thatX is (n21) times the
(1,n)th row of H. So

n22n21<rankMq
z~n!<n22n11.

However, rankMq
z(n) must be an even integer, so we get the result. h

Theorem 5.11:Let Di5(22 0
0 2 ) for i 51,2,...,(n22n)/2. Then a canonical form ofMq

z(n) is
diag(D1,D2,...,D(n22n)/2,0,...,0).

Proof: We now know that the rank ofMq
z(n) is n22n and the entries of a canonical form o

Mq
z(n) are clearly all even. Hence the assertion follows Theorem 4.4. h

The final case,Jq
n(n), is more difficult to handle. We know from experiments that the cano

cal form contains matrices of the form (22p 0
0 2p

) with p.1. Indeed, the maximal occurringp, as a
function of n, appears to be increasing. We shall be content to compute the rank of the can
form ~which gives the degree whenm is ‘‘good,’’ i.e., relatively prime to the entries!.

Let B be the integral antisymmetric matrix with entriesb@ i , j #,@s,t# , defined by

b@ i , j #,@s,t#522 if s> i and t, j ,

b@ i , j #,@s,t#52 if i>s and j ,t,

and

b@ i , j #,@s,t#50, otherwise.
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Let H be the integral antisymmetric matrix with entriesh@ i , j #,@s,t#5s2 i 1 j 2t. Then it is
obvious thatH is of rank two and the rows ofH are spanned by the 13n2 row P5(r @s,t#) with
r @s,t#5s2t and the 13n2 row T in which all entries are 1. The defining matrix ofJq

n(n) is then
equal toH1B.

Consider the sum of the (k,k)th rows ofB for all k51,2,...,n. This is22P. Hence, the rank
of H1B is the same as the rank ofB since it has got to be even. ButB is twice the transposed o
the defining matrix ofDq(n). Thus we obtain the following.

Proposition 5.12: The rank ofMq
n(n) is n2 if n is even and n221 if n is odd.

We end this section by illustrating how closely related are, e.g.,Jq
z(n) andJq

0(n): Let A2 be
the quantum plane, i.e., an associative algebra generated byx,y subject to the following relation:

yx5qxy.

Lemma 5.13: Let Z˜
i , j5xi 1 j y^ Mi , j for all i,j . Then the Z˜ i , j generate a subalgebra o

A2^ Jq
z(n), which is isomorphic with Jq

0(n).
Proof: If (s2 i )(t2 j )<0, then

Z̃i , j Z̃s,t5xi 1 j yxs1ty^ Mi , jMs,t

5qs1tXi 1 j 1s1ty2
^ Mi , jMs,t

5qs1t2 i 2 j xs1tyxi 1 j y^ Ms,tM i j

5qs1t2 i 2 j Z̃s,tZ̃i , j .

If s. i , t. j , we have

q11 j 2tZ̃i , j Z̃s,t5q11 j 1s@xi 1 j 1s1ty2
^ Mi , jMs,t#

5qj 1s@xi 1 j 1s1ty2
^ ~q21Ms,tM i , j1~q2q21!Mi ,tMs, j !#

5qj 1s212 i 2 j Z̃s,tZ̃i , j1~q2q21!Z̃i ,tZ̃s, j .

This completes the proof. h

Remark 5.14: Similarly, one can embed Jq
z(n) into A2^ Jq

0(n) by the mapt:Jq
z(n)→A2^ Jn ,

defined by

Mi , j→xyi 1 j
^ Z̃i , j .

VI. THE VARIETIES OF THE ALGEBRAS J q
0
„n …, J q

z
„n …, J q

n
„n …, AND Dn

In this section we consider the associated varieties of the modified algebras. LetV be a
complex linear space and letT(V) be the tensor algebra onV. Let R,V^ V be a subspace and le
~R! be the ideal ofT(V) generated byR. Set A5T(V)/(R). This is a quadratic algebra. Th
elements ofV^ V may be viewed as bilinear froms onV* 3V* : If

f 5(
i , j

a i , j xi ^ xjPR ~6.1!

and (p,q)PV* 3V* , then

f ~p,q!5(
i , j

a i , j xi~p!xj~q!. ~6.2!

Hence, we may associate toR the subvariety
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G~R!ª$~p,q!PP~V* !3P~V* !u f ~p,q!50, for all f PR%. ~6.3!

We call G(R) the associated variety.
In Ref. 26 the associated variety of the standard quantized matrix algebra was deter

Among other things, it turned out to be independent of the quantum parameterq. In this section we
~again! assume thatq2Þ1 and we consider first the associated varietyGn

0 of the algebraJq
0(n). In

some sense, this is the nicest.
Let „(ai , j ),(bi , j )…PGn

0, where (ai , j ) and (bi , j ) are twon3n complex matrices. Then we hav
the following.

Lemma 6.1: Let the notations be as above. Then ai , j50 if and only if bi , j50.
Proof: We assume thatas,tÞ0 for some~s,t! andai , j50 but bi , jÞ0. By

ai , jbi ,k5qk2 jai ,kbi , j ,

we haveai ,k50 for all k51,2,...,n.
If ( s2 i )(t2 j )<0, we have

ai , jbs,t5qs1t2 i 2 jas,tbi , j ,

which implies thatbi , j50. Contradiction.
If s. i and t. j we have

q12t1 jai , jbs,t5qs2 i 21as,tbi , j1~q2q21!ai ,tbs, j ,

which, together withai ,t50, imply bi , j50, which again is a contradiction.
Similarly, one can prove that ifs, i and t, j we also getbi , j50. This completes the proof

h

Lemma 6.2: If(ai , j ) is a rank one n3n complex matrix, then„(ai , j ),(q
i 1 jai , j )…PGn

0.
Proof: By direct verification. h

Lemma 6.3: Let„(ai , j ),(bi , j )…PGn
0 and suppose that(ai , j ) is a rank one complex matrix. The

bi , j5qi 1 jai , j for all i , j 51,2,...,n.
Proof: We assume thatai , jÞ0 for some (i , j ), thenbi , jÞ0, and by multiplying through by

some nonzero complex number we can assume thatbi , j5qi 1 jai , j .
For any (s,t), if ( s2 i )(t2 j )<0, we have

ai , jbs,t5qs1t2 i 2 jas,tbi , j ,

so bs,t5qs1tas,t .
If s. i and t. j , we have

q12t1 jai , jbs,t5qs2 i 21as,tbi , j1~q2q21!ai ,tbs, j .

Sincebs, j5qs1 jas, j and since rank 1 of the matrix (ai , j ) implies thatai ,tas, j5ai , jas,t , we get
bs,t5qs1tas,t .

Similarly, one can prove that ifs, i and t, j thenbs,t5qs1tas,t . This completes the proof
h

Now we assume that the matrix (ai , j ) is indecomposable. Letai , j be the first nonzero entry in
the matrix (ai , j ) according to the lexicographic ordering and assumebi , j5qi 1 jai , j . Let

I 15$~ i , j !ubi , j5qi 1 jai , j%,

I 25$~ i , j !ubi , jÞqi 1 jai , j%.
                                                                                                                



t

ty

ation

2325J. Math. Phys., Vol. 41, No. 4, April 2000 A class of quadratic matrix algebras arising . . .

                    
Then it is easy to see that ifai ,kÞ0 and (i ,k)PI 1 for somek, then (i , j )PI 1 for all j. Similarly,
if ak, jÞ0 and (k, j )PI 1 for some k, then (i , j )PI 1 for all i. Indeed, if (k,l )PI 1 and if
(s2k)(t2 l )<0 then (s,t)PI 1 . SinceI 1ÞB and (ai , j ) is indecomposable, it follows easily tha
I 15I (n), i.e., bi , j5qi 1 jai , j for all i,j . For anyi ,s and j ,t, we have

q12t1 jai , jbs,t5qs2 i 21as,tbi , j1~q2q21!ai ,tbs, j .

Henceai , jas,t5ai ,tas, j . This proves that rank(ai , j )51.
Now we assume that the matrix (ai , j ) is decomposable. Then rank(ai , j )>2. Let ai , jas,t

Þ0,(i , j )PI 1 ,(s,t)PI 2 . As above, (s2 i )(t2 j )<0 is impossible. So, without losing generali
we assume thats. i and t. j . We then must haveai ,t5as, j50. By

q12t1 jai , jbs,t5qs2 i 21as,tbi , j1~q2q21!ai ,tbs, j ,

we get thatbs,t5qs1t22bs,t for (s,t)PI 2 . More generally, this proves that the matrix (ai , j ) is, in
fact, a direct sum of indecomposable matrices,

~qi , j !5diag~D1 ,D2 ,...,Dr !,

where eachDi is either zero or of rank one. Furthermore, the above analysis of how the rel
betweenas,t andbs,t follows from I 1 clearly implies~sinceq2Þ1!, that, at most two of them are
nonzero. Summarizing, we have proved the following.

Theorem 6.4: Let q be generic or q is an mth root of unity (mÞ2). Let „(ai , j ),(bi , j )…
PGn

0. Then the matrix(ai , j ) is either of rank one and bi , j5qi 1 jai , j for all i,j or (ai , j ) is of the
following form:

~ai , j !5diag~0,0,...,0,D1,0,...,0,D2,0,...,0!,

where Di are rank one matrices. In this case,

~bi , j !5diag~0,0,...,T1,0,...,0,T2,0,...,0!,

where T15(qi 1 jai , j ), T25(qi 1 j 22ai , j ).
Let us now consider the varietyGn

z of Jq
z(n).

Theorem 6.5: Let „(ai , j ),(bi , j )…PGn
z . Then the matrix(ai , j ) is either of rank one and bi , j

5ai , j for all i,j or (ai , j ) is of the following form:

~ai , j !5diag~0,0,...,0,D1,0,...,0,D2,0,...,0!,

where Di are rank one matrices (of arbitrary shape). In this case

~bi , j !5diag~0,0,...,T1,0,...,0,T2,0,...,0!,

where T15D1 , T25q22D2 .
Proof: The proof is almost the same as that ofJq

0(n). h

Theorem 6.6:Let Gn
D denote the variety of Dq(n) and let„(ai j ),(bi j )… be a point inGn

D . Then
either there exists a nonzero13n row R and cPC* such that
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~ai j !51
0
]

0
R
0
¯

0
cR
0
]

0

2 and ~bi j !51
0
]

0
qR
0
]

0
qcR

0
]

0

2 ,

or (ai j )5diag(A1,A2,...,An), where Ai is a 13si complex row vector for some positive integeri

and (bi j )5(ai j ).
Proof: Consider the relations~5.1! and let„(ai j ),(bi j )… be a point in the varietyGn

D . First of
all, an elementary computation shows thatai j 50⇒bi j 50. Moreover,

ai j bik5aikbi j , for all i , j ,k.

Hence, there existc1 ,c2 ,...,cnPC* , such that

bi j 5ciai j , for all i , j 51,2,...,n. ~6.4!

If there existi .s and j <t such thatai j astÞ0, then

ai j bst5qastbi j ,

and so cs5qci . Thus, it is impossible to have three nonzero entriesai j ,ast ,alk such that
i .s. l and j <t<k.

For i .s and j .t, if ai j astas jaitÞ0, then

ai j bst5astbi j 1~q21!as jbit .

Thereforeai j ast5as jait .
The above argument proves that for any 232 submatrix,

S ast as j

ait ai j
,D ,

if all entries are nonzero, the rank is 1. But we can, furthermore, see that the number o
entries cannot be 1. In fact, ifai j or ast is zero, by

ai j bst5astbi j 1~q21!as jbit ,

we get as jait50. If as j50 but the other entries are nonzero, then sinceaitastÞ0, we getcs

5qci . But

ai j bst5astbi j

implies thatci5cs , which is a contradiction. Similarly, one can dismiss the caseait50 but the
other entries are nonzero.

If rank(ai j )51, then there exists a nonzero 13n row R such that
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~ai j !5S d1R
d2R
...

dnR
D ,

for certain constantsd1 ,...,dn . By the above observations, at most twodi are nonzero and the firs
assertion follows.

If rank(ai j )>2 there exists a nondegenerate submatrix,

S ast as j

ait ai j
D .

By the above argument we must haveas j5ait50. If the matrix (ai j ) does not have a 232
submatrix with all entries nonzero, then (ai j )5diag(A1,A2,...,An), whereAi is a 13si complex
row vector for some positive integersi , and by the above discussion we must have (bi j )
5c(ai j ) for somecPC* . If there is a rank one 23r submatrixSwith all entries are nonzero an
we assume thatr>2 i5s maximal among the possible choices, then there are some no
entries in (ai j ) outsideS because rank (ai j )>2. Clearly, those nonzero entries cannot sit in t
middle of, on top of, or below the matrixS, since there are no triplesai j ,ast ,alk of nonzero entries
with i .s. l and j <t<k. Now assume that there is a nonzeroalk located to the lower right the
submatrixS. Let the numbers of the two rows of the submatrixSbe r andt with r ,t. Hence, we
have three nonzero entriesalk ,ar j ,at j , where ar j ,at j are entries inS and r ,t, l and j ,k.
Obviouslyal j 5ark5atk50 and socl5cr5ct , butcr5qct since bothar j andat j are nonzero and
this is a contradication. Similarly, one can dismiss any other location of a nonzero entry outs
S. But this means that the rank of (ai j ) is 1, which is contrary to our assumption. Hence, t
matrix (ai j ) does not have a rank 1 23r submatrix with all entries nonzero. Therefore

~ai j !5diag~A1 ,A2 ,...,An!,

whereAi is a 13si complex row vector for some positive integersi . It is then clear that the
matrix (bi j ) must be a multiple of the matrix (ai j ). This completes the proof. h

Theorem 6.7: Let Gn
n be the variety of Jq

n(n) and let „(ai j ),(bi j )… be a point inGn
n . Then

either there exists a nonzero n31 column R and acPC* such that

~ai j !5~0,...,0,R,0,...,0,cR,0,...,0!

and

~bi j !5~0,...,0,R8,0,...,0,cq2R8,0,...,0!,

where R5S r 1i

r 2i

¯

r ni

D and R85S q12 i r 1i

q22 i r 2i

¯

qn2 i r ni

D ,

or (ai j )5diag(A1,A2,...,An), where Ai is an si31 complex column for some positive integer si and
(bi j )5(qi 2 jai j ).

Proof: This follows by arguments analogous to those in the proof forDq(n). h

VII. STRUCTURE AND DIMENSIONS OF SYMPLECTIC LEAVES

The dimensions of the symplectic leaves in the case of theregular points of M (n,C),
equipped with the standard structure, can be computed by the method of the Manin dou
explained in, e.g., Ref. 23. Specifically, letn6 denote the set of strictly upper and lower triangu
matrices inM (n,C), and letN65exp(n6). Let h denote the diagonal subalgebra ofM (n,C), let
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h0 denote the subalgebra ofh consisting of trace 0 elements, and letH0 denote the diagona
elements of determinant 1. ByB0

6 we denote the upper and lower triangular matrices, respectiv
in SL(n,C) and we denote the analogous subgroups ofGL(n,C) by B6. Identify SL(n,C) with
the diagonal inD05SL(n,C)3SL(n,C). Let SLr(n,C) denote the subgroup ofD0 generated by
N131, 13N2, andA05$(x,x21)uxPH0%, and denote byslr(n,C) the Lie algebra of this sub
group. Analogously, defineGLr(n,C) and glr(n,C) by removing the determinant 1 and trace
condition fromA0 andh0 , respectively.

We denote bŷ•,•& the standard bilinear form̂x,y&5tr xy both onM (n,C) and onsl(n,C),
and we define the bilinear formB on M (n,C)3M (n,C) by

B„~x1 ,y1!,~x2 ,y2!…5 1
2~^x1 ,x2&2^y1 ,y2&!. ~7.1!

Through the bilinear formB, slr(n,C) is identified with sl(n,C)* and glr(n,C) with
M (n,C)* .

The traditional setting is to viewSLr(n,C)/G, whereG5$xPH0ux251%, as sitting inside
D0 /SLr(n,C). The latter is a Poisson manifold, andSLr(n,C)/G is an open Poisson submanifold

Let aPslr(n,C). Through the bilinear formB above,a induces a right-invariant 1-form
a r(x) on SL(n,C). The right dressing vector fieldr~a! is defined by

;jPV1
„M ~n,C!…:^rx~a!,j&5px„a r~x!,j…. ~7.2!

Second,aPslr(n,C) gives rise to a vector field onSLr(n,C)/G through the left action on
D0 /SLr(n,C), and this can be lifted to a vector fields~a! on SL(n,C). The key result is then the
following.

Theorem 7.1: ~Refs. 22, 27!. For all xPSL(n,C),

rx~a!52sx~a!.

It follows from the above~Ref. 23! that SL(n,C) is a disjoint union of the setsLv1 ,v2

5B0
1v1B0

1ùB0
2v2B0

2 , where (v1 ,v2)PW3W. Each setLv1 ,v2
is a union of symplectic leave

of the same dimension. This dimension may be computed by placing oneself at a good p
D0 /SLr(n,C), e.g., (v1 ,v2), even though this, whenv1Þv2 , is not inSLr(n,C)/G.

This picture extends in an obvious way toGL(n,C). In particular, we have the following.
Corollary 7.2: The symplectic stacks in GL(n,C) are precisely the sets

B1v1B1ùB2v2B2.

Let us now take a closer look at the Poisson brackets~3.15!,

$ l k ,ai , j%5~lk ,a i , j !ai , j l k . ~7.3!

In this expression, (lk ,a i , j ) is exactly the exponent of the multiplication operatorľk ~3.1!. Thus,
it follows that if uk denotes the vector field defined byľk ; then

$ l k ,ai , j%5 l k dai , j~uk!. ~7.4!

Let si
r denote ther th scalar row operator andsj

c the j th scalar column operator. Thensi
r acts

from the left andsj
c from the right. Specifically, letdi denote the diagonal matrix ingl(n,C) with

1 at thei th place and zeros elsewhere. Then

si
r f ~Z!5

d

dt U
t50

f ~etdiZ! and sj
cf ~Z!5

d

dt U
t50

f ~Zetdj !. ~7.5!

We now wish to determine the Poisson structure onM (n,C) obtained through a modification
`. The functionszi , j are transformed intozi , jf ic j . Recalling that the Poisson bracket$f,g% only
depends ondf anddg, it follows easily, lettingl k→1 in ~3.15!, that the modified Poisson bracke
$v,j%* between two 1-formsv, j on M (n,C) is given as
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$v,j%* 5$v* ,j* %5$v,j%1Sk$v~sk
r !fk ,j%1Sk$v~sk

c!ck ,j%1$v,j~sk
r !fk%1$v,j~sk

c!ck%.
~7.6!

Let us for the rest of this section assume that the modifications are of the formZ̃i , j

5Zi , jf ic j , wheref i only involves the fundamental roots corresponding tob,m1 ,...,mn21 , and
wherec j only involves the fundamental roots corresponding tob,n1 ,...,nn21 . We let~cf. Lemma
3.2! xi andyj denote the right- and left-invariant vector fields, respectively, corresponding tf i

andc j ,i , j 51,...,n. Specifically,

$fk ,j%5j~xk!, and $ck ,j%5j~yk!. ~7.7!

Then

$v,j%* 5j~rv!1j„Skv~dk
r !xk…1j„Skv~dk

c!yk…1v„Skj~dk
r !xk…1v„Skj~dk

c!yk…. ~7.8!

Summarizing, we have the following.
Proposition 7.3: Letrv denote the dressing vector field corresponding to the 1-formv in the

unmodified Poisson structure and letrv* denote the dressing vector field defined byv with respect
to the modified Poisson structure. Then,

rv* 5rv1(
k

v~dk
r !xk1(

k
v~dk

c!yk2(
k

v~xk
r !dk2(

k
v~yk

c!dk .

Let

r 15(
k

dk`xk and r 25(
k

dk`yk ~7.9!

be elements inh`h, where we identifyxk andyk with their values at 0 and whereh denotes the
diagonal subalgebra ofg5M (n,C).

Corollary 7.4: The modifications considered have the form [cf. (3.6)]

p̃~g!5p~g!1~ l g!* ~r 2!1~r g!* ~r 1!.

This class of modifications is of the form considered by Semenov–Tian–Shansky in Re
Indeed, viewed under appropriate identifications as a skew-symmetric mapg→g, any r̃
5(1< i , j <nei , j`ej ,i1r , with r Ph`h, satisfies the Yang–Baxter identity,

@ r̃ X, r̃ Y#5 r̃ ~@ r̃ X,Y#1@X, r̃ Y# !2@X,Y#, X,YPg. ~7.10!

We introduce the following elements ofh for k51,...,n:

hk5dk111¯1dn and ak5k~d11¯1dn!, ~7.11!

where, naturally,hn is defined to be 0. We then have Table I.

TABLE I. The quantitiesxk andyk of ~7.9!.

Algebra xk yk

Dq(n) 2hk hk

Jq
0(n) 2hk2ak 2hk2ak

Jq
z(n) 2hk 2hk

Jq
n(n) 2hk2ak hk1ak
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The following then follows from Propositions 5.1 and 5.2.
Proposition 7.5: Consider the following elements in M(n,C)`M (n,C):

r 5 (
aPD1

ea`e2a , r 05 (
k51

n

dk`hk , and r s5 (
k51

n

dk`ak .

The Poisson structuresps(g), pD(g), pJ0(g), pJz(g), andpJn(g) on M(n,C) corresponding to
the algebras Mq(n), Dq(n), Jq

0(n), Jq
z(n), and Jq

n(n) are then given as follows:

ps~g!52~ l g!* r 1~r g!* r , pD~g!52~ l g!* ~r 2r 0!1~r g!* ~r 2r 0!,

pJ0~g!52~ l g!* ~r 1r 01r s!1~r g!* ~r 2r 02r s!, pJz~g!52~ l g!* ~r 1r 0!1~r g!* ~r 2r 0!,

pJn~g!52~ l g!* ~r 2r 02r s!1~r g!* ~r 2r 02r s!.

The following is an easy consequence of Ref. 22, Theorem 2, p. 1242.
Proposition 7.6: Multiplication M(n,C)3M (n,C)→M (n,C) induces Poisson mappings,

M ~n,C!D3M ~n,C!Jz→M ~n,C!Jz,

M ~n,C!Jn3M ~n,C!J0→M ~n,C!J0.

In caser 152r 2 , the dimensions may be computed by the method devised by Seme
Tian–Shansky. Indeed, these dimensions have already been computed in Refs. 3 and 7.
r 1Þ2r 2 , it seems to be difficult to obtain the answer in full generality. However, in casev1

5v25v, one may obtain satisfactory results:
When computing at the point@~v, v!# it is easy to see that the only Hamiltonian~dressing!

vector fields that are being modified are those corresponding to elements of the form (a,2a)
Pglr(n,C), whereaPh. @Observe that we have to move intogl(n,C).# Set

;aPh:TR~a!5^a,dk&•yk2^a,yk&•dk and TL~a!5^a,dk&•xk2^a,xk&•dk . ~7.12!

When we compute at the point@~v, v!# we make all vector fields into right actions. Obser
that s(a)!@(v,v)#5@(a•v,a21

•v)#5@(v(v21av),v(v21a21v)#5@(v,v)#.
Proposition 7.7: The modified dressing vector vector field corresponding to aPh is given by

r̃~a!5TR~v21av!1v21
„TL~a!…v. ~7.13!

The right-hand side of~7.13! may be identified with an element ofh. Let Lv denote the linear

maph°
v

h, given by

h{a°Lv~a!5TR~v21av!1v21
„TL~a!…v. ~7.14!

We can now give formulas for the dimensions of some symplectic leaves for the modifica
we have considered, where we use the known formula~Ref. 23! from the standard case.

Proposition 7.8: The dimension of the symplectic leaf through the point (v, v) is given as
2• l (v)1rankLv .

In general, it appears to be difficult to compute rankL in terms ofv. However, we have the
following partial result.

Proposition 7.9: Letv l denote the longest element of the Weyl group. Then Lv l
is zero for

Jq
0(n) and Jq

z(n), whereas in the cases of Dq(n) and Jq
n(n), the rank of Lv l

is n for n even and

n21 for n odd.
Proof: It is easy to see that there are many cancellations and simplifications in this s

case. Thus, the claim aboutJq
0(n) andJq

z(n) follows by easy inspection. For the remaining cas
one is quickly reduced to finding the rank of~for example! TL . For Dq(n) the matrix ofTL is
skew symmetric with 1’s below the diagonal; a matrix with the stated rank. ForJq

n(n) it is slightly
more complicated, but after a few simple manipulations, one may decompose the matrix i
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invertible 434 matrix and a skew-symmetric matrixM whosei , j th entry below the diagonal is
i 2 j 11. The last is the sum of a rank 2 matrixA ~with entriesai , j5 i 2 j ! and a matrix as for the
case of the Dipper Donkin algebra. But a combination of the columns ofA, namely the column
vector with 1’s at all places, is in the span ofM. The claim follows from this, since the rank mu
be even. h

VIII. THE CENTERS OF THE ALGEBRAS J q
0
„n …, J q

z
„n …, AND J q

n
„n …

In Refs. 24 and 25, the center of the standard quantized matrix algebra and the center
Dipper–Donkin quantized matrix algebra were determined explicitly. A strategy one ma
when computing the center of any modified algebra in our family is the following: Our mo
cation is based on the standard quantized matrix algebraMq(n). In Ref. 24 it was proved that the
subdeterminants in the left upper or right lower corner are covariant. Since our modificatio
by multiplication by some monomials in theLi ’s, the corresponding modified subdeterminants
still covariant. Although for different modified algebras one may need to use different metho
compute the degree, it seems that we can get the whole center of the modified algebra b
bining the modified subdeterminants in some proper ways~cf. Refs. 24 and 25!. As already seen
in Sec. VII, there is a close relationship between the size of the center and the degree. We n
look at the center ofJq

0(n) since by Lemma 5.8, the center of its associated quasipolyno
algebraJq

0(n) is within reach.
For anyB5(bi j ) i , j 51

n PMq(n)(Z1), we define

JB5PJi , j
bi , j ,

where the factors are arranged according to lexicographic ordering. We denote the genera
Jq

0(n) by xi j ,i , j 51,2,...,n, and define the symbolxB analogously in terms of the same orderin
Let C be the center ofJq

0(n) andC̄ the center ofJq
0(n). For anyPPC, the leading term ofP

must be of the formcJB, cPC, for someB5(ai , j ) i , j 51
n PMn(Z1). For anyJk,l the leading term

of PJk,l is cqr k,lJB1Ek,l, wherer k,l5( ( i , j ).(k,l )(k1 l 2 i 2 j )bi , j1( i .k, j . l2bi , j . The leading term
of Jk,l P is cql k,lJB1Ek,l, where l k,l5( ( i , j ),(k,l )( i 1 j 2k2 l )bi j 22( i ,k, j , lbi , j . Since PJk,l

5Jk,l P we getql k,l5qr k,l and this implies thatcXB is a central element of the twisted polynomi
algebraJq

0(n). Hence, we can define a mapL:C→C̄ by

P°cXB,

if the leading term ofP is cJB, cPC.
Clearly,L(P)50 impliesP50.
Theorem 8.1:Let q be a primitive mth root of unity and let s be the minimal positive inte

such that sm2n11>0. Then we have the following.
(a) If m is odd, then the center ofJq

0(n) is generated by xi , j
m ,x1,n

m2rxn,1
r for r 51,...,m21,

x1,n
sm2n11X( j ) for j 52,3,...,n, and x1,n

sm2n12X(1).

(b) If m is even, m52m8 say, then the center ofJq
0(n) is generated by xi , j

m8xj ,i
m8 ,x1,n

m2rxn,1
r for

r 51,...,m21, x1,n
n21X( j ) for j 52,3,...n, andx1,n

n22X(1).
Proof: By Theorem 5.9 and Proposition 2.5 we know that the degree of the quasipolyn

algebraJq
0(n) is

degJq
0~n!5m•~m8!~n22n22!/2. ~8.1!

The result now follows from Ref. 19, Proposition 7.1. h

In the following, the quantum determinants are those corresponding toJq
0(n). Let

J~k!5detq~$1,2,...,k%,$n2k11,...,n%!detq~$k,k11,...,n%,$1,2,...,n2k11%!, ~8.2!

for k52,3,...,n and
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J~1!5detq . ~8.3!

Then we have the following.
Theorem 8.2:Let q be a primitive mth root of unity for some odd positive integer m. Then

center of Jq
0(n) is generated by the elements Ji , j

m ,J(k)J1,n
m2n11 for all k52,3,...,n, J1,n

m2n12J(1),
and J1,n

m2rJn,1
r for r 51,2,...,m.

Proof: Let C8 be the central subalgebra generated by the central elements stated
theorem. For anyYPC we use induction on the leading term ofY to prove thatY belongs toC8.
By Theorem 8.1, we know that there is a central elementY8PC8 that has the same leading ter
as that ofY. Hence,Y2Y8PC8. This completes the proof. h

Similarly, we get the following.
Theorem 8.3: Let q be a primitive mth root of unity for some even positive integer

52m8. The center of Jq
0(n) is generated by the elements Ji , j

m8Jj ,i
m8 for i , j 51,2,...,n,J(k)J1,n

m2n11 for
k52,3,...,n, J1,n

m2n12J(1), and J1,n
m2rJn,1

r for r 51,2,...,m.
We next consider the center of the algebraJq

z(n). Let M (k) be the minor detq($n2k11,
n2k12,...,n%,$1,2,...,k%) and let t be the antiautomorphism sendingMi , j to M j ,i . Then in a
similar way we get the following.

Theorem 8.4:Let q be a primitive mth root of unity (odd or even) and let C be the cente
the algebra Jq

z(n). Then C is generated by the elements Mi , j
m , M1,n , Mn,1 , and

M (k) rt„M (n2k11)r
…detq

m2r for k52,3,...,n21 and r51,2,...,m21.
Finally, we considerJq

n(n). Let q be a primitive mth root of unity and letA5(ast)
PMn(Z1), where

ast51, if s1t is even,

ast5m21, if s1t is odd.

Let Jq
n(n) be the associated quasipolynomial algebra ofJq

n(n), and denote the generators
Jq

n(n) by Ni j .
Proposition 8.5: The element N(̄n22)A2I is a central element ofJq

n(q), provided that n is odd.
Proof:

Ni j N̄
A5q(s,t~s2 i 2t1 j !~21!s1t12(s51

i
( t5 j 11

n
~21!s1t22(s5 i

n
( t51

j 21
~21!s1t

N̄ANi j

5qj 2 i N̄ANi j , for all i , j .

Sincen is odd, we have

(
s,t

~s2 i 2t1 j !~21!s1t5(
s,t

~2 i 1 j !~21!s1t5 j 2 i ,

2(
s51

i

(
t5 j 11

n

~21!s1t22(
s5 i

n

(
t51

j 21

~21!s1t50,

and

Ni j N̄
I5q~n22!~ j 2 i !N̄INi j , for all i , j .

This completes the proof. h

Let I 5$t11,t12,...,n%, J5$1,2,...,n2t%, and let f t5detq(I,J). Let I * 5$1,2,...,t%, J*
5$n2t11,n2t12,...,n% and letf t* 5detq(I* ,J* ), where the determinant is the modified dete
minant. Leta15n23, ai5(n22) if i is odd andiÞ1, andai5(n22)(m21) if i is even. Set
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V~n!5P i 51
n f i

aiP j 52
n c j

an2J11. ~8.4!

Then the elementV(n) is a central element ofJq
n(n). Due to our weaker result concerning th

canonical form in this case, we also need an extra assumption onm for our result concerning the
center ofJq

n(n).
Theorem 8.6:Let q be an mth root of unity for some ‘‘good’’ integer m. Then the cente

Jq
n(n) is generated by Ni j

m for all i , j 51,2,...,n if n is even and is generated by Ni j
m and V(n) for

all i , j 51,2,...,n if n is odd.

IX. C†L 1
Á1,...,L 2nÀ1

Á1
‡ÃsMq

`
„n …

As should hopefully be clear from the preceding sections,An5C@L1
61,...,L2n21

61 #3sMq
`(n)

is, in some sense, the most fundamental algebra. We here briefly study some of its prope
Proposition 9.1:C@L1

61,...,L2n21
61 #3sMq

`(n) is an iterated Ore extension.
Proof: Since the elementsLi are covariant, this is obvious. h

Obviously,C@L1
61,...,L2n21

61 #3sMq
`(n) is a quadratic algebra, and the associated quasip

nomial algebra may be taken to beC@L1
61,...,L2n21

61 #3sMq
`(n).

Theorem 9.2: Let Si5(21 0
0 1) for i 51,2,...,3n23 and Sj5(22 0

0 2) for j 53n22,...,(n2

1n)/2. Thendiag(S1,S2,...,S(n21n)/2,0...,0) is a canonical form of the algebraC@L1
61,...,L2n21

61 #
3sMq

`(n). In particular, the degree is given by

degAn5m3n23~m8!~n22!~n23!/2.

Proof: This relies heavily on the result~and method! for Mq(n) ~Ref. 24!. Write down the
defining matrix for the associated quasipolynomial algebra. This may be taken in the form

S M C

2Ct 0 D ,

whereM is the defining matrix ofMq(n). But it is easy to see thatC can be used to remove th
first n rows and columns of this matrix together with rows and columnsi •n11 for i 51,...,n
21. This is done at the expense of 2n21 blocks (21 0

0 1). What remains is exactly the definin
matrix Mq(n21). The result follows immediately from this. h

Recall that the usual coproduct onMq(n) is given as

D~Zi , j !5(
a

Zi ,a ^ Za, j . ~9.1!

Though we know from experiments that it is not possible to define coproducts on all mo
algebrasMq

`(n), it is interesting that it is possible to define a structure of bialgebra~in fact,
several, due to a certain ambiguity! on C@L1

61,...,L2n21
61 #3sMq(n):

Lemma 9.3: DefineD(Zi , j ) as in (9.1) and set

D~Lm i
!5Lm i

^ 1,

D~Ln j
!51^ Ln j

,

~9.2!
D~Lb!5Lb ^ 1,

e~Zi j !5d i , j and ; i51,...,2n21: e~Li !51.

Then this is a bialgebra structure onC@L1
61,...,L2n21

61 #3sMq(n).
Proof: This follows easily from the wayMq(n) is constructed; cf.~2.8!. h
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Remark 9.4: More generally, one may setD(Lb)5Lb
a

^ Lb
b for any pair a, b of integers with

a1b51.

X. RANK r

In this section we shall consider the subsets of lower rank matrices. To begin with we co
the standard quantum matrix algebraMq(n) andM (n,C) with the standard Poisson structure. A
usual,q is a primitivemth root of unity.

Proposition 10.1: In Mq(n),

„detq~$Zi , j%!…m5det~$Zi , j
m %!.

Proof: By the quantum Laplace expansion, the quantum determinant is a sum ofq-commuting
terms~cf. Ref. 24!. The claim then follows easily by the quantum binomial formula. h

Corollary 10.2:

;s,t51,...,n ˆZs,t ,det~$Zi , j%!‰50.

Proof: This follows easily since bothZi , j
m and detq are central elements~cf. Ref. 24!.

q.e.d.
Let Aj

i denote the quantum cofactor obtained as the quantum (n21)3(n21) determinant of
the subalgebra generated by thoseZs,t for which sÞ i or tÞ j ~cf. Ref. 24!.

Lemma 10.3:

$Zi , j ,Aj
i %52S (

s, i
~21! i 2sZs, jAj

s2(
j ,t

~21! t2 jZi ,tAt
i D .

Proof: We use induction onn. The formula is true forn52. By Laplace expansion we hav

Aj
i 5(

s51

i 21

~21!s21Zs,1Aj ,1
i ,s2 (

s5 i 11

n

~21!s21Zs,1Aj ,1
i ,t .

Hence

$Zi , j ,Aj
i %5(

s51

i 21

~21!s21Zs,1$Zi , j ,Aj ,1
i ,s%22(

s51

i 21

~21!s21Zs, jZi ,1Aj ,1
i ,s

2 (
s5 i 11

n

~21!s21Zs,1$Zi , j ,Aj ,1
i ,s%.

Applying the inductive hypothesis toA1
s , and changing the enumeration appropriately, we ge

$Zi , j ,Aj ,1
i ,s%522(

r 51

s21

~21! i 2rZr , jAj ,1
r ,s12 (

r 5s11

i 21

~21! i 2rZr , jAj ,1
r ,s22(

j , l
~21! l 2 jZi ,lAl ,1

i ,s ,

for s51,2,...,i 21.
Similarly, we have

$Zi , j ,Aj ,1
i ,s%52S (

r , i
~21! i 2rZr , jAj ,1

r ,s2(
j , l

~21! l 2 jZi ,lAl ,1
i ,sD ,

for s5 i 11,...,n.
Now we get
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$Zi , j ,Aj
i %522(

s51

i 21

Zs,1(
r 51

s21

~21! i 2rZr , jAj ,1
r ,s12(

s51

i 21

Zs,1 (
r 5s11

i 21

~21! i 2rZr , jAj ,1
r ,s

22(
s51

i 21

Zs,1(
j , l

~21! l 2 jZi ,lAl ,1
i ,s22(

r 51

i 21

~21!r 21Zr , jZi ,1Aj ,1
i ,r

22 (
s5 i 11

n

~21!s21Zs,1(
r , i

~21! i 2rZr , jAj ,1
r ,s

12 (
s5 i 11

n

~21!s21Zs,1(
j , l

~21! l 2 jZi ,lAl ,1
i ,s .

The assertion now follows by considering the Laplace expansion ofAj
r along the first column for

r , i and ofAl
i along the first column forj , l . h

By the same method it follows that we have Lemma 10.4.
Lemma 10.4:

$Zi , j ,Aj
n%5(

k, j
~21! j 2kZi ,kAk

n2(
s. j

~21! j 2sZi ,sAs
n .

Proposition 10.5: In the space of all polynomials on M(n,C), the ideal generated by all r
3r minors is invariant under Hamiltonian flow.

Proof: By, if necessary, deleting and/or renaming columns and rows, this follows from
ollary 10.2, Lemma 10.3, and Lemma 10.4. h

Corollary 10.6: The space of matrices of rank r is preserved by Hamiltonian flow in
standard Poisson structure.

Proof: We know by Proposition 10.5 that the space of matrices of rank<r is invariant. But
clearly, the rank cannot decrease along a Hamiltonian flow since by reversing time it would
be possible to increase rank. h

Proposition 10.7:

D~Zi , j
m !5 (

a51

n

Zi ,a
m

^ Za, j
m .

Proof: Similar to the proof of Proposition 10.1. h

The following is important because all tensor categories are important. According to P
sition 10.7, each central elementZi , j

m is represented as a scalar multipleci , j•I of the identity
operator in the tensor product of two irreducible representations. Hence, it is represented
same multiple in each invariant subspace and in each quotient of such a tensor product.

Corollary 10.8: The space of matrices of rank less than or equal to r forms a tensor cate
Indeed, if in two representationsp1 ,p2 ,$Zi , j

m % is represented by matrices A and B, respective
then it is represented by A•B in the tensor product.

Remark 10.9: A special case of the above is when A25a•A for some rth root a of 1 (e.g.,
a51).

Turning, finally, to the other Poisson structures onM (n,C) defined by our modifications, we
recall that according to Proposition 7.3, the modified vector fields differ from the original one
left and/or right multiplication operators. Hence, we have the following.

Corollary 10.10: The space of matrices ofrank<r is preserved by Hamiltonian flow for a
modified Poisson structure.

As for tensor categories, we do not have as precise results for the modified algebra
observe that it is possible to start with two irreducible modulesI 1 ,I 2 of a modified algebra
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Mq
`(n). These may then be induced to the semidirect product, and the tensor product m

formed of the induced representations according to Lemma 9.3. Finally, the result may b
lyzed in terms of its irreducible quotients.
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In this paper we provide a quantitative comparison of two obstructions for a given
symmetric operatorS with dense domain in Hilbert spaceH to be self-adjoint. The
first one is the pair of deficiency spaces of von Neumann, and the second one is of
more recent vintage; LetP be a projection inH. We say that it issmoothrelative
to S if its range is contained in the domain ofS. We say that smooth projections
$Pi% i 51

` diagonalize Sif ~a! (I 2Pi)SPi50 for all i , and ~b! supi Pi5I . If such
projections exist, thenS has a self-adjoint closure~i.e., S̄ has a spectral resolution!,
and so our second obstruction to self-adjointness is defined from smooth projec-
tionsPi with (I 2Pi)SPiÞ0. We prove results both in the case of a single operator
S and a system of operators. ©2000 American Institute of Physics.
@S0022-2488~00!02604-9#

I. INTRODUCTION

The following infinite-by-infinite matrices, also called infinite tridiagonal matrices:

1
a1 b̄1 0 0 ¯ 0 0 ¯

b1 a2 b̄2 0 ¯ 0 0 ¯

0 b2 a3 b̄3 A A

0 0 b3 a4 � A

A A � � �

0 0 ¯ � an b̄n

0 0 ¯ ¯ bn an11 �

A A � �

2 ~1.1!

(biPC,aiPR) arise in the theory of moments,1,2 in noncommutative geometry,3–6 and in math-
ematical physics.7–11 Such matrices clearly define symmetric operatorsS in the Hilbert spaceH
5l 2, and it can be checked that the corresponding deficiency indices~see~1.7! below! must be
~0, 0! or ~1, 1!. These cases correspond to classicallimit-point, respectively,limit-circle, configu-
rations for the corresponding generalized resolvent operators~see Refs. 12, 13!. The limit-point
case yields a self-adjoint closureS̄, and we say thatS is essentially self-adjoint. This means that
it has a spectral resolution which is given by the spectral theorem applied toS̄. In the other case
there are nonzero vectorsx6 in l 2 such that

^x6 ,Sy6 iy& l 250 for all finite sequencesy. ~1.2!

It is also known1 that S̄ is self-adjoint if and only if(nubnu215`, assuming that the numbersbn

are all nonzero.~If some are zero, there is a natural modified condition.!

a!Electronic mail: jorgen@math.uiowa.edu
23370022-2488/2000/41(4)/2337/13/$17.00 © 2000 American Institute of Physics
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The most basic example of such infinite tridiagonal matrices from quantum mechani
cluded the variablesp, q from Heisenberg’spq2qp5 (1/A21) I . To see this, realizel 2 as
L2(R) via the orthonormal basis inL2(R) consisting of the Hermite functionshn( • ). Then
p f(x)5 (1/A21) f 8(x) andq f(x)5x f(x), say for f in the Schwartz spaceS(R), and the corre-
sponding raising and lowering operators are (p1 iq)hn5An11hn11 , and (p2 iq)hn

5Anhn21 , for n50,1,2, . . . . As a result, the respective matrices forp andq are as follows:

1

2 1
0 1

1 0 & 0

& 0 )

) 0 �

� � �

� 0 An

0 An 0 �

� �

2
and

1

2A21 1
0 21

1 0 2& 0

& 0 2)

) 0 �

� � �

� 0 2An

0 An 0 �

� �

2 .

One reason for the more general formulation~1.5! below, which is based on an increasin
resolution of orthogonal projections, as opposed to an orthonormal basis, is that techniques
are effective in the simplest case of tridiagonal matrices carry over to the case when
symmetric operatorS is formed by taking noncommuting functions of thep, q variables. Some
such functionsS are known to be essentially self-adjoint, and others not; for example, e
quadratic expressionS2 in p, q which is symmetric is essentially self-adjoint, whileS35pqp is
not. Also S45p22q4 is not essentially self-adjoint, butp21q4 is. These questions are als
appropriate when we have instead an infinite number of degrees of freedom, i.e., infinite sy
$pi ,qj%; see, e.g., Refs. 6 and 14.

In yet other applications, an orthonormal basis may not be readily available, while a reso
of projections$Pn% may be. For example, such a resolution may come from a wavelet cons
tion; in this case, usually such a resolution of projections is given at the outset, while the w
basis is technically much more complicated.

This classical setup from~1.1! serves as motivation for the results in the present paper.
now formulate a related geometric Hilbert space problem which turns out to generalize th
above, and which, as noted in Refs. 9–11, 15, and above, has many more applications.

Definition I.1: An operatorS with dense domainD(S) in a Hilbert spaceH is said to be
symmetric~or Hermitian! if

^Sx,y&5^x,Sy& for all x,yPD~S!. ~1.3!
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In terms of the adjoint operatorS* , this means thatS,S* , or equivalently, the domain ofS is
contained in that ofS* , andSx5S* x for xPD(S).

It was proved by von Neumann16 that the closureS̄ is self-adjoint inH if and only if both of
the deficiency spaces

E6~S!5$x6PD~S* !;S* x656 ix6% ~1.4!

are zero. We say that a symmetric operatorS is smoothif there is a sequence of projections

P1<P2<¯ ~1.5!

such thatPjH,D(S), andø j PjH is dense inH. The last density condition may be restated

sup
j

Pj5I , ~1.6!

where I denotes the identity operator inH. As noted by Stone,12 if S has dense domain, suc
projectionsPj may always be constructed: we may even construct some smooth$Pj% which has
eachPj finite-dimensional, and for a given choice, there may be others which have bette
mates on the corresponding off-diagonal terms. It is clear that the setting of smooth sym
operators generalizes the classical matrix problem from~1.1!. But for the more general operator
the deficiency indices,

n6ªdim E6~S! ~1.7!

need not be equal, and they may be more than one on either side, or infinite. For examples
see Ref. 11. Recall that it is known16 that S has self-adjoint extensions inH if and only if n1

5n2 .
If Pj is a sequence of projections associated to a given symmetric operatorS, it is then clear

from the geometric and general formulation that the operators (I 2Pj )SPj may be viewed as
off-diagonal terms, in a sense which naturally generalizes the off-diagonal termsbj from the
matrix ~1.1! above. This is so since

Pj
'
ªI 2Pj ~1.8!

is the projection onto the orthogonal complement ofPjH. In an earlier paper9 we used the
operator normsiPj

'SPj i as a measure for the off-diagonal terms, but as noted in Ref. 9 this
rough measure, and in the general case, the best result of this kind amounts to the asser
boundedness ofiPj

'SPj i ~as j→`) implies essential self-adjointness.
In this paper, we refine this result, by considering the vectorsPj

'SPjx rather than theoperator
normsiPj

'SPj i . For one thing, the corresponding ‘‘local results’’~i.e., depending on vectors! are
more precise, and, secondly, it is difficult in practice to compute operator norms. As not
Sakai’s book,17 the quantityiPj

'SPjxi represents surface energy in statistical mechanics mo

II. A BASIC ESTIMATE

Let S be a symmetric operator with dense domainDªD(S) in a Hilbert spaceH, and let

EªE1~S!5$xPD~S* !;S* x5 ix%. ~2.1!

Lemma II.1: Let P be a smooth projection, and set P'
ªI 2P. Then we have the estimate

iP'SPxiiP'xi>iPxi2 ~2.2!

for all xPE.
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Proof: If xPE is given, thenS* x5 ix. Applying P to both sides, and taking inner product
we get

^Px,S* x&5 i iPxi2. ~2.3!

But ^Px,S* x&5^SPx,x&5^PSPx,x&1^P'SPx,x&5^SPx,Px&1^P'SPx,P'x&, and
^SPx,Px&5^Px,SPx&5^SPx,Px&. Hence,

Im^P'SPx,P'x&5iPxi2. ~2.4!

SinceuIm^P'SPx,P'x&u<u^P'SPx,P'x&u<iP'SPxi iP'xi, the result of the lemma follows. h

Since the projectionP has its range contained inD(S), the operatorSP is bounded even
thoughS is typically unbounded. The norm of the operatorP'SP is a rough measure of the defe
from self-adjointness for the given symmetric operatorS, and we have the following:

Corollary II.2: Let P be a smooth projection, and let xPE (the defect space for a give
symmetric operator S). Then we have the estimate,

iP'SPuE iiP'xi>iPxi . ~2.5!

Proof: The result follows from the lemma, and the observation

iP'SPxi<iP'SPuE iiPxi . ~2.6!

If this is substituted into~2.4!, and the termiPxi is divided out,~2.5! follows. h

Corollary II.3: [Jorgensen (Ref. 10)] Let S be a symmetric operator, and let$Pi% i 51
` be a

sequence of smooth projections such thatsupi Pi5I . Then if

sup
i

iPi
'SPi i,`, ~2.7!

then S is essentially self-adjoint.
Proof: Apply the estimate~2.7! to both of the deficiency spaces,

E65$x6PD~S* !;S* x656 ix6%. ~2.8!

The boundedness of$iPj
'SPj i% j 51

` implies that

lim
j→`

iPj
'SPj iiPj

'x6i50, ~2.9!

since ix6i5 lim j→`iPjx6i , and iPj
'x6i25ix6i22iPjx6i2→0. An application of~2.5! then

yields x650. This applies for any vectorx6 in either of the two deficiency spacesE6 . Hence
both of these spaces must vanish, and it follows thatS is essentially self-adjoint by von Neu
mann’s theorem; see, e.g., Ref. 16. h

The conclusion is that nontrivial defect for the given symmetric operatorS implies unbound-
edness of the sequence of norms from~2.7!.

Corollary II.4: Let S and$Pj% j 51
` be as in Corollary II.3, but assume further that

~ I 2Pj 11!SPj50 for all j 51,2, . . . . ~2.10!

Then, if one of the defect spacesE6 is nonzero, it follows that every positive sequence bj such that
the estimates

iPj
'SPj i<bj ~2.11!

hold will satisfy
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(
j 51

`
1

bj
2 ,`. ~2.12!

Proof: Suppose for simplicity thatxPE1 andxÞ0. Then the added restriction~2.10! placed
on the projections may be incorporated into the argument as follows: From~2.4! we have

Im^Pj
'SPjx,x&5iPjxi2.

But

^Pj
'SPjx,x&5^Pj

'SPjx,~Pj 112Pj !x&

if ~2.10! is assumed. Hence,

iPjxi2<bj iPjxiiPj 11x2Pjxi ,

where the estimates~2.11! are used. Cancelling aiPjxi factor, we get

iPjxi<bj~ iPj 11xi22iPjxi2!1/2.

Equivalently, with the estimates~2.11!, we therefore get

bj
2i~Pj 112Pj !xi2>iPjxi2

and

bj
2iPj 11xi2>~11bj

2!iPjxi2.

Hence,

iPk1 j xi2> )
s5 j

k1k21 S 11
1

bs
2D iPjxi2.

If xÞ0, then there is somej such thatPjxÞ0 and so the product) j <x, j 1k(111/bs
2) converges

ask→`, which implies the finiteness of the sum~2.12!, and the result follows. h

The following result is stronger than the corollary:
Theorem II.5: With the assumptions of Corollary II.4, and assuming further that one of

deficiency spacesE6 is nonzero, we get( j 51
` bj

21,`.
Proof: As in the previous proof, letxPE1\$0%. By virtue of ~2.10! we have

^Pj
'SPjx,x&5^Pj

'SPj~Pj2Pj 21!x,~Pj 112Pj !x&

and therefore

iPjxi2<bj i~Pj2Pj 21!xii~Pj 112Pj !xi .

Pick j such thatPjxÞ0. We will show that the numbers (bk) from ~2.11! yield (bk
21)k. jPl 1.

Summing the previous estimate, we now get the following:

iPjxi2(
k5 j

n

bk
21<S (

k5 j

n

i~Pk2Pk21!xi2 (
k5 j 11

n11

i~Pk2Pk21!xi2D 1/2

5i~Pn2Pj 21!xi i~Pn112Pj !xi<ixi2,

and the result follows. h
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III. LOCAL ESTIMATES

The norm estimates onPj
'SPj in the previous section are rather rough in that they do

yield direct asymptotic properties of the sequencesPj
'SPjx for fixed vectorsx, and we now turn

to this question, beginning with a basic lemma:
Lemma III.1: Let S be a symmetric operator as in Sec. II, and let x be a nonzero vector i

of the deficiency spaces (2.8). Then,

lim
j→`

iPj
'SPjxi5`; ~3.1!

more specifically,iPjxi,ixi for all j , and

iPj
'SPjxi>

iPjxi2

Aixi22iPjxi2
. ~3.2!

Proof: From ~2.4! in Sec. II, we get

iPj
'SPjxiiPj

'xi>iPjxi2. ~3.3!

Since iPj
'xi5Aixi22iPjxi2, the estimate~3.2! follows. Conclusion~3.1! is implied by the

estimate since limj→`iPjxi25ixi2 from the assumption~1.6! on the sequencePj . We always
haveiPjxi<ixi , but this inequality is sharp. For ifiPjxi5ixi , thenPjx5x, and this contradicts
the fact

D~S!ùE65$0%. ~3.4!

To see this, note thatPjxPD(S) sincePj is smooth, andxPE1 by assumption. The conclusion o
the lemma follows. h

We now turn to the more restrictive class of symmetric operatorsS considered in Corollary
II.4: While we have the subspacesDj5PjH contained in the domain ofS for all j , the more
restrictive assumption in Corollary II.4 is thatS mapsDj into the next spaceDj 11 . Note that, if
ø jDj is mapped into itself, we can always arrange, by relabeling the indexing of the subs
that this condition is satisfied relative to the relabeled sequence of subspaces. This means
corresponding projectionsPj will then satisfy the property~2.10! from Corollary II.4. We now
turn to the sequenceiPj

'SPjxi for the case whenS has at least one nontrivial deficiency spac
i.e., when one of the two spacesE6(S) is assumed nonzero. We already showed in Lemma I
that theniPj

'SPjxi→` as j→`, and so we may assume without loss of generality that
numbersiPj

'SPjxi are all nonzero.
The next result specifies a growth rate for this sequence in case of nonzero deficien

apply the result in proving essential self-adjointness of some given symmetric operatorS, with the
scaling property~3.6!, we can then check that the sequenceiPj

'SPjxi grows less rapidly than the
a priori rate ~see~3.8!! andS must then have self-adjoint closure.

Theorem III.2: Let S be a densely defined symmetric operator which has a smooth seq
of projections Pj with

sup
j

Pj5I ~3.5!

and

Pj 11SPj5SPj for all j 51,2, . . . . ~3.6!

Suppose one of the deficiency spaces is nonzero. Let xPE \$0%. Then there is a numbe
jP(0,1), the open unit interval, such that the local sequence,
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cj5cj~x!ªiPj
'SPjxi2 ~3.7!

grows so rapidly as to yield existence of the limit

lim
j→`

Fcj 11
~Fcj

~¯~Fc2
~Fc1

~j!!!¯ !!<1, ~3.8!

where

Fc~s!5s1
1

c
s2, sPR1 . ~3.9!

Moreover, then( j1/cj,`.
Proof: The start of the proof is the same as that of Corollary II.4, but then the next esti

is refined as follows: Suppose for specificity thatxPE1 , and thatixi51. By virtue of the
assumption onS, we have

^Pj
'SPjx,x&5^Pj

'SPjx,~Pj 112Pj !x& ~3.10!

and

Im^Pj
'SPjx,x&5iPjxi2.

As a consequence, we get the estimate

iPjxi2<cj
1/2iPj 11x2Pjxi , ~3.11!

where the sequencecj is defined in~3.7!. Introducingj jªiPjxi2, we note that 0,j j,1, and
lim j→` j j51 (5ixi2), and the limit is monotone. Also note that the functionsFc from ~3.9! are
monotone onR1 . Now the estimate~3.11! takes the form

j j
2<cj~j j 112j j !, ~3.12!

or equivalently

Fcj
~j j !<j j 11 for all j 51,2, . . . . ~3.13!

Starting with the initial estimateFc1
(j1)<j2 , and using monotonicity ofFc2

, we get

Fc2
~Fc1

~j1!!<Fc2
~j2!<j3 ,

and then, by induction,

It also follows from~3.9! that the sequencet j is monotone and strictly increasing. Indeed,t j 11

5t j1 (1/cj 11) t j
2.t j for all j . Sincej j 115iPj 11xi2,1, with limit51, the result follows. The

last conclusion in the theorem will be proved in the next section. h

Remark III.3: It follows from the theorem that if the containmentS̄,S* is strict, then there
are vectorsx in D(S* ) such that the boundary termscn(x)5iPn

'SPnxi2 have growth asymptotics
at least somea priori rate. If further~3.6! is assumed, then this rate may be specified as

(
n

cn~x!21,`. ~3.14!
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But we have the following converse: Suppose, for somexPD(S* ), that ~3.14! holds. Thenx

cannot be in the domain ofS̄, and soS̄ Þ
, S* , or equivalently,S is then not essentially self-adjoin

This is strong enough for proving that the noncommutative polynomialspqp and p22q4 from
Sec. I are not essentially self-adjoint on the spanD of the Hermite polynomials, and thereforea
fortiori also not onS.

To prove the claim, suppose a symmetric operatorS is given to satisfy the conditions in
Theorem III.2. We claim that, ifxPD(S̄), thencn(x)5iPn

'SPnxi2 is bounded. This clearly is
inconsistent with~3.14!, so if ~3.14! holds for somexPD(S* ), thenS̄ is not self-adjoint. We now
prove boundedness ofcn(x) for xPD(S̄): If xPD(S̄), thenSPnx→S̄x, and so it is enough to
prove boundedness ifxPDªønPnH (,D(S)). Let xPPnH, i.e., Pnx5x. Then Pjx5Pj Pnx
5Pnx for all j >n, and, using~3.6!, Pj

'SPjx5Pj
'SPnx5Pj

'Pn11Sx50 if j >n11. Hence
cj (x)50 if j >n11, and limj→` cj (x)50 for all xPD. We leave the remaining approximatio
argument for the reader, i.e., passing to vectorsx in D(S̄).

IV. FUNCTIONAL ITERATION

The condition~3.8! of Theorem III.2 is perhaps not as transparent as the correspon
condition ~2.12! in Corollary II.4. But there is a simple comparison between the two sequen

bj5iPj
'SPj i and cj~x!5iPj

'SPjxi2. ~4.1!

Clearly,

cj~x!<ixi2bj
2 . ~4.2!

So if x is a nonzero vector in one of the two deficiency spacesE6 , then

(
j

1

bj
2 <ixi2(

j

1

cj~x!
. ~4.3!

The condition from Corollary II.4 is~2.12!, and its negation,

(
j

1

bj
2 5`, ~4.4!

implies self-adjointness. We conclude then that ifx is any nonzero vector, then the condition

(
j

1

cj~x!
5` ~4.5!

follows from ~4.4!. We now show that Theorem III.2 is strictly stronger then Corollary II.4.
this end we state a simple lemma on functional iteration which explains the two types of esti
involved.

Lemma IV.1: Let$cj% j 51
` ,R1 be given. Then the following two conditions are equivalen

~1! ( j1/cj,`;
~2! There is ajP(0,1) such that

Fcj
~Fcj 21

~¯~Fc2
~Fc1

~j!!!¯ !!,1 for all j 51,2,. . . . ~4.6!

Proof: (1)⇒(2): Assume~1!. Since ln(111/ci),1/ci , we get ln)i51
j (111/ci),( i 51

j 1/ci ,
the infinite product then converges, and) i 51

` (111/ci),exp((i51
` 1/ci),`. Hence we may pick

jP(0,1) such that
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)
i 51

j S 11
1

ci
D j,)

i 51

` S 11
1

ci
D j,1 for all j . ~4.7!

If we prove that

t jªFcj
~Fcj 21

~¯~Fc1
~j!!¯ !!,)

i 51

j S 11
1

ci
D j, ~4.8!

then the first implication of the lemma follows. But this is an induction argument: Suppose it
up to j 21. Then by~4.7!, we will have t j 215Fcj 21

(Fcj 22
(¯(Fc1

(j))¯)),1, and therefore,

using t j 21
2 ,t j 21 , we get

t j5Fcj
~ t j 21!5t j 211

1

cj
t j 21
2 ,S 11

1

cj
D t j 21,)

i 51

j S 11
1

ci
D j,

where, in the last step, the induction hypothesis was used a second time. This conclud
induction step, and~4.8! is proved. By the choice ofj in ~4.7!, we now get the desired conclusio
~4.6! of the lemma. h

(2)⇒(1): Assume~2!. The first two estimates in~4.6! are

t15j1
1

c1
j2,1,

and

t25j1
1

c1
j21

1

c2
S j1

1

c1
j2D 2

,1.

Completing the second square, we get five positive terms in the sum on the left, and soa fortiori,

1

c1
j21

1

c2
j2,1,

when only two out of the five terms are retained in the sum. But the general term

t j5Fcj
~Fcj 21

~¯~Fc2
~Fc1

~j!!!¯ !!

on the left-hand side in~4.6! includes, when all the squares are completed, the followingj terms:

1

c1
j21

1

c2
j21¯1

1

cj
j2 ~,t j !

among a total of 3•( j 21) positive terms. Since all these terms sum up tot j,1, we get, for the
retained ones, (( i 51

j 1/ci)j
2,t j,1, and therefore( i 51

` 1/ci,`. h

Proposition IV.2: The implication in Corollary II.4 may be derived from that of Theorem II
and Theorem III.2 applies to cases not covered by Corollary II.4.

Proof: SupposexPE(S)\$0%. Normalize such thatixi51. Then, by Theorem III.2, we may
pick j such thatj5iPjxi2P(0,1) will satisfy Fcj 1k

(Fcj 1k21
(¯(Fcj 11

(j))¯)),1 for all k.

Using the lemma, we get( j1/cj,`, and by~4.3!, we must then have( j1/bj
2,`. This shows that

Theorem III.2 is the stronger of the two results. The examples in Ref. 11 further show that, in
the result in Sec. III is strictly stronger than that of Sec. II. h
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V. POSITIVE OPERATORS

We say that a symmetric operatorL with dense domain in a Hilbert spaceH is positive if

^y,Ly&>0, yPD~L !. ~5.1!

For vectorsxPH, then the sequence

dn~x!ª^x,Pn
'LPnx&, nPN, ~5.2!

is a more natural measure for off-diagonal terms, relative to some system$Pn%n51
` of smooth

projections with supn Pn5I ; and we have the following obvious estimate:

dn~x!<cn~x!1/2ixi , ~5.3!

wherecn(x)5cn(L,x)ªiPn
'LPnxi2. As a result, we have the following estimate for the sum

(
n

cn~x!21/2<ixi(
n

dn~x!21 ~5.4!

for all nonzero vectorsx in H. Hence, if a given symmetric operatorL is also known to be
positive, then we get the following improvement on Theorem III.2.

Theorem V.1: Let L be a positive operator, and suppose$Pn%n51
` are smooth projections

satisfying

sup
n

Pn5I , ~5.5!

and suppose further, for some kPN, that

Pn1kLPn5LPn for all n. ~5.6!

If xPE6(L)\$0%, then(ncn(x)21/2,`.
Proof: The result in fact is a consequence of the following more general one, combined

~5.4!. h

Theorem V.2: Let L be a positive operator, and let$Pn%n51
` be smooth projections satisfyin

(5.5)–(5.6). Then, if xPD(L* )\$0% satisfiesL* x52x, we get the summability,

(
n

dn~x!21,`. ~5.7!

Proof: This result is implicit in the proof of Lemma 1 in Ref. 18. We will also need t
general fact16 that positive operatorsL with dense domain are essentially self-adjoint if and o
if $xPD(L* );L* x52x%5$0%. h

Let $Si% i 51
k be a finite family of symmetric operators in a Hilbert spaceH which are defined

on a common dense invariant domainD in H. ThenLª( i 51
k Si

2 is positive and defined onD.
Nelson19 and Poulsen20 studied the question of deciding when the operatorsS̄i are self-adjoint
with commuting spectral resolutions. A necessary condition for this is the commutativity

SiSjy5SjSiy for all i , j <k, and all yPD. ~5.8!

If such commuting spectral resolutions exist, then there is, by Refs. 16, 13, a spectral m
E( • ) on Rk such that

Six5E
Rk

l i dE~l!x ~5.9!
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and

ixi25E
Rk

idE~l!xi2, ~5.10!

where we use the standard notationRk{l5(l1 , . . . ,lk).
Nelson’s celebrated theorem~see also Ref. 20! states that a joint spectral resolution~5.9!

exists if theSi ’s satisfy ~5.8!, and if L5( iSi
2 is essentially self-adjoint onD.

Our off-diagonal terms from Theorem III.2 are especially useful in the multivariable cas
is illustrated in the following theorem.

Theorem V.3: Let $Si% i 51
k be given symmetric operators satisfying (5.8). Let$Pn%n51

` be
smooth projections such that PnH,D, supn Pn5I , and

Pn11Si Pn5Si Pn for all 1< i<k, and all nPN, ~5.11!

i.e., each Si satisfying the conditions in Theorem III.2. Suppose, for all xPH, that we have the
following asymptotics:

ci~n,x!5iPn
'Si Pnxi2<O~n!. ~5.12!

Then the closed operators Sī are self-adjoint (the Si ’s are essentially self-adjoint onD, and they
have joint spectral resolution in the sense of~5.9!.

Proof: For Nelson’s operatorL5( i 51
k Si

2 , we have off-diagonal defect terms as follows:

d~L,n,x!5^Pn
'LPnx,x&

5^L~Pn2Pn22!x,~Pn122Pn!x&

5(
i

^Si~Pn2Pn22!x,Si~Pn122Pn!x&

5(
i

^Pn21
' Si Pnx,Pn11

' Si Pn12x&

5(
i

^Pn11
' Si Pnx,Pn11

' Si Pn12x&

5(
i

^Pn11
' Pn

'Si Pnx,Pn11
' Si Pn11x&

<(
i

iPn
'Si PnxiiPn11

' Si Pn11xi

<S (
i 51

k

ci~n,x!(
j 51

k

cj~n11,x!D 1/2

<O~n!

by virtue of the assumption~5.12! made for each of the operatorsSi . Each Si is essentially
self-adjoint onD by Theorem III.2; buta priori the corresponding spectral resolutionsEi(•) may
not commute~see, e.g., Refs. 19, 21, or 22, 23!. However, sinced(L,n,x)<O(n) for all xPH,
we conclude from Theorem V.2 above thatL5( i 51

k Si
2 is then essentially self-adjoint onD.

Hence, Nelson’s theorem19 implies that the individual spectral resolutionsEi(•) onR are mutually
commuting. So, if we define E on Rk as a product measure,dE(l)
5E1(dl1)E2(dl2)¯Ek(dlk), then it follows from standard spectral theory~see, e.g., Ref. 16!
that E(•) ~on Rk) will satisfy ~5.9!–~5.10!. h
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Remark V.4:The multivariable case in the present section is especially useful in recent
on multivariable spectral theory by Vasilescuet al.21,24 There, in applications to multivariable
moment problems, the issue of commutativity of symmetric operators in the weak sense,
the strong sense, is related to comparison of joint distributions vs marginal distributions.

Other applications to mathematical physics are sketched in Refs. 23 and 9–11, 18,
particular, our assumptions are especially useful in the study of noncommutative polyno
applied to quantum fields like momentum and position bosonic variables, as they are given
tionally in terms of raising and lowering operators.

A simple application of Theorem V.2 then yields the following concrete corollary: Let

~pih!~x!5
1

A21

]

]xi
~x!,

and

~qih!~x!5xjh~x1 , . . . ,xk!

for hPS(Rk),L2(Rk). Let L be a noncommutative polynomial in the variablespi , qj for 1
< i , j <k of degree at most four, such that^h,Lh&L2(Rk)>0 for all hPS(Rk). Then it follows that
L is essentially self-adjoint onS(Rk),L2(Rk), and the spectrum ofL̄ is positive.
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Classical r-matrices for the osp „2Õ2… Lie superalgebra
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The co-Lie structures compatible with the osp~2/2! Lie superalgebra structure are
investigated and found to be all of the coboundary type. The corresponding classi-
cal r-matrices are classified into several disjoint families. The osp(1/2)% u(1) Lie
superbialgebras are also classified. ©2000 American Institute of Physics.
@S0022-2488~00!02704-3#

I. INTRODUCTION

The need for classification of Lie bialgebras1 comes from their close relation with
q-deformations of universal enveloping algebras in the Drinfeld sense. To each such defor
there corresponds a Lie bialgebra which may be recovered from the first order of the deform
of the coproduct.

It has also been shown2 that each Lie bialgebra admits quantization. So the classificatio
Lie bialgebras can be seen as the first step in classification of quantum algebras.

Along these lines several efforts~see, e.g., Refs. 3–6 to list only a few! have been undertake
in order to classify those Hopf algebras which can be of importance in physics.

The Osp~2/2! supergroup is a subgroup of two-dimensionalN52 superconformal symmetry
which plays an important role in string theory. In Ref. 7 the correlation functions ofN52
superconformal field theory were found by using the Osp~2/2! symmetry group. Lattice model
based on Uq(osp(2/2)) symmetry were constructed in Ref. 8, where also new solutions t
graded Yang–Baxter equation were found.

A few examples of quantum deformations of osp~2/2! ~Refs. 9–12! were given so far and it
became evident that their classification would be of much value.

In this paper we perform a complete classification of Lie superbialgebras osp~2/2! based on
the brut-force computer approach combined with careful identification of equivalent struc
We also classify of the u~1!%osp(1/2) Lie superbialgebras. u~1!%osp(1/2) is the simplest centra
extension of the osp~1/2! subalgebra and is similar to osp~2/2! in the fact that it contains gl~2! and
osp~1/2! as subalgebras. In both cases all the obtained structures are coboundary, allowin
brief exposition of the results in the form of list of classicalr-matrices.

The paper is organized as follows: In Sec. II we recall the basic definitions and outlin
strategy. In Sec. III we identify the group of automorphisms of osp~2/2! and derive its action on
classicalr-matrices. In Sec. IV we show how we used this four-parameter symmetry to o
families of nonequivalent r-matrices parameterized by at most two complex numbers. In Se
we summarize our results and discuss relevant papers of other authors. In Sec. VI we g
results of classification of osp~1/2!%u(1) Lie superbialgebras obtained by a similar approach

II. LIE SUPERBIALGEBRA osp „2Õ2…

The osp~2/2! Lie superalgebraG5G0% G1 is spanned by the generators (g1 ,...,g8)
5(H,X1 ,X2 ,B,V1 ,V2 ,W1 ,W2), whereH, X6 , B span the subspaceG0 of grade 0, andV6 ,
W6 span the subspaceG1 of grade 1. We refer to the elements ofG0 and G1 as bosons and
fermions, respectively. The generators fulfill the following relations:

@H,X6#56X6 , @X1 ,X2#522H,

@H,B#50, @X6 ,B#50,
23500022-2488/2000/41(4)/2350/10/$17.00 © 2000 American Institute of Physics
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@H,V6#56 1
2V6 , @H,W6#56 1

2W6 ,

@B,V6#5 1
2V6 , @B,W6#52 1

2W6 ,

@X6 ,V6#50, @X6 ,W6#50,
~1!

@X6 ,V7#57V6 , @X6 ,W7#57W6 ,

$V6 ,V6%5$V6 ,V7%5$W6 ,W6%5$W6 ,W7%50,

$V1 ,W2%5H2B, $W1 ,V2%5H1B,

$V6 ,W6%5X6 .

From the last three relations it is evident that the superalgebra is generated by its ferm
sectorG1 .

Lie superbialgebra can be defined as two Lie superalgebra structures; one defined on a
vector spaceV and one on its dualV* . These two structures should be compatible with each ot

For the approach taken in the present paper it is most convenient to use the definition
superbialgebra in terms of the structure constants.

Definition 1: Lie superbialgebra13 is a vector space G with two linear mappings:

@ .#:G^ G{gi ^ gj°@gi ,gj #5ci j
kgkPG, ~2!

d:G{gi°d~gi !5 f i
jkgj ^ gkPG^ G. ~3!

[,] is a Lie bracket on G which means that its structure constants ci j
k satisfy the relations,

ci j
k50 if grade~ i !1grade~ j !Ógrade~k! ~mod 2!, ~4!

ci j
k52z~ i , j !cji

k, ~5!

ci j
kckl

mz~ i ,l !1cjl
kcki

mz~ j ,i !1cli
kck j

mz~ l , j !50, ~6!

where

z~ i , j ![~21!grade~gi !•grade~gj !. ~7!

d* defines the Lie bracket on the dual space G* so its structure constants fi
jk fulfill similar

relations,

f k
i j 50 if grade~ i !1grade~ j !Þ grade~k! ~mod 2!, ~8!

f k
i j 52z~ i , j ! f k

j i , ~9!

f i
k j f j

lmz~k,m!1 f i
l j f j

mkz~ l ,k!1 f i
m j f j

klz~m,l !50. ~10!

Moreover, the two mappings need to be compatible

ci j
kf k

lm5 f i
lkcjk

m1ck j
l f i

kmz~m, j !1cjk
l f j

km1 f j
lkcik

mz~ i ,l !. ~11!

If there exists an elementr 5r i j gi ^ gjPG^ G such that

d~gi !5@r ,gi ^ 111^ gi # ~12!

or, in terms of the structure constants,
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f i
jk5r jmcmi

k2cim
j r mk, ~13!

then theG is calledcoboundaryLie superbialgebra. It is easy to see that the graded antisymm
part of r defined by r̂ i j 5(r i j 2z( i , j )r j i )/2 yields the samef i

jk so we will assume thatr
PG∧G,

r i j 52r j i z~ i , j !. ~14!

Similarly, it can be shown that projection ofr on theG0∧G1 subspace ofG∧G cannot influence
f i

jk without violating condition~8!. After subtracting it fromr we obtain evenr-matrix r
PG0∧G0% G1∧G1 , i.e.,

r i j 50 if grade~gi !Þgrade~gj !. ~15!

The commutation relations~1! fix the structure constantsci j
k . Then our task is to find all the

f i
jk that fulfill ~8!, ~9!, ~10!, and ~11!. To this end we use a computer and a symbolic alge

programREDUCE.We use~8! and~9! just to reduce the number of unknowns, then we solve the
of linear Eqs.~11! coming from the cocycle condition. At this point we are able to obtai
16-parameter family of solutions and by solving the relations~13! are able to find the correspond
ing classicalr-matrix.

This leads to the conclusion that all the solutions are coboundary. It is well known1 that the
Lie bialgebras of simple Lie algebras are all of coboundary type. Since the osp~2/2! is a simple Lie
superalgebra the fact that all its bialgebras are coboundary can probably be justified fro
cohomological point of view.

We substitute the results into the quadratic Eq.~10! representing the co-Jacobi identity. Sol
ing them yields 22 solutions, each parametrized by up to 6 complex numbers. Substituting
solutions into the genericr-matrix we obtain 22 families of classicalr-matrices.

III. AUTOMORPHISMS OF THE ALGEBRA

We consider two coalgebra structuresd ~and their correspondingr-matrices! equivalent if one
can be obtained from the other by means of a change of basis which is an automorphism of
superalgebra, i.e., which preserves~a! the parity of the generators, and~b! the structure constant
ci j

k ~i.e., the relations~1!!. Therefore it is crucial for our further considerations to identify t
group of automorphisms of the osp~2/2! Lie superalgebra.

Since the algebra is generated by the fermions, every automorphism is generated by a
transformation within the fermionic sectorG1 which in turn can be identified with a nonsingula
434 matrix AF ,

S Ṽ1

Ṽ2

W̃1

W̃2

D 5AF•S V1

V2

W1

W2

D ~16!

such thatṼ1 ,Ṽ2 ,W̃1W̃2 fulfill relations ~1!.
Statement 1: The matrix AF must be either block diagonal or block antidiagonal, i.e., it is

the form

A15S AVV 0

0 AWW
D or A25S 0 AVW

AWV 0 D . ~17!

Proof: Let us assume the following general expression forṼ1 :

Ṽ15aV11bV21cW11dW2 . ~18!
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Then,

05$Ṽ1 ,Ṽ1%/25$aV11bV21cW11dW2 ,aV11bV21cW11dW2%/2

5acX11~ad1bc!H1~2ad1bc!B1bdX2 . ~19!

The condition 05ac5ad1bc52ad1bc5bd has two solutions~a5b50 or c5d50! which
shows thatṼ1 is either a combination ofV’s or a combination ofW’s. Similar reasoning is valid
for Ṽ2 , W̃1 , andW̃2 .

Now we show that bothṼ1 andṼ2 belong to the same sector~V or W!. Indeed, assumption
to the contrary, i.e., thatṼ15aV11bV2 ,Ṽ25cW11dW2 would imply

05$Ṽ1 ,Ṽ2%5$aV11bV2 ,cW11dW2%5acX11~ad1bc!H1~2ad1bc!B1bdX2 .
~20!

Then 05ac5ad1bc52ad1bc5bd with the only two solutions being~a5b50 or c5d50!

would mean that eitherṼ150 or Ṽ250. This would contradict our assumption thatAF is non-
singular.

Now when we have proven thatṼ1 ,Ṽ2 belong to the same sector we see thatW̃1 andW̃2

must belong to the other one for theAF to be nonsingular. The conclusion is that the matrixAF is
block diagonal or block antidiagonal. h

Comment:Every block antidiagonal matrixA2 can be written in the form,

A25S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D •A1 ,

whereA1 is block diagonal.
Statement 2: The diagonal blocks AVV and AWW of A1 are proportional to each other,

AVV5k•AWW, ~21!

where k5detAVV.
Proof: Assume that

AVV5S a b

c dD , AWW5S x y

z t D , ~22!

or equivalently,

Ṽ15aV11bV2 , W̃15xW11yW2 ,

Ṽ25cV11dV2 , W̃25zW11tW2 . ~23!

Then,

X̃15$Ṽ1 ,W̃1%5axX11~bx1ay!H1~bx2ay!B1byX2 , ~24!

X̃25$Ṽ2 ,W̃2%5czX11~dz1ct!H1~dz2ct!B1dtX2 . ~25!

Inserting~23!–~25! into
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@X̃1 ,Ṽ2#52Ṽ1 , @X̃2 ,Ṽ1#5Ṽ2 , ~26!

we obtain

~ad2bc!~2xV12yV2!52aV12bV2 ,
~27!

~ad2bc!~zV11tV2!5cV11dV2 ,

from which follows

S a b

c dD 5~ad2bc!S x y

z t D . ~28!

h

The remaining relations~1! do not lead to further constraints on the numbersa,b,c,d.Alto-
gether, we have just shown that

Statement 3: The matrix AF has the following general form:

AF5S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D mS a b 0 0

c d 0 0

0 0 a/k b/k

0 0 c/k d/k

D , m50,1, ~29!

where a,b,c,d are arbitrary complex numbers such that

k[detS a b

c dDÞ0. ~30!

The action of the above symmetry onG0 is defined by the matrixAB ,

S H̃

X̃1

X̃2

B̃

D 5AB•S H
X1

X2

B
D , ~31!

where

AB5S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ~21!m

D k21S ac1bc ac bd 0

2ab a2 b2 0

2cd c2 d2 0

0 0 0 k

D . ~32!

The action of the group of automorphisms of osp~2/2! on G5G0% G1 is given by the block
diagonal matrixA5diag(AB ,AF). We can say thatA5A(m,M ) is a function ofmPZ2 and M
[(c d

a b)PGL(2).
Statement 4: The group of automorphisms of the osp (2/2) superalgebra is a sem

product of Z2 and GL(2). Here Z2 is a subgroup of the group of automorphisms of GL
generated by S:M°(1/detM)M.

Proof: We see thatS(S(M ))5M for all MPGL~2!. SoS generates a subgroup of the grou
of automorphisms of GL~2! which is isomorphic toZ2 . We define the action ofZ2 on GL~2! as
follows:
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0xM5M , 1xM5
1

detM
M . ~33!

A straightforward calculation shows that formiPZ2 ,MiPGL~2!,

A~m1 ,M1!A~m2 ,M2!5A~m11m2 ,M1~m1xM2!!.
h

The action of the symmetry A on classical r-matrices is derived as follows:

r 5r i j gi % gj5 r̃ i j g̃i % g̃ j5 r̃ klAk
igi % Al

jgj5 r̃ klAk
iAl

jgi % gj5ATr̃A, ~34!

we see that

r 5ATr̃A. ~35!

Because we require ther-matrices to be even they are also block diagonal (r 5diag(rB ,rF)).
Then ~35! implies

r B5AB
Tr̃ BAB , r F5AF

Tr̃ FAF . ~36!

We give names to the four 232 blocks ofr F in the following way:

r F5S r VV r VW

r WV r WW
D .

Then the second relation~36! implies for A5A(0,M ),

r VV5MTr̃ VVM ,

r VW5MTr̃ VWM /detM , ~37!

r WW5MTr̃ WWM /detM2.

The relations~37! imply thatA(0,M ) preserves ranks ofr VV , r VW , andr WW as well as detrVW and
detrVV•detrWW. This set of invariants will be useful in distinguishing the set of nonequiva
r-matrices.

On the other hand, the action of the symmetryA(1,I ) consists of exchangingr VV with r WW

and r WV with r vw or, in other words, exchangingV with W.

IV. ANALYSIS OF THE SOLUTIONS

We use relations~36! and ~37! together with~29! and ~32! in order to identify classes o
equivalentr-matrices. Furthermore, in most cases we are able to eliminate some parameter
r by using an appropriate automorphismA(m,M ).

The list of computer generated solutions for the classicalr-matrix consists of 22 entries. Man
of them are easily identified as equivalent to some other after applying automorphisms of th
A(1,I ) or A(0,s1). In order to classify the remainingr-matrices we created a procedure
bringing them to some kind of ‘‘canonical’’ form. This procedure can be outlined in the follow
steps:

~1! If r VV has a lower rank thanr WW we apply the symmetryA(1,I ) which makes them inter-
change. Now rankr VV>rankr WW. It also turns out that the rank ofr WW is smaller than 2 after
this step.

~2! If rank r WW51, then due to~37! and Sylwester theorem we can bring it to the formr WW

5diag(1,0). Otherwiser WW50.
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~3! Now we try to simplifyr WV while preserving the form ofr WW. If r WW50 it is preserved by
every MPGL~2!. Otherwiser WW5diag(1,0) and it is preserved only by matricesM of the
form

M5S1 b

0 dD ~38!

which form a subgroup of GL~2!.

There are three possibilities:

~a! Whenr VW is antisymmetric it is invariant with respect to GL~2!. We just proceed to simplify
r VV .

~b! When r VW is symmetric then by a suitable choice ofM we can bring it to the form

S0 z

z 0D or S x 0

0 0D .

~c! In other cases we can obtain

rVW5S0 x

0 0D.
~4! We use the remaining symmetry to simplifyr VV . Here what we can achieve depends on

previous steps and on the rank ofr VV .

~5! We can use

M5Sx 0

0 xD
to scaler VV with respect tor WW.

~6! If the stability group of the obtainedr F is nontrivial we try to make ther B simpler. The main
rule is to get rid ofX2 if possible.

This strategy proved good enough to create a list of nonequivalentr-matrices. In almost all
cases the form of the automorphismA(m,M ) which brought ther-matrix to its ‘‘canonical’’ form
depended on the values of the parameters ofr. Some values of the parameters madeM singular
and these cases needed to be analyzed separately.

One more effect had to be taken into account. It is well known that computer produced r
are the generic ones. For example if we solve the equationxy51 with respect tox we obtain the
generic solutionx51/y which does not make sense wheny50. In this case the equation has n
solutions. If however we start with equationxy5z we obtainx5z/y. This makes no sense eithe
wheny50 but whenz5y50 the initial equation has in fact a continuum of solutions. They
be recovered from the generic one by taking the limitz5ly→0, wherel5const

It is therefore very important to perform the analysis of what happens when some param
of our set of solutions tend to 0. Such singular limits were investigated when needed and ga
to some new solutions.

The details of the equivalence considerations are very lengthy and therefore we decided
include them in the present paper but they can be found in Ref. 14.

V. SUMMARY AND DISCUSSION

Below we give the list of nonequivalentr-matrices for the osp~2/2!. The lower-case latin
lettersx, y denote arbitrary complex numbers, whereasa, b can only take value 0 or 1,

r 15H`X1 , ~39!
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r 25xH`X11B`X1 , ~40!

r 35a~H2B!`X11b~V1`V1!, ~41!

r 45x~X1`X21V1`W22V2`W1!1y~H`B!, ~42!

r 55x~X1`X21V1`W21V2`W1!1y~H`B!, ~43!

r 65x~X1`X21V1`W21 1
2V2`V21 1

2W1`W1!, ~44!

r 7522~H`X1!1 1
2~V11W1!`~V11W1!, ~45!

r 85x~2H`B1X1`X21V1`W22V2`W1!1a 1
2~V1`V1!, ~46!

r 95x~22H`B1X1`X21V1`W22V2`W1!1a 1
2~V1`V1!, ~47!

r 105x~2H`B1X1`X21V1`W21V2`W1!, ~48!

r 115r 101y~V1`V1!1~V1`V2!1 1
2~V2`V2!, ~49!

r 125r 101
1
2~V1`V1!1~V1`V2!, ~50!

r 135r 101
1
2~V1`V1!1 1

2~V2`V2!, ~51!

r 145r 101
1
2~V1`V1!, ~52!

r 155~~xB2H !`X1!1~V1`W1!, ~53!

r 16[2~B1H !`X11~V1`W1!, ~54!

r 175r 161y 1
2~V1`V1!1 1

2~V2`V2!, ~55!

r 185r 161~V1`V2!, ~56!

r 195r 161
1
2~V1`V1!, ~57!

r 205V1`V2 , ~58!

r 215
1
2~V1`V1!. ~59!

Due to the equivalence osp(2/2);sl(1/2) ~see, e.g., Ref. 15! this classification is also valid fo
the sl~1/2! superalgebra.

The r-matrices~39!, ~40!, ~41!, ~45!, ~53!, ~54!, ~55!, ~56!, ~57!, ~58!, ~59! satisfy CYBE. The
remaining ones satisfy CYBE only if the parameterx is equal to 0.

If the result of Etingof16 can be generalized to the case of Lie superbialgebras, thenr-matrices
satisfying CYBE can be easily quantized.

In view of the sequence of inclusions,

sl~2!,
gl~2!

osp~1/2!
,osp~2/2!, ~60!
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it is relevant to look at the classification of Lie superbialgebras for each element in this ch
is obvious that any nonstandardr-matrix ~i.e., satisfying CYBE! of a subalgebra is alsor-matrix
for the whole algebra. We make sure that nonstandardr-matrices of sl~2!, gl~2!, and osp~1/2!
which are known in the literature are also present in our classification.

~a! For sl~2! all the r-matrices satisfying CYBE are equivalent toH`X1 ~39!.
~b! The classification of gl~2! Lie bialgebras was first obtained by Ballesteroset al. in Ref. 6,

where the corresponding Hopf algebras were also described. From their nonsta
r-matrices it is possible to pick up just two nonequivalentr 15H`X1 andr 25H`B which
coincide with~39! and ~40!.

~c! The subalgebra osp~1/2! is generated byH, X1 , X2 , V18 5(V11W1)/2, andV28 5(V2

1W2)/2. The classification of super-Lie bialgebras was obtained in Ref. 17. There wer
nonstandardr-matrices,r 15H`X1 and r 25H`X12V1`V1 . They correspond to~39!
and ~45! from our list.

In the case of osp~2/2! Lie superbialgebras several examples have been investigated so
Deguchi et al.11 constructed the deformation of the universal enveloping alge

Uq(osp(2/2)) and obtained its universalR-matrix. After identification of the generatorsJ6

56X6 ,V65V6 /&,V̄65W6 /&,H5H,T52B we notice that the antisymmetric part of th
first order term~in ln q! of the R-matrix takes the formX1`X21V1`W21V2`W1 which is
a special case of our classicalr-matrix ~43!. We also check that it generates the antisymmetric p
of the first order term of their coproduct.

The universalR-matrix given by Aizawa12 was obtained by a twisting element belonging
the gl~2! subalgebra which had the following form~we use the following identification of genera
tors used in Ref. 12:H52H,Z52B,X656X6 ,v65V6 ,v̄656W6 in order to give the origi-
nal expression in our basis!:

F5expS g

h
s ^ BDexp~2H ^ s!, ~61!

where

s[2 ln~122hX1!.

The universalR-matrix takes the form,

R5expS g

h
B^ s Dexp~2s ^ H !exp~H ^ s!expS 2

g

h
s ^ BD

and in the classical limith→0,g→0 it gives rise to ther-matrix ~40!.
Another two parameter deformation was investigated by Arnaudonet al.18 After the identifi-

cation of the generators (E1
15V2 ,E1

25W1 ,E2
15W2 ,E2

25V1 ,E3
15V2 ,E3

25X1 ,H15H
1B,H25H2B) we were able to check that the super antisymmetric part of the first order ter
their coproduct is generated by the classicalr-matrix ~43!.

VI. CLASSIFICATION OF osp „1Õ2…Šu„1… SUPER LIE BIALGEBRAS

The osp(1/2)% u(1) Lie superalgebra has the same subalgebra structure as osp~2/2!,

sl~2!,
gl~2!

osp~1u2!
,osp~1/2! % u~1!. ~62!
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However, it has only 6 generators so it is relatively easy to classify its Lie superbialgebras
the same technique. The osp~1/2! algebra is spanned by the generatorsH, X1 , X2 , Q1[ 1

2(V1

1W1) and Q2[ 1
2(V21W2), whose commutation relations follow from~1!. Supplementing

them with a central generatorZ gives osp(1/2)% u(1).
All the Lie superbialgebras osp(1/2)% u(1) are coboundaries and their correspond

r-matrices are equivalent to one of the following:

r 15H`X1 , ~63!

r 25Z`X1 , ~64!

r 35H`X11Z`X1 , ~65!

r 45H`X12Q1`Q1 , ~66!

r 55H`X12Q1`Q11Z`X1 , ~67!

r 65x~X1`X212Q1`Q2!, ~68!

r 75x~X1`X212Q1`Q2!1H`Z. ~69!

r-matrices~63!–~67! satisfy CYBE, whereas~68! and ~69! do not if xÞ0.

ACKNOWLEDGMENTS

The work on this paper was supported by the KBN Grant No. 2PO3B13012. The a
would like to thank Dr. J. T. Sobczyk for stimulating discussions.

1V. G. Drinfel’d, ‘‘Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the cla
Yang–Baxter equations,’’ Sov. Math. Dokl.27, 68 ~1983!.

2P. Etingof and D. Kazhdan, ‘‘Quantization of Lie-bialgebras,’’ q-alg/9506005, q-alg/9610030, q-alg/970
math.QA/9801043, math.QA/9808121.

3S. Zakrzewski, ‘‘Poisson Poincare´ groups,’’ hep-th/9412099.
4S. Zakrzewski, Lett. Math. Phys.32, 11 ~1994!.
5L. Frappat, V. Hussin, and G. Mideau, ‘‘Classification of the quantum deformations of the superalgebra gl~1/1!,’’
q-alg/9705024.

6A. Ballesteros, F. J. Herranz, and P. Parashar, ‘‘Multiparametric quantum gl~2!: Lie bialgebras, quantumR-matrices and
nonrelativistic limits,’’ J. Phys. A32, 2369~1999!; math.QA/9806149.

7A. Shafekhani and W. S. Chung, ‘‘N52 superconformal field theory on the basis of osp~2/2!,’’ hep-th/9703222.
8A. Maassarani, ‘‘Uq~osp~2,2!! lattice models,’’ hep-th/9407032.
9M. D. Gould, J. R. Links, and Y-Z. Zhang, ‘‘Twisted quantum affine superalgebra Uq@sl(2/2)(2)#,Uq@osp(2/2)# invariant
R-matrices and a new integrable electronic model,’’ cond-mat/9611014.

10P. Parashar, ‘‘~p,q! deformation of superalgebra U~osp~2/2!!,’’ J. Phys. A17, 3809~1994!.
11T. Deguchi, A. Fujii, and K. Ito, ‘‘Quantum superalgebra Uqosp~2,2!, ’’ Phys. Lett. B238, 242 ~1990!.
12N. Aizawa, ‘‘Drinfeld twist for two-parametric deformation of gl~2! and sl~1/2!,’’ Czech. J. Phys.48, 1273 ~1998!;

math.QA/9807051.
13N. Andruskiewitsch, ‘‘Lie superbialgebras and Poisson–Lie supergroups,’’ Abh. Math. Sem. Univ. Hamburg63, 147

~1993!.
14C. Juszczak, ‘‘Classification of osp~2/2! Lie superbialgebras,’’ math.QA/9906101.
15V. G. Kac, ‘‘Lie superalgebras,’’ Adv. Math.26, 8 ~1977!.
16P. Etingof and A. Soloviev, ‘‘Quantization of geometric classicalr-matrices,’’ math.QA/9811001.
17C. Juszczak and J. T. Sobczyk, ‘‘Classification of low dimensional Lie superbialgebras,’’ J. Math. Phys.39, 4982~1998!;

q-alg/9712015.
18A. Arnaudon, C. Chryssomalakos, and L. Frappat, ‘‘Classical and quantum sl~1/2! superalgebras, Casimir operators, a

quantum chain Hamiltonians,’’ J. Math. Phys.36Õ10, 5262~1995!; q-alg/9503021.
                                                                                                                



rious
ory the
fre-
ited

t

s—
rarily
in. It

ording

sting
n; see
king

e of an
sence
mely

inol-

tum

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 4 APRIL 2000

                    
Black holes, bandwidths and Beethoven
Achim Kempfa)
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It is usually believed that a functionf(t) whose Fourier spectrum is bounded can
vary at most as fast as its highest frequency componentvmax. This is, in fact, not
the case, as Aharonov, Berry, and others drastically demonstrated with explicit
counterexamples, so-called superoscillations. It has been claimed that even the
recording of an entire Beethoven symphony can occur as part of a signal with a 1
Hz bandwidth. Bandlimited functions also occur as ultraviolet regularized fields.
Their superoscillations have been suggested, for example, to resolve the trans-
Planckian frequencies problem of black hole radiation. Here, we give an exact
proof for generic superoscillations. Namely, we show that for every fixed band-
width there exist functions that pass through any finite number of arbitrarily pre-
specified points. Further, we show that, in spite of the presence of superoscillations,
the behavior of bandlimited functions can be characterized reliably, namely through
an uncertainty relation: The standard deviationDT of samplesf(tn) taken at the
Nyquist rate obeysDT>1/4vmax. This uncertainty relation generalizes to variable
bandwidths. For ultraviolet regularized fields we identify the bandwidth as the in
general spatially variable finite local density of degrees of freedom. ©2000
American Institute of Physics.@S0022-2488~00!03904-9#

I. INTRODUCTION

Functions that contain only frequencies up to a certain maximum frequency occur in va
contexts from theoretical physics to the applied sciences. For example, in quantum field the
method of ‘‘ultraviolet’’ regularization by energy–momentum cutoff yields fields that are
quency limited. Frequency limited functions also occur, for example, as so-called ‘‘bandlim
signals’’ in communication engineering.

Intuitively, one may expect that any frequency limited function,f(t), can vary at most as fas
as its highest frequency component,vmax. In fact, this is not the case.

Aharonovet al.1 and Berry2 gave explicit examples—which they named superoscillation
which drastically demonstrate that frequency limited functions are able to oscillate for arbit
long finite intervals arbitrarily faster than the highest frequency component that they conta
has even been conjectured, in Ref. 2, that, for example, 5000 s of a 20 KHz bandwidth rec
of a symphony of Beethoven can be part of a 1 Hz bandlimited signal.

Concerning superoscillations in ultraviolet regularized quantum field theories, an intere
possibility arose in the context of the trans-Planckian energies paradox of black hole radiatio
Refs. 3–8: The standard free field formalism seemingly paradoxically predicts that Haw
radiation displays far trans-Planckian frequencies close to the horizon, even in the presenc
ultraviolet cutoff at the Planck scale. In Refs. 9 and 10 it has been pointed out that in the pre
of an ultraviolet cutoff fields could still display the predicted trans-Planckian frequencies, na
as superoscillations.

Before we begin our investigation of superoscillations a few remarks on our use of term
ogy may be in place.

Frequency limited functions and superoscillations not only occur in ultraviolet cutoff quan

a!Electronic mail: kempf@phys.ufl.edu
23600022-2488/2000/41(4)/2360/15/$17.00 © 2000 American Institute of Physics
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field theory and in information theory, but also in a whole variety of other physical cont
Superoscillations are known to occur, for example, with evanescent waves and quantum b
~see Ref. 11!, and, for example, with effects of apparent superluminal propagation in uns
media such as media with inverted level populations; see, e.g., Ref. 12. Here we will mos
concerned with the general properties of superoscillations and we could therefore use
terminology the language of any one of these contexts where superoscillations occur. Our
will be to use both the language of quantum field theory and the language of information th

We make this choice because, on the one hand, our main interest is in the implicatio
superoscillations in ultraviolet regular quantum field theories. On the other hand, we will
find it advantageous to use the concrete and intuitive terminology of information theory. We
for example, often use terms such as ‘‘signal’’ and ‘‘bandwidth’’ where we mean ‘‘field’’ a
‘‘ultraviolet cutoff.’’ For our purposes, the main advantage of the language of information th
will be that this language contains several useful terms that describe properties of band
signals—and that by correspondence also describe properties of ultraviolet cutoff fields
which there does not seem to exist an established corresponding terminology in the langu
quantum field theory. These will be terms such as ‘‘data transmission rate,’’ ‘‘noise,’’ or ‘‘si
reconstruction from samples.’’ These terms will be introduced as needed.

We will address three points concerning the general properties of superoscillations an
implications:

First, we will apply methods recently developed in Ref. 13 to obtain exact results abou
extent to which frequency limited functions can superoscillate. Namely, we will show that am
the functions with frequency cutoffvmax there always exist functions that pass through any fin
number of arbitrarily prespecified points. We will also show that superoscillations cann
prespecified on any continuous interval. In the language of information theory this mean
while a 20 KHz recording of a Beethoven symphony cannot occur precisely as part of a 1 Hz
bandlimited signal, there are indeed always 1 Hz bandlimited signals that coincide wit
Beethoven symphony at arbitrarily many discrete points in time.

The recognition of the existence of these superoscillations sheds light on the unde
reasons for why it has proven notoriously difficult to define the seemingly intuitive conce
time-varying bandwidth: Due to the existence of superoscillations, the variability of a s
around some point in time is not a reliable indicator of the frequency content of the signal
shows that any reliable description of time-varying bandwidths should be based on a cha
ization of the effect of frequency limitation on the ‘‘behavior’’ of functions for which superos
lations do not pose exceptions.

Therefore, second, we will give a reliable characterization of the effect of frequency limit
on the behavior of functions, in terms of an uncertainty relation: If a strictly frequency lim
function,f(t), superoscillating or not, is sampled at the so-called Nyquist rate, then the sta
deviationDT of its samplesf(tn) is bounded from below byDT.1/4vmax. In other words, while
a frequency limit does not pose a limit to how quickly a function can vary, a frequency limit
pose a limit to how much a function’s Nyquist rate samples can be peaked.

Third, we will show that the characterization of frequency limited functions in terms o
uncertainty relation indeed allows a generalization to time-varying bandlimitsvmax(t) for which
superoscillations do not pose consistency problems. We will also discuss the relation of
results to a recently developed generalized Shannon sampling theorem.13

Translated into the language of field theory, our results will show, for example, tha
number of degrees of freedom per unit volume~assuming a Euclidean formulation! is literally
finite for ultraviolet cut off fields and that and how the density of degrees of freedom ma
general, be spatially varying.

II. EXAMPLES OF SUPEROSCILLATIONS

Let us consider functions,f(t), which are frequency limited with a maximum frequen
vmax, i.e., that contain only plane waves up to this frequency. We can write such functions
form
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f~ t !5E
2`

1`

du r~u!eitv(u), ~1!

wherev(u) is a real-valued function that obeys

uv~u!u<vmax, for all uPR, ~2!

and wherer (u) is a complex-valued function.
Berry2 gives the explicit example~among other examples!

v~u!ª
vmax

11u2 ~3!

and

r ~u!ª
1

A2pe
e2 (u2 ic)2/2e, ~4!

wheree andc are positive constants. The claim is that for suitable choices ofe andc the resulting
function f(t) displays superoscillations, i.e., that in some interval it oscillates faster thanvmax.

There is a simple argument for why this should be true. Berry reports this argument to b
to Aharonov:

Namely, for sufficiently smalle the function r (u) should effectively become a Gaussia
approximation to a Diracd distribution that is peaked around the imaginary valueu5 ic. There-
fore, the factorr (u) in Eq. ~1! should effectively project out the value of the integrand au
5 ic. Due to Eq.~3!, this value ofu corresponds to the frequency:

v~ ic !5
vmax

12c2 . ~5!

Clearly, for suitable choices of the parameterc, this frequency can be made arbitrarily larger th
the bandwidthvmax.

Thus, the situation is that on the one hand,f(t) certainly contains only frequencies up tovmax

becausev(u)<vmax for all real values ofu, and the intergration in Eq.~1! is over realu only. On
the other hand, forimaginaryvalues ofu the value ofv(u) can become much larger thanvmax.
Indeed, the behavior ofr (u) indicates that the integral should effectively be peaked around
imaginary valueu5 ic. This suggests that, for choices ofc close enough to 1, in some interval th
function f(t) could display superoscillations with frequencies aroundvso'1/(12c2).vmax.

This intuitive argument for superoscillations has been confirmed, in Ref. 2, both
asymptotic analysis and by numerical calculations. Berry also explains in Ref. 2 that the pri
a function to have this type of a superoscillating period is that the function also possesses a
with exponentially large amplitudes—nevertheless, the whole function is square integrabl
remark that a different method for constructing examples of superoscillations has been fo
Ref. 14.

III. TO WHICH EXTENT ARE FREQUENCY LIMITED FUNCTIONS ABLE TO
SUPEROSCILLATE?

A. Definitions

Let us in the following refer to frequency limited functionsf(t) as ‘‘signals’’ and to the
variablet as ‘‘time.’’

More precisely, we define the class ofsignalsf with bandwidthvmax as the Hilbert space o
square integrable functions on the interval@2vmax,vmax# in frequency space,
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Hvmax
5L2~2vmax,vmax!, ~6!

with the usual scalar product:

~f1 ,f2!5E
2vmax

vmax
dv f̃1~v!* f̃2~v!. ~7!

We then define the setBvmax
of strictly bandlimited signalswith bandwidthvmax as the set of all

functionsf̃(v) on frequency space for which there exists ac(f),vmax such that

f̃~v!50, if uvu.c~f!, ~8!

and whose derivativesdnf̃(v)/dvn are square integrable for allnPN.
Clearly, the strictly bandlimited signals are dense in the Hilbert space of bandlimited si

Hvmax
:

Hvmax
5Bvmax

. ~9!

B. Proposition

We claim that each Hilbert space of bandlimited signalsHvmax
contains signals such that th

Fourier transform off̃(v), i.e., the signalf(t), passes through any finite number of arbitrar
prespecified points.

Explicitly, we can fix a value for the bandwidth,vmax. Then, we chooseN arbitrary times
$t i% i 51

N andN arbitrary amplitudes$ai% i 51
N . The claim is that there always exist signals of ban

width vmax that obey

f~ t i !5ai , for all i 51,2,. . . ,N. ~10!

In field theory language, we are claiming that for any choice of an ultraviolet cutoff frequ
there are fields that obey the cutoff and that at an arbitrary finite number of points in spac
arbitrary prespecified values.

C. Proof

Let us first outline the proof. We will begin by considering the simple symmetric oper
T:f(t)→tf(t) on Bvmax

. Its self-adjoint extensions,T(a), then yield a set of Hilbert base

$tn(a)% of Hvmax
as their eigenbases. The amplitudes of bandlimited signalsf(t) can be written

as scalar products with these eigenvectors:f(t)5(t,f). The proof of the proposition will consis
in showing that any finite set$t i% i 51

N of basis vectors among all eigenvectors of the self-adjo
extensions is linearly independent.

1. The ‘‘time operator’’ T

We define the operatorT on the domainDTªBvmax
as the operator that acts on strict

bandlimited signalsf(t) by multiplication with the time variable:

T: f~ t !→Tf~ t !5tf~ t !. ~11!

The operatorT maps strictly bandlimited functions into strictly bandlimited functions:

T: Bvmax
→Bvmax

. ~12!

This is becauseT acts in the Fourier representation as
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T: f̃~v!→Tf̃~v!52 i
d

dv
f̃~v!, ~13!

and, clearly, iff̃(v) obeys the bandwidth condition, Eq.~8!, so does its derivative]vf̃(v).
The elementsfPDT are strictly bandlimited and they therefore obey, in particular,

f̃~2vmax!505f̃~vmax!. ~14!

Thus, for allfPBvmax
,

E
2vmax

vmax
dv f̃1~v!* ~2 i ]v!f̃2~v!5E

2vmax

vmax
dv„~2 i ]v!f̃1…* f̃2~v!. ~15!

Consequently,

~f,Tf!5~Tf,f!5~f,Tf!* , ;fPBvmax
, ~16!

and, therefore,

~f,Tf!PR, ;fPBvmax
, ~17!

which means thatT is a symmetric operator.
Nevertheless,T is not self-adjoint. Indeed,T possesses no~normalizable nor non-

normalizable! eigenvectors. This is because the only candidates for eigenvectors, namely the
wavese2p i tv do not obey Eqs.~8! and~14!. Thus, the plane waves are not strictly bandlimited a
therefore they are not in the domainDT5Bvmax

of T. On the other hand, while the plane waves a
not strictly bandlimited, they are nevertheless bandlimited, i.e., they are elements of the H
spaceHvmax

. Indeed, the domain ofT can be suitably enlarged to yield a whole family of se
adjoint extensions ofT, each with a discrete subset of the plane waves as an eigenbasis. W
derive these self-adjoint extensions below. For a standard reference on the functional ana
self-adjoint extensions see, e.g., Ref. 15.

2. The self-adjoint extensions T „a… of T , and their eigenbases

There exists aU(1) family of self-adjoint extensionsT(a) of T.
The self-adjoint operatorT(a) is obtained by enlarging the domain ofT by signals,f, that

obey the boundary condition

f̃~2vmax!5eiaf̃~vmax!. ~18!

To be precise: We first close the operatorT. Then, the domainDT* of T* consists of all those
signalsfPH for which also2 i ]vf̃(v)PHvmax

. The signalsfPDT* are not required to obey
any boundary conditions. Thus, all plane waves are eigenvectors ofT* . Note that while some
plane waves are orthogonal, most are not. This is consistent becauseT* is not a symmetric
operator: due to the lack of boundary conditions in its domain,T* also has complex expectatio
values. Any self-adjoint extensionT(a) of T is a restriction ofT* by imposing a boundary
condition of the form of Eq.~18!:

DT(a)5$fPDT* uf̃~2vmax!5eiaf̃~vmax!%. ~19!

For each choice of a phaseeia we obtain an operatorT(a) that is self-adjoint and diagonalizable
Its orthonormal eigenvectors,$tn

(a)%n52`
1` , obeying

T~a!tn~a!5tn~a!tn~a!, ~20!
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form a Hilbert basis forHvmax
. In frequency space, they are the plane waves

t̃n
(a)~v!5

e2p i t n(a)v

A2vmax

, ~21!

which correspond to theT(a) eigenvalues:

tn~a!5
n

2vmax
2

a

4pvmax
, nPZ. ~22!

As mentioned before, each eigenvector of a self-adjoint extension is also an eigenvector ofT* , the
adjoint of T:

T* tn~a!5tn~a!tn~a!, ;n,a. ~23!

The eigenvalues ofT* , i.e., the eigenvalues of all the extensionsT(a), together, cover the rea
line exactly once, i.e., for eachtPR there exists exactly oneeia and onen such thatt5tn(a). We
will therefore occasionally write simplyt for tn(a). In this notation, Eq.~23! reads as

T* t5tt. ~24!

Using the scalar product, Eq.~7!, the signalf(t), i.e., the Fourier transform of the functionf̃(v),
can then be written simply as

f~ t !5~ t,f!. ~25!

Thus, the signal as a time-dependent functionf(t) is the expansion of the abstract signalf in an
overcomplete set of vectors, namely, in all the eigenbases of the family of operatorsT(a).

As an immediate consequence we recover the Shannon sampling theorem.

3. The Shannon sampling theorem

The Shannon sampling theorem states that if the amplitudes of a strictly bandlimited
f(t) are known at discrete points in time with spacing,

tn112tn51/2vmax, ~26!

which is the so-called Nyquist rate, then the signalf(t) can already be calculated for allt.
Namely, let us fix onea. Then, to know the valuesf„tn(a)… of the functionf(t) at the

discrete set of eigenvaluestn(a) @whose spacing, from Eq.~22!, is 1/2vmax#, is to know the
coefficients of the vectorf in the Hilbert basis$tn(a)%. Thus,f is fully determined as a vector in
the Hilbert spaceHvmax

. Therefore, its coefficients can be calculated in any arbitrary Hilbert ba
Thus, in particular, the values off(t)5(t,f) can be calculated for allt:

f~ t !5 (
n52`

`

„t,tn~a!…f„tn~a!…. ~27!

Clearly, Eq.~27! is obtained simply by inserting the resolution of the identity 15(n52`
` tn(a)

^ tn* (a) on the rhs of Eq.~25!. We note that while for each fixeda the set of vectors$tn(a)%
forms an orthonormal Hilbert basis inH, the basis vectors belonging to different self-adjo
extensions are not orthogonal:

„tn~a!,tm~a8!…Þ0, for aÞa8. ~28!
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In the sampling formula, Eq.~27!, we need this scalar product, i.e.,„t,tn(a)…, and it is easily
calculated for all values of the arguments:

~ t,t8!5E
2vmax

vmax
dv

e2p i (t2t8)v

2vmax
5

sin„2p~ t2t8!vmax…

2p~ t2t8!vmax
. ~29!

Note that the sampling kernel (t,t8) is real and continuous, which means that we describe r
continuous~in fact, entire! signalsf(t)* 5f(t), that would not be the case for other choices
the phases of the eigenvectorst.

The Shannon sampling theorem has an interesting translation into the language of field
A scalar field normally possesses at each point in space one degree of freedom, nam
amplitude, which means, of course, that it has an infinite number of degrees of freedom p
volume. The Shannon sampling theorem shows that fields that are cut off in the ultraviolet,
original sense of a frequency cutoff, say at somevmax, are fully determined everywhere in spac
if known only on any discrete lattice whose spacing is smaller or equal to 1/2vmax. This means
that for ultraviolet cut off fields the number of degrees of freedom of per unit volume~assuming
a Euclidean formulation! is literally finite: it is given by the number of sampling points needed
unit volume in order to be able to reconstruct the field everywhere. The field theoretic mean
the information theory term ‘‘Nyquist rate’’ is the spatial density of the degrees of freedom
fields.

4. Superoscillations

We can now prove that for every bandwidthvmax there always exist bandlimited signalsf
PHvmax

, which pass through any finite number of prespecified points.
To this end we chooseN arbitrary distinct timest1 , . . . ,tN andN amplitudesa1 , . . . ,aN . We

must show that for each such choice and for each bandwidthvmax there exist bandlimited signal
fPHvmax

that pass at the timest i through the valuesai :

f~ t i !5~ t i ,f!5ai , ; i 51, . . . ,N. ~30!

We recall that the eigenbases of the self-adjoint extensionsT(a) of T each yield a resolution o
the identity:

15 (
n52`

1`

tn~a!‹tn* ~a!. ~31!

Inserting one of these resolutions of the identity into Eq.~30! we obtain an explicit inhomoge
neous system of linear equations:

(
n52`

1`

„t i ,tn~a!…„tn~a!,f…5ai , ; i 51, . . . ,N. ~32!

Solutions to Eq.~32! exist, i.e., there are bandlimited signals that go through all the spec
points, exactly, if the matrix„t i ,tn(a)… is of full rank,

rankS „t i ,tn~a!…
i 5N,
i 51,

n51`
n52` D5N, ~33!

which is the case exactly if the set of vectors$t i% is linearly independent.
In order to prove that indeed every finite set of distinct eigenvectorst i of T* is linearly

independent, let us now assume the opposite. Namely, let us assume that there does exist
N eigenvectorst i of T* , and complex coefficientsl i that are not all zero, such that
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(
i 51

N

l i t i50. ~34!

Since the sum is a finite sum, we can repeatedly applyT* to Eq. ~34!, to obtain

(
i 51

N

l i t i
nt i50, ;nPN. ~35!

The firstN equations yield

S 1 1 1 ¯ 1

t1 t2 t3 ¯ tN

A

t1
N21 t2

N21 t3
N21

¯ tN
N21

D S l1t1

l2t2

l3t3

A
lNtN

D 50. ~36!

This N3N matrix is a Vandermonde matrix and its determinant is known to take the form

U 1 1 1 ¯ 1

t1 t2 t3 ¯ tN

A

t1
N21 t2

N21 t3
N21 . . . tN

N21

U5 )
1< j ,k<N

~ tk2t j !. ~37!

In particular, the determinant does not vanish, since thet i are, by assumption, distinct, i.e.,tk

Þt j for all kÞ j . Thus, the Vandermonde matrix has an inverse. Multiplying this inverse from
left onto Eq. ~36! we obtain thatl i t i50, ; i 51, . . . , N, i.e., we can conclude thatl i50, ; i
51, . . . , N.

Therefore, any finite set of distinct eigenvectorst of T* is indeed linearly independent, an
consequently Eq.~33! is obeyed.

Thus, for any arbitrarily chosen bandwidthvmax, there are indeed signalsfPHvmax
that pass

through any finite number of arbitrarily prespecified points.

D. Beethoven at 1 Hz?

Let us now address the question whether, or in which sense, a recording of a Bee
symphony could appear as part of a 1 Hzbandlimited signal. In particular, let us ask whether it
possible to take say 5000 s of a 20 KHz recording of a Beethoven symphony and to app
suitable function before and suitable function after the symphony, so that the whole signal ra
from time t52` to t51` is a 1 Hzbandlimited signal.

If the question is posed in this form, the answer is no. We note that this result is n
contradiction to the claim by Berry, in Ref. 2, which was that approximation to arbitrary prec
should be possible. To see why exact matching of the Beethoven recording in a 1 Hzsignal is not
possible, we recall that bandlimited functions are always entire functions. Entire function
Taylor expandable everywhere, and with infinite radius of convergence. Thus, if an entire fu
f(t) is known on even a tiny interval@ t i ,t f # of the time axis, then we can calculate at a po
t0P@ t i ,t f # in that interval all derivativesdn/dtnf(t0). This yields a Taylor series expansion
f(t) around the timet0 with an infinite radius of convergence. Thus, if a bandlimited function
known on any finite interval then it is already determined everywhere.

One consequence is that a bandlimited signal cannot vanish on any finite interval, sin
would mean that it vanishes everywhere. Thus, for example, if the original signal of the Beet
recording is truly 20 KHz bandlimited, then it is an entire function and therefore it does not v
on any finite interval betweent52` andt51`. On the other hand, we are only interested in
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interval of length about 5000 s. Now the question is whether these 5000 s of the 20 KHz
limited recording can occur as a superoscillating period of a signal that is bandlimited, say
Hz. The answer is negative because this 1 Hz bandlimited signal, if existing, would als
entire—but clearly two entire functions that coincide on a finite interval coincide everywher

It is therefore not possible to arbitrarily prespecify the exact values of a 1 Hz bandlimited
signal on any finite interval. We are left with the question in which topologies approximations
converge. It is clear at least that if we wish to prespecify precise values of the signal then th
that may be possible is to arbitrarily prespecify the values of a 1 Hzbandlimited signal at arbitrary
discrete times. This would mean, for example, that one can find 1 Hz bandlimited signal
coincide with the 20 KHz Beethoven recording at arbitrarily many discrete points in time. Th
is indeed possible to prespecify the signals’ values at an arbitrary finite number of discrete
in time is what we proved in the previous section.

E. Superoscillations for data compression?

As is well known, the bandwidth of a communication channel limits its maximal data tr
mission rate. We have just seen, however, that signals with fixed bandwidth can superoscilla
exhibit, for example, arbitrarily fine ripples and arbitrarily sharp spikes. This suggests th
should be possible to encode and transmit an arbitrarily large amount of information in an
trarily short time interval of a 1 Hzbandlimited signal—because there is always a 1 Hzbandlim-
ited signal that passes through any number of arbitrarily prespecified points.

Thus, this raises the question of whether superoscillations are able to circumvent the
width limitations of communication channels—and whether, as Berry suggested, superoscil
may, for example, be used for data compression.

Here, we need to recall that the bandwidth alone does not fix the maximal data transm
rate. It is known that every channel, with any arbitrary bandwidth, can carry an infinite amou
information in any arbitrarily short amount of time—if there is no noise in the channel.

In practice, however, every channel has noise and this prevents one from measuring the
to ideal precision. Essentially, the effect of the noise is that only a finite number of ampl
levels can be resolved. Now if the information is encoded inV different amplitude levels~i.e.,
binary would be two levels,V52), then the maximum baud rateb in bits/second is

b52vmaxlog2 V. ~38!

This follows immediately from the Shannon sampling theorem: Each amplitude measur
yields one out ofV possible outcomes, i.e., each measurement yields ln2 V bits of information.
This yields Eq.~38!, because by the Shannon theorem we need to measure only 2vmax samples per
second to capture all of the signal. We only remark here that for the example of white noi
maximal data transmission rate can be expressed directly in the signal to noise ratioS/N:

bnoise5vmaxlog2S 11
S

ND . ~39!

For the precise definitions and the proof see, e.g., the classic text by Shannon.16

Interesting for us here is that Eqs.~38! and~39! show that indeed even in the presence of no
the data transmission rate can be made arbitrarily large for any fixed bandwidth—though at
The price to be paid is that in order to increase the baud rate to bandwidth ratio the dyna
range of the signal’s amplitude must be increased exponentially as compared to the resolu
the amplitude, or, more precisely, as compared to the noise level.

Let us consider the implications for superoscillations. Superoscillations, in spite of the
culiar behavior, do obey the bandlimit,vmax. Therefore, superoscillations cannot violate the lim
on the baud rate in Eqs.~38! and ~39!. Indeed, conversely, from the validity of the limits on th
baud rate we can deduce properties of superoscillations: If large amounts of information ar
sent over a low bandwidth channel, e.g., by employing superoscillations, this necessita
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exponentially large dynamical range of the superoscillating signal. Indeed, Berry conjecture
superoscillations necessarily occur with exponentially large dynamical ranges.

This is essentially the same as saying that it is difficult to stabilize superoscillations u
perturbations.

We showed that it is not possible to prespecify superoscillations on anycontinuous time
interval. For example, there is no 1 Hz bandlimited function that coincides with a sympho
recording on a continuous interval of, say, 5000 s. On the other hand, we showed that it is p
to prespecify superoscillations at any number ofdiscrete points in time. For example, there do
exist 1 Hz bandlimited functions that coincide with the 20 KHz bandlimited Beethoven reco
at 101000 points in time during the 5000 s of the recording.

Thus, a 1 Hzbandlimited function that coincides with a symphony’s recording at 101000points
on a 5000 s interval, can only be 1 Hz bandlimited because of very fine-tuned cancellations
calculation of its Fourier spectrum—cancellations that depend on small details of the functio
therefore conclude that tiny perturbations of such a 1 Hzbandlimited superoscillating function ar
able to induce very high-frequency components. Thus, superoscillations are in this sense u
and they are therefore likely to be difficult to make practical use of in imperfect communic
channels.

On the other hand, as the reverse side of the coin, important phenomena in signal proc
are instabilities in the reconstruction procedures of signals that are oversampled, i.e., th
sampled at a rate higher than the Nyquist rate. The instabilities in the reconstruction arise b
small imprecisions in the measurement of the then overdetermined samples of an ordinary~i.e., in
general, nonsuperoscillating! signal can lead to the reconstruction of a deviant signal, which
our terminology, possesses superoscillations. This connection was pointed out already by2

quoting Daubechies. For a general reference on oversampling see, e.g., Ref. 17.
In terms of models of fields at the Planck scale, the instabilities of superoscillations su

that in ultraviolet cutoff quantum field theories the interaction of particles whose fields super
late could easily destroy their superoscillations. In concrete cases this effect is likely to depe
the type interactions of the field theory that one considers. Studies in this direction could be
pursuing since these instabilities could have implications, for example, for the viability o
Rosu–Reznik approach to superoscillations in black hole radiation when treated within a f
work of interacting fields.

IV. UNCERTAINTY RELATION FOR NYQUIST RATE SAMPLES

We proved that for any fixed bandwidth there always exist functions that, for exam
possess arbitrarily fine ripples and arbitrarily sharp spikes. The existence of these superosc
shows that bandlimited functions indeed cannot be characterized reliably as varying at most
as their highest Fourier component.

Interestingly, the realization of the existence of these superoscillations also sheds light
underlying reasons for the notorious difficulties in defining the seemingly intuitive notio
time-varying bandwidths:

Assuming, naively, that how fast a given signal varies does indicate its bandwidth, one
try to characterize the time-varying bandwidth of signals by some measure of how fast a
varies around different points in time. Superoscillations show, however, that the rate at
functions oscillate locally in time is an unreliable indicator of the signals’ frequency conten
fundamental problem with the naive approach to time-varying bandwidths is therefore tha
cause of superoscillations, bandlimits do not always manifest themselves in the rate of var
of a signal.

In this section and the next we will show how this problem can be overcome. To this en
show that bandlimits reliably manifest themselves in the behavior of functions through an u
tainty relation: The Nyquist rate samples of bandlimited signals, superoscillating or not, pos
finite minimum standard deviation inversely proportional to the bandwidth. We will find that
characterization of the bandlimit indeed generalizes to the time-varying case.
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A. The minimum standard deviation

Our aim is to find a characterization of the effect of bandlimitation on the behavio
functions that is reliable in the sense that it also holds for superoscillations.

To this end, let us reconsider the Heisenberg uncertainty principle: If we readT as the
momentum operator of a particle in a~one-dimensional! box then, because the position uncertain
is bounded from above by the size of the box, we expect the momentum uncertainty@hereDT(f)#
to be bounded from below.

To be precise, consider a normalized, strictly bandlimited signalfPBvmax
. Then,

T̄~f!ª~f,Tf!, ~40!

is theT expectation value, or the time mean or the ‘‘center of mass’’ of the signalf on the time
axis. A measure of how much the signal is overall peaked around this time is the formal sta
deviation:

DT~f!ªA~f,„T2T̄~f!…2f!. ~41!

We note that bothT̄(f) andDT(f) are not sensitive to local features off(t), such as fine ripples
and sharp spikes. Instead, being the first and second moment ofT, the timeT̄(f) is simply the
signal’s global average position on the time axis andDT(f) is the global spread of the signa
around that position.

Our claim is that strictly bandlimited signals,fPBvmax
, are always globally spread by at lea

a certain minimum amount:

DT~f!.
1

4vmax
, for all fPBvmax

. ~42!

In field theory language, our claim is that there exists a formal finite minimum uncertain
position for fields that are cut off in the ultraviolet.

B. The minimum standard deviation as a property of the Nyquist rate samples

Let us now rewriteT̄(f) andDT(f) as explicit expressions in the signalsf(t) as functions
of time. To this end, we can use any one of the resolutions of the identity
5(n52`

1` tn(a)‹tn* (a) that are induced by the self-adjoint extensionsT(a) of T. Inserting one of
the resolutions of the identity into Eq.~40! we obtain, restricting attention to signalsfPBvmax

that
are real,f(t)* 5f(t):

T̄~f!5 (
n52`

`

f„tn~a!…2tn~a! ~ independently ofa!. ~43!

Thus,T̄(f) is the ‘‘mean’’ of the discrete set of samples of the signal, when sampled on o
the time lattices of Eq.~22!, i.e., T̄(f) is the time around which the discrete samples of the sig
f are centered. Indeed, for each set of samples taken at the Nyquist rate~i.e., for each time lattice
corresponding to some fixeda!, the timeT̄(f) around which the samples are centered is the sa
This is because in order to calculateT̄(f) from Eq. ~41! we can equivalently use any one of th
resolutions of the identity 15(n52`

1` tn(a)‹tn* (a).
Similarly, we obtain an explicit expression for how much the samples are spread arou

valueT̄(f) by inserting a resolution of the identity into the expression for the standard devia
Eq. ~41!:
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DT~f!5A (
n52`

`

f„tn~a!…2„tn~a!2T̄~f!…2. ~44!

Again, also, the standard deviation does not depend on which sampling lattice$tn(a)% has been
chosen. We remark that, clearly, not only the mean and standard deviation, but indeed a
higher moments of a bandlimited signal’s Nyquist rate samples are independent of the cho
the lattice of sampling times. We can therefore refer to the mean, the standard deviation, an
higher moments of a signalf as such, without needing to specify the choice of a sampling lat

On the other hand, let us emphasize that the values ofT̄(f) and DT(f) are not the usua
mean and standard deviation of a continuous curve, as conventionally calculated in ter
integrals rather than sums. Instead, we need to keep in mind that while the strictly bandl
signals are, of course, continuous,T̄(f) andDT(f) are the mean and the standard deviation
their discrete Nyquist rate samples.

Our proposition of the above, i.e., Eq.~42!, if expressed explicitly in terms of the strictl
bandlimited signal’s Nyquist rate samples, is therefore that the standard deviationDT(f) of these
samples is bounded from below by 1/4vmax.

C. Calculation of the maximally peaked signals Õfields

In order to prove the lower bound on the standard deviation expressed in Eq.~42!, let us now
explicitly solve the variational problem of finding signalsf that minimizeDT(f). To this end, we
minimize (f,T2f) while enforcing the constraints (f,Tf)5t and (f,f)51.

We work in frequency space, whereT acts on the strictly bandlimited signals as the symme
operatorT52 id/dv.

Introducing Lagrange multipliersk1 ,k2 , the functional to be minimized reads as

S@f#ªE
2vmax

vmax
dv$2~]vf̃* !~]vf̃!1k1~f̃* f̃2c1!1k2~2 i f̃* ]vf̃2c2!%. ~45!

SettingdS@f#/df50 yields the Euler–Lagrange equation:

]v
2 f̃1k1f̃2 i ]vf̃50. ~46!

Imposing the boundary condition, Eq.~14!, which is obeyed by all strictly bandlimited signals, w
obtain exactly one~up to phase! normalized solutionF T̄ for each value of the meanT̄:

F̃ T̄~v!5
1

A2pvmax

cosS pv

2vmax
De2p i T̄v. ~47!

The standard deviations,DT(F T̄), of these solutions are straightforward to calculate in Fou
space, to obtain

DT~f t!5
1

4vmax
, for all t. ~48!

Since the signalsF̃ T̄(v) that minimizeDT are not themselves strictly bandlimited—they do n
obey Eq.~8!—we can conclude that all strictly bandlimited signals, or ultraviolet cutoff fie
obey the strict bound given in Eq.~42!.
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V. GENERALIZATION TO TIME-VARYING BANDWIDTHS AND SPATIALLY VARYING
ULTRAVIOLET CUTOFFS

A. Superoscillations and the concept of time-varying bandwidth

Intuitively, it is clear that the bandwidths of signals can vary with time. One might there
expect to be able to define the time-varying bandwidth of signals, for example, in terms o
highest-frequency components that signals contain in intervals centered around different
This approach encounters difficulties, however, due to the existence of superoscillations:

We recall that a signalf(t) obeys aconstantbandlimit vmax if its Fourier transform,

f̃~v!5~2p!21/2E
2`

1`

dt f~ t !exp~2p ivt !, ~49!

has support only in the interval@2vmax,vmax#. The integration in Eq.~49! ranges over the entire
time axis, i.e., the bandlimit is aglobal property of the signal.

If it were true that bandlimited signals could nowhere vary faster than their highest frequ
component, then this would mean that the bandwidth is also alocal property of the signal.
Namely, one might then expect that if we consider the signal on some finite interval,@ t i ,t f #, and
if we calculate its Fourier expansion on that interval then we will find that its Fourier coeffic
are nonzero only for frequencies smaller or equal thanvmax. If so, we could indeed define
time-varying bandwidths as time-varying upper limits on the local frequency content, in inte
around different times.

The existence of superoscillations shows, however, that there are always signals of a
bandwidthvmax that superoscillate in any given interval@ t i ,t f #, i.e., for which windowed Fourier
transforms yield arbitrarily high-frequency components.

In practice, of course, strongly superoscillating signals rarely occur because they are ve
tuned, and indeed windowed Fourier transforms and, in particular, the more sophisticated
and Wigner transforms, as well as wavelet decompositions, are generally very useful.18–20

Nevertheless, the existence of superoscillations shows that in order to avoid counterin
cases, time-varying bandwidths should be measured in ways that are reliable in the sen
superoscillations do not pose exceptions:

B. The time-varying bandwidth as a time-varying limit to how much the Nyquist
samples can be peaked

We saw that, due to superoscillations, a finite bandwidth does not impose a reliable li
how fast signals can vary in time. However, we also saw that a finite bandwidth does imp
reliable limit DTmin to how much the Nyquist rate signals can be peaked around any timet.

This latter characterization of the effect of bandlimitation indeed generalizes to time-va
bandwidths. Namely, the limit to how much the signals’ Nyquist rate samples can be peaked
in general, depend on the timet around which they are peaked.

We found that if a strictly bandlimited signalf(t)PBvmax
is centered around a timet

5T̄(f), then its standard deviation around the timet is always bounded from below by th
uncertainty relationDT(f).1/4vmax. This suggests that signals obeying a time-varying ba
limit could be characterized as obeying a time-dependent uncertainty relation:

DT~f!.DTmin„T̄~f!…, ~50!

where the minimum standard deviationDTmin„T̄(f)… that the signal’s Nyquist samples obe
depends on the timeT̄(f) around which the signal is centered.

To this end, let us recall the functional analytic structure of the Hilbert space of bandlim
signals that we discussed in Sec. III C: The operatorT is a simple symmetric operator wit
deficiency indices~1,1!, whose self-adjoint extensions have purely discrete andequidistantspec-
tra.
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Indeed, the theory of simple symmetric operators with deficiency indices~1,1!, whose self-
adjoint extensions have discretebut not necessarily equidistantspectra, has been shown to yield
generalized Shannon sampling theorem in Ref. 13, and it is indeed exactly the theory of
varying bandwidths in the sense that we just indicated: The nonequidistant spectra yie
time-varying Nyquist rates, which, in turn, yield the time-varying minimum standard devia
DTmin(t), and vice versa. In terms of field theory, the time-varying bandwidth clearly mean
spatially varying ultraviolet cutoff and a correspondingly spatially varying density of degree
freedom. More details and implications are worked out in Ref. 21.

VI. OUTLOOK

We formulated most of our investigation in the language of communication theory, bu
results apply of course wherever functions with a bounded Fourier spectrum occur, for exam
the case of field theories with an ultraviolet cutoff.

Let us mention in this context that, interestingly, frequency-limited fields need not be as
ated with a crude momentum cutoff. For example, effective Heisenberg uncertainty relation
contain correction terms of the form

DX DP>
\

2
„11k~DP!21¯ … ~51!

have appeared in various studies in the context of quantum gravity and string theory; se
Refs. 22–25. As is easy to verify, for a suitable small positive constantk, Eq. ~51! yields a lower
bound,

DXmin5\Ak, ~52!

at a Planck or at a string scale. In turn, as we saw, a minimum standard deviation imp
corresponding frequency cutoff. Quantum mechanical and quantum field theoretical mode
display such uncertainty relations have been investigated in detail. For example, the ultra
regularity of loop graphs in such field theories has been shown; see Refs. 26–28.

We already mentioned the approach of Rosu and Reznik to resolving the trans-Pla
frequencies paradox of black hole radiation through superoscillations. In work by Broutet al.,5 it
has been shown that the type of short-distance cutoff described by Eq.~51! could resolve the
trans-Planckian energies paradox of black hole radiation—without invoking superoscilla
Since, as we now see, both the approaches of Broutet al.,5 and of Rosu and Reznik,9,10 assume, in
fact, the same short-distance structure it should be very interesting to investigate their relatio
in particular, since our results showed that while generic superoscillations of arbitrarily
frequencies do exist, they could be too unstable under perturbations by interactions. In this c
see also Ref. 29.

To put our results into a wider context, let us note that it is not necessarily surprising
various different studies in quantum gravity and in string theory have led to this same
distance structure, which is also the same type of minimum uncertainty structure that app
communication engineering:

The reason is that, as has been pointed out in Ref. 30, in any theory, any real deg
freedom that is described by an operator that islinear can only display very few types of shor
distance structures. The basic possibilities are continua, lattices, and two basic types of u
short distance structures, which have been named ‘‘fuzzy-A’’ and ‘‘fuzzy-B.’’ All others
mixtures of these. Technically, the unsharp real degrees of freedom are those described by
symmetric operators with nonzero~and, for the two types fuzzy-A and fuzzy-B, a pair of eith
equal or unequal! deficiency indices. The ‘‘time’’ degree of freedom of electronic signals is r
the corresponding time operatorT therefore had to fall into this classification, and among the f
possibilities it happened to be of the type fuzzy-A, which is also the type that arises from
uncertainty relation, Eq.~51!.
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We can therefore view our present results on superoscillations as clarifying aspects of
these very general classes of short-distance structures of real degrees of freedom.

ACKNOWLEDGMENTS

The author is very grateful to Haret Rosu for bringing the issue of superoscillations t
attention, and the author is happy to thank John Klauder and Pierre Sikivie for their very va
criticisms.

1Y. Aharonov, J. Anandan, S. Popescu, and L. Vaidman, Phys. Rev. Lett.64, 2965~1990!.
2M. V. Berry, in Proceedings of the International Conference on Fundamental Aspects of Quantum Theory, Columbia,
SC, 10–12 December 1992, edited by J. S. Anandan and J. L. Safko~World Scientific, Singapore, 1995!.

3G. ’t Hooft, Nucl. Phys. B256, 727 ~1985!.
4T. Jacobsen, Phys. Rev. D44, 1731~1991!.
5R. Brout, C. Gabriel, M. Lubo, and P. Spindel, Phys. Rev. D59, 044005~1999!.
6R. Brout, S. Massar, R. Parentani, and P. Spindel, Phys. Rev. D52, 4559~1995!.
7W. G. Unruh, Phys. Rev. Lett.21, 1351~1981!.
8W. G. Unruh, Phys. Rev. D44, 1731~1991!.
9H. Rosu, Nuovo Cimento Soc. Ital. Fis., B112, 131 ~1997!.

10B. Reznik, Phys. Rev. D55, 2152~1997!.
11M. V. Berry, J. Phys. A27, L391 ~1994!.
12Y. Aharonov, B. Reznik, and A. Stern, Phys. Rev. Lett.81, 2190~1998!.
13A. Kempf, preprint UFIFT-HEP-99-04, hep-th/9905114.
14W. Qiao, J. Phys. A29, 2257~1996!.
15N. I. Akhiezer and I. M. Glazman,Theory of Linear Operators in Hilbert Space~Dover, New York, 1993!.
16C. E. Shannon,The Mathematical Theory of Information~republished by Univ. of Illinois Press, Urbana and Chicag

1998!.
17R. J. Marks,Introduction to Shannon Sampling and Interpolation Theory~Springer-Verlag, Heidelberg, 1991!.
18L. Cohen,Time–Frequency Analysis~Englewood Cliffs, New Jersey, 1995!.
19I. Daubechies, IEEE Trans. Inf. Theory36, 961 ~1990!.
20J. R. Klauder, Proc. SPIE3723, 44 ~1999!.
21A. Kempf, preprint UFIFT-HEP-99-10.
22L. J. Garay, Int. J. Mod. Phys. A10, 145 ~1995!.
23E. Witten, Phys. Today49, 24 ~1996!.
24R. J. Adler and D. I. Santiago, gr-qc/9904026.
25S. de Haro, J. High Energy Phys.9810, 23 ~1998!.
26A. Kempf, J. Math. Phys.35, 4483~1994!.
27A. Kempf, J. Math. Phys.38, 1347~1997!.
28A. Kempf, G. Mangano, and R. B. Mann, Phys. Rev. D52, 1108~1995!.
29M. Lubo, preprint UMH-MG-9904, hep-th/9911191.
30A. Kempf, UFIFT-HEP-98-30, hep-th/9810215, to appear inProceedings of the ‘‘36th Course: From the Planck Leng

to the Hubble Radius,’’ Erice, Italy, 29 August–7 September 1998.
                                                                                                                



the
ts

he
d.
-

cuts

e

y
nomial

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 4 APRIL 2000

                    
Generalized binomial distributions
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The definition, properties, and calculational advantages of the binomial transform
representation of a class of finitely enumerated discrete probability distributions
that generalize the standard binomial distribution are investigated. Discrete distri-
butions of this type appear in various models of hadron multiparticle production
among other physical applications. The compact representations of the generating
functions for factorial moments of these discrete distributions obtained using the
binomial transform are used to relate the behavior of the complex zeros of the
generating functions to different models for the distribution of charged and neutral
particles in multihadron production. ©2000 American Institute of Physics.
@S0022-2488~00!02504-4#

I. INTRODUCTION

The formal methods of statistics and probability theory have proven to be useful in
analysis of high-energy multihadron production.1–3 The generating function for factorial momen
for the distribution ofN particles

G~z,N!5 (
n50

N

znP@n,N#, ~1!

has proven to be of particular utility. HereP@n,N# can be the probability for observingn charged
particles in some region of phase space containingN charged particles, but it can also refer to t
probability for observingn neutral particles amongN total particles either neutral or charge
Often ~1! is applied in the approximation where the sum in~1! is extended to infinity to accom
modate the phenomenological use of denumerably infinite discrete probability distributionsP@n#,
n50, 1, 2, . . . ,such as the Poisson distribution, even though in reality energy conservation
off the sum. Any infinite discrete distributionP@n# cutoff at some finiteN can be converted into
a distributionP@n,N# via a normalizing multiplicative factor. Equation~1! thus suffices in all
cases of interest in the physical context of hadronic multiparticle production.

It was pointed out in Ref. 4 that any distributionP@n,N# can be expressed in terms of th
binomial distribution

Pbin@n,N; f #5S N

n D f n~12 f !N2n, ~2!

which corresponds to a probability ofn ‘‘successes’’ inN trials, with 0<n<N, and with a
probability f of an individual success, with 0< f <1. In Ref. 4 it was argued that any finitel
enumerated probability distribution could be expressed as what was termed there a bi
transform, namely

P@n,N#5E
0

1

d f P~ f !Pbin@n,N; f #, ~3!

a!Electronic mail: klk3@po.cwru.edu
23750022-2488/2000/41(4)/2375/8/$17.00 © 2000 American Institute of Physics

                                                                                                                



th

ell-
of the

l

e
is

rating
high-
esults

on

2376 J. Math. Phys., Vol. 41, No. 4, April 2000 Kenneth L. Kowalski

                    
where the spectral functionP( f )>0 is a continuous normalized probability distribution wi
respect tof on the interval 0, f ,1.

The representation~3!, its inversion, and its very useful properties do not appear to be w
known. In this paper we extend the results obtained in Ref. 4 to find a general determination
spectral functionP( f ) from its corresponding discrete distributionP@n,N# as well as from the
representation~3!. We illustrate the calculational utility of~3! for the calculation of both factoria
and simple moments by means of theN-independent moments ofP( f ), which are found by
integration, rather than by often difficult summations overn that are involved in determining th
N-dependent moments ofP@n,N#. Moreover, we show that the converse construction also
realized in that any proper spectral functionP( f ) defines a probability distributionP@n,N# by
means of~3!. Several explicit examples are considered including the calculation of the gene
function zeros in the previously unexplored context of the charged-neutral distributions in
energy hadron multiproduction thereby extending the range of applicability of the general r
found in Ref. 5.

II. BINOMIAL TRANSFORM

The representation~3! for P@n,N# can be justified in a number of ways. One way is based
the heuristic conversion of the discrete normalization sum

(
n50

N

P@n,N#51, ~4!

into the integral relation

E
0

1

d f P~ f !51, ~5!

by rewriting ~4! as

(
n50

N
Dn

N
$NP@n,N#%51, ~6!

whereDn51. Then we can identifyP( f )>0, which we call the binomial spectral function, as

P~ f ![ lim
N,n→`

$NP@n,N#%n/N 5 f , ~7!

with Dn/N→d f asN→`.
Evidently,d f P( f ) is the probability for the fractionf to lie in the range (f , f 1d f). Thus, the

product

d f P~ f !Pbin@n,N; f #, ~8!

is the probability forn successes inN trials with f in the range (f , f 1d f). The integration of~8!
over all f will then recoverP@n,N# in the form ~3!.

Alternatively, if one were to consider a large sample (N@1) distributed according toP@n,N#,
thend f P( f ), with P( f ) defined by~7!, is clearly the probability for observing a fractionn out of
a total of N chosen in the range@ f , f 1d f# within the large sample. Then we obtain~3! by our
previous argument using~8!.

One can also check the prescription~7! by inverting the representation~3!. This is done using
the Gaussian limit ofPbin@n,N; f 8# implicit in the limit ~7! which yields

lim
N,n→ `

$NPbin@n,N; f 8#%n/N 5 f5d~ f 2 f 8!, ~9!
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along with the binomial spectral function

Pbin~ f , f 0!5d~ f 2 f 0!, ~10!

corresponding toPbin@n,N; f 0#.
Conversely, given any positive semidefinite, continuous normalized probability distrib

P( f ) one can define its corresponding discrete probability distributionP@n,N# by means of~3!.
We infer from~3! that P@n,N#>0 and thatP@n,N# satisfies the normalization condition~4! and
so possesses the requisite properties for a discrete probability distribution.

In the example of a uniform distribution, viz.

Puni@n,N#5
1

N11
, ~11!

we have from~7!

Puni~ f !51. ~12!

That this is consistent with~3! follows from the integral representation of theb function6

B~x,y!5E
0

1

d f fx21~12 f !y21, ~13!

with x5n11 andy5N2n11.
The last example that we consider is the distributionPhs@n,N# found by Horn and Silver7

which has been conjectured to represent anomalous distributions of neutral and charged p
high-energy multihadron production.4,8–10 In Ref. 4 the original form7 of the Horn–Silver distri-
bution was re-expressed as

Phs@n,N#5
1

2 S N

n DBS n1
1

2
,N2n11D . ~14!

Following Ref. 4 and again using the integral representation~13!, but now withx5n1 1
2 and y

5N2n11, we obtain the representation~3! with the binomial spectral function

Pdcc~ f !5
1

2Af
, ~15!

where the subscript dcc refers to a conjectured physical mechanism that may lead to this
bution, namely a disoriented chiral condensate.4,8–10It was shown independently in Ref. 9 that th
limit ~7! using the original form of the distributionPhs@n,N# is ~15!.

We next show how the representation~3! greatly simplifies the calculation of both the fact
rial and the simple moments ofP@n,N#. If we use the representation~3! definition ~1! becomes

G~z,N!5E
0

1

d f P~ f !Gbin~z,N; f !, ~16!

where

Gbin~z,N; f !5@ f ~z21!11#N, ~17!

is the generating function for factorial moments of the binomial distribution~2!. The factorial
moments of the distributionP@n,N# are then, in the notation of Ref. 2, simply
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F̃m[^n~n21!•••~n2m11!&5N~N21!•••~N2m11!^ f m&, ~18!

where the angular brackets on the left-hand side refer to the average with respect toP@n,N# and

^ f m&[E
0

1

d f P~ f ! f m. ~19!

Therefore, calculations of the factorial moments, which straightforwardly generally require
complicated summations for which closed forms for anyN are generally difficult to obtain, are
reduced to the computation of theN-independent integrals~19!. Remarkably, the completeN
dependence is fully explicated in~18!. Similar considerations apply as well to the simple mome
given by the prescription

^nm&5FdmG~ez,N!

dzm G
z51

, ~20!

although the momentŝnm& can also be obtained from the factorial moments~18! by combinato-
rial methods.

The Poisson transform representation of an infinite discrete probability distributionP@n#, n
50, 1, 2, . . . ,namely

P@n#5E
0

`

dmr~m!PPoisson@n,m#, ~21!

has been used to study the deviations from purely statistical multihadron production.1,2,4,11In Eq.
~21!

PPoisson@n,m#[
mn

n!
e2m, ~22!

is the Poisson distribution corresponding to a mean value ofm and the spectral functionr(m)
satisfies

E
0

`

dmr~m!51. ~23!

Since the Poisson and binomial distributions are related in a certain limit, the question na
arises of a possible connection between the representations~3! and ~21!.

We have seen that the Gaussian limit ofPbin(n,N; f ) under the integral sign in~3! is well-
defined, but the Poisson limit, whereN→`, f→0, N f→m yielding PPoisson@n,m#, is not mean-
ingful since in~3! 0, f ,1. However, with a change of integration variable tom5N f , Eq. ~3! can
be rewritten as

P@n,N#5E
0

N

dm
1

N
PS m

ND PbinFn,N;
m

NG , ~24!

which resembles a finite-N form of~21!, provided that theN→` limiting process is meaningful
An arbitrary finite discrete distributionP@n,N# generally does not have a nontrivial limitP@n# as
N→`, so that~24! can reduce to a triviality in this limit. If it can be shown that for a givenP@n#
there is a distributionP@n,N# and a functionF(N) such that

P@n#5 lim
N,n→ `

$F~N!P@n,N#%, ~25!
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with a spectral function

r~m!5 lim
N,n→ `

H F~N!

N
PS m

ND J , ~26!

which satisfies~23!, then theN→` limit of ~21! multiplied by F(N) may be meaningful and
would provide an infinite counterpart to the finite distributionP@n,N#.

The preceding results show that the binomial transform is not a simple generalization
widely used Poisson transform. So the interpretation of~3! is not as straightforward as the nois
suppression2 features of the Poisson transform employed by Bialas and Perschanski.11 By analogy
with their interpretation, the spectral functionP( f ) and the binomial distributionPbin(n,N; f )
would be identified with the ‘‘dynamical’’ and the ‘‘statistical’’ distributions, respectively, as
ciated with P@n,N#. Equation~3! provides meaning for these terms our case of finite disc
distributions.

III. GENERATING FUNCTION ZEROS

Dremin3 has remarked thatG(z,N), which is a polynomial inz with real positive coefficients,
is analogous to the grand partition function of statistical mechanics. Because the structu
polynomial is determined entirely by the distribution of its zeros,12 which we denote byzk , k
51, . . . ,N, the distribution of the conjugate pairs ofzk in the complexz-plane might reflect
important features of multihadron production.3,5,13 The generating functions corresponding to
wide variety of unfolded charged-hadron multiproduction data possess zeros distributed on
lar rings of approximately unit radius centered at the origin in the complexz-plane that is open in
a small sector bisected by the positive real axis.3,5,13 The analysis in Ref. 5 indicates that th
clustering of these generating function zeros near the unit circle reflects the flatness of th
pirical probability distributionPch@n,N# in n as compared to, for example, the Poisson distribut
corresponding to the same mean^n&, but truncated at someN in the generating function.

All of the preceding considerations pertain to any generalized binomial distribution. By
of illustration of this we study the distribution of generating function zeros for three quite diffe
types of binomial transform which have not been analyzed in this respect before.

The generating function for the uniform distribution~11! is

Guni~z,N!5
1

N11

~zN1121!

~z21!
, ~27!

which has zeros

zk5e6~2p in/N11!, n51, . . . ,N, ~28!

that necessarily5 all fall exactly on the unit circle centered at the origin in the complexz-plane. We
note thatz51 is not a zero since in this limitGuni(1,N)51.

The binomial distribution~2! is not flat inn and so we expect substantial deviation from t
geometry of the zeros ofGuni(z,N). From ~17! we find theN zeros ofGbin(z,N; f ) are all at the
single point

zbin5
f 21

f
, ~29!

which lies on the unit circle only whenf 51/2. The so-called generic production of charged a
neutral pions in multihadron production reactions seems to be modeled very well byGbin(z,N; f )
with f 51/3 as the fraction of theN-pion data set that are neutral.10

The generating function~1! for the Horn–Silver distribution~14! is
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Ghs~z,N!5 (
n50

N
1

2 S N

n DB~n1 1
2 ,N2n11!zn. ~30!

Alternatively, using~15!–~17! we obtain an integral representation which yields an expan
aboutz51 rather thanz50

Ghs~z,N!5E
0

1

dz@~z21!z211#N5 (
n50

N S N

n D ~z21!n

2n11
. ~31!

The sum in~31! is identified with a truncated hypergeometric series so that

Ghs~z,N!5F~ 1
2 ,2N; 3

2 ;12z!, ~32!

whereF(a,b;c;z) with arbitrary arguments refers to the hypergeometric function.
The Horn–Silver distribution~14! becomes progressively flat inn asN increases, a property

which if it were reflected in the charged-neutral distribution of a statistically significant samp
multihadron events would signal highly unusual physics, perhaps indicative of a chiral
transition.4,8–10Because of this progressive flatness the zeros ofGhs(z,N) should tend to migrate
to the unit-circle.5 In support of these expectations we have computed the zeros ofGhs(z,N), or,
equivalently, of the hypergeometric function~32!, for three values ofN; the results of these
calculations are presented in Figs. 1–3 which illustrate the expected migration of the zer
wards the unit circle with increasingN.

IV. CONCLUDING REMARKS

We have demonstrated the general validity and calculational utility of the binomial trans
for reclassifying finitely enumerated discrete probability distributions as generalized bino
distributions. The calculational advantages of the representation of this class of discrete pr
ity distributions in terms of a continuous distribution are considerable. In addition to the re
ease that this representation permits in the calculation of statistical moments and factori

FIG. 1. Generating function zeros ofGhs(z,10).
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ments, we have also shown that it leads to alternative integral forms for the generating fun
that are of practical value. Finally, in applying our techniques to the specific case of va
models for the charged-neutral distributions in multihadron production, we find strikingly diffe
behaviors for the geometries of the generating function zeros in the complex plane for g
production models as compared to a type of model proposed in connection with the produc
disoriented chiral condensates.

FIG. 2. Generating function zeros ofGhs(z,20).

FIG. 3. Generating function zeros ofGhs(z,100).
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Conjugation in braided C* -categories and orthogonal
quantum groups

E. C. Lancea) and A. Paolucci
School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
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We consider braidedC* -categories with conjugates and the notion of dimension. If
the braid is a Birman–Wenzl–Murakami symmetry then we characterize the com-
pact orthogonal quantum groups. ©2000 American Institute of Physics.
@S0022-2488~00!02804-8#

I. INTRODUCTION

This paper is motivated by earlier work~Ref. 1! on the compact quantum group SOq(3) and
by studies~Ref. 2! on the operation of conjugation in tensorC* -categories.

The notion of conjugate objects in a strict tensorC* -category is implicit in the definition of
dual object~see Ref. 3!. In Ref. 4 a relation between the index and the square of the dimen
was established. The concept of dimension goes back to Ref. 5 where it was called the sta
dimension and defined using the permutation symmetry on the strict tensorC* -category. This
allowed the existence proof of conjugates for finite-dimensional objects.

In this paper we consider braidedC* -categories admitting a conjugate. We can define a
Ref. 2 a notion of dimension for theseC* -categories having a Birman–Wenzl–Murakami~BWM!
symmetry. In Sec. II we introduce tensorC* -categories and the notion of conjugation and dime
sion for theseC* -categories. Also, the definition of BWM symmetry is given. Section III de
with the characterization of theC* -algebra generated by the braid satisfying the BWM symme
A reconstruction theorem is found which characterizes the compact quantum group SOq(N), thus
providing an extension toN.3 of theq-group studied in Ref. 1. In Sec. IV we give a constructi
of the algebraic crossed product ofOr by Od under the action of the fixed point algebra (Od)G on
theC* -algebraOr . Theorem 3 gives a further characterization of the Hopf* -algebra whose fixed
point algebra (Od)G is known ~Ref. 6!.

II. TENSOR C* -CATEGORIES

Let F be a category whose objects we denote byr, s, t, ..., ~Refs. 4 and 7!. The set of arrows
between a pairr, s of objects will be denoted by~r, s! and the identity ofr by 1r . ThenF will
be called aC* -category if each~r, s! is a complex Banach space where the composition of arr
gives us a bilinear map (S,R)→S+R, with iS+Ri<iSiiRi and there is an antilinear involutiv
contravariant functor* : F→F where if RP(r,s) thenR* P(s,r) with iR* +Ri5iRi2.

A C* -category with a single object is just aC* -algebra with unit. The categoryF is said to
have subobjects if given a~self-adjoint! projectionEP(r,r) there is an isometryVP(s,r) with
V+V* 5E. We say thatF has~finite! direct sums if given objectsr, s of F there are isometries
VP(r,t),WP(s,t) with V+V* 1W+W* 51t .

We introduce further structure on aC* -category, modeled on the behavior of tensor produ
We say thatF is a strict monoidal~or tensor! C* -category if the following holds. To each pairr,
s of objects ofF there is a product object denoted simply byrs andF contains a unit objecti
such thatr i 5 ir5r. Given two arrowsRP(r,s) and R8P(r8,s8) there is an arrowR^ R8
P(rr8,ss8). The mapping (R,R8)→R^ R8 is associative and bilinear and we have 1i ^ R

a!Electronic mail: e.c.lance@leeds.ac.uk
23830022-2488/2000/41(4)/2383/12/$17.00 © 2000 American Institute of Physics
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5R^1i5R and (R^ R8)* 5R* ^ R8* . Also, the interchange law (S+R) ^ (S8+R8)5(S^ S8)+(R
^ R8) holds whenever the left-hand side is defined. ForRP(r,s),R8P(r8,s8), from this inter-
change law,R^ R85(1s ^ R8)+(R^ 1r8)5(R^ 1s8)+(1r ^ R8). Note that ~i, i! is an abelian
C* -algebra. Assume that the categoryF has subobjects and~finite! direct sums.

Let us define the notion of conjugation for finite dimensional objects of an arbitrary s
tensorC* -categoryF. Finite dimensionality means that eachr can be decomposed into a finit
direct sum of irreducible objects. Then we say thatF has conjugates if given an objectr of F there
is an objectr̄ of F andCP( i ,r̄r),C̄P( i ,rr̄) such that

~C̄* ^ 1r!+~1r ^ C!51r , ~C* ^ 1r̄ !+~1r̄ ^ C̄!51r̄ , ~1!

with i denoting the tensor unit inF. If these objects and morphisms exist then they are unique
to isomorphisms. We can observe that a choice of conjugates yields a transpositiont:(r,r8)
→( r̄8,r̄) and the conjugation defines an involution on the set of irreducible objects.

This means that the concept underlying the notion of conjugation is that of adjoint funct
r andr̄ are objects in a tensorC* -category then the functor of tensoring on the left by 1r has the
functor of tensoring on the left by 1r̄ as a right adjoint precisely when we can findC and C̄ as
above. We define a left inversef for an objectr in a strict tensorC* -categoryF to be a set

fs,t :~rs,rt!→~s,t! ~s,tPF!,

of linear mappings which are natural ins andt. That is, givenSP(s,s8),TP(t,t8) we have

fs8,t8~1r ^ T+X+1r ^ S* !5T+fs,t~X!+S* ~XP~rs,rt!!

and

fsp,tp~X^ 1p!5fs,t~X! ^ 1p ~XP~rs,rt!!,

for each objectp of F. We say thatf is positiveif fs,s is positive for eachs, andnormalizedif
f i ,i(1r)51i . Whenf is positive we say thatf is faithful if fs,s is faithful for each objects.

If r has a conjugate we may always construct nonzero left inverses. SupposeC,SP( i ,r̄r) and
define

fs,t~X!5~S* ^ 1t!+~1r̄ ^ X!+~C^ 1s! ~XP~rs,rt!!.

Then it follows thatf is a left inverse, it is positive ifC5S and is normalized ifS* +C51. We can
observe that whenS5C defines a conjugate forr then we get a faithful left inverse~see Ref. 2!.

We now turn to the related notions of dimension and trace. We restrict to the case in
( i ,i )5C, or equivalently thati is irreducible. We have from Ref. 2 Lemma 3.1:

Lemma:Two irreducible objectsr andr̄ are conjugate if and only if there areCP( i ,r̄r) and
C̄P( i ,rr̄) such that (C̄* ^ 1r)+(1r ^ C)Þ0.

Definition: Let f be the left inverse ofr defined by a solutionC,C̄ of the conjugate equations
Then we define thedimension d(f) of f by d(f)5iCiiC̄i .

If we restrict to normalized solutions~those for whichiCi5iC̄i! then we have

d~f!5C* +C5C̄* +C̄5d~f̄ !,

wheref̄ denotes the left inverse ofr̄ defined byC̄.
If CP( i ,r̄r) andC̄P( i ,rr̄) satisfy the conjugate equations, lete,ē be the range projection

of C and C̄,

e5iCi22C+C* , ē5iC̄i22C̄+C̄* .
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These are called the associated Jones projections. They are unique up to a unitary equ
within an equivalence class of solutions, and the unitary can be chosen from the suba
( r̄,r̄) ^ 1r and 1r ^ ( r̄,r̄), respectively,~see Ref. 2!. Since

1r ^ ~C+C* !+~C̄+C̄* ! ^ 1r+1r ^ ~C+C* !51r ^ ~C+C* !,

we have

1r ^ e+ē^ 1r+1r ^ e5iCi22iC̄i221r ^ e,

and similarly

1r̄ ^ ē+e^ 1r̄+1r̄ ^ ē5iCi22iC̄i221r̄ ^ ē.

These are the Jones relations and by looking at the associated representations of the bra
we may conclude as in Ref. 8 that

iCi22iC̄i22PH 4 cos2
p

k
:kPN,k>3J ø@4,̀ !.

Thus for each objectr, there are two sets of Jones projections, those of the forme associated with
faithful right inverses and those of the formē associated with faithful left inverses. For eac
faithful left or right inverse, there is a unique unitary equivalence class of Jones projections
Jones projectione determines a solution of the conjugate equations up to a scalar. The key s
introducing a dimension for the objects ofF rather than their left inverses is to choose a spe
equivalence class of solutions of the conjugate equations. Pick the unique equivalence c
normalized solutions, for irreducible objects.

There is a notion of trace defined via the following scalar product. ForS,TP(r,r8), define
(S,T) l5C* ^ 1r̄ ^ (S* +T)+C. Then

~S,S! l>0, ~2!

~S,X+T! l5~X* +S,T! l , ~3!

whenever the above expressions are well defined. GivenTP(r,r) define tr(T)5(1r ,T) l . The
trace of a projectionE is

tr~E!5~1r ,E! l5~W* ,W* ! l5~W,W! l5tr~1s!,

if E5W+W* , whereWP(s,r) is an isometry. Thus the trace ofE is just the dimension of the
standard left inverse ofs. Defined(r) for an objectr to be the dimension of its standard le
inversef.

Let F be a strict tensorC* -category of finite dimensional Hilbert spaces. Suppose thatF is
generated by a single objectr and the arrows are (r ^ t,r ^ s) linear mappings fromr ^ t to r ^ s

5r ^¯^ r, the tensor product being takens times. We say that~F,u! is a strict braided tenso
C* -category if the following conditions are satisfied:

~i! To each pairr, s of objects ofF there is an operatoru(r,s)P(rs,sr) such that ifC
P(r,s),C8P(r8,s8) then we have

u~s,s8!+C^ C85C8^ C+u~r,r8!;

~ii ! u(r,s) is natural inr ands and

u~r,i !5u~ i ,r!51r , ~4!

u~r,st!51s ^ u~r,t!+u~r,s! ^ 1t , ~5!
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u~rs,t!5u~r,t! ^ 1s+1r ^ u~s,t!. ~6!

The structure is related to the braid group by the fact that there exists a unique braided
functor ur from the braid categoryB to F with ur(1)5r ~see Ref. 9!. The braiding ofB is
determined byu(1,1): takeu(1,1)5g0 , whereg0 is a generator of the braid group of order
Since ur is braided, ur(g0)5u(r,r). We assume further that the strict braided ten
C* -categoryF has a BWM symmetry in the following sense. A BWM symmetry is a line
operatorG on r ^ r satisfying the Yang–Baxter equation

G1G2G15G2G1G2 ,

and the following BWM condition: LetE512(q2q21)21(G2G21). Then

EG5p21E, EGE5pE, EG21E5p21E,

wherep,qPC2$0% ~to be specified later! andG satisfy the cubic equation

~G2q!~G1q21!~G2p21!50.

ThenE is a complex multiple of a projection:

E25~11~p2p21!~q2q21!21!E.

For the quantum SO(N) ~see Ref. 10!, N52m11, the operatorG has the form

G5(
iÞ0

~qei ,i ^ ei ,i1q21ei ,2 i ^ e2 i ,i !1e0,0^ e0,01(
iÞ j

ei , j ^ ej ,i

1~q2q21!S (
i , j

ei ,i ^ ej , j2(
j , i

q~ i 1 j !/2ei , j ^ e2 i ,2 j D . ~7!

Here $ei , j% is the N3N matrix with 1 in the~i,j! position and 0 elsewhere;G acts on a finite-
dimensional Hilbert spaceH with basis indexed by I 5$22m11,22m13,...,23,
21,0,1,3,...,2m21%. The elementE512(q2q21)21(G2G21) has the form

E5(
i , j

q~ i 1 j !/2ei , j ^ e2 i ,2 j .

Then it is easy to see thatE25xE,x5( iq
i .

We shall see that (F,G) is a braided tensorC* -category generated by a single objectr5H
and having conjugater̄ such that there exists aCP( i ,r̄r) satisfying the conjugate equations.

III. q-DIMENSION AND BWM SYMMETRY

We now turn to the analysis of the BWM symmetry. We start from the braidingu(r,r) and
we construct for each integern a representation ofB` ~see Ref. 9!. We analyze this representatio
by using conjugate equations. We use the operatorCP( i ,r̄r) to define the linear mappings

F5Fn :~rn,rn!→~rn21,rn21! ~n>1!,

by setting

F~T!5C* ^ 1rn21+1r̄ ^ T+C^ 1rn21.

ThenF is a positive linear mapping such that

F~1r ^ S+S8+1r ^ S9!5S+F~S8!+S9, F~1rn!5dq~1rn!5dq~r! ^ 1rn21.
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Let CP( i ,r̄r),C̄P( i ,rr̄) satisfy the conjugate equations. LetE,Ē be defined by

E5C+C* , Ē5C̄+C̄*

and

dq~r!5C* +C5C̄* +C̄5iCi2,

if iCi5iC̄i , normalized solutions.
Suppose thatu andE satisfy (u ^ 1)(1^ E)5q22m(1^ E) and

~1^ E!~u ^ 1!~1^ E!5q2m~1^ E!. ~8!

That is,u andE generate a BMW symmetry. Observe that

E25E~C^ C* !5C+C* +C+C* 5dq~r!E.

Define F̂(X)5dq(r)21(C* ^ 1r+1r̄ ^ X+C^ 1r) to be the left inverse associated to a solutionC

of the conjugate equations, such thatF̂(1)51. Let us computeF̂(1r ^ E):

F̂~1r ^ E!5C* ^ 1r̄r+1r̄r ^ E+C^ 1r̄r .

Then using Eq.~8!, we obtain

F̂~~1^ E!~u ^ 1!~1^ E!!5q2mF̂~1^ E!.

This implies that

~1^ E!F̂~u ^ 1!~1^ E!5q2mF̂~1!~1^ E!

and

~1^ E!2F̂~u ^ 1!5q2mF̂~1!~1^ E!.

It then follows that

x~1^ E!F̂~u ^ 1!5q2mF̂~1!~1^ E!,

which gives

F̂~u ^ 1!5
q2m

x
,

wherex5dq(r). To computeF̂(1^ E) we consider the equation

~1r̄ ^ Ē!~E^ 1r̄ !+~1r̄ ^ Ē!51r̄ ^ Ē.

This follows from:

1r̄ ^ C̄+C̄* 5~1r̄ ^ C̄!+~1r̄ ^ C̄* !,

~C+C* ! ^ 1r̄5~C^ 1r̄ !+~C* ^ 1r̄ !,

and the conjugate equations. Thus we have
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~E^ 1r̄ !+~1r̄ ^ Ē!5~C^ 1r̄ !+~C* ^ 1r̄ !+~1r̄ ^ C̄!+~1r̄ ^ C̄* !51r̄r .

Hence

F̂~~1r̄ ^ Ē!~E^ 1r̄ !~1r̄ ^ Ē!!5F̂~1r̄ ^ Ē!.

We then have

~1r̄ ^ Ē!F̂~E^ 1r̄ !~1r̄ ^ Ē!5F̂~1!~1r̄ ^ Ē!,

~1r̄ ^ Ē!2F̂~E^ 1r̄ !5F̂~1!~1r̄ ^ Ē!,

x~1r̄ ^ Ē!F̂~E^ 1r̄ !5F̂~1!~1r̄ ^ Ē!,

and finally

F̂~E^ 1r̄ !5
1

x
,

so thatx5dq(r) in the BWM relations.
Define the positive mappingw(n):u (n)(Bn)→( i ,i ) by iteratingF:

~rn,rn!→
F

~rn21,rn21!→
F

¯→
F

~r,r!→
F

~ i ,i !.

To computeF(u (n)(g)), whereu (n)(g)P(rn,rn),gPB` andp5p(g) is its associated permuta
tion, we use the fact that we can represent any braid as a composition of the elementary
gi5s i(g0), whereg05u(r,r). We then have the following result~Ref. 9!.

Theorem 1: Let gPB` be an element of the infinite braid group andp5p(g) be its associ-
ated permutation, written as a product of disjoint cycles of lengthk1 ,...,km , with k11¯1km

5n. Then

w~n!~u~n!~g!!5Fn~u~n!~g!!5~dq~r!!mF~u~r,r! ^ 1rn21!n.

We need to prove thatF is faithful. From Lemma 2.7 of Ref. 2 we have

X* +X<C* +C̄^ 1rs+1r ^ Fs,s~X* +X! ~XP~rs,rt!!. ~9!

Let TP(rn,rn) and putX5T in Eq. ~9!. This gives

dq~r!F~T* +T!>T* +T.

Taking norms,

dq~r!iF~T* +T!i>iTi2,

and it follows thatF is faithful. Thus ifdq(r)5C̄* +C̄ is theq-dimension thenw(n) is a faithful
trace and hence it determines theC* -algebra generated by theuq

(n)(r,r).
Assume thatuq(r,r) satisfies a BWM symmetry. Then we have the following result.
Lemma:If dq(r)5C* +C is the quantum dimension such thatE5C+C* and Ē5C̄+C̄* are

the BWM generators together withu~r,r!, then theC* -algebra generated byu(g) is canonically
isomorphic to that generated by the representation ofB` given by the Markov trace which factor
through the BWM of modulusq2m(dq(r))21.

Proof: We need just to check thatw(n) gives the required trace. See Ref. 11.
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Let us denote by (+Od)SOq(N) the subalgebra of+Od ~the algebraic part of the Cuntz algeb
Od ; see Sec. IV! fixed under the coactionG:Od→Od^ SOq(N) given byG(Si)5S jSj ^ uji . Then
by Ref. 6, (+Od)SOq(N) is C(B`), the *-algebra generated by the above representation of
infinite braid group, quotiented by some idealI d .

We then have the following result characterizing the compact quantum group SOq(N),
namely, for everyqP(0,1#,N>3 and everyu(r,r) satisfying BWM symmetry one can associa
a compact quantum group (A(u),u) of type Bm , N52m11, having irreducible fundamenta
representation.

Theorem 2: Let qP@0,1#, mPN, and letG be a BWMq-symmetry. The following condi-
tions are equivalent.

~i! There exists a faithful Markov tracew given by a left inverse via a conjugateCP( i ,r̄r)
such that

w~G!5
q2m

dq~r!
,

andE5C+C* such thatE5(q2q21)21(G2G21).
~ii ! There existstqP(C,r2), a group-like element and nondegenerate mapping given

tql5l( iei ^ J21ei , whereJ5(qj /2d i ̄), ̄5N112 j . Furthermore there exists an antisymmet
tensore i 1¯ i N

:C→HN which gives a nondegenerate form.
If these conditions hold then we can associate a compactq-group (A(G),u), where

A~G!5C* ~ui j :u^
2
jtq

5jtq
,u* u5uu* 51,

(
i 1¯ i N

e i 1¯ i N
ui 1 j 1

¯ui Nj N
5e j 1¯ j N

),

of type Bm having an irreducible fundamental representation.
Proof: ~i! ⇒ ~ii !. Let R be the Jimbo solution of the quantum Yang–Baxter equation for t

Bm ~Ref. 10!. It has the form~7! with $ei j % i , j PI a set of matrix units for EndH. Given a BWM
symmetryG, there exists a unique representationp r of the Birman–Wenzl–Murakami algebr
BWMr(q,eqN2e) where r 5q2m @e51 for SOq(N)#, on H such thatp r(gi)5R̂i ,i 11 where gi

5s i(G), s i5s+¯+s ~i times!, s(G)51^ G is the shift andR̂1,15t+C, whereR is theR-matrix
and R̂i ,i 11 is R at the position (i ,i 11) in ^

`MN , whereMN denotes theN3N matrices. From
now on we drop ther.

There exists a spectral decomposition ofR given by

R̂1,15qP12q21P21eqe2NP0

~see Ref. 10!, whereP1 is the projection onto the antisymmetric tensorH ^ H. Let F be the matrix
given by

F5(
i , j

q~ i 1 j !/2ei , j ^ e2 i ,2 j .

ThenR2R215(q2q21)(12F), so thatp(E)5F.
Let f be the left inverse associated to the conjugateCP( i ,r̄r) such thatE5C+C* . Then

p(C)l5( iei ^ J21ei whereJ has the formJ5(qj /2d i ,̄), ̄5N112 j , with respect to the repre
sentationp. Thustq5p(C) is a nondegenerate mapping sinceC satisfies the conjugate equation
and is nondegenerate. From Ref. 12 it follows that there exists a nondegeneratee i 1¯ i N

:C→HN

such that
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P
~1 ! i j ,i j 11

rm e i 1¯ i N
505P

~0! i j ,i j 11

rm e i 1¯ i N
.

This form allows us to define Detqu5(e i 1¯ i N
ui 1 , j 1

¯ui N , j N
, a group-like element called th

q-determinant.
~ii ! ⇒ ~i!. Suppose there existe i 1¯ i N

, tq , nondegenerate forms, group-like elements. Defi

f~x!5~tq^ 1!+~1^ x!+~tq* ^ 1!.

Since tqP( i ,H2) satisfies the conjugate equations, it follows thatt̄q* ^ 1+1^ tq51r . Then by
Ref. 4 f is a faithful left inverse, and it is positive. Thenw(n)5f ^¯^ f ~n times!, w(0)5f,
w(E)5dq(r)21 andw(G)5q2m/dq(r) is a Markov trace, factoring throughp.

Let

A~G!5C* S ui , j :u5~ui , j ! is unitary,u^ 2jtq
5jtq

, (
i 1¯ i N

e i 1¯ i N
ui 1 j 1

¯ui Nj N
5e j 1¯ j ND .

Let A be the free complex algebra generated by$ui , j ,ui , j* % i , j 51¯N , with an involution defined by
ui , j→ui , j* . Let $ei 1

,...,ei N
% be the standard basis inH(dimH5N). Suppose that

jtq
5( j i 1i 2

ei 1
^ ei 2

,

jDetq
5( e i 1¯ i N

ei 1
^¯^ ei N

.

Let J,A be the two-sided ideal generated by the relations

(
k

ukl* ukm5(
k

umkulk* 5d lm1,

(
k

ul 1k1
¯ul NkN

ek1¯kN
5e l 1¯ l N

1,

(
k

ur 1 j 1
ur 2 j 2

j j 1 j 2
5j r 1r 2

1.

The matrixu5(ui , j ) i , j 51¯N is unitary inMN(A/J) so its coefficients have norm less than or eq
to 1 for everyC* -seminorm inA/J. Thus the envelopingC* (A/J) is well-defined. Observe tha
the tensorC* -categoryF generated byH ~a finite-dimensional Hilbert space! is a concrete monoi-
dal W* -category as in Ref. 13. Let (A(G),u) be as defined in the statement of the Theorem. T
the pair (A(G),u) is the universal admissible pair with respect to the categoryF from the above
argument. Letv,wPB(H) ^ A(G) be unitary elements. Then

~v ^ w!~p r~C! ^ 1!5p r~C! ^ 1,

~p r~C̄! ^ 1!~v ^ w!5p r~C̄! ^ 1,

sinceC, C̄ satisfy the conjugate equation. Hence by Proposition 2.5 III and Theorem 1.3 of
13, it follows that (A(G),u) is a compact quantum group since it is the universal admissible
for the category with distinguished objectH and conjugateH̄ given via the non-degenerate form
tq .

As an example let us consider~F, u! to be the representation category of SO(N), for N53. A
solution of the conjugate equations can be taken as follows, where we dropp for convenience:
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Cl5l(
i

f i ^ J21f i , C̄l5l(
i

f i ^ J f i ~lPC!,

where$ei% is an orthonormal basis inr5H, a finite dimensional Hilbert space,$ f i% is an ortho-
normal basis inH̄, the conjugate Hilbert space, andJ is an invertible antilinear intertwiner no
necessarily antiunitary. For a representation category of SOq(N), choose J5(ci j ) i , j 51,...,N

5(qj /2d i ,̄), wherē5N112 j . For example, ifN53 then

J5S 0 0 q1/2

0 1 0

q21/2 0 0
D ,

so thatJ215J and

J21* J215J* J5S q21 0 0

0 1 0

0 0 q
D .

Hence theq-dimension is given by

dq~r!5C̄* +C̄5tr~J* J!5q21111q5(
i

qi .

If q51 thendq(r)5dimH(53).
As an exampleu5r1 , the fundamental corepresentation of SOq(3). Then u^ 2ĵ5 ĵ, where

ĵ5(0,0,q21/2,0,1,0,q1/2,0,0)t. Sinceu is unitary,

~u^ 1!ĵ5~1^ u* !ĵ, u5S u1 u2 u3

u4 u5 u6

u7 u8 u9

D .

This implies

qu35u7* , q1/2u25u8* , u15u9* , q1/2u65u4* , u55u5* , u45q1/2u6* ,

so the matrixu has the following form as in Ref. 1:

u5S a q1/2z* qy*

x h q1/2x*

y z a*
D ,

whereh5h* is self-adjoint. The condition

u^ 2ĵ5 ĵ, ~10!

is obtained from the nondegenerate formtq of Theorem 2.
The existence of the conjugate comes from the existence ofJ:

Cl5l( ei ^ Jei ,

whereJ is as above, so thatJ251, implying in turn
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Cl5 ĵ5~0,0,q21/2,0,1,0,q1/2,0,0! t.

Then condition~10! together with theq-determinant condition gives the defining relations as
Ref. 1.

IV. ALGEBRAIC CROSSED PRODUCT AND COALGEBRA

We want to consider a cross product of aC* -algebra by a semigroup of endomorphisms w
properties related to BWM symmetry and the existence of conjugates.

A Hopf algebra is defined intrinsically by its dual action on the cross product. In partic
this construction will provide an algebraic characterization of the Hopf* -algebra of the quantum
SO(N). Let us start by introducing the cross product ofC* -algebras by a concrete tensor braid
C* -category, namely the one generated byHd ~a d-dimensional Hilbert space! and the tensor
powers ofHd together with the intertwining operators. This structure is realized withinOd with
Hd the canonical Hilbert space associated to the Cuntz algebra. The intertwiners between
powers ofHd generate aC* -subalgebra ofOd which can be defined as the fixed point algebra
Od under a coactionG to be defined later. Let us denote thisC* -subalgebra by (Od)G. We assume
that there exists an action

m:~Od!G→Or ,

in other words, a morphism of* -algebras with unit such that

m+s5r+m,

m~s r ,ss!,~r r ,rs! ~11!

wheres is the canonical endomorphism.
We then construct the cross product for an action of (Od)G on theC* -algebraOr in a purely

algebraic context. Let+Or and+Od be the algebraic parts ofOr andOd . We denote by (+Od)G the
fixed point algebra of+Od under the coactionG.

By using the construction of the cross product of aC* -algebra by a single endomorphism
in Ref. 7, we see that the cross productC* -algebra is a universal solution within the category
* -algebras with unit such that the following diagram commutes:

Or →
p B

m↑ ↑z

~ °Od!G → °Od

,

with

z~c!p~A!5pr~A!z~c! ~cPH !.

The mapping from (Od)G to Od is just the inclusion mapping. BothOd andOr can be viewed as
(Od)G-bimodules in a natural way. Since we have the following relation inB,

p~A!z~XC!5p~Am~X!!z~C! ~APOp ,CP +Od ,XP~ +Od!G!,

the universal property of the (+Od)G-module tensor product+Or ^ m
+Od shows that there is a

unique linear map

V: +Or ^ m
+Od→B,
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with V(A^ C)5p(A)z(C). Now, +Or ^ m
+Od can be made into a*-algebra in such a way thatV

is a homomorphism for allB. SinceV is already unique as a linear map, the universality is th
automatic~see Ref. 7!.

We want now to construct a Hopf* -algebra and prove that for a particular choice of the fix
point C* -algebra we obtain a compact quantum group of typeBm . Take the finite dual ofB:(B)0.
It has a natural structure of a Hopf algebra:D0 ,m0 , unit 10 , counit e0 , antipodeg0 , defined in
the standard way~see Ref. 14!. Consider a subalgebra of (B)0 defined as follows. GivenF, a finite
dimensional representation onHd , we considerg5(gi j ) i , j 51,...,d wheregi j P(B)0 are defined by

^gi j ,b&5F~b! i j .

Then by duality

^D0~gi j !,b1b2&5F~b1•b2!,

implies

D0~gi j !5(
k

gik ^ gk j .

Proceed similarly for counit and antipode.
Define AF to be the associative subalgebra of (B)0 generated by the matrix elements ofg

where the multiplication is defined by

^gi j gkl ,b&5F i j ~b!Fkl~b!,

using the fact thatB is functorially equivalent to a tensor category and the comultiplication
given byD(b)5b^ b.

Let us define the action+:B^
+Od→

+
+Od by

T+Si→(
j

F~T! i j Sj

and

T+Si* →(
j

F~T! i j Sj* .

Dualizing +, we get a coaction which we callG:

G: +Od→ +Od^ AF,

given by

G~Si !5(
j

Sj ^ F~T! i j .

Thus we have the following:
Theorem 3: Given a braided tensorC* -category with conjugates, suppose that (i ,i )5C ~that

is, i is irreducible!. Let r be a special object of finite rankd. There exists a Hopf* -algebraAF

contained in the finite dual (Or ^ mOd)0 and a*-algebra homomorphismp:Or→Od such that
p+ r̂5sH+p and sH is an inner endomorphism ofOd generated byH ~so that p(ur(g))
5uq(g) for gPB!. Furthermore,p(Or)5(Od)G, the fixed point algebra under the coactio
G:Od→Od^ AF.
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Proof: By Ref. 9 there is a unique monomorphismm:(Od)G→Or with m~uq~g!!
5ur~g!~gPB`! andm+s5 r̂+m, wheres is the canonical endomorphism of (Od)G. This defines
an action of (Od)G on Or and then we may form the cross productB5Or ^ mOd . Let I F

5$KerFuF:B→End(Hd)%. Then we observe that for eachbPB the set$I 1bPBuI PI F% forms
a base for theI F-adic topology onB. Then we can define similarly anI F-adic topology on
B^ B such that the structure maps are continuous with respect to that topology. Then the
gebraAF consists of continuous maps for this topology.

Consider the following diagram:

Or →
pF BF

m↑ ↑zF

~Od!G → Od

,

with pF :Or→BF given bypF(A)5h(A^ I ), andzF(C)5h(I ^ C) where

h:B→BF5B/I F

is the quotient map. SincepF(Or)5zF((Od)G),zF(Od) andOd is simple, it follows thatzF is
onto. Hence the above diagram is commutative andzF(C)pF(A)5pF+ r̂(A)zF(C) (CPHd).
Define p5zF

21+pF ,p( r̂ r ,r̂s)5(Hd
r ,Hd

s)G . Then the algebraAF generated by the elementsgi j

PHom(B,Od) is a Hopf algebra which leaves invariantOr , where the duality is given by

^gi j ,b&5zF
21~b! i j ,

and the generators satisfy

^gi j ,b+x&5zF
21~b+x! i j 5p~b+x! i j 5zF

21~b! i j 5^gi j ,b&.

This implies that the elementsx belong to the fixed point algebra, hence they are cofixed by
actionG ~see Ref. 14!. Thus the generators of the Hopf algebra stabilize the action+.

Since p( r̂ r ,r̂s)5(Hd
r ,Hd

s)G , the cofixed points under the actionG are exactly those left
invariant by thegi j . Thus the only relations satisfied by the generators of the Hopf algebraAF are
those from the cofixed points.

In particular if we consider the fixed point algebra generated by the braids satisfying B
symmetry and theq-trace then we can recover the SOq(N) algebra. See also Ref. 6.
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Parallel spinors and holonomy groups
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Uwe Semmelmanna)
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In this paper we complete the classification of spin manifolds admitting parallel
spinors, in terms of the Riemannian holonomy groups. More precisely, we show
that on a givenn-dimensional Riemannian manifold, spin structures with parallel
spinors are in one to one correspondence with lifts to Spinn of the Riemannian
holonomy group, with fixed points on the spin representation space. In particular,
we obtain the first examples of compact manifolds with two different spin struc-
tures carrying parallel spinors. ©2000 American Institute of Physics.
@S0022-2488~00!01302-5#

I. INTRODUCTION

The present study is motivated by two articles~Refs. 1 and 2! which deal with the classifi-
cation of nonsimply connected manifolds admitting parallel spinors. In Ref. 1, Wang
representation-theoretic techniques as well as some nice ideas due to McInnes3 in order to obtain
the complete list of the possible holonomy groups of manifolds admitting parallel spinors~see
Theorem 4!. We shall here be concerned with the converse question, namely:~Q! Does a spin
manifold whose holonomy group appears in the above referred to list admit a parallel spin

The first natural idea that one might have is the following~cf. Ref. 2!: Let M be a spin
manifold and letM̃ its universal cover~which is automatically spin!; let G be the fundamenta
group ofM and letPSpinn

M̃→PSOn
M̃ be the unique spin structure ofM̃ ; then there is a naturalG

action on the principal bundlePSOn
M̃ and the lifts of this action toPSpinn

M̃ are in one-to-one
correspondence with the spin structures onM. This approach seems to us quite inappropriate in
given context since it is very difficult to have a good control on these lifts. Our main idea w
remark that the question~Q! above is not well posed. Let us, indeed, consider the following sl
modification of it.

~Q8! If M is a Riemannian manifold whose holonomy group belongs to the above referr
list, doesM admit a spin structure with parallel spinors?

It turns out that the answer to this question is simply ‘‘yes’’~see Theorem 6 below!. The
related question of how many such spin structures may exist on a given Riemannian man
also completely solved by our Theorem 7~see the following!. In particular, we obtain the inter
esting result that every Riemannian manifold with holonomy group SUm’Z2 (m[0(4)), ~see the
explicit compact examples of such manifolds in Sec. V!, has exactly two different spin structure
with parallel spinors. The only question which remains open is the existence of compact no
ply connected manifolds with holonomy Spm3Zd ~d odd and dividingm11!. We remark that our
results correct statements of McInnes given in Ref. 2~see Secs. IV and V!.

II. PRELIMINARIES

A spin structure on an oriented Riemannian manifold (Mn,g) is a Spinn principal bundle over
M, together with an equivariant two-fold coveringp:PSpinn

M→PSOn
M over the oriented ortho-

a!Electronic mail: semmelma@rz.mathematik.uni-munchen.de
23950022-2488/2000/41(4)/2395/8/$17.00 © 2000 American Institute of Physics
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normal frame bundle ofM. Spin structures exist if and only if the second Stiefel–Whitney cl
w2(M ) vanishes. In that case, they are in one-to-one correspondence with elements ofH1(M ,Z2).
Spinors are sections of the complex vector bundleSMªPSpinn

M3rSn associated with the spin

structure via the usual spin representationr on Sn . The Levi-Civita connection onPSOn
M induces

canonically a covariant derivative¹ acting on spinors.
Parallel spinors are sectionsf of SM satisfying the differential equation¹f[0. They obvi-

ously correspond to fixed points~in Sn! of the restriction ofr to the spin holonomy group
Hol(M ),Spinn . The importance of manifolds with parallel spinors comes from the fact that
are Ricci flat:

Lemma 1: (Ref. 4) The Ricci tensor of a Riemannian spin manifold admitting a parallel s
vanishes.

Proof: Applying twice the covariant derivative to the parallel spinorf gives that the curvature
of the spin-connection¹ vanishes in the direction off. A Clifford contraction together with the
first Bianchi identity then show that Ric(X)•f[0 for every vectorX, which proves the claim.

h

We will be concerned in this paper with irreducible Riemannian manifolds, i.e., manif
whose holonomy representation is irreducible. By the de Rham decomposition theorem, a
fold is irreducible if and only if its universal cover is not a Riemannian product. Simply conne
irreducible spin manifolds carrying parallel spinors are classified by their~Riemannian! holonomy
group in the following way:

Theorem 2: ~Refs. 4 and 5! Let (Mn,g) be a simply connected irreducible spin manifo
(n>2). Then M carries a parallel spinor if and only if the Riemannian holonomy groupHol~M,g!
is one of the following: G2 (n57); Spin7 (n58); SUm (n52m); Spk (n54k).

Proof: If M carries a parallel spinor, it cannot be locally symmetric. Indeed,M is Ricci flat by
the above-mentioned Lemma, and Ricci-flat locally symmetric manifolds are flat. This w
contradict the irreducibility hypothesis. One may thus use the Berger–Simons theorem
states that the holonomy group ofM belongs to the following list:G2 (n57); Spin7 (n58);
SUm (n52m); Spk (n54k); Um (n52m); Sp1•Spk (n54k); SOn . On the other hand, ifM car-

ries a parallel spinor then there exists a fixed point inSn of Hol̃(M ) and hence a vectorjPSn on

which the Lie algebrahol̃(M )5hol(M ) of Hol̃(M ) acts trivially. It is easy to see that the sp
representation of the Lie algebras of the last three groups from the Berger–Simons list h
fixed points, thus proving the first part of the theorem~cf. Ref. 5!. Conversely, suppose tha
Hol(M ) is one ofG2 , Spin7, SUm , or Spk . In particular, it is simply connected. Letp denote the
universal covering Spinn→SOn . Since Hol(M ) is simply connected,p21Hol(M ) has two con-
nected components,H0 ~containing the unit element! andH1 , each of them being mapped bijec

tively onto Hol(M ) by p. Now, it is known thatp:Hol̃(M )→Hol(M ) is onto ~Ref. 6, Chap. 2,

Prop. 6.1!. Moreover, Hol˜(M ) is connected~Ref. 6, Chap. 2, Theorem. 4.2! and contains the uni

in Spinn , so finally Hol˜(M )5H0 . The spin representation of the Lie algebra ofH0 acts trivially
on some vectorjPSn , which implies thath(j) is constant forhPH0 . In particular h(j)
51(j)5j for all hPH0 , and one deduces thatj is a fixed point of the spin representation
H0 . h

Remark:In the first part of the proof one has to use some representation theory in ord
show that the last three groups in the Berger–Simons list do not occur as holonomy gro
manifolds with parallel spinors. The nontrivial part concerns only Um and Spk , since the spin
representation ofson5spinn has of course no fixed point. An easier argument which exclu
these two groups is the remark that they do not occur as holonomy groups of Ricci-flat man
~see Ref. 7!. It is natural to ask in this context whether there exist any simply connected Ricc
manifolds with holonomy SOn . Our feeling is that it should be possible to construct local
amples but it seems to be much more difficult to construct compact examples. Related to
was remarked by Dessai that a compact irreducible Ricci-flat manifold with vanishing first
trjagin class must have holonomy SOn ~cf. Ref. 8!.
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III. WANG’S HOLONOMY CRITERION

In this section we recall the results of Wang~cf. Ref. 1! concerning the possible holonom
groups of nonsimply connected, irreducible spin manifolds with parallel spinors. By Lemm
every such manifoldM is Ricci flat. The restricted holonomy group Hol0(M ) is isomorphic the
full holonomy group of the universal coverM̃ , so it belongs to the list given by Theorem 2. Usin
the fact that Hol0(M ) is normal in Hol(M ), one can obtain the list of all possible holonom
groups of irreducible Ricci-flat manifolds~see Ref. 1!. If M is compact this list can be conside
ably reduced~see Ref. 3!.

The next point is the following simple observation of Wang~which we state from a slightly
different point of view, more convenient for our purposes!. It gives a criterion for a subgroup o
SOn to be the holonomy group of ann-dimensional manifold with parallel spinors:

Lemma 3: Let(Mn,g) be a spin manifold admitting a parallel spinor. Then the spin holono
group of M projects isomorphically over the Riemannian holonomy group by the canonical
jection p:Spinn→SOn . In particular, there exists an embeddingf:Hol(M )→Spinn such that
p+f5IdHol(M ) . Moreover, the restriction of the spin representation tof(Hol(M )) has a fixed
point onSn .

Finally, a case by case analysis using this criterion yields
Theorem 4: ~Ref. 1! Let (Mn,g) be an irreducible Riemannian spin manifold which is n

simply connected. If M admits a nontrivial parallel spinor, then the full holonomy groupHol(M )
belongs to Table I, whereG is eitherZ2d(d.1), or an infinite subgroup ofU~1!’Z2, or a binary
dihedral, tetrahedral, octahedral or icosahedral group. Here N denotes the dimension of the
of parallel spinors. If, moreover, M is compact, then only the possibilities in Table II may oc.

IV. SPIN STRUCTURES INDUCED BY HOLONOMY BUNDLES

We will now show that the algebraic restrictions on the holonomy group given by Wa
theorem are actually sufficient for the existence of a spin structure carrying parallel spinor
main tool is the following converse to Lemma 3:

Lemma 5: Let M be a Riemannian manifold and suppose that there exists an embe
f:Hol(M )→Spinn which makes the diagram

TABLE I.

Hol0(M ) dim(M ) Hol(M ) N Conditions

SUm 2m SUm 2
SUm’Z2 1 m[0(4)

Spm 4m Spm m11
Spm3Zd (m11)/d d.1, d odd,d dividesm11
Spm•G see Ref. 1 m[0(2)

Spin7 8 Spin7 1
G2 7 G2 1

TABLE II.

Hol0(M ) dim(M ) Hol(M ) N Conditions

SUm 2m SUm 2 m odd
SUm’Z2 1 m[0(4)

Spm 4m Spm3Zd (m11)/d d.1, d odd,d dividesm11
G2 7 G2 1
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Spinn

f

↗ ↓
Hol~M ! → SOn

commutative. Then M carries a spin structure whose holonomy group is exactlyf(Hol(M )),
hence isomorphic toHol(M ).

Proof: Let i be the inclusion of Hol(M ) into SOn andf:Hol(M )→Spinn be such thatp+f
5 i . We fix a frameuPPSOn

M and letP,PSOn
M denote the holonomy bundle ofM throughu,

which is a Hol(M ) principal bundle~see Ref. 6, Chap. 2!. There is then a canonical bund
isomorphismP3 iSOn.PSOn

M and it is clear thatP3fSpinn together with the canonical projec
tion ontoP3 iSOn defines a spin structure onM. The spin connection comes of course from t
restriction toP of the Levi-Civita connection ofM and hence the spin holonomy group is ju
f(Hol(M )), as claimed. h

Remark:The hypothesis of the above-mentioned lemma is obviously equivalent to the
dition that the preimage of Hol(M ) in Spinn is isomorphic toZ23Hol(M ). This provides a very
useful criterion to check whether a given holonomy group satisfies the hypothesis of the le
For instance, as the preimage of Um in Spin2m is isomorphic to Um itself, this group does no
satisfy the conditions of the lemma.

Now, recall that Table I was obtained in the following way: among all possible holon
groups of nonsimply connected irreducible Ricci-flat Riemannian manifolds, one selects
whose holonomy group lifts isomorphically to Spinn and such that the spin representation h
fixed points when restricted to this lift. Using the above-mentioned Lemma we then dedu
once the following classification result, which contains the converse of Theorem 4.

Theorem 6: An oriented nonsimply connected irreducible Riemannian manifold has a
structure carrying parallel spinors if and only if its Riemannian holonomy group appears in T
I (or, equivalently, if it satisfies the conditions in Lemma 3).

There is still an important point to be clarified here. LetG5Hol(M ) be the holonomy group
of a manifold such thatG belongs to Table I and suppose that there are several liftsf i :G
→Spinn of the inclusionG→SOn . By Lemma 5 each of these lifts gives rise to a spin struct
on M carrying parallel spinors, and one may legitimately ask whether these spin structur
equivalent or not. The answer to this question is given by the following~more general! result.

Theorem 7: Let G,SOn and let P be a G structure on M which is connected as topolog
space. Then the enlargements toSpinn of P using two different lifts of G toSpinn are not
equivalent as spin structures.

Note that by ‘‘different lifts’’ of a subgroupG of SOn to Spinn we simply mean two different
group morphismsf i :G→Spinn ( i 51,2) such thatp+f i5IdG .

Proof: Recall that two spin structuresQ and Q8 are said to beequivalentif there exists a
bundle isomorphismF:Q→Q8 such that the diagram

Q →
F

Q8

↘ ↙
PSOn

M

commutes. Letf i :G→Spinn ( i 51,2) be two different lifts ofG and suppose thatP3f iSpinn are
equivalent spin structures onM. Assume that there exists a bundle mapF which makes the
diagram
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P3f1
Spinn →

F

P3f2
Spinn

↘ ↙
P3 iSOn

commutative. This easily implies the existence of a smooth mappingf :P3Spinn→Z2 such that

F~u3f1
a!5u3f2

f ~u,a!a, ;uPP, aPSpinn . ~1!

As P and Spinn are connected we deduce thatf is constant, sayf [e. Then ~1! immediately
implies f15ef2 , hencee51 sincef i are group homomorphisms~and both map the identity in
G to the identity in Spinn!, sof15f2 , which contradicts the hypothesis. h

Using the above-mentioned results, we will construct in Sec. V the first examples of~com-
pact! Riemannian manifolds with several spin structures carrying parallel spinors.

Remark:We have actually proved that the spin structures with parallel spinors on a g
Riemannian manifold are in one-to-one correspondence with the liftsf of the Riemannian ho-
lonomy group of the manifold to the spin group such that the restriction of the spin represen
to f(Hol(M )) has a fixed point onSn . Indeed, every such structure is nothing else but
enlargement to Spinn of the spin holonomy bundle, which, by Wang’s remark~Lemma 3!, is
isomorphic to the enlargement to Spinn of the Riemannian holonomy bundle via the correspond
lift to Spinn of the Riemannian holonomy group.

Remark:Let us also note that a simple check through the list obtained by McInnes in R
shows that the holonomy group of a compact, orientable, irreducible, Ricci-flat manifold of
generic holonomy and real dimension not a multiple of four is eitherG2 or SUm ~m odd! ~there are
two other possibilities in the nonorientable case!. Theorem 2 of Ref. 2~which states that the
above-mentioned manifolds have a unique spin structure with parallel spinors! follows thus im-
mediately from the remark above, becauseG2 and SUm , being simply connected, admit a uniqu
lift to the spin group~which is known to have fixed points onSn!.

V. EXAMPLES AND FURTHER REMARKS

Theorem 6 is not completely satisfactory as long as we do not know whether for each
in Tables I or II, Riemannian manifolds having this group as holonomy group really exist. Th
why we will show in this section that most of the concerned groups have a realization a
lonomy groups. We will leave as an open problem whether there exist compact nonsimply
nected manifolds with holonomy Spm3Zd ~d odd andm11 divisible byd!. We also remark that
the problem which we consider here is purely Riemannian, i.e., does not make reference to
anymore.

1. M compact. Besides the above-mentioned case which we do not treat here, it rema
construct examples of compact nonsimply connected manifolds with holonomyG2 , SUm , and
SUm’Z2 ~as these are the only cases occurring in Wang’s list in the compact case!. The first one
is obtained directly using the work of Joyce,9 who has constructed several families of comp
nonsimply connected manifolds with holonomyG2 for which he computes explicitly the funda
mental group.

For the second we have to find irreducible, nonsimply connected Calabi–Yau manifo
odd complex dimension. Such examples can be constructed in arbitrary high dimension
instance, one can take the quotient of a hypersurface of degreep in CPp21 by a freeZp action,
wherep>5 is any prime number~see Ref. 10 for details!.

Finally, we use an idea of Atiyah, Hitchin11 and McInnes3,12 to construct manifolds with
holonomy group SUm’Z2 . Let ai j , ~i 51,...,m11, j 50,...,2m11! be ~strictly! positive real
numbers andMi be the quadric inCP2m11 given by
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Mi5H @z0 ,...,z2m11#U(
j

ai j zj
250J .

We defineM to be the intersection of theMi ’s, and remark that if theai j ’s are chosen generically
~i.e., such that the quadrics are mutually transversal!, thenM is a smooth complexm-dimensional
manifold realized as a complete intersection. By Lefschetz’s hyperplane Theorem13 M is con-
nected and simply connected~for m.1!.

Moreover,M endowed with the metric inherited fromCP2m11 becomes a Ka¨hler manifold.
The adjunction formula~see Ref. 13! shows thatc1(M )50. ConsequentlyM is a Calabi–Yau
manifold, and there exists a Ricci-flat Ka¨hler metrich on M whose Kähler form Vh lies in the
same cohomology class as the Ka¨hler formVg of g. We now consider the involutions of M given
by s(@zi #)5@ z̄i #, which has no fixed points onM because of the hypothesisai j .0. The following
lemma as well as the next corollary can be found in Ref. 12. Nevertheless, we include the
for the sake of completeness.

Lemma 8: The involutions is an antiholomorphic isometry of(M ,h,J).
Proof: It is easy to see thats is actually an isometry of the Fubini–Study metric onCP2m11,

hences* Vg52Vg . On the other hand,s* h is a Ricci-flat Kähler metric, too, whose Ka¨hler
form is Vs* h52s* Vh . At the level of cohomology classes we have thus@Vs* h2Vg#
5s* @Vg2Vh#50 and by the uniqueness of the solution to the Calabi–Yau problem, we de
that s* h5h, as claimed. h

We now remark that the manifoldM is irreducible. Indeed, from the Lefschetz hyperpla
theorem also followsb2(M )51. On the other hand, ifM would be reducible, the de Rham
decomposition theorem would imply thatM5M13M2 whereMi are simply connected compac
Kähler manifolds, henceb2(M )5b2(M1)1b2(M2)>2, a contradiction.

Corollary 9: The quotient M/s is a 2m-dimensional Riemannian manifold with holonom
SUm’Z2 .

Note that this manifold is oriented if and only ifm is even. Form[0(4), SUm’Z2 has
exactly two different lifts to Spin2m , each of them satisfying the conditions of Lemma 3. The t
lifts of SUm’Z2 can be described as follows~cf. Ref. 1!. For SUm we take the unique lift which
maps IdPSUm to 1PSpin2m and we lift the generatorI 5diag(Idm,2Idm)PO(2m) of Z2 to
6em11¯e2mPSpin2m , where$ei% is an orthonormal basis ofR2m and the spin group is realize
as a subset of the Clifford algebra. It is easy to see that this construction induces two well-d
lifts of SUm’Z2 to Spin2m and that the restriction of the spin representation to each of these
lifts has exactly a one-dimensional space of fixed points~see Ref. 1!.

We thus deduce~by Theorem 7 and the remark following it! that @for m[0(4)# the above
constructed manifoldM is a compact Riemannian manifold with exactly two different spin str
tures carrying parallel spinors.

Remark:This result is a counterexample to McInnes’ Theorem 1 in Ref. 2, which asserts
a compact, irreducible Ricci-flat manifold of nongeneric holonomy and real dimension 4m admits
a parallel spinor if and only if it is simply connected. The error in McInnes’ proof comes from
fact that starting from a parallel spinor on a manifold with local holonomy SU2m , the ‘‘squaring’’
construction does not always furnish the whole complex volume form. In some cases on
obtain its real or complex part, which is of course not sufficient to conclude that the w
holonomy group is SU2m .

2. M noncompact. We now give, for each group in Table I, examples of~noncompact, non-
simply connected! oriented Riemannian manifolds having this group as holonomy group
course, we will not consider here the holonomy groups of the compact manifolds const
above, since it suffices to remove a point from such a manifold to obtain a noncompact exa
All our examples for the remaining groups in Table I will be obtained as cones over man
with special geometric structures. Recall that if~M, g! is a Riemannian manifold the coneM̄ is the
product manifoldM3R1 equipped with the warped product metricḡªr 2g% dr2. Note thatM̄ is
always a noncomplete manifold, and by a result of Gallot,14 the cone over a complete manifold
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always irreducible or flat as Riemannian manifold. Using the O’Neill formulas for warped p
ucts, it is easy to relate the different geometries of a manifold and of its cone in the following
~see, e.g., Ref. 15 or Ref. 16 for the definitions!.

Theorem 10: ~Ref. 15! Let M be a Riemannian manifold and M¯ the cone over it. Then M¯ is
hyperkähler or has holonomySpin7 if and only if M is a 3-Sasakian manifold, or a weak G2

manifold, respectively. There is an explicit natural correspondence between the above stru

on M and M̄.
This directly yields examples of oriented, nonsimply connected Riemannian manifolds

holonomy Spin7 and Spm , as cones over nonsimply connected weakG2 manifolds~cf. Ref. 17 or
Ref. 18 for examples!, and nonsimply connected 3-Sasakian manifolds, respectively~cf. Ref. 16
for examples!.

Now let M be a regular simply connected 3-Sasakian manifold other than the round sphe~all
known examples of such manifolds are homogeneous!. It is a classical fact thatM is the total space
of a SO3 principal bundle over a quaternionic Ka¨hler manifold, such that the three Killing vecto
fields defining the 3-Sasakian structure define a basis of the vertical fundamental vector fie
this fibration.

For d.1 odd, letG be the image ofZd,U(1),SU2 through the natural homomorphism
SU2→SU2/Z2.SO3. It is clear thatG.Zd and by the aboveG acts freely onM. On the other
hand, for everyxÞ61 in SU2, the right action ofx on SO3 preserves a one-dimensional space
left invariant vector fields and defines a nontrivial rotation on the remaining two-dimens
space of left invariant vector fields on SO3. This means that ifgÞ1 is an arbitrary element ofG,
its action onM preserves exactly one Sasakian structure and defines a rotation on the cir
Sasakian structures orthogonal to the first one. The following classical result then shows t
holonomy group of the cone overM /G has to be Spm3Zd .

Proposition 11: Let(M ,g) be a Riemannian manifold with universal cover M˜ . If the natural
surjective homomorphismp1(M )→Hol/Hol0 is not bijective, then there exists a subgro

K,p1(M ) such that M̃/K is a manifold withHol5Hol0. The group K is actually the kernel of th
homomorphism above.

Similarly one may construct examples of manifolds with holonomy Spm•G for every groupG
listed in Theorem 4.
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Contraction of the Gr ,s quantum group to its nonstandard
analog and corresponding colored quantum groups

Deepak Parashara) and Roger J. McDermottb)
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The quantum groupGr ,s provides a realization of the two parameter quantum
GLp,q(2), which is known to be related to the two parameter nonstandard
GLh,h8(2) group via the contraction method. We apply the contraction procedure
to Gr ,s and obtain a new Jordanian quantum groupGm,k . Furthermore, we provide
a realization ofGLh,h8(2) in terms ofGm,k . The contraction procedure is then
extended to the colored quantum groupGLr

l,m(2) to yield a new Jordanian quan-
tum groupGLm

l,m(2). Both Gr ,s and Gm,k are then generalized to their colored
versions, which in turn provide similar realizations ofGLr

l,m(2) andGLm
l,m(2).

© 2000 American Institute of Physics.@S0022-2488~00!02902-9#

I. INTRODUCTION

In recent years, a lot of interest has been generated in the study of nonstandard~or Jordanian!
deformations of Lie groups and algebras. ForGL(2), theJordanian deformation~also known as
theh-deformation! was initially introduced in Refs. 1 and 2 with its two parametric generaliza
given by Aghamohammadi in Ref. 3. This was extended to the supersymmetric caseGL(1/1) in
Ref. 4. At the algebra level, the nonstandard deformationUh(sl(2)) of sl(2) was first proposed
by Ohn,5 the universalR-matrix was presented in Refs. 6–8, and irreducible representa
studied in Refs. 9 and 10. A peculiar feature of this deformation is that the correspondingR-matrix
is triangular, i.e.,R215R21. The groupGL(2) admits two distinct deformations with centr
determinant:GLq(2) and GLh(2), and these are the only such possible deformations~up to
isomorphism!.11 In Ref. 12, an observation was made that theh-deformation could be obtained b
a singular limit of a similarity transformation from theq-deformations of the groupGL(2). Given
this contraction procedure, it would be useful to look for Jordanian deformations of
q-groups.

The two parameter quantum groupGr ,s was proposed by Basu–Mallick in Ref. 13 as
particular quotient of the multiparameterq-deformation ofGL(3). Thestructure ofGr ,s is inter-
esting because it contains the one parameterq-deformation ofGL(2) as a Hopf subalgebra an
also gives a simple realization of the quantum groupGLp,q(2) in terms of the generators ofGr ,s .
As an initial step in the further study of this quantum group, the authors have recently shown14 that
the dual Hopf algebra toGr ,s may be realized using the method described by Sudbery,15 i.e., as the
algebra of tangent vectors at the identity. As well as this, a bicovariant differential calculus onGr ,s

has also been constructed by the authors.14 In the present paper, we investigate the contract
procedure onGr ,s in order to obtain its nonstandard counterpart. The generators of the contr
structure are employed to realize the two parameter nonstandard deformationGLh,h8(2). This is
similar to what happens in theq-deformed case. Furthermore, we extend the contraction proce
to the case of ‘‘colored’’ quantum groups and obtain a new single parameter nonstandard qu
groupGLm

l,m(2). Gm,k is then extended to its colored version, obtained by contraction from

a!Electronic mail: deeps@scms.rgu.ac.uk
b!Electronic mail: rm@scms.rgu.ac.uk
24030022-2488/2000/41(4)/2403/14/$17.00 © 2000 American Institute of Physics
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coloredGr ,s . These new colored extensions also provide realizations of single parameter c
quantum and Jordanian deformation ofGL(2).

In Sec. II, the block diagonal form of theR-matrix ofGr ,s is presented. The contraction on th
block diagonalR-matrix is carried out in Sec. III yielding the newR-matrix for Gm,k . Section IV
defines a new nonstandard groupGm,k and Sec. V provides a new realization of the well-know
GLh,h8(2). Contraction for colored quantum groups and colored extensions ofGr ,s andGm,k are
given in Sec. VI with Sec. VII detailing the colored realizations. In Sec. VIII, we summarize
results and briefly discuss possible further work. Appendices A, B, and C summarize the
algebra relations forGr ,s , GLh,h8(2), andcoloredGLm

l,m(2), respectively.

II. THE Gr,s R-MATRIX

The quantum groupGr ,s is generated by the matrix of generators

T5S a b 0

c d 0

0 0 f
D ,

where the first four generatorsa, b, c, and d form a Hopf subalgebra which is isomorphic
GLq(2) quantum group with deformation parameterq5r 21. The two parameterGLp,q(2) can
also be realized through the generators of thisGr ,s Hopf algebra provided the sets of deformatio
parameters~p,q! and~r,s! are related to each other in a particular fashion. This quantum group
therefore, be used to realize bothGLq(2) andGLp,q(2) quantum groups. The expression for t
R-matrix of Gr ,s is given in Ref. 13. Explicitly, this reads

R~Gr ,s!51
r 0 0 0 0 0 0 0 0

0 1 0 r 2r 21 0 0 0 0 0

0 0 s 0 0 0 r 2r 21 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 r 0 0 0 0

0 0 0 0 0 1 0 r 2r 21 0

0 0 0 0 0 0 s21 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 r

2
with entries labeled in the usual numerical order~11!, ~12!, ~13!, ~21!, ~22!, ~23!, ~31!, ~32!, ~33!.
We start with the observation, first made by Aschieri and Castellani,16,17 that if we reorder the
indices of thisR-matrix with the elements in the order~11!, ~12!, ~21!, ~22!, ~13!, ~23!, ~31!, ~32!,
~33!, then we obtain a block matrix, sayRq , which is similar to the form of theGLq(2) R-matrix
with the q in the R11

11 position itself replaced by theGLq(2) R-matrix,

Rq5S R~GLr~2!! 0 0 0

0 S lI 0

0 0 S21 0

0 0 0 r

D ,

whereR(GLr(2)) is the 434 R-matrix for GLq(2) with q5r , l5r 2r 21, I is the 232 identity
matrix, andS is the 232 matrix
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S5S s 0

0 1D ,

where r and s are the deformation parameters. The zeroes are the zero matrices of appr
order. The usual block structure of theR-matrix is clearly seen in this form. It is straightforwar
to check that theRTTrelations with this newR-matrix give the knownGr ,s commutation relations.

III. R-MATRIX CONTRACTION

It is well known12 that the nonstandardR-matrix Rh(2) can be obtained from theq-deformed
Rq(2) as a singular limit of a similarity transformation,

Rh~2!5 lim
q→1

~g21
^ g21!Rq~2!~g^ g!,

where

g5S 1 h

0 1D .

Such a transformation has been generalized to higher dimensions18 and has also been successfu
applied to two parameter quantum groups. Here we apply the above-mentioned transforma
our Gr ,s quantum group. Our starting point is the block diagonal form of theGr ,s R-matrix,
denotedRq ,

Rq51
r 0 0 0 0 0 0 0 0

0 1 l 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 r 0 0 0 0 0

0 0 0 0 s 0 l 0 0

0 0 0 0 0 1 0 l 0

0 0 0 0 0 0 s21 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 r

2 ,

wherel5r 2r 21. We apply toRq the transformation

~G21
^ G21!Rq~G^ G!.

Here the transformation matrixG is a 333 matrix and chosen in the block diagonal form

G5S g 0

0 1D ,

whereg is the transformation matrix for the two-dimensional case. The similarity transforma
gives the matrix
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1
r h~r 21! h~r 2l21! h2~2~r 21!2l! 0 0 0 0 0

0 1 l h~l112r ! 0 0 0 0 0

0 0 1 h~12r ! 0 0 0 0 0

0 0 0 r 0 0 0 0 0

0 0 0 0 s h~s21! l 0 0

0 0 0 0 0 1 0 l 0

0 0 0 0 0 0 s21 h~s2121! 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 r

2 .

Following the procedure outlined in Ref. 12, we substituteh5m/(12r ) to obtain

1
r 2m mr21 m2r 21 0 0 0 0 0

0 1 r 2r 21 2mr21 0 0 0 0 0

0 0 1 m 0 0 0 0 0

0 0 0 r 0 0 0 0 0

0 0 0 0 s 2m
12s

12r
r 2r 21 0 0

0 0 0 0 0 1 0 r 2r 21 0

0 0 0 0 0 0 s21 ms21
12s

12r
0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 r

2 .

In the limit r→1, s→1 such that (12s)/(12r )→k/m, this yields the JordanianR-matrix

Rh5R~Gm,k!51
1 2m m m2 0 0 0 0 0

0 1 0 2m 0 0 0 0 0

0 0 1 m 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 k 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 2k 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

2 ,

where the entries are labeled in the block diagonal form~11!, ~12!, ~21!, ~22!, ~13!, ~23!, ~31!,
~32!, ~33!. It is straightforward to verify that thisR-matrix is triangular and a solution of th
quantum Yang–Baxter equation

R12R13R235R23R13R12.

It is interesting to note that the block diagonal form ofR(Gm,k) embeds in the top left-hand corn
the R-matrix for the single parameter deformedGLh(2) for m5h.
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IV. THE NONSTANDARD Gm,k

The contractedR-matrix R(Gm,k) can be used in conjunction with aT-matrix of generators of
the form

T5S a b 0

c d 0

0 0 f
D

to form a two parameter nonstandard quantum groupGm,k . TheRTT relations

RT1T25T2T1R

~whereT15T^ 1, T251^ T) give the commutation relations between the generatorsa, b, c, d,
and f,

@c,d#52mc2, @c,b#52m~ac1cd!52m~ca1dc!,

@c,a#52mc2, @d,a#52m~d2a!c52mc~d2a!,

@d,b#52m~d22d!,

@b,a#52m~d2a2!

and

@ f ,a#5kc f, @ f ,b#5k~d f2 f a!,

@ f ,c#50, @ f ,d#52kc f.

The elementd5ad2bc1mac5ad2cb2mcd is central in the whole algebra. Note that th
first set of the above-mentioned relations consists of elementsa, b, c, and d, which form a
subalgebra that coincides exactly with the single parameter nonstandardGLh(2) for m5h. The
coalgebra structure ofGm,k can be written as

DS a b 0

c d 0

0 0 f
D 5S a^ a1b^ c a^ b1b^ d 0

c^ a1d^ c c^ b1d^ d 0

0 0 f ^ f
D ,

eS a b 0

c d 0

0 0 f
D 5S 1 0 0

0 1 0

0 0 1
D .

Adjoining the elementd21 to the algebra enables determination of the antipode matrixS(T),

SS a b 0

c d 0

0 0 f
D 5d21S d1mc 2b1m~d2a!1m2c 0

2c a2mc 0

0 0 d f 21
D .

@The Hopf structure ofd21 is D(d21)5d21
^ d21, e(d21)51, S(d21)5d.#

These relations are consistent with the usual axioms of the Hopf algebra,

m+~ id^ m!5m+~m ^ id!, ~ id^ D!+D5~D ^ id!+D,
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~ id^ e!+D5~e ^ id!+D5 id, m+~ id^ S!+D5m+~S^ id!+D51+e,

D~xy!5D~x!D~y!, e~xy!5e~x!e~y!, S~xy!5S~y!S~x!,

wherem denotes the multiplication operationm(x^ y)5xy and id is the identity transformation
It is evident that the elementsa, b, c, andd of Gm,k form a Hopf subalgebra which coincide

with nonstandardGL(2) with deformation parameterm. This is exactly analogous to th
q-deformed case where the first four elements ofGr ,s form theGLq(2) Hopf subalgebra. Again
the remaining fifth elementf generates theGL(1) group, as it did in theq-deformed case, and th
second parameter appears only through the cross-commutation relations betweenGLm(2) and
GL(1) elements. Therefore,Gm,k can also be considered as a two parameter Jordanian defo
tion of classicalGL(2)^ GL(1) group.

V. A REALIZATION OF GL h,h8„2…

Now we investigate the connection of the newly definedGm,k with the nonstandard two
parameterGLh,h8(2). It wasobserved by Basu–Mallick13 that there is a Hopf algebra homomo
phismF from Gr ,s to GLp,q(2) given by

FN :Gr ,s°GLp,q~2!,

FN :S a b

c dD °S a8 b8

c8 d8
D 5 f NS a b

c dD .

The elementsa8, b8, c8, andd8 are the generators ofGLp,q(2) andN is a fixed nonzero integer
The relation between the deformation parameters~p,q! and ~r,s! is given by

p5r 21sN, q5r 21s2N.

A Hopf algebra homomorphism of exactly the same form exists between the generat
Gm,k and GLh,h8(2) which is straightforward to verify. Moreover, the two sets of deformat
parameters (h,h8) and ~m,k! are related via the equation

m52h1Nk52h82Nk,

i.e.,

h52m1Nk, h852m2Nk.

Note thath85h for vanishingk, and one gets the one parameter case. In addition, using
above-mentioned realization together with the coproduct, counit, and antipode axioms for thGm,k

algebra and the respective homeomorphism properties, one can easily recover the stand
product, counit, and antipode forGLh,h8(2). Thus, the nonstandardGLh,h8(2) group can in fact
be reproduced from the newly defined nonstandardGm,k . These realizations can be exhibited
the following commutative diagram:

It is curious to note that if we writep5eh, q5eh8, r 5em, ands5ek, then the relations betwee
the parameters in theq-deformed case and those in theh-deformed case are identical.
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VI. COLORED QUANTUM GROUPS

The standard quantum group relations can be extended by parametrizing the corresp
generators using some continuous ‘‘color’’ variables and redefining the associated algeb
coalgebra in a way that all Hopf algebraic properties remain preserved.13,19,20For the case of a
single parameter quantum deformation ofGL(2) ~with deformation parameterr!, its ‘‘colored’’
version13 is given by theR-matrix

Rr
l,m5S r 12~l2m! 0 0 0

0 r l1m r 2r 21 0

0 0 r 2~l1m! 0

0 0 0 r 11~l2m!

D ,

which satisfies

R12
l,mR13

l,nR23
m,n5R23

m,nR13
l,nR12

l,m ,

the so-called ‘‘colored’’ quantum Yang–Baxter equation~CQYBE!. This gives rise to the colored
RTT relations

Rr
l,mT1lT2m5T2mT1lRr

l,m

~whereT1l5Tl ^ 1 and T2m51^ Tm) in which the entries of theT matrices carry color depen
dence. The coproduct and counit for the coalgebra structure are given by

D~Tl!5Tl ^̇ Tl ,

e~Tl!51

and depend only on one color parameter. By contrast, the algebra structure is more comp
with only generators of two different colors appearing simultaneously in the algebraic rela
The full Hopf algebraic structure can be constructed resulting in a colored extension o
quantum group. Sincel and m are continuous variables, this implies that the colored quan
group has an infinite number of generators. The quantum determinantDl5aldl

2r 2(112l)clbl is grouplike but not central, and the antipode is

S~Tl!5Dl
21S dl 2r 112lbl

2r 2122l al
D .

In order to investigate the contraction for colored quantum groups, we apply toRr
l,m the

transformation

~g^ g!21Rr
l,m~g^ g!,

whereg is the two-dimensional transformation matrix

S 1 h

0 1D
andh is chosen to beh5m/(12r ). This gives the matrix
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S r 12~l2m! R12
11 R21

11 R22
11

0 r l1m r 2r 21 R22
12

0 0 r 2~l1m! R22
21

0 0 0 r 11~l2m!

D ,

where

R12
115mr12l1m@2112l# r ,

R21
1152mr12l1m@112m# r1mr21~11r !,

R22
125mrl1m@122m# r2mr21~11r !,

R22
215mr2~l1m!@112l# r ,

R22
1152m2r ~@2l1m# r@2112l# r1@l2m# r@2122l# r !1m2r 21~@112l# r@122l# r !

and

@x# r5S 12r x

12r D
denotes the basic number fromq-analysis.

In the limit r→1, we obtain a newR-matrix,

Rm
l,m5S 1 2m~122l! m~122m! m2~124lm!

0 1 0 2m~112m!

0 0 1 m~112l!

0 0 0 1

D ,

which is a coloredR-matrix for a Jordanian deformation ofGL(2). This R-matrix satisfies the
CQYBE and is ‘‘color’’ triangular, i.e.,R12

l,m5(R21
m,l)21, a colored extension of the notion o

triangularity. ThisR-matrix is distinct from that of the colored Jordanian deformation ofGLq(2)
obtained in Refs. 19 and 20 by other means. The Hopf algebra structure and the comm
relations for the quantum group associated with thisR-matrix are given in Appendix C.Note: This
is the first time that such a contraction procedure has been applied to obtain a colored Jo
R-matrix and hence the colored Jordanian quantum group.

A. Colored extension of Gr ,s :Gr
s ,s8

The colored extension ofGr ,s proposed in Ref. 13 has only one deformation parameterr and
two color parameterss ands8. The second deformation parameter of the uncolored case now
the role of a color parameter. In such a colored extension, the first four generatorsa,b,c,dare kept
independent of the color parameter~s! while the fifth generatorf is now parametrized bys ands8.
The matrices of generators are

Ts5S a b 0

c d 0

0 0 f s

D , Ts85S a b 0

c d 0

0 0 f s8

D .

From theRTT relations, one observes that the commutation relations betweena,b,c,dare as
before butf s and f s8 now satisfy
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a fs5 f sa, b fs5s21f sb, c fs5s fsc, d fs5 f sd,

a fs85 f s8a, b fs85s821f s8b, c fs85s8 f s8c, d fs85 f s8d,

and

@ f s , f s8#50.

Our choice of the 939 R-matrix for Gr
s,s8 is

Rr
s,s85S Rr~2! 0 0 0

0 S~s,s8! 0 0

0 0 S̄~s,s8! 0

0 0 0 r

D ,

where

Rr~2!5S r 0 0 0

0 1 r 2r 21 0

0 0 1 0

0 0 0 r

D , S~s,s8!5S Ass8 0

0 A s

s8
D , S̄~s,s8!5S 1

Ass8
0

0 A s

s8

D ,

which satisfies the CQYBE

R12~r ;s,s8!R13~r ;s,s9!R23~r ;s8,s9!5R23~r ;s8,s9!R13~r ;s,s9!R12~r ;s,s8!.

S and S̄ satisfy the exchange relationS̄(s,s8)5S(s8,s)21.

B. Colored extension of Gm,k :Gm
k,k8

Similar to the case ofGr ,s , we propose a colored extension of the Jordanian quantum g
Gm,k . The first four generators remain independent of the colored parametersk andk8 whereas the
generatorf is parametrized byk and k8 . Again, the second deformation parameterk of the
uncolored case now plays the role of a color parameter and theT-matrices are

Tk5S a b 0

c d 0

0 0 f k

D , Tk85S a b 0

c d 0

0 0 f k8

D .

The commutation relations betweena,b,c,dremain unchanged whereasf k and f k8 satisfy

@ f k ,a#5kc fk , @ f k ,b#5k~d fk2 f ka!, @ f k ,c#50, @ f k ,d#52kc fk ,

@ f k8 ,a#5k8c fk8 , @ f k8 ,b#5k8~d fk82 f k8a!, @ f k8 ,c#50, @ f k8 ,d#52k8c fk8 ,

and

@ f k , f k8#50.

Our choice of the 939 R-matrix for Gm
k,k8 is
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Rm
k,k85S Rm~2! 0 0 0

0 K~k,k8! 0 0

0 0 K̄~k,k8! 0

0 0 0 1

D ,

where

Rm~2!5S 1 2m m m2

0 1 0 2m

0 0 1 m

0 0 0 1

D , K~k,k8!5S 1 2k8

0 1 D , K̄~k,k8!5S 1 k

0 1D .

This R-matrix is chosen in this way since it is the contraction limit of theR-matrix for the colored
extension ofGr ,s via the transformation

Rm
k,k85 lim

r→1
~G^ G!21Rr

s,s8~G^ G!,

where

G5S g 0

0 1D , g5S 1 h

0 1D , h5
m

r 21
.

It is a solution of the CQYBE

R12~m;k,k8!R13~m;k,k9!R23~m;k8,k9!5R23~m;k8,k9!R13~m;k,k9!R12~m;k,k8!

and is color triangular. Again,K and K̄ satisfy the exchange relationK̄(k,k8)5K(k8,k)21.

VII. COLORED REALIZATIONS

It is shown in Ref. 13 that, similar to the uncolored case, the colored quantum groupGr
s,s8

provides a realization of the well-known coloredGLr
l,m(2) where Hopf algebra homomorphism

from Gr
s,s8 to GLr

l,m(2),

FN :Gr
s,s8°GLr

l,m~2!,

is given by

FN :S a b

c dD °S al8 bl8

cl8 dl8
D 5 f s

NS a b

c dD ,

FN :S a b

c dD °S am8 bm8

cm8 dm8
D 5 f s8

N S a b

c dD ,

whereN is a fixed nonzero integer and the sets of color parameters (s,s8) and ~l, m! are related
through quantum deformation parameterr by

s5r 2Nl, s85r 2Nm.

The primed generatorsal8 ,bl8 ,cl8 ,dl8 and am8 ,bm8 ,cm8 ,dm8 belong to GLr
l,m(2) whereas the

unprimed onesa, b, c, d, f s , and f s8 are generators ofGr
s,s8 .
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Just as in theq-deformed case, we obtain a realization of theh-deformed quantum group

GLm
l,m(2) using the newly defined colored quantum groupGm

k,k8 . If we again denote the genera

tors ofGLm
l,m(2) by al8 ,bl8 ,cl8 ,dl8 andam8 ,bm8 ,cm8 ,dm8 and the generators ofGm

k,k8 by a, b, c, d, f k

and f k8 then a Hopf algebra homomorphism fromGm
k,k8 to GLm

l,m(2),

FN :Gm
k,k8°GLm

l,m~2!,

is of exactly the same form

FN :S a b

c dD °S al8 bl8

cl8 dl8
D 5 f k

NS a b

c dD ,

FN :S a b

c dD °S am8 bm8

cm8 dm8
D 5 f k8

N S a b

c dD .

The sets of color parameters (k,k8) and~l, m! are related to the Jordanian deformation parame
m by

Nk522ml, Nk8522mm

andN, again, is a fixed nonzero integer.

VIII. CONCLUSIONS

In this work, we have applied the contraction procedure to theGr ,s quantum group and
obtained a new Jordanian quantum groupGm,k . The groupGm,k has five generators and tw
deformation parameters and contains the single parameterGLh(2) as a Hopf subalgebra~gener-
ated by the first four elements!. The remaining fifth generator corresponds to theGL(1) group.
Furthermore, we have given a realization of the two parameterGLh,h8(2) through the generator
of Gm,k which also reproduces its full Hopf algebra structure. The results match with
q-deformed case. The bigger picture that emerges from our analysis of contraction for unc
as well as colored quantum groups and their morphisms can be represented in the fol
diagram:

whereC, F, andE denote the contraction, Hopf algebra homomorphism, and colored exten
respectively. The objects at the top level are theq-deformed ones and the corresponding Jordan
counterparts are shown at the bottom level of the diagram.

Future work along the lines indicated in the paper will lead to the explicit derivation of
dual algebra for the nonstandardGm,k and its colored extension, and this will be presented by
authors in a later paper.

APPENDIX A: Gr ,s QUANTUM GROUP

The two parameter quantum groupGr ,s is generated by elementsa, b, c, d, andf satisfying the
relations

ab5r 21ba, db5rbd,

ac5r 21ca, dc5rcd,
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bc5cb, @a,d#5~r 212r !bc

and

a f5 f a, c f5s f c,

b f5s21f b, d f5 f d.

Elementsa,b,c,dsatisfying the first set of commutation relations form a subalgebra which c
cides exactly withGLq(2) whenq5r 21. The Hopf structure is given as

DS a b 0

c d 0

0 0 f
D 5S a^ a1b^ c a^ b1b^ d 0

c^ a1d^ c c^ b1d^ d 0

0 0 f ^ f
D ,

eS a b 0

c d 0

0 0 f
D 5S 1 0 0

0 1 0

0 0 1
D .

The Casimir operator is defined asd5ad2r 21bc. The inverse is assumed to exist an
satisfiesD(d21)5d21

^ d21, e(d21)51, S(d21)5d, which enables determination of the an
pode matrixS(T), as

SS a b 0

c d 0

0 0 f
D 5d21S d 2rb 0

2r 21c a 0

0 0 d f 21
D .

The quantum determinantD5d f is grouplike but not central.

APPENDIX B: NONSTANDARD GL h,h8„2…

The two parameter nonstandard groupGLh,h8(2) is generated by the matrix of generators

T5S a b

c dD
and the 434 R-matrix is given as

R5S 1 2h8 h8 hh8

0 1 0 2h

0 0 1 h

0 0 0 1

D .

The commutation relations among the generatorsa, b, c, andd are

@a,c#5hc2, @b,c#5hcd1h8ac,

@d,c#5h8c2, @a,d#5hcd2h8ca,

@a,b#5h8~D2a2!,

@d,b#5h~D2d2!,
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whereD5ad2cb2hcd5ad2bc1h8ac is the quantum determinant andh andh8 are the two
deformation parameters. The Hopf algebra structure is

DS a b

c dD 5S a^ a1b^ c a^ b1b^ d

c^ a1d^ c c^ b1d^ dD ,

eS a b

c dD 5S 1 0

0 1D .

D21 exists and satisfiesD(D21)5D21
^ D21, e(D21)51, S(D21)5D.

Using this structure the antipode matrix can be expressed as

S~T!5D21S d1hc 2b1h~d2a!1h2c

2c a2hc D 5S d1h8c 2b1h8~d2a!1h82c

2c a2h8c
DD21.

APPENDIX C: COLORED JORDANIAN GL m
l,m

„2…

The commutation relations between the generating elementsal ,bl ,cl ,dl andam ,bm ,cm ,dm

of GLm
l,m(2) are

@al ,cm#5m~112m!clcm ,

@dl ,cm#5m~122m!cmcl ,

@al ,dm#5m~112m!cldm2m~122l!cmal ,

@al ,bm#5m~122l!aldm2m~122l!amal2m~122m!clbm2m2~124lm!cldm ,

@bl ,dm#5m~112m!dldm1m~112l!cmbl2m~112m!dmal1m2~124lm!cmal ,

@bl ,cm#5m~112m!dlcm1m~122m!cmal ,

and

@al ,am#5m~122l!alcm2m~122m!clam2m2~124lm!clcm ,

@bl ,bm#5m~122l!bldm1m~112l!ambl2m~122m!dlbm

2m~112m!bmal1m2~124lm!~amal2dldm!,

@cl ,cm#50,

@dl ,dm#5m~112l!cmdl2m~112m!dmcl1m2~124lm!cmcl .

These relations satisfy thel↔m exchange symmetry. The generators are arranged in
T-matrices

Tl5S al bl

cl dl
D , Tm5S am bm

cm dm
D

and the associated coproduct and counit are

D~Tl!5Tl ^̇ Tl , e~Tl!51.

The quantum determinant
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Dl5aldl2blcl1m~122l!alcl5aldl2clbl2m~112l!cldl

satisfies@Dl ,Dm#Þ0 and @Dl ,Tl#Þ0 unlessl50. The coalgebra structure is also invaria
under thel↔m exchange symmetry.
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Probability distribution of distance in a uniform ellipsoid:
Theory and applications to physics

Michelle Parrya)

Department of Natural Sciences, Longwood College, Farmville, Virginia 23909

Ephraim Fischbachb)

Department of Physics, Purdue University, West Lafayette, Indiana 47907

~Received 4 November 1999; accepted for publication 24 November 1999!

A number of authors have previously found the probabilityPn(r ) that two points
uniformly distributed in ann-dimensional sphere are separated by a distancer .
This result greatly facilitates the calculation of self-energies of spherically symmet-
ric matter distributions interacting by means of an arbitrary radially symmetric
two-body potential. We present here the analogous results forP2(r ;e) andP3(r ;e)
which respectively describe an ellipse and an ellipsoid whose major and minor axes
are 2a and 2b. It is shown that fore5(12b2/a2)1/2<1, P2(r ;e) andP3(r ;e) can
be obtained as an expansion in powers ofe, and our results are valid through order
e4. As an application of these results we calculate the Coulomb energy of an
ellipsoidal nucleus, and compare our result to an earlier result quoted in the litera-
ture. © 2000 American Institute of Physics.@S0022-2488~00!04304-8#

I. INTRODUCTION AND SUMMARY

It is well known that the exchange of fields with appropriate quantum numbers gives r
two-body potentialsV(ur12r2u)[V(r ) between particles 1 and 2, which contribute in turn to
self-energies of many-body systems such as nuclei and neutron stars. In typical applicat
interest these potentials are often of the Yukawa form,

V~r !5CY

e2r /l

r
, ~1.1!

whereCY andl are constants, or are inverse powers

V~r !5
Cn

r n ~n51,2,3, . . .!, ~1.2!

where Cn is a constant. The most familiar example is the self-energy of a spherical ch
distribution ~e.g., a spherically symmetric nucleus! arising from the Coulomb potential

VC~r !5
e2

ur12r2u
[

e2

r
. ~1.3!

As we discuss in Sec. IV, the average interaction energyUC[^VC(r )& of a single pair of charges
having a uniform probability distribution in a sphere of radiusR is given by

UC5
6

5

e2

R
. ~1.4!

For a nucleus containingZ charges, and henceZ(Z21)/2 pairs, the total Coulomb energy is1

a!Electronic mail: mparry@longwood.lwc.edu
b!Electronic mail: ephraim@physics.purdue.edu
24170022-2488/2000/41(4)/2417/17/$17.00 © 2000 American Institute of Physics
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WC5
1

2
Z~Z21!UC5

3

5
Z~Z21!

e2

R
. ~1.5!

The conventional way of obtainingUC is to integrateVC(ur12r2u) over r1 and r2 which
requires evaluating a six-dimensional integral. For the Coulomb potential this is relatively str
forward, but for other potentials evaluatingUC is considerably more difficult, particularly for th
inverse power potentials in Eq.~1.2!. These typically arise from the simultaneous exchange of
quanta: For example, the exchange of two pseudoscalars produces a 1/r 3 potential,2–6 while the
exchange of a neutrino–antineutrino pair leads to a 1/r 5 potential.7–10 Evaluation ofU for these
potentials in nuclei or neutron stars would lead to formally divergent integrals, but finite resul
obtained by introducing the hard-core radiusr c , which cuts off the lower limit of integration
When the hard-core restrictionur12r2u,r c is incorporated into the conventional evaluation ofU,
as in Eq.~4.3! below, it leads to complicated constraints on the six-dimensional integration re
By contrast, the same constraint can be expressed trivially in terms of the functionP3(r ) in Eq.
~1.6!, which gives the probability that two points in a sphere of radiusR are separated by a
distancer<2R. The utility of this geometric probability approach lies not only in its ability
deal with the hard core constraint, but also in its universal applicability to any potentialV(r ), as
we discuss later.

The object of the present paper is to extend the above formalism to ellipsoids and el
which would allow geometric probability techniques to be applied to systems in which there
deviations from exact spherical or circular symmetry. As in the case of the functionP3(r ), once
the corresponding functions are determined for an ellipsoid or an ellipse, the evaluation
self-energyU for an arbitrary two-body potential becomes trivial.

To set the stage for the ensuing discussion, we begin by reviewing earlier results f
probability distributions in spherically symmetric geometries. Consider two points 1 and 2 lo
at coordinatesr1 and r2 in a uniformly distributedn-dimensional sphere of radiusR, and letr
5ur12r2u. The normalized probabilityPn(r ) that 1 and 2 are separated by a distancer , 0<r
<2R, has been treated by Deltheil,11 Hammersley,12 Overhauser,13 Lord,14 and Parry15 ~see also
Kendall, and Moran16 and Santalo´17!. It is convenient to introduce the variables5r /2R, 0<s
<1, and to then definePn(s) as the normalized probability thats be in the interval (s,s1ds).
Pn(s) is given by17

Pn~s!52nnsn21I 12s2S ~n11!

2
,
1

2D , ~1.6!

whereI x(p,q) is the incomplete beta function,

I x~p,q!5
G~p1q!

G~p!G~q!
E

0

x

dt tp21~12t !q21. ~1.7!

As discussed here earlier and in Ref. 10, the results forn51,2,3 are of interest in physics whe
calculating the self-energies of various configurations of charges, and hence we exhibit the e
functional forms forP1(s), P2(s), andP3(s) below:

P1~s!52~12s!,

P2~s!5
16

p
s@cos21 s2s~12s2!1/2#, ~1.8!

P3~s!512s2~12s!2~21s!.

In terms ofPn(s) the self-energyU of a one-, two-, or three-dimensional configuration of charg
interacting via an arbitrary potentialV(s) is given by
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U5E
0

1

ds Pn~s!V~s!. ~1.9!

The effects of the hard-core radiusr c can be included trivially by replacing the lower limit in Eq
~1.9! by sc5r c/2R.

For some applications where symmetry conditions are important, it is essential to know
the results in Eqs.~1.8! change in the presence of deviations from exact circular or sphe
symmetry, characterized by a nonvanishing eccentricitye. In what follows we derive the appro
priate generalizations ofP2(r ) andP3(r ) for an ellipse and an oblate spheroid, which we den
by P2(r ;e) andP3(r ;e), respectively. The outline of our paper is as follows. In Sec. II we pres
the ~unpublished! Overhauser method for derivingP3(r ), which we then generalize in Sec. III t
obtainP3(r ;e). The expression forP3(r ;e) for an oblate spheroid is given in Eqs.~3.31!–~3.34!,
and analogous results for a prolate spheroid can then be obtained trivially. As an illust
example, we use the results of Sec. III to calculate the Coulomb energy of an ellipsoidal n
in Sec. IV, and we compare our results to those obtained earlier by Feenberg.18 In the Appendix
we present the results forP2(r ;e), which can be derived in analogy toP3(r ;e), as discussed in
Ref. 15.

II. THE METHOD OF OVERHAUSER

The results forP2(r ;e) and P3(r ;e) can be obtained using either the Hammersley12 or
Overhauser13 method. The latter has a simple geometric interpretation which is discuss
greater detail in Ref. 15, and which we summarize below.

In a uniform three-dimensional sphere of radiusR suppose that point 1 is located a distancer
from the center of the sphere and that point 2 is located a distancer from point 1. The conditional
probability that point 2 is located a distancer from point 1, given that point 1 is located a distan
r from the origin of the sphere, is defined to bef (r ur). Similarly, f (r) is the probability that point
1 is located a distancer from the origin, wherer and r are continuous random variables. The

P3~r ![ f ~r !5E
0

R

f ~r ur! f ~r! dr, ~2.1!

where f (r ) is the sought-after probability that the two points are separated by a distanr .
Evidently,

f ~r!dr5
4pr2dr

4
3 pR3

5
3r2dr

R3 ~2.2!

for 0<r<R. Since point 1 is required to be inside the sphere,f (r) must be normalized such tha

E
0

R

f ~r! dr5E
0

R 3r2

R3 dr51. ~2.3!

It is convenient to calculatef (r ) separately for the two cases, 0<r<R andR<r<2R. We show,
however, thatf (r ) has the same functional form for both regions.

When 0<r<R, there are two regions ofr in which f (r ur) has different functional forms
From Fig. 1~a! it follows that when 0<r<R2r ,

f ~r ur!dr5
4pr 2dr

4
3 pR3

5
3r 2dr

R3 . ~2.4!

However, whenR2r<r<R, the shell intersects the sphere as in Fig. 1~b!. In this case the
enclosed surface area (S) is no longer 4pr 2, but is given by
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Senclosed5r 2E
0

2p

df8E
0

u

sinu8 du852pr 2~12cosu!52pr 2F12
r21r 22R2

2rr G , ~2.5!

where the law of cosines has been used to replace cosu. Hence,

f ~r ur!dr5
3

2

r 2

R3 S 12
r21r 22R2

2rr Ddr, ~2.6!

for R2r<r<R. Combining Eqs.~2.1!, ~2.2!, ~2.4!, and~2.6! yields

P3~r ![ f ~r !5E
0

R2r S 3r2

R3 D S 3r 2

R3 D dr1E
R2r

R S 3r2

R3 D F3

2

r 2

R3 S 12
r21r 22R2

2rr D G dr

5
3r 2

R3 2
9

4

r 3

R4 1
3

16

r 5

R6 . ~2.7!

FIG. 1. ~a! ~top! Geometry for the Overhauser method when 0<r<R and 0<r<R2r . Point 2 is constrained to lie on the
surface of a spherical shell of radiusr centered at point 1. Note that the spherical shell is totally enclosed in the spher~b!
~bottom! Geometry for the case 0<r<R andR2r<r<R. The spherical shell made by point 2 intersects the sphere a
angleu. The dashed line represents the portion of the spherical shell that lies outside the sphere.
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When R<r<2R there are also two regions ofr in which f (r ur) has different functional
forms. The spherical shell lies outside the given sphere when 0<r<r 2R as seen in Fig. 2~a!, and
hence

f ~r ur!50. ~2.8!

Whenr 2R<r<R the spherical shell intersects the sphere as in Fig. 2~b!. The discussion leading
to Eq. ~2.6! can be taken over immediately and we find forr 2R<r<R,

f ~r ur! dr5
3

2

r 2

R3 S 12
r21r 22R2

2rr D dr. ~2.9!

Combining Eqs.~2.1!, ~2.2!, ~2.8!, and~2.9! yields

P3~r ![ f ~r !5E
0

r 2RS 3r2

R3 D ~0! dr1E
r 2R

R S 3r2

R3 D F3

2

r 2

R3 S 12
r21r 22R2

2rr D G dr

5
3r 2

R3 2
9

4

r 3

R4 1
3

16

r 5

R6 ~2.10!

FIG. 2. ~a! ~top! Geometry for the caseR<r<2R and 0<r<r 2R. The spherical shell is always outside the sphere wh
0<r<r 2R. The dashed line~only part of which is shown! represents the portion of the spherical shell that lies outs
the sphere.~b! ~bottom! Geometry for the case whenR<r<2R and r 2R<r<R. The spherical shell made by point
intersects the sphere at an angleu.
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for R<r<2R. We observe from Eqs.~2.7! and ~2.10! that the probability functionP3(r )[ f (r )
has the same functional form over the entire region ofr , and agrees with the results obtaine
previously by Deltheil,11 Hammersley,12 and Lord.14 P3(r )dr in Eq. ~2.10! reproduces the expres
sion for P3(s)ds in Eq. ~1.8! usings5r /2R. We note in passing that

E
0

2R

f ~r ! dr51, ~2.11!

which is the required normalization condition.

III. DISTRIBUTION OF DISTANCE IN AN OBLATE SPHEROID

A. General considerations

The equation for an oblate spheroid in Cartesian coordinates is

x2

a2 1
y2

a2 1
z2

b2 51, ~3.1!

wherea andb are the major and minor semi-axes, respectively. It is more convenient to des
the oblate spheroid in spherical coordinates~R,Q,F! so that the equation for the oblate sphero
may be written as

R~Q,F!5
aA12e2

A12e2 sin2 Q
, ~3.2!

where the eccentricity,e, is defined to be

e5A12
b2

a2. ~3.3!

It should be noted thatR(Q,F) is independent of the azimuthal angleF, and henceR(Q,F)
5R(Q). Although the oblate spheroid can be described using any two of the three variablesa, b,
and e, it is most convenient to usea and e, since the maximum possible distance between t
points in the oblate spheroid is 2a.

Suppose that point 1 is located at a position~r,u!, wherer is the distance from the origin o
the oblate spheroid andu is the angle with respect to thez axis. If point 2 is a distancer from
point 1 as in Fig. 3~a!, then it is constrained to lie on the surface of a sphere with radiusr . The
probability that point 1 is located at~r,u! is defined asP(r,u), and the conditional probability tha
point 2 is located a distancer from point 1, given that point 1 is located at a position~r,u!, is
P(r ur,u). P(r ;e) is then given by

P~r ;e!5E
0

p

duE
0

R(u)

dr P~r ur,u!P~r,u!, ~3.4!

where P(r ;e)[P3(r ;e) is the probability that two points are separated by a distancer in a
uniformly distributed oblate spheroid with eccentricitye. Since point 1 is constrained to lie on th
circumference of a circle of radiusr sinu, as shown in Fig. 3~b!, it follows that

P~r,u!dr du5
3

2

r sinu

a3A12e2
dr r du ~3.5!

for 0<r<R(u). The conditional probabilityP(r ur,u) is proportional to the surface area~en-
closed in the oblate spheroid! of the spherical shell made by point 2 as it rotates about point
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follows thatP(r ur,u) has a different functional form in each of four regions ofr ~i.e., ranges of
values of r !. When 0<r<b, the spherical shell can either be totally enclosed in the ob
spheroid or can intersect it. Whenb<r<a, the spherical shell always intersects the oblate sp
oid. Whena<r<2b, the spherical shell can either be outside the oblate spheroid or can inte
it. Finally, when 2b<r<2a, the spherical shell can either be totally outside the oblate sphero
it can intersect the oblate spheroid only over a certain region ofu. P(r ;e) cannot be expecteda
priori to have the same functional form over the entire range of values ofr , and for this reason
each of the above cases must be considered separately. We illustrate our formalism by con
the region 0<r<b.

B. The intersection of a sphere and an oblate spheroid

Since the probability functionP(r ur,u) is proportional to the surface area of the sphere
radiusr enclosed in the oblate spheroid, one must determine how an oblate spheroid and a
intersect. The surface area of the sphere enclosed in the ellipsoid can be determined by intro
a new coordinate system (x8,y8,z8) centered at point 1. Thex8 axis points in the same directio
as thex axis, out of the page. Thez8 axis points toward the origin of the original coordina
system alongr. Finally, they8 axis is perpendicular to thex8 andz8 axes. Associated with this
new coordinate system are the spherical coordinates (r ,u8,f8). The surface area of the sphe
enclosed in the oblate spheroid is then determined by

Senclosed5r 2E df8E d~cosu8!, ~3.6!

where the limits of integration depend on how the sphere and the oblate spheroid intersec

FIG. 3. ~a! ~top! Geometry of an oblate spheroid. Point 1 is at a distancer from the origin and located at an angleu as
shown. Point 2 is a distancer from 1. ~b! ~bottom! Constraint forP(r,u) in an oblate spheroid. Point 1 is constrained
lie on a circle of radiusr sinu.
                                                                                                                



here
of the
the

nd
ed in the

tion

les

ents the
e

2424 J. Math. Phys., Vol. 41, No. 4, April 2000 M. Parry and E. Fischbach

                    
Consider the case 0<r<b, for which there are two subcases. In the first subcase the sp
intersects the oblate spheroid as in Fig. 4 which, for simplicity, depicts only one quadrant
oblate spheroid. In this figure,R15R(a1) describes the position of point 2 on the surface of
oblate spheroid and is given by

R15R~a1!5
aA12e2

A12e2 sin2 a1

. ~3.7!

The surface area of the sphere enclosed in the oblate spheroid for this subcase is

Senclosed5r 2E
0

2p

df8E
cosq1

1

d~cosu8!5E
0

2p

r 2~12cosq1! df8. ~3.8!

The integration overf8 is nontrivial sinceq15q1(f8), and will be discussed below.
In the second subcaseR25R(a2) andR35R(a3) represent the positions of intersection a

are defined in the same manner as above. In this case the surface area of the sphere enclos
oblate spheroid is

Senclosed5r 2E
0

2p

df8E
21

cosq3
d~cosu8!1r 2E

0

2p

df8E
cosq2

1

d~cosu8!

54pr 21r 2E
0

2p

~cosq32cosq2! df8. ~3.9!

To determineP(r ;e), cosqi ( i 51,2,3) must be expressed in terms of the positions of intersec
Ri which depend on the anglesa i explicitly as in Fig. 4. cosqi can be expressed in terms ofRi

using the law of cosines,

cosq i5
r21r 22R i

2

2rr
. ~3.10!

Equation~3.10! does not give a total representation of the angleq i sinceRi itself depends on the
unknown anglea i . This makes it necessary to find a second relationship between the angq i

anda i .
Consider the triangle formed byr, r , andRi and its relationship to thez axis of the defined

coordinate system. From Fig. 5,

FIG. 4. One configuration illustrating the intersection of a sphere and an oblate spheroid. The dotted line repres
portion of the spherical shell that lies outside of the oblate spheroid.R1 is the distance from the origin to the surface of th
oblate spheroid at the location of the intersection, and is described by an anglea1 according to Eq.~3.7!. The angleq1

represents the position of intersection.
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Ri cosa i5r cosu1r z5r cosu1r sinf8 sinq i sinu2r cosq i cosu. ~3.11!

Combining Eqs.~3.10! and ~3.11! gives a quartic equation in cosqi whose solution can be ex
pressed as a series in powers ofe:

cosq i5Y1
e2

2rr
@a2 cos2 u1r 2~12Y2!~sin2 f8 sin2 u2cos2 u!#

1
e4

4r2r 2 @2rra2 cos2 u sin2 u12r 2a2Y~cos4 u23 sin2 f8 sin2 u cos2 u!

12rr 3~12Y2!~sin2 f8 sin4 u2sin2 u cos2 u22 sin2 f8 sin2 u cos2 u!

12r 4Y~12Y2!~6 sin2 f8 sin2 u cos2 u2sin4 f8 sin4 u2cos4 u!#10~e6!

1•••, ~3.12!

Y5
r21r 22a2

2rr
, ~3.13!

where ... denotes terms of ordere2 ande4 which do not contribute to the surface area. Note t
cosqi has the same functional form fori 51,2,3, and hence we drop the subscripti .

For 0<r<b there are thus two possibilities for the intersection of the sphere and the ellip
For the purpose of calculating the surface area, the sphere is effectively~i.e., to ordere4! totally
enclosed in the oblate spheroid for 0<r<R2r , which gives

Senclosed54pr 2. ~3.14!

However, whenR2r<r<R the sphere intersects the oblate spheroid and produces a surfac
equal to

Senclosed5E
0

2p

r 2~12cosq! df8. ~3.15!

When the expression for cosq in Eq. ~3.12! is substituted into the above result and the integrat
is carried out, we find

FIG. 5. Enlargement of Fig. 4 showing the primed coordinate system used to calculate the enclosed surface area
for further details.
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Senclosed52pr 2H ~12Y!2
e2

2rr Fa2 cos2 u1r 2~12Y2!S 1

2
sin2 u2cos2 u D G

2
e4

4r2r 2 F2rra2 sin2 u cos2 u12r 2a2YS 2
3

2
cos2 u1

5

2
cos4 u D12rr 3~12Y2!

3S 5

2
cos4 u23 cos2 u1

1

2D12r 4Y~12Y2!S 2
35

8
cos4 u1

15

4
cos2 u2

3

8D G J . ~3.16!

The calculation of the intersection of a sphere and an oblate spheroid for the case in wb
<r<2a can be carried out in an analogous manner, and leads to the same result as in Eq~3.16!
above. It follows that when the spherical shell and the oblate spheroid intersect, the surface
independent of the regions ofr and is always given by Eq.~3.16!. The conditional probability
P(r ur,u) is then given by

P~r ur,u!5
Senclosed

~4/3!pa3A12e2
, ~3.17!

where the denominator is the volume of the ellipsoid.P(r ur,u) is explicitly given in Eqs.~3.18!–
~3.20! below.

C. The determination of P„r ; e…

We begin by summarizing the three possible functional forms forP(r ur,u). When 0<r<b
and 0<r<R2r , the sphere is effectively totally enclosed in the oblate spheroid, and henc
contribution toP(r ur,u) is

P~r ur,u!5
3r 2

a3A12e2
. ~3.18!

When the sphere intersects the oblate spheroid for 0<r<b, R2r<r<R, and a<r<2b,
r 2R<r<R, the contribution toP(r ur,u) is

P~r ur,u!5
3

2

r 2

a3A12e2 H ~12Y!2
e2

2rr Fa2 cos2 u1r 2~12Y2!S 1

2
2

3

2
cos2 u D G

2
e4

4r2r 2 F2rra2 sin2 u cos2 u1r 2a2Y~23 cos2 u15 cos4 u!

1rr 3~12Y2!~5 cos4 u26 cos2 u11!

1
1

4
r 4Y~12Y2!~235 cos4 u130 cos2 u23!G J . ~3.19!

Finally, whena<r<2b, and 0<r<r 2R, the sphere is effectively totally outside the obla
spheroid, and hence the contribution toP(r ur,u) is

P~r ur,u!50. ~3.20!

The functional forms ofP(r ur,u) and P(r,u) can be used to determineP(r ;e). Since
P(r ur,u) has only been determined for the upper half of the oblate spheroid, which is specifi
point 1 in the the range 0<u<p/2, the corresponding contribution toP(r ;e) for point 1 lying in
the upper half of the oblate spheroid is given by
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P~r ;e!upper5E
0

p/2

duE
0

R
dr P~r ur,u!P~r,u!. ~3.21!

Similarly, the contribution from the lower half of the oblate spheroid is given by

P~r ;e! lower5E
p/2

p

duE
0

R
dr P~r ur,u!P~r,u!, ~3.22!

so that

P~r ;e!5P~r ;e!upper1P~r ;e! lower. ~3.23!

On symmetry grounds it follows that

P~r ;e!upper5P~r ;e! lower, ~3.24!

which implies that

P~r ;e!52P~r ;e!upper. ~3.25!

In analogy to the case of the sphere treated in Sec. II,P(r ;e) can be obtained by evaluating
separately in each of four regions of the variabler . For 0<r<b the sphere is effectively totally
enclosed in the oblate spheroid in a region where 0<r<R2r , and it intersects the oblate sphe
oid in a region whereR2r<r<R. Using the results of Eqs.~3.5!, ~3.18!, ~3.19!, ~3.21!, and
~3.25!,

P~r ;e!upper5
1

2
P~r ;e!5E

0

p/2E
0

R2r

dr duS 3r2 sinu

2a3A12e2D S 3r 2

a3A12e2D
1E

0

p/2E
R2r

R
dr duS 3r2 sinu

2a3A12e2D S 3r 2

2a3A12e2D H ~12Y!2
e2

2rr Fa2 cos2 u

1r 2~12Y2!S 1

2
2

3

2
cos2 u D G2

e4

4r2r 2 F2rra2 sin2 u cos2 u

1r 2a2Y~23 cos2 u15 cos4u!1rr 3~12Y2!~5 cos4 u26 cos2 u11!

1
1

4
r 4Y~12Y2!~235 cos4 u130 cos2 u23!G J , ~3.26!

where

R5R~u!5
aA12e2

A12e2 sin2 u
. ~3.27!

Among the terms appearing in Eq.~3.26!, several do not contribute to ordere4. These are given
by
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E
0

1E
a2r

a

dr d~cosu!S 3r2

2a3A12e2D S 3r 2

2a3A12e2D S 2e4

4r2r 2D
3H r 2a2Y~23 cos2 u15 cos4u!1rr 3~12Y2!~5 cos4 u26 cos2 u11!

1
1

4
r 4Y~12Y2!~235 cos4 u130 cos2 u23!J . ~3.28!

Notice that to ordere4, the limits on ther integration can be replaced bya2r anda, respectively.
From Eq.~3.26!,

P~r ;e!upper5
1

2
P~r ;e!5E

0

1

d~cosu!
9r 2

4a6~12e2! H 1

6
R 32

1

4
R 2r 1

1

24
r 31

1

2
Ra22

1

4
ra2

1e2S 2
1

2
a2R1

1

4
ra2 cos2 u D1e2S 1

4
2

3

4
cos2 u D

3F1

4
R 31

3

16
r 32

1

4
Rr 22

3

8
R 2r 2

1

2
Ra21

1

4
ra2

2
1

4

~r 22a2!2

r
lnS 12

r

RD G1e4 sin2 u cos2 uS 2
1

2
Ra21

1

4
ra2D J .

~3.29!

The integration over cosu can be carried out by combining Eq.~3.27! and the results for
various useful integrals which are tabulated in Ref. 15. We find to ordere4,

P~r ;e!5S 3
r 2

a3 2
9

4

r 3

a4 1
3

16

r 5

a6D1e2S 3

2

r 2

a3 2
3

2

r 3

a4 1
3

16

r 5

a6D
1e4S 9

8

r 2

a3 2
27

20

r 3

a4 1
9

40

r 5

a6D1O~e6!. ~3.30!

Although this probability function is valid for only one region ofr (0<r<b), the analogous
results for the other three regions can be obtained in a similar manner.15

D. Final results

Although we have argued that the functional form ofP(r ;e) could be different in each of the
four regions 0<r<b, b<r<a, a<r<2b, and 2b<r<2a, it turns out that the first three region
are in fact described by the expression given in Eq.~3.30!. Hence the final expression forP(r ;e)
is

P~r ;e!5H PI~r ;e!, 0<r<2b,

PII~r ;e!, 2b<r<2a,
~3.31!

where

PI~r ;e!5S 3
r 2

a3 2
9

4

r 3

a4 1
3

16

r 5

a6D1e2S 3

2

r 2

a3 2
3

2

r 3

a4 1
3

16

r 5

a6D
1e4S 9

8

r 2

a3 2
27

20

r 3

a4 1
9

40

r 5

a6D1O~e6! ~3.32!

and
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PII~r ;e!5XH S 3
r 2

a3 2
9

4

r 3

a4 1
3

16

r 5

a6D1e2S 3

2

r 2

a3 2
3

2

r 3

a4 1
3

16

r 5

a6D1e4S 9

8

r 2

a3 2
27

20

r 3

a4 1
9

40

r 5

a6D J
1e2X~12X2!H 117

96

r 2

a3 2
171

192

r 3

a4 2
9

32

r 4

a5 1
27

128

r 5

a6 2
9

32

r ~r 22a2!2

a6 ln S r

a
21D J

1e4X~12X2!H 1251

768

r 2

a3 2
2619

2560

r 3

a4 2
171

256

r 4

a5 1
2259

15360

r 5

a6 1
27

512

r 7

a8

2
171

256

r 3~r 22a2!

a6 ln S r

a
21D1

63

256

r ~r 22a2!

a4 ln S r

a
21D J

1e4X3~12X2!H 2
261

256

r 2

a3 1
711

2560

r 3

a4 1
135

256

r 4

a5 1
1323

5120

r 5

a6 2
63

512

r 7

a8

1
135

256

r 3~r 22a2!

a6 ln S r

a
21D2

27

256

r ~r 22a2!

a4 ln S r

a
21D J 1O~e6!, ~3.33!

X[
A12e2

e
A4a2

r 2 21. ~3.34!

Although the functional form ofP(r ;e) is different in the region 2b<r<2a from what it is in the
other regions, it can be shown that at the boundary of these two regions,

PI~2b;e!5PII~2b;e!1O~e6!,
~3.35!

PI8~2b;e!5PII8~2b;e!1O~e4!,

where the primes denote differentiation with respect tor . It is also straightforward to show tha
the expression forP(r ;e) given Eqs.~3.31!–~3.34! is appropriately normalized,

E
0

2b

PI~r ;e! dr1E
2b

2a

PII~r ;e! dr511O~e6!. ~3.36!

Figures 6 and 7 compare the analytic expressions found in Eqs.~3.31!–~3.34! to the results of

FIG. 6. A plot of probability functionP3(r ;e) as a function ofr for an ellipsoid witha51.0 ande50.3. The solid line
is the analytic function in Eqs.~3.31!–~3.34!. Also shown~but not visible! is a Monte Carlo simulation ofP3(r ;e) which
is indistinguishable from the analytic result. Note that the result for the ellipsoid differs from that for a sphere with
a51.0, which is shown by the dotted line.
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a Monte Carlo simulation for different values ofe. For these simulations we have generated 19

random points in an oblate spheroid in whicha51.0 so that the largest possible distance betw
two points is 2.0. In addition the figures compare the results forP3(r ;e) to those of a sphere with
radiusa51.0. We see from these figures that the probability functions for an oblate sphero
clearly different from those for a sphere. Moreover, the analytic results are seen to agre
those of the Monte Carlo simulation fore&0.6. For larger values ofe higher powers ofe2 would
necessarily have to be included in our expansions.

IV. APPLICATIONS

We illustrate the application of our results in Eqs.~3.31!–~3.34!, by using them to calculate
the Coulomb energy of a charged ellipsoid. As noted in Sec. I, the significance of these res
that they allow^V(r )&[U to be computed for an arbitrary two-body potentialV(r ) in terms of a
simple one-dimensional integral over the ellipsoidal matter or charge distribution. The Cou
energy of an ellipsoidal nucleus has been found previously by Feenberg18 using a different
method, and we will show that our result agrees with that obtained in Ref. 18 to ordere4. We find
the Coulomb energy of a charged ellipsoid following the same procedure discussed in Sec.
potential energy of two charges,e15e25e, separated by a distancer is

V~r !5
e2

ur12r2u
5

e2

r
, ~4.1!

and the probabilities of finding these charges atr1 and r2 arer1d3r 1 andr2d3r 2 , respectively,
where

r15r25r05
1

4
3 pa3A12e2

. ~4.2!

It follows that the potential energy between two such charges in an ellipsoid of uniform ch
density is

dU5~r0d3r 1!~r0d3r 2!V~ ur12r2u!. ~4.3!

As in the case of a spherical matter or charge distribution, the average potential energy is fo
integrating over all possibler1 and r2 in the ellipsoid, which necessitates the evaluation o

FIG. 7. A plot of the probability functionP3(r ;e) as a function ofr for an ellipsoid witha51.0 ande50.6. Note that
P3(r ;e) in Eqs.~3.31!–~3.34! deviates slightly from the Monte Carlo simulation, shown by the dashed line, and that
of these curves differ from that for a sphere, shown by the dotted line.
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nontrivial six-dimensional integral. By contrast, the present formalism allows the same calcu
to be carried out as a one-dimensional integral using the ellipsoid probability function. SinceU is
the average electrostatic energy, it may be written as

U5^V~r !&ellipsoid5E
0

2a

P~r !V~r ! dr5E
0

2b

PI~r !V~r ! dr1E
2b

2a

PII~r !V~r ! dr, ~4.4!

wherePI(r ) and PII(r ) are the probability functions for each region ofr and are given by Eqs
~3.32! and ~3.33!, respectively. The integrals in Eq.~4.4! can be evaluated in a straightforwa
manner and, after expanding the results in powers ofe, we find to ordere4

U5
6

5

e2

a H 11
1

6
e21

3

40
e41O~e6!J . ~4.5!

Equation~4.5! gives the energyU for a single pair of charges. Since a nucleus which containZ
charges can formZ(Z21)/2 pairs, it follows that the Coulomb energyWC of a charged ellipsoid
to ordere4 is

WC5
3

5

Z2e2

a H 11
1

6
e21

3

40
e41O~e6!J , ~4.6!

whereZ(Z21) has been approximated byZ2. The result of Eq.~4.6! can be compared to Feen
berg’s calculation18 of the Coulomb energy of a perturbed nucleus. Feenberg assumes th
nucleus is perturbed from its original spherical shape to an ellipsoid defined by

x21y21S z

ā
D 2

5
R2

ā2/3, ~4.7!

whereR is the radius of the unperturbed nucleus. Note that in the above parametrization
ellipsoid the volume of the nucleus is always 4pR3/3 independent ofā. When the nucleus is
perturbed, Feenberg finds for the Coulomb energy

WC5
3

5

Z2e2

R H 12
4

45
~ ā21!21¯J . ~4.8!

To compare Eqs.~4.6! and ~4.8! we note that the equation for the ellipsoid in Eq.~3.1!,

x2

a2 1
y2

a2 1
z2

b2 51, ~4.9!

can be written as

x21y21S z

A12e2D 2

5a2, ~4.10!

where we have replacedb with aA12e2. Comparing Eqs.~4.10! and ~4.7!, we see that

ā5A12e2, ~4.11!

R5a~12e2!1/6. ~4.12!

Combining Eqs.~4.8!, ~4.11!, and~4.12!, we find
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WC5
3

5

Z2e2

a~12e2!1/6H 12
4

45
~A12e221!21¯J . ~4.13!

Expanding Eq.~4.13! in a Taylor series aboute50, we find

WC5
3

5

Z2e2

a H 11
1

6
e21

3

40
e41O~e6!J . ~4.14!

This is exactly the same result that was found in Eq.~4.6! by using the ellipsoid probability
function.

We note in passing that although it may appear from Eq.~4.14! that the Coulomb energy o
the ellipsoid is larger than that of the original sphere, this is not the case. Recall that the
turbed nucleus has a Coulomb energy given by

WC
sphere5

3

5

Z2e2

R
. ~4.15!

When this is compared to the leading term in Eq.~4.14!, we observe that

3

5

Z2e2

R
.

3

5

Z2e2

a
~4.16!

sinceR,a. Even though it seems as though more terms are being added to the original e
this is not the case since the leading term in Eq.~4.14! is not the original energy. In fact, if we
replacea with R(12e2)21/6 in Eq. ~4.14!, and then expand the result in a Taylor series, we fi
that the Coulomb energydecreasesas a result of perturbing the nucleus from its original spher
shape.
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APPENDIX: DISTRIBUTION OF DISTANCE IN A ELLIPSE

We present in this Appendix the probability distribution of distance in an ellipse. The prev
formalism can be taken over immediately to obtainP2(r ;e) for an ellipse, as discussed in Ref. 1
and hence only the final results are presented here. We find

P2~r ;e!5H P2I~r ;e!, 0<r<2b,

P2II~r ;e!, 2b<r<2a,
~A1!

P2I~r ;e!5
1

pa H 8F S r

2aD cos21 S r

2aD2S r

2aD 2A12S r

2aD 2G14e2F S r

2aD cos21 S r

2aD
22S r

2aD 2A12S r

2aD 2G13e4F S r

2aD cos21 S r

2aD23S r

2aD 2A12S r

2aD 2

1
1

4 S r

2aD 2X12S r

2aD 2C21/2G J , ~A2!
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P2II~r ;e!5
4

p2a S r

2aD HFcos21S r

2aD2S r

2aDA12S r

2aD 2G4 cos21 ~X!

1e2F2 cos21 S r

2aD $cos21 ~X!1XA12X2%22S r
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A simple expression is derived for the terms in the Baker–Campbell–Hausdorff
series. One formulation of the result involves a finite number of operations with
matrices of rational numbers. Generalizations are discussed. ©2000 American
Institute of Physics.@S0022-2488~00!03604-5#

I. INTRODUCTION

The Baker–Campbell–Hausdorff series has a long history and has applications in a
variety of problems, as explained in Refs. 1–13. In a classic paper, Goldberg1 was able to derive
an integral expression for the coefficients in the general term, and this result is still used to2–4

to calculate the Baker–Campbell–Hausdorff series.
In this paper, we present a simple method for calculating the terms in the Baker–Camp

Hausdorff series. The process can be carried out by hand, and it is easily implemente
computer.

II. STATEMENT OF THEOREM

We let z5 log(ex ey) denote the Baker–Campbell–Hausdorff series for noncommuting v
ables x and y. Our result for thenth order termzn in this series is given by the following
procedure, which involves only a finite number of matrix multiplications. We state our re
without reference to commutators. If an expression in terms of commutators is desired, o
pression can be transformed using the substitution due to Dynkin.3,5–7 Each product involvingx
and y variables is replaced by 1/n times the corresponding iterated commutator of the sa
sequence ofx’s andy’s. The quantityzn is invariant under this transformation.

To calculatezn , the entirenth order term in the Baker–Campbell–Hausdorff series,
compute a certain polynomial inn ~ordinary commuting! variables,s1 ,...,sn , and then make a
replacement, as described below. We begin by defining two (n11)3(n11) matricesF andG by

Fi j 5
1

~ j 2 i !!
~2.1!

and

Gi j 5
1

~ j 2 i !! )
k5 i

j 21

sk . ~2.2!

These equations are valid for alli and j from 1 to n11, with the usual convention that th
reciprocal of the factorial of a negative integer is zero. Written out explicitly, the matrices a

a!Electronic mail: reinsch@uclink4.berkeley.edu
24340022-2488/2000/41(4)/2434/9/$17.00 © 2000 American Institute of Physics
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F5S 1 1 1
2

1
6 ...

1 1 1
2

1
6 ...

1 1 1
2

1
6 ...

•

•

•

1

D ~2.3!

and

G5S 1 s1
1
2 s1s2 ...

1 s2
1
2 s2s3 ...

1 s3
1
2 s3s4 ...

•

•

• sn

1

D . ~2.4!

Although it is not necessary for the calculation of results, we point out at this point tha
matricesF and G are exponentials of very simple matrices. We define two (n11)3(n11)
matricesM andN by

Mi j 5d i 11,j ~2.5!

and

Ni j 5d i 11,j s i . ~2.6!

These equations are valid fori andj ranging from 1 ton11. A simple application of the definitio
of the exponential function givesF5expM and G5expN. Written out explicitly, these state
ments are

F5expS 0 1 0 ...

0 1 0 ...

•

•

•

0 1

0

D ~2.7!

and
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G5expS 0 s1 0 ...

0 s2 0 ...

•

•

•

0 sn

0

D . ~2.8!

The matricesM andN will be used later in a proof.
Our expression for thenth order term in the Baker–Campbell–Hausdorff series is

zn5T~ logFG!1,n11 . ~2.9!

The indices on the right-hand side of this equation indicate the upper-right element of the m
logFG. The operatorT replaces products ofs-variables with products ofx andy according to the
following procedure. The polynomial (logFG)1,n11 is a sum of terms, each of which may b
written as a rational number timess1

m1s2
m2
¯sn

mn, where them i are either 0 or 1~no exponents

greater than 1 occur, as explained later in this paper!. Next,s i
m i is replaced withx if m i50 andy

if m i51. Thus eachs i that occurs~to the first power! in a term indicates that ay is to be placed
at the i th location in the product ofx and y variables. For example, in the casen56, we have
T(s2s4s5)5xyxyyx. The operatorT is a vector-space isomorphism from the space of poly
mials in thes-variables~with m i<1) to the space of linear combinations of products that havn
factors that are eitherx or y.

The log operation in Eq.~2.9! is simple becauseFG is equal to the (n11)3(n11) identity
matrix ~which we denote byI! plus a matrix that is strictly upper triangular. Thus the series
log@I1(FG2I)# terminates after finitely many terms,

logFG52 (
q51

n
~21!q

q
~FG2I !q . ~2.10!

The calculation ofzn , the ordern term in the Baker–Campbell–Hausdorff series, can therefor
carried out with a finite number of simple operations. There are no sums over partitions, o
tions with noncommuting variables, translations of binary sequences into descriptions in te
block lengths, etc.

III. EXAMPLES

Let us begin by working out the example ofn51. We have

F5S 1 1

0 1D ~3.1!

and

G5S 1 s1

0 1 D . ~3.2!

From this follows

FG5S 1 11s1

0 1 D ~3.3!
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and

z15T~ logFG!1,1115T~s1
01s1

1! ~3.4!

5x1y. ~3.5!

Next let us work out the example ofn52. We have

F5S 1 1 1
2

0 1 1

0 0 1
D ~3.6!

and

G5S 1 s1
1
2 s1s2

0 1 s2

0 0 1
D . ~3.7!

From this follows

FG5S 1 11s1
1
21s21

s1s2

2

0 1 11s2

0 0 1

D ~3.8!

and

~FG2I !25S 0 0 11s11s21s1s2

0 0 0

0 0 0
D , ~3.9!

so that

z25T~ logFG!1,2115T~ 1
2 s1

0s2
12 1

2 s1
1s2

0! ~3.10!

5 1
2 ~xy2yx!. ~3.11!

For the casen53, the equations result in

z35T~ 1
12 s12 1

6 s21 1
12 s31 1

12 s1s22 1
6 s1s31 1

12 s2s3! ~3.12!

5 1
12 yxx2 1

6 xyx1 1
12 xxy1 1

12 yyx2 1
6 yxy1 1

12 xyy. ~3.13!

The casen54 works out to be

z45T~2 1
24 s1s21 1

12 s1s32 1
12 s2s41 1

24 s3s4! ~3.14!

52 1
24 yyxx1 1

12 yxyx2 1
12 xyxy1 1

24 xxyy. ~3.15!

These results and higher-order calculations not shown here agree with results published
literature.3,4 As an example of the types of coefficients that occur, whenn is 7 our formula gives
a coefficient of21/1512 for theyxxxyyyterm, and this agrees with the literature result.
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IV. PROOF OF THEOREM

We begin by considering the Baker–Campbell–Hausdorff series for log(eMeN), where the
(n11)3(n11) matricesM andN are defined in Eqs.~2.5! and~2.6!. The matricesM andN are
written out explicitly on the right-hand sides of Eqs.~2.7! and~2.8!. They have nonzero elemen
only on the first superdiagonal. Therefore, a product havingm factors that are eitherM or N will
have nonzero elements only on themth superdiagonal. Thus, the upper-right element of the ma
log(eMeN) is equal to the upper-right element of the matrix that is the ordern term in the Baker–
Campbell–Hausdorff series for log(eMeN). We write this as

@ log~eMeN!#1,n115(
W

C~W!@)~W!#1,n11 , ~4.1!

where the sum runs over all ‘‘words’’W of lengthn ~orderedn-tuples of elements that are eithe
the symbolM or the symbolN!, C(W) denotes the coefficient ofW in the ordern term in the
Baker–Campbell–Hausdorff series, and)(W) denotes a product ofM andN matrices as specified
by the wordW.

We now show that@)(W)#1,n11 is a product ofs-variables whose indices give the positio
of theN’s in the wordW. We let the matrix)(W) act on an (n11)-component column vector tha
is all zeroes except the lowest element, which is a 1. After each multiplication by anM or anN
matrix, the location of the nonzero element in the column vector moves up by one step.
matrix multiplying the column vector is anN, the nonzero element in the column vector ge
multiplied by as. The index on thes gives the location of theN matrix in the wordW, as can be
seen by looking at the structure of theN matrix, shown on the right-hand side of Eq.~2.8!. After
all of the n matrices in the wordW have acted on the column vector, the nonzero element in
vector is at the top, and this element is a product ofs-variables whose indices describe the wo
W in the manner explained above. The top element of the vector obtained by letting a mat
on the initial column vector described above is the upper-right element of the matrix. Thu
have shown that@P(W)#1,n11 is a product ofs-variables whose indices give the positions of t
N’s in the wordW. This fact together with the relationsF5expM andG5expN and Eq.~4.1!
proves Eq.~2.9!.

V. ALTERNATIVE FORMULATION

In this section we present a result equivalent to the result presented above, but the
operations involve only numbers. We will express thenth order term,zn , as a linear combination
of terms of the form (x1s1y)(x1s2y)¯(x1sny), where thes’s are either11 or 21. There
are 2n such terms. Our result is that the coefficient of a given term is 22n times the value of the
polynomial (logFG)1,n11 defined Sec. II, with the correspondings-values substituted in. This
number can be computed by substituting thes-values into theG matrix before doing the matrix
operations. These statements can be summarized as

zn522n (
s1 ,...,sn

~ logFG!1,n11~x1s1y!~x1s2y!¯~x1sny!, ~5.1!

where the sum is over all 2n possible assignments of61 to thes-variables.
Let us work out an example. Forn52 the equation becomes

z25222 (
s1 ,s2

S s2

2
2

s1

2 D ~x1s1y!~x1s2y! ~5.2!

5
1

4 F S 1

2
2

21

2 D ~x2y!~x1y!1S 21

2
2

1

2D ~x1y!~x2y!G ~5.3!

5
1

2
~xy2yx!, ~5.4!
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where we have used Eq.~3.10!.
A calculation ofzn without the use of multiplication of matrices of polynomials would pr

ceed in the following way. For every choice of11 or 21 values for thes-variables one compute
the value of 22n(logFG)1,n11 . This involves a finite number of operations with numbers. T
result is the coefficient of (x1s1y)(x1s2y)¯(x1sny) in the expression forzn in Eq. ~5.1!.
Next, we imagine the process of expanding all of the products (x1s1y)(x1s2y)¯(x1sny).
The result of this operation is a sum over words in the variablesx andy. To get the coefficient of
a particular word one sums all of the coefficients calculated from 22n(logFG)1,n11 with a sign
given by the product of thes’s at the locations of they’s in the word. For example, if the word i
xxyyxythen the coefficients are summed with signs given bys3s4s6 .

We now prove Eq.~5.1!. We consider the ordern term in log(ex1yex2y). This may be written
in two ways,

(
s1 ,...,sn

C~s1 ,...,sn!~x1s1y!¯~x1sny!5(
W

C8~W!W. ~5.5!

The sum on the left-hand side is a sum over all assignments of11 or 21 to the variables
s1 ,...,sn . The coefficientC(s1 ,...,sn) is the usual coefficient in the Baker–Campbel
Hausdorff series, with thes’s identifying a word. The right-hand side of Eq.~5.5! results from
multiplying out all of the products (x1s1y)¯(x1sny). It is a sum over words inx andy, and
C8(W) denotes the resulting coefficient of the wordW. @In this context we use the term ‘‘word’
to denote an actual product of a certain sequence ofx andy variables, because such a product do
not evaluate to become something else, as it did in the case of the products ofM andN matrices
in the previous section. Thus, the notationP(W) is not needed in Eq.~5.5!.# The coefficient
C8(W) of a particular wordW can be expressed in terms of theC(s1 ,...,sn). For every set of
values for s1 ,...,sn in the sum on the left-hand side we get a contribution toC8(W) of
C(s1 ,...,sn) times the product of thes’s that correspond to they’s in W. This product is the same
as the product ofs i

(W) , where thes (W) values describe the wordW (s i
(W) is 11 if the i th factor

in W is x, and s i
(W) is 21 if the i th factor in W is y!, and the product runs overi-values

corresponding to negatives’s. Thus,C8(W) is precisely the polynomial ins (W) given in the first
theorem. Now we transform fromx andy to new variables according tox1y5 x̃ andx2y5 ỹ.
This impliesx5( x̃1 ỹ)/2 andy5( x̃2 ỹ)/2, and the right-hand side of Eq.~5.5! ~which equals the
order n term in logex̃eỹ) becomes the right-hand side of Eq.~5.1!, after the tildes have bee
dropped, which is justified since only variables with tildes occur at that point. Then factors of 1/2
are collected into the factor of 22n in Eq. ~5.1!.

VI. SYMMETRIES OF THE COEFFICIENTS

The calculation described in the penultimate paragraph of the preceding section inv
repeated evaluation of (logFG)1,n11 with values of11 and21 substituted in for thes-variables.
These numbers are the coefficients in the sum in Eq.~5.1!. We begin this section by showing tha
half of the resulting numbers will be zero because of a basic symmetry of the Baker–Cam
Hausdorff series. Then we show that some of the nonvanishing coefficients can be obtaine
other ones. These considerations reduce the computational work involved in calculating the
ficients in Eq.~5.1!.

The relationshipez5exey implies e2z5e2ye2x and

z52 loge2ye2x. ~6.1!

From this we see that swapping thex’s andy’s in the nth order termzn gives the same result a
multiplying zn by (21)n21. In the present context, thes-variables are being assigned values
11 or 21, so we may use the relationships i

251. The preceding statement about the symmetry
zn is equivalent to
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~ logFG!1,n11)
i 51

n

s i5~21!n21~ logFG!1,n11 . ~6.2!

Multiplication by P i 51
n s i effects a swapping ofx andy, because of the relationships i

251. If the
number ofs’s that are11 is even thenP i 51

n s i will equal (21)n because all of thes’s in the
product may be replaced with21 without changing the value of the product. Therefore, if t
number ofs’s that are11 is even, then (logFG)1,n11 is zero. Elementary combinatorics show
that this condition holds for one-half of the terms in the sum in Eq.~5.1!. In the case of oddn
greater than 1, there is one additional term which vanishes, namely the one for which all of ts’s
are11. This is because the matricesM andN are equal and therefore commute. Thus logFG is
equal toM1N and the upper-right element of logFG is zero.@In the case of evenn, ( logFG)1,n11

of course also vanishes when all of thes’s are11, but this vanishing has already been counted
the discussion above.#

Thus far, we have identified coefficients in the sum in Eq.~5.1! that are zero for symmetry
reasons. This author has searched up through ordern515 and found all of the remaining coeffi
cients to be nonzero.

A further symmetry of (logFG)1,n11 is

@~ logFG!1,n11#~s1 ,...,sn!5~21!n21@~ logFG!1,n11#~sn ,...,s1!. ~6.3!

The notation on the left-hand side of this equation indicates explicitly that (logFG)1,n11 is a
function of then variabless1 ,...,sn . On the right-hand side, thesen quantities are inserted into
the function in the reversed order. The fact that these two values of the function are relate
factor of (21)n21 is due to a symmetry of the Baker–Campbell–Hausdorff series. It foll
immediately from results in Ref. 1 that the coefficient of a word in the variablesx andy is equal
to (21)n21 times the coefficient of the word obtained by reversing the order of the factors i
original word. This implies thatT$@(logFG)1,n11#(sn ,...,s1)% ~whereT is the operator defined in
Sec. II!, which is the ordern term in the Baker–Campbell–Hausdorff series with the sequenc
the factors in each term reversed, is equal to (21)n21 times T$@(logFG)1,n11#(s1 ,...,sn)%.
Because the vector-space isomorphismT is invertible, this proves Eq.~6.3!. This equation is usefu
because it can be used to avoid carrying out unnecessary evaluations of (logFG)1,n11 .

VII. COMPUTER IMPLEMENTATION

The methods presented in this paper can easily be used with computers. A simple exam
how the results of Sec. II can be implemented using Mathematica is shown below. It i
necessary to load any special packages to run this code. This example is oriented toward
coding. Faster implementations are possible. The first program gives the polynomial to the r
the T operator in Eq.~2.9!, and the second program~for n.1) translates this intozn , the corre-
sponding expression in terms ofx andy,

p[n –] ªp[n]=(F=Table[1/(j−i)!, $i,n+1 %, $j,n+1 %];

G=Table[1/(j−i)! Product[s[k], $k,i,j−1 %], $i,n+1 %, $j,n+1 %];

qthpower=IdentityMatrix[n+1]; FGm1=F.G−qthpower;Expand[

−Sum[qthpower=qthpower.FGm1; (−1)ˆq/q qthpower, $q,n %][[1,n+1]]])

translated[n –] ª(temp=Expand[Product[s[k]ˆ2, $k,n %]p[n]];

Sum[term=Apply[List, temp[[i]]]; term[[1]] Apply[StringJoin,

Take[term,−n]/. $s[i –]ˆ2–> 9x 9,s[i –]ˆ3–> 9y 9%], $i,Length[temp] %])
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In[3] ªtranslated[4]

Out[3]=

xxyy
----

24
2

xyxy
----

12
+

yxyx
----

12
2

yyxx
----

24

VIII. OTHER SERIES

As in the case of Goldberg’s results,1 the methods of this paper can be used to calculate
f (x) f (y), where f (x) is an arbitrary power series withf (0)51. The only changes that ar
necessary are that occurrences of the exponential function such as those in Eqs.~2.7! and ~2.8!
must be replaced with the functionf. The matricesM andN have the property that when they a
raised to the powern11 the result is zero, so the calculation off (M ) and f (N) terminates after
finitely many matrix operations.

IX. GENERALIZED BAKER–CAMPBELL–HAUSDORFF SERIES

The methods presented in Sec. II may also be used to calculate the terms in gene
Baker–Campbell–Hausdorff series. For example, ifz5 logexeyew then thenth order term may be
found as follows. MatricesF andG are defined as in Eqs.~2.1! and~2.2!, and a matrixH is defined
by

Hi j 5
1

~ j 2 i !! )
k5 i

j 21

tk , i , j 51,...,n11, ~9.1!

where t1 ,...,tn are n additional commuting variables. The definition ofH is the same as the
definition of G, except that different variables are used. Reasoning similar to that in the ori
case gives the following expression forzn ,

zn5T~ logFGH!1,n11 , ~9.2!

where the definition of theT operator now has been extended to also putting aw at thei th position
of a product ofx’s, y’s, and w’s for an occurrence oft i . For example, whenn is 4, we have
T(s2t3)5xywx. The results obtained from Eq.~9.2! agree with those obtained from Reutena
er’s generalization8 of Goldberg’s theorem.

An example of how these methods can be used with Mathematica is shown below. For e
coding, the notation has been changed slightly,

p3[n –] ªp3[n]=(

F=Table[1/(j−i)! Product[s[k, 9x 9], $k,i,j−1 %], $i,n+1 %, $j,n+1 %];

G=Table[1/(j−i)! Product[s[k, 9y 9], $k,i,j−1 %], $i,n+1 %, $j,n+1 %];

H=Table[1/(j−i)! Product[s[k, 9w9], $k,i,j−1 %], $i,n+1 %, $j,n+1 %];

qthpower=IdentityMatrix[n+1]; FGm1=F.G.H.−qthpower; Expand[

−Sum[qthpower=qthpower.FGm1; (−1)ˆq/q qthpower, $q,n %][[1,n+1]]])

translated3[n –] ª(temp=p3[n]; Sum[term=Apply[List,temp[[i]]]; term[[1]] *

Apply[StringJoin, Take[term,−n]/.s[j –,k –]–>k], $i,Length[temp] %])
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In[3] ªtranslated3[2]

Out[3]=

2wx
---

2
2

wy
--
2

+

xw
--
2

+

xy
--
2

+

yw
--
2

2

yx
--
2

X. CONCLUSION

The results contained in this paper provide a means of computing the entirenth order term in
the Baker–Campbell–Hausdorff series, without the use of noncommuting variables, sum
partitions, or other complicated operations. One application is in writing simple program
standard computer languages to calculate the Baker–Campbell–Hausdorff series. Such p
do not result in a significant reduction in computer time needed. Rather, the programmi
volved is simplified. The sample program included in this paper can be shortened to just
lines, and it is not necessary to load special software packages. The calculation of highe
terms in the Baker–Campbell–Hausdorff series is usually done in computer languages that
have symbol manipulation, because they are faster. This paper also explains how a simple p
can be written in such a language to calculate the series.

This paper does not address the question of expressing the Baker–Campbell–Hausdor
in terms of commutators. As explained in Sec. II, if an expression in terms of commutato
desired, the substitution due to Dynkin3,5–7 may be used to transform the results calculated h

Future research could include finding alternative ways to calculate certain sequences
ments in graded free Lie algebras, such as those in Ref. 13~which also contains an interestin
method of computing the Baker–Campbell–Hausdorff series by numerically integrating a d
ential equation!. These quantities occur in the optimization of numerical algorithms involv
computations in Lie algebras. Graded Lie algebra bases can be used in the construction of R
Kutta methods on manifolds.
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Generalized bc-systems based on Hermitian vector
bundles

Matthias Schorka)

FB Mathematik, J.W. Goethe-Universita¨t, 60054 Frankfurt, Germany

~Received 4 October 1999; accepted for publication 29 December 1999!

A generalizedbc-system associated to a Hermitian vector bundle over a Riemann
surface is introduced in close analogy to the usual rank one case. Some of the
geometric analogies to the well-known case are studied. In particular, if there are
no zero-modes, the ‘‘non-Abelian’’ theta divisor appears. In the general case where
zero-modes exist, it seems to be more difficult to find a natural description. It is
discussed in detail why no such system exists in low genus that is on the Riemann
sphere and on elliptic curves. ©2000 American Institute of Physics.
@S0022-2488~00!04604-1#

I. INTRODUCTION

Thebc-system first appeared in bosonic string theory as a gauge fixing ghost system~see Ref.
1!. Its local structure was discussed in detail by Friedan, Martinec, and Shenker,2 providing a lot
of local information about operator product expansions, currents, and energy-momentum te
This local singularity structure~poles and zeros of correlation functions! was the starting point for
Raina’s rigorous~i.e., algebro-geometric! approach to correlation functions in Refs. 3–6. It
important to note that one considers in this approach not the quantum fieldsb, c themselves~which
should be ‘‘operator valued sections’’ of certain line bundles!, but their correlation functions
inheriting the symmetries of the operators.

A remark of Raina~Remark 5.7 in Ref. 4! motivated the construction of abc-system of higher
rank; it seems that there is also some genuine physical interest in such a system, as A
Gaumé, Gomez, and Reina announced a closer study of such a system at the end of Ref. 7
does not seem to be published. In Ref. 8 Witten also considered closely related systems
recently, Losevet al. considered in Ref. 9 such generalizedbc-systems on manifolds of highe
dimensions but with different goals~and methods!. Since the mathematical setting is close
related to the one of Wess–Zumino–Witten~WZW! models, one may hope that the higher ra
bc-system might be useful in providing some rigorous kind of free-field-representation for W
models.10–13

Since we will keep the analogy between the rank one system and the system of higher r
close as possible, we briefly review in Sec. II some of the relevant facts of thebc-system and its
geometry before we define the higher rank system in Sec. III. Here we make some basic
vations which will be useful for Sec. IV, where we study the propagator, the simplest corre
function. In Sec. V we will see some of the related geometry before we consider some basi
of the ‘‘nonoptimal’’ case—where zero modes exist—in Sec. VI. We will use a theorem
Grothendieck in Sec. VII to see that the natural system of higher rank does not exist in genu
In the last section a theorem of Atiyah shows that there is no such system in genus one e

In the following we denote bySg a Riemann surface of genusg>2 and byK its canonical
bundle, that is, the holomorphic cotangent bundle. By Picd(Sg) we denote the subset of the Pica
group Pic(Sg) consisting of~isomorphism classes of! holomorphic line bundles of degreedPZ;
we will identify it with the set of~linear equivalence classes of! divisors of degreed. Note that
Pic(Sg) is a group under the tensor product, where the inverse of a line bundleL is given by its

a!Electronic mail: schork@math.uni-frankfurt.de
24430022-2488/2000/41(4)/2443/17/$17.00 © 2000 American Institute of Physics
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dualL∨, which we also denote byL21. We use the same symbol to denote a holomorphic ve
bundle and its associated~locally free! sheaf of germs of sections.

II. THE bc-SYSTEM AND ITS GEOMETRY BRIEFLY REVISITED

The bc-system. Recall that the usualbc-system is defined by the action

S5
i

p E
Sg

b]̄c, ~2.1!

where the fieldsb andc have conformal spin 12l andl with lP 1
2 Z, that is, they are sections o

K12l andKl. To make this well defined we have to explain the meaning ofK1/2. On a Riemann
surface of genusg there exist 22g line bundlesDPPicg21(Sg) with D25K; they are calledtheta
characteristicsand correspond bijectively to spin structures.14,15 K1/2 then denotes one chose
theta characteristic. The casel521 is particularly important, since this yields precisely~the
chiral part of! the Faddeev–Popov ghost system occurring in bosonic string theory.1 We will be
interested in a generalization of the casel5 1

2; note that in this case both fields are sections o
chosen theta characteristicD. In the easiest possible case there are no zero modes in the sy
Since the space of zero modes is given by the space ofholomorphic sections ofD, that is,
H0(Sg ,D), we have to requireD to be aneventheta characteristic; the case of odd characteri
is more difficult, cf. Ref. 15.

Following Raina,3 we can consider more generallytwistedfermions, that is, we assume thatc
is a section of an elementaPPicg21(Sg); to obtain a good integrand in the action~2.1!, the field
b has to be a section ofK ^ a21PPicg21(Sg). Since we have allowed arbitrary line bundlesa of
degreeg21, we have to impose theno zero-mode condition (NZM condition)by hand, i.e., we
allow only bundlesa satisfying

h0~Sg ,a!50.

Note that Riemann–Roch givesh0(Sg ,a)2h1(Sg ,a)50, so that we may use Serre duali
h1(Sg ,a)5h0(Sg ,K ^ a21) to conclude that the NZM conditionh0(Sg ,K ^ a21)50 for the
field b is satisfiedautomatically.

The theta divisor. Recall that theJacobian varietyJac (Sg) of Sg is isomorphic to the group
Pic0(Sg) of ~isomorphism classes of! line bundles of degree zero. There is a natural mapSg

→Pic1(Sg) which associates topPSg the divisorDpª1•p. Iterating thisg21 times gives a
map Sg3¯3Sg→Pic1(Sg)3¯3Pic1(Sg).Picg21(Sg), where the last map is the tenso
product. Using the natural map from the (g21)-fold Cartesian product to the symmetric produ
Sg

(g21) , we obtain a natural mapSg
(g21)→Picg21(Sg), whose image has codimension 1; th

divisor in Picg21(Sg) is calledtheta divisorU and may be described also as

U5$LPPicg21~Sg!udimH0~Sg ,L !5dimH1~Sg ,L !Þ0%. ~2.2!

Using the tensor product with a fixed line bundleMPPicg21(Sg), one obtains an isomorphism
Picg21(Sg){L°L ^ M 21PPic0(Sg), giving an induced theta divisorUM on Pic0(Sg); it may
be described alternatively as

UM5$NPPic0~Sg!udimH0~Sg ,N^ M !5dimH1~Sg ,N^ M !Þ0%. ~2.3!

Recall that the Jacobian variety Jac(Sg) may be interpreted as moduli space Pic0(Sg) of holo-
morphic line bundles of degree zero. LetLU be the line bundle associated to the theta divisor a
kPZ. Then

H0
„Picg21~Sg!,LU

^ k
… ~2.4!
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is the space oftheta functions of level kwith dimensionkg ~see, e.g., Refs. 14, 16, and 17!. Using
again the tensor product with a line bundle of degreeg21, one can consider theta functions o
Pic0(Sg).

The bc-system again.After this small detour we can describe the basic building block of
bc-system as follows: ForaPPicg21(Sg) the NZM condition for the fieldc translates into the
conditionaPPicg21(Sg)\U. The NZM condition for the fieldb is then satisfied automatically.

In the higher rank case we will follow the same strategy as in the rank one case: Fir
define the action for arbitrary Hermitian bundlesE , then we impose the NZM condition for th
c-field and demand that the degree is chosen in such a way that the NZM condition for theb-field
is satisfied automatically. A closer examination of the system will lead to further restriction
it turns out, thenon-Abelian theta divisorwill be involved.

III. DEFINITION AND FIRST PROPERTIES OF THE bc r-SYSTEM

Let E be a holomorphic vector bundle of rankr and degreed on Sg ; denote byE∨ the dual
bundle ofE. Furthermore, we assume that a Hermitian metrich on E has been chosen. On th
smooth sections ofE acts the Dolbeaut operator]̄E :G(Sg ,E)→G(Sg ,K̄ ^ E). In most cases we
will suppress theE dependence and write it as]̄. For a ~0, 1!-form b̃ with values inE @i.e., b̃

PE0,1(Sg ,E)# and a sectionc of E @i.e., cPE0(Sg ,E), hence]̄cPE0,1(Sg ,E)# we have the
Hodge inner product:

^]̄c,b̃&ªE
Sg

]̄c` *̄ E~ b̃!. ~3.1!

We follow the conventions and notations of Ref. 18. In particular, the inner product is
linear in the second argument and*̄ E is a mapEp,q(Sg ,E)→E12p,12q(Sg ,E∨). We introduceb
ª *̄ E(b̃) and write ~3.1! as *Sg

b• ]̄c, wherecPG(Sg ,E) and bPG(Sg ,K ^ E∨), showing the
close analogy to the rank one case. Note that we use here the dual pairing betweenE andE∨ ~i.e.,
the metrich! to obtain a good integrand. The physical fields areb andc. In terms of these fields
~3.1! can be written as

E
Sg

b• ]̄c5^]̄c,*̄ E
21~b!&. ~3.2!

Definition III.1: Let ~E, h! be a Hermitian vector bundle of rank r. The bcr-system associated t
E is defined by the action

Sª
i

p E
Sg

b• ]̄c, ~3.3!

where cPG(Sg ,E),bPG(Sg ,K ^ E∨) and the convention (3.2) is understood.
Remark:Note that we can write the action~3.3! asS5( i /p)*Sg

]̄c∧b, thus reproducing~2.1!
in the caser 51. The rather strange-looking formula~3.2! shows that we consider indeed
bilinearform, which is essential if we want to compute, e.g., the partition function via a
integral,Z5*eiSD@b,c#; ‘ ‘det ]̄E .’’ Here we have to make sense out of the determinant; see
remark after Corollary IV.2.

Now, we want to express the action in components, that is, we work on an open subsetSg

where we can trivialize the bundlesE and K ^ E∨. There we can identify ]̄c↔dz̄

^ (] z̄c1 ,...,] z̄cr)
t ~and similarly for b!. The inner product is then given by]̄c∧b

5S ibi] z̄cidz̄∧ *̄ (dz̄). Usingdz̄∧ *̄ (dz̄)5d(vol)5..dm, the action~3.3! becomeslocally
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Sloc5
i

p E (
i 51

r

bi] z̄ci dm. ~3.4!

Thus, ‘‘S is a sum ofr rank onebc-systems,’’ or, more precisely, the Lagrangian density of
bcr-system is locally the sum ofr bc-systems, i.e.,

Ldm[
i

p
b• ]̄c5S (

i 51

r
i

p
bi] z̄ci D dm. ~3.5!

One may naively expect that the nice properties of the rank one systems can be found in the
rank system, but, in general, this is not true.

The equations of motion.We will derive the classical equations of motion in two ways: fi
in a global fashion~using the Hodge inner product! and then in a local fashion. In both cases w
will omit the irrelevant factori/p.

The global way:Let S05^]̄c,b̃&. For tPR and arbitraryzPE0(Sg ,E),hPE0,1(Sg ,E), we
set ctªc1tz, b̃tªb̃1th. Defining Stª^]̄ct ,b̃t& we find (1/t)(St2S0)5^]̄c,h&1^]̄z,b̃&
1t^]̄z,h&, so that

lim
t→0

1

t
~St2S0!5^]̄c,h&1^z,]̄* b̃&.

Here the adjoint operator]̄* []̄E* of ]̄E is given by ]̄* 52 *̄ E∨]̄ *̄ E ~cf. Ref. 18, p. 168!. The
principle of stationary actiondS50 implies that the classical equations of motion are given
]̄c50, ]̄* b̃50. Here we have used the nondegeneracy of the Hodge inner product. Expresb̃

through the physical fieldb we find 05 ]̄* b̃52 *̄ E∨]̄ *̄ E*̄ E
21(b)52 *̄ E∨]̄b. Since the Hodge

operator is an isomorphism, we can summarize the above considerations in the following le
Lemma III.2: The classical equations of motion of the bcr-system are given by

]̄c50, ]̄b50.

Note that this reduces forr 51 to the well-known equations of the usualbc-system.
The local way:Here we start with the local form of the Lagrangian density given in~3.5!.

Variation with respect tobk , k51,...,r , implies ] z̄ck50, whereas variation with respect tocl , l
51,...,r , yields ] z̄bl50. Thus, we recover the corresponding local form of the equation
motion.

The zero modes.The zero modes of thebcr-system are evidently given as

c zero modes↔H0~Sg ,E!, b zero modes↔H0~Sg ,K ^ E∨!.

Using Serre duality, we see that the number ofb zero modes is also given byh1(Sg ,E), so that
the difference between the number ofc andb zero modes is given by the index of]̄E ~that is, by
Riemann–Roch!, i.e.,

#$c zero modes%2#$b zero modes%5d1~12g!r .

Note that the difference vanishes provided that the rank and degree ofE are chosen so thatd
5r (g21). This is the first step of the program mentioned above.

Lemma III.3: Let E be of rank r and degree r(g21). Furthermore, suppose that the NZM
condition for the c-field is satisfied, that is h0(Sg ,E)50. Then the NZM condition for the b-fiel
is satisfied automatically, i.e., h0(Sg ,K ^ E∨)50.

Since we want to satisfy the NZM condition, we introduce the following notion.
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Definition III.4: We will say that a bundle E (of rank r) with d5r (g21) and h0(Sg ,E)
50 is of typek.

IV. THE PROPAGATOR

In this section we want to consider the propagator in several ways. First we will conside
physical approaches~one local, the other global! and then a geometrical one, mimicking close
the rank one case. To obtain ‘‘good’’ properties for the propagator, we will have to restrict fu
the considered class of bundles.

The ‘‘global’’ physical approach. Recall that the propagator is generally given as ‘‘t
inverse of the operator appearing in the quadratic part of the Lagrangian.’’ In the rank one ca
normalized propagator is given as the Szego¨ kernel corresponding to the spin structurea ~see, e.g.,
Refs. 3 and 15!:

^b~z!c~w!&5Sa~z,w![
qa~*z

wv!

qa~0!E~z,w!
,

whereE(z,w) is the prime form,having asymptotic behaviorE(z,w);z2w for z;w, and the
argument of the theta function is obtained as the image under theAbel–Jacobi mapfrom Sg to its
Jacobian variety. Hence, the behavior of the propagator near the diagonalz5w is given by
^b(z)c(w)&51/(z2w)1•••, where the first term is the exact propagator in the plane~i.e., g
50!, and the omitted terms describe the nontrivial topology ofSg .

In the case of thebcr-system one obtains therefore

^b~z!c~w!&5 i S i

p
]̄ED 21

~z,w!, ~4.1!

where]̄E acts on sections ofE and this is an equation betweenr 3r matrices.
Lemma IV.1: Let the bundle E be of typek. Then the propagator̂b(z)c(w)& is given by the

non-Abelian Szego¨ kernel SE , i.e.,

^b~z!c~w!&5SE~z,w!. ~4.2!

Proof: According to Ref. 19, p. 25, the inverse of (1/p) ]̄E on the orthogonal complement o
H0(Sg ,E) is given by the non-Abelian Szego¨ kernel, i.e.,

S 1

p
]̄EuH0~Sg ,E!'D 21

5SE .

Note that our Szego¨ kernel SE is the negative of Fay’s!Since we have assumedE to be of typek,
we can neglect the restriction and obtain„( i/p) ]̄E…

2152 iSE . Combining this with~4.1! yields
the assertion. h

The non-Abelian Szego¨ kernel is a section of (K ^ E∨)�E on Sg3Sg . On p. 26 of Ref. 19
we find the expansion

^b~z!c~w!&5SE~z,w!5
1

z2w
Id1a0~z;E!1a1~z;E!~z2w!1¯ , ~4.3!

where theai are differentiable functions inz encoding the geometry of the Hermitian bundleE.
We obtain immediately an important corollary.

Corollary IV.2: Let E be of typek. Then the propagator is bimeromorphic in z and w.
Proof: The propagator is given precisely by the non-Abelian Szego¨ kernel, which is, accord-

ing to Ref. 19, p. 27, bimeromorphic inz andw if and only if E is a bundle of degreer (g21) and
h0(Sg ,E)50; these are the conditions forE to be of typek! h
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Remark: If one wants to consider]̄E in a more analytical way, one should introduc
the Hilbert space of square integrable sections; the domain of definition of]̄E is then the
Sobolev spaceW2,1(Sg ,E). Introducing the Laplacian]̄E* ]̄E in L2(Sg ,E), we can define
udet]̄Euª(detz ]̄E* ]̄E)1/2, where we have indicated the zeta-function regularizationà la Ray–Singer
with a subscript. Since we have explicitly excluded the zero modes, we can define in this w
absolute value of the partition function considered in the remark after Definition III.1. Note
the metrich enters crucially.

The ‘‘local’’ physical approach. Recall that by~3.5! the Lagrangian densityL is given
locally as the sum ofr Lagrangian densities of rank one systems, i.e.,L5( i /p)S i 51

r bi] z̄ci .
Since this describesr noninteracting systems, their propagators are ‘‘orthogonal’’ in th
sense that ^bk(z)cl(w)&50 for kÞ l . Putting them together in a matrix̂b(z)c(w)&
ª(^bi(z)cj (w)&) i , j 51,...,r , we find that the propagator^b(z)c(w)& should be in diagonal form
i.e., ^b(z)c(w)&5diag(̂ b1(z)c1(w)&,...,̂ br(z)cr(w)&). The local approach ‘‘overlooks’’ the fine
metric invariants of the Hermitian bundle appearing not on the diagonal; forz;w the leading term
in the expansion~4.3! is diagonal, so the approximation will become better the closerz andw are.

The geometrical approach.Here we will adopt the approach of Raina3–6 for the rank one
case. Let two copies ofSg be given and letpi :Sg3Sg→Sg be the canonical projections onto th
i th factor. The propagator is a meromorphic section of the bundle

with a first order pole on the diagonalD,Sg3Sg ~see, e.g., Ref. 8!. We first prove an easy
lemma needed later on.

Lemma IV.3: Let E be of typek. Then the bundle(K ^ E∨)�E has no holomorphic sections
i.e., h0(Sg3Sg ,(K ^ E∨)�E)50.

Proof: By the Künneth formula ~cf. Ref. 20, p. 82! we obtain that H0(Sg3Sg ,
(K ^ E∨)�E) is isomorphic toH0(Sg ,K ^ E∨) ^ H0(Sg ,E), which vanishes becauseE is of type
k. h

We are not interested in the holomorphic sections of (K ^ E∨)�E, but in the meromorphic
sections with a first-order pole on the diagonalD.Sg . Let O(D) be the line bundle correspond
ing to the divisorD,Sg3Sg ; the propagator should then give aholomorphicsection of

O~D! ^ „~K ^ E∨!�E…5..ME . ~4.4!

Thus, to show the existenceand uniqueness of the propagator~up to multiplication by a nonzero
constant! one has to showh0(Sg3Sg ,ME)51. We first need a result which we quote direct
from Raina~Lemma 5.1, Proposition 5.3, and the straightforward generalization of Propositio
in Ref. 3!:

Theorem IV.4: Let D be the diagonal with associated line bundleO(D). Then we have the
following.
(1) The restriction ofO(D) on D(5O(D)uD) is isomorphic to TD5KD

21, where TD ~resp. KD! is
the tangent sheaf (resp. cotangent sheaf) ofD.

(2) There exists a canonical isomorphism H0(Sg3Sg ,O(D)).H0(Sg3Sg ,OSg3Sg
), hence

h0(Sg3Sg ,O(D))51. This section is the prime form.
(3) Let E be of typek. Then there exists a canonical isomorphism H0(Sg3Sg ,ME)

.H0(D,MEuD).

To obtain the analogous result to Lemma 5.7 of Ref. 3, we have to restrict the cla
considered bundles. Recall that a vector bundle is calledsimpleif its only endomorphisms are th
homotheties, i.e.,h0

„Sg ,End(E)…51.
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Lemma IV.5: Let E be a simple bundle of typek. Then the restriction ofME (defined over
Sg3Sg) to the diagonalD is isomorphic to the trival bundle onD. The associated sheaf i
isomorphic to the structure sheafOuD of D.

Proof: Recall thatME5O(D) ^ ((K ^ E∨)�E), so that

MEuD5O~D!uD ^ ~„p1* ~K ^ E∨! ^ p2* ~E!…uD .

The second factor of the tensor product is isomorphic toKD ^ E∨
^ E5KD ^ End(E). SinceKD

5O(2D)uD by Theorem IV.4, we findMEuD.OuD ^ End(E). Now we use thatE is simple, that
is, End(E).C; it follows that MEuD.OuD , where we have identified scalarslPC with l•Id as
r 3r matrix. h

A remarkable class of simple bundles is given by the class ofstablebundles.
Definition IV.6 (Mumford): A holomorphic vector bundle E of rank r and degree d is ca

stable, if for every proper subbundle F,E the following inequality holds: m(F)
ªdegF/rank F,d/r . If instead of‘‘ ,’’ only ‘‘ <’’ holds, E is called semistable. The quotie
m(F) is called slope of F.

Since every stable bundle is simple~cf. Ref. 21, p. 72!, the above result holds in particular fo
E stable. Although we could formulate some of the following results for simpleE, we will restrict
ourselves from now on to stable bundles, since it is well known that they behave in a bette
~e.g., when one considers families!. Now we are in the position to show existence and uniquen
of the propagator of thebcr-system~up to normalization!.

Theorem IV.7: Let E be a stable bundle of typek. Then the propagator of the correspondin
bcr-system exists and is uniquely determined, i.e., h0(Sg3Sg ,ME)51.

Proof: We just have to collect the various results stated above; by Theorem IV.4 we first
H0(Sg3Sg ,ME).H0(D,MEuD), so that we may now use Lemma IV.5 to concludeH0(Sg

3Sg ,ME).H0(D,OD).C, which establishes the assertion. h

This cohomological result was part of the contents of Raina’s remark alluded to in the
duction. It shows that the propagator exists and is uniquely determined by the pole structur
given ‘‘explicitly’’ by the non-Abelian Szego¨ kernel, cf. Lemma IV.1.

Remark:Here we want to indicate some of the difficulties one encounters when one tri
transfer the above procedure to the case where the underlying manifold has~complex! dimension
greater than one; this is the system considered in Ref. 9. Since the difficulties increase w
dimension, we restrict to compact complex manifoldsX with dimC X52, i.e., complex surfaces
Let E be a Hermitian vector bundle; thec-field is an element ofE0,1(X,E), hence ]̄Ec

PE0,2(X,E). So b̃ has to be an element ofE0,2(X,E), too, implying that the physical field
bª *̄ E(b̃) lies in E2,0(X,E∨). The zero modes of thec-field are given byH0,1(X,E).H1(X,E),
whereas those of theb-field are given byH2,0(X,E∨).H0(X,KX^ E∨).H2(X,E), where we
have used the Dolbeaut isomorphism and Serre duality. But now the difference betwe
number ofc and b zero modes isnot given by x(X,E)ªS i 50

2 (21)ihi(X,E). And even if the
difference is given byx(X,E) @e.g., if h0(X,E)50#, application of Riemann–Roch–Hirzebruc
x(X,E)5^Ch(E)Td(X),@X#& gives upon expansion several terms which are difficult to cont
Let us thereforesupposethatE is chosen in such a way that there are neitherb nor c zero modes.
Let pi :X3X→X be the canonical projections. The propagator^b(z)c(w)& should then be a
meromorphic section ofp1* (KX^ E∨) ^ p2* (TX*

(0,1)
^ E) overX3X, having a pole of third order on

the diagonalD,X3X ~cf. Ref. 9!. But here the diagonalD has codimension two, hence is not
divisor! This means roughly that the local singularity structure does not provide enough info
tion, so one cannot proceed as in the case of dimension one.

Higher correlation functions and a conjecture.A general correlation function should be th
vacuum expectation value of a certain number ofb- and c-fields. Let Qi ,i 51,...,m, and Pj , j
51,...,n, be some points onSg . In the notation of Raina,3,4 a correlation function is written as
CE(m,n)ª^b(Q1)¯b(Qm)c(P1)¯c(Pn)& and should be a section of the bundleK ^ E∨ in each
Q-argument and a section ofE in eachP-argument. Thus,CE(m,n) is a section of the bundle
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FE~m,n!ªp1* ~K ^ E∨! ^¯^ pm* ~K ^ E∨! ^ pm11* ~E! ^¯^ pm1n* ~E!

on Sg
m1n

ªSg3¯3Sg ~m1n times!. The fundamental operator product expansions2 give the
following ‘‘axiom.’’

Axiom:The correlation functionCE(m,n) is a meromorphic section of the holomorphic vect
bundleFE(m,n) on Sg

m1n having~1! a simple zero forQi5Qj or Pi5Pj ; ~2! a simple pole for
Qi5Pj ; and ~3! no other singularities than those required by~2!.

The first two axioms define divisors onSg
m1n , denoted byDz(m,n) ~thedivisor of zeros! and

Dp(m,n) ~the divisor of poles!. Together they define the divisorD(m,n)ªDz(m,n)
2Dp(m,n). By the third axiom the correlation functionCE(m,n) defines aholomorphicsection
of

ME~m,n!ªFE~m,n! ^ O„2D~m,n!…,

that is, an element ofH0
„Sg

m1n ,ME(m,n)…. Thus, the bundleME of ~4.4! equalsME(1,1). As
in the case of the propagator, one has to check existence and uniqueness.

Theorem IV.8: Let E be a stable bundle of typek. Then h0„Sg
m1n ,ME(m,n)…5dnm .

Remark:The proof carries over nearly verbatim from the rank one case given in Ref. 4
only difference is that during the proof we have to make several identifications as in the pr
Lemma IV.5. This cohomological statement was the contents of Raina’s Remark 5.7 in Re

This shows that the higher correlation functions exist and are uniquely defined. Recall t
the rank one case there existtwo ways of expressing a general correlation functionCa(n,n):
either ~1! by using the geometry of the theta divisor and the associated theta functions, or~2! by
recalling that thebc-system is afree system,that is, Wick’s theorem holds. This means th
Ca(n,n)5det„Ca(1,1)i j …, whereCa(1,1)i j is the propagator̂b(Qi)c(Pj )&. Comparing the two
expressions~using the uniqueness of the correlation function they have to be equal! gives a proof3

of Fay’s trisecant identity.As Raina shows in Ref. 5, the case of spinÞ 1
2 ~the ‘‘nonoptimal’’ case!

can be reduced to the spin12 case~see also Sec. VI!, and hence gives no new identities.
Now recall that in the higher rank case the correlation functionsCE(n,n) exist and are

uniquely defined by Theorem IV.8 forEPUg„r ,r (g21)…\Q r ~see the next section!. The propa-
gator is given by the non-Abelian Szego¨ kernel, cf. Lemma IV.1. Since thebcr-system is a free
system, we should apply Wick’s rule to obtain the correlation function as ‘‘CE(n,n)
5det„SE( i , j )…, ’’ where now the propagatorsSE( i , j ) are r 3r matrices and one has to interpr
this equation in a suitable sense~which should be the easier part of the program!. On the other
hand, it should be possible to express the correlation function directly through the geometry
non-Abelian theta divisor analogously to the rank one case~this should be the harder part!. If we
believe in the ‘‘prestabilized harmony’’ between physics and mathematics, we are led t
following ~somehow vague! conjecture.

Conjecture IV.9: Let EPUg„r ,r (g21)…\Q r and consider the associated bcr-system. Com-
paring the results of the two ways of calculating the correlation functions CE(n,n) just described
should lead to a ‘‘non-Abelian’’ Fay identity.

V. SOME GEOMETRICAL REMARKS

As we saw in Sec. II, the rank onebc-system is closely linked to the theta divisor and
classical geometry~e.g., theta functions!. We expect that the rankr case~with r .1! should
therefore be linked to the much less understood non-Abelian theta divisor and its corresp
geometry. Recall that we assumed in Theorem IV.7 thatE is stable, although the same result hol
for simpleE. In close analogy to the sets Picd(Sg) of ~isomorphism classes of! holomorphic line
bundles of degreed on Sg , one may define corresponding sets of vector bundles of rankr and
degreed. Since nontrivial automorphisms of the bundles lead to ‘‘bad’’ moduli spaces,
restricts to the stable bundles~otherwise one has to work with the corresponding stacks!.

Definition V.1: The moduli space of stable vector bundles of rank r and degree d is defin
Ug(r ,d)ª $isomorphism classes of stable bundles of rank r and degree d%.
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As shown by Mumford,22 these sets are smooth quasi-projective varieties of~complex! di-
mensionr 2(g21)11, which are in the coprime case (r ,d)51 even compact; since the stabilit
condition is empty for line bundles, every line bundle is stable and we obtainUg(1,d)
5Picd(Sg). These varieties admit natural compactifications, due to Seshadri,23 namely the moduli
spacesUg

ss(r ,d) of equivalence classes of semistable bundles. The spaceUg(r ,0) of bundles of
degree zero is isomorphic to the space of~conjugacy classes of! irreducible unitary representation
of p1(Sg) by a famous theorem of Narasimhan and Seshadri,24 bundles of higher degree corre
spond also to some sort of representation.

Note that taking the determinant~5top exterior power! yields a mapUg
ss(r ,d)→Picd(Sg),

given explicitly byE°L rE. For a givenLPPicd(Sg) the subvariety of bundles inUg
ss(r ,d) with

determinant isomorphic toL is denoted byS Ug
ss(r ,L); it is denoted byS Ug

ss(r ) in caseL is the
trivial bundle.

The non-Abelian theta divisor. It was realized by Drezet and Narasimhan25 that it is possible
to define generalized theta divisors on the spacesUg

ss(r ,d); further information can be found in
Ref. 26. Note that in the cased5r (g21) we havex(E)50 and it is possible to define th
non-Abelian theta divisorQ r,Ug(r ,r (g21)) in complete analogy to the rank one case~2.2!:

Q rª$EPUg~r ,r ~g21!udimH0~Sg ,E!5dimH1~Sg ,E!Þ0%. ~5.1!

Its closure~in Zariski topology! gives a natural theta divisor inUg
ss(r ,r (g21)). As in therank

one case one can use the tensor product with a fixed vector bundle to pull backQ r to the other
varietiesUg

ss(r ,d). A semistable bundleF is calledcomplementary to EPUg(r ,d) if x(E^ F)
50, and complementary toUg(r ,d) if x(E^ F)50 for all EPUg(r ,d). Since x(E^ F)
5rank(F)•r (12g)1r •deg(F)1d•rank(F), we find for complementaryF @set dFªdeg(F),
r Fªrank(F)#: rr F(12g)1dFr 1r Fd50. Introduceh5(r ,d) and definer̄ ,d̄ by d5hd̄, r 5hr̄.
Then the above equation givesdFr̄ 5( r̄ (g21)2d)r F , which may be solved with a parameterk
PN by

r F5kr̄, dF5k„r̄ ~g21!2d̄….

From the conditionx(E^ F)50 we obtain deg(E^ F)5dFr 1dFr 5rr F(g21) and rank(E
^ F)5rr F , so thatE^ FPUg

ss
„rr F ,rr F(g21)…. Hence, the product lies in a space where th

exists a natural theta divisorQ rr F
; here we have used the nontrivial fact that the product

semistable bundles is again semistable~cf. Ref. 27, p. 61!. Thus, a bundleF which is comple-
mentary toUg(r ,d) yields by tensoring a map

tF :Ug~r ,d!→Ug
ss
„rr F,rr F~g21!….

Pulling back the theta divisor toUg(r ,d) via tF* , we obtain in complete analogy to~2.3! a theta
divisor, Q r ,Fª$EPUg(r ,d)udimH0(Sg ,E^ F)Þ0%. Again, there is a theta divisor inUg

ss(r ,d)
obtained by closure. In caseF is chosen to have minimal rankr̄ , the corresponding theta diviso
is calledthe theta divisor; it only depends on det(F) ~see Ref. 25!. The corresponding line bundl
will be denoted byLQr ,F

.

Remark:For eachLPPicd(Sg) we obtain by restriction a theta divisorQ r ,F
L in S Ug

ss(r ,L)
and a corresponding line bundle. IfL is the trivial bundle, the space

H0
„S Ug

ss~r !,LQ
r ,F
O

^ k
…

is called thespace of non-Abelian theta functions of level k,since it is a very natural generalizatio
of the rank one case~2.4!. It is isomorphic to the space of conformal blocks of theslr Wess–
Zumino–Witten model of levelk, hence its dimension is given by the Verlinde formula. For mo
information, see Sorger’s survey.28
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The connection to the bcr-system. If we compare the definition~5.1! of the non-Abelian
theta divisorQ r with Definition III.4 of the notion ‘‘typek,’’ we see that the condition ‘‘stable
bundle of typek’’ on E is equivalent to the conditionE¹Q r ! This is the straightforward
generalization of the rank one case~see the end of Sec. II!.

For EPUg(r ,r (g21)) and LPPicl(Sg) we find rank(E^ L)5r and deg(E^ L)5r (g21
1 l ); in casel 52(g21) the degree ofE^ L vanishes. Suppose we have chosen a theta cha
teristic ~spin structure! D.

Lemma V.2: Let FEªE^ D21. Then FE has rank r, degree 0, and is stable, i.e., FE

PUg(r ,0).
Proof: Clearly,FE has the correct rank and degree. It is stable, since tensoring a stable b

with a line bundle preserves stability. h

Using this lemma, we may writeE5FE^ D with FEPUg(r ,0). The theta divisor inUg(r ,0)
can therefore be written as$FPUg(r ,0)udimH0(Sg ,F ^ D)Þ0%. Note that K ^ E∨5K ^ (FE

^ D)∨5FE
∨

^ D, where we have usedD25K. So

E5FE^ D⇔K ^ E∨5FE
∨

^ D. ~5.2!

This can be interpreted as follows: If the fieldc is a FE-valued spinor~5section ofFE^ D!, then
the fieldb is a FE

∨ valued spinor. Now, we introduce mapsi r ,d , given by

i r ,d~E!ªK ^ E∨.

Note that forEPUg(r ,d), the dual bundleE∨ is also stable, and since tensoring a stable bun
with a line bundle preserves stability,K ^ E∨ is also stable. Since deg(K ^ E∨)52r (g21)2d, we
have found thati r ,d is a map:

i r ,d :Ug~r ,d!→Ug„r ,2r ~g21!2d…. ~5.3!

On Ug„r ,r (g21)… this map has a special property.
Lemma V.3: The mapi r ,r (g21) is an involution inUg(r ,r (g21)), i.e., i25Id.
Proof: Inspecting~5.3! for d5r (g21), we see thati r ,r (g21) is indeed a map onUg„r ,r (g

21)…. Explicitly we find i r ,r (g21)
2 (E)5i r ,r (g21)(K ^ E∨)5K ^ (K ^ E∨)∨.E, where we have

used K ^ K∨.O and (E∨)∨.E. Since we are interested only in the isomorphism class,
assertion is proved. h

Remark V.4: The fact thati r ,r (g21) is an involution means that E and K̂E∨ change their
roles under application ofi r ,r (g21) . In case d.r (g21) we find deg(K ^ E∨)52r (g21)2d
,r (g21), so the degrees of E and K̂E∨ have the same distance to the ‘‘optimal’’ case
5r (g21), that is, ud2r (g21)u5u(2r (g21)2d)2r (g21)u. This allows us to assum
deg(E)<r (g21), since otherwise one replaces E K ^ E∨ ~and K^ E∨ E!.

VI. THE CASE WITH INSERTIONS

In this section we want to indicate some of the difficulties which arise when the degree
optimal, that isdÞr (g21). There do occur zero modes in the system, which make the ana
more difficult.

The rank one case.Assume that the fieldb is a section ofzPPic2l(g21)(Sg). For l big
enough there are only zero modes of theb-field and none of thec-field ~by Kodaira–Nakano
vanishing!. Since the difference between the number ofc andb zero modes is given by Riemann
Roch ~5 index ]̄ z!, the number ofb-field insertions is henceNªu ind]̄ zu5(2l21)(g21); the
propagator is then given as^P i 51

N b(Qi)b(z)c(w)&, depending on some chosen fixed pointsQi ,
i 51,...,N, of insertion. In the rigorous approach of Raina5 one tries to reduce the problem to th
already studied case of degreeg21. Let us introduce a divisorW5Q11¯1QN of degreeN.
Replacez aªz ^ O(2W)PPicg21(Sg). Sinceb was a section ofz, c had to be a section o
K ^ z21, so that the respective bundle for thec-field has to be replaced according to
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K ^ z21 K ^ z21
^ O~W!, ~6.1!

that is, it has to be tensored withO(W). For ageneric choiceof W the NZM condition will be
satisfied ~since the theta divisor has codimension one! and one can then show existenc
uniqueness of correlation functions for the new bundle.

The higher rank case. Let E be a Hermitian vector bundle of rankr and degreed>0
~otherwise considerE∨!. The fieldc is a section ofE; in contrast to the case above, there is
intrinsic spinl which we can make big enough to obtain~via Kodaira–Nakano! h0(Sg ,E)50;
we will have to impose it by hand. Before we begin with a closer study, recall thatx(E)5d
2r (g21), so that there are three cases to consider:

Case 1: d5r (g21). This is the case we considered in the previous sections and whe
insertions are needed.

Case 2: d,r (g21). Sincex(E),0, we haveh0(Sg ,E),h1(Sg ,E) and with Serre duality
h0(Sg ,E),h0(Sg ,K ^ E∨). Thus, there are always zero modes of theb-field.

Case 3: d.r (g21). From x(E).0 we find h0(Sg ,E).h0(Sg ,K ^ E∨)>0, so that we
cannot impose the NZM conditionh0(Sg ,E)50 on thec-field. But, recalling Remark V.4 we can
impose the NZM conditionh0(Sg ,K ^ E∨)50 on theb-field and continue analogously to case

Henceforth, we assume d,r (g21) and that the NZM condition h0(Sg ,E)50 for the c-field
is satisfied.Using Serre duality, we obtain the number ofb-zero modes

h0~Sg ,K ^ E∨!5r ~g21!2d5..n. ~6.2!

Lemma VI.1: The simple ansatz (6.1) does not work in higher rank.
Proof: Let FªE^ O(W), whereW5Q11¯1Qn is a divisor of degreen. Then F is a

bundle of rankr and degree deg(F)5rn1d, that is deg(F)5r 2(g21)1(12r )d. To obtain
deg(F)5r (g21) ~recall this is the ‘‘good’’ range! we have to choosed5r (g21)—which con-
tradicts our assumptiond,r (g21). h

We could try more generally an ansatzF5E^ M with some vector bundleM.
Lemma VI.2: For F to be in the good range,M has to satisfym(E)1m(M)5g21.
Proof: That F is in the good range means deg(E^ M)5rank(E^ M)•(g21), so that divi-

sion by the rank yieldm(E^ M)5g21. Using the propertym(L ^ N)5m(L)1m(N) of the slope
gives the assertion. h

Making this necessary condition more explicit gives

m~M!5g212
d

r
. ~6.3!

In general, there seems to be no easy~and sufficiently natural! way of generating such bundlesM,

except when the degreed is a multiple ofr, sayd5rd̃, where we can choose forM a line bundle
of degreeg212d̃.

Let us recall thath0(Sg ,K ^ E∨)5r (g21)2d5n. But locally the field b (i.e., a section o
K ^ E∨! is an r-tupel of fields bi , so that one should maken/r insertions instead ofn! For this
interpretation the degreed of E has to be a multiple ofr ,d5rd̃, so thatñªn/r 5g212d̃. Let
W̃ªQ11¯1Qñ be a divisor of degreeñ and define

ẼªE^ O~W̃!.

Ẽ has rankr, degreer (g21), and is stable iffE is stable. In analogy to the rank one case, wh
we had thatz ^ O(W)¹U for generic choice ofW,we obtain here that for generic choice ofW̃ the
new bundleẼ5E^ O(W̃) does not belong toQ r . We summarize these observations in t
following theorem.

Theorem VI.3: Let EPUg(r ,rs) with sP$1,...,g22%. Choose kªg212s points Qj , j
51,...,k, on Sg to obtain the divisor WªQ11¯1Qk with associated line bundleO(W). Then
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the bundle E˜ªE^ O(W) is stable, has rank r and degree r(g21), that is, ẼPUg„r ,r (g21)…,
and satisfies for generic choice of W the NZM condition h0(Sg ,Ẽ)50, i.e., ẼPUg„r ,r (g
21)…\Q r .

Remark:Thus,E has to lie inUg(r ,rs)\Q r ,O(W) . The theorem shows that we can general
the method of the rank one case only in special situations. For a given rankr we can handle
roughly 1/r of all possible bundles. Ifd5rs1l with lP$1,...,r 21%, the ansatzẼ5E^ L with
some line bundleL leads to deg(L)5g212s2l/r PQ\Z, cf. ~6.3!, so that one has to conside
‘‘line bundles of fractional degree.’’

VII. THE CASE OF GENUS gÄ0

Here we will consider thebcr-system explicitly on the Riemann sphereĈ5Cø$`%, which we
identify with P1. We first recall some facts about bundles onP1 ~which can be found in Ref. 21!
before we consider the propagator in the case, where no zero modes exist.

Vector bundles onP1. Let O(1)[OP1(1) be the hyperplane bundle whose dualO~21! is the
tautological line bundleO(21)5$( l ,v)PP13CuvP l %. For kPZ let O(k)ªO(1)^ k if k>0 and
O(k)ªO(21)^ uku if k,0. The sections ofO(k), k>0, can be identified with homogeneou
polynomialsPPC@z0 ,z1# of degreek. Thus,

h0~P1,O~k!!5H k11, for k>0;

0, for k,0.
~7.1!

The canonical bundleK is given asK5O(22), henceh0(P1,K)50. The degree of a line bundl
O(k) is given byk, so the degree ofK is 22.

Remark: There exists one line bundleL with L ^ 25K, namely, L5O(21) @formally O
(21)5O(22)1/25K1/2#. In analogy to the case of a Riemann surfaceSg of genusg>2 we call
it spin bundle~of spin 1

2!. That there is one such bundle fits into the general observation that
are 22g theta characteristics on a Riemann surface of genusg. A section ofO~21! will be called
field of spin1

2; more generally, a section ofKl5O(22l) with lP 1
2 Z will be called field of spin

l.
Turning to vector bundles, one has the following theorem of Grothendieck.29,21

Theorem VII.1: Let E be a holomorphic vector bundle of rank r onP1. Then there exist
uniquely determined a1 ,...,arPZ with a1>¯>ar so that

E.O~a1! % O~a2! %¯% O~ar !. ~7.2!

The degree of E in the Grothendieck decomposition (7.2) is thus given bydeg(E)5S iai .
Remark VII.2: This shows that the only stable bundles onP1 are the line bundles!
Let E be a vector bundle of rankr with Grothendieck decompositionE5 % i 51

r O(ai). Since its
dual bundle is given byE∨5 % i 51

r O(2ai), one finds

E∨
^ E5 %

i 51

r

O% %
1< i , j <r

$O~aj2ai ! % O~ai2aj !%. ~7.3!

Recall that on a general Riemann surface every stable bundleE is simple, but the converse is i
general not true. Here we can see immediately that the converse holds.

Lemma VII.3: Every simple bundle onP1 is even stable.
Proof: Let E5 % i 51

r O(ai) be a simple bundle, i.e.,h0(P1,E∨
^ E)51. SinceE∨

^ E is given
by ~7.3!, we obtain

h0~P1,E∨
^ E!5(

i 51

r

h0~P1,O!1 (
1< i , j <r

$h0
„P1,O~ai2aj !…1h0

„P1,O~ai2aj !…%.
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This can only equal 1 ifr 51. Thus,E is a line bundle and therefore stable. h

It is also very easy to describe the semistable bundles onP1.
Proposition VII.4: The semistable bundles of rank r onP1 have the form% i 51

r O(d) for some
dPZ.

Proof: Let E5O(a1) %¯% O(ar) with a1<¯<ar be a bundle of rankr in the Grothendieck
decomposition~7.2!. ThenFªO(a2) %¯% O(ar) is a proper subbundle of rankr 21. ForE to be
semistable we must have~recall Definition IV.6!

1

r 21 (
i 52

r

ai[m~F !<m~E!5
1

r (
i 51

r

a,

which is equivalent toa21¯1ar<(r 21)a1 . Since we assumeda1<¯<ar , we concludea2

5¯5ar5a1 , i.e., E5 % i 51
r O(a1). h

To see the analogy with the general case, we introduce the moduli spaceUP1(r ,d) @resp.
UP1

ss(r ,d)# of stable~resp. semistable! bundles of rankr and degreed. The above discussion i
summarized in the following well-known theorem.

Theorem VII.5: The moduli spaces are given by

UP1~r ,d!.H B, if r .1;

$O~d!%, if r 51;
UP1

ss~r ,d!.5 B, if
d

r
¹Z;

H %
i 51

r

O~a!J , if
d

r
5aPZ.

The propagator. Now, we first consider the NZM condition and show that this leaves o
bundles of restricted type. The condition of uniqueness of the propagator requires the bundl
of rank one.

Lemma VII.6: Let E be a holomorphic vector bundle of rank r and degree d which satisfie
NZM condition h0(P1,E)50 for the field c. Then there are only line bundles of negative degre
its Grothendieck decomposition (7.2).

Proof: Let E5O(a1) %¯% O(ar) be the Grothendieck decomposition ofE with d
5S i 51

r ai . Sinceh0(P1,E)5S i 51
r h0

„P1,O(ai)…, we obtain from~7.1!

h0~P1,E!5 (
i 51
ai>0

r

~ai11!.

Since all summands are positive, the sum has to be empty, i.e., allai are negative. h

Since deg(E)5S iai and allai,0 we immediately obtain the following.
Corollary VII.7: A bundle E satisfying the NZM condition for the field c has negative deg
Remark:We are interested in fields of spinlP 1

2 N. Theorem VII.1 and Lemma VII.6 show
that a rankr system can be considered as a system ofr fermions of spins2ai /2. But note that we
have sofar only considered the NZM condition for the fieldc.

Lemma VII.8: Let E be as in Lemma VII.6. If the NZM condition h0(P1,K ^ E∨)50 for the
field b is also satisfied, then E has the form

Proof: Riemann–Roch givesh0(P1,E)2h1(P1,E)5r 1d, so that the NZM condition implies
h1(P1,E)52(r 1d). Using Serre dualityh1(P1,E)5h0(P1,K ^ E∨), we conclude that the NZM
condition for theb-field is satisfied iffd52r . From the Grothendieck decomposition~7.2! and
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Lemma VII.6 we know thatai,0 for i 51,...,r , and that2r 5d5S iai . Hence,ai521 for
all i. h

Let E5 % i 51
r O(21). The dual bundleE∨ is then given by% i 51

r O(1). Thus, the fieldb is a
section ofE, since K ^ E∨5O(22)^ % i 51

r O(1)5 % i 51
r O(21). The integrand~3.3! is in this

caseglobally the sum ofr systems of rank one, i.e.,

S5
i

p (
i 51

r E
P1

bi ]̄ci . ~7.4!

Herebi as well asci are meromorphic sections ofO(21)5K1/2. This shows that thebcr-system,
where no zero modes occur,is a system ofr ~noninteracting! fermions of spin1

2.
Now, we want to consider the propagator^b(z)c(w)&. Let pi :P13P1→P1, i 51,2, be the

canonical projections. According to general principles,3,8 the propagator is a meromorphic sectio
of p1* (K ^ E∨) ^ p2* (E) overP13P1 with a simple pole on the diagonalD,P13P1. We quote the
following result from Raina.6

Proposition VII.9: The line bundleO(D) on P13P1 associated to the divisorD.P1 is given
by

O~D!5p1* „O~1!…^ p2* „O~1!….

Since the propagator̂b(z)c(w)& is a meromorphic section ofp1* (K ^ E∨) ^ p2* (E), it induces a
holomorphicsection ofO(D) ^ p1* (K ^ E∨) ^ p2* (E). Thus, to show existence and uniqueness
the propagator~up to normalization! one has consequently to showh0(P13P1,O(D) ^ p1* (K
^ E∨) ^ p2* (E))51. We can now prove the main result of this section.

Theorem VII.10: Suppose that E satisfies the NZM conditions for the fields b and c. The
propagator exists and is uniquely determined, i.e.,

h0
„P13P1,O~D! ^ p1* ~K ^ E∨! ^ p2* ~E!…51,

precisely iff r51, that is, iff E is a line bundle.
Proof: Using Lemma VII.8, we can infer from the absence of zero modes thaE

5 % i 51
r O(21). SinceK ^ E∨5 % i 51

r O(21), we find

p1* ~K ^ E∨! ^ p2* ~E!5 %
i , j 51

r

p1* „O~21!…^ p2* „O~21!….

Tensoring withO(D) yields

O~D! ^ p1* ~K ^ E∨! ^ p2* ~E!5 %
i , j 51

r

O~D! ^ p1* „O~21!…^ p2* „O~21!….

Using Proposition VII.9, we see that each summand on the right-hand side is trivial, i.e.,O(D)
^ p1* „O(21)…^ p2* „O(21)…5OP13P1. We obtainO(D) ^ p1* (K ^ E∨) ^ p2* (E)5 % i , j 51

r OP13P1,
henceh0

„P13P1,O(D) ^ p1* (K ^ E∨) ^ p2* (E)…5r 2. Thus, to obtain a unique propagator we ha
to setr 51. h

Remark:This fits well into the general scheme. Recall that in the case of genusg>2 the
bundleE has to be simple to give a unique propagator. As we saw in Lemma VII.3, every si
bundle onP1 is also stable and hence by Remark VII.2 a line bundle. Thus, the bundle has
a priori of the formO(a); the NZM condition givesa521, i.e., the rank onebc-system of spin
1/2.

Let E be a bundle which doesnot satisfy the NZM condition. Recall that the usual ‘‘trick
consists in choosing a line bundleO(W) such thatE^ O(W) has ‘‘good’’ degree and satisfies th
NZM condition. Since there is no ‘‘good’’ case here, this reduction is futile. But let us check
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in detail. Assume that the fieldc satisfies the NZM condition, that is,E5 % i 51
r O(ai) with a1

>¯>ar and allai negative, cf. Lemma VII.6. Letnªudu2r be the difference between the actu
degree and the ‘‘good’’ degree. According to general principles of Sec. VI one should mañ

ªn/r 5udu/r 21 insertions ofb-fields. Choose a divisorW5Q11¯1Qñ on P1 and setẼªE

^ O(W). As Ẽ has degree2r , we can writeẼ5 % i 51
r O(bi) with bi,0 andS ibi52r according

to Theorem VII.1. Hencebi521, soO(21)5O(ai) ^ O(W) for i 51,...,r . Comparing degrees
gives 215ai1 ñ, hence ai52udu/r . The bundle E has therefore to be of the formE
5 % i 51

r O(2udu/r ) for this trick to work. Thus, the degree has to be a multiple of the rank. T
is the same restriction as in the general case~cf. Theorem VI.3!; here it means thatE is semistable
~Proposition VII.4!. Of course, uniqueness of the propagator then requiresr 51.

VIII. THE CASE OF GENUS gÄ1

In this section we want to consider thebcr-system on an~nonsingular! elliptic curveX, that is,
a Riemann surface of genusg51. Here the canonical bundle is trivial@note that deg(K(g

)52g

22#.
Bundles on elliptic curves.Recall that a vector bundleE over an elliptic curveX is called

indecomposable,if it is not a direct sum of two proper subbundles. Atiyah classified the indec
posable bundles in Ref. 30 and Tu drew the connection to~semi-!stability in Ref. 31:

Proposition VIII.1: Every indecomposable bundle is semistable; it is stable iff its rank
degree are coprime.

Let E(r ,d) be the set of indecomposable bundles of rankr and degreed. Some of the results
of Atiyah30 are collected in the following theorem.

Theorem VIII.2: For each rPN there exists a vector bundle FrPE(r ,0) with h0(X,Fr)
51. For each bundle EPE(r ,0) there exists a line bundle LE of degree zero with E.Fr ^ LE .
This line bundle [with LE

r .det(E)] is uniquely determined up to isomorphy. The bundles Fr are
self-dual, i.e., Fr

∨.Fr , and the product of two such bundles is given by

Fr ^ Fs. (
i 51

min~r ,s!

Fr i
, where (

i 51

min~r ,s!

r i5rs.

Thus, h0(X,Fr ^ Fs)5min(r,s).
Corollary VIII.3: Let E belong toE(r ,0). ThenEnd(E).Fr ^ Fr . In particular,

h0
„X,End~E!…5r . ~8.1!

Proof: According to Theorem VIII.2 there exists a line bundleLE with E.Fr ^ LE , so that
~again by Theorem VIII.2! E∨.Fr ^ LE

∨ . Hence,E∨
^ E.(Fr ^ LE

∨) ^ (Fr ^ LE).Fr ^ Fr . h

From the proof one concludes thatLE∨.LE
∨ . We need some more results on~semi-!stable

bundles which can be found in Ref. 31.
Theorem VIII.4: The moduli spaceUX

ss(r ,d) of equivalence classes of semistable vec
bundles of rank r and degree d is isomorphic to the symmetric product ShX, where h5(r ,d), i.e.,
UX

ss(r ,d).ShX. The moduli space of isomorphism classes of stable bundlesUX(r ,d) is isomor-
phic to X if (r ,d)51 and empty otherwise.

Corollary VIII.5: There exist no stable bundles of degree zero.
In analogy to Lemma VII.3 the following holds~see, e.g., Ref. 27, p. 146!.
Proposition VIII.6: Every simple bundle on an elliptic curve is stable.
The propagator. Let E be a Hermitian vector bundle of rankr and degreed on the elliptic

curve X. Riemann–Roch givesh0(X,E)2h1(X,E)5d1r (12g)5d. According to the genera
procedure we have to setd50, since thenh0(X,E)50 implies h0(X,K ^ E∨)5h1(X,E)50.
Henceforth, we will assume that d50 and that h0(X,E)50. The propagator will be a meromor
phic section ofp1* (K ^ E∨) ^ p2* (E) on X3X with a simple pole on the diagonalD,X3X. Let
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MEªO~D! ^ p1* ~E∨! ^ p2* ~E!

~here we have used the triviality of the canonical bundleK!. As usual we have to determine und
which conditions onE the propagator exists and is uniquely defined, i.e.,h0(X3X,ME)51. In
the case of a Riemann surface of genusg>2 one uses simple~or even stable! bundles, but
according to Proposition VIII.6 every simple bundle onX is already stable~as in the caseg50!.
Thus, we should assumeE to be stable. The NZM condition restricts the degree to zero,but there
are no stable bundles of degree zero according to Corollary VIII.5!So we should consider th
next bestnatural class of bundles, i.e., the indecomposable ones.

Theorem VIII.7: Let EPE(r ,0). The propagator exists and is uniquely determined, i.e.,

h0~X3X,ME!51,

precicely iff r51, i.e., iff E is a line bundle.
Proof: We haveMEuD5O(D)uD ^ „p1* (E∨) ^ p2* (E)…uD . The first factor is, according to

Theorem IV.4 equal toKD
21, which is trivial. The second factor is isomorphic to End(E) restricted

to D, so thatMEuD5OuD ^ End(E)uD . Using ~8.1!, we get

h0~D,MEuD!5h0
„X, End~E!…5r . ~8.2!

Since the equalityh0(X3X,ME)5h0(D,MEuD) ~Theorem IV.4! holds also in the caseg51, we
can combine it with~8.2! to find h0(X3X,ME)5r . h

Remark:Let us consider briefly the case where only the fieldc satisfies the NZM condition.
We assumeE to be a stable bundle of rankr and degreed; according to Theorem VIII.4 this is
only possible if (r ,d)51. Since by Riemann–Rochh0(X,E)5h1(X,E)1d, requiring the NZM
conditionh0(X,E)50 givesd,0. There will beh0(X,E∨)52d zero modes of the fieldb. Since
ñª2d/r PQ\Z, the usual ‘‘trick’’ does not work here.

IX. CONCLUSION

We have seen that it is possible to define a generalizedbc-system based on stable Hermitia
vector bundles instead of line bundles. To obtain good results, the bundles have to sa
geometric condition, namely they should not lie in the non-Abelian theta divisor. This gener
in a straightforward way the rank one case. However, it will be difficult to obtain explicit form
since the geometry of non-Abelian theta functions is much less understood. Most of the ran
constructions work—with appropriate modifications—for bundles of higher rank as well, b
the case, where insertions have to be made, a new idea seems to be needed. In case the
zero or one there does not exist a natural higher rank system. Nevertheless, there might exi
kind of ‘‘parabolic’’ bcr-system~where we have some marked points on the surface, corresp
ing physically to Vertexoperators and mathematically to parabolic bundles!, which allows one to
show factorizationas in WZW models.
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We determine the exchange relations of the level-oneq-vertex operators of the
quantum affine superalgebraUq@gl(NûN)#. We study in detail the level-one irre-
ducible highest weight representations ofUq@gl(2û2)], andcompute the characters
and supercharacters associated with these irreducible modules. ©2000 American
Institute of Physics.@S0022-2488~00!01902-2#

I. INTRODUCTION

A. Free bosonic representations

Infinite-dimensional highest weight representations and the corresponding vertex operat1 of
quantum affine~super!algebras are two ingredients of great importance in the algebraic analy
lattice integrable models.2,3 Under some assumptions on the physical space of states of the m
this algebraic analysis method enables one to compute the correlation functions and form
of these models in the form of integrals.2–6

A powerful approach for studying the highest weight representations and vertex opera
the bosonization technique7,8 which allows one to explicitly construct these objects in terms of
q-deformed free bosonic fields.

Free bosonic realization of level-one representations and the associated vertex opera
been constructed for most~twisted or untwisted! quantum affine algebras.7–11 This bosonization
technique has recently extended to the type I quantum affine superalgebrasUq@sl(M ûN)#,
MÞN,12 andUq@gl(NûN)#.13 Level-one representations and vertex operators of these two c
have been constructed in terms ofq-deformed free bosonic fields.$See also Refs. 14 and 15 for th
specialUq@sl(2û1)] andUq@gl(2û2)] cases, respectively.%

B. Highest weight irreducible representations

For most quantum affine bosonic algebras, the level-one free bosonic representatio
already irreducible. However, forUq@sl(M ûN)#, MÞN or M5N, such free bosonic represent
tions, which were constructed in Refs. 12 and 13, are not irreducible in general. It is inter
~and important for applications! to construct irreducible highest weight representations out of
reducible ones. In Refs. 12, 5, and 16 the level-one irreducible highest weight representat
Uq@sl(2û1)] and Uq@gl(1û1)] have been investigated in detail. The method adopted in th
papers is to look for suitable projection operators and then apply them to decompose the re
representations into a direct sum of irreducible ones. The characters and supercharacters
ated with these irreducible representations can then be computed by the BRST resolution
24600022-2488/2000/41(4)/2460/22/$17.00 © 2000 American Institute of Physics
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C. The present work

In the first part of this work, we determine the exchange relations of level-oneq-vertex
operators ofUq@gl(NûN)# by using the free bosonic realization given in Ref. 13. We also giv
Miki’s construction of the super Reshetikhin–Semenov–Tian–Shansky~RS! algebra17 for
Uq@gl(NûN)# at level one. The second part of this work is devoted to a detailed study of leve
irreducible highest weight representations ofUq@gl(2û2)] and the corresponding vertex operato
We compute the characters and supercharacters associated with all these irreducible rep
tions.

The paper is organized as follow. In Sec. II we briefly review the bosonization
Uq@gl(NûN)# given in Ref. 13. In Sec. III we obtain the free bosonic realization of the level-
vertex operators ofUq@gl(NûN)# by extending the results in Ref. 13 forUq@sl(NûN)#. In Sec. IV
we determine the exchange relations of these vertex operators. In Sec. V, we study in de
level-one irreducible highest weight representations ofUq@gl(2û2)] and the associated with verte
operators. The characters and supercharacters corresponding to these irreducible mod
computed.

II. BOSONIZATION OF Uq†gl „N ẑN…‡ AT LEVEL ONE

A. Drinfeld basis of Uq†gl „N ẑN…‡

Let $a i ,i 50,1,...,2N21% denote a chosen set of simple roots of the affine superalg
sl(NûN).18 As in Ref. 13, we choose the following nonstandard system of simple roots, a
which are odd:

a05d2«11«2N ,
~II.1!

a l5« l2« l 11 , l 51,2,...,2N21,

with d, $«k%k51
2N satisfying (d,d)5(d,«k)50, («k ,«k8)5(21)k11dkk8 . Extending the Cartan sub

algebra of sl(NûN by adding to it the element

a2N5 (
k51

2N

«k , ~II.2!

we obtain an enlarged Cartan matrix with elementsai j 5(a i ,a j ), i , j 50,1,2,...,2N. Explicitly,

~ai j !5S 0 21 1 22

21 0 1 2

1 0 � 22

� � �

1 0 21 22

1 21 0 2

22 2 22 ¯ ¯ 2 0

D . ~II.3!

Then the Cartan matrix (ai j ), i , j 51,2,...,2N, is invertible, which is essential in the construction
q-vertex operators.

We denote byH the extended Cartan subalgebra and byH* the dual of H. Let
$h0 ,h1 ,...,h2N ,d% be a basis ofH, whereh2N is the element inH corresponding toa2N andd is
the usual derivation operator. We identify the dualH* with H via the form ~,!. Let
$L0 ,L1 ,...,L2N ,d% be the dual basis withL j being fundamental weights. Explicitly,13
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L2N5
1

2N (
k51

2N

~21!k11«k ,

~II.4!

L i5L01 (
k51

i

~21!k11«k2
i

2N (
k51

2N

~21!k11«k ,

wherei 50,1,...,2N21. Obviously,H (H* ) constitutes the~dual! Cartan subalgebra of gl(NûN.
The quantum affine superalgebraUq@gl^NûN) is a quantum~or q-) deformation of the uni-

versal enveloping algebra of gl(NûN and is generated by the Chevalley generators$ei , f iq
hj ,du i

50,1,...,2N21,j 50,1,...,2N%. The Z2-grading of the Chevalley generators is@ei #5@ f i #51, i
50,1,...,2N21, and zero otherwise. The defining relations are

hh85h8h, ;hPH,

qhjeiq
2hj5qai j ei , @d,ei #5d i0ei ,

qhj f iq
hj5q2ai j f i , @d, f i #52d i0f i ,

@ei , f i 8#5d i i 8

qhi2q2hi

q2q21
,

@ei , ei 8#5@ f i , f i 8#50, for aii 850,

†@e0 , e1#q21,@e0 , e2N21#q‡50, ~II.5!

†@el el 21#q~21! l,@el , el 11#q~21! l 11
‡50,

†@e2N21 ,e2N22#q21@e2N21 ,e0#q‡50,

†@ f 0 , f 1#q21,@ f 0 , f 2N21#q‡50,

†@ f l , f l 21#q~21! l ,@ f l , f l 11#q~21! l 11
‡50,

†@ f 2N21 , f 2N22#q21,@ f 2N21 , f 0#q‡50, l 51,2,...,2N22.

Here and throughout,@a, b#x[ab2(21)@a#@b#xba and @a, b#[@a, b#1 .
HereUq@gl(NûN) is a Z2-graded quasi-triangular Hopf algebra endowed with the follow

coproductD, counit e, and antipodeS:

D~h!5h^ 111^ h,

D~ei !5ei ^ 11qhi ^ ei , D~ f i !5 f i ^ q2hi11^ f i ,
~II.6!

e~ei !5e~ f i !5e~h!50,

S~ei !52q2hiei , S~ f i !52 f iq
hi, S~h!52h,

where i 50,1,...,2N21 and hPH. Notice that the antipodeS is a Z2-graded algebra anti
homomorphism. Namely, for any homogeneous elementsa,bPUq@gl(NûN), S(ab)
5(21)@a#@b#S(b)S(a), which extends to inhomogeneous elements through linearity. The m
plication rule on the tensor products isZ2-graded: (a^ b)(a8^ b8)5(21)@b#@a8#(aa8^ bb8) for
any homogeneous elementsa,b,a8,b8PUq@gl(NûN).
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Uq@gl(NûN) can also be realized in terms of the Drinfeld generato19

$Xm
6,i ,Hn

j ,q6H0
j
,c,dumPZ,nPZ2$0%,i 51,2,...,2N21,j 51,2,...,2N%. The Z2-grading of the

Drinfeld generators is given by@Xm
6,i #51 for all i 51,...,2N21, mPZ and @Hn

j #5@H0
j #5@c#

5@d#50 for all j 51,...,2N, nPZ2$0%. The relations satisfied by the Drinfeld generato
read20,17,13

@c, a#5@d, H0
j #5@H0

j ,Hn
j 8#50, ;aPUq@gl~NûN!,

qH0
j
Xn

6,iq2H0
j
5q6ai j Xn

6,i ,

@d, Xn
6,i #5nXn

6,i , @d, Hn
j #5nHn

j ,

@Hn
j , Hm

j #5dn1m,0

@aj j 8n#q@nc#q

n
,

@Hn
j Xm

6,i #56
@ai j n#q

n
Xn1m

6,i q7unuc/2, ~II.7!

@Xn
1,i Xm

2,i 8#5
d i i 8

q2q21
~q~c/2!~n2m!cn1m

1,i 2q2~c/2!~n2m!cn1m
2,i !,

@Xn
6,i Xn

6,i 8#50, for aii 850,

@Xn11
6,i , Xm

6,i 8#q6aii 82@Xm11
6,i 8 , Xn

6,i #q6aii 850,

†@Xm
6,l Xm8

6,l 21
#q~21! l ,@Xn

6,l , Xn8
6,l 11

#q~21!l 11‡

1†@Xn
6,l , Xm8

6,l 21
#q~21! l ,@Xm

6,l , Xn8
6,l 11

#q~21! l 11
‡50, l 52,...,2N22,

where@x#q5(qx2q2x)/(q2q21) andcn
6, j are related toH6n

j by relations

(
nPZ

cn
6, j z2n5q6H0

j
expS 6(q2q21) (

n.0
H6n

j z7nD . ~II.8!

The Chevalley generators are related to the Drinfeld generators by the formulas

hi5H0
i , ei5X0

1,i , f i5X0
2,i , i 51,2,...,2N21, ~II.9!

h2n5H0
2N , h05c2 (

k51

2N21

H0
k ,

e05†X0
2,2N21,@X0

2,2N22,...,†X0
2,3 ,@X0

2,2 ,X1
2,1#q‡q21...#q‡q21q2Sk51

2N21H0
k
, ~II.10!

f 05~21!NqSk51
2N21H0

k
†@ ...†@X21

1,1 ,X0
1,2#q21,X0

1,3
‡q ,...,X0

1,2N22#q21,X0
1,2N21

‡q .

B. Free Bosonic realization of Uq†gl „N ẑN… at level one

In this subsection, we briefly review the bosonization ofUq@gl(NûN)# at level one.13

Introduce bosonic oscillators$an
j ,cn

l ,Qaj ,QclunPZ, j 51,2,...,2N,l 51,2,...,N% which satisfy
the commutation relations
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@an
j , am

j 8#5~21! j 11d j j 8dm1n,0

@n#q
2

n
, @a0

j , Qaj8#5d j j 8 , ~II.11!

@cn
l , cm

l 8#5d l l 8dn1m,0

@n#q
2

n
, @c0

l , Qcl 8#5d l l 8 . ~II.12!

The remaining commutation relations are zero. Associated with these bosonic oscillators a
q-deformed free bosonic fields

H j~z;k!5QAj1A0
j ln z2 (

nÞ0

An
j

@n#q
qkunuz2n, ~II.13!

cl~z!5Qcl1c0
l ln z2 (

nÞ0

cn
l

@n#q
z2n, ~II.14!

H6
j ~z!56~q2q21! (

n.0
A6n

j z7n6A0
i ln q. ~II.15!

Here,

An
i 5~21! i 11~an

i 1an
i 11!, QAi5Qai2Qai 11, i 51,2,...,2N21, ~II.16!

An
2N5

qn1q2n

2 (
l 51

2N

~21! l 11an
l , qA2N5(

l 51

2N

Qal. ~II.17!

Let us define the Drinfeld currents

X6,i~z!5 (
nPZ

Xn
6,iz2n21, i 51,2,...,2N21,

c6, j~z!5 (
nPZ

cn
6, j z2n, j 51,2,..,2N.

Then, we have the following.
Theorem 1:13 The Drinfeld generators of Uq@gl(NûN) at level one are realized by the fre

boson fields as

c51,

c6, j~z!5eH6
j

~z!, j 51,2,...,2N, ~II.18!

X6,i~z!5:e6Hi ~z;71/2!Y6,i~z!:F6,i , i 51,2,...,2N21,
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where

F6,2k215)
l 51

k21

e6A21pa0
2l 21

, F6,2k5)
l 51

k

e7A21pa0
2l 21

,

Y1,2k21~z!5eck~z!

Y2,2k21~z!5
1

z~q2q21!
~e2ck~qz!2e2ck~q21z!!, ~II.19!

Y1,2k~z!5Y2,2k21~z!5
1

z~q2q21!
~e2ck~qz!2e2ck~q21z!!,

Y2,2k~z!52Y1,2k21~z!52eck~z!, k51,2,...,N.

III. BOSONIZATION OF LEVEL-ONE VERTEX OPERATORS

We consider the evaluation representationVz of Uq@gl(NûN), whereV is an 2N-dimensional
graded vector space with basis vectors$v1 ,v2 ,...,v2N%. The Z2-grading of the basis vectors i
chosen to be@v j #5@(21) j11#/2. Let ej , j 8 be the 2N32N matrices satisfyingei , jvk5d jkv i .
Denote byV* S the left dual module ofV defined by

~a•v* !~v !5~21!@a#@v* #v* ~S~a!v !, ;aPUq@gl~NûN!, vPV,v* PV* . ~III.1!

Namely, the representations onV* S are given by

pV* s~a!5pV„S~a!…st, ;aPUq@gl~NûN!, ~III.2!

where st denotes the supertransposition defined by (Ai , j )
st5(21)@ j #(@ i #1@ j #)Aj ,i . Let Vz*

S be the
2N-dimensional evaluation module corresponding toV* S.

In the homogeneous gradation, the Drinfeld generators are represented13 on Vz by

Hm
i 5~21! i 11

@m#q

m
q~21! im~qxiz!m~ei ,i1ei 11,i 11!,

Hm
2N5zm

@2m#q

m F2qm(
l 51

N

e2l ,2l1(
l 51

N

„12N1~ l 21!~12qm!…~e2l 21,2l 211e2l ,2l !G ,

H0
i 5~21! i 11~ei ,i1ei 11,i 11!, H0

2N5 (
k51

2N

~21!k11ek,k ,

Xm
1,i5~qxiz!mei ,i 11, Xm

2,i5~21! i 11~qxiz!mei 11,i ,

and onVz*
S by

Hm
i 5~21! i

@m#q

m
q~21! i 11m~q2xiz!m~ei ,i1ei 11,i 11!,

Hm
2N52zm

@2m#q

m F2q2m(
l 51

N

e2l ,2l1(
l 51

N

„12N1~ l 21!~12q2m!…~e2l 21,2l 211e2l ,2l !G ,
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H0
i 5~21! i~ei ,i1ei 11,i 11!, H0

2N5 (
k51

2N

~21!kek,k ,

Xm
1,i52~21! iq~21! i

~q2xiz!mei 11,i , Xm
2,i52q~21! i 11

~q2xiz!mei ,i 11 ,

wherei 51,...,2N21, xi5S l 51
i (21)l 115@(21)i 1111#/2.

Let V(l) be the highest weightUq@gl(NûN)-module with the highest weightl. Consider the
following intertwiners ofUq@gl(NûN)-modules:3

Fl
mV~z!:V~l!→V~m! ^ Vz , ~III.3!

Fl
mV* ~z!:V~l!→V~m! ^ Vz*

S , ~III.4!

Cl
Vm~z!:V~l!→Vz^ V~m!, ~III.5!

Cl
V* m~z!:V~l!→Vz*

S
^ V~m!. ~III.6!

They are intertwiners in the sense that for anyxPUq@gl(NûN),

J~z!•x5D~x!•J~z!, J~z!5Fl
mV~z!,Fl

mV* ~z!,Cl
Vm~z!,Cl

V* m~z!. ~III.7!

These intertwiners are even operators, that is, their gradings are@Fl
mV(z)#5@Fl

mV* (z)#

5@Cl
Vm(z)#5@Cl

V* m(z)#50. According to Ref. 3,Fl
mV(z)@Fl

mV* (z)# is called the type I~dual!

vertex operator andCl
Vm(z)@Cl

V* m(z)# the type II~dual! vertex operator. The vertex operators c
be expanded in the form

Fl
mV~z!5(

j 51

2N

Fl, j
mV~z! ^ v j , Fl

mV* ~z!5(
j 51

2N

Fl, j
mV* ~z! ^ v j* , ~III.8!

Cl
Vm~z!5(

j 51

2N

v j ^ Cl, j
Vm~z!, Cl

V* m~z!5(
j 51

2N

v j* ^ Cl, j
V* m~z!. ~III.9!

Following Ref. 13, we introduce the combinations of bosonic oscillators:

An*
i5 (

l 51

2N21

ail
21An

l 1
2

qn1q2n ai ,2N
21 An

2N , i 51,2,...,2N21, ~III.10!

An*
2N52N(

l 51

2N

a2N,l
21 An

l , nÞ0, ~III.11!

A0*
j5(

l 51

2N

ajl
21A0

l , QAj* 5(
l 51

2N

ajl
21QAl, j 51,2,...,2N, ~III.12!

and define the currents

H* , j~z;k!5QAj* 1A0*
j ln z2 (

nÞ0

An*
j

@n#q
qkunuz2n, j 51,2,...,2N21, ~III.13!

B2N~z;k!5QA2N* 5A0*
2N ln z2 (

nÞ0

An*
2N

@n#q
qkunuz2n, ~III.14!
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B1~z;k!5QA2N* 1A0*
2N ln z1

N21

N (
nÞ0

An*
2N

@n#q
qkunuz2n. ~III.15!

Consider the even operators

f~z!5(
j 51

2N

f j~z! ^ v j , f* ~z!5(
j 51

2N

f j* ~z! ^ v j* ,

c~z!5(
j 51

2N

v j ^ c j~z!, c* ~z!5(
j 51

2N

v j* ^ c j* ~z!.

They obey the same intertwining relations asFl
mV(z), Fl

mV* (z), Cl
Vm(z), andCl

V* m(z), respec-
tively.

Intertwining operators which satisfy~III.7! for any xPUq@sl(NûN) have been constructed b
one of the authors.13 We extend the result toUq@gl(NûN) by requiring that the vertex operator
found in Ref. 13 also satisfy~III.7! for the elementx5Hm

2N $which extendsUq@sl(NûN)# to
Uq@gl(NûN). We find

f2N~z!5:e2H* 2N21~qz;1/2!1B2N~zq2;1/2!ecN~qz!:e2A21pNf ,

~21! lf l~z!5@f l 11~z!, f l #q~21! l,

f1* ~z!5:eH* ,1~qz;1/2!1B1~qz;1/2!:eA21pNf ,

q~21! l 11
f l 11* ~z!5@f l* ~z!, f l #q~21! l 11 ,

~III.16!

c1~z!5:e2H* ,1~qz;21/2!2B1~qz;21/2!:e2A21pNf ,

c l 11~z!5@c l~z!,el #q~21! l 11 ,

c2N* ~z!5:eH* 2N21~qz;21/2!2B2N~z;21/2!]z$e
2cN~qz!%:eA21pNf ,

~21! l 11q~21! l
c l* ~z!5@c l 11* ~z!,el #q

~21! l
,

where theq-difference derivative]z is defined by

]zf ~z!5
f ~zq!2 f ~zq21!

~q2q21!z

andNf5S l 51
N a0

2l is the Fermi-number operator satisfying

~21!Nf J~z!5~21!@J~z!#J~z!, for J~z!5X6,i~z!,f i~z!,f i* ~z!,c i~z!,c i* ~z!.

SinceFl
mV(z), Fl

mV* (z), Cl
Vm(z), andCl

V* m(z) obey the same intertwining relations asf(z),
f* (z), c(z), andc* (z) respectively, we have the following,

Proposition 1: The vertex operatorsFl
mV(z), Fl

mV* (z), Cl
Vm(z), andCl

V* m(z), if they exist,
have the same bosonized expressions as the operatorsf(z), f* (z), c(z), and c* (z), respec-
tively.
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IV. EXCHANGE RELATIONS OF VERTEX OPERATORS

In this section, we derive the exchange relations of type I and II bosonized vertex opera
Uq@gl(NûN). As expected, these vertex operators satisfy the graded Faddeev–Zamolod
algebra.

A. The R-matrix

Let R(z)PEnd (V^ V) be theR-matrix of Uq@gl(NûN), defined by

R~z!~v i ^ v j !5 (
k,l 51

2N

Rkl
i j ~z!vk^ v l , ;v i ,v j ,vk ,v lPV, ~IV.17!

where

R2l 21,2l 21
2l 21,2l 21~z!51, R2l ,2l

2l ,2l~z!5
zq212q

zq2q21
, l 51,2,...,N,

Ri j
i j ~z!5

z21

zq2q21
, iÞ j ,

Ri j
j i ~z!5

q2q21

zq2q21 ~21!@ i #@ j #, i , j ,

Ri j
j i ~z!5

q2q21

zq2q21
~21!@ i #@ j #, i , j ,

Rkl
i j ~z!50, otherwise.

The R-matrix satisfies the graded Yang–Baxter equation onV^ V^ V,

R12~z!R13~zw!R23~w!5R23~w!R13~zw!R12~z!,

and, moreover, enjoys~i! initial condition,R(1)5P with P being the graded permutation oper
tor; ~ii ! unitarity condition,R12(z/w)R21(w/z)51, whereR21(z)5PR12(z)P; and ~iii ! crossing-
unitarity,

R21,st1~z!R~z!st15
~z21!2

~q21z21!~zq2q21!
.

The various supertranspositions of theR-matrix are given by

„Rst1~z!…i j
kl5Rk j

il ~z!~21!@ i #~@ i #1@k# !, ~Rst2~z!! i j
kl5Ril

k j~z!~21!@ j #~@ l #1@ j # !,

„Rst12~z!…i j
kl5Rkl

i j ~z!~21!~@ i #1@ j # !~@ i #1@ j #1@k#1@ l # !5Rkl
i j ~z!.

B. The graded Faddeev–Zamolodchikov algebra

We calculate the exchange relations of type I and II bosonic vertex operators ofUq@gl(NûN)
given by ~III.16!. Define

R dz f~z!5Res~ f !5 f 21 , for a formal series functionf ~z!5 (
nPZ

f nzn.
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Then, the Chevalley generators ofUq@gl(NûN) can be expressed by the integrals

ei5 R dz X1,i~z!, f i5 R dzX2,i~z!, i 51,2,...,2N21.

One can also get the integral expressions of the bosonic vertex operatorsf(z), f* (z), c(z), and
f* (z) from ~III.16!. Using these integral expressions and the relations given in Appendices A
B, we arrive at the following.

Proposition 2: The bosonic vertex operators defined in (III.16) satisfy the graded Fadd–
Zamolodchikov algebra

f j~z2!f i~z1!5S z2

z1
D 221/N

(
k,l 51

2N

Ri j
klS z1

z2
Dfk~z1!f l~z2!~21!@ i #@ j #, ~IV.2!

c i* ~z1!c j* ~z2!5S z1

z2
D 221/N

(
k,l 51

2N

Rkl
i j S z1

z2
Dc l* ~z2!ck* ~z1!~21!@ i #@ j #, ~IV.3!

c i* ~z1!f j~z2!5S qz2

z1
D 221/N

f j~z2!c i* ~z1!~21!@ i #@ j #. ~IV.4!

In the derivation of this proposition the fact thatRi j
kl(z)(21)@k#@ l #5Ri j

kl(z)(21)@ i #@ j # is helpful.
We can also generalize the Miki construction to theUq@gl(NûN) case. Define

L1~z! i
j5f i~zq1/2!c j* ~zq21/2!,

L2~z! i
j5f i~zq21/2!c j* ~zq1/2!.

Proposition 3: The L-operators L6(z) defined above give a realization of the super RS algeb17

at level one for the quantum affine superalgebra Uq@gl(NûN),

R~z/w!L1
6~z!L2

6~w!5L2
6~w!L1

6~z!R~z/w!,

R~z1/w2!L1
1~z!L2

2~w!5L2
2~w!L1

1~z!R~z2/w1!,

where L1
6(z)5L6(z) ^ 1, L2

6(z)51^ L6(z), and z65zq61/2.
Proof: Straightforward computation by using~IV.2!–~IV.4!.

V. HIGHEST WEIGHT REPRESENTATION OF Uq†gl „2 ẑ2…‡ AND ASSOCIATED VERTEX
OPERATORS

In this section we study in detail the irreducible highest weight representations ofUq@gl(2û2)]
and their associated vertex operators.

A. Highest weight Uq†gl „2̂z2…‡-modules

We begin by defining the Fock module. Denote byFl1 ,l2 ,l3 ,l4 ;l5 ;l6
, the bosonic Fock

spaces generated bya2m
i ,c2m

l (m.0) over the vectorul1 ,l2 ,l3 ,l4 ;l5 ,l6 &:

Fl1 ,l2 ,l3 ,l4 ;l5 ,l6
5C@a21

1 ,a22
1 ...;a21

2 ,a22
2 ...;a21

3 ,a22
3 ,...;a21

4 ,a22
4 ,...;

c21
1 ,c22

1 ,...;c21
2 ,c22

2 ,...#ul1 ,l2 ,l3 ,l4 ;l5 ,l6 &,

where

ul1 ,l2 ,l3 ,l4 ;l5 ,l6&5e( i 51
4 l iQai1l5Qc11l6Qc2u0&.
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The vacuum vectoru0& is defined byam
i u0&5cm

l u0&50 for i 51,2,3,4,l 51,2, andm>0. Obvi-
ously,

am
i ul1 ,l2 ,l3 ,l4 ;l5 ,l6&50, for i 51,2,3,4 andm.0,

cm
l ul1 ,l2 ,l3 ,l4 ;l5 ,l6&50, for i 51,2 and m.0.

To obtain the highest weight vectors ofUq@gl(2û2)], we impose the conditions

ei ul1 ,l2 ,l3 ,l4 ;l5 ,l6&50, i 50,1,2,3,

hj ul1 ,l2 ,l3 ,l4 ;l5 ,l6&5l j ul1 ,l2 ,l3 ,l4 ;l5 ,l6 &, j 50,1,2,3,4. ~V.1!

Solving these equations, we obtain the following classification:

~1! (l1 ,l2 ,l3 ,l4 ;l5 ,l6)5(b,2b,b,2b;0,0), whereb is arbitrary. The weight of this vecto
is (l0,l1,l2,l3,l4)5(1,0,0,0,4b). We haveuL014bL4&5ub,2b,b,2b;0,0&.

~2! (l1 ,l2 ,l3 ,l4 ;l5 ,l6)5(b11,2b21,b11,2b;0,0), whereb is arbitrary. The weight of
this vector is (l0,l1,l2,l3,l4)5(0,0,0,1,4b13). We haveuL31(4b13)L4&5ub11,2b
21,b11,2b;0,0&.

~3! (l1 ,l2 ,l3 ,l4 ;l5 ,l6)5(b11,2b211a,b,2b;2a,0), whereb is arbitrary. The weight
of this vector is (l0,l1,l2,l3,l4)5(0,a,12a,0,4b122a). We haveuaL11(12a)L2

1(4b122a)L4&5ub11,2b211a,b,2b;2a,0&.

According to this classification, we introduce the Fock spaces

F
„~0,1!;b…5 % i , j ,kPZFb1 i ,2b2 i 1 j ,b2 j 1k,2b2k; i 2 j ,k , ~V.2!

F
„~1,0!;b…5 % i , j ,kPZFb111 i ,2b212 i 1 j ,b112 j 1k,2b2k; i 2 j ,k , ~V.3!

F~a;b!5 % i , j ,kPZFb111 i ,2b211a2 i 1 j ,b2 j 1k,2b2k;2a1 i 2 j ,k . ~V.4!

It can be shown that the bosonized action ofUq@gl(2û2)] on F(* ;b) is closed, i.e.,

Uq@gl~2û2!]F~* ;b!5F~* ;b! , for * 5~0,1!,~1,0!,a.

Hence each Fock space in~V.2!–~V.4! constitutes aUq@gl(2û2)]-module. However, these mod
ules are not irreducible in general. To obtain the irreducible representations, we introduc
pairs of ‘‘fermionic’’ currents

h i~z!5 (
nPZ

hn
i z2n215:eci ~z!:, j i~z!5 (

nPZ
jn

i z2n5:e2ci ~z!:, i 51,2.

The mode expansion ofh i(z) andj i(z) is well defined onF
„(0,1);b… , F

„(1,0);b… , andF(a;b) with
aPZ, and the modes satisfy the relations

jm
i jn

i 1jn
i jm

i 5hm
i hn

i 1hn
i hm

i 50, jm
i hn

i 1hn
i jm

i 5dm1n,0 , i 51,2, ~V.5!

jm
1 jn

22jn
2jm

1 5jm
1 hn

22hn
2jm

1 5hm
1 jn

22jn
2hm

1 5hm
1 hn

22hn
2hm

1 50. ~V.6!

Thus, we have the direct sum decompositions

F~* ;b!5h0
1j0

1h0
2j0

2F~* ;b! % h0
1j0

1j0
2h0

2F~* ;b! % j0
1h0

1h0
2j0

2F~* ;b! ,% j0
1h0

1j0
2h0

2F~* ;b! , ~V.7!

with * 5(0,1),(1,0),aPZ. As usual, we name
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K Ker uF~* ;b!
as h0

1j0
1h0

2j0
2F~* ;b! ,

K CokeruF~* ;b!
as h0

1j0
1j0

2h0
2F~* ;b! ,

C Ker uF~* ;b!
as j0

1h0
1h0

2j0
2F~* ;b! ,

K CokeruF~* ;b!
as j0

1h0
1j0

2h0
2F~* ;b! .

Since h0
1 and h0

2 commute ~or anticommute! with the bosonized actions ofUq@gl(2û2)],
K Ker uF(IL ;b)

, C Ker uF(* ;b)
, K CokeruF(* ;b)

, andC CokeruF(* ;b)
are all theUq@gl(2û2)]-modules.

From now on, we study the characters and supercharacters of theseUq@gl(2û2)]-modules
which are constructed in the bosonic Fock spaces. We first of all bosonize the derivation op
d as

d52 (
m.0

m2

@m#q
2 H (

i 51

3

A2m
i Am*

i1
1

2~qm1q2m!
A2m

4 Am*
41c2m

1 cm
1 1c2m

2 cm
2 J

2
1

2 H (
i 51

4

A0
i A0*

i1c0
1~c0

111!1c0
2~c0

211!J . ~V.8!

One can easily check that thisd obeys the commutation relations

@d, hj #50, @d, hm
j #5mhm

j , @d, Xm
6,i #5mXm

6,i , j 51,2,3,4, i 51,2,3,

as required. Moreover, we have@d, j0
l #5@d, h0

l #50 for l 51,2.
The character and supercharacter of aUq@gl(2û2)]-moduleM are defined by

ChM ~q,x1 ,x2 ,x3 ,x4!5trM ~q2dx1
h1x2

h2x3
h3x4

h4!, ~V.9!

SchM ~q,x1 ,x2 ,x3 ,x4!5StrM ~q2dx1
h1x2

h2x3
h3x4

h4!5trM „~21!Nlq2dx1
h1x2

h2x3
h3x4

h4
…, ~V.10!

respectively.
• ~I! Character ofF(a;b) for a¹Z. Sinceh0

1,h0
2 are not defined on this module, it is expect

that F(a;b) is an irreducible highest weightUq@gl(2û2)]-module. Thus, we have the following
Conjecture 1: We have the identification of the highest weight Uq@gl(2û2)]-modules: F(a;b)

>V(aL11(12a)L21(4b122a)L4) for a¹Z and arbitrary b, where and throughout V(l)
denotes the irreducible highest weight Uq@gl(2û2)]-module with the highest weightl.

Proposition 4: The character and supercharacter ofF(a;b) are

ChF~a;b!
~q,x1 ,x2 ,x3 ,x4!5

q~1/2!a~2b11!

)n51
` ~12qn!6

3 (
i , j ,kPZ

q~1/2!~ i 21 j 21k222k j1 i 1 j 1k!x1
a1 j x2

12a1 i 2k

3x3
2 j x4

~4b122a12i 22 j 12k! ,
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SchF~a;b!
~q,x1 ,x2 ,x3 ,x4!5

q~1/2!a~2b11!

)n51
` ~12qn!6

3 (
i , j ,kPZ

~21!a211 i 2 j 1kq~1/2!~ i 21 j 21k222k j1 i 1 j 1k!x1
a1 j x2

12a1 i 2k

3x3
2 j x4

~4b122a12i 22 j 12k! .

• ~II ! Characters and supercharacters of KKerF(* ;b)
, C KerF(* ;b)

, K CokerF(* ;b)
, and

C CokerF(* ;b)
for * 5(0,1),(1,0),aPZ. In this case,h0

1 andh0
2 are well defined. We shall calcu

late the characters and supercharacters of these modules by using the BRST resolution.5

Let us define the Fock spaces, forl 1 ,l 2PZ,

F
„~0,1!;b…
~ l 1 ,l 2!

5 % i , j ,kPZ@Fb1 i ,2b2 i 1 j ,b2 j 1k,2b2k; i 2 j 1 l 1 ,k1 l 2
#,

F
„~1,0!;b…
~ l 1 ,l 2!

5 % i , j ,kPZ@Fb111 i ,2b212 i 1 j ,b112 j 1k,2b2k; i 2 j 1 l 1 ,k1 l 2
#,

F
~a;b!

~ l 1 ,l 2!
5 % i , j ,kPZ@Fb111 i ,2b211a2 i 1 j ,b2 j 1k,2b2k;2a1 i 2 j 1 l 1 ,k1 l 2

#.

We haveF(* ,b)
(0,0) 5F(* ;b) . It can be shown thath0

i and j0
i intertwine these Fock spaces in th

following fashions:

h0
1:F

~* ;b!

~ l 1 ,l 2!→F
~* ;b!

~ l 111,l 2! , h0
2:F

~* ;b!

~ l 1 ,l 2!→F
~* ;b!

~ l 1 ,l 211! ,

j0
1:F

~* ;b!

~ l 1 ,l 2!→F
~* ;b!

~ l 121,l 2! , j0
2:F

~* ;b!

~ l 1 ,l 2!→F
~* ;b!

~ l 1 ,l 221! .

We have the following two BRST complexes:

¯ ——→
Ql 121

~1!
5h0

1

F
~* ;b!

~ l 1 ,l 2!
——→
Ql 1

~1!
5h0

1

F
~* ;b!

~ l 111,l 2!
——→

Ql 111
~1!

5h0
1

¯

uO uO ~V.11!

¯ ——→
Ql 121

~1!
5h0

1

F
~* ;b!

~ l 1 ,l 2!
——→
Ql 1

~1!
5h0

1

F
~* ;b!

~ l 111,l 2!
——→

Ql 111
~1!

5h0
1

¯

and

¯ ——→
Ql 221

~2!
5h0

2

F
~* ;b!

~ l 1 ,l 2!
——→
Ql 2

~2!
5h0

2

F
~* ;b!

~ l 1 ,l 211!
——→

Ql 211
~2!

5h0
2

¯

uO uO ~V.12!

¯ ——→
Ql 221

~2!
5h0

2

F
~* ;b!

~ l 1 ,l 2!
——→
Ql 2

~2!
5h0

2

F
~* ;b!

~ l 1 ,l 211!
——→

Ql 211
~2!

5h0
2

¯

whereO is an operator such thatF(* ;b)
( l 1 ,l 2)→F(* ;b)

( l 1 ,l 2) , and moreoverO commutes with the BRST
chargesQl

(1) andQl
(2) . Then, we have the following:
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Proposition 5:

KerQ
l
~ i !5ImQ

l 21
~ i ! , i 51,2, for any l PZ,

~V.13!

tr~O!uKerQl
~ i !5tr~O!u ImQl 21

~ i ! 5tr~O!uCokerQl 21
~ i ! .

Proof: It follows from the fact thath0
i j0

i 1j0
i h0

i 51, (h0
i )25(j0

i )250, andh0
i j0

i (j0
i h0

i ) are the
projection operators fromF(* ;b)

( l 1 ,l 2) to KerQ
l i

( i )~CokerQ
l i

( i )).

By Proposition 5, we can compute the characters and supercharacters ofK KerF(* ;b)
,

C KerF(* ;b)
, K CokerF(* ;b)

, andC CokerF(* ,b)
for * 5~0,1!,~1,0!, aPZ. We have the following:

Proposition 6: The characters and supercharacters of KKerF
„(0,1);b…

, CKerF
„(0,1);b…

,
K CokerF

„(0,1);b…
, and CCokerF

„(0,1);b…
are given by

ChK KerF
„~0,1!;b…

~q,x1 ,x2 ,x3 ,x4!5
1

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
2 l 12 l 2!

3 (
i , j ,kPZ

q~1/2!„i 21 j 21k222k j1~112l 1!i 2~112l 1! j 1~122l 2!k…

3x1
j x2

i 2kx3
2 j x4

~4b12i 22 j 12k! ,

ChC KerF
„~0,1!;b…

~q,x1 ,x2 ,x3 ,x4!5
1

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
1 l 12 l 2!

3 (
i , j ,kPZ

q~1/2!„i 21 j 21k222k j1~112l 1!i 2~112l 1! j 1~122l 2!k…

3x1
j x2

i 2kx3
2 j x4

~4b12i 22 j 12k! ,

ChK CokerF
„~0,1!;b…

~q,x1 ,x2 ,x3 ,x4!5
1

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
2 l 11 l 2!

3 (
i , j ,kPZ

q~1/2!„i 21 j 21k222k j1~122l 1!i 2~122l 1! j 1~112l 2!k…

3x1
j x2

i 2kx3
2 j x4

~4b12i 22 j 12k! ,

ChC CokerF
„~0,1!;b…

~q,x1 ,x2 ,x3 ,x4!5
1

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
1 l 11 l 2!

3 (
i , j ,kPZ

q~1/2!„i 21 j 21k222k j1~112l 1!i 2~112l 1! j 1~112l 2!k…

3x1
j x2

i 2kx3
2 j x4

~4b12i 22 j 12k! ,
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and

SchK KerF
„~0,1!;b…

~q,x1 ,x2 ,x3 ,x4!

5
1

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
2 l 12 l 2!

3 (
i , j ,kPZ

@~21! i 2 j 1kq~1/2!„i 21 j 21k222k j1~122l 1!i 2~122l 1! j 1~122l 2!k…

3x1
j x2

i 2kx3
2 j x4

~4b12i 22 j 12k!#,

SchC KerF
„~0,1!;b…

~q,x1 ,x2 ,x3 ,x4!

5
1

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
1 l 12 l 2!

3 (
i , j ,kPZ

@~21! i 2 j 1kq~1/2!„i 21 j 21k222k j1~112l 1!i 2~112l 1! j 1~122l 2!k…

3x1
j x2

i 2kx3
2 j x4

~4b12i 22 j 12k!#,

SchK CokerF
„~0,1!;b…

~q,x1 ,x2 ,x3 ,x4!

5
1

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
2 l 11 l 2!

3 (
i , j ,kPZ

@~21! i 2 j 1kq~1/2!„i 21 j 21k222k j1~122l 1!i 2~122l 1! j 1~112l 2!k…

3x1
j x2

i 2kx3
2 j x4

~4b12i 22 j 12k!#,

SchC CokerF
„~0,1!;b…

~q,x1 ,x2 ,x3 ,x4!

5
1

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
1 l 11 l 2!

3 (
i , j ,kPZ

@~21! i 2 j 1kq~1/2!„i 21 j 21k222k j1~112l 1!i 2~112l 1! j 1~112l 2!k…

3x1
j x2

i 2kx3
2 j x4

~4b12i 22 j 12k!#.

Proposition 7: The characters and supercharacters of KKerF(a;b)
, C KerF(a;b)

, K CokerF(a;b)
, and

C CokerF(a;b)
for aPz are given by

ChK KerF~a;b!

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
2 l 12 l 2!

3 (
i , j ,kPZ

q~1/2!„i 21 j 21k222k j1~122l 1!i 1~112l 1!i 2~122l 1! j 1~322l 2!k…
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3x1
j x2

i 2kx3
12 j x4

~4b1312i 22 j 12k! ,

ChC KerF
„~1,0!;b…

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
1 l 12 l 2!

3 (
i , j ,kPZ

q~1/2!„i 21 j 21k222k j1~112l 1!i 2~112l 1! j 1~322l 2!k…x1
j

3x2
i 2kx3

12 j x4
~4b1312i 22 j 12k! ,

ChK CokerF
„~1,0!;b…

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
2 l 11 l 2!

3 (
i , j ,kPZ

q~1/2!„i 21 j 21k222k j1~122l 1!i 2~122l 1! j 1~312l 2!k…

3x1
j x2

i 2kx3
12 j x4

~4b1312i 22 j 12k! ,

ChC CokerF
„~1,0!;b…

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
1 l 11 l 2!

3 (
i , j ,kPZ

q~1/2!„i 21 j 21k222k j1~112l 1!i 2~112l 1! j 1~112l 2!k…

3x1
j x2

i 2kx3
2 j x4

~4b1312i 22 j 12k! ,

and

SchK KerF
„~1,0!;b…

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
2 l 12 l 2!

3 (
i , j ,kPZ

@~21!11 i 2 j 1kq~1/2!„i 21 j 21k222k j1~122l 1!i 2~122l 1! j 1~322l 2!k…

3x1
j x2

i 2kx3
12 j x4

~4b1312i 22 j 12k!#,

SchC KerF
„~1,0!;b…

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
1 l 12 l 2!

3 (
i , j ,kPZ

@~21!11 i 2 j 1kq~1/2!„i 21 j 21k222k j1~112l 1!i 2~112l 1! j 1~322l 2!k…

3x1
j x2

i 2kx3
12 j x4

~4b1312i 22 j 12k!#,
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SchK CokerF
„~1,0!;b…

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
2 l 11 l 2!

3 (
i , j ,kPZ

@~21!11 i 2 j 1kq~1/2!„i 21 j 21k222k j1~122l 1!i 2~122l 1! j 1~312l 2!k…

3x1
j x2

i 2kx3
12 j x4

~4b1312i 22 j 12k!#,

SchC CokerF
„~1,0!;b…

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
1 l 11 l 2!

3 (
i , j ,kPZ

@~21!11 i 2 j 1kq~1/2!„i 21 j 21k222k j1~112l 1!i 2~112l 1! j 1~112l 2!k…

3x1
j x2

i 2kx3
2 j x4

~4b1312i 22 j 12k!#.

Proposition 8: The characters and supercharacters of KKerF(a;b)
, C KerF(a;b)

, K CokerF(a;b)
, and

C CokerF(a;b)
for aPZ are given by

ChK KerF~a;b!

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
2~122a!l 12 l 2!

3 (
i , j ,kPZ

@q~1/2!„i 21 j 21k222k j1~122l 1!i 1~112l 1! j 1~122l 2!k…

3x1
a1 j x2

12a1 i 2kx3
2 j x4

~4b122a12i 22 j 12k!#,

ChC KerF~a;b!

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!a~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
1~122a!l 12 l 2!

3 (
i , j ,kPZ

@q~1/2!„i 21 j 21k222k j1~112l 1!i 1~122l 1! j 1~122l 2!k…

3x1
a1 j x2

12a1 i 2kx3
2 j x4

~4b122a12i 22 j 12k!#.

ChK CokerF~a;b!

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!a~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!„l 1
2
1 l 2

2
2~122a!l 11 l 2…

3 (
i , j ,kPZ

@q~1/2!„i 21 j 21k222k j1~122l 1!i 1~112l 1! j 1~112l 2!k…

3x1
a1 j x2

12a1 i 2kx3
2 j x4

~4b122a12i 22 j 12k!#,
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Chk KerF~a;b!

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!a~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!„l 1
2
1 l 2

2
1~122a!l 11 l 2…

3 (
i , j ,kPZ

@q~1/2!„i 21 j 21k222k j1~112l 1!i 1~122l 1! j 1~112l 2!k…

3x1
a1 j x2

12a1 i 2kx3
2 j x4

~4b122a12i 22 j 12k!#,

and

SchK KerF~a;b!

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!a~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!„l 1
2
1 l 2

2
2~122a!l 12 l 2…

3 (
i , j ,kPZ

@~21!12a1 i 2 j 1kq~1/2!„i 21 j 21k222k j1~122l 1!i 1~112l 1! j 1~122l 2!k…

3x1
a1 j x2

12a1 i 2kx3
2 j x4

~4b122a12i 22 j 12k!#,

SchC KerF~a;b!

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!a~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!„l 1
2
1 l 2

2
1~122a!l 12 l 2…

3 (
i , j ,kPZ

@~21!12a1 i 2 j 1kq~1/2!„i 21 j 21k222k j1~112l 1!i 1~122l 1! j 1~122l 2!k…

3x1
a1 j x2

12a1 i 2kx3
2 j x4

~4b122a12i 22 j 12k!#,

SchK CokerF~a;b!

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!a~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
2~122a!l 11 l 2!

3 (
i , j ,kPZ

@~21!12a1 i 2 j 1kq~1/2!~ i 21 j 21k222k j1~122l 1!i 1~112l 1! j 1~112l 2!k!

3x1
a1 j x2

12a1 i 2kx3
2 j x4

~4b122a12i 22 j 12k!#,

SchC CokerF~a;b!

~q,x1 ,x2 ,x3 ,x4!

5
q~1/2!a~2b11!

)n51
` ~12qn!6 (

l 1 ,l 251

`

~21! l 11 l 2q~1/2!~ l 1
2
1 l 2

2
1~122a!l 11 l 2!

3 (
i , j ,kPZ

@~21!12a1 i 2 j 1kq~1/2!„i 21 j 21k222k j1~112l 1!i 1~122l 1! j 1~112l 2!k…

3x1
a1 j x2

12a1 i 2kx3
2 j x4

~4b122a12i 22 j 12k!#.
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Proof: We sketch the proof of these three propositions. Sinceq2dx1
h1x2

h2x3
h3x4

h4 and

(21)Nfq2dx1
h1x2

h2x3
h3x4

h4 commute with the BRST chargesQl
( i ) and@Ql

(1) ,Ql 8
(2)

#50, the trace over

Ker and Coker can be written as the sum of trace overF(* ;b)
( l 1 ,l 2) . The latter can be computed by th

technique introduced in Ref. 21.
Note thatF(* ;b)

(1,1) 5F(* ;b21) , and we have the following.
Corollary 1: The following relations hold for anyaPZ and b,

ChC CokerF~* ;b11!

5ChK KerF~* ;b!

, ~V.14!

SchC CokerF~* ;b11!

5SchK KerF~* ;b!

. ~V.15!

Now, we study theUq@gl(2û2)]-module structures ofF(* ;b) for *5(0,1),(1,0),aPZ. Set

lb
~0!5L014bL4 , lb

35L31~4b13!L4 ,

la,b5aL11~12a!L21~4b122a!L4 for aPZ,

for arbitraryb and

ulb
~0!&5ub,2b,b,2b;0,0&PF

„~0,1!;b… ,

ulb
3&5ub11,2b21,b11,2b;0;0&PF

„~1,0!;b… ,

ula,b&5ub11,2b211a,b,2b;2a,0&PF~a;b! , aPZ.

The above vectors play the role of the highest weight vectors ofUq@gl(2û2)]-modules in the Fack
spacesF(* ;b) with *5(0,1),(1,0),aPZ. One can verify that (l 51,2 below!

h0
l ulb

0&5h0
l ulb

3&5h0
l ula,b&50, for a50,21,22,..., ~V.16!

h0
2ula,b&50, h0

1ula,b&Þ0, for a51,2,... . ~V.17!

It follows that the modulesK KerF
„(0,1);b…

K KerF
„(1,0);b…

are highest weightUq@gl(2û2)]-modules

with highest weightslb
0,lb

3, respectively, whileK KerF(a;b)
(a50,21,22,...) andC KerF(a;b)

(a51,2,...) are highest weightUq@gl(2û2)]-modules with highest weightsla,b . We denote them
by V̄(lb

0), V̄(lb
3), andV̄(la,b), respectively:

V̄~lb
0 !>K KerF

„~0,1!;b…
, V̄~lb

3 !>K KerF
„~1,0!;b…

,

V̄~la,b!>K KerF~a;b!
, for a50,21,22,...,

>C KerF~ab!
, for a51,2,3,... .

It is expected that the modulesV̄(lb
0), V̄(lb

0), andV̄(la,b) are also irreducible with respect to th
action ofUq@gl(2û2)]. Namely, we have the following.

Conjecture 2: V̄(lb
0), V̄(lb

3), and V̄(la,b) are the irreducible highest weigh

Uq@gl(2û2)]-modules with the highest weightlb
0, lb

3, andla,b , respectively, i.e.,

V̄~la,b!5V~la,b!, aPZ, ~V.18!

V̄~lb
~0!!5V~lb

0 !, V̄~lb
3 !5V~lb

3 !. ~V.19!
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B. Vertex operators of U†gl „2 ẑ2…‡

In this subsection we study the action of the type I and II vertex operators ofUq@gl(2û2)] on
the highest weightUq@gl(2û2)]-modules.

Using the bosonic representations of the vertex operators~III.16!, we have the homomor
phisms ofUq@gl(2û2)]-modules:

f~z!:F~a;b!→F~a21;b! ^ Vz ,
~V.20!

c~z!:F~a;b!→Vz^ F~a21;b!,

f* ~z!:Fa;b→F~a11;b! ^ Vz*
S ,

~V.21!
c* ~z!:F~a;b!→Vz*

S
^ F~a11;b! .

Then we consider the vertex operators which intertwine the highest weightUq@gl(2û2)]-modules
by using the above results. Fora¹Z, we have the following by Conjecture 1:

Conjecture 3: The following vertex operators associated with the level-one irreducible hi

weight Uq@gl(2û2)]-modules exist:

F~z!la,b

la21,bV
~z!:V~la,b!→V~la21,b! ^ Vz ,

C~z!la,b

Vla21,b:V~la,b!→Vz^ ~la21,b!,

~V.22!

F~z!la,b

la11,bV*
~z!:V~la,b!→V~la11,b! ^ Vz*

S ,

C~z!la,b

V* la11,b:V~la,b!→Vz*
S

^ V~la11,b!,

for a¹Z.
It is easy to see that the bosonized vertex operators~III.16! also commute~or anticommute!

with h0
1 andh0

2. Noting this property, the homomorphisms~V.20!, and~V.21!, and Conjecture 2,
we have the following.

Conjecture 4: ForaPZ, the following vertex operators associated with the level-one ir

ducible highest weight Uq@gl(2û2)]-modules exist:

F~z!la,b

la21,bV
~z!:V~la,b!→V~la21,b! ^ Vz , aÞ1,

C~z!la,b

Vla21,b:V~la,b!→Vz^ V~la21,b!, aÞ1, ~V.23!

F~z!la,b

la11,bV*
~z!:V~la,b!→V~la11,b! ^ Vz*

S , aÞ0,

C~z!la,b

V* la11,b:V~la,b!→Vz*
S

^ V~la11,b!, aÞ0.
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APPENDIX A: NORMAL-ORDERED RELATIONS OF FUNDAMENTAL BOSONIC FIELDS

In this appendix, we give the normal-ordered relations of the fundamental bosonic field

:eHi ~z;b1!<eH j ~w;b2!:5~z2wqb11b2!ai j :eHi ~z;b1!1H j ~w;b2!:,

:eHi ~z;b1!<eH* j ~w;b2!:5~z2wqb11b2!d i j :eHi ~z;b1!1H* j ~w;b2!:,

:eH* i ~z;b1!<eH j ~w;b2!:5~z2wqb11b2!d i j :eH* i ~z;b1!1H j ~w;b2!:,

:eH* 1~z;b1!<eH* 2N21~w;b2!:5:eH* 1~z;b1!1H* 2N21~w;b2!:,

:eB2N~z;b1!<eHi ~w;b2!:5:eHi ~w;b2!<eB2N~z;b1!:5:eB2N~z;b1!1Hi ~w;b2!:,

:eB1~z;b1!<eHi ~w;b2!:5:eHi ~w;b2!<eB1~z;b1!:5:eB1~z;b1!1Hi ~w;b2!:,

:eB2N~z;b1!<eB2N~w;b2!:5:eB2N~w;b2!<eB2N~z;b1!:5:eB2N~z;b1!1B2N~w;b2!:,

:eB1~z;b1!<eB1~w;b2!:5:eB1~w;b2!<eB1~z;b1!:5:eB1~z;b1!1B1~w;b2!:,

eB2N~z;b1!<eH* 2l 21~w;b2!:5z1/2NS 12
w

z
qB11b2D :eB2N~z;b1!1H* 2l 21~w;b2!:,

:eB2N~z;b1!<eH* 2l ~w;b2!:5:eB2N~z;b1!1H* 2l ~w;b2!:,

:ecl ~z!<ecl 8
•~z!:5~z2w!d l l 8:ec8~z!1cl 8~z!:,

wherei, j 51,2,...,2N21, andl, l 851,2,...,N.

APPENDIX B: COMMUTATION RELATIONS OF VERTEX OPERATORS

By using Theorem 1, the integral expressions of the bosonized vertex operators~III.16!, and
the technique in Ref. 22, one can check the following relations.

~i! For the type I vertex operators,

@fk~z!, f l #50 if kÞ l ,l 11, @f1~z!, f l #q~21! l50,

@f l 11~z!, f l #q~21! l5~21! lf l~z!,

@fk~z!, el #50 if kÞ l , @f l~z!, el #52qhlf l 11~z!,

qhlf l~z!q2hl5q~21! l
f l~z!,

qhlfk~z!q2hl5fk~z! if kÞ l ,l 11, qhlf l 11~z!q2hl5q~21! l
f l 11~z!,

@fk* ~z!, f l #50 if kÞ l ,l 11, @f l 11* ~z!, f l #q~21! l 1150,

@fk* ~z!, el #50 if kÞ l 11, @f l 11* ~z!, el #5~21! lqhl1~21! l
f l* ~z!,

@f l* ~z!, f l #q~21! l 115q~21! l 11
f l 11* ~z!, qhlf l* ~z!q2hl5q~21! l 11

f l* ~z!,

qhlfk* ~z!q2hl5fk* ~z! if kÞ l ,l 11, qhlf l 11* ~z!q2hl5q~21! l 11
f l 11* ~z!.
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~ii ! For the type II vertex operators,

@ck~z!, el #50 if kÞ l ,l 11, @c l 11~z!, el #q~21! l 1150,

@c l~z!, el #q~21! l 115c l 11~z!,

@ck~z!, f l #50 if kÞ l 11, @c l 11~z!, f l #5~21! l 11q2hlc l~z!,

qhlc l~z!q2hl5q~21! l
c l~z!, qhlc l 11~z!q2hl5q~21! l

c l 11~z!,

qhlck~z!q2hl5ck~z! if kÞ l ,l 11,

@ck* ~z!, el #50 if kÞ l ,l 11, @c l* ~z!, el #q~21! l50,

@ck* ~z!, f l #50 if kÞ l , @c l* ~z!, f l #52q2hl2~21! l
c l 11* ~z!,

@c l 11* ~z!, el #q~21! l5~21! l 11q~21! l
c l* ~z!, qhlc l* ~z!q2hl5q~21! l 11

c l* ~z!,

qhlck* ~z!q2hl5ck* ~z! if kÞ l ,l 11, qhlc l 11* ~z!q2hl5q~21! l 11
c l 11* ~z!.
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Structure and properties of Hughston’s stochastic
extension of the Schro ¨ dinger equation

Stephen L. Adlera) and Lawrence P. Horwitzb)

Institute for Advanced Study, Princeton, New Jersey 08540

~Received 15 September 1999; accepted for publication 18 January 2000!

Hughston has recently proposed a stochastic extension of the Schro¨dinger equation,
expressed as a stochastic differential equation on projective Hilbert space. We
derive new projective Hilbert space identities, which we use to give a general proof
that Hughston’s equation leads to state vector collapse to energy eigenstates, with
collapse probabilities given by the quantum mechanical probabilities computed
from the initial state. We discuss the relation of Hughston’s equation to earlier
work on norm-preserving stochastic equations, and show that Hughston’s equation
can be written as a manifestly unitary stochastic evolution equation for the pure
state density matrix. We discuss the behavior of systems constructed as direct
products of independent subsystems, and briefly address the question of whether an
energy-based approach, such as Hughston’s, suffices to give an objective interpre-
tation of the measurement process in quantum mechanics. ©2000 American In-
stitute of Physics.@S0022-2488~00!03505-2#

I. INTRODUCTION

A substantial body of work1 has addressed the problem of state vector collapse by propo
that the Schro¨dinger equation be modified to include a stochastic process, presumably arising
physics at a deeper level, that drives the collapse process. In particular, Gisin,2 Percival,3 and
Ghirardi, Pearle, and Rimini4 have constructed equations that preserve the norm of the
vector, which in the approximation that the usual Schro¨dinger Hamiltonian dynamics is neglecte
are shown4 to lead to state vector collapse with the correct quantum mechanical probabilitie
alternative approach to constructing a stochastic extension of the Schro¨dinger equation has bee
pursued by Hughston,5 based on the proposal of a number of authors6 to rewrite the Schro¨dinger
equation as an equivalent dynamics on projective Hilbert space, i.e., on the space of r
formulation in which the imposition of a state vector normalization condition is not nee
Within this framework, Hughston5 has proposed a simple stochastic extension of the Schro¨dinger
equation, constructed solely from the Hamiltonian function, and has shown that his equation
to state vector reduction to an energy eigenstate, with energy conservation in the mean thro
the reduction process. In the simplest spin-1

2 case, Hughston exhibits an explicit solution th
shows that his equation leads to collapse with the correct quantum mechanical probabilitie
the issue of collapse probabilities in the general case has remained open.

Our purpose in this paper is to further investigate the structure and properties of Hugh
equation, proceeding from new identities in projective Hilbert space derived in Sec. II. A prin
result will be the proof in Sec. III~using the martingale or ‘‘gambler’s ruin’’ argument pioneer
by Pearle!7 that in the generic case, with no approximations, Hughston’s equation leads to
vector collapse to energy eigenstates with the correct quantum mechanical probabilitie
relation of Hughston’s equation to earlier work on norm-preserving equations is discussed i
IV, and the density matrix form of Hughston’s equation, which gives a manifestly unitary

a!Elecronic mail: adler@ias.edu
b!On leave from School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, T

University, Ramat Aviv, Israel, and Department of Physics, Bar Ilan University, Ramat Gan, Israel.
24850022-2488/2000/41(5)/2485/15/$17.00 © 2000 American Institute of Physics
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chastic evolution on pure states, is given in Sec. V. In Sec. VI we examine the stochastic evo
of an initial state that is constructed as the product of independent subsystem states. Fin
Sec. VII we discuss whether an energy-based approach to stochastic evolution~as opposed to
approaches8 based on spontaneous localization! suffices to give a satisfactory objective descripti
of the evolution of a state during the quantum mechanical measurement process.

II. PROJECTIVE HILBERT SPACE AND SOME IDENTITIES

We begin by explaining the basic elements of projective Hilbert space needed to unde
Hughston’s equation, working in ann11-dimensional Hilbert space. We denote the general s
vector in this space byuz&, with z a shorthand for the complex projectionsz0,z1, . . . ,zn of the
state vector on an arbitrary fixed basis. LettingF be an arbitrary Hermitian operator, and using t
summation convention that repeated indices are summed over their range, we define

~F ![
^zuFuz&

^zuz&
5

z̄aFabzb

z̄gzg , ~1a!

so that (F) is the expectation of the operatorF in the stateuz&, independent of the ray represe
tative and normalization chosen for this state. Note that in this notation (F2) and (F)2 are not the
same; their difference is in fact the variance@DF#2,

@DF#25~F2!2~F !2. ~1b!

We shall use two other parametrizations for the stateuz& in what follows. Since (F) is homoge-
neous of degree zero in bothza and z̄a, let us define new complex coordinatest j by

t j5zj /z0, t̄ j5 z̄j / z̄0, j 51, . . . ,n, ~2!

which are well defined over all states for whichz0Þ0.9 Next, it is convenient to split each of th
complex numberst j into its real and imaginary parttR

j , t I
j , and to introduce a 2n component real

vector xa, a51, . . . ,2n, defined byx15tR
1 , x25t I

1 , x35tR
2 , x45t I

2 , . . . ,x2n215tR
n , x2n5t I

n .
Clearly, specifying the projective coordinatest j or xa uniquely determines the unit ray containin
the unnormalized stateuz&, while leaving the normalization and ray representative of the stateuz&
unspecified.

As discussed in Refs. 6, projective Hilbert space is also a Riemannian space with res
the Fubini–Study metricgab , defined by the line element

ds25gabdz̄adzb[4S 12
u^zuz1dz&u2

^zuz&^z1dzuz1dz& D . ~3a!

Abbreviatingz̄gzg[ z̄•z, a simple calculation gives

gab54~dabz̄•z2zaz̄b!/~ z̄•z!254
]

] z̄a

]

]zb log z̄•z. ~3b!

Because of the homogeneity conditionsz̄agab5zbgab50, the metricgab is not invertible, but if
we hold the coordinatesz̄0, z0 fixed in the variation contained in Eq.~3a! and go over to the
projective coordinatest j , we can rewrite the line element of Eq.~3a! as

ds25gjkd t̄ jdtk, ~4a!

with the invertible metric9
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gjk5
4@~11 t̄ l t l !d jk2t j t̄ k#

~11 t̄ mtm!2
, ~4b!

with inverse

gjk5 1
4 ~11 t̄ mtm!~d jk1t j t̄ k!. ~4c!

Reexpressing the complex projective coordinatest j in terms of the real coordinatesxa, the line
element can be rewritten as

ds25gabdxadxb,

gab5
4@~11xdxd!dab2~xaxb1vacx

cvbdx
d!#

~11xexe!2 , ~4d!

gab5 1
4 ~11xexe!~dab1xaxb1vacx

cvbdx
d!.

Here vab is a numerical tensor whose only nonvanishing elements areva52 j 21 b52 j51 and
va52 j b52 j 21521 for j 51, . . . ,n. As discussed by Hughston, one can define a complex st
ture Ja

b over the entire projective Hilbert space for whichJa
cJb

dgcd5gab , Ja
bJb

c52da
c , such

that Vab5gbcJa
c andVab5gacJc

b are antisymmetric tensors. Atx50, the metric and complex
structure take the values

gab54dab , gab5 1
4 dab ,

~5!
Ja

b5vab , Vab54vab , Vab5 1
4 vab .

Returning to Eq.~1a!, we shall now derive some identities that are central to what follo
Differentiating Eq.~1a! with respect toz̄a, with respect tozb, and with respect to bothz̄a andzb,
we obtain

^zuz&
]~F !

] z̄a 5Fabzb2~F !za,

^zuz&
]~F !

]zb 5 z̄aFab2~F !z̄b, ~6a!

^zuz&2
]2~F !

] z̄a]zb 5^zuz&@Fab2dab~F !#12zaz̄b~F !2 z̄gFgbza2 z̄bFagzg.

Writing similar expressions for a second operator expectation (G), contracting in various combi-
nations with the relations of Eq.~6a!, and using the homogeneity conditions

z̄a
]~F !

] z̄a 5zb
]~F !

]zb 5 z̄a
]2~F !

] z̄a]zb 5zb
]2~F !

] z̄a]zb 50 ~6b!

to eliminate derivatives with respect toz̄0, z0, we obtain the following identities,

2 i ~FG2GF!52 i ^zuz&S ]~F !

]za

]~G!

] z̄a 2
]~G!

]za

]~F !

] z̄a D52Vab¹a~F !¹b~G!,

~FG1GF!22~F !~G!5^zuz&S ]~F !

]za

]~G!

] z̄a 1
]~G!

]za

]~F !

] z̄a D52gab¹a~F !¹b~G!, ~7a!
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~FGF!2~F2!~G!2~F !~FG1GF!12~F !2~G!5^zuz&2
]~F !

]za

]2G

] z̄a]zb

]~F !

] z̄b

52¹a~F !¹b~F !¹a¹b~G!,

with ¹a the covariant derivative constructed using the Fubini–Study metric affine connection
not necessary to use the detailed form of this affine connection to verify the right-hand equ
in these identities, because since (G) is a Riemannian scalar,¹a¹b(G)5¹a]b(G), and since the
projective Hilbert space is a homogeneous manifold, it suffices to verify the identities at the
point x50, where the affine connection vanishes and thus¹a¹b(G)5]a]b(G). Using Eqs.~7a!
and the chain rule we also find

2¹a@~F2!2~F !2#¹a~G!52 1
2 ~F2G1GF2!1~F2!~G!1~F !~FG1GF!22~F !2~G!.

~7b!

When combined with the final identity in Eq.~7a! this gives

D[¹a~F !¹b~F !¹a¹b~G!2 1
2 ¹a@~F2!2~F !2#¹a~G!

5 1
4 ~2FGF2F2G2GF2!52 1

4 ~†F, @F, G#‡!, ~7c!

with @ , # denoting the commutator, from which we see thatD vanishes when the operatorsF and
G commute.

An alternative derivation of Eq.~7c! proceeds from the fact, noted by Hughston, that~for F
self-adjoint!

jF
a[Vab¹b~F ! ~8a!

is a Killing vector obeying

¹cjF
a1¹ajcF50. ~8b!

Using the identity (F2)2(F)25¹b(F)¹b(F), which is theF5G case of the middle equality o
Eq. ~7a!, we rewriteD of Eq. ~7c! as

D5¹a~F !¹b~F !¹a¹b~G!2¹b~F !¹a~G!¹a¹b~F !. ~9a!

This can be rewritten, using the identityVabVcb5dc
a , the antisymmetry ofV, the fact thatV

commutes with the covariant derivatives, and the Killing vector definition of Eq.~8a!, as

D5VacjcFVbejeF¹a¹b~G!2VbcjcFVaejeG¹a¹b~F !52jcFjeFVac¹ajG
e 1jcFjeGVae¹ajF

c .

~9b!

We now use the Killing vector identity of Eq.~8b! on the final factor in each term, giving

D5jcFjeFVac¹ejaG2jcFjeGVae¹cjaF . ~9c!

Exchanging the labelse andc in the first term, and exchanging the labelsa ande in the second
term, we obtain

D5jcFjeFVae¹cjaG1jcFjaGVae¹cjeF5jcF¹c@VaejeFjaG#. ~10a!

Substituting the Killing vector definition of Eq.~8a!, this becomes

D5Vcb¹
b~F !¹c@VaeVe f¹

f~F !Vag¹
g~G!#

5Vcb¹
b~F !¹c@Vg f¹

g~G!¹ f~F !#52 1
4 ~†F, @F,G#‡!, ~10b!
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where to obtain the final line we have twice used the first identity in Eq.~7a!. This completes our
geometric derivation of Eq.~7c!.

III. HUGHSTON’S EQUATION AND STATE VECTOR COLLAPSE PROBABILITIES

Let us now turn to Hughston’s stochastic differential equation, which reads

dxa5@2Vab¹b~H !2 1
4 s2¹aV#dt1s¹a~H !dWt , ~11a!

with Wt a Brownian motion or Wiener process, withs a parameter governing the strength of t
stochastic terms, withH the Hamiltonian operator and (H) its expectation, and withV the vari-
ance of the Hamiltonian,

V5@DH#25~H2!2~H !2. ~11b!

When the parameters is zero, Eq.~11a! is just6 the transcription of the Schro¨dinger equation to
projective Hilbert space. For the time evolution of a general functionG@x#, we get by Taylor
expandingG@x1dx# and using the Itoˆ stochastic calculus rules10

@dWt#
25dt, @dt#25dtdWt50, ~12a!

the corresponding stochastic differential equation

dG@x#5mdt1s¹aG@x#¹a~H !dWt , ~12b!

with the drift termm given by

m52Vab¹aG@x#¹b~H !2 1
4s

2¹aV¹aG@x#1 1
2 s2¹a~H !¹b~H !¹a¹bG@x#. ~12c!

Hughston shows that with thes2 part of the drift term chosen as in Eq.~11a!, the drift termm in
Eq. ~12b! vanishes for the special caseG@x#5(H), guaranteeing conservation of the expectat
of the energy with respect to the stochastic evolution of Eq.~11a!. But referring to Eq.~7c! and the
first identity in Eq.~7a!, we see that, in fact, a much stronger result is also true, namely thm
vanishes@and thus the stochastic process of Eq.~12b! is a martingale# wheneverG@x#5(G), with
G any operator that commutes with the HamiltonianH.

Let us now make two applications of this fact. First, takingG@x#5V5(H2)2(H)2, we see
that the contribution from (H2) to m vanishes, so the drift term comes entirely from2(H)2.
Substituting this intom gives22(H) times the drift term produced by (H), which is again zero,
plus an extra term

2s2¹a~H !¹b~H !¹a~H !¹b~H !52s2V2, ~13a!

where we have used the relationV5¹a(H)¹a(H) which follows from theF5G5H case of the
middle identity of Eq.~7a!. Thus the varianceV of the Hamiltonian satisfies the stochastic diffe
ential equation, derived by Hughston by a more complicated method,

dV52s2V2dt1s¹aV¹a~H !dWt . ~13b!

This implies that the expectationE@V# with respect to the stochastic process obeys

E@V~ t !#5E@V~0!#2s2E
0

t

ds E@V~s!2#, ~13c!

which, using the inequality 0<E@$V2E@V#%2#5E@V2#2E@V#2, gives the inequality
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E@V~ t !#<E@V~0!#2s2E
0

t

ds E@V~s!#2. ~13d!

SinceV is necessarily positive, Eq.~13d! implies thatE@V(`)#50, and again using positivity o
V this implies thatV(s) vanishes ass→`, apart from a set of outcomes of probability measu
zero. Thus, as concluded by Hughston, the stochastic term in his equation drives the sys
t→`, to an energy eigenstate.

As our second application of the vanishing of the drift termm for expectations of operator
that commute with H, let us consider the projectorsPe[ue&^eu on a complete set of energ
eigenstatesue&. By definition, these projectors all commute with H, and so the drift termm
vanishes in the stochastic differential equation forG@x#5(Pe), and consequently the expectatio
E@(Pe)# are time independent; additionally, by completeness of the statesue&, we have(e(Pe)
51. But these are just the conditions for Pearle’s7 gambler’s ruin argument to apply. At time zer
E@(Pe)#5(Pe)[pe is the absolute value squared of the quantum mechanical amplitude to
the initial state in energy eigenstateue&. At t5`, the system always evolves to an energy eig
state, with the eigenstateu f & occurring with some probabilityPf . The expectationE@(Pe)#,
evaluated at infinite time, is then

E@~Pe!#513Pe1(
f Þe

03Pf5Pe ; ~14!

hencepe5Pe for eache and the state collapses into energy eigenstates att5` with probabilities
given by the usual quantum mechanical rule applied to the initial wave function.

This conclusion clearly generalizes to the stochastic equation

dxa5F2Vab¹b~H !2
1

4
s2(

j
¹aVj Gdt1s(

j
¹a~H j !dWt

j , ~15a!

with the H j a set of mutually commuting self-adjoint operators that commute with H, withVj

5(H j
2)2(H j )

2, and with thedWt
j independent Wiener processes obeyingdWt

jdWt
k5d jkdt. Fol-

lowing the same method used in obtaining Eq.~13b!, and defining Ck j5¹a(Hk)¹
a(H j )

5(HkH j )2(Hk)(H j ), one finds

dVk52s2(
j

Ck j
2 dt1s¹aVk(

j
¹a~H j !dWt

j , ~15b!

and therefore

E@Vk~ t !#5E@Vk~0!#2s2E
0

t

ds(
j

E@Ck j~s!2#. ~15c!

SinceE@Ck j
2 #>E@Ck j#

2, we have as before

E@Vk~ t !#<E@Vk~0!#2s2E
0

t

ds(
j

E@Ck j~s!#2, ~15d!

which implies that eachE@Ck j(s)# approaches zero ass→`. Hence for eachk, j we have at large
times

E@~HkH j !#2E@~Hk!~H j !#→0, ~15e!

and so there is an effective quantum decorrelation of commuting observables. Moreoverk
5 j , Eq. ~15e! implies that at large timesE@Vk#→0, which, sinceVk is non-negative, implies tha
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Vk approaches zero apart from a set of outcomes of probability measure zero, and so th
evolves to a simultaneous eigenstate of all the commuting observables entering the proces
~15a!.

IV. RELATION OF HUGHSTON’S EQUATION TO OTHER STOCHASTIC NORM-
PRESERVING EQUATIONS

Let us now specialize Eqs.~12b! and~12c! to the case in whichG@x# is simply the expecta-
tion (G) of an operatorG. Then by substituting Eqs.~7c! and the second equality in Eq.~7a!, we
find

d~G!5mdt1kdWt , ~16a!

with

k5 1
2 s@~$G,H%!22~G!~H !#5 1

2 s~$G,H2~H !%!, ~16b!

and with

m5~2 i @G,H# !2 1
8 s2~@H, @H, G## !, ~16c!

where we have used$, % to denote the anticommutator.
Let us now compare this with the evolution of (G) implied by the stochastic state vecto

evolution

duz&5@adt1bdWt#uz&, ~17a!

with

a52 iH 2 1
8 s2@A2~A!#2,

b5 1
2 s@A2~A!#, ~17b!

where A is a general self-adjoint operator and (A) is defined, as in Eq.~1a!, by (A)
5^zuAuz&/^zuz&. For the evolution of̂ zuGuz&, we find by the Itoˆ rules,

d^zuGuz&5^zu@a†G1Ga1b†Gb#dt1@b†G1Gb#dWtuz&

5^zu2 i @G,H#dt2 1
8 s2@$G, @A2~A!#2%22@A2~A!#G@A2~A!##dt

1 1
2 s$G, @A2~A!#%dWtuz&

5^zu2 i @G, H#dt2 1
8 s2

†A, @A, G#‡dt1 1
2 s$G, @A2~A!#%dWtuz&. ~18a!

WhenG51, the right-hand side of Eq.~18a! vanishes, since the commutator terms vanish trivia
and^zuA2(A)uz&5^zuAuz&2^zuz&(A)50. Therefore the state vector evolution of Eqs.~17a! and
~17b! is norm preserving, and so it is consistent to choose the normalization^zuz&51 in conjunc-
tion with this evolution. For generalG we then haved^zuGuz&5d(G), and so Eq.~18a! gives an
expression ford(G), which we see is identical to Eqs.~16a!–~16c! when the operatorA is taken
as the HamiltonianH. In particular, whenA5G5H we learn from Eq.~18a! that d(H)
5sVdWt , in agreement with Eq.~12b!, because

^zu$H,H2~H !%uz&52@~H2!2~H !2#52V, ~18b!

and so the convergence argument of Eqs.~13a!–~13d! follows directly from Eq.~18a!. Apart from
minor changes in notation, the norm-preserving evolution of Eqs.~17a! and~17b! is the one given
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by Gisin,2 Percival,3 and Ghirardi, Pearle, and Rimini,4 and so we see that this evolution
equivalent11 to the state vector evolution in projective Hilbert space given by Hughston’s equa

The evolution of Eq.~17a! can be generalized@as was done for the Hughston equation in E
~15!# to read

duz&5Fadt1(
j

b jdWt
j G uz&,

a52 iH 2
1

8
s2(

j
@Aj2~Aj !#

2, ~19!

b j5
1
2 s@Aj2~Aj !#,

with the Aj any set of mutually commuting operators. When theAj do not all commute with the
HamiltonianH, it is necessary to make the approximation of neglecting the Hamiltonian evol
~the 2 iH term in a! in proving that Eq.~19! implies state vector reduction to the mutual eige
states of theAj with probabilities given by the usual quantum mechanical rule. Such a proof,
similar to the one given for Hughston’s equation in Sec. III above, has been given by Gh
Pearle, and Rimini.4 In order to carry through the proof with no approximations, it is necessar
assume that theAj are operators in the mutually commuting setH j that all commute withH, as
was done in Sec. III.

V. DENSITY MATRIX EVOLUTION

Let us now define the pure state density matrixr by

r5
uz&^zu
^zuz&

, ~20a!

in terms of which (G) is given by

~G!5Tr rG. ~20b!

SinceG is a fixed operator, Eq.~18a! for d(G) can be rewritten as

Tr Gdr5Tr r@2 i @G, H#dt2 1
8 s2

†A, @A, G#‡dt1 1
2 s$G, @A2~A!#%dWt#

5Tr G@2 i @H, r#dt2 1
8 s2

†A, @A, r#‡dt1 1
2 s$r, @A2~A!#%dWt#, ~20c!

where in the final line we have cyclically permuted terms under the trace. Since Eq.~20c! holds
for arbitrary self-adjoint operatorsG, it implies that the density matrix obeys the stochas
differential equation~each term of which is self-adjoint!

dr52 i @H, r#dt2 1
8 s2

†A, @A, r#‡dt1 1
2 s$r, @A2~A!#%dWt . ~21a!

This equation can be written in an alternative form by observing that sincer is a pure state density
matrix obeyingr25r, we haver(A)5r Tr rA5rAr. These facts imply that

$r, @A2~A!#%5rA1Ar22r~A!5r2A1Ar222rAr5†r, @r, A#‡, ~21b!

and so we can rewrite Eq.~21a! as

dr52 i @H,r#dt2 1
8 s2

†A, @A, r#‡dt1 1
2 s†r, @r, A#‡dWt . ~21c!

Equations~21a! and ~21c! have the following properties for generalA:
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~i! Since Trdr50, the condition Trr51 is preserved by the time evolution.
~ii ! After some algebra using the Itoˆ rules, one finds thatr25r implies that

$r,dr%1@dr#25dr, ~21d!

which can be rewritten as@r1dr#25r1dr. Hence the evolution of Eqs.~21a! and ~21c! is
consistent with the pure state condition. This is required by the fact that Eqs.~21a! and~21c! may
be derived as consequences of Eqs.~17a! and ~17b!, which are a norm preserving pure sta
evolution. The condition of Eq.~21d! determines the coefficient of thes2 . . . dt drift term in terms
of the coefficient of thes . . . dWt stochastic term, and so the ratio of these two coefficients in
~21c! cannot be treated as an additional adjustable parameter.

~iii ! Sincedr5dr†, the self-adjointness ofr is preserved by the time evolution.
~iv! Time reversal invariance is violated by the stochastic terms, since whendt and i are

reversed in sign, the term2 i @H, r#dt is invariant, but the term2 1
8 s2

†A, @A,r#‡dt reverses sign.
~v! When we take the stochastic expectation of Eq.~21c!, the dWt term drops out, and we

obtain

dE@r#

dt
52 i †H, E@r#‡2 1

8 s2@A,†A, E@r#‡#, ~22a!

which, as pointed out by Percival3 and Ghirardi, Pearle, and Rimini,4 is a quantum dynamica
semigroup evolution of the completely positive Lindblad12 form. The stochastic expectationE@r#
is what is usually termed the density matrix; it starts off att50 as a pure state density matrix b
then evolves, through the stochastic process, into a mixed state density matrix.

~vi! The conditions for Eq.~22a! to admit stationary solutionsE@r#S with dE@r#S /dt50 are
very stringent, since when the left-hand side of Eq.~22a! is zero, multiplying byE@r#S and taking
the trace gives

052 i Tr E@r#S†H, E@r#S‡2
1
8 s2 Tr E@r#S†A,@A, E@r#S#‡. ~22b!

Using cyclic permutation under the trace, the first term on the right-hand side vanishes, wh
second term becomes

1
8 s2 Tr †A, E@r#S‡

2, ~22c!

which can only vanish when†A, E@r#S] 50. Substituting this equation back into Eq.~22a! then
further implies that†H, E@r#S‡50. WhenA and H commute, these conditions can be satisfi
with E@r#S a general function ofH @see the further discussion of this case in~xiii !#, but whenA
andH do not commute, one can have situations in which eitherE@r#S must be a multiple of the
unit operator, which trivially commutes with bothH and A, or else there are no stationar
solutions. The latter case is found in spontaneous localization models, as discussed for exa
Section III.B.3 of Ref. 4.

~vii ! The evolution implied by Eq.~22a! leads13 to a monotonic increase of the von Neuma
entropy, a result that can be demonstrated directly from Eq.~22a! as follows. Letting

S52Tr E@r# logE@r# ~22d!

be the von Neumann~or information! entropy, we find by substituting Eq.~22a! and using cyclical
permutation of factors under the trace that

dS

dt
52Tr

dE@r#

dt
†11 logE@r#‡5 1

8 s2 Tr†logE@r#, A‡†A, E@r#‡. ~22e!
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Substituting complete sets of eigenstatesun&, um& of the non-negative density matrixE@r#, this
becomes

dS

dt
5

1

8
s2(

n
(
m

†logE@r#n2 logE@r#m‡AnmAmn†E@r#n2E@r#m‡

5
1

8
s2(

n
(
m

uAnmu2†logE@r#n2 logE@r#m‡†E@r#n2E@r#m‡>0. ~22f!

~viii ! Since Eqs.~21a! and ~21c! are nonlinear inr, the Schro¨dinger dynamics described b
them cannot be represented as an equivalent Heisenberg or dual dynamics on the operatoG. On
the other hand, Eq.~22a! is linear inr, and so, as noted by Lindblad, the Schro¨dinger dynamics for
E@r# can be represented as a dual Heisenberg dynamics forE@G#, given by

dE@G#

dt
5 i †H, E@G#‡2

1

8
s2@A, †A, E@G#‡#. ~22g!

~ix! The evolution of Eq.~21c! can be written~after some algebra, and again usingr25r) in
the manifestly unitary form

r1dr5UrU†, U5edK, ~23a!

with the infinitesimal anti-self-adjoint generatordK given by

dK5†2 iH 2 1
8 s2@A222ArA, r#‡dt2 1

2 s@r, A#dWt . ~23b!

Equations~21c! and~23b! thus give a stochastic unitary extension of the Lindblad evolution of
~22a!.14

Specializing to the Hughston caseA5H, Eq. ~21c! ~which uses the pure state conditionr2

5r) becomes

dr52 i @H, r#dt2 1
8 s2

†H,@H, r#‡dt1 1
2 s†r, @r, H#‡dWt , ~24a!

while Eq. ~22a! becomes

dE@r#

dt
52 i †H, E@r#‡2 1

8 s2@H, †H, E@r#‡#, ~24b!

and the following further properties are evident:
~x! Whenr5Pe , the projector on an energy eigenstate, then, since all commutators i

~24a! vanish, we havedr50.
~xi! For G commuting withH, E@d(G)#5Tr GdE@r#50, since by cyclic permutation insid

the trace each term arising from substituting Eq.~24b! into the expectation of Eq.~20b! can be
rearranged to have a factor@G, H#.

~xii ! For V5@DH#25Tr rH22@Tr rH#2, use of Eq.~24a! and the Itoˆ calculus imply that
E@dV/dt#52E@R2#, with

R5 1
2 s Tr †r, @r, H#‡H5sV. ~24c!

~xiii ! Items ~x!–~xii ! are the ingredients used in Sec. III to prove state vector collaps
energy eigenstatesue& with the correct quantum mechanical probabilitiespe . Hence, at large
times, as noted by Hughston,E@r#→(epePe , which explicitly exhibits the role ofE@r# as the
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density matrix that evolves, under the stochastic process, from a pure to a mixed state for
fact thatE@r# for Hughston’s equation approaches a stationary limit at large times is in ac
with the general stationarity discussion given in~vi! above.

VI. BEHAVIOR OF SYSTEMS CONSTRUCTED FROM INDEPENDENT SUBSYSTEMS

Let us next examine the structure of Hughston’s equation for a Hilbert space construc
the direct product of independent subsystem Hilbert spaces, so that initially at timet50 the state
vector is

uz&5)
l

uzl&. ~25a!

We assume the Hamiltonian

H5(
l

Hl , ~25b!

with Hl acting as the unit operator on the statesuzk&, kÞ l . Then a simple calculation shows th
the expectation of the Hamiltonian (H) and its varianceV are both additive over the subsyste
Hilbert spaces,

~H !5(
l

~Hl ! l , V5(
l

Vl5(
l

@~Hl
2! l2~Hl ! l

2#, ~25c!

with (Fl) l the expectation of the operatorFl formed according to Eq.~1a! with respect to the
subsystem wave functionuzl&. In addition, the Fubini–Study line element is also additive over
subsystem Hilbert spaces, since

12ds2/45
u^zuz1dz&u2

^zuz&^z1dzuz1dz&

5)
l

u^zl uzl1dzl&u2

^zl uzl&^zl1dzl uzl1dzl&
5)

l
@12dsl

2/4#512F(
l

dsl
2G Y 41O~ds4!.

~26!

@An alternative way to see this is to use the identity logz̄•z5logPlz̄l•zl5(l log z̄l•zl in Eq. ~3b!,
along with a change of variable fromz to the zl ’s.# As a result of Eq.~26!, the metricgab and
complex structureVab block diagonalize over the independent subsystem subspaces. Equ
~25a!–~25c! then imply that Hughston’s stochastic extension of the Schro¨dinger equation given in
Eq. ~11a! separates into similar equations for the subsystems, which do not refer to one ano
xa coordinates, but are correlated only through the common Wiener processdWt that appears in
all of them. These correlations result in the entanglement of the statesuzl&, so that the product
form of Eq. ~25a! is not maintained for timest.0, but subsystemsuzl& already in energy eigen
states remain unentangled for all time, since the coefficient ofdWt vanishes in their stochasti
evolution equations.

These same conclusions follow from the density matrix form of Hughston’s equation giv
Eq. ~24a!, in which the entanglements arising from the action of the same Wiener process
subsystems are already evident, because the density matrix depends quadratically on the
ized state vector. Considering for simplicity the case of two independent subsystems, subs
the t50 form

r5r1r2 ~27a!
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into Eq. ~24a!, with H5H11H2 , we obtain

dr5dr1r21r1dr22 1
4 s2@H1 , r1#@H2 , r2#dt, ~27b!

with dr1 the evolution predicted by Eq.~24a! within subsystem 1,

dr152 i @H1 , r1#dt2 1
8 s2

†H1 , @H1 , r#‡dt1 1
2 s†r1 ,@r1 , H1#‡dWt , ~27c!

and similarly fordr2 . The entangling term proportional to@H1 , r1#@H2 , r2#dt comes from the
@dWt#

2 contribution from the state vector evolution equation to the density matrix equation;
in general nonzero, but vanishes when either@H1 , r1#50 or @H2 , r2#50, that is, when either of
the two subsystems is in an energy eigenstate. When more than two subsystems are pre
entangling term couplingrL to r l , lÞL, is more complicated in structure, but still has a fac
@HL , rL# and so vanishes when the subsystemL is in an energy eigenstate. Thus the endpoints
the stochastic evolution under Hughston’s equation, which are the energy eigenstates, can
indefinitely as unentangled independent subsystems in a larger system.

This conclusion does not extend to the more general evolution of Eq.~21c!, in which the
stochastic process is driven by an operatorA differing from the Hamiltonian, withA taken to be
additive over subsystems. The reason is that there is now a competition between the sto
terms, which are constructed from double commutators with an innermost commutator@A, r#, and
the Schro¨dinger evolution term, which involves the commutator@H, r#; the stochastic terms ten
to drive the system toA eigenstates, while the Schro¨dinger term coherently mixesA eigenstates,
leading to evolution away fromA eigenstates. Thus, a subsystem cannot remain indefinitely i
A eigenstate, and as a result does not persist indefinitely as an unentangled independent su
in a larger system.@These statements are in accord with the conclusions reached in the statio
discussion of~vi! in Sec. V.#

VII. DOES AN ENERGY-BASED EQUATION SUFFICE?

In the preceding sections we have seen how Hughston’s equation fits into the general
work of stochastic modifications of the Schro¨dinger equation that have been studied in the past
distinguishing feature is that the general operatorA of Eqs.~17a! and ~17b! and ~21a! and ~21c!
driving the stochastic terms is chosen, in Hughston’s case, to be the Hamiltonian H. This
confers the advantage that the proof of reduction of the state vector toA eigenstates~i.e., in
Hughston’s case, to energy eigenstates! with the correct quantum mechanical probabilities b
comes exact, since it is not necessary to neglect the Hamiltonian evolution term. Moreover
for Hughston’s equation the stochastic expectation of the Hamiltonian operatorE@H# is conserved
in time, and since convergence toH eigenstates preserves the quantum mechanical predict
any statistical test of energy conservation performed on the endpoint of the stochastic proce
agree with the quantum mechanical prediction. To justify these advantages, we must now a
the issue of whether an energy-based stochastic equation is sufficient to give an objective
pretation of state vector reduction.15

First, we must deal with the objection that, in most measurements, the quantum attribute
measured is not an energy; for example, in a Stern–Gerlach experiment, it is typicallyz
component of a spin. However, to perform a measurement, it is always necessary to cou
quantum attribute being measured to the apparatus through an interaction energy termHI , in such
a way that the macroscopic state of the apparatus is ultimately determined by the quant
tribute being measured. Thus, in the first instance, what is being measured is an energ
though after amplification to macroscopic scale this can be converted to other forms of indic
such as pointer displacements. So from the point of view of the variety of quantum attribute
can be measured, Hughston’s equation appears to be as viable as localizing approaches8 in which
A is chosen as an operator that produces spatial localization.

We must next deal with the issue of whether an energy-based approach can preve
occurrence of macroscopic quantum superpositions. For example, take a macroscopic obj
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displace it a macroscopic distance; the two states have the same energy, and so in Hug
approach such superpositions would appear to be allowed, whereas in localizing approach
are strongly forbidden. However, this objection neglects the interactions of the macroscopic
with its environment, of the same type that are important in studies of decoherence. Whe
effects are taken into account, macroscopic displacement of a macroscopic object result
energy shiftDE, reflecting the altered environment, which is sufficient, from the point of view
Hughston’s equation, to lead to rapid state vector reduction to one displaced alternative
other. To study this quantitatively, let us consider the following two environmental effects~i!
thermal energy fluctuations, and~ii ! the surface adsorption of surrounding molecules. Hughs
proposes, as have other authors,16 that the parameter governing the stochastic terms is of o
s;MPlanck

21/2 in microscopic units with\5c51, which he shows leads to state vector reduction
a time tR given by

tR;S 2.8 MeV

DE D 2

s. ~28!

Hence, to obtain a reduction time of order, say, 1026 s, one needs aDE;3 GeV;3 nucleon
masses.

Considering first the effect of thermal fluctuations, let us consider a macroscopic objec
N;1023 nucleon masses, so thatDE;N1/2kT;8 GeV at room temperature~300 K! and DE
;0.08 GeV at the 3° temperature of the cosmic microwave background. For such an o
thermal-energy-driven state vector reduction will occur in 1027 s at room temperature and i
1023 s at the temperature of the microwave background. Examining next the effect of ads
molecules, consider an object with a surface area of 1 cm2 at room temperature in an extrem
vacuum of 10214Torr ~less than the nighttime pressure at the surface of the moon17!. Then the flux
of molecules bombarding its surface is 43106 per second,17 so assuming a high probability for th
molecules to stick, aDE of 3 GeV is attained in an order of 1026 s, permitting a 1026 s state
vector reduction time driven by the change in energy produced by surface adsorption. O
scale to other sizes of macroscopic object from these examples, but they suffice to show tha
normal range of laboratory operating conditions for measuring apparatus, environmental in
tions produce a large enough spread of energy values to give rapid state vector reduction t
an energy-driven stochastic equation.

From a formal point of view, it is instructive to cast the above discussion of environme
effects in terms of the analysis of the measurement process given by Zurek,18 starting from Eq.
~24b! for the evolution of the stochastic expectation of the density matrix. Zurek assumes th
total HamiltonianH describes the systemS being measured, the apparatusA doing the measuring
and the environmentE. Thus, he writes the Hamiltonian as a sum of six terms,

H5HS1HA1HE1HSA1HAE1HSE , ~29!

with the first three terms giving the Hamiltonians of the system, apparatus, and environm
isolation from one another, and with the second three terms giving the corresponding inter
Hamiltonians. Zurek assumes that the interactionHSE between system and environment can
neglected, and that the interactionHSA between system and apparatus acts only briefly w
entanglement of the system and apparatus states is established, but is unimportant du
subsequent evolution of the density matrix that results in the actual measurement. He also
the simplifying assumption that the states which actually distinguish between quantities
measured have equal eigenvalues of the noninteraction part of the HamiltonianHS1HA1HE ,
which implies that for the submatrix ofE@r# spanned by these states, the commutator†HS1HA
1HE , E@r#‡ is zero, and so these commutator terms in Eq.~24b! can be neglected. With thes
simplifications, Eq.~24b! becomes
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dE@r#

dt
52 i †HAE ,E@r#‡2

1

8
s2@HAE ,†HAE , E@r#‡#, ~30a!

or when the non-Schro¨dinger term is omitted, as in Zurek’s analysis,

dE@r#

dt
52 i †HAE , E@r#‡. ~30b!

Zurek points out that the evolution of Eq.~30b! introduces correlations between the appara
and the environment, which select as the ‘‘pointer basis’’ of the apparatus, which registe
measurement, the eigenstatesuAp& of a ‘‘pointer observable’’P̂ that commutes withHAE ; in other
words, the pointer basis projectorsPp5uAp&^Apu must satisfy

@Pp , HAE#50. ~30c!

Returning to the full evolution equation of Eq.~30a!, with the non-Schro¨dinger terms included, we
see that the argument of Sec. III, when applied to this equation using Eq.~30c!, implies state
vector collapse to the eigenstates of the Zurek pointer basis. Thus an energy-based sto
reduction equation, when analyzed within the framework of Zurek’s approximations, is cons
with, and adds further support to, the picture of the measurement process that Zurek prop
Ref. 18.

In addition to the issues just discussed, there are further questions that must be address
energy-based approach, such as whether Hughston’s estimateds gives sufficiently rapid~but also
not too rapid! reduction of state vectors for all classes of experiments that have been carrie
Answering this question is beyond the scope of the present paper, but is an important iss
future study. Ultimately, the decision between an energy-based or localization-based appro~or
yet some other choice of the operatorA driving the stochastic terms! may depend on which form
of the modified Schro¨dinger equation can be derived as an approximation to relativistically
variant physics at a deeper level.

To summarize, we have shown that Hughston’s stochastic extension of the Schro¨dinger equa-
tion has properties that make it a viable physical model for state vector reduction. This ope
challenge of seeing whether it can be derived as a phenomenological approximation to a
mental prequantum dynamics, along the lines of existing work on open dynamical syste19

Specifically, we suggest that since Adler and Millard20 have argued that quantum mechanics c
emerge as the thermodynamics of an underlying noncommutative operator dynamics, an
the corrections to the thermodynamic approximation in this dynamics are driven by the trace
energy operator multiplied by a coefficient parameter with dimensions of inverse mass, it m
possible to show that Hughston’s stochastic process is the leading statistical fluctuation cor
to this thermodynamics.
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†Vj r̄2
1
2r̄Vj

†Vj #, which whenVj
†5Vj reduces todr̄/dt 52 i @H, r̄ #2

1
2( j†Vj ,@Vj , r̄ #‡, corresponding to the
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The notion of convexity model is introduced to provide a general frame for statis-
tical theories of physical interest: this frame encompasses, in particular, the classi-
cal and the quantum cases. In a convexity model the states of the physical system,
and the convex structure they form, play a basic role; observables and related
quantities are then naturally defined. The notion of extensions of a convexity model
is studied: it appears physically relevant to cope with several needs, paradigmati-
cally with the one of viewing the physical system as a part of a compound system.
We focus attention on quantum-like extensions of both the usual classical and
quantum convexity models, as well as on classical-like extensions of the quantum
model. The behavior of state overlapping and state superposition under model
extension is briefly examined. ©2000 American Institute of Physics.
@S0022-2488~00!01705-9#

I. INTRODUCTION

The basic fact that the states of a physical system can be mixed up is mirrored by the c
structure of the setS they form. States that cannot be thought of as mixtures of other state
usually called pure and correspond to extreme elements of the setS. The models of physica
interest generally admit a rich set of pure states allowing to view any nonpure, or mixed, st
a convex combination of pure states. The structure ofS and its geometrical shape embody ric
information about the physical system; they can support the ambitious program of a geom
approach to a statistical theory of the system. Such an approach is often called the c
approach.

The typical branching between the classical and the quantum behavior can be traced b
this context, to the fact that in the classical case the convex decomposition of a nonpure sta
pure states is unique~henceS is a simplex!, while in the quantum case such a decomposition
never unique.

The general features of the convex approach have been studied by various authors: in
we summarize the notion of convexity model, a notion that will prove structured enough to
a rich array of results but general enough to encompass the physically relevant cases, in pa
the classical and the quantum ones.

The convexity model associated to a given physical system need not be unique, its
being dependent on the accuracy of the description or on the degrees of freedom one is int
in. As a paradigmatic example, think of a physical system which is part of a compound sy
one can handle its description focusing on the subsystem and neglecting all the rest, or on
adopt a more refined description that takes into account the whole compound system. In S

a!Electronic mail: beltrametti@ge.infn.it
25000022-2488/2000/41(5)/2500/15/$17.00 © 2000 American Institute of Physics
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we deal with this problem by introducing the notion of extension of a convexity model: su
notion has been already advanced in the literature, but here we provide a more complete

In Sec. IV we come to the main result of this paper, namely to the extensions of the qua
convexity model that still live inside the Hilbert space framework: the relation with the te
product rule for compound systems is discussed here.

Other examples of nontrivial extensions will be given in Sec. V.
In Sec. VI we briefly examine the notions of state overlapping and state superposition

a general convexity model; we provide some results on their behavior under model extens

II. CONVEXITY MODELS

Given the convex setSof states consider now other crucial elements in the description o
physical system.

An observable, or measurable physical quantity, is physically specified by stating what
space in which its outcomes take values and by giving, for each state of the system, the prob
distribution of the outcomes. Thus we are led to say that the mathematical object represen
observable is an affine mapA:S→M1

1(J) of the convex setS into the convex setM1
1(J) of all

probability measures on a measurable spaceJ, the outcome space of the observable. The affi
character of the mapA, that is the propertyA(la11(12l)a2)5lAa11(12l)Aa2 for any
a1 ,a2PS and lP@0,1#, corresponds to the physical requirement that the measurement
observableA on a mixture of two states gives a probability distribution on the outcome s
which is the corresponding mixture of the probability distributions associated with the two s
The above definition of observable has some tradition in the literature: see, e.g., Refs. 1–

The models we are going to consider do not require, in general, that every affine maA:S
→M1

1(J), for any measurable spaceJ, is an observable of the model. Thus we use anot
name for the wider family of such affine maps and say that they are thestatistical mapson S.

If A:S→M1
1(J) is a statistical map onS andX is a measurable subset ofJ, then the pair

(A,X) determines an affine functionEA(X) from S into @0,1# defined by (EA(X))(a)ª(Aa)
(X), aPS. The functionEA(X) is called the effect ofA at X. Every statistical mapA:S→M1

1(J)
determines4 an effect-valued measure onJ, and every effect-valued measure on a measura
space determines a statistical map onS.

The setA b(S) of all real-valued bounded affine functions onScarries the natural structure o
ordered linear space with the positive cone consisting of all non-negative functions onS: for
a,bPA b(S), a<b meansa(a)<b(a) for everyaPS. Denoting byoS andeS the constant null
function and, respectively, the constant one function onS, all effects of all statistical maps onS
belong to the order interval@oS ,eS# consisting of the elements ofA b(S) that take values in@0,1#.
Actually, the effects onS exhaust@oS ,eS#. For more detailed discussions see, e.g., Refs. 1–

We come now to the notion of convexity model.
Definition 1:A pair (S,E), whereS is a convex set representing the states of a physical sys

and E#@oS ,eS# is a family of effects onS, is called a convexity model of the given physic
system if the following conditions are met:

~i! oS ,eSPE;
~ii ! if aPE, theneS2aPE;
~iii ! if a,b,c,a1b,a1b1cPE, thenb1cPE; and
~iv! if a1 ,a2PS,a1Þa2 , then there isaPE such thata(a1)Þa(a2).

The first three conditions ensure thatE is indeed the set of effects of some family of obse
ables; according to a widely used terminology~see, e.g., Refs. 4 and 8!, they can be summarize
by saying thatE is an effect algebra with respect to the partial binary operation of add
inherited from@oS ,eS#. In particular, the associative condition~iii ! is physically motivated by the
following argument: take an observable defined as aE-valued measure on some outcome spaceJ,
take three disjoint subsetsX,Y,ZPB(J), consider the effectsaªEA(X),bªEA(Y),cªEA(Z)
and notice that the equality (XøY)øZ5Xø(YøZ) reads (a1b)1c5a1(b1c) so that not
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only a,b,c,a1b,(a1b)1c are effects produced by the observable but alsob1c must be so.
Condition ~iv! says thatS is separated byE, namely that the set of states is not redundant w
respect to the considered effects and observables. For more details see Refs. 4, 8, and 9

The physical assumption that a function of an observable should still be an observa
accounted for by the following lemma which is easy to prove.

Lemma 1: If A:S→M1
1(J) is an observable of a convexity model~S,E!, namely if

EA(B(J))#E, then any function ofA is an observable of that convexity model.
Clearly, the notion of convexity model provides a rather general and abstract statistical f

work for the description of a physical system. Mackey’s axiomatization10 of a general statistica
physical theory can be hosted in a convexity model and it is partially accounted for by s
structure.

We come now to some explicit examples of convexity models.
Example 1:Take forS the simplexM1

1(V) of all probability measures on some measura
spaceV: this is the typical set of states in a classical description,V being the ‘‘phase space’’ o
the physical system. Take forE the setB(V) of all measurable subsets ofV where the subse
EPV is identified with the effectaE(m)ªm(E), mPM1

1(V). This convexity model is the one
that hosts classical statistical mechanics.

Example 2:Take forS the setS(H) of all density operators on a separable complex Hilb
spaceH: this is the familiar set of states adopted in the quantum description of a physical sy
Take for E the set of the extreme effects onS(H) which are known11 to correspond to the
projection operators onH, so that the effect algebraE now takes the form of the orthomodula
lattice P(H) of projectors onH. Explicitly, the effect associated to the projectorP maps the
density operatorD into Tr(DP).

If we look at the observables having the real lineR as outcome space, we therefore have
consider the projection-valued measures~PV-measures! on B~R! which are known to admit the
familiar representation in terms of self-adjoint operators onH. Thus we see that the convexit
model considered here is precisely the one that carries standard quantum mechanics.

Example 3:As in example 2, take forS the setS(H) of the density operators on the Hilbe
spaceH, but take now forE the setE(H)ª@oS(H) ,eS(H)# of all effects onS(H). The latter is
known @see Theorem VI.26~b! of Ref. 12# to be in one-to-one correspondence with the family
positive operators onH whose mean value at every state is not bigger than one: explicitly, ifP is
such an operator andDPS(H), then the effect associated toP mapsD into Tr(DP).

The observables associated with such a convexity model are thus the positive operator
measures on measurable spaces~POV-measures!: they include the sharp observables of stand
quantum mechanics~the ones of example 2!. This wider set of observables is called into play
the so-called operational, or unsharp, formulation of quantum mechanics: we recommend
also for further discussion and references.

III. EXTENSIONS OF CONVEXITY MODELS

The choice of a convexity model is not uniquely determined by the physical system we
to describe: the set of states, as well as the family of observables, may depend upon d
options about the aspects we want to take into account. As a paradigmatic example thin
physical system which is part of a bigger system, hence a subsystem of a compound syste
might take the option of restricting the attention to the subsystem, ignoring all the rest: this w
lead to a convexity model in which only the states, the observables, and the effects pertain
the subsystem are called into play. Or one might take the option of describing the whole
pound system, therefrom reading out the description of the subsystem: this would lead
convexity model that makes use of the states, the observables, and the effects pertaining
whole compound system.

In this section we will be concerned with the relationship between convexity models ho
the description of the same physical system; in particular, we will deal with the notion of ex
ing and restricting a convexity model.
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Let (S̃,Ẽ) and (S,E) be two convexity models and letR be an affine map ofS̃ into S. The dual
R* of R is the map of@oS ,eS# into @oS̃ ,eS̃# defined byR* (a)ªa+R, aP@oS ,eS#, (+ standing for
the map composition!; we still denote byR* its restriction toE. The affine character ofR makes

R* (a) an affine map ofS̃ into @0,1#, hence an element of@oS̃ ,eS̃# which, however, need not be a

element of Ẽ. Clearly, R* (eS)5eS̃ and, if a,b,a1bPE, we have thatR* (a1b)5R* (a)
1R* (b): we summarize this fact by saying thatR* is a morphism of the effect algebraE into the
effect algebra@oS̃ ,eS̃#. We also outline that ifR is surjective, thenR* is injective. In fact, take
any two distinct elementsa,bP@oS ,eS# and letaPS be such thata(a)Þb(a): if R is surjective,

there existsãPS̃ such that R(ã)5a, hence (a+R)(ã)Þ(b+R)(ã), showing that R* (a)
ÞR* (b).

Definition 2: Given two convexity models (S̃,Ẽ), (S,E), an affine mapR:S̃→S is said to be

a convexity-model morphism~a morphism for short! if R* mapsE into Ẽ. In this case we write

R:(S̃,Ẽ)
(S,E).
Notice that an observable of a model (S,E), sayA:S→M1

1(J), can be viewed as a morphism
(S,E)
(M1

1(J),B(J)) between the model describing the observed physical system an
classical model that summarizes the classical behavior of the measuring apparatus.

The morphism of convexity models carries a connection between the states of the two m
as well as a connection between the effects. In the above definition the connection betwee
has a primary role, but one could shift the primary role to the connection between effects. I
we have the following lemma:

Lemma 2: Let (S̃,Ẽ), (S,E), be two convexity models, andK:@oS ,eS#→@oS̃ ,eS̃# a

weak*-continuous affine map. IfK is an effect algebra morphism that mapsE into Ẽ, then it
determines an affine mapK* :S̃→S, the predual ofK, which carries a morphism of the tw

convexity models:K* :(S̃,Ẽ)
(S,E).

Proof: K extends by linearity to a unique weak*-continuous positive mapK̂:A b(S)

→A b(S̃) of order-unit Banach spaces, and its predualK̂* :V(S̃)→V(S), whereV(S) andV(S̃)

are the real linear spaces spanned bySandS̃, respectively, maps affinelyS̃ into S. Let K* be the

restriction ofK̂* to S̃: if K mapsE into Ẽ, thenK* is a morphism of convexity models, name

K* :(S̃,Ẽ)
(S,E). h

The existence of a morphismR:(S̃,Ẽ)
(S,E) ensures that every state of the (S̃,Ẽ) model has
an image in the (S,E) model~in general a many-to-one image!, and that every effect of the (S,E)

model has an image in the (S̃,Ẽ) model. In order to view the convexity model (S̃,Ẽ) as a refine-
ment, or as an extension, of the convexity model (S,E) we need, however, something more. W

need thateveryelement ofS is the image of some element ofS̃, and we need that distinct elemen

of E have distinct images inẼ, so that distinct observables of the (S,E) model correspond to

distinct observables in the (S̃,Ẽ) model. In other words, we needR to be surjective and its dualR*
injective, two facts that are related since, as already noticed, the surjectivity ofR implies the
injectivity of R* . Thus we come to the following definition:3

Definition 3: Given two convexity models (S̃,Ẽ), (S,E), we say that a morphism

R:(S̃,Ẽ)
(S,E) provides an extension ifR is surjective. In this case (S̃,Ẽ) is said to be an
extension of (S,E), the latter is said to be a restriction of the former, andR is called the reduction
map.

Under rather weak hypotheses the reduction mapR turns out to be surjective even at the pu

state level, that is, every pure state ofS can be obtained by the action ofR on a pure state ofS̃.
This feature, which goes back to an argument of Segal,13 is specified by the next lemma.

Lemma 3:Let R be an affine surjection of the convex setS̃ onto the convex setS, and leta
be an extreme element ofS. Then

~i! R21(a) is a convex set, and

~ii ! if R21(a) has extreme elements, then these elements are necessarily extreme inS̃.
                                                                                                                



e

an
te

t
.

ly

l has

e

e

2504 J. Math. Phys., Vol. 41, No. 5, May 2000 Beltrametti, Bugajski, and Varadarajan

                    
Proof: ~i! Due to the surjectivity ofR the setR21(a) is nonempty; moreover, sinceR is affine,
any convex combination of elements ofR21(a) has to belong toR21(a).

~ii ! Let ã be extreme inR21(a) and supposeã5lã11(12l)ã2 for someã1 ,ã2PS̃ and

0,l,1. Thena5lR(ã1)1(12l)R(ã2), henceR(ã1)5R(ã2)5a sincea is assumed to be

extreme inS. From ã1 ,ã2PR21(a) we concludeã15ã25ã sinceã is assumed to be extrem
in R21(a). h

Notice that the hypothesis in(ii) is met in all examples of physical interest: the Krein–Milm
theorem ensures that it is fulfilled wheneverR21(a) is compact, which is the case in most fini
dimensional contexts.

If the convexity model (S̃,Ẽ) is an extension of (S,E) under the reduction mapR, then, in

general,R is many-to-one so that the setS of states can be viewed as a coarse graining ofS̃ and

the restriction of (S̃,Ẽ) to (S,E) reminds one of a coarsening procedure.14,15 The fact that two

distinct elements ofS̃ can be mapped byR into the same element ofS is related to the fact tha
they can be mapped byR* (a), aPE, into the same element of@0,1# as the next lemma specifies

Lemma 4:Let (S̃,Ẽ) be an extension of (S,E) under the reduction mapR. Then, for any two

distinct ã1 ,ã2PS̃, the following statements are equivalent:

~i! R(ã1)5R(ã2),

~ii ! ã(ã1)5ã(ã2) for every ãPR* (E), and

~iii ! ã(ã1)5ã(ã2) for everyãPC(R* (E)), whereC(R* (E)) denotes the weak*-closure of the
convex hull ofR* (E).

Proof: ~i! ⇒ ~ii ! is obvious. After noticing that~ii ! can be rewritten asa(R(ã1))

5a(R(ã2)) for everyaPE, the implication~ii ! ⇒ ~i! comes from the fact thatE separatesS. ~ii !

⇒ ~iii ! is a direct consequence of the fact that the elements ofS̃ can be identified with
weak*-continuous affine functionals on@oS̃ ,eS̃#. ~iii !⇒~ii ! is obvious. h

As a consequence of the above lemma we have the following corollary:

Corollary 1: If ( S̃,Ẽ) is an extension of (S,E) under the reduction mapR and if Ẽ#C(R* (E)),
thenR is a bijection.

Proof: SupposeR(ã1)5R(ã2) for some ã1 ,ã2PS̃. When Ẽ#C(R* (E)) we have, by

Lemma 4,ã(ã1)5ã(ã2) for everyãP Ẽ. This impliesã15ã2 due to the fact thatẼ separatesS̃.
Thus the surjectionR is also injective, hence it is a bijection. h

Notice, in particular, that wheneverẼ5R* (E) there is no significant extension since not on

R is a bijection but also the setẼ of effects merely mirrorsE so that (S̃,Ẽ) becomes just a replica
of (S,E). Thus, the above corollary implies that any nontrivial extension of a convexity mode

to enlarge the set of effects: more precisely, the setẼ has to be essentially larger thanR* (E). This
corresponds to an analogous property of the set of observables, as we are going to see.

Let the convexity model (S̃,Ẽ) be an extension of the convexity model (S,E) under the

reduction mapR:S̃→S, and consider an observableA:S→M1
1(J) of the original model (S,E).

Clearly the composite mapÃªA+R:S̃→M1
1(J) is a statistical map onS̃; moreover, noticing that

EÃ(X)5(R* +EA)(X) and thatR* mapsE into Ẽ, every effect ofÃ belongs toẼ so thatÃ is an

observable of the extended model (S̃,Ẽ). The observableÃ so constructed will be called th
representative, in the extended model, of the original observableA. This terminology is motivated

by the fact thatÃ(S̃)5A(S)#M1
1(J), namely, the observableÃ on S̃ generates exactly the sam

set of probability measures onJ as the original observableA on Sdoes. More specifically, given

aPS, the probability distributionAa on J is reproduced by the action ofÃ5A+R on all the

elements ofS̃ that are mapped intoa by the reduction mapR. Denoting byO the set of the

observables of the (S,E) model and byÕ the set of the observables of the (S̃,Ẽ) model, we have
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thus seen that the extension procedure defines a natural injection ofO into Õ, which corresponds

to the injectionR* :E→Ẽ.
As already noticed, any nontrivial extension of a convexity model (S,E) has to enlarge the se

E of effects; correspondingly, any nontrivial extension has therefore to enlarge the set

observables. More specifically,Õ hosts a proper subset formed by the representatives of

elements ofO. Of courseÕ separatesS̃, since the same doesẼ; however, the image ofO in Õ,

as well as the imageR* (E) of E in Ẽ, does not in general separateS̃. In fact, wheneverR is
many-to-one, the elements of the counterimageR21(a), aPS, are not separated by the repr
sentatives of the original observables, nor by the representatives of the original effects.

The extension procedure preserves the comeasurability of observables. Indeed, consi
comeasurable observables of the (S,E) model, sayA1 :S→M1

1(J1) and A2 :S→M1
1(J2): by

‘‘comeasurable’’ we mean that there exists in the model an observableA1,2:S→M1
1(J13J2)

such that A15p1+A1,2 and A25p2+A1,2, where p i , i 51,2, is the marginal projection o
M1

1(J13J2) onto M1
1(J i), i.e., (p1m)(X)ªm(X3J2) for every mPM1

1(J13J2),X

PB(J1), and similarly forp2 ~in other wordsA1,2 is a joint observable ofA1 andA2). If ( S̃,Ẽ)
is an extension of (S,E) under the reduction mapR, then the representatives ofA1 andA2 in the

extended model areÃ1ªA1+R andÃ2ªA2+R, respectively, and it is obvious that they admit t

joint observableÃ1,2ªA1,2+R since Ã15p1+Ã1,2 and Ã25p2+Ã1,2. Therefore, any two comea
surable observables of the original model (S,E) have comeasurable representatives in the exten

model (S̃,Ẽ). This comeasurability property, which is present in our extensions, is reaso
enough that one may view it as a consistency requirement to be met by any alternative no
extension.

We list now some instances of extensions of convexity models.

~1! Consider the convexity models of examples 2 and 3 of Sec. II: the latter is an extension
former under the identity mapR5I :S(H)→S(H). The effects and the observables of e
ample 2 are particular cases of the ones of example 3. This fits with Corollary 1: the
models adopt the same set of states and the reduction map is bijective. In spite of its s
ity, this extension represents a remarkable step in the history of quantum mechanics, n
the transition from the standard quantum mechanics~as codified by J. von Neumann16! to the
so-called operational quantum mechanics.5,7,11

~2! Consider two convexity models having the classical form of example 1 of Sec. II,
(M1

1(V1),B(V1)) and (M1
1(V2),B(V2)), where we retain the notationB(V i), typical of the

Boolean algebra of the measurable subsets ofV i . The convexity model (M1
1(V1

3V2),B(V13V2)) is an extension of (M1
1(V i),B(V i)), i 51,2, by taking as a reduction

map the marginal projectionp i :M1
1(V13V2)→M1

1(V i). Clearly, the dualp1* mapsX1

PB(V1) into X13V2PB(V13V2), and similarly for the dual ofp2 . Notice that if the given
convexity models carry the description of two classical physical systems, then (M1

1(V1

3V2),B(V13V2)) is the convexity model that, according to the classical statistical the
carries the description of the compound system formed by the two physical systems.

~3! Take two quantum convexity models having the form of example 2 of Sec. II,
(S(H1),P(H1)) and (S(H2),P(H2)), where the notationP(Hi), i 51,2, is motivated by the
fact that the considered effects are associated to the projectors on the corresponding
space. Denoting byH1^ H2 the tensor product of the two Hilbert spaces, the convexity mo
(S(H1^ H2),P(H1^ H2)) is an extension of (S(Hi),P(Hi)), i 51,2, the reduction map be
ing the partial trace@characterized by the equality (f l

1 ,TrH2
Dfm

1 )5(n(f l
(1)

^ fn
(2) ,Dfm

(1)

^ fn
(2)) whereDPS(H1^ H2), $fm

(1)% is a base ofH1 , $fm
(2)% a base ofH2 , and similarly for

TrH1
]. Again we notice that if the given convexity models are associated to two qua

physical systems, then the considered extension is precisely what the quantum theory
ates to the compound system formed by those two physical systems.

We have seen that any nontrivial extension of a convexity model always has to enlarge
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of the effects, hence of the observables, though there are nontrivial extensions that do not
the set of states. Various circumstances can accompany the physical need of extending a
we now sketch a few.

An enlargement of the set of observables and of effects might be called for by the appe
of new properties of a physical system, together with new experimental possibilities of in
gating them.

A definite physical theory based on some convexity model has to include the inform
about the maps of the setSof states into itself that represent symmetry properties of the syste
admissible dynamical evolutions; the setE of effects, as well as the set of observables, have to
closed under the transformations induced by these maps so that any recourse to a wider
symmetries and/or dynamical evolutions could require an enlargement of the setE, hence a model
extension. As an example consider the model extension discussed in~1!: the set of effects of the
original convexity model of standard quantum mechanics is closed under the transform
induced by the authomorphisms~the affine bijections! of the setS(H), while the set of effects of
the extended model is closed under the transformations induced by the endomorphisms~the affine
maps! of S(H).11,17,18

Any physical need of enlarging the set of states determines an extension of the con
model, which unavoidably carries also an enlargement of the set of effects, and of observab
already outlined, a paradigmatic situation is the one in which the physical system under att
is thought of as a subsystem of a compound system. Other situations might correspond to th
of taking into account new degrees of freedom of the physical system. For instance, we migh
a convexity model hosting the motion of an electron disregarding its spin: the inclusion of the
coordinates will then cause an enlargement of the set of states.

Also, a change of the symmetry group associated to the physical system can induce
vexity model extension: think, e.g., of the Pauli two-component description of a spin-1

2 particle
whose dynamical evolution has the Galilei invariance; when we shift to the relativistic invar
we end up with the Dirac four-component description, hence with an enlargement of the
states.

Haag and Bannier19 and Mielnik20,21 have pointed out that when the usual Schro¨dinger time
evolution of a quantum physical system is modified by introducing nonlinear terms, the
elements ofS(H), that is, the density operators onH, cease to be complete descriptions of t
states of the system because different convex combinations of pure states that give rise to
density operator might become distinguishable by the nonlinear dynamics. Such an enlargem
the set of states occurs in a classical extension of the quantum convexity model to be reca
Sec. V.

IV. HILBERT-SPACE EXTENSIONS OF THE QUANTUM MODEL

Consider the typical convexity model hosting the standard quantum description: as outli
example 2 of Sec. II the states are the density operators on a complex separable Hilbert sp
the effects correspond one-to-one to the projectors on that Hilbert space, the effect assoc
the projectorP being the function that maps the density operatorD into Tr(PD). In this section
we deal with the issue of extending a convexity model of this kind by a convexity model tha
has a similar structure. More specifically, given a convexity model (S(H),P(H)) we look for the
extensions of this model that have the form (S(H̃),P(H̃)) for some other complex separab
Hilbert spaceH̃. As already noticed in item~3! of the previous section the extended model mig
be the one built on a Hilbert spaceH̃ consisting of the tensor product ofH and some other Hilber
space, the reduction map being the partial trace. But is this the only possibility? The cha
ization of the ‘‘Hilbertian’’ extensions is provided by the next theorem, which rests mainly
result of Wright.22 An analogous result has been provided by Busch23 in the framework of a
characterization of isometric transformations of density operators of a Hilbert space.24

Theorem 1: If ( S(H̃),P(H̃)) is an extension of (S(H),P(H)) with respect to a reduction
mapR:S(H̃)→S(H), then there exist two Hilbert spacesH 8 andH 9, a projectionP̃PP(H̃), a
unitary mapU8:H^ H 8→ P̃H̃, and an antiunitary mapU9:H^ H 9→( Ĩ 2 P̃)H̃ such that
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~i! R* P5U8(P^ I 8)U8211U9(P^ I 9)U921 for everyPPP(H), and

~ii ! RD̃5TrH 8(U821P̃D̃ P̃U8)1TrH 9(U921( Ĩ 2 P̃)D̃( Ĩ 2 P̃)U9) for every D̃PS(H̃), where
I 8,I 9, Ĩ denote the identity operators ofH 8,H 9,H̃.

Proof: The proof of~i! goes through three steps.

~1! By definition of extension of a convexity model,R* is an injective morphism of the effec
algebraP(H) into the effect algebraP(H̃), and this morphism iss-complete~see Lemma 6
of Ref. 4!. It has been proven~see Ref. 22, Lemma 1! that the above properties ofR* ensure
that it extends uniquely to a Jordan morphismF of the von Neumann algebraL(H) of
bounded operators onH into the corresponding algebraL(H̃).

~2! The characterization theorem for Jordan morphisms~see, for instance, Ref. 25, p. 207, Prop
sition 3.2.2! states that there exists in the center ofF(L(H))#L(H̃) a projectionP̃ such that
the mapA°F1(A)ªF(A) P̃ is a * -morphism, while the mapA°F2(A)ªF(A)( Ĩ 2 P̃) is
a * -antimorphism ofL(H) into L(H̃). Clearly,F1 can be seen as a*-morphism ofL(H)
into L( P̃H̃), F2 as a *-antimorphism ofL(H) into L(( Ĩ 2 P̃)H̃), andF5F11F2 .

~3! According to a result of Wright~see Ref. 22, Lemma 2! the existence of the above map
F1 ,F2 implies the existence of two Hilbert spacesH 8 and H 9, of a unitary mapU8:H
^ H 8→ P̃H̃, and of an antiunitary mapU9:H^ H 9→( Ĩ 2 P̃)H̃ such thatF1(A)5U8(A
^ I 8)U821, F2(A)5U9(A* ^ I 9)U921 for every APL(H). Hence F(A)5F1(A)
1F2(A), and the restriction of this equality toP(H) gives~i!. It is evident that the spaceH̃
bears then the structureH̃5U8(H^ H 8) % U9(H^ H 9).

~ii ! is an immediate consequence of~i!. h

We see that, even in the case of standard quantum mechanics, the concept of exten
more general than imbedding in a compound system. Indeed, according to the above theo
Hilbertian extensions of the standard quantum mechanical model (S(H),P(H)) need not be based
on a Hilbert spaceH̃ that takes the form of a tensor product. They include, in general, bo
unitary and an antiunitary branch: only in the case in which the projectionP̃ is trivial either the
unitary or the antiunitary branch disappears, andH̃ becomes unitarily or antiunitarily equivalent t
the tensor product ofH and some other Hilbert space. This necessarily occurs when the J
mapF ~introduced in the proof! sendsL(H) into a von Neumann algebra having only zero a
the identity as central projections.

It is then natural to ask which additional conditions on the convexity model morph
R:(S(H̃),P(H̃))
(S(H),P(H)) should be imposed to make the extension equivalent to view
the physical system as a subsystem of a compound one. As the antiunitary part ofF would not
preserve the commutators, the general extension becomes the same as imbedding in a co
system if we assume natural covariance properties for the dual mapR* . Notice that the antiunitary
branch comes in because the mapF in the theorem above ensures only the preservation of
Jordan multiplication; but if we assume the usual product of operators to be preserved, the
the unitary branch is left, and extension becomes the same as imbedding in a compound
We may also remark that this situation can be achieved by assuming the reduction
R:S(H̃)→S(H) to be completely positive, as implied by a result of Busch and Lahti.26

The preceding observation shows that if we insist on the preservation of not just the J
algebra structure of the bounded observables but the associative algebra structure of all b
operators, the antiunitary branch can be eliminated. In view of Schwinger’s interpretation o
associative algebra as the algebra of measurements,27 this assumption is not unphysical, an
allows us to retain only the compound system extensions. The measurement algebra of Sch
is the full algebra ofall operators, not just the observables, and he has given the opera
meaning of the product operation as two measurements carried one after the other. Howe
question whether there are physically relevant extensions beyond the compound system on~thus
involving the antiunitary branch! remains open.
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Theorem 1 has been expressed in terms of the convexity models of the standard qu
description: however, the theorem holds true even if we replace the convexity m
(S(H),P(H)), (S(H̃),P(H̃)) by (S(H),E(H)), (S(H̃),E(H̃)) ~see example 3 of Sec. II!, pro-
vided the dual mapR* that injects the familyE(H) of all effects onS(H) into the familyE(H̃)
of all effect onS(H̃) puts projectors into projectors, that is, extreme effects into extreme eff

As already said, a typical feature of the quantum description is the nonunique convex d
position of mixed states into pure states. It is then natural to raise the question whethe
different convex combinations of pure states that correspond to the same mixed state of the
based on the Hilbert spaceH can be recognized as distinct by the observables of an exte
model based on the Hilbert spaceH̃. To answer this question we restrict ourselves to the partic
case in whichH is two-dimensional,H̃ is the tensor productH^ H, andR is the partial trace. Let
$w1 ,w2% and$f1 ,f2% be two orthogonal bases, letP(w i) be the projector on the one-dimension
space spanned byw i , and similarly forP(f i). The nonunique decomposability of mixtures
exemplified by the fact that the ‘‘most mixed’’ stateD5 1

2(P(w1)1P(w2)) can be equivalently
written asD5 1

2(P(f1)1P(f2)). The question above can then be formalized as follows: is th
a maps of the pure states ofS(H) into the pure states ofS(H̃) such thatR+s is the identity and
the two convex combinations12(s(P(w1)1s(P(w2))) and 1

2(s(P(f1)1sP((f2))) become sepa-
rated by some observable or some effect of the extended model (S(H̃),P(H̃))? Lets be the map
P(c)°P(c ^ c), cPH: sinceR is a partial trace it is clear thats(P(c))PR21(P(c)). The two
convex combinations12(s(P(w1))1s(P(w2))) and 1

2(s(P(f1))1s(P(f2))) are now separated
for instance, by the effect associated to the projectorP(w1^ w1)PP(H^ H) which maps the
former convex combination into the number1

2 and the latter into the number12(u(w1 ,f1)u4

1u(w1 ,f2)u4).
This example shows that there can be two distinct convex combinations of pure state

give rise to the same state in the original model but they are recognized as different state
interpreted in an extended model. The extension procedure can thus be accompanied by a
effect on the mixtures of pure states: the nonunique decomposition of mixed states occurring
original model appears attenuated when one looks at the representation of that model ins
extended one.

Let us close this section by noticing that the extension of a quantum mechanical con
model is related to the quantum measurement theory. Indeed, the extension procedure
passes the relation between a physical object subjected to measurement and the compoun
formed by the object and the measuring apparatus. Therefore, one can think of a general th
measurement in the framework considered here, with the aim of exploring a mechanism
generates the statistical~thermodynamical! behavior of the measured object, as well as of
measuring apparatus, by an automorphic dynamical evolution of the compound system. W
to discuss this problem in a forthcoming paper.

V. OTHER INSTANCES OF MODEL EXTENSION

Here we quote other examples of extensions of convexity models that in our opinion de
an interest.

~i! Take the standard classical model (M1
1(V),B(V)) of example 1 of Sec. II, assuming fo

simplicity a countableV, and consider the convexity model (M1
1(V),E(V)) whereE(V)

is the set of all the affine functionsM1
1(V)→@0,1#. While the effects of the first mode

correspond to the~crisp! subsets ofV, the effects of the second model~which are uniquely
determined by their restriction to the Dirac measures onV) correspond to the fuzzy subse
of V. The observables of the first model are the usual random variables that map
measures onV into Dirac measures on the outcome space, while the observables o
second model carry a fuzzy, or indeterministic, character since they can map Dirac
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sures onV into diffused measures on the outcome space. The model (M1
1(V),E(V)) is an

extension of (M1
1(V),B(V)) under the identity reduction map: it is the basic structure

the so-called fuzzy, or operational, probability theory.28,29

~ii ! Here we consider a quantum model (S(H),E(H)) as in example 3 of Sec. II and show th
it can behave as an extension of a classical model. Recall that an effectaPE(H) maps
DPS(H) into the number Tr(âD) where â is the positive operator associated toa. Let
$Pv :vPV% be a countable sequence of pairwise orthogonal projectors ofH whose sum is
the identity operator, so thatH takes the direct sum formH5 % vPVHv whereHv denotes
the subspace onto whichPv projects. On the countable setV so defined we build the
classical convexity model (M1

1(V),E(V)) as specified in item~i! above. An effecta
PE(V) is uniquely determined by the measurable function it defines onV:

fa~v!ªa~dv!, vPV,
wheredv stands for the measure concentrated atv; clearly a mapsmPM1

1(V) into the
number(vPV f a(v)m(v).

We have now the following result:
Lemma 5:The Hilbertian convexity model (S(H),E(H)) is an extension of the classica

convexity model (M1
1(V),E(V)) mentioned above under the reduction mapR:S(H)→M1

1(V)
that sendsDPS(H) into the probability measuremD on V defined bymD(v)ªTr(PvD), v
PV.

Proof: mD is obviously additive on disjoint elements and the fact that the projectorsPv sum
up to the identity makes it a probability measure onV. The affine character of the mapR is
obvious. Recall that the dual ofR is the mapR* :E(V)→E(H) defined byR* (a)ªa+R,a
PE(V); thus we have, for everyDPS(H),

~R* ~a!!~D !5a~mD!5 (
vPV

f a~v!mD~v!5 (
vPV

f a~v!Tr~PvD !5TrS (
vPV

f a~v!PvDD.

It is now evident that the operator(vPV f a(v)Pv occurring in the last equality is a self-adjoin
positive operator whose mean value at every state is not bigger than one: thereforeR* mapsE(V)
into E(H). This shows that we have a convexity model morphismR:(S(H), E(H))

(M 1

1(V),E(V)). This morphism is actually an extension sinceR is surjective. Indeed, given
any mPM1

1(V) consider the density operatorDmª(vPVm(v)DvPS(H) whereDv is an arbi-
trary density operator acting on the Hilbert spaceHvªPv(H): it is evident thatR mapsDm into
m. h

Whenever a quantum model (S(H),E(H)) is the extension of a classical mod
(M 1

1(V),E(V)) the reduction mapR gives rise to a decoherence effect: according to the ab
Lemma all the quantum superpositions belonging to someHv , vPV, are mapped into the Dirac
measure concentrated atv, hence into a single pure state, while the quantum superposition
belonging to a singleHv are mapped into mixtures. In such a situation the action of the reduc
map R reminds us of a classical limit of the quantum model, or we can view the action ofR as a
transition to states that are in thermal equilibrium, a transition that is accompanied by decoh
and singles out a simplex of states.

As an illustration of Lemma 5 consider the case of a two-dimensional Hilbert space,V being
a two-element set labelling two orthogonal one-dimensional projectors. The setS(H) now be-
comes representable by the points of a three-dimensional sphere~the state set of a spin-1

2 system!,
while the simplexM1

1(V) is now a segment, say a diameter of the above sphere. The redu
mapR becomes an affine surjection of the sphere onto this diameter: ifO is a point of the diameter
and we consider a section of the sphere perpendicular to the diameter atO, then all points of this
section are mapped byR into O. Such a reduction map can be identified with the operator of
spin component~Pauli matrix! along the direction of the considered diameter. The classica
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striction of the set of spin-1
2 states so produced gives rise to a decoherence effect that m

correspond to the search of thermal equilibrium states of a magnetic dipole in a suitably s
external field.

Comparing with what was said in the previous section, we see that a Hilbertian conv
model can behave at the same time as an extension of a classical and of a quantum
Consider in particular a Hilbert-space tensor productH̃5H^ H 8 with H 8 hosting the description
of some quantum physical system: then (S(H^ H 8),P(H^ H 8)) carries both an extension of th
quantum model (S(H 8),P(H 8)) under the reduction map TrH , and an extension of a classic
model (M1

1(V),E(V)) under the reduction map given by composing the partial trace TrH 8 with
the mapR:S(H)→M1

1(V) specified in Lemma 5. A physical interest of such a common ex
sion of a classical and a quantum model can be traced back to the ideas advanced by Bla
and Jadczyk30 in the context of the quantum measurement problem.

~iii ! We come now to an instance of classical extension of the quantum model. More sp
cally, we briefly look into the possibility of extending the usual quantum model by a conve
model based on a simplex of states. This question has been studied in Refs. 3 and 31–
summarize, letS(H) be the set of states of a quantum model, either the one of examples 2
example 3 of Sec. II, letV represent the set of the extreme elements of the convex setS(H),
namely the one-dimensional projectors ofH, and consider the convexity model (M 1

1(V),E(V))
as specified in~i! above. The latter model, which has the classical feature of being based
simplex of states~namely every mixed state has a unique decomposition into pure states!, turns out
to be an extension of the original quantum model. The reduction map gives to the quantum
states a unique classical representative while quantum mixed states are represented by i
many mixtures in the classical extension. The observables of the quantum model are inject
the wider family of observables of the classical extended model, and this injection preserves
statistical properties of the original observables. Typical quantum features, like uncertainty
tions or violation of Bell-like inequalities, are faithfully reproduced in the classical extensio
the ~fuzzy! observables that are representatives of the quantum ones.3,32

As already noticed at the end of Sec. III, the inclusion of nonlinear terms in the dynam
a quantum system might lead to the separation of the convex combinations of pure stat
correspond to a same state of the usual quantum model: this is just what occurs in this cl
extension. In Ref. 33 it is argued how observables described by nonlinear operators c
represented by observables of the classical extension.

VI. STATE OVERLAPPING AND STATE SUPERPOSITION UNDER EXTENSIONS

In quantum mechanics one is faced with the fact that two states can give nonvan
overlapping of the probability measures they produce for every observable. Somewhat rel
this phenomenon is the notion of quantum superposition of states. In this section we will
give meaning to the notions of state overlapping and state superposition in a general con
model, and we examine how these features behave under the process of model extension

A. State overlapping

Part of the notion of a convexity model (S,E) is the fact that two states are separated by
effects, hence by the observables: given two distinct elementsa1 ,a2 of S there is an observable
A:S→M1

1(J) such thatAa1ÞAa2 . A strong form of separability might come when the tw
probability distributions do not overlap, namely when there isXPB(J) such thatAa1(X)50 and
Aa2(X)51 @in other words, when there isaPE such thata(a1)50, a(a2)51]. In this case we
say that the two states are orthogonal, symbolicallya1'a2 . This is what occurs with any two
pure states in a classical model, but it is not the case of quantum models.

To discuss this issue in a general context we need first some auxiliary notions.
Let J be a measurable space andm1 ,m2PM1

1(J). There always exists a measuren
PM1

1(J) such that the equalityn(X)50, XPB(J), implies m1(X)5m2(X)50 @an example
might ben5 1

2(m11m2)]; the given measuresm1 ,m2 are said to be absolutely continuous wi
respect ton. We can then write
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m i~X!5E
X
Adm i

dn
n~dj!, i 51,2,

for everyXPB(J), wheredm i /dn is the Radon–Nikodym derivative ofm i with respect ton. To
the pairm1 ,m2PM1

1(J) we can now associate the Kakutani35 inner product

k~m1 ,m2!ªE
J
Adm1

dn
Adm2

dn
n~dj!, ~1!

which has the relevant property of being independent of the choice of the measuren, provided
m1 ,m2 are absolutely continuous with respect ton ~see, e.g., Ref. 9!. It turns out that 0
<k(m1 ,m2)<1, the upper limit 1 being reached if and only ifm15m2 while the lower limit 0 is
reached if and only ifm1'm2 @i.e., when there isXPB(J) such thatm1(X)50, m2(X)51].

In a convexity model (S,E), for any two statesa1 ,a2PS and any observableA:S
→M1

1(J), the numberk(Aa1 ,Aa2) physically represents the overlap of the two states relativ
that observable. Since the physical possibility of distinguishing two states relies on the sepa
power of the family of physical observables, it appears natural to define the absolute o
coefficientk(a1 ,a2) of two states in a convexity model (S,E) as

k~a1 ,a2!ª inf $k~Aa1 ,Aa2!uAPO%,

whereO stands for the family of all the observables of the model. This is the quantity studie
Cantoni36,37 who callsk(a1 ,a2)2 a generalized transition probability.

Notice thatk(a1 ,a2)50 means thatAa1'Aa2 for someAPO, namely that the two state
are orthogonal.

When a statea is a proper convex combination of other states, then its overlap coeffi
with any member of the convex combination cannot vanish. We have in particular the follo
lemma.

Lemma 6:The equalitylk(a,a1)1(12l)k(a,a2)51, where 0,l,1 anda,a1 ,a2PS,
implies a5la11(12l)a2.

Proof: We have

k~a,la11~12l!a2!5 inf$k~Aa,lAa11~12l!Aa2uAPO%

> inf $lk~Aa,Aa1!1~12l!k~Aa,Aa2!uAPO%

>l inf$k~Aa,Aa1!uAPO%1~12l!inf$k~Aa,Aa2!uAPO%

5lk~a,a1!1~12l!k~a,a2!.

Therefore, the hypothesis of the lemma impliesk(a,la11(12l)a2)51, hencea5la11(1
2l)a2 . h

In the standard convexity model (M1
1(V),B(V)) of classical statistical mechanics we have38

k(m1 ,m2)5k(m1 ,m2) for any pair of statesm1 ,m2PM1
1(V): in particular, any two pure states

that is two Dirac measures at different points ofV, have vanishing overlap. In the convexi
model (S(H),P(H)) of standard quantum mechanics the overlap coefficient between two
states becomes the absolute value of the scalar product of the associated state vectors,36,38,39so that
it vanishes for orthogonal vectors only~the form of the overlap coefficient for any two states of t
quantum model is given in Ref. 38!.

We come now to the behavior of the overlap coefficient under extension of the conv
model:

Theorem 2: If the convexity model (S̃,Ẽ) is an extension of the convexity model (S,E) under
the reduction mapR:S̃→S, then, for any two statesã1 ,ã2PS̃, we have k(ã1 ,ã2)
<k(Rã1 ,Rã2).
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Proof: Let O andÕ be the sets of all the observables of (S,E) and, respectively, of (S̃,Ẽ). By
definition k(Rã1 ,Rã2)5 inf $k(A(Rã1),A(Rã2))uAPO%5inf $k(Ãã1 ,Ãã2)uÃPR* O%, where
R* O denotes the set of the observables of the (S̃,Ẽ) model that are representatives~underR* )
of the elements ofO. SinceR* O is a subset ofÕ, it follows thatk(ã1 ,ã2)<k(Rã1 ,Rã2). h

In Ref. 40 a slightly different version of this theorem is given. Notice that the proof does
make any use of the surjectivity ofR: thus the propertyk(ã1 ,ã2)<k(Rã1 ,Rã2) holds true for
any convexity-model morphismR:(S̃,Ẽ)
(S,E) ~compare Definitions 2 and 3!.

An example of the above theorem is provided by the extension recalled in item~iii ! of Sec. V:
if we restrict to pure states, then any two states of the classical extension have vanishing o
coefficient though the reduction map might send them into quantum states having overlap

B. State superposition

The quantum notion of coherent superposition of pure states makes use of the vecto
structure underlying the quantum model: it is thus hopeless to translate entirely such a noti
general convexity model. We can, however, pick up some particular aspect, viewing it in a g
convexity model.

A property of a quantum superpositionaPS(H) of two statesa1 ,a2PS(H) is that every
effect that maps botha1 anda2 into 0 mapsa, too, into 0. Let us pick up this property to defin
a notion of superposition in a general convexity model:

Definition 4: Given a convexity model (S,E) and a subsetT of S having cardinality not less
than 2, we say thataPS\T is a superposition of elements ofT if and only if a(a)50 for every
aPE such thata(T)50 @by a(T)50 we mean thata maps into 0 every element ofT].

Such a definition is indeed the natural generalization of the one adopted in the so-
quantum logic approach.41 We denote byT̄ the subset ofS obtained by adding toT all its
superpositions, the mapT°T̄ having the properties of a closure relation:T#T̄, T#T8 implies

T̄#T8, T̃
¯

5T̄.
We have to stress that any convex combination of elements ofT#S meets the requirements o

Definition 4, thus being a superposition. The typical feature of the quantum model is that it a
superpositions that are pure states~extreme elements ofS). To distinguish them from the conve
combinations we call them coherent superpositions. The absence of coherent superpositio
typical feature of the classical models.

The notion of superposition, as expressed by Definition 4, is relative to the convexity m
under attention: of course, it need not be preserved under an extension of the model. In this
we have the following property:

Theorem 3: Let the convexity model (S̃,Ẽ) be an extension of the convexity model (S,E)
under the reduction mapR:S̃→S.
~i! If T#S is closed, i.e., ifT5T̄, then alsoR21T is closed.
~ii ! For arbitraryT#S we haveR21T#R21T̄.

~iii ! For arbitraryT̃#S̃ we haveRT̃
¯

#RT̃, and this property is equivalent to~ii !.

Proof: ~i! SupposeR21T is not closed: then there would be a superposition of its eleme
say ã, not belonging toR21T, i.e., Rã would not belong toT. Let aPE be such thata(T)50:
thena+R would map into 0 all elements ofR21T. Hence (a+R)(ã)50 by the assumption thatã

is a superposition of elements ofR21T. This is equivalent to writea(Rã)50: since this holds
true for everya such thata(T)50 we would conclude thatRã is a superposition of elements o
T, contrary to the assumption thatT is closed.

~ii ! SinceT#T̄ we haveR21T#R21T̄. HenceR21T#R21T̄ in view of the fact thatR21T̄ is
closed@see item~i!#.

~iii ! For arbitraryT̃#S̃ we haveT̃#R21RT̃ henceT̃
¯

#R21RT̃ and, by use of~ii !, T̄#R21RT̃
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which impliesRT̃
¯

#RR21RT̃5RT̃. To show that~ii ! follows from ~iii ! takeT#S and notice that
~iii ! implies RR21T#RR21T5T̄, henceR21T#R21T̄. h

The affine character of the reduction mapR does not imply that pure states of the extend
model are mapped into pure states of the original convexity model. WhenR maps pure states into
pure states the extension procedure determines some shift toward classicality. Indeed, in
situation, when a pure state of the extended model is a~coherent! superposition, it has to be
mapped, according to the above theorem, into a pure state of the original model which is a
~coherent! superposition. But the converse need not be true: there can be coherent superpo
of the original model that do not correspond to any superposition~coherent or not! of the extended
model. The extension recalled in item~iii ! of Sec. V provides an example: the pure states of
quantum model, for which the notion of coherent superpositions applies, correspond one-to
pure states of the classical extension which cannot be thought of as coherent superpositio

We do not enter, here, into the problem of what the superposition principle of qua
mechanics might be shaped in the more general convex approach: proposals and remarks
found in Refs. 41–45~Section 14.8!.

ACKNOWLEDGMENTS

We thank the referee for many beneficial comments which have significantly improve
presentation.

1A. S. Holevo,Probabilistic and Statistical Aspects of Quantum Theory~North Holland, Amsterdam, 1982!.
2E. G. Beltrametti and S. Bugajski, Int. J. Theor. Phys.34, 1221~1995!.
3E. G. Beltrametti and S. Bugajski, J. Phys. A28, 3329~1995!.
4E. G. Beltrametti and S. Bugajski, J. Math. Phys.38, 3020~1997!.
5G. Ludwig, Die Grundlagen der Quantenmechanik~Springer, Berlin, 1954!; English edition~Springer, New York,
1983!.

6R. Giles, J. Math. Phys.11, 2139~1970!.
7P. Busch, M. Grabowski, and P. J. Lahti,Operational Quantum Physics~Springer, Berlin, 1995!.
8R. J. Greechie and D. J. Foulis, Int. J. Theor. Phys.34, 1369~1995!.
9S. P. Gudder,Stochastic Methods in Quantum Mechanics~North Holland, New York, 1979!.

10G. W. Mackey,The Mathematical Foundations of Quantum Mechanics~Benjamin, New York, 1963!.
11E. B. Davies,Quantum Theory of Open Systems~Academic, London, 1976!.
12M. Reed and B. Simon,Methods of Modern Mathematical Physics~Academic, New York, 1972!.
13I. E. Segal, Ann. Math.48, 930 ~1947!
14P. Busch and R. Quadt, Int. J. Theor. Phys.32, 2261~1993!.
15R. Quadt and P. Busch, Open Systems and Information Dynamics2, 129 ~1994!.
16J. von Neumann,Mathematical Foundations of Quantum Mechanics~Princeton U. P., Princeton, NJ, 1955! ~German

edition, 1932!.
17A. Kossakowski, Rep. Math. Phys.3, 247 ~1972!.
18R. Alicki and K. Lendi,Quantum Dynamical Semigroups and Applications~Springer–Verlag, Berlin, 1987!.
19R. Haag and U. Bannier, Commun. Math. Phys.60, 1 ~1978!.
20B. Mielnik, J. Math. Phys.21, 44 ~1980!.
21B. Mielnik, Commun. Math. Phys.101, 323 ~1985!.
22R. Wright, Int. J. Theor. Phys.16, 567 ~1977!.
23P. Busch,Quantum extensions of quantum statistical models, Internal Report, University of Hull, U.K.~1998!.
24P. Busch, ‘‘Stochastic isometries in quantum mechanics,’’ Math. Research Reports of the Univ. of Hull, Vol. 11, N

~1998!.
25O. Bratteli and D. W. Robinson,Operator Algebras and Quantum Statistical Mechanics~Springer-Verlag, New York,

1979!.
26P. Busch and P. J. Lahti, Found. Phys.20, 1429~1990!.
27J. Schwinger,Quantum Kinematics and Dynamics~Benjamin, New York, 1970!.
28S. Bugajski, K. E. Hellwig, and W. Stulpe, Rep. Math. Phys.41, 1 ~1998!.
29S. Bugajski, Int. J. Theor. Phys.35, 2229~1996!.
30Ph. Blanchard and A. Jadczyk, Ann. Phys.4, 583 ~1995!.
31B. Misra, inPhysical Reality and Mathematical Description, edited by C. P. Enz and J. Mehra~Reidel, Dordrecht, 1974!.
32E. G. Beltrametti and S. Bugajski, J. Phys. A29, 247 ~1996!.
33S. Bugajski, Int. J. Theor. Phys.30, 961 ~1992!.
34E. G. Beltrametti and S. Bugajski, inWaves, Information and Foundations of Physics, edited by R. Pratesi and L. Ronch

~Societa’ Italiana di Fisica, Bologna, 1998!.
35S. Kakutani, Ann. Math.49, 19 ~1948!; reprinted inS. Kakutani: Selected Papers, Vol. 2 ~Birckauser, Boston, 1986!.
                                                                                                                



2514 J. Math. Phys., Vol. 41, No. 5, May 2000 Beltrametti, Bugajski, and Varadarajan

                    
36V. Cantoni, Commun. Math. Phys.44, 125 ~1975!.
37V. Cantoni, inSymmetries in Science,edited by B. Gruber and F. Iachello~Plenum, New York, 1989!, Vol. 111.
38N. Hadjisavvas, Commun. Math. Phys.83, 43 ~1982!.
39S. P. Gudder, Int. J. Theor. Phys.20, 383 ~1981!.
40V. Cantoni, Commun. Math. Phys.87, 153 ~1982!.
41V. S. Varadarajan,Geometry of Quantum Theory, 2nd ed.~Springer-Verlag, New York, 1985!.
42P. J. Lahti and S. Bugajski, Int. J. Theor. Phys.24, 1051~1985!.
43P. Ptak and S. Pulmannova,Orthomodular Structures as Quantum Logics~Kluwer, Dordrecht, 1991!.
44S. Pulmannova, Commun. Math. Phys.49, 47 ~1976!.
45E. G. Beltrametti and G. Cassinelli,The Logic of Quantum Mechanics~Addison-Wesley, Reading, MA, 1981!.
                                                                                                                



-
e
1/
only

in

the
hro

of the
hod is,
-
e of
system
the
tial

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 5 MAY 2000

                    
1ÕN expansions in nonrelativistic quantum mechanics
Niels Emil Jannik Bjerrum-Bohr
University of Copenhagen, The Niels Bohr Institute,
Blegdamsvej 17, DK-2100 Copenhagen, Denmark
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An extensive number of numerical computations of energy 1/N series using a
recursive Taylor series method are presented in this paper. The series are computed
to a high order of approximation and their behavior on increasing the order of
approximation is examined. ©2000 American Institute of Physics.
@S0022-2488~00!05004-0#

I. INTRODUCTION

In chemistry and atomic physics, 1/N ~or 1/D) perturbation theory is very powerful in calcu
lating energy eigenstates for many complicated systems.1–4 The method is especially valuabl
when the applicability of Hartree–Fock methods is limited. In this study the behavior ofN
expansions is investigated at a very high order of approximation. For the sake of simplicity
radial potentials with spherical symmetry will be considered. TheN-dimensional nonrelativistic
Schrödinger equation for such potentials may be written as

F2
1

2

d2

dr22
1

2

N21

r

d

dr
1

l ~ l 1N22!

2r 2 1V~r !Gf~r !5Ef~r !, ~1!

whereN is the number of spatial dimensions.5 A brief review of this equation is presented
Appendix B.

The concept underlying 1/N expansion methods is the use of perturbation theory on
expandable parameter 1/N. A standard problem in perturbation theory would be a solvable Sc¨-
dinger equation plus a small perturbation, expressed as

H5H01gV, ~2!

whereH0 is the solvable Hamiltonian andgV is the small perturbation. In this notationg is a real
expansion coefficient. To obtain an approximation to the eigenstates of the perturbed Schro¨dinger
equation one inserts a series for the wave function in powers ofg as

u5u~0!1gu~1!1g2u~2!1¯ ~3!

and a series in energy as

E5E~0!1gE~1!1g2E~2!1¯ . ~4!

Finally, these series are solved for the unknown functionsu(n) and the energy coefficientsE(n).
For the standard problem this procedure provides an efficient way to obtain an estimate

eigenstates and the energy of the physical system. Widespread application of this met
however, limited since only problems with an expandable coefficientg can be solved. The dimen
sional dependency of the Schro¨dinger equation provides us with a hidden expandable variabl
the potential. Roughly speaking, enlarging the dimensions of a physical system turns the
‘‘classical,’’ and in the limit of large dimensionality a particle in a potential is fixed at
minimum; in some sense,\→0. A classical analog could be a damped pendulum. A differen
equation describing this is, e.g.,
25150022-2488/2000/41(5)/2515/22/$17.00 © 2000 American Institute of Physics
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mrü1bu̇1mgu50,

wheremrü!bu̇ ~assuming small angles!. In the case of a very heavily damped pendulum it is s
to disregard theümr term. This implies that the second-order differential equation reduces to
first-order differential equation

bu̇1mgu50.

Solutions of a first-order differential equation are unable to oscillate. The pendulum thus see
fixed point of the potential.

An N-dimensional particle, whereN is very large, behaves somewhat like a pendulum i
highly viscous fluid. Its ‘‘damping term’’~the first-order differential term! in the Schro¨dinger
equation is large, and hence its de Broglie wavelength becomes small. To leading order in 1N, the
particle may be addressed by quasi-classical concepts. Accordingly, the fixed point of the po
provides a starting point for a power series expansion in 1/N for the energy eigenvalue and th
wave function.

Most 1/N-series provide accurate results even when only the first few terms are summe
thus more interesting to examine the behavior of the series as the order of approximati
creases. An interesting aspect of the 1/N-method is that it is perturbatively exact in the sense t
there are no explicit approximations in the method. Most potentials lead to apparently asym
series at large orders of approximation. The approach here is to calculate the 1/N series to a
significant order~30–100 terms! for miscellaneous potentials and then explore the behavior of
series. This is accomplished by employing a computer algebraic program. Round-off erro
also taken into account in the calculations.

II. THEORY

A. How to obtain the 1 ÕN series

In order to obtain 1/N series for a given potential there are several ways to proceed.
procedure is to expand the wave function, the energy, and the potential in Taylor series.6 This
approach makes it easy to make an efficient computer algorithm. Before the Taylor series
sions are made, it is preferable to redefine the equations slightly. First, theN-dimensional Schro¨-
dinger equation is transformed into

S 2
1

2

d2

dr2 1k2F ~121/k!~123/k!

8r 2 G1V̂~r ! Dc~r !5E8c~r ! ~5!

by redefiningc(r )5r (N21)/2f(r ). Now, k is defined byk5N12l . The energy eigenvalue i
denoted byE8.

The position is then redefined in terms of k,r 5Akr or yr5r wherey is 1/Ak. The Schro¨-
dinger equation is subsequently recast into to a differential equation inr as

S 2
1

2

d2

dr2 1k2F ~121/k!~123/k!

8r2 1
V̂~rAk!

k
G Dc~r!5E8kc~r!. ~6!

If now V̂(r )5kV(r), then

S 2
1

2

d2

dr2 1k2F ~121/k!~123/k!

8r2 1V~r!G Dc~r!5E8kc~r!. ~7!

In the large-N limit one has an effective potential like
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kF 1

8r2 1V~r!G . ~8!

Its minimum is the energykE(22) which matches the energy at the minimumr0 .
To ease the further derivations it is preferable to rescale distance asx5Ak(r2r0) and define

c(r)5eU(x) and

Veff~x!5 1
8 r~x!221V~r!2E~22!. ~9!

Introducingc in Eq. ~7! leads to a differential equation forU(x):

2 1
2 @Ü~x!1U̇~x!2#1kVeff~x!1~2 1

21 3
8 k21!r~x!225E82E~22!k5E ~10!

or

Ü~x!1U̇~x!222W~x!12E50, ~11!

whereW(x)5kVeff(x)1@(21/21(3/8)k21)/r(x)2#. Now the actual Taylor series expansion m
begin. ExtendingU̇(x), E, andW(x) in Taylor series inx andy one obtains

U~x!5 (
n50

`

(
m50

n11 FDm
n x2m

2m Gy2n1 (
n50

`

(
m50

n11 FCm
n x2m11

2m11 Gy2n11, ~12!

E5 (
n50

`

E~n21!y2n. ~13!

Coefficients of the typeD0
n are defined to be zero. The series for the potential is extraordinary

W(x) it turns out that for any power ofx, sayk(k.1), one has solely terms ofy is powersk
22, k, andk12.

B. The recursion formulas

Using the Taylor series technique, series expansions for the energy and the wave fu
have to be found by recursion. The easiest way to do this is to find universal recursion form6

for the required coefficients and then use a computer to recursively calculate each coefficie
by one to a preferred number of terms. For the ground state, the recursion relations are esta
by the requirement that

Ü~x!1U̇~x!222W~x!12E50, ~14!

or
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(
n50

`

(
m50

n

@~2m11!Dm11
n x2m#y2n1 (

n50

`

(
m50

n11

@~2m!Cm
n x2m21#y2n11

1F (
n50

`

(
m50

n11

@Dm
n x2m21#y2n1 (

n50

`

(
m50

n11

@Cm
n x2m#y2n11G2

12(
n50

`

E~n21!y2n

22FW0
01W2

0x21~W1
1x1W3

1x3!y1 (
n51

`

~W2n22
2n x2n221W2n

2nx2n1W2n12
2n xn12!y2n

1 (
n51

`

~W2n21
2n11x2n211W2n11

2n11x2n111W2n13
2n11x2n13!y2n11G50. ~15!

From these equations it is apparent that

D1
052A2W2

0 ~16!

and

Cn12
n 5Dn12

n 50. ~17!

Likewise, for the coefficientsDm
n it follows that

Dm
n 52

1

2D1
0 F22W2m

2n 1~2m11!Dm11
n 1 (

i 51

n21

(
j 51

i 11

D j
i Dm112 j

n2 i 1 (
i 50

n21

(
j 50

i 11

Cj
i Cm2 j

n2 i 21G . ~18!

For the coefficientsCm
n one obtains

Cm
n 52

1

2D1
0 F22W2m11

2n11 12~m11!Cm11
n 12(

i 51

n

(
j 51

i 11

D j
i Cm112 j

n2 i G , ~19!

and for the energy one obtains, after some algebra,

E~n21!5
1

2 F2D1
n12W0

2n2 (
i 50

n21

C0
i C0

n2 i 21G . ~20!

All coefficients of the typeCj
n , where j is negative, orD j

n , where j is zero or negative, are
assumed to be zero in the summation.

Obvious extensions of this technique to include excited states are possible. We can
write

c5„xy2A~y!…eU~x! ~21!

for the first excited state, and

c5„x2y21xyC~y!1B~y!…eU~x! ~22!

for the second excited state, etc. Here,A(y), B(y), andC(y) are series expansions iny for the
nodes inc:

A~y!5 (
n51

`

any2n, B~y!5 (
n51

`

bny2n, C~y!5 (
n51

`

cny2n. ~23!

Subsequently, a differential equation forU(x) is obtained for the first excited state:
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~xy2A!„Ü~x!1U̇~x!222W~x!12E…12yU̇~x!50. ~24!

Expressing

Ü~x!1U̇~x!222W~x!12E ~25!

in a new Taylor series

T1S5 (
n50

`

(
m50

n

@Tm
n x2m#y2n1 (

n50

`

(
m50

n

@Sm
n x2m11#y2n11, ~26!

the previously obtained universal recursion formulas for the ground state are again usefu
recursion formulas forT andS are arrived at using the relation

~xy2A!~T1S!12yU̇~x!50 ~27!

or

Fxy2 (
n51

`

any2nGF (
n50

`

(
m50

n

@Tm
n x2m#y2n1 (

n50

`

(
m50

n

@Sm
n x2m11#y2n11G

12yF (
n50

`

(
m50

n11

@Dm
n x2m21#y2n1 (

n50

`

(
m50

n11

@Cm
n x2m#y2n11G50. ~28!

One obtains

Tm
n 5 (

k51

n2m

akSm
n2k22Dm11

n ~29!

and

Sm
n 5 (

k51

n2m

akTm11
n2k1122Cm11

n , ~30!

an5
1

T0
0 F2C0

n212 (
k51

n21

akT0
n2kG . ~31!

Once again

D1
052A2W2

0, Cn12
n 5Dn12

n 50 ~32!

Dm
n 52

1

2D1
0 F2Tm

n 22W2m
2n 1~2m11!Dm11

n 1 (
i 51

n21

(
j 51

i 11

D j
i Dm112 j

n2 i 1 (
i 50

n21

(
j 50

i 11

Cj
i Cm2 j

n2 i 21G ,

~33!

Cm
n 52

1

2D1
0 F2Sm

n 22W2m11
2n11 12~m11!Cm11

n 12(
i 51

n

(
j 51

i 11

D j
i Cm112 j

n2 i G , ~34!

E~n21!5
1

2 FT0
n2D1

n12W0
2n2 (

i 50

n21

C0
i C0

n2 i 21G . ~35!

Successively for the second excited state it is found that
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~x2y21Cxy1B!„Ü~x!1U̇~x!222W~x!12E…12y212~2xy21yC!U̇~x!50. ~36!

Note that there is a misprint in Ref. 6, in that 2x2y should read 2xy2. Once again,

Fx2y21xy(
n51

`

cny2n1 (
n51

`

bny2nGF (
n50

`

(
m50

n

@Tm
n x2m#y2n1 (

n50

`

(
m50

n

@Sm
n x2m11#y2n11G12y2

12F2xy21y(
n51

`

cny2nGF (
n50

`

(
m50

n11

@Dm
n x2m21#y2n1 (

n50

`

(
m50

n11

@Cm
n x2m#y2n11G50. ~37!

Now

Tm
n 52 (

k51

n2m

@2ckCm11
n2k 1bkTm11

n2k111ckSm
n2k#24Dm11

n , ~38!

Sm
n 52 (

k51

n2m

@2ckDm12
n2k111bkSm11

n2k111ckTm11
n2k11#24Cm11

n , ~39!

bn52
1

T0
0 F (

k51

n21

@2ckC0
n2k211bkT0

n2k#12dn,1G , ~40!

cn5
21

T0
012D1

0 F (
k51

n21

@2D1
n2k1T0

n2k#ck1 (
k51

n

bkS0
n2k14C0

n21G . ~41!

Employing the Taylor expansion technique the sign of theD1
0 coefficient has to be decided. Th

two signs lead to distinct dissimilar solutions. The choice leading to finite energy eigenval
the negative solution, and this is the one we must choose.

III. THE RESULTS

Exploying a computer algebraic algorithm programmed in MapleV~V.3.0 Waterloo Maple
Software!, all coefficients were calculated to a selected order of approximation by recursion

TABLE I. Table showing the convergence of the 1/N series for four different potentials (2m515\), except for the
Coulomb potential in which (m515\). The exact energy for the last potential is calculated in Ref. 8 with a supers
metric method.

Partial sums of the energy approximation

r 2 2
1

r
r21

1
10 •r

2

11
1
10 •r

2
r22

406
10000•r

2

11
1

100•r
2

Order of
approximation

2.121 320 343 3 0.222 222 222 22 2.215 499 9 2.078 282 11 1
2.952 629 969 0 20.491 083 676 27 3.071 244 1 2.893 544 32 5
3.003 677 068 9 20.499 935 082 16 3.123 894 1 2.943 604 13 10
2.999 749 610 5 20.499 999 616 70 3.119 895 9 2.939 826 08 15
3.000 001 056 6 20.499 999 997 94 3.120 048 7 2.939 968 27 20
2.999 998 270 6 20.500 000 000 00 3.120 075 2 2.939 998 31 29
3.000 000 000 00 20.500 000 000 00 diverges diverges 100

Exact results for the eigenenergies

3exact ~Ref. 7! 20.5exact ~Ref. 7! 3.120 081~Ref. 8! 2.94exact super sym.~Ref. 8! ¯
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The energy estimates obtained using the 1/N method were compared with strict analytical
accurate numerical results from different sources.6–10 In Table I, the results of the series for th
harmonic oscillator and the Coulomb potential are displayed. The approximation to the app
ate energy eigenvalues is extremely good, indicating that in this case the Taylor expansio
cedure is exceedingly reliable. The 1/N outcome for two additional potentials is also shown
Table I. The results are excellent, but the energy sum starts to diverge at some point
approximation~around 29th order or so!, suggesting that the approximation is correct to about
to seven digits. To illustrate the behavior graphically, some plots of the partial sums of the e
approximation versus the order of approximation have been made for these potentials~see Figs.
1–3!.

Some potentials, also dealt with in Refs. 6 and 9, are recomputed here to a much highe
of approximation~see Tables II–IV!. The results are very reasonable, and the high orde
approximation make the results nearly exact. In particular, it is observed that the high-l states
approximate the correct energy quite well. In Table IV for the second excited states, only
which did not begin to diverge to around 30th order of approximation are presented. Most

FIG. 1. Long-term behavior of the 1/N energy series for the Coulomb potential. The dotted line represents the exact e
eigenvalue.

FIG. 2. Caption as for Fig. 1 for the harmonic oscillator potential.
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approximated partial energy sums for the first and second excited states diverged at lowl in an
oscillatory manner around the correct energy eigenvalue. A high-l quantum number entirely can
celled the divergence, leading to a seemingly convergent series. As seen from Tables III a
the results for the harmonic oscillator and the Coulomb potential are excellent and corre
exactly to the analytically known energy eigenvalues.

The surveyed energy series are frequently seen to oscillate around a certain energy valu
plotted against the order of approximation. The exact energy eigenvalue is found to be arou
energy. The series begins to diverge at some order of approximation but still varies arou
same definite energy. The oscillating series are often seen to fluctuate not termwise, but w
terms or more above the specific energy value and then two terms or more below, etc.

Some convention is required in order to discuss the results when this behavior is seen. I
to discover the best energy eigenvalue, the last~first! term above and first~last! term below~or
opposite! the center of oscillation with least variation across it is found. The result presented
tables is then these two terms. For a normal oscillating series, the two terms with least va
across the center of oscillation are presented. In Tables II–IV the normal oscillating behav
observed. The order of approximation of the partial sums employed is noted in the tables. F
convergent series, only the highest order term is presented.

To examine the oscillations more carefully another potential also discussed in Refs. 6
namely the linear potential 27/2r , will be analyzed.~The curious value of the constant is chos
such that the results in this paper can be directly compared with those in Refs. 6 and 9! The
results are presented in Table V. For this potential the energy eigenvalue is calculated to ab

FIG. 3. Long-term behavior for an analytic solvable supersymmetic potential. Pot:@r 21(1/10)r 2/„11(1/10)n2
…#. An-

gular momentum zero~Ref. 8!.

TABLE II. Results for the ground state energy (n50), N53, for different potentials (m5\51). The ‘‘exact’’ results
refer to Refs. 6 and 9 the calculated results are referred to asETaylor .

Potential l Eshifted method~Ref. 9! ETaylor Eexactnum
~Refs. 6 and 9! Used order

221.7r 20.2 0 22.686 01 22.685 882 22.686 29
221.7r 20.2 1 22.344 94 22.344 946 22.345 29
221.7r 20.2 2 22.156 26 22.156 260 22.156 29
221.7r 20.2 3 22.029 06 22.029 065 22.029 29
220.8r 20.8 0 21.218 70 21.218 693 21.218 29
220.8r 20.8 1 20.500 44 20.500 439 7 20.500 29
220.8r 20.8 2 20.294 70 20.294 695 9 20.295 29
220.8r 20.8 3 20.201 91 20.201 913 7 20.202 29
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29th order using the 1/N method for the first three excited states. The results show partial en
sums for the ground, the first and second excited state seemingly swinging around the
energy eigenvalue. Some graphs showing the oscillations of the partial energy sums are pr
~see Figs. 4–6!.

Different radial potentials for which ‘‘exact’’ results from Ref. 9 are used, are shown in T
VI. For most of these, satisfactory agreement with exact values is obtained. Many of them a
termwise oscillating series. The order of approximation employed gives a hint about the co
gence of the expansion. Ther k potentials wherek.3 are seen to diverge very quickly. A
empirical formulation of this principle would be ‘‘the higher the power of the potential, the po
the convergence of the resulting 1/N energy series.’’

In order to investigate the applicability of the 1/N procedure for potentials with analyticall
precise eigenvalues, the method is now applied in the case of fabricated potentials whe
potential is set up from the Schro¨dinger equation~see Appendix A!. These examples illustrate th
reliability of 1/N progressions in the case of explicit, analytically known solutions and are h
interesting for our purposes. The results in Table VII are obtained using potentials calculate
a selected eigenfunction. Most of the constructed potentials are seen in particular to h
not-termwise-oscillatory behavior.

Miscellaneous ‘‘quark’’ potentials and a particular double-well potential have also bee

TABLE III. Results for the first excited state (n51), N53, for different potentials (m5\51). The ‘‘exact’’ results refer
to Refs. 6, 7, and 9 the calculated results are referred to asETaylor .

Potential l Eshifted method~Ref. 9! ETaylor Eexactnum
~Refs. 6 and 9! Used order

221.7r 20.2 0 22.254 83 22.253 515–~22.253 14! 22.253 16–17
221.7r 20.2 1 22.101 03 22.100 738 22.101 29
221.7r 20.2 2 21.990 15 21.990 056 21.990 29
221.7r 20.2 3 21.904 91 21.904 867 21.905 29
220.8r 20.8 0 20.462 82 20.462 291 20.462 22
220.8r 20.8 1 20.280 71 20.280 648 20.281 29
220.8r 20.8 2 20.194 93 20.194 912 20.195 29
220.8r 20.8 3 20.146 35 20.146 342 20.146 29

Eexact ~Ref. 7!

2
1

r

0 20.125 000 00 20.125exact 29

2
1

r

1 20.055 555 56 20.05̄exact
29

2
1

r

2 20.031 250 00 20.03125exact 29

2
1

r

3 20.020 000 00 20.02exact 29

2
1

r

4 20.013 888 89 20.0138̄exact
29

1

2
r2

0 3.500 000 00 3.5exact 29

1

2
r2

1 4.500 000 00 4.5exact 29

1

2
r2

2 5.500 000 00 5.5exact 29

1

2
r2

3 6.500 000 00 6.5exact 29

1

2
r2

4 7.500 000 00 7.5exact 29
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TABLE IV. Results for the second excited state (n52), N53, for different potentials (m5\51). The ‘‘exact’’ results
refer to Refs. 6, 7, and 9; the calculated results are referred to asETaylor .

Potential l Eshifted method~Ref. 9! ETaylor Eexactnum
~Refs. 6 and 9! Used order

221.7r 20.2 1 21.95147 21.950 722 21.951 29
221.7r 20.2 2 21.87535 21.875 032 21.875 29
221.7r 20.2 3 21.81266 21.812 502 21.812 29
220.8r 20.8 1 20.18745 20.187318–~20.187320! 20.187 28–29
220.8r 20.8 2 20.14202 20.141 980 20.142 29
220.8r 20.8 3 20.11280 20.112 788 20.113 29

l Eexact ~Ref. 7!

2
1

r

0 diverges 20.05̄exact
29

2
1

r

1 20.031 250 00 20.03125exact 29

2
1

r

2 20.020 000 00 20.02exact 29

2
1

r

3 20.013 888 89 20.0138̄exact
29

2
1

r

4 20.010 204 08 2
1

96exact '20.01020408 29

1

2
r2

0 5.500 000 00 5.5exact 29

1

2
r2

1 6.500 000 00 6.5exact 29

1

2
r2

2 7.500 000 00 7.5exact 29

1

2
r2

3 8.500 000 00 8.5exact 29

1

2
r2

4 9.500 000 00 9.5exact 29

TABLE V. Table showing partial energy sums for the potential: 27/2r . Results for the first three excited states are sho
(m515\).

Ground-state
energy

First excited
state energy

Second excited
state energy

Order of
approximation

9.352 40 16.351 80 22.704 13 10
9.352 29 16.351 75 21.520 97 15
9.351 53 16.352 74 22.620 47 20
9.387 45 16.448 61 21.614 22 25
9.542 45 16.352 86 22.459 52 26
9.241 70 15.680 14 21.130 08 27
7.957 50 15.929 72 23.452 80 28
9.263 33 21.511 71 25.793 75 29

Exact energies~Refs. 6 and 9!
9.35243exact 16.3518exact 22.082 24exact ¯

Shifted method~Ref. 9!
9.35243 16.326 36 22.023 19 ¯
                                                                                                                



led

but the

terms

rly for
-
viates
detail
f some
r some

cision

the 25th

2525J. Math. Phys., Vol. 41, No. 5, May 2000 Nonrelativistic 1/N-expansions

                    
veloped in 1/N series~see Tables VIII and IX!. The double-well potential has also been hand
in Ref. 10 using ordinary perturbation calculations.

These results are not quite as good as those encountered for the other potentials,
Taylor method still yields a fairly good approximation to the proper eigenvalue.

The double-well potential@(r 22R2)2/(8R2), whereR is a constant# is in fact a rather peculiar
potential because in a normal perturbation calculation one has to add powers of small
proportional to;exp (22

3 R2) in order to take into account quantum-mechanical tunnelling10 in the
perturbation series. Such tunnelling considerations have not been included here, but clea
certain potentials such terms proportional to, e.g., exp (2aN) should have an effect on the ap
proximated energy eigenvalues. Maybe that is why the result for the double-well potential de
slightly from the correct energy eigenvalue. This should, of course, be investigated in more
before using the Taylor expansion method more generally. To demonstrate the behavior o
of the approximations, plots of the partial energy sums versus the order of convergence fo
of the potentials are presented~see Figs. 7–12!.

Most series are generated to about the 29th order of approximation with a numerical pre
of about 100 digits. In fact, it is feasible to generate the series to the 100th~or higher! order of

FIG. 4. Graph of the energy series for the ground state of the linear potential: 27/2r with zero angular momentum:l 50. It
is seen that the convergence for the first 10–20 terms is excellent. The series starts to diverge oscillatingly at about
order of approximation.

FIG. 5. Caption as for Fig. 4 for the first excited state.
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approximation with a numerical precision of about 1000 digits. Further, it is conceivab
calculate the 1/N series exactly using calculations with fractions and fractional roots to abou
100th order of approximation. The most important potentials are the harmonic oscillato
Coulomb potential, and with the constructed potentials examples where analytic exact so
are available.

Shanks resummed sums could have been used to resum the series. In a Shanks resu
Shanks extrapolants are calculated from the partial sums as

Sn5
Pn11•Pn212Pn

2

Pn111Pn2122Pn
,

whereSn is thenth Shanks extrapolant andPn thenth partial sum. See Ref. 11. In this paper it h
been chosen not to do so because this question is an auxiliary aspect of the technique.

IV. DISCUSSION

The major aspect of the long term behavior of the 1/N series is, of course, their apparent
asymptotic behavior. As demostrated, many 1/N series match the exact energy satisfactorily wh
only a certain number of terms are summed, but, as further terms are added, the sum d
oscillatingly to infinity. The plots presented clearly show this behavior with some minor di
ences. Convergent 1/N series are also seen, such as the Coulomb and the harmonic osc
potentials series, together with the high-l states 1/N series~i.e., 1/k). This behavior is very similar

FIG. 6. Caption identical as for Figs. 4 and 5 for the second excited state.

TABLE VI. Results for the ground state energy (l 5n50), N53, for different potentials (2m5\51). For the ‘‘exact’’
results, reference is made to Ref. 9;ETaylor refers to the calculated results.

Potential Eshifted method~Ref. 9! ETaylor Eexactnum
~ref. 9! Used order

2r 21.5 20.298 88 20.298 80–~20.299 31! 20.296 09 27–28
2r 21.25 20.220 35 20.220 38 20.220 29 29

r 0.15 1.327 95 1.327 81–1.327 97 1.327 95 15–16
r 0.5 1.833 41 1.833 61–1.832 87 1.833 39 13–14
r 0.75 2.108 15 2.107 69–2.112 23 2.108 14 15–16
r 1.5 2.708 06 2.707 80–2.712 99 2.708 09 14–15
r 3 3.451 11 3.461 73–3.438 40 3.450 56 11–12
r 4 3.801 39 3.814 67–3.377 68 3.799 67 7–8
r 5 4.091 46 4.193 31–4.037 67 4.089 16 6–7
ln (r ) 1.044 36 1.044 57–1.044 14 1.0443 13–14
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TABLE VII. Results for the ground state energy (l 5n50), N53, for
different constructed potentials (2m5\51). The exact energies are chosen
to be 1;ETaylor refers to the calculated results.

Eigenfunction ETaylor Used order

exp (2r0.80) 1.0005–0.999 17 12–13
exp (2r0.85) 1.000 005–0.999 993 29–30
exp (2r0.90) 1.000 03–0.999 998 23–24
exp (2r0.95) 1.0000–0.999 99 24–25
exp (2r1.05) 1.0000–1.000 00 24–25
exp (2r1.10) 1.0000–0.999 98 25–26
exp (2r1.15) 1.0001–1.000 00 18–19
exp (2r1.20) 1.0000–0.999 98 22–23
exp (2r1.25) 1.0000–0.999 95 18–19
exp (2r1.30) 1.0000–0.999 91 18–19
exp (2r1.35) 1.0001–0.999 85 18–19
exp (2r1.40) 1.0002–0.999 75 18–19
exp (2r1.45) 1.0004–0.999 60 18–19
exp (2r1.50) 1.0004–0.999 53 12–13
exp (2r1.55) 1.0005–0.999 58 12–13
exp (2r1.60) 1.0006–0.999 60 12–13
exp (2r1.65) 1.0008–0.999 60 12–13
exp (2r1.70) 1.0002–0.999 96 15–16
exp (2r1.75) 1.0005–0.999 90 15–16
exp (2r1.80) 1.0010–0.999 73 15–16
exp (2r1.85) 1.0015–0.999 44 14–15
exp (2r1.90) 1.0019–0.999 63 14–15
exp (2r1.95) 1.0016–0.999 68 14–15

TABLE VIII. Results for the ground-state energy (l 5n50), N53, for different potentials (2m5\51). For the ‘‘exact’’
results, reference is made to Ref. 9, againETaylor refers to the calculated results.

Potential Eshifted method~Ref. 9! ETaylor Eexactnum
~Ref. 9! Used order

6.8698r 0.1– 8.064 20.319 14 20.319 36– (20.318 83) 20.31917 11–10

r

~2.34!220.52
1

r
0.478 80 0.480 49–0.479 90 0.47811 10–9

r 21r 4 4.650 61 4.662 12–4.642 67 4.64881 11–10

TABLE IX. Double-well potential: (r 22R2)2/(8R2), R54. Results for the ground-state energy (l 5n50), (m515\),
N53.

Enum ~Ref. 10! ETaylor Eperturbation~Ref. 10! Used order

0.483 053 433 0.483 018–0.483 015 0.483 053 390 13–12
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to that of asymptotic series. Most perturbation series are actually asymptotic. An asymptotic
is, briefly stated, a series which begins to converge towards a finite value, but which in the
run diverges. Mathematically, an asymptotic power series in 1/x ~herex plays the rule ofN! is a
series for which

lim
uxu→`

xnF f ~x!2(
r 50

n
ar

xr G→0. ~42!

for all zero and positiven ~Poincare´’s definition! ~Ref. 12 or 13!, wheref (x) is a function and the
sum is a partial sum for the asymptotic power series off (x).

If the 1/N series are asymptotic, the Coulomb and harmonic oscillator potentials would
just be special cases in which the divergence is extremely slow. Comparing the eigenfunctio
the Coulomb and harmonic oscillator potentials, they are both of the type exp(rk), with k51 and
k52, respectively. As a numerical experiment in this paper, eigenfunctions of the type exp(rk) are

FIG. 7. Energy series for the ground state of the potentialr 3/2 with zero angular momentum as a function of the order
approximation. As seen the convergence of the series is good up to a certain point, but at about the 20th
approximation it starts to diverge. The series is seen to be oscillatory.

FIG. 8. Caption as for Fig. 7 for the potentialr 5. Now the divergence is much faster, and the series diverges even b
it has reached its exact value~the power effect!.
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used to find the corresponding potential with eigenvalue fixed atE51 ~see Appendix A!. These
potentials are then expanded using the 1/N method~see Table VII!. Examining this table one
notices that the nearerk is to 1 or 2, the later the divergence of the resulting series, suggesting
the point of divergence is related tok. For instance, withk equal to 1.2 or 1.15, the convergenc
is good to 25–30 orders or so.

One possible hint could be the radius of convergence for the Taylor series of theU(x)
function, but further investigations examining the 1/N series for, e.g.,U(x)5cosh (x) have shown
that there is no simple relationship between the radius of convergence of the Taylor series
U(x) function and the point of divergence of its corresponding 1/N series. Furthermore, fork
53 the resulting series is divergent, like the series fork between 1 and 2. In a more comprehe
sive treatment this should be inspected more carefully, and the apparent relation betweenk and the
order of convergence of the resulting 1/N series surveyed.

The series reported in this article are derived to a very high numerical accuracy. S
evidence that numerical round-off errors have not affected the results have been presen
calculating results for different power-law potentials it has been found that results obtained

FIG. 9. Caption as for Fig. 7 for the ln(r) potential.

FIG. 10. The ground state of the quark potentialr /(2,34)2252/(100r ) with zero angular momentum is seen to diverge
approximately the 20th order of approximation.
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actly’’ ~by fractions and fractional roots! and results obtained with an exactness of 1000 digits
100 digits, respectively, are nearly identical, and that differences occur only at about the 6
70th digit.

The purpose of this article has been to consider the convergence of quantum mechaniN
series in detail. Many of the energy series presented are extremely close to the exact
eigenvalues. The results clearly demonstrate that 1/N methods can be used to obtain approxim
energy eigenvalues for different physical and chemical potentials.

The method has proved to yield fine results not only for the ground state but also for th
and second excited states. For the harmonic oscillator and Coulomb potentials the resu
extremely accurate.

The question of the convergence of the series has been settled, and much evidence
towards the 1/N series being asymptotic. Some of the series are so rapidly convergent a
orders that it will be very difficult to see that they diverge at all.

It has been established that numerical round-off errors are completely insignificant here

FIG. 11. Caption as for Fig. 10 for the quark potentialr 21r 4. The divergence just starts much faster than in Fig. 1

FIG. 12. Energy series for the ground state of the double-well potential (r 22R2)2/(8R2), R54 with zero angular mo-
mentum. It is seen that the 1/N series converges to about the 20th order of approximation. It is also seen that oscil
divergence does not occur for this potential.
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is a very important point because it demonstrates that the divergence problem is a feature
method itself and not a product of the computer arithmetic calculations.
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APPENDIX A: HOW TO CONSTRUCT THE POTENTIAL FROM A GIVEN GROUND-STATE
WAVE FUNCTION

If f(r )5exp„c(r )… is an eigenfunction of

F2
1

2

d2

dr22
1

2

N21

r

d

dr
1V~r !Gf~r !5Ef~r ! ~A1!

with eigenvalueE, then the potential must be (N53)

V~r !52
1

2

]2c~r !

]r 2 1
1

2 S ]c~r !

]r D 2

1
1

r

]c~r !

]r
1E. ~A2!

APPENDIX B: THE SCHRÖ DINGER EQUATION IN N DIMENSIONS

In this appendix we shall see how to derive the most important equation in this paper, n
the radial Schro¨dinger equation inN dimensions~see also Ref. 5!.

The Laplace operator in polar coordinates can be written5 as

¹25
1

h (
i 50

N21
]

]u i
S h

hi
2

]

]u i
D , ~B1!

whereu05r , h5) j 50
N21hj andhi

25( j 51
N (]xj /]u i)

2.
The expressions for the spatial coordinates inN dimensions are given by

x15r cosu1 sinu2 sinu3¯sinuN21 ,

x25r sinu1 sinu2 sinu3¯sinuN21

]

xi5r cosu i 21 sinu i sinu i 11¯sinuN21

]

xN5r cosuN21 ~B2!

for N>3 (x15r cosu1, x25r sinu1; N52), and where 0<r ,`; 0<u1<2p; 0<u i<p; 2
< i<N21, andr 25( i 51

N xi
2.

The functionshj are given by the following expressions:
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h051

h15r sinu2 sinu3¯sinuN21

]

hj5r sinu j 11 sinu j 12¯sinuN21

]

hN215r . ~B3!

Inserting the expression forhj in Eq. ~B1! leads to

¹25
1

r N21

]

]r
r N21

]

]r
1

1

r 2 (
i 51

N22
1

) j 5 i 11
N21 sin2 u j

3F 1

sini 21 u i

]

]u i
sini 21 u i

]

]u i
G1

1

r 2 F 1

sinN22 uN21

]

]uN21
sinN22 uN21

]

]uN21
G . ~B4!

In general, the Hamiltonian can be written (m515\)

Ĥ52
1

2
¹25

p̂r
2

2
1

L̂2

2r 2 , ~B5!

separating angular momentum and radial momentum. Hence, from Eqs.~B5! and ~B4! one can
define total angular momentum operators as

L̂1
252

]2

]u1
2,

L̂2
252F 1

sinu2

]

]u2
sinu2

]

]u2
2

L̂1
2

sin2 u2
G ,

]

L̂ i
252F 1

sini 21 u i

]

]u i
sini 21 u i

]

]u i
2

L̂ i 21
2

sin2 u i
G ,

]

L̂N21
2 52F 1

sinN22 uN21

]

]uN21
sinN22 uN21

]

]uN21
2

L̂N22
2

sin2 uN21
G . ~B6!

In three dimensions,L̂1
2 is simply L̂z

2, andL̂2
2 is L̂2. Also, it is seen thatL̂ i

2 has the same expressio
independent of the number of spatial dimensions.

Equation~B4! may now be recast as

¹25
1

r N21

]

]r
r N21

]

]r
2

L̂N21
2

r 2 . ~B7!

The eigenvalues of the operatorL̂N21
2 will subsequently be determined.
                                                                                                                



dimen-

ed in

on

nctions

2533J. Math. Phys., Vol. 41, No. 5, May 2000 Nonrelativistic 1/N-expansions

                    
Only total angular momentum operators have so far been addressed, but as in three
sions, angular momentum components also exist. They are written as

L̂ i j 52L̂ j i 5 x̂i p̂ j2 x̂ j p̂i , 1< i< j 21, 2< j <N, ~B8!

wherep̂ j is defined as

p̂ j52 i (
k50

N21 S 1

hk
2

] x̂ j

]uk
D ]

]uk
. ~B9!

Considering the potential combinations, there areN(N21)/2 distinct~not just differing by a sign!
operators of the patternL̂ i j . The generalized angular momentum operators can then be obtain
polar coordinates from Eqs.~B2!, ~B9!, and~B3!. The results, i.e., the operatorsL̂ i j , are then as
follows:

L̂1252 i
]

]u1
,

L̂1352 i Fsinu1 cotu2

]

]u1
2cosu1

]

]u2
G ,

L̂2351 i Fcosu1 cotu2

]

]u1
1sinu1

]

]u2
G ,

L̂1 j52 i Fsinu1 cotu j 21

)k52
j 22 sinuk

]

]u1
2 (

k52

j 22

cotuk cosu1 cosu j 21S )h52
k sinuh

)h5k11
j 21 sinuh

D ]

]uk
G

1 i Fcosu1)
k52

j 22

sinuk

]

]u j 21
G , 4< j <N,

L̂2 j51 i Fcosu1 cotu j 21

)k52
j 22 sinuk

]

]u1
1 (

k52

j 22

cotuk sinu1 cosu j 21S )h52
k sinuh

)h5k11
j 21 sinuh

D ]

]uk
G

1 i Fsinu1)
k52

j 22

sinuk

]

]u j 21
G , 4< j <N, ~B10!

L̂ i j 52 i Fsinu i 21 cotu j 21

)k5 i
j 22 sinuk

]

]u i 21
2(

k5 i

j 22

cotuk cosu i 21 cosu j 21S )h5 i
k sinuh

)h5k11
j 21 sinuh

D ]

]uk
G

1 i Fcosu i 21 )
k5 i

j 22

sinuk

]

]u j 21
G , 3< i< j 22, 5< j <N,

L̂ j 21 j52 i Fsinu j 22 cotu j 21

]

]u j 22
2cosu j 22

]

]u j 21
G , 4< j <N,

for N>3 (h051, h15r ; N52).5 For N53, it is noted thatL̂12 is simply L̂z ,L̂13 is 2L̂y , and
that L̂23 is L̂x . As Eq. ~B6! shows,L̂1

2,L̂2
2,...,L̂N21

2 clearly commute because they depend
distinct angles, meaning that they have simultaneous eigenfunctions. SinceL̂ i

2 is a sum of squares
of Hermitian operators of the form (x̂i p̂ j2 x̂ j p̂i), it is known that the eigenvalues ofL̂ i

2 will be real
and non-negative. Furthermore, the eigenfunctions are orthogonal because they are eigenfu
of Hermitian operators. Assuming a proper normalization, they may be written as
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Y~lN21 ,...,l1!5YlN21 ,...,l1
~u1 ,...,uN21!5 )

i 51

N21

U i~l i ,l i 21!, ~B11!

where U i(l i ,l i 21) is a function only ofu i , U1(l1 ,l0)[U1(l1), and l i is the associated
eigenvalue ofL̂ i

2.
Clearly,U i(l i ,l i 21) will satisfy

L̂1
2U1~l1!5l1U1~l1!,

L̂ i
2~l i 21!U i~l i ,l i 21!5l iU i~l i ,L i 21!, ~B12!

„L̂ i
2~l i 21!2L̂ i 21

2 ~l i 22!…U i 21~l i 21 ,l i 22!U i~l i ,l i 21!

5~l i2l i 21!U i 21~l i 21 ,l i 22!U i~l i ,l i 21!

for 2< i<N21.
Since

L̂ i
2~l i 21!2L̂ i 21

2 ~l i 22!5(
j 51

i

~ x̂ j p̂i 112 x̂i 11p̂ j !
2, ~B13!

the eigenvalues of„L̂ i
2(l i 21)2L̂ i 21

2 (l i 22)…5l i2l i 21 must be non-negative and real simp
because the sum is the diagonal matrix elements of the Hermitian operator (x̂ j p̂i 112 x̂i 11p̂ j )

2.5

Clearly,

l i>l i 21 , ~B14!

which implies that

lN21>lN22>¯.l1>0 ~B15!

becausel15m2>0

At N53, l15 l 1
25m2 andl25 l 2( l 211)5 l ( l 11)5 l ( l 1221). This suggests that

l i5 l i~ l i1 i 21!. ~B16!

Although the value ofl i is unknown, a sensible guess would bel iPN0 since it should be legiti-
mate forN53. By the principle of induction it is feasible to prove this proposition by proving t
if

L̂ i 21
2 ~ l i 22!U i 21~ l i 21 ,l i 22!5 l i 21~ l i 211 i 22!U i 21~ l i 21 ,l i 22!, ~B17!

wherel i 21PN0 . Then

L̂ i
2~ l i 21!U i~ l i ,l i 21!5 l i~ l i1 i 21!U i~ l i ,l i 21!, ~B18!

l iPN0 , and for a givenl i50,1,2,.. one hasl i 2150,1,2,..,l i .
Proof: Using ~B6!, L̂ i

2( l i 21) may be transformed into

L̂ i
2~ l i 21!52F ]2

]u i
2 1~ i 21! cotu i

]

]u i
2

l i 21~ l i 211 i 22!

sin2 u i
G . ~B19!

If ladder operators are defined as
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L̂ i
1~ l i 21!5

]

]u i
2 l i 21 cotu i ,

~B20!

L̂ i
2~ l i 21!52

]

]u i
2~ l i 211 i 22!cotu i ,

then L̂ i
2( l i 21) can be written as

L̂ i
2~ l i 21!5L̂ i

1~ l i 2121!L̂ i
2~ l i 21!1~ l i 211 i 22!~ l i 2121!5L̂ i

2~ l i 2111!L̂ i
1~ l i 21!

1 l i 21~ l i 211 i 21!. ~B21!

By multiplying ~B21! from right and left withL̂ i
6( l i 21) one finds

L̂ i
2~ l i 2111!L̂ i

1~ l i 21!5L̂ i
1~ l i 21!L̂ i

2~ l i 21!,
~B22!

L̂ i
2~ l i 2121!L̂ i

2~ l i 21!5L̂ i
2~ l i 21!L̂ i

2~ l i 21!.

If now ~B22! operates onU i(l i ,l i 21), it leads to

L̂ i
2~ l i 2111!L̂ i

1~ l i 21!U i~l i ,l i 21!5l i L̂ i
1~ l i 21!U i~l i ,l i 21!5l iA~l i ,l i 21!U i~l i ,l i 2111!,

~B23!

L̂ i
2~ l i 2121!L̂ i

2~ l i 21!U i~l i ,l i 21!5l i L̂ i
2~ l i 21!U i~l i ,l i 21!5l iB~l i ,l i 21!U i~l i ,l i 2121!,

whereA, B are normalizing factors. It turns out thatB(l i ,l i 2111)5A* (l i ,l i 21).5 Thus, from
~B21!

L̂ i
2~ l i 21!U i~l i ,l i 21!5l iU i~l i ,l i 21!5„uA~l i ,l i 21!u21 l i 21~ l i 211 i 21!…U i~l i ,l i 21!

⇒l i2 l i 21~ l i 211 i 21!5uA~l i ,l i 21!u2>0. ~B24!

As a consequence of~B15!, i.e., l i>0, there must exist a maximum value forl i 21 , say l i , for a
given l i , such that

L̂ i
1~ l i !U i~l i ,l i !50, ~B25!

wherel iPN0 , becausel i 21PN0 . This leads to

l i5 l i~ l i1 i 21!, ~B26!

wherel i is a positive integer or zero.
To see what the possible values ofl i 21 are, givenl i , one notes that clearlyl i 215 l i is

plausible and that~B23! implies that

Li
2~ l i !U i~l i ,l i ! ~B27!

is an eigenfunction ofL̂ i
2( l i21) with eigenvaluel i . Hence,l i 215 l i21 is viable. Continuing this

argument and introducingl i 215 l i21 into ~B23!, one discovers thatL̂ i
2( l i22) has the eigenvalue

l i . Consequently, another feasible value forl i 21 is l i22. Since 0 is the lowest probable value
l i 21 by presumption and one can diminishl i 21 one by one, it is unquestionably seen that t
possible values ofl i 21 are l i ,l i21,l i22,...,0 for l iPN0 .
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From ~B15! it is demonstrated thatlN21 , and accordinglyl N21 , have no upper boundaries.
thus follows thatl N2150,1,2,..., and in addition it is seen thatl 2( l 211)> l 1

2>0, leading tol 1

<u l 2u. Since~B17! is believed to be correct fori 53, it will also be valid fori 54, and therefore
by induction

L̂ i
2U i~ l i ,l i 21!5 l i~ l i1 i 21!U i~ l i ,l i 21!, ~B28!

where 1< i<N21, 0< l 2< l 3< l 4<¯< l N23< l N22< l N21,` and l 1<u l 2u.
Equation~B11! may now be written as

Y~ l N21 ,...,l 1!5 )
i 5 l

N21

U i~ l i ,l i 21! ~B29!

and

L̂ i
2Y~ l N21 ,...,l i ,...,l 1!5 l i~ l i1 i 21!Y~ l N21 ,...,l i ,...,l 1!. ~B30!

Substitutingi 5N21 into ~B5!, one finally arrives at

F2
1

2

d2

dr22
1

2

N21

r

d

dr
1

l ~ l 1N22!

2r 2 1V~r !Gf~r !5Ef~r ! ~B31!

as theN-dimensional radial Schro¨dinger equation.
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Group theoretical quantization and the example
of a phase space S1ÃR¿

Martin Bojowalda) and Thomas Stroblb)

Institut für Theoretische Physik, RWTH Aachen D-52056, Aachen, Germany

~Received 7 September 1999; accepted for publication 8 November 1999!

The group theoretical quantization scheme is reconsidered by means of elementary
systems. Already the quantization of a particle on a circle shows that the standard
procedure has to be supplemented by an additional condition on the admissibility of
group actions. A systematic strategy for finding admissible group actions for par-
ticular subbundles of cotangent spaces is developed, two-dimensional prototypes of
which areT* R1 andS5S13R1 ~interpreted as restrictions ofT* R andT* S1 to
positive coordinate and momentum, respectively!. In this framework~and under an
additional, natural condition! an SO↑(1,2)-action onS results as theuniqueadmis-
sible group action. Furthermore, for symplectic manifolds which are~specific! parts
of phase spaces with known quantum theory a simple ‘‘projection method’’ of
quantization is formulated. ForT* R1 and S equivalent results to those of more
established~but more involved! quantization schemes are obtained. The approach
may be of interest, e.g., in attempts to quantize gravity theories where demanding
nondegenerate metrics of a fixed signature imposes similar constraints. ©2000
American Institute of Physics.@S0022-2488~00!02805-X#

I. INTRODUCTION

To quantize a classical phase space there are techniques generalizing the standard qua
method which is only applicable to simple cotangent bundles. Most prominent are geometri1 and
group theoretical quantization.2,3 But since each method of quantization has its own advanta
and disadvantages and gives rise to certain types of ambiguities, none of them can be rega
a final and unique route to a quantum theory. Usually, such a scheme is developed on
examples so as to reproduce standard results. Studying more complicated systems then ca
the necessity of further specifications which are necessary to exclude unphysical results.

The present paper is divided into two main parts. In the first part, Sec. II, we review the g
theoretical quantization~following Ref. 2! focusing on some points which, in our opinion, deser
further study. In this scheme one studies the irreducible unitary representations of a group
has a transitive, almost effective Hamiltonian action with a momentum map on the phase
~keeping only those representations which are physically acceptable!. The main ingredients of this
method and its application to the simplest examples~phase spaceT* R, T* R1, andT* S1) are
recalled here. In the course of this review we will see the necessity of a global generating pr
for phase space functions as opposed to a local one, which is already implied by transitivity
group action. Therefore, we have to supplement the rules of group theoretical quantizat
outlined in Ref. 2 by a further condition on the allowed group actions in order to recove
results of standard quantizations ofT* S1.

Thereafter a general strategy for finding an appropriate group action on particular subb
of cotangent bundles is discussed. This extends considerations presented in Ref. 2 for act
cotangent bundles.

Section II is concluded with a proposal~‘‘projection quantization’’! for the quantization of

a!Electronic mail: bojowald@physik.rwth-aachen.de
b!Electronic mail: tstrobl@physik.rwth-aachen.de
25370022-2488/2000/41(5)/2537/31/$17.00 © 2000 American Institute of Physics
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certain submanifoldsP of phase spacesP̃, where quantum realizations ofP̃ are known.
T* R1 may be used as an illustrating example. As a restriction ofT* R it fits into the frame-

work of both of the final two subsections of Sec. II. Standard results are reproduced in this
In Sec. III we will consider the phase spaceSªS13R1

ªT* S1up.0 defined as the restriction
of the cotangent bundle ofS1 to positive momenta, which is maybe the simplest example fo
phase space which is not symplectomorphic to a cotangent bundle. It will be found that SO↑(1,2),
the identity component of SO~1,2!, provides an appropriate action onS for applying group theo-
retical quantization. To find this group action we exploit the fact thatS is a subbundle ofT* S1 for
which we can apply the methods of Sec. II described above. It will be seen that the canoni
of an SO↑(1,2) subgroup of the diffeomorphism group ofS1 to T* S1 provides atransitive and
effective Hamiltonian action on thehalf cylinder S5S13R1. Under a further condition we will
be able to show that any such subgroup of the lift of the diffeomorphisms is necessarily is
phic to a covering group of SO↑(1,2). All effective actions of proper covering groups
SO↑(1,2), which would be allowed according to the commonly used rules of group theore
quantization, will be seen to be excluded by the additional condition mentioned above.

Applying standard knowledge on the unitary irreducible representations~IRREPs! of
SO↑(1,2) and its covering groups leads to possible quantum realizations of the system
consideration. Actually, as any representation of a group is also a representation of a co
group of that group, it is sufficient to analyze the unitary IRREPs of the universal covering g
SÕ↑(1,2) of SO↑(1,2) to obtain the most general possible quantum theory. This in turn amoun
an analysis of the unitary IRREPs of the Lie algebra of so(1,2);su(1,1);sl(2,R). Selecting
appropriate representations which fulfill the relationp.0 at the quantum level will complete th
group theoretical quantization ofS, leading to a one-parameter family of inequivalent quanti
tions given by the positive discrete seriesDk of SO↑(1,2)-representations, which is labeled by
parameterkPR1.

These considerations are supplementary to those in Refs. 4 and 5, where the group the
quantization ofS has been carried out already. Other recent related work is Refs. 6–8 whe
quantization of a system is discussed, the reduced phase space of which~or, rather, its regular part!
turns out to be the fourfold copy of our phase spaceS.

By definition, S is the restriction of the cotangent bundleT* S1 to positive momenta. The
above-mentioned projection quantization may therefore be used as an alternative~and simple!
route to the quantization ofS. Equivalence of this quantization with the group theoretical o
restricts the parameterk to the interval 0,k<1 ~due to a maximality condition in the projectio
quantization!. This restricted range fork coincides also with what one expects on general groun1

for a phase space with fundamental groupp15Z (u-angle!. In the group theoretical quantization
however, all positive values ofk, labeling the inequivalent so(1,2)-representations of the pos
discrete series, come out on an equal footing.~Here,k can be restricted to the interval 0,k<1 by
regarding representations withk.1 as ‘‘unphysical’’—it is not unusual that not all possib
unitary IRREPs are physically acceptable and thus taken into account. However, here this
sion cannot be done ‘‘intrinsically’’ such as, e.g., in terms of an operator condition.! On the other
hand, relaxing the maximality condition in the projection quantization, all the values ofkPR1 can
also be realized there. This is seen to lead to an apparently novel realization of the positive d
series in terms of functions overS1.

In the context of projection quantization, our phase space can also be viewed as a toy
for imposing similar constraints, e.g., the constraint dete.0 in a dreibein formulation of genera
relativity. This analogy, and some of its limitations, are discussed briefly in Sec. II E.

A further application of our considerations to a gravitational problem can be found in R
where it is shown that a suitable periodic identification of the reduced phase space of Sc
schild black holes in an arbitrary space–time dimension yields the phase spaceS.

II. QUANTIZATION

We begin this section by briefly recapitulating the group theoretical quantization schem
means of some elementary systems. To reobtain the standard results for the quantization oT* S1,
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we will find it necessary to reconsider the generating principle: Already this simple exa
illustrates the necessity to require thatany function on phase space can be generated~globally! by
means of the fundamental observables obtained from the momentum map of the group
~‘‘strong generating principle’’!. As shown in Sec. II C, in many cases~such as, e.g., when th
groupG under discussion is semisimple! it turns out to be sufficient to simply consider the cen
of the groupG ~or the center of a groupG closely related toG, cf. Lemma 1! as to the effect of
excluding a candidateG-action ~instead of explicitly checking the strong generating principle
the respective set of fundamental observables!.

In Sec. II D we collect some of the remarks of Ref. 2 on group actions on general cota
bundles~related to lifts of the diffeomorphism group of the base manifold!. The situation will be
found to simplify considerably when certain subbundles are considered, which, in the
dimensional case, are nothing butT* R1, S, or disjoint unions of these two. This leads to a gene
strategy of finding admissible group actions on such subbundles, which is then subseq
illustrated for both of the two-dimensional cases.

Finally, a projection method of quantization is introduced in Sec. II E which is also applic
to these two-dimensional examples. For higher-dimensional phase spaces it is not applicabl
subbundles considered in Sec. II D, while, on the other hand, its range of applicability is
wider.

A. Review of the group theoretical quantization scheme

The Heisenberg commutation relations

@qi ,pj #5 i\d j
i ~all other commutators vanishing! ~1!

are at the heart of many introductory textbooks on quantum mechanics. Mathematically the
however, not an adequatestarting point for quantization. First, these relations can certainly
valid only on a dense subspace of the full Hilbert space. But even worse, there exist
inequivalent~and unphysical! representations of these relations on a dense subspace~cf. Ref. 9, p.
88, for a simple example!, which in part is connected to the fact that the commutation relat
take into account only local information about the phase space~cf. the example in Ref. 2, p. 1131!.
The ‘‘exponentiated’’ Heisenberg relations, defining the Weyl algebra, on the other hand,are a
good starting point for an algebraic approach to quantization. WithU(a)ªexp(2iajpj) and
V(b)ªexp(2ibjq

j), wherea,bPRn ~up to respective units!, the Weyl algebra has the form

U~a!U~a8!5U~a1a8!, V~b!V~b8!5V~b1b8!, U~a!V~b!5V~b!U~a!ei\ajbj . ~2!

It is a mathematical fact that~for finite n and for fixed\) the irreducible, strongly continuou
representations of the Weyl algebra areunique~up to unitary equivalence! and equivalent to the
standard representation of quantum mechanics in a Hilbert spaceL2(Rn,dnx) with qi being the
multiplication operatorxi andpi52 i\d/dxi ~cf., e.g., Refs. 10,9, and 2 for details!.

If the configuration space is no longer anRn or the phase space no longer a cotangent bun
quantization is no longer that unique, and different generalizations or alterations of the
approach come into question, e.g., on a configuration spaceTn (n-torus! the relations~2! are
required to hold forbiPZ only and the space of unitarily inequivalent representations beco
U(1)n $corresponding to the different possibilities of~mutually commuting, cf. Ref. 11! self-
adjoint extensions of the operatorspi52 i\d/dxi on @0,2p#n%. And on a configuration spaceR1

it is no longer adequate to consider unitary representations of exp(ilp) ~among the other element
in the Weyl algebra!. The Hermitian operatorp52 i\d/dx has no self-adjoint extensions onR1;
exp(ilp) is a translation operator that does not mapR1 into itself for all values ofl.

Geometric quantization is one of the most prominent attempts for a quantization proc
applicable to more or less arbitrary phase spaces~cf., e.g., Ref. 1 for an introduction!. Another
method is the group theoretical quantization, which is inspired in part by geometric quantizat
well as by the work of Mackey;12 cf. Ref. 2 for a review. Since this approach requires the ph
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space to be some coset space, it has the drawback that even in some cases of finite-dim
phase spaces one may be forced to use infinite-dimensional groups and their representation
However, in many finite-dimensional examples of physical interest~cf., e.g., Ref. 2!, including the
phase spaceS studied in detail in Sec. III, this is not the case.

In the context of a standard configuration spaceRn, the group theoretical approach arises
follows: Reinterpreting the phase factor in the Weyl algebra~2! as a central element, the relation
~2! may be understood as the multiplication law for a 2n11-dimensional Lie group. Its Lie
algebra is given by the Heisenberg relations~1! with generatorsqi ,pj , and 1, where the need fo
the latter generator results from the right-hand side of the commutators, 1 denoting a c
element of the full Lie algebra. The study of the irreducible unitary representations of this g
~or its universal covering group, the Heisenberg group! yields our standard quantum theory.

Let us analyze this situation more carefully so that it allows a generalization to more ge
phase spaces: The operatorsU andV in Eq. ~2! are translation operators in the configuration spa
and momentum space, respectively.Eachof thesen-dimensional translation groups has an ana
in the classical phase spaceP[T* Rn, q→q1a andp→p1b. Put together, these two transfo
mation groups form the 2n-dimensionalAbeliangroup13 G5(R2n,1), which acts transitively and
effectively on P and leaves the symplectic formv5dqi`dpi invariant, i.e., it is a group of
canonical transformations.~Transitivity means that for any two points inP there is a group
element such that its application to one of the points yields the other one;effectivenessimplies that
only the identity ofG acts trivially onP.) The action ofG is Hamiltonian, moreover, i.e., ther
exist ~globally defined! functionsFA on P such that the vector fieldsVA[$•,FA% generate the
group action~the invariance ofv guarantees only thelocal existence of functionsFA); in the
present case with group (R2n,1) the respective Hamiltonians~or observables! are qi , pi , i
51, . . . ,n ~up to an addition of constants, which drop out from the generating vector fieldsVA).

In the general case of an~effective! action of a groupG on a phase spaceP, the Lie bracket
of the generating vector fieldsVA always mimics the Lie algebraL(G) of the group G:
@VA ,VB#5 f AB

C VC , wheref AB
C are the structure constants ofL(G) ~in the above case of an Abelia

groupG, f AB
C [0). If the action is Hamiltonian, one may conclude from this in general only

$FA ,FB%52 f AB
C FC1k(A,B), wherek is a constant onP. As a function on the Lie algebra,k is

a two-cocycle~as a consequence of the Jacobi identity for the Poisson bracket!, which changes by
a two-coboundary upon redefining the functionsFA by a constant; thuskPH2(L(G),R) ~cf., e.g.,
Ref. 1 for more details on this and related aspects!. In many cases the constantsk can be made to
vanish upon an appropriate choice of functionsFA , in which case the Hamiltonian action is sa
to allow a momentum map, e.g., this is the case when the groupG is semisimple, because the
H2(L(G),R) is trivial. However, also any Hamiltonian action of a Lie group on acompactphase
space has a momentum map~independent of the second cohomology of the respective group! or,
similarly, any subgroup of the lift of the diffeomorphism group of an arbitrary configuration sp

It is obvious from the Poisson brackets$qi ,pj%5d j
i that the action of (R2n,1) on T* Rn does

not allow a momentum map~clearly the right-hand side of these relations cannot be remove
shifting qi andpj by constants!. AlthoughT* Rn is the simplest choice of a phase space, from
point of view of group theoretical quantization it is rather an involved example~due the absence
of a momentum map!. Instead ofG5(R2n,1), one is then lead to focus on a central extensioE
of this group, the Lie algebra of which may be spanned byFA and a central element 1, with th
Lie bracket provided by the Poisson bracket between the corresponding functions onP. The
unique simply connected choice for this groupE is the Heisenberg group. Note that (R2n,1) is not
a subgroup ofE, any Abelian subgroup having at most dimensionn11; only the factor groupE/R
with respect to the central subgroupN5R yields (R2n,1). Also, in contrast to the latter group,E
does not act effectively onP anymore~as N acts trivially on P), while it certainly still is
transitive.

There is a one-parameter family of weakly continuous unitary IRREPs of the Heisen
groupE. ~As a consequence of unitarity, weak continuity implies strong continuity. Alternativ
we may require strong continuity and then find, although only for specific cases such as f
Heisenberg group, that all the representations are unitary.! This parameter stems from the unita
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representation of the central subgroupN5(R,1). Following Isham, the freedom in this paramet
is fixed by nature’s value of\. This brings us back to the first paragraph of this section with
unique quantum theory.

Preliminarily, we state the following general strategy in the group theoretical approach
quantum theory for a given phase spaceP ~cf. Ref. 2 for further motivation and details!: First, find
a Hamiltonian, transitive, and almost effective~i.e., there is only adiscreteset of elements ofG,
which necessarily is an invariant subgroup, acting trivially on all points ofP) action of a groupG
on P. If this action allows a momentum map, the next and final step is to study the w
continuous, unitary IRREPs ofG ~discarding possibly physically unacceptable representations!. If,
on the other hand, there is no momentum map for the action ofG, one again considers th
one-parameter central extensionE of G and then studies the weakly continuous, unitary IRREP
E.

In general there may be different admissible groups acting on the phase space and e
these groups may have different, inequivalent actions. Moreover, for any group there m
various admissible unitary representations. Some of the latter may be excluded upon p
considerations~such as, e.g., by positivity of a classically positive Hamiltonian!, the possible
ambiguity in the remaining IRREPs being interpreted as part of the ambiguity in the tran
from a classical system to its quantum version.

Note that clearlyany function onT* Rn is a function of the elementary observablesqi andpi .
As will be found below, a similar requirement on the fundamental observablesFA of the groupG
hasto be asked for also in the general case, leading to anadditionalconstraint on the admissibility
of group actions. This will be taken up in the following two subsections, after illustrating
above considerations by means of the elementary systemsT* S1 and T* R1. Thereafter we will
add some remarks on the quantization of general cotangent bundlesT* Q and subbundles includ
ing our example systemS.

B. Application to T* R¿ and T* S1

To illustrate the quantization scheme reviewed in the previous subsection, we prese
examplesT* R1 and T* S1. The second of these examples will lead us to discuss the issu
generating phase space functions in more detail.

As T* S1 and T* R1 may be quantized by various established quantization schemes
present the standard results~from several perspectives! first before turning to their group theore
ical quantization.

1. Standard results

As remarked already in the preceding subsection, there is a one-parameter family of dif
but physically acceptable quantum theories ofT* S1. This parameter may be viewed as a con
quence of the multiple connectedness of the phase space~cf., e.g., the general statements on t
quantization of multiply connected phase spaces in geometric quantization in Ref. 1 an
discussion below; cf. also Ref. 11!. The resulting Hilbert space may be spanned by the w
functions expi(n1u)w, nPZ, wherew is a coordinate on the interval@0,2p# anduP@0,1# ~where
u50 is to be identified withu51) is the fixed parameter mentioned above. Thus the w
functions may be regarded as functions on the interval@0,2p# with quasi-periodic boundary
conditions~having periodic probability densities!. The momentum operatorp5(\/ i ) d/dw is self-
adjoint and its spectrum obviously is of the form$\(n1u),nPZ%. ~The level spacing\ of the
spectrum is fixed by the choice@0,2p# for the fundamental interval of the angle variablew. In
physical applications, it may possibly be rescaled depending on the realization ofw.) The spectra
of p differ for different values ofu and thus the respective quantum theories cannot be unit
equivalent.~Note also that althoughu provides only an overall shift in the spectrum ofp, already
for a free Hamiltonian of the formH5p2/2, energy differencesare affected by that parameter.!

From the point of view of geometric quantization1 wave functions are sections in a line bund
overS1 or betterT* S15S13R. This line bundle is necessarily trivial. There are, however, sev
inequivalent connections\21Q with the same curvature\21v (v being the symplectic form on
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T* S1; its Chern class is trivial and so is the bundle!. Up to gauge transformationsQ may be
brought into the formQ5p dw2u\ dw where u;u11 as a consequence of theU(1) gauge
transformations exp(2iw). The difference between two connections with fixed curvature is a
connection; up to gauge transformations this difference is an element ofH1(M ,R)/H1(M ,Z)
;H1(M ,U(1)) (M being the phase space under consideration, hereM5T* S1), different choices
correspond to different parallel transporters around nontrivial loops@so the ambiguity may be
associated also to elements of Hom(p1(M ),U(1))]. In the above trivialization of the bundle
~polarized! wave functions correspond to ordinary functions overS1 and theu-angle enters in the
momentum operatorp̂: p̂52 i\¹Xp

1p52 i\ (d/dw) 1u\ ~hereXp5d/dw is the Hamiltonian
vector field corresponding top and¹ denotes the covariant derivative!. We may, however, also
use a nontrivial transition function atw50 to removeu in the expression for the momentum
operator, transferring it simultaneously into the wave functions~so that effectively they are qua
siperiodic as above!.

The quantum system corresponding toT* R1, on the other hand, may be traced back to
one for T* R: Let q.0 and pPR parametrize (T* R1,dq`dp). Then in the new chart (q̃
ª ln q, p̃ªq p) this symplectic manifoldbecomesjust (T* R,dq̃`dp̃). The quantization of the
latter is standard, yielding wave functionsc̃(q̃) with measure*dq̃ if simultaneously p̃

5(\/ i ) d/dq̃.
The resulting quantum system may now be represented also in the original coordinq

5exp(q̃): For the wave functionsc(q)5c̃(ln q) the measure in the inner product becom
*R1dq/q and p̃5(\/ i ) q d/dq. Note that, as a consequence of the nontrivial measure inq, p
5(\/ i ) Aq (d/dq)(1/Aq).

We can also get rid of the nontrivial measure by rescaling the wave functions:ĉ(q)
ªc(q)/Aq. Then the measure becomes*R1dq, while p5(\/ i ) d/dq and now p̃ is seen to
becomep̃5(qp1pq)/2.

We remark that whilep̃ is ~in the above manner by construction! a self-adjoint operator,p is
only Hermitian, having no self-adjoint extensions~cf. Refs. 9 and 2 for further details onp).

2. T* R¿

We next turn to the group theoretical quantization ofT* R1. As remarked already above, from
the point of view of symplectic manifoldsT* R15T* R. Theobservables q.0 andp on T* R1,
however, are certainly different from the observablesq andp on T* R, which, for means of clarity,
we again denote byq̃ and p̃ as in Sec. II B 1. The precise correspondence between these ob
ables~viewed as observables onone and the samephase space! has been provided already ther
too.

In the group theoretical approach there are thus at least two admissible groups which m
used to quantizeT* R1 ~or, likewise, to quantizeT* R). First, we may just take the Abelian grou
generated by the Hamiltonian vector fields corresponding toq̃[ ln q and p̃[qp. In one-to-one
correspondence with the quantization ofT* R, this action onT* R1 has no momentum map, an
the canonical groupC becomes the three-dimensional Heisenberg group. As is evident from
discussion ofT* R1 in the preceding Sec. II B 1, in this way the correct quantum theory ofT* R1

is reproduced. It is identical to the quantum theory ofT* R; one just has to take into account th
nontrivial correspondence of observables.

Second, in the framework of group theoretical quantization, we may also use the
generated byq and p̃[qp. This is easily seen to provide an effective and transitive action
T* R1 of the two-dimensional, non-Abelian affine groupG5R’R1. Since it obviously has a
momentum map, for the quantization ofT* R1 ~or, likewise, also ofT* R!! one may study, as an
alternative to the Heisenberg groupC, the unitary IRREPs of the affine groupG.

There arethreeunitarily inequivalent IRREPs ofG ~again here we refer to Ref. 2 for furthe
details!. In one of them, the operatorq has a strictly negative spectrum; clearly, this representa
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has to be excluded on physical grounds, as classicallyq is strictly positive. Furthermore, one of th
representations uses aone-dimensional Hilbert space and thus does not come into questio
quantum theory ofT* R1, too. The single remaining representation has the Hilbert sp
L2(R1,q21dq) with the generatorp̃ being represented by (\/ i ) q (d/dq). This is in coincidence
with what we found above~cf. Sec. II B 1!. In this case the parameter\ enters on reasons o
correct physical dimensions:p̃ has the dimension of an action and the Poisson bracket rela

$q,p̃5q thus has to turn into the commutator@q,p̃#5 i\q in the quantum theory.
Certainly$•,q%52d/dp and$•,p%5d/dq do not generate a group onT* R1; d/dq generates

translations ofq, which may leave the positive real axis. This fits well to the previous observa
that p cannot become a self-adjoint operator.

3. T* S1

In the group theoretical approach to quantizingT* S1 one first looks for a transitive, almos
effective Hamiltonian action of a groupG on that space. Such a group is provided by the thr
dimensional Euclidean group~in two dimensions! E25R2

’SO(2). If wP@0,2p# denotes the
configuration space variable onS1 andp its conjugate momentum, Hamiltonian generators of t
action are provided by$•,p%, generating rotations along theS1, as well as by$•,sinw% and
$•,cosw%, which generate transformations along the fibersw5const. Since the Poisson bracke
between the respective Hamiltonian functions clearly close, the action has a momentum ma
action ofE2 is easily seen to be effective and transitive onT* S1, moreover. The representatio
theory ofE2 shows that there is a one-parameter family of unitary IRREPs~cf. Ref. 2 for details!.
The corresponding parameterlPR1 is, however,not the u-angle, as we might have expecte
from our previous consideration of this example. Instead, upon working with dimensionful q
tities, it may be seen that this parameter has to be identified with\ again.

In the present quantization scheme theu-angle arises only when consideringanothergroup
action onT* S1. Clearly p1(E2)5p1(SO(2))5Z. Thus instead ofE2 we may consider as wel
the action of its universal covering group,Ẽ2 . This action is no more effective, but still almo
effective ~the elements which act trivially onT* S1 are then just the centerZ of Ẽ2 in the kernel
of the projection fromẼ2 to E2) and the Lie algebra isomorphism between the Poisson algeb
the generating Hamiltonians and the elements ofL(G) is certainly not affected by this change o
G. The unravelling of the subgroup SO(2) ofE2 to R,Ẽ2 leads to an additional continuou
parameter in the unitary representations. This parameter lives on a circle and may be ide
readily with the angleu. So, when usingG5Ẽ2 , the group theoretical quantization schem
reproduces the general results of other established approaches.~The representations obtained fro
the choiceG5E2 correspond to the special, but still legitimate, quantum realization with peri
wave functions,u50, on the other hand!.

4. Summary

The two examples discussed above nicely illustrate that there may be several admissible
actions on one and the same phase spaceP ~which will still be the case also after imposing ou
additional condition on admissible group actions below!.

As any covering groupĜ of an ~almost! effectively acting groupG acts almost effectively on
the phase space, too, and unitary representations ofG are also unitary representations ofĜ ~but
not necessarily vice versa!, we will always choose the~unique! simply connected universal cov
ering groupG̃ as the groupG.

We learn from the group theoretical quantization ofT* S1 that only then we may expect t
obtain the most general quantum realization of the theory with classical phase spaceP.

The exampleT* R1 ~or T* R) demonstrates that different admissible groups need not be
coverings of one another. Moreover, this example illustrates that not all weakly contin
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unitary IRREPs ofG need to make sense physically. In part this was concluded from a compa
of the range of values of a physically important classical observable~namelyq) with its quantum
spectrum.

The situation in quantizing the phase spaceS5S13R1, discussed in detail in Sec. III, will be
quite analogous to the one in quantizingT* S1. The allowed effectively acting group will be
SO↑(1,2). Only by studying the IRREPs of the respective universal covering group au-angle, to
be expected due top1(S)5Z, will be obtained. In analogy to the exampleT* R1, on the other
hand, not all unitary IRREPs will be seen to make sense ‘‘physically’’ as quantum realizatio
S.

5. Other group actions on T * S1

Up to now the discussion was in agreement with Ref. 2. However, in the example ofT* S1

there are many more group actions which fulfill the conditions of transitivity, effectiveness, a
being Hamiltonian with momentum map: The Lie algebra ofE2 is not only provided by the
Hamiltonian generators$•,p%, $•,sinw%, and$•,cosw% on T* S1, but also by the countably infinite
family $•,l 21p%, $•,sinlw%, and $•,coslw%, l PN.14 For fixed l these vector fields generate a
effectiveaction of the l -fold covering group of E2: The vector fieldl 21$•,p% generates the
translationsw°w1t l 21, tPR, which is the identity transformation fort52p l , but not already
for t52p j , j , l .

If we repeat the quantization described in Sec. II B 3 forlÞ1, we have to use the sam
representation theory because in any case we use the universal covering groupẼ2 . However, now
we havel 21p in place ofp, andthis phase space function is quantized to the same operatorp
above with discrete spectrum\(Z1u). Thusp will be quantized to an operator with spectru
\ l (Z1u). Note that the intervalwP@0,2p# has not changed and, therefore, the obtained spec
is not acceptable. A rescaling of\ to absorbl, furthermore, is not possible because locally w
have to preserve canonical conjugacy ofp andw.

We are thus in need of excluding the group actions onT* S1 with lÞ1! To extract a genera
strategy from this example, we now will focus on the question of what kind of phase s
functions may be generated by the fundamental observables of the group action.

C. Generation by fundamental observables

In Ref. 2 two different principles for what phase space functions can be generated b
fundamental observablesF1 , . . . ,FnPC`(P,R) generating the group action on the phase sp
were presented:

Strong Generating Principle „SGP…: For any phase space function fPC`(P,R) there is a
functionF fPC`(Rn,R) such that f5F f(F1 , . . . ,Fn).

Local Generating Principle „LGP…: Any sPP has a neighborhoodUs,P such that the
condition of the SGP is met onUs .

As noted in Ref. 2, the LGP is fulfilled if the group action is transitive. However, transiti
is not sufficient for SGP, e.g., in the example ofT* S1 above we found an infinite family o
transitive group actions parametrized by the labell. The SGP is fulfilled only forl 51: For l
.1 the functions sinlw and coslw are not sufficient to generate an arbitrary~smooth! function on
the interval 0<w,2p, because any generated function is 2p l 21-periodic ~globally we cannot
take thel th root!. Thus, demanding the SGP singles out the only group action which reprod
the results of standard quantizations in this example.

In Ref. 2 only the need for the LGP was recognized, and incorporated by means of trans
of the group action.~Consequently it then was concluded on p. 1149: ‘‘ . . . in this group theory
oriented quantization scheme, we cannot always maintain the strong generating principle! As
the above example shows, however, the validity of the SGP is an essential part of group theo
quantization and must not be ignored.

The SGP is a condition on the Hamiltonians of a given group action. For practical applica
it may be worthwhile to reformulate it in terms of a property of the group action~analogously to
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trading in transitivity of the action for the LGP! or even the canonical groupG itself. We did not
succeed in this attempt in full generality. However, we will now present anecessarycondition for
the validity of the SGP for a rather large class of group actions.

Let G have an almost effective, transitive Hamiltonian action onP and let us, for the above
purpose, assume that this action admits a momentum map~and thus there is no need for a centr
extension!. An almost effective action can always be reduced to an effective action by fact
out a discrete subgroup: IfG acts almost effectively, thenGªG/N, where N is the maximal
invariant subgroup ofG acting trivially on P, acts effectively~with all other properties of the
action unchanged!. The necessary condition mentioned above may now be formulated as a
dition on the remaining centerZ(G) of G.

Lemma 1: LetG be a group acting almost effectively, transitively, and Hamiltonian with
momentum map on the phase spaceP and let G be the corresponding effectively acting group
G is semisimple and the center Z(G) of G is nontrivial, then the strong generating principle
violated. It is also violated (for a general groupG) if Z(G) is nontrivial but finite.

Proof: Let sPP, gPG, and denote the group action ofg by Lg :s°gs. By means of this
action to eachXPLG a vector fieldX̃ on P is associated, whose flow we denote as exptX

ªFt(X̃). Its push forward withLg acting on a functionf on P is

Lg* X̃~ f !5
d

dt U
t50

f +Lg+exp~ tX!5
d

dtU
t50

f +exp~ tAdgX!+Lg . ~3!

If X̃5X̃H5$•,H% is a Hamiltonian vector field, then we have, furthermore,Lg* X̃H5X̃H+L
g
21

because the group action is Hamiltonian. Forg5zPZ(G) in the center ofG we have AdgX5X

and these equations implyX̃H5X̃H+L
z
21 . The generating functionH thus has to fulfill

H+Lz
215H1cz~H ! for any zPZ~G!. ~4!

Herecz :LG→R is a linear map from the Lie algebra ofG, which we identify using the momen
tum map with its isomorphic Lie algebra of generating functions of the group action onP, to R.
This map is in fact a one-cocycle in the cohomology of this Lie algebra:$H+Lz

21 ,G+Lz
21%

5$H,G%+Lz
21 implies $H1cz(H),G1cz(G)%5$H,G%5$H,G%1cz($H,G%) which leads to

cz($H,G%)50. This observation already proves our first assertion: IfG is semisimple, we have
@LG,LG#5LG andcz(LG)5cz(@LG,LG#)50; cz vanishes for anyzPZ(G). This means that
each of the generating functions, and therefore any generated function, is invariant with res
the action ofZ(G). But the center ofG acts nontrivially, because the group action ofG is
effective, and not any phase space function, which is in general not invariant, can be gene

For groups with@LG,LG#ÞLG ~nonperfect groups, cf. the remark following this proof! the
above argument cannot be used. However, ifZ(G) is finite, there is for eachzPZ(G) a kPN with
zk51. Due toH5H+Lzk

21
5H1kcz(H) @which follows from Eq.~4! andcz(H+Lz8

21)5cz(H) for
all z,z8PZ(G), which in turn is a consequence ofcz(H1c)5cz(H) for any constant functionc
on the phase space#, we again havecz(H)50 for anyzPZ(G) andHPLG. h

In the above lemma, we could also relax the conditions replacing ‘‘semisimple’’
‘‘perfect.’’ 15 The defining property of a perfect Lie groupG is @LG,LG#5LG. A prominent
example for a nonsemisimple but perfect Lie group is the Poincare´ group.

Note that the center of semisimple Lie groups is discrete, while for perfect Lie groupsper se
this is not necessarily the case. However, in the present context a continuous centerZ(G) is
excluded in any case due to the~almost! effectiveness of theG-action and the existence of
momentum map: The phase space function generating the action of the center would hav
ishing Poisson brackets with all other generating functions. Therefore, it would be constan
the center would act trivially.

Thus, the only case of a nontrivial center not covered by the lemma is that of a discre
infinite center of a nonperfect group.
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A simple example for this case where, however, the SGP is still violated, may be provid
T* R. Such an action onT* R fulfilling Isham’s axioms can be constructed as a limitl→` of the
action of the l -fold covering group ofE2 on T* S1: After the symplectic transformation
(w,p)°( lw,l 21p) we can take the limitl→` for the action of thel -fold covering group ofE2 .
The generating functionsp, sinw, and cosw are nowl independent, but thel -fold covering group
acts on a phase space withw-interval 0<w,2p l . For l→` this phase space unwinds toT* R and
the action becomes an effective and transitive action ofẼ2 , which is neither perfect nor has finit
center. The lemma does not apply, but nevertheless the group action has to be rejected
only 2p-periodic functions can be generated.

This example shows that the lemma is not sufficient to decide in all cases whether a
action is allowed, and it demonstrates even more drastically the necessity of the SGP: Trust
group action ofẼ2 would lead us to a discrete spectrum forp in a quantization ofT* R! ~This
discreteness comes in because the fundamental observables are periodic, which is a glob
erty and cannot be detected by the LGP. A further failure of this group action is that the coor
q in T* R could not be promoted to an operator, because it cannot be generated by the funda
observables.!

Note that the lemma does not provide any statement about the validity or failure of the
for the case thatZ(G) is trivial. We are, however, not aware of an example with trivialZ(G)
where the SGP is violated.

In the paragraph preceding the lemma we made use of the fact that a trivially acting sub
of G can always be factored out to arrive at the effectively acting groupG. If the center of the
latter group,Z(G), is nontrivial, it can be factored out only at the cost of factoring the ph
space, too. This does not change its dimensionality due to discreetness of the center.~To do so, we
have to suppose that the action on the phase space of the center is properly discontinuous
is, e.g., fulfilled if the center is finite.! If the action ofG on this factored phase space is st
Hamiltonian, the conclusion of the lemma can be evaded by regardingG as the canonical group fo
this smaller phase spaceP8[P/Z(G) ~i.e., although the SGP is violated onP it is not necessarily
so onP8).

In light of this consideration we can understand the wrongp-spectrum being obtained whe
using the action of thel -fold ( l .1) covering group ofE2 on T* S1. In this case the center is th
cyclic group of orderl generated by the translation inwP@0,2p# by 2p l 21. If we want to factor
out the center, we have to identify the pointsw andw12p l 21 to obtain an action ofE2 ~or an
almost effective action of thel -fold covering!. This identification effects a reduction of the co
figuration space to the interval@0,2p l 21#, which explains the multiplication of thep-spectrum by
l.

D. Quantizing cotangent bundles and certain subbundles

We proceed with some general remarks2 on the group theoretical approach when applied
phase spaces which are cotangent bundles,P5T* Q. As discussed in the next section, the pha
spaceS, on the other hand, is definitely not a cotangent bundle. However, it will turn out to
certain subbundle of a cotangent bundle~specified below!. Many of the facts applicable to cotan
gent bundles will be seen to be applicable to those subbundles, too. In a sense, the situati
simplifies there.

1. A general strategy for determining group actions

On T* Q, the infinite-dimensional groupDª(C`(Q,R)/R)’Diff( Q), which is a subgroup of
the full group of canonical transformations, always acts transitively and effectively.

Here Diff(Q) is the canonical lift of the diffeomorphism group of the configuration spaceQ.
If qi→q̃i(q) denotes the diffeomorphism onQ, this is lifted canonically to a symplectomorphis
on T* Q ~a so-called ‘‘point transformation’’! when it is accompanied bypi→pj ]qj /]q̃i@where
q(q̃) denotes the inverse of the functionq̃(q)]. The action of Diff(Q) is also Hamiltonian and
allows a momentum map: IfXi(q) d/dqi is the generating vector field of a diffeomorphism ofQ
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~connected to the identity!, thenXi(q) pi is a Hamiltonian of its canonical lift, and it is obviou
that the Poisson algebra of these functions onT* Q is closed without a central extension.

Although infinite dimensional, Diff(Q) by itself does not act transitively onT* Q, as the@dim
(Q)-dimensional# subspacepi50 is mapped into itself. However, when enhanced byC`(Q,R)/R
~‘‘diffeomorphisms up the fibers’’!, the action becomes transitive onT* Q; here C`(Q,R)/R
consists of those canonical transformations that are generated by Hamiltonian vector fields
form $•, f (q)%, where f PC`(Q,R)/R (R corresponding to the constants that act trivially a
which are thus removed so as to obtain an effective action!.

Quantizing~finite-dimensional! cotangent bundles, one thus may look forfinite-dimensional
subgroupsG5W’G of D[(C`(Q,R)/R)’Diff( Q)which still act transitively. As a subgroup o
D this action is then guaranteed to be Hamiltonian and to act effectively. As seen above,
over, separately, each of the groups Diff(Q) andC`(Q,R)/R allows a momentum map~and thus
this follows also for any of their subgroupsG andW, respectively!. However, the full~combined!
groupD, and thus alsoG5W’G, mayhave an obstruction for a momentum map~cf. the example
Q5Rn reexamined below!.

2. The examples revisited

In the examples discussed above we always used subgroups ofD ~or their covering groups!.
For T* R;T* R1 this wasG5R, W5R ~which is more natural when viewing the phase space
T* R, the generating observables beingq and p in the corresponding chart! or G5R1, W5R
~more natural when viewing the phase space asT* R1, the generating observables beingq.0 and
qp in this other chart!. In the former case there is an obstruction to a momentum map and o
lead to the three-dimensional Heisenberg group~which is a subgroup ofC`(Q,R)’Diff( Q)), in
the latter case there was no obstruction to a momentum map forG5W’G. For T* S1, on the
other hand,W5R2 andG5SO(2) ~the rotations along theS1) or, better, the universal coverin
group of the latter,G5R.

3. Subbundles

We noted above that the subspace

P05$~p,q!PT* Qupi50 ; i 51, . . . ,dim~Q!% ~5!

of T* Q is left invariant by the action of Diff(Q). On the~connected components of the! comple-
mentP* of P0 in T* Q the action is, however, also transitive. More precisely, for dim(Q)51, P*
has two connected components, which we will denote byP1 andP2 for p.0 andp,0, respec-
tively. ~The phase spaceS will be found to be of this type withQ5S1 in the following section.!
For dim(Q).1, on the other hand,P* is already connected and we have the following sm
lemma:

Lemma 2: Fordim(Q).1 @dim (Q)51] the canonical lift ofDiff( Q) @Diff 1(Q), the com-
ponent ofDiff( Q) connected to the identity] has a transitive and effective action on (the conne
components of)P* 5T* Q\P0 with a momentum map.

Proof: According to the invariance ofP0 with respect to Diff(Q), the action of Diff(Q) does
not lead out of the subbundleP* . For dim(Q)51 each of the components ofP* is invariant only
with respect to orientation preserving diffeomorphisms@and we thus restrict to Diff1(Q) in this
case#.

The momentum map of the action has been provided already, furthermore, and its effe
ness onP* is obvious. Transitivity onP* @P6 for dim(Q)51] follows as Diff(Q) @Diff 1(Q)#
acts fiber transitively onP* ,T* Q ~i.e., it acts transitively on the space of fibers!, while on the
fiber of P* (P6) over the originqi50 of some particular local coordinate system ofQ the vector
fields $•,qi pj% act transitively. h

Note that when dealing withP* (P6), it is not only not necessary to add the above gro
C`(Q,R)/R ~or any of its subgroups! to obtain a transitive action, this is not even possib
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Already any one-dimensional subgroup ofC`(Q,R)/R moves points in a fiber ofT* Q into its
origin pi50, so that no subgroup ofC`(Q,R)/R yields a group action onP* .

Thus, if we are to quantize a phase spaceP* ~or one of its connected components!, we may
first search for finite-dimensional, transitively acting subgroupsG of Diff( Q). Such an action ofG
then automatically acts effectivelyand now it also has a momentum map, as this is the case
Diff( Q). The quantum realizations of the phase spaceP* are then to be found among the unita
IRREPs ofG5G̃, whereG̃ is the universal covering group ofG. This sets the strategy for wha
follows in the next section.

There certainly is no guarantee that such a finite-dimensional groupG exists for a given
~finite-dimensional! phase spaceP* as likewise there need not exist a finite-dimensional, tra
tively acting subgroup ofD on a cotangent bundleT* Q. In both of these cases there still could b
some other finite-dimensional subgroupG of the full group of canonical transformations on th
phase space acting transitively and effectively. Moreover, certainly no finite-dimensional c
gent bundle~and likewise none of its subbundlesP* ) can be quantized by the group theoretic
approach~usingfinite-dimensionalgroups!, even if it is quantizable, e.g., in the sense of geome
quantization. In particular, the mere existence of a transitive, almost effective action ofG on a
phase spaceP implies that~topologically! P>G/H, whereH is a subgroup ofG ~the stabilizer
group of some point inP); clearly no phase spaceP ~or also cotangent bundleT* Q or its
subbundlesP* ) has the topology of some coset space of finite-dimensional groups~but any
manifold can be obtained as the coset space of appropriate, genericallyinfinite-dimensional
groups15!. Still, the group theoretical quantization scheme, and in particular the above strate
quantizingT* Q andP* , is general enough to be applicable to a number of physical systems
among others, this will apply also to the phase spaceS.

4. T* R¿ and T * „R2\ˆ„0,0…‰… as subbundles

The phase spaceT* R1 can, after interchangingq andp, be seen as a subbundleP1 of T* R.
A transitive action onR1 is generated by the phase space functionq, whereas the proof of Lemma
2 suggests use in addition to the generating functionqp to obtain a transitive action on the pha
space. This brings us back to the groupG5R’R1 of Sec. II B 2. The quantum theory obtaine
there was defined on the Hilbert spaceL2(R1,q21dq) with qp acting as (\/ i )q d/dq, which
realizes the unique representation ofG having positive spectrum forq.

An example for a phase spaceP* is, again after interchanging coordinates and momenta,
phase spaceT* (R2\$(0,0)%). Such a phase space is of relevance in the context of the Ahar
Bohm effect.

The smallest transitively acting subgroup of the diffeomorphism group ofR2 ~the fibers of this
phase space! is the two-dimensional Abelian group of translations generated by the coordinax
and y of R2\$(0,0)%. According to the proof of Lemma 2, we obtain a transitive action on
phase space if we add the functionsxpx , xpy , ypx andypy as generators. However, already t
span^x,y,xpx1ypy ,xpy2ypx& ~the latter two functions arexpx1ypy5rpr andxpy2ypx5pw

in polar coordinates! is closed under Poisson brackets forming a Lie algebra isomorphi
R2

’R2, and we will see that it generates a transitive action onT* (R2\$(0,0)%).
The Hamiltonian vector fields are easily seen to generate an action of the groG

5(R2
’SO(2))’R1, the semidirect product of the group of motions ofR2 with the groupR1 of

dilatations with composition (v1 ,R1 ,l1)(v2 ,R2 ,l2)5(v11l1R1v2 ,R1R2 ,l1l2). ~Here v de-
notes the translation vector andR the two-by-two rotation matrix.! This group is isomorphic to
G>R2

’(SO(2)3R1)>C’C* with composition (a1 ,b1)(a2 ,b2)5(a11b1a2 ,b1b2). Using
the latter form, the action onT* (R2\$(0,0)%) can most compactly be written in terms of th
complex coordinateszªx1 iy , pªpx1 ipy as (a,b):(z,p)°(bz,b21p1a). @The groupG can
also be viewed as a subgroup ofD in Sec. II D 1, whereR2 is a subgroup ofC`(Q,R)/R and
SO(2)3R1 a subgroup of Diff(Q) with Q5R2\$(0,0)%. From this point of view one still would
have to check the existence of a momentum map, which is immediate from the present pers
of G ~cf. Lemma 2!.#
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Analogously to the exampleT* S1 we can also find effective actions of any covering group
G, but again they are excluded by the SGP. The quantum theory, however, will be most gen
provided by unitary representations of the universal coveringG5G̃.

Using Mackey theory,12 one finds that the inequivalent~nontrivial! unitary representations o
this ~universal covering! group may be presented on the Hilbert spaceH5L2(R13S1,r drdw)
according to the unitary action (U(v,t,l)c)(r ,w)5lexp(iut1ir (v1 cosw1v2 sinw))c(lr,w1t) of
G, wheretPR is a parameter inG̃ covering the SO(2)-angle ofG. HereuP(0,1# is theu-angle
expected due top1(T* (R2\$(0,0)%))5Z, which, in the group theoretical context, may be und
stood to arise from the unitary representations ofp1(G)5Z, the center ofG̃. The spectra of the
fundamental observablesx̂, ŷ, rpr̂ , and p̂w areR, R, R, andZ1u, respectively. Note that her
(0,0) is in the spectrum of (x̂, ŷ), although classically this point is removed from the configu
tion space.

E. Projection quantization

By imposing the restriction to a subbundle at the quantum level we can also arrive
quantum theory ofT* R1 in a different way: Starting from the standard quantization ofT* R on
the Hilbert spaceH̃5L2(R,dq) we restrict it, in a second step, to the maximal subspaceH on
which q is quantized to a positive operator~implementation of the restrictionq.0 at the quantum
level as an operator inequality!, i.e., we defineH through completion of the maximal subspa
F,D(q̂) on which *R f̄ q f dq>0 for all f PF @whereD(q̂) is the domain of definition of the
multiplication operatorq̂]. This subspace is easily seen to beH5L2(R1,dq).

Clearly there is a~unique! projectorp:H̃→H, which may be used to also transport operat
defined inH̃ to operators onH. ~The uniqueness of the projector is a result of the maxima
condition required for the subspaceH on which q̂.0. This condition is necessary to reprodu
standard results; in a way, it serves to capture the phase space, hereT* R1, globally.!

We now propose a more general setting in which the above ‘‘projection quantization’’ sh
be applicable.

1. Restricted phase spaces and their Hilbert spaces

A phase spaceP which can be treated using projection quantization has to obey the follow
properties: First,P can be characterized as a submanifold of a phase spaceP̃ via restriction by
means of inequalitiesf i.0 for a set of functions$ f i% on P̃ with mutually vanishing Poisson
brackets. We furthermore demand that, for eachi, the set on which the opposite inequality,f i

,0, is fulfilled is nonempty.@This condition is necessary to exclude, e.g., cases like the restri
of T* R2 to T* (R2\$(0,0)%) by means ofx21y2.0, which cannot be treated by the method of t
present subsection; see the remarks below.# Second, a quantum realization ofP̃ is known in which
the functions$ f i% may be promoted to self-adjoint, simultaneously diagonalizable operators$ f̂ i%.
We remark that, in the case of unbounded self-adjoint operators, commutativity on a dense d
is not sufficient for their simultaneous diagonalizability, needed below.

For simplicity we assume that the spaceP, where all conditionsf i.0 are fulfilled, is con-
nected. Otherwise, we have to quantize each connected component separately and to tak
tually the direct sum of the resulting Hilbert spaces as common Hilbert space for the quanti
of P.

The general strategy of the projection quantization to obtain a quantum realization ofP is then
as follows: Starting with the Hilbert spaceH̃ which quantizesP̃ we have the self-adjoint operator
f̂ i . Their spectral families can be used to define the projectorsPiªQ( f̂ i), whereQ:R→R is the
step function which is zero forx,0 and one forx>0. Because the operatorsf̂ i are assumed to be
simultaneously diagonalizable, their spectral families commute and the common projecP
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ª)iPi :H̃→H̃ can be defined unambiguously. Using this projector, the restricted Hilbert spaH
is defined as a subspace ofH̃ according toHªP(H̃). As a Hilbert space of its own,H is regarded
as the Hilbert space ofP.

Restricting the image ofP to H we obtain a mapp:H̃→H with adjoint being the inclusion
i:H�H̃ of H ~which is defined as a subspace ofH̃) in H̃. Both these maps are partial isometri
~i.e., they map closed subspaces—H in both cases—isometrically to their images and annihil
their orthogonal complements!. Composing the two maps we obtainp+i5IH ~the identity onH)
and i+p5P ~the projector onH̃), respectively.

In the preceding subsection we presented a general strategy for finding a group act
certain subbundles of cotangent bundles appropriate for the group theoretical quantization
one-dimensional configuration space the subbundle is defined by an inequality of the formf .0
where f is the coordinate or its canonical momentum. All the above conditions of projec
quantization are fulfilled in this case and it can be used to obtain a quantum realization o
subbundle as demonstrated by the exampleT* R1 above.

For phase spaces of dimension greater than two the situation is different. Here, the subb
P* of the previous subsection are defined by inequalitiesf iÞ0 removing alower-dimensional
submanifold from the phase space and the functionsf i do not meet all the conditions require
above. They still Poisson commute and for a known quantum realization ofP they correspond to
simultaneously diagonalizable operators. Thus, one still can construct the projector, of c
However, the restriction method may fail: If zero is not contained in the discrete part o
spectrum of all thef̂ i , then the projector is the identity onH̃, not leading to any restriction@an
example for this case is the phase spaceT* (R2\$(0,0)%)]. If, on the other hand, zero is containe
in the discrete part of the spectrum for at least one of thef̂ i , then the projection leads to
restriction, but the point zero can be excluded from the spectra of all thef̂ i only if it is an isolated
point.

Although the projection quantization is not applicable to higher-dimensional phase spa
the formP* in general, the conditions for its applicability as formulated above are fulfilled b
much wider class of systems than those considered in Sec. II D 3. Given a phase spaceP one
merely has to find an appropriate embedding ofP within a phase space with known quantu
realization.

2. Observables

To complete the quantum theory ofP we have to promote a certain class of observable
densely defined operators onH. In the quantization ofP̃ we already have such operatorsÕ acting
on H̃ as quantizations of observables. These can be used to define operators onH by mapping
Õ:H̃→H̃ to O:H→H by means ofOªp+Õ+i. If Õ is densely defined with domainD(Õ), then
O is also densely defined with domainD(O)5p(D(Õ)).

Specific properties ofÕ are, however, not necessarily inherited byO, e.g., an unbounded
self-adjoint operatorÕ leads, in general, only to a Hermitian operatorO: The product of adjoints
of two densely defined operatorsA:F→G and B:G→H between Hilbert spaces satisfie
A* B* ,(BA)* , and equality can be concluded, without further information onA andB, only if B
is bounded~defined on all of the Hilbert spaceG and not just on a dense subset!. This condition
is fulfilled for the mapsp and i in the definition ofO, such that we obtain as its adjoint

O* 5~p~Õi !!* 5~Õi !* p* .i* Õ* p* 5pÕ* i.

If Õ is self-adjoint,Õ5Õ* , thenO is in general only Hermitian:O,O* ~cf. also the example of
the momentum operator ofT* R1 below!.

Similarly, for a unitary operatorÕ the operatorO is isometric (pÕi clearly preserves the
norm onH), but not necessarily also unitary: Its adjoint is given byO* 5pÕ* i due to the fact
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that Õ, being unitary, is a bounded operator. Only ifÕ commutes withP @i.e., if Õ preserves the
subspaceH5P(H̃) as well as its orthogonal complement#, we may in general simplifyOO*
5pÕPÕ* i to OO* 5pPi5IH and likewise concludeO* O5IH . An example for a unitary
operator with only isometric projection will appear in Sec. III B 2.

If possible, observables of the classical theory are promoted to self-adjoint operators~The
momentum operator onT* R1 provides an example where this is not possible.! The operatorO
obtained from some self-adjoint operatorÕ in the above manner is, in general, only Hermitia
this is typically the case because the conditionsf i.0 introduce a boundary on the phase spaceP.
An operatorO projected as above is then defined on a dense domain including a specificat
boundary conditions. If this operator has self-adjoint extensions, each of them can be u
quantization of an observable~possibly introducing an additional ambiguity in defining the qua
tum theory ofP).

The latter scenario may be illustrated by means of a particle on a line of bounded exte
This system may be obtained as a submanifold ofT* R by means off 15q2a and f 25b2q for
somea,bPR with b.a. The domain of definition of the momentum operator projected from
one ofT* R is given by absolutely continuous functions on@a,b# which vanish at the boundary
So defined, it is only Hermitian. However, it has a family of self-adjoint extensions, paramet
again by au-angle, defined on absolutely continuous functionsc satisfyingc(b)5exp(iu)c(a).
Each of these extensions may now be chosen as a possible quantum observable correspo
the canonical momentum onT* (@a,b#) ~cf., e.g., Ref. 9!.

Best candidates for operators which project to a self-adjoint one onH correspond to phase
space functions adapted to the boundary. This is similar to the situation in group theo
quantization, where the condition that the fundamental observables generate an action onP forces
the generating vector fields to be tangential to the boundary.

We finally illustrate these considerations by means of the quantization ofT* R1. The Hilbert
spaceH5L2(R1,dq) was derived at the beginning of this subsection using the projection q
tization. Here the projectorp and the inclusioni are defined bypc̃5c̃uR1 for c̃PL2(R,dq) and
(if)(q)5f(q) for q.0 while (if)(q)50 otherwise forfPH. The operatorq̂, whose spectral
family was used to restrict the Hilbert space, remains a self-adjoint multiplication operator oH.
But the momentum operatorÕ5 p̂52 i\d/dq, commonly used as the other fundamental obse
able onH̃, projects down to a derivativeO52 i\d/dq on H, which is no longer self-adjoint: The
domain of definition ofO defined by the projection isD(O)5D(Õ)ùH5$cPH:c absolutely
continuous,c8PH and c(0)50%. Its adjoint has, however, the larger domain of definiti
D(O* )5$cPH:c absolutely continuous andc8PH%, whereasO ** 5O. This shows thatO is
not essentially self-adjoint, and, even worse, it has no self-adjoint extensions.9

Being a consequence of the boundary, the latter problem can easily be cured by usi
self-adjoint operator12(q̂p̂1 p̂q̂)52 i\(q d/dq1 1

2) ~as quantization ofqp) instead ofp̂. Due to
the presence ofq̂, its projection toH no longer needs additional boundary conditions to
Hermitian, and it can easily be shown to be self-adjoint@it generates the unitary transformatio
c(q)°Atc(tq)]. This is related to the fact that the flow ofqp is tangential to the boundary. W
are again lead to the same fundamental observables as when using the group theoretica
zation and we obtain unitarily equivalent quantum theories.

3. Outlook on possible applications

The main advantage of the projection quantization~within its limited domain of applicability!
as opposed to other quantization schemes is the fact that it makes use of the quantization
embedding phase spaceP̃. So, parts of the steps in the transition from the classical to the quan
system are taken from the auxiliary systemP̃ and need not be repeated forP. This will become
particularly transparent at the example in the subsequent section.

At the level of symplectic manifolds there is a related method, known as ‘‘symplectic
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ting’’ in the mathematical literature.16 In this approach one is given a torus action with moment

map on a phase spaceP̃. By means of this momentum mapP̃ can be cut into pieces, one of whic
is determined by setting the Hamiltonians of the torus action greater than zero, yielding a c
compactification of the subspaceP defined above. Note that due to the Abelian character of
torusU(1)n these Hamiltonians always Poisson commute. In Ref. 17 this technique is emp
to prove that the projection quantization yields a correct quantization ofP for a large class of
systems.

Far more complicated examples for the projection quantization than those provided i
paper, for which the procedure can be relevant~when extended appropriately to deal with co
strained systems!, are given by gravitational theories. There, the~symmetric! matrix gmn of the
coefficients of the metricg in some local chart is required to satisfy det(g)Þ0 ~for all points of
space–time! or, more precisely,6det(g).0, the sign depending on the signature of the metricg,
e.g., in a dreibein formulation of Hamiltonian general relativity one has to require dete.0 for the
dreibein components in order to extract the nondegenerate sector. In the context of lattice q
gravity the implementation of this condition at the quantum level, as compatible with the ge
projection quantization above, has been investigated in Ref. 18.

We conclude these considerations with a cautionary remark: In the context of gr
theories—but also, more generally, of constrained Hamiltonian systems with~additional! ‘‘disal-
lowed regions’’ in phase space—further care is needed when considering projection quant
~in addition to the standard problems of the quantization of constrained systems!. This becomes
obvious already classically: First, removing disallowed regions from phase space~degenerate
sectors in gravity theories! and then performing the symplectic reduction is in general only equ
lent to first reducing and then singling out the disallowed equivalence classes~or the equivalence
classes without an allowed representative! if the flow of the constraints does not connect allow
with disallowed regions.

This condition is violated in several popular formulations of gravity theories in space–
dimensions four~Ashtekar formulation!, three ~Chern–Simons formulation!, and two ~BF- or,
more generally, Poisson Sigma formulation!. In all of these cases, equivalence with the origin
metrical formulation can be established only on thenondegeneratesector of phase space and~in
contrast to the original diffeomorphism constraints! the flow of the constraints in the new formu
lation does indeed enter the degenerate sector.

To show that this can be of relevance, we provide a simple example~cf. also Ref. 19 for a
similar illustration!: Consider a particle inR3 with the ~original, first class! constraintC5x @(x
12)22(px)

221#'0, declaring the subspace withx<0 to be ‘‘disallowed’’ ~‘‘degenerate sec-
tor’’ !. Clearly, the flow ofC does not leave~or enter! the forbidden region in phase space. Thu
removing the disallowed subspace and performing the symplectic reduction commute, lead
a reduced phase space~RPS! which is atwofoldcovering ofT* R2. On the other hand, within the

allowed region of the original phase space the constraintC may be replaced equivalently byC̃
[(x12)22(px)

221'0. However, the above condition on the flow of the constraint is no m
satisfied in this case. Indeed, while certainly one obtains the same RPS as before when o
removes the disallowed region and only then performs the symplectic reduction~which requires
knowledge about the global topology of the orbits!, the ~simpler! symplectic reduction of the

original theoryT* R3 with respect toC̃ leads to only asinglecopy ofT* R2 as RPS~each point of
which contains allowed representatives!.

Accordingly, given a procedure for solving the constraint of the original system~defined in
T* R3) at the quantum level, it will yield inequivalent results when performed with respect to

constraintsC andC̃, even if in a second step projection quantization~adapted appropriately to th
context! is applied to take care ofx.0.

Explicit examples of gravity theories in two19 and three20 space–time dimensions showed th
the above mechanism can indeed produce inequivalent factor spaces and, accordingly, als
tum theories. Note, however, that in this context the failure of projection quantization doe
result from its insufficiency as a quantization scheme; rather, the deficiency is evident alrea
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the classical level and results from the reformulation of the constraints, equivalence in nond
erate sectors being, in this context, insufficient for full equivalence.

III. THE PHASE SPACE SÄS1ÃR¿

In this section we present the quantization of the phase spaceS which is the restriction of the
cotangent bundleT* S1;S13R with canonical symplectic formv5dw`dp to positive values of
the momentum variablep. We denote this restriction byS13R1, in analogy toT* R1;R13R.

As stressed already in the previous section,T* R1 is symplectomorphic toT* R; as a sym-
plectic manifold there isno difference between the phase spacesT* R1 andT* R ~there is only a
difference between what we call thephysicalmomentum and position!. Topologicallywe certainly
also haveS;S13R. So we may ask if possiblyS is also symplectomorphic toT* S1. If this were
the case, the quantization ofS would be immediate, as then we could use the quantum theor
T* S1, recapitulated in the previous section.

In contrast toT* R andT* R1, S13R5T* S1 andS13R15S are in factnot symplectomor-
phic. This may be proved by the following simple consideration: Suppose they were symp
morphic. Then the diffeomorphism between the two phase spaces has to map a noncontr
non-self-intersecting loop onS to a similar loop onT* S1. Each of these loops separates t
respective phase space into two disconnected parts. OnS5S13R1 oneof these two parts has
finite symplectic volume. Its image onT* S1 under the diffeomorphism has an infinite symplec
volume, on the other hand. This is in contradiction with a symplectomorphism, which le
symplectic volumes unchanged.

A. SO_
„1,2… and its action

ThusS cannot be a cotangent bundle. However,S is the restriction of a cotangent bundle ov
S1 to positive values of the canonical momentum. Such spaces were considered in Sec. II D~called
P1 there!. We thus may apply those considerations to construct a transitive, almost effective
canonical group action onS. In particular, as a consequence of Lemma 2, it is only necessa
find a ~finite-dimensional! subgroup of Diff(S1) with a lift acting transitively onS. Its action will
then be also effective and have a momentum map.

1. Finite-dimensional subgroups of Diff „S1
… with transitive action on S£T* S1

The Lie algebra diff(S1) of Diff( S1) may be represented by vector fields of the formv
5 f (w) d/dw, wheref is a 2p-periodic function. Thus a dense subalgebra of diff(S1) is spanned
by

T5
d

dw
, Sk5sin~kf!

d

dw
, and Ck5cos~kf!

d

dw
with kPN[$1,2, . . .% , ~6!

and we will denote it as

diff 0~S1!ªH b0T1 (
k.0

~bkCk1b2kSk!UbkPR and bk50 for almost all kJ .

As already mentioned, we are interested infinite-dimensionalsubgroups of the diffeomor
phism group. They can have an arbitrary dimension as the following construction shows: T
nPN we can choosen vector fields on the circle which have disjoint compact supports. T
generate then-dimensional Abelian subgroupRn. Clearly, these subgroups have fixed points a
thus do not act transitively onS1 ~and neither do their lifts toS).

To eliminate these and similar subgroups from our consideration we will, in the follow
constrain ourselves to the~still infinite-dimensional! subalgebra diff0(S1) of diff( S1) generated by
finite linear combinations ofT, Sk andCk in some chart ofS1. As subalgebras of diff(S1) they
depend on the coordinate onS1: Subalgebras corresponding to different coordinates are
identical; however, they are conjugate to one another and are thus isomorphic. The restric
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diff 0(S1) will allow us to draw much stronger conclusions, namely we will find thatall finite-
dimensional subgroups of Diff1(S1) @the component of Diff(S1) connected to the identity# with
Lie algebra lying in diff0(S1) and with transitively acting lift toS are covering groups o
SO↑(1,2):

Theorem 1: Each finite-dimensional subgroup ofDiff 1(S1) which is generated by finite
linear combinations of T, Sk and Ck in some chart of S1 and which has a transitively acting lift to
S,T!S1 is isomorphic to a covering group ofSO↑(1,2) (the l-fold covering being generated b
l 21T, l 21Sl , and l21Cl).

2. Finite-dimensional subalgebras of the Witt algebra

To prove the theorem we first consider finite-dimensional subalgebras of the complexific
of diff 0(S1), which is known as the Witt algebra,

WªH (
kPZ

akLkUakPC and ak50 for almost allkJ
with generatorsLk52 i exp(ikf)d/df, kPZ and relations@L j ,Lk#5(k2 j )Lk1 j .

Lemma 3: The finite-dimensional subalgebras ofW are at most (complex) three-dimensiona
in which case they are isomorphic tosl(2,C).

Proof: Let A be a finite-dimensional subalgebra ofW with at least three generators. Witho
any restriction these generators can be assumed to be of the formg5L21cL01L1 with L2

5(k51
M2 akL2k , L15(k51

M1 bkLk ,c,ai ,biPC and aM2
Þ0ÞbM1

. Otherwise they can be brough

into this form by appropriate linear combinations. Letgi5L2
( i )1c( i )L01L1

( i ) , i 51,2, be two of
the generators andM 1/2

( i ) as defined above. Then we can reveal the following conditions forA to
be finite-dimensional:

~i! M 1
(1)5M 1

(2) , and analogouslyM 2
(1)5M 2

(2) : Otherwise@g1 ,g2# would contain a contribu-
tion of LM

1
(1)1M

1
(2) with nonzero coefficient. By induction, repeated commutators wo

contain contributions fromLmM
1
(1)1nM

1
(2) with arbitrarym,nPN. Therefore, the subalgebr

could not be finite-dimensional.
~ii ! L1

(1)}L1
(2) , and analogouslyL2

(1)}L2
(2) : Otherwise by appropriate linear combinations w

could trade the generators for two new generators not fulfilling condition~i!.

We conclude that all generators are of the formgi5aiL21ciL01biL1 , i.e., there are only
three linearly independent generators$L2 ,L0 ,L1%. This proves that a finite-dimensional suba
gebra is at most three-dimensional.

We can now determine the form of these subalgebras^L2 ,L0 ,L1&: From the commutation
relations of theLk it follows that @L0 ,L1# has to be proportional toL1 in order for^L2 ,L0 ,L1&
to be closed under commutation. This can only be the case if there is anl PN such thatL1

}Ll . Analogously there must be aj PN such thatL2}L2 j . Now we must havel 5 j because
otherwise^L2 ,L0 ,L1& would not be closed. The only three-dimensional subalgebras ofW are,
therefore, given bŷL2 l ,L0 ,Ll& for l PN, which are easily seen to be isomorphic to sl(2,C). h

Thus we know all three-dimensional subalgebras of the Witt algebra. We will see now
they also include all two-dimensional subalgebras:

Lemma 4: Each (complex) two-dimensional subalgebra ofW is a subalgebra of one of the
sl(2,C) subalgebras found in the preceding lemma.

Proof: A two-dimensional Lie algebra generated byg1 and g2 can, without restriction, be
assumed to be of the form@g1 ,g2#50 or @g1 ,g2#5g2 , respectively. In close analogy to the pro
of the preceding lemma, one may show that the former case impliesg1}g2 ~in contradiction to the
linear independence ofg1 andg2) and that the latter case is possible only ifg1}L0 andg2}Ll for
an l PZ. h
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To use the information aboutW contained in the preceding two lemmas we have to trans
it to the real form diff0(S1). The statements on~now real! dimensionality in Lemmas 3 and
remain true because otherwise we could construct contradictions to these lemmas by com
cation.

3. SO_
„1,2… and its covering groups

The sl(2,C)-subalgebraŝL2 l ,L0 ,Ll&,W have the real formŝl 21T,l 21Sl ,l 21Cl& as subal-
gebras of diff0(S1). For anyl this is an so(1,2)-algebra shown by the isomorphism

T

l
↔T0 ,

Sl

l
↔T1 ,

Cl

l
↔T2 . ~7!

Here the Ti , i 50,1,2, are generators of so(1,2), satisfying the standard relations@Ti ,Tj #
5e i j

k Tk , wheree01251 and indices are raised by means of diag(21,1,1)5k/2, k being the
Killing metric. As real forms of sl(2,C) the above subalgebras are unique by demanding the
be real subalgebras of the real form diff0(S1) of W.

For later use it is worthwhile to exploit the Lie algebra isomorphisms of so(1,2) to sl(2,R) and
su(1,1). An isomorphism between the former two in terms of their generatorsTi ands1 , s2 ,
s3/2, respectively, is given by

T0↔ 1
2 ~s12s2!, T1↔ 1

2 ~s11s2!, T2↔ 1
2 s3 , ~8!

where 2s65s16 is2 and s j , j 51,2,3, denote the standard Pauli matrices. An isomorph
between so(1,2) and su(1,1) is provided by

T0↔2
i

2
s3 , T1↔

1

2
s1 , T2↔

1

2
s2 . ~9!

The subgroup of Diff1(S1) generated byl 21T, l 21Sl , andl 21Cl is thel -fold coveringgroup
of SO↑(1,2). This is the case because (exp(2pl21T))j5exp(2pjl21d/dw)Þ1 for 0, j , l and
(exp(2pl21T))l51. In the language of SO↑(1,2) (l 51), T generates rotations in the (x1 ,x2)-plane
of the (211)-dimensional Minkowski space, andS1 and C1 generate boosts along thex1- and
x2-direction, respectively.

We thus arrived at SO↑(1,2) and its covering groups as maximal finite-dimensional subgro
of Diff 1(S1) with Lie algebra in diff0(S1). They are maximal finite-dimensional subgroups
Diff 1(S1) in the sense that there is no finite-dimensional subgroup of Diff1(S1) which has one of
these groups as a subgroup. This follows easily from the fact that their complexified Lie alg
contain the elementL0 .

For Theorem 1 to hold the restriction to diff0(S1) is essential: As already noted at the beg
ning of this subsection, Diff1(S1) contains finite-dimensional subgroups of arbitrary dimensi
The examples provided there were of no interest in our context, however; for physical ap
tions, moreover, it seems natural to restrict oneself to finite linear combinations of trigonom
functions as for thefundamentalobservables~certainly this does not imply that all the observabl
are restricted in the same manner, since for them one still is allowed to take infinite
combinations, cf. also Sec. II C!.

Finally, to prove Theorem 1 we are left to study their possible subgroups.
Lemma 5: For any covering group ofSO↑(1,2) there are two conjugacy classes of tw

dimensional subgroups (both of which are isomorphic toR’R). The Lie algebras of respectiv
representatives are spanned by T2 and T06T1 .

Proof: As Abelian subalgebras of sl(2,R) are at most one-dimensional@sl(2,R) has rank one#,
any two-dimensional subalgebra may be spanned by generatorst1 and t3 satisfying @t3 ,t1#
5t1 . In the complexified Lie algebra sl(2,C) they span a Borel subalgebra, which is a maxima
solvable subalgebra and unique up to conjugation. Thus we know that for any two-dimen
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subalgebra of sl(2,R) there is, in the fundamental representation of the algebra, acomplextwo-
by-two matrixM of unit determinant such thatt35M (s3/2)M 21 andt15Ms1M 21 ~and, up to
a sign,M is unique!. Reality of the matricest3 and t1 implies thatM is either real or purely
imaginary. In the former case,MPSL(2,R) and the conjugation is compatible with the reali
condition leading from sl(2,C) to sl(2,R). In the latter case,M5M̃ is1 where M̃PSL(2,R).
Conjugation with the imaginary pieceis1 maps (s3 ,s1) into (2s3 ,s2). The assertion of the
lemma then follows upon the isomorphism~8! and exponentiation to group level. h

To discuss transitivity of group actions onS,T!S1, we finally need the lifts of the diffeo-
morphisms generated byT, Sl , andCl . According to Eq.~5! and the remarks in Sec. II D 1, the
are generated by the Hamiltonian vector fields

T→$•,p%, Sl→$•,p sin lw%, Cl→$•,p coslw%, ~10!

respectively. This also provides a momentum map for the action of SO↑(1,2) onS.
We are now in the position to prove our theorem:
Proof (of Theorem 1):According to Lemma 4 the finite-dimensional subgroups of Diff1(S1)

which are generated by elements of diff0(S1) can be at most three-dimensional because
finite-dimensional subalgebras ofW, which is the complexification of diff0(S1), are at most
three-dimensional.

The three-dimensional subgroups are isomorphic tol -fold covering groups of SO↑(1,2)
spanned byl 21T, l 21Sl , and l 21Cl . All the two-dimensional subgroups are subgroups of th
three-dimensional ones, moreover. Finally, there are the one-dimensional subgroups of Dif1(S1)
which are generated by exponentiation of an arbitrary element of diff0(S1). We now investigate
the action of these subgroups when lifted toS,T* S1.

One-dimensional groups cannot have orbits filling all of the two-dimensional half-cylin
So, they cannot act transitively.

According to Lemma 5 and Eq.~7!, all two-dimensional subgroups are in one of the tw
conjugacy classes, representatives of which are generated by the vector fieldsCl andT6Sl . Their
lifts $•,p coslw% and$•,p(16sin lw)% to S fix the fiber overw57p/(2l ) and therefore the group
cannot act transitively.~The other two-dimensional subgroups, being conjugate to one of these
groups, can just as less act transitively.!

The only candidates with transitively acting lift are now the covering groups of SO↑(1,2).
That they act indeed transitively can be seen from the following consideration: The lift o
action of anl -fold covering group of SO↑(1,2) is generated by the two vector fields given in t
previous paragraph together with the vector field$•,p%. The former two act transitively in som
fibers and the latter one acts fiber transitively. Thus their joint action is transitive onS. h

4. Integrating the group actions

In this subsection we will derive the finite action onS generated byT, Sl , andCl . There is
a well-known SO↑(1,2)-action onS1 given by ~see, e.g., Ref. 21!

z°
az1b

b̄z1ā
, z5expiwPS1, A[S a b

b̄ ā
D PSU~1,1! , ~11!

with uau22ubu251. This action onS1 has been written down in terms of SU(1,1), which is
twofold covering of SO↑(1,2) @note thatAPSU(1,1) and2A have the same action#.

@The relation between these two groups can be made explicit by means of the
X°AXA† of APSU(1,1) on matricesX5X† satisfying tr(s3X)50, where † denotes transpos
tion of the complex conjugate matrix. This transformation preserves the determinant ofX, which,
in the parametrization
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X5S x0 x12 ix2

x11 ix2 x0
D , x0 ,x1 ,x2PR, ~12!

is nothing but the bilinear formx0
22x1

22x2
2; in this wayA is seen to generate a~proper! Lorentz

@or SO↑(1,2)] transformation on the (211)-dimensional Minkowski space spanned
(x0 ,x1 ,x2)].

It is straightforward to verify that the infinitesimal form of Eq.~11! coincides with the action
generated by the vector fieldsT, S1 , and C1 @cf. Eqs. ~5! and ~6!#. In this way we may also
determine the lift of the~finite! action~11! to S ~cf. Sec. II D 1!, yielding p°puaeiw1bu2 in this
case.

For l .1 the action~11! on S1 can be generalized by substituting expilw for z5expiw.
Infinitesimally, this action is readily seen to coincide with the one generated by the vector fieT,
Sl , and Cl . However, taking thel th root in a continuous manner to arrive at an action onw
PRmod 2p is nontrivial; in particular, forl .2 it doesnot lead to an action onS1 of the group
SU(1,1) itself, but of appropriate covering groups only~contrary to what is claimed, e.g., in Re
21!.

Actually, from the discussion preceding Lemma 5, we already know that the group gene
by T, Sl , andCl is an l -fold covering group of SO↑(1,2). Thus, we can see that it is not possib
to express the action in terms of SU(1,1) forl .2. Introducing the parametersgªa21b, ugu
,1 and 0<v,2p by a5uauexpiv of SU(1,1) ~see, e.g., Ref. 22!, which make explicit the
topology of SU(1,1), then-fold covering group of SO↑(1,2) can be parametrized by these para
eters taking, however,v in the range 0<v,np. The action~11! on S1 with w replaced bylw
now takes the form

expi l w°exp~2iv!
g1expi l w

ḡ expi l w11
. ~13!

Acting on expilw, 0<w,2p l 21, this action onS1 is an almost effective action of then-fold
covering group of SO↑(1,2), andn does not need to be identical tol. However, to obtain an action
on S1, w has to take values in@0,2p) wherew andw12p l 21 are not to be identified.

This observation will fix the covering group which acts effectively onRmod 2p if we take the
l th root. To this end it suffices to consider the action forg50 becauseg takes values in a simply
connected domain. The action reduces to

expi l w°exp~2iv!expi l w,

which leads tow°w12l 21v if we use continuity and the fact that we have to obtain the iden
transformation forv50. The last two conditions fix the branch of thel th root uniquely. Now
v5np must give the same result asv50 because we consider the action of then-fold covering
group of SO↑(1,2). This is possible only ifn is an integer multiple ofl and an effective action is
obtained forn5 l . Thus we see that Eq.~13! determines an effective action of thel -fold covering
group of SO↑(1,2) on S1 ~and an almost effective action of thelm-fold covering for anym
PN), but ~for l .2) not an SU(1,1)-action.

So, following the strategy for finding a group action onS as formulated in Sec. II D, we thu
arrive at the following action of finite-dimensional groups onS,T* S1:

~expi l w,p!°S a expi l w1b

b̄ expi l w1ā
,puaeil w1bu2D . ~14!

This is the lift of the action of thel -fold covering group of SO↑(1,2) presented earlier.@We were
searching for subgroups of Diff(S1) which all act effectively; therefore, these subgroups arel -fold
coverings and notlm-fold ones (m.1).] By construction, for anyl PN, Eq. ~14! provides a
transitive, effective, and Hamiltonian action onS with momentum map.
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Two more remarks: First, by means of the above action forl 52 we may identify the phase
spaceS with the coset space SU(1,1)/N. HereN denotes the nilpotent subgroup appearing in
Iwasawa decomposition of SU(1,1)@obtained by exponentiatingT22T0 in Eq. ~8!, cf. also Ref. 5
for details#. HereN is the stabilizer group of any point (w50,p)PS, since obviously its generato
$•,p(cos 2w21)% vanishes identically on the fiber overw50.

Second, the~finite! action~14! onS may be also obtained as the~effective! action of thel -fold
covering of SO↑(1,2) on thel -fold covering of the future light coneC 1 in (211)-Minkowski
space (x0 ,x1 ,x2). For l 51 this is just the fundamental~defining! action of the~proper! Lorentz
group which clearly maps the future light coneC 1:x0

22x1
22x2

250, x0.0, onto itself so that its
action on Minkowski space can be restricted to an action onC 1. The action~14! with l 51 is then
obtained from the SO↑(1,2)-action onC 1 upon identifyingx0 with p and the polar angle of the
light cone withw. For l .1 this generalizes to

~x0 ,x11 ix2!↔~p,pe2 i l w!, 0<w,2p,p.0, ~15!

identifying the phase spaceS with an l -fold covering ofC 1. To verify the equivalence of the
actions one only needs to check the infinitesimal correspondence~7! and ~10! @with TiPso(1,2)
interpreted as the generators on~the l -fold covering of! C 1]. Formula~14! may now be obtained
also by this approach viaX°AXA†, whereAPSU(1,1) as above andX results from combining
Eqs.~12! and ~15!.

5. Admissible group actions on S
We have now determined all the lifts of actions of the subgroups of Diff1(S1) found in

Theorem 1. The possible effectively acting groups are thel -fold covering groups of SO↑(1,2). We
are now left only with checking the validity of the SGP for these group actions.

As is obvious from Eq.~10!, the SGP is violated forlÞ1. Alternatively we may also apply
Lemma 1 due to the semisimplicity of SO↑(1,2) and its covering groups: In the case of Eq.~14!
G is identified with thel -fold covering group of SO↑(1,2), which has a trivial center only forl
51.

In the present case the use of the Lemma was not essential. However, let us remark t
may change drastically when more complicated phase spaces and group actions are con
~and in particular for infinite-dimensional phase spaces!.

This fixes the parameterl in the countable family of~effective! group actions to bel 51 so
that we end up with a unique effective action of the group SO↑(1,2).

Any covering group of SO↑(1,2) is, however, allowed as analmosteffectively acting group
provided its action projects down to the SO↑(1,2)-action@Eq. ~14! with l 51]. The most genera
almost effective action is provided by the universal covering group SO˜↑(1,2) of SO↑(1,2). Ac-
cording to the considerations of Sec. II A we will thus examine the unitary representatio
SÕ↑(1,2) for possible quantum realizations ofS in the following subsection@using the momentum
map ~10! with l 51 only#.

B. The quantum theory

In the present subsection we will apply two methods to quantizeS. The first one completes
the group theoretical quantization by using the group action derived in the preceding subs
The second approach employs the projection quantization of Sec. II E making use of the fa
S is the restriction ofT* S1 to positive momentum. Quantizing this phase spaceS thereby provides
another example for the application of this method with, in contrast toT* R1, a discrete spectrum
of the observablep̂ used to project down to the restricted Hilbert space. We will find that b
quantization procedures are compatible, and that demanding equivalence constrains the q
realizations obtained within group theoretical quantization.
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1. Group theoretical quantization of S
According to the results of the previous subsection, when applying the group theor

quantization scheme toS, we are to analyze the~weakly continuous! unitary IRREPs of the
universal covering group SO˜↑(1,2) of SO↑(1,2).

Thus we first have to look for unitary representations of so(1,2). Its generatorsT0 , T1 , and
T2 obey the relations@T0 ,T1#5T2 , @T0 ,T2#52T1 and @T1 ,T2#52T0 . This rank one algebra
has the Casimir operatorCªT0

22T1
22T2

2. As a maximal set of commuting algebra elements
choose$2 iT0 ,C%, which will be promoted to the maximal set$H,C% of commuting operators on
a representation space.

The states in irreducible representations can be classified by the eigenvaluesl andq of H and
C, respectively. In each irreducible representation,T1ªT12 iT2 andT2ª2T12 iT2 act as rais-
ing and lowering operators, respectively, which can be read off from the relations

@H,T1#5T1 , @H,T2#52T2 , @T1 ,T2#522H.

On an orthonormal basis$fl
q%lPL of a representation characterized by the eigenvalueq of C and

indexed by the eigenvalues ofH, the action ofH, T1 , andT2 is given by

Hfl
q5lfl

q , T1fl
q5vl11Aq1l~l11!fl11

q , T2fl
q5v̄lAq1l~l21!fl21

q ~16!

with arbitrary phase factorsvl , which can be chosen to be 1 by a unitary change of the basis.
can see that the spectra ofH in all irreducible representations are equidistantly spaced by 1.

A more detailed analysis22–24 of the irreducible unitary representations of SO˜↑(1,2) reveals
that there are—besides the trivial representation—three families~see Table I!. We now have to
select the appropriate representations from the mathematically possible ones in accordan
the general principles outlined in Sec. II A. This will be done by checking the classical pro
p.0 ~in complete analogy withq.0 for T* R1, cf. Sec. II B 2!. According to Eqs.~7! and~10!
this enforces the spectrumL of H to be purely positive.

In the continuous series the spectrumL is unbounded from both sides so that these repres
tations are to be disregarded. The same applies to the negative discrete series, where the s
is purely negative. The condition of positive spectrum ofH is thus fulfilled only in the positive
discrete series~for arbitrary parameterkPR1). In this case there is a ground statefl0

q , l05k,

q5k(12k), which is annihilated byT2 .
The choiceDk now already determines the quantum theory ofS in the group theoretica

framework. In the following we provide one possible realization of this Hilbert space by mea
antiholomorphic functions on the unit disc.25

For k. 1
2 a representation on the Hilbert spaceHk(D) of antiholomorphic functions on the

unit discDª$zPCuzz̄,1% with inner product

~ f ,g!k5
2k21

2p i E
D

f ~z!̄g~z!~12zz̄!2k22 dzdz̄ ~17!

is given in Ref. 24,

TABLE I. Families of irreducible unitary SO˜↑(1,2)-representations.

Irreducible representations L C

Continuous series Ck,q, 0<k,1, q.k(12k) k1Z q

Discrete series D2k,kPR1 2k2N0 k(12k)
Dk,kPR1 k1N0 k(12k)
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~Dk~g,v! f !~ z̄!5exp~2ikv!~12ugu2!k~g z̄1exp~2iv!!22kf S z̄1g exp~2iv!

g z̄1exp~2iv!
D , ~18!

where (g,v) parametrize the universal covering of SU(1,1)~see Sec. III A 4!. The factor
exp(2ikv) determines for which values ofk the representation can be projected to a representa
of SU(1,1) or SO↑(1,2).

An orthonormal basis ofHk(D) which diagonalizesH52 iT0 is given by the functions

gk,n~z!5A G~2k1n!

G~2k!G~n11!
z̄n, nPN0 . ~19!

For 0,k< 1
2 the Hilbert spaceHk(D) can be defined by completing the span of the orthonor

basis$gk,n%n>0 .
By differentiating and using Eq.~9!, we get the representations

H5k1 z̄
d

dz̄
,

T1522kz̄2 z̄2
d

dz̄
, ~20!

T252
d

dz̄

of the generatorsT05 iH , T15(T12T2)/2, andT25 i (T11T2)/2 of SU(1,1). On the element
gk,n of the orthonormal basis~19! they act as

Hgk,n5~k1n!gk,n ,

T1gk,n52A~2k1n!~n11!gk,n11 , ~21!

T2gk,n52An~2k1n21!gk,n21 ,

which is identical to Eqs.~16! if we use the relationsl5k1n and q5k(12k), choosing the
phasesvk1n to be21.

According to Eq.~7! the spectrum ofp in a quantization ofS using the SO↑(1,2) action is
given by the spectrum ofH. Reintroducing Planck’s constant~cf. the discussion in Sec. II!, we get
the following quantization map

p̂5
\

i
T05\H, ~p sinw!̂5

\

i
T1 , ~p cosw!̂5

\

i
T2 . ~22!

Thus we obtain a one-parameter family of inequivalent quantizations with spectra\(k1N),
kPR1, of p̂. On the other hand, from the point of view of geometric quantization,1 the ambiguity
in different quantum realizations should be parametrized by a parameter living on a
(u-angle! ~cf. our discussion in Sec. II B 1 and, for the particular phase spaceS, Ref. 17!. Simi-
larly, application of the alternative projection quantization, which is presented in the subse
subsection, will be seen to yieldkP(0,1# or, better,kPS1.

From this we conclude that representations characterized by values ofk larger than one should
be regarded as ‘‘unphysical’’ in the group theoretical quantization—similar to discarding
continuous or negative discrete series of representations. Note, however, thatwithin the scheme of
group theoretical quantization this cannot be obtained by a natural condition such asp.0, because
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all values ofk are obtained here on an equal footing.@Restriction to representations of effective
acting admissible groups, on the other hand, leads tokPN only; this merely excludes the
u-parameter~obtained from permitting also almost effective group actions! and still leavesk
unbounded.#

2. Quantum realization via restriction of a Hilbert space

By definition, our phase spaceS is the restriction ofT* S1 to positive values of the canonica
momentump such that it can be treated by using projection quantization. QuantizingS,T* S1, we
thus proceed as follows: Wefirst quantizeT* S1, which is standard and which we reviewed in Se
II ~from various perspectives!. Thereafter, in a second step, we implement the conditionp.0
using the projector to the positive part of the spectrum ofp̂ ~cf. Sec. II E for the strategy in genera
context!.

More precisely, in Sec. II we observed that the spectrum ofp̂ in the Hilbert spaceH̃u spanned
by quasi-periodic functions onS1 characterized by u with inner product (f ,g)
5(2p)21*S1 f̄ g dw is $\(m1u),mPZ%. The respective eigenstatesf u,mªexp(i(m1u)w), m

PZ, form an orthonormal basis ofH̃u . The conditionp̂.0 is met on any subspaceHu1mmin
of H̃u

which is spanned by the vectorsf u,m with m>mminPN0 .
According to the general strategy of projection quantization in Sec. II E we have to de

heremmin50 to obtain the maximal Hilbert subspace on whichp̂.0 is fulfilled. As Hilbert spaces
of S we will only regardHu , i.e., those withmmin50. In the case ofT* R1 the requirement of
maximality was necessary so as to reproduce standard results on the quantization of this
space~including those of group theoretical quantization!. To achieve maximality also in the cas
of S, on the other hand, forces us to restrict the outcome of the group theoretical quantizat
declaring representations withk.1 as ‘‘unphysical.’’ For mathematical reasons it is, howev
instructive in some contexts to leavemmin unspecified and discuss observables on all spa
Hu1mmin

; we will do so in Secs. III B 3 and III B 5.
All infinite-dimensional, separable Hilbert spaces are isomorphic to one another; addi

structures arise only through the representation of some elementary set of observables inHu1mmin
,

which is induced by the respective representation inH̃u .
We choosep andUªexpiw as such a set of elementary functions. Their action on the b

$ f u,m ,m>mmin% of Hu1mmin
is provided byp̂ f u,m5\(m1u) f u,m andÛ f u,m5 f u,m11 , whereÛ is

the obvious multiplication operator andp̂52 i\ (d/dw). The Poisson algebra$U,p%5 iU is
turned correctly into the commutation relations@Û,p̂#52\Û.

Classicallyp.0 andŪU[UŪ51. By construction ofHu1mmin
, p̂ becomes positive also a

an operator, and it remains self-adjoint. On the other hand,Û, although unitary inH̃u , is only
isometric inHu1mmin

: one still findsÛ* Û5I, Û* denoting the adjoint ofÛ, but now, due to the
existence of a lowest lying statef u,mmin

in H ~which can be interpreted as corresponding clas

cally to the boundaryp50 of S), ÛÛ* is equal only to the projectorI2Pmmin
ÞI ~wherePmmin

is
the projector on the statef u,mmin

). Such a feature has been observed already in the general co

in Sec. II E, and one can ask for a substitute ofÛ with improved properties. However, as will b
found in the next subsection, the operator corresponding to expiw cannot be made unitary in th
group theoretical approach as well. Since unitarity ofÛ, generating translations inp as a conse-
quence of the commutation relations, is incompatible with the restriction of the phase s
isometry is the most that can be achieved forÛ in a quantum theory ofS.

We finally remark that over the complex numbers the Poisson algebra ofU and p is a
two-dimensional affine Lie algebra and indeedHu1mmin

provides an irreducible representation

it. However, this representation isnot unitary ~even inH̃u) and it cannot be so as a consequen
of the complex structure constants appearing already in theclassicalPoisson algebra.
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The classical (U,p)-algebra closes over the real numbers only when taking the real
imaginary part ofU, cosw and sinw, as separate generators. Together withp they then provide the
Lie algebra ofE2 and this was precisely the algebra that yieldedH̃u , the quantum theory for
T* S1, and not the present quantum realization inHu1mmin

. This mirrors the fact that$•,cosw% and

$•,sinw% cannot be used as generating vector fields onS,T* S1 ~being transversal to the bounda
p50), so that they do not exponentiate to the action of a group onS. To apply the group
theoretical approach we, therefore, needed to discuss the more involved group actions prov
the previous subsection.

3. Equivalence of the two approaches

If we compare the spectra ofp̂ obtained in the approaches above, we see that they
compatible: With the identificationu1mmin5k of the respective parameters labeling the Hilb
spaces, the operatorsp̂ of the two quantizations can be identified. We are thus lead to the fol
ing Hilbert space isomorphism betweenHu1mmin

andHk(D): f u,n1mmin
°gk,n , nPN0 .

The identification of the creation operatorÛ of Sec. III B 2 with the appropriate operator i
Sec. III B 1 is somewhat more involved. Classically,U5cosw1i sinw. Thus a first ansatz, ignor
ing factor ordering problems, for defining the operatorÛ in Sec. III B 1 could be of the form
T1H21, which has the correct classical limit cosw1i sinw @using Eq.~22! and the definition of
T1]. Again this is a creation operator. However, it cannot be identified withÛ of Sec. III B 2 as
the latter operator respects the norm—being isometric—whileT1 ~or likewiseT1H21) does not.

The deficiency of this ansatz can be traced back to the fact thatT2T1ÞH2, although the
classical limit of this relation yields an equality, namelyp2 sin2 w1p2 cos2 w5p2. This is very
similar to the difficulties of maintaining the relation cos2 w1sin2 w51 in a quantum theory of
T* S1 discussed in Ref. 2 and we now apply a similar strategy as the one of Isham to cu
problems here. Related issues forS will be discussed in detail also in the next subsection.

Classically, there are certainly various possibilities to express the functionU5exp(iw) on
phase spaceS. One such possibility is provided by

U5
p cosw1 ip sinw

A~p sinw!21~p cosw!2
. ~23!

This function onS is readily translated into the operatorT1(T2T1)21/2 @again using Eq.~22!#.
Note thatT2T1 is a positive, essentially self-adjoint operator having eigenvaluesq1l(l11) on
the statesfl

q so that this expression is a well-defined operator.$The minimal of these eigenvalue
is given by 2k @q5k(12k) and l>k for the representationDk in the positive discrete series#.
Thus, the operatorT1(T2T1)21/2 is well defined only fork.0, which is consistent with the fac
that only under this condition the representationDk is unitary.% Using the Hilbert space isomor
phism betweenHu1mmin

and Hk(D) it is then easily verified@using Eq. ~16!# that Û and
T1(T2T1)21/2 act identically on the Hilbert space and thus may be identified.@There are factor
ordering problems in definingT1(T2T1)21/2 as a quantization of the classical expression~23!.
They are, however, fixed by asking for a quantization which acts isometrically to make possi
identification withÛ.]

In particular, now the adjoint ofT1(T2T1)21/2 is (T2T1)21/2T2 , and we have the relation

Û* Ûfl
q5~T2T1!2 1/2T2T1~T2T1!2 1/2fl

q5fl
q

for all l, and

ÛÛ* fl
q5T1~T2T1!2 1/2~T2T1!2 1/2T2fl

q5~12dll0
!fl

q .

This demonstrates the already known isometry and nonunitarity ofT1(T2T1)21/25Û.
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Up to now we expressed the operatorÛ obtained in Sec. III B 2 in terms ofT1 and T2 .
Conversely, we can expressT1 andT2 in terms ofp̂ and Û @cf. Eq. ~21!#:

T152\21A~ p̂1~k21!\!~ p̂2k\!Û, ~24!

while T25T1* .
The constructions of the present subsection provide appropriate identifications of the op

obtained in the two quantization schemes. These results hold true also for valuesk.1, if we relax
the maximality condition when using projection quantization~thenmmin is not necessarily zero!,
which will be necessary in Sec. III B 5 to obtain realizations of the complete positive dis
series.

When quantizingS by projection quantization we have, however, to demandmmin50. If we
restrictk to lie in (0,1# in the group theoretical quantization, the identifications of this subsec
prove equivalence of the two approaches. In Sec. III B 5, we will make this more explic
studying the isomorphism of the respective Hilbert spaces in terms of function spaces.

4. Ambiguities connected with the parameter k

By comparing two quantizations, namely the group theoretical one and the projection
tization, we arrived in the preceding subsections at a one-parameter family of inequivalent
tum theories labeled by the parameterkP(0,1#. Such an ambiguity has to be expected becaus
p1(S)5Z ~cf. our discussion in Sec. II B 1!.

Nevertheless, one could be tempted~as, e.g., the authors of Refs. 7 and 8! to restrict this
arbitrariness further by demanding that the Casimir operatorC5T0

22T1
22T2

2, whose eigenvalue
q5k(12k) determines a particular representation of the positive discrete series, should b
~yielding k51; note thatk.0 for unitary representations!. The apparently best argument for th
step would be provided by the fact that the classical limit ofC, p22p2(sin2 w1cos2 w), vanishes
identically. However, this reasoning is not compelling: Using the group theoretical quantiz
we know the quantum operators corresponding to the generatorsp, p sinw, andp cosw, but we
cannot unambiguously determine the quantization of, e.g., sinw or cosw ~we have to divide byp̂
in some appropriate sense!, the sum of whose squares was used as one in the above concl
Because of factor ordering ambiguities we have to distinguish between the operatorsp̂sinŵ and
(p sinŵ), for instance, whereas in the classical expression we can simply factor outp.

ImposingC50 to exclude representations withkÞ1 is basically the argument provided i
Ref. 7 @leading to Eq.~3.14! of Ref. 8#. Also in the algebraic quantization, mainly used in th
paper, noninteger values ofk excluded there arise when factor ordering ambiguities are taken
account. The argumentation in Sec. 3.2 of Ref. 8, on the other hand, would even lead to the
representation~all T ’s vanishing! as the only quantum realization ofS ~not to k51 as concluded
there!.

As discussed above, the conditionC50 just imposes the relation (p sinŵ)21(pcosŵ)25p̂2.
However, because of factor ordering ambiguities, this says nothing about the quantum ver
sin2 w1cos2 w51, which would be used as an argument for imposing it. We thus do not fin
convincing to imposeC50 as a condition for singling out the valuek51.

To round off the above discussion, we provide natural quantizations of sinw and cosw in-
spired by the quantization ofU5expiw in the preceding subsections. As demonstrated there,
possible to restrict the freedom in defining sinŵ and cosŵ by demanding that the quantization o
U[cosw1i sinw acts isometrically. This leads to26–28

sinŵª2
i

2
~Û2Û* !52

i

2
„T1~T2T1!2 1/22~T2T1!2 1/2T2…, ~25!

cosŵª
1

2
~Û1Û* !5

1

2
„T1~T2T1!2 1/21~T2T1!2 1/2T2…, ~26!
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which are self-adjoint operators with the correct classical limits. Although these expression
appear rather complicated~as compared toT1 and T2 for p sinw and p cosw), they are seen to
come as close to the classical properties of sinw and cosw as possible in the present context: Fir
they satisfy

~sinŵ !21~cosŵ !2512 1
2 Pl0

,

violating sin2 w1cos2 w51 only in the ground state characterized byl5l0 (Pl0
denotes the

projector on that state!. Second, also the commutator

@sinŵ,cosŵ#5
i

2
Pl0

is nonvanishing only in the lowest state, whereas the commutators

@H,sinŵ#52 icosŵ, @H,cosŵ#5 isinŵ ~27!

represent the classical Poisson relations exactly.
These are only minor violations of the classical identities, which are, moreover, indepe

of the value ofkP(0,1#. Note also that there can beno self-adjoint and commuting operatorss
and c with @H,s#52 ic, @H,c#5 is which also satisfys21c251 in a quantum theory ofS.
Otherwise, the operatorc1 is would be a quantization ofU5expiw as aunitary operator gener-
ating translations, which is a contradiction according to the discussion in Sec. III B 2.

5. Different realizations of the positive discrete series on function spaces over S 1

By choosing thew-representation of the Hilbert spaceHu1mmin
in Secs. III B 2 and III B 3, we

are implicitly provided with a realization of the representationDk (k[u1mmin) on a space of
sections of a~trivial! bundle overS1 with a connection characterized byu. On the other hand, by
restricting the elements of the representation spaceHk(D) of Sec. III B 1 to its boundary values
we obtain a realization ofDk on a space of functions onS1, too. ~Similar transitions between
different Hilbert spaces have been discussed in more detail in Ref. 5.! Now we want to compare
these two different realizations. In order to cover all the inequivalent representations in the
tive discrete series (kPR1), we drop here the conditionkP(0,1# @‘‘physical’’ representations in
the group theoretical quantization or, respectively,mmin50 ~maximality in the projection quanti-
zation!#.

To allow a comparison, we first transform the spaceHu1mmin
into a function space overS1 as

well ~more precisely, we trivialize the bundle, transferring theu-dependence of the transitio
function into the momentum operator, cf. our discussion in Sec. II B 1!. This is done most easily
by multiplying the elementsf u,m by exp(2ikw), yielding exp(inw), n[m2mmin PN0 as the new
orthonormal basis elements of a Hilbert space, which is denoted byH1

2 : It is the Hardy space of
the unit circle~cf. Ref. 29 for further details on this space!. Note that the inner product is unaltere
by the above transition and still provided by (2p)21 *dwc1(f )̄c2(f)5:(c1 ,c2)1 .

On H1
2 the so(1,2)-generators are then easily seen to take the form@cf. Eq. ~24!#:

T05
d

df
1 ik, T152exp~ if!AS 2k2 i

d

df D S 12 i
d

df D , T25T1* . ~28!

By exponentiation this provides a unitary~irreducible! representation of the universal coverin
group of SO↑(1,2), being a concrete realization ofDk on H1

2 .
In the following this realization shall be compared to the one obtained by restricting elem

of Hk(D) to their boundary values onS15]D, which leads to a Hilbert spaceHk(S
1). Because an

antiholomorphic function onD is already determined by its boundary values, the inner produc
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Hk(S
1) is defined by antianalytically continuing two given functions onS1 into D and using the

inner product (•,•)k of Hk(D) defined in Sec. III B 1. In this way an orthonormal basis inHk(S
1)

is seen to be provided by@cf. Eq. ~19!#

g̃k,n~w!5A G~2k1n!

G~2k!G~n11!
einw, nPN0 . ~29!

Here we used the coordinatew on S1 in reversed orientation as compared to the standard de
tion. This leads toz̄5exp(iw), slightly simplifying the following relations.

Note that except fork5 1
2 there isno representation of the inner product (•,•)k of Hk(S

1) in
terms of an integral overS1 for some measurem(f), i.e., there is no functionm(f) such that
(c1 ,c2)k5*dwm(f)c1(f )̄c2(f) except fork5 1

2 @in which casem[(2p)21]. This is seen most
easily by inserting the orthonormal set of wave functions~29! into such an ansatz. So~for k
. 1

2) the continuation into the disc is an essential ingredient in the definition of the inner pro
of Hk(S

1) in terms of an integral.
Alternatively, the inner product ofHk(S

1) may be represented as an ordinaryL2(S1)-inner
product with an operator-valued metric Ak ~cf. Ref. 30 for further details!: (c1 ,c2)k

5(c1 ,Akc2)1 . @This observation shows that the Hilbert spacesHk(S
1) used here are identical t

the Hilbert spacesHAk

2 of Sec. 5.3 in Ref. 5.#

In both casesH1
2 and Hk(S

1) we are regarding wave functions of the formc(f)
5(n>0an exp(inf). However, because the Hilbert spaces are completions in different inner
ucts, the function spaces are different: the Hardy spaceH1

2 consists of all functionsc(f) with
(n>0uanu2,`, whereas inHk(S

1) the functions have to obey(n>0uanu2G(2k1n)21G(2k)G(n
11),`. It follows immediately thatas function spacesHk(S

1),H1
2 for k, 1

2, Hk(S
1)5H1

2 for
k5 1

2, andH1
2 ,Hk(S

1) for k. 1
2. While H1

2 is a subspace~and thus also a subset! of L2(S1,dw),
Hk(S

1) is a subset~but not a subspace fork, 1
2) of L2(S1,dw) for k< 1

2 ~and only fork< 1
2).

The action of the so(1,2)-generators inHk(S
1) is derived from Eq.~20! usingz̄5exp(iw) and

z̄d/dz̄52 id/dw:

T05
d

dw
1 ik, T15exp~ iw!S 22k1 i

d

df D , T25T1* , ~30!

where now the adjoint is to be taken with respect to the inner product inHk(S
1), certainly.

Clearly, this presentation of the so(1,2)-generators as operators on wave functions oveS1 is
different from the one obtained before in Eq.~28!, exceptfor k5 1

2 where alsoHk(S
1)5H1

2 .
Equation~28! constitutes, to the best of our knowledge, a novel realization@which is similar to the
Holstein–Primakoff representation31 of SU(1,1)] of the positive discrete series on a space of w
functions overS1 ~namely the Hardy space!. In the standard realization on wave functions ov
S1, the operators have a rather simple action@provided by Eq.~30!#; however, the corresponding
k-dependent Hilbert spaceHk(S

1) carries a rather complicated andk-dependent inner product~cf.
the discussion above!. In contrast, in the other realization the Hilbert space is simply a Ha
space with standardL2-inner product, independent of the value ofk. The price to be paid for this
simplification of the Hilbert space is the appearance of roots of differential operators i
representation of the so(1,2)-generators@cf. Eq. ~28!#.

Note that despite the (k-dependent! subset relations betweenH1
2 and Hk(S

1), the
so(1,2)-representation is certainly still irreducible in each of the respective Hilbert spaces~as is
obvious from the Hilbert space isomorphism of Sec. III B 3!; the difference in the spaces
compensated by the different action of the group generators.

IV. DISCUSSION

In Sec. II of this article we first motivated and recalled the basic rules for group theore
quantization as outlined in Ref. 2. At the example ofT* S1 it became obvious that the stron
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generating principle~SGP! is an essential property to be fulfilled by the fundamental observa
of the group action. Otherwise, apparently admissible group actions can be provided w
however, were seen to yield an unacceptable spectrum of the momentum operator.

Checking the SGP requires the study of completeness properties of the fundamental o
ables generating the group action, which may be a cumbersome task for more involved
spaces. Here Lemma 1 may be of assistance: Triviality of the center of the effectively a
projection of the canonical group was found as a necessary condition for the validity of the
in a wide range of cases.

We then pointed out that the lift of the diffeomorphism group of a manifoldQ to P5T* Q has
a transitive action on~the connected parts of! P* which results fromP upon removal of the points
of vanishing canonical momenta. Since, by construction, this action is also effective and H
tonian with momentum map~cf. Lemma 2!, finite-dimensional subgroups of Diff(Q) are good
candidates for the use in a group theoretical quantization of such subbundles. This strate
applied in Sec. III to construct the SO↑(1,2)-action onS5T* S1up.0 as the lift of the respective
diffeomorphism group ofS1. Other effective actions of covering groups of SO↑(1,2), found in this
way as well, could be excluded by the SGP~cf. also Lemma 1!. In an appropriate sense~cf.
Theorem 1! the SO↑(1,2)-action onS was found to be the unique admissible group action
quantization of the phase spaceS.

In Sec. II E we proposed a projection method for quantizing phase spaces which are
priate submanifolds of phase spaces with known quantum realization. Examples for such su
folds areT* R1 andS: The quantum theory for the phase spaceT* R1 (S) is obtained from the

standard quantum theory ofT* R (T* S1) with its Hilbert spaceH̃ upon restriction to the maxima

subspaceH on which the operator inequalityq̂.0 (p̂.0) is satisfied. The corresponding~unique!

projection operator fromH̃ to H may then be used also to obtain operators defined originally o

within H̃.
We outlined some of the prerequisites for the applicability of the projection method of q

tization as well as its basic rules. It may well be that the study of further examples will lead
adjustment and refinement of these ideas. A promising strategy is also to employ the techn
symplectic cuts16 for a comparison of the projection quantization with more standard quantiza
schemes, which is done in Ref. 17.

As a possible arena for its application we discussed issues in quantum gravity, where
generacy of the metric has to be imposed. In this context we remarked that the prese
constraints may lead to subtleties~in addition to the well-known problems of the quantization
constrained systems!.

For T* R1 the quantum theory resulting from projection quantization is equivalent to
standard one for this phase space. ForS it coincides with the quantum theory obtained from gro
theoretical quantization, if in addition to the negative discrete and the continuous series
so(1,2)-representations~cf. Subsec. III A and Ref. 5! also representations of the positive discre
seriesDk with k.1 are discarded.Within the ~present-day! scheme of group theoretical quant
zation this may be justified only by declaring them to be unphysical representations. In lac
truly physical realization of the phase spaceS, the above ‘‘unphysical’’ is not to be taken to
literally. However, the resulting restriction, leaving onlyDk for 0,k<1 as possible Hilbert
spaces forS, agrees also with what one would expect on general grounds in the conte
geometric quantization. Projection quantization yields a one-to-one relation between theu-angle
of the quantum theories ofS andT* S1. Thus, agreement with other approaches to the quantiza
of S forces us to truncate the range of allowed values ofk in the group theoretical one.

Within this paper we always tried to keep track of possible ambiguities in the transition
the classical to the quantum system. In the group theoretical approach this led us to
consider representations of the universal covering of the group with admissible action.
however, that in all the examples studied the fundamental group of the phase space was atZ.
The situation may become more involved for the case of non-Abelian fundamental groups11
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Symmetry requirement for a deformation operator related
to density functional theory
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We study symmetry properties of an operator that has been introduced in Quantum
Chemistry under the name of ‘‘Local Scaling Method,’’ or ‘‘Local Scaling Trans-
formation.’’ This operator is defined using deformations of the spaceR3. It has
previously been used in order to obtain density-functional approximations of the
N-electron problem, and newN-representability results. In order that the operator
satisfies a natural symmetry requirement associated with the symmetry group of a
molecule, we show that only the deformations that commute with all operations of
the symmetry group may be used. These deformations are listed and practical
consequences explained. ©2000 American Institute of Physics.
@S0022-2488~00!01005-7#

I. INTRODUCTION

In this paper, we study symmetry properties of theN-particle unitary operator defined from
L2(R3N) onto itself by

~TfC!~x1 ,¯ ,xN!ªS )
i 51

N

Jf~xi !D 1/2

C„f~x1!,¯ ,f~xN!…, ~1!

where f:R3→R3 is a C1 diffeomorphism~a ‘‘deformation of the space’’!, Jf5udet(]fi /]xj)u de-
notes the absolute value of the Jacobian determinant off, and wherexi denotes thei th space
variable ofR3N. We also consider the space of wave functions,La

2(R3N)5` i 51
N L2(R3) ~the space

of antisymmetric and square integrable functions!, and note thatTf„La
2(R3N)…,La

2(R3N). Spin is
not considered here for simplicity of presentation.

The operator~1! was introduced in molecular quantum chemistry by Petkov and Stoitso1–3

and Petkov, Stoitsov, and Kryachko4 under the name of theLocal-Scaling Methodor Local-
Scaling Transformation~LST! and in connection with density functional theory~see also Macke5

and Percus6 for older references and Kryachko and Luden˜a7 for more recent applications; see als
Levy8–12 for fundamental results on DFT and symmetry!. It is used with deformations of aradial
type, i.e., of the following form:

f~x!5 f ~r ,u,f! ur~u,f!, ~2!

where f is some real-valued function,r 5uxu, u, f are spherical coordinates, andur5x/r . This
form includes uniform scalingf (r ,u,f)5l r , l const. More general forms have then be
proposed recently.13 However, here, we do nota priori restrict ourselves to a particular type o
deformations. For instance, in the atomic case, one of our aims is to show that it is not nec
to use other deformations thatf (r ,u,f)5 f (r ) in ~2!.

We recall a fundamental property of the deformation operatorTf . Let us denoterC the
density function associated to a wave functionC:

a!Electronic mail: boka@math.jussieu.fr
25680022-2488/2000/41(5)/2568/18/$17.00 © 2000 American Institute of Physics
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rC~x!ªNE
R3(N21)

uC~x,x2 , . . . ,xN!u2 dx2¯dxN

~whenN>2! andrC(x)ªuC(x)u2 whenN51. Then we have

~C25TfC1!⇒~rC2
5f* rC1

!, ~3!

where we have denoted

~ f* r!~x!ªJf~x!r„f~x!…

@use changes of variablesxi→f(xi) for i 52, . . . ,N#.
Property~3! has been used by Bokanowski and Gre´bert14 and in the LST Theory in order to

construct ‘‘physically acceptable’’ wave functionsC of a given densityr, i.e., such that
rC5r. Indeed, suppose we have a given ‘‘acceptable’’ wave functionC1 ~with cusps at the
nuclei, and a good decreasing behavior at infinity!, but that does not have the desired dens
function r (rC1

Þr). Then we can constructC25TfC1 ~a deformation ofC1!, such that it will
have the desired densityrC2

5r. SincerC2
5f* rC1

by ~3!, it suffices to find a deformationf
solution of the following nonlinear problem:

r5f* rC1
. ~4!

In order to keep the cusp nuclei at the same nuclei positions, we may require furthermo
invariance of the nucleiK5(Rj ) j 51, . . . ,N , i.e.,

;xPK, f~x!5x. ~5!

The problem~4!, wheref is the unknown, is called a ‘‘Jacobian problem.’’ Solutions of~4!–~5!
adapted to molecular systems are proposed in Refs. 15, 14, 16, and 17.

An application of LST is then to use such deformationsf in order to construct ‘‘rigorous’’
density functionals, for instance, in the following form:

r→FC1
@r#ª^TfC1 , HTfC1&, ~6!

whereH is a given Hamiltonian molecule,^•,•& is the scalar product onLa
2(R3N), C1 an initial

trial wave function~normalized!, and wheref is a deformation solution of the problem~4! ~f
depends onr!. HenceFC1

@r# will give an energy value corresponding to a wave function
density r and that is an upper bound of the ground state energy. Then one may sear
approximations ofFC1

@r# in terms of a more simple density functional, as attempted in Ref.
Deformations have been used in order to approach the Kohn–Sham orbitals for the Ber

atom,19 or to obtain a newN-representability result20,15 ~see below!. Using a ‘‘high-density limit’’
assumption and using deformations we have been able to find the usual DFT approximatio21 in
particular, to propose a more precise derivation of the SlaterXa approximation of the exchang
potential in the Hartree–Fock equations in a periodic model,22,23 and for the Thomas-Fermi Von
Weisacker term.24

Radial deformations@i.e., of the form~2! with f (r ,u,f)5 f (r )# have also been used in
different way in Ref. 25 in order to prove the ‘‘Scott conjecture.’’

Our main goal in this paper is to characterize all the deformationsf that satisfy to symmetry
stability properties of the following type~as introduced in Ref. 14!:

Tf„GùLa
2~R3N!…,G, ~7!

where G is a given class of symmetry related to a symmetry groupG. The groupG can be
associated to some molecule HamiltonianH. In the sequel, a class of symmetryG will denote a
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subspace ofL2(R3N) spanned by functions with the same symmetry. Also,d5dim(G), called the
‘‘dimension’’ of G, will denote the dimension of any irreducible families ofG. ~See Sec. III for
precise definitions concerning points groups and classes of symmetry.!

Indeed, if we want thatC25TfC1 be inG @for instance in~6!#, then it is natural to start with
C1PG and require~7! to hold, which means that we keep the symmetry of the system
deformation. We shall hereafter refer to~7! as asymmetry requirement. For numerical applica-
tions, a symmetry requirement such as~7! is very important if we search for the minimum energ
in a given class of symmetry, or if we want to construct variational density functionals for t
energies~as in Refs. 14 and 20!.

II. IDEA OF THE RESULTS

We assume the symmetry group is given by

Gª$QPO~3!, v~Q!5v%, ~8!

where

v~x!5(
j 51

P
2Zj

ux2Rj u
~9!

is the Coulombian potential created by nucleiK5(Rj ) j 51, . . . ,P with charge1Zj . The center of
the groupG is assumed to be at the origin. Other potentials and symmetry groups are cons
in Sec. VIII.

We shall say that we have anatomwhenP51, a linear moleculewhenP>2 and the nuclei
are aligned, and anonlinear moleculewhen the nuclei are not aligned. For atoms and lin
molecules,G is continuous, and for nonlinear moleculesG is finite.

Now as in Ref. 20, we introduce the following definition.
Definition 1: We say thatf:R3→R3 is symmetricif

;QPG, f~Q!5Q~ f!.

We recall a fundamental property already given in Ref. 14~see also Proposition 2!:

f symmetric⇒„Tf~G!,G…. ~10!

So we ask the following: do other than symmetric deformations satisfy~7!?
The following theorem gives an idea of our main results~Theorems 3, 4 and 5 in Sec. VII!.

We establish a kind of reciprocal of~10! and thus we answer, in some sense, negatively to
previous question. LetCdiff

1 (O) be the set ofC1 diffeomorphisms fromO onto itself, whereO is
an open subset ofR3. For QPO(3), let TQ be as in ~1!, i.e., TQC(x1 , . . . ,xN)
5C(Qx1 , . . . ,QxN) since JQ51. Also, let @A,B#ªAB2BA be the commutator of operator
A,B.

Theorem. 1: Let G be the point group of a molecule (atom, linear or nonlinear molecule, K
the nuclei positions, andG a class of symmetry of dimension d and such thatGùL2

a(R3N)
Þ$0%. Let f be in C0(R3,R3)ùCdiff

1 (R32K), that lets K invariant@i.e., ;xPK, f(x)5x#. We
suppose thatf satisfies the symmetry requirement~7! in the case d51, or the symmetry require-
ment

;QPG, ;CPGùLa
2~R3N!, @Tf ,TQ#C50, ~11!

in the cased.1. Then we have following.
(i) There existsgPC0(R3)ùCdiff

1 (R32K), g symmetric, that lets K invariant, and there exis
e561, such that

;CPG, TfC5eTgC.
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(ii) If G is finite (for nonlinear molecules), thenf is symmetric.
Note: indeed, in the cased51, ~11! is equivalent to~7! @see Proposition 2~iv!#.

Discussion:Theorem 1 asserts that under a symmetry requirement, the operatorTf must
behave like an operatorTg whereg is asymmetricdeformation. This is a nontrivial result since,
general,G has a nontrivial form. It shows that it is not necessary to use other than symm
deformations@at least when dim(G)51#.

In particular, a consequence of Theorem 1, in the atom case, is that we should use onlyradial
deformations, i.e., of the following form:

f~x!5 f ~r !ur ~12!

~where f :R1→R!, instead of the form given by~2!. This is because for atoms we can prove th
symmetric deformations, if one to one and continuous, can only be radial deformations~see
Proposition 1 in Sec. IV!. Note also that many numerical studies have been done in the
case,13,18,19,26,17but none, to the author’s knowledge, using other than radial deformations.

In order to see that Theorem 1 is not trivial let us first show, on two simple cases
Tf(G),G does not implyf to be symmetric. We consider an atom centered at the origin@G
5O(3)# for which we know that symmetric functions must be radial functions, i.e., as in~12!. Let
GªG0

1 be the class of totally symmetric functions, i.e., spanned by functionsC such thatTQC
5C for all QPO(3) sinceJQ51 ~in this cased51!. If N51, thenG0

1 is the set of radial
functions of L2(R3). When N52 and G5O(3), then G0

1 is the class spanned by function
C(x1 ,x2)5F(r 1 ,r 2 ,r 12) that depends only ofr 15ux1u, r 25ux2u, andr 125ux12x2u.

We first chooseN51 electrons, soG is the set of radial functions. Letf be defined, in
spherical coordinates, by (r ,u,f)→„f (r ),u,f1c(r )… for some functionf (r ) andc(r )Þ0. Note
that f is not symmetric~it is not radial! but we do haveTf(G),G becauseJf5 f 8(r ) ( f (r )/r )2 is
a radial function.

We now take N52, for which we know that anyCPG has the form C(x1 ,x2)
5F(r 1 ,r 2 ,r 12). So if fPO(3) with f¹$Id,2Id%, then f is not symmetric but we do hav
Tf(G)5G ~sinceTfC5C!.

Nevertheless, the above examples are not in contradiction with Theorem 1 since fo
CPG, we haveTfC5TgC, where g is symmetric@take g(x)5 f (r )ur in the first case and
g(x)5x in the second one#. Analogous examples can be found for linear molecules.

Another motivation to study the symmetry requirement~7! is that deformationsf satisfying it
were used in order to obtain an N representability result with symmetry. ForN>2, G a symmetry
class such thatGùLa

2(R3N)Þ$0%, andr a totally symmetric and positive function ofL1(R3) ~plus
some regularity conditions and ‘‘good’’ behavior at infinity!, it is proved in Ref. 20 that there
existsCPGùLa

2(R3N) such thatrC̃5r and* u“Cu2,` ~see also Refs. 15, 17!. The idea is to
use ~3! with symmetric deformations. In an attempt to generalize this result, it was natur
search for other than symmetric deformations still satisfying~7!.

Plan of the paper:Some notations are introduced in Sec. III. A general characterizatio
symmetric deformations is given in Sec. IV A, showing which deformations may be used i
LST theory in the molecular case. Thus, for recent developments of LST theory~as in Ref. 27 for
diatomic molecules!, we advise to use only the deformations listed in this section.

In Sec. V a simple proof of Theorem 1 is given for nonlinear molecules.
In Sec. VI we introduce a weaker symmetry requirement hypothesis than~7! or ~11!, used in

Theorem 1. When dim(G)51, it is of the form

Tf„GsùLa
2~R3N!…,G, ~13!

where we can use a much smaller subsetGs than the whole classG itself. This is important, since
in practice, we naturally work only with a particular subsetGsùLa

2(R3N) of wave functions ofG.
We can still ask ourselves which deformationsf can be used in order to satisfy~13!.
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In Sec. VII, we first obtain some information on these deformations using the resolution
‘‘Jacobian problem’’ in Theorem 2. Finally, we give a complete list of the deformations
satisfy the~weak! symmetry requirement, in Theorems 3, 4, and 5, i.e., for nonlinear molec
atoms, and linear molecules, respectively.

In Sec. VIII, we conclude with some extensions of the results, in particular when sp
involved, or when other symmetry groups are considered, corresponding to pseudopotentia
periodic systems.

III. NOTATIONS

In this section we recall basic definitions and notations related to the symmetry28,29 and
introduce other ones more specific to the paper.

A. Symmetry group, classes of symmetry

We identifyO(3), thegroup of orthonormal matrices (QÁQ5Id), with the isometries ofR3

that let the origin invariant.SO(3) denotes the rotations ofO(3). We denote Id the identity
function ~or matrix!, I the inversion inR3 @ I (x)52x#, andU(d) the unitary matrices of dimen
sion d.

Symmetry group:Let Isom(R3) be the set of isometries ofR3. In this paper we define the
symmetry group~or point group! associated to the Hamiltonian moleculeH by:

G5$QPIsom~R3!; TQH5HTQ%. ~14!

If we consider the Hamiltonian molecule,

H52D1(
i 51

N

v~xi !1(
i , j

1

uxi2xj u
, ~15!

wherev is given by~9! andD the Laplacian onR3N, then we notice that

@H,TQ#5F S (
i 51

N

v~xi !D ,TQG5S (
i 51

N

„v~xi !2v~Qxi !…DTQ

~where@A,B#5AB2BA!. HenceQPG if and only if v(Q)5v.
Then we recall that there existsx0PR3 ~the center ofG! such that;QPG, Qx05x0 .

Hereafter, we assume thatx0 is the origin. ThusG is a subgroup ofO(3) and is equivalently
defined by~14! or ~8!.

Nuclei: We denoteK5$R1 , . . . ,RP% a set of ‘‘nuclei’’ positions. In the sequel, we suppo
@as for molecules~15!–~9!# that K is finite and invariant underG, i.e.,

;QPG ~xPK⇒QxPK !. ~16!

Classes of symmetry:We recall that there exists a Hilbert decomposition ofL2(R3N) into
classes of symmetryassociated to the unitary representationQPG→(TQ)21. To each character o
G, x:G→C, we can associate a class of symmetryG5G(x) as follows:

Gª$CPL2~R3N!, PGC5C%,

wherePG is the orthogonal projector onG, i.e.,

PGCª

d

m~G!
E

QPG
dm~Q!x~Q!TQC, ~17!
                                                                                                                



ion

2573J. Math. Phys., Vol. 41, No. 5, May 2000 Symmetry requirement for a deformation operator . . .

                    
and where dPN* is the dimension of any irreducible unitary matrix representat
QPG→M (Q)PU(d) associated tox @i.e., such that;QPG, Tr„M (Q)…5x(Q)#. We have also
denoteddm the Harr measure ofG.

We recall that a continuous map,

M : QPG→M ~Q!5„mi j ~Q!…1< i , j <dPU~d!,

is called anirreducible unitary matrix representation~or simply M irreducible! if ~i! M (PQ)
5M (P) M (Q) for any P,QPG, and ~ii ! if ;QPG, AM(Q)5M (Q)A for some matrixA of
dimensiond, thenA must be proportional to Id. We say thatM is associated to the characterx if
Tr„M (Q)…5(k51

d mkk(Q)5x(Q) for QPG.
We also denoted5dim(G) and say thatd is the dimension ofG. For instance, ifG5G(x) and

dim(G)51, we know thatCPG if and only if CPL2(R3N) and;QPG, TQC5x(Q)C ~and in
this caserC̃5rC!.

The classes of symmetryG5G(x) such thatGùLa
2(R3N)Þ$0% are listed in Ref. 20, for

instance~see also Ref. 17, Chap. IV!.
Operator AN and Slater determinants:Let SN be the set of permutations of$1, . . . ,N%. The

operatorAN is defined fromL2(R3N) into La
2(R3N) by

AN@C#~x1 , . . . ,xN!ª
1

AN!
(

sPSN

e~s!C~xs(1) , . . . ,xs(N)!, ~18!

wheree(s) is the signature of the permutations.
We say that C:R3N→C is a Slater determinant when it is of the form

C5AN@f1(x1)¯fN(xN)# ~we also denoteC5AN@f1¯fN#!. We recall that if the set
(f i) i 51, . . . ,N is orthonormal inL2(R3) thenrC5( i 51

Nuf i u2.
Other notations:G irr

set, G irr , G irr,M
set , G irr,M , GSlater, GSlater* , and G (p).

The following definitions will be mainly useful in Secs. VI and VII.
We say that (C1 , . . . ,Cd) is an irreducible familyof G5G(x) if C1Þ0 and;QPG, ; i ,

TQC i5( j 51
d mi j (Q)C j , whereM is irreducible and associated tox. We also introduce

G irr
set
ª$~C1 , . . . ,Cd!, irreducible family ofG%, ~19!

G irrª$C,'~C1 , . . . ,Cd!PG irr
set,CPVect~C i !%,

G irr,M
set

ª$~C1 , . . . ,Cd!, irreducible family ofG associated toM %, ~20!

G irr,Mª$C,'~C1 , . . . ,Cd!PG irr,M
set , CPVect~C i !%.

For instance, ifCPG and dim(G)5d, sincePGC5C, we haveC5(k51
d Ckk , whereC i j

5@d/m(G)# *G dm(Q)mi j (Q)TQC ~for a representationM as above! and,;k (C1k , . . . ,Cdk)
PG irr,M

set .
We denoteG (p) for the functions ofL2

„(R3)p
… and of symmetryG, and also

GSlaterª$C5AN@f1¯fN#, CPG%, ~21!

GSlater* ª$C5AN@f1¯fN#,f1PG (1), ~f i ! i>2 radial and in L2~R3!%. ~22!

In particular,GSlater* ,GSlater,GùLa
2(R3N) and forN51 we haveGSlater* 5GSlater5G. Also, (G (1)

Þ$0%) ⇔ (GSlater* Þ$0%) ⇒ „GùLa
2(R3N)Þ$0%….
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B. Notations for atoms and linear molecules
Atoms: In the atom case,P51 (R150) and G5O(3). We shall use thespherical coordi-

nates (r ,u,f) @r .0, fP(0,2p), uP(0,p)#, related to Euclidean coordinates byx
5r cos(f)sin(u), y5r sin(f)sin(u), andz5r cos(u).

Linear molecules:When the nuclei are aligned andP>2, we suppose that (Oz), thez axis,
is confounded with the nuclei axis. We denoteSO(2) the rotations ofz axis, andO(2) the group
generated bySO(2) and a symmetry with respect to a plane that contains (Oz). We recall that
only two situations may occur.

~i! If the linear molecule has no center of symmetry, we haveG5O(2).
~ii ! Otherwise, we can assume the center of symmetry is the origin, and thenG5O(2)

3$Id,I % @the group generated byO(2) and the inversionI #. Note: O(3), O(2), and
O(2)3$Id,I % are also denoted, respectively,O` , C`v , andD`h .

For instance, diatomic molecules (P52) are linear molecules. IfZ1ÞZ2 , thenG5O(2), and
If Z15Z2 , thenG5O(2)3$Id,I %.

For linear molecules, we shall use thecylindrical coordinates(r ,z,f) such thatr .0, f
P(0,2p), andzPR, and related to the Euclidean coordinates byx5r cos(f), y5r sin(f), and
with an identicalz component.

IV. PRELIMINARY RESULTS

A. Characterization of symmetric deformations

We first consider the case of atoms and linear molecules.
Proposition 1: Letf be continuous and one to one.

(i) Let G5O(3) or G5SO(3) (atoms). Thenf is symmetric if and only iff(x)5e f (r ) ur , with
r 5uxu, ur5x/r , whereeP$21,11% and f:R1→R1 . @In this case, f (0)50.#

(ii) Let G5O(2) (linear molecules). Thenf is symmetric if and only if in cylindrical coordinate
f is of the form(r ,z,f)→„r f(r ,z),zf(r ,z),f….

(iii) Let G5O(2)3$Id,I % (linear molecules). Thenf is symmetric if and only if it is of the form
(r ,z,f)→„r f(r ,z),zf(r ,z),f… and with rf(r ,2z)5r f(r ,z) and zf(r ,2z)52zf(r ,z).

Proof: It easy to see that iff satisfies the assumptions of~i!, ~ii !, or ~iii !, then it is symmetric.
Thus, we suppose nowf symmetric and prove the following assumptions.
~i! Let us denotex5(r ,V) and f(x)5(r f ,V f) in the spherical coordinates, whereV andV f

are in S2. Using uf(Q)u5ufu we obtain thatr f is radial: r f(r ,V)5r f(r ). Then, we have
V f(r ,QV)5QV f(r ,V) for QPSO(3), whereQV is defined by (1,QV)5Q(1,V).

Let V15V f(r ,V) and let Q1 be a rotation of axisV1 , with Q1ÞId. Then V f(r ,Q1V)
5Q1V15V15V f(r ,V). But f is one to one withr f5r f(r ), soV→V f(r ,V) is also one to one
on S2. Hence,Q1V5V, and thusV belongs to the axis ofQ1 , i.e., 'eP$21,11%, (1,V)
5e(1,V1). Note that e does not depend ofQ1 , by continuity of f. Finally „1,V f(r ,QV)…
5e(1,V), and a newe is independent ofV.

~ii ! Using the rotations ofz axis (Cu:f→f1u), we obtain thatr f andzf aref independent,
and f f(r ,z,f)5f f(r ,z,0)1f. Then using the symmetrys:f→2f we obtain
f f(r ,z,0)50.

~iii ! We use furthermore the inversionQ5I represented in cylindrical coordinates by (r ,z,f)
→(r ,2z,f1p). h

Now, for nonlinear molecules~G finite!, we first recall the following lemma, which states th
existence of a subdivision ofR3 into uGu isometric convex conesV j such thatG acts transitively
on $V j , 1< j <g% ~see also Ref. 30, Chap. 1!.

Lemma 1: Let G finite and g5uGu its cardinal. There exists$V j%1< j <g convex and disjoint
open cones ofR3, centered at the origin, and such that
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(i) R3\ø j 51
g V j is included in a finite union of planes ofR3;

(ii) ;QPG, ; i , ' j , QV i5V j ; and
(iii) ;QPG, ; i , QV i5V i⇒Q5Id.
Proof: The proof is easily obtained by graphical arguments and going through all the po

finite point groups~for a review of such groups see Ref. 31, p. 416!. h

As a consequence, for nonlinear molecules, a symmetric function can be characterized
value on the convex coneV1 defined as in Lemma 1. To see this suppose thatf is symmetric,
defined onV1 , and letxPR3. There exists a uniquei such thatxPV i . Let QPG such that
QV i5V1 . Thusy5QxPV1 , and f(x)5Q21f(Qx)5Q21f(y) so f(x) can be determined usin
fuV1

.

B. First implications of symmetry requirements

In this paragraph we give some elementary relations between symmetric functions a
symmetry requirement~7! or ~11!. We first state a useful lemma.

Lemma 2: (i)TfTg5Tg+ f for two deformationsf, g.
(ii) Let QPO(3) and f a deformation. Let

g@Q#ªfo Qo f21o Q21. ~23!

Then, for anyCPL2(R3N):

@Tf ,TQ#C50 ⇔ Tg[Q]C5C. ~24!

Proof: Immediate verifications. h

Proposition 2: LetG be a class of symmetry. Then we have following.
(i) ~f symmetric! ⇔„;QPG,;CPL2(R3N),@Tf ,TQ#C50…

⇔„;QPG,;CPLa
2~R3N!,@Tf ,TQ#C50).

(ii) ~f symmetric! ⇒ ~;QPG, @Tf ,TQ#uG50! ⇒ „Tf(G),G….
(iii) ~;QPG, @Tf ,TQ#uG50! ⇔ ~'M irreducible,Tf(G irr,M

set ),G irr,M
set). [With the notation

Tf(C1 , . . . ,Cd)ª(TfC1 , . . . ,TfCd), and G irr,M
set as in (20).]

(iv) If dim(G)51, then ~;QPG, @Tf ,TQ#uG50! ⇔ @Tf(G),G#.

Proof: ~i! If f is symmetric andQPG, @Tf ,TQ#50 is immediate using Lemma 2~i!.
Reciprocally, letQPO(3) and suppose that;CPLa

2(R3N), @Tf ,TQ#C50, i.e.,TgC5C by
Lemma 2, whereg5g@Q# is defined as in~23!. To show thatf commutes withQ, it suffices to
showg5Id. Using the fundamental property~3! we deduce fromTgC5C thatg* rC5rC for all
CPLa

2(R3N). So, for any rPL1(R3,R1), we obtain alsog* r5r @because there existsC
PLa

2(R3N) such thatrC5r.5,32,33

Then usingrl(x)5l3r(lx), with l.0, we obtainJg(x)r„lg(x)…5r(lx). With r continu-
ous,r(0)Þ0, andl→0, we obtainJg51. Sor(g)5r for anyrPL1(R3,R1). If g(x)Þx, we can
chooser with different values inx and g(x), and obtain a contradiction. Thus,g5Id, and f is
symmetric.

To prove~ii ! it remains to prove the last implication of~ii !. Let CPG andF5TfC. To prove
FPG, it suffices to provePGF5F. This is easily obtained using formula~17! and the assump
tion TQTfC5TfTQC for all QPG.

To prove ~iii !, let M be an irreducible matrix representation and let (C i) i 51, . . . ,d be an
irreducible family ofG and associated toM ~i.e., an element ofG irr,M

set !: TQC i5( j 51
d mi j (Q)C j

~for QPG!. We applyTf to the previous equality. If we suppose thatTf andTQ commute onG,
we obtainTQF i5( j 51

d mi j (Q)F j whereF i5TfC i . Hence (F i) is an irreducible family associ
ated toM . Now, to prove the reciprocal of~iii !, we remark that anyCPG is a linear combination
of elements that belong toG irr,M . Therefore it remains to prove thatTf andTQ commute when
applied on a given irreducible family (C1 , . . . ,Cd) of G associated toM . This is a simple
verification.
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Finally, in the case dim(G)51, ~iii ! gives ~iv!. h

V. A SIMPLE PROOF FOR THEOREM 1 WHEN G IS FINITE

In this section we show how to conclude tof symmetric in the caseG is finite ~for instance,
for nonlinear molecules!, if N>2, and if we suppose as in Theorem 1 thatf satisfies the symmetry
requirement~11! for d>1 andf(x)5x for any nucleixPK. We recall that~11! corresponds to~7!
whend51.

For a givenQPG, we definegªg@Q# as in~23!. We want to prove thatf is symmetric, i.e.,
that g5Id. Using Lemma 2, we see that~11! is equivalent to the following:

;QPG, ;CPGùLa
2~R3N!, Tg[Q]C5C. ~25!

SinceGùLa
2(R3N)Þ$0% there exists aCPGùLa

2(R3N) such thatuCu.0 a.e.on R3N ~such aC
can be constructed as in Ref. 20; see also Ref. 17, Chap. IV!.

Then we consider

q~x1 , . . . ,xN!5 (
1< i , j <N

~11uxi2xj u!21. ~26!

Both C and qC are in GùLa
2(R3N). Hence, using~25!, we obtain TgC5C and Tg(qC)

5qC, and also Tg(qC)5q(g)Tg(C)5q(g)C. We divide by C and thus obtain
q„g(x1), . . . ,g(xN)…5q(x1 , . . . ,xN) a.e. on R3N. Since q is continuous the previous equalit
holds onR3N. Then we putxi5x2 for i>2 and obtainug(x1)2g(x2)u5ux12x2u, so g is an
isometry.

Note also that forxPK, g(x)5x. To see this, we use that foryPK, f(y)5y and alsoQy
PK @see~16!#. HenceQ21(x)PK, f21(Q21x)5Q21x, andg(x)5x.

Since there is at least three nonaligned point inK in the nonlinear case, and thatg must be a
rotation because it is of a positive Jacobian determinant@see~23! and use thatJf(x) andJf21(y)
have the same sign onR3#, we obtain thatg is the identity. This concludes the proof whenG is
finite andN>2.

In the other cases, Theorem 1 will be a consequence of Theorems 3, 4, and 5.

VI. A WEAKER SYMMETRY REQUIREMENT

We want to prove that Theorem 1, in general, is still true if in the symmetry requirement~11!,
G is replaced by asubclass of symmetryGs a subset ofG that must satisfy some particula
conditions. In this section we give a definition forGs . We first need to defineadmissibledensity
functions andadmissibledeformations.

A. Totally symmetric density functions, admissible density functions, admissible
deformations

We recall thatC is said to be totally symmetric ifTQC5C for all Q in G.
Definition 2: We denoter̃ the projection of a functionr on the totally symmetric functions, i.e

r̃~x!ª
1

m~G!
E

QPG
r~Qx!dm~Q!,

wherem is the Haar measure of G.
For atoms, r̃ is a function of r 5uxu and @with dw5sin(u)du df#: r̃(r )

5 1/4p *S2r(r ,w) dw. When G5O(2), r̃(r ,z)5 1/2p *0
2pr(r ,z,f) df, and for G5O(2)

3$Id,I %: r̃(r ,z)5 1/4p *0
2p
„r(r ,z,f)1r(r ,2z,f)…df. For nonlinear molecules, we haver̃(x)

5 1/uGu (QPGr(Qx), whereuGu is the cardinal ofG.
We now introduce a set of useful density functions~see also Ref. 14!:
Definition 3: We say thatr is an admissible density function if the following occurs.
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(i) rPC0(R3,R1* )ùL1(R3).
(ii) r is totally symmetric~i.e., r̃5r!;
(iii) For linear and non-linear molecules, we suppose furthermorerPC1(R3)

and

lim
R→1`

H sup
wPS2

E
R

1`

r 2 r~r ,w! drJ 50, ~27!

where we have denoted(r ,w) the spherical coordinates~r .0 and wPS2!.
In Definition 3, we may also replace(iii) by the following.
(iii 8) rPC1(R3\K), with “r locally bounded and such that~27! holds.
Requirement(iii) or (iii 8) will be needed for solving a Jacobian problem~Theorem 2!. We also

introduce a set of useful deformations for the sequel.
Definition 4: We say thatf:R3→R3 is admissibleif (i) fPC0(R3)ùCdiff

1 (R32K), (ii) ;x
PK, f(x)5x, and(iii) f is symmetric.

Note that~f admissible! ⇔ ~f21 admissible!, and anyf admissible is aC0 homeomorphism on
R3.

B. Subclasses of symmetry

Definition 5: We say thatGs is a subclass of symmetryif we have the following.
(i) Gs,G whereG is a class of symmetry.
(ii) There exists(C1 , . . . ,Cd),GsùLa

2(R3N), an irreducible family [see (19)] such thatrC 1̃

be an admissible density function.
(iii) For all admissible deformationsg, Tg„GsùLa

2(R3N)…,Gs .

Definition 6: When N>2, we say that a subclassGs is admissibleif there existsC1PLa
2(R3N) and

a function qPC0(R3N,R) such that we have the following.
(i) C1PGs and q.C1PGs .
(ii) C1(x)Þ0 a.e. xPR3N.
(iii) q (xs(1) , . . . ,xs(N))5q(x1 , . . . ,xN) for any permutations.
(iv) q(x1 ,x2 , . . . ,x2)5q(y1 ,y2 , . . . ,y2)⇒ux12x2u5uy12y2u.

Note that in Definition 5, the stability condition~iii ! means that we want at least to consid
a setGs that contains wave functionsand their deformations obtained using symmetric deform
tions, because at least we want to use symmetric deformations, and also because we ma
the use of the deformation operatorTf . Condition~ii ! is a technical assumption.

Eventually, admissible subclasses will be needed. Indeed, any class of symmetryG such that
GùLa

2(R3N)Þ$0% is admissible~see Ref. 20!, and this has been used in Sec. V. Typically we m
chooseq as in ~26!, or in the formq5) i , je

r i j /11r i j , wherer i j 5uxi2xj u, and so on.
Examples of sub-classesGs : For N>1 and GùLa

2(R3N)Þ$0%, we note that there alway
exists aC in GùLa

2(R3N) such thatrC̃ be admissible~for a proof, see Refs. 20 or 17, Chap. IV!.
Thus, as soon asGùLa

2(R3N)Þ$0%, there always exists subclasses of symmetryGs , since we can
takeGs5G itself.

Typical setsGs can also beGs5GSlater, or Gs5GSlater* , as defined by~21!–~22! when such sets
are nonempty~for instance, for nonlinear molecules!. One may also choose, for a given set
coefficients (ck), the set of the linear combinationsC5(ckCk such thatCPG, whereCk are
Slater determinants, and so on.

C. Definition of the weak symmetry requirement

For a subclassGs , we now define aweak symmetry requirementas follows:

;QPG, ;CPGsùLa
2~R3N!, @Tf ,TQ#C50. ~28!
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Notice that ifd5dim(G)51 then~28! is equivalent toTf„GsùLa
2(R3N)…,G. Also, if Gs5G, then

~28! is equivalent to~11!.

VII. MAIN RESULTS AND PROOFS

In this section we look for the deformationsf that satisfy to the symmetry requirement~28!,
whereGs is a subclass of symmetry. This includes the case whenGs5G.

Our strategy of proof is the following. As in the beginning of Sec. V, we first obtain that
symmetry requirement~28! is equivalent to the following:

;CPGsùLa
2~R3N!, TgC5C,

whereg@Q#ªfo Qo f21o Q21. We want to prove, somehow, thatg@Q#5Id. Let g5g@Q#. Using
~3!, we also obtain

;CPGsùLa
2~R3N!, g* rC5rC . ~29!

At this point, if we hadGs5La
2(R3N) ~for instance, in the caseGs5G and G5$Id%!, we could

easily concludeg5Id, using Proposition 2. But this is not the case in general.
In order to get rid ofC in ~29! we first deduce from~29! thatg* rC̃5rC̃ ~this would be trivial

knowing g symmetric!. Then, using a symmetric solution of the Jacobian problem, we obtar
5g* r for any admissible density functionr.

Then we shall be able to conclude tog5Id in the nonlinear case~Theorem 3!.
In the atom and linear cases, at this stage we have also some properties ong, such asJg

51 andug(x)u5uxu, but that are insufficient in order to conclude. We shall eventually add s
hypothesis onGs to obtain thatg is in O(3), andfinally that there exists someSPO(3) such that
(Sf) be symmetric. Then, we shall be able to list all the possible deformationsf and conclude that
;CPG, TfC56TFC, for some symmetricF.

A. Preliminary result on the Jacobian problem

We shall need the following result, which can be obtained using similar techniques as in
14. ~In Ref. 14, more regularity conditions were required on the deformation.!

Theorem 2: If r1 ,r2 are two admissible density functions (see Definition 3) such that*r1

5*r2 , then there exists an admissible deformationf (see Definition 4) solution ofr25f* r1 .

B. Results common to atoms, linear, and nonlinear molecules

We first state a key result that holds for atoms, linear, and nonlinear molecules. We den
K the nuclei positions.

Proposition 3: LetfPCdiff
1 (R32K) and satisfying to the weak symmetry requirement (28).

QPG andg5fo Qo f21o Q21. Then
(i) g* r5r for any admissible density functionr.
(ii) J g(x)51 and ug(x)u5uxu.
(iii) ;xPR3, 'QxPG, g(x)5Qxx.
We first establish the following lemma.
Lemma 3: Let(C1 , . . . ,Cd)PG irr

set, (a i)PC, andC5( i 51
d a iC i . Then

rC̃5S (
i 51

d

ua i u2D S 1

d (
i 51

d

rC i D .

Proof: We haveTQC i5( j 51
d mi j (Q)C j for a given unitary irreducible matrix representatio

M (Q)5„mi j (Q)…. We recall the relations

1

m~G!
E

QPG
dm~Q! mi j ~Q!mkl̄~Q!5

1

d
d ikd j l .
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We also haverC5( i , j 51
d a īa j r i j , where, forN>2,

r i j ~x!5NE
(R3)N21

C̄ i~x,x2 , . . . !C j~x,x2 , . . . ! dx2¯dxN

~there is a formula of the same type whenN51!. Then we see thatr i j (Qx)
5(k,l 51

d mik̄(Q) mjl (Q) rkl(x). By integration over G and use of ~30!, we obtain r i j̃

5d i j @(1/d) (k51
d rkk# andrC̃5( i , j 51

d a īa j r i j̃ 5(( i 51
d ua i u2)@(1/d) (k51

d rkk#. h

Proof of Proposition 3:~i! We know that forCPGsùLa
2(R3N), TgC5C, and thusg* rC

5rC .
By definition ofGs , there exists (C1 , . . . ,Cd)PG irr

set, with C iPGsùLa
2(R3N), and such that

rC1
˜ be admissible. Then using Lemma 3, withC5C1 , we obtainrC1

˜ 5(1/d)(k51
d rC i

.

Let r be an admissible density function such that*r5*rC1
˜ . We apply Theorem 2 and obtai

an admissible deformationk solution of r5k* rC1
˜ . Let F i5TkC i . We have ; i , F i

PLa
2(R3N)ùGs @by the definition of subclasses, property~iii !# andrF1

˜ 5k* rC1
˜ 5r. We can also

write r5(1/d)(k51
d k* rC i

5(1/d)(k51
d rF i

. Then we apply g* and deduce thatg* r

5(1/d)(k51
d g* rF i

5(1/d)(k51
d rF i

5r. Also, by linearity ofr→g* r, we obtaing* r5r in the

case*rÞ*rC̃.
Then~ii ! and~iii ! are deduced from~i!. To prove~ii !, let r(x)5e2uxu. As in Proposition 2, let

r t(x)5t3r(tx) for t.0. Sincer t is admissible, by~i!, g* r t5r t . We then deduce thatug(x)u
5uxu andJg(x)51.

To prove~iii !, let xPR3, andX5$Qx,QPG%. Let r0 be some regular density function suc
that r0(x)51 for xPX, andr0(x),1 otherwise, and also such thatr5r 0̃ is admissible. Since
Jg(x)51, we haver„g(x)…5r(x). Note that„r(y)51…⇔yPX. Using r(x)515r„g(x)…, there
existsyPX such thatg(x)5y. This concludes the proof.~This argument holds for the continuou
point groups as for finite point groups.! h

We then deduce the following.
Corollary 1: Under the hypothesis of Proposition 3, we have that
(i) ;r admissible,f* r is totally symmetric;
(ii) ufu and Jf are totally symmetric functions; and
(iii) ;xPR3, ;QPG, 'QxPG such thatf(Qx)5Qxf(x).

C. Case of nonlinear molecules „G finite …

Theorem 3: Let G be finite, Gs a sub-class, and K the nuclei positions. Iff is in
C0(R3)ùCdiff

1 (R32K), such that;xPK, f(x)5x, and satisfying the symmetry requirement (2
then f is symmetric.

Proof: Let Q1PG andg5fo Q1o f21o Q1
21. For QPG we define

XQ5$xPR3,g~x!5Qx%.

Using Proposition 3,~iii !, we obtain

R35 ø
QPG

XQ .

We then want to show, by an argument using connected sets, that there existsQPG such that
R35XQ . Let Y be the set of invariant points~the union of the planes and axes of symmetry of
elements ofG!, i.e.,

Y5$xPR3; 'PPG, PÞId, Px5x%.

We have
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R32Y5øQPG~XQ2Y!.

The union is disjoint by choice ofY. SinceXQ is closed, the setXQ2Y is also closed inR3

2Y. HenceR32Y is a finite union of closed and disjoint setsXQ2Y, and therefore those sets a
also open inR32Y. Then, each connected componentC of R32Y is included into one of theXQ .
Note also that the setsC̄ are easily identified: they are convex cones~possibly separated by plane
P!. On such a setC,XQ , we haveg(x)5Qx, andDg(x)5Q is constant. ButDg is continuous
except eventually on the nuclei. So locally, on the sides of a planeP, it must be the sameQ.

Hence there existsQPG such thatg5Q. By definition of g, its Jacobian determinant i
non-negative, soQ is a rotation. Furthermore,K is invariant byG. Thus, if xPK, we obtain
Q1xPK and f(Q1x)5Q1x5Q1f(x) becauseK is also invariant byf. So, ;xPK, g(x)5x.
Henceg is a rotation with at least three nonaligned invariant points, andg5Id. h

D. Case of atoms

Let G5O(3), GÞ$0% a class of symmetry, andGs,G a subclass of symmetry. We deno
(r ,u,f)→(r f ,u f ,f f) the action of f in spherical coordinates, and alsoV5(u,f) and V f

5(u f ,f f).
We defineF by (r ,V)→(r f ,V), i.e., F(x)5r f(r ,V) ur(V).
Similarly, we definek by (r ,V)→„r ,V f(r ,V)…, i.e., k(x)5ur„V f(r ,V)…, and alsoJk5uJsu

whereJs is the Jacobian determinant ofk, i.e.,

Jsª
sin~u f !

sin~u! S ]u f

]u

]f f

]f
2

]u f

]f

]f f

]u D .

Theorem 4: Let f be in C0(R3,R3)ùCdiff
1 (R32$0%), and satisfying the symmetry requireme

~28!. Then we have following.
(i) r f and Jf are radial functions. In particular, F is symmetric. Furthermore, f5Fo k, and Js is

constant with Js561.
(ii) Case dim(G)51. If N51 (G5G0

1), any functionf as in (i) satisfies (28). If N>2 and if Gs

is admissible (see Definition 6), then (28) is satisfied if and only ifk is in O(3).
(iii) Case dim(G)>2. If Gs is admissible or if$0%ÞGSlater* ,GsùLa

2(R3N), then f5Js F. In par-
ticular, f is symmetric.

(iv) Then, in all cases [(ii) or (iii)], there existsh561 s.t. ;CPG, TfC5hTFC.

Proof: ~i! Corollary 1~ii ! shows thatr f andJf are radial functions. Sof5Fo k. Also, we recall
that Jf5r f

2 sin(uf)/„r
2 sin(u)… Jfs

where hereJfs
denotes the absolute value of the Jacobian

fs(r ,u,f)5(r f ,u f ,f f) in the spherical coordinates. Hence,Jf5JF uJsu, where JF
5„r f(r )/r …2 u(]r f /]r )(r )u depends only ofr . SoJs is radial.

Also, r→r f(r ) is monotone from ]0,̀ @ onto ]0,̀ @ , continuous and one to one. Henc
r f(0)50 and forr .0, (]r f /]r )(r ).0. SoF is admissible, andk5F21o f is also admissible.

Hence we can use the change of variable onS2: V→V f(r ,V) ~it is one to one and regular o
the sphere, and of JacobianJs!, and obtain*S2uJsu5*S21. But Js(r ) is constant onS2 and finally
uJs(r )u51 necessarily. h

To prove~ii !–~iv! we first prove some lemmas.
Lemma 4: Letg@Q#5ko Qok21o Q21 for QPG5O(3). The symmetry requirement (28)

equivalent to the following:

;CPGsùLa
2~R3N!, ;QPG, Tg[Q]C5C. ~30!

Proof: Let QPG. Note thatF and Q commute, soQo f5Qo Fo k5Fo (Qo k), andTfTQ

5TQo f5TQo kTF . Similarly, TQTf5Tko QTF . Hence@Tf ,TQ#5@Tk ,TQ#TF . But F andF21 are
admissible functions, so we haveTF„GsùLa

2(R3N)…5GsùLa
2(R3N). The symmetry requiremen

~28! becomes;CPGsùLa
2(R3N), @Tk ,TQ#C50, which gives Eq.~30! using Lemma 2. h
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Remark 1: ForC1PGs and C25TfC1 , we haverC2
˜ 5F* rC1

˜ .
To prove this remark, note thatrC2

5f* rC1
, i.e.,

rC2
~r ,V!5JF~r !uJs~r !u rC1

„r f~r !,V f~r ,V!….

Then we take the mean value onS2 and make a change of variableV→V f(r ,V) on S2, which
gives the result. h

We now state one more lemma, which will also be useful for linear molecules.
Lemma 5: LetgPCdiff

1
(R32K) with K finite. Then

~;CPGSlater* , TgC5C!⇒„;qPG (1), q~g!5q….

Proof: We recall thatJg51 andug(x)u5uxu ~Proposition 3!. WhenN51 the result is trivial,
so we supposeN.1. Let qPG (1) andF5„( i 51

N q(xi)…. Also, letC15AN@f1¯fN#, where (f i)
are radial and inL2(R3), andC5C1F. Using the hypothesis ong we obtainTgC5C5C1F on
one hand, and sinceJg51, TgC5TgC1 .TgF5C1(TgF) on the other hand. Then, for any s
(x1 , . . . ,xN) such that (iÞ j )⇒(uxi uÞuxj u) ~disjoint radius!, there exists a choice of continuou
radial functionsf iPL2(R3) such thatf i(xj )5d i j . In particular,C1(x1 , . . . ,xN)51 and we can
divide by C1 in C1(TgF)5C1F. So we obtain( i 51

N q„g(xi)…5( i 51
N q(xi) a.e. on R3N, from

which we deduce thatq„g(x)…5q(x) a.e. on R3 ~by integration onx2 , . . . ,xN!. h

Proof of Theorem 4 (continued):We first treat the case dim(G)51.
Case N51. NecessarilyG5G0

1 . Note thatk does not change the radial components~and
Jk51!, and this is the same forg@Q#5ko Qok21o Q21. Thus whenCPGs,G0

1 ~i.e., radial! we
haveTg[Q]C5C, and~30! is satisfied.

Case N>2. SupposingGs admissible, we can prove as in Sec. V thatg@Q#PO(3). Thus
Q→R(Q)5ko Qok21 mapsO(3) into O(3). Better,R is a continuous endomorphism ofSO(3)
@R(PQ)5R(P)R(Q), and if QPSO(3) thenR(Q) has positive Jacobian so is inSO(3)#. We
recall a classical result of Lie group theory.

Lemma 6: Let R be a continuous endomorphism of SO(3). Then only two cases may occu.
(a) ;QPSO(3), R(Q)5Id.
(b) 'SPSO(3), ;QPSO(3), R(Q)5S Q S21.
In case ~a! we would have;QPSO(3), k(Q)5k, so Q5Id, contradiction. Hence'S

PSO(3), ;QPSO(3), (S21k)o Q5Qo (S21k). Using Proposition 1 withG5SO(3), we ob-
tain S21k5e Id with e561. HencekPO(3).

Then f5Fo k5e SF, and TfC5Te IdTFC5hTFC for CPG and with h521 if ~G5G0
2

ande521!, and otherwiseh51.
We now treat the case dim(G).1. Let QPG andg5g@Q#. We want to prove thatg5Id ~so

that k56Id!.
Case G (1)Þ$0% and GSlater* ,GsùLa

2(R3N). First, we recall the character tables ofO(3)
5SO(3)3$Id,I % ~character values for Id,Cu, andI !:

O~3! Id Cu I

G l
1 2l 11 x l~Cu! 1

G l
2 2l 11 x l~Cu! 21

with x l~Cu!5

sinF ~2l 11!
u

2G
sinS u

2D ,

wherel PN, andCu is any rotation ofSO(3) of angleu. Thus for eachl PN, there exists exactly
two classes of symmetry of dimension (2l 11), denotedG l

e with e561 ~the parity!. For C
PG l

e andxPR3N, we haveC(2x)5eC(x).
Then let us define the spherical harmonicsYlmPL2(S2), for l PN andmP@2 l ,l #, as follows

~see Ref. 31!: Yl (2m)5(21)mYlm̄, and for m>0, Ylm(u,f)5clmPlm@cos(u)# ei m f, where the
Plm are defined using the Legendre polynomials, and whereclm.0 is such that*S2uYlmu251. We
recall that (Ylm)2 l<m< l is an irreducible family of symmetryG l

e , with parity e5(21)l .
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Now, in spherical coordinates,g(r ,V)5„r ,Vg(r ,V)…. By Lemma 5, we obtainYlm

5Ylm(Vg)5Ylm(ug ,fg) for mP@2 l ,l #. Since dim(G)>2, we havel>1 and thus we can take
m51. By definition of theYlm , we obtain ei fg5e1 ei f with e1561. Sofg5f1c, wherec
50 or c5p. We know that Jg51 for the Jacobian without an absolute value, thus
5(]ug /]u) sin(uf)/sin(u). We obtain cos(ug)5cos(u)1c1,c1 constant, so necessarilyc150. Fi-
nally, ug5u, andYl1(u,f)5Yl1(ug ,fg)5ei cYl1(u,f) implies c[@2p# andg5Id.

CaseGs admissible. As in the case dim(G)51, we obtainkPO(3). Let d5dim(G). For
(C1 , . . . ,Cd)PG irr

set and inLa
2(R3N), we haveTQC i5( j 51

d mi j (Q)C j @with d5dim(G)#, where
Q→M (Q) is irreducible. We have alsoTQTkC i5TkTQC i . We then make the scalar produ
with C j , and obtain;Q, M (Q)M (k)5M (k)M (Q). ThusM (k)5l Id, lPC, andl561 be-
causeM (k)PU(d). We have alsod5uTr„M (k)…u5ux l(u)u, whereu is the angle ofk. But note
that usin(d x)u<dusin(x)u, with equality only for x[0@p# ~becaused>2!. So d52l 11 is the
maximal value ofux l(u)u and is only obtained foru50@2p#, i.e.,k56Id. We then conclude as
in the proof of Theorem 4~ii !.

Finally, Theorem 4~iv! is deduced from~ii ! and ~iii !. h

E. Case of linear molecules

In this section,G5O(2) or G5O(2)3$Id,I %, and we suppose thatK,(Oz), the nuclei axis.
Let G be a class of symmetry, andGs,G a subclass of symmetry.

We also set some notations for the symmetry classes~listed below!, where we give the
corresponding character values.

O~2! I d Cu s

GA1
1 1 1

GA2
1 1 21

GEk
2 2cos~ku! 0

O~2!3$Id,I % Id Cu s I

GA1

1
1 1 1 1

GA1

2
1 1 1 21

GA2

1
1 1 21 1

GA2

2
1 1 21 21

GEk

1
2 2cos~ku! 0 1

GEk

2
2 2cos~ku! 0 21

We have denotedCu the rotationf→f1u, and s the symmetryf→2f @in the cylindrical
coordinates (r ,z,f)#. There are three different types of classes of symmetry:GA1

and GA2
, of

dimension one, and the classes of dimension two,GEk
~with kPN* !. For G5O(2)3$Id,I %, we

denotee5x(I )561 the parity ofG.
Finally, for f:R3→R3, we denote (r ,z,f)→(r f ,zf ,f f) the action off in cylindrical coordi-

nates, and similarly letF andk be defined by the following:

F: ~r ,z,f!→„r f~r ,z,f!,zf~r ,z,f!,f…,

k: ~r ,z,f!→„r ,z,f f~r ,z,f!….

Theorem 5: Let f be in C0(R3,R3)ùCdiff
1

„R32(Oz)…, and satisfying the symmetry requireme
(28).

(i) r f ,zf do not depend off, and 'e561, 'b(r ,z) such thatf f(r ,z,f)5e f1b(r ,z).
Furthermore, f5Fo k (with Jk51) and F is a symmetric deformation. [Also, if ;x
PK, f(x)5x, thenF is admissible.]

(ii) Case G5O(2). CaseG5GA1
. If N51, then the symmetry requirement is satisfied for a

functionf of the form given in (i). If N>2 and if Gs is admissible, then b(r ,z) is constant.
CaseG5GA2

•(N>2!. If Gs is admissible, then b(r ,z)5b is constant.

CaseG5GEk
. If $0%ÞGSlater* ,GsùLa

2(R3N), thene51, b(r ,z)5b, with k b[0@p#.
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(iii) Case G5O(2)3$Id,I %. The results of (ii) hold, withG5GA1

g or G5GA2

g or G5GEk

g ,

respectively.
(iv) The results of (ii) or (iii) give sufficient conditions for the symmetry requirement (28

all cases, there existsh561 such that;CPG, TfC5hTFC.

Proof: ~i! The totally symmetric functions aref-independent functions. By Corollary 1~ii !
and ~iii !, we obtain thatJf , r f andzf aref-independent.

We recall thatJf5(r f /r ) Jfc
, wherefc(r ,z,f)5(r f ,zf ,f f). Thus we obtain

Jf5
r f

r UD~r f ,zf !

D~r ,z!
U U]f f

]f U.
So (]f f /]f) is f independent, and there exists two functionsa(r ,z), b(r ,z) such that
f f(r ,z,f)5a(r ,z) f1b(r ,z). The 2p periodicity off f implies thata(r ,z) be a natural integer
and thus is a constant function. Butf is one to one and thusa561. Hereafter, we denotee
5a, andf f5e f1b(r ,z).

In the caseG5O(2)3$Id,I %, using Corollary 1, we obtain furthermorer f(r ,2z)5r f(r ,z)
anduzf(r ,2z)u5uzf(r ,z)u. But k is one to one and onto, soF5fo k21 is also one to one and ont
and necessarilyzf(r ,2z)52zf(r ,z).

As a consequence, in all cases,F is symmetric.@Furthermore,F is admissible if;xPK,
f(x)5x.# This concludes the proof of~i!. h

Remark 2: IfC1PG and C25TfC1 , thenrC 1̃
5F* rC 2̃

.
Proof: We have rC2

(r ,z,f)5JF(r ,z) rC1
„r f(r ,z),zf(r ,z),ef1b(r ,z)). If G5O(2) we

recall that r̃(r ,z)5 (1/2p) *0
2pr(r ,z,f) df. So we obtainrC 2̃

5F* rC 1̃
. The caseG5O(2)

3$Id,I % is similar. h

Lemma 7: Letg@Q#5ko Qok21o Q21 for QPG. The symmetry requirement (28) is equiv
lent to the following:

;CPGsùLa
2~R3N!, ;QPG, Tg[Q]C5C. ~31!

Furthermore, we haveg@Cu#5C(e21)u, g@s#:(r ,z,f)→„r ,z,f12b(r ,z)…, and g@ I #:(r ,z,f)
→„r ,z,f1b(r ,2z)1b(r ,z)….

Proof: As in the atom case, sinceF is symmetric, we have@Tf ,TQ#5@Tk ,TQ#TF for Q
PG and can conclude. Theng@Q# can be easily calculated in cylindrical coordinates. h

Proof of Theorem 5 (continued):To prove~ii !, we first treat the caseG5GA1
. If N51, for

CPGA1
we haveC(r ,z,f)5C(r ,z).

For N.1, we look at the conditions obtained in the previous lemma. WhenCPGA1
,

TC(e21)uC5C is satisfied becauseC(e21)u is a rotation.
Then, using~31!, the assumption thatGs is admissible, and withg5g@s#: (r ,z,f)→„r ,z,f

12b(r ,z)…, we obtain thatgPO(3). Thus b(r ,z)5b is constant. Sog@s#5C2b and for C
PG, Tg[s]C5C is satisfied.

Reciprocally, forCPG and f in the above form we can check thatTfC5Tk(TFC)5TFC
~becauseTFCPG!.

CaseG5GA2
. For N51, GA2

5$0%. For N.1, we proceed as before.

CaseG5GEk
. Let QPG andg5g@Q#. For CPGSlater* , we haveTgC5C, and we can apply

Lemma 5. We obtainc(g)5c for all cPGEk

(1) . In particular, usingc(r ,z,f)5f(r ,z) eikf @with

c(r ,z)Þ0#, we obtain ei k fg(r ,z,f)5ei k f. So fg2f is constant. Then, usingQ5s, we obtain
that fg2f52b(r ,z) so b(r ,z)5b is constant, and 2kb[0@2p#. With g5g@Cu#5C(12e)u we
obtain thatfg2f5(e21)u must be constant~for any u!, and thus necessarilye51. Now we
have obtained sufficient conditions one andb for Eq. ~31! to hold.
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Also, we havek(r ,z,f)5f1b with kb[0@2p# or kb[p@2p#. Then forCPGEk
we obtain

TkC5hC with h51 if 2k b[0@2p#, and h521 otherwise. In particular, we hav
TfC5Tk(TFC)5hTFC ~note thatTFCPGEk

becauseF is symmetric!. This concludes~ii !.
The proof of~iii ! is similar, because ifb(r ,z)[b, theng@ I #5C2b. Also, ~iv! is deduced from

~ii ! and ~iii !. h

VIII. EXTENSION OF THE RESULTS

~1!. An open question. We recall that if dim(G)51; then ~11! is equivalent to
Tf„GùLa

2(R3N)…,G. Still we were not able to answer the following question as in Theorem
In the case dim (G).1, doesTf„GùLa

2(R3N)…,G imply that f is symmetric?
~2!. Spin. The main techniques and results of the paper are stated onLa

2(R3N) but can be
extended to a wave function space including spin~for fermion or boson particles!, Tf being the
identity on the spin variables. For instance, in the electron case, instead ofLa

2(R3N) we may take
CP` i 51

N L2(Rs
3) where Rs

35R33$21,1%, and consider ~for N>2!: rC(x1)
5N(s1561* (R

s
3)N21 dz2¯dzNuC(z1 ,z2 , . . . ,zN)u2, where zi5(xi ,si)PRs

3 and *R
s
3 dzi

5(si561*R3 dxi .

Also, instead ofLa
2(R3N), other classes ofL2(R3N) with respect to the symmetry group of th

exchange of particles could have been considered~see Ref. 17, Chaps. I and IV!.
~3!. Pseudopotentials. Similar results holds for other potentials than in~9!. For instance, for

each atom centered atRj , ‘‘core’’ electrons may be represented by aneffective potentialv̂ j
eff ~or

pseudopotential!, i.e., an operator onL2(R3) and such that;QPO(3), v̂ j
effTQ5TQv̂ j

eff ~in the
case Rj is the origin!. For the N electrons that are left we may then usev̂(x)
ª( j 51

P $2Zj
eff/ux2Rj u 1 v̂ j

eff(x2Rj )%.
~4!. Periodic potentials. Symmetric deformations have also been used recently in Ref. 22

electron periodic model in order to make some steps rigorous in the SlaterXa approximation of
the Hartree–Fock exchange term. Here the symmetric deformations, in caseH is invariant by
translations tPG @in the sense that@H,Tt#50 for tPG and where TtC(x1 , . . . ,xN)
5C(x12t, . . . ,xN2t)# are the deformations that commute with the elements ofG, i.e.,

f~x1t!5f~x!1t, ;tPG, ;xPR3.

Using the ideas of this paper we can prove also that only such deformations can be used i
to haveTf(G),G, whereG is a symmetry class associated to the representationt→Tt . ~G is also
called a ‘‘Bloch’’ space and satisfiesTtC5ei t.uC, CPG, for someuPR3.! HereG is Abelian
and the irreducible representations ofG are of dimension one.

ACKNOWLEDGMENTS

The author deeply thanks C. Bigorgne, and P. Labastie for useful discussions. The auth
acknowledge B. Gre´bert for helpful comments, and J. P. Daudey, J. Bellissard, and E. Luden˜a for
discussions that motivated the present study. This work was performed at the Laborato
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13E. V. Ludeña, R. López-Boada, and R. Pino, ‘‘Generation of explicit energy–density functionals by local-sc

transformations,’’ inCondensed Matter Theories, edited by E. V. Luden˜a, P. Vashishta, and R. F. Bishop~Nova Science
Publishers, Commack, New York, 1996!, Vol. 11, pp. 51–62.

14O. Bokanowski and B. Gre´bert, ‘‘Deformations of density functions in molecular quantum chemistry,’’ J. Math. Ph
37, 1553~1996!.

15O. Bokanowski and B. Gre´bert, ‘‘Utilization of deformations in molecular quantum chemistry and application to dens
functional theory,’’ Int. J. Quantum Chem.68, 221–231~1998!.

16O. Bokanowski and B. Gre´bert, ‘‘A decomposition theorem for wave functions in molecular quantum chemistry,’’ M
Methods Appl. Sci.6, 437 ~1996!.

17O. Maurice-Bokanowski, Ph.D. thesis, The`se de Doctorat de l’Universite´ Paul Sabatier No. 2374, Universite´ Paul
Sabatier, Toulouse, France, 1996.
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A method for representing probabilistic aspects of quantum systems by means of a
density function on the space of pure quantum states is introduced. In particular, a
maximum entropy argument allows us to obtain a natural density function that only
reflects the information provided by the density matrix. This result is applied to
derive the Shannon entropy of a quantum state. The information theoretic quantum
entropy thereby obtained is shown to have the desired concavity property, and to
differ from the conventional von Neumann entropy. This is illustrated explicitly for
a two-state system. ©2000 American Institute of Physics.
@S0022-2488~00!03305-3#

I. INTRODUCTION

In quantum theory, the information about physical observables is contained in thestateof the
system, which is represented by a density matrixrb

a . This is because the expectation of a
observableFb

a in the staterb
a is given by the trace formula

^F&5rb
aFa

b , ~1!

and it is through such expectations that the statistical properties of measurement outcom
determined. For a state we requirerb

a to be nonnegative and to have trace unity. These prope
suggest that the density matrix can be viewed as a probability distribution. For example, ifrb

a is
nondegenerate, with distinct eigenvalues, then it admits a unique decomposition of the for

rb
a5(

i
wiPb

a~xi !. ~2!

HerePb
a(xi) denotes the normalized projection operators onto the eigenstatesxi of rb

a , and the
correspondingprobability weights wi satisfywi.0 and( iwi51. Some care has to be taken wi
this interpretation ofrb

a , because in the present context the underpinnings of classical proba
are missing, and the associated terminology can only be used, therefore, by analogy. Never
von Neumann,1 in pursuit of this analogy, was led by a series of ingenious arguments invo
the thermodynamics of a hypothetical gas of independent systems represented by a w
family of orthogonal pure states, to argue that the quantity

SvN52rb
a ln ra

b ~3!

a!Electronic mail: d.brody@damtp.cam.ac.uk
b!Electronic mail: lane–hughston@yahoo.com
25860022-2488/2000/41(5)/2586/7/$17.00 © 2000 American Institute of Physics
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represents the entropy of the staterb
a . In the example of the state~2!, for instance, we have

SvN52( iwi ln wi , which is the classical information entropy associated with the probab
distributionwi .

It is arguable, nevertheless, that the von Neumann entropy is inadequate as a basis
description of some physical situations. Suppose, for example, we make a measuremen
observable with distinct eigenstatesxi . Then the results of the measurement can be represe
statistically by the state~2!, where the weightingswi are given by the familiar transition ampli
tudes taken with respect to the initial state. In this case, the entropy of the distribution is i
given bySvN , since we know that a measurement of the observable results in one of the
statesxi being selected, and that the information thereby gained with the knowledge o
outcome precisely counterbalances the entropy of the staterb

a . However, this is a special state o
affairs, peculiar to the measurement problem, and there is certainly noa priori justification for
assuming in general, givenrb

a , that the system is in one or another of the eigenstates ofrb
a . In

fact, for a givenrb
a , the implied minimal information distribution on the space of pure states is

necessarily concentrated on the eigenstates, and indeed is generally of a smoother charact
shall demonstrate in what follows.

II. QUANTUM OBSERVABLES

In this article we introduce a more realistic formula for the entropy of a quantum state
expression for the quantum entropy is in line with that of Shannon; as a consequence, many
standard results for classical information entropy apply. The quantum entropy proposed
differs, in general, from the von Neumann entropy. However, like the von Neumann entrop
new entropy can be expressed in terms of the eigenvalues of the density matrix, as w
illustrate explicitly in the case of a system characterized by a two-dimensional Hilbert space
methodology has the advantage that it more satisfactorily takes into account the significa
information in modern quantum theory. Indeed, whereas von Neumann specifically accomm
into his thermodynamic analysis as extra information the assumption that the ensemble i
posed of a weighted system of pure states, each one of which belongs to a given complete
of orthogonal pure states, we make no such assumption here. Instead, we shall be gu
information theoretic principles.

The other key idea at our disposal, missing in von Neumann’s theory, is the recognitio
the space of pure states in quantum theory has the structure of a phase space; that is t
admits a natural symplectic structure. The quantum phase spaceG has the structure, more specifi
cally, of a complex projective space endowed with a Hermitian correlation between point
hyperplanes. A pointxPG represents a pure state, i.e., an equivalence class of wave func
belonging to the same ray in Hilbert space. When viewed as a real manifold,G is known moreover
to have a natural Riemannian geometry, given by the Fubini–Study metric, which has a co
ible symplectic structure associated with it.2 A typical quantum observableFb

a is given by a real
function F(x) on G of the form

F~x!5
c̄a~x!Fb

acb~x!

c̄g~x!cg~x!
, ~4!

whereca(x) denotes any wave function in the equivalence class associated with the pure sx.
With a slight but nevertheless very reasonable departure from the traditional terminology, w
refer to the functionF(x) itself as the observable. Then ifF(x) andG(x) are observables, thei
Poisson bracket with respect to the symplectic structure is also an observable, given byi times the
expectation of the commutator of the corresponding operators, taken in the pure statex. The
resulting algebra of quantum observables givesG the structure of a Poisson manifold, and as
consequence the Schro¨dinger trajectories of pure states are given by the integral curves o
symplectic vector field for which the generatorH(x) is the quantum Hamiltonian, here represen
by a function on the phase spaceG.
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III. QUANTUM STATES

We shall take the view here that ageneralquantum state is represented by a density funct
r(x) on G, satisfyingr(x)>0 and

E
G
r~x!dV51, ~5!

wheredV is the volume element associated with the Fubini–Study metric. Thus we can thi
r(x) as an ensemble on the phase spaceG. In some situationsr(x) has to be regarded as
distribution. For example, let us consider the measurement of an observableF(x) with distinct
eigenstatesxi , when initially the system is in a given pure statex0 . Then for the density function
corresponding to an ensemble consisting of a large number of independent identical copies
system we can writer(x)5d(x,x0) for the initial state, andr(x)5( iwid(x,xi) after the mea-
surement has been performed. Hered(x,xi) denotes a delta function onG, concentrated at the
point xi , andwi is the transition amplitude between the statesx0 andxi .

The expectation of an observableF(x) in the general stater(x) is given by the phase-spac
integral

^F&5E
G
F~x!r~x!dV. ~6!

To interpret this formula, we have to think ofF(x) as representing the conditional expectation
the observable in question, given that the quantum system is in the pure statex. Then we can
regard~6! as equatinĝF& with the unconditional expectation of the conditional expectationF(x).
The dynamical evolution ofr(x) is governed by the Liouville equation, where the Poisson brac
betweenr(x) andH(x) is determined by the symplectic structure onG. If r(x) is initially given
by a delta function concentrated on a single pure state, then it can be shown that subsequ
necessarily remains of that form, and the point of concentration follows a Schro¨dinger trajectory.

IV. DENSITY MATRIX

Now, suppose we introduce the projection operator

Pb
a~x!5

c̄b~x!ca~x!

c̄g~x!cg~x!
~7!

corresponding to the pure state represented by a generic pointxPG. Then, the general quantum
state can be expanded in terms of its moments.3 In particular, the lowest moment ofPb

a(x) in the
stater(x) gives rise to the density matrix of ordinary quantum mechanics,

rb
a5E

G
r~x!Pb

a~x!dV. ~8!

It follows from the formulas above that the expectation~6! agrees with the standard trace formu
~1!, providedF(x) is an ordinary linear observable of the form~4!, that is, of the formF(x)
5Fb

aPa
b(x). An advantage of the general expression~6! is that it can also be applied in the ca

of a nonlinear observable of the Kibble–Weinberg-type.4 It should be emphasized neverthele
that when we consider the statistical properties of ordinary linear observables, the formula
quantum mechanics on the phase spaceG that we consider here is equivalent to the conventio
Hilbert space approach.

Under suitable technical conditions the information in the stater(x) can be represented by th
totality of its moments, and a unique expansion of the form
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r~x!511mb
aPa

b~x!1mbb8
aa8Pa

b~x!Pa8
b8~x!1¯ ~9!

exists, where them-coefficients are trace-free and totally symmetric. A calculation then shows
thenth coefficient is given, up to a combinatorial factor, by the trace-free part of thenth moment
of Pa

b(x). It follows that the density matrix does not in general contain all of the informa
about the stater(x) of the system, since there may be further information in the higher mom

However, if we wish to consider the statistical properties of ordinary linear observables,
owing to formula~1!, it suffices to consider the density matrix exclusively. Because our inten
here is to investigate the entropy in ordinary quantum mechanics, we shall, in particular, ex
the consequences of assuming that the information encoded in the density matrix is th
information available to us.

In this context it is worth recalling the pioneering work of Mielnik,5 who regards the state in
ordinary quantum theory as an equivalence class of density functions, each of which gives
the same density matrix. We note, however, that from the present vantage point there is a
deficiency built into the assumptions of Mielnik’s approach, inasmuch as it treats all distribu
that give rise to the same density matrix on an equal footing. Clearly, some distributions c
more information than others, and according to the general principles of information theo
must look for the distribution that isleast informative, subject to the condition that it is consiste
with the prescribed density matrix.

V. QUANTUM ENTROPY

It should be evident from the foregoing discussion that the appropriate expression f
entropy of a smooth quantum stater(x) is given by the phase-space integral,

Sr52E
G
r~x!ln r~x!dV. ~10!

Becauser(x) is a probability density function defined on the smooth manifoldG, it follows that
Sr possesses the standard properties of the Shannon entropy. In particular, for any conve
bination of density functionsar11br2 , with a, b>0 anda1b51, we haveSar11br2

>aSr1

1bSr2
. The question we have to address here is thus: given a density matrixrb

a , how do we
express the corresponding quantum entropySr in terms of it? Clearly, for a generic density matri
there exist many different density functionsr(x) that give rise to the samerb

a . Therefore, it is not
a priori obvious whichr(x) we should select.

This problem can be resolved by recalling our assumption thatthe density matrix is the only
information available to us. This implies that the relevant density functionr(x) is the one with
minimum information, or maximum entropySr , subject to the constraint~8!. If we let lb

a denote
the Lagrange multiplier required for this optimization problem, then the solution is a distrib
of the multivariate canonical form

r~x!5exp~2lb
aPa

b~x!2 ln Z~l!!, ~11!

where the normalization factor here is given by the generating function

Z~l!5E
G

exp~2lb
aPa

b~x!!dV. ~12!

The Lagrange multiplierlb
a is determined, up to an arbitrary trace term, by the constraint

2
] ln Z~l!

]la
b 5rb

a . ~13!
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The result~11! is slightly surprising because in the literature of quantum theory the cano
distribution function normally arises in the context of the characterization of a system in the
equilibrium. As a consequence we are able in our investigation here to draw on analogie
ideas arising in statistical mechanics.

It follows from the expression for the minimum information distribution function that
quantum Shannon entropy associated with the density matrixrb

a is given by a Legendre transfor
mation

Sr5lb
ara

b1 ln Z~l!, ~14!

wherelb
a is determined by the relation~13!. Alternatively, we can combine~13! and ~14! and

defineSr according to the scheme

Sr5sup
l

~lb
ara

b1 ln Z~l!!. ~15!

In fact, one can show that lnZ(l) is convex on the vector subspace obtained by eliminating
trace oflb

a . The argument, as we indicate below, is reminiscent of the reasoning used to d
strate the positivity of the heat capacity in statistical mechanics. It follows that lnZ(l) is the
convex dualof the entropy, and thatSr is concave over the space of density functions. Mo
specifically, we find that

]2 ln Z

]la
b]lg

d 5E
G
r~x!~Pb

a2rb
a!~Pd

g2rd
g!dV, ~16!

which shows that the Hessian matrix of lnZ(l) is given by the autocovariance of the projectio
operatorPb

a(x), which is positive definite for trace-free displacements in the value oflb
a . Indeed,

the Hessian is independent of the tracela
a , since under the transformationlb

a→lb
a1mdb

a we have
Z(l)→e2mZ(l). It thus follows that~16! defines a positive definite Riemannian metric~the
Fisher–Rao metric! on the parameter space of the distribution~11!. Therefore, by convex duality,6

we conclude thatSr is concave on the space of density matrices in the sense that ifrb
a( i ) denotes

a system of density matrices fori 51,2,...,n and if $wi% is a corresponding set of probabilit
weights, then

SF(
i

wirb
a~ i !G>(

i
wiS@rb

a~ i !#, ~17!

whereS@rb
a# denotes the entropy~14! associated with a given density matrixrb

a .
This is our main result for the quantum entropy. To see thatSr differs fromSvN as a function

of rb
a we proceed as follows. Suppose, on the contrary, that there exists a constantA, independent

of rb
a , such thatSr5SvN1 ln A. Then solving forrb

a by use of ~3! and ~14! we obtain rb
a

5A exp(2lb
a)/Z(l), which implies that*GPb

a exp(2ld
gPg

d(x))dV5Aexp(2lb
a) holds for all lb

a .
Expanding each side to first order inlb

a , we reach a contradiction.

VI. TWO-STATE SYSTEMS

We have demonstrated that if the information at our disposal is given solely by the de
matrix rb

a , then the corresponding entropy is given by~14!. Conversely, any other form o
entropy, such as that of von Neumann, implies the knowledge of information in addition to th
rb

a , even if the entropy itself can be expressed in terms ofrb
a . Hence, in a strict sense, any oth

choice of entropy takes us outside of the category of linear quantum mechanics, which is c
tent with the fact that the von Neumann entropy gives the correct result in the case of a me
ment outcome. This implication is implicit in the optimization procedure used to obtain
probability distribution~11!.
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Given expression~14! for the quantum entropy, it is not necessarily readily obvious howSr

depends on the eigenvalues ofrb
a . In order to see this, all we require is the generating funct

Z(l) in ~12!. As an illustration, let us consider the case of a two state system. We choose the
where the density matrix is diagonal, with elementsr1 and r2512r1 . Becauselb

a commutes
with rb

a , in this basislb
a is also diagonal, with eigenvaluesl1 andl2 . TheG-space integration for

the generating functionZ(l) can be lifted toC2 with a spherical constraint onca(x). The
integration involves a Gaussian distribution~cf. Ref. 7!, and we obtain

Z~l!5~2p!3
e2l22e2l1

l12l2
, ~18!

from which it follows that

r15
1

l12l2
1

1

12el12l2
. ~19!

Then because the dependence ofrb
a on lb

a is only up to the eigenvalue difference, we can
l25l andl152l. With these expressions at hand, we can compare the quantum entropy
the von Neumann entropy. The qualitative behaviors ofSr(l) andSvN(l) in this example turn out
to be similar, though not quite identical, as illustrated in Fig. 1, where we compare plots fo
l-derivatives of the two entropies. The two curves agree in the pure-state limitsl→6`.

VII. DISCUSSION

Although we have only exhibited detailed explicit results here for two-state systems,
worth remarking that theG-space integration~12! for the general generating function also reduc
to a Gaussian integral, and that the derivation of the entropy thus remains tractable for al

FIG. 1. Comparison of the quantum state entropySr and the von Neumann entropySvN . The plots for the entropy
derivativedSr /dl ~lower-right curve! and the corresponding derivativedSvN /dl ~upper-right curve! for the von Neumann
entropy, for a two-state quantum system, show that the two entropies have qualitatively similar behavior.
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dimensionalities. It is interesting to note that in the general situation the minimal inform
density functionr(x) is smooth if and only if the density matrixrb

a is nondegenerate. Otherwis
r(x) takes the form of a distribution concentrated on the points ofG consisting of states orthogo
nal to the points ofG represented by null eigenvectors of the density matrix. Thus, for exampl
we indicated earlier, the minimal information state onG corresponding to the projection operat
onto a pure statex0 is simply the delta functiond(x,x0) on G concentrated at that point.

In summary, we have introduced here the idea of a probability density functionr(x) on the
space of rays through the origin of the Hilbert space that only reflects the information provid
the density matrix. Based upon this we were able to obtain the Shannon entropy for a qu
state, which, from an information theoretic point of view, is in many respects superior to
Neumann’s proposal for the entropy.

The utility of the distribution~11! does not exclusively reside, however, in studying t
entropy of quantum states. In fact, it can also be applied to numerous other probabilist
information theoretic aspects of quantum mechanics, as well as quantum estimation theo
example, the Lagrange multiplierlb

a in the foregoing analysis can be viewed as parameterizing
quantum staterb

a of the system. Then, in the problem of estimating an unknown quantum s8

it is of interest to consider the Fisher information matrix which determines the variance l
bound~cf. Ref. 9!. In the present context, this is given by the Hessian matrix~16! of the generating
function lnZ(l), which has the interpretation of being a Fisher–Rao metric on the parameter
of the distribution, and can be computed explicitly for a givenrb

a . The minimal information state
r(x) can also be used in the theory of quantum communication and computation. We hope t
approach put forth here will stimulate further insights into the understanding of quantum t
and quantum statistical mechanics.
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Renormalized Hamiltonian for a peptide chain: Digitalizing
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A renormalized Hamiltonian for a flexible peptide chain is derived to generate the
long-time limit dynamics compatible with a coarsening of torsional conformation
space. The renormalization procedure is tailored taking into account the coarse
graining imposed by the backbone torsional constraints due to the local steric
hindrance and the local backbone-side-group interactions. Thus, the torsional de-
grees of freedom for each residue are resolved modulo basins of attraction in its
so-called Ramachandran map. This Ramachandran renormalization~RR! procedure
is implemented so that the chain is energetically driven to form contact patterns as
their respective collective topological constraints are fulfilled within the coarse
description. In this way, the torsional dynamics are digitalized and become codified
as an evolving pattern in a binary matrix. Each accepted Monte Carlo step in a
canonical ensemble simulation is correlated with the real mean first passage time it
takes to reach the destination coarse topological state. This real-time correlation
enables us to test the RR dynamics by comparison with experimentally probed
kinetic bottlenecks along the dominant folding pathway. Such intermediates are
scarcely populated at any given time, but they determine the kinetic funnel leading
to the active structure. This landscape region is reached through kinetically con-
trolled steps needed to overcome the conformational entropy of the random coil.
The results are specialized for the bovine pancreatic trypsin inhibitor, corroborating
the validity of our method. ©2000 American Institute of Physics.
@S0022-2488~00!06105-3#

I. INTRODUCTION

In a broad sense, the renormalization procedure arises from the need to coarse grain
mation space in order to effectively compute kinetic or equilibrium properties.1,2 This simplifica-
tion of the microscopic dynamics by identifying the dominant variables has found a ge
realization in the context of critical phenomena following the tenets of the Wilson–Kada
approach.2 While the coarsening procedure is iterated progressively in systems with quen
disorder or statistical ensembles of equivalent units, the statistical-dynamical properties of
ing peptide chain might prove accessible if we tailor the coarse graining procedure to mat
specific torsional constraints of the system:3,4 The ~F,C! - torsional coordinates of each residu
may be viewed modulo the basins of attraction of the so-called Ramachandran map, th
potential energy surface~PES! governing the torsional dynamics of the residue. Such ba
represent the admissible regions within the constraints imposed by steric hindrances in ba
torsions and by the local side chain-backbone interactions. In turn, the Ramachandran m

a!Author to whom correspondence should be addressed. Electronic mail: arifer@criba.edu.ar
25930022-2488/2000/41(5)/2593/11/$17.00 © 2000 American Institute of Physics
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characterized by the distribution and topology of basins of attraction of the minima, with
basin coarsely representing either a bended or an extended local conformation of the ch5 as
shown in Fig. 1. Thus, if we were to view each pair of torsional coordinates~F,C! modulo the
Ramachandran basins of the particular residue, the actual geometry of the chain would b
immaterial: Only the topology as dictated by the local coarse states would be significan
compatible with the renormalization.

What really validates this ‘‘Ramachandran renormalization~RR! procedure’’ is the invariance
of the qualitative topographic features of the Ramachandran map throughout the folding pr
No new basins are formed or existing ones are fused, while the relative distribution in the
dimensional~F,C! - torus ~the Cartesian product of two circles! is preserved.6 Using high-
resolution folded structures, it has been found that over 90% of the residues lie in three do
in ~F,C! space corresponding to thea-helix, b-sheet, and left-handed helix regions~respectively,
basins 1, 2, and 3, in Fig. 1!. This means that the long-range hydrophobic and electrostatic t
in the full intramolecular potential do not affect significantly the topology and qualitative to
graphic features of the local PES, essentially determined by steric hindrance and intera
involving adjacentCb atoms of the side chains.7

This implies that the RR procedure warrants a scale invariance in the coarse grainingvis-a-vis
a topological representation of the chain conformation: Finer resolutions of the torsional sta
not alter the topological class of the whole chain determined by a Cartesian product of Ram
dran basins, one for each residue.

II. REPRESENTATIONAL TOOLS: DIGITALIZATION OF THE TORSIONAL DYNAMICS

A binary RR codification or digitalization of the coarse torsional state of the chain ma
easily implemented: For a chain of lengthN, we construct a binary vectors5(s(n,m)), with n
51,...,N andm51,2,3,4, so thats(n,m)51 if the ~F,C! coordinates for thenth residue lie in the
Ramachandran basinm, ands(n,m)50 otherwise.

Depending on the type of residue at contour positionn along the chain,s(n,m) might be
invariably 0 if basinm is absent from the type of Ramachandran map~cf. Fig. 2, see Refs. 6 and
7!. Thus, forL-alanyl-like residues~the most common type!, s(n,4)50. On the other hand, fo
glycine at thenth position,s(n,m) might be 1 for any of the four possible values ofm, whereas
for proline, we invariably gets(n,2)5s(n,4)50, and for a residue preceding proline~and differ-
ent from glycine and proline itself!, we always gets(n,3)5s(n,4)50.

Thus, vectors represents a Cartesian productV(s) defined as

V~s!5 )
n51,...,N

Vn~s!, ~1!

FIG. 1. Schematic representation of three basins of attraction in the Ramachandran plot for anL-alanyl-like residue, the
most common type in peptide chains. A fourth basin is absent in this case. Each basin is a region in a two-torus
~F,C! conformation space. The torsional coordinates of the side chain and of its linkage to the backbone hav
adiabatically eliminated and they show up in an averaged way, determining the qualitative topographic type of Ram
dran plot. The basins are labeled 1,2,3, corresponding to the extended~1! and bending~2 and 3! local topologies. The
bending could be planar~zero pitch! or nonplanar~nonzero pitch!, both situations being indistinguishable when torsion
coordinates are viewed modulo Ramachandran basins. The actual geometry is immaterial, due to the latitude i~F,C!
coordinates within each basin. Basins 1,2,3 are compatible with the geometries of theb sheet, left-handed helix, andR-a
helix, respectively.
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whereVn(s) denotes the Ramachandran basinm if and only if s(n,m)51. The regionV(s) has
an entropyS(s)5k ln Q(s), wherek is the Boltzmann constant andQ(s) is the volume of torsional
conformation space taken up byV(s). This volume is a fraction of the total torsional volum
(2p)2N, and is given by

Q~s!5 )
n51,...,N

E Vn~s!
dqn , ~2!

whereq5(q1 ,q2 ,...,qN)5(F1 ,C1 ,F2 ,C2 ,...,FN ,CN) denote the backbone torsional coord
nate vector. Thus, the entropy change associated to a transition to the coarse states starting from
the random coil or unconstrained state isDS5k ln@Q(s)/(2p)2N#.

This coarse representation enables us to determine the signature vectors( i ) for a specific
folding motif i, as exemplified in Fig. 3:s( i )(n,m)51 if residuen must necessarily bein basinm
to yield folding i, and s( i )(n,m)50 otherwise. A vectors5s( i ) will be called a pattern with
frustrationX5X( i) or anX pattern if a geometric realization in three dimensions~Fig. 4, cf. Sec.
V! represents ana priori possible contact pattern3,8 with X hydrophobic/polar (h/p) sidechain
mismatches in theh-h mapping of the primary sequence onto itself~giving all possibleh/h
contacts!.

III. THE RR HAMILTONIAN

At this point, we may introduce a canonical ensemble statistical dynamics compatible wi
Ramachandran coarse graining of conformation space. LetU5U(q) denote the intramolecula
potential energy as a function of the backbone torsional coordinates, obtained assuming th
batic elimination of side-chain torsional degrees of freedom. Then, subsuming the adiabatic
nation in the Ramachandran maps~the qualitative topography of the map is determined by the t
of side chain!, we may define the RR HamiltonianH5H(s) by means of the following averagin
procedure:

H~s!5E
V1~s!

E
V2~s!

...E
VN~s!

U~q1 ,q2 ,...,qN!dq1dq2 ...dqN /Q~s!5( iPWhi~X~ i!!s~ i !"s

5 F( iPWhi~X~ i!!s~ i ! G"s5( iPW( n51,...,N;m51,...,4hi~X~ i!!s~ i !~n,m!s~n,m!, ~3!

FIG. 2. Schematic representation of the four qualitatively different types of Ramachandran plots featuring the
location of the basins in~F,C! space. Types I–IV correspond respectively to anL-alanyl-like residue, glycine, a residu
preceding proline~other than glycine or proline itself! and proline.
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whereW is the family of all patterns with a given threshold level of admissible frustration~see
below!, andhi(X( i))5hi<0 denotes the pattern recognition enthalpy~cf. Refs. 3–5! for patterni
endowed withh/p mismatching frustrationX( i). We shall assumehi50 only if i represents the
random coil or a state frustrated beyond threshold levels. Then the generic Eq.~3! reflects the fact
that the coarse-grained energy is lowered through the formation of patterns. The p
recognition enthalpyhi represents an energetic compensation for forming patterns~cf. Refs. 3–5!
and penalizes imperfections according to a pattern recognition tolerance toh/p mismatches. We
observe that the enthalpy of formation of a particular patterni is not additive,7 since it contributes
to the HamiltonianH(s) as the sum(i8hi 8s

( i 8)"s( i 8), where the sum index denotes any subpatt
i8 of i, including i85 i. Thus, the vector(iPWhi(X( i))s( i ) acts as a ‘‘pattern scanner,’’ since th
identification of a patterni belonging toW lowers the overall potential energy by maximizing th
scalar products( i )"s. This means that an energetic compensation built into the RR Hamilto
materializes whenever a pattern is detected in thes vector.

The pattern-recognition enthalpy reflects the frustrated or imperfect conformity toh/p mis-
matching which may be overlooked with a certain probability during the pattern formation. T
following basic tenets of pattern recognition,9 we define a frustration-dependent input parame
z( i) as follows:

z~ i!5Arctanh$2@L~ i!2X~ i!/L~ i!#21%, ~4!

FIG. 3. Consensus for an antiparallelb sheet made up of a sequence of eightL-alanyl-like residues~A! in a schematic
version of the~F,C! space for each of the residues involved. The representation adopted is described in Figs. 1 a
fixed vector has been added below the scheme of the Ramachandran plot to indicate whether the residue is hyd
~dark left square!, neutral~dark central square! or polar~dark right square!. Theh-h complementarities within an admitted
level of tolerance are thus determinant of the patterns which may only form as the correct basin is adopted by the co
residues. In~B!, the consensus for anR-a helix interrupted by the presence of a proline is featured. The residue prece
proline is inhibited from adopting the basin 3 conformation required by the structural motif~cf. Fig. 2!. The signature
vectors for both motifs~A! and ~B! are also provided.
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whereX( i) is the number ofh/p mismatches, andL( i) is the total number of pairs of residue
engaged in intrachain contacts for patterni. Thus,z( i)51` in the perfect matching limit~zero
frustration!, while z( i)52` in the totally frustrated case. Since we shall adopt the canon
logistic activation function,9 our choice of input parameter stems from the need to amplify
effect of frustration accordingly. The logistic output functionp( i) represents the probability o
tolerating theX( i) frustrated contacts:

p~ i!5@11exp~2z~ i!!#21. ~5!

Thus, we obtainp( i)51 if X( i)50 andp( i)50 if X( i)5L( i). Given a threshold valueu for the
frustration tolerance, the pattern-recognition enthalpy may be now given in terms of the o
function ashi(X( i))5hi5hL( i)p( i), for X( i)<uL( i) andhi(X( i))5hi50 for X( i).uL( i). The
scaling factorh'3.1 kcal/mol may be fixed through accessible calorimetric data, and reflect
probability of thermally induced pattern transitions.10–13 The numerical value ofh is obtained
assuming that at the actual denaturation temperature, the formation of any critical bubble
existing pattern forms with at least 50% probability. Beyond the threshold valueu for frustration
tolerance, the stability of patterns is so severely compromised as to render them unfeasib

The RR Hamiltonian yields a torsional frustration funnel14 which tends to ‘‘correct’’ torsional
incongruities in a seeding structure in order to complete the formation of a pattern: Suppo
Hamming distanced(s,s( i )) betweens and a specific pattern with signature vectors( i ) is small, that
is, d(s,s( i )),a( i)/2, where

d~s,s~ i !!5~4N!21( nPI ~ i!( m51,...,4us~ i !~n,m!2s~n,m!u ~6!

with I ( i )5$n:1<n<N ands( i )(n,m)51 for certainm5m(n)%; and

a~ i!5MinimumjPV~ i !d~s~ j !,s~ i !!, ~7!

FIG. 4. Conformation within ana-Carbon model of the protein backbone as defined by the~F,C! variables. The virtual
bonds~dashed lines! joining a-Carbons are of fixed length due to the torsional rigidity of the peptide bonds~thickest lines!.
A local conformation involving three residuesn21, n, andn11 is represented. The local conformation is specified by t
coordinates: The planar angle between virtual bonds (n21,n) and (n,n11), and the angle between the planesp(n
21),p(n).
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whereV( i ) is the set of patterns which are more complex thani, that is, those involving additiona
constraints~their signature vectors contain other nonzero coordinate values besides those os( i )!.
Under such conditions, the canonical ensemble dynamics will tend to minimize the ener
‘‘perfecting’’ the proto-pattern identifiable ins, that is, by makingd(s,s( i ))→0. This is so because
this process progressively decreases the quantityH(s) with a minimal alteration ofs, that is, with
the minimum entropic cost. This is easily proven by noticing thatd(s,s( i ))50 implies that the
scalar products( i )"s is maximized. Thus, a patterni will be called saturating ifa( i).(4N)21

5minimum nonzero Hamming distance. This means that patterni cannot evolve into a more
complex pattern by a single transition between Ramachandran basins. Thus, a saturating pi
is contained in an open ballB( i,a( i)/2) centered ins( i ) and with radiusa( i)/2, such that every
state sPB( i,a( i)/2) relaxes invariably toi with the minimum expenditure in conformationa
entropy. We may say thatB( i,a( i)/2) is contained in the basin of attraction ofi in s space. On the
other hand, a nonsaturating patternj is one such that every ballB( j ,D) for any nonzero radiusD
contains a more complex pattern. Such is the case with the nucleating pattern for ana-helix of
b-sheet formation: A zipper effect reflecting the least additional entropic cost would mak
pattern increasingly more complex by means of a cascade of Ramachandran basin tran
positioning one by one a sequence of adjacent residues in the correct Ramachandran basvis-a-
vis the target saturating pattern5 until no more structural organization is possible.

The nucleation effect in pattern formation is readily captured by the RR Hamiltonian:
patterni contains a subpatterni8 which may act as a kernel for structure growth~for example, a
single turn in ana helix!. Then, the formation ofi8 detected in vectors would be signaled by a
decrease in energy due to the maximization of the scalar products( i 8)"s. Thus, the nucleating
pattern in thes vector represents a local energy minimum which has a chance to survive
further structural growth takes place.

On the other hand, the destructive effect of adjacent~as opposed to isolated! h/p mismatches
on the formation of a critical size bubble3–5 is also taken into acount in our Hamiltonian: Suppo
that two adjacent, as opposed to isolated, mismatches occur in a patterni, then, there is a highe
probability that there exists a subpatterni8 of i containing enough mismatches so that the frus
tion thresholduL( i8) is surpassed fori8:X( i8)>uL( i8), or hi 850. In turn, the destruction o
subpatterni8 induces the dismantling of the entire patterni. This is so since the destruction ofi8
turns it into a critical size bubble for a bigger subpatterni9 of i. Oncei9 is dismantled, it turns into
a critical size bubble for an even bigger subpattern, and so on, until the entire patterni is dis-
mantled.

IV. MONTE CARLO STEPS AND THE REAL-TIME PROBLEM

To investigate the kinetics of intramolecular folding steps along the dominant pathway
need to correlate MC steps with real-time intervals. To do this, let us first classify chain uni
a given states according to whether they represent free residues~class I!, residues engaged in
secondary structure~class II!, or residues engaged in tertiary structure~class III!. SupposeL units
of one particular class are altered~their Ramachandran basin is changed! in a single MC step
determining the transitions→s8. The first mean passage timet(s→s8) to getL units in a basin
different from the starting basin may be obtained by adopting Zwanzig’s equation15 to getL binary
and equivalent units in the correct state, while defining ‘‘correct state’’ for a residue as a
achandran basin different from the one designated by vectors. Thus, we get

t~s→s8!5~ f 2132L!/L, ~8!

where f 51011, 107, or 103 s21 are respectively the mean frequencies of transition between R
achandran basins for residues of classes I, II, and III.3,5

In order to connect our simulations with real-time kinetics using Eq.~8!, we need to impose
a restriction on the type of MC steps allowed: Only residues of the same class may be alte
each step. In this case, an allowed transitions→s8 in the simulation represents a time leng
t(s→s8) along the real-time axis. Even though any of the three classes of residues may be c
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an MC step involving class II or class III residues, representing a long time step, is less lik
be accepted than one involving class I residues. This is so since altering class II or cla
residues means actually dismantling secondary or tertiary structure, an operation which rai
energy (DH.0). Thus, kinetic control becomes compatible with the dynamics dictated by the
Hamiltonian.

V. RESULTS

The topological error-tolerant dynamics obtained from the RR Hamiltonian described in
II–IV is now generated to infer the dominant folding pathways of the protein bovine pancr
trypsin inhibitor~BPTI!, as well as the main structural features of the native conformation an
significant kinetic bottlenecks.3,5,16–20 The results show that this method, when applied wit
suitable tolerance limits, reproduces the essentials of the probed folding pathway for BP
elusive object given the low population of the intermediates at all times.5,16–20A representative
three-dimensional realization or optimal realization of the topology~ORT! of eachs state will be
generated by adopting for thenth residue withs(n,m)51, theF, C coordinates corresponding t
the energy minimum in Ramachandran basinm.

For visualization purposes, we have introduced a beadeda-Carbon model of the protein, s
that the ORT for ans state may be represented as a conformation of a tube wrapping a bead
virtual-stick backbone. In essence, we introduce a lattice model which differs from existing8

in that ours is tailored upon the Ramachandran constraints. Since the distance between a
a-Carbons in a chain remains fixed due to the torsional rigidity of the peptide bonds, we
define a bead model with virtual bonds joininga-Carbons in which the Ramachandran~F,C!
coordinates for a given residuen define the two coordinates necessary to specify beaded co
mations: ~a! The planar angle sustained by the three virtually connecteda-Carbons C(n21),
C(n), and C(n11); and~b! the angle between the plane containing the (n21,n)-peptide bond,
C(n21) and C(n), and the plane containing the (n,n11)-peptide bond, C(n) and C(n11) ~Fig.
4!. If the ~F,C! coordinates are viewed modulo Ramachandran basins and taken to ado
minimum values within the basins, each conformation of the beaded object becomes a wa
nonsymmetric lattice, where each vertex is a plausible optimized position for ana-Carbon relative
to the neighbor beads and dictated by the choice of Ramachandran basin for the particular r
Since the optimized ORT positions fora-Carbonn are determined by the Ramachandran map
residuen ~while every other coordinate is assume fixed!, the total number of vertices in the lattic
becomesM5Pn51,...,Nq(n), whereq(n) is the number of basins in the Ramachandran map
residuen. Thus, unlike in most bead model proteins which are taken to fold within a cubic latt8

the actual geometric constraints imposed by the Ramachandran maps make the movem
adjacent virtual bonds correlated and the lattice, nonsymmetric and irregular. The dominan
sequence displayed in Figs. 5~A!–5~D! has been obtained for a representative MC run consis
of 106 steps withu520%. Each of the 62 runs performed for BPTI under renaturation condit
at T5298 K revealed the same ORT sequence with a real-time chronological variance
occurrence of each ORT of less than 1/10 ns.

Each MC steps→s8 consists in altering the states only if we obtain a lower energy stat
(DH,0) or a state accessible by thermal fluctuations~r * ,exp(2DH/kT), with r * , a realization
of a uniform random variabler P@0,1#!. The altered states8 is obtained from the starting states
according to the following rules:~a! The units to be altered belong to a single class~I, II, or III !
and the number of units to be altered is a realization of a uniform random variable takin
integer valuesL51,...,N~I!, L51,...,N~II !, and L51,...,N~III !, where N~I!,N~II !,N~III ! denote
respectively the number of units in class I, II, and III in thes state.~b! Once the class andL have
been picked, a lottery determines which units are to be altered.~c! If, say, unitn has been picked
a lottery with as many possible outcomes as its possible Ramachandran basins determine
Ramachandran basin will be picked for residuen in states8.

We shall focus on determining significant folding intermediates and the late kinetic b
necks which occur within the first 1022 s of the renaturation process, a time span that requires6

MC steps. Our aim is to show how the dominant sequence of ORT transitions for the
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describes the dominant folding kinetics, reproducing the essential cooperative features
experimentally probed folding pathways, including the late scenario in which tertiary interac
direct and stabilize the native Cys-Cys~5,55! contact~cf. Refs. 16–20, Cys5cysteine!. The actual
renaturation conditions involve a particular redox environment so that intramolecular dis
bonds become sufficiently labile so as not to entrain or subordinate the formation of seco
structure. The reducing conditions are such that the mean time scale of formation, disma
and recombination of intrachain Cys-Cys disulfide bonds lies within the 1027 s ~Refs. 3 and 5!,
and does not interfere with the folding process.

How does cooperativity materialize in the folding of BPTI? To answer this question
follow Sec. IV and examine the estimated mean timest’s to form Cys-Cys disulfide contact
starting from a random coil conformation:

t~5,55!'104 s; t~30,51!'1.631021 s. ~9!

Throughout this section, the numbers in brackets, as in Eq.~9!, will denote the contour values o
residues engaged in a putative contact. Direct inspection of Eq.~9! reveals that such native
contacts take a long time to form and can only be created cooperatively within the time
under investigation. On the other hand, the third native Cys-Cys contact~14,38! may form directly
within time scales commensurate with the occurrence of tertiary contacts:

t~14,38!'1.331023 s. ~10!

The sequence of ORTs taken within the time span of 106 MC steps is consistent with th
previous analysis and reveals the expedient followed by the molecule to form its native co
Four revealing images of the time evolution of the ORT are displayed in Figs. 5~a!–5~d!. The

FIG. 5. ~a!–~d! Four snapshots of a canonical esemble simulation obtained adopting the RR-HamiltonianH(s). The three
dimensional objects are optimal realizations of the topology~ORTs! dictated by the evolvings vector. The corresponding
snapshot times have been averaged over 62 runs of 106 MC steps each. They are respectively: 3.231024,1.331023,1.3
3102313.231027 s ~the third snapshot is taken 229 MC steps after the second!, and 1.33102313.23102710.5
31022 s.
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corresponding snapshot times averaged over all 62 runs are respectively 3.231024,1.3
31023,1.33102313.231027 s ~the third snapshot is taken 229 MC steps after the second!, and
1.33102313.23102710.531022 s.

To understand the role of frustration tolerance we have also run 28 simulations of the s
totally intolerant version (u50%) of the algorithm. In this case, the structure development d
not go beyond the ORT displayed in Fig. 5~b!, which reveals the nonnative disulfide bond~5,30!,
as well as part of a complex 3b-sheet motif and some helix structure. At this point, the intolera
to contact mismatches prevents the formation of further secondary structure and also preve
formation of tertiary interactions which would stabilize the secondary motifs. Thus, theb-sheet
complex motif never gets completed, and its respective seeding motif does not get further
lization necessary for its survival. This is so, since that would require tolerance to mismatc
the tertiary contact as well as in the rest of the secondary structure motif. Thus, the le
organization displayed in Fig. 5~b! is preserved through only 220 steps and then, just as the ke
for structure destruction are formed as critical bubbles, the structure recedes back to th
displayed in Fig. 5~a!. Thus, the two ORTs of Figs. 5~a! and 5~b! are kinetically interconvertible
at u50%, and frustration intolerance would force the system to oscillate between them w
ever reaching the active folded form.

Nucleation windows of the form shown in Fig. 3~B! seeding the formation of ana-helix
appear in the~43–58! extreme of the molecule within the range of time scales 8.831024– 9.8
31024 s. The time scale of formation of~14,38! given in Eq.~10! is also a good estimate judgin
from the examination of Fig. 5. The snapshot taken at 1.331023 s @Fig. 5~b!# displays this native
contact, as well as fully and partially developed secondary structure elements such as thea-helix
and a two-strand portion involving the contour region~20–33! of theb-sheet complex motif. The
nucleating events leading to the two-strand portion of theb-sheet motif take place in the~20–33!
region of the chain within the same time interval as those triggering the formation of the
These motifs get dismantled unless tertiary structure develops within their lifetime of app
mately 220 MC steps, which can only happen in the tolerant version of our simulation.

Tertiary contacts between thea-helix and the complexb-sheet require the closure of the loo
in contour region~33–43! and start developing between the incompleteb-sheet and the helix 190
steps after the time when the last snapshot displayed in Fig. 5~b! was taken. This coincides
precisely with the time estimation for closure of the 10 loop with five polar groups within
~33–43! region of the BPTI:

t~tertiary interaction!'3.231027 s. ~11!

We emphasize that this is a renormalized calculation that assumes the previous forma
secondary structure.

At this point, the nonnative~5,30! Cys-Cys bond is completely dismantled to give rise to
native~30–51! contact induced and stabilized by the tertiary interaction, as a direct observat
the third snapshot@Fig. 5~c!# reveals. This pathway reveals how the formation of~30,51! is
expedited by cooperative folding, in agreement with recent findings.19 Furthermore, during the
time span of development of the first tertiary contact, the complexb-sheet motif continues to
develop, fostering other tertiary interactions between the two dominant secondary structu
ments. Since folding and unfolding of tertiary structure exchanges on the 1023 s fast NMR time
scale, the locking of such class III residues at the mean 103 s21 frequence peak warrants th
survival of the initial tertiary consensus while contact~30–51! forms and theb sheet is completed
It could not have been completed unless there was frustration tolerance in the folding pr
enabling the initially weaka-helix -b-sheet tertiary contact to form, thus allowing the complet
and further engagement of the full 3-strandb-sheet motif which ultimately interacts with th
a-helix.

Finally, the ~5,55! disulfide bond that would initially take a forbiddingly long time to form
now entails the closure of a complex 29-loop with no polar orientation demands: This lo
made up of the quasi-coil~5–20! region, theb-sheet~20–30! region, and the quasi-coil stran
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~51–55!. Notice that the formation of the native~30,51! contact has short-circuited the loo
closure for the~5,55! contact, so that the estimated time for this interaction is now:

t~5,55!'0.531022 s. ~12!

This estimation of the rate-determining step in BPTI folding is corroborated by examination o
fourth snapshot@Fig. 5~d!#, and confirms previous estimations,16–20 in the sense that contac
~30,51! occurs 105-fold more rapidly than~5,55!. Thus, the RR-Hamiltonian dynamics not on
predicts with good accuracy the tertiary structural elements of the BPTI but it also shows
cooperative effects can serve as an expedient to aid the formation of native interactions s
the hydrophobic core.

None of the kinetic intermediates displayed in Figs. 5~a!–5~c! is significantly populated a
renaturation temperature, since their formation requires that the large conformational entr
the random coil be overcome, and this can only be done by maximizing relatively earl
number of contacts formed@Fig. 5~b!#. Under solvent conditions, less reductive than those ado
in this work, the enthalpic compensation would have been provided by the formation of Cy
disulfide bonds.20 Thus, the ORTs shown in Figs. 5~a!–5~c! are metastable, but they determine t
funnel-like landscape leading to the active conformation, a region only accessible through
cally controlled steps. Once the funnel is reached at a large entropic expense, its sho
intermediates formed face a lower kinetic barrier in reaching higher levels of organization
they do in unfolding. This phenomenon is indeed what the chronological sequence shown in
5~a!–5~d! reveals.

VI. CONCLUDING REMARKS

The steric hindrance in backbone torsions of a peptide chain defines a two-dimensional~F,C!
distribution of a small number of local torsional isomeric states~rotamers! for each residue. Each
of these distributions is qualitatively~topologically! invariant throughout the folding process,
fact that enables us to digitalize the torsional dynamics. In turn, this digitalization mak
computationally feasible to study the folding process by regarding it as the long-time limit
coarse version of torsional dynamics. Thus, the digitalization is realized by a renormaliz
procedure, enabling us to assess the microscopic origin of the expediency of the folding p

The approach introduced in this work is essentially topological since each recognizabl
tern is meant to encompass the vast geometric latitude inherent to anN sequence of Ramachandra
basins, and thus each pattern admits manifold geometric realizations. As such, our perspe
compatible with other attempts at characterizing the nature of the transition state ensem
protein folding kinetics.21,22 Such approaches emphasize the need to obtain the correct coll
competent topology in the nucleating event and suggest that the transition state ensemble is
determined by the protein topology which prevails over energetic frustration. Getting the c
topology requires a balance between the secondary and tertiary structure contributions
stabilization energy, a feature readily captured in our renormalization treatment, which dee
sizes the hierarchical ‘‘simple-to-complex’’ scenario of folding in favor of a rough initial sea
for a nucleating topology which might trigger the final hydrophobic collapse.

ACKNOWLEDGMENTS

A.F. thanks Professor R. Stephen Berry for enlightening discussions and kind hosp
during the author’s stay at the University of Chicago. This work has been partially support
the Alexander-von-Humboldt Stiftung~Bonn!, the J. S. Guggenheim Memorial Foundation~New
York City!, and the US-Argentina Fulbright Bilateral Commission. A.F. is a principal investig
with the National Research Council of Argentina~CONICET!.

1K. Wilson, Phys. Rev. B4, 3184~1974!.
2L. Kadanoff, Phys. Rev. Lett.23, 1430~1969!.
3A. Fernández and A. Colubri, J. Math. Phys.39, 3167~1998!.
4A. Fernández, J. Stat. Phys.92, 237 ~1998!.
                                                                                                                



,

2603J. Math. Phys., Vol. 41, No. 5, May 2000 Renormalized Hamiltonian for a peptide chain: . . .

                    
5A. Fernández, Phys. Chem. Chem. Phys.1, 861 ~1999!.
6J. Thornton, inProtein Folding, edited by T. E. Creighton~W. H. Freeman, New York, 1992!, pp. 59–63.
7C. Cantor and P. Schimmel,Biophysical Chemistry, Vols. I–III ~W. H. Freeman, New York, 1980!.
8K. A. Dill and H. S. Chan, Nat. Struct. Biol.4, 10 ~1997!.
9D. E. Rumelhart, J. C. McClelland, and the PDP Group,Parallel Distributed Processing~MIT Press, Cambridge, 1988!.

10Y. M. Bai and S. W. Englander, Proteins: Struct., Funct., Genet.24, 145 ~1996!.
11D. A. Brant, Macromolecules1, 291 ~1968!.
12V. J. Hilser, J. Gomez, and E. Freire, Proteins: Struct., Funct., Genet.26, 123 ~1996!.
13J. A. Daquino, J. Gomez, V. J. Hilser, K. H. Lee, L. M. Amzel, and E. Freire, Proteins: Struct., Funct., Genet.25, 143

~1996!.
14M. Skorobogaty, H. Guo, and M. Zuckermann, Phys. Rev. E55, 7354~1997!.
15R. Zwanzig, Proc. Natl. Acad. Sci. USA92, 9801~1995!.
16T. E. Creighton, N. J. Darby, and J. Kemmink, FASEB J.10, 110 ~1996!.
17T. G. Oas and P. S. Kim, inProtein Folding, edited by L. M. Gierasch and J. King~Am. Assoc. Adv. Sci., Washington

1990!, p. 123.
18T. E. Creighton, inProtein Folding, edited by L. M. Gierasch and J. King~Am. Assoc. Adv. Sci., Washington, 1990!,

p. 157.
19N. Go, Annu. Rev. Biophys. Bioeng.12, 183 ~1983!.
20J. Kemmink and T. E. Creighton, J. Mol. Biol.234, 861 ~1993!.
21H. Nymeyer, A. E. Garcı´a, and J. N. Onuchic, Proc. Natl. Acad. Sci. USA95, 5921~1998!.
22J. E. Shea, J. N. Onuchic, and C. L. Brooks, Proc. Natl. Acad. Sci. USA96, 12512~1999!.
                                                                                                                



d
ifolds
ng

to Eqs.

c

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 5 MAY 2000
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Bogoliubov Laboratory of Theoretical Physics,
JINR, 141980 Dubna, Moscow Region, Russia

~Received 6 December 1999; accepted for publication 28 January 2000!

We consider holomorphic BF theories, their solutions and symmetries. The equiva-
lence of Čech and Dolbeault descriptions of holomorphic bundles is used to de-
velop a method for calculating hidden~nonlocal! symmetries of holomorphic BF
theories. A special cohomological symmetry group and its action on the solution
space are described. ©2000 American Institute of Physics.
@S0022-2488~00!05505-5#

I. INTRODUCTION

Let Z be a complexn-dimensional manifold,G a ~complex! semisimple matrix Lie group,g
its Lie algebra,P a principalG-bundle overZ, A a connection one-form onP, and FA5dA
1A`A its curvature. Consider the following action:

ShBF5E
Z
Tr~B`FA

0,2!, ~1.1!

whereB is an adP-valued (n,n22)-form onZ, adPªP3Gg, andFA
0,2 is the~0,2!-component of

the curvature tensorFA . The field equations for the action~1.1! are

]̄A0,11A0,1`A0,150, ~1.2a!

]̄B1A0,1`B2B`A0,150, ~1.2b!

where]̄ is the ~0,1!-part of the exterior derivatived5]1 ]̄ andA0,1 is the ~0,1!-component of a
connection one-formA5A1,01A0,1 on P.

Notice that Eq.~1.2a! coincides with the compatibility conditionsFA
0,25 ]̄A

250 of Eq. ~1.2b!,
]̄A5 ]̄1A0,1. It follows from Eqs.~1.2! that models~1.1! describe holomorphic structures]̄A on
bundles over complexn-manifolds Z and ]̄A-closed adP-valued (n,n22)-forms B on Z. So,
theories with the action~1.1! generalize topological BF theories1,2 which give a field-theoretic
description of flat connections on bundles over realn-manifolds. Models~1.1! can also be con-
sidered as a generalization of holomorphic Chern–Simons–Witten theories3,4 defined in three
complex dimensions. Theories with the action~1.1! have been introduced in Ref. 5 and calle
holomorphic BF theories. They can be useful in describing invariants of complex man
~Ray–Singer holomorphic torsion and the others! and compactified configurations in superstri
theory.5 We believe holomorphic BF theories~hBF! deserve further developing.

The purpose of the present paper is to describe a procedure of constructing solutions
~1.2! and mappings of solutions into one another~dressing transformations!. We describe a pa-
rametrization of solutions to Eqs.~1.2! by transition functions of topologically trivial holomorphi
bundles and elements of Dolbeault cohomology groups. We show that all~dressing! symmetries of
Eqs.~1.2! can be calculated with the help of homological algebra methods.

a!Electronic mail: ita@thsun1.jinr.ru
b!Electronic mail: popov@thsun1.jinr.ru
26040022-2488/2000/41(5)/2604/12/$17.00 © 2000 American Institute of Physics
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II. FIELD EQUATIONS OF hBF THEORIES AND THEIR SOLUTIONS

A. Flat „0,1…-connections and functional matrix equations

We consider a complexn-manifold Z, a principal G-bundle P over Z and a connection
one-formA on P. The curvatureFA5dA1A`A of a connectionA splits into components,

FA5FA
2,01FA

1,11FA
0,2,

and the (0,2)-component of the curvature tensor is

FA
0,25 ]̄A

25 ]̄A0,11A0,1`A0,1.

The ~0,1!-componentA0,1 of a connection one-formA5A1,01A0,1 will be called the ~0,1!-
connection.

For simplicity we shall consider a trivialG-bundleP0.Z3G. Then for the adjoint bundle
adP05P03Gg we have adP0.Z3g, whereg is the Lie algebra of a groupG. Generalization to
the case of nontrivial bundles is straightforward and not difficult. We denote by

Vp,q~Z,g!

the space ofg-valued smooth (p,q)-forms onZ. Taking a formBPVn,n22(Z,g), we introduce
the action~1.1! of holomorphic BF theory and consider field equations~1.2!.

Solutions of Eq.~1.2a! are flat (0,1)-connectionsA0,1. They can be described in differen
ways. To show this, let us fix a coveringU5$Ua% of a complex manifoldZ, aPI . Then consider
a manifold

U (0)[Z5ø
aPI

Ua , ~2.1a!

and the subsets

U (1)5ø
a,bPI

UaùUb , ~2.1b!

U (2)5ø
a,b,gPI

UaùUbùUg ~2.1c!

of a manifold Z. The summation in~2.1b! and ~2.1c! is carried out overa,b, . . . for which
UaùUbÞB andUaùUbùUgÞB.

Let us consider a collectionc5$ca% of smoothG-valued functionsca defined onUa , a
collection f 5$ f ab% of holomorphic matrices on nonempty intersectionsUaùUb and suppose tha
ca’s satisfy the differential equations,

~ ]̄ca!ca
215~ ]̄cb!cb

21 ~2.2!

defined onU (1), and f ab’s satisfy the functional equations

f abug f bgua f gaub51 ~2.3a!

on U (2). Here f abug means the restriction off ab to an open setUaùUbùUg . Now, let us define
a map of solutions$ca% of Eqs. ~2.2! into solutions $ f ab% of Eqs. ~2.3a! by the formula
h:$ca%°$ca

21cb%, and denote byF the subset of those solutions$ f ab% of Eqs.~2.3a! for which
there exists a collectionc5$ca% of smoothG-valued functionsca on Ua such that

f ab5ca
21cb . ~2.3b!

Using equations]̄ f ab50, one can easily show that these$ca% will satisfy Eqs.~2.2! and therefore
F5Im h.
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Denote byX the space of solutions to Eqs.~2.2! and consider a map

h: X→F ~2.4a!

given for anyc5$ca%PX by the formula

h~c!5h~$ca%!5$ca
21cb%5 f . ~2.4b!

It is easy to see that ifg5$ga% is an element of the gauge groupG, then c5$ca%PX and
g21c5$ga

21ca%PX are projected by the map~2.4! into the same solutionf 5h(c) of Eqs.~2.3!.
Therefore the spaceF of solutions to functional equations~2.3! can be identified with the space o
orbits of the groupG in the setX,

F.X/G. ~2.5!

Now consider a~0,1!-connectionA0,1 on P0 , restrictA0,1 to Ua’s and consider a collection
A0,15$A(a)% of ~0,1!-connectionsA(a)

ªA0,1uUa
. In terms ofA(a)’s, Eq. ~1.2a! have the form

]̄A(a)1A(a)`A(a)50, ~2.6a!

A(a)5A(b) on UaùUb . ~2.6b!

Denote byN the space of solutions to Eqs.~2.6! and define a map

d̄0: X→N ~2.7a!

given by the formula

d̄0~c!5c]̄c215$ca]̄ca
21%5$A(a)%5A0,1, ~2.7b!

wherec5$ca%PX. It is clear that$A(a)%5$ca]̄ca
21% satisfy Eqs.~2.6! if $ca% satisfy Eqs.~2.2!.

It is not difficult to see that for any$ca%PX we have$caha
21%PX if ha’s are holomorphic

G-valued functions onUa’s,

]̄ha50. ~2.8!

Moreover, such$ca%, $caha
21%PX are mapped byd̄0 into the same flat~0,1!-connectionA0,1

5$A(a)%5$ca]̄ca
21%. We denote byH the set of all collectionsh5$ha% of G-valued locally

defined holomorphic functionsha :Ua→G. The setH is a group under the pointwise multiplica
tion: hx5$haxa% for h5$ha%,x5$xa%PH. So, it follows from ~2.7! that the spaceN of flat
~0,1!-connections can be identified with the space of orbits of the groupH in the spaceX of
solutions to Eqs.~2.2!,

N.H\X. ~2.9!

We see that if we findc5$ca% from Eqs. ~2.2! or Eqs. ~2.3!, then we can obtain a fla
~0,1!-connectionA0,15c]̄c21 with the help of the map~2.7!. Thus, flat~0,1!-connections can be
found not only by solving Eq.~1.2a! on U (0) but also by solving Eqs.~2.2! on U (1) or Eqs.~2.3a!
on U (2).

B. Moduli space of holomorphic structures

Consider a~trivial! G-bundleP0 over a complexn-manifoldZ and a~0,1!-connectionA0,1 on
P0 . The gauge groupG acts onA0,15$A(a)% by the formula
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A0,1°Adg21A0,15g21A0,1g1g21]̄g5$ga
21A(a)ga1ga

21]̄ga%, ~2.10!

whereg5$ga%PG. Equations~1.2a! and ~2.6! are invariant under the transformations~2.10!.
We denote byM the set of orbits of the gauge groupG in the setN of solutions to Eqs.~2.6!,

M5N/G. ~2.11!

By definition, M is the moduli space of flat (0,1)-connectionsA0,1 parametrizing holomorphic
structures]̄A on the bundleP0 . By introducing a projection

p:N→M, ~2.12!

we obtain a composite map

p+ d̄0:X→
d̄0

N→
p

M ~2.13!

of X onto M.
Recall that on the spaceX we have an action not only of the groupG but also of the groupH,

H{h5$ha%: c°ch215$caha
21%, ~2.14!

wherec5$ca%PX. This action induces the following action ofH on matricesf ab5ca
21cb :

H{h5$ha%: f ab° f̃ ab5ha f abhb
21 . ~2.15!

Therefore one can introduce the spaceH\F of orbits of the groupH in the spaceF of solutions
to Eqs.~2.3!. Then, using the bijection~2.5!, we obtain

H\F.H\X/G. ~2.16!

By definition, H\F is the moduli space of solutions to functional Eqs.~2.3!. Comparing~2.9!,
~2.11!, and~2.16!, we obtain bijections

M.N/G.H\X/G.H\F, ~2.17!

i.e., there is a one-to-one correspondence between the moduli spaces of solutions to Eqs.~2.3! and
Eqs.~2.6!. We identify these moduli spaces with the moduli spaceM of holomorphic structures
on the bundleP0→Z.

Let us denote byp a projection

p:F→M. ~2.18!

Combining~2.4! and ~2.18!, we obtain a composite map

p+h:X→
h

F→
p

M ~2.19!

of X onto M @cf. ~2.13!#.
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Comparing all the maps described above, we obtain the following commutative diagra

~2.20!

HereX is the solution space of differential Eqs.~2.2!, N is the space of flat~0,1!-connections on
P0 , F is the solution space of functional Eqs.~2.3!, andM is the moduli space of holomorphi
structures on the bundleP0→Z.

C. Non-Abelian cohomology and holomorphic bundles

Results of Sec. II B can be reformulated in terms of homological algebra using sheav
non-Abelian groups. Namely, letS be the sheaf of germs of smoothG-valued functions onZ, H
its subsheaf of holomorphicG-valued functions andA 0,1 the sheaf of flat~0,1!-connections onP0

@germs of solutions to Eq.~1.2a!#. We fix a coveringU5$Ua% of a manifoldZ and introduce the
following sets: the setC0(U,S) of 0-cochains of the coveringU with values inS, the setZ0(U,S)
of 0-cocycles with values inS, the setC1(U,S) of 1-cochains with values inS, the setZ1(U,S)
of 1-cocycles of the coveringU with values in the sheafS and the 1-cohomology setH1(U,S).
These sets contain the subsetsC0(U,H), Z0(U,H), C1(U,H), Z1(U,H) and H1(U,H), respec-
tively. All the definitions can be found, e.g., in Refs. 6–9.

Recall that by definition H0(Z,S)5G(Z,S)5Z0(U,S), H0(Z,A 0,1)5G(Z,A 0,1)
5Z0(U,A 0,1). Moreover, one can always choose a coveringU5$Ua% such that it will be
H1(U,S)5H1(Z,S), H1(U,H)5H1(Z,H). This is realized, for instance, whenUa’s are Stein
manifolds and we suppose that the chosen covering satisfies the above conditions. In coho
cal terms some of spaces and groups introduced earlier are defined as follows:

H5C0~U,H!, ~2.21a!

N5H0~Z,A 0,1!, ~2.21b!

G5H0~Z,S!, ~2.21c!

M.N/G5H0~Z,A 0,1!/H0~Z,S!. ~2.21d!

Notice also that the spaceX is a subset of the setC0(U,S), and the spaceF is a subset of the se
Z1(U,H). Namely,F is the set of those 1-cocyclesf PZ1(U,H) that are smoothly equivalent t
the cocyclef 05$ idUaùUb

%.

We denote byi :H→S an embedding ofH into S and define a mapd̄0:S→A 0,1 given for
any open setU of the spaceZ by the formula

d̄0~cU!ªcU]̄cU
21 , ~2.22!

wherecUPG(U,S) is a smoothG-valued function onU. Let us also introduce an operatord̄1

acting on~0,1!-connectionsA0,1 by the formula

d̄1~A0,1!ª ]̄A0,11A0,1`A0,1. ~2.23a!
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By definition, d̄1 maps any flat~0,1!-connection into zero and therefore

d̄1~A 0,1!50⇔A 0,15Ker d̄1. ~2.23b!

Remember that locally Eqs.~1.2a! are solved trivially, and on any sufficiently small open s
U,Z we haveAU

0,15cU]̄cU
21 , whereAU

0,1PG(U,A 0,1) andcUPG(U,S) is a smoothG-valued
function onU @cf. ~2.22!#. It is easy to see that

AU
0,15cU]̄cU

215~cUhU
21!]̄~cUhU

21!21, ~2.24!

wherehUPG(U,H) is an arbitrary holomorphicG-valued function onU ~a section of the sheafH
over U!. Therefore, the sheaf of germs of solutions to Eqs.~1.2a! is isomorphic to the quotien
sheafH\S. Notice that the~left! action of the sheafH on S is described for any open setU by
the formulacU°cUhU

21 , wherecUPG(U,S), hUPG(U,H). Thus, we have the exact sequen
of sheaves

e→H→
i

S ——→
d̄0

A 0,1 ——→
d̄1

e, ~2.25!

wheree is a marked element of the considered sets~the identity in the sheafH,S and zero in the
sheafA0,1!. From ~2.25! we obtain the exact sequence of cohomology sets,6,7,8

e→H0~Z,H! ——→
i
*

H0~Z,S! ——→
d̄
*
0

H0~Z,A 0,1! ——→
d̄
*
1

H1~Z,H!→
r

H1~Z,S!, ~2.26!

where the mapr coincides with the canonical embedding induced by the embedding of she
i :H→S.

By definition the 1-cohomology setsH1(Z,H) andH1(Z,S) parametrize the sets of equiva
lence classes of holomorphic and smoothG-bundles overZ, respectively. The kernel Kerr
5r21(e) of the mapr coincides with a subset of equivalence classes of topologically tri
holomorphic bundlesP. Therefore we have

H\F5Kerr, ~2.27!

where the spaceH\F is the moduli space of solutions to Eqs.~2.3!. By virtue of the exactness o
the sequence~2.26!, the space Kerr5H\F is bijective to the quotient space~2.21d!. So, the
bijections~2.17! follow from the exact sequence~2.26! and we have

M.H0~Z,A 0,1!/H0~Z,S!.Kerr. ~2.28!

Recall thatM is the moduli space of holomorphic structures on the bundleP0 .9,10

D. Algebra-valued forms and Dolbeault cohomology

Now let us consider Eq.~1.2b! on globally definedg-valued (n,n22)-formsB on Z. These
equations can be rewritten in the form

]̄AB50, ~2.29!

and Eq.~1.2a! coincides with the compatibility conditionsFA
0,25 ]̄A

250 of Eqs.~2.29!.
The gauge groupG acts on a fieldBPVn,n22(Z,g) by the formula

B°Adg21B5g21Bg, ~2.30!

wheregPG. Notice that the action~1.1! and Eqs.~1.2! are invariant under the gauge transform
tions ~2.10!, ~2.30! and under the following ‘‘cohomological’’ symmetry transformations:
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B°B1 ]̄AF, ~2.31!

whereFPVn,n23(Z,g). By virtue of this invariance, solutionsB andB1 ]̄AF of Eq. ~1.2b! are
considered as equivalent.

Equations~1.2b! are linear inB. For any fixed flat~0,1!-connectionA0,1 the space of non-
trivial solutions to Eq.~1.2b! is the (n,n22)th Dolbeault cohomology group,

H
]̄A ;P0

n,n22
~Z!ª

$BPVn,n22~Z,g!: ]̄AB50%

$B5 ]̄AF,FPVn,n23~Z,g!%
. ~2.32!

So, the space of nontrivial solutions to Eq.~1.2b! forms the vector spaceH
]̄A ;P0

n,n22
(Z) depending on

a solutionA0,1 of Eq. ~1.2a!.
For a fixed flat~0,1!-connectionA0,15c]̄c215$ca]̄ca

21% any solution of Eq.~1.2b! has the
form

B5cB0c215$caB0
(a)ca

21%5$B(a)%, ~2.33!

whereB05$B0
(a)% is an arbitrary solution of the equations

]̄B050. ~2.34a!

Here B(a)
ªBuUa

and B0
(a)

ªB0uUa
are restrictions ofB and B0 to an open setUa from the

coveringU5$Ua%, aPI . On nonempty intersectionsUaùUb we haveB(a)5B(b). These com-
patibility conditions for B5$B(a)% lead to the following compatibility conditions forB0

5$B0
(a)%:

B0
(a)5 f abB0

(b) f ab
21 , ~2.34b!

where f abªca
21cb , and$ca% satisfy Eqs.~2.2!. It follows from Eqs.~2.2! that f ab’s are holo-

morphic matrices onUaùUb . Therefore,$ f ab% can be chosen as transition functions in a ho
morphic bundleP.

Notice that the space of nontrivial solutions to Eqs.~2.34! is the standard Dolbeault cohomo
ogy group,

H
]̄;P

n,n22
~Z!5

$]̄2closed adP2valued ~n,n22!2forms on Z%

$]̄2exact adP2valued ~n,n22!2forms on Z%
, ~2.35!

where P and adP5P3Gg are holomorphic bundles defined by transition functions$ f ab%
5$ca

21cb%. Formula~2.33! defines an isomorphism of the vector spaces~2.32! and ~2.35!.
To sum up, one can easily construct solutions of Eq.~1.2b! if one knows solutions of Eq.

~1.2a! and Eqs.~2.34!. Moreover, the space of solutions to Eqs.~1.2! forms a vector bundleT
→N, the base space of which is the spaceN of solutions to Eq.~1.2a!, and fibers of the bundle
T at pointsA0,1PN are the vector spacesH

]̄A ;P0

n,n22
(Z) of nontrivial solutions to Eq.~1.2b!. Recall

that the gauge groupG acts on solutions (A0,1,B) of Eqs. ~1.2! by formulas~2.10! and ~2.30!.
Therefore, identifying points (A0,1,B)PT and (g21A0,1g1g21]̄g,g21Bg)PT for any gPG, we
obtain the moduli space

M5T /G ~2.36!
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of solutions to Eqs.~1.2!. The spaceM is a vector bundle over the moduli spaceM of flat
~0,1!-connections with fibers at points@A0,1#PM isomorphic to the Dolbeault cohomolog
groups~2.32!.

III. DRESSING TRANSFORMATIONS IN hBF THEORIES

A. Cohomological symmetry groups

In Sec. II we have discussed the correspondence between flat~0,1!-connectionsA0,1

5$A(a)% on aG-bundleP0→Z and 1-cocyclesf 5$ f ab% defining topologically trivial holomor-
phic bundlesP over Z. It follows from this correspondence that if we define an action of so
group on the spaceF of transition functionsf of topologically trivial holomorphic bundles, the
using the correspondenceA0,1↔ f @see diagram~2.20!#, we obtain an induced action of this grou
on the spaceN of flat ~0,1!-connections on the bundleP0 . In this section we introduce aspecial
cohomological groupand describe its action on the spaceF.

Consider a collectionh5$hab%PC1(U,H) of holomorphic matrices such that

habug5hagub , ~3.1!

wherehabug means the restriction ofhab to an open setUaùUbùUg . The constraints~3.1! are
not severe. They simply mean that sectionshabPG(UaùUb ,H) of the sheafH over UaùUb

can be extended to sections of the sheafH over the open set

U (1)5øa,bPIUaùUb ,

where the summation is carried out in alla,bPI for which UaùUbÞB. In other words, it
follows from ~3.1! that there exists a holomorphic map

hU (1):U (1)→G ~3.2a!

such that

hab5hU (1)uUaùUb
. ~3.2b!

One can identifyh5$hab%5$hU (1)uUaùUb
% andhU (1). SuchhPG(U (1),H) form a subgroup

C̄1~U,H!ª$hPC1~U,H!:habug5hagub on UaùUbùUgÞB% ~3.3!

of the groupC1(U,H).
We considerC̄1(U,H) as alocal group, i.e., we choose a neighborhoodC of the identitye in

C̄1(U,H) and take elementsh only fromC,C̄1(U,H). The local groupC is a representative of the
germ of the groupC̄1(U,H) at the pointePC̄1(U,H). We define the following action of the grou
C on the spaceF:

T~h,.!: f ab° f ab
h 5T~h, f !ab5hab f abhba

21 , ~3.4a!

wherehPC, and a 1-cocyclef 5$ f ab%5$ca
21cb%PF defines a topologically trivial holomorphic

bundleP. It is easy to see that$ f ab
h % satisfy Eqs.~2.3a! by virtue of the definition~3.3! of the

groupC̄1(U,H) and therefore$ f ab
h % is a 1-cocycle. Moreover, forhPC,C̄1(U,H) there exists a

0-cochainch5$ca
h%PX,C0(U,S) such that

f ab
h 5~ca

h !21cb
h , ~3.4b!

since small enough deformations do not change the topological trivializability of holomo
bundles. This well-known statement follows from the equalityH1(Z,sP)50,10 wheresP is the
sheaf of smooth sections of the bundle adP.
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So, we have a map

T:C3F→F, ~3.5!

and to eachhPC there corresponds a bijective transformation

Th : f °T~h, f ! ~3.6!

of the setF. The mapt:h°Th is a homomorphism of the groupC into the groupBi j (F) of all
bijective transformations of the setF. Notice that maps~3.6! are connected with maps betwee
bundles (P, f ) and (Ph, f h), where a bundlePh is defined by transition functions$ f ab

h %. These
bundles are diffeomorphic, but not biholomorphic. A diffeomorphism ofP onto Ph is defined by
a 0-cochainc21ch5$ca

21ca
h%PC0(U,S). Moreover, the bundlesP andPh become biholomor-

phic after the restriction toU (1):PuU (1).PuU (1)
h . In other words, a mapTh : f ° f h, hPC, defines a

local biholomorphismPuU (1)→PuU (1)
h which does not extend up to the biholomorphism ofP and

Ph as holomorphic bundles overZ.
More general transformations of the spaceF of topologically trivial holomorphic bundles ca

be found by discarding the conditions~3.1! on matrices$hab%. Namely, let us consider the
transformations~3.4a! with an arbitrary elementh5$hab% of the groupC1(U,H). Then consider
the equations

hab f abhba
21hbg f bghgb

21hga f gahag
2151 ~3.7!

on $hab%. These equations mean thatf h5T(h, f )5$hab f abhba
21% is a 1-cocycle. For each solutio

h5$hab% of Eqs. ~3.7! we obtain a mapTh of the space of holomorphic bundles into itse
Moreover, solutionsh5$hab% of Eqs. ~3.7! that are close to the identity correspond to transf
mations preserving topological triviality of bundles, and we obtain the transformations

F{ f °

Th

f hPF.

In principle, by solving Eqs.~3.7! one can obtain all elements of the group of local bijections
the spaceF.

B. Actions of groups on the solution space

We consider the trivialG-bundleP0 with the transition functionsf 05$ idUaùUb
% and a flat

~0,1!-connectionA0,15$A(a)% on P0 . As it was discussed in Sec. II, for any flat~0,1!-connection
A0,1 there exists a 0-cochainc5$ca%PX,C0(U,S) such thatA0,15c]̄c215$ca]̄ca

21%. If we
denote byw a section of the fibrationd̄0:X→N, d̄0+w5 id, thenc5w(A0,1), whereA0,1PN, c
PX. Notice thatw is a local section, i.e., we consider an open neighborhood of the pointA0,1

PN. The choice ofw is not unique, and an elementc5w(A0,1) is defined up to an element from
the groupH5C0(U,H). Using the mapsw andh, we obtain a map

h+w:~ f 0 ,A0,1!°~ f ,0!, ~3.8!

where f 5$ f ab%5$ca
21cb% are transition functions of aG-bundleP.

Conversely, denote byz a local section of the fibrationh:X→F, i.e., h+z5 id on an open
neighborhood of the pointf 5$ca

21cb%PF. Of course, the choice of a sectionz is not unique, and
an elementc5z( f )PX is defined up to an element from the gauge groupG5H0(Z,S). Using
the mapsz and d̄0, we obtain a map

d̄0+z:~ f̃ ,0!°~ f 0 ,Ã0,1!, ~3.9!
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where f̃ is an element from an open neighborhood off PF, andÃ0,1 is an element from an ope
neighborhood ofA0,1PN.

In Sec. III A we have described mapsTh : f ° f h, wheref hPF if hPC. Then, using the map
~3.9! for f̃ 5 f h, we obtain

Ã0,15ch]̄~ch!215$ca
h ]̄~ca

h !21%, ~3.10!

wherech[c̃5z( f h) can be found from formula~3.4b!. By construction,Ã0,1 satisfies Eq.~1.2a!.
Thus, if we take a ‘‘seed’’ flat~0,1!-connectionA0,1 and carry out the sequence of transformatio

A0,1°
w

c°
h

f °

Th

f h°
z

ch°
d̄0

Ã0,1, ~3.11!

we obtain a new flat~0,1!-connectionÃ0,1 depending nonlocally onA0,1 andhPC.
Let us introduce

f~h!ªchc215$ca
hca

21%5$fa~h!%PC0~U,S!. ~3.12!

Then we have

Ã0,15f~h!A0,1f~h!211f~h!]̄f~h!215$fa~h!A(a)fa~h!211fa~h!]̄fa~h!21%.
~3.13!

Formally, ~3.13! looks like a gauge transformation. But actually the transformation

Adf(h) :A0,1°Adf(h)A
0,15f~h!A0,1f~h!211f~h!]̄f~h!21 ~3.14a!

defined by~3.12! consists of the sequence~3.11! of transformations and is not a gauge transf
mation since fa(h)Þfb(h) on UaùUbÞB. Recall that for gauge transformation
Adg :A0,1°AdgA0,15gA0,1g211g]̄g21 one hasga5gb on UaùUb for g5$ga%PG. In other
words,g5$ga% is a globally definedG-valued function onZ andf(h)5$fa(h)% is a collection
of locally definedG-valued functionsfa(h):Ua→G which are constructed by the algorithm
described above. So, to eachhPC there corresponds a bijective transformation Adf(h) of the set
N, and the mapg:h°Adf(h) is a homomorphism of the groupC into the groupBi j (N) of all
bijections of the setN.

From formulas~2.33! and~3.12! it follows that the transformations Adf(h) act on any solution
of Eq. ~1.2b! by the formula

Adf(h) :B°Adf(h)B5f~h!Bf~h!215$fa~h!B(a)fa~h!21%, ~3.14b!

wheref(h)5$fa(h)% is defined in~3.12!. As is shown above, the transformation Adf(h) is not a
gauge transformation and therefore Adf(h)B is a new solution of Eq.~1.2b!. So, we have describe
a homomorphism of the groupC into the groupBi j (T) of bijective transformations of the spaceT
of solutions to equations of motion of holomorphic BF theory. The transformations~3.14! will be
called thedressing transformations. In this terminology we follow the papers,11–13 where analo-
gous transformations were used for constructing solutions of integrable equations.

IV. DRESSING SYMMETRIES AND SPECIAL hBF THEORIES

Let now Z be a Calabi–Yaun-manifold. This means that besides a complex structure, oZ
there exist a Ka¨hler two-formv, a Ricci-flat Kähler metricg and a nowhere vanishing holomo
phic (n,0)-form u. We consider a~trivial! principalG-bundleP0 overZ and the~0,1!-component
A0,1 of a connection one-formA on P0 . The existence onZ of a nowhere degenerate holomorph
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(n,0)-formu permits one to introduce one more class of models describing holomorphic struc
on bundles over Calabi–Yau manifolds. These models are calledholomorphic uBF theories
~huBF! and their action functional5 have the form

ShuBF5E
Z
u`Tr~B0,n22`FA

0,2!, ~4.1!

whereB0,n22 is ag-valued (0,n22)-form onZ, andFA
0,2 is the~0,2!-component of the curvature

tensor of a connectionA on P0 . The action~4.1! leads to the following equations of motion:

]̄A0,11A0,1`A0,150, ~4.2a!

]̄B0,n221A0,1`B0,n222~21!nB0,n22`A0,150. ~4.2b!

So, the action~4.1! provides us with a field-theoretic description of holomorphic structures
bundles over Calabi–Yau manifolds.

A description of solutions and symmetries of Eqs.~4.2! literally reproduce a description o
solutions and symmetries of field Eqs.~1.2! of holomorphic BF theories. In particular, the descri
tion of flat ~0,1!-connections is not changed since Eq.~4.2a! coincides with Eq.~1.2a!, and for a
description of solutions to Eq.~4.2b! it is sufficient to replaceBPVn,n22(Z,g) by B
PV0,n22(Z,g) in all formulas of Secs. II D and III B.

One can also consider special holomorphic BF theories on twistor spaces of sel
4-manifolds.5 To describe these models, we consider a Riemannian real 4-manifoldM with self-
dual Weyl tensor~a self-dual manifold! and the bundlet:Z→M of complex structures onM ~the
twistor spaceof M ! with CP1 as a typical fiber.14,15The twistor spaceZ of a self-dual 4-manifold
M is a complex 3-manifold15 which is the total space of a fiber bundle overM associated with the
bundle of orthonormal frames onM .

Using the complex structures onCP1
�Z and Z, one can split the complexified tange

bundle ofZ into a direct sum

TC~Z!5T1,0
% T0,15~Ver1,0

% Hor1,0! % ~Ver0,1
% Hor0,1! ~4.3!

of subbundles of type~1,0! and~0,1!. Here Ver0,1 is the distribution of vertical~0,1!-vector fields.
Analogously the complexified cotangent bundle ofZ is splitted into a direct sum of subbundle
T1,0 andT0,1.

Let E3,3 be ag-valued~3,3!-form on Z, andV0,1 be an arbitrary~0,1!-vector field from the
distribution Ver0,1. Consider a trivialG-bundleP0 overZ, the ~0,1!-componentA0,1 of a connec-
tion A and the~0,2!-componentFA

0,2 of the curvature of a connectionA on P0 . Denote by
V0,1

4A0,1 the contraction ofV0,1 with A0,1 and consider the action5

ShBFE5E
Z
Tr@B3,1`FA

0,22g~V0,1
4A0,1!E3,3#, ~4.4!

whereB3,1PV3,1(Z,g) andg5const. This action leads to the following field equations:

]̄A0,11A0,1`A0,150, gV0,1
4A0,150, ~4.5a!

]̄B3,11A0,1`B3,12B3,1`A0,15gV0,1
4E3,3. ~4.5b!

Equations~4.5a! on the twistor spaceZ of a self-dual 4-manifoldM are equivalent to the self-dua
Yang–Mills ~SDYM! equations onM .15,16 So, the action~4.4! can be considered as an action f
SDYM models. Dressing symmetries of Eq.~4.5a! have been described in Refs. 17 and 18. Th
symmetries can be reduced to symmetries of integrable models in less than four dimensio
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The branch process of cosmic strings
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In light of the f-mapping method and the topological tensor current theory, the
topological structure and the topological quantization of topological defects are
obtained under the condition that JacobianJ(f/v)Þ0. When J(f/v)50, it is
shown that there exists the crucial case of branch process. Based on the implicit
function theorem and the Taylor expansion, the generation, annihilation, and bifur-
cation of the linear defects are detailed in the neighborhoods of the limit points and
bifurcation points off-mapping, respectively. ©2000 American Institute of
Physics.@S0022-2488~00!04605-3#

I. INTRODUCTION

There have been rapid and exciting developments over the last decades on the in
between paticle physics and cosmology.1 Particle physicists pursing the goal of unification wou
like to test their theories at energy scales far beyond those available now or in the fut
terrestrial accelerators. An obvious place to look is to the very early Universe, where conditi
extreme temperature and density obtained. Meanwhile, cosmologists have sought to und
features of the Universe currently observed by tracing their history back to that very early p
An exciting outcome of the interplay between particle physics and cosmology is the cosmic
theory.2–4 It is strongly believed to solve the short-distance problems of quantum gravity a
Plank scale by providing a fundamental lengthl str5A\c/T, whereT is the string tension, and
provides a bridge between the physics of the very small and the very large. The research
topic of cosmic strings can help to explain some of the largest-scale structures seen in the U
today.

Past research has mostly focused on the dynamical properties of the cosmic strings,5–7 and all
of them are based on some particular models. In our previous work,8 by making use of the
f-mapping topological current theory,9 which plays an important role in discussing the topologi
invariant and structure of the physical system,9–13 we have studied the topological structure a
topological quantization of cosmic strings without any concrete model. In this paper, based
previous work, we will study the generating, annihilating, colliding, splitting and merging
cosmic strings from a topology viewpoint, and give the branch conditions of cosmic st
without any concrete model.

This paper is organized as follows: In Sec. II, a brief review of the topological structure
the topological quantization of cosmic strings is given. In Sec. III, by virtue of the imp
function theorem, the creation and annihilation of cosmic strings at the limit points are discu
The bifurcation behavior of strings is detailed in the neighborhood of the bifurcation point in
IV.

a!Electronic mail: yjiang@itp.ac.cn
b!Mailing address.
c!Electronic mail: ysduan@lzu.edu.cn
26160022-2488/2000/41(5)/2616/13/$17.00 © 2000 American Institute of Physics
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II. TOPOLOGICAL STRUCTURE AND TOPOLOGICAL QUANTIZATION OF COSMIC
STRINGS

Cosmic strings are linear defects14 in four-dimensional space–timeX, analogous to those
topological defects found in some condensed matter systems such as vortex lines in liquid h
flux tubes in type-II superconductors or disclination lines in liquid crystal, and they are clo
related to the torsion tensor of the Riemann-Cartan manifold.10,15–17

In vierbein theory, the torsion tensor is expressed by

Tmn
A 5Dmen

A2Dnem
A , m,n,A51,2,3,4, ~1!

where em
A is the vierbein field. As in our previous work,8 by analogy with the ’t Hooft’s

viewpoint,18 to establish a physical observable theory of space–time defect, we must first de
gauge invariant antisymmetrical two-order tensor from a torsion tensor with respect to a
vector fieldNA(x) as follows:

Tmn5Tmn
A NA1en

ADmNA2em
ADnNA5]mAn2]nAm , ~2!

whereAm5em
ANA is a kind of U(1) gauge potential. This shows that the antisymmetrical te

Tmn expressed in terms ofAm is just the U(1)-like gauge field strength@i.e., the curvature on U(1)
principle bundle with base manifoldX#, which is invariant for the U(1)-like gauge transformation

Am8 ~x!5Am~x!1]mL~x!, ~3!

whereL(x) is an arbitrary function.
In order to study the string theory, we should extend the traditional concept of topolo

currents9 which have been used to study the topological properties of pointlike defects,13,19 and
introduce a topological tensor current of second order from torsion. From the above discus
we can define a topological tensor currentj mn as the dual tensor ofTlr as follow

j mn5
1

2

1

Agx

emnlrTlr5
1

2

1

Agx

emnlr~]lAr2]rAl!. ~4!

Very commonly, the topological property of a physical system is much more importan
worth investigating mediculously. It is our conviction that, in order to get a topological result
should input the topological information from the beginning. Two useful tools—thef-mapping
method and the composed gauge potential theory9,11—just do the work. As mentioned in ou
previous works,8,10 the decomposation ofAm(x) can be expressed by

Am~x!5
Lp

2p
eabn

a~x!]mnb~x!, na~x!5
fa~x!

if~x!i , ~5!

wherefa(x) is the order parameter field of cosmic strings, andLp5A\G/c3 is the Planck length
introduced to make the both sides of the formula with the same dimension.10 With the decompo-
sition of Am in ~5!, j mn can be expressed in terms ofna by

j mn5
Lp

2p

1

Agx

emnlreab]lna]rnb, ~6!

which shows thatj mn is just an antisymmetric and identically conserved two-order topolog
tensor current. Because of the topological property ofna, we input the topological information
successfully. Obviously,na(x)na(x)51, andna(x) is a section of the sphere bundleS(X).9 The
zero points offa(x) are just the singular points ofna(x).

By making use of the expression ofna in ~5! and the Laplacian relation inf-space,
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]a]a lnifi52pd~f!, ]a5
]

]fa ,

the topological tensor currentj mn can be rewritten in a compact form

j mn5
1

Agx

Lpd~f!JmnS f

x D , ~7!

whereJmn(f/x) is the general Jacobian determinants

eabJmnS f

x D5emnlr]lfa]rfb. ~8!

It is obvious thatj mn is nonzero only whenf50.
Suppose that for the system of equations

f1~x!50, f2~x!50,

there arel different solutions, when the solutions are regular solutions off at which the rank of
the Jacobian matrix@]mfa# is 2, the solutions off(x)50 can be expressed parametrizedly b

xm5zi
m~u1,u2!, i 51,...,l , ~9!

where the subscripti represents thei th solution and the parametersuI (I 51,2) span a two-
dimensional submanifold with the metric tensorgIJ5gmn (]xm/]uI)(]xn/]uJ), which is called the
i th singular submanifoldNi in X. For eachNi , we can define a normal submanifoldMi in X
which is spanned by the parametersvA (A51,2) with the metric tensorgAB5gmn (]xm/]vA)
3(]xn/]vB), and the intersection point ofMi andNi is denoted bypi . By virtue of the implicit
function theorem, at the regular pointpi , it should be hold true that the Jacobian matrixJ(f/v)
satisfies

JS f

v D5
D~f1,f2!

D~v1,v2!
Þ0. ~10!

Even deeper calculation can lead to the total expansion of the string current

j mn5
Lp

Agx
(
i 51

l
b ih iAgv

J~f/v !upi

d~Ni !J
mnS f

x D , ~11!

or, in terms of parametersyA5(v1,v2,u1,u2),

j AB5
Lp

Agy
(
i 51

l
b ih iAgv

J~f/v !upi

d~Ni !J
ABS f

y D , ~12!

where b i is a positive integer called the Hopf index20 of f-mapping on Mi and h i

5signJ(f/v)pi
561 is the Brouwer degree20 of f-mapping.d(Ni) is the d-function on the

singular submanifoldNi ~Refs. 8 and 21! with the expression

d~Ni !5E
Ni

1

Agx

d4
„x2zi~u1,u2!…Agu d2u.

From the above equation, we conclude that the inner structure ofj mn or j AB is labeled by the
total expansion ofd(f), which includes the topological informationb i andh i . It is obvious that,
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in ~9!, whenu1 andu2 are taken to be timelike evolution parameter and spacelike string pa
eter, respectively, the inner structure ofj mn or j AB just representsl strings moving in the four-
dimensional Riemann–Cartan manifoldX. The two-dimensional singular submanifoldsNi ( i
51,...,l ) are their world sheets. The Hopf indicesb i and Brouwer degreeh i classify these strings
In detail, the Hopf indicesb i characterize the absolute values of the topological quantization
the Brouwer degreesh i511 correspond to strings whileh i521 corresponds to antistrings.

III. THE BRANCH PROCESS OF STRINGS AT LIMIT POINTS

However, from the above discussion we know that the results mentioned are obtained
the conditionJ(f/v)upi

Þ0. When this condition fails, i.e., the Brouwer degreesh i are indefinite,
what will happen? In what follows, we will study the case whenJ(f/v)upi

50. It often happens
when the zero off includes some branch points, which lead to the bifurcation of the topolog
current.

In order to discuss the evolution of these strings and to simplify our study, we selec
parameteru1 as the evolution parametert, and let the string parameteru25s be fixed. In this
case, the Jacobian matrices are reduced to

JA4[JA, JAB50, J35J345JS f

v D , A,B51,2,3,

for y45u2[s. The branch points are determined by

f1~v1,v2,t,s!50,

f2~v1,v2,t,s!50, ~13!

f3~v1,v2,t,s![JS f

v D50,

for the fixeds, and they are denoted as (t* ,pi). In f-mapping theory usually there are two kind
of branch points, namely the limit points and the bifurcation points,22 each kind of which corre-
sponds to different cases of branch process.

First, in this section, we study the case that the zeros of the order parameter fieldf includes
some limit points which satisfy

JAS f

y D U
(t* ,pi )

Þ0, A51 or 2. ~14!

For simplicity, we considerA51 only.
For the purpose of using the implicit function theorem to study the branch properties of s

at the limit points, we use the JacobianJ1(f/y) instead ofJ(f/v) to search for the solutions o
f50. This means we have replacedv1 by t. For clarity we rewrite the first two equations of~13!
as

fa~ t,v2,v1,s!50, a51,2. ~15!

Taking account of~14! and using the implicit function theorem, we have a unique solution of
equations~15! in the neighborhood of the limit point (t* ,pi),

t5t~v1,s!, v25v2~v1,s!, ~16!
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with t* 5t(pi
1 ,s). In order to show the behavior of the strings at the limit points, we w

investigate the Taylor expansion of~16! in the neighborhood of (t* ,pi). In the present case, from
~14! and the last equation of~13!, we get

dv1

dt
5

J1~f/y!

J~f/v !
U

(t* ,pi )

5`,

i.e.,

dt

dv1 U
(t* ,pi )

50.

Then, the Taylor expansion oft5t(v1,s) at the limit point (t* ,pi) is

t5t~pi
1 ,s!1

dt

dv1 U
(t* ,pi )

~v12pi
1!1

1

2

d2t

~dv1!2U
(t* ,pi )

~v12pi
1!25t* 1

1

2

d2t

~dv1!2 U
(t* ,pi )

~v12pi
1!2.

Therefore,

t2t* 5
1

2

d2t

~dv1!2 U
(t* ,pi )

~v12pi
1!2, ~17!

which is a parabola inv1– t plane. From~17! we can obtain two solutionsv (1)
1 (t,s) andv (2)

1 (t,s),
which give the branch solutions of strings at the limit points. If@d2t/(dv1)2# u(t* ,zi )

.0, we have
the branch solutions fort.t* @Fig. 1~a!#, otherwise, we have the branch solutions fort,t* @Fig.
1~b!#. Since the topological current of strings is identically conserved, the topological qua
numbers of these two generated strings must be opposite at the limit point, i.e.,b1h11b2h2

50, the former is related to the creation of cosmic strings and antistrings in pair at the limit p
and the latter to the annihilation of the cosmic strings.

IV. THE BRANCH PROCESS OF STRINGS AT BIFURCATION POINTS

In the following, let us turn to consider the case of bifurcation points in which the additi
restrictions are

J1S f

y D U
(t* ,pi )

50, J2S f

y D U
(t* ,pi )

50. ~18!

These two restrictive conditions will lead to an important fact that the function relation
betweent and v1 or v2 is not unique in the neighborhood of bifurcation point (t* ,pi). The
equation

dv1

dt
5

J1~f/y!

~f/v !
U

(t* ,pi )

, ~19!

which, under restraint of~18!, directly shows that the direction of the integral curve of~19! is
indefinite at the point (t* ,pi). This is why the very point (t* ,pi) is called a bifurcation point of
the multistring current. With the aim of finding the different directions of all branch curves a
bifurcation point, we suppose that
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]f1

]v2 U
(t* ,pi )

Þ0. ~20!

From f1(v1,v2,t,s)50, the implicit function theorem says that there exists one and only
function relationship

v25v2~v1,t,s! ~21!

with the partial derivativesf 1
25]v2/]v1, f t

25]v2/]t. Substituting~21! into f1, we have

f1~v1,u2~v1,t,s!,t,s![0,

which gives

FIG. 1. ~a! The creation of two cosmic strings.~b! Two cosmic strings annihilate in collision at the limit point.
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]f1

]v2 f 1
252

]f1

]v1 ,
]f1

]v2 f t
252

]f1

]t
,

]f1

]v2 f 11
2 522

]2f1

]v2]v1 f 1
22

]2f1

~]v2!2 ~ f 1
2!22

]2f1

~]v1!2 ,

~22!
]f1

]v2 f 1t
2 52

]2f1

]v2]t
f 1

22
]2f1

]v2]v1 f t
22

]2f1

~]v2!2 f t
2f 1

22
]2f1

]v1]t
,

]f1

]v2 f tt
2 522

]2f1

]v2]t
f t

22
]2f1

~]v2!2 ~ f t
2!22

]2f1

]t2 ,

where

f 11
2 5

]2v2

~]v1!2 , f 1t
2 5

]2v2

]v1]t
, f tt

2 5
]2v2

]t2 .

From these expressions we can calculate the values off 1
2 , f t

2 , f 11
2 , f 1t

2 and f tt
2 at (t* ,pi).

In order to explore the behavior of the string at the bifurcation points, let us investigat
Taylor expansion of

F~v1,t,s!5f2~v1,v2~v1,t,s!,t,s! ~23!

in the neighborhood of (t* ,pi), which, according to Eqs.~13!, must vanish at the bifurcation
point, i.e.,

F~ t* ,pi !50. ~24!

From ~23!, the first order partial derivatives ofF(v1,t,s) with respect tov1 and t can be ex-
pressed by

]F

]v1 5
]f2

]v1 1
]f2

]v2 f 1
2 ,

]F

]t
5

]f2

]t
1

]f2

]v2 f t
2 . ~25!

Making use of~22!, ~25! and Cramer’s rule, it is easy to prove that the two restrictive conditi
~18! can be rewritten as

JS f

v D U
(t* ,pi )

5S ]F

]v1

]f1

]v2 D U
(t* ,pi )

50,

J1S f

y D U
(t* ,pi )

5S ]F

]t

]f1

]v2 D U
(t* ,pi )

50,

which give

]F

]v1 U
(t* ,pi )

50,
]F

]t U
(t* ,pi )

50 ~26!

by considering~20!. The second order partial derivatives of the functionF are easily found out to
be

]2F

~]v1!2 5
]2f2

~]v1!2 12
]2f2

]v2]v1 f 1
21

]f2

]v2 f 11
2 1

]2f2

~]v2!2 ~ f 1
2!2,
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]2F

]v1]t
5

]2f2

]v1]t
1

]2f2

]v2]v1 f t
21

]2f2

]v2]t
f 1

21
]f2

]v2 f 1t
2 1

]2f2

~]v2!2 f 1
2f t

2,

]2F

]t2 5
]2f2

]t2 12
]2f2

]v2]t
f t

21
]f2

]v2 f tt
2 1

]2f2

~]v2!2 ~ f t
2!2,

which at (t* ,pi) are denoted by

A5
]2F

~]v1!2 U
(t* ,pi )

, B5
]2F

]v1]t U
(t* ,pi )

, C5
]2F

]t2 U
(t* ,pi )

. ~27!

Then, taking notice of~24!, ~26! and~27!, we can obtain the Taylor expansion ofF(v1,t,s) in the
neighborhood of the bifurcation point (t* ,pi),

F~v1,t,s!5 1
2 A~v12pi

1!21B~v12pi
1!~ t2t* !1 1

2 C~ t2t* !2,

which by ~23! is the behavior off2 in this region. Because of the second equation of~13!, we get

A~v12pi
1!212B~v12pi

1!~ t2t* !1C~ t2t* !250,

which leads to

AS dv1

dt D 2

12B
dv1

dt
1C50 ~28!

and

CS dt

dv1D 2

12B
dt

dv1 1A50. ~29!

The different directions of the branch curves at the bifurcation point are determined by~28! or
~29!. There are four possible cases:

Case 1 (AÞ0): For D5B22AC.0, from ~28! we get two different solutions

FIG. 2. Two cosmic strings collide with different directions of motion at the bifurcation point.
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FIG. 3. Cosmic strings have the same direction of motion.~a! Two cosmic strings tangentially collide at the bifurcatio
point. ~b! Two cosmic strings merge into one cosmic string at the bifurcation point.~c! One cosmic string splits into two
cosmic strings at the bifurcation point.
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dv1

dt U
1,2

5
2B6AB22AC

A
, ~30!

which is shown in Fig. 2, where two cosmic strings collide at the bifurcation point (t* ,pi). This
shows that two cosmic strings meet and then depart at the bifurcation point.

Case 2 (AÞ0): For D5B22AC50, there is only one solution

dv1

dt
52B/A, ~31!

which includes three important cases shown in Fig. 3. First, two cosmic strings tangentially c
at the bifurcation point@Fig. 3~a!#. Second, two cosmic strings merge into one cosmic string at
bifurcation point@Fig. 3~b!#. Third, one cosmic string splits into two cosmic strings at the bif
cation point@Fig. 3~c!#.

Case 3 (A50,CÞ0): For D5B22AC.0, from ~29! we have

FIG. 4. ~a! One cosmic string splits into three cosmic strings at the bifurcation point.~b! Three cosmic strings merge into
one cosmic string at the bifurcation point.
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dt

dv1 U
1,2

5
2B6AB22AC

C
5H 0,

2
2B

C
.

~32!

As shown in Fig. 4, there are two important cases:~a! One cosmic string splits into three cosm
strings at the bifurcation point@Fig. 4~a!#. ~b! Three cosmic strings merge into one at the bifu
cation point@Fig. 4~b!#.

Case 4 (A5C50): The equations~28! and ~29! give respectively

dv1

dt
50,

dt

dv1 50. ~33!

This case is obvious as in Fig. 5, which is similar to the third situation.
The remainder componentdv2/dt can be given by

dv2

dt
5 f 1

2 dv1

dt
1 f t

2,

FIG. 5. This case is similar to Fig. 4.~a! Three cosmic strings merge into one cosmic string at the bifurcation point~b!
One cosmic string splits into three cosmic strings at the bifurcation point.
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where partial derivative coefficientsf 1
2 and f t

2 have been calculated in~22!.
At the end of this section, we conclude that in our string theory there exists the crucial c

branch process. This means that, when an original string moves through the bifurcation p
the early universe, it may split into two strings moving along different branch curves. Sinc
topological current of strings is identically conserved, the sum of the topological quantum
bers of these two split strings must be equal to that of the original string at the bifurcation
i.e.,

b i 1
h i 1

1b i 2
h i 2

5b ih i

for fixed i . This can be looked upon as the topological reason of string splitting.

V. CONCLUSION

In this paper, with the gauge potential decomposition and the so-calledf-mapping method,
we obtain the topological current to describe the strings in the four-dimensional Riemann–C
manifold. In the early universe, by discussing the properties of the zero points of the vecto
f and the expansion of the delta functiond(f), we get the topological quantization of the strin
under the condition that the JacobianJ(f/v)Þ0, and pointed out that the singular manifolds a
just the evolution manifolds of these strings. When the JacobianJ(f/v)50, i.e., at the critical
points off-mapping, it is shown that there exist the crucial case of branch process. Based
implicit function theorem and the Taylor expansion, the origin and bifurcation of the string
detailed in the neighborhoods of the limit points and bifurcation points off-mapping respectively,
i.e., the branch solutions at the limit points and the different directions of all branch curves
bifurcation points are calculated out. Because the topological current of these strings is iden
conserved, the topological charges of these strings will remain constant during the branc
cesses, which means that the topological quantum numbers of the two generated string c
must be opposite at the limit point and, at the bifurcation point, the sum of the topolo
quantum numbers of the split strings must be equal to that of the original.
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In this paper we construct generalizations to spheres of the well-known Levi-Civita,
Kustaanheimo–Steifel, and Hurwitz regularizing transformations in Euclidean
spaces of dimensions two, three, and five. The corresponding classical and quantum
mechanical analogs of the Kepler–Coulomb problem on these spheres are dis-
cussed. ©2000 American Institute of Physics.@S0022-2488~00!05205-1#

I. INTRODUCTION

It is well known that the problem of a body moving under the influence of a central force
with potentialV(r )52m/r has a singularity at the origin. We refer to this as theKepler problem.
This problem is usually posed in three dimensions, but since the motion is always constrai
a plane perpendicular to the constant angular momentum vector we can reduce it to two
sions with Newtonian equations of motion and energy integral

d2

dt2
r52

m

r 3 r ,
1

2 S dr

dt D
2

2
m

r
1

1

2r 2 5h, ~1!

where r 25r•r , r 2 (du/dt) 5c and r5(x,y)5(r cosu, r sinu). As is well known,1,2 in two di-
mensions the Levi-Civita transformation effectively removes the singularity and rewrites
problem in terms of the classical harmonic oscillator. In this process the original problem has
regularized. To achieve the regularization, instead oft we use the variables defined by

s5E dt

r
,

d

dt
5

1

r

d

ds
. ~2!

With x85 dx/ds, etc., the original equations~1! are

r 92
r 8

r
r 81

m

r
r50,

1

2r 2 r 8•r 82
m

r
5h. ~3!

Instead of using the variables (x,y) it is convenient to make the transformation1

UxyU5Uu1 2u2

u2 u1
UUu1

u2
U or r5L~u!u. ~4!

From the explicit form of these relations it follows thatr 852L(u)u8. The equations of motion are
equivalent to

a!Electronic mail: miller@ima.umn.edu
26290022-2488/2000/41(5)/2629/29/$17.00 © 2000 American Institute of Physics
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u91
m/22u8•u8

u•u
u5u,

m

2
5u8•u82

h

2
u•u. ~5!

Consequently we have the regularized equation of motion

u92
h

2
u50.

This is essentially the equation for the harmonic oscillator ifh,0. The solutionu15a cos(vs),
u25b sin(vs), v252h/2 is equivalent to elliptical motion.

The relationship between the harmonic oscillator and the corresponding Kepler proble
also be easily seen from the point of view of Hamilton–Jacobi theory. Indeed the Hamiltonia
be written in the two equivalent forms

H5
1

2
~px

21py
2!1

m

Ax21y2
5

1

8~u1
21u2

2!
@pu1

2 1pu2

2 18m#. ~6!

If we now write down the corresponding Hamilton–Jacobi equation via the substitutions

pu1
→]u1

S5Su1
, pu2

→]u2
S5Su2

,

we obtain

Su1

2 1Su2

2 18m28E~u1
21u2

2!50. ~7!

This is just the Hamilton–Jacobi equation for a mechanical system with Hamiltonian

H85pu1

2 1pu2

2 28E~u1
21u2

2!

and energy28m. ~This is the pseudo-Coulomb problem, see Refs. 3, and 4. Reference 3
obtains~7! as an application of Sta¨ckel transform theory.!

This transformation also achieves a regularization of the corresponding quantum mech
problem, which we call thequantum Coulombproblem. Indeed, the Schro¨dinger equation in the
presence of the potentialV(r )52m/r in two dimensions has the form

2
1

2
~]x

21]y
2!C2

m

Ax21y2
C5EC. ~8!

In the coordinates (u1 ,u2), ~8! becomes5

~]u1

2 1]u2

2 !F1$8m18E~u1
21u2

2!%F50. ~9!

Here, ~9! has all the appearances of the Schro¨dinger equation in an oscillator potentia
V(u1 ,u2)524E(u1

21u2
2) and energyE54m. Note that for scattering stateE.0 we have the

repulsive oscillator potential and forE50 the free motion. ForE,0 we get the attractive oscil
lator potential and the corresponding bound state energy spectrum can be easily compute
this reformulation of the Coulomb problem, although the weight function for the inner produ
no longer the same.2,5,3,6 ~Indeed, the Virial Theorem states that for the Coulomb problem
change in weight function does not alter the bound state spectrum.6! The wave functions have th
form F5w1(u1)w2(u2) where the functionswl satisfy

~]ul

2 1kl18Eul
2!wl50, l51,2, k11k258m.
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The bound state eigenvalues are quantized according to

kl52A22E~2nl11!, l51,2, ~10!

wheren1 ,n2 are integers. Taking into account7 F(2u1 ,2u2)5(21)n11n2F(u1 ,u2) and using
that C(x) is even in variableu: C@x(u)#5C@x(2u)# @because two points (2u1 ,2u2) and
(u1 ,u2) in u-space map to the same point in the plane (x,y)], we find from ~10! the energy
spectrum of the two-dimensional Coulomb system8,9

EN52
m2

2S N1
1

2D 2 , N5
n11n2

2
50,1,2,... .

It is well known that the regularizing transformations~4! that we have discussed for th
Kepler and Coulomb problems in two-dimensional Euclidean spaces are also possible in th
of three ~Kustaanheimo–Stiefel transformation for mappingR4→R3)2,10–12 and five ~Hurwitz
transformation for mappingR8→R5)13–19 dimensions. The only difference in these cases is
additional constraints are required. These transformations have been employed to solve
problems in classical and quantum mechanics~see Ref. 14 and references therein!.

As in flat space, the study of the Kepler–Coulomb system in constant curvature spaces
long history. It was first introduced in quantum mechanics by Schro¨dinger,20 who used the fac-
torization method to solve the Schro¨dinger equation and to find the energy spectrum for
harmonic potential as an analog of the Kepler–Coulomb potential on the three-dimen
sphere. Later, two- and three-dimensional Coulomb and oscillator systems were investiga
many authors in Refs. 21–31.

However, in spite of these achievements the question of finding all transformations tha
generalize the Levi-Civita, Kustaanheimo–Steifel~KS!, and Hurwitz transformations for space
with constant curvature and preserve the Kepler–Coulomb and oscillator duality has been
until now. The answer to this question is a main aim of our paper.

The paper is organized as follows. In Sec. II we present the transformations that genera
flat space Levi-Civita transformation and correspond to the mapS2C→S2 from complex into real
two-dimensional spheres. We also show that this transformation establishes the correspo
between Kepler–Coulomb and oscillator systems in classical and quantum mechanics. In S
in analogy with Sec. II, we construct the Kustaanheimo–Steifel and Hurwitz transformation
show Kepler–Coulomb and oscillator duality for mappingsS4C→S3 andS8C→S5 , respectively.
Section IV is devoted to a summary and discussion of our findings. In the Appendix we give
formulas determining the connections between Laplace–Beltrami operators and the volum
ments in different spaces.

II. THE TRANSFORMATION ON THE TWO-SPHERE

The potential, which is the analog of the Coulomb potential in quantum mechanics an
gravitational potential for the Kepler problem, is taken to be20,21

V52
m

R

s3

As1
21s2

2
, ~11!

where (s1 ,s2 ,s3) are the Cartesian coordinates in the ambient Euclidean space andR is the radius
of the sphere

s•s[s1
21s2

21s3
25R2.
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~Note thatV52 (m/R)cota wherea is the arclength distance froms to the north pole of the
sphere. Furthermore, the leading term in the Laurent series expansion ina about the north pole is
2 m/Ra.)

This problem is easily transformed into a much simpler one via the transform

s15 iAu1
21u2

21u3
2
•

u1
22u2

2

2u3
,

s25 iAu1
21u2

21u3
2
•

u1u2

u3
, ~12!

s35Au1
21u2

21u3
2
•S u31

u1
21u2

2

2u3
D ,

or in matrix form

Us1

s2

s3

U5
Au1

21u2
21u3

2

2u3
U iu1 2 iu2 0

iu2 iu1 0

u1 u2 2u3

UUu1

u2

u3

U . ~13!

The advantage of this transform is the Euler identity5

s1
21s2

21s3
25~u1

21u2
21u3

2!2, ~14!

from which we see that the pointu5(u1 ,u2 ,u3) lies on the complex ‘‘sphere’’S2C : u1
21u2

2

1u3
25D2 with the real radiusD if s5(s1 ,s2 ,s3) lies on the real sphereS2 with radiusR, and

R5D2.
In the general case the two-dimensional complex sphereS2C may be parametrized by four rea

variables~the constraintu1
21u2

21u3
25D2 includes two equations for real and imaginary part!.

The requirement of reality of the Cartesian variablessi leads to two more equations and th
formula ~12! corresponds to the mapping from a two-dimensional submanifold~or surface! in the
complex sphereS2C ~four-dimensional real space! to the sphereS2 . To verify we introduce
ordinary spherical coordinates onS2 :

s15R sinx cosw, s25R sinx sinw, s35R cosx. ~15!

From transformation~12! we have

s3

R
5

1

2 S u3

D
1

D

u3
D . ~16!

Putting s35R cosx in formula ~16! we getu35Deix and then the corresponding points on t
complex sphereS2C are

u15DA12e2ix cos
w

2
, u25DA12e2ix sin

w

2
, u35Deix, ~17!

where 0<x<p, 0<w<4p. Note that the transformation~12! is not one to one; two points
(2u1 ,2u2 ,u3) and (u1 ,u2 ,u3) on the sphere inu-space correspond to one point on the sphere
s-space. Thus, when the variables (u1 ,u2 ,u3) cover the sphere inu-space, the variablessi cover
the sphere ins-space twice.

Let us now introduce nonhomogeneous coordinates according to32
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s̄i5R
si

s3
, ūi5D

ui

u3
, D25R, i 51,2. ~18!

Then formula~12! transforms to

s̄15
i ~ ū1

22ū2
2!

2S 11
ū1

21ū2
2

2D2 D , s̄25
i ū1•ū2

S 11
ū1

21ū2
2

2D2 D . ~19!

In the contraction limitD→` we obtain

s̄15 i
ū1

22ū2
2

2
, s̄25 i ū1•ū2 , ~20!

which coincides with the flat space Levi-Civita transformation~4! up to the additional mapping
ūi→e2 i (p/4)&ũi .

The relationship between the infinitesimal distances is

ds•ds5~u1
21u2

21u3
2!F ~u•du!2

u3
2 2S u1

21u2
2

u3
2 D du•duG13~u•du!2. ~21!

Thus, when restricted to the sphere, the infinitesimal distances are related by

ds•ds

R
52S u1

21u2
2

u3
2 D du•du, ~22!

and we see that as in flat space the transformation~12! is conformal.

A. Classical motion

Just as in the case of Euclidean space, the classical equations of motion under the influ
a Coulomb potential can be simplified. The classical equations are

s̈52~ ṡ• ṡ!s2“V, ~23!

where the first term on the right-hand side is the centripetal force term, corresponding
constraint of the motion to the sphere, and the potential satisfies

s•“V50. ~24!

Here,ṡ5 (d/dt)s. @In studying~23! and~24! we initially regard the coordinatess as unconstrained
and then restrict our attention to solutions on the sphere.# In the case of potential~11! these
equations become

d2

dt2
sj52sj~ ṡ• ṡ!2

m

R

sjs3

~s1
21s2

2!3/2, j 51,2,

d2

dt2
s352s3~ ṡ• ṡ!1

m

R

1

~s1
21s2

2!1/2,

subject to the constraints

s•s5R2 ~25!

and its differential consequences
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s• ṡ50, s• s̈1 ṡ• ṡ50.

From the equations of motion we immediately deduce the energy integral

1
2ṡ• ṡ1V5E. ~26!

We choose a new variablet such that

dt

dt
5

1

D2 •
u3

2

u1
21u2

2 .

In terms of the variablest andui , the equations of motion can now be written in the form

~u18!21~u28!21~u38!222D2S E1
im

D2D1
2D4

u3
2 S E2

im

D2D50, ~27!

u1912S E1
im

D2Du150, u2912S E1
im

D2Du250, ~28!

u3912S E1
im

D2Du32
2D4

u3
3 S E2

im

D2D50, ~29!

subject to the constraintu•u5D2 and its differential consequencesu•u850, u•u91u8•u850,
whereui85dui /dt. These equations are equivalent to the equations of motion we would obta
choosing the Hamiltonian

H5
1

2
~pu1

2 1pu2

2 1pu3

2 !2S E1
im

D2D ~u1
21u2

21u3
2!1

D4

u3
2 S E2

im

D2D , ~30!

regarding the variablesui as independent and using the variablet as time. In fact, to solve the
classical mechanical problem from the point of view of the Hamilton–Jacobi equation, we u
relation

1

2
~ps1

2 1ps2

2 1ps3

2 !2
m

R

s3

As1
21s2

2
2E

[2
u3

2

u1
21u2

2 F 1

2D2 ~pu1

2 1pu2

2 1pu3

2 !2S i
m

D2 1ED1
D2

u3
2 S E2

im

D2D G50, ~31!

together with the substitutionspui
5 ]S/]ui andpsj

5 ]S/]sj to obtain the Hamilton–Jacobi equa
tions

S ]S

]s1
D 2

1S ]S

]s2
D 2

1S ]S

]s3
D 2

2
2m

R

s3

As1
21s2

2
22E50, ~32!

S ]S

]u1
D 2

1S ]S

]u2
D 2

1S ]S

]u3
D 2

22D2S im

D2 1ED1
2D4

u3
2 S E2

im

D2D50. ~33!

This last equation can be solved by separation of variables in the spherical coordinates
complex sphereS2C ~17!.
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B. Quantum motion

If we write the Schro¨dinger equation on the sphere for the Coulomb potential~11!

1

2
DsC1S E1

m

R

s3

As1
21s2

2D C50, ~34!

and use the transformation~12!, we obtain@see formula~A3!#

1

2
Duc1S E2

v2D2

2

u1
21u2

2

u3
2 Dc50, ~35!

where

E52im, v252S E2
im

D2D . ~36!

Thus we see that the Coulomb problem on the real sphereS2 is equivalent to the correspondin
quantum mechanical problem on the complex sphereS2C with the oscillator potential~Higgs
oscillator21,26,27! and energy 2im, but with an altered inner product~see the Appendix!.

Let us consider the Schro¨dinger equation~35!. Using the complex spherical coordinates~17!
we obtain

1

sinx

]

]x
sinx

]c

]x
1

1

sin2 x

]c

]w
1H v2D42 iED2

eix

sinxJ c50. ~37!

To solve Eq.~37! we first complexify the Coulomb coupling constantm by settingk5 im in the
formulas forE andv,

E52k, v252S E2
k

D2D . ~38!

Further, we analytically continue the variablex into the complex domainG: 0<Rex<p and 0
<Im x,` ~see Fig. 1! and pass from the variablex to q, defined by

eix5cosq. ~39!

FIG. 1. DomainG5$0< Rex<p;0< Im x,`% on the complex plane ofx.
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For realu this substitution is possible if Rex50 or Rex5p and ImxP(0,̀ ), which corresponds
to the motion on the upper (0<q< p/2) or lower (p/2<q<p) hemispheres of the real spher
In any case conditions~39! and~38! translate the oscillator problem from the complex to the r
sphere with spherical coordinates (q,w/2). In these coordinates we can rewrite~37! in the form

1

sinq

]

]q
sinq

]c

]q
1

4

sin2 q

]2c

]w2 1H ~2ED21v2D4!2
v2D4

cos2 qJ c50. ~40!

Using the separation of variables ansatz

c~q,w!5R~q!
eim ~w/2!

A2p
, m50,61,62, . . . , ~41!

we obtain

1

sinq

d

dq
sinq

dR

dq
1H ~2ED21v2D4!2

v2D4

cos2 q
2

m2

sin2 qJ R50. ~42!

The corresponding solution regular at the pointsq50,p/2 takes the form7

Rnrm
~q!5Cnrm

~n! ~sinq! umu ~cosq!n1 1/2
2F1~2nr ,nr1n1umu11; umu11;sin2 q!

5Cnrm
~n!

~nr !! umu!
~nr1umu!! ~sinq! umu ~cosq!n1 1/2 Pnr

(umu,n)~cos 2q! ~43!

with energy spectrum given by

E5
1

2D2 @~n11!~n12!1~2n21!~n11!#, n5S v2D41
1

4D 1/2

, ~44!

whereCnrm
(n) is the normalization constant,Pn

(a,b)(x) is a Jacobi polynomial,nr50,1,2, . . . is
the ‘‘radial,’’ and n52nr1umu is the principal quantum number.

To compute the normalization constantCnrm
(n) for the reduced system we require that t

wave function~41! satisfy the normalization condition~see the Appendix!:

2
D2

2 E
S2C

cnrm
cnrm

L
u1

21u2
2

u3
2 dv~u!5D4E

0

p

Rnrm
Rnrm

L sinx dx51, ~45!

where the open diamond~L! means the complex conjugate together with the inversionx→
2x, i.e.,cL(x,w)5c* (2x,w). @We choose the scalar product ascLc because for realv2 and
E the functioncL(x,q) also belongs to the solution space of~37!.#

Consider now the integral over contourG in the complex plane of variablex ~see Fig. 1!,

R Rnrm
Rnrm

L sinx dx5E
0

p

Rnrm
Rnrm

L sinx dx1E
p

p1 i`

Rnrm
Rnrm

L sinx dx

1E
p1 i`

i`

Rnrm
Rnrm

L sinx dx1E
i`

0

Rnrm
Rnrm

L sinx dx. ~46!

Using the facts that the integrand vanishes ase2inx and thatRnrm
(x) is regular in the domainG

~see Fig. 1!, then according to the Cauchy theorem we have
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E
0

p

Rnrm
Rnrm

L sinx dx5E
0

i`

Rnrm
Rnrm

L sinx dx2E
p

p1 i`

Rnrm
Rnrm

L sinx dx

5@12e2ip(n1 1/2)#E
0

i`

Rnrm
Rnrm

L sinx dx. ~47!

Making the substitution~17! in the right integral of Eq.~47!, we find

E
0

p

Rnrm
Rnrm

L sinx dx5@12e2ip(n11/2)# E
0

p/2

@Rnrm
#2 sinq tan2 q dq. ~48!

Using the following formulas for integration of the two Jacobi polynomials:33

E
21

1

~12x!a~11x!b@Pn
(a,b)~x!#2dx5

2a1b11G~n1a11!G~n1b11!

~2n1a1b11!n!G~n1a1b11!
,

E
21

1

~12x!a~11x!b21@Pn
(a,b)~x!#2dx5

2a1bG~n1a11!G~n1b11!

~b!n!G~n1a1b11!
,

we find

Cnrm
~n!5

2

~ umu!!
A2n~n12nr1umu11! ~nr1umu!!G~ umu1nr1n11!

D4@122ip(n1 1/2)#~2nr1umu11! ~nr !!G~nr1n11!
. ~49!

The wave functionc(q,w)[cnrm
(q,w) is then given by Eqs.~41!, ~43!, and~49!.

Now we can construct the Coulomb wave functions and eigenvalue spectrum. From tra
mation

cnrm
~q,w12p!5eimpcnrm

~q,w! ~50!

and the requirement of 2p periodicity for the wave functions~41! we see that only even azimutha
angular momentum states of the oscillator correspond to the reduced system. Then, intro
new angular and principal quantum numbersM andN by the condition

n52nr1umu52nr12uM u52N, N50,1,2,. . . , uM u50,1,2,...N, ~51!

comparing~38! with expression~44! for the oscillator energy spectrum, and puttingk5 im, we
find the energy spectrum for reduced systems,

EN5
N~N11!

2R2 2
m2

2~N1 1
2!

2
. ~52!

This formula coincides with that obtained from other methods in works Refs. 21, 26, and 2
Transformingq back to the variablex by ~39!, we see that~44! and ~38! imply

n5 is2S N1
1

2D , s5
mR

N1 1
2

.

Using

G~1/21uM u1 is!

G~1/22uM u1 is!
5~21! uM u uG~1/21uM u1 is!u2

uG~1/21 is!u2 5
~21! uM u

p
coshsp uG~1/21uM u1 is!u2,

~53!
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we easily get from~41!, ~43!, and~49! the eigenfunction of Schro¨dinger equation~34!,

CNM~x,w!5CNM~s!e2 ix(N2uM u2 is)~sinx! uM u

32F1S 2N1uM u, uM u1 is1
1

2
; 2uM u11; 12e2ixD eiM w

A2p
, ~54!

where now

CNM~s!5
2uM u

R~2uM u!!A@~N1 1
2!

21s2#~N1uM u!!

p~N1 1
2!~N2uM u!!

esp/2uG~ uM u11/21 is!u . ~55!

By direct calculation it may be shown that the Coulomb wave function~54! satisfies the normal-
ization condition

E
0

p

sinx dxE
0

2p

dw CNMCNM* 5dNN8dMM8 .

Thus, by reduction from the two-dimensional quantum oscillator on the complex sphere we
constructed the wave function and energy spectrum for the Coulomb problem on the
dimensional real sphereS2 . Formula~54! for Coulomb wave functions on the two-dimension
sphere is new.

Now let us consider the flat space contraction. In the contraction limitR→` the energy
spectrum for finiteN goes to the discrete energy spectrum of the two-dimensional hydr
atom8,9

lim
R→`

EN~R!52
m2

2~N1 1
2!

2
, N50,1, . . . .

In the limit R→`, putting tanx;x; r/R, where r is the radius-vector in the two-dimension
tangent plane and using the asymptotic formulas34

lim
R→`
x→0

2F1S 2N1uM u, uM u1 is1
1

2
; 2uM u11; 12e2ixD51F1S 2N1uM u, 2uM u11;

2mr

N1 1
2
D ,

lim
uyu→`

uG~x1 iy !ue~p/2! yuyu1/22x5A2p, lim
z→`

G~x1a!

G~x1b!
5za2b, ~56!

we obtain the well-known Coulomb wave function with correct normalization factor9

lim
R→`
x→0

CNM~x,w!5
m&

~N1 1
2!

3/2
A~N1uM u!!

N2uM u)! S 2mr

N1 1
2
D uM u exp@2 mr /~N11/2!#

~2uM u!!

31F1S 2N1uM u, 2uM u11;
2mr

N1 1
2
D eiM w

A2p
. ~57!

In the case for largeR andN such thatN;kR, ~wherek is constant! we obtain the formula for
continuous spectrum:E5k2/2. Now taking into account thats; m/k and using the asymptotic
relation ~56!, we have
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lim
R→`
x→0

ARCNM~x,w!5Ak

p
epm/2kuG~ uM u11/21 im/k!u

~2kr ! uM u

~2uM u!!
e2 ikr

31F1S uM u1
im

k
1

1

2
; 2uM u11; 2ikr D eiM w

A2p
, ~58!

which coincides with the formula for the two-dimensional Coulomb scattering wave functio
polar coordinates.35

III. THE THREE- AND FIVE-DIMENSIONAL KEPLER–COULOMB PROBLEMS

In complete analogy with the three- and five-dimensional Euclidean case, the correspo
regularizing transformations exist for the Kepler and Coulomb problems in spheres of dime
three and five. Indeed if we consider motion on the sphere of dimensionn then the classica
equations of motion in the presence of a potential are just~23!, ~24! again, where now

s5~s1 ,...,sn11!, ~59!

subject to the constraints

s•s5R2 ~60!

and its differential consequences

s• ṡ50, s• s̈1 ṡ• ṡ50.

If we choose our potential to be

V52
m

R

sn11

As1
21¯1n

2
, ~61!

these equations assume the form

d2

dt2
sj52sj ṡ• ṡ2

m

R

sjsn11

~s•s!3/2, j 51, . . . ,n, ~62!

d2

dt2
sn1152sn11ṡ• ṡ1

m

R~s•s!1/2. ~63!

The energy integral again has the form~26!.
We are particularly interested in dimensionsn53,5. We deal with each of these cases se

rately.
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A. Generalized KS transformation

For n53 we choose theuj coordinates in five-dimensional space according to

s15 iAu1
21u2

21u3
21u4

21u5
2
•

u1u31u2u4

u5
,

s25 iAu1
21u2

21u3
21u4

21u5
2
•

u2u32u1u4

u5
,

~64!

s35 iAu1
21u2

21u3
21u4

21u5
2
•

u1
21u2

22u3
22u4

2

2u5
,

s45Au1
21u2

21u3
21u4

21u5
2
•S u51

u1
21u2

21u3
21u4

2

2u5
D .

The basic identity is

s1
21s2

21s3
21s4

25~u1
21u2

21u3
21u4

21u5
2!2,

and the basic relationship for the infinitesimal distances is

ds1
21ds2

21ds3
21ds4

252
D2

u5
2 $~u1

21u2
21u3

21u4
2!@du1

21du2
21du3

21du4
21du5

2#

1~u4 du32u3 du41u2 du12u1 du2!2%, ~65!

where the constraint for mapping between the three-sphere:( i 51
4 si

25R2 and the complex four-
sphere:( i 51

5 ui
25D2 is clearly

u4 du32u3 du41u2 du12u1 du250. ~66!

In this section we will use the Eulerian spherical coordinates on the complex four-sphereS4C ,

u15DA12e2ix cos
b

2
cos

a1g

2
, u25DA12e2ix cos

b

2
sin

a1g

2
,

u35DA12e2ix sin
b

2
cos

a2g

2
, u45DA12e2ix sin

b

2
sin

a2g

2
, ~67!

u55Deix,

where the ranges of the variables are given by

0<x<p, 0<b<p, 0<a,2p, 0<g,4p.

The corresponding spherical coordinates onS3 are

s15R sinx sinb cosa, s25R sinx sinb sina,

s35R sinx cosb, s45R cosx.
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1. Classical motion

In analogy with our previous analysis we choose a new variablet according to

dt

dt
5

1

D2

u5
2

u1
21u2

21u3
21u4

2 .

In the u coordinates the equations of motion can be written as

~u18!21~u28!21~u38!21~u48!21~u58!222D2S E1
im

D2D1
2D4

u5
2 S E2

im

D2D50,

uj912S E1
im

D2Duj50, j 51,2,3,4, ~68!

u5912S E1
im

D2Du52
2D4

u5
3 S E2

im

D2D50,

subject to the constraints

(
k51

5

uk
25D2, (

k51

5

ukuk850,

(
k51

5

~ukuk91~uk8!2!50, u4u382u3u481u2u182u1u2850.

Note that Eq.~68! is compatible with these constraints. Here, the Kepler problem on the sphe
three dimensions is equivalent to choosing a Hamiltonian

H5
1

2
~pu1

2 1pu2

2 1pu3

2 1pu4

2 1pu5

2 !2S E1
im

D2D ~u1
21u2

21u3
21u4

21u5
2!1

D4

u5
2 S E2

im

D2D , ~69!

regarding the variablesuj as independent andt as time. The only difference is that there is no
the constraint

u4pu3
2u3pu4

1u2pu1
2u1pu2

50.

In terms of the Hamilton–Jacobi formulation we have the relation

1

2
~ps1

2 1ps2

2 1ps3

2 1ps4

2 !2
m

R

s4

As1
21s2

21s3
2

2E

52
u5

2

u1
21u2

21u3
21u4

2 F 1

2D2 ~pu1

2 1pu2

2 1pu3

2 1pu4

2 1pu5

2 !

2S E1
im

D2D ~u1
21u2

21u3
21u4

21u5
2!1

D2

u5
2 S E2

im

D2D G50.

With the usual substitutions, the corresponding Hamilton–Jacobi equations are

(
k51

4 S ]S

]sk
D 2

2S 2E1
2m

R

s4

As1
21s2

21s3
2D 50, ~70!
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or

1

2D2 (
k51

5 S ]S

]uk
D 2

1FD2

u5
2 S E2

im

D2D2S E1
im

D2D G50, ~71!

and the constraint has become

L•S50, ~72!

where operatorL is

L5u2

]

]u1
2u1

]

]u2
1u4

]

]u3
2u3

]

]u4
. ~73!

Equation~71! can be solved by separation of variables in the spherical coordinates~67! on the
complex sphereS4C .

2. Quantum motion

The associated quantum Kepler–Coulomb problem on the sphere corresponding to the
tial ~61!,

1

2
Ds

(3)C1S E1
m

R

s4

As1
21s2

21s3
2D C50, ~74!

translates directly to@see formula~A10!#

1

2
Du

(4)F1S E2
v2D2

2

u1
21u2

21u3
21u4

2

u5
2 DF50 ~75!

with the constraint

L•F50, ~76!

whereL is given by~73!,

C5u5
1/2F, ~77!

and

E52im2
1

D2 , v2D252ED222im1
3

4D2 . ~78!

HereDs
(3) andDu

(4) are Laplace–Beltrami operators on the spheresS3 andS4C , respectively.
Consider the Schro¨dinger equation~75! in complex spherical coordinates~67!. We have

e2 ix

sin2 x

]

]x
eix sin2 x

]F

]x
1Fv2D42 iED2

eix

sinx
1

LW 2

sin2 x
GF50, ~79!

where the operatorLW 2 is defined in~A8!. We complexify the anglex to the domainG ~see Fig. 1!
by the transformation~39!, such thatqP@0,p/2# and also complexifym by settingk5 im in
expression forE andv2. Then Eq.~79! transforms to the Schro¨dinger equation for the oscillato
problem on real sphereS4 .

We make the ansatz
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F~q,a,b,g!5~sinq!2 3/2Z~q!D m1 ,m2

l ~a,b,g!, ~80!

where

D m1 ,m2

l ~a,b,g!5eim1a dm1 ,m2

l ~b! eim2g ~81!

is the Wigner function,36 satisfying the eigenvalue equation

LW 2D m1 ,m2

l ~a,b,g!5l ~ l 11!D m1 ,m2

l ~a,b,g!, ~82!

and normalization condition

E D m
18 ,m

28
l 8* ~a,b,g!D m1 ,m2

l ~a,b,g!
1

8
sinbdb da dg5

2p2

2l 11
d l l 8dm1m

18
dm2m

28
. ~83!

Then the functionZ(q) satisfies

d2 Z

dq2 1F S 2ED21v2D41
9

4D2
v2D4

cos2 q
2

~2l 11!22 1
4

sin2 q
GZ50. ~84!

The corresponding solution regular atq50,p/2 and energy spectrum are given by

Znr l ~q!5const~sinq!2l ~cosq!n1 1/2
2F1~2nr , nr12l 1n12; 2l 12;sin2 q!, ~85!

E5
1

2D2 @~n11!~n14!1~2n21!~n12!#, ~86!

wheren5(v2D41 1
4)

1/2, n52nr12l 50,1,2,... is the principal quantum number. The other qu
tum numbers are

nr50,1,...,n, 2l 50,1,. . . ,n, m1 ,m252l ,2l 11, . . . ,l 21,l .

Thus the wave functionF(q,a,b,g) normalized under the condition~see the Appendix!

2
iD 2

2p E
S4C

Fnr l m1m2
Fnr l m1m2

L ~u1
21u2

21u3
21u4

2!
dv~u!

u5
2 51 ~87!

has the form

Fnr l m1m2
~q,a,b,g!5Cnr l ~n!A2l 11

2p2 Rnr l ~q! D m1 ,m2

l ~a,b,g! ~88!

with

Rnr l ~q!5~sinq!2l ~cosq!n1 1/2
2F1~2nr , nr12l 1n12; 2l 12; sin2 q!, ~89!

Cnr l ~n!5
Ap

D7/2A@~2 in!~n12l 12nr12!#~2l 1nr11!!G~2l 1n1nr12!

~12e2ipn!~ l 1nr11!@~2l 11!! #2~nr !!G~n1nr11!
. ~90!

We now construct the wave function and energy spectrum for the Schro¨dinger equation~74!.
The corresponding wave functionC(s) connecting withF(u) by formula~77! is independent of
the variableg and 2p periodic ina ~the transformationa→a12p is equivalent to the inversion
ui→2ui , i 51,2,3,4). The constraint~76! in the spherical coordinate~67! is equivalent to
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]

]g
•Fnr l m1m2

~q,a,b,g!5m2Fnr l m1m2
~q,a,b,g!50

and we havem250. From 2p periodicity we get thatl andm1 are integers. Then, upon intro
ducing the principal quantum numberN5(nr1l )115 n/211 and using expression~78!, we
obtain the energy spectrum of the reduced system

E5
N221

2R2 2
m2

2N2 , N51,2 ,. . . , ~91!

wherek5 im. This spectrum coincides with that obtained from other methods.20,24,23

Returning fromq to the variablex, observing that

n5 is2N, s5
mR

N
,

and using the relations (m1[m)

D m,0
l ~a,b,g!5~21!mA 4p

2l 11
Yl m~b,a!, ~92!

we obtain the wave functions~with correct normalization! for the reduced system in the form

CNl m~x,b,a!5AD eix/2Fnr l m0~x,a,b,g!5
~21!m

AR3
Cnr l ~s! ~sina! l e2 ia(N2l 2 is)

3 2F1~2N1l 11, 11l 1 is; 2l 12; 12e22ix! Ylm~b,a!, ~93!

where

Cnr l ~s!5
2l 11eps/2

~2l 11!!
A~N21s2!~N1l !!

2pN~N2l 21!!
uG~11l 1 is!u.

This solution is identical to that given for the Coulomb eigenfunction onS3 in Refs. 23 and 25.
Note that in Ref. 25 it already has been shown that the function~93! contracts asR→` into the
flat space Coulomb wave function for discrete and continuous energy spectrum.

B. Generalized Hurwitz transformation

The analogous problem in five dimensions can be realized via the variables

s15S (
k51

9

uk
2D 1/2

i

u9
~u1u51u2u62u3u72u4u8!,

s25S (
k51

9

uk
2D 1/2

i

u9
~u1u62u2u51u3u82u4u7!,

s35S (
k51

9

uk
2D 1/2

i

u9
~u1u71u2u81u3u51u4u6!,

~94!

s45S (
k51

9

uk
2D 1/2

i

u9
~u1u82u2u72u3u61u4u5!,
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s55S (
k51

9

uk
2D 1/2

i

2u9
~u1

21u2
21u3

21u4
22u5

22u6
22u7

22u8
2!,

s65S (
k51

9

uk
2D 1/2 S u91

1

2u9
(
k51

8

uk
2D ,

which satisfy

(
j 51

6

sj
25S (

l 51

9

ul
2 D 2

. ~95!

The relation between the infinitesimal distances on the five-dimensional sphereS5 : ( i 51
6 si

25R2

and the eight-dimensional complex sphereS8C : ( i 51
9 ui

25D2, (R5D2) is

1

R (
j 51

6

dsj
25

21

u9
2 F S (

k51

8

uk
2D (

l 51

9

dul
2 1v1

21v2
21v3

2G , ~96!

where

v15u4 du11u3 du22u2 du32u1 du42u8 du52u7 du61u6 du71u5 du8 ,

v25u3 du12u4 du22u1 du31u2 du42u7 du51u8 du61u5 du72u6 du8 ,

v35u2 du12u1 du21u4 du32u3 du41u6 du52u5 du61u8 du72u7 du8 ,

and the constraint for mappingS8C→S5 corresponds to

v i50, i 51,2,3.

Following Ref. 16~see also Ref. 18! we can supplement the transformation~94! with the angles

aH5
1

2 Farctan
2u1u2

u1
22u2

2 1arctan
2u3u4

u3
22u4

2GP@0,2p!,

bH52 arctanS u3
21u4

2

u1
21u2

2D 1/2

P@0,p#, ~97!

gH5
1

2 Farctan
2u1u2

u1
22u2

2 2arctan
2u3u4

u3
22u4

2GP@0,4p!.

The transformations~94! and~97! correspond toS8C→S85S5^ S3 . If we now choose the spheri
cal coordinates onS5 as

s11 is25R sinx sinq cos
b

2
ei ~a1g!/2, s55R sinx cosq,

s31 is45R sinx sinq sin
b

2
ei ~a2g!/2, s65R cosx.

then the corresponding~nonorthogonal! spherical coordinates on the eight-dimensional comp
sphere take the form (D25R)
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u15DA12e2ix cos
q

2
cos

bH

2
cos

aH1gH

2
,

u25DA12e2ix cos
q

2
cos

bH

2
sin

aH1gH

2
,

u35DA12e2ix cos
q

2
sin

bH

2
cos

aH2gH

2
,

u45DA12e2ix cos
q

2
sin

bH

2
sin

aH2gH

2
,

u55DA12e2ix sin
q

2 S cos
b

2
cos

bH

2
cos

a1g1aH1gH

2
1sin

b

2
sin

bH

2
cos

a2g2aH1gH

2 D ,

~98!

u65DA12e2ix sin
q

2 S cos
b

2
cos

bH

2
sin

a1g1aH1gH

2
2sin

b

2
sin

bH

2
sin

a2g2aH1gH

2 D ,

u75DA12e2ix sin
q

2 S sin
b

2
cos

bH

2
cos

a2g1aH1gH

2
2cos

b

2
sin

bH

2
cos

a1g2aH1gH

2 D ,

u85DA12e2ix sin
q

2 S sin
b

2
cos

bH

2
sin

a2g1aH1gH

2
1cos

b

2
sin

bH

2
sin

a1g2aH1gH

2 D ,

u95Deix,

wherexP@0,p#, qP@0,p#, aP@0,2p#, bP@0,p#, andgP@0,4p#.

1. Classical motion

The Kepler–Coulomb potential on the five-dimensional sphereS5 has the form

V52
m

R

s6

As1
21s2

21s3
21s4

21s5
2

. ~99!

As before we can define a new coordinatet such that

dt

dt
5

1

D2

u9
2

(k51
8 uk

2 .

The corresponding equations of motion are given by

(
l 51

9

~ul8 !222S E1
im

D2D2
2D2

u9
2 S E2

im

D2D50,

uk912S E1
im

D2D50, k51, . . . ,8, ~100!

u9912S E1
im

D2Du92
2D2

u9
3 S E2

im

D2D50,
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subject to the constraints

(
l 51

9

ul
2 5D2, (

l 51

9

ul ul8 50, (
l 51

9

~ul ul9 1~ul8 !2!50,

u4u181u3u282u2u382u1u482u8u582u7u681u6u781u5u8850,

u3u182u4u282u1u381u2u482u7u581u8u681u5u782u6u8850,

u2u182u1u281u4u382u3u481u6u582u5u681u8u782u7u8850.

These equations of motion are equivalent to what we would obtain by choosing the H
tonian

H5
1

2 (
l 51

9

pul

2 2S E1
im

D2D (
l 51

9

ul
2 1

D2

u9
2 S E2

im

D2D , ~101!

regarding the variablesui as independent and usingt as time. The associated constraints are

u4p11u3p22u2p32u1p42u8p52u7p61u6p71u5p850,

u3p12u4p22u1p31u2p42u7p51u8p61u5p72u6p850, ~102!

u2p12u1p21u4p32u3p41u6p52u5p61u8p72u7p850.

If we wish to solve this problem from the point of view of the Hamilton–Jacobi equation
use the relation

1

2 (
j 51

6

psj

2 2
m

R2

s6

As1
21s2

21s3
21s4

21s5
2

2E

52
u9

2

(k51
8 uk

2 H 1

2D2 (
l 51

9

pul

2 2S im

D2 1ED (
l 51

9

ul
2

1
D2

u9
2 S E2

im

D2D J 50.

The corresponding Hamilton–Jacobi equations are

1

2 (
j 51

6 S ]S

]sj
D 2

2
m

R2

s6

As1
21s2

21s3
21s4

21s5
2

2E50, ~103!

1

2D2 (
l 51

9 S ]S

]ul
D 2

2S im

D2 1ED (
l 51

9

ul
2 1

D2

u9
2 S E2

im

D2D50, ~104!

subject to the constraints

u4

]S

]u1
1u3

]S

]u2
2u2

]S

]u3
2u1

]S

]u4
2u8

]S

]u5
2u7

]S

]u6
1u6

]S

]u7
1u5

]S

]u8
50,

u3

]S

]u1
2u4

]S

]u2
2u1

]S

]u3
1u2

]S

]u4
2u7

]S

]u5
1u8

]S

]u6
1u5

]S

]u7
2u6

]S

]u8
50,
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u2

]S

]u1
2u1

]S

]u2
1u4

]S

]u3
2u3

]S

]u4
1u6

]S

]u5
2u5

]S

]u6
1u8

]S

]u7
2u7

]S

]u8
50.

2. Quantum motion

The Schro¨dinger equation for the five-dimensional quantum Coulomb problem

1

2
Ds

(5)C1S E1
m

R

s6

As1
21s2

21s3
21s4

21s5
2D C50 ~105!

transforms to the eight-dimensional oscillator equation~see the Appendix!

1

2
Du

(8)F1S E2
v2D2

2

1

u9
2 (

i 51

8

ui
2DF50 ~106!

with constraints

TiF50, ~107!

where the operatorTW is given by formula~A13!,

E5S 2im2
6

D2D , v2D252S D2E22im1
15

8D2D , ~108!

and

C5~u9!3/2F. ~109!

Considering the oscillator equation~106! in complex spherical coordinates~98! we get~see the
Appendix!

e23ix

sin4 x

]

]x
e3ix sin4 x

]F

]x
1Fv2D42 iED2

eix

sinx
1

MW 2

sin2 x
GF50, ~110!

where the operatorMW 2 has the form

MW 25
1

sin3 u

]

]u
sin3 u

]

]u
2

LW 2

sin2
u

2

2
JW2

cos2
u

2

, ~111!

and

JW5LW 1TW , JW25LW 21TW 212LW •TW . ~112!

As before, we make the complex transformation~39! and also complexify parameterm by putting
k5 im. We make the separation ansatz18

F5R~q!Z~u!G~a,b,g;aH ,bH ,gH!, ~113!

whereG is an eigenfunction of operatorsLW 2, TW 2, andJW2 with eigenvaluesL(L11), T(T11),
J(J11), respectively. Correspondingly the wave functionZ(u) is the eigenfunction of operato
MW 2 with eigenvaluel(l13). Because there isLW •TW interaction the eigenvalue equation

JW2G~a,b,g;aH ,bH ,gH!5J~J11!G~a,b,g;aH ,bH ,gH! ~114!
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cannot be separated in variables (a,b,g;aH ,bH ,gH) but we can apply the rules for the additio
of angular momentaLW andTW and, following Ref. 18 expressG as a Clebsch–Gordan expansio

GLm;Tt
JM 5 (

M5m81t8
~J,M uL,m8; T,t8!D m,m8

L
~a,b,g!D t,t8

T
~aH ,bH ,gH!, ~115!

where (JMuLm;Tt) are the Clebsch–Gordan coefficients. Note that the functionsGLm;Tt
JM satisfy

the normalization condition

E
V

dVE
VH

dVHGLm;Tt
JM GL8m8;T8t8

J8M8* 5S 2p2

2L11D S 2p2

2T11D dJJ8dLL8dTT8dMM8dmm8d tt8 . ~116!

If we substitute ansatz~113! into the Schro¨dinger equation~110!, then after separation of variable
we obtain the differential equations

1

sin3 u

d

du
sin3 u

dZ

du
1Fl~l13!2

2L~L11!

12cosu
2

2J~J11!

11cosu GZ50, ~117!

1

sin7 q

d

dq
sin7 u

dR

dq
1F ~2D2E1v2D4!2

4l~l13!

sin2 q
2

v2D4

cos2 qG50, ~118!

with real parameters

E5S 2k2
6

D2D , v2D252S D2E22k1
15

8D2D . ~119!

Consider Eq.~117!. Taking the new function byv(u)5(sinu)3/2Z(u) we obtain the Po¨schl–Teller
equation. Then the solutionZ(u)[Zl

JL(u) orthonormalized by the condition

E
0

p

Zl
JL~u!Zl8

JL* ~u!sin3 u du5dll8 ~120!

has the form

Zl
JL~u!5A ~2l13!~l1J1L12!! ~l2L2J!!

22J12L12~l2L1J11!! ~l2J1L11!!
~12cosu!J

3~11cosu!LPnu

(2L11,2J11)~cosu!, nu50,1,2,. . . , ~121!

wherel is quantized asl2L2J5nu .
Let us now turn to the quasiradial equation~118!. Settingw(q)5(sinq)27/2R(q), we can

rewrite this equation in the Po¨schl–Teller form

d2w

dq2 1F S 2D2E1v2D41
49

4 D2
~2l13!22 1

4

sin2 q
2

v2D4

cos2 q
Gw50. ~122!

Solving this equation we have following expression for quasiradial functionsR(q)[Rnrl
(u):

Rnrl
~u!5~sinq!2l ~cosq!n1 1/2

2F1~2nr , nr1n12l14; 2l14;sin2 q!, nr50,1,2, . . .
~123!

with energy levels given by
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E5
1

2D2 @~n11!~n18!1~2n21!~n14!#, n50,1,2,. . . , ~124!

wheren5(v2D41 1
4)

1/2, and principal quantum number

n52~nr1l!52~nr1nu1L1J!.

Thus, the full wave functionF is the simultaneous eigenfunction of the Hamiltonian a
commuting operatorsM2, JW2, LW 2, TW 2, J3 , L3 , andT3 . The explicit form of this function satis-
fying the normalization condition~see the Appendix!

2
iD 5

32p2 E
S8C

FnrlMmt
JLT FnrlMmt

JLT L (
i 51

8

ui
2 dv~u!

u9
2 51

is

FnrlMmt
JLT 5Cnrl

~n!
A~2L11!~2T11!

2p2 Rnrl
~q! Zl

JL~u! GLm;Tt
JM ~a,b,g;aH ,bH ,gH!, ~125!

whereRnrl
(q) is given by formula~123! and

Cnrl
~n!5

4

~2l13!!
Ain~n12l12nr14!G~2l1n1nr14!~nr12l13!!

D13p2~12e2ipn!~l1nr12!~nr !!G~n1nr11!
. ~126!

Let us now construct the five-dimensional Coulomb system. The constraints tell us

TW 2F~u!5T~T11!F~u!50 ~127!

and therefore the oscillator eigenstates span the states withT50 andL5J. For L5J the Jacobi
polynomial in ~121! is proportional to the Gegenbauer polynomial34

Pl22L
(2L11,2L11)~cosu!5

~4L12!! ~l11!!

~2l 11!! ~2L1l12!!
Cl22L

2L1 3/2~cosu!, ~128!

and we obtain

Zl
JL~u![Zll~u!522L11GS 2L1

3

2D A~2l13!~l22L !!

p~l12L12!!
~sinu!2L Cl22L

2L1 3/2~cosu!. ~129!

Then from properties of Clebsch–Gordan coefficients (JMuLm8;00)5dJLdMm8 and using
D 0,0

0 (aH ,bH ,gH)51 we see that the expansion~115! yields

GLm;00
JM ~a,b,g;aH ,bH ,gH!5D m,m8

L
~a,b,g! dJL dMm8 . ~130!

Thus, the functionF now depends only on variables (q,u,a,b,g). Observing thatl5nu12L
50,1,2,. . . ,n, introducing the new principal quantum numberN5(nr1l)5 n/250,1,2,..., and
settingk5 im, we easily get from the oscillator energy spectrum~124! the reduced system energ
levels

EN5
N~N14!

2R2 2
m2

2~N12!2 . ~131!

Noting that n5 is2(N12) and taking into account the formulas~123! and ~125!–~130!, we
finally have the solution of the Schro¨dinger equation~105! as
                                                                                                                



l Cou-
e

teifel,
ations

ms
g these
b

orrect

xifica-

-
b

o- and

2651J. Math. Phys., Vol. 41, No. 5, May 2000 Coulomb-oscillator duality in spaces of . . .

                    
Cnrmm8
Ll

~x,u;a,b,g!5D3/2e3/2 ix Fnrmm8
Ll

~x,u;a,b,g!

5Nnr

Ll~s! Rnrl
~q! ZLl~u!A2L11

2p2 D m,m8
L

~a,b,g!, ~132!

whereZLl(u) is given by~129! and

Rnrl
~x!5~sinx!l e2 ix(N2l2 is)

2F1~2N1l, l121 is;2l14;12e2ix!, ~133!

Nnrl
L ~s!5

2l12eps/2

~2l13!!
A@~N12!21s2#~N1l13!!

2R5p~N12!~N2l!!
uG~l121 is!u. ~134!

Thus, we have constructed the wave function and energy spectrum for the five-dimensiona
lomb problem. In the contraction limitR→` for finite N we get the formula for the discret
energy spectrum of the five-dimensional Coulomb problem,37

lim
R→`

EN~R!52
m2

~N12!2 , N50,1, . . . .

Taking the limitR→` and using asymptotic formulas as in~56! we get from~132! to ~134!

lim
R→`

Cnrmm8
Ll

~x,u;a,b,g!5RNl~r ! ZLl~u!A2L11

2p2 D m,m8
L

~a,b,g! ~135!

with

RNl~r !5
4m5/2

~N12!3A~N1l13!!

~N2l!! S 2mr

N12D l e2 mr /~N12!

~2l13!! 1 F1S 2N1l;2l14;
2mr

N12D ,

which coincides with the five-dimensional Coulomb wave function obtained in Ref. 37.

IV. SUMMARY AND DISCUSSION

In this paper we have constructed a series of mappingsS2C→S2 , S4C→S3 , andS8C→S5 ,
that generalize those well known from the Euclidean space Levi-Civita, Kustaanheimo–S
and Hurwitz transformations. We have shown, that as in case of flat space, these transform
permit one to establish thecorrespondencebetween the Kepler–Coulomb and oscillator proble
in classical and quantum mechanics for the respective dimensions. We have seen that usin
generalized transformations~12!, ~64!, and~94! we can completely solve the quantum Coulom
system on the two-, three-, and five-dimensional sphere, including eigenfunctions with c
normalization constant and energy spectrum.

For the solution of the quantum Coulomb problem, we first transformed the Schro¨dinger
equation to the equation with oscillator potential on the complex sphere. Then, via comple
tion of the Coulomb coupling constantm (m5Ze2) and the quasiradial variablex this problem
was translated to the oscillator system on the real sphere and solved.

It is interesting to note that the complexification of constantZe2/R and the quasiradial vari
able were first used by Barut, Inomata, and Junker24 in the path integral approach to the Coulom
system on the three-dimensional sphere and hyperboloid, and further were applied to tw
three-dimensional superintegrable systems on spaces with constant curvature.27,30The substitution
used in Ref. 24,

eix52cothb, bP~2`,`!, ~136!
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is correct as an analytic continuation to the region 0<Rex<p and2`,Im<0 and translates the
Coulomb quasiradial equation with variablex to the modified Po¨schl–Teller equation with vari-
able b. It is possible to show that there exists a connection between~136! and generalized
Levi-Civita transformations on constant curvature spaces. Indeed, for instance, along w
mappingS2C→S2 we can determine a mappingH2C→S2 , i.e., from the two-dimensional comple
hyperboloid to the real sphere:

s1
21s2

21s3
25~u3

22u1
22u2

2!2.

This transformation has the form

s15 iAu3
22u1

22u2
2
•

u1
22u2

2

2u3
,

s25 iAu3
22u1

22u2
2
•

u1u2

u3
, ~137!

s35Au3
22u1

22u2
2
•S u32

u1
21u2

2

2u3
D ,

and translates the Schro¨dinger equation for the Coulomb problem on the sphere to the oscil
problem on the complex hyperboloid. Then the substitution~136! transforms the oscillator prob
lem from the complex to the real hyperbolid, a solution well known from Refs. 30 and 29.

The method described in this paper can be applied not just to~11! but to many Coulomb-type
potentials. In particular the generalized two-dimensional Kepler–Coulomb problem may be
formed to the Rosokhatius system on the two-dimensional sphere.28

As we have seen, in spite of the similarity of transformations~4! and~12! on the sphere and
Euclidean space there exist essential differences. Equations~12!, ~64!, and ~94! determine the
transformations between complex and real spheres or in ambient spaces a mappingC2p11

→Rp12 for p51,2,4. Evidently these facts are closely connected to Hurwitz theorem,38 according
to which the nonbijective bilinear transformations satisfy the identity

s1
21s2

21 ¯ 1sf
25~u1

21u2
21 ¯ 1un

2!2 ~138!

only for four pair of dimensions: (f ,n)5(1,1),(2,2),(3,4), and (5,8),which corresponds to a
mappingR2p→Rp11 for p51,2,4, respectively.

For transformations between real spaces of constant curvature the situation is more c
cated, and more interesting. For example, the two-dimensional transformation on the hype
is

s15Au3
26u1

26u2
2
•

u1
22u2

2

2u3
,

s25Au3
26u1

26u2
2
•

u1u2

u3
, ~139!

s35Au3
26u1

26u2
2
•S u36

u1
21u2

2

2u3
D ,

and

s3
22s1

22s2
25~u3

26u1
26u2

2!2. ~140!
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Thus, the upper and lower hemispheres of the real sphere or the upper and lower sheet
two-sheet hyperboloid inu-space map to the upper and lower sheets, respectively, of the two-
hyperboloid ins-space.

The next example is the transformation

s15Au1
21u2

22u3
2
•

u1
22u2

2

2u3
,

s25Au1
21u2

22u3
2
•

u1u2

u3
, ~141!

s35Au1
21u2

22u3
2
•S u32

u1
21u2

2

2u3
D ,

and

s1
21s2

22s3
25~u1

21u2
22u3

2!2. ~142!

Here the one-sheet hyperboloid inu-space maps to the one-sheet hyperboloid ins-space. From
transformations~139! and ~141! ~using the methods as in Sec. II! it is easy to show that in the
contraction limitD→` this transformation goes to the real Levi-Civita transformation~up to the
translationūi→&ūi) ~4!. This shows that the method of this article can be adapted to tre
Kepler–Coulomb system on the two- and one-sheet hyperboloids.

Finally, note that in this article we do not discuss two important questions. First is
correspondence between integrals of motion for Kepler–Coulomb and oscillator systems. S
is the connection between separable systems of coordinates~not only spherical! under mappings
~12!, ~64!, and~94!. This investigation will be carried out elsewhere.

ACKNOWLEDGMENTS

This work was supported in part by the Russian Foundation for Basic Research under
No. 98-01-00330. We thank Professor A. Odzijewicz, Professor A. N. Sissakian, Professor
Ter-Antonyan, and Professor P. Winternitz, and Dr. A. A. Izmest’ev and Dr. L. G. Mardoya
interest in this work and very fruitful discussions. Two of the authors~E.K. and G.P.! thank each
other’s institutions for kind hospitality during visits to Dubna and Hamilton.

APPENDIX: TRANSFORMATION FORMULAS

We present some differential aspects of the generalized Levi-Civita, KS, and Hurwitz t
formations. These calculations are related to those in Refs. 15 and 18 for flat space.

1. Transformation S2C\S2

The Laplace–Beltrami operator on theuI -sphere in complex spherical coordinates~17! is

Du
(2)5

1

D2 @~u1]u2
2u2]u1

!21~u3]u2
2u2]u3

!21~u3]u1
2u1]u3

!2#

5
2i

D2 sinxe2 ixH 1

sinx

]

]x
sinx

]

]x
1

1

sin2 x

]2

]w2J , ~A1!

while the usual Laplace–Beltrami operator on thes-sphere in spherical coordinates (x,w) has the
form
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Ds
(2)5

1

R2 @~s1]s2
2s2]s1

!21~s3]s2
2s2]s3

!21~s3]s1
2s1]s3

!2#

5
1

R2 H 1

sinx

]

]x
sinx

]

]x
1

1

sin2 x

]2

]w2J . ~A2!

The two Laplacians are connected through

Ds
(2)52

u3
2

u1
21u2

2

1

D2 Du
(2) . ~A3!

The volume elements inu- ands-spaces are

dv~u!52
iD 2

2
eix dx dw, dv~s!5R2 sinx dx dw ~A4!

and

1

R
dv~s!52

u1
21u2

2

u3
2 dv~u!. ~A5!

We have~the variablew runs the from 0 to 4p)

E
S2

¯ dv~s!52
D2

2 E
S2C

¯

u1
21u2

2

u3
2 dv~u!. ~A6!

2. Transformation S4c\S3

The Laplace–Beltrami operator on theu-sphere in (x,a,b,g) coordinates is

Du
(4)5

2i

D2 sinxe2 ixF e2 ix

sin2 x

]

]x
eix sin2 x

]

]x
1

LW 2

sin2 x
G , ~A7!

where

L15 i S cosa cotb
]

]a
1sina

]

]b
2

cosa

sinb

]

]g D ,

L25 i S sina cotb
]

]a
2cosa

]

]b
2

sina

sinb

]

]g D , ~A8!

L352 i
]

]a
,

and

LW 25F ]2

]b2 1cotb
]

]b
1

1

sin2 b S ]2

]g2 22 cosb
]

]g

]

]a
1

]2

]a2D G , ~A9!

while the usual Laplace–Beltrami operator on thes-sphere in (x,b,a) coordinates is

Ds
(3)5

1

R2 F 1

sin2 x

]

]x
sin2 x

]

]x
1

1

sin2 x S ]2

]b2 1cotb
]

]b
1

1

sin2 b

]2

]a2D G .
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The two Laplace–Beltrami operators are connected by

Du
(4)5

2i

D2 sinxe2~3i /2! xFD4Ds
(3)1S 1

4
2 i cotx D1

1

sin2 x

1

sin2 b

]

]g S ]

]g
22 cosb

]

]a D Ge~ i /2! b,

and the operator acting on functions of variables (x,b,a) is

Ds
(3)52u5

1/2H u5
2

u1
21u2

21u3
21u4

2 F 1

D2 Du
(4)2

1

D4 S 21
3

4

u1
21u2

21u3
21u4

2

u5
2 D G J u5

2 1/2. ~A10!

The volume elements onS4c andS3 are given by

dv~u!52
D4

4
e2ix sinx sinbd x db da dg, dv~s!5R3 sin2 x sinb dx db da,

where

u1
21u2

21u3
21u4

2

u5
3 dv~u!5

i

2D2 dv~s! dg. ~A11!

Integration overgP@0,4p# gives

E
S3

¯ d v~s!52
iD 2

2p E
S4C

¯

u1
21u2

21u3
21u4

2

u5
3 d v~u!.

3. Transformation S8C\S5

The Laplace–Beltrami operator on theu-sphere in (x,q;a,b,g,aH ,bH ,gH) coordinates is

Du
(8)5

2i

D2 sinxe2 ixH e23ix

sin4 x

]

]x
e3ix sin4 x

]

]x
1

1

sin2 x
F 1

sin3 q

]

]q
sin3 q

]

]q

2

4S LW 212LW •TW sin2
q

2
1TW 2 sin2

q

2 D
sin2 q

G J , ~A12!

where operatorLW is given by~A8! andTW is

T15 i S cosaH cotbH

]

]aH
1sinaH

]

]bH
2

cosaH

sinbH

]

]gH
D ,

T25 i S sinaH cotbH

]

]aH
2cosaH

]

]bH
2

sinaH

sinbH

]

]gH
D , ~A13!

T352 i
]

]aH
.

The Laplace–Beltrami operator on the five-dimensional sphere in (x,q;a,b,g) coordinates is

Ds
(5)5

1

R2 F 1

sin4 x

]

]x
sin4 x

]

]x
1

1

sin2 x
S 1

sin3 q

]

]q
sin3 q

]

]q
2

4LW 2

sin2 q
D G . ~A14!
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The Laplace–Beltrami operators are related by

Du
(8)5

2i

D2 sinxe2~5i /2! aFD4Ds
(5)1S 9

4
26i cotx D2

1

sin2 x

2LW •TW 1TW 2

cos2
q

2
G e~3i /2! x

and the operator acting on a function of variables (x,q;a,b,g) is

Ds
(5)52u9

3/2H 1

D2

u9
2

(
i 51

8 ui
2
FDu

(8)2
1

D2 S 121
15

4

1

u9
2 (

i 51

8

ui
2D G J u9

2 3/2. ~A15!

The volume elements onS8C andS5 have the form

dv~u!528D8e4ix sin3 x sin3 u dx du dV dVH ,

dv~s!5R5 sin4 x sin3 u dx du dV,

where

dV5 1
8 sinbda db dg. ~A16!

We have

1

u9
5 (

i 51

8

ui
2 dv~u!5

16i

D5 dv~s! dVH ~A17!

and integration over the variables (aH ,bH ,gH) gives the formula

E
S5

¯dv~s!52
iD 5

32p2 E
S8C

¯(
i 51

8

ui
2 dv~u!

u9
5 . ~A18!
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We analyze the perturbative series expansion of the vacuum expectation value of a
Wilson loop in Chern–Simons gauge theory in the temporal gauge. From the analy-
sis emerges the notion of thekernel of a Vassiliev invariant. The kernel of a
Vassiliev invariant of ordern is not a knot invariant, since it depends on the regular
knot projection chosen, but it differs from a Vassiliev invariant by terms that vanish
on knots withn singular crossings. We conjecture that Vassiliev invariants can be
reconstructed from their kernels. We present the general form of the kernel of a
Vassiliev invariant and we describe the reconstruction of the full primitive Vassil-
iev invariants at orders two, three, and four. At orders two and three we recover
known combinatorial expressions for these invariants. At order four we present new
combinatorial expressions for the two primitive Vassiliev invariants present at this
order. © 2000 American Institute of Physics.@S0022-2488~99!02912-6#

I. INTRODUCTION

Topological quantum field theories have provided important connections between dif
types of topological invariants. These connections are obtained by exploiting the multipl
proaches inherent in quantum field theory. Chern–Simons gauge theory~CSGT! constitutes a very
successful case in this respect. Its analysis, from both the perturbative and the nonpertu
points of view, has provided numerous important insights into the theory of knot and link in
ants. Nonperturbative methods1–6 have established the connection of~CSGT! with polynomial
invariants as the Jones polynomial7 and its generalizations.8–10 Perturbative methods11–18 have
provided representations of Vassiliev invariants.

Gauge theories can be analyzed for different gauge fixings. Vacuum expectation val
gauge-invariant operators are gauge independent and they can therefore be computed in
gauges. Covariant gauges are simple to treat and their analysis in the case of perturbative
has been shown to lead to covariant formulas for Vassiliev invariants.11,12,14–16These formulas
involve multidimensional space and path integrals which, in general, are rather involved
computed explicitly. Noncovariant gauges seem to lead to simpler formulas. However, the s
ties inherent to noncovariant gauges19 plague their analysis with difficulties. The two noncovaria
gauges that have been more widely studied are the light-cone gauge and the temporal gau20–22

Both belong to the general category of axial gauges. In the light-cone gauge the resulting e
sions for the Vassiliev invariants turn out to be the ones involving Kontsevich integrals.23 These
integrals, although simpler than the ones appearing in covariant gauges, are still too comp
to carry out explicit computations of Vassiliev invariants. Simpler expressions in which no
grals are involved, i.e., combinatorial ones, are desirable. The aim of this paper is to rea
goal by studying the theory in the temporal gauge.

a!Electronic mail: labasti@fpaxp1.usc.es
26580022-2488/2000/41(5)/2658/42/$17.00 © 2000 American Institute of Physics
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We present the analysis of the perturbative series expansion of the vacuum expectatio
of a Wilson loop in the temporal gauge. Some aspects of this gauge have been studied in R
and 20. In our analysis we encounter all the problems which were present in the light-cone
A key role is played by the gauge propagator. The computation of the gauge propaga
noncovariant gauges is plagued with ambiguities, which are solved by demanding some pro
for the correlation functions of the theory. These properties are usually based on physical gr
In our case we must demand gauge invariance of the vacuum expectation values of Wilson
As we encounter these ambiguities in our analysis we are forced to work with a rather g
propagator in which some of the terms are not known explicitly. Fortunately, the complete ex
form of the propagator is not needed to compute vacuum expectation values of Wilson
Using the factorization theorem24 of Chern–Simons perturbation theory we are able to explic
compute them, at least up to fourth order. Consistency, however, forces the introduction
correction term similar to the one needed in the light-cone gauge. Since in our analysis
hypotheses are introduced to cope with the ambiguities, we must check that our final expre
are indeed knot invariants. We will prove this to be the case for the terms of the perturbative
expansion under consideration.

The propagator is the sum of two terms, one whose explicit form is known and that de
on the signatures at the crossings, and one whose complete explicit form is not known
independent of the signatures at the crossings. Taking into account only the first term, w
struct what we call the kernels of the Vassiliev invariants. These are quantities that are no
invariants but depend on the regular projection chosen, i.e., they are functions of knot dia
These kernels have the property that they differ from an invariant by terms that vanish on si
knots with a high enough number of singular crossings. More precisely, if one conside
order-m kernel, it differs from an order-m Vassiliev invariant by terms that vanish after performi
the m subtractions needed to get the invariant for a singular knot diagram withm singular cross-
ings.

In this paper we provide the general formulas for the kernels of the Vassiliev invariants
we conjecture that the information contained in the kernels is sufficient to reconstruct a
Vassiliev invariants at a given order. To sustain this conjecture we implement it at orders
three and four. Recent results from the mathematical side seem to indicate the existenc
combinatorial formula of this type.25,26

The paper is organized as follows. In Sec. II we formulate the perturbative series expans
the vacuum expectation value of a Wilson loop in the temporal gauge. In Sec. III we prese
kernels of Vassiliev invariants and we analyze their properties. In Sec. IV we carry ou
reconstruction procedure at order two, three, and four. In Sec. V we prove that the qua
obtained at order four are invariant under Reidemeister moves. Finally, in Sec. VI we sta
conclusions. An Appendix contains tables where the output of our combinatorial expressio
the primitive Vassiliev invariants of orders two to four for prime knots up to nine crossing
compiled.

II. CHERN–SIMONS PERTURBATION THEORY IN THE TEMPORAL GAUGE

In this section we formulate Chern–Simons gauge theory in the temporal gauge. L
consider a semisimple gauge groupG and aG connection on a three-spaceM. The action of the
theory is the integral of the Chern–Simons form:

SCS~A!5
k

4p E
M

TrS A`dA1
2

3
A`A`AD , ~2.1!

where Tr denotes the trace over the fundamental representation ofG, andk is a real parameter
The exponential exp(iSCS) of this action is invariant under the gauge transformation

Am→h21Amh1h21]mh, ~2.2!
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where h is a map fromM to G, when the parameterk is an integer. Of special interest i
Chern–Simons gauge theory are the Wilson loops. These are gauge-invariant operators lab
a loopC embedded inM and a representationR of the gauge groupG. They are defined by the
holonomy along the loopC of the gauge connectionA:

WR~C,G!5Tr@PR expgrA#, ~2.3!

wherePR denotes that the integral is path-ordered and thatA must be considered in the represe
tation R of G. As shown in Ref. 1, the vacuum expectation values of products of these ope
lead to invariants associated with links corresponding to sets of nonintersecting loops.

Gauge-invariant theories need to undergo a gauge-fixing procedure to make their ass
functional integrals well defined. Different choices of gauge fixing lead to different representa
of the same quantities. For vacuum expectation values of products of Wilson lines one o
different expressions for knot and link invariants. The aim of this paper is to study the perturb
series expansion corresponding to these quantities when one chooses the temporal gaug
temporal gauge the condition imposed on the gauge connectionA is

nmAm50, ~2.4!

where n is the vectornm5(1,0.0). This gauge is a particular case of a more general clas
noncovariant gauges called axial gauges in which just~2.4! is imposed,n being a constant vecto
satisfying some condition. The light-cone gauge studied in Ref. 17 is another particular c
this type of gauge. We showed in Ref. 17 that in the light-cone gauge the perturbative
expansion of the vacuum expectation value of a Wilson line leads to the Kontsevich inte23

representation for Vassiliev invariants.
Condition~2.4! is imposed in the functional integral, adding the following gauge-fixing te

to the action:

Sgf5E
M

d3x Tr~dnmAm1bnmDmc1ad2!, ~2.5!

whered is an auxiliary field,c andb are ghost fields, anda is an arbitrary constant. In definin
perturbative series expansions, it is convenient to rescale the fields byA→gA, where g
5A4p/k, and to integrate outd. The quantum action becomes

S52
1

2 EM
d3xFemnrS Am

a ]nAr
a2

g

3
f abcAm

a An
bAr

cD2
1

a
~nmAm

a !21banmDm
abcbG . ~2.6!

We will study the theory in the gaugea→0. In this case we can impose the condition~2.4! for
the terms in the action and it turns out that all terms but the quadratic ones vanish. Thu
corresponding Feynman rules do not have vertices and all the information is contained in th
of the propagator. This observation might not hold for some types of three-manifoldsM since
there can be zero modes that cannot be gauged away and some interaction terms could rem
the case ofM5R3, the one on which we concentrate our attention, this does not occur. How
they may play an important role in other situations.13 We are therefore left with the quadratic pa
of ~2.6!. The ghost contribution is trivial and for the gauge fields one obtains the follow
propagator in momentum space:

Dmn~p!5
a

~np!2 S pmpn2
i

a
~np!emrnnrD , ~2.7!

which, in the limita→0, becomes
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Dmn~p!→2 i emrn

nr

np
. ~2.8!

This propagator presents a pole atnp50 and a prescription to regulate it is needed. This type
problem is standard in noncovariant gauges and several prescriptions have been proposed
the pole~see Ref. 19 for a review on the subject!. To construct the perturbative series expans
of the vacuum expectation value of a Wilson loop, we need the Fourier transform of~2.8! and
therefore the problem related to the presence of the pole is unavoidable. In the temporal gau
momentum–space integral that has to be carried out has the following form:

D~x0 ,x1 ,x2!5E
M

d3p

~2p!3

ei ~p0x01p1x11p2x2!

p0
. ~2.9!

This integral is ill-defined due to the pole atp050. To make sense of it a prescription has to
given to circumvent the pole. But, before studying possible prescriptions, let us first analy
dependence ofD(x0 ,x1 ,x2) in ~2.9! on x0 . The pole inp0 is avoided if, instead of~2.9!, one
analyzes the derivative ofD(x0 ,x1 ,x2) with respect tox0 . ConsideringD(x0 ,x1 ,x2) as a distri-
bution one obtains:

]D

]x0
5 id~x0!d~x1!d~x2!. ~2.10!

Integrating this expression with respect tox0 , one finds that any prescription would lead to a res
of the following form:

D~x0 ,x1 ,x2!5
i

2
sign~x0!d~x1!d~x2!1 f ~x1 ,x2!, ~2.11!

where f (x1 ,x2) is a prescription-dependent function. The important consequence of the
~2.11! is that the dependence ofD(x0 ,x1 ,x2) on x0 has to be in the form sign(x0)d(x1)d(x2).
This observation will be crucial in our analysis. We will actually work with the rather gen
formula ~2.11! for D(x0 ,x1 ,x2). This form of the propagator will allow us to introduce the notio
of kernel of a Vassiliev invariant and to design a procedure to compute combinatorial expre
for these invariants.

Although we will not use an explicit prescription to compute the propagator~2.9! let us
analyze one of them to check that indeed it has the form~2.11!. We will choose a Mandelstam-like
prescription19 to show that the propagator on the right-hand side of~2.8! has the form advocated
in Ref. 20. Let us consider:

De~x0 ,x1 ,x2!5E
M

d3p

~2p!3

ei ~p0x01p1x11p2x2!

p02 i e sign~p2!
. ~2.12!

The integral on the left-hand side of~2.12! has poles atp05 i e sign(p2). To carry out thep0

integration, we close forx0.0 ~for x0,0) the contour integration in the upper~lower! half plane:

De5 iQ~x0!d~x1!E
p2.0

dp2

2p
eip2~x21 i ex0!2 iQ~2x0!d~x1!E

p2,0

dp2

2p
eip2~x21 i ex0!

52
d~x1!

2p

1

x21 i ex0
. ~2.13!

Using the relation,
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1

x21 i ex0
5PS 1

x2
D2 ip sign~x0!d~x2!, ~2.14!

one finally obtains

De5
i

2
sign~x0!d~x1!d~x2!2

1

2p
PS 1

x2
D d~x1!, ~2.15!

which has the general form~2.11!. This propagator is the one used in the analysis performe
Ref. 20. Notice that the prescription that we have used breaks the symmetry under rotations
x1 , x2 plane, which is present in the temporal gauge. A more symmetric prescription in whic
symmetry is kept would be preferable. Although such a prescription could be constructed
we will not do it here. As stated previously, we will not need in our analysis an explicit form
the distributionf in ~2.11!.

Taking the expression~2.11! for D(x0 ,x1 ,x2) and ~2.8! we can easily obtain the form of a
the components of the propagator:

^A0
a~x!Am

b ~x8!&50,
~2.16!

^Am
a ~x!An

b~x8!&5
i

2
dabemn sign~x02x08!d~x12x18!d~x22x28!1 f ~x12x18 ,x22x28!,

wherem,n51,2 andemn is antisymmetric withe1251. This propagator contains the basic info
mation of the theory and constitutes the essential ingredient in the construction of the pertu
series expansion of the vacuum expectation value of a Wilson loop.

III. KERNELS OF VASSILIEV INVARIANTS

Wilson loops are the gauge-invariant operators~2.3! whose vacuum expectation value leads
knot invariants. Our aim is to compute the normalized vacuum expectation value:

^WR~C,G!&5
1

Zk
E @DA#WR~C,G!eiSCS~A!, ~3.1!

whereZk is the partition function of the theory:

Zk5E @DA#eiSCS~A!. ~3.2!

This quantity leads to knot invariants and possesses a perturbative series expansion in the c
constantg. This series can be constructed diagrammatically from the Feynman rules of the th
One assigns an external circle to the loopC carrying a representationR, and internal lines to the
propagator~2.16!. These internal lines are attached to the external circle by the vertex dictat
the form of the Wilson loop~2.3!:

Vi
j ma~x!5g~T~R!

a ! i
jE dxm. ~3.3!

The perturbative series is constructed by expanding the Wilson loop operator~2.3! and contracting
the gauge fields with the propagator~2.16!. It has the following general form:14

^WR~C,G!&5dimR(
i 50

`

(
j 51

di

a i j ~C!r i j ~R!xi , ~3.4!
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where x5 ig2/2 is the expansion parameter. The quantitiesa i j (C), or geometrical factors, are
combinations of path integrals along the loopC, and ther i j are traces of products of generators
the Lie algebra associated with the gauge groupG. The index i corresponds to the order i
perturbation theory, andj labels independent contributions at a given order,di being the number
of these at orderi. In ~3.4! dim R denotes the dimension of the representationR. Notice the
conventiona01(C)51. For a given order in perturbation theory,$r i j %$ j 51,...,di %

represents a basis o
independent group factors.

The quantitiesa i j (C) in ~3.4! are Vassiliev invariants of orderi.27 Our goal is to compute
them in the temporal gauge. We will find out that, as in the light-cone gauge, we must intro
a multiplicative factor to render the terms of the perturbative series expansion invariant. W
obtain some conditions that this factor must satisfy and we will present an ansatz for it poss
the same structure as the one present in the light-cone gauge. With this problem around
arbitrary distributionf present in the propagator~2.16!, one would not expect that it is possible
obtain concrete combinatorial expressions for the Vassiliev invariants. However, it turns ou
the structure of the perturbative series expansion is so greatly constrained that by making a
hypothesis on the form of the multiplicative factor we are able to achieve our goal.

The structure of the gauge propagator~2.16! indicates that in the temporal gauge we mu
consider loops in three space which do not make the argument of the delta functions vanish
a finite segment. This fact restricts us to knot configurations which possess a regular pro
into the planex1 ,x2 . This does not imply any loss of generality since any knot can be cont
ously deformed to one of that type.

Given a regular projectionK of a knot K onto thex1 ,x2 plane we will construct first the
perturbative series expansion of the vacuum expectation value of the corresponding Wilso
using only the first term of the propagator~2.16!. At order i the terms in the series involvei
propagators and so, in considering only the first term of~2.16!, we are missing terms with al
powers of f (x1 ,x2) from 1 to i. The term with f i does not depend onx0 and therefore it only
contains information on the shadow of the knot projectionK on the planex1 ,x2 , i.e., it does not
contain information on the signs of the crossings. Terms with lower powers off contain some
information on the crossings, but they vanish after considering the signed sums involved
invariants associated with singular knots. Vassiliev invariants for singular knots are defined
iterated sum of the differences when a singular point is resolved by an overcrossing a
undercrossing. Terms withf j vanish for singular knots withi 2 j 11 singularities. Thus what we
are missing by considering at orderi only the first term in the propagator~2.16! is something that
vanishes on knots withi singularities. Of course, being an invariant of finite type, the whole te
vanishes for knots with more thani singularities. The main goal of this paper is to conjecture t
the full invariant can be reconstructed from the quantities that result from a consideration o
the first term in~2.16!. We will call those quantitieskernelsof Vassiliev invariants. We will show
explicitly the reconstruction from the kernels at orders two, three, and four.

In order to understand the role played by the first term of~2.16!, let us analyze in detail the
second-order contribution~see Fig. 1!. The quantity to be computed is of the form:

FIG. 1. Example of a knot projection.
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E
v,w

dv dw ẋm~v !ẋn~w!«mn sign~x0~v !2x0~w!!d~x1~v !2x1~w!!d~x2~v !2x2~w!!.

~3.5!

Two types of contributions can be encountered. There are other contributions whenv andw get
close to each other. These contributions are related to framing and they can be analyzed as
17, giving the standard framing factor. Since they are simple to control, we will not consider
here. There are contributions whenx1(v)5x1(w) andx2(v)5x2(w), but vÞw. These situations
correspond precisely to the crossings. Let us suppose that the knot projectionK hasn crossings
labeled byj , j 51,...,n. At a crossingj the parametersv andw take valuesv5sj andw5t j , with
sjÞt j . The delta functions present in~3.5! can be evaluated very easily. Equation~3.5! becomes

(
j 51

n E
v,w

dv dw
ẋm~v !ẋn~w!«mn

uẋm~v !ẋn~w!«mnu
sign~x0~v !2x0~w!!d~v2sj !d~w2t j !, ~3.6!

which is precisely a sum of the crossing signse j at the crossingsj 51,...,n, i.e., ( j 51
n e j .

The structure of the computation of~3.5! clearly generalizes. Whenever a term containing
first part of the propagator~2.16! appears in the perturbative series expansion, it can be trade
crossing signs. In general, one obtains powers of crossing signs by multiplying quantities
depend only on the shadow of the regular projection. This proves that, as stated previou
order-i contribution withj powers off ~and thereforei 2 j powers of crossing signs! vanishes for
singular knots withi 2 j 11 singularities.

The argument leading to( j 51
n e j after ~3.6! generalizes and allows us to write the gene

form of the perturbative series expansion when only the first term in~2.16! is taken into account.
Let us consider a knotK with a regular knot projectionK containingn crossings. Let us choose
base point onK and let us label then crossings by 1,2,...,n as we pass for the first time throug
each of them when traveling alongK starting at the base point. The universal expression for
kernel associated withK has the following form:

N~K!5 (
k50

` S (
m51

k

(
p1 ,...,pm51

p11¯1pm5k

k

(
i 1 ,...,i m51
i 1,¯, i m

n e i 1

p1
¯e i m

pm

~p1!¯pm! !2 (
s1 ,...,sm

s1eP1 ,...,smePm

T~ i 1 ,s1 ;...;i m ,sm!D .

~3.7!

In Eq. ~3.7! Pm denotes the permutation group ofpm elements. The factors in the innermost su
T( i 1 ,s1 ;...;i m ,sm), are group factors which are computed in the following way: Given a se
crossings,i 1 ,...,i m , and a set of permutations,s1 ,...,sm , with s1PP1 ,...,smPPm , the corre-
sponding group factorT( i 1 ,s1 ;...;i m ,sm) is the result of taking a trace over the product of gro
generators which is obtained after assigningp1 ,...,pm group generators to the crossingsi 1 ,...,i m ,
respectively, and placing each set of group generators in the order which results after tra
along the knot starting from the base point. The first time that one encounters a crossini j a
product ofpj group generators is introduced: the second time the product is similar, but wit
indices rearranged according to the permutations jPPj .

The kernels entering~3.7! are not knot invariants. Besides the knotK, they clearly depend on
the knot projection chosen. However, at orderk they are knot invariants modulo terms that vani
when an order-k signed sum is considered. We conjecture that kernels contain enough inform
to allow reconstruction of the full Vassiliev invariants at each order. In Sec. IV we will presen
reconstruction procedure for all primitive Vassiliev invariants up to order four.
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IV. RECONSTRUCTION OF VASSILIEV INVARIANTS UP TO ORDER FOUR

A. Outline of the calculation procedure

In this section we will obtain combinatorial formulas for the primitive Vassiliev invariants
to order four using the kernels~3.7! presented in Sec. III. In order to be able to reconstruct
invariant we need to exploit as much as possible all the information contained in the pertur
series expansion of a Wilson loop in Chern–Simons theory. The crucial ingredient is, a
previously observed, that all the dependence on the crossings comes from the first term
propagator~2.16!. Contributions not involving that part are crossing independent, i.e., they w
not distinguish between over- or undercrossings, and consequently neither between the dia
a knot projectionK and its standard ascending diagrama~K!. Recall that the ascending diagram
a knot projection is defined as the diagram obtained by switching, when traveling along the
from the base point, all the undercrossings to overcrossings. There is a straightforward
quence of this fact that will help us in simplifying our calculations. Under the action o
inversion of space, a Vassiliev invariant of even order coming from the perturbative expa
does not vary, while one of odd order changes sign. This means that all the signature contrib
should be of even order in the former and odd order in the latter. As we claim that all
contributions come from the first term of the propagator~2.16!, it follows that integrals with an
odd number of powers of the functionf in ~2.16! will not contribute to the invariant.

Many of the ingredients entering the reconstruction procedure of the full invariants rely o
use of the factorization theorem in Chern–Simons theory proved in Ref. 24. According to
theorem, once a canonical basis is chosen for the group factors, any nonprimitive Va
invariant of a given order can be written in terms of invariants of lower orders. Using this the
we will obtain a series of relations involving unknown integrals, which will allow their solution
be such that a combinatorial formula for the Vassiliev invariants will be obtained.

As stated previously, we will have to deal also with a Kontsevich-type global factor. We
assume that this factor can be written as the invariant of the unknot raised to some expone
depends on some features of the knot projection under consideration. This will modify the
turbative series at every even order. We will obtain a series of consistency relations fo
exponent, which admit simple solutions.

As crucial as the calculation itself is finding a convenient way to deal with the integ
appearing in the perturbative series expansion. On the one hand, we would like to write th
explicitly as possible so that, when we know how they behave, relations appearing at a given
can be used in higher orders; on the other hand, we would like to describe them in a compa
so that the notation does not become too clumsy. We will introduce a notation that we
satisfies these two conditions.

We will basically denote an integral made out of thef-dependent part of the propagator~2.16!
by a capitalD and a subindex which will actually be the Feynman diagram it comes from.
calculations, though, require a more subtle labeling. Given a Feynman diagram, each cho
usually represents the propagator of the theory. Our propagator~2.16! contains two pieces: the
explicit one, which leads to the signatures of the crossings, and thef-dependent one. A Feynma
integral will be a sum over all the possible ways of identifying the chords with each of them
for a given Feynman diagram we will end up with different types ofD integrals, depending on
how manyf-terms they contain. When all the propagators in the Feynman integral are of this
we will simply denote it by where the subindex represents the corresponding Feynman
gram~the void circle stands for any diagram!. If only one chord stands for the signature-depend
part, its evaluation will simply result in a crossing sign,e i , plus a restriction of the origina
integration domain. We will say that the chord standing for this factor is attached to thi th
crossing, meaning that the ordered integration domain of the other chords of theD integral is now
limited by the position of that crossing. We will write down the resulting integral as

~4.1!
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with the superindex ofD denoting that one of the chords in the diagram is attached to thei th
crossing. This timeD is in fact a sum over all the possible choices of placing the signat
dependent part of the propagator~2.16! in the i th crossing~and of course a sum over the perm
tations of the given diagram is understood everywhere!. Some examples are shown in Fig.
There the integrals are represented directly by their Feynman diagrams, with a dashed line
ing for a signature-dependent term of the propagator, attached to a crossingi, and a continuous
line representing thef-dependent term.

A more involved case arises when the integrand contains two signature-dependent te
the propagator~2.16!. In this case we will distinguish three subcases.

~1! When both are attached to the same crossing the integral will then be written as

~4.2!

~2! When the crossings are different and, while traveling along the knot path, their l
follow the pattern in Fig. 3~a!; then the integral will be denoted as

~4.3!

~3! When they are as in Fig. 3~b!,

~4.4!

We will denote byCa the set of all pairs of crossings like those in Fig. 3~a!, and byCb the pairs like
in Fig. 3~b!. Examples of these cases are drawn in Fig. 4. As we are dealing with invariants
order four, we do not need to handle the case where three or more signature-dependent t
the propagator~but not all! are fixed to crossings. When the contribution does not con
f-dependent terms, the Feynman integral may be read from the kernels~3.7!. We will denote
by the sum of terms in~3.7! corresponding to the diagram specified in its subindex, enco
in that formula in the form of the group factorT.

FIG. 2. Examples ofDi integrals.

FIG. 3. Possible configurations of two crossings.
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In order to organize the perturbative series expansion, we have to make a choice of ba
the group factors entering the Feynman diagrams. Once this is done, the coefficients of th
elements will be built out of a sum of Feynman integrals, with the appropriate factors. We
denote these sums by when the terms involve only the signature-dependent part of
propagator, and by when they involve thef-dependent part. Indexes in the capitalD will have
the same meaning as mentioned previously. This time, the diagram will stand for the indep
group factor.

Additional notation is needed to write explicit combinatorial formulas for the invaria
These involve the so-calledcrossing numbers,28 which build up the signature contributions i
every integral. We will use the notation introduced in Ref. 28 for some of these function
well as new ones. The key ingredient of that notation~see Ref. 28 or 29 for a more detaile
explanation! is the following definition of the signature function:

Let p:S1→R2 be the projection, into thex1 ,x2 plane of a knot diagramK. Let siPS1, i
PI, be the preimages of then crossings inK, with I5$1,...,2n% the index set of the labelings o
the crossings. Then, following, Ref. 28, we define:

e~ i , j !5H e~p~si !! if p~si !5p~sj ! and iÞ j

0 otherwise
. ~4.5!

This function is such that whenever two labelings happen to label the same crossing, it
its signature, and if they do not, it returns zero. With the help of this function one de
quantities involving powers of the signatures. The following is a list of all the definitions of t
quantities required in our computations~notice that our notation for the order-two functions
slightly different from that in Ref. 28!. The sums are taken over all possible ways of choosing
labelings in the index setI within the given ordering. In Fig. 5 we present a diagrammatic nota
for these definitions. There, the solid lines stand for the signature function, and the dashed o
its square. The diagram tells us in a straightforward way the ordering that the labels must
when we travel along the knot, and thus which collection of crossings would contribute to a
crossing number. Only one representative is chosen from those entering each sum. The oth
be obtained very simply from the representative performing a rotation of the diagram
keeping the labels fixed. The list of functions that will be needed below is the following:

x1~K!5 (
j 1. j 2

e~ j 1 , j 2!,

x2
A~K!5 (

j 1. j 2. j 3. j 4

e~ j 1 , j 3!e~ j 2 , j 4!,

x2
B~K!5 (

j 1. j 2. j 3. j 4

@e~ j 1 , j 3!2e~ j 2 , j 4!1e~ j 1 , j 3!e~ j 2 , j 4!2#,

FIG. 4. Examples ofDi j integrals.
                                                                                                                



2668 J. Math. Phys., Vol. 41, No. 5, May 2000 J. M. F. Labastida and E. Pérez

                    
x2
C~K!5 (

j 1. j 2. j 3. j 4

e~ j 1 , j 3!2e~ j 2 , j 4!2,

x3
A~K!5 (

j 1.¯. j 6

e~ j 1 , j 4!e~ j 2 , j 5!e~ j 3 , j 6!,

x3
B~K!5 (

j 1.¯. j 6

@e~ j 1 , j 3!e~ j 2 , j 5!e~ j 4 , j 6!1e~ j 1 , j 4!e~ j 2 , j 6!e~ j 3 , j 5!

1e~ j 1 , j 5!e~ j 2 , j 4!e~ j 3 , j 6!#,

x3
C~K!5 (

j 1.¯. j 6

@e~ j 1 , j 4!2e~ j 2 , j 5!e~ j 3 , j 6!1e~ j 1 , j 4!e~ j 2 , j 5!2e~ j 3 , j 6!

1e~ j 1 , j 4!e~ j 2 , j 5!e~ j 3 , j 6!2#,

x3
D~K!5 (

j 1.¯. j 6

@e~ j 1 , j 3!2e~ j 2 , j 5!e~ j 4 , j 6!1e~ j 1 , j 3!e~ j 2 , j 5!e~ j 4 , j 6!2

1e~ j 1 , j 4!e~ j 2 , j 6!2e~ j 3 , j 5!1e~ j 1 , j 4!e~ j 2 , j 6!e~ j 3 , j 5!21e~ j 1 , j 5!2e~ j 2 , j 4!e~ j 3 , j 6!

1e~ j 1 , j 5!e~ j 2 , j 4!2e~ j 3 , j 6!#, ~4.6!

FIG. 5. Diagrammatic expression for crossing numbers.
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x3
E~K!5 (

j 1.¯. j 6

@e~ j 1 , j 3!e~ j 2 , j 5!2e~ j 4 , j 6!1e~ j 1 , j 4!2e~ j 2 , j 6!e~ j 3 , j 5!

1e~ j 1 , j 5!e~ j 2 , j 4!e~ j 3 , j 6!2#,

x4
A~K!5 (

j 1.¯. j 8

e~ j 1 , j 5!e~ j 2 , j 6!e~ j 3 , j 7!e~ j 4 , j 8!,

x4
B~K!5 (

j 1.¯. j 8

@e~ j 1 , j 5!e~ j 2 , j 7!e~ j 3 , j 6!e~ j 4 , j 8!1e~ j 1 , j 6!e~ j 2 , j 5!e~ j 3 , j 7!e~ j 4 , j 8!

1e~ j 1 , j 4!e~ j 2 , j 6!e~ j 3 , j 7!e~ j 5 , j 8!1e~ j 1 , j 5!e~ j 2 , j 6!e~ j 3 , j 8!e~ j 4 , j 7!#,

x4
C~K!5 (

j 1.¯. j 8

@e~ j 1 , j 6!e~ j 2 , j 5!e~ j 3 , j 8!e~ j 4 , j 7!1e~ j 1 , j 4!e~ j 2 , j 7!e~ j 3 , j 6!e~ j 5 , j 8!#,

x4
D~K!5 (

j 1.¯. j 8

@e~ j 1 , j 7!e~ j 2 , j 6!e~ j 3 , j 5!e~ j 4 , j 8!1e~ j 1 , j 5!e~ j 2 , j 4!e~ j 3 , j 7!e~ j 6 , j 8!

1e~ j 1 , j 3!e~ j 2 , j 6!e~ j 4 , j 8!e~ j 5 , j 7!1e~ j 1 , j 5!e~ j 2 , j 8!e~ j 3 , j 7!e~ j 4 , j 6!#,

x4
E~K!5 (

j 1.¯. j 8

@e~ j 1 , j 6!e~ j 2 , j 7!e~ j 3 , j 5!e~ j 4 , j 8!1e~ j 1 , j 6!e~ j 2 , j 4!e~ j 3 , j 7!e~ j 5 , j 8!

1e~ j 1 , j 3!e~ j 2 , j 6!e~ j 4 , j 7!e~ j 5 , j 8!1e~ j 1 , j 5!e~ j 2 , j 8!e~ j 3 , j 6!e~ j 4 , j 7!

1e~ j 1 , j 7!e~ j 2 , j 5!e~ j 3 , j 6!e~ j 4 , j 8!1e~ j 1 , j 4!e~ j 2 , j 5!e~ j 3 , j 7!e~ j 6 , j 8!

1e~ j 1 , j 4!e~ j 2 , j 6!e~ j 3 , j 8!e~ j 5 , j 7!1e~ j 1 , j 5!e~ j 2 , j 7!e~ j 3 , j 8!e~ j 4 , j 6!#,

x4
F~K!5 (

j 1.¯. j 8

@e~ j 1 , j 4!e~ j 2 , j 8!e~ j 3 , j 6!e~ j 5 , j 7!1e~ j 1 , j 7!e~ j 2 , j 5!e~ j 3 , j 8!e~ j 4 , j 6!

1e~ j 1 , j 4!e~ j 2 , j 7!e~ j 3 , j 5!e~ j 6 , j 8!1e~ j 1 , j 6!e~ j 2 , j 4!e~ j 3 , j 8!e~ j 5 , j 7!

1e~ j 1 , j 3!e~ j 2 , j 7!e~ j 4 , j 6!e~ j 5 , j 8!1e~ j 1 , j 6!e~ j 2 , j 8!e~ j 3 , j 5!e~ j 4 , j 7!

1e~ j 1 , j 7!e~ j 2 , j 4!e~ j 3 , j 6!e~ j 5 , j 8!1e~ j 1 , j 3!e~ j 2 , j 5!e~ j 4 , j 7!e~ j 6 , j 8!#.

B. Vassiliev invariants of order two and three

In this section we will present the reconstruction procedure to obtain a combinatorial ex
sion for each of the primitive Vassiliev invariants at orders two and three. We will obtain the
combinatorial expressions as the ones computed in Refs. 28 and 29, working in a covariant

We argued above that we will assume that the perturbative series expansion emerging
temporal gauge must be accompanied by a global factor which involves the topological inv
for the unknot to some power. The reason for this is the similar behavior found in the light
gauge. The topological invariant vacuum expectation value of the Wilson line corresponding
knot K has the form

^W~K,G!&5^W~K,G!& temp3^W~U,G!&b~K!, ~4.7!

where, as before,K denotes the regular projection into thex1 ,x2 plane chosen, andb(K) is an
unknown function. As in the case of the light-cone gauge, we will assume that this fun
depends only on the shadow corresponding to the projectionK of the knotK. In other words, the
quantityb(K) is insensitive to crossing changes inK.
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We will denote the perturbative series expansion ofW(K,G) by

1

d
^W~K,G!&511(

i 51

`

v i~K !xi , ~4.8!

wherev i(K) stands for the combination of Vassiliev invariants appearing at orderi, while that of
W(K,G) temp is denoted by

1

d
^W~K,G!& temp511(

i 51

`

v̂ i~K!xi . ~4.9!

The quantitiesv̂ i(K) do not need to be topological invariants. Actually, as explicitly shown in
labeling, they depend on the projectionK of the knot K. In ~4.8! and ~4.9!, d5dimR, the
dimension of the representation carried by the Wilson loop.

As explained in detail in Ref. 14, and summarized in Eq.~3.4!, to obtain universal Vassiliev
invariants~just depending on the knot class, and not on the choice of gauge group! we first express
the contribution from a given diagram in the perturbative series as a sum of products o
factors, geometrical and group factors; then we choose a basis for the independent group
The coefficients of the basis elements will turn out to be Vassiliev invariants. In order to obta
primitive invariants, and also the relations holding for the nonprimitive ones, there is a pref
family of bases called canonical.24 Our choice of basis will be the same as in Ref. 14, but here
will refer to it using diagrams. Our choice of canonical basis is depicted in Fig. 6. Notice tha
are including diagrams with isolated chords or collapsible propagators. The reason for this
their inclusion provides useful information when working in the nontrivial vertical framing.
stead of factorizing them out as in Ref. 14, we will keep them in our analysis. This implies th
number of elements in the basis at a given order will increase with respect to Ref. 14
expressions of all the chord diagrams in terms of the elements of the canonical basis hav
collected in Figs. 7 and 8.

The perturbative series expansions entering~4.7! get some modifications relative to their form
in ~3.4!. We will write them in the following form:

FIG. 6. Choice of canonical basis up to order four.
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1

d
^W~K,G!&511(

i 51

`

(
j 51

di

a i j ~K !r i j ~G!xi1(
i 51

`

(
j 51

d̃i

g i j ~K ! r̃ i j ~G!xi ,

~4.10!

FIG. 7. Expansion of chord diagrams in the canonical basis: orders two and three.

FIG. 8. Expansion of chord diagrams in the canonical basis: order four.
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1

d
^W~K,G!& temp511(

i 51

`

(
j 51

di

â i j ~K!r i j ~G!xi1(
i 51

`

(
j 51

d̃i

ĝ i j ~K! r̃ i j ~G!xi .

Notice that we have split the perturbative series into two sums. In the first sum the group fa
and their corresponding coefficients, are exactly those appearing in~3.4!, while in the second sum
they are all the nonprimitive elements coming from diagrams with collapsible propagators
quantitiesr i j (G) andr̃ i j (G) denote the respective group factors, whiledi andd̃i are the dimension
of their basis at orderi. As for the geometrical factors,a i j (K) andg i j (K) denote the Vassiliev
invariants, primitive or not, we are looking for, whileâ i j (K) and ĝ i j (K) are just the geometrica
coefficients in the canonical basis of the perturbative Chern–Simons theory in the temporal

Our strategy is the following. First we will analyze the behavior of the unknown integ
entering â i j (K) and ĝ i j (K); then we will build the whole invariant, taking into account th
corresponding global term as dictated by~4.7!. Since, as shown in Ref. 24, the perturbative ser
expansion of the vacuum expectation value of the Wilson loop exponentiates in terms
primitive basis elements, we have the following simple relation among primitives:

a i j ~K !5â i j ~K!1b~K!a i j ~U !. ~4.11!

Let us begin with the analysis ofv̂ i(K) in ~4.9!. At first order we have no correction term
~recall we are using the vertical framing!, and the temporal gauge series provides the full reg
invariant:

~4.12!

From the expression~3.7! for the kernels we easily find, extracting thek51 contribution:

~4.13!

wheren is the number of crossings inK. This corresponds to the linking number in the vertic
framing, which is known to be the correct answer forv1(K). Thus we must have

~4.14!

which agrees with our general arguments, showing that contributions with an odd numb
f-dependent terms vanish.

At order two, the series expansion of~4.9! can be expressed as

~4.15!

Notice that we have not included terms of the form

since they have an odd number off-dependent terms, and should not contribute. In terms of
group factors of the chosen canonical basis, the last expression takes the form:

~4.16!
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We can easily compute from the expression~3.7! for the kernels, the two signature-depende
terms entering this expression. One finds:

~4.17!

wheren(K) is the total number of crossings of the knot projectionK. These give the following
contribution to the sum entering the first group factor in~4.15!:

~4.18!

This relation follows from the fact that the square of any signature takes the value 1, and the
their sum leads ton(K)/2, and the rest of the terms just correspond to the remaining term
~4.17!. According to the factorization theorem24 this is the whole nonprimitive regular invariant o
order two,g215

1
2(Se i)

2. Thus, we conclude that the order-twoD integrals must satisfy

~4.19!

The second equation in~4.17! gives us the crossing-dependent part of the primitive elem
â21(K), which can alternatively be written, using the crossing numbers in~4.6!, as

~4.20!

Adding the corresponding global factor term from~4.11! we end with the following expression fo
the primitive invariant at order two:

~4.21!

where a21(U) stands for the value of this invariant for the unknot. The functionb(K) is the
unknown exponent in the global factor in~4.7!. Using the fact thatD-type terms andb are equal
for both K anda(K), and that the latter is equivalent under ambient isotopy to the unknot
find:

~4.22!

The final expression for the invariant is

a21~K !5a21~U !1x2
A~K!2x2

A~a~K!!, ~4.23!

which agrees with the formulas given in Refs. 28 and 30. Notice that its dependence onb(K) has
disappeared, so up to this order we do not get any condition on this function. It might be i
cally zero. It is important to remark that the derivation of~4.23! that we have presented is muc
simpler than the one in the covariant gauge obtained in Ref. 28. This simplicity is rooted
special features of the temporal gauge that permit one to have the compact expression~3.7! for the
kernels, which are the essential building blocks of the combinatorial expressions for Vas
invariants. These features will become more prominent in the third-order analysis to whic
now turn.
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At order three, the expression of the perturbative series of~4.9! takes the form:

~4.24!

where we have made the choice of canonical basis shown in Fig. 6. In order to write dow
sums and in terms of their Feynman integrals, one has to take into account the chan
basis described in Fig. 7. Given a basis element, its sum will be built up with all the c
diagrams whose expansion in the canonical basis contains that element, each multiplied
corresponding coefficient.

At this order there are three independent group factors, but only one is primitive. The fa
ization theorem provides a sufficiently large number of relations between theD integrals, so that
we will be able to solve for the primitive invariant. The Feynman integrals proportional toe0 or
e2 times someD integral are not written in~4.24! since, as we argued before, they do n
contribute. Recall that the integralsDi are built out of twof-dependent terms of the propagat
~2.16!. The third factor, which is a signature-dependent one, leads to the signe i and a restriction
in the integration domain. Thus, we may expect them to be related to the order-two indepe
integral . As we show in the following, this is indeed the case. With the help of the fac
ization theorem we will find relations for the nonprimitive diagrams. Our task is to use t
relations to find expressions for the unknown integrals in the primitive factorâ31 in terms of the
order-two integrals evaluated in the whole knot or in some closed piece of it.

Similar to the case of lower order, the computation of the signature contributions is e
obtained from the kernels~3.7!. For the casek53 in ~3.7! and the first group factor in~4.24! one
finds:

~4.25!

where we have used the factorization theorem.24 The other term associated with the group fac
under consideration must therefore vanish:

~4.26!

We thus end with a nontrivial relation for the integrals of order three: they sum up to zer
Notice that it is the same kind of relation that we found in~4.19! at order two.

To the second group factor in~4.24! is associated the other nonprimitive factorĝ32(K):

~4.27!

whose relation with the corresponding regular invariant, following~4.7!, is

g32~K !5ĝ32~K!1b~K!a21~U !(
i

e i . ~4.28!

Due to the Chern–Simons factorization theorem,24 the invariant must fulfill the following relation:

g32~K !5a21~K !(
i

e i . ~4.29!

These last two equations trivially imply that the following relation must hold:
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ĝ32~K!1b~K!a21~U !(
i

e i5a21~K !(
i

e i . ~4.30!

Equation~4.30! will provide important relations to solve the unknown quantities in~4.27!.
The strategy to obtain them is the following. First we extract the signature-dependent p
~4.27!, using the kernels~3.7!; then one substitutes~4.21! and ~4.28! into ~4.30!. The signature
contributions in~4.27! turn out to be, using the definition of the signature function given in~4.5!
and the crossing numbers~4.6!:

~4.31!

where c.p. stands for the five inequivalent cyclic permutations of the indices. The right-han
of ~4.31! factorizes as

~4.32!

where is given in ~4.17!. Substituting this result into~4.30!, we find a relation which
involves three of the fourDi integrals present at this order:

~4.33!

Notice that the left-hand side of~4.33! depends on the crossingi, while the right-hand side doe
not, i.e., the precise combination ofD integrals on the left, whose domain of integration
principle depends on the crossingi, is in fact equal to an order-twoD integral evaluated in the
whole knot.

Equations~4.26! and ~4.33! can also be proved without making use of the factorizat
theorem. It is worthwhile to describe how this is so, since it provides some insight that w
useful later. The left-hand side of both equations@~4.26! and ~4.33!# is a sum over Feynman
integrals, with one propagator fixed at a crossing and the other two running over the two re
in which that crossing divides the path of the knot in a way consistent with the correspo
diagram. To better understand the argument, let us first think that we want to compute the in

, or , splitting the knot path into two regions from a selected crossingi, so one runs over
the parametric interval (si 2

,si 1
), and the other over (si 1

,si 2
). The integration region can b

decomposed in a sum of partial contributions as depicted in Fig. 9, where the dashed line
sents the crossingi. The linearity of the integral guarantees that the sum of all these pa
contributions leads to the full , or . The order-two integralsDi appearing in~4.26! can
be organized in a similar way, leading to

FIG. 9. Splitting ofD integrals.
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~4.34!

so ~4.26! is a consequence of~4.19!. For ~4.33! the splitting procedure is a bit more elaborate. T
D integrals entering on its left-hand side can be read from Fig. 9: given some, all the dia-
grams in Fig. 9 whose three chords build the Feynman diagram in the subscript~no matter whether
they are dashed or not! contribute to it. We can see that some cancellations occur between t
For instance, when the first three integrals in the second column of Fig. 9~the first two entering

and the third are summed up, they factorize to the first integral times the secon

the last equality of Fig. 9. This factorization can be written as

~4.35!

where the notation used in the following:Ki 1
andKi 2

are the two components obtained from t
original knot when thei crossing is removed; stands for the integral of thef-depen-
dent part of the propagator over the componentKi 1

, while (Ki 2
,Ki 1

) represents the in-
tegral of thef part of the propagator with one of its end points running overKi 2

and the other over
Ki 1

. Recall that the diagram in the subscript denotes the way that the propagators are atta
the knot. The first factor in~4.35! is zero because of~4.14!, as it is the evaluation of an od
number off-dependent parts of the propagator~2.16! over the knotKi 1

. Similar arguments hold
for the first three integrals in the fourth column of Fig. 9, which again sum up to zero. Also
sum of the second and third integrals in the third column of Fig. 9 factorize to

~4.36!

But this integral can be seen to be zero by using the decomposition of the first-order integra
last equality of Fig. 9, and~4.14!. One can now see that the remaining integrals in~4.33! build the

decomposition of shown in Fig. 9, so~4.33! is proved.
The splitting argument will again lead to a relation for the unknown integrals entering

primitive diagram of Eq.~4.24!. These are:

~4.37!

All the integrals entering~4.37! can again be read from Fig. 9: just add up those diagra
whose chords build the subscripts in~4.37! with the appropriate factors. A factorization of the typ
explained in~4.36! occurs, and the remaining terms build up the decomposition of , except
for the first and last terms in the second equality of Fig. 9, leading to the following result:

~4.38!

Thus, we have achieved our goal: We have expressed the unknown integrals in the primitive
at order three in terms of known integrals of order two. Given a crossingi, theD integrals of order
three on the left-hand side of~4.38! @made out of twof-dependent parts of propagator~2.16!# can
be expressed as a combination of the order-two integral , evaluated inK and in the two

componentsKi 1
andKi 2

in which the original knot projection is divided when thei crossing is
removed. Notice that now both sides of~4.38! depend on the crossingi.

Equation~4.38! can also be obtained by using the factorization theorem and the rela
~4.26! and ~4.33!. Taking into account that

~4.39!
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where, in the last equality, we have made use of~4.26!, and using~4.33! and ~4.37!, one easily
finds:

~4.40!

The last term of this equation can be written as

~4.41!

Taking into account that the third and fourth terms of Eq.~4.41! vanish because of~4.14! and that,
using ~4.19!, the first two can be substituted by the corresponding order-twoD terms, one finds
that ~4.38! holds.

From the procedure that we have developed to obtain~4.38!, we learn that the factorization
theorem provides enough relations to express all the unknown parts of the primitive invaria
terms of the lower-order integral . As an alternative to the use of the factorization theore
we also possess a splitting procedure which leads to the same results and that sheds some
the origin of the relations involved.

In order to write down the order-three primitive invariant explicitly, we need to comput
detail the signature contributions. These are easily obtained by using the general formula
kernels in~3.7!. The resulting contribution can be written in a compact form, using the cros
functions~4.6!:

~4.42!

Using ~4.22!, ~4.38!, and the following two relations,

x2
B~K!5(

i
e in~Ki 1

,Ki 2
!, ~4.43!

n~Ki 1
,Ki 2

!115n~K!2n~Ki 1
!2n~Ki 2

!, ~4.44!

wheren(Ki 1
,Ki 2

) stands for the number of crossings between the two componentsKi 1
andKi 2

,
we end with the following formula@recall that, according to~4.7!, there is no contribution from the
global factor at odd orders#:

a31~K !5@ 1
92 1

42a21~U !#x1~K!1 1
2x2

B~K!1x3
B~K!12x3

A~K!

2(
i

e i@x2
A~a~K!!2x2

A~a~Ki 1
!!2x2

A~a~Ki 2
!!#

2a21~U !(
i

e i@b~K!2b~Ki 1
!2b~Ki 2

!#. ~4.45!

Contrary to the order-two result~4.23! we now find an expression depending explicitly on t
unknown functionb. Invariance ofa31(K) provides a relation for the terms involvingb in ~4.45!,
which, in turn, leads to ab-independent expression. The simplest way to achieve this is to con
a knotK with two projections which differ by a Reidemeister move of type I. It is easy to find
the value ofx1 varies in one unit while all the other terms, except the last one involving
function b in ~4.45!, remain invariant~this will be shown in full detail in the next section!. Thus,
the contribution from the last term in~4.45! must cancel the one from the first term. This impli
that the unknown functionb must satisfy

b~K!2b~Ki 1
!2b~Ki 2

!5x, ~4.46!
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wherex is a constant such that

1
92 1

42a21~U !2a21~U !x50. ~4.47!

Throughout this paper we will use the unknot normalization,a21(U)52 1
6, which implies:

x52 1
6. ~4.48!

Taking into account~4.46! and~4.48!, expression~4.45! for the order-three primitive Vassil
iev invariant turns out to be

a31~K !5 1
2x2

B~K!1x3
B~K!12x3

A~K!2(
i

e i@x2
A~a~K!!2x2

A~a~Ki 1
!!2x2

A~a~Ki 2
!!#.

~4.49!

This combinatorial formula is the same as the one obtained in Ref. 29, using Chern–Simons
theory in a covariant gauge and in Ref. 30 using other methods. As compared to the calcula
the covariant gauge, our computation is much simpler. It is very unlikely that with the cova
gauge methods utilized in Ref. 29 one could obtain combinatorial expressions for higher
invariants. It turns out that our procedure goes beyond and can be implemented at higher
We will show in Sec. IV C how this is achieved at order four, obtaining combinatorial form
for the two primitive Vassiliev invariants present at that order.

C. Vassiliev invariants of order four

In this section we will apply our reconstruction procedure to compute the two combina
expressions for the two primitive invariants at order four. Using our diagrammatic notation fo
group factors and the choice of basis shown in Fig. 6, the perturbative series expansion
temporal gauge at this order takes the form:

~4.50!

which, after writing down the geometrical contributions more explicitly, making use of the ab
introduced notation to separate theD integrals from theE integrals, becomes

~4.51!

Notice that in this expression we have not included the Feynman integrals proportional toe and
e3, as they do not contribute. Also it is worthwhile to point out that denotes an integra
where two chords for the signature-dependent part of~2.16! are attached to the same crossingi,
while corresponds to one in which the two chords are attached to two different crossin
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the latter, there are in fact two different sums: one fori , j PCa , and another fori , j PCb , whereCa

andCb are the sets which entered in~4.3! and~4.4!. All these integrals are built out of products o
two f terms, while the ones of contain fourf terms.

At order four there are six independent group factors, but only two are primitive. The fa
ization theorem will allow us to obtain ways of relating all theD integrals in terms of the
second-order one . This will lead to an expression for the ones associated with the prim
group factors, and , similar to that obtained at third order in~4.38!.

As in previous orders, one easily finds, with the aid of the kernels~3.7! and of the factoriza-
tion theorem, that the sum over all the signature contributions coming from the propagator~2.16!,
which are contained in builds up the whole regular invariant:

~4.52!

This implies that the rest of the coefficients associated to that group factor vanish:

~4.53!

The next nonprimitive factor,ĝ42(K), has the form:

~4.54!

and, as follows from~4.7!, its relation with the corresponding invariant is

g42~K !5ĝ42~K!1
1

2
b~K!a21~U !S (

i
e i D 2

. ~4.55!

From the factorization theorem, it follows that this invariant factorizes as

g42~K !5
1

2 S (
i

e i D 2

a21~K !. ~4.56!

Following the procedure used at order three, i.e., computing the signature-dependent
ĝ42(K) with the aid of the kernels in~3.7!, and comparing Eqs.~4.55! and~4.56!, we find that the
signature contributions match,

~4.57!
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so theD integrals have to fulfill the following relations:

~4.58!

~4.59!

~4.60!

Recall that the coefficients multiplying theD integrals come from the choice of basis that we ha
made. They can be computed with the aid of Fig. 8. Notice that in principle the left-hand si
~4.58! and ~4.59! could depend upon the pair of crossings chosen. The factorization theo
however, implies that this is not the case. Actually, these relations are even more remarka
~4.58! and~4.59!, we are dealing withD integrals where two of the propagators are placed in
same crossing (Dii ), in two different crossings belonging toCa(Di j ,a), or in another two in
Cb(Di j ,b). A given pair of chords in a given Feynman diagram will fulfill only one of the last t
conditions, as is easily seen from their picture. So in fact Eq.~4.59! is not one but two different
relations. It is also worthwhile to point out that factorization also provides a check for the ke
~3.7!: the computation of the signature contributions encoded in the symbol, done with the

aid of ~3.7!, has to match that coming from the factorized expression of the invariant give
~4.56!. Equation~4.57! shows that this is indeed the case.

For the other nonprimitive factors one proceeds similarly. Forĝ43(K) we have:

~4.61!

g43~K !5ĝ43~K !, ~4.62!

g43~K !5(
i

e ia31~K !. ~4.63!

Comparing~4.62! with ~4.63!, and making use of~3.7! to check that the signature contributions
g43(K) match those of the right-hand side of~4.63!, we find the following relations for theD
integrals-:

~4.64!

~4.65!
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~4.66!

where, for the last step in Eqs.~4.64! and ~4.65!, we have made use of~4.38!.
For the last nonprimitive factorâ41(K), we find:

~4.67!

a41~K !5â41~K!1b~K! 1
2~a21~U !!2, ~4.68!

a41~K !5 1
2~a21~K !!2, ~4.69!

and the relations obtained for theD integrals turn out to be

~4.70!

~4.71!

~4.72!

~4.73!

Notice that in this case we have now found different relations for theintegrals depending
on the relative position between the crossing labels.

We have obtained a series of relations which will be used in the determination of the unk
terms in the primitive factors. As in order three, a fundamental step to carry out the compu
is the expression of the integral in terms of all the integrals appearing when we split

integration domain in the pieces defined by two selected crossingsi andj. Now there are two ways
of doing this, depending on which are the relative positions of the crossings labels. The no
we will use when a closed path is split after removing two crossings is shown in Fig. 10. N
that, when the crossings are alternating, orientation has to be reversed in two of the four se
the knot is divided into, so as to have actualclosedpaths.

Using all the previous relations for theD integrals at this order, and applying a splittin
procedure analogous to the one at order three, one finds the following expressions for the un
integrals present in the two primitive factors:
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~4.74!

~4.75!

~4.76!

~4.77!

~4.78!

~4.79!

FIG. 10. Dividing the knot in other knots.
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As before, the relations we have found depend on how the two crossings are related.
that all the possible ways of dividing the knot into other closed knots when one or two cros
are removed appear. The alternating case is a bit subtle because, to form closed paths, ori
in some segments has to be reversed, and so the integrals on the left-hand side of~4.75! and~4.79!
have to appear with the appropriate sign.

Our aim is now to calculateâ42(K) andâ43(K), the primitive factors at this order. It follows
from ~4.51! that they have the form:

~4.80!

~4.81!

The signature contributions appearing in them can be computed from the kernels~3.7!. Using the
crossing numbers notation introduced in Eq.~4.6!, we find

5
38

~4! !2 n~K!1
44

~3! !2 x2
A~K!1

21

16
x2

C~K!13x3
C~K!1

3

4
x3

E~K!1
9

4
x3

D~K!

17x4
A~K!15x4

B~K!14x4
C~K!1x4

D~K!12x4
E~K!1x4

F~K!, ~4.82!

5
5

~4! !2 n~K!1
1

3!
x2

A~K!1
1

4
x2

C~K!1
1

2
x3

C~K!

1
1

2
x3

E~K!1x4
A~K!1x4

B~K!1x4
C~K!. ~4.83!

Making use of all these formulas and adding the corresponding global terms coming
~4.7! we obtain the following expressions for the primitive invariants at order four:

~4.84!
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~4.85!

To get rid of theD integrals appearing in this expression one has to first replace by

~4.22!, and then take into account the fact that allD integrals, as well as the unknown functio
b(K), only depend on the shadow of the knot. In order to simplify the equations, we will u
~4.84! and ~4.85! the following set of relations:

x3
E~K!5 (

i . j PCb

e ie j~K!@n~K!2n~Ki 1
!2n~Ki 2

!2n~Kj 1
!

2n~Kj 2
!1n~Ki j c

!1n~Ki j d
!1n~Ki j e

!#,

6x2
A~K!14x3

C~K!1x3
D~K!5 (

i . j PCa

e ie j~K!@3n~K!22n~Ki 1
!22n~Ki 2

!

22n~Kj 1
!22n~Kj 2

!1n~Ki j a
!1n~Ki j b

!#,

2x2
A~K!12x3

C~K!5 (
i . j PCa

e ie j~K!@n~K!2n~Ki 1
!2n~Ki 2

!2n~Kj 1
!

2n~Kj 2
!1n~Ki j a

!1n~Ki j b
!#. ~4.86!

These relations are analogous to~4.43! and their use will make~4.84! and ~4.85! independent of
the functionn(K). Evaluating~4.84! and~4.85! for the ascending diagrama(K), a projection of
the unknot, one obtains expressions for the order-four integrals and . Substituting

them back into~4.84! and ~4.85!, using the normalization for the unknot invariant at order tw
a21(U)52 1

6, and the relations~4.86!, one obtains the following expressions:

a42~K !5a42~U !1 2
9@x2

A~K!2x2
A~a~K!!#12@x3

C~K!2x3
C~a~K!!#1 1

2@x3
D~K!2x3

D~a~K!!#

12@x3
E~K!2x3

E~a~K!!#17@x4
A~K!2x4

A~a~K!!#15@x4
B~K!2x4

B~a~K!!#

14@x4
C~K!2x4

C~a~K!!#1x4
D~K!2x4

D~a~K!!12@x4
E~K!2x4

E~a~K!!#

1x4
F~K!2x4

F~a~K!!2 (
i . j PCa

@e ie j~K!2e ie j~a~K!!#$3x2
A~a~K!!

22@x2
A~a~Ki 1

!!1x2
A~a~Ki 2

!!1x2
A~a~Kj 1

!!1x2
A~a~Kj 2

!!#

1x2
A~a~Ki j a

!!1x2
A~a~Ki j b

!!%2 (
i . j PCb

@e ie j~K!2e ie j~a~K!!#

3$x2
A~a~K!!2x2

A~a~Ki 1
!!2x2

A~a~Ki 2
!!2x2

A~a~Kj 1
!!2x2

A~a~Kj 2
!!1x2

A~a~Ki j c
!!
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1x2
A~a~Ki j d

!!1x2
A~a~Ki j e

!!%1
1

6 (
i . j PCa

@e ie j~K!2e ie j~a~K!!#$3b~K!22b~Ki 1
!

22b~Ki 2
!22b~Kj 1

!22b~Kj 2
!1b~Ki j a

!1b~Ki j b
!%

1
1

6 (
i . j PCb

@e ie j~K!2e ie j~a~K!!#$b~K!2b~Ki 1
!2b~Ki 2

!2b~Kj 1
!2b~Kj 2

!

1b~Ki j c
!1b~Ki j d

!1b~Ki j e
!%, ~4.87!

a43~K !5a43~U !2 1
6@x2

A~K!2x2
A~a~K!!#1 1

2@x3
E~K!2x3

E~a~K!!#1x4
A~K!2x4

A~a~K!!1x4
B~K!

2x4
B~a~K!!1x4

C~K!2x4
C~a~K!!2 (

i . j PCa

@e ie j~K!2e ie j~a~K!!#$x2
A~a~K!!

2x2
A~a~Ki 1

!!2x2
A~a~Ki 2

!!2x2
A~a~Kj 1

!!2x2
A~a~Kj 2

!!1x2
A~a~Ki j a

!!

1x2
A~a~Ki j b

!!%1
1

6 (
i . j PCa

@e ie j~K!2e ie j~a~K!!#$b~K!2b~Ki 1
!2b~Ki 2

!2b~Kj 1
!

2b~Kj 2
!1b~Ki j a

!1b~Ki j b
!%. ~4.88!

Notice that some coefficients of the crossing functions have changed because there a
contributions coming from the use of~4.22! and~4.86!. Also, the terms depending only ona(K)
@like n(K) or x2

C] disappear after substituting back and .

The expressions~4.87! and ~4.88! contain sums involving the functionb(K) evaluated in
different closed paths. In analogy with order three, we will require the factors of these sums
constants. Actually, as we argue in the following, this is the only possibility for~4.87! and~4.88!
to be invariants. Making use of the constraint imposed at order three@see~4.46!# we define the
following:

2x2@b~K!2b~Ki j c
!2b~Ki j d

!2b~Ki j e
!#5y,

2x2@b~K!2b~Ki j a
!2b~Ki j b

!#5z, ~4.89!

4x2@b~K!2b~Ki j a
!2b~Ki j b

!#5t,

wherey, z, andt are the constants andx52 1
6 follows from ~4.48!. Recall that the labels ofK refer

to the closed paths in which the original knot is split when two of its crossings are removed~see
Fig. 10!. Consistency between the last two equations leads tot52x1z. A solution for the other
two can be obtained by using the values ofa42 anda43 for some nontrivial knot@for example, for
the trefoil knotT: a42(T)562/311/360 anda43(T)510/321/360]. They turn out to be

y5z50. ~4.90!

The final combinatorial expressions for the two order-four primitive Vassiliev invariants

a42~K !5a42~U !1 1
6@x2

A~K!2x2
A~a~K!!#12@x3

C~K!2x3
C~a~K!!#1 1

2@x3
D~K!2x3

D~a~K!!#

12@x3
E~K!2x3

E~a~K!!#17@x4
A~K!2x4

A~a~K!!#15@x4
B~K!2x4

B~a~K!!#

14@x4
C~K!2x4

C~a~K!!#1x4
D~K!2x4

D~a~K!!12@x4
E~K!2x4

E~a~K!!#

1x4
F~K!2x4

F~a~K!!2 (
i . j PCa

@e ie j~K!2e ie j~a~K!!#$3x2
A~a~K!!
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22@x2
A~a~Ki 1

!!1x2
A~a~Ki 2

!!1x2
A~a~Kj 1

!!1x2
A~a~Kj 2

!!#1x2
A~a~Ki j a

!!

1x2
A~a~Ki j b

!!%2 (
i . j PCb

@e ie j~K!2e ie j~a~K!!#$x2
A~a~K!!2x2

A~a~Ki 1
!!

2x2
A~a~Ki 2

!!2x2
A~a~Kj 1

!!2x2
A~a~Kj 2

!!1x2
A~a~Ki j c

!!1x2
A~a~Ki j d

!!

1x2
A~a~Ki j e

!!%, ~4.91!

a43~K !5a43~U !2 1
6@x2

A~K!2x2
A~a~K!!#1 1

2@x3
E~K!2x3

E~a~K!!#1x4
A~K!2x4

A~a~K!!1x4
B~K!

2x4
B~a~K!!1x4

C~K!2x4
C~a~K!!2 (

i . j PCa

@e ie j~K!2e ie j~a~K!!#$x2
A~a~K!!

2x2
A~a~Ki 1

!!2x2
A~a~Ki 2

!!2x2
A~a~Kj 1

!!2x2
A~a~Kj 2

!!1x2
A~a~Ki j a

!!

1x2
A~a~Ki j b

!!%. ~4.92!

Again, the coefficient ofx2
A in ~4.91! has changed because of the contribution coming from

last equation in~4.89!. Note that both formulas have the same structure: a sum over some cro
numbers evaluated inK minus the same sum evaluated in the ascending diagrama(K). In
addition, there are residual sums involving some combination of the functionsx2

A evaluated in the
different pieces the knot is divided into when two crossings are selected. Ina42(K) we have two
of these sums: one for all the pairs of crossings belonging toCa , and another for those inCb . In
a43(K), however, only the former set contributes. This, together with the fact that there is a
number of order-four crossing numbers appearing in~4.91!, makes the expression fora42(K)
more complicated.

There is another important comment to be made: The term in both invariants proportio
x2

A(K)2x2
A(a(K)) is in fact a Vassiliev invariant by itself, that of order two with the unkn

normalized to zero. So the rest of the sum also has to be a topological invariant~as we prove in
Sec. V!. Then, the value of the coefficient ofx2

A(K)2x2
A(a(K)) does not affect the topologica

invariance of our formulas. The last two constraints for the functionb(K) in ~4.89! only affect that
term, so that any other values fort and z, as long as they are constants, would not spoil
topological invariance of our formulas. With our present knowledge, the only way to fixt andz is
to compare our expression fora42(K) anda43(K) to a known one for some nontrivial knot, as w
did to get~4.90!. Of course, this would not be necessary if we had an independent argum
obtain the functionb(K). To fix the constanty, however, there is no need to make expli
comparisons: it follows from invariance, as was the case ofx at order three. Indeed, under the fir
Reidemeister move, the variation of the sum that multipliesy,

(
i . j PCb

e ie j~K!, ~4.93!

is proportional to the writhe,x1(K), while the rest of the terms remain invariant~this will be
explicitly shown in Sec. V!. Thusy50 is the only solution.

We have implemented the combinatorial expressions~4.91! and~4.92!, as well as the known
ones,~4.23! and ~4.49! into a MATHEMATICA algorithm. In Tables I and II of the Appendix w
present a list of the values of the four primitive invariantsa21, a31, a42, anda43 for all prime
knots up to nine crossings. Actually, the values presented in those tables area21, a31, a42, and
a43 once their value for the unknot has been subtracted. The values for the new combin
expressions fora42 anda43 agree for all knots for which those quantities are known.14,15,31

The constraints that we have obtained for the functionb(K) can be summarized in th
following equations:
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b~K!2b~Ki 1
!2b~Ki 2

!52 1
6,

b~K!2b~Ki j a
!2b~Ki j b

!52 1
3, ~4.94!

b~K!2b~Ki j c
!2b~Ki j d

!2b~Ki j e
!52 1

3.

These constraints onb have a very simple solution. Let us consider a representative ofK which is
a Morse function in both thex and they directions. Certainly this can always be done without lo
of generality for any projectionK. This representative has well-defined numbers of critical po
in both thex and they directions. Let us denote these numbers bynx and ny , respectively. A
solution of Eq.~4.94! is

b~K!5 1
12~nx1ny!. ~4.95!

To prove that this is indeed a solution, let us consider the three possible splittings ofK contained
in Eq. ~4.94!, which are represented in Fig. 10. Under the first splitting we find thatnx1ny

→nx1ny12, i.e., that the number of extrema is increased by 1 in each of the resulting co
nents. Under the second splitting, the number of extrema is increased by 2 in each of the re
components, and thereforenx1ny→nx1ny14. Finally, in the third splittingnx1ny→nx1ny

14, since one component increases by 2 while in the other two it increases by 1. Thus~4.95!
satisfies the relations~4.94!. Notice that the ansatz~4.95! is symmetric under the interchange ofx
andy. This is consistent with the rotational invariance on the plane normal to the time dire
present in the temporal gauge. We conjecture that~4.95! is the correct form of the functionb(K)
when a representative ofK, which is a Morse function in both thex and they directions, is chosen

V. INVARIANCE UNDER REIDEMEISTER MOVES

In this section we will prove that the combinatorial expressions for the two primitive inv
ants of order four,~4.91! and ~4.92!, are actually topological invariants, showing that they a
invariant under the three Reidemeister moves. To do so, we have to know how the cr
functions behave under these moves. For some of them this has been done in Refs. 28 and
the others, we will work out the form of their variations proceeding in an analogous way.

The Reidemeister moves are depicted in Figs. 11–13. For concreteness, we have
choice of base points and orientations, as well as a choice of joining the three curves in R-I
it should be clear that these choices do not affect our proof. They have also been taken su
the signature of the crossings involved in the moves does not vary when we change fromK to
a(K) or from K8 to a(K8). As the number of different functions is quite large, we are going
provide details only for one case,x4

A , and give a list of the variations for the rest of the cross
functions.

It is easier to understand the procedure to obtain the variations of the crossing functions
diagrams. Recall that in Fig. 5 we gave a diagrammatic definition of the crossing functio

FIG. 11. Reidemeister I.
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which a circle represented the ordered set of crossing labels onK, and a series of chords joinin
the labelsi and j represented the signature functione( i , j ). From those diagrams one can imm
diately figure out that, given a selected group of crossings, only those that follow the pattern
by the diagram contribute to the corresponding function. In Figs. 11, 12, and 13 we have
similar diagrams to represent the three Reidemeister moves, which are labeled R-I, R-II
R-IIB, and R-III. In these diagrams, the circle representingK is divided into sections, some o
them affected by the move and some not. Only the labels affected by the move are depict
a chord is pictured as joining them. All other crossings do not change under the moves.

Under R-I, the functionx4
A does not vary,x4

A(K8)2x4
A(K)50. The e crossing does no

contribute to any term inx4
A , as can be seen from the symbolic expression of the move in Fig

There is no way to choosee and other three crossings so that they reproduce the diagramm
expression of this function, because all the others lay in the region outside (e2,e1). The same
argument holds for the other crossing function appearing in Eqs.~4.91! and~4.92! for a42(K) and
a43(K), because none has a diagrammatic expression with isolated chords.

Under a move of type R-IIA we find:

x4
A~K8!2x4

A~K!5eee f (
i 1 ,i 2P~ f 2,e1!

i 3 ,i 4P~ f 1,e2!

e~ i 1 ,i 3!e~ i 2 ,i 4!, ~5.1!

where the crossingse andf are such thatee52e f . In this expression and throughout this sectio
the crossing labelsi 1 ,...,i n fulfill the natural order:i 1, i 2,¯, i n . In the variation~5.1! there is
a potential term proportional toee1e f but it does not contribute because its coefficient turns
to be zero. The sum on the right-hand side of~5.1! can be expressed in diagrammatic form. T
regions to which the labels are attached are the regions not affected by the move. The si
functions fix how to draw the chords. These two chords, together with the ones correspond
e and f, build the diagram associated withx4

A .
Under R-IIB one easily finds thatx4

A(K8)2x4
A(K)50. As in the previous case the crossin

e and f are such thatee52e f , and the terms linear ine and f cancel. This time no quadrati
contribution is left, because there is no way to choosee, f, and two other crossings so as to end
with the chord diagram corresponding tox4

A .
Under R-III the three crossings involved in the move are such thate f5eg52ee . Their

signature values do not vary fromK8 to K. The variation turns out to be

FIG. 12. Reidemeister II.
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x4
A~K8!2x4

A~K!52e feg (
i 1 ,i 2P~ f 1,e2!

i 3 ,i 4P~e1,g1!

e~ i 1 ,i 3!e~ i 2 ,i 4!2eeeg (
i 1 ,i 2P~ f 1,e2!

i 3 ,i 4P~g2, f 2!

e~ i 1 ,i 3!e~ i 2 ,i 4!

2e fee (
i 1 ,i 2P~g2, f 2!

i 3 ,i 4P~e1,g1!

e~ i 1 ,i 3!e~ i 2 ,i 4!. ~5.2!

In order to make the resulting expressions simpler we will assume from now on thate f51 in
any of the moves. Certainly this does not imply a loss of generality. We now present the li
variations of the crossing functions. Under R-IIA one finds

x2
A~K8!2x2

A~K!521,

x3
C~K8!2x3

C~K!52 (
i 1P~ f 1e2!

i 2P~ f 2,e1!

e2~ i 1 ,i 2!12 (
i 1 ,i 2P~ f 1,e2!

i 3 ,i 4P~ f 2,e1!

e~ i 1 ,i 3!e~ i 2 ,i 4!,

x3
D~K8!2x3

D~K!52 (
i 1 ,i 2 ,i 3P~ f 1,e2!

i 4P~ f 2,e1!

e~ i 1 ,i 3!e~ i 2 ,i 4!12 (
i 1P~ f 1,e2!

i 2 ,i 3 ,i 4P~ f 2,e1!

e~ i 1 ,i 3!e~ i 2 ,i 4!,

x3
E~K8!2x3

E~K!52 (
i 1 ,i 2P~ f 1,e2!

i 3,i 4P~ f 2,e1!

e~ i 2 ,i 3!e~ i 1 ,i 4!, ~5.3!

x4
B~K8!2x3

B~K!52 (
i 1 ,i 2P~ f 1,e2!

i 3 ,i 4P~ f 2,e1!

e~ i 2 ,i 3!e~ i 1 ,i 4!,

x4
E~K8!2x4

E~K!52 (
i 1 ,i 2 ,i 3P~ f 1,e2!

i 4P~ f 2,e1!

e~ i 1 ,i 3!e~ i 2 ,i 4!2 (
i 1P~ f 1,e2!

i 2 ,i 3 ,i 4P~ f 2,e1!

e~ i 1 ,i 3!e~ i 2 ,i 4!,

x4
C~K8!2x4

C~K!5x4
D~K8!2x4

D~K!5x4
F~K8!2x4

F~K!50.

Under R-IIB the variations turn out to be

x3
C~K8!2x3

C~K!52 (
i 1 ,i 2P~ f 1,e2!

i 3 ,i 4P~ f 2,e1!

e~ i 1 ,i 3!e~ i 2 ,i 4!,

x3
D~K8!2x3

D~K!52 (
i 1 ,i 2 ,i 3P~ f 1,e2!

i 4P~ f 2,e1!

e~ i 1 ,i 3!e~ i 2 ,i 4!12 (
i 1P~ f 1,e2!

i 2 ,i 3 ,i 4P~ f 2,e1!

e~ i 1 ,i 3!e~ i 2 ,i 4!,

x3
E~K8!2x3

E~K!52 (
i 1P~ f 1,e2!

i 2P~ f 2,e1!

e2~ i 1 ,i 2!12 (
i 1 ,i 2P~ f 1,e2!

i 3 ,i 4P~ f 2,e1!

e~ i 2 ,i 3!e~ i 1 ,i 4!,
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x4
B~K8!2x4

B~K!52 (
i 1 ,i 2P~ f 1,e2!

i 3 ,i 4P~ f 2,e1!

e~ i 1 ,i 3!e~ i 2 ,i 4!, ~5.4!

x4
C~K8!2x4

C~K!52 (
i 1 ,i 2P~ f 1,e2!

i 3 ,i 4P~ f 2,e1!

e~ i 2 ,i 3!e~ i 1 ,i 4!,

x4
D~K8!2x4

D~K!52 (
i 1 ,i 2 ,i 3P~ f 1,e2!

i 4P~ f 2,e1!

e~ i 1 ,i 3!e~ i 2 ,i 4!2 (
i 1 ,P~ f 1,e2!

i 2 ,i 3 ,i 4P~ f 2,e1!

e~ i 1 ,i 3!e~ i 2 ,i 4!,

x2
A~K8!2x2

A~K!5x4
E~K8!2x4

E~K!5x4
F~K8!2x4

F~K!50.

Under R-III moves we find the variations of the crossing numbers collected in the follow
For simplicity, we have not written explicitly the terms where the signature function is squ
~these terms appear inx3

C , x3
D , andx3

E). The reason is that, whatever they might be, they
trivially canceled when we computea42(K8)2a42(K), or a43(K8)2a43(K), because they al-
ways appear in terms of the formx(K)2x(a(K)) ande( i , j )2 has the same value in bothK and
a(K) for any i,j . We will generally denote these contributions byF(e2). The variations under
R-III moves are

x2
A~K8!2x2

A~K!51,

x3
C~K8!2x3

C~K!5122 (
i 1P~e1,g1!

i 2P~ f 1,e2!

e~ i 1 ,i 2!1F~e2!,

x3
D~K8!2x3

D~K!501F~e2!,

x3
E~K8!2x3

E~K!52 (
i 1P~e1,g1!

i 2P~ f 1,e2!

e~ i 1 ,i 2!22 (
i 1P~g2, f 2!

i 2P~ f 1,e2!

e~ i 1 ,i 2!22 (
i 1P~g2, f 2!

i 2P~e1,g1!

e~ i 1 ,i 2!,

x4
B~K8!2x4

B~K!52 (
i 1 ,i 2P~e1,g1!

i 3 ,i 4P~ f 1,e2!

@e~ i 1 ,i 4!e~ i 2 ,i 3!2e~ i 1 ,i 3!e~ i 2 ,i 4!2e~ i 1 ,i 3!#

1 (
i 1 ,i 2P~g2, f 2!

i 3 ,i 4P~e1,g1!

@e~ i 1 ,i 4!e~ i 2 ,i 3!2e~ i 1 ,i 3!e~ i 2 ,i 4!1e~ i 1 ,i 3!#

1 (
i 1 ,i 2P~g2, f 2!

i 3 ,i 4P~e1,g1!

@e~ i 1 ,i 4!e~ i 2 ,i 3!2e~ i 1 ,i 3!e~ i 2 ,i 4!1e~ i 11 i 3!#

12 (
i 1 ,i 2P~g2, f 2!

i 3P~e1,g1!,i 4P~ f 1,e2!

e~ i 1,i 3!e~ i 2,i 4!, ~5.5!
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x4
C~K8!2x4

C~K!52 (
i 1 ,i 2P~g2, f 2!

i 3P~e1,g1!,i 4P~ f 1,e2!

e~ i 1 ,i 3!e~ i 2 ,i 4!1 (
i 2 ,i 3P~e1,g1!

i 1P~g2, f 2!,i 4P~ f 1,e2!

e~ i 1 ,i 3!e~ i 2 ,i 4!

1 (
i 3 ,i 4P~ f 1,e2!

i 1P~g2, f 2!,i 2P~e1,g1!

e~ i 1 ,i 3!e~ i 2 ,i 4!2 (
i 1 ,i 2P~g2, f 2!

i 3 ,i 4P~e1,g1!

e~ i 1 ,i 4!e~ i 2 ,i 3!

1 (
i 1 ,i 2P~e1,g1!

i 3 ,i 4P~ f 1,e2!

e~ i 1 ,i 4!e~ i 2 ,i 3!2 (
i 1 ,i 2P~g2, f 2!

i 3 ,i 4P~ f 1,e2!

e~ i 1 ,i 4!e~ i 2 ,i 3!,

x4
D~K8!2x4

D~K!52 (
i 1 ,i 2P~e1,g1!

i 3 ,i 4P~ f 1,e2!

e~ i 1 ,i 4!e~ i 2 ,i 3!1 (
i 1 ,i 2 ,i 3P~e1,g1!

i 4P~ f 1,e2!

e~ i 1 ,i 3!e~ i 2 ,i 4!

1 (
i 1P~e1,g1!

i 2 ,i 3 ,i 4P~ f 1,e2!

e~ i 1 ,i 3!e~ i 2 ,i 4!2 (
i 1 ,i 2 ,i 3P~g2, f 2!

i 4P~e1,g1!

e~ i 1 ,i 3!e~ i 2 ,i 4!

2 (
i 1P~g2, f 2!

i 2 ,i 3 ,i 4P~e1,g1!

e~ i 1 ,i 3!e~ i 2 ,i 4!2 (
i 1 ,i 2 ,i 3P~g2, f 2!

i 4P~ f 1,e2!

e~ i 1 ,i 3!e~ i 2 ,i 4!

2 (
i 1P~g2, f 2!

i 2 ,i 3 ,i 4P~ f 1,e2!

e~ i 1 ,i 3!e~ i 2 ,i 4!,

x4
E~K8!2x4

E~K!522 (
i 1 ,i 2P~g2, f 2!

i 3P~e1,g1!,i 4P~ f 1,e2!

@e~ i 1 ,i 3!e~ i 2 ,i 4!2e~ i 1 ,i 4!e~ i 2 ,i 3!#

12 (
i 1 ,i 2P~e1,g1!

i 3 ,i 4P~ f 1,e2!

e~ i 1 ,i 3!e~ i 2 ,i 4!2 (
i 1 ,i 2 ,i 3P~e1,g1!

i 4P~ f 1,e2!

e~ i 1 ,i 3!e~ i 2 ,i 4!

2 (
i 1P~e1,g1!

i 2 ,i 3 ,i 4P~ f 1,e2!

e~ i 1 ,i 3!e~ i 2 ,i 4!1 (
i 1 ,i 2 ,i 3P~g2, f 2!

i 4P~e1,g1!

e~ i 1 ,i 3!e~ i 2 ,i 4!

FIG. 13. Reidemeister III.
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1 (
i 1P~g2, f 2!

i 2 ,i 3 ,i 4P~e1,g1!

e~ i 1 ,i 3!e~ i 2 ,i 4!1 (
i 1 ,i 2 ,i 3P~g2, f 2!

i 4P~ f 1,e2!

e~ i 1 ,i 3!e~ i 2 ,i 4!

1 (
i 1P~g2, f 2!

i 2 ,i 3 ,i 4P~ f 1,e2!

e~ i 1 ,i 3!e~ i 2 ,i 4!,

x4
F~K8!2x4

F~K!5 (
i 1 ,i 2P~g2, f 2!

i 3P~e1,g1!,i 4P~ f 1,e2!

@e~ i 1 ,i 3!e~ i 2 ,i 4!23e~ i 1 ,i 4!e~ i 2 ,i 3!#

1 (
i 2 ,i 3P~e1,g1!

i 1P~g2, f 2!,i 4P~ f 1,e2!

@e~ i 1 ,i 4!e~ i 2 ,i 3!2e~ i 1 ,i 3!e~ i 2 ,i 4!#

1 (
i 3 ,i 4P~ f 1,e2!

i 1P~g2, f 2!,i 2P~e1,g1!

@e~ i 1 ,i 4!e~ i 2 ,i 3!2e~ i 1 ,i 3!e~ i 2 ,i 4!#

12 (
i 1 ,i 2 ,i 3P~e1,g1!

i 4P~ f 1,e2!

e~ i 1 ,i 3!e~ i 2 ,i 4!12 (
i 1P~e1,g1!

i 2 ,i 3 ,i 4P~ f 1,e2!

e~ i 1 ,i 3!e~ i 2 ,i 4!.

Applying the formulas for the variations to the expressions~4.91! and~4.92! for a42 anda43,
we obtain the transformation under the moves of all the terms containing only crossing num
The behavior of the terms containing sums overCa andCb has to be studied separately. One has
analyze the three different cases: both crossingsi and j belong to the set affected by the move
only one of them, or none. Recall that these sums are essentially made out of the crossing n
x2

A evaluated in the ascending diagram of different closed pieces of the knot. In order to clarif
analysis, let us reproduce those terms here:

I 1~K!5 (
i . j PCa

@e i ,e j~K!2e ie j~a~K!!#$x2
A~a~K!!2x2

A~a~Ki 1
!!2x2

A~a~Ki 2
!!2x2

A~a~Kj 1
!!

2x2
A~a~Kj 2

!!1x2
A~a~Ki j a

!!1x2
A~a~Ki j b

!!%, ~5.6!

I 2~K!5 (
i . j PCa

@e ie j~K!2e ie j~a~K!!#$3x2
A~a~K!!22x2

A~a~Ki 1
!!22x2

A~a~Ki 2
!!

22x2
A~a~Kj 1

!!22x2
A~a~Kj 2

!!1x2
A~a~Ki j a

!!1x2
A~a~Ki j b

!!%, ~5.7!

I 3~K!5 (
i . j PCb

@e ie j~K!2e ie j~a~K!!#$x2
A~a~K!!2x2

A~a~Ki 1
!!2x2

A~a~Ki 2
!!2x2

A~a~Kj 1
!!

2x2
A~a~Kj 2

!!1x2
A~a~Ki j c

!!1x2
A~a~Ki j d

!!1x2
A~a~Ki j e

!!%. ~5.8!

These three expressions possess the same structure, so we will refer to them in the fol
compact way, whenever we do not need to take into account particular details:

I k~K!5 (
i . j Pc~k!

@e ie j~K!2e ie j~a~K!!#Fi j
k ~K!, ~5.9!
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with k51,2,3,Fi j
k standing for the combination of functions entering a given sum. The superi

in Fi j
k denotes that this combination depends on the sum, and the subindexes that it also d

on the pair of crossings. The set over which the sum is taken is specified byc(k), wherec(k)
5Ca for k51,2 andc(k)5Cb for k53.

Under R-I the variation of all these sums is trivially zero for the same reasons as s
previously: As the crossinge involved in this move is isolated, there is no other crossing that co
give a contribution to any of thex2

A functions. As we have already seen, the variation of all
other terms ina42(K) anda43(K) also vanishes; then it follows trivially that our formulas~4.91!
and ~4.92! are invariant under this move.

Under R-IIA or R-IIB the general behavior of the sums can be written as

I k~K8!2I k~K!5 (
i . j Þ$e, f %
i , j Pc~k!

@e ie j~K!2e ie j~a~K!!#~Fi j
k ~K8!2Fi j

k ~K!!

1 (
iÞ$e, f %

i ,ePc~k!

ee@e i~K!2e i~a~K!!#Fie
k ~K8!

1 (
iÞ$~e, f !%
i , f Pc~k!

e f@e i~K!2e i~a~K!!#Fi f
k ~K8!. ~5.10!

Notice that in Eq.~5.10! there are no additional terms proportional toeee f because the diagram i
Fig. 13 has been chosen so that,eee f(K)2eee f(a(K))50. Recall that all the crossingsi , j
Þ$e, f % do not change when going fromK8 to K. In the last two terms, there is no subtraction
the functionFk(K) because the crossingse and f are not present inK.

After these general comments on~5.9! we will evaluate~5.10! and then we will find out the
behavior of~5.6!, ~5.7!, and ~5.8! under the second Reidemeister move. We need to specify
two labelings on each crossing, as in the case of the crossing numbers, to distinguish on
section ofK they lay. We will write the signature function as given in~4.5! and the labels will
fulfill the ordering i 1, i 2, i 3, i 4 . Under R-IIA we find

I 1~K8!2I 1~K!52 (
i 1 ,i 2P~ f 2,e1!

i 3 ,i 4P~ f 1,e2!

@e~ i 1 ,i 3!e~ i 2 ,i 4!~K!2e~ i 1 ,i 3!e~ i 2 ,i 4!~a~K!!#,

I 2~K8!2I 2~K!5H 23 (
i 1 ,i 2P~ f 2,e1!

i 3 ,i 4P~ f 1,e2!

2 (
i 1 ,i 2 ,i 3P~ f 2,e1!

i 4P~ f 1,e2!

2 (
i 1P~ f 2,e1!

i 2 ,i 3 ,i 4P~ f 1,e2!

J
3@e~ i 1 ,i 3!e~ i 2 ,i 4!~K!2e~ i 1 ,i 3!e~ i 2 ,i 4!~a~K!!#, ~5.11!

I 3~K8!2I 3~K!52 (
i 1 ,i 2P~ f 2,e1!

i 3 ,i 4P~ f 1,e2!

@e~ i 1 ,i 4!e~ i 2 ,i 3!~K!2e~ i 1 ,i 4!e~ i 2 ,i 3!~a~K!!#,

and, under R-IIB:

I 1~K8!2I 1~K!52 (
i 1 ,i 2P~ f 2, f 1!

i 3 ,i 4P~e1,e2!

@e~ i 1 ,i 3!e~ i 2 ,i 4!~K!2e~ i 1 ,i 3!e~ i 2 ,i 4!~a~K!!#,
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I 2~K8!2I 2~K!52 (
i 1 ,i 2P~ f 2, f 1!

i 3 ,i 4P~e1,e2!

@e~ i 1 ,i 3!e~ i 2 ,i 4!~K!2e~ i 1 ,i 3!e~ i 2 ,i 4!~a~K!!#, ~5.12!

I 3~K8!2I 3~K!50.

The invariance under the second Reidemeister move ofa42(K) in ~4.91! anda43(K) in ~4.92! then
follows, after summing up the contributions coming from the crossing numbers in~5.3! and~5.4!,
and the expressions~5.11! and ~5.12!, respectively, and finding out that they cancel.

To prove the invariance under R-III we will study first the behavior of theI k sums~5.6!–~5.8!
under R-III. As in the previous case, we start by writing down the general structure of
variation:

I k~K8!2I k~K!5 (
i . j Þ$e, f ,g%

i , j Pc~k!

@e ie j~K!2e ie j~a~K!!#~Fi j
k ~K8!2Fi j

k ~K!!

1 (
iÞ$e, f ,g%
i ,ePc~k!

ee@e i~K!2e i~a~K!!#~Fie
k ~K8!2Fie

k ~K!!

1 (
iÞ$e, f ,g%
i , f Pc~k!

e f@e i~K!2e i~a~K!!#~Fi f
k ~K8!2Fi f

k ~K!!

1 (
iÞ$e, f ,g%
i ,gPc~k!

eg@e i~K!2e i~a~K!!#~Fig
k ~K8!2Fig

k ~K!!. ~5.13!

Again, the terms proportional toeee f , eeeg , or ege f do not contribute because their signatu
values do not vary when going fromK to a(K). The computation of the variation of the differe
Fk functions appearing in~5.13! is more complicated than before. Instead of changes in
crossings involved in the move, we are now dealing with a change in the configuration of the
crossings affected by the move. This implies that many of the crossings contributing t
functionsx2

A change. For example, the value of the subtractionx2
A(a(Ki j a

8 ))2x2
A(a(Ki j a

)) ~or any

other of the functions evaluated in the split knot! depends on the sections of the knot in which t
crossingsi and j lay in between. Let us work out some examples. In these examples, we
specify both labels of the crossings:i 1, i 2 for one andj 1, j 2 for the other.

If a crossing happens to have all the labels in the region (e2,e1) we find:

x2
A~a~Ki j a

8 !!2x2
A~a~Ki j a

!!52eee f2eeeg2ege f51, ~5.14!

while if the situation isi 1P(e2,e1) and i 2 , j 1 , j 2P( f 2, f 1):

x2
A~a~Ki j a

8 !!2x2
A~a~Ki j a

!!50. ~5.15!

In some other cases there are apparently nontrivial contributions linear in the signature
crossingse, f, or g. An example isx2

A(a(Kiea
8 ))2x2

A(a(Kiea
)) for some crossingi such that

i, ePCa and whose two labels,i 1, i 2 , lay in the following knot regions:i 1P(e2,e1) and i 2

P(g1,g2). We then find that
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x2
A~a~Kiea

8 !!2x2
A~a~Kiea

!!5e fF2 (
j 1P~e2,i 1!

j 2P~ f 2, f 1!

e~ j 1 , j 2!~a~K!!1 (
j 1P~ f 2, f 1!

j 2P~g1,i 2!

e~ j 1 , j 2!~a~K!!G
2egF (

j 1P~e2,i 1!

j 2P~ f 2, f 1!

e~ j 1 , j 2!~a~K!!2 (
j 1P~ f 2, f 1!

j 2P~g1,i 2!

e~ j 1 , j 2!~a~K!!G .

~5.16!

The minus sign in front of some of the terms inside the brackets is due to the fact that in or
close the knotKiea

, we had to reverse the orientation in some piece of the original knot;
implies a change of sign in the signature functions affected by this reversing. In this examp
are reversing the orientation of the region (e2,i 1). The key point is to notice that to the contr
butions inside the brackets sum up to the linking number between some specific knots and t
linking number is always zero:

x2
A~a~Kiea

8 !!2x2
A~a~Kiea

!!5e f•L~a~Kiea

f 1 !,a~Kiea

f 2 !!2eg•L~a~Kiea

g1!,a~Kiea

g2!!50,

~5.17!

whereL(K1 ,K2) stands for the linking number betweenK1 andK2 . In the first term the knots are
the two pieces into which the knota(Kiea

) is divided when splitting thef crossing, and in the
second those obtained after the splitting of theg crossing. As the knota(Kiea

) is just an ascending
diagram, these two pieces lay one on top of the other, and so their linking number is zero
kind of argument can be applied to other contributions of the same type. The computation
the contributions to~5.13! of the sums~5.6!–~5.8! can now be done without difficulty, leading t
the following formulas for their behavior under R-III~where againi 1, i 2, i 3, i 4):

I 1~K8!2I 1~K!5H (
i 3 ,i 4P~g1,g2!

i 1P~e2,e1!,i 2P~ f 2, f 1!

1 (
i 1P~e2,e1!,i 4P~g1,g2!

i 2 ,i 3P~ f 2, f 1!

1 (
i 1 ,i 2P~e2,e1!

i 3P~ f 2, f 1!,i 4P~g1,g2!

J
3e~ i 1 ,i 3!e~ i 2 ,i 4!12 (

i 2P~g1,g2!

i 1P~ f 2, f 1!

e~ i 1 ,i 2!,

I 2~K8!2I 2~K!53H (
i 3 ,i 4P~g1,g2!

i 1P~e2,e1!,i 2P~ f 2, f 1!

1 (
i 1P~e2,e1!,i 4P~g1,g2!

i 2 ,i 3P~ f 2, f 1!

1 (
i 1 ,i 2P~e2,e1!

i 3P~ f 2, f 1!,i 4P~g1,g2!

J
3e~ i 1 ,i 3!e~ i 2 ,i 4!1H (

i 1P~e2,e1!

i 2 ,i 3 ,i 4P~ f 2, f 1!

1 (
i 2 ,i 3 ,i 4P~g1,g2!

i 1P~ f 2, f 1!

1 (
i 1P~e2,e1!

i 2 ,i 3 ,i 4P~g1,g2!

J e~ i 1 ,i 3!e~ i 2 ,i 4!1H (
i 4P~ f 2, f 1!

i 1 ,i 2 ,i 3P~e2,e1!

1 (
i 1 ,i 2 ,i 3P~ f 2, f 1!

i 4P~g1,g2!

1 (
i 4P~g1,g2!

i 1 ,i 2 ,i 3P~e2,e1!

J e~ i 1 ,i 3!e~ i 2 ,i 4!16 (
i 2P~g1,g2!

i 1P~ f 2, f 1!

e~ i 1 ,i 2!, ~5.18!
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I 3~K8!2I 3~K!5H (
i 3 ,i 4P~g1,g2!

i 1P~e2,e1!,i 2P~ f 2, f 1!

1 (
i 1 ,i 2P~e2,e1!

i 3P~ f 2, f 1!,i 4P~g1,g2!

J e~ i 1 ,i 4!e~ i 2 ,i 3!

1 (
i 1P~e2,e1!,i 4P~g1,g2!

i 2 ,i 3P~ f 2, f 1!

e~ i 1 ,i 2!e~ i 3 ,i 4!1H (
i 1 ,i 2P~e2,e1!

i 3 ,i 4~ f 2, f 1!

1 (
i 3 ,i 4P~g1,g2!

i 1 ,i 2P~ f 2, f 1!

1 (
i 1 ,i 2P~e2,e1!

i 3 ,i 4P~g1,g2!

J e~ i 1 ,i 4!e~ i 2 ,i 3!.

Taking into account~5.18! and the behavior under R-III of the crossing numbers given
~5.5!, one can see that all the terms appearing in computing the variation of~4.91! and ~4.92!
under R-III cancel, and thus the invariance ofa42(K) anda43(K) is established.

VI. CONCLUSIONS

In this paper we have analyzed Chern–Simons gauge theory in the temporal gauge. Th
outcome of our work is that we have shown that this gauge is particularly well suited to o
combinatorial expressions for Vassiliev invariants. These are much simpler than the in
expressions obtained in covariant gauges or the ones leading to Kontsevich integrals
emerge in the light-cone gauge.

One of the crucial ingredients of our work is the observation that in the temporal gauge a
signature-dependent parts of the invariant can be easily extracted. In fact we have obtai
explicit general expression for the leading signature-dependent terms. These terms are the
the expansion~3.7! and constitute the kernels of the Vassiliev invariants. The kernels are
Vassiliev invariants. Different kernels may belong to the same knot, but they are well defin
knot projections. As an order-n Vassiliev invariant, an order-n kernel vanishes in signed sums
ordern11. The kernel is the only part of the order-n Vassiliev invariant that in general does n
vanish for signed sums of order less thann11. In other words, an order-n kernel differs from an
order-n Vassiliev invariant by terms which vanish in signed sums of ordern.

The kernels contain a large amount of information about the Vassiliev invariants. We
shown how the full invariants can be reconstructed from them. The two main ingredients
reconstruction procedure are the factorization theorem and the structure of the perturbative
expansion of the vacuum expectation value of the Wilson loop in the temporal gauge. Th
observation of the reconstruction procedure is that combinatorial expressions can be ob
without actually performing any of theD integrals. All these integrals are solved in terms of t
kernels using the series of relations provided by the factorization theorem.

In our analysis we have carried along the unknown functionb(K), obtaining a series of
consistency relations for it. These relations are necessary conditions to have knot invarian
have shown that these relations possess a simple solution, similar to the one that must b
duced in the light-cone gauge. It would be very helpful to understand the origin of this functi
the context of Chern–Simons gauge theory, and to prove that, indeed, our ansatz is corre
same type of problem has not been solved in the light-cone gauge.

The reconstruction procedure has been performed up to order four. We have obtained
combinatorial expressions at orders two and three, and new ones for the two primitive Va
invariants present at order four. The form of these combinatorial expressions suggests
general structure. For example, it seems that at even orders the quantities that enter the c
torial expressions are paired, one of the terms for the diagram associated withK, and another for
the corresponding ascending diagram with opposite sign. In addition, the terms involved
splitting of a knot are evaluated on the ascending diagram. For odd orders, crossing numbe
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not to be accompanied by their ascending-diagram counterparts. However, as in the eve
cases, the terms involved in the splitting are evaluated in the ascending diagram.

We have successfully applied the reconstruction procedure up to order four, obtainin
combinatorial expressions for Vassiliev invariants. The question to ask now is if the procedu
be generalized to higher orders. We conjecture that this can be done. Certainly, the comple
the combinatorial expressions will increase with the order, but it would be very importa
establish if the procedure would work at any order. In other words, it would be very importa
possess a reconstruction theorem which would guarantee that from the kernels~3.7! and the
factorization theorem, we can solve for all theD integrals present at each order. Provided we kn
a basis of primitive group factors, this would imply that there exists a systematic algorith
obtain combinatorial expressions for Vassiliev invariants at any order.
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TABLE I. Primitive Vassiliev invariants up to order four for all prime knots up to eight crossings.

Knot a21 a31 a42 a43

31 4 8 62/3 10/3
41 24 0 34/3 14/3
51 12 40 174 26
52 8 24 268/3 44/3
61 28 28 116/3 52/3
62 24 28 34/3 38/3
63 4 0 14/3 214/3
71 24 112 684 100
72 12 48 222 34
73 20 88 1510/3 242/3
74 16 64 1016/3 184/3
75 16 64 968/3 136/3
76 4 16 158/3 34/3
77 24 8 214/3 210/3
81 212 224 66 38
82 0 28 0 24
83 216 0 520/3 200/3
84 212 8 114 54
85 24 224 262/3 86/3
86 28 224 68/3 100/3
87 8 216 124/3 228/3
88 8 28 124/3 24/3
89 28 0 212/3 124/3
810 12 224 110 10
811 24 216 214/3 62/3
812 212 0 82 30
813 4 28 14/3 238/3
814 0 0 16 16
815 16 56 776/3 112/3
816 4 28 14/3 238/3
817 24 0 82/3 62/3
818 4 0 62/3 34/3
819 20 80 1270/3 170/3
820 8 16 172/3 20/3
821 0 28 216 8
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APPENDIX

In this appendix we present the values of the primitive Vassiliev invariants at orders
three, and four for all prime knots up to nine crossings. These have been computed, with
of a MATHEMATICA algorithm, using formulas~4.23!, ~4.49!, ~4.91! and~4.92!. In Tables I and II
we present the value of these invariants once their value for the unknot has been subtrac
other words, thea i j (K) shown in the tables are the result of the replacement,a i j (K)→a i j (K)

TABLE II. Primitive Vassiliev invariants up to order four for all prime knots with nine crossings.

Knot a21 a31 a42 a43

91 40 240 5660/3 820/3
92 16 80 1304/3 184/3
93 36 208 1578 246
94 28 152 3122/3 502/3
95 24 120 780 140
96 28 144 2834/3 382/3
97 20 96 1654/3 218/3
98 0 16 48 16
99 32 176 3760/3 560/3
910 32 176 3856/3 656/3
911 16 272 1160/3 208/3
912 4 24 302/3 58/3
913 28 144 2930/3 478/3
914 24 16 2110/3 234/3
915 8 240 508/3 92/3
916 24 112 668 84
917 28 0 116/3 28/3
918 24 120 748 108
919 28 8 68/3 4/3
920 8 32 412/3 68/3
921 12 248 238 50
922 24 8 34/3 210/3
923 20 88 1462/3 194/3
924 4 16 110/3 34/3
925 0 8 64 24
926 0 8 232 28
927 0 8 16 8
928 4 0 234/3 214/3
929 4 216 62/3 214/3
930 24 28 82/3 38/3
931 8 16 172/3 20/3
932 24 16 262/3 14/3
933 4 28 62/3 10/3
934 24 0 34/3 14/3
935 28 144 3026/3 574/3
936 12 256 270 42
937 212 8 82 22
938 24 112 684 100
939 8 232 460/3 116/3
940 24 28 34/3 38/3
941 0 8 248 224
942 28 0 164/3 76/3
943 4 16 254/3 82/3
944 0 8 0 28
945 8 232 412/3 68/3
946 28 224 20/3 52/3
947 24 216 2110/3 234/3
948 12 240 190 42
949 24 112 700 116
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2aij(U). The values for the unknot primitive invariants up to order four are, in the normaliza
and basis that we useda21(U)52 1

6, a31(U)50, a42(U)5 1
360, a43(U)52 1

360.
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Padé interpolation: Methodology and application
to quarkonium
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A novel application of the Pade´ approximation is proposed in which the Pade´
approximant is used as an interpolation for the small and large coupling behaviors
of a physical system, resulting in a prediction of the behavior of the system at
intermediate couplings. This method is applied to quarkonium systems, and reason-
able values for thec andb quark masses are obtained. ©2000 American Institute
of Physics.@S0022-2488~00!00805-7#

The Pade´ approximation seeks to approximate the behavior of a function,f (x), by a ratio of
two polynomials ofx. This ratio is referred to as the Pade´ approximant. Compared to the usu
perturbative power series approximation, the Pade´ approximant has the advantage that it devia
less rapidly from the true values off (x) asx becomes large. Recently, the Pade´ approximation has
been applied to quantum field theories to estimate the next order term in a perturbation serie1 The
method involves calculating a certain physical quantity perturbatively tonth order in the coupling
constant and then forming a Pade´ approximant which, when expanded in a power series of
coupling constant, reproduces the perturbative result. The (n11)th-order term in the expansion o
the Pade´ approximant yields an estimate of the (n11)th-order term in the perturbation series f
the physical quantity. It turns out one can obtain reasonably good estimates from this app

In this paper a different usage of the Pade´ approximation is proposed. We observe th
because of the nature of the Pade´ approximant, it can be expanded in a power series inx whenx
is small as well as in a power series in 1/x whenx is large. It is therefore interesting to ask th
question: in cases when both the smallx ~e.g., weak coupling! and the largex ~e.g., strong
coupling! behaviors of a theory can be computed perturbatively, is it possible to form a s
Padéapproximant which interpolates the weak and strong coupling behaviors, and, if so, how
does this Pade´ interpolation approximate the behaviors of the theory at intermediate values o
coupling constant? This is a particularly timely question since, with the advance of dual
supersymmetric gauge theories,2 we may someday be able to compute the strong coupling be
iors of a theory from its dual theory. The Pade´ interpolation will then provide a means to estima
the behaviors of the theory for the entire range of the coupling constant.

The method proposed here goes beyond interpolating the strong and weak coupling be
of a system. For example, the expansion parameterx can be the temperature, the strength of
applied field, or, as discussed below in the application to heavy quarkonia, a parameter intro
to implement the Pade´ interpolation.

We have tested the Pade´ interpolation method with examples in which the exact resul
known, with encouraging success. To see how accurate the Pade´ interpolation can be and to
illustrate the methodology involved, let us consider a simple quantum mechanical two-stat
tem with the Hamiltonian,

H5sx1lsz , ~1!

a!Present address: Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 197
27000022-2488/2000/41(5)/2700/6/$17.00 © 2000 American Institute of Physics
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where thes’s are the Pauli matrices and the coupling constantl is assumed to be positive. Fo
l!1, thesz term may be treated as a perturbation and we find, to second order in pertur
theory, the eigenvalues of H are

E6
,5616

l2

2
. ~2!

For l@1, the Hamiltonian can be written as H5l„sz1 (1/l) sx…, and thesx term can be treated
as a perturbation. We find, again to second order in perturbation theory, the eigenvalues oH are
now

E6
.56l6

1

2l
. ~3!

A Padéapproximant which interpolates the small and largel behaviors of the energies ca
now be constructed. For the higher energy levelE1 , we find

E1
(PA)5

l31 3
2 l21 3

2 l11

l21 3
2 l11

. ~4!

This Pade´ approximant is uniquely determined from the perturbative expansions forE1 given in
~2! and ~3!. The largel behavior indicates that the polynomial in the numerator must be
degree higher than the polynomial in the denominator and that the coefficient for the highes
term in l must be the same for the two polynomials. Without loss of generality, we may ch
this coefficient to be 1. If the numerator is a polynomial of degreed, there will be a total of
(2d21) coefficients to be determined for the Pade´ approximant. Because the smalll behavior
requires the numerator and the denominator to have the same constant~i.e., l-independent! term,
there are only (2d22) remaining coefficients to be determined. Expanding the Pade´ approximant
and matching against the perturbation series in~2! and ~3! provide an additional four conditions
which selectsd53.

In Fig. 1, the approximate result generated from Pade´ interpolation is compared with the exa
result, E15Al211. We see that the Pade´ approximant~open squares! tracks the exact resul
~solid curve! for all values of the coupling constant. In fact,E1

(PA) differs fromE1 by no more than

FIG. 1. See description in the text.
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about 1% for the entire range ofl. For example, forl50.5, 1.0, 2.0, and 4.0,E1
(PA) is larger than

E1 by 0.63%, 1.02%, 0.62%, and 0.18%, respectively. One may improve the approximati
calculating more terms in the perturbation series forE1

, andE1
. and constructing the correspond

ing Pade´ approximant. However, our example suffices to demonstrate the potential power
Padéinterpolation method in that very few terms in the perturbation expansions can yield a
accurate approximation to the exact result for the entire range of the coupling constant.

For comparison, we have also plotted in Fig. 1 the perturbative result for smalll, E1
, ~dotted

curve!. As expected, it only agrees with the exact result for small values ofl and diverges
significantly from the exact result whenl becomes large. Similarly,E1

. will diverge from the
exact result for smalll. In contrast, by interpolatingE1

, and E1
. , the Pade´ approximant is

constrained not to deviate too far from the exact result for the full range of the coupling con
In this way, the Pade´ interpolation method can yield a very good approximation, provided
quantity we try to approximate is a smooth, continuous function of the coupling constant.

When applying the Pade´ interpolation, one should beware of potential unphysical singular
coming from the zeroes of the polynomial in the denominator of the Pade´ approximant. This
complication may limit the scope of applicability of the method. On the other hand, this pro
may prove useful in some applications. For instance, when interpolating the high and low
perature behaviors of a system for which a phase transition takes place at some interm
temperature, one may try to construct a Pade´-like approximant~perhaps involving fractiona
powers in the polynomials! which mimics the singular behavior near the phase transition po

Another way to implement the Pade´ interpolation method is in cases when the Hamilton
can be expressed as H5H11H2 , where the exact solutions forH1 andH2 ~but not H! are known.
Introducing the interpolating Hamiltonian,

H~b![H11bH2 , ~5!

whereb is a positive constant, we can then treatH2 as a perturbation whenb!1 and treatH1 as
a perturbation whenb@1, in exactly the same way as in the example~1!. A Padéapproximant is
formed interpolating the perturbative results for large and smallb. Finally, an approximate solu
tion for the original Hamiltonian H is obtained by settingb equal to 1 in the Pade´ approximant.
This method will be applied below to calculate quarkonium spectra. Reasonable values forc
andb quark masses are obtained by fitting the calculated levels to their measured values,
demonstrates the legitimacy of this Pade´ interpolation approach.

Quarkonium refers to the bound state of a heavy quarkQ ~e.g., c or b quark! with its
antiquarkQ̄. It is well known that such systems can be described reasonably well using no
ativistic quantum mechanics.3 Various potential energy functions have been used to model theQQ̄
interaction. It has been found that the potential description is flavor independent, i.e., the
potential describes equally well thecc̄ and thebb̄ systems. We consider here a central poten
consisting of an attractive Coulomb term and a confining linear potential:4

V~r !52
a

r
1lr , ~6!

wherea andl are positive coupling constants. We shall focus on the S states for the purpo
testing the proposed interpolation method. In this case, the Hamiltonian for the radial Schro¨dinger
equation is simply

Hr52
1

2m

d2

dr2 2
a

r
1lr , ~7!

wherem is the reduced mass for the heavy quarkQ, m5mQ/2. Note that Hr can be expressed a
the sum of two exactly solvable Hamiltonians: a Hamiltonian for the Coulomb potential,
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HC52
1

4m

d2

dr2 2
a

r
, ~8!

and a Hamiltonian for the linear potential,

HL52
1

4m

d2

dr2 1lr . ~9!

We have split the kinetic energy term in half so that the ‘‘effective mass’’ that appears in HC and
in HL is 2m5mQ .

We may now form the interpolating Hamiltonian, Hr(b)5HC1bHL , and perform perturba-
tive calculations for smallb as well as for largeb. We shall summarize the results of ou
calculation here. Details of the calculation can be found in Ref. 5 where the calculation incl
the quarkonium P states is also discussed.@For the P states, the centrifugal pontential energy te
l ( l 11)/2mr 2, should be included with HC, resulting in a solvable ‘‘hydrogen like’’ Hamiltonian
Because of the half kinetic energy term, care must be taken to redefine the orbital angul
mentum quantum number in order to extract the energy eigenvalues.#

The bound state energies for the S states of Hr(b) are computed for smallb as well as for
largeb to the same order in perturbation theory. Wherever necessary~e.g., integrals involving the
Airy functions, the eigenfunctions of HL!, terms in the perturbation series are evaluated num
cally. In addition, for second- and higher-order calculations, the infinite series that appear
perturbation expansions are estimated using the method of acceleration of convergenc6,5 A
separate Pade´ approximant is formed interpolating the small and largeb results from our first-,
second-, and third-order calculations. Our estimates for the S state energies are obtained b
b equal 1 in the respective Pade´ approximant. These are fitted to the corresponding meas
values treatinga, l, mc , andmb as well as the zero-point energiesVc ~for charmonium! andVb

~for bottomonium! as free parameters. We used the data for theJ/c(1S), J/c(2S), Y~1S!, Y~2S!,
and Y~3S! given in Ref. 7. When performing the fit, care must be taken to avoid the artifi
singularities of the Pade´ approximant.

The details of the fit results are presented in Table I. We see that the first-order approxim
already produces a rather good fit to the measured S-state energies, although the best fit va
mc andmb are somewhat high. The second-order approximation improves the fit quality, r
ducing all of the quarkonium S-levels. The fit quality, defined as( i(mi

~experiment!2mi
~calculated!)2,

worsens~from less than 1 to 240! as we go to the third-order approximation, primarily due to t
increased difficulty to avoid a larger number of unphysical singularities from the Pade´ approxi-
mant in performing the fit. Using the second-order results, our best fit values formc andmb are

TABLE I. Fit results from Pade´ interpolation.

Energy level~MeV! Measured First order Second order Third order Numeri

J/c(1S) 3097 3097 3097 3089 3097
J/c(2S) 3686 3686 3686 3694 3687
Y(1S) 9460 9459 9460 9464 9456
Y(2S) 10 023 10 026 10 023 10 028 10 020
Y(3S) 10 355 10 353 10 355 10 347 10 356
Fit quality ~MeV2! 13 ,1 240

Fit parameters

a 0.4600 0.4984 0.7510 0.4984
l (GeV2! 0.1834 0.1771 0.1344 0.1771
Vc ~MeV! 2767 2765 2953 2765
Vb ~MeV! 9573 9585 9761 9585
mc ~MeV! 1719 1521 1253 1521
mb ~MeV! 5538 5046 4143 5046
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1.521 and 5.046 GeV, respectively, to be compared with the values given in Ref. 7mc

51.0– 1.6 GeV,mb54.1– 4.5 GeV. The best fit values for the parameters in the quarkon
potential ~6!, a50.4984 andl50.1771 GeV2, also compare favorably with earlier results:a
50.520 andl50.183 GeV2 in Ref. 8;a50.507 andl50.169 GeV2 in Ref. 3.

We have also performed a fit with the constraintVb2Vc52(mb2mc) on the model param-
eters. The results are presented in Table II. The fit quality in this case is comparable to that
unconstrained fit and the best fit values of the model parameters differ somewhat from the
values of the unconstrained fit, indicating that the found minimum is not sharp and allow
some variation of the quark masses as long as their difference remains equal to half
difference between the zero-point energiesVb andVc . The model parameters appear to be mo
stable than before as we go from first- to second-order Pade´ interpolation, which corroborates th
physical significance of the constraint.

As a final check, we have integrated numerically the Schro¨dinger equation for the quarkonium
systems with the second-order best fit values of the parameters to obtain the energy leve
results are shown in the last column of Table I. This verifies the validity of the Pade´ interpolation
method.

In conclusion, using quarkonia and a simple two-state model as our testing grounds, w
shown that Pade´ interpolation can be a powerful method for estimating physical quantitie
intermediate values of the coupling constant where perturbative calculations are not reliable
are many areas for which this method may be applicable, one of which is the K-meson s
The strange quark mass,ms , has the value such that neither chiral perturbation theory~for small
quark masses! nor heavy quark effective theory~for large quark masses! gives a good description
of K-meson properties. With Pade´ interpolation we may be able to obtain a more accurate estim
of the K-meson properties by interpolating the smallms and largems behaviors which can be
obtained perturbatively through chiral perturbation theory and heavy quark effective theor
spectively. These issues are being examined by one of us and the results will be reported
near future.9

This work was supported in part by the U.S. Department of Energy under Grant No.
FG02-84ER40163.
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TABLE II. Fit results from Pade´ interpolation with the constraintVb2Vc52(mb2mc).

Energy level~MeV! Measured First order Second order

J/c(1S) 3097 3097 3098
J/c(2S) 3686 3686 3685
Y(1S) 9460 9459 9460
Y(2S) 10 023 10 026 10 022
Y(3S) 10 355 10 353 10 356
Fit quality ~MeV2! 13 3

Fit parameters

a 0.4850 0.4964
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Dynamical symmetry approach to periodic Hamiltonians
Hui Lia) and Dimitri Kusnezovb)

Center for Theoretical Physics, Sloane Physics Laboratory, Yale University,
New Haven, Connecticut 06520-8120

~Received 10 May 1999; accepted for publication 18 January 2000!

We show that dynamical symmetry methods can be applied to Hamiltonians with
periodic potentials. We construct dynamical symmetry Hamiltonians for the Scarf
potential and its extensions using representations of su(1,1) and so(2,2). Energy
bands and gaps are readily understood in terms of representation theory. We com-
pute the transfer matrices and dispersion relations for these systems, and find that
the complementary series plays a central role as well as nonunitary representations.
© 2000 American Institute of Physics.@S0022-2488~00!03405-8#

I. INTRODUCTION

Lie-algebraic techniques have found wide application to physical systems and generall
vide descriptions of bound states or scattering states.1–3 Once an algebraic structure is identifie
such as a spectrum generating algebra, exactly solvable limits of the theory, or dynamica
metries, can be constructed.4 Here representation theory provides a full classification of states
often transitions.5 These dynamical symmetry limits can be intuitive guides to the more gen
structure and behavior of solutions of the problem. Quantum systems can be characterized b
types of spectra; discrete~bound states!, continuous~scattering states!, and bands~periodic poten-
tials!. The third case corresponds to spectra with energy bands and gaps. Up to now, ho
dynamical symmetry treatments have focused only on the first two, leaving the case of
structure and its connection to representation theory unclear.

In this article, we extend the dynamical symmetry approach to quantum systems by sh
that Lie algebras and representation theory can also be used to treat Hamiltonians with p
potentials, allowing the calculation of dispersion relations and transfer matrices.6 We will focus
our attention here on the Scarf potential7 and its generalizations and show how representation
so(2,1) and so(2,2) can be used to explain energy bands and gaps. The representations w
be necessary are the projective representations of su~1,1!;so~2,1!. These have three families
known as the discrete, principal, and complementary series. The discrete and principal seri
found much application in physics. For instance, the Po¨schl–Teller Hamiltonian,H52d/dx2

1g/cosh2 x, can be expressed as an su(1,1) dynamical symmetry,8 with the discrete and principa
series describing the bound and scattering states. The complementary series, howeve
21/2, j ,0, has found little application in physics and is considered to be more of a curiosity
will see that this series is precisely what is needed to describe band structure in certain p
potentials, and further, that the unitary representations correspond to the energy gaps, rath
the bands.

II. SCARF POTENTIAL

The Scarf potential7 provides a convenient starting point for the dynamical symmetry ana
of periodic systems. It was originally introduced as an example of an exactly solvable c
model. The starting point is the Hamiltonian

a!Electronic mail: huili@nst4.physics.yale.edu
b!Electronic mail: dimitri@nst4.physics.yale.edu
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Hsc52
d2

dx2 1
g

sin2 x
. ~1!

The potential is shown in Fig. 1.~We choose units with massM51/2 and\51.! The strength of
the potentialg is usually expressed asg5s221/4 since forg<21/4, one can no longer define
Hilbert space for which the Hamiltonian is self-adjoint.9 The dispersion relation for this Hamil
tonian was found to be

E~k!5
1

p2 @cos21~sinps coskp!#2 ~2!

with the band edges for thenth band,

En
65~n1 1

2 6s!2. ~3!

The bands become degenerate ass→0. For s51/2, the motion is that of a free particle wit
E(k)5k2. While Scarf originally showed that the potential admits band structure for 0,s
<1/2, it was demonstrated more recently that the Hamiltonian has bands for 1/2<s,1.9 In our
analysis, we will see that the entire range of 0,s,1 arises naturally from representation theo

In order to realize the Scarf problem as a dynamical symmetry, we consider the Lie alg
isomorphic to so(3). We will see that while different constructions are possible, not all
fruitful.

A. so „3… realization

The relationship of the Scarf Hamiltonian to so(3) was noted some time ago by Gu¨rsey.10

Consider the realization of so(3) given by the generators,

FIG. 1. Scarf potentialV(x)5g/sin2 x for g520.1.
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I 65e6 ifF6
]

]u
1cotuS 7

1

2
1 i

]

]f D G , ~4!

I 352 i
]

]f
, ~5!

I 25I 1I 21I 3
22I 352

]2

]u2 2
1

sin2 u S ]2

]f2 1
1

4D2
1

4
, ~6!

which satisfy the usual commutation relations,

@ I 3 ,I 1#5I 1 , @ I 3 ,I 2#52I 2 , @ I 1 ,I 2#52I 3 . ~7!

Then, using the basisc j
m5AsinuPj

m(cosu), with the unitary representations of so(3) labeled
( j ,m), the Casimir invariantI 2 can be rewritten as the Schro¨dinger equation,

F2
d2

du2 1
m22 1

4

sin2 u
Gc j

m~u!5S j 1
1

2D 2

c j
m~u!. ~8!

While this is Scarf’s Hamiltonian withg5m221/2 @similar tog5s221/2 in ~1!#, it is not a useful
realization for several reasons. For instance, one cannot obtain any band structure from t
crete representations of so(3). Here the spectrum is labeled by (j 11/2), which identifies only
bound states. Further, the strength of the potential,m221/4, is only negative form50. In this case
g521/4 and the Hamiltonian is no longer self-adjoint. Finally, sincem appears in the strengthg
of the potential, a given representationj would correspond to different forms of the Hamiltonia
rather than the spectrum of a single Hamiltonian. For this reason, the previous realizationsHSc

are not useful for the discussion of band structure.

B. so „2,1… realization

A more suitable realization of the Scarf Hamiltonian can be found using so~2,1!;su~1,1!. To
obtain this form, we perform the following transformations of the so(3) algebra;~i! scaling the
wave function by 1/sinu; ~ii ! changing cosu→tanhu; and ~iii ! taking u→ iu. The result is the
so(2,1) realization

I 65e6 ifS 7sinu
]

]u
1 icosu

]

]f D , ~9!

I 352 i
]

]f
, ~10!

I 252I 1I 21I 3
22I 35sin2 uS ]2

]u2 2
]2

]f2D ~11!

which satisfies the commutation relations

@ I 3 ,I 1#5I 1 , @ I 3 ,I 2#52I 2 , @ I 1 ,I 2#522I 3 . ~12!

The Casimir operator, using the basis statesc j
m(u)5Pj

m( i cotu), 0,u,p/2, reduces to Scarf’s
Hamiltonian in the dynamical symmetry form,

F2
d2

du2 1
j ~ j 11!

sin2 u Gc j
m~u!5m2c j

m~u!. ~13!
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While this Hamiltonian is more pleasing than Eq.~8! in the sense that a single representat
j will account for the spectral properties, given bym2, the standard unitary representations~given
in Appendix A! are not yet sufficient to describe the bands. These come in three series
principal series with j 521/21 ir, r.0, the discrete seriesD j

6 where j 52n/2 for n
51,2,. . . , and thecomplementary series,21/2, j ,0.

In order to realize band structure as a dynamical symmetry, it is clear that we must co
slightly more general representations. For Hamiltonians with periodic potentials,V(x1a)
5V(x), Bloch’s theorem requires the form of the wave functions to be11

Ck~x!5eikxuk~x!, uk~x1a!5uk~x!, ~14!

so thatCk(x1a)5exp(ika)Ck(x) is not single valued. To obtain multi-valued functions, we pa
to the projective unitary representations of su~1,1!;so~2,1!.12,13 In contrast to the more familia
representations of so(3) which are related to the orthogonal symmetries in the vector spaR 3,
the projective representations are associated with equivalence classes of vectors defined
phase@as in Eq.~14!#. The action of a group on the projective space~rather than a vector space!,
defined by this equivalence class of states, leads to the projective representations. While th
multi valued representations of the group, they are proper representations of the algebra
hence suitable. Consequently, the single-valued representations of this covering group of
are infinitely many-valued representations of su(1,1). Such representations have been
describe bound and scattering states in the Po¨schl–Teller potential.8 They fall into the same three
series as the usual unitary representations of su(1,1) discussed above~see Appendix A!. We will
see that for our Scarf dynamical symmetry~13!, the discrete series corresponds to the band ed
the complementary series provides the bands and gaps, while the principal series is unp
corresponding to the regime where the Hamiltonian is not self-adjoint.

Consider first the complementary series of the projective unitary representations of so
Here we must have

2 1
2, j ,0, or 2 1

4, j ~ j 11!,0. ~15!

This is precisely the range ofg5 j ( j 11) studied initially by Scarf in Eq.~1!. The states are
labeled by two quantum numbersj ,m, with unitary representations given by the range of quant
numbers,

m5m06n~n50,1, . . .!, 0<m0,1, m0~12m0!,2 j ~ j 11!, 1
4 . ~16!

The last condition provides the range

0,m0,2 j , and 11 j ,m0,1, ~17!

which is illustrated in Fig. 2. For a given value ofj , j ( j 11) ~dots! separates unitary from
nonunitary representations. The unitary representations are given by values ofm for which the
periodically continued parabola~dashes and solid! are abovej ( j 11). One can now see that thes
unitary representations correspond to the band gaps rather than the bands by takingj→0. In this
case the Hamiltonian~13! is that of a free particle, so that the spectrum isE5m2>0. From Eqs.
~16!–~17! and Fig. 2, we see that asj→0 the allowed values ofm become restricted tom50,
61,62, . . . . Therefore, for a specificj , E5m2 has band structure, with the range ofm from
unitary projective representations giving the energy gaps. Thenonunitaryprojective representa
tions of the complementary series give the energy bands

~2 j 1n!2,E,~11 j 1n!2, n2 j ,m,11 j 1n. ~18!

The band edges are not contained in the complementary series. In contrast to the state
band, the edge states are periodic. They form a discrete set of states which are associated
discrete series. These seriesD j

6 have the representationsj ,0 with m given by
                                                                                                                



d

omple-

d

nitary

that

2710 J. Math. Phys., Vol. 41, No. 5, May 2000 H. Li and D. Kusnezov

                    
D j
1 : m52 j ,12 j ,22 j , . . . , ~19!

D j
2 : m5 j , j 21,j 22, . . . . ~20!

When we restrict to the range of physical interest,2 1
2, j ,0, this series provides the upper an

lower band edges@compare to Eq.~18!#,

D j
6~ lower!: E5~n2 j !2, ~21!

D2 j 21
6 ~upper!: E5~n1 j 11!2. ~22!

Equation~22! arises from the invariance of our Hamiltonian~13! underj→212 j , allowing both
discrete seriesD j

6 andD212 j
6 . Other discrete representations withj ,21 are not useful for band

structure. The band spectrum of the Scarf potential which includes both the discrete and c
mentary series is shown in Fig. 3. The shaded region corresponds to the bands~nonunitary! and
the unshaded to the gaps~unitary!.

The remaining representations, the principal series, hasj 52 1
21 ir (r.0). This gives a

potential with strengthg5 j ( j 11),2 1
4, for which the Hamiltonian is no longer self-adjoint an

is of no physical interest.
Note that we have explained the band structure for strengths of the potential21/4,g5 j ( j

11),0 and found agreement with Scarf.7 More recently it was noted that for 0<g,3/4, there is
also band structure.9 In this range the potential is strictly positive.~The origin of the band structure

FIG. 2. Complementary series of projective representations of so(2,1). Unitary representations are labeled byj ,m where
21/2, j ,0 @so that21/4, j ( j 11),0# andm given by the following construction:m5m06n, where 0<m0,1, and
m0(m021). j ( j 11)>21/4. In the figure, we plotj ( j 11) for somej ~dots!, the parabolam0(m021) ~solid!, and its
periodic extension (m6n)(m6n21) ~dashes!. The unitary representations (j ,m) are the values ofm for which the solid
and dashed lines are abovej ( j 11). These correspond to the energy gaps of the Scarf potential, while the nonu
regions correspond to the energy bands.

FIG. 3. Band structure of the Scarf potentialj ( j 11)/sin2 x. The dynamical symmetry spectrumE5m2 is plotted as a
function of j . The energy gaps~unshaded! for eachj correspond to the unitary representations of Fig. 2. One can see
the complementary series describes the spectral properties of this potential. The discrete representationsD j

6 (D212 j
6 ) are

seen to explain the lower~upper! band edges.
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here is that the matching conditions on the wavefunctions around the singularity in the pot
needed to have a self-adjoint Hamiltonian, in a sense ‘‘dilute’’ the infinite potential at these p
and allow bands.! While our so(2,1) realization above cannot account for this range ofg, we will
see in Sec. III, that a limiting case of an so(2,2) dynamical symmetry will account for this r
using the same complementary series. Forg>3/4, there is no band structure and the discr
projective representation then describe the bound state spectrum.

C. Transfer matrix

The transfer matrix T for the periodxP(2 (p/2) , (p/2)) can be computed directly from
wave functions. However, the quadratic singularity of the potential requires some care. The
two approaches one can consider, but both are equivalent.7,9,14In the first, we compute the transfe
matrix atx56«. We then match the transfer matrices on both sides of the singularity as«→0,
which results in matching conditions on the wave functions. This procedure is not equivalen
analytical continuation around the origin. The second arises in the construction of the H
space of functions for whichH is self-adjoint. This gives rise to equivalent matching conditio
around the origin.9 The matrix elements of the transfer matrix are related to the values of the
and odd solutions and their first derivatives atp/2 ~see Appendix B!. We find

T5S a b

b* a* D , ~23!

wherea andb are determined by the representations of the complementary and discrete serij ,m
as

a5e2 impF cospm

sinp~ j 1 1
2!

1 iS 2
2

m

GS 12 j 1m

2 DGS 12 j 2m

2 D
GS 2

j 2m

2 DGS 2
j 1m

2 D

1
m

2

GS 11 j 1m

2 DGS 11 j 2m

2 D
GS 21 j 1m

2 DGS 21 j 2m

2 D D cosp
j 1m

2
cosp

j 2m

2

sinp~ j 1 1
2! G , ~24!

b5 ieimp

cosp
j 1m

2
cosp

j 2m

2

sinp~ j 1 1
2! F 2

m

GS 12 j 1m

2 DGS 12 j 2m

2 D
GS 2

j 2m

2 DGS 2
j 1m

2 D

1
m

2

GS 11 j 1m

2 DGS 11 j 2m

2 D
GS 21 j 1m

2 DGS 21 j 2m

2 D G . ~25!

Although the Scarf Hamiltonian can be obtained from the Po¨schl–Teller potentialV(x)
5g/cosh2 x through a transformation, the above transfer matrix is not related to that o
Pöschl–Teller in any simple manner.

The Bloch form of the so(2,1) wave functions for thenth period, (n2 1
2)p,x<(n1 1

2)p, of
the Scarf Hamiltonian are readily found to be

Ck~x!5 f k~x2np!eikx, ~26!
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where

f k~z!5e2 ik(z1 p/2)@aPj
m~ i cotz!1bPj

2m~ i cotz!# ~27!

and

a5~2 !2 j /2
Ap22m

sinmp F cos
kp

2

GS 12 j 2m

2 D
GS 2 j 1m

2 D 2sin
kp

2

GS 21 j 2m

2 D
GS 11 j 1m

2 D ~2 ! jG , ~28!

b52~2 !2 j /2
Ap2m

sinmp F cos
kp

2

GS 12 j 1m

2 D
GS 2 j 2m

2 D 2sin
kp

2

GS 21 j 1m

2 D
GS 11 j 2m

2 D ~2 ! jG . ~29!

Since2 (p/2),z< (p/2) , f k(z) is made periodic, andCk(x) satisfies Bloch’s theorem.

D. Dispersion relation

Once we have the transfer matrix, the dispersion relation is obtained froma by the
condition11,15

cospk5Re~aeimp!5
cospm

sinp~ j 1 1
2!

. ~30!

Solving for the energyE5m2, we find

E~k!5m25
1

p2 @cos21~sinp~ j 1 1
2!cospk!#2. ~31!

This is precisely the result~2! obtained by Scarf. Again, the values ofj and m are determined
from the representations given in~18! and ~21!–~22!. From the dispersion relation, we can al
compute the group velocityV and the effective massM* . These will depend only upon th
representation labelsj andm. We have

V~ j ,m!5
]E

]k
52m

Acos2 p j 2cos2 pm

sinpm
. ~32!

This is plotted in Fig. 4~a! for selected values ofj . V( j ,m) vanishes on the band edges. Forj
50, the Hamiltonian~13! describes free motion, and we expectV56k/M562k ~dots!, while for
j→21/2, we have degenerate bands, andV→0 at half-integer values ofm. For the effective
mass,

1

M* ~ j ,m!
5

]2E

]k2 52F cos2 j p

sin2 mp
2cot2 mp1mp

sin2 j p cotmp

sin2 mp G . ~33!

~Note that this differs slightly from the result derived in Ref. 7.! In Fig. 4~b!, 1/M* ( j ,m) is shown
for selected values ofj . For j 50, M* 5M51/2, while for j→21/2, 1/M* →0.

E. Variation of the Scarf potential

In the next section we will present a dynamical symmetry Hamiltonian for a variation o
Scarf potential using so(2,2). This potential will have several limits where the Hamiltonia
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duces to the Scarf case, including the 1/cos2 x potential. In order to compare the transfer matrix
this limit to the Scarf result, we consider the Scarf Hamiltonian translated byp/2,

F2
d2

du2 1
j ~ j 11!

cos2 u Gc j
m~u!5m2c j

m~u!. ~34!

The dispersion relationE(k) and the energy band structure will remain the same as before.
transfer matrix for (2 (p/2) , (p/2)), on the other hand, will change. The new transfer matrix
be calculated easily from a translation of the solutions of Scarf case,

a5e2 impF cospm

sinp~ j 1 1
2!

1 iS 2m

G~ j 1 1
2!GS 12 j 1m

2 DGS 12 j 2m

2 D
G~2 j 2 1

2!GS 21 j 1m

2 DGS 21 j 2m

2 D

1
1

m

G~2 j 2 1
2!GS 11 j 1m

2 DGS 11 j 2m

2 D
G~ j 1 1

2!GS 2
j 2m

2 DGS 2
j 1m

2 D D cosp
j 1m

2
cosp

j 2m

2

sinp~ j 1 1
2! G , ~35!

FIG. 4. ~a! The group velocity of the Scarf potentialV( j ,m) shown as a function ofm for several strengths of the potentia

For j 50, the motion becomes free and one hasV56k/M562k. For j→2
1
2, the bands become degenerate andV→0 at

the values ofm56(2l 11)/2, l 50,1,2, . . . .~b! Effective massM* of the Scarf potential. We shown 1/M* as a function
of m for several values ofj . For j→21/2, the bands become degenerate, and the effective mass diverges atm56(2l
11)/2, l 50,1,2,. . . . For j→0, M* →M51/2.
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b52 ieimp

cosp
j 1m

2
cosp

j 2m

2

sinp~ j 1 1
2! F m

G~ j 1 1
2!GS 12 j 1m

2 DGS 12 j 2m

2 D
G~2 j 2 1

2!GS 21 j 1m

2 DGS 21 j 2m

2 D

1
1

m

G~2 j 2 1
2!GS 11 j 1m

2 DGS 11 j 2m

2 D
G~ j 1 1

2!GS 2
j 2m

2 DGS 2
j 1m

2 D G . ~36!

III. GENERALIZED SCARF POTENTIAL

We have now shown that band structure can arise naturally as a dynamical symmetr
would like to build on the analysis of the Scarf problem and study a different class of per
potentials. Consider an extension of the Scarf potential given by a generalized Po¨schl–Teller
Hamiltonian,16

F2
d2

dx2 1
g1

sin2 x
1

g2

cos2 xGC~x!5EC~x! ~g1 ,g2.2 1
4!. ~37!

While this Hamiltonian is exactly solvable, we would like to see how band structure ca
obtained from representation theory using dynamical symmetry considerations. We will rela
Hamiltonian to the so(4) and so(2,2) algebras and develop the band structure from the c
mentary series. We plot some forms of this potential in Fig. 5 for several values ofg1 andg2 . Our
study will be restricted to the range21/4,g1 ,g2<0.

FIG. 5. Forms of the generalized Scarf potentialV(x)5g1 /sin2 x1g2 /cos2 x using ~a! g15g2520.1, ~b! g1520.25,
g2520.001, and~c! g1520.01, g2520.25. Situation~a! is one of the three limiting cases whereV(x) becomes the
Scarf potential.
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A. so „4… realization

We start with the realization of the so(4) algebra,

A65
1

2
e6 i (f1a)F6

]

]u
1cot 2uS i

]

]f
1 i

]

]a
71D2

i

sin 2u S ]

]f
2

]

]a D G ,
A352

i

2 S ]

]f
1

]

]a D ,

~38!

B65
1

2
e6 i (f2a)F6

]

]u
1cot 2uS i

]

]f
2 i

]

]a
71D2

i

sin 2u S ]

]f
1

]

]a D G ,
B352

i

2 S ]

]f
2

]

]a D ,

which have the commutation relations,

@A3 ,A1#5A1 , @A3 ,A2#52A2 , @A1 ,A2#52A3 ,
~39!

@B3 ,B1#5B1 , @B3 ,B2#52B2 , @B1 ,B2#52B3 , @A,B#50.

Since this is the direct product of two so(3) algebras, the quadratic Casimir invariant has the

C252~A21B2!

52~A1A21A3
22A31B1B21B3

22B3!

52
]2

]u2 1
1

cos2 u F2
]2

]f2 2
1

4G1
1

sin2 u F2
]2

]a2 2
1

4G21. ~40!

The representations of so(4) can be labeled by (j 1 ,m; j 2 ,c), where j 1 , j 2 ,m,c are non-
negative integers or half-integers and2 j 1<m< j 1 , 2 j 2<c< j 2 . It is easy to check that, a
differential operators,A25B2. So for this realization, we only need to consider symmetric rep
sentations withj 15 j 25 j . Hence,C254 j ( j 11). The resulting Schro¨dinger equation is

F2
d2

du2 1
~m1c!22 1

4

cos2 u
1

~m2c!22 1
4

sin2 u
Gc j

m,c~u!5~2 j 11!2c j
m,c~u!. ~41!

While this is suitable for bound states, the discrete representations of so(4) do not explai
structure, and the strength of the potential is not in the range of physical interest.

B. so „2,2… realization

We can derive a more suitable realization by passing to so(2,2). Starting with the a
generators, we~i! scale the wave functions by 1/Asinu, ~ii ! transform cosu→tanhu and~iii ! take
u→ iu. This results in the so(2,2) realization,
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A65
1

2
e6 i (f1a)F6cosu

]

]u
1 i

11sin2 u

2 sinu S ]

]f
1

]

]a D1 i
cos2 u

2 sinu S ]

]f
2

]

]a D7
1

2 sinuG ,
A352

i

2 S ]

]f
1

]

]a D ,

~42!

B65
1

2
e6 i (f2a)F6cosu

]

]u
1 i

11sin2 u

2 sinu S ]

]f
2

]

]a D1 i
cos2 u

2 sinu S ]

]f
1

]

]a D7
1

2 sinuG ,
B352

i

2 S ]

]f
2

]

]a D ,

with the commutation relations,

@A3 ,A1#5A1 , @A3 ,A2#52A2 , @A1 ,A2#522A3 ,
~43!

@B3 ,B1#5B1 , @B3 ,B2#52B2 , @B1 ,B2#522B3 , @A,B#50.

The quadratic Casimir invariant now has the form

C252~A21B2!52~2A1A21A3
22A32B1B21B3

22B3!

5cos2 u
]2

]u2 2cos2 u
]2

]a2 1
cos2 u

sin2 u S ]2

]f2 1
1

4D2
3

4
. ~44!

The states of the representations of so(2,2) can be labeled by a direct product of repr
tions of so(2,1), denoted (j 1 ,m; j 2 ,c). Again, as differential operators,A25B2 so that j 15 j 2

5 j . Replacingu by x, this leads to the Schro¨dinger equation,

F2
d2

dx2 1
~m1c!22 1

4

sin2 x
1

~2 j 11!22 1
4

cos2 x
Gc j

m,c~x!5~m2c!2c j
m,c~x!. ~45!

Two independent solutions17,18 in the region 0,x,p/2 are

c1~x!5~sin2 x!~1/4! 2 @~m1c!/2#~cos2 x!2 j 2 ~1/4!
2F1~2c2 j ,2m2 j ;12m2c;sin2 x!,

~46!
c2~x!5~sin2 x!~1/4! 1 @~m1c!/2#~cos2 x!2 j 2 ~1/4!

2F1~m2 j ,c2 j ;11m1c;sin2 x!.

In order to develop the band structure of this Schro¨dinger equation, we must construct th
complementary series of the projective representations of so~2,2!;su~1,1!%su~1,1!. This direct
product structure allows us to simply use the results discussed in the Scarf dynamical sym

The complementary series, labeled by (j ,m,c), is constructed as follows. For ranges ofm and
c which correspond to unitary representations of~projective! complementary series su(1,1), th
resulting so(2,2) representation is also unitary. For ranges ofm andc which are both nonunitary
the resulting direct product becomes unitary in the strip of physical interest, 0,um1cu<1/2. The
remaining cases whenm is unitary andc is nonunitary and the case withm andc interchanged,
result in nonunitary representations of the complementary series of so(2,2). These non
representations correspond to the energy bands of the extended Scarf potential, which can
by taking limiting cases where~i! the potential reduces to the Scarf case~see below! and ~ii ! the
potential vanishes and the spectrum is continuous.

Since the eigenvalue of our Hamiltonian isE5(m2c)2, and the strength of the potential
labeled byj andm1c, it is convenient to plot the resulting unitary and non-unitary represe
tions of so(2,2) vsm1c for selected values ofj . This is done in Fig. 6. Here the energy ga
correspond to the shaded regions and the bands to the unshaded regions. Three valuesj are
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chosen:~a! j 520.45, ~b! j 520.35, and~c! j 520.25. Case~c! corresponds to the Scarf poten
tial limit. As j→21/2 or um1cu→0, the bands become degenerate. On the other hand, whj
→21/4 andum1cu→1/2, the spectrum becomes continuous. For the band edges, one tak
direct product of su(1,1) discrete projective representations.

The bandsE5(m2c)2 are given by the following ranges of quantum numbers in the (m,c)
plane:

2n2~m01c0!22 j <m2c<2n112u2 j 112m02c0u,
~47!

2n111u2 j 112m02c0u<m2c<2n1212 j 1m01c0 ,

wheren50,1,2, . . . and

0,um1cu< 1
2 , 0,2 j 11< 1

2 . ~48!

C. Transfer matrix

Due to the strong singularity structure of the potential, one again must introduce bou
conditions for the solutions at singularities such that the Schro¨dinger operator can be made se
adjoint. Such an analysis has been undertaken in Refs. 9 and 17. We can then easily com
transfer matrix for the intervalxP(2 (p/2) , (p/2)) using the boundary values and first deriv
tives at (p/2). The transfer matrix is

T5S a
b*

b
a* D , ~49!

where

FIG. 6. Complementary series of the projective representation of so(2,2). The spectrum ofm2c is shown for 0,um
1cu<1/2 for ~a! j 520.45, ~b! j 520.35, and~c! j 520.25. The dashed lines are the spectra for particular strength
the potential for which the group velocity is computed in Fig. 7. The unshaded regions are nonunitary representati
striped~checkered! regions are unitary representations which arise from direct products of two su(1,1) unitary~nonunitary!
representations.
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a5e2 i (m2c)pFcosp~m2c!1cosp~2 j 11!cosp~m1c!

sinp~2 j 11!sinp~m1c!

1 i S 1

m2c

G~22 j 21!G~11 j 2m!G~11 j 2c!

G~2 j 11!G~2 j 2m!G~2 j 2c!

2~m2c!
G~2 j 11!G~2 j 1m!G~2 j 1c!

G~22 j 21!G~11 j 1m!G~21 j 1c! D sinp~ j 2m!sinp~ j 2c!

sinp~2 j 11!sinp~m1c!G , ~50!

b52 iei (m2c)p
sinp~ j 2m!sinp~ j 2c!

sinp~2 j 11!sinp~m1c! F 1

m2c

G~22 j 21!G~11 j 2m!G~11 j 2c!

G~2 j 11!G~2 j 2m!G~2 j 2c!

1~m2c!
G~2 j 11!G~2 j 1m!G~2 j 1c!

G~22 j 21!G~11 j 1m!G~21 j 1c!G . ~51!

D. Dispersion relation

The dispersion relation is computed as before, using cospk5Re(aei(m2c)p),

cospk5
cosp~m2c!1cosp~2 j 11!cosp~m1c!

sinp~2 j 11!sinp~m1c!
. ~52!

If we denote

m15m1c, m25m2c, ~53!

thenE5(m2c)25m2
2 , and we find

E~k!5m2
2 5

1

p2 @cos21~cospk sinp~2 j 11!sinpm12cosp~2 j 11!cospm1!#2. ~54!

The band structure could be explained through the projective representations of so(2,2
0,um1cu< 1

2 and 2 1
2, j <2 1

4. Again, nonunitary representations give the energy bands w
unitary representations correspond to energy gaps.

The group velocity for this potential is

V~ j ,m,c!5
]E

]k
5

2m2

sinpm2
@sin2~2p j !2cos2 pm12cos2 pm2

12 cospm2 cospm1 cos 2p j #1/2. ~55!

The behavior is shown in Fig. 7 for selected values ofj andm1c given by the dashed lines in Fig
6. The effective massM* ( j ,m,c) is given by

1

M*
5

]2E

]k2 52m2p@cotpm22cos 2p j cospm1 cscpm2#12 csc2 pm2~12m2p cotpm2!

3~sin2 2p j 2cos2 pm12cos2 pm212 cospm2 cospm1 cos 2p j !. ~56!

E. Limiting cases

There are three cases where the extended Scarf potential reduces to the Scarf case:~i! When
2 j 115 1

2, the potential becomes the Scarf potential and the transfer matrix is equivalent to
~24!–~25!. ~ii ! Whenm1c5 1

2, Eq. ~38! reduces to the potential
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~2 j 11!22 1
4

cos2 u
~57!

and the transfer matrix is consistent with the results of Sec. II E.~iii ! When um1cu52 j 11, the
Hamiltonian reduces to the Scarf potential with twice the period.

Of the three limiting cases, it is case~ii ! which provides something new. To compare to t
Scarf results, we let 2j 115 j̃ 1 1

2, so that the potential~57! becomesj̃ ( j̃ 11)/sin2 x. For the full
complementary series21/2, j <0, we have21/2, j̃ <1/2 which corresponds to potentia
g/sin2 x with 21/4,g,3/4. From~47! we find that the energy bands are given by

2n2 j̃ <m2c<2n111 j̃ , ~58!

2n112 j̃ <m2c<2n121 j̃ .

This is precisely the band structure obtained in Eqs.~18!, ~21!–~22!, but now extended to positive
coupling constants, 0<g,3/4, while using the same complementary series. This agrees with
more recent observation that the Scarf potential admits band structure for ranges of the s
which are positive.9 It also exemplifies the fact that a dynamical symmetry does not necess
exhaust all possible regimes of band structure, and that other realizations might provide add
regions. In principle we can extend our analysis of the generalized Scarf potential tog1 ,g2.0 as
well, but we do not do so here.

IV. CONCLUSIONS

We have shown that dynamical symmetry techniques can be applied to Hamiltonians
periodic potentials, and band structure can arise naturally from representation theory. This
long-standing gap in the algebraic approach to quantum systems. We have constructed dy
symmetry Hamiltonians in so(2,1) and so(2,2) which can be expressed as Schro¨dinger operators
with periodic potentials. Using projective representations motivated by Bloch’s theorem, we
seen that the complementary series of so(2,1) and so(2,2)~and theirnonunitaryrepresentations!

FIG. 7. Group velocity for the three cases shown in Fig. 6. Forj 521/4 andum1cu51/2, one has free motion.
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are needed to explain band structure, while the discrete representations are important fo
edges. As far as we know, this is the first application of the su(1,1) complementary serie
physical problem. It now seems reasonable to loosely associate the three series of pro
representations, discrete, principal and complementary, with the quantum problems of
states, scattering states and energy bands.

Using our dynamical symmetries, Hamiltonians such as Scarf’s and its extension c
reduced to quadratic forms of the Cartan subalgebra generators, such asH5Jz

2 , which are readily
solved. We are then able to derive not only the band structure, but the dispersion relatio
transfer matrix as well. It would be interesting to develop higher dimensional periodic Ham
nians connected to representations ofu(n,m) or so(n,m). In this case, the inclusion of additiona
discrete symmetries using point groups would be possible, and extensions to nondynamica
metry problems could be pursued.
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APPENDIX A: REPRESENTATIONS OF so „2,1…

First, let us recall the presentation of so(3). The algebra can be realized as differenti
operators on the spherex21y21z251. The representations are labeled by (j ,m) where j is any
non-negative half integer and2 j <m< j .

The so(2,1) algebra can be realized as differential operators on a hyperboloid2x22y21z2

51. The unitary representations are12

~1! The principal seriesj 52 1
21 ir,r.0,m50,61,... orm56 1

2,6
3
2,... .

~2! The complementary series2 1
2, j ,0,m50,61,... .

~3! The discrete seriesD j
1 , where j is a negative integer or half-integer andm52 j ,2 j

11,... .
~4! The discrete seriesD j

2 , where j is a negative integer or half-integer andm5 j , j 21,... .
A more general form of the representations of the algebra are the projective represent
The projective unitary representations of so(2,1) are13

~5! The principal seriesj 52 1
21 ir,r.0, 0<m0,1,m5m06n,n50,1,2,... .

~6! The complementary series2 1
2, j ,0, 0<m0,1,,m0(m021). j ( j 11)>2 1

4, m5m06n,n
50,1,... .

~7! The discrete seriesD j
1 , j ,0, m52 j ,2 j 11, . . . .

~8! The discrete seriesD j
2 , j ,0, m5 j , j 21, . . . .

Since we find that the nonunitary representations are important for the bands, we review
origin.13 AssumingI 3f 5m0f , with 0<m0,1, and using the commutation relations for so(2,1
we have

I 3I 1 f 5~m011!I 1 f , ~A1!

I 3I 2 f 5~m021!I 2 f , ~A2!

I 2I 1 f 5@2 j ~ j 11!1m0~m011!# f , ~A3!

I 1I 2 f 5@2 j ~ j 11!1m0~m021!# f , ~A4!

whereI 25 j ( j 11) is the Casimir, a constant for a specific representation. Replacingf by I 1
n21f

and I 2
n21f (n51,2,. . . ) in thelast two equations, we get

I 2I 1
n f 5anI 1

n21f , ~A5!
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I 1I 2
n f 5bnI 2

n21f , ~A6!

where an52 j ( j 11)1(m01n21)(m01n) and bn52 j ( j 11)1(m02n)(m02n11). The
above relations imply

i I 1
n11f i25~ I 1

n11f ,I 1
n11f !5an11i I 1

n f i2, ~A7!

i I 2
n11f i25~ I 2

n11f ,I 2
n11f !5bn11i I 2

n f i2. ~A8!

Starting with the initial statef , we can generate the coefficientsak andbk (k.0). Of these
coefficients, onlyb1 can be positive or negative. This distinguishes the unitary and non-un
representations. For instanceb1.0 whenm0(m021). j ( j 11), which gives the complementar
series. When we are in the region2 j ,m0,11 j , b1,0. So if we start with a statef labeled by
( j ,m0) with 2 j ,m0,11 j , we find that all states obtained by operating withI 1 will have norms
of the same sign. These are related to all the statesI 2

n f by a sign change in the norm. Cons
quently, the states of the nonunitary representation can be divided into two families. In
family, the states have norms of the same sign, while the two families are related by a cha
sign in the norm.

APPENDIX B: A FORMULA FOR THE TRANSFER MATRIX

When the potential is symmetric about the center of each period, it is convenient to co
even and odd solutionsg(E,x), u(E,x) such that

g~E,0!51, g8~E,0!50, ~B1!

u~E,0!50, u8~E,0!51. ~B2!

Let us define14

gS E,2
a

2D5gS E,
a

2D5g0~E!; ~B3!

g8S E,2
a

2D52g8S E,
a

2D5g08~E!; ~B4!

uS E,2
a

2D52uS E,
a

2D5u0~E!; ~B5!

u8S E,2
a

2D5u8S E,
a

2D5u08~E!; ~B6!

According to the definition of transfer matrix,15 we can derive a formula as follows:

T5S a b

b* a* D , ~B7!

where

a5e2 ika@~g0u081g08u0!1 i ~u08g08/k2u0g0k!#, ~B8!

b52 ieika~u08g08/k1u0g0k!, ~B9!

andk5AE, a is the period.
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Path integral solution by sum over perturbation series
De-Hone Lina)

Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan

~Received 24 September 1999; accepted for publication 19 January 2000!

A method for calculating the relativistic path integral solution via sum over pertur-
bation series is given. As an application the exact path integral solution of the
relativistic Aharonov–Bohm–Coulomb system is obtained by the method. Differ-
ent from the earlier treatment based on the space–time transformation and infinite
multiple-valued trasformation of Kustaanheimo–Stiefel in order to perform path
integral, the method developed in this contribution involves only the explicit form
of a simple Green’s function and an explicit path integral is avoided. ©2000
American Institute of Physics.@S0022-2488~00!05305-6#

I. INTRODUCTION

Based on the perturbation expansion of path integral formulation, Feynman firstly intro
his famous diagram technique to give a neat interpretation of the terms in the perturbation
and calculate the quantities of quantum electrodynamics order by order.1,2 Over the last five
decades, Feynman’s method has been successfully applied to diverse areas of phys
achieved many accomplishments.3 Nevertheless, the exact result of summing the perturba
series is still the aim of seeking because of many physical effects in which nonperturbative
result plays the pivot’s role. In this contribution, a method for calculating the relativistic
integral is given in which the exact results only involve the computation of some kind of mom
Qn over the Feynman measure and summing them in accordance with the Feynman–Ka
formula. So clear and neat is the method that it provides us not only with an alternative app
but a completely diverse viewpoint for treating physical problems. As an application, we app
formula to calculate the path integral solution of the relativistic Aharonov–Bohm–Coulomb~A-
B-C! system. It turns out that the method presented in this paper is neat due to the avoida
space–time and Kustaanheimo–Stiefel~K-S! transformation in directly performing path integral4

The A-B-C case can serve as the prototype for the treatment of arbitrary problems via sum
the perturbation series.

II. PATH INTEGRAL SOLUTION BY SUMMING THE PERTURBATION SERIES

The starting point is the path integral representation for the Green’s function of a relati
particle in external electromagnetic fields4–6

G~xb ,xa ;E!5
i\

2mcE0

`

dSE Dr~l!F@r~l!#E D Dx~l!exp$2AE@x,ẋ#/\%r~0!, ~2.1!

with the action

AE@x,ẋ#5E
la

lb
dlF m

2r~l!
ẋ2~l!2 i ~e/c!A~x!• ẋ(l)2r~l!

~E2V~x!!2

2mc2 1r~l!
mc2

2 G , ~2.2!

whereS is defined as

a!Electronic mail: d793314@phys.nthu.edu.tw
27230022-2488/2000/41(5)/2723/9/$17.00 © 2000 American Institute of Physics
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S5E
la

lb
dlr~l!, ~2.3!

in which r(l) is an arbitrary dimensionless fluctuating scale variable,r(0) is the terminal point
of the functionr(l), and F@r(l)# is some convenient gauge-fixing functional.4–6 The only
condition onF@r(l)# is that

E Dr~l!F@r~l!#51. ~2.4!

\/mc is the well-known Compton wave length of a particle of massm, A(x) andV(x) stand for
the vector and scalar potential of the systems, respectively.E is the system energy, andx is the
spatial part of the (D11) vectorxm5(x,t).

The functional integral forx in representation of Eq.~2.1! can be interpreted as the expect
tion value of the real functional exp$2 (1/\) *la

lbdlbr(l)V(x(l))% over the measure

K0~xb ,xa ;lb2la!5E D Dx~l!e2 1/\ *
la

lbdl[ ~m/2r(l) ! ẋ
2
(l)2 i ~e/c! A(x)• ẋ(l)2r(l) ~V(x)2/2mc2!] ,

~2.5!

and the entire Green’s function reduces to the following formula

G~xb ,xa ;E!5
i\

2mcE0

`

dSE Dr~l!F@r~l!#e2 ~1/\! *
la

lbdlr(l)E

3K expH 2
1

\ E
la

lb
dlbr~l!V~x~l!!J L r~0!, ~2.6!

in which E5(m2c42E2)/2mc2, b5E/mc2 with the notation^!& standing for the expectation
value of the moment! over the measureK0(xb ,xa ;lb2la). Equation~2.6! forms the basis for
studying the relativistic potential problems by the Feynman–Kac type formula. Although we
chosen the termV(x(l)) to expansion, it has the aesthetic appeal on choosing convenien
according to which the most suitable term is expanded for calculation.

Expanding the potentialV(x) in Eq. ~2.6! into a power series and interchanging the order
integration and summation, we have

G~xb ,xa ;E!5
i\

2mcE0

`

dSE DrF@r#e2 ~1/\! *
la

lbdlr(l)E

3 (
n50

`
~2b/\!

n!

nK S E
la

lb
dlr~l!V~x~l!! D nL r~0!. ~2.7!

We see that the calculation of path integral now turns into the computation of the expec
value of momentsQn (Q5*la

lbdlrV(x)) over the Feynman measure and summing them in

cordance with the Feynman–Kac type formula. Ordering thel as l1,l2,¯,ln,lb and
denotingx(l i)5xi , the perturbation series in Eq.~2.7! explicitly turns into1
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(
n50

`
~2b/\!

n!

nK S E
la

lb
dlr~l!V~x~l!! D nL

5K0~xb ,xa ;lb2la!1 (
n51

` S 2
b

\ D nE
la

lb
dlnE

la

ln
dln21¯E

la

l2
dl1

3E F)
j 50

n

K0~xj 11 ,xj ;l j 112l j !G)
i 51

n

r iV~xi !dxi , ~2.8!

wherel05la , ln115lb , xn115xb , andx05xa .
As an application of Eq.~2.7!, let us apply it to the relativistic A-B-C system in thre

dimensions. In this case, we have the vector and scalar potentials

A~x!52g
2yêx1xêy

x21y2 , V~r !52
e2

r
, ~2.9!

whereêx,y stands for the unit vector along thex,y axis, respectively. The perturbative expansi
in Eq. ~2.8! becomes

(
n50

`
~be2/\!

n!

nK S E
la

lb
dlr~l!

1

r D nL
5K0~xb ,xa ;lb2la!1 (

n51

` S be2

\ D nE
la

lb
dlnE

la

ln
dln21¯E

la

l2
dl1

3E F)
j 50

n

K0~xj 11 ,xj ;l j 112l j !G)
i 51

n

r i

dxi

r i
. ~2.10!

The corresponding amplitudeK0 takes the form

K0~xb ,xa ;lb2la!5E D 3xe2 ~1/\! *
la

lbdl[ ~m/2r(l) ! ẋ2(l)2 i ~e/c! A(x)• ẋ(l)2r(l) ~\2/2m!~a2/r 2!] ,

~2.11!

wherea5e2/\c is the fine structure constant. We now chooseF@r#5d@r21# to fix the value of
r(l) to unity. The path integral in Eq.~2.7! becomes

G~xb ,xa ;E!5
i\

2Mc E0

`

dSe2 ~E/\! SH K0~xb ,xa ;S!1 (
n51

` S be2

\ D nE
la

lb
dlnE

la

ln
dln21¯E

la

l2
dl1

3E F)
j 50

n

K0~xj 11 ,xj ;l j 112l j !G)
i 51

n
dxi

r i
J . ~2.12!

We observe that the integration overS is a Laplace transformation. Because of the convolut
property of the Laplace transformation, we obtain

G~xb ,xa ;E!5
i\

2mc
3H G0~xb ,xa ;E!1 (

n51

` S be2

\ D nE F)
j 50

n

G0~xj 11 ,xj ;E!G)
i 51

n
dxi

r i
J ,

~2.13!
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with G0(xb ,xa ;E) is the Laplace transformation of pseudopropagatorK0(xb ,xa ;lb2la). Let’s
first analyze the influence of A-B effect on theG0(xb ,xa ;E). Introducing the azimuthal angle
around the A-B tube

w~x!5arctan~y/x!, ~2.14!

the components of the vector potential can be expressed as

Ai52g] iw~x!. ~2.15!

The associated magnetic field lines are confined to an infinitely thin tube along thez axis:

B352ge3i j ] i] jw~x!54pgd~x'!, ~2.16!

wherex' stands for the transverse vectorx'5(x,y). Note that the derivatives in front ofw(x)
commute everywhere, except at the origin where Stokes’ theorem yields

E d2x~]x]y2]y]x!w~x!5 R dw52p. ~2.17!

The magnetic flux through the tube is defined by the integral

V5E d2xB3 . ~2.18!

This shows that the coupling constantg is related to the magnetic flux by

g5
V

4p
. ~2.19!

InsertingAi52g] iw(x) into the action of Eq.~2.11!, the magnetic interaction takes the form

Amag5 i\b0E
0

S

dlẇ~l!, ~2.20!

wherew(l)5w(x(l)), ẇ5dw/dl, andb0 is the dimensionless number

b052
2eg

\c
. ~2.21!

The minus sign is a matter of convention. Since the particle orbits are present at all times
worldlines in space–time can be considered as being closed at infinity, and the integral

k5
1

2p E
0

S

dlẇ~l!, ~2.22!

is the topological invariant with integer values of the winding numberk. The magnetic interaction
is, therefore, purely topological, its value being

Amag5 i\b02kp. ~2.23!

The influence of A-B effect in the Green’s functionG0(xb ,xa ;E) is as follows. In the lacking of
A-B effect, the Green’s function

G0~xj 11 ,xj ;E!5
m

\~r j 11r j !
1/2(

l 50

`

(
k52 l

l

gl
(0)~r j 11 ,r j ;E!Ylk~ x̂j 11!Ylk* ~ x̂j !, ~2.24!
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where Ylk( x̂) is the three-dimensional spherical harmonicsYlk( x̂) and thegl
(0) is the radial

Green’s function of a particle moving in a centrifugal potential given by7,8

E
0

` dS

S
e2 ~E/\! Se2m(r j 11

2
1r j

2)/2\SI A( l 11/2)22a2S m

\

r j 11r j

S D . ~2.25!

The notationI denotes the modified Bessel function. With the following formulas@pp. 166, 210,
and 212, Ref. 9#

5
Pn

m(x)5
(11x)m/2(12x)2m/2

G(12m)
FS 2n,11n;12m;

12x

2 D
Pn

(a,b)(x)5
G(11n1a)

n!G(11a)
FS 2n,a1b1n11;a11;

12x

2 D
G(11n)

G(11n2 l )
Pn

(2 l ,l )(x)5
G(11n1 l )

G(11n) S x21

2 D l

Pn2 l
( l ,l )(x)

, ~2.26!

wherePn
m(x), Pn

(a,b)(x) are the associated Legendre polynomial and Jacobi function andF the
hypergeometric function, it is not difficult to prove the following result:

Pl
k~cosu!5~21!k

G~11k1 l !

G~11 l !
~cosu/2 sinu/2!kPl 2k

(k,k)~cosu!. ~2.27!

The angular part of Eq.~2.24! turns into

(
k52 l

l

Ylk~ x̂j 11!Ylk* ~ x̂j !5 (
k52 l

l
2l 11

4p

G~11 l 2k!

G~11 l 1k!
Pl

k~cosu j 11!Pl
k~cosu j !e

ik(w j 112w j )

5 (
k52 l

l F2l 11

4p

G~11 l 2k!G~11 l 1k!

G2~11 l ! G
3~cosu j 11/2 cosu j /2 sinu j 11/2 sinu j /2!k

3Pl 2k
(k,k)~cosu j 11!Pl 2k

(k,k)~cosu j !e
ik(w j 112w j ). ~2.28!

To go further, let us change the variablel by definingl 2k5q into q. It is easily to find that the
Green’s function of Eq.~2.24! becomes

G0~xj 11 ,xj ;E!5
m

\~r j 11r j !
1/2 (

q50

`

(
k52`

`

gq1k
(0) ~r j 11 ,r j ;E!

3F2~q1k!11

4p

G~11q!G~11q12k!

G2~11q1k! Geik(w j 112w j )

3~cosu j 11/2 cosu j /2 sinu j 11/2 sinu j /2!kPq
(k,k)

3~cosu j 11!Pq
(k,k)~cosu j !, ~2.29!

with gq1k
(0) being the radial Green’s function

E
0

` dS

S
e2 ~E/\! Se2m(r j 11

2
1r j

2)/2\SI A(q1k11/2)22a2S m

\

r j 11r j

S D . ~2.30!

Let us invoke the Poisson’s summation formula@p. 469, Ref. 9#
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(
k52`

`

f ~k!5E
2`

`

dy (
n52`

`

e2pnyif ~y!. ~2.31!

The entire Green’s functionG0(xb ,xa ;E) containing the A-B effect becomes

G0~xj 11 ,xj ;E!5
m

\~r j 11r j !
1/2 (

q50

` E dz (
k52`

`

gq1z
(0) ~r j 11 ,r j ;E!

3F2~q1z!11

4p

G~11q!G~11q12z!

G2~11q1z! Gei (z2b0)(w j 1112kp2w j )

3~cosu j 11/2 cosu j /2 sinu j 11/2 sinu j /2!z

3Pq
(z,z)~cosu j 11!Pq

(z,z)~cosu j !. ~2.32!

The sum over allk in Eq. ~2.32! forcesz to be equal tob0 modulo an arbitrary integral numbe
leading to

G0~xj 11 ,xj ;E!5
m

\~r j 11r j !
1/2 (

q50

`

(
k52`

`

gq1uk1b0u
(0) ~r j 11 ,r j ;E!

3F2~q1uk1b0u!11

4p

G~11q!G~11q12uk1b0u!
G2~11q1uk1b0u! Geik(w j 112w j )

3~cosu j 11/2 cosu j /2 sinu j 11/2 sinu j /2! uk1b0u

3Pq
(uk1b0u,uk1b0u)

~cosu j 11!Pq
(uk1b0u,uk1b0u)

~cosu j !, ~2.33!

with

gq1uk1b0u
(0) ~r j 11 ,r j ;E!5E

0

` dS

S
e2 ~E/\! Se2m(r j 11

2
1r j

2)/2\SIA[2(q1uk1b0u)11]224a2/2S m

\

r j 11r j

S D .

~2.34!

Using the orthogonality relations of Jacobi polynomials@p. 212, Ref. 9#,

E
21

21

dx~12x!a~11x!bPn
(a,b)~x!Pm

(a,b)~x!5
2a1b11

a1b12n11

G~a1n11!G~b1n11!

n!G~a1b1n11!
dm,n ,

~2.35!

we perform the intermediate angular part of Eq.~2.13!, it yields

G~xb ,xa ;E!5
i\

2mc (
q50

`

(
k52`

`

Gq,uk1b0u~r b ,r a ;E!

3F2~q1uk1b0u!11

4p

G~11q!G~11q12uk1b0u!
G2~11q1uk1b0u! Geik(wb2wa)

3~cosub/2 cosua/2 sinub/2 sinua/2! uk1b0u

3Pq
(uk1b0u,uk1b0u)

~cosub!Pq
(uk1b0u,uk1b0u)

~cosua!. ~2.36!

The pure radial amplitudeGn,uk1b0u(r b ,r a ;E) has the form
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Gq,uk1b0u~r b ,r a ;E!5
m

\

1

~r br a!1/2 (
n50

` S mbe2

\2 D n

gq1uk1b0u
(n) ~r b ,r a ;E!, ~2.37!

with gq1uk1b0u
(n) given by

gq1uk1b0u
(n) ~r b ,r a ;E!5E

0

`

¯E
0

`F)
j 50

n

gq1uk1b0u
(0) ~r j 11 ,r j ;E!G)

i 51

n

dri . ~2.38!

To obtain the explicit result ofgq1uk1b0u
(n) , we note that10

E
0

` dS

S
e2 ~E/\! Se2m(r b

2
1r a

2)/2\SI rS m

\

r br a

S D52E
0

`

dz
1

sinhz
e2k(r b1r a)cothzI 2rS 2kAr br a

sinhz D
~2.39!

with k5Am2c42E2/\c. With the help of the integral formula9

E
0

`

drre2r 2/aI n~§r !I n~jr !5
a

2
ea(j21§2)/4I n~aj§/2!, ~2.40!

we obtain the result

gq1uk1b0u
(1) ~r b ,r a ;E!5E

0

`

gq1uk1b0u
(0) ~r b ,r ;E!gq1uk1b0u

(0) ~r ,r a ;E!dr5
22

k E
0

`

zh~z!dz, ~2.41!

where the functionh(z) is defined as

h~z!5
1

sinhz
e2k(r b1r a)cothzIA[2(q1uk1b0u)11]224a2S 2kAr br a

sinhz D . ~2.42!

The expression forgq1uk1b0u
(n) (r b ,r a ;E) can be obtained by induction with respect ton, and is

given by

gq1uk1b0u
(n) ~r b ,r a ;E!5

2n11

n!

1

kn E
0

`

znh~z!dz. ~2.43!

Inserting the expression in Eq.~2.37!, we obtain

Gq,uk1b0u~r b ,r a ;E!5
m

\

2

~r br a!1/2E
0

`

dze(2mbe2/\2k)z

3
1

sinhz
e2k(r b1r a)cothzIA[2(q1uk1b0u)11]224a2S 2kAr br a

sinhz D . ~2.44!

The integration can be done by the formula~e.g., Ch. 9, Ref. 7!

E
0

`

dy
e2ny

sinhy
expF2

t

2
~za1zb!cothyG I mS tAzbza

sinhy D 5
G~~11m!/22n!

tAzbzaG~m11!
Wn,m/2~ tzb!M n,m/2~ tza!,

~2.45!

whereMm,n andWm,n are the Whittaker functions and the range of validity is given by

zb.za.0,
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Re@~11m!/22n#.0,

Re~ t !.0,uargtu,p.

We complete the integration and obtain

Gq,uk1b0u~r b ,r a ;E!5
1

~r br a!

mc

Am2c42E2

3
G~1/21A@2~q1uk1b0u!11#224a2/22Ea/Am2c42E2!

G~11A@2~q1uk1b0u!11#224a2!

3WEa/Am2c42E2,A[2(q1uk1b0u)11]224a2/2S 2

\c
Am2c42E2r bD

3MEa/Am2c42E2,A[2(q1uk1b0u)11]224a2/2S 2

\c
Am2c42E2r aD . ~2.46!

The entire solution of path integral becomes

G~xb ,xa ;E!5
i\

2mc

mc

4pr br aAm2c42E2

3 (
q50

`

(
k52`

` H G~1/21A@2~q1uk1b0u!11#224a2/22Ea/Am2c42E2!

G~11A@2~q1uk1b0u!11#224a2!
J

3WEa/Am2c42E2,A[2(q1uk1b0u)11]224a2/2S 2

\c
Am2c42E2r bD

3MEa/Am2c42E2,A[2(q1uk1b0u)11]224a2/2S 2

\c
Am2c42E2r aD

3H G~11q!G~11q12uk1b0u!@2~q1uk1b0u!11#

G2~11q1uk1b0u! J
3eik(wb2wa)~cosub/2 cosua/2 sinub/2 sinua/2! uk1b0u

3Pq
(uk1b0u,uk1b0u)

~cosub!Pq
(uk1b0u,uk1b0u)

~cosua!. ~2.47!

This result is given in Ref. 4, and p. 304, Ref. 8 in the first time where the same result must i
the complicate space–time and multivalued K-S transformations to perform the path integ
present paper, this procedure is avoided and can be applied to arbitrary potential problem

III. CONCLUDING REMARKS

In the paper, a method for calculating the relativistic path integral involved essentiall
computation of the expectation value of convenient momentsQn, such asQ5*la

lbdlr(l)V(x) if

we expands the term in action potential term, over the Feynman measure and summing t
accordance with the Feynman–Kac type formula is given. As a realization, the path in
solution of relativistic A-B-C system is given. Different from the former treatment in Ref
where the same problem must invoke the complicated space–time and the multivalued K-S
formations to perform path integral, the merits of the method used in the paper is that it inv
only the explicit form of some known Green’s function and explicit path integral is avoided.
A-B-C system can serve as the prototype for the treatment of arbitrary problems via summi
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perturbation series. It is our hope that our studies would help to achieve the ultimate g
obtaining a comprehensive and complete solutions in perturbation series based on the path
of quantum mechanics and quantum field theory, including quantum gravity and cosmolog
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Absence of singular spectrum for Schro ¨ dinger operators
with anisotropic potentials and magnetic fields

Marius Măntoiua) and Serge Richardb)

Department of Physics, University of Geneva, 24 Quai E. Ansermet,
1211 Gene`ve, Switzerland

~Received 28 September 1999; accepted for publication 31 January 2000!

We study magnetic Schro¨dinger operators of the formH5(P2a)21V in
L2(Rm1p), with m>2. We get a limiting absorption principle and the absence of
singular spectrum under rather mild and especially anisotropic hypothesis. The
magnetic fieldB and the potentialV will be connected by someRm-conditions, but
in theRp-variable there will be almost no constraints. Ifm52 andp50, our results
contrast with the known fact thatP21V always has bound states ifV is negative.
© 2000 American Institute of Physics.@S0022-2488~00!05105-7#

I. INTRODUCTION

We shall study spectral properties of the magnetic Schro¨dinger operatorH5(P2a)21V
acting in the Hilbert spaceH5L2(Rn), wherea:Rn→Rn is the vector potential generating th
magnetic fieldBjk5] jak2]kaj andV is a multiplication operator. It is an established fact that
magnetic Hamiltonians have specific spectral properties distinguishing them from the usual¨-
dinger operators~see, for example, Refs. 1 and 2!. We intend to present some new results in th
direction.

Let us begin with the two-dimensional case. It is well known3 that if V is not identically zero,
is small at infinity in a suitable sense, and if*R2V(x) dx<0, then the operatorP21bV has bound
states however smallb.0 may be. We shall show that a magnetic field can change this pic
drastically. For potentialsV satisfying some mild conditions, there exists a rather rich clas
magnetic fields such that (P2a)21bV is purely absolutely continuous and unitary equivalent
(P2a)2. We shall show the absence of singular spectrum even forV’s that do not decay a
infinity. Roughly, it will be enough forV to have radial limits, possibly direction dependent, a
to converge towards them with a rate which is dictated by the magnetic field. This aniso
phenomenon has been put into evidence in Ref. 4 for the Schro¨dinger operatorP21V in dimen-
sion n>3, the convergence rate towards the radial limits being of the formc/r 2, with a suitable
constantc. In the presence of a magnetic field this becomes possible in dimension two.

A new effect appears in dimensionn greater than 2. Let us decomposeRn as a direct sum
Y% Z with dimY[m>2. Suppose that the magnetic field has a two-block decomposition:Bjk

50 if j labels a variable inY and k a variable inZ. Some mild conditions on theY-magnetic
components and some constraints onV in theY-variable are enough to get absolutely continuo
spectrum for the corresponding operator (P2a)21V. The Z-components of the magnetic fiel
and theZ-variable dependence of the potential are essentially unrestricted~we impose only
smoothness assumptions for convenience!. In Ref. 4 the same type of high-dimension results w
obtained for the Schro¨dinger HamiltonianHb5P21bV. If V behaves well in a subspace ofRn of
dimensionof at least 3, there will be no singular spectrum forb small enough even ifV acts very
badly in the remaining variables. It seems that good properties of the potential in three dime
are enough to allow the particle to propagate to infinity. We shall show now that, in the pre

a!On leave of absence from the Institute of Mathematics of the Romanian Academy. Electronic
marius.mantoiu@physics.unige.ch

b!Electronic mail: richard@kalymnos.unige.ch
27320022-2488/2000/41(5)/2732/9/$17.00 © 2000 American Institute of Physics
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of a Y-well-behaved magnetic field,the critical dimension is reduced to 2. And this is compatible
with very wild Z-components of the magnetic field.

The results we described are stated in a precise form form52 andn arbitrary in Sec. II and
proved in Sec. IV. In Sec. V we comment briefly on some extensions form>3. The abstract
method used in the proofs is exposed in Sec. III. It originates in Ref. 4 and the~stronger!
form-version we need here is proved in Ref. 5 in which perturbations of convolution operator
partial differential operators with variable coefficients are treated as applications. It may be
sidered a generalization of the classical Kato–Putnam theorem, also relying on the positivity
commutator betweenH and a supplementary self-adjoint operatorA. It is no longer asked thatA
be H-bounded. Since it is close in spirit~and in proof! to the Mourre theory, which appear
occasionally under the name ‘‘the method of the conjugate operator,’’ we called it ‘‘the meth
the weakly conjugate operator.’’ It lacks the main qualities of Mourre’s method~localization in
energy, the compact operator!, but it relies on a weaker positivity assumption:i @H, A#.0 and this
is crucial for the type of results we obtain. In particular, remark that all our resolvent estimate
global, i.e., also valid at ‘‘threshold points.’’

II. THE MAIN RESULTS

Let us consider the decompositionRn5Y% Z with dimY[m>2 and the Hilbert spaceH
5L2(Rn), with scalar product̂•, •& and normi•i . For j 51, . . . ,n, Qj will be the operator of
multiplication by the variablexj and Pj the self-adjoint extension of2 i (]/]xj ) defined on
C0

`(Rn)[D. We shall write freelyx5(y,z), with yPY, zPZ, andQ5(QY,QZ).
We consider a self-adjoint operatorH in H, G 2 its domain andG 1 its form-domain with the

corresponding graph-norms; both are Hilbert spaces. IdentifyingH with its topological dual and
settingG 2s the dual ofG s(s51,2) with its canonical structure of Hilbert space, we get conti
ous, dense embeddingsG 2

�G 1
�H�G 21

�G 22. Obviously, H extends to an element o
B(G 1,G 21), the Banach space of all linear, bounded operators:G 1→G 21.

We shall introduce now our magnetic Hamiltonians. We look to Ref. 1 or 2 for the proo
the assertions and for further details. Note, however, that we work under various smoo
assumptions which are not essential, but which simplify our arguments. So letaPC`(Rn,Rn) be
the vector potential andVPC`(Rn,R)ùL`(Rn,R) the electromagnetic potential. The magne
field is given byBjk5] jak2]kaj , j ,k51, . . . ,n. We denote byP j the magnetic momentum
which is the closure ofPj2aj (Q) defined onD. The differential operator

H5H01V5(
j 51

n

P j
21V~Q!

is essentially self-adjoint onD and its form-domain isG 15$ f PHuP j f PH, j 51, . . . ,n%. Fur-
ther on, we shall rely heavily on the following lemma.

Lemma II.1: For every fPD and j,k51, . . . ,n one has

^ f ,~P j
21Pk

2! f &>6^ f ,Bjk f &.

The two alternative signs will come into play frequently in the sequel.
Let us assume that the magnetic fieldB has a split form:Bjk50 if j P$1, . . . ,m% and k

P$m11, . . . ,n%. By the cocycle condition] iBjk1] jBki1]kBi j 50 it follows that the
Y-components ofB depend only ony and theZ-components only onz. To implement this, we
shall suppose thata has the forma5(aY,aZ), with aYPC`(Y,Y) andaZPC`(Z,Z). In conse-
quence,H05H0

Y
^ 111^ H0

Z , whereH0
Y5( j 51

m P j
2 acts inH Y5L2(Y) andH0

Z5( j 5m11
n P j

2 acts
in H Z5L2(Z).

We focus now on the special casem52 andn arbitrary. The general case will be discussed
Sec. V. The magnetic componentB1252B21 will be written simply BY; if hPC`(Rn), we set
(DYh)(y,z)5y•(¹yh)(y,z)5( j 51

2 yj (] jh)(y,z). We state our main result:
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Theorem II.2: Assume that the following conditions are verified:

~i! uBY(y)u< c/(11uyu11h), whereh.0.
~ii ! DYVPL`(Rn).
~iii ! There exist positive constantsg, «, d with (221/g).«.0 and d.0, so that one of the

inequalities

G6~y,z![S22
1

g
2«D@6BY~y!#2~DYV!~y,z!2~g1d!uyu2~BY!2~y!>0 ~1!

is satisfied. Let us denote simply by G the function verifying one of the above inequa.
~iv! There are positive constants c1 , c2 , c3 such that

uDY~DYV!~y,z!u1uyu2~DYBY!2~y!<c1@6BY~y!#1c2G~y,z!1c3uyu2~BY!2~y!.

Then, we have the following.

~a! i(H2l7 in)21iB(A,A* )<c, uniformly in lPR, n.0.
~b! All the elements of B(A* ,H) are (globally) H-smooth operators.
~c! H has only purely absolutely continuous spectrum.

Remark II.3:In their greatest generality, the spacesA andA* which appear in the limiting
absorption principle will be constructed in Sec. IV. But under one not too restrictive extra c
tion, we can give a very transparent version. Assume thatBY(y).0 for all yPR2. Then we can
defineF(y)5max$BY(y)21/2,uyu% and setF the completion ofD with respect to the normi f iF
5iF(Q) f i . In the points~a! and~b! of Theorem II.2, the spaceA can be replaced byF andA*
by its dualF* . It follows in particular that, under the stated hypothesis onBY, the operator of
multiplication by the functionL is H-smooth if one hasuL(y,z)u<c min $BY(y)1/2,1/uyu %. Similar
results are true ifBY(y),0 for all yPR2.

We give now a corollary including a result on the existence and completeness of
suitable wave operators. There will be more restrictive conditions on the magnetic fieldBY, but we
get rid of the hypothesis on the smoothness and on theY-derivatives of the potential. The proof o
the corollary is given at the end of Sec. IV.

Corollary II.4: Assume that the Y-component of the magnetic field satisfies

~i! 0,BY(y)< c/(11uyu2), for a subunitary constant c, and
~ii ! uyu2(DYBY)2(y)<c8BY(y), for a finite constant c8.

Suppose that the Borel function V has radial limits in the directions contained in Y: for anv
PY,uvu51 and any zPZ there exists Vo(v,z)5 limr→`V(rv,z). Assume in addition that

uV~rv,z!2Vo~v,z!u<bBY~rv!.

Then, forb small enough, the operator H5H01V is purely absolutely continuous and unita
equivalent to H(o)5H01Vo through the wave operators

V65s2 lim
t→6`

eitHe2 i tH (o).

Remark II.5:In both Theorem II.2 and Corollary II.4 very few constraints were imposed in
subspaceZ. The smoothness condition left apart,Bjk ( j ,k53, . . . ,n) are completely arbitrary;
they may even grow at infinity. To have some insight into the wayV may behave, let us make th
very particular assumption that it factorizes:V(y,z)5VY(y)•VZ(z). The functionVZ must only
be smooth and bounded. The hypothesis essentially connectVY to BY; VZ comes into play only
through itsL`-norm.

Remark II.6: If n5m52 ~henceZ5$0%!, the results contrast with the zero magnetic fie
case. Let us work, for instance, in the framework of the Corollary II.4 We shall neglec
Y-anisotropy which is permitted and setVo50. Choose a functionV which is negative and deca
at infinity at least asuyu22. It is known that the operatorP21V will surely have bound states. Bu
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if iViL` is small enough, there will always exist a magnetic field such that the associated H
tonian (P2a)21V is purely absolutely continuous and unitarily equivalent to (P2a)2.

Remark II.7: Assume thatBY behaves asuyu2b at infinity. It is easy to see that, forb
P(1,2), the magnetic part of the lhs of the inequality~1! is negative. Hence, in order to verify~1!,
the functionV must be repulsive with respect to theY-variable. Let us stick now to the casen
52. It is known that forb<1, special spectral phenomena are possible forV50. In some
situations, dense pure point spectrum appears in an interval@0, d# or on the entire positive rea
axis.6 If the magnetic field is constant, the spectrum is composed of equidistant, infinitely d
erated eigenvalues. ForB diverging at infinity there is no essential spectrum. However, we m
suspect that by introducing a strongly repulsive potential one restores purely absolutely cont
spectrum. This is shown to be true in some situations~see Ref. 7 and references cited therein!, but
it seems that there is still some work to do in this direction. A short glimpse at the formul~1!
shows that forb,1 the functionV must be~negative and! unbounded at infinity. We were no
able to adapt our method to this kind of situation.

III. THE METHOD OF THE WEAKLY CONJUGATE OPERATOR

Let H be a self-adjoint operator in the Hilbert spaceH, G 1 its form-domain andG 21 the
topological dual ofG 1. We consider a unitary group$Wt5eitAutPR% in H and we assume that fo
all t, Wt leavesG 1 invariant. It is a standard result that$WtuG 1% tPR is a C0-group in G 1 and
$(W2tuG 1)* % tPR aC0-group inG 21 ~see Ref. 8, Proposition 6.3.1 for instance!. We will use for all
of them the simple notationWt . By D(A;G 1) we denote the domain of the generator of t
C0-group acting inG 1.

Definition III.1: We say that HPC1(A;G 1,G 21) if the map

R{t→W2tHWtPB~G 1,G 21!

is strongly C1 or, equivalently, if the sesquilinear form

D~A;G 1!3D~A;G 1!{~ f ,g!→ i ^H f ,Ag&2 i ^A f ,Hg&PC

is continuous when we consider on D(A;G 1) the topology ofG 1.
The equivalence follows easily from Ref. 8, Proposition 5.1.2~b!.

Let us denote byT the strong derivative (d/dt) (W2tHWt)u t50 or, equivalently, the extension
of the sesquilinear form to an element ofB(G 1,G 21). One might think ofT as a rigorous form of
the commutatori @H, A#.

Definition III.2: The self-adjoint operator A is said to be weakly conjugate to H if
PC1(A;G 1,G 21) and T.0 (i.e., ^ f ,T f&.0 for all f PG 1\$0%).

Let T be the completion ofG 1 with respect to the normi f iT 5^ f ,T f&1/2 andT * its topo-
logical dual~T extends to an isometric operator:T→T* !. T* can be identified with the completio
of TG 1 with respect to the normigiT* 5^g,T21g&1/2. T and T* are Hilbert spaces which ar
generally not comparable withH. However, sinceG 1

�T and T *�G 21, it makes sense to
assume that$Wt% tPR restricts to aC0-group inT* or, equivalently, that it extends to aC0-group
in T. Under this assumption, we denote byA5D(A;T* ) the domain of the generator of th
C0-group inT* endowed with the graph-norm. We are now in a position to state the abstract
~see Ref. 5!:

Theorem III.3: Let H be a self-adjoint operator inH having a spectral gap (i.e., a real poin
outside its spectrum). Assume that A is weakly conjugate to H and that T5 i @H,A#
PC1(A;T,T* ). Then we have the following.

~a! i(H2l7 in)21iB(A,A* )<c, uniformly in lPR,n.0.
~b! Any operator L belonging to B(A* ,H) is H-smooth.
~c! H has purely absolutely continuous spectrum.

Notice thatB(G 21,G 1),B(A,A* ); this gives sense to~a!.
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By combining the point~b! with standard results on smooth operators9 and by taking into
account the embeddingsG 1

�A* andA�G 21, we can state the next result on the existence
completeness of the wave operators:

Corollary III.4: Under the hypothesis of Theorem III.3 we assume, in addition, that H is lo
semibounded. Let U be a symetric operator inH which extends to an element of B(A* ,A). Then
there existsbo.0 such that for anybP(2bo ,bo) the operator Hb5H1bU is well defined in
form-sense, self-adjoint, and is unitary equivalent to H through the wave operatorsV65s
2 limt→6` eitH be2 i tH .

IV. PROOFS

Proof of Theorem II.2:The proof consists in verifying the hypothesis in Theorem III.3 a
will be divided into several parts.

~i! The weakly conjugate operatorA is introduced through its unitary group inH given by
~see also Ref. 10!

~Wtf !~y,z!5et exp„2 iF t~y!…f ~ety,z!

with

F t~y!5E
1

etS (
j 51

2

yjaj~sy!D ds.

In relation with the splittingH5L2(R2) ^ L2(Rn22) we haveWt5Wt
Y

^ 1, with an obvious mean-
ing for Wt

Y . It is easy to check that$Wt% tPR is indeed an evolution group inH. Its generatorA is
essentially self-adjoint onD and for f PD one has

A f5
1

2 (
j 51

2

~P jQj1QjP j ! f .

~ii ! Let us verify that for alltPR the operatorWt leaves invariant the magnetic Sobolev spa
G 15$ f PHuP j f PH, j 51, . . . ,n%. A straightforward calculation onD shows that forj 51,2

W2tP jWt5etS P j2~21!kE
e2t

1

sQkB
Y~sQY! dsD ~k5 j 11 mod 2!.

However, by hypothesis~i!, the second term defines a bounded operators inH, henceW2tP jWt

extends to a bounded operator:G 1→H. For j >3 one hasW2tP jWt5P j . All these imply the
invariance ofG 1 underWt .

~iii ! We verify now the second condition in Definition III.1. Because of our smoothn
assumptions, one gets easily on the invariant domainD the formula

i @H, A#52H0
Y

^ 12DYV1$BY~Q1P22Q2P1!1~P2Q12P1Q2!BY%. ~2!

By applying to the last term, which we denote byHc , the Cauchy–Schwarz inequality, and th
formula 2ab< (1/g) a21gb2(g.0), we get forf PD:

u^ f ,Hcf &u<
1

g
^ f ,H0

Y
^ 1 f &1g^ f ,~ uQYuBY!2f &. ~3!

SinceDYV and (uQYuBY)2 are bounded, the required continuity ofi @H, A# is obtained.
~iv! We denote byTPB(G 1,G 21) the continuous extension ofi @H, A# defined initially onD.

Let us show thatT.0. From~2!, ~3!, and Lemma II.1 we obtain onD
                                                                                                                



,

of

d.
or

ove
ption

pose

2737J. Math. Phys., Vol. 41, No. 5, May 2000 Anisotropic magnetic Schrödinger operators

                    
T>«H0
Y

^ 11S 22
1

g
2« D @6BY#2DYV2~g1d!~ uQYuBY!21d~ uQYuBY!2.

By hypothesis~iii ! of the theorem, we obtain the following three inequalities onD, which extend
in form-sense toG 1:

T>«H0
Y

^ 1>6«BY, ~4!

T>G~Q!, ~5!

T>d~ uQYuBY!2. ~6!

Obviously,T>0. However,f PG 1 satisfieŝ f ,H0
Y

^ 1 f &50 if and only if P j f 50 for all index j
corresponding toY. SinceP j is unitary equivalent withPj , by a simple gauge transformation
this implies f 50. Therefore,T.0, henceA is weakly conjugate toH.

~v! Some more calculations on the invariant domainD give

i @T,A#54H0
Y

^ 11DY~DYV!12~ uQYuBY!212Hc

1$DYBY~Q2P12Q1P2!1~P1Q22P2Q1!DYBY%.

By using for the last term the same strategy that gave~3!, we obtain

u^ f ,i @T,A# f &u<c1^ f ,H0
Y

^ 1 f &1c2^ f ,uQYu2$~BY!21~DYBY!2% f &1u^ f ,DY~DYV! f &u.

Then the hypothesis~iv! and the inequalities~4!–~6! show thati @T,A#<cT on D, for a suitable
positive constantc. Let T be the completion ofG 1 with respect to the normi f iT 5^ f ,T f&1/2 and
denote byT* its topological dual. SinceD is dense inT, the preceding step shows thati @T, A#
extends to an operator belonging toB(T,T* ).

~vi! We check now thatWt can be extended to a bounded operator inT. It will be enough to
prove thatiWtf iT<c(t)i f iT for all f PD. One has, by~v!,

iWtf iT
25^ f ,T f&1E

0

t

ds^Wsf ,i @T,A#Wsf &

<i f iT
21cU E

0

t

ds^Wsf ,TWsf &U
5i f iT

21cU E
0

t

ds IWsf I T
2U.

The function (0,t){s→iWsf iT
2PR is bounded~sinceG 1

�T!, hence, by a simple form of the
Gronwall lemma, we obtain the inequalityiWtf iT <ec/2 utui f iT .

~vii ! By duality, we define operators (W2t)* in T* which are restrictions of the elements
the C0-group $Wt% tPR acting in G 21. In this way we automatically get aC0-group in T* . We
finished proving the propertyTPC1(A;T,T* ) and all the conditions in Theorem III.3 are checke
Hence the conclusions of Theorem II.2 are true, where forA we take the domain of the generat
~also denoted byA! of the C0-group $Wt% tPR in T* endowed with the graph-normi f iA
5(i f iT*

2
1iA fiT*

2 )1/2. A* stands for its topological dual. j

The spacesA andA* introduced in the proof are generally quite intricate. We shall pr
now the assertions made in Remark II.3, which give a simple form of the limiting absor
principle. This is contained in the following proposition.

Proposition IV.1: Let us place ourselves in the framework of Theorem II.2 but also sup
that BY(y).0 for all yPY. Let F(y)5max$BY(y)21/2,uyu% and F the completion ofD with
respect to the normi f iF5iF(Q) f i . ThenF is continuously embedded intoA.
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Proof: We need to show that^ f ,T21f &1^A f ,T21A f&<c^ f ,F2(Q) f & for all f PD. To bound
the first term we use~4! and Corollary 1 of Ref. 11 to get^ f ,T21f &< (1/«) ^ f ,(BY)21f &. For the
second one, we writeA5( j 51

2 P jQj1 i1. From the first part of the inequality~4! it follows easily
that P j extends to a bounded operator:H→T* . Then

iA fiT* <
1

A«
(
j 51

2

iQj f i1i f iT* <
2

A«
iuQYu f i1

1

A«
i~BY!21/2f i<ciF~Q! f i ,

and the proof is finished.
j

Proof of Corollary II.4: We may interpretVo as a real function defined onRn5Y% Z, which
is homogeneous of degree 0 inY. ThereforeW2tVo(QY,QZ)Wt5Vo(QY,QZ) and DYVo50.
Theorem II.2 can be applied withV replaced byVo . The lack of regularity ofVo can be easily
overcome using the first condition of Definition III.1 in the point~iii ! of the proof of the Theorem
SinceBY is everywhere strictly positive, we can also apply Proposition IV.1. It follows that
operator of multiplication with (BY)1/2 is globalyH-smooth. Then the result is a consequence
Corollary III.4, or we apply directly the standard Kato’s smoothness theory; see, for example
9. j

V. SOME FURTHER DEVELOPMENTS

The casem>3 is not more difficult than the previous one, apart from the notations. In
some new opportunities are available. We shall state a result and make some brief comm
the changes needed in the proof and on its special features. The setting will be exact
exposed in the beginning of Sec. II, before the statement of Theorem II.2, except that no
assume thatm>3. By Ḣ1

Y we denotethe homogeneous Lebesgue space of order1 in Y, i.e., the
completion ofC0

`(Y) in the homogeneous normi f iḢ
1
Y5iuQYu f iL2(Y) . Its topological dual will be

denoted byḢ21
Y . Both these spaces are incomparable withL2(Y). We setḢ615Ḣ61

Y
^ L2(Z).

Theorem V.1: Assume that

~i! uBjk(y)u< c/(11yj
21yk

2)1/21h , j ,k51, . . . ,m, h.0.

~ii ! DYV5y•(¹yV)PL`(Rn).
~iii ! There exist constantsg,«,d,a, $a jk% j ,k51, . . . ,m satisfying „22 (1/g) (m21)….«.0, d

.0, aP@0,1#, a jk5ak j , a j j 50, (k51
m ua jku<(12a) for every j<m such that

G~y,z!5S22
1

g
~m21!2«DH (

1<j,k<m
ajkBjk1aSm22

2 D2 1

uyu2J
2DYV2~g1d! (

1<j,k<m
~yj

21yk
2!Bjk

2 >0.

~iv! The functionsuDY(DYV)u and (yj
21yk

2)(DYBjk)2, ( j ,k51, . . . ,m), can be dominated by
linear combinations of G, uyu22, Bpq , and (yp

21yq
2)Bpq

2 (p,q51, . . . ,m).

Then we have the following.

~a! i(H2l7 in)21iB(Ḣ1 ,Ḣ21)<c, uniformly in lPR, n.0.

~b! Any bounded operator L:Ḣ21→H is H-smooth.
~c! H is purely absolutely continuous.

Proof: The proof is very similar to that given for Theorem II.2, so we will just point out so
adaptations. The main new fact is that aside from Lemma II.1, we have a new positivity re

H0
Y>S m22

2 D 2

uQYu22. ~7!
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For zero magnetic field this is the classical Hardy inequality; it stays true in the magnetic ca
Kato’s inequality.

The unitary group is now given by (Wtf )(y,z)5emt/2 exp„2 iF t(y)…f (ety,z) ; f PH, with

F t(y)5*1
et
„( j 51

m yjaj (sy)… ds. The invariance ofG 1 is proved straightforwardly by calculatin
W2tP jWt5et

„P j2*e2t
1

(k51
m sQkBjk(sQ)ds… and by using hypothesis~i!.

Simple calculations performed on the invariant domainD lead to

i @H, A#52H0
Y

^ 12DYV1 (
j ,k51

m

~P jQkBk j1QkBk jP j !,

which can be extended continuously toTPB(G 1,G 21) by using the Cauchy–Schwartz inequali
and hypothesis~i! and ~ii !. The strict positivity ofT is obtained from hypothesis~iii !, which
includes all inequalities connectingH0

Y and a multiplicative operator in a profitable way by maki
appropriate linear combinations. Moreover, we collect the following inequalities@similar to ~4!
and ~6!#: T>«Bjk , j ,k<m, andT>d(1< j ,k<m(Qj

21Qk
2)Bjk

2 .
Analogous calculations onD give

i @T, A#54H0
Y

^ 11DY~DYV!12(
j 51

m S (
k51

m

QkBk jD 2

1 (
j ,k51

m

„2P jQkBk j12QkBk jP j2P jQk~DYBk j!2Qk~DYBk j!P j…,

which can be handled similary as forT. An upper bound can be obtained by using the ab
inequalities and hypothesis~iv!. The remainder of the proof is exactly similar to that for Theor
II.2.

For simplicity, the limiting absorption principle is expressed between spacesḢ1 andḢ21 and
not A andA* . This follows from a calculation similar to the one in Proposition IV.1 and by us
the magnetic Hardy inequality~7!. j

Remark V.2:Remark II.5 has a counterpart here which is easy to formulate, but notice
some extra anisotropy is allowed for the magnetic field insideY. A very simple, relevant example
is as follows: takeY5R3, Z5$0% and setBjk(y)5 cjk /(11yj

21yk
2). Let V be homogeneous o

degree 0, for simplicity. Then, if the constantscjk are not too large, the hypothesis of Theorem V
are fulfilled; in conclusionH is purely absolutely continuous. However,B12 does not decay when
we go to infinity staying close to the third axis and analogously for the other two compone

Remark V.3:In general,global H-smooth operators are not easy to obtain. By the point~b! of
Theorem V.1,uQYu21

^ 1 is H-smooth. In the particular case of the Laplace operator, whic
obtained by takingZ5$0%, B50 andV50, we get a result which was not known for quite a lo
time. We look to Refs. 12 and 13 where, however, more general and precise results are pre
In Ref. 14 the method of the weakly conjugate operator is used to deduce global smooth op
for operators of multiplication by a rather large class of functions in a unified manner.
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Time-dependent Schro ¨ dinger equations having isomorphic
symmetry algebras. I. Classes of interrelated equations
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In this paper, we focus on a general class of Schro¨dinger equations that are time
dependent and quadratic inX and P. We transform Schro¨dinger equations in this
class, via a class of time-dependent mass equations, to a class of solvable time-
dependent oscillator equations. This transformation consists of a unitary transfor-
mation and a change in the ‘‘time’’ variable. We derive mathematical constraints
for the transformation and introduce two examples. ©2000 American Institute of
Physics.@S0022-2488~00!03005-X#

I. INTRODUCTION

Finding analytical solutions to time-dependent Schro¨dinger equations has been a mathemati
problem of considerable interest. Such equations are relevant to the study of dissipative sys
quantum theory. Solutions to the time-dependent Schro¨dinger equation~setting\5m51!

$H2 i ] t%C~x,t !50, ~1!

where the Hamiltonian H is time dependent, describe the evolution of such systems.
Several calculations for a general class of Hamiltonians that are quadratic inx andp have been

studied.1–10 We write the following general form for these Hamiltonians,

H15@11k~ t !#
p2

2
1

1

2
h~ t !~xp1px!1g~ t !p1h~2!~ t !x21h~1!~ t !x1h~0!~ t !, ~2!

wherek, h, g, andh( j ), j 50,1,2, are suitably well-behaved real functions of time. We design
such time-dependent Hamiltonians by TQ.

A subclass of time-dependent Hamiltonians, TM, with ‘‘time-dependent masses’’ is11–24

H25 f ~ t !
p2

2
1 f ~2!~ t !x2, ~3!

where f and f (2) are suitably well-behaved real functions of time. Using Lewis invariants,25,26

analytical solutions have been obtained for some Schro¨dinger equations with this type o
Hamiltonian.20,22 Often, the functionf (t) has the form exp(6Yt), Y a real constant.

A second subclass of time-dependent Hamiltonians, TO, is the time-dependent har
oscillator in one dimension. This has been studied extensively.25–37 Its Hamiltonian is

H35
p2

2
1g~2!~ t !x21g~1!~ t !x1g~0!~ t !, ~4!

a!Electronic mail: mmn@lanl.gov
b!Electronic mail: truax@ucalgary.ca
27410022-2488/2000/41(5)/2741/12/$17.00 © 2000 American Institute of Physics
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where the coefficientsg( j )(t), j 51,2,3, are suitably well-behaved real functions of time. One
the earliest symmetry techniques used to solve this equation was the method of
invariants.25,26 Its Lie space–time symmetry algebra has been identified as sl(2,R)hw1 by one of
the authors30 and its complexification, su(1,1)hw1

c , has been used to construct solution spaces
Eq. ~1!.31,35–37The subalgebraw1 is a Heisenberg–Weyl algebra in one dimension andw1

c is its
complexification.

In this paper we show that the three classes of Schro¨dinger equations mentioned above can
interrelated by transformations. Generally speaking, these transformations can be given
actions: a unitary transformation (TQ→TM) and a change in ‘‘time’’ variable (TM→TO). After
giving notation for the three classes of Schro¨dinger equations in Sec. II, we describe the unita
transformation and the change in ‘‘time’’ variable in Sec. III. In Sec. IV, we apply our analys
two TM systems commonly found in the literature.~For example, see Refs. 19 and 24.! We close
with a short summary.

In paper II38 we continue by studying an algebraic approach to solving Schro¨dinger equations
for all three classes of systems, TQ, TM, and TO. We shall show that these three system
isomorphic Schro¨dinger algebras, six-dimensional Lie algebras of space–time symmetries. A
algebra, having the structure of an oscillator algebra, will be used to derive expressio
number-state, coherent-state, and squeezed-state wave functions for each of the three c
systems. Expectation values and uncertainty products will also be obtained and the cl
equations of motion determined.

Elsewhere39 we will concentrate on the TM systems discussed in Sec. IV of this paper
will apply the general procedures worked out here and in paper II to obtain number s
coherent states, and squeezed states for the TM systems and examples of symmetry-rel
and TQ systems. Our treatments of TM systems will be detailed and new results will emer

II. NOTATION

For computational purposes, it is more convenient to rearrange the Schro¨dinger equation~1!,
with quadratic Hamiltonian~2!, into the form

S1F~x,t !5$@11k~ t !#]xx12i ] t1h~ t !~2 ix]x2 i /2!1g~ t !~2 i ]x!

22h~2!~ t !x222h~1!~ t !x22h~0!~ t !%F~x,t !

50, ~5!

wherek, h, g, andh( j ), j 50,1,2, are suitably well-behaved, real functions oft.
Next, we introduce the following operator algebra:

T5 i ] t , P52 i ]x , X5x, I 51, ~6!

P252]xx , X25x2, D5 1
2 ~XP1PX!52 ix]x2 i /2. ~7!

These operators have the following nonzero commutation relations:

@X, P#5 i I , ~8!

@X2, P2#54iD , @D, X2#522iX2, @D, P2#52iP, ~9!

@P2, X#522iP, @X2, P#52iX, @D, X#52 iX, @D, P#5 iP. ~10!

This Lie algebra of operators has a structure isomorphic to sl(2,R)hw1 , a Schro¨dinger algebra.
The operators$X,P,I% form a basis for a Heisenberg–Weyl algebra,w1 @see Eq.~8!#, and the
operators$X2,P2,D% form a basis for the special linear algebra sl(2,R) @see Eq.~9!#.

When we express the Schro¨dinger equation~5! in terms of these operators, we obtain
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S1F~x,t !5$2@11k~ t !#P212T1h~ t !D1g~ t !P22h~2!~ t !X2

22h~1!~ t !X22h~0!~ t !I %F~x,t !50. ~11!

Equations of the type~11! are time-dependent quadratic Schro¨dinger equations, the class TQ.
Next, we turn to those Schro¨dinger equations~1! which have Hamiltonians~3!. With the

operator notation,~6! and ~7!, we write the Schro¨dinger equation as

S2U~x,t !5$2 f ~ t !P212T22 f ~2!~ t !X222 f ~1!~ t !X22 f ~0!~ t !I %U~x,t !50. ~12!

Equation ~12! is representative of the so-called ‘‘time-dependent mass’’ equations. We
denoted this class by TM.@The term ‘‘time-dependent mass’’ comes from the fact thatf (t)
multiplies P2, just as 1/m would if we did not have unitsm51.#

The second class of Schro¨dinger equations, the time-dependent oscillator equations, den
by TO, can be written as~here the ‘‘time’’ variable is indicated with a prime!

S3C~x,t8!5$2P212T822g~2!~ t8!X222g~1!~ t8!X22g~0!~ t8!I %C~x,t8!50. ~13!

In the next section, we derive a connection betweent and t8.
We emphasize again that the two classes of equations, TM and TO, are subclasses of t

TQ. Here, our main focus will be on answering the question: Do transformations exist that
a given Schro¨dinger equation in one class to a Schro¨dinger equation in another class? In the ne
section, we will find a unitary transformation that interrelates all TQ Schro¨dinger equations~11!.
Then, we identify the conditions that allow a TQ equation to be transformed into a TM equ
~12!. That equation can in turn be mapped into a solvable Schro¨dinger equation~13! in the class
TO. Also, we derive conditions for the inverse transformations. That such transformations e
due to the classes TM and TO being subclasses of TQ.

III. THE TRANSFORMATION
A. The form of the unitary transformation

Let us consider the following unitary transformation,

R~m,n,k!5exp$ imP% exp$ inD% exp$ ikP2%, ~14!

wherek, m, andn depend upont. ~We shall normally not indicate this time dependence.! When we
apply this transformation to the TQ Schro¨dinger equation~11!, we have

R~m,n,k!S1R21~m,n,k!R~m,n,k!F~x,t !50, ~15!

S̃1F̃~x,t !50, ~16!

where Eq.~16! follows from Eq.~15! by the definitions

S̃15exp$ imP% exp$ inD% exp$ ikP2%S1 exp$2 ikP2% exp$2 inD% exp$2 imP%, ~17!

F̃~x,t !5exp$ imP% exp$ inD% exp$ ikP2%F~x,t !5R~m,n,k!F~x,t !. ~18!

By using the theorem40

exp$B%A exp$2B%5A1@B,A#1
1

2!
@B,@B,A##1¯ ~19!

and the commutation relations in Eqs.~8!–~10!, the transformation of the operators can be carr
out analytically~see Ref. 41!:

RXR215enX12ke2nP1enmI , ~20!
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RX2R215e2nX214kD14k2e22nP212e2nmX14kmP1e2nm2I , ~21!

RPR215e2nP, ~22!

RP2R215e22nP2, ~23!

RDR215D1mP12ke22nP2, ~24!

RTR215T1S dm

dt
1m

dn

dt D P1
dn

dt
D1

dk

dt
e22nP2. ~25!

Keeping in mind thatk, m, andn are time dependent, the Schro¨dinger operatorS̃1 is

S̃152@11 k̃~ t !#P212T1h̃~ t !D1g̃~ t !P22h̃~2!~ t !X222h̃~1!~ t !X22h̃~0!~ t !I . ~26!

In Eq. ~26!, the coefficients of the operatorsP,D, andP2 are, respectively,

g̃~ t !52
dm

dt
1e2n@g~ t !24h~1!~ t !k#1mF2

dn

dt
1h~ t !28h~2!~ t !kG , ~27!

h̃~ t !52
dn

dt
1h~ t !28h~2!~ t !k, ~28!

11 k̃~ t !5F22
dk

dt
22h~ t !k18h~2!~ t !k21k~ t !11Ge22n. ~29!

The coefficients ofX2, X, andI are, respectively,

h̃~2!~ t !5h~2!~ t !e2n, h̃~1!~ t !5h~1!~ t !en12h~2!~ t !e2nu,
~30!

h̃~0!~ t !5h~0!~ t !1h~1!~ t !enm1h~2!~ t !e2nm2.

Since the mappingR(m,n,k) is unitary, Eq.~16!, with S̃1 given by Eq.~26!, has the same form a
Eq. ~11!. Equations~27!–~30! give the conditions connecting the two TQ equations,S1 and S̃1 .

B. The transformation TQ \TM

To transform Eq.~11!, S1F50, into a TM-type equation~12!, S2U50, we require that the
coefficientsh̃, g̃, and k̃ in Eqs.~27!–~29! satisfy the conditions

g̃~ t !5h̃~ t !50, 11 k̃~ t !5 f ~ t !. ~31!

Under these circumstances, the operatorS̃1 in Eq. ~26! reduces to anS2 operator such as in Eq
~12!. Then Eqs.~27! and ~28! and the first equality in~31! imply that m andn satisfy

2
dn

dt
1h~ t !28h~2!~ t !k50, ~32!

2
dm

dt
1e2n

„g~ t !24h~1!~ t !k…50. ~33!

Also, Eqs.~29! and the third equality in~31! yield the equation
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dk

dt
1h~ t !k24h~2!~ t !k25

1

2
~11k~ t !!2

1

2
f ~ t !e2n. ~34!

Equations~32!–~34! are a set of coupled, first-order, nonlinear, ordinary differential equat
for the functionsk, m, andn. When solutions to these equations are obtained, one can calcula
functions f ( j ), j 50,1,2, in Eq.~12! from

f ~ j !5h̃~ j !, j 50,1,2. ~35!

Under these conditions, withF̃(x,t) given in Eq.~18!,

Q~x,t !5F̃~x,t !5R~m,n,k!F~x,t !. ~36!

We refer to Eqs.~30!–~36! as the (TQ→TM)-connecting equations.

C. The transformation TM \TO

As an aside, we note that, with the conditions

g̃5h̃5 k̃50, ~37!

a TQ Schro¨dinger equation~11! could be directly transformed into a TO Schro¨dinger equation
~13!, if the set of coupled nonlinear equations~32!, ~33!, and~38! had a solution:

dk

dt
1h~ t !k24h~2!~ t !k25

1

2
„11k~ t !…2

1

2
e2n. ~38!

Instead of using the above approach, we shall employ an alternative method involv
change in ‘‘time’’ variable to go from the TM equation to the TO equation. Since we already
TQ→TM, the time transformation will complete the TQ→TM→TO path.

We start by multiplying both sides of Eq.~12! by 1/f (t), where we assume thatf (t)Þ0 for all
t. This yields

S2Q~x,t !5H 2P21
2

f ~ t !
T22q~2!~ t !X222q~1!~ t !X22q~0!~ t !I J Q~x,t !50, ~39!

where

S25
1

f ~ t !
S2 , ~40!

q~ j !~ t !5
f ~ j !~ t !

f ~ t !
. ~41!

Now change to a new ‘‘time’’ variablet85t8(t). Focusing on„1/f (t)…T in Eq. ~39! gives

1

f ~ t !
T52 i

1

f ~ t !

]

]t
52 i

1

f ~ t !

]t8

]t

]

]t8
. ~42!

Setting the product

1

f ~ t !

]t8

]t
51 ~43!

and solving fort8(t) we find that
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t82t085E
t0

t

ds f~s!. ~44!

~Some time transformations may not be defined for allt or t8. See the examples that follow.!
Suppose thatt8(t) has an inverse. Then, writingt5t(t8), we define the functions

f̌ ~ t8!5~ f +t !~ t8!,

q̌~ j !~ t8!5~ f̃ ~ j !+t !~ t8!, ȟ~ j !~ t8!5~h~ j !+t !~ t8!, j 50,1,2, ~45!

ǩ~ t8!5~k+t !~ t8!, ň~ t8!5~n+t !~ t8!, m̌~ t8!5~m+t !~ t8!. ~46!

With the aid of the identities in Eqs.~30! and ~35!, we expressg( j ), j 50,1,2, as

g~2!~ t8!5
q̌~2!~ t8!

f̌ ~ t8!
5ȟ~2!~ t8!e2ň~ t8!

1

f̌ ~ t8!
, ~47!

g~1!~ t8!5
q̌~1!~ t8!

f̃ ~ t8!
5@2m̌~ t8!ȟ~2!~ t8!e2ñ~ t8!1ȟ~1!~ t8!eñ~ t8!#

1

f̌ ~ t8!
, ~48!

g~0!~ t8!5
q̌~0!~ t8!

f̌ ~ t8!
5@ ȟ~0!~ t8!1ȟ~1!~ t8!eñ~ t8!m̌~ t8!1ȟ~2!~ t8!e2ñ~ t8!ň2~ t8!#

1

f̌ ~ t8!
. ~49!

Using Eqs.~43! and ~47!–~49!, we have mapped Eq.~39! @that is, Eq.~12!# into a new
Schrödinger equation having the form of a TO equation~13!. We refer to Eqs.~32!–~34!, ~44! and
its inverse, and~47!–~49! as the (TM→TO)-connecting equations. Also, we write the wa
function,C(x,t8), as the composition

C~x,t8!5~Q+t !~x,t8!. ~50!

This completes the transformation of Eq.~12! into Eq. ~13!. Now, let us look at the revers
transformations, TO→TM and TM→TQ.

D. The transformations TO \TM and TM\TQ

In the TO Schro¨dinger equation~13!, suppose that thet8-dependent functions,g( j ), j
50,1,2, are suitably well-behaved, real functions but otherwise unspecified. Furthermore, a
that t85t8(t) is any suitable, invertible function oft, and denote its inverse byt5t(t8). With
foresight, define the functionf (t) by

f ~ t !5
]t8

]t
. ~51!

Then, changing the ‘‘time’’ variable in Eq.~13! and multiplying the result byf (t), we obtain

S2Q~x,t !5$2 f ~ t !P212T22 f ~2!~ t !X222 f ~1!~ t !X22 f ~0!~ t !I %Q~x,t !50, ~52!

where we have set

f ~ j !~ t !5 f ~ t !~g~ j !+t8!~ t !, ~53!

for j 50,1,2, and
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Q~x,t !5~C+t8!~x,t !. ~54!

Equation~52! is of the same form as the TM Schro¨dinger equation~12!.
We refer to Eqs.~51!, ~54!, and~53! as the (TO→TM)-connecting equations.
In the TM Schro¨dinger equation~12!, assume thatf and f ( j ), j 50,1,2, are suitably well-

behaved, real functions oft. We shall now determine a transformationR(m,n,k) of the type~14!
that will transform Eq.~12! of the TM class into a TQ Schro¨dinger equation~11!.

We chooseR(m,n,k) such that

R21~m,n,k!S2R~m,n,k!R21~m,n,k!Q~x,t !50. ~55!

Substitute Eq.~14! and the Schro¨dinger operator of Eq.~12! into Eq. ~55!. Then, using Eq.~19!
and the commutation relations~8!–~10!, we obtain the TQ equation~11!, where

11k~ t !52S dk

dt
22k

dn

dt D18 f ~2!~ t !ke22n1 f ~ t !e2n, ~56!

h~ t !522
dn

dt
18 f ~2!~ t !ke22n, ~57!

g~ t !522
dm

dt
en28 f ~2!~ t !kme2n1 f ~1!~ t !ke2n, ~58!

h~2!~ t !5 f ~2!~ t !e22n, ~59!

h~1!~ t !5 f ~1!~ t !e2n22 f ~2!~ t !me2n, ~60!

h~0!~ t !5 f ~0!~ t !2 f ~1!~ t !m1 f ~2!~ t !m2. ~61!

We refer to Eqs.~56!–~61! as the (TM→TQ)-connecting equations. As we might expect, E
~56!–~58! are equivalent to Eqs.~32!–~34!. This can be seen by solving for the derivativesdv/dt
anddm/dt and inverting Eqs.~59!–~61! for the functionsf ( j ), j 50,1,2,.

IV. EXAMPLES WITH f „t …ÄeÀ2n„t …

A. Form of examples

Now that the analysis of the transformations connecting the three Schro¨dinger equations
~11!–~13! has been completed, we illustrate how the mapping works with two examples o
TQ→TM→TO transformations.

But here, and in later work, we shall restrictf (t) in Eq. ~12! to one particular form:

f ~ t !5e22n~ t !. ~62!

In this case, the Schro¨dinger operator in Eq.~12! becomes

Ŝ252e22nP212T22 f ~2!~ t !X222 f ~1!~ t !X22 f ~0!~ t !I . ~63!

The ‘‘hat’’ indicates the restriction~62!. The corresponding Schro¨dinger equation is

Ŝ2Q̂~x,t !5$2e22nP212T22 f ~2!~ t !X222 f ~1!~ t !X22 f ~0!~ t !I %Q̂~x,t !50, ~64!

Q̂~x,t !5Q„x,t, f ~ t !5e22n~ t !
…. ~65!

This equation is a special case of the class TM equations~12!, where f (t) is identified with
exp(22n). The two examples are actually of this form.
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With condition~62!, Eqs.~32! and~33! remain the same. But, the right-hand side of Eq.~34!
is simplified to 1

2k(t), that is,

dk

dt
1h~ t !k24h~2!~ t !k25 1

2k~ t !, ~66!

which is a Riccati equation42 for k. The f ( j ), j 50,1,2, in Eqs.~63! and~64! are still given by Eqs.
~30! and ~35!, but k is now a solution of the Riccati equation~66!.

Since Eq.~66! is a Riccati equation, we can proceed analytically in the examples be
Furthermore, previously studied systems11–24 are encompassed within the restriction~62!.

Before continuing with the examples, we need to specifically incorporate~62! into Eq.~44! for
the TM→TO transformation. This becomes

t82to85E
to

t

ds e22n~s!. ~67!

In addition, Eqs.~47!–~49! yield

g~2!~ t8!5q̌~2!~ t8!e2ň~ t8!5ȟ~2!~ t8!e4ň~ t8!, ~68!

g~1!~ t8!5q̌~1!~ t8!e2ň~ t8!52m̌~ t8!ȟ~2!~ t8!e3ň~ t8!1ȟ~1!~ t8!e3ň~ t8!, ~69!

g~0!~ t8!5q̌~0!~ t8!e2ň~ t8!5ȟ~0!~ t8!e2ň~ t8!1ȟ~1!~ t8!e3ň~ t8!m̌~ t8!1ȟ~2!~ t8!e4ň~ t8!m̌2~ t8!. ~70!

B. Example 1

The first example is a frequently studied TM equation11–23 of the form

Ŝ2Q̂~x,t !5$2eY~ t2to!P212T2v2e2Y~ t2to!X2%Q̂~x,t !50, ~71!

with associated TM Hamiltonian

Ĥ252 1
2e

Y~ t2to!]xx1
1
2v

2e2Y~ t2to!x2. ~72!

Both Y andv2 are real constants and we also takev2 to be positive.
First, we shall find a TQ equation related to the TM equation~71! via the mapping~55!.

Comparing the Schro¨dinger equations~64! and ~71!, we observe that

n52 1
2Y~ t2to!, f ~2!~ t !5 1

2v
2e2Y~ t2to!, f ~1!~ t !5 f ~0!~ t !50. ~73!

Therefore, Eqs.~59!–~61!, yield

h~2!~ t !5 1
2v

2, h~1!~ t !52v2e2~Y/2!~ t2to!m, h~0!~ t !5 1
2v

2e2Y~ t2to!m2. ~74!

Conditions~74! and Eqs.~32!, ~33!, and~66! together imply that

h~ t !5Y14v2k, ~75!

2
dm

dt
1e~Y/2!~ t2to!g~ t !14v2mk50, ~76!

dk

dt
1Yk12v2k25

1

2
k~ t !. ~77!
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Since there are a nondenumerable number of choices fork(t) andg(t), there are an nondenume
able number of TQ equations that can be mapped into the TM equation~71!, with Eqs.~73!–~77!
as the connecting equations.

A TQ Schrödinger equation with atime-independentHamiltonian can be obtained by settin
k(t)5g(t)50 for all t. With the initial condition,R(t5to)5I , the Riccati equation~77! with
k(t)50 yields the trivial solutionk50, for all t, as the only solution. Furthermore, Eq.~76! with
g(t)50 andk50 implies thatm50, for all t @subject to the initial conditionR(t5to)5I #. Hence,
h(t)5Y and the mapping has the general form

R~0,n,0!5exp@ inD#, ~78!

n given in Eq.~73!. Under these conditions, the TQ equation~11! and Hamiltonian become

S1F~x,t !5$2P212T1YD2v2X2%F~x,t !50, ~79!

H152 1
2]xx2

1
4Y~22ix]x2 i !1 1

2v
2x2. ~80!

To find the equivalent TO equation, we change the ‘‘time’’ variable. From Eq.~67!

t82to85
1

Y
$exp@Y~ t2to!#21%. ~81!

The inverse mapping is

t2to5
1

Y
ln @11Y~ t82to8!#, ~82!

where certain restrictions ont8 apply. That is, if (t2to)P@0,̀ ), then whenY.0, (t82to8) lies in
the interval@0, 1`!, and whenY,0,(t82to8) lies in the interval@0, 1/uYu!.

From the (TM→TO)-connecting equations~68!–~70!, we see that

g~2!~ t8!5
1

2

v2

@11Y~ t82to8!#2 , g~1!~ t !5g~0!~ t !50, ~83!

and the TO Schro¨dinger equation~13! and Hamiltonian are

S3C~x,t8!5H 2P212T82
v2

@11Y~ t82to8!#2 X2J C~x,t8!50, ~84!

H352
1

2
]xx1

v2/2

@11Y~ t82t08!#2 x2. ~85!

We shall discuss this example in detail elsewhere.39

C. Example 2

The second example is also a TM Schro¨dinger equation. This time it is of the form

Ŝ2Q̂~x,t !5H 2S to

t D a

P212T2S t

to
D b

v2X2J Q̂~x,t !50, ~86!

wherea andb are real numbers. The associated TM Hamiltonian is

Ĥ252
1

2 S to

t D a

]xx1
1

2
v2S t

to
D b

x2, ~87!
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for real values ofa andb. For positive values ofa andb, this is the Hamiltonian system studie
by Kim.24 We shall not consider thea50 case for which Eq.~86! already has TO form.

As in Example 1, we shall find a TQ equation related to the TM equation~86! via the mapping
~55!. Comparing the Schro¨dinger equations~64! and ~86!, we observe that

n5
a

2
ln S t

to
D , f ~2!~ t !5

1

2
v2S t

to
D b

, f ~1!~ t !5 f ~0!~ t !50. ~88!

Therefore, Eqs.~59!–~61! yield

h~2!~ t !5
1

2
v2S t

to
D b2a

, h~1!~ t !52v2S t

to
D b2a/2

m, h~0!~ t !5
1

2
v2S t

to
D b

m2. ~89!

Conditions~89! and Eqs.~32!, ~33!, and~66! together imply that

h~ t !52
a

t
14v2S t

to
D b2a

k, ~90!

2
dm

dt
1S to

t D 1/2

g~ t !14v2S t

to
D b2a

mk50, ~91!

dk

dt
2

a

t
k12v2S t

to
D b2a

k25
1

2
k~ t !. ~92!

There are a nondenumerable number of TQ equations, depending upong(t) andk(t), that can be
mapped into the TM equation~86!, with Eqs. ~88!–~92! as the connecting equations. To cite
specific example, ifg(t)5k(t)50, then the only solution to Eqs.~91! and~92! consistent with the
initial conditionR(t5to)5I is k5m50, for all t, and the transformation is of the form~78! with
n given in Eq.~88!.

Sinceh(t)52a/t, we see that the TQ Schro¨dinger equation~5! is

S1F~x,t !5H 2P212T2
a

t
D2v2S t

to
D b2a

X2J F~x,t !50. ~93!

The corresponding time-dependent TQ Hamiltonian is

H152
1

2
]xx1

a

2t
~22ix]x2 i !1

1

2
v2S t

to
D b2a

x2. ~94!

In the (TM→TO) transformation, we compute a new ‘‘time’’ variable by substituting Eq.~88!
for n in ~67! and performing the integration. We recognize two separate cases:a51 andaÞ0, 1.
Furthermore, we assume that (t2to)P@0,̀ ).

Whena51, we find that

t82to85to ln S t

t0
D , ~95!

where (t82to8)P@0,̀ ). However, foraÞ0, 1, we have

t82to85
to

12a F S t

t0
D 12a

21G , ~96!

where (t82to8)P@0,to /(a21)) if aP(1,̀ ) and (t82to8)P@0,̀ ) if aP(2`,0)ø(0,1).
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From Eqs.~48! and~49!, the functionsg(1)(t8)5g(0)(t8)50 in Eq. ~5!. The TO Schro¨dinger
equation~5! becomes

S3C~x,t8!5$2P212T822g~2!~ t8!X2%C~x,t8!50, ~97!

where Eq.~47! yields

g~2!~ t8!5H 1

2
v2 expF S 11b

to
D ~ t82to8!G , for a51,

1

2
v2F11S 12a

to
D ~ t82to8!G ~a1b/12a!

, for aÞ0,1.

~98!

The Hamiltonian then has the form

H352 1
2]xx1g~2!~ t8!x2. ~99!

It is also possible to map many TM Schro¨dinger equations into a single TO equation. Exam
2 provides an illustration of this. Look at the second equality in Eq.~98! (aÞ0,1). For all b
52a, we haveg(2)(t8)5 1

2v
2. Thus, we have a nondenumerable number of distinct TM eq

tions, determined by eacha and b52a, that are mapped into a single TO equation. This T
equation is independent ofa andb. This is a common phenomenon in Example 2.

We shall also discuss this example in detail elsewhere.39

V. SUMMARY

We have developed a general method for transforming Schro¨dinger equations of class TQ int
the subclasses of TM and TO equations. The transformation involves~i! a unitary mapping or~ii !
a unitary mapping and a change in ‘‘time’’ variable. This permits us to map~i! a TQ Schro¨dinger
equation into a TM Schro¨dinger equation or~ii ! into a TO Schro¨dinger equation. In paper II, we
shall use these transformations to show that all these equations have isomorphic spac
symmetry algebras. We shall exploit this isomorphism and the known generators for TO equ
to obtain solutions for each of the Schro¨dinger equations in the class TQ and the subclasses
and TO. Then, we will compute displacement-operator coherent and squeezed states for ea
and subclass.
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Time-dependent Schro ¨ dinger equations having isomorphic
symmetry algebras. II. Symmetry algebras, coherent
and squeezed states
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Using the transformations from paper I, we show that the Schro¨dinger equations for
~1! systems described by quadratic Hamiltonians,~2! systems with time-varying
mass, and~3! time-dependent oscillators all have isomorphic Lie space–time sym-
metry algebras. The generators of the symmetry algebras are obtained explicitly for
each case and sets of number-operator states are constructed. The algebras and th
states are used to compute displacement-operator coherent and squeezed states
Some properties of the coherent and squeezed states are calculated. The classica
motion of these states is demonstrated. ©2000 American Institute of Physics.
@S0022-2488~00!03105-4#

I. INTRODUCTION

In this paper, we continue the investigation that began in paper I1 of three classes of one
dimensional Schro¨dinger equations: equations with time-dependent quadratic Hamiltonians~TQ!,
equations with time-dependent masses~TM!, and equations for time-dependent oscillators~TO!.
They are described thusly:

The TQ class of Schro¨dinger equations, in units ofm5\51, is

S1F~x,t !5$2@11k~ t !#P222T1h~ t !D1g~ t !P22h~2!~ t !X222h~1!~ t !X22h~0!~ t !I %F~x,t !

50, ~1!

whereD5 1
2(XP1PX).

The TM class of equations is

S2U~x,t !5$2 f ~ t !P222T22 f ~2!~ t !X222 f ~1!~ t !X22 f ~0!~ t !I %U~x,t !50. ~2!

In thesem51 units, 1/f (t) represents a time-dependent mass. Rather than use the most g
~TM! Eq. ~2!, we shall work with the more restrictive~see Sec IV A of paper I!

Ŝ2Û~x,t !5$2e22nP222T22 f ~2!~ t !X222 f ~1!~ t !X22 f ~0!~ t !I %Û~x,t !50, ~3!

f ~ t !5exp@22n~ t !#, ~4!

where the functionn(t) will be defined below.
Finally, the time-dependent oscillator Schro¨dinger equations~TO! have the form

a!Electronic mail: mmn@lanl.gov
b!Electronic mail: truax@ucalgary.ca
27530022-2488/2000/41(5)/2753/15/$17.00 © 2000 American Institute of Physics
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S3C~x,t8!5$2P212T822g~2!~ t8!X222g~1!~ t8!X22g~0!~ t8!I %C~x,t8!50. ~5!

In this paper, we have four main objectives:
First, in Sec. II, we compute the relationship between the symmetry algebras of the

classes of Schro¨dinger equations, TQ, TM, and TO. To do this, we start with the Lie algebr
space–time symmetries associated with TO equations. This Lie symmetry algebra for TO
tions is known2–5 to be the Schro¨dinger algebra

SA1
c5su~1,1!Lw1

c . ~6!

Then, using the transformation developed in paper I,1 we show that all three classes of Schr¨-
dinger equations have symmetry algebras isomorphic toSA1

c .
In Sec. III, we start with the symmetry generators associated with TO equations. We

‘‘work backwards’’ to construct the generators of space–time transformations for first TM
then TQ. These calculations constitute the second objective.

In Sec. IV, working with the oscillator subalgebras of (SA)1
c for each class of Schro¨dinger

equations, we obtain a set of solutions for each. This has already been done for TO.3,5,6 Here we
extend the method to the TM and TQ equations. This completes the third objective.

The fourth objective concerns the calculation of coherent states~Sec. V! and squeezed state
~Sec. VI! for the three classes of equations. It is natural, in this context, to take advantage
Lie symmetry to construct displacement-operator coherent states~DOCS!6–8 and displacement-
operator squeezed states~DOSS!.5,9,10We make extensive use of the isomorphism of the symm
try algebras and the results of Sec. IV to calculate properties of the coherent~Sec. V! and squeezed
~Sec. VI! states.

We close with comments on uncertainty relations and the classical equations of motio
Elsewhere,11 we shall apply the general results of paper I and this article to the calculatio

space–time number-state, coherent-state, and squeezed-state wave functions for TM syst
have been studied by others. We shall give detailed accounts of the solutions.

II. LIE SYMMETRIES

Starting with the TQ Schro¨dinger equation~1! and using the definitions in Eq.~I-6!, we
express its Lie symmetries as2,3,5,6,12

L152 iA1~x,t !T1 iB1~x,t !P1C1~x,t !I . ~7!

For L1 to be a Lie symmetry of Eq.~1!, it must satisfy the operator equation

@S1 , L1#5l1~x,t !S1 , ~8!

whereS1 is the TQ Schro¨dinger operator from Eq.~1!. The functionl1 depends on the variable
x and t. As a consequence, ifF(x,t) is a solution of the TQ equation~1!, then L1F(x,t) is also
a solution to this equation.

Next, denote the Lie symmetries of the TM Schro¨dinger equation~3! by

L̂252 iÂ2~x,t !T1 iB̂2~x,t !P1Ĉ2~x,t !I . ~9!

If Ŝ2 is the TM Schro¨dinger operator given in Eq.~3!, then for L2 to be a symmetry of Eq.~3!, it
must satisfy the commutator relation~l̂2 is a function ofx and t!

@Ŝ2 , L̂2#5l̂2~x,t !Ŝ2 . ~10!

Finally, for the TO Schro¨dinger equation~5!, its Lie symmetries2,3,5,6,12are

L352 iA3~x,t8!T81 iB3~x,t8!P1C3~x,t8!I , ~11!
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whereT85 i ] t8 . For the operator, L3, to be a symmetry of Eq.~5!, it must satisfy

@S3 , L3#5l3~x,t8!S3 , ~12!

whereS3 is the Schro¨dinger operator given in Eq.~5! andl3 is a function ofx and t8 ~not t!.
To obtain the coefficients of the operatorsT or T8, P, and I, in Eqs.~7!, ~9!, and ~11!, we

could substitute these operators into Eqs.~8!, ~10!, and~12!, respectively, and solve the three se
of coupled partial differential equations for the coefficients ofT or T8, P, and I. This has been
done elsewhere for the TO class of Schro¨dinger equations.2–6

However, here we shall adopt a different approach. Our present objective is to estab
connection between the Lie symmetries of the TQ, TM, and TO equations;~1!, ~3!, and ~5!,
respectively. We achieve this by starting with the TO symmetries~11! and transforming them into
the TM symmetries. Then, we obtain the TQ symmetries from the TM symmetries.

In the first step, we transform from the (x,t8) to the ~x,t! coordinate system, taking us from
TO to TM. Making use of 15e2n(]t8/]t)[e2n f (t), Eq. ~12! becomes

@ Ŝ2 , L̂#5l̂~x,t !Ŝ2 , ~13!

wherel̂(x,t)5(l3+t8)(x,t). The generator, Lˆ , takes the form

L̂52 iÂ~x,t !T1 iB̂~x,t !P1Ĉ~x,t !I , ~14!

Â~x,t !5~A3+t8!~x,t !e2n, B̂~x,t !5~B3+t8!~x,t !, Ĉ~x,t !5~C3+t8!~x,t !. ~15!

From Ŝ25e22nŜ2 , we obtain

@e2nŜ2 , L̂#5l̂~x,t !e2nŜ2 , ~16!

which, after rearranging, yields

@Ŝ2 , L̂#5~ l̂1e22n@ L̃, e2n#!Ŝ25S l̂~x,t !12Â
dn

dt D Ŝ2 , ~17!

whereÂ is given in Eq.~15!. Therefore, Lˆ is a symmetry ofŜ2 . Comparing Eqs.~10! and~17!, we
can identify L̂2 with L̂ if

l̂25l̂12Â
dn

dt
, ~18!

Â2~x,t !5Â~x,t !, B̂2~x,t !5B̂~x,t !, Ĉ2~x,t !5Ĉ~x,t !. ~19!

This means that Lˆ is a symmetry of both Eq.~3! and Ŝ2Û(x,t)50, but with different ‘‘lambda’’
functions;l̂2 and l̂, respectively.

In the final step, we transform the commutator bracket~10! with the transformationR(m,n,k)
of Eq. ~I-14!, thereby going from TM to TQ. Inverting the transformationŜ2

5R(m,n,k)S1R21(m,n,k), we obtain the commutator~8!, where

S15R21~m,n,k!Ŝ2R~m,n,k!, L15R21~m,n,k!L̂2R~m,n,k!, ~20!

l1~x,t !5R21~m,n,k!l̂2R~m,n,k!5R21~m,n,k!S l̂12Â
dn

dt DR~m,n,k!. ~21!

Here,dn/dt is given by Eq.~I-32!.
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For TO Schro¨dinger equations~5!, bothA3 andl3 are functions oft8 only.2–4 Therefore,l̂ is
a function oft only and, according to Eq.~18!, l̂2 is a function oft only. Since the transformation
R(m,n,k) involves no time derivatives, we have

l1~ t !5l̂2~ t !5l̂~ t !1„8h~2!~ t !k2h~ t !…Â. ~22!

III. LIE SYMMETRIES FOR EACH CLASS OF EQUATION

A. TO symmetries

The six generators of Lie space–time symmetries for the TO Schro¨dinger equation~5! have
been calculated previously.2–4 They form a basis for the Lie algebra sl~2,R)hw1 .2,4 We prefer to
use its complexification,3,4 which we have called the Schro¨dinger algebra, denoted bySA1

c in Eq.
~6!. We shall work with the generators ofSA1

c only.
First, the three generators which form a basis for the Heisenberg–Weyl subalgebra,w1

c , are

J325 i $jP2Xj̇1CI %, J315 i $2 j̄P1XjG 2 C̄I %, I 51. ~23!

Both j and its complex conjugate,j̄, are functions oft8 and are two linearly independent solution
of the second-order, ordinary differential equation2–4

g̈12g~2!~ t8!g50. ~24!

The Wronskian of the two solutions is a constant,

W~j,j̄ !5jjG 2 j̇ j̄52 i . ~25!

A dot over the function indicates differentiation byt8, i.e., j̇5dj/dt8. The functionC(t8! is

C~ t8!5c~ t8!1Co, c~ t8!5E
t08

t8
ds g~1!~s!j~s!, ~26!

whereCo is an integration constant.4

The three generators of the su~1, 1! subalgebra have the form

M3252$2f1T81 1
2 ḟ1D1E1P2 1

4 f̈1X22 Ė1X1~D11g~0!f1!I %,

M3152$2f2T81 1
2 ḟ2D1E2P2 1

4 f̈2X22 Ė2X1~D21g~0!f2!I %, ~27!

M352$2f3T81 1
2 ḟ3D1E3P2 1

4 f̈3X22 Ė3X1~D31g~0!f3!I %.

The three functions,f j , j 51, 2, 3, are defined as~note thatf3 is a real function oft8!3,4

f15j2, f25 j̄2, f352jj̄. ~28!

The remainingt8-dependent functions are defined in terms ofj, j̄, C, and C̄.

E152jC, E252 j̄ C̄, E352j C̄2 j̄C, ~29!

D152 1
2 C2, D252 1

2 C̄2, D352CC̄. ~30!

Both E3 andD3 are real functions oft8.
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B. TM symmetries from TO symmetries

First, we calculate the generators,Ĵ26 . In the initial step, we transform the operatorsJ36

from the (x,t8) coordinate system to the~x, t! system, as described in Sec. III and Sec. IV A
paper I:

Ĵ225 i $ĵP2Xĵ̇1 ĈI %, Ĵ215 i $2 ĵ̄P1Xĵ̇̄2 Ĉ̄I %, ~31!

ĵ~ t !5~j+t8!~ t !, ĵ̇~ t !5~ j̇+t8!~ t !, Ĉ~ t !5~C+t8!~ t !5~c+t8!~ t !1Co. ~32!

In Eq. ~32! we have used definition~26! for C.
It is important to keep in mind that, in general,

d

dt
ĵ~ t !Þĵ̇~ t !. ~33!

The ‘‘dot’’ over a function will always indicate differentiation byt8. Differentiation by t will

always be written in full notation. Also, an important relationship betweenĵ and ĵ̄ is

ĵ ĵ̇̄2 ĵ̇ ĵ̄52 i , ~34!

which follows from the Wronskian~25! and the definitions in Eq.~32!.
Now, we proceed in the same way as before to obtain the operators spanning the~1,1!

algebra. First, because of Eq.~I-51! and f (t)5e22n, we note that

T85e2nT. ~35!

The three generators of su~1,1! have the form

M̂2252$2f̂1e2nT1 1
2f̂̇1D1Ê1P2 1

4f̂̈1X22 Ê̇1X1~D̂11ĝ~0!f̂1!I %,

M̂2152$2f̂2e2nT1 1
2f̂̇2D1Ê2P2 1

4f̂̈2X22 Ê̇2X1~D̂21ĝ~0!f̂2!I %, ~36!

M̂252$2f̂3e2nT1 1
2f̂̇3D1Ê3P2 1

4f̂̈3X22 Ê̇3X1~D̂31ĝ~0!f̂3!I %,

where, for j 51, 2, 3 and again keeping in mind the comment on ‘‘dots’’ following Eq.~33!,

D̂ j~ t !5~Dj +t8!~ t !, Êj~ t !5~Ej +t8!~ t !, Ê̇ j~ t !5~ Ėj +t8!~ t !,
~37!

f̂ j~ t !5~f j +t8!~ t !, f̂̇ j~ t !5~ḟ j +t8!~ t !, f̂̈ j~ t !5~f̈ j +t8!~ t !.

Also, according to Eq.~I-70!, we have

ĝ~0!~ t !5~g~0!+t8!~ t !5h~0!~ t !e2n1h~1!~ t !e3nm1h~2!~ t !e4nm25e2n f ~0!~ t !. ~38!

C. TQ symmetries from TM symmetries

A basis for the Lie symmetries associated with the TQ Schro¨dinger equation can be obtaine
by applying the transformation in Eq.~20! to the generators for the TM class of Lie symmetri
obtained in the previous subsection. From Eq.~31!, and using~see Ref. 13!

eABe2A5B1@A, B#1
1

2!
†A, @A, B#‡1¯, ~39!
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we obtain

J125R21~m,n,k!Ĵ22R~m,n,k!5 i $JPP2XJX1J I I %, ~40!

J115R21~m,n,k!Ĵ21R~m,n,k!5 i $2J̄PP1XJ̄X2J̄ I I %, ~41!

JP~ t !5 ĵ~ t !en12ĵ̇~ t !ke2n, JX~ t !5 ĵ̇~ t !e2n, J I~ t !5 Ĉ~ t !1mĵ̇~ t !. ~42!

The analogue of Eqs.~25! and ~34! is

JPJ̄X2J̄PJX52 i . ~43!

To obtain the basis of the su~1,1! Lie subalgebra, we observe that

M125R21~m,n,k!M̂22R~m,n,k!, M115R21~m,n,k!M̂21R~m,n,k!,
~44!

M15R21~m,n,k!M̂2R~m,n,k!.

Keeping in mind that the functionsm, n, andk are t-dependent, we find that

M1252$2C1,TT1C1,P2P21C1,DD1C1,PP1C1,X2X21C1,XX1C1,I I %,

M1152$2C2,TT1C2,P2P21C2,DD1C2,PP1C2,X2X21C2,XX1C2,I I %, ~45!

M152$2C3,TT1C3,P2P21C3,DD1C3,PP1C3,X2X21C3,XX1C3,I I %,

where, for j 51, 2, 3, the coefficients are

Cj ,T5f̂ j~ t !e2n, ~46!

Cj ,P25f̂ j~ t !„1
2k~ t !24h~2!~ t !k2

…e2n2 f̂̇ j~ t !k2 f̂̈ j~ t !k2e22n, ~47!

Cj ,D5f̂ j~ t !„2 1
2h~ t !14h~2!~ t !k…e2n1 1

2f̂̇ j~ t !1 f̂̈ j~ t !ke22n, ~48!

Cj ,P5f̂ j~ t !„2 1
2g~ t !12h~1!~ t !k…e2n1Êj~ t !en2 1

2f̂̇ j~ t !men2 f̂̈ j~ t !kme2n12Ê̇ j~ t !ke2n,
~49!

Cj ,X252 1
4f̂̈ j~ t !e22n, ~50!

Cj ,X52 Ê̇ j~ t !e2n1 1
2f̂̈ j~ t !me2n, ~51!

Cj ,I5D̂j~ t !2 1
4f̂̈ j~ t !m21 Ê̇ j~ t !m1f̂ j~ t !„h~0!~ t !1h~1!~ t !men1h~2!~ t !m2e2n

…e2n. ~52!

D. Commutation relations and algebraic structure

The commutation relations for the symmetry operators have been worked out previou3–5

and the structure of the Lie algebra is known to be su~1,1!hw1
c . The nonzero TO commutators ar

as follows: For thew1
c subalgebra,

@J32 , J31#5I , ~53!

For the su~1,1! subalgebra,
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@M31 , M32#52M3 , @M3 , M32#522M32 , @M3 , M31#512M31 . ~54!

The nonzero commutators involving operators from each of the two subalgebras are

@M3 , J32#52J32 , @M3 , J31#51J31 ,
~55!

@M32 , J31#52J32 , @M31 , J32#51J31 .

Since commutation relations are preserved by each segment of the transformation~TO→TM!
and~TM→TQ!, the Lie algebras of operators associated with TM Schro¨dinger equations and TQ
Schrödinger equations are isomorphic to su~1,1!hw1

c . We take advantage of this isomorphism
define a set of generic operators,$M ,M 6 ,J6 ,I %, where the subset$M ,M 6% forms a subalgebra
with the su~1,1! structure:

@M 1 , M 2#52M , @M , M 6#562M 6 , ~56!

and the subset$J6 ,I % forms a subalgebra with thew1
c structure:

@J2 , J1#5I . ~57!

The nonzero commutation relations between operators from each of the two subalgebras

@M , J6#56J6 , @M 2 , J1#52J2 , @M 1 , J2#51J1 . ~58!

The operatorsM andM 6 are identified withM j andM j 6 , respectively, and theJ6 are identified
with Jj 6 . This is for j 51, 2, 3, with or without hats.

IV. EIGENSTATES OF THE NUMBER OPERATOR

A. Casimir operators

In the following analysis, we do not require the operatorsM 6 . We shall consider only the
subalgebra consisting of the operators$M ,J6 ,I %, satisfying the nonzero commutation relation

@M , J6#56J6 , @J2 , J1#5I , ~59!

and its representation spaces. Regardless of the system we are working with, we refer
subalgebra as the oscillator subalgebra, denoted by os~1!, with one Casimir operator

C5J1J22MI . ~60!

For the TQ class of equations, we have the expressions

J11J1252 1
2f̂3~ t !e2nS11M12 1

2, ~61!

C15J11J122M1I 52 1
2f̂3~ t !e2nS12 1

2, ~62!

whereS1 is the TQ Schro¨dinger operator in Eq.~1!. The operatorsJ16 are given in Eqs.~40! and
~41! andM1 is found in Eq.~45!.

The expression analogous to Eq.~61! for the TM class of equations is

Ĵ21Ĵ2252 1
2f̂2~ t !e2nŜ21M̂22 1

2, ~63!

whereŜ2 is the TM Schro¨dinger operator from Eq.~3!. The operatorsĴ26 andM̂2 , defined in Eqs.
~31! and ~36!, are members of the TM os~1! algebra. Its Casimir operator is

Ĉ25 Ĵ21Ĵ222M̂2I 52 1
2f̂3~ t !e2nŜ22 1

2. ~64!
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Similarly, as shown in Refs. 3 and 5, the Casimir operator for the TO os~1! Lie algebra is

C35J31J322M3I 52 1
2f3~ t8!S32 1

2. ~65!

The second equality follows from the relationship

J31J3252 1
2f3~ t8!S31M32 1

2, ~66!

whereS3 is the TO Schro¨dinger operator from Eq.~5!. The operatorsJ36 andM3 , defined in Eqs.
~23! and ~27!, are members of the TO os~1! algebra.

B. Number states

Previously, we showed3 that certain states of the time-dependent oscillator equation~5! form
a representation space for the oscillator algebra, os~1!. Since the representation spaces dep
primarily upon the algebraic structure of the algebra, the same will hold true for the TM an
equations. In this representation, the operatorsM and C are diagonal. IfZ0

1 denotes the set o
non-negative integers and if we denote the spectrum of the operatorM by Sp(M ), then

Sp~M !5$n1 1
2, nPZ0

1%, ~67!

and the spectrum is bounded below. Let$Vn ,nPZ0
1% be a basis for this representation spa

Each vectorVn in this set is an eigenvector of the operatorM with eigenvaluen1 1
2.

The extremal state,V0 , is annihilated by the operatorJ2 , that is

J2V050. ~68!

Furthermore, by requiring that eachVn be a solution to an appropriate Schro¨dinger equation in
each class, Eq.~65! implies that, for allnPZ0

1 ,

CVn52 1
2Vn . ~69!

The action of the basis of the TO Lie algebra on the vectors in the representation spa

MVn5~n1 1
2!Vn , ~70!

J1Vn5An11Vn11 , J2Vn5AnVn21 , ~71!

for nPZ0
1 . We indicate this irreducible representation by the symbol↑21/2, where the subscrip

is the eigenvalue of the Casimir operatorC. From the extremal state,V0 , we can obtain all
higher-order states by repeated application of the raising operator,J1 :

Vn5A 1

n!
~J1!nV0 . ~72!

The statesVn are also eigenstates of the operatorJ1J2 with eigenvaluen. We shall refer to
the eigenfunctionsVn as number states. We emphasize that the number states are genera
eigenfunctions of a Hamiltonian. Therefore, we do not refer to the extremal state,V0 , as a ground
state nor to the higher-order states as excited states. We reserve the terms ‘‘ground sta
‘‘excited state’’ for states that are energy eigenstates of the system.

For convenience, in Table I, we present the connection between the generic symbo
operators, and states for each class of Schro¨dinger equation. Recall that the eigenvectorsFn and

Ûn are related byÛ(x,t)5R(m,n,k)F(x,t) @see Eqs.~I-36! and ~I-65!# while Ûn and Cn are
connected throughC(x,t8)5(Û+t)(t8) @see Eqs.~I-50! and ~I-65!#.
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V. COHERENT STATES

A. The displacement operator

In this and the following section, we shall continue to use generic symbols where conve
In addition, we shall write the operatorsJ6 as

J25 i $GPP2GXX1GII %, J15 i $2ḠPP1ḠXX2ḠI I %, ~73!

where the functionsGP , GX , and GI are given in Table II. We have used Eq.~42! for the
definitions of the TQ functions. For convenience, we have dropped the prime on the variat,
since we do not make explicit use of the relationship betweent8 and t in this and the following
section. The coefficients,GP andGX , satisfy the relationship

GPḠX2ḠPGX52 i . ~74!

In essence, this contains expressions~25!, ~34!, and~43!.
With this as background, we define generic displacement-operator coherent states~DOCS!,

Va , for os~1!-type systems in the usual way:6–8

Va5D~a!V0 . ~75!

a is a complex parameter,V0 from Table I is a generic extremal state, andD(a) is a generic
displacement operator

D~a!5exp@aJ12āJ2#, ~76!

D(a) is unitary sinceJ2 andJ1 are Hermitian conjugates, anda is a complex parameter.
By expressing the operatorsx5X and2 i ]x5P in terms ofJ2 andJ1 , we can compute the

expectation values in the usual way. Using Eqs.~73! and ~74!, we find that

X5ḠPJ21GPJ11 iF PI , ~77!

P5ḠXJ21GXJ11 iF XI . ~78!

The purely imaginary functionsFP andFX of Table II are defined as

TABLE I. Generic symbols and their values according to class.

M C J1 J2 Vn

TQ M 1 C1 J11 J12 Fn

TM M̂ 2 Ĉ2 Ĵ21 Ĵ22 Q̂n

TO M 3 C3 J31 J32 Cn

TABLE II. Generic functions and their values according to class.

Function TO TM TQ

GP j(t) ĵ(t) ĵ(t)en12j6 (t)ke2n

GX j̇(t) j6 (t) j6 (t)e2n

GI C(t) Ĉ(t) Ĉ`mj6(t)
FP j(t) C̄(t)2 j̄(t)C(t) ĵ(t)CC(t)2jC (t) Ĉ(t) „ĵ(t)CC(t)2jC (t) Ĉ(t)…en2 imen

12„j6 (t)CC(t)2jĜ (t) Ĉ(t)…e2nk
FX j̇(t) C̄(t)2jG (t)C(t) j6 (t)C6(t)2jĜ (t) Ĉ(t) „j6 (t)CC(t)2jĜ (t) Ĉ(t)…en
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FP5GPḠI2ḠPGI , FX5GXḠI2ḠXGI , ~79!

and specific values of these two functions for the three classes of systems are given in Ta

B. Position and momentum expectation values

To calculate expectation values for position and momentum we have

^x~ t !&5^VauXuVa&5^V0uD21~a!XD~a!uV0&5aḠP1āGP1 iF P , ~80!

^p~ t !&5^VauPuVa&5^V0uD21~a!PD~a!uV0&5aḠX1āGX1 iF X . ~81!

To evaluateD21(a)XD(a) andD21(a)PD(a) in Eqs.~80! and~81! we used the Eqs.~77! and
~78!, the unitarity ofD(a), Eq. ~39!, and the commutation relations~I-8!–~I-10!.

Let x0 andp0 be initial position and momentum:

xo5^x~ to!&, po5^p~ to!&. ~82!

Placing a superscript ‘‘o’’ on GP , GX , FP , andFX ~and their corresponding values in Table I!
to indicatet5t0 , and using Eq.~74!, we find that

a5 i ~GP
o po2GX

oxo!1GP
oFX

o2GX
oFP

o . ~83!

Substituting Eq.~83! for a into Eqs. ~80! and ~81!, we obtain expressions for the expectati
values ofX andP in terms ofxo andp0 :

^x~ t !&5 i ~ḠPGP
o 2GPḠP

o !po1 i ~GPḠX
o2ḠPGX

o !xo1 iGP~ḠI2ḠI
o!2 iḠP~GI2GI

o!, ~84!

^p~ t !&5 i ~ḠXGP
o 2GXḠP

o !po1 i ~GXḠX
o2ḠXGX

o !xo1 iGX~ḠI2ḠI
o!2 iḠX~GI2GI

o!, ~85!

where we have used the definitions in Eqs.~74! and ~79!.
For each of the three classes, we can combine Eqs.~84! and~85! with the functions in Table

II to obtain explicit expectation values:

TQ: ^x~ t !&5 i @~ ĵ̄ ĵo2 ĵ ĵ̄o!en12~jĜ ĵo2 ĵ̇ ĵ̄o!ke2n#po1 i @~ ĵjĜ o2 ĵ̄ ĵ̇o!en12~ ĵ̇jĜ o2jĜ ĵ̇o!ke2n#xo

1@ i ~ ĵ ĉ̄2 ĵ̄ ĉ!1m#en12i ~ ĵ̇ ĉ̄2jĜ ĉ!ke2n,
~86!

^p~ t !&5 i ~jĜ ĵo2 ĵ̇ ĵ̄o!e2npo1 i ~ ĵ̇jĜ o2jĜ ĵ̇o!e2nxo1 i ~ ĵ̇ ĉ̄2jĜ ĉ!e2n.

TM: ^x~ t !&5 i ~ ĵ̄ ĵo2 ĵ ĵ̄o!po1 i ~ ĵjĜ o2 ĵ̄ ĵ̇o!xo1 i ~ ĵ ĉ̄2 ĵ̄ ĉ!,
~87!

^p~ t !&5 i ~jĜ ĵo2 ĵ̇ ĵ̄o!po1 i ~ ĵ̇jĜ o2jĜ ĵ̇o!xo1 i ~ ĵ̇ ĉ̄2jĜ ĉ!.

TO: ^x~ t !&5 i ~ j̄jo2jj̄o!po1 i ~jjG o2 j̄ j̇o!xo1 i ~j c̄2 j̄c!,
~88!

^p~ t !&5 i ~jG jo2 j̇ j̄o!po1 i ~ j̇jG o2jG j̇o!xo1 i ~ j̇ c̄2jG c!.

C. Uncertainties

Now, we compute the uncertainty product for the general case. If we take the uncertai
an operatorA as

~DA!25^A2&2^A&2, ~89!
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then we find that

~Dx!25GPḠP , ~Dp!25GXḠX , ~90!

which are both real and positive quantities. Therefore, the uncertainty product has the form

~Dx!2~Dp!25GPḠPGXḠX5 1
4@11~GPḠX1ḠPGX!2#. ~91!

This is both real and always greater than or equal to1
4. @We used Eq.~74! in the calculation of the

second equality.#
We delay presentations of the particular uncertainties and uncertainty products for each

classes of systems until the end of the corresponding section for squeezed states.

VI. SQUEEZED STATES

A. The squeeze operator

Define the operators5

K25 1
2J2

2 , K15 1
2J1

2 , K35J1J21 1
2, ~92!

which satisfy the commutation relations14

@K1 , K2#52K3 , @K3 , K6#562K6 . ~93!

Calculating their commutation relations withJ6 , and using Eq.~59!, we find that

@K2 , J2#50, @K1 , J2#52J1 , @K3 , J2#52J2 ,
~94!

@K2 , J1#5J2 , @K1 , J1#50, @K3 , J1#51J1 .

The algebra of operators,$K6 ,K3 ,J6 ,I %, has the su(1,1)hw1
c structure.

We define a generalized displacement-operator squeezed state,5,9,10,15Va,z , as follows:

Va,z5D~a!S~z!V0 , ~95!

whereD(a) is given in Eq.~76! andS(z) is the squeeze operator

S~z!5exp~zK12 z̄K2!. ~96!

The parameterz is complex. For computational purposes, it is more convenient to write
squeeze operator in the form of ‘‘canonical coordinates of the second kind.’’5 A Baker–
Campbell–Hausdorff relation5,9,16 gives this form as

S~z!5exp~g1K1! exp~g3K3! exp~g2K2!, ~97!

where

g252
z̄

uzu
tanhuzu, g15

z

uzu
tanhuzu, g352 ln ~coshuzu!, ~98!

z5reiu, r 5uzu. ~99!

B. Position and momentum expectation values

To compute expectation values of position and momentum, we again employ the ope
~77! and ~78! and follow the same method of calculation as in Ref. 5:
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^x~ t !&5^a,zuXua,z&5^0uS21~z!D21~a!uXuD~a!S~z!u0&, ~100!

^p~ t !&5^a,zuPua,z&5^0uS21~z!D21~a!uPuD~a!S~z!u0&. ~101!

Making use of Eq.~39! we obtain the adjoint action of the group operatorsS(z) andD(a) on X
andP, respectively,

S21~z!D21~a!XD~a!S~z!5XX,2J21XX,1J11XX,I I , ~102!

S21~z!D21~a!PD~a!S~z!5XP,2J21XP,1J11XP,I I . ~103!

The coefficients of the operators in these two expressions are

XX,25ḠP~eg32g2g1e2g3!2GPe2g35ḠP coshr 1GPe2 iu sinhr ,

XX,15ḠPg1e2g31GPe2g35ḠPeiu sinhr 1GP coshr , ~104!

XX,I5aḠP1āGP1 iF P ,

XP,25ḠX~eg32g2g1e2g3!2GXe2g35ḠX coshr 1GXe2 iu sinhr ,

XP,15ḠXg1e2g31GXe2g35ḠXeiu sinhr 1GX coshr , ~105!

Xp,I5aḠX1āGX1 iF X ,

whereGX andGP are given in Table II.
Combining Eqs.~100!–~105!, we obtain the equations~80! and ~81! for ^x(t)& and ^p(t)&,

respectively. Identifying an initial position and momentum, as in Eq.~82!; we end up with Eqs.
~84! and~85! for ^x(t)& and^p(t)& in terms ofx0 andp0 . The expectation values for position an
momentum for each of the three classes of equations are given in Eqs.~86!–~88!.

C. Uncertainties

To obtain the squeezed-state uncertainty products, we proceed in the same way as we
the coherent states, but with the operators~102! and ~103!. The uncertainties in position an
momentum are

~Dx!25 1
2~ḠP

2eiu1GP
2e2 iu! sinh 2r 1GPḠP cosh 2r , ~106!

~Dp!25 1
2~ḠX

2eiu1GX
2e2 iu! sinh 2r 1GXḠX cosh 2r . ~107!

These are both real and positive sinceGPe2 iu/21ḠPeiu/2 and GXe2 iu/21ḠXeiu/2 are both real.
Particular expressions (Dx)2 and (Dp)2, for the TQ, TM, and TM systems, can be obtained
using the values ofGP andGX in Table II.

After some manipulation, we obtain the following expression for the uncertainty produc

~Dx!2~Dp!25 1
4$11@~GPḠX1ḠPGX! cosh 2r 1~GPGXe2 iu1ḠPḠXeiu! sinh 2r #2%.

~108!

As for the coherent states, we have used the identity~74! to aid in obtaining this result.
Note that coefficients of cosh 2r in Eqs. ~106! and ~107! and of cosh2 2r in Eq. ~108! are

identical to their respective coherent-state expressions~90! and ~91!. Also, as expected, the un
certainties and uncertainty products for the coherent states can be reclaimed by setting the
ing parametersr 5u50 in the above.
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Finally, from Table II, the uncertainty products for the three classes of equations are

TQ: ~Dx!2~Dp!25 1
4$11 1

4@~ f̂̇318ĵ̇jĜ ke22n! cosh 2r 1~@ḟ114ĵ̇2ke22n#e2 iu

1@ f̂̇214jĜ 2ke22n#eiu!sinh 2r #2%, ~109!

TM: ~Dx!2~Dp!25 1
4$11 1

4@ f̂̇3 cosh 2r 1~ f̂̇1e2 iu1 f̂̇2eiu!sinh 2r #2%. ~110!

The functionsf̂̇ j (t), j 51,2,3, are in Eq.~34!:

TO: ~Dx!2~Dp!25 1
4$11 1

4@ḟ3 cosh 2r 1~ḟ1e2 iu1ḟ2eiu! sinh 2r #2%. ~111!

The functionsf j (t8), j 51,2,3, are in Eq.~28!.
For the harmonic oscillator,5 ḟ350, ḟ15 i exp@2iv(t2t0)#, and ḟ25ḟ1* . ~Recall we ignore

primes for time in this section.! The uncertainty product becomes

~Dx!2~Dp!25
1

4 F11
1

4 S s22
1

s2D 2

sin2 @2v~ t2to!2u#G , s5expr . ~112!

This expression is well known. See, e.g., Eq.~86! in Ref. 17.

VII. DISCUSSION

A. Uncertainty relations

We have been considering Heisenberg–Weyl~HW! algebras withJ2 , J1 , and I satisfying
the appropriate commutation relations. Now define

X5
J21J1

&
, P5

J22J1

i&
. ~113!

Then, the coherent states we have defined@see Eqs.~75! and ~76!#,

ub&5D~a!u0&, D~a!5exp@aJ12āJ2#, ~114!

minimize the Heisenberg uncertainty relation

~DX!2~DP!2> 1
4. ~115!

In addition, in Eq.~92!, we have have defined the su(1,1) algebra withK2 , K1 , andK3

satisfying the appropriate commutation relations among themselves and with the HW alge
Then the squeezed states@see Eq.~95!#,

ua,z&5D~a!S~z!u0&, S~z!5exp@zK212 z̄K1#, ~116!

minimize the Schro¨dinger–Robertson uncertainty relation

~DX!2~DP!2> 1
41 1

4u^$X2^X&,P2^P&%&u2, ~117!

where$,% is the anticommutator.18

Note thatx andp arenot X andP, but linear combinations of them andI, with multiplicative
coefficients. Therefore, although the uncertainty products ofx and p are correct and physically
relevant, they do not necessarily satisfy the equalities in Eqs.~115! and ~117!. In fact, they tend
not to, except possibly for particular times~such ast5to!. They do, however, often tend to b
close to minimum uncertainties.
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B. The classical motion

For coherent and squeezed states,^x(t)& and ^p(t)& should obey the classical Hamiltonia
equations of motion:

ẋ5
]H

]p
, p̂52

]H

]x
. ~118!

The ‘‘dot’’ indicates differentiation byt8 for TO systems and differentiation byt for TM and TQ
systems, andt and t8 are related through Eq.~I-67!.

The classical Hamiltonians associated with each class of Schro¨dinger equations are

TO: H5
p2

2
1g~2!~ t8!x21g~1!~ t8!x1g~0!~ t8!, ~119!

TM: Ĥ5e22n
p2

2
1 f ~2!~ t !x21 f ~1!~ t !x1 f ~0!~ t !, ~120!

TQ: H5@11k~ t !#
p2

2
2

h~ t !

2
xp12

g~ t !

2
p1h~2!~ t !x21h~1!~ t !x1h~0!~ t !. ~121!

Putting these Hamiltonians into Eqs.~118! one finds

TO: ẋ5p, ṗ522g~2!~ t8!x2g~1!~ t8!, ~122!

TM: ẋ5e22nx, ṗ522 f ~2!~ t !x2 f ~1!~ t !, ~123!

TQ: ẋ5@11k~ t !#p2
h~ t !

2
x2

g~ t !

2
, ṗ52

h~ t !

2
p22h~2!~ t !x2h~1!~ t !. ~124!

Now consider the expectation values^x& and^p& in Eqs.~86!–~88! and their time derivatives
Making extensive use of Eqs.~I-32!, ~I-33!, ~I-59!–~I-61!, ~I-66!, ~25!, ~34!, and ~35!, one can
demonstrate that these quantities satisfy Eqs.~122!–~124! with x→^x& and p→^p&. Thus, the
classical motion is satisfied.
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Three flavor neutrino oscillations in matter
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We derive analytic expressions for three flavor neutrino oscillations in the presence
of matter in the plane wave approximation using the Cayley–Hamilton formalism.
Especially, we calculate the time evolution operator in both flavor and mass bases.
Furthermore, we find the transition probabilities, matter mass squared differences,
and matter mixing angles all expressed in terms of the vacuum mass squared
differences, the vacuum mixing angles, and the matter density. The conditions for
resonance in the presence of matter are also studied in some examples. ©2000
American Institute of Physics.@S0022-2488~00!01605-4#

I. INTRODUCTION

There are at present essentially four different types of experiments looking for neu
oscillations:1 solar neutrino experiments, atmospheric neutrino experiments, accelerator ne
experiments, and reactor neutrino experiments. Among the accelerator and reactor exper
the accelerator long baseline experiments2 are just beginning to become operative. Also the S
bury Neutrino Observatory~SNO!3 has started to take data on solar neutrinos. An accumula
amount of data on neutrino oscillations is therefore becoming accessible. Yet, at present t
no general agreement on the mixing angles or the mass squared differences of the neutrin

In a previous paper,4 we described a global analysis of neutrino oscillation data in a th
flavor neutrino scenario. In that analysis, we deliberately considered mass ranges for the s
that avoided the region where the solar and atmospheric neutrinos could be affected
so-called Mikheyev–Smirnov–Wolfenstein~MSW! effect.5

Here we would like to report on the second stage of a global analysis of all the neu
oscillation data in the three flavor neutrino model and present analytic expressions for the
lation probabilities in the presence of matter expressed in the Cabibbo–Kobayashi–Ma
~CKM! mixing matrix elements~or @vacuum# mixing angles! and the neutrino energies or masse
i.e., incorporating the MSW effect.

We will assume as before thatCP nonconservation is negligible at the present level
experimental accuracy.6 Thus, the CKM matrix for the neutrinos is real.

Previous work on models for three flavor neutrino oscillations in matter includes work
Bargeret al.,7 Kim and Sze,8 and Zaglauer and Schwarzer.9 Our method is different from all thes
approaches and their parametrizations also differ slightly from ours. In particular, we calcula
time evolution operator and do not introduce the auxiliary~effective! matter mixing angles.

Approximative solutions for three flavor neutrino oscillations in matter have been pres
by Kuo and Pantaleone10 and Joshipura and Murthy.11 Approximative treatments have also be
done by Toshev and Petcov.12 D’Olivo and Oteo have made contributions by using an appro
mative Magnus expansion for the time evolution operator13 and Aquino, Bellandi, and Guzzo hav
found the auxiliary matter mixing angles in terms of the vacuum mixing angles.14 Extensive
numerical investigations of matter enhanced three flavor oscillations have been made by
et al.15

Below we derive the expressions for the transition probabilities in the case of three

a!Electronic address: tommy@theophys.kth.se
b!Electronic address: snell@theophys.kth.se
27680022-2488/2000/41(5)/2768/21/$17.00 © 2000 American Institute of Physics
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neutrino oscillations when the neutrinos pass through matter~the MSW effect! using Cayley–
Hamilton’s theorem. This allows us to give rather explicit analytic formulas in terms of elem
tary functions for the quite involved expressions for the transition probabilities. We deriv
time evolution operator for a constant matter~electron! density. The most straightforward way t
use this result is to approximate any density profile with step functions and to obtain the tota
evolution as a product of the evolution in each step. This can easily be handled numerical16

The three auxiliary angles of rotation from the matter mass eigenstate basis to the flavo
basis can be identified from these expressions and we show their relation to the ordinary f
ism.

The application of this formalism to the analysis of the neutrino oscillation data wil
presented in a forthcoming publication. Here we will only illustrate the qualitative behavior o
transition probabilities and the auxiliary matter mixing angles as functions of the matter de
for different choices of the vacuum mixing angles and the mass squared differences.

It is possible to adapt the formalism presented here to the case of a scenario with an ar
number of neutrinos, but the eigenvalues have to be solved for numerically for the case of
more neutrino flavors.

The outline of our paper is as follows. We first go through some formalism in Sec. II and
set out to find the solution for the time evolution operator and the transition probabilities i
presence of matter. In Sec. III, the main result of our analysis is given by the time evo
operator for the neutrinos when passing through matter with constant matter density expre
a finite sum of elementary functions in the matrix elements of the Hamiltonian, and in Sec. IV
transition probabilities in presence of matter are given. In Sec. V, we determine the aux
matter mixing angles. Finally, in Sec. VI, we present a discussion of our main results an
illustrations.

II. FORMALISM

Neutrinos are produced in flavor ‘‘eigenstates’’una& (a5e,m,t) created by the interaction o
the weak gauge bosons with the charged leptons. Between the source, the production poin
neutrinos, and the detector, the neutrinos evolve as mass eigenstatesuna& (a51,2,3), i.e., as state
with definite mass. At the detector, the neutrino flavors can again be identified by charge c
interactions. It is also possible to detect the neutrinos by weak neutral current interactions.
case, however, the weak neutral currents do not distinguish the flavors on the detector side,
total neutrino flux will be measured.

Let the flavor state basis and the mass eigenstate basis be given byHf[$una&%a5e,m,t and
Hm[$una&%a51

3 , respectively. Then the flavor statesuna&PHf can be obtained as superpositio
of the mass eigenstatesuna&PHm , or vice versa. Observe that the basesHf andHm are just two
different representations of the same Hilbert spaceH.

In the present analysis, we will use the plane wave approximation to describe neutrino
lations. In this approximation, a neutrino fieldna with flavor a is a linear combination of neutrino
mass fieldsna such that17

na5 (
a51

3

Uaana , a5e,m,t, ~1!

where theUaa’s are entries in a 333 unitary matrixU. Taking the Hermitian conjugate of Eq.~1!
yields

na
†5 (

a51

3

Uaa* na
† , a5e,m,t. ~2!

Acting with Eq. ~2! on the vacuum stateu0& gives
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una&5 (
a51

3

Uaa* una&, a5e,m,t, ~3!

since the states are defined asuna&[na
† u0&, wherea5e,m,t, and una&[na

†u0&, wherea51,2,3.
In what follows, we will use the short-hand notationsua&[una& andua&[una& for the flavor states
and the mass eigenstates, respectively. An arbitrary neutrino statecPH can, of course, be ex
pressed in both the flavor and mass bases as

c[ (
a5e,m,t

caua&5 (
a5e,m,t

ca (
a51

3

Uaa* ua&5 (
a51

3 S (
a5e,m,t

caUaa* D ua&[ (
a51

3

caua&, ~4!

whereca , a5e,m,t, andca , a51,2,3, are the components of the statec in the flavor state basis
and the mass eigenstate basis, respectively, and they are related to each other by

ca5 (
a5e,m,t

Uaa* ca , a51,2,3. ~5!

In matrix form, one has

c f5Ucm , ~6!

where

c f5~ca!5S ce

cm

ct

D PHf and cm5~ca!5S c1

c2

c3

D PHm .

Here the subscriptsf and m denote the flavor state basis and the mass eigenstate basis, r
tively.

The unitary matrixU is given by

U5~Uaa!5S Ue1 Ue2 Ue3

Um1 Um2 Um3

Ut1 Ut2 Ut3

D . ~7!

A convenient parametrization forU5U(u1 ,u2 ,u3) is given by18

U5S C2C3 S3C2 S2

2S3C12S1S2C3 C1C32S1S2S3 S1C2

S1S32S2C1C3 2S1C32S2S3C1 C1C2

D , ~8!

whereSi[sinui and Ci[cosui for i 51,2,3. This is the so-called standard representation of
CKM mixing matrix. The quantitiesu i , wherei 51,2,3, are the so-called~vacuum! mixing angles.
We have here put the CP phase equal to zero in the CKM matrix. This means thatUaa* 5Uaa for
a5e,m,t anda51,2,3.

In the mass eigenstate basisHm , the HamiltonianH for the propagation of the neutrinos i
vacuum is diagonal and given by

Hm5S E1 0 0

0 E2 0

0 0 E3

D , ~9!
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whereEa5Ama
21p2, a51,2,3, are the energies of the neutrino mass eigenstatesua&, a51,2,3

with massesma , a51,2,3. Note that we assume the momentump to be the same for all mas
eigenstates.

When neutrinos propagate in matter, there is an additional term coming from the prese
electrons in the matter.5 This term is diagonal in the flavor state basisHf and is given by

Vf5AS 1 0 0

0 0 0

0 0 0
D , ~10!

whereA56A2GFNe is the matter density. HereGF is the Fermi weak coupling constant andNe

is the electron density. The sign depends on whether we deal with neutrinos (1) or antineutrinos
(2). We will assume that the electron densityNe is constant throughout the matter in which th
neutrinos are propagating. In the mass representation, this piece of the HamiltonianVm

5U21VfU, where againU is the CKM matrix.
We are looking for the unitary transformation that leads from the initial statec f(0) in flavor

basis at timet50 of production of the neutrino, to the state of the same neutrinoc f(t) at the
detector at timet. This transformation is given by the operatorU f(t)[U f(t, 0), whereU f(t2 , t1)
is the time evolution operator from timet1 to time t2 in flavor basis. This operator can be formal
written asU f(t)5e2 iH f t. When the neutrinos are propagating through vacuum, the Hamiltonia
flavor basis isH f5UHmU21. In this case, the exponentiation ofH f can be effectuated easily
U f(t)5e2 iH f t5Ue2 iH mtU21, and the result can be expressed in closed form. In the case w
the neutrinos propagate through matter, the Hamiltonian is not diagonal in either the mass
state or the flavor state basis, and we have to calculate the operatorU f(t). This is the task we now
set out for.

III. CALCULATING THE TIME EVOLUTION OPERATOR

The Schro¨dinger equation in the mass eigenstate basis is

i
d

dt
cm~ t !5Hmcm~ t !, ~11!

where

Hm5Hm1Vm

is the Hamiltonian.
Similarly, in the flavor state basis, one has

i
d

dt
c f~ t !5H fc f~ t !, ~12!

where

H f5H f1Vf .

In the mass eigenstate basis, the matter term~the potential matrix! is

Vm5U21VfU. ~13!

Thus, the total Hamiltonian in the mass eigenstate basis is given by

Hm5Hm1U21VfU. ~14!
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Equation~11! has the solution

cm~ t !5e2 i Hmtcm~0!. ~15!

Insertingt5L into Eq. ~15!, one finds the solution in the mass eigenstate basis to be

cm~L !5e2 i HmLcm~0![Um~L !cm~0! ~16!

and in the flavor state basis

c f~L !5Ucm~L !5Ue2 i HmLcm~0!5Ue2 i HmLU21Ucm~0!5Ue2 i HmLU21c f~0!

[U f~L !c f~0!. ~17!

Inserting the potential matrix in the flavor basis and the CKM matrix into Eq.~13! yields

Vm5AS Ue1
2 Ue1Ue2 Ue1Ue3

Ue2Ue1 Ue2
2 Ue2Ue3

Ue3Ue1 Ue3Ue2 Ue3
2

D , ~18!

which is a~real! symmetric matrix. Then, the Hamiltonian in the mass eigenstate basis is

Hm5S E11AUe1
2 AUe1Ue2 AUe1Ue3

AUe2Ue1 E21AUe2
2 AUe2Ue3

AUe3Ue1 AUe3Ue2 E31AUe3
2
D . ~19!

Of course, we also haveU f(L)5e2 i H f L, but we prefer to first work outUm(L)5e2 i HmL, since
the structure ofHm is much simpler than that ofH f , and afterwards perform the transformatio
to U f(L).

Next, we need to find the exponential of the matrix2 i HmL in order to obtainUm(L).
Generally, when one wants to find the exponential of anN3N matrix M, one has to calculate

eM5 (
n50

`
1

n!
Mn. ~20!

The characteristic equation of the matrixM is given by

x~l![det~M2lI !5lN1cN21lN211•••1c1l1c050, ~21!

whereci , i 50, 1, . . . ,N21, are some coefficients. Cayley–Hamilton’s theorem implies thatl in
the characteristic equation can be replaced with the matrixM itself, giving

MN1cN21MN211•••1c1M1c0I 50, ~22!

whereI is theN3N identity matrix. Hence, one has

MN52cN21MN212•••2c1M2c0I , ~23!

which means that

M p5cN21
(p) MN211•••1c1

(p)M1c0
(p)I , for any p>N, ~24!

whereci
(p) , i 50, 1, . . . ,N21, are some coefficients. The exponential of the matrixM can then be

written as
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eM5a0I 1a1M1•••1aN21MN215 (
n50

N21

anMn, ~25!

where ai , i 50, 1, . . . , N21, are some coefficients. Thus, the infinite series in Eq.~20! is
reduced to onlyN terms, whereN is the dimension of the matrixM.

An arbitraryN3N matrix M can always be written as

M5M01
1

N
~ trM !I , ~26!

whereM0 is anN3N traceless matrix, i.e., trM050. Splitting upM as in Eq.~26! is useful, since
the identity matrixI is commuting with all other matrices.

Now using Eqs.~25! and ~26!, one can write the exponential of the matrix2 i HmL as

e2 i HmL5fe2 iLT5f@a0I 1a1~2 iLT !1a2~2 iLT !2#5f~a0I 2 iLTa12L2T2a2!, ~27!

wheref[e2 iL tr Hm/3is a complex phase factor,T[Hm2(tr Hm)I /3 is a traceless matrix, an
a0 , a1 , anda2 are coefficients to be determined. The infinite series in Eq.~20! is here reduced to
only three terms. The trace of the matrixHm is

tr Hm5E11E21E31A. ~28!

The matrixT can now be written as

T5~Tab!

5S AUe1
2 2 1

3 A1 1
3 ~E121E13! AUe1Ue2 AUe1Ue3

AUe1Ue2 AUe2
2 2 1

3 A1 1
3 ~E211E23! AUe2Ue3

AUe1Ue3 AUe2Ue3 AUe3
2 2 1

3 A1 1
3 ~E311E32!

D ,

~29!

where Eab[Ea2Eb . The six quantitiesEab , where a,b51, 2, 3 andaÞb, are not linearly
independent, since they obey the following relations:

Eba52Eab , ~30!

E121E231E3150. ~31!

This means that only two of theEab’s are linearly independent, e.g.,E21 andE32.
The following linear system of equations will determine the coefficientsa0 , a1 , and a2

introduced in Eq.~27! above,

e2 iLl15a02 iLl1a12L2l1
2a2

e2 iLl25a02 iLl2a12L2l2
2a2

e2 iLl35a02 iLl3a12L2l3
2a2

, ~32!

where la , a51, 2, 3, are the eigenvalues of the matrixT, i.e., solutions to the characterist
equation

l31c2l21c1l1c050

with
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c252tr T50,

c15T11T222T12T211T11T332T13T311T22T332T23T32

52 1
3 A21 1

3 A@Ue1
2 ~E211E31!1Ue2

2 ~E121E32!1Ue3
2 ~E131E23!#

2 1
9 ~E12

2 1E13
2 1E23

2 1E12E131E21E231E31E32!,

c052detT52 2
27 A31 1

9 A2@Ue1
2 ~E211E31!1Ue2

2 ~E121E32!1Ue3
2 ~E131E23!#

2 1
9 A@Ue1

2 ~E211E23!~E311E32!1Ue2
2 ~E121E13!~E311E32!

1Ue3
2 ~E121E13!~E211E23!1 1

3 ~E12
2 1E13

2 1E23
2 1E12E131E21E231E31E32!#

2 1
27 ~E121E13!~E211E23!~E311E32!.

Note that the coefficientsc0 , c1 , andc2 are all real. Introducing the relativistic limit~see Appen-
dix A!, E21 andE32 can be written in terms of the mass squared differencesDm2 (5Dm21

2 ) and
DM2 (5Dm32

2 ) as

E215
Dm2

2E
and E32.

DM2

2E
,

whereE is the neutrino energy.
The solutions to the characteristic equation are19

l152
1

2
~s11s2!2

1

3
c21 i

A3

2
~s12s2!52

1

2
~s11s2!1 i

A3

2
~s12s2!, ~33!

l252
1

2
~s11s2!2

1

3
c22 i

A3

2
~s12s2!52

1

2
~s11s2!2 i

A3

2
~s12s2!, ~34!

l35s11s22
1

3
c25s11s2 , ~35!

where

s15@r 1~q31r 2!1/2#1/3, s25@r 2~q31r 2!1/2#1/3,

and

q5 1
3 c12 1

9 c2
25 1

3 c1 ,

r 5 1
6 ~c1c223c0!2 1

27c2
352 1

2 c0 .

SinceT is a Hermitian matrix (T is a real symmetric matrix!, it holds thatq31r 2<0 and all
eigenvaluesla , wherea51,2,3, are real. Furthermore, insertingq5c1/3 andr 52c0/2 into the
inequality q31r 2<0, one findsc1

3/271c0
2/4<0 from which one can conclude thatc1<0 and

uc1u>3uc0u2/3/A3 4, sincec0 ,c1PR. Thus, the roots~eigenvalues! can be written as

l152A2
1

3
c1cosF1

3
arctanS 1

c0
A2c0

22
4

27
c1

3D G1A2c1sinF1

3
arctanS 1

c0
A2c0

22
4

27
c1

3D G ,
~36!
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l252A2
1

3
c1cosF1

3
arctanS 1

c0
A2c0

22
4

27
c1

3D G2A2c1sinF1

3
arctanS 1

c0
A2c0

22
4

27
c1

3D G ,
~37!

l352A2
1

3
c1cosF1

3
arctanS 1

c0
A2c0

22
4

27
c1

3D G . ~38!

Observe thatl11l21l350. This relation is satisfied because of the fact that the trace ofT is
zero. In addition, the relationsl1l21l1l31l2l35c1<0 andl1l2l352c0 are fulfilled.

The la’s are, up to a constant, the energy eigenvalues of the neutrinos in the prese
matter. The measurable quantities are the energy differencesula2lbu, which in the relativistic
limit are related to the effective matter mass squared differencesDm̃ab

2 as

ula2lbu5
uDm̃ab

2 u
2E

, a,b51,2,3, aÞb, ~39!

whereE is again the neutrino energy.
Introducing the following matrix form representation for the system of equations in Eq.~32!,

e5La, ~40!

where

e5S e2 iLl1

e2 iLl2

e2 iLl3

D , L5S 1 2 iLl1 2L2l1
2

1 2 iLl2 2L2l2
2

1 2 iLl3 2L2l3
2
D , and a5S a0

a1

a2

D ,

one obtains the solution

a5L21e5
1

D S iL 3~l2l3
22l2

2l3! iL 3~l1
2l32l1l3

2! iL 3~l1l2
22l1

2l2!

2L2~l2
22l3

2! 2L2~l3
22l1

2! 2L2~l1
22l2

2!

2 iL ~l32l2! 2 iL ~l12l3! 2 iL ~l22l1!
D S e2 iLl1

e2 iLl2

e2 iLl3

D
5

1

D S iL 3@e2 iLl1~l2l3
22l2

2l3!1e2 iLl2~l1
2l32l1l3

2!1e2 iLl3~l1l2
22l1

2l2!#

2L2@e2 iLl1~l2
22l3

2!1e2 iLl2~l3
22l1

2!1e2 iLl3~l1
22l2

2!#

2 iL @e2 iLl1~l32l2!1e2 iLl2~l12l3!1e2 iLl3~l22l1!#
D ,

~41!

where

D[detL5 iL 3~l1l2
22l1

2l21l2l3
22l2

2l31l3l1
22l3

2l1!.

Thus, the exponential of the matrix2 i HmL in Eq. ~27! can be written as

e2 i HmL5fe2 iLT52 if
L3

D
$@e2 iLl1~l2

2l32l2l3
2!1e2 iLl2~l1l3

22l1
2l3!

1e2 iLl3~l1
2l22l1l2

2!#I 1@e2 iLl1~l3
22l2

2!1e2 iLl2~l1
22l3

2!

1e2 iLl3~l2
22l1

2!#T1@e2 iLl1~l32l2!1e2 iLl2~l32l1!

1e2 iLl3~l12l2!#T2%. ~42!
                                                                                                                



s-

ithout

2776 J. Math. Phys., Vol. 41, No. 5, May 2000 T. Ohlsson and H. Snellman

                    
Inserting the expression forD into Eq. ~42! gives

e2 i HmL5
1

~l12l2!~l12l3!
fe2 iLl1@l2l3I 2~l21l3!T1T2#

1
1

~l22l1!~l22l3!
fe2 iLl2@l1l3I 2~l11l3!T1T2#

1
1

~l32l1!~l32l2!
fe2 iLl3@l1l2I 2~l11l2!T1T2#. ~43!

Using the various relations for the eigenvalues finally yields

e2 i HmL5fe2 iLl1
~l1

21c1!I 1l1T1T2

3l1
21c1

1fe2 iLl2
~l2

21c1!I 1l2T1T2

3l2
21c1

1fe2 iLl3
~l3

21c1!I 1l3T1T2

3l3
21c1

, ~44!

which can be written as

Um~L !5e2 i HmL5f (
a51

3

e2 iLla
1

3la
21c1

@~la
21c1!I 1laT1T2#. ~45!

The evolution operator for the neutrinos in the flavor basis is thus given by

U f~L !5e2 i H f L5Ue2 i HmLU215f (
a51

3

e2 iLla
1

3la
21c1

@~la
21c1!I 1laT̃1T̃2#, ~46!

whereT̃[UTU21. Equation~46! is our final expression forU f(L).
Let us pause for a moment to contemplate Eqs.~45! and ~46!. SinceH f5UHmU21, it is

clear thatT̃5H f2(tr H f)I /35H f2(tr Hm)I /3 due to the invariance of the trace under tran
formation ofU. In fact, the characteristic equation is also invariant underU and therefore so are
the coefficientsc0 , c1 , c2 , and the eigenvaluesl1 , l2 , l3 . However, the expression forH f is
much more complicated than that forHm , which is the reason why we work withHm instead of
H f .

The formula~46! is our main result for the evolution operator. It expresses the time~or L)
evolution directly in terms of the mass squared differences and the vacuum mixing angles w
introducing any auxiliary matter mixing angles.

IV. PROBABILITY AMPLITUDES AND TRANSITION PROBABILITIES

The probability amplitude is defined as

Aab[^buU f~L !ua&, a,b5e,m,t. ~47!

Inserting Eq.~46! into Eq. ~47! gives

Aab5f (
a51

3

e2 iLla
~la

21c1!dab1laT̃ab1~ T̃2!ab

3la
21c1

, ~48!

where dab is Kronecker’s delta and the entriesT̃ab and (T̃2)ab , a,b5e, m, t, are given in
Appendix B. HereT̃ab5T̃ba and (T̃2)ab5(T̃2)ba .
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The probability of transition from a neutrino flavora to a neutrino flavorb is thus defined by
the expression

Pab[uAabu25Aab* Aab , a,b5e, m, t. ~49!

Inserting the expression for the probability amplitude into the definition of the transition prob
ity, one finds

Pab5 (
a51

3

(
b51

3

e2 iL (la2lb)
~la

21c1!dab1laT̃ab1~ T̃2!ab

3la
21c1

~lb
21c1!dab1lbT̃ab1~ T̃2!ab

3lb
21c1

.

~50!

Sincedab , T̃ab , and (T̃2)ab all are symmetric, it holds thatPab5Pba .
SettingA50 gives

^buUm~L !ua&5^bue2 iH mLua&5e2 iEaLdab , a,b51, 2, 3, ~51!

Aab5^buU f~L !ua&5 (
a51

3

UaaUbae2 iEaL, a,b5e, m, t, ~52!

and

Pab5dab24(
a51

3

(
b51

3

a,b

UaaUbaUabUbb sin2xab , a,b5e, m, t, ~53!

where xab[EabL/2, which are the well-known transition probabilities for vacuum oscillatio
~see, e.g., Ref. 4!.

We can write the probabilities for oscillations in matter in a form analogous to the ones fo
vacuum probabilities, as

Pab5S (
a51

3
~la

21c1!dab1laT̃ab1~ T̃2!ab

3la
21c1

D 2

24(
a51

3

(
b51

3

a,b

~la
21c1!dab1laT̃ab1~ T̃2!ab

3la
21c1

~lb
21c1!dab1lbT̃ab1~ T̃2!ab

3lb
21c1

sin2 x̃ab ,

a,b5e, m, t, ~54!

wherex̃ab[(la2lb)L/2. ForL50 Eq. ~46! reads

I 5 (
a51

3
1

3la
21c1

@~la
21c1!I 1laT̃1T̃2#. ~55!

This means that the corresponding matrix element version of the above formula is given b

dab5 (
a51

3
~la

21c1!dab1laT̃ab1~ T̃2!ab

3la
21c1

, a,b5e,m,t. ~56!

Hence, the transition probabilities in matter are
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Pab5dab24(
a51

3

(
b51

3

a,b

~la
21c1!dab1laT̃ab1~ T̃2!ab

3la
21c1

~lb
21c1!dab1lbT̃ab1~ T̃2!ab

3lb
21c1

sin2 x̃ab ,

a,b5e,m,t. ~57!

From unitarity, there are only three independent transition probabilities, since the other
can be obtained from them, i.e., from the equations

Pee1Pem1Pet51, ~58!

Pme1Pmm1Pmt51, ~59!

Pte1Ptm1Ptt51, ~60!

wherePem5Pme , Pet5Pte , and Pmt5Ptm . We will choosePem , Pet , and Pmt as the three
independent ones. The expression for the transition probabilities in Eq.~57! thus simplifies to

Pab524(
a51

3

(
b51

3

a,b

laT̃ab1~ T̃2!ab

3la
21c1

lbT̃ab1~ T̃2!ab

3lb
21c1

sin2 x̃ab , ~61!

which is valid only foraÞb.

V. DETERMINING THE AUXILIARY MATTER MIXING ANGLES

The flavor states can be expressed as linear combinations of either the vacuum mass
states (A50) in the basisHm or the matter mass eigenstates (AÞ0) in the basisHM . The
corresponding components are related to each other as follows:

c f5Ucm , ~62!

c f5UMcM , ~63!

whereU5U(u1 ,u2 ,u3) andUM5UM(u1
M ,u2

M ,u3
M) are the unitary mixing matrices for vacuum

and matter, respectively. Hereu i
M , i 51,2,3, are the auxiliary~effective! matter mixing angles.

Combining these expressions for the flavor components, one obtains the following re
between the two different sets of mass eigenstate components:

cM5Rcm , ~64!

where

R[~UM !21U.

The matrixR is, of course, a unitary matrix~even orthogonal, sinceU and UM are real!. This
means that the matter mixing matrix can be expressed in the vacuum mixing matrix as

UM~u1
M ,u2

M ,u3
M !5U~u1 ,u2 ,u3!R21. ~65!

The relations between the different bases can be depicted as in the following commutativ
gram:

From this diagram one readily obtains the Hamiltonian in presence of matterHM as
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HM[RHmR21 or HM[RTR211 1
3 ~ tr Hm!I ,

which is diagonal in the mass eigenstate basis in matter,HM .
Due to the invariance of the trace, we have

TM[HM2 1
3 ~ tr HM !I 5RTR21, ~66!

whereTM is a traceless diagonal matrix. This implies that

e2 iLTM5Re2 iLTR215 (
a51

3

e2 iLla
1

3la
21c1

@~la
21c1!I 1laTM1TM

2 #, ~67!

which is actually equivalent to the system of equations~32!.
Inverting the first relation above, we obtain

U f~L !5fUe2 iLTU215fUR21e2 iLTMRU215fUMe2 iLTM~UM !21. ~68!

From this one immediately obtains the transition amplitude

Aab5^buU f~L !ua&5f (
a51

3

Uaa
M Uba

M e2 iLla, a,b5e,m,t, ~69!

where theUaa
M ’s are the entries in the matrixUM. This allows us to identify theUM matrix

elements with those in Eq.~48! as

Uaa
M Uba

M 5
~la

21c1!dab1laT̃ab1~ T̃2!ab

3la
21c1

, a,b5e,m,t, a51,2,3. ~70!

The matter mixing angles can therefore be expressed as follows

u1
M[arctan

Um3
M

Ut3
M

5arctan
l3T̃em1~ T̃2!em

l3T̃et1~ T̃2!et

, ~71!

u2
M[arcsinUe3

M 5arcsinAl3
21c11l3T̃ee1~ T̃2!ee

3l3
21c1

, ~72!

u3
M[arctan

Ue2
M

Ue1
M

5arctan
l2T̃ea1~ T̃2!ea

l1T̃ea1~ T̃2!ea

3l1
21c1

3l2
21c1

, a5m,t. ~73!

The transition probabilities in matter can thus be written as

Pab5dab24(
a51

3

(
b51

3

a,b

Uaa
M Uba

M Uab
M Ubb

M sin2 x̃ab , a,b5e,m,t. ~74!

The above formulas for the transition probabilities are thus in effect exactly the same a
formulas in Eq.~57!.

When the matter density goes to zero, i.e.,A→0, thenUaa
M →Uaa (u i

M→u i) and x̃ab→xab .
Also Eqs.~57! and ~74! will become identical to Eq.~53! whenA50.
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To connect this treatment to the usual treatment in terms of the auxiliary matter mixing a
we have to find the matrixR. Using Eq.~66!, the matrixR, which diagonalizes the matrixT, can
be constructed from the eigenvectors of the matrixT as

R5S v1
T

v2
T

v3
T
D , ~75!

i.e.,

R215RT5~v1v2v3!, ~76!

where

va5S aa

ba

1
D za , a51,2,3.

Here

aa5
T12~T332la!2T13T23

T23~T112la!2T12T13
, ba5

T12~T332la!2T13T23

T13~T222la!2T12T23
, za5

1

Aaa
21ba

211
, a51,2,3.

The orthogonal matrixR is of course diagonalizing bothT andHm .
Equation~65! can now be written in matrix form as

S Ue1
M Ue2

M Ue3
M

Um1
M Um2

M Um3
M

Ut1
M Ut2

M Ut3
M
D [S C2

MC3
M S3

MC2
M S2

M

2S3
MC1

M2S1
MS2

MC3
M C1

MC3
M2S1

MS2
MS3

M S1
MC2

M

S1
MS3

M2S2
MC1

MC3
M 2S1

MC3
M2S2

MS3
MC1

M C1
MC2

M
D

5S C2C3 S3C2 S2

2S3C12S1S2C3 C1C32S1S2S3 S1C2

S1S32S2C1C3 2S1C32S2S3C1 C1C2

D
3S a1z1 a2z2 a3z3

b1z1 b2z2 b3z3

z1 z2 z3

D
[S Ue1 Ue2 Ue3

Um1 Um2 Um3

Ut1 Ut2 Ut3

D S ~v1!1 ~v2!1 ~v3!1

~v1!2 ~v2!2 ~v3!2

~v1!3 ~v2!3 ~v3!3

D , ~77!

whereSi
M[sinui

M and Ci
M[cosui

M for i 51,2,3. We can then obtain the matter mixing ang
from the above matrix relation as

u1
M5arctan

S1
M

C1
M

5arctan
~2S3C12S1S2C3!a3z31~C1C32S1S2S3!b3z31S1C2z3

~S1S32S2C1C3!a3z31~2S1C32S2S3C1!b3z31C1C2z3
, ~78!

u2
M5arcsinS2

M5arcsin~C2C3a3z31S3C2b3z31S2z3!, ~79!
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u3
M5arctan

S3
M

C3
M

5arctan
C2C3a2z21S3C2b2z21S2z2

C2C3a1z11S3C2b1z11S2z1
. ~80!

The conditions for resonance are given by the extremal points of the probability amplit
These will coincide with extremal points for the modulus of the amplitudes, thus for the pro
Uaa

M Uba
M or for the expressions in the right-hand side of Eq.~70! as functions ofA.

VI. DISCUSSION

The main result of our analysis is given by the time evolution operator for the neutrinos
passing through matter with constant matter density in Eq.~46! expressed as a finite sum o
elementary functions in the matrix elements of the Hamiltonian. Also the transition probabilit
Eq. ~61! and the neutrino energies in presence of matterẼa5la , wherea51,2,3, given by Eqs.
~36!–~38! belong to our main results as do the expressions for the matter mixing angles in
~71!–~73!. In our treatment these auxiliary matter mixing angles play no independent role an
not really needed. It is convenient, though, to express the matter mixing angles in the
elements of the Hamiltonian to look for the resonance conditions.

As an illustration of the resonance phenomena, we have plotted the energy differ
ula2lbu, wherea,b51,2,3,aÞb, and the behavior of the matter mixing anglesu1

M , u2
M , u3

M as
a function of the matter densityA for two different cases. First for two mass squared differen
that are close and bimaximal mixing,20 i.e., two large mixing angles and one small. The results
presented in Figs. 1 and 2. Then for two widely separated mass squared differences and
mixing angles small. These results are presented in Figs. 3 and 4. The energy diffe
ula2lbu are related to the effective matter mass squared differencesDm̃ab

2 by the following
relations

uDm̃ab
2 u52Eula2lbu, a,b51,2,3, aÞb.

As can be seen from Figs. 1–4, the resonances occur~i.e., the mixing is maximal! when the
energy levels in presence of matter approach each other as function of the matter densityA. As the
mass squared differences approach each other in magnitude, the resonances move closer
and the mixing angleu1

M , which looks quite flat~constant! at large separations of the ma
squared differences, will have a modest increase above the location of the~higher! resonance of

FIG. 1. The differencesula2lbu, a,b51,2,3,aÞb, as a function of the matter densityA for u15u3545° ~bimaximal
mixing!, u255°, Dm251024 eV2, DM251023 eV2, andE510 GeV.
                                                                                                                



nance
n for

hanged

roxi-

s
res
ond to
f atmo-

2782 J. Math. Phys., Vol. 41, No. 5, May 2000 T. Ohlsson and H. Snellman

                    
the mixing angleu2
M . The smaller the vacuum mixing angles are, the sharper are the reso

peaks. For bimaximal mixing the resonance occurs only for the small mixing angle, but eve
matter densities above the resonance region the values of the auxiliary mixing angles are c
appreciably from their vacuum values, as is shown in Fig. 2.

Our results for the auxiliary matter mixing angles are in agreement with the previous app
mative and numerical calculations in Refs. 8,9,11,12, and 14.

We have also calculated the transition probabilitiesPab for neutrino oscillations in matter a
functions of the matter densityA. The results are illustrated in Figs. 5 and 6. These two figu
correspond to the only physically measurable quantities. Our illustration is chosen to corresp
values of the mass squared differences that are close to those obtained from analyses o
spheric neutrino data. In Fig. 5~c!, we can see a sharp drop in the probabilityPee at a matter

FIG. 2. The quantities sin2 2ui
M , i 51,2,3, as a function of the matter densityA for u15u3545° ~bimaximal mixing!,

u255°, Dm251024 eV2, DM251023 eV2, andE510 GeV. Note that sin2 2ui
M51 corresponds to maximal mixing.

FIG. 3. The differencesula2lbu, a, b51, 2, 3,aÞb, as a function of the matter densityA for u15u25u3510°, Dm2

510210 eV2, DM251024 eV2, andE510 GeV.
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density of about 5•10214 eV ~same parameter values as in Figs. 1 and 2! for a sensitivity of
L/E'1.6•105 eV22as the neutrinos pass through the Earth. This corresponds to an enhanc
of Pem andPet at the same value ofA, whereas the probabilityPmt wiggles in the same region
Due to unitarity only three of these probabilities are of course independent.

The Cayley–Hamilton formalism could in principle be used to derive neutrino oscilla
formulas in matter for arbitrary numbers of neutrino flavors. However, the calculations for fo
even more flavors will be much more tedious than in the case of three neutrino flavors. Fo
or more flavors, the unitary mixing matrices have more complicated structures than in the
flavor case. Another complication, for more than four flavors, is that one will not, in genera
able to find analytical solutions to the characteristic equation, since only characteristic equ
up to degree four are analytically solvable.

In Appendix C, we have given, as a comparison and reference, the derivation of the ne
oscillation formulas in matter for two neutrino flavors also using the Cayley–Hamilton forma
We observe that the derivation for two flavors is much easier to make than that for three fl
The evolution operatorUm(L) can of course be written in a much more compact form for t
flavors than for three; compare Eqs.~45! and ~C5!.

FIG. 4. The quantities sin2 2ui
M , i 51,2,3, as a function of the matter densityA for u15u25u3510°, Dm2

510210 eV2, DM251024 eV2, andE510 GeV. Note that sin2 2ui
M51 corresponds to maximal mixing.

FIG. 5. The transition probabilityPee as a function of the matter densityA for u15u3545° ~bimaximal mixing!, u2

55°, Dm251024 eV2, DM251023 eV2, and L/E5h (2R% /10 GeV).3.233104 eV22 h, whereR% .6378 km
.1.6231014 eV-1 is the ~equatorial! radius of the Earth.~a! h51/5, ~b! h51, and~c! h55.
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APPENDIX A: INTRODUCING THE RELATIVISTIC LIMIT

We will here introduce the relativistic limit by reparametrizing the expressions for the en
differences. Any two ofE21, E32, andE13 can be chosen as independent variables. Thus, we
Eab5Dmab

2 /(Ea1Eb) for a,b51,2,3 andaÞb, whereDmab
2 [ma

22mb
2 . Without lack of gener-

ality, we will assume that there is a mass ordering withm1,m2,m3 . Apart from the masses, w
will take the momentum as a common independent variable and assume that the momentum
same for all components of the mixed state. However, it is convenient to use instead the en
an independent quantity. This choice can again be made in several ways. For definiteness,
here choose as physical variablesE[(E11E2)/2, Dm2[Dm21

2 , andDM2[Dm32
2 . This gives

E215
Dm2

2E
, ~A1!

E3252S E1
Dm2

2E D1AS E1
Dm2

2E D 2

1DM2. ~A2!

Since in the applicationsDM /E!1 (&1026), we find the excellent approximation

E32.
DM2

2E
. ~A3!

Equations~A1! and ~A3! lead to the following expressions for the coefficientsc2 , c1 , andc0:

c250, ~A4!

FIG. 6. Transition probabilities as functions of the matter densityA, using the same parameter values as for Fig. 5~c!. ~a!
Pee , ~b! Pem , ~c! Pet , and d! Pmt .
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c1.2
1

3
A21

A

6E
@Ue1

2 ~DM212Dm2!1Ue2
2 ~DM22Dm2!2Ue3

2 ~2DM21Dm2!#

2
1

12E2
~DM41Dm41DM2Dm2!, ~A5!

c0.2
2

27
A31

A2

18E
@Ue1

2 ~DM212Dm2!1Ue2
2 ~DM22Dm2!2Ue3

2 ~2DM21Dm2!#

1
A

36E2
@Ue1

2 ~2DM21Dm2!~DM22Dm2!1Ue2
2 ~2DM21Dm2!~DM212Dm2!

2Ue3
2 ~DM212Dm2!~DM22Dm2!2~DM41Dm41DM2Dm2!#

2
1

216E3
~2DM21Dm2!~DM212Dm2!~DM22Dm2!. ~A6!

APPENDIX B: THE ENTRIES OF THE MATRICES T̃ AND T̃2

The entries of the 333 real symmetric matrixT2 are

~T2!115
1
3 @A2~Ue1

2 1 1
3!12A~Ue1

2 2 1
3!~E121E13!1 1

3 ~E121E13!
2#, ~B1!

~T2!225
1
3 @A2~Ue2

2 1 1
3!12A~Ue2

2 2 1
3!~E211E23!1 1

3 ~E211E23!
2#, ~B2!

~T2!335
1
3 @A2~Ue3

2 1 1
3!12A~Ue3

2 2 1
3!~E311E32!1 1

3 ~E311E32!
2#, ~B3!

~T2!125~T2!215
1
3 Ue1Ue2A~A1E131E23!, ~B4!

~T2!135~T2!315
1
3 Ue1Ue3A~A1E121E32!, ~B5!

~T2!235~T2!325
1
3 Ue2Ue3A~A1E211E31!. ~B6!

For the matricesT̃ and T̃2 we have the following expressions for the entries:

T̃ab5 (
a51

3

(
b51

3

UaaUbbTab , a,b5e,m,t, ~B7!

and

~ T̃2!ab5 (
a51

3

(
b51

3

UaaUbb~T2!ab , a,b5e,m,t. ~B8!

For aÞb Eq. ~B7! simplifies to

T̃ab5 (
a51

3

UaaUbaEa . ~B9!

APPENDIX C: THE TWO FLAVOR NEUTRINO CASE

Considering only a two flavor neutrino oscillation model instead of a three neutrino, the
Hamiltonian in the mass eigenstate basis and the potential matrix are
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Hm5S E1 0

0 E2
D and Vf5S A 0

0 0D . ~C1!

In the mass eigenstate basis, the potential matrix is given by

Vm5U21VfU, ~C2!

where

U5S Ue1 Ue2

Um1 Um2
D 5S cosu sinu

2sinu cosu D
is the usual 232 orthogonal matrix, which describes neutrino mixing with two neutrino flavo
Thus, we have

Vm5AS Ue1
2 Ue1Ue2

Ue1Ue2 Ue2
2 D ~C3!

and

Hm5Hm1Vm5S E11AUe1
2 AUe1Ue2

AUe1Ue2 E21AUe2
2 D . ~C4!

Again, we have to find the evolution operatorUm(L)5e2 i HmL. Similar but simpler formulas than
in the three flavor neutrino case now give

Um~L !5e2 i HmL5fe2 iLT5f (
a51

2

e2 iLla
1

2la

~laI 1T!5fS cos~Ll̃ !2 i
1

l̃
sin~Ll̃ !TD ,

~C5!

wheref[e2 iL tr Hm/2, T[Hm2(tr Hm)I /2, l152l̃, l25l̃, andl̃5A2detT. Here

l̃[A1

4
A22

x21

L S A cos 2u2
x21

L D , x21[
E21L

2
5

Dm2L

4E
, Dm2[m2

22m1
2 .

The quantityl̃ comes from the solutions,l1 and l2 , to the characteristic equationl21c1l
1c050, where c152tr T50 and c05detT52A2/41AUe1

2 E21/21AUe2
2 E12/21 E12E21/4

52A2/41x21 (A cos 2u2 x21/L)/L.
The evolution operatorUm(L) can now be written in matrix form as

Um~L !5fS a b

b a* D , ~C6!

where a5cos(Ll̃)2i (Acos 2u2 2x21/L) sin(Ll̃)/2l̃ and b52 i A sin 2u sin(Ll̃)/2l̃. Similarly,
the evolution operatorU f(L) is
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U f~L !5UUm~L !U21

5fS cosu sinu

2sinu cosu D S a b

b a* D S cosu 2sinu

sinu cosu D
5fS a cos2 u1a* sin2 u1b sin 2u

a* 2a

2
sin 2u1b cos 2u

a* 2a

2
sin 2u1b cos 2u a sin2 u1a* cos2 u2b sin 2u

D . ~C7!

The em-element of theU f(L) matrix is

~U f~L !!em5
a* 2a

2
sin 2u1b cos 2u52 if

x21

Ll̃
sin 2u sin~Ll̃ !. ~C8!

Taking the absolute value and squaring Eq.~C8!, we obtain the transition probabilityPem as

Pem5u~U f~L !!emu25
x21

2

~Ll̃!2
sin2 2u sin2~Ll̃ !

5
x21

2 sin2 2u

L2@A2/42 x21~A cos 2u2x21/L !/L#
sin2~Ll̃ !

5
sin2 2u

11 AL @AL/~4x21! 2cos 2u#/x21

sin2~Ll̃ !

5
sin2 2u

sin2 2u1@cos 2u2AL/~2x21!#
2

sin2~Ll̃ !, ~C9!

whereLl̃5Ax21
2 2ALx21@cos 2u2 AL/(4x21)#. Introducing the definitions

sin2 2uM[
sin2 2u

sin2 2u1~cos 2u2 ~A/E21!!2
~C10!

and

x̃21[Ax21
2 2ALx21S cos 2u2

AL

4x21
D5x21Asin2 2u1S cos 2u2

A

E21
D 2

, ~C11!

we can write

Pem5sin2 2uM sin2 x̃21. ~C12!

One could also immediately identify the definitions~C10! and~C11! from Eq. ~C8! by observing
that the factorx21sin 2u/Ll̃ should correspond to sin 2uM and that the argumentLl̃ in the factor
sin(Ll̃) should correspond tox̃21. This identification corresponds to the one in Eq.~70! above in
Sec. V. The factor2 if is just a complex phase factor.

Setting

cos 2u5
A

E21
~C13!
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in Eqs.~C10! and ~C12! gives

sin2 2uM51 ~maximal mixing!, ~C14!

Pem5sin2AS x211
AL

2 D S x212
AL

2 D5sin2 x21AS 11
A

E21
D S 12

A

E21
D , ~C15!

where Eq.~C13! is the so-called MSW resonance condition.
InsertingA50 into Eq.~C12! leads, of course, back toPem5sin2 2u sin2 x21, the old transition

probability formula forne-nm oscillations in vacuum.
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The origin of chiral anomaly and the noncommutative
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We describe scalar and spinor fields on a noncommutative sphere starting from
canonical realizations of the enveloping algebraA5U(u(2)). Thegauge extension
of a free spinor model, the Schwinger model on a noncommutative sphere, is
defined and the model is quantized. The noncommutative version of the model
contains only a finite number of dynamical modes and is nonperturbatively UV
regular. An exact expression for the chiral anomaly is found. In the commutative
limit the standard formula is recovered. ©2000 American Institute of Physics.
@S0022-2488~00!03905-0#

I. INTRODUCTION

The basic notions of the noncommutative geometry were developed in Refs. 1–3, in the
of the matrix geometry they appeared in Refs. 4 and 5. The essence of this approach cons
in reformulating the geometry in terms of commutative algebras and modules of smooth func
and then generalizing them to their noncommutative analogs. The notion of the space, th
tinuum of points, is lost, and this is expected to lead to an UV-regular quantum field theor

One of the simplest models for a noncommutative manifold is the noncommutative~fuzzy!
sphere, see Refs. 6–9. Simple field theoretical models containing scalar and spinor field
fuzzy sphere are described in Refs. 10–13, an alternative form of the Dirac operator was pr
in Refs. 14 and 15. The issue of gauge field was investigated in Ref. 16. A systematic appro
other structures on a fuzzy sphere, like monopoles and instantons, was proposed recently
17–19. All models in question possess only finite number of modes and are UV regular.

Our aim is to apply the ideas of a noncommutative geometry to the Schwinger model~quan-
tum electrodynamics in two dimension! on a fuzzy sphere. The commutative version was analy
in detail in Ref. 20. Its noncommutative matrix version was proposed in Ref. 21. In Ref.
supersymmetric Schwinger model was described possessing finite number of modes. In Ref
proposed an approach going beyond matrix models. Here we extend these investigations.

The construction of fuzzy field-theoretical models consists of two steps.
~1! Fuzzy kinematics: First we describe scalar and spinor fields on a noncommutative~fuzzy!

sphere starting from a canonical realization of the enveloping algebraA5U(u(2)), working
within the set of all finite dimensional fuzzy realizations of fields. Using a noncommuta
version of a prepotential formalism we straightforwardly perform the gauge extension o
model—the Schwinger model. It contains fuzzy fields: the spinor fieldsC̄, C, the dynamical
gauge fields, and a fuzzy gauge fieldl corresponding to the pure gauge. To guarantee the l
gauge symmetry the fieldl should be assumed within all its fuzzy realizations.

~2! Fuzzy dynamics: We define the gauge invariant fuzzy Schwinger model action depe
on a finite number of modes of dynamical fieldsC̄, C, ands. We quantize the Schwinger mode
within functional integral formalism integrating over dynamical modes. The truncation of m
cannot by performed for the the pure gauge fieldl, however the mean values of gauge invaria

a!Electronic mail: presnajder@fmph.uniba.sk
27890022-2488/2000/41(5)/2789/16/$17.00 © 2000 American Institute of Physics
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functionals arel independent: the integration over a finite number of dynamical modes give
same result for any fixedl. This guarantees the nonperturbative UV regularity of the model
allows us to calculate exactly the noncommutative chiral anomaly. Using an explicit* -product
formula on a sphere we recover in the commutative limit the standard result.

In Sec. II we describe the fuzzy kinematics of the Schwinger model. In Sec. III we form
its quantum fuzzy dynamics and calculate exactly the fuzzy chiral anomaly. Section IV con
concluding remarks.

II. FIELDS AND GAUGE INVARIANCE

A. The scalar field

We describe the scalar field on a sphereS2 in the SU(2)-invariant formulation, see Ref. 2
The sphere is interpreted as the Hopf fibration

S35$xPC2;x1x5r%→S25$x5~x1 ,x2 ,x3!PR3%

with xi5
1
2x

1s ix,i 51,2,3.In this approach the fields are functions of complex variablesxa , xa* ,
a51,2. The spaceHk of fields with a topological winding number 2kPZ is defined as the spac
of analytical functions

F5( amnx* mxn, unu2umu52k. ~1!

We use the multi-index notation: ifn5(n1 ,n2) thenxn5xn1xn2, unu5n11n2 , n! 5n1!n2!, etc.
Obviously, it holdsHk* 5H2k andHkHl,Hk1 l . The spaceH0 of functions constant on a fibe
can be identified with algebra of function onS2. All spacesHk are H0 modules. OnHk we
introduce the scalar product

~F1 ,F2!5E dmF1* F2 , dm5~2pr!21d3xd~xi
22r2!. ~2!

The Poisson structure onC2 is defined by elementary brackets

$xa ,xb%5$xa* ,xb* %50, $xa ,xb* %52 idab , a,b51,2. ~3!

A Poisson bracket realizations of theu(2) algebra is then obtained by choosing the basis:

xi5
1
2 x1s ix, i 51,2,3, r 5x1x. ~4!

The functionsxi generatesu(2), andr is a central element extending it to theu(2) algebra. InHk

the u(2) algebra is realized as the adjoint Poisson algebra:

XiF5 i $xi ,F%, i 51,2,3, RF5 i $r ,F%. ~5!

This allows one to construct WignerD-functions in a standard way.~i! The lowest weight is given
by

Dk,2 j
j 5@~2 j 11!!/ ~ j 1k!! ~ j 2k!! #1/2r 2 jx2*

j 1kx1
j 2k . ~6!

~ii ! For a givenj all otherDkm
j are obtained by a repeated action ofX1 ,

Dkm
j 5@~ j 1m!!/ ~ j 2m!! ~2 j !! #1/2X1

j 2mDk,2 j
j . ~7!

It holdsX0Dk,2 j
j 52 jD k,2 j

j andX2Dk,2 j
j 50 ~hereX05X3 , X65X16 iX2). The functionsDkm

j ,
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umu< j , j 5uku,uku11, . . . , form an orthonormal basis inHk with respect to the scalar product~2!.
In the noncommutative version we ‘‘quantize’’ the above-given Poisson structure. We re

the commuting complex parametersxa , xa* , by annihilation and creation operatorsx̂a , x̂a*
satisfying commutation relations

@ x̂a ,x̂b#5@ x̂a* ,x̂b* #50, @ x̂a ,x̂b* #5dab , a51,2. ~8!

They act in the auxiliary Fock spaceF5$un&5(1/An!) x̂* nu0&,n5(n1 ,n2)%.
The spaceH̃k of fields with topological winding number 2k is formed by operators of the

form

F̃5( amnx̂* mx̂n, unu2umu52k, ~9!

defined on the invariant domainFf5$(anun&–finite sum%. It holds that H̃k* 5H̃2k and
H̃kH̃l,H̃k1 l . The spaceH̃0 itself is a faithful canonical realization of the enveloping algeb
A5U(u(2)) generated by

x̂i5
1
2x̂

1s i x̂, i 51,2,3, r̂ 5x̂1x̂. ~10!

The subspaceFN5$un&PF,unu5N% is a carrier space of the unitary irreducible SU(2) repres
tation corresponding to the spins5 N/2. Theu(2) action is realized inH̃k as the adjoint com-
mutator action

X̂iF̂5 i @ x̂i ,F̂#, i 51,2,3, R̂F̂5 i @ r̂ ,F#. ~11!

The fuzzy analogs of the WignerD-functions can be constructed analogously as in the com
tative case.~i! The lowest weight is

D̂k,2 j
j 5@~2 j 11!!/ ~ j 1k!! ~ j 2k!! #1/2x̂2*

j 1kNj~ r̂ !x̂ j 2k
1 . ~12!

~ii ! The otherDkm
j are obtained by a repeated action ofX̂1 ,

D̂km
j 5@~ j 1m!!/ ~ j 2m!! ~2 j !! #1/2X̂1

j 2mD̂k,2 j
j . ~13!

The factorNj ( r̂ )5@( r̂ 1 j 11)r̂ !/( r̂ 12 j 11)!#21/2 is diagonal, it guarantees that the restrict
D-functionsD̂km

J j [D̂ jm
MN

ªD̂km
j uFN

, umu< j , j 5uku,uku11, . . . ,J, form an orthonormal basis in th
space of linear mappings

Ĥk
J[ĤMN5$FN→FN ; M5J1k,N5J2k%,

endowed with the scalar product

~F̂1 ,F̂2!k
J5

1

J11
Tr~F̂1* F̂2!. ~14!

We shall assume the relationsM5J1k,N5J2k amongM ,N,J, andk in what follows.
Any operatorF̂PH̃k can be expanded as

F̂5 (
j 5uku

`

(
umu< j

akm
j ~ r̂ !D̂km

j . ~15!

The relationH̃kH̃l,H̃k1 l takes for basis functions the form
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D̂k8m8
j 8 D̂k9m9

j 9 5(
j

C̃k8k9k
j 8 j 9 j

~ r̂ !Cm8m9m
j 8 j 9 j D̂km

j . ~16!

Here Cm8m9m
j 8 j 9 j ;dm81m9,m are standard Clebsh–Gordon coefficients. The deformed coeffic

C̃k8k9k
j 8 j 9 j ( r̂ );dk81k9,k are square roots of a rational function ofr̂ , they possess the asymptot

expansion

C̃k8k9k
j 8 j 9 j

~ r̂ !5Ck8k9k
j 8 j 9 j

1(
s51

`

r̂ 2sCk8k9k
j 8 j 9 j

~n!5Ck8k9k
j 8 j 9 j

1o~ r̂ 21!. ~17!

By Ĥk we denote the subset of operators fromH̃k with the expansion coefficientsakm
j ( r̂ )

possessing an asymptotic expansion

akm
j ~ r̂ !5akm

j 1(
s51

`

akm
j r̂ 2s. ~18!

For Ĥk hold basic relationsĤk* 5Ĥ2k and ĤkĤl,Ĥk1 l . Restricting the domainFf to FN one
obtains the relations for the restricted spacesĤMN[Ĥk

J :

ĤMN* 5ĤNM , ĤMLĤLN,ĤMN .

Putting M5J1k5J81k8, L5J91k95J82k8, andN5J2k5J92k9, the preceding relations
can be rewritten as

Ĥk*
J5Ĥ2k

J , Ĥk8
J8Ĥk9

J9,Ĥk
J .

If we takek8,k9 andJ as independent thenJ85J1k9, J95J2k8, andk5k81k9. The product
formula for the restricted basis elements reads

D̂k8m8
J8 j 8 D̂k9m9

J9 j 9 5(
j

C̃MLN
j 8 j 9 j Cm8m9m

j 8 j 9 j D̂km
J j , ~19!

whereM5J1k, L5J2k81k9, andN5J2k. The nonvanishing deformed coefficients are giv
by

C̃MLN
j 8, j 9, j5

~D̂k81k9, j 82 j 9
J, j ,D̂k8, j 8

J8, j 8D̂k9, j 8
J9, j 9!k

J

Cj 8,2 j 9, j 82 j 9
j 8, j 9, j

5Ck8,k9,k81k9
j 8, j 9, j

1o~J21!. ~20!

They are square roots of rational functions inJ, they break the commutativity~in general, they are
not symmetrical with respect to primed and double primed indices!, and they restrict the summa
tion to uku< j <min(j81j9,J).

To any field on a standard sphere~the ‘‘classical/commutative observable’’!

Fk5 (
j 5uku

`

(
umu< j

akm
j Dkm

j PHk , ~21!

we assign the operator~the ‘‘quantum/fuzzy observable’’!
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F̂k5 (
j 5uku

`

(
umu< j

akm
j ~ r̂ !D̂km

j PĤk , ~22!

with akm
j ( r̂ )5akm

j 1o( r̂ 21). Various choices of theo( r̂ 21) term correspond to various fuzz
~fication! rules ~in quantum mechanics they would correspond to various\ terms generated by
different operator orderings!. Restricting the domainFf to FN we obtain for anyF̂k the infinite
sequence of restrictions

F̂k
J[F̂MN5F̂uFN

5 (
j 5uku

J

(
umu< j

akm
J j D̂km

J j PĤk
J , ~23!

with akm
J j 5akm

j (J1k)5akm
j 1o(J21) ~the truncation of the summation follows fromD̂km

j uFN
50

for J.N1k5J).
Note 1:Let FPHk , A,BPH0 . According to the fuzzy rules~21! and~22! we assign to any

linear transformationF→AFB (5ABF) in Hk the mapping in the fuzzy spaceĤk defined as

F̂→ÂLB̂RF̂ªÂF̂B̂. ~24!

Restricting the invariant domainFf to FN we obtain the linear transformationĤMN[Ĥk
J→Ĥk

J

[ĤMN (M5J1k, N5J2k!, given by

F̂MN→ÂMF̂MNB̂N ~25!

~here we put simplyÂM ,B̂N instead ofÂMM ,B̂NN). The determinant of this transformation
given by the following well-known formula,

detk
J ÂLB̂R5~detM AM !N11~detN BN!M11. ~26!

Note 2:Let us define the commutative limit as the inverse mapping to the fuzzy rules: To
class of operators of the form

F̂5 (
j 5uku

`

(
umu< j

@akm
j 1o~ r̂ 21!#D̂km

j , ~27!

we assign the field on a commutative sphere

@F̂#5 (
j 5uku

`

(
umu< j

akm
j Dkm

j . ~28!

Due to the product formulas~16! and ~17! it holds that@D̂k8m8
j 8 D̂k9m9

j 9 #5@D̂k8m8
j 8 # @D̂k9m9

j 9 #. Simi-

larly, ~19! and ~20! guarantee that@D̂k8m8
J j8 D̂k9m9

J9 j 9 #5@D̂k8m8
J8 j 8 #@D̂k9m9

J9 j 9 #, J85J1k9, J95J2k8, pro-
vided that J> j 81 j 9. Consequently, algebraic relations among fuzzy polynomials are, u
o(J21) corrections, the same as their commutative analogs. For example, for polynomial ope
F̂PĤk , Â,B̂PĤ0 , the relationF̂MN→ÂMF̂MNB̂N reduces in the commutative limit (J5 1

2(M
1N)→`, k5 1

2(M2N)-fixed! to the commutative relationF→AFB ~this can be extended to th
case when Wigner expansion coefficients of all operators in question are rapidly decreasing!. This
is just the ‘‘correspondence principle’’ on a sphere6 ~in a more general context see Refs. 24 a
25!. However, for a more complex objects, like the determinant~26!, theo(J21) corrections can
accumulate, and an ‘‘anomaly’’ can appear in the commutative limit.
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B. The spinor field

Spinor fields in the standard~commutative! SU(2)-invariant formalism are two-compone
functions

C5S C1

C2
D 5 f x11gx2 , x15S x1

x2
D , x25S x2*

2x1*
D , ~29!

with C15C1(x* ,x), C25C2(x* ,x), f 5 f (x* ,x), and g5g(x* ,x) being functions in com-
plex variablesxa* ,xa , a51,2. The spaceSk of spinor fields with winding number 2kPZ is
formed by fields withC1 ,C2PHk , or equivalently, withf PHk11/2 andgPHk21/2.

In order to define the Dirac operator we introduce an orthonormal frame onS25$xWPR3;xW2

5r2% as follows:

yW 05r21xW5r21xa* sW abxb , yW 15yW 2* 5r21xa* sW ab«bgxg* . ~30!

HereyW 0 is a unit vector perpendicular toS2, andyW 6 are complex normalized vectors tangential
S2 (eab—antisymmetric,e1251). The projections of the spin angular momentum1

2sW are

1
2 G65 1

2yW 6 •sW , 1
2 G05 1

2yW 0•sW .

The Clifford algebra relations are satisfied:G6
2 50, G1G21G2G151, G1G22G2G152G0.

Similarly, the projection of the orbital angular momentumXW @the SU(2) right-invariant vector
fields defined in~5!# are given as

R65yW 6 •XW [K6 , R05yW 0•XW [K0 .

Here,

K152eabxa* ]xb
, K25eabxa]x

b*
, K05 1

2 ~xa* ]x
a*
2xa]xa

! ~31!

are the SU(2) left-invariant vector fields. The free Dirac operator is given as

D0[I 1G21I 2G15K1G21K2G111, ~32!

where

I 65K61 1
2 G6 , I 05K01 1

2 G0

are projections of the total angular momentumJW5XW 1 1
2GW into basis~30!. The Dirac operatorD0

anticommutes with the chirality operatorG0 . SinceG0x656x6 , f andg are chiral components
of C to the chiralities 11 and 21, respectively. The operatorD0 already contains the
2k-monopole field strengthF0 . This can be identified with the term inD0

2 proportional toG0 . It
can be found straightforwardly:F05 1

2@R1 ,R2#G05K0G0 . The operatorR05K0 takes inSk

constant valuek. Obviously,F0uSk
5kG0 is the monopole field in question.

Standard formulas are obtained by replacing in the above-mentioned formulasxa* , xa by
arbitrary S3→S2 sections xa* (xW ), xa(xW ). In the following we shall use an equivalen
SU(2)-invariant supersymmetric picture which is appropriate for the noncommutative gener
tion ~see Refs. 12 and 13!.

In this formalism the fields are functions onC2u1 in complex variablesxa , xa* , a51,2, and
one anticommuting~Grassmannian! pair a,a* . The space of spinor fields with given windin
number 2k is defined as

Sk5Hk1 1/2a% Hk2 1/2a* 5$C5 f a1ga* ; f PHk1 1/2,gPHk2 1/2%.
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In this approach the analogs of the spin angular momentum projections are

1
2 G15 1

2 a]a* , 1
2 G25 1

2 a* ]a , 1
2 G05 1

2 a]a2a* ]a* .

The Clifford algebra relations are satisfied. The operatorsP15a]a andP25a* ]a* are projection
onto spinor subspaces with chiralities11 and21, respectively. Similarly, the analogs of the tot
angular momentum projections are

I 65K6 , I 05K0 ,

so the analogs of the orbital angular momentum projections are given as

R65K62 1
2 G6 , I 05K02 1

2 G0 .

In Sk the free Dirac operator is given by the formula@see~32!#:

D0[I 1G21I 2G15K1G21K1G2 . ~33!

It anticommutes with the chirality operatorG05P12P2 . The monopole field is:F0

5 1
2@R1 ,R2#G05K0G02 1

2.
The charge conjugationJ is defined as follows:J( f a1ga* )5g* a2 f * a* . Obviously,

J:Sk→S2k , andJ 2521. The inner product inSk we define as

~C1 ,C2!5E dn JC1C25E dm~ f 1* f 21g1* g2!, ~34!

where dn5(16p2r)21d2x* d2x da da* d(xa* xa1a* a2r). Any spinor field fromSk can be
expanded as

C5 (
j 5uku21/2

`

(
umu< j

@akm
j 1Dk21/2,m

j a1akm
j 2Dk11/2,m

j a* #. ~35!

The first term withj 5uku2 1
2 appears only fork.0 with G521, or for k,0 with (G511).

In the space of functions onC2u1 a graded Poisson structure can be introduced by postula
elementary graded brackets

$xa ,xb* %52 idab , $a,a* %52 i ~36!

~all other elementary brackets vanish!. The operatorsK6 and G6 can be expressed in terms o
Poisson brackets as follows:

K252 i eabxa$xb ,.%, K15 i eabxa* $xb* ,.%,
~37!

G25 ia$a,.%, G15 ia* $a* ,.%.

Note 1:The u(2u1) Poisson bracket superalgebra is realized by choosing the basis

xi5
1
2 x1s ix, i 51,2,3, b5x1x12a* a,

~38!
va5xaa* , v̄a5eabxb* a, a51,2, s5x1x1a* a.

The operatorsxi andb are even generators, andva ,v̄a the odd ones of the superalgebrasu(2u1);
s is a central element extending it to theu(2u1) superalgebra. The adjoint Poisson bracket rep
sentation of theu(2u1) superalgebra is realized in the space of superfields:
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XiC5 i $xi ,C%, BC5 i $b,C%, SC5 i $s,C%,
~39!

VaC5$va ,C%, V̄aC5$v̄a ,C%.

This action can be extended to the enveloping superalgebraB5U(u(2u1))5B 0
% B 1. The spinor

spaceSk is invariant with respect to the adjoint action~39! generated by the even subalgebraB 0.
The free Dirac operator can be expressed as:D05 1

2eab(VaVb1V̄aV̄b).
In the fuzzy case we quantize the graded Poisson structure~36!: We replace the graded

commuting variablesxa ,xa* anda, a* by annihilation and creation operatorsx̂a ,x̂a* ~bosonic! and
â,â* ~fermionic! satisfying graded commutation relations

@ x̂a ,x̂b* #5dab , @a,a* #51 ~40!

~all other elementary brackets vanish!. They act in the auxiliary Fock superspacesF5$unn&
5(n!) 21/2x̂* nâ* nu0&5F% â* F. The subspace of spinor operators with winding number 2k we
define as the space

S̃k5H̃k1 1/2â% H̃k2 1/2â* 5$C̃5 f̃ â1g̃â* ; f̃ PH̃k1 1/2,g̃PH̃k2 1/2%

of odd mappingssF→sF defined on the invariant domainsFf5Ff % Ff â* ~of finite linear com-
binations of statesun,n&). The charge conjugationJ is defined as follows:J f̃ â1g̃â* 5g̃* â

2 f̃ * â* . Obviously,J:S̃k→S̃2k , andJ 2521.
The spaceS̃k is a bimodule with respect to the left and right multiplications by the eleme

of the algebraB̃05H̃0% â* âH̃0 . Any element fromS̃k can be expanded as

C̃5 (
j 5uku21/2

`

(
umu< j

@akm
j 1~ r̂ !D̂k21/2,m

j a1akm
j 2~ r̂ !D̂k11/2,m

j a* #. ~41!

By Ŝk5Ĥk11/2â% Ĥk21/2â* we denote the subspace ofS̃k with akm
j 6( r̂ )5akm

j 61o( r̂ 21). The
spaceŜk is a B̂05Ĥ0% â* âĤ0 bimodule. InŜk the free Dirac operator is defined as follows@see
~33!#:

D05K̂1Ĝ21K̂1Ĝ2 , ~42!

where

K̂252eabx̂a@x̂b ,.#, K̂152eabx̂a* @ x̂b* ,.#,
~43!

Ĝ25â@ â,.#, Ĝ15â* @ â* ,.#.

It anticommutes with the chirality operatorĜ05 P̂12 P̂2 . Here P̂15â@ â* ,.# and P̂2

5â* @ â,.# are projectors onto subspaces with chiralities11 and21, respectively.
Note 2:The fuzzy analogosx̂i ,v̂a ,vC a , andŝ of generators satisfying insF theu(2u1) graded

commutator relations are given by Eqs.~38!, similarly the u(2u1) adjoint action and the Dirac
operator are given by Eqs.~39! and ~42! ~of course, all commuting parameters are replaced
annihilation and creation operators and graded bracketsi $.,.% by graded commutators@ .,.#). The
subspacesFN5FN% FN21â* is the carrier space of the atypical unitary irreducible representa
of su(2u1) superalgebra.

To any spinor field
                                                                                                                



gs

ential

real
ld

h

2797J. Math. Phys., Vol. 41, No. 5, May 2000 The origin of chiral anomaly . . .

                    
Ck5 (
j 5uku21/2

`

(
umu< j

@akm
j 1Dk21/2,m

j a1akm
j 2Dk11/2,m

j a* #PSk , ~44!

we assign the spinor operator

Ĉk5 (
j 5uku21/2

`

(
umu< j

@ âkm
j 1~ r̂ !D̂k21/2,m

j â1akm
j 2~ r̂ !D̂k11/2,m

j â* #PŜk , ~45!

defined on the domainsFf5Ff % Ff â* . Restricting it to the subspacesFN5FN% FN21â* we
obtain an infinite set of restrictions

Ĉk
J[ĈMN5ĈkusFN

5 (
j 5uku21/2

J21/2

(
umu< j

@akm
j 1~ r̂ !D̂k21/2,m

J21/2,j â1akm
j 2~ r̂ !D̂k11/2,m

J21/2,j â* #, ~46!

belonging to the spaceŜk
J5Ĥk11/2

J21/2â% Ĥk21/2
J21/2â* of odd elements in the superspace of mappin

sH k
J5$sFN→sFM , M5J1k,N5J2k%. In Ŝk

J we introduce the inner product

~Ĉ1 ,Ĉ2!k
J5

1

2J
sTrN@JĈ1Ĉ2#5

1

2J
~TrNf̂ 1* f̂ 21TrN21ĝ1* ĝ2!, ~47!

wheresTrN denotes the supertrace in the space of mappingssFN→sFN . In Ŝk
J the spectrum ofD0

is the same but truncated as in the commutative case~see Ref. 12!.

C. The gauge field

In the commutative case it is convenient to introduce gauge fields within the prepotent
formalism. In this approach the full Dirac operatorD is given by

D5D01A, A5A1G21A1G2 . ~48!

The chiral componentsA65K6(s7 il) of the gauge potential are expressed in terms of two
prepotentialslPH0 andsPH0: thel-dependent termi @D0 ,l# of A represents a pure gauge fie
~corresponding to an exact one-form in the differential form approach!, whereas thes-dependent
term @D0 ,s# represents a dynamical gauge field~corresponding a co-exact one-form!. We note
that D0 already contains the monopole gauge field~corresponding to a harmonic one-form!.

In the SU(2)-invariant formalism the full Dirac operator can be written in the form

D5I1G21I2G15R1G21R1G211, ~49!

whereI15VI 1V21, I25V* 21I 1V* , analogouslyR15VR1V21, R25V* 21R1V* . Here,
V5eiles is an invertible element fromH0 acting onC as a left multiplicator. The field strengt
F can be identified with the term inD2 proportional toG0:

F5 1
2 @R1 ,R2#G05~ 1

2 @R1 ,R2#2R0!G01R0G0 . ~50!

It can be shown straightforwardly that1
2@R1 ,R2#2R05Ds, whereD is the Laplace operator on

a sphere.
Using the relationsI 65K6 andR65K62 1

2G6 valid in the SU(2)-invariant supersymmetric
formalism, the expressions for the full Dirac operator and the field strength read

D5K1G21K1G2 , ~51!

and
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F5~ 1
2 @K1 ,K2#2K0!G01R0G0 , ~52!

with

K15VK1V21, K25V* 21K1V* . ~53!

Any unitary elementvPH0 generates a local U(1) gauge transformation of all fields
question. The spinor fieldC5 f a1ga* PSk , the conjugated spinor fieldC̄5 f̄ a1ḡa* PS2k ,
and the gauge fieldVPH0 transform as follows:

C→vC, C̄→C̄v* , V→vV. ~54!

Obviously,eil→veil andes is gauge invariant. Moreover, it can be easily seen that under g
transformations:D→vDv* , F→vFv* 5F. Consequently, the spinor termC̄ iDCPH0 in the
Schwinger model Lagrangian and the gauge field termF2PsH0 are both gauge invariant.

In the fuzzy supersymmetric picture we use exactly the same formulas as above, howe
objects~variables, fields, and spaces! should be replaced by their noncommutative partners.
full Dirac operator is an operator the noncommutative spinor spaceŜk defined as

D5K̂1Ĝ21K̂1Ĝ2 , ~55!

where

K̂15V̂K̂1V̂21, K̂25V̂* 21K̂1V̂* . ~56!

The operatorsK̂6 have been defined in Sec. II,V̂ is an arbitrary invertible element fromĤ0 . The
field strength operatorF̂:Ŝk→Ŝk we define in analogy with~52! as follows:

F̂5~ 1
2 @K̂1 ,K̂2#2K̂0!Ĝ01R̂0Ĝ0 , ~57!

The local gauge transformations of all fields in question, the spinor fieldĈPŜk , the conju-
gated spinor fieldCR PŜ2k and the gauge fieldV̂PĤ0 are generated by unitary elementsv̂

PĤ0 . The gauge transformations rules read:

Ĉ→v̂Ĉ, CR →CR v̂* , V̂→v̂V̂. ~58!

Thus, the right-radial operatoreŝ in the polar decomposition ofV̂5ei l̂eŝ is gauge invariant.
Moreover, it can be easily seen that under gauge transformations:D→v̂Dv̂* , F̂→v̂F̂v̂* . Con-
sequently, the fuzzy analog of the spinor termCR iDCPĤ0 in the Schwinger model Lagrangian
gauge invariant, whereas the gauge termF̂2PsĤ0 transforms homogeneously:F̂2→v̂F̂2v̂* .

III. QUANTIZATION AND CHIRAL ANOMALY

A. Field action and quantization

In the commutative case the Schwinger model field action,

S@C,C̄,V#5
1

4qo
2E dmF21E dn C̄DC, ~59!

is gauge invariant (q0 is interaction constant!. Introducing new spinor fields by putting
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C→C05Ṽ* CªV* f a1V21ga* ,
~60!

C̄→C̄05C̄Ṽª f̄ V* 21a1ḡVa* ,

we obtain the action

S@C0 ,C̄0 ,s#5
1

4q0
2E dm F21E dn C̄0D0C0 , ~61!

from which the electromagnetic interaction is eliminated, it describes a system of noninter
gauge and spinor fields. We stress that this is a valid procedure for the classical~nonquantized!
fields only.

We quantize the Schwinger model within the functional integral approach. The dyna
fields in questionJ5$C,C̄,s% we expand as follows:

C 5 (
j 5uku21/2

`

(
umu< j

@akm
j 1Dk21/2,m

j a1akm
j 2Dk11/2,m

j a* #PSk ,

C̄5 (
j 5uku21/2

`

(
umu< j

@ ā2km
j 1 D2k21/2,m

j a1ā2km
j 2 D2k11/2,m

j a* #PS2k , ~62!

s5(
j 51

`

(
umu< j

bm
j D0m

j PH0 , b2m
j 5~21!mbm

j* .

The pure gauge prepotentiall is an arbitrary fixed real function fromH0 . The actionS@J#, given
in ~59!, is a function of Grassmannian parametersakm

j 6 , ā2km
j 6 and of complex parametersbm

j .
The quantum mean values of gauge invariant field functionalsP@J# are defined by

^P@J#&5Z21E ~DJ!k P@J#e2S[J] ,Z5E ~DJ!ke
2S[J] . ~63!

They do not depend on the choice ofl. The symbol (DJ)k denotes the formal infinite dimen
sional integration over all dynamical field configurations:

~DJ!k;S )
j 51

`

)
m51

j

dbm
j D •S )

umu<uku21/2
dakm

0 dā2km
0 D S )

j 5uku11/2

`

)
umu< j

dakm
6 jdā2km

6 j D ~64!

~hereakm
0 and ā2km

0 correspond to zero modes!. The mean values are defined only formally, a
a regularization procedure is needed.

We may try to solve the model by performing the same spinor fields transformation~60!.
However, in the quantum case we have to take into account the determinant of this transfor
~which is inverse to the corresponding Jacobian appearing in the functional integral!. Formally, it
is given as

detṼ detṼ* 5detV detV* detV* 21 detV21. ~65!

Naively, it equals 1, but one should take into account that in the commutative case all determ
on right-hand side are singular. Regularizing them properly it can be shown that~see, e.g., Ref. 20!

detṼ detṼ* ;exp$S@s#%, S@s#52q0
2E dm~Xis~xW !!2. ~66!
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Thus, there appears achiral anomaly, the nontrivial quantum correctionS@s# to the bosonic
action ~it generates a mass for an effective free bosonic field!.

In the noncommutative case the calculations are simple and straightforward. We quant
model according to the general formula~63!, however there are important differences.

~i! We take the dynamical fieldsJ5$Ĉ,CR ,ŝ% in the following form:

Ĉ5 (
j 5uku21/2

`

(
umu< j

@akm
j 1D̂k21/2,m

j a1akm
j 2D̂k11/2,m

j a* #PŜk ,

CR 5 (
j 5uku21/2

`

(
umu< j

@ ā2km
j 1 D̂2k21/2,m

j a1ā2km
j 2 D̂2k11/2,m

j a* #PŜ2k , ~67!

ŝ5(
j 51

`

(
umu< j

bm
j D̂0m

j PĤ0 , b2m
j 5~21!mbm

j* .

We choose all expansion coefficients withouto( r̂ 21) terms~this fixes the fuzzy rules for dynami
cal fields!.The pure gauge prepotentiall̂ is an arbitrary fixed Hermitean operator fromĤ0 ~this
fixes the gauge!.

~ii ! We implement a natural regularization induced by the noncommuative geometry
achieve this by fixingJ and taking the Schwinger model field action in the form

Sk
J@Ĉ,CR ,ŝ#5

1

2J
s TrN@CR iD Ĉ#1

1

4@~J11/2!22k2#eo
2

sTrk
J@ F̂2G0#. ~68!

Here, e0 is interaction constant specified in the following. In the first terms TrN denotes the
supertrace in the space of mappingssFN→sFN . In the second termsTrk

J denotes the supertrace i
the space of mappingsŜk

J→Ŝk
J . The gauge degrees of freedom enters the action via operatV̂

5ei l̂ei ŝ.
The definition~68! is an essential step. It implies that only a finite number of dynam

modes takes part in the calculation of the action:
~1! the Grassmannian spinor modesakm

0 , ā2km
0 ~zero modes! and akm

j 6 , ākm
j 6 for j 5uku

11/2,uku13/2,. . . ,J21/2, umu< j , and
~2! the bosonic modesbm

j with j 51, . . . ,J1k, 0<m< j ~the coefficients with negativem are
given byb2m

j 5(21)mbm
j* ).

The quantum mean values are again defined by~63!, however the measure (DJ)k
J contains

only relevant dynamical modes:

~DJ!k
J5S )

j 50

J1k

db0
j )
m51

j

dbm
j D •S )

umu<uku21/2

dakm
0

AJ

dā2km
0

AJ
D S )

j 5uku11/2

J21/2

)
umu< j

dakm
6 j

AJ

dā2km
6 j

AJ
D .

~69!

Its dimension is finite, and consequently there are no UV divergencies. This allows us to ca
straightforwardly various nonperturbative quantities.

As an example, let us consider the problem of chiral anomaly. Applying the transform
~60! in the functional integral, we have to take into account that the spinor fields are rest
from Ŝ6k to Ŝ 6k

J . The restricted transformation~60! reads

f̂ M ,N21â1ĝM21,Nâ* →V̂M* f̂ M ,N21â1V̂M21
21 ĝâ* ,

~70!
fCN,M21â1gC N21,Mâ* → fCN,M21V̂M21* 21 â1gC N21,MV̂Mâ*
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~we put simplyV̂M instead ofV̂MM). The Jacobian of this transformation is

exp$Sk
J@ŝ#%[~detṼ detṼ* !k

J5~detM V̂M* !N~detM21 V̂M21
21 !N11~detM21 V̂M21* 21 !N11~detM V̂M !N

5~detM V̂M* V̂M !N~detM21 V̂M21
21 V̂M21* 21 !N11. ~71!

This is an exact formula for the chiral anomaly in the noncommutative case. Obviously, it is g
invariant.

Note 1:ReplacingV̂ in the transformation~60! by an arbitrary unitary operator fromĤ0 the
corresponding determinant~71! will be equal to one. This explicitly indicates that the pure gau
factorse6 i l̂ can be absorbed into spinor fields.

Note 2:The formula for the chiral anomaly does not change if one adds gauge invariant
to the action~68!, e.g.,

m

2J
sTrN@CR Ĉ#1

1

2J
s TrN@m~CR Ĉ!21n~CR G0Ĉ!2#.

The first term can be interpreted as a mass term for the fieldĈ, the second one a particula
four-fermionic interaction. Performing the spinor field transformation~60! the fermionic fields
CR 0 , Ĉ0 do not separate from gauge degrees of freedom: An integration over fermionic giv
additional contribution to the effective gauge field action besides fermionic determinant~71!.

B. Product formula and commutative limit

To find the commutative limit we shall represent the operators fromĤ0 in the coherent state
basis~for details see Ref. 9!. The formula for the coherent statesuxW ;N&PFN reads

uxW ;N&[uj~xW !;N&ª
1

AN
~x1j~xW !!Nu0&5 (

n50

N A N!

n! ~N2n!!
j1

n~xW !j2
N2n~xW !un,N2n&. ~72!

Here xW5j1(xW )sW j(xW )PS2, j(xW ) is an arbitrary section of the bundleS3→S2 normalized by
j1(xW )j(xW )51. For variousj(xW ) the vectorsuj(xW );N& differ just by a phase factor. LetTN(g),
gPSU(2) be the SU(2) group representation of inFN corresponding to the canonical realizatio
~10!. Puttingg5C1 iSW •sW , C21SW 251, it can be shown that

wN~g,xW !ª^xW ;NuTN~g!uxW ;N&5~C1 iSW •xW !N ~73!

@for SW 5(0,0,S) the proof is straightforward, Eq.~73! follows by rotational invariance#.
To any operatorf̂ PĤ0 we assign the functionf N(xW )5^xW ;Nu f̂ uxW ;N&. The normalized trace o

the operatorf̂ N5 f̂ uFN
in the coherent state basis can be expressed as

1

N11
TrN f̂ N5E dm f N~xW !. ~74!

The *-product of two functionsf N(xW )5^xW ;Nu f̂ uxW ;N& andgN(x)5^xW uĝuxW & is defined by

~ f N* gN!~xW !5^xW ;Nu f̂ ĝuxW ;N&. ~75!

Our aim is to express this *-product directly in terms off N(xW ) andgN(xW ) and their deriva-
tives. To achieve this let us express the operatorf̂ N as f̂ N5*dg TN(g) f̃ (g)), dg is the Haar
measure. Thenf N(xW )5*dg f̃ (g)wN(g,xW ), analogously,gN(xW )5*dg g̃(g)wN(g,xW ). From the re-
lation TN(g)TN(g8)5TN(gg8)and the definition of the*-product it follows straightforwardly
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~ f N* gN!~xW !5E dg dg8 f̃ ~g!g̃~g8!wN~gg8,xW !.

Puttingg5C1 iSW •sW andg85C81 iSW 8•sW we obtain

wN~gg8,xW !

wN~g,xW !wN~g8,xW !
5 (

k50

N
N!

k! ~N2k!!
F i ~SW 3SW 8!•xW2~SW 3xW !•~SW 83xW !

~C1 iSW •xW !~C81 iSW 8•xW !
G k

5 (
k50

N
~N2k!!

k!N!
v i 1 j 1

. . . v i kj k
~] i 1

. . . ] i k
wN!~g,xW !~] j 1

. . . ] j k
wN!~g8,xW !,

wherev i j 5 i« i jkxk2xixj1d i j . This induces the desired explicit* -product formula

~ f N* gN!~xW !5 (
k50

N
~N2k!!

k!N!
v i 1 j 1

. . . v i kj k
~] i 1

. . . ] i k
f N!~xW !~] j 1

. . . ] j k
gN!~xW !. ~76!

From ~76! it follows that the asymptotic formula for thekth *-power

~ f N* . . . * f N!~xW !5 f N
k ~xW !1

k~k21!

2N
f N

k22~xW !~Xi f N~xW !!21o~N22!.

If F(z) is a polynomial~analytic function! this allows us to obtain the asymptotic formula linkin
FN( f )(x) to f N(x):

FN~ f !~xW !5F~ f N~xW !!1
1

2N
F9~ f N~xW !!~Xi f N~xW !!21o~N22!. ~77!

This is the key formula we use for the calculation of the commutative limit of the chiral anom
Applying it to the functionVV* 5exp@2e0s# we obtain

~VV* !N~xW !5e2eosN(xW )1
2eo

2

N
e2eosN(xW )~XisN~xW !!21o~e0

2N22!,

or,

ln~VV* !N~xW !52e0sN~xW !1
2e0

2

N
~XisN~xW !!21o~e0

2N22!. ~78!

This gives the asymptotic formula for the determinant

detN~VV* !N5exp@TrN ln~VV* !N#5expH2e0
2E dm~XisN~x!!2] 1o~e0

2N21!J ~79!

@the linear term insN(xW ) in ~78! does not contribute to the integral#. Using ~79! for both factors
in the chiral anomaly formula~71! and renormalizing the constante0 properly by 2Je0

25q0
2 , we

obtain in the commutative limit (J→`, k-fixed! the quantum correctionSk
J@s# to the bosonic

action

Sk
J@s#52q0

2E dm~Xis~x!!21o~J21!. ~80!
                                                                                                                



ge

l

cribed

zed as

finite

nite
ulting
ure

do not

ly UV

g the
dard

erties
urvive

s-
ject

2803J. Math. Phys., Vol. 41, No. 5, May 2000 The origin of chiral anomaly . . .

                    
Here we have used relation*dm(XisN(x))25*dm(Xis(x))21o(N23), which is valid provided
that the commutative prepotentials(xW ) leads to a finite contribution to the commutative gau
field field action~59!. Equation~80! reproduces the standard commutative result~66!.

Note: Let us we replace the factorials in~76! by G-functions andN in the arguments by a rea
parametere21. Performing a power expansion ine we obtain, for generice, a divergent but Borel
summable series corresponding to the Kontsevich quantization formula.26 For the ‘‘critical’’ val-
uese5N21 the formal power series quantization is unitarizable and reduces to the one des
by ~76!.

IV. CONCLUDING REMARKS

The essential steps in our approach to the fuzzy Schwinger model can be summari
follows.

~i! In order to guarantee the gauge invariance we have to work with all~fuzzy! canonical
realizations of fields~i.e., fields are realized as operators in the Fock space and not as some
dimensional matrices!.

~ii ! We have been able to define the rotation invariant field action containing only fi
number of modes of dynamical fields, i.e., with respect to the dynamical modes the res
model is finite dimensional~matrix! model. Such mode restriction is not possible for the p
gauge prepotentiall.

~iii ! The dynamical modes were quantized within functional integral approach, andl appears
as a background field. However, the quantum mean values of gauge invariant functionals
depend on a particular choice ofl, it can be fixed arbitrarily~e.g.,l50). The resulting model for
dynamical modes is a finite dimensional matrix model, and consequently is nonperturbative
regular.

~iv! In a simple and direct way we derived an exact formula for the chiral anomaly. Usin
explicit formula for the*-product on a sphere we recovered in the commutative limit the stan
result.

It would be desirable to generalize the model to the four-dimensional~4D! case. This will not
be straightforward, since various steps in our construction are linked with the particular prop
of a two-dimensional 2D sphere. However, one can expect that some specific features will s
in 4D.
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18A. P. Balachandran and S. Vaidya, hep-th/9910129.
19A. P. Balachandran, T. R. Govindarajan, and B. Idri, hep-th/9911087.
20C. Jayewardena, Helv. Phys. Acta61, 638 ~1988!.
21H. Grosse and J. Madore, Phys. Lett. B283, 218 ~1992!.
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The spectrum of a magnetic Schro ¨ dinger operator
with randomly located delta impurities

J. V. Puléa) and M. Scrowstonb)
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We consider a single band approximation to the random Schro¨dinger operator in an
external magnetic field. The spectrum of such an operator has been characterized in
the case where delta impurities are located on the sites of a lattice. In this paper we
generalize these results by letting the delta impurities have random positions as
well as strengths; they are located in squares of a lattice with a general bounded
distribution. We characterize the entire spectrum of this operator when the mag-
netic field is sufficiently high. We show that the whole spectrum is pure point, the
energy coinciding with the first Landau level is infinitely degenerate, and that the
eigenfunctions corresponding to other Landau band energies are exponentially lo-
calized. © 2000 American Institute of Physics.@S0022-2488~00!03705-1#

I. INTRODUCTION

In recent years there has been considerable activity in the study of random magnetic¨-
dinger operators mainly due to their relation with the theory of the Integer Quantum Hall E
~IQHE!. Some of these studies have incorporated the randomness into the magnetic field,1 whereas
others have added a random potential to the usual Landau Hamiltonian. Without any disord
Landau Hamiltonian has a spectrum of evenly spacedLandau levels, each one of which is an
infinitely degenerate eigenenergy. When a random potential is added these Landau levels b
into bands. In several models2–4 it has been shown that for a large magnetic field the spectru
the edges of the bands is pure point, with each eigenenergy corresponding to an expon
localized state. The proofs rely on the von Dreifus and Klein5 refined version of the earlie
multiscale analysis by Fro¨hlich and Spencer6 and on percolation theory. These results are
sufficient to provide a complete understanding of the IQHE, however, as the nature of the
trum in the interior of the band is crucial in explaining the observed plateaux.7 In one special
case8,9 the spectrum has been completely characterized. In this work the authors consider
dom potential consisting of zero-range scatterers~delta functions! situated on the sites of a regula
lattice. In the first paper,8 they show that, in the case of a single-band approximation, the w
spectrum is pure point, with exponentially localized states for all energies except the or
Landau level. They prove also that this level remains infinitely degenerate. These resu
improved in a later work,9 where they obtain similar results for the unprojected Hamiltonian. T
adopt a simple proof of localization by Aizenman and Molchanov,10 which utilizes low moments
of the resolvent kernel.

Our purpose in this work is to generalize the above for the case of a magnetic Schro¨dinger
operator with randomly distributed delta impurities. Specifically, the random potential consi
point scatterers, delta functions, positioned in unit squares that are centered on the G
integers, so that it is possible to have up to four scatterers arbitrarily close together. The str
of the scatterers will also be random. We consider a two-dimensional infinite system of non
acting electrons moving in a uniform magnetic field of strengthB and the random potentialV. The
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precise hypotheses on the probability distributions will be stated in Sec. II.

In the symmetric gauge the vector potential is given byA(r )5 1
2 (rÃB) and the Hamiltonian

is

H5„2 i¹2A~r !…21V~r !. ~1.1!

When the magnetic field is sufficiently strong in comparison to the random potential, the La
bands do not overlap, and it is sufficient to consider the projection of the Hamiltonian onto
one of them. The Hamiltonian restricted to thenth level is

Hn5B~2n11!Pn1PnVPn , ~1.2!

wherePn denotes the projection onto the level. The first term comes from the decompositi
the purely kinetic part of~1.1! and can be dropped as it modifies the energy only by a cons
Note that the resulting Hamiltonian is a random integral operator instead of a differential op
and that the kernels ofPn are known explicitly. For simplicity, in this paper, we restrict ourselv
to the casen50 but the casenÞ0 can be treated similarly.

For our model, in the special case where the support of the positional probability distrib
is bounded within each unit box so that a corridor exists between impurities, the meth
Aizenman and Molchanov yields a simple proof of localization.11 However, for general distribu-
tions of position, impurities can become arbitrarily close to each other and we are not able
their method. This is partly due to possible resonances; that when impurities can becom
trarily close together the low moments of the resolvent kernel do not converge rapidly enou
this paper we use the modification of the Theorem of von Dreifus and Klein given in Ref.
show exponential localization of states corresponding to each of the eigenenergies sep
~except the original Landau level eigenenergy!. We do this by studying, at fixed energy, th
behavior of the generalized eigenfunctions at the impurity sites only, thus reducing the prob
the study of a random matrix. The eigenfunctions of this matrix are related to the eigenfun
of the Hamiltonian in such a way that exponential decay of the former implies exponential d
of the latter. Then using Kotani’s ‘‘trick’’12 we can show exponential decay for all eigenenerg
in an interval with probability one, implying that the whole spectrum is pure point. That
original Landau level eigenenergy remains infinitely degenerate has been shown in Ref. 13
case of a Poisson distribution of impurities. The result given here is similar and so only a s
of the proof is given.

The paper is organized as follows. In Sec. II we give a precise definition of the model. In
III we characterize the spectrum as a set, state the main theorem, and show infinite degene
the original eigenenergy. Also in this section we relate the Hamiltonian to a lattice operato
state our version of the adapted von Dreifus–Klein Theorem. Section IV contains the main
of this paper, where the conditions of the main theorem are checked. In Sec. V we use K
trick to show exponential decay and a pure-point spectrum with probability one.

II. DEFINITION AND BOUNDEDNESS OF THE HAMILTONIAN

Let vn , nPZ@ i #[$n11 in2 :(n1 ,n2)PZ2%, the Gaussian integers, be independent, identic
distributed~i.i.d.! random variables representing the strengths of the impurities. We shall as
that their distribution is given by an absolutely continuous probability measurem whose support
is a compact intervalX5@a,b#,R containing the origin and whose densityr is bounded by a
constantrb . We letV15XZ[ i ] andP15)nPZ[ i ]m.

Define the unit squares centered atnPZ@ i #:

Bn5$zPRuni2
1
2 <zi,ni1

1
2 , nPZ@ i #, i 51,2%.

Let zn5n1 z̃n , nPZ@ i #, represent the positions of the impurities in the complex plane.z̃n , n
PZ@ i # are i.i.d. random variables. We shall assume that their distribution is given by a proba
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measuren with support equal toB0 and densityr bounded by a constantr b . We let V2

5B0
Z@ i # andP25)nPZ[ i ]n. Our probability space will beV5V13V2 with probability measure

P5P13P2 .
For mPZ@ i # let tm be the measure preserving automorphism ofV corresponding to transla

tion by m:

„tm~v,z!…n5~vn2m ,zn2m!. ~2.1!

The group$tm :mPZ@ i #% is ergodic for the probability measureP.
Let H5L2(C) and letH0 be the eigenspace corresponding to the lowest eigenvalue~the first

Landau level! of the kinetic part of the Hamiltonian defined in~1.1! and letP0 be the orthogonal
projection ontoH0 . The Hamiltonian for our model is the operator onH0 , given formally by

H~v,z!5
p

2k
P0V„•,~v,z!…5

p

2k
P0V~•,„v,z!…P0 , ~2.2!

where (v,z)PV and

V„z,~v,z!…5 (
nPZ[ i ]

vnd~z2zn!. ~2.3!

Note thatH coincides withH0 in ~1.2! up to the termBP0 and a multiplicative constant and tha
the lowest Landau energy is now shifted to zero. The projectionP0 is an integral operator with
kernel

P0~z,z8!5
2k

p
exp@2kuz2z8u222ikz`z8#, ~2.4!

wherek5B/4 andz`z85RzIz82IzRz8, Rz andIz being the real and imaginary parts ofz,
respectively. Note that ifcPH thencPH0 if and only if c(z)5 f (z)e2kuzu2, wheref (z) is entire.
Using ~2.4! we can write the Hamiltonian in the form

H5 (
nPZ[ i ]

vnf zn
^ f zn

,

where forzPC,

f z~z!5A p

2k
P0~z,z!5A2k

p
exp@2kz̄z2k~ uzu21uzu2!#. ~2.5!

Note thati f zi51, ^ f z , f z8&5Ap/2k f z8(z) and thatH is an integral operator with kernel

H~z,z8!5 (
nPZ[ i ]

vnf zn
~z! f zn

~z8!. ~2.6!

We first obtain a bound onH(z,z8), which implies thatH is bounded. We give the following
simple estimate without proof.

Lemma 2.1: For s,t.0 and z,z8PC,

(
nPZ[ i ]

e2suz2znu2e2tuzn2z8u2<K~s1t !e2 @st/~s1t !# uz2z8u,2.

where
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K~s!5918e2s14S p

s D 1/2

1
4

s
.

The above lemma implies thatuH(z,z8)u is bounded above by

2Rk

p
K~2k!e2 ~k/2! uz2z8u2, ~2.7!

whereR5max(uau,ubu). ThereforeH is bounded and

iHi<4RK~2k!. ~2.8!

Note that the heat kernel is

Pt~z,z8!5
1

2pt
e2 ~1/2t ! uz2z8u2

and the corresponding operator has unit norm. From now on we takek sufficiently large so that
K(2k),10 and we letR̄540R so thatiHi<R̄.

III. THE SPECTRUM OF H

Let $Uz :zPC% be the family of unitary operators onH corresponding to the magnetic tran
lations:

~Uzf !~z8!5e2ikz`z8 f ~z1z8!.

Then formPZ@ i #,

UmH~v,z!Um
215H„tm~v,z!…. ~3.1!

Note that@P0 ,Uz#50 for all zPC so thatUzH0,H0 . Also Uz1
Uz2

5e2ikz2`z1Uz11z2
. The er-

godicity of $tm :mPZ@ i #% and Eq.~3.1! together imply that the spectrum ofH(v,z) and its
components are nonrandom~see Ref. 14, Theorem V.2.4!.

Lemma 3.1: With probability one,

@4a,4b#,s„H~v,z!….

Proof: It is sufficient to prove that for eachEP@4a,4b# and for alld.0, there existsV8,V with
P(V8).0 andcPH0 with ici51, such that for all (v,z)PV8, i(H(v,z)2E)ci,d.

Let B5$0,1,i ,11 i %. ChooseEP@4a,4b# andD such that(n:uznu>De2kuzn2z0u2,d/4R, where
R5max(uau,ubu), and let

V285H zPV2 :uzn2z0u<
d

4EA2k
, ;nPBJ ,

then since for allnPB, the impuritieszn andz0 can be arbitrarily close to one another,P(V28)
.0. Let

V185H vPV1 :Uvn2
E

4U, d

16
, ;nPB and max

mP” B:uzmu,D
uvmuK~k!,

d

4J .

SinceE/4 and 0 are in the support ofm, P(V18).0. Let V85V183V28 , thenP(V8).0.
Now
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~H f z0
2E fz0

!~z!5 (
nPB

S vn2
E

4 D ^ f zn
, f z0

& f zn
~z!1ES 1

4 (
nPB

^ f zn
, f z0

& f zn
~z!2 f z0

~z! D
1 (

n¹B:uznu,D
vn^ f zn

, f z0
& f zn

~z!1 (
n:uznu>D

vn^ f zn
, f z0

& f zn
~z!.

Hence

iH f z0
2E fz0

i<
d

4
1

E

4 I (
nPB

^ f zn
, f z0

& f zn
24 f z0I1 (

n¹B:uznu,D
uvnuu^ f zn

, f z0
&u

1R (
n:uznu>D

e2kuzn2z0u2.

It is easily seen thati^ f zn
, f z0

& f zn
2 f z0

i2512u^ f zn
, f z0

&u2 is bounded by 2kuzn2z0u2, and there-
fore for all (v,z)PV8,

iH f z0
2E fz0

i,d.

h

We now state the main theorem, which we will prove in the sequel.
Theorem 3.2: There existsk0.0 such that fork.k0 , with probability one, (a)0 is an

eigenvalue of H with infinite multiplicity, (b)scont(H)5B, and (c) iflPs(H)\$0%, is an eigen-
value of H with eigenfunctionc, thenc decays exponentially with rate>k1/4.

We will start by showing part~a!. The lemma is very close to results proven in Refs. 8 and
so only a sketch of the proof will be given.

Lemma 3.3: There existsk1.0 such that fork.k1 , with probability one, 0 is an eigenvalu
of H with infinite multiplicity.

Proof: Let

cz~z!5 )
nPZ[ i ]

S 12
z

zn
Dez/zn 1 z2/2zn

2
.

If we can show that the sums(n1/uznu3 and(n1/zn
2 converge independently ofz, then it follows

from the theory of entire functions~see Ref. 15! that there existsA.0 andR.0, both indepen-
dent of z such that foruzu.R, ucz(z)u<eAuzu2. The first sum is easily bounded, the second c
be bounded by utilizing the fourfold rotational symmetry of theZ@ i # to cancel any large
contributions. Letfk(z)5zkcz(z)e2kuzu2for k>1; then if k.A, the fk’s are inH0 andfk(zn)
50 for all nPZ@ i #. Therefore Hfk50 for all k>1. Moreover, if ( j 51

N akj
fkj

50 then

( j 51
N akj

zkj50 for z¹$zn%. Therefore( j 51
N akj

zkj[0 and thus theakj
’s are zero, implying that the

fk’s are independent. h

For Theorem 3.2 parts~b!, ~c! we can simplify the problem by studying the behavior of t
generalized eigenfunctions at the impurity sites only. We have

~Hc!~z!5
p

2k (
nPZ[ i ]

vnP0~z,zn!c~zn!,

and thus if (Hc)(z)5lc(z),

p

2k (
nPZ[ i ]

vnP0~z,zn!c~zn!5lc~z!, ~3.2!

which evaluated atzm gives
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p

2k (
nPZ[ i ]

vnP0~zm ,zn!c~zn!5lc~zm!.

Let vnc(zn)5jn . Then

p

2k (
nPZ[ i ]

P0~zm ,zn!jn5
l

vm
jm . ~3.3!

We can thus reduce the problem to the study of a random matrix which hasv-dependent element
on the diagonal andz-dependent rapidly decaying off-diagonal elements. We write this matri
a sum of a diagonal matrix and an off-diagonal matrix as defined below.

Let M5 l 2(Z@ i #). Define the operatorsM0 , andVv
l on M as follows:

^muM0un&5
p

2k
P0~zm ,zn!~12dmn!,

~3.4!

^muVv
l un&5S 12

l

vn
D dmn .

For a proof of Theorem 3.2, part~c! we note that the eigenvectorsj of Ml5M01Vv
l , are related

by an explicit formula to the generalized eigenfunctionsc of H in such a way that exponentia
decay of the former implies exponential decay of the latter.

From ~3.2!, if lÞ0,

c~z!5
p

2kl (
nPZ[ i ]

P0~z,zn!jn .

If jn decays exponentially,ujnu<Ce2muznu, we have

uc~z!u<
C

l (
nPZ[ i ]

e2kuz2znu2e2muznu

<
C

l
e2muzu (

nPZ[ i ]
e2kuz2znu2emuz2znu

<
C

l
e2muzuem2/2k (

nPZ[ i ]
e2 ~k/2! uz2znu2<

C

l
em2/2kKS k

2De2muzu, ~3.5!

and c(z) decays exponentially, where we have bounded the sum by takings5k/2, t50 in
Lemma 2.1.

Thus, we want to show that the eigenvectors for the eigenvalue equationMlj50 decay
exponentially forlÞ0. We will do this by the same method as in Ref. 8. First we will need
make a few definitions.

For regionsL,Z@ i # we defineML
l to be the restriction ofMl to l 2(L). If EP” s(ML

l ) then
the Green’s function

GL
l ~E!5~ML

l 2E!21 ~3.6!

is well defined. In particular, we shall consider the regions

LL~n!5$n8PZ@ i #u:un82nu`,L/2%, ~3.7!

for nPZ@ i # andL.0.
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Definition: Fix constantsbP(0,1) and sP( 1
2,1). Given a configuration(v,z), a square

LL(n) is called (m,E) regular for some m.0 and EPR if the following two conditions are
satisfied:

~RA! d~E,s„MLL(n)
l ~v,z!…!. 1

2 e2Lb
,

~RB! u^nuGLL(n)
l ~E!un8&u<e2mL,

for all n8PL̃L(n), whereL̃L(n)5LL(n)\L L̃(n) with L̃5L2Ls. LL(n) is called singular if it is
not regular.

We now state a theorem that is a variant of the main theorem in Ref. 2, where the von D
and Klein Theorem is adapted from the case of a tight-binding~finite range! Hamiltonian to the
case where the Hamiltonian has a long range hopping term with Gaussian decay. It states
tions under which the eigenvectors of the random matrixMl with eigenvalue 0 decay exponen
tially.

Theorem 3.4: Fix constantsbP(0,1), sP( 1
2,1), gP(0,1), p.2, q.4p112. There exists

Q0.0 depending on all these constants butindependent ofl and k.1 such that the following
holds: If for l,k the conditions (P1) and (P2) are satisfied, where

(P1) There exists an L0.Q0 and m0 such that

P$LL0
~0! is ~m0,0! regular %>12L0

2p ; ~3.8!

(P2) There existsh.0 such that, for all EP(2h,h) and for all L.L0 ,

P$d„E,s~MLL(0)
l !…,e2Lb

%,L2q, ~3.9!

then, for all mP(0,m0), there existsd.0 depending on m,m0 ,L0 ,b and h such that for all
EP(2d,d) the eigenvectors of Ml with eigenvalue E decay exponentially with rate>m.

The main work of this paper consists in proving that the conditions~P1! and~P2! are satisfied.
The conditions can be seen to consist of two types of estimate. (RB) of~P1! is an estimate of the
decay of the Greens functionGLL

l (0), while (RA) of ~P1! and~P2! are Wegner-type estimates th

require small gaps in theLL-dependent spectrum. It is unusual that it is the latter estimates
will require the finer analysis; previous works have found the decay of the Green’s functi
require the more delicate study. This is because we want to show that the eigenfunctio
exponentially decaying for arbitrarily smalll. Inspecting~3.4! we see that forl small thev
dependence becomes less significant and does not give sufficient randomness for Wegn
estimates. Therefore we have to utilize randomness provided by the positions of thez j ’s.

IV. PROOF OF THE CONDITIONS „P1… AND „P2…

We will begin by showing~RB! of ~P1!. We will need the following two probabilistic lemma
in which we fix u.3.

Lemma 4.1: There exists Q1 such that

PS uzn2zn8u.
2

Lu for all n,n8PLL , nÞn8D>12
1

Lu23
, ~4.1!

for all L .Q1 .
Proof: The zn’s have a distribution with a density bounded byr b for eachBn and, thus,

PS uzn2zn8u.
2

Lu for all n,n8PLL , nÞn8D>S 12
4r b

Lu D L2

.

                                                                                                                



2812 J. Math. Phys., Vol. 41, No. 5, May 2000 J. V. Pulé and M. Scrowston

                    
By taking L sufficiently large we get the result. h

Lemma 4.2: There exists Q2 such that

PS U12
l

vn
U. 1

Lu , ;nPLLD.12
1

Lu23
, ~4.2!

for all L .Q2 .
Proof: Now u12 l/vn u< 1/Lu gives us that2 1/Lu <12 l/vn < 1/Lu, which implies that

11 1/Lu > l/vn>12 1/Lu.
Thus,vn must fall between the bounds,

ulu

11 ~1/Lu!
<uvnu<

ulu

12 ~1/Lu!
. ~4.3!

Hence

PS U12
l

vn
U< 1

LuD <2rbuluS 1

12 ~1/Lu!
2

1

11 ~1/Lu!D 5
4rbulu

Lu S 12
1

L2uD 21

<
2u12rbR̄

Lu
,

if L.2, where we have used 121/L2u.1/2u. Therefore

PS U12
l

vn
U. 1

Lu
, ;nPLLD .S 12

2u12rbR̄

Lu D (L11)2

.

By taking L sufficiently large we get the result. h

The following Lemma is proved in Ref. 8.
Lemma 4.3: For allgP(0,1), there exists C0(g).0, such that fora.1,

(
mPZ[ i ]

e2a$uz2mug1uz82mug%<C0~g!e2auz2z8ug. ~4.4!

The following Lemma will be used to show~RB! of ~P1!.
Lemma 4.4: For allgP(0,1) and u.3, there exists Q3 such that for all L.Q3 and all k

.L4u/4 we have for any n,n8PLL ,

P~ u^nuGLL

l ~0!un8&u<2Lue2 ~k1/2/8! un2n8ug!.12
2

Lu23
. ~4.5!

Proof: In the following we letgP(0,1). Using ua1bu2<2(uau21ubu2) we havekuzn2zn8u
2

>k( 1
2 un2n8u222).(k/4) un2n8u2.(k1/2/4) un2n8ug for un2n8u>3. Suppose thatuzn2zn8u

.2/Lu for all n,n8PLL , nÞn8. Then for un2n8u,3 we have thatkuzn2zn8u
2.(k1/2/4) un

2n8ug if 2k1/2/L2u.1. Thus we can write

e2kuzn2zn8u
2
<e2 ~k1/2/4! un2n8ug,

and, consequently,

u^nuMLL

0 un8&u<e2 ~k1/2/4! un2n8ug~12dnn8!.

If u12l/vnu.1/Lu for all nPLL , then for alln,n8PLL we also have
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u^nu~VLL

l !21un8&u<Ludnn8 .

Therefore we can write

u^nu~VL
l !21MLL

0 un8&u< (
pPL

u^nu~VL
l !21up&uu^puMLL

0 un8&u

5u^nu~VL
l !21un&uu^nuMLL

0 un8&u

<Lue2 k1/2/8e2 ~k1/2/8! un2n8ug~12dnn8!,

and

u^nu~~VLL

l !21MLL

0 !2un8&u< (
r PL

u^nu~VLL

l !21un&uu^nuMLL

0 ur &uu^r u~VLL

l !21ur &uu^r uMLL

0 un8&u

<L2ue2 k1/2/4 (
r PZ[ i ]

e2 ~k1/2/8! un2r uge2 ~k1/2/8! ur 2n8ug~12dnr!~12d rn8!

<C0~g!L2ue2 k1/2/4e2 ~k1/2/8! un2n8ug.

Similarly,

u^nu~~VLL

l !21MLL

0 !kun8&u<C0~g!k21Lkue2 kk1/2/8e2 ~k1/2/8! un2n8ug.

Let T be the operator witĥ nuTum&5e2 (k1/2/8) un2mug. Then we can makei((VLL

l )21MLL

0 )ki

< (1/2k) iTi by makingC0(g)Lue2 k1/2/8, 1
2. We can therefore iterate the resolvent identity to

Gl~0!5~Vl!212~Vl!21M0Gl~0!5 (
k50

`

~21!k
„~Vl!21M0

…

k~Vl!21.

Hence, if we takeL.Q3 with Q3 larger thanQ1 and Q2 and sufficiently large that12 L2u

.8 ln„2C0(g)Lu
…, the result follows from Lemmas 4.1 and 4.2. h

Let b be fixed as in Theorem 3.4 andk.p/2. To prove~RA! of ~P1! and condition~P2!, we
need to look at two regimes,ulu>e2Lb/2 and ulu,e2Lb/2. The next lemma deals with the firs
regime, and the Lemmas 4.6–4.9 with the second.

Lemma 4.5:If ulu>e2Lb/2, L.1, EPR ande.0, then

P~d„E,s~MLL

l !…,e!,8rbR2L2eLb/2e. ~4.6!

Proof: First we need to find a bound on the density of the diagonal terms ofMl:

sup
x

lim
e→0

1

2e E
x2e,12 l/v,x1e

r~v!dv5sup
x

lim
e→0

1

2el E
x2e

x1e

rS l

12uD S l

12uD 2

du

,sup
x

lim
e→0

rbR2

2eulu Ex2e

x1e

du5
rbR2

ulu
. ~4.7!

It follows that the density ofxnn5^nuML
l un& is bounded byrbR2eLb/2.

For Borel subsetsB of R let sn
L(B)5^nuEL(B)un&, whereEL(B) are the spectral projection

of ML
l . Then by Lemma VIII.1.8 in Ref. 14, and by~4.7!,
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Exnn
sn

L~B!,rbR2eLb/2E
B

dx,

and therefore

Esn
L~B!,rbR2eLb/2E

B
dx.

As in Proposition VIII.4.11 of Ref. 14, it then follows that, using~4.7!, for all EPR ande.0,

P~d„E,s~MLL

l !…,e!,2rbR2eLb/2euLLu,2rbR2eLb/2e~L11!2.

If L>1 the result follows. h

For the next part it is necessary to make some definitions.
Definitions:We defineV5$zn ,nPZ@ i #% to be the vertices of a graphG(V,E) with edgesE

defined asE5$(zm ,zn):uzm2znu, 1
8, ;n,mPZ@ i #,nÞm%. The degree of a vertex, deg(zm)

5#$nPZ@ i #:(zm ,zn)PE%. Two vertices are said to beconnectedif there exists a path betwee
them along a series of edges. Acomponentis defined to be a maximally connected subgraph.
will define acluster to be a component of the graphG(V,E).

Lemma 4.6: For each configuration$zn% there exist clusters containing, at most four vertic
such that the distance between every pair of clusters is at least1

8.
Proof: The distance between two clustersCi , Cj is given by

d~Ci ,Cj !5 inf$d~zn
i ,zm

j !uzn
i PCi ,zm

j PCj%.

It is easily seen that if the distance between two clusters is less than1
8, then the distance betwee

one of the vertices in one cluster, must be closer than1
8 to a vertex in the other. Thus, an edge w

exist that connects the two clusters, leading to a contradiction in their definition as se
clusters.

It suffices to show that we cannot have a cluster with more than four vertices. The diame
a cluster is given by

diam~Ci !5sup$d~zn ,zm!uzn ,zmPCi%.

We know that the unit squares centered on the Gaussian integers,$Bn ,nPZ@ i #%, contain exactly
one vertex each. The maximum diameter for a cluster of five vertices will be less than1

2 by virtue
of the definition of a cluster. However, a circle of diameter1

2 cannot intersect more than four of th
Bn , so we cannot have a cluster of five. If we had a cluster of more than five vertices, we
also have a cluster of five, as can be seen if we perform a one by one deletion of the lowest
vertices until only five remain. Thus we cannot have a cluster with more than five verticesh

For a configuration$zn%, let

^nuM̃L
l un8&5H ^nuML

l un8&, if zn ,zn8 are in the same cluster,

0, otherwise.

Let C1 ,C2 , . . . ,CN be the clusters inL and letP1 ,P2 , . . . ,PN be the projections ontoHi the
space spanned by$un&:znPCi%. Let

Mi5P iML
l Pi5P i M̃L

l Pi . ~4.8!

Lemma 4.7: Forl50,
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udetMi u>C )
m,n:zm ,znPCi

~12e2kuzm2znu2!, ~4.9!

where C.0 is a constant independent ofz.
Note that numerical calculation shows that the inequality is satisfied withC51. If thez i ’s are

distinct then forl50, we can write

^j,Mij&5
p

2k (
m,n:zm ,znPCi

j̄mP0~zm ,zn!jn

5
p

2kEC
(

m,n:zm ,znPCi

j̄mP0~zm ,z!P0~z,zn!jn dz

5E
C
U (

m:zmPCi

jmf zm
~z!U2

dz.0, ~4.10!

since thef z i
’s will be linearly independent. Thus, detMi.0.

Proof: If l50, recall that from the definition ofMl, for zm , zn in a clusterCi ,

^muMi un&5e2kuzm2znu222ikzm`zn.

We only have to prove the result up to a cluster of four. For a cluster of one, the result is t
For a cluster of two we get,

udetMi u512e22kuz12z2u2.

We now give the proof for a cluster of three. A direct proof withC51 can be given~see Ref. 16!,
but it is difficult to extend this to the case of a cluster of four impurities. For this reason we
give an indirect proof, which can be extended to the latter case.

Let k1/2(z22z1)5aeia and k1/2(z32z1)5beib. Then detMi5G3(a,b,f), where f5a
2b and

G3~a,b,f!512e22a2
2e22b2

2e22c2
12e2(a21b21c2) cos„2ab sin~f!…, ~4.11!

with

c25a21b222ab cosf.

Note that without loss of generality we can takefP@0,p#. G3 is an analytic function ofa, b, and
f. It is easy to check that

G3~0,b,f!5G3~a,0,f!5G3~a,ae6 if,f!50,

and

]G3

]a
~0,b,f!5

]G3

]b
~a,0,f!50,

so that we can write

G3~a,b,f!5a2b2~b2ae2 if!~b2aeif!g3~a,b,f!5a2b2c2g3~a,b,f!, ~4.12!

whereg3(a,b,f) is an analytic function ofa, b, andf.
Let A5Ṙ1

2 3@0,p#, whereṘ1 denotes the one-point compactification ofR1 , and letAo be
the interior ofA. Define f 3 :Ao→R by
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f 3~a,b,f!5
G3~a,b,f!

~12e2a2
!~12e2b2

!~12e2c2
!
. ~4.13!

f 3(a,b,f).0 for all (a,b,f)PAo by the inequality~4.10!. Note thatc50 only if a5b50 or
a5b andf50. We shall prove that for each point (a0 ,b0 ,f0) on the boundary ofA, we have
lim inf (a,b,f)→(a0 ,b0 ,f0) f 3(a,b,f).0. Then sinceA is compact there existsC.0 such that
f 3(a,b,f).C for all (a,b,f)PA.

For points on the boundary ofA for which a, b andc are all finite and nonzerof 3(a,b,f) is
defined by ~4.13! and is strictly positive. Now lima→` f 3(a,b,f)511e2b2

.1for all (b,f)
PR13@0,p# and similarly for limb→` f 3(a,b,f). Also, lim inf(a,b)→(`,`) f 3(a,b,f)51.

Next, we have that lim(a,b)→(0,0) f 3(a,b,f)5g3(0,0,f), and we can check thatg3(0,0,f)
54. Forb.0, lima→0 f 3(a,b,f)5b4g3(0,b,f)/(12e2b2

)2. We can calculateg3(0,b,f) explic-
itly to get b4g3(0,b,f)52e22b2

(e2b2
2122b2).0. Similarly, we can show thatg3(a,0,f).0.

Finally, by symmetry it follows that lima→b,f→0f 3(a,b,f)5 lima→0 f 3(a,b,c), wherec is the
angle between the edges of lengthsb andc, which has already been shown to be strictly positi
Note that, in fact, this limit is independent ofc.

Now we come to the proof of the lemma for a cluster of four. The idea of the proof is the
as for a cluster of three, but the details are more complicated.

Let k1/2(z22z1)5aeia, k1/2(z32z1)5beib, and k1/2(z42z1)5ceig. Then detMi

5G4(a,b,c,f,c), wheref5b2a, c5a2g, and

G4~a,b,c,f,c!512e22a2
2e22b2

2e22c2
2e22u2

2e22v2
2e22w2

1e22(b21v2)

1e22(a21w2)1e22(c21u2)12e2(a21b21u2) cos~4Dabu!

12e2(b21c21w2) cos~4Dbcw!12e2(a21c21v2) cos~4Dacv!

12e2(u21v21w2) cos~4Duvw!22e2(b21c21u21v2) cos„4~Dacv1Dabu!…

22e2(a21c21u21w2) cos„4~Dabu2Dbcw!…

22e2(a21b21v21w2) cos„4~Dacv2Dbcw!…, ~4.14!

with

u25b21a222ba cosf,

v25c21a222ac cosc,

w25b21c222bc cos~f1c!,

Dabu5
1
2 ba sinf,

Dacv5 1
2 ac sinc,

Dbcw5 1
2 bc sin~f1c!,

and

Duvw5 1
2 „ba sinf1ac sinc2bc sin~f1c!….

G4(a,b,c,f,c) is an analytic function ofa, b, c, f andc. In this case also we can check th

G4~0,b,c,f,c!5G4~a,0,c,f,c!5G4~a,b,0,f,c!50,
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]G4

]a
~0,b,c,f,c!5

]G4

]b
~a,0,c,f,c!5

]G4

]c
~a,b,0,f,c!50,

and

G4~be6 if,b,c,f,c!5G4~ce6 ic,b,c,f,c!5G4~a,ce6 i (f1c)c,f,c!50.

These identities imply that

G4~a,b,c,f,c!5a2b2c2u2v2w2g~a,b,c,f,c!, ~4.15!

whereg4(a,b,c,f,c) is an analytic function ofa, b, c, f, andc.
In this case we letA5Ṙ1

3 3@0,p#2and definef 4 :Ao→R by

f 4~a,b,c,f,c!5
G4~a,b,c,f,c!

~12e2a2
!~12e2b2

!~12e2c2
!~12e2u2

!~12e2v2
!~12e2w2

!
. ~4.16!

Using the same arguments as before it is sufficient to check that for each poz
5(a0 ,b0 ,c0 ,f0 ,c0) on the boundary ofA, we have lim inf(a,b,c,f,c)→z f 4(a,b,c,f,c).0.

When one ofa, b, and c tend to `, the problem simplifies to the three impurity cas
and taking the lower limit when two of them tend tòreduces the problem to the two impurit
case. When all ofa, b, and c tend to `, the lower limit is equal to 1. It remains to
show thatf 4(a,b,c,f,c) is strictly positive in the limit of any subset of$a,b,c% going to zero.
By symmetry we need only check the casesa,b,c→0, a,b→0, and a→0. Now
lim(a,b,c)→(0,0,0) f 4(a,b,c,f,c)5g(0,0,0,f,c)5 16

3 . Similarly lim(a,b)→(0,0) f 4(a,b,c,f,c)
54e22c2

(e2c2
2122c222c4)/(12e2c2

)3.0.
Finally, we need to check that lima→0 f 4(a,b,c,f,c).0. This is considerably more difficul

and will be checked over several stages. We have that

lim
a→0

f 4~a,b,c,f,c!52h~b,c,u!/~12e2b2
!2~12e2c2

!2~12e2w2
!, ~4.17!

where

h~b,c,u!512~112b2!e22b2
2~112c2!e22c2

2e22w2
12w2e22(b21c2)

12e2b21c21w2
cos~2bc sinu!14bce2(b21c21w2)

„cosu cos~2bc sinu!

1sinu sin~2bc sinu!…, ~4.18!

andu5f1c. Now, differentiatingh with respect tou gives

dh

du
58bce2(b21c21w2)S~bc,u!, ~4.19!

whereS(x,u)5sinu„cosh(2xcosu)2cos(2xsinu)…2x sin(2xsinu).
We can use cosht>11t2/2!1t4/4! for all t and sint<(n50

4 (21)nt2n11/(2n11)!, cost
<(n50

4 (21)nt2n/(2n)! for t,10 to write

S~x,u!> 2
45 x4 j ~x,u!sinu, ~4.20!

where j (x,u)51512x2 sin6 u26x2 sin4 u14/7x4 sin6 u21/7x4 sin8 u22/63x6 sin8 u. Note that
j (x,u) is symmetric about p/2. Differentiating j (x,u) with respect to u yields
4/7x2sin3u cosu(21 sin2 u24216x2 sin2 u22x2 sin4 u24/9x4 sin4 u). The first factor is seen to be
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zero only atuP$0,p/2,p%. The second factor is quadratic inx2 and has no real roots as (
2sin2 u)2128/3(sin2 u22),0 for all u. Hence, j (x,u) takes stationary values foru
P$0,p/2,p%. Now j (x,0)5 j (x,p)515, while

j ~x,p/2!51524x21 3
7 x42 2

63 x6

is a cubic inx2, which is easily shown to be decreasing withx. j (2.4,p/2).0 and thus forx
,2.4, dh/du >0 andh is increasing withu.

We now need to find an increasing lower bound forh whenx>2.4. ForuP@0,p/2#, so that
cosu>0, we can get a lower bound forh by using cos(2bcsinu)>122b2c2 sin2 u and
sin(2bcsinu)>22bcsinu. Let this lower bound bek1 . Note thath andk1 coincide atu50. We
have that

dk1

du
516bc sinue2(b21c21w2)S1~bc,bc cosu!, ~4.21!

where S1(x,y)5sinh2 y22y1(21y)(x22y2)2y2. For x>y we have thatS1(x,y)>sinh2 y22y
2y2.0 for y.1.65. On the other handS1(x,y).22y12(x22y2).0 if y,(21
1A114x2)/2. Combining these two results, we haveS1(x,y)>0 for all y<x if x.2.1.

For uP@p/2,p# we have that cosu<0. We use the same bounds inh as before except we
bound cos(2bcsinu) by 1 in the term containing cosu. Let this bound bek2 . Note thatk1 andk2

coincide atu5p/2. It is simple to see that

dk2

du
58bc sinue2(b21c21w2)S2~b,c,u!, ~4.22!

whereS2(b,c,u)52 sinh2(bccosu)24bccosu13b2c2 sin2 u>0. Hence,k2 is increasing withu.
We have shown, whenx>2.4, that for uP@0,p/2#, k1<h is increasing, and foru

P@p/2,p#, k2<h is increasing. We have also noted thath5k1 at u50 and thatk15k2 at u
5p/2. We have seen that forx,2.4, h is increasing. Therefore it remains to check thath is
strictly positive atu50. Making the change of variabless52b2 andr 52b(c2b), we have that

h~As/2,~r /s11!As/2,0!5
s

r 2
eser 2/sh̃~s,r !,

where

h̃~s,r !5
~er 2/s21!s~es212s!

r 2
12

e2rs~12e2r !

r
2e22r~12e2s!2

s~11s!~12e2r !2

r 2
.

Let k3 be the lower bound obtained by replacing the first term inh̃ by (11r 2/2s)(es212s). We
differentiatek3 with respect tor and write it as a power series expansion inr;

sr3e2r
dk3

dr
52sS 12e2s2s1

s2

2 D r 31S es212s2
s2

2
1

5s3

6 D r 412s2(
n55

`
r n

n!
„s~2n2n22!12n

2n22n22)…1~es212s! (
n55

`
2n24r n

~n24!!
.

By using the bound 12e2s<s, it is easy to see that the first term is increasing and thus posi
es212s2 s2/21 5s3/6>0 ands(2n2n22)12n2n22n22>0 for n>5. Thusk3 is increas-
ing with r.

Finally, we need to check that the limr→0 k3(s,r ).0:
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lim
r→0

k3~s,r !52S coshs212
s2

2 D.0,

for s.0, and thereforeh(b,c,0).0 for all nonzerob, c and the lemma is proved. h

Recalling~4.8!, we can write

M̃L
l 5(

i
M i and ~M̃L

l !215(
i

~Mi !
21.

Let E5supi iMi
21i ; then i(M̃L

l )21i<E.
Lemma 4.8: Letdk5 1

2 e2k/64. If u.39 and q,u/1323 then there exists Q4 such that for all

L.Q4 , k.64 ln(2Lu), for all EP(2dk ,dk), all l with ulu,e2Lb/2,

P~d„E,s~MLL

l !…,e2Lb
!,

1

Lq
.

Proof: If di5dimPi then we have

iMi
21i<

cdi

udetMi u
iMi idi21, ~4.23!

wherecdi
is a constant. ObviouslydiP$1,2,3,4%, as a maximal cluster contains four impuritie

Now, from the previous lemma we have a lower bound forudetMi u for the case wherel50.
Using the bound 12exp(2kx2)>x2 exp(2x2) for k.1, we can write, whenl50,

udetMi u>C )
m,n:zm ,znPCi

uzm2znu2e2uzm2znu2. ~4.24!

Let u5u/13. Then ifuzn2zn8u.2/Lu for zn ,zn8PCi with znÞzn8 ,

udetMi u>CS 4e2(3/8)2

L2u D 6

5C8L212u.

Also, if l50, then

iMi idi21<S (
$n,m:zn ,zmPCi %

u^muMi un&u D di21

,A,

for some constantA, independent ofz. So forl50, iMi
21i<C9L12u.

Therefore ifD is the diagonal matrix made up of the elementsl/vn with u l/vn u,e2Lb/4 for
$n:znPCi%, then forL sufficiently large, by the resolvent identity

E5supi iMi
21i<supi

iMi
21ul50i

12iDiiMi
21ul50i

<Lu. ~4.25!

The probability for this to occur is greater thanP(uvnu.e2Lb/4 and uzn2zn8u.2/Lu for all n,n8

such thatzn ,zn8PCi with znÞzn8), which is greater than (122rbe2Lb/4)4(12L32u).12L2q

for L sufficiently large.
Let dML

l 5ML
l 2M̃L

l . Then
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^nudML
l un8&5H 0 if zn ,zn8 are in the same cluster,

p

2k
P0~zn ,zn8!, otherwise.

Sincek>p/2, we have

idML
l i<e2k/64.

From the resolvent identity we get

i~ML
l !21i<i~M̃L

l !21i1i~M̃L
l !21iidML

l ii~ML
l !21i . ~4.26!

If we can makei(M̃L
l )21iidML

l i<Ee2k/64< 1
2, then we get

i~ML
l !21i<2i~M̃L

l !21i . ~4.27!

Thus, we have that ifk.64 ln(2Lu),

i~ML
l !21i<2Lu,

with a probability greater than 12L2q if L is sufficiently large.
If uEu, 1

2 e2k/64 thenuEu,1/4Lu. So i(ML
l 2E)21i,@ i(ML

l )21i2121/4Lu#21. Hence, from
above,

P~ i~ML
l 2E!21i<4Lu!.12

1

Lq
.

Now, asEPR,

d„E,s~ML
l !…5i~ML

l 2E!21i21,

which gives us that

PS d„E,s~ML
l !…<

1

4LuD,
1

Lq
.

Taking Q4 sufficiently large so that, in addition,Lb. ln(4Lu), we obtain the result. h

Lemma 4.9: There exists Q5 such that for all L.Q5 , for q.0, any EPR, all k,Lb/20, all

l with ulu,e2Lb/2,

P~d„E,s~MLL

l !…,e2Lb
!,

1

Lq
. ~4.28!

Proof: We divide up the points ofLùZ@ i # into adjacent pairs$ni ,ni8%.
Let Qi be the two-dimensional projection onto the space spanned byuni& and uni8&. Let

Ui5
1

A2
S 1 2e22ikzni

`zni8

1 e22ikzni
`zni8

D , Ui* 5
1

A2
S 1 1

2e2ikzni
`zni8 e2ikzni

`zni8
D

Let U5( iQiUiQi* . Then we have, forni ,ni8 in a pair,

^ni uUM0U* uni&511e2kuzni
2zni8

u2,
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^ni8uUM0U* uni8&512e2kuzni
2zni8

u2.

Now, if r 5uzni
2zn

i8
u, then

P@r P~a,b!#5E d2z1E d2z2r ~z1!r ~z2!1$uz12z2uP(a,b)%

<E r ~z1!d2~z1!E
R2

r ~z2!1$uz12z2uP(a,b)%d
2~z2!

<2pr bE
a

b

r dr 5pr b~b22a2!5E
a

b

r̃~r !dr,

with r̃(r )52pr br .
Let s5e2kr 2

ande25k,a,b,1. Then2(pr b ds)/(ks)5 r̃(r )dr,

P@sP~a,b!#,2
pr b

k E
a

bds

s
,

pr b

k
e5kE

a

b

ds5
pr b

k
e5k~b2a!.

The density ofxnn5^nuUM0U* un& is bounded bypr be5k/k. So the diagonal terms 16s have
the same bound.

For Borel subsetsB of R, let sn
L(B)5^nuEL(B)un&, whereEL(B) are the spectral projection

of UM0U* , with ulu,e2Lb/2. Then by Lemma VIII.1.8 in Ref. 14,

Exnn
sn

L~B!,
pr be5k

k E
B

dx,

and, therefore,

Esn
L~B!,

pr be5k

k E
B

dx.

As in Proposition VIII.4.11 of Ref. 14, it then follows that for allEPR ande.0,

P~d„E,s~MLL

0 !…,e!,2
pr be5k

k
euLLu,2

pr be5k

k
e~L11!2,8

pr be5k

k
L2e, ~4.29!

if L>1. Now, it is easily seen thats(Ml),$z:d„z,s(M0)…,iMl2M0i%. Hence

d„E,s~Ml!…>d„E,s~M0!…2iMl2M0i .

We can show thatiMl2M0i,e2Lb/4 with a probability P(uvnu.e2Lb/4 for all nPLL).(1
22rbe2Lb/4)(L11)2.12L22q for all L.Q5 , with Q5 sufficiently large. Hence if
d„E,s(MLL

0 )….e1e2Lb/4 thend„E,s(MLL

l )….e.

So for l with ulu,e2Lb/2, all EPR and for allL.Q5 ,

P~d„E,s~MLL

l !….e!.S 128
p

k
r bL2~e1e2Lb/4!e5kD S 12

1

L2qD , ~4.30!

where we have usedP(A)>P(AuB)P(B). If we have thatLb.20k, the lemma is proved. h

Finally, we can bring the two regimes forl together to prove that the following.
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Lemma 4.10: There exists Q6 and dk such that for any q.0, any lPR, EP(2dk ,dk), for
all L .Q6 ,

P~d„E,s~MLL(0)
l !…,e2Lb

!,
1

Lq
.

Proof: Chooseu.13(q13). TakeQ6 larger thanQ5 such that

8rbR2L2e2Lb/2,
1

Lq
, and Lb.28.5 ln~2Lu!,

for all L.Q6 and takedk5 1
2 e2k/64. Let EP(2dk ,dk) and ulu,e2Lb/2. Then by Lemmas 4.8

and 4.9, for allL.Q6 ,

P~d„E,s~MLL(0)
l !…,e2Lb

!,
1

Lq
.

On the other hand, ifulu>e2Lb/2 then by Lemma 4.5, for allL.Q6 , we also have the abov
inequality. h

We finally check that the conditions of Theorem 3.4 are satisfied forp53, q525. By Lemma
4.10, condition~P2! is satisfied forL.Q6 with h5dk , wheredk5 1

2 e2k/64. Also from Lemma
4.10, ~RA! of ~P1! is satisfied with probability greater than 12 1/Lq for L.Q6 .

Now in Lemma 4.4 putu57, g5 1
2, and letL0 be greater thanQ3~Q6 and such that for any

fixed sP( 1
2,1) ~as in the regularity condition!, we have

1

L0
25

1
2

L0
4
,

1

L0
3

, L0
14~L02L0

s!1/2.64 ln~2L0
7!, and L0

7~L02L0
s!1/2.32L0 .

If we choosek05L0
4u/4, then we have that

u^nuGLL0

l ~0!un8&u<e2k1/4L0,

for all k.k0 , all n, n8PLL0
with a probability greater than 122/L0

4. Therefore if we takem0

5k1/4,

P$LL0
~0! is ~m0,0!2regular%>12

1

L0
3

,

where we have used thatP(AùB)>12P(Ac)2P(Bc)and condition~P1! is checked.

V. PROOF OF THEOREM 3.2 PARTS „b… AND „c…

In this section we denote byL the Lebesgue measure.
From Theorem 3.4, Eq.~3.5! and an application of Fubini’s theorem, we can deduce that w

probability one and forL a.e. l, if l is a nonzero generalized eigenvalue ofH(v,z) then the
corresponding eigenfunction decays exponentially. An immediate consequence is thatsac(H)
5B. However, this does not rule out the existence of a singular continuous spectrum. To e
this we need to show exponential decay fora.e.l with respect to the spectral measure ofH(v,z).
We will use the ideas of Delyon, Le´vy, and Souillard.17

Let L,Z@ i # with uLu5N as before and define the restriction ofH to L by
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HL5 (
nPL

vnu f zn
&^ f zn

u.

If ck are eigenfunctions ofHL with eigenvalueslk , k51, . . . ,N and icki51 for all k, then

HLck5lkck .

Define the resolution of the identity of the restriction ofH to HL by

EL~B!5 (
k:lkPB

uck&^cku,

whereB is a Borel subset ofR and letsL
f,f5^fuELuf& for somefPH0 . For L↗Z@ i #, sL

f,f

converges weakly as a measure tosf,f, the spectral measure ofH. We can writesL
f,f explicitly:

sL
f,f~B!5 (

k:lkPB
u^fuck&u2. ~5.1!

As in Sec. III the eigenvalueslk of HL with eigenfunctionck must satisfyML
l jk50, where

jk(n)5A2k/pvn^ f zn
uck&. Thus, we can expectN solutions ofl for detML

l 50. We will look at
solutions as a function of one of thevn only.

Using ]HL /]vn 5u f zn
&^ f zn

u, a calculation of̂ ckud/dvn(HLck)& yields that

dlk

dvn
5u^ f zn

uck&u2. ~5.2!

Note that if ^ f zn
uck&50 thenck remains an eigenvector forlk as vn varies and does not con

tribute tos
L

f zn
, f zn . Also, if lk is degenerate, we can choose the corresponding orthonormal s

eigenvectors so that only one satisfies^ f zn
uck&Þ0. From~5.2! we see that eachlk is a monotonic

increasing function ofvn and from~3.4! that we getN21 solutions oflk that are identical as
vn→6`. The Nth solution corresponds to theck , which tends tof zn

, and this value increase
from l52` at vn52` to the lowestlk at vn51` ~respectively, increases from the highestlk

at vn52` to l51` at vn51`), as can be seen from the following argument. We would l
to know the behavior whenvn andl both become large. If we expand the determinant, we g

S 12
l

vn
D S ~21!N21

P
lN211P~l! D1 (

mÞn

N

vm

e22kuzm2znu2~21!N22

P
lN221Q~l!50,

whereP5)mÞn
N vm , P(l) is a polynomial inl of degreeN22, andQ(l) is a polynomial inl

of degreeN23. We thus get an expression forvn in terms ofl.

vn5
lN

lN212(mÞn
N vme22kuzm2znu2lN221R~l!

,

whereR(l) is a polynomial inlN23. Thus, forl large,vn;l. This is what we expect ifck

→ f zn
as then we have thatdlk /dvn→1.

Now, recalling the fact thatl is a monotonic increasing function ofvn , we see that only one
among the eigenvalueslk crosses anyl, i.e., the range ofl(vn) is divided into disjoint open
subsetsOk such thatøkOk5R, and eachlk corresponds to only one of theOk . Therefore there

is only one term corresponding to suchlk in the sum~5.1! for s
L

f zn
, f zn .

The above results along with~5.1! and ~5.2! allow us to make the following change o
variables:
                                                                                                                



e

that

een

ence

e of

7/

2824 J. Math. Phys., Vol. 41, No. 5, May 2000 J. V. Pulé and M. Scrowston

                    
E
R3B

r~vn!dvn s
L

f zn
, f zn~dl!5E

R
(

k:lkPB
r~vn!dvnu^ f zn

uck&u2<rb#$lkPB%5rbuBu.

~5.3!

Using the weak convergence ofs
L

f zn
, f zn to s f zn

, f zn, we can therefore write

E
R
r~vn!dvn s f zn

, f zn~B!<rbuBu, ~5.4!

and hence thevn-averaged spectral measureEvn
„s f zn

, f zn(dl)… is absolutely continuous with
respect to Lebesgue measure.

We now use Kotani’s ‘‘trick’’ ~see Ref. 12!. In the following,B will represent the Borels
field. We will need the following lemma who’s proof is elementary.

Lemma 5.1: Let$ f n% be a total countable subset of normalized vectors of a Hilbert spacH
and H a self-adjoint operator onH with spectral projections E(•). Let cn.0, (ncn,` and n
5(ncns f n , f n, wheres f n , f n(•)5^ f nuE(•)u f n&. Then for any BPB, n(B)50 implies that E(B)
50.

Let (V,F,P) be the probability space corresponding to thev andz and letFn* be the subs
field of F generated by all of these variables exceptvn for somenPZ@ i #. If F(v,z,l) is a
non-negativeFn* ^ B measurable function, then from Proposition VIII.1.4 in Ref. 14 we have

S EH E F~•,•,l!dlJ 50D⇒S E F~v,z,l!s f zn
, f zn~dl!50 Pa.e.D . ~5.5!

Lemma 5.2: For BPB let B°E(B) be the spectral measure of H and let APùnPZ[ i ] (Fn*
^ B), then, if for a.e.lPR with respect to Lebesgue measureE$1A(•,•,l)%50, then E$E($l:
(•,•,l)PA%)%50.

Proof: Let APFn* ^ B. If for a.e. l with respect to Lebesgue measureE$1A$(•,•,l)%50,
then by Fubini’s theoremE$*dl 1A(•,•,l)%50. Combining this with ~5.4!, we have that
E$*1A(•,•,l)Evn

„s f zn
, f zn(dl)…%50. We now use the fact thatAPFn* ^ B with ~5.5! to move the

expectation overvn outside the integral, and we obtain

E$1A$~•,•,l!%%50⇒EH E 1A~•,•,l!s f zn
, f zn~dl!J 50. ~5.6!

Finally, by takingAPùnPZ[ i ] (Fn* ^ B) and n5(ncns f zn
, f zn, where eachcn.0, (ncn,`, we

have thatE$*R1A(•,•,l)n(dl)%50, and from Lemma 5.1 we have the result. Now we have s
at the beginning of this section that ifW is the set inV3R, defined by

W5$~v,z,l!:the generalized eigenfunctions ofH~v,z!

with eigenvalueldecay exponentially%,

then Fubini’s theorem implies thatW is of P^ L full measure. By takingWc asA in Lemma 5.2,
we have shown that with probability one andl a.e.with respect to the spectral measure, ifl is a
generalized eigenvalue ofH then the corresponding eigenfunctions decay exponentially, and h
Theorem 3.2 parts~b! and ~c! are proven.
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17F. Delyon, H. Lévy, and B. Souillard, Commun. Math. Phys.100, 463 ~1985!.
                                                                                                                



models.
d. One
od
with
ch

lightly
e
e also
riance,
tion in
ed

ody
els have
matter
early
12

e Lie
haps

odel. It

oxeter
,

actly
in an
6–18.

mal

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 5 MAY 2000

                    
„Super …conformal many-body quantum mechanics
with extended supersymmetry

Niclas Wyllarda)

DAMTP, University of Cambridge, Silver Street, Cambridge CB3 9EW, United Kingdom
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We studyN54 supersymmetric quantum-mechanical many-body systems withM
bosonic and 4M fermionic degrees of freedom. We also investigate the further
restrictions of conformal and superconformal invariance. In particular, we construct
conformalN54 extensions of theAM21 Calogero models, which for generic val-
ues of the coupling constant are not SU(1,1u2) superconformal. This class of mod-
els is also extended to arbitrary~even! N. We give both Hamiltonian and~classical!
Lagrangian formulations. In the latter case, we use both component andN54
superfield formulations. ©2000 American Institute of Physics.
@S0022-2488~00!05705-4#

I. INTRODUCTION

Recently, there has been increased interest in supersymmetric quantum-mechanical
Contrary to the situation in higher dimensions, such models have been much less studie
recent application is to black hole physics.1–5 A related issue is the still incompletely understo
adS2/CFT1 correspondence.6 In the case of black holes, most work has so far been concerned
N54 models with 4M bosonic and 4M fermionic coordinates, and general results for su
models have been obtained.7–9 The emphasis has been on which~sigma-model! metrics are con-
sistent with supersymmetry and the properties of the resulting geometries. Our focus is s
different; we discuss models withM bosonic and 4M fermionic degrees of freedom, take th
metric to be flat and study the constraints on the potential coming from supersymmetry. W
investigate the constraints arising from adding more symmetry such as translational inva
conformal invariance and superconformal invariance. We do not have any particular applica
mind, althoughN54 supersymmetric superconformal Calogero models have been conjectur1 to
provide a microscopic description of four-dimensional extremal Reissner–Nordstro¨m black holes.
The Calogero models10 and their generalizations comprise a particular class of many-b
quantum-mechanical models that have been intensely studied over the years. These mod
appeared in various areas of theoretical physics, ranging from problems in condensed
physics to Seiberg–Witten theory. For reviews with extensive lists of references to the
literature, see Ref. 11~for reviews on the connection to Seiberg–Witten theory, see, e.g., Ref.!.
It is well known that the Calogero systems are intimately connected with the semisimpl
algebras. For every~semisimple! Lie algebra, there is an associated Calogero system. It is per
less widely known that the conditions can be weakened. Recently, it has been shown13,14 that one
actually does not need a root system associated to a Lie algebra to construct a Calogero m
is sufficient to have a root system associated to any finite reflection group~Coxeter group!; only
when the root system is crystallographic can one associate it to a Lie algebra and the C
group is then called the Weyl group. The Calogero systems are integrable~see, e.g., Refs. 14, 15
and references therein! and, for the cases with discrete spectrum, exactly solvable. By ex
solvable, we mean the condition that it should be possible to obtain the eigenfunctions
‘‘algebraic’’ way. This has been shown using various different approaches, see, e.g., Refs. 1
An interesting feature of theAM21 Calogero models is that they are translational and confor

a!Electronic mail: N.Wyllard@damtp.cam.ac.uk
28260022-2488/2000/41(5)/2826/13/$17.00 © 2000 American Institute of Physics

                                                                                                                



logero
c

in Ref.

ructed

.
general
ther

ant.
e

ssical
iefly
iltonian
hysics

y be
more

s

n
se is
nsion

the

2827J. Math. Phys., Vol. 41, No. 5, May 2000 (Super)conformal many-body quantum mechanics . . .

                    
invariant. The two-particle case coincides~after removing the center-of-mass motion! with the
model of conformal mechanics studied in Ref. 19. Supersymmetric extensions of the Ca
models withN52 supersymmetry have also been constructed.20–23 So far, the supersymmetri
models have not had as many applications as the bosonic models. The models constructed
20 are also superconformal; the superconformal algebra being osp(2u2)>su(1,1u1). The relative
motion of the two-particle case was studied before in Ref. 24. In Refs. 25–27~see also Ref. 28!,
an N54 superconformal extension of the conformal quantum mechanics model was const
~a related development is in Ref. 29!. The superconformal group in this case is SU(1,1u2). This
result has not been extended to the many-body case.

In the next section, we investigate~using the quantum Hamiltonian formalism!30 the restric-
tions of N54 supersymmetry, conformal invariance and SU(1,1u2) superconformal symmetry
We first discuss the one-particle case and then move on to the many-body case and derive
results. We concentrate on theAM21 Calogero models, but our results are applicable also to o
cases. We show that it is possible to construct conformalN54 extensions of theAM21 Calogero
models, which are SU(1,1u2) superconformal only for a particular value of the coupling const
Furthermore, we show that~given certain assumptions! for M.2 and generic values of th
coupling constant there are no natural SU(1,1u2) superconformal extensions of theAM21 Calog-
ero models. In Sec. III, we present a similar discussion employing the language of the cla
Lagrangian formalism.31 We use both superfield and component formulations. We also br
discuss the connection between the classical Lagrangian approach and the quantum Ham
one. We end with a short discussion of the possible relevance of our results to black hole p
and some open questions.

II. QUANTUM HAMILTONIAN FORMULATION

We assume theN54 supersymmetry algebra to be of the form

@Qa ,Q†b#152da
bH, @Qa ,Qb#150, @Q†a,Q†b#150, ~II.1!

wherea,b51,2. In other words, we use a complex formalism. Some of our conclusions ma
altered if the supersymmetry algebra is changed, i.e., if central charges are allowed or if
general supersymmetry algebras are considered~such as the ones in Refs. 9 and 32!. In this
section, we will investigate the restrictions on the potential resulting from requiring anN54
symmetry in the form of the supersymmetry algebra~II.1!. We will also discuss the restriction
coming from demanding conformal and superconformal invariance.

A. Preliminaries: One-body models

The supercharges areQa and their Hermitian conjugates. We sometimes use the notatioQ

[Q1 andQ̃[Q2 to reduce the number of indices. The discussion below of the one-body ca
in part a review of Refs. 26 and 27, but it is presented in such a way as to facilitate the exte
to the many-particle case to be discussed later. We will denote the bosonic coordinate byx and use
the concrete realizationu, ũ, ]u , and]ũ for the fermionic coordinates. On general grounds,
supercharges can be taken to be of the form:

Q5uS p2 iW[0]~x!2 iW[1]~x!ũ
]

]ũ
D , Q̃5 ũS p2 iW[0]~x!2 iW[1]~x!u

]

]u
D , ~II.2!

together with their Hermitian conjugates~usingu†5]/]u and (jz)†5z†j†). The supersymmetry
algebra~II.1! is satisfied if the following equation is satisfied (][ d/dx):

2]W[0]22W[0]W[1]1]W[1]2W[1]W[1]50. ~II.3!

The Hamiltonian then becomes
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H5 1
2p

21 1
2~W[0] !22 1

2]W[0]1]W[0]F u
]

]u
1 ũ

]

]ũ
G1]W[1]u

]

]u
ũ

]

]ũ
. ~II.4!

We will now restrict ourselves to conformal models. Such models satisfy@D,H#52 iH , where

D52 1
4 @x,p#1 .19 To regain the OSp(2u2) superconformal mechanics of Ref. 24 when restrict

to theN52 subsector, we have to setW[0]5n/x. Somewhat surprisingly, for this choice ofW[0] ,
there are two solutions to the constraint~II.3! preserving conformal invariance, namely:W[1]

52 1/x andW[1]52 2n/x. Thus, there are two different conformalN54 supersymmetrisation
of conformal mechanics~or equivalently, of the relative motion of theA1 Calogero model!. The
corresponding Hamiltonians are

H15 1
2p

21
1

2x2 S n21n22nF u
]

]u
1 ũ

]

]ũ
G12u

]

]u
ũ

]

]ũ
D ,

H25 1
2p

21
1

2x2 S n21n22nF u
]

]u
1 ũ

]

]ũ
G14nu

]

]u
ũ

]

]ũ
D 5 1

2p
21 1

2

n~n1@u,]u#@ ũ,]ũ# !

x2
.

~II.5!

Although both models in~II.5! are conformal, only the first has su(1,1u2) as its superconforma
algebra for genericn. This can be seen by making a general ansatz for the generators of s
supersymmetriesS, S̃ and their Hermitian conjugates. The su(1,1u2) superconformal algebra~see
the Appendix! is satisfied ifS5ux, S̃5 ũx andxW[1]521. The other generators of su(1,1u2) are
then given by

J152 1
2~u]ũ1 ũ]u!, J252

i

2
~u]ũ2 ũ]u!, J35 1

2~ ũ]ũ2u]u!. ~II.6!

Furthermore, the central elementT is given byT5xW[0]2 1
2. Thus, there is a unique SU(1,1u2)

conformally invariant model. For this model,T5n2 1
2. The second model above is SU(1,1u2)

superconformal only whenn5 1
2, in which case, it coincides with a special case of the first mo

~with T50). For other values ofn, the conformal and supersymmetry generators will belong
some other superconformal algebra. The free theory is not SU(1,1u2) superconformal. The abov
SU(1,1u2) superconformal model is, however, ‘‘on-shell’’-dual to a freeN54 theory with a
complex bosonic coordinate~two real ones!.25 Let us also mention that for the first model abov
there is a simple extension to arbitrary~even! N,27 i.e., arbitrary number of supersymmetries~there
is no restriction on the number of supersymmetries in one dimension since there is no no
spin!. The arbitrary-N models have the following supercharges:27

Qa5uaS p2 i
n

x
1 i

1

x (
cÞa

uc]ucD , Q†a5]uaS p1 i
n

x
2 i

1

x (
cÞa

uc]ucD , ~II.7!

wherea,c51,...,N/2. These models are also superconformal; the superconformal algebra
su(1,1u N/2) ~see the Appendix!. The other generators of su(1,1u N/2) are given by:Sa5uax,
S†a5]ua

x, and

Ja
b5ua]ub

~aÞb!, Ja
a5ua]ua

2
2

N (
c

uc]uc
, U5 1

2(
c

uc]uc
. ~II.8!

For the second model in~II.5!, a similar extension to arbitrary~even! N can be constructed by
taking the supercharges to be of the form
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Qa5uaS p2 iW[ ~N22!/2]~x!)
cÞa

Fuc ,
]

]uc
G D , Q†a5]uaS p1 iW[ ~N22!/2]~x!)

cÞa
Fuc ,

]

]uc
G D ,

~II.9!

wherea,c51,...N/2 ~we use a slightly different normalization forW[1] than before!. The corre-
sponding Hamiltonian is obtained from@Qa ,Q†b#152da

bH and becomes

H5 1
2p

21 1
2~W[ ~N22!/2]!21 1

2]W[ ~N22!/2])
c

Fuc ,
]

]uc
G . ~II.10!

In particular, forW[(N22)/2]52 n/x, we get

H5 1
2p

21 1
2

nS n1)c51
N/2 Fuc ,

]

]uc
G D

x2 . ~II.11!

Notice that ()c@uc , ]/]uc#)
251.

B. Extension to many-body models

We will now discuss the extension of the above results to the many-body case. The c
nates arexi , u i , ũ i , ]u i

, and ]ũ i
, where i 51,...,M . Here, and throughout the paper, we w

assume that the Hamiltonians are invariant under permutations of the coordinates. We ta
superchargeQ to be of the form

Q5(
j

u jS pj2 iWj
[0]~xk!2 i(

nm
Wjnm

[1] ~xk!ũn

]

]ũmD , ~II.12!

with a similar expression forQ̃. This is not the most general choice, but it is a natural extens
of the supercharges used to constructN52 models.20,22,23,33The supersymmetry algebra~II.1! is
satisfied if the following conditions are fulfilled:

Wi
[0]5] iW

[0] , Wi jk
[1]5] i] j]kW

[1] ,

(
l

Wli [n
[1] Wm] j l

[1] 50,

] j]kŴ
[0]5(

l
Wl jk

[1]] l Ŵ
[0] , S Ŵ[0]

ªW[0]1 1
2(

n
]n]nW[1] D , ~II.13!

and the Hamiltonian is then given by

H5 1
2(

i
@pi

21~] iW
[0] !22] i

2W[0] #1(
i , j

~u i]u j
1 ũ i]ũ j

!] i] jW
[0]1 (

i jnm
u i]u j

ũn]ũm
] i] j]n]mW[1] .

~II.14!

One solution to the last constraint in~II.13! is the trivial one: Ŵ[0]50, i.e., W[0]

52 1
2 (n]n]nW[1] . This provides a possible way to constructN54 extensions of knownN52

models, e.g., the Calogero models. We would like to stress that one also has to check that th
conditions in~II.13! hold. With Ŵ[0]50, the superchargeQ takes the form
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Q5(
j

u jS pj2
i

2
(
n,m

] j]n]mW[1]F ũn ,
]

]ũmG D , ~II.15!

with a similar expression forQ̃. The AM21 Calogero models haveW[0]5(n/2)( iÞ j lnuxi2xju. If
we set

W[1]52
n

2 (
iÞ j

F ~xi2xj !
2 lnuxi2xj u2

3

2
~xi2xj !

2G , ~II.16!

it can readily be checked that all conditions in~II.13! are fulfilled. The resulting Hamiltonian
becomes

H5 1
2(

i
pi

21(
i , j

n~n1Ki j !

~xi2xj !
2 , ~II.17!

whereKi j 5
1
4 @(u i2u j ),(]u i

2]u j
)#@( ũ i2 ũ j ),(]ũ i

2]ũ j
)#. The operatorKi j is an exchange opera

tor satisfying: u iKi j 5Ki j u j , ũ iKi j 5Ki j ũ j , Ki j
2 51, and Ki j K jk5K jkK ji 5KkiKi j . The above

models are closely related to the general models in Ref. 34~see also Ref. 16! and should hence be
integrable. Notice thatKi j only acts on the fermionic coordinates, whereas the operators in R
34 and 16 also act on the bosonic coordinates; it is, however, easy to extend the above mo
this more general setting. The models~II.17! can be straightforwardly extended to arbitraryN.
The supercharges take the form

Qa5(
i

ua
i S pi1 i

n

2N/2 21 (
m

)
cÞa

@~uc
i 2uc

m!,~]u
c
i 2]u

c
m!#

xi2xm D , ~II.18!

wherea,c51,...,N/2. The Hamiltonian has the same form as in~II.17!, but with Ki j given by
Ki j 5(1/2N/2) )c51

N/2 @(uc
i 2uc

j ),(]u
c
i 2]u

c
j )#.

TheN54 models just constructed are conformal, but as we shall see next the supercon
algebra is not su(1,1u2). We now turn to the question of what restrictions follow from demand
SU(1,1u2) superconformal invariance. WithS5( iu ixi and S̃5( i ũ ixi , the superconformal alge
bra is satisfied if

(
i

xiWi jk
[1]52d jk , ~II.19!

and ( ixi] iW
[0]5const~the latter condition follows from@D,Wi

[0] #52 iWi
[0] , i.e., from confor-

mal invariance!. The other generators are then given by

J152 1
2(

i
~u i]ũ i

1 ũ i]u i
!, J252 i

2(
i

~u i]ũ i
2 ũ i]u i

!, J35 1
2(

i
~ ũ i]ũ i

2u i]u i
!,

~II.20!

and T5( ixi] iW
[0]2 N/2. The restriction~II.19! on Wi jk

[1] , show that the models~II.17! are not
SU(1,1u2) superconformal.

Another issue is translational invariance. The condition for superconformal invariance~II.19!
is not consistent with translational invariance ofW[1] ~since that would imply(k]kW

[1]50).
However, after extracting fromWi jk

[1] , the nontranslational-invariant center-of-mass partWi jk
[1]cm

52 1/MX ~whereX5( ixi) the remaining relative part can be taken to be translational invar
and the superconformal condition is replaced by( ixiWi jk

[1]52d jk1 1/M . With this modification
of the models in~II.17!, they become SU(1,1u2) superconformal for certain exotic values of th
coupling constantn, namely, whenn5 1/M . We will now address the question of whether the
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exist SU(1,1u2) superconformal extensions of theAM21 Calogero models for generic values
the coupling constant. If we assume thatW[0] has an overall parameter~as in the case of the
Calogero models!, then~if demand conformal invariance and discard the above solution! the last
equation in ~II.13! decouples into two equations:] i] jW

[0]5( lWli j
[1]] lW

[0] and ] i(nWjnn
[1]

5( l ,nWli j
[1]Wlnn

[1] . Notice that the latter equation is consistent with~II.19! and conformal invari-
ance. WhenW[0] has the Calogero formW[0]5(n/2) (nÞm lnuxn2xmu, one can show that there ar
no solutions to the coupled set of equations~II.13!,~II.19! for M53; we believe that this continue
to be true for higherM ~it can be shown for allM.2 that for genericn there is no solution with
two-body interaction forces only!. Thus, we conclude that forM.2 there is no natural candidat
for anN54 SU(1,1u2) superconformalAM21 Calogero model which has the properN52 limit.
We would like to stress that this conclusion depends on the particular~but natural! choice of
supercharges~II.12!.

Is it possible to find other SU(1,1u2) superconformal models? For simplicity, let us discu
theM53 ~three-particle! case in more detail. There is actually no solution to the set of constr
given above for anyW[0] with an overall parameter and two-body interactions only, so
conditions have to be weakened. One has to allow for an-independent part inW[0] and/or
higher-body interactions if one is to be able to satisfy the constraints. At least for theM53 case,
it turns out that it is not sufficient to introduce higher-body interactions, so we will therefore a
for a n-independent part inW[0] . At this point, we recall that there is another three-parti
translational-invariant~bosonic! Calogero model~besides theA2 one!, namely, the model assoc
ated to theG2 Lie algebra.35 The Hamiltonian is

HG2
5 1

2(
i

pi
21(

i , j

n1~n121!

~xi2xj !
2 13 (

j ,k
iÞ j Þk

n2~n221!

~2xi2xj2xk!
2 . ~II.21!

The two coupling constantsn1 andn2 can be chosen independently. This Hamiltonian has all
nice properties of the Calogero models, such as integrability and exact solvability.36 Using rea-
soning similar to the one used in theA2 case, one can show that there does not exist
SU(1,1u2) superconformalN54 extension when theQa’s are of the form~II.12! and the two
coupling constants are unrelated. Choosing the center-of-mass part ofWi jk

[1] as before, allowing for
a linear relation betweenn1 andn2 , and choosing

Wrel
[1]5b1(

i , j
~xi2xj !

2 lnuxi2xj u1b2 (
j ,k

iÞ j Þk

~2xi2xj2xk!
2 lnu2xi2xj2xku,

W[0]5a1(
i , j

lnuxi2xj u1a2 (
j ,k

iÞ j Þk

lnu2xi2xj2xku, ~II.22!

we have found the following SU(1,1u2) superconformal extensions of theG2 model. The follow-

ing different choices for the parameters (a1 ,a2 ,b1 ,b2) are possible: (2 1
6,n2 , 1

12,2
1

12), (n1 ,

2 1
6,2

1
4,

1
36), or (1

32n,n, n/22 1
6,2 n/6). The last case is more trivial than the others since it

Ŵ[0]50. The corresponding potential is

Vrel
1 5(

i , j

1

xi j
2 @a1~a111!2a1~u i j ]u i j

1 ũ i j ]ũ i j
!22b1u i j ]u i j

ũ i j ]ũ i j
#

1 (
j ,k

iÞ j Þk

1

xi jk
2 @3a2~a211!2a2~u i jk]u i jk

1 ũ i jk]ũ i jk
!22b2u i jk]u i jk

ũ i jk]ũ i jk
#, ~II.23!
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wherexi j 5xi2xj , u i j 5u i2u j , and]u i j
5]u i

2]u j
; xi jk52xi2xj2xk , u i jk52u i2u j2uk , and

]u i jk
52]u i

2]u j
2]uk

.
For M54, there also exists a translational-invariant~bosonic! ‘‘Calogero’’ model, which in

general has two- and four-body interactions37

H45 1
2(

i
pi

21(
i , j

n1~n121!

~xi2xj !
2 12 (

i , j ,k, l
iÞ j ÞkÞ l

n2~n221!

~xi1xj2xk2xl !
2 . ~II.24!

A similar analysis for this case leads to the following SU(1,1u2) superconformal solution with
four-body interactions only

Wrel
[1]52

1

8 (
i , j ,k, l

iÞ j ÞkÞ l

~xi1xj2xk2xl !
2 lnuxi1xj2xk2xl u,

W[0]5n (
i , j ,k, l

iÞ j ÞkÞ l

lnuxi1xj2xk2xl u,

Vrel5 (
i , j ,k, l

iÞ j ÞkÞ l

1

xi jkl
2 F2n~n11!2n~u i jkl ]u i jkl

1 ũ i jkl ]ũ i jkl
!1

1

4
u i jkl ]u i jkl

ũ i jkl ]ũ i jkl G , ~II.25!

where xi jkl 5xi1xj2xk2xl , u i jkl 5u i1u j2uk2u l , and ]u i jkl
5]u i

1]u j
2]uk

2]u l
. One could

continue this analysis to higherM and try to find interesting solutions. One restriction one co
impose is that the bosonic part should have special properties, such as, e.g., integrability. P
it is possible to turn things around and use supersymmetry considerations to construct inte
bosonic models.

III. CLASSICAL LAGRANGIAN TREATMENT

In this section, we perform a study ofN54 models similar to the one in Sec. II, but from
~classical! Lagrangian perspective.

A. One-body models

In Ref. 25~see also Ref. 28, an SU(1,1u2) superconformal mechanics model was construc
The action is most succinctly written inN54 superspace. Our superspace conventions coin
with those of Ref. 25 and are as follows:Da5]/]ha 1 i h̄a] t , D̄a52 ]/]h̄a 2 iha] t , and

$Da ,D̄b%522ida
b] t . Indices are raised and lowered witheab and its inverseeab (eabe

bc5da
c).

To reduce the number of indices, we will sometimes suppress contracted indices with the
standing that the first index should be in a ‘‘natural’’ position. The action given in Ref. 25
constructed in terms of a real superfield with componentsfu5x, Dafu5 ica , D̄afu52 i c̄a and

@D (a ,D̄b)#fu5Fab , whereu as usual is shorthand foruha50,h̄a50 . Since the representation corr
sponding to the real superfieldf is not irreducible, one has to constrain the superfield. T
following constraints were used in Ref. 25:D2f52 (1/f) DfDf, D̄2f52 (1/f)D̄fD̄f and

@Da ,D̄a#f[@D,D̄#f52 (2/f) DfD̄f1 4n/f. These constraints are the one-dimensional a
logue of the constraints for the four-dimensional tensor multiplet.38 The superspace action is

S5
1

8 E dtDaDaD̄bD̄b~2 1
2f

2 lnufu!. ~III.1!

After passing to components and eliminating the auxiliary fieldFab , one obtains the action
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S5 1
2E dtF ẋ22 i c̄ċ1 icG c2

~n1c̄c!2

x2 G . ~III.2!

For completeness, we now briefly describe how to pass to the Hamiltonian form and th
quantum mechanics. The classical Hamiltonian isHc5xp1pcc1pc̄c̄2L, wherep5 dL/dx ,
pca

5 dL/dca , andpc̄a5 dL/dc̄a are the conjugate momenta~fermionic variational derivatives

act from the left!. The canonical Poisson brackets are$p,x%521, $pcb
,ca%152da

b , and

$pc̄b,c̄a%152db
a . Using standard methods to deal with the second class constraintsYa5pc̄a

2 ( i /2) ca'0 andȲa5pca
2 ( i /2)c̄a'0, lead to the Dirac brackets$ca ,c̄b%* 5 ida

b . The Noet-

her charges associated to the supersymmetry invariance of the action areQa andQ̄a. At this point,
we deviate from the particular model discussed so far and assume the supercharges to b
more general form

Qa5ca~p2 iw [0]~x!!2 iw [1]~x!ca~ c̄bcb!,

Q̄a5c̄a~p1 iw [0]~x!!1 iw [1]~x!c̄a~ c̄bcb!. ~III.3!

In order for $Qa ,Q̄b%* 52ida
bHc to be satisfied, the following condition has to be fulfille

]w[0]5w[0]w[1] , andHc is then determined to be

Hc5 1
2p

21 1
2~w[0] !21]w[0] c̄ccc1 1

2]w[1]~ c̄ccc!
2. ~III.4!

In the conformal case, bothw[0] and w[1] are proportional to 1/x and the equation]w[0]

5w[0]w[1] has two solutions corresponding to the two solutions found in the quantum
w[0]5n/x , w[1]52 1/x, andw[0]50, w[1]522n/x, wheren is a constant. The next step is t
pass to the quantum theory using the usual rule$•,•%* → i @•,•#. Since @ca ,c̄b#152da

b , the
fermions can be realized asca5ua andc̄a52 ]/]ua . One has to deal with ordering ambiguitie
in the supercharges~such ambiguities are absent forN52 systems!. Requiring that the super
charges still come in Hermitian-conjugate pairs after quantization~which guarantees that th
Hamiltonian is Hermitian! and that the supersymmetry algebra is still satisfied, i.e.,@Qa ,Q†b#1

52da
bH, fixes the ordering ambiguities. We then regain the supercharges and Hamiltonian

earlier in ~II.2! and ~II.4!.
What about superspace formulations for the models corresponding to the more general

charges~III.3!? For instance, for the other conformal model, the superspace action is~when n

Þ 1
2)

S5 1
8E dtDaDaD̄bD̄b

1

122n
@2 1

2f
2#, ~III.5!

and the constraints are:D2f52 (2n/f) DfDf, D̄2f52 (2n/f)D̄fD̄f and @D,D̄#f

52(4n/f) DfD̄f. Whenn5 1
2 the model is a special case of the SU(1,1u2) superconformal one

and is described by the action~III.1! and its associated constraints withn50. In components the
action ~III.5! becomes

S5 1
2E dtF ẋ22 i c̄ċ1 icG c2

2n

x2 ~cc̄!2G . ~III.6!

Although the potential has no ‘‘bosonic’’ part, the quantum potential has such a part, which,
have seen, arises from ordering ambiguities. The actions for the models with supercharges~III.3!
can also be written in superspace; the general construction will be given in the next subse
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B. Many-body models

The above results will now be extended to many-body systems. In this section, we u
Einstein summation convention: repeated indices are summed. The construction involve
functions,wi

[0] (xl) andwi jk
[1] (xl), which are assumed to satisfy the following constraints:

wi
[0]5] iw

[0] , wi jk
[1]5] i] j]kw

[1] ,

wli [ j
[1] wn]ml

[1] 50,

] i] jw
[0]5] lw

[0]wli j
[1] . ~III.7!

The following action:

S5 1
2E dt@ ẋi ẋ

i2 i c̄ i ċ
i1 icG ic

i2~] iw
[0] !212] i] jw

[0]c j c̄k2] i] j]k] lw
[1]~c i c̄ j !~ckc̄ l !#,

~III.8!

is supersymmetric~see below! if the constraints~III.7! hold. The associated supersymmetry N
ether charges are

Qa5ca
i ~pi2 i ] iw

[0]2 i c̄bncb
mwinm

[1] !, Q̄a5c̄a~pi1 i ] iw
[0]1 i c̄bncb

mwinm
[1] !, ~III.9!

and satisfy$Qa ,Q̄b%1* 52ida
bHc , whereHc is the classical Hamiltonian associated to the Lagra

ian which can be read off from~III.8!.
The conformalAM21 N54 Calogero models corresponding to the ones constructed in

quantum case@cf. ~II.17!# have w[0]50, which means that classically they have no boso
potential, however, after passing to quantum mechanics a bosonic potential is generated as
of ordering ambiguities.

The models~III.8! can also be written in superspace. To this end, we introduceM real
superfieldsf i with componentsf i u5xi , Daf i u5 ica

i , D̄bf i u52 i c̄ i
b and @D (a ,D̄b)#f i u5Fab

i ,
while the other components have to be constrained. We introduce the following constraint

D2f i5wi jk
[1]~f l !Df jDfk, D̄2f i5wi jk

[1]~f l !D̄f j D̄fk,

@D,D̄#f i52wi jk
[1]~f l !Df j D̄fk24wi

[0]~f l !. ~III.10!

In this context, the constraints~III.7! can be viewed as consistency conditions for the supersp
constraints~III.10!. We take the superspace action to be of the form

S5 1
8E dtDaDaD̄bD̄bA~f i !, ~III.11!

where the scalar functionalA is assumed to satisfy the equation

] i] jA1wi jk
[1]]kA52d i j . ~III.12!

The rationale for this choice is that it impliesD̄2A52D̄f i D̄f i . The component action can the
easily be obtained using the constraints~III.7!, ~III.10!, with the result~III.8!. The superspace
equation of motion is

@D (a ,D̄b)#f i522wi jk
[1]D (af j D̄b)f

k, ~III.13!

and it can be shown that it reproduces the component equations of motion derived from~III.8!,
after the auxiliary fieldsFab

i are eliminated.
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The requirement~in addition to conformal invariance! for SU(1,1u2) superconformal invari-
ance isxlwli j

[1]52d i j . The question arises if/howA is related tow[1] andw[0] . One possibility is
that A5w[1] . This choice is consistent with the condition for SU(1,1u2) superconformal invari-
ance~and in fact implies it if the matrixMi j 5] i] jw

[1]1d i j is invertible and the theory is con
formal!. Of the many-body models constructed before in Sec. II, only the classical four-
model corresponding to~II.25! satisfies this constraint.

From the Lagrangian read off from~III.8! or from the Dirac bracket of the Noether charg
~III.9!, one can obtain the classical Hamiltonian and then pass to quantum mechanics to reg
results obtained in the previous section. The seeming difference between the classical qu
and the quantum ones result from ordering ambiguities.

IV. DISCUSSION

Although we only constructedN>4 extensions of theAM21 Calogero models, it should als
be possible to extend the results to the Calogero models based on the other root systems.
question is whether it is possible to extend the results to the super-Sutherland models.22,23,33A
more uniform formulation along the lines of the one in Ref. 23 would also be desirabl
particular, the integrability properties merit further investigation. The results on e
solvability16–18,22are expected to hold also for the supersymmetric extensions~of the models with
discrete spectrum!.

Another issue worth studying is supersymmetry breaking~extending the results in Ref. 39!.
One could also investigate more general models, e.g., by introducing a nontrivial metric s
H5 1

2 gi j pipj1V(xi). It may be interesting to try and lift the more general superspace constr
~III.10! for f i to four dimensions, which might lead to a generalization of the result in Ref. 3
many fields.

It was conjectured by Gibbons and Townsend1 that an N54 SU(1,1u2) superconformal
extension of theAM21 Calogero models could provide a microscopic description of an extre
d54 Reissner–Nordstro¨m black hole. This conjecture was partly based on the observation28,40

that the radial motion of a super-particle in the near-horizon limit of a large-mass extremd
54, Reissner–Nordstro¨m black hole is described by the SU(1,1u2) superconformal mechanic
model of Ref. 25. A related issue is the quantum mechanics ofM slowly moving extremal black
holes in four dimensions. This multiblack hole mechanics is described in terms of 3M bosonic and
4M fermionic degrees of freedom~just as the multiblack holes in five dimensions discussed
Ref. 3 are described in terms of 4M bosonic and 4M fermionic coordinates! and was recently
discussed in Ref. 4. Thus, it would seem that models withM bosonic and 4M fermionic coordi-
nates are perhaps more naturally connected with two-dimensional black holes. Howev
near-horizon geometry of an extremald54, Reissner–Nordstro¨m black hole is adS23S2 and
there is a natural ‘‘angular/radial’’ split. Hence, it is not excluded that models withM bosonic and
4M fermionic coordinates may provide a microscopic description ofd54 black holes~this is in
the spirit of the adS/CFT correspondence!. Such a many-body model is expected to have
SU(1,1u2) superconformal symmetry. For generic values of the coupling constant, we hav
been able to construct anN54 extension of theAM21 Calogero models with an SU(1,1u2)
symmetry. The only possible way around this result is to change the supercharges. A
possibility is that another generalization of the one-body case is needed, however, without
input it is not clear which assumptions should be made to pinpoint such a model. One criterio
could use in Ref. 1 is that when all coordinates but one are small, then the model should red
the one-body SU(1,1u2) model. Even if it turns out that there is no direct connection between
models considered in this paper and black hole physics, they may still be valuable as toy m
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APPENDIX: THE su „1,1zNÕ2… ALGEBRAS

The su(1,1u2) Lie superalgebra generators comprise the odd elementsQa , Sa and their Her-
mitian conjugates, together with the even Hermitian generatorsJA , H, D, and K. A list of
supercommutators sufficient to specify the algebra completely is

@Qa ,Q†b#152da
bH, @Sa ,S†b#152da

bK,

@Qa ,Qb#150, @Sa ,Sb#150,

@Qa ,S†b#152i ~sA!a
bJA22da

bD2 ida
bT, @JA ,Qa#52 1

2~sA!a
cQc ,

@Sa ,Q†b#1522i ~sA!a
bJA22da

bD1 ida
bT, @JA ,Sa#52 1

2~sA!a
cSc ,

@Qa ,D#5 i
2 Qa , @Q†a,D#5 i

2 Q†a,

@Sa ,D#52 i
2 Sa , @S†a,D#52 i

2 S†a,

@K,D#52 iK , @H,D#5 iH ,

@H,K#52iD , @JA ,JB#5 i eABCJC ,

@K,Qa#5 iSa , @K,Q†a#5 iS†a,

@H,Sa#52 iQa , @H,S†a#52 iQ†a. ~A1!

Herea,b51,2; A,B,C51,2,3, and the 232 matrices (sA)a
b are generators of su(2) and are

this paper taken to be the usual Pauli matrices satisfying the relation@sA ,sB#52i eABCsC . In
~A1!, T is a central element which can be removed, however, such a central extension is p
for some of the models considered in this paper.

The generators of the Lie superalgebra su„1,1u N/2… comprise the odd elementsQa , Sa and
their Hermitian conjugates, together with the even generatorsJa

b , U, H, D, andK. The super-
commutators of su(1,1u N/2) are the same as in~A1! with the following differences. Now the
indices take the valuesa,b51,...,N/2 and thesA’s are replaced byN/23N/2 matrix generators
of su(N/2). In this paper, we use the following realization of these generators: (la

b)c
d5

22da
ddc

b ~when aÞb) and (la
a)c

d522@da
ddc

a2 (2/N) dc
d#. They satisfy@la

b ,lc
d#52(db

cla
d

2dd
alc

b). Furthermore, the anticommutation relations between theQ’s and theS’s are replaced
by

@Qa ,S†b#15 i ~lc
d!a

bJd
c12ida

bU22da
bD2 ida

bT,

@Sa ,Q†b#152 i ~lc
d!a

bJd
c22ida

bU22da
bD1 ida

bT. ~A2!

The commutation relations involving the additional u~1! generatorU are

@U,Sa#5 1
2Sa , @U,S†a#52 1

2S
†a,

@U,Qa#5 1
2Qa , @U,Q†a#52 1

2Q
†a, ~A3!

and finally,@Ja
b ,Jc

d#5(db
cJa

d2da
dJc

b).
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Inverse scattering for inhomogeneous viscoelastic media
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In this paper, the inverse scattering problems for the full inhomogeneous viscoelas-
tic medium are studied via the invariant imbedding technique. Special attention is
paid to the propagation operators of the viscoelastic medium and the imbedding
equations for these operators are derived. For the inverse scattering problems, it is
shown that the reflection data can be extended from one round trip through the
iscoelastic slab to arbitrary time with the help of the propagation operators, hence
the reconstruction of the relaxation modulus is sufficient to be considered only in
one round trip. It is also shown that only one-side measurement reflection data are
not sufficient to reconstruct the relaxation modulus and the density of the medium
simultaneously. The corresponding numerical examples are presented. For the case
that the relaxation modulus of the medium is modeled by two independent func-
tions, an iterative inversion procedure is proposed to recover the relaxation modu-
lus and the density simultaneously with the input two-side normally reflection data.
© 2000 American Institute of Physics.@S0022-2488~00!06705-0#

I. INTRODUCTION

Time domain wave splitting, invariant imbedding and Green functions techniques have
widely used for the direct and inverse scattering problems of dispersive media.1–6 Beezley1 and
Ammicht2 gave the definition of the reflection operator for the homogeneous dispersive me
via the invariant imbedding method and a system of imbedding equations governing the be
of the reflection operator are derived, these equations can be used for both the direct and
scattering problems. Karlsson3 showed that the transmission data of the homogeneous viscoe
slab are sufficient to reconstruct the relaxation modulus of the medium. Bui4 used these procedure
to study the well-posedness of the inverse scattering problem for dispersive medium and
the theorems for the existence, uniqueness, and continuous dependence on data of the d
inverse scattering problems for the semi-infinite medium and the finite slab. However, in
problems the dispersive medium was assumed to be homogeneous.

The inhomogeneous dispersive case was studied by Corones5 with the obliquely incident SH
wave. It was pointed out in Ref. 5 that for the full inhomogeneous medium, the inverse scat
problem cannot be solved uniquely using the scattering data from a finite number of ang
incident SH wave. For the reconstruction of the time-dependent creep compliance and the
dependent density, they used the two angles of incident SH wave. However, Zhu7 pointed out that
in many applications such as seismology and nondestructive testing, obtaining the uncou
SV, or SH wave is difficult. Thus the method presented in Ref. 5 is theoretical but unpract

In view of these developments, we propose to study the inverse scattering problems
full inhomogeneous viscoelastic medium with only normally incident wave. The propag
operators for the viscoelastic medium are introduced, and with the imbedding equations

a!Author to whom correspondence should be addressed. Electronic mail: chjcheng@yc.shu.edu.cn
b!Electronic mail: xianyaochen@263.net
28390022-2488/2000/41(5)/2839/12/$17.00 © 2000 American Institute of Physics
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propagation operators, the reflection data can be extended from one round trip through th
viscoelastic slab to arbitrary time. In the same extension procedure, the relaxation modul
also be determined. Therefore, it is sufficient for the inverse problem of the full inhomogen
viscoelastic medium to be considered only in one round trip through the slab. The imbe
equations for the propagation operators are obtained from the equations of the scattering op
this technique has been used in Refs. 8 and 9 for the dissipative and nondispersive media

For the data required in the inverse scattering, it is shown in this paper that the rela
modulus and the density function cannot be uniquely determined simultaneously with only
side measurement reflection data. The corresponding numerical examples are given.

For the case that the relaxation modulus is modeled by the two independent function
G1(x,s)5D(x)G(s), an iterative inversion procedure is developed in this paper to reconstruc
relaxation modulus and the density simultaneously with the two-side normally reflection da
differs from the previous work by Corones5 that only the two-side normally reflection data a
used in the presented method. The numerical implementation is given to test the iterative i
method in the end of the paper.

II. STATEMENT OF THE PROBLEM AND THE SCATTERING OPERATORS

As shown in Fig. 1, it is assumed that the full inhomogeneous viscoelastic medium occ
the region 0<z<L with the relaxation modulusG1(z,t) and the densityr1(z). Here the full
inhomogeneous medium means that the relaxation modulusG1(z,t) can not be separated to th
product of two functionsf (z) and g(t). On the both sides of the viscoelastic slab, there
homogeneous elastic media whose wave impedances satisfy

Z05Z1~0!, Z25Z1~L !, ~1!

whereZ1(z) is the wave impedance of the viscoelastic slab satisfying

Z1~z!5r1~z!c1~z!, ~2!

c1(z) is the speed of the wave propagation in the viscoelastic slab

c1~z!5AG1~z,0!

r1~z!
. ~3!

The constitutive equation of the viscoelastic medium is given as follows:10

s~z,t !5~G1~z,0!1G1t~z,t !* !
]u

]z
~z,t !, ~4!

where s(z,t) and u(z,t) are the stress and displacement components,G1t(z,t)5]G1(z,t)/]t.
And it is assumed that the medium is quiescent up to timet50.

For convenience, the travel-time transform is introduced as follows:

FIG. 1. Physical model.
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x5
1

l E0

z 1

c1~j!
dj, s5

t

l
, ~5!

wherex is the normalized travel time ands is the normalized time,l is the one round trip time
through the viscoelastic slab

l 5E
0

L 1

c1~z!
dz. ~6!

In the new coordinate~5!, the viscoelastic slab occupies the region 0<x<1.
Letting

u~x,s!5u~z,t !, ~7a!

s~x,s!5
1

c1~x!
~G1~x,0!1G1s~x,s!* !

]u

]x
~x,s!, ~7b!

the equation of motion is obtained as

]2u

]s2 ~x,s!5
1

r1~x!c1~x!

]s

]x
~x,s!. ~8!

With the constitutive equation@Eq. ~7b!# and the equation of motion@Eq. ~8!#, proceeding
along the same line as presented in Refs. 1–4, the scattering operatorsR̃6(x,y;s) andT̃6(x,y;s)
for the full inhomogeneous viscoelastic medium can be introduced as follows:

u2~x,y;s!5R̃1~x,y;s!u1~x,y;s!5R1~x,y;s!* u1~x,y;s!, ~9a!

u1~y1,y;s1y2x!5T̃1~x,y;s!u1~x,y;s!5t1~x,y!~11T~x,y;s!* !u1~x,y;s!, ~9b!

u1~x,y;s!5R̃2~x,y;s!u2~x,y;s!5R2~x,y;s!* u2~x,y;s!, ~9c!

u2~x,x2;s1y2x!5T̃2~x,y;s!u2~x,y;s!5t2~x,y!~11T2~x,y;s!* !u2~x,y;s!, ~9d!

where R6(x,y;s) and T̃6(x,y;s) are the reflection and transmission kernels, respectiv
t6(x,y) are the functions to be determined. The superscript ‘‘6’’ denote the incident waves
traveling along the1x direction and2x direction, respectively.

The imbedding equations for the reflection kernelR1(x,y;s) and the transmission kerne
T(x,y;s) are given as follows:

2
]R1

]x
24

]R1

]s
5AR1* R11

]

]s
@~12R1* !~12R1* !* h#,

R1~x,y;0!5 1
4@A~x!2h~x,0!#, R1~x,y;s!ux5y50,

R1~x,y;s!us52~12x!2
s52~12x!1

52 1
4@A~y!2h~y,0!#expS E

x

y

h~j,0!dj D ,

~10!
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2
]R2

]x
14

]R2

]s
5AR2* R22

]

]s
@~12R2* !~12R2* !* h#,

R2~x,y;0!52 1
4@A~y!2h~y,0!#, R2~x,x;0!50,

R2~x,y;s!us52y2
s52y1

5
1

4
@A~x!1h~x,0!#expS E

x

y

h~j,0!dj D ,

~11!

and

2
]T

]x
5~11T* !~AR12hs1h~x,0!R11hs* R1!,

2
]T

]y
5~11T* !~AR21hs2h~y,0!R22hs* R2!,

T~x,y;0!5
1

2 E
x

yFhs~j,0!2
1

4
A2~j!1

1

4
h2~j,0!Gdj,

t1~y,y!5t2~x,x!51, T~y,y;0!5T~x,x;0!50,

t1~x,y!5expF1

2 E
x

y

~A~j!1h~j,0!!djG ,
t2~x,y!5expF1

2 E
x

y

~2A~j!1h~j,0!!djG ,

~12!

whereh(x,s) is the resolvent kernel ofG1s(x,s) satisfying11

@G1~x,0!1G1s~x,s!* #h~x,s!5G1s~x,s! ~13!

and

A~x!52
d

dx
ln r1~x!c1~x!. ~14!

For the direct scattering problem, these equations can be used to determine scattering
R6(x,y;s) andT(x,y;s), and thenR6(0,1;s) andT(0,1;s).

III. INVERSE SCATTERING PROBLEMS

A. The propagation operators

For the inverse scattering problems, it is necessary to introduce the propagation op
W̃6(x,y;s) andṼ6(x,y;s) of the viscoelastic medium. The propagation operators of the diss
tive medium have been considered in Ref. 8, in which the compact support of the propa
operators is obtained and applied for the inverse scattering problems of dissipative me9

However, there is no compact support for the propagation operators of the dispersive an
coelastic media.

For the right-moving incident wave, the propagation operators satisfy

u1~x,y;s!5W̃1~x,y;s!u1~y1,y;s1y2x!5j1~x,y!~11W~x,y;s!* !u1~y1,y;s1y2x!,

~15a!

u2~x,y;s!5Ṽ1~x,y;s!u1~y1,y;s1y2x!5h1~x,y!V1~x,y;s!* u1~y1,y;s1y2x!.
~15b!

For the left-moving incident wave, the propagation operators satisfy
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u2~x,y;s!5W̃2~x,y;s!u2~x,x2;s1y2x!5j2~x,y!~11W~x,y;s!* !u2~x,x2;s1y2x!,

~16a!

u1~x,y;s!5Ṽ2~x,y;s!u2~x,x2;s1y2x!5h2~x,y!V2~x,y;s!* u2~x,x2;s1y2x!.
~16b!

In Eqs.~15! and~16!, W(x,y;s),V6(x,y;s) are propagation kernels. Equations~15a! and~16a! are
obtained from Eqs.~9b!, ~9d!, and the resolvent equation of the transmission kernelT(x,y;s)

T~x,y;s!1W~x,y;s!1T* W~x,y;s!50, ~17!

and we also have

j1~x,y!5
1

t1~x,y!
, j2~x,y!5

1

t2~x,y!
. ~18!

Substituting~15a! and ~16a! into ~9a! and ~9c! yields

V6~x,y;s!5~11W* !R6~x,y;s! ~19!

and

h1~x,y!5
1

t1~x,y!
, h2~x,y!5

1

t2~x,y!
. ~20!

Differentiating Eq. ~17! with respect tox and substituting Eqs.~12a! and ~12b! into the
resulting equation, this yields the imbedding equation ofW(x,y;s) as

2
]W

]x
1~11W* !~AR12hs1h~x,0!R11hs* R1!50,

2
]W

]y
1~11W* !~AR21hs2h~y,0!R22hs* R2!50,

W~x,x;0!W~y,y;0!50,

W~x,y;0!52
1

2 E
x

yFhs~j,0!2
1

4
A2~j!1

1

4
h2~j,0!Gdj.

~21!

Differentiating Eq.~19! with respect tox, t, respectively, and combining the result equatio
this yields the imbedding equations of the propagation kernelV6(x,y;s)

2
]V1

]x
24

]V1

]s
5~11W* !hs2~2h~x,0!1hs* !V12~A~x!2h~x,0!!W,

V1~x,y;0!5 1
4 @A~x!2h~x,0!#, V1~y,y;s!50,

V1~x,y;s!us52~12x!2
s52~12x!1

5
1

4
@A~x!2h~x,0!#expS E

x

y

h~j,0!dj D ,

~22!

and
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2
]V2

]y
14

]V2

]s
52~11W* !hs1~2h~y,0!1hs* !V22~A~y!2h~y,0!!W,

V2~x,y;0!52 1
4@A~y!1h~y,0!#, V2~x,x;s!50,

V2~x,y;s!us52y2
s52y1

5
1

4
@A~y!1h~y,0!#expS E

x

y

h~j,0!dj D ,

~23!

where Eqs.~10!, ~11!, and~21! have been used.

B. Extension of the reflection data

In this section, the imbedding equations of the propagation kernels are used together w
imbedding equations of reflection kernels to extend the reflection data from one round t
arbitrary time. In the same procedure, the relaxation modulus beyond one round trip can a
determined.

First, Eqs.~22a! and ~23a! can be transformed to

2
]V1

]x
24

]V1

]s
52

]W

]x
1@A~x!2h~x,0!#~V12W!, ~24a!

2
]V2

]y
14

]V2

]s
52

]W

]y
1@A~y!1h~y,0!#~V22W!, ~24b!

where Eqs.~19!, ~21a!, and~b! have been used.
Assumed that the material functionsA(x),h(x,s) are known for 0<x<1, 0<s<2. It is

obvious that the scattering kernelsR6(x,y;s) andT(x,y;s) can be determined from Eqs.~10!–
~12! for 0<x<1, 0<s<2, and the propagation kernelsW(x,y;s),V6(x,y;s) can be obtained
from Eqs.~21!–~23! for 0<x<1, 0<s<2. Now the extension procedure of the reflection kern
R6(x,y;s) are given as follows~PI!:

First step: DetermineR1(x2Dx,1;21Ds) with R1(x,1;2), whereDx and Ds are the step
sizes along thex ands axies.

Approximating Eq.~10a! with the rectangle rule yields

2

Dx
@R1~x,1;s!2R1~x2Dx,1;s1Ds!#

5@A~x!1h~x,0!#R1* R1~x,1;s!1hs~x,s!

1~R1* R122R1!* hs~x,s!22h~x,0!R1~x,1;s!. ~25!

Letting s52, Eq. ~25! may be solved forR1(x2Dx,1;21Ds) from right to left, where the
boundary valueR1(1,1;s)50 is used.

Similarly, R2(0,y1Dy;21Ds) can be determined withR2(0,y;2), Dx5Dy.
Second step: Determinehs(x,21Ds) with W(x,y;s) andV6(x,y;s).
Simultaneous the Eqs.~19! and~24! reads the systems of equations~EIa! and~EIb! as follows:

~EIa! H V1~x,y;s!5~11W* !R1~x,y;s!,

2
]V1

]x
24

]V1

]s
52

]W

]x
1@A~x!2h~x,0!#~V22W!,

~EIb! H V2~x,y;s!5~11W* !R2~x,y;s!,

2
]V2

]y
14

]V2

]s
52

]W

]y
1@A~y!1h~y,0!#~V22W!.
                                                                                                                



t

o
r
stic

be
tic me-

he full
deter-

d by

2845J. Math. Phys., Vol. 41, No. 5, May 2000 Inverse scattering for inhomogeneous . . .

                    
Letting s521Ds, the systems of equations~EIa! and~EIb! may be numerically solved from righ
to left and from left to right, respectively, to determineW(x,y;21Ds) andV6(x,y;21Ds).

SubstitutingW(x,y;21Ds) into Eqs.~21a! and ~21b!, respectively,hs(x,21Ds) can be de-
termined for 0<x<1.

Third step: Repeat the first and the second steps,hs(x,s) andR6(x,y;s) can be determined
for any times.2.

Now the reflection kernelsR6(x,y;s) have been extended from 0<s<2 to arbitrary times
.2. In the same procedure, the material functionhs(x,s) beyond the one round trip is als
determined. With the help of Eq.~13!, the relaxation modulusG1(x,s) can be determined fo
arbitrary times.2. Therefore, if the material properties of the full inhomogeneous viscoela
medium are given for one round trip, i.e., 0<s<2, the properties beyond one round trip can
determined. This means that the inversion procedure of the full inhomogeneous viscoelas
dium is sufficient to be studied only in the one round trip through the slab.

C. The data required for the inverse scattering problem

In this section, the data required for the inverse scattering problem are considered. For t
inhomogeneous viscoelastic medium, it is shown that the relaxation modulus can not be
mined uniquely if the reflection data are only available for one side.

Let y51 and assume that the incident wave travels alone1x direction and impinges on the
interfacex502 at the times50.

It is assumed that the reflection kernels of two viscoelastic mediums characterize
@h1(x,s),A1(x)# and @h2(x,s),A2(x)# are R1

1(x,1;s) and R2
1(x,1;s), respectively, for all 0<x

<1. Assume thatR1
1(x,1;s)5R2

1(x,1;s)5R1(x,s), for all 0<x<1, s>0, from ~10a!, we have
the following two equations:

2
]R1

1

]x
24

]R1
1

]s
5@A1~x!1h1~x,0!#R1

1
* R1

122h1~x,0!R1
1~x,1;s!

1hs1
~x,s!1~R1

1
* R1

122R1
1!* hs1

~x,s!

and

2
]R2

1

]x
24

]R2
1

]s
5@A2~x!1h2~x,0!#R2

1
* R2

122h2~x,0!R2
1~x,1;s!

1hs2
~x,s!1~R2

1
* R2

122R2
1!* hs2

~x,s!.

Subtracting these two equations from each other, this yields

Dhs~x,s!1@R1* R122R1#* Dhs~x,s!52Dh~x,0!R1~x,s!2D@A~x!1h~x,0!#R1* R1~x,s!,
~26!

where

Dhs~x,s!5hs1
~x,s!2hs2

~x,s!,

DA~x!5A1~x!2A2~x!, ~27!

Dh~x,0!5h1~x,0!2h2~x,0!.

Obviously, Eq.~26! is a second kind Volterra integral equation forDhs(x,s). It can be seen from
~26! that if DA(x)[Dh(x,0)[0, ;xP@0,1#, the right-hand-side of~26! vanishes andDhs(x,s)
50, this means that the two viscoelastic mediums are identical.

However, if choosing
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Dh~x,0![0, DA~x!ux5050, DA~x!ux5150, ~28!

from Eq. ~10!, we haveR1
1(0,1;0)5R2

1(0,1;0) and

R2
1~x,1;s!us52~12x!2

s52~12x!1

52
1

4
@A2~1!2h2~1,0!#expS E

x

1

h2~j,0!dj D
52

1

4
@A1~1!2h1~1,0!#expS E

x

1

h1~j,0!dj D
5R1

1~x,1;s!us52~12x!2
s52~12x!1

, ;xP@0,1#.

Substituting~28! into ~26! yields

Dhs~x,s!1@R1* R122R1#* Dhs~x,s!52DA~x!R1* R1~x,s!, ;xP@0,1#. ~29!

It is obvious that if DA(x)Þ0 for 0,x,1, Dhs(x,s) can be determined from~29! and
Dhs(x,s)Þ0, this means that the material functionshs1

(x,s) andhs2
(x,s) are not identical. Thus

the two different viscoelastic mediums are obtained whose reflection kernelsR1(0,1;s) are iden-
tical, even so are of allR1(x,1;s), ;xP@0,1#.

D. Numerical examples

Example I:Choose the material functionsA(x) of the two viscoelastic mediaI 1 and I 2 as
shown in Fig. 2~a!, the relaxation moduliG1(x,s) as shown in Fig. 2~b1!–~b5!. The reflection
kernels are determined by solving Eqs.~8! and~9! and the curves ofR6(0,1;s) are shown in Fig.
2~c!. One can see from Fig. 2 that even though the material properties of two viscoelastic me
I 1 and I 2 are different, the curves of the reflection kernelsR6(0,1;s) are identical.

IV. ITERATIVE INVERSION PROCEDURE

In the previous section, the direct and inverse scattering problems for the full inhomoge
viscoelastic medium are studied. Bearing these in mind, the case with relaxation mo
G1(x,s)5D(x)G(s) is investigated in this section. Though the same problem has been studi
Corones,5 the data required in Ref. 5 are generated by two obliquely incident SH waves. In
paper, the normally incident wave is considered and an iterative inversion procedure is dev
to recover the relaxation modulus and the density simultaneously. The following inverse pr
is to be considered.

Assume that the relaxation modulus of the inhomogeneous viscoelastic medium satisfi

G1~x,s!5D~x!G~s!, ~30!

whereD(x) andG(s) are independent functions. Assume that the reflection kernelsR6(0,1;s),
0<s<2, have been obtained from the scattering experiment, the unknown functionsG(s), D(x),
andr(x) are to be determined.

The inverse algorithm developed in this section is an iterative procedure. It is possible th
iteration does not converge. The proof for the convergence of the iteration procedure
considered in this paper. But from the numerical examples given in this paper, one can s
after some iterations, the good approximation of the original material functions can be obta

At first, some initial values should be determined.
From ~13! and ~30!, we have

D~x!~G~s!1Gs~s!* !h~x,s!5D~x!Gs~s!. ~31!

This means thath(x,s) is independent ofx, i.e., h[h(s). If R6(0,1;s) are available, from Eqs
~10! and ~11!, we have
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R1~0,1;0!5 1
4@A~0!2h~0!#, R2~0,1;0!52 1

4@A~1!1h~0!# ~32!

and

R1~0,1;s!us522
s521

52 1
4 @A~1!2h~0!#exp~h~0!!,

R2~0,1;s!us522
s521

5 1
4 @A~0!1h~0!#exp~h~0!!. ~33!

The initial values ofA(0), A(1), andh(0) can be determined from~32! and ~33!.

FIG. 2. Viscoelastic mediumsI 1 and I 2 . ~a! A(x). ~b! Relaxation modului G1(x,s) of I 1 and I 2 , x
P$0,5Dx,10Dx,15Dx,20Dx51%. ~c! Reflection kernelsR1(0,1;s).
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Then the iterative procedure is suggested. The basis of the procedure is the imbedding
tion for the reflection kernelR6(x,y;s). Lettingx50 and integrating~11a! with respect toy along
the characteristic linedy/ds51/2, this yields

R2~0,y;s!5R2~0,1;s12~y82y!!2
1

2 E
y

1

hs~s12~y82y!!dy8

2
1

2 E
y

1

A~y8!R2* R2~0,y8;s12~y82y!!dy8

2
1

2 E
y

1

~h~0!1hs~s!* !~R2* R222R2!~0,y8;s12~y82y!!dy8. ~34!

Notice that the first term on the right-hand-side of Eq.~34! is the given reflection dataum, an
denote this by

F2~s!5R2~0,1;s!. ~35!

Now Eq. ~34! forms the basis for an iteration procedure given by

Rn11
2 ~0,y;s!5F2~s12~12y!!2

1

2 E
y

1

hsn
~s12~y82y!!dy8

2
1

2 E
y

1

An~y8!Rn
2

* Rn
2~0,y8;s12~y82y!!dy8

2
1

2Ey

1

~h~0!1hsn
~s!* !~Rn

2
* Rn

222Rn
2!~0,y8;s12~y82y!!dy8

0<y<1, 0,s,2y, n51,2,... . ~36!

It can be seen that on the right hand side of Eq.~36!, there is a time-dependent functio
hsn

(s), this is the very important difference between this paper and Kristensson.9 In Ref. 9, the
similar iterative inversion procedure is suggested to reconstruct the spatial dependent funct
inhomogeneous dissipative, but nondispersive medium. There is no time-dependent function
iteration procedure in Ref. 9 except the reflection kernelRn

2(0,y;s). Thus the method presente
here is the generalization of those developed in Ref. 9.

The functionAn(y) in the right hand side of~36! can be determined from Eqs.~10b! and~11b!

An~y!52@Rn
1~y,1;0!2Rn

2~0,y;0!#, ~37!

whereRn
1(y,1;0) is determined by

h~0!522@Rn
1~y,1;0!1Rn

2~0,y;0!#. ~38!

OnceRn
1(0,1;s) andRn

1(x,1;s) are determined, the imbedding equation forRn
1(x,y;s), i.e.,

Eq. ~10!, can be used to recoverhsn
(s). Rewriting ~8a! as

hsn
~s!1~Rn

1
* Rn

122Rn
1!* hsn

~s!52
]Rn

1

]x
24

]Rn
1

]s
2A~x!Rn

1
* Rn

12h~0!~Rn
1

* Rn
122Rn

1!.

~39!

The inversion procedure for the reconstruction ofhsn
(s) can be given by~Idh!:

First: DetermineRn
1(Dx,1;Ds) with Eq. ~10! andRn

1(x,1;0) from right to left, whereDx and
Ds are the step sizes alongx ands axes.
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Second: Determinehsn
(Ds) with Rn

1(0,1;s) andRn
1(Dx,1;Ds) from Eq. ~39!.

Third: Repeat the first and the second steps,hsn
( j Ds), j 50,1,... can be determined from righ

to left and from bottom to top.
All the functions appearing in the right-hand-side of Eq.~36! have been determined, th

iterative inverse scheme can now be given as follows~It!:
First step: DetermineA(0), A(1) andh(0) with Eqs.~32! and ~33!.
Second step: Choose

R1
2~0,y;s!5F2~s12~12y!!, ~40!

as the starting of the iteration.
Third step: DetermineA1(x) andR1

1(x,1;0) with Eqs.~37! and ~38!.
Fourth step: Determinehs1

(s) by use of the inversion procedure~Idh!.

Fifth step: DetermineR2
2(0,y;s) by the iteration equation@Eq. ~36!#.

Sixth step: Repeat the third step to fifth step, the iteration begins.
Seventh step: After some iterations, the material functionshs(s) and A(x) are determined.

With Eqs.~14!, ~30!, and~31!, the relaxation modulusG(s), 0<s<2, and the wave impedanc
Z(x)5r(x)c(x) can be recovered.

It will be noticed that the iteration~It! is only carried out in the one round trip 0<s<2. After
~It!, applying the extension procedure presented in Sec. III, 2,G(s), s.2, can be recovered.

If the wave speedc(x) is given in advance, the unknown functionsG(s), D(x), andr(x) can
be reconstructed simultaneously with the reflection dataR6(0,1;s).

Though the convergence of the iteration~It! is not considered in this paper, the followin
numerical example shows that after some iterations, the good approximations of the o
material functions are obtained.

Example II:Assume that the reflection dataR6(0,1;s) are given as Fig. 3~a! shown. Figure

FIG. 3. Reflection kernels, relaxation moduli and the wave impedances.~a! Reflection kernels, 1.R1(0,s), 2. R2(0,s). ~b!
Relaxation moduli.~c! The wave impedances. 1: Original values; 2: Initial iteration values; 3: Reconstructed values
5 iterations; 4: Reconstructed values after 20 iterations.
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3~b! shows the iterative inverse results of the relaxation modulusG(s), in which the broken lines
denote the inverse result after 20 iterations, it gives the good approximation of the or
relaxation modulus. The curves of the reconstructed wave impedanceZ(x) are shown in Fig. 3~c!.

ACKNOWLEDGMENTS

The Project was supported by the National Natural Science Foundation of China~No.
19772027! and the Science Foundation of Shanghai Municipal Commission of Education~No.
99A01!.

1R. S. Beezley and R. J. Krugger, ‘‘An electromagnetic inverse problem for dispersive media,’’ J. Math. Phy26,
317–325~1985!.

2E. Ammicht, J. P. Corones, and R. J. Krugger, ‘‘Direct and inverse scattering for viscoelastic media,’’ J. Acous
Am. 81, 827–834~1987!.

3A. Karlsson, ‘‘Inverse scattering for viscoelastic media using transmission data,’’ Inverse Probl.3, 691–709~1987!.
4D. D. Bui, ‘‘On the well-posedness of the inverse electromagnetic scattering problem for a dispersive medium,’’ I
Probl.11, 835–863~1995!.

5J. P. Corones and A. Karlsson, ‘‘Inverse problem of a simultaneous reconstruction of the creep compliance
density,’’ Inverse Probl.4, 643–660~1988!.

6K. L. Kreider, ‘‘Time dependent direct and inverse electromagnetic scattering for the dispersive cylinder,’’ Wave M
11, 427–440~1989!.

7W. H. Zhu, ‘‘Inverse scattering of the three-dimensional elastic wave equation for three parameters,’’ J. Acous
Am. 877, 2371–2375~1990!.

8G. Kristensson and R. J. Krugger, ‘‘Direct and inverse scattering in the time domain for a dissipative wave equa
Scattering operators,’’ J. Math. Phys.27, 1667–1682~1986!.

9G. Kristensson and R. J. Krugger, ‘‘Direct and inverse scattering in the time domain for a dissipative wave equa
Simultaneous reconstruction of dissipation and phase velocity profiles,’’ J. Math. Phys.27, 1683–1693~1986!.

10R. M. Christenson,Theory of Viscoelasticity~Academic, New York, 1982!.
11R. Kress, ‘‘Linear Integral Equations,’’Applied Mathematical Sciences~World Publishing, Springer Verlag, 1989!.
                                                                                                                



nce of
tude
o-
erates
exact

locity
as

of the
in
action

ndary

t. Due
ma is

ce cur-
force

all in
re falls

netic
nergy
er the
size

f
tarts

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 5 MAY 2000

                    
Radial motion of highly conducting sphere in magnetic
field

Ö. D. Gürcan and V. V. Mirnova)
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Radial motion of a highly conducting sphere in external magnetic field is consid-
ered. It both perturbs the external magnetic field and generates an electric field.
Exact analytic solution has been obtained previously for a uniformly expanding
sphere. In the present paper a new exact solution is derived which is valid not only
for expansion but for contraction as well. It allows us to calculate analytically the
total electromagnetic energy irradiated by the sphere involved in periodical radial
motion with arbitrary velocity. ©2000 American Institute of Physics.
@S0022-2488~00!04805-2#

I. INTRODUCTION

The problem of sudden expansion of a point plasma source into a vacuum in the prese
an initially uniform magnetic field has been intensively studied in connection with high-alti
nuclear explosions,1 laser fusion experiments,2 physics of exploding wires, and different astr
physical applications.3 When plasma expands, it both perturbs the external magnetic and gen
an electric field. This process was studied mathematically in Ref. 4 on the basis of an
analytical solution for an infinitely conducting sphere expanding with the constant radial ve
~uniform expansion!. Although this model is not completely realistic, it plays an important role
an example of an exactly solvable problem with moving boundary conditions. The purpose
present work is to develop the model4 and derive another exact solution which is valid not only
the case of expansion but also for contraction following after expansion. The phase of contr
cannot be treated by means of simple substitutionv→2v into the solution4 valid in the case of
expansion. It is analyzed below on the basis of a new solution satisfying all moving bou
conditions.

It should be noted that the case of contraction is not only of a pure mathematical interes
to high conductivity there is no magnetic and electric fields inside the moving sphere. Plas
shielded against penetration of the external electric and magnetic fields by induced surfa
rents. Interaction of these currents with the external magnetic field creates pondoromotive
~magnetic pressure! acting inward on the plasma surface. Although magnetic pressure is sm
comparison with the plasma pressure, after a short period of acceleration, plasma pressu
down and spherical boundary starts decelerating. The radius of the boundary,R(t), reaches a
turning point, Rmax, and then contracts to its initial state at the origin~if energy losses and
instabilities are ignored!. One of the mechanisms of energy loss is radiation of electromag
waves. Making use of the exact solution obtained in Sec. II, the total electromagnetic e
irradiated during the entire cycle of expansion and contraction is calculated in Sec. III und
assumption of uniform velocity profile. The uniform profile implies that the sphere has zero
at t50, starts expanding att.0 with the constant radial velocityv, reaches maximum radius o
expansionRmax at t5Rmax/v, then suddenly changes the sign of velocity to opposite one and s
contracting to the origin with the constant velocity2v. Correspondingly, the profile ofR(t) has

a!Electronic mail: mirnov@langmuir.eecs.berkeley.edu
28510022-2488/2000/41(5)/2851/7/$17.00 © 2000 American Institute of Physics
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a triangular shape with discontinuity of velocity and infinitely large deceleration at the tur
point as shown in Fig. 1~a!. The more realistic parabolic profileR(t) @see Fig. 1~b!#, which
corresponds to given initial radial velocity and constant deceleration, is discussed in Sec.

The uniform external magnetic field,B05B0ẑ is generated by the source at infinity. As th
sphere starts expanding att.0, the magnetic field becomes a superposition of this uniform fi
and an additional magnetic field generated by the currents circulating in plasma and chan
space and time. Correspondingly, the wave equation for the vector potential of the total e
magnetic field,

¹2A~r ,t !2
1

c2

]2

]t2 A~r ,t !5
4p

c
J~r ,t !, ~1!

whereJ(r ,t) stands for density of currents flowing in plasma.
In the highly conducting case, currents are localized in narrow layer on the moving su

Thus, they can be excluded from~1! and considered as a boundary condition. Currents area priori
unknown and may be found when the full solution is obtained. The vector potential outsid
sphere satisfies the source-free wave equation. This equation is formulated in spherical coo
with the z axis aligned along a uniform magnetic field. Following Ref. 4, we will represent
vector potential as a product of angular and radial dependences,A5W(r ,t)sinuf̂. Substituting
this presentation into the source-free wave equation yields

]2W~r ,t !

]r 2 1
2

r

]W~r ,t !

]r
2

2W~r ,t !

r 2 2
1

c2

]2W~r ,t !

]t2 50. ~2!

Equation~2! is subject to initial conditions

W~r ,0!5B0r /2,
]W~r ,0!

]t
50, ~3!

which correspond to uniform magnetic fieldB0ẑ and zero electric field att50.
The boundary conditions on the moving surface of the sphere are as follows:

S ]W

]t
1

Ṙ

r

]~rW!

]r
D U

r 5R~ t !

50, ~4!

FIG. 1. The graphs of functionR(t): ~a! the case of expansion and contraction with constant velocity, and~b! motion of
the boundary with given initial velocity and constant deceleration~parabolic profile!
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S 1

r

]~rW!

]r
1

Ṙ

c2

]W

]t
D U

r 5R~ t !

52
4p

c sinu
i f , ~5!

where Ṙ is the velocity of the surface andi f is the azimuthal component of surface curre
Boundary condition~4! provides the local electric field to be zero in the reference frame of
moving surface. Boundary condition~5! allows calculation of surface currents.

At the first moment of the expansion, an electromagnetic pulse is generated at the orig
propagates outward with the speed of light. Correspondingly, all perturbations of the vect
tential must be zero atr .ct, where only a uniform magnetic field exists,

for r>ct, W~r ,t !5B0r /2, ~6!

and electric and magnetic fields inside the plasma sphere,r ,R(t), are supposed to be zero a
well:

for r<R~ t !, W~r ,t !50. ~7!

Electric and magnetic fields in Coulomb gauge@E52(1/c)]A/]t, B5¹3A# are expressed
in terms ofW(r ,t) as follows:

Ef52
sinu

c

]W

]t
, Bu52

sinu

r

]~rW!

]r
, Br5

2 cosuW~r ,t !

r
. ~8!

Additional to the boundary conditions listed above, one should require that the vector p
tial W(r ,t) is a continuous function in the entire space and time domain.

II. GENERAL SOLUTION

To solve~2! let us first consider the static case:

]2W~r ,t !

]r 2 1
2

r

]W~r ,t !

]r
2

2W~r ,t !

r 2 50. ~9!

Equation~9! has a trivial solutionW5C1r 1C2 /r 2. Taking into account the boundary con
dition ~6!, a new functionF(r ,t) is introduced instead ofW(r ,t): W(r ,t)5B0r /21F(r ,t)/r 2.
Substituting this presentation into~2! yields

]2F~r ,t !

]r 2 2
2

r

]F~r ,t !

]r
2

1

c2

]2F~r ,t !

]t2 50 . ~10!

Equation~10! can be further simplified by the transformationF(r ,t)5r 3U(r ,t). Introducing
canonical variablesj5r 2ct andh5r 1ct, it can be written in a standard form of the ‘‘Euler
Darboux’’ equation. The general solutions of the ‘‘Euler–Darboux’’ equation are well kn
~see, for example, Ref. 5!. In our special case it involves two arbitrary functions and their der
tives; F(r ,t)5r @ f 8(r 2ct)1g8(r 1ct)#2@ f (r 2ct)1g(r 1ct)#. Ignoring the second and forth
terms corresponding to the waves incoming from infinity gives the final solution in the form

W~r ,t !5
B0r

2
1

@r f 8~r 2ct!2 f ~r 2ct!#

r 2 . ~11!

The unknown functionf (j) is defined by the boundary and initial conditions. We will tre
them separately, first for the stage of expansion, then for contraction.
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A. Profile of f „j… during expansion

Two moving boundary conditions~4! and~7! are imposed onW(r ,t) at r 5R(t). We will use
only ~7! because boundary condition~4! is automatically satisfied if~7! is valid. Applying~7! and
substitutingR(t)5vt yields an ordinary differential equation forf (j), wherej5(v2c)t:

vj f 8~j!2~v2c! f ~j!52
B0v3j3

2~v2c!2 . ~12!

The general solution of~12! has the form

f ~j!5Aj12c/v2
B0j3

2~v2c!2~2v1c!
, ~13!

whereA is an arbitrary contant. Applying boundary condition~6! at r 5ct yields A50. Then,
making use of~11! and ~13! gives the following expression forW(r ,t):

Wex~r ,t !5
B0r

2
2

B0v3~r 2ct!2~2r 1ct!

2r 2~v2c!2~2v1c!
. ~14!

The same solution has been obtained in Ref. 4 with the use of the Laplace method.

B. Profile of f „j… during contraction

Reaching the maximum of expansionRmax at t5Rmax/v, the plasma boundary sudden
changes the sign of the radial velocity and starts contracting in the reverse direction s
R(t)52Rmax2vt at t.t. It implies infinitely large deceleration imposed at the turning po
Since transition fromv to 2v happens instantaneously, the stage of contraction can be consi
as a problem with initial conditions formed by the previous stage of expansion. Indeed,
contraction starts, the entire solution turns out to be consisting of two different parts. The firs
Wex(r ,t), reproduces the structure of the electromagnetic pulse which has been formed
expansion. Its trailing edge is located atr 5Rmax(12c/v)1ct, the leading edge is atr 5ct, and the
pulse, as a whole, propagates outward with the speed of light. The second part,Wcon(r ,t), repre-
sents new field which has been formed by the contraction. Its trailing edge is localized on
tracting surface atr 52Rmax2vt while the leading edge is atr 5Rmax(12c/v)1ct, where it is
contacting the trailing edge ofWex(r ,t).

The profile of Wex(r ,t) is defined by~14! and its leading edge matches the unperturb
uniform field. The trailing edge of this solution plays the role of a boundary condition for
leading edge ofWcon(r ,t):

at r 5Rmax1c~ t2Rmax/v !, Wcon~r ,t !5Wex~r ,t !. ~15!

The profile ofWcon(r ,t) is defined by the boundary condition imposed on its trailing edge
the contracting sphere atr 52Rmax2vt. Similar to the derivation of~13! we will use equation
W(r ,t)50 ~continuity of vector potential!, which turns out to be equivalent to~4!. It gives an
ordinary differential equation of the same structure as~12!. Making the substitutionj52Rmax

2(v1c)t yields

~2Rmaxc1vj! f 8~j!2~v1c! f ~j!52
B0~2Rmaxc1vj!3

2~v1c!2 . ~16!

The differential equation~16! has a general solution of the form

f ~j!5A~2Rmaxc1vj!c/v112
B0~2Rmaxc1vj!3

2~v1c!2~2v2c!
. ~17!
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The first term is proportional to arbitrary constantA and represents the general solution of t
uniform equation. The second term corresponds to the particular solution of the nonun
equation. Analyzing the stage of expansion we had to cancel the first solution due to bou
condition ~6! at r 5ct and used only the second solution found in Ref. 4. During the stag
contraction another boundary condition~15! is applied forWcon(r ,t). Consequently, the constan
A is nonzero now and the first solution plays an important role in the formation ofWcon(r ,t)
50. This is the new element imposed by the contraction problem in comparison with the e
sion problem considered in Ref. 4.

Matching solutions according to~15! yield the value ofA. The final expression forWcon(r ,t)
is as follows:

Wcon~r ,t !5
B0r

2
2

B0„vr 1cR~ t !…2„2vr 2cR~ t !…

2r 2~v1c!2~2v2c!
1

3B0Rmax
22c/vc2v„vr 1cR~ t !…c/v

„r 2R~ t !…

r 2~v1c!c/v11~4v22c2!
.

~18!

C. Free electromagnetic wave

The entire cycle of expansion and contraction is completed att52Rmax/v, when plasma
returns to its initial point state at the origin. Starting from this moment the plasma sour
supposed to be removed and not exist anymore. The next stage corresponds to the evolutio
electromagnetic field created during the previous stages. This evolution is described by the
free equation~2! with initial conditions which are defined byW(r ,t) at t52Rmax/v. This initial
field is localized inside the sphere of the radius 2(c/v)Rmax. At t.2Rmax/v it loses contact with
the origin and starts propagating outward with the speed of light. There appears a growing
cal area of the radiusc„t2(2Rmax/v)… with a uniform magnetic field. It has to be matched with t
trailing edge ofWcon(r ,t) at r 5ct22Rmaxc/v. This boundary condition is introduced to provid
time evolution of the magnetic field to a uniform magnetic field which is stationary generate
the source at infinity. The above initial and boundary conditions are satisfied if the entire pro
W(r ,t) in the whole space and time domain is defined as follows:

W~r ,t !55
B0r /2, 0<r<ct22cRmax/v,

Wcon~r ,t ! ct22cRmax/v<r<Rmax~12c/v !1ct,

Wexp~r ,t !, Rmax~12c/v !1ct<r<ct,

B0r /2, ct<r ,`.

~19!

This solution is illustrated in Fig. 2.

III. ENERGY BALANCE

Solution ~19! shows that after one period, plasma motion creates an electromagnetic
propagating outward and takes some amount of energy out of the system. Energy,U loss, irradiated
to infinity during one period is measured as a Poyinting vector integrated over the time and
the surface of distant sphere,r 5Rc ~control surface!, enclosing the plasma sphere (R(t),Rc).
The equation of energy balance has the form

]E
]t

1div P52 j "E, ~20!

whereE5E2/8p1B2/8p andP5(c/4p)@EÃB#. Integrating~20! over the volume of the contro
sphere and over time from the beginning of expansion,t i50, up to the final moment,t f5Rc /c
12Rmax/v when the trailing edge of~19! leaves the control sphere, yields

U loss5E
Rcgc

Rc/c12Rmax/v
dt R

S
P•dS52E

0

2Rmax/v
dtE

V
j "E dV. ~21!
                                                                                                                



ere

urface

result
e lhs
stem

als

s are
nergy

cant
mpres-
to the
e of
-

a ener-

of

ard

2856 J. Math. Phys., Vol. 41, No. 5, May 2000 Gürcan, Mirnov, and Üçer

                    
It is taken into account that att5t i andt5t f electromagnetic energy inside the control sph
is defined by a uniform magnetic field, and, therefore,E(t i)5E(t f). Limits of integration in~21!
result from the fact that the lhs is nonzero during passage of the pulse through the control s
while the rhs contributes during the time of expansion and contraction.

The integrand of the rhs is localized on the surface of plasma sphere and, therefore, the
of integration overdVdoes not depend on the radius of the controlling sphere. It means that th
is also independent ofRc and represents a universal expression for the energy lost by the sy
in the form of an electromagnetic pulse escaping to infinity. Substituting~8! into the Poynting
vector and performing integration overu andf in ~21! yields

U loss52
2

3 ERc /c

Rc /c12Rmax/v]~rW!

]r U
r 5Rc

]~rW!

]t U
r 5Rc

dt. ~22!

Making use of~19! this integral is calculated exactly. It is subdivided into two integr
related toWex andWcon contributions. The result of integration is, indeed, independent ofRc and
has the form

U loss5
2B0

2Rmax
3 v2/c2~314v/c23v2/c2!

~22v/c!~12v/c!~v/c11!2~2v/c11!2 . ~23!

IV. DISCUSSION

All the above effects including induced currents and irradiated electromagnetic wave
caused by the external magnetic field. Energy transferred to infinity is proportional to the e
of a uniform magnetic field inside the sphere of the radiusRmax and some function ofv/c. The
flux of energy~Poynting vector! created by the stage of expansion is positive and a signifi
amount of electromagnetic energy leaves the control sphere. During the second stage of co
sion the Poyting vector changes sign and almost all electromagnetic energy comes back
control sphere. Expression~23! represents imbalance between these two fluxes. In the cas
nonrelativistic velocities, it is proportional to (v/c)2 and, therefore, small. However, for relativ
istic velocities the effect can be significant.

The loss of electromagnetic energy causes the same loss of kinetic and internal plasm
gies and, correspondingly, damping of oscillations. SubstitutingE52(1/c)@vÃB# into the RHS
of ~21! and making a standard transformation based on Gauss’s theorem proves that the rhs~21!
is mechanical work performed by the magnetic pressure on the moving sphere.

FIG. 2. Radial profiles ofW(r ,t), Ef(r ,t), andBu(r ,t) during the stage of free electromagnetic wave propagating outw
@r 1(t)5ct22cRmax/v, r 2(t)5Rmax(12c/v)1ct and r 3(t)5ct#.
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There is an issue about how much the above model is sensitive to the choice ofR(t). In order
to analyze this problem a more realistic profile of parabolicR(t) was treated:

R~ t !5v0t2
v0

2

4Rmax
t2. ~24!

It corresponds to the initial radial velocityv0 and constant decelerationv0
2/Rmax that better

matches time variations of plasma speed. The method presented in Sec. II allows us, in pr
to find U loss analytically in the case of~24!; however, calculations are complicated. We will stu
the issue with the help of a simpler plane geometry model. The process of plasma slab exp
and contraction in a uniform magnetic field was considered and energy loss was calculate
way similar to the above spherical geometry. In the case of a uniform velocity profile@triangular
shapeR(t)#, total energy loss per unit area of the slab is

U loss5
RmaxB0

2~v/c!

2p~12v2/c2!
, ~25!

while in the case of~24! the same approach yields

U loss5
B0

2c2Rmax

2pv0
2 F lnS 11v0 /c

12v0 /cD22v0 /cG5
B0

2Rmax

p S v0

3c
1

v0
3

5c3 1¯ D . ~26!

Comparing~25! and ~26! in nonrelativistic limit shows that both of them are proportional
the first power ofv/c. In order to reach the sameRmax during the same expansion timet, the
initial velocity v0 in the case~24! must be chosen to bev052v. It provides the average velocit
along the parabolic trajectory to be equal tov. Taking this into account gives approximately th
same net energy loss in the first and second cases (U loss

unif5 3
4 U loss

parab). One can conclude that th
choice of smooth parabolic profile does not practically affect the net energy loss, becaus
determined by the integral of energy flux over time where details ofR(t) and Ṙ(t) are not very
important.
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Constraints in Hamiltonian time-dependent mechanics
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The key point of the study of constraints in Hamiltonian time-dependent mechanics
lies in the fact that a Poisson structure does not provide dynamic equations and a
Poisson bracket of constraints with a Hamiltonian is ill-defined. We describe
Hamiltonian dynamics in terms of Hamiltonian forms and connections on the ver-
tical cotangent bundleV* Q→R seen as a momentum phase space. A Poisson
bracket $,%V on V* Q is induced by the canonical Poisson bracket$,%T on the
cotangent bundleT* Q. With $,%V , an algebra of first and second class time-
dependent constraints is described, but we use the pull-back of the evolution equa-
tion ontoT* X and the bracket$,%T in order to extend the constraint algorithm to
time-dependent constraints. The case of Lagrangian constraints of a degenerate
almost regular Lagrangian is studied in detail. One can assign to this LagrangianL
a set of Hamiltonian forms~which are not necessarily degenerate! such that any
solution of the corresponding Hamilton equations which lives in the Lagrangian
constraint space is a solution of the Lagrange equations forL. In the case of an
almost regular quadratic Lagrangian, the complete set of global nondegenerate
Hamiltonian forms with the above-mentioned properties is described. We construct
the Koszul–Tate resolution of the Lagrangian constraints for this Lagrangian in an
explicit form. © 2000 American Institute of Physics.@S0022-2488~00!03205-9#

I. INTRODUCTION

We study holonomic constraints in Hamiltonian mechanics subject to time-depe
transformations.1,2 In contrast to the existent formulations of time-dependent mechanics,3–7 we do
not imply any preliminary splitting of its momentum phase spaceP5R3Z. From the physical
viewpoint, this splitting characterizes a certain reference frame, and is violated by time-depe
transformations, including inertial frame transformations.

Recall that, given such a splitting,P is endowed with the product of the zero Poisson struct
on R and the Poisson structure onZ. A HamiltonianH is defined as a real function onP. The
corresponding Hamiltonian vector fieldqH on P is vertical with respect to the fibrationP→R.
Due to the natural imbeddingP3RTR→TP one introduces the vector fieldgH5] t1qH , where
] t is the standard vector field onR. The Hamilton equations are equations for the integral cur
of the vector fieldgH , while the evolution equation on the Poisson algebraC`(P) of smooth
functions onP is given by the Lie derivative

LgHf 5] t f 1$H, f %.

However, the splitting on the right-hand side of this expression is violated by time-depe
transformations, and a HamiltonianH is not scalar under these transformations. Its Pois
bracket with functionsf PC`(P) is ill-defined, and is not maintained under time-depend

a!Electronic mail: mangiaro@camserv.unicam.it
b!Electronic mail: sard@grav.phys.msu.su
28580022-2488/2000/41(5)/2858/19/$17.00 © 2000 American Institute of Physics
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transformations. This fact is the key point of the study of constraints in Hamiltonian t
dependent mechanics. Therefore, we need something more than a Poisson structure onP.

A generic momentum phase space of time-dependent mechanics is a fiber bundleP→R
endowed with a regular Poisson structure whose characteristic distribution belongs to the v
tangent bundleVP of P→R.8 The problem is that this Poisson structure cannot provide dyna
equations. A first-order dynamic equation onP→R, by definition, is a section of the affine je
bundleJ1P→P, i.e., a connection onP→R. Being a horizontal vector field, such a connecti
cannot be a Hamiltonian vector field with respect to the above-mentioned Poisson structureP.

Let us consider time-dependent mechanics on a configuration bundleQ→R. The correspond-
ing momentum phase space is the vertical cotangent bundleP5V* Q, called the Legendre
bundle. It is provided with the canonical Poisson structure$,%V such that9

z* $ f ,g%V5$z* f ,z* g%T , f ,gPC`~V* Q!, ~1!

wherez is the natural fibration

z:T* Q→V* Q, ~2!

and $,%T is the nondegenerate Poisson structure on the cotangent bundleT* Q defined by the
canonical symplectic formdJ on T* Q. The characteristic distribution of$,%V coincides with the
vertical tangent bundleVV* Q of V* Q→R.

Given a sectionh of the fiber bundle~2!, let us consider the pull-back forms

Q5h* ~J`dt!, V5h* ~dJ`dt! ~3!

on V* Q. It is readily observed that these forms are independent ofh, and are canonical onV* Q.
Then a Hamiltonian vector fieldq f for a functionf on V* Q is given by the relation

q f cV52d f`dt,

while the Poisson bracket~1! is written as

$ f ,g%Vdt5qgcq f cV.

Thus, the three-formV ~3! providesV* Q with the Poisson structure$,%V in an equivalent way,
but gives something more as follows.1,2,10 A connectiong on the Legendre bundleV* Q→R is
said to be a Hamiltonian connection if

g cV5h* dJ5dH,

whereh is some section of the fiber bundle~2!. The formH5h* J is called a Hamiltonian form.
Given a Hamiltonian formH and the associated Hamiltonian connectiongH , the kernel of the
corresponding covariant differentialDgH

provides the Hamilton equations on the Legendre bun
V* Q→R, while the Lie derivative

dt f 5LgH
f 5gHcd f ~4!

defines the evolution equation on the Poisson algebraC`(V* Q).
Remark 1:A generic momentum phase spaceP→R of time-dependent mechanics can

seen locally as the Poisson product overR of a Legendre bundleV* Q→R and some fiber bundle
over R, equipped with the zero Poisson structure.

With the Poisson bracket$,%V , the conventional notion of first and second class constra
can be extended to constraints in Hamiltonian time-dependent mechanics, and the classica
technique11,12 can be applied to these constraints. At the same time, sincegH is not a vertical
vector field, the right-hand side of the evolution equation~4! is not expressed in the Poisso
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bracket unless a reference frame is given. To overcome this difficulty, we consider the pul
of the equality~4! onto the cotangent bundleT* Q where its right-hand side takes the form of th
Poisson bracket$H* ,z* f %T of the pull-back functionz* f and the functionH* 5] tc(J2z* H) on
T* Q. This Poisson bracket enables us to extend the constraint algorithm of conservative m
ics ~and time-dependent mechanics on a productR3Z6,7! to mechanical systems subject to tim
dependent transformations. An essential difference between constraints in conservative me
and time-dependent mechanics also lies in the fact that Hamiltonian vector fields of first
time-dependent constraints are not generators of gauge symmetries of a Hamiltonian formH. At
the same time, we show that gauge symmetries of a Hamiltonian formH generate a coisotropic
ideal of first class constraints. Therefore, the BRST technique may be applied to them.

Lagrangian constraints are one of the most important class of constraints studied in qu
theory. If a LagrangianL of time-dependent mechanics is degenerate, it defines the Lagra
constraint subspaceNL of the Legendre bundleV* Q. We show that, for a degenerate almo
regular LagrangianL, there exists at least locally a complete set of weakly associated Hamilto
forms H such that solutions of the Hamilton equations forH which live in the Lagrangian con
straint spaceNL exhaust all solutions of the Lagrange equations forL. It is important that, in
contrast to associated Hamiltonian forms studied in our previous works,1,2 these Hamiltonian
forms are not necessarily degenerate. Furthermore, we find a complete set of nondeg
Hamiltonian forms with the above-mentioned properties for a generic almost regular qua
Lagrangian. We also show that, in this case, the Legendre bundleV* Q admits the splitting
V* Q5Kers % NL overQ, wheres is some morphism. Using the corresponding projection ope
tors, we construct the Koszul–Tate resolution for the Lagrangian constraintsNL of a generic
almost regular quadratic LagrangianL in an explicit form.

The plan of the paper is as follows. Section II presents some technical preliminaries. In
III, we compile the basic facts of Hamiltonian time-dependent mechanics from our pre
works. Section IV is devoted to two useful constructions which are the LagrangianLH ~11! on the
jet manifoldJ1V* Q and the above-mentioned bracket$H* ,z* f %T ~15! on the cotangent bundle
T* Q. We use them for the study of an evolution equation in time-dependent mechanics
LagrangianLH also enables us to follow the standard procedure of Lagrangian formalism in
to describe gauge symmetries in Hamiltonian mechanics. In Sec. V, an ideal of time-dep
constraints is described in algebraic terms. In Sec. VI, we extend our analysis of dege
Lagrangian and Hamiltonian systems in the previous works1,2 to weakly associated Hamiltonia
forms, which are not necessarily degenerate. Section VII provides the detailed exposition
case of an almost regular quadratic Lagrangian, appropriate for application to many ph
models. One of the results is the existence of a complete set of nondegenerate Hamiltonian
weakly associated with this Lagrangian; that may be important for quantization. Another one
splittings~45a! and~46a! of the velocity and momentum phase spaces. Based on these split
we obtain the Koszul–Tate resolution for the Lagrangian constraints of an almost regula
dratic Lagrangian. These constraints are reducible in general. Section VIII is devoted
geometric description of the corresponding antighost fields. In Sec. IX, the above-men
Koszul–Tate resolution and the corresponding BRST charge are constructed.

II. TECHNICAL PRELIMINARIES

The following peculiarities of fiber bundles overR should be emphasized.2 Their baseR is
parametrized by the Cartesian coordinatest with the transition functionst85t1const, and is
provided with the standard vector field] t and the standard one-formdt. A vector fieldu on a fiber
bundleY→R is said to be projectable ifucdt is constant. From now on, by vector fields on fib
bundles overR are meant only projectable vector fields.

Let Y→R be a fiber bundle coordinated by (t,yA) and J1Y its first-order jet manifold,
equipped with the adapted coordinates (t,yA,yt

A). There is the canonical imbedding

l5] t1yt
A]A :J1Y�

Y
TY
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whose image is the affine subbundle of elementsvPTY such thatv cdt51. This subbundle is
modeled over the vertical tangent bundleVY→Y. As a consequence, there is one-to-one co
spondence between the connections on the fiber bundleY→R and the vector fieldsG on Y such
that G cdt51. The corresponding covariant differential reads

DG5l2G:J1Y→
Y

VY, ẏA+DG5yt
A2GA.

A connectionG on Y→R yields a one-dimensional distribution onY, transversal to the
fibration Y→R. As a consequence, it defines an atlas of local constant trivializations ofY→R
whose transition functions are independent oft and G5] t . Conversely, every atlas of loca
constant trivializations of a fiber bundleY→R sets a connection onY→R which is ] t relative to
this atlas. In particular, every trivialization ofY→R yields a complete connectionG on Y, andvice
versa.

Recall the total derivativedt5] t1yt
A]A1¯ and the exterior algebra homomorphism

h0 :f dt1fA dyA°~f1fAyt
A!dt,

which sends exterior forms onY→R onto the horizontal forms onJ1Y→R.

III. HAMILTONIAN TIME-DEPENDENT DYNAMICS

In this section, we compile some basic facts of Hamiltonian time-dependent mechanic1,2,10

Let the momentum phase space of time-dependent mechanics

V* Q ——→
pQ

Q→
p

R

be provided with holonomic coordinates (t,qi ,pi). These coordinates are canonical for the Pois
structure~1! on V* Q such that

V5dpi`dqi`dt,
~5!

$ f ,g%V5] i f ] ig2] ig] i f , f ,gPC`~V* Q!.

Lemma 1:1,2 A vector fieldu on V* Q is canonical for the Poisson structure$,%V iff the form
ucV is closed. The closed formucV is exact.

With respect to the Poisson bracket~5!, the Hamiltonian vector fieldq f for a functionf on the
Legendre bundleV* Q is

q f5] i f ] i2] i f ]
i .

It is vertical. Conversely, one can show that every vertical canonical vector field on the Leg
bundleV* Q→R is locally a Hamiltonian vector field.

Proposition 2:Let a connectiong on the Legendre bundleV* Q→R be a canonical vecto
field for the Poisson structure$,%V . Then g cV5dH, whereH is locally a Hamiltonian form.
Conversely, any Hamiltonian form

H5h* J5pi dqi2H dt ~6!

on the momentum phase spaceV* Q admits a unique Hamiltonian connection

gH5] t1] iH] i2] iH] i . ~7!

Remark 2:A glance at expression~6! shows that, given a trivialization of the configuratio
bundle Q→R, the Hamiltonian formH ~6! is the well-known integral invariant of Poincare´–
Cartan whereH is a Hamiltonian.
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Hamiltonian forms constitute an affine space modeled over the vector space of hori
densitiesf dt on V* Q→R, i.e., overC`(V* Q). Accordingly, Hamiltonian connectionsgH make
up an affine space modeled over the vector space of Hamiltonian vector fields.

Remark 3:Any bundle morphism

F:V* Q→J1Q,TQ, F5] t1F i] i ,

called a Hamiltonian map, defines the Hamiltonian form

HF52F cQ5pi dyi2piF
i dt

on V* Q. Conversely, every Hamiltonian form yields the Hamiltonian map

Ĥ5J1pQ+gH :V* Q→J1Q, qt
i+Ĥ5] iH. ~8!

Let G be a connection onQ→R. It characterizes a reference frame in nonrelativistic tim
dependent mechanics.1,2,13Indeed, the vector fieldG sets a tangent vector at each point ofQ whose
vertical part can be seen as the velocity of an ‘‘observer’’ at this point. Accordingly, the atl
local constant trivializations ofQ→R associated with a connectionG and, in particular, every
trivialization of Q→R can also be regarded as a reference frame. Every connectionG on Q
→R, by definition, is a section of the affine bundle~2!, and defines the frame Hamiltonian form

HG5G* J5pi dqi2piG
i dt.

The corresponding Hamiltonian connection is the canonical lift

V* G5] t1G i] i2pi] jG
i] j

of G onto V* Q→R. Then any Hamiltonian formH on V* Q admits the splittings

H5HG2H̃G dt, H5piG
i1H̃G , ~9!

whereH̃G is the energy function with respect to the reference frameG @see~18! below#.
Given a Hamiltonian formH ~6! and the associated Hamiltonian connectiongH ~7!, the kernel

of the covariant differentialDgH
defines the Hamilton equations

qt
i5] iH, ~10a!

pti52] iH. ~10b!

IV. THE EVOLUTION EQUATION AND SYMMETRY CURRENTS

A Hamiltonian formH ~6! is the Poincare´–Cartan form for the Lagrangian

LH5h0~H !5~piqt
i2H!dt ~11!

on the jet manifoldJ1V* Q. This Lagrangian is a convenient tool in order to apply the stand
Lagrangian technique to Hamiltonian time-dependent mechanics. Given a vector fieldu on Q
→R and its lift

ũ5ut] t1ui] i2] iu
j pj]

i

onto the Legendre bundleV* Q→R, we have

L ũH5L j i ũLH5~2ut] tH1pi] tu
i2ui] iH1] ju

ipi]
jH!dt. ~12!
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Applying the first variational formula to~12!, we observe that the Hamilton equations~10a! and
~10b! for H are exactly the Lagrange equations forLH .

Furthermore, given a functionf PC`(V* Q) and its pull-back ontoJ1V* Q, let us consider the
bracket

~ f ,LH!5d i f d iLH2d i f d
iLH5LgH

f 2dt f ,

whered i , d i are variational derivatives~in the spirit of the Batalin–Vilkovisky antibracket!. Then
the equation (f ,LH)50 is the evolution equation

dt f 5LgH
f 5] t f 1$H, f %V ~13!

in time-dependent mechanics. Note that, taken separately, the terms on its right-hand s
ill-behaved objects under reference frame transformations. With the splitting~9!, the evolution
equation~13! is brought into the frame-covariant form

LgH
f 5V* G cH1$H̃G , f %V ,

but its right-hand side does not reduce to a Poisson bracket.
The following construction enables us to represent the right-hand side of the evolution

tion ~13! as a pure Poisson bracket. Given a Hamiltonian formH5h* J, let us consider its
pull-back z* H onto the contangent bundleT* Q. It is readily observed that the differenceJ
2z* H is a horizontal one-form onT* Q→R, while

H* 5] tc~J2z* H !5p1H ~14!

is a function onT* Q. Then the relation

z* ~LgH
f !5$H* ,z* f %T ~15!

holds for any functionf PC`(V* Q). In particular,f is an integral of motion iff its bracket~15!
vanishes. Note thatgH5Tz(qH* ) whereqH* is the Hamiltonian vector field for the functionH*
~14! with respect to the canonical Poisson structure$,%T on T* Q.

Relation~12! enables us to obtain the conservation laws in Hamiltonian time-dependen
chanics in accordance with the standard procedure in Lagrangian formalism.1,2,10,14The first varia-
tional formula applied to the LagrangianLH ~11! leads to the weak identityL ũH'dt(ucH)dt. If
the Lie derivative~12! vanishes, we have the conserved symmetry current

Ju5ucdH5piu
i2utH, ~16!

alongu. If u is a vertical vector field,Ju is the Noether current

Ju~q!5ucq5piu
i , q5pi dqiPV* Q. ~17!

If u5G is a connection,

JG5piG
i2H52H̃G ~18!

is the energy function with respect to the reference frameG, taken with the minus sign.1,2,15Note
that the currentJu ~16! is conserved iff its bracket$H* ,z* Ju%T ~15! vanishes.

Proposition 3:Given a Hamiltonian formH, the symmetry currents~16! make up a subalge
bra of the Poisson algebraC`(V* Q):

$Ju ,Ju8%V5J@u,u8#. ~19!
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The proof follows from a direct computation.
Remark 4:It is readily observed that all Noether currents~17! also constitute a subalgebra o

the Poisson algebraC`(V* Q) with respect to the bracket~19!.

V. TIME-DEPENDENT CONSTRAINTS

With the Poisson bracket$,%V , an algebra of time-dependent constraints can be descr
similarly to that in conservative Hamiltonian mechanics, but we should use relation~15! in order
to extend the constraint algorithm to time-dependent constraints.

Let N be a closed imbedded subbundlei N :N�V* Q of the Legendre bundleV* Q→R,
treated as a constraint space. Note thatN is neither Lagrangian nor symplectic submanifold w
respect to the Poisson structure$,%V . Let us consider the idealI N,C`(V* Q) of functionsf on
V* Q which vanish onN, i.e., i N* f 50. Its elements are said to be constraints. There is the isom
phism

C`~V* Q!/I N>C`~N! ~20!

of associative commutative algebras. By the normalizeĪ N of the idealI N is meant the subset o
functions ofC`(V* Q) whose Hamiltonian vector fields restrict to vector fields onN,12 i.e.,

Ī N5$ f PC`~V* Q!:$ f ,g%VPI N ,;gPI N%. ~21!

It follows from the Jacobi identity that the normalizer~21! is a Poisson subalgebra ofC`(V* Q).
Put

I N8 5 Ī NùI N . ~22!

This is also a Poisson subalgebra ofĪ N . Its elements are called the first class constraints, while
remaining elements ofI N are the second class constraints. It is readily observed thatI N

2 ,I N8 .
Remark 5:Let N be a coisotropic submanifold ofV* Q. Then I N, Ī N and I N5I N8 , i.e., all

constraints are of first class.
Let H be a Hamiltonian form on the momentum phase spaceV* Q. In accordance with the

relation~15!, a constraintf PI N is preserved with respect to a Hamiltonian formH if the bracket
~15! vanishes on the constraint space. It follows that solutions of the Hamilton equations~10a! and
~10b! do not leave the constraint spaceN if

$H* ,z* I N%T,z* I N . ~23!

If this relation does not hold, let us introduce secondary constraints$H* ,z* f %T , f PI N , which
belong toz* (C`(V* Q)). If the set of primary and secondary constraints is not closed w
respect to relation~23!, one can add the tertiary constraints$H* ,$H* ,z* f a%T%T , and so on.

Let us assume thatN is a final constraint space for a Hamiltonian formH. If H satisfies
relation ~23!, so is a Hamiltonian form

H f5H2 f dt, ~24!

where f PI N8 is a first class constraint. Though Hamiltonian formsH andH f coincide with each
other on the constraint spaceN, the corresponding Hamilton equations have different solution
N becausedHuNÞdHf uN . At the same time,d( i N* H)5d( i N* H f). Therefore, let us consider th
pull-back, called the constrained Hamiltonian form,

HN5 i N* H f , ~25!

which is the same for allf PI N8 . Note thatHN ~25! is not a true Hamiltonian form onN→R in
general. On sectionsr of the bundleN→R, we can write
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r * ~uNcdHN!50, ~26!

whereuN is an arbitrary vertical vector field onN→R. They are called the constrained Hamilto
equations. It is readily observed that, for any Hamiltonian formH f ~24!, every solution of the
Hamilton equations which lives in the constraint spaceN is a solution of the constrained Hamilto
equations~26!.

Let us mention the problem of constructing a generalized Hamiltonian system, similar t
for a Dirac constraint system in conservative mechanics. LetH satisfy the condition
$H* ,z* I N8 %T,I N , whereas$H* ,z* I N%TúI N . The goal is to find a constraintf PI N such that the
modified HamiltonianH2 f dt would satisfy the condition

$H* 1z* f ,z* I N%T,z* I N .

This is an equation for a second-class constraintf.
The above construction, except the isomorphism~20!, can be applied to any idealI of

C`(V* Q), treated as an ideal of constraints.12 In particular, an idealI is said to be coisotropic if
it is a Poisson algebra. In this case,I is a Poisson subalgebra of the normalizeĪ ~21!, and coincides
with I 8 ~22!.

For instance, sincez* (Lq f
H)Þ$z* f ,H* %T , the constraintsf PI N preserved with respect to

Hamiltonian form H ~i.e., $z* f ,H* %TPI N) are not generators of gauge symmetries ofH in
general. At the same time, the generators of gauge symmetries of a Hamiltonian formH define an
ideal of constraints as follows. LetA be a Lie algebra of generatorsu of gauge symmetries of a
Hamiltonian formH. In accordance with relation~19!, the corresponding symmetry currentsJu

~16! on V* Q constitute a Lie algebra with respect to the Poisson bracket onV* Q. Let I A denote
the ideal ofC`(V* Q) generated by these symmetry currents. It is readily observed that this
is coisotropic. Then one can think ofI A as being an ideal of first class constraints compatible w
the Hamiltonian formH, i.e.,

$H* ,z* I A%T,z* I A . ~27!

Note that any Hamiltonian formHu5H2Ju dt, uPA, obeys the same relation~27!, but other
currentsJu8 are not conserved with respect toHu , unless@u,u8#50.

Now let A be an arbitrary Lie algebra of vertical vector fieldsu on the configuration bundle
Q→R. As was mentioned in Remark 4, the corresponding symmetry currentsJu ~17! on V* Q
constitute a Lie algebra and generate the corresponding coisotropic idealI A of C`(V* Q) with
respect to the Poisson bracket$,%V on V* Q.

Proposition 4: Let A be a finite-dimensional Lie algebra of vertical vector fields on
configuration bundleQ→R. If there exists a reference frameG on Q→R such that@G,A#50,
then there exists a nonframe Hamiltonian formH on the Legendre bundleV* Q such thatA is the
algebra of gauge symmetries ofH.

Proof: Let Ā be the universal enveloping algebra of the Lie algebra of the symmetry cur
Ju , uPA, ~17!. Then each nonzero elementC of its center of order.1 can be written as a
polynomial inJu , and defines the desired Hamiltonian formH5HG2C dt.

VI. LAGRANGIAN CONSTRAINTS

Lagrangian constraints are one of the most important classes of constraints studied in qu
theory. If a Lagrangian of time-dependent mechanics is degenerate, we have the Lagr
constraint subspace of the Legendre bundleV* Q and a set of Hamiltonian forms associated w
the same Lagrangian.1,2 Here, we consider weakly associated Hamiltonian forms. In compar
with the above-mentioned associated Hamiltonian forms, a degenerate Lagrangian may a
nondegenerate weakly associated Hamiltonian form that is essential for quantization.

Remark 6:Let L5L dt:J1Q→R be a Lagrangian on the velocity phase spaceJ1Q. It yields
the Legendre map
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L̂:J1Q→
Q

V* Q, pi5p i5] i
tL,

whose imageNL5L̂(J1Q),V* Q is called a Lagrangian constraint space. Besides the Lagr
equations

~] i2dt] i
t!L50, ~28!

we will also refer to the Cartan equations, which can be introduced as follows. Being the Lep
equivalent of the LagrangianL on J1Q @i.e., L5h0(HL)], the Poincare´–Cartan form

HL5L1p i~dqi2qt
i dt! ~29!

is also the Lepagean equivalent of the Lagrangian

L̄5ĥ0~HL!5~L1~ q̂t
i2qt

i !p i !dt, ĥ0~dqi !5q̂t
i dt, ~30!

on the repeated jet manifoldJ1J1Q, coordinated by (t,qi ,qt
i ,q̂t

i ,qtt
i ). The Lagrange equations fo

L̄ are the above-mentioned Cartan equations

] i
tp j~ q̂t

j2qt
j !50, ] iL2d̂tp i1~ q̂t

j2qt
j !] ip j50. ~31!

They are equivalent to the Lagrange equations~28! on holonomic sectionsc̄5 ċ of J1Q→R and
in the case of regular Lagrangians.

Given a LagrangianL on the velocity phase spaceJ1Q, a Hamiltonian formH on the mo-
mentum phase spaceV* Q is said to be associated withL if H satisfies the relations

L̂+Ĥ+L̂5L̂, ~32a!

H5HĤ1Ĥ* L, ~32b!

whereĤ is the Hamiltonian map~8!. A glance at relation~32a! shows thatL̂+Ĥ is the projector

pi~z!5p i~ t,qi ,] jH~z!!, zPNL ,

from V* Q onto the Lagrangian constraint spaceNL . Accordingly,Ĥ+L̂ is the projector fromJ1Y

onto Ĥ(NL). A Hamiltonian form is called weakly associated with a LagrangianL if condition
~32b! holds on the Lagrangian constraint spaceNL .

Proposition 5:10,16 If a Hamiltonian mapF:V* Q→
Q

J1Q obeys relation~32a!, then the

Hamiltonian formH5HF1F* L is weakly associated with the LagrangianL. If F5Ĥ, thenH is
associated withL.

The difference between associated and weakly associated Hamiltonian forms lies in th
lowing. Let H be an associated Hamiltonian form, i.e., equality~32b! holds everywhere onV* Q.
It takes the coordinate form

H5pi]
iH2L~ t,qj ,] jH!.

The exterior differential of this equality leads to the relation

~pi2~] i
tL!~ t,qj ,] t

jH!!] t
i] t

aH50,

which shows that an associated Hamiltonian form is degenerate outside the Lagrangian co
spaceNL .
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Let us restrict our consideration to almost regular LagrangiansL, i.e., ~i! the Lagrangian
constraint spaceNL is a closed imbedded subbundlei N :NL→V* Q of the bundleV* Q→Q, ~ii !
the Legendre mapL̂:J1Q→NL is a fibered manifold, and~iii ! the inverse imageL̂21(z) of any
point zPNL is a connected submanifold ofJ1Q.

Proposition 6:A Hamiltonian formH weakly associated with an almost regular LagrangiaL
exists iff the fibered manifoldJ1Q→NL admits a global section.

This fact is an immediate consequence of the above-mentioned conditions~i!, ~ii ! and Propo-
sition 5. Condition~iii ! leads to the following property.

Lemma 7:2,10 The Poincare´–Cartan formHL for an almost regular LagrangianL is constant on
the connected inverse imageL̂21(z) of any pointzPNL .

Corollary 8: All Hamiltonian forms weakly associated with an almost regular LagrangiaL
coincide with each other on the Lagrangian constraint spaceNL , and the Poincare´–Cartan form
HL ~29! for L is the pull-back

HL5L̂* H, p iqt
i2L5H~ t,qj ,p j !, ~33!

of any such Hamiltonian formH.
It follows that, given Hamiltonian formsH andH8 weakly associated with an almost regul

LagrangianL, their difference isf dt, f PI NL
. However,ĤuNL

ÞĤ8uNL
in general. Therefore, the

Hamilton equations forH andH8 do not coincide necessarily on the Lagrangian constraint sp
NL . Their solutions can leave the Lagrangian constraint spaceNL , i.e., relation~23! fails to hold
in general.

Theorem 9: Let a sectionr of V* Q→R be a solution of the Hamilton equations~10a! and
~10b! for a Hamiltonian formH weakly associated with an almost regular LagrangianL. If r lives
in the Lagrangian constraint spaceNL , the sectionc5pQ+r of Q→R satisfies the Lagrange
equations~28!, while c̄5Ĥ+r obeys the Cartan equations~31!.

The proof is based on the relationL̄5(J1L̂)* LH , whereL̄ is the Lagrangian~30!, while LH

is the Lagrangian~11!. This relation is derived from the equality~33!. The converse assertion i
more intricate.

Theorem 10: Given an almost regular LagrangianL, let a sectionc̄ of the jet bundleJ1Q
→R be a solution of the Cartan equations~31!. Let H be a Hamiltonian form weakly associate
with L, and letH satisfy the relation

Ĥ+L̂+ c̄5 ċ,

wherec is the projection ofc̄ onto Q. Then, the sectionr 5L̂+ c̄ of the Legendre bundleV* Q
→R is a solution of the Hamilton equations~10a! and ~10b! for H.

We will say that a set of Hamiltonian formsH weakly associated with an almost regul
LagrangianL is complete if, for each solutionc of the Lagrange equations, there exists a solut
r of the Hamilton equations for a Hamiltonian formH from this set such thatc5pQ+r . By virtue
of Theorem 10, a set of weakly associated Hamiltonian forms is complete if, for every soluc
on R of the Lagrange equations forL, there is a Hamiltonian formH from this set which fulfills
the relation

Ĥ+L̂+ ċ5 ċ. ~34!

In accordance with Proposition 6, on an open neighborhood inV* Q of each pointzPNL , there
exists a complete set of local Hamiltonian forms weakly associated with an almost regula
grangianL.

Given a Hamiltonian formH weakly associated with an almost regular LagrangianL, let us
consider the corresponding constrained Hamiltonian formHN ~25!. By virtue of Corollary 8,HN

is the same for all Hamiltonian forms weakly associated withL, andHL5L̂* HN . Furthermore, for
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any Hamiltonian formH weakly associated with an almost regular LagrangianL, every solution of
the Hamilton equations which lives in the Lagrangian constraint spaceNL is a solution of the
constrained Hamilton equations~26!. Using the equalityHL5L̂* HN , one can show that the
constrained Hamilton equations~26! are quasiequivalent to the Cartan equations, i.e., there
surjection of the set of solutions of the Cartan equations onto the set of solutions of the cons
Hamilton equations.2,10

VII. QUADRATIC DEGENERATE SYSTEMS

Let us study the physically relevant case of almost regular quadratic Lagrangians. We
that, in this case, there always exists a complete set of nondegenerate weakly associated
tonian forms.

Given a configuration bundleQ→R, let us consider a quadratic LagrangianL which has the
coordinate expression

L5 1
2ai j qt

iqt
j1biqt

i1c, ~35!

wherea, b, andc are local functions onQ. This property is coordinate independent due to
affine transformation law of the coordinatesqt

i . The associated Legendre map

pi+L̂5ai j qt
j1bi ~36!

is an affine morphism overQ. It defines the corresponding linear morphism

L̄:VQ→
Q

V* Q, pi+L̄5ai j q̇
j . ~37!

Let the LagrangianL ~35! be almost regular, i.e., the matrix functionai j is of constant rank.
Then the Lagrangian constraint spaceNL ~36! is an affine subbundle of the bundleV* Q→Q,
modeled over the vector subbundleN̄L ~37! of V* Q→Q. Hence,NL→Q has a global section. Fo
the sake of simplicity, let us assume that it is the canonical zero section 0ˆ (Q) of V* Q→Q. Then
N̄L5NL . Accordingly, the kernel of the Legendre map~36! is an affine subbundle of the affine je
bundleJ1Q→Q, modeled over the kernel of the linear morphismL̄ ~37!. Then there exists a
connection

G:Q→Ker L̂,J1Q, ai j G
j1bi50, ~38!

on Q→R. Connections~38! constitute an affine space modeled over the linear space of ve
vector fieldsv on Q→R, satisfying the conditions

ai j v
j50 ~39!

and, as a consequence, the conditionsv ibi50.
The matrixa in the LagrangianL ~35! can be seen as a degenerate fiber metric of cons

rank in VQ→Q. Then the following corollary of the well-known theorem on a splitting of ex
sequences of vector bundles takes place.

Lemma 11:Given ak-dimensional vector bundleE→Z, let a be a section of rankr of the

tensor bundle∨
2
E* →Z. There is a splittingE5Kera% ZE8 whereE85E/Kera is the quotient

bundle, anda is a nondegenerate fiber metric inE8.
Theorem 12: There exists a linear bundle map

s:V* Q→
Q

VQ, q̇i+s5s i j pj , ~40!

such thatL̄+s+ i N5 i N .
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Proof: The map~40! is a solution of the algebraic equations

ai j s
jkakb5aib . ~41!

By virtue of Lemma 11, there exist the bundle slitting

VQ5Kera%

Q
E8 ~42!

and an atlas of this bundle such that transition functions of Kera andE8 are independent. Sinc
a is a nondegenerate fiber metric inE8, there is an atlas ofE8 such thata is brought into a
diagonal matrix with nonvanishing componentsaAA . Due to the splitting~42!, we have the
corresponding bundle splitting

V* Q5~Kera!* %

Q
Im a. ~43!

Then the desired maps is represented by a direct sums1% s0 of an arbitrary sections1 of the

bundle∨
2
Kera* →Q and the sections0 of the bundle∨

2
E8→Q, which has nonvanishing compo

nentssAA5(aAA)21 with respect to the above-mentioned atlas ofE8. Moreover,s satisfies the
particular relations

s05s0+L̄+s0 , a+s150, s1+a50. ~44!

Corollary 13: The splitting~42! leads to the splitting

J1Q5S~J1Q! %

Q
F~J1Q!5Ker L̂ %

Q
Im~s+L̂ !, ~45a!

qt
i5Si1F i5@qt

i2s0
ik~ak jqt

j1bk!#1@s0
ik~ak jqt

j1bk!#, ~45b!

while the splitting~43! can be written as

V* Q5R~V* Q! %

Q
P~V* Q!5Kers0%

Q
NL , ~46a!

pi5Ri1Pi5@pi2ai j s0
jkpk#1@ai j s0

jkpk#. ~46b!

It is readily observed that, with respect to the coordinatesS i andF i ~45b!, the Lagrangian
~35! reads

L5 1
2ai j F iF j1c8,

while the Lagrangian constraint space is given by the reducible constraints

Ri5pi2ai j s0
jkpk50. ~47!

Given the linear maps ~40! and the connectionG ~38!, let us consider the affine Hamiltonia
map

F5Ĝ1s:V* Q→J1Q, F i5G i1s i j pj , ~48!

and the Hamiltonian form
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H5HF1F* L

5pidqi2@piG
i1 1

2s0
i j pipj1s1

i j pipj2c8#dt

5~Ri1Pi !dqi

2@~Ri1Pi !G
i1 1

2 s0
i j PiPj1s1

i j pipj2c8#dt. ~49!

Theorem 14:The Hamiltonian forms~49! parametrized by connectionsG ~38! are weakly
associated with the Lagrangian~35! and constitute a complete set.

Proof: By the very definitions ofG ands, the Hamiltonian map~48! satisfies the condition
~32a!. ThenH is weakly associated withL ~35! in accordance with Proposition 5. Let us write th
corresponding Hamilton equations~10a! for a sectionr of the Legendre bundleV* Q→R. They
are

ċ5~ Ĝ1s!+r , c5pQ+r . ~50!

Due to the surjectionsS andF ~45a!, the Hamilton equations~50! break in two parts

S+ ċ5G+c, ṙ i2s ik~ak jṙ
j1bk!5G i+c,

~51!
F+ ċ5s+r , s ik~ak jṙ

j1bk!5s ikr k .

Let c be an arbitrary section ofQ→R, e.g., a solution of the Lagrange equations. There exis
connectionG ~38! such that relation~51! holds, namely,G5S+G8 whereG8 is a connection on
Q→R which hasc as an integral section. It is easily seen that, in this case, the Hamiltonian
~48! satisfies relation~34! for c. Hence, the Hamiltonian forms~49! constitute a complete set.

It is readily observed that, ifs150, thenF5Ĥ and the Hamiltonian forms~49! are associated
with the Lagrangian~35! in accordance with Proposition 5. Ifs1 is nondegenerate, so is th
Hamiltonian form~49!. Hence, we have different complete sets of Hamiltonian forms~49! for
differents1 . Hamiltonian formsH ~49! of such a complete set differ from each other in the te
v iRi , wherev are vertical vector fields~39!. If follows from the splitting~46a! that this term
vanishes on the Lagrangian constraint space. The corresponding constrained Hamiltonia
HN5 i N* H and the constrained Hamilton equations~26! can be written.

VIII. GEOMETRY OF ANTIGHOSTS

We aim to obtain the Koszul–Tate resolution for the constraints~47!. Since these constraint
are reducible, we need an infinite number of antighost fields in general.11,12 We follow the termi-
nology of Ref. 12. They are graded by the antighost numberr and the Grassmann parityr mod2.
Therefore, the following construction generalizes that of simple graded manifolds17 to commuta-
tive graded algebras generated both by odd and even elements. We use an asterisk~* ! for the
Grassmann parity.

Let E5E0% E1→Z be the Whitney sum of vector bundlesE0→Z and E1→Z over a para-
compact manifoldZ. One can think ofE as being a bundle of vector superspaces with a typ
fiber V5V0% V1 where transition functions ofE0 and E1 are independent. Let us consider th
exterior bundle

∧E* 5 %
k50

`

~`
Z

k

E* !,

which is the tensor bundlê E* modulo elements

e0e082e08e0 , e1e181e18e1 , e0e12e1e0 , e0 ,e08PE0z* , e1 ,e18PE1z* , zPZ.
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One can think of∧E* as being the fiber bundle of commutative superalgebras∧V, which is the
tensor product∨E0* ^ ∧E1* modulo elements

e0e12e1e0 , e0PE0z* , e1PE1z* , zPZ.

Global sections of∧E* constitute a commutative graded algebraA(Z) modeled on the locally
free C`(Z)-moduleE0* (Z) % E1* (Z) of global sections ofE* . This is the product of the commu
tative algebraA0(Z) of global sections of the symmetric bundle∨E0* →Z and the graded algebr
A1(Z) of global sections of the exterior bundle∧E1* →Z.

Remark 7:Let A1 be the sheaf of sections of the exterior bundle∧E1* . The pair (Z,A1) is a
graded manifold.17 By the well-known Batchelor theorem, any graded manifold is isomorphic
sheaf of sections of some exterior bundle∧F, but not in a canonical way. If an exterior bundle∧F
is given, one speaks about a simple graded manifold. Therefore, the construction below
extended to an arbitrary commutative graded algebra modeled on a locally freeC`(Z)-module
A5A0% A1 of finite rank. For the sake of brevity, we agree to call (Z,A) a graded manifold,
though its generating set contains an even subsetA0 . Accordingly, elements ofA(Z) are called
graded functions.

Let us study theA(Z)-module DerA(Z) of graded derivations ofA(Z). Recall that by a
graded derivation of the commutative graded algebraA(Z) is meant an endomorphism ofA(Z)
such that

u~ f f 8!5u~ f ! f 81~21!@u#@ f # f u~ f 8! ~52!

for the homogeneous elementsuPDerA(Z) and f, f 8PA(Z).
Proposition 15:Graded derivations~52! are represented by sections of a vector bundle.
Proof: Let $ca% be the holonomic bases forE* →Z with respect to some bundle atlas (zA,v i)

of E→Z with transition functions$rb
a%, i.e., c8a5rb

a(z)cb. Then graded functions read

f 5 (
k50

1

k!
f a1 ...ak

ca1
¯cak, ~53!

wheref a1¯ak
are local functions onZ, and we omit the symbol of an exterior product of eleme

c. The coordinate transformation law of graded functions~53! is obvious. Due to the canonica
splitting VE5E3E, the vertical tangent bundleVE→E can be provided with the fiber bases$]a%
dual of $ca%. These are fiber bases for pr2VE5E. Then any derivationu of A(U) on a trivial-
ization domainU of E reads

u5uA]A1ua]a , ~54!

whereuA,ua are local graded functions andu acts onf PA(U) by the rule

u~ f a1¯ak
ca1

¯cak!5uA]A~ f a1¯ak
!ca1

¯cak1uaf a1¯ak
]a4~ca1

¯cak!. ~55!

This rule implies the corresponding coordinate transformation law

u8A5uA, u8a5r j
auj1uA]A~r j

a!cj ~56!

of derivations~54!. Let us consider the vector bundleVE→Z which is locally isomorphic to the
vector bundle

VEuU'∧E* ^

Z
~pr2VE%

Z
TZ!uU ,

and has the transition functions
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zi 1¯ i k
8A 5r i 1

21a1
¯r i k

21akza1¯ak

A ,

v j 1¯ j k
8 i 5r j 1

21b1
¯r j k

21bkFr j
i vb1¯bk

j 1
k!

~k21!!
zb1¯bk21

A ]A~rbk

i !G
of the bundle coordinates (za1¯ak

A ,vb1¯bk

i ), k50,... . These transition functions fulfill the cocyc

relations. It is readily observed that, for any trivialization domainU, theA-module DerA(U) with
the transition functions~56! is isomorphic to theA-module of local sections ofVEuU→U. One can
show that, ifU8,U are open sets, there is the restriction morphism DerA(U)→DerA(U8). It
follows that, restricted to an open subsetU, every derivationu of A(Z) coincides with some loca
sectionuU of VEuU→U, whose collection$uU ,U,Z% defines uniquely a global section ofVE

→Z, called a graded vector field onZ. Graded vector fields constitute a Lie superalgebra w
respect to the bracket

@u,u8#5uu81~21!@u#@u8#11u8u.

Corollary 16: The sheaf of sections ofVE→Z is isomorphic to the sheaf of graded derivatio
of the sheafA.

There is the exact sequence overZ of vector bundles

0→`E* ^

Z
pr2VE→VE→`E* ^

Z
TZ→0.

Its splitting

g̃: żA]A° żA~]A1g̃A
a]a! ~57!

transforms every vector fieldt on Z into a graded vector field

t5tA]A°¹t5tA~]A1g̃A
a]a!,

which is the derivation¹t of A(Z) such that

¹t~s f !5~t4ds! f 1s¹t~ f !, f PA~Z!, sPC`~Z!.

Thus, one can think of the splitting~57! as being a graded connection onZ. For instance, every
linear connection

g5dzA
^ ~]A1gA

a
bvb]a!

on the vector bundleE→Z yields the graded connection

gs5dzA
^ ~]A1gA

a
bcb]a!

on Z such that, for any vector fieldt on Z and any graded functionf, the graded derivation¹t( f )
is exactly the covariant derivative off relative to the connectiong.

The ∧E* -dual VE* of VE is a vector bundle overZ which is locally isomorphic to the vecto
bundle

VE* uU'`E* ^

Z
~pr2VE* %

Z
T* Z!uU .

Global sections of this vector bundle constitute theA(Z)-module of exterior graded one-form
f5fAdzA1fadca. Then the morphismf:u→A(Z) can be seen as the interior product
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u4f5uAfA1~21!@fa#uafa . ~58!

Gradedk-forms f can be defined as sections of the graded exterior bundle∧Z
kVE* such that

f∧s5~21! ufuusu1@f#@s#s`f,

whereu* u is the form degree. The interior product~58! is extended to higher graded forms by th
rule

u4~f∧s!5~u4f!∧s1~21! ufu1@f#@u#f∧~u4s!.

The graded exterior differentiald of BRST functions is introduced by the conditionu4d f
5u( f ) for an arbitrary BRST vector fieldu, and is extended uniquely to higher BRST forms
the rules

d~f`s!5~df!`s1~21! ufuf`~ds!, d+d50.

It takes the coordinate form

df5dzA`]A~f!1dca`]a~f!,

where the left derivatives]A ,]a act on the coefficients of graded forms by rule~55!, and they are
graded commutative with the formsdzA,dca. The Lie derivative of a graded formf along a
graded vector fieldu is given by the familiar formula

Luf5u4df1d~u4f!.

IX. THE KOSZUL–TATE RESOLUTION

To construct the vector bundleE of antighosts, let us consider the vertical tangent bun
VQ(V* Q) of V* Q→Q. Let us choose the bundleE as the Whitney sum of the bundlesE0% E1

over V* Q which are the infinite Whitney sum overV* Q of the copies ofVQ(V* Q). We have

E5VQ~V* Q! %

V* Q

VQ~V* Q! %¯ .

This bundle is provided with the holonomic coordinates (t,qi ,pi ,ṗi
(r )), r 50,1,..., where

(t,qi ,pi ,ṗi
(2l )) are coordinates onE0 , while (t,qi ,pi ,ṗi

(2l 11)) are those onE1 . By r is meant the
antighost number. The dual ofE→V* Q is

E* 5VQ* ~V* Q! %

V* Q

VQ* ~V* Q! %¯ .

It is endowed with the associated fiber bases$ci
(r )%, r 51,2,..., such thatci

(r ) have the same linea
coordinate transformation law as the coordinatespi . The corresponding graded vector fields a
graded forms are introduced onV* Q as sections of the vector bundlesVE andVE* , respectively.

The C`(V* Q)-moduleA(V* Q) of graded functions is graded by the antighost number a

A~V* Q!5 %
r 50

`

N t, N 05C`~V* Q!.

Its termsN r constitute a complex

0←C`~V* Q!←N 1←... ~59!

with respect to the Koszul–Tate differential
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d:C`~V* Q!→0,

d~ci
~2l !!5ai j s0

jkck
~2l 21!, l .0,

~60!
d~ci

~2l 11!!5~d i
k2ai j s0

jk!ck
~2l ! , l .0,

d~ci
~1!!5~d i

k2ai j s0
jk!pk .

The nilpotency propertyd+d50 of this differential is the corollary of relations~41! and ~44!.
Proposition 17:The complex~59! with respect to the differential~60! is the Koszul–Tate

resolution, i.e., its homology groups are

Hk.150, H05C`~V* Q!/I NL
5C`~NL!.

Note that, in different particular cases of the degenerate quadratic Lagrangian~35!, the com-
plex ~59! may have a subcomplex, which is also the Koszul–Tate resolution. For instance,
fiber metrica in VQ→Q is diagonal with respect to a holonomic atlas ofVQ, the constraints~47!
are irreducible and the complex~59! contains a subcomplex which consists only of the antigho
ci

(1) .
Now let us construct the BRST chargeQ such that

d~ f !5$Q, f %, f PA~V* Q!,

with respect to some Poisson bracket. The problem is to find the Poisson bracket suc
$ f ,g%50 for all f ,gPC`(V* Q).

To overcome this difficulty, one can consider the vertical extension of Hamiltonian forma
onto the configuration bundleVQ→R.2,18 The corresponding Legendre bundleV* (VQ) is iso-
morphic toV(V* Q), and is provided with the holonomic coordinates (t,qi ,pi ,q̇i ,ṗi) such that
(qi ,ṗi) and (q̇i ,pi) are conjugate pairs of canonical coordinates. The momentum phase
V(V* Q) is endowed with the canonical exterior three-form

VV5]VV5@dṗi`dqi1dpi`dq̇i #`dt, ~61!

where we use the compact notation

]̇ i5
]

]q̇i , ]̇ i5
]

] ṗi
, ]V5q̇i] i1 ṗi]

i .

The corresponding Poisson bracket onV(V* Q) reads

$ f ,g%VV5 ]̇ i f ] ig1] i f ]̇ ig2] ig]̇ i f 2 ]̇ ig] i f .

To extend this bracket to graded functions, let us consider the following graded extens
Hamiltonian formalism.2,19 We will assume thatQ→R is a vector bundle, and will further denot
P5V* Q.

Let us consider the vertical tangent bundleVVP. It admits the canonical decomposition

VVP5VP %

R
VP ——→

pr1

VP. ~62!

Let us choose the bundleE as the Whitney sum of the bundlesE0% E1 over VP which are the
infinite Whitney sum overVP of the copies ofVVP. In view of the decomposition~62!, we have
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E5VP %

R
VP %¯ ——→

pr1

VP.

This bundle is provided with the holonomic coordinates (t,qi ,pi ,q̇(r )
i ,ṗi

(r )), r 50,1,..., where
(t,qi ,pi ,q̇(2l )

i ,ṗi
(2l )) are coordinates onE0 and (t,qi ,pi ,q̇(2l 11)

i ,ṗi
(2l 11)) are those onE1 . The

dual of E→VP is

E* 5VP %

R
VP* %¯ .

It is endowed with the associated fiber bases$c̄(r )
i ,c̄i

(r ) ,c(r )
i ,ci

(r )%, r 51,... . The corresponding
graded vector fields and graded forms are introduced onVP as sections of the vector bundlesVE

andVE* , respectively. Let us complexify these bundles as

C^

R
VVVP , C^

R
VVVP* .

The BRST extension of the form~61! on V* Q is the three-form

VS5VV1 i (
r 51

`

~dc̄i
~r !`dc~r !

i 2dci
~r !`dc̄~r !

i !`dt.

The corresponding bracket of graded functions onV* Q reads

$ f ,g%S5$ f ,g%VV2 i (
r 51

`

~21!r @ f #F ] f

] c̄i
~r !

]g

]c~r !
i 1~21!r

] f

] c̄~r !
i

]g

]ci
~r !2

] f

]ci
~r !

]g

] c̄~r !
i

2~21!r
] f

]c~r !
i

]g

] c̄i
~r !G . ~63!

It satisfies the condition$ f ,g%S52(21)@ f #@g#$g, f %S . Then the desired BRST charge takes t
form

Q5 i F c̄~1!
i ~d i

k2ai j s0
jk!pk1(

l 51

`

~ c̄~2l !
i ai j s0

jkck
~2l 21!1 c̄~2l 11!

i ~d i
k2ai j s0

jk!ck
~2l !!G .

Due to the bracket~63!, one can use this charge in order to obtain the BRST complex
antighostsci

(r ) and ghostsc̄(r )
i such that

c̄~2l 21!
i °ak js0

i j c̄~2l !
k , c̄~2l !

i °2~dk
i 2ak js0

i j !c̄~2l 11!
k , l .0.
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Adjoint symmetries, separability, and volume forms
W. Sarlet
Department of Mathematical Physics and Astronomy, University of Ghent,
Krijgslaan 281, B-9000 Ghent, Belgium

A. Ramos
Departamento de Fı´sica Teo´rica, Universidad de Zaragoza, 50009 Zaragoza, Spain

~Received 8 February 1999; accepted for publication 19 January 2000!

Two results of a preceding paper are generalized. The first is about characterizing
to what extent preservation of the energy function of a Lagrangian of mechanical
type turns dynamical symmetries into Noether symmetries. The generalization here
is twofold: polynomial integrals of arbitrary degree are considered and the kinetic
energy can have an arbitrary metric. The second result~here again for arbitrary
metrics! is about the way separation variables for the Hamilton–Jacobi equation,
when they are ensured to exist by Eisenhart’s theorem, can be computed, in prin-
ciple, from a factorization property of a certain volume form. The main novelty in
the way the generalizations are discussed is that the emphasis is shifted from
symmetries to the dual concept of adjoint symmetries. ©2000 American Institute
of Physics.@S0022-2488~00!01405-5#

I. INTRODUCTION

In a preceding paper,1 two aspects of the practical use of symmetries of Lagrangian sys
were scrutinized; one was about conditions which will force a general dynamical symmetry
into the class of Noether symmetries; the other one was about the way separation variables
Hamilton–Jacobi equation~if they exist! could be obtained from calculations involving the sym
metry generators. Both of these investigations were prompted by certain potentially misle
statements in the work of others. To be more precise, for the first aspect, the idea was to sho
in Refs. 2–4 calculations originating from the determining equations of general symmetrie
thought not to be making use of Noether’s theorem, turned out to give rise to Noether symm
anyway. For the second aspect, there was need for an explanation why certain formal ma
tions on the characteristic equations of the symmetry generators in the work of the same a
can indeed produce separation variables under the right circumstances.

By the nature of the problems posed in Ref. 1, the emphasis was very much on comput
aspects. For a start, therefore, attention was restricted to Lagrangians whose kinetic ener
has the standard Euclidean metric, and the whole analysis was about integrals of the motion
are polynomial functions of the velocities. Let us recall the two main conclusions, formulat
propositions in Ref. 1.

It is well known that Noether symmetries of autonomous Lagrangian systems preser
energy function, so this is a condition which is the most likely candidate for having the effe
forcing symmetry generators towards matching the requirements of Noether symmetries. S
try generators were considered whose leading components are polynomials of odd degree
at most of degree three in the velocities~so that corresponding Noether first integrals, if any,
bound to be even degree polynomials of at most degree four!. Now, conditions for a vector field
Y to be a symmetry of the given second-order system~SODE! G, or to be a Noether symmetr
with respect to the given quadratic LagrangianL, or to leave the energy functionE invariant, all
give rise to different determining equations~pde’s! for the polynomial coefficients of the leadin
componentsj i of Y and from a computational point of view it is by no means obvious how
these equations interrelate. It was shown that whenever the coefficients of thej i are fully sym-
metric and energy preservationY(E)50 is imposed, vanishing of the lowest-order terms in t
28770022-2488/2000/41(5)/2877/12/$17.00 © 2000 American Institute of Physics
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symmetry requirement@Y,G#50 is enough to guarantee that all other terms will vanish as w
and that in fact also all determining equations coming from the Noether requirement w
satisfied.

For the problem of explaining where the separation variables come from in Refs. 2–4, a
for systems with two degrees of freedom and an additional quadratic first integral, Eisen
theorem~see, e.g., Refs. 5–8! was recalled in Ref. 1. Always in the case that the kinetic ene
term is the standard one, it was shown how this theorem implies that the volume form o
configuration manifold gives rise to a determinant, computed out of the symmetry gen
corresponding to the additional integral, which factorizes into the product of linear functions
velocities. These in turn, to within an integrating factor, are bound to be the derivatives o
separation variables. Adding an extra degree of freedom, such a mechanism of course pro
cubic expression which factorizes as the product of three linear functions~giving no support for
the attempts in Ref. 4 to manipulate also quadratic expressions in that case!.

The limitations which were built into the analysis of Ref. 1 gave enough freedom st
answer all the questions of computational nature which were posed. The conjecture was,
over, that looking at more general situations~polynomial first integrals of degree higher than fo
and general metrics in the kinetic energy! would merely be a matter of more labor. In the prese
paper, we shall consider these generalizations anyway, because we feel that something su
can be added to the discussion. Essentially, we shall look at a dual picture for proving
general results. The regular Lagrangian of the given SODE provides us with a symplectic fo
which all statements concerning vector fields~symmetries in particular! can be translated, in
principle, into equivalent statements on 1-forms~‘‘adjoint symmetries’’ in particular!. The point
now is that by looking at this dual world, proving the more general results we have in mind
out to become much more simple. In fact, for the first result, the proof for arbitrary de
polynomial first integrals becomes almost trivial and is carried out in the next section.
respect to the second result, the computation of a volume form with corresponding factori
property becomes more elegant and direct. This is presented in Sec. III. In addition, we will
in Sec. V at a rather surprising new formulation of Eisenhart’s theorem, which may inspire
developments in Hamilton–Jacobi theory in the future. Section IV contains some illustr
examples for the computation of separation variables along the lines of the results of Sec.

II. THE DUAL PICTURE OF ADJOINT SYMMETRIES

Let the second-order vector field

G5 ẋi
]

]xi 1 f i~x,ẋ!
]

] ẋi , ~1!

living on the tangent bundleTM of a manifoldM , be derived from a regular Lagrangian functio
LPC`(TM), i.e., we have

i GduL52dE, ~2!

whereE5D(L)2L is the ‘‘energy function’’ associated withL, anduL5S(dL) is the Poincare´–
Cartan 1-form. These defining relations further refer to two canonically defined objects onTM,
namely the Liouville vector fieldD5 ẋi]/] ẋi and the type~1,1! tensor field

S5
]

] ẋi ^ dxi , ~3!

usually called the vertical endomorphism~cf. Ref. 9!. The 2-formduL is symplectic, so that the
relation

i YduL5b ~4!
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defines an isomorphism between the module of vector fieldsY and the module of 1-formsb
on TM. We will first discuss how a number of features ofY translate into corresponding feature
for b.

As was the case in Ref. 1, vector fieldsY of interest will always be of the form

Y5j i
]

]xi 1G~j i !
]

] ẋi , ~5!

so that they are completely determined by their]/]xi components~referred to before as the
leading componentsj i!. The intrinsic characterization of such vector fields is that they belon
the setXG introduced in Ref. 10, determined by the conditionS(LGY)50. The corresponding
1-form b then will likewise be characterized by the propertyS(LGb)50. The set of such forms
was denoted byMG* in Ref. 11 to distinguish it from the closely related set of 1-formsXG*
considered in Ref. 10, which consists of those 1-formsb which have the propertyLG(S(b))
5b. The relation between these two sets is simply thatMG* 5LGS(XG* ), and this is an isomor-
phism in view of the property (LGS)251. What elements ofMG* andXG* have in common is tha
their dẋi components can be any functions, whereas, similar to the situation in~5!, the dxi

components then are completely fixed. Elements ofXG* , for example, are of the form

b5bidẋi1G~bi !dxi . ~6!

The relationship between the setsXG ~andMG5LGS(XG)! of vector fields on the one hand, an
the setsMG* andXG* of 1-forms on the other hand, which are of course well defined for any SO
G ~not necessarily coming from a Lagrangian!, was also described by Morando and Pasquero12

We are, in particular, interested in those elements ofXG which are symmetries ofG, i.e.,
vector fieldsY for which @Y,G#50. In view of the propertyLGduL50, this is equivalent to saying
that the correspondingb is invariant,LGb50. Originally13 ~and in Ref. 14 for time-dependen
systems! the related 1-forma5LGS(b)PXG* was called anadjoint symmetry. To avoid too much
terminology, however, we will also use the term adjoint symmetry for an invariant 1-formb. In
fact, there is a deeper reason for that. Having recognized that for second-order systemsG, objects
of interest onTM are very frequently fully determined by only part of their components, Martı´nez
et al.15,16 developed a suitable calculus in which only this ‘‘leading part’’ occurs, namely
calculus of derivations of forms along the projectiont:TM→M . In that approach, the adjoin
symmetry would simply be the semi-basic 1-formS(a)5S(b)5bidxi , regarded as 1-form along
t ~and satisfying of course a suitable condition16!, and it becomes then a matter of taste
preference to choose whether one wants to think of this object as being associated toaPXG* or to
bPMG* . We come back to this calculus alongt later. For the moment, and for the sake
generalizing the first result of Ref. 1, we stick to the more familiar calculus on the full spaceTM.

Let now L more specifically be a Lagrangian of the form

L5 1
2 gi j ~x!ẋi ẋ j2V~x!, ~7!

with gi j (x) symmetric and nonsingular. The functionsf i in the expression forG thus are of the
form

f i52G jk
i ẋ j ẋk2gil

]V

]xl , ~8!

where theG jk
i are the Christoffel symbols coming from the kinetic energy metricg. Since thef i

contain terms of even degree in the velocities only, whenever a polynomial functionF is a first
integral ofG, its odd and even parts will be first integrals by themselves and we can discuss
two cases separately. Thinking of the even case first, letF be a polynomial~always to be under-
stood as referring to the velocity variables! of degree 2r . Then the condition thatF be a first
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integral,G(F)50, requires a polynomial of degree 2r 11 to vanish identically. IfF were a first
integral indeed, its corresponding Noether symmetry would be a vector fieldY of the form ~5!,
whose leading componentsj i would be given by

j i52gi j
]F

] ẋ j , ~9!

and would accordingly be polynomials of degree 2r 21, containing odd degree terms only. Su
pose, on the other hand, that the construction of polynomial type symmetries ofG would be our
first move~and that we would worry later about identifying which of these are of Noether ty!.
Then, we would again be looking for vector fields of the form~5!, with j i purely odd polynomials
of degree 2r 21 say, satisfying the requirements~coming from@Y,G#50!:

G2~j i !5Y~ f i !, i 51,...,n5dim M . ~10!

Also this requires polynomials of degree 2r 11 to vanish. Finally, the independent requireme
that a vector field of type~5!, with odd j i of degree 2r 21 preserves the energy functionE5T
1V, i.e., satisfiesY(E)50, again gives rise to a polynomial condition of degree 2r 11. In all
three cases, moreover, the polynomials in question will contain terms of odd degree only, b
three conditions of course are drastically different in general, if only because in the secon
there aren requirements, as opposed to only one in the first and third case. The result we w
generalize from Ref. 1, wheregi j was d i j and r was either 1 or 2, is the following: if the
coefficients of the different powers ofẋ in the j i are symmetric in all their indices andY(E)
50, then vanishing of the lowest order term in the polynomial expressions~10! is enough to
ensure thatY is a Noether symmetry with respect toL. The first of these conditions is equivale
to saying that thej i are of the form]F/] ẋi for some functionF. Obviously, it will have to be
replaced here by a symmetry requirement with respect to the metricgi j , which is the same as
saying that thej i are of the form~9! for someF ~the sign is irrelevant for that matter!. So we now
state and prove the following result.

Proposition 1: Consider the SODEG coming from a Lagrangian of type (7). Let Y be a vec
field in XG , whose leading componentsj i are polynomial functions of the velocities of degr
2r 21 (and contain odd degree terms only). Then, if
~1! the j i are of the form (9) for some function F,
~2! Y(E)50, where E5D(L)2L,
~3! the lowest order terms in the expressions (10) cancel out,
Y is a Noether symmetry and there exists a function fPC`(M ), such that F1 f is the corre-
sponding first integral.

Proof: Consider the 1-formb associated withY via the relation~4!. To say thatY belongs to
XG and satisfies the first condition, is exactly equivalent to saying thatb is of the form

b5dF2S~dG~F !! ~11!

for some functionFPC`(TM). Indeed,duL contains the termgi j dẋj`dxi ~and no other terms in
dẋj !, so that the termdF in b will make sure that thej i are of the form~9!. The extra semibasic
part in b simply makes sure thatb belongs toMG* , as can be easily verified, remembering th
when acting on 1-forms, we have the propertyS+LGS5S. Observe that there is a certain ‘‘gaug
freedom’’ in selecting functionsF to construct ab of the form ~11!. Indeed, if f is any function
on the base manifoldM , putting F̃5F1 f , we will havedF̃2S(dG(F̃))5dF2S(dG(F)).

The second condition onY, namely,Y(E)50, in view of ~2! and~4! translates equivalently to
the conditioni Gb50. But with ab of the form ~11! and remembering thatS(G)5D, we have
i Gb5G(F)2D(G(F)), so that the second condition immediately implies thatG(F) is homoge-
neous of degree 1 and~being a polynomial! therefore linear in the velocities. It further follows tha
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i Gdb52 i Gd~S~dG~F !!!

52LG~S~dG~F !!!1diDdG~F !

52LG~S~dG~F !!!1dG~F !.

Turning now to the third condition, remember that the full symmetry requirements~10! translate
to LGb50, which in view ofi Gb50 reduces toi Gdb50. This in turn, from the computation jus
done, reduces to

GS ]G~F !

] ẋi D2
]G~F !

]xi 50, ~12!

with G(F) of the formai(x) ẋi say. Hence, in this dual picture it is immediately clear that all ter
but the lowest-order ones of the symmetry requirement, have already cancelled out, so t
third condition is going to make sure thatY is a symmetry. To see that it is actually going to
a Noether symmetry, it suffices to note that~12! expresses thatG(F) is the total time derivative of
a function onM . In other words, there exists a functionf PC`(M ) such that, withF̃5F1 f , we
will have G(F̃)50 andb5dF̃. h

Remark:For the case of polynomial functionsF of even degree, it is clear that in defining th
j i via ~9!, information about the zeroth-order term inF is lost. Therefore, we know from the outs
thatY(E)50 cannot be enough, in general, to guarantee thatY will become a Noether symmetry
The lowest order terms of the symmetry conditions~10!, which will be second-order pde’s for th
potentialV, then precisely provide the integrability conditions for existence of a functionf (x)
which will complete the construction of a first integral.

The situation of course is different ifF contains only terms of odd degree and is of degr
say, 2r 21. Then, all conditions such asG(F)50, Y(E)50 or @Y,G#50 give rise to polynomials
of degree 2r with even degree terms only. The coordinate free computations in the above
remain perfectly valid, however, and still lead to the conclusion~from ^G,b&50! that G(F) is
linear in the velocities. This can now only be ‘‘true,’’ however, ifG(F)50. Hence, we reach the
following conclusion:

Proposition 2: Consider the SODEG coming from a Lagrangian of type (7). Let Y be a vec
field in XG , whose leading componentsj i are polynomial functions of the velocities of degr
2r 22 (and contain even degree terms only). Then, if
~1! the j i are of the form (9) for some function F,
~2! Y(E)50, where E5D(L)2L,
F is a first integral and Y is the corresponding Noether symmetry. h

III. ADJOINT SYMMETRIES AND SEPARABILITY

Assume now, still for Lagrangians of type~7! with a general metric, that we are in th
situation of Eisenhart’s theorem, which gives necessary and sufficient conditions for the exi
of a point transformation which will transform the kinetic energy part into Sta¨ckel form. As
before,1 for the sake of discussing the identification of separation variables, we can actually
the potential energy term without loss of generality. So assume then that the SODE is a spr
that we know, apart from the energy functionE, n21 further ~homogeneous! quadratic first
integrals

Fg5 1
2 ag i j ẋ

i ẋ j , g51,...,n21. ~13!

These are assumed to be linearly independent and all symmetric matrices involved are s
neously diagonalizable in coordinates. More explicitly, the further assumptions in the contr
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ant version of Eisenhart’s theorem~which is mentioned, e.g., in Refs. 8, 7! are that the roots of the
n21 eigenvalue problems det(ag

ij2lg gij)50 are simple and that there existn common orthogonal
closed eigenformsa (k),

~ag
i j 2lg

~k!gi j !a j
~k!50, da (k)50. ~14!

Separation variablesyk then follow from the local exactness of these eigenforms,a (k)5dyk. We
can rewrite these conditions equivalently with type~1,1! tensor fields while keeping the sam
1-forms a (k). That is to say, multiplying the above relations withgmi , we obtainn equivalent
conditions for eachg51,...,n21 and eachk51,...,n; but since all functions involved are basi
multiplying further byẋm, thesen conditions are still equivalent to the single condition, linear
the velocities,

ẋmagmlg
l j a j

~k!5lg
~k!ẋmam

~k! . ~15!

As in Ref. 1 we recognize the symmetry generator in this expression. To be precise, in vi
the symmetry of the matricesag and g the left-hand side, up to a sign, contains the lead
componentsj j of the Noether symmetryY corresponding toFg ~cf. Eq. ~9!!. So we introduce~for
eachg!

Xg52jg
j ]

]xj , ~16!

and recall that this is a well defined object, namely, a vector field along the projectiont:TM
→M , and that there are intrinsic operations by which the symmetry generatorYPX(TM) can be
constructed from thisXPX(t). We further recall that there is a canonical element inX(t),
namely,

T5 ẋi
]

]xi . ~17!

The 1-formsa (k), being basic forms, can also be regarded as elements of`1(t), i.e., as 1-forms
alongt, and thus can be paired with elements ofX(t). This way, the relations~15! acquire the
simple form,

^Xg ,a (k)&5lg
~k!^T,a (k)&, k51,...,n, g51,...,n21. ~18!

It follows that

~a (1)`¯`a (n)!~T,X1 ,...,Xn21!5r^T,a (1)&¯^T,a (n)&, ~19!

wherer is the determinant with 1’s in the first row and the eigenvalueslg
(k) in the rows 2 ton, and

is nonzero in view of the linear independence of the integralsE,Fg . We thus obtain, always as
corollary of Eisenhart’s theorem, the following generalization~to arbitrary degrees of freedomn
and arbitrary metricsg! of a procedure discussed in Ref. 1 by which, in principle, the separa
variablesyk could be obtained from a computation on the symmetry generators; the left-han
of ~19! is a polynomial of degreen in the velocities, which is, up to a factor, the volume for
dx1`¯`dxn acting on (T,X1 ,...,Xn21), and the right-hand side of~19! says that this polyno-
mial can be factorized into the product of linear functions in the velocities which are total
derivatives of the separation variables.

What we wish to do now is to pass also for these considerations to the dual picture of a
symmetries and to show that one can express the result this way in an even more dire
transparant form.

In agreement with the discussion at the beginning of the previous section, the leading p
an adjoint symmetryb of a SODEG ~whether regarded as element ofMG* or as the correspond
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ing a in XG* ! is the partbidẋi . A way of singling out this part of a 1-formb on TM is in fact to
act on it with the tensor fieldS, thus producing the semibasic form~or 1-form alongt! bidxi . It
is in this more economical representation that adjoint symmetries can be discussed also wit
calculus alongt.16 If we are talking about an adjoint symmetry coming from a first integralF,
then thebi are of the formbi5]F/] ẋi . The corresponding element of̀1(t) then is

a5dVF5
]F

] ẋi dxi . ~20!

We have hereby identified the canonically defined vertical exterior derivativedV on `(t), at least
for its action on functions onTM ~its definition is completed by adding thatdV is a derivation of
degree 1 and thatdVdxi50!. For the time being, however, there is even no need to use
notation, asdVF is also the Poincare´–Cartan 1-form associated withF and hence we can writeuF

instead. But we will continue to regard it now as a 1-form alongt and in that sense, it is an adjoin
symmetry ofG as soon asF is a first integral.

Consider now again property~18!, and transfer in the left-hand side agl j -factor from one side
of the pairing to the other, thereby defining the vector fieldsa (k)]PX(t) with components,
a (k)] l

5gl j a j
(k) . Then we have

^Xg ,a (k)&5^a (k)],uFg
&, ~21!

and likewise~we write uE instead ofuL although of courseE andL are the same here!

^T,a (k)&5^a (k)],uE&. ~22!

As a result, the left-hand side of~19! can be rewritten as

~uE`uF1
`¯`uFn21

!~a (1)],...,a (n)]!.

All the velocity dependence this way is shifted to the volume form itself, so that it is the fun
appearing there which will have the factorization property.

Proposition 3: Consider a system with Lagrangian (7) and assume that n21 additional
quadratic integrals have been found. Then, if we are in a situation where orthogonal sepa
variables exist, they can be found by taking only the homogeneous quadratic parts E,F1 ,...,Fn21

of all integrals and factorizing the single component of the volume formuE`uF1
`¯`uFn21

into

n factors which are linear in the velocities and integrable. h

Remark:The single component of the volume form in question is of course the determina
the matrix]Fg /] ẋi , with g50,...,n21 andF05E.

IV. ILLUSTRATIVE EXAMPLES

We content ourselves in this section to giving a number of simple illustrations of the fa
ization ensured by Proposition 3. We leave the selection of suitable potentials for separabil
of the discussion. For better legibility, we shall label coordinates here with lower indices.

Consider first a Lagrangian with the following kinetic energy term,

L5E5 1
2 ~ ẋ1

21x1
2ẋ2

2!.

A second quadratic integral is given by

F15x1
2~x1ẋ2

2 cosx21 ẋ1ẋ2 sinx2!.

We have
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uE`uF1
5x1

2~2x1ẋ1ẋ2 cosx21~ ẋ1
22x1

2ẋ2
2!sinx2!dx1`dx2 .

It is easy to see that, up to a factor, the component of this volume form is the product of the
expressions

~12cosx2!ẋ11x1ẋ2 sinx2 and ~11cosx2!ẋ12x1ẋ2 sinx2 ,

which are total time derivatives and thus provide the separation variables

y15x1~12cosx2!, y25x1~11cosx2!.

Another quadratic integral for the same metric Lagrangian could be taken to be

F25x1
2~x1ẋ2

2 sinx22 ẋ1ẋ2 cosx2!.

It would lead by the same procedure to the separation variables

y15x1~12sinx2!, y25x1~11sinx2!.

These are of course well-known results: the Lagrangian we took can be thought of as the
energy part of the Kepler problem in polar coordinates, and the two integralsF1 andF2 then are
the quadratic parts of the Runge–Lenz vector.

As a second illustration, takeL to have a constant~but non-Euclidian! metric,

L5 1
2 ~ ẋ1

22 ẋ2
2!,

and consider the additional quadratic integral

F5x2ẋ1ẋ22x1ẋ2
2 .

We find

uE`uF5~x2~ ẋ1
21 ẋ2

2!22x1ẋ1ẋ2!dx1`dx2 .

In domains wherex1
22x2

2.0, puttingr 5Ax1
22x2

2, a factorization is given by

~~r 1x1!ẋ12x2ẋ2!~x2ẋ21~r 2x1!ẋ1!,

and suitable integrating factors can be found which lead to the following separation variab

y15Ax11r , y25Ax12r .

Next, consider the Lagrangian

L5 1
2 ~ ẋ1

21sin2 x1ẋ2
2!,

for which one can verify that the following functions are first integrals:

F15sin3 x1 cosx1 cosx2ẋ2
21sin2 x1 sinx2ẋ1ẋ2 ,

F25sin3 x1 cosx1 sinx2ẋ2
22sin2 x1 cosx2ẋ1ẋ2 .

For F1 as additional integral, our volume form becomes

uE`uF1
5sin2 x1~sinx2ẋ1

21cosx2 sin 2x1ẋ1ẋ22sin2 x1 sinx2ẋ2
2!dx1`dx2 .
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Its component can be seen to factorize as the product of the linear functions,

~A12cos2 x2 sin2 x11cosx1 cosx2!ẋ12sinx1 sinx2ẋ2 ,

~A12cos2 x2 sin2 x12cosx1 cosx2!ẋ11sinx1 sinx2ẋ2 .

Both of these functions become total time derivatives if one divides by the square root
contain. One thus identifies the separation variables by the transformation formulas~in domains
where they apply!,

y15x11arcsin~sinx1 cosx2!,

y25x12arcsin~sinx1 cosx2!.

For the case ofF2 as second integral, the calculations are completely similar.
Let us finally put the theory to a test on an example withn degrees of freedom for which w

know what should come out from the start. Consider a so-called system of Liouville-typ
described for example in Ref. 17. We have~the summation convention cannot be used here!,

L5E5
1

2
c(

j 51

n ẋj
2

aj~xj !
, c~x!5(

j 51

n

cj~xj !,

where the functionsaj andcj depend onxj only. Quadratic first integrals are

F j5
1

2

c2ẋ j
2

aj
2cjE, j 51,...,n.

We have( jF j50 but, for example,E and F2 ,...,Fn can be chosen as linearly independe
integrals. WritingF j5Gj2cjE, for shorthand, we haveuF j

5uGj
2cjuE , so that the volume form

reduces to

uE`uG2
`¯`uGn

5uE`S c2ẋ2

a2
Ddx2`¯`S c2ẋn

an
Ddxn .

It is obvious then that only the term indx1 in uE survives, so that the result is

c2n21

) j 51
n aj

ẋ1¯ ẋndx1`¯`dxn .

This simple factorization of course does not come as a surprise: it tells us that thexi are already
separation variables, as expected. A completely similar result would be obtained if we
somewhat more generally, Sta¨ckel systems as the starting point~see, e.g., Ref. 17!.

V. OUTLOOK FOR FURTHER STUDY

Vector fields and 1-forms alongt have popped up in our analysis in a natural way, but
have avoided so far to refer too much to the related calculus developed by Martı´nezet al.15,16We
shall now embark into this area a bit more deeply. To some extent, showing how the same
could have been obtained by using that calculus at this stage, merely means rewriting th
formulas in another way. But it seems to us that the alternative formulation of Eisenhart’s the
we will arrive at, may open up an interesting avenue for future study.

The fundamental property following from Eisenhart’s theorem, which leads to the facto
tion of a volume form, is~18! and was rewritten in the dual form using~21! and~22!. Let us write
Xk for the vector fielda (k)] alongt ~which for the time being can be seen as just a simplificat
of notations!, and now use the notationdVF for uF . Then this dual form of~18! reads
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dVFg~Xk!5lg
~k!dVE~Xk!, k51,...,n, g51,...,n21

or

DXk

V Fg5lg
(k)DXk

V E. ~23!

Here, DX
V is a degree zero derivation, thevertical covariant derivativewith respect toX

5Xi]/]xi , whose action on functionsF is simply given by

DX
VF5Xi

]F

] ẋi . ~24!

The volume form becomes

dVE`dVF1`¯`dVFn215dV~EdVF1`¯`dVFn21!. ~25!

One can easily show that for anyXiPX(t) ~not necessarily basic vector fields!,

~dVE`dVF1`¯`dVFn21!~X1 ,...,Xn!5U DX1

V E ¯ DXn

V E

A A

DX1

V Fn21 ¯ DXn

V Fn21

U . ~26!

If then theXi are vector fields for which the relations~23! hold, we immediately find the factor
ization property again

~dVE`dVF1`¯`dVFn21!~X1 ,...,Xn!5rDX1

V E¯DXn

V E, ~27!

wherer is the same determinant as in~19!.
Now, remember that relations like~23! contain a large part of the information in Eisenhar

theorem and note in fact that by dualizing the formulation~18! we used first via~21!–~22!, we
have returned from the contravariant tensors in~14! to covariant tensors. To be specific, th
coordinate expressions for~23!, with the Fg given by ~13! and writing the components of th
vectorXk asXk

j , read

ẋiag i j Xk
j 5lg

~k!ẋigi j Xk
j . ~28!

Identifying the coefficients of eachẋi , they just say that theXk are common eigenvectors of a
matricesag . A somewhat tricky remark is in order here. The~covariant! version of Eisenhart’s
theorem which can be found in Ref. 6 states that there exist such common eigenvectors wh
in fact the coordinate vector fields]/]yk in the separation variables. We used the other vers
~14! first because we needed the closed 1-formsa (k) in our arguments, and the point now is th
theXk we thus obtained asa (k)] then cannot be the coordinate vector fields, in general. This is
a contradiction because the theorem actually ensures that the system will have the Sta¨ckel form in
the new variables, with diagonal (gi j ). As a result, one can verify that the eigenvectorsa (k)] will
just be multiples of the coordinate eigenvectorsXk . This being said, it is obvious that in th
present formulation~23! or ~28!, we rather work withXk which will turn out to be coordinate
vector fields in the good variables, because this can simply be expressed by requiring th
commute. We finally observe that the other assumptions of Eisenhart’s theorem can also, ju
the case with~23!, be written as conditions on theFg . Indeed, we want theFg to be homogeneous

quadratic in the velocities, which by Euler’s theorem can be expressed as DT
VFg52Fg , and they

have to be first integrals, meaning thatG(F)[¹(F)50. ~The degree zero derivation¹ is the
dynamical covariant derivativeof the calculus alongt, but coincides with the vector fieldG for its
action on functions.!
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We thus come to the conclusion that Eisenhart’s theorem, as copied in Ref. 1 from Ref.
be rewritten in the following form:

Proposition 4 (Eisenhart’s theorem): The necessary and sufficient conditions that a geo
Lagrangian L5 1

2gi j ẋ
i ẋ j5E can be given the Sta¨ckel form is that there exists n21 functions Fg

such that

~1! ¹Fg50,
~2! DT

VFg52Fg ,
~3! there exists n commuting basic vector fields Xk , such that for some functionslg

(k) which are
all different for each fixedg, we haveDXk

V Fg5lg
(k)DXk

V E,

~4! U DX1

V E ••• DXn

V E

A A

DX1

V Fn21 ••• DXn

V Fn21

UÞ0.

Proof: That the first three conditions are just transcripts of conditions in Ref. 6 was expla
above. The last one, knowing already that theFg are quadratic, is just a way of saying that a
quadratic integrals involved are linearly independent. h

Needless to say, we have made a point in this formulation of Eisenhart’s theorem of ex
ing all conditions as differential conditions on the first integrals. The motivation for doing so i
following. Much of the old work on separability of the Hamilton–Jacobi equation is about
ditions for checking whether a system is separable in the given coordinates. Examples
respect are the Levi Civita conditions and Sta¨ckel’s theorem. Eisenhart’s theorem was perhaps
first result which gives a sort of test for checking whether separation variables exist, althoug
to a large extent an existence theorem, i.e., the test is not of the kind that could be applied d
on the given data. Important generalizations were obtained by Woodhouse8 and, specifically for
nonorthogonal separability by Benenti~see Ref. 18 and references therein!. What these have in
common is that a transition to separation variables, if they exist, will always be a point tran
mation. A couple of examples are known~see, e.g., Refs. 19 and 20! of Hamiltonian systems with
additional integrals of degree higher than 2, for which a nonpoint canonical transformation
such that the Hamilton–Jacobi equation of the transformed Hamiltonian is separable. To th
of our knowledge, no intrinsic characterization exists, for example of the kind of Eisenh
theorem, of existence of such nonpoint transformations to separation variables. The idea is t
above reformulation of Eisenhart’s theorem might lead to generalizations when not all add
integrals are quadratic~a generalization of condition 2!. One might hope that an appropria
generalization of condition 3 could be found, which then presumably would involve vector fi
XkPX(t) which are not basic~and also nonbasic functionslg

(k)!. ~Note that we have mentioned a
least one result in what precedes, which is valid for more than just basic vector fields.! The overall
idea of the new approach would be to base the analysis on a study of the integrability con
for formal integrability of the pde’s on theFg . Admittedly, these ideas are rather speculative. B
it seems to us that it would already be worthwhile to try to arrive at a new, independent pro
Eisenhart’s theorem along such lines. An integrability analysis of the conditions in Proposi
might well lead to much more practical criteria for testing the existence of separation vari
i.e., conditions expressed directly in terms of the given data. The calculus for doing su
analysis is available and starts from commutator properties of the derivations involved. We
refer in this respect to a somewhat similar study on complete decoupling of systems of se
order equations,21 which did indeed give rise to fairly practical test criteria. Also, although t
refers to an entirely different subject, an integrability study of equations expressed wit
geometric derivations of the calculus alongt has successfully been carried out in the context of
inverse problem of the calculus of variations.22,23
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11J. F. Cariñena and E. Martı´nez, ‘‘A new geometric setting for Lax equations,’’ Int. J. Mod. Phys. A9, 4973–4986

~1994!.
12P. Morando and S. Pasquero, ‘‘The symmetry in the structure of dynamical and adjoint symmetries of secon

differential equations,’’ J. Phys. A28, 1943–1955~1995!.
13W. Sarlet, F. Cantrijn, and M. Crampin, ‘‘Pseudo-symmetries, Noether’s theorem and the adjoint equation,’’ J. P

20, 1365–1376~1987!.
14W. Sarlet, G.E. Prince, and M. Crampin, ‘‘Adjoint symmetries for time-dependent second-order equations,’’ J. P

23, 1335–1347~1990!.
15E. Martı́nez, J.F. Carin˜ena, and W. Sarlet, ‘‘Derivations of differential forms along the tangent bundle projection,’’ D

Geometry Applications2, 17–43~1992!.
16E. Martı́nez, J.F. Carin˜ena, and W. Sarlet, ‘‘Derivations of differential forms along the tangent bundle projection

Diff. Geometry Applications3, 1–29~1993!.
17A.M. Perelomov,Integrable Systems of Classical Mechanics and Lie Algebras~Birkhäuser Verlag, Basel, 1990!, Vol. I.
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An inverse scattering scheme for the regularized
long-wave equation
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The regularized long-wave~RLW! equation was proposed as an alternative model
to the Korteweg–de Vries~KdV! equation to describe small-amplitude long waves
in shallow water. However, unlike the KdV equation—which is exactly solvable by
the inverse scattering method—the RLW equation is deemednot to be completely
integrable. In this paper, an inverse scattering scheme is described for solving the
RLW equation which is based on the ‘‘dressing method’’ of Zakharov and Shabat.
Significantly, the compatibility of the ‘‘dressed’’ operators leads totwo governing
equations which, taken together, reduce to the RLW equation. One of these equa-
tions links the RLW equation to the~completely integrable! shallow water wave
~ASWW! equation due to Ablowitzet al.; the second is alinear wave constraint
that signals the nonintegrability of the RLW equation and prohibits the existence of
multisoliton solutions. Contrary to results already reported in the literature, the
proposed scheme associates the RLW equation with athird-order scattering prob-
lem. Moreover, as a special case of the RLW scheme, we obtain an inverse scat-
tering procedure for the integrable ASWW equation; its formulation via the dress-
ing method would appear to be given here for the first time. Explicit solutions are
constructed for both equations using the respective inverse scattering schemes.
© 2000 American Institute of Physics.@S0022-2488~00!00905-1#

I. INTRODUCTION

In the 100 or more years since D. J. Korteweg and G. de Vries first obtained their cele
equation—the eponymous Korteweg–de Vries~KdV! equation1—many other nonlinear partia
differential equations~PDEs! have been derived which model wave propagation in diverse n
linear systems. To be sure, much of this activity is quite recent, having been motivated b
pioneering work of Gardner, Greene, Kruskal, and Miura2,3 who discovered a remarkable analyt
technique for solving the KdV equation—the so-called inverse scattering transform~IST! method.
More often than not, the model wave equations are obtained by approximating the full gove
equations in some well-defined asymptotic sense. For example, the KdV equation

ut1uux1uxxx50 ~1!

was originally derived in Ref. 1 to describe propagation of weakly nonlinear dispersive wav
the limits of long waves and small amplitudes. For water waves, the underlying assumption
lead to the KdV equation~1! equally well justify the regularized long-wave~RLW! equation4

ut1uux2uxxt50. ~2!

Equation~2! was proposed by Benjaminet al.5 as a valid and, in some respects, superior alter
tive to the KdV Eq.~1!. Indeed, Bonaet al.6 have established that, in the regime of small amp
tudes and long waves at least, either equation can be used with comparable accuracy.

a!Corresponding author; electronic mail: allen.parker@newcastle.ac.uk
28890022-2488/2000/41(5)/2889/16/$17.00 © 2000 American Institute of Physics
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The KdV ~1! admits the solitary-wave solution

u~x,t !5A sech2AA

12S x2
A

3
t1x0D , ~3!

whereas the solitary wave of the RLW Eq.~2! has the analytic form

u~x,t !5A sech2
1

2 S x2
A

3
t1x0D . ~4!

In each case, the parameterA.0 specifies both the amplitude and speed of the wave. Sig
cantly, however, these solutions do not exhibit precisely the same wave dynamics; the width
KdV solitary wave~3! depends on the amplitude, whereas the RLW solitary wave~4! does not.
Naturally, we are free to study Eqs.~1! and ~2! in their own right, quite independently of th
physical context in which they purport to model small-amplitude waves. But then the so
waves~3! and ~4! need not be considered merely small-amplitude phenomena, and the qu
arises as to whether other large-amplitude solutions of Eqs.~1! and ~2! will also resemble one
another. Unfortunately, the theorem of Bonaet al.6 provides no information about these solution

In spite of their close resemblance, Eqs.~1! and ~2! have quite different mathematical prop
erties. The KdV equation iscompletely integrableand has all the remarkable properties th
normally characterize these equations; solvability by IST, multisoliton solutions, a Lax pai
Painlevéproperty and more.7–9 On the other hand, there is ample evidence to suggest tha
RLW equation isnot completely integrable; Eq.~2! has only three independent conserv
densities10 and does not possess the Painleve´ property.11 Of course, the hallmark of any integrab
equation is that it admits a sequence of soliton solutions that describe the ‘‘elastic’’ collisio
multiple solitary waves.7 However, in the absence of an inverse scattering procedure with w
to study analytic solutions of the RLW equation, information about its solitary-wave interac
could only be obtained by numerical computation. The consensus of the numerical studies
the collisions are inelastic.12–16 On the basis of these and other theoretical results,17,18 it is now
widely believed that the RLW equation does not possess multisoliton solutions and so, b
same token, has no Lax pair representation.

There are two further integrable equations that can be used to model shallow water wav
are relevant to this study. One is the shallow water wave equation due to Ablowitzet al.,19

ut2uxxt14uut22uxE
x

`

ut dx81ux50, ~5!

which, for the purpose of this study, we dub the ASWW equation. Equation~5! reduces to the
KdV equation in the long-wave, small-amplitude limit, and yet has the desirable properties
RLW equation.19 The second model equation of interest is the Hirota–Satsuma shallow w
wave ~HSWW! equation,20

ut2uxxt13uut23uxE
x

`

ut dx81ux50. ~6!

Despite their similarity, the two equations are fundamentally different; there is no scale tra
mation which reduces Eq.~5! to Eq. ~6!. Curiously, these equations were not originally deriv
from shallow water theoryper se, and it is only recently that an attempt has been made to p
both equations on a firm hydrodynamical foundation.21

It is generally accepted that if a nonlinear PDE is to have any chance of being integrable
it should be possible to recast the equation in bilinear form using Hirota’s formalism.22 However,
this is not in itself a guarantee of integrability; there are many evolution equations which h
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bilinear form, but are, nonetheless, not completely integrable.22 The RLW Eq.~2! is a case in
point; its bilinear form has been found by one of us,23 yet the equation is almost certainl
nonintegrable. Thus, under the transformation

u~x,t !5g14b
] 2

]x2
ln f ~x,t !, ~7!

Eq. ~2! has the coupled bilinear form23

~DxDt2Dx
3Dt1gDx

2! f • f 50, ~8!

~3DxDt1bDx
2! f • f 50, ~9!

whereb andg are arbitrary parameters~and suitable ‘‘soliton’’ boundary conditions have bee
imposed!. The singular nature of this bilinear form is immediately apparent; it comprisestwo
equations for the single field variablef ! But Eq. ~8! is just the bilinear form of the HSWW Eq.~6!
~modulo the parameterg), while Eq. ~9! represents alinear wave constraint~on u) which pro-
hibits the existence of multisoliton solutions. Thus, taken together with Eq.~8!, Eq. ~9! destroys
the integrability of the HSWW equation and reduces it to the RLW equation, thereby signalli
nonintegrability. In hindsight, it is surprising that this connection between the RLW and HS
equations was not alluded to in Ref. 23 and seems to have gone unnoticed in the literatu
now. Yet, interestingly, we shall find that precisely this same scenario recurs in the in
scattering scheme reported here, except that now it links the RLW and ASWW equations in

We now turn to the main purpose of this paper—the formulation of an inverse scatt
scheme for solving the RLW Eq.~2!. In view of what we have said above, this endeavor wo
appear, at first sight, to be self-contradictory. All the available evidence points to the nonin
bility of Eq. ~2!, and yet solvability by IST wouldde factoimply that it is completely integrable
We can attempt to resolve this impasse by reminding ourselves that Gardneret al.3 originally
developed their IST technique as a means of obtaining analytic solutions of the KdV equatio
notion of acompletely integrableequation was to follow only later when it became clear that
IST method was not simply a ‘‘one off,’’ but could be applied to a whole raft of physic
important nonlinear evolution equations~NEEs!.19,24 Seen in this light, it is legitimate to inquire
whether an equation can be solved by inverse scattering, not with the primary intention of
lishing its integrability or otherwise, but rather for the purpose of extracting exact solutions
no other analytic technique presents itself. This is precisely the situation that obtains for the
Eq. ~2!. What we are proposing, then, is the possibility of extending the notion of an inv
scattering scheme to accommodate nonlinear PDEs that are eithernot integrable in the commonly
accepted sense, or whose integrability is uncertain. This would not only provide us wi
analytical tool for studying the solutions of these equations, but signal their nonintegrable
where doubt persists. As a first step, and to develop these ideas, we shall consider the RLW~2!
which may be considered a prototypenonintegrableequation.

Some recent work by Yan25 suggests that this undertaking is not entirely without purpose
this study, the author was able to construct an inverse scattering scheme for the RLW Eq.~2! by
modifying the classical IST method3 for the KdV Eq. ~1!. However, we believe that the IST a
formulated in Ref. 25 has certain disadvantages which the present work seeks to address.
order to mimic precisely the classical IST procedure for the KdV equation, Yan had to intro
a lengthy and complicated condition~on the wave functions of the spectral problem! which cannot
be easily verified~Yan appears to do so for the asymptotic states atx→6` only!. As it stands,
this condition has no obvious intuitive interpretation; nor is it clear what restriction it places o
solutions of the RLW equation itself. Yet, we strongly suspect that it is equivalent to the l
wave constraint that is implicit in the bilinear form of the RLW equation@cf. Eq. ~9!#, and which
is duplicated in our own IST scheme. A second point concerns the underlying scattering pro
by adapting the KdV scheme, one is forced to adopt the Schro¨dinger scattering operator. But ther
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is no reason—other than perhaps the duality between the KdV and RLW Eqs.~1! and ~2!—to
believe that the associated spectral problem should be ofsecondorder. In fact, the alternative IST
procedure that is presented here requires athird-order scattering problem@see Eq.~62!#. More
significantly, however, there would appear to be little scope for applying the IST, as envisag
Ref. 25, to other nonintegrable equations. Because of the computational difficulties one enco
with all but the simplest of inverse spectral problems, few NEEs have actually been solved
the classical theory; this means that only a few IST schemes are available to serve as temp
other nonintegrable PDEs in the manner proposed by Yan.25

Fortunately, a very general formulation of the inverse scattering method was develop
Zakharov and Shabat24 which bypasses the spectral problem entirely. This scheme—usually c
thedressing method—generalizes Lax’s method26 and is expressed entirely in terms of operato
It enjoys several advantages over alternative approaches to IST. Apart from sidesteppi
inverse spectral problem, one has no need to stipulate the scattering operator at the outset~since it
follows in a systematic way once suitable ‘‘undressed’’ operators have been identified!. It is this
aspect of the dressing method that offers the prospect of applying inverse scattering theory t
nonintegrable equations; for example, it should be possible to accommodate the RLW–Bous
equation27 simply by adjusting the undressed operators. Furthermore, the dressing meth
arguably the most general formulation of the inverse scattering technique in as much as it
one, in principle, to handle a wider class of boundary-initial-value problems.28–30

We arrange the remainder of the paper as follows. In the next section we develop an i
scattering scheme for the RLW equation using the dressing method. Significantly, the comp
ity of the resulting ‘‘Lax pair’’ of dressed operators yieldstwo governing equations which, take
together, reduce to the RLW equation. One of them is the ASWW Eq.~5!, while the other is a
linear wave constraint that rules out multisoliton solutions and flags up the nonintegrability o
RLW equation. Further, as a special case of our RLW scheme, we obtain an IST procedure
integrable ASWW equation; its formulation via the dressing method is, as far as we know,
here for the first time. In Sec. III, we solve the Gel’fand–Levitan–Marchenko integral equa
and use the solution to construct the solitary wave of the RLW equation. In a similar way
derive the solitary-wave solution of the ASWW equation and indicate the generalization t
necessary to construct its multisolitons, as well as other explicit solutions. An appendix lists
formulas and identities that facilitate our analysis.

II. AN INVERSE SCATTERING SCHEME FOR THE RLW EQUATION

In employing the dressing method to set up an inverse scattering procedure for the
equation, we have chosen to adopt the notation in the excellent monograph by Draz
Johnson.7 ~Their presentation follows closely the original work of Zakharov and Shabat.24! As we
have already noted, a significant advantage of the method over classical IST is the co
absence of the scattering problem. This is achieved by formulating the problem in term
operators which, for our purpose, are of scalar form.

Now, it is customary in water wave theory to impose ambient conditionsaheadof the wave
~i.e., atx→1`). In view of this, and keeping in mind the transformation~7!, we make a change
of variableu→g22bu so that the RLW Eq.~2! becomes

ut2uxxt22buux1gux50, ~10!

whereb andg are arbitrary~real! parameters. In effect, this permits us to set the ambient leve
the waveform to zero by choosingg appropriately; from now on, we shall consider the RL
equation in the more expedient form~10!. @Incidentally, it is worth pausing a moment to compa
the RLW Eq.~10! with the shallow water wave equations~5! and ~6!.#
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A. The integral operators

We begin by defining a linear integral operatorJF by

JF~c!5E
2`

`

F~x,z! c~z! dz, ~11!

whereF(x,z;t) and the~arbitrary! functionc(x;t) depend parametrically ont. @For convenience,
and clarity of presentation, we shall henceforth suppress thet dependence—as we have done
Eq. ~11!—unless emphasis demands otherwise.# Similarly, we introduce upper and lower Volterr
operators, respectively,

J1~c!5E
x

`

K1~x,z! c~z! dz, ~12!

J2~c!5E
2`

x

K2~x,z!c~z! dz, ~13!

whereK1(x,z;t)50 for z,x, andK2(x,z;t)50 for z.x. The kernelsK6 are chosen so thatJF

can be ‘‘factorized’’ in terms ofJ6 as

I 1JF5~ I 1J1!21~ I 1J2!, ~14!

whereI 1J1 is assumed to be invertible~and I denotes the identity operator!.
Now, pre-multiplying Eq.~14! by I 1J1 , and using the above definitions, one easily sho

that K1 satisfies7

K1~x,z!1F~x,z!1E
x

`

K1~x,s!F~s,z! ds50, z.x, ~15!

which is the familiar Gel’fand–Levitan–Marchenko~GLM! integral equation of classical invers
scattering theory.3,19 Similarly, in z,x, we obtain

K2~x,z!5F~x,z!1E
x

`

K1~x,s!F~s,z! ds, ~16!

which definesK2 in terms ofK1 andF. Now, in principle, the GLM Eq.~15! can be solved for
K1(x,z) once we have specified the kernelF(x,z). However, before we proceed to do this, it w
pay us to simplify our notation further. Evidently, asK2 depends onK1 @through Eq.~16!#, it
suffices to work withK1 ; in what follows, therefore, we will omit the subscript ‘‘1’’ and write
K(x,z) in place ofK1(x,z).

B. The undressed operators

The next step is to identify suitable ‘‘undressed’’ or ‘‘bare’’ operators for the RLW Eq.~10!
which are then used to determine the PDEs that describeF. To see how we might choose thes
differential operators, let us first recall the Lax representation of the ASWW Eq.~5!:20

P5
] 2

]x2
2u, ~17!

Q5
]

]t
24

] 3

]x2]t
1

]

]x
14u

]

]t
22E

x

`

ut dx8
]

]x
13ut . ~18!
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Then, the compatibility condition@P, Q#50 leads to Eq.~5!, while Pc5lc constitutes the
Schrödinger scattering problem of classical IST. Now, we observed that the RLW equati
linked to both the ASWW and HSWW equations; this suggests that we take as our und
operators:

D0
(1)5

]

]t
24

] 3

]x2]t
1g

]

]x
, ~19!

D0
(2)54b

] 3

]x3
1m

] 2

]x2
1s

]

]x
, ~20!

whereb andg are the parameters in Eq.~10! andm ands are arbitrary constants at this stage. W
note thatD0

(1) also mirrors the linear part of Eq.~10! so as to give the correct dispersion relatio
whereasD0

(2) bears comparison with the third-order spectral operator for the HSWW equation
is given in Ref. 31.@We emphasize that, in the usual scenario,D0

(2) need only comprise of odd
derivatives;7 i.e., nothing would be lost were we to setm50 at the outset. However, by includin
the second-order derivative in Eq.~20!, we are able to subsume the ASWW equation as a spe
case of our IST scheme—this will serve as a check on our results.# Of course, the ensuing result
are contingent on our choice of the undressed operators~19! and~20!; but we would contend that
for the reasons stated, they constitute the natural choice in the absence of a suitable alter

Since the differential operatorsD0
(1) andD0

(2) have constant coefficients, they obviously satis
the commutator relation

@D0
(1) , D0

(2)#50. ~21!

We further insist that they commute with the integral operatorJF , i.e.,

@D0
(1) ,JF#50 ~22a!

and

@D0
(2) ,JF#50. ~22b!

Using the definitions~11! and~19!, and operating on the state functionc(x;t), Eq. ~22a! becomes

S ]

]t
24

] 3

]x2]t
1g

]

]xD E2`

`

F~x,z;t !c~z;t ! dz2E
2`

`

F~x,z;t !~c t24czzt1gcz! dz50,

which, after integration by parts, simplifies to

E
2`

`

@Ft24Fxxt1g~Fx1Fz!#c dz24E
2`

`

~Fxx2Fzz!c t dz50 ~23!

for arbitraryc ~such thatc,c t ,cxt→0 asuxu→`). It follows immediately that

Ft24Fxxt1g~Fx1Fz!50, ~24!

Fxx2Fzz50. ~25!

Similarly, using the commutator identity Eq.~22b!, we obtain

E
2`

`

@4b~Fxxx1Fzzz!1m~Fxx2Fzz!1s~Fx1Fz!#c dz50,
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which, together with Eq.~25!, yields

4b~Fxxx1Fzzz!1s~Fx1Fz!50. ~26!

Equations~24!–~26! are the simultaneous linear PDEs which determine the kernelF of the GLM
Eq. ~15!, and merit some comment. We observe that they are independent ofm, which concurs
with our earlier caveat in respect to this parameter. More pertinently, as the equations comp
only restriction onF, this admits the possibility of obtaining a broad class of solutions of the G
equation~and hence of the associated evolution equation!.

C. The dressed operators

With each bare operatorD0
( i ) ( i 51,2), we associate the corresponding~linear! differential

operatorD ( i ) ( i 51,2) defined by

D ( i )5~ I 1J1! D0
( i ) ~ I 1J1!21, i 51,2. ~27!

These ‘‘dressed’’ operators are used to generate the PDEs that describeK ~formerly K1), which,
in turn, is related to the solution of the evolution equation that we wish to solve@in this instance
the RLW Eq. ~10!#. The dressing operations~27! play a central role in the Zakharov–Shab
scheme24 and warrant some further consideration. Because they are performed using the V
operatorJ1 , Eq. ~12!, the computations are more exacting than the comparable task forF @in Sec.
II B #. To aid us, we shall make use of the formulas listed in the Appendix, Part I. Howeve
additional complication is the mixed derivative that appears inD0

(1) , Eq. ~19!; the Zakharov–
Shabat scheme, as originally proposed, caters for higher-order derivatives in the spatial vax
only.7,24 To get around this difficulty, we shall have recourse to an identity that is given in
Appendix, Part II.~As far as we can tell, the dressing technique has not previously been fo
lated with a mixed derivative.! Finally, we should add that the dressing operations~27! could
equally well be carried out usingJ2 ~but recall our earlier comments regardingK2 ).

We facilitate the dressing procedure by recasting Eq.~27! as

D ( i )~ I 1J1!5~ I 1J1! D0
( i ) , i 51,2, ~28!

and introducing auxiliary differential operatorsM1 andL1 such that

D (1)5D0
(1)1M1 ~29a!

and

D (2)5D0
(2)1L1 . ~29b!

Substituting Eqs.~29a! and ~29b!, respectively, into Eq.~28!, we obtain the dressing operato
identities,

M1~ I 1J1!1@D0
(1) , J1#5 0, ~30!

L1~ I 1J1!1@D0
(2) , J1#5 0. ~31!

We must now make a suitable choice forM1 andL1; but, following the usual convention,7 both
these~linear! operators are necessarily offirst order ~sinceD0

(1) , D0
(2) are third order!. So, we let

M15a~x,t !
]

]t
1b~x,t !

]

]x
1c~x,t ! ~32!

and
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L15A~x,t !
]

]x
1B~x,t !, ~33!

wherea, b, c, A, andB are unknown functions.
Writing out the dressing operation~30! using Eqs.~12!, ~19!, and~32!, we get

S a
]

]t
1b

]

]x
1cD H c~x;t !1E

x

`

K~x,z;t !c~z;t ! dzJ 1S ]

]t
24

] 3

]x2]t
1g

]

]xD
3E

x

`

K~x,z;t !c~z;t ! dz2E
x

`

K~x,z;t !~c t24czzt1gcz! dz50.

After making appropriate use of the formulas~A1!–~A3!, this last equation simplifies to

E
x

`

@Kt24Kxxt1g~Kx1Kz!1aKt1bKx1cK#c dz1E
x

`

@aK24~Kxx2Kzz!#c t dz

1F4S dK̂ t

dx
1K̂xtD 2bK̂1cGc1~b14K̂ t!cx1S a18

dK̂

dx
Dc t50,

where we have definedK̂(x;t)5K(x,x;t) ~and assumed thatK,Kz→0 asz→1`). Since this is
an identity for all~continuous and differentiable! c, it follows that

a18
dK̂

dx
50; ~34!

b14K̂ t50; ~35!

c2bK̂14S dK̂ t

dx
1K̂xtD 50; ~36!

aK24~Kxx2Kzz!50; ~37!

Kt24Kxxt1g~Kx1Kz!1aKt1bKx1cK50. ~38!

The first three equations are used to fix the functionsa, b, andc ~in terms ofK̂), while Eqs.~37!
and~38! are PDEs that describe the spatial variation and temporal development ofK, respectively.
The next step is to relateK̂ to the solutionu of the RLW Eq.~10!; in view of Eq.~7!, we make the
identification

u~x,t !522
d

dx
K̂~x;t !. ~39!

Then Eq.~34! givesa54u, and from Eq.~37! we have

Kxx2Kzz2uK50. ~40!

Substituting Eq.~39! into Eq. ~35!, and integrating, we further deduce

b522E
x

`

ut dx8, ~41!
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where we have set the ambient level ahead of the wave to zero~cf. our introductory remarks to this
effect!.

Before we can proceed further, we must deal with the termK̂xt in Eq. ~36! that derives from
the mixed derivative in the undressed operatorD0

(1) . This necessitates the use of a novel ident
~A5!, and would seem to mark a subtle departure from the dressing technique as it has pre
been applied.7,24,29,32@We confine the derivation of this result to the Appendix, Part II so as no
impede the main argument.# Thus, combining the identity~A5! with Eqs.~35!, ~36!, and~39!, we
find that

c526
dK̂ t

dx
53ut . ~42!

Note that we have been able to set the arbitrary function of integration in~A5! to zero, without
loss of generality, because of the gauge invariance of the Lax equation, Eq.~54!.

Repeating the procedure for the dressing operation~31! ~the detailed, but routine, calculation
are omitted here! yields

A212b
dK̂

dx
50, ~43!

B2AK̂212b
dK̂x

dx
22m

dK̂

dx
50, ~44!

and

4b~Kxxx1Kzzz!1m~Kxx2Kzz!1s~Kx1Kz!1AKx1BK50. ~45!

With the aid of Eq.~39!, Eq. ~43! givesA526bu. In order to recast Eq.~44! in terms ofu, we
need the further identity~A6!: it then follows that

B523bux2mu. ~46!

Putting these results together with Eqs.~29!, ~32!, and~33!, we finally obtain the dressed operato

D (1)5
]

]t
24

] 3

]x2]t
1g

]

]x
14u

]

]t
22E

x

`

ut dx8
]

]x
13ut , ~47!

D (2)54b
] 3

]x3
1m

] 2

]x2
1s

]

]x
26bu

]

]x
2~3bux1mu!. ~48!

These operators should be compared with the Lax representation of the ASWW Eq.~5!; indeed, if
we setb5s50 ~andg5m51) in Eqs.~47! and~48!, we recover the Lax pair~17! and~18!! This
should not surprise us; we have simply confirmed the complete integrability of Eq.~5! that was
previously known from the inverse scattering theory of Ablowitzet al.19 However, we believe tha
the formulation via the dressing method is given here for the first time.

As yet, we have said little or nothing about the PDEs, Eqs.~38!, ~40!, and~45!, that describe
K; these equations deserve closer scrutiny. Of course, as a means of findingK they are quite
useless~since they involve the unknown solutionu); rather, this objective is accomplished b
solving the linear GLM Eq.~15!. Nevertheless, we are bound to ensure their consistency; u
tunately, this is not self-evident here because there aretwo equations, Eqs.~40! and ~45!, that
describe the spatial variation ofK(x,z). It is also well to note that, in the case of the ASWW E
~5!, these equations coincide and so the question of their consistency does not arise. Except
special integrable case, however, Eq.~45! imposes an extra constraint onK @and, hence, onu
                                                                                                                



n

e
ve still

erse

2898 J. Math. Phys., Vol. 41, No. 5, May 2000 J. M. Dye and A. Parker

                    
through Eq.~39!#, and is the first intimation that Eqs.~47! and~48! do not, in general, describe a
integrable system. In anticipation of what is to follow, it is worth examining Eqs.~40! and ~45!
more carefully. In fact, a little straightforward manipulation reduces Eqs.~40! and ~45! to

b
d3K̂

dx3
23bu

dK̂

dx
1s

dK̂

dx
50,

which, with the help of Eq.~39!, may be written in terms ofu as

su23bu21buxx50. ~49!

This ‘‘spatial KdV’’ equation is an additional constraint onu which, as we shall see, restricts th
solution space of the RLW equation and betrays its nonintegrable status. Of course, we ha
to find the evolution equation that is associated with the pair of dressed operators~47! and ~48!
and this we do next.

D. The ‘‘Lax’’ representation of the RLW equation

By construction, the dressed operatorsD (1) andD (2) satisfy the identity7

@D (1), D (2)#50; ~50!

i.e., they are commuting operators like their undressed counterparts@cf. Eq. ~21!#. This is the
decisive relation that yields the evolution equation which, in principle, is solvable by our inv
scattering scheme. Before we proceed, we first write the dressed operators~47! and ~48! in the
more expedient form

D (1)5
]

]t
2M , D (2)5L, ~51!

with

M54
] 3

]x2]t
2g

]

]x
24u

]

]t
12E

x

`

ut dx8
]

]x
23ut , ~52!

L54b
] 3

]x3
1m

] 2

]x2
1s

]

]x
26bu

]

]x
2~3bux1mu!. ~53!

Substituting forD ( i ) from Eq. ~51! into Eq. ~50!, we obtain the familiar Lax equation26 for the
operatorsL andM:

Lt1@L, M #50. ~54!

Now, substituting forL andM in Eq. ~54!, and operating onc(x;t), we readily deduce the
following compatibility equations foru:

sux26buux1bu3x50; ~55!

~s13b!ut2bS 2uxxt26uut16uxE
x

`

ut dx823guxD 50; ~56!

3F ~s1b!uxt22buuxt22buxxE
x

`

ut dx81gbuxxG1mS ut2uxxt14uut22uxE
x

`

ut dx81guxD
50. ~57!
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Equation~55! is automatically satisfied because of Eq.~49!. Moreover, using Eq.~49! to eliminate
the termsut in Eq. ~56!, we get

ut2uxxt14uut22uxE
x

`

ut dx81gux50. ~58!

With the help of Eqs.~49! and~58!, it is now straightforward to show that Eq.~57! is identically
true. Thus, the compatibility of the dressed operators has generatedtwo governing equations foru,
Eqs.~49! and~58!. Note that for the special caseb5s50, the spatial constraint Eq.~49! is absent
and we are left with only the completely integrable ASWW Eq.~58!, as we earlier anticipated.

It is not yet clear that this pair of equations can represent the RLW equation whenb ands are
not both zero, but we still have to prescribe the relationship between the parametersb, g, ands.
In this case, straightforward manipulation of Eqs.~49! and ~58! reveals thatu must satisfy the
linear wave equation

ut1dux50, ~59!

whered(t) is an arbitrary~possibly constant! function of integration. If we now substitute Eq.~59!
back into Eq.~56!, and compare the result with Eq.~49!, we deduce the relationbg5d(s1b).
Moreover, Eq.~59! reduces the ASWW Eq.~58! to

ut2uxxt26duux1gux50.

But this is just the RLW Eq.~10! provided that we setd5b/3, in which cases53g2b and Eq.
~59! becomes

ut1
b

3
ux50. ~60!

This last equation is exactly thelinear wave constraint that was found in Ref. 23~using Hirota’s
method!, only now it is coupled with the ASWW Eq.~58! instead of the HSWW equation! A
before, Eq.~60! prohibits the existence of multisoliton solutions and reduces the integr
ASWW Eq. ~58! to the nonintegrable RLW Eq.~10!.

The operators~52! and ~53! may now be written

M54
] 3

]x2]t
2g

]

]x
24u

]

]t
12E

x

`

ut dx8
]

]x
23ut , ~61!

L54b
] 3

]x3
1~3g2b!

]

]x
26bu

]

]x
23bux , ~62!

where we have setm50, without loss of generality@see Sec. II B#. They may be interpreted as a
ersatz ‘‘Lax pair’’ for the nonintegrableRLW Eq. ~10!; Lc5lc would then constitute the
associatedthird-order scattering problem of classical IST theory. We stress that it is quite dis
from the second-order spectral operator that was employed by Yan,25 although, interestingly, it
bears comparison with the third-order scattering operator of the related HSWW equation.31 Now
that we have set up our inverse scattering scheme for the RLW equation, we can use it to lo
analytic solutions.
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III. EXPLICIT SOLUTIONS

The usual procedure for constructing explicit solutions via the dressing method7,24 is to first
solve the linear PDEs that describe the kernelF, Eqs.~24!–~26!. Moreover, an effective way to
obtain an analytic solution of the GLM integral equation, Eq.~15!, is by takingF(x,z) to be
separable. For example, a simple choice would be the exponential form

F~x,z;t !5ekx1mz1vt1h, ~63!

wherek,m,v, andh are constants~possibly complex!. Indeed, an ansatz of the type~63! is often
used when seeking soliton solutions of integrable equations24 ~see below!. However, in this in-
stance, the solution space of the RLW Eq.~10! is restricted by the linear wave constraint~60! to
traveling waves; accordingly, we prefer to solve Eqs.~24!–~26! as generally as possible.

We start with Eq.~25! which has the general solutionF5F(x1z)1C(x2z), whereF(j)
andC(n) are arbitrary functions. However, if we are to obtain a bounded solutionK(x,z) ~for-
merly K1) of the GLM equation~15!, thenC[0 and so

F5F~j;t !, j5x1z.

SubstitutingF into Eq. ~26!, and integrating, we obtain

4bFjj1s F50, ~64!

where the arbitrary function of integration must be set to zero~to giveK finite!. Similarly, Eq.~24!
transforms to

F t1
2b

3
Fj50, ~65!

where we have made use of Eq.~64! and the relations1b53g. Now, Eq.~64! has the genera
solution

F~j;t !5R~ t !e2~1/2! pj1S~ t !e~1/2! pj, p5S b23g

b D 1/2

,

whereR(t) andS(t) are arbitrary functions. However, using Eq.~65!, we finally deduce

F~x,z;t !5Ce2~1/2! p(x1z22ct)1De~1/2! p(x1z22ct), ~66!

whereC andD are arbitrary constants and we have setc5b/3 @cf. Eq. ~60!#,

g5c~12p2!. ~67!

We next solve the GLM Eq.~15! for K(x,z;t); but, since the kernelF5F(x,z) is separable,
the solution procedure is routine7 and yields

K~x,z;t !52
p e2p[ ~1/2!(x1z)2ct1x0]

p1e2p(x2ct1x0)
, p.0,

where we have writtenC5e2px0 ~andD50 for convergence!. It follows immediately that

K̂~x;t !5K~x,x;t !52
p e2p(x2ct1x0)

p1e2p(x2ct1x0)
. ~68!

The solitary wave solution of the modified RLW Eq.~10! is now obtained from Eqs.~39! and~68!
as
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u~x,t !522
d

dx
K̂~x;t !52

1

2
p2 sech2

1

2
p~x2ct1x0!, ~69!

where we have redefined the arbitrary phase shiftx0 appropriately. We note thatu satisfies the
linear wave constraint~60!, as required.

Using Eq.~69! and the transformationu→g22bu ~see Sec. II!, we finally obtain the solitary
wave solution of the RLW equation~2!,

u~x,t !5g13cp2 sech2 1
2 p~x2ct1x0!, p.0. ~70!

Modulo the constant phase shiftx0, we may interpret Eq.~70! as a family of solitary waves in
which c and p are free parameters. However, we note that, once the wave numberp and wave
speedc have been prescribed, the ambient levelg of the solitary wave is completely determine
by the relation~67!. In this scenario, the resonant casep51 gives g50 and then Eq.~70!
becomes

u~x,t !53c sech2 1
2 ~x2ct1x0!,

which recovers the solitary wave~4! ~with amplitudeA53c). With hindsight, it is evident that we
could equally well have taken the ansatz~63! as our starting point@cf. Eq. ~66! with D50].
However, the preceding analysis confirms that the solitary wave~70! is the only analytic solution
which is derivable from our RLW scheme and is consistent with the linear wave constraint~60!.

Now, in the integrable caseb5s50 ~and mÞ0), the third governing equation forF, Eq.
~26!, is absent, and the exponential form~63! leads directly to Eqs.~67! and ~69! which recover
the well-known sech2 solitary wave of the ASWW Eq.~58!. Moreover, as Eqs.~24! and~25! are
linear, we may replaceF by a superposition of exponentials of the type given in Eq.~63!,

F5 (
n51

N

exp~knx1mnz1vnt1hn!;

this generalization leads to the multisoliton solution of the ASWW Eq.~58! that describes the
elastic interaction ofN solitary waves. The calculations are quite routine~see, e.g., Ref. 24! and
we omit them here; nevertheless, as far as we know, these soliton solutions have not been
by the dressing method before now~having been obtained in Refs. 19 and 20 by other mea!.
Indeed, our IST scheme opens the way for us to obtain more general explicit solutions
ASWW Eq. ~58! along the lines proposed in Refs. 24 and 28–30, though we will not pursue
further in the present work. Of course, these avenues are not available for the RLW eq
owing to the linear constraint~60! or, to what is equivalent, the presence of the third govern
equation~26!.

IV. SUMMARY AND DISCUSSION

The inverse scattering method, in its various guises, has proved to be a remarkably suc
analytical technique for solving a broad class of physically important nonlinear PDEs~see, e.g.,
Refs. 7 and 9!. The fact of their being exactly solvable by the IST method endows these
pletely integrable equations with a plenitude of distinctive mathematical properties. Most no
perhaps, they admit a sequence of soliton solutions that describe the ‘‘elastic’’ interacti
multiple solitary waves.7,8 In a recent paper, Yan25 showed that it might be possible to extend t
inverse scattering methodology to accommodate those nonlinear equations which are deem
nonintegrable~or ‘‘partially’’ integrable22!. Specifically, he was able to integrate the RLW equ
tion by mimicking the classical IST procedure for the KdV equation;2,3 however, this approach
suffers certain drawbacks which the present study has sought to address. Our own results
that we may extend the reach of inverse scattering theory to equations that arenot integrable—or
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whose integrable status is uncertain—where it is primarily intended as an analytic tool for fi
explicit solutions, rather than as a means to establish complete integrability.

Using the more general framework of the Zakharov–Shabat ‘‘dressing method,’’24 we were
able to construct an alternative inverse scattering scheme for the RLW equation. This ap
enjoys several advantages over the IST procedure reported by Yan.25 For example, the compli-
cated and uninformative conditional equation that must be imposed in Ref. 25, is replaced h
a simple linear wave constraint, Eq.~60!. This latter condition—which, it should be emphasize
arises quite naturally within our scheme—prohibits multisoliton solutions and so herald
nonintegrability of the RLW equation. Further, by interpreting the dressed operators~61! and~62!
as an ersatz ‘‘Lax pair,’’ our IST associates the RLW Eq.~10!, in a canonical way, with a
third-order scattering problem. This is in marked contrast to Yan’s scheme where one is req
at the outset, to adopt thesecond-order Schro¨dinger spectral operator so as to mimic precis
classical IST for the KdV equation.

Of course, a major advantage of the dressing method over classical inverse scattering
is that, being couched entirely in terms of operators, one is able to sidestep the scattering p
Certainly, the computational difficulties that one encounters in classical IST will severely lim
scope for applying inverse scattering to other nonintegrable equations in the manner envis
Ref. 25. For example, it is not clear how one would proceed for the RLW–Boussinesq equa27

even though the IST procedure for the classical Boussinesq equation has been studied in33

and is available as a template. On the other hand, the approach that we have taken for th
equation holds out the prospect of extending the inverse scattering method to a wider c
nonintegrable equations. In particular, we can accommodate the RLW–Boussinesq equatio
ply by adjusting the undressed operators; the results will be the subject of a separate stud

Contrary to the usual scenario, the Lax equation of our IST scheme@Eq. ~54!# yields two
governing equations, Eqs.~58! and~60!, which, taken together, give the RLW equation. The fi
of these links the RLW equation with the completely integrable ASWW equation, in exactl
same way that the bilinear form~8! and ~9! relates the RLW and HSWW equations.23 The
introduction of the extra parameterm into the bare operator~20! meant that we were able t
deduce an inverse scattering procedure for the ASWW equation as a special case of ou
scheme; to our knowledge, the multisoliton solutions of the ASWW equation have not previ
been derived by means of the dressing method. However, as a consequence of the linea
constraint~60!, it has only been possible to obtain the solitary wave for the RLW equa
Nevertheless, it is open to us to relax the natural~‘‘soliton’’ ! boundary condition—which we
imposed ahead of the wave in constructing our IST scheme—with a view to obtaining fu
explicit solutions; this avenue is currently being explored, particularly in regard to the per
problem. Finally, we would submit that the results of this study add to the growing bod
evidence—both analytic and numerical~cf. the references herein!—that attests, overwhelmingly
to the nonintegrable status of the regularized long-wave equation.
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APPENDIX: FORMULAS AND IDENTITIES FOR K „x ,z; t …

Throughout this appendix we letK̂(x;t)5K(x,z;t)uz5x.
„I … If cnx5] nc/]xn, andK,Kz , . . . ,K (n21)z→0 asz→1`, then integration by parts give
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E
x

`

K~x,z!cnz~z! dz5~21!nE
x

`

Knz c dz1~21!nK̂ (n21)z c1~21!n21K̂ (n22)z cx1•••

1K̂z c (n22)x2K̂ c (n21)x , ~A1!

and

]

]x E
x

`

K~x,z!c~z! dz5E
x

`

Kxc dz2K̂c, ~A2!

] 2

]x2 Ex

`

K~x,z!c~z! dz5E
x

`

Kxxc dz2S dK̂

dx
1K̂xDc2K̂ cx , ~A3!

] 3

]x3 Ex

`

K~x,z!c~z! dz5E
x

`

K3xc dz2S d2K̂

dx2
1

dK̂x

dx
1K̂xxD c2S 2

dK̂

dx
1K̂xDcx2K̂cxx .

~A4!

„II … If K(x,z;t) satisfiesKxx2Kzz2uK50 with u522dK̂/dx, then

4~K̂xt1K̂K̂ t!52ut1h~ t !, h~ t !arbitrary, ~A5!

and

4
dK̂x

dx
52uK̂2ux . ~A6!

Proof: Settingz5x we deduce that

K̂xx2K̂zz2uK̂5K̂xx2K̂zz12K̂
dK̂

dx
50.

But

d

dx
~K̂x2K̂z!5~K̂xx1K̂zx!2~K̂xz1K̂zz!5K̂xx2K̂zz,

and so

d

dx
~K̂x2K̂z1K̂2!50.

Integrating, we obtain the identity

K̂x2K̂z1K̂25g~ t !,

whereg(t) is an arbitrary function of integration. Now, noting that dK̂/dx5K̂x1K̂z , this last
result may be recast as

2K̂x1K̂25
dK̂

dx
1g~ t !52

1

2
u1g~ t !.

The identities~A5! and~A6! follow directly by differentiating with respect tot andx, respectively.
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Elementary Toda orbits and integrable lattices
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We show that key features of several important integrable lattices appear naturally
in a framework of the full Toda flows. Using special symplectic leaves for these
flows, we construct a family of bi-Hamiltonian integrable lattices that interpolates
between the nonrelativistic and relativistic Toda lattices. ©2000 American Insti-
tute of Physics.@S0022-2488~00!04905-7#

I. INTRODUCTION

In the study of soliton lattice equations there are two clearly distinguishable trends. On th
hand, there is a tremendous amount of papers devoted to individual integrable lattices or
generally, hierarchies of differential-difference equations, such as the Toda lattice, the Vo
lattice, Ablowitz–Ladik hierarchy, etc. More recently, an equal amount of attention has
attracted by the relativistic Toda lattice, introduced in Ref. 1. For a comprehensive account
latter system we refer the reader to Ref. 2. In this context, it is important to investigate rela
between different hierarchies, e.g., Ba¨cklund transformations of one system into another. E
amples of such studies can be found in Refs. 3–5.

On the other hand, an integrable lattice can often be viewed as a restriction of a more g
Hamiltonian system defined on a Poisson manifold, which leads to natural problems of desc
symplectic leaves and constructing Darboux coordinates and establishing Liouville comple
tegrability on each symplectic leaf. A representative example of such situation is the study
full Toda flows. In this case, the Poisson manifold is the dual of the Borel subalgebra o
semisimple Lie algebra, symplectic leaves are orbits of the coadjoint action of the Borel sub
the Toda lattice, and its Lie algebraic analogs correspond to the minimal~‘‘tridiagonal’’ ! sym-
plectic leaves, where complete integrability is provided by restrictions of the Chevalley inva
of the algebra. In this case, a solution of the equations of motion can be obtained by means
factorization method6,7 that works for all symplectic leaves. A general, though not always eas
implement, construction of Darboux coordinates was proposed in Ref. 8. As for complete
grability, two kinds of results are available. The first approach, that was initiated in Ref. 9
later developed in Refs. 10–12 deals with the construction of a maximal family of integra
involution for generic symplectic leaves. The other approach that can be found in Refs. 8 a
is to describe all symplectic leaves, on which complete integrability is guaranteed by the C
ley invariants.

In this paper we investigate an interplay between two classes of problems mentioned
Namely, we show that the theory of the full Toda flows insl(n) provides a natural framework in
which one can study a bi-Hamiltonian structure and Ba¨cklund transformations for some integrab
hierarchies, including relativistic Toda lattice, Ablowitz–Ladik hierarchy and Schur~or dmKdV!
flows. All these hierarchies are associated with a one-parameter family of orbits of the
studied in Refs. 8 and 13. This family, which includes the orbit via the maximal root vecto
parametrized by the standard Darboux coordinates on an open set inR2n. Furthermore, we gen

a!Electronic mail: Leonid.Faybusovich.1@nd.edu
b!Electronic mail: Michael.Gekhtman.1@nd.edu
29050022-2488/2000/41(5)/2905/17/$17.00 © 2000 American Institute of Physics
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eralize our construction to a family of integrable lattices parameterized by increasing sequen
integers from$1,...,n% that, in a sense, interpolates between the usual and relativistic Toda la
A bi-Hamiltonian structure for each of these lattices descends from the bi-Hamiltonian stru
for the full Toda flows. Note that the fact that tridiagonal and relativistic Toda lattices ca
realized as restrictions of the same Hamiltonian system to different symplectic leaves wa
observed in Ref. 14

It should be mentioned that lattices considered in this paper are closely related tothe Coxeter–
Toda latticesrecently introduced in Ref. 15. The latter are discrete integrable lattices in the s
Lie group parametrized by Coxeter elements in the corresponding Weyl group. Note, how
that all Coxeter–Toda lattices retract to the usual Toda lattice in the neighborhood of the id
element of the group, while systems considered here ‘‘live’’ on distinct orbits in the Lie alge

The paper is organized as follows. In Sec. II, we review the Hamiltonian structure fo
Kostant–Toda flows on the setH of upper Hessenberg matrices. We also propose a simple w
derive from the brackets introduced in Ref. 16 an explicit expression for the quadratic Po
bracket for the Kostant–Toda flows, compatible with the standard linear one. Our approac
is alternative to the one in Ref. 17.

In Sec. III, the parametrization by Darboux coordinates is considered for a one-para
family of symplectic leaves for the Kostant–Toda system. This family is shown to be natu
associated both with the relativistic Toda and Ablowitz–Ladik hierarchies, as well as with e
tions Schur~or dmKdV! flows and peakons lattice. As a byproduct we also obtain Darb
coordinates on the set of generic upper Hessenberg matrices.

In Sec. IV, we embed both usual and relativistic Toda lattices into a large family of c
pletely integrable systems. More precisely, for each set of indicesI 5$1, i 1,¯, i k5n% we
produce a completely integrable system onR2n and a Poisson map fromR2n into a one-paramete
family MI of 2(n21)-dimensional symplectic leaves of the Kirillov–Kostant Poisson bracke
H, which maps this system into the equation of the Toda flow. We show that the quadratic P
structure onH can be restricted toMI and discuss different parametrizations ofMI suitable for
dealing with linear and quadratic structures. These parametrizations lead to different presen
of the Toda flows onMI , in particular, we obtain a family of integrable bi-Hamiltonian lattic
that generalize both Volterra and relativistic Toda lattices. Finally, we construct a birat
transformation of each of these lattices to the Toda lattice, that preserves a bi-Hamiltonian
ture.

The second author would like to thank N. Reshetikhin for stimulating discussions an
bringing the paper15 to his attention. We would also like to thank the referee for helpful sugg
tions.

II. POISSON STRUCTURES

Let us recall the Hamilton formalism for the Kostant–Toda flows. Denote byJ ann3n matrix
with 1s on the first subdiagonal and 0s everywhere else. Letb1 ,n1 ,b2 ,n2 be, resp., algebras o
upper triangular, strictly upper triangular, lower triangular, and strictly lower triangular matr
Denote byH the setJ1b1 of upper Hessenberg matrices.

For any matrixA we write its decomposition into a sum of lower triangular and strictly up
triangular matrices as

A5A21A01A1 , ~1!

and defineA>05A01A1 , A<05A01A2 , Asym5A11A01A1
T .

A linear Poisson structure onH is obtained as a pull-back of the Kirillov–Kostant structure
b2* , the dual ofb2 , if one identifiesb2* and H via the trace form. A Poisson bracket of tw
functions f 1 , f 2 on H then reads as

$ f 1 , f 2%~X!5^X,@„“ f 1~X!…<0 ,„“ f 2~X!…<0#&, ~2!
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where we denote bŷX, Y& the trace form Trace (XY) and gradients are computed w.r.t. this form
As is well known, symplectic leaves of the bracket~2! are orbits of the coadjoint action of th
groupB2 of lower triangular invertible matrices:

OX0
5$J1~Adn X0!>0 :nPB2%. ~3!

The hierarchy of commuting Kostant–Toda flows is generated by the HamiltoniansHk(X)
5@1/(k11)#Tr(Xk11), k51,...,n21. Each flow has a Lax form,

Ẋ5@X,~Xk!<0#. ~4!

Equations~4! can be viewed as a restriction toH of the so-calledLU flows studied in Refs. 10
and 18. These flows are defined on the algebra Matn of n3n matrices and possess a b
Hamiltonian structure that can be described as follows. The linear Poisson structure forLU flows
is given by theR-matrix bracket,7

2$ f 1 , f 2%1~X!5^X,@R„“ f 1~X!…,“ f 2~X!#1@“ f 1~X!,R„“ f 2~X!…#&, ~5!

whereR(A)5A<02A1 . The quadratic Poisson structure compatible with~5! is a particular case
of the construction proposed in Ref. 16 and can be written as

2$ f 1 , f 2%1~X!5^X,@R„X“ f 1~X!1“ f 1~X!X…,“ f 2~X!#

1@“ f 1~X!,R„X“ f 2~X!1“ f 2~X!X…#&. ~6!

~6! provides a simple way to derive the quadratic Poisson structure for the Kostant–
flows ~4! on H. This structure was obtained in Ref. 17 in a rather implicit way as a Lie deriva
of the linear bracket~2! in the direction of the master symmetry vector field. Explicit formulas
quadratic Poisson brackets for matrix entries ofX were presented in Ref. 17 forn54. We were
unable to locate in the literature similar formulas for the general case.

Denote byH̃ the set of upper Hessenberg matrices whose subdiagonal entries are nonz
not necessarily equal to 1. It is not hard to see thatH̃ is a Poisson submanifold of Matn w.r.t. both
~5! and ~6!. Furthermore, ifLPH̃, then

X5D21LD, ~7!

where

D5diag~1,l 21,l 21l 32,...,l 21¯ l nn21!, ~8!

belongs toH. Assume now thatLPH̃ evolves according to~4!. Then it follows easily from~4!

that L̇250 and so,X5D21LD also satisfies~4!. To compute compatible Poisson structur
$ , % i

H ( i 51,2) on H it suffices now to present$ f 1+AdD21, f 2+AdD21% i uH̃ in the form $ f 1 , f 2% i
H

+AdD21. Here f 1 , f 2 are functions onH. Substitutingf 1(X)5xi j , f 2(X)5xkl ~i< j , k< l ! one
obtains from~5!, ~7!,

$xi j ,xkl%1
H5dk jxil 2d i l xk j , ~9!

which coincides with the linear bracket~2!. Similarly, if we start with ~5!, a straightforward,
though lengthy, computation yields the following.

Proposition 1: A quadratic Poisson structure for the Kostant–Toda flows onH compatible
with the linear structure (9) is given by

$xi j ,xk j%2
H5sign~k2 i !xi j xk j ,
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$xi j ,xkl%2
H5H xi j xil , k5 i ,

xi j xkl1xil xk j , i ,k< j ,

xil , k5 j 11.

~10!

Here i< j , k< l and j, l .
Remark:Brackets~10! can be obtained in a similar way from another quadratic bracke

Matn :

2$ f 1 , f 2%2~X!5^R1„“ f 1~X!X…,“ f 2~X!X&2^R1„X“ f 1~X!…,L“ f 2~X!&, ~11!

which, when restricted to invertible elements of Matn coincides with the Sklyanin bracket o
GL(n). HereR1(A)5A12A2 . We shall use this observation in the proof of Lemma 2 belo

Examples:
~1! Whenn52, we can parametrize elements ofH as

X5X~q,r !5F r sr2c

1 s G , ~12!

wherec5det(x). Then~10! becomes

$r ,s%5sr2c, ~13!

andc is a Casimir function.
~2! If XPH is a tridiagonal matrix:xi ,i 115ai , xii 5bi , xi j 50( j . i 11), then~9! and~10!

turn into linear and quadratic Poisson structures for the Toda lattice,

ȧi5ai~bi 112bi !, bi5ai2ai 21 ~ i 51,...,n;a15an50!. ~14!

Nonzero Poisson brackets for these structures are given by

$ai ,bi%152$ai ,bi 11%15ai , ~15!

$ai ,ai 11%252aiai 11 , $bi ,bi 11%252ai ,

$ai ,bi%25aibi , $ai ,bi 11%252aibi 11 . ~16!

An important role in the study of the Toda flows~4! is played bythe Weyl function,

m~l!5m~l,X!5„~l12X!21e1 ,e1… ~17!

~see, e.g., Refs. 9, 19–21!.
If XPH0 , whereH0,H consists of elements with simple real spectruml1,¯,ln , one

can write~17! as

m~l!5(
i 51

n
r i~X!

l2l i~X! S (
i 51

n

r i~X!51D . ~18!

The Lax equation~4! implies the following evolution forr i(X),l i(X):

ṙ i~X!5„l i~X!k2~Xk!11…r i~X!, l̇ i~X!50, ~19!

which can be easily integrated:
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r i„X~ t !…5
el

i

kt
r i„X~0!…

( j 51
n el

j

kt
r i„X~0!…

. ~20!

The Weyl functionm(l) is invariant under the adjoint action of a subgroup ofGL(n) that
consists of matrices whose off-diagonal entries in the first row and column are zero. In part
it is invariant under the transformation~7!, which means that, for any fixedl andm, in order to
compute Poisson brackets ofm(l) andm(m) induced by the quadratic structure~10!, one can use
Eq. ~11!. This can be used to establish the following lemma that can be useful to us later.

Lemma 2: For any fixedl and m,

$m~l!,m~m!%1
H5

„m~l!2m~m!…2

l2m
2m~l!m~m!„m~l!2m~m!… ~21!

and

$m~l!,m~m!%2
H5

m~l!2m~m!

l2m
„lm~m!2mm~l!…2m~l!m~m!„lm~l!2mm~m!…. ~22!

Proof: Denote by“l the gradient„“m(l)…(X). Then

“l5~l12X!21e1e1
T~l12X!21, ~23!

and the following identities hold true:

X“l52e1e1
T~l12X!211l“l , “lX52~l12X!21e1e1

T1l“l . ~24!

Note that, for anyl andm,

^R1„e1e1
T~l12X!21

…,e1e1
T~m12X!21&5^R1„~l12X!21e1e1

T
…,~m12X!21e1e1

T&50. ~25!

This, together with~24! and a skew symmetricity ofR1 w.r.t. ^ , &, implies

2$m~l!,m~m!%2
H5l^R1~“l!,@e1e1

T ,~m12X!21#&2m^R1~“m!,@e1e1
T ,~l12X!21#&. ~26!

Furthermore, ^R1(“l),@e1e1
T ,(m12X)21#&52^(“l),0 ,e1e1

T(m12X)21&2^e1e1
T(“l).0 ,(m1

2X)21&52(e1
T
“le1)„e1

T(m12X)21e1…2e1
T
“l(m12X)21e12e1

T(m12X)21
“le1 . Using ~17!,

~23!, and the Hilbert identity (m12X)21(l12X)215@1/(l2m)#„(m12X)212(l12X)21
…, we

obtain

^R1~“l!,@e1e1
T ,~m12X!21#&52m~m!S m~l!21

1

l2m
„m~l!2m~m!…D . ~27!

Then ~22! follows from ~26!. ~21! can be obtained similarly. h

One can check that the set ofm(l) of the form ~18! is closed w.r.t.~21! and ~22!. We shall
use this fact in Sec. IV.

III. RELATIVISTIC TODA ORBIT

We shall now consider an orbitOX0
,H, whereX05J1e1n ande1n is an elementary matrix

whose (1,n) entry is equal to 1 and all other entries are zero. It is an example of so-c
elementary Toda orbits, on which Poisson commuting HamiltoniansHk(X) are sufficient to guar-
antee Liouville complete integrability of any of the flows~4!. A particular kind of elementary
Toda orbits~coadjoint orbits that contain a root vector of the corresponding Lie algebra! was
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classified in Ref. 8~see also Ref. 13!. Note that, since on every symplectic leaf the functi
Trace(X) is a Casimir for the bracket~2!, any translationne111OX0

(nPR) is also a symplectic
leaf that coincides withOne111X0

.
Consider a symplectic linear spaceR2n equipped with the standard symplectic formw

5( i 51
n dpi∧dqi . We shall view elements ofR2n as pairs of column vectorsq5(qi) i 51

n ,p
5(pi) i 51

n .
Proposition 3: The map

f:R2n.U5$p1qnÞ0%→ ø
nPR

One111X0
,H, ~28!

defined by

f~p,q!5J1~pqt!>0 , ~29!

is Poisson and onto.
Proof: First, let us check thatf(U)5ønPROne111X0

. Indeed,ne111X05J1e1(ne11en)T.
Then „Adne1(ne11en)T

…>05((ne1)„(n21)T(ne11en)…T)>05(pqt)>0 , where p5ne1 ,q
5(n21)T(ne11en). Note thatqTp5( i 51

n qipi5n and, sincen is invertible lower triangular,
p1qnÞ0. Thus,ønPROne111X0

,f(U).
On the other hand, ifp1qnÞ0, then (pqt)>05(AdN„(q

Tp)e111X0…), where

N5p1qne111pnqnen11enn1 (
i 52

n21

~piei11eii 2qieni!. ~30!

Therefore,J1(pqt)>0PO(qTp)e111X0
andf(U)5ønPROne111X0

.
To show thatf is Poisson, consider matrix entriesxi j ,xkl( i , j ,k, l ) as linear functions onH.

Then

$xi j +f,xkl+f%5$piqj ,pkql%5dk jpiql2d i l pkqj5dk jxil +f2d i l xk j+f5$xi j ,xkl%+f. ~31!

h

As a corollary of Proposition 3, we can derive Darboux coordinates on the setHgen of generic
elements ofH. Recall~Refs. 9, 11, and 22! that Hgen consists of such elementsX that for anyk
51,...,@n/2#, a submatrix ofX obtained by deleting firstn2k columns and lastn2k rows is
nondegenerate. LetN5(@n/2#11)(n2@n/2#). Consider a symplectic vector spaceR2N with the
standard symplectic structure and canonical coordinatesp5(pi) i 51

@n/2# ,q5(qi) i 51
@n/2# , where pi

5(pi j ) j 5 i
n22(i 21) ,qi5(qi j ) j 5 i

n22(i 21) .
Corollary 4: The map

c:R2N.U5H )
i 51

@n/2#

pi j qi ,n22~ i 21!Þ0J →Hgen,H, ~32!

defined by

„c~p,q!…i j 5 (
k51

@ i /2#

pkiqk j ~ i< j !, ~33!

is Poisson and onto.
Proof: For anyXPHgen,x1nÞ0. Just like in the proof of Proposition 3 one can choose vec

p1,q1PRn such thatx1i5p1qi ,xin5piqn( i 51,...,n). ThenX15X2(p1(q1)T)>0 has a zero first
row and zero last column. SinceX is generic, its upper right 232 minor is nonzero, which implies
that the (2,n21) entry of X1 is nonzero. Thus, we can proceed by induction to find (p,q)
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PU,R2N such thatX5c(p,q), where the upper triangular part ofX is defined by~33!. The proof
that c is Poisson is a trivial modification of the proof of Proposition 3. h

Remark:The matrixX1 defined above coincides with an upper triangular part of the so-ca
one-chop map, which was introduced and studied in Refs. 22 and 11. This map plays a cruc
in the proof of the complete integrability of generic Toda flows.~See Ref. 12 for a generalizatio
to arbitrary semisimple Lie algebras.!

Consider now the first Toda flow~4! with HamiltonianH1(X)5 1
2 Trace(X2) restricted to a

Poisson submanifoldM5ønPROne111X0
of H. Using the parametrization~29!, one obtains

H1~X!5H1~q,p!5
1

2 (
i 51

n

~qi
2pi

212qi 11pi ! ~qn1150!, ~34!

and corresponding equations of motion,

q̇i5piqi
21qi 11 ,ṗi52qipi

22pi 21~qn115p050, i 51,...,n!, ~35!

are Liouville completely integrable.
To establish connection between the system~35! and equations of the relativistic Toda lattic

we need the following.
Lemma 5: Almost every X5J1(pqT)>0 can be factorized as the following:

X5~J1D !~12C!215~12C̃!21~J1D̃ !, ~36!

where D5diag(d1,...,dn), C5(i51
n21ciei,i11, D̃5diag(d̃1,...,d̃n), C̃5(i51

n21c̃iei,i11, and

ci5
qi 11

qi
; di 115pi 11qi 112

qi 11

qi
~ i 51,...,n21!, d15p1q1 , ~37!

c̃i5
pi

pi 11
; d̃i5piqi2

pi

pi 11
~ i 51,...,n21!, d̃n5pnqn . ~38!

Functionsci , di and c̃i , d̃i are related via

c̃i5ci

di1ci 21

di 111ci
, d̃i5di 11

di1ci 21

di 111ci
. ~39!

Proof: First, observe that, sinceCn50, the first factorization in~36! can be rewritten as

X5~J1D !~11C1¯1Cm21!5J1~JC1D !~11C1¯1Cn21!. ~40!

The matrixT5JC1D is diagonal, while

11C1¯1Cn215S S c1¯cj 21

c1¯ci 21
D

i , j 51

n D
>0

5~uvT!>0 , ~41!

where v5(v i) i 51
n ,u5(ui) i 51

n ,v151,v i5c1¯ci 21( i 51,...,n21),ui5v i
21. Thus, (J1D)(1

2C)215J1(pqT)>0 , with

p15ad1 , q15a21, pi55aci

di1ci 21

c1¯ci 21
, qi5a21c1¯ci 21 ~ i 52,̄ ,n!, ~42!

wherea is any nonzero number. Solving~42! for ci ,di , we obtain relations~38!. ~38! can be
obtained similarly. Finally, a substitution of~42! into ~38! yields ~39!. h
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Recall now2,14 that the Lax operator for the relativistic Toda lattice,

ċi5ci~di 112di1ci 112ci 21!, ḋi5di~ci2ci 21!, ~43!

has a formX5(J1D)(12C)21 and Eqs.~43! are equivalent to the Lax equation of the first To
flow for X. Thus, the relativistic Toda flows ‘‘live’’ on the open dense subset ofM
5ønPROne111X0

and can be obtained from Hamilton equations~35! via the change of variable
~38!. Canonical Poisson brackets for variablespi ,qi then lead to a linear Poisson bracket f
ci ,di ,

$ci ,di%52ci , $ci ,di 11%5ci ,$di ,di 11%52ci . ~44!

On the other hand, one can check that the set of matrices~36! is a Poisson submanifold ofH
w.r.t. bracket~10!. ~In fact, this follows from a more general statement that constitutes part
proposition below.! Rewriting ~38! as

ci5
x1,i 11

x1i
; di 115xi 11,i 112

x1,i 11

x1i
~ i 51,̄ ,n21!, d15x11, ~45!

and using~10!, we obtain a quadratic Poisson structure for the relativistic Toda lattice,

$ci ,di%52cidi , $ci ,di 11%5cidi 11 ,$ci ,ci 11%5cici 11 . ~46!

Moreover, Eqs.~35! and ~38! imply the following.
Proposition 6: Equations (39) define an auto Ba¨cklund transformation of the relativistic Tod

lattice. This transformation is Poisson w.r.t. both (44) and (46).
It was observed in Ref. 2~see also Ref. 4! that the Ablowitz–Ladik hierarchy23 can be

embedded into the relativistic Toda one. We shall show below that Ba¨cklund transformations
between equations of these two hierarchies are just the result of rearranging terms in a fac
tion of elements~36! into a product of elementary matrices. Factorizations of this kind pro
extremely useful in the study of totally positive elements in reductive groups~see Ref. 24!.

First, we define

Ei~u!511uei ,i 11 . ~47!

Clearly,Ei(u)215Ei(2u). Moreover, an easy calculation shows that

~12C!215E1~c1!¯En21~cn21!, ~J1D !5E1
T~d1

21!¯En21
T ~dn21

21 !D. ~48!

This gives a factorization ofX5(J1D)(12C)21 into a product of elementary factors.
Recall now that det(X) is Casimir for the quadratic Poisson structure~10! on H. We consider

the set of all elements of the form~36! with det(X)5det(D)51 as a symplectic submanifoldS of
H. Write D5D1¯Dn , whereDi(x)511(x21)eii 1(x2121)ei 11,i 11 and rearrange factors in
the elementary factorization ofX as follows:

X5E1
T~d1

21!¯En21
T ~dn21

21 !DE1~c1!¯En21~cn21!5S )
i 51

n21

(Ei
T
„(di8)

21
…D1(di8)Ei(ci8) D .

~49!

Thendi8 ,ci8 can be determined uniquely:

di85d1¯di , ci85
ci

di 118
, ~50!

and, thus,
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Ei
T
„~di8!21

…D1~di8!Ei~ci8!5Xi~qi ,r i !5diagS 1i 21 ,F r i si r i21

1 si
G ,1n2 i 21D , ~51!

where

r i5d1¯di ,si5
ci1di 11

d1¯di 11
. ~52!

Inverting ~52!, one obtains

di5
r i

r i 21
, ci5~sir i21!

r i 11

r i
. ~53!

Similarly, if starting with the second representation forX in ~36!, one obtains

si5~ d̃1¯d̃i !
21, si5 c̃i~ d̃1¯d̃i !

211d̃i ~54!

and

d̃i5
si 21

si
, c̃i5~sir i21!

si 21

si
. ~55!

Poisson brackets~46! and Eqs.~52! yield the Poisson algebra of the Ablowitz–Ladik hiera
chy for si ,r i :

$si ,r j%5d i j ~ i 2sir i !, ~56!

equivalent to a direct product ofn21 copies of the Poisson manifold of the first example of S
II. Formulas~55! coincide with ones suggested in Ref. 4.

Consider now one of the members of the hierarchy~4! restricted to the open set$X5(J
1D)(12C)21%,M . We chooseF5 1

2 Trace(X2)1 log detX as a Hamiltonian. The correspondin
Lax equation~w.r.t. the linear Poisson structure! is

Ẋ5@X,~X1X21!<0#. ~57!

Equations of motionci ,di can be easily obtained from~43!, ~44! and an equality detX
5d1¯dn :

ċi5ci~di 111di 11
21 2di2di

211ci 112ci 21!,

ḋi5ci~di2di 11
21 !2ci 21~di2di 21

21 !. ~58!

Recall from Refs. 25–27 that equations of the Schur~or dmKdV! flows:

ġ i5~12g i
2!~g i 112g i 21!~ i 51,...,n21!, g0

25gn
251, ~59!

can also be written as the Lax equation~57! if one chooses the Lax operatorX to be of the form
X5(xi j ) i , j ,51

n ,

xi j 5H 2g i 21g j) k5 i
j 21bk , i< j ,

1 i 5 j 11,

0 i . j 11,

~60!
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where

bk51gk
2. ~61!

It is not hard to show that the matrix~60! is also of the form (J1D)(12C)21, with

ci5b i

g i 11

g i
, di52g i S g i 211

b i 21

g i 21
D . ~62!

Taking ~61! into account, we obtain the following.
Proposition 7: Reduction

di52
g i

g i 21
, ci5~12g i

2!
g i 11

g i
~63!

is compatible with Eqs. (58) and reduces (58) to the Schur flows (59).
We conclude this section with a discussion of a connection between~35! and the peakons

lattice, which describes multipeak solutions of the Camassa–Holm~shallow water! equation.
To this end, we need to use the Weyl functionm(l,X) defined by~18!. It was shown in Ref.

28 thatr i can be used to construct a Poisson map from an open subset ofH into a spaceS of
symmetric matrices, which sends full Kostant–Toda flows into full symmetric Toda flows.~Here
the Poisson structure onS is also obtained as a pull-back of the Kirillov–Kostant structure onb*
and has a form~2! with a projection ( )<0 replaced by a projection onb2 parallel to the subalgebra
of skew-symmetric matrices.!

This map can be constructed as follows. LetXPH0 , i.e.,X5AdU21„diag(l1,...,ln)…, whereU
is normalized to have all entries in the first column equal to 1. Then one defines an elemn
5n(X) of the group of the lower triangular matrices as a unique solution of the equation

nnT5U21 diag~r1 ,...,rn!~UT!21, ~64!

if the solution exists.~Clearly, it exists if allr i are positive.! The mapj is then defined by

j~X!5Adn~X!21 X. ~65!

It was shown in Ref. 28 that~i! off-diagonal entries of the first column ofn(X) are zero;~ii !
j(X)PS; and ~iii ! j(X) is a Poisson map that maps~4! into the symmetric Toda flows,

L̇5@L, 1
2 „~Lk!.02~Lk!,0…#, ~66!

on S.
Now let us apply j to an elementX5J1(pqT)>0POX0

. Then L5j(X)5Adn(X)21 X

5(Adn(X)21 X)sym5( p̃q̃ t)sym, wherep̃5n(X)21p, q̃5n(X)Tq. Whenp̃i and q̃i are all positive
we can apply an additional canonical change of variables,

p̃i5APie
Qi, q̃i5APie

2Qi. ~67!

Then the Hamiltonian~34! that is equal to1
2 Tr(X2)5 1

2 Tr(L2) can be rewritten in terms ofPi ,Qi

as

H~Q,P!5
1

2 (
i , j 51

n

Pi Pje
Qi2Qj , ~68!

and matrix elements ofL5j(X) have a form

Li j 5APi Pje
Qi2Qj ~ i< j !. ~69!
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Equations~68! and ~69! give, respectively, the Hamiltonian of the peakons lattice and its
pair.29 A generalization of the peakons lattice associated with symmetric Toda flows in simpl
algebras was proposed in Ref. 30.

IV. ELEMENTARY TODA ORBITS

In this section we describe a family of orbits for the Kostant–Toda flows that, in a se
interpolate between the tridiagonal and relativistic Toda orbits. These orbits are parametri
increasing sequences of natural numbersI 5$ i 1 ,...,i k :1, i 1,¯, i k5n%. To each sequenceI
there corresponds a one-parameter family of 2(n21)-dimensional symplectic leaves that can
described via the surjective Poisson mapf I from an open dense subsetUI of R2n with the
standard Poisson structure toH.

Let i 050 and put

UI5H p1)
j 51

k

qi j
Þ0J ,R2n. ~70!

The mapf I :UI→H is defined as follows:

d I~p,q!5J1(
j 51

k S (
i j 21, l<m< i j

plqmelmD 1 (
j 51

k21

(
l 5 i j 11

i j 11 ql

qi j

ei j l
. ~71!

Note that the~l, m! entry off I(p,q) is zero for all~l, m! such thatl , i j,m. It is also easily seen
that f I(p,q) is tridiagonal forI 5$2,3,...,n% andf I(p,q) coincides with~29!, if I 5$n%.

Denote

XI5e1i 1
1 (

j 51

k21

ei j
i j 11 . ~72!

The following proposition generalizes Proposition 3.
Proposition 8: The map f I defined by (71) is Poisson. Its image coincides w
ønPROve111XI

,H. Here n5ptq.
Proof: We proceed by induction onk. WhenI 5$n%, the statement follows from Propositio

3. For I 5$ i 1 ,...,i k5n%, denoten85 i k21 , n95n2n8 and let I 85$ i 1 ,...,i k215n8%. Then the
upper lefti k213 i k21 block of ne111XI has a form,X85(ne111XI 8)Pgl(n8), whereas the lower
right (n911)3(n911) block of ne111XI is e1,n911Pgl(n911).

Every invertible lower triangular matrixN can be factored into a productN5N1N2N3N4 ,
where

N15F 1n821 0 0 0

0 1 0 0

0 x 1n921 0

0 z 2yT 1

G , ~73!

N25diag(1n821,1,U,1), N35diag(N8,1n9), andN4511V, whereU andN8 are invertible lower
triangular andV has nonzero entries only strictly below thei k21th row and strictly to the left of
the i k21th column. Then „AdN4

(ne111XI)…>05ne111XI and X̃ª„AdN3
(ne111XI)…>0

5diag„(AdN8 X8)>0,0…1ken8n, , wherek5Nn8n8
8 5Nn8n8 .

Let J8 be an analogue ofJ in gl(n8). By induction hypothesis,J81(AdN8 X8)>0 lies in the
image of the open setUI 8,R2n8 under the mapf I 8 defined by ~71!: Fª(AdN8 X8)>0

5f I 8(p8,q8)2J8, where (p8)Tq85n. Furthermore, coadjoint action byN2 leavesX̃ unchanged
and, thus, we obtain
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„AdN~ne111XI !…>05„AdN1
~X̃!…>05FF11 F12 0 0

0 F222m kyT k

0 0 k~xyT!>0 kx

0 0 0 kz

G , ~74!

wherem5k(yTx1z) and

FF11 F12

0 F2
G

is a suitable partition ofF. Define (p,q)PUI as follows: pi5pi8 , qi5qi8 for 0, i ,n8, qn8
5qn8

8 , pn85(F222m)/qn8 , pi5(xi 2n8)/qn8 , qi5kyi 2n8qn8 for n8, i ,n qn5kqn8 , pn

5z/qn8 . Then it is immediately seen from~74! that J1„AdN(ne111XI)…>05f I(p,q) and pTq
5n.

Due to the induction hypothesis, in order to show thatf I is Poisson, we only need to chec
that Poisson brackets$xi j +f I ,xkl+f I% agree with the restriction of~9! to ønPROne111XI

for 1
< i< j <n, n8<k< l<n. When bothi andk are greater thann8, this follows from Proposition 3.
If 1< i< j <n8, iÞn8 andlÞn8, thenxi j +f I depends only onp1 ,...,pn821 ,q1 ,...,qn8 , whereas
xkl+f I depends only onpn811 ,...,pn ,qn8 ,...,qn , therefore,$xi j +f I ,xkl+f I%50, which is consis-
tent with ~9!. Similarly, $xn8n8+f I ,xkl+f I%50 for n8,k< l<n. Thus, we only have to chec
$xn8n8+f I ,xn8 l+f I%5$pn8qn8 ,ql /qn8%5ql /qn85xn8 l+f I and, for j .n8,n8,k< l , $xn8 j +f I ,xkl

+f I%5$qj /qn8 ,pkql%5d jk(ql /qn8)5d jkxn8 j +f I . Since the last two brackets also agree with~9!,
the proof is complete. h

Next, we give another parametrization of the dense set inMI5ønPROne111XI
. This param-

etrization generalizes~36! and is more suitable when one deals with the quadratic bracket~10! on
H.

Proposition 9: Let D5diag(d1,...,dn). The set MI8 of elements of the form

X5~J1D !~12Ck!
21~12Ck21!21

¯~12C1!21, ~75!

where

Cj5 (
a5 i j 21

i j 21

caea,a11 , ~76!

is dense in MI .
MI8 is a Poisson submanifold w.r.t. the quadratic bracket (10), which, when restricted toI8

is equivalent to

$ci ,di%52cidi , $ci ,di 11%5cidi 11 ,

$ci ,ci 11%5cici 11 ~ i j< i , i j 1121!, $ci j 21 ,ci j
%50 ~ j 51,...,k21!. ~77!

Proof: First notice that (12Cj )
21 is an upper triangular matrix with zero off-diagonal entri

in rows 1,...,i j 2121 and columnsi j11,...,n. Also, analogously to a first formula in~48!,

~12Cj !
215Ei j 21

~ci j 21
!¯Ei j 21~ci j 21!, ~78!

where elementary matricesEi(u) are defined by~47!.
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It follows that an~l, m! entry of U5(12Ck)
21

¯(12C1)21 is zero if l , i j,m and, there-
fore, the same is true forX5(J1D)U. On the other hand, ifi j 21< l ,m< i j , one obtains that the
~l, m! entry of U is ulm5cl¯cm21 . Thus, we obtain the following formulas for entriesxlm( l
,m) of X in terms ofci ,di :

xlm5dlulm1ul 21,m55
~dl1cl 21!cl¯cm21 , i j 21, l ,m< i j ,

di j 21
ci j 21

¯cm21 , i j 215 l ,m< i j ,

dl1cl 21 , l 5m,

0, otherwise.

~79!

~Herec050.!
Substitute into~79! the following expressions forci ,di in terms ofpi ,qi :

d15p1q1 ; ci5
qi 11

qi
; di 115pi 11qi 112

qi 11

qi
~ i 51,...,i 121!;

ci 1
5

qi 111

di 1
qi 1

5
qi 111qi 121

qi 1
2 ~pi 1

qi 12121!
, di 1115pi 111qi 1112ci 1

;

ci5
qi 11

qi
; di 115pi 11qi 112

qi 11

qi
~ i 5 i 111,...,i 221!;

ci j
5

qi j 11

di j
qi j

, di j 115pi j 11qi j 112ci j
;

ci5
qi 11

qi
; di 115pi 11qi 112

qi 11

qi
~ i 5 i j11,...,i j 1121, j 52,...,k21!. ~80!

Thenxlm in ~79! coincides with the~l, m! entry off I(p,q) defined by~71!. Sincef i is surjective
and formulas~80! are defined almost everywhere, the first part of the proposition is proven.

Note that both~71! and ~80! do not change under a transformationpi→api ,qi→a21qi ,
therefore the mapj:$d1 ,...,dn ,c1 ,...,cn21%→MI8,MI defined by the right-hand side of~75! is
one to one. Therefore, to complete the proof of the proposition, we have to show that a
forward of the brackets~77! under this map coincides with the restriction of~10!. This can be done
by induction onn.

Indeed,~79! implies that the left upper (n21)3(n21) submatrix ofX defined by~75! does
not depend ondn ,cn21 . Then, due to the induction assumption, it suffices to check only
Poisson brackets$xin ,xlm% for i k21< i<n,1< l<m<n. Note also that ~77! implies that
$cn21 ,xlm%50 for 1< l<m<n21 and$dn ,xlm%50 for 1< l<m<n22 and, therefore,

$xnn ,xlm%5$dn1cn21 ,xlm%50, ~81!

for 1< l<m<n22, which is consistent with~10!.
Now we have two cases to consider. First, ifi k215n21, thenxn21,n5dn21cn21 , xin50 for

i ,n21 and, according to~77! $cn21 ,ci%50 for any i. By ~79! and ~77!, $xn21,n ,xlm%50 for
1< l<m<n22. Furthermore, we have$xn21,n ,xnn%5$cn21 ,dn%dn211cn21$dn21 ,cn21%
5dn21cn21(dn1cn21)5(xn21,nxnn) and $xi ,n21 ,xnn%5$xi ,n21 ,cn21%5d i ,n21$cn22

1dn21 ,cn21%5d i ,n21dn21cn215xin . Similarly, $xn21,n21 ,xn21,n%5$cn221dn21 ,dn21cn21%
5(cn221dn21)dn21cn215(xn21,n21xn21,n) and, for i k22< i ,n21,$xi ,n21+j,xn21,n+j%
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5$xi ,n21 ,dn21%cn21 . Since, by~79!, xi ,n21 /cn22 has a zero Poisson bracket withdn21 , we
obtain $xi ,n21 ,xn21,n%5(xi ,n21 /cn22)$cn22 ,dn21%cn215(xi ,n21xn21,n). Thus all brackets
$xin ,xlm% for i k21< i<n,1< l<m<n are consistent with~10!.

In the second case,i k21,n21. Then $cn21 ,cn22%5cn21cn22 and ~79! implies that xin

5xi ,n21cn21( i ,n). It also follows from~79! and ~77! that $xlm ,cn21%5dm,n21xlmcn21 for 1
< l<m<n21. Then

$xin ,xnn%5xi ,n21$cn21 ,dn%1$xi ,n21 ,cn21%cn215xi ,n21cn21~dn1cn21!5xinxnn , ~82!

$xi ,n21 ,xnn%5$xi ,n21 ,cn21%5xi ,n21cn215xin , ~83!

$xi ,n21 ,xjn%5$xi ,n21 ,xj ,n21%cn211xj ,n21$xi ,n21 ,cn21%55xi ,n21xjn1xin ,xj ,n21 . ~84!

Thus, we have checked all the necessary Poisson brackets and the proof is complete.h
Propositions 8 and 9 provide us with two alternative ways to describe the restriction o

Toda flows toMI5ønPROne111XI
.

First, note that restrictions of~9!, ~10! to MI8 equip it with two compatible Poisson structure
It is not hard to see that the rank of the Poisson structure~77! does not depend onI and is equal
to 2(n21). Therefore, det(X)5d1¯dn is the only Casimir function of~10! on MI8 . The rank of
the Poisson structure~9! on MI is also 2(n21) by Proposition 8, with the only Casimir bein
H0(X)5Trace(X). Since gradients of the functions Tr(Xj ), j 51,...,n21 are linearly independen
at any point ofH ~see, e.g., Ref. 6!, it follows that the restriction of the Toda flow toMI8 is
Liouville completely integrable.

Recall, now, that theH0(X) is the Hamiltonian of the Toda flow in the quadratic Poiss
structure. Due to~79!, for any I, the restriction ofH0(X) on MI8 is equal toH0(c,d)5( i 51

n (di

1ci 21), wherec050. Then the Toda flow onMI8 is equivalent to the following system:

ḋi5di~ci2ci 21!,

ċi5ci ~di 112di1ci 112ci 21! ~ i j, i , i j 11 , j 50,...,k21!,

ċi j
5ci j

„di j 112di j
1~12d i j 11,i j 11!ci j 11… ~ j 50,...,k21!. ~85!

If I 5$n%, we recover the relativistic Toda lattice~43!. If, on the other hand,I 5$2,3,...,n%, we
obtain a system,

ḋi5di~ci2ci 21!, ċi5ci~di 112di !, ~86!

which, after relabelingdi5u2i 21 , ci5u2i , becomes the Volterra lattice,

u̇i5ui~ui 112ui 21!. ~87!

This is an example of the discrete Miura transformation considered in Ref. 3~see also Ref. 5!.
We can sum up the above discussion in the following.
Proposition 10: For any I5$ i 1 ,...,i k :1, i 1,¯, i k5n%, (85) is a biHamiltonian completely

integrable system.
Remark: Unlike~44!, which gives a linear Poisson structure for the relativistic Toda latt

the restriction of~9! to MI8 is, in general, a nonlocal expression in terms ofci ,di ~see Ref. 27! for
the caseI 5$2,...,n%.

An alternative description of the Toda flow onMI can be obtained by lifting it to a completel
integrable Hamiltonian system onR2n via the mapf I . Here one has to use the linear Poiss
structure onMI . Due to~71! the restriction of the Toda HamiltonianH1(X)5 1

2 Trace(X2) gives
rise to the following completely integrable Hamiltonian onR2n equipped with a standard Poisso
structure:
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HI~q,p!5
1

2 (
i 51

n

qi
2pi

21 (
1< i ,n; iÞ i 1 ,...,i k21

n

qi 11pi1 (
j 51

k21 qi j 11

qi j

. ~88!

In the case when allqi are positive, one can apply a canonical change of variables,

qi5eQi, pi5Pie
2Qi. ~89!

In variablesPi , Qi , HI has a form

H̃I~Q,P!5
1

2 (
i 51

n

Pi
21 (

1< i ,n; iÞ i 1 ,...,i k21

n

Pie
Qi 112Qi1 (

j 51

k21

eQi j 112Qi j. ~90!

For anyI, equations of the Toda flow or, equivalently, the system~85!, can be linearized by
means of the factorization method~see Refs. 6 and 7!. Alternatively, one can use the Wey
function m(l,X) and Eqs.~19!, ~20!. If XPH is tridiagonal, it can be restored fromm(l,X)
uniquely via the inverse spectral problem~cf. Refs. 20 and 21!. Entries ofX are then expressed i
terms of Hankel determinants composed from the coefficients of the Laurent expansi
m(l,X). Similarly, if X5(J1D)(12C)21, then solutions of the relativistic Toda lattice can
expressed via certain Toeplitz determinants~see, e.g., Ref. 2!, that, in turn, are uniquely deter
mined bym(l,X). We shall not review the details here. Instead, we use the uniqueness
correspondenceX→m(l,X) in two aforementioned cases to establish the following.

Proposition 11: For any I, there exists a birational transformation of solutions of the T
flow on MI to solutions of the Toda lattice (14), which is Poisson w.r.t. both linear and quadr
Poisson structures.

Proof: SinceMI8 is dense inMI and, by~79!, matrix entries ofXPMI8 and parametersci , di

can be expressed via each other by rational expressions, we can restrict ourselves to elemeX be
defined by~75!.

We are going to show that there exists a unipotent invertible upper triangular matrixB such
that~i! off-diagonal elements of the first row ofB are zero,~ii ! X̃5BXB21 is a tridiagonal elemen
of H, ~iii ! entries ofB depend rationally on entries ofD and C, and ~iv! inverse mapX̃→X is
rational.

B can be constructed by induction onI. Here we assume, thatI 5$ i 1 ,...,i k :1, i 1,¯, i k

5n% is greater thanI 85$ i 18 ,...,i k8
8 :1, i 18,¯, i k8

8 5n%, if, for some j ,k8, i 15 i 18 ,...,i j 21

5 i j 218 and i j. i j8 . Then the minimalI is I 5$2,3,...,n%, in which caseMI consists of tridiagonal
matrices and, thus, there is nothing to prove.

If I is greater than$2,3,...,n%, thenk.n21, and at least one of the numbersn15 i 121, n2

5 i 22 i 1 ,..., nk5 i k2 i k21 is greater than 1. Letj be the smallest index such thatn j.1. Then
i 152,..., i j 215 j , i j. j 11 and, by~75!, ~78!,

X5~J1D !U5~J1D !~12Ck21!21
¯~12Cj 11!21Ej~cj !¯Ei j 21~ci j 21!Ej 21~cj 21!¯E1~c1!.

~91!

Consider nowX85Ei j 21(ci j 21)XEi j 21
21 (ci j 21). Ei j 21(ci j 21) commutes withEi(ci) for iÞ i j

22, i j11 ~note thati j22. j 21!. Therefore,

UEi j 21
21 ~ci j 21!5~12Ck21!21

¯~12Cj 11!21Ej~cj !¯Ei j 22~ci j 22!Ej 21~cj 21!¯E1~c1!.

~92!

On the other hand,
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Ei j 21~ci j 21!~J1D !5~11ci j 21ei j 21,i j
!~J1D !

5J1D1ci j 21ei j 21,i j 211ci j 21di j
ei j 21,i j

5~J1D8!Ei j 21~ci j 218 !,

whereD85diag(d1,...,di j218 ,di j
8 ,di j11,...,dn) and

di j 218 5di j 211ci j 21 , di j
8 5

di j
di j 21

di j 211ci j 21
, di j

8 5
di j

ci j 21

di j 211ci j 21
. ~93!

Thus,

X85~J1D8!Ei j 21~ci j 218 !

3~12Ck21!21
¯~12Cj 11!21Ej~cj !¯Ei j 22~ci j 22!Ej 21~cj 21!¯E1~c1!

5~J1D8!~12Ck21!21
¯~12Cj 12!21

„Ei j 21~ci j 218 !~12Cj 11!21
…

3„Ej~cj !¯Ei j 22~ci j 22!…Ej 21~cj 21!¯E1~c1!.

But, by ~78!,

Ei j 21~ci j 218 !~12Cj 11!215Ei j 21~ci j 218 !Ei j
~ci j

!¯Ei j 1121~ci j 1121!5~12Cj 118 !21, ~94!

whereCj 118 5ci j 218 ei j 21,i j
1ci j

ei j ,i j 111¯1ci j 1121ei j 1121,i j 11
and, similarly,

Ej~cj !¯Ei j 22~ci j 22!5~12Cj8!21, ~95!

whereCj85cjej , j 111¯1ci j 22ei j 22,i j 21 . Therefore,

X85~J1D8!~12Ck21!21
¯~12Cj 12!21~12Cj 118 !21~12Cj8!21Ej 21~cj 21!¯E1~c1!

~96!

belongs toMI 8
8 , where I 85$2,3,...,j ,i j21,i j 11 ,...,i k%, if j ,k or I 85$2,3,...,j ,n21,n%m if j

5k. In both casesI 8 is less thanI, and so, by induction hypothesis there exists a unipo
invertible upper triangular matrixB8 satisfying~i!–~iv! for X8. ThenB5B8Ei j 21(ci j 21) satisfies
~i!–~iv! for X.

To see that the mapX→X̃5BXB21 is Poisson w.r.t linear and quadratic structures, rec
that, by Lemma 2, both mapsX→m(l,X) and X̃→m(l,X̃) induce Poisson structures~21!, ~22!

and, by construction ofB, m(l,X)5m(l,X̃). h
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It is shown that when a dynamical systemX0 with a proper set of global first
integrals is perturbed, the phase space region accessible to the orbits of the per-
turbed vector fieldX01Xp is bounded~we are assuming here that the time variable
runs over afinite interval!. A polynomial new bound is obtained for the separation
between the solutions ofX0 andX01Xp. Perturbations near an equilibrium point of
X0 are also considered. ©2000 American Institute of Physics.
@S0022-2488~00!02905-4#

I. INTRODUCTION

The role played by first integrals of vector fields~v.f.’s! in the integration of them via quadra
tures and other reduction mechanisms is well known.1 Remember that a smooth functionI is
called first integral of the v.f.Y whenLY(I )50, LY standing for the Lie derivative ofI along the
streamlines ofY. Most of the first integrals considered in this paper areproper first integrals: a
function I is proper when I 21(K) is a compact set wheneverK is compact. The reader will hav
no difficulty in proving that when lim̀ I (x)5`, then I is a proper function~of Rn in R!. More
information and some examples of proper functions can be found in Appendix B.

First integrals have also been used in other contexts: to estimate limiting possibiliti
optimal control systems,2 in averaging techniques of perturbed Hamiltonian v.f.’s,1,3 and in the
obtention of bounds for the number of periodic orbits surviving when a completely degen
linear, Hamiltonian system is perturbed.4 We now show that they also play an interesting role
relation to~i! the wideness of the phase space region accessible to the perturbed orbits and~ii ! the
obtention of bounds for the separation of perturbed and unperturbed solutions. Since the on
of studying the perturbed v.f. is, in general, numerical, these phase space domains and
could be useful in order to control the errors of the numerical computations.

Let us now compare our method with other perturbations methods. Consider, for exa
KAM theory. In this theoryn/2 first integrals, in involution, of an unperturbed v.f.X0 are used.X0

is Hamiltonian andn is the phase space dimension. On the phase space domain where th
sets of the first integrals meet in tori and where the Kolmogorov condition holds1,5 most of the
nonresonant tori survive the perturbation and do not disappear, but are slightly deforme~the
perturbing termXp is assumed conveniently small!.

For n52,4 KAM implies the boundedness of the perturbed solutions. But whenn.4, un-
bounded orbits can appear~Arnold diffusion!. The theory is not applicable if the first integrals a
not in involution or if they are but the geometry where its level sets meet is not toruslike~X0 might
vanish on one of these compact intersections!. The same applies ifX0 ~the unperturbed v.f.! is not
Hamiltonian.

Concerning the relation between KAM and the work developed here, we note the follo
~i! The bounds obtained in this paper are valid for any v.f.X0, integrable or not, Hamiltonian o
not, in so long as its first integrals form a proper set of first integrals. This implies that the
29220022-2488/2000/41(5)/2922/9/$17.00 © 2000 American Institute of Physics
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where the level sets meet are compact. The theory is also applicable whenoneof the connected
components of the set where the level sets meet is a compact set. On the other hand, the g
of these compact intersections of level sets is not necessarily toruslike: any compact diffe
manifold is equally valid to us.~ii ! Our bounds are valid for finite intervals of time, while KAM’
are valid for infinite intervals of time.~iii ! Local coordinates around the compact sets defined
the first integrals are never used in this paper. Therefore we do not get problems when try
globalize them.6

Now, we will give some information concerning our method and the techniques of aver
and adiabatic invariants.1 Most of these methods are designed in order to study the perturba
of Hamiltonian v.f.’s, withn/2 first integrals in involution and with global action-angle variable6

on a certain compact set filled with tori, or for v.f.’s with parameters drifting ‘‘slowly with time
We have already mentioned that global action-angle variables do not always exist, beca
topological obstructions. On the other hand, in order to define the term ‘‘slowly with time,’’ u
in the theory of adiabatic invariants, some authors are compelled to consider only Hamil
v.f.’s X0 of degenerate type; that is, v.f.’s, all of whose orbits are of typeS1 ~topological circles!,
at least on a certain phase space domain. The periods of theS1 orbits can be used as a scale of tim
in order to give a certain meaning to the term ‘‘slowly with time.’’ We have to say that in
approach the v.f.X0 is not constrained to be degenerate.

We explain now why our treatment has little in common with the so-called ‘‘averag
methods.’’1 In these methods bounds for the separation between the evolution of theaction
variables~slow variables! in the v.f. X01Xp andA(X01Xp) are obtained,A(Y) standing for the
average ofp(Y) over the angle variables@p(Y) is the projection ofY over the action variables
space#.

On the contrary, we get bounds for the separationix(t)2y(t)i between the position vectors o
the solutions ofX0 andX01Xp at timet. We show that for large values oft this separation canno
grow faster than a polynomial function oft. This result improves previous exponential bounds
the literature.

The plan of the paper is the following: the bounding regions are introduced in Sec. II. Bo
for the separation between the unperturbed and perturbed solutions, with the same initial
tions, are given in Sec. III, and these bounds are compared, in Sec. IV, with other bounds
literature. An application to the perturbations near a stable equilibrium point is given in Se

II. THE BOUNDING REGIONS

We prove in this section the following Proposition:
Assume that~i! I is a uniformly bounded and smooth first integral@see formula~6!# of X0 ; ~ii !
y0 is a common initial condition of the v.f.X0 andX01Xp with corresponding solutionsx(t)
andy(t) satisfyingx(0)5y0, y(0)5y0 ; and ~iii ! Xp satisfies Eq.~7!.

Under these assumptionsy(t) must lie inside the phase space domain defined by Eq.~8!. Certain
consequences of Eq.~8! are also discussed at the end of this section.

In fact, consider the differential equations associated with the v.f.X0 andX01Xp ,

ẋ5X0~x!, ~1!

ẏ5X0~y!1Xp~ t,y!, ~2!

wherex andy are vectors inRn andXp is the perturbing term. The rate of change ofI along the
solutions ofX01Xp is

İ 5¹I •~X01Xp!5¹I •Xp , ~3!

where¹ stands for the gradient operator. Note that the identity¹I •X050 has been used in~3!,
sinceI is a first integral ofX0 . We immediately obtain from~3!
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2u¹I •Xpu< İ<u¹I •Xpu ~4a!

and

2i¹I i•iXpi< İ<i¹I i•iXpi , ~4b!

i i standing for the Euclidean norm ofRn. Integrating~4b! betweent50 and t5T, T.0, we
obtain

2E
0

T

i¹I i•iXpi dt<I 2I 0<E
0

T

i¹I i•iXpidt, ~5!

with I 05I (y0).
We discuss now some consequences of Eq.~5!. Assume that¹I satisfies the uniform bound

edness condition:

i¹I i<K, ;xPRn ~6!

~see Appendix A for a study concerning this point! and thatXp factorizes in the form

Xp5 f ~ t !•X̂p~y!,

iX̂pi>K8, ;yPRn ~7!

f ~ t !PC0.

Under these requirements we get from~5!

2K•K8E
0

T

u f ~ t !u dt<I ~y!2I 0<K•K8E
0

T

u f ~ t !u dt. ~8!

A similar equation holds whenXp is a linear combination of terms of type~7!.
Let us discuss now some consequences of Eq.~8!.

~i! If we assume, in addition, that*0
1`u f (t)u dt is bounded and thatI is proper~see Appendix

B!, Eq. ~8! defines a bounded domain ofRn wherey(t) lies whent runs over the interval
@0,T# for any value ofT. Thereforey(t) cannot blow up to infinite in a finite time. Thes
conclusions hold as well if we assume thatI 1 ,...,I s is a proper set of first integrals ofX0
such thati¹I i,K (I[I 1

21¯1I s
2). In fact, it is easy to show thatI is a proper function.

~ii ! Assume now thatI is a first integral ofX0 not necessarily proper and that the connec
component of the level setI 21(I 0) throughy0 is compact. On the other hand, we do n
assume the validity of Eq.~6! on the whole ofRn, as it is obviously verified on any
compact setC containing the compact component ofI 21(I 0). Under these assumptions th
perturbed solutiony(t) remains inC when t (t.0) is sufficiently small. We get in this
way, through Eq.~8!, a restriction on the phase space domain~contained inC! accessible to
the perturbed solutiony(t).

~iii ! Let us clarify the meaning of this section and the last paragraph with an example. As
thatX0 is the electromagnetic inductionB0(x), xPR3, andI is not necessarily a proper firs
integral ofB0 , whose level sets, inside a certain compact setC, are tori. Let us compare th
orbits ofB0 andB01Bp , with the same initial conditions, whiley(t) lies in C. Note that the
boundK of Eq. ~6! can be made arbitrarily small ifC is chosen near the central linew of
the tori, since¹I vanishes onw. This fact implies that the termK•K8•*0

Tu f (t)u dt in Eq. ~8!
can be made small, and small will also be the domain accessible toy(t) defined by Eq.~8!.
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We obtain, in this way, a convenient finite time confinement of the orbits ofX01Xp . This
confinement has been induced by the presence of the first integralI and its compact leve
sets onC.

~iv! Note that a first integral ofB0 with toruslike level sets can be obtained ifB0 possesses a
transverse symmetry vectorS of zero divergence.

That is, whenS commutes withB0 and DivS50.
This is what happens, for instance, whenB0 is symmetric under rotations around thez axis. In

this caseS5]w , Div (]w)50, andI is given by

~9!

standing for the contraction operator between v.f. and differential forms.
Under these conditions it is easy to see that the compact components of the level setsI are

tori. One just has to remember that the functionI defined in Eq.~9! is also a first integral of]w .

III. A NEW BOUND OF ix„t …Ày„t …i

We prove in this section the following Proposition:
Assume that~i! I is a proper, or locally proper, polynomial first integral of Eq.~1!, ~ii !

u f (t)u,K9,;t, and~iii ! the assumptions used to obtain Eq.~8!.
Under these requirements a polynomial upper bound forix(t)2y(t)i is obtained@see Eq.~12!#.

In fact, under the above requirements, Eq.~8! implies

2K-•T<I 2I 0<K-•T, ~10!

K- being the product of the bounds ofi¹I i , iXpi , and u f (t)u on C. Remember thatC is a
compact set containingy(t) for tP@0,T#.

We see in~10! that I cannot increase faster than linearly along the solutions ofX01Xp. We
can now obtain, out of Eq.~10!, a bound for the maximal separationix(t)2y(t)i . In fact, we can
write

ix~ t !2y~ t !i<D~T!<2R~T!, ~11!

D(T) being the diameter of the bounded setI 21@ I 02K-•T, I 01K-•T#, and R(T) being the
maximum distance from the points of this set to any fixed arbitrary point ofRn.

Now, it is shown in Appendix C that whenI is a polynomialR(T) cannot increase, for large
values ofT, faster thanTm(mPN). Therefore, we obtain from Eq.~11!

ix~ t !2y~ t !i<aTm, mPN, ~12!

a standing for a positive real number.
Let us compare next the bound~12! with other bounds in literature.

IV. COMPARING THE POLYNOMIAL BOUND WITH OTHER BOUNDS

We compare now the polynomial bound of Sec. III with some classical bounds.
~i! First of all, consider the well-known expression7

ix~ t !2y~ t !i<K8•L21
•@exp~L•T!21#, tP@0,T#, T.0, ~13!

L being a Lyschitz constant ofX0 andK8 a bound ofiXpi . Remember that sinceX0 is analytic,
L is just a bound of the matrixDX0 ~D is the differential operator!.
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We see in~13! that ix(t)2y(t)i increases exponentially withT. Therefore, the bound~13! is
worse~whenT is large! than the polynomial bound inT obtained in Sec. III. Our improvement i
to be ascribed to the presence of the proper uniformly bounded first integrals.

~ii ! Assume now thatX05A0•x, whereA0 is a constantn3n matrix andXp5f(t) with f(t)
satisfyingi f(t)i<K8 for any t. In this case writing the explicit expressions forx(t) andy(t) we
obtain

ix~ t !2y~ t !i<iexp~A0•t !i• I E
0

t

exp~2A0•s!•f~s! dsI . ~14!

Using now the inequality8

iexpAi<~n21!1expiAi , ~15!

whereA is again a~n,n! matrix, we get from Eqs.~14! and ~15!

ix~ t !2y~ t !i<K8•@~n21!1exp~ iA0i•T!#2
•T tP@0,T#, T.0. ~16!

Equation~16! is a new bound ofix(t)2y(t)i , of exponential type, and valid whenX0 is a linear
v.f. This bound is, therefore, worse than the polynomial bound of Sec. III.

In particular cases the bound~16! becomes linear inT. Assume, for example, that the eige
values ofA0 are purely imaginary and simple. Then it is easy to see that exp (iA0i•T) is bounded
for any T. Let k be a bound of exp (iA0i•T).

In this case we can write~16! in the form

ix~ t !2y~ t !i<K8•@~n21!1k#2
•T, ~17!

which is a bound ofix(t)2y(t)i linear in T.
It is easy to see that this improvement is due to the presence of a proper set of first int

Indeed, under the hypothesis considered on the eigenvalues ofA0 , X0 has a set of proper, an
quadratic, first integrals.9

What we learn from this example is that it is again the presence of proper first integral
induces improvements of the bounds ofix(t)2y(t)i .

V. PERTURBATIONS AROUND STABLE EQUILIBRIUM POINTS

We show now that the existence of bounding regions and the separation bound of Eq.~12! are
sufficient to explain the stability of systems of linear oscillators under nonlinear perturba
Assume that0 is an equilibrium point ofX0 andXu1Xp and thatI is a proper first integral ofX0 ,
with I (0)50, ¹I (0)50. These assumptions imply that the level sets ofI near0 are topological
spheres. We also assume thatI and the v.f.X0 andXp are analytic. We can, therefore, write

İ 5¹I •Xp5 (
i 5n0

`

Ai~u!•r i , n0>2, ~18!

~r, u! standing for the generalized spherical coordinates inRn around0.
For convenient values ofy0 , y(t) lies inside an arbitrary ballBr of radiusr centered at0, and

we obtain from Eq.~18!

2S (
i 5n0

`

Âi•r i D •T<I 2I 0<S (
i 5n0

`

Âi•r i D •T, ~19!

Âi being the maximum ofAi(u) on the unit sphereixi51. Whenr is small the series( i 5n0

` Âi

•r i behaves like its leading termÂn0
•r n0 and we can write
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DI'Ân0
•r n0

•T. ~20!

We see in~20! thatDI becomes quite small, even ifT is large, whenBr is sufficiently small. This
implies thatix(t)2y(t)i becomes small, since~see Sec. III! ix(t)2y(t)i is proportional toDI .
This fact makes the solutionsx(t) andy(t) practically indistinguishable.

In some physical problems~motion of a spherical pendulum near the equilibrium position, a
related problems, normal modes of vibration of molecular systems10! X0 is a linear v.f. with a
proper and quadratic first integral~the total energy!. The perturbed v.f.X01Xp has a first integral
Î . Here Î has the structureI 1I p , whereI p is a perturbation ofI near0.

In the above physical problemsÎ is also proper. Therefore, it is possible to getx(t) andy(t)
insideBr for any t. One has just to choose the initial conditiony0 sufficiently near0. Under these
conditions Eq.~20! can be applied, but nowT is anunrestrictedpositive number, sincex(t) and
y(t) never get out ofBr .

The key to this stability of linear systems with proper integrals is

~i! the presence in~20! of the factorr n0
•T, which can be made small even ifT is large, and

~ii ! the existence of proper integrals ofX0 andX01Xp .

The smallness ofDI andix(t)2y(t)i explains why the theory of linear oscillations is usef
since the separation between the small amplitude solutions ofX0 and those ofX01Xp is so small
that its detection is practically impossible.

VI. FINAL REMARKS

The effect of proper first integrals on the separationix(t)2y(t)i between the solutions of th
perturbed and the unperturbed systems has been studied. It has been shown that unde
conditions this separation cannot become, whenT is large, larger than a polynomial function ofT,
while in the absence of proper first integrals the separation is exponential inT.

The influence of proper integrals on the stability of linear systems has also been cons
Open problems in this field are the following.

~i! To get bounds ofix(t)2y(t)i , improving the exponential bound of Equation~13!, when
the first integrals do not form a proper set or when they are not polynomials. Note th
molecular systems and for the motion of a point on the surfacez5 f (x,y), where f is a
polynomial and lim̀ f 51`, there are proper and polynomial first integrals.

~ii ! To improve the bounds of this paper whenmore than onepolynomial, proper first integrals
of X0 are known.

~iii ! To obtain relations betweenI and the integerm of Eq. ~12!.
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APPENDIX A: UNIFORM BOUNDESNESS OF PROPER FIRST INTEGRALS

Assume thatI is a first integral ofX0 . We show that ifI is proper, an increasing function,f,
can be obtained such that

i¹ f ~ I !i<1. ~A1!

Note thatf (I ) is proper wheneverI is proper. In fact, letI (x)5C be the compact level sets ofI.
Define

M ~C!5Maxi¹I i on I ~x!5C. ~A2!

Note that in generalM (C) is continuous but not differentiable.
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We definef by

f ~z!5Ez

M ~C!21 dC. ~A3!

Note thatf is aC1 function@its first derivatives are continuous, but is not in general a smooth (C`)
function#.

Let us see thatf (I ) satisfies Eq.~A1!:

i¹ f ~ I !i5 Id f

dI
•¹I I5M ~C!21

•i¹I i<1, ~A4!

as we wanted to prove.
Note that if$I i%, i 51,...,s, is a proper set of first integrals, thenI 5I 1

21¯1I s
2 is a proper

function, to which the above construction can be applied.
Remark that Eq.~A3! is of difficult handling, since the analytical expression ofM (C) can

rarely be obtained and, on the other hand, the integrand in~A3! becomes singular at those valu
of C corresponding to the singular level sets ofI @manifolds degenerating into points, curves,
manifolds of dimension (n22)#. Because of these problems it is preferable to use Eq.~A3! in
order to get suggestions on the form of possible functionsf̂ for which f̂ (I ) satisfies Eq.~A1!.

Let us now give some examples. In all of themf̂ has been suggested by the form ofM (C).
This form can be obtained using the Lagrange multipliers rule to get the extrema ofi¹I i on I
5C.

Example 1:Let I be given by the following polynomial,

I ~x!5(
i 51

n

ai•xi
2pi,

whereai are positive real numbers andpi are natural numbers. In this casef̂ is of the formz1/p

with p5Greater(2p1 ,...,2pn)11. It is easy to check thatf̂ (I )5k•I 1/p is proper and satisfies~A1!

for a suitable value ofk. Note thatf̂ (I ) is C` on R2$0%.
Example 2:

I ~x!5Pm~x!1pm21~x!,

where Pm is a homogeneous polynomial of even degree (m), lim
`

Pm51`, and Pm21 is a

polynomial of degreem21. In this case the computations withM (C) suggest thatf̂ (I ) is of the
form k• ln I. In fact, k• ln I is proper and satisfies Eq.~A1! for a suitable value ofk.

Example 3:

I ~x!5(
i 51

n

exi
2
.

In this casef̂ (I )5k• ln (ln I).
Note that in these two last examplesf̂ (I ) is C` in R12$0%. This local C` behavior is

sufficient in order to be able to apply the techniques of Appendix C. On the other hand, the
first integral f̂ (I ) can be of interest in so far as the interval@I 02K-•T, I 01K-•T# lies inside the
region wheref̂ (I ) is smooth (C`).
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APPENDIX B: A SUMMARY ON PROPER FUNCTIONS

A summary of certain useful properties concerningproper functions is given here.
A function I is called proper ifI 21(K) is compact for every compact setK, K,R. The

function ~total energy! ż21V(z) is proper when lim
`

V51`.

A function I is called locally proper ifI 21(K) is compact for any compact setK,K,D,R ~D
is a fixed subset ofR!. The total energy of a pendulum is a locally proper function of the ang
displacement~u! and u̇. When u̇ is small, the level sets ofE are bounded.

The set of functions$I i%, i 51,...,s is proper if ù
i 51

s

I i
21(K) is a compact set for anyK,Rs. If

$I i% is a proper set, thenI 1
21¯1I s

2 is a proper function, since its level sets are formed by
compact union of the~compact! level sets ofI i .

The functions

I 15x1
21x2

21sen~x3!,
~B1!

I 25x2
21x3

21exp~2x1
2!,

are not proper, but they form a proper pair. ThereforeI 1
21I 2

2 is a proper function, as the reade
can check directly.

A set of functionsI i i 51,...,s, is locally proper onD if for any compact set contained i

D,Rs the setù
i 51

s

I i
21(K) is compact. The energy and the angular momentum form a proper

set of integrals of Kepler’s problem. In this caseD is any R2 domain on whichE~energy!,0,
L~angular momentum!Þ0.

Note that when$I i%, i 51,...,s, is a locally proper set of functions onD the function I 1
2

1¯1I s
2 is not always locally proper onD. For instance, the energy and the angular momen

of Kepler’s problem do not satisfy this requirement. In fact, the level sets ofE21L2 are always
unbounded.

APPENDIX C: A USEFUL BOUND FOR R„T…

We now get a bound forR(T), the maximum distance from0PRn to the setS defined by

S5$xuI 02K-•T<I ~x!<I 01K-•T%. ~C1!

The following evaluations shall be made by computing the maximum distance from0 to the part
of the Boundary~S! given by the compact setI 21(I 01K-•T). By Sard’s theorem11 we may
assume thatI 21 (I 01K-•T) is a differential manifold. Note that the same evaluations apply
computing the maximum distance from0 to the compact setI 21 (I 02K-•T).

Consider the projectionspri (MT) of the compact setMT5I 21 (I 01K-•T) on the coordinate
axis xi . That is,

pri~x1 ,...,xn!5xi . ~C2!

We can also write

pri~MT!,@ai~T!,bi~T!#,

ai~T!5Min pri~MT!, ~C3!

bi~T!5Max pri~MT!.
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Now, since we assume thatI is a polynomial it can be shown using the Tarski theorem12 thatai(T)
and bi(T) are semialgebraic inT ~Ref. 12! and whenT→1` they are bounded by an intege
power ofT, Tmi, miPN.

It follows that R(T)5Dmax(0,MT) shall be bounded by

$~Tm1!21¯1~Tmn!2%1/2'Tm, ~C4!

m standing for the maximum of the natural numbers (m1 ,...,mn). ThereforeR(T) cannot in-
crease, for large values ofT, faster thanTm, as we desired to prove.

When I is a nonpolynomial first integral we can use the Stone–Weierstrass theorem13 to
approximateI, and a finite number of its derivatives, nearMT by a polynomialPm(«,T)(x) of
degreem(«,T). Moreover, by the Thom isotopy lemma,14 the sets defined by

i ~x!5I 01K-•T, ~C5!

Pm~e,T!~x!5I 01K-•T, ~C6!

are diffeomorphic and the set defined by~C5! lies in a neighborhood of the set defined by~C6!.
Fixing now the value of« ~say«51! andassumingthat the coefficients ofPm(1,T)(x) depend

algebraically onT ~Ref. 12!, we define the projectionspri(MT) and obtain again, via Tarsk
theorem,12 the polynomial boundR(T)'Tm. It must be said that when the dependence onT of the
coefficients ofPm(1,T)(x) is not semialgebraic, the problem of obtaining a bound ofR(T) is a very
difficult one and no general solution of it is known to us.
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A direct perturbation theory for the unstable nonlinear Schro¨dinger equation with
perturbations is developed. The linearized operator is derived and the squared Jost
functions are shown to be its eigenfunctions. Then the equation of linearized op-
erator is transformed into an equivalent 434 matrix form with first order derivative
in t and the eigenfunctions into a four-component row. Adjoint functions and the
inner product are defined. Orthogonality relations of these functions are derived and
the expansion of the unity in terms of the four-component eigenfunctions is im-
plied. The effect of damping is discussed as an example. ©2000 American In-
stitute of Physics.@S0022-2488~00!00405-9#

I. INTRODUCTION

The unstable nonlinear Schro¨dinger ~UNLS, for short! equation was introduced in plasm
physics1,2 to describe the nonlinear modulation of a high frequency mode in electron beam p
such as a system where an electron beam is injected under high frequency electric field
equation may be considered as a prototype amplitude equation for the soliton phenomen
unstable system. It also describes the nonlinear modulation of waves in Rayleigh-Taylor pro3

The UNLS equation can be expressed as

iux1utt12uuu2u50, ~1!

wheret andx are time and space coordinate.
Interchange ofx and t in ~1! leads to the conventional stable nonlinear Schro¨dinger ~SNLS,

for short! equation. Since the SNLS equation has been proved to be a completely inte
system,4,5 it has been solved by using the inverse scattering transform~IST!. Soliton solutions for
the UNLS equation can be obtained by simply interchangingx andt from the soliton solutions for
the SNLS equation. The UNLS equation has also been generally solved, by a similar IST, i
ing the contribution of continuous spectrum of the spectral parameter,2,6 which is necessary in
developing a perturbation theory for the UNLS equation with perturbations. To have some i
into the physical significance of the UNLS equation and to have an effective method to
practical problems, it is necessary to consider the UNLS equation with perturbations,7

ivx1v tt12uvu2v5er @v#, ~2!

wheree is a small positive parameter andr @v# is a functional ofv. Since~2! has a second orde
derivative int, the initial conditions must include one aboutv t(x,0) in addition to the one abou
v(x,0). We choose

a!Permanent address: Department of Physics, Wuhan University, Wuhan 430072, People’s Republic of China.
b!Electronic mail: xiangjun-chen@21cn.com
29310022-2488/2000/41(5)/2931/12/$17.00 © 2000 American Institute of Physics
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v~x,0!5u~x,0!, v t~x,0!5ut~x,0!. ~3!

However,~1! and~2! are second order partial differential equations in time. The initial va
problem under the condition~3!, which is very different from that for the SNLS equation,7 has
never appeared in the literature. The purpose of this work is to find the perturbed solution~2!
under the initial condition~3!. This work is arranged as follows:

~1! The linearized equation for~2! is derived, and the squared Jost functions are shown to
solutions of this linearized equation by means of the Lax equations.

~2! A 434-matrix form of the linearized equation which has only a first order derivative int is
introduced to replace its original 232-matrix form with a second derivative int;

~3! The two-component squared Jost functions are transformed into four-component one
four-component adjoint functions and the inner product are introduced. The orthogo
relations are then derived.

~4! The expansion of the unity in terms of the four-component squared Jost functions is im
~5! The secularity conditions are found and the adiabatic solution can be determined with
~6! Finally, the effect of damping is discussed as an example.

A brief review of the inverse scattering transform for~1! is given in the Appendix.2,6

II. THE LINEARIZED EQUATION

Suppose8–11

v5ua1eq, ~4!

whereua is the so-called adiabatic solution which has the same functional form as that of the
soliton solution but the parameters involved may depend ont of the order ofe, which will be
discussed in detail later. Hereeq is the remaining term up to the order ofe. Substitution of~4! into
~2! yields

iqx1qtt14uuu2q12u2q̄5R@u#, ~5!

R@u#5r @u#2s@u#, s@u#5
1

e
$ iux1utt12uuu2u%. ~6!

Equation~5! is an equation up to the order ofe, u in the left hand side and inr @u# is the exact
solution, andu in s@u# is the adiabatic solution. Here the bars denote complex conjugates.

Equation~5! and its complex conjugate can be combined as

S i ]x1] t
214uuu2 22u2

22ū2 2 i ]x1] t
214uuu2D S q

2q̄D5S R

2R̄D . ~7!

The initial condition~3! turns to

q~x,t50!50, qt~x,t50!50. ~8!

To find the perturbed solution of~2! under the initial condition~3! is equivalent to solving~7!
under the initial condition~8!.

In order to solve~7!, we need to find a complete set of solutions for its homogeneous ver
i.e., ~7! with a vanishing right hand side. From~A2! and ~A3!, the Lax equations of~1!, we
obtain8–11

S i ]x1] t
214uuu2 22u2

22ū2 2 i ]x1] t
214uuu2D W5S 0

0D . ~9!
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Here

W5S w1
2

w2
2D , ~10!

in which w1 andw2 are components of a solution of the Lax equations,w, which can be chosen
as those Jost functions,h(t,l)21c(x,l), h(t,l)c̃(x,l), h(t,l)f(x,l), or h(t,l)21f̃(x,l) ~see
the Appendix!. That is, like the case of the SNLS equation,8 solutions of the homogeneous versio
of ~7! can be constructed with those so-called squared Jost functionsW. We denoteW5w+w.

III. A TRICK TO TREAT THE SECOND ORDER DERIVATIVE IN T

If one can find a complete set of the squared Jost functions, solutions of~7! can be expanded
in the complete set. However, owing to the fact that~7! and~9! have second derivatives int, like
the case of sine-Gordon equation,10 it is more convenient to transform them into an equat
having only a first derivative int. Thus, equivalently, we rewrite~7! as

S 2 i ] t 0 1 0

0 2 i ] t 0 1

i ]x14uuu2 22u2 2 i ] t 0

22ū2 2 i ]x14uuu2 0 2 i ] t

D S q
2q̄
iqt

2 i q̄ t

D 5S 0
0
R

2R̄

D . ~11!

Similarly, ~9! is transformed to

S 2 i ] t 0 1 0

0 2 i ] t 0 1

i ]x14uuu2 22u2 2 i ] t 0

22ū2 2 i ]x14uuu2 0 2 i ] t

D S W1

W2

iW1t

iW2t

D 5S 0
0
0
0
D . ~12!

Introducing C(x,l)5c(x,l)+c(x,l), C̃(x,l)5c̃(x,l)+c̃(x,l), F(x,l)5f(x,l)
+f(x,l) andF̃(x,l)5f̃(x,l)+f̃(x,l), takingW5h(t,l)22C(x,l), for example,~12! becomes

S 2 i ] t 0 1 0

0 2 i ] t 0 1

i ]x14uuu2 22u2 2 i ] t 0

22ū2 2 i ]x14uuu2 0 2 i ] t

D S C~x,l!1

C~x,l!2

C~x,l!3

C~x,l!4

D 52lS C~x,l!1

C~x,l!2

C~x,l!3

C~x,l!4

D , ~13!

where

C~x,l!5~C~x,l!1 C~x,l!2 C~x,l!3 C~x,l!4!T ~14!

is a four-component squared Jost function with the additional third and fourth components

C~x,l!35 i2~ ilc~x,l!12uc~x,l!2!c~x,l!1 ,
~15!

C~x,l!45 i2~2 ilc~x,l!21ūc~x,l!1!c~x,l!2 .

Set
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2L ~u!5S 0 0 1 0

0 0 0 1

i ]x14uuu2 22u2 0 0

22ū2 2 i ]x14uuu2 0 0

D . ~16!

Equation~15! becomes

$2 i ] t2L ~u!%C~x,l!52lC~x,l!. ~17!

It is obvious that atln , one of the zeros ofa(l),

$2 i ] t2L ~u!%C~x,ln!52lnC~x,ln!, ~18!

and

$2 i ] t2L ~u!%Ċ~x,ln!52lnĊ~x,ln!12C~x,ln!, ~19!

whereĊ(x,ln)5 (d/dl) C(x,l)ul5ln
.

Similarly, we have equations for other four-component squared Jost functions,F(x,l),
C̃(x,l) andF̃(x,l), similar to ~17!–~19!.

Introducing

q5~q2q̄iqt2 i q̄ t!
T, R5~0 0 R 2R̄!T, ~20!

~11! can be rewritten as

$2 i ] t2L ~u!%q5R. ~21!

IV. ADJOINT FUNCTIONS AND INNER PRODUCTS

We now introduce adjoint functions and inner products. The essential point is that the
product of a squared Jost function with its adjoint function is proportional to thed(l2l8)
function in the continuous spectrum.8–11 Definition of the inner product is given by

^C~l8!uC~l!&5E
2`

`

dx C~x,l8!AC~x,l!. ~22!

We choose the adjoint function to be

C~x,l!A5~2F~x,l!42F~x,l!3F~x,l!2F~x,l!1!, ~23!

whereF3 andF4 are as in~15!, replacing components ofc with those off.
From the Lax equation~A2! we obtain

d

dx
W@w~x,l8!,c~x,l!#52 i2~l822l2!~w~x,l8!1c~x,l!21w~x,l8!2c~x,l!1!12~l82l!

3~uw~x,l8!2c~x,l!21ūw~x,l8!1c~x,l!1!. ~24!

where W@¯# is the Wronskian determinant.2,5 From ~14! and ~23! we have

C~x,l8!AC~x,l!5@2~l81l!~w1~x,l8!c2~x,l!1w2~x,l8!c1~x,l!!1 i2uw2~x,l8!c2~x,l!

1 i2ūw1~x,l8!c1~x,l!#@w1~x,l8!c2~x,l!2w2~x,l8!c1~x,l!#. ~25!
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Hence we find

d

dx
$W@w~x,l8!,c~x,l!#%252 i2~l82l!C~x,l8!AC~x,l!. ~26!

Therefore, the inner product is

^C~l8!uC~l!&5 lim
L→`

1

2 i2~l82l!
$W@w~x,l8!,c~x,l!#%2ux52L

x5L , ~27!

wherel andl8 should be considered as those approaching the real or the imaginary axis fro
first or the third quadrant. The limit is considered as the Cauchy principal value

lim
L→`

P
1

2 i2~l82l!
e2 i4(l822l2)L5pld~l22l82!. ~28!

Hence the values of~27! at the upper and at the lower limits can be found. We thus find

^C~l8!uC~l!&5pa~l!22ld~l22l82!. ~29!

It is obvious that

^C~lm!uC~ln!&50. ~30!

Applying the operatord2/dl2 to ~26!, and settingl5l85ln , we obtain

d2

dl2

d

dx
$W@w~x,l8!,c~x,l!#%2

l5l85ln
u5 i4C~x,ln!AĊ~x,ln!. ~31!

Integration leads to

^C~lm!uĊ~ln!&5 i 1
2ȧ~ln!2dmn . ~32!

Applying the operator$ d3/dl3 13d/dl8d2/dl2 % to ~27!, settingl5l85ln , upon integra-
tion we have

H d3

dl3 13
d

dl8

d2

dl2J $W@w~x,l8!,c~x,l!#%2ul5l85ln
u2L
L 5 i12̂ Ċ~ln!uĊ~ln!&. ~33!

Finally we obtain

^Ċ~lm!uĊ~ln!&5 i 1
2ȧ~ln!ä~ln!dmn . ~34!

Having definedC̃(x,l)’s adjoint function in a similar way, we also have

^C̃~l8!uC̃~l!&52pã~l!22ld~l22l82!, ~35!

^Ċ̃~ l̄m!uC̃~ l̄n!&5^C̃~ l̄m!uĊ̃~ l̄n!&5 i 1
2ȧ̃~ l̄n!2dmn , ~36!

and

^Ċ̃~ l̄m!uĊ̃~ l̄n!&5 i 1
2ȧ̃~ l̄n! ä̃~ l̄n!dmn . ~37!

Now we have the desired orthogonality relations.
                                                                                                                



ation,

n

2936 J. Math. Phys., Vol. 41, No. 5, May 2000 Huang et al.

                    
V. THE EXPANSION OF THE UNITY

If the above squared Jost functions form a complete set, like the case of the SNLS equ8

a stateq(x) can be expanded in terms of them:

q~x!5
1

p G
dl$ f ~l!C~x,l!1 f̃ ~l!C̃~x,l!%1(

n
$ f nC~x,ln!1gnĊ~x,ln!%1(

n
$ f̃ nC̃~ l̄n!

1g̃nĊ̃~ l̄n!%. ~38!

By using the orthogonality relations we obtain

f ~l!5
1

a~l!2 ^C~l!uq&, gn52 i
2

ȧ~ln!2 ^C~ln!uq& ~39!

and

f n52 i
2

ȧ~ln!2 ^Ċ~ln!uq&1 i
2ä~ln!

ȧ~ln!3 ^C~ln!uq&, ~40!

and similarly

f̃ ~l!52
1

ã~l!2
^C̃~l!uq&, g̃n52 i

2

ȧ̃~ l̄n!2
^C̃~ l̄n!uq& ~41!

and

f̃ n52 i
2

ȧ̃~ l̄n!2
^Ċ̃~ l̄n!uq&1 i

2ä̃~ l̄n!

ȧ̃~ l̄n!3
^C̃~ l̄n!uq&. ~42!

Substituting them into~38!, we obtain

d~x2y!5
1

p
E

G
dl

1

a~l!2
C~x,l!C~y,l!A1(

n
i
2ä~ln!

ȧ~ln!3
C~x,ln!C~y,ln!A

2(
n

i
2

ȧ~ln!2
$Ċ~x,ln!C~y,ln!A1C~x,ln!Ċ~y,ln!A%

2
1

p
E

G
dl

1

ã~l!2
C̃~x,l!C̃~y,l!A1(

n
i
2ä̃~ l̄n!

ȧ̃~ l̄n!
C̃~x,l̄n!C̃~y,l̄n!A

2(
n

i
2

ȧ̃~ l̄n!
$Ċ̃~x,l̄n!C̃~y,l̄n!A1C̃~x,l̄n!Ċ̃~y,l̄n!A%. ~43!

This is the expansion of the unity in terms of the squared Jost functions.

VI. SECULARITY CONDITIONS

Supposeq in ~21! can be expanded in the form of~38! ~the coefficients may be dependent o
t). Substituting it into~21! and performing the inner product withC(x,l)A, C(x,lm)A and
Ċ(x,lm)A from the left, respectively, by using the orthogonality relations, we obtain

$2 i f t~l!12l f ~l!%a~l!25^C~l!uR&, ~44!
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$2 ignt12lngn% i
1
2ȧ~ln!25^C~ln!uR&, ~45!

and

$2 i f nt12lnf n12gn% i
1
2ȧ~ln!21$2 ignt12lngn%

1
2ȧ~ln!ä~ln!5^Ċ~ln!uR&. ~46!

Similarly, we also have

2$2 i f̃ t~l!22l f̃ ~x,l!%ã~l!25^C̃~l!uR&, ~47!

$2 i g̃nt22l̄ng̃n% i
1
2ȧ̃~ l̄n!25^C̃~ l̄n!uR&, ~48!

and

$2 i f̃ nt22l̄nf̃ n22g̃n% i
1
2ȧ̃~ l̄n!21$2 i g̃nt22l̄ng̃n% i

1
2ȧ̃~ l̄n! ä̃~ l̄n!5^Ċ̃~ l̄n!uR&. ~49!

We can see thatgn(t), f n(t), g̃n(t) and f̃ n(t), the expansion coefficients of the discre
spectrum, may tend to infinity ast grows, unless the right hand sides of those relevant equa
above vanish. In order to eliminate such leading secularities, modulations of those para
characterizing soliton solutions must be so selected that the full sourceR@u# is orthogonal to the
entire discrete subspace. Explicitly, we demand8–11

^C~ln!uR&50, ^Ċ~ln!uR&50, ~50!

and

^C̃~ l̄n!uR&50, ^Ċ̃~ l̄n!uR&50. ~51!

It is easy to show that~51! are just complex conjugates of~50! and are not independent of them
The so-called secularity conditions~50! become

E
2`

`

dx$F2~x,ln!R@u#2F1~x,ln!R@u#%50, ~52!

and

E
2`

`

dx$Ḟ2~x,ln!R@u#2Ḟ1~x,ln!R@u#%50. ~53!

They give 4N real conditions for theN-soliton case. In theN-soliton case, we have just 4N
parameters. By means of these secularity conditions we can determine the time dependenc
parameters up to the order ofe in the adiabatic solution. After determining the adiabatic soluti
from ~44! we can determinef (l) as a function oft. Finally, we can findq.

VII. A SINGLE SOLITON CASE

The secularity conditions~52! and ~53! can be rewritten as

S15R1 ~54!

and

S25R2 , ~55!

with
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S15E
2`

`

dx$F2~X,l1!ei2ds@u#2F1~X,l1!e2 i2ds@u#%, ~56!

S25E
2`

`

dx$Ḟ2~X,l1!ei2ds@u#2Ḟ1~X,l1!e2 i2ds@u#%, ~57!

andR1 andR2 are obtained simply by replacings@u# with r @u# from ~56! and~57!, respectively.
For the single soliton solution,

u52n sechXe2 iw, ~58!

where the parameterl15m1 in. We assumel1 lies within the first quadrant without loss o
generality, hencem.0 andn.0:

X52n@2t14m~x2x1!#, w522mt14~m22n2!x1w0 , ~59!

wherex1 andw0 are real constants.
For the adiabatic solution,m,n,x1 ,w0 may be dependent ont of the order ofe. We write

X58mnz, z5x2 x̂,
d

dt
x̂5

1

4m
, ~60!

and

w54~m22n2!z12d,
d

dt
2d52

m21n2

m
. ~61!

Simple algebra yields

s@u1#516nnt sechXthXe2 iw28n2@8~nm!tz28~nm!x̂t#@sechX22 sech3 X#e2 iw

18nm@4~m22n2!tz24~m22n2!x̂t12dt# sechXe2 iw1 i8~nm!tsechXe2 iw

2 i8n2@4~m22n2!tz24~m22n2!x̂t12dt# sechXthXe2 iw

2 i8nm@8~nm!tz28~nm!x̂t# sechXthXe2 iw. ~62!

Except unimportant factors~see Appendix! which can be dropped from both sides of~54! and
~55!, F(x,l1) andḞ(x,l1) can be replaced by

F~X,l1!e2 i2ds3, Ḟ~X,l1!e2 i2ds3, ~63!

respectively, where

F~X,l1!5 1
4 sech2 Xe2 i4l̄1

2zs3, ~64!

and

Ḟ~X,l1!52 i2l1z sech2 Xei4l̄1
2zs32 i

1

2n
sechXei4(m22n2)zS 1

0D . ~65!

We obtain

S15
1

2
mtS 1

n
2

n

3m2D1 i
1

2
ntS 1

n
1

n

m2D ~66!
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and

S254l1H S 3

2
2

n2

2m2 1 i
m

2n
2 i

5n

6m D x̂t2S 1

4m2 1 i
1

4mn D dtJ 2 i x̂tH 8n

3
24

m2

n
14nJ 2 i

2

n
dt .

~67!

VIII. EFFECT OF DAMPING

The perturbation term for damping is2 iGu1 , andG can be chosen as the small parametee.
That is,

r @u1#52 iu152 i2n sechXe2 iw. ~68!

We have

R152 inE
2`

`

dzsech2 X52 i
1

4m
~69!

and

R250. ~70!

The secularity conditions~54! and ~55! become

mt50,
m21n2

m2n
nt52

1

4m
, ~71!

and

x̂t50, dt50. ~72!

Hence, up to the order ofe, we have

d

dt
m50,

m21n2

m2n

d

dt
n52G

1

4m
, ~73!

and

d

dt
x̂52G

1

4m
,

d

dt
d5

m21n2

2m
. ~74!

Equations~73! and ~74! yield

m5m0 , logS n

n0
D1

1

2m0
2 ~n22n0

2!52G
1

4m
t, ~75!

and

x̂5x12G
1

4m
t, d5d01

1

2
mt1

1

2m E
0

t

dtn2. ~76!

Herem0 , n0 , x1 andd0 are constants.
After determination of the adiabatic solution, the right hand side of~47! is given, and we can

find f (t,l) and thenq(x,t). Finally, we obtainq(x,t).
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IX. DISCUSSION

We have developed a direct perturbation theory for the perturbed UNLS equation. Beca
the second order derivative int, the perturbation theory is essentially different from that for
perturbed SNLS equation involving only the first derivative int.

In a single soliton case, by substituting the explicit expressions of the Jost solutions in
right hand side of~43!, like the case of dark solitons of SNLS,12 we can see that it is indeed equ
to d(x2y). Hence the completeness relation~43! is shown in this case. However, for the mult
soliton case the explicit expressions of the Jost solutions are very complicated so that it is
sible to substitute them into the right hand side of~43! and to show it is equal tod(x2y). This
problem will be discussed separately.
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APPENDIX: A REVIEW OF THE INVERSE SCATTERING TRANSFORM FOR THE UNLS
EQUATION

We review the inverse scattering transform2,6 for the unperturbed equation~1! with the bound-
ary condition

u→0, as uxu→`. ~A1!

Two Lax equations for the UNLS equation are obtained from those for the SNLS equatio2 by
interchanging their roles. Starting from the first Lax equation

]xw~x,t,l!5S 2 i2l21uuu2 2lu2 iut

22lū2 i ū t i2l22uuu2Dw~x,t,l!, ~A2!

and by using the boundary conditions~A1!, the analyticity of the Jost functions can be found a
the equation of IST can be derived. Then, by using the second Lax equation,

] tw~x,t,l!5S il 2u

ū 2 il Dw~x,t,l!, ~A3!

the t dependence of the scattering data can be determined.
From the Lax equation~A2! and the boundary condition~A1!, the asymptotic solution in the

limit of uxu→` of ~A2! is

E~x,l!5e2 i2l2xs3. ~A4!

In comparison with the asymptotic solution for the SNLS equation,e2 ilxs3, one can see that th
parameter in the exponential,l, is replaced by 2l2 in the UNLS case. This leads to the followo
ing.

~1! The domain of definition of the asymptotic solution for the SNLS equation is for real,
namely, on the real axis in the complexl-plane. The domain of definition of the asymptot
solution for the UNLS equation is for reall2, namely, on the real axis in the complexl-plane
wherel2.0, as well as on the imaginary axis wherel2,0.

~2! Jost functions are defined by

~ c̃ c!~x,l!→E~x,l! as x→`, ~A5!
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and

~w w̃!~x,l!→E~x,l! as x→2`; ~A6!

the monodromy matrix is introduced as well:

~ww̃!~x,l!5~ c̃c!~x,l!S a~l! 2b̃~l!

b~l! ã~l!
D , ~A7!

similarly in both cases. In the SNLS casec(x,l), w(x,l) anda(l) are analytic in the upper hal
plane of complexl-plane, andc̃(x,l), w̃(x,l) and ã(l) are analytic in the lower plane. More
over,b(l) and b̃(l) cannot be analytically continued out of the real axis. The zeros ofa(l) lie
in the upper plane. On the other hand, in the UNLS case,c(x,l), w(x,l) anda(l) are analytic
in the first and third quadrants, andc̃(x,l), w̃(x,l) andã(l) are analytic in the second and four
quadrants. Moreover,b(l) and b̃(l) cannot be analytically continued out of the real and
imaginary axes. The zeros ofa(l) lie in the first or the third quadrants.

~3! By using the usual procedure, we can obtain the equation of inverse scattering tran
of Zakharov-Shabat type,

c̃~x,l!5$E
•2~x,l!1R~x,l!1J~x,l!%e2 i2l2x, ~A8!

whereE
•25(0 ei2l2x)T,

R~x,l!5 i(
n

1

l2ln
cnc~x,ln!ei2ln

2x, ~A9!

J~x,l!5
1

2p E
G
dl8

1

l2l8
r ~l8!c~x,l8!ei2l82x. ~A10!

Herecn and r (l8) are the usual symbols.2 The path of integration is

G5~0,1`!ø~0,2`!ø~ i`,i0!ø~2 i`,i0!. ~A11!

~4! By using the Lax equation~6!, we can obtain thet dependence of scattering data in~12!,
Simply, the Jost functionsc(x,l), etc., which are determined by only one of the Lax equatio
can be extended to those to satisfy simultaneously the two Lax equations. For example,

h~ t,l!c̃~x,l!, h~ t,l!21c~x,l!, h~ t,l!5eilt. ~A12!

The scattering data are replaced by

r ~l!→r ~l!h~ t,l!22, cn→cnh~ t,ln!22, ~A13!

etc.
The soliton solutions correspond to a reflectionless potential and in this case the cont

spectrum disappears. The poles of the transmission coefficienta(l)21 lie within the first or the
third quadrants. However, it has been shown13 that the forms of the soliton solutions depend on t
absolute values of the imaginary part of these poles and the values of the real parts. Th
soliton solutions of the UNLS equation can be obtained from those of the SNLS equatio
simply interchangingx and t.

1T. Yajima and M. Wadati, J. Phys. Soc. Jpn.59, 41 ~1990!.
2T. Yajima and M. Wadati, J. Phys. Soc. Jpn.59, 3237~1990!.
3T. Iizuka and M. Wadati, J. Phys. Soc. Jpn.59, 3182~1990!.
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6Z.-D. Chen, X.-J. Chen, and N.-N. Huang, Commun. Theor. Phys.~to be published!
7Y. S. Kivshar and B. A. Malomed, Rev. Mod. Phys.61, 794 ~1989! and references therein.
8D. J. Kaup, J. Math. Anal. Appl.54, 489 ~1976!.
9J. P. Keener and D. W. McLaughlin, J. Math. Phys.18, 2008~1977!.

10D. W. McLaughlin and A. C. Scott, Phys. Rev. A18, 1652~1978!.
11R. L. Herman, J. Phys. A23, 1063~1990!.
12X.-J. Chen, Z.-D. Chen, and N.-N. Huang, J. Phys. A31, 6929~1998!.
13N.-N. Huang and G.-J. Liao, Phys. Lett. A154, 373 ~1991!.
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In the present paper we consider a system of degenerate Davey–Stewartson equa-
tions. We prove the global existence of weak solutions and blow-up of solutions for
appropriate initial data. ©2000 American Institute of Physics.
@S0022-2488~00!02904-2#

I. INTRODUCTION

In this paper we study the following degenerate Davey–Stewartson equations:

ic t1cxx5xc, ~1.1!

xy5ucux
2 ~1.2!

with an initial condition

c~0,x,y!5c0~x,y!, ~x,y!PR2. ~1.3!

At infinity we assume that

lim
uxu→`

c~ t,x,y!50, lim
y→2`

x~ t,x,y!50. ~1.4!

In Ref. 1 Davey and Stewartson derived a system that describes quasimonochromati
pockets on the surface of a shallow liquid, which is now often called Davey–Stewartson
tions,

iut1duxx1uyy5auuu2u1buw, ~1.5!

wxx1mwyy5~ uuu2!xx , ~1.6!

where m is a positive constant. Later similar equations were also derived in Ref. 2 by ta
account of the effect of surface tension~or capillary!. In long-wave–short-wave resonance, wh
the group velocity of the short~capillary! wave matches the phase velocity of the long~gravity!
wave, one leads to~1.1! and~1.2!.2 In this case that the capillary effect is important,m can become

a!Author to whom correspondence should be addressed. Electronic mail: liys@public.wh.hb.cn
29430022-2488/2000/41(5)/2943/14/$17.00 © 2000 American Institute of Physics
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negative. By searching completely integrable systems that generalize the 1D nonlinear¨-
dinger equation, Novikov, Manakov, Pitaevskii, and Zakharov derived the Davey–Stewa
equations of the form,3

ic t1D1c1vc50, ~1.7!

D2v57D1ucu2, ~1.8!

whereD1 ,D2 are differential operators,

D15a2
]2

]y2 12~ l 2a!a
]2

]x]y
1~ l 222la2a!

]2

]x2 ,

D25a2
]2

]y2 1a~2l 11!
]2

]x]y
1 l ~ l 11!

]2

]x2 .

In particular, whenl 5a52 1
2,

D15a2
]2

]y2 1
1

4

]2

]x2 , D25a2
]2

]y22
1

4

]2

]x2 .

If we let u572ucu21v, these equations reduce to the usual Davey–Stewartson of the elli
hyperbolic-type. A special case is thata50,D1 becomes degenerate, and

D15S a
]

]y
1 l

]

]xD 2

,
]2

]j2 ,

D25S a
]

]y
1 l

]

]xD S a
]

]y
1~ l 11!

]

]xD, ]2

]j]h
,

~1.7! and ~1.8! reduce to the degenerate Davey–Stewartson that is similar to~1.1! and ~1.2!,

ic t1cjj1uc50, ~1.9!

uh572~ ucu2!j . ~1.10!

~1.1! and~1.2! are of the inverse scattering type.4,5 It finds also application in plasma physics.3,6 If
]/]y5c]/]x, the system reduces to the nonlinear Schro¨dinger equation.

Usually the Davey–Stewartson equations are classified as elliptic–elliptic, ellip
hyperbolic, hyperbolic–elliptic, and hyperbolic–hyperbolic types according to the respective
of ~d, m!: ~1, 1!, ~1, 2!, ~2, 1!, ~2, 2!. Due to their abundant physical and mathemati
properties, in recent years Davey–Stewartson equations~1.5! and~1.6! have drawn much attention
of many physicists and mathematicians. The solitons, lump solutions, the local and globa
tence, blow-up and decay of solutions, existence of solitary and standing waves and their s
and instability, etc., have been quite extensively studied by many authors, such as Ank
Freeman,7 Ablowitz and Fokas,8 Linares and Ponce,9 Ghidaglia and Saut,10 Tsutsumi,11 Hayashi
and Saut,12 Cipolatti,13,14 Ohta,15,16 Hayashi,17 Hayashi and Hirata,18 etc., and references therein

In the above mentioned papers the principal operatorD1 in ~1.7! is either elliptic or hyper-
bolic, i.e., nondegenerate. However, whena50, its dispersion relation (v5k1

2) is degenerate
because a component of the group velocity is zero (]v/]k250). Thus in seeking for the solution
difficulties arise, an explicit one is the lacking the regularity of the solutions in they-coordinate,
and thus little results are known. For the existence of solutions of system~1.1! and~1.2!, we have
only Ref. 19, in which the equations are more general, while the solutions are limited in the
of analytic functions.
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In this paper we adapt the method of Ref. 10, make use of a regularized system to pro
global existence of weak solution of~1.1! and ~1.2! for suitably small initial data. We use th
method of Ref. 20 and show that regular solutions of~1.1! and~1.2! will blow up in finite time for
appropriate initial data under an additional condition at infinity.

We remark that, in general the condition onx at infinity is imposed as

lim
y→2`

x5g~ t,x! ~a given real function!.

For some kinds ofg, for examples, forx(t,x,2`)5g(x)5g̃8(x)>0 with g̃PW1,̀ (R), the
equationx5wx ~see the formula below~2.4!! will be replaced byx5wx1g(x), an additional
linear termgc will be added into the right-hand side of~2.5! and thus into~2.9!. Accordingly an
integral*R2gucu2dxdywill be added into conservation laws~2.2!8 and~2.13!, and the existence o
weak solutins can be obtained in the same procedures. However, to assure the blow-up o
regular solutions, we have to assume thatx vanishes asuyu→`. We remark also that the unique
ness of the solution is still open.

Throughout this paper,Wm,p(R2),Hs(R2) are the usual Sobolev spaces, their norms are w
ten asi•iWm,p and i•iHs respectively.i•ip denotes the norm ofLp(R2)(1<p<`). C is the
generic constant.

II. EXISTENCE OF GLOBAL WEAK SOLUTIONS

In this section we first introduce a transformationw of x and turn the system of Eqs.~1.1! and
~1.2! into a nonlocal nonlinear degenerate Schro¨dinger equation ofc, then construct a regularize
equation force andwe and prove its global existence of solutions. In passing limits we make s
special efforts to show the strong convergence ofwe in L`(R1;L loc

p (R2)) and ce in
L2(0,T;L2(R2))(T.0) that ensures the convergence of the nonlocal nonlinear term, thus
the existence of weak solutions of the original systems~1.1! and ~1.2!.

Definition 2.1: A pair of functionsc, x are called weak solutions of~1.1!–~1.4! if

H c,cxPL`~R1;L2~R2!!,

xPL`~R1;L loc
2 ~R2!!, xyPL`~R1;L1~R2!!

and if they satisfy~1.1! in the sense of L`(R1;H21(R2)) and ~1.2! in the sense of
L`(R1;L1(R2)).

Remark: From Definition 2.1, if c, x are weak solutions of~1.1!–~1.4!, then c t

PL`(R1;H21(R2)), thuscPC(R1;H21(R2)). Therefore initial condition~1.3! makes sense.
It is easy to see that~1.1! and ~1.2! have conservation laws,

E
R2

ucu2dxdy5E
R2

uc0u2dxdy, ~2.1!

E~ t !,E
R2

S ucxu21
1

2
xucu2Ddxdy5E~0!. ~2.2!

We note that the conservation~2.1! is rigorous~see Lemma 2.8 below for its derivation!, while
~2.2! is formal and is satisfied at least by regular enough solutions under an additional condi
infinity,

lim
uxu,uyu→`

x50. ~1.48!

We multiply both sides of~1.1! by c̄ t , integrate them overR2 and then take the real parts, no
that
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ReE
R2

xcc̄ tdxdy5
1

2 ER2
xucu t

2dxdy5
1

2

d

dt ER2
xucu2dxdy2

1

2 ER2
x tucu2dxdy,

E
R2

x tucu2dxdy52E
R2

xytS E
2`

y

ucu2dh D dxdy

52E
R2

~ ucux
2! tS E

2`

y

ucu2dh D dxdy

5E
R2

~ ucu2! tS E
2`

y

ucu2dh D
x

dxdy5E
R2

xucu t
2dxdy,

ReE
R2

cxxc̄ tdxdy52
1

2

d

dt ER2
ucxu2dxdy,

we get~2.2!. We remark also that both the conservation laws~2.1! and~2.2! are important for the
proof of the blow-up result in Sec. III. However,~2.2! is not explicitly used in the deduction o
existence of weak solutions.

The main result of this section is
Theorem 2.2:For c0PL2(R2) with c0xPL2(R2) satisfying

E
R2

uc0u2dxdy, 1
2, ~2.3!

then (1.1)–(1.4) have a global weak solution.
Let

w5E
2`

y

uc~ t,x,h!u2dh, ~2.4!

then

cy5uc~ t,x,y!u2 wx5E
2`

y

uc~ t,x,h!ux
2dh5x,

and ~1.1! and ~1.2! are equivalently changed into

ic t1cxx5wxc, ~2.5!

wxy5ucux
2. ~2.6!

At infinity c vanishes andw satisfies the homogeneous radiation condition

lim
x→2`

w50, lim
y→2`

w50.

This is consistent with~1.4!.
We note that the conservation~2.2! is exactly

E~ t !5E
R2

S ucxu21
1

2
wxwyDdxdy5E~0!. ~2.28!

From ~2.4!, w can be expressed as
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w5E
2`

y E
2`

x

uc~ t,j,h!uj
2djdh5E

R2
H~x2j!H~y2h!uc~ t,j,h!j

2djdh,

whereH(•) is the Heaviside function. This leads to the definition of an operatorK.
Let K(x,y)5H(x)H(y). For a given functionf PL1(R2), define an operatorK by

f~x,y!5K~ f !,K* f ~x,y!5E
2`

x E
2`

y

f ~j,h!djdh.

Then we have
Lemma 2.3: (i) is a bounded linear operator from L1(R2) into L`(R2). Moreover, f

PC(R2) and

ifi`<i f i1 . ~2.7!

(ii) *R2ufxfyudxdy<i f i1
2.

(iii) If f e⇀ f weakly in L1(R2) ase→0, then K( f e)→K( f ) pointwise in(x,y)PR2, there-
fore K( f e)→K( f ) in Lloc

` (R2).
Proof: ~i! Note thatiK(•,•)i`51, by Young inequality we have~2.7!.
~ii ! Since

fx5E
2`

y

f ~x,h!dh, fy5E
2`

x

f ~j,y!dj,

we have

fxfy5E
2`

x E
2`

y

f ~j,y! f ~x,h!djdh,

and thus

E
R2

ufxfyudxdy<E
R2
E

R2
u f ~j,y! f ~x,h!udjdhdxdy5S E

R2
u f udxdyD 2

. ~2.8!

~iii ! Sincef e→ f weakly inL1(R2), $ f e% is bounded inL1(R2). Due to~i!, K( f e) is bounded
in L`(R2). For any (x,y)PR2, K(x2•,y2•)PL`(R2), by dominated convergence theorem w
have

K~ f e!2K~ f !5E
R2

K~x2j,y2h!~ f e~j,h!2 f ~j,h!!djdh→0

ase→0. ThereforeK( f e)→K( f ) pointwise and thus we have~iii !.
Using the operatorK, we can expressw as w5K(]/]xucu2) and write ~2.5! and ~2.6! as a

nonlocal nonlinear Schro¨dinger equation,

ic t1cxx5c
]

]x
KS ]

]x
ucu2D ,

c~0,x,y!5c0~x,y!.

~2.9!
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A. Regularized equations

Let e.0 be given. We consider the following regularized equation:

ic t
e1~11eD2!21cxx

e 5~11eD2!21S ce
]

]x
KS ]

]x
uceu2D D ,

ce~0,x,y!5c0
e~x,y!,

~2.10!

whereD5]x
21]y

2. We shall prove the existence of global solutions to~2.10! and then pass the
limit as e→0 to obtain the solutions of~2.9!.

We write ~2.10! in an abstract form

c t
e5Aec

e2 iF e~ce!, ce~0!5c0
e , ~2.11!

whereAe5 i (11eD2)21(]2/]x2), Fe(v)5(11eD2)21(v(]/]x)K((]/]x)uvu2)).
It is easy to see that, for any fixede.0, iAe52(11eD2)21(]2/]x2) is a densely defined

self-adjoint operator onL2(R2) with the domain of definitionH2(R2). It has a linear bounded
extension2(]2/]x2)(11eD2)21. Thus Ae generates a unitary groupS(t)5eAet on L2(R2)
which leavesH2(R2) invariant.21 MoreoverS(t) is also a unitary group onH2(R2). To prove the
local existence of solutions, we shall show thatFe is locally Lipschitz continuous onH2(R2).
Given v1 ,v2PH2(R2) with iv j iH2<R, j 51,2. Denotewj5K(uv j ux

2). Note thatuv j ux
2PL1(R2)

and iuv j ux
2i1<2R2,

iwj i`<2R2, iw12w2i`<CRiv12v2iH2.

Since

Fe~v1!2Fe~v2!5~11eD2!21~v1w1x2v2w2x!

5~11eD2!21~v1w12v2w2!x2~11eD2!21~v1xw12v2xw2!,

while

i~11eD2!21~v1w12v2w2!xiH2<Cei~11eD2!21/2~v1w12v2w2!xi2

<Ceiv1w12v2w2i2

<Ceiw1i`iv12v2i21Ceiv2i2iw12w2i`

<CeR
2iv12v2iH2,

similarly,

i~11eD2!21~v1xw12v2xw2!iH2<CeR
2iv12v2iH2,

thus we have

iFe~v1!2Fe~v2!iH2<CR2iv12v2iH2.

Therefore, for anyc0
ePH2(R2), ~2.11! has a unique local solution

ce~ t !PC~@0,T0#;H2~R2!!.

To show that the solution of~2.10! ~or ~2.11!! is global, we need somea priori estimates.
Similar to the system of Eqs.~2.5! and ~2.6!, there are two conservation laws to~2.10!,

Ge~ t !,E
R2

~ uce~ t !u21euDce~ t !u2!dxdy5Ge~0!, ~2.12!
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Ee~ t !,E
R2

S ucx
eu21

1

2
wx

ewy
e Ddxdy5Ee~0!, ~2.13!

wherewe5K((]/]x)uceu2). Thereforeice(t)iH2 is bounded for allt>0 and thus we have
Theorem 2.4:For any c0

ePH2(R2), (2.10) admits a unique global solutionce(t) satisfying
(2.12) and (2.13).

B. Passing limits

Now we are going to pass limits ofce andwe5K(]/]xuceu2) ase→0. Forc0PL2(R2), we
takec0

e5(11e1/4D2)21c0PH2(R2), then

iw0
e i2<ic0i2 , ic0x

e i2<ic0xi2 , eiDc0
e i2<Aeic0i2 . ~2.14!

The solutionce(t) of ~2.10! associated with the initial functionc0
e satisfies~2.12! and ~2.13!.

Assume here and in the sequel that~2.3! holds, i.e.,d5ic0i2
2, 1

2. We can takee05(1
22d)2/8d2.0. Then for any 0,e<e0 , k,2(11Ae)d<k0,2(11Ae0)d,1. By ~2.14!,

Ge~0!5ic0
e i2

21eiDc0
e i2

2<~11Ae0!ic0i2
2.

From ~2.12!,

ice~ t !i2
2<Ge~0!<~11Ae0!ic0i2

25
k0

2
. ~2.15!

Sincewe5K(uceux
2), by ~2.8!,

1

2 ER2
uwx

euuwy
eudxdy<

1

2 S E
R2

U ]

]x
uceu2UdxdyD 2

<2ice~ t !i2
2icx

e~ t !i2
2<kicx

e~ t !i2
2.

Inserting this inequality into~2.13! we have

E
R2

ucx
e~ t !u2dxdy<

Ee~0!

~12k0!
<

112d

12k0
ic0xi2

2, ~2.16!

where because

Ee~0!5E
R2

uc0xu2dxdy1
1

2 ER2
w0x

e w0y
e dxdy<ic0xi2

2~112ic0i2
2!.

Therefore we obtain the boundedness oficei2
2 and icx

ei2
2. Thus from~2.7!

iwei`< I ]

]x
uceu2I

1

<2icei2icx
ei2<C, ~2.17!

whereC5A@2k0(112d)#/(12k0)ic0xi2 . Since for anywPH2(R2),

^wx
ece,w&52E

R2
we~cx

ew̄1cew̄x!dxdy<iwei`~ icx
ei2iwi21icei2iwxi2!,

where^•, •& is the dual product ofH21(R2) andH1(R2), we see that

iwx
eceiH21<iwei`~ iwei21icx

ei2!<C. ~2.18!

Therefore, from Eq.~2.10!,
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ic t
e~ t !iH21<C, ;t>0. ~2.19!

From ~2.15!–~2.19! we find that there are functionsc, w, h such that

ce⇀c, weakly star in L`~R1;L2~R2!!

cx
e⇀cx , weakly star in L`~R1;L2~R2!!

c t
e⇀c t , weakly star in L`~R1;H21~R2!! ~2.20!

we⇀w, weakly star in L`~R13R2!

wx
ece⇀h, weakly star in L`~R1;H21~R2!!

ase→0.
To assert thatc, w are a solution of~2.10! we have to check that

h5wxc, ~2.21!

w5KS ]

]x
ucu2D . ~2.22!

Since the system is degenerate, we can not obtain theH1(R2)-boundedness ofce which directly
implies some strong limit to guarantee the convergence of the nonlocal nonlinear term. F
case we must make special efforts to get some strong limits ofce andwe in appropriate senses

C. Verification of „2.21…

Lemma 2.5: We havewx
ePL`(R1,L loc

2 (R2)) bounded.
Proof: First we have for a. e.xPR,

E
2`

`

uce~x,y!u2dy5E
2`

` E
2`

x ]

]x
uce~x,y!u2dxdy<2E

2`

` E
2`

`

uceuucx
eudxdy<2icei2icx

ei2 .

~2.23!

For any wPC0
`(R2), let BR(0),R2 be the ball centered at the zero of radiusR containing

suppw, and let

J5E
R2

wuwx
eu2dxdy.

Note thatwx
e5*2`

y (]/]x)uce(x,h)u2dh, we get

uJu<4E
R2

uwuS E
2`

y

ucecx
e~x,h!udh D 2

dxdy

<4iwi`E
2R

R E
2R

R S E
2`

`

ucecx
e~x,h!udh D 2

dxdy

<8Riwi`E
2R

R S E
2`

`

uce~x,h!u2dh D S E
2`

`

ucx
e~x,h!u2dh D dx

<8Riwi`sup
xPR

E
2`

`

uce~x,h!u2dhS E
2R

R E
2`

`

ucx
e~x,h!u2dhdxD

<8Riwi`•2icei2icx
ei2

3 ~due to~2.23!!<C~R!,
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where we have used~2.15! and~2.16! in the last inequality. The proof of the lemma is complete
Lemma 2.6: For any ball BR(0),R2, 1<p,` and a. e. t>0, we(t) is relatively compact in

Lp(BR(0)).
Proof: Sincewe5K((]/]x)uceu2)5*2`

y uce(x,h,t)u2dh, we havewy
e5uceu2, thus by~2.15!,

iwy
ei15icei2

2< 1
2.

Combining Lemma 2.6 and~2.17! together with the above estimate we have

wePL`~R1;Wloc
1,1~R2!!ùL`~R13R2! bounded.

Since the embeddingW1,1(BR(0))�L1(BR(0)) is compact, we can extract a subfamily~still
denoted bywe! such thatwe converge inL1(BR(0)) for a. e.t>0. Thus, for any 1<p,`,

iwe1~ t !2we2~ t !iLp~BR~0!!<iwe1~ t !2we2~ t !iL1~BR~0!!
p

~ iwe1~ t !i`1iwe2~ t !i`!12~1/p!→0

as«1 , «2→0. Hencew«(t) is relatively compact inLp(BR(0)).
Lemma 2.7:;r .2, T.0, wx

«c«⇀wxc weakly star in L`(0,T;W21,r 8(R2)), where r85r /(r
21). That is, (2.21) holds true.

Proof: For anyvPL1(0,T) and wPC0
`(R2),

E
0

T

^wx
«c«2wxc,vw&1,rdt52E

0

T

v̄~ t !E
R2

~w«~c«w̄!x2w~cw̄!x!dxdydt

52E
0

T

v̄~ t !E
R2

w~~c«2c!w̄!xdxdydt

2E
0

T

v̄~ t !E
R2

~w«2w!~c«w̄!xdxdydt, ~2.24!

where^•,•&1,r denotes the dual product ofW21,r 8(R2) and W1,r(R2). Sincec«2c,cx
«2cx→0

weakly star inL`(0,T;L2(R2)), v̄ww̄ and v̄ww̄x are inL1(0,T;L2(R2)), the first integral of the
right-hand side of~2.24! tends to zero. LetBR(0) be a ball containing suppw,p52r /(r 22)
.2. From Lemma 2.6 we have

U E
R2

~w«2w!~c«w̄!xdxdyU<iw«2wiLp~BR~0!!~ icx
«i2iwi r1ic«i2iwxi r !→0

as«→0, thus the last integral~2.24! tends to zero as«→0. Combining this and the last limit o
~2.20! we conclude that~2.21! holds true.

D. Verification of „2.22…

In fact ~2.22! is just equivalent to~2.5!. To verify ~2.22! we shall use the strong convergen
of c« in L2((0,T)3R2). First we see that the limit functionc satisfies the following degenerat
Schrödinger equation,

ic t1cxx5wxc ~2.25!

in the sense ofL`(R1;H21(R2)), viewing wx as its potential. We have the following:
Lemma 2.8: LetwPL`(R13R2), wxPL`(R1;L loc

2 (R2)), and c be the solution of (2.25)
satisfyingc,cxPL`(R1;L2(R2)). Then the following conservation law holds:

ic~ t !i25ic~0!i2 , ;t>0. ~2.26!
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Remark:We cannot simply take the dual product of~2.25! with c to obtain the conservation
law, since we have not been able to provecPH1(R2). Indeed we know neither

Im^ ic t ,c&5
1

2

d

dt
ic~ t !i2

2,

nor

Im^wxc,c&50,

where ^•, •& denotes the dual product ofH21(R2) with H1(R2). We have to overcome thes
difficulties through the mollification ofc.

Proof: Let rPC0
`(R2) satisfy r>0, r(2x,2y)5r(x,y), and *R2r(x,y)dxdy51. Let

r«(x,y)5«22r(x/«,y/«), thenu«5c* r« satisfies

u«PL`~R1;H`~R2!!,
~2.27!

u«tPL`~R1;L2~R2!!,

iu«→ci2→0, iu«x2cxi2→0 as «→0, ~2.28!

and

iu«t1u«xx5~wxc!* r« , ~2.29!

where (wxc)* r« is defined as

^~wxc!* r« ,w&5K wxc,E
R2

w~j,h!r«~j2•,h2• !djdhL 5^wxc,w* r«&, ;wPH1~R2!,

because of the symmetry ofr« . Take the dual product of~2.29! with respect tou« and then take
the imaginary parts we attain

1

2

d

dt
iu«i2

25Im^~wx ,c!* r« ,u«&.

This procedure is reasonable sinceu« satisfies~2.27!. Note that Im̂wx(c*r«),u«&50, we have

iu«~ t !i22iu«~0!i25E
0

t

Im^~wxc!* r«2wx~c* r«!,u«&dt. ~2.30!

We shall show that the integrand in the right-hand side of~2.30! tends to zero as«→0. For any
wPH1(R2),

~w!,^~wxc!* r«2wx~c* r«!,w&

5^~wc!x* r« ,w&2^~wcx!* r« ,w&2^wx~c* r«!,w&

5^~wc!x ,w* r«&2^wcx ,w* r«&2^wx~c* r«!,w&

52E
R2

wc~w̄* r«!xdxdy2E
R2

wcx~w̄* r«!dxdy

1E
R2

w~c* r«!xw̄dxdy1E
R2

w~c* r«!w̄xdxdy
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5E
R2

w@~c,* r«!w̄x2c~w̄* re!x#dxdy1E
R2

w@~c* r«!xw̄2cx~w̄* r«!#dxdy

5E
R2

ww̄x~c* r«2c!dxdy2E
R2

wc~w̄x* r«2w̄x!dxdy

1E
R2

ww̄~cx* r«2cx!dxdy2E
R2

wcx~w̄* r«2w̄!dxdy,

thus we have

uI ~w!u<iwi`~ iwxi2ic* r«2ci21ici2iwx* r«2wxi2

1iwi2icx* r«2cxi21icxi2iw* r«2wi2!.

In particular we takew5u«5c* r« , notice that from~2.28!,

iu«* r«2u«i25i~u«2c!* r«i2<iu«2ci2→0,

iu«x* r«2u«i25i~u«x2cx!* r«i2<iu«x2cxi2→0,

we attain

uI ~u«!u<iwi`~ ici21icxi2!~ iu«2ci21iu«x2cxi2!→0 as «→0.

Therefore,

lim
«→0

E
0

t

Im I ~u«~ t !!dt5 lim
«→0

E
0

t

Im^~wxc!* r«2wx~c* r«!,u«&dt50.

Hence we have proven the lemma.
Now we prove the strong convergence ofc«.
On the one hand, sincec«→c in L2(0,T;L2(R2)), we have

lim inf
«→0

E
0

TE
R2

uc«~ t !u2dxdydt>E
0

TE
R2

uc~ t !u2dxdydt5E
0

TE
R2

uc0u2dxdydt5Tic0i2
2.

On the other hand, sincec« satisfies~2.12!, for anyT.0 we have

E
0

TE
R2

uc«~ t !u2dxdydt1E
0

TE
R2

«uDc«~ t !u2dxdydt5G«~0!T,

due to~2.14!

Tic0i2
25 lim inf

«→0
TG«~0!> lim inf

«→0
E

0

TE
R2

uc«~ t !u2dxdydt,

by conservation law~2.26! we obtain

lim inf
«→0

E
0

TE
R2

uc«~ t !u2dxdydt<E
0

TE
R2

uc~ t !u2dxdydt.

Hence,
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lim
«→0

E
0

TE
R2

uc«~ t !u2dxdydt5E
0

TE
R2

uc~ t !u2dxdydt.

Therefore we have proven
Lemma 2.9: For any T.0,c«→c strongly in L2((0,T)3R2)).
Now we verify ~2.22! and then complete the proof of Theorem 2.2.
Let f «5uc«ux

2, f 5ucux
2, then

f «2 f 52 Re~ c̄«2c̄ !cx
«12 Rec̄~cx

«2cx!.

For anywPL2(0,T;L`(R2)),

E
0

TE
R2

~ f «2 f !w̄dxdy52E
0

TE
R2

w̄ Re~ c̄«2c̄ !cx
«dxdy12E

0

TE
R2

w̄ Rec̄~cx
«2cx!dxdy

5I 11I 2 ,

by Lemma 2.9,

uI 1u<2iwiL2~0,T;L`!• sup
@0,T#

icx
«i2•ic«2ciL2~~0,T!3R2!→0;

sincecx
«→cx in L2(0,T;L2(R2)),I 2→0. Thereforef e⇀ f weakly in L2(0,T;L1(R2)). Applying

Lemma 2.3~iii ! we obtain

w«5K~ f «!→K~ f ! strongly in L2~0,T;L loc
` ~R2!!.

Combining this and the fourth limit of~2.20! we get~2.22!. Therefore the proof of Theorem 2.2
completed.

III. THE BLOW-UP OF SOLUTIONS

In this section we show that under certain conditions the solutions of~1.1! and~1.2! will blow
up in finite time. Besides the conservation laws~2.1! and~2.2!, we have another quantityI (t) ~see
~3.1! below! whose evolution is completely known. We note that the deduction is formal and
be satisfied by sufficiently regular solutions. However, we have been unable to prove the ex
of such regular solutions yet. Our result shows that,if the regular solutions exist locally and thei
initial data satisfy the conditions in Theorem 3.2, they will always blow up in finite time.

Lemma 3.1: Letc be the solution of (1.1) and (1.2) satisfying thatc,xcPL2(R2) and thatx
vanishes at infinity, and let

I ~ t !5E
R2

x2ucu2dxdy, ~3.1!

then

dI~ t !

dt
54 Im E

R2
xcc̄xdxdy, ~3.2!

d2I ~ t !

dt2
58E~0!. ~3.3!

Proof: By direct computation, we have
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dI

dt
52 ReE

R2
x2cc̄ tdxdy52 ReE

R2
x2c• i ~xc̄2c̄xx!dxdy

522 Im E
R2

~x2c!xc̄xdxdy524 Im E
R2

xcc̄xdxdy,

thus we get~3.2!,

d2I

dt2
524 Im E

R2
x~c tc̄x1cc̄xt!dxdy

524 ImE
R2

~2 i !xc̄x~xc2cxx!dxdy

24 Im E
R2

ixc~xc̄2c̄xx!xdxdy ~due to ~1.1!!

54 ReE
R2

xxcc̄xdxdy24 ReE
R2

xc̄xcxxdxdy14 ReE
R2

~xc!xxc̄dxdy

24 ReE
R2

~xc!xc̄xxdxdy

52E
R2

xxucux
2dxdy22E

R2
x~ ucxu2!xdxdy14E

R2
xucu2dxdy14 ReE

R2
xxc̄cxdxdy

24 ReE
R2

cc̄xxdxdy24 ReE
R2

xcxc̄xxdxdy ~due to ~1.2!!

52E
R2

xxxydxdy22E
R2

xucxux
2dxdy14E

R2
xucudxdy

12E
R2

xxxydxdy14E
R2

ucxu2dxdy22E
R2

x~ ucxu2!xdxdy

58E
R2

ucxu2dxdy14E
R2

xucu2dxdy58E~0!,

where because*R2xxxydxdy50. So we have the lemma.
Theorem 3.2:Let c0PL2(R2) with xc0PL2(R2), c be the solution of (1.1) and (1.2) wit

an initial function c0 satisfyingc,xcPL2(R2) and that x vanishes at infinity. If one of the
following conditions holds:

~i! E(0),0;
~ii ! E(0)50 and Im *R2xc0c̄0xdxdy.0;
~iii ! E(0).0 and Im *R2xc0c̄0xdxdy>4AE(0)I (0),

then

lim inf
t→T*

icxi2
25`,

that is, the solution will blow up in finite time.
Proof: From ~3.3!, we have

I ~ t !54E~0!t21I 8~0!t1I ~0!.
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If one of the conditions of the theorem holds, there exists aT* .0 such thatI (T* )50. Thus, from

ic0i2
25ic~ t !i2

25ReE
R2

~22!xcc̄xdxdy<2ixci2icxi2 ,

we attain

lim inf
t→T*

icxi2> lim
t→T*

ic0i2
2

2AI ~ t !
5`.

Therefore the solution will blow up at timeT* .
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Integrable and superintegrable Hamiltonian systems
in magnetic fields
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Montréal, Québec H3C 3J7, Canada

Pavel Winternitzb)
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In this article we are devoted to the construction of integrable and superintegrable
two-dimensional Hamiltonian systems with scalar and vector potentials. All inte-
grable systems with a quadratic polar coordinate type integral of motion are found.
Classical trajectories are calculated in integrable cases and compared with those for
a system that is not integrable. ©2000 American Institute of Physics.
@S0022-2488~00!02305-7#

I. INTRODUCTION

A classical result, due to Bertrand,1 states that the only central potentials in which all fin
trajectories are closed are the Kepler potentialV5 a/r and the harmonic oscillatorV5ar 2. These
two physical systems have many other interesting properties valid also inn-dimensional space fo
any finite n. The corresponding Hamiltonian systems are not only completely integrable, i
Liouville sense,2 they are both ‘‘maximally superintegrable.’’ That means that they possess
only n integrals of motion in involution, but rather 2n21 integrals, amongst which it is possib
to choose different subsets ofn in involution. The corresponding quantum systems have deg
erate energy levels. The degeneracy has been called ‘‘accidental,’’ in that it goes beyon
explained by rotational invariance in any central potential. The integrals of motion in clas
mechanics form Lie algebras:o(n11) in the case of the Kepler potential3,4 ~or hydrogen atom!
and su(n) in the case of the harmonic oscillator.5 In both cases, there is ano(n) subalgebra,
realized by first-order operators corresponding to the ‘‘geometric’’ rotational symmetry. The
operators, completing the algebra too(n11), or su(n), respectively are second-order ones. T
implies that the corresponding symmetry transformations are not point ones: ‘‘higher’’ symm
are involved.

Both of the above systems are not only superintegrable, they are also separable in at le
coordinate systems in configuration space. That is, the corresponding Hamilton–Jacobi and¨-
dinger equations can be separated in more than one coordinate system.

A systematic search for the Hamiltonian systems with higher symmetries was initiated
time ago6–10 for space dimensionsn52 andn53. The restriction to spherically symmetric sy
tems was dropped, the integrals of motion were assumed to be second-order polynomials
momenta, or second-order linear operators in the quantum case.

The results of the study can be summed up as follows. All integrable systems in two
three-dimensional real Euclidean spaces with second-order integrals of motion allow the s
tion of variables in at least one of the coordinate systems in which the free Schro¨dinger equation
~or free Hamilton–Jacobi equation! allows separation. All superintegrable systems allow the se
ration of variables in at least two such coordinate systems.

a!Electronic mail: ericmcsween@yahoo.com
b!Electronic mail: wintern@crm.umontreal.ca
29570022-2488/2000/41(5)/2957/11/$17.00 © 2000 American Institute of Physics
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Integrable Hamiltonian systems with velocity dependent potentials have also been stu11

for n52, i.e., in a Euclidean plane. The classical Hamiltonian was assumed to have the fo

H5 1
2 ~px

21py
2!1A~x,y!px1B~x,y!py1W~x,y!, ~1.1!

and the corresponding integral of motion by assumption was

C5g0ẋ21g1ẋẏ1g2ẏ21k0ẋ1k1ẏ1h, ~1.2!

whereg0 , g1 , g2 , k0 , k1 andh are functions ofx andy. They are determined from the require
ment thatC be constant on solutions of the equations of motion corresponding to the Hamilt
~1.1!. For any Hamiltonian of the form~1.1!, the condition

dC

dt
50 ~1.3!

implies that the integralC will have the form

C5a~xẏ2yẋ!21b ẋ~xẏ2yẋ!1g ẏ~xẏ2yẋ!1d ẋ2

1z ẏ21j ẋẏ1k0~x,y!ẋ1k1~x,y!ẏ1h~x,y!, ~1.4!

wherea, b, g, d, z andj are real constants. The dots denote time derivatives. The quadratic
of the invariantC can thus be interpreted as a second order element in the Euclidean Lie a
e(2), with basis elements

L35~xẏ2yẋ!;y ]x2x ]y,

P15 ẋ;]x, ~1.5!

P25 ẏ;]y.

Euclidean transformations of the plane will change the potentialsW, A andB, but leave the
form of the Hamiltonian~1.1! invariant. The integralC can be simplified by these transformatio
and taken into one of the following standard forms:

CC5 ẋ21k0ẋ1k1ẏ1h, ~1.6!

CR5~xẏ2yẋ!21k0ẋ1k1ẏ1h, ~1.7!

CP5 ẋ~xẏ2yẋ!1k0ẋ1k1ẏ1h, ~1.8!

CE5~xẏ2yẋ!21s~ ẋ22 ẏ2!1k0ẋ1k1ẏ1h, ~1.9!

wherek0 , k1 andh are functions ofx andy, ands is a constant~related to the focal distance i
elliptic coordinates!. For purely scalar potentials, we haveA5B50 andk05k150. The existence
of the integralsCC , CR , CP and CE then implies the separation of variables in the Hamilto
Jacobi equation~and in the Schro¨dinger equation! for the corresponding Hamiltonian, in Cartesia
polar, parabolic or elliptic coordinates, respectively.6,7

The case of the ‘‘Cartesian integral’’~1.6! in the presence of a magnetic field was stud
earlier.11 The potentials were completely determined in terms of two functions,f (x) andg(y) that
are either elliptic functions, or the elementary ones arising as special cases of elliptic func
The equations of motion no longer separate, but all the attributes of integrability remain.
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Our purpose in this article is to analyze the integrable Hamiltonian system~1.1! and~1.7!, i.e.,
the case of a second-order integral of motion of the ‘‘polar type.’’ The corresponding scala
vector potentials are found in Sec. II, together with the integralCR . The possibility of superinte-
grability is studied in Sec. III, where it is shown that the only system allowing simultaneou
Cartesian and a polar integral of motion is that of a particle in a constant magnetic field. S
IV is devoted to analytical and numerical solutions of the equations of motion. Some conclu
are drawn in Sec. V.

II. THE POLAR INTEGRABLE SYSTEM

The equations of motion corresponding to the Hamiltonian~1.1! can be written in the form

ẍ52Vx1V ẏ,
~2.1!

ÿ52Vy2V ẋ,

with

V~x,y!5W2 1
2 ~A21B2!,

~2.2!
V~x,y!5Ay2Bx .

Notice that the equations of motion~2.1! are invariant with respect to a gauge transformation
the potentials,

W̃5W1~AW ,¹W F!1 1
2 ~¹W F!2,

~2.3!

AW̃ 5AW 1¹W F,

where we have putAW [(A,B) andF(x,y) is an arbitrary function.
Now, let us assume that the Hamiltonian~1.1! allows a ‘‘polar integral of motion’’CR of the

form ~1.7!. We wish to determine the physical quantitiesV(x,y), V(x,y) andk0(x,y), k1(x,y),
h(x,y) that arise in this case.

Let us first transform to polar coordinates:x5r cosf, y5r sinf. The integralCR is trans-
formed into

CR5r 4ḟ21P~r ,f! ṙ 1Q~r ,f!r ḟ1h~r ,f!, ~2.4!

P5k0 cosf1k1 sinf, Q52k0 sinf1k1 cosf. ~2.5!

The equations of motion~2.1! in polar coordinates are

r̈ 2r ḟ252Vr1Vr ḟ, ~2.6!

r f̈12ṙ ḟ52
1

r
Vf2V ṙ . ~2.7!

The condition thatCR be an integral of motion is imposed by differentiatingCR with respect to
time and replacingr̈ andf̈ using Eqs.~2.6! and~2.7!. Setting the coefficients ofḟ2, ṙ 2, ṙ , ṙ ḟ, ḟ,
ṙ and 1 to zero, we obtain an overdetermined system of equations for the functionsV, V, P, Q and
h. These determining equations are

Pr50, P1Qf50, ~2.8!
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2r 3V2Pf2rQr1Q50, ~2.9!

hf22r 2Vf1rPV50, hr2QV50, ~2.10!

PVr1
1

r
QVf50. ~2.11!

From Eq.~2.8!, we obtain

P52 f 8~f!, Q5 f ~f!1R~r !, ~2.12!

wheref andR are so far arbitrary. Equation~2.11! can now be solved by the method of chara
teristics and we have

V5V~j!, j5r f ~f!1c~r !,
~2.13!

c r5R~r !, ~P,Q!Þ~0,0!.

We mention that the case of a purely scalar potential is recovered if we setV5P5Q50. Then
Eqs.~2.8!, ~2.9! and ~2.11! are satisfied trivially and Eq.~2.10! implies

V5V0~r !1
1

r 2
h~f!, ~2.14!

i.e., we recover a separable potential.
In the following, we will assumeVÞ0. From~2.9!, we have

V52
1

2r 3
~ f ff1 f 1c r2rc!. ~2.15!

The remaining two equations~2.10! are compatible only if the potentialV(j) satisfies

Vjj1
3

r f
Vj1

1

4r 6f f 8
„f f-13 f 8 f 914 f f 81 f-ċ1 f 8~r 2ĉ23r c̈14ċ !…50, ~2.16!

where primes denote derivatives with respect tof, dots with respect tor. Equation~2.16! requires
that r f be a function ofj. This is possible in two cases only. Let us investigate each separa

The first possibility isċ50. We obtain

j5r f ~f!, P52 f 8~f!, Q5 f ~f!, ~2.17!

V52
1

2r 3
~ f 91 f !, ~2.18!

V5
a

j4
1

b

j2
, ~2.19!

wherea andb are constants. Substituting Eq.~2.19! into ~2.16!, we find thatf (f) must satisfy the
following equation:

f f-13 f 8 f 914 f f 81
32a f 8

f 5
50. ~2.20!
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Equation~2.20! can be integrated twice to obtain

f 821 f 21
8a

f 4
1

K

f 2
1C50, ~2.21!

whereK andC are constants.
The functionh(r ,f) is obtained from Eq.~2.9! and is

h5
1

4r 2
f ~ f 91 f !1

2b

f 2
. ~2.22!

Thus,V, V, P, Q andh are all expressed in terms of the functionf (f), itself satisfying Eq.~2.21!.
This equation is a first-order differential equation with constant coefficients and is thus al
reduced to a quadrature, expressible in terms of elliptic integrals.

Here, we just discuss some special cases whenf (f) is an elementary function.
~a! a50:

f 5~a1b cos 2f!1/2. ~2.23!

The constantsa andb are related toK andC. A second solution,f 5a sinf, is of no interest since
it implies V50.

~b! aÞ0:

f 5A~28a)cos1/3f, a,0. ~2.24!

This corresponds toK5C50 in Eq. ~2.21!.
The second possibility of satisfying Eq.~2.16! is to have f 8(f)50 and hencej5j(r ),

yielding

V5V~r !, V5
rQr2Q

2r 3
,

~2.25!

P50, Q5Q~r !, h5
Q2

4r 2
.

Thus bothV andV depend onr alone. In this case, a first-order integral also exists, namely

C1,R5r 2ḟ1H~r !, V5V~r !, V5
Hr

r
. ~2.26!

The second-order integralCR in this case is simply

CR5~C1,R!2, Q52Hr . ~2.27!

III. SUPERINTEGRABILITY IN A MAGNETIC FIELD

The Hamiltonian system with Hamiltonian~1.1! will be superintegrable if it allows at leas
two functionally independent integrals of motion. Here, we will restrict ourselves to systems
are not only superintegrable, but actually ‘‘doubly separable:’’ separable in at least two coor
systems. This means that both integrals are at most quadratic in the velocities. We shall mo
require that separation should occur in Cartesian and polar coordinates.

In the scalar case (V50, i.e., no magnetic field!, there is such a superintegrable syste
namely
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H5
1

2
~p1

21p2
2!1a~x21y2!1

b

x2
1

g

y2
. ~3.1!

We shall now requireVÞ0 and that a Cartesian and a polar invariant exist. With no los
generality, we can take the polar invariantCR in the standard form~1.7! with V, V, P, Q andh as
in ~2.17!, ~2.18!, ~2.19! or as in~2.25!. The Cartesian invariant can also be chosen in the stan
form ~the rotation needed for the standardization will not changeCR):

CC5 1
2 ẋ21k0~x,y!ẋ1k1~x,y!ẏ1h~x,y!. ~3.2!

In the Cartesian case,7 all physical quantities are expressed in terms of the two functionsf (x)
andg(y), satisfying

f xx5a f 21b f 1g, gyy52ag21dg1j. ~3.3!

In particular, we have

V5a~ f 22g2!1b f 1dg1g1j,
~3.4!

V5
a

3
~g2 f !31

b1d

2
~g2 f !21~g1k2j!~g2 f !,

where all Greek letters denote constants. The question now is the following: when are Eqs~3.4!
compatible with the existence of a polar invariantCR?

Let us first considerV andV as in Eqs.~2.18! and ~2.19!. We must have

]

]r
r 3V50. ~3.5!

This requires thatf andg be constant, henceV andV are constant. However, ifV is constant in
Eq. ~2.18!, it must vanish—i.e., we haveV50—which we are not interested in.

Now, let us consider the caseV5V(r ) andV5V(r ) and require that a Cartesian invaria
should exist, in addition to the polar one. From Eqs.~3.3! and ~3.4!, we obtain in this case tha
both V(r ) andV(r ) are constant.

The result is that the only superintegrable system in a magnetic field with a polar and C
sian invariant is that of a zero scalar potential and a constant magnetic field:

V50, V5V0Þ0. ~3.6!

It is easy to verify that in this case, three invariants exist that are linear in the momenta, na

C15 ẋ2Vy, C25 ẏ1Vx, C35yẋ2xẏ2 1
2 V~x21y2!. ~3.7!

Out of these, we can form all quadratic integrals that exist in this highly degenerate, but phys
important case. Thus, we have

CC5C1
2 , CR5C3

2 , CP5C1C3 , CE5C3
21s~C1

22C2
2!. ~3.8!

We mention that the original Hamiltonian~1.1! corresponding toV50, V5const can be written
in the standard form

H5 1
2 ~px1Vy!21 1

2 py
2 . ~3.9!

In the quantum mechanical case, we obtain three first-order operators commuting with the
tum Hamiltonian corresponding toH of Eq. ~3.9!, namely,
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P152 i ]x, P252 i ]y, L352 i ~y ]x2x ]y!2 1
2 V~x21y2!. ~3.10!

They generate a Lie algebra isomorphic to the Galilei algebra with a central extension,

@L3 ,P1#5 iP2 , @L3 ,P2#52 iP1 , @P1 ,P2#52 iV. ~3.11!

While the case of a classical, or quantum mechanical particle in a constant magnetic fi
well studied, its superintegrability, to our knowledge has not been noticed. The Schro¨dinger
equation obviously separates in Cartesian coordinates. Less obviously, it also ‘‘R-separates’’12,13

in polar coordinates, that is the wave function can be written as

c~r ,f!5R~r ,f!A~r !B~f!, ~3.12!

whereR is an overall multiplier that does not depend on the separation constants. More s
cally, we have

c~r ,f!5e2 ~ i /4! Vr 2 sin 2fJm~kr !eimf, k252E1mV, ~3.13!

whereE is the energy, andJm(z) a Bessel function.

IV. EXAMPLES OF SOLUTIONS

A. The superintegrable case

We haveV50, V5const. We integrate by setting two integralsC1 andC2 of Eq. ~3.7! equal
to constants:

ẋ2Vy52Vy0 , ẏ1Vx5Vx0 . ~4.1!

The solution is

x5A sin~Vt1f!1x0 , y5A cos~Vt1f!1y0 , ~4.2!

whereA, f, x0 andy0 are integration constants. We have of course obtained a well known re
the trajectories are circles.

B. Rotationally symmetric case

We haveV5V(r ), V5V(r ). The first integral~2.26! gives us the general solution of Eq
~2.7!:

r 2ḟ1H~r !5C, V5
Hr

r
. ~4.3!

Substitutingḟ from Eq. ~4.3! into Eq. ~2.6!, we can integrate once to obtain

ṙ 212V1
~C2H !2

r 2
5K, V5

Hr

r
, ~4.4!

whereC and K are constants. Since there is no explicitt dependence, Eq.~4.4! is integrated in
quadratures. For instance, if we consider a potential and magnetic field of the form

V5
g1

r 2
1g2r 21g3r 41g4r 6,

~4.5!
V5V01V1r 2,
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whereg i andV j are constants, we can expressr in terms of elliptic functions, or elementary one
in special cases.

The special caseV5 1
2v

2(x21y2), V5const was considered earlier.11 It can easily be solved
in Cartesian coordinates. Equations~2.1! in this case yield

x5
v22a1

2

a1V
A cos~a1t1f1!1

v22a2
2

a2V
B cos~a2t1f2!, ~4.6!

y5A sin~a1t1f1!1B sin~a2t1f2!,

FIG. 1. Trajectories in an integrable rotationally symmetric case.
~4.7!
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a1,2
2 5

2v21V26A~2v21V2!224v4

2
,

whereA, B, f1 and f2 are arbitrary constants. Thus the motion is always bounded and q
periodic. It is periodic if the ratioa1 /a2 is rational.

Two such periodic cases are shown in Fig. 1, witha1 /a251/2 anda1 /a251/50, respec-
tively.

FIG. 2. Trajectories in potentials with angular dependence.
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C. Potential and magnetic field with azimuthal dependence

Let us consider the magnetic field and potential of Eqs.~2.17! and ~2.18!, with the function
f (f) as in Eq.~2.23!. We then have

V5
b

r 2~a1b cos 2f!
, V5

b22a2

r 3~a1b cos 2f!3/2
. ~4.8!

The trajectories of a particle in this case will in general not be closed. Forubu.uau, the potential
V and the fieldV only have a point singularity atr 50 ~not along the line cos 2f52 a/b).

The integral of motion in this case is

C5r 4ḟ21
b sin 2f

~a1b cos 2f!1/2
ṙ 1~a1b cos 2f!1/2r ḟ1

1

~a1b cos 2f! S a22b2

4r 2
12b D .

~4.9!

An example of a trajectory in this integrable case is shown in Fig. 2~a!. For a comparison, we
show a trajectory in a nonintegrable case in Fig. 2~b!. We see that, while the difference in th
formulas seems slight~namelyr 23 in V is replaced byr 24) the trajectory becomes quite irregu
lar.

V. CONCLUSIONS

A very sizable literature exists on integrable and super-integrable finite-dimensional sy
of the form~1.1! with a purely scalar potential, i.e., withA5B50. For recent reviews containin
numerous references, see, e.g., Refs. 14–16.

A systematic search for such super-integrable systems in two- and three-dimensional E
ean spaces has been conducted some time ago.6–10 A more recent series of articles is devoted
superintegrable systems in space of constant curvature.17–19 The emphasis is on special functio
aspects of these systems.

The obtained systems have been analyzed using algebraic techniques originally develo
the hydrogen atom.20–23 A different approach to these systems makes use of path integrals.14,24

In addition to being explicitly solvable, many super-integrable systems occur in applica
They include the ring-shaped Hartmann potential used in quantum chemistry,25–27the Aharonov–
Bohm potential,28 the Calogero–Moser system29 and many others. Interesting mathematical o
jects arise in these studies, including quadratic algebras30 and twisted Kac–Moody algebras.31,32

Systems involving vector potentials have been studied to a much lesser degree. A sys
search for integrable systems with vector potentials in two dimensions was initiated in Re
This article is a continuation of that search and, to our knowledge, the first in which the que
of superintegrability is posed. The study of ‘‘parabolic’’ and ‘‘elliptic’’ integrals of motion
postponed to a future article. Further questions under study include a search for super-int
velocity-dependent systems in 3 and, more generally,n dimensions.

ACKNOWLEDGMENTS

We thank B. Grammaticos, W. Miller, Jr., G. S. Pogosyan, and A. Ramani for intere
discussions. The research of P. W. is supported by grants from the NSERC of Canada and
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Conservation laws and Calapso–Guichard deformations
of equations describing pseudo-spherical surfaces

Enrique G. Reyesa)

Department of Mathematics and Statistics, McGill University, Montre´al, Québec, Canada
and Department of Mathematics and Statistics, Utah State University,
Logan, Utah 84322-3900
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The relation between the Chern and Tenenblat approach to conservation laws of
equations describing pseudo-spherical surfaces~conservation laws from pseudo-
spherical structure! and the more familiar ‘‘Riccati equation’’ approach~conserva-
tion laws from associated linear problem! is investigated. Two examples@cylindri-
cal Korteweg–de Vries~KdV! and Lund–Regge equations# are presented. Chern
and Tenenblat’s point of view is then connected with the theory of soliton surfaces.
A generalization of the original Chern–Tenenblat construction of conservation laws
results, and a reasonable family of large deformations for scalar equations describ-
ing pseudo-spherical surfaces, the ‘‘equations describing Calapso–Guichard sur-
faces,’’ can be introduced. It is shown that these equations are also the integrability
condition of linear problems. ©2000 American Institute of Physics.
@S0022-2488~00!04205-5#

I. INTRODUCTION

A differential equationJ50 for a real-valued functionu(x,t) ~or, in general, a system o
equations in two independent variables! describes pseudo-spherical surfacesif there exist smooth
functions f ab , a51,2,3,b51,2, depending onx,t,u, and its derivatives, such that the one-form
va5 f a1dx1 f a2dt satisfy the structure equations of a surface of constant Gaussian curv
equal to21, namely,

dv15v3`v2, dv25v1`v3, and dv35v1`v2,

wheneveru(x,t) is a solution ofJ50. A formal definition is given in Sec. III.
An important property of equations possessing this structure is that they are the integr

condition of sl~2, R!-valued linear problems. Since equations which are the integrability cond
of a one-parameterfamily of linear problems are usually called integrable,1 it is natural to intro-
duce the notion ofgeometric integrability: a differential equationJ50 is said to be geometrically
integrable if it describes a nontrivial one-parameter family of pseudo-spherical surfaces.

Geometrically integrable equations were first considered by Chern and Tenenblat,2 following
Sasaki’s3 observation that equations which are the integrability condition of an sl~2, R!-valued
linear problem of Ablowitz, Kaup, Newell, and Segur~AKNS! type describe pseudo-spheric
surfaces. Classification results have been obtained~Ref. 4 and references therein!, an algorithm to
compute conservation laws has been developed,2,5 and a comparison of geometric and form
integrability ~in the sense of Mikhailov, Shabat, and Sokolov6! has been undertaken.4

Conservation laws of geometrically integrable equations are revisited in Secs. IV and
this paper. As pointed out above, recent work has been devoted to relating Chern and Tene
notion with other approaches to integrability. An interesting problem is, of course, to compa
conservation laws one obtains using these different points of view. There exists a classical m

a!NSERC Post-doctoral Fellow. Present address: School of Mathematics, University of Minnesota, Minneapol
55455; electronic mail: reyes@math.umn.edu
29680022-2488/2000/41(5)/2968/22/$17.00 © 2000 American Institute of Physics
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to compute conservation laws of equations which are the integrability condition of a
parameter family of linear problems, the ‘‘Riccati equation method.’’7 Will Cavalcante and
Tenenblat’s5 algorithm produce the same conservation laws?~Wyller8 has already asked this in th
special case of the derivative nonlinear Schro¨dinger equation.! It is shown in Sec. IV that the
answer is affirmative.

It is also shown in this paper that Chern and Tenenblat’s2 conservation laws can be genera
ized. As it is explained in Sec. IV, their approach is based on the existence of a one-fou,
depending on the one-formsva introduced above and a ‘‘pseudo-potential,’’ which gives rise
conservation laws. It is proven in Sec. VI that there exists a one-parameter family of one-
u~j!, with u(0)5u, which gives rise to conservation laws. Thus, in principle, geometric
integrable equations possess a two-parameter family of conservation laws. This generalizat
consequence of the possibility, discussed below and more in depth in Sec. V, of switching
Chern and Tenenblat’s intrinsic point of view to an extrinsic approach, very much in the sp
the theory of soliton surfaces~Refs. 9, and 1, and references therein!.

The very important problem of deciding whether the conservation laws one obtains are
or not, is not considered in this paper. A classical nontriviality test is explained in Olve10

treatise, and the cohomological approach to this issue is summarized in the lecture no
Krasil’shchik and Verbovetsky.11

In Sec. VII, a class of deformations of scalar equations describing pseudo-spherical surf
considered. Gu¨rses and Nutku12 observed that the classical Calapso–Guichard equations13 natu-
rally generalize the sine–Gordon equation, and are also the integrability condition of a
parameter family of sl~2, R!-valued linear problems. Is there a ‘‘Calapso–Guichard-like’’ gen
alization of arbitrary scalar equations describing pseudo-spherical surfaces? The answer i
affirmative:

Immerse the pseudo-spherical surfaces described by one-forms$v1,v2,v3% into a flat three-
spaceE3 by specifying extrinsic connection one-forms$v13,v23%, and deformv1, v2, v13, and
v23 following the pattern of the classical Calapso–Guichard deformation of the sine–Go
equation. The Gauss–Codazzi equations to be satisfied by these deformed one-forms, if the
describe a surface immersed inE3, are the integrability condition of a linear system, the equati
of Gauss and Weingarten.

These deformed equations will be called ‘‘equations describing Calapso–Guichard surfa
Why are they of interest? Classical differential geometry is an important source of integ
systems14,1 and the geometrical transformations admitted by some classes of surfaces c
understood in modern terms as ‘‘generalized Ba¨cklund transformations’’ of the underlying differ
ential equations determining them.15,14 Such transformations do exist for Calapso–Guich
surfaces,13 and it is expected they will give rise to ‘‘generalized Ba¨cklund transformations’’
between solutions of equations describing Calapso–Guichard surfaces. They will be consid
a separate paper.

The language of the formal theory of differential equations10,11 will be used throughout to
express the results obtained in this work. A short review based on Refs. 10 and 11 app
Sec. II.

II. GEOMETRIC FRAMEWORK FOR SCALAR EQUATIONS

Let p:E→M be a trivial fiber bundle in whichM is the space of independent variables (x,t),
and the typical fiber is the space of the dependent variableu, and letJkE, k>1, be the bundles of
k-jets of local sections ofE.

The infinite jet bundle of E, J`E→M , is the inverse limit of the tower of jet bundlesM
←E...←JkE←Jk11E←... under the standard projectionsp l

k :JkE→JlE, k. l . Locally, J`E is
described by canonical coordinates

~x,t,u,ux ,ut ,...,uxktl,...! ~1!

obtained from the standard coordinates on the finite-order jet bundlesJkE,
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uxi t j„j k~s!~x,t !…5
] i 1 j s

]xi]t j ~x,t ! for 0< i , j <k, and i 1 j <k, ~2!

in which j k(s) is thek-jet of the local sections:(x,t)°„x,t,u(x,t)… of E.
Any local sections:(x,t)°„x,t,u(x,t)… of E lifts to a unique local sectionj `(s) of J`E

called the infinite prolongation of s. In the coordinates ~1!, j `(s) is the section
„x,t,u(x,t),ux(x,t),ut(x,t),...,uxktl(x,t),...….

A function f :J`E→R is smoothif it factors through a finite-order jet bundle, that is,f 5 f k

+pk
` ~pk

` :J`E→JkE is the canonical projection! for some functionf k :JkE→R.
A vector field Xon J`E is a derivation on the ring of smooth functions onJ`E. In local

coordinates, vector fields are formal series

X5A
]

]x
1B

]

]t
1 (

m,n>0
Cm,n

]

]uxmtn
,

in which A,B,Cm,n are smooth functions onJ`E. Vector fieldsX on M can be canonically
prolongedto vector fieldspr`X on J`E by setting

~pr`X!„j `~s!~x,t !…• f 5X~x,t !„f + j `~s!… ~3!

for smooth functionsf on J`E. This operation defines theCartan connectionC on J`E: the
horizontal subspaceCj `(s)(x,t) at j `(s)(x,t) in J`E is given by

Cj `~s!~x,t !5$~pr`X!„j `~s!~x,t !…:X is a vector field onM %, ~4!

so that the horizontal lift of a vector fieldX on M, also called thetotal derivativein theX direction,
is simply pr`X. Locally, horizontal vector fields are linear combinations of the total derivat
Dx andDt , in which Dx5pr`]/]x andDt5pr`]/]t, that is,

Dx5
]

]x
1(

m,n
uxm11tn

]

]uxmtn
, and Dt5

]

]t
1(

m,n
uxmtn11

]

]uxmtn
. ~5!

Note that the prolongation operation~3! satisfiespr`@X1 , X2#5@pr`X1 , pr`X2# for all vec-
tor fieldsX1 andX2 on M, and therefore the Cartan connection is flat.

Differential forms onJ`E are the pull-backs of differential forms onJkE by the projections
pk

` . Any differential formv on J`E may be written in the canonical coordinates~1! as ~here
x15x, x25t and I j are multi-indices,I j5xkj t l j!

v5Ai 1¯ i p

I 1¯I qdxi 1`¯`dxi p∧u I 1
`...`u I q

, i s51,2, q>0, ~6!

in which the one-formsu I are thebasic contact one-forms

u05du2uxdx2utdt and uxktl5duxktl2uxk11t ldx2uxktl 11dt, k,l>1. ~7!

A differential form v is horizontal if no forms u I appear in its local expansion~6!. Lastly, the
horizontal exterior derivativedH , which as the ordinaryd also satisfiesdH

2 50, is the operator
uniquely determined in local coordinates by the formulas

dHf 5Dxf dx1Dt f dt, dH~dx!5dH~dt!50, dH~uxktl !5dx`uxk11t l1dt`uxktl 11.

Consider now a partial differential equation

JS x,t,u,
]u

]x
,
]u

]t
,¯ ,

]m1nu

]xmtn D50. ~8!
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This equation defines a locus in the jet bundleJm1nE of E. It will be assumed thatSm1n is an
open, connected, and contractible subset of this locus, that the functionJ is smooth on a neigh-
borhood ofSm1n, and that its Jacobian matrix satisfies

~Jx ,J t ,Juxi t j
!Þ0 ~9!

on Sm1n, so thatSm1n is a submanifold ofJm1nE. It will be further assumed thatSm1n is a
subbundle ofJm1nE, so that it fibers over the spaceM of independent variables.

Theprolongations Sm1n11, Sm1n12,... of Sm1n are defined by total differentiation of~8!. For
instance,

Sm1n115$ j m1n11~s!~x,t !PJm1n11E: j m1n~s!~x,t !PSm1n and ~DxJ!„j m1n11~s!~x,t !…

5~DtJ!„j m1n11~s!~x,t !…50%,

and so on. One then assumes that the towerM←Sm1n←Sm1n11←¯ is well defined, that is, tha
eachSk11 (k>m1n) is a submanifold ofJk11E which fibers overSk. The infinite prolongation
S` of Sm1n is the inverse limit of the towerM←Sm1n←Sm1n11←¯ . Thus, locally,S` is the
set of infinite jets inJ`E satisfying~8! and all its~total! differential consequences. The spaceS`

is a well-defined subbundle ofJ`E which also fibers overM. It is called theequation manifoldof
Eq. ~8!.

A local solutionof Eq. ~8! is a holonomic local section ofS`, namely, a local section ofS`

which is the infinite prolongation of a local sections:(x,t)°(x,t,u(x,t)… of E. Sometimes the
phrase ‘‘u(x,t) is a solution of Eq.~8!’’ will be used instead of the more formal sentence ‘‘th
local sectionj `(s), in which s:(x,t)°„x,t,u(x,t)… is a local section ofE, is a local solution of
Eq. ~8!.’’

If u5 j `(s)(x,t) is a point inS`, the horizontal subspaceCu given by~4! is contained in the
tangent spaceTuS`. Thus, there exists a connection onS`, called theCartan connection of S`,
obtained by restricting the Cartan connection onJ`E. This connection is also flat. Locally, th
horizontal vector fieldson S` are linear combinations of the restriction to this manifold of the to
derivativesDx andDt defined in~5!. For instance, forevolutionequationsut5F(x,t,u,...,uxk),
they are linear combinations of

Dx5
]

]x
1(

i 50

`

uxi 11
]

]uxi
and Dt5

]

]t
1(

i 50

`

Dx
i ~F !

]

]uxi
. ~10!

The space of differential forms onS` is the space of differential forms onJ`E pulled-back to
S` by the canonical inclusioni:S`

�J`E. In particular, the basic contact forms onS` are the
pull-backs byi of the one-forms~7!. Horizontal forms and the horizontal exterior derivativedH

are defined as before.
An important observation is that the operatorsd and dH coincide ‘‘on solutions’’ in the

following sense:

d~„j `~s!…* v!5„j `~s!…* ~dHv! ~11!

for every differential one-formv5Xdx1Tdt on S`, and every holonomic sectionj `(s) of S`. In
particular,~11! holds if ~8! is the ‘‘empty’’ equation, namely, it holds for local sectionsj `(s) of
J`E. Equation~11! will be used very often in subsequent sections.

Finally, a local conservation lawof Eq. ~8! is a horizontal one-formv5Xdx1Tdt on S`

such that

dHv5~2DtX1DxT!dx`dt50, ~12!

and the conservation law is calledtrivial if v is dH-exact.
Example:Burgers’ equationut5uxx1uux1h(x) determines a locusL in J2E,
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L5$~x,t,z0 ,z0,t ,z1 ,z0,ttz1,t ,z2!:z0,t5z21z0z11h~x!%,

in which the notationzi , zi ,t j , 0< i , j <2, has been used to label the canonical coordinates
J2E. SinceJ52z0,t1z21z0z1 is smooth onJ2E andJz2

Þ0 on J2E,L itself is a submanifold
S2 of J2E, which moreover fibers over the space of independent variables. Natural coordina
S` are (x,t,z0 ,z1 ,...,zk ,...), as~total! derivatives ofz0 with respect tot, may be replaced by
expressions containing onlyx-derivatives by using the differential consequences ofJ50. The
total derivativesDx andDt are given by~10! with F5z21z0z11h(x), and one easily checks tha
if

v5z0dx1S z11
1

2
z0

21E h~x! dxDdt,

thendHv52z0,t1z21z0z11h(x)50 on S`, so thatv is a conservation law for Burgers’ equa
tion.

III. EQUATIONS DESCRIBING PSEUDO-SPHERICAL SURFACES

Fix a trivial fiber bundlep:E→M with base the spaceM of independent variables~x,t! and
typical fiber the space of the dependent variableu. Generalizing the notation used in the la
example, the functionu and its derivatives will be henceforth denoted by

z0ªu, z0,xmtn5
]m1nu

]xm]tn and zjª
] ju

]xj , j ,m,n>1,

if considered as jet coordinates.
Definition 1: Consider the differential equation

J~x,t,z0 ,...,z0,xmtn!50, ~13!

in which J is a smooth function on J`E, and let S` be its equation manifold. Equation (13
describes pseudo-spherical surfaces if there exist smooth functions fab ~a51,2,3; b51,2! on
J`E for which f11f 222 f 12f 21Ó0, and such that the pull-back of the one-formsva5 f a1dx
1 f a2dt by local holonomic sections j`(s) of S`,v̄a say, satisfy the structure equations of
surface of constant Gaussian curvature equal to21 with metric (v1)21(v2)2 and connection
one-formv125v3, namely,

dv̄15v̄12∧v̄2, dv̄25v̄1∧v̄12, and dv̄125v̄1∧v̄2. ~14!

Hereafter, only the notationv12 ~instead ofv3! will be used for the connection one-formf 31dx
1 f 32dt. Also, the expression ‘‘PSS equation’’ will be sometimes utilized as an abbreviation o
phrase ‘‘equation describing pseudo-spherical surfaces.’’ The functionsf ab may well be complex
valued. An interesting example is provided by the Lund–Regge equation discussed in Sec

How do the pseudo-spherical surfaces themselves appear in this context? One can
following: if j `(s) is a genericsolution of the PSS Eq.~13!, that is, if

„j `~s!…* ~v1`v2!Þ0, ~15!

~Ref. 15!, one can consider the space of independent variables as the domain of the inver
local chart on the graphQ of the sectionj `(s), and one can then equipQ with a pseudo-spherica
structure determined in the~x,t! coordinates by the one-forms„j `(s)…* v1, „j `(s)…* v2, and
„j `(s)…* v12. In agreement with the classical tradition16 the pseudo-spherical surfaces so co
structed may well be complex.

Note that if the equationJ50 describes pseudo-spherical surfaces, it is the integrab
condition of the sl(2,R)-valued linear problem
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S dv1

dv2
D5

1

2 S v2 v12v12

v11v12 2v2 D S v1

v2
D . ~16!

Thus, if the equationJ50 describes a one-parameter family of pseudo-spherical surfaces
can obtain a one-parameter family of linear problems for which the given equation is the in
bility condition. It is then natural, as anticipated in the Introduction, to call a PSS equ
geometrically integrableif its associated one-forms depend on an extra parameterh. It is custom-
ary to callh the ‘‘spectral’’ parameter, in agreement with the fact that one may hope to use~16!
to solve geometrically integrable equations by inverse scattering techniques.

One can characterize large classes of geometrically integrable equations for which the
sponding linear problems~16! present ana priori dependence on the parameterh. For instance, a
complete characterization of evolution equationsz0,t5F(x,t,z0 ,...,zm) describing pseudo-
spherical surfaces for whichv25hdx1 f 22dt @so that thex-part of the associated linear proble
~16! is an eigenvalue problem# has been performed by Reyes,4 generalizing earlier work by Chern
and Tenenblat.2 These characterization resultsare fruitful. The one described above has be
used4 to study the relationship between geometric integrability and formal integrability in
sense of Mikhailov, Shabat, and Sokolov.6 This section ends with three examples.

Example 1:Burgers’ equationz0,t5z21z0z1 is geometrically integrable. One can check~the
computations were performed inMAPLE, using the Variational Calculus PackageVESSIOT being
developed at Utah State University by Charles Miller and Ian Anderson! that theh-dependent
one-forms,

v15~~1/2!z02z1h2~1/4!z1
2z01~1/2!z1

2h1z2!dx1~~1/2!z11~1/4!z0
22~1/2!z1hz0

2~1/4!z1
32~1/8!z1

2z0
21~1/4!z1

2hz01z0z21z1
21z3!dt, ~17!

v25~h1~1/2!z1z02z1h!dx1~1/2!~hz01z1
21~1/2!z1z0

22z1hz0!dt, ~18!

v125~2h1z1h1~1/4!z1
2z02~1/2!z1

2h2z2!dx1~2~1/2!hz01~1/2!z1hz01~1/4!z1
3

1~1/8!z1
2z0

22~1/4!z1
2hz02z0z22z1

22z3!dt, ~19!

satisfy the structure equations~14! wheneverz0(x,t) is a solution of Burgers’ equation. Thi
example shows that Definition 1 allows for one-forms$v1,v2,v12%, which are not considered in
the classification results for evolutionary PSS equations known up to now:2,15,4 these results were
obtained under a technical assumption which implies that the functionsf a1(a51,2,3) appearing
in Definition 1 factor throughE, that is, they do not depend onzi , i>1.

Example 2:The Laplace equationuxx1uyy50 is geometrically integrable. One can eas
check that theh-dependent one-forms,

v15e2hxuydx2e2hxuxdy, ~20!

v252hdx, ~21!

v1252e2hxuydx1e2hxuxdy, ~22!

satisfy the structure equations~14! wheneveru(x,y) is a solution of Laplace’s equation.
Example 3:The elliptic Monge–Ampe`re equationuxxuyy2uxy

2 51 is geometrically integrable
This result is based on the following notion of equivalence for partial differential equations

Let J50 andJ850 be two equations with equation manifoldsS`
�J`E andS`8

�J`E8.
They arecontact equivalentif there exists a transformationF:S`→S`8 such that~i! the induced
mapF* preserves the differential ideals generated by the basic contact one-forms onS` andS`8,
and ~ii ! the mapF covers a smooth mapF1:V,J1E→V8,J1E8, in which V andV8 are open
sets satisfyingp1

`(S`),V andp1
`(S`8),V8.
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The reader is referred to Olver’s17 treatise for a thorough discussion of these import
transformations. Now, the Laplace equationv x̄x̄1v ȳȳ50 and the Monge–Ampe`re equation
uxxuyy2uxy

2 51 are contact equivalent. Indeed, if one considers the contact transformatioF
determined by

x̄5ux ȳ5y, v5u2xux , ~23!

one can show that

~v x̄x̄1v ȳȳ!+F5
1

uxx
~uxxuyy2uxy

2 21!,

which proves the claim. It follows thath-dependent one-forms associated with the ellip
Monge–Ampe`re equation can be obtained from Eqs.~20!–~23!. Use of theMAPLE packageVES-

SIOT mentioned in Example 1 yields

s15uxxe
2huxuydx1~uxye

2huxuy1e2huxx!dy, ~24!

s252uxxhdx12uxyhdy, ~25!

and

s1252uxxe
2huxuydx1~2uxye

2huxuy2e2huxx!dy. ~26!

IV. CONSERVATION LAWS OF PSS EQUATIONS: INTRINSIC VERSION

Conservation laws of equations describing pseudo-spherical surfaces were first obtai
Chern and Tenenblat.2 Their construction is as follows:

Given an arbitrary coframe$v̄1,v̄2% and corresponding connection one-formv̄12 on a smooth
surfaceM with metricds25(v̄1)21(v̄2)2, one can find a new coframe$ū1,ū2% and a correspond
ingly new connection one-formū12 satisfying the structure equations

dū150, dū25 ū2` ū1, and ū121 ū250, ~27!

if and only if the surfaceM is pseudo-spherical. This is seen thus: assume that the frames d
the coframes$v̄1,v̄2% and $ū1,ū2% possess the same orientation. SinceM is, in principle, an
arbitrary surface, the structure group of the principal bundle of orthonormal oriented framesM

is SO~2!, and therefore, the ‘‘old’’ and ‘‘new’’ one-forms,$v̄1,v̄2,v̄12% and$ū1,ū2,ū12% respec-
tively, are related by a rotation in an angler,

ū15v̄1 cosr1v̄2 sinr, ~28!

ū252v̄1 sinr1v̄2 cosr, ~29!

and a gauge transformation

ū125v̄121dr. ~30!

It follows that one-forms$ū1,ū2,ū12% as above exist if and only if the Pfaffian system

v̄121dr2v̄1 sinr1v̄2 cosr50 ~31!

is completely integrable, and one can check that this happens if and only ifM is pseudo-spherical
Now, if a differential equation
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J~x,t,z0 ,...,z0,xmtn!50 ~32!

with equation manifoldS`
�J`E describes pseudo-spherical surfaces with associated one-f

v1,v2,v12, Eqs.~27!–~30! imply that the Pfaffian system

v̄121dr2v̄1 sinr1v̄2 cosr50 ~33!

on the space of coordinates (x,t,r), in which

v̄15„j `~s!…* v1, v̄25„j `~s!…* v2, and v̄125„j `~s!…* v12, ~34!

is completely integrable forr(x,t) whenevers:(x,t)°„x,t,z0(x,t)… is a local section ofE deter-
mining a solutionj `(s) of Eq. ~32!. Moreover, if j `(s) is a solution of~32! and r(x,t) is a
corresponding solution of~33!, Eqs.~27! and ~28! imply that the one-form

u5v̄1 cosr1v̄2 sinr ~35!

is closed. If the associated functionsf ab can be formally expanded as power series in a param
h, the functionr(x,t) determined by~33! can be also expanded in powers ofh. The one-form~35!
then determines a sequence of one-forms which are closed wheneverz0(x,t) is a solution of Eq.
~32!. Because of~11!, they becomedH-closed horizontal one-forms on the equation manifoldS`

of Eq. ~32! if they are differential forms onS`.
An explicit algorithm to construct these conservation laws appears in Cavalcante

Tenenblat5 and further applications of the method have been made by Wyller8 and Alekseev and
Kurdryashov.18 In particular, Wyller8 used it to construct a sequence ofnonlocal conservation
laws for the derivative nonlinear Schro¨dinger equation. One is thus led naturally to consider
nonlocal generalizations of the theory sketched in Sec. II, so as to study local and non
conservation laws on the same footing. This can be done by using coverings~Ref. 11 and refer-
ences therein!. Applications of this theory to PSS equations appear in Ref. 19.

Now, as pointed out in the Introduction, Wyller8 conjectured that his nonlocal conservatio
laws for the derivative nonlinear Schro¨dinger equation should be related to the ones obtained f
the corresponding linear system with spectral parameter by the classical method of Ricca
substitutions.7,3,4 Indeed this is the case: for every geometrically integrable equation, Caval
and Tenenblat’s5 conservation laws coincide with the ones obtained by Riccati-type substitu
from the associated one-parameter family of linear problems~16!.

Lemma 1: LetJ50 be a differential equation describing pseudo-spherical surfaces w

associated one-forms$v1,v2,v12%. Under the changes of variablesG5tan(r/2) and Ĝ
5cot (r/2), the completely integrable Pfaffian system (33) and the one-form (35) become, re
tively,

22dG5~v̄121v̄2!22Gv̄11G2~v̄122v̄2!, ~36!

U5v̄12G~v̄122v̄2! ~up to an exact differential form!, ~37!

and

2dĜ5~v̄122v̄2!22Ĝv̄11Ĝ2~v̄121v̄2!, ~38!

Û52v̄11Ĝ~ v̄121v̄2! ~up to an exact differential form!. ~39!

Proof: Equation~36! is easily obtained from~33! if one setsG5tan(r/2). In turn, the closed
one-formu given by Eq.~35! becomes

uG5
12G2

11G2 v̄11
2G

11G2 v̄2. ~40!
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Of course, one can check by direct computation thatuG is closed ifG satisfies~36! and the forms
$v1,v2,v12% satisfy the structure equations of a pseudo-spherical surface wheneverz0(x,t) is a
solution ofJ50. Now consider the one-formU given by

U5uG1d ln~11G2!. ~41!

A straightforward computation using the Pfaffian system~36! yields ~37!. Analogously, if one
makes the change of variablesĜ5cot(r/2) in ~33!, one finds~38!, while ~35! yields a one-formuĜ

similar to ~40!. One finds the one-form~39! if one sets

Û5uĜ1d ln~11Ĝ2! ~42!

and simplifies using the Pfaffian system~38!. h

The one-formsU and Û given by ~37! and ~39! are very similar to the ones appearing
Sasaki’s3 seminal paper on AKNS integrable equations. One obtains exactly his formulas~up to
nonessential constants! if one rotates the coframe$v̄1,v̄2% by an angler05p/2. Indeed, Eqs.
~28!–~30! imply that the Pfaffian system~36! and the one-form~37! become, respectively,

22dG05~v̄121v̄1!12G0v̄21G0
2~v̄122v̄1! ~43!

and

U52v̄22G0~v̄122v̄1!, ~44!

while the Pfaffian system~38! and one-form~39! now read

2dĜ05~v̄122v̄1!12Ĝ0v̄21Ĝ0
2~v̄121v̄1! ~45!

and

Û5v̄21Ĝ0~v̄121v̄1!. ~46!

Equation~43! becomes exactly formula~4.1! appearing in Sasaki’s3 work, and Eq.~44! becomes
22 times Sasaki’s3 formula ~4.5!, if one replaces Sasaki’s ‘ ‘G1’ ’ by 2G0 . Also, Eq. ~45! is
precisely Sasaki’s3 Pfaffian system~4.2!, and the one-form~46! is two times Sasaki’s3 formula
~4.6!, if one replaces Sasaki’s ‘ ‘G2’ ’ by 2Ĝ0 . One has proven the following theorem:

Theorem 1: Let J50 be a geometrically integrable equation with associated one-fo
$v1,v2,v12%. The conservation laws forJ50, obtained from the Chern–Tenenblat one-form
(35), coincide with those obtained by Sasaki3 up to a rotation, nonessential constants, invertib
changes of variables, and addition of trivial conservation laws.

Sasaki’s3 conservation laws certainly reduce to the ones obtained classically by using Ri

type substitutions.7,4 By writing (2 1
2)U5( 1

2)v̄
21( 1

2)G0(v̄122v̄1) explicitly in terms of the func-
tions f ab ~notation as in Definition 1!, one finds the following conservation law:

DtS f 21

2
1

1

2
G0~ f 312 f 11! D5DxS f 22

2
1

1

2
G0~ f 322 f 12! D . ~47!

If f 11Þ f 31, one can apply the change of variables

f15 1
2G0~ f 312 f 11! ~48!

to Eqs.~43! and ~47!. One finds the Riccati equation
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Dxf15
1

4
~ f 11

2 2 f 31
2 !1S Dx~ f 112 f 31!

f 112 f 31
2 f 21Df12f1

2, ~49!

and the conservation law

DtS f 21

2
1f1D5DxS f 22

2
1f1

f 122 f 32

f 112 f 31
D , ~50!

both of which are to be satisfied wheneverz0(x,t) is a solution of the equationJ50. These two
equations are precisely~if f 215h! the first two formulas for conservation laws ofJ50 consid-
ered~in the AKNS case! by Wadati, Sanuki, and Konno,7 and generalized in Theorem 9 of Ref.
In the same way, iff 11Þ2 f 31, Eqs.~45! and ~46! yield the Riccati equation

Dxf252
1

4
~ f 11

2 2 f 31
2 !1S Dx~ f 111 f 31!

f 111 f 31
1 f 21Df21f2

2, ~51!

and the conservation law

DtS f 21

2
1f2D5DxS f 22

2
1f2

f 121 f 32

f 111 f 31
D , ~52!

both of which are again to be satisfied wheneverz0(x,t) is a solution of the equationJ50. These
equations are precisely~if f 215h! the last two equations appearing in Theorem 9 of Ref. 4.

Thus, Chern and Tenenblat’s2 construction of conservation laws for geometrically integra
equations provides a precise geometric interpretation for~and a generalization of! the computa-
tions of conservation laws so familiar from the integrable systems literature. This section
with two examples.

The Lund–Regge equation:The Lund–Regge equation~Ref. 20! in light-cone coordinates
reads

uxt2
1

2
sin 2u1

cosu

sin3 u
lxl t50, ~53!

~lx cot2 u! t1~l t cot2 u!x50. ~54!

The system~53!, ~54! describes a one-parameter family of~complex! pseudo-spherical surface
with associated one-forms

v15~2ilx cotu!dx1S i

2h
sin 2u Ddt, ~55!

v25S 22ih1 i
cos 2u

sin2 u
lxDdx1S i

2h
cos 2u2

i

sin2 u
l tDdt, ~56!

and

v1252uxdx. ~57!

Equation~49! becomes

Dxf15L1~R12ih!f12f1
2, ~58!

in which the functionsL andR are given by
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L52~lx
2 cot2 u1ux

2!, ~59!

R5Dx ln~ ilx cotu22ux!2 i
cos 2u

sin2 u
lx . ~60!

Assume thatf1 can be expanded in a power series of the form

f15 (
n51

`

f1
~n!h2n.

Equation~58! implies thatf1 is determined by the recursion relation

f1
~1!5

21

2i
L, ~61!

f1
~n11!5

1

2i S 2Rf1
~n!1Dxf1

~n!1 (
i 51

n21

f1
~ i !f1

~n2 i !D , n>1, ~62!

whenever„u(x,t),l(x,t)… is a solution of Eqs.~53! and~54!, and it follows from Eq.~50! that the
coefficients of the power series inh,

2 ih1 i
cos 2u

2 sin2 u
lx1 (

n51

`

f1
~n!h2n, ~63!

are a sequence of conserved densities for Eqs.~53! and ~54!.
Conservation laws have been also found by Lund himself21 by means of inverse scatterin

techniques. The conserved densities corresponding to the coefficients ofh0 andh21 in ~63! are
exactly Lund’s conserved densitiesC0 andC1 given by Eqs.~3.50! and~3.51! of Ref. 21, if one
sets the constantA8 appearing in those equations equal to zero.

The cylindrical KdV equation: The one-forms

s152~1/4!
22/3~22125/3sv222/3j!

As
dj

1S 36s2 A3 2vjj118hAs236hs3/2vj118h222/3sv29h2j22/3

36s3/2

1
12 A3 2s2v216A3 2svj26j2 A3 2218h2128/3sv211 22/3j210

36s3/2 D ds, ~64!

s25~1/2!
22/3h

As
dj2

~9h313h22/3sv13j22/3h13As26s3/2vj15h!

18s3/2 ds, ~65!

and
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s1252~1/12!
22/3~2416 22/3sv23 22/3j!

As
dj

1S 108s2 A3 2vjj154hAs2108hs3/2vj154h222/3sv227h2j22/3

108s3/2

1
36 A3 2s2v2118 A3 2svj218j2 A3 2236h2118 22/3sv227 22/3j220

108s3/2 D ds ~66!

satisfy the structure equations~14! wheneverv(j,s) is a solution of the cylindrical KdV equation

]v
]s

52
]3v
]j32v

]v
]j

2
1

2s
v. ~67!

Replacing the coefficients of the one-forms~64!–~66! into Eq. ~49! one finds the equation

Djf152
1

72

A3 2~2516 22/3sv23 22/3j!

s
1S Dx ln S 1

6

22/3

As
D 2

221/3h

As
D f12f1

2. ~68!

As before, assume thatf1 can be expanded in a power series of the form

f15 (
n51

`

f1
~n!h2n.

Equation~68! implies thatf1(j,s) is determined by the recursion relation

f1
~1!52

1

72

A3 4~2516 22/3sv23 22/3j!

As
, ~69!

f1
~n11!5221/3AsX2Dx lnS 1

6

22/3

As
D f1

~n!1Djf1
~n!1 (

j 51

n21

f1
~ j !f1

~n2 j !C, ~70!

wheneverv(j,s) is a solution of the cylindrical KdV equation~67!. This recursion relation yields
a sequence of conserved densities given by the coefficients of the power series inh

224/3

As
h1 (

n51

`

f1
~n!h2n,

which one obtains from Eq.~50!.
Conservation laws for the cylindrical KdV equation have been also studied by Caloger

Degasperis22 by means of inverse scattering techniques, and by Nakamura23 who used a Miura-
type transform.

V. IMMERSED SURFACES AND INTEGRABILITY

Sym’s9 theory of soliton surfaces, Lund and Regge’s20 discovery of the integrable equatio
named after them, and Fokas, Gel’fand, Finkel and Liu’s1 recent work on the geometry of inte
grable surfaces consider surfaces immersed in higher-dimensional spaces as their startin
while Chern and Tenenblat’s2 approach is intrinsic. The immersion approach is tersely reviewe
this section. It will be used in Sec. VI to gain some further understanding of the class of
equations.
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The following standard result is sometimes called ‘‘the fundamental theorem of su
theory:’’

Theorem 2:Let v̄b andv̄ i
j ~b51,2; i , j 51,2,3! be one-forms on an open domain U,R2,E3

such that the one-formsv̄b are linearly independent, the compatibility condition

v̄ i j 1v̄ j i 50, i , j 51,2,3, ~71!

holds, and the structure equations

dv̄15v̄12̀ v̄2, ~72!

dv̄25v̄1`v̄12, ~73!

05v̄1`v̄131v̄2`v̄23, ~74!

dv̄1252ev̄13̀ v̄23, ~75!

dv̄135v̄12̀ v̄23, ~76!

dv̄235v̄13̀ v̄12, ~77!

are satisfied (indices are raised and lowered by means of the metrich ib5d ib , h i35ed i3 , i
51,2,3,b51,2 on E3). Let u0PU and p0PE3, and assume that$e1

0,e2
0,e3

0% is an orthonormal
basis of the tangent space of E3 at p0 . There exists a unique (up to isometries of E3! immersion
P:U�E3, and a unique orthonormal moving frame$e1 ,e2 ,e3% on P(U) such that

P~u0!5p0 , and ei~u0!5ei
0, i 51,2,3, ~78!

dP5v̄beb , b51,2, ~79!

and

dei5v ī
j ej , i , j 51,2,3. ~80!

The mapdP is the differential of the immersionP, anddei is the differential of the vector fieldei

considered as a functionei :U→E3. Equations~75!–~77! are the Gauss–Codazzi equations, a
Eqs.~80! are the equations of Gauss and Weingarten. The relation between this classical m
and integrability is the following:

Suppose thatJ50 is a system of equations forz0 ,j,h in two independent variables~x, t!.
The theory summarized in Sec. II extends straightforwardly to this case.10 In particular,J50
determines an equation manifoldS̄`

�J`Ē, in which Ē denotes a trivial fiber bundle given locall
by (x,t,z0 ,j,h)°(x,t), and a horizontal exterior derivativedH can be defined as before. Le
vb5 f b1dx1 f b2dt (b51,2) be smooth one-forms onJ`Ē such thatv1∧v2Ó0, and letv12 be the
unique horizontal one-form satisfying the equations

dHv15v12∧v2 and dHv25v1∧v12 ~81!

identically. Setvb35hb1v11hb2v2 for some smooth functionshba on J`Ē, and consider the
one-formsv̄b5„j `(s)…* vb andv̄ba5„j `(s)…* vba (a51,2,3) in whichj `(s) is an arbitrary local
solution ofJ50. By construction, and because of Eq.~11!, the one-formsv̄b andv̄ba satisfy the
structure equations~72!–~74! identically. If the Gauss–Codazzi equations~75!–~77! are also sat-
isfied, J50 is precisely the integrability condition of the Gauss–Weingarten equations~80!.
Moreover, if „j `(s)…* v1∧„j `(s)…* v2Þ0, Theorem 2 implies that there exists an~immersed!
surface with coordinates~x,t! which is described by the coframe$v̄1,v̄2% and the connection
one-forms$v̄12,v̄13,v̄23%.
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Conversely, letvb5 f b1dx1 f b2dt andvb35hb1v11hb2v2 (b51,2) be one-formson J`Ē
such thatv1`v2Ó0. As before, one can find a unique horizontal one-formv12 satisfying Eqs.
~81! identically. The equations

dHv1252ev13̀ v23, dHv135v12̀ v23, and dHv235v13̀ v12 ~82!

give rise to a system of nonlinear equations,J50, say, in the variablesz0 , j, andh. This system
will determine, in principle, a locus on a finite-order jet bundleJkĒ, a submanifoldS̄k of JkĒ, and
a subbundleS̄` of J`Ē. Equations~11! and~82! then imply that the structure equations~75!–~77!

are satisfiedif the one-formsvb andvba are pulled-back by holonomic sections ofS̄`. It follows
that the systemJ50 thus constructed is the integrability condition of the Gauss–Weinga
equations~80!.

A striking example of this procedure is the discovery and analysis of the Lund–Regge
tion by Lund and Regge20 and Lund.24,21

It will be seen in Sec. VI that this ‘‘extrinsic’’ approach can indeed be connected with
‘‘intrinsic’’ approach put forward in Secs. III and IV. As preparation, this section finishes with
easy example of an immersion of pseudo-spherical surfaces into a flat three-dimensional s

Proposition 1: A pseudo-spherical surface S described locally by one-formsv̄b (b51,2) and
v̄12 can be locally and isometrically immersed into a three-space E3 equipped with a flat metric
of signature~1,1,21!.

Proof: Consider one-formsv̄b,v̄12 satisfying the structure equations~14! ~with ‘‘ v’’ replaced
by ‘‘ v̄ ’’ everywhere! and set

v̄1
352v̄1 and v̄2

352v̄2. ~83!

It is easy to check that Eqs.~72!–~77! indeed hold. Therefore, Theorem 2~with e521! implies
that there exists a local isometric immersionP:S�E3. h

Remark:The immersed surfaceP(S) and the immersionP:S�E3 can be easily found. The
last equation of the linear system~80! is de35v̄3

1e11v̄3
2e2 , that is, by Eqs.~83!, de352v̄1e1

2v̄2e2 , and Eq.~79! then implies that (de3)u(v)52(dP)u(v) for all vPTuS. This last equation
has the obvious solutionP52e3 . Thus, if E3 has coordinateszi ( i 51,2,3), P is of the form
P(x,t)5„2zi(x,t)…, where the mape3 :S→E3 is (x,t)°„zi(x,t)…. Sincee3 is a unit timelike
vector field, the pointsP(x,t) of P(S) satisfy

„z1~x,t !…21„z2~x,t !…22„z3~x,t !…2521.

VI. CONSERVATION LAWS OF PSS EQUATIONS: EXTRINSIC VERSION

It is shown in this section that Chern and Tenenblat’s2 one-form ~35! is a member of a
one-parameter family of one-forms which are closed wheneverz0(x,t) is a solution of the PSS
equationJ50. This fact is based on the following result.

Proposition 2: Suppose that M is a surface locally and isometrically immersed in a th
space E3 equipped with a flat metric of signature~1, 1, e!, e561. Let S(j) and C(j) be two
real-valued functions such that C(j)21eS(j)251. The surface M is pseudo-spherical if and on
if for any numberj with C(j)Þ0, and any unit vectorv0 tangent to M at p0PM , there exists a
local orthonormal moving frame$e18 ,e28 ,N% on M, such that e18 and e28 are everywhere tangent to

M, e18(p0)5v0 , and the dual one-formsūb and connection one-formsū i j (b51,2, i , j 51,2,3)
satisfy the equation

ū12C~j!1 ū21 ū31S~j!50. ~84!

In this case,

ū12 ū32S~j! ~85!
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is a one-parameter family of closed one-forms.
Proof: Let $e1 ,e2 ,N% be an arbitrary orthonormal moving frame onM aboutp0PM with e1

ande2 everywhere tangent toM. Assume that$v̄1,v̄2% is the moving coframe dual to$e1 ,e2%,
and that v̄ i j ,i , j 51,2,3, are the corresponding connection one-forms. Assume further

$e1 ,e2 ,N% and the ‘‘new’’ moving frame$e18 ,e28 ,N% possess the same orientation. Let$ū1,ū2% be
the moving coframe dual to$e18 ,e28%, and$ū i j %,i , j 51,2,3, be the corresponding connection form

Let ~x, t! be local coordinates aboutp0 . The moving frames$e1 ,e2% and $e18 ,e28% are con-
nected by a rotation in an angler(x,t). Therefore the coframes$v̄1,v̄2% and$ū1,ū2% are related
by formulas~28! and ~29!, and the connection one-formsv̄ i j and$ū i j %, i , j 51,2,3, by~30! and

ū315v̄31cosr1v̄32sinr ~86!

and

ū3252v̄31sinr1v̄32cosr. ~87!

It follows that a moving frame$e18 ,e28%, with e18(p0)5v0 and such that Eq.~84! holds, exists if
and only if the Pfaffian system on the space of coordinates~x, t, r!,

C~j!~v̄121dr!1v̄2 cosr2v̄1 sinr1S~j!~v̄31cosr1v̄32sinr!50, ~88!

is completely integrable forr(x,t). A long but straightforward computation using the structu
equations~72!–~77! shows that this happens if and only if

1

C~j!
~dv̄122v̄1∧v̄2!50,

that is, if and only ifM is pseudo-spherical.
The fact that the parameter-dependent one-formū12 ū32S(j) is closed follows from Eq.~84!

and the structure equations~72!–~77!. h

Example:The ubiquitous sine–Gordon equation in the form

]2u

]x22
]2u

]t2 5sinu cosu ~89!

describes pseudo-spherical surfaces immersed in a flat Euclidean three-space. Associa
forms arev15cosu dx, v25sinu dt, v125u tdx1uxdt, v135sinu dx, and v2352cosu dt. Set
j5p/22s, C(j)5cosj, andS(j)5sinj. Equation~88! yields

sins~rx1u t!5sinr cosu2coss cosr sinu,

and

sins~r t1ux!52cosr sinu1coss sinr cosu.

This is exactly the completely integrable Pfaffian system appearing in Ref. 16, p. 285, w
determines a pseudo-spherical surfaceM1 from a pseudo-spherical surfaceM by means of a
Bäcklund transformation with parameters. In actual fact, the existence part of Proposition
appears already in the moving frames version of the Ba¨cklund theorem proven by Chern an
Terng25 in the Euclidean case.

The Pfaffian system~88! reduces to the one considered in Sec. IV@Eq. ~33!# if e51, C(j)
5cosj, S(j)5sinj, andj50, of course. It also yields conservation laws, this time by mean
the one-form~85!:
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Theorem 3: Let J50 be a differential equation which describes pseudo-spherical surfa
locally and isometrically immersed in a three-space E3 equipped with a flat metric of signature~1,
1, e!, e561. Suppose that the immersion is determined by one-formsvb5 f b1dx1 f b2dt, v12

5 f 31dx1 f 32dt, and v3b5hb1dx1hb2dt, b51,2. Let s be a local section of E, and setv̄b

5„j `(s)…* vb, and v̄ i j 5„j `(s)…* v i j , b51,2, i , j 51,2,3.Consider two functions S(j) and C(j)
satisfying C(j)21eS(j)251. Then, for eachj for which C(j)Þ0, the Pfaffian system

C~j!~rx1 f̄ 31!5 f̄ 11sinr2 f̄ 21cosr2S~j!~ h̄11cosr1h̄21sinr!, ~90!

C~j!~r t1 f̄ 32!5 f̄ 12sinr2 f̄ 22cosr2S~j!~ h̄12cosr1h̄22sinr!, ~91!

on the space of coordinates~x, t, r!, is completely integrable forr(x,t) whenever j`(s) is a local
solution ofJ50. Moreover, for each solution ofJ50 and a corresponding solutionr(x,t) of
(90) and (91), the one-form

u~j!5v̄1 cosr1v̄2 sinr2S~j!~2v̄31sinr1v̄32cosr! ~92!

is closed.
A simpler representative of the same conservation law is obtained by changing variabl

F5tan (r/2), and addingC(j)d ln (11F2) to the resulting one-form. One finds that the Pfaffi
system~90! and ~91! can be written as

„2C~j!v̄122v̄22S~j!v̄31…12F„v̄12S~j!v̄32…1F2
„2C~j!v̄121v̄21S~j!v̄31…52C~j!dF,

~93!

while u(j) becomes

Q~j!5v̄11F„v̄22C~j!v̄12…1S~j!~Fv̄312v̄32!. ~94!

This is the final version of thegeneralized Chern–Tenenblatconservation laws which will be
considered here.

Remark:~1! If the equationJ50 is geometrically integrable, so that the associated one-fo
depend on a ‘‘spectral’’ parameterh, Q(j) can be used to find, in principle, an infinite number
j-dependent conservation laws by expanding the one-formsvb, v i j (b51,2,i , j 51,2,3) and the
function F in powers ofh. Examples appear in Ref. 19.

~2! A PSS equationJ50 possesses, in principle, an infinite number of conservation la
even if its associated one-forms do not depend on an extra parameter. This is so because~93! and
~94! depend onj through the functionsC(j) andS(j). One can then expand these functions
powers ofj, and findF andQ(j) as formal power series inj. Since, as pointed out before, th
construction of generalized Chern–Tenenblat conservation laws is based on the integrabil
of the Bäcklund theorem, one can interpret this remark as providing a formal version of Wa
Sanuki, and Konno’s7 calculation of conservation laws from Ba¨cklund transformations.

~3! The fact that the ‘‘spectral’’ parameterh is in general different from the ‘‘Ba¨cklund’’
parameterj has been observed in field theory by Neveu and Papanicolaou.26

VII. EQUATIONS WHICH DESCRIBE CALAPSO–GUICHARD SURFACES

In this last section, the extrinsic approach reviewed in Sec. V is used to define a cla
systems of equations which may be naturally considered as large deformations of scala
equations: it will be shown that ifJ(x,t,z0 ,...)50 is a scalar PSS equation, there exists a sys
of equationsJ i(x,t,z0 ,j,h,...)50, i 51,2,3, which is also the integrability condition of
sl(2,R)-valued linear problem, and which reduces, in a precise sense, to the original equatij
is constant andh50.

The main observation behind this work is that the Gauss–Codazzi equations of Cal
Guichard surfaces generalize the sine–Gordon equation, and can be interpreted as the inte
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condition of a two-dimensional linear problem with spectral parameter.12 These surfaces are o
interest, because, as pointed out in Sec. I, a suitable generalization of Ba¨cklund transformations
can be defined for them,13 and it is expected that these transformations will induce a corres
dence between solutions of equations in the class to be introduced here~see Ref. 15 for the
pseudo-spherical case!.

Classically, Calapso–Guichard surfaces are obtained as follows. One considers a suS
immersed inR3 with metric

ds25cos2 u dx21sin2 u dt2 ~95!

and second fundamental form

w5sinu cosu~dx22dt2!, ~96!

so thatS is a pseudo-spherical surface ifu satisfies the sine–Gordon equation~89!. One then
deforms~95! and ~96! to

dsCG
2 5~ej cosu!2dx21~ej sinu!2dt2

and

wCG5ej cosu~sinu1h cosu!dx21ej sinu~2cosu1h sinu!dt2,

respectively. The Gauss–Codazzi equations~75!–~77! become nonlinear equations for the fun
tionsj, h, andu. These are theCalapso–Guichard equations, and the surfaces determined by the
the Calapso–Guichard surfaces. Explicitly, Eqs.~75!–~77! now read

2~2u t1j t cotu! t1~2ux2jx tanu!x5~2cosu1h sinu!~sinu1h cosu!, ~97!

hx5jx~h1tanu!, ~98!

and

ht5j t~h2cotu!, ~99!

which clearly generalize the sine–Gordon equation~89!. The extension of this analysis to arbitra
scalar PSS equations proceeds as follows.

Let J(x,t,z0 ,...,z0,xmtn)50 be a scalar equation describing pseudo-spherical surfaces
associated one-forms

v15 f 11dx1 f 12dt, v25 f 21dx1 f 22dt, and v125 f 31dx1 f 32dt ~100!

in which v1`v2Ó0. Let Ē be a trivial fiber bundle given locally by (x,t,z0 ,j,h)°(x,t) and set

s15ejv1 and s25ejv2. ~101!

As in Sec. V, let

s125h31dx1h32dt ~102!

be the unique one-form onJ`Ē satisfying the equations

dHs15s12̀ s2 and dHs25s1`s12 ~103!

identically. Here and below,dH denotes the horizontal exterior derivative onJ`Ē ~see Sec. V and
Ref. 10!. The functionsh31 andh32 are given by
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h315
1

d
@ f 11~2 f 11,t1 f 12,x!1 f 21~2 f 21,t1 f 22,x!#1

1

d
@jxF2j tE#, ~104!

h325
1

d
@ f 12~2 f 11,t1 f 12,x!1 f 22~2 f 21,t1 f 22,x!#1

1

d
@jxG2j tF#, ~105!

in which d5 f 11f 222 f 12f 21, and the functionsE5 f 11
2 1 f 21

2 , F5 f 11f 121 f 21f 22, andG5 f 12
2 1 f 22

2

are the coefficients of the tensor (v1)21(v2)2 in the coordinates~x, t!.
Suppose that there exist connection one-forms

v135h1
13dx1h2

13dt and v235h1
23dx1h2

23dt ~106!

such thatv1, v2, v12, v13, and v23 satisfy the structure equations~72!–~77! of a pseudo-
spherical surface immersed in a three-spaceE3 equipped with a flat metric of signature~1, 1, e!,
e561, wheneverz0(x,t) is a solution ofJ50. Set

s135v131hv1 and s235v231hv2, ~107!

and consider the equations

dHs15s12̀ s2, ~108!

dHs25s1`s12, ~109!

05s1`s131s2`s23, ~110!

dHs1252es13̀ s23, ~111!

dHs135s12̀ s23, ~112!

and

dHs235s13̀ s12. ~113!

Locally, these equations determine a locusL on a finite order jet-bundle,JkĒ, say. Explicitly,
since Eqs.~108!–~110! are identities,L consists of all thosek-jets in JkĒ satisfying

2h31,t1h32,x52e@h1
13h2

232h1
23h2

131h2~ f 11f 222 f 12f 21!1h~h1
13f 222h2

13f 211 f 11h2
232 f 12h1

23!#,

~114!

2@h1
131h f11# t1@h2

131h f12#x5h31~h2
231h f22!2h32~h1

231h f21!, ~115!

2@h1
231h f21# t1@h2

231h f22#x5h32~h1
131h f11!2h31~h2

131h f12!. ~116!

This motivates the following definition.
Definition 2: LetJ50 be a scalar equation which describes pseudo-spherical surface

cally and isometrically immersed in a three-space E3 equipped with a flat metric of signature~1,
1, e!, e561, by means of one-formsvb,v i j (b51,2, i , j 51,2,3)given by (100) and (106). Letsb

and s i j be the one-forms on J`Ē defined by Eqs. (101), (102), and (107), and consider
two-forms

S15dHs121es13∧s23, S25dHs132s12∧s23, and S35dHs232s13∧s12. ~117!

Assume thatS i are two-forms on a finite-order jet bundle JkĒ. The system of equationsJ i50
describing Calapso–Guichard surfaces of typeJ is the locus
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L5$ j k~ s̄!~x,t !uS i~ j k~ s̄!~x,t !!50, i 51,2,3%. ~118!

The nonlinear equations~118! are exactly~114!–~116!, of course. As in Sec. II, one restrict
one’s attention to an open, connected, and contractible subset ofL which is a subbundle ofJkĒ,
and for which the tower of prolongationsM←S̄k←S̄k11←¯ is well defined. One obtains a
subbundleS̄` of J`Ē, the equation manifold of Eqs.~114!–~116!. Note that if j `( s̄) is a holo-
nomic section ofS̄` and „j `( s̄)…* s1`„j `( s̄)…* s2Þ0, Eq. ~11! and Theorem 2 imply that ther
exists a Calapso–Guichard surface locally and isometrically immersed inE3, coordinatized by the
independent variables~x,t!, and described by the coframe$s̄1,s̄2% and the connection one-form

$s̄12,s̄13,s̄23%, in which s̄b5 j `( s̄)* sb and s̄ i j 5 j `( s̄)* s i j , b51,2, i,j51,2,3.
Theorem 4:LetJ50 be a scalar equation describing pseudo-spherical surfaces immers

a flat space E3, with associated one-formsv1, v2, v12, v13, andv23 given by (100) and (106)
and equation manifold S`. Let

J i~x,t,z0 ,...,z0,xntmj,...,j tt ,h,...,htt!50, i 51,2,3, ~119!

be the system of equations which describes Calapso–Guichard surfaces of typeJ with equation

manifold S̄`. Then, Eq. (119) is the integrability condition of asl(2,R)-valued linear problem.
Furthermore, (119) reduces toJ50 in the following sense: ifj is constant and h50, holonomic

sections of S` ~i.e., local solutions ofJ50) are also holonomic sections of S¯̀ ~i.e., local
solutions ofJ i50).

Proof: Equations~114!–~116! are the integrability condition of the Gauss–Weingarten lin
system~80!, i.e.,

S de1

de2

de3

D 5S 0 s12 es13

2s12 0 es23

2s13 2s23 0
D S e1

e2

e3

D . ~120!

One obtains a two-dimensional linear problem by standard methods, exploiting the local is
phisms between SU~2! and SO~3! if e51, and between SL(2,R) and SO~2, 1! if e521. One finds
that Eqs.~114!–~116! are the integrability condition of the linear system

S dv1

dv2
D5

1

2 S ~2e!1/2s23 ~2e!1/2s132s12

~2e!1/2s131s12 2~2e!1/2s23
D S v1

v2
D . ~121!

The second part of the theorem is proven as follows. Ifj is constant andh50, one can
identify E and Ē. Equations~108!–~113! become simply

dHv15s12̀ v2, ~122!

dHv25v1`s12, ~123!

05v1`v131v2`v23, ~124!

dHs1252ev13̀ v23, ~125!

dHv135s12̀ v23, ~126!

and

dHv235v13̀ s12. ~127!
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Now, let s:(x,t)°„x,t,z0(x,t)… be a local section ofE such thatj `(s) is a holonomic section of
S`. Then, the pull-backs of Eqs.~122!–~127! by j `(s) are identities. Indeed, Eqs.~11! and~14!,
and the formulas~104! and~105! determinings12, imply that „j `(s)…* s125„j `(s)…* v12. Thus,
the pull-backs of~122!–~127! by j `(s) are exactly the structure equations of a pseudo-sphe
surface immersed inE3 and described by the one-formsv1,v2,v12,v13,v23 pulled-back by
j `(s). By hypothesis, they are identically satisfied. Thus,j `(s) is a holonomic section ofS̄`, as
claimed. h

Remark:A short computation using Eq.~121! shows that Eqs.~114!–~116! describe pseudo
spherical surfaces with associated one-forms

a15~2e!1/2s13, a25~2e!1/2s23, and a125s12. ~128!

Example 1:The classical Calapso–Guichard equations~97!–~99! describe Calapso–Guichar
surfaces of typeJ in which J5uxx2u tt2cosu sinu, of course. It is enough to takee51 and
definev15sinu dt, v25cosu dx, v1252uxdt2u tdx, v1352cosu dt, andv235sinu dx.

Example 2:If the explicit immersion for pseudo-spherical surfaces appearing in Proposit
is used, one obtains examples of ‘‘Calapso–Guichard deformations’’ for arbitrary scalar
equations, which describe Calapso–Guichard surfaces immersed locally and isometric
Minkowski three-space. Explicitly, ifv1, v2, and v12 are one-forms associated with a PS
equationJ50, and one definesv135v1, andv235v2, Eqs.~114!–~116! become

2h31,t1h32,x5~11h!2d, ~129!

2@~11h! f 11# t1@~11h! f 12#x5~11h!~ f 22h312 f 21h32!, ~130!

and

2@~11h! f 21# t1@~11h! f 22#x5~11h!~ f 11h322 f 12h31!, ~131!

in which d5 f 11f 222 f 12f 21, andh31, h32 are given by~104!, ~105!. For instance, for Burgers
equation, the system of equations describing Calapso–Guichard surfaces of typeJ, in which J
5z0,t2z22z0z1 , is obtained from Eqs.~129!–~131! by taking2

v15 1
2z0dx1~ 1

2z11 1
4z0

2!dt, ~132!

v25dx1 1
2z0dt. ~133!

The functionsh31 andh32 become

h315211
z0

2z1
~J!2

2

z1
~jxF2j tE!, ~134!

h3252
1

2
z01

z11 1
2z0

2

2z1
~J!2

2

z1
~jxG2j tF !, ~135!

in which the notation introduced in Eqs.~104! and ~105! has been used. One finds the system
nonlinear equations

2
1

2
~11h!2z152F z0

2z1
J2

2

z1
~jxF2j tE!G

t

1F S 1

2
1

z0
2

4z1
DJ2

z0

2
2

2

z1
~jxG2j tF !G

x

,

~136!
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2
1

2
htz01hxS 1

2
z11

1

4
z0

2D5~11h!F2
z0

z1
~jxF2j tE!1

2

z1
~jxG2j tF !G , ~137!

2ht1
1

2
hxz05~11h!F2

z0

z1
~jxG2j tF !1S 11

z0
2

2z1
D ~jxF2j tE!G . ~138!

Note that ifj is constant andh50, Eqs.~136!–~138! determine a locus inJ3E, and not ofJ2E as
in the Burgers’ equation case. However, ifj is constant andh50, a solutionz0(x,t) of Burgers’
equation is also a solution of~136!–~138!, in agreement with Theorem 4.
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Spin coefficients as Lanczos scalars: Underlying spinor
relations

F. Anderssona) and S. B. Edgarb)

Department of Mathematics, Linko¨ping University, S581 83 Linko¨ping, Sweden
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It has been conjectured by Lopez-Bonilla and co-workers that there is some linear
relationship between the NP spin coefficients and the Lanczos scalars, and ex-
amples have been given for a number of different classes of space–times. We show
that in each of those examples a Lanczos potential can be defined in a very simple
way directly from the spinor dyad. Although some of these examples seem to have
no deeper geometric meaning, we emphasize that there are structural links between
Lanczos potential and spin coefficients which we highlight in some other examples.
In particular we show that the direct identification of Lanczos potentials with spin
coefficients is possible for some important classes of space–times while the direct
identification of Lanczos potentials with the properly weighted spin coefficients is
also possible for several important classes of space–times. In both of these cases
we obtain the necessary and sufficient conditions on the spin coefficients for such
identifications to be possible, which enables us to test space–times directly.
© 2000 American Institute of Physics.@S0022-2488~00!03104-2#

I. INTRODUCTION

Throughout this paper we will use the standard conventions and definitions from Ref. 1
WABCD be an arbitrary symmetric spinor; a symmetric spinorLABCA8 is said to be a Lanczos
~spinor! potential ofWABCD if

WABCD52¹ (A
A8LBCD)A8. ~1!

Illge2 has shown that such a Lanczos potential always exists locally~of course this requires a
four-dimensional space–time with a metric of Lorentz signature!. The Lanczos spinor potential i
essentially the spinor analog of the Lanczostensorpotential3 for which Bampi and Caviglia4 have
given an existence proof, by tensor methods in analytic, four-dimensional spaces indepen
metric signature. Note that no assumptions about the differential properties ofWABCD are made.
Illge has also shown that the solution of~1! is far from unique. For a recent summary of propert
of the Lanczos potential, see Ref. 5. Of particular interest is the case whenWABCD5CABCD , i.e.,
the Weyl curvature spinor. There exists no algorithm for finding Lanczos potentials for the
spinor in a general space–time, but in certain special situations some algorithms have bee
~see e.g., Refs. 6–12!.

Let (oA,iA) be a spinor dyad, normalized so thatoAiA51. It is then conventional to define th
eight dyad components of the Lanczos potential as

L05LABCA8o
AoBoCoA8, L45LABCA8o

AoBoCiA8,

L15LABCA8o
AoBiCoA8, L55LABCA8o

AoBiCiA8,

a!Electronic mail: frand@mai.liu.se
b!Electronic mail: bredg@mai.liu.se
29900022-2488/2000/41(5)/2990/12/$17.00 © 2000 American Institute of Physics
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L25LABCA8o
AiBiCoA8, L65LABCA8o

AiBiCiA8,

L35LABCA8i
AiBiCoA8, L75LABCA8i

AiBiCiA8, ~2!

Note that in Refs. 6 and 11, these Lanczos scalars are defined from thetensor version of the
Lanczos potential; as a result the scalars used in Refs. 6 and 11 are defined using the oppo
compared to our spinor definition.

With W05WABCDoAoBoCoD, etc., ~1! can be written as five scalar equations
NP-formalism,6,11

1
2W05dL02DL42~ ā13b2p̄ !L013sL11~3«2 «̄1 r̄ !L423kL5 ,

2W153dL123DL52 d̄L41DL02~3g1ḡ13m2m̄ !L023~ ā1b2p̄2t!L1

16sL21~3a2b̄13p1 t̄ !L413~«2 «̄1 r̄2r!L526kL6 ,

W25dL22DL62 d̄L51DL12nL02~2m2m̄1g1ḡ !L12~ ā2b2p̄22t!L2

1sL31lL41~a2b̄12p1 t̄ !L52~«1 «̄2 r̄12r!L62kL7 ,

2W35dL32DL723d̄L613DL226nL113~m̄2m1g2ḡ !L22~ ā23b23t2p̄ !L3

16lL523~a1b̄2 t̄2p!L62~3«1 «̄2 r̄13r!L7 ,

1
2W45DL32 d̄L723nL21~m̄13g2ḡ !L313lL62~3a1b̄2 t̄ !L7 ~3!

for the Lanczos scalars; for the case whenWABCD5CABCD , these are called the NP Weyl
Lanczos equations.@Unfortunately these equations contain some misprints in both Refs. 6 an
in Refs. 9 the equations~1! subject to the Lanczos differential gauge,AA8LABCA850 are quoted
in NP-formalism and it should be noted that the RHS occur there with the opposite sign com
to above.#

In Ref. 6 it has been pointed out that if the Lanczos scalars in the NP Weyl–Lanczos
tions ~3! are replaced by the spin coefficients according to the scheme

L05
k

2
, L45

s

2
, L15

r

6
, L55

t

6
,

L252
p

6
, L652

m

6
, L352

l

2
, L752

n

2
, ~4!

then the resulting equations are first order equations for the spin coefficients with a str
similar to the NP Ricci equations; these can be shown to be satisfied in Petrov-typeN spaces with
a suitably chosen dyad. Furthermore it is shown that thedifferent replacement,

L05k, L45s, L15
r

3
, L55

t

3
,

L252
t

3
, L652

m

3
, L352l, L752n, ~5!

again because of the Ricci equations, satisfies the Weyl–Lanczos equations of a type III
time, in a suitably chosen dyad.
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These results can both be extended to Petrov type 0 spaces, but neither of these resu
any obvious modification—is applicable to any other spaces.

In Sec. II we show how these results just quoted from Ref. 6 are actually consequence
simple spinor ansatz,

LABC
A85¹ (A

A8~goBiC)!,

whereg is some function, and a very simple spinor calculation. We show that this also ma
clear why the applicability of this ansatz is restricted to space–times with very special
spinors.

Although the particular identifications between the Lanczos scalars and the spin coeffi
presented in Ref. 6 seem to be simply mathematical curiosities which are incapable of an
nificant direct generalization, it is important to note that there are fundamental structural
between Lanczos potentials and spin coefficients, as we discuss in Sec. III. There we demo
such a link for a subclass of Kerr–Schild space–times, and moreover show the relations
curvature-free asymmetric connections. More precisely, given a spinor dyad (oA,iA), the spin
coefficients of this dyad are given by the components of the spinor,

gCBAA85iC¹AA8oB2oC¹AA8iB.

We prove that in a Kerr–Schild space–time with metricgab5hab1 f l al b , wherehab is a flat
metric andl a is a geodesic, shear-free null-vector, there exists a spinor dyad (oA,iA) such that
LABCA85

1
2g (ABC)A8 is a Lanczos potential of the Weyl spinor.

In Sec. IV we look at a modification to this choice forLABCA8 ; i.e., we identifyLABCA8 with
the properly weighted spin coefficients according to

LABCA852 1
2i (BiCoD¹A)A8oD2 1

2o(BoCiD¹A)A8iD .

We show that a Lanczos potential for the Weyl spinor of this form, in an appropriately ch
dyad, exists for a number of classes of space–times including many stationary, axially sym
space–times, and many cylindrically symmetric space–times.

This clarifies and generalizes recent results of Dolan and Muratori10 who, following the
method developed in Refs. 6, 7, and 11, obtained a scheme for replacing Lanczos scalars
coefficients for thevacuumcase of these two classes of space–times. For stationary, ax
symmetric vacuum space–times Dolan and Muratori used the replacement

L052
k

2
, L450, L150, L552

t

6
,

L252
p

6
, L650, L350, L752

n

2
, ~6!

in a suitably chosen dyad. In cylindrically symmetric vacuum space–times the analogous re
ment

L050, L452
s

2
, L152

r

6
, L550,

L250, L652
m

6
, L352

l

2
, L750, ~7!

is used.
In Ref. 11 a ‘‘generalized Weyl–Lanczos equation,’’
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CABCD52 f D (A
A8LBCD)A8 ~8!

was proposed for type D vacuum space–times. Possible choices aref 5C2
2/3 and f 5C2

1/3; for
these choices it was shown that the Lanczos scalars can be chosen asf 21 times linear combina-
tions of spin coefficients, in an analogous manner as for the type III,N and 0 potentials found in
Ref. 6. In Sec. V it is shown that certain combinations of these ‘‘generalized Lanczos poten
can be identified withf 21 times the spin coefficients and the properly weighted spin coefficie
respectively. It is then obvious that this particular algorithm willonly work for Petrov type D,
vacuum spaces~and some nonvacuum generalizations!.

In Sec. VI we discuss possibilities for future developments of this paper.

II. LANCZOS POTENTIALS FOR TYPE III, N AND 0 WEYL SPINORS

In this section we will build a Lanczos potential of the Weyl spinor in some space–ti
from the derivatives of the dyad spinors (oA,iA) whereoAiA51. One reason why we might expe
this approach to work is that the metric is formed from the spinor dyad via the formula

gab5«AB«A8B85~oAiB2iAoB!•~oA8iB82iA8oB8!

and the Weyl spinor is formed from second derivatives of the metric, among other things. T
fore it may be possible to form a spinorLABCA8 from the first covariant derivative of the dya
spinors that satisfies the Weyl–Lanczos equation.

One of the simplest constructions one could think of is

LABC
A85¹ (A

A8~goBiC)!, ~9!

whereg is, for the moment, an arbitrary function. Expanding the Weyl spinor in this dyad g

CABCD5C0iAiBiCiD24C1o(AiBiCiD)16C2o(AoBiCiD)24C3o(AoBoCiD)1C4oAoBoCoD .

Thus, we obtain from~9!

2¹ (A
A8LBCD)A8522¹A8(D¹A

A8~goBiC)!

52gC (ABC
E~oD)iE1iD)oE!

52g~C0iAiBiCiD23C1o(AiBiCiD)1C1o(AiBiCiD)13C2o(AoBiCiD)

23C2o(AiBiCoD)13C3o(AoBiCoD)2C3o(AoBoCiD)2C4oAoBoCoD!

52gC0iAiBiCiD24gC1o(AiBiCiD)14gC3o(AoBoCiD)22gC4oAoBoCoD .

~10!

From this calculation we can draw a number of conclusions:
If CABCD is Petrov type 0, then clearly 2¹ (A

A8LBCD)A8505CABCD for all g so LABCA8 , as
given by ~9!, is a Lanczos potential for the Weyl spinor for any choice ofg.

If CABCD is Petrov type N, then we can chooseoA as the principal spinor ofCABCD . Then
C05C15C25C350, so

2¹ (A
A8LBCD)A8522gC4oAoBoCoD522gCABCD .

This means thatLABCA8 is a Lanczos potential for the Weyl spinor if and only ifg52 1
2. Note that

this holds for any choice ofiA, as long asoAiA51. For this choice,LABCA8 can easily be seen to
coincide with the potential~4! originally found in Ref. 6.

If CABCD is Petrov type III, then we can chooseoA as the repeated principal spinor ofCABCD

and iA as the other principal spinor so thatC05C15C25C450. Hence,
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2¹ (A
A8LBCD)A854gC3o(AoBoCiD)52gCABCD ,

so LABCA8 as given by~9! is a Lanczos potential for the Weyl spinor if and only ifg521. This
choice is easily seen to coincide with~5! originally found in Ref. 6.

If CABCD is type Petrov D, then we can chooseoA andiA as the repeated principal spinors
CABCD so thatC05C15C35C450. Thus, in this case

2¹ (A
A8LBCD)A850

for all functionsg. Therefore we cannot useLABCA8 given by ~9! as a Lanczos potential for th
Weyl spinor in type D. We can however use it as a gauge transformation, i.e., if we kn
Lanczos potential for a type D Weyl spinor, then we can addLABCA8 given by ~9! to it, and the
sum will still be a Lanczos potential of the Weyl spinor.

For other,more general space–times, it is easily seen thatLABCA8 as given by~9! will not be
a Lanczos potential ofCABCD because the crucialC2-component vanishes for every choice ofg.

III. THE SPIN COEFFICIENTS AS LANCZOS SCALARS

In Ref. 6 it has been conjectured that in general the Lanczos scalars will be given by
combinations of the spin coefficients. In support of this, the authors of Ref. 6 have found
different identifications7 between Lanczos scalars and the spin coefficients which ‘‘work’’ i
similar way for certain other very specialized spaces, e.g., for the Schwarzschild metric
suitably chosen dyad

Li50, iÞ1,6, L15L65 2
3«.

It seems to us that these very special results in Refs. 6 and 7 are not directly in themselves
a larger picture, but are simply mathematical coincidences in very special spaces where t
comparatively little structure. We note that the result for typeN is independent of our choice fo
iA, whereas in type III we have to chooseiA as our second principal spinor ofCABCD . In both of
these cases only properly weighted spin coefficients are used in the identification with the La
scalars, i.e., the results still have spin-boost freedom, but in some of the other spaces in
such as Schwarzschild, the Lanczos scalars are identified with nonweighted spin coefficie
that there is no remaining dyad freedom. Most crucially, a ‘‘relationship’’ between Lan
scalars and spin coefficients which needs to change depending on Petrov-type, and even s
appears to be more of a curiosity than a manifestation of some genuine deep mathematica
ture.

However, we believe that there are structural relationships still to be fully understood
exploited between the Lanczos potential and spin coefficients as we will explain below.

Let us put

gABCA85iA¹CA8oB2oA¹CA8iB .

The spinorgABCA8 is of course a familiar structure; the dyad componentsgabga8 ~Greek letters
denote dyad indices and range from 0 to 1! of gABCA8 are precisely the spin coefficients.~Note that
in Ref. 1 the indices ofgabga8 are arranged somewhat differently.!

Let us now try

LABCA85
1
2g~ABC!A8 . ~11!

The dyad components of this choice ofLABCA8 are

L052 1
2k, L152 1

3«2 1
6r, L252 1

3a2 1
6p, L352 1

2l,

L452 1
2s, L552 1

3b2 1
6t, L652 1

3g2 1
6m, L752 1

2n.
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By calculations similar to those in Sec. II we easily obtain

2¹ (A
A8LBCD)A85¹ (A

A8gBCD)A85CABCD22¹ (A
A8oD¹BuA8uiC) . ~12!

By noting the relationship¹ (A
A8oD¹BuA8uiC)5

1
2gE(DA

A8gE
CB)A8 it follows that

2¹ (A
A8LBCD)A85CABCD2gE(DA

A8gE
CB)A8 . ~13!

Clearly, this choice ofLABCA8 will be a Lanczos potential if and only if

gE(DA
A8gE

CB)A850.

Thus, we have the following result:
Lemma 1: A Lanczos potential LABCA8 of the Weyl spinor can be directly equated to the s

coefficientsgABCA8 , i.e., LABCA85
1
2g (ABC)A8 if and only if

gE(DA
A8gE

CB)A850. ~14!

The link in differential structures between Eqs.~1! and~13! has been commented on also b
Bonanos.13

We can write condition~14! out in NP-notation as

052kb1s«,

052k~m1g!1s~p1a!2rb1t«,

052kn1sl2rm1tp2rg1ta2m«1pb,

052n~r1«!1l~t1b!2ma1pg,

052na1lg. ~15!

These equations give a direct and simple method for checking whether for particular space–
a Lanczos potential can be found in the form~11!. We can immediately see that these equatio
are not satisfied for some familiar space–times in their usual spinor dyad, e.g., vacuum t
with k5s5n5l50 or N with k5s5t5p5l50.

The absence of large subclasses of spaces which obviously satisfy these equations d
mean that Lanczos potentials cannot be constructed from spin coefficients in this manner; r
poses the question as to whether dyads can be found in which the spin coefficients satisfy~15!.

We conclude this section with some examples where Lanczos potentialscanbe constructed in
this manner.

~1! For conformally flat, pure radiation space–times it is shown in Ref. 14 that there exists
spinor dyad in which all the properly weighted spin coefficients exceptn and t vanish.
Furthermore, for a spin-boost transformation with parameterew wherew is complex it can be
shown that by choosingDw52«, d̄w52a ~a choice for which the commutators are iden
cally satisfied! we can put«5a50. Hence, in this dyad Eq.~15! are identically satisfied and
therefore a Lanczos potential of the Weyl spinor can be directly equated to the spin c
cients as in~11!.

~2! Recently explicit Lanczos potentials have been found for a class of space–times—Kerr–
Schild space–times15 in which the null vector occurring in the metric is geodesic and she
free. We will see below that these potentials are an example of when the above equatio~15!
are satisfied, i.e., these potentials can be directly equated to the spin coefficients of a pa
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spinor dyad. Moreover these Lanczos potentials have been found in the context of curv
free, asymmetric metric connections. Recall that any metric connection
¹̂AA8 can be written

¹̂AA8j
B5¹AA8j

B12GC
B

AA8j
C, ~16!

whereGCBAA85G (CB)AA8 . Further, recall that a Kerr–Schild space–time is a space–tim
which the metricgab can be writtengab5hab1 f l al b for some functionf, wherehab is a flat
metric andl a is a null-vector with respect togab and hence, also with respect tohab . In Ref.
16 the following theorem is proved:

Theorem 2: In a Kerr–Schild space–time the spinor,

GABCA85
1
2¹(A

B8~fjB)jCjA8jB8!,

where la5jAjA8 , defines an asymmetric connection¹̂AA8 according to (16), with vanishing
curvature tensor. Furthermore, if the null vector la is geodesic and shear-free, the spin
LABCA85G (ABC)A8 is a Lanczos potential of the Weyl spinor.

We remark that the first part of the theorem was proved by Harnett17 while Bergqvist8 has
proved the complete theorem in the special case of the Kerr space–time.

It is well-known that since¹̂AA8 has zero curvature, there exists a normalized spinor d
(oA,iA) such that¹̂AA8oB5¹̂AA8iB50. From this we easily obtain the relation

GCBAA85
1
2~iC¹AA8oB2oC¹AA8iB!51

2gCBAA8 ,

wheregCBAA8 are the spin coefficients of the dyad (oA,iA) as above. This proves the follow
ing corollary:

Corollary 3: In a Kerr–Schild space–time in which la is geodesic and shear-free ther
exists a normalized spinor dyad(oA,iA) with spin coefficientsgABCA8 , such that LABCA8
5 1

2g (ABC)A8 , is a Lanczos potential of the Weyl spinor.

However, it is emphasized again that neither of the elements of the spinor dyad of the
theorem need coincide with the principal spinors of the Weyl spinor or the spinorjA occurring in
the metric.

Whether dyads with the required properties exist for other space–times, or indeed
space–times, is an open question which we are presently investigating.

IV. THE PROPERLY WEIGHTED SPIN COEFFICIENTS AS LANCZOS SCALARS

A drawback with the above expression forLABCA8 directly in terms of the spin coefficients i
of course that it is extremely dyad dependent. We might argue that it would be desirable to fi
expression for a Lanczos potential with less explicit dependence on the dyad. One obvious
lessening the dyad dependence is to subtract off the nonweighted spin coefficients to get a
whose form is invariant under spin-boost transformations, i.e., we attempt to identify the La
scalars with the properly weighted spin coefficients.

Thus, if we put

LABCA85
1
2g~ABC!A81MABCA8 ,

whereMABCA8 has the dyad componentsM05M35M45M750, M15 1
3«, M25 1

3a, M55 1
3b,

andM65 1
3g then the form ofLABCA8 will be invariant under spin-boost transformations. Hen

MABCA8 can be written

MABCA852i (BoCiD¹A)A8oD52o(BiCoD¹A)A8iD .

We then obtain
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LABCA852 1
2i (BiCoD¹A)A8oD2 1

2o(BoCiD¹A)A8iD, ~17!

where the components ofLABCA8 are precisely the properly weighted spin coefficients. Differ
tiating yields

2¹ (A
A8LBCD)A85¹ (A

A8gBCD)A812¹ (A
A8MBCD)A8

5CABCD2gE(DA
A8gE

CB)A812¹ (A
A8MBCD)A8 . ~18!

This gives us the following result:
Lemma 4: A Lanczos potential LABCA8 of the Weyl spinor can be directly equated to t

properly weighted spin coefficients, i.e., LABCA85
1
2g (ABC)A81MABCA8 if and only if

2¹ (A
A8MBCD)A85gE(DA

A8gE
CB)A8. ~19!

By taking dyad components of Eq.~19! and using the Ricci equations we discover that
equations corresponding to components 0 and 4 are identically satisfied. Thus,LABCA8
5 1

2g (ABC)A81MABCA8 will be a Lanczos potential of the Weyl spinor if and only if there exist
spinor dyad such that the following three conditions are satisfied:

C152~km2sp!,

C22L5kn2sl1rm2tp,

C352~nr2lt!. ~20!

Each of these three conditions can be put into alternative forms using the NP Ricci equation
the middle one can be written as

F115Dg2D«1sl2rm2b~p1 t̄ !2a~p̄1t!12«g1«ḡ1g«̄ ~21!

or

F115da2 d̄b1kn2tp2aā2bb̄12ab1g~r̄2r!1«~m̄2m!. ~22!

We shall now show that a number of classes of space–times satisfy these conditions:

~1! Consider the class ofstationary, axially symmetric space–timesgiven by15

ds25e22U@e2k~dr21dz2!1r2dw2#2e2U~dt1Adw!2, ~23!

wherek, U, andA are functions ofr and z only. Note that this form of the metric require
certain additional assumptions to be satisfied~the Killing vectors must admit two-surface
orthogonal to the group orbits or equivalently the Ricci tensor must satisfy a certain con
also involving the Killing vectors, see Ref. 15!. Ernst18 has shown that for such space–tim
there exists a spinor dyad in which

s5r5m5l5«5g50, t52p̄
and in addition

C15C350.
Hence it is clear that the first and third of the conditions~20! are satisfied. From Eq.~21! it is
also clear that the second one is satisfied if and only ifF1150.

The class of stationary, axially symmetric space–times given by~23! includes all the
vacuum ones together with many nonvacuum ones such as various perfect fluids, null
and Einstein–Maxwell space–times. The additional constraintF1150 does eliminate some
cases, but obviously all the vacuum space–times are still included as are the ‘‘electr
space–times investigated in Ref. 18. Therefore, we have shown that many stationary,
symmetric space–times given by~23! have a Lanczos potential that can be directly equate
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the properly weighted spin coefficients as in~17!; these include all vacuum space–times a
also some nonvacuum ones.

In Ref. 10 the Lanczos potential equivalent to~17! was given implicitly by the substitution
~6! for stationary, axially symmetric vacuum space–times. In addition it was also shown
these Lanczos potentials satisfy the Lanczos differential gauge¹AA8LABCA850. We also note
that in Ref. 10 it was stated, in the context of generalized Tomimatsu–Sato solutions, th
same substitution is valid for nonvacuum spaces providedL5F1150.

~2! In a similar manner the properly weighted spin coefficients yield a Lanczos potenti
cylindrically symmetric space–times. If we, as above, assume that the Killing vectors adm
two-surfaces orthogonal to the group orbits, we obtain the line element15

ds25e22U@e2k~dr22dt2!1r2dw2#1e2U~dz1Adw!2,
where the functionsU, k, andA only depend on the coordinatesr andt. Similarly to above we
can find a dyad such that the spin coefficients satisfy10

k5t5p5n5a5b50, r5 r̄, m5m̄
and in addition

C15C350.
By using~22! it is easily seen that the conditions~20! are satisfied if and only ifF1150 and
consequently, providingF1150 the properly weighted spin coefficients define a Lanc
potential by Eq.~17!. We note that the vacuum version of this result was given also in Ref

~3! We next considerconformally flat, pure radiation space–timesinvestigated in Ref. 14. There
it is shown that there exists a spinor dyad in which all properly weighted spin coeffic
exceptt andn, all Weyl scalars andL vanish. It follows that Eqs.~20! are satisfied and so, th
properly weighted spin coefficients define a Lanczos potential.

~4! In the Kundt class of type N pure radiation metricsit is shown in Ref. 19 that there exists
spinor dyad such that eitherk5s5r5t50 or k5s5r5p50. In both these casesL50
~due to pure radiation! and C05C15C25C350 ~due to typeN!, which immediately im-
plies that Eqs.~20! are satisfied so that the properly weighted spin coefficients defin
Lanczos potential also in this case.

~5! For plane polarized plane waveswhere the Killing vectors that span the wavefront are hyp
surface orthogonal it is possible20 to find a dyad such that the only nonvanishing prope
weighted spin coefficients arem andl. Moreover in this dyad all Weyl scalars exceptC4 also
vanish so Eqs.~20! are identically satisfied and the properly weighted spin coefficients th
fore define a Lanczos potential.

~6! For plane fronted waves with parallel rays (pp-waves)it is in the vacuum case possible15 to
find a dyad in which the only properly weighted non-zero spin coefficient isn. All Weyl
scalars exceptC4 also vanish which proves that the properly weighted spin coefficients de
a Lanczos potential in this case.

V. A ‘‘GENERALIZED LANCZOS POTENTIAL’’ FOR WEYL SPINORS OF EMPTY, TYPE
D SPACE–TIMES

In Ref. 11 a ‘‘generalized Weyl–Lanczos equation,’’

CABCD52 f ¹ (A
A8LBCD)A8 ~24!

is proposed for type D vacuum space–times. Some particular solutions forLABCA8 are found for
the choicesf 5C2

2/3 and f 5C2
1/3. These ‘‘generalized Lanczos potentials’’ can be found a

some extensive NP calculations using both the Ricci equations and the Bianchi equations
For f 5C2

1/3 it is shown that a solution is given by

Li50, i 50,3,4,7,
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L152
«

3
f 21, L552

b

3
f 21,

L252
1

3
~p1a! f 21, L652

1

3
~m1g! f 21 ~25!

in the familiar canonical spinor dyad. However, it is easy to see that these expressions
obtained in a similar way as in Sec. II, i.e.,LABCA8 is given simply by

LABCA852 f 21o(A¹BuA8uiC) . ~26!

HereoA andiA are principal spinors ofCABCD ~normalized so thatoAiA51!. In order to see that
~24! is satisfied, we note that our choice of spinor dyad together with the Goldberg–Sachs th
implies that the spin coefficientsk, s, l, andn all vanish. Furthermore, sincef 5C2

1/3 we have that

¹AA8 f 215 f 21~iAiEoF¹EA8oF1oAoEiF¹EA8iF!

as is easily seen by taking components and comparing with the Bianchi identities in N
GHP-formalism.

Differentiating gives us

2 f ¹ (A
A8LBCD)A8522 f ¹ (A

A8~ f 21oB¹CuA8uiD)!

522o(B¹A
A8¹CuA8uiD)22¹ (A

A8oB•¹CuA8uiD)22 f o(B¹CuA8uiD•¹A)
A8 f 21

522o(BCACD)
EiE22¹ (A

A8oB•¹CuA8uiD)22i (AoB¹CuA8uiD)•iEoF¹E
A8oF

22o(AoB¹CuA8uiD)•oEiF¹E
A8iF

5CABCD22@¹ (A
A8oB1iEoF¹E

A8oF•o(AiB1oEiF¹E
A8iF•o(AoB#¹CuA8uiD) ,

~27!

where we have used thatCABCD56C2o(AoBiCiD) in the chosen dyad. By expanding the seco
term into dyad components, it is easily seen to be identically zero. Therefore we obtain

2 f ¹ (A
A8LBCD)A85CABCD

with this choice of spinor dyad and functionf.
By symmetry we see that an alternative choice ofLABCA8 is

LABCA85 f 21i (A¹BuA8uoC) . ~28!

By linearity we can also choose

LABCA85a f21i (A¹BuA8uoC)2b f21o(A¹BuA8uiC) , ~29!

wherea andb are complex numbers such thata1b51. For the casef 5C2
2/3 we can obtain the

form for LABCA8 given in Ref. 11 from

LABCA853 f 21~i (A¹BuA8uoC)2iDo(AiB¹C)A8oD!

523 f 21i (BiCoD¹A)A8oD , ~30!

or alternatively

LABCA8523 f 21~o(A¹BuA8uiC)1oDo(AiB¹C)A8iD!523 f 21o(BoCiD¹A)A8iD . ~31!
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By calculations similar to those above it can be shown that these Lanczos spinors satisfy~24! for
f 5C2

2/3. Similarly to above we can of course also choose

LABCA8523a f21i (BiCoD¹A)A8oD23b f21o(BoCiD¹A)A8iD , ~32!

wherea andb are complex numbers such thata1b51, as before.
For the casea5b5 1

2 in ~29! we note that the choice made there is simplyf 21 times the spin
coefficients of the dyad (oA,iA); in ~32! the choicea5b5 1

2 is f 21 times the properly weighted
spin coefficients. These seem quite natural choices and so the question arises as to whet
choices are valid for other classes of space–times.

Thus, we will try the ansatz,

LABCA85c f21~ 1
2g~ABC!A81MABCA8!, ~33!

wheref is a complex function andc is a complex constant, included so that comparison with
above example is possible. If we putg5 log f calculations similar to those in the previous sectio
tells us that

CABCD52 f ¹ (A
A8LBCD)A8

if and only if

0522¹ (A
A8oB¹DuA8uiC)12¹ (A

A8MBCD)A82~i (CiDoE¹B
A8ouEu1o(CoDiE¹B

A8i uEu!¹A)A8g.
~34!

Taking components and using the Ricci equations gives us the following system of equati
NP-formalism,

12c

c
C052sDg1kdg,

2
22c

c
C152tDg1rdg2sd̄g1kDg14~km2sp!,

2
32c

c
C252mDg1pdg2td̄g1rDg14~kn2sl1rm2tp1L!,

2
22c

c
C352nDg1ldg2md̄g1pDg14~nr2lt!,

12c

c
C452nd̄g1lDg. ~35!

The type D vacuum example above would then correspond tof 5C2
2/3 andc53.

VI. DISCUSSION AND SUMMARY

In this paper we have investigated several cases where a Lanczos potential of the Weyl
can be formed from the spin coefficients. We found that in the type III, N, and 0 case
identification did not seem to have any deeper geometric meaning. In Ref. 6 it has been c
tured that the Lanczos scalars of a Lanczos potential can always be given as linear combi
of the spin coefficients and in fact if we make the identificationLABCA85

1
2g (ABC)A8 we have

shown that it applies in particular for the important Kerr–Schild space–times constructed f
geodesic and shear-free null vector and also for all conformally flat pure radiation space–
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On the other hand, if we make the~perhaps more geometrically motivated! choice LABCA8
5 1

2g (ABC)A81MABCA8 , i.e., we identify the Lanczos scalars with the properly weighted s
coefficients, it also applies for a number of classes including many stationary, axially symm
and cylindrically symmetric space–times as well as all conformally flat pure radiation sp
times, all typeN pure radiation space–times of Kundt’s class, plane polarized plane wave
plane fronted plane waves with parallel rays.

It is significant to note that in some of these cases the dyad is not in ‘‘standard’’ form
although these identifications have not been shown to work in other families of space–time
still leaves open the question as to whether the identifications could work in a different dyad
the standard one. Indeed, the general case is still an open question. However the res
constraint equations~15! and ~20! do give us a direct method of testing whether these identifi
tions work in a particular dyad in some space–time without having to consult the Weyl–Lan
equation directly. In particular Eq.~20! which is only three equations but has the addition
freedom of 2 unknown complex functions~rotation parameters! seems to have the potential to b
satisfied for larger classes of space–times. We shall develop those possibilities in a subs
paper.
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A generalization of the geodesic notion
B. Chauvineau
Observatoire de la Coˆte d’Azur, Avenue Copernic, 06130 Grasse, France

~Received 28 September 1999; accepted for publication 5 January 2000!

It is well known that the conservation and geodesic equations can be derived from
the null divergence of an energy-momentum tensor. This derivation involves the
existence of a metric defined on the space–time. We show in this paper that these
equations can be generalized to the case where a probability field is considered,
instead of a vector field. It is shown that the null-divergence condition of a par-
ticular density field leads to the generalized conservation and geodesic equations.
This derivation is made without the help of any metric field. ©2000 American
Institute of Physics.@S0022-2488~00!00105-5#

INTRODUCTION

In general relativity, the gravitational field is described by a metric tensorgik defined on the
space–time. The field equation of this theory

Rik2
1

2
Rgik1Lgik5

8pG

c4 Tik ~1!

is constructed in such a way that the Bianchi identities lead to the null-divergence of the so-
energy-momentum tensorTik . In the case of incoherent matter, this tensor is defined asruiuk ,
wherer is the ~scalar! matter density field andui is the quadrivelocity field of matter. This field
is normalized, i.e., it satisfies

gikuiuk51. ~2!

This equation involves explicitly the metric of the variety. The null-divergence condition

DiT
ik50 ~3!

leads to the conservation laws1

Di~rui !50, ~4!

uiDiuk50. ~5!

This derivation needs explicitly the use of~2!, so that the link from~3! to ~4! and~5! can be made
only in a metric variety.

We will consider in this short paper a scalar density field and a field of probabilities~proba-
bilizing each tangent vector spaceTxV! instead of a vector field. We will show that a transform
tion of these fields can be defined in a natural way, generalizing the notion of displace
Geodesic fields will be defined as fields invariant under this transformation. Geodesic curv
be considered as particular cases. We will then define a density field whose null-diver
condition turns out to be equivalent to the geodesic field condition. In all these developmen
only presence of a connection is needed.
30020022-2488/2000/41(5)/3002/5/$17.00 © 2000 American Institute of Physics
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e -TRANSFORMATIONS

Let us consider a varietyV of dimensionN on which a symmetric connexionG i j
k is defined.

Let us first attach to each pointx of this variety a densitym(x) of weight 21. An integral like

E
xPD

m~x!dNx ~6!

is then invariant for any change of coordinates, whatever the domainD,V. dNx is an abbreviated
notation fordx1dx2

¯dxN. Let us now probabilize each tangent vector spaceTxV by a distribu-
tion m̃(x,u), whereu is an element ofTxV. We consider the case wherem̃ tends towards zero
whateverx, rapidly enough when one~at least! of the components ofu tends towards infinity. An
integral of m̃(x,u) over any subsetD̃(x) of TxV is supposed to be invariant for any change
coordinates. From the general formula,

E
uPD̃~x!

m̃~x,u!dNu5E
u8PD̃8~x8!

m̃~x~x8!,u~x8,u8!!U ]u

]u8
UdNu8 ~7!

and the transformation formulaua5u8 i(]xa/]x8 i), leading to ]ua/]u8 i5]xa/]x8 i ~x being
given!, it turns out thatm̃ transforms as a scalar density of weight21. The normalization condi-
tion on m̃ writes

E
uPTxV

m̃~x,u!dNu51, ~8!

whateverx. It is worthwhile to remark that this condition is of a very different nature than~2!,
since no metric field is needed. It expresses nothing but thatm̃ can be interpreted as a probabili
defined on the tangent vector space.

If u is a vector at pointx, the parallel transferred vector at pointx1dx, with respect toG, is

tG,dx~u!k5uk2G i j
k uidxj . ~9!

Let e be an infinitesimal number. Letx be an element ofV whose coordinates arexi , andu an
element ofTxV whose coordinates areui . Let us now associate tox, u, ande the elementy of V
whose coordinates are the numbersyi5xi2eui . We will conventionally resume this operatio
writing y5x2eu in the following. The consistency of this notation is ensured by the fact tha
differential of coordinatesdxi5yi2xi ~this is a differential becausee is an infinitesimal number!
and the componentsui transform in the same way through any coordinate changes. The poiny is
then defined without ambiguity by the notationy5x2eu.

We define thee-transformed ofm, written TG,em, by

TG,em~x!5E
uPTxV

m~x2eu!m̃~x2eu,tG,eu
21 ~u!!~112eGki

k ui !dNu, ~10!

where tG,dx
21 (u)k5uk1G i j

k uidxj1O(dx2) is the vector whose parallel transferred alongdx, with
respect toG, is u. This definition is chosen in such a way that the new density atx is the sum of
the previous densities at the neighboring pointsx2eu, each pondered by the probability of th
displacement leading fromx2eu to x ~the major contribution in~10! comes from the neighboring
points of x, because of the hypothesis onm̃!. The termm(x2eu)m̃(x2eu,tG,eu

21 (u)) being a
density of weight22, it has to be multiplied by the term (112eGki

k ui) when transported from
x2eu to x.2 One can verify that the integral ofm(x) overV is preserved undere-transformation.

At first order ine, Eq. ~10! leads to
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TG,em~x!5m~x!1eE
uPTxV

S 2ui
]~mm̃!

]xi 1G jk
i ujukm

]m̃

]ui 12mm̃G ik
i ukDdNu. ~11!

Integrating the second term in the parentheses by parts, one finds that it cancels exactly th
Defining a ‘‘mean vector field’’ by

Ai~x!5E
uPTxV

uim̃~x,u!dNu, ~12!

expression~11! can be rewritten as

TG,em~x!5m~x!2e] i~mAi !5m~x!2eDi~mAi !, ~13!

the covariant divergence of a~contravariant! vectorial density field~of weight21! being identical
with its coordinate divergence. Let us now define thee-transformed ofm̃, written TG,em̃, by

TG,em~x!TG,em̃~x,u!5E
uPTxV

m~x2ev !m̃~x2ev,tG,ev
21 ~u!!m̃~x2ev,tG,ev

21 ~v !!~113eGki
k v i !dNv.

~14!

This definition is chosen in such a way that the new density atx times the new probability of the
vectoru, at this point, is the sum of the corresponding previous terms at the neighboring p
x2ev, each pondered by the probability of the displacement leading fromx2ev to x. The
justification of the last term in the integrand is the same as in Eq.~10!. One can verify that the
normalization condition~8! is preserved undere-transformation. Developing this expression
first order ine, one finds, using the development ofTG,em,

TG,em̃~x,u!5m̃~x,u!1eS 2
]m̃

]xk 1G jk
i uj

]m̃

]ui 1G ik
i m̃ DAk5m̃~x,u!2eAkDkm̃ ~15!

at the points wherem(x)Þ0 ~see Appendix A for the generalization of the covariant derivative
u-dependant fields!.

GEODESIC FIELDS

By definition, (m,m̃) will be called a geodesic field for the connexionG if it is invariant under
the e-transformation induced byG, i.e., if

Di~mAi !50, ~16!

AiDim̃50. ~17!

Let us point out that Eq.~17! involves the probability fieldm̃ only.
One can easily show that the particular probability fieldm̃(x,u)5d(u2U(x)), for which

each pointx has the unique vectorU(x) attached, satisfies Eq.~17! if and only if the vectors
Uk(x) satisfyUkDkU

i50, and then define a family of classical geodesic curves~see Appendix B!.
Classical geodesic curves appear then to be particular solutions of the geodesic field equ
Reciprocally, geodesic fields turn out to be a natural generalization of geodesic curves, an
~16! and~17! are then the counterpart of the matter conservation and of geodesic Eqs.~4! and~5!.
It is noteworthy that Eqs.~16! and ~17! appear simultaneously, at the same level, whereas
geodesic Eq.~5! comes out alone from the classical geodesic theory.

For a given probability fieldm̃, each pointx has a single mean vectorAi attached. A natural
question is then the following: What can be said about the fieldAi induced by a geodesic field?

Let us multiply Eq.~17! by u and integrate overTxV,
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AkE
uPTxV

uiDkm̃dNu50, ~18!

or equivalently

AkE
uPTxV

ui S ]km̃2Gmk
n ]

]un ~umm̃ ! DdNu50. ~19!

Integrating the second term by parts, one obtains

AkDkA
i50. ~20!

~This can be directly derived using~A3! and the commutation relation~A5! in Eq. ~18!.! This
means that the mean vector fieldAi defines a set of classical geodesic curves, referred to as ‘‘m
geodesic curves.’’ Mean geodesic curves are without intersection,Ai being unique at each point
This geodesic equation appears directly under the standard form, corresponding to the par
zation of the curve with an affine parameter.3

AN EQUIVALENT NULL-DIVERGENCE CONDITION

Let us now introduce the tensorial density of first order and weight22,

t i~x,u!5m~x!m̃~x,u!Ai~x!. ~21!

The condition of null-divergence oft i writes, using the Leibnitz rule,

m̃Di~mAi !1mAiDim̃50. ~22!

Using ~8! and the commutation relations~A5!, it turns out that

E
uPTxV

Dim̃dNu5] iE
uPTxV

m̃dNu50. ~23!

Integrating~22! overTxV, Eqs.~8! and~23! lead to the relation~16!, and then~22! shows that~17!
is satisfied too. The equation

Dit
i50 ~24!

is then the counterpart of Eq.~3! of general relativity in incoherent matter. No metric field h
been used in the link from~24! to Eqs.~16! and ~17!. Let us remark that*TxVukt idNu5mAiAk

5u ik, an expression close in form to the energy-momentum tensorTik5ruiuk ~u ik is a tensorial
density of weight22 while Tik is a tensor!. The relation betweent i and u ik is the same as the
relation betweenm̃ andAi . Multiplying ~24! by u, using~A3! and the commutation relation~A5!
~or using~16! and ~20!! leads to

Diu
ik50. ~25!

However,~16! and ~20! cannot be derived from~25! without the help of a metric fieldgik and a
normalization condition likegikAiAk51. If no metric is defined, Eqs.~16!, ~17!, ~20!, and ~25!
turn out to be simultaneous consequences of the sole null-divergence condition~24!, involving the
primary entitiesm and m̃ only.

APPENDIX A: COVARIANT DERIVATIVE OF u-DEPENDENT TENSORIAL FIELDS

Let G
¯

¯(x,u) be au-dependent tensorial density,p times covariant,q times contravariant and
of weight v. Let us define its covariant derivativeDkG¯

¯ by
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G
¯

¯~x1dx,tG,dx~u!!2tG,dx~G
¯

¯~x,u!!5dxkDkG¯

¯~x,u!. ~A1!

DkG¯

¯ is a tensorial density,p11 times covariant,q times contravariant and of weightv. This
definition leads to the explicit form

DkGi 1i 2¯
j 1 j 2¯5]kGi 1i 2¯

j 1 j 2¯1Gsk
j 1 Gi 1i 2¯

s j 2¯1¯2G i 1k
s Gs i 2¯

j 1 j 2•••
2¯1vGsk

s Gi 1i 2¯
j 1 j 2¯2Gak

b ua
]Gi 1i 2¯

j 1 j 2¯

]ub ,

~A2!

where the last term is the only one added to the classical expression ofx-dependant fields.2 This
covariant derivative verifies the Leibnitz rule.

It turns out that the identity field, defined asPi(x,u)5ui , has a vanishing covariant deriva
tive,

DkP
i50. ~A3!

Besides, one can verify directly that

]

]us ~DkG¯

¯!5Dk

]

]us G
¯

¯, ~A4!

and that, for sufficiently rapidly decreasing, withui , densityG
¯

¯,

E
uPTxV

DkG¯

¯dNu5DkE
uPTxV

G
¯

¯dNu. ~A5!

APPENDIX B: CASE OF d-FIELD

Let us consider a probability field of the formm̃(x,u)5d(u2U(x)), whereU(x) is a vector
field. At each pointx is then attached the unique vectorU(x). For such a field, one hasAi

5Ui , and the derivation of the identity (uj2U j )d(u2U)50, with respect toui , leads to

~uj2U j !
]m̃

]ui 1m̃d i
j50. ~B1!

One has then

AiDim̃5UkS ]km̃2G jk
i uj

]m̃

]ui 2G ik
i m̃ D . ~B2!

Using ~B1!, this can be rewritten as

AiDim̃52UkF]kU
i
]m̃

]ui 1G jk
i S U j

]m̃

]ui 2m̃d i
j D1G ik

i m̃ G ~B3!

which leads to

AiDim̃52
]m̃

]ui UkDkU
i . ~B4!

The distributionm̃(x,u)5d(u2U(x)) satisfies then~17! if, and only if, the vectorsUk(x) define
a family of classical geodesic curves~for the reciprocal, multiply~B4! by uj and integrate the righ
member by parts!.

1H. Weyl, Ann. Phys.54, 117 ~1917!; A. Papapetrou,Lectures on General Relativity~Reidel, Dordrecht, 1974!, p. 150.
2S. Weinberg,Gravitation and Cosmology~Wiley, New York, 1972!, pp. 103–106.
3R. M. Wald,General Relativity~The University of Chicago Press, Chicago, 1984!, p. 41.
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The Bach equation, i.e., the vacuum field equation following from the Lagrangian
L5Ci jkl C

i jkl , will be completely solved for the case that the metric is conformally
related to the Cartesian product of two two-spaces; this covers the spherically and
the plane symmetric space–times as special subcases. Contrary to other ap-
proaches, we make a covariant 212-decomposition of the field equation, and so
we are able to apply results from two-dimensional gravity. Finally, some cosmo-
logical solutions will be presented and discussed. ©2000 American Institute of
Physics.@S0022-2488~00!01905-8#

I. INTRODUCTION

We consider the Lagrangian

L5Ci jkl C
i jkl , ~1!

whereCi
jkl is the conformally invariant Weyl tensor. The variational derivative of LA2g ~where

g is the determinant of the metricgi j ! gives rise to the Bach tensor1 defined by

Bi j 5
1

A2g
•

dLA2g

dgi j
.

With Eq. ~1! one obtains the following form:

Bi j 52Ck
i j

l
; lk1Ck

i j
lRlk . ~2!

The purpose of the present paper is to characterize several solutions of the Bach equaBi j

50, and thereby we cover the spherically and the plane symmetric metrics. In other word
look for vacuum solutions of conformal Weyl gravity.2

II. ANOTHER FORM OF THE FIELD EQUATION

Subtracting the divergence, which represents the Gauss–Bonnet term in four dimensio

LGB5Ri jkl R
i jkl 24Ri j R

i j 1R2; ~3!

from the Lagrangian L in Eq.~1! we obtain

L̃52Ri j R
i j 2 2

3R
2.

a!Permanent address: Dept. Theor. Phys., Kyrgyz State National University, Bishkek 720024, Kyrgyzstan; electron
dzhun@rz.uni-potsdam.de

b!Electronic mail: hjschmi@rz.uni-potsdam.de or http://www.physik.fu-berlin.de/˜hjschmi
30070022-2488/2000/41(5)/3007/9/$17.00 © 2000 American Institute of Physics
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The variation of L̃A2g with respect to the metric gives, of course, a vacuum equation identic
Eq. ~2!, but now in a form,3 where neither the Weyl tensor not the full Riemann tensor explic
appear:

Bi j 5Bi j
~1!1Bi j

~2! , ~4!

where

Bi j
~1!52hRi j 12Ri

k
; jk2 2

3R; i j 1
1
6gi j hR, ~5!

and

Bi j
~2!5 2

3RRi j 22RikRj
k2 1

6R
2gi j 1

1
2gi j RklR

kl. ~6!

This form of the field equation is also given in Ref. 4; the two details where the equation giv
Ref. 4 differs from ours are explained as follows:

~1! Instead of12Ri
k
; jk they write1Ri

k
; jk1Rj

k
; ik .

However, the tensorRi
k
; jk is already symmetric inij due to the Bianchi identity.

~2! In our Eq.~4! the authors of Ref. 4 write2 instead of1. But this is only due to the differen
sign conventions. Our conventions are defined byRi j 5Rk

ik j and the condition that the Eu
clidean sphere hasR.0.

III. THE TRIVIAL SOLUTIONS

If Ri j 5lgi j for any constantl, then by Eqs.~4!–~6! we see thatBi j 50 is identically fulfilled.
In other words, every Einstein space, i.e., vacuum solutions of the Einstein field equation
arbitrary value ofL, solves the Bach equation. From Eqs.~1! and ~2! it becomes clear that the
Bach equation is conformally invariant. So we get that if we apply a conformal transformati
a solution, then the resulting space–time solves the Bach equation, too. Combining both pro
it proves useful to define the following.

A solution of the Bach equation is called trivial if it is conformally related to an Einst
space. In Ref. 5, conditions have been found to decide whether a given space–time is confo
related to an Einstein space; however, as already mentioned there, these conditions are ap
only in such cases where a nonvanishing scalar constructed from the Weyl tensor exists. In
the spherically symmetric solutions of the Bach equation have been analyzed, and the resul
every spherically symmetric solution of the Bach equation is almost everywhere trivial.
restriction ‘‘almost everywhere’’ refers to possibly existing hypersurfaces where the nece
conformal factor becomes singular. Further details about the Bach tensor can be found in

IV. THE 2¿2 DECOMPOSITION OF THE BACH EQUATION

In this section we perform a 212 decomposition of the metric, and then we apply resu8

from two-dimensional gravity to solve the Bach equation.

A. The metric ansatz

For the metric

ds25gi j dxidxj , i , j 50,...,3, ~7!

we make the following ansatz:

ds25ds21dt2, ~8!

whereds2 anddt2 are both two-dimensional. The metric
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ds25gABdxAdxB, A,B50,1, ~9!

wheregAB depends on thexA only, has curvature scalarP and signature~21!. The other two-
dimensional metric

dt25gabdxadxb, a,b52,3, ~10!

wheregab depends on thexa only, has curvature scalarQ and signature~11!.
For the four-dimensional metric~7! we get signature~2111! and curvature scalarR via

R~xi !5P~xA!1Q~xa!. ~11!

B. The Einstein spaces of this type

The Einstein spaces of the type defined in Sec. IV A are already known for a long time~see
Ref. 9 for the history of these metrics!. Here we deduce them for two reasons: First, we wan
elucidate the method which we will apply to the Bach equation afterwards, and, second, it
yet general knowledge that a spherically symmetric Einstein space@Eq. ~16!# exists which cannot
be written in Schwarzschild coordinates. The Einstein spaces can be found as extremals
action

I 5E ~R22L!A2detgi j d
4xi , ~12!

whereL has an arbitrary constant value. Extremality implies constancy ofR, and, because of Eq
~11!, we find bothP andQ as constants. Let us assume that space–time is compact; if not, w
restrict ourselves to the corresponding local consideration. We denote the volumes ofds2 by V1

and ofdt2 by V2, i.e.,

V15E A2detgABd2xA, V25E Adetgabd2xa. ~13!

Due to the Gauss–Bonnet theorem we have two topological invariants which do not chang
smooth variation of the metric:

K15E PA2detgABd2xA, K25E QAdetgabd2xa. ~14!

Because of the constancy ofP andQ we haveP5K1 /V1 andQ5K2 /V2 . We insert Eqs.~11!,
~13!, and~14! into Eq. ~12! and obtain

I 5K1V21K2V122LV1V2 . ~15!

Extremality of the actionI implies ]I /]Vn50 for n51,2:

05K222LV2 , 05K122LV1 .

These equations implyP5Q52L andR54L.
In the usual deduction we get from the action~12! the Einstein equation

Ri j 2
R

2
gi j 52Lgi j ,

i.e., Ri j 5Lgi j andR54L, whose spherically symmetric solutions are almost everywhere g
in Schwarzschild coordinates as
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ds252S 12
2m

r
2

L

3
r 2Ddt21S 12

2m

r
2

L

3
r 2D 21

dr21r 2dV2.

For L50 we get only the flat Minkowski space–time. ForL.0, however, we get a nonfla
spherically symmetric space–time

ds25L21@2t22dt21t2dx21dV2# ~16!

~wheredV25du21sin2 udw2 is the metric of the standard two-sphere! representing a Cartesia
product of two spaces of equal positive constant curvature which is nonsingular and not a
totically flat. Metric~16! represents a cosmological model of Kantowski–Sachs type and poss
a six-dimensional isometry group including a timelike isometry@i.e., the time dependence o
metric ~16! is only due to the choice of the coordinates#.

Analogously we get for the caseL,0 the solution

ds25uLu21@2x2dt21x22dx21dV̄2# ~17!

~wheredV̄25du21sinh2 udw2 is the metric of the standard plane of constant negative curvat!
representing a cosmological model of Bianchi type III.

C. Curvature for this type of metrics

For metric~7!, the nonvanishing componentsRi jkl of the Riemann tensor are

RABCD5
P

2
~gACgBD2gBCgAD! ~18!

and

Rabgd5
Q

2
~gaggbd2gbggad!. ~19!

For the Ricci tensor we get analogouslyRaA50, and

RAB5
P

2
gAB , Rab5

Q

2
gab . ~20!

The Weyl tensor is defined as

Ci jkl 5Ri jkl 2
1

2
~Rikgjl 1Rjl gik2Rjkgil 2Ril gjk!1

R

6
~gikgjl 2gjkgil !.

For our metric~7! it now reads

Cabgd5
R

6
~gaggbd2gbggad!, ~21!

CABCD5
R

6
~gACgBD2gBCgAD!. ~22!

As a byproduct we obtain that the conformal flatness of metric~7! implies the vanishing of its
curvature scalarR. However, in contrast to the Riemann tensor, the Weyl tensor possesse
nonvanishing mixed components:
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CaAbB52
R

12
gabgAB . ~23!

Summing up Eqs.~21!–~23! we get

Ci jkl C
i jkl 5 1

3R
2.

D. Solving the Bach equation—constant P and Q

As a first part we make the analogous calculation as in Sec. IV B. Inserting Eqs.~11! and
~18!–~20! into Eq. ~3! we get LGB52PQ, i.e., the four-dimensional topological invariant is th
double product of the corresponding two-dimensional ones:

E LGBA2detgi j d
4xi52K1K2 . ~24!

Further we getR25(P1Q)2 and

Ri j R
i j 5 1

2~P21Q2!; ~25!

thus, up to a divergence, Eq.~1! now reads

L̂5 1
3~P21Q2!, ~26!

and with the notation from Eq.~13! and

L15E P2A2detgABd2xA, L25E Q2Adetgabd2xa, ~27!

Î[E L̂A2detgi j d
4xi5

1

3
~L1V21L2V1!. ~28!

In the set of spaces with constantP andQ we get, forn51,2, Ln5Kn
2/Vn , i.e.,

Î 5 1
3~K1

2V2 /V11K2
2V1 /V2!. ~29!

Consequently,

] Î

]Vn
50

implies 05K1
2/V12K2

2V1 /V2
2, i.e., P25Q2. Thus, besides the Einstein spaces of this type

additionally get spaces withP52QÞ0. These are just the Cartesian products of two two-spa
of constant nonvanishing curvature with the additional condition that they haveR50, i.e., that
they are conformally flat, which can be shown by Eqs.~21!–~23!.

By use of the notation of Sec. III we can say that they represent trivial solutions of the
equation.

E. Solving the Bach equation—variable P or Q

From Eq. ~25! we seeRi j R
i j 2 1

2R
2 represents a divergence, cf. Ref. 10. Thus, it see

tempting to use also this divergence to show that our Lagangian gives just the same field eq
that L5R2 would give. But this argument does not work the following reason: The statement
Ri j R

i j 2 1
2R

2 represents a divergence, is valid only within the class of metrics considered he
the vacuum field equation need not be the same for L in Eq.~1! and the LagrangianR2: The
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variation has to be made in comparison with all possible metrics. Therefore, we now have
the full equation~2! or ~4!–~6!. For our purposes it turned out that Eq.~2! is easier to handle. We
write

hR5hP1hQ ~30!

with a context-dependent meaning of the symbolh, cf. eqs.~7!–~11!, for example, inhP, h

denotes the D’Alembertian withinds2. Analogously, we use only one symbol ‘‘;’’ for the cova
riant derivative. After a lengthy but straightforward calculation we get theAB-part of the Bach
equation:

BAB[ 1
3P;AB1gAB~ 1

6hQ2 1
3hP1 1

12Q
22 1

12P
2!50. ~31!

From the trace of Eq.~31! we see thathP1 1
2P

2 andhQ1 1
2Q

2 are both constant because th
are equal but ‘‘live’’ in different spaces:

hP1 1
2P

25C, hQ1 1
2Q

25C5const. ~32!

The fact that the trace-free part of the tensorP;AB vanishes is equivalent to the requirement th
jA5«ABP;B represents a Killing vector. Here we use«AB, the covariantly constant antisymmetr
Levi-Civita pseudotensor inds2.

Now we have to use theab-part of the field equation. However, we need not really deduc
because there is a dualityA↔a. Thus, the only additional requirement is thatha5«abQ;b

represents a Killing vector, too.
Let us summarize this section:

~1! There exists a double-Birkhoff theorem as follows: If a solution of the Bach equation i
Cartesian product of two two-spaces, then two independent Killing vectors exist. The
orthogonal to each other, and each of them is hypersurface orthogonal. If eitherP or Q is
constant, then the number of Killing vectors equals 4.

~2! The Cartesian product of two two-spaces is a solution of the Bach equation if and only if
exists a constantC such that both two-spaces solve the fourth-order field equation follow
from the two-dimensional Lagrangian L5 1

2
(2)R21C. Here,(2)R is the curvature scalar in tha

two-dimensional space. In principle, this result could have been guessed already fro
~26!: In the variation of~26! with respect togAB , the scalarQ2 plays the role of a constant an
vice versa. However, by such a consideration one loses the information about the fa
both equations~32! contain thesameconstantC.

~3! The solutions for L5 1
2
(2)R21C are all known in closed form@Ref. 8, Eq.~14!#, so we are now

able to list all these solutions of the Bach equation which possess exactly two Killing ve

2~a1Cr2r3/6!dt21
dr2

a1Cr2r 3/6
1~b1Cc2c3/6!df21

dc2

b1Cc2c3/6
~33!

with three constantsa,b,C. Each of the two factor spaces gives one integration constant
from Eq.~32! it follows that the third constant reflects the fact that the Bach equation is s
invariant.

With the ansatzd(2)s25dw2/A(w)6A(w)dy2 one obtains—besides the constant curv
ture solution(2)R2[2C—the general solution asA(w)5C11C•w2w3/6 where C1 is a
further constant. One should note that the cubic term inA(w) is necessarily unequal to zero t
have a nonconstant curvature scalar and that therefore, a term'w2 can be made to vanish b
a suitablew-translation. However, the fact that the cubic term is just21

6 was fixed by a
corresponding coordinate transformation, a multiplication ofw and y by the same constant
This ‘‘21

6’’ was chosen such that the factorC of the linear term is just theC defined in
Eq. ~32!.
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~4! The number of Killing vectors of a solution of the Bach equation for the metrics discu
here equals 2, 4, 6, or 10. The solutions with six Killing vectors and the flat space–
solution with ten Killing vectors have already been listed in Sec. IV D; the solutions with
Killing vectors are given by Eq.~33! above. Thus, it remains to find the solutions possess
four Killing vectors. This takes place if fromP andQ one is constant, and the other one is n
For C,0, all solutions have exactly two Killing vectors because neitherP nor Q can be
constant, cf. Eq.~32!. We restrict to the case thatQ is constant, andP is not constant; the othe
case is quite analogous to deal with. Depending on the sign ofQ, we have three differen
subcases.

We get the spherically symmetric solutions for the case thatdt25dV2, i.e.,Q5C52. ~With
Q522, C52, anddt25dV̄2 we would get the analogous case for a plane of negative curva
The formulas can then be straightforwardly written down.! Here

ds252~a12r 2r 3/6!dt21
dr2

a12r 2r 3/6
1dV2. ~34!

This is—up to conformal transformations—the general spherically symmetric solution of the
equation; however, this form of the solution is not very common. Therefore, we multiply m
~34! by a conformal factorr2(t) and user5c61/t as new radial coordinate. As a result one g
the known old result~see Ref. 6 also for the details of that transformation! that the spherically
symmetric solutions of the Bach equation are conformally related to the Schwarzschild–de
solution.

The plane-symmetric solutions we get fordt25dy21dz2, i.e., Q5C50, are

ds252~a2r 3/6!dt21
dr2

a2r 3/6
1dy21dz2. ~35!

V. COSMOLOGICAL SOLUTIONS

Here we give some examples of cosmological solutions of the type of Eqs.~34! and~35!. The
interpretation of the more general solution~33! as cosmological model shall be postponed to la
work.

A. Axially symmetric Bianchi type I universe

In order to obtain some cosmological solutions in conformal Weyl gravity we have to do
following. The two-metricds2 for metric ~35! can be written as

ds252~a1br3!dt21
dr2

a1br3 . ~36!

~Because ofC50 the factorb need not be put to21
6.! It is evident that fora,b,0 we can rename

t→x, r→t, a→2a, b→2b. Then we have

ds252
dt2

a1bt3
1~a1bt3!dx2. ~37!

Let us introduce the polar coordinate systemy5r cosw, z5r sinw. Then the solution~35! is
given by

ds252
dt2

a1bt3
1~a1bt3!dx21dr21r2dw2. ~38!
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The metric~38! describes the axially symmetric Kasner-like universe with expandingx-dimension
and constant~y,z!-plane.

The calculations of the scalar invariants for this metric give us

R526bt, ~39!

RikRik518bt2, ~40!

RiklmRiklm536bt2. ~41!

At the surface defined byt52(a/b)1/3 there is only a coordinate peculiarity similar to that one
the Schwarzschild horizon.

B. Spherically symmetric Universe

Analogously to the previous case we can exchanget→r and r→t in the solution~34! and
then we obtain

ds252
dt2

a12t2t3/6
1~a12t2t3/6!dr21dV2. ~42!

The scalar invariants are

R5t, ~43!

RikRik5 1
2t

2, ~44!

RiklmRiklm5t2. ~45!

Also, att0 ~wherea12t02t0
3/650! there is not a real singularity and we have only the peculia

grr 50 andgtt52`.

VI. DISCUSSION

In many papers, motivations for considering conformal Weyl gravity, i.e., motivations
solving the Bach equation, are given.

The Bach tensor~sometimes also called the Schouten-Haantjes tensor! also plays a role in the
following contexts:

~1! The integrability of the null-surface formulation of general relativity imposes a field equa
on the local null surfaces which is equivalent to the vanishing of the Bach tensor~see Ref. 11!.

~2! For asymptotically flat space–times it holds: It is conformally related to a Ricci-flat spa
time if and only if the Bach tensor vanishes~see Ref. 12!.

~3! The Mannheim–Kazanas approach4 ~see also its analysis in Ref. 13! essentially uses the Bac
tensor and tries to relate it to observable astrophysical effects.

~4! The Bach equation accompanied by conformally invariant matter~electromagnetic field! has
been discussed in Ref. 14. There, already the relation to theR2-gravity in two dimensions has
been mentioned, and a Birkhoff theorem has been deduced. However, at that time, th
tions of R2-gravity in two dimensions~deduced in Ref. 15! were not known, so this relation
was not as useful as it is now.

~5! In several approaches to quantum gravity, e.g., by compactification of 11-dimens
supergravity,16 one getsR2-terms including the Weyl term in the effective action. In Ref. 1
a theorem relating solutions of a four-order theory of gravity to general relativity has
deduced. In both Refs. 16 and 17 the general need to include the Weyl term is mention
the calculations have been restricted to the case where this term is absent. So, here re
general interest in these calculations, too.
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~6! Quite recently, renewed interest in the Bach equation lead to several concrete calculatio~see
Refs. 18 and 19 and the references cited there!. In Ref. 18, a new approach to the Newtonia
limit of conformal gravity has been presented, and in Ref. 19 the Hamiltonian formulation
exact solutions of the Bianchi type I space–time in conformal gravity have been deduce
exact solutions given there are more general for the Bianchi type I case than our cosmo
solution given in Sec. V A. However, our general solution~33! possessing only two Killing
vectors is more general than the solutions given in Ref. 19.
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Static stringlike solutions in five-dimensional relativity. II
Pierre Gravela)

Département de Mathe´matiques et Informatique, Colle`ge Militaire Royal du Canada,
Kingston, Ontario K7K 5LO, Canada

~Received 10 December 1999; accepted for publication 19 January 2000!

In this paper we find five-dimensional static strings solutions to Einstein’s equa-
tions in the context of the induced-matter approach to higher dimensional relativity.
This is done by separating Einstein’s equations for a metric depending on a radius
and the extra coordinate. Extending previous work, we consider the cases where the
separation constants do not vanish. We find all elements of a decomposition of the
four-dimensional induced-matter energy-momentum tensor necessary to identify
perfect, heat and viscous parts. Corresponding metrics are found. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!00305-4#

I. INTRODUCTION

This paper is a sequel to the first work1 which dealt with five-dimensional static string
corresponding to separated Einstein equations with vanishing separation constants in the
of the induced-matter approach to higher dimensional relativity~see the review article by Over
duin and Wesson2!.

The essence of this approach to the Kaluza–Klein formalism is that ‘‘matter’’ should c
from the behavior of thex55c dependent part of the five-dimensional vacuum field equati
without the fifth dimension being necessarily compactified. In this nonprojective, noncylind
reinterpretation of higher-dimensional pure gravity, the five-dimensional vacuum Einstein
tions are each rewritten as a strictly four-dimensional part on the one side~the four-dimensional
curvature! with the other, ‘‘matter,’’ side containing all terms depending on thega5’s and their
derivatives, and thec-derivatives of thegab’s. Thus, in this formalism, four-dimensional matter
a manifestation of five-dimensional pure gravity.

The standard tests of GR do not falsify the theory3–5 and the formalism has been extended
a number of directions, including cosmology,6,7 wave propagation,8,9 inflation,10

solitons/black-holes,11–13 and other special solutions.14–16 Since its inception the Kaluza–Klein
idea has been studied under various gauge~coordinate! conditions.17–20 The formalism has also
been extended to the process of obtainingD-dimensional matter-gravity equations fro
(D11)-dimensional empty space–time Einstein equations.21 Here we shall restrict ourselves t
the originalD54 case. For a review of the field and an extensive list of references, one s
consult Ref. 2.

Our goal here is to find new solutions with cylindrical symmetry and the energy-mome
tensorT that allows them to persist. Such solutions where the metric coefficients depend on
the radius and time coordinates already exist.22 However, it is known that metrics which ar
independent of the fifth coordinate can lead to radiation only.23 By allowing the metric to depend
on the fifth coordinate, new, nonradiative solutions with cylindrical symmetry can be found.
is what was attempted in our first paper on this topic,1 although the solutions found there did n
stray much from the radiation type. In the present paper however, new solutions are found
the equation of state of the four dimensional world depends on the value of the extra coor
This is done by separating Einstein’s equations and considering this time the cases wh
separation constants do not vanish. Using radially infalling geodesics, we find all element
decomposition of the four-dimensional induced-matter energy-momentum tensor into perfec

a!Electronic mail: gravel-p@rmc.ca
30160022-2488/2000/41(5)/3016/12/$17.00 © 2000 American Institute of Physics
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and viscous parts. Metrics corresponding to the nontrivial cases are also found.
The conventions about the metric, curvature tensor and indices are those of the book by

et al.24 and the review article by Overduin and Wesson.2 In particular, the metricg is of signature
~1, 2, 2, 2, 6!, greek indices run from 1 to 5, and Latin indices from 1 to 4.

II. THE INDUCED ENERGY-MOMENTUM TENSOR

We shall begin with a metric of the form,

ds25A~r !2a~c!2~dt22dz2!2B~r !2b~c!2dr22C~r !2c~c!2du21«F~r !2f ~c!2dc2

with «561. The usual cos2 u factor in front ofdu2 has been absorbed into the differentials. It
also possible to absorbB(r ) and f (c) into their associated differentials. This will make th
computations to come easier.

So for our metric we will use

ds25A~r !2a~c!2~dt22dz2!2b~c!2dr22C~r !2c~c!2du21«F~r !2dc2.

This having been said, in order to be a bit more general, in the first part of this paper we
temporarily use the following unseparated form instead:

ds25B1~r ,c!2~dt22dz2!2B2~c!2dr22B3~r ,c!2du21«B5~r !2dc2,

so as to keep the equations as uncluttered as possible. We shall also keep the solution work
last part, as the actual forms of the solution may obscure by their complexity the general pro
of the fluids surrounding the string.

We now separate the Einstein equations in five dimensions into those terms of the E
tensor~written on the right of the field equations! which depend onF5B5 and thec derivatives
of the metric coefficients and~on the left! all remaining terms, which correspond to the fou
dimensional Einstein tensor. According to the Ponce de Leon–Wesson formalism, the righ
side defines theTb

a’s, the components of the induced-matter energy-momentum tensorT in four
dimensions. The five-dimensional Einstein equations which are not identically satisfied the
the following form:

Gt
t5

1

B2
2 S B1rr

B1
1

B3rr

B3
1

B1rB3r

B1B3
D

5Tt
t[2

1

B5
S 1

B2
2 S B3rr 1

B1rB5r

B1
1

B3rB5r

B3
D

1
«

B5
S B1cc

B1
1

B2cc

B2
1

B3cc

B3
1

B2cB1c

B1B2
1

B3cB1c

B1B3
1

B2cB3c

B2B3
D D ,

Gr
r5

1

B2
2 S B1r

2

B1
2 12

B1rB3r

B1B3
D

5Tr
r[2

1

B5
S B5r

B2
2 S 2

B1r

B1
1

B3r

B3
D

1
«

B5
S 2

B1cc

B1
1

B3cc

B3
1

B1c
2

B1
2 12

B1cB3c

B1B3
D D ,
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Gu
u5

1

B2
2 S 2

B1rr

B1
1

B1r
2

B1
2 D

5Tu
u[2

1

B5
S 1

B2
2 S B5rr 12

B1rB5r

B1
D

1
«

B5
S 2

B1cc

B1
1

B2cc

B2
1

B1c
2

B1
2 12

B1cB2c

B1B2
D D ,

Gz
z5Tz

z[Tt
t ,

Gc
r505

«

B5
2 S 2

B1rc

B1
1

B3rc

B3
22

B1rB2c

B1B2
22

B1cB5r

B1B5
2

B2cB3r

B2B3
2

B3cB5r

B3B5
D ,

Gc
c5

1

B2
2 S 2

B1rr

B1
1

B3rr

B3
1

B1r
2

B1
2 12

B1rB3r

B1B3
D

52
«

B5
2 S B1c

2

B1
2 12

B1cB2c

B1B2
12

B1cB3c

B1B3
1

B2cB3c

B2B3
D ,

where theGa
b’s are the components of the four-dimensional Einstein tensorG ~units are chosen

so that 8pG51, G being Newton’s constant!, and noT components are associated withGc
r and

Gc
c , T being a four-space tensor.

III. ORTHOGONAL DECOMPOSITION OF THE ENERGY-MOMENTUM TENSOR

Our goal is to determine what kind of energy-momentum tensorT creates the appropriat
conditions for the static string to persist. We will show that when the five-metric is a solutio
Einstein’s field equations in five-dimensional empty space–time,T describes an imperfect fluid in
four-dimensional space–time.

In order to achieve this goal, we need a velocity vector which is tangent to a tim
geodesic. With such a vector we will be able to construct the projectors which are need
decompose the energy-momentum tensor into its interpretable components. We shall assu
T can ultimately be put into the imperfect fluid form,25

T5Tperfect1Theat1Tviscous

with the decomposition

Tperfect
ab 5ruaub1pPab,

Theat
ab 5qaub1uaqb, ~1!

Tviscous
ab 52zuPab22hsab5dpab,

wherer is the energy density,p the isotropic scalar pressure,q is the heat-flux vector,h is the
dynamic viscosity,z is the bulk viscosity,s is the shear tensor,u is the expansion, andPab

5gab1uaub the components of the orthogonal projection operatorP with respect to the unit
velocity vectoru.

We now find a unit tangent vector to a geodesic. This is necessary if we want to make
that we do not introduce any unwanted coordinate effects in the shear and rotation tensors
depend on derivatives of the velocity. We take the geodesic to be one of radial free-fall~i.e., with
dz5du5dc50!. In order to find a closed-form solution to the geodesic equations, we reve
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the separated form of the metric coefficientsBi and assume an affine parameters is used for the
curves. Retaining only the nonzero Christoffel symbols appearing in the radially infalling geo
equations we get

t912
A8

A
r 8t850, r 91

AA8a2

b2 t8250, bb8r 822A2aa8t8250,

where the primes, when applied to the coordinates, represent derivatives with respect tos, and
when applied to the metric split-coefficients functions~A, a, b, etc.! represent derivatives with
respect to the coordinate they depend on~either r or c!. Solving these equations leads to th
velocity vector

Ua5~C1A22,C2A2ab8/a8b,0,0,0!.

The integration ‘‘constants’’Ci being functions ofc, they are constants along each such geode
this also holds for the exponent in the second component, where we shall use the symboK for
ab8/a8b. With this in mind, we can adjust theCi so that coming computation results have
compact a look as possible. Trial and error leads us to the choicesC151/a andC251/b. For these
choices, the unit (uaua521) velocity vector takes the form

ua5AA2~11K !

A2K2A2 ~1/aA2,1/bAK,0,0,0!.

The fluid’s properties and those of that particular family of geodesics, given with their u
interpretations, are extracted fromT andu as follows:

r5Tabu
aub density,

p5 1
3TabP

acPb
c isotropic pressure,

qa52Tbcu
bPc

a heat flux,

pab5TcdP
c
aPd

b2pPab viscous part of Tab ,

u̇a5ua,bub acceleration,

u5ua
;a expansion,

sab5u~a;b!1u̇~aub)2
1
3uPab shear,

vab5u@a;b#1u̇@aub] rotation.

Under our assumptions, density and pressure take the form

r5
1

«F2~A22A2K! S A2KS a9

a
1

b9

b
1

c9

c
1

a8b8

ab
1

a8c8

ac
1

b8c8

bc D
2A2S 2

a9

a
1

c9

c
1

a82

a2 12
a8c8

ac D D1
1

b2~A22A2k! S A2kS F9

F
1

A8F8

AF
1

C8F8

CF D
2A2S C8F8

CF
12

A8F8

AF D D ,
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p5
1

3«F2~A22A2K! S A2S 4
a9

a
13

b9

b
12

c9

c
1

a82

a2 14
a8b8

ab
12

a8c8

ac
12

b8c8

bc D
2A2KS 5

a9

a
12

b9

b
12

c9

c
12

a82

a2 13
a8b8

ab
13

a8c8

ac
1

b8c8

bc D D
1

1

3b2~A22A2K! S A2S 3
F9

F
12

C8F8

CF
14

A8F8

AF D2A2KS 2
F9

F
15

A8F8

AF
12

C8F8

CF D D .

There is apparently no relation between these two quantities, so that there is no obvious e
of state. We shall have to wait for the solution of Einstein’s equations to be under way to o
these.

Then we have the nonzero components ofq,

qt52
aA22K

b
qr5

AK13a

~A2K2A2!3/2 S 1

«F2 S a9

a
2

b9

b
1

a82

a2 2
a8b8

ab
1

a8c8

ac
2

b8c8

bc D
1

1

b2 S A8F8

AF
2

F9

F D D ,

those of the full orthogonal projection ofT(P5p1pP),

Pa52
A4a2

~A22A2K!2

3S A2

«F2 S a9

a
1

b9

b
1

c9

c
1

a8b8

ab
1

a8c8

ac
1

b8c8

bc D1
A2K

«F2 S 2
a9

a
1

c9

c
1

a82

a2 12
a8c8

ac D
1

A2

b2 S F9

F
1

A8F8

AF
1

C8F8

CF D1
A2K

b2 S 2
A8F8

AF
1

C8F8

CF D D ,

P tr5
AK22b

a
P tt ,

P rr 5
A2K24b2

a2 P tt ,

Puu5C2c2S 1

«F2 S 2
a9

a
1

b9

b
1

a82

a2 12
a8b8

ab D1
1

b2 S F9

F
12

A8F8

AF D D ,

pzz5A2a2S 1

«F2 S a9

a
1

b9

b
1

c9

c
1

a82

a2 1
a8b8

ab
1

a8c8

ac
1

b8c8

bc D1
1

b2 S F9

F
1

A8F8

AF
1

C8F8

CF D D ,

those of the shear

s tt52
A4a2

bc
M , where M5 1

3~A2K2A2!25/2~A2K~~2K23!A8C1AC8!1A2~A8C2AC8!!,

s rr 52
A2Kb

C
M ,

s tr5
AK12a

c
M ,
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suu5
Cc2

3b
~A2K2A2!23/2~A2K~~K23!A8C12AC8!12A2~A8C2AC8!!,

szz5
A2a2

3bc
~A2K2A2!23/2~A2K~KA8C2AC8!1A2~AC82A8C!!,

of the acceleration

u̇t52
a

b
A22Ku̇r52

a

b
AK11A8

~A2K2KA2!

~A2K2A2!2 ,

and the expansion

u5
A2KA8~12K !

b~A2K2A2!3/22
2A8C1AC8

bC~A2K2A2!1/2.

The four-dimensional rotationvab vanishes.
The energy-momentum tensor can be reconstructed from these elements using~1!.
We have now reached the point where although obtainingT relied on the assumption tha

Einstein’s equations are satisfied in the five-dimensional space–time, further progress in
terpretation of the quantities obtained can be made only if solutions to the field equation
found. However, these will be very heavy looking~see next section! and we will see that it will
have been worth our while to stick to the general formulation~with no explicit form forA, a, b,
etc.! as long as we could.

IV. THE STATIC RADIALLY SYMMETRIC SOLUTIONS

We proceed as in Ref. 1. Substituting the split form of the radial metric into the field equa
leads to the separated five-dimensional Einstein equations. Those which are not identicall
fied read

R1
15R4

450: F2S A9

A
1

A82

A2 1
A8C8

AC
1

A8F8

AF D5
m

2
5eb2S a9

a
1

a82

a2 1
a8b8

ab
1

a8c8

ac D ,

R2
250: F2S 2

A9

A
1

C9

C
1

F9

F D5n5eb2S b9

b
12

b8a8

ba
1

b8c8

bc D ,

R3
350: F2S C9

C
12

C8A8

CA
1

C8F8

CF D5p5eb2S c9

c
12

c8a8

ca
1

c8b8

cb D , ~2!

R5
550: F2S F9

F
12

F8A8

FA
1

F8C8

FC D5q5eb2S 2
a9

a
1

b9

b
1

c9

c D ,

R2
550: 22

A8b8

Ab
22

F8a8

Fa
12

A8a8

Aa
1

C8c8

Cc
2

F8c8

Fc
2

C8b8

Cb
50,

wherem, n, p, qare separation constants. First results in the case where all these constants
simultaneously have been obtained in Ref. 1. As for the other cases, they split accord
whethernq vanishes or not. This last case is the most interesting, and it subdivides accord
whetherm1p50 or not.
                                                                                                                



ase,

1
e

l

3022 J. Math. Phys., Vol. 41, No. 5, May 2000 Pierre Gravel

                    
V. THE CASE nqÄ0

In this case,m andp must also vanish and we refer the reader to our first paper for this c
where the corresponding solutions have already been found.1

VI. THE CASE nqÅ0

We look first at the left-hand sides~the r set of equations!, and denote this fact by putting
as a first subscript to all the constants we shall have to introduce. We can then rewrite thR1

1 ,
R3

3 , andR5
5 equations in the form

F2
~~A2!8CF!8

A2CF
5m, F2

~A2C8F !8

A2CF
5p, F2

~A2CF8!8

A2CF
5q. ~3!

SinceqÞ0 in this case, we can obtain

~~A2!8CF!85
m

q
~A2CF8!8,

~A2C8F !85
p

q
~A2CF8!8,

which can be integrated once,

~A2!8CF5
m

q
A2CF81k12, ~4!

A2C8F5
p

q
A2CF81k13. ~5!

From these we get

~A2CF!85~A2!8CF1A2C8F1A2CF85a1A2CF81k121k13

in which a15b11g111, with b15m/q andg15p/q.
Although it is possible to obtainA and C in terms ofF at this point since this differentia

equation gives

A2C5~k121k13!F
a121S E F2a1dr1c1D

and then

A25c2Fb1S ~k121k13!E F2a1dr1c1D k12 /~k121k13!

,

C5c3Fg1S ~k121k13!E F2a1dr1c1D k13 /~k121k13!

,

it is not possible to obtain a closed form relation betweenr andF while keeping a nonzerok12

1k13. We will thus assume now thatk121k1350. This gives a different form toA andC in terms
of F. ~However, we shall need the above expressions forA andC later.!

Going back on our steps we find this time

A2CF5c11F
a1, or A2C5c11F

a121, c11.0 ~6!
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which gives, when substituted back into~3! and after summation of all three equations

F22a1~Fa1!95a1q. ~7!

This givesr implicitly in terms of F,

r ~F !56E
0

F dy

A q

a121
1c1y222a1

1c2, c1.0 ~8!

and makesr andF monotonous functions of each other. This will allow us to useF as a replace-
ment radial coordinate later on.

This being given, the next step is to findA andC in terms ofF. Dividing ~4! and ~5! by ~6!
we get

A2~F !5c12F
b1e~k12 /c11!*F2a1dr, c12.0 ~9!

C~F !5c13F
g1e~k12 /c11!*F2a1dr, c13.0 with c115c12c13. ~10!

This is not satisfactory however, since we want to haveF itself as a radial coordinate and the
expressions contain integrals with respect to the original radial variabler. We can use~7! to obtain
a closed form for this integral strictly in terms ofF. The simple substitutionu5F12a1 gives

E F2a1dr5 lnF SAc1F12a11A q

a121
1c1F2~12a1!D 1/~12a1!Ac1G

and this implies that

A2~F !5c12F
b1SAc1F12a11A q

a121
1c1F222a1D k12 /~12a1!c11Ac1

,

C~F !5C13F
g1SAc1F12a11A q

a121
1c1F222a1D 2k12 /~12a1!c11Ac1

.

We now turn to the functionsa(c), b(c), andc(c). It is obvious from the separated Einste
equations that in thenqÞ0 case their expressions can be found in a similar way, provideb
becomes the new fifth coordinate, anda andc are expressed in terms of it. Reserving a value
2 for the first subscript of constants appearing in allc-related expressions, we thus have

a2~b!5c22b
b2SAc2b12a21A en

a221
1c2b222a2D k22 /~12a2!c21Ac2

,

c~b!5c23b
g2SAc2b12a21A en

a221
1c2b222a2D 2k22 /~12a2!c21Ac2

, c215c22c23

in which b25m/n, g25p/n, and a25b21g211. Hence the complete form of our prototyp
metric will be
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ds25A2~F !a2~b!~dt22dz2!2b2~d~r ~F !!!22C2~F !c2~b!du21eF2~d~c~b!!!2

5c12F
b1SAc1F12a11A q

a121
1c1F222a1D k12 /~12a1!c11Ac1

c22b
b1SAc2b12a2

1A en

a221
1c2b222a2D k22 /~12a2!c21Ac2

~dt22dz2!2c13
2F2g1SAc1F12a1

1A q

a121
1c1F222a1D 22k12 /~12a1!c11Ac1

c23
2b2g2SAc2b12a2

1A en

a221
1c2b222a2D 22k22 /~12a2!c21Ac2

du22
b2

q

a121
1c1F222a1

dF2

1e
F2

en

a221
1c2b222a2

db2

with the differentialdF being obtained from~8!, and similarly fordb.
The other three equations@that is, in Eq.~2!, R5

250, ther side ofR2
250 and thec side of

R5
550#, are used to constrain the values of the many constants appearing in the metric

cients. In order to do this it is most convenient to use the exponential forms~9!, ~10!, and the
corresponding forms fora(c) andc(c). Substituting these into ther side ofR2

250, thec side of
R5

550, andR2
550 @see~2!#, we obtain polynomial equations in functions ofF andb, and their

corresponding coefficient equations. Because the (b i1g i ’s) appear as divisors in some of the
coefficients, we must study separately the cases wherem1p does not vanish and the case whe
it does.

VII. THE m¿pÅ0 CASE „nqÅ0…

The coefficient equations are in this case for ther side ofR2
250,

q
b1~b122!12g1~g121!

2~b11g1!
5n,

3

2

k12
2

c11
22c1S 1

2
b1

212b1g112b112g1D50,

k12~b122g1!50,

for the c side ofR5
550,

n
b2~b222!12g2~g221!

2~b21g2!
5q,

3

2

k22
2

c21
22c2S 1

2
b2

212b1g212b212g2D50,

k22~b222g2!50,

for R2
550,

k12k2250,
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c21k12~b222g2!50,

c11k22~b122g1!50,

c11c21~b1b212g1g222b122b222g122g2!50.

The only sets of constants satisfying all of these conditions are

2p522q5m5n,

k2256c21A3c2, ~Case I!

k1250,

and

2p522n5m5q,

k1256c11A3c1, ~Case II!

k2250.

Before continuing in the actual solution work, we can deduce from these conditions, thec side of
the separated form of the Einstein equations~2! and ther side of R5

550, that those quantities
deduced from the energy-momentum tensor which can be simplified read, in Case I,

r53p52
F8

b2F~A22A2K! S ~3A221!
A8

A
1A2

C8

C D ,

qt5
aAK23F8

b2~A2K2A2!3/2F S 3
A8

A
1

C8

C D ,

P tt52
a2A2F8

b2F~A22A2K!2 S ~A222!
A8

A
1A2K

C8

C D ,

Puu52
C2c2

b2

C8F8

CF
,

Pzz5A2a2S a82

«F2a22
A8F8

b2AFD .

Thus in Case I the densityr and scalar pressurep satisfy the relativistic equation of stater
53p. However, for any givenr value, very large values ofc correspond to negligible densitie
and pressures which in this case would suggest a ‘‘thick’’c-hypersurface interpretation of four
dimensional space–time.

In Case II we have instead the closely related quantities,

r53p112
n

b2F2 5
1

F~A22A2K! S 3
n

b2F
2

F8

b2 S ~3A221!
A8

A
1A2

C8

C D D ,

qt5
aAK23F8

b2~A2K2A2!3/2F S 3
A8

A
1

C8

C D ,
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P tt5
F8

b2F S ~A222!
A8

A
1A2K

C8

C D13
n

b2F2 ~122A2!,

Puu52C2c2S C8F8

b2CF
13

n

b2F2D ,

Pzz5A2a2S S a82

«F2a22
A8F8

b2AFD23
n

b2F2D .

In this case the equation of state is not exactly relativistic but gets closer to it as eitherr or c, or
both, increase. The heat flux vector is formally the same as in Case I.

We now go back to the solution process for the metric coefficients. Absorbing the con
ci j into (dt22dz2) anddu2, and changing thesymbols Fandb into thesymbols randc, we find
that the possible forms of the metric in these four cases are as follows:

ds25rc22SAc1r 23/21A2q

3
1c1r 23D 6~2/) !

~dt22dz2!2
3c2

2q13c1r 23 dr22rc22

3SAc1r 23/21A2q

3
1c1r 23D 7~4/A3!

du21
6«r 2

6c2c61«q
dc2

and

ds25r 22cSAc2c23/21Ac2c232
4

3
«qD 6~2/) !

~dt22dz2!2
3c2

3c1r 62q
dr22r 22c

3SAc2c23/21Ac2c232
4

3
«qD 6~4/) !

du21
3«r 2

3c2c2324«q
dc2.

These Ricci-flat metrics are not trivial. For example, the first of them~the one with12/) as
exponent of the first pair of parentheses! has the following value for the Kretschmann scalar:

18

F37/2b4 ~4c2
2F29/2b1264c1c2F23/2b616c1

2F17/21c1qF23/212c1
3/2AF17~2qF313c1!!

which shows that singularities in four-dimensional space–time are unavoidable at vanishF
values, which as we have seen is equivalent to a radial coordinate.

Still in the original coordinate system, the energy-momentum tensor for this particular m
takes the diagonal form,

T1
15T4

45
1

6 S 3c12qF~r !3

F~r !5b~c!2 D1
1

2

Ac1~3c112qF~r !3!

F~r !5b~c!2 ,

T2
252

1

2 S 3c12qF~r !3

F~r !5b~c!2 D ,

T3
35

1

6 S 3c12qF~r !3

F~r !5b~c!2 D2
Ac1~3c112qF~r !3!

F~r !5b~c!2 .
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VIII. THE m¿pÄ0 CASE „nqÅ0…

We still must address the case wherem1p50. Starting again from the separated Eqs.~2!, we
obtain after some computation along lines similar to the previous thatn5q and the resulting
metric is

ds25dt22dz22
c2

2q ln r 1c1
dr22du21

«r 2

2«q ln c1c2
dc2.

This metric is Riemann flat in five dimensions, and does not contain induced matter in
dimensions~i.e., the induced matter energy-momentum tensor vanishes identically!.

IX. CONCLUSION

Using a separation process on the five-dimensional Einstein equations in the context
Ponce de Leon–Wesson formalism, we have shown that contrary to the case of vanishing
ration constants, nonzero values exist for these such that the four dimensional fluid is not
relativistic type with the equation of state depending on the specificc-hypersurface considere
and on the coordinate~F! distance from the core. A number of questions immediately com
mind, such as whether this singularity is hidden behind a trapped surface and, of course
interpretation must be applied to the choice of a specific or diffusec-hypersurface. These ques
tions, and others, we hope to be able to answer, at least partly, in forthcoming publication

The heavier parts of the computations were carried out using the GRTensorII package r
under MapleV.26
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On the extension of the Obukhov theorem
in non-Riemannian gravity. I

R. Scipionia)
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This is the first paper of a series in which we give some generalizations of the
Dereli–Obukhov–Tucker–Wang theorem in the Tucker–Wang approach to metric-
affine gravity in which we consider more general actions containing scalar and in
general fields which do not depend on the metric or connection. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!02005-3#

I. INTRODUCTION

Recently much effort has been devoted to the study of nonstandard gravitational theorie
is, theories which allow for nonmetricity and torsion of space time. The usual approach t
generalization of Einstein theory goes through the gauge field method which permits us to
a gauge theory of gravity starting from the affine groupA(n,R).1

In this approach the metricgab , the connectionvb
a , and the coframeea are considered as

three independent gauge potentials whose fields are the nonmetricityQab , the curvatureRb
a , and

the torsionTa, respectively.
However, when a detailed study is performed, we note that the different equations we g

not independent, in particular the one for the coframe and the one for the metric are re
meaning that the approach contains a kind of redundancy.1

It has been suggested by Tucker–Wang2,3 to drop one of the potentials like the metric or th
coframe and use only the connection and the metric, or the coframe as independent variab
pure variational approach. This approach is motivated also by the fact that when we descr
symmetry reduction from the general affine group to the group describing the low energy lim
gravity we still have the freedom of choosing the coframe. This permits us to choose an
normal coframe and, by doing so, the degree of freedom of the metric and the coframe be
equivalent. The metric can be written asg5habe

a
^ eb with hab5diag(21,1,1,1,...).

In this approach we choose the coframeea and the connection as independent variables
obtain the field equations using a variational technique.

Recently this approach has been used to prove that a remarkable reduction property oc
the field equations of certain non-Riemannian models of gravity.4 This property of reduction has
been proved in metric-affine gravity, too,5 and it is now known as the Obukhov theorem.6

In this paper a generalization of this theorem is given obtained by analyzing the proper
the Cartan equation obtained from the connection variation. We stress the different role of it
part compared with the traceless part. While the latter is used to obtain the rest of the
Riemannian part of the connection as a function of the fields appearing in the action, the f
gives a certain relation for the Weyl one-formQ, which in the case of the Obukhov theorem is
Proca-type equation.

We will show that by considering a more general action we can obtain a more ge
equation forQ, but the functional dependence oflb

a ~the non-Riemannian part of connectio
one-forms! as a function of the fieldsQ,T,c,... is thesame. The result is that the reduction c
then be extended to more general actions like non-Riemannian scalar gravity or theories in

a!Electronic mail: scipioni@physics.ubc.ca
30280022-2488/2000/41(5)/3028/7/$17.00 © 2000 American Institute of Physics
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nonmetricity or torsions are coupled to metric-invariant terms like electromagnetic fields.
property of generalization has been used recently to exhibit a black-hole dilaton solution
nonmetricity and torsion.7

We consider also a simple generalization of the Obukhov theorem to the case whe
Einstein–Hilbert term is coupled to the Dilaton field.

To establish the notation, we use a non-Riemannian geometry which is specified by a
tensor fieldg and a linear connection“. Using a local coframeea with its dual frameXb such that
ea(Xb)5db

a , the connection one-forms satisfyvb
c(Xa)[ec(“Xa

Xb). The tensorS5“g defines
the nonmetricity of the theory; in a local orthonormal frame the metric tensor isg5habe

a
^ eb

@hab5diag(21,1,1,1,...)#.
The nonmetricity one-forms are defined byQab[S(2,Xa ,Xb) and the torsion two-forms by

Ta[dea1va
b`eb; the curvature two-forms areRa

b[dva
b1va

c`vc
b , while the general cur-

vature scalarR is given byR!15Ra
b∧!(ea`eb) in terms of the Hodge operator of the metri

The Weyl one-formQ is defined as the trace ofQa
b which can be written asQ5gab(dgab

2vc
agcb2vc

bgac)522va
a .

Before considering the different cases let us briefly remind the reader what the main c
sion of the Obukhov theorem is.

Obukhov’s theorem:4–6 The field equations of a general non-Riemannian model of gra
can be reduced to the field equations of an effective Proca–Einstein theory in which the Wey
one-form Q represents the Proca field.

II. SCALAR FIELD THEORIES

To begin our analysis let us consider the action

E L@e,v,c#5E FkR!11
a

2
f 1~c!~dQ∧!dQ!1

b0

2
f 2~c!~Q∧!Q!

1
b2b0

2
~Q∧!Q!1

d

2
~dc∧!dc!1F~e,v,...!G , ~1!

where f 1(c) and f 2(c) are zero-forms functions of the scalar fieldc andF(e,v,...) is ageneric
n-form dependent on the coframee and the connectionv but not on the scalar fieldc.

The field equations are obtained considering the variation of the action with respect toea, v,
andc.

The Cartan equation can be written as

kD!~ea∧eb!5Fb
a , ~2!

whereFb
a are dependent one andv and other fields.

Suppose now that in the limit

f 1~c!→1, f 2~c!→1. ~3!

We get a Proca-type equation forQ,

ad!dQ1b0!Q50, ~4!

and the action~1! in the limit ~3! satisfies the Obukhov theorem, so that the generalized Ein
equations reduce to@note thatF(e,v) is not supposed to vanish in the limit~3! since the effect of
the reduction property is to ‘‘cancel’’ the effect of the last three terms in the action~1!#

kG
o

c1tc@a#1tc@b0#1tc@d#50, ~5!
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whereG
o

c is the Riemannian part of the Einsteinn21 formsR
o

a
b`!(ea`eb`ec) and

tc@a#5
a

2
~dQ` i c!dQ2 i cdQ`!dQ!,

tc@b0#52
b0

2
~Q` i c!Q1 i cQ`!Q!, ~6!

tc@d#52
d

2
~dc` i c!dc1 i cdc`!dc!.

Then we have the following theorem.
Theorem 1: The reduction occurs in the case f1(c)Þ1, f 2(c)Þ1 as well, with (5) replaced

by

kG
o

c1 f 1~c!tc@a#1 f 2~c!tc@b0#1tc@d#50. ~7!

Proof: Considering the trace of the connection variation of~1! we get (modd) @where
(modd) means that when we perform variations we may get other terms which are total d
tives and do not contribute to the field equations#:

ad„f 1~c!!dQ…1 f 2~c!b0!Q1~b2b0!!Q5!E, ~8!

in which E is defined as follows.

From the variations
then

2n!E5!Ba
a . ~9!

Now from the hypothesis we have forf 1(c)5 f 2(c)51,

ad!dQ1b0!Q50, ~10!

so we have

~b2b0!!Q5!E. ~11!

When we considerf 1(c), f 2(c)Þ1 we are considering the replacement:

b~Q∧!Q!→@b0f 2~c!1~b2b0!#~Q∧!Q!,
~12!

~dQ∧!dQ!→ f 1~c!~dQ∧!dQ!.

Consider now the Cartan equation which we may put in the form

kD!~ea∧eb!5F̂b
a1

1

n
db

aFc
c , ~13!

whereF̂a
b is traceless.

If the action is specified,Fa
b andFc

c are specified, the transformation~12! affects onlyFc
c in

~13!, and the traceless part then will be unaffected. Then we can expressl̂a
b as a function ofF̂b

a

and the expression forl̂a
b will be invariant under the transformation~12!.
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So, we may formulate the following:
Lemma: The traceless part of the Cartan equation may be written in a form which is inva

under transformation (12) which contains the Weyl one-form and/or connection invariant fi
Then, aside from the Weyl one-form, the functional dependence of the non-Riemannian par
connection is unaffected.

By using the previous Lemma we can calculate the quantitiesE appearing in~8!, which will
have the same functional dependence.

So, we can conclude that the relation

~b2b0!!Q5!E ~14!

is still valid since it may be expressed as a function ofla
b and other fields which are independe

on la
b .

Then we obtain

ad„f 1~c!!dQ…1 f 2~c!b0!Q50. ~15!

With the same reasoning, since the algebraic dependence ofl̂a
b on F̂a

b is the same, we can stat
that the relation

kDG
o

c1tc@b2b0#1tc@F@e,v##50 ~16!

$in which tc†F@e,v#‡ indicate the stress forms contribution due toF(e,v) in the action~1!% will
be valid in general.

In the previous oneDG
o

c is the non-Riemannian contribution toGc .
Then we reduce the generalized Einstein equations to

kG
o

1 f 1~c!tc@a#1 f 2~c!tc@b0#1tc@d#50. ~17!

The theorem is proved.
The proof of the theorem and the lemma relies essentially on the fact that the conn

variation of terms like

f 1~c!~dQ`!dQ!

~18!
f 2~c!~Q`!Q!,

contains the diagonal operatorda
b .

It is clear that this property valid for scalar fields is valid also for fields independent o
metric and connection.

Consider for example a term like

!~F`!F !~dQ`!dQ!, ~19!

whereF is the electromagnetic fieldF5dA, the connection variation of which reads (modd)

2dva
bdb

a`d@!~F`!F !`!dQ#. ~20!

The presence of the diagonal operatorda
b permits us to extend what is found below to actio

which contain terms analogous to~19!. The equation forQ will be modified, but the reduction
property is still valid with the proper stress forms originating from terms like~19!.8
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III. THE DILATON CASE

In this section we extend the Obukhov theorem to a class ofdilaton non-Riemannian grav-
ity . We consider for simplicity the case in which the action contains only terms dependent o
nonmetricity, that is, we do not put any explicit torsion term.

We start the analysis from the action~in this section the coupling constant of the kinetic te
is indicated withb instead ofd/2!

S5E @kc2R!11b~dc`!dc!2V~c!!1#. ~21!

We use the Tucker–Wang method in which the metric is fixed to be orthonormalgab5hab

5(21,1,1,1,...), and we consider the coframeea, the connectionva
b , and c as independen

variables.
As we will see, the non-Riemannian contribution to the Einstein–Hilbert term timesc2 is

equivalent in the field equations to a kinetic term for the dilaton. The variation of~21! with respect
to c gives (modd)

22bd!dc12kc~R!1!2V8~c!!150. ~22!

The variation of~21! with respect to the connection gives

D!~ea`eb!52
2

c
@dc`!~ea`eb!#, ~23!

while the coframe variation gives

kc2R
o

a
b`!~ea`eb`ec!22kc@l̂a

b`dc`!~eb`ea`ec!#2b@dc` i c!dc1 i cdc`!dc#

1kc2@ l̂a
d`l̂d

b#`!~ea`eb`ec!2V~c!!ec50, ~24!

where use has been made of the expression for the full non-Riemannian Einstein–Hilbert

R!15R
o

!12l̂a
c`l̂c

b`!~eb`ea!2d„l̂a
b`!~eb`ea!…. ~25!

Let us observe that the action~21! is projectively invariant. This means that the value ofQ
obtained from the field equations will be arbitrary.

The solution of the Cartan equation is

lab52
1

2n
gabQ1

2

~22n!c
„i a~dc!eb2 i b~dc!ea…, ~26!

and the traceless part is

l̂ab5
2

22n

1

c
„i a~dc!eb2 i b~dc!ea…. ~27!

By using this expression in the generalized Einstein equations we get

kc2G
o

c2b8@dc` i c!dc1 i cdc`!dc#2V~c!!ec50, ~28!

where
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b85b14k
n21

n22
. ~29!

So, the presence of the full non-Riemannian Einstein–Hilbert term is equivalent to a resca
the scalar kinetic term coupling constant.

Observe the following two interesting cases:
~a! If we haveb50 in the action~21!, then we get the generalized Einstein equations:

kc2G
o

c14k
n21

n22
@dc` i c!dc1 i cdc`!dc#2V~c!!ec50. ~30!

Then forn54,

kc2G
o

c16k@dc` i c!dc1 i cdc`!dc#2V~c!!ec50. ~31!

So we get the dilaton Einstein equation with the conformal couplingj5 1
6.

Note that the equation~22! for c can be rewritten as

22bd!dc12kcR
o

!11kc~DR
o

!1!2V8~c!!150, ~32!

whereDR
o

! is given by the last two terms on the rhs of~25!.
By using the expression~27! for l̂a

b we obtain

22bd!dc12kc~R
o

!1!22k
n21

n22

4

c
~dc`!dc!2V8~c!!150. ~33!

Then, puttingb50, we have

2kc~R
o

!1!22k
n21

n22

4

c
~dc`!dc!2V8~c!!150, ~34!

which is equivalent to~if cÞ0!

2kc2R
o

!128k
n21

n22
~dc`!dc!2V8~c!c!150. ~35!

~b! If b14k(n21)/(n22)5b850 or b524k(n21)/(n22).
Then we obtain

kc2G
o

c2V~c!!ec50, ~36!

which are equivalent to

kG
o

c2Ṽ~c!!ec50, ~37!

whereṼ(c)5V(c)/c2.
The generalized Einstein equations in this case are equivalent to the decoupled case w

potentialṼ(c).
The analysis of the equation forc is similar to case~a!.
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We observe that the equations for the scalar field are different from the Levi-Civita one, s
reduction property refers only to the Einstein sector of the theory.

Let us consider now the action

S5E Fkc2R!11b~dc`!dc!1
a

2
f 1~c!~dQ`!dQ!1

g

2
f 2~c!~Q`!Q!2V~c!!1G .

~38!

Using the Lemma of the previous section we may certainly formulate the following:
Theorem 2: Suppose we start from the action (38). Then the generalized Einstein equa

can be reduced to

kc2G
o

c2b8@dc` i c!dc1 i cdc`!dc#2V~c!!ec1 f 1~c!
a

2
@dQ` i c!dQ1 i cdQ`!dQ#

1 f 2~c!
g

2
@Q` i c!Q2 i cQ`!Q#50 ~39!

with b85b14k(n21)/(n22).
Equation ~39! can be considered the generalization of the Dereli–Obukhov-Tucker–W

theorem to the non-Riemannian Dilaton Gravity action~38!9

The equation forc becomes

22bd!dc12kc~R!1!2V8~c!!11 f 18~c!
a

2
~dQ`!dQ!1 f 28~c!

g

2
~Q`!Q!50. ~40!

From the trace of the Cartan equation we get the new equation forQ:

ad~ f 1~c!!dQ!1g f 2~c!!Q50. ~41!

In the action~38! we have not introduced terms likeT`!T,Tc`!Tc ~T is defined asi cT
c!; had

we done that, we would have modified the traceless part of the Cartan equation and the L
proved in Sec. II, which brought us to Theorems 1 and 2, would not have been valid anymor
expect, however, a similar result to hold for an action more general than~38!, but the proof is not
trivial and may require a computer-based calculation, so much said, we hope to obtain this
generalization in the next paper of this series.
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Symmetries of asymptotically flat axisymmetric
space–times with null dust

U. von der Gönnaa)

Institute for Theoretical Physics, FSU Jena, Max-Wien-Platz 1, D-07743 Jena, Germany

A. Pravdováb)

Mathematical Institute, Academy of Sciences, Zˇ itná 25, 115 67 Prague 1, Czech Republic

~Received 7 September 1999; accepted for publication 11 February 2000!

Symmetries of space–times with null dust field as a source compatible with
asymptotic flatness are studied by using the Bondi–Sachs–van der Burg formalism.
It is shown that in an axially symmetric space–time with null dust field in which at
least locally a smooth null infinity in the sense of Penrose exists, the only allowable
additional Killing vector forming with the axial one a two-dimensional Lie algebra
~the axial and the additional Killing vector are not assumed to be hypersurface
orthogonal! is a supertranslational Killing vector and the gravitational field is then
nonradiative~the Weyl tensor has a nonradiative character!. © 2000 American
Institute of Physics.@S0022-2488~00!06605-6#

I. INTRODUCTION AND SUMMARY

Recently a unique role of boost-rotation symmetric electrovacuum space–times desc
‘‘uniformly accelerated particles’’ of various kinds1 was exhibited by a theorem which states th
in axially symmetric, locally asymptotically flat spacetimes the only additional symmetry that
not exclude radiation is the boost symmetry~in Ref. 2 for vacuum space–times with hypersurfa
orthogonal Killing vectors and in Ref. 3 for electrovacuum space–times with Killing vec
which are in general not hypersurface orthogonal!. Our effort in this paper is to prove a simila
theorem for locally asymptotically flat space–times with null dust fields. We also specializ
space–time to be axially symmetric~with the axial Killing vector which is in general not hype
surface orthogonal!—this assumption simplifies lengthy calculations.

If one is interested in gravitational radiation from a general bounded matter source, i.e.,
behavior of gravitational field far from the source, one has to turn to approximation methods
Bondi–Sachs formalism is a powerful instrument for the treatment not only of asymptoticall
vacuum4,5 and electrovacuum6 fields, but also for the investigation of asymptotically flat null du
fields.7 The energy-momentum tensor of null dust or pure radiation

Tab5rnanb , nana50, r.0, ~1!

with r being the energy density of the radiation field, describes a field of massless rad
propagating along a null congruence with the tangent vectorna. This field is the incoheren
superposition of waves with random phases and different polarizations where the radiation
from electromagnetic null field, massless scalar field, neutrino field, or gravitational field i
The field equations of these originating fields are not considered. Exact solutions of this cla
the Vaidya solution8 which can model the exterior of a spherically symmetric shining star and
Kinnersley photon rocket,9 a particle emitting photons and accelerating because of the recoil.
null dust fields with rotation are known.10,11

a!Electronic mail: U.v.d.Goenna@tpi.uni-jena.de
b!Electronic mail: pravdova@mbox.troja.mff.cuni.cz and pravdova@math.cas.cz
30350022-2488/2000/41(5)/3035/10/$17.00 © 2000 American Institute of Physics
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In Sec. II we start out from the general form of an axially symmetric metric in Bondi–S
coordinates$u,r ,u,f%, where the null coordinateu and the spherical anglesu, f are constant
along null rays while the luminosity distancer varies. We consider their asymptotic series exp
sions atr→` assuming the Einstein equations for the null dust field to be satisfied and
space–time to be locally asymptotically flat.

Then we assume that, in addition, another symmetry exists, i.e., an additional Killing v
field which forms with the axial one a two-dimensional Lie algebra. By first decomposing
additional Killing vector fieldha in the null tetrad and then solving the Killing equations asym
totically in the leading order for this new Killing vector, we find that the additional Killing vec
asymptotically generates either a supertranslation or a boost along the symmetry axis. Ho
developing and solving Killing equations in higher orders and considering Lie derivatives o
energy momentum tensor for null dust to vanish for both the supertranslational Killing vec
Sec. III and the boost Killing vector in Sec. IV we conclude that in fact the only allowa
additional Killing vector of axially symmetric space–times with null dust is a supertranslati
Killing vector and then the gravitational field is nonradiative~the Weyl tensor has a nonradiativ
character!.

Our conventions for the Riemann and Ricci tensors follow those of Ref. 12 but our sign
is 22.

II. AXISYMMETRIC NULL DUST SPACE–TIMES WITH ANOTHER SYMMETRY

Consider an axially symmetric spacetime with the corresponding Killing vector field den
by ]/]f. Assume that at least the ‘‘piece ofJ 1’’ exists in the sense of Ref. 13. Then one c
introduce the Bondi–Sachs coordinate system$u,r ,u,f%[$x0,x1,x2,x3% in which the metric has
the form4–6

ds25S V

r
e2b2r 2e2gU2 cosh 2d2r 2e22gW2 cosh 2d22r 2UW sinh 2d Ddu212e2bdudr

12r 2~e2gU cosh 2d1W sinh 2d!dudu12r 2~e22gW cosh 2d1U sinh 2d!sin ududf

2r 2@cosh 2d~e2gdu21e22g sin2 u df2!12 sinh 2d sinududf#, ~2!

where the six metric functionsU, V, W, b, g, d do not depend onf because of axial symmetry
The space–time~2! is filled with null dust described by the energy-momentum tensor~1! which is
assumed to be axially symmetric, too.

In Ref. 7 the expansions of the metric functions of~2! for asymptotically flat space–times wit
null dust in Bondi–Sachs coordinates are derived. For that, the null expansion vectorna is chosen
to be identified with the null vectorka of the Bondi–Sachs tetrad~10! at J 1, i.e.,J 1 has to exist
in the direction determined by the null vectorna of the null dust. Then its contravariant comp
nents are

nu5
U~u,u!

r 2 1O~r 23!,

nr511
R~u,u!

r
1O~r 22!,

~3!

nu5
T~u,u!

r 2 1O~r 23!,

nf5
F~u,u!

r 2 1O~r 23!,
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and the covariant components read

nu511
R
r

1O~r 22!,

nr5
U
r 2 1O~r 23!,

~4!
nu52T1O~r 24!,

nf52F sin2 u1O~r 21!.

As the vectorna is null (nana50), functions entering~3!, ~4! have to satisfy

U5 1
2 ~T 21F2 sin2 u!, ~5!

and similarly for the higher-order coefficients. Then the equations for the null dust field~1! can be
solved. The metric coefficients have in the first order inr 2k the same form as Eq.~4! in Ref. 3

g5
c

r
1O~r 23!,

d5
d

r
1O~r 23!,

b52
1

4
~c21d2!

1

r 2 1O~r 24!,

~6!

U52~c,u12c cotu!
1

r 2 1O~r 23!,

W52~d,u12d cotu!
1

r 2 1O~r 23!,

V5r 22M1O~r 21!.

For the radiation densityr(u,r ,u) we write

r~u,r ,u!5
r2~u,u!

r 2 1O~r 23!, ~7!

and from the field equations

M ,u52~c,u
21d,u

2!2 1
2 k0r21 1

2 ~c,uu13c,u cotu22c!,u ~8!

follows. The energy balance at null infinity~where null infinity admits a regular spherical cro
section! then shows that the mass lossm,u results from a linear superposition of the pure and
gravitational radiation parts7

m,u52
1

2 E
0

p

~c,u
21d,u

21 1
2 k0r2!sinudu<0 ~9!

with the function r2(u,u) being an analogue to the news functions of electromagnetic
squaredX21Y2 @see~14! in Ref. 6#.
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Since we admit space–times with only ‘‘local’’J 1, we assume Eqs.~2!–~9! to be satisfied
for fP^0,2p&, however not necessarily on the whole sphere, i.e., for alluP^0,p&, but only in
some open interval ofu.

Let us follow a similar procedure to that one used for the electrovacuum case and assum
again the space–time to have another Killing vectorh which forms a two-dimensional Lie algebr
with the axial one,j5]/]f, i.e., we assume@h,j#50 ~see the Lemma in Sec. II in Ref. 2!.
Hence, the components are independent off.

We introduce the standard null tetrad$ka,ma,ta, t̄ a% @for details see~11! and the paragraph
above in Ref. 3#, with bar denoting the complex conjugation

ka5@1,0,0,0#, ma5@ 1
2 Vr21e2b,e2b,0,0#,

ta5 1
2 r ~cosh 2d!21/2@~11sinh 2d!egU1cosh 2de2gW1 i@~12sinh 2d!egU2cosh 2de2gW#,

0, 2~11sinh 2d1 i~12sinh 2d!!eg, 2~12 i!cosh 2d sinue2g#, ~10!

and decompose the additional Killing vectorha in this null tetrad

ha5Aka1Bma1 f̃ ~ tR
a1t I

a!1g̃~ tR
a2t I

a!, ~11!

whereA, B, f̃ , g̃ are general functions ofu, r , u and ta5tR
a1 it I

a .
The Killing vectorha has to satisfy the Killing equations~all of them are written down in Ref

14!

Lhgab50. ~12!

The easiest one among them is the equation

Lhg1152e2bB,r50, ~13!

which implies

B5B~u,u!. ~14!

We solve the other Killing equations asymptotically assuming that the coefficientsA, f̃ , g̃ can
be expanded in powers ofr 2k. Then equationsLhg2250, Lhg1250, Lhg1350 imply

A5A(21)r 1A(0)1
A(1)

r
1O~r 22!,

f̃ 5 f (21)r 1 f (0)1
f (1)

r
1O~r 22!, ~15!

g̃5g(21)r 1g(0)1
g(1)

r
1O~r 22!,

where the coefficientsA(k), f (k), g(k) are functions ofu andu.
Since the null dust field decays at infinity in the same way as the electromagnetic field in

3, it does not enter the Killing equations in the leading order inr 2k as in Ref. 3@see Eqs.
~19!–~25! therein# and their solution is thus identical to the solution in the electrovacuum ca
Ref. 3 and even the solution obtained in the vacuum case examined in Ref. 2

A(21)5k cosu,

f (21)52k sinu, ~16!
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B52ku cosu1a~u!,

wherek5const anda is an arbitrary function ofu and

g(21)5h sinu, ~17!

whereh5const. One can easily find@using Eqs.~10!, ~11!, and~15!# that the contribution ofh to
the vector fieldha is just constant multiple of the axial Killing vector]/]f, hf5h1O(r 21), and
so we may, without loss of generality, puth50. Therefore, in the lowest order ofr 21 the general
asymptotic form of the Killing vectorh turns out to be

ha5@2ku cosu1a~u!, kr cosu1O~r 0!, 2k sinu1O~r 21!, O~r 21!#, ~18!

wherek is a constant,a—an arbitrary function ofu. Thus, assuming the presence of a null d
field satisfying the boundary conditions~3!–~5! and Killing vectors which need not be hypersu
face orthogonal, we arrive in the leading order of the asymptotic expansion at the same con
obtained in Ref. 2 in the vacuum case with hypersurface orthogonal]/]f or in Ref. 3 for the
electrovacuum case which Killing vectors need not be hypersurface orthogonal. Whenk50, the
vector field~18! generates supertranslations.

AssumingkÞ0, one can find a Bondi–Sachs coordinate system witha50 by making a
supertranslation, as was shown in Ref. 3. Hence, we puta50 in Eq. ~18! and without loss of
generality we choosek51. ThenB52u cosu, A(21)5cosu, f (21)52sinu andg(21)50 and the
asymptotic form of the Killing vector fieldh is

ha5@2u cosu, r cosu1O~r 0!, 2sinu1O~r 21!, O~r 21!#, ~19!

that is the boost Killing vector. It generates the Lorentz transformations along the axis of the
symmetry.

The conclusion of this section is thus following:
Suppose that an axially symmetric space–time with null dust admits a ‘‘piece’’ ofJ 1 in the sense
that the Bondi–Sachs coordinates can be introduced in which the metric takes the form~2!, ~6! and
the asymptotic forms of the energy-mass density and the null vector field of the null dust is
by ~3!–~5!. If this space–time admits an additional Killing vector forming with the axial Killi
vector a two-dimensional Lie algebra, then the additional Killing vector has asymptoticall
form ~18!. For k50 it generates a supertranslation; forkÞ0 it generates a boost along th
symmetry axis.

However, in the next sections we see that the boost symmetry is in fact not allowable.

III. THE SUPERTRANSLATIONAL KILLING FIELD

In this section, assumingk50 for the Killing field ~18!, we consider the Killing equations in
higher orders ofr 21 and arrive at the same equations as~31!–~48! in Ref. 3 with the same
solutions~49!–~55! therein

c5 1
2 uB21~B,uu2B,u cotu!, d5d~u!, M52uc,u

22B21@A(1)1B,u~c,u12c cotu!#,

A(0)5 1
2 ~B,uu1B,u cotu1B!, f (0)5 f (0)~u!52B,u , g(0)50, ~20!

A(1)5A(1)~u!, f (1)5B~c,u12c cotu!, g(1)5B~d,u12d cotu!2B,ud,

whereB, A(1), andd are arbitrary functions ofu. Thus, in the supertranslational case for the n
dust the Weyl tensor is also nonradiative as it was in electrovacuum space–times. Substitu
metric functions~6! into the null tetrad~10! and coefficients~20!, the expansion of the Killing
vector reads
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hm5FB~u!, 1
2 ~B,uu1B,u cotu!1@2B,uu22B,uB,uuu12B,u

2B,uuB2122B,u
3 cotuB21

1B,u
2~3 cotu222 sin22 u!#B21

u

4r
1O~r 22!,

2B,u

1

r
1B,u

c

r 2 1O~r 23!, B,u

d

r 2 sinu
1O~r 23!G . ~21!

Now let us turn to the asymptotic behavior of the null dust. It is easy to show that ifh is a
Killing vector then the Lie derivative of the Riemann tensor with respect to this vector vani
and then also the Lie derivative of the Ricci tensor vanishes. And if, in addition, the Ricci s
is zero and the Einstein equations are satisfied, then the following equations hold:

LhTmn50. ~22!

Substitutingh from ~21!, Eq. ~22! get in the leading order the form

LhT0050 ~r 22!: r2 ,uB50, ~23!

LhT0150 ~r 24!: r2 ,uUB1r2~U,uB2TB,u!50, ~24!

LhT0250 ~r 22!: r2 ,uTB1r2~T,uB2B,u!50, ~25!

LhT0350 ~r 22!: r2 ,uFB1r2F,uB50, ~26!

LhT1150 ~r 26!: U@r2 ,uUB12r2~U,uB2TB,u!#50, ~27!

LhT1250 ~r 24!: r2 ,uUTB1r2@~UT!,uB2~U1T 2!B,u#50, ~28!

LhT1350 ~r 24!: r2 ,uUFB1r2@~UF!,uB2TFB,u#50, ~29!

LhT2250 ~r 22!: T@r2 ,uTB12r2~T,uB2B,u!#50, ~30!

LhT2350 ~r 22!: r2 ,uTFB1r2@~TF!,uB2FB,u#50, ~31!

LhT3350 ~r 22!: r2 ,uFB12r2F,uB50. ~32!

If r250, then all equations are trivially satisfied and it can be shown that we deal with a va
space–time with an arbitrary supertranslational symmetry. If we supposeB andr2 to be nonva-
nishing, then the first equation@Eq. ~23!# implies

r25r2~u!, ~33!

and from Eqs.~26! or ~32!, ~25! or ~30!, and~24!, ~27!, or ~29! it follows:

F,u50, ~34!

T,u5B,uB21, ~35!

U,u5B,uB21T, ~36!

which yield

F5F0~u!, ~37!
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T5B,uB21u1T0~u!, ~38!

U5 1
2 B,u

2B22u21B,uB21T0u1 1
2 ~T 0

21F 0
2 sin2 u!, ~39!

where we used condition~5!. Comparing~8! with ~20! we obtain the following equation deter
mining the functionB(u) for the given ‘‘null dust’’ news functionr2(u):

H B2

sinu Fsin3 u

2B S B,u

sinu D ,uG ,uJ ,u5k0r2B2 sinu. ~40!

If a spacetime admits a global null infinity this case with a nonzeror2 is not very physical
since~9! then implies permanent linear decreasing of the total Bondi massm.

IV. THE BOOST KILLING FIELD

In this section we investigate the boost case,k51 anda50, similarly as the previous one b
expanding the Killing equations in higher orders ofr 21. We obtain the same conditions for th
coefficientsA(k), f (k), and g(k) as Eqs.~81!–~89! and ~104!–~112! in Ref. 3 with the identical
solutions

A(0)~u,u!5 1
2 u cosu, ~41!

f (0)~u,u!52u2w1K~w!52u sinu1K~sinu/u!, ~42!

g(0)~u,u!5g(0)~w!, ~43!

A(1)~u,u!5
cosu

w
~ 1

2 K,www212K,ww1K!2
cosu

8 sin2 u
~4K 21g(0)2!1

cosu

u2 L~w!, ~44!

f (1)~u,u!5
1

4 sinu
~22K 21g(0)2!1u cot2 u~K,ww1K!, ~45!

g(1)~u,u!5
1

2
ug(0)2

g(0)K
sinu

1
1

2
u cot2 u~g,~0!

ww1g(0)!, ~46!

c~u,u!52
K~w!

uw
→c,u~u,u!5

K~w!,w

u2 , ~47!

d~u,u!52
g(0)~w!

2 sinu
→d,u~u,u!5

g(0)~w!,w

2u2 , ~48!

M ~u,u!5
1

2u
~K,www12K,w!1

L~w!

u3 5
1

2 sinu
~w2K,w!,w1

L
u3 , ~49!

whereK(w) andg(0)(w) are arbitrary functions ofw

w5
sinu

u
, ~50!

and the integration functionL(w) entering the expression for the mass aspect has the form

L~w!5
l~w!

w3 , ~51!
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with l satisfying the equation

l~w!,w5w2S K,w
2 1

1

4
g(0),w

2 1
1

2
k0v D2

1

2w
~w3K,ww!,w . ~52!

Here,K andg(0) determine the gravitational news functions,c,u andd,u , by the relations~47! and
~48!, v determines the null dust news function,r2 , given below by the relation~65!. Hence,
solving the last equation forl for givenK, g(0), andv, we findL(w) and thus the mass aspe
M (u,u) in the form of Eq.~49!. The total massm atJ 1 is then given by integrating Eq.~49! over
the sphere:

m~u!5
1

2 E
0

p

M ~u,u!sinudu5
1

4 E
0

p

~w2K,w!,wdu1
1

2 E
0

p wL
u2 du. ~53!

Substituting the expansions of the metric functions, Eq.~6! into the null tetrad, Eq.~10!, and
coefficientsA, B, f̃ , andg̃, Eqs.~41!–~49!, into Eq.~11!, we find the asymptotic form of the boos
Killing vector to be

hm5F2u cosu, r cosu1u cosu1cosuS K,w1
K
wD 1

r
1O~r 22!,

2sinu2u sinu
1

r
1uc sinu

1

r 2 1O~r 23!, ud
1

r 2 1O~r 23!G . ~54!

Finally, let us turn our attention to the asymptotic properties of the null dust represent
the energy-momentum tensorTmn which, as was shown in the previous section, has to have
vanishing Lie derivative~22! with respect to the Killing vectorha, ~54!. Regarding~41!–~49!,
these equations in the first orders look as follows:

LhT0050 ~r 22!:2cosu~ur2 ,u1tanur2 ,u24r2!50, ~55!

LhT0150 ~r 24!:2cosu@~ur2 ,u1tanur2 ,u!U1r2~uU,u1tanuU,u14U1u tanuT!#50,
~56!

LhT0250 ~r 22!: cosu@~ur2 ,u1tanur2 ,u!T1r2~uT,u1tanuT,u14T1u tanu!#50,
~57!

LhT0350 ~r 22!: cosu@~ur2 ,u1tanur2 ,u!F1r2~uF,u1tanuF,u15F!#50, ~58!

LhT1150 ~r 26!:2cosu@~ur2 ,u1tanur2 ,u!U12r2~uU,u1tanuU,u12U1u tanuT!#50,
~59!

LhT1250 ~r 24!: cosu$~ur2 ,u1tanur2 ,u!UT1r2@u~UT!,u1tanu~UT!,u14UT
1u tanu~U1T 2!#%50, ~60!

LhT1350 ~r 24!: cosu$~ur2 ,u1tanur2 ,u!UF1r2@u~UF!,u1tanu~UF!,u15UF
1u tanuTF#%50, ~61!

LhT2250 ~r 22!:2cosu@~ur2 ,u1tanur2 ,u!T12r2~uT,u1tanuT,u12T1u tanu!#50,
~62!

LhT2350 ~r 22!:2cosu$~ur2 ,u1tanur2 ,u!TF1r2@u~TF!,u1tanu~TF!,u15TF
1u tanuF#%50, ~63!
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LhT3350 ~r 22!:2cosu@~ur2 ,u1tanur2 ,u!F12r2~uF,u1tanuF,u13F!#50. ~64!

The trivial solution is againr250 which implies a vacuum boost-rotation symmetric space–ti
Let us assumer2Þ0. Using variablew given by ~50!, Eq. ~55! can be solved to yield

r25
v~w!

u2 , ~65!

with an arbitrary functionv(w). The sum of Eqs.~58! and ~64! gives

F5
F0~w!

u
~66!

@F0(w) being an arbitrary function# and their difference is then identically zero. Similarly, sum
ming Eqs.~57! and ~62!, we obtain the equation forT,

T,u52tanu52
uw

A12u2w2
, ~67!

which leads to the solution

T5
A12u2w2

w
1T0~w!5u cotu1T0~w!, ~68!

where T0(w) is an arbitrary integration function. Next, the difference of Eqs.~57! and ~62!
identically vanishes. We repeat the procedure for the sum of Eqs.~56! and ~59! and find the
solution

U52
1

2
u21T0~w!

A12u2w2

w
1U0~w!52

1

2
u21u cotuT0~w!1U0~w! ~69!

@U0(w) is an arbitrary function ofw#. Then their difference is identically zero and also Eqs.~60!,
~61!, ~63! are identically satisfied.

The coefficientsU, T, andF have, in addition, to fulfill the condition for the null vector~5!.
This, however, is in contradiction with the boost-rotation symmetric solutions~66!, ~68!, and~69!.
Consequently, there are no asymptotically flat boost-rotation symmetric solutions of the Ei
equations with null dust. And the final conclusion reads:

Theorem: Suppose that an axially symmetric space–time with null dust admits a piece oJ 1

in the sense that the Bondi–Sachs coordinates can be introduced in which the metric ta
form ~2!, ~6! and the asymptotic forms of the radiation density and the null vector field of the
dust are given by~3!–~5!. If this space–time admits an additional Killing vector forming
two-dimensional Lie algebra with the axial Killing vector, then the additional Killing vector wh
has asymptotically the form~21! generates asymptotically supertranslations and the Weyl tens
nonradiative~although one of the ‘‘gravitational’’ news functions,c,u , is nonvanishing, however
it is a function only ofu as the ‘‘null dust’’ news function,r2!.
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Calabi-Yau manifolds by Borcea-Voisin method
Mitsuko Abea) and Masamichi Satob)

Department of Physics, Tokyo Institute of Technology, Oh-okayama 2-12-1, Meguro,
Tokyo 152-8551, Japan

~Received 29 December 1997; accepted for publication 20 December 1999!

We construct Calabi-Yau manifolds and their mirrors from K3 surfaces. This
method was first developed by Borcea and Voisin. We examined their properties
torically and checked mirror symmetry for the Calabi-Yau four-fold case. From
Borcea-Voisin three-fold or four-fold examples, it may be possible to probe the
S-duality of Seiberg-Witten. ©2000 American Institute of Physics.
@S0022-2488~00!04904-5#

I. INTRODUCTION

In recent developments in string duality, the mathematical properties of the underlying
fold, on which theories are compactified, are playing significant role.1–10 In this paper, Calabi-Yau
manifolds and their mirrors are constructed using the method developed by Borcea and Vois11,12

Gross and Wilson13 showed that the Calabi-Yau three-fold by the Borcea-Voisin method
special Lagrangian three-tori fibered when Pic(K3)5U by using degenerate Calabi-Yau metric
The special Lagrangian fibration also exists on one family of Borcea-Voisin three-fold wit
spect to nondegenarate Calabi-Yau metrics.14 From Borcea-Voisin three-fold or four-fold ex
amples, it may be possible to probe the S-duality of Seiberg-Witten15 by using compact manifolds
~It has been pointed out that T-duality on the special tori causes local mirror transformat16

which may relate the S-duality of Seiberg-Witten.!
In the next section, we give the list of some mirror pairs of K3 as the reflexive pyramid

Sec. III, we give the list of the mirror pairs of Calabi-Yau three-folds constructed by the Bo
Voisin method in weighted projective manifolds. In Sec. IV, we give the list of the mirror pair
Calabi-Yau four-folds constructed by Borcea-Voisin method. Section V is devoted to discus
In Appendix A, we review the Borcea-Voisin method by using some polynomials of Calabi
manifolds. In Appendix B, we show a way of mirror checking for Calabi-Yau four-folds.
Appendix C, we examine properties of two dual polyhedrons of Calabi-Yau three- and four
constructed by Borcea-Voisin. Especially, we present a dual polyhedron and a Newton polyh
of the Calabi-Yau three-fold with the Pic~K3!5U case.

II. K3 SURFACE

We start by looking at a definition of a K3 surface.17 A K3 surface is defined as a compa
manifold of complex dimension two with trivial canonical bundle such thath0,1(K3)50. hp,q

~K3! denotes the Hodge number of a K3 surface.
For this paper, we will consider algebraic K3 surfaces defined by a set of algebraic equ

in an N dimensional complex~weighted! projective space, CPN. The reason why we conside
them is that weighted projective space is easy to describe torically. Such surfaces hav
classified by Reid and Yonemura.18 The equations of K3 surfaces which we will discuss are giv
by Table I.

The numbers in parentheses in the second column denote weights of K3 surfaces. The
script * denotes the mirror of the corresponding K3 surface.~There are some definitions of mirro

a!Electronic mail: mabe@th.phys.titech.ac.jp
b!Electronic mail: sato@th.phys.titech.ac.jp
30450022-2488/2000/41(5)/3045/12/$17.00 © 2000 American Institute of Physics
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symmetry for K3 case.19–21The relation between them and the extension of weight duality on
case are given in Ref. 22. Their physical applications were discussed in Ref. 23.! We construct
Calabi-Yau three- and four-folds, using the method of Borcea and Voisin.11,12 These manifolds
have some nice properties. One of them is that some fibers of mirror pairs are known. Borce
these K3 surfaces, which allow involution, to construct Calabi-Yau three-folds~the way of invo-
lution s is reviewed in Appendix A!.

The K3 and K3* surfaces in Table I satisfy the ‘‘reflexive pyramid’’ property. This is
sufficient condition for a pair of Calabi-Yau three-folds constructed by Borcea method to
mirror pair.11 This condition is stronger than that of K3 and K3* being a mirror pair.

The properties of our K3 surface are summed in Table II. The second column is the P
lattice and the third column is of rank Pic~K3! denoted byr. ~We used the results of Ref. 24 fo
Picard lattice andr.! Note that all K3 surfaces in Table II are all elliptic fibered.24 The fourth
column is the lattice invariants (r , a, d!. Nikulin used these lattice invariants to characterize
fixed part Ls of s on the K3 lattice, up to the lattice isomorphism.25 HZ

2(K3)5L5U3

% (2E8)2. a is defined as (Ls)* /Ls.(Z/2Z)a. (Ls)* is the dual of Ls, namely (Ls)*
5Hom (Ls,Z). r 5rank(Ls). d denotes the genus of the lattice, that is,d50 if (x* )2PZ for any
x* P(Ls)* , otherwised51. The fifth column is the quotient singularity.18

TABLE I. Equation of K3 surfaces.

Surface K3 or K3* Equation of K3

~1! CP3(6,4,1,1)@12# w25s31t121u12

(1)* CP3(33,22,6,5)@66# w25s31t111tu12

~2!, (2)* , ~3! CP3(21,14,6,1)@42# w25s31t71u42

(3)* CP3(18,12,5,1)@36# w25s31t7u1u36

~4! CP3(5,2,2,1)@10# w25s51t51u10

(4)* CP3(20,8,7,5)@40# w25s51t5u1u8

~5! CP3(10,5,4,1)@20# w25s41t51u20

(5)* CP3(15,7,6,2)@30# w25s4u1t51u15

~6!, (6)* CP3(15,10,3,2)@24# w25s31t151u10

~7! CP3(12,8,3,1)@30# w25s31t81u24

(7)* CP3(21,14,5,2)@42# w25s31t8u1u21

~8!, ~9! CP3(9,6,2,1)@18# w25s31t91u18

(8)* CP3(18,11,4,3)@36# w25s3u1t91u12

(9)* CP3(24,16,5,3)@48# w25s31t9u1u16

TABLE II. K3 surface and Picard lattice.

Surface Pic~K3! r (r ,a,d) Quotient singularity

~1! U 2 ~2,0,0! A1

(1)* U % E8
2 18 ~18,0,0! A11A21A41A10

~2!, (2)* , ~3! U % E8 10 ~10,0,0! A11A21A6

(3)* U % E8 10 ~10,0,0! A41A5

~4! U(2)% D4 6 ~6,4,0! 5A1

(4)* E8% T2,5,5 18 ~14,4,0! A312A41A6

~5! T2,5,5 10 ~6,4,0! A112A4

(5)* D4% D8% U 14 ~14,4,0! 5A11A21A6

~6!, (6)* D4% E6% U 12 ~10,4,0! 3A112A21A4

~7! U % E6 8 ~6,2,0! 2A21A3

(7)* E8% D4% U 14 ~14,2,0! 3A11A41A6

~8!, ~9! U % D4 6 ~6,2,0! 3A11A2

(8)* E6% E8% U 16 ~14,2,0! A112A21A10

(9)* E6% E8% U 16 ~14,2,0! 2A21A41A7
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III. CALABI-YAU THREE-FOLD

A. K3 fibered Calabi-Yau three-fold

Let us now consider Calabi-Yau manifolds with base CP15CP1(1,k) and fiber K3
5CP3(u1 ,u2 ,u3 ,u4)@d#.26 $The equivalence for type IIA string on CY3 with k>2 dual to the
heterotic string on K33T2 is not clear yet. However, some extension of the duality tok>2 and
u151 may be possible. For example, CY35CP4(1,k,(k11)(1,4,6))@12(k11)# with
K35CP3(1,1,4,6)12 fiber relate to the terminal A-chain with shrinking E8 instantons27 by exchang-
ing of base under the elliptic fibration, that is, F0 blown-up and F2 blown-up.28 They are the same
manifolds with double K3 fibrations.% They are represented as hypersurfaces in weighted pro
tive four-space, CP4,

CY35CP4~u1 ,ku1 ,~k11!u2 ,~k11!u3 ,~k11!u4!@~k11!d#, ~1!

whered5( i 51
4ui .

There are some mirror pairs of Calabi-Yau three-folds, which have mirror pair of K3 sur
as fiber. See, for instance, the self-mirror Calabi-Yau three-folds~2! and ~6! in Table III. ~These
Calabi-Yau three-folds were already investigated and listed in Ref. 29.! These manifolds have
self-mirror K3 surfaces CP3(21,14,6,1)@42# and CP3(15,10,3,2)@30# as K3 fiber. Another ex-
ample of a mirror pair is~4! and (4)* , which can be obtained by the Borcea-Voisin method.~All
Calabi-Yau three-folds given in Ref. 26 are smooth. However, by picking up appropriate t
we obtain Calabi-Yau three-fold which we are treating.!

The word ‘‘self-mirror manifold’’ contains a deformed manifold from the strict self-mirr
one whose faces are lattice equivalent to vertices. Therefore, in cases~2! and ~6!, their faces are
not lattice equivalent to vertices.

B. Borcea-Voisin construction

We use the K3 surfaces listed in Table II. In the above equation, (21) denotes involution
acting on T2 ands on the K3 surface. For the K3 surface, the involution changes the sign o
of the coordinates describing the torus in an elliptic fiber:

CY35
T23K3

~21!3s
, CY3* 5

T23K3*

~21!3š
. ~2!

For the details of this construction, see Ref. 11 and Appendix A.~In Ref. 30 and 31, Calabi-Yau
manifolds are constructed by the extended way of the Borcea method using K3 surfaces li
Ref. 32.! Because of the condition gcd(u0 ,v0)51 ~see Appendix A!, we obtain only three mirror
pairs as the hypersurfaces in CP4 with weight representations. The results of the construction
mirror pairs of Calabi-Yau three-folds are given by Table IV. However, it is possible to ob
other mirror pairs of Calabi-Yau three-folds by using all K3 surfaces in Table I and their
data. This is because one side of Calabi-Yau three-folds can be represented by the hype
representation in terms of weight by using either T25CP2~1,1,2!@4# or T25CP2~1,2,3!@6# at least.
For example, toric data of a Calabi-Yau three-fold contructed from K35CP3~1,1,4,6!@12# with
Pic~K3!5U in case~1! of Table I can be obtained~in Appendix C!. This is the case with specia
three tori fiber.13 Equations of these manifolds are listed in Table V.

TABLE III. Calabi-Yau three-fold 1.

Surface (CP1 base, K3 fiber! CY3 h1,1, h1,2 x

~2! (CP1(1,1),CP3(21,14,6,1)@42#) CP4(21,21,2(14,6,1))@84# 35, 35 0
~4! (CP1(1,2),CP3(5,2,2,1)@10#) CP4(5,10,3(2,2,1))@30# 15, 39 248
(4)* (CP1(1,2),CP3(20,8,7,5)@40#) CP4(20,40,3(8,7,5))@120# 39, 15 48
~6! (CP1(1,1),CP3(15,10,3,2)@30#) CP4(15,15,2(10,3,2))@60# 27, 27 0
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The Hodge numbers given by Ref. 11 are represented byr , f or g, whose values coincide
with the calculation using the adjunction formula,

h1,1~CY3!511r 14 f , h1,2~CY3!511~202r !14g, ~3!

where

f 5~r 2a!/211 and g5~202r 2a!/211. ~4!

By mirror transformation, the values ofr become 202r and the values off andg are exchanged
In Calabi-Yau three-folds constructed by Borcea-Voisin, there are two or four fixed p

generated by the involution on T2 or on S1.
3,13 S1 denotes one-dimensional sphere. If Calabi-Y

three-folds have the elliptic fibration due to the one side of the T2 part of the direct product only
then the singularities of the elliptic fiber are SO(8)f for the Calabi-Yau three-fold or SO(8)g for
the Calabi-Yau three-fold* in addition to SU~3!.3,13

We conclude that though the singularity of the elliptic fibration of K3 fiber might appear
to the quotient singularity of Calabi-Yau three-folds or due to the tensor multiplets when
under the K3 fibration is large, they will not appear as the singularity of the elliptic fibration o
Calabi-Yau three-fold.@The number of the tensor multiplets in D56 and N51 are given byr
22 ~or 202r 22) for Calabi-Yau three-fold~or the mirror of Calabi-Yau three-fold!3 whenT2

fiber from the direct product part ofT2 is used in the compactification. They lead to the sa
numbers of the U~1! vector multiplets for D54 and N52 case from type IIA side, which migh
enhance.# ~We examine the possibility of an existing elliptic fibration coming from the K3 fib
side in Appendix C.! @If Calabi-Yau three-fold by Borcea-Voisin is double K3 fibered, then c
~4! may relate to the heterotic and type IIA string duality in C-chain whose gauge symmetr
U(1)23D5 with H1,1515 andH1,2539.26#

IV. CALABI-YAU FOUR-FOLD

In this section, we consider three types of Calabi-Yau four-folds.
The first basic examples are composed with two K3 surfaces with involution given by Re

CY45
K33K3̃

s3s8
, CY4* 5

K3* 3K3̃*

s3s8
, ~5!

TABLE IV. Calabi-Yau three-fold 2.

Surfaces T2 fiber K3 fiber CY3

~2! CP2(2,1,1)@4# CP3(1,6,14,21)@42# CP4(21,21,28,12,2)@84#
~4! CP2(3,2,1)@6# CP3(5,2,2,1)@10# CP4(5,10,6,6,3)@30#
(4)* CP2(3,2,1)@6# CP3(20,8,7,5)@40# CP4(20,40,24,21,15)@120#
~6! CP2(2,1,1)@4# CP3(15,10,3,2)@30# CP4(15,15,20,6,4)@60#

TABLE V. Equation of CY3.

Surface Equation of CY3 h1,1,h1,2 x Quotient singularity

~2! x41y45s31t71u42 35, 35 0 4A214A61A1

~4! x31y65s51t51u10 15, 39 248 5A215A113A4

(4)* x31y65s51t5u1u8 39, 15 48 3A21A11A6

~6! x41y45s31t151u10 27, 27 0 A114A214A4
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The involutions acts on K3 ands8 on K3* . Note that the condition gcd(u0 ,v0)51 restricts the
choice of K3 pairs. Table VI contains all mirror pairs with weight representations constru
from K3 surfaces listed in Table II. We can prove that these pairs are mirror by using their Ne
polyhedra derived from the weight representation in Appendix B.

The Hodge numbers of Calabi-Yau four-folds given by Ref. 11 are

h1,15r 11r 21 f 1f 2 ,

h3,15~202r 1!1~202r 2!1g1g2 ,
~6!

h2,15 f 1g21 f 2g1 ,

h2,252@1021~r 1210!•~r 2210!1 f 1f 21g1g2#,

where f i andgi are given by Eq.~A3!. The suffix i specifies K3 or K3* in Eq. ~A4!. The Euler
number of the Calabi-Yau four-fold is

x5412~h1,11h1,3!1h2,224h1,2. ~7!

Equations and the Euler number are given by Table VII.
When both K3 surfaces are elliptically fibered, the dual theory of F-theory compactified o

Calabi-Yau four-fold will be typeI 8 theory compactified on T23K3/Z2 . The enhanced gaug
symmetries will be related to the singular elliptic fibers or the quotient singularities of a Ca
Yau four-fold relating to K3 singularities.

The second type,

TABLE VI. Calabi-Yau four-fold.

Surface K3 fiber K3 fiber˜ CY4

~1! CP3(5,2,2,1)@10# CP3(6,4,1,1)@12# CP5(20,5,5,12,12,6)@60#
(1)* CP3(20,8,7,5)@40# CP3(33,22,6,5)@66# CP5(440,120,100,264,231,165)@1320#
~2! CP3(5,2,2,1)@10# CP3(21,14,6,1)@42# CP5(70,30,5,42,42,21)@210#
(2)* , ~3! CP3(20,8,7,5)@40# CP3(21,14,6,1)@42# CP5(280,120,20,168,147,105)@840#
(3)* CP3(5,2,2,1)@10# CP3(18,12,5,1)@36# CP5(60,25,5,36,36,18)@180#
~7! CP3(5,2,2,1)@10# CP3(12,8,3,1)@24# CP5(40,15,5,24,24,12)@180#
(7)* CP3(20,8,7,5)@40# CP3(21,14,5,2)@42# CP5(280,100,40,168,147,105)@840#
(8)* CP3(5,2,2,1)@10# CP3(18,11,4,3)@36# CP5(55,20,15,36,36,18)@180#
~8!, ~9! CP3(20,8,7,5)@40# CP3(9,6,2,1)@18# CP5(120,40,20,72,63,45)@360#
(9)* CP3(5,2,2,1)@10# CP3(24,16,5,3)@48# CP5(80,25,15,48,48,24)@240#

TABLE VII. Equation of CY4.

Surface Equation of CY4 h1,1 h2,1 h3,1 h2,2 x

~1! y31z121w121s51t51u1050 12 32 92 396 480
(1)* y31z111zw121s51t5u1u850 92 32 12 396 480
~2! y31z71w421s51t51u1050 28 48 60 300 464
(2)* , ~3! y31z71w421s51t5u1u850 60 48 28 300 464
(3)* y31z7w1w361s51t51u1050 28 48 60 300 464
~7! y31z81w241s51t51u1050 14 44 102 420 480
(7)* y31z8w1w211s51t5u1u850 102 44 14 420 480
(8)* y3w1z91w121s51t51u1050 34 48 38 236 192
~8!, ~9! y31z91w181s51t5u1u850 38 48 34 236 192
(9)* y31z9w1w161s51t51u1050 34 48 38 236 192
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CY45
T23CY3

~21!3s
, ~8!

can be obtained from the Borcea-Voisin method~here, the Calabi-Yau three-fold has a
involution!.11,30,31 We can construct the following example. By using CY3

5CP4(1,42,258,602,903)@1806# and T25CP2(1,1,2)@4#, we obtain CY4
5CP5(2,84,516,903,903,1204)@3612#. It is also in the list of Calabi-Yau four-fold.29 Hodge num-
bers are

h1,15h3,15500, h1,250 and x56048. ~9!

In this case, the Calabi-Yau three-fold is K3 fibered Weierstrass type such as the Cala
three-fold and K3 fiber have the same T2 fiber. The K3 fiber is CP3(1,6,14,21)@42# with E8 type
elliptic singularity. It may be self-mirror though their faces and vertices are not SL~5,Z! equiva-
lent. @For self-mirror families, vertices and faces are not SL~5,Z! equivalent and they are onl
GL~5,Z! equivalent. This condition may be a necessary one for self-mirror cases.# It has h1,1

5h2,15251 andk542 in Eq. ~1!. The CY three-fold satisfies the condition of being reflexi
pyramid which is extended to the higher dimensions.k542 is a case when 21(k11)5903 is
coprime with 2 in the list of Ref. 28.

For the third type, the manifold may be obtained by extending the Borcea-Voisin meth

CY45
T23~T23K3!/@~21!3s#

~21!3s
. ~10!

The holonomy group of covering space of this manifold is SU~2!. It would be interesting to
consider the application of this manifold to verify string duality.

V. DISCUSSION

Many Calabi-Yau manifolds were constructed by the Borcea-Voisin method. Furtherm
many mirror pairs are possible without weight representations in addition to our list with w
representations.~The reason why we made mirror pairs of Calabi-Yau manifolds with we
representations is that we wanted to examine their properties torically.!

These manifolds have some nice properties. For example, in the Calabi-Yau three-fold

~1! the mirror pair can be constructed easily,
~2! the mirror pair manifolds have the same T2 fiber,
~3! K3 fibers of mirror pair manifolds have the same base T2/(21), and
~4! the number of the rational curves are known. Therefore, the superpotentials are obtained

exact forms12 in both type IIA and IIB sides. The correspondence of types IIA and IIB
apparent.

It should be possible to use these Calabi-Yau four-folds to see the relation between F-
on Calabi-Yau four-folds and type I8 theory on Calabi-Yau three-folds or T23K3/Z2 . For ex-
ample, Sen5 used Calabi-Yau three-folds constructed by Borcea-Voisin method (CY35(T2,Fm),
m50, 1, 4) and showed the relation among F-theory compactified on the Calabi-Yau thre
and type I8 theory on the K3 surface.

Studying the duality of supersymmetric field theory with brane will require the clarificatio
a relation among T-duality, mirror symmetry and Fourier-Mukai transformation.10,16,33–35The
manifolds constructed in the present paper will be applied to investigate this relation in f
work.
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APPENDIX A: BORCEA-VOISIN METHOD

We start with the manifolds with weights,u5(u0 ,u1 ,...,un) andv5(v0 ,v1 ,...,vm), where
u05S i 51

n ui and v05Si51
m vi . We assume the following form to the equations which descri

these manifolds,

x0
25 f ~x1 ,x2 ,...,xn! and y0

25 f ~y1 ,y2 ,...,ym!. ~A1!

Then the Calabi-Yau hypersurfacesXn
(u) andYm

(v) of degree 2u0 and 2v0 , are defined respectively
as

CP~u!5CP~u0 ,u1 ,...,un! and CP~v !5CP~v0 ,v1 ,...,vm!. ~A2!

Furthermore, assume that gcd(u0 ,v0)51 to obtain the rational map

CP~u!3CP~v !5CP~v0u1 ,...,v0un ,u0v1 ,...,u0vm!, ~A3!

defined by

~x0 ,...xn!3~y0 ,...ym!→~x1y0
u1 /u0 ,...,xny0

un /u0 ,y1x0
v1 /v0 ,...,ymx0

vm /v0!, ~A4!

where all the fractional powers use the same determination fory0
1/u0 andx0

1/v0, respectively. This
is a Calabi–Yau hypersurfaceXn1m

u3v of total degree 2u0v0 .
We used two types of tori for the construction of CY3,

CP2~1,1,2!@4# : y1
25y2

41y3
4 ~A5!

and

CP2~1,2,3!@6# : y1
25y2

31y3
6 . ~A6!

APPENDIX B: THE MIRROR CHECK OF CALABI-YAU FOUR-FOLDS

Here, we will show a simple way to check mirror using the following pair of Calabi-Y
four-folds. ~We owe this way to Mohri.! We will use ~2! and (2)* in Table VIII as an example.
All of their weights are not equal one.
~2! CP5(70,30,5,42,42,21)@210# (2)* CP5(280,120,20,168,147,105)@840#. The coordinate trans
formation of the Newton polyhedra21 in the lattice is as follows:
(x1 ,...,x6)PZ6→(m1 ,...,m5)PZ5.

For case~2!, the basic equation which they must satisfy is

5~14x116x21x3!121~2x412x51x6![53~221m3!12135m350. ~B1!

A solution is given by

x15m1 , x25m2 , x35214m126m2221m3 ,
~B2!

x45m4 , x55m5 , x655m322m422m5 , ;xi>21.

Some similar deformations are possible for (2)* ,
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x15m1 , x25m2 , x35214m126m2221m3 , ;xi>21
~B3!

x456m327m412m5 , x5524m318m423m5 , x65m5 .

This comes from the relation between weights and degrees.
Using a program of analyzing polytopes and polyhedra, the faces and the vertices of N

polyhedra are obtained. For example, the faces of~2! and the vertices of (2)* are given by

fW15~14,6,21,0,0!, vW 15~21,21,21,21,21!,

fW25~21,0,0,0,0!, vW 25~2,21,21,21,21!,

fW35~0,21,0,0,0!, vW 35~21,6,21,21,21!,
~B4!

fW45~0,0,0,21,0!, vW 45~21,21,1,1,0!,

fW55~0,0,0,0,21!, vW 55~21,21,1,0,21!,

fW65~0,0,25,2,2!, vW 65~21,21,1,3,7!.

They are lattice isomorphic, i.e.,'APSL(5,Z), A fW i5vW i for i 51,...,6:

TABLE VIII. Dual polyhedron of CY three-fold~2! and their sub-dual polyhedra.

CP2(1,2,3)@6# CP2(1,1,2)@4# CP3(1,6,14,21)@42# CP4(21,21,2,12,28)@84#

x3 x4 x1 x4 x2 x3 x4 x1 x2 x3 x4

21 22 21 0 0 22
26 214 221 0 26 214 221
25 210 218 0 25 212 218
24 210 215 0 24 210 215
24 29 214 0 24 29 214
23 28 212 0 23 28 212
23 27 211 0 23 27 211
22 26 29 0 22 26 29
22 25 28 0 22 25 28
22 25 27 0 22 25 27
22 24 27 0 22 24 27
21 24 26 0 21 24 26
21 23 25 0 21 23 25
21 23 24 0 21 23 24
21 22 24 0 21 22 24
21 22 23 0 21 22 23

22 23 0 22 23 0 0 22 23
21 22 0 21 22 0 0 21 22
21 21 0 21 21 0 0 21 21

0 21 0 21 0 0 21 0 0 0 21
0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 0 1
1 0 0 1 0 0 0 1 0

1 0 0 0 1 0 0
1 0 1 0 0 0
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A5S 22 1 1 1 1

1 26 1 1 1

1 1 21 21 21

1 1 21 21 0

1 1 21 0 1

D .

Thus,~2! and (2)* are a mirror pair.

APPENDIX C: DUAL POLYHEDRA OF CALABI-YAU THREE-FOLD IN BORCEA VOISIN
CONSTRUCTION

There are some works about singularities in algebraic manifolds including K3 surfaces.32,36–40

It is difficult to know all elliptic fibrations and all degenerations which Calabi-Yau manifolds h
even if they are K3 surfaces. Some ways of obtaining them in terms of toric varietie
proposed.26,29,42@For K3 cases, Belcastro gave some more improved ways of calculating Pic~K3!,
finding elliptic fibrations.24 Her ways are composite ones of using toric varieties and some t
rems of algebraic geometry. Her way to calculate the intersection number of two curves is t
at the graph associated to the incidence matrix associated to the desingularization of the po
If the vertices representing the curve have an edge between them, then their intersection
plicity is the multiplicity of the edge~otherwise 0!. She gave the list of Pic~K3! and the elliptic
fibers for 95 K3 surfaces and types of generations.24# They use a dual polyhedron of Calabi-Ya
manifolds to find fibrations and their singularities. For example, in finding singularities, top p
and bottom points in the edge of the dual polyhedron of K3 denote the extended Dynkin dia
of the singularities. Their method is simple and visible. However, there are some ambig
because they have the lattice equivalence and some vanishing points. Therefore, we think
sufficient condition to identify the final step corresponding to the boundary of the Kahler
may be useful in using their method. The boundary of the Kahler cone is where we can fi
elliptic fibrations and their degenerations which Calabi-Yau manifolds have. It corresponds
most smooth Calabi-Yau manifold. Vinberg gave an algorism to obtain the boundary of the K
cones of K3. He derived the sufficient condition to identify the last stage of the algorism fo
signature~1,n! case of the Picard lattice.41 If we can translate this condition in terms of du

TABLE IX. A polyhedron of CY three-fold~1!5CP1~1,1,2!3CP3~1,1,4,6!/~21!3s and their subpolyhedra.

CP2~1,2,3!@6# CP2~1,1,2!@4# CP3~1,1,4,6!@42# CY three-fold~1!

x2 x3 x2 x4 x1 x2 x3 x1 x2 x3 x4

1 21 1 21 21 1 21 21 1 21 21
21 21 21 21 0 21 21 0 21 21 21
21 21 21 0 0 21 21 0 21 21 0
21 21 21 1 0 21 21 0 21 21 1
21 21 21 2 0 21 21 0 21 21 2
21 21 21 23 0 21 21 0 21 21 3

0 21 0 21 0 0 21 0 0 21 21
0 21 0 0 0 0 21 0 0 21 0
0 21 0 1 0 0 21 0 0 21 1
0 0 0 21 0 0 0 0 0 0 21
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1
1 21 1 21 0 1 21 0 1 21 21
1 0 1 21 0 1 0 0 1 0 21
1 1 1 21 0 1 1 0 1 1 21
1 2 1 21 0 1 2 0 1 2 21
1 21 1 21 1 1 21 1 1 21 21
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polyhedron, we can apply this condition to the method of Refs. 26, 29, and 42 for these
From the Picard lattice, it may be possible to obtain the boundary of the Kahler cone b
following method.~The Kahler cone can be obtained as the fundamental region of the W
transformation of the Picard lattice for K3 case.! The dual graph of the Kahler cone~secondary
polytope! is obtained by the triangulation of dual polyhedra.~There are some softwares to g
secondary polytopes. Unfortunately, even for K3 cases, ifr>8, then they will not work unless one
uses some symmetries.! After choosing the case which has the most triangulations which co
spond to the most smooth K3, we can identify it as the dual of the boundary of the Kahler
If we can get the dual graph of the secondary polytope, then we will be able to see the bou
of the Kahler cone constructed by CP1. If we can make the Gram matrix whose element
represented by the intersection number of each CP1 in the boundary of the Kahler cone, then

TABLE X. A dual-polyhedron of CY three-fold~1! and their sub-dual polyhedra.

CP2~1,2,3!@6# CP2~1,1,2!@4# CP3~5,6,22,33!@66# CY three-fold~1!*

x2 x3 x2 x4 x1 x2 x3 x1 x2 x3 x4

26 3 22 26 3 22 0
5 3 22 25 3 22 0

24 2 21 24 2 21 0
24 3 22 24 3 22 0
23 1 21 23 1 21 0
23 2 21 23 2 21 0
23 3 22 23 3 22 0

0 0 21 22 1 21 0
22 1 0 22 1 0 0
22 2 21 22 2 21 0
22 3 22 22 3 22 0
21 1 21 21 1 21 0
21 1 21 21 1 21 0
21 1 0 21 1 0 0
21 2 21 21 2 21 0

1 3 22 21 3 22 0
22 21 0 22 0 21

21 0 21 0 0 21 0 0 21 0 0
0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1
0 1 0 0 1 0 0 1 0
1 21 0 1 21 0 1 21 0
1 0 1 0 0 1 0 0 1 0 0
2 21 0 2 21 0 2 21 0
3 22 0 3 22 0 3 22 0

1 0 0 1 0 0 0
1 1 21 1 1 21 0
1 1 0 1 1 0 0
1 2 21 1 2 21 0
1 3 22 1 3 22 0
2 1 21 2 1 21 0
2 1 0 2 1 0 0
2 2 21 2 2 21 0
2 3 22 2 3 22 0
3 1 21 3 1 21 0
3 2 21 3 2 21 0
3 3 22 3 3 22 0
4 2 21 4 2 21 0
4 3 22 4 3 22 0
5 3 22 5 3 22 0
6 3 22 6 3 22 0
                                                                                                                



s.
pe by

-folds
per
ron.
bi-

l
olds.
ron

nd in
VIII
More

ng
ing

alabi-
3.
ther

ch is

t T

that
m as
erstrass
bers

y the
are a

d

3055J. Math. Phys., Vol. 41, No. 5, May 2000 Calabi-Yau manifolds by Borcea-Voisin method

                    
contains all the elliptic curves which are resoluted and forming the extended Dynkin diagram~It
may be possible to link the intersection number of the singularities and the secondary polyto
using Ref. 43.!

We applied the methods of Refs. 26, 29, and 42 to investigate fibers in Calabi-Yau three
in Table V. Their method is summarized below. We will follow the notation of Ref. 26. The up
prefix in ¹ denotes the dimension of the lattice of the polyhedron or dual polyhed
$(x1 ,x2 ,x3 ,x4)%P4¹ form integral points in the four-dimensional dual polyhedron of the Cala
Yau three-fold up to the points in codimension one face.$(x1 ,x2)%P2¹,4¹ represent the integra
points in the dual polyhedron of a base under the elliptic fibration of Calabi-Yau three-f
$(x2 ,x3 ,x4)%ux150P3¹,4¹ denote the integral points in the three-dimensional dual polyhed
of K3 fiber of the Calabi-Yau three-fold.$(x3 ,x4)%ux15x250P2¹,4¹ form the integral points in
the two-dimensional dual polyhedron of a common elliptic fiber in Calabi-Yau three-folds a
K3 fiber. We confirmed that most Calabi-Yau three-folds and Calabi-Yau four-folds in Table
have the dual polyhedrons of K3 and of an elliptic curve which satisfy the above conditions.
precisely, for case~2!, the dual polyhedron contains two dual sub-polyhedra of T2 and a dual
polyhedron of K3 satisfying the above conditions. They are CP2(1,1,2)@4# and CP2(1,2,3)@6#.
CP2(1,2,3)@6# comes from the elliptic fiber of the K3 fiber. If the above condition for havi
elliptic fibration is sufficient, then we can conclude that the two kinds of elliptic fibrations com
from both sides of the direct product of the Borcea-Voisin construction are possible for C
Yau three-folds. One comes from the T2 side and the other comes from the elliptic fibration of K
However, this will not be a sufficient condition for having elliptic fibration and needs fur
conditions to be sufficent. T25CP1(1,2,3)@6# in the Calabi-Yau three-fold in case~2! does not
satisfy the necessary condition of having elliptic fibration about canonical bundles, whi
quoted in Ref. 2:

KCY35p* ~KB1S iaiEi !1error terms50. ~C1!

~We follow the notations of Ref. 2.! The dual polyhedron of Table VIII leads tonT51
5h1,1(B)21. This is not consistent with the above equation when we suppose tha2

5CP1(1,2,3)@6# fibered with E8 type degeneration and B5F0 based for case~2!.
The conclusion of the property of Calabi-Yau three-folds by Borcea-Voisin methods is

they do not have the elliptic fibration coming from the K3 fiber side. Even if they have the
fibers, then there may be no sections. Therefore, they cannot be represented in the Wei
form as the extension of this elliptic curve with the singularity. The degenerations of elliptic fi
of Calabi-Yau three-folds do not relate to the degenerations of K3 fibers.

For the dual polyhedron of Calabi-Yau four-folds see Table VI, which was constructed b
method in Appendix B. It has two dual sub-polyhedra of K3 as two fibers. Tables IX and X
polyhedron and a dual polyhedron of the Calabi-Yau three-fold~1! constructed by K3
5CP3(1,1,4,6)@12# and T25CP2(1,1,2)@12#. $x2 ,x3% and $x4% may relate the polyhedron an
dual polyhedron of three tori.
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We introduce a class of generalized Bargmann spaces onCn for which we establish
explicit formulas of their reproducing kernels. Some applications of the obtained
formulas are given. ©2000 American Institute of Physics.
@S0022-2488~99!03507-0#

I. INTRODUCTION

V. Bargmann had introduced the spaceA2(C) of all entire functions f for which
*cu f (z)u2e2uzu2 dl(z),1`. On this space Fock’s solutionj5]/]z of the commutation rule
@j,z#51 is realized. The Bargmann–Fock spaceA2(C) was used in Ref. 1 as the representati
space of the canonical commutation rules of quantum mechanics. Since then it has appe
many different contexts, e.g., in signal analysis, representation theory of nilpotent Lie group2 and
in the theory of Hankel and Toeplitz operators.3 For n>1, the Bargmann–Fock spaceA2(Cn)
consists of holomorphic functionsf on Cn with finite norm *Cnu f (z)u2e2uzu2dl(z),1`, where
dl(z) is the Lebesgue measure onCn5R2n and uzu25^z,z& the usual Euclidean norm square.

In this paper we introduce a class of generalized Bargmann spacesAm
2 (Cn),m50,1,2,..., that

are eigenspaces of a single elliptic second-order differential operator onCn. Namely, for m
50,1,2,... the generalized Bargmann space is given by

Am
2 ~Cn!5H f :Cn→C;D̃ f 5m f and E

Cn
u f ~z!u2e2uzu2 dl~z!,1`J ,

whereD̃ is the following generalized Laplacian ofCn given by

D̃52(
j 51

n
]2

]zj] z̄j
1(

j 51

n

z̄j

]

] z̄j
. ~1.1!

In particular form50, we will see that our generalized Bargmann spaceA0
2(Cn) is nothing

other than the classical Bargmann–Fock spaceA2(Cn). Therefore,A2(Cn) can be realized as th
null space of the single operatorD̃. As the spaceA2(Cn) has K0(z,w)5e^zw& as the explicit
reproducing kernel, we will show that generalized Bargmann spacesAm

2 (Cn) also have explicit
reproducing kernels of the forme^zw&Lm

n21(uz2wu2), whereLm
n21(x) denotes the Laguerre poly

nomial ~see Theorem 3.1 for a precise statement!.
We organize this paper as follows. In Sec. II, we introduce the generalized Bargmann s

Am
2 (Cn) and we give their realization as Hilbert spaces of complex sequences onZ13Z1. In Sec.
30570022-2488/2000/41(5)/3057/11/$17.00 © 2000 American Institute of Physics
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III we deal with explicit formulas for the reproducing kernels of the spacesAm
2 (Cn). In Sec. IV,

we give some applications of the obtained explicit formulas for the reproducing kernels. Na
we derive an addition formula for Laguerre polynomials and we give explicit solutions for the
equation and the wave equation associated toD̃.

II. THE GENERALIZED BARGMANN SPACES ON Cn

In this section, we introduce a class of generalized Bargmann spaces and we give a
description of the expansion of their elements in terms of the appropriate Fourier series onCn. For
this, let us fix some notations. Forp,qPZ1, let H(p,q) denote the space of restrictions to th
sphereS2n215$vPCn,uvu51% of Euclidean harmonic polynomialsh(z) on Cn which are ho-
mogeneous of degreep in z and degreeq in z̄. Dimensions, basic properties of the spacesH(p,q),
and related special functions are listed in Appendix A.

Now, for mPZ1, we consider the Hilbert spaceSm
2 (Cn) consisting of sequencesa

5(ap,q)
0<q<m
p>0 ;ap,qPCd(n;p,q) with d(n;p,q)5dimH(p,q) and such that iaim

2 5(
0<q<m
p>0

g(n;m;p,q)uap,qu2,1`, where

g~n;m;p,q!5 1
2~m2q!! ~p1q1n21!!G~n1p1q!„G~n1p1m!…21.

Then, for n51 and m50, we see that the spaceS0
2(C)5$(ap,0)p>0 ;ap,0PC/(p>0p! uap,0u2

,1`% is exactly the sequential characterization of the Bargmann–Fock spaceA2(C) ~cf. Ref. 4!,
and it is not difficult to see that this holds for alln>2. That is,S0

2(Cn) is isometric to the
Bargmann–Fock spaceA2(Cn).

Next, we will see that the sequential spacesSm
2 (Cn) are connected with the generalize

Bargmann spacesAm
2 (Cn) that we will define below. For this, letL2(Cn,e2uzu2dl) be the space of

functions f :Cn→C with finite norm i f i25*Cnu f (z)u2e2uzu2 dl(z),1`, endowed with the Her-
mitian scalar product̂ f ,g&5*Cnf (z)g(z)e2uzu2 dl(z). For mPC, let us denote byEm(Cn) the
space of eigenfunctionsf of the operatorD̃ given in ~1.1! with eigenvaluem. That is,Em(Cn)
5$ f :Cn→C;D̃ f 5m f % and let Am

2 (Cn) the subspace ofEm(Cn) whose elements are in
L2(Cn,e2uzu2dl). Before giving a concrete realization ofAm

2 (Cn), we first give an explicit expan-
sion of any element ofEm(Cn).

Proposition 2.1: LetmPC. Then f:Cn→C is an eigenfunction ofD̃ with m as eigenvalue if
and only if there exists a sequence ap,q5(ap,q

j )1< j <d(n;p,q)PCd(n,p,q) such that

f ~z!5 (
p,q>0

1F1~2m1q,p1q1n,uzu2!uzup1qap,q .hp,qS z

uzu D in C`~Cn!,

where hp,q5$hp,q
j %1< j <d(n;p,q) is an orthonormal basis of H(p,q),1F1(2m1q,p1q1n;uzu2) is

the confluent hypergeometric function, and ap,q .hp,q(z)5( j 51
d(n;p,q)ap,q

j hp,q
j (z).

Proof: For this, we use polar coordinates inCn(z5rv,r .0,vPS2n21) to write the Laplacian
D̃ in these coordinates as

D̃5
21

4 S ]2

]r 2 1
2n21

r

]

]r
1

1

r 2 DS2n21D1
1

2 S r
]

]r
1LvD , ~2.1!

whereLv is the tangential component of the Euler operator, i.e.,

(
j 51

n

z̄j

]

] z̄j
5

1

2 S r
]

]r
1LvD

and we should note thatLvhp,q(v)5(q2p)hp,q(v) for everyhp,qPH(p,q). On another hand
let f be an eigenfunction ofD̃ with m as eigenvalue; i.e.,
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S 2(
j 51

n
]2

]zj] z̄j
1(

j 51

n

z̄j

]

] z̄j
D f ~z!5m f ~z!. ~2.2!

SinceD̃ is an elliptic differential operator onCn, the solutions of~2.2! are inC`(Cn). Thus, the
function f (rv) can be expanded as a function ofv into its trigonometrical series in terms of th
spherical harmonics as follows:

f ~z!5 f ~rv!5 (
0<p,q,`

ap,q~r !.hp,q~v! in C`~@0,1`@3S2n21!, ~2.3!

where ap,q(r )5(ap,q
j (r ))1< j <d(n;p,q)PC`(@0,1`@) are the Fourier coefficients off (rv) and

hp,q(v)5(hp,q
j (v))1< j <d(n;p,q) is an orthonormal basis ofH(p,q) for each fixed (p,q)

P(Z1)2. Here, the dot product is given byap,q(r ).hp,q(v)5( j 51
d(n;p,q)ap,q

j (r )hp,q
j (v). Using~2.1!

and~2.3! in Eq. ~2.2! as well as the fact that thehp,q(v)’s form a basis ofL2(S2n21), we get, for
each fixed (p,q)PZ13Z1, the following ordinary differential equation that the Fourier coe
cientsap,q(r ) must satisfy:

S d2

dr2 1F ~2n21!

r
22r G d

dr
2

1

r 2 ~p1q!~p1q12n22!22~q2p!14m Dap,q~r !50. ~2.4!

Puttingap,q(r )5r p1qwp,q(r ), Eq. ~2.4! reduces to

r 2wp,q9 ~r !1r „2~p1q!12n2122r 2
…wp,q8 ~r !14r 2~m2q!wp,q~r !50, ~2.5!

and, using the change of variabler 25x with wp,q(r )5F(x), it is easy to see thatF(x) satisfy the
confluent hypergeometric equation

xF9~x!1~p1q1n2x!F8~x!1~m2q!F~x!50. ~2.6!

So, the regular solution atx50 of Eq. ~2.6! is given, up to a multiplicative constant, byF(x)
51F1(2m1q,p1q1n,x), and, then, the Fourier coefficientsap,q(r ) of f (rv) are given by
ap,q(r )5ap,qr p1qF(2m1q,p1q1n,r 2), ap,q5(ap,q

j )1< j <d(n;p,q)PCd(n;p,q). Hence

f ~z!5 f ~rv!5 (
0<p,q,`

F~2m1q,p1q1n,r 2!r p1qap,q .hp,q~v!, z5rv,

whereap,q5(ap,q
j )1< j <d(n;p,q) is a constant vector ofCd(n;p,q). h

Now, we return to the spaceAm
2 (Cn) consisting of eigenfunctions ofD̃ that are in

L2(Cn,e2uzu2dl). Using Proposition 2.1 and Appendix B of this paper we have the following
Theorem 2.1:Let mPC. Then we have the following:

(i) For mÞ0,1,2,3,...the space Am
2 (Cn) is trivial.

(ii) If m5m, mPZ1, then f:Cn→C belongs to Am
2 (Cn) if and only if it can be be expande

in the form f(z)5(
0<q<m
p>0 F(2m1q,n1p1q,r 2)r p1qap,q .hp,q(v) in C`(Cn), z

5rv, uvu51, r .0 and with ap,qPCd(n;p,q) such that(
0<q<m
p>0 g(n;m;p,q)uap,qu2,1`,

with g(n;m;p,q)5 1
2(m2q)!( p1q1n21)!G(n1p1q)„G(n1p1m)…21 and in this

case we havei f i25(
0<q<m
p>0 g(n;m;p,q)uap,qu2.

By the above theorem, it becomes natural to consider the case whenm5mPZ1 with the
associated eigenspace:
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Am
2 ~Cn!5H f PC`~Cn!, D̃ f 5m f and E

Cn
u f ~z!u2e2uzu2dl~z!,1`J .

Corollary 2.1: For mPZ1, the space Am
2 (Cn) is isometric to the Hilbert space Sm

2 (Cn).
Corollary 2.2: For m50, the null space A0

2(Cn) of the operatorD̃ coincides with the
Bargmann–Fock space A2(Cn).

Definition 2.1: The eigenspaces(Am
2 (Cn))mPZ1 of D̃ endowed with the Hermitian scala

product ^ f ,g&5*Cnf (z)g(z)e2uzu2 dl(z) will be called generalized Bargmann spaces on Cn.
Before ending this section, we make some remarks on the connection of the LaplacianD̃ with

some well known operators onR2n.
Remark 2.1:The LaplacianD̃ on Cn can be seen likewise as a harmonic oscillator

L2(Cn,e2uzu2dl). Namely we haveD̃5( j 51
n Aj* Aj , whereAj5]/] z̄j and Aj* 52]/]zj1 z̄j sat-

isfy the canonical identities:@Aj ,Ak#5@Aj* ,Ak* #50 and@Aj ,Ak* #5dk j,1< j ,k<n.
Remark 2.2:Let

H̃5
21

4 (
j 51

n S S ]

]xj
1 iy j D 2

1S ]

]yj
2 ix j D 2D

be the Schro¨dinger operator with uniform magnetic field onR2n ~see Refs. 5 and 6 forn51!.
Then, we can transformH̃ to obtain the LaplacianD̃. More precisely, we haveQo(H̃

2n/2)oQ215D̃, whereQ f5e(1/2)( j 51
n (xj

2
1yj

2) f , f PL2(R2n;dx1 ,...,dxndy1 ,...,dyn) is the ground
state transformation.

III. EXPLICIT FORMULAS FOR THE REPRODUCING KERNELS

In this section, we will give explicit formulas for the reproducing kernelKm(z,w) of the
generalized Bargmann spaceAm

2 (Cn),mPZ1. For this we start by the following lemma.
Lemma 3.1: Let zPCn. Then, the evaluationdzf 5 f (z) is a continuous linear form on the

Hilbert space Am
2 (Cn).

Proof: Let f (z) be in Am
2 (Cn). Then, by Theorem 2.1, we can writef (z) as

f ~z!5 (
0<q<m
p>0

F~2m1q,n1p1q,uzu2!uzup1qap,q .hp,q S z

uzu D in C`~Cn!

with (
0<q<m
p>0 g(n;m;p,q)uap,qu25i f i2,1`. Thus using the Cauchy–Schwarz inequality, we o

tain

u f ~z!u<i f iS (
0<q<m
p>0

„g~n;m;p,q!…21uF~2m1q,n1p1q,uzu2!u2uzu2~p1q!Uhp,qS z

uzu D U
2D 1/2

.

~3.1!

Using the well-known fact thatuhp,q(v)u25(2p)2nG(n)d(n;p,q) as well as the estimate for th
confluent hypergeometric function,uF(2m1q,n1p1q;r 2)u<Cn,m(11r 2)m for everyp>0 and
0<q<m, it becomes easy to check~by the ratio test! that the involved series in~3.1! is absolutely
convergent for every fixedr. h

Now, we state the main formulas for the reproducing kernelsKm(z,w) of the spaces
Am

2 (Cn),m50,1,2,... .
Theorem 3.1:Let Km(z,w) be the reproducing kernel of Am

2 (Cn). Then we have
(i) K m(z,w)5(

0<q<m
p>0 „g(n;m;p,q)…21F(2m1q,n1p1q,uzu2)F(2m1q,n1p
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1q,uwu2)Gp,q(z,w), where Gp,q(z,w) is related to the reproducing kernel of H(p,q)
given in (4) of Appendix A.

(ii) K m(z,w)5p2ne^z,w&Lm
n21(uz2wu2).

Proof: ~i! Let zPCn, z fixed. Then, using Lemma 3.1, we can apply Riesz theorem to w
f (z)5^ f (w),gz(w)& for some unique elementgz in Am

2 (Cn). Hence, with the help of Theorem
2.1, we can expandf andgz as follows:

f ~w!5 (
0<q<m
p>0

F~2m1q,n1p1q;uwu2!uwup1qap,q .hp,qS w

uwu D
and

gz~w!5 (
0<q<m
p>0

F~2m1q,n1p1q;uwu2!uwup1qbp,q~z!.hp,qS w

uwu D ,

so that^ f ,gz& can be written in view of Theorem 2.1 and its Corollary 2.1 as

f ~z!5 (
0<q<m
p>0

g~n;m;p,q!ap,q .bp,q~z!.

Hencefore, by identification we get the form of thebp,q(z)’s. Namely, we have

bp,q~z!5„g~n;m;p,q!…21F~2m1q,n1p1q;uzu2!hp,qS z

uzu D uzup1q.

Thus,

gz~w!5 (
0<q<m
p>0

„g~n;m;p,q!…21F~2m1q,n1p1q;uzu2!F~2m1q,n1p1q;uwu2!

3~ uzuuwu!p1qK hp,qS z

uzu D ,hp,qS w

uwu D L
and using~B! of Appendix A,

~ uzuuwu!p1q (
j 51

d~n;p,q!

hp,q
j S z

uzu Dhp,q
j S w

uzu D5Gp,q~z,w!,

we obtain the desired formula forKm(z,w) and we havef (z)5*CnKm(z,w) f (w)e2uwu2 dl(w),
where Km(z,w)5gz(w). In particular, we haveKm(z,0)5F(2m,n;uzu2) and this finishes the
proof of ~i!. For the proof of~ii !, we need to establish the following property:

Km~g.z,g.w!5eug.ou22^z,g21.o&2^g21.o,w&Km~z,w!, ~3.2!

whereg is any element of the semi-direct groupG5U(n)›Cn andg.z is the natural action ofG
on Cn. Assuming, for a moment, that~3.2! holds we can use the fact thatG acts onCn transitively
so thatKm(z,w)5Km(z,g.o) for someg in G such thatg.o5w and by~3.2! we get

Km~z,g.o!5eug.ou22^g21z,g21o&2^g21.o,o&Km~g21.z,o!,
                                                                                                                



to

l

r
t

ulas

rezin

pace

3062 J. Math. Phys., Vol. 41, No. 5, May 2000 Askour, Intissar, and Mouayn

                    
But we know from~i! of Theorem 3.1 thatKm(g21.z,o)5F(2m,n,ug21.zu2). Hence, lettingg
PG be the translation transform bywPCn for which we haveg.o5w, we obtain the desired
compact explicit formula forKm(z,w) given in ~ii !. This finishes the proof of Theorem 3.1 up
property~3.2! of Km(z,w).

Now, we establish invariance properties of the LaplacianD̃ and the reproducing kerne
Km(z,w). For this letTg be the operator on the Hilbert spaceL2(Cn,e2uzu2dl) given by

Tgf ~z!5e2~1/2!ug.ou1^z,g.o& f ~g21.z!, gPG5U~n!›Cn,

whereg.z is the natural action ofG on Cn. We have the following.
Proposition 3.1:

(i) For every gPG,Tg is an unitary operator of L2(Cn,e2uzu2dl).
(ii) D̃Tg5TgD̃ for all gPG.
(iii) K m(g.z,g.w)5eug.ou22^z,g21.o&2^g21.o,w&Km(z,w) for all gPG.

Proof of Proposition 3.1:For gPU(n) it is clear that ~i! and ~ii ! hold since D̃ is
U(n)-invariant. Also,~iii ! holds for the reproducing kernelKm(z,w) in view of its series expan-
sion given in~i! of Theorem 3.1 for suchgPU(n). Thus, it suffices to prove Proposition 3.1 fo
the translations transformations. In fact, by using direct computation with such an elemeng of
G(z→g.z5z1a,aPCn) it is easy to establish~i! and~ii !. This is to say that the operatorsTg are
unitary in the Hilbert spaceL2(Cn,e2uzu2dl) and that the LaplacianD̃ is Tg-invariant. Hence, the
spacesAm

2 (Cn) areTg-invariant. Next, we prove the property~iii ! of the kernelKm(z,w) for the
translationsga ,aPCn. For this, letf PAm

2 (Cn). Then,Tga
f belongs also toAm

2 (Cn). Hence we

can reproduce it asTga
f (z)5*CnKm(z,w)Tga

f (w)e2uwu2dl(w). Explicitly, we have

e~21/2!uau21^z,a& f ~z2a!5E
Cn

Km~z,w!e~21/2!uau21^w,a& f ~w2a!e2uwu2 dl~w!. ~3.3!

Hence, replacingz2a by z8 andw2a by w8 we can rewrite~3.3! as follows:

f ~z!5E
Cn

Km~z1a,w1a!e2^z,a&2^a,w&2uau2f ~w!e2uwu2 dl~w!.

SinceKm(z1a,w1a) is an element ofAm
2 (Cn) and reproduces the functionf (z), then, by the

uniqness of the reproducing kernelKm(z,w), we get Km(z,w)5Km(z1a,w
1a)e2^z,a&2^a,w&2uzu2. h

IV. SOME APPLICATIONS

In this section, we will give some elementary applications of the obtained explicit form
for the reproducing kernelKm(z,w) of the generalized Bargmann spaceAm

2 (Cn).

A. Berezin transform

As a direct consequence of the explicit formulas given in Theorem 3.1, we have the Be
kernel ~cf. Ref. 7, p. 163!:

Bm~z,w!5
uKm~z,w!u2

Km~z,z!Km~w,w!
, z,wPCn.

Corollary 4.1: The Berezin transform associated to the reproducing kernel of the s
Am

2 (Cn) is given by the integral operator Bm on L2(Cn;dl):
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~Bmf !~z!5E
Cn

e2uz2wu2uF~2m,n,uz2wu2!u2f ~w! dl~w!.

B. Decomposition of L 2
„Cn,eÀzzz2d l… onto an orthogonal sum of spaces A m

2
„Cn

…

Proposition 4.1: We have the following decomposition:

L2~Cn,e2uzu2dl!5 %
m>0

Am
2 ~Cn!.

Proof: To prove Proposition 4.1, we will show that iff is an element ofL2(Cn,e2uzu2dl)
which is orthogonal to% m>0Am

2 (Cn), then f [0. For this we will rely again on our explici
formulas for the kernelsKm(z,w) given in terms of the Laguerre polynomials byKm(z,w)
5p2nLm

n21(uz2wu2)e^z,w&. Thus for f' % m>0Am
2 (Cn), we have

E
Cn

Lm
n21~ uz2wu2!e^z,w& f ~w!e2uwu2 dl~w!50

for every zPCn and every m50,1,2,... .

Now, letting tP]0,1@ we get (m50
N *CntmLm

n21(uz2wu2)e^z,w& f (w)e2uwu2dl(w)50 for everyN
PZ1. Thus proceeding at least formally by sendingN to 1` and using the explicit formula for
the generating function of the Laguerre polynomials which reads in our case asSm50tmLm

n21(uz
2wu2)5(12t)2nexp„2@ t/(12t)#uz2wu2…, we can lett→12, to end with an integral involving
the Diracd-function at the pointzPCn against the integrande^z,w& f (w)e2uwu2, from which we
deduce thatf (z)50, i.e., for everyzPCn. Our above formal method can be rigourously justifi
by using test functions onCn5R2n, which is a classical argument in the theory of Schwa
distributions. h

C. An addition formula for Laguerre polynomials

Let us recall that the Laguerre polynomialsLk
a(x) are given in terms of the confluent hype

geometric function byLk
a(x)5„k!G(a11)…21G(k1a11)1F1(2k,a11;x),a.21 ~cf. Ref. 8!.

Then a straightforward application of the explicit formulas for the reproducing kernelsKm(z,w)
given in Theorem 3.1 by~i! and ~ii ! gives the following addition formula:

Proposition 4.2: Let n>1 and m>0 be integers. Then for every x>0 and y>0 we have the
formula

eAxyLm
n21~x22Axy1y!5 (

0<q<m
p>0

c~n;m;p,q!S d

dxD
q

Lm
n1p21~x!•S d

dyD
q

Lm
n1p21~y!~Axy!p1q.

In particular, for x5y we have

ex5 (
0<q<m
p>0

c~n;m;p,q!S dq

dxq Lm
n21~x! D 2

xp1q,

where c(n;m;p,q)5d(n;p,q)(m2q)!(G(n1p1m))21 and d(n;p,q)5dimH(p,q).

D. Heat kernel for the Laplacian D̃

The heat kernel for the quadratic HamiltonianH̃ given in Remark 2.2 can be obtained b
many different ways. For example, forn51, it can be obtained throughout the Van Vleck–Pa
formula ~cf. Refs. 9 and 10!. Below, we will see how one can use the explicit formula for t
reproducing kernel ofAm

2 (Cn) to rederive the formula for the heat kernel ofD̃.
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Proposition 4.3: Let u(t,z) be the solution of the heat Cauchy problem associated toD̃ on Cn:

~] t1D̃ !u~ t,z!50, ~ t,z!PR13Cn,

u~0;z!5 f ~z!, f PC0
`~Cn!.

Then u(t,z) is given by the integral formula

u~ t,z!5E
Cn

H~ t;z,w! f ~w!e2uwu2dl~w!,

where H(t;z,w) is the heat kernel given by

H~ t;z,w!5p2ne^z,w&
•~12e2t!2n expS 2

e2t

12e2t uz2wu2D .

Proof: For mPZ1, let Pm denotes the projection operator fromL2(Cn;e2uzu2dl) onto
Am

2 (Cn). Then, for f PC0
`(Cn) the function

~Pmf !~z!5E
Cn

f ~w!Km~z,w!e2uwu2 dl~w!

belongs toAm
2 (Cn),Km(z,w) being the reproducing kernel ofAm

2 (Cn). Moreover, the function

Um~ t,z!5e2mt~Pmf !~z!5e2mtE
Cn

p2nLm
n21~ uz2wu2!e^z,w& f ~w!e2uwu2 dl~w!

is a solution of the equation

~] t 1D̃ !u~ t,z!50 Um~0,z!5~Pmf !~z!.

Hence, letu(t,z)5Sm>0Um(t,z). Since f PC0
`(Cn) and t.0 we can rewriteu(t,z) as

u~ t,z!5p2ne^z,w&E
CnS (

m>0
e2mtLm

n21~ uz2wu2! D f ~w!e2uwu2 dl~w!,

and, making use of the generating function of the Laguerre polynomial, then the functionu(t,z)
can be written in the closed form

u~ t,z!5E
Cn

H~ t;z,w! f ~w!e2uwu2 dl~w!, where H~ t,z,w!5p2ne^z,w&
•~12e2t!2n

3expS 2
e2t

12e2t uz2wu2D .

Finally, it is not difficult to show thatH(t,z,w) goes to the distributional Dirac measured(z
2w) from which we get limt→01 u(t,z)5 f (z). h

Remark 4.1:For the wave Cauchy problem associated toD̃,

~] t
21D̃ !u~ t,z!50, ~ t,z!PR3Cn,

u~0,z!50 and ] tu~0,z!5 f ~z!PC0
`~Cn!.

The solutionu(t,z) can be represented by the integral formula
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u~ t,z!5E
Cn

W~ t,z,w! f ~w!e2uwu2 dl~w!

where the wave kernelW(t,z,w) is given by the series

W~ t,z,w!5p2ne^z,w& (
m>0

sin~ tAm!

Am
Lm

n21~ uz2wu2!.

However, we are not yet able to rewriteW(t,z,w) in a closed form.
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APPENDIX A

Dictionary: ~1! For n51,2,..., the area of the unit sphere ofCn is Vn52pn$G(n)%21.
~2! For p,qPZ1, let H(p,q) denote the space of restrictions toS2n21 of Euclidean harmonic

polynomialsh(z) on Cn which are homogeneous of degreep in z and degreeq in z̄. The dimen-
sion d(n;p,q) of H(p,q) is given as follows. Ifn52,3,..., then

d~n;p,q!5
~p1q1n21!~p1n22!! ~q1n22!!

p!q! ~n21!! ~n22!!
,

and if n51, we make the convention thatpq50, so thatd(1,p,q)51 ~cf. Refs. 4 and 11!.
~3! For a,b.21 andk50,1,2,...,Pk

(a,b) is the Jacobi polynomial of degreek associated to
~a,b!:

Pk
~a,b!~x!5

~21!k

2kk!
~12x!2a~11x!2b

dk

dxk ~~12x!k1a~11x!k1b! ~cf. Ref. 8).

~4! For p,qPZ1, n52,3,..., andjPC, we set

Hn
p,q~j!5d~n:p,q!uju up2quei ~p2q! argjPmin~p,q!

~n22,up2qu!~2uju221!•$Pmin~p,q!
~n22,up2qu!~1!•Vn%

21,

the reproducing kernel ofH(p,q), and we setGp,q(z,w)5(uzuuwu)p1qHn
p,q(^z/uzu,w/uwu&)

5Hn
p,q(^z,w&) ~cf. Ref. 11!.
Basic properties:~A! The spacesH(p,q) are pairwise orthogonal inL2(S2n21) and we have

L2(S2n21)5 % 0<p,q,`H(p,q). ~B! If hp,q
1 ,...,hp,q

d(n;p,q) is any orthonormal basis forH(p,q), then
we have the Koorwinder formula~cf. Ref. 11!,

(
j 51

d~n:p,q!

hp,q
j ~j!hp,q

j ~z!5Hn
p,q~^j,z&!, j5~j i !1< i<n , z5~z i !1< i<nPS2n21

with ^j,z&5S i 51
n j i z̄ i andHn

p,q is the function defined in the dictionary.
~C! For n51,2,..., letDS2n21 denote the Laplace–Beltrami operator of the sphereS2n21.

Then, if h(v)PH(p,q), then h(v) is an eigenfunction ofDS2n21 with 2(p1q)(p1q12n
22) as eigenvalue~cf. Ref. 4!.

APPENDIX B

This appendix is devoted to give the proofs of Theorem 2.1 and its Corollary 2.1. For~i! of
Theorem 2.1,Am

2 (Cn)5$0% if and only if mÞ0,1,2,3,..., letf be a nonzero eigenfunction ofD̃ with
m as eigenvalue. Then, by Proposition 2.1, the functionf can be expanded as
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f ~z!5 (
p,q>0

F~2m1q,n1p1q,r 2!r p1qap,q.hp,q~v!: z5rv,vPS2n21,r .0,

and its norm in the Hilbert spaceL2(Cn;e2uzu2dl) is

i f i25 (
0<p,q,`

iam ,p,qiCd~n;p,q!
2 E

Cn
uF~2m1q,n1p1q;uzu2!u2uzu2~p1q!e2uzu2 dl~z!. ~B1!

So, for f (z) in Am
2 (Cn) we have necessarily for everyp,q,

iam,p,qiCd~n;p,q!
2 E

Cn
uF~2m1q,n1p1q;uzu2!u2uzu2~p1q!e2uzu2 dl~z!,1`. ~B2!

Now, let p0 ,q0 be such thatam;p0,q0
Þ0. Then, we have necessarily

E
Cn

uF~2m1q0,n1p01q0;uzu2!u2uzu2~p01q0!e2uzu2 dl~z!,1`. ~B3!

Making use of the asymptotic behavior of the confluent hypergeometric function~cf. Ref. 8!,

F~a,b;t !5S G~c!

G~c2a!
~2t !2a1

G~c!

G~a!
etta2cD S 11OS 1

t D D as uzu→1`, uarg~6t !u<p,

for F(2m1q0 ,n1p01q0 ;uzu2), we get necessarily from~B3! that 2m1q0PZ2, i.e., 2m
1q052k0 for somek0PZ1. Hencem must be a positive integer of the formm50,1,2,3,... . This
finishes the proof of~i!. For ~ii !, let f PAm

2 (Cn). We puts5uzu2 in ~B1! and we write the confluen
hypergeometric function in terms of Laguerre polynomial by using the formulaF(2m1q,n1p
1q;s)5@(m2q)!G(n1p1q)#/@G(n1m1p)#Lm2q

p1q1n21(s). Then the integral occuring in~B1!
becomes

1

2 S ~m2q!!

G~m1p1n! D
2E

0

1`

uLm2q
p1q1n21~s!u2sp1q1n21e2s ds.

But since the norm of the Laguerre polynomialLm2q
p1q1n21 in L2(@01`@ ,xp1q1n21e2xdx) is

G(p1n1m)/(m2q)!, then

i f i25 (
0<q<m

p>0
iap,qiCd~n;p,q!

2 .
1

2
~m2q!! ~p1q1n21!!

G~n1p1q!

G~n1p1m!
.

By puttingg(n;m;pq)5 1
2(m2q)!( p1q1n21)!G(n1p1q)/G(n1p1m), we finish the proof

of ~ii !. For Corollary 2.1, letf ,gPAm
2 (Cn) and write

f ~z!5 (
0<q<m
p>0

F~2m1q,p1q1n,uzu2!uzup1qap,q .hp,qS z

uzu D
and

g~z!5 (
0<q<m
p>0

F~2m1q,p1q1n,uzu2!uzup1qbp,q .hp,qS z

uzu D .

Then, by ~ii ! of Theorem 2.1, we see that ^ f ,g&L2(Cn,e2uzu2dl)5(0<q<m,0<p

3g(n;m;p,q)ap,qb̄p,q , so Corollary 2.1 follows.
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Turaev–Viro invariant and 3 nj symbols
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We propose in this work a new method to construct the Turaev–Viro state sums,
using a diagrammatic presentation describing surgery operation as Heegaard split-
tings. The resulting invariants can be connected with suitable 3n j symbols, and we
evaluate them for the lens spaces. ©2000 American Institute of Physics.
@S0022-2488~00!03605-7#

I. INTRODUCTION

In their seminal paper, Ponzano and Regge1 pointed out that it is possible to reproduce t
partition function for three-dimensional gravity by using the semiclassical limit of 6j symbols. A
coherent algebraic and geometric approach explaining the rationale behind the Ponzano
model come with Turaev–Viro in Ref. 2. Their construction draws together the deep intuitio
Ponzano–Regge and the newly developed representation theory of quantum groups into t
struction of a topological invariant,uM uTV of a closed 3-manifoldM.

The Ponzano–Regge and Turaev–Viro approach focus on PL geometry and group rep
tation theory; however, one can equivalently discuss the quantization of three-dimension
gravity from the vantage point offered by Chern-Simons Theory~Witten in Refs. 3, 4!. This latter
approach has been formalized by Reshetikhin–Turaev in Ref. 5 and further developed by M
Kirby in Ref. 6. By using surgery operations, their analysis provides a new topological inva
of closed orientable 3-manifolds,t(M ) related to the Turaev–Viro invariant by

uM uTV5t~M !t~M̄ !,

wheret(M̄ ) denotes the invariant evaluated onM with the opposite orientation. The issue of th
relation betweenuM uTV andt(M ) has been extensively discussed by Turaev in Refs. 7 and 8
Roberts in Refs. 9–11, by Beliakova and Durhuus in Ref. 12 using the spin-networks form
by Mizoguchi and Tada in Ref. 13, considering the perturbative development of the quantuj
symbols around the parameterq51, and by Kauffman and Lins in Ref. 14, using the Temperl
Lieb recoupling theory.

These two facets of 3-D quantum gravity suggest that a formulation of the theory that inv
both the T–V and R–T approach can provide a deeper understanding of the geometry invol
this paper we develop the necessary theory for such a unification. The high point is perh
rather elementary derivation of the T–V invariant.

In Sec. II we set the stage of the paper, focusing on the characterization of links in the
formalism. We will construct the associated link invariant, which turns out to be the correspo
Homfly polynomial.15,12 Such an extension of the theory permits us to introduce the notio
observable in the T–V context. We also explain the Heegaard splitting definition of the
invariant.

In Sec. III we review the basic of Dhen surgery, in particular the construction of 3-mani
and the corresponding action of the Rolfsen moves.

In the final section we focuses on rewriting the surgery process in terms of the Hee
splitting, by considering the action of the surgery maps on the handle bodies defining the

a!Electronic mail: carbone@sissa.it
30680022-2488/2000/41(5)/3068/18/$17.00 © 2000 American Institute of Physics
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fold. We will define a simple diagrammatic presentation of 3-manifolds. This latter procedure
give us the explicit expression of the invariant for all three-dimensional lens spaces, and will
us to connect it to 3n j symbols.

II. INVARIANTS OF LINKS IN THE FRAMEWORK OF THE TURAEV MODEL

In the original formulation given by Turaev and Viro in Ref. 2, links were absent, a gap fi
only later on by Turaev himself in Ref. 15. Our starting point is the notion of fat graph
compact 3-manifoldN. By this we mean a finite graph whose vertices and edges are extend
small 2-disks and narrow bands, respectively. We will consider here only 3-valent fat g
equipped with colors given by the assignment to edges of a non-negative integer or half-i
lying between 0 and (r 22)/2, wherer is the deformation parameter of the quantum gro
associated to the theory. In our case we considerSLq(2,C) with q5exp(2pi/r).15 Note that the
model without links will turn out to reproduce the usual form of the Turaev–Viro invariant.

Fix a commutative ringK and callK* the subgroup of invertible elements ofK. Let I be a
given set,i→v i given functions,I→K* and an elementv of K* . A G-tuple will be admissible
if his triplets are admissible, adm, and a triplet is admissible if, in the explicit realization of
context using a quantum group, its elements satisfy the triangular inequality. To every six-tup
associate the symbol

U j 1 j 2 j 3

j 4 j 5 j 6
UPK.

The initial data defined in this way satisfy the following conditions.

~a! ; j 1 , j 2 ,...,j 6PI such that (j 1 j 3 j 4), ( j 2 j 4 j 5), ( j 1 j 3 j 6) and (j 2 j 5 j 6) are admissible triples
we have

(
j

vj
2Uj2 j1 j

j3 j5 j4
UUj3 j4 j6

j2 j5 j
U5dj4j6

. ~1!

~b! ;a,b,c,e, f , j 1 , j 2 , j 3 , j 23PI , such that (j 23ae j1f b) and (j 3 j 2 j 23b f c) are admissible, we
have

(
j

vj
2Uj2 a j

j1 c b
UUj3 j e

j1 f c
UUj3 j2 j23

a e j
U5U j 23 a e

j 1 f b
UU j 3 j 2 j 23

b f c
U. ~2!

~c! ; j PI , we have

v25v j
22 (

k,l :~ jkl !Pamm.
vk

2v l
2. ~3!

To such initial data we add another functionqiPK* , which satisfies the relation

(
j 13PI

v j 13

2 qj 13
U j 3 j 1 j 13

j 2 j j 12
UU j 2 j 3 j 23

j 1 j j 13
U5qjqj 1

qj 2
qj 3

qj 12

21qj 23

21U j 3 j 2 j 23

j 1 j j 123
U. ~4!

From this latter, the following important relations are obtained:

U j 3 g e

j 1 d c
U5U j 1 c g

j 3 e d
U5 (

j 13PI
v j 13

2 qeqcqj 1
qj 3

qb
21qg

21qj 13

21U j 1 j 3 j 13

c e d
UU c j1 g

j 3 e j13
U, ~5!

(
j PI

v j
2~qaqjqb

22!eU i b j

i b a
U5qi

2e , ~6!

wheree561, and
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(
k

~ i , j ,k!Padm

vk
25v i

2v j
2. ~7!

If we consider the quantum initial data,15 namely, if we explicitly realize the model using
quantum group, the functions, defined before, will assume the value

v2522r /~q1/22q21/2!2,

v j5~21!2i@2 j 11#1/2,
~8!

U j 1 j 2 j 3

j 4 j 5 j 6
U5~A21!22S j iH j 1 j 2 j 3

j 4 j 5 j 6
J

q

RW

,

qi5exp~pA21„i 2 i ~ i 11!r 21!…,

where@k#5(qk/22q2k/2)/(q1/22q21/2) and

H j 1 j 2 j 3

j 4 j 5 j 6
J

q

RW

is the quantum Racah–Wigner symbols.
The Turaev–Viro invariants can be generalized to the formuM ,Fum , with F a certain union of

components of]M ,

uM ,Fum5v22a1b8)
e9

vm~e9!)
e

vm~e!
2 )

T
uTum , ~9!

wherea is the number of vertices ofM, b8 the number of vertices of]M \F, e runs over the edges
of M, which do not lie in]M , e9 runs over the edges of]M \F, andT runs over all 3-simplices
of M.

A coloring of a 3-valent graphw is a function that associates an element of the setI with each
edge ofw. This assignment is such that, for any vertex ofw incident to 3~resp., 2! edges ofw, the
colors of these edges form an admissible triple~resp., are equal to each other!. Each fat graphG
has a corec(G) that is an ordinary graph consisting of edges and vertices.

If F is any compact surface, a fat graph in the cylinderF3@21,1# may be represented b
graph diagrams onF containing only double transversal crossings of edges~provided with an
additional structure showing the undercrossings and overcrossings!. Let now F be an oriented
compact surface and letw and c be two colored 3-valent graphs embedded inF. Let G be an
oriented colored fat graph inF3@21,1# andD its graph diagram onF. We may assume thatw, c,
andD lie in a general position so that all crossings ofwøcøD are double transversal crossing
of edges. We derive a graph diagram fromwøcøD assuming thatw lies everywhere overcøD,
andc lies everywhere underwøD. Denote the resulting graph diagram onF by s and denote by
S the graph inF obtained froms, ignoring the over-/undercrossing information. The set
vertices ofS may be split into five subsets~Fig. 1!: ~1! the 2-valent vertices ofw, c, D; ~2! the
3-valent vertices ofw, c, D; ~3! crossings ofw with c; ~4! crossings ofD with w or c; and ~5!
self-crossings ofD.

A regionof D with respect tow andc is a connected component ofF\S and anarea coloring
of D is an arbitrary mapping from the set of the regions ofD into the setI. An area coloringh of
D is called admissible if for each edgee of S, the color ofe together with theh colors of the two
regions ofD adjacent toe form an admissible triple. Denote the set of admissible area color
by adm(D). With eachhPadm(D) we will associate an elementuDuh of the ringK. For a region
y of D we set
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uyuh5vh~y!
2x~y! , ~10!

whereh(y) andx(y) are, respectively, theh color and the Euler characteristic ofy.
With respect to the previous classification, we have five possible ways of characteriz

vertexaPS, namely, the following.
~1! uauh51.
~2!

uauh5U i j k

l m n
U, ~11!

wherei, j, k denote the colors of the three edges ofS incident ina and l, m, nare theh colors of
the opposite regions.

~3! The same expression used as in~2!, wherel is the color of the upper branch andi that of
the lower branch; moreover,j, k, m, nare theh colors of the four regions ofD incident ina.

~4!

uauh5qk
1/2qn

1/2qj
21/2qm

21/2U i j k

l m n
U. ~12!

~5!

uauh5qkqnqj
21qm

21U i j k

l m n
U. ~13!

Finally, let us define the following quantity:

^wuDuC&h5)
y

uyuh)
a

uauh , ~14!

wherey runs over all regions ofD anda runs over all vertices ofS. The state sum,

^wuGuC&5 (
hPam~D !

^wuDuC&hPK, ~15!

turns out to be an invariant both under ambient isotopies ofw andc in F, and under isotopies o
G in F3@21,1#.15 If F is a disjoint union ofn surfacesF1 ,...,Fn , then we can extend~14! and
~15! according to

FIG. 1. S vertices configurations.
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^wuGuC&5)
k51

n

^wkuGkuCk&, ~16!

wherewk ,ck are the components ofw, c lying on Fk , and Gk is the part ofG lying in Fk3
@21,1#,(;k51,2,...,n).15

We can define now the invariants of links on a generic manifold. LetN be a compact
3-manifold with a triangulated boundary]N and letG be a 3-valent colored fat graph lying i
Int N. We setF5]U, whereU is an oriented closed regular neighborhood ofG in N. Consider a
nonsingular normal vector field on the surface ofG, which, together with the fixed orientation o
this surface, determines uniquely the orientation ofU. Shifting G along this vector field, we get a
parallel copyG8 of G lying on F. U is an handlebody consisting of 3-balls and solid cylinde
Choose in each of these cylinders a meridian disk that lies transversal with respect to the
sponding band ofG. Let c1 ,...,cm be the boundaries of disks obtained in this way, wherem is the
number of edges ofG. The former loops can be considered as graphs with one vertex and
edge. We color them with a sequenceJ5( j 1 ,...,j m)PI m and setvJ5)k51

m vJk

2 . Let M be the

compact 3-manifoldN\U bounded by]M5Fø]N. We provideM with an arbitrary triangulation,
which extends the given triangulation of]N; also,F is equipped with the induced triangulatio
and lets be the number of vertices ofG. Then for eachlPcol(]N) we define a relative invarian
of the pairN, G, with respect tol:

^N,Gul&5v222s (
mPcol~K !,mu]N5l,JPI m

v j uM ,Fum^gF
mFuG8uC j&, ~17!

wheregF is the dual graph of the 1-skeleton of the triangulation ofF andmF5muF .
We may define the invariant in terms of Heegaard diagrams of closed 3-manifolds.15 Recall

that Heegaard surface in a closed 3-manifoldN is a closed connected oriented surfaceF,N,
which splitsN into the union of two handlebodiesU andV, bounded byF. We distinguish these
handlebodies assuming that the orientation ofF, together with the normal vector field onF
directed outwardU, defines uniquely the orientation ofN. Let w1 ,...,wg ~resp.,c1 ,...,cg! be the
boundaries of a system of meridian disks ofV ~resp., ofU!, whereg is the genus ofF. The surface
F, together with these sets of loops, is a Heegaard diagram ofN. We will treat the loopsw1 ,...,cg

as graphs onF, each one of them having just one vertex and one edge. Denote bycJ the colored
graph onF obtained fromc1ø¯øcg by assigning the coloringj 1 ,...,j g to the edges of
c1 ,...,cg , respectively; a similar definition holds true forwH . Therefore ifG is a colored 3-valent
fat graph lying inF3@21,1#,N we obtain the invariant

^N,G&5v22 (
J5~ j 1¯ j g!PI g

H5~h1¯hg!PI g

)
i 51

g

v j i

2 )
k51

g

vhk

2 ^wHuG8ucJ&, ~18!

whereG8 is defined as before.

III. DEHN SURGERY

A manifold M can be understood as the union of several components glued together by
given identification of the points on their boundaries. If these components are glued in a dif
way, one may find a new manifoldM 8. In this case, we say thatM 8 can be obtained fromM by
means of surgery. As is well known, any closed, orientable and connected 3-manifold c
obtained by surgery from the 3-sphereS3.16 In this section we give a brief review of the surge
operations inS3. In particular, we concentrate on Dehn surgery performed along knots or lin
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S3. Recall that the points ofT25S13S1, if we consider the complex representation ofS1, have
like coordinates (eiu1,eiu2) and the mapseif→(eif,1) andeif→(1,eif) define a longitude and a
meridian respectively. The homotopy class@f# of a mapf :S1→T2, can be written in the longitude
meridian basis as@ f #5(a,b). The longitude class is~1,0! and the meridian class is~0,1!. The class
~a, b! of a knot inT2 has necessarilya andb relatively prime. Let us recall that a homeomorphis
h of a generic spaceX is called an ambient isotopy ifh is the end maph1 of a homotopyht :X
→X such thath0 is the identity andht is an homeomorphism;tP@0,1#. The group of orientation
preserving self-homeomorphism ofT2, modulo ambient isotopy, is generated by the longitudi
and meridianal twistshl(a,b)5(a1b,b), hm(a,b)5(a,a1b); this group is isomorphic to
SL(2,Z). Two knotsC1 andC2 in T2 are ambient isotopic if and only if@C1#56@C2#. In order
to describe Dehn surgery operations, we need to consider solid tori. A solid torus is a
dimensional spaceV homeomorphic withS13D2. A given homeomorphismh:S13D2→V is
called a framing ofV. Given a tubular neighborhoodN of a knot C and a framingh of N, the
longitudeh(S131) of N defines a framingCf of C, which is a preferred framing if the linking
number ofC andCf is equal to zero. The longitudel5h(S131), defined by a preferred framin
h of N, is oriented in the same way asC, and the meridianm5h(13]D2) is oriented in such a
way that its linking number withC is equal to11. We say that the longitudel and the meridian
m of N are the homotopy generators of a Rolfsen basis in]N and any class@ f #Pp1(]N) is
expressed in this basis as

@ f #5a•@l#1b•@m#5~a,b!.

A self-homeomorphismt1 of N, which is an extension inN of a meridian twisthm :]N
→]N, is called a right-handed meridian twist ofN; the inverse homeomorphismt2 is called a
left-handed twist ofN. The mapst6 act on a generic linkL in S3\Ṅ, whereṄ is the interior ofN,
simply by twisting the band through a62p rotation. In general, if there aren components in the
link L, the action oft1 is described by the element (s1s2¯sn21)n of the braid groupBn , $s i%
being its generators. It is clear thatt6 do not modify the number of the components of a linkL in
the solid torus, but the linking numbers between the different components can be changed

A Dehn surgery performed along a knotZ in S3 can be described in the following way.

~1! First remove the interiorṄ of a tubular neighborhoodN of the knotZ, from S3.
~2! ConsiderS3\Ṅ andN as distinct spaces whose boundary](S32Ṅ) and]N are tori.
~3! Glue backN and S32Ṅ by identifying the points on their boundaries with a given home

morphismh:]N→](S32Ṅ).

The knotZ and the gluing homeomorphismh completely specify the surgery operation, a
the resulting manifold is denoted by

M5~S32Ṅ!ø
h

N. ~19!

Actually, the manifold~19! depends~up to homeomorphism! only upon the homotopy class o
h(m) in ](S32Ṅ), wherem is a meridian ofN. The surgery is characterized then by the knoZ
and by a closed curveYP]N representingh(m). The convention introduced by Rolfsen in ord
to codify the surgery instruction consist in choosing

Y5a•@l#1b•@m#5~a,b!,

where the generatorsl andm are the longitude and the meridian of a Rolfsen basis in]N. The
ratio r 5b/a is called the surgery coefficient. In conclusion, the surgery instructions are spe
simply by the knotZ in S3 and by the rational surgery coefficientr. Clearly, the surgery operatio
of removing and gluing back a solid torus can be iterated. Therefore, a general surgery inst
consists in the assignment of an unoriented linkL in S3 with given surgery coefficients$r i%
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associated with its components$Li%. For example, whenL is a circle with surgery coefficientr
5b/a, the resulting space is homeomorphic with the lens spaceL(a,b).

Two manifolds associated with different surgery instructions are homeomorphic if and o
the two surgery instruction are related by a finite sequence of Rolfsen moves.16,17A Rolfsen move
of the first type state amounts to add or delete a component of the surgery linkL with surgery
coefficientr 5`. A Rolfsen move of the second type describes the effects of an appropriate
homeomorphismt6 on the surgery instruction.

Let L be a surgery link such that one of its components, sayL1 , is a circle with surgery
coefficientr 1 . This means that all the remaining componentsL j , with j Þ1, belong to the comple-
ment solid torusV1 of L1 in S3. Under a twist homeomorphismt6 of V1 , the componentL1 is not
modified, whereasL j are changed according tot6 :L j→L j8 . Moreover, the surgery coefficient
become

r 185
1

1/r 161
, ~20!

r j85r j6@x~L j ,L1!#2, for j Þ1, ~21!

wherex(L j ,L1) is the linking number ofL j andL1 .
When the surgery coefficientr is an integer, one can takea51 andb5r ; in this case, the

curveY is a longitude ofN and can be interpreted as a framing of the surgery knotZ.

IV. REFORMULATION OF THE TURAEV–VIRO INVARIANTS

Our main purpose in this section is to rewrite the surgery construction in terms of the T
formalism. We start from the T–V-invariant expression in the Heegaard splitting framework

^N&5v22 (
J5~ j 1¯ j g!PI g

H5~h1¯hg!PI g

)
i 51

g

v j i

2 )
k51

g

vhk

2 ^wku0uc j&, ~22!

where wk and c j are the meridians of the two handlebodies generating the manifolds. L
consider the case in which the surgery link consists of many distinct loops with generic fram
This is a sufficiently general situation that can be used to represent a great number of manif
explaining the Kirby relations. In this situation̂wku0uc j& becomesP i^wki

u0uc j i
& where every-

thing lives on a single torus, the regular neighborhood of each link component. It is necessa
to consider what happens to the torus in the Heegaard-splitting configuration as a consequ
the surgery operation. In the following we shall consider several distinct cases:

A. S2ÃS1

We start with the caser 50, where the surgery operation sends a meridian into a longitud
the surface; the curves that realize the quantity^wku0uc j& are a meridian of the torus~transformed!
and a meridian of the complement, respectively. The starting graph is shown in Fig. 2, whe
consider the transformed torus. If we had considered the initial torus instead, the meridian
complement would have been the curve that sticks to the meridian of the torus under s
operation. Since the stick operation forces us to associate longitude to meridian, the graph
must consider is shown in Fig. 3: it represents the torus meridian and the meridian of the co
ment after the action of the surgery operation. The value of the invariant associated to this
is

v22( v i
2v j

2 (
ab

~ iab!
~ jab!

1, ~23!
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since the surfaces that the two links bound on the torus surface have an Euler number e
zero. We rewrite the two sums in~23! according to

(
i j

v i
2v j

2 (
ab

~ iab!Padm
~ jab!Padm

15(
ab

(
i j

~ iab!Padm
~ jba!Padm

v i
2v j

25(
ab

(
i

~ iab!Padm

v i
2 (

j
~ jab!Padm

v j
25(

ab S (
i

~ iab!Padm

v i
2D 2

.

~24!

Using the relation~7!, we obtain

v22(
ab

va
4vb

45v2,

which is exactly the T–V invariant forS23S1.2

B. S3

As is well known,S3 can be obtained with a surgery operation along a link with framing eq
to one: the meridian of the torus is sent into a longitude that becomes knotted once alo
surface. The graph associated to this situation is depicted in Fig. 4, where we can see th
that goes through one meridian and one longitude before closing. The corresponding exp
for the invariants reads as

v22( v i
2v j

2(
a

va
2U i a a

j a a
U. ~25!

FIG. 2. Graph associated to the surgery operation withr 50 in which we consider the transformed torus as a handlebo

FIG. 3. Graph associated to the surgery operation withr 50 in which we consider the torus before the transformatio
namely the object associated to theS3 splitting.
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Now we consider̂ S3& in its expression coming from~17!:

(m j v j
2uMFum^gF

mu0uc j&5^S3&, ~26!

where the term̂gF
mu0uc j& of ^S3& corresponds exactly to

( a va
2U j a a

m a a
U. ~27!

Thus, by using the expression ofuMFum , we get

^S3&5v22(
m j

v j
2vm

2 (
a

va
2U j a a

m a a
U, ~28!

which represents the desired result.

C. The lens space L „2,1…

In theL(2,1) case the associated graph is depicted in Fig. 5, where we can see the cur
goes through one meridian and two longitudes before closing. To this graph we associa
quantity

v22( va
2vb

2U i a b

j a b
UU i b a

j b a
U. ~29!

Carrying out the sum oni and using the first axiom on the structure of the initial data, we ob
that the invariant, expressed in the Heegaard-splitting framework, is equal to

FIG. 4. Graph associated to the surgery operation withr 51.

FIG. 5. Graph associated toL(2,1).
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v22( va
2vb

2 (
i

~ iab!

5v22(
i

(
a

va
2 (

b
~ iab!

vb
2. ~30!

According to relation~7!, we eventually obtain the formula

v22(
i

v i
2(

a
va

4, ~31!

which gives exactly the T–V invariant forL(2,1).2

D. The lens space L „3,1…

Let us consider nowL(3,1). In this case, the surgery link has a framingr 53, so the meridian
of the complement is sent into a curve that goes through one meridian and three longitudes
closing, so we obtain the graph of Fig. 6, and the associated invariant is expressed by the q

v22( va
2vb

2vc
2U i a b

j c b
UU i c b

j c a
UU i c a

j b a
U. ~32!

Carrying out the sum oni and by using the second axiom, we obtain

v22( v j
2va

2vb
2vc

2U j j j

c a b
UU j j j

a b c
U. ~33!

Finally, upon summation overb and using the relation~1!, we get, as in Ref. 2,

v22(
j

~ j j j !

(
ac

~ jac!

va
2vc

25 (
j

~ j j j !

v j
2. ~34!

E. The lens space L „n ,1…

L(n,1) is obtained by a surgery along a link with framingr 5n; the meridian of the comple
ment solid torus is sent into a curve that goes through one meridian andn longitudes of the torus
surface before closing, the associated graph is given by Fig. 7. The expression of the in
becomes

uL~n,1!u5v22( v i
2v j

2)
i

v j i

2U i j 1 j 2

j j 1 j n
U¯U i j n j n21

j j n j 1
U, ~35!

and using the relation defining the 3n j symbols,18 we get

FIG. 6. Graph associated toL(3,1).
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F a1 a2 ¯ an

b1 b2 ¯ bn

c1 c2 ¯ cn

G
q

5(
z

~21!S1nz@2z11#H a1 c1 z

c2 a2 b1
J

q
H a2 c2 z

c3 a3 b2
J

q

¯H an cn z

c1 a1 bn
J

q

, ~36!

whereS denotes the sum over all the 3n arguments and

H a1 c1 z

c2 a2 b1
J

q

5~21!~a11a21b11c11c21z!Ua1 c1 z

c2 a2 b1
U.

We can rewrite the expression of the invariant in terms of 3n j symbols,

uL~n,1!u5v22( @2 j 11#)
i

@2 j i11#F j 1 j 2 ¯ j n

j j ¯ j

j n j 1 ¯ j n21

G
q

. ~37!

V. THE LENS SPACE L „p ,q …

We generalize now the procedure, introduced in the previous section, to the generic
dimensional lens spaceL(p,q), wherep,q are relatively prime, (p,q)51. We can write them
L(nq1 f ,q) with an n integer and (f ,q)51 with q. f . We have seen in Sec. III that, in th
surgery representation, the meridian of the tubular neighborhood of a surgery link is sent
curve that goes throughp meridians andq longitudes before closing. The graphs associated
these configurations are quite more complicated than the ones considered before. Let us c
first the graphs and the invariants in some particular and then their generic expression.

A. The lens space L „2n¿1,2…

Putq52 and consider as an example of this classL(5,2), with the associated graph shown
Fig. 8. In order to construct this graph we put three points on each horizontal line and five
on each vertical one at the same distance from each other, connect among themselves
point of the horizontal lines, the second point of the bottom horizontal line with the first poi
a vertical left line and the other in pairs with lines ‘‘parallel’’ to this one. It is easy to see tha
graph represents the intersection of two links, one of them going through two meridians an
longitudes before closing. Using the laws described above, the expression of the invariant

FIG. 7. Graph associated to the surgery operation withr 5n.
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uL~5,2!u5v22( v i
2v j

2)
i

v j i

2U i j 4 j 5

j j 2 j 1
UU i j 5 j 1

j j 3 j 2
UU i j 1 j 2

j j 4 j 3
UU i j 2 j 3

j j 5 j 4
UU i j 3 j 4

j j 1 j 5
U,
~38!

which, using~36!, can be rewritten in term of a 15j symbol,

uL~5,2!u5v22( @2 j 11#)
i

@2 j i11#F j 4 j 5 j 1 j 2 j 3

j j j j j

j 1 j 2 j 3 j 4 j 5

G
q

. ~39!

Starting from the expression~38! and using some basic relations involving 6j symbols,19 it is
possible to recover easily the value given in Ref. 20. We will give, in the Appendix, the ex
computation for this example and for a similar one. From this analysis we can recove
following expression of the invariant for the classL(2n11,2) ~see Fig. 9!,

FIG. 8. Graph associated toL(5,2).

FIG. 9. Graph associated toL(2n11,2).
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uL~211n,1!u5v22( @2 j 11#)
i

@2 j i11#

3F j 2n j 2n11 j 1 ¯ j 2n21

j j j ¯ j

j 1 j 2 j 3 ¯ j 2n11

G
q

. ~40!

B. The lens spaces L „3n¿1,3… and L „3n¿2,3…

For q53, we have two classesL(3n11,3) andL(3n12,3). As an example of the first w
considerL(7,3), and for the secondL(8,3). The graph associated toL(7,3) is shown in Fig. 10.
The link goes through tree meridians and seven longitudes before closing. The associated
sion for the invariant is

uL~7,3!u5v22( v i
2v j

2)
i

v j i
2U i j 5 j 6

j j 2 j 1
UU i j 6 j 7

j j 3 j 2
UU i j 7 j 1

j j 4 j 2
U¯U i j 4 j 5

j j 1 j 7
U. ~41!

Note that, by using the relation~36!, it can be rewritten in terms of a 21j symbol,

FIG. 10. Graph associated toL(7.3).

FIG. 11. Graph associated toL(3n11,3).
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uL~7,3!u5v22( @2 j 11#)
i

@2 j i11#F j 5 j 6 j 7 j 1 ¯ j 4

j j j j ¯ j

j 1 j 2 j 3 j 4 ¯ j 7

G
q

.

~42!

It is also possible to obtain the value given in Ref. 20, using a sequence of relations descr
Ref. 19. We are now in the condition of constructing forL(3n11,3), the associated graph~Fig.
11!, and the corresponding invariant given explicitly by the formula

uL~3n11,3!u5v22( @2 j 11#)
i

@2 j i11#

3F j 3n21 j 3n j 3n11 j 1 ¯ j 3n22

j j j j ¯ j

j 1 j 2 j 3 j 4 ¯ j 3n11

G
q

. ~43!

Let us now considerL(8,3), the associated graph is shown in Fig. 12 and constructed usin
usual procedure.

FIG. 12. Graph associated toL(8,3).

FIG. 13. Graph associated toL(3n12,3).
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The corresponding expression of the T–V invariant can be written by exploiting~36!, in terms
of a 24j symbol, namely,

uL~8,3!u5v22( @2 j 11#)
i

@2 j i11#F j 6 j 6 j 8 j 1 ¯ j 5

j j j j ¯ j

j 1 j 2 j 3 j 4 ¯ j 8

G
q

.

~44!

Also in this case it is possible to obtain the value given in Ref. 20.
Finally, we can associate to the lens spaceL(3n12,3) the graph shown in Fig. 13, with th

invariant expression given by

FIG. 14. Graph associated toL(nq1 f̄ ,q).

FIG. 15. Diagrammatic representation of the 3n j symbol of a II kind.
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uL~3n12,3!u5v22( @2 j 11#)
i

@2 j i11#

3F j 3n j 3n11 j 3n12 j 1 ¯ j 3n21

j j j j ¯ j

j 1 j 2 j 3 j 4 ¯ j 3n12

G
q

. ~45!

C. The lens space L „nq¿f ,q …

Drawing from these examples, we are now able to construct the graph associated to a
three-dimensional lens space and his related invariant. The strategy is to put aqn1 f point on each
vertical line, at the same distance from each other,q11 points on each horizontal line and the
connect among themselves the first point of the horizontal lines; the first point of the vertic
line with the second one of the bottom horizontal line and the other in pair with ‘‘parallel’’ li
to this. The latter graph obtained is shown in Fig. 14, wheref̄ is the value off such that (q, f )
51, and the expression of the invariant can be written in terms of 3(nq1 f̄ ) j symbols with entries
position depending fromq, in the form

uL~nq1 f̄ ,q!u5v22( @2 j 11#)
i

@2 j i11#

3F j nq1 f̄ 2q11 j nq1 f̄ 2q12 ¯ j nq1 f̄ j 1 ¯ j nq1 f̄ 2q

j j ¯ j j ¯ j

j 1 j 2 ¯ j q j q11 ¯ j nq1 f̄

G
q

.

~46!

FIG. 16. Diagrammatic representation ofL(4,1) andL(5,2).

FIG. 17. First step inL(4,1) calculation.
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VI. CONCLUSIONS

We have proposed a new diagrammatic approach, using the Heegaard splitting, for eva
the Turaev–Viro invariants of 3-manifolds. We have, explicitly, constructed the invariants for
spaces in terms of the 3n j symbols of the II kind. With this method one can construct explici
the T–V invariant for 3-manifolds, which are a connected sum of lens spaces, namely man
with disconnected surgery simple links. Obviously, in order to obtain a complete constructi
the invariant, for a generic 3-manifold, it is necessary to implement, in this context, the Ro
moves. Such a procedure, if constructively implemented, would give us the possibility to d
the ‘‘observable’’ link invariants. We are working in this direction but, in such a case, it is m
difficult to extract the information from the diagrams. It is perhaps worth stressing that we
put in evidence the two-dimensional nature of the Turaev–Viro theory obtaining the inva
from the configuration of two links on the torus surface. This fact, together with the possibil21

to obtaining the Turaev–Viro invariants using rational conformal field theory, may shed a
light on the nature of the T–V theory.
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APPENDIX: zL „4,1…z,zL „5,2…z REDUCTION

In this appendix we want to show how it is possible to recover from our approach
Ionicioiu–Williams results.20 We discuss only the simplest examples:L(4,1) andL(5,2). Recall
that the T–V invariant is given by a sum, over a coloring, of a particular configuration ofn j
symbols of II type; to perform the calculus we use the diagrammatic method.19 The diagrammatic
representation of this symbol is given in Fig. 15 and for the examples we are considerin
diagrams as in Fig. 16. ForL(4,1) we can start using relation~10!, p. 455 in Ref. 19, which gives
the sum in terms of three diagrams, like those shown in Fig. 17. On the first of them we ca
relation ~6!, p. 454 in Ref. 19, obtaining the expression of the invariant in terms of fourj
symbols. We then perform the sum overj 3 , involving only three 6j symbols, using the B–E
identity. We get, in this way, three 6j symbols: one involving onlyj,k,

U j j k

j j k
U

and the other a square of

U j j k

j 2 j 4 j 1
U.

Summing overj i and using the orthogonal relation between 6j symbols and the definition ofv2,
eventually we obtain the value given in Ref. 20.

FIG. 18. First step inL(5,2) calculation.
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For L(5,2) we can use the relation~15!, p. 457 in Ref. 19 to obtain the invariant expressed
terms of four diagram~Fig. 18!. We use, for the first diagram, the relation~6!, p. 454 in Ref. 19;
we get in this way a decomposition of the invariant in terms of six 6j symbols. Now we can
perform the sum overj 5 , involving three 6j symbols, and, using the B–E identity, we obtain

U j x x

j j y
U

and

U j x x

j 1 j 3 j 4
U.

Carrying out the sum overj 2 ~which implies, using the orthogonal condition,x5y! and then
summing overj i , we obtain the value provided by Ionicioiu–Williams in Ref. 20.
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Wavelets and orthogonal polynomials based on harmonic
oscillator eigenstates
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We present a new method for the construction of wavelets. The main tool is the
harmonic oscillator eigenstates. With the help of their properties we are able to
construct wavelets which have explicit expressions and have exponential decay in
both time domain and frequency domain. Moreover we get a new family of poly-
nomials which are orthogonal in a weighted squarely integrable function space.
© 2000 American Institute of Physics.@S0022-2488~00!00205-X#

I. INTRODUCTION

The Schro¨dinger equation for a linear harmonic oscillator of massm, angular frequencyv0 ,
and total energyE reads as

d2c~ t !

dt2
1S 2mE

\2 2
m2v0

2

\2 t2D c~ t !50, ~1!

wherec(t) is the wave function and\ is the Planck’s constant.
In quantum mechanics it is required to find the value ofE for which Eq. ~1! has bounded

solutions on the real lineR5$t:2`,t,1`%. The eigenvalues that make this possible areE
5En5(n11/2)\v0 . The corresponding eigenfunctions, the Hermite functions, form a comp
orthogonal basis for the spaceL2(R) of functions which are squarely integrable on the real lineR.
For more information on Hermite functions, one is referred Refs. 1–4.

A basic feature of a wavelet function is its time-frequency localization. In the past few y
the problems of existence of wavelet bases inL2(R) were solved.5–7 In most of the cases, wavelet
constructed are having only finite smoothness in the time domain, which results in wa
having only polynomial decay in the frequency domain and there are no explicit expressions
time domain or frequency domain. In some cases, wavelets, together with all its deriva
having exponential decay and explicit expressions can be found in the frequency domain, s
Meyer’s wavelet, but certainly not in both domains. In this paper, we shall take this advanta
the Meyer’s wavelet. It turns out that we are able to construct a wavelet like basis ofL2(R), the
basis functions are well-localized and have explicit expressions in the time domain and
frequency domain. Moreover, in a weighted space setting, we get a new family of orthon
polynomials. With this new basis, sparse representations for functions are possible, whic
important applications such as in signal processing, fractals.

The present research is concerned with the construction of a waveletlike basis based
Hermite functions. The new wavelet functions are formed from multiplications of polynomials
Gaussian. Functions of this nature have been used, e.g., in5 the mexican hat for multiscale edg
detection in image processing, in8 derivatives of Gaussian for analysis of equations in fluid m
chanics. This is one of our motivations for constructing this new orthogonal system.

A useful method to construct wavelets is through Fourier transform, which is related t
orthogonal Fourier basis$ei2pnx% on the torus. A natural question arises: Can we use spectrum

a!Electronic mail: stsddq@zsu.edu.cn
30860022-2488/2000/41(5)/3086/18/$17.00 © 2000 American Institute of Physics
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other operators? To analyze a signal it is helpful to use some basic tools that look like the
itself.

The organization of this paper is as follows: In Sec. II, we shall give the explicit constru
of the basis functionsFm(x) andCm(x) and the corresponding polynomialsPm(x), Qm(x). In
Sec. III, we shall first show that they are orthonormal and$F j ,k(x)% has among different scalej a
two-scale relation. Then we shall get explicit expressions for the Fourier transforms ofFm(x) and
Cm(x), which are again products of polynomials and Gaussian. Moreover, we shall show th
functionCm(x) has vanishing moments. In Sec. IV, we show that we get a complete orthono
system ofL2(R) throughFm(x) andCm(x). In Sec. V, multiresolution decomposition ofL2(R)
will be derived. In Sec. VI, we shall first derive the convergence rate of approximation in term
modulus of continuity and then show that compression of the coefficients can be achieved
system$Cm(x)% is used. Section VII contains discussions, where comparisons are made a
the new construction, Hermite functions and wavelets.

II. CONSTRUCTION OF THE BASIS FUNCTIONS

Let Z, Z1, and N denote the sets of integers, non-negative integers and positive int
respectively,Zj5$0,1,...,2j21%.

For nPZ1, let hn(x) be the Hermite polynomial defined through the generating func
~Ref. 2, p. 1058!,

e2xz2z2
5 (

n50

` hn~x!

n!
zn, ~2!

for any complex numbersx andz.
It is well known that the collection of Hermite functions$en(x)%n50

` ,

en~x!5
hn~x!e2~x2/2!

A2nn!Ap
, ~3!

is an orthonormal system ofL2(R).3

For a functionf (x), let f̂ (j) denote its Fourier transform,

f̂ ~j!5E
2`

`

f ~x!e2 ixjdx.

Let the functionsw(x) andc(x) be defined through their Fourier transforms

ŵ~j!55
1, uju<

2p

3
,

cosFp

2
nS 3

2p
uju21D G ,

2p

3
,uju,

4p

3
,

0, otherwise,

~4!

and
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ĉ~j!55
e2 i ~j/2! sinFp

2
nS 3

2p
uju21D G ,

2p

3
<uju<

4p

3
,

e2 i ~j/2! cosFp

2
nS 3

4p
uju21D G ,

4p

3
,uju,

8p

3
,

0, otherwise,

~5!

where the rising cutoff functionn(x) is continuously differentiable on2`,x,1`. For more
details about its explicit expression, see Appendix A1.

For mPN, let j PZ, kPZj be two integers such that

m52 j1k.

Then j andk are uniquely determined bym. We define two sets of functionsFm(x), Cm(x) by

Fm~x!5 (
unu,

2
32 j

w j ,k̂~2pn!es~n!~x!, ~6!

and

Cm~x!5 (
1
32 j ,unu,

4
32 j

c j ,k̂~2pn!es~n!~x!, ~7!

wheres being the mappings:Z→Z1 is defined by

s~n!5H 2n, n>0,

2unu21, n,0.

As in wavelet literature, in~6! and ~7! we have used the notationf j ,k(x)52 j /2f (2 j x2k) for a
function f (x).

From the formulas~6! and~7! and the definition ofen(x), the functionsFm(x) andCm(x) are
sums of products of polynomials with the Gaussiane2x2/2. To be more precise we have th
following results:

Proposition 1:For mPN, we have

Fm~x!5Pm~x!e2~x2/2!, Cm~x!5Qm~x!e2~x2/2!, ~8!

where

Pm~x!5 (
unu,

2
32 j

w j ,k̂~2pn!hs~n!~x!

A2s~n!s~n!!Ap
, ~9!

and

Qm~x!5 (
1
32 j ,unu,

4
32 j

c j ,k̂~2pn!hs~n!~x!

A2s~n!s~n!!Ap
, ~10!

are polynomials, whose degrees are not greater than (4/3)m and (8/3)m, respectively.
Proof: We prove the assertion aboutFm(x) only. The proof of~10! is similar. From~3! and

~6!, we have by extracting the factore2x2/2,
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Fm~x!5( unu,
2
32 jw j ,k̂~2pn!es~n!~x!

5S ( unu,
2
32 j

w j ,k̂~2pn!hs~n!~x!

A2s~n!s~n!!Ap
D e2~x2/2!5Pm~x!e2~x2/2!.

Since the degree of Hermite polynomialhn(x) is n and s(n)<2n, the degree ofPm(x) is not
greater than2((2/3)2j )<(4/3)m. The proof of Proposition 1 is completed.

The first fewFm(x) andCm(x) are

F1~x!5~1/A4 p!e2x2/2, F2~x!51/A2Ap~x21x11/2!e2x2/2,

F3~x!51/A2Ap~3/22x2x2!e2x2/2,

C1~x!51/A4 p~1/22x2x2!e2x2/2,

C2~x!51/A4 p~~3x22x3!/~2) !1~12x224x423!/~4A6!!e2x2/2

1 i /~2A2Ap!~2x22x211!e2x2/2,

C3~x!51/A4 p~~3x22x3!/~2) !1~12x224x423!/~4A6!!e2x2/2

2 i /~2A2Ap!~2x22x211!e2x2/2.

They are independent ofn(x) since only the propertyn(1/2)51/2 is used which is valid for all
rising cutoff functions. Figure 1 is the graph ofC1(x). SinceC2(x) is complex-valued, Figs. 3

FIG. 1. C1(x).
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and 5 are graphs of its real part Re(C2(x)) and its imaginary part Im(C2(x)), respectively. Notice
that C3(x)5C2(x).

III. PROPERTIES OF THE FUNCTIONS Fm„x … and Cm„x …

For convenience of notation, we denote also

F j ,k~x!5Fm~x!, C j ,k~x!5Cm~x!

and

Pj ,k~x!5Pm~x!, Qj ,k~x!5Qm~x!,

wherem and j,k are related bym52 j1k(0<k,2 j ).

A. Orthognality

Lemma 1:For j , j 8PZ1, kPZj , k8PZj 8 , we have the following orthogonal relations:

~1! ^F j ,k ,F j ,k8&L2~R!5dk,k8 , ~11!

~2! ^C j ,k ,C j 8,k8&L2~R!5d j , j 8dk,k8 , ~12!

~3! ^F j ,k ,C j ,k8&L2~R!50, ~13!

wheredk,k8 is the Kronecker’s symbol, i.e.,dk,k851 if k5k8, 0 otherwise,̂ •,•&L2(R) is the inner
product inL2(R).

Proof: We prove only~11!, the proofs for the rest are similar. We use the notation

w j ,k
per~x!5(

l PZ
w j ,k~x1 l !, c j ,k

per~x!5(
l PZ

c j ,k~x1 l !

to denote the periodization ofw j ,k(x) and c j ,k(x), respectively, where the functionsw(x) and
c(x) are defined through their Fourier transforms~4! and~5!, respectively. From Poisson’s sum
mation formula, we have

w j ,k
per~x!5 (

nPZ
w j ,k̂~2pn!ei2pnx, c j ,k

per~x!5 (
nPZ

c j ,k̂~2pn!ei2pnx.

Since $en(x)%n50
` and $ei2pnx%n50

` are, respectively, orthonormal inL2(R) and L2(T), we
have

^F j ,k ,F j ,k8&L2~R!5SnPZw j ,k̂~2pn!w j ,k8̂~2pn!5^w j ,k
per,w j ,k8

per &L2~T!5dk,k8 ,

where the last equation is valid since$w j ,k
per%k50

2 j 21 is orthonormal inL2(T).
Remarks:Identities similar to~11!–~13! for the polynomialsPm(x), Qm(x) also hold.

B. Two-scale relations

From the construction of Meyer’s wavelet, there exists the sequence$hk%kPZ such that

w~x!5 (
kPZ

hkw~2x2k!,

~14!

c~x!5 (
kPZ

gkw~2x2k!,
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wheregk5(21)k21h12k . We have

uhku<C1~11uku!22, ~15!

for some constantC1.0 andhk is even ink. For formula ofhk , see Appendix A2.
To state the two-scale relation, we introduce two sequences$hk

j % and $gk
j %. For j PZ1, k

PZj , let

hk
j 5(

l PZ
h2 j l 1k , gk

j 5(
l PZ

g2 j l 1k . ~16!

From ~15!, hk
j and gk

j are well-defined for fixedj and k. Their properties are collected i
Lemma 2.

Lemma 2:

~1! For fixed j, hk
j , andgk

j are 2j periodic ink,

hk
j 5hk1a2j

j , gk
j 5gk1a2j

j , for all aPZ.

~2! Symmetry ofhk
j ,

h11a
j 5h2j212a

j , a50,1,...,2j 2121.

~3! gk
j 5(21)k21hk21

j .

Proof: See Appendix A3.
Remarks:From ~1! and~2!, among$hk

j %, there are only 2j 2111 of them are independent fo
fixed j.

We now state the two-scale relation,
Proposition 2:For j PZ1, kPZj , we have

F j ,k~x!5
1

&
(
l 50

2 j 1121

hl 22k
j 11 F j 11,l~x! ~17!

and

C j ,k~x!5
1

&
(
l 50

2 j 1121

gl 22k
j 11 F j 11,l~x!. ~18!

Proof: We prove only Eq.~17!, and the proof of~18! is similar. From the definition of
F j ,k(x), we have by splitting 2k1a52 j 11b1 l , 0< l ,2 j 11,

F j ,k~x!5 (
nPZ

w j ,k̂~2pn!es~n!~x!

5
1

&
(
nPZ

(
aPZ

haw j 11,2k1â~2pn!es~n!~x!

5
1

&
(
nPZ

(
bPZ

(
l 50

2 j 1121

h2 j 11b1 l 22kw j 11,2j 11b1 l̂ ~2pn!es~n!~x!

5
1

&
(
nPZ

(
bPZ

(
l 50

2 j 1121

h2 j 11b1 l 22kw j 11,l̂~2pn!es~n!~x!
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5
1

&
(
l 50

2 j 1121 S (
bPZ

h2 j 11b1 l 22kD (
nPZ

w j 11,l̂~2pn!es~n!~x!5
1

&
(
l 50

2 j 11

hl 22k
j F j 11,l~x!,

where in the second equation, we have used Eq.~13! by taking Fourier transform on both side
and the formula,

w j 11,2j 11̂b1 l~2pn!522~ j 11!/2ŵ~22 j 212pn!e2 i ~2 j 11b1 l !22 j 212pn

522~ j 11!/2ŵ~22 j 212pn!e2 i l 22 j 212pn5w j 11,l̂~2pn!.

The proof of~17! is completed.
Remarks:By discarding a factore2x2/2 on both sides of~17! and ~18!, we get for the poly-

nomialsPj ,k(x) andQj ,k(x) also the two scale relations,

Pj ,k~x!5
1

&
(
l 50

2 j 1121

hl 22k
j 11 Pj 11,l~x!

and

Qj ,k~x!5
1

&
(
l 50

2 j 1121

gl 22k
j 11 Pj 11,l~x!.

Remarks:In ~17! and~18!, the lengths of the filters depend on the scalej, which are inherited
from the definitions~6! and ~7!, where periodic wavelets were used.

C. Fourier transforms of Fm„x … and Cm„x …

Lemma 3:The Fourier transform of the Hermite functionen(x) defined by~3! is

en̂~j!5A2p~2 i !nen~j!, ~19!

that is, it differs withen(x) only a constant factor.
Proof: See Appendix A4.
From Lemma 3, we are able to get the explicit expressions for the Fourier transforms

functionsFm(x) andCm(x). We have the following result:
Proposition 3: The Fourier transform of the functionsFm(x) andCm(x) are

Fm̂~x!5 P̃m~j!e2~j2/2! ~20!

and

Cm̂~x!5Q̃m~j!e2~j2/2!, ~21!

where

P̃m~j!5 (
unu,~2/3!2 j

A2pw j ,k̂~2pn!~2 i !s~n!es~n!~j !

and

Q̃m~j!5 (
~1/3!2 j ,unu,~4/3!2 j

A2pc j ,k̂~2pn!~2 i !s~n!es~n!~j !
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are polynomials, whose degrees do not exceed (4/3)m and (8/3)m, respectively.
Proof: We prove that only~20! and~21! can be similarly proved. By taking Fourier transfor

on both sides of~6! and inserting~19! into it, we get~20!. The rest is similar to the proof o
Proposition 1.

D. Vanishing moments of Cm„x …

From the definition~7! of Cm(x), in the summation, the terme0(x) does not appear, henc
we have^e0 ,Cm&L2(R)50. After discarding a constant factor, we get

E
2`

1`

e2~x2/2!
•Cm~x!dx50, for all mPN.

From this equation, it follows thatCm(x) oscillates. By virtue of Proposition 1 it has a
exponential decay for fixedm. HenceCm(x) can be regarded as a wavelet function. In Figs. 2
the graphs ofe2x2/2

•Cm(x) are plotted. Figure 2 is forC1(x)e2x2/2; Figs. 4 and 6 are for
Re(C2(x)e2x2/2) and Im(C2(x)e2x2/2), respectively.

In the setting of the weighted spaceL2(e2x2
,R) with weight e2x2

, we have

^1,Qm&w50,

where^ f ,g&w5*2`
1`e2x2

f (x)g(x)dx is the inner product inL2(e2x2
,R).

Moreover, we have the following result:
Proposition 4: For mPN, let m52 j1k with 0<k,2 j . Then we have

E
2`

1`

~xle2~x2/2!!Cm~x!50, l 50,1,...,2@2 j /3#, ~22!

FIG. 2. C1(x)* e2x2/2,*2`
` (C1(x)* e2x2/2)dx50.
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where@x# denotes the greatest integer not exceedingx. Equivalently, we have for the polynomia
Qm(x),

^xl ,Qm~x!&w50, l 50,1,...,2@2 j /3#. ~23!

FIG. 3. Real part ofC2(x).

FIG. 4. Real part ofC2(x)* e2x2/2,*2`
` xl Re((C2(x)*e2x2/2))dx50,l 50,1,2.
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Proof: From Ref. 2, fora>1, we have for the Hermite polynomial

E
2`

1`

xbe2x2
ha~x!dx50, b50,1,...,a21.

FIG. 5. Imaginary part ofC2(x).

FIG. 6. Imaginary part ofC2(x)* e2x2/2,*2`
` Im((C2(x)*e2x2/2))dx50.
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By ~3!, we have

E
2`

1`

xbe2x2/2ea~x!dx50, b50,1,...,a21. ~24!

Consider now the smallest index ofen(x) appearing in the summand of~7!, which is given by

min$s~n!,~1/3!2 j,unu,~4/3!2 j%52~@~1/3!2 j #11!2152@2 j /3#11.

Hence forl 50,1,...,2@2 j /3# from ~24! each term in~7! is orthogonal toxle2x2/2. This proves~22!.

IV. COMPLETENESS OF Fm„x … and Cm„x …

For f (x)PL2(R), there exists$ f n%nPZ1 with SnPZ1u f nu2,1`, such that

f ~x!5 (
nPZ1

f nen~x!. ~25!

We introduce a one-periodic functionfI (x) as

fI ~x!5 (
nPZ

f s~n!e
i2pnx. ~26!

A. Two important identities

For the relationship betweenf (x) and fI (x), we have
Proposition 5:~i! The functionfI (x) is squarely integrable onT, fIPL2(T),
~ii !

^ f ,F j ,k&L2~R!5^ fI , w j ,k
per&L2~T! , ~27!

^ f ,C j ,k&L2~R!5^ fI , c j ,k
per&L2~T! , ~28!

for j PZ1, kPZj .
Proof: ~i! follows from SnPZ1u f nu2,1`.
~ii ! By Parseval’s identity, we have

^ f ,F j ,k&L2~R!5S l PZ1 f lw j ,k̂~2ps21~ l !!5S l PZf s~ l !w j ,k̂~2p l !5^ fI ,w j ,k
per&L2~T! ,

this proves~27!. Equation~28! can be proved similarly.

B. Convergence

Theorem 1: Let f (x)PL2(R). Then for any non-negative integerj 0 , we have in the norm of
L2(R),

f ~x!5 (
k50

2 j 021

cj 0 ,kF j 0 ,k~x!1 (
j 5 j 0

1`

(
k50

2 j 021

dj ,kC j ,k~x!5 (
m52 j 0

2 j 01121

cmFm~x!1 (
m52 j 0

1`

dmCm~x!,

~29!

where the coefficientscj ,k ,dj ,k are defined through the inner products,

cj ,k5^ f ,F j ,k&L2~R! , dj ,k5^ f ,C j ,k&L2~R! . ~30!

Proof: For anyg(x)PL2(R), there exists$gn%nPZ1 such that
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g~x!5 (
nPZ1

gnen~x!, (
nPZ1

ugnu2,1`.

We introduce two auxiliary one-periodic functionsfI (x) by ~26! and similarlygI (x).
Then from Proposition 5~i!, we have fI (x),gI (x)PL2(T). Since $w j 0 ,k

per (x):k50,1,...,2j 0

21%ø$c j ,k
per(x),k50,1,...,2j21, j > j 0% is an orthonormal basis ofL2(T), we have

^ fI ,gI &L2~T!5SkPZj 0
^ fI ,w j 0 ,k

per &L2~T!^w j 0 ,k
per ,gI &L2~T!1S j 5 j 0

1` SkPZj
^ fI ,c j ,k

per&L2~T!^c j ,k
per,gI &L2~T! .

By virtue of Proposition 5,~ii ! and Schwartz’ inequality, we get for anyN> j 0 ,

i f 2~SkPZj 0
^ f ,F j 0 ,k&L2~R!F j 0 ,k1S j 5 j 0

N Sk50
2 j 21^ f ,C j ,k&L2~R!C j ,k!i

5supigiL2~R!51u^ f ,g&L2~R!2~SkPZj 0
^ f ,F j 0 ,k&L2~R!^F j 0 ,k ,g&L2~R!

1S j 5 j 0
` Sk50

2 j 21^ f ,C j ,k&L2~R!^C j ,k ,g&L2~R!!u

5supigI iL2~T!51u^ fI ,gI &L2~T!2~SkPZj 0
^ fI ,w j 0 ,k

per &L2~T!^w j 0 ,k
per ,gI &L2~T!

1S j 5 j 0
` Sk50

2 j 21^ fI ,c j ,k
per&L2~T!^c j 0 ,k

per ,gI &L2~T!!u

5supigI iL2~T!51S j .NSk50
2 j 21u^ fI ,c j ,k

per&L2~T!^c j ,k
per,gI &L2~T!u

<supigI iL2~T!51~S j .NSk50
2 j 21u^ fI ,c j ,k

per&L2~T!u2!1/2~S j .NSk50
2 j 21u^c j ,k

per,gI &L2~T!u2!1/2

<supigI iL2~T!51C2igI iL2~T!~S j .NSk50
2 j 21u^ fI ,c j ,k

per&L2~T!u2!1/2

5C2~S j .NSk50
2 j 21u^ fI ,c j ,k

per&L2~R!u2!1/2→0 as N→1`,

whereC2 is a constant. This proves Theorem 1.
For the coefficientscj ,k , dj ,k defined by~30!, we have
Proposition 6: ~i! Decomposition,

cj ,k5
1

&
(
l 50

2 j 1121

hl 22k
j 11 cj 11,l ,dj ,k5

1

&
(
l 50

2 j 1121

gl 22k
j 11 cj 11,l , k50,1,...,2j21,

~ii ! reconstruction,

cj 11,l5
1

&
(
k50

2 j 21

~hl 22k
j 11 cj ,k1gl 22k

j 11 dj ,k!, l 50,1,...,2j 1121,

where the coefficientshk
j ,gk

j are defined by~16!.
Proof: This follows from Proposition 5 and the corresponding results about periodic w

let decomposition and reconstruction.
In terms of the orthogonal polynomialsPm(x),Qm(x), ~29! becomes

f ~x!5 (
m52 j 0

2 j 01121

cmPm~x!1 (
m52 j 0

`

dmQm~x!,

for the functionf (x)PL2(e2x2
,R).
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V. MULTIRESOLUTION DECOMPOSITION OF L 2
„R…

Let Vj andWj be the linear spans ofFm(x)(m52 j ,2j11,...,2j 1121) andCm(x)(m52 j ,2j

11,...,2j 1121) in L2(R), respectively. Then we have
Proposition 7: ~1! The dimension ofVj is 2j and $Fm(x),m52 j ,2j11,...,2j 1121% is an

orthonormal basis ofVj for j PZ1.
~2! For j PZ1, Vj andWj are subset ofVj 11 :Vj , Wj,Vj 11 .
~3! The direct sum ofVj andWj equals toVj 11 :Vj 115Vj % Wj .
Proof: From ~11!, Fm(x) for mÞm8,m,m852 j ,...,2j 1121 are orthogonal, this proves~1!.
~2! follows from ~17! and ~18!.
From ~13!, Vj is orthogonal toWj . From~2! and by comparing the dimensions ofVj andWj ,

we prove~3!.
Combining Theorem 1 and Proposition 7, we have
Theorem 2: For any j 0PZ1, we have the multiresolution decomposition ofL2(R) as

L2~R!5Vj 0
% j > j 0

Wj .

Remarks:From Proposition 4, the number of vanishing moments ofC j ,k increases withj. If
more vanishing moments are required, one can choose a largerj 0 , but the dimension ofVj 0

increases also.

VI. RATE OF APPROXIMATION AND COMPRESSION

A. Rate of approximation

For f PL2(R), let the partial sumpnf be

~pnf !~x!5^ f ,F1&L2~R!F1~x!1 (
m51

n21

^ f ,Cm&L2~R!Cm~x!, ~31!

which corresponds to~29! by choosingj 050.
Consider also the partial sumenf by the Hermite functions$en%n50

1` ,

~enf !~x!5 (
m50

n

^ f ,em&L2~R!em~x!. ~32!

In Ref. 3, p. 490, it is proven that

i f 2enf iL2~R!<
C3

An11
i f iL2~R!1C3vS f ,

1

An11
D , ~33!

wherev( f ,d)5(suputu<d*2`
1`u f (x1t)2 f (x)u2dx)1/2 andC3 is a positive constant independent

f (x) andn.
We denote the modulus of continuity of one-periodic functionFPL2(T) by vs(F,h),

vs~F,d!5S sup
uhu<d

E
0

1U(
k50

s11

~21!kS s
kDF~ei ~x1kh!!U2

dxD 1/2

.

We denote also byHs(R) andHs(T) the Sobolev spaces of orders in R and inT, respectively.
In Ref. 3, p. 489, it is shown thatfI (x)PHs/2(T) if f (x)PHs(R) for positive integers.
When the functionf (x) is more regular, Theorem 1 can be generalized as
Theorem 3:Let f (x)PL2(R) and fI be its corresponding one-periodic function defined

~26! so thatfIPHs(T) for some integers>0. Then we have
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i f 2pnf iL2~R!<C4n2svsS fI ,
1

n
D for n.1, ~34!

whereC4 is a constant independent ofn and f (x).
Proof: By virtue of Theorem 1 and Proposition 5, we have

i f 2pnf iL2~R!
2

5Sm5n
` u^ f ,Cm&L2~R!u25Sm5n

` u^ fI ,c j ,k
per&L2~T!u25i fI2pI nfI iL2~T!

2 ,

where in the second equation we have usedm52 j1k, 0<k,2 j , pI nfI is thenth partial sum of the
periodic functionfI (x) corresponding to the periodic waveletsw j ,k

per(x) andc j ,k
per(x). From Ref. 9,

Theorem 2 and Ref. 10, Theorem 1, Theorem 3 follows.
Remarks:Noticing that the term 1/An11 in ~33! is changed in~34! as 1/n.

B. Compression of „29…

From the general theory of the periodic waveletsw j ,k
per(x), c j ,k

per(x), to a periodic functionfI ,
compression of its coefficients will be achieved where it is smooth. From Proposition 5,~ii ! the
coefficients^ f ,Cm&L2(R) of ~29! are equal to the coefficients of theL2(T) function fI (x) in the
periodic waveletc j ,k

per(x). Therefore, there will also be compression to the functionf (x).
Let us take an example to show compression of the coefficients by the approximation~29!.
We choosef (x) so that its corresponding one-periodic functionfI (x)5u sin(px)u2a, 0,a

,1/2. The Fourier coefficients of the functionfI (x) are

cm5gumua211O~ma23!, mPZ,

whereg is a nonzero constant. The functionf (x) is thus defined by

f ~x!5 (
mPZ1

dmem~x!, ~35!

which belongs toL2(R) sinceSmPZucmu2,1` and fI (x)PL2(T), wheredm5cs(m) .
SincegÞ0, the coefficients$dm% decay to zero slowly and the series~35! is a dense series.
We now decompose the functionf (x) according to the basis$Fm(x),Cm(x)%, i.e.,

f ~x!5a0F1~x!1 (
m51

`

amCm~x!. ~36!

For 2j<m,2 j 11 let l 5min(m22j,2j 1121), we get from Proposition 5,uamu5u^ f ,c j ,k
per&u

<Ckma21/2/(11 l )k cf. Ref. 6, pp. 122–123. Thus the series~36! is a sparse series.

VII. DISCUSSIONS

By using the explicit expressions of the Meyer’s wavelet in the frequency domain an
harmonic oscillator eigenstates, we construct an orthonormal wavelet system ofL2(R) and get a
new family of orthogonal polynomials, which behave like wavelets. We are now to make
comparisons among the new functions$Fm(x),Cm(x)%, the Hermite functions and wavelets.

For a squarely integrable functionf (x), we have the spectral decomposition~25!, which is
from the spectrum of the differential operator~1!. We have also the expansion~29!. Through Eqs.
~27! and ~28!, the coefficients of~29! can be viewed as wavelet coefficients of a one-perio
squarely integrable function. A consequence of this is that sparse representations of functi
possible with the new basis. What we have got is that if the expansion~25! is considered as a
Fourier analyzer, expansion~29! is then a wavelet expansion.
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A drawback of the functions$C j ,k% is that the parameterk does no longer correspond t
translation. This cannot be hoped from a general statement that there exists no wavele
exponential decay such that all of its derivatives are bounded on2`,x,1` since in our
constructions, all derivatives ofCm(x) have exponential decay. The reason for this is that we
using the spectrum of the differential operator~1! whose coefficients are not constant, translat
is therefore not invariant. After giving up this, the reward is that we now have explicit expres
in both the time domain and the frequency domain, which may be an advantage from the ph
point of view. Moreover we still have a multiresolution or subdivision structure among diffe
scalesj from Proposition 2 and Theorem 2.

From the construction of this paper, it suggests the possibility that one can start from spe
of other physically significant differential operators. Moreover if one uses wavelets of h
dimensions and higher dimensional Hermite functions~Ref. 3, p. 491!,1 the results of this pape
can be generalized to higher dimensions also.
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APPENDIX

1. On the rising cutoff function n„x …

A continuously differentiable functionn(x) on 2`,x,1` is said to be a rising cutoff
function if n(x)51 for x.1, 0 for x,0 andn(x) satisfiesn(x)1n(12x)51 for 0,x,1.

To construct an(x) explicitly, we need only to specifyn(x) on the interval@0, 1#. Let

n~x!5
*21/2

x21/2f ~u!du

*21/2
1/2 f ~u!du

, 0<x<1,

where the functionf (u) is an even function andk-times differentiable on the interval@21/2, 1/2#
and satisfies*21/2

1/2 f (u)duÞ0, f ( l )(2
11/2)50 for l 50,1,...,k. Then it is easy to check thatn(x) is

(k11)-times differentiable on2`,x,` and is a rising cutoff function. We have also

n~ l !~0!5n~ l !~1!50, l 50,1,...,k11.
Some examples are:

f (u) n(x),0<x<1 k

cos~pu! sin2(px)/2 1

(cos(pu))2 x2~2px!/~2p! 2

(cos(pu))3 1/223/4 cos(px)11/4(cos(px))3 3

(cos(pu))4 @25 sin~px!cos(px)12(cos(px))3 sin(px)13px#/(3p) 4

(cos(px))5 1/2215/16cos(px)15/8(cos(px))323/16(cos(px))5 5
1/42u2 22x313x2 1
(1/42u2)2 10x316x5215x4 2
(1/42u2)3 35x4284x5170x6220x7 3

It is also possible to findf (u) so that all its derivatives exist, e.g.,f (u)5e21/(1/42u2), butn(x) has
no explicit expression.
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2. Formulas of h l in „14…

Let m0(j)51/2( l PZ hle
2 i l j. Thenm0(j) is a 2p-periodic function and

m0~j!5 (
aPZ

ŵ~2~j12pa!!.

On @0, 2p!, we have

m0~j!5

¦

1, 0< j <
p

3
,

cosS p

2
nS 3

p
j21D D ,

p

3
, j ,

2p

3
,

0,
2p

3
< j ,

4p

3
,

cosS p

2
nS 252

3

p
j D D ,

4p

3
< j ,

5p

3
,

1,
5p

3
< j ,2p.

Hence we get

hl5
1

p
E

0

2p

m0~j!eil jdj

5
1

p
F E

0

p/3

eil jdj1E
p/3

2p/3

cosS p

2
nS 3

p
j21D D eil jdj

1E
4p/3

5p/3

cosS p

2
nS 52

3

p
j D D eil jdj1E

5p/3

2p

eil jdjG
5

2 sin~ lp/3!

p l
1

1

p
F E

0

p/3

cosS p

2
nS 3

p
j D D eil ~j1p/3!dj

1E
0

p/3

cosS p

2
nS 3

p
j D D eil ~5p/32j!djG

5
2 sin~ lp/3!

p l
1

2

p
E

0

p/3

cosS p

2
nS 3

p
j D D cosS l S j1

p

3
D D dj

5
2 sin~ lp/3!

p l
1

2

3
E

0

1

cosS p

2
n~ t !D cosS lp

3
~ t11!D dt,

where in the second equation, the changes of variablesj2p/3→j, 5p/32j→j were used,
respectively, in the second and the third integrals and in the fourth equation, the tran
3j/p→t was used.

For l 50, we have
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h05
2

3
1

2

3
E

0

1

cosS p

2
n~ t !D dt.

Using n(0)5n(1)5n8(0)5n8(1)50, and integrating by parts twice on the right hand s
of hl , we get whenlÞ0,

hl5
1

l
E

0

1

sinS p

2
n~ t !D n8~ t !sinS lp

3
~ t11!D dt5

3

l 2p
E

0

1FsinS p

2
n~ t !D n8~ t !G 8cos

lp

3
~ t11!dt.

Hence whenn(t) is twice differentiable on@0, 1#, we have the estimate

uhl u<
C

l 2

for some constantC.

3. Proof of Lemma 2

~1! By substitutingl 1a→ l we gethk
j 5hk1a2 j

j ,gk
j 5gk1a2 j

j .
~2! Sincehk5h2k , by splitting the sum into two parts, we have

h11a
j 5 (

mPZ
h2 jm111a5 (

m50

`

h2 jm111a1 (
m521

2`

h2 jm111a5 (
m50

`

h2 jm111a1 (
m51

`

h2 jm111a

and

h2 j 212a
j

5 (
2 jm12 j 212a

5 (
m50

`

h2 j ~m11!212a1 (
m51

`

h2 j ~m21!111a

5 (
m51

`

h2 jm212a1 (
m50

`

h2 jm111a ,

which proves~ii !.
~3! From hk5h2k we get

gk
j 5 (

mPZ
g2 jm1k5 (

mPZ
~21!2 jm1k21h12~2 jm1k!5~21!k21 (

mPZ
h2 jm1k215~21!k21hk21

j .

4. Fourier transform of en„x …

Multiplying both sides of~2! by e2(x2/2) and setting

En~x!5hn~x!e2~x2/2!, nPZ1,

we get

e2~x2/2!12xz2z2
5 (

n50

` En~x!

n!
zn.

Taking the Fourier transform on both sides, we have

(
n50

` En̂~j!

n!
zn5A2pe2~j2/2!22izj1z2

for any complex numberz.
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Substitutingz→ iz and using the generating function~2! in the variablej again, we get

(
n50

` En̂~j!

n!
i nzn5A2pe2~j2/2!12zj2z2

5A2pe2~j2/2! (
n50

` hn~j!

n!
zn.

Hence by comparing the coefficients ofzn, we get

En̂~j!5 i 2nA2pe2~j2/2!hn~j!5 i 2nA2pEn~j!.

From ~3!, we get~19!.
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A dominated-type convergence theorem for the Feynman
integral

G. W. Johnsona) and J. G. Kim
Department of Mathematics and Statistics, University of Nebraska–Lincoln,
Lincoln, Nebraska 68588-0323

~Received 3 December 1999; accepted for publication 19 January 2000!

A dominated-type convergence theorem is proved for the operator-valued Feynman
integral defined via the Trotter product formula. This definition is intimately related
to the one of Feynman and the physical setting is the same as in his original paper.
The convergence result given here provides the final piece of a unifying and rather
satisfactory picture of three approaches to the Feynman integral. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!00505-3#

I. INTRODUCTION

The setting is nonrelativistic quantum mechanics with state spaceH5L2(Rd) and Hamil-
tonian H5H01V52 1

2D1V, whereD denotes the Laplacian andV:Rd→R denotes both the
potential energy function and the operator of multiplication by that function. LetL(H) denote the
space of bounded linear operators onH.

The conditions on the potentials in our convergence theorem, as well as in two closely r
convergence theorems that will enter into our discussion, are quite general. They inclu
particular, the most standard potentials of quantum mechanics such as the harmonic oscilla
the attractive and repulsive Coulomb potentials.

All three of the convergence results will tell us that ifVm , m51,2,..., is a sequence o
potentials such thatVm→V a.e.~that is, almost everywhere with respect to Lebesgue measure! and
if the sequences$Vm,1% and$Vm,2% are dominated by functionsU andW, respectively, where the
conditions onU and W are selected to fit the type of operator-valued Feynman integral u
consideration, then that type of Feynman integral associated withVm converges in the strong
operator topology to the same type associated withV. @Note:Vm,1 denotes the positive part of th
potential Vm ; i.e., Vm,1(v)5max(Vm(v),0). Similarly, Vm,2 is the negative part ofVm ; i.e.,
Vm,2(v)5max(2Vm(v),0).]

From a physical point of view and in less precise language than we will use further on,
convergence theorems tell us that the evolution of the quantum system is stable unde
perturbations of the potential. In fact, once stability in the potential is established, joint stabi
the potential and the initial state follows immediately from the Uniform Boundedness Theo

Convergence theorems for the Feynman integral of the type described above; i.e., w
sumptions of pointwise convergence a.e. plus domination, seem to have begun with the bo
type convergence theorem1 of the first author. Somewhat more general results in the same s
followed soon after in the paper of Johnson and Skoug.2 It was theanalytic in massoperator-
valued Feynman integral that was considered in these papers.~This approach to the Feynma
integral will not be considered further in this paper.! The results in Ref. 1 are quite simple, but th
convergence question was posed there in a way that is natural and useful.

Johnson asked Lapidus if there was a similar theorem for the modified Feynman in
which had recently been defined and studied by Lapidus.3 The result was the dominated-typ
convergence theorem of Lapidus.4 ~See also Theorem 11.5.19 of the forthcoming book5 by
Johnson and Lapidus.! This beautiful theorem is one of the three convergence results that w

a!Electronic mail: gjohnson@math.unl.edu
31040022-2488/2000/41(5)/3104/9/$17.00 © 2000 American Institute of Physics
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discussed below and is, along with existence3,5–7and comparison5 theorems, the key to the proof
of the other two.

We turn now to Sec. II which is essentially of an expository nature.

II. PRELIMINARY DEFINITIONS AND RESULTS

We begin by recalling the definition of the Feynman integral via the Trotter product form
~TPF!. We start with the formula for thenth Trotter product (e2 i (t/n)H0e2 i (t/n)V)n acting on the
initial statewPL2(Rd).

Let V:Rd→R be Lebesgue measurable and finite a.e. Then for everytPR andwPL2(Rd) and
for a.e.vPRd, we have the equality,

@~e2 i ~ t/n!H0e2 i ~ t/n!V!nw#~v !5S 2 i

2p~ t/n! D
d/2E

Rd
expH i

2~ t/n!
ixn2xn21i2J

3expH 2 i t

n
V~xn21!J 3S 2 i

2p~ t/n! D
d/2E

Rd

3expH i

2~ t/n!
ixn212xn22i2J expH 2 i t

n
V~xn22!J

3¯3S 2 i

2p~ t/n! D
d/2E

Rd
expH i

2~ t/n!
ix22x1i2J

3expH 2 i t

n
V~x1!J S 2 i

2p~ t/n! D
d/2E

Rd
expH i

2~ t/n!
ix12x0i2J

3expH 2 i t

n
V~x0!J w~x0!dx0dx1¯dxn22dxn21 , ~2.1!

wherexnªv and where the iterated integrals on the right-hand side of~2.1! exist for a.e.vPRd

when interpreted in the mean~see below! and define a function which is inL2(Rd) as a function
of v.

The integral in the mean referred to above is to be interpreted just as in the theory
Fourier–Plancherel transform onL2(Rd). ~See Ref. 8, pp. 10–11 or, in the setting that specifica
concerns us here, see the proof of Theorem 10.2.7 of Ref. 5.!

Formula~2.1! above is an explicit expression for thenth Trotter product in the special cas
which is relevant to us; see Lemma 11.2.18 of Ref. 5 or Theorem X.66 of Ref. 8.

Definition 2.1: The Feynman integralFTP
t (V) at time t associated with the potentialV is

defined as

FTP
t ~V!5 lim

n→`

~e2 i ~ t/n!H0e2 i ~ t/n!V!n, ~2.2!

where the limit is taken in the strong operator topology onL(H); that is, for everywPH
5L2(Rd),

iFTP
t ~V!w2~e2 i ~ t/n!H0e2 i ~ t/n!V!nwi2→0 as n→`. ~2.3!

WhenFTP
t (V) exists, we refer to it asthe Feynman integral at time t associated with the poten

V and defined via the Trotter product formula.
We will identify in Theorem 2.7 below~see also Remark 2.8~b!! quite general conditions on

V under whichFTP
t (V) exists for alltPR.

The modified Feynman integralFM
t (V) of Lapidus is defined in a manner that is similar

Definition 2.1. However, the approximating Trotter products are replaced by approximating
ucts of resolvents.
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Definition 2.2: The modified Feynman integral FM
t (V) at time t associated with the potentia

V is defined as

FM
t ~V!5 lim

n→`
S F I 1 i S t

nDH0G21F I 1 i S t

nDVG21D n

, ~2.4!

where the limit is taken in the strong operator topology onL(H).
Lapidus has shown that the approximators involved on the right-hand side of~2.4! have

advantages over the Trotter products used in Definition 2.1~Refs. 3, 5, Secs. 11.4–11.6 an
13.5–13.6!. In particular,FM

t (V) is known to exist under conditions where the Trotter prod
formula is not applicable.

Next we prepare for the definition of the analytic in time operator-valued Feynman inte
Let Ct5C(@0,t#,Rd) denote the space of continuous,Rd-valued functions on the interval@0,t#;C0

t

will denote those functionsx in Ct such thatx(0)50. We consider both of these spaces
equipped with the norm defined by

ixiªsup$ix~s!i :0<s<t%,

whereix(s)i denotes the usual Euclidean norm ofx(s)PRd. The Borel classB5B(Ct) of Ct is
the smallests-algebra containing the open subsets ofCt. Definition 2.3 below will involve Wiener
measurem defined onB. ~There are many places where Wiener measure—also referred to, a
other names, as Wiener space or the Brownian motion stochastic process—is discussed.
brief treatment can be found in Appendix A of Ref. 6. We also mention,5 Chaps. 2–4, which
require no previous background in probability theory!. Now let

F~y!5FV~y!ªexpH 2E
0

t

V~y~s!!dsJ ~2.5!

for any yPCt for which the right-hand side of~2.5! makes sense. Under the conditions onV in
Theorem 2.4 below, it is known~see Ref. 5, Chap. 12! that the operatorse2t(H0uV), t>0, make
sense and are given for eachwPL2(Rd) and a.e.vPRd by theFeynman–Kac formula,

~e2t~H0uV!w!~v !5E
C0

t
expH 2E

0

t

V~x~s!1v !dsJ w~x~ t !1v !m~dx!. ~2.6!

We are now ready to give the definition of the analytic in time operator-valued Feyn
integral.

Definition 2.3:Given t.0, wPL2(Rd) andvPRd, consider the expression (Jt(FV)w)(v) on
the right-hand side of~2.6!. The operator-valued function space integralJt(FV) exists if and only
if the right-hand side of~2.6! definesJt(FV) as an element ofL(H). If Jt(FV) exists for every
t.0 and, in addition, has an extension~necessarily unique! as a function oft to an operator-valued
analytic function onC1 and a strongly continuous~i.e., continuous in the strong operator topo

ogy! function onC̄1 , we say thatJt(FV) exists for alltPC̄1 . On the imaginary axis, Jt(FV) is
called the analytic in time operator-valued Feynman integral associated with the potentia.
~Alternatively, the last part of the preceding sentence is replaced by ‘‘Feynman integral o
function FV . ’’ ! In the Feynman case~i.e., when the parameter is on the imaginary axis!, one
usually writesJit(FV) and letst run overR.

We turn next to the statement of a theorem which gives conditions on the potentialV under
which FM

t (V), Jit(FV), and e2 i t (H0uV) all exist and agree. Theorems insuring the existence
FM

t (V) andJit(FV) have a common operator theoretic base~see Chap. 10 of Ref. 5! but otherwise
quite different proofs as can be seen in Chaps. 11–13 of Ref. 5. Nevertheless, it is useful to
to incorporate the existence and agreement results into one theorem~see Corollary 13.4.1 of Ref
5!. The existence ofJit(FV) under the conditions given below was first shown in Ref. 7.
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Theorem 2.4: Let V:Rd→R be such that V1PL loc
1 (Rd) and V2 is H0-form bounded with

bound less than 1. Also, for any t.0, let FV :Ct→R be given by (2.5).
Then the unitary group e2 i t (H0uV), the modified Feynman integral FM

t (V) and the analytic in
time operator-valued Feynman integral Jit(FV) all exist for every tPR, and we have

e2 i t ~H0uV!5FM
t ~V!5Jit~FV!. ~2.7!

Remark 2.5:~a! The family of operators$e2 i t (H0uV):tPR% is the unitary group associate
with the usual Hamiltonian approach to quantum dynamics. The unbounded, self-adjoint~under
present assumptions! operatorH0uV is the ‘‘form sum’’ of H0 and V. The reader who is no
familiar with form sums nor with form boundedness can read about these concepts in many
for example, Refs. 9, 10, 8, 5.

~b! The restriction placed onV1 in Theorem 2.4 is easily understood; one way of describ
it is that V1 must be integrable over every ball of radius 1 inRd. In fact, the restriction can be
further relaxed. It is enough to haveV1PL loc

1 (Rd\G), whereG is a closed subset ofRd of measure
0. This permitsV1 to have arbitrary singularities at̀ and onG and integrable singularities on th
open setRd\G.

The restriction onV2 in Theorem 2.4 is less readily understood~even if the definition of
‘‘ H0—form-bounded’’ were included!. However, there are four classes of functions which ha
been studied in this context, and all of these functions satisfy the restrictions onV2 in Theorem
2.4. Two ~at least! of these four classes are rather easily understood. The four classes a
increasing family of sets of functions as follows:

Lp~Rd!1L`~Rd!Þ
,L loc

p ~Rd! ũÞ
,L loc

p ~Rd!u5
,Kd , ~2.8!

wherep.d/2 for d>2 andp51 for d51. The smallest of these classes consists simply of th
functions which can be written as the sum of anLp-function and anL`-function. For example, if
d53, we can takep52 and the negative part of the attractive Coulomb potential, that is,
function W(u)51/iui , is easily seen to belong toL2(R3)1L`(R3). The spaceL loc

P (Rd)u is also
easy to understand. It consists of those functionsW such that for some~and hence all! r .0,

sup
uPRd

iWiLP~Br ~u!!,`, ~2.9!

where the norm in~2.9! is theLp-norm of W over ther-ball in Rd centered atu. The collection
L loc

P (Rd) ũ will play an important role as we continue and so we give its definition next;L loc
P (Rd) ũ

consists of those functionsW such that

lim
r→01

@ sup
uPRd

iWiLp~Br ~u!!#50. ~2.10!

The middle two spaces in~2.8! are closely related as we will see in parts~iii ! and ~iv! of
Proposition 3.3 below. The largest collectionKd in ~2.8!, the Kato class, will appear only in late
remarks and so will not be defined here.~The definition is given, for example, in Ref. 11
Definition 1.10 or Ref. 5, Definition 10.4.1.! We note that the last containment in~2.8! is equality
whend51.

~c! The existence results forFM
t (V) and Jit(FV) in Theorem 2.4 have been extended

various ways; see Refs. 12 and 13 as well as Secs. 11.6 and 13.7 of Ref. 5.
While working on this paper, the authors found an example showing that the first contain

in ~2.8! is proper. It seems highly likely that this fact is known, but we include the example s
we have not seen it in the standard references. We treat the cased51, but it is clear that it can be
adjusted to any positive integerd.

Example 2.6:Let f PLp(R)\L`(R) be a non-negative function which is supported by t
interval @0,1#. Let
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g~u!ª (
k52`

`

f ~u2k!. ~2.11!

It is easy to show thatgPL loc
p (R) ũ . If g were in Lp(R)1L`(R), say, g5g11g2 , with g1

PLp(R) andg2PL`(R), theng2g2PLp(R). However, it is clear that subtracting anL`-function
from g can never yield a function inLp(R).

Now we turn to the statement of a theorem giving conditions on the potentialV under which
FM

t (V), Jit(FV), FTP
t (V), ande2 i t (H01V) all exist and agree. As before, theorems guarantee

the existence of these three variations of ‘‘the’’ Feynman integral have quite different proofs~see
Chaps. 11–13 of Ref. 5!, but it will be convenient for us to combine the statement of th
existence and agreement results into one theorem~see Corollary 13.4.2 of Ref. 5!. The existence
of FTP

t (V) is due to Nelson6 although the restrictions onV in Theorem 11.2.19 and Corollar
11.2.22 of Ref. 5 are milder than in Ref. 6.

Theorem 2.7:Let V:Rd→R be such that V1PL loc
2 (Rd) and V2 is H0-operator bounded with

bound less than 1. Also, for any t.0, let FV :Ct→R be given by (2.5).
Then(H01V) /D is essentially self-adjoint, where D is the space of infinitely differentia

compactly supported functions onRd. Denoting the self-adjoint closure(H01V) /D by H, we have
that the unitary group e2 i tH , the modified Feynman integral FM

t (V), the analytic in time
operator-valued Feynman integral Jit(FV) and the Feynman integral FTP

t (V) via TPFall exist for
every tPR, and we have

e2 i tH5FM
t ~V!5Jit~FV!5FTP

t ~V!. ~2.12!

Remark 2.8:~a! The operatorH is often denotedH01V and is called the operator sum ofH0

andV.
~b! The condition onV1 is more restrictive than in Theorem 2.4, but is still very general a

is, much as in the earlier theorem, easily understood. The condition onV2 is again less readily
understood. The definition of ‘‘H0-operator boundedness’’ can be found, for example, in Ref.
8, Sec. 10.2; Ref. 5, Definition 11.2.9. One can again identify four classes of functions all of w
satisfy the restrictions onV2 in Theorem 2.7,

~2.13!

wherep.d/2 for d>4 andp52 for d<3. We will not defineSd , called the Stummel class, bu
refer the reader to Ref. 11, Definition 1.6 or to Ref. 5, Definition 11.2.13. We note that the
containment in~2.13! is actually equality ford<3.

~c! In Theorem 2.4,V2 is H0-form bounded with bound less than 1 rather thanH0-operator
bounded with bound less than 1. Further, the Hamiltonian in Theorem 2.4 is theform sum H0uV
rather than the unique self-adjoint extensionH5(H01V) /D as in Theorem 2.7. For our purpose
in the next section on convergence theorems and, indeed, even to see that Theorem
possibly make sense, one needs to know that under the assumptions of Theorem 2.7V2 is
H0-form bounded with bound less than 1 and thatH5(H01V) /D5H0uV. Proposition 11.2.10 in
Ref. 5 assures us of this fact.

III. CONVERGENCE THEOREMS

We now state the dominated-type convergence theorem of Lapidus for the modified Fey
integral ~see Ref. 4 as well as Theorem 11.5.19 of Ref. 5!. This result along with Theorems 2.
and 2.7 will be the key to the proofs of the two further dominated-type convergence theore
this section.

Theorem 3.1: ~Dominated-type Convergence Theorem for the Modified Feynman Integ!
Let Vm , m51,2,..., be Lebesgue measurable real-valued functions onRd. Assume that‘‘ Vm

converges to V dominatedly’’ in the following sense:
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(a) Vm→V a.e. inRd,
(b) Vm,1<U for someUPL loc

1 (Rd),
(c) Vm,2<W for someWPL loc

p (Rd) ũ ,

where p51 if d51 and p is any number in the interval(d/2,̀ ) for d>2.
ThenFM

t (V) andFM
t (Vm), m51,2,...,all exist and

FM
t ~Vm!→FM

t ~V! ~3.1!

in the strong operator topology, uniformly in t on compact subsets ofR.
After the existence theorem for the analytic in time operator-valued Feynman integralJit(FV)

~represented in this paper by the appropriate part of the existence result in Theorem 2.4! had been
proven in Ref. 7, Johnson observed that a dominated type-convergence theorem forJit(•) fol-
lowed easily from Theorem 3.1 of Lapidus. We now state that result~Corollary 6.2 of Ref. 7!. We
will also give the short proof since Ref. 7 is not readily accessible for most readers.

Theorem 3.2: (Dominated-Type Convergence Theorem for the Analytic in Time Opera
Valued Feynman Integral.) Under the same assumptions on V and Vm , m51,2,...,as in Theorem
3.1, we have that Jit(FV) and Jit(FVm

), m51,2,...,all exist and

Jit~FVm
!→Jit~FV! ~3.2!

in the strong operator topology, uniformly in t on compact subsets ofR.
Proof: Assumptions~a! and~b! imply that all of V1 andVm,1 , m51,2,..., are dominated by

U. Also, ~a! and ~c! imply that all of V2 and Vm,2 , m51,2,..., are dominated byW. ~The
assumptions~a!–~c! are explicitly stated in Theorem 3.1.! Then Theorem 2.4 along with Remar
2.5~b!, especially the discussion associated with~2.8!, imply that all ofFM

t (V), Jit(FV), FM
t (Vm),

Jit(FVm
), m51,2,..., exist, and we have the equalitiesFM

t (V)5Jit(FV) andFM
t (Vm)5Jit(FVm

),

m51,2,... . Further,FM
t (Vm)→FM

t (V) in the strong operator topology, uniformly int on compact
subsets ofR. The assertion~3.2! now follows immediately. h

We are now ready to work directly toward a dominated-type convergence theorem fo
Feynman integral defined via the Trotter product formula. We begin with a preliminary pro
tion which will help us with the proof and will also clarify some related issues. It is the equ
in ~iv! and the second containment in~iii ! of Proposition 3.3 below that primarily concern us. O
or both of these results may be new, but the rest of Proposition 3.3 is not; we include the
the facts for clarity and because these items come out in the course of the proof in any ca

Proposition 3.3: Let d be any positive integer and let p and q be real numbers satisfy1
<q<p<`. Further, let W be any real-valued, Lebesgue measurable function onRd. Then we
have the following:
(i) For any uPRd and r.0,

iWiLq~Br~u!!<F pd/2r d

GS d

2
11D G 1/q21/p

iWiLP~Br ~u!! , ~3.3!

where Br(u) is the ball of radius r centered at uPRd and G is the gamma function. It follows
immediately that

Lp~Br~u!!#Lq~Br~u!!. ~3.4!
(ii) Further,

Lloc
p ~Rd! ũ#L loc

q ~Rd! ũ . ~3.5!
(iii) Also, if 1<q,p,`, then

Lloc
p ~Rd! ũ#L loc

p ~Rd!u#L loc
q ~Rd! ũ . ~3.6!

(iv) Finally, for any c>1,

ø
p.c

Lloc
p ~Rd! ũ5 ø

p.c
L loc

p ~Rd!u . ~3.7!
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Proof: ~i! The Lp-norm on a probability space is an increasing function ofp. Hence,

F 1

Leb.~Br~u!!
E

~Br ~u!!
uW~v !uqdvG1/q

<F 1

Leb.~Br~u!!
E

~Br ~u!!
uW~v !updvG1/p

,

where Leb.(Br(u)) denotes thed-dimensional Lebesgue measure ofBr(u). It follows that

iWiLq~Br ~u!!<@Leb.~Br~u!!#1/q21/piWiLp~Br ~u!! .

Thus ~3.3! follows since Leb.(Br(u))5(pd/2r d)/G((d/2)11).
~ii ! Let WPL loc

p (Rd) ũ . Hence,~2.10! holds. Thus, by~3.3!,
lim

r→01

@ sup
uPRd

iWiLq~Br ~u!!
#

< lim
r→01F sup

uPRdS pd/2r d

GS d

2
11D D 1/q21/p

iWiLp~Br ~u!!G
< lim

r→01S pd/2r d

GS d

2
11D D 1/q21/p

@ sup
uPRd

iWiLp~Br ~u!!#50. ~3.8!

ThusWPL loc
q (Rd) ū as claimed.

~iii ! The first containment in~3.6! has already been noted in~2.13!. ~In fact, that containment in
~2.13! and in~2.8! holds for anyp such that 1<p,`). It is the second contaiment in~3.6!
which mainly concerns us. LetWPL loc

p (Rd)u . Then~2.9! holds. Also, sinceq,p,

S pd/2r d

GS d

2
11D D 1/q21/p

→0 as r→01.

Hence, under the present assumptions, the~adjusted! argument in~3.8! still shows that
WPL loc

q (Rd) ũ .

~iv! The fact that the left-hand side of~3.7! is contained in the right-hand side follows from th
first containment in~3.6!. Finally, let WPL loc

p (Rd)u for somep.c. Chooseq such that
p.q.c. By the second containment in~3.6!, we see thatWPL loc

q (Rd) ū and so W
Pø

p.c
L loc

p (Rd) ũ , as we wished to show. h

We are finally ready to state and prove the following dominated-type convergence the
Theorem 3.4:~Dominated-type Convergence Theorem for the Feynman Integral Defined

the Trotter Product Formula.! Let Vm , m51,2,...,be Lebesgue measurable real-valued functio
on Rd. Assume that‘‘ Vm converges to V dominatedly’’ in the following sense:
(a) Vm→V a.e. inRd,
(b) Vm,1<U for some UPL loc

2 (Rd),
(c) Vm,2<W for some WPL loc

p (Rd)u ,

where p52 for d51,2,3 and p is any number in the interval(d/2,̀ ) for d>4.
ThenFTP

t (V) and FTP
t (Vm), m51,2,...,all exist and

FTP
t ~Vm!→FTP

t ~V! ~3.9!

in the strong operator topology, uniformly in t on compact subsets ofR.
Proof: The domination assumption~b! insures that eachVm,1 belongs toL loc

2 (Rd). By ~b! and
the pointwise convergence from~a!, we see thatV1 is also inL loc

2 (Rd). Combining~c! and~a!, we
see that eachVm,2 and alsoV2 are dominated byW and so all belong toL loc

2 (Rd)u where p
depends ond as indicated in~c! above. It then follows from Theorem 2.7 and Remark 2.8~b! that
the Feynman integralsFTP

t (V) andFTP
t (Vm), m51,2,..., all exist and agree with the unitary grou
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e2 i tH ande2 i tH m, m51,2,..., respectively. Further, by Theorem 2.7,H andHm , m51,2,..., are all
the closures of the essentially self-adjoint operators (H01Vm) /D , m51,2,..., respectively.

Next, we recall thatL loc
2 (Rd)#L loc

1 (Rd). Hence, our dominating functionU satisfies the hy-
pothesis~b! on U from Theorem 3.1, Lapidus’ Dominated-Type Convergence Theorem for
Modified Feynman Integral.

We also claim thatW from ~c! of the present theorem satisfies the hypothesis onW in ~c! of
Theorem 3.1. Comparing these two hypotheses, we see that it suffices to show that ford51, d
52, d53, andd>4, respectively, we have

~i! L loc
2 (R)u#L loc

1 (R) ũ ; ~ii ! L loc
2 (R2)u#L loc

p (R2) ũ for somep.1; ~iii ! L loc
2 (R3)u#L loc

p (R3) ũ

for somep. 3
2; ~iv! ø

p.d/2
L loc

p (Rd)u#ø
p.d/2

L loc
p (Rd) ũ , whered>4.

But ~3.6! from Proposition 3.3 tells us~i! just above holds and that~ii ! holds with, say,p
57/4. The same part of Proposition 3.3 yields~iii ! above with, for example,p57/4 again.
Equality ~3.7! of Proposition 3.3 yields~iv! above wherec is taken asd/2. ThusW satisfies the
desired hypothesis.

We can now apply Theorem 3.1 from which it follows thatFM
t (Vm)→FM

t (V); in fact, if we
also apply the first equality in~2.7!, we get

e2 i t ~H0uVm!5FM
t ~Vm!→FM

t ~V!5e2 i t ~H0uV!, ~3.10!

where the convergence is in the strong operator topology asm→`, uniformly in t on compact
subsets ofR. But since (H01V) /D is essentially self-adjoint, we know by Remark 2.8~c! that H
ª(H01V) /D agrees with the form sumH0uV. In the same way,Hmª(H01Vm) /D5H0uVm ,
m51,2,... . Now by~2.12! of Theorem 2.7,FTP

t (V)5FM
t (V) andFTP

t (Vm)5FM
t (Vm), and so, by

~3.10!, we have

FTP
t ~Vm!→FTP

t ~V! ~3.11!

in the strong operator topology asm→`, uniformly in t on compact subsets ofR as we wished to
show. h

It is not always easy to separate the positive and negative parts of the potential. Whe
occurs, it may be easier to have the assumptions on the sequenceuVmu, m51,2,..., rather than on
Vm,1 andVm,2 . The following easy corollary of Theorem 3.4 gives such a result.

Corollary 3.5: Let Vm , m51,2,...,be Lebesgue measurable real-valued functions onRd and
assume that

~a! Vm→V a.e.in Rd, and that
~b! uVmu<W* for some W* PL loc

p (Rd)u ,
where p52 for d51,2,3 and p is any number in the interval(d/2,̀ ) for d>4. Then the conclu-
sion of Theorem 3.4 holds.

Proof: Clearly ~b! implies that both of the sequencesVm,1 andVm,2 , m51,2,..., are domi-
nated byW* . Also, it is not difficult to show that all of the spacesL loc

p (Rd)u are subsets of
L loc

2 (Rd), wherep depends ond as indicated in~b!. The result now follows immediately from
Theorem 3.4. h

Remark 3.6:~a! Theorems 3.1 and 3.2 have corollaries of the same nature as Corollary 3
Theorem 3.4. However, the assumption onW* in ~b! of Corollary 3.5 is replaced in both cases b
the assumption thatW* PL loc

p (Rd) ũ , wherep51 if d51 andp is any number in the interva
(d/2,̀ ) for d>2.

~b! Lapidus realized after the publication of Ref. 4 that the class of functionsL loc
p (Rd) ũ as in

Theorem 3.1 can be replaced by the larger Kato classKd ; see Remark 11.5.15~d! in Ref. 5.
~Chang, Lim, and Ryu made the same observation independently in Ref. 14.! Not surprisingly,Kd

can be used in the same way in connection with Theorem 3.2 above. In similar fashio
intersection of the Kato class and the Stummel classSd can replace the setL loc

p (Rd)u in ~c! of
Theorem 3.4. In fact, this replacement would shorten the proof of Theorem 3.4.
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~c! Further work of Bivar-Weinholtz and Lapidus or of Lapidus on or related to the mod
Feynman integral can be found in the paper12 or in the book.5 Also, additional results on the
analytic in time operator-valued Feynman integral are given in the papers of Albeverio, Joh
and Ma,13 Chang, Lim, and Ryu,14 and Lim.15 An expository account of the paper13 is given in
Ref. 5.

~d! The nice operator-theoretic papers of Voigt16 and Liskevich and Manavi17 appear to have
implications for convergence theorems for operator-theoretic approaches to the Feynman in
Indeed, the paper16 was inspired in part by the dominated-type convergence theorem of Lap
~see Ref. 4 and Theorem 3.1 above!. Since we are concerned in this paper with real-valu
potentials and the positive operatorH052 1

2D, it is Corollary 3.6 and Theorem 3.5 from Ref. 1
which are most directly relevant.~The paper17 considers complex-valued potentials and ad
magnetic fields to the Hamiltonian.!

Neither of the papers16,17 discusses the Feynman integral. However, one might wonde
Corollary 3.6 from Ref. 16 along with a relatively small number of the preliminary results
cussed in Sec. II of this paper, including certainly the Trotter product formula part of Theorem
would yield an alternative and much shorter proof of Theorem 3.4, the dominated-type co
gence theorem for the Feynman integral defined via the Trotter product formula. This do
seem to be the case. In Corollary 3.6 from Ref. 16, the functionV is required to be both the
limiting and the dominating potential. This is not required either in Theorem 3.4 or Corollary
of the present paper. This difference seems to be significant as it is in the setting of the fa
Dominated Convergence Theorem from the theory of Lebesgue integration. Finally, we re
that even if some way can be found to deduce rather quickly our Theorem 3.4 from Corolla
of Ref. 16, a full explanation for those interested in the Feynman integral would require a diff
and fairly extensive list of preliminaries.

The reader who is interested in the papers16,17 should also check the related earlier paper
Voigt18 and the paper of Stollman and Voigt.19

1G. W. Johnson, ‘‘A bounded convergence theorem for the Feynman integral,’’ J. Math. Phys.25, 1323–1326~1984!.
2G. W. Johnson and D. L. Skoug, ‘‘Stability theorems for the Feynman integral,’’ Conference Celebrating the
Centenary of Circolo Matematico di Palermo, Rend. Circ. Mat. Palermo~2! Suppl. 8, pp. 361–377~1985!.

3M. L. Lapidus, ‘‘Product formula for imaginary resolvents with application to a modified Feynman integral,’’ J. F
Anal. 63, 261–275~1985!.

4M. L. Lapidus, ‘‘Perturbation theory and a dominated convergence theorem for Feynman integrals,’’ Integral Equ
and Operator Theory8, 36–62~1985!.

5G. W. Johnson and M. L. Lapidus,The Feynman Integral and Feynman’s Operational Calculus~Oxford University
Press, Oxford, 2000!.

6E. Nelson, ‘‘Feynman integrals and the Schro¨dinger equation,’’ J. Math. Phys.5, 332–343~1964!.
7G. W. Johnson,Existence Theorems for the Analytic Operator-Valued Feynman Integral, University of Sherbrooke
Monograph, No. 20~Sherbrooke, Quebec, Canada, 1988!.

8M. Reed and B. Simon,Methods of Modern Mathematical Physics~Academic, New York, 1975!, Vol. II.
9M. Reed and B. Simon,Methods of Modern Mathematical Physics, revised and enlarged ed., 1975~Academic, New
York, 1980!, Vol. I.

10T. Kato, Perturbation Theory for Linear Operators, 2nd ed., corrected printing~Springer-Verlag, Berlin, 1995!.
11H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon,Schrödinger Operators With Applications to Quantum Mechani

and Global Geometry, Texts and Monographs in Physics~Springer-Verlag, Berlin, 1987!.
12A. Bivar-Weinholtz and M. L. Lapidus, ‘‘Product formula for resolvents of normal operators and the modified Fey

integral,’’ Proc. Am. Math. Soc.110, 449–460~1990!.
13S. Albeverio, G. W. Johnson, and Z. M. Ma, ‘‘The analytic operator-valued Feynman integral via additive function

Brownian motion,’’ Acta Appl. Math.42, 267–295~1996!.
14K. S. Chang, J. A. Lim, and K. S. Ryu, ‘‘Stability theorem for the Feynman integral via time continuation,’’ Ro

Mountain J. Math.~to be published!.
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Majorana spinors on unoriented surfaces
Nikolaos Kalogeropoulosa)

Department of Physics, Syracuse University, Syracuse, New York 13244-1130

~Received 18 April 1994; accepted for publication 10 June 1994!

In this paper we find the conditions for the existence of Majorana spinors on
unoriented surfaces. We prove that a Majorana spinor exists on these surfaces if
and only if its genus is an odd integer. We enumerate the different real spin
structures and we comment on their parity classification. Potentially interesting
applications are pointed out. ©2000 American Institute of Physics.
@S0022-2488~00!05005-2#

I. INTRODUCTION

Some time ago it was proved that Majorana fermions exist on unoriented surfaces if an
if the genus of the surface is an odd integer.1 We find the same result using different method
Whereas the authors of Ref. 1 used the method of Steenrod squares, we are employing the
any unoriented surface has an unramified double cover which is a Riemann surface.2 We extend
the treatment of Ref. 1 in that we find the number of Majorana fermions and we classify
according to their behavior under the parity operation.

The theory of unoriented surfaces has received small attention so far, compared to the
of Riemann surfaces. Examining that theory may prove useful for getting better acquainted w
diverse subjects as the three-dimensional~3D! Ising model3 and critical as well as noncritica
string theory. Besides, it may help shed some light to the conjectured connection between
theory and the largeN limit of QCD.4 The fact that the unoriented surfaces form a subset of
category of Klein surfaces which treat both oriented and unoriented surfaces on equal foot
well as the fact that the latter are categorically equivalent to real algebraic curves,2 makes the
study of these objects interesting from a mathematical viewpoint. It would not be totally surp
if the study of some statistical mechanical systems could be described in some subset o
parameter space~probably at the infrared limit! as a theory of unoriented surfaces.

In Sec. II we discuss the possible double covers of an unoriented surface~some of the
arguments are more general and can be used for manifolds of any dimension!, and we prove a
formula for the number of these double covers. In Sec. III we discuss the conditions under
a manifold can admit a spin structure. We follow the argument that uses the Leray–Serre´ spectral
sequence to get an exact sequence from which we can also find the number of distin
structures on a manifold.5 In Sec. IV we present an interpretation of these results, as well as
connection with the theory of real and complex Clifford algebras. In Sec. V we find the numb
Majorana spinors on an unoriented surface. In Sec. VI we classify the real spin structures in
classes, odd and even, under parity. In Sec. VII we present our conclusions.

II. UNORIENTED SURFACES AND DOUBLE COVERS

In dealing with the theory of unoriented surfaces we would like to draw as many resu
possible from the theory of Riemann surfaces. In order to have a uniform treatment of all su
regardless of orientation, the theory of Klein surfaces has been developed.2 The tool that allows us
to use many results from the theory of Riemann surfaces to the theory of Klein surfaces
existence and uniqueness, within their definition, of some unramified double covers. The w

a!Electronic mail: nikolaos@suhep.phy.syr.edu
31130022-2488/2000/41(5)/3113/12/$17.00 © 2000 American Institute of Physics
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constructing some useful double covers as well as the proofs of the unramified, uniquene
existence statements is being explained in Ref. 2. Unlike these authors, we understand
ramified double cover of a manifoldM as aZ2 fiber bundle overM. Following this picture, in
order to find all the possible double covers of a manifoldM, it suffices to find all the possibleZ2

fiber bundles overM.
Consider the principal fiber bundle (Sn,p,RPn) with total spaceSn, base manifoldRPn and

typical fiberZ2 . The projectionp identifies the antipodal points of the sphereSn. Applying the
long exact homotopy sequence to the fibration

Z2 → Sn

↓
RPn

we find

¯→p2~RPn!→p1~Z2!→p1~Sn!→p1~RPn!→p0~Z2!→p0~Sn!→p0~RPn!. ~1!

Sincepm(Sn)50 if m,n, pn(Sn)5Z thenp0(Sn)5p1(Sn)50, n.1 and the long exact homo
topy sequence reduces to the short exact sequence

0→p i~RPn!→p0~Z2!→0. ~2!

Because of the exactness of this sequencep1(RPn).p0(Z2).Z2 , where . denotes isomor-
phism, we eventually have

p1~RPn!.Z2, pm~RPn!.0, 1,m,n.

This means that the principal fiber bundle (Sn,p,RPn) is (n21) universal.6 By using the natural
inclusions, the casen→` is defined so

p1~RP`!.Z2 , pm~RP`!.0, m,`.

Therefore the principal fiber bundle (S`,p,RP`) is ` universal andRP` is the Eilenberg–
McLane spaceK(Z2,1). Let BZ2

(M ) denote the set of isomorphism classes of the principalZ2

fiber bundles overM, @X,Y# the set of homotopy classes of the mapsX→Y andBZ2 the universal
classifying space of theZ2 principal fiber bundles. We then have the successive isomorphis7

BZ2
~M !.@M ,BZ2#.@M ,RP`#.@M ,K~Z2,1!#[H1~M ;Z2!. ~3!

So, we see that the double covers ofM are in one-to-one correspondence with the first Stief
Whitney classes ofM.8 We argue later that for a genusg unoriented surface we hav
H1(M ;Z2)52g5212x wherex is the Euler characteristic of the unoriented surface.9 In this way,
we proved the formula appearing in Ref. 2 for the number of boundariless unramified d
covers of an unoriented surface.

Of all these unramified double covers the most useful one, for our purposes, is the co
cover. Its important property is that it provides a Riemann surface from an unoriented surfac
can use it, therefore, to transfer results from a Riemann surface to the unoriented surface.
and further comments on this structure are provided in Ref. 2.

III. SPIN STRUCTURES ON MANIFOLDS

In this paragraph we find the necessary and sufficient conditions for the existence o
structures on manifolds, and enumerate the different spin structures. The definition of th
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structures as well as the equivalence relations between spin structures are explained in R
and 11. In this paper we use the alternative definition due to Hirsch10 because it is more suitabl
for our purposes.

Consider a differentiable manifoldM and a principal fiber bundle with structure groupG over
it. Let G be an SO~m,n! group andG̃ its double cover, i.e., its associated spin group. The m
part of the argument does not rely on the fact thatG is an SO~m,n! group. Thus we could assum
that it is any Lie group andG̃ its double cover. For the interpretation of the results, however,
must confine ourselves to the previous choice. As we said before, we can considerG̃ to be a
principal Z2 bundle overG. So we have the fibration

Z2 → G̃

↓
G

which gives the short exact sequence

1→Z2→G̃→G→1. ~4!

Let Gd ,G̃d be the sheaves of differentiable mapsM→G and M→G̃, respectively, andZ2,d the
constant sheaf. The short exact sequence given above yields the short exact sequence of

1→Z2,d→G̃d→
p

Gd→1. ~5!

It can be proved using the snake lemma,12 that the previous short exact sequence of sheaves g
rise to the following long exact sequence:

1→H0~M ;Z2!→H0~M ;G̃d!→
p0

H0~M ;Gd!→
d0

H1~M ;Z2!→H1~M ;G̃d!→
p1

H1~M ;Gd!

→
d1

H2~M ;Z2!,

wherep0 ,p1 are the maps induced byp in the category of cohomology modules overM andd i

are the transgressions

d i ; Hi~M ;Gd!→Hi 11~M ;Z2!.

These transgressions are called Bockstein homomorphisms. Their origin is essentially the f
Hi(M ; ) is a right derived functor. According to a definition due to Hirsch~for a proof of the
equivalence with the ordinary definition see Refs. 10 and 11! if PPH1(M ;Gd) then P is a
principal fiber bundle with structure groupG and similarly if P̃PH1(M ;G̃d) thenP̃ is a principal
fiber bundle with structure groupG̃d . If H2(M ;Z2)50 then anyPPH1(M ;Gd) is the image of a

P̃PH1(M ;G̃d). Conversely, ifp1( P̃)5P there is an induced mappingP̃→
p0

P which is two-to-
one. Thus anyP̃ determines a spin structure forp1( P̃). We have showed that a manifold admi
a spin structure if and only if its second Stiefel–Whitney class@i.e., an element ofH2(M ;Z2)]
vanishes.

In order to find the number of different spin structures on a spin manifold we conside
following construction.5,7,13,14 This construction also reproduces the result given above on
necessary and sufficient condition for the existence of spin structures. Let

0→S→A0→A1→¯→An→¯
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be a differential complex of sheaves over the manifoldM andCi(Aj ) be the canonical resolution
of each term of that sequence. We define a bicomplex of sheaves byK5C* (M ;A* )
5$Cp(M ;Aq)%, p,q>0 with the mappings

d8: CP~M ;Aq!→Cp11~M ;Aq!, d9: Cp~M ;Aq!→Cp~M ;Aq11!. ~6!

Consider the following filtration of that complex:

8Kr5(
q

(
p>r

Kpq

and let $Er
pq ,dr% be the spectral sequence corresponding to that filtration. In our caseS is the

constant sheafZ2 over the manifoldM. Let P be a principal fiber bundle overM with typical fiber
the groupG and consider the projection mapp: P→M . According to the Leray–Serre´ theorem
there is a spectral sequenceEr

pq that abuts toHr(M ;Z2). To be more specific, since the mapp:
P→M is proper, we define forq>0 the sheafp

*
q G which is being generated by the preshe

U→Hq(p21(U);E), whereE is the sheaf of differential functions onM. The sheafp
*
q Z2 has

stalks of the form

~p
*
q Z2!x5 lim

→
Hq~p21~U !;Z2!,

where lim→ is the direct limit. The spectral sequence that obeys the Leray–Serre´ theorem has
elements

E2
pq5Hp~M ;p

*
q Z2!. ~7!

If U is an element of an open cover ofM, thenU can be considered as topologically trivial an
from the local triviality condition for the principal fiber bundleP we havep21>U3G where>
stands for homeomorphism. Using Ku¨nneth’s formula we have

Hq~U3G;Z2!.H0~U;Z2! ^ Hq~G;Z2!.Z2^ Hq~G;Z2!.

The rest of the terms in Ku¨nneth’s formula are trivial becauseU is topologically trivial so
Hp(U;Z2)50, 1<p,q. Therefore

p
*
q ~Z2!5Z2^ Hq~G;Z2!.

Now consider

E2
015H0~M ;Z2^ H1~G;Z2!!.H0~M ;Z2! ^ H1~G;Z2!.Z2^ H1~G;Z2!.H1~G;Z2!.

Similarly we prove thatE2
10.H1(M ;Z2), E2

20.H2(M ;Z2). The r-order differential of a spectra
sequence has generally the following action on its elements:

dr : Er
pq→Er

p1r ,q2r 11.

In our case the second order differentiald2 acts as

d2 : E2
01→E2

20

and substituting the results we just found about the elements of this spectral sequence we

d2 : H1~G;Z2!→H2~M ;Z2!. ~8!
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The mapE`
01→E2

20 is a monomorphism because the filtration of the bigraded complexK induces
a filtration in the respective cohomology module complex. Then, by definition,9 the sequence

0→E`
01→E2

01 ~9!

is exact. Combining Eqs.~8! and ~9! we find that the sequence

0→E`
01→H1~G;Z2!→H2~M ;Z2! ~10!

is exact. For the filtration that we considered above for the bigraded complex one can see

H1~K !.H1~P;Z2!.

Let us call the image ofH1(K) in the zeroth element of the induced filtration on the cohomolo
modulesH1(K)0 and similarly we defineH1(K)1 , etc. We have the finite filtration

K5K0.K1.K250

which induces the following filtration on the induced complex of cohomology modules:

H1~K !5H1~K !0.H1~K !1.H1~K !250.

It is known though, from purely algebraic arguments, quite independent of the particular sp
sequence under consideration~the Leray–Serre´ spectral sequence in our case! that if K is a filtered
complex, then there exists a spectral sequence such that

E`
pq5Grp~Hp1q~K !!,

whereGrp(Hp1q(K))[Hq(K)p /Hq(K)p11 . Using this theorem for our case we have

E`
01.H1~K !/H1~K !1 , E`

105H1~K !1 .

Corresponding to this factorization statement we have the following sequence:

0→E`
10→H1~P;Z2!→E2

01→0. ~11!

Putting together the short exact sequences~10! and ~11! we find the exact sequence

0→H1~M ;Z2!→
i

H1~P;Z2!→
p

H1~G;Z2!→H2~M ;Z2!. ~12!

When the manifoldM admits a spin structureH2(M ;Z2) vanishes as we argued before. Then t
preceding exact sequence gives kerp5imi. But according to M. Hirsch’s definition stated before
its generality, an element ofH1(P;Z2) whose restriction to the fibers produces an elemen
H1(G;Z2) is a spin structure. Therefore, in order to have a spin structure the characteristic
s should not be an element of kerp. That means that the different spin structures are param
by elements of kerp. But according to the previous exact sequence kerp5imi5H1(M ;Z2). Thus
we proved that the number of inequivalent spin structures that a manifold with vanishing s
Stiefel–Whitney class admits is dimH1(M ;Z2).

SinceM in our case is the complex cover of the unoriented surface, the Leray-Serre´ exact
sequence descends to an exact sequence for the unoriented surface. In terms of a diag
following reduction is true
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0→H1~Mc ;Z2!→H1~Pc ;Z2!→H1~Gc ;Z2!→H2~Mc ;Z2!

↓ i c* ↓ i p* ↓ i G* ↓ i p**

0→H1~M ;Z2!→H1~P;Z2!→H1~G;Z2!→H2~M ;Z2!,

whereMc , M denote the double cover and the unoriented surface, respectively, andPc , P are the
principal fiber bundles with typical fibers the complexification ofG (Gc) andG respectively. The
maps i c* , i c** are induced on the modulesH1(Mc ;Z2) and H2(M ;Z2) by the inclusioni: M
→Mc . i p* is locally the induced map of the product mapi p5 i c3 i G , andi G is the inclusioni G :
G→Gc . In our caseG5SO~2! andP is a spin bundle overM. Similarly, Gc5SO~2!^ RC andPc

is a principal spinc bundle over the Riemann surfaceMc .
The reader may have noticed that the discussion, so far, has treated only the case of R

surfaces. For unoriented surfaces there is one major difference. The structure group of the
bundle of the surface is not SO~2! as in the oriented case but O~2!. The latter group is discon
nected, having two components one connected to the identity and another connected to21. Then
we expect the double covering of O~2! to be more complicated than just Spin~2!. Indeed, we can
straightforwardly prove that there are two distinct covers for O~2! which are called Pin1 and Pin2.
The obstruction to the existence of Pin2 turns out to bew21w1

2. In the case of unoriented surface
this is always equal to zero mod 2. So there is no obstruction for the existence of Pin2 Majorana
spinors on unoriented surfaces. In the case in which the double cover is Pin1 then the obstruction
is the same as for the existence of a spin structure on a Riemann surface, i.e., that the
Stiefel–Whitney classw2 vanishes. Since this condition is not trivially satisfied for all unorien
surfaces, it is the one which provides the constraints on the genus of the unoriented surfa
carries the Pin1 structure, and we will consider only that condition in what follows. The argume
for the unoriented case are so similar to those of the oriented case only for Pin1 structures. Which
type of spinors is realized in physical systems is model dependent and the predictions o
models have to be compared with experiment if we want to know whether our choice o
structure was right or not.

IV. THE CONNECTION WITH CLIFFORD ALGEBRAS AND INTERPRETATION

In interpreting these results physically, the first objectionable point is the use of the com
fied form of SO~2! in the Leray–Serre´ exact sequence over the Riemann surfaceMc . If this is the
case thenP would not be a spin bundle overM but a complexified spin bundle spinc. ~The
topological obstruction for the existence of a spinc bundle, namely that the third Stiefel–Whitne
classW3(Mc) should vanish is trivially satisfied here because dimMc52.) Following the local
discussion of the next paragraph we see that a Dirac spinor is, globally, a section of the ass
fiber bundle to the spin bundle whose typical fiber is the spaceVc that carries a representation o
Cl(n). This bundle is the same essentially, with the associated fiber bundle to a principalc

bundle overMc . This is why the use ofPc bundle in the Leray–Serre´ exact sequence overMc

does not cause any problems in the interpretation of the above results.
This statement is in accordance with the algebraic definition of Dirac and Majorana sp

using the theory of Clifford algebras. Indeed let Cl(n) be the real Clifford algebra inn dimensions
~we have assumed throughout this discussion that the metric of the manifold, and the corre
ing quadratic form of the Clifford algebra have been fixed!. Let V be a real vector space on whic
we are considering the irreducible representations of that algebra. Let Clc(n) and Vc be the
corresponding complexifications of the above-mentioned algebraic structures. As a Dirac
we define an element of an irreducible representation of Cl(n) on the vector spaceVc . This is
equivalent to considering an irreducible representation of Clc(n) on Vc . If n is an even integer~2
in our case! then Cl(n) is a simple algebra so there is one and only one irreducible represen
of it for given n on V. However, in that case there exists an isomorphismc between the irreducible
representation of the Clifford algebra onVc and its complex conjugate representation that co
mutes with all the elements of the algebra Clc(n). This isomorphism is either real or quaternion
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corresponding to the choices ofc such thatc251 or c2521, respectively~it can be proved that
these are the only allowed possibilities!. In the former case we define the vector spaceM5$c
PV : cc5c% and in the latter case the vector spaceM5$cPV : cc5 ic% to be the vector space
of Majorana fermions. This is in accordance with the elementary considerations of the 4-dim
algebra. It turns out that the unique irreducible representation of Clc(n) on V reduces to the direc
sum of two equivalent irreducible representations under the action ofc. In Physics we call one of
these two irreducible representations the space of Majorana spinors. All these are local co
ations however. When we attach these Clifford algebras to a manifoldM forming a Clifford
bundle we have the global restrictions that we discussed before.

V. THE NUMBER OF MAJORANA FERMIONS ON AN UNORIENTED SURFACE

Returning to the treatment of the complex cover of the unoriented surfaceM we observe that
sinceMc is unramified we have

H1~Mc ;Z2!5H1~M ;Z2! ^ H1~M ;Z2!.

So, in order to compute the number of different Majorana fermions on the unoriented surfa
in other words the order of the groupH1(M ;Z2) it suffices to computeH1(Mc ;Z2). This can be
done in a variety of ways. From the physicist’s viewpoint a spin structure can be fully specifi
the effect on the sign of a fermion when it is transported around a noncontractible loop o
manifold Mc . For a Riemann surface we can consider the canonical homology basis as
whose elements generate, through composition, any noncontractible loop. Therefore it suffi
examine the effect on the sign of a fermion when it is being transported around the elements
canonical homology basis. But the motion of a fermion on each cycle of that basis is indepe
of the motion on another cycle. So the effect would be the same for transporting a fermion a
each loop of the canonical homology basis. The possible signs of a fermion after it has tr
along such a loop form a group canonically isomorphic toZ2 . And since the canonical homolog
basis is a basis for the moduleH1(Mc ;Z) we have the conjecture that

H1~Mc ;Z2!5H1~Mc ;Z! ^ Z2

modulo possible torsion elements. The fact that this is indeed the case~all the torsion functors are
trivial! can be, more formally, justified as follows. By the universal coefficient theorem15,16we get
the isomorphism

H1~Mc ;Z2!.H1~M ;Z! ^ Z2^ Tor~H0~Mc ;Z!;Z2!. ~13!

SinceH0(Mc ;Z) is assumed to be path-connectedH0(Mc ;Z)50. Therefore

Tor~H0~Mc ;Z!;Z2!50.

For the same reason

Ext~H0~Mc ;Z!;Z2!50.

Having the torsion and extension functors trivial, by repeatedly applying the universal coeffi
theorem, we find

H1~Mc ;Z2!.Hom~H1~Mc ;Z!;Z2! % Ext~H0~Mc ;Z!;Z2!

.Hom~H1~Mc ;Z!;Z2!

.Hom~H1~Mc ;Z!;Z mod 2!

.Hom~H1~Mc ;Z!;Z!mod 2
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.H1~Mc ;Z!mod 2

.H1~Mc ;Z! ^ Z2

verifying our statement. Therefore

H1~Mc ;Z2!.H1~Mc ;Z! ^ Z2 ~14!

.Z2g
^ Z2 ~15!

.Z2
2g . ~16!

So the number of Majorana spinors on the unoriented surface is

dimH1~M ;Z2!5@dimH1~Mc ;Z2!#1/2 ~17!

52g. ~18!

We also know that the second Stiefel–Whitney class of any manifold~orientable or not! is the
reduction modulo 2 of its Euler characteristic.17 From the uniformization theorem for unoriente
surfaces9 we have thatx512g(M ). Therefore

w2~M !5x~M !mod 25@12g~M !#mod 2.

As we proved before in order for a manifold to admit spin structuresw2(M )50 which means in
our case thatg(M )52k11, k>0. This proves the statement first encountered in Ref. 1
Majorana fermions exist on a nonorientable surface if and only if the genus of that surface
odd integer. Besides we proved that the number of Majorana spinors in such a surface isg.

All the arguments given above are in accordance with the algebraic-geometric treatme
that context we consider all the holomorphic line bundles over the Riemann surfaceMc . These
bundles are classified by their degree and a point in the Picard variety Pic0(Mc) corresponding to
the set of flat line bundles. We know in physics that a spinor can be understood, roughly spe
as the square root of a vector. Someone would be tempted to suggest that a spinor bundle
considered as the square root of the canonical line bundle over the Riemann surface. The f
this is indeed the case, namely that ifK5T* Mc is the canonical line bundle ofMc andL is a spin
bundle, thenK5L2 has been proved in Ref. 18. It follows that

degK5degL252 degL.

We also know19 that

degV5E
Mc

c1~S!

for any line bundleSover the Riemann surfaceMc . Let gab be the induced metric onMc through
the uniformization theorem from the complex plane, the disk or the upper half plane and leR be
the corresponding Ricci scalar. For the special case of the canonical line bundleK we easily find
~for the unique torsion-free connection compatible with the induced metric! that

c1~K !52
1

4p
R.

Therefore
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deg~K !52
1

4p E
Mc

R52x52g22 ~19!

which is the Riemann–Hurwitz formula,20 and consequently

degL5g21.

This condition, as we mentioned before, does not specifyL uniquely. Indeed ifN is a line bundle
with degL50 then

deg~L ^ N!5degL1degN5degL.

In order forL ^ N to be a spin structure it should satisfy the condition (L ^ N)25K which implies
that N251, where 1 is the trivial holomorphic line bundle. This means that we have to con
the pointsN of the Picard variety Pic0(Mc) that satisfyN251. According to Abel’s theorem21

Pic0~Mc!.J~Mc!,

whereJ(Mc) is the Jacobian ofMc which is the maximal torus being generated by the latt
(V,I ) with V being the Riemann period matrix ofMc andI is the identity matrix. This means tha
generally

Pic0~Mc!.T2g5 ^ 2gS1.

As we argued before, the spin structures should satisfyN251 and the set of solutions to thi
equation is canonically isomorphic toZ2 . Therefore the spin structures form the groupZ2

2g in
agreement with the result that we found before using topological arguments.

VI. PARITY CLASSIFICATION OF THE MAJORANA FERMIONS

We can classify the elements ofH1(Mc ;Z2) in the following way. The spaceH1(Mc ;Z2) is
a natural symplectic space with an involutioni 8. That involution is induced in that module from
the mapi which is locally represented by the antianalytic map

i : z→ z̄,

acting on the Riemann surfaceMc . The symplectic formv on H1(Mc ;Z2) is given by the Weil
pairing

H1~Mc ;Z2!3H1~Mc ;Z2!→Z2 ~20!

which is the reduction modulo 2 of the Poincare dual to the intersection pairing

H1~Mc ;Z!3H1~Mc ;Z!→H2~Mc ;Z!. ~21!

BecauseM is orientable, by Poincare´ duality H2(Mc ;Z).H0(Mc ;Z).Z. It can be proved17 that
the parity of H0(Mc ;Z2) namely the fact that dimH0(Mc ;Z2)mod 2 is even or odd remain
invariant under analytic deformations of the Riemann surfaceMc . On the other hand, we ca
consider the quadratic formq associated to the symplectic formv through the relation

v~a,b!5q~a1b!2q~a!2q~b!.

According to Arf’s theorem20 given a regular quadratic space~in our case the quadratic form isq!
and a symplectic basisa1 ,...,ag ,b1 ,...,bg the sum~which is called the Arf invariant!
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(
i 51

g

q~ai !q~bi ! ~22!

is independent of the choice of the symplectic basis. In other words there are as many di
quadratic functions on a symplectic space as the different values of the Arf invariant. It c
proved that the Arf invariant, alone, classifies all the quadratic forms over perfect fields.22 Since
all finite fields are perfect all the possible quadratic forms overH1(Mc ;Z2) are classified by their
Arf invariant. It is not too difficcult to see that the possible values of the Arf invariant in our c
are 0 and 1. Using hyperelliptic curves and the fact that the moduli space of complex alg
curves is connected18 one can find that the dimensions of the eigenspaces corresponding to v
of the Arf invariant 0 and 1 are 2g21(2g11) and 2g21(2g21), respectively. Consider the Abel
Jacobi embedding of the manifold in its Jacobian. The elements of the Jacobian variety
manifold for which the Arf invariant is zero remain invariant under reflection and they are
even q characteristics. Similarly the elements of the Jacobian variety that correspond t
invariant 1 change their signs upon reflection and they are the oddq characteristics. They corre
spond to the even and odd spin structures, respectively, under the parity operation in the al
description of spinors. If we want to further refine our analysis we notice that the parity ope
is an isometry on the spaceH1(Mc ;Z2). Therefore the automorphism group ofH1(Mc ;Z2)
reduces from GL(Z2g) to O(Z2g). Accordingly the Arf invariant in our case can be reduced to
homomorphism

D: O~Z2
2g ,q!→Z2 ~23!

which is the Dickson invariant. Therefore the dimensions of the eigenspaces of the Di
invariant give the number of odd and even spin structures

As we discussed before, we can consider any unoriented surface as the quotient of a R
surface~its double cover! and the antianalytic involutioni which is locally expressed as a comple
conjugationz→ z̄. In order to calculate the number of odd and even real spin structures~Majorana
fermions! on the unoriented surface, we have to follow the prescription given above regardin
Dickson invariant of the Riemann surface and find the dimensions of the eigenspaces corre
ing to its values~0 and 1!. This can similarly be achieved by considering real hyperelliptic cur
and using the fact that the moduli space of real curves is connected.

In that section we outlined the classification of Majorana fermions on an unoriented su
with respect to their parity. In a second thought this appears to be an obviously meani
statement for the following reason. We know that the parity of a fermion is a multiple~up to a
factor of i wherei is the unit of the imaginary numbers! of the top element of the Clifford algebr
which in the Physics literature is often denoted byg5 . The eigenspaces of this operator when
acts on the Clifford algebra are the odd and even subspaces of the Clifford algebra. But sin
are working on an unoriented surface, this operator is not globally well defined. Indeed, if it
then it would specify an orientation in the tangent bundleTM of M and this subsequently woul
induce an orientation onM which is contrary to our assumption thatM is nonorientable. What ou
previous classification means is not that. Instead let us consider the space of left-handed
space of right-handed fermions at one point of the manifoldM. This specification is well defined
Let us transport an element of one of these two spaces~e.g., a left-handed fermion! around a
homotopically nontrivial loop of the manifold. Then becauseM is not orientable, the fermion will
end up at the same point with opposite chirality~i.e., a right-handed fermion!. At the same time
though, a right-handed fermion will leave its space and it will travel along a homotopi
equivalent loop to the set of the left-handed fermions. After that process has been comple
end up having the same number of fermions in both sets although their elements are differe
since these elements are indistinguishable particles the most that we can say, quantum m
cally speaking, is that these two sets have the same number of elements before and a
transportation process took place.
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This argument has the flavor of an underlying index theorem. This is not a coincidence,
it is truly an index theorem in a different disguise. Consider a real spin complex and a real
operator, i.e., a Weyl operator. This operator is skew-Fredholm on the space of pseudodiffe
operators of the spin complex. Therefore its index is identically zero. This is, in fact, generi
skew-Fredholm operators have index zero. So the Atiyah–Singer index theorem does not p
any new information about the topological properties of the manifold. It has been pr
however23 that in this case the dimension of the kernel of the Weyl operator mod 2 is a topolo
invariant. This mod 2 index is what we have to calculate in the parity classification of the M
rana fermions. One problem that arises in trying to carry out this task is that it is hard to cal
this index for reasons that are explained in Refs. 23 and 24. Moreover, we do not have a g
well-defined meaning for the Weyl operator on an unoriented surface. Therefore the straig
ward application of the index theorem does not give anything new, since it is not obvious wh
the theorem can be applied at all, in the first place.

It may be instructive though, to think about this situation in the following way. Roug
speaking, according to the discussion given in the first section of this note, we can cons
Majorana fermion on an unoriented surface to be the square root of a Dirac fermion on an or
surface. We know that the number of even Dirac fermions minus the number of odd
fermions on a Riemann surface is 2g. When we make the transition from the Dirac-type spin
bundle overMc to the Majorana-type spinor bundle overM we identify the points connecte
through the mapi p . This map essentially assigns to each Majorana fermion of one chirali
Majorana fermion of the opposite chirality. Therefore we expect that the real spin structure
M have the same number of odd and even elements.

VII. CONCLUSION

The treatment that we have given here is by no means the most general. The transitio
a Riemann surface to an unoriented surface through an unramified double covering may p
either a Riemann surface or an unoriented surface. Besides the result can be either a co
manifold or it may have many connected components. In our case though, we know that the
should be an unoriented surface, so we do not have to worry about the general case~which is
treated in detail in Refs. 22 and 25!.

We found the condition for the existence of Majorana fermions on an unoriented surface
number and parity classification, when they exist. We know that we cannot consistently de
Weyl spinor on an unoriented surface. It would be nice if we could somehow extend the me
of the Weyl spinor so that a consistent meaning could be given to it regardless of the orient
of the underlying manifold. This would allow us to formulate supersymmetry algebras on a
dim surface, which could be proved useful for the formulation of closed unoriented super
models. Besides that, the effective theory that we will get by integrating out the fermion fields
prove useful in understanding other systems that, as it has been conjectured, can be de
either at the fundamental or the effective level as theories of surfaces.
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Schlesinger transformations for elliptic isomonodromic
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Schlesinger transformations are discrete monodromy-preserving symmetry trans-
formations of the classical Schlesinger system. Generalizing well-known results
from the Riemann sphere we construct these transformations for isomonodromic
deformations on genus one Riemann surfaces. Their action on the system’s tau-
function is computed and we obtain an explicit expression for the ratio of the old
and the transformed tau-function. ©2000 American Institute of Physics.
@S0022-2488~00!04505-9#

I. INTRODUCTION

The theory of isomonodromic deformations of ordinary matrix differential equations of
type

dC

dl
5A~l!C, ~1.1!

whereA(l) is a matrix-valued meromorphic function onC̄, is a classical area intimately related
the matrix Riemann–Hilbert problem on the Riemann sphere. Over the last 20 years th
become a powerful tool in areas like soliton theory, statistical mechanics, theory of ra
matrices, quantum field theory, etc. The main object associated with the isomonodromic de
tion equations is the so-calledt-function which turns out to be closely related to the Fredho
determinant of certain integral operators associated to the Riemann–Hilbert problem. Aft
classical work of Schlesinger1 the major contributions to the development of the subject w
made in the papers of Jimbo, Miwa, and their collaborators in the early 1980s.2–5

There are only a few cases where the matrix Riemann–Hilbert problem may be solve
plicitly in terms of known special functions~in addition to the mentioned papers of the Kyo
school, see also the recent work6,7 where certain classes of solutions were obtained using
theory of theta-functions!. However, as was already discovered by Schlesinger himself, t
exists a large class of transformations which allows us to get an infinite chain of new solu
starting from the known ones. They share the characteristic feature that they shift the eigen
of the residues of the connectionA(l) in ~1.1! by integer or half-integer values, thus changing t
associated monodromies by sign only. These transformations—nowadays called Schl

a!Present address: Department of Mathematics and Statistics, Concordia University, 7146 Sherbrooke W., Montre´al, Qué-
bec, H4B 1R6, Canada. Electronic mail: korotkin@aei-potsdam.mpg.de

b!Electronic mail: nmanoj@mozart.si.ualg.pt
c!UMR 8548: UnitéMixte de Recherche du Centre National de la Recherche Scientifique et de l’Ecole Normale S´r-
ieure. Electronic mail: henning@lpt.ens.fr
31250022-2488/2000/41(5)/3125/17/$17.00 © 2000 American Institute of Physics
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transformations—were systematically studied in Refs. 4 and 5. In particular, it turns out that
written in terms of thet-functions the superposition laws of these transformations provide a
supply of discrete integrable systems.

The natural question of generalizing the theory of isomonodromic deformations on the s
to higher-genus surfaces was addressed by several authors. Here, we mention the contribu
Okamoto8,9 and Iwasaki.10

For the case of the torus, recently two different explicit forms of isomonodromic deforma
were proposed. In Ref. 11, two of the present authors studied isomonodromic deformati
non-single-valued meromorphic connection on the torus whose ‘‘twists’’@which determine the
transformation of the connectionA(l) with respect to tracing along basic cycles of the torus# vary
with respect to the deformation parameters. The isomonodromic deformation equations fo
connections hence contain transcendental dependence on the dynamical variables, which m
difficult to analyze this system in a way analogous to the Schlesinger system on the sphere.
other hand, Takasaki12 considered connections on the torus whose twists remain invariant
respect to the parameters of deformation. In Takasaki’s form, the equations of isomonod
deformations have already the same degree of nonlinearity as the ordinary Schlesinger sy

The purpose of the present paper is the extension of the notion of Schlesinger transform
from the Riemann sphere to the isomonodromy deformation equations on the torus with co
twists ~we call this the elliptic Schlesinger system!. In particular, in analogy to the ordinar
Schlesinger system, it turns out to be possible to derive the action of elliptic Schlesinger tra
mation on thet-function. Thereby, we realize the first steps of the program to extend the resu
Refs. 3–5 to the elliptic case. Throughout, we restrict to the caseA(l)Psl(2,C).

The paper is organized as follows. In Sec. II we review the framework of isomonodr
deformations on the sphere and reproduce some facts about the Schlesinger transformation
Riemann sphere in a form convenient for generalization to the elliptic case. In Sec. III we de
the elliptic Schlesinger system with constant twists. In particular, we find the simple formu

Hm52
1

2p i Ra
tr A2~l! dl, ~1.2!

for the Hamiltonian which generates the isomonodromic evolution with respect to the modulem of
the torus. This evolution is hence of the same type as the isomonodromic evolution with res
the position of the singularitiesl j of A(l), which is generated by the contour integrals

H j5
1

4p i Rl j

tr A2~l! dl. ~1.3!

Generalizing the construction from the Riemann sphere we subsequently implement the
Schlesinger transformations.

Finally, in Sec. IV we determine the action of the elliptic Schlesinger transformations o
t-function of the system. The transformedt-function t̂ differs from the old one by a factor which
may be explicitly integrated in terms of the characteristic parameters of the solutionC of ~1.1!.
For elementary elliptic Schlesinger transformations which shift the eigenvalues of the resid
A(l) in two singularitieslk andl l by 1/2, the main result is given by Theorem 4.1 below:

t̂~$l j%,m!5H Fw1w2w3S lk2l l

2 D G1/2

det@GJ1/2#J • t~$l j%,m!, ~1.4!

with certain elliptic functionswA , and whereJ andG are parameters in the local expansion of t
solutionC to ~1.1! around the singularitieslk andl l , to be defined explicitly later.
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II. ISOMONODROMIC DEFORMATIONS ON THE RIEMANN SPHERE AND SCHLESINGER
TRANSFORMATIONS

A. Schlesinger system on the Riemann sphere

Consider the following ordinary linear differential equation for a matrix-valued func
C(l)PSL(2,C):

dC

dl
5A~l! C, A~l![(

j 51

N
Aj

l2l j
, ~2.1!

where the residuesAjPsl(2,C) are independent ofl. Regularity atl5` requires

(
j 51

N

Aj50, ~2.2!

and allows us to further impose the initial conditionC(l5`)5I . The matrixC(l) defined in
this way lives on the universal coveringX of CP1\$l1 , . . . ,lN%. Its asymptotical expansion nea
the singularitiesl j is given by

C~l!5GjC j• ~l2l j !
Tj Cj , ~2.3!

with Gj , Cj PSL(2,C) constant,C j5I 1O(l2l j )PSL(2,C) holomorphic aroundl5l j , and
where Tj is a traceless diagonal matrix with eigenvalues6t j . The residuesAj of ~2.1! are
encoded in the local expansion as

Aj5Gj Tj Gj
21 . ~2.4!

Upon analytical continuation aroundl5l j , the functionC(l) in CP1\$l1 , . . . ,lN% changes by
right multiplication with some monodromy matricesM j :

C~l!→C~l! M j ,
~2.5!

M j5Cj
21 e2p iT j Cj .

In the sequel we shall consider the generic case when none oft j is integer or half-integer.
The assumption of independence of all monodromy matricesMi of the positions of the

singularitiesl j : ]Mi /]l j50 is called the isomonodromy condition; it implies the followin
dependence ofC(l) on l j

]C

]l j
52

Aj

l2l j
C, ~2.6!

as follows from~2.3! and normalization ofC(l) at `. Compatibility of ~2.1! and ~2.6! then is
equivalent to the classical Schlesinger system1

]Aj

]l i
5

@Aj , Ai #

l j2l i
, iÞ j ,

]Aj

]l j
52(

iÞ j

@Aj , Ai #

l j2l i
~2.7!

describing the dependence of the residuesAj on thel i . Obviously, the eigenvaluest j of theAj are
integrals of motion of the Schlesinger system. The functionsGj accordingly have the following
dependance:3

]Gj

]l i
5

AiGj

l i2l j
, iÞ j ,

]Gj

]l j
52(

iÞ j

AiGj

l i2l j
, ~2.8!
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which obviously implies~2.7!.
To introduce the notion of thet-function for the Schlesinger system, one defines the Pois

structure

$Ai
A , Aj

B%5d i j «ABC Aj
C ~2.9!

on the residuesAj ~A,B,C denotingsl(2) algebra indices with the completely antisymmet
structure constants«ABC!. For later usage, we rewrite this as

$A
1

~l!, A
2

~l8!%5@r ~l2l8!,A
1

~l!1A
2

~l8!#, ~2.10!

where for arbitrary matricesAab, Bab we have defined

A
1

[Aacdbd, A
2

[Abddac, $A
1

,B
2

%ab,cd[$Aac,Bbd%,

and the rationalr -matrix is given by~see Ref. 13 for a general discussion of classicalr -matrix
theory!

r ab,cd52daddbc2dacdbd. ~2.11!

Equations~2.7! form a multi-time Hamiltonian system2 with respect to this Poisson structu
where the Hamiltonians are given by

Hi5
1

4p i Rl i

tr A2~l! dl5
1

2 (
j Þ i

tr AiAj

l j2l i
. ~2.12!

Explicitly, ~2.7! takes the form

]Aj

]l i
5$Hi ,Aj%, ~2.13!

and all the HamiltoniansH j Poisson commute.
Thet-functiont($l j%) of the Schlesinger system then is defined as the generating functi

the Hamiltonians

] ln t

]l j
5H j , ~2.14!

where compatibility of these equations follows from~2.7!. This t-function is closely related to the
Fredholm determinant of a certain integral operator associated to the Riemann–Hilbert pr
~see Ref. 14 for details!.

B. Schlesinger transformations

Schlesinger transformations are symmetry transformations of the Schlesinger system~2.7!
which map a given solution̂Aj ($l i%)‰ to another solution̂Âj ($l i%)‰ with the same number an
positions of polesl j such that the related eigenvaluest j are shifted by integer or half-intege
valuest j→t j1nj /2, njPZ. The monodromy matricesM j hence remain invariant or change sig
under this transformation. To be brief, we do not consider Schlesinger transformations inv
the pointl5`. Moreover, we shall restrict ourselves to elementary Schlesinger transforma
which change only twot j ’s, say, tk and t l for kÞ l by 6 1

2. The transformed variables will be
denoted byĈ, Âj , t̂ j , etc. Without loss of generality we consider the case
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t̂ j5H t j1
1
2 for j 5k,l ,

t j otherwise
. ~2.15!

Our presentation here mainly follows Ref. 15. For the transformed functionĈ we make the ansatz

Ĉ~l!5F~l! C~l!, ~2.16!

with

F~l!5Al2lk

l2l l
S11Al2l l

l2lk
S2 , ~2.17!

where the matricesS6 do not depend onl and are uniquely determined by15

S6
2 5S6 , S11S25I , S1 Gl

15S2 Gk
150. ~2.18!

By Gj
a here we denote theath column of the matrixGj (a51,2). Combining the columnsGk

1 and
Gl

1 into a 232 matrix

G5~Gk
1,Gl

1!, ~2.19!

we can deduce from~2.18! the following simple formula forS6 :

S65G P6G21, ~2.20!

with projection matrices

P15S 1 0

0 0D , P25S 0 0

0 1D .

It is easy to check using the local expansion ofC at the singularitiesl j in ~2.3! and the defining
relations forS6 in ~2.20! that the transformed functionĈ at l j has a local expansion of the form
~2.3! with the same matricesCj and the desired transformation~2.15! of the t j . The matricesGj

change to new matricesĜj . Thus,Ĉ satisfies the system

]Ĉ

]l
5(

j 51

N
Âj

l2l j
Ĉ,

]Ĉ

]l j
52

Âj

l2l j
Ĉ, ~2.21!

where the functionsÂj ($l i%) build a new solution of the Schlesinger system~2.7!.
On the level of the residuesAj , the form of the Schlesinger transformation is not ve

transparent; however, it turns out that the associatedt-function transforms in a rather simple wa
Namely, forĈ we find

tr Â25tr A212 tr FF21
dF

dl
AG1tr FF21

dF

dl G2

.

The HamiltoniansH j for j Þk,l hence transform as

Ĥ j2H j5S 1

l j2lk
2

1

l j2l l
D tr @AjS1#

5
tr @AjGP1G21#

l j2lk
1

tr @AjGP2G21#

l j2l l

5
~2.8!

tr F ]G

]l j
G21G5

]

]l j
$ ln detG%. ~2.22!
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Therefore, the transformedt-function t̂ is given by t̂5 f (lk ,l l) detG • t with some function
f (lk ,l l) to be determined from the transformation ofHk , Hl . In analogy to the above we find
that

Ĥk2Hk5(
j Þk

tr @AjS1#

lk2l j
2

tr @AkS1#

lk2l l
2

1

2~lk2l l !
5

]

]lk
ln detG2

1

2~lk2l l !
, ~2.23!

and similarly for Hl . This yields the following formula describing the action of element
Schlesinger transformation~2.15! on thet-function:

t̂~$l j%!5$~lk2l l !
21/2detG% • t~$l j%!. ~2.24!

Remark 2.1:The other elementary Schlesinger transformations like

t̂ j5H t j1
1
2 for j 5k,

t j2
1
2 for j 5 l ,

t j otherwise,

~2.25!

etc., may be obtained in a similar way by building the matrixG from Gk
1 andGl

2 instead of~2.19!,
etc. Moreover, all such transformations with differentk andl may be superposed to get the gene
Schlesinger transformation which simultaneously shifts an arbitrary number of thet j by some
integer or half-integer constants. These general transformations were studied in detail in
3–5. In their framework, detG from ~2.24! is introduced as particular matrix element (Gk

21Gl)12

~an identity which holds for 232 matrices!.
Remark 2.2:Carefully comparing~2.24! to the result of Ref. 4, we find an additional factor

(lk2l l)
21/2. This is due to the fact that we treat thesl(2,C) case rather than thegl(2,C) case

which is done in Ref. 4. Indeed, this amounts to a simple renormalization of theC-function by,
e.g.,A(l2lk)/(l2l l) after the Schlesinger transformation~2.15!, which generates precisely thi
additional factor.

III. SCHLESINGER TRANSFORMATIONS FOR ISOMONODROMIC DEFORMATIONS ON
THE TORUS

In this section, we generalize the construction of Schlesinger transformations described
to the case of genus one Riemann surfaces. To this end we first review some basic
functions and subsequently the isomonodromic deformations on the torus in the setting of R

A. Some elliptic functions

The elliptic theta-function with characteristic@p,q# (p,qPC) on a torusE is defined by the
series

q@p,q#~lum!5 (
mPZ

ep im(m1p)212p i(m1p)(l1q). ~3.1!

Let us introduce on the torusE the standard Jacobi theta-functions:

q1~l![2q@ 1
2,

1
2#~lum!,

q2~l![q@ 1
2, 0#~lum!,

~3.2!
q3~l![q~l![q@0, 0#~lum!,

q4~l![q@0, 1
2#~lum!,
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and corresponding theta-constants

q j[q j~0!, j 52,3,4.

We define the following three combinations of Jacobi theta-functions:

w1~l!5pq2q3

q4~l!

q1~l!
, w2~l!5pq2q4

q3~l!

q1~l!
, w3~l!5pq3q4

q2~l!

q1~l!
. ~3.3!

All these functions have simple poles atl50 with residue 1. Moreover, they possess the follo
ing periodicity properties:

w1~l11!52w1~l!, w1~l1m!5w1~l!,

w2~l11!52w2~l!, w2~l1m!52w2~l!, ~3.4!

w3~l11!5w3~l!, w3~l1m!52w3~l!.

In the sequel we shall also need the following functionsZA :

Z15
w1

2p i

q48~l!

q4~l!
, Z25

w2

2p i

q38~l!

q3~l!
, Z35

w3

2p i

q28~l!

q2~l!
, ~3.5!

with the following periodicity properties:

Z1~l11!52Z1~l!, Z1~l1m!5Z f1~l!2w1 ,

Z2~l11!52Z2~l!, Z2~l1m!52Z2~l!1w2 , ~3.6!

Z3~l11!5Z3~l!, Z3~l1m!52Z3~l!1w3 .

It is easy to verify the identity

dwA

dm
~l!5

dZA

dl
~l!. ~3.7!

Let us check this for example, forA51. Both sides of~3.7! are holomorphic inE. Moreover, from
the periodicity properties ofw1 andZ1 we have

dZ1

dl
~l11!52

dZ1

dl
~l!,

dZ1

dl
~l1m!5

dZ1

dl
~l!2

dw1

dl
~l!.

Therefore, the differencedw1 /dm2dZ1 /dl is holomorphic inE, invariant with respect to the
m-shifts of l and changes sign with respect to unit shifts ofl. It hence vanishes and~3.7! is
fullfilled.

Let us list some further useful properties of the functionswA andZA :

~i! The functionswA may be represented as ratios of Jacobi’s elliptic functions as follow

w1~l!5
1

sn~l!
, w2~l!5

dn~l!

sn~l!
, w3~l!5

cn~l!

sn~l!
. ~3.8!

~ii ! The functionswA satisfy the following differential equation,
dw1~l!

dl
52w2~l!w3~l!, ~3.9!

and cyclic permutations thereof. This relation may be easily proved comparing the beh
at l50 and the twist properties of both sides of~3.9!.
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~iii ! The functionswA satisfy the following summation theorem which easily follows from t
summation theorem for Jacobi functions,

w1~l1l8!2w1~l2l8!5
2w1~l8!w2~l!w3~l!

w1
2~l!2w1

2~l8!
, ~3.10!

and cyclic permutations thereof. Atl5l8 this relation implies

2w1~2l!5
]

]l
ln S w1

w2w3
D. ~3.11!

~iv! For any values ofA, B , the difference of squareswA
2 (l)2wB

2(l) is independent ofl, as
follows from its single-valuedness and holomorphy onE. From the well-known relations
between the squares of Jacobi elliptic functions we find more precisely thatw1

2(l)
2w2

2(l)5x, w1
2(l)2w3

2(l)51 wherex5x(m) is the module parameter of the torusE
which arises from realizing the torus as two-sheet covering of the complex plane
branch points 0,1,x,`.

~v! The previous property in particular implies that the expressionwA
2 (l)2wA

2 (l8) does not
depend onA for any values ofl andl8.

~vi! We have the following formula for integration of the product of two functionswA along the
basica-cycle of the torusE

R
a
wA~l2l1!wA~l2l2! dl52p i ZA~l12l2!. ~3.12!

This formula can be verified by checking the analyticity and periodicity properties of
sides in, say, thel1-plane.

B. Isomonodromic deformations on the torus

Consider the elliptic curveE with periods 1 andm together with the canonical basis of cycle
(a,b). A ~naive! straightforward generalization of the idea of isomonodromic deformations f
the complex plane to the torusE runs into difficulties related to the absence of meromorp
functions on the torus with just one simple pole. An independent variation of the simple po
a meromorphic connectionA on the torus preserving the monodromies around the singular
and basic cycles is impossible for the following simple reason. Existence of such a deform
would imply a version of~2.6! with the functionAj /(l2l j ) on the rhs being substituted by
meromorphic function with only one simple pole on the torus, which gives rise to the contr
tion. Therefore, one of the underlying assumptions has to be relaxed.

For example, one may consider the case where not all the poles of the connectionA are varied
independently. Another possibility is the assumption that some of the poles ofA are of order
higher than one.9 A third alternative which we shall consider here is to relax the condition
single valuedness of the connectionA on E and assume thatA has ‘‘twists’’ with respect to
analytical continuation along the basic cyclesa andb, i.e.,

A~l11!5QA~l!Q21, A~l1m!5RA~l!R21,

where the matricesQ,R do not depend onl. By a gauge transformation of the formA
→SAS211dSS21 with S holomorphic but possibly multi-valued, one may bring the connec
into a form whereQ5I andR5eks3, wheresA denote the Pauli matrices:

s15S 0 1

1 0D , s25S 0 i

2 i 0 D , s35S 1 0

0 21D .

The equations of isomonodromic deformations with this choice of the twist were consider
Ref. 11 where the multi-valuedness ofA had a natural origin in the holomorphic gauge fixing
Chern–Simons theory on the punctured torus. The resulting equations, however, are rathe
plicated in comparison with the Schlesinger system on the sphere. This is due to the fact t
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twist k itself becomes a dynamical variable, i.e., changes under isomonodromic deformation
in generic situation has a highly nontriviall j dependence. Therefore, instead of being bilin
with respect to the dynamical variables, this Schlesinger system on the torus becomes
transcendental.

An alternative form of the elliptic Schlesinger system was proposed by Takasaki12 who
considered the restrictionQ5s3 , R5s1 , related to the classical limit of Etingof’s elliptic versio
of the Knizhnik–Zamolodchikov–Bernard system on the torus.16–18 This choice of fixing the
twists turns out to be compatible with the isomonodromic deformation equations, therefore
tially simplifying the dynamics as compared to Ref. 11. It results into studying isomonodr
deformations of the system

dC

dl
5A~l!C,

~3.13!

A~l![(
j 51

N

(
A51

3

Aj
A wA~l2l j ! sA ,

with lPC and functionswA from ~3.3!. The connectionA(l) obviously has only simple poles o
E and the following twist properties, cf.~3.4!,

A~l11!5s3 A~l! s3 , A~l1m!5s1 A~l! s1 . ~3.14!

Since the residues of allwA at l50 coincide, the residue ofA(l) at l j is

Aj[(
A

Aj
A sA .

As in the case of the Riemann sphere, the functionC has regular singularities atl5l j with the
same local properties~2.3!–~2.5!. The twist properties ofC take the form

C~l11!5 is3C~l!Ma C~l1m!5 is1C~l!Mb , ~3.15!

with monodromy matricesMa , Mb along the basic cycles of the torus. Moreover, as in the c
of Riemann sphere,C(l) has monodromiesM j around the singularitiesl j .

The isomonodromy condition on the torus implies that all monodromiesM j , Ma , andMb are
independent of the positions of singularitiesl j and the modulem of the torus. As on the Rieman
sphere, this implies that the function]C/]l j C21 has the only simple pole atl5l j with residue
2Aj . In addition, it has the following twist properties:

]C

]l j
C21~l11!5s3

]C

]l j
C21~l! s3 ,

]C

]l j
C21~l1m!5s1

]C

]l j
C21~l! s1 .

Therefore,

]C

]l j
52 (

A51

3

Aj
A wA~l2l j !sA C. ~3.16!

To derive the equation with respect to modulem we observe that]C/]m C21 is holomorphic at
l5l j ~but not atl5l j1m! and has twist properties
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]C

]m
C21~l11!5s3

]C

]m
C21~l! s3 ,

]C

]m
C21~l1m!5s1 S ]C

]m
C21~l!2

]C

]l
C21~l! D s1 .

Taking into account the periodicity properties of the functionsZA in ~3.6!, this hence implies

]C

]m
5(

j 51

N

(
A51

3

Aj
A ZA~l2l j ! sAC. ~3.17!

The compatibility conditions of the equations~3.13!, ~3.16!, and ~3.17! then yield thel i and m
dependence of the residuesAj . The result is summarized in the following.

Theorem 3.1:12 Isomonodromic deformations of the system (3.13) are described by the
lowing elliptic version of the Schlesinger system:

dAj

dl i
5FAj , (

A51

3

Ai
AwA~l j2l i ! sAG , iÞ j ,

dAj

dl j
52(

iÞ j
FAj , (

A51

3

Ai
AwA~l j2l i ! sAG , ~3.18!

dAj

dm
52(

i 51

N FAj , (
A51

3

Ai
AZA~l j2l i ! sAG .

h

The corresponding equations for the matricesGj from ~2.3! take a form analogous to th
equations~2.8! on the Riemann sphere:

]Gj

]l i
5(

A
Ai

AwA~l i2l j ! sAGj ,
]Gj

]l j
52(

i 51

N

(
A

Ai
AwA~l i2l j ! sAGj . ~3.19!

The system~3.18! admits a multi-time Hamiltonian formulation with respect to the Poisson st
ture ~2.9! on the residues

$Ai
A ,Aj

B%5d i j «ABC Aj
C.

This is summarized as follows.
Theorem 3.2:The elliptic Schlesinger system (3.18) is a multi-time Hamiltonian system

respect to the Poisson bracket

$A
1

~l!,A
2

~l8!%5@r ~l2l8!,A
1

~l!1A
2

~l8!#, ~3.20!

with the elliptic classical r-matrix r given by

r ~l!5(
A

wA~l!sA

1

sA

2

.

The Hamiltonians describing deformation with respect to the variablesl i and to the modulem of
the torus are respectively given by
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Hi5
1

4p i R
l i

tr A2~l!dl5(
j Þ i

(
A

Aj
AAi

AwA~l j2l i !, ~3.21!

Hm52
1

2p i R
a
tr A2~l!dl52(

i , j
(
A

Ai
AAj

AZA~l i2l j !, ~3.22!

and mutually Poisson commute.
This follows from straightforward calculation. The representation ofHm as contour integral

along the basica-cycle in ~3.22! may be derived using the relations~3.12!. The fact that all
Hamiltonians Poisson commute is a direct consequence of

$ tr A2~l!,tr A2~l8! %50, ~3.23!

which in turn follows immediately from~3.20!. h

Now we are in position to define thet-function of the elliptic Schlesinger system~3.18! as
generating functiont($l j%,m) of the Hamiltonians

] ln t

]l j
5H j ,

] ln t

]m
5Hm , ~3.24!

whereby it is uniquely determined up to an arbitrary (m,$g j%)-independent multiplicative constan
As ususal, consistency of this definition is a corollary of the elliptic Schlesinger system.

C. Schlesinger transformations for elliptic isomonodromy deformations

The natural generalization of the notion of Schlesinger transformations on the Riemann
as introduced above to the elliptic case is the following. Starting from any solution of the el
Schlesinger system~3.18! with associated functionC satisfying~3.13! and ~3.15! we construct a
new solutionÂj , Ĉ with eigenvaluest̂ j which differ from thet j by integer or half-integer values
In particular, we will consider the elliptic analog of the elementary Schlesinger transform
~2.15! on the Riemann sphere. The following construction is inspired by Refs. 19 and 20.

As a natural elliptic analog of the functionF(l) from ~2.17! we shall choose the following
ansatz,

F~l!5
f ~l!

Adetf ~l!
,

~3.25!

f ~l!5
1

2
1 (

A51

3

JA wAS l2
1

2
~lk1l l ! D sA ,

where the functionsJA(l j ,m) depend onGk andGl and will be defined below. We formulate th
result of this section in the following.

Theorem 3.3:Let the functionŝAj ($l i%)‰ satisfy the elliptic Schlesinger system (3.18) w
twist properties (3.14) and let the functionC satisfy the associated linear system (3.13). For t
arbitrary noncoinciding poleslk and l l , define the new function

Ĉ~l![F~l!C~l!, ~3.26!

with F(l) from formula (3.25) withl-independent coefficients JA defined by

(
A

JA wAS 1

2
~lk2l l ! D sA[2

1

2
G s3 G21, ~3.27!
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where as above we denote by G the matrix (2.19) containing the first columns of the matrick

and Gl .
The functionĈ(l) then satisfies the equations~3.13!, ~3.16!, and~3.17! and the twist condi-

tions ~3.15! with the transformed functions

Âj~$l i%![resl5l j
H dĈ

dl
Ĉ21J . ~3.28!

In turn, the functions Aˆ
j satisfy the elliptic Schlesinger system (3.18). For the eigenvalues tj we

have

t̂ j5H t j1
1
2 for j 5k,l ,

t j otherwise
.

The monodromy matrices Mˆ
j , M̂a and M̂b of the functionĈ coincide with the monodromies ofC,

except for M̂k52Mk and M̂l52Ml .
Proof: The proof consists of two parts. The first part is to check that locally in the neighb

hoods of the singularitiesl j the situation looks exactly like the situation on the Riemann sph
The second~global! part is to check that no new singularities arise apart from thel j and that the
new functionĈ satisfies the required twist conditions~3.15!.

The proper local behavior of functionĈ is ensured by the relations

S6
2 5S6 , S11S25I , S1Gl

15S2Gk
150; ~3.29!

for

S6[
1

2
7(

A
JAwAS 1

2
~lk2l l ! D sA5G P6G21,

which in complete analogy to~2.18! describe annihilation of the vectorsGk
1 and Gl

1 by the
matricesf (lk) and f (l l), respectively. Obviously, Eqs.~3.29! are a consequence of~3.27!. Simi-
larly to the case of the sphere, it is then easy to verify that~3.29! provide the required asymptotica
expansions~2.3! for the functionĈ with parametersĜj , Cj , and t̂ j .

Concerning the global behavior ofĈ we note that the prefactor„detf(l)…21/2 in ~3.25! pro-
vides the condition detĈ51 and kills the simple pole off (l) at l5(lk1l l)/2. Therefore, the
only singularities ofF(l) on E are the zeros of detf(l). Since detf(l) has only one pole—this is
the second order pole atl5(lk1l l)/2— it must have also two zeros onE whose sum according
to Abel’s theorem equalslk1l l . According to~3.29! these are preciselylk andl l . It remains to
check thatĈ satisfies conditions~3.15! with the same matricesMa andMb . This follows from the
twist properties

f ~l11!5s3 f ~l! s3 , f ~l1m!5s1 f ~l! s1 ,

which in turn is a consequence of~3.25! and the periodicity properties~3.4! of the functions
wj (l). h

IV. THE ACTION OF ELLIPTIC SCHLESINGER TRANSFORMATIONS ON THE
t -FUNCTION

In this section we shall present and prove the elliptic analog of formula~2.24! describing the
transformation of thet-function under the action of elliptic Schlesinger transformations.
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Theorem 4.4: The t-function t̂ corresponding to the Schlesinger-transformed solutionˆ
j

(3.28) of the elliptic Schlesinger system is related to thet-function corresponding to the solutio
Aj as follows

t̂~$l j%,m!5H Fw1w2w3S lk2l l

2 D G1/2

det@GJ1/2#J • t~$l j%,m!, ~4.1!

where G is the matrix~2.19! containing the first columns of the matrices Gk , Gl ; J is the matrix

J[ (
A51

3

JAsA

and the functions JA are defined in terms of G via (3.27).
Proof: We start noting that

(
A

FJA wAS 1

2
~lk2l l ! D G2

5
1

4
, ~4.2!

as follows from taking the determinant of~3.27!. In particular, this shows that upon replacin
wA(l)→1/l, formula ~4.1! indeed reproduces the result for the Riemann sphere~2.24!.

The proof of~4.1! according to the definition of thet-function ~3.24! now consists of three
parts; it has to be checked that

Ĥ j2H j5
]

]l j
ln H F (

A51

3

JA
2 G1/2

detGJ for j Þk,l , ~4.3a!

Ĥk2Hk5
]

]lk
ln H Fw1w2w3S 1

2
~lk2l l ! D (

A51

3

JA
2 G1/2

detGJ , ~4.3b!

Ĥm2Hm5
]

]m
ln H Fw1w2w3S 1

2
~lk2l l ! D (

A51

3

JA
2 G1/2

detGJ . ~4.3c!

To obtain the lhs of these equations we make use of the representation of the Hamiltoni
contour integrals~3.21! and ~3.22! and compute the difference:

tr Â22tr A252 tr FF21
dF

dl
AG1tr FF21

dF

dl G2

. ~4.4!

It is

F21
dF

dl
52

2

124(A~JAwA!2 S (
a

JAwA8sA2 i (
A,B,C

«ABCJBJCwA~wB
22wC

2 !sAD
3~l2 1

2~lk1l l !!,

where all the elliptic functionswA on the rhs are taken at the argumentl2 1
2(lk1l l). Making use

of ~3.9!, ~3.10!, ~4.2!, and the fact that the combinationwA
2 (l)2wA

2 (l8) does not depend on A
this expression simplifies to
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F21
dF

dl
52

1

4(A~JA
2 ! (A JA

wA~l2lk!2wA~l2l l !

wA„
1
2~lk2l l !…

sA

2
i

4(A~JA
2 ! (

A,B,C
«ABCJBJC~wB

22wC
2 !

wA~l2lk!1wA~l2l l !

wBwC„
1
2~lk2l l !…

sA . ~4.5!

The argument in the combinationswB
22wC

2 has been skipped since they arel-independent.
Let us start by proving~4.3a!. According to~4.4! and ~4.5! we find that

Ĥ j2H j52
1

2(A~JA
2 ! (A JAAj

A wA~l j2lk!2wA~l j2l l !

wA„
1
2~lk2l l !…

2
i

2(A~JA
2 ! (

A,B,C
«ABCAj

AJBJC~wB
22wC

2 !
wA~l j2lk!1wA~l j2l l !

wBwC„
1
2~lk2l l !…

. ~4.6!

This should be compared to the rhs of~4.3a!. From ~3.19! we find that

]G

]l j
5(

A
Aj

AsA$wA~l j2lk!GP11wA~l j2l l !GP2%.

Thus,

]

]l j
$ ln detG%5tr F ]G

]l j
G21G522(

A
Aj

AJAwAS 1

2
~lk2l l ! D „wA~l j2lk!2wA~l j2l l !….

~4.7!

It is slightly more complicated to calculate the first term in the rhs of~4.3a!. Equations~3.27! and
~3.19! imply that

2(
A

]JA

]l j
wAS 1

2
~lk2l l ! DsA52

]

]l j
$Gs3G21%

52(
A

Aj
A~wA~l j2lk!S22wA~l j2l l !S1!sA

1Gs3G21(
A

Aj
A
„wA~l j2lk!S22wA~l j2l l !S1…sA . ~4.8!

ReexpressingGs3G21 andS6 in terms ofJA according to~3.27! and ~3.29!, we get after some
calculation

]

]l j
(
A

JA
2 52(

A
JAAj

A wA~l j2lk!2wA~l j2l l !

wA„
1
2~lk2l l !…

X124wA
2 S 1

2
~lk2l l ! D(

B
JB

2C
2 i (

A,B,C
«ABCAj

AJBJC~wB
22wC

2 !
wA~l j2lk!1wA~l j2l l !

wBwC„
1
2~lk2l l !…

,

such that combining this with~4.6! and ~4.7! we indeed recover~4.3a!. This determines the
function t̂ already up to some factor depending onlk , l l , andm in accordance with formula
~4.1!.

We turn to proving~4.3b!. According to~4.4!, also the residues ofF21dF/dl at lk enter the
variation ofHk . Expanding~4.5! we find
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F21
dF

dl
52

1

4~l2lk!(A~JA
2 ! H (A JAsA

wA„
1
2~lk2l l !…

1 (
A,B,C

i«ABC~wB
22wC

2 !JBJCsA

wBwC„
1
2~lk2l l !…

J
1

1

4(A~JA
2 ! (A JA

wA~lk2l l !

wA„
1
2~lk2l l !…

sA

2
i

4(A~JA
2 ! (

A,B,C
«ABCJBJC~wB

22wC
2 !

wA~lk2l l !

wBwC„
1
2~lk2l l !…

sA1O~l2lk!.

As it turns out, in~4.3b! all terms linear in the residuesAj cancel in a way completely analogou
to ~4.3a! shown above. We hence restrict to the remaining terms. On the lhs we find m
repeated use of~3.11! and ~4.2!:

1

2
resl5lk

tr FF21
dF

dl G2

52
1

8@(A~JA
2 !#2 (

A
JA

2 wA~lk2l l !

wA
2
„

1
2~lk2l l !…

1
1

2@(A~JA
2 !#2 (

(ABC)5(123)
cyclic

JB
2JC

2
~wB

22wC
2 !2wA~lk2l l !

wB
2wC

2
„

1
2~lk2l l !…

52
1

2@(A~JA
2 !#2 (

A
JA

4wA~lk2l l !

2
1

2@(A~JA
2 !#2 (

(ABC)5(123)
cyclic

JB
2JC

2
wBwC„

1
2~lk2l l !…

wA„
1
2~lk2l l !…

5
1

2

]

]lk
ln Xw1w2w3S 1

2
~lk2l l ! D C

2
1

(A~JA
2 ! (A JA

2 ]

]lk
ln XwAS 1

2
~lk2l l ! D C. ~4.9!

The first term in~4.9! obviously cancels against the derivative of the explicit factorw1w2w3 in
~4.3b!. To see the origin of the second term we note that instead of~4.8! the lk derivative ofJA

is given by

2(
A

]JA

]lk
wAS 1

2
~lk2l l ! DsA52

]

]lk
$Gs3G21%22(

A
JA

]

]lk
wAS 1

2
~lk2l l ! D .

The additional term on the rhs which has no linear dependence on the residuesAj coincides
precisely with the second term in~4.9!. Thus, we have shown~4.3b!.

To finally prove~4.3c! we first note that

(
j

resl5l j
trFF21

]F

]m
F21

dF

dl G52
1

2p i R]E
tr FF21

]F

]m
F21

dF

dl Gdl

52
1

2p i Ra
tr FF21

dF

dl G2

dl, ~4.10!

where by]E we denote a closed path encircling all the singularities. To show the second eq
in ~4.10!, note that the integrand is single-valued with respect to shifts along thea-cycle, whereas
upon tracing along theb-cycle it has the additive twist
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tr FF21
]F

]m
F21

dF

dl G~l1m!5tr FF21
]F

]m
F21

dF

dl G~l!2tr FF21
dF

dl G2

~l!.

The closed integral along]E thus reduces to the integral over the additive twist of the integr
along thea-cycle. Equation~4.10! may be used to compute the variation ofHm as

Ĥm2Hm52
1

2p i Ra
tr FF21

dF

dl
AG dl2

1

4p i Ra
tr FF21

dF

dl G2

dl

5(
j

resl5l j
tr FF21

]F

]m
AG1

1

2 (
j

resl5l j
tr FF21

]F

]m
F21

dF

dl G2

.

By some further calculations similar to the one given in the proofs of~4.3a! and ~4.3b!, this
variation can now be shown to coincide with the rhs of~4.3c!. We leave the details to the reade
This finishes the proof of Theorem 4.1.h

V. OPEN PROBLEMS

In this paper we have extended the construction of elementary Schlesinger transformati
sl(2,C)-valued meromorphic connections from the Riemann sphere to the torus. The in
transformation of thet-function of the elliptic Schlesinger system has been explicitly integra

There are several ways for a further extension of these results. We hope that the formul~4.1!
will give rise to new integrable chains associated to elliptic curves in a way similar to
construction of integrable chains from isomonodromic deformations on the sphere.4,5 For a com-
plete generalization of the program of Refs. 2–5 to the elliptic case one should extend the
of this work to higher-rank matrices and higher-order poles.

An interesting problem would be the generalization of the notion of Schlesinger transfo
tions for isomonodromic deformations on higher-genus curves, which seems although rath
ficult from the technical point of view, cf. Refs. 21 and 22. Already on the torus it is a ra
nontrivial problem to extend our construction to isomonodromic deformations with var
twist11 as has been discussed in the text.

In Ref. 23 there is explicitly solved a certain class of Riemann–Hilbert problems on the
which allows one to obtain a class of solutions of the elliptic Schlesinger system in terms of
theta-functions.
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The contraction of SU m„2… and its differential structures
to Ek„2…
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The deformed double covering of theE(2) group, denoted byẼk(2), is obtained
by contraction from the SUm(2). Thecontraction procedure is then used for pro-
ducing new examples of differential calculi: three-dimensional left covariant cal-
culus on bothẼk(2) and the deformed Euclidean groupEk(2) and two different
four-dimensional~4D!-bicovariant calculi onẼk(2) which correspond to the one
4D-bicovariant calculi onEk(2) described by Gilleret al. @Acta Phys. Pol. B28,
1121 ~1997!#. © 2000 American Institute of Physics.@S0022-2488~00!01505-X#

I. INTRODUCTION

The idea to use the contraction procedure in the theory of quantum groups goes b
Celeghiniet al. In a series of papers1–4 they applied this procedure to quantum deformations
simple Lie groups producing new examples of quantum groups. Later the contraction was u
Lukierski, et al. as a tool for obtaining thek deformation of Poincare algebra5,6 and by Zaugg for
constructing thek deformation of Poincare group.7,8 In this way, in Ref. 9, Sobczyk obtained from
SUm(2) the deformed two-dimensional Euclidean groupEk(2). In the present paper we us
contraction as a method for producing new examples of noncommutative differential calcu
this reason we need a slightly different contraction technique than the one used in Ref. 9.
applied to SUm(2) it gives the deformed counterpart of double covering ofE(2), referred to in the

following asẼk(2); theprojection fromẼk(2) ontoEk(2) can be then easily constructed. This
described in Sec. II. In Sec. III we contract the three-dimensional~3D! left-covariant differential
calculus on SUm(2) constructed by Woronowicz.10 As a result we get the 3D left-covarian
differential calculus onEk(2). We also construct the corresponding Lie algebra and prove
equivalence toek(2), thelatter being described in Refs. 11 and 12 as a dual object toEk(2). The
whole structure is described in some detail because it is given here for the first time~it cannot be
constructed according to the general rules of Woronowicz theory because it is not bicovaria!. In
Sec. IV we contract the 4D1 bicovariant differential calculus on SUm(2), first described explicitly

by Stachura,13 and obtain 4D1 bicovariant differential calculus onẼk(2) related to some righ

ideal of ‘‘functions’’ vanishing at the identity ofẼk(2). We also give the corresponding Li

algebra. In Sec. V we present the 4D2 bicovariant differential calculus onẼk(2) resulting from
the contraction of 4D2 differential calculus on SUm(2) ~described also in Ref. 13!. This calculus
is related to some right ideal which can be roughly described as consisting of ‘‘functions’’ s

taneously vanishing at the identity and some other ‘‘point’’ ofẼk(2). In Sec. VI we prove that

both 4D1 and 4D2 calculi onẼk(2) project onto the same 4D bicovariant differential calculus
Ek(2), first constructed in Ref. 14.

Contrary to the 3D case we do not enter into a detailed description of 4D calculus beca
was discussed in our previous paper.14

More technical proofs of theorems are relegated to the Appendix.

a!Electronic mail: pkosinsk@krysia.uni.lodz.pl
31420022-2488/2000/41(5)/3142/18/$17.00 © 2000 American Institute of Physics
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In the present paper~as well as in all the above-mentioned papers concerning the contra
procedure! the quantum groups are considered in the purely algebraic setting of deformed u
sal enveloping algebras.

II. k CONTRACTION FROM SUm„2… TO Ek„2…

In this section we present a slightly different scheme of contraction than the one descri
Ref. 9. The contraction procedure presented here allows us to describe the complete stru
Ek(2) by considering only the terms of order 1/L, whereL is a contraction parameter.

Let us recall that SUm(2) is a matrix quantum group defined as follows:10

g5S s 2mr*

r s* D ,

D~g!5g ½̂ g,
~1!

rr* 5r* r, m~r2r* !s5s~r2r* !,

ss* 1m2rr* 5I , m~r1r* !s5s~r1r* !,

s* s1rr* 5I .

The first step in our scheme is to change the basis of generators in SUm(2):

S s mr*

r s* D→ 1

2 S 1 1

21 1D S s 2mr*

r s* D S 1 21

1 1 D
5

1

2 S s1r2mr* 1s* 2s2r2mr* 1s*

2s1r1mr* 1s* s2r1mr* 1s* D . ~2!

The contraction (L) and the deformation~k! parameters are introduced by the following relation

s1r2mr* 1s* 5a~L !,
~3!

2s2r2mr* 1s* 5
w~L !

L
,

m5expS 1

kL D .

We assume thata(L) andw(L) have well-defined limits asL→`:

lim
L→`

a~L !5a0 , lim
L→`

w~L !5w0 . ~4!

The relations in~3! allow us to express the generatorsr and s as functions of the contraction
parameter:

s5
1

11m S ma1a* 1
1

L
~w* 2mw! D ,

s* 5
1

11m S ma* 1a1
1

L
~w2mw* ! D , ~5!
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r5
1

11m S a2a* 2
1

L
~w1w* ! D ,

r* 52
1

11m S a2a* 1
1

L
~w1w* ! D .

We are now ready to perform the contraction of SUm(2) by taking the limitL→` in Eq. ~I!.
As a result we obtain the quantum counterpart of the double covering ofE(2), denoted below by
Ẽk(2). Thestructure ofẼk(2) is described by the following:

Theorem 1: Ẽk(2) is Hopf algebra generated by the elements a0 , a0* , w0 , and w0* subject
to the relations:

@a0* ,w0#52@a0* ,w0* #5
1

2k
~a0*

22I !,

@a0 ,w0#52@a0 ,w0* #5
1

2k
~a0

22I !,

@w0 ,w0* #52
1

2k
~a01a0* !~w01w0* !,

@a0 ,a0* #50, a0* a05a0a0* 5I ,

Da05a0^ a0 , Da0* 5a0* ^ a0* ,
~6!

Dw05w0^ a0* 1a0^ w0 ,

Dw0* 5w0* ^ a01a0* ^ w0* ,

S~a0!5a0* , S~a0* !5a0 ,

S~w0!52a0* w0a0 , S~w0* !52a0w0* a0* ,

e~a0!5e~a0* !51, e~w0!5e~w0!50.

For the proof see Appendix A.
Let us stress that the above-mentioned structure was obtained by considering only the te

order 1/L ~cf. the proof of Theorem 1!. In order to get the deformed two-dimensional Euclide
groupEk(2) we put:

A5a0
2 , A* 5a0*

2, v152 iaow0 , v25 iw0* a0 . ~7!

As a result the following Hopf algebraEk(2) ~cf. Refs. 11, 12, and 14! is obtained from~6!:

@A,v2#5
i

k
~ I 2A!, @A* ,v2#5

i

k
~A* 2A* 2!,

@A,v1#5
i

k
~A2A2!, @A* ,v1#5

i

k
~ I 2A* !,

@v1 ,v2#5
i

k
~v22v1!, @A,A* #50,
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AA* 5A* A5I ,
~8!

DA5A^ A, DA* 5A* ^ A* ,

Dv15A^ v11v1 ^ I , Dv25A* ^ v21v2 ^ I ,

S~A!5A* , S~A* !5A,

S~v1!52A* v1 , S~v2!52Av2 ,

e~A!5e~A* !51, e~v1!5e~v2!50.

III. THE LEFT COVARIANT 3D DIFFERENTIAL CALCULUS

In this section we describe 3D left covariant differential calculus onEk(2). This calculus
results from the contraction of 3D left covariant differential calculus on SUm(2), thelatter being
constructed by Woronowicz.10

The right idealR which defines the 3D calculus on SUm(2) is generated by the following six
elements:10 r2; r* 2; r* r5rr* , (s2I )(r2r* ); (s2I )(r1r* ); s* 1m* s2(11m2)I . De-
noting byR̃0 the contraction ofR we have:

Theorem 2: The right ideal R̃0 is generated by the following elements:

~a02I !~a0* 2I !, ~a02I !w0* 1
1

2k
~a02a0* !,

~a02I !w02
1

2k
~a02a0* !, ~a0* 2I !w0* 2

1

2k
~a02a0* !,

~9!

~a0* 2I !wo1
1

2k
~a02a0* !, w0* w01

1

2k
~w023w0* !2

1

4k2 ~a02a0* !,

w0
21

1

2k
~w0* 23w0!1

1

4k2 ~a02a0* !, w0* 2
1

2k
~w023w0* !1

1

4k2 ~a02a0* !.

The proof is given in Appendix B.
It follows from the theorem that the elementsa02a0* , w0 , andw0* form a basis in kere/R̃0 .

According to the Woronowicz theory,15 the space of left invariant one forms onẼk(2) is spanned
by

w̃05pr 21~ I ^ ~a02a0* !!5a0* da02a0da0* ,
~10!

w̃15pr 21~ I ^ w0!52a0* w0a0da0* 1a0* dw0 ,

w̃25pr 21~ I ^ w0!52a0w0* a0* da01a0dw0* .

Let us pass toEk(2). Thefollowing corollary is a simple consequence of Theorem 1.
Corollary 1: The right ideal R05Ek(R)ùR̃0 is generated by the following elements:

~A2I !~A* 2I !,

~A2I !v22
i

k
~A* 2I !, ~A* 2I !v21

i

k
~A* 2I !,
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~A2I !v11
i

k
~A2I !, ~A* 2I !v12

i

k
~A2I !,

~11!

v2v11
i

2k
~v113v2!1

1

4k2 ~A* 2A!,

v1
2 1

i

2k
~3v11v2!1

1

4k2 ~A* 2A!,

v2
2 1

i

2k
~v113v2!1

1

4k2 ~A* 2A!.

Accordingly, the elements:A2A* , v1 , andv2 form a basis in kere/R0 and the space of lef
invariant one-forms is spanned by the following forms:

w05pr 21~ I ^ ~A2A* !!5A* dA2AdA* ,
~12!

w15pr 21~ I ^ v1!5A* dv1 ,

w25pr 21~ I ^ v2!5Adv2 .

The following relations hold for the forms defined by Eqs.~10! and ~12!:

w052w̃0 ,
~13!

w152
i

2k
w̃02 i w̃1 ,

w25 i w̃2 .

Now one can easily find the following commutation rules between the invariant forms
generators ofEk(2):

@A,w0#50, @A* ,w0#50,

@A,w1#50, @A* ,w1#50,

@A,w2#50, @A* ,w2#50,

@v2 ,w0#5
i

k
A* w0 ,

~14!

@v2 ,w1#5
i

2k
A* ~3w11w2!2

1

4k2 A* w0 ,

@v2 ,w2#5
i

2k
A* ~w113w2!2

1

4k2 A* w0 ,

@v1 ,w0#5
i

k
Aw0 ,

@v1 ,w1#5
i

2k
A~3w11w2!2

1

4k2 Aw0 ,
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@v1 ,w2#5
i

2k
A~w113w2!2

1

4k2 Aw0 .

To complete the description of the first-order differential calculus we must introduce
*-operator. It is easy to see that the involution acts as follows:

w0* 52w0 , w1* 5w2 , w2* 5w1 . ~15!

The next step is the construction of the higher order differential calculus. Because our
order calculus is not bicovariant the general Woronowicz theory does not work in this
However we can apply our contraction procedure to obtain the higher differential forms from
ones on SUm(2) constructed by Woronowicz.10 Let us recall that the left invariant basic forms o
SUm(2) introduced in Ref. 10 read:

V05r* ds* 2sdr* ,
~16!

V15s* ds2r* dr,

V25rds2m21sdr.

One can easily find the following expansions:

V05
1

4
w01

1

2L F i ~w12w2!2
1

k
w0G1OS 1

L2D ,

~17!

V15
1

2L F2 i ~w11w2!1
1

2k
w0G1OS 1

L2D ,

V252
1

4
w01

1

2L F i ~w12w2!1
5

4k
w0G1OS 1

L2D .

Inserting these expansions into the following external product identies written out in Re

V0`V050, V1`V150,

V1`V052m4V0`V1 ,
~18!

~V21V0!`V052m2V0`~V01V2!,

~V01V2!`V152m24V1`V02m4V1`V2 ,

we obtain the following external product rules:

w0`w050,

w0`w11w1`w050,

w0`w01w2`w050,
~19!

w2`w11w1`w21
i

4k
w2`w02

i

4k
w1`w050,

w2`w22
3i

8k
w1`w02

5i

8k
w2`w050,
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w1`w11
5i

8k
w1`w01

3i

8k
w2`w050.

The following Cartan–Maurer equations complete the description of the differential calc

dw050,
~20!

dw152 1
2 w0`w1 ,

dw25 1
2 w0`w2 .

Woronowicz theory15 provides us with the general construction of Lie algebra once the
covariant calculus is given~see also Ref. 10!. Following a general framework we introduce th
counterparts of left invariant vector fields by

dx5~x0* x!w01~x1* x!w11~x2* x!w2 , ~21!

wherexPEk(2) andx* x5( id ^ x)Dx.
Applying the exterior derivative to both sides of Eq.~21! and taking into account Cartan

Maurer equations as well as the exterior algebra relations~19!, we arrive at the following com-
mutation rules:

@x1 ,x0#5
5i

8k
x1

22
1

2
x12

i

2k
x1x22

3i

8k
x2

2,

~22!

@x2 ,x0#5
3i

8k
x1

21
i

4k
x1x21

1

2
x22

5i

8k
x2

2,

@x1 ,x2#50.

It is easy to check that the involution acts as follows:

x0* 5x0 , x1* 52x2 , x2* 52x1 . ~23!

The coproduct for the functionalsx i , i 50, 1, 2 is defined by

Dx i5(
j 50

2

x j ^ f i j 1I ^ x i , ~24!

where the functionalsf i j are given by

w ix5(
j 50

2

~ f i j * x!w j . ~25!

On the other hand it has been shown~Refs. 11 and 12! that the deformed Lie algebraek(2)
dual toEk(2) is a Hopf algebra generated by three self-adjoint elementsP1 , P2 , andJ subject to
the following relations:

@P1 ,P2#50,

@J,P1#55 iP2 ,

@J,P2#52 ik sinhS P1

k D , ~26!
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DP15I ^ P11P1^ I ,

DP25e2P1/2k
^ P21P2^ eP1/2k,

DJ5e2P1/2k
^ J1J^ eP1/2k.

Now, one can pose the question what is the relation between the functionalsx i , i 50, 1, 2 and
the generatorsP1 , P2 , and J of the ek(2). It is not difficult to check that the answer to thi
question is given by the following relations:

x05
1

2
eP1/2kS J1

i

2k
P2D2

1

8
~e2P1 /k2I !,

x15
ik

4
~e2P1 /k2I !2

1

2
P2eP1/2k,

x25
ik

4
~e2P1 /k2I !1

1

2
P2eP1/2k,

~27!
f 015 f 0250, f 005eP1 /k,

f 205 f 105
i

4k
~e2P1 /k2e2P1 /k!,

f 225 f 115
1
2 ~e2P1 /k1eP1 /k!,

f 215 f 125
1
2 ~e2P1 /k2eP1 /k!.

IV. THE BICOVARIANT 4D ¿ DIFFERENTIAL CALCULUS ON Ẽk„2…

Let us recall13 that the right idealR1 ~respectivelyR2) which defines the 4D1 ~respectively,
4D2) bicovariant differential calculus on SUm(2) is generated by the following elements:

r2, r~s2s* !, s21m2s* 21~11m2!2rr* 2~11m2!I ,

r* 2, r* ~s2s* !,ar, r* , a~s2s* !, ~28!

a~m2s1s* 2~11m2!I !,

wherea5m2s1s* 2@(11m4)/m#I ~respectivelya5m2s1s* 1@(11m4)/m#I ).
Let us denote byR̃01 the contraction of the idealR1 . then we have:
Theorem 3: The right ideal R̃01 is generated by the following elements:

a01a0* 22, ~a02I !w0 , ~a0* 2I !w0 ,

~a02I !w0* , ~a0* 2I !w0* , w0
21

1

k
w0 ,

w0* 2
1

k
w0* .

For the proof see Appendix C.
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The ideal R̃01 is ad-invariant so then we can apply the general Woronowicz theory.15 It
follows from theorem 3 that the space of left invariant one-forms is spanned by the follo
one-forms:

c15pr 21~ I ^ ~a02a0* !!5a0* da02a0da0* 52a0* da0522a0da0* ,

c25pr 21~ I ^ w0!5 1
2 a0* w0c11a0* dw0 ,

~29!
c35pr 21~ I ^ w0* !52 1

2 a0w0* c11a0dw0* ,

c45pr 21~ I ^ w0w0* !52w0a0* c32
1

2k
~12a0

2!S c22
1

2k
c1D1d~w0w0* !.

One can easily find the following commutation relations:

@a0 ,c1#50, @w0 ,c1#50,

@a0* ,c1#50, @w0* ,c1#50,

@a0 ,c2#5
1

2k
a0c1 ,

@a0* ,c2#52
1

2k
a0* c1 ,

@w0 ,c2#52
1

2k
w0c11

1

k
a0c2,

@w0* ,c2#5
1

2k
w0* c12a0* c4 ,

@a0 ,c3#52
1

2k
a0c1 ,

~30!

@a0* ,c3#5
1

2k
a0* c1 ,

@w0 ,c3#5
1

2k
w0c12a0c42

1

k
a0~c11c3!,

@w0* ,c3#52
1

2k
w0* c12

1

k
a0* c3 ,

@a0 ,c4#5
1

2k2 a0c1 ,

@a0* ,c4#52
1

2k2 a0* c1 ,

@w0 ,c4#52
1

2k2 w0c11
1

k2 a0c2 ,
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@w0* ,c4#5
1

2k2 w0* c11
1

k
a0* c41

2

k2 a0* c3 .

The external product identies read:

c1`c150,

c1`c21c2`c150,

c1`c31c3`c150,

c1`c41c4`c150,

c2`c22
1

k
c1`c250,

~31!

c2`c31c3`c21
1

k
c1`~c31c2!50,

c2`c41c4`c250,

c3`c32
1

k
c1`c350,

c3`c41c4`c31
1

k2 c1`~c32c2!50,

c4`c41
1

k3 c1`c250,

while Cartan–Maurer equations are given by

dc150,

dc252c1`c2 ,
~32!

dc35c1`c3 ,

dc45
1

k
c1`c2 .

The quantum Lie algebra reads@dx5(j1* x)c11(j2* x)c21(j3* x)c31(j4* x)c4#:

@j1 ,j2#52
1

k
j2

21
1

k
j3j21j22

1

k2 j4j31
1

k3 j4
22

1

k
j4 ,

@j1 ,j3#5
1

k
j3j22

1

k
j3

21
1

k2 j4j32j3 ,

@j1 ,j4#50,
~33!

@j2 ,j3#50,
                                                                                                                



ted.
left

3152 J. Math. Phys., Vol. 41, No. 5, May 2000 P. Kosiński and P. Maślanka

                    
@j2 ,j4#50,

@j3 ,j4#50.

V. 4DÀ DIFFERENTIAL CALCULUS ON Ẽk„2…

Denoting byR̃02 the contraction of the idealR2 @see~28!# we have
Theorem 4: The right ideal R̃02 is generated by the following elements:

a0
21a02a0* 2I , a0*

21a0* 2a02I ,

~a01I !w0 , ~a0* 1I !w0 ,

~a01I !w0* , ~a0* 1I !w0* ,

w0
22

1

k
w0 , w0*

21
1

k
w0* ,

w0w0* 2
1

k
w02

1

k2 ~a0* 2I !.

Proof: The proof of this theorem is very similar to the proof of theorem 3 and will be omit
The idealR̃02 is ad-invariant and we can follow the Woronowicz theory. The space of

invariant one-forms is spanned by the following four one-forms:

F15pr 21~ I ^ ~a02I !!5a0* da0 ,

F25pr 21~ I ^ ~a0* 2I !!5a0da0* ,
~34!

F35pr 21~ I ^ w0!5a0* dw02a0* w0a0da0* ,

F45pr 21~ I ^ w0* !5a0dw0* 2a0w0* a0* da0 .

The following commutation relations hold between above forms and the generators ofẼk(2):

F1a05a0~F222F1!,

F1a0* 52a0* F2 ,

F2a052a0F1 ,

F2a0* 5a0* ~F122F2!,

F3a052a0F31
1

2k
a0~F12F2!,

F3a0* 52a0* F31
1

2k
a0* ~F22F1!,

F4a0* 52a0F41
1

2k
a0~F22F1!,
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F4a0* 52a0* F41
1

2k
a0* ~F12F2!,

~35!
F1w052w0F222a0F3 ,

F1w0* 5w0* F222w0* F122a0* F4 ,

F2w05w0F122w0F222a0F3 ,

F2w0* 52w0* F122a0* F4 ,

F3w052w0F32
1

2k
w0~F12F2!1

1

k
a0F3 ,

F3w0* 52w0* F31
1

2k
w0* ~F12F2!1

1

k
a0* F31

1

k2 a0* F2 ,

F4w052w0F41
1

2k
w0~F12F2!2

1

k
a0F41

1

k2 a0F2 ,

F4w0* 52w0* F41
1

2k
w0* ~F22F1!2

1

k
a0* F4 .

The external product identies read:

F1`F150,

F2`F250,

F1`F21F2`F150,

F3`F113F1`F322F2`F350,

F3`F22F2`F312F1`F3 ,
~36!

F3`F32
1

k
F1`F31

1

k
F2`F1350,

F4`F12F1`F412F2`F450,

F4`F213F2`F422F1`F450,

F4`F31F3`F41
1

k
~F12F2!`F31

1

k
~F12F2!`F450,

F4`F42
1

k
~F12F2!`F450.

The following Cartan–Maurer formulas complete the description of the second-order cal

dF150,

dF250, ~37!
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dF35~F12F2!`F3 ,

dF45~F22F1!`F4 .

The Lie algebra relations@dx5(h1* x)F11(h2* x)F21(h3* x)F31(h4* x)F4# read:

@h1 ,h2#50,

@h1 ,h3#52h3h112h3h22
1

k
h3

21
1

k
h4h32h3 ,

@h1 ,h4#522h4h122h4h21
1

k
h4h32

1

k
h4

21h4 ,

~38!

@h2 ,h3#522h3h122h3h21
1

k
h3

22
1

k
h4h31h3 ,

@h2 ,h4#52h4h112h4h22
1

k
h4h31

1

k
h4

22h4 ,

@h3 ,h4#50.

VI. THE BICOVARIANT 4D DIFFERENTIAL CALCULUS ON Ek„2…

It is known14 that there exists only one four-dimensional bicovariant calculus onEk(2). On
the other hand, as was shown in Secs. IV and V, there exist two four-dimensional calc
Ẽk(2), sothey have to correspond to the same calculus onEk(2). Indeed, we have:

Theorem 5: The following equalities hold:

R̃01ùEk~2!5R̃02ùEk~2!5R,

where the right ideal R defines the 4D bicovariant differential calculus described in Ref. 14.
Proof: The proof of this theorem is straightforward.
Let us recall the basic left invariant one-forms, introduced in Ref. 14,

w05 1
2 ~A* dA2AdA* !5A* dA52AdA* ,

w15A* dv1 ,
~39!

w25A* dv2 ,

w̃05dS v1v21
i

k
v1D2v1dv22v2dv1 .

Like in the undeformed case, we can express the left invariant one-forms and the left inv
fields defined on theEk(2) by the ones defined on theẼk(2). For D1 we get (dx5(x0* x)v0

1(x1* x)v11(x2* x)v21(x̃0* x)ṽ0),

w05c1 ,

w152 ic2 ,

w25 ic32
i

2k
c1 ,
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w̃05c41
1

k
c21

1

2k2 c1 ,

~40!
x05j1 ,

x15 i S j22
1

k
j4D ,

x252 i j3 ,

x̃05j4 ,

while for D2 we obtain:

w05F22F1 ,

w15 iF3 ,

w252 iF41
i

k
~F12F2!,

w̃05
3

2k2 F22
1

2k2 F1 ,

~41!
x05 1

2 ~h22h1!,

x152 ih3 ,

x25 ih4 ,

x̃05k2~h21h1!.

Let us conclude with the following remark. In the classical case the differential calcul
obtained with the choiceR5(kere)2, i.e., it is determined by the ideal consisting of functions th
vanish, up to second order, at the group identity. Therefore, local diffeomorphism gives a u
relation between differential calculi. However, in the quantum case the situation looks diffe
Two different calculi onẼk(2) reduce to the single one onEk(2). In order to get some insight, le
us consider the Hopf subalgebra ofẼk(2) generated bya0 , a0* . It is commutative Hopf algebra
so we can speak in terms of algebra of functions on U(1). In the D1 case we obtain the standar
calculus on U(1). Indeed, denotinga05aiQ we see that the corresponding ideal is generated
cosQ21'Q2. On the other hand in the D2 case the ideal is generated by cos 2Q21 and
sinQ(cosQ11). Therefore, it consists of functions vanishing not only atQ50 but also atQ
5P. However, under the mappinga0→A5a0

2, which is double covering, it produces the ideal
functions vanishing at the group identity~in a special way!. We see that in the quantum cas
generically, the relation between calculi depends on global properties of the mapping.
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APPENDIX A: PROOF OF THEOREM 1

We begin from the analysis of the relations given in Eq.~1! ~up to terms of order 1/L).
r* r5rr* implies
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lim
L→`

Ln@w1w* ,a2a* #50, n50,1,2,... . ~A1!

m(r2r* )s5s(r2r* ) implies

@a0 ,a0* #50, ~A2!

lim
L→`

S 2L@a,a* #1@a2a* ,w2w* #1
1

k
~a2a* !~a1a* ! D50. ~A3!

m(r1r* )s5s(r1r* ) gives

@w01w0* ,a01a0* #50, ~A4!

lim
L→`

S L@w1w* ,a1a* #1
1

k
@w1w* ,a#1

1

k
~w1w* !~a1a* !12@w,w* # D50. ~A5!

s* s1rr* 5I gives

a0* a01a0a0* 2250, ~A6!

lim
L→`

S 2L~a* a1a* a22!1
1

k
~a1a* !21@a1a* ,w* 2w#1@a2a* ,w1w* # D5

4

k
. ~A7!

Finally, from the relationss* 1m2r* r5I we obtain

lim
L→`

S 2L~aa* 1a* a22!1
1

k
~a1a* !21@a1a* ,w2w* #2

2

k
~a2a* !21@a2a* ,w1w* # D

5
4

k
. ~A8!

From Eqs.~A2!, ~A6!, and~A4! one concludes:

a0a0* 5a0* a05I ~A9!

and

@w0 ,a0#52@w0* ,a0#,
~A10!

@w0 ,a0* #5@w0* ,a0* #.

If we subtract Eq.~A8! from Eq. ~A7! and take into account Eq.~A10! we arrive at

@a0 ,w0#1@a0* ,w0#5
1

2k
~a0

22a0*
222!. ~A11!

Subtracting from Eq.~A3! its conjugation and using Eq.~A10! we get

2@a0 ,w0#1@a0* ,w0#5
1

2k
~a0*

22a0
2!. ~A12!

Now adding to Eq.~A5! its conjugation and again using Eq.~A10! we arrive at the relation
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@w0 ,w0* #52
1

2k
~a01a0* !~w01w0* !. ~A13!

Finally from Eqs.~A9!, ~A11!, and~A13! we get the commutation rules~6!.

APPENDIX B: THE PROOF OF THEOREM 2

From the inclusionsr2PR, r* 2PR, andrr* PR we immediately obtain that

~a02a0* !2PR̃0 , ~w01w0* !2PR̃0 , ~a02a0* !~w01w0* !PR̃0 . ~B1!

Due to (s2I )(r6r* )PR, s* 1m2s2(11m2)I PR and relations~B1! one gets

a01a0* 22PR̃0 , ~B2!

lim
L→`

L~a1a* 22!PR̃0 , ~B3!

lim
L→`

S L2~a1a* 22!2
1

k2 ~a2I !1
1

k
~w* 23w! DPR̃0 , ~B4!

w0* ~w01w0* !PR̃0 , ~B5!

w0~w01w0* !PR̃0 , ~B6!

~a02I !w0* 1
1

2k
~a02a0* !PR̃0 , ~B7!

~a02I !w02
1

2k
~a02a0* !PR̃0 , ~B8!

~a0* 2I !w0* 2
1

2k
~a02a0* !PR̃0 , ~B9!

~a0* 2I !w01
1

2k
~a02a0* !PR̃0 . ~B10!

From the relationss* s1r* r5I , ss* 1m2r* r5I , and the inclusionrr* PR it follows
that @s,s* #PR andss* 2I PR.

The inclusion@s,s* #PR gives

lim
L→`

S 1

k
L@a,a* #1L@w* 2w,a1a* #1

1

k
@w2w* ,a1a* # DPR̃0 . ~B11!

Taking into account Eq.~B3! we obtain fromss* 2I PR the relations:

lim
L→`

S L2~a1a* 22!~a1a* 12!1
L

k
@a,a* #1L@w* 2w,a1a* #1

1

k
@a,w#1

1

k
@w* ,a* #

2
2

k
aw* 2

2

k
wa* 2~w* 2w!2DPR̃0 . ~B12!

Equations~B1!, ~B2!, ~B4!–~B7!, and~B10!–~B12! imply
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w0* w01
1

2k
~w023w0* !2

1

4k2 ~a02a0* !PR̃0 . ~B13!

Finally, again using Eqs.~B5! and ~B6! we get

w0
21

1

2k
~w0* 23w0!1

1

4k2 ~a02a0* !PR̃0 , ~B14!

w0*
22

1

2k
~w023w0* !1

1

4k2 ~a02a0* !PR̃0 . ~B15!

The relations~B2!, ~B7!–~B10!, and~B13!–~B15! completely describe the idealR̃0 .

APPENDIX C: PROOF OF THEOREM 3

The proof of this theorem is similar to the proof of theorem 2. After long and tedious ana
of the generators of the idealR1 we conclude that

a01a0* 22PR̃01 ,

~a02I !w0PR̃01 , ~a02I !w0* PR̃01 , ~C1!

~a0* 2I !w0PR̃01 , ~a0* 2I !w0* PR̃01 ,

lim
L→`

S 2L2~aa* 1a* a22!1LS 1

k
~a21a* 212a* a24!1@a1a* ,w* 2w# D1

1

2k2 ~a21a* 2

14a* a26!1
1

k
~@w,a#1@a* ,w* #22w* a22a* w!2~w* 2w!21~w1w* !2DPR̃01 ,

~C2!

lim
L→`

S 22L2~a2a* !224L2~22aa* 2a* a!2
4

k2 ~a2a* !21
1

k2 ~24a2113aa* 113a* a222!

12~w2w* !214~w1w* !1
1

k
~2$a* ,w%24$a* ,w* %22$a,w* %! DPR̃01 , ~C3!

~w01w0* !~w0* 2w0!PR̃01 , ~C4!

and

lim
L→`

L~a2a* !2PR̃01 . ~C5!

The relation (m221)(r1r* )222@s,s* #PR1 gives

lim
L→`

LS 1

k
@a,a* #1@a1a* ,w2w* # D1

1

k
@a01a0* ,w02w0* #PR̃01 , ~C6!

while from Eqs.~C2!, ~C3!, ~C5!, and~C6! it follows that

w0
21

1

k
w01w0*

22
1

k
w0PR̃01 , ~C7!
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while from Eqs.~C7! and ~C4! we obtain

w0
21

1

k
w0PR̃01 , ~C8!

w0*
22

1

k
w0* PR̃01 . ~C9!

Equations~C1!, ~C8!, and~C9! completely describe the idealR̃01 .
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On the integrable perturbations of the Camassa–Holm
equation

R. A. Kraenkel, M. Senthilvelan, and A. I. Zenchuk
Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista,
Rua Pamplona 145, 01405-900 Sa˜o Paulo, Brazil

~Received 12 August 1999; accepted for publication 27 December 1999!

We present an investigation of the nonlinear partial differential equations~PDE!
which are asymptotically representable as a linear combination of the equations
from the Camassa–Holm hierarchy. For this purpose we use the infinitesimal trans-
formations of dependent and independent variables of the original PDE. This ap-
proach is helpful for the analysis of the systems of the PDE which can be asymp-
totically represented as the evolution equations of polynomial structure. ©2000
American Institute of Physics.@S0022-2488~00!02605-0#

I. INTRODUCTION

The Camassa–Holm equation~sometimes also called Fuchssteiner–Fokas–Camassa–
equation! has been found as an equation describing the propagation of long-wave
shallow-water1,2 when higher-order terms are taken into account. A remarkable fact is that,
say, KdV, it is an integrable equation.1,3 This equation reads

mt1
~u!5CH~0!~u!522kux2umx22uxm, m5u2uxx . ~1!

Many of its properties have been studied recently in Refs. 3–9. Being a completely integ
equation, a hierarchy in the Lax sense can be constructed.4 We will use the following symbolic
representation for this hierarchy:

mtm
~u!5CH~m!~u!, m5u2uxx . ~2!

The simplest equations of this hierarchy are

mt21
5CH~21!52mx2

1

2
~]x

32]x!
1

Am1k
, ~3!

mt2
5CH~2!52Vmx22kVx22Vxm, m5u2uxx , ~4!

whereV is defined by the following equation:

2kux12uxm1umx1~]x
32]x!V50.

On the other hand, Eq.~1! has been obtained as the leading order term in the expansion o
shallow water system in the powers of small parameters characterizing scales in amplitu
wavelength. Thus, in a physical sense, it is only an approximate equation. We are thus
naturally to consider the next terms in the perturbative expansions. These terms appear in
as the corrections of small order. This leads us to the study the perturbed CH equation.

A rather classical question to ask about the perturbations of an integrable equation
determination of the perturbations that do not destroy the integrability of the system. Among
are the perturbations which are a superposition of the higher order equations of the corresp
hierarchy. However, we should recall that the equation under consideration is to describe a
31600022-2488/2000/41(5)/3160/10/$17.00 © 2000 American Institute of Physics
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cal system. Therefore it comes from the perturbative series in small parametere which has to be
truncated at a certain ordereN. We are, thus, taken to consider as equivalent~up to this order! all
equations which can be obtained one from the other by infinitesimal transformations up
same ordereN. We say then that the two equations are asymptotically equivalent.10,11 If an
equation is asymptotically equivalent to an integrable equation we say that it is asympto
integrable.12 In the same order of ideas we say that a perturbation of a completely integ
equation is asymptotically integrable, if the resulting equation is asymptotically integrable.
this in mind, the relevant question becomes: what are the perturbations of the CH equation t
asymptotically integrable?. This is the problem we investigate in this paper.

The analogous problem to the one formulated above has been considered for a num
integrable evolution-type equations such as the nonlinear Schro¨dinger equation~NLS!,11–15

Korteweg–de Vries equation~KdV!,10,11,16Kadomtsev–Petviashvili equation~KP!,12 and the Bur-
gers equation.17 However, the CH equation is of the nonevolutionary type. This introduce
considerable complication in the problem and will call for several adaptations of the techn
used previously.

The paper is organized as follows. In Sec. II we remind the definition of infinitesimal tr
formation and define the class of nonlinear PDE asymptotically equivalent to the superposi
the equations from the CH-hierarchy~asymptotic integrability!. In Sec. III we give the multiscale
decomposition of the equations considered in Sec. II and consider the first obstacle
asymptotic integrability of the CH-type equation with perturbations, based on the symm
approach.12,18Then we discuss different types of infinitesimal transformations~transformations of
dependent and independent variables!. In Sec. IV we formulate the definition of an approxima
symmetry for the nonintegrable PDE of the evolutionary type. Finally, we present the ge
conclusions.

II. INFINITESIMAL TRANSFORMATIONS

We say that a PDE,

mt~v !5P~v,e!, e!1, m~v !5v2vxx ~5!

is asymptotically equivalent to the CH-hierarchy up to the ordereN, iff

~i! after the expansion in powers of small parametere it becomes

mt~v!5(
k

ak~e!CH~k!~v !1Q~e,v !, Q5 (
m5M0

M

emQm~v ! ~6!

and
~ii ! under the infinitesimal transformations of dependent and/or independent variables

general form,

v~j,tn!5u~x,tn!1e0F0~x,tn ,e!, ~7!

j5x1e1F1~x,tn ,e!, ~8!

tn5tn1en11Fn11~x,tn ,e!, n51,2,..., ek5ek~e!!1, ~9!

Eq. ~6! gets the following structure:

mt~u!5(
k

ak~e!CH~k!~u!1O~e~N!!, ] t[(
k

ak~e!] tk
5]t . ~10!

For example, transformations~7!–~9! reduce the equation
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mt~v !12kvj1vmj~v !12vjm~v !2Q50, m~v !5v2vjj ~11!

with perturbationsQ in first order inek ,

Q[(
k

ekPk , Fk5Fk~j,tk!, ~12!

P052kF0j1F0t1
2F0jjt1

1~3F0v !j2~2F0jvj!j2F0vjjj2F0jjjv, ~13!

P1522kvjF1j2F1t1
vj23vvjF1j16vjvjjF1j12vjjF1jt12vj

2F1jj

1vjtF1jj13vvjjF1jj12vjjt1
F1j1vjF1jjt1

1vjjjF1t1
13vvjjjF1j1vvjF1jjj ,

~14!

P2522kF2jvt1
2vt1

F2t1
23vvt1

F2j14vjF2jvjt1
12vjt1

F2jt1
12F2jvjt1t1

12vt1
F2jvjj

1vt1t1
F2jj12vt1

vjF2jj13vvjt1
F2jj1F2t1

vjjt1
13vF2jvjjt1

1vtF2jjt1
1vvt1

F2jjj ,

~15!

Pk522kFkjvtk
2vtk

Fkt1
23vvtk

Fkj14vjFkjvjtk
12vjtk

Fkjt1
12Fkjvjt1tk

12vtk
Fkjvjj1vt1tk

Fkjj12vtk
vjFkjj13vvjtk

Fkjj1Fkt1
vjjtk

13vFkjvjjtk

1vtk
Fkjjt1

1vvtk
Fkjjj , k.2, ~16!

to the CH equation up to the orderO(e2).
In what follows we discuss briefly some features associated with the infinitesimal transfo

tions ~7!–~9!. For simplicity let us consider the first order infinitesimal transformations~7!–~9!
with Fk not depending one j ( j 50,1,...), that isFk5Fk(x,tn). First of all note that the transfor
mation associated withv, Eq. ~7!, takes a predominant position since it allows us to elimin
from Eq. ~6! the perturbations of the form,

Q5e0~~12]j
2!]t1

F0~j,t1!1G~F0~j,t1!,v !!, ~17!

whereG is the nonlinear part of the correction and its structure is defined by the operators(n)

from Eq. ~6! and does not contain thet derivative of the functionv. So if one considers the
function F0 of the form,

F0~v !5 f ~m~v !!1L~v !, ~18!

wheref is a local function ofm and itsj-derivatives andL is a linear differential operator inj with
constant coefficients then the first term in the perturbation~17! has the form,

(
k

S ~12]j
2!

] f ~m~v !!

]mk~v !
1

]L~m~v !!

]mk~v ! D ]t1
mk~v !, mk~v ![

]km~v !

]jk ,

and the time derivatives can be eliminated from the perturbation of this order by using the
order of Eq.~6!.

As a result, transformation~7! allows us to treatlocal perturbations in Eq.~6! which are
polynomials inv and itsj derivatives. We wish to stress that only the infinitesimal transforma
~7! possesses this property whereas the other ones~8!, ~9! after substitution into Eq.~6! lead to the
t derivatives of the functionu which can be eliminated only by introducing a nonlocal opera
(12]xx)

21. This happens due to the fact that the CH is a nonevolutionary type equation w
differs from other integrable systems like KdV, NLS, and so on.
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Now let us discuss the relations between the solutionu(x,t) andv(j,t) of Eqs.~10! and~6!.
One can construct without any problem the solutionv of Eq. ~6! which comes from the given
solutionu of Eq. ~10! by performing the direct calculations through formulas~7!–~9!. But some
times one needs to reverse the infinitesimal transformations, which is not a trivial problem
interesting case of this kind is related with the initial value problem for Eq.~6!. For example, let
us consider a functionv0(j)5v(j,t)ut50 and using this we try to construct the correspond
initial datau0(x)5u(x,t)u t50 for Eq. ~10!. By doing this we relate the initial value problems
Eqs.~6! and~10!. To perform this algorithm first of all one needs to solve the system of equa
for function u0 and variablex,

v0~x1e1F1~x,0!!5u0~x!1e0F0~x!, j5x1e1F1~x,0! ~19!

~one should remember that the functionsF j are the given functions of arguments! to find u0(x).
It is not difficult to do if all the functionsFk in Eqs.~7!–~9! are given functions of the independe
variablesx, tn and do not depend explicitly on the solutionu itself. In this case the perturbation i
Eq. ~6! has inhomogeneous, linear, and nonlinear terms with variable coefficients. But of pa
lar interest are the situations when the functionsFk’s are the functions ofu and its derivatives and
do not depend on independent variables explicitly. In this case Eq.~6! has the form of a nonlinea
equation with constant coefficients and Eq.~19! for determiningu0 is a differential equation
~algebraic in particular cases! on the functionu0 and can be integrated both numerically and by
perturbation method, as far as the small parametere is involved in these equations. To clarify th
last statement let us note that Eq.~19! can be expanded in powers of the parametersek up to the
first order

v0~x!2u0~x!2e0F0~x,0!1e1]xv0~x!F1~x,0!1O~e j
2!50

so that one can look for the solutionu0(x) of the form,

u0~x!5v0~x!1(
j 50

1

(
k.0

e j
kujk~x!.

We will come back to the problem of inversion of the infinitesimal transformations~7!–~9! in Sec.
III B.

Now let us come to the general algorithm to construct the solutions of Eq.~6! with an arbitrary
perturbation which comes from the physical point of view.

Let us assume for simplicity that the equation under consideration has the form~6! with first
order perturbation of the formQ5e P̂(j,t1). To construct the solutions of these equations up
the ordere one needs to consider the transformations~7!–~9! which reduces this equation to th
form ~10! up to the ordere. To do this let us substitute Eqs.~7!–~9! into ~6!, then the first order
correction has the following forme(2P(Fk(x,t),u)1 P̂(x,t)). To eliminate it one needs to solv
the equation

P̂~x,t !5P~Fk~x,t !,u! ~20!

with respect to the functionsFk .
This equation is a PDE which can be solved, generally speaking, numerically for any

solutionu of Eq. ~10!. The only requirement is that the functionsFk should be restricted for al
values of the parametersj andt. Only under these circumstances the transformations~7!–~9! can
be considered as the infinitesimal ones. There are many types of the infinitesimal transform
which remove the correction of the above form and one can choose a suitable one accordin
convenience. After this the solution of the original equation can be calculated by using
~7!–~9! for any given solutionu of the transformed Eq.~10!.

This general discussion of the first order perturbations can be straightforwardly extend
the perturbations of higher order.
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III. MULTISCALE DECOMPOSITION AND ASYMPTOTICALLY EQUIVALENT EQUATIONS

In the previous section we have discussed the possibility for Eq.~6! to be considered as
asymptotically equivalent to the CH-hierarchy~10!. However, we have not specified the role of t
small parametere there. Of particular interest is Eq.~6! with the parametere which appears from
the rescaling ofv and x ~multiscale decomposition!. For example, CH can be derived from th
shallow water equation by introducing the small scales inx and u. So we wish to investigate
system~6! under scaling. In order to do this let us substitute the rescaled variables,

u→d1u, v→d1v, j→d2 , t→t/d2 , ~21!

where dk , k51,2 are small parameters, into systems~2! and ~6! and expand the equations i
powers of these parameters. For convenience let us choosed15e2, d25e. The main advantage o
this rescaling is that it allows us to rewrite system~2! in an evolutionary form represented by th
infinite series

utk
5 (

m>0
emCHm

~k! , ~22!

whereas Eq.~6! transforms to

vt5(
k

(
m>0

akCHm
~k!1Q~e,v !. ~23!

We say that Eq.~23! is equivalent to the hierarchy of CH given by the above Eq.~22! up to the
ordereN if there exists infinitesimal transformations of the form~7!–~9! such that Eq.~23! can be
brought to the form,

ut5(
k

(
m>0

ekakCHm
~k!1O~eN11!. ~24!

In the following we write down a few equations explicitly which comes from the CH hierar
under the scaling~21! ~up to the ordere6),

ut1
522kux2e2~3uux12kuxxx!2e4~7uxuxx12uuxxx12kuxxxxx!

2e6~2ku7123uxxuxxx111uxuxxxx12uuxxxxx!1O~e8!, ~25!

ut3
52ux2

ux

2k3/22e2S uxxx

2k3/21
3uux

4k5/2D2e4S 15u2ux

16k7/2 1
3uxuxx

4k5/2 1
3uuxxx

4k5/2 D
1e6S 35u3ux

32k9/2 1
15uuxuxx

8k7/2 1
15u2uxxx

167/2 1
3uxxuxxx

4k5/2 D1O~e8!, ~26!

ut22
524k2ux2ke2~12uux18kuxxx!

2e4S 15u2ux

2
148kuxuxx118kuuxxx112k2u5D

2e6S 16k2u71
35ux

3

2
155uuxuxx110u2uxxx1202kuxxuxxx

1108kuxuxxxx126kuuxxxxxD 1O~e8!. ~27!
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We wish to mention that only the above equations from the CH-hierarchy have a completely
polynomial structure under the multiscale transformation, whereas all other equations cont
nonlocal terms.

With these ideas in mind let us now proceed to investigate Eq.~23! with corrections by using
the concept of asymptotic integrability of the PDE of the evolutionary type which was discu
in detail in Ref. 12. Even though the main ideas of our algorithm are the same, we find c
important differences related with the particular structure of the CH-hierarchy.

A. Asymptotically commuting flows and obstacles to the integrability

To begin with let us recall some facts from the symmetry approach to the integrability o
nonlinear PDE in (111)-dimensions.12,18 Suppose that the evolutions int1 and t2 are described
by the equations,

ut1
5F~u!, ut2

5G~u!, ~28!

whereF(u) andG(u) are functions ofu and itsx-derivatives, are considered as commuting flo
if ut1t2

5ut2t1
. In other words,

K ~F,G![(
k

S ]F

]uk
]x

kG2
]G

]uk
]x

kF D50. ~29!

Analogously ifG andF are represented in the form of a series in small parametere,

F5(
k

ekFk , G5(
k

ekGk , ~30!

then we can call these flows are commuting up to the ordereN when the commutator~29! is of the
orderO(e (N11)): K (F,G)5O(e (N11)). It is evident that the infinitesimal transformations~7!–~9!
do not disturb the integrability.

In the following we focus our attention on evolutionary type equations having local pol
mial type perturbations, i.e., the functionsFk andGk in ~30! have local polynomial structure inu
and itsx derivatives.

We wish to construct ageneral polynomial type Eqs.~28!–~30! which would completely
commute with CH. If it so then the equation we have constructed can said to bea local polynomial
symmetryfor the CH-equation. By the direct commutation one can find this symmetry of the
~we give several terms!

ut5a01ux1e2~a21uxxx1a22uux!1e4~a41u51a42uuxxx1a43uxuxx1a44u
2ux!

1e6~a61u71a62uu51a63uxu41a64uxxuxxx1a65u
2uxxx1a66uuxuxx1a67ux

31a68u
3ux!

1e8~a81u91a82uu71a83uxu61a84uxxu51a85uxxxu41a86u
2u51a87uuxu41a88uuxxuxxx

1a89ux
2uxxx1a8~10!uxuxx

2 1a8~11!u
3uxxx1a8~12!u

2uxuxx1a8~13!uux
31a8~14!u

4ux!1O~e10!,

~31!

where all coefficientsan j are fixed in terms of the coefficientsak1 (k<n) which are left arbitrary.
We represent them in the following form:

a225~1/2k!~3,0,0,0!, a425~1/2k!~23,5,0,0!, a435~1/2k!~23,10,0,0!,

a445~15/8k2!~21,1,0,0!, a625~1/2k!~0,25,7,0!, a635~1/2k!~0,210,21,0!,

a645~1/2k!~3,215,35,0!, a655~5/8k2!~3,210,7,0!,
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a665~5/4k2!~3,217,14,0!, a675~35/8k2!~0,21,1,0!,

a685~35/16k3!~1,22,1,0!, a825~1/2k!~0,0,27,9!,

a835~3/2k!~0,0,27,12!, a845~1/2k!~0,5,242,84!,

a855~1/k!~0,5,228,63!, a865~7/8k2!~0,5,214,9!,

a875~7/4k2!~0,10,237,27!, a885~215/4k2!~1,28,28,221!,

a895~21/8k2!~0,5,228,23!, a8105~1/8k2!~215,155,2791,651!,

a8115~35/16k3!~21,5,27,3!, a8125~105/16k3!~21,8,213,6!,

a8135~315/16k3!~0,1,22,1!, a8145~315/128k4!~21,3,23,1!, ~32!

where we adopted the designation

~a1 ,a2 ,a3 ,a4!5~a1a211a2a411a3a611a4a81!.

It follows from the above form of corrections that if the first nontrivial term in the symmetry~31!
is of the ordereN, then all higher order terms cannot be equal to zero. From this it follows
most important property of the symmetry~31!; this symmetry is represented by aninfinite series
in powers of the parametere.

Now let us construct a differential equation which has a general polynomial structure
asymptotically equivalent to the general symmetry~31! of the CH. For this purpose let us consid
an infinitesimal transformation of the form,

v5u1e2~a21u
21a22u21a23]x

21~u!u1!1e3~a31uu11a32u3!

1e4~a41u
31a42u1

21a43uu21a44u41a45u3]x
21u1a46u2]x

21u2

1a47uu1]x
21u1a48u1]x

21u2!1¯ ~33!

which transforms Eq.~23! into an another polynomial equation. If this equation coincides with
symmetry~31! up to the ordereN, then the original Eq.~23! is asymptotically equivalent to the
CH-symmetry up to the ordereN. We suppose that the transformation~33! covers all possible
transformations~7!–~9!, which are related with the perturbations of the local polynomial type,
we leave the proof of this statement beyond the scope of this paper. Also we conside
perturbations up to the ordere6. Let us substitute the transformation~33! into Eq. ~23! and take
the coefficientsakn in formula ~33! from the condition that the final transformed equation co
cides with the symmetry~31!. This can be done if the original Eq.~23! has the form,

v t5a01vx1e2~a21vxxx1a22vvx!1e4~a41v51b42vvxxx1b43vxvxx1b44v
2vx!

1e5b51~vxx
2 1vxvxxx!1e6~a61u71b62vv51b63vxv41b64vxxvxxx

b65v
2vxxx1b66vvxvxx1b67vx

31b68v
3vx!1O~e7!. ~34!

It is worth noting that the ordere5 appears in the above Eq.~34!, while it does not exist in the
symmetry~31!. The correction up to the ordere4 does not give any obstacle to the integrabil
while the correction of the ordere6 requires the coefficientsbkn to satisfy the following relation:
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3~70a612k~85b62230b63112b64!1k2~16b65118b66248b67!224k3b68!a21

2~300a412335ka41b421k2~212b43
2 160b42b4318b42

2 1120a41b44!

1k3~24b43b4418b42b44!!50. ~35!

The above Eq.~35! represents an obstacle to the integrability for Eq.~34! up to the ordere6. It is
the same as the one derived in Refs. 10 and 16.

B. Different types of infinitesimal transformations

In the previous discussion we have considered an equation of the general form~34! which is
reducible to an integrable equation up to the ordere6 through an infinitesimalgauge transforma-
tion ~7!, ~33!. However, we have already seen in Sec. II.@vide Eq.~19!# that it is not so easy to
reverse this transformation, if required. That is why for the practical purpose of constru
solutions to the equation with perturbation it can be useful to consider infinitesimal transform
of the independent variables as far as each of Eqs.~7!–~9! has its own distinct structures.

In this section we demonstrate the advantage of the infinitesimal transformation~8! by con-
sidering a simple example.

Let us consider an equation of the form,

v t5(
k

CHk
~0!~v !2Q~e,v !,

Q5e5~9a31v2
226ka32v2

219a31vxv326ka32vxv3!1e6~3a41vx
3212ka41v2v3!.

The perturbationQ can be treated by two manners; either through the transformation

~ i! v5u1e3~a31uxxx1a32uux!1e4a41ux
2, j5x, t5t, v5v~j,t!, u5u~x,t !, ~36!

or through the transformation,

~ ii ! v~j,t!5u~x,t !, j5x1e2b21u1e2b31uj , t5t, v5v~j,t!, u5u~x,t !, ~37!

where

b215
1

2k
~3a3122ka32!, b3152a41.

Each of these transformations leads to CH up to the ordere6. Of course it is more convenient t
consider Eq.~36! if one needs to construct the solutionv(j,t) related with givenu(x,t). How-
ever, if one needs to reverse the infinitesimal transformation and find functionu which is related
with the givenv ~for instance to solve the initial value problem! the second transformation~37! is
more preferable since it involves only one differentiation with respect tox. However, we will not
consider an explicit example for this kind of solutions here.

IV. GENERALIZATIONS OF THE ASYMPTOTIC INTEGRABILITY

Generally speaking, the asymptotic integrability is not related with complete integrability
instance, it is possible to consider the equation of the general form, which does not poss
exact symmetry but can possess an approximate symmetry,
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ut j
5a01

~ j !u11e~a11
~ j !u21a12

~ j !u2!1e2~a21
~ j !u31a22

~ j !uu1!

1e3~a31
~ j !u41a32

~ j !u1
21a33

~ j !uu21a34
~ j !u3!1e4~a41

~ j !u51a42
~ j !uu31a43

~ j !u1u21a44
~ j !u2u1!

1e5~a51
~ j !u61a52

~ j !u2
21a53

~ j !u1u31a54
~ j !uu41a55

~ j !uu1
21a56

~ j !u2u21a57
~ j !u4!1e6~a61

~ j !u7

1a62
~ j !uu51a63

~ j !u1u41a64
~ j !u2u31a65

~ j !u2u31a66
~ j !uu1u21a67

~ j !u1
31a68

~ j !u3u1!. ~38!

To find an approximate symmetry, let us consider the commutator of two equations of the
form. It is represented by the infinite series in powers ofe. One can find the restrictions on th
coefficients of Eq.~38! from the conditions that this commutator is of the ordere (N11). Direct
calculations give the following results. The commutator is of the ordere3 if

22a12
~ j !a11

~ i !12a11
~ j !a12

~ i !50,

of the ordere4 if

22a22
~ j !a11

~ i !26a12
~ j !a21

~ i !16a21
~ j !a12

~ i !12a11
~ j !a22

~ i !50,

a22
~ j !a12

~ i !2a12
~ j !a22

~ i !50,

of the ordere5 if

22a32
~ j !a11

~ i !23a22
~ j !a21

~ i !26a12
~ j !a31

~ i !16a31
~ j !a12

~ i !13a21
~ j !a22

~ i !12a11
~ j !a32

~ i !50,

22a33
~ j !a11

~ i !23a22
~ j !a21

~ i !28a12
~ j !a31

~ i !18a31
~ j !a12

~ i !13a21
~ j !a22

~ i !12a11
~ j !a33

~ i !50,

a33
~ j !a12

~ i !2a12
~ j !a33

~ i !50,

26a34
~ j !a11

~ i !12a32
~ j !a12

~ i !12a33
~ j !a12

~ i !22a12
~ j !a32

~ i !22a12
~ j !a33

~ i !16a11
~ j !a34

~ i !50,

a34
~ j !a12

~ i !2a12
~ j !a34

~ i !50,

of the ordere6 if

22a43
~ j !a11

~ i !26a32
~ j !a21

~ i !23a33
~ j !a21

~ i !210a22
~ j !a31

~ i !220a12
~ j !a41

~ i !120a41
~ j !a12

~ i !

110a31
~ j !a22

~ i !16a21
~ j !a32

~ i !13a21
~ j !a33

~ i !12a11
~ j !a43

~ i !50,

22a42
~ j !a11

~ i !23a33
~ j !a21

~ i !24a22
~ j !a31

~ i !210a12
~ j !a41

~ i !110a41
~ j !a12

~ i !14a31
~ j !a22

~ i !13a21
~ j !a33

~ i !

12a11
~ j !a42

~ i !50,

a42
~ j !a12

~ i !2a12
~ j !a42

~ i !50,

22a44
~ j !a11

~ i !26a34
~ j !a21

~ i !12a43
~ j !a12

~ i !1a32
~ j !a22

~ i !2a22
~ j !a32

~ i !22a12
~ j !a43

~ i !16a21
~ j !a34

~ i !12a11
~ j !a44

~ i !50,

24a44
~ j !a11

~ i !218a34
~ j !a21

~ i !12a43
~ j !a12

~ i !16a42
~ j !a12

~ i !12a33
~ j !a22

~ i !22a22
~ j !a33

~ i !

22a12
~ j !a43

~ i !26a12
~ j !a42

~ i !118a21
~ j !a34

~ i !14a11
~ j !a44

~ i !50,

2a44
~ j !a12

~ i !2a34
~ j !a22

~ i !1a22
~ j !a34

~ i !22a12
~ j !a44

~ i !50,

and so on. Equation~38!, with different i, j , whose coefficients satisfy the above conditions up
the ordereN are said to becommuting up to the ordereN. Analogously one can consider a cla
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of equations, equivalent to the given one, as it was done in Sec. II for the CH-type equation
are not considering this question here. The important fact is that none of Eq.~38! with different j
does necessarily belong to a completely integrable hierarchy. There is no regular way to con
in general, the solutions of this type of equations except by the perturbation method.

V. CONCLUDING REMARKS

The PDE of the polynomial structure~38! can be considered as the perturbations of the Kd
or CH-type equations. The obstacles to integrability do not depend on what kind of the inte
equation we are considering. But these equations have quite different solutions, for ex
cuspon and peakon of CH. And both of these equations possess soliton solutions. We ha
that the CH hierarchy under the rescaling~21! gets the structure of the evolution equations of t
polynomial type which arenot scale invariant and are represented as infinite series in power
e @see Eqs.~25!–~27!#. This is the main point of the CH hierarchy.

We have considered a class of equations which is asymptotically equivalent to the
hierarchy up to the ordere6.

We have discussed the advantages of different types of the infinitesimal transform
~7!–~9!. We have shown that along with gauge transformation~7! the transformation of indepen
dent variables are useful in the cases when one needs to reverse the infinitesimal transfor
~for example, for solving the initial value problem!.

Generally speaking, theasymptoticintegrability is not related withcompleteintegrability. One
can consider the approximate symmetries of the nonintegrable Eq.~38! and definition of the
equation which is asymptotically equivalent to the given~nonintegrable! one.
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We introduce a class of currents which allows a new and very explicit form for the
Massey product of a third order link as a line integral. The explicit form permits the
introduction of an asymptotic Massey product analogous to that introduced previ-
ously for Gauss’s integral by V. Arnold. The average third order asymptotic Mas-
sey product is shown to be equal to Berger’s third order helicity for divergence-free
vector fields in linked tori. ©2000 American Institute of Physics.
@S0022-2488~00!02105-8#

I. INTRODUCTION AND MAIN RESULTS

An integral formula for linking numbers was discovered by Gauss. His formula for the lin
number of two closed curvesC1 andC2 is

LK ~C1 ,C2!5
1

4p E
C1

E
C2

t1~ l 1!•t2~ l 2!3
X~ l 1!2X~ l 2!

uX~ l 1!2X~ l 2!u3 dl1 dl2 , ~1!

wheret i is a unit vector alongCi , i 51,2. The analog for curves that are linked in a higher or
fashion, such as the Borromean rings~see Fig. 1! came much later. The Borromean rings a
perhaps the simplest example of a three component link in which the linking numbers of an
curves is zero but such that the link is nonetheless nontrivial. In 19561 Massey introduced an
analog of the linking number which equals 1 for three curves linked as in the Borromean
and 0 for three curves that are unlinked. Massey’s formula in its original form involves an int
of a divergence-free vector field over the boundary of a tubular neighborhood of one of the c
or in more geometric language, of a certain representative of the cohomology class of the c
ment inR3 ~or S3! of the tubular neighborhood of the link. This invariant was little known outs
the algebraic topology community until Monastyrsky and Retakh~Ref. 2 in 1985!, and Berger
~Ref. 3 in 1990!, presented and interpreted it in a manner accessible to nontopologists. For
exposition we also recommend the recent book by Arnold and Khesin.4

A. Curves

An integral expression on a tubular neighborhood of a curve is different than a line int
over the curve itself and, to our knowledge, the first to suggest the latter in this context were
and Berger in Ref. 5. We will rigorously derive their expression from Massey’s formula in Se
by using Stokes’s theorem. Denoting byVCi

(X),i 51,2,3, the solid angle subtended by the cur
Ci from the viewpointX, the result is

a!Electronic mail: laurence@mat.uniroma1.it
b!Electronic mail: estredul@uwc.edu
31700022-2488/2000/41(5)/3170/22/$17.00 © 2000 American Institute of Physics
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E
C1

H“321~AC2
3AC3

!1
1

4p
VC3

AC2J •t dS, ~2!

where the fundamental formsACi
are defined below in~3! With a line integral expression for th

Massey product in hand, we are well on our way to having a generalization of the Gauss l
integral applicable to higher order links. But there is a key missing element. The expressions~2!
still involve quantities that, compared to~1!, are not expressed in anexplicit way in terms of the
curves themselves. Indeed in~1! the expression involves only the distance between points on
curves and the tangent vectort. On the other hand, the expressions“321(AC2

3AC3
) appearing

in ~2! dependa priori in a complicated way on the curves, since, given that the fieldAC2

3AC3
, which is divergence-free in the complement of the tubular neighborhoods, has anonzero

normal component on the boundary, the inverse curl isnot given by the classical Biot–Sava
potential, but rather,a priori, involves solving boundary value problems on this domain for
Laplacian, which provides a much less geometrically explicit description. Another appr
which is the one taken by Berger in Ref. 3, is to find aglobally divergence freeextension of the
field AC2

3AC3
~which is defined onlyoutsidea tubular neighborhood of the link! to which the

Biot–Savart formula can be applied. Actually the inverse is not, and should not, be expected
global in the case of curves. In Berger’s case the inverse is global because his ‘‘A i ’s’’ are vector
potentials for nonsingular magnetic fields. In the case of curves we will see that the inve
strictly speaking, an inverse in the classical sense, only inR2\ø i 51

3 Ci . Nonetheless in Sec. II
@see formula~18!# we give an explicit expression for the singular part of the curl of our inve
which is ~as a measure! supported on the curves. Recall also that an inverse such as that giv
specializing the constructive part of Poincare`’ s formula to two-forms is not possible, since ou
domain is not star shaped.

The approach we will take to finding an inverse that is as explicit as possible is motivat
the idea due to Berger mentioned above. Berger found a continuation of the vector fielAC2

3AC3
into T2 andT3 ~whereTi is a tubular neighborhood ofCi! as a globally defined divergence

free vector field. Our expressions for the inverse curl are related to Berger’s in the following

FIG. 1. The standard Borromean rings.
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As he does, we continue the vector fieldAC2
3AC3

into the interior of the tubes. But we use
different divergence-free extension closely connected to the Frenet triad of the curvesC2 andC3 .
We then renormalize in an appropriate way and consider the limit as the radius of the tubes
to zero. Our expression for the inverse curls can then be obtained as pointwise almost every
but highly nonuniform~close to the curves themselves!, limits of a family of these specia
divergence-free extensions. However, pointwise convergence does not suffice to guaran
distributional identitywe are after, and, in fact, we were unable to push through the proof u
the intuitive extension-blowup argument. The interested reader can find this argument in Re
rigorous proof that the currents obtained really are inverse curls of the fieldAC2

3AC3
takes a

different, more direct but less intuitive approach, and is given in Sec. III. Our expression fo
inverse is

A2,3~X!5E
V

~AC2
3AC3

!3K ~X,Y! dY1E
C3

VC2
~Y!K ~X,Y!3dl2E

C2

VC3
~Y!K ~X,Y!3dl,

whereK is defined in~5!. If we now plug this expression for the inverse into~2!, we obtain a new
and very geometrical form for the Massey product of three curves. The expression ob
involves solid anglesVCi

,i 51,2,3, subtended by curveCi ,i 51,2,3. In this sense, too, it const
tutes a natural generalization to third order links of the connection that exists between
linking number and solid angle. Indeed, recall that the fundamental one-forms

ACi
~X!5

1

4p E
Ci

t3
X2Y

uX2Yu3 dl ~3!

have the property that

¹VCi
54pACi

for all X¹Ci . ~4!

On the other hand, in our formula~3!, solid angle plays the role of aweighton the same kerne
(X2Y)/uX2Yu3 that appears in the fundamental one-forms. Also, for any family of curves
show that these solid anglesin turn have anexpression as line integrals. Note that in the case o
a Borromean link of tori, as mentioned in the next paragraph, potentials needed to give a v
integral representation for the third order helicity admit a representation as a very geo
integral, subject only to certain restrictions that the three tori do not get too ‘‘wild.’’ This will
studied in Sec. IV.

B. Links of tori and asymptotic third order linking number

In 1974 Arnold7 introduced the notion of asymptotic linking number. This notion provide
natural extension of Gauss linking numbers to the context where the trajectories of a diver
free vector field are not closed. Using Birkhoff’s ergodic theorem, Arnold showed that the s
average of the asymptotic linking number equals the helicity. An application of Arnold’s form
was given in Ref. 8 to show that the mutual helicity of linked tori is equal to the linking num
of the core curves of the tori times the product of the fluxes of the magnetic fields. Analogo
denoting the third order helicity of three magnetic fieldsBi that leaves toriTi invariant by
H(B1 ,B2 ,B3), we have

H~B1 ,B2 ,B3!5)
i 51

3

FiM~C1 ,C2 ,C3!,

whereM is the third order Massey product of the curves, which when applied to the a Borro
link of tori becomesH(B1 ,B2 ,B3)5F1F2F3 .
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In Sec. IV, using the explicit geometric form of the Massey product for curves, we intro
an asymptotic version of the Massey product and then demonstrate a relation between a
averaged form@see~14!# of this asymptotic invariant and the third order helicity of the link. Th
relation is the analog of the one that exists in the Gauss linking number context, between v
averaged asymptotic linking number and~ordinary! helicity. We present such a generalization f
a certain subclass of Borromean torus links, those that satisfy a translation property that
expressed in terms of an admissible cone of translations~see Sec. III B!. This subclass is quite
broad but excludes, roughly speaking, Borromean links of tori for which the tori wrap around
other in certain pathological ways and/or have tentacles that protrude in all possible dire
The technical reason for such a specialization is simple. The line integral definition of M
product involves the~multi-valued! potentialsf i . The standard definition of these as line integr
~choosing some base point! of the fundamental one-formsA i does not interact well with ergodic
theorems since it introduces an additional line integral into these expressions, which isnot a line
integral along the trajectories of a divergence-free vector field. We are not aware of ways
around this difficulty in full generality. Thus we look for a class of Borromean links of tori
which the potentials~solid angles! can be expressed as volume integrals of explicit kernels, i.e
analog of the Biot–Savart potential for scalar potentials. We show that such a representa
possible provided that the tori satisfy the translation invariance property mentioned above.

A starting point for our investigation was to ask whether the availability of an explicit form
such as Massey’s could, in the case of Brunian links, provide complementary and possibly s
inequalities to those obtained by Freedman and He in Ref. 9. In a companion paper,10 we use the
new form of the third order helicity@see~13!# to derive the following lower bound on the magnet
energy of magnetic fields normalized by their flux:

1<
p

16)
i 51

3

E3/2
2/3~Bi !1S p

16D
2/3S )

j 51,2,3
E3/2

2/3~Bj ! D S (
i 51,2,3

E3/2
2 ~Bi ! D ,

where (E3/2)
2/3 denotes theL3/2 norm.

Finally, an obvious next step is to consider higher order Massey products. The method
results carry over in a straightforward way for fourth order links. In the case ofnth order Massey
products, we only conjecture the same to be true. We gratefully acknowledge the permiss
Rob Scharein at UBC to adapt his beautiful images in the figures. Any defects in these figu
due to our editing. The originals can be found on his KnotPlot site at the University of Br
Columbia, VC, computer science department.

II. PRELIMINARIES

A. The fundamental one-forms

Throughout this paper we will denote byK (X,Y) the kernel

K ~X,Y!5
1

4p

X2Y

uX2Yu3 52
1

4p
¹X

1

r
,

wherer 5uX2Yu. Given aC1 curveC we can associate to it the following one-form

AC~X!5E
C
t~Y!3K ~X,Y! dl~Y!,

wheret is a unit tangent vector.AC(X) is a harmonicform in the complement of the curve, i.e
¹•AC5“3AC50 in R3\C. Its distributional curl has a singular part that is supported on
curve and for which one can give an explicit expression. This is a good warm-up for the
complicated expressions we derive in connection with the Massey product and so we give

We have
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~¹3AC!@h#5E
C

h•t dl, ~5!

whereh is a vector test function and we use the notationL@h# to denote the action of a distri
bution LPD8(R3) on the test functionh. In a more geometric form, denoting the on
dimensional Hausdorff measure supported on the curveC by H1bC, we have“3AC(X)
5t(X)dH1bC, wheret is a unit vector on the curveC. The proof is a good warm up for the mor
complicated derivations in Sec. III. The interested reader may find it in Ref. 6.

B. The Massey product for curves

Given threeC1 closed curvesCi ,i 51,2,3, whose Gauss linking numbersLK (Ck ,Cl), k
Þ l , are zero, one can define the Massey product associated to these curves as follows1–3 Let
Ui(e i) be small tubes of radiuse i around the curvesCi , and for i 51,2,3 ~using theconvention
i 1151, for i 53!, defineA i ,i 11 by

A i ,i 115“321~ACi
3ACi 11

!. ~6!

Let

Le1 ,e2 ,e3
5R3\$ø i 51,2,3Ui~e i !%.

Note that ACi
,i 51,2,3, represent cohomology classes in Rot(Le1 ,e2 ,e3

), i.e., in
H1(Le1 ,e2 ,e3

:R), and ACi
3ACj

represents a cohomology class in Sol(Le1 ,e2 ,e3
), i.e., in

H2($Le1 ,e2 ,e3
:R). Put simply,A i ,i 11 is not uniquely defined, being defined up to a single-valu

gradient, andA i ,i 11 is not uniquely defined, being defined up to the curl of a single valued ve
field. The Massey product associated to the cohomology classes in the complement ofLe1 ,e2 ,e3

is
defined as follows. Let

V i
(1)5A i3A i 11,i 12

and

V i
(2)5A i 123A i ,i 11 ,

and define the divergence-free vector fieldVi by

Vi5V i
(1)2V i

(2) ~7!

Vi is divergence-free and represents an element in the cohomology class in Sol(Le1 ,e2 ,e3
). The

Massey product is given by any one of the following surface integrals:

E
]Ui (e i )

Vi•n dS, i 51,2,3. ~8!

C. The third order helicity associated to divergence-free vector fields

Suppose that instead of the three curvesCi ,i 51,2,3, we are given three tori which cann
necessarily be expressed as ‘‘tubes’’ around the curvesCi , but are linked in the same fashion. W
call this a Borromean link of tori. More precisely, we have the following.

Definition 1: LetT S5(T1̄,T2̄,T3̄) denote the standard Borromean link of tori. A Borrome
link of tori T5(T1 ,T2 ,T3) is a link of three tori such that there exists a diffeomorphism fromR3

to R3 carrying T S to T.
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Equivalently, the toriTi ,i 51,2,3, are smooth andunknotted, any two pairs of tori (Tj ,Tk) are
unlinked, and the axes of the tori form a standard Borromean link.

Definition 2: Given a Borromean link of toriT S and a divergence-free vector fieldB
5( i 51

3 Bi , whereBi is zero in the complement of Ti and has zero normal component on]Ti let A i

be a globally defined vector potential forBi . Then we define the third order helicity ofB,
H(B1 ,B2 ,B3), by

H~B1 ,B2 ,B3!5E
Ti

Vi•n dS,

where theVi were defined in Eq. (7).
Thus the third order helicity is the result of applying the expression for the Massey prod

the vector potentials of the magnetic fieldsBi instead of to the fundamental one-formsACi

associated to the curveCi .
Remark:The third order helicity is well defined forL1 vector fields. Moreover, when thes

vector fieldsBi are divergence-free in the sense of distributions, and have zero normal comp
~in the sense of traces! on the boundary ofTi , the fundamental formula~14! holds true. This can
be easily shown using a standard approximation argument.

An example of a nonstandard Borromean link, still with nonzero Massey product, but
two of its components linked as in a Whitehead link, is illustrated in Fig. 2.

In the case of tori one may, following Berger,3 consider as the fundamental object a dive
gence free-vector fieldB5(B1 ,B2 ,B3) with the property thatBi is supported inTi and is tangen-
tial on the boundary ofTi . Then we may consider the cohomology in the complement of any
of the tori Ti . As particular representatives of the cohomology class, we may consider the
Savart potentialsA i

Biot of the magnetic fieldBi and, in the definition of the Massey product give
earlier@see~7! and~8!#, we useABiot instead ofACi

. Berger’s contribution was to show how th
resulting expression can be transformed into a volume integral inøTi ,i 51,2,3. To achieve this

FIG. 2. A third order Brunnian link with two components forming a Whitehad link.
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goal he found divergence-free extensions of vector fields of the formA i3A j into the toriTi and
Tj , in such a way that the extended globally defined vector field were globally divergence-f
the distributional sense.

1. The Biot –Savart potential

Given a divergence-free fieldB, the Biot–Savart vector potential is defined by

ABiot~B!~X!5
1

4p E
R3

B~Y!3
X2Y

uX2Yu3
dY5E

R3
B~Y!3K ~X,Y! dY,

It satisfies

“3Abiot5B.

In order to find divergence-free extensions of vector fields of the formA i3A j ~to simplify
notation we drop the superscript ‘‘Biot’’ when there is no ambiguity! into tori Ti andTj , in such
a way that the extended globally defined vector field is globally divergence-free in the dis
tional sense, it suffices to ensure that the normal component of the globally defined vecto
varies continuously as we cross the boundary of the toriTi , Tj .

D. Extension „Berger’s extension …

We use the convention thati 1151 when i 53, i.e., that sums are calculatedmod 3. We
define the globally divergence free vector fieldFi ,i 11 by

Fi ,i 115H A i3A i 111f iBi 11 for XPTi 11 ,

A i3A i 112f i 11Bi for XPTi ,

A i3A i 11 elsewhere,

wheref i is any single valued~in Ti! solution of ¹f i5A i . Note that the free constant in th
definition of f i does not affect the value of the integral above since the mutual helicity*T3

A1

•B3 is zero. It is possible to find other extensions intoTi . See Ref. 6.

E. Transformations of the expression for the Massey product into a volume form

Consider one of the three equivalent~up to permutation of the indices! terms*]Ti
Vi , say with

i 51. Given the expression

E
]T1

A33“321~A13A2!•n dS

corresponding to*]T1
V 1

(2)
•n dS, use the divergence theorem, the vector identity¹•(V3W)

5W•“3V2V•“3W, and the extensions associated with the fields to transform the latter
the following volume integral in]T1 :

E
]T1

A1•F1,2dV5E
T1

A13A2•A3 dV2E
T1

A1•B1f3 dV. ~9!

Use the divergence theorem on*]T1
V 1

(1)
•n dS to transform it into a volume integral insideT1 .

That is we have

E
T1

A1•A23A3 dX12E
T1

A1•ABiot~F2,3! dX1 , ~10!
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where the second term in~10! may, by the definition ofF2,3, be written

E
T1

A1•ABiot~F2,3! dV5E
T1

B1•5
E

R3
@A23A3#~Y!3K ~Y2X1! dY

2E
T2

f3~X2!B2~X2!3K ~X22X1! dX2

1E
T3

f2~X3!B3~X3!3K ~X32X1! dX3

6 dX1 . ~11!

F. Volume integral form 1 of third order helicity

Now subtracting the result of substituting~11! into ~10! from ~9! we get the first of two
equivalent expressions for the Massey product as a volume integral. We will refer to the follo
volume form as thethird order helicity, and denote it byH(B1 ,B2 ,B3):

E
T1

B1•

¦

E
R3

@A23A3#~Y!3K ~X12Y! dYdX1

2E
T2

f3~X2!B2~X2!3K ~X12X2! dX2

1E
T3

f2~X3!B3~X3!3K ~X12X3! dX3

2E
T2

f3~X1!B2~X2!3K ~X12X2!

§
dX1. ~12!

G. Volume form 2 of third order helicity

Alternatively, we may use Fubini’s theorem~i.e., change the order of integration in th
multiple integral! and the definition of the Biot–Savart potential to obtain the second volume

E
R3

@A23A3#~Y!3K ~Y2X1! dYdX1

1H E
T1

A3•B1f2 dV2E
T2

A1•B2f3 dX21E
T3

A1•B3f2 dX3J . ~13!

This form will turn out to be particularly useful in obtaining lower estimates on the magn
energy in Borromean links. We also record the following result proved in Appendix D in Re

Theorem 1: Let B5(B1 ,B2 ,B3) be an integrable divergence-free vector field supported i
Borromean torus linkT5(T1 ,T2 ,T3) and tangential to the boundary of the link. Then we hav

H~B1 ,B2 ,B3!5F1F2F3 , ~14!

where Fi is the flux through torus Ti .

H. Line integral form of the Massey product

Starting from the form~15! ~with i 51! for the Massey product, using Stokes’s theorem in
two-dimensional surface]T1 , after a cut has been introduced to make the potentialf1 single
valued~recall ¹f15A1!, one obtains

E
C1

“321~A23A3!•dl2E
C1

f3A2•dl. ~15!
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The details are contained in Ref. 6, Appendices A and B.

III. MAIN RESULTS

A. Definition of an inverse curl and an explicit form for the Massey product

In this section we begin to present our main results. Our aim is to exhibit in explicit fo
vector potentialA2,3

global with the property that for anyX in the open setV̂5R3\$C1øC2øC3% one
has

¹3A2,3
global~X!5~¹f23¹f3!~X!5AC2

3AC3
~X! in V̂.

We will show thatA2,3 is given by

A2,3~X!5E
V

~AC2
3AC3

!3K ~X,Y! dY1E
C3

f2~Y!K ~X,Y!3dl2E
C2

f3~Y!K ~X,Y!3dl

5:a1b22b3 , ~16!

where f i(X)5 V i(X)/4p, the solid angle subtended by curveCi viewed from pointX and
normalized to have total variation 1 ifCi is linked once. In the sequel we will writeA i5ACi

, for
brevity. In analogy with~5! we will establish the following elegant expression for the curl in t
distributional sense:

“3A2,35A23A32tdH1bC21tdH1bC3 , ~17!

or, equivalently, ifh is a vector test function,

E
R3

A2,3•hdV ~18!

E
R3

~A23A3!•h dV2E
C2

t•h dl1E
C3

t•h dl. ~19!

Remark 1: Two remarks are in order concerning (16). The first is that there is a singular co
bution given by the last two terms, even when the curl is taken at a pointnot on the two curves C2
and C3 . Moreover the distributional curl has a singular part supported on the curves C2 and C3 .
The second is that in the proof given below, we assume the curves are C2. It is not clear what
minimal regularity is needed for the formula to hold.

We now give an exact statement of our theorem.
Theorem 2: Given two closed C2 curves C2 and C3 , and given the two-form formed by th

exterior product of the two one-formsAC2
andAC3

associated with the curves we define a curre

through the formula (16). Then the distributional curl of (16) is (19). In particular,
R3\(C2øC3) we have that“3A2,35A2,3 in the classical sense.

An immediate consequence of Theorem 2 is the following form for the Massey produc
Corollary 1 (Semi-explicit form Massey product): Given three C2 closed curves with zero

pairwise linking numbers, their Massey product is given by the expression

E
C15 ER3

~A23A3!~Y!3K ~X,Y! dY1E
C3

f2~X3!K ~X1 ,X3!3dl3

2E
C2

f3~X2!K ~X1 ,X2!3dl2 6 •dl1

2E f3~X1!S E K ~X1 ,X2!3dl2D •dl1 . ~20!

C1 C2
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Proof of corollary: The corollary follows immediately by using the line integral form for t
Massey product given at the end of Sec. II, in conjunction with the expressions for the in
curls given by Theorem 2.

Proof of Theorem 2:We must show forh, a ~three vector! test function with compact suppor
in R3, that

E
V̂

~a1b21b3!•¹3h dX5E
V̂

A2~X!3A3~X!•h dX1 (
i 51,2,j Þ i

E
Ci

~21! if jh~X!•dl.

First note that

E
R3

¹3h•E
R3

~A23A3!3K ~X,Y! dY dX5 lim
e→0

E
R3

¹3h•E
L(e)

~A13A2!3K ~X,Y! dY dX

5: lim
e→0

t~e!,

where for simplicity we let

Le5Le1 ,e2 ,e3
.

This can be seen as follows. LetBR be a ball that contains the curvesC2 andC3 , and hence
the singularities ofA23A3 . Split the integral overR33R3 into four integrals over regions:BR

3BR , BR3BR
c , BR

c 3BR , BR
c 3BR

c . SinceKPL3/22e(BR3BR) for anye.0, andA23A3 is in
L loc

22e(BR), the contribution fromBR3BR is finite by Young’s inequality. The other contribution
are easily seen to be finite due to the decay ofA23A3 andK at infinity.

We begin by pulling the operator¹3 out from under the integral, i.e.,

E
L(e)

A23A3~Y!3K ~X,Y! dX5¹X3E
L(e)

A23A3~Y!

uX2Yu
dY,

where hereB5A23A3 , and where we have used the identity¹3( f C)5¹ f 3C1 f ¹3C.
We now use the divergence theorem and the identity

¹•~C3D!5D•¹3C2C•¹3D,

which shows that“3 is a symmetric operator with respect to the inner product inL2 when acting
on functions which are zero on the boundary.~Note that a sharp characterization of not only t
symmetry property but also the ‘‘maximal’’ closed subspace of solenoidalL2 fields for which“3
can be extended to a self-adjoint operator has been given by Yoshida and Giga in Ref. 11! Thus
we reexpresst(e) as follows:

E
R3S EL(e)

~A23A3!~Y!

uX2Yu
dYD •¹3X¹3Xh dX.

Then use the identity

¹3¹352D1¹¹

to obtain from the standard distributional identity

D
1

uX2Yu
524pd~X2Y!.

Then
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t~e!5E
R3

~A2~X!3A3~X!!•h~X! dX2E
R3
E

L(e)
¹X•

A23A3

uX2Yu
dY¹•h dX5:t11t2~e!.

~21!

Note that we have~legitimately! brought the operator¹ underneath the integral sign, since the
is no singularity ofA23A3 in the domainL(e). Now set

s~e!5E
L(e)

¹X•
A13A2

uX2Yu
dY

using the fact that

¹X•
1

uX2Y
52¹Y

1

uX2Yu
.

We may integrate by parts~using the divergence theorem! in the inner integral ins(e) and
exploit the fact that forYPL(e) ~but not in all ofR3!, ¹•(A23A3)50. It is easily seen that the
boundary term vanishes at infinity because of the sufficiently rapid decay ofA2 andA3 , and thus
we are left with

t2~e!5E
R3S E]L(e)

~A23A3•n!~Y!

uX2Yu
dSy~¹•h~X!! D dX.

We now use the fact that](L(e))5]U2(e)ø]U3(e) and write for brevity

E
R3

¹•h~X!E
]L(e)

~A23A3•n!~Y!

uX2Yu
dSy5 (

i 52,3
E

R3
¹•h~X!E

]Ui

~A23A3•n!~Y!

uX2Yu
dSy

5:E
R3

¹•h~X!~s2~X,e!1s3~X,e!! dX.

Now calculate the limit ase tends to zero of*R3¹•hs3(X,e). The limit of *R3¹
•hs2(X,e) is treated in the same way.

Applying Stokes’ formulain the two-dimensional surface]U3 we obtain

E
]U3(e)

A23A3•n

uX2Yu
dSy ~22!

51E
]U3(e)

¹f3•Fn~Y!3
A2

uX2YuG dSy ~23!

5E
]U3

cut(e)
t•

¹f2~Y~ l !!

uX2Y~ l !u
dl1E

U3
cut(e)

f3¹S•S n~Y!3¹f2~Y!

uX2Yu D dSy ~24!

5:s3
1~X,e!1s3

2~X,e!. ~25!

For X in R3\C3 we clearly have that lime→0s3
1(X,e)50. But, due to the singularity of the kerne

K at C3 , the limit in the distributional sense is different from zero, as we will see below.
We next treats3

2. To deal with the fact that¹ 1/uX2Yu is singular forX on C3 , we use Fubini,
and¹S•(n3¹f2)50, and we rearrange the triple product to get
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E
R3

¹•h~X!s3
2~X,e! ~26!

5E
R3H EU3

cut(e)
f3¹S•S n~Y!3¹f2~Y!

uX2Yu D J ¹•h~X! dX @recall that ¹S~n3f2!50#

5E
U3

cut(e)
f3~Y!n~Y!3¹f2~Y! dY•S E

R3
¹•h~X!K ~X,Y! dYD dX. ~27!

The inner integral is clearly bounded and the outer integral is of ordere, and so tends to zero a
e→0. Thuss3

2(e)→0 ase→0.
To prove our claim that“3A2,35A23A32tdH1bC22tdH1bC3 , we must show that

lim
e→0

E
R3
E

]U3
cut(e)

t•
¹f2~Y~ l !!

uX2Y~ l !u
dly¹•h dX ~28!

5E
R3
E

C3

f2t3K ~X,Y! dly•“3h dX1E
C3

f2h•dl, ~29!

and analogously for the~analogously defined! term s2
2(e) ~just interchange the indices 2 and 3!.

The line integral in the inner integral in the first term on the right hand side may be wr

¹XE
C3

f2

uX2Yu
t~Y! dly ,

and so, integrating by parts, we may rewrite the first term in the right hand side of~28! and~29!
as

E
R3
E

C3

f2

uX2Yu
“3“3h dX. ~30!

To treat the left hand side in~25!, note that we may reexpress the line integral appearing ther

E
]U3

cut(e)
t•¹S f2~Y!

uX2Yu Ddly2E
]U3

cut(e)
f2~Y!t•¹YS 1

uX2Yu Ddly . ~31!

Note that the first term in~31! vanishes, since it is the integral of a perfect differential on a clo
curve. In the second term we replace¹Y by 2¹X and pull the¹• operator out of the line integra
@so that using¹X• f (Y)V(X)5V• f , it may be written as the divergence of a line integral#. Then
after an integration by parts we are left with a left hand side equal to

E
R3S E]U3

cut(e)

f2

uX2Yu
dlyD ~2¹~¹•h!!dX. ~32!

The curve]U3
cut(e) is a longitude on]U3 and can be obtained whenC2 is C2 by following an

appropriate vectorp, in the normal–binormal plane to the curve, out a distancee. So easy esti-
mates show that the contribution due to the difference between the line integral on]U3

cut and the
line integral onC3 are vanishingly small ase→0. Thus combining the contributions~30! and~32!
we obtain

E
C3

f2~Y!

uX2Yu
dlE

R3
Dh~X! dX. ~33!
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Reversing the order of integration and using the fact that

E
R3

Dh~X!

uX2Yu
dX5h~Y!,

we see that we may write~33! as

E
C3

f2~ l !h~ l ! dl,

and this establishes the equality of the two sides appearing in~16!.

B. Third order torus links with a translation property

In this section, in order to recover results connecting the threefold averaged third
Massey product over all trajectories in the three tori, with the third order helicity, we res
ourselves to a family of third order torus links which satisfy an additional property which we
to as a translation property or, better yet, an admissible ‘‘cone of translations.’’

Definition 3: We will say that a standard Borromean link of tori is ‘‘tame’’ if we can choo
two pairs of indices, which, without loss of generality, we denote by (1,3) and (2,3) from the
combinations of two indices, such that for the correponding ordered pair of tori(T1 ,T3), resp.
(T2 ,T3), there exist directionsa1,3 and a2,3 (represented by unit vectors on the unit sphere)
which the translation of T1 in the directiona1,3 does not intersect the torus T3 and analogously for
T2 and T3 .

Note thata2,3 is admissible for the pair (T2 ,T3) if and only if 2a2,3 is admissible for the pair
(T3 ,T2). In order for such a choicenot to be possiblethe tori need to be quite ‘‘wild’’ as
illustrated by Figs. 1 and 3 of a ‘‘not wild’’ and a ‘‘wild’’ Borromean link of tori. Also, it is clea
that when there is a pair of unit vectors (a1,3,a2,3) with the above properties, there is actually
coneCo1,3, Co2,3. See Fig. 4.

FIG. 3. An illustration of a Brunnian link that does not satisfy the translation property.
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To motivate the definition consider the volume integral form 1 for the Massey product, w
we repeat here for convenience:

E
T1

B1•

¦

E
R3

@A23A3#~Y!3K ~X12Y! dY dX1

2E
T2

f3~X2!B2~X2!3K ~X12X2! dX2

1E
T3

f2~X3!B3~X3!3K ~X12X3! dX3

2E
T2

f3~X2!B2~X2!3K ~X12X2!

§
dX1 . ~34!

We will see below that

f i~Xj !5E
Ti

B~Xi !•ASo~Xj2Xi ! dXi ~35!

where, by definition the kernelASo(Xj2Xi) is given by

ASo~Xj2Xi !5
~Xj2Xi !3aj ,i

u~Xj2Xi3aj ,i u2
S ~Xj2Xi !•aj ,i

uXj2Xi u
21D5

~Xj2Xi !3aj ,i

uXj2Xi u1u~Xj2Xi !3aj ,i u

in terms of constant unit vectorsaj ,i . The kernelASo(Xj2Xi) is only singular when the vecto
Xj2Xi and the vectoraj ,i point in opposite directions. Thus we will say that the Borromean to
link (T1 ,T2 ,T3) is tamewhen it is possible to choosea1,2 so that for no point (X1 ,X2) in T1

3T2 does the vectorX12X2 point in the same direction as the vectora1,2 and when it is possible

FIG. 4. A Brunnian link that satisfies the translation property and an accompanying admissible pair of translations
a1,3 anda2,3.
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to choose in an analogous waya2,3 ~and soa3,2! for the tori T2 and T3 . In fact, as mentioned
previously, when the tori are tame, there is not just one unit vector but rather a cone of po
translations.

The condition of being tame guarantees that we may define the solid angles using v
integrals and so express the third order helicity of the three tori by plugging the expression~36!
into ~34!.

C. The derivation of the volume integral expressions for the scalar potential for the
Biot–Savart potential for the magnetic field

The main object of this section is, given a magnetic fieldB supported in a torusT and given
its Biot–Savart potentialABiot ~as defined in the preliminaries!, to find an expression for a scala
potentialf for A (¹f5A) in the form of a volume integral overT. To prepare for this we will
make use of a little known inverse curl of the gradient of the fundamental solution.

Lemma 1: Given a unit vectora, if X is not parallel toa and is not zero, then we have

@¹3#21
X

uXu3
5

X3a

uX3au2 S X•a

uXu
21D52

X3a

~ uXu1~X•a!!~ uXu!
. ~36!

Proof: We use the identity

“3~ f V!5¹ f 3V1 f“3V.

The lemma follows easily from the following relations:

¹3~X3a!522a, ~37!

¹S X•a

uXu
21D5

a

uXu
2

X

uXu3 X•a, ~38!

¹uX3au252X22~X•a!a, ~39!

¹H S X•a

uXu
21D 1

uX3au2J 3$X3a%, ~40!

and so we get

H ¹S X•a

uXu
21D D 1

uX3au2 1S X•a

uXu
21D S 2

¹~ uX3au2!

uX3au4 D3$X3a%ªa11a2 .

After some simplification and using the identitiesuX3au25uXu2uau22(X•a)2 and a•(b3c)
52(a•c)b2(a•c)b we get

a15
X

uXu3.

The second term gives
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a2522
1

uX3au4 S X•a

uX
21D ~2uXu2a1X•aX1~X•a!2a2~X•a!X!)

522
a

uX3au4 S X•a

uX
21D ~2uX3au2!

52a
1

uX3au2 S X•a

uX
21D .

But the remaining term in the calculation of“3$ (X3a)/uX3au2 (X•a/uXu 21)%, i.e., the term
involving “3(X3a), yields exactly2a2 , so we are done.

It follows immediately that if we define, abusing notation a bit, a vector potentialASo(X,Y,a)
by

ASo~X,Y,a!5ASo~X2Y,a!, ~41!

then we have

¹X3ASo~X,Y,a!54pK ~X,Y!, ~42!

where

ASo~X,Y,a!52
~X2Y!3a

~ uX2Yu1~X2Y!•a!~ uX2Yu!
.

Let C be a closed curve andS a smoothly embedded surface bounded byC. Relative to the
viewing pointY the solid angle is given by

VC~Y!54pE
SC

K•n dS.

Using Stokes’ theorem andASo(X,Y,a) this may be written~recalling thatVC54pfC!

fC~Y!a5E
C
ASo~X~ l !,Y,a! dl. ~43!

D. An integral expression for the scalar potential of the Biot–Savart vector potential
and for the fundamental one-form

Using the expressions derived above for the inverse curl of the gradient of the fundam
solution of Laplace’s equation, we derive for eacha the following integral expression for a
solutionf i of

¹fCi

a 5ACi
.

The analogous formula in the case of scalar potentials for solid tori is

¹f i
a5A i

Biot ,
~44!

f i~X!a5E
Ti

Bi~Y!•ASo~X,Y,a! dY.

This solution is well defined only if (X2Y)3a does not vanish forYPTi andX in the domain in
consideration. Note that as discussed in the section on potentials and cuts,f i is actually defined in
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the complement ofTi minus a cutbut will not be represented by formula~44! except in subregions
having the property that for eachX in the subregion, (X2Y)3a does not vanish forany Y
PTi , i.e., X2Y is never parallel toa.

Formula~44! is easily checked. Indeed, taking the gradient off i , bringing the gradient unde
the integral sign and using the identity

¹~U•V!5U•V1V•U1U3“3V1V3“3U,

we get

¹f i~X!5E
Ti

B~Y!•“YASo~X,Y,a!dY1E
Ti

B~Y!3“3ASo~X,Y,a!dY

5E
Ti

B~Y!3K ~X2Y! dY,

where we have used formula~36! to simplify the second integral and where the first integ
vanishes since

E
Ti

B~Y!•“YASo~X,Y,a! dY52E
Ti

B~Y!•“XASo~X,Y,a! dY

5E
Ti

~“•B!ASo dY1E
]Ti

B•nASodS,

and the latter equals zero since“•B50 andB•n50 on ]Ti .
Corollary (explicit form for the Massey product):The line integral expression for the Masse

product of three curvesC1 ,C2 ,C3 given at the end of Sec. II, Eq.~15!, for Â2,3, may be rewritten
as

E
C15

E
R3

~A23A3!~Y!3K ~X,Y! dY

1E
C3

S E
C2

t2~X2!•ASo~X3 ,X2 ,a!dl2DK ~X1 ,X3!3dl3

2E
C2

S E
C3

t3~X3!•ASo~X2 ,X3 ,a!dl3DK ~X1 ,X2!3dl2
6 •dl1

2E
C1

S E
C3

t3~X3!•ASo~X1 ,X3 ,a!dl3D S E
C2

K ~X1 ,X2!3dl2D •dl1 . ~45!

IV. ASYMPTOTIC THIRD ORDER LINKING NUMBER

In this section we first show that there is a well defined asymptotic version of the third
Massey product of three curves. We then show that given a ‘‘tame’’ Borromean link of
(T1 ,T2 ,T3) and given a smooth vector fieldB with support in the link and tangential to th
boundary of the link, the triple volume average over the three tori of the asymptotic third
Massey product equals the third order helicity of the three tori.

A. Definition of the asymptotic third order linking number

We begin by recalling some well known facts and introducing some notation.
Definition 4: Given a domainV, we say that a system of curvesD@X,Y# connecting XandY

is a system of w-short paths if the length of a curve inD@X,Y# is bounded by a constant that i
independent of X and Y.
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Systems of w-short paths exist in any smooth domain. The existence of short paths tha
given vector field, also make vanishing contributions to integrals of Gauss type, is a much
subtle question, being related to delicate questions about the critical set of the vector field
Ref. 4, pp. 145–146. In the present paper the stronger concept of short paths is not re
because the vector fields considered have support in disjoint tori.

Let g(@x,t#) denote the trajectoryX(x,s), 0<s<t @whereX(x,s) is the solution of the ODE
]X(x,s)/]s5B(X(x,s)) with initial condition X(x,0)5x#, and denote byGt(x) the end point
X(x,t). The curvegc

t (x) is obtained by adding a curve inD@x,X(t,x)# of the system of short
paths. Denote the end point of the curve obtained in this way byGc

t (x).
Let Gi , i 51,2,3, be trajectories of magnetic fieldsBi , whereBi is tangent to the boundar

of Ti and is Lipschitz continuous. In the case of multi-parameter ergodic theorems with mu
‘‘times’’ it is necessary to put some restrictions on the way that the parameters tend to in
Loosely speaking it is not permissible for some of thet i ’s to tend to infinity much slower than
others. To make this precise, we use a notion due to Becker12 which generalizes that of Wiener.13

Definition 5: We say that a set of parameters ti ,i 51,2,3 tends nicely to infinity if there is an
increasing family of open sets Ua with a.0 such that the three-tuple(t1 ,t2 ,t3)PUa and such
that for each XPR3

lim
a→`

~X1Ua!DUa

uUau
50,

whereD denotes the symmetric difference andu u denotes the three-dimensional Lebesgue m
sure.

This constrains the parameter set to increase in a fairly symmetric way. Two special ca
families of parameters (t i ,t2 ,t3) that tend nicely to infinity are given by choosing

~i!

Ua5$T5~ t1 ,t2 ,t3!PR3:t1
21t2

21t3
2<a2%

which is the case considered by Wiener, and
~ii !

Ua5$T5~ t1 ,t2 ,t3!PR3:t1<a,t2<a1c2 ,t3<a1c3%,

wherec2 andc3 are arbitrary constants.
The asymptotic third order linking number of the three curves is defined by

lim
a→`(t1 ,t2 ,t3)PUa

1

uUau
M~Ĝt1,Ĝt2,Ĝt3!,

whereĜi is Gi completed to a closed curve by the addition of a short path. Becker’s generaliz
of Wiener’s result is that the limit above exists almost everywhere and the convergence is
nated, whereM is the explicit form of the Massey product~45! and whereĜi is Gi completed to
a closed curve by the addition of a short path.

In the next section we will need the following well known result. Iff̃ is a multi-valued
function that increases by 1 on any degree one curve in a torusT, and if B is a divergence-free
field that is tangential to]T, then

E
T
B•¹f̃ dV5Flux of B5F.

As pointed out by Freedman and He in Ref. 9, this has the following corollary:
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E
T
~~f̃~Gt~x!!2f̃~G0~x!!!dV ~46!

5E
T
H E

0

s d

dt
f̃~Gs~x!!dsJ dV ~47!

5E
T
E

0

t

B•¹f̃dsdV5E
0

t

dsE
T
B•¹f̃dV ~48!

5tF. ~49!

B. Multiplicativeness of third order linking number

We will need the following result:
Lemma 2: Let(T1 ,T2 ,T3) be a Borromean link of tori (wild or not). If Ci is a closed curve

of degree di in Ti , i 51,2,3,then

M~C1 ,C2 ,C3!5d1d2d3 . ~50!

This lemma in the cased151, d251 andd35n wheren is an arbitrary integer is proved in Re
14 and already mentioned in Massey.1 To prove the lemma in the more general case, one m
generalize Stein’s proof, or argue directly using a generalization of the argument in Appen
in Ref. 6, where the Massey product is connected with the signed intersections of one
components of the link with Seifert surfaces bounded by one of the other components. Wh
component has degreen this contribution is easily seen to ben times its value when the compo
nent has degree 1, since the trajectories will traverse alln sheets of the corresponding Seife
surface.

C. Average of third order asymptotic linking number is equal to third order helicity

We are now ready to establish the following result:
Theorem 3: Let T5(T1 ,T2 ,T3) be a tame Borromean link and letB be a smooth divergence

free vector field, with support inT and tangential to the boundary ofT. Then, if the parameters
t5(t1 ,t2 ,t3) tend nicely to infinity~in particular, if t15t25t3!, then the volume average of th
time average of the asymptotic Massey product in the link is equal to the third order helicity o
link, i.e.,

E
T1

E
T2

E
T3

lim
t nicely→`

1

t1

1

t2

1

t3
M~gc

t1~a1!,gc
t2~a2!,gc

t3~a3!!da3da2da1 ,

We will first establish a lemma that allows us to deal with the set of null points of the ve
field B. Indeed, away from these null points, the trajectories~field lines! of B are smooth, and so
we can use the line integral form of the Massey product mentioned in Sec. II and deriv
Appendix B of Ref. 6. But this may not be so at a null. The lemma allows us, roughly spea
to show that the set of null points has a negligible influence.

D. The set of critical points is of zero measure in Lagrangian space

The idea of the proof is analogous to that which uses the coarea formula, in the cont
Lipschitz scalar functions, to show that the Hausdorff measure of the set of critical points is
on almost all levels.

Let
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W~B!5H aPS~B!:If g t~a! is a trajectory of B beginning ata,

then fort→`, g t~a!→null point of B J ,

whereS(B) denotes the support ofB. By the ergodic theorem, we have

E
W(B)

uB~a!u d3a5E
W(B)

da lim
t→`

1

t E0

t

uB~g t~a!u dt.

Now denote the~first! null point encountered on the trajectoryg t(a) by N(a). Then since
limt→`g t(a)5N(a), and sinceB is smooth, givene, there exists aT so large that fort.T we
have

uB~g t~a!!u<
e

2
.

Now chooseT8.2TumaxWuBu/e, so we have

1

T8
E

0

T8
uB~X~a,t !!u dt5

1

T8 S E0

T

uB~X~a,t !!u dt1E
T

T8
uB~X~a,t !!u dtD

<
T

T8
maxuBu1

T82T

T8

e

2

<e.

Thus, if we set

M~B,a,t !5
1

t E0

t

uB~g t~a!!u dt,

we have

M→0 pointwise ast→`;aPW~B!.

Thus we have

E
W(B)

uB~a!u d3a50,

as claimed, and soB50 almost everywhere on the setW(B). We summarize this as a theorem
Theorem 4: Let B be a smooth divergence-free vector field in a torus T, tangential at]T.

ThenuBu is zero almost everywhere on the set of points which tend asymptotically to a null
In particular, the trajectory issuing from almost any point not in the null set ofB does not tend
asymptotically to a null point ofB.
We now can begin the proof of Theorem 2.

Using the mean value theorem, we have

f̃ i@Gt~x!#2f̃ i~x!5f̃ i@Gc
t ~x!#2f̃ i~x!1f̃@Gt~x!#2f@Gc

t ~x!# ~51!

<f̃ i@Gc
t ~x!#2f̃ i~x!1uf̃ i~Gt~x!!2f̃ i~Gc

t x!u ~52!

<f̃ i@Gc
t ~x!#2f̃ i~x!1 sup

xPV

u¹f̃ i~x!uuD@x,X~x,t !#u ~53!
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5E
gc

t
“f̃ i .•dl1C, ~54!

whereC is a constant. Similarly estimating the difference in~51! from below we obtain

f̃ i@X~x,t !#2f̃ i~x!>E
Ĝt

¹f̃ i .•dl2C. ~55!

To deduce~54! form ~53! we used the fact thatu¹f̃ i u is uniformly bounded and the fact tha
members of the system of short curves are uniformly bounded. Thus, combining~54! and ~55!

uf̃ i@Gt~x!#2f̃ i~x!u<deg~gc
t ~x!!1C8. ~56!

The two inequalities together imply

deg@gc
t ~x!#2C<f̃ i@X~x,t !#2f̃ i@x#<deg@g t~x!#1C. ~57!

Integrate~57! over Ti and use@~49!# for i 51 to get

E
Ti

deg@~gc
t ~x!!( i )#2CuTi u<tF1<E

Ti

deg@~gc
t ~x!!( i )#1C.

Dividing by t and lettingt→` we have

lim
t→`

1

t ETi

deg@~gc
t ~x!!( i )# dX5Fi . ~58!

Now if (gc
t )( i ) are closed curves inTi , i 51,2,3, and if we apply formula~50!, we obtain

M~~gc
t ~x!!(1),~gc

t !(2),~gc
t !(3)!5deg@~gc

t1!(1)~x1!#deg@~gc
t2!(2)~x2!#deg@~gc

t3!(3)~x3!#.

Integrate both sides in turn overTi ,i 51,2,3, to obtain

)
i 51

3 E
Ti

deg@~gc
t1!( i )~xi !#5E

T3

E
T2

E
T1

M~~gc
t1!(1)~x1!,~gc

t2!(2),~x2!,~gc
t3!(3)~x3!!dx1dx2dx3 .

At this point we use the lemma as follows: IfX5(X1 ,X2 ,X3) is a point inT13T23T3 which is
such that the trajectory emanating from any of theXi encounters a null point, the correspondin
degree on the left hand side will be bounded. For such a point modify the definitio
M((gc

t )(1)(x1),(gc
t )(2)(x2),(gc

t )(3)(x3)) to be zero.
Now divide by t1t2t3 and lett i→`, i 51,2,3. Using~58! the left hand side clearly tends to

F1F2F2 . ~59!

As noted before and demonstrated in detail in Appendix D of Ref. 6, this quantity is equal t
third order helicity. The limit of the right hand side corresponds to the average of the asym
linking number. Note in the argument above we donot need to useBecker’s multi-parameter
generalization of Birkhoff’s theorem~to the effect that the volume average of the time aver
equals the volume average!, but the proof may also be concluded in that way.

V. CONCLUSIONS

Our main result is a new and explicit form for the Massey product given by~45!. It expresses
the Massey product in terms of purely geometric quantities such as a suitably normalized
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joining pairs of points one on each curve. The expression involves four terms. One is th
integral of a line integral, and the other three are triple line integrals. This explicit form o
Massey product was derived in two stages. The first step was to obtain a semi-explicit form
line integral form of the Massey product~20! by expressing the inverse curls appearing there a
volume integral against an explicit kernel and two line integrals involving solid angles.
second step was then to express these solid angles in turn as line integrals by using the exp
~45!.

This explicit form of the Massey product was then used to define an asymptotic third
Massey product in Sec. IV. For a certain, rather general, subclass of Borromean torus
possessing a translation property, it is possible to establish an analog, in the present conte
result of Arnold for Hopf links: The volume averaged asymptotic third order Massey produ
equal to Berger’s third order helicity.
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On characteristic equations, trace identities and Casimir
operators of simple Lie algebras

A. J. Macfarlanea) and Hendryk Pfeifferb)

Department of Applied Mathematics and Theoretical Physics,
Silver Street, Cambridge CB3 9EW, England

~Received 4 August 1999; accepted for publication 18 January 2000!

Two approaches are developed to exploit, for simple complex or compact real Lie
algebrasg, the information that stems from the characteristic equations of repre-
sentation matrices and Casimir operators. These approaches are selected so as to b
viable not only for ‘‘small’’ Lie algebras, but also to be suitable for treatment by
computer algebra. A very large body of new results emerges in the forms of~a!
identities of a tensorial nature, involving structure constants etc. ofg, ~b! trace
identities for powers of matrices of the adjoint and defining representations ofg, ~c!
expressions of nonprimitive Casimir operators ofg in terms of primitive ones. The
methods are sufficiently tractable to allow not only explicit proof by hand of the
nonprimitive nature of the quartic Casimir ofg2 , f 4 , e6 , but also, e.g., of that of
the tenth order Casimir off 4 . © 2000 American Institute of Physics.
@S0022-2488~00!01305-0#

I. INTRODUCTION

In this paper we are concerned with two related matters. One is the analysis of higher
Casimir operators of a simple complex or compact real Lie algebrag in terms of primitive
Casimirs. The other is the provision of identities involving the structure constants ofg and related
invariant tensors, such identities being often presented as expressions for the trace of the
of matrices from either the defining or the adjoint representation ofg.

Much of course is known about these matters, and we attend with care below in th
paragraphs of this Introduction to the relationship of our work to that of previous authors
purpose however has been to develop and apply methods that remain viable forg of large rank or
dimension, and that are amenable to treatment by computer algebra. In fact, we claim to
large body of new results, for many Lie algebras, not only forg2 , f 4 and e6 , but also for the
classical families, with even quite a few fora25su(3).

It is well known@see Refs. 1, 2, for example, foral5su( l 11)# that identities for ad-invarian
tensors forg can be separated into two classes. Class 1 contains results readily available fog,
and having a common appearance for allg in any of the four classical families, which arise~as we
explain in detail in Sec. II! from use of Jacobi type identities. Class 2 identities, which take o
form special for each Lie algebrag, arise from the use in some way of the characteristic equat
of representation matrices and Casimir operators. In this paper we aim to justify its existen
its approaches to identities in Class 2, to the results that flow from them, and from their appli
to the treatment of nonprimitive Casimir operators.

We follow here two approaches to Class 2 identities and characteristic equations. One is
on the characteristic equation of the second order Casimir operator onVadj^ Vadj whereVadj is the
adjoint representation ofg. The other proceeds by diagonalization of representation matrices o
defining and adjoint representations ofg.

It is convenient to explain these methods first fora25su(3) or, at some points,su(n). Thus

a!Electronic mail: A.J.Macfarlane@damtp.cam.ac.uk
b!Electronic mail: H.Pfeiffer@damtp.cam.ac.uk
31920022-2488/2000/41(5)/3192/34/$17.00 © 2000 American Institute of Physics
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our paper is organized as follows. After a few brief remarks in Sec. II about notation, we ta
our two methods forsu(3) in Sects. III A and III B. While often the results here are well-know
their derivations may well be simpler, and, as subsequent work indicates, more amena
generalization than previous ones. Furthermore, one finds, even in this well-studied contex
results of clear importance@cf. ~3.37a! and ~3.37b!#. Section III C has been included to compa
our approach, in regard to its outlook and results, to the general work of Meyberg3 on trace
identities.

Section IV then proceeds briefly through the application of the first method to the
classical families of Lie algebras and tog2 , f 4 ande6 , displaying a wide variety of new results
especially for the three exceptional algebras. Our strength ran out, as did the calls ma
information storage by our computer programs, during the study ofe6 , so thate7 ande8 have not
been treated. Since our second method requires little explanation beyond that given in Sec
for su(3), andyields useful output easily by hand for simple cases, we simply present the re
in an Appendix. Much here is new and we think valuable.

For what is merely a selection of interesting items, we refer to Eqs.~A1! and ~A2! for a2

5su(3), to thesituation surrounding the primitivity fora45su(5) of the traces trF2k, to ~A36!
for e6 , ~A39! for f 4 and corresponding results forg2 . As an indication of results for which pe
and paper derivation were viable ahead of their confirmation by algebraic computation, w
for example,~A42a!–~A42d! and ~A43a! and ~A43b!, as well as~A39b!, yes, for f 4 .

A C-program was used to produce data regarding representations ofg and the reduction of
tensor products with only the Cartan matrix as input. Maple was used to prepare the Appe

Finally, attention must be given to placing our paper in the context of previous work. To b
this, we recall that work onsu(3) tensorial quantities, the two classes of identities, and us
characteristic equations, began many years ago; see, e.g., Refs. 1, 2, 4–6 forsu(n). See also Refs
4, 5 for Class 1 identities. The study of Casimir operators7–10 likewise has a long history, which
may be further traced from Ref. 2: see Refs. 2 to 8 in Ref. 2. That paper, Ref. 2, conta
canonical definition via cocycles11,12 of a set of primitive Casimir operators forg. It also relates
these to a set of totally symmetric isotropic tensors forg. In the process, various identities for suc
tensors are formed, especially forsu(n). In the present paper we reproduce many of these
methods that are in general easier and more readily extended. Reference 2 employed the id
featured in it the reduction of nonprimitive Casimir operators in terms of primitive ones, a
also carried much further here.

We comment on the nonprimitive nature of the quartic Casimir ofg2 , for which the primitive
Casimirs are of orders 2 and 6, proved by Okubo13 on the basis of identities whose proof was n
displayed by him, although it needs only an easy calculation especially using the method o
III B. Meyberg14 gave a proof of a similar result for all exceptional Lie algebras, and Cvitanˇ
indicated~only, as far as we know, via private communication to Okubo! that proof of the same
result was available via ‘‘bird-track’’ methods.15 Our method of proof was easy enough to ena
us to extend it by hand to show the nonprimitive nature of the tenth order Casimir off 4 , which
has primitive Casimirs of orders 2,6,8 and 12.

It should be remarked also there is much common ground between the outlook of this
and the work of Cvitanovicˇ15,16 even though the latter is devoted to the development of diagr
matic methods.

We note that Meyberg17 used the decomposition ofVadj^ Vadj in conjunction with trace iden-
tities, but only as far as fourth powers, and not in conjunction with tensorial methods. An
significant work on trace calculations is that of Mountain.18 His method naturally covers ver
many cases where no special identities, like those which reflect the absence of the quartic C
of g2 , are present, and is effective also when supplemented by such identities where nec
The work of Gould19 discusses invariant polynomials and characteristic equations in a formul
using the universal enveloping algebra. There is further information also in the earlier works,
20, 21. Finally we thank a referee for drawing our attention to the paper3 by Meyberg mentioned
above in which a powerful general method of calculating traces trFk in terms of trAk is devel-
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oped, whereA andF are matrices in the defining and adjoint representations ofg. Also as noted
above, in Sec. III C we relate our work to this.

We also cite the Physics Report of Slansky,22 which contains many tables of Lie algebra da
useful in the present work. Likewise useful for background information are the books, Ref
23, and the paper, Ref. 24. See Ref. 25 for useful information onf 4 , and Ref. 26 for the
construction of Casimir operators and calculation of their eigenvalues. Also it is interesting to
the appearance in recent work27 of results fore6 in agreement with~A35!.

II. NOTATION AND CONVENTIONS

Let g be a simple complex or compact real Lie algebra. For the general discussions we c
a basis (Xj ) of g such that the Cartan–Killing form isk jk5tr(adXj +adXk)52d jk , and write the
Lie product, with totally antisymmetric structure constantsCjkl , in the form

@Xj ,Xk#5CjklXl . ~2.1!

In discussing specific examples we adhere to conventions commonly used in the p
literature. Thus, forsu(n), we use the Gell-Mann matricesl j . These are a set ofn3n traceless
Hermitian matrices, normalized according to tr(l jlk)52d jk . They have the multiplication law

l jlk5
2

n
d jk11~djkl1 i f jkl !l l , ~2.2!

where the completely symmetricd-tensor satisfiesdj j l 50. Since ~2.2! implies @l j ,lk#
52i f jkll l , and the basis vectors ofsu(n) are defined byxj5l j /2, the f jkl serve as structure
constants forsu(n). The relationship of this basis to that of the general discussion is see
tr(adxj +adxk)5n d jk , and is given byXj5 i x j /An and thereforeCjkl52 f jkl /An.

Well known Class 1 identities which are valid for allsu(n) follow from Jacobi type identities,

05†@l j ,lk#,l l‡1†@lk ,l l #,l j‡1†@l l ,l j #,lk‡, ~2.3a!

05†@l j ,lk#,l l‡1ˆ$l j ,l l%,lk‰2ˆ$lk ,l l%,l j‰, ~2.3b!

05@$l j ,lk%,l l #1@$lk ,l l%,l j #1@$l l ,l j%,lk#, ~2.3c!

together with consequences based on trace properties and completeness relations for thel j . The
paper in Ref. 28 is a valuable source of Class 1 identities forsu(n). Much the same applies fo
generalg in the other cases when the matricesXi°xi of their defining representations are use
However, as we make explicit below, the anticommutators$xj ,xk% bring in matricesya @cf. ~4.19!
for g5cl# linearly independent of thexi . Vital Class 1 identities nevertheless arise.

Class 2 identities emerge in forms different for eachn. Many of them are absent or degenera
for n52, and, in general, exhibit a complexity that increases withn. Such Class 2 identities stem
from the use of the characteristic equation,1,5 e.g., ofA5ajl j , ajPC. The procedure is alread
cumbersome2,4–6 for modestly largen.

III. DESCRIPTION OF THE METHODS

In this section we describe our methods and apply them tosu(n), n53 or 4 for illustrative
purposes.

A. Tensor products of the adjoint representation

Our first method uses the tensor productVadj^ Vadj, whereVadj denotes the adjoint represen
tation of g, and is based on the characteristic equation of the second order Casimir opera
offers a convenient way of deriving certain Class 2 identities, and as a by-product yields e
expressions~in tensorial form! for Clebsch–Gordan coefficients occurring in the reduction.
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Consider the tensor product of a finite-dimensional irreducible representationV of g and its
decomposition into irreducible componentsWi ,

V^ V.W1% W2%¯% Wk . ~3.1!

For example letV be the adjoint representation@8# of su(3); then

~3.2!

or in su(4),

~3.3!

These decompositions are always understood over the field of complex numbers. In the basXi),
the second order Casimir operator onV is given by

CV52(
r 51

n

Xr
2 . ~3.4a!

It acts onV^ V as

CV^ V52(
r 51

n

~Xr ^ 111^ Xr !
25CV^ 111^ CV12 L, ~3.4b!

where we have defined

L5
1

2
~CV^ V2CV^ 121^ CV!52(

r 51

n

Xr ^ Xr . ~3.4c!

L has the sameg-invariant subspaces asCV^ V . Written with indices, it has the form

L jk,pq52CjprCkqr . ~3.5!

The normalization of the Casimir operators obviously is important when their eigenvalue
considered. Our normalization ofCV is such that the adjoint representation has eigenvalue 1 fo
g. The eigenvalue is furthermore equal to^L,L12 d& whereL is the highest weight of a finite
dimensional irreducible representation,d denotes the half-sum of positive roots ofg and^•,•& is
induced from the Cartan–Killing form on the space of weights.

When V denotes the adjoint representation ofsu(n), we have, for example,L jk,pq

52 (1/n) f rp j f rqk . If we were working only withsu(n), we would absorb the factor 1/n into the
definition of L to make the eigenvalues integral, but this does not allow uniform treatme
algebras of different series.

Assume that in the decomposition~3.1! m projectorsP(1),...,P(m) onto theW1 ,...,Wm are
explicitly known (m,k). Then P(others)512P(1)2•••2P(m) projects onto the sumWm11%¯

% Wk . The characteristic equation ofL ~which has the same structure as that ofCV^ V) implies

~L2 l m111!¯~L2 l k1!P
(others)50, ~3.6!

wherel i are the eigenvalues ofL on the componentsWi . Equation~3.6! implies a relation of the
form
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Lk2m5c1Lk2m211¯1ck2m11c18P(1)1¯1cm8P(m), ~3.7!

with known coefficientsci andci8 . Equation~3.7! is used in the following to reduce powers ofL.
In the decomposition~3.2! for su(3), thefollowing projectors have a very simple form:

Pjk,pq
[1] 5

1

8
d jkdpq , Pjk,pq

[8S]
5

3

5
djkrdpqr , Pjk,pq

[8A]
5

1

3
f jkr f pqr , ~3.8!

where@8S# and@8A# denote the adjoint representation in the symmetric and antisymmetric pa
the decomposition~3.2!, respectively.

The eigenvalues ofCV^ V on the representations@1#, @8# and@27# are 0, 1 and8
3, respectively,

in view of the normalization defined in Eq.~3.4!. We thus havel [1]521, l [8]52 1
2 and l [27]

5 1
3. Equation~3.7! for the symmetric part of~3.2! reads as

L1S5
1

3
1S2

4

3
P[1]2

5

6
P[8S] , ~3.9!

where (1S) jk,pq5 1
2(d jpdkq1d jqdkp) projects onto the symmetric part of the tensor product.

terms of thef - andd-tensors ofsu(3), Eq. ~3.9! reads as

f jpr f kqr1 f jqr f kpr52d jpdkq2d jqdkp1d jkdpq13 djkrdpqr . ~3.10!

This is a well-known identity. It coincides with Eq.~2.23! in Ref. 1.
A similar argument could be applied to the antisymmetric part of the decomposition~3.2!, but

this would only give the Jacobi identity as a relation. Reversing the argument, we can u
Jacobi identity to determine the constituents of the antisymmetric part. IfVadj denotes the adjoin
representation ofg, there is always an adjoint component in the antisymmetric part ofVadj^ Vadj

determined by the projector,

Pjk,pq
[adjA]

5CjkrCpqr , ~3.11!

or, in thesu(3) example, by the last entry in~3.8!. Because of~3.5!, the Jacobi identity is the
same as

L1A52
1

2
P[adjA] , ~3.12a!

where (1A) jk,pq5 1
2(d jpdkq2d jqdkp) is the antisymmetrizer. This implies

L21A52
1

2
L1A . ~3.12b!

Hence the minimal equation ofL on the antisymmetric subspace, for allg, takes the form

LS L1
1

2D 1A50. ~3.13!

We conclude that the only representations contained in the antisymmetric subspace have
values 0 or2 1

2 of L, i.e., eigenvalues 2 or 1 ofCV^ V . We employ this fact in Sec. IV E in the
discussion of the exceptional simple Lie algebrag2 to associate representations of the sa
dimension with the symmetric versus antisymmetric part. The relations~3.12! are furthermore
useful to get rid of the symmetrizer in Eq.~3.9!.

Now we apply a Jacobi type identity twice to Eq.~3.10! and derive
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dr ( jkdp)qr5
1

3
d ( jkdp)q , ~3.14!

obtained as Eq.~2.22! in Ref. 1 from the characteristic equation ofA5ajl j , ajPC. We see~3.14!
easily allows us to calculate

tr~l ( il jlk)l l !52d ( i j dk) l , ~3.15!

and

trA45
1

2
~ trA2!2, ~3.16!

which reflects the fact~trivial in this context! that the fourth order Casimir operator13,29 of su(3)
is not primitive. Our second method described in Sec. III B analyzes these dependencies s
atically.

For su(4), referring to the decomposition~3.3!, we note that the projectorsP[1] and P[15S]

belonging to the symmetric part have a simple form, but the two remaining ones,P[20] andP[84],
have not. The eigenvalues ofCV^ V are 0, 1,32 and 5

2. Thereforel [1]521, l [15]52 1
2, l [20]52 1

4 and
l [84]5 1

4. Since there are two projectors which are not known immediately, we derive inste
~3.9! an equation for the square ofL:

L21S5
1

16
1S1

15

16
P[1]1

3

16
P[15S] , ~3.17!

from which the term proportional toL1S accidentally vanishes. This means

f jmr f knr~ f mpsf nqs1 f mqsf nps!5d jpdkq1d jqdkp12 d jkdpq12 djkrdpqr . ~3.18!

Using the relations~3.12!, we obtain

L25
1

16
1S1

15

16
P[1]1

3

16
P[15S]1

1

4
P[15A] ~3.19!

or

2 f jmr f knrf mpsf nqs5d jpdkq1d jqdkp12 d jkdpq12 djkrdpqr12 f jkr f pqr . ~3.20!

This is equivalent to Eq.~A.5! in Ref. 2 and can be seen, by use of Eq.~2.3b!, to imply Eq.~A.11!
in Ref. 2 in the casen54. The left side of~3.20! is equal to tr(F jFkFpFq), where matrices of the
adjoint representation ofsu(n) are defined by (F j )kl5 i f j lk . It is worth stressing that this is muc
more valuable than an identity for the symmetrized tr(F ( jFkFpFq)). It is easy to pass from the
unsymmetrized to the symmetrized, but very awkward to attempt the reverse procedur
already out of the question for the case of six fold traces.

The method described above has the advantage that it does not rely on a well-develof -
andd-tensor technique but instead refers to the representation theory of the adjoint represe
It is therefore applicable even in cases where the tensor calculations are of significant dif
~e.g.,g2 , Sec. IV E! or not available at all~e.g., f 4 , e6 , Secs. IV F and IV G!.

As a by-product, our methods allow us to determine the remaining projectors, and
Clebsch–Gordan coefficients, via

P( j )5)
iÞ j

L2 l i1
l j2 l i

, ~3.21!
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where relation~3.7! reduces the power of the operatorL appearing in the expression forP( j ) to at
mostLk2m21.

In su(3) there is, of course,1

Pjk,pq
[27] 5~1S2P[1]2P[8S] ! jk,pq5

1

2
~d jpdkq1d jqdkp!2

1

8
d jkdpq2

3

5
djkrdpqr . ~3.22!

But in su(4) we have the less obvious but clearly useful results

Pjk,pq
[20] 5

1

4
~d jpdkq1d jqdkp1 f jpr f kqr1 f jqr f kpr!2

1

6
d jkdpq2

1

2
djkrdpqr , ~3.23a!

Pjk,pq
[84] 5

1

4
~d jpdkq1d jqdkp2 f jpr f kqr2 f jqr f kpr!1

1

10
d jkdpq1

1

6
djkrdpqr . ~3.23b!

Since we use the characteristic~more precisely, minimal! polynomial of L to obtain ~3.7!, our
method fails to separate projectors onto representations which have the same eigenvalue
quadratic Casimir operator as, e.g., two conjugate representations do have. Possible treatm
this point involve the use of higher order Casimir operators or the explicit consideration
conjugation operation in the field of complex numbers.4

While we have examined here only the decomposition of the adjoint representation~in order
to derive relations involving the structure constants!, the same method can be applied to oth
representations to obtain convenient expressions for some of the projectors occurring ther

B. Relations of trace polynomials

Our second method is based on the characteristic equation of representation matrA
5ajxj of elementsajXjPg, ajPC. It enables us to derive relations between invariant polyno
als ofg and to express nonprimitive polynomials explicitly in terms of primitive ones. This g
rise to further Class 2 identities that generalize~3.16!.

Let G be any connected Lie group with Lie algebrag. Due to a theorem of Chevalley~see,
e.g., Refs. 30, 31! the algebraI g of polynomials ong that are invariant under the adjoint action
G is isomorphic to a polynomial algebra inl 5rank g indeterminates. Since the generaliz
Casimir operators7,13,9,8,32and the center of the universal enveloping algebraU(g) can be con-
structed from these polynomials, an explicit description of them is desired.

Let A5ajxj be the matrix of an arbitrary elementajXjPg in the d-dimensional defining
representation. One possible strategy18 is to consider the characteristic polynomial ofA,

xA~ t !5det~A2t1!5(
j 50

d

pd2 j~A!t j , ~3.24!

whose coefficientspk(A) are homogeneous polynomials of degreek in the elements of the matrix
A. They areG-invariant by construction. Depending on the Lie algebra, a certain set ofl poly-
nomials can be selected that generatesI g freely.30,31 These generators are therefore called prim
tive, and their degrees are a property ofg itself. For easy reference, we include the table of th
degrees for the simple Lie algebras in Table I.

Another way of constructing manifestlyG-invariant polynomials uses the trace polynomia
tr(Ak), kPN, which we study below. Again it is desired to select a subset of algebraic
independent polynomials which have the required degrees and therefore freely generateI g .

The fact that Eq.~3.24! only gives primitiveG-invariant polynomials up to a certain degreem
~at least not higher than the dimensiond of the defining representation! was exploited in Ref. 18
to derive relations expressing trAk, k.m, as polynomials in the lower degree traces. But
method in Ref. 18 needs additional input in certain situations. For example, the identitiesg2
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that account for the nonprimitive nature of the quartic Casimir operator ofg2 are not themselves
generated by the method. Thus, we seek a systematic approach which expressesall nonprimitive
trAj in terms of primitive ones.

In order to perform explicit calculations involving the trAj , we exploit their invariance unde
a change of basis in their representation space in order to diagonalizeA. The resulting matrix can
be seen to belong to the Cartan subalgebrag0 of g and therefore may be written as

A5g jhj , 1< j < l 5rank g, ~3.25!

whereh1 ,...,hl spang0 . They are determined by the weights of the representation. The ex
sions trAk are polynomials of degreek in the l indeterminatesg1 ,...,g l . To express a nonprimi-
tive trAk in terms of the primitive ones means to write it as a linear combination of products o
primitive ones. The problem of finding the relations is reduced to a~very manageable! problem in
linear algebra.

It follows from the construction that the resulting relations do not depend on the choi
basis ofg0 and therefore not on the normalization or orthogonality of the weights.

Let us first consider the defining representation@3# of su(3). Thechoice of a convenient basi
for the diagonal form ofA5 1

2ajl j leads to

A5al31
b

2
~l31)l8!5diag~a1b,2a,2b!, ~3.26!

with indeterminatesa, b. Therefore trA50 and

trA252~a21ab1b2!, ~3.27a!

trA353~a2b1ab2!, ~3.27b!

trA452~a412a3b13a2b212ab31b4!. ~3.27c!

Because of the degrees of primitive invariant polynomials ofsu(3) ~Table I! we can select trA2

and trA3 as generators of the algebra of invariant polynomials. The other trAk can be seen to
satisfy the relations

trA45
1

2
~ trA2!2, trA55

5

6
~ trA2!~ trA3!, trA65

1

4
~ trA2!31

1

3
~ trA3!2. ~3.28!

It is also easy to compute the characteristic polynomial ofA, obtaining the well-known1 result

xA~ t !5t32
1

2
~ trA2!t2

1

3
~ trA3!, ~3.29!

TABLE I. Degrees of primitive invariant polynomials of the simple Lie algebras.

Simple Lie algebrag Degrees

al ,l>1 2,3,...,l 11
bl ,l>2 2,4,...,2l
cl ,l>3 2,4,...,2l
dl ,l>4 2,4,...,2l 22,l
e6 2,5,6,8,9,12
e7 2,6,8,10,12,14,18
e8 2,8,12,14,18,20,24,30
f 4 2,6,8,12
g2 2,6
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and use it to confirm~3.28! and generate formulas for higherk. Passing from trAk to
tr(l ( i 1

¯l i k)), we can translate results like~3.28! into the language ofd-tensors.5 Thus we recover
the well-knownsu(3) results, Eqs.~6.5! and ~6.7! of Ref. 2.

In the same way as trAk we can consider the matricesF5ajF j , ajPC, (F j )kl5 i f j lk , of the
adjoint representation ofsu(3). Here we have tr(F jFk)53d jk . Using the same basis of th
Cartan subalgebra as in Eq.~3.26!, we write

F52aF31b~F31)F8!5diag~a12b,a2b,2a1b,0,0,22a2b,2a1b,2a22b!,

~3.30!

so that trF2k2150 for all kPN, and

trF2512~a21ab1b2!, ~3.31a!

trF4536~a412a3b13a2b212ab31b4!. ~3.31b!

We derive

trF45
1

4
~ trF2!2, ~3.32a!

trF852
5

192
~ trF2!41

2

3
~ trF2!~ trF6!, ~3.32b!

as well as is the characteristic polynomial ofF,

xF~ t !5t82
1

2
~ trF2!t61

1

16
~ trF2!2t41S 1

96
~ trF2!32

1

6
~ trF6! D t2. ~3.33!

In Eq. ~3.32! we have listed only those relations which express a certain trF2k in terms of lower
degree traces. Since the trF2k fail to define a third order invariant, the trF2k are unable to generat
the algebra of invariant polynomials freely. It turns out, further, that ina45su(5) ~see Appendix
I 1 c! the trF2k, 2kP$2,4,6,8,10% cannot be written as polynomials in the lower degree traces.
fact that there are five of them while the rank of the algebra is only four does not contradic
theorem because they do not generate the algebra freely. Instead they should satisfy mo
plicated~i.e., higher order! relations which we have not analyzed systematically.

Equation~3.32a! is already of interest; it yields

tr~F ( iF jFkFl )!5
9

4
d ( i j dkl) , ~3.34!

which agrees with~A.12! of Ref. 2, but has been more simply derived here. As a further chec
our work, we confirmed that our result for trF8 agrees with relations derived in a different way
Ref. 18.

Since we are using the same basis of the Cartan subalgebra for the diagonal forms ofA
andF, we are able to express the trF2k in terms of the primitive elements trA2 and trA3, namely,

trF256~ trA2!, ~3.35a!

trF459~ trA2!2, ~3.35b!

trF65
33

2
~ trA2!3218~ trA3!2, ~3.35c!
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trF85
129

4
~ trA2!4272~ trA2!~ trA3!2, ~3.35d!

where Eq.~3.35a! reflects the relative normalizations of the matricesA andF. The characteristic
polynomial ofF can thus be given in a form more useful than~3.33!,

xF~ t !5t823~ trA2! t61
9

4
~ trA2!2 t41S 2

1

2
~ trA2!313~ trA3!2D t2. ~3.36!

From Eq.~3.35c! and Eq.~3.35d!, for example, we can show that

tr~F ( i 1
¯Fi 6)!5

33

16
d ( i 1i 2

d i 3i 4
d i 5i 6)2

9

8
d( i 1i 2i 3

di 4i 5i 6) , ~3.37a!

tr~F ( i 1
¯Fi 8)!5

129

64
d ( i 1i 2

d i 3i 4
d i 5i 6

d i 7i 8)2
9

4
d ( i 1i 2

di 3i 4i 5
di 6i 7i 8) , ~3.37b!

which are new results, the first being related to but not easily derived from~A.21! in Ref. 2. The
second could be also derived from Eq.~3.32b! and Eq.~3.37a!.

Since this method of determining the explicit relations among invariant polynomials
relies on the properties of the relevant polynomials, it is well suitable for automatization
computer algebra systems. Applications to other rank 2 algebras includingg2 can still be easily
performed by hand, whereas for higher rank the polynomials become quite lengthy. We perf
many calculations, including these for low degrees in the rank 2 examples by hand, and
Maple to confirm our results and to handle the more complicated computations.

C. On Meyberg’s general formula

In the context of results like~3.35! for traces of symmetrized products of matricesF j in the
adjoint representation, we thank a referee and refer to the following general result: Eq.~11! of Ref.
3, as well as its specializations and illustrations~13!–~16! for the a,b,c,d series of Lie algebras

In the notation of Ref. 3, the formula foral reads as

tr~ad x!k5(
j 50

k

~21! j S k
j D ~ tr xj !~ tr xk2 j !, ~3.38!

which can be translated into our notation by writingx5ajxj , adx5ajF j for constantsajPC.
This leads directly to results such as~3.35! above. We have, at various points in the sequel, u
~3.38! to abbreviate our original manuscript. Several related points however need to be mad
the results like~3.38! for large enoughk are not yet expressed in a form ready for practical u
the traces on the right side are not in general primitive, and a result in terms of the primitive
is what is most often called for. Our procedures have been designed to give results of this
For largeg, moreover, the calculations involved to pass from a result in the form~3.38! to a result
in the rearranged form may well be considerable. These remarks have influenced our decis
to what should be retained and what can without genuine loss be omitted from our or
manuscript in the light of~3.38!. The power and generality and elegance of the method
Meyberg are nonetheless fully acknowledged.

IV. APPLICATIONS AND SELECTED RESULTS

In this section we describe the most important results concerning other Lie algebras than
considered in the examples of Sec. III, and we comment on some aspects of them. A
comprehensive list of results obtained by our second method is contained in Appendix A.
                                                                                                                



n-

-

imir
I.
t

ir

3202 J. Math. Phys., Vol. 41, No. 5, May 2000 A. J. Macfarlane and H. Pfeiffer

                    
A. The simple Lie algebras al , l Ð3

In this paragraph we summarize our results for the simple Lie algebrasal , l>3 @or su(n),
n5 l 11>4#. In order to write them in a fashion independent ofn, we characterize the represe
tations by their highest weight which we specify in terms of the fundamental weightsL1 ,...,L l in
standard form.30,33 The adjoint representation is therefore (1,0,...,0,1), and we find the decompo
sition into irreducible components:

~4.1!

where, for example, (0,1,0,...,0,1,0) corresponds to the highest weightL5L21L l 21 . This re-
duces to, e.g., (0,2,0) ifl 53. The dimensions and the eigenvalues of the quadratic Cas
operator and ofL can be directly computed from the Cartan matrix and are listed in Table I

In the decomposition~4.1!, the following projectorsP( i ) ~wherei is used as shown in the firs
column of Table II! are initially known:

Pjk,pq
(1)5

1

n221
d jkdpq , Pjk,pq

(2S)
5

n

n224
djkrdpqr , Pjk,pq

(2A)
5

1

n
f jkr f pqr . ~4.2!

Relation~3.7! gives in this case

L25
1

n2 1S1
n221

n2 P(1)1
n224

4n2 P(2S)2
1

2
L1A , ~4.3a!

4 f jmr f knrf mpsf nqs52~d jpdkq1d jqdkp!14d jkdpq1n ~djkrdpqr1 f jkr f qpr!. ~4.3b!

Applying Eq.~2.3b! we see that~4.3b! coincides with Eq.~A.5! and implies Eq.~A.11! in Ref. 2.
The remaining projectorsP(3) andP(4) in the symmetric part can also be found:

TABLE II. The irreducible components occurring in the tensor product of the adjoint representation ofal , l>3, with
itself. The representations are of dimensiond and have the highest weightL. The eigenvalues of the quadratic Casim
operatorC and ofL @see Eq.~3.5!# are also given. The numberi is used to refer to them in the text.

i Representation ofal d L C L

1 ~0,...,0! 1 0 0 21

2 ~1,0,...,0,1! l ( l 12) L11L l 1 2
1
2

3 ~0,1,0,...,0,1,0! 1
4

( l 11)2( l 12)(l 22) L21L l 21
2l

l 11
2

1
l 11

4 ~2,0,...,0,2! 1
4

l ( l 11)2( l 14) 2L112L l 2
l 12
l 11

1
l 11

5 ~2,0,...,0,1,0! 1
4

l ( l 12)(l 13)(l 21) 2L1L l 21 2 0

6 ~0,1,0,...,0,2! 1
4

l ( l 12)(l 13)(l 21) L212L l 2 0
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Pjk,pq
(3) 5

1

4
~d jpdkq1d jqdkp!2

1

2~n21!
d jkdpq2

n

4~n22!
djkrdpqr1

1

4
~ f jpr f kqr1 f jqr f kpr!,

~4.4a!

Pjk,pq
(4) 5

1

4
~d jpdkq1d jqdkp!1

1

2~n11!
d jkdpq1

n

4~n12!
djkrdpqr2

1

4
~ f jpr f kqr1 f jqr f kpr!.

~4.4b!

The su(4) example presented in Sec. III A is a special case of these results. From Eq.~4.3b! we
derive

tr~F ( iF jFkFl )!52d ( i j dkl)1
n

4
dr ( i j dkl)r , ~4.5!

which implies

trF456~ trA2!212n~ trA4!. ~4.6!

Note that because of our normalization conventions tr(F jFk)5 f pq j f pqk5nd jk and thus trF2

52n (trA2). Of course, the last result and~4.6! are trivial consequences of~3.38!. From the
relations obtained with our second method from Eq.~A4!, we obtain, e.g., forsu(4),

tr~F ( i 1
¯Fi 6)!5d ( i 1i 2

d i 3i 4
d i 5i 6)1

9

4
d ( i 1i 2

dr
i 3i 4

di 5i 6)r2
13

12
d( i 1i 2i 3

di 4i 5i 6) , ~4.7!

and forsu(5) @cf. Eq. ~A7!#,

tr~F ( i 1
¯Fi 6)!5

65

64
d ( i 1i 2

d i 3i 4
d i 5i 6)1

75

32
d ( i 1i 2

dr
i 3i 4

di 5i 6)r2
25

24
d( i 1i 2i 3

di 4i 5i 6) . ~4.8!

B. The simple Lie algebras b l , l Ð2

We describe the Lie algebrasbl @or so(n), n52l 11# by a basis (xj ) of n3n antisymmetric
Hermitian matricesxj in the defining representation. They are normalized such that tr(xjxk)
52d jk . We define the structure constantscjkl using @xi ,xj #5 ic jklxl . Since the symmetrized
product$xj ,xk% is a symmetric matrix, we have

$xj ,xk%5
4

n
d jk11djkaya , ~4.9!

where theya span the space of traceless symmetricn3n matrices and have the normalizatio
tr(yayb)52dab . The coefficientsdjka form a tensor with the propertiesdjka5dk ja and dj j a

50. The collection of allxi andya can serve as a set of Gell-Mann matrices ofsu(n).
It is to be noted that here forbl as well as below forcl and fordl , we index the basis vector

xj by a single letter rather than by the~perhaps more usual! method that uses an index pair, as
Mab5Eab2Eba52Mba , where (Eab)cd5dacdbd . This is first suitably convenient for all ou
purposes and second allows a uniform treatment of all Lie algebras.
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Since the Cartan–Killing form reads in our basis as tr(adxj +ad xk)52(2l 21)d jk , the struc-
ture constantscjkr are related to theCjkr used in our general discussion byCjkr

52 cjkr /A2(2l 21).
Table III lists the representations which are relevant to the decomposition of the t

product of the adjoint representation with itself for the casesl>5,

~4.10a!

The highest weights written in terms of the fundamental weights have special formsl
52,3,4. The above decomposition reads in these cases as

~4.10b!

~4.10c!

TABLE III. The irreducible components occurring in the tensor product of the adjoint representation ofbl , l>5, with
itself. Herei , d, L, C andL are as for Table II. The formulas for dimensions and Casimir eigenvalues are also val
the corresponding representations in the casesl 52,3,4. We comment on this fact in the text.

i Representation ofbl d L C L

1 ~0,...,0! 1 0 0 21

2 ~0,1,0,...,0! l (2l 11) L2 1 2
1
2

3 ~0,2,0,...,0! 1
3

( l 21)(l 11)(2l 11)(2l 13) 2L2
4l

2l 21
1

2l 21

4 ~0,0,0,1,0,...,0! 1
6

l ( l 21)(2l 21)(2l 11) L4
2(2l 23)

2l 21
2

2
2l 21

5 ~2,0,...,0! l (2l 13) 2L1
2l 11
2l 21

2
2l 23

2(2l 21)

6 ~1,0,1,0,...,0! 1
2

l ( l 21)(2l 11)(2l 13) L11L3 2 0
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~4.10d!

But nevertheless, the formulas in Table III for dimensions and Casimir eigenvalues are va
arbitrary l>2.

The following projectorsP( i ) ~wherei refers to the rows of Table III! are easily written down:

Pjk,pq
(1) 5

2

n~n21!
d jkdpq , Pjk,pq

(5) 5
1

2~n22!
djkadpqa , Pjk,pq

(2) 5
1

2~n22!
cjkrcpqr .

~4.11!

The projectorP(5) has been constructed using the tensordjka from Eq.~4.9!. A careful analysis of
the tensors involved in relations like~4.9! shows that this is in fact a projector onto an irreducib
component of the symmetric tensor product of the adjoint representation. A consideration
relevant dimensions furthermore allows us to identify the representation to be (2,0,...,0).

Relation~3.7! gives in this case

L25
2

~n22!2 1S1
~n21!~n24!

~n22!2 P(1)1
n28

4~n22!
P(5)2

1

n22
L1S2

1

2
L1A , ~4.12a!

cjmrcknrcmpscnqs54 ~d jpdkq1d jqdkp!1
8~n24!

n
d jkdpq

1
n28

2
djkadpqa1

n

2
cjprckqr2

n24

2
cjqrckpr , ~4.12b!

which implies

tr~F ( i 1
Fi 2

Fi 3
Fi 4)!5

16~n22!

n
d ( i 1i 2

d i 3i 4)1
n28

2
d( i 1i 2

adi 3i 4)a . ~4.13!

The simplest of the relations from Appendix A 2 a forb25so(5) imply, for example,

tr~x( i 1
¯xi 6)!5

1

5
d ( i 1i 2

d i 3i 4
d i 5i 6)1

3

4
d ( i 1i 2

di 3i 4
adi 5i 6)a ~4.14!

and

tr~F ( i 1
¯Fi 6)!5

93

5
d ( i 1i 2

d i 3i 4
d i 5i 6)2

21

4
d ( i 1i 2

di 3i 4
adi 5i 6)a . ~4.15!

The remaining projectors in the symmetric part can be found from Eq.~4.12!:

Pjk,pq
(3) 5

1

3
~d jpdkq1d jqdkp!1

2~n24!

3n~n22!
d jkdpq

1
n28

12~n22!
djkadpqa2

1

12
~cjprckqr1cjqrckpr!, ~4.16a!
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Pjk,pq
(4) 5

1

6
~d jpdkq1d jqdkp!2

2

3n
d jkdpq

2
1

12
djkadpqa1

1

12
~cjprckqr1cjqrckpr!. ~4.16b!

C. The simple Lie algebras c l , l Ð2

We describe the Lie algebrascl @or sp(2n), n5 l # by a basis (xj ) of 2n32n traceless
Hermitian matricesxj in the defining representation satisfying

JxjJ
2152xj

T , J5S 0 1n

21n 0 D . ~4.17!

They are normalized in such a way that tr(xjxk)52d jk . We write the structure constants a
@xi ,xj #5 ic jklxl . Given thesexj , the matricesJxj span the space of symmetric 2n32n matrices
~including the pure trace!. If we extend the set of thexi to a basis ofsu(2n) by adding further
basis vectorsya , theJya are antisymmetric, and theya thus satisfy

JyaJ215ya
T . ~4.18!

Since the symmetrized product$xj ,xk% also satisfies~4.18!, we have

$xj ,xk%5
2

n
d jk11djkaya , ~4.19!

because theya together with the unit matrix span the space of solutions of Eq.~4.18!. The
coefficientsdjka occurring here form a tensor which satisfiesdjka5dk ja anddj j a50.

Since the Cartan–Killing form reads in our basis as tr(adxj +ad xk)54(l 11)d jk , the struc-
ture constantscjkr are related to theCjkr used in our general discussion byCjkr5
2 cjkr /(2Al 11).

TABLE IV. The irreducible components occurring in the tensor product of the adjoint representation ofcl , l>2, with
itself. Herei , d, L, C andL are as for Table II.

i Representation ofcl d L C L

1 ~0,...,0! 1 0 0 21

2 ~2,0,...,0! l (2l 11) 2L1 1 2
1
2

3 ~4,0,...,0! 1
6

l ( l 11)(2l 11)(2l 13) 4L1
2(l 12)

l 11
1

l 11

4 ~0,2,0,...,0! 1
3

l ( l 21)(2l 21)(2l 13) 2L2
2l 11
l 11

2
1

2(l 11)

5 (0,1,0,...,0) (l 21)(2l 11) L2
l

l 11
2

l 12
2(l 11)

6 ~2,1,0,...,0! 1
2

l ( l 21)(2l 11)(2l 13) 2L11L2 2 0
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Table IV lists the representations which are relevant to the decomposition of the t
product of the adjoint representation with itself,

~4.20!

The following projectorsP( i ) ~wherei refers to the rows of Table IV! are easily written down:

Pjk,pq
(1) 5

1

n~2n11!
d jkdpq , Pjk,pq

(5) 5
1

4~n11!
djkadpqa , Pjk,pq

(2) 5
1

4~n11!
cjkrcpqr ,

~4.21!

whereP(5) has been constructed using the tensordjka from Eq. ~4.19!.
Relation~3.7! reads in this case as

L25
1

2~n11!2 1S1
~2n11!~n12!

2~n11!2 P(1)1
n14

4~n11!
P(5)1

1

2~n11!
L1S2

1

2
L1A , ~4.22a!

cjmrcknrcmpscnqs54 ~d jpdkq1d jqdkp!1
8~n12!

n
d jkdpq1~n14!djkadpqa1n cjprckqr

2~n12! cjqrckpr , ~4.22b!

which implies

tr~F ( i 1
Fi 2

Fi 3
Fi 4

!5
16~n11!

n
d ( i 1i 2

d i 3i 4)1~n14! d( i 1i 2
adi 3i 4)a . ~4.23!

The remaining projectors in the symmetric part are

Pjk,pq
(3) 5

1

6
~d jpdkq1d jqdkp!1

1

3n
d jkdpq1

1

12
djkadpqa2

1

12
~cjprckqr1cjqrckpr!, ~4.24a!

Pjk,pq
(4)

5
1

3
~d jpdkq1d jqdkp!2

2~n12!

3n~2n11!
d jkdpq2

n14

12~n11!
djkadpqa1

1

12
~cjprckqr1cjqrckpr!.

~4.24b!

D. The simple Lie algebras d l , lÐ3

In order to describe the Lie algebrasdl , l>3 @or so(n), n52l ], we choose the same basis
for odd n in Sec. IV B. Because of the different relation betweenl and n, we find tr(adxj

+ad xk)54(l 21)d jk and thereforeCjkr52 cjkr /(2Al 21).
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Table V lists the representations which are relevant to the decomposition of the tensor p
of the adjoint representation with itself in the casesl>6:

~4.25a!

The special cases forl 53,4,5 are

~4.25b!

~4.25c!

TABLE V. The irreducible components occurring in the tensor product of the adjoint representation ofdl , l>6, with
itself. We comment on the special casesl 53,4,5 in the text.

i Representation ofdl d L C L

1 ~0,...,0! 1 0 0 21

2 ~0,1,0,...,0! l (2l 21) L2 1 2
1
2

3 ~0,2,0,...,0! 1
3

l ( l 11)(2l 23)(2l 11) 2L2
2l 21
l 21

1
2(l 21)

4 ~0,0,0,1,0,...,0! 1
6

l ( l 21)(2l 23)(2l 21) L4
2(l 22)

l 21
2

1
l 21

5 ~2,0,...,0! ( l 11)(2l 21) 2L1
l

l 21
2

l 22
2(l 21)

6 ~1,0,1,0,...,0! 1
2

l ( l 11)(2l 23)(2l 21) L11L3 2 0
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~4.25d!

The structure of the decomposition is somewhat exceptional forl 53 ~becaused3 is isomorphic
with a3) and for l 54 ~because of the higher symmetry of the Dynkin diagram ofd4). We have
indicated by additional parentheses, in~4.25b! and ~4.25c!, the cases in which a representatio
corresponding to one piece in~4.25a! has decomposed into even smaller constituents. Neve
less, the formulas in Table V for dimensions and Casimir eigenvalues are useful for arbitl
>3. In the case of further decomposition, the table lists the sum of the dimensions, and
constituents turn out to have the same Casimir eigenvalue.

If the projectorsP( i ) and the Casimir eigenvaluesC from Table V are written usingn52l ,
they have exactly the same form as for the algebrasbl . Therefore we have the same results as E
~4.11! and ~4.16!.

E. The exceptional simple Lie algebra g 2

For the structure and the construction of representations ofg2 see, for example, Refs. 34–37
We use for the defining representation ofg2 a suitable set of 14 traceless Hermitian 737 matrices
xj which have the additional properties

xj
T52xj , tr~xjxk!52d jk , ~4.26!

and write the structure constantscjkl such that@xj ,xk#5 i c jklxk . Note that they are related to th
constantsCjkl from the general discussion byCjkl52 cjkl /A8. The space of 737 traceless
Hermitian matrices@the matrices of the defining representation ofa65su(7)# involves 21 anti-
symmetric matrices which span theb35so(7) subalgebra ofa6 , and 28 symmetric matricesya ,
1<a<28. We do not need to introduce here the 7 antisymmetric matricesza , 1<a<7, which lie
outside theg2 subalgebra ofb3 , but we do need theya . They satisfy

ya
T5ya , tr~yayb!52dab , tr~xjya!50, ~4.27!

and are related to thexj by

xjxk5
2

7
d jk1

1

2
ic jklxl1

1

2
djkaya , ~4.28!

wheredjka5dk ja anddj j a50. Of course, complete control ofg2 technology depends on consid
eration ofxi , ya andza , and the various isotropic tensors that enter product laws like Eq.~4.28!.
A full treatment of these matters will be presented elsewhere.38 Here we quote Class 1 results a
needed and attend to our main purpose, that of deriving Class 2 results. It is worth noting th
set of allxi , za , ya can be viewed as a set of 48 Gell-Mann type matriceslA of a65su(7).

Table VI contains information about the irreducible representations ofg2 relevant to the
application of our first method.@7# is the defining representation,@14# the adjoint. The tensor
product of the adjoint representation with itself decomposes into irreducible components a
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lows:

~4.29!

In order to decide which of the@77# or @778# representations occur in the symmetric vers
antisymmetric part, we consider theirCV^ V eigenvalues. Only@778# gives the eigenvalue 2 an
therefore, according to the discussion of Eq.~3.13!, belongs to the antisymmetric part.

The following projectors are initially known:

Pjk,pq
[1] 5

1

14
d jkdpq , Pjk,pq

[27] 5
9

32
djkadpqa , Pjk,pq

[14] 5
1

8
cjkrcpqr , ~4.30!

by virtue of the identities

cjkpcjkq58dpq , djkadjkb5
32

9
dab . ~4.31!

As for su(3) in Sec. III A we deal with the characteristic equation and, noting that in our basi
haveL jk,pq52 1

8cjprckqr , derive

L1S5
1

4
1S2

5

4
P[1]2

2

3
P[27], ~4.32a!

cjprckqr1cjqrckpr522~d jpdkq1d jqdkp!1
10

7
d jkdpq13djkadpqa . ~4.32b!

By two applications of the Jacobi identity,~4.32b! yields

d( jk
adpq)a5

6

7
d ( jkdpq) . ~4.33!

The simplification process used these Class 1 identities,

cp jqcqkrcrlp524cjkl , djkadlmackmp5
20

7
cjlp , cp jqcqkrdjka5

10

3
dpra . ~4.34!

The results~4.32! and ~4.33! are new, as is their convenient and therefore important metho
derivation. We note the check that~4.33! implies ~4.31!. From ~4.33!, we can obtain

TABLE VI. Irreducible representations ofg2 .

Representation ofg2 d L C L

~0,0! 1 0 0 21

~0,1! 7 L2
1
2

2
3
4

~1,0! 14 L1 1 2
1
2

~0,2! 27 2L2
7
6

2
5
12

(2,0) 77 2L1
5
2

1
4

(0,3) 778 3L2 2 0
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tr~x( ixjxkxl )!5d ( i j dkl) , ~4.35!

and hence ifA5ajxj , ajPC, the important result,

trA45
1

4
~ trA2!2, ~4.36!

which was quoted by Okubo13 ~without what he termed its rather involved proof!.
If we had to perform our calculations ing2 without an explicit form of the projectorP[27]

~which we do indeed know thanks to thed-tensor calculus available!, the procedure would have
been more like the treatment of thesu(4) example given in Sec. III A, and would have yielded t
weaker results

L25
5

48
1S1

35

48
P[1]2

1

6
L1S2

1

2
L1A , ~4.37a!

cjmrcknrcmpscnqs5
10

3
~d jpdkq1d jqdkp1d jkdpq!1

8

3
cjprckqr2

4

3
cjqrckpr . ~4.37b!

But with this information, we can still construct the projector in question, getting

Pjk,pq
[27] 5

3

16
~d jpdkq1d jqdkp!2

15

112
d jkdpq1

3

32
~cjprckqr1cjqrckpr!, ~4.38!

which, of course, agrees with Eq.~4.30! upon use of~4.32b!. Also, from Eq.~4.37b! we can derive

tr~F ( iF jFkFl )!510d ( i j dkl) , ~4.39!

where (F j )kl5 i c j lk are the matrices in the adjoint representation. Since tr(F jFk)58d jk , this
leads to

trF45
5

32
~ trF2!25

5

2
~ trA2!2. ~4.40!

This is consistent with the relations found more easily using our second method, and lis
Appendix A 7 forg2 . From those relations, we obtain further identities, e.g.,

tr~x( i 1
¯xi 8)!52

5

192
d ( i 1i 2

d i 3i 4
d i 5i 6

d i 7i 8)1
2

3
d ( i 1i 2

di 3¯ i 8)
(6) , ~4.41a!

tr~x( i 1
¯xi 10)

!52
1

64
d ( i 1i 2

d i 3i 4
d i 5i 6

d i 7i 8
d i 9i 10)

1
5

16
d ( i 1i 2

d i 3i 4
di 5¯ i 10)

(6) , ~4.41b!

where

d( i 1¯ i 6)
(6) 5tr~x( i 1

¯xi 6)! ~4.42!

denotes the sixth order invariant ofg2 . In particular we observe that our identity for trA8 is
consistent with the results obtained in Ref. 18. Furthermore we can also reduce the sym
traces in the adjoint representation:

tr~F ( i 1
¯Fi 6)!5

15

4
d ( i 1i 2

d i 3i 4
d i 5i 6)226d( i 1¯ i 6)

(6) , ~4.43a!
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tr~F ( i 1
¯Fi 8)!5

515

96
d ( i 1i 2

d i 3i 4
d i 5i 6

d i 7i 8)2
160

3
d ( i 1i 2

di 3¯ i 8)
(6) . ~4.43b!

Our discussion off 4 in the next section is similar to that ofg2 without referring to explicit
d-tensor formulas.

F. The exceptional simple Lie algebra f 4

For the analysis off 4 , we use the structure constantsCjkl in the general notation defined i
the beginning of Sec. II because no analog of thef - andd-tensor calculus is known. Table VI
contains information about the irreducible representations off 4 relevant to the application of ou
first method.@26# is the defining representation,@52# the adjoint. The tensor product of the adjoi
representation with itself decomposes into irreducible components as follows:

~4.44!

We have the relation

L25
5

162
1S1

65

81
P[1]2

1

6
L1S2

1

2
L1A , ~4.45a!

CjmrCknrCmpsCnqs5
5

324
~d jpdkq1d jqdkp1d jkdpq!1

1

3
CjprCkqr2

1

6
CjqrCkpr , ~4.45b!

and the projectors

Pjk,pq
[1] 5

1

52
d jkdpq , ~4.46a!

Pjk,pq
[52] 5CjkrCpqr , ~4.46b!

Pjk,pq
[324]5

1

7
~d jpdkq1d jqdkp!2

5

91
d jkdpq1

9

7
~CjprCkqr1CjqrCkpr!, ~4.46c!

Pjk,pq
[1053]5

5

14
~d jpdkq1d jqdkp!1

1

28
d jkdpq2

9

7
~CjprCkqr1CjqrCkpr!, ~4.46d!

TABLE VII. Irreducible representations off 4 .

Representation off 4 d L C L

(0,0,0,0) 1 0 0 21

(0,0,0,1) 26 L4 2
3

2
2
3

(1,0,0,0) 52 L1 1
2

1
2

(0,0,0,2) 324 2L4 13
9

2
5
18

(2,0,0,0) 1053 2L1 20
9

1
9

(0,1,0,0) 1274 L2 2 0
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Pjk,pq
[1274]5

1

2
~d jpdkq2d jqdkp!2CjkrCpqr . ~4.46e!

Furthermore we derive from~4.45b!,

tr~F ( iF jFkFl )!5
5

108
d ( i j dkl) , ~4.47!

and therefore

trF45
5

108
~ trF2!2, ~4.48!

where (F j )kl5Cjlk are the matrices of the adjoint representation, which obey tr(F jFk)52d jk .
Since there is no generally accepted definition of the invariant tensors off 4 , we use trAk,

A5ajxj , to define them in a totally symmetric form,

di 1 ...i k
(k)

ªtr~x( i 1
¯xi k)!, kP$2,6,8,12%. ~4.49!

Here thexj are the matrices of the defining representation off 4 anddi 1i 2
(2) ;d i 1i 2

. The relations that

express the nonprimitivity of trace polynomials~see Appendix A 6! thus read as

tr~x( i 1
¯xi 4)!5

1

2
d( i 1i 2

(2) di 3i 4)
(2) , ~4.50a!

tr~x( i 1
¯xi 10)

!5
7

41472
d( i 1i 2

(2) di 3i 4
(2)

¯di 9i 10)
(2) 2

7

144
d( i 1i 2

(2) di 3i 4
(2) di 5 ...i 10)

(6) 1
3

8
d( i 1i 2

(2) di 3 ...i 10)
(8) ,

~4.50b!

and so on. Furthermore we derive for the matrices (F j )kl of the adjoint representation~in a
suitable normalization!

tr~F ( i 1
¯Fi 4)!5

5

12
d( i 1i 2

(2) di 3i 4)
(2) , ~4.51a!

tr~F ( i 1
¯Fi 6)!5

5

36
d( i 1i 2

(2) di 3i 4
(2) di 5i 6)

(2) 27d( i 1i 2i 3i 4i 5i 6)
(6) . ~4.51b!

G. The exceptional simple Lie algebra e6

In e6 we use again the structure constantsCjkl in the general notation. The structure of th
decomposition of the adjoint representation and therefore of the results is similar to what we
for f 4 . Table VIII contains information about the relevant representations. Either@27# or @278# can
play the role of a defining representation,@78# is the adjoint. The decomposition is

~4.52!

As before we obtain the relation

L25
1

48
1S1

13

16
P[1]2

1

6
L1S2

1

2
L1A , ~4.53a!
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CjmrCknrCmpsCnqs5
1

96
~d jpdkq1d jqdkp1d jkdpq!1

1

3
CjprCkqr2

1

6
CjprCkqr . ~4.53b!

The relevant projectors are

Pjk,pq
[1] 5

1

78
d jkdpq , ~4.54a!

Pjk,pq
[78] 5CjkrCpqr , ~4.54b!

Pjk,pq
[650]5

1

8
~d jpdkq1d jqdkp!2

1

24
d jkdpq1

3

2
~CjprCkqr1CjqrCkpr!, ~4.54c!

Pjk,pq
[2430]5

3

8
~d jpdkq1d jqdkp!2

3

104
d jkdpq2

3

2
~CjprCkqr1CjqrCkpr!, ~4.54d!

Pjk,pq
[2925]5

1

2
~d jpdkq2d jqdkp!2CjkrCpqr . ~4.54e!

From the relation~4.53b! we derive

tr~F ( iF jFkFl )!5
1

32
d ( i j dkl) , ~4.55!

which implies

trF45
1

32
~ trF2!2, ~4.56!

where we have defined the matrices of the adjoint representation as (F j )kl5Cjlk , i.e., tr(F jFk)
52d jk .

Again there is no common choice for the invariant tensors ofe6 , so we define

di 1 ...i k
(k)

ªtr~x( i 1
¯xi k)!, kP$2,5,6,8,9,12%. ~4.57!

TABLE VIII. Irreducible representations ofe6 .

Representation ofe6 d L C L

(0,0,0,0,0,0) 1 0 0 21

(1,0,0,0,0,0) 27 L1
13
18

2
23
36

(0,0,0,0,1,0) 278 L5
13
18

2
23
36

(0,0,0,0,0,1) 78 L6 1 2
1
2

(1,0,0,0,1,0) 650 L11L5
3
2

2
1
4

(0,0,0,0,0,2) 2430 2L6
13
6

1
12

(0,0,1,0,0,0) 2925 L3 2 0
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Here thexj are the matrices of the defining representation ofe6 and di 1i 2
(2) ;d i 1i 2

. The simplest

nontrivial relations from appendix A 5 read as

tr~x( i 1
¯xx4)!5

1

12
d( i 1i 2

(2) di 3i 4)
(2) , ~4.58a!

tr~x( i 1
¯xx7)!5

7

24
d( i 1i 2

(2) di 3i 4i 5i 6i 7)
(5) , ~4.58b!

as well as

tr~F ( i 1
¯Fi 4)!5

1

2
d( i 1i 2

(2) di 3i 4)
(2) , ~4.59a!

tr~F ( i 1
¯Fi 6)!5

5

36
d( i 1i 2

(2) di 3i 4
(2) di 5i 6)

(2) 26d( i 1i 2i 3i 4i 5i 6)
(6) . ~4.59b!
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APPENDIX A: RELATIONS OF TRACE POLYNOMIALS

In the appendix we list Class 2 relations, specific to eachg, obtained by the method describe
in Sec. III B in a systematic way. If required, our algorithm is able to deal with even higher o
traces.

Whenever the characteristic polynomialsxM of the matricesM involved are simple enough to
include them, we give only the low order trace formulas explicitly. The higher orders starting
trMd whered is the degree ofxM can then be obtained usingxM(M )50. But if eitherxM is too
lengthy to present or else it appeared that a prohibitive amount of computer time was neede
to obtain it, we explicitly give trace reduction formulas for the trMk.

As we discuss in Sec. III C, a general formula for the expression of trFk whereF is in the
adjoint representation ofg, in terms of the trAl in the defining representation can be found in R
3, Eqs.~13! and~15!, for the classical series of Lie algebras. Whenever the expressions given
are not reduced to primitive invariant polynomials, we list their reductions explicitly below.

1. The simple Lie algebras al

We define the matrices of the defining representations of the Lie algebrasal by the Gell-Mann
matricesA5 1

2ajl j , so that trA50. The adjoint representations are given by (F j )kl5 i f j lk ~where
@l j ,lk#52i f jkll l). The odd traces trF2k21, kPN, vanish.

a. The Lie algebra a 2

~i! The defining representation:In the defining representation~1,0!@3#, the polynomials trA2

and trA3 can be taken as generators of the algebra of invariant polynomials. Some r
have been given in Sec. III B. We obviously do not repeat them. Thus, we have th
trAk satisfy three relations, given as Eq.~3.28! for k54,5,6. Results for higherk easily
follow from the characteristic polynomial~3.29!.

~ii ! The adjoint representation:The traces trFk, kPN, in the adjoint representation~1,1!@8# can
be expressed in terms of the primitive polynomials trA2 and trA3 via Eq. ~3.35! for 2k
52,4,6,8. The higher order traces can be obtained from the characteristic polynomiaF
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expressed in terms of the primitive invariant polynomials~3.36!, e.g.,

trF105
513

8
~ trA2!52

405

2
~ trA2!2~ trA3!2. ~A1!

The simplest relations of the trF2k are given by Eq.~3.32! for 2k54,8. Relations for the highe
traces can be obtained from the characteristic polynomial of the matrixF in Eq. ~3.33!, e.g.,

trF1052
1

64
~ trF2!51

5

16
~ trF2!2~ trF6!. ~A2!

b. The Lie algebra a 3

~i! The defining representation:In the defining representation~1,0,0!@4# of a3 , the polynomi-
als trA2, trA3 and trA4 can be taken as generators of the algebra of invariant polynom
The higher trAk can be obtained easily using the characteristic polynomial of the matriA,

xA~t!5t42
1

2
~trA2! t22

1

3
~ trA3! t1S 1

8
~ trA2!22

1

4
~ trA4! D . ~A3!

~ii ! The adjoint representation:The traces trFk, kPN, in the adjoint representation~1,0,1!@15#
can be expressed in terms of the primitive polynomials via

trF258~ trA2!, ~A4a!

trF456~ trA2!218~ trA4!, ~A4b!

trF652~ trA2!32
52

3
~ trA3!2136~ trA2!~ trA4!, ~A4c!

trF852
15

2
~ trA2!42

640

9
~ trA2!~ trA3!2144~ trA2!2~ trA4!172~ trA4!2, ~A4d!

of which only ~A4a! and~A4b! follow directly from the Meyberga-series formula~13! in
Ref. 3. The simplest relation amongst the trF2k is

trF85
35

1248
~ trF2!42

43

104
~ trF2!2~ trF4!1

9

8
~ trF4!21

20

39
~ trF2!~ trF6!. ~A5!

c. The Lie algebra a 4

~i! The defining representation:In the defining representation~1,0,0,0!@5#, the polynomials
trAk, kP$2,3,4,5% can be taken as generators of the algebra of invariant polynomials
higher trAk can be calculated using the characteristic polynomial of the matrixA,

xA~ t !5t52
1

2
~ trA2! t32

1

3
~ trA3! t21S 1

8
~ trA2!22

1

4
~ trA4! D t

1S 1

6
~ trA2!~ trA3!2

1

5
~ trA5! D . ~A6!

~ii ! The adjoint representation:The traces in the adjoint representation~1,0,0,1!@24# of a4 can
be expressed in terms of the primitive polynomials by

trF2510~ trA2!, ~A7a!

trF456~ trA2!2110~ trA4!, ~A7b!

trF652
5

4
~ trA2!32

50

3
~ trA3!21

75

2
~ trA2!~ trA4!, ~A7c!
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trF852
61

8
~ trA2!41

56

3
~ trA2!~ trA3!21

89

2
~ trA2!2~ trA4!

1
145

2
~ trA4!22

320

3
~ trA3!~ trA5!. ~A7d!

We give these results in detail to allow an observation described in Sec. III B to be seen exp
There areno relations expressing trFk, kP$2,4,6,8,10% as polynomials of the lower degree one
The first such relation involves trF12. It is

trF125
13799

61440000
~ trF2!62

8193

1024000
~ trF2!4~ trF4!1

3873

51200
~ trF2!2~ trF4!22

1957

12800
~ trF4!3

1
6293

240000
~ trF2!3~ trF6!2

1113

4000
~ trF2!~ trF4!~ trF6!1

731

3750
~ trF6!22

759

6400
~ trF2!2~ trF8!

1
177

320
~ trF4!~ trF8!1

54

125
~ trF2!~ trF10!. ~A8!

2. The simple Lie algebras b l

We define the matrices of the defining representations of the Lie algebrasbl by the matrices
A5ajxj given in Sec. IV B. The adjoint representations are defined by (F j )kl5 i c j lk ~where
@xi ,xj #5 ic jklxl). The odd traces trA2k21 and trF2k21, kPN, vanish.

a. The Lie algebra b 2

~i! The defining representation:In the defining representation~1,0!@5# of b2 , the polynomials
trA2 and trA4 can be used as generators of the algebra of invariant polynomials. The o
can be expressed in terms of the primitive ones using the characteristic polynomial
matrix A,

xA~t!5t52
1

2
~trA2!t31S 1

8
~ trA2!22

1

4
~ trA4! D t. ~A9!

~ii ! The adjoint representation:The traces in the adjoint representation~0,2!@10# can be written
in terms of the primitive polynomials via

trF253~ trA2!, ~A10a!

trF453~ trA2!223~ trA4!, ~A10b!

trF65
27

8
~ trA2!32

21

4
~ trA2!~ trA4!. ~A10c!

The simplest relation involving the trF2k alone is

trF652
5

72
~ trF2!31

7

12
~ trF2!~ trF4!. ~A11!

Relations for the higher trF2k can be obtained from the characteristic polynomial of the matriF
in the form

xF~ t !5t102
1

2
~ trF2!t81S 1

8
~ trF2!22

1

4
~ trF4! D t61S 2

1

108
~ trF2!31

1

36
~ trF2!~ trF4! D t4

1S 2
1

864
~ trF2!41

5

432
~ trF2!2~ trF4!2

1

36
~ trF4!2D t2, ~A12!
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which can be written using~A10! in terms of primitive polynomials and used to extend~A10! for
trF2k for higherk.

b. The Lie algebra b 3

~i! The defining representation:In the defining representation~1,0,0!@7#, the polynomials trA2,
trA4 and trA6 can be used as generators of the algebra of invariant polynomials. The o
can be written in terms of them using the characteristic polynomial of the matrixA,

xA~t!5t72
1

2
~trA2!t51S 1

8
~ trA2!22

1

4
~ trA4! D t3

1S 2
1

48
~ trA2!31

1

8
~ trA2!~ trA4!2

1

6
~ trA6! D t. ~A13!

~ii ! The adjoint representation:The traces in the adjoint representation~0,1,0!@21# can be
expressed in terms of the primitive polynomials via

trF255~ trA2!, ~A14a!

trF453~ trA2!22~ trA4!, ~A14b!

trF6515~ trA2!~ trA4!225~ trA6!, ~A14c!

trF852
121

48
~ trA2!41

121

4
~ trA2!2~ trA4!1

19

4
~ trA4!22

158

3
~ trA2!~ trA6!. ~A14d!

The simplest relation involving the trF2k alone is

trF85
8683

150000
~ trF2!42

543

500
~ trF2!2~ trF4!1

19

4
~ trF4!21

158

375
~ trF2!~ trF6!. ~A15!

c. The Lie algebra b 4

~i! The defining representation:In the defining representation~1,0,0,0!@9#, the polynomials
trAk, kP$2,4,6,8%, can be used as generators of the algebra of invariant polynomials
others can be calculated from the characteristic polynomial of the matrixA,

xA~t!5t92
1

2
~trA2!t71S 1

8
~ trA2!22

1

4
~ trA4! D t5

1S 2
1

48
~ trA2!31

1

8
~ trA2!~ trA4!2

1

6
~ trA6! D t3

1S 1

384
~ trA2!42

1

32
~ trA2!2~ trA4!1

1

32
~ trA4!21

1

12
~ trA2!~ trA6!2

1

8
~ trA8! D t.

~A16!
~ii ! The adjoint representation:The traces in the adjoint representation~0,1,0,0!@36# can be

expressed in terms of the primitive polynomials via
trF257~ trA2!, ~A17a!

trF453~ trA2!21~ trA4!, ~A17b!

trF6515~ trA2!~ trA4!223~ trA6!, ~A17c!

trF8535~ trA4!2128~ trA2!~ trA6!2119~ trA8!, ~A17d!

trF105
503

384
~ trA2!52

2515

96
~ trA2!3~ trA4!1

2515

32
~ trA2!~ trA4!21

2515

24
~ trA2!2~ trA6!

1
5

12
~ trA4!~ trA6!2

2155

8
~ trA2!~ trA8!. ~A17e!
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The simplest relation involving the trF2k alone is

trF1052
657127

2 523 470 208
~ trF2!51

2285

262 752
~ trF2!3~ trF4!2

4535

87 584
~ trF2!~ trF4!2

2
16385

459 816
~ trF2!2~ trF6!2

5

276
~ trF4!~ trF6!1

2155

6664
~ trF2!~ trF8!. ~A18!

3. The simple Lie algebras c l

We define the matrices of the defining representations of the Lie algebrascl by the matrices
A5ajxj given in Sec. IV C. The adjoint representations are defined by (F j )kl5 i c j lk ~where
@xi ,xj #5 ic jklxl). The odd traces trA2k21 and trF2k21, kPN, vanish.

a. The Lie algebra c 2

~i! The defining representation:In the defining representation~1,0!@4#, the polynomials trA2

and trA4 can be used as generators of the algebra of invariant polynomials. The h
traces can be calculated using the characteristic polynomial of the matrixA,

xA~t!5t42
1

2
~trA2!t21S 1

8
~ trA2!22

1

4
~ trA4! D . ~A19!

~ii ! The adjoint representation:The traces in the adjoint representation~2,0!@10# can be ex-
pressed in terms of the primitive polynomials via

trF256~ trA2!, ~A20a!

trF453~ trA2!2112~ trA4!, ~A20b!

trF652
9

2
~ trA2!3142~ trA2!~ trA4!. ~A20c!

The simplest relation involving the trF2k alone is

trF652
5

72
~ trF2!31

7

12
~ trF2!~ trF4!. ~A21!

Expressions for the higher order traces can be obtained from the characteristic polynomial oF in
the form

xF~ t !5t102
1

2
~ trF2!t81S 1

8
~ trF2!22

1

4
~ trF4! D t61S 2

1

108
~ trF2!31

1

36
~ trF2!~ trF4! D t4

1S 2
1

864
~ trF2!41

5

432
~ trF2!2~ trF4!2

1

36
~ trF4!2D t2. ~A22!

By use of~A20!, this can be written in terms of trA2 and trA4.

b. The Lie algebra c 3

~i! The defining representation:In the defining representation~1,0,0!@6#, the polynomials trA2,
trA4 and trA6 can be used as generators of the algebra of invariant polynomials. The o
can be expressed in terms of the primitive ones using the characteristic polynomial
matrix A,

xA~t!5t62
1

2
~trA2!t41S 1

8
~ trA2!22

1

4
~ trA4! D t2

1S 2
1

48
~ trA2!31

1

8
~ trA2!~ trA4!2

1

6
~ trA6! D . ~A23!
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~ii ! The adjoint representation:The traces in the adjoint representation~2,0,0!@21# can be
expressed in terms of the primitive polynomials via

trF258~ trA2!, ~A24a!

trF453~ trA2!2114~ trA4!, ~A24b!

trF6515~ trA2!~ trA4!138~ trA6!, ~A24c!

trF85
67

24
~ trA2!42

67

2
~ trA2!2~ trA4!1

137

2
~ trA4!21

352

3
~ trA2!~ trA6!. ~A24d!

The simplest relation involving the trF2k alone is

trF85
2011

357 504
~ trF2!42

1815

14 896
~ trF2!2~ trF4!1

137

392
~ trF4!21

22

57
~ trF2!~ trF6!. ~A25!

c. The Lie algebra c 4

~i! The defining representation:In the defining representation~1,0,0,0!@8#, the polynomials
trAk, kP$2,4,6,8% can be used as generators of the algebra of invariant polynomials.
higher trAk can be calculated using the characteristic polynomial of the matrixA,

xA~t!5t82
1

2
~trA2!t61S 1

8
~ trA2!22

1

4
~ trA4! D t4

1S 2
1

48
~ trA2!1

1

8
~ trA2!~ trA4!2

1

6
~ trA6! D t2

1S 1

384
~ trA2!42

1

32
~ trA2!2~ trA4!1

1

32
~ trA4!21

1

12
~ trA2!~ trA6!2

1

8
~ trA8! D .

~A26!
~ii ! The adjoint representation:Let (F j )kl5 i c j lk be the matrices of the adjoint representati

~2,0,0,0!@36#. The odd traces trF2k21, kPN, vanish. The others can be expressed in ter
of the primitive polynomials via

trF2510~ trA2!, ~A27a!

trF453~ trA2!2116~ trA4!, ~A27b!

trF6515~ trA2!~ trA4!140~ trA6!, ~A27c!

trF8535~ trA4!2128~ trA2!~ trA6!1136~ trA8!, ~A27d!

trF1052
65

48
~ trA2!51

325

12
~ trA2!3~ trA4!2

325

4
~ trA2!~ trA4!22

325

3
~ trA2!2~ trA6!

1
1280

3
~ trA4!~ trA6!1370~ trA2!~ trA8!. ~A27e!

The simplest relation involving the trF2k alone is

trF1052
2039

6528000
~ trF2!51

2269

163200
~ trF2!3~ trF4!2

143

1088
~ trF2!~ trF4!22

1349

20400
~ trF2!2~ trF6!

1
2

3
~ trF4!~ trF6!1

37

136
~ trF2!~ trF8!. ~A28!
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4. The simple Lie algebras d l

We define the matrices of the defining representations of the Lie algebrasdl by the matrices
A5ajxj given in Sec. IV B. In order to generate the invariant polynomials of a simple Lie alg
of type dl , we need a square root of det(A) related to a Pfaffian form39,12 in addition to the trace
polynomials.

The adjoint representations are defined by (F j )kl5 i c j lk ~where @xi ,xj #5 ic jklxl). The odd
traces trA2k21 and trF2k21, kPN, vanish.

a. The Lie algebra d 3

~i! The defining representation:In the defining representation~1,0,0!@6#, the polynomials trA2,
trA4 and AdetA, which is of degree three, can be used as generators of the algeb
invariant polynomials. The higher traces can be calculated using the characteristic p
mial of the matrixA,

x~t!5t62
1

2
~trA2!t41S 1

8
~ trA2!22

1

4
~ trA4! D t21~detA!. ~A29!

~ii ! The adjoint representation:The traces in the adjoint representation~0,1,1!@15# can be
expressed in terms of the primitive polynomials via

trF254~ trA2!, ~A30a!

trF453~ trA2!222~ trA4!, ~A30b!

trF65
13

4
~ trA2!31156~detA!2

9

2
~trA2!~ trA4!, ~A30c!

trF85
33

8
~ trA2!41320~ trA2!~detA!2

19

2
~ trA2!2~ trA4!1

9

2
~ trA4!2. ~A30d!

The simplest relation involving the trF2k is

trF85
35

1248
~ trF2!42

43

104
~ trF2!2~ trF4!1

9

8
~ trF4!21

20

39
~ trF2!~ trF6!. ~A31!

b. The Lie algebra d 4

~i! The defining representation:In the defining representation~1,0,0,0!@8#, the polynomials
trAk, kP$2,4,6%, andAdetA, which, like trA4, is of degree four, can be used as generat
of the algebra of invariant polynomials. The others can be obtained using the charact
polynomial of the matrixA,

x~t!5t82
1

2
~trA2!t61S 1

8
~ trA2!22

1

4
~ trA4! D t4

1S 2
1

48
~ trA2!31

1

8
~ trA2!~ trA4!2

1

6
~ trA6! D t21~detA!. ~A32!

~ii ! The adjoint representation:The traces in the adjoint representation~0,1,0,0!@28# can be
expressed in terms of the primitive polynomials via

trF256~ trA2!, ~A33a!

trF453~ trA2!2, ~A33b!

trF6515~ trA2!~ trA4!224~ trA6!, ~A33c!

trF852
5

2
~ trA2!41960~detA!130~ trA2!2~ trA4!15~ trA4!2252~ trA2!~ trA6!,

~A33d!
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trF1052
69

16
~ trA2!512160~ trA2!~detA!1

165

4
~ trA2!3~ trA4!

1
45

4
~ trA2!~ trA4!2275~ trA2!2~ trA6!. ~A33e!

The simplest relations involving the trF2k alone are

trF45
1

12
~ trF2!2, ~A34a!

trF105
7

41472
~ trF2!52

7

144
~ trF2!2~ trF6!1

3

8
~ trF2!~ trF8!. ~A34b!

5. The simple Lie algebra e6

~i! The defining representation:We denote the matrices of the defining representa
~1,0,0,0,0,0!@27# of e6 by A. We have trA50 and trA350, and the polynomials trAk, k
P$2,5,6,8,9,12% are suitable generators of the algebra of invariant polynomials. The
tions are

trA45
1

12
~ trA2!2, ~A35a!

trA75
7

24
~ trA2!~ trA5!, ~A35b!

trA105
7

41472
~ trA2!51

7

40
~ trA5!22

7

144
~ trA2!2~ trA6!1

3

8
~ trA2!~ trA8!, ~A35c!

trA1152
55

3456
~ trA2!3~ trA5!1

11

36
~ trA5!~ trA6!1

605

1512
~ trA2!~ trA9!, ~A35d!

trA1352
143

27648
~ trA2!4~ trA5!1

143

2700
~ trA2!~ trA5!~ trA6!

1
143

400
~ trA5!~ trA8!1

1859

18144
~ trA2!2~ trA9!. ~A35e!

~ii ! The adjoint representation:Let (F j )kl5 i c j lk be the matrices of the adjoint representati
~0,0,0,0,0,1!@78#. The odd traces trF2k21, kPN, vanish. The others can be expressed
terms of the primitive polynomials via

trF254~ trA2!, ~A36a!

trF45
1

2
~ trA2!2, ~A36b!

trF65
5

36
~ trA2!326~ trA6!, ~A36c!

trF85
35

432
~ trA2!42

28

3
~ trA2!~ trA6!118~ trA8!, ~A36d!

trF105
91

2304
~ trA2!52

21

20
~ trA5!22

133

24
~ trA2!2~ trA6!1

51

4
~ trA2!~ trA8!. ~A36e!
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6. The simple Lie algebra f 4

~i! The defining representation:We denote the matrices of the defining representa
~0,0,0,1!@26# of f 4 by A. The polynomials trAk, kP$2,6,8,12% are suitable generators of th
algebra of invariant polynomials. The odd traces trA2k21, kPN, vanish. The relations are

trA45
1

12
~ trA2!2, ~A37a!

trA105
7

41472
~ trA2!52

7

144
~ trA2!2~ trA6!1

3

8
~ trA2!~ trA8!, ~A37b!

trA1452
2761

179159040
~ trA2!71

24409

5598720
~ trA2!4~ trA6!2

1001

19440
~ trA2!~ trA6!2

2
7931

311040
~ trA2!3~ trA8!1

77

360
~ trA6!~ trA8!1

497

1080
~ trA2!~ trA12!. ~A37c!

~ii ! The adjoint representation:Let (F j )kl5 i c j lk be the matrices of the adjoint representati
~1,0,0,0!@52# in a suitable normalization relative to those of the defining representation.
odd traces trF2k21, kPN, vanish. The others can be expressed in terms of the prim
polynomials via

trF253~ trA2!, ~A38a!

trF45
5

12
~ trA2!2, ~A38b!

trF65
5

36
~ trA2!327~ trA6!, ~A38c!

trF85
35

432
~ trA2!42

28

3
~ trA2!~ trA6!117~ trA8!, ~A38d!

trF105
1631

41472
~ trA2!52

791

144
~ trA2!2~ trA6!1

99

8
~ trA2!~ trA8!, ~A38e!

trF125
1309

62208
~ trA2!62

2387

648
~ trA2!3~ trA6!1

154

9
~ trA6!21

209

18
~ trA2!2~ trA8!263~ trA12!.

~A38f!

The simplest relations of the trF2k are

trF45
5

108
~ trF2!2, ~A39a!

trF105
161

6345216
~ trF2!52

455

22032
~ trF2!2~ trF6!1

33

136
~ trF2!~ trF8!. ~A39b!

7. The simple Lie algebra g 2

~i! The defining representation:We define the defining representation~0,1!@7# by the same
matrices as in Sec. IV E,A5ajxj . The polynomials trA2 and trA6 can be taken as genera
tors of the algebra of invariant polynomials. The odd traces trA2k21, kPN, vanish. The
trAk satisfy these relations:

trA45
1

4
~ trA2!2, ~A40a!

trA852
5

192
~ trA2!41

2

3
~ trA2!~ trA6!, ~A40b!
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the latter of which follows easily from the characteristic polynomial of the matrixA,

xA~t!5t72
1

2
~trA2!t51

1

16
~ trA2!2t31S 1

96
~ trA2!32

1

6
~ trA6! D t. ~A41!

~ii ! The adjoint representation:Let (F j )kl5 i c j lk be the matrices of the adjoint representati
~1,0!@14# ~where@xj ,xk#5 i c jklxl). The odd traces trF2k21, kPN, vanish. The others can
be expressed in terms of the primitive polynomials via

trF254~ trA2!, ~A42a!

trF45
5

2
~ trA2!2, ~A42b!

trF65
15

4
~ trA2!3226~ trA6!, ~A42c!

trF85
515

96
~ trA2!42

160

3
~ trA2!~ trA6!, ~A42d!

trF105
431

64
~ trA2!52

605

8
~ trA2!2~ trA6!, ~A42e!

trF125
12865

1536
~ trA2!62

1315

12
~ trA2!3~ trA6!1

365

3
~ trA6!2. ~A42f!

The trF2k themselves satisfy these relations:

trF45
5

32
~ trF2!2, ~A43a!

trF852
2905

319488
~ trF2!41

20

39
~ trF2!~ trF6!, ~A43b!

trF1052
217

53248
~ trF2!51

605

3328
~ trF2!2~ trF6!. ~A43c!

The characteristic polynomial of the matrixF is

xF~ t !5t1422~ trA2!t121
11

8
~ trA2!2t101S 2

17

24
~ trA2!31

13

3
~ trA6! D t8

1S 49

256
~ trA2!422~ trA2!~ trA6! D t61S 2

1

64
~ trA2!51

3

16
~ trA2!2~ trA6! D t4

1S 2
11

3072
~ trA2!61

5

48
~ trA2!3~ trA6!2

3

4
~ trA6!2D t2 ~A44a!

5t142
1

2
~ trF2!t121

11

128
~ trF2!2t101S 2

1

768
~ trF2!32

1

6
~ trF6! D t8

1S 2
323

851968
~ trF2!41

1

52
~ trF2!~ trF6! D t61S 19

1703936
~ trF2!52

3

6656
~ trF2!2~ trF6! D t4

1S 2
2159

2126512128
~ trF2!61

35

519168
~ trF2!3~ trF6!2

3

2704
~ trF6!2D t2. ~A44b!
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A condition for an area-preserving mapping
to be in the Engel’s form

Jian-min Maoa)

Department of Mathematics, Hong Kong University of Science and Technology,
Clearwater Bay, Kowloon, Hong Kong

~Received 29 November 1999; accepted for publication 29 December 1999!

We establish explicit expressions of restrictions on the coefficients of nonlinear
terms in a two-dimensional area-preserving polynomial map imposed by the prop-
erty of area preserving. We also establish a necessary and sufficient condition for a
two-dimensional area-preserving generic polynomial map to be in the Engel’s
form. The condition is that coefficients of nonlinear terms in the first mapping
equation are proportional to the corresponding ones in the second mapping equa-
tion. As an application of the results, we discuss how to regain the area-preserving
property lost in truncating a two-dimensional area-preserving map. ©2000
American Institute of Physics.@S0022-2488~00!06905-X#

I. INTRODUCTION

Two-dimensional~2D! area-preserving polynomial maps have been intensively studie
recent decades, particularly in the field of nonlinear dynamics and chaos.1 Many important dis-
coveries have been made in these studies, such as scaling in the period-doubling route to c2,3

breakup of Kol’mogorov-Arnol’d-Moser tori,4 possession of symmetries.5,6

In this paper, we establish explicit expressions for restrictions imposed by the area-pres
property on the coefficients of the nonlinear terms in mapping equations of a 2D area-pres
polynomial map. We also establish a necessary and sufficient condition for a 2D area-pres
generic polynomial map to be in the Engel’s form:7 The coefficients of nonlinear terms in the fir
mapping equation and the corresponding ones in the second equation are proportional
other. Both results are established, to the best of my knowledge, for the first time. The r
should be useful in studies related to 2D area-preserving maps. It is because the area-pre
property is essential in the studies and our results provide explicit expressions for the es
property. It is also because the Engel’s form, which can be linearly transformed into the H´non
form, is considered as the normal form of 2D area-preserving polynomial maps in many re
papers.

As an application of the results, we discuss how to regain the area-preserving property
truncating a two-dimensional area-preserving map. Truncations are often used in nume
determining a map modeling a dynamical system. We consider a numerically determined Po´
map for a Hamiltonian system with two degrees of freedom. The numerically determined m
not in the Engel’s form in general. The map should be area-preserving,8 but is usually not even
within numerical errors. The loss of the area-preserving property is due to the truncation m
determining the map numerically. A truncation of an area-preserving map not in the Engel’s
is not area-preserving in general, as will be shown in Sec. II. In order to regain the ess
property of area preserving, at least approximately, we propose to approximate the nume
determined map by a map in the Engel’s form up to an order. The map in the Engel’s fo
area-preserving and remains so when truncated.

Related to the issues stated above, there is a conjecture, known as the Jacobian conje
the mathematics literature, that if a polynomial map has a nonzero constant Jacobian, then t

a!Electronic mail: mamao@uxmail.ust.hk
32260022-2488/2000/41(5)/3226/7/$17.00 © 2000 American Institute of Physics
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is invertible and the inverse is a polynomial.9 Much efforts have been made to prove or
construct counterexamples for the conjecture.10–13This paper is not intended to be on the conje
ture, though the lemma and the theorem given in this paper can be helpful in researches
conjecture.

This paper is organized as follows. In Sec. II, we derive the analytical expressions of re
tions imposed by the area-preserving property on the coefficients in the mapping equation
necessary and sufficient condition for a 2D area-preserving generic polynomial map to be
Engel’s form is given in Sec. III. In Sec. IV, we given an application of our results showing
a numerically determined map for a Hamiltonian system can be approximated by an
preserving map in the Engel’s form up to a proper order.

II. RESTRICTIONS ON COEFFICIENTS

A polynomial map of degreeN from R2 to itself can be formulated asP:(x,y)°(x8,y8),
where

x85 (
n51

N

f (n)~x,y!, f (n)~x,y!5 (
i , j 50

( i 1 j 5n)

n

ai j x
iy j ,

~1!

y85 (
n51

N

g(n)~x,y!, g(n)~x,y!5 (
i , j 50

( i 1 j 5n)

n

bi j x
iy j .

Hereai j andbi j , for i , j 50,1,...,N and 1< i 1 j <N, are real coefficients. Here we have assum
that the map has a fixed point and the constant terms of the map have been transformed

Lemma 1: The2D polynomial map in Eq. (1) has a constant Jacobian if and only if

Anm1Bnm50, for n51,2,. . . ,N, m50,1,2,. . . ,n, ~2!

where

Anm5~n112m!~a10bm,n112m2b10am,n112m!2~m11!~a01bm11,n2m2b01am11,n2m!,
~3!

Bnm5 1
2 (

( i , j )
$@ i ~n12!2~ i 1 j !~m11!#~ai j bm2 i 11,n2m2 j 112bi j am2 i 11,n2m2 j 11!%.

Here the summation is over the pair of i and j such thatmax(0,m2n11) < i < min(n,m11),
max(0,12m)< j < min(n,n2m11), and 2< i 1 j <n.

Proof: Define Poisson bracket of differentiable functionsj(x,y) and h(x,y) by
@j(x,y),h(x,y)#[ @(]j/]x)(]h/]y)# 2 @(]j/]y)(]h/]x)#. The Jacobian of the map is a sum
terms in the form of@ f (n1),g(n2)# for n1 ,n251,2,..,N, among which only@ f (1),g(1)#5a10b01

2a01b10 is a constant. Therefore, the map has a constant Jacobian if and only if

F f (1),(
n52

N

g(n)G1F (
n52

N

f (n),g(1)G1F (
n52

N

f (n),(
n52

N

g(n)G50. ~4!

Rearranging the terms according to their order, Eq.~4! becomes

(
n51

N

(
m50

n

~Anm1Bnm!xmyn2m50, ~5!

whereAnm andBnm are given in Eq.~3!. Thus, the map has a constant Jacobian if and only if
~2! is true. h

Expressions ofAnm andBnm for n51,2,3 andm50,1,2,. . . ,n are given in the Appendix.
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TermsAnm andBnm defined in Eq.~3! have following properties.~i! Anm is a sum of terms
ai 1 j 1

bi 2 j 2
, wherei 11 j 151, andi 21 j 25n11. In other words,Anm involves only the coefficients

of the linear terms and the coefficients of the terms of powern11. ~ii ! Bnm is a sum of terms
ai 1 j 1

bi 2 j 2
, where 2< i 11 j 1<n and 2< i 21 j 2<n, i.e., Bnm involves all coefficients of the non

linear terms up to powern. ~iii ! A coefficientai j ~or bi j ! involved inAnm is not involved inBnm ,
and vice versa.~iv! B1m[0 for m50,1. ~v! ANm[0 for m50,1,...,N.

A truncation of map~1! at theN8th order, for 2<N8<N21, implies settingai j 5bi j 50 for
i 1 j >N811, and thereforeAN8m50 for m50,1,...,N8. For area-preserving maps, the lemm
assertsAN8m1BN8m50, whereAN8mÞ0 in general. Thus a truncation of an area-preserving m
is not necessarily area-preserving.~If the map is in the Engel’s form, however, thenAN8m50 and
the area-preserving property persists under truncations.!

III. CONDITIONS FOR A MAP TO BE IN THE ENGEL’S FORM

Map C:(x,y)°(x8,y8) is said to be in the Engel’s form7 if

x85~a10x1a01y!1b (
n52

N

dn@a~a10x1a01y!2b~b10x1b01y!#n,

~6!

y85~b10x1b01y!1a (
n52

N

dn@a~a10x1a01y!2b~b10x1b01y!#n,

wherea, b, anddn for n52, . . . ,N are constants. Here, as in map~1!, a10, a01, b10, andb01 are
real constants, andN is an integer. We also say thenth order terms of the map are in the Enge
form if the map is in the form. It is easy to see that a map in the Engel’s form has a con
Jacobian equal to (a10b012a01b10), and remains so when truncated at theN8th order, for 2
<N8<N21.

For a 2D area-preserving polynomial map to be in the Engel’s form requires, at first gl
not only that all nonlinear terms in the first mapping equation have coefficients proportion
corresponding ones in the second equation, but also that the nonlinear terms of the sam
form a complete power, i.e.,@a(a10x1a01y)2b(b10x1b01y)#n for n52,3,..,N. However, not
both requirements are necessary if the map is generic~the map is called generic if all the coeffi
cients of the nonlinear terms are nonzero!. In this case, satisfaction of the first requirement impl
satisfaction of the second, and vice versa. In other words, we have the following theorem.

Theorem 1:A 2D area-preserving generic polynomial map of degreeN is in the Engel’s form
if and only if the coefficients of the nonlinear terms up to the (N21)th order in the first mapping
equation are proportional to the corresponding ones in the second mapping equation, i.e.,

ai j

bi j
5constant, for 2< i 1 j <N21, ~7!

whereai j andbi j are as defined in Eq.~1!, andN>3.
Proof: It is obvious that if the map is in the Engel’s form then Eq.~7! is satisfied. For the

converse, we start from assuming Eq.~7! is satisfied and the proof takes the following two ste
~i! Prove the map is in the Engel’s form up to the (N21)th order. Denote the constant in E

~7! by b/a, whereb anda are constants~this can always be done because the map is gene!.
Equation~7! impliesBnm50 for 1<n<N21 andm50,1,...,n, whereBnm is defined in Eq.~3!.
Therefore,Anm50 becauseAnm1Bnm50 from Lemma 1. In the equationAnm50, eliminate
bm11,n2m by using Eq.~7! ~this can always be done because the map is generic!. Thus we have
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am11,n2m5
n112m

m11

a10

a

b
2b10

a01

a

b
2b01

am,n2m11 . ~8!

This is the recurrence relation foram11,n2m on m. Therefore

am,n2m5Cn
mS a10

a

b
2b10

a01

a

b
2b01

D m

a0,n , ~9!

whereCn
m5n!/ @m! (n2m)! # is the binomial coefficient. Similarly we have the expression

bm,n2m . Finally, the functionsf (n)(x,y) andg(n)(x,y) in Eq. ~1! for 2<n<N21 are

f (n)~x,y!5 (
m50

n

am,n2mxmyn2m

5~a012bb01!
2n@a~a10x1a01y!2b~b10x1b01y!#n,

~10!

g(n)~x,y!5
a

b
f (n)~x,y!.

This means the map is in the Engel’s form up to the (N21)th order.
~ii ! Prove the terms of orderN are also in the Engel’s form. Actually,ANm[0 for m

50,1,...,N since ai j 5bi j 50 for i 1 j 5N11. From Lemma 1, we haveBNm50 for m
50,...,N, which is a system of linear equations and can be written asM x50, where x
5(aN0 ,aN21,1,...,a0N ,bN0 ,bN21,1,...,b0N) is the unknown vector, andM is an (N11)3(2N
12) matrix whose entries are the coefficients of the nonlinear terms up to the (N21)th order in
the map. As proved in part~i!, the coefficients involved in matrixM satisfy Eq.~7! and the terms
of the same order form a complete power. Solving the system of linear equations, we fin
solution set is given byai j /bi j 5b/a for i 1 j 5N. Using this result, the equationsAN21,m50 for
m50,1,...,N21 imply the terms of powerN form a complete power. Therefore, the terms
orderN are in the Engel’s form. The map is in the Engel’s form from parts~i! and ~ii !. h

For 2D area-preserving generic quadratic maps~i.e., whenN52!, A2m[0 for m50,1,2.
ThereforeB2m50, anda20/b205a11/b115a02/b02 is always satisfied. Thus, from Theorem 1, t
Engel’s form is the normal form for 2D area-preserving generic quadratic maps. For 2D
preserving generic polynomial maps of degreeN>3, however, Eq.~7! is only a particular set of
solutions ofBnm50. EquationBnm50 may have other solutions, andAnm1Bnm50 may have
solutions other than those given byBnm50. From this point of view, the question as to wheth
the Engel’s form is the normal form for the area-preserving generic cubic or higher-order
nomial maps7 is the question as to whether Eq.~7! is the only solution of the equationAnm

1Bnm50.

IV. AN APPLICATION: EFFECTS OF A TRUNCATION

As an application of the results presented in Lemma 1 and Theorem 1, we discuss
truncation affects the area preserving property of a 2D area-preserving polynomial map not
Engel’s form~if it is in the Engel’s form, then its truncations remain area-preserving!. Truncations
are often used in numerically determining a map modeling a physical system. Therefo
discuss the numerically determined Poincare´ map for a Hamiltonian dynamical system. We ta
the diamagnetic Kepler problem as an example.
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A. The numerically determined map

The diamagnetic Kepler problem is for the motion of the electron of a hydrogen atom
external uniform magnetic field. The problem has been studied intensively in recent decade
is a good candidate to reveal manifestation of classical chaos in quantum systems.14–17Taking the
direction of the magnetic field as thez axis, the Hamiltonian function in the cylindrical coord
nates (r,f,z) can be written as17

H~r,z,pr ,pz!5
1

2
~pr

21pz
2!1

1

Ar21z2
1

1

8
r21

Lz

2r2 , ~11!

whereLz is a system parameter. Here thef-motion has been separated and the atomic units h
been used.

Takingz50 as the Poincare´ surface of section and starting from a pair ofr andpr values (pz

given by the energy conservation!, we integrate the Hamilton’s equations by an adaptive O
~ordinary differential equation! integrator, and recordr andpr when the trajectory intersects th
Poincare´ surface of section. The list of such successive values ofr andpr is fitted by a 2D spline
to a 2D polynomial mapP:(r,pr)→(r8,pr8). WhenLz51.5 and the scaled energy is 0.136 37
the numerically-determined map is given by

x85~0.657 705 108x20.548 557 710 5y!1~26.2427x222.625 95xy10.4344y2!

1~228.1x3126.2x2y224.2xy228.5y3!,
~12!

y85~1.034 544 53x10.657 705 108y!1~8.3949x225.495 06xy14.2876y2!

1~218.6x311.60x2y126.6xy223.7y3!.

Here we have denoted (r,pr) by (x,y) and (r8,pr8) by (x8,y8). The map is generic and not in th
Engel’s form. The map is approximately area-preserving:a10b012a01b1051 is satisfied within the
error of 10210, and Eq.~2! for n51 is satisfied within the error of 1026, and 1024 for n52 and
1021 for n53.

The ‘‘true’’ map should be~exactly! area-preserving because the underlying physical sys
is Hamiltonian. The numerically determined map is the truncation of the true map at the
terms. The truncation setsai j 5bi j 50 for i , j 50, 1,2,3,4 andi 1 j >4 and, therefore, the poo
satisfaction of Eq.~2! for n53. Because of this, one may think of the further truncation at
quadratic terms~i.e., settingai j 5bi j 50 for i , j 50, 1,2,3 andi 1 j 53!, which, however, worsens
the satisfaction of Eq.~2! for n52: The error becomes 1021 from the original 1024. To ease this
difficulty, one may approximate the numerically determined map by a map in the Engel’s f

B. An approximation in the Engel’s form

To approximate a numerically determined map of degreeN in coordinate (x,y) by a map in
the Engel’s form in new coordinates (X,Y), we use Theorem 1. Consider the following coordina
changes:

S x
yD°S X5x1b~ax2by!21b (

n53

N21

h(n)~x,y!

Y5y1a~ax2by!21a (
n53

N21

h(n)~x,y!
D , ~13!

wherea and b are constants, andh(n)(x,y)5(
( i 1 j 5n)
i , j 50
n

g i j x
iy j consisting of thenth power terms.

Here a, b, and g i j , for i , j 50,1,. . . ,N21 and 3< i 1 j <N21, are to be determined. Thes

@ 1
2 N(N11)24# unknowns are required to satisfy Eq.~7! so that the map in new coordinates is
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the Engel’s form up to theNth order, while the terms of the (N11)th and higher orders ar

neglected. The number of such equations is@ 1
2 N(N11)24#, the same as the number of un

knowns. If a solution of this system of equations exists, then the given map can be approx
by the Engel’s form up to theNth order.

For the map given in Eq.~12!, N53 and the coordinate change is given by (x,y)→(X,Y)
5(x1b(ax2by)2, y1a(ax2by)2). Here a and b are required to satisfya208 /b208 5a118 /b118
5a028 /b028 , whereai j8 andbi j8 for ( i , j )5(2,0), ~1,1! and~0,2!, are coefficients in the transforme
map. We finda522.271 464 18 andb50.209 082 24. The numerically determined map~12! is
approximated, in the new coordinates, byC:(X,Y)°(X8,Y8), where

X85~0.657 705 108X20.548 557 710 5Y!1~0.532 217X20.487 891Y!2,
~14!

Y85~1.034 544 53X10.657 705 108Y!129.4996~0.532 217X20.487 891Y!2.

This map is in the Engel’s form up to quadratic terms. By a further~linear! coordinate change
(X,Y)→(p,q), the map becomes a He´non map up to quadratic terms,H:(p,q)°(p8,q8), where
p852q1(1.315 41p1p2) andq85p.

V. CONCLUSIONS

For 2D area-preserving polynomial maps, we establish the explicit expressions, Eq.~2!, for
restrictions on coefficients in mapping equations imposed by the area-preserving property
this result, we further establish the necessary and sufficient condition for a 2D area-pres
generic polynomial map of degreeN>3 to be in the Engel’s form: All coefficients of nonlinea
terms in the first mapping equation are proportional to corresponding ones in the second m
equation, i.e., Eq.~7! is satisfied. These results is applied to studying a numerically determine
polynomial map that should be area-preserving as predetermined by the properties of the
lying physical system, but is not exactly area-preserving as determined numerically. The n
cally determined map can be approximated by a map in the Engel’s form, which is~exactly!
area-preserving and remains so when truncated.
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APPENDIX

Here we give explicit expressions ofAnm and Bnm defined in Eq.~3! for n51,2,3 andm
50,1,. . . ,n. For n51, they are

A1052~a10b022b10a02!2~a01b112b01a11!, B1050,
~A1!

A115~a10b112b10a11!22~a01b202b01a20!, B1150.

For n52

A2053~a10b032b10a03!2~a01b122b01a12!, B2052~a11b022b11a02!,

A2152~a10b122b10a12!22~a01b212b01a21!, B2154~a20b022b20a02!, ~A2!

A225~a10b212b10a21!23~a01b302b01a30!, B2252~a20b112b20a11!.
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For n53

A3054~a10b042b10a04!2~a01b132b01a13!,

A3153~a10b132b10a13!22~a01b222b01a22!,

A3252~a10b222b10a22!23~a01b312b01a31!,

A335~a10b312b10a31!24~a01b402b01a40!,
~A3!

B3053~a11b032b11a03!12~a12b022b12a02!,

B3156~a20b032b20a03!12~a21b022b21a02!1~a11b122b11a12!,

B3256~a30b022b30a02!12~a20b122b20a12!1~a21b112b21a11!,

B3353~a30b112b30a11!12~a20b212b20a21!.

1For example,Universality in Chaos, edited by P. Cvitanovic~Adam Hilger Press, Bristol, 1984!; Hamiltonian Dynamical
Systems: A Reprint Selection, edited by R. S. MacKay and J. D. Meiss~Adam Hilger Press, London, 1987!.
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Statistical properties of eigenvectors in non-Hermitian
Gaussian random matrix ensembles

B. Mehliga) and J. T. Chalker
Theoretical Physics, University of Oxford, 1 Keble Road, OX1 3NP, United Kingdom

~Received 23 June 1999; accepted for publication 20 September 1999!

Statistical properties of eigenvectors in non-Hermitian random matrix ensembles
are discussed, with an emphasis on correlations between left and right eigenvectors.
Two approaches are described. One is an exact calculation for Ginibre’s ensemble,
in which each matrix element is an independent, identically distributed Gaussian
complex random variable. The other is a simpler calculation usingN21 as an
expansion parameter, whereN is the rank of the random matrix: this is applied to
Girko’s ensemble. Consequences of eigenvector correlations which may be of
physical importance in applications are also discussed. It is shown that eigenvalues
are much more sensitive to perturbations than in the corresponding Hermitian ran-
dom matrix ensembles. It is also shown that, in problems with time evolution
governed by a non-Hermitian random matrix, transients are controlled by eigen-
vector correlations. ©2000 American Institute of Physics.
@S0022-2488~00!05405-0#

I. INTRODUCTION

Hermitian random matrices have been very successfully used to model Hamiltonian ope
of closed quantum systems.1 In many cases, this has lead to a quantitative description of fea
such as spectral fluctuations in classically chaotic quantum systems and in disordered q
systems in the metallic regime.2 Within this approach it is also possible to describe the statist
properties of wave functions and matrix elements in such systems. Random matrices are
great importance in many other areas of physics in which they are not constrained
Hermitian.3,4 These include: the dynamics of neural networks,5 the quantum mechanics of ope
systems,6 classical diffusion in random media,7 and in population biology,8 and modeling the
statistical properties of flux lines in superconductors with columnar disorder.9–13 Recently, in
connection with these problems, spectral properties of non-Hermitian random matrices and
tors have been studied in great detail~see, for instance, Refs. 3,4,7,8,14–18!.

In the context of fluid dynamics, it is well known19–21 that systems governed by non
Hermitian evolution operators exhibit striking features. First, such systems are particularly
tive to perturbations. Second, these systems can exhibit pseudoresonances at which the
reacts strongly to an external perturbation although the excitation frequency is not close to
the frequencies of the internal modes. Third, non-Hermiticity can give rise to interesting tran
features in time evolution. Such features cannot be understood solely in terms of the spect
the evolution operator. While the eigenvalues of the evolution operator determine the long
behavior, transients and sensitivity to perturbations, in particular, are determined by the pro
of the corresponding eigenvectors.

In this paper, we quantify the statistical properties of the eigenvectors of random
Hermitian matrices and examine to what extent enhanced sensitivity to perturbations an
sients in time evolution are present in random systems described by non-Hermitian operator
as Fokker–Planck operators7 or projected Hamiltonians.6 We report on results for two ensemble
of random matrices, namely, Ginibre’s ensemble3 and Girko’s ensemble.4 There are several rea

a!Present address: Max-Planck-Institute for the physics of complex systems, No¨thnitzer Str. 38, 01187 Dresden, German
32330022-2488/2000/41(5)/3233/24/$17.00 © 2000 American Institute of Physics
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sons for studying these ensembles. First, characterizing the statistical properties of eigenve
these cases is by itself a problem of considerable interest: we show that left and right eigen
exhibit striking correlations, which depend strongly on where in the spectrum the correspo
eigenvalues lie. Second, non-Hermitian operators~such as the Fokker–Planck operator govern
classical diffusion in a random velocity field7! may be represented, in a finite system and in
appropriate basis, as random matrices. In general, their matrix elements exhibit certain str
and are much less uniform than the matrices from the ensembles we investigate. Never
experience of universality in random Hermitian problems gives reason to hope that random
ensembles will provide a widely applicable guide to behavior. Third, the high symmetry of G
bre’s ensemble~the matrix elements are independently Gaussian distributed! allows for an exact
calculation which we present in detail. Separately, we develop an alternative, more gener
simpler approach to calculations, based on a perturbative evaluation of ensemble-average
vents, usingN21 as the expansion parameter, whereN is the rank of the matrix. We apply this t
Girko’s ensemble, and also assess its validity in Ginibre’s ensemble by comparison with
results. Such approximate methods are particularly important because they are easily exte
the more general ensembles discussed in Refs. 7 and 8.

The remainder of this article is organized as follows. In Sec. II, we discuss the formulati
the problem: we define the ensembles of random non-Hermitian matrices studied in subs
sections, define the densities of eigenvector overlaps that will be the main objects of study
paper, and the corresponding Green functions. This section establishes the notation used
quently. In Sec. III, we show how to derive exact results for the statistical properties of eige
tors in Ginibre’s ensemble of non-Hermitian random matrices of arbitrary matrix dimensions
also discuss simplifications which arise in the largeN limit. In Sec. IV, we summarize our
approximate calculations, applying them to Girko’s ensemble. The eigenvector correlato
calculated in terms of two-point functions which are obtained within the self-consistent
approximation. This approach is appropriate in the limit of largeN, and under certain additiona
assumptions which are discussed in this section. As a special case, we check results fou
this method for Ginibre’s ensemble against the exact results of Sec. III. The results obtai
Secs. III and IV are summarized and discussed in Sec. V. In Sec. VI, we examine some
quences of eigenvector correlations that are likely to be important in physical applications.
are: the extreme sensitivity of eigenvalues to perturbations; time evolution governed by
Hermitian random matrices; and the nature of correlations between individual eigenvector
ponents in non-Hermitian random matrix ensembles. Finally, we summarize our conclusio
Sec. VII. An outline of some of these results has been published previously in a sh
communication.22

II. FORMULATION OF THE PROBLEM

A. Ensembles of non-Hermitian matrices

In the recent literature, a large number of different ensembles of non-Hermitian ra
matrices and operators have been discussed.5–16,3,4 In the following, we restrict ourselves to
Ginibre’s3 and Girko’s ensembles4 of non-Hermitian random matrices.

Ginibre introduced an ensemble of randomN3N matricesJ which have complex elementsJkl

with independently distributed real and imaginary partsJkl8 andJkl9 . The ensemble is defined b
the measure3 ~see also Ref. 1!

P~J!dJ} expS 2
1

s2 Tr@JJ†# D)
kl

dJkl8 dJkl9 . ~1!

Thus ^Jkl&50 and ^JklJ̄kl&5s2. Here ^...& denote ensemble averages and the overbar indic
complex conjugation. The parameters2 controls the density of eigenvalues: in the limitN→`,
the ensemble-averaged density~per unit area! is 1/ps2 within a disk in the complex plane
centered on the origin and of radiusANs. Two different conventions are in use for the value
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s2. The choices251 ~as for instance, in Refs. 1 and 3! results in a fixed density asN→`.
Alternatively, the choices25N21 results in a fixed support for the eigenvalue density
N→`.

Girko has considered the following generalization of Ginibre’s ensemble:

P~J!dJ}expS 2
1

s2

1

12t2 Tr@JJ†2t ReJJ# D)
k,l

dJkl8 dJkl9 , ~2!

with 21<t<1. In this ensemble, the nonzero cumulants are

^JklJ̄kl&5s2, ^JklJlk&5ts2. ~3!

For t50, Ginibre’s ensemble is recovered; the caset51 corresponds to Dyson’s Gaussian Un
tary Ensemble,1 while t521 describes an ensemble of complex antihermitian matrices.
eigenvalue distribution has been calculated for generalt in the largeN limit by Sommerset al. in
Ref. 5: the eigenvalues fill an ellipse in the complex plane with uniform density. Se
s25N21, the real and imaginary axes of the ellipse are 11t and 12t, respectively. The eigen
value distribution thus collapses onto the real axis fort51, and onto the imaginary axis fort
521, as it should.

B. Densities of left and right eigenvectors

The eigenvalues,la , and left and right eigenvectors,^Lau and uRa&, of the matrixJ satisfy

JuRa&5lauRa&,

^LauJ5la^Lau. ~4!

In general, the eigenvalues are complex numbersla5la81 ila9 . Except for a set of measure zer
they are nondegenerate. In this case, the eigenvectors form two complete, biorthogonal ba
with the normalization

^LauRb&5dab . ~5!

The closure relation is

(
a

uLa&^Rau51. ~6!

We denote the Hermitian conjugates of^Lau and uRb& by uLa& and ^Rbu, so that, for example,
uLa& satisfiesJ†uLa&5l̄auLa&. Left and right eigenvectors are generally not orthogonal amo
themselves. On the contrary, scalar products can vary significantly. This can have imp
physical implications. For instance, it is well known that nonorthogonality of eigenvectors
have an important bearing of time evolution in systems governed by non-normal operators21

In the following, we consider statistical properties of scalar products of eigenvectors i
sembles of random non-normal operators. We note that Eqs.~4! and ~5! allow for the following
scale transformation:

uRa&→cauRa&, ^Lau→^Lauca
21 ~7!

with arbitrary complex numbersca : we study only such combinations of eigenvectors as
invariant under this scale transformation. The simplest such combination of two eigenvec
trivial @see Eq.~5!#. We hence consider the combination

Oab5^LauLb&^RbuRa&. ~8!
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We calculate the mean value and discuss the distribution function of this overlap matrix. No
completeness implies the sum rule

(
a

Oab51. ~9!

It is convenient to define local averages of diagonal and off-diagonal elements ofOab ,

O~z!5K s2(
a

Oaad~z2la!L , ~10!

O~z1 ,z2!5K s2 (
aÞb

Oabd~z12la!d~z22lb!L . ~11!

Here,z5x1 iy is a complex number with real and imaginary partsx and y andd(z) denotes a
delta function in both coordinates. Correspondingly, the density of states and the two-point
tion are defined as

d~z!5K s2(
a

d~z2la!L , ~12!

R2~z1 ,z2!5K s2 (
aÞb

d~z12la!d~z22lb!L . ~13!

In order to characterize the overlap matrix using Green functions, it is convenient to introdu
density

D~z1 ,z2!5K s2(
a,b

Oabd~z12la!d~z22lb!L , ~14!

which can be expressed in terms ofO(z1) andO(z1 ,z2) as

D~z1 ,z2!5O~z1!d~z12z2!1O~z1 ,z2!. ~15!

Thus, information on the diagonal overlap matrix elements may be extracted from the singul
of D(z1 ,z2). The smooth part conveys information on the off-diagonal overlap matrix elem

Finally, we note that the sum rule~9! implies the constraint for the densityD(z1 ,z2)

E d2z2D~z1 ,z2!5d~z1!, ~16!

whered(z1) is the density of states@Eq. ~12!#.

C. Green functions and spectral densities

We shall make use of the fact that the densitiesd(z) andD(z1 ,z2) may be expressed in term
of ensemble averages of resolvents (z2J)21 and products of resolvents (z12J)21( z̄22J†)21.
The density of statesd(z), for example, by means of the relation

d~z!5
1

p

]

] z̄

1

z
~17!

may be expressed as7,15
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d~z!5
s2

p

]

] z̄
^Tr@~z2J!21#&. ~18!

In Eqs.~17! and ~18!,

]

] z̄
5

1

2 S ]

]x
1 i

]

]yD . ~19!

Equation~17! replaces the relationd(E)5p21 Im(E2i01)21 which is applicable in problems fo
which the Green functions are analytic in the upper and lower complex half-planes. Here,
not the case.

Similarly, the densityD(z1 ,z2) can be obtained from a two-point function

D~z1 ,z2!5
s2

p2

]

] z̄1

]

]z2
^Tr@~z12J!21~ z̄22J†!21#&. ~20!

This is most easily seen from the spectral representation of the resolvent:

~z2J!215SauRa&~z2la!21^Lau.

We show in Sec. IV how the averages in Eqs.~18! and~20! can be calculated perturbatively, usin
an expansion in powers ofN21.

III. GINIBRE’S ENSEMBLE

As pointed out in the introduction, Ginibre’s ensemble is a special case of Girko’s fami
ensembles of non-Hermitian matrices. It is obtained by settingt50 in Eq. ~2! and is thus the
ensemble of complex matrices with independent, Gaussian distributed elements. In this
case, we are able to provide an exact calculation of the eigenvector correlators introduced
II.

A. Density-of-states and eigenvalue correlations

Eigenvalue correlations for the ensemble~1! were first studied by Ginibre.3 The joint prob-
ability distribution of the eigenvalues is

PN~l1 ,...,lN!5CN )
m,n

ulm2lnu2 expS 2
1

s2 (
m

ulmu2D ~21!

with normalizationCN5(N!P j 50
N21p j !s2 j 12)21. The eigenvalue density and the two-point fun

tion d(z) and R2(z1 ,z2) @Eqs. ~12!, ~13!#, may be calculated by averagingd(z2l1) and
(N21)d(z12l1)d(z22l2) with the weightPN . In the following, we demonstrate briefly a wa
of performing the correspondingl-integrals which can be readily generalized to deal with
integrals that arise in the calculation of the eigenvector correlations~Sec. III B 4!. Making use of
the fact that

PN~l1 ,...,lN!5~pN!s2N!21 expS 2
ul1u2

s2 D )
m52

N

ul12lmu2PN21~l2 ,...,lN!, ~22!

we have

d~z!5Ns2~pN!s2N!21 expS 2
uzu2

s2 D E d2l2 ...d2lNPN21~l2 ,...,lN! )
m52

N

uz2lmu2. ~23!

This can be written as
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d~z!5Ns2~pN!s2!21 expS 2
uzu2

s2 DdetF d00 d01 0

d10 �

�

dN23N22

0 dN22N23 dN22N22

G ~24!

with di j 5(p j !s2 j 14)21*d2ll̄ il j uz2lu2 exp(2s22ulu2). Denoting the (N21)3(N21) deter-
minant in Eq.~24! by DN21 , we derive the recursion relation

Dk115~s22uzu21k11!Dk2s22uzu2kDk21 . ~25!

Using D1511s22uzu2 andD25212s22uzu21s24uzu4, we thus obtain

d~z!5p21 expS 2
uzu2

s2 D (
l 50

N21 uzu2l

l !s2l ~26!

which corresponds to Eq.~51.1.32! in Ref. 1. In the limit of largeN, with s25N21, the density
of states is

d~z!5H p21 for uzu,1,

0 otherwise.
~27!

Similarly, we obtain for the two-point function

R2~z1 ,z2!5Ns2~p2N!s6!21uz12z2u2 exp~2s22uz1u22s22uz2u2!

3det3
f 00 f 01 f 02 0

f 10 f 11 �

f 20

� f N25N23

f N24N24 f N24N23

0 f N23N25 f N23N24 f N23N23

4 ~28!

with

f i j 5~p~ j 11!!s2 j 16!21E d2ll̄ il j uz12lu2uz22lu2 expS 2
ulu2

s2 D . ~29!

As before, we derive a recursion relation for the (N22)3(N22) determinant in Eq.~28!. This
recursion relation simplifies considerably whenz250. Denoting the determinant in Eq.~28! by
FN22 , we have withz15z

Fk115~s22uzu21k12!Fk2s22uzu2~k11!Fk21 . ~30!

In this way, we obtain, withF1521s22uzu2 andF25613s22uzu21s24uzu4

R2~z,0!52
1

p2s2 expS 2
uzu2

s2 D S 12 (
l 50

N21 uzu2l

l !s2l D ~31!

which ~for s251! is equivalent to~15.1.30! in Ref. 1 withn52 andz250. Moreover, in the limit
of large N, with s25N21, one finds that forz1Þz2 and uz1u,uz2u,1, the two-point function is
constant1
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N21R2~z1 ,z2!5H p22 for z1Þz2 and uz1u,uz2u,1,

0 otherwise.
~32!

B. Eigenvector correlations

In this section, we show how to obtain expressions for correlations of eigenvectors in
bre’s ensemble. We start from~10! and ~11!, perform calculations for generals2 but sets2

5N21 in the final results@see Eqs.~68! and ~73! below#.

1. Change of basis

Since the fluctuations of the eigenvectors and those of the eigenvalues are correlate
convenient to parameterize the matrixJ following Ref. 23, using a unitary transformationU to
bring it into upper triangular form,

T5U†JU5S l1 T12 ¯ T1N

0 l2 ¯ T2N

] ]

0 lN

D . ~33!

The ensemble requires 2N2 coordinates. Of these, 2N are given by real and imaginary parts of th
eigenvalueslk , and N(N21) by real and imaginary parts of the matrix elementsTkl . The
remainingN(N21) parametersHkl are as described by Mehta.23 The Jacobian of this transfor
mation is proportional toPk, l ulk2l l u2 and thus depends onl1 ,...,lN only. Note also that the
eigenvector correlatorOab is invariant under the unitary transformationU. In this section,̂ Lmu
and uRn& will denote left and right eigenvectors in the new basis. Thus,TuR1&5l1uR1& and
uR1&5(1,0,...,0)T. In keeping with Eq.~5!, let ^L1u5(1,b2 ,...,bN). The coefficientsbl can be
determined by recursion: From̂L1uT5l1T one has, withb151 and forp.1,

bp5
1

l12lp
(
q51

p21

bqTqp . ~34!

The solution of this recursion relation is

b151,

b25
T12

l12l2
,

b35
T13

l12l3
1

T12T23

~l12l2!~l12l3!
, ~35!

b45
T14

l12l4
1

T13T34

~l12l3!~l12l4!
1

T12T24

~l12l2!~l12l4!
1

T12T23T34

~l12l2!~l12l3!~l12l4!
,

]

Equation~35! provides an explicit expression for the correlator

O115(
l 51

N

ubl u2 ~36!
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in terms of the eigenvalueslk and the matrix elementsTkl for k, l .
To calculate off-diagonal correlators one needs, in addition, the eigenvectors^L2u and uR2&.

Let uR2&5(c,1,0,...,0)T and, in keeping with Eq.~5!, ^L2u5(0,1,d3 ,...,dN). Equation~5! implies
that c52b2 . Then^L2uT5l2T gives, withd150 andd251,

dp5
1

l22lp
(
q51

p21

dqTqp . ~37!

This recursion relation is solved in the same way as~34! and

O1252b̄2(
l 51

N

d̄lbl ~38!

provides a corresponding expression forO12 in terms of the eigenvaluesl l and the matrix ele-
mentsTkl(k, l ).

2. Integration on T kl

It was shown in the previous section how the correlatorsO11 andO12 may be expressed in
terms of the eigenvalueslk and the matrix elementsTkl(k, l ). The Jacobian depends only o
l1 ,...,lN . In calculating averages of the type~10! and ~11!, the N(N21) parametersHkl men-
tioned in Sec. III B 1 can thus be integrated out and only the integrals overTkl for k, l and over
lk for k51,...,N remain. These have the form

E )
k

d2lk)
k, l

ulk2l l u2)
k, l

d2Tkl¯ expS 2
1

s2 (
k

ulku22
1

s2 (
k, l

uTklu2D . ~39!

The integrals on all the eigenvalues will be discussed in the next section. In the present sect
show how to perform the integrals overTkl . To this end the notation̂̄ &T is introduced, denoting
a normalized integral on allTkl with weight exp(2s22Sk,luTklu2). Consider first the averag
^O11&T . Let

Sl5 (
p51

l

^ubpu2&T ~40!

so thatS151 andSN5^O11&T . Then from Eq.~34!

^ubl u2&T5
s2

ul12l l u2 Sl 21 , ~41!

and hence

Sl5S 11
s2

ul12l l u2DSl 21 . ~42!

Together withS151 this implies

^O11&T5)
l 52

N S 11
s2

ul l2l l u2
D . ~43!

Consider now the average^O12&T . Let
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Sl85K T̄12(
k51

l

bkd̄kL
T

~44!

so thatS1850, S285s2/(l12l2) and ^O12&T52SN8 /(l̄12l̄2). Now

Sl 118 2Sl85^T̄12bl 11d̄l 11&T5K T̄12F 1

l12l l 11
(
q51

l

blTql11GF 1

l̄22l̄ l 11

(
k51

l

d̄kT̄klG L
T

5
s2

~l12l l 11!~ l̄22l̄ l 11!
Sl8 . ~45!

This implies

^O12&T52
s2

ul12l2u2 )l 53

N S 11
s2

~l12l l !~ l̄22l̄ l !
D . ~46!

Equations~43! and~46! represent the averages ofO11 andO12 with respect to the coordinatesTkl .
The remaining integrals are those overlk . Using Eqs.~43! and ~46! one has

O~z1!5Ns2K d~z12l1!)
l 52

N S 11
s2

ul12l l u2D L
P

~47!

and

O~z1 ,z2!52N~N21!s2K d~z12l1!d~z22l2!
s2

ul12l2u2
)
l 53

N S 11
s2

~l12l l !~ l̄22l̄ l !
D L

P

,

~48!

where^¯&P is an average with the weight~21!.

3. The case N Ä2

The caseN52 is particularly simple. We find

O~z!5
1

p S 21
uzu2

s2 DexpS 2
uzu2

s2 D ~49!

and

O~z1 ,z2!52
1

s2p2 expS 2
uz1u2

s2 2
uz2u2

s2 D . ~50!

These expressions are useful as simple checks of results for arbitrary values ofN. Of more general
interest, the distribution ofOaa is, from Eqs.~34! and ~36!

P~Oaa!54
Q~Oaa21!

~2Oaa21!3 , ~51!

whereQ(x)51 for x.0 and zero otherwise. This gives

^Oaa&53/2 ~52!
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which is consistent with~49! integrated overz. Note that the second and higher moments ofOaa

diverge. We argue in Sec. V A 2 that the tail of the distribution ofOaa at largeOaa has the same
form for all N>2.

4. Calculation of the eigenvalue averages

In this section, we show how to evaluate the remaining integrals in~47! and~48!. They can be
performed in the same way as those in Sec. III A. In analogy with Eq.~24!, one has

O~z!5Ns2~pN!s2!21 expS 2
uzu2

s2 DdetF g00 g01 0

g10 �

�

gN23N22

0 gN22N23 gN22N22

G ~53!

with gi j 5(p j !s2 j 14)21*d2ll̄ il j (s21uz2lu2)exp(2s22ulu2). Equation ~53! provides an ex-
plicit expression forO(z) for generalN. The determinant can be easily evaluated numerically
is shown in Sec. V. Forz50, the (N21)3(N21) determinant in Eq.~24! is simply diagonal.
Denoting it byGN21 we haveGk115(k12)Gk and thus

O~z!uz505
N

p
, ~54!

independent ofs2. For N52 this expression givesO(0)52/p, consistent with Eq.~49!. An
expression forO(z1 ,z2) can be obtained in analogy with~28!:

O~z1 ,z2!52Ns2~p2N!s4!21expS 2
uz1u2

s2 2
uz2u2

s2 D

3det3
h00 h01 h02 0

h10 h11 �

h20

� hN25N23

hN24N24 hN24N23

0 hN23N25 hN23N24 hN23N23

4 ~55!

with

hi j 5~p~ j 11!!s2 j 16!21E d2ll̄ il j@ uz12lu2uz22lu21s2~ z̄12l̄ !~z22l!#expS 2
ulu2

s2 D .

~56!

For z250 andz15z, and denoting the determinant in~55! by HN22 , we obtain the recursion
relation

Hk115~s22uzu21k13!Hk2s22uzu2~k12!Hk21 . ~57!

With H1531s22uzu2 andH251214s22uzu21s24uzu4 this yields

O~z,0!52Ns2p22 expS 2
uzu2

s2 D 1

uzu4 (
l 52

N uzu2l

l !s2l . ~58!
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For N52, this givesO(z,0)52(sp)22 exp(2s22uzu2), which is consistent with~50!. An addi-
tional check is provided by the fact that Eqs.~54! and~58! obey the sum rule~16!. In the limit of
N large, withs25N21, we obtain, forzÞ0,

O~z,0!52
1

p2uzu4
~59!

for uzu,1 and zero otherwise. In order to exhibit the behavior of Eq.~58! near the origin, for
s25N21 and in the largeN limit, we write v5N1/2z; for uvu!N1/2, we then have

N22O~z,0!52
1

p2uvu4 @12~11uvu2!e2uvu2#. ~60!

Equation~60! displays the way in which the result~59! is regularized asuzu→0.

5. Simplified calculation of the eigenvalue averages for N large

The main results of Sec. III B 4 are the determinantal expressions Eqs.~53! and~55!, provid-
ing exact results for the eigenvector correlators~10! and ~11!. In the present section, we provid
approximate expressions for~53! and~55! which, for s25N21, are valid in the limit ofN large,
with z1Þz2 anduz1u,uz2u,1. In the following, we shall need to indicate explicitly the rank of t
random matrix considered, and so we use the notation

ON~z!5K 1

N (
a

Oaad~z2la!L , ~61!

ON~z1 ,z2!5K 1

N (
aÞb

Oabd~z12la!d~z22lb!L , ~62!

in place ofO(z) andO(z1 ,z2) @Eqs.~10! and ~11!#. Consider firstON(z). We write

ON~z!.OM~0!V1 , ~63!

where

V15 )
l 5M11

N S 11
1

N

1

uz2l l u2D ~64!

and the product excludes theM eigenvaluesl l closest in the complex plane to the pointz, as
illustrated in Fig. 1. We believe that Eq.~63! is exact forN→` followed by M→`, because we
expect thatV1 has no fluctuations in that limit. This implies in particular that we can calculateV1

by evaluating the average of its logarithm. Starting from

logV15 (
l 5M11

N

logS 11
1

Nuz2l l u2D ~65!

and expanding the logarithm on the right side, we have

logV15
1

N (
l 5M11

N
1

uz2l l u2
5E

D
d2ld~l!

1

uz2lu2
, ~66!

where in the largeN limit, d(z)5p21 for uzu,1 and d(z)50 otherwise. The domainD of
integration excludes a disk of radius% with centered onz. Since this disk should containM
eigenvalues,%25M /N. Thus, we obtain in the largeN limit
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V15%22~12uzu2!. ~67!

Making use of the fact thatOM(0)5M /p @see Eq.~54!#, and using Eq.~63! we thus obtain

O~z!.
N

p
~12uz2!. ~68!

The quantityON(z1 ,z2) can be calculated in a similar fashion. To this end, we write

ON~z1 ,z2!5OM~z12z2,0!V2 , ~69!

whereV2 is

V25 )
l 5M11

N S 11
1

N

1

~z12l l !~ z̄22l̄ l !
D ~70!

and the product excludes theM eigenvalues closest toz2 , with 1!M!N. We first consider the
caseuz12z2u!1. Proceeding as above, we have

logV25E
D

d2ld~l!
1

~z12l!~ z̄22l̄ !
, ~71!

where again the domain of integrationD is the unit disk with a disk of radius% aroundz2 removed
as illustrated in Fig. 1. In the largeN limit, we obtain

V2.%22~12z1z̄2!. ~72!

As before, %25M /N. Using Eqs.~58! and ~69!, we find in the largeN limit and with v
[N1/2(z12z2),uvu!N1/2

N22O~z1 ,z2!.2
12z1z̄2

p2uvu4 ~12~11uvu2!e2uvu2!. ~73!

Second, we consider the caseuz12z2u@N21/2. In this case, we obtain, in the largeN limit, for
z1Þz2 and uz1u,uz2u,1,

FIG. 1. Eigenvalue distribution in the complex plane, as discussed in Sec. III B 5.
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O~z1 ,z2!52
1

p2

12z1z̄2

uz12z2u4 . ~74!

For uz1u,uz2u.1,O(z1 ,z2) vanishes in this limit.

IV. GIRKO’S ENSEMBLE

In this section, we present a general approach to calculating the averages of Eqs.~10! and~11!
perturbatively, using an expansion in powers ofN21. This will enable us to treat more gener
ensembles than the one considered in the previous section. As an example, expressions are
for the averages of Eqs.~10! and ~11! in the case of Girko’s ensemble, defined in Eq.~2!. The
expressions derived below are appropriate for largeN andz1Þz2 in ~11!. For t50, Eqs.~74! and
~68! are thus reproduced. In the following, we sets5N21/2: the results derived are correct in th
largeN limit.

A. Self-consistent Born approximation

The desired approximations for~10! and ~11! are obtained by calculating the average in E
~20! using Green functions. The corresponding Green functions are nonanalytic within the s
of the density of states which occupies a finite region in the complex plane. In general, per
tion theory yields only the analytic contribution, and in conventional problems singularities o
real axis are obtained by analytic continuation. In the present case one thus proceeds as fol
Hermitian 2N32N matrix H5H01H1 is introduced:7,10,14–16,24,25

H05S h

2h D , H15S A

A† D ~75!

with h.0, A5z2J and with inverse

G5S h@h21AA†#21 A@h21A†A#21

A†@h21AA†#21 2h@h21A†A#21D[S G11 G12

G21 G22
D . ~76!

Expanding the Green function as a power series inH1 , its ensemble average^G& can be written as

^G&5G01G0S^G&, ~77!

where G05H0
21 and S is a self-energy. Within the self-consistent Born approximation,

obtains7,15

S51N^ S ^G22& 2z1t^G21&

2 z̄1t^G12& ^G11&
D ~78!

as illustrated diagrammatically in Fig. 2. The self-consistent Born approximation is exact i
limit N→`. Forh→0, the self-consistent solution of Eqs.~77! and~78! is as follows:5,7,15one has
for all z ^G22&52^G11& and ^G12&5^Ḡ21&. In addition,^G11& is nonzero only inside the ellips
defined by@x/(11t)#21@y/(12t)#251

^G11&5HA12@x/~11t!#22@y/~12t!#2 inside the ellipse,

0 outside.
~79!

Furthermore,
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^G21&5H x/~11t!2 iy /~12t! inside the ellipse,

~z2Az224t!/2t outside.
~80!

Using Eq.~18!, the density of states is given by

d~z!5 lim
h→0

1

p

]

] z̄
^G21&. ~81!

It thus turns out that forN@1, the support ofd(z) is an ellipse in the complex plane5,7,15 with

d~z!5H p21~12t2!21 for @x/~11t!#21@y/~12t!#2,1,

0 otherwise.
~82!

In the limit t→1, the eigenvalue density of the Gaussian Unitary Ensemble is recovered
which d(z)5d(y)(2p)21A42x2. Alternatively, settingt50, the support of the density of state
in the complex plane becomes a disk of unit radius centered around the origin@compare Eq.~27!#.

B. Bethe–Salpeter equation

In the following,Gkl(z1 ,z̄1) is denoted byGkl(1) (k,l 51,2). An equation for the average o
the matrix product̂ G21(1)G12(2)&, accurate at leading order inN21, is shown diagrammatically
in Fig. 3. There are sixteen such equations for all products^Gi j (1)Gkl(2)& for i ,...,l 51,2. In
order to write these in matrix form, one defines

R~1,2!5^G~1! ^ Ḡ~2!&. ~83!

Similarly, R0(1,2) is the matrix̂ G(1)& ^ ^Ḡ(2)&. The matricesR andR0 are Hermitian. Defining
the vertex

FIG. 2. ~a! Diagrammatic notation for the ensemble~2!. ~b! Self-energyS in Eq. ~77!, to lowest order inN21, compare Eq.
~78!. Note that a summation over internal indices in closed loops incurs an additional factor ofN.
                                                                                                                



es

3247J. Math. Phys., Vol. 41, No. 5, May 2000 Statistical properties of eigenvectors in . . .

                    
G51N^ S 1

t

t

1

D , ~84!

the diagrammatic expression forR(1,2) can be written as

R~1,2!5R0~1,2!1R0~1,2!GR~1,2!. ~85!

Equation~86! has the solution

R~1,2!5@12R0~1,2!G#21R0~1,2!. ~86!

We first discuss the simplest case,t50. If z1 andz2 lie inside the support of the density of stat
~uz1u,1 anduz2u,1!,

R0~1,2!51N^ S A12z1z̄1 z1

z̄1 2A12z1z̄1
D ^ S A12z2z̄2 z̄2

z2 2A12z2z̄2
D . ~87!

In this case, from Eq.~86!

R~1,2!51N^ 1
A12z1z̄1A12z2z̄2

uz12z2u2
2

A12z1z̄1

z12z2

A12z1z̄1

z̄12 z̄2

12z1z̄12z2z̄21z1z̄2

uz12z2u2

2
A12z1z̄1

z̄12 z̄2

0 2
z12z2

z̄12 z̄2
2

A12z2z̄2

z̄12z2

A12z2z̄2

z12z2
2

z̄12 z̄2

z12z2
0

A12z1z̄1

z12z2

12z1z̄12z2z̄21 z̄1z2

uz12z2u2 2
A12z2z̄2

z12z2

A12z1z̄1

z̄12 z̄2

A12z1z̄1A12z2z̄2

uz12z2u2

2 .

~88!

Alternatively, if bothuz1u.1 anduz2u.1, we obtain

FIG. 3. Equation for the matrix product^G21(1)G12(2)&. The diagrammatic rules are as in Fig. 2.
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R~1,2!51N^S 1

z̄1z221

1

z̄1z̄2

1

z1z2

1

z1z̄221

D . ~89!

The general case,tÞ0, is dealt with as follows. We define a transformation

z→w5
z2t z̄

12t2 ~90!

which maps the support of the density of states in thez plane onto the unit disk in thew plane. For
z1 andz2 inside the support of the density of states, one hasuw1u,1,uw2u,1 and

R0~1,2!51N^ S A12w1w̄1 w1

w̄1 2A12w1w̄1
D ^ S A12w2w̄2 w̄2

w2 2A12w2w̄2
D . ~91!

The resulting matrixR(1,2) is more complicated than Eq.~87!. For the element̂G21(1)G12(2)&
in the caseuw1u,1 anduw2u,1, we find

^G21~1!G12~2!&5
~12t!21~11t2!w̄1w22w1w̄12w2w̄21t~w̄1w̄21w1w22w̄1

22w2
2!

uw12w21t~w̄12w̄2!u2
.

~92!

C. Calculation of the density D„z1 ,z2…

The densityD(z1 ,z2) can be expressed in terms of Green functions, from Eq.~20!, as

D~z1 ,z2!5 lim
h→0

1

p2

]

] z̄1

]

]z2
^G21~1!G12~2!&. ~93!

We find from Eq.~92!, for uz1u,uz2u within the ellipse, that

D~z1 ,z2!52
~12t!2

p2

~12t2!22~11t2!z1z̄21t~z1
21 z̄2

2!

uz12z2u4 . ~94!

For z1 andz2 outside the ellipse,D(z1 ,z2) vanishes.
As a check it can be shown explicitly thatD(z1 ,z2) obeys the sum rule~16!. Using Green’s

theorem, we have

E d2z2D~z1 ,z2!5
1

p

]

] z̄1

1

2p i R dz2^G21~1!G12~2!& ~95!

where the contour integral is around the ellipse. By means of the transformation~90!, this contour
may be mapped into the unit circle in thew plane, giving
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E d2z2D~z1 ,z2!5
1

p

1

12t2 S ]

]w̄1
2t

]

]w1
D 1

2p i R
uw2u51

~dw21tdw̄2!^G21~1!G12~2!&

5
1

p

1

12t2 ~96!

for uw1u,1 and zero otherwise, as expected from Eq.~82!.
As a final check, we observe that witht50, Eq. ~94! implies

O~z1 ,z2!52
1

p2

12z1z̄2

uz12z2u4 ~97!

for uz1u,uz2u,1 and zero otherwise. Thus, our previous result, Eq.~74!, is reproduced from~94!
for t50.

As pointed out in Sec. II B, the diagonal correlatorO(z) is given in terms of the singular par
of D(z1 ,z2), see Eq.~15!. This singular part is inaccessible perturbatively, in lowest orde
N21.26 In order to determineO(z) within the perturbative approach discussed in this section,
proceed as follows. For simplicity, consider the caset50. Integrating the densityD(z1 ,z2) over
a small disk aroundz2 , of radiush which is taken to be small

E
uz12z2u<h

d2z2D~z1 ,z2!5
1

2p i R
z12z25h

dz2

1

p

]

] z̄1
^G21~1!G12~2!&.

1

ph2 ~12uz1u2!,

~98!

providedz1 is sufficiently far away from the boundary. On the other hand, from Eq.~14! and for
h.N21/2, this is approximatelyO(z1), so that up to prefactors of orderO(1),

O~z1!.N~12uz1u2! ~99!

@compare Eq.~68!# and thusOaa;N. The sum rule~16! can be used to check the consistency
Eqs.~97! and ~99!.

V. SUMMARY AND DISCUSSION OF THE RESULTS

In the present section, we summarize and discuss the results obtained in the previo
sections. As in Sec. IV, the variances2 in Eqs.~1! and ~2! is taken to be 1/N.

A. Ginibre’s ensemble

1. Eigenvector correlators Eqs. (10) and (11)

In the case of Ginibre’s ensemble, we have been able to obtain exact expressions
eigenvector correlators, Eqs.~10! and~11!, in the form of determinants. In certain cases, we co
simplify these expressions further by recursion. Combining these results@compare Eqs.~54! and
~58!# with a continuum treatment~see Sec. III B 5!, in a way which we believe gives exact resu
for the largeN limit, we have foruz12z2uÞ0 anduz1u,uz2u,1

N21O~z1!5
1

p
~12uz1u2!, ~100!

O~z1 ,z2!52
1

p2

12z1z̄2

uz12z2u4 . ~101!

For uz1u,uz2u>1, both densities vanish asN→`. To display the form ofO(z1 ,z2) as uz12z2u
→0, it is necessary to expressz12z2 in units of the separation between adjacent eigenvalues.
z15(z11z2)/2, z25z12z2 , andv5ANz2 . For uz1u,1, v!AN and forN@1, Eq.~73! implies
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N22O~z1 ,z2!52
12uz1u2

p2uvu4 ~12~11uvu!2!e2uvu2). ~102!

We have examined the convergence towards these results for increasingN. In Fig. 4, we show
N21O(z) as a function ofz for N52, 4, 8, and 16, obtained by evaluating the determinant in~53!.
We also compare this with Eq.~100!. The exact results converge rapidly towards the approxim
result ~100! asN is increased, providedz is sufficiently far from the boundary of the support
O(z).

In Fig. 5, we showO(z1 ,z2) as a function ofz1 ~on the real axis! for z250.4 for N52, 4, 8,
and 16, obtained by evaluating the determinant in~55!. We compare this with Eq.~101!. Again,
the exact results converge rapidly towards the approximate expression~101! as N is increased,
providedz1 andz2 are not too close to each other or to the boundary of the support ofO(z1 ,z2).
Finally, in Fig. 6, we show the behavior ofN22O(z1 ,z2) for uz12z2u&N21/2, comparing the
approximate expression~102! with exact results obtained by evaluating the determinant in
~55!. The exact results converge very rapidly to the approximate expression asN is increased,
providedz1,1 anduvu!AN.

It is important to stress the dramatic difference between the behavior ofOab in Ginibre’s
ensemble and its behavior in the case of Hermitian matrices, for whichOab5dab . The fact that,
by contrast,Oaa;N in the non-Hermitian ensemble can be understood as the behavior w
would result if ^Lau and uRa& were independent random vectors, subject to the normalizatio

FIG. 4. N21O(z)5^N22SaOaad(z2l1)& as a function ofz5r expiw. The ensemble average is independent ofw.
Results forN52,4,8,16 are shown with Eq.~100! valid for largeN ~---!.

FIG. 5. O(z1 ,z2)5^N21SaÞbOabd(z22la)d(z22lb)& for z250.4 as a function ofz1 on the real axis. Results forN
52,4,8,16 are shown, together with Eq.~101! valid for largeN ~---!.
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Eq. ~5!: Choosing a basis and scaling in whichuRa&5(1,0,...,0)T, and assuming that̂Lau is a
random vector, biorthogonality requires^Lau5(1,b2 ,...,bN), where the coefficientsbj , for j
.1 are random andubj u is expected to be of orderO(1). Thus, ^Oaa&;N. Moreover, large
values for the diagonal elements of the matrixOab must be accompanied by some large~or many
small! off-diagonal elements, since the two are linked by the sum rule~9!. Indeed, Eq.~11! implies

Oab;O~z1 ,z2!/R2~z1 ,z2! ~103!

and hence, from Eq.~102!, Oab;2N if la andlb are neighboring eigenvalues in the compl
plane, so that~typically! v;1.

2. Distributions of O ab

Finally, it is interesting to ask about, not only the average behavior of the overlap matrix
also its fluctuations. In fact,Oab is typically large if the matrixJ has an eigenvalue which i
almost degenerate withla or lb , and as a result, the probability distribution ofOab has a
power-law tail extending to largeuOabu. To illustrate this, we considerN52, for which the
probability distribution,P(Oaa), of a diagonal element of the overlap matrix is given by Eq.~51!
and decays at largeOaa according toP(Oaa);Oaa

23. This implies in particular that the secon
and higher moments ofOaa diverge.

For N.2, the tail of the distributionP(Oaa) is determined by pairs of eigenvectors wi
closest eigenvalues, and we expect that for generalN, the tail of the distribution function decay
algebraically according to

P~Oaa!;Oaa
23. ~104!

In Fig. 7, we show the distributionP(Oaa) of the diagonal overlapsOaa in Ginibre’s en-
semble forN510. The tail of the distribution function is well described by Eq.~104!.

FIG. 6. Shows Eq.~102! for z150.4 as a function ofv for several values ofN ~---!. Also shown are the correspondin
exact results~—!.
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B. Girko’s ensemble

The main result of Sec. IV is Eq.~94!, giving O(z1 ,z2) provideduz12z2u is much greater than
the mean separation in the complex plane between neighboring eigenvalues. Fort50, Girko’s
ensemble reduces to Ginibre’s ensemble. Correspondingly, the perturbative result~94! reproduces,
for t50, uz12z2uÞ0, uz1u,uz2u,1 and largeN the expression~101!, which was obtained from the
exact results of Sec. III in the same limits. The singular contribution of the diagonal overlap m
elements toD(z1 ,z2) is only indirectly available within perturbation theory. Equation~99! shows
that the singular behavior extracted from the perturbative results is consistent with the
expressions@compare Eq.~100!#. On the other hand, Eq.~94! implies that for 12t!1, Oab

;O(z1 ,z2)/R2(z1 ,z2)}12t. Thus,Oab vanishes in the Hermitian limitt→1, as expected. The
same is true for the anti-Hermitian limit,t→21.

VI. IMPLICATIONS

Fluctuations of eigenvectors in non-Hermitian random matrix ensembles exhibit a num
striking features which are likely to be relevant in physical applications. As in the immedi
preceding sections, we take the variance in Eqs.~1! and ~2! to bes25N21.

A. Sensitivity to perturbations

First, as pointed out in the introduction, systems described by a non-Hermitian operat
particularly sensitive to perturbations. This sensitivity is determined by the diagonal matrix
ments ofOab . In order to illustrate this fact, it is convenient to consider a one-parameter fa
of matrices

J5J1 cosu1J2 sinu, ~105!

where the parameteru is real and the matricesJ1 andJ2 are drawn independently from the sam
ensemble. Then

^u]la /]uu2&5N21^Oaa&. ~106!

According to Eq.~100!, ^Oaa& is large, being of orderN. Thus,^u]la /]uu2& is of order unity.
This should be compared with the Hermitian case,27 where^u]la /]uu2& is of orderN21 in the
corresponding parametrization. Structural stability, on the other hand, requires that the lev
locities tend to zero as the boundary of the support of the density of states is approached: th
must remain unchanged asu varies, since the perturbations merely takeJ from one realization of
the ensemble to another. The expression~100! for O(z) shows that this is indeed the case.

FIG. 7. A histogram ofP(Oaa) of the diagonal overlaps as a function ofOaa /N in Ginibre’s ensemble forN510 ~—!.
Also shown is the theoretical estimate for the tail of the distribution~---!.
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B. Time evolution

Systems governed by a non-Hermitian evolution operator may exhibit transient features
time dependence of correlation functions which are controlled by the type of correlations be
left and right eigenvectors that we have studied. Consider, for example, an evolution equa
the form

]

]t
uut&5~J21!uut& ~107!

with J drawn from Ginibre’s ensemble. We useJ21 rather thanJ in Eq. ~107! for convenience,
to suppress exponential growth. This corresponds to shifting the support of the density of sta
unity along the negative real axis, so that all~except a vanishing fraction! of the eigenvalues have
negative real parts. Then,

uut&5(
a

uRa& f t~la!^Lauu0&, ~108!

with f t(l)5exp@(l21)t#. Ensemble averaging witĥu0uu0&51 yields

^^utuut&&5K 1

N (
ab

Oab f t~la! f̄ t~lb!L . ~109!

Thus, properties of the matrixOab directly influence time evolution. Equation~109! can be
obtained as the double Laplace transform of the density~14!, with respect toz1 andz2 ,

^^utuut&&5E d2z1d2z2e~z11 z̄222!tD~z1 ,z2!. ~110!

The diagonal and nondiagonal contributions toD(z1 ,z2) yield large contributions to Eq.~110!
which almost cancel. It is thus convenient to evaluate the double Laplace transform in~110! by
contour integration,

^^utuut&&5
1

~2p!2 R
uz1u51

dz1 R
uz2u51

dz̄2e~z11 z̄222!t^G21~1!G12~2!&. ~111!

In this case, one obtains for largeN and for t!AN,

^^utuut&&5e22tI 0~2t ! ~112!

which, for 1!t!AN, simplifies to

;
1

A4pt
. ~113!

This behavior should be compared with the much faster decay that would result from the
spectrum if the eigenvectors were orthogonal. In the same regime, the replacementOab→dab

transforms Eq.~109! into

^^utuut&&5K 1

N (
a

u f t~la!u2L ~114!

and thus
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^^utuut&&5t21e22tI 1~2t !;
1

A4pt3
. ~115!

Thus, eigenvector correlations may be as significant as eigenvalue distributions in deter
evolution at intermediate times, a fact of established importance in hydrodynamic sta
theory.19,20

The more general case of Girko’s ensemble~2! can also be treated in this way. Mapping th
corresponding contour integrals to thew plane by means of~90!, we obtain

^^utuut&&5e22~11t!t$I 0@2~11t!t#1tI 2@2~11t!t#%. ~116!

Here, the support of the spectrum was shifted by 11t along the negative real axis. The limitin
cases of Girko’s ensemble,t→61, are easily understood: In the anti-Hermitian case, fot
521, one has simplŷ ^utuut&&51 because all eigenvalues have vanishing real parts. In
Gaussian unitary ensemble, fort51, on the other hand, for largeN, d(E)5(2p)21A42E2 for
uEu<2 and thus

^^utuut&&5
1

2p E
22

2

dEA42E2e2~E22!t5~2t !21e24tI 1~4t !, ~117!

which corresponds to~116! for t51. For the three cases,t521, 0, and 1,̂ ^utuut&& is shown in
Fig. 8 ~full lines! together with the corresponding asymptotic expressions~dashed lines! valid for
t@1.

C. Correlations of eigenvector components

The space dependence of correlation functions of more general ensembles~such as the one
discussed in Refs. 7 and 8! can be modeled by correlation functions of the components of^Lau and
uRb&. Under a change of basis given by a unitary matrixU, the components of sayuRb& transform
according to ^ j uRb&→^ j uUuRb&5SmU jm^muRb&. Correspondingly, ^Lau i &→^LauU†u i &
5S l^Lau l &Ū il . Due to the invariance of the ensemble under unitary transformations, we can

^^Lau i &^ j uRb&&5(
ml

^U jmŪil &U^Lau l &^muRb&, ~118!

FIG. 8. Showŝ ^utuut&& as a function oft for Girko’s ensemble~—!, for t51, 0, and21. Shown are Eqs.~112! for t
50 and ~117! for t51. For t521, one has just̂ ^utuut&&51. Also shown are the asymptotic expressions valid fot
@1 ~---!, compare Eq.~113!.
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where^¯&U denotes an average over the unitary matricesU. With ^U jmŪil &U5N21d i j d lm this
implies immediatelŷ ^Lau i &^ j uRb&&5N21dabd i j . Consider now averages involving four eige
vector components. The only nonvanishing~and nontrivial! averages which are invariant under th
scale transformation~7! are

^^ i uRa&^Lau j &^ j uLb&^Rbu i &&5
1

N221
~d i j 1^Oab&!2

1

N

1

N221
~11d i j ^Oab&! ~119!

and

^^ i uRa&^Lau i &^ j uLb&^Rbu j &&5
1

N221
~11d i j ^Oab&!2

1

N

1

N221
~d i j 1^Oab&!. ~120!

Summing Eqs.~119! and ~120! over i and j, one obtainŝ Oab& and unity, respectively, as ex
pected. It should be noted that the dependence oni, j anda,b does not necessarily factorize. Th
is likely to be of importance in problems with spatial structure. The above considerations
that interesting space dependence of correlation functions may arise from non-Hermiticity.

VII. CONCLUSIONS

In this paper, we have analyzed correlations of eigenvectors in non-Hermitian random m
ensembles. Such correlations are of interest partly because they determine some aspec
behavior of systems represented by non-Hermitian operators: for example, such systems
ticularly sensitive to external perturbations and correlation functions may exhibit transient fe
in their time dependences. As emphasized in the introduction, there are numerous insta
which random non-Hermitian operators appear in the description of physical problems, a
hope that the results and methods summarized here will be of interest in a number of conte
particular, we have obtained the following results. We have characterized exactly the eigen
correlations in Ginibre’s ensemble of non-Hermitian random matrices. We have shown th
sensitivity of the eigenvalues with respect to external perturbations is larger by a factorN
~where N is the rank of the matrix! than the equivalent for Dyson’s ensembles of Hermit
matrices. Moreover, we have shown that eigenvectors associated with two different eigen
exhibit strong correlations which decrease algebraically with increasing separation betwe
eigenvalues in the complex plane. We have also shown that the probability distribution funct
eigenvector overlaps has algebraic tails. This implies that fluctuations are large, in the sen
higher moments of the eigenvector overlaps diverge. In addition to exact calculations spec
Ginibre’s ensemble, an alternative, perturbative approach has been developed and used t
corresponding results, in an approximate way, in Girko’s more general ensemble of non-Her
random matrices. In the appropriate cases and in the limit of largeN, the exact results are
reproduced.
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Orthogonal polynomial method and odd vertices
in matrix models
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We show how to use the method of orthogonal polynomials for integrating, in the
planar approximation, the partition function of one-matrix models with a potential
with even or odd vertices, or any combination of them. ©2000 American Insti-
tute of Physics.@S0022-2488~00!07005-5#

I. INTRODUCTION

The method of orthogonal polynomials is a powerful technique for the nonperturbative
gration of matrix models over one1 or more matrices2 in particular with even potential, i.e., with
vertices with an even number of legs. Indeed, with even potential, the calculation simplifies
because the integrals are well defined and, as we shall see, the number of equations ne
solve the problem is smaller. On the other hand the model with odd vertices, in particula
cubic vertices is more natural in a number of problems; e.g., in the dynamical triangulation m
of quantum gravity, where the random surface is given by a polyhedron with triangular face
order of the vertices appearing in the dual graphs is always three. Bre´zin et al.3 solved the problem
with cubic vertices using the saddle point technique. Bessis4 introduced an alternative method~the
orthogonal polynomial method! which to some extent appears more powerful, e.g., in dealing w
matrix model with more than one matrix variable.2 In particular, the orthogonal polynomia
method has been proven useful in the treatment of a cubic vertex two-matrix model5 in the context
of the Ising model on a random planar lattice.

The purpose of this paper is to show, in a systematic way, how to extend the ortho
polynomial method to arbitrary vertices, both even and odd and any combination of them
shall follow the article of Bessiset al.1 generalizing some aspects to the case of odd vertice
particular we shall recover, for the simplest case of cubic vertices, the result of Ref. 3 for sph
topology. Hopefully such a treatment can be extended to higher genus.

The use of mixed vertices, e.g., cubic plus quartic vertex, allows us to write a well defi
i.e., convergent, partition function by adding to the cubic interaction a quartic term which m
the action bounded from below and thus the integral giving the partition function well define
the end one can take the limit when the coupling constant of the quartic vertex goes to ze

We start from the partition function

ZN~g!5E dMe2trS~M !, ~1!

where the integration is over a Hermitian matrix of orderN and where the action is given i
general by

2S~M !52 1
2M

21V~M !,

a!Present address: Dipartimento di Fisica dell’Universita`, Milano 20133, Italy; Electronic mail:
eminguzz@mailbox.difi.unipi.it
32570022-2488/2000/41(5)/3257/11/$17.00 © 2000 American Institute of Physics
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V~M !5(
j 53

k
gj

jN ~ j /2!21 M j , with k even and Re~gk!,0.

In the following we shall use also the variablesḡi5gi /N( i /2)21. As we can see the potential i
composed of a combination of vertices, however, in order for it to be bounded from above
thus the integral be well defined, it is needed that the vertex with highest valence be even, a
the real part of the related coupling constant be negative. We are interested in the functionseh(g)

ln
ZN~g!

ZN~0!
5 (

h50

`

N222heh~g!, ~2!

where 222h is the Euler characteristic of the oriented ribbon graphs to be summed in
perturbative expansion of the functionseh(g). Indeed, denoting such graphs with capital lette
each functioneh admits the following expansion:1

eh~g!5 (
G connected of

genus h

) igi
v i ~G!

o~A~G!!
, ~3!

wherev i(G) is the number of vertices with valencei of the ribbon graphG ando(A(G)) is the
order of the group of automorphisms of the graph.6 Figures 1 and 2 show the simplest connec
ribbon graphs in the cubic and quartic case. Models with odd vertices will be regulariz
explained above, i.e., by adding a regulating even interaction which at the end is put to zer
shall see explicitly how this method works for the cubic vertex.

II. THE METHOD OF ORTHOGONAL POLYNOMIALS

A change of integration variables in~1! leads us to the integration over the eigenvaluesl i of
the diagonal matrixl

ZN~g!5E dMe2trS~M !5kHE )
i

dl iD
2~l!e2( iS~l i !, ~4!

whereD(l)5Pa,b(lb2la) is the Vandermonde determinant. We obtain the value of the c
stantkH using the results in Ref. 7:kH5p@(N22N)/2#/) j 51Nj ! . As we see the argument of th
integral is the product of the Vandermonde determinant squared and a factorizable function
eigenvalues, this feature makes the orthogonal polynomial method applicable. Let us introdu
measuredm(l)5dle2S(l), and the orthogonal polynomialsPn(l)

E
2`

1`

dm~l!Pn~l!Pm~l!5hndnm , ~5!

wherePn(l) is normalized by the condition that the coefficient of the term with highest de
equals 1

Pn~l!5ln1¯ .

The polynomialsPn(l) can be obtained in a constructing way, e.g., by the Gram–Schmid
thogonalization procedure from the monomials 1,l, l2,... . A simple analysis of this procedur
shows that the polynomialsPj have the well defined parity (21) j if the actionS(l) is even.
Every polynomial of degreen can be rewritten as a linear combination ofPm with m<n. The
Vandermonde determinant in~4! can be rewritten as
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D5detil i
j 21i5detiPj 21~l i !i5(

s
~21!p~s!)

i

N

Ps~ i !21~l i !,

where the second equality is due to the fact that adding to a column a linear combination
other columns does not change the determinant of the matrix; (21)p(s) stands for the sign of the
permutations. We can take advantage of the coupling of the orthogonal polynomials dueD2 in
~4! to obtain the partition function in terms of the norm of the orthogonal polynomials

ZN~g!5kH (
s1 ,s2

~21!p~s1!~21!p~s2!)
i

N E dm~l i !Ps1~ i !21~l i !Ps2~ i !21~l i !

5kH (
s1 ,s2

~21!p~s1!~21!p~s2!ds1s2)i
hs1~ i !215kHN!h0h1¯hN21 .

FIG. 1. Second- and fourth-order connected graphs with cubic vertex.
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Let us rewrite this expression in a different form. The following equation is valid:

lPn~l!5Pn11~l!1AnP~l!1RnPn21~l!, ~6!

where the terms with index less thann21 are absent because after multiplication byl they do not
reach the degreen and thus are orthogonal tolPn . For parity reasons whenS(l) is evenAn

vanishes. We shall refer to the preceding equation as thestep equationbecause its repeate
application enables us to calculatel i Pn(l) using an analogy with all possible staircasesi steps
long. This method will be developed in the following section. Since

FIG. 2. First- and second-order connected graphs with quartic vertex.
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hn115E dm~l!Pn11lPn~l!

5E dm~l!@Pn12~l!1An11Pn11~l!1Rn11Pn~l!#Pn~l!5Rn11hn ,

the partition function can be rewritten as

ZN~g!5kHN!h0
NR1

N21
¯RN22

2 RN21 ,

whereh05*dle2S(l). Before passing to the limit for largeN, we must compute

EN~g!5
1

N2 ln
ZN~g!

ZN~0!
5

1

N (
n51

N S 12
n

ND ln
Rn~g!

Rn~0!
1

1

N
ln

h0~g!

h0~0!
. ~7!

We can prove that the last term on the r.h.s.~right-hand-side! of ~7! is negligible using the same
perturbative method used for the partition function. The main difference is thath0(g) is integrated
over a scalar variable whereas partition functions such asZN(g) are integrated over a matri
variable. Expanding the action inh0 and recalling the proof of the topological expansion,1 we
notice the absence of the typical contribution due to the propagator deltas, namely a factoN for
each face. Finally we have to add a factorN2F which yields

ln
h0~g!

h0~0!
5 (

G connected

Nx~G!2F) igi
Vi

o~A~G!!
. ~8!

Sincex(G)2F52( i 53Vi( i /221)<21, we have

1

N
ln

h0~g!

h0~0!
5O~N22!,

which vanishes for largeN. Thus

e0~g!5 lim
N→`

EN~g!5 lim
N→`

1

N (
n51

N S 12
n

ND ln
Rn~g!

Rn~0!
. ~9!

III. THE NUMBER OF STAIRCASES

We shall need, in the following, the quantitiesbn
i defined by:

hnbn
i 5E dm~l!Pn~l!l i Pn21~l!. ~10!

We devote the present section to the calculation of the above integral. To computel i Pn21 we take
advantage of an analogy with all staircases ofi steps; where each step can go up, come down
stay at the same level. The analogy comes from a repeated application of the step equatio
the integration only the staircases, which end one step up, contribute. Each of them repre
product of factors: If a step is down from leveln to the leveln21 we add a factorRn , and if it
stays at the same leveln we add a factorAn . Figure 3 shows an example of this kind o
calculation.

Since every coefficientAj ,Rj , is a function of the indexj it would be difficult to hand the
final expression forbn

i ; luckily, as we shall see, the planar limit (N→`) will enable us to neglect
the differences among these quantities relative to different levels. In this limit we must com
the expression forbn

i supposing that each step down yields a factorR, and each step that stays
the same level yields a factorA. Thus the question is: How many are the staircases ofi steps
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whose final effect is to go up one step? Letj be the steps of typeA, then the otheri 2 j are divided
in p steps up andp21 steps down so thati 5 j 12p21. Without theA steps there are (p

2p21)
staircases of 2p21 steps whose final effect is to go up one step. Inside these staircases we
to insert the remainingj levels of typeA: There are 2p places where they can be inserted, and,
a fixed staircase, there are (j

2p1 j 21) choices. Finally the number of staircases ofi steps whose fina
effect is to go up one step is

(
p51

@~ i 11!/2#
i !

~ i 22p11!! p! ~p21!!
,

where@ # stands for the integer part, and, denoting byb̃ i the continuum value ofbn
i , we have

b̃ i5 (
p51

@~ i 11!/2#
i !

~ i 22p11!! p! ~p21!!
Ai 22p11Rp21, ~11!

where the tilde reminds the replacementAj→A, Rj→R. The values ofb̃ i for the first fewi are

b̃252A,

b̃352A213R,

b̃454A3112AR.

Analogously we define

hn11gn
i 5E dm~l!Pn11~l!l i Pn21~l!. ~12!

By the same technique used forbn
i we find

g̃ i5 (
p52

@ i /211#
i !

~ i 22p12!! p! ~p22!!
Ai 22p12Rp22. ~13!

Finally we define

FIG. 3. bn
i computed from the staircases.
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d̃ i5b̃ i2Rg̃ i 212Ab̃ i 215 (
p51

@~ i 11!/2#
~ i 21!!

~ i 22p11!! ~p21!! 2 Ai 22p11Rp21. ~14!

The values ofd̃ i for the first fewi are

d̃35A212R,

d̃45A316AR,

d̃55A4112A2R16R2.

IV. DERIVATION OF THE CONTINUUM EQUATIONS

In this section we shall examine the continuum limitN→`, which will allow us to write a
simple expression for the generating functione0(g) of the planar graphs. This will also justify th
replacementAj→A, Rj→R used in the previous section. Let us consider the identity

nhn5E dm~l!lPn8~l!Pn~l!5E dm~l!Pn8~l!@Pn11~l!1RnPn21~l!1AnPn~l!#

5RnE dle2S~l!Pn8~l!Pn21~l!

5RnE dle2S~l!S8~l!Pn~l!Pn21~l!

5S 12(
i 53

k

ḡibn
i 21D hnRn ,

where in the last but one equality we have integrated by parts and in the last equality we hav
the definition ofbn

i . Thus we have obtained the first recursion relation

n5S 12(
i 53

k

ḡibn
i 21DRn . ~15!

From this equation we infer in particular that:Rn(0)5n. We want to find a second recursio
relation which relates the coefficientsAn andRn . We observe that:

E dle2S~l!lPn~l!Pn118 ~l!5E dle2S~l!Pn~l!lS8~l!Pn11~l!

5S An1An112(
i 53

k

ḡibn11
i D hn11 .

But

E dle2S~l!lPn~l!Pn118 ~l!5nAnhn1RnE dle2S~l!Pn21~l!Pn118 ~l!

5nAnhn1RnE dle2S~l!Pn21~l!S8~l!Pn11~l!

5nAnhn2hn11Rn(
i 53

k

ḡign
i 21.
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As a result, the second recursion relation is

S An1An112(
i 53

k

ḡibn11
i DRn115nAn2Rn11Rn(

i 53

k

ḡign
i 21. ~16!

Now, we extract the planar case taking the limitN→`. Let us introduce the substitutions

n

N
→x,

Rn

N
→R~x!,

An

AN
→A~x!,

to obtain, taking into account the power ofN contained inḡi , the two continuum equations

x5R~x!S 12(
i 53

k

gi b̃
i 21~x!D , ~17!

A~x!5(
i 53

k

gi d̃
i~x!, ~18!

whereb̃ i(x) and d̃ i(x) are expressed in terms ofA(x) andR(x) as given by Eqs.~11! and ~14!.
One easily finds, from Eqs.~15! and ~16!, that the continuous solutionA(x), R(x), is related to
the coefficientsAn andRn by

Rn

N
5RS n

ND1O~N21!,

~19!
An

AN
5AS n

ND1O~N21!.

We are interested only in the continuous solution, indeed, recalling thatRn(0)5n, we have

Rn~g!

Rn~0!
5

Rn~g!

N S n

ND 21

,

and the functione0(g) can be rewritten, in the limitN→`, as

e0~g!5E
0

1

dx~12x!lnS R~x!

x D . ~20!

We have therefore reduced our problem to the one of obtainingR(x) ~or A(x)! from the system
of continuum equations@Eqs.~17! and ~18!#, and to perform the integral in Eq.~20!.

V. THE SOLUTION FOR THE CUBIC VERTEX

In order to understand the solution for the cubic vertex it is useful to recall the main fea
of the even vertex case. For even vertexA(x)50 and thus the first continuum equation forR(x)
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x5RS 12 (
p52

k/2

g2pS 2p21
p DRp21D , ~21!

suffices. The quartic case can be explicitly integrated1 to obtain

e0~g4!5
1

2
ln a1

1

24
~a21!~129!5 (

k51

`

~3g4!k
~2k21!!

k! ~k12!!
, ~22!

with

a5
12A1212g4

6g4
511 (

k51

`

~3g4!k2
~2k21!!

~k11!! ~k21!!
.

Recalling the formula for the topological expansion~3!, one has the interesting equation

(
G planar, connected,

with k quartic vertices

1

o~A~G!!
53k

~2k21!!

k! ~k12!!
~23!

that can be checked fork51 andk52 using the contents of Fig. 2. The radius of convergenc
1/12 andg4c51/12 is the critical point. Forg4→g4c one obtains the critical behavior

e0~g4!;~g4c2g4!5/2, ~24!

which is particularly interesting for 2D~two-dimensional!-gravity.
Coming now to the cubic vertex case, in order to cure the lower unboundedness of the

one can add a quartic term with negativeg4 , with the idea to take eventually the limitg4→0. On
the other hand it is clear that we can just takeg450 in all the expressions which turn out to b
well defined in that limit. We shall see that the integral~20! is well defined forR(x) given by the
solution of the continuum equations@Eqs.~17! and ~18!# with g450

x

R
5122g3A, 2g3R5A2g3A2. ~25!

In fact, let us introduce the new variables52g3A related tox by

2g3
2x1s~11s!~112s!50. ~26!

The functions(x)5s̄(g3
2x) is the solution of~26! which vanishes forx50; indeed wheng3

50 the potential has no longer odd vertices and thenA(x)50⇒s̄(0)50. Our functione0(g3)
may be rewritten, going over from the variablex to the variables and integrating by parts

e0~g3!5E
0

1

dx~12x!lnS R~x!

x D52E
0

s1
ds

~x~s!21!2

112s

52
1

2
ln~112s1!1

s1~216s113s1
2!

3~11s1!~112s1!2 ,

wheres15s̄(g3
2) is the solution of

2g3
21s~11s!~112s!50,

which vanishes ing350. s1 can be expressed as an expansion in powers ofg3 using Lagrange
theorem, obtaining
                                                                                                                



re

tic

ged

result
ices,

ial so
per we
, the
g all

e, and
hogo-
eded
vering
ng

lso for

e.g., in

3266 J. Math. Phys., Vol. 41, No. 5, May 2000 Ettore Minguzzi

                    
s152
1

4 (
k51

`

~8g3
2!k

GS 1

2
~3k21! D

G~k11!GS 1

2
~k11! D .

Except for some factors, due to different definitions, our results coincide with those of B´zin
et al.3 The power expansion series for the planar generating function is

e0~g3!5
1

2 (
k51

`

~8g3
2!k

G~3k/2!

G~k13!G~k/211!
, ~27!

and, recalling the topological expansion fore0(g3), we reach the formula

(
G planar, connected,

with 2k cubic vertices

1

o~A~G!!
58k

1

2

G~3k/2!

G~k13!G~k/211!
. ~28!

Such a formula can be checked fork51 andk52 using the contents of Fig. 1. The asympto
behavior of the expansion coefficient is

8k
1

2

G~3k/2!

G~k12!G~k/211!
;

e3

A6p
~12) !kk27/2. ~29!

The radius of convergence of the series is 1/A12) and g3c51/A12) is the critical point.
From the asymptotic behaviork27/2 we conclude that the critical exponent remains unchan
from the quartic case.

In 2D-gravity, where the continuum surfaces are replaced by poligonalizations, such a
is a check of the independence of the partition function, in the limit of infinite number of vert
of the kind of poligonalization one chooses to approximate the continuum surfaces.8

VI. CONCLUSIONS

In dealing with matrix models usually one encounters matrix models with even potent
the question naturally arises if there is some obstruction to the odd vertex case. In this pa
have shown that, even if, in the odd vertex case, the original partition function is ill defined
method of orthogonal polynomials can be often applied in its most naive form, that is ignorin
convergence problems. This is justified by adding a regulating even vertex to the odd on
taking eventually the limit for its coupling constant going to zero. We have extended the ort
nal polynomial method to any combination of odd and even vertices, writing the two ne
continuum equation. The explicit application to the cubic vertex case has been given, reco
the result of Bre´zin et al.3 An explicit integration of 314 or 5 vertex case appears feasible alo
these lines and would be a useful check of the universality of the critical behavior.

The general setting explained here can be readily developed, in the planar case, a
two-matrix models with coupling in the form of the Itzykson–Zuber formula,2,9 the cubic case
being already solved in Ref. 5. Further extension can be developed in higher genus cases,
the cubic case for the torus topology.
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Recent work by Lam on the decomposition of time-ordered products appearing in
the time-evolution operator in terms of sums of products of nested commutators is
endowed with a recursive algorithm. A sufficient condition for absolute conver-
gence is subsequently obtained. Connection with Magnus expansion is established.
© 2000 American Institute of Physics.@S0022-2488~00!01205-6#

I. INTRODUCTION

The initial value problem originated by the linear homogeneous ordinary differential equ
of first order

dZ

dt
5A~ t !Z, Z~0!5I ~1!

plays a pervasive role in many branches of mathematics, physics, and engineering with
range of different mathematical and physical meanings for the variableZ(t) involved, from scalar
to matrix or operator valued functions. Its disguise of simplicity hardly conceals the difficu
one faces when trying to solve it analytically in all but the scalar case. This fact, together w
ubiquity, probably explains the large number of proposed approximate solution techniques
the years.

The problem has a centennial history dating back at least to the work of Peano, by the
the XIXth century, and Baker, at the beginning of the XXth.1 In physics literature the interest i
the problem highly revived for instance with the advent of QED. The work of Dyson and Feyn
in the late 1940s and early 1950s is worth mentioning here.

On the mathematical side a turning point in the treatment of the operator linear differ
equation was the seminal contribution of Magnus.2 He proposed an exponential solutionZ(t)
5exp(V(t)), V(0)50 and provided an expansion, hereafter referred to as the Magnus expa

V~ t !5 (
k51

`

Vk~ t !, ~2!

whereVk(t) are given as multiple integrals of nested commutators.
At a variable pace since then, progress has been made by people from different fields

our point of view Magnus expansion can be considered as the kernel for the understanding
initial value problem we are talking about. Nevertheless, it is necessary to observe that in
instances what we consider important contributions have been made as completely un
works without even mentioning each other. Roughly speaking, and without any claim for
pleteness, developments have followed three main directions:

~1! Formulations of practical rules for calculation of higher order terms and further theore
analysis of the Magnus expansion. These include, among other topics, recurrence3–5 and
32680022-2488/2000/41(5)/3268/10/$17.00 © 2000 American Institute of Physics
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explicit6,7 expressions for the terms of the series and studies of the existence8 and
convergence6,9 problems, i.e., for whatA(t) and for how long~t range! is an exponential
solution valid and the series~2! convergent.

~2! Applications in a wide range of fields. Just to quote physical problems which have
treated from the Magnus expansion point of view we can mention: general time depe
problems in classical and quantum mechanics, some nuclear, atomic and molecular rea
nuclear magnetic resonance, infrared divergences in QED, and the solar neutrino pr
The interested reader can find a representative list of references to these topics in Re

~3! Use, in the field of numerical analysis of differential equations on manifolds, of Mag
expansion as a geometric integrator along the lines of the work pioneered by Iserle
No”rsett.6 It has been proved to furnish efficient and competitive algorithms.10

Continuing with this tradition, in a recent paper Lam11 presents some results for the expone
tial solution for the initial value problem~1! in terms of sums of products of integrals of tim
ordered commutators. Furthermore that paper opens a new perspective for applications in
directions in high energy physics.

In the present paper we propose to further elaborate on Lam’s results showing how the
the general outlook outlined in the paragraphs above. In Sec. II we schematically review
aspects of Magnus expansion which are relevant for this purpose. In Sec. III we endow
perturbation theory with a recursive generator. We dwell also on the convergence problem.
IV a new recursion for Magnus expansion is presented followed by an absolute conver
analysis.

II. THE MAGNUS EXPANSION

For the sake of definiteness throughout the paper we always refer to the quantum mec
time evolution operator. This represents no loss of generality of our considerations. So we r
~1! in the form

dU

dt
5H̃U, U~0!5I , ~3!

with H̃[H(t)/ i\ and H(t) the Hamiltonian of a quantum system. The usual treatment of
differential equation as an integral equation incorporating the initial condition leads to the D
expansion

U5I 1 (
n51

`

Pn , ~4!

wherePn50 at t50, and the time-ordered products

Pn5Pn~ t !5E
0

t

dt1¯E
0

tn21
dtnH̃1¯H̃n , H̃ i[H̃~ t i ! ~5!

provide us with the perturbative series representation ofU. Formally this is written as the time
ordered exponentialU(t)5P exp(*0

t H̃(t)dt). Just for bookkeeping purposes we could introduc
perturbation parameter in front ofH̃ or simply take as such 1/\, thenPn;(1/\)n.

The question we address in this section is about the possibility of expressingU for a time-
dependent Hamiltonian as a true exponential of an anti-Hermitian operator,U5expV. Magnus2

has shown that under certain conditions such an exponential representation ofU can be obtained.
The operatorV5V(t) is expressed as the series expansion in Eq.~2! with Vn50 at t50 and
againVn;(1/\)n. This is the so-called Magnus expansion~ME!. Substitution ofU5expV into
Eq. ~3! leads2,12 to the following highly nonlinear differential equation satisfied byV(t):
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V̇5 (
k50

`
Bk

k!
$Vk,H̃%. ~6!

The dot stands for time derivative andBk are Bernoulli numbers.13 The curly brackets denote
multiple commutator withV enteringk times,

$Vk,H̃%5@V,@¯@V,H̃#¯##, $V0,H̃%5H̃.

Another convenient way of expressing Eq.~6! is in terms of the adjoint operator adV(H̃)
[@V,H̃#, which leads to

V̇5
adV

exp~adV!21
H̃5(

j 50

`
Bj

j !
adV

j H̃, adV
0 H̃5H̃. ~7!

The problem of looking for a solution of the linear equation~3! becomes a nonlinear one whe
dealing with ME. Notwithstanding this deterioration an immediate benefit is reached when
ing up approximate solutions ofU. Truncation at any order of the Magnus series, i.e.,V.V [N]

[(n51
N Vn automatically yields a unitary approximation forU since for a hermitian Hamiltonian

H the operatorV [N] is anti-Hermitian. This is a property not shared by the truncation of
perturbative series~4!. The net effect of exponentiation is equivalent to an infinite resummatio
the perturbative series so as to restore the unitary character ofU. More generally, ifg is a Lie
algebra andH̃(t)Pg for tP@0,t# thenV(t)Pg andUPG, the Lie group associated withg. For
the sake of illustration we give the two first terms of the ME,

V15E
0

t

dt1H̃~ t1!, V25
1

2 E0

t

dt1E
0

t1
dt2@H̃~ t1!,H̃~ t2!#. ~8!

Four well separate aspects of ME have to be distinguished, namely,

~1! Existence ofV;
~2! Construction ofVn ;
~3! Convergence of the series(n51

` Vn ;
~4! Computation of expV[N].

We shall not be concerned here with the fourth item above. The appropriate treatment
question depends essentially on whetherV is either an operator or a finite dimension matrix. W
address the interested reader to the specialized literature on this subject.14 We shall concentrate
ourselves on items~1!–~3!. For the perturbative series in Eq.~4! the only relevant item is the
second one referred toPn , since convergence of the perturbation series~4! is guaranteed for any
finite time interval ifH̃(t) is a bounded operator.

A. Existence of V

In his original paper2 Magnus proved that the exponential representation of the time-evolu
operator exists for a sufficiently small interval oft. Whenever a couple of eigenvalues ofV, say
lk(t), l j (t), satisfies theMagnus conditionlk(t)2l j (t)52p i , thenV̇(t) becomes singular in
Eq. ~7! becauselk(t)2l j (t) are precisely the instantaneous eigenvalues of adV . This is a formal
result with no immediate application. From a quantitative point of view, it has been rec
proved8 that a solution of Eq.~6! does exist provided the following condition is fulfilled:

E
0

t

iH̃~s!i ds<
1

m E
0

p dx

21x~12cot~x!!
5

1.086869

m
,
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in terms of an operator normi•i which we require to satisfy the so-called submultiplicati
property,iABi<iAiiBi . That estimate stems from the following bounding for the basic com
tator:

i@V,H̃#i<2miViiH̃i , 0<m<1. ~9!

Without further knowledge of the operatorH̃ one can always at least takem51. But this bound
may be improved in certain cases. For example, forH̃ lying in the Lie algebrasu(2) one can take
m51/&. It is worth recalling that the question of the existence ofV is completely independent o
whether or not we are seekingV as a series expansion. We shall come back to this point in
II C.

B. Construction of Vn

Once the series in Eq.~2! is substituted into Eq.~6!, and the same powers of 1/\ are gathered,
the determination ofV̇n follows. It is straightforward to compute, say, from first to third order
hand.2,15 Afterwards computation becomes really more complicate. To the best of our know
there are five ways to proceed. Iserles and No”rsett6 follow an approach based on a diagramma
analysis in terms of binary trees to build up any order in the Magnus series. Prato and Lam16

use an algorithmic approach. For the purposes of the present work we are interested in re
methods.3–5 The so-calledcommutator approach3 is a generator for the time derivative ofVn . It
reads

V̇15H̃,

V̇n5 (
j 51

n21
Bj

j !
Sn

( j ) , n>2,

with the recurrence relation

Sn
( j )5 (

m51

n2 j

@Vm ,Sn2m
( j 21)#, 2< j <n21,

Sn
(1)5@Vn21 ,H̃#, Sn

(n21)5$V1
n21 ,H̃%.

After integration we reach the final result

V15E
0

t

H̃~t!dt,

Vn5 (
j 51

n21
Bj

j ! E0

t

Sn
( j )~t!dt, n>2.

Connection between Magnus series and Dyson perturbative series starts from the iden

(
j 51

`

V j5 lnS I 1(
j 51

`

Pj D ~10!

and provides another method for recurrently calculatingVn . As stated by Burum3,4

Vn5(
j 51

n
~21!n

j
Rn

( j ) , n>2, ~11!
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whereRn
( j ) may be obtained recursively from

Rn
( j )5 (

m51

n2 j 11

Rm
(1)Rn2m

( j 21) ,

Rn
(1)5Pn , Rn

(n)5P1
n .

C. Convergence of (nÄ1
` Vn

This is a question to be considered for both the finite- and infinite-dimensional case. O
we deal with operators in a free Lie algebra does this problem not enter.17 Different results on
convergence conditions of ME have been obtained in various settings.6,9,15Among them, the wider
range ensuring absolute convergence of ME stems from the commutator approach follow
some numerical work9

E
0

t

iH̃~s!i ds<
1.086869

m
. ~12!

It is a remarkable fact that both, existence and convergence, reported bounds do coincide
of referring to two quite separate problems.

If instead of using the commutator approach we resort to boundingVn via Eq. ~11!, then the
following poorer condition9,15 for absolute convergence of ME is obtained

E
0

t

iH̃~s!i ds, ln 250.693147. ~13!

The difference between these results,~12! and ~13!, originates in the fact that each of the tw
recurrences~Sn

( j ) andRn
( j )! loses accuracy in a different way in the course of the bounding of t

terms.
On the other hand absolute convergence of Dyson series~4! is established by noticing in Eq

~5!,

iPni,
1

n! S E
0

t

iH̃~s!idsD n

and consequently it converges absolutely for any finite value oft because

I 1 (
n51

`

Pn,expS E
0

t

iH̃~s!idsD .

III. DYSON SERIES IN TERMS OF TIME-ORDERED COMMUTATORS

Lam11 has recently developed a method to determine Dyson series in terms of nested m
commutators ofH̃. Actually the method applies to more elaborate time-ordered integrals thanPn ,
but we restrict ourselves to the simplest case of a single operator valued functionH̃(t). In the
sequel of this section we extend the study providing results on convergence and recursiv
eration.

According to Ref. 11 a perturbative expansion forU,

U5I 1 (
n51

`

Un , Un;~1/\!n ~14!

may be computed in terms of
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Un5( jn
(k)~m1 ,m2 ,...,mk!Cm1

Cm2
¯Cmk

,

where the sum is taken over allk, and allmi.0 such that( j 51
k mj5n. The coefficients read

jn
(k)~m1 ,m2 ,...,mk!5)

i 51

k S (
j 5 i

k

mj D 21

~15!

andCn is the time-ordered nested commutator,

Cn5E
0

t

dt1¯E
0

tn21
dtn@H̃1 ,@H̃2 ,...@H̃n21 ,H̃n#...##, H̃ i[H̃~ t i !.

Thus, Un may be obtained in that scheme as a sum of products of time-ordered integr
multiple nested commutators. We may interpret this result as a reminiscent of a theore
Dynkin which is often invoked in analyses of the Baker–Campbell–Hausdorff formula.18–21 The
theorem provides a simple algorithm to replace monomialsH̃1¯H̃n with nested commutators

@H̃1 ,@H̃2 ,...@H̃n21 ,H̃n#...## in this type of series.
Notice that, in spite of the similarity between Eqs.~4! and ~14!, Pn and Un are formally

different. Since these equations are both expansions in powers of 1/\ of the same operatorU one
could be tempted to conclude that the proved absolute convergence of(n51

` Pn for finite t ensures
that(n51

` Un is also absolutely convergent. However this is not a correct reasoning. An infini
terms have to be added and subtracted in expressing~4! in the form~14!. This reshuffle is allowed
provided absolute convergence is guaranteed. Every termPn is certainly present inUn but it is
only the absolute convergence of(n51

` (Un2Pn) which buttresses the convergence ofUn series.
So (n51

` Un has to be analyzed on its own. This is what we do next: to obtain a lower boun
the radius of convergence of theUn series by building up a recursive generator forUn .

A. Recursive generation of Un

Let us write

Un5 (
k51

n

Wn
(k) , ~16!

where

Wn
(k)5 (

m11¯1mk5n
jn

(k)~m1 ,m2 ,...,mk!Cm1
Cm2

¯Cmk
. ~17!

By regrouping terms

Wn
(k)5C1 (

m21¯1mk5n21
jn

(k)~1,m2 ,...,mk!Cm2
¯Cmk

1C2 (
m21¯1mk5n22

jn
(k)~2,m2 ,...,mk!Cm2

¯Cmk
¯1Cn2k11

3 (
m21¯1mk5k21

jn
(k)~n2k11,m2 ,...,mk!Cm2

¯Cmk
.

Now the formula in Eq.~15! allows us to write
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jn
(k)~s,m2 ,...,mk!5

1

n
jn2s

(k21)~m2 ,...,mk!, ~0,s,n2k!.

In particular,jn
(1)(n)51/n and Wn

(1)5jn
(1)(n)Cn5Cn /n. Therefore if we defineWn

(0)5dn,0 we
can rewriteWn

(k) as

Wn
(k)5

1

n (
s51

n2k11

sWs
(1)Wn2s

(k21) , ~1,k<n!, ~18!

which together with Eq.~16! yieldsUn recursively. Notice the similarity of this recursive gener
tor with that of Sec. II B.

B. Convergence of (nÄ1
` Un

Let us consider norms in Eqs.~16! and ~18!,

iUni<(
k51

n

iWn
(k)i<

1

n (
k51

n

(
s51

n2k11

siWs
(1)iiWn2s

(k21)i .

Furthermore we define the upper boundiH̃(t)i<k(t), with k(t) a scalar function, and denot
K(t)[*0

t k(t8) dt8. Then it is possible to bound the fundamental commutators as

iCni<~2m!n21E
0

t

dt1¯E
0

tn21
dtnk~ t1!¯k~ tn!5

~2m!n21

n!
Kn~ t !,

wherem is the bounding parameter introduced in Eq.~9!. This yields in Eq.~17!,

iWn
(s)i< (

m11¯1ms5n
jn

(s)~m1 ,m2 ,...,ms!iCm1
iiCm2

i¯iCms
i

< (
m11¯1ms5n

~2m!n2s

m1!m2!¯ms!
jn

(s)~m1 ,m2 ,...,ms!K
n~ t !,

which constitutes an upper bound of the type

iWn
(s)i<~2m!n2sf ~n,s!Kn~ t ! ~19!

for an appropriatef (n,s). This structure allows us to circumvent the explicit computation of
coefficientsjn

(s) . It suffices to substitute Eq.~19! into Eq. ~18! to show by induction

f ~n,s!5
1

n (
r 51

n2s11
1

r !
f ~n2r ,s21!, f ~1,1!51.

We conclude that

iUni<(
s51

n

~2m!n2sf ~n,s!Kn~ t !

and consequently absolute convergence of(n51
` Un follows when

2mK~ t ! lim
n→`

(s51
n11~2m!2sf ~n11,s!

(s51
n ~2m!2sf ~n,s!

,1.
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A numerical investigation of this condition for the most general casem51 provides us with

E
0

t

iH̃~s!i ds<K~ t !, 1
2

which is a sufficient condition for the absolute convergence ofUn series in the finite interval@0,t#,
excluding in passing that the series be asymptotic after all.

IV. OBTAINING MAGNUS EXPANSION FROM ˆUN‰

An interesting contribution in Ref. 11 is the exponential representation proposed forU starting
from theUn series,

K5 lnS I 1 (
n51

`

UnD 5 (
n51

`

Kn . ~20!

There, the first five termsKn are explicitly obtained. Now we shall readily establish a recurs
generator ofKn with the purpose of analyzing the convergence properties of the previous e
tion. It will then become clear that(Kn does match ME.

By paralleling Burum’s analysis quoted in Sec. II B we are led to

Kn5(
j 51

n
~21!n

j
Vn

( j ) , n>2, ~21!

whereVn
( j ) may be computed recursively from

Vn
( j )5 (

m51

n2 j 11

Vm
(1)Vn2m

( j 21) ,

Vn
(1)5Un , Vn

(n)5U1
n .

A direct study of convergence using this recursive generator proceeds as follows. Fro
~21!,

iKni<(
j 51

n
1

j
iVn

( j )i .

Besides,

iVn
( j )i<hn

( j )Kn,

with

hn
( j )5 (

m51

n2 j 11
2m21

m!
hn2m

( j 21) , h1
(1)51.

A numerical analysis as in Sec. III B indicates that absolute convergence of(n51
` Kn is guaranteed

when

E
0

t

iH̃~s!i ds<K~ t !, 1
2 ln~2!.

Some comments are in order about these results. Throughout all the paper we hav
involved with four series expansions for the evolution operatorU, I 1(n51

` Pn , I 1(n51
` Un ,
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exp((n51
` Vn), and exp((n51

` Kn). Whenever the series are dealt with exactly it is obvious that t
unique result isU(t). Under ordinary circumstances,U(t) evolves in a Lie group whent varies in
(2`,`). Nevertheless in practice we are always forced to make truncations. In the two first
~Pn andUn! this amounts to approximateU by sums of integrals of products of operators, i.e.,
elements of an associative algebra. In the latter two cases~Vn andKn! one has in the exponen
sums of integrals of commutators, i.e., the truncation keeps the approximation in a Lie algeb
our purposes here we conclude that in the common domain of convergence of the series in
it follows from Kn;(1/\)n that Kn5Vn , ;n.

V. CONCLUDING REMARKS

Magnus proposal of a true exponential solution for the operator linear initial value proble
the first order has been used with a moderate but constant profusion always since its first a
ance more than 50 years ago. From a historical point of view it seems interesting to notice th
of the original motivation for Magnus, as explicitly stated in his 1954 paper, was to contribu
the clarification of some mathematical aspects of the quantum theory of fields. It is pe
surprising that only very few11,20,22,23among the rather large number of papers directly or in
rectly using ME refer explicitly to quantum field theory. One of our aims has been to place in
more general scenario Lam’s contribution, which was presented from a high energy p
perspective.

However, before specific calculations along these lines be carried out some points hav
further clarified. In particular all quantum field theory applications involve integration ove
infinite time span and no results for this case are known about the convergence of the M
expansion. Our results presented here on recurrent generation and absolute convergenc
tended to be a contribution in that direction.

From a practical point of view two further considerations are worth doing. First, it is stil
open question the minimum number of commutators required at every order of ME. Th
important in evaluating the computing cost of applications. Second, it is well known that a nu
of different explicit expressions can be built up for every order in ME. This is so due to the J
identity for double commutators as wells as to the various possibilities to configure the lim
the multiple integrals. Altogether much freedom is left to calculate terms in the ME. The r
sentation given in Eq.~8! for the two first termsV1,V2, leaves no room to maneuver. The thi
order term already bears witness to this freedom. It is usually written down as

V35
1

6 E0

t

dt1E
0

t1
dt2E

0

t2
dt3$@H̃1 ,@H̃2 ,H̃3##1@@H̃1 ,H̃2#,H̃3#%.

Alternatively,

K35
1

3 E0

t

dt1E
0

t1
dt2E

0

t2
dt3@H̃1 ,@H̃2 ,H̃3##1

1

12F E
0

t

dt1E
0

t1
dt2@H̃1 ,H̃2#,E

0

t

dt1H̃1G .
Indeed it may be checked from the above two expressions thatV35K3 . As regards higher order
it is worth mentioning that an explicit expression forK4 may be written with two terms~albeit
integrals are not completely time-ordered!, whereas usual expressions ofV4, with time-ordered
integrals, involve three terms. More spectacular is the fifth order in the ME; whereas in Ref. 1V5

is written down with 22 terms~time-ordered exponentials!, K5 contains instead only six terms11

~with integrals not completely time-ordered!.
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Functions of linear operators: Parameter differentiation
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We derive a useful expression for the matrix elements@] f @A(t)#/]t# i j of the de-
rivative of a functionf @A(t)# of a diagonalizable linear operatorA(t) with respect
to the parametert at t0 . The functionf @A(t)# is supposed to be an operator acting
on the same space as the operatorA(t) which is assumed to have a nondegenerate,
pure point spectrum. We use the basis which diagonalizesA(t0), i.e., @A(t0# i j

5l id i j , and obtain @] f @A(t)#/]t u t5t0
# i j 5@]A/]t u t5t0

# i j $@ f (l j )2 f (l i)#/(l j

2l i)%. In addition to this, we show that further elaboration on the~not necessarily
simple! integral expressions given by Wilcox~who basically consideredf @A(t)# of
the exponential type! and generalized by Rajagopal@who extended Wilcox results
by considering f @A(t)# of the q-exponential type where expq(x)[@11(1
2q)x#1/(12q) with qPR; hence, exp1(x)5exp(x)# yields these same expressions.
Some of the lemmas first established by the above authors are easily recovered.
© 2000 American Institute of Physics.@S0022-2488~00!02205-2#

The quite ubiquitous necessity to have an expression of the parameter derivative of a g
function of a linear operator has stimulated many authors to develop various algorithms foc
on this problem. A special effort has addressed the calculation of the derivative of expon
functions of such an operator in terms of the derivative of the exponent. Most of the result
have been achieved provide the derivative as an integral expression,1,2 or by means of an integra
representation3 of the function in the complex plane. Such an elegant procedure is very use
prove mathematical properties but, in many cases, to calculate the remaining integrals is
easy task. Therefore, it is convenient to have explicit expressions of the matrices elements
relevant operators. The choice of an appropriate basis set considerably simplifies the calcu
indeed, once these elements are obtained, the expression in a different basis can readily b
lated. This is our purpose in the present work.

Theorem: Consider a family of bounded normal operatorsA(t) acting on a Hilbert space
each with a nondegenerate, pure point spectrum. Consider a valuet0 and a basis set such tha
A(t0) is diagonal, i.e.@A(t0)# i j 5l id i j . Assume that the matrix elements ofA(t), with respect to
this basis are differentiable as function oft at t0 . Let f @A(t)# be a smooth function of the operato
A(t); then its matrix elements are differentiable as function oft at t0 , and are given by

F ] f @A~ t !#

]t U
t5t0

G
i j

5Ai j8
f ~l j !2 f ~l i !

l j2l i
~ iÞ j !, ~1!

whereA8[]A(t)/]tu t5t0
.

a!Electronic mail: prato@mail.famaf.unc.edu.ar
b!Electronic mail: tsallis@cbpf.br
32780022-2488/2000/41(5)/3278/5/$17.00 © 2000 American Institute of Physics
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Proof: Since f @A(t)# commutes withA(t) we have

f @A~ t !#A~ t !5A~ t ! f @A~ t !#. ~2!

Differentiating with respect tot yields

] f @A~ t !#

]t
A~ t !1 f @A~ t !#

]A~ t !

]t
5

]A~ t !

]t
f @A~ t !#1A~ t !

] f @A~ t !#

]t
. ~3!

The matrixi j -element of this equality, att5t0 , gives us the following expression:

F ] f @A~ t !#

]t U
t5t0

G
i j

l j1 f ~l i !Ai j8 5Ai j8 f ~l j !1l iF ] f @A~ t !#

]t U
t5t0

G
i j

, ~4!

from which the proof of the theorem follows.
In the Appendix we show, using another method, that

F ] f @A~ t !#

]t U
t5t0

G
i i

5Aii8
] f ~l!

]l U
l5l i

. ~5!

Equations~1! and~5! constitute the main result of this work. In what follows, and in order
exhibit their usefulness, we will use these expressions to prove some of the theorems g
Wilcox’s and Rajagopal’s papers.

As a first application let us consider the formula~2.1! of Wilcox,1 namely

] exp@A~ t !#

]t U
t5t0

5E
0

1

dx exp@~12x!A~ t0!#
]A~ t !

]t U
t5t0

exp@xA~ t0!#. ~6!

The matrix elements in the basis that diagonalizes the operatorA(t0) are given by

F ] exp@A~ t !#

]t U
t5t0

G
i j

5E
0

1

dx exp@~12x!l i #Ai j8 exp~xl j !

5Ai j8 exp~l i !E
0

1

dx exp@x~l j2l i !#5Ai j8
exp~l j !2exp~l i !

l j2l i
, ~7!

which is the same expression obtained from our general formula, Eq.~1!.
As a second application of our results, let us focus on the proof of the following:
Lemma:If @B,A(t)#u t5t0

5 ]A/]t u t5t0
then @B, f (A)#u t5t0

5 ] f (A)/]t u t5t0
.

Proof: From the first equation we have

Bi j l j2l iBi j 5Bi j ~l j2l i !5Ai j8 . ~8!

Taking the matrix elements of the first member of the second equation we get

Bi j @ f ~l j !2 f ~l i !#5
Ai j8

~l j2l i !
@ f ~l j !2 f ~l i !#5F ] f ~A!

]t U
t5t0

G
i j

, ~9!

which is what we wanted to prove.
As a third application, let us now assume that the operatorA depends on two parameter

namelyt andu. We will prove the following.
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Theorem:

TrFh~A!
] f ~A!

]t

]g~A!

]u G5TrFh~A!
]g~A!

]t

] f ~A!

]u G , ~10!

whereh, f andg are smooth functions of the operatorA(t,u).
Proof: The first term of the last equation in the basis that diagonalizesA(t,u) is

(
i

(
j

h~l i !F] f ~A!

]t G
i j
F]g~A!

]u G
j i

5(
i

(
j

h~l i !
Ai j8

~l j2l i !
@ f ~l j !2 f ~l i !#

Ȧj i

~l i2l j !
@g~l i !2g~l j !#

5(
i

(
j

h~l i !
Ai j8

~l j2l i !
@g~l j !2g~l i !#

Ȧj i

~l i2l j !
@ f ~l i !2 f ~l j !#

5(
i

(
j

h~l i !F]g~A!

]t G
i j
F] f ~A!

]u G
j i

5TrFh~A!
]g~A!

]t

] f ~A!

]u G , ~11!

as we wanted to prove.~We have used the notationA8[ ]A/]t and Ȧ[ ]A/]u.!
Let us finally focus on our fourth and last application. As mentioned before, Rajagopa2 has

generalized Wilcox’s expression in which the exponential function of the operator is replac
a monomial fractional power of the form

QT~ t,b!5@12~12q!bA~ t !#q/~12q![@expq@2bA~ t !##q. ~12!

Suchq-exponential expressions arise naturally when we consider ensembles in the context
recently introduced nonextensive thermostatistics4 ~for a recent review on the subject see Ref.!.

Before we show that further elaboration on Rajagopal’s expression2 gives the same result a
the one obtained from our Eq.~1!, we need the following identity:

d

dx F12ax

12bxG
c

5c~b2a!
@12ax#c21

@12bx#c11 . ~13!

Defining againA8[ ]A(t)/]t u t5t0
, Rajagopal’s equality, besides a factorb that is lacking in

his equation and also in Wilcox’s paper, can be written in the form

]QT~ t,b!

]t U
t5t0

52qbE
0

b

dxQT~ t0 ,b!@QT~ t0 ,x!#21u21A8@12~12q!xA~ t0!#21QT~ t0 ,x!.

~14!

The matrix elements of the last equality give us

F ]QT~ t,b!

]t U
t5t0

G
i j

52qbE
0

b

dx@12~12q!bl i #
q/~12q!@12~12q!xl i #

2 q/12q 21

3Ai j8 @12~12q!xl j #
q/~12q! 21. ~15!

Using the identity given in Eq.~13! we obtain
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F ]QT~ t,b!

]t U
t5t0

G
i j

52qb@12~12q!bl i #
q/~12q!Ai j8 E

0

b

dx
@12~12q!xl j #

q/~12q! 21

@12~12q!xl i #
q/~12q! 11

5
Ai j8

l j2l i
@@12~12q!bl j #

q/12q2@12~12q!bl i #
q/~12q!#, ~16!

which is the expression that we would obtain from Eq.~1! applied to the function,QT(t,b),
defined in Eq.~12!.

Summarizing, we have given a general expression, Eq.~1!, for the parameter differentiation o
a generic functionf @A(t)# of a diagonalizable linear operatorA(t) that depends on a parametert.
This expression enables the consistent recovering, as particular instances, of various useful
formulas,1 as well as their recent generalization by Rajagopal.2 We believe, consequently, that th
present expression can be useful for quantum calculations in standard or deformed Qu
Mechanics, extensive or nonextensive Statistical Mechanics,4 among other areas of physical in
terest.
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APPENDIX: ALTERNATIVE PROOF

Here we will give an expression for diagonal elements of the derivative, with respect t
parametert, of the functionf @A(t)# at t0 .

Theorem: In the basis which diagonalizesA(t0), the diagonal elements of] f @A(t)#/]t u t5t0
are given by

F ] f @A~ t !#

]t U
t5t0

G
i i

5Aii8
] f ~l!

]l U
l5l i

. ~A1!

Proof: By definition we have

] f @A~ t !#

]t U
t5t0

5 lim
s→0

f @A~ t01s!#2F@A~ t0!#

s
. ~A2!

In order to find an expression forf @A(t01s)# it is convenient to find the basis in whic
A(t01s) is diagonal. More precisely, we have

A~ t01s!C5CL, ~A3!

whereL is the diagonal matrix formed with the eigenvalues ofA(t01s) and C is the matrix
whose columns are the eigenvectors also of the matrixA(t01s), hence

A~ t01s!5A~ t0!1A8s1 . . . 5l1A8s1¯ ,

C5I 1C(1)s1¯ , ~A4!
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L5l1l (1)s1¯ ,

where we have kept terms up to orders, I is the matrix unity andl denotes the diagonalize
matrix A(t0). Identification of the coefficients ofs implies

A81lC(1)5C(1)l1l (1). ~A5!

Then, by taking matrix elements in the last equation, we obtain

Aii8 5l i
(1) ,

Ai j8 1l iCi j
(1)5Ci j

(1)l j , ~ iÞ j !; ~A6!

hence

Ci j
(1)5

Ai j8

@l j2l i #
.

Once we know the expression forC as a function ofs we can obtain an expression fo
f @A(t01s)#, namely

f @A~ t01s!#5C f~L!C21. ~A7!

Then, by keeping up to terms linear ins, we can write

f @A~ t01s!;@ I 1sC(1)# f @l1sl (1)#@ I 1sC(1)#21, ~A8!

and, since we have that@ I 1sC(1)#215I 2sC(1)1u(s2), we can replace this in Eq.~A2! and
obtain

] f @A~ t !#

]t U
t5t0

5 lim
s→0

@ I 1sC(1)# f @l1sl (1)#@ I 2sC(1)#2 f ~l!

s

5C(1)f ~l!2 f ~l!C(1)1
] f ~l!

]l
l (1). ~A9!

The matrix elements obtained from the last equation are

F ] f @A~ t !#

]t U
t5t0

G
i i

5l i
(1) ] f ~l!

]l U
l5l i

5Aii8
] f ~l!

]l U
l5l i

, ~A10!

where we have used thatAii8 5l i
(1) .
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Singular boundary perturbations for some
eigenvalue problems

P. Zhevandrov and E. Alcántar
Institute of Physics and Mathematics, University of Michoacan, CP 58060,
Morelia, Mich., Mexico

~Received 3 August 1999; accepted for publication 2 December 1999!

By means of two examples arising from physics we show that in contrast to a small
perturbation of a regular boundary point, a small displacement of a singular bound-
ary is singular in the sense that the expansions of the perturbed eigenvalues contain
not only the integer powers of the small parameter involved, but also powers of the
logarithm of this parameter. Examples considered are the Schro¨dinger equation for
a hydrogenlike atom with nucleus of finite small size and the linearized shallow-
water equation describing water waves trapped by a sloping beach. ©2000
American Institute of Physics.@S0022-2488~00!04804-0#

I. INTRODUCTION

It is well known that a small perturbation of a regular boundary~even in the multi-
dimensional case! is regular in the sense that the eigenvalues of, say, a Sturm–Liouville pro
have expansions in integer powers of the small parameter characterizing the perturbation1 Our
goal in this paper is to investigate whether a similar perturbation of a singular boundary po
regular in the above sense. We consider two examples arising from physics. The first
Schrödinger equation for a hydrogenlike atom with a nucleus of finite small size~with or without
internal structure!, and the second is the linearized shallow-water equation for water w
trapped by a sloping beach. In the second example the small perturbation of the boundary
physically that a vertical wall parallel to the shore line is imposed at a small distance from
fact, the standard explanation of the nature of trapped waves in this case involves precis
geometry of the sort described above.2 Both examples reduce to the confluent hypergeome
equation with different parameters. It turns out that these perturbations are singular: th
correction is proportional to an integer power ofe, but the complete expansion always conta
terms logarithmic ine ~here e is the corresponding small parameter!. We obtain a convergen
expansion for the eigenvalues in powers ofe ande ln e, calculate the coefficients of the leadin
term and the first term containing the logarithm, and also provide an algorithm for calcu
corrections of any order~Theorems 1 and 2!.

We note that our first example is well known and was treated in various books and pa3,4

~the so-called ‘‘isotope shift’’!. However, the approach of those authors is purely formal an
based on the application of the standard perturbation theory: one considers the deviation of
potential from the Coulomb one as a small perturbation and calculates the first term o
Rayleigh–Schro¨dinger series. Without doubt, this procedure can be justified rigorously for the
correction. Nevertheless, it does not provide any information about the corrections of higher
the best possible result being the statement that they are of higher order than the last co
constructed.5 Since, in fact, the series contain terms logarithmic ine, the standard perturbatio
theory is bound to break down at a certain step. Thus we hope that our result could be o
especially in the light of recent interest in large-order perturbation theory, notwithstanding th
that for physically sound values ofe the corrections of higher order are negligably small a
surely are dominated by corrections of other~e.g., relativistic! nature, and, in fact, one has t
consider the Dirac equation to take into account the relativistic effects.

The text is organized as follows: in Sec. II we treat the case of an absolutely rigid sph
nucleus and the problem of trapped water waves, and in Sec. III we consider a nucleus w
32830022-2488/2000/41(5)/3283/7/$17.00 © 2000 American Institute of Physics
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arbitrary spherically symmetric charge distribution. In all these cases logarithmic terms app
the corrections to the corresponding eigenvalues~energy levels for the Schro¨dinger equation and
frequencies of trapped water waves!.

II. RIGID SPHERE AND TRAPPED WATER WAVES

The case of the rigid sphere is almost elementary. Indeed, the radial Schro¨dinger equation in
atomic units has the form

1

r 2 ~r 2R8!81S 2E1
2Z

r
2

l ~ l 11!

r 2 DR50, ~1!

wherel 50,1,... is the angular momentum andZ is the charge of the nucleus. Boundary conditio
are

Rur 5e50, R→0 as r→`; ~2!

heree is the radius of the nucleus. The only solution of~1! satisfying the condition at infinity is
~up to a factor!

R~r !5e2r/2r lU ~ l 112n,2l 12,r!, ~3!

wherer5kr , k52A22E, n52Z/k, andU(a,m,x) is the subdominant solution of the conflue
hypergeometric equation

xU91~m2x!U82aU50. ~4!

A convergent in 0,r,` expansion ofU is given by6

U~ l 112n,2l 12,r!5U11
~21! l 11~n1 l !!

~2l 11!!

3H 1F1~ l 112n,2l 12,r!Fcosnp1
sinnp

p
„ln r1F~n2 l 21!…G

1
sinnp

p F (
s51

`
~ l 1s2n!!

~ l 2n!!s!

~2l 11!!

~2l 1s11!!
rs

3S (
p51

s
1

l 1p2n
2F~2l 1s11!2F~s!D 2F~2l 11!2F~0!G J , ~5!

U15
~2l !!

~ l 2n!!
r22l 21S 11(

s51

2l
~ l 1n!~ l 1n21!¯~ l 1n2s11!

s!2 l ~2l 21!¯~2l 2s11!
rsD , ~6!

where1F1(a,m,x) is the Kummer function,

1F1~a,m,x!511
a

m
x1

a~a11!

2!m~m11!
x21••• , and F~z!5

d

dz
ln z!.

The sum overs in ~6! vanishes forl 50.
In order to satisfy the condition atr 5e, we should setR(e)50, or, multiplying by expek/2,

~ek! lU~ l 112n,2l 12,ke!50. ~7!

Multiplying ~7! by e l 11 and denoting the left-hand side byFl(e,e2l 11 ln e,n), we obtain
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Fl~e,e2l 11 ln e,n!50; ~8!

we considern as the spectral parameter instead ofE. The functionFl(e,m,n) is such that

Fl~0,0,n!50, n5 l 11,l 12,...,

because~6! vanishes forn5n, and is analytic ine, m, n in neighborhoods of the points (0,0,n).
Let us apply the implicit function theorem to~8!. We have to calculate (]Fl /]n)(0,0,l 1k), k
51,2,... . Using~5! and ~6!, we obtain

]Fl

]n
~0,0,l 1k!5 lim

n→ l 1k

~2l !!

~ l 2n!!
~21!F~ l 2n!S 2Z

n D 2 l 21

5
~2l !!

~21!k21 ~k21!! S l 1k

2Z D l 11

Þ0.

Hence, we have the following result.
Theorem 1: Problem~1!, ~2! for sufficiently smalle is solvable forE52Z2/2n2, where

n5n l ,n5 (
i , j 50

`

ai j ~ l ,n!e im j , m5e2l 11 ln e, a005n, ~9!

n5 l 11,l 12,... . Here the series converges for sufficiently smalle, m. The coefficientsai j can be
calculated by means of substituting~9! in ~8! and equating to zero the coefficients of like powe
of e, m and their products.

We note that one can obtain some information aboutai j immediately. For example, since th
logarithmic term in~5! is multiplied by sinnp ~which vanishes forn5n), we have

a0j~ l ,n!50, j51,2, . . . . ~10!

Likewise, the presence of the factor@( l 2n)! #21 in ~6! implies

a1 j5a2 j5•••5a2l , j50, j 50,1. ~11!

Hence,

n l ,n5n1a2l 11,0e
2l 111a2l 11,1e

4l 12 ln e1O~e2l 12!. ~12!

Obviously, for l .0 the logarithmic term is absorbed by the error term, and forl 50 we have

n0,n5n1a10e1a11e
2 ln e1O~e2!;

here the logarithmic term gives the second correction.
Straightforward calculations provide explicit formulas fora2l 11,j , j 50,1:

a2l 11,052S 2Z

n D 2l 11 ~n1 l !!

~2l !! ~2l 11!! ~n2 l 21!!
,

a2l 11,15~a2l 11,0!
2.

Consider now the problem of water waves trapped by a sloping beach. In the linea
shallow-water approximation, the equation for the amplitudeF(x) of the surface displacemen
F(x)exp$i(kz2vt)% ~herez is the longshore coordinate,x is the coordinate orthogonal to the shor!
reduces to the form7

~xF8!81~l2x!F50, l5v2/agk; ~13!
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we assume that the bottom is described by the equationy52ax, a5tanb, b is the angle of
inclination of the bottom, andy is the vertical coordinate. The standard problem describing wa
trapped by the shorelinex50 is stated on the ray 0,x,` with the boundary conditions

xF8ux5050, F→0 as x→`. ~14!

The solutions of this problem exist whenl52n11, n50,1,..., and are called trapped modes.
Suppose now that instead of zero depth at the beach we have a vertical wall parallel

shoreline and situated at a small distancee from it. Then the first condition in~14! is changed to

xF8ux5e50. ~15!

The solution of~13! decaying at infinity is given by

F~x!5e2xU~2n,1,2x!, l52n11; ~16!

hereU(2n,1,2x) possesses the convergent in 0,x,` expansion

U~2n,1,2x!5n! H 1F1~2n,1,2x!Fcosnp1
sinnp

p
„ln 2x1F~n!…G J

1
n! sinnp

p F (
s51

`
~s2n21!!

~2n21!! ~s! !2 ~2x!sS (
p50

s21
1

p2n
22F~s!D 22F~0!G ~17!

quite similar to the expression~5!. Just as above, the condition~15!, after multiplying by expe,
gives the equation

F~e,m,n!50, m5e ln e, ~18!

whereF(e,e ln e,n)52eU8(2n,1,2e)2eU(2n,1,2e). Again we have

F~0,0,n!50, n51,2,...,

and

]F
]n

~0,0,n!5~21!nn!Þ0.

Hence we have

n5n1a10e1a01e ln e1a11e
2 ln e1O~e2!,

and it can be easily seen that

a0150, a1052n11, a115~2n11!2.

Thus, in this problem the eigenvalues again have expansions in powers ofe, e ln e and their
products.

III. ARBITRARY CHARGE DISTRIBUTION

Assume now that (Z/4pe3)s(r /e) is a spherically symmetric charge distribution in th
nucleus whose radius is equal toe and whose total charge isZ. This means thats(y) vanishes for
y.1, *0

1y2s(y) dy51. We assume thats(y) is a non-negative piecewise continuous function
To find the potentialF inside the nucleus, we have to solve the radial Poisson equation
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1

r 2 ~r 2F8!852
Z

e3 sS r

e D . ~19!

The solution having no singularity at the origin and coinciding with the Coulomb potenti
infinity is readily provided by

F5
Z

e
fS r

e D , ~20!

where

f~y!5
1

y E0

y

j2s~j! dj1E
y

`

js~j! dj. ~21!

Note thatf(y)51/y for y>1 and is a continuously differentiable and piecewise twice conti
ously differentiable function.

The radial Schro¨dinger equation takes the form

1

r 2 ~r 2R8!81X2E1
2Z

e
fS r

e D2
l ~ l 11!

r 2 CR50, ~22!

and the boundary conditions forR are as follows:

uRu,` for r 50, R→0 as r→`. ~23!

In fact, ~22! is two equations in the inner (r ,e) and outer (r .e) regions. We will construct the
solution in each of these regions separately and then match them atr 5e:

Rue105Rue20 , R8ue105R8ue20 . ~24!

In the outer region the solution decaying at infinity is still given by formula~3!. Let us
consider the inner region. Passing to the coordinatey5r /e, we obtain

1

y2 ~y2R8!81S 2e2E12eZf~y!2
l ~ l 11!

y2 DR50. ~25!

Multiplying ~25! by yl 12, we have

~y2l 12P8!8522ey2l 12~eE1Zf!P, ~26!

whereP5R/yl . Rewrite~26! as an integral equation,

P522eE
0

y

h22l 22E
0

h
j2l 12

„eE1Zf~j!…P~j! dj dh1C1y22l 211C2 ; ~27!

by the condition at the origin we haveC150. TakeC251 and apply the method of successi
approximations to~27!. Denoting

A@P#~y!522E
0

y

h22l 22E
0

h
j2l 12

„eE1Zf~j!…P~j! dj dh,

we have

P051, Pj511eA@1#1¯1e jAj@1#, j >1; ~28!
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here all the terms are well defined due to smoothness off(y). Since the operatorA is bounded~in
the metric ofC@0,1#, for example!, the series in~28! converges uniformly inyP@0, 1# and uEu
<const,` for sufficiently smalle. Thus we have constructed a solution of~22! in the inner
region; it is defined up to a factor, satisfies the boundary condition at the origin, and is giv
the formula

Rin~y!5yl (
j 50

`

e jRj~y!, Rj~y!5Aj@1#~y!, y5r /e, 0<r<e. ~29!

Obviously,~29! is analytic ine, E for e sufficiently small anduEu bounded.
Now, in order to match the two solutions~3! and ~29! at r 5e, it is sufficient to require that

the logarithmic derivatives ofRin(r /e) andR(r ) given by ~29! and ~3!, respectively, coincide a
this point. We obtain

e21Rin8 ~1!

Rin~1!
5

R8~e!

R~e!
; ~30!

Rin8 here means the derivativedRin(y)/dy. Multiplying by R(e)Rin(1) and bye l 12, we again
obtain an equation of the form~8!. We have

Gl~e,e2l 11 ln e,n![e l 11R~e!Rin8 ~1!2e l 12R8~e!Rin~1!50. ~31!

Here it is assumed that the expressionsE52Z2/2n2 andk52Z/n are substituted instead ofE in
~29! andk in ~3!. Using ~29!, ~3!, ~5!, and~6!, it is easy to check that

Gl~0,0,n!50, n5 l 11,l 12, . . . ,

and the functionGl(e,m,n) is analytic ine, m, n in neighborhoods of the points (0,0,n).
Repeating the arguments of Sec. II, we calculate the derivative

]Gl

]n
~0,0,n!5~21!k21~2l 11!! ~k21!! S l 1k

2Z D l 11

Þ0, k5n2 l ~32!

@here we have used the fact thatRin(y)5yl1O(e)]. Hence, we obtain the following result.
Theorem 2: Problem~22!, ~23! for sufficiently smalle is solvable forE52Z2/2n2, where

n5n l ,n5 (
i , j 50

`

ai j ~ l ,n!e im j , m5e2l 11 ln e, a005n, ~33!

n5 l 11,l 12,... . Here the series converges for sufficiently smalle, m. The coefficientsai j can be
calculated by means of substituting~33! in ~31! and equating to zero the coefficients of lik
powers ofe, m and their products.

Just as after Theorem 1, we obtain thatai j still satisfy ~10! and ~11!. Moreover, it is easily
seen that the terms proportional toe2l 11 ande2l 11m in ~31! cancel out. Hencea2l 11,j50,j 50, 1,
as well. Also,a2l 12,150. With the use of~29!, ~3!, ~5!, and~6!, we obtain after some calculation

a2l 12,052S 2Z

n D 2l 11 ~n1 l !!

„~2l 11!! …2~n2 l 21!!
a,

a5R18~1!ue501
Z

l 11
, ~34!

a2l 13,15~a2l 12,0!
2.
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Let us calculate the factora in ~34!. We have

R18~1!ue50522ZE
0

1

j2l 12f~j! dj52ZS 1

l 11
2

1

~2l 13!~ l 11!
E

0

1

j2l 14s~j! dj D
~we have used here the Poisson equation forf and integrated twice by parts!. Finally,

a5
Z

~2l 13!~ l 11!
E

0

1

j2l 14s~j! dj.0. ~35!

The last result forl 50 gives the standard formula for the first correction.3,4

Summing up, we have

n l ,n5n1a2l 12,0e
2l 121a2l 13,0e

2l 131a2l 13,1e
4l 14 ln e1O~e2l 14!,

wherea2l 12,0 anda2l 13,1 are given by~34! and never vanish. Just as in Theorem 1, the logar
mic term is absorbed by the error term forl .0; moreover, in the case of the nucleus with intern
structure the logarithmic term even forl 50 appears only in the third correction in contrast to t
case of a rigid nucleus.

We note in closing that the coefficienta2l 13,0 can be computed by means of the algorithm
Theorem 2; we are not interested in its precise value but would like to remark that the calcul
of it and the other coefficients of the expansion by means of the standard Rayleigh–Schro¨dinger
series~when this is possible! is, probably, an even more cumbersome task.
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On a certain renormalization group method
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In this paper, a mathematical study of the renormalization group method, recently
introduced by Chen, Goldenfeld, and Oono@Phys. Rev. E54, 376 ~1997!; Phys.
Rev. Lett.73, 1311~1994!, NATO Adv. Study Inst. Ser., Ser. B284, 375 ~1991!#
is given for the case of autonomous nonlinear systems of differential equations. We
also observe that the approximation results obtained by this method by Chen,
Goldenfeld, and Ono@NATO Adv. Study Inst. Ser., Ser. B284, 375 ~1991!# are
valid over long time intervals. Moreover, a connection between this method and the
classical Poincare´–Dulac normal forms and the averaging method is briefly dis-
cussed. ©2000 American Institute of Physics.
@S0022-2488~00!02705-5#

I. INTRODUCTION

Recently, a perturbative renormalization group~RG! method was developed by Chen, Gol
enfeld, and Oono~CGO! as a unified tool for asymptotic analysis. The origin of the CGO-
method goes back to perturbative quantum field theory and critical phenomena, see Refs. 1
and the notion of intermediate asymptotics developed by Barenblatt.3 Its effectiveness was illus
trated in several examples of ordinary differential equations involving multiple scales, bou
layers and Wintzel–Kramers–Brillouin analysis, see Refs. 4–6. The CGO-renormalization
method, as observed in Refs. 4–6, does not require ad hoc assumptions about the structu
perturbation series or the use of asymptotic matching.

The rationale for the present work is CGO’s explicit plea for a mathematical study of the
method.4 Thus, our aim in this article is to provide a contribution toward the understanding o
CGO-RG method. We will study the following system of differential equations, which co
most of the examples illustrated in Refs. 4–6:

due

dt
1

1

e
Aue5F~ue!,

ueut505u0
e ,

where A is a complex matrix, assumed for simplicity to be diagonalizable,F is a polynomial
nonlinear term, ande is a small parameter.

We will follow the three steps of the CGO-RG method4 and derive therenormalization group
equationwhenF(u) is a polynomial inu. First, we write a naive perturbation expansion, whi
contains~in general! secular terms. Then, following Refs. 4–6, we introduce a free parameters in
order to remove the ‘‘possible’’ secular terms. Finally, the RG equations are derived using th
that the approximate solution of the perturbed problem should not depend on the free params.
We show, in Sec. II, that the RG equation is given by

dū

dt
5R~ ū!,

a!Electronic mail: ziane@math.tamu.edu
32900022-2488/2000/41(5)/3290/10/$17.00 © 2000 American Institute of Physics
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ūut505u0 ,

whereR(u) is the resonant part ofF(u) relative to the operatorA, i.e.,

etAR~e2tAv !5R~v !, ;v.

Hence~RG! can be written in the equivalent form

dŪ

dt
1AŪ5R~Ū !,

Ūut505u0 ,

whereŪ5e2tAū.
In Sec. III, we derive estimates on the difference betweenue ande2(t/e)Aū over time intervals

independent ofe. Finally, in Sec. IV, we show how this general setting applies to the example
Refs. 4–6 and we also estimate the error.

In this paper, we are mainly concerned with the finite dimensional case~a system of nonlinear
differential equations!, but the approach given herein extends as well to the infinite dimens
case, for instance the method is applied in Ref. 7 to partial differential equations invo
multiple scale phenomena, such as the Navier–Stokes equations of slightly compressible
and the Navier–Stokes equations of rotating fluids. Numerical investigations based on th
method are given in Ref. 8.

II. THE CGO-RG METHOD AND THE FORMAL DERIVATION OF THE RG EQUATION

We consider the following system of differential equations:

due

dt
1

1

e
Aue5F~ue!,

~1!
ueut505u0

e .

Our aim is to study the asymptotic behavior of the solutionue(t)5(u1
e(t),u2

e(t),...,un
e(t)) of ~1!

as e→0. We denote byl1 ,l2 ,...,ln , with l iPC, the eigenvalues ofA and assume thatA is
diagonalizable; the general case of any ‘‘smooth’’ time-dependent matrixA can be treated using
decomposition ofA as A5A11A2 , where A1 is semisimple andA2 is nilpotent with A1A2

5A2A1 . This will be done elsewhere.
Since we are assuming thatA is diagonalizable, we may suppose without loss of genera

that A5diag (l1,l2,...,ln) and we write the nonlinear term in the basis of eigenvectors ofA as

F~u!5 (
uau<m

Caua, ~2!

whereCa5 t@Ca
1,...,Ca

n # andua5u1
a1
¯un

an, a5(a1 ,...,an) and uau5a11¯1an . Note here
that F(0) andDF(0) are not necessarily zero.

Introducing a new timet5t/e, we rewrite Eq.~1! in the form of a weakly nonlinear problem

due

dt
1Aue5eF~ue!,

~3!
ueu t505u0

e .

Step 1. The naive expansion. We write the naive perturbation expansion:
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ue5u~0!1eu~1!1e2u~2!1¯ ~4!

and derive formally

du~0!

dt
1Au~0!50,

i.e.,

u0~ t !5e2tAv~ t0!, ~5!

wherev(t0) is some vector function; its relation toue(0) will be made precise later on. Then,
next order,

du~1!

dt
1Au~1!5F~u~0!!. ~6!

Solving ~6!, we find a solution

u~1!~ t !5e2tAw~ t0!1e2tAE
t0

t

esAF~e2sAv~ t0!!ds. ~7!

Now we write the approximation ofue found so far to be valid locally in some neighborhoo
of t0 . We have

U1
e~ t !5u~0!~ t !1eu~1!~ t !5e2tAFv~ t0!1ew~ t0!1eE

t0

t

esAF~e2sAv~ t0!!dsG .
We note that since we are interested in approximations up to orderO(e), the vectorw(t0) is
irrelevant and may be taken to be zero. In fact, letṽ(t0)5v(t0)1ew(t0). Remembering that
U1

e(t) is sought to be an approximation valid up to orderO(e) and any termO(e2) may be
neglected, we have

U1
e~ t !5e2tAF ṽ(t0)1eE

t0

t

esAF(e2sAṽ(t0)2ee2sAw(t0))dsG
5e2tAF ṽ(t0)1eE

t0

t

(esAF(e2sAṽ(t0))1O(e))dsG
5e2tAF ṽ(t0)1eE

t0

t

(esAF(e2sAṽ(t0))dsG1O~e2!. ~8!

Hence we may takew(t0)50 and write

U1
e~ t !5e2tAFv~ t0!1eE

t0

t

esAF~e2sAv~ t0!!dsG . ~9!

Step 2. The introduction of a free parameter. We introduce a free parameters, t0<s<t and
use the additivity of integrals; we find

U1
e~ t !5e2tAFv~ t0!1eE

t0

s

esAF~e2sAv~ t0!!ds1eE
s

t

esAF~e2sAv~ t0!!dsG . ~10!

Then set
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v~s!5v~ t0!1eE
t0

s

esAF~e2sAv~ t0!!ds ~11!

to obtain

U1
e~ t !5e2tAFv~s!1eE

s

t

esAF~e2sAv~s!!dsG1O~e2!, ~12!

ands is a free parameter.
One needs to control the secular terms, which appear because of the presence of reson

the spectrum ofA. More precisely, in order for~5! to be valid, we need to have the size ofu(1) to
be of the same order as that ofu(0). However, in the expression ofu(1) we have the term

E
t0

t

esAF~e2sAv~ t0!!ds,

which may contain~and usually it does! secular terms. These are the terms proportional tot. They
are generated by the constant part ofesAF(e2sAv(t0)). Thus we write

esAF~e2sAv~ t0!!5R~v~ t0!!1Q~s,v~ t0!!, ~13!

where

R~v !5(
i 51

n S (
aPNr

i
Ca

i vgaD ei , vPRn, ~14!

Q~ t,v !5(
i 51

n S (
a¹Nr

i
Ca

i es~l i2~L,a!!vaD ei , ~15!

with

Nr
i 5H aPNn,uau<m;~L,a!ª(

k51

n

aklk5l iJ , ~16!

and (ei)1< i<n is the set of eigenvectors of the matrixA. Note that

etAR~e2tAv~ t0!!5R~v~ t0!!. ~17!

Using ~7! and ~13!–~15!, we can write

etAu1~ t !5R~v~ t0!!~ t2t0!1(
i 51

n S (
a¹Nr

i

Ca
i et~l i2~L,a!!

l i2~L,a!
vaD ei1W~ t0!.

Again, we claim here thatW(t0) is irrelevant and may be taken equal to zero, and we can
perform the RG method@see the argument given in~8!–~9!#.

Taking into account~5! and ~17!, we rewrite~12! as

etAU1
e~ t !5v~s!1eR~v~s!!~ t2s!1e(

i 51

n S (
a¹Nr

i

Ca
i et~l i2~L,a!!

l i2~L,a!
va~s!D ei1O~e2!. ~18!

The shortcoming of the naive perturbation is the presence of the secular termv(s)1eR(v(s))
3(t2s). Several methods have been proposed to overcome this problem, for instan
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Poincare´–Lindstedt method,9 the multiple scale method,10 and the method of averaging.11 The
renormalization group method, as developed by Goldenfeld and his group, is based on a d
trick: the naive perturbation is independent of the parameters, hence the approximate solutio
should not depend ons @at least up to orderO(e)#. Therefore, we have formally

]

]s
~etAue~ t !!5O~e2!, ;s,

which implies that

]

]s
v~s!2eR~v~s!!1e

]

]v
R~v~s!!~ t2s!

]v~s!

]s

1e
]v~s!

]s

]

]v (
i 51

n S (
a¹Nr

i

Ca
i et~l i2~L,a!!

l i2~L,a!
va~s!D ei5O~e2!.

Hence, we must have (]/]s)v(s)5O(e), and then obviously

]

]s
v~s!5eR~v~s!!1O~e2!, ;s.

This is the renormalization group~RG! equation as called by Chen, Goldenfeld, and Oono in R
4–6. An alternative way, which is simpler, for deriving the~RG! equation follows from the
following observation: In order to kill the secular termeR(v(s))(t2s), we look at the term
v(s)1eR(v(s))(t2s) as the Taylor expansion of order 1 of some functionVe(t) around t
5s. Hence, we introduce the followingrenormalization groupdifferential system:

dVe

dt
5eR~Ve~ t !!,

~19!
Veu t5t0

5v~ t0!.

This idea suggests that the renormalization group method in Refs. 4–6 is a ressumation m
The above-written renormalized equation coincides with the one obtained in Refs. 5–7

thermore, in the case where the real parts of thel i8s,; i 51,...,n, are zero, the RG equations a
just the averaged equation in the theory of averaging, see Ref. 11. Note also that the no
term in the~RG! equation is the first-order Poincare´ normal form of the nonlinear term of~1!, see
Ref. 12.

Suppose now that we can solve the RG equation. Then, settings5t in ~18!, we obtain the
following ansatz approximate solution:

ũe~ t !5e2tAVe~ t !1(
i 51

n S (
a¹Nr

i

Ca
i e2t~L,a!

l i2~L,a!
~Ve!aD ei1O~e2!. ~20!

A straightforward calculation gives

dũe

dt
1Aũe5eF~e2tAVe~ t !!1e(

i 51

n

(
a¹Nr

i

Ca
i e2~L,a!t

l i2~L,a!

d

dt
~Ve!aei1O~e2!. ~21!

Let we(t)5ue(t)2ũe(t). Thanks to~1! and ~21!,
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dwe

dt
1Awe5e@F~ue!2F~e2tAVe~ t !!#2e(

i 51

n

(
a¹Nr

i

Ca
i e2~L,a!t

l i2~L,a!

d

dt
~Ve!aei . ~22!

Therefore,

we~ t !5e2~ t2t0!Awe~ t0!1ee2tAE
t0

t

esA@F~ue~s!!2F~e2sAVe~s!!#ds2ee2tAE
t0

t

esANe~s!ds,

~23!

where

Ne~s!5(
i 51

n

(
a¹Nr

i

Ca
i e2~L,a!s

l i2~L,a!

d

ds
~Ve!a~s!ei . ~24!

So far no assumptions have been made on the complex eigenvalues ofA. We will treat two cases.
Case I. There exists a constantK, such that

ietAi<1, ;tPR,

and, for someT.0,

iVe~ t !i<K, ;tP G2
T

e
,
T

e F . ~25!

Note here that, since we are in the finite dimensional case, the normi•i is any of the equivalent
norms onMn(C), the space ofn3n matrices with complex entries.

Case II. There exist two constantsK.0 andk.0, such that

Rel i>k, ; i P$1,...,n%,
~26!

ie2tAVe~ t !i<K, ;t>0.

In case I, we are assuming that with Reli50,; i 51,...,n, we may have some of the eigen
values equal to zero. One may look at the problem of finding asymptotics in this case in ter
the ‘‘small time’’ t and notice that we have a highly oscillatory problem; only weak converge
may be obtained from studying system~1! directly. However, using the above-described techniq
and Theorem 1, we are able to control the oscillations and obtain an oscillatory corrector. Th
be done even in the case of partial differential equations, see Ref. 7. Uniform estimat
obtained for the difference between the actual solution and the oscillatory corrector.

In case II, the situation is completely different, since we have dissipation. We do not
oscillatory terms~in general!, but we have terms presenting a boundary layer type behavior.
include this case to cover some of the examples on boundary layers in Refs. 4–6.

III. THE ESTIMATES

A. For Case I

We have the following:
Theorem 1: Let ue be the solution of

due

dt
1

1

e
Aue5F~ue!,

ueut505u0
e ,
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and assume that

ie~t/e!Ai<1, ;tPR,

and for some arbitrarily large T.0,

iVe~t!i<K, ;tP] 2T,T@ ;

~H1!

where Ve(t) is the solution of

dVe

dt
5R~Ve~t!!,

Vut505v0
e .

Let

ũe~t!5e2~t/e!AVe~t!1(
i 51

n S (
a¹Nr

i

Ca
i e2t/e~L,a!

l i2~L,a!
~Ve!a~t!D ei . ~27!

Then there exists a constant C depending on K, T, on the spectrum of A and the solution
renormalization equation, such that

sup
2T<t<T

iue~t!2ũe~t!i<Ce . ~28!

Proof: We will work in terms of the timet. Thanks to~23! andH1 , we have

iwe~ t !i<iw0
e~ t0!i1eE

t0

t

iGe~s!ids1ei E
t0

t

e~s2t !ANe~s!dsi , ~29!

where

Ge~s!5F~ ũe1we!2F~e2sAVe~s!!.

We write ũe as

ũe~s!5e2sAVe~s!1evN
e ~s!,

where

vN
e ~s!5(

i 51

n

(
a¹Nr

i

Ca
i e2t~L,a!

l i2~L,a!
~Ve!a~s!ei .

Thanks to assumption~H1!, there exists a constantC1 depending onK2 , n and the nonlinear term
F, such that

iR~Ve~ t !!i<C1 , ;tPF2
T

e
,
T

e G , ~30!

ivN
e ~ t !i5i(

i 51

n

(
a¹Nr

i

Ca
i e2t~L,a!

l i2~L,a!
~Ve!a~ t !ei i<C1 , ;tPF2

T

e
,
T

e G , ~31!
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I d

dt
Va~ t !I<eC1 , ;tPF2

T

e
,
T

e G . ~32!

Note that under assumption~H1! and~31!, there exists a constantC2 , independent ofe, such that

i ũe~ t !i<C2 , ;tPF2
T

e
,
T

e G . ~33!

Hence, there exists a constantC3 depending onC1 such that

iNe~ t !i<C3e, ;tPF2
T

e
,
T

e G . ~34!

Furthermore,

iGe(s)i<iF~ ũe1we)2F(ũe)i1iF(ũe)2F(e2sAVe(s))i

<( sup
0<b<1

iD(F)~ ũe~s!1~12b!we~s!!i !iwe~s!i

1e( sup
0<b<1

iD~F !~ ũe~s!1~12b!vN
e ~s!!i)ivN

e ~s!i

<~ sup
0<b<1

iD~F !~ ũe~s!1~12b!we~s!!i !iwe~s!i1C4e, ~35!

whereC4 is a constant independent ofe. Combining~30!–~35!, we obtain

iwe~ t !i<iwe~ t0!i1C5e2t1eE
t0

t

he~s!iwe~s!ids, 2
T

e
<t<

T

e
, ~36!

where

he~s!5 sup
0<b<1

iD~F !~ ũe~s!1~12b!we~s!!i . ~37!

Now, assumeiwe(t0)i<K0e; we have for2T/e<t<T/e,

iwe~ t !i<K0e11C5eT1eE
t0

t

he~s!iwe~s!ids. ~38!

Define

ye~ t !5E
t0

t

he~s!iwe~s!ids. ~39!

From ~38!, we obtain

dye~ t !

dt
<~K01C5eT!ehe~ t !1ehe~ t !ye~ t !, ~40!

which implies that

ye~ t !<~K01C5eT!eE
t0

t

he~s!expS eE
s

t

he~r !dr D ds. ~41!

Let
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I 5] 2T1 ,T2 ,F,G2
T

e
,
T

e F
be the maximal interval such that

iwe~ t !i<1, ;tP] 2T1 ,T2@ . ~42!

Then, there exists a constantK6 such thathe(s)<K6 for sPI , and

ye~ t !<~K01C5eT!eeC6TC6utu, ;tP] 2T1 ,T2@ . ~43!

Hence

iwe~ t !i<~K01C5eT!e1~K01C5eT!eC6TC6utue2, ~44!

which implies that

uwe~ t !i<Ce, ;tP] 2T1 ,T2[ , G2
T

e
,
T

e F , ~45!

where C is obviously independent ofT1 and T2 . This is in contradiction to the maximality
condition of I given in ~42!. Therefore,

iwe~ t !i<1, ;tP G2
T

e
,
T

e F , ~46!

and the above-mentioned argument shows that

iwe~ t !i<Ce, ;tP G2
T

e
,
T

e F . ~47!

Going back to the timet5et, we conclude the proof of the theorem.

B. For Case II

Theorem 2: Let ue be the solution of

due

dt
1

1

e
Aue5F~ue!,

ueut505u0
e ,

and assume that there exist constants K3 and k.0, such that

Rel i>k , ; i P$1,...,n%, ~48!

and

ie~t/e!AVe~t!i<K3 , ;t>0,

where Ve(t) is the solution of

dVe

dt
5R~Ve~t!!,

Vut505v0
e .
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Then, if

ũe~t!5e2~t/e!AVe~t!1(
i 51

n S (
a¹Nr

i

Ca
i e2/te~L,a!

l i2~L,a!
~Ve!a~t!D ei , ~49!

there exists a constant K4 depending on K3 ,n, the spectrum of A and the nonlinear term F su
that

sup
t>0

iue~t!2ũe~t!i<K4e. ~50!

Proof: Thanks to~17! and ~48!, we have

ie2tAR~V~ t !!i<C2 , ;t>0,

ie2tAvN
e ~ t !i<C3e2kt, ;t>0,

Ie2tA
d

dt
Va~ t !I<eC4e2kt, ;t>0,

iN~ t !i<eC5~F,A!, ;t>0,

i ũe~ t !i<C6 , ;t>0,

iGe~ t !i<c7iwe~ t !i1c5e. ;t>0.

Hence, following the same lines as in the proof of Theorem 1, we conclude the proof.13,14
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There is a sign error in the last equation of Sec. II. The identity in the paper was given in
to beq2,sg;nm2q2,sg;mn5q2,grRmns

r1q2,srRmng
r; the correct identity is

q2,sg;nm2q2,sg;mn52q2,grRmns
r2q2,srRmng

r.

Consequently, Lemma 2.5~5! should be changed to read

~5! R mns
d5 1

2 gdg~q2,ms;gn1q2,ng;sm2q2,mg;sn2q2,ns;gm2q2,sbRmng
b2q2,gbRmns

b!.

The other formulas and statements of the paper are not affected by this error. Lemma 2.5~5! was
used only in the proof of Lemma 4.3~5! and the error does not affect this result.

We are grateful to Arkady Tseytlin for pointing out this mistake to us.
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On pages 2194 and 2195, all ‘‘²’’ should be replaced by ‘‘,’’ ~‘‘strictly smaller’’ !. On page
2195, the ‘‘³’’ should be replaced by ‘‘.’’ ~‘‘strictly greater’’!.
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In Definition 1 ~iii ! ‘‘ ⇒’’ should be replaced by ‘‘⇔.’’
There are several errors in the formulation of conditions~2.5! and ~3.2!. A corrected and

improved formulation is as follows.

Condition „2.5…: The Minkowski metrich is locally compatible with the coneC in the sense
that h0(v,v)50⇔vPT0N, with arbitrary submanifoldN,C ,Rd11 such that (0,v)PTN. Cor-
respondingly, a Lorentzian metricg is said to belocally compatiblewith an LC structurep°C p ,
iff, with C p.fp(N)>N, it holds

gp„V~p!,V~p!…50⇔V~p!PTpfp~N!, ;pP intM ,

i.e., locally at any vertex the cone determines the characteristic null directions in the tangent
Condition „3.2…: The Minkowski metrich is compatible with the coneC in the sense tha

hx(v,v)50 ⇔ (x,v)PTC ªøyPC TyC whereTyC ªøyPN,C TyN,Rd11 and the latter union is
over all ~differentiable! 1-dimensional submanifoldsN,C passing throughy, with all their tan-
gent spaces embedded as linear submanifolds with common origin within the common emb
spaceRd11. Hence, foryÞ0, the fibersTyC >Rd are all usual isomorphic tangent spaces, wh
the only non-standard fiberT0C >C ,Rd11 reproduces thed-dimensional cone itself, which is th
local model of its own singularity. Correspondingly, a Lorentzian metricg is said to becompatible
with some LC structurep°C p , iff

gq~V~q!,V~q!!50⇔F;pPM :qPC p⇒V~q!PTqC pª~fp!* Tf
p
21~q!C 5 ø

N,C :

fp
21

~q!PN

Tqfp~N!G ,

where the latter union is over all~differentiable! 1-dimensional submanifoldsN,C passing
through fp

21(q), and the latter identity holds with tangent push forward (fp)* TyN
ªTfp(y)fp(N). Therefore, with~3.2! the cones are the characteristic surfaces of the Lorent
metric.
33030022-2488/2000/41(5)/3303/1/$17.00 © 2000 American Institute of Physics
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Symplectic geometry and topology
V. I. Arnold
Steklov Mathematical Institute, 8, Gubkina Street, 117966 Moscow, GSP-1, Russia

~Received 18 August 1999; accepted for publication 25 February 2000!

This is a review of the ideas underlying the application of symplectic geometry to
Hamiltonian systems. The paper begins with symplectic manifolds and their La-
grangian submanifolds, covers contact manifolds and their Legendrian submani-
folds, and indicates the first steps of symplectic and contact topology. ©2000
American Institute of Physics.@S0022-2488~00!01106-3#

I. WHAT IS SYMPLECTIC GEOMETRY ABOUT?

A. From Hamilton dynamics to symplectic geometry

Symplectic geometry is the product of a long evolution of such branches of mathemati
the variational calculus, the theory of dynamical systems, especially of Hamilton system
classical mechanics, geometrical optics, the theory of wave propagation, the study of the
waves or quasiclassical asymptotics in quantum mechanics, microlocal analysis of PDEs a
Lie theory of diffeomorphism groups and Poisson algebras.

The geometrization of mathematics and of physics, originating in the pioneering wor
Poincare´, has led to the description of the time evolution of the state of a dynamical syste
terms of a flow of the so-called phase fluid in the phase space, whose points represent d
states of the system~say, the positions and the velocities of its particles!.

The phase flow consists of transformationsgt of the phase space, depending on time, send
any initial state to the new state of the system after timet. The transformations forming the phas
flow of a Hamilton dynamical system are not arbitrary diffeomorphisms. For instance, they c
have attracting fixed points or other attractors, accordingly to the Liouville theorem, saying
the phase flow of a Hamiltonian system preserves the volume of any domain of the phase

One can thus imagine that the phase fluid, filling the phase space, is incompressible. Th
implies many special features of the transformations of the phase flow, a typical example be
Poincare return theorem and the numerous applications of the ergodic theory to dynamic
tems. Statistical mechanics is based on this incompressibility of phase flows.

The applications of the incompressibility property form the volume-preserving geometry
study of the geometrical properties of different objects on a manifold with a fixed volume ele
A property is here called geometrical if it is invariant under the volume-preserving diffeo
phisms.

The symplectic geometry arises from the understanding of the fact that the transformati
the phase flows of the dynamical systems of classical mechanics and of variational calculu~and
hence also of optimal control theory! belong to a narrower class of diffeomorphisms of the ph
space, than the incompressible ones.

Namely, they preserve the so-calledsymplectic structureof the phase space—a closed no
degenerate differential two-form. This form can be integrated along two-dimensional surfa
the phase space. The integral, which is called the Poincare´ integral invariant, is preserved by th
phase flows of Hamilton dynamical systems.

The diffeomorphisms, preserving the symplectic structure—they are c
symplectomorphisms—form a group and have peculiar geometrical and topological properties
instance, they preserve the natural volume element of the phase space~the exterior power of the
symplectic structure 2-form! and hence cannot have attractors. However, this is not the
33070022-2488/2000/41(6)/3307/37/$17.00 © 2000 American Institute of Physics
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restriction—the preservation of the symplectic structure is responsible for many astonishing
in mechanics, optics, and other parts of mathematical physics.

While the first examples of such phenomena were explicitly described by Poincare´ ~and might
be traced to the works of Hamilton, Jacobi, Lie, Cayley, and others!, the systematic study of the
geometry on symplectic manifolds is mostly due to the works of the second half of the
century. Applications to statistical physics~where the physicists still freely permute the pieces
the phase space, provided that they have equal volumes! are still to be found.

The wordsymplecticwas invented by Weyl,1 to describe the finite-dimensional version of th
symplectomorphism group—the group of the linear transformations, preserving a nondege
skew-symmetric bilinear form.

Siegel2 had christened symplectic geometry, the geometry of this linear group, as that
group of symplectomorphisms, but now this name is used for the extended domain of non
symplectic manifolds and mappings. Symplectic topology is even younger.3,4

Before I start a more systematic description of the subject, I shall discuss some very par
results of symplectic geometry and topology.

B. Symplectic phenomena and invariants

The conjecture that the symplectomorphisms may behave differently than the vo
preserving diffeomorphisms was first formulated in the following form.

Example: the symplectic camel problem. Consider the ‘‘eye of the needle’’~a hole in a
vertical plane in three-space!. In volume-preserving geometry any camel, however large it is,
snake from one half-space to the other through the hole~Fig. 1!.

The symplectic camel problem askswhether it is possible for a symplectic camel in one h
of the symplectic space to be continuously transformed into a camel in the other half, pa
through a small hole in the hyperplane separating the half-spaces. The transformation should b
defined by time-dependent symplectomorphisms of the complement of the hyperplane with
These diffeomorphisms should connect the identity mapping with the mapping sending the
from one half space to the other.

Any symplectic space is even-dimensional. Symplectic geometry in dimension two coin
with the volume~area!-preserving geometry. The two-dimensional camel can percolate thr
any hole from the left half-plane to the right one.

However in dimension four the situation is different: a symplectic camel hassymplectic ribs
that do not permit him to pass from one half-space to the other, if the hole is not large eno5

These ribs are defined in terms of the periods of periodic solutions of some Hamilt
differential equations associated to the camel. The impossibility of the crossing of the hole c

FIG. 1. The symplectic camel problem.
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considered as an extension from linear to nonlinear oscillations of the Rayleigh–Fisher–C
theorem on the behavior of the eigenvalues under the imposing of constraints.

Example: the symplectic packing problem. Any bounded domain of the plane, whose area
smaller than the area of the unit disc, can be sent into this disc by an area-preserving diffe
phism. A similar result holds in the volume-preserving geometry in any dimension.

The symplectic packing problem requires oneto send via symplectomorphism a bound
domain of the symplectic space into a given bounded domain of larger volume.

It is impossible, for instance, to embed by a symplectomorphism the unit ball of the sta
symplectic four-space into the product of two two-dimensional symplectic discs, one of whic
radius r,1 ~see Ref. 6!.

A collection of disjoint images ofk equal balls~Fig. 2! under a system of symplectomo
phisms of symplectic four-space can fill no more than 121/N of the volume of the symplectic
four-ball, and can fill almost 121/N of the volume, whereN is equal to

2, 4, `, 5, 25, 64, 289,`

for k52, 3,...,9.
Moreover, for every positive integerp the symplectic 2n-ball can be filled with gaps of

arbitrary small volume by the disjoint images ofpn equal symplectic balls (N5`, see Ref. 7!.
The universal obstacles in the symplectic embedding and packing problems are calleGro-

mov’s width and symplectic capacities~see Refs. 8 and 9!.

C. Last geometric theorem of Poincare ´

The first theorem of symplectic topology was discovered by Poincare´ in his studies of periodic
orbits in celestial mechanics. It is calledthe last geometric theorem of Poincare´, because he had
announced it just before his death, being unable to prove it. The proof was given later by Bir

Poincare´ had formulated his theorem for the area-preserving mappings of an annulus to
such a mapping has at least two fixed points, provided that it moves the two boundary circ
opposite directions. From the modern point of view this is a particular consequence of the ge
facts of symplectic topology.

Example: the symplectic fixed-point theorem. Consider a torus of dimension two with its are
element as a symplectic manifold. A symplectomorphism of the torus is calledexact, if it can be
connected to the identity mapping by a continuous path in the group of symplectomorph
preserving the ‘‘center of masses’’ of the torus.

FIG. 2. The symplectic packing problem.
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The ‘‘preservation of the center of masses’’ condition can be written in the terms
coordinate system on the plane, covering the torus~Fig. 3!.

If the coordinates are (x,y) mod 1, the area element isdx dyand the mapping sends the poi
~x,y! to (x1 f (x,y),y1g(x,y)), then the center-of-mass preservation condition requires the
ishing of the average shift, that is, of the integral of the vector~f,g! along the unit square.

The theorem~see Ref. 10! says thatany exact symplectomorphism of a torushas at least four
fixed points, and that at least three of them are geometrically different.

Remark: The original statement of Poincare´ on the annulus mappings follows, since one c
construct a torus by glueing together two identical annuli.

The theorem says thatan exact diffeomorphism of the torus has at least as many fixed p
as a function on the torus has critical points. In this form the theorem holds also on all surfac
and on many higher-dimensional manifolds, but is still neither proved nor disproved for arb
compact symplectic manifolds~the exact symplectomorphisms form the commutator subgrou
the connected component of the identity in the symplectomorphism group!.

Example: On a surface of genusg the number of fixed points counted with multiplicities is
least 2g12, and at least 3 among them are geometrically different. For the torusT2n these
numbers are 22n and 2n11, respectively. For the complex projective spaceCPn both numbers are
n11. ~The proofs for different classes of symplectic manifolds are in Refs. 10, 6, 11, 12, 44!

The Morse numbers and the critical points occur in this problem by no coincidence
whole theory can be viewed as an extension of Morse theory to generalized multivalued fun
called Legendrian manifolds.

Infinitesimal exact symplectomorphisms are defined by Hamiltonian vector fields. The c
points of the Hamiltonian are fixed points of these symplectomorphisms. The symplectic
point theorem extends the Morse-theoretical minoration of the number of the fixed points
infinitesimal exact symplectomorphism to the exact symplectomorphisms themselves.

Some other facts of classical calculus may also be considered as infinitesimal versi
theorems in symplectic geometry.

D. Topology of caustics and wavefronts

We start with the following result of Euclidean geometry.
Example: the four-vertex theorem. Consider a convex plane curve~Fig. 4!. A vertex is a local

extreme point of the curvature. The classical four-vertex theorem says thatthe number of vertices
is at least four~see Ref. 13!.

FIG. 3. An exact symplectomorphism of a torus.
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It seems to be a theorem in Riemannian geometry, but it is not, since the result does n
for the geodesic curvature of curves on the plane with a Riemannian metric, even when it is
to the standard Euclidean one.

The real meaning of this theorem can only be understood in terms of symplectic topo
where it appears together with quite a few other theorems on the singularities of caustics an
fronts.

The infinitesimal version of these theorems is a Sturm-type result on the oscillatory prop
of the function f-1 f 8 on the circle. According to a general theorem proved by Hurwitz,
2p-periodic function of this form has at least 4 zeroes on every period.

This infinitesimal result has global counterparts which are general theorems of symplect
contact topology. In the next two examples we discuss applications of these general theor
problems of classical Riemannian geometry and the calculus of variations.

Example: focal points. A focal point of a point on a surface equipped with a Riemann
metric is an intersection point of a geodesic ray issued from the point with an infinitely c
geodesic ray~also issuing from this point!.

The set of focal points of a given point of a surface form a curve, called thecausticof the
initial point. The caustic of the North pole of a sphere consists of its South pole and North
This is a degenerate caustic.

Perturbing the metric of the sphere~say, transforming it into an ellipsoid! one transforms the
caustics of its points into small but complicated curves. Jacobi proved that the caustic of any
on convex surface has cusps~see Fig. 5!.

In fact the caustic consists of several branches. The first consists of the first focal points
each ray; the second of the next ones, and so on.

If the perturbation is small, the first branch of the caustic of the North pole is close to
South pole, the second to the North pole and so on. The smallness of the perturbations on
depends of course of the order of the branch.

FIG. 4. The vertices of a plane curve.

FIG. 5. The first caustic of a point on a surface.
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The four cusp theorem says thatthe caustic~say, of a generic point on a generic conv
surface! has at least four cusps.

This is classically proved for the first branch of the caustic. It holds also for any bra
provided that the perturbation is sufficiently small.14 Standard conjectures in symplectic topolo
imply that it should be true with no smallness restrictions, but this is not proved.

Symplectic geometry of even-dimensional phase spaces has an odd-dimensional twin:
geometry. This geometry of wave fronts and wave propagation is the mathematical base o
metrical optics. It is highly nontrivial even in the simplest case of wave propagation in Eucli
space, even in the plane, where the propagating fronts are equidistant curves of the initial

Example: the inside-out reversal of a front. Consider the equidistant curve of an ellipse~Fig.
6!. When the distance from the initial ellipse grows the equidistant curve first shrinks and
starts to grow. If one starts from a circle it shrinks to a point. For the ellipse, the transition
shrinking to growing is decomposed into several steps.

At one of the steps the equidistant curve has four cusps. This is a special case of a g
theorem of symplectic and contact topology, accordingly to which any inside-out reversal pr
requires at least four cusps on a moving front at some moment.

This is proved15 for fronts having no parallel co-orienting normals~for instance, for the
equidistant curves of convex plane curves!. The result has been proved in 1999 by Chekanov
Pushkar for all front-reversals without co-oriented self-tangencies at any moment.

The proof depends on the Hurwitz theorem of Sturm type,13 describing the oscillation prop
erties of linear combinations of eigenfunctions of linear differential equations on the circle. T
combinations define the infinitesimal perturbations of the reversal of the circular front.

Consider a periodic function, whose Fourier series contains only the harmonics of h
order, coskx and sinkx with k>n. The Hurwitz theorem says thatthe number of zeroes of an
such function on a period is at least equal to the number2n of zeroes of its lowest harmonics.

The extension of the theorem on cusps of equidistant curves to general theorems in sym
and contact topology suggests generalizations of the Sturm theory to the multivalued and h
dimensional cases in the same sense that the symplectic fixed-point theorem extends Morse

II. SYMPLECTIC MANIFOLDS AND THEIR LAGRANGIAN SUBMANIFOLDS

A. Symplectic structures

Symplectic manifolds are the natural generalizations of the phase spaces of classical m
ics.

Definition: A symplectic manifoldis a smooth manifold equipped with a closed nondegen
ate differential 2-form, calledthe symplectic structure.

Example: The plane with its oriented area element is a symplectic manifold.
Example: The Cartesian product of two symplectic manifolds has a natural sympl

structure—the sum of~the pull-backs of! the two given structures.

FIG. 6. The eqidistant curves of an ellipse.
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Example: The spaceR2n has a natural symplectic structure. Its value on a pair of vecto
equal to the sum of the oriented areas of the projections of these two vectors on then coordinate
planes (p1 ,q1),...,(pn ,qn).

Theorem of Darboux. All symplectic manifolds of any given dimension are locally symp
tomorphic one to the other.

Corollary (Darboux coordinates). Any symplectic structure is defined in a sufficiently s
neighborhood of any point of any symplectic manifold of dimension2n by the form described in
the preceding example in suitable local coordinates.

In other words all differences between symplectic manifolds are global, since all symp
manifolds of the same dimension are locally alike~similar to Euclidean spaces but unlike Ri
mannian manifolds!.

Moreover, any point of a connected symplectic manifold can be carried to any other
symplectomorphism~diffeomorphism preserving the symplectic structure!, and even by a flow of
the symplectomorphisms.

The most important examples of symplectic manifolds are the phase spaces of classic
chanical systems—thecotangent bundle, of smooth manifolds~which are called thebase mani-
folds or theconfiguration spaces!.

Definition: A cotangent vectoron a manifold is a linear function on the space of tang
vectors at a point of the manifold.

The set of all cotangent vectors~which in physics are usually calledmomentumvectors! at all
points of a base manifoldBn form the cotangentbundleT* B of dimension 2n.

Manifolds which have serious reasons to be even-dimensional usually carry natural sym
tic structures.

Definition: Theaction formon the cotangent bundle is the tautological differential 1-form
the cotangent bundle space, namely the form, whose value on any vector tangent to the co
bundle at a pointp equals the value of the cotangent vectorp on the projection of this tangen
vector to the base manifold.

Example: The action form on the cotangent bundle of the vector space with linear coordi
(q1 ,...,qn) is the 1-form

a5p1dq11¯1pn dqn ,

where thepi are the natural coordinates of a cotangent vector.
Definition: The natural symplectic structureof the cotangent bundle space is the different

2-form

v5da.

Other examples of symplectic manifolds are the Kaehlerian manifolds of complex geometr
the orbits of the coadjoint representation of any Lie group in the dual space of its Lie alge

Example: The complex projective space carries a natural symplectic structure.
Example: The manifold of all complex matrices with fixed and simple eigenvalues carri

natural symplectic structure.

B. Submanifolds of symplectic manifolds

The geometry of a symplectic manifold is refreshingly different from the usual Euclidea
volume-preserving geometry. Some of its submanifolds are locally different from others o
same dimension.

Definition: A submanifold of a symplectic manifold is calledisotropic if the symplectic
structure’s restriction to this submanifold vanishes. An isotropic submanifold of maximal pos
dimension~which is n in a symplectic manifold of dimension 2n) is called aLagrangian sub-
manifold.

Example: Any smooth curve on the plane is a Lagrangian submanifold.
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Example: Any smooth functionf defines a Lagrangian section of the cotangent bundle sp
of its domain of definition,

p5d f ,

associating to each point of the base manifold the differential of the function at this point.
Example: The fibers of the cotangent bundle are Lagrangian submanifolds.
Locally all Lagrangian submanifolds are symplectomorphic to each other.
Weinstein’s theorem ~see Ref. 16!. Some neighborhood of any Lagrangian submanifold

any symplectic manifold is symplectomorphic to some neighborhood of this Lagrangian sub
fold in any other symplectic manifold, for instance in its own cotangent bundle space.

Remark: In general there is no global symplectomorphism—this is clear from the examp
plane curves. Indeed, the area bounded by a closed curve is a symplectic invariant of the

Givental–Darboux theorem ~see Ref. 17!. The restriction of the symplectic structure to
submanifold of a symplectic manifold defines this submanifold locally in a neighborhood of a
its points up to a local symplectomorphisms.

In other words, in symplectic geometry, in contrast with the Riemannian geometry, there
no local exterior invariants of submanifolds: the interior geometry controls the exterior one

Example: Any two smooth hypersurfaces~submanifolds of codimension one, that is defin
locally by one nondegenerate equation each! in a symplectic manifold are locally symplectomo
phic in the neighborhoods of any two points.

C. Hamiltonian vector fields and Poisson brackets

All points of a smooth hypersurface in a symplectic manifold are equal, but the hypersu
is ~even locally! nonisotropic. At each point of the hypersurface there exists a preferred~charac-
teristic! tangent direction, intrinsically defined by the symplectic structure. There is only one
direction—it is theskeworthocomplementary directionof the tangent hyperplane of the hypersu
face.

Definition: The Hamiltonian vector fieldof a function on a symplectic manifold is that field
for which the value of the symplectic structure on a pair formed by a vector of the field and b
second tangent vector of the symplectic manifold at the same point is equal to the derivative
function along the second vector.

The function is then called the Hamiltonian of the field. It is defined by the field up to a loc
constant summand. The Hamiltonian vector field is the only vector field intrinsically associa
a function on a symplectic manifold~up to multiplication by a function locally constant on th
level sets of the Hamiltonian function!.

Example: A hypersurface in a symplectic manifold is foliated~locally fibered! into the
characteristics—lines tangent to the vectors of the Hamiltonian fields, defined by all funct
constant along the hypersurface.

The characteristics are independent of the choice of the equation defining the hypers
Hence the structure of the decomposition of the hypersurface into characteristics~which may be
very complicated as is well known from celestial mechanics and Hamiltonian chaos theory! is a
symplectic-topological invariant of the hypersurface. It is also an important source of symp
invariants of domains bounded by hypersurfaces in symplectic space.

The Hamiltonian vector fields form a Lie algebra—a subalgebra of the algebra of a
vector fields with the usual operation—thePoisson bracket. The Hamiltonian functions also form
a Lie algebra, whose operation is also called the Poisson bracket.

The Poisson bracket of two functions is the derivative of one of them along the Hamilto
vector field of the other. The algebra of functions is a central extension of the algebra of field~the
center consisting of the locally constant functions!.

The flows of the Hamiltonian vector fields preserve the symplectic structure. If the
preserves the symplectic structure the field is locally a Hamiltonian field, but globally the H
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tonian function may be multivalued. The Lie algebra of Hamiltonian vector fields is a subalg
of the algebra ofsymplecticvector fields preserving the symplectic structure.

Example: The translations of the torus preserve the area element and hence the co
~translation-invariant! vector fields on the torus are symplectic. However they are not Hamilto
vector fields.

The flows of Hamiltonian vector fields on the torus are precisely those consisting of
preserving and center-of-mass preserving diffeomorphisms. They form the commutator suba
of the Lie algebra of symplectic vector fields. The quotient space is the one-dimensional
mology space of the symplectic manifold.

D. Symplectic algebraic and analytic geometry

We now return to the Lagrangian submanifolds of a symplectic manifold. According
general principle of Weinstein, in symplectic geometryevery important objectis a Lagrangian
submanifold.

Example: A symplectomorphism between two symplectic manifolds is defined by its gr
which is a submanifold of middle dimension in the Cartesian product of the two manifolds. E
the product with a symplectic structure, which is the difference of~the pullbacks of! the given two
structures. The graph of a diffeomorphism is then a Lagrangian submanifold of the product
only if the diffeomorphism is symplectic.

Remark: Replacing here the graph byany Lagrangian submanifold of the product we obta
an interesting generalization of the notion of symplectomorphism:symplectic correspondence. In
many problems it is also useful to considerLagrangian varietieswith singularities.

The algebraic~or better analytic! geometry of symplectic manifolds and of their subvariet
should be based on the interaction of two algebra structures in the space of functions: the o
commutative multiplication and the Poisson bracket Lie algebra structure. Many facts, kno
the regular case of transversal submanifolds, should extend to the general situation.

One motivation for this extension is the remark~due to Melrose, who had based his works
diffraction singularities near gliding rays! that the geometry of submanifolds of a Riemanni
manifold can be considered as the symplectic geometry of pairs of submanifolds in a sym
manifold.

Example: Consider the case of a hypersurface in the usual Euclidean space~the cases of a
curve in a plane and of a surface in the three-space being quite instructive!.

The Riemannian metric can be viewed as the hypersurfacep251 of momenta of length one in
the phase space~space of the cotangent bundle of the Euclidean space!.

Consider a hypersurface in Euclidean space~think of the boundary of the obstacle in th
diffraction problem!, say F(q)50. This equation defines a second hypersurface in the p
space.

The differential geometry of the boundary surface in Euclidean space can be read fro
symplectic geometry of this pair of hypersurfaces in phase space~think of the asymptotic direc-
tions and the parabolic points on a surface in the usual three-space and try to understan
meaning in the symplectic geometry of the pair!.

E. Lagrangian singularities

Lagrangian singularities are the singularities of Lagrangian mappings. The simplest exa
are the projections of Lagrangian submanifolds in phase space to configuration space. The
mapping of Euclidean differential geometry is also a Lagrangian mapping~of a hypersurface to the
unit sphere!.

Definition: A Lagrangian fibrationis a fibration whose fibers are Lagrangian submanifol
Example: The cotangent bundle is a Lagrangian fibration.
Theorem: All Lagrangian fibrations of the same dimension are locally symplectomorph

each other (locally means here ‘‘in a neighborhood of any point of the symplectic manifold’’)
hence are locally symplectomorphic to the cotangent bundle of Euclidean space.
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Remark: The fibers of a Lagrangian fibration~or foliation! have naturallocal affine struc-
tures, intrinsically defined by the symplectic geometry of the fibration. This is crucial for
theory of integrable Hamiltonian systems and is very close to the Liouville theorem on integ
systems, which claims that the smooth compact common level manifolds of commuting H
tonian functions are nested tori~see Fig. 7 and Ref. 18!.

Suppose now that we have a Lagrangian submanifold in the space of a Lagrangian fib
Example: Consider a hypersurface in an Euclidean space, say an ellipsoid. All the

vectors of the lines normal to the hypersurface form a Lagrangian submanifold in the cota
bundle space of Euclidean space~we identify the tangent and cotangent vectors in an Euclid
space!.

One may think of particles emanating from the surface along its normals with fixed en
Their states form our Lagrangian submanifold. Consider thepositionsof these particles. They ar
clustered along some hypersurface in Euclidean space—thecaustic.

Definition: The causticof a Lagrangian submanifold of a Lagrangian fibration space o
some base manifold is the set of critical values of the projection of the Lagrangian submanif
the base manifold along the fibers. The singularities of the restriction of the projection t
Lagrangian submanifold are calledLagrangian singularities.

Example: The caustic of the Lagrangian submanifold constructed in the preceding exam
the focal set of the initial hypersurface. For instance, let the initial submanifold be an ellipse
Euclidean plane. In this case the caustic is an astroid~Fig. 8!. It has four cusps.

The classical four-vertex theorem guarantees the existence of four cusps on the caustic
by any generic convex curve in the Euclidean plane. The general results of symplectic geo
show that it is not a coincidence and is not a peculiarity of theEuclideangeometry of the plane

We might have started from a curve in the plane with a different Riemannian metric.
Lagrangian variety is well defined, and its caustic still generically has four cusps. The Riema
metric might be deformed to a Finsler metric; there will still be four cusps. And there might b
metric at all.

FIG. 7. The nested tori of an integrable system.

FIG. 8. The caustic of an ellipse.
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The classification of generic singularities of caustics is at present known in spaces of d
sions smaller then six. In these dimensions the classification is discrete: there is only a
number of singularity classes~up to fibered symplectomorphisms, see Ref. 19!.

These singularities are classified by the simple Lie algebras,Ak , Dk , Ek , wherek is at most
n11 if the dimension of the base manifold isn. All singularities of generic caustics in the thre
space are shown in Fig. 9.

From dimension 6 on the classification of the Lagrangian singularities up to symplecto
phisms~or even of caustics singularities up to the diffeomorphisms! is no longer discrete. The
topologicalclassification is discrete in any dimension. But it is unknown even in dimension

F. Unimodular singularities, strange duality, and mirror symmetry

The nondiscrete classification of the Lagrangian singularities of higher dimensions re
algebraically appealing, at least at the beginning, when they depend on few parameter
classification ofunimodular singularities~whose classes depend on one parameter! consists of
several series of one-parameter families of singularities and of 14 sporadic families.

The 14 sporadic families of exceptional unimodular singularities correspond to the 14 e
tional triangles on the Lobachevski plane. These 14 triangles have anglesp/p,p/q,p/r , where
~p,q,r! is one of the 14 triples

~239!~247!~336!~256!~345!~444!~238!~246!~335!~255!~344!~237!~245!~334!.

Among the 14 unimodular singularities a strange duality was discovered long ago.20 This duality
~permuting the so-calledGabrielov numbersandDolgachev numbersof the same singularity! is an
involution on the set of the 14 triangles.

I had called this dualitystrangebecause it is hard~impossible?! to guess which triangle is dua
to which. Try to find the rule, knowing the answer: the dual pairs are

~239!↔~334!,~247!↔~335!,~238!↔~245!,~256!↔~344!.

Each of the remaining six triangles is dual to itself. The sum of all the six Gabrielov and
gachev numbers is equal to 24 for any of the 14 singularities.

It was recently discovered that this strange duality is a manifestation of the so-calledmirror
symmetryof three-folds studied by physicists. It is perhaps the first manifestation of this sym
try, which permutes the Hodge numbers of different-dimensional cohomologies and which it
strange and rather poorly understood.

More general cases of mirror symmetries~for hypersurfaces in the so-calledtoric varietiesof
arbitrary dimension—not only of dimension 3 of physicists—see Ref. 21! are the manifestations o
the Legendre duality of convex geometry~applied to the Newton polyhedra!—the duality between
a function and its Legendre transformation, that we shall describe below.

FIG. 9. The swallowtail, the purse, and the pyramide.
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The theory of mirror symmetry for the toric varieties themselves is closely related to
symplectic fixed point and Lagrangian intersections theories. The multiplication in Floer
cohomology, studied in the framework of symplectic topology by Givental,45 is now calledquan-
tum cohomologyand even just ‘‘cohomology’’ by physicists.

G. Simple Lagrangian singularities and simple Lie algebras

The classification of Lagrangian singularities remains discrete in higher dimensions
neighborhoods of certain ‘‘simplest’’ singularities, which are generically stable.

These singularities are calledsimple and are classified by the classical Dynkin diagra
Ak ,Dk ,E6 ,E7 ,E8 ~Fig. 10! of the simple Lie algebras, of quivers theory, etc.@classifying also the
regular polyhedra in the usual three-dimensional Euclidean space and the discrete subgroup
Spin~3! group SU~2!#.

The complete list of simple Lie algebras contains also some diagrams with double and
lines,Bk ,Ck ,F4 ,G2 . These correspond to theboundary singularitiesof caustics~in the cases with
double lines!.

Example: The caustic singularityF4 occurs on the focal set of a surface with boundary in
usual Euclidean three-space. The focal set of a surface with boundary consists of three c
nents. One is the focal set of the surface, the other of the boundary curve and the third (B2 in Fig.
11! is formed by the normals to the surface at the points of the boundary curve.

TheF4 singularity, shown in Fig. 11, occurs on the caustic near the focal point of the su
at a point of the boundary curve where this curve is tangent to the principal curvature direct
the surface.22

FIG. 10. The Dynkin diagrams.

FIG. 11. The caustic of the groupF4 .
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H. Simple Lie algebras, Euclidean reflection groups, and the hypericosahedron

The list of the simple Lie algebras forms a part of a larger list of the CoxeterEuclidean
reflection groups. A Euclidean reflection is an orthogonal transformation preserving exactly
hyperplane pointwise~called itsmirror!. The reflections in a finite set of mirrors may generat
finite or an infinite group.

Example: Two mirrors in the plane define a finite reflection group if and only if the an
between them is commensurable with 2p. This reflection group is then the symmetry group o
regularp-gone, denoted byI 2(p).

Remark: The Dynkin diagram provides a short description of a reflection group in term
the angles between the generating mirrors.

Each vertex represents a normal vector of a mirror. Two vertices are connected by a
line if the vectors form an angle of 120 degrees, by a double line if the angle is 135 degree
by a triple line if it is 150 degrees.

Example: The diagramA25.—. represents two mirrors forming an angle of 120 degree
the plane. The corresponding reflection group is the symmetry group of an equilateral trian

The Euclidean reflection groups were classified by Coxeter. Most of them are crystallog
~preserving some lattice!.

Example: The crystallographic plane reflection groups areI 2(p) with p52,3,4,6~Fig. 12!.
The symmetry groups of regular pentagons, heptagons, octagons, and so on are not cr
graphic~they are related to the quasicrystals of physicists!.

There exists a natural bijection between the set of crystallographic irreducible Eucl
reflection groups~considered together with their lattices! and the set of the simple~complex! Lie
algebras~listed above!: the reflection groups are the so-called Weyl groups of the algebras.

The remaining list of the noncrystallographic irreducible Euclidean reflection groups con
of the seriesI 2(p), p55,7,8,9,... and of the two sporadic groupsH3 ,H4 .

H3 is the symmetry group of the regular icosahedron in three-space.H4 is the symmetry
group of the regular hypericosahedron in the Euclidean four-space. The hypericosahedron h
vertices and 600 tetrahedral faces. Since it is not described in the Bourbaki book on C
groups, I give here its construction.

Consider the 60 rotations preserving the icosahedron. They form a group. The Spin~3! group
SU~2! is the double covering of the rotation group SO~3!. The icosahedron rotation group
covered bythe binary icosahedron groupconsisting of 120 elements of SU~2!.

The group SU~2! is the 3-sphereS3 in R4. The 120 elements of the binary icosahedron gro
are the 120 vertices of the hypericosahedron, which is their convex hull. The hypericosa
symmetry groupH4 acts on these vertices as the product of the left and of the right translatio
the binary group. Hence, the Euclidean reflection groupH4 has 14 400 elements.

FIG. 12. The crystallographic and noncrystallographic plane reflection groups.
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I. Simple Lagrangian singularities and Euclidean reflection groups

The full list of Coxeter Euclidean reflection groups, crystallographic or not, provides
answer to the following problem on Lagrangian mappings in symplectic geometry. Consi
Lagrangian subvariety in the space of a Lagrangian fibration and project it to the base
fibration along the fibers. Any such projection is called aLagrangian mapping.

Definition: A singularity of a Lagrangian mapping issimple if the set of singularities into
which it can be transformed by a small deformation of the fibration is finite.

Givental classification theorem.23 There exists a natural bijection between the simple sin
larities of Lagrangian mappings of Lagrangian varieties and irreducible Coxeter groups. A
ety can have a simple projection singularity only if it is (locally) a product of a smooth man
with a curve.

The A,D,E groups correspond to smooth curves (and hence to the projections of s
Lagrangian manifolds). The groups with double lines in the Dynkin diagram correspond t
curves with an ordinary double point and to the boundary singularities. The remaining gr
correspond to the curve singularities x25yp ~where p54,3,3,q22 for G2 ,H3 ,H4 ,I 2(q)).

The Coxeter groups and their corresponding crystalline and quasicrystalline structur
crucial for studying the geometry of wave fronts and caustics in the corresponding proble
symplectic and contact geometry.

They control also the asymptotics of the integrals of the short-wave approximations an
ramification of the corresponding special functions in the complex domain. The Coxeter
represents themonodromy groupand the crystallographic lattice is the integer homology gro
generated by thevanishing cycleson a complex hypersurface.

To explain the relations between the Coxeter groups and Lagrangian singularities one
some basic notions of contact geometry.

The relation between contact geometry and symplectic geometry is similar to the re
between linear algebra and projective geometry. Any fact in symplectic geometry can be f
lated as a contact geometry fact and vice versa. The calculations are simpler in the sym
setting, but their geometric content is better seen in the contact version.

The functions and vector fields of symplectic geometry are replaced by hypersurfaces a
fields in contact geometry. Contact geometry is almost unknown in the mathematical p
community in spite of the fact that it provides the mathematical basis for geometrical optic
Gibbs thermodynamics and for Huygens general theory of wave propagation, and for o
control theory.

III. CONTACT MANIFOLDS AND THEIR LEGENDRIAN SUBMANIFOLDS

A. Contact structures

Contact manifolds are the odd-dimensional twins of symplectic manifolds. Each contact
fold has a symplectization, which is a symplectic manifold whose dimension exceeds that
contact manifold by one.

Symplectic manifolds have contactizations whose dimensions exceed their own dimensi
one.

Definition: A contact structureon a manifold is a nondegenerate field of tangent hyperpla
The nondegenericity condition can be formulated in terms of a differential 1 form, which lo
defines the field as the field of its zeros. Namely, the restriction of the derivative of this forma to
each hyperplanea50 should be a nondegenerate bilinear form~a linear symplectic structure!.
Symplectic spaces are even dimensional. Hence contact structures may exist only o
dimensional manifolds.

If a manifold has a serious reason to be odd dimensional it usually carries a natural c
structure.

Example: A contact elementat a point of a smooth manifold is a hyperplane in the tang
space of the manifold at this point~called thecontact pointof the element!.
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The manifold of all the contact elements on a given base manifoldB is called thecontact
element bundle space PT* B. The space of the contact element bundle,PT* B, fibers over the
base manifoldB. Each fiber is the manifold of contact elements at some point of the base m
fold.

Over a base manifoldB of dimensionn, these fibers are projective spaces of dimens
n21—the projectivized cotangent spaces ofB. Thus the contact element space is the projectivi
cotangent bundle. Its dimension is always odd; namely, 2n21.

Example: The manifold of contact elements of the plane is three-dimensional: it is dif
morphic to the open filled torusS13R2.

Definition: The natural contact structureof the manifoldM5PT* B of contact elements on
some base manifoldB is its tautological structure, namely the field of preimages of con
elements under the projection ofM to B.

Hence the natural contact structure on the manifoldM of contact elements ofB is the field of
tangent hyperplanes ofM, defined by the followingskating condition:the velocity of a contact
element belongs to the hyperplane of the field if and only if the velocity of the point of con
belongs to the contact element.

In other words, the contact element~the skate! may rotate around the point of the contact b
may not move transversally to its direction.

Theorem: The skating condition defines a contact structure on the manifold of contact
ments.

This example explains the terminology: the manifold of contact elements is a typical exa
of a contact manifold.

Contact Darboux theorem.All contact manifolds of the same dimension are locally cont
tomorphic.

Moreover, any point of a connected contact manifold can be carried to any other by a fl
contactomorphisms.

The manifold of contact elements provides a local model for any contact structure
manifold of suitable dimension.

B. Projective duality and Legendre transformation

Consider the manifold of contact elements in projective space.
Theorem: It coincides with the manifold of contact elements of the dual projective spac

PT* Pn5PT* Pn* .

Indeed, a contact element in projective space is a pair, consisting of a point of the space a
hyperplane containing this point. The hyperplane is a point of the dual projective spacePn* and
the point of the original space defines a contact element of the dual space.

Hence the manifold of contact elements of a projective space is the total space oftwo fibra-
tions: the first over the original projective space and the second over the dual one~Fig. 13!. Each

FIG. 13. The projective duality.
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of these fibrations is the projectivized cotangent space of some base manifold.
Thus the manifold of contact elements of the projective space hastwo natural contact struc-

tures. The first is the natural contact structure of the manifold of contact elements of the o
projective space. The second is the natural contact structure of the manifold of contact elem
the dual projective space.

Theorem: Both contact structures of the manifold of contact elements of projective s
coincide.

This theorem is a geometrical statement and it has a geometrical proof with no comput
at all. Hint: consider the product of two identical projective spaces and the involution perm
them.~I leave to the reader the pleasure to discover this geometrical proof.!

Projective duality associates to a hypersurface in projective space the dual hypers
formed by the tangent hyperplanes of the original hypersurface. This dual hypersurface lives
dual projective space.

From the theorem above it follows easily and with no calculations thatthe dual of the dual
hypersurface is the initial hypersurface~at least if both are smooth for instance for the bounda
of convex bodies!. Hint: any nonvertical Legendrian submanifold of the space of contact elem
of a manifold is, at least locally, the manifold of tangent planes of a hypersurface in the
manifold, see below the definition and examples of Legendrian submanifolds!.

The affine or coordinate version of the projective duality is called theLegendre transforma-
tion. Thus contact geometry is the geometrical base of the theory of Legendre transformatio
hence of all the theories based on it: thermodynamics, optimal control theory, etc.

C. Manifold of 1-jets of functions

When working with the projective space one has two ordinary spaces in mind: the affine
~to which one has to add points at infinity! and the vector space one dimension higher~whose
one-dimensional subspaces are the points of the projective space!.

The contact structure of the manifold of contact elements corresponds to the s
approach—to the projectivization of a higher-dimensional symplectic manifold, namely o
space of the cotangent bundle. The manifold of contact elements has one dimension less t
even-dimensional phase space.

But to obtain an odd number one may as welladdone to an even number. Thus we obtain t
second very important example of a natural contact structure.

Definition: A 1 jet of a function is its Taylor polynomial of degree one~i.e., a triple consisting
of a point of the manifold where the function is defined, of the value at that point and o
differential of the function at that point!.

The dimension of the space of all 1-jets of all functions on a given manifoldV of dimension
m equals 2m11. This is an odd number and hence the space of 1-jetsT* V3R should carry a
natural contact structure.

Definition: A 1-graphof a smooth function is the submanifold of the manifold of the 1-jets
functions, consisting of the 1-jets of this function at all points.

The dimension of the 1-graph of a function on a manifold of dimensionm is m.
Theorem: The tangent spaces of the one graphs of all functions on a manifold, pa

through a given point of the manifold of the 1-jets, are contained in a hyperplane tangent
manifold of 1-jets at this point and fill this hyperplane densely.

Indeed, in the standard local coordinates (qi for the argument,z for the value,pi for the partial
derivatives! in the space of 1-jets the hyperplane is given by the equation

dz5p1 dq11¯1pmdqm .

Theorem: The hyperplanes defined in the preceding theorem form a contact structure.
This structure is frequently used as the local normal form of any contact structure

coordinates (p,q;z) are calledDarboux coordinates.
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Example: The contact manifold of 1-jets of functions on the unit sphereSm is naturally
contactomorphic to the manifold of cooriented contact elements of the Euclidean spaceRm11

containing the sphere.
To obtain a 1-jet from a contact element, consider the scalar product with the point o

space at which the element is based, as a function on the sphere. Consider the point of the
whose radius vector is the coorienting normal unit vector of the element. The image of the el
in the space of 1-jets is the 1-jet of the scalar product function at the point we have constr

The contactomorphism that we have constructed is essentially thehodograph transformation,
very useful in many problems of symplectic and contact geometry. It is missing in the textb
I know. This paper may even be the first explicit description of this important contactomorp

It is nontrivial and very useful already in the casem51, providing two different geometrica
descriptions of the standard contact structure of the solid torusS13R2.

D. Legendrian submanifolds

Legendrian submanifolds of contact manifolds are the twins of the Lagrangian subman
in symplectic manifolds. The corresponding Weinstein principle should say that all intere
objects in contact geometry are Legendrian submanifolds.

Definition: An integral submanifold of the hyperplane field of a contact structure is ca
Legendrian, if it has the maximal possible dimension~m in a contact manifold of dimension
2m11).

Example: The 1-graphs of functions are Legendrian submanifolds of the manifold of 1-je
functions. Any nonvertical Legendrian submanifold of the manifold of 1-jets is~at least locally!
the 1-graph of a function.

The general Legendrian submanifolds of this contact manifold may be considered as
alized functions, in general multivalued. This generalization is highly productive; for instance
can extend the Morse inequality to such generalized functions and in this way prove the usu
generalized symplectic fixed point theorems.

Example: The contact elements tangent to a given hypersurface in a manifold form a
endrian submanifold in the manifold of all contact elements.

Any fiber of the bundle of contact elements is also a Legendrian submanifold of that bu
Interpolating the two cases, consider the contact elements, tangent toany given submanifold

of the base manifold. These elements always form a Legendrian submanifold of the projec
contact bundle space,independently of the dimension of the submanifold.

In many cases this also holds for subvarieties.
Example: The elements tangent to the semicubical parabolax25y3 form a smoothLegend-

rian curve in the space of contact elements of the plane.

E. Legendrian fibrations and Legendrian singularities

Legendrian mappings are the contact brothers of Lagrangian mappings of symplectic
etry.

Definition: A Legendrian fibrationis a fibration whose fibers are Legendrian. ALegendrian
mappingis the projection of a Legendrian submanifold of the space of a Legendrian fibrati
the base of the fibration~along its Legendrian fibers!.

Example: The projectivized cotangent bundle is a Legendrian fibration~sending the bundle o
contact elements of a base manifold to the base manifold!.

This example is universal: any Legendrian fibration is locally contactomorphic to this on~in
a neighborhood of a point of the fiber space!. The ~local! projective structures of the fibers ar
intrinsically defined by the contact structure and the fibration.

Consider a smooth hypersurface in a projective space. Its tangent hyperplanes define
elements in the projective space. They form a Legendrian submanifold in the manifold of c
elements of the projective space.
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Project this Legendrian submanifold to the dual projective space along the fibers of the s
Legendrian fibration of the manifold of contact elements of the projective space.~This second
fibration sends a contact element to its hyperplane. It is a Legendrian fibration by the proj
duality theorem.!

Thus themapping of a hypersurface onto the variety of its tangent hyperplanes is Legend.
In fact this example is~locally! universal:almost any Legendrian mapping is locally conta

tomorphic to the mapping of this example. The exceptions are infinitely degenerate. They will
discussed below.

F. Fronts of Legendrian mappings

The caustic of a Lagrangian mapping in symplectic geometry is a hypersurface in the
space of a Lagrangian mapping. In the base space of a Legendrian mapping there al
distinguished hypersurface.

Definition: The image of a Legendrian mapping is called itsfront. As a rule the front is a
hypersurface in the base space of a Legendrian fibration.

Example: The dual hypersurface of a hypersurface in a projective space is a front. It i
projection of the manifold of contact elements of the projective space tangent to the hypers
along the fibers of the second Legendrian fibration~see Fig. 13!.

Corollary: The graph of the (multivalued) Legendre transformation of a smooth functio
the front of a Legendrian mapping.

In fact the last examples provides the local models of almost all Legendrian singularities
exceptional singularities of Legendrian mappings which are not contactomorphic to those o
examples form a set of codimension infinity in the space of Legendrian mappings.

Example: The Legendrian collapsesends the Legendrian manifold of contact elements t
gent to a submanifold which is not a hypersurface~for instance it might be a point! to the base.
The image is not a hypersurface~it is the original submanifold and even may be one point!.

This collapse is an exceptional Legendrian mapping. Under a small generic perturbation
Legendrian manifold the Legendrian mapping becomes generic. Figure 6 shows what hap
a point front in the plane under some generic perturbations.

G. Moving fronts and the Huygens principle

The front of a nonexceptional Legendrian mapping is a hypersurface with singularities
term front originates from the following.

Example: Consider a hypersurface in a Euclidean or Riemannian space. Suppose, th
hypersurface isco-oriented, i.e., equipped with a field of normal vectors.

The t-equidistant hypersurfaceof the given hypersurface is the set of endpoints of the
orienting normal vectors of lengtht ~in the Riemannian case—of the endpoints of the geod
segments of lengtht normal to the hypersurface at their initial points!.

One may think of the propagation of some perturbation~light, sound, epidemy! with velocity
one. If the initial perturbation was bounded by an initial hypersurface, the front of its propag
at timet will be bounded by thet-equidistant hypersurface~at least for the case of the propagatio
from a convex body in a Euclidean space!.

Huygens theorem 1.The equidistant hypersurfaces are fronts of Legendrian mappings.
Indeed, consider thegeodesic flow of cooriented contact elements. This one-parameter grou

of diffeomorphismsgt of the manifold of cooriented contact elements of the given Euclidea
Riemannian manifold sends each contact element normal to a geodesic to the contact e
normal to the same geodesic at the distancet along the geodesic from the original point in th
direction defined by the coorientation.

Huygens theorem 2.The geodesic flow of cooriented contact elements preserves the na
contact structure of the manifold of contact elements.
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This deep result of contact geometry has been rediscovered many times under different
in the calculus of variations, optimal control, and nonlinear programming theories. I ther
leave the pleasure of finding a geometrical proof to the reader.

The first Huygens theorem follows, since the contactomorphismgt of the flow send the
Legendrian submanifold of contact elements tangent to the initial hypersurface to the c
elements ‘‘tangent’’ to itst equidistant.

The generic singularities of propagating fronts are thus the same as the singularities
graphs of multivalued Legendre transforms of generic smooth functions.

Example: one-dimensional fronts. The only generic singularity of one-dimensional front
the semicubical cusp point.~Of course there also exist transversal intersections of diffe
branches of the front, which we shall not discuss here.!

One can see the cusps on the equidistants of an ellipse~Fig. 6! and on the curve projectively
dual to a generic smooth plane curve. The cusp of the dual curve corresponds to the infl
point of the original curve~see Fig. 14!.

Example: fronts in three-space.The generic singularities are shown in Fig. 15: the semi
bical cusped edge and theswallowtail surface, studied by Kroneker.

Theorem: The generic singularities of fronts of dimension n smaller then six are simple (
no moduli) and are classified by the simple Lie algebras Ak ,Dk ,Ek , k<n11.

In higher dimension moduli~continuous classification parameters! occur, but simple Legend
rian singularities still correspond to the simple Lie algebrasA, D, andE.

H. Euclidean reflection groups and Legendrian singularities

We now explain the relation between fronts and reflection groups.
Definition: The discriminantof a Euclidean reflection group is the hypersurface of singu

orbits in the manifold of orbits of the group.
Example: Consider the groupA2 generated by the reflections of the plane in three symme

cal mirrors~Fig. 16!. A generic orbit consists of six points. It is convenient to take as our plane
planex11x21x350 in three-space.

FIG. 14. The cusp dual to an inflection.

FIG. 15. The generic singularities of a front in the 3-space.
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The group is then generated by the transpositions of two coordinates~reflections in the planes
xi5xj ). It is the group of permutations of the three coordinates. The orbit is specified b
unordered triple of coordinates. The manifold of orbits is the set of polynomialsx31ax1b whose
roots are these coordinates.

The singular orbits consist of fewer elements then the others. They are the orbits of poi
the mirrors. The corresponding polynomials have double roots.

The polynomials with double roots form a semicubical parabola 4a3127b250 on the plane
of polynomials. This plane curve is the discriminant of the reflection groupA2 . It has a semicu-
bical singularity.

Theorem: The discriminant of a Euclidean reflection group of type A, D or E is the fron
a generic Legendrian mapping at a simple singularity. All fronts of simple generic Legen
singularities are locally diffeomorphic to these discriminants (or to unions of transversal bran
having such singularities).

I. Caustics of reflection groups

Having associated to any Euclidean reflection group a front, one can also associate
caustic.

Example: the caustic singularity A3 . The manifold of orbits of the reflection groupA3 ~which
is the group of symmetries of a tetrahedron! is the space of polynomialsx41ax21bx1c. We
project this space along thec axis to the plane with coordinates~a,b!.

The discriminant hypersurface in this example is the swallowtail surface~Fig. 17!. It has two
types of singularities: a cusped edge and a self-intersection line.

FIG. 16. The mirrors, the orbit space, and the discriminant of the triangle symmetry groupA2 .

FIG. 17. The caustic of the reflection groupA3 as the projection of the cusped edge of its discriminant.
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The projection of the cusped edge to the plane is a semicubical parabola. It is the c
associated to the reflection groupA3 .

In the general case one considers any generic projection of the manifold of orbits alon
family of curves~the final result does not depend on this choice up to a local diffeomorphi!.
The higher-dimensional cusped edgeof the discriminant is the variety of orbits of points belon
ing to at least two nonorthogonal mirrors.

Definition: The caustic of a reflection groupis the projection of the cusped edge of th
discriminant along a generic family of lines.

J. Caustics and waves propagation

In physical terms the caustic is described as the hypersurface swept by the cusped e
moving fronts~Fig. 18!.

The propagation of fronts can be described in terms of space-time as a single hypersur
the union of the momentary fronts belonging to different isochrone hypersurfacest5const. This
hypersurface~for the case of a simple singularity corresponding to a reflection group! is locally
diffeomorphic to the discriminant of the reflection group.

The cusped edges of the momentary fronts sweep the cusped edge of the discriminant
surface. Its projection into physical space along the world lines is the surface in physical
swept out by the cusped edges of the momentary fronts. Thus the generic lines of the mathe
definition of the caustic of a reflection group are the space-time world lines of the phy
description.

The noncrystallographic Euclidean reflection groups appear in this theory as the descrip
the propagation of fronts in a manifold with a boundary, for instance in the problem of the fa
bypassing of an obstacle bounded by a hypersurface in ordinary Euclidean space.

Example: The fronts in the problem of bypassing of an obstacle bounded by a smooth
in the Euclidean plane are the Huygens evolvents~or involutes! of the boundary curve. At a
generic inflection point of the boundary they have a peculiar behavior. The surface swept
these moving evolvents in three-dimensional space time is diffeomorphic to the discrimina
the symmetry group of the icosahedron~Fig. 19!.

The hypericosahedron arises from the bypassing of a generic obstacle in three space.24

IV. FIRST STEPS OF SYMPLECTIC AND CONTACT TOPOLOGY

A. Lagrangian intersections and symplectic fixed points

Consider the zero section of the cotangent bundle space of a manifold as a Lagr
submanifold of this symplectic space. We shall intersect this zero section with a neighb
Lagrangian submanifold.

FIG. 18. The sweeping of a caustic by the cusped edges of the fronts.
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Definition: A Lagrangian submanifold of a cotangent bundle space is exact, if the action
p dq on it is exact.

Example: Consider the Lagrangian curvep5 f (q) on the surface of the cylinder@which is the
cotangent bundle space of the circleq mod 2p]. This submanifold is exact if and only if the mea
value of f equals zero.

If the original manifold is simply connected, every neighboring Lagrangian submanifo
exact.

Suppose that the perturbed exact manifold is a section of the cotangent bundle. Then i
graph of the differential of a function. The intersection points of the perturbed manifold with
original zero section are the critical points of this function.

Hence Morse theory bounds the numbers of intersection points of such perturbed exa
grangian submanifolds from below, with the zero section of the cotangent bundle~and hence also
of their mutual intersections!.

B. Quasifunctions

Lagrangian intersection theory is a far-reaching generalization of the Morse bounds to th
of exact Lagrangian submanifolds of the cotangent bundle space which are not sections.4,6,25

Definition: A Legendrian submanifold of the manifold of 1-jets of functions on a comp
manifold is aquasifunctionif it can be connected to the 1-graph of a function by an isotopy in
class ofembeddedLegendrian submanifolds.

Chekanov theorem.The projection of a generic quasifunction to the cotangent bundle sp
intersects the zero section at least b* times, where b* is the sum of the Betti numbers of th
original manifold.

Remark: The embeddings in the definition of quasifunctions cannot be replaced by
immersions. This is clear from Fig. 20.

Both Lagrangian manifolds on the cylinderT* S1 are projections of embedded Legendri
curves in the manifold of 1-jets of functions. The left Lagrangian curve intersects the zero se
while the right one does not intersect it.

The left curve can be continuously deformed into the right one in the class of projectio
closed Legendrian immersed curves. However, the obvious deformations of this kind c
moments of self-intersection at some intermediate time.

The Chekanov theorem shows that such self-intersections are unavoidable. The left L
rian curve is a quasifunction, but the right one is not. Any path connecting these curves

FIG. 19. The discriminant surface of the icosahedron symmetry groupH3 and the evolvents of a curve with an inflectio
point.
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infinite-dimensional space of closed Legendrian immersed curves contains curves with
intersections.

The Lagrangian intersection theory is closely related to the symplectic fixed-point pro
Indeed, fixed points are points of intersection of the graph of a symplectomorphism wit
diagonal of the Cartesian square of the symplectic manifold. Both the graph and the diago
Lagrangian submanifolds of the product.

A neighborhood of the diagonal is symplectomorphic to its cotangent bundle space. The
is exact~in this neighborhood! if the symplectomorphism is exact. Hence the symplectic fix
point theorem follows from the Lagrangian intersection theorem, provided that the symplect
phism does not move any point too far from its original place.

C. Neutral quadratic forms and their perturbations

All known proofs of the theorems on Lagrangian intersections and symplectic fixed p
depend on a generalization of the Morse theory of geodesics invented by Rabinowitz.26

In the classical Morse theory of geodesics the infinite-dimensional variational proble
approximated by a set of finite-dimensional ones. This approximation is based on the fact t
functional one wishes to study is a perturbation of a positive definite quadratic form.

Moreover, this form becomes steeper and steeper when we travel to the higher harmo
the Fourier representation of the elements of our infinite-dimensional space, while the pertur
remains small in some sense~or at least grows slower then the form at high harmonics!.

This makes it possible to neglect the higher harmonics completely and to deduce inform
on the critical points in the infinite-dimensional variational problem from the finite-dimensi
Morse theory of the approximated problem.

The new trick invented by Rabinowitz is to apply the same reasoning to quadratic f
which are not positive definite, but are as far from it as possible~forms having as many positive
squares in the normal form as negative ones!. I shall call themneutral forms~leaving this term
with no exact definition!.

Example: Consider the integral of the action formp dq along the mappings of the standa
circle to the plane with coordinates~p,q!.

To parametrize the space of such mappings use Fourier series. Introduce complex n
z5p1 iq on the plane, and representz(t) as the sum of Fourier harmonicsake

ikt. The complex
coefficientsak are the coordinates in our infinite-dimensional space.

The integral of the action form is a quadratic form. A simple calculation shows that it eq
the sum of the termskuaku2/2

Hence the harmonics with positive wave numberk contribute positive squares, and those w
negativek—negative squares~as it should be since the integral is the area and positivek corre-
sponds to traversing the oriented boundary of the dish in the positive sense!. We see also that the
quadratic form is steeper in the directions of the higher harmonics, as required.

Thus, the nonperturbed neutral form has the desired properties. The fact that the pertu
analysis can be reduced to a finite dimensional problem~neglecting higher harmonics correspon
ing to large positive and large negative wave numbers! is the infinite-dimensional version of th

FIG. 20. A quasifunction and a nonquasifunction.
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Hadamard–Perron–Grobman–Hartman–Anosov theorem on the dichotomy of the phase s
a vector field at a stationary saddle point, which is the main fact of the hyperbolical theo
dynamical systems.

The Lyapunov idea of structural stability of the attraction, which is the basis of the clas
elliptic Morse theory, is replaced in the new theory by structural stability of the neutral sadd
modern dynamical systems theory.

D. Lagrangian intersections, Floer homology, and the Casson invariant

The developments of the theory of Lagrangian intersections led Floer to the eightFloer
homologygroups of the three-dimensional homology spheres.27,28

The idea behind it is that the critical points of a function on a manifold generate the M
complex, providing the Betti numbers of the manifold. Lagrangian intersections generate c
points of a functional on an infinite-dimensional manifold.

Under certain conditions one can associate to these critical points a generalized Mors
plex and its homology. To a homology 3-sphere one can associate certain Lagrangian in
tions, and the corresponding homology is an invariant of the homology sphere.

In classical Morse theory, the dimension of the cycle associated to a critical point is the
of the Hessian of the function. In the Floer theory both positive and negative indices are in
and the dimension is defined only modulo eight.

Floer homology is only defined for three manifolds. One may speculate that there should
higher-dimensional versions, which might be invariants of contact manifolds of dimension
21 rather than of smooth manifolds.

Example: The Euler characteristic of Floer homology is the Casson invariant of a homo
3-sphere~it counts representations of the fundamental group with appropriate signs!.

The knot of a critical point of a holomorphic function is the intersection of its critical lev
hypersurface with a small sphere centered at the critical point.

Wahl and Newmann29 have discovered an astonishing relation between the topology of
cal points of holomorphic functions and the theory of Floer homology.

Theorem: For any weighted-homogeneous function of three complex variables, whose k
a homology 3-sphere, the Casson invariant (up to a universal multiplier) equals the signatu
the Milnor fiber.

TheMilnor fiber of a function is the part of a nonsingular level hyper-surface of the func
inside the small ball centered at the critical point. It is a four-dimensional manifold with boun
The boundary is diffeomorphic to the knot of the critical point.

Example: For the functionx21y31z5, the knot is the Poincare dodecahedral space, whic
a homology 3-sphere.

Its Milnor fiber is a four-manifold bounded by a dodecahedral space. The intersection fo
its two-dimensional homology is negative definite and the signature is equal to28.

This form is, with a minus sign, the restriction of the Euclidean scalar product to the la
generated by the vectors with scalar square 2, whose angles are defined by the Dynkin d
E8 .

Remark: The link of theE8 singularity in five variables

x1
21x2

21x3
21y31z550

is homeomorphic but not diffeomorphic to the 7-sphere. This smooth manifold is one of th
Milnor’s exotic spheres. The above simple equation for the Milnor sphere was discovered
Brieskorn.

Unlike the Casson invariant, the signature is defined for any singularity. One may ask wh
the Casson invariant and Floer homology can be defined in this situation.

The knot has a natural contact structure and the Milnor fiber a symplectic structur
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homology is generated by its vanishing cycles, which are Lagrangian spheres. The inters
form is related to the linking of their Legendrian representatives in the knot manifold.

The Morse complex corresponding to this situation, has yet to be constructed.

E. The characteristic class entering in the quantization conditions

The existence of symplectic topology was first appreciated by the mathematical comm
when the characteristic class entering into the quantization conditions was discovered. I chr
it the Maslov classin Ref. 30.

In its simplest version this class is a one-dimensional cohomology class of a Lagra
submanifold of the cotangent bundle space of a manifold. The case where the manifold isRn and
the Lagrangian submanifold lives in the standard symplectic phase vector spaceR2n is very
instructive, even forn51 ~curves in the phase plane!.

The Maslov class associates to any closed curve on a Lagrangian submanifold an inte~its
Maslov index!, which depends only on the homology class of the curve.

The Maslov index of a curve is the intersection index of the curve with the caustic o
projection of the Lagrangian submanifold to the base space of the fibration~to the configuration
space!. It is well defined, because the caustic is a codimension one cycle on the Lagra
manifold and has a natural coorientation.

I shall not give here the definition of this co-orientation~see Ref. 30!. The reader may try to
guess the general definition from the example in Fig. 21.

In physical terms the Maslov index describes the well-known effect of the loss of a quar
a wave at a caustic. This correction to the short wave approximation produces the 1/2 cor
term in the Bohr–Sommerfeld quantization conditions.

These conditions describe the possible energy levels in a one-dimensional quantum sy
terms of the area, bounded by the corresponding phase curve on the phase plane.

In some units~called quanta of actionand depending on the Plank constant! the area~the
integral of the action form! should be an integer if the correction is not taken into account.

The correction due to the existence of the caustic is 1/4 for each crossing of a critical po
the projection in the direction defined by the natural coorientation. Hence the total correction
multiplied by the Maslov index of the phase curve.

Since this index equals two, according to Fig. 21, the number of quanta of action insid
nth energy level should ben11/2. This is the quantization condition.

It was known to physicists that something similar happens in higher dimensions, at le
classically integrable systems. Maslov had tried to formulate it mathematically and had reco
the topological nature of the correction term as well as the importance of Lagrangian subma
in this context.

FIG. 21. The Maslov index.
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By the way, he christened these manifoldsLagrangian because the so-called Lagrangia
brackets~the 18th-century way to describe the symplectic structure! vanish there. In my first work
on symplectic topology3 I called them null-submanifolds~while Sophus Lie, according to Klein
had initially used the termmad manifoldsfor all isotropic manifolds!.

Using the short-wave approximation Maslov had proved in his thesis31 that his coorientation
rule defines a cohomology class modulo four. Reference 30 explains why an integer-value
was initially written as a referee report.

Remark:The short wave or quasiclassical approximation is now usually called the W
~J!-method in physics, by the names of the quantum mechanics people using it. It seems t
method was first published by Carlini~1817!.32 A detailed exposition of the method~later used by
Stokes, Kelvin, and many others in the 19th century! was published by Jacobi~see Vol. 7 of his
Collected Works, pp. 175–245; I am endebted to Professor S. Graffi for these references!.

The Maslov index of a closed curve on a Lagrangian submanifold inR2n can be defined as th
number of complete rotations of the square of the determinant of a unitary matrix.

Consider the complex spaceCn with its usual Hermitean structure. The real part of t
Hermitean structure is a Euclidean structure inR2n, and its imaginary part is a symplectic stru
ture. Both the Euclidean and the symplectic structures are invariant under multiplication byi. The
Lagrangian subspaces are those realn-subspaces orthogonal to their images under multiplica
by i.

Each orthonormal frame in a Lagrangian subspace defines a Hermitian orthonormal fra
the complex space. Consider the unitary operator sending the fixed standard coordinate
frame to the chosen orthonormal frame in a Lagrangian subspace.

Theorem: The square of this determinant is independent on the choice of the frame in a
Lagrangian subspace.

Indeed, change of this frame multiplies the unitary operator by an orthogonal real one
determinant of a real orthogonal operator is11 or 21. Hence, the square of the determina
remains unchanged when the frame changes.

The tangent planes of the Lagrangian submanifold along a given curve are Lagrangian
Theorem: The Maslov index of a curve on a Lagrangian submanifold of the Euclidean p

space is equal to the number of rotations of the square of the determinant corresponding
tangent planes of the Lagrangian submanifold along the curve.

F. Lagrangian and Legendrian characteristic classes

The Maslov class, dual to the caustic of a Lagrangian mapping, can be extended to a
general category of real vector bundles whose complexifications are trivial.3 There exist other
natural generalizations of the preceding construction too.

Definition: The Lagrangian Grassmannianis the manifold of the Lagrangian subspaces o
symplectic real vector-space.

This manifold is the homogenous spaceU(n)/O(n). Each cohomology class of the Lagran
ian Grassmannian defines a characteristic class on the Lagrangian submanifolds ofR2n.

Indeed, any Lagrangian submanifold of the vector-space is sent to the Lagrangian Gra
nian by the Gauss map~which associates to a point of a Lagrangian submanifold the directio
its tangent plane!. The pull-back of a class of the Grassmannian is the characteristic class
Lagrangian submanifold.

Example: The Maslov class is the pull-back of theuniversal Maslov class—the one-
dimensional cohomology class of the Lagrangian Grassmannian, induced from the unit cir
the mapping det2.

The cohomology ring of the Lagrangian Grassmannian is well-known. The multiplica
generators in dimension 4k11 are related to the Pontrjagin classes by the Bott periodicity s

The one-dimensional class is dual to the set of critical points of a Lagrangian mapping
set is generically stratified accordingly to the classes of singularities of caustics of diff
codimensions: cusps or cusped edges, swallowtails, etc.
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One can construct higher-dimensional characteristic classes dual to higher codimensi
grangian or Legendrian singularities. These constructions provide a lot of geometric inform
on the coexistence and interrelations of singularities of caustics and wavefronts.

Example: The number of the swallowtails on a generic caustic of a compact Lagran
3-manifold or on a generic front of a compact two-dimensional Legendrian manifold is eve

Indeed, a swallowtail is an endpoint of the self-intersection line of a caustic or of a f
while at any other singular point on the self-intersection line there meet an even number o

I refer to Ref. 33 for dozens of less trivial examples. Since in dimensions higher than s
still have no explicit description of the natural stratification of the space of Lagrangian or
endrian singularities, the combinatorics related to the Lagrangian and Legendrian singu
defining higher characteristic classes is an immense challenge.

Recent progress on a similar problem in knot theory, due to Vassiliev and Kontsevich, s
that the complicated combinatorics may hide rather simple and universal algebraic structu
fact this progress in knot theory is a byproduct of previous work on global theory of Lagran
and Legendrian singularities.

G. Lagrangian and Legendrian cobordisms

Consider a Lagrangian submanifold immersed in the cotangent bundle of a base manifo
boundary. One can define theLagrangian boundaryof a Lagrangian submanifold, which is
Lagrangian submanifold immersed in the cotangent bundle of the boundary of the base ma
the projection of the intersection of the Lagrangian manifold with the boundary of the phase
along the characteristics of this boundary.

Physically an immersed Lagrangian submanifold represents the short-wave approxima
a wave state inside the base manifold. If the base manifold has a boundary, the wave stat
the base manifold determines the state on the boundary~think of the light inside a room and on it
walls!. Hence, it is natural that the interior Lagrangian manifold defines aLagrangian boundary,
which is an immersed Lagrangian submanifold of one lower dimension.

One may also imagine the restriction of a~multivalued! function to the boundary of its
domain.

Definition: Two immersed Lagrangian submanifolds~of the cotangent bundle space overB!
are ~cylindrically! Lagrangian cobordant, if they form the Lagrangian boundary of a Lagrangi
immersed submanifold, transversally intersecting the boundary of the cotangent bundle ov
cylinder B3@0,1#. In the oriented version, as usual]L5L12L0 , where the minus means th
reversal of orientation, see Fig. 22.

FIG. 22. An ~oriented cylindrical! Lagrangian cobordism.
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Example: Two oriented closed curves immersed in the plane are Lagrange~cylindrically,
orientably! cobordant if and only if they have the same Maslov index and bound equal areas~have
equal action integrals!.

As usually, one defines addition as the disjoint union, and forms the~commutative! semigroup
from cobordism classes. This semigroup is in fact a group.

Example: The group of Lagrangian~oriented cylindrical! cobordism classes of plane curves
Z% R.

The characteristic numbers of cobordant objects are equal. Hence one can use the num
point singularities of Lagrangian mappings to distinguish cobordism classes or use informat
the classes to understand adjacencies of singularities.

There exists a similar theory in contact geometry for Legendrian singularities and cobord
In this case one may simply consider front cobordisms, defined as cobordisms of str
varieties—they faithfully represent the Legendrian cobordisms of immersed Legendrian su
eties in contact spaces.

Theorem: The Legendrian (oriented cylindrical) cobordism group of Legendrian curves
mersed in the standard contact 3-space is isomorphic to the group of integers Z. The generator is
the class of the Legendrian curve whose front is the bow-tie curve, shown in Fig. 23.

I leave to the reader the pleasure of finding the geometric proof of this fact: one can
decompose any front having no vertical tangents into bow-ties. Our fronts have no vertica
gents, since our 3-space with coordinates~p,q;z! carries the standard Darboux contact struct
dz5p dq.

The front lives on the plane with coordinatesz andq. It is nonvertical since its inclinationp
is finite.

The number of bow-ties in the decomposition can be read immediately from the given ge
front. Recall that a generic front has only cusp singularities and that our fronts are co-or
~since they have no vertical tangents!. Choose the coorienting one-formdz2p dq.

Definition: The cusp on an oriented and co-oriented front ispositive (negative)if the orienting
motion leaves the cusp point in the direction to the side where the co-orienting one-fo
positive ~negative!.

Example: Both cusp points of the bow-tie front in Fig. 23 are positive. For the bow-tie w
the opposite orientation~but same co-orientation! the cusps are negative.

Theorem: The difference between the numbers of positive and negative cusps on an or
and co-oriented front is an invariant of the oriented Legendrian cobordisms.

Hence the number of the standard bow-ties to which the front is cobordant is equal to on
of the above difference which is easily computable.

Remark: The difference between the numbers of positive and negative cusps is callethe
Maslov indexof the front~or of the Legendrian curve!. It is indeed the Maslov index of a curve o
a Lagrangian submanifold of the Lagrangian fibration space~to obtain these objects one shou
symplectize the given Legendrian and contact objects!.

The Maslov index is the only oriented Legendre cobordism invariant of oriented and
oriented fronts in the plane.

Theorem: Unoriented Legendrian curves immersed in the standard 3-space form a tr
cobordism group.

FIG. 23. The bow-tie.
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Indeed, the bow-tie cobordism to the void curve is shown in Fig. 24. The Legendrian su
represented by this sequence of transformations of the front, is a Moebius band, bounding
~whose projection is the bow-tie!. Since any front is cobordant to several bow-ties, it is a
cobordant to zero.

The Legendrian cobordism groups are simpler then the Lagrangian ones, since the inv
are discrete~unlike the area in the Lagrangian case!. I quote without proof from the book o
Audin:34

Theorem: The Legendrian oriented cobordism groups of the standard Euclidean spaces
a graded anticommutative ring. This ring (tensored with the rationals to kill torsion) has one
multiplicative generator in degree4k11 for each k50,1,2... .

The unoriented Legendrian cobordism groups form the ring

Z2@x5 ,x9 ,x11,...#

~one generator of each odd degree except those of the form2k21).
The Legendrian cobordism rings formed by Legendrian submanifolds of the projecti

cotangent bundlesST* Rm of co-oriented contact elements are naturally isomorphic to the ring
the theorem above~describing the Legendrian submanifolds of the spaces of 1-jets of function
Euclidean spaces!.

H. Lagrange embeddings and inclusions

A circle can be embedded into the plane and hence there exists an embedded Lagrangi
in the standard phase spaceR4. However, this embedding is not exact: the integral of the ac
form is a multivalued function on the torus.

Gromov theorem.No compact smooth manifold admits an exact Lagrangian embedding
the standard symplectic space R2n.

This theorem has a simple topological proof for all surfaces different from the torus, for w
the theorem is really very hard and was proved only recently by methods from the theo
~pseudo!holomorphic functions.

This technique was introduced into symplectic topology by Gromov6 and the most striking
results in symplectic and contact topology have been so far obtained only by this method,
seems foreign to the subject. Its strange power is a cousin of the well-known use of varia
methods in elliptic PDE’s.

Definition: A Lagrangian inclusionis a smooth mapping of a manifold into a symplec
manifold, which is a Lagrangian embedding in a neighborhood of almost every point~and which
therefore induces the zero 2-form from the symplectic structure!.

Example: The conormal bundleof a subvariety in configuration space is the variety
cotangent vectors of the configuration space which vanish on the tangent vectors of the sub
The Givental open umbrella singularityis the singularity of the conormal bundle space of
semicubical parabola in the plane.

The Givental singularity is~the image of! a Lagrangian inclusion~of the plane!. Topologically
this surface inR4 is nonsingular. But it has one point of nonsmoothness.

Indeed, the Givental surface is parametrized by two parameters~t along the parabola ands
across it!, namely

q15t2,q25t3,p1523st,p252s.

FIG. 24. The~nonoriented! Legendrian cobordism of the bow-tie to zero.
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Theorem: (Givental, Ishikawa, Zakaljukin) The only singularities of the generic Lagrang
inclusions of a surface in space are transversal self-intersections and Givental singularities.
points are stable.

Theorem: (Givental35! Any orientable surface of genus g.1 admits a Lagrangian inclusion
into the standard symplectic Euclidean4-space with2g22 Givental open umbrella singularities
and no selfintersections (topologically this inclusion is an embedding).

Any nonorientable surface of negative genus24k admits a Lagrangian embedding into th
standard symplectic Euclidean4-spacewith no singularities at all.

The exact Lagrangian inclusion of the real projective plane intoR4 is represented in Fig. 25 by
its front.

This front is a surface inR3. It has a semicubical cusped edge and a self-intersection line,
fronts of smooth Legendrian varieties have, but they meet at three points. The singularities
front at these points are calledfolded umbrellas. At a neighborhood of a folded umbrella the fro
can be described by the normal formy25z3x2 ~Fig. 26!.

Like the ordinary Cayley–Whitney umbrellay25zx2, the folded umbrella contains a hand
(x5y50, z,0), shown in Fig. 26 as a dotted line. The handle is not included in the real f
Neither umbrella is very useful in case of rain, as it is clear from Fig. 26.

The Cayley–Whitney umbrellas are the only singularities of generic mappings of the su
into 3-space~besides transversal crossings of two or even three branches!.

The mapping in a neighborhood of such a singular point can be written in the Whitney no
form (x5u, y5uv, z5v2), whereu andv are local coordinates on the surface.

The folded umbrella is a standard element of many singularities in symplectic and co
geometries.

FIG. 25. An exact Lagrangian inclusion of the projective plane into the 4-space.

FIG. 26. The folded umbrella and the Whitney–Cayley umbrella.
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Example: The tangent lines of a generic smooth curve in the Euclidean 3-space sweep
surface. The original curve is a cusped edge of semicubical type on this surface. At points
the torsion of the curve vanishes, the surface is locally diffeomorphic to a folded umbrella.

Folded umbrellas and double points obstruct the smooth Lagrangian embedding of su
into Euclidean space. One cannot eliminate them by deforming the embedding.

Two folded umbrellas may replace one double point, however~see Fig. 27!.
Each part of Fig. 27 represents a front in 3-space. Each front consists of two surfaz

5 f (x,y), z52 f (x,y) connected along the cusped edges, wherez50. The shape of the graph o
f is shown by the level lines and by the directions of fastest descent.

The Lagrangian submanifold corresponding to the left front has no self-intersections. In
the planes, tangent to the front at the two points with equal~x,y! are nowhere parallel, since the
are symmetric with respect to the planez50 and are not horizontal, the function having no critic
points outside the cusped edge.

This cusped edge contains two folded umbrellas and the corresponding Lagrangian su
fold of R4 has two open umbrellas.

The Lagrangian submanifold corresponding to the right front, has one self-intersection
corresponding to the critical point off . It has no Givental open umbrellas.

I. Lagrangian and Legendrian knots

A smooth manifold may have many different embeddings into an Euclidean space.
smooth embeddings are calledisotopic if they belong to the same connected component of
space of embeddings. The classification of these components is a generalization of knot
which studies the embeddings of the circle into 3-space.

An equivalent~and even, in a sense more ‘‘real world’’! definition of a knot starts from a
standard straight line in 3-space. A knot is represented by an embedding which differs fro
standard one only in a finite ball~Fig. 28!.

Definition: A Lagrangian knot typeis a connected component of the space of Lagrang
embeddings ofRn into the standard symplectic spaceR2n, differing from the embedding of a fixed
Lagrangian plane only inside finite balls.

Problem (Ref. 14): Do there exist nontrivial Lagrangian knot types?
The trivial type is the one containing the standard Lagrangian plane.

FIG. 27. The Givental handles.

FIG. 28. A knot on an infinite string.
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Theorem: (Luttinger, Eliashberg, Polterovich36) All Lagrangian knots in the standard sym
plectic 4-space are trivial in the sense of differential topology.

In other words, any topological Lagrangian 2-plane which is ‘‘standard’’ outside some b
unknotted: one can connect the plane with the perturbed surface by a continuous deforma
the class of smooth~not necessarily Lagrangian! embeddings.

Moreover, this deformation can even be realized by a time-dependent flow, fixing the p
outside some ball and transforming the plane into the perturbed surface at time 1. If this flo
Hamiltonian, all Lagrangian knots would be trivial. The theorem above means that nont
Lagrangian knots, if they do exist, arepurely Lagrangian—topologically they are trivial.

Whether higher-dimensional Lagrangian knots can be topologically nontrivial is unknow
A Legendrian curve in the standard contactR3 or S3 may be considered as a knot in the usu

sense, and every knot has Legendrian representatives. However the type of the knot in th
sense does not define its Legendrian type~the component of the space of Legendrian embeddin!.

Example: The Legendre curve whose front is the bow-tie is in the same trivial clas
ordinary knots as the ‘‘lips’’ curve~Fig. 29!. But they are different as Legendrian knots inR3.

Indeed, the ‘‘lips’’ curve is Legendrian cobordant to zero, while the bow-tie is not.
The Maslov index, distinguishing Legendrian cobordism classes, is not the only invaria

Legendrian isotopies of curves, even if they are unknotted in the ordinary sense.
Definition: The Bennequin invariantof a Legendrian curve inR3 is the intersection index o

an oriented surface bounded by the curve with a curve obtained from the given one by a sma
in the direction orthogonal to the contact plane.

Example: The Bennequin invariant of the curve shown in Fig. 30 isb511s12t511.
Bennequin theorem(Ref. 37). The value of the Bennequin invariant on an unknotted curv

the standard contact R3 is positive.
Remark: In a sense, the Bennequin invariant~which might be defined for higher-dimension

Legendrian submanifolds of topologically trivial contact manifolds! is a quadratic form. For in-
stance, this selflinking number is multiplied by 4 if the curve is covered twice. The Benne
inequality claims that this form is positive definite.

Bennequin had used this inequality to prove that a certain twisted contact structure inR3 is
exotic. He constructed for the twisted structure a Legendrian curve, unknotted in the ord
sense, whose Bennequin invariant~depending on the contact structure! is not positive.

Eliashberg–Fraser theorem (Ref. 38). The Maslov index and the Bennequin invariant
the only invariants of Legendrian isotopies of topologically unknotted Legenrdian curves i
standard contact space R3.

FIG. 29. The fronts of two different purely Legendrian knots~knots, which are unknotted in the usual sense!.

FIG. 30. The classification of the purely Legendrian knots inR3.
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The fronts of Legendrian curves representing all the classes are shown in Fig. 30. To ob
classes one has to consider both orientations of the fronts withs, t50,1,... .

J. Contact and symplectic structures

The first example of an exotic contact structure inR3 was constructed by Bennequin. Now a
such structures are known.

Theorem: (Eliashberg39) The complete list of nonequivalent contact structures on R3 is
countable.

The list itself can be found in Ref. 39. The theorem should be compared with the fact~due to
the same author! that there exists acontinuous familyof pairwise nonequivalent contact structur
on the filled torusS13R2.

The contact structures on a closed manifold are rigid: any small deformation is t
~J. Gray40!. This means that the deformed structure is equivalent to the initial one by a diffeo
phism close to the identity.

The homotopy type of the hyperplane field defining a contact structure is of course an i
ant of the structure.

Any closed 3-manifold has a contact structure~Martinet41!.
The fields of tangent hyperplanes onS3 are classified by the integers. Indeed, this sphere

group@Spin ~3!' SU(2)]. Identify all the tangent spaces using left translations on the group.
field is then described by a mappingS3→S2. The homotopy classes of these are labeled by
Hopf invariants of these mappings.

Theorem: (Eliashberg42) Every class of plane fields on S3 contains (up to isotopy) exactly on
contact structure, with the exception of the zero class, which contains exactly two contact
tures.

Ginzburg43 defined the natural contact cobordism groups. He proved that all contact co
ism groups of contact manifolds of dimensions 4k13 are trivial, while the contact cobordism
group of contact manifolds of dimension 4k11 consists of two elements.

Example: The contact circle is not contact cobordant to zero. This simply means th
compact oriented surface bounded by a circle has no line fields transversal to the boundary
The union of two circles is contact cobordant to zero, however, since there exists a line field
cylinder transversal to both boundary circles.

In thesymplectic cobordismtheory of Ginzburg, the situation is quite different. The invaria
of symplectic cobordism are the integrals of certain differential forms, which are products o
Chern forms and of the exterior powers of the symplectic structure. Hence the cobordism g
are not finitely generated.

Example: The only cobordism invariants of symplectic structures on surfaces are the
plectic area and the Euler characteristic~which of course are additive!.

K. Existence of symplectic topology

Most natural questions in symplectic and contact topology are yet unanswered, but one
is firmly established: symplectic and contact topologydo exist. This statement is not a constatio
of mathematical activity in these domains, but a technical result: a highly nontrivial theorem

The definitions of symplectic and contact structures use the differentiable structure o
underlying smooth manifold. Topological symplectic or contact geometry should be inva
under homeomorphisms preserving the structure.

Example: A closed curve dividing the 2-sphere into two parts of equal Lebesgue a
intersects the equator at least at two points. This is true for nonsmooth Jordan curves. He
fact belongs to topological symplectic geometry.

Similar examples show thattopological volume-preserving geometrydoes exist. However, the
symplectic theory is more delicate when the dimension is higher than 2.
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Instead of pathological topological objects one may consider limits~in theC0 topology where
no convergence of the derivatives is supposed! of smooth objects~Lagrangian submanifolds
symplectomorphisms, etc.!. The problem arises whether these limits preserve the properties o
smooth original objects.

Of course, the limit should not betoo bad. For instance, the limit of a sequence of Lagrang
curves might be the whole phase plane, which of course should not be considered as an
topological Lagrangian submanifold.

The resulting topological theory would preserve the traces of the symplectic~and not just
volume-preserving! geometry only if the topological limit does not change their symplectic sta
when they aresmoothsubmanifolds or mappings.

Theorem: (Eliashberg–Gromov6) A diffeomorphism of a compact symplectic manifold is
symplectomorphism, if it is the C0 limit of symplectomorphisms.

Theorem: (Laudenbach–Sikorav, 1993) A smooth embedding of a closed manifold into s
dard symplectic space is Lagrangian if it is the C0 limit of Lagrangian embeddings of the sam
closed manifold.

Similar results hold for contactomorphisms and for Legendrian submanifolds.
In spite of the recent proof of these long awaited theorems, the real construction of topol

symplectic and contact geometries~even of the PL-version, which is evidently important in op
mal control theory! is yet to be achieved.

Remark: I use the namestopological symplectic and contact geometriesfor the studies of
symplectic and contact properties of nonsmooth objects, reserving the namessymplectic and
contact topologiesfor the study of discrete invariants of smooth objects in symplectic and con
manifolds.

I think, moreover, that topology should refer to the study of discrete invariants of va
objects in all the geometries, rather than the study ofhomeomorphisminvariants.~Geometry, as
everyone knows, is the study of those properties of different objects in the space where a g
acting, which are invariant with respect to this group action!.

In a recent American book I have read that~differential! geometry is the art of making no
mistakes in long calculations. This definition seems to be too restrictive.

L. The symplectic world

Symplectic and contact geometries are of course differential geometries of manifolds
some additional structures. Some rather natural axioms led Cartan to a small list of n
geometries of this kind, associated with the simple~pseudo!-groups of diffeomorphisms.

The Cartan list of simple pseudo-groups contains real and complex differential and vo
preserving geometries, symplectic and contact geometries, and a few conformal versions
preceding geometries. This list is somewhat similar~and closely related to! the Killing list of
simple Lie algebras discussed above~see Fig. 10!.

It is well known in the theory of Lie algebras that practically any fact of matrix theory can
reformulated in coordinate-free terms of the so-called root theory~which is a natural extension o
the theory of the eigenvalues!. The roots of the linear group form the simplest Dynkin diagra
Ak .

Once formulated in terms of the roots the result becomes meaningful for the other D
diagrams. This way one obtains at least a conjecture valid for all simple Lie algebras. In
cases one can then prove the conjecture~sometimes slightly correcting it!.

This method unifies the geometries of finite-dimensional simple Lie algebras. It seems
similar unification might be useful in the infinite-dimensional case of the simple diffeomorp
groups.

From this point of view, symplectic, contact or holomorphic geometries and topologies s
be considered assistersof ordinary geometry and topology rather than as the parts of it, the s
way as in the theory of simple Lie groups one considers the orthogonal group as a sister
linear group rather than as its subgroup~in spite of the fact that the orthogonal groupis the group
of linear transformations preserving an additional structure!.
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One may thus imagine that quite a few of the notions of ordinary geometry and topolo
manifolds might have parallels in symplectic, contact, complex, and other geometries.

Example: The following list of parallel objects in the real and in the complex geometrie
well known ~see e.g., Ref. 4!:

R C
O(n),SO(n) U(n),SU(n)

p0 p1
K(p,0) K(p,1)

Z2 Z
RPn CPn

Stiefel–Whitney classes Chern classes
S15RP1 S2

S15R/Z S3

Morse theory Picard–Lefschetz theory
symmetric group braid group

boundary ramified covering.
orientation ofRn element ofp1(U(n))

It is clear that the complexification of ‘‘homology’’ is not at all homology theory in the se
of homological algebra, but some algebraically completely different object~yet to be discovered!.

Similarly to the complexification, the symplectizations and contactizations of the usual
metrical objects may be very different from the original objects. There yet exist no axiom
mathematical operations of this rank~like quantization, superization, symplectization!.

However one may guess that in many cases symplectization can be achieved by the fol
procedure. One starts from some object in an ordinary manifold. One symplectizes it, consi
the cotangent bundle space and associating to the original object some kind of prolongatio~the
conformal bundle space of a submanifold, the action of a diffeomorphism on cotangent ve
etc.!. Finally one can try to generalize the properties of the resulting objects to make
symplectically invariant.

This way one obtains, in the preceding examples, Lagrangian manifolds or varieties s
from ordinary manifolds or varieties, Hamiltonian vector fields from ordinary vector fields, an
on.

It seems that Morse number and Lagrangian intersection theory have something to do w
symplectizations of the Euler characteristic and of the Lefschetz fixed points theorem of ord
topology, while Lagrangian and Legendrian cobordism theories might be the symplectizatio
the contactization of the usual cobordisms.

Most of the branches of mathematics~from the theory of PDEs to the calculus of variation
from the theory of group representations to number theory! have been symplectized or are und
symplectization currently.

In this brave new symplectic world the old concrete theories live a new life in the compa
cousins from whom they were separated before symplectization~similarly to the ellipse, the
parabola, and the hyperbola, which were separated before projectivization!.

One starts from some concrete theory. Say, one considers the elementary theory of th
endre transformation or the geometry of the equidistant surfaces of a surface in the Euc
3-space, or the classical theory of pedal surfaces~also called derivative surfaces!.44

The derivativeof a hypersurface in the Euclidean space is the variety, formed by the fe
the perpendicular from the origin to the tangent plane of the given hypersurface~Fig. 29!. The
primitive hypersurface of a given hypersurface is the envelope of the hyperplanes orthogo
the radius vectors of the points of a given hypersurface.45 ~See Fig. 31.!

In symplectic~or better contact! geometry all these hypersurfaces show their true face: t
are fronts of Legendrian mappings. It follows, for instance, that the singularities of Lege
transforms, of equidistants, of derivatives, and of primitive hypersurfaces, coincide. Henc
sufficient to study any of these objects to master all of them.

Riemannian geometry is a special case of the symplectic geometry of pairs of hypersurfa
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symplectic manifolds. This remark allows one to use the experience and intuition of Riema
geometry and even of the elementary geometry of surfaces in the usual Euclidean 3-sp
derive results in symplectic and contact geometries of pairs of hypersurfaces.

The resulting theory has useful applications to other problems in 3-space, in particu
variational problems with one-sided constraints, holonomic or not, and to optimal control
lems.

The power of the symplectic and contact geometries depends on the unification of
apparently disjoint branches of mathematics that these theories provide. It is comparable
unification of most branches of mathematics provided by linear algebra or, more geometrica
projective geometry.

Some 19th century mathematicians objected to the tendency toward projectivization of
and Euclidean geometries. Cayley finally settled the problem, proclaiming ‘‘projective geome
all geometry.’’

In the same sense one might now say ‘‘symplectic geometry is all geometry,’’ but I pref
formulate it in a more geometrical form:contact geometry is all geometry.
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This is intended as an introduction to and review of the theory of Lagrangian and
Legendrian submanifolds and their associated maps developed by Arnold and his
collaborators. The theory is illustrated by applications to Hamilton–Jacobi theory
and the eikonal equation, with an emphasis on null surfaces and wave fronts and
their associated caustics and singularities. ©2000 American Institute of Physics.
@S0022-2488~00!00706-4#

I. INTRODUCTION

The following paper is intended to be an introduction to the theory of smooth Lagrangia
Legendrian maps from manifolds into manifolds, with a wide range of examples from phy
Hamilton–Jacobi theory, the theory of the eikonal equation, wave fronts, their singularities,
tics, etc. Our interest in this subject arose out of efforts to understand the beautiful ide
Arnold1–6 and his collaborators concerning the theory of singularities of maps. This effort, in
was motivated originally by a recent reformulation of general relativity7,8 ~GR! in terms of fami-
lies of null hypersurfaces that naturally necessitated a study of the pertinent singularities a
ated with null hypersurfaces. Another reason for studying this theory was our interest in gr
tional lens theory9,10 and Zeldovich’s theory of structure formation in the early universe.11

As Arnold’s treatment is much more general than most physicists need or use and h
proach is often quite abstract, we and many colleagues found it initially difficult to get
essential overall picture of this remarkable theory. Eventually, to a large extent, the picture d
clarified and we thought that an elementary presentation, from a physicist’s view, of these
might be of use to others who do not have the patience to struggle through Arnold’s bea
work.1–4

This work is organized as follows. In Sec. II, we discuss the basic geometric ideas behi
local theory of caustics and wave front singularities3,12,6,13based on the construction of Lagrangia
and Legendrian submanifolds in phase space via the use ofgenerating functions—along with
some simple illustrative examples. In Sec. III we give a particularly instructive example from
theory of the Hamilton–Jacobi equation. In Sec. IV we establish various relations of the ei
equation and its solutions to~small and large! wave fronts in arbitrary space–times. After a bri
discussion, in Sec. V, of some technical difficulties that emerge from the use of gene
functions in the detailed implementation of the theory, we proceed, in Sec. VI, to the core
method, showing how the concept ofgenerating families~for the construction of Lagrangian an
Legendrian submanifolds! naturally arises and is used to overcome some of the aforementi
difficulties. Finally, in Sec. VII, we apply this method to wave fronts in (311)-dimensional
space–time, to ensembles of noninteracting particles in phase space and to gravitational l

The main message we learned from this powerful theory that we wish to convey to the r
is the following: in order to describe wave propagation phenomena in space or space–

a!Electronic mail: newman@phyast.pitt.edu
33440022-2488/2000/41(6)/3344/35/$17.00 © 2000 American Institute of Physics
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~processes that generically lead to intersections of rays, focal points or focal lines, sharp ed
wave fronts, infinite densities, or similar ‘‘catastrophes’’!—it is advisable to treat the evolution o
the requisite structures not directly in space~space–time!, but lift them to a suitable bundle ove
space~space–time!, evolve them there, and at the end project the result down into space~space–
time!. In this way one can describe the singularities that occur ‘‘downstairs’’ in terms of sm
regular structures ‘‘upstairs.’’ What might appear at first sight as a complication turns out to
fact, a simplification.

While the general definitions and constructions in Sec. II are based exclusively on the
ential topology of a manifold, the physical examples employ, as an additional structure, a~gen-
eralized! Hamiltonian that defines a hypersurface in the bundle space. This leads to the res
class of those Lagrangian/Legendrian submanifolds that are contained in those hypersurfa
that are ruled by the phase space trajectories. These particular submanifolds are distinguish
general ones by a certain rigidity: pieces of them can be continued uniquely by those trajec
In accordance with this, in the applications, besides having to satisfy a certain rank conditio
generating families have to satisfy a first-order partial differential equation, e.g., the Hami
Jacobi or eikonal equation.

Except for the manner of presentation, we do not claim any originality here, and any erro
ours. Though, of course, there is an overall unity to the subject, in this elementary treatme
have tried, especially in Sec. II, to keep separate ideas apart. We have denoted a new idea
by a l. Examples are denoted by a;.

II. LAGRANGIAN AND LEGENDRIAN SUBMANIFOLDS OF SYMPLECTIC
AND CONTACT BUNDLES

We begin with an arbitrary,n-dimensional manifoldM to be considered as a configuratio
space, with local coordinatesqa.

l1. Consider the cotangent bundleT* M ~or phase space! overM with fiber coordinatespb ,
and with associated symplectic potentialk and two-formv,

k5pa dqa, v5dqa`dpa52dk. ~1!

We will refer to such a 2n-dimensional symplectic manifold also asMS .
The two-formv plays a somewhat similar role in symplectic geometry as the metricg in

Riemannian or Lorentzian geometry. As bothv andg are nondegenerate, their inverses exist a
respectively, can be used to lower or raise indices. Metric orthogonality,g(X,Y)50, corresponds
to skeworthogonality,v(X,Y)50. We shall occasionally make use of the latter relation.

l2. BesidesT* M , we shall useT* M3R with coordinates (qa,pa ,u) and~by definition! the
‘‘contact’’ one-form,

a5du2pa dqa. ~2!

We call the ‘‘contact manifold’’ (T* M3R,a), the ‘‘contactification’’ of T* M and sometimes
use the shorthandMC for it. A function U on M defines a section ofMC @considered as a bundl
with (n11)-dimensional fibers and baseM # via u5U(qa), pa5]aU. On such a section,a50.

~Note that though this construction yields a particular example of a contact manifold,locally
all contact manifolds can be given this structure.!

An important example of a contactified phase spaceis the (p,q,t) extended phase space
classical mechanics.

l3. We thus have the ‘‘extension’’ of the 2n-dimensional symplectic bundle to the (2n
11)-dimensional contact bundle. Alternatively one can start with a (2n12)-dimensional sym-
plectic bundle and ‘‘reduce’’ it to a (2n11)-dimensional contact bundle.@See Remark 5a at th
end of this section.#
                                                                                                                



aximal

wing
s

ian

e
ting

s of

3346 J. Math. Phys., Vol. 41, No. 6, June 2000 J. Ehlers and E. T. Newman

                    
l4. Let MS be a symplectic manifold. An immersed submanifold,L of MS is called La-
grangian if it isndimensional and if the pull-back ofv to L vanishes. A submanifold ofMS is
Lagrangian if and only if its tangent spaces are skeworthogonal to themselves and have a m
dimension.

;a. As a simple example we can construct a Lagrangian submanifold in the follo
manner. Choose a ‘‘generating’’ functionF5F(qa), then consider then qa’s as the parameter
used to parametrically describe ann-manifold L in the 2n-dimensional symplectic space by

pa5]aF~q!,
~3!

qa5qa.

One sees immediately, that onL,

v5dqa`dpa5~]a]bF !dqa`dqb[0.

Alternately one could chooseG5G(p) as a generating function and define a Lagrang
submanifold by

qa52]aG~p!,

pa5pa ,

with the notation]a[]/]pa . In particular, each fiber is a Lagrangian submanifold.
In contrast to the first example, Eq.~3!, the newL will, in general, not be a section of th

bundleMS . Its projection toM need not be everywhere a local diffeomorphism. The resul
singularities will occupy us extensively below.

Other choices include interchanging some of thep’s andq’s in the generating function; for
example, letG5G(p1 ,q2, . . . .,qn) with

q152]1G,

pi5] iG,
~4!

p15p1 ,

qi5qi ,

i 52, . . . ,n. ;
In general, there are 2n different local representations of Lagrangian submanifolds in term

canonical coordinates. To construct them we divide the set of integers (1,. . . ,n) into two disjoint
sets withÂ integers in the first set andĴ integers in the second set~with Â1 Ĵ5n!. We then
chooseÂ different q8s, i.e., (qA) and Ĵ different p8s, i.e., (pJ). A generating function is then
chosen asK5K(qA,pJ) and a Lagrangian submanifold is given by

qJ52]JK,

pA5]AK,
~5!

pJ5pJ ,

qA5qA.

Note that there is never a canonically conjugate pair in the set (qA,pJ).
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Though it is clear that a submanifold constructed as in Eq.~5! is Lagrangian, the convers
statement that any Lagrangian submanifold can locally be constructed in this manner m
proved. We now give a derivation of this result.

Though the derivation is not difficult, it does get complicated and the reader might wa
skip over the details and simply accept the result or return to the proof later.

Proof: Let L be a Lagrangian submanifold ofMS , with j a point onL, and let (pa ,qa) be a
canonical coordinate system. SinceL is an immersed submanifold, there exists a subset on

elements of the set (pa ,qa), sayva[(pi ,qi 8), that provides local coordinates forL nearj so that
L can be represented bywa5 f a(vb), with wa being the remainingn elements of (pa ,qa).

The derivation will consist of two parts; we first show that such a subsetva can always be
chosen so that it does not contain a canonical pairpj ,qj . Then we show that a generating functio
can be chosen such that locallyL is given by Eq.~5!.

Instead of giving a proof for arbitrary dimensionn of M we taken54 as a representative~and
in physics an important! case. The argument will show how to proceed in general. If the seva

doescontain a canonically conjugate pair, we will refer to it as an ‘‘unwanted’’ set; if it does
contain a conjugate pair it will be referred to as a ‘‘desired’’ set. Then, it will obviously suffic
prove the following: If local coordinates onL are given in the first place in one of the ‘‘un
wanted’’ forms,

~ i! va5~p1 ,q1,q2,q3!, ~ ii ! va5~p1 ,q1,p2 ,q3!, ~ iii ! va5~p1 ,q1,p2 ,q2!,

then one can always transform to a system of the ‘‘desired’’ form.
Consider case~i!. Then, nearj on L, dp1`dq1`dq2`dq3Þ0. SinceL is Lagrangian, we

have onL, dpa`dqa50 ~summation convention used!. Therefore,

dp1`dq1`dq2`dq31dp4`dq4`dq2`dq350;

and hence the second term, like the first one, does not vanish atj. Our assumption~i! implies that,
on L, nearj, p45 f (p1 ,q1,q2,q3); therefore from

dp45
] f

]p1
dp11

] f

]q1 dq11
] f

]q2 dq21
] f

]q3 dq3, ~6!

either ] f /]p1 Þ0 and dp1`dq2`dq3`dq4Þ0, or ] f /]q1 Þ0 and dq1`dq2`dq3`dq4Þ0.
From the implicit function theorem,p45 f (p1 ,q1,q2,q3) can be inverted so that in the forme
case, (p1 ,q2,q3,q4) are a ‘‘desired’’ set, while in the later case (q1,q2,q3,q4) form the ‘‘desired’’
set.

In case~ii !, the Lagrange condition gives

dp1`dq1`dp2`dq31dp4`dq4`dp2`dq350. ~7!

Reasoning as above, one eliminates in the second productdp4 in favor of dp1 or dq1, obtaining
in each case a ‘‘desired’’ set.

In the third case~iii ! one gets

dp1`dq1`dp2`dq21dp3`dp3`dp2`dq21dp4`dq4`dp2`dq250,

so either the second or the third term is nonzero atj. Applying again the former reasoning todp3

or dp4 , respectively, one reduces case~iii ! to one of the other cases.
One can thus always transform an ‘‘unwanted’’ set to a ‘‘desired’’ set.
Accepting now, for an arbitraryn, the existence of a subset (pJ ,qA) withoutcanonical pairs,

which provides local coordinates onL nearj, we use the conditionvuL50 in the form

05dk5d~pJ dqJ1pA dqA!5d~2qJ dpJ1pA dqA!.
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Thus, there exists locally nearj a functionK(pJ ,qA) such that, onL,

kuL52qJ dpJ1pA dqA5dK,

which means thatL is given locally by then equations,~5!, namely

qJ52]JK, pA5]AK. ~8!

jQ.E.D.

~a! We note that a generating function can be defined as a potential for the pull-back ok to
a Lagrangian submanifold,kuL5dK, expressed in a ‘‘desired’’ set of coordinates.

~b! Given a pointj on L, only some of the 2n representations will be valid in its neighbo
hood. If, for example,n52 and (q1,q2) as well as (q1,p2) are permissible, we have

dK5p1 dq11p2 dq2 and dG5p1 dq12q2 dp2 ,

and the change from (q1,q2,K) to (q1,p2 ,G) is a Legendre transformation,

K~q1,q2!5G~q1,p2!1q2p2 , p25]2K.

Globally, L can be ‘‘given’’ in terms of an atlas of overlapping charts, each with
representation of the form, Eq.~8!, ‘‘Legendre related’’ in the overlap regions.

~c! Note also that if we have an invertible transformation,ya5Ya(qA,pJ), the Lagrangian
submanifold can be parametrized byya. In applications, this type of situation, where th
Lagrangian submanifold is parametrized by coordinates other than the (qA,pJ), is very
common. In particular, it plays a major role in the discussion of Secs. VI and VII
generating families, where the parametersya have a physical significance.

;b. We give a simple example of a Lagrangian submanifold generated by a do
valued ‘‘function’’ that is not smooth. The same submanifold can be generated by a sm
~single-valued! function. ConsiderR as a configuration space with the generating function

F56q3/2,

so that

p5]F/]q56 3
2 q1/2⇒q5 4

9 p2.

Note that the second derivative ofF at q50 does not exist. The same Lagrangian submanifol
given by the generating function

G52 4
27p3,

q52]G/]p5 4
9 p2⇒F5pq1G5 8

27p3,

and is parametrized byp instead ofq. The projection to the base is given byq5 4
9p

2, with the
‘‘critical’’ point at p50. ;

l5. An important issue is the mapping from ann-dimensional Lagrangian submanifold,L, to
the correspondingn-dimensional base spaceM . This projection,p, is given locally@from Eq.~5!#
by

p:~qA,pJ!°$qA,qJ52]JK~qA,pJ!%.

For most cases of interest the mappingp is, for almost all points, a diffeomorphism~one to
one and smooth in both directions!. This is the case wheneverL is transversal to the fibers.L may,
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however, have points where the Jacobian matrix~the derivative ofp! is degenerate, i.e., has ran
lower thann. These are the critical points ofp that form the critical set, CritL; the image of Crit L
in M is the caustic set,p(Crit L)5CaustL. In terms of the preceding representation ofL, the
critical points are given by

det~]J]J8K !50; ~9!

what matters here is thepJ dependence ofK. Sard’s theorem states that the caustic set
Lebesgue measure zero; the critical set may, however, have positive measure.

Note that the amount by which the rank of the Jacobian matrix,J5p* , drops at critical
points is equal to the corresponding decrease in rank for (]J]J8K). This integer is an invariant o
p, equal to the dimension of the kernel ofJ, i.e., the subspace of the tangent space ofL that is
annihilated by the projection. The kernel is given by the solutionsXJ of (]J]J8K)XJ50.

• Given a critical pointj on a Lagrangian submanifold, one can choose the coordinate sy
(qa), nearp(j), and the generating functionK such that a ‘‘desired’’ coordinate system h
Â5rankJ, Ĵ5dim kerJ. The corresponding representation, Eq.~8!, contains the larges
number ofq8s that is possible atj. Then,]J]J8K50 atj, and the kernel ofJ is spanned by
]J. Such representations are used to give canonical forms of generating functions
singularities of the Lagrangian maps.

;c. A simple but important example of a Lagrangian submanifold will now be constru
and analyzed. It shows why one introduces bundles and their projections even though
interested in what is taking place inM : in the bundle functions are unique and regular and
projection allows one to control their singularities.

Consider as base manifoldM the Euclidean planeR2 with metric dab with the associated
symplectic manifoldMS5R4, with coordinates (qa,pa). Now choose a curveC in M , param-
etrized byqa5q0

a(s) in terms of the arclengths. The ~unit! tangent vectorta and unit normalna

are defined alongC by

ta[q̇0
a5~ t1,t2!, na[2eb

atb5~2t2,t1!, ~10!

with an over dot denoting differentiation with respect tos. The ta andna are related to each othe
by the ~plane! Serret–Frenet equations,14

ṫ a5kna and ṅa52kta, ~11!

wherek(s)[dabṫ
anb andk21(s) are, respectively, the curvature and the radius of curvature oC

at s. The lines inM normal toC are called rays, and their orthogonal curves, wave fronts.
In the four-dimensional spaceMS of the (qa,pa), we consider the two-dimensional surfac

L, associated with a finite section ofC, wherek.0, by

qa5q0
a~s!1vna~s!, ~12!

pa5dabn
b~s![na~s!, ~13!

s1,s,s2 , 0,v,`. ~14!

Thev ands globally parametrizeL; different values of (v,s) give different points ofL. By direct
calculation, one sees that the rank of the map from (s,v) to (qa,pa) everywhere equals 2; thi
follows from

dq1`dq25~12vk!ds̀ dv,

dq1`dp252~ t2!2k ds̀ dv,
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dq2`dp15~ t1!2k ds̀ dv.

ThusL is a submanifold ofT* M on which (s,v) are global noncanonical coordinates. One se
that if (12vk)Þ0 then (q1,q2) are preferred coordinates; elsewhere one can use either (q1,p2) or
(q2,p1). Moreover, one finds that onL, k5pa dqa5dv and hencev5dqa`dpa50, and soL is
Lagrangian.

The projection ofL to M is given by

qa5q0
a~s!1vna~s!. ~15!

The Jacobian of this mapping, (s,p)→qa(s,p), obtained using the Serret–Frenet equations, i

uJu5U~12vk!t1~s!, n1

~12vk!t2~s!, n2U512vk~s!. ~16!

Thus, the critical set of the projection is the curve onL given by uJu50 or

v5k~s!21. ~17!

The caustic is the curve in the base spaceM given by

qc
a5q0

a~s!1k~s!21na~s!, ~18!

with, as mentioned earlier,v5k(s)21 the radius of curvature ats of C.14 After a brief calculation,
one finds that the tangent vector to the caustic is

q̇c
a52 k̇k22na~s!;

hence the rays are tangent to the caustic.
Remark 1: Perhaps a more intuitive way to characterize the caustic directly in M is to find

points where ‘‘neighboring rays intersect’’:

q0
a~s!1vna~s!5q0

a~s1Ds!1~v1Dv !na~s1Ds!,

leads in the limitDs°0 to

q̇0
a1vṅa52

Dv
Ds

na5lna,

and since q˙ 0
a5ta and ṅa52kta are orthogonal to na this givesl50, and one recovers the earlier

caustic condition, v5k(s)21. Note that defining the caustic in this manner is equivalent to
search for zeros of Jacobi vector fields, i.e., to points conjugate to C on rays.

To further analyze this example we return to the Lagrangian submanifoldL @Eqs.~12!, ~13!,
and ~14!#, and~first! define the ‘‘lifted rays’’ by

qa5q0
a~s!1vna~s!,

~19!
pa5na~s!,

with s5const and v5variable and ~second! the ‘‘lifted wave fronts’’ by v5const and s

5variable. The two vector fields spanningL ~]/]v[T̂r , ]/]s[T̂w!, which are tangent, respec
tively, to the lifted rays and wave fronts are expressed in the coordinates (qa,pa) of MS by

T̂r5~na,0!, T̂r•T̂r51,
~20!
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T̂w5~ q̇0
a1vṅa,ṅa!5„~12vk!ta,2kta…,

T̂w•T̂w5~k!21~12vk!2.0, ~21!

with

T̂w•T̂r50, ~22!

where the Serret–Frenet equations have again been used and the scalar product onL is given by
Û•Ŵ[dabu

awb1dabũaw̃b with Û5(ua,ũa), etc.
Evaluating (T̂r ,T̂w) on the critical curve, i.e., Eqs.~12! and~13! with v5k(s)21, one obtains

T̂r5~na,0!, T̂r•T̂r51,
~23!

T̂w5~0,2kta!, T̂w•T̂w5k2.0,

with the tangent vector to the critical curve,

T̂c5S 2 k̇

k2 na,2ktaD , T̂c•T̂c5k21S k̇

k2D 2

.0. ~24!

The projections toM of these vector fields are

Tr
a5na, Tw

a 5~12vk!ta, Tc
a5

2 k̇

k2 na. ~25!

From Eqs.~20!, ~22!, ~23!, and~24!, we see that the lifted rays and lifted wave fronts and
critical curve have no stationary points,~i.e., no zero tangent vectors! while their projections onto
M , the wave fronts, do have stationary points@‘‘spikes’’ or technically cusps,~see Remark 2!# at
the caustic (12vk50). T̂w spans the kernel of the projection. It is tangent to the critical curv
extremals of the curvature (k̇50,kÞ0), where the caustic itself has stationary points—ag
‘‘spikes’’ or cusps—provided thatk̈Þ0 there. See Figs. 1 and 2.

FIG. 1. The formation of caustics from the rays normal to a curve.
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Remark 2: To see that indeed the wave fronts and the caustic curve have cusps
stationary points of their tangent vectors Tw

a , and Tc
a , we note the following: if either curve is

written as q25 f (q1) their slopes are given, respectively, by dq2/dq15t2/t1 and dq2/dq1

5n2/n1 and hence are well defined at their stationary points. However, as the stationary p
are smoothly traversed as functions of s, one sees (by expanding about the stationary point) t

the vectors Tw
a and Tc

a point in opposite directions on either side of the stationary point if k¨Þ0,
giving rise to the spike appearance.

These local considerations can be applied to and globalized15 for closed convex curves,C.
~See Chap. 8 of Arnold, Ref. 2.!

This construction of the normals to a curve inR2 is easily extended to higher dimensions. F
M5R3, one could construct the normals to an arbitrary 2-surface inR3. See Sec. VII.

From a slightly different physical model as in this example, the same caustic curve~with the
cusps! can easily be observed; it can be seen as the image on a two-surface, of a point so
light reflected by a distorting mirror or passing through a distorting lens. From a different m
in R3, one could visualize the caustics as the ‘‘focusing’’ of light rays from a point sou
distorted by a mirror, passing through a smoke-filled room. These caustics would form a
surface.’’ We will return to the wave fronts and their singularities shortly via the contact bu
where their structure is more natural.;

l6. Turning now to a (2n11)-dimensional contact bundle with local coordinates (qa,pa ,u)
and contact forma5du2pa dqa, we consider the analog of a Lagrangian submanifold, nam
a Legendrian submanifold,E, defined by the requirement that it be an immersedn-dimensional
submanifold in the contact manifold and that the contact form vanishes when pulled backE.

;d. A simple example of the construction of anE is to consider any functionF5F(qa).
With the qa acting as then parameters for the parametrized form ofE, E is given by

pa5]aF~qa!,

u5F~qa!, ~26!

qa5qa,

an n-dimensional submanifold in the (2n11)-dimensional contact space.
An alternate form for the construction of anE is to choose thepa as parameters and tak

G5G(pa) as the generating function. One then has for the parametrized form ofE,

qa52]G~pa!/]pa[2]aG,

u5G~pa!2pa ]aG, ~27!

FIG. 2. Cusp singularity of one-dimensional wave front in two dimensions.
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pa5pa .

• Note that theu5u(pa) is defined via a Legendre transformation continued thru singular po
from theG(p). ;

The general forms to represent Legendrian submanifolds in terms of a generating fu
G(qA,pJ) are—compare with Eq.~5!,

qJ52]JG, ~28!

pA5]AG, ~29!

u5G2pJ ]JG. ~30!

For other parametrizations of the Lagrangian and Legendrian submanifolds, see Sec. IV.

~i! Note that ifE is a Legendrian submanifold ofT* M3R, its image inT* M is a Lagrangian
submanifold. See the previous set of equations and Eqs.~5!.

~ii ! Also note that if T* M3R is considered as a bundle overM3R then its fibers are
Legendrian submanifolds.

l7. The analog of the Lagrangian mapping of ann-dimensional Lagrangian manifold to th
base spaceM is a ‘‘Legendrian map’’ of then-dimensional Legendrian manifold~a projection! to
the (n11)-dimensional spaceM3R, i.e., to the original baseM times the one-dimensional fibe
described byu, with coordinates (qa,u); it is given locally by Eqs.~28! and ~30!.

After the projection one then has, in general, ann-dimensional ‘‘surface’’—called a ‘‘wave
front’’—embedded in an (n11)-dimensional space. The singularities of this map~where the rank
of the Jacobian matrix drops belown! are the wave front singularities.

The Legendrian projection ofE into MxR is singular at a point ofE if and only if the
corresponding Lagrangian projection ofL into M is singular, and the amounts by which the ran
of the associated Jacobians drop, are equal. If]/]u is transverse toE at a pointe of E, E is locally
diffeomorphic toL neare. Then the images ofE in MxR and ofL in M have the same~regular
or singular! differential structure near the respective images ofe.

;e. A simple but very elucidating example~related to;c! is again to useR2, but now use
r andf as coordinates. We first let our configuration spaceM be a circleS1 with coordinatef, the
two-dimensional symplectic manifold has coordinatesf and pf . We then identify the contac
bundle coordinateu with the radial coordinater , i.e., we have on our three-dimensional conta
bundle the coordinates, (f,pf ,r ). One way to form a Legendrian submanifold is to takeF
5F(f) and set

pf5]fF,

f5f,

r 5F~f!.

Its projection to the (f,r ) space is justr 5F(f), a curve in R2 representing a one
dimensional wave front inR2. For the other forms of the generating function~or for multivalued
F ’s!, the associated wave front would, in general, have singularities, i.e., singular points o
front.

We emphasize in this last example thatR2 is not the configuration spacebut is the extension
of the configuration spaceS1. The configuration space isS1, the symplectic manifold is theS1

with its cotangent vectors and finally the contact bundle is theR2 with the cotangent vectors ove
the S1.

This construction is easily generalized to higher dimensions. Consider the configuration
M to be a closed 2-surface inR3 with local coordinates~u, f! and
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u5r 5A~x21y21z2!,

so that the contact bundle has coordinates (u,f,pu ,pf ,r ). A generating function of the formF
5F(u,f) yields the Legendrian submanifold,

pu5]uF,

pf5]fF,

f5f, ~31!

u5u,

r 5F~u,f!,

with projection r 5F(u,f), a two-dimensional wave front inR3. Again different forms of the
generating function lead to singularities of the wave front~in general, curves!. ~There are other
ways of thinking of these two-dimensional wave fronts; in the above example we could think
null three-surface intersecting at5const slice of Minkowski space–time yielding the wave fro
or having the null surface intersecting a time-like tube or intersecting a null cone. The latte
is what occurs in the version of GR, where the basic variables are the light-cone cu
nullinfinity.7,8!

Or considerM5R3, with (x,y,z,px ,py ,pz ,t) as the contact coordinates. Again withF
5F(x,y,z) we have the projection into the four-space given by

t5F~x,y,z!. ~32!

Arnold2 calls this particular wave front an example of a ‘‘big wave front.’’ In the context
Lorentzian optics~where, of course, the dynamics determinesF!, Eq. ~32! describes a null or
characteristic surface. The singularities of the ‘‘big wave front’’ are two-dimensional ‘‘surfac

;f. In the context of Legendrian submanifolds and maps we return, for a moment, t
ample;c. By contactifyingT* M to T* M3R, i.e., by adding the coordinateu[t, to the set
(qa,pa), we obtain the five-dimensional contact manifold with coordinates, (qa,pa ,t). The ex-
tended base space,M3R[R23R, can be interpreted as a (211)-dimensional flat ‘‘space–time’’
with coordinates (qa,t). The Legendrian submanifold,E, is constructed from the Lagrangia
submanifoldL, by simply ‘‘adding’’ t5v to L; i.e., E is given by

qa5q0
a~s!1vna~s!, ~33!

pa5na~s!,
~34!

t5v.

On E the contact form,a5dt2pa dqa vanishes sincek5pa dqa5dv; a5dt2dv50.
The projection ofE to the space–time is the ‘‘null surface’’~optical wavefront or ‘‘big wave

front’’ !,

qa5q0
a~s!1vna~s!,

~35!
t5v,

possessing a variety of singularities.~See the discussion inl 9.! Note that, from Eq.~18!, the
caustic is a nongeodesic null curve in space–time. A similar remark applies in higher dimen
;
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l8. It must be emphasized that in the case of;a and;e we have chosen~for simplicity!
the generating function to depend only on the configuration space coordinatesqa. If the F, so
chosen, is a~single-valued! function of theqa, there will be no caustics or wave front singularitie
The caustics and wave front singularities arise from the alternate forms of the generating fu
or from ‘‘multivalued functions’’F(q), as illustrated by examples;b and;f.

l9. One of the most remarkable insights achieved in the theory of Lagrangian and Le
rian maps is that~in the cases of configuration spaces, with dimensionn<5! there is a simple and
complete classification of the associated stable singularities of the maps.~Stable means that th
singularities retain their qualitative, differential–topological properties under all small pertu
tions of the generating function. An example of an unstable singularity is provided by anL, which
is a fiber,qa5q0

a5const.! This classification, which really lies at the heart of the work of Arno
and co-workers, is based on the idea of using the allowed fiber preserving canonical coo
freedom on the symplectic or contact spaces to put the generating functions into differe
equivalent canonical forms.

We conclude this section with a discussion and a list of the stable singularities for
dimensions of the base manifoldM . We will include both the singularities of the Lagrangian a
Legendrian maps. In particular, we will discuss in detail all the cases of dimensionn51 and 2 and
just skim over the case ofn53. The notation used to describe the different cases, i.e.,Ai andDi

is that of Arnold and arises from the observation that the classification of singularities is cl
related to the classification of semisimple Lie groups, where that notation is used. Als
simplicity we have excluded from the summary several closely related cases that differ by

The following material is complicated~though not difficult! and is not essential for the furthe
understanding of this work. On first reading one might want to skip it and go straight to
remarks at the end of this section.

For typographical reasons—the conflict between superscript indices and powers—we w
the coordinates (x,y,z) for the base space coordinates and the contact coordinate instead
customary (qa,u) for the remainder of this section.

~a! one-dimensionalM with local coordinatex.
A1 : The trivial case of a neighborhood of a noncritical point of a Lagrangian submanifold

the canonical choice of generating functionG52p2, and thus$x52p, p5p% represents the
Lagrangian submanifold locally.

A2 : The only other case in one-dimension is the fold singularity of the Lagrangian
Again let x be the coordinate ofM andp the momentum coordinate. A canonical choice for t
generating function isG52p3. The Lagrangian submanifold is given by$x53p2, p5p% and the
projection toM is x53p2 that has a ‘‘fold’’ singularity atp50, with rankJ50. Near the fold, the
Lagrangian submanifold covers the base twice forx.0 and not at all forx,0; p is a coordinate
near the singularity,x is not.

Extending this to a~three-dimensional! contact manifold, where the contact coordinate isu
5y then the Legendrian submanifold is given, viay5G1xp, as$y52p3, x53p2, p5p% with
the Legendrian projection given by$y52p3, x53p2%, which is a curve in the (x,y) plane having
a cusp atp50⇔(x50,y50). Alternately the curve can be given by 4x3527y2. ~Note: the
Legendrian projection is a homeomorphism, but not a diffeomorphism near that point.! This is the
most general stable~local! form that a singular one-dimensional wave front inR2 can take. This
cusp is what we referred to earlier, inl5c, as a ‘‘spike’’ in the wave front. See Fig. 1.

Before proceeding we introduce a convention.
When specifying a generating functionG for n.1; we write down only terms containing

pa’s; it is to be understood that besides those variables that are ‘‘visible,’’G is always taken to
depend trivially on as many configuration variables as are needed for a ‘‘good’’ coordinate s
on L. If, e.g., n53 and we writeG52px

3 ~as in the casen51, A2! we meanG(px ,y,z)5
2px

3 , so that the corresponding representation ofL, with coordinates (px ,y,z), reads as

x53px
2 , py50, pz50,

and the projection is given by
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~px ,y,z!→~3px
2 ,y,z!.

All the action is in the (x,px) pair while the other coordinates are dummies. This conventio
obviously useful; in particular, when proceeding to dimensionn11, it is not necessary to lis
again all the cases form<n augmented by dummies.~Note that the amount by which the ran
drops is not affected by dummies.!

~b! Two-dimensionalM5R2 with local coordinates (x,y).
Again we have the cases A1 and A2, augmented as described above. In the A2 Legendrian case,px

andy can be taken as coordinates onE, which is the 2-surface in (x,y,px ,py ,z) space generated
by G52px

3 , z5G1xpx so that the Legendrian submanifold~with u5z! is given by

$x53px
2 , y5y, z52px

3 , px5px , py50%,

whose image under projection toR35M3R5(x,y,z) is the ‘‘product’’ of the algebraic curve
4x3527z2 ~considered above! with they axis. This is a two-dimensional wave front inR3 that has
a ‘‘cusp ridge’’ singularity along they axis. The fold singularity of the Lagrangian mapbecomes
the cusp ridge of the Legendrian map; see Fig. 3.
A3: The third canonical type of Lagrangian submanifold inn52 dimensions~which has a new
form! is given byG52(px)

41y(px)
2 yielding

$x54~px!
322ypx , y5y, px5px , py5~px!

2%, ~36!

with the Lagrangian map$x54(px)
322ypx , y5y%. The critical points of the Lagrangian sub

manifold are given by the curvey56(px)
2, which, when projected toM , yields the caustic curve

$x528(px)
3, y56(px)

2%, a semicubic parabola, which has a cusp at the origin.
@Note that in the two-dimensional plane the only two types of stable singularities are the fo
the A2 maps and the cusps of the A3 maps. They can be made physically manifest by the p
focusing of light from a simple source~e.g., by a point source! onto a plane by a distorting mirro
or glass of water. Their general appearance is often complicated by the fact that multiple s
often give rise to several different Lagrangian submanifolds and their respective caustics o
Another very important physical manifestation of these caustics is their appearance
‘‘source’’ plane in the theory of gravitational lensing. We will say more about this in a l
section.#

The Legendrian submanifold obtained from the A3 generating function has the form

$x54~px!
322ypx , y5y, z53~px!

42ypx
2, px5px , py5~px!

2%. ~37!

The Legendrian map toR3:(x,y,z), given by

FIG. 3. Cusp ridge singularity for a two-dimensional wave front in three dimensions.
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$x54~px!
322ypx , y5y, z53~px!

42y~px!
2%. ~38!

This is a two-dimensional surface~wave front! in R3, parametrized by the (y,px), known as the
swallow tail. See Fig. 4. The critical points of the map are given byy56(px)

2 which map to the
wave front singularities forming the curve$x528(px)

3, y56(px)
2, z523(px)

4%. The cusp
singularity of the Lagrangian map becomes the swallowtail singularity of the Legendrian m

~c! Three-dimensionalM :(x,y,z); there are the same cases as in~a! and~b!, i.e., A1, A2, and
A3, plus three new cases, namely,

A4: G52~px!
51z~px!

31y~px!
2

and

D4
6 : G57~px!

2py1~py!31z~py!2.

The A4 caustic~two-surface in 3-space! is a swallowtail. The D4 caustics are the so-calle
elliptic umbilic and hyperbolic umbilic singularities.~See Arnold3 for their definitions.! The Leg-
endrian singularities associated with the A4 and D4 maps~e.g., the singularities of the ‘‘big wave
front,’’ the null surfaces in space–time, are far more complicated. The five singularities
above, ~i.e., A2, A3, A4, D4

6!, exhaust all stable singularities of the big wave fronts
(311)-space–time.

Examples are given and illustrated in Hasseet al.16

Remark 3: In both cases A2 and A3 the rank of the corresponding JacobianJ drops by one at
the critical curve. The direction of the kernel ofJ is tangent to the critical curve only at the cus
point in the A3 case, while it is transverse to the critical curve in the other case. Similar invar
criteria can be used to characterize the other singularities. (To see this in the context o
theory, see Ref. 9.) An advantage of such criteria is that they can be applied without hav
transform to the normal form of the generating function. In the examples;c and; f one easily

verifies that a critical point at which k˙Þ0 corresponds to a fold and one at which k˙ 50 corre-
sponds to a cusp.

Remark 4: We want to emphasize that all the different types of caustics in the low-dimen
cases have been observed in optical experiments.17

Remark 5: In the treatment of symplectic and contact manifolds and their associated Lag
ian and Legendrian submanifolds that we have given here, we began with a base sp
dimension n, then introduced its cotangent bundle T* M of dimension2n (the phase space) an
defined Lagrangian submanifolds as special n-dimensional submanifolds in T* M . We then intro-
duced an additional dimensionR, obtaining locally T* M3R (with the contact coordinate u onR

FIG. 4. The swallowtail singularity for a two-dimensional wave front in three dimensions.
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and contact forma5du2pa dqa! and thus obtained the(2n11)-dimensional contact manifold
as an ‘‘extension’’ (the contactification) of the phase space with its n-dimensional Legendrian
submanifolds. We then considered the projections of the Lagrangian submanifolds on
n-dimensional space M (Lagrangian maps) and the projections of the Legendrian subman
onto the(n11)-dimensional space M3R (Legendrian maps). We want to point out two aspe
of this.

~a!

~a! We could have started in an alternate way and introduced a different base spa˜

(configuration space) of dimension(n11) and its phase space T* M̃ of dimension(2n12); then

by considering the projective cotangent space PT* M̃ (i.e., nonzero covectors of M˜ up to scale),

we would have obtained a(2n11)-dimensional contact space. The contact structure of PT* M̃

arises as follows: the symplectic potentialk̃ of T* M̃ defines on PT* M̃ a one-form up to a
nonzero factor. Thus, the corresponding null vector spaces (i.e., the annihilators) of the one

are unique: they form the ‘‘field of contact hyperplanes’’ on PT* M̃ . In suitable coordinates
$qa,q0,pa ,(p0521)%, the one-form dq02pa dqa generates the field of the above contact hyp

planes. Although the intrinsic and global structures of PT* M̃ and MC5T* M3R are different,
their dimensions112n are the same and they play the same role for local considerations. We

choose local coordinates(qa,q0,pa) with p0521 on (part of) PT* M̃ and identify them with
local coordinates (qa,q05u,pa) on MC : Then the hypersurface elements given by d0

2pa dqa50 correspond to those given by du2pa dqa50. Therefore, if the objects of interest ar

these elements and not the 1-forms themselves, one may locally work with either PT* M̃ or MC

and their Legendrian submanifolds and projections. This applies in particular to the local stu

null hypersurfaces in space–time, the latter being represented either as M˜ or M3R. For their

global analysis, PT* M̃ is the appropriate setting.
~b! Though it is often natural to think of the configuration space M as the physical space

when one discusses caustics of families of light rays), nevertheless, it is equally often us
think of the(n11) space M3R as the physical space or space–time (e.g., when studying wav
fronts and their singularities.) Sometimes the relations between these two interpretations c
quite confusing. Depending on the physical situation the relationships could be quite differ.

Remark 6: In this section we have mainly tried to give an exposition of the mathemat
Lagrangian and Legendrian submanifolds and their maps to M and M3R, with occasional
digressions to their connections with physics. In particular, we have just explained that a v
of generating functions can be used to obtain a variety of Lagrangian and Legendrian sub
folds and their maps, but we have essentially avoided describing how they are to be phy
chosen. We have done this for two reasons: pedagogically we thought it best to first descr
mathematics and second because the variety of different physical uses could in their own
confusing. We think that there is, however, one essential idea that is common to all (or a
most) uses; when a Lagrangian (Legendrian) submanifold is chosen it should be thought o
particular ensemble of states of a physical system, i.e., for each point of the submanifold th
a particle (photon or light ray in the case of geometric optics) with a particular position
momentum. Sometimes the submanifold will be thought of as representing the initial conditio
the ensemble, other times it will represent the evolution of a smaller ensemble. Later w
discuss these ideas in the context of the Hamilton–Jacobi equation with an emphasis on th
eikonal equation, i.e., the massless Hamilton–Jacobi equation, and the beautiful theory of gene
ating families.

Remark 7: We point out a fascinating historic fact that seems not to be well known; Eins18

as early as 1917 in his investigations (involving both improvements and serious criticisms)
Sommerfeld–Epstein quantum rules, very clearly came across the existence of Lagrangian
manifolds; he clearly saw that generating functions of the form G(qa) could, in general, only be
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given locally or as multivalued functions and that in regions there could be lower-dimens
subspaces of critical points.

III. AN EXAMPLE FROM DYNAMICS

In this section we will give a simple but very illustrative example of the physical use of
mathematical ideas described in the previous section. The example comes from a verbal dis
given by Arnold in Ref. 2 and worked out in Ref. 10.

Consider a one-dimensional configuration space~and its associated phase space! with a free
particle Hamiltonian,

H5 1
2p

2.

We want to treat the evolution of an ensemble of free particles, or equivalently a pressu
fluid, with some given initial conditions. This problem can be treated either directly via
particle motions (x5x01pt), or via the Hamilton–Jacobi~H–J! equation,

]S

]t
1

1

2 S ]S

]xD 2

50. ~39!

We select the latter method since it illustrates the material of both the previous and
sections.

We choose, as an example, the followinginitial momentum distribution,

p5
1

11x2 , ~40!

defining a Lagrangian submanifold in the (x,p) phase space. Sincep5 ]S/]x , we obtain the
initial value of the action function~or velocity potential!,

S05tan21 x. ~41!

Simply from the physical situation we expect the faster moving particles eventually to overta
slower ones and that the single-valued momentum field, Eq.~40!, should change to a multivalue
one. At points where the ‘‘multivaluedness’’ starts or ends, we expect to find the focusin
caustic points of the projection map.~See Fig. 5.!

Using, from Eq.~40!, x[x056Ap2121 for the initial position as a function of the mo
menta, the equations for the particle motions, namely,

g65x2pt2x0[x2pt7Ap212150, ~42!

FIG. 5. The evolution of a momentum distribution and the formation of ‘‘fold’’ caustics.
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implicitly define a functionp(x,t) in the strip 0<t, 8
9)[tc ~for the meaning oftc , see below!,

2`,x,`. @To see this, considerg650 for fixed (x,t) in 0,p<1. Theng150 (g250) has
a unique solution forp if x>t (x<t), and forx5t the solutions coincide,p(x,x)51.# Using this
function, p(x,t)5 ]S(x,t)/]x, we can write down the solution of the time-dependent H–J eq
tion ~39! in the aforementioned strip,

S~x,t !5 1
2 p2t1tan21~x2pt!, ~43!

wherep5p(x,t) was defined above in Eq.~42!. Note that this solution can be directly obtained
integrating the H–J equation with the initial data, Eq.~41!; see Secs. IV and VII.

At all times t, the particle states (x,p) are given by the~cubic! algebraic curve~obtained from
g1g250!,

p~x2pt!21p2150, ~44!

which represents a familyL(t) of Lagrangian submanifolds in the (x,p) phase space. For 0<t
,tc , L(t) is generated byS(x,t),

p5
]S~x,t !

]x
, x5x, ~45!

with a trivial projection~diffeomorphism!. But for t.tc , there is a time-dependent open interv
x1,x,x2 , where Eq.~44! has three solutions,pi , i.e., L(t) has two folds; see Fig. 4. Near th
folds S does not generateL(t). However, near the folds we can introduce an alternative genera
function G(p,t), obtained, first, fort,tc by the Legendre transformation

G~p,t !5S~x,t !2px52 1
2 p2t1tan21~Ap2121!2pAp2121 ~46!

in the domainx.t and then continued tot>tc . ThenL(t), including the critical points, is given
by

x52
]G

]p
5pt1Ap2121, p5p. ~47!

Dropping the trivial part,p5p, Eq. ~47! gives the projection onto thex space.
The critical points~where the folds are! are given by those values ofp, where

dx

dp
505t2

1

2p2Ap2121
. ~48!

Equation~48! can be rewritten as

f ~p,t ![p42p31
1

~2t !2 50. ~49!

Thought of as a function ofp, f (p,t) has a minimum atp53/4, and a point of inflection with a
double extremum atp50. One sees that at theminimum, for t,tc[

8
9), f (3/4,t) is positive and

hence f (p,t) does not vanish for anyp while for t. 8
9) there are always two solutions; on

solution lies between 0 and 3/4 while the other lies between 3/4 and 1. Ast5.`, the two roots
approach, respectively, 0 and 1. The values ofx, in Eq. ~47!, associated with these critical poin
are the caustics that move to the right along thex axis with increasingt.

As we mentioned earlier, physically we can think of this example as representing an ens
of free particles moving to the right with an initial momentum distribution. After some time
faster ones catch up with the slower ones and the distribution becomes triple valued wit
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caustics. If there had been some initial smooth densityr5r0(x0), the density at later times is
given by r(x,t)5r0(x0)(dx0 /dx), where the initial positionx0 as a function ofx and t is
obtained by inserting thep from Eq. ~40! as a function ofx0 , i.e., p51/(11x0

2), into g150 of
Eq. ~42!, yielding x5X(x0 ,t)5x01t/(11x0

2). After the critical timetc5 8
9) there will be caus-

tics at pointsx1(t) andx2(t); for eachx between these two points there will be three values op
on the Lagrangian submanifold that correspond to three initial positions,xi0 ( i 51,2,3). Associ-
ated with these three differentps, there will be three density distributionsr i(x,t), which turn out
to be

r i~x,t !5
~11xi0!2r0~xi0!

~11xi0!222txi0
.

At tc the ‘‘flow’’ splits at the first caustic pointxc into three partial flows, and thereafter there a
two moving infinite ‘‘density waves’’ at the caustic positions.

The singularities atx1(t) andx2(t) are folds, while the singularity at the ‘‘trifurcation’’ poin
xc ~the point at the critical time where the caustic first begins! is an unstable one if considered a
belonging to the Lagrangian projection at fixedt, while it is stable as a singularity of the famil
of maps with variablet, called a metamorphosis~perestroikas!.

We mention in passing that Eq.~44! can alternatively be interpreted as defining a Lagrang
submanifold in the (x,t;p,2E) phase space over the (x,t) space–time as a base. In that interp
tation the fold curvesxi(t) meet at the~stable! cusp point (xc ,tc), where the caustic begins.

The ideas described here can~in principle! be extended to H–J theory with arbitrary Ham
tonians. From a complete solution of the H–J equation on ann-dimensional configuration spac
~i.e., one that depends onn independent constants!, it is possible to construct a solutionS(xa,t)
from arbitrary Cauchy dataS0(xa) and study the evolving Lagrangian submanifold with t
development of the critical points and density waves. In fact, the use of this idea has
proposed and extensively developed in order to account for the origin of large-scale struc
the early universe.11,19,20 In Secs. VI and VII in the discussion of generating families, we w
return to this issue.

IV. MULTIPLE USES FOR THE EIKONAL

Another interesting and useful application of the ideas of Sec. II is to wave propagati
arbitrary space–times. The treatment is essentially kinematic, the dynamics enters in the fa
we are assuming that we can solve the eikonal equation and that we can produce fam
solutions at will. For simplicity of presentation, we will take a rather unsophisticated approa
the solution of algebraic equations, assuming that almost always a solution exists. Later,
VI, we will give a more sophisticated treatment of the same issues

We begin with an arbitrary four-dimensional manifold,M4, with a Lorentzian metricg given
in some local coordinate systemxa, by gab(x). We want to consider the null hypersurfaces ofg
in M4; e.g., the hypersurfaces of a constant phase in the geometric optics~high-frequency! limit of
the Maxwell equations onM4. These hypersurfaces can be described as the level surfac
functionsS5S(xa) satisfying the eikonal equation~or massless H–J equation!, namely

gab ]aS]bS50. ~50!

A solution S5S(xa) will be referred to as an eikonal. Though later we will discuss~in a
special case! the problem of generating solutions to Eq.~50!, at the start we will assume that w
have been given a solutionS(xa) that is continuous but perhaps only piecewise smooth. The l
‘‘surfaces’’ of S might have self-intersections and have sharp edges, as, for example, in F
and 4.

We will consider several different uses for theS(xa).
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~1! First we writeS(xa)5S(xA,r ,t), A51, 2, having made an arbitrary decomposition of t
four-space into a one parameter family of three-dimensional spaces (t5const); these three sur
faces are, in turn, foliated by families of two-dimensional surfaces,M2, with xA as coordinates.
These 2-surfaces are parametrized byr on eacht5const three-surface.~One might think oft
5const as space-like surfaces, withr as a radial coordinate and thexA as the local angular
coordinates on the two-surface, though there are many alternate pictures one could mak! We
now consider the cotangent bundle over eachM2, with v5dxA`dpA and construct a Lagrangia
submanifold,L2, on it in the following manner. FromS5S(xA,r ,t), fix S5s0 andt5t0 and solve
for r , obtaining

r5R~xA,t0,s0!. ~51!

Using this as a generating function forL2, we have that

pA5]AR~xA,t0 ,s0!,

xA5xA,

defines a Lagrangian submanifold.
• Note that the values of the canonical momenta depend on the choice of the analytic

sentation of the big wave front being considered.For example, one could represent the wa
front by eitherS505t2T(xA,r ) or S505r 2R(xA,t).

~2! Any one of these symplectic manifolds,MS
2 , can now be contactified by adding th

coordinater . The contact form is thena5dr2pA dxA.
A Legendrian submanifoldE2 in MS

23R is defined by

pA5]AR~xA,t0 ,s0!, ~52!

xA5xA,
~53!

r 5R~xA,t0 ,s0!,

with the projection to the (xA,r ) space~i.e., the three-dimensional spacet5t0! given by r
5R(xA,t0 ,s0). This describes a wave front constructed from the intersection of the null ‘‘
face,’’ s05S(xa) with the t5t0 three-surface. Note that by the assumptions in this construc
the wave fronts will not have any singularities; however, if evolved to later times they, in gen
do develop singularities. See Sec. VII.

~3! An alternate way of looking at this evolution is to go back toS(xa) and view it asS(xi ,t),
with xi5(xA,r ), and again takeS5s0 and then solve fort5T(xi ,s0). Now we treat a manifold~a
time slice!, M3, with coordinatesxi , as the base space of a symplectic bundle, (xi ,pi) with the
form

v5dxi`dpi .

A Lagrangian submanifold can be obtained from the generating function,T(xi ,s0), with a
projection toM3. Again the construction used here precludes caustics; however, generalizati
be considered in Sec. VII do lead to caustics that consist of the singularities of the evolving
fronts.

Remark 8: Note that there is a completely different Lagrangian submanifold in the s,
(xi ,pi), symplectic space also constructed from S(xa); it arises from allowing the value of S t
vary but keeping t0 constant. A generating function is S5S(xi ,t0). Its projection (and the asso
ciated caustics) to M3 are completely different from those of the generating function
5T(xi ,s0). They are the caustics associated with families of null surfaces studied at one in
of time; contrasted against the previous case of the projection of one null surface S5S0 in
space–time into the three-space of the xi . This distinction often is the source of considerab
confusion.
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~4! This Lagrangian structure, obtained fromT(xi ,s0), can be contactified by adding toM3

the coordinatet, with contact forma5dt2pi dxi . Now taking the generating function ast
5T(xi ,s0), we obtain a Legendrian submanifold of (xi ,pi ,t)-space. Its projection to space–tim
M45(xa)5(xi ,t), is a null ‘‘three-surface,’’ referred to as a ‘‘big wave front’’ by Arnold. This
the same ‘‘surface’’ as described bys05S(xa); a level surface of the eikonal.

~5! As the last use of the eikonal, we mention that takingS5S(xa) as the generating function
for a Lagrangian submanifold in the symplectic manifold overM4 given by pa5]aS(xa) there
will, in general, be three-dimensional caustics associated with its projection toM4. We do not
know of a geometric use for this construction.

; Often in a physical discussion one is interested in a steady-state situation where
source~say a point or a two-surface! would light up and remain on as a source~in time! of families
of wave fronts.@We assume in this discussion that the metric~or a conformally related metric! in
the eikonal equation does not depend on time.# The families of wave fronts would look exactl
alike at every instant of timet. The problem is to solve the eikonal equation so that the initia
Cauchy data,S(xi ,t0)5S0(xi), corresponds to the evolution of one wave front obtained from
normal evolution from the given source surface, that is projected back to thet5t0 three-surface.
This can be accomplished by returning to item #3, where the evolving wave fronts on the
manifold M3 of the (xi), was described by the level 2-surfaces oft5T(xi ,s0). Treating the
two-surface defined byt05T(xi ,s0) as the source surface and ignorings0 since it is a given
constant, we can define the Cauchy data byS05T(xi); the level surfaces of this functionS0 are
the wave fronts att5t0 of light emitted by the source at earlier times. This is the situation
arises in the discussion of gravitational lensing; it is assumed that there is a fixed sourc
~conformally stationary! space–time that continuously emits light.

A closely associated point of view to this is to consider the ‘‘time-independent’’ eikonal
equation~defined only in conformally stationary space–times!, namely,

gi j ] i T̂ ] j T̂22gi0 ] i T̂1g0050. ~54!

This equation can be obtained by substituting the ansatz,S5t2T̂(xi) into the original eikonal
equation. This equation is satisfied by the Cauchy dataS05T(xi) of the previous paragraph if we
takeT, defined implicitly by

s05S~xi ,T!, ~55!

whereS(xi ,t) satisfies the eikonal equation,gab ]aS]bS50. Indeed, differentiating Eq.~55! with
respect toxi , we obtain 05] iS1(]S/]t)] iT or

] iT52
] iS

] tS
,

which when substituted into Eq.~54! leads back to the eikonal equation. Thus, our ‘‘stationar
Cauchy data is asolutionof the time-independenteikonal equation.

In the case of static space–times where thegi050, Eq. ~54! is often written in terms of the
HamiltonianH5gi j pipj2n2(xi)50 with n252g00, reinterpreted as an effective index of refra
tion andpi5] iT. This point of view leads to Fermat’s Principle of least time.

l We give a powerful example of how the eikonal equation can be solved with given Ca
data. We will assume that a three-parameter family of solutions of the eikonal equation is k
In principle, there always exists such a three-parameter family of solutions, though in practic
generally very hard to find them exactly. Perturbation techniques might be needed to appro
them. Nevertheless, for the general discussion we will assume that there exists a solutionS* of the
eikonal equation that depends on three independent parameters, i.e.,

S* 5S* ~xi ,t,a i !. ~56!
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This is called a complete integral. We show that a ‘‘general integral’’~which involves an arbitrary
function of three variables! can be constructed from the complete integral in the following fash
we first add to it an arbitrary function of thea i , i.e., we consider

S** 5S* ~xi ,t,a i !2F~a i !, ~57!

which trivially still satisfies the eikonal equation.
We next form the equations

]S** /]a i5]S* /]a i2]F/]a i50. ~58!

For the present we assume that it has a solution of the forma i5Ai(x
i ,t). @This is an example of

our unsophisticated treatment. Tacitly we are referring to the implicit function theorem, assu
that the determinant of]2S** /]a i ]a j is different from zero. We will return later, in Secs. VI an
VII, to the issue of solving Eq.~58! when the determinant vanishes.#

Finally, via a i5Ai(x
i ,t), thea i are eliminated inS** , yielding

S~xi ,t !5S* „xi ,t,Ai~xi ,t !…2F„Ai~xi ,t !…. ~59!

It is not difficult to show that thisS satisfies the eikonal equation.21 The xa derivatives of
S(xi ,t) involve both the explicitxa dependence and the dependence via theAi(x

i ,t); the latter
dependence, however, drops out because of Eq.~58!. Since the eikonal equation is satisfied as
as the explicit dependence is concerned, then so does Eq.~59!. This solution now depends on a
arbitrary function of three variables, namelyF(a i).

The task is now to determineF(a i) in terms of Cauchy data,S0(xi). This is accomplished as
follows: consider the functions(xi ,a i)[S* (xi ,t0 ,a i)2S0(xi) and then construct the three equ
tions,

]s~xj ,a j !

]xi [
]~S* 2S0!

]xi 50.

BecauseS* is a complete solution, they can be solved for

a i5Ai~xj !.

We now assume that the Cauchy data was chosen so that the last equation can be alge
inverted, i.e.,

xi5Xi~a i !.

At t5t0 we have that

S0~xi !5S* „xi ,t0 ,Ai~xi !…2F„Ai~xi !…. ~60!

Replacing all theAi by a i and all thexi by Xi(a j ), we have that

F~a i !5S* „Xi~a i !,t0 ,a i…2S0~Xi
„a i !…, ~61!

i.e., the freeF(a i) is now expressed in terms of the free Cauchy dataS0(xi) and the complete
solution.

~The construction described here for the solution of the eikonal equation in terms of Ca
data can be easily extended to the H–J equation. See Sec. VII.!

; In Minkowski space, the plane waves provide a complete integral;

S* 5xia i2tA~a i !
2.
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This allows us to find~in principle—modulo algebraic inversions! all solutions of the flat-space
Eikonal equation with arbitrary Cauchy data.;

V. A CAVEAT

As we pointed out in examples, the principal strength and importance of the theory o
grangian and Legendrian projections lies in its ability to treat the singularities of wave front
the families of particle trajectories and understand their origin in terms of smooth functions

In many cases it is possible and perhaps even intuitively useful to treat the projectio
being almost always diffeomorphisms with lower-dimensional regions as the exception. One
try to handle the singularities formally by allowing the generating functions to be multivalued
only piecewise smooth and then approach the critical points as limits of regular ones. How
this creates difficulties: the projections to the base space near critical points are difficult to
and the structure of the caustics or wave front singularities are often hard to ‘‘see.’’ Even
possible, this approach certainly is inelegant and ill-defined mathematically. One might
hoped that the cases with critical points would be exceptions, but the opposite is true; the ex
of critical points is generic and one must be able to construct the proper type of gene
function. In Sec. IV, where we dealt with solutions to the eikonal equation, we always ta
assumed that the relevant equations could be solved for certain specific variables. This was
most regions, but not in the regions where certain Jacobians vanished and where the critica
existed. In fact, it is the existence of the critical points that was the obstruction to solvin
algebraic equations.

An important question then is the following: Does there exist some general procedure
cable to physical problems for the construction of Lagrangian or Legendrian submanifolds
the associated projection maps—including singularities—so that the issue of finding appro
choices for the generating function does not arise and where the associated projection m
given in some natural systematic manner? We saw, in examples;c and;f how to obtain the
Lagrangian and Legendrian submanifolds~with critical points! without a generating function an
then in Sec. III, discussing the free particle H–J equation, the evolution of the H–J equation
suggested the Legendre transformation to a proper single-valued generating function. We w
in the next section that there indeed is a systematic method based on the concept of ‘‘gen
families.’’ We will see that it allows us to construct general Lagrangian and Legendrian sub
folds associated with, either H–J or eikonal evolution based on arbitrary Cauchy data. How
if wanted or needed, it is possible to construct generating functions, which are local objects
generating families that serve to define the submanifolds globally.

VI. GENERATING FAMILIES

There is a remarkably beautiful method1,4 for the construction of single-valued~local! gener-
ating functions—easily applied in many physical situations—using what are called ‘‘generating
families.’’ Actually one can bypass the generating function construction and go directly, via
generating families, to the Lagrangian and Legendrian submanifolds and associated m
~Though in the literature of catastrophe theory what we are calling generatingfamilies are fre-
quently called generating functions, we will stay with the terminology adopted by Arnold.!

We first outline the mathematical ideas behind ‘‘generating families’’ and then show ho
can be applied to various physical situations or problems.

We give two methods for the construction of generating families; the first begins w
generatingfunction, a special class of generatingfamiliesbeing constructed from it. Second, from
certain observations concerning the first construction, the procedure can be generalized
becomes the full theory of generating families.

For the first method we start with the cotangent bundleT* M equipped with canonical coor
dinates (qa,pa). For step one, we assume a Lagrangian submanifoldL to be given, with a pointj
on L and a generating functionG(qA,pJ) nearj. The local embedding ofL into T* M is then
given by
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qJ52]JG, pA5]AG. ~62!

We now define a functionF in a neighborhoodU of j in T* M by

F~qa,pa!5G~qA,pJ!1qJpJ . ~63!

SinceF does not depend onpA nor G on qJ, it is trivially seen thatF identically satisfies the
equations

]AF50, ]JF5pJ . ~64!

The remaining equations,

]JF50, ]AF5pA , ~65!

which are equivalent to Eqs.~62!, define the Lagrangian submanifold.
The construction ofF from G implies that

rank~]aF50, ]aF2pa!5n, ~66!

since the 2n equations in Eq.~66! have, by construction, the unique solution~62!.
We henceforth want to forget theG from which F was constructed and claim the following

If a function F(qa,pa) satisfies the rank condition, Eq.~66!, then the 2n equations,

]aF50, ]aF5pa , ~67!

can be solved for somen of the set (qa,pa). This uniquely yields an embedded Lagrangi
submanifold. Indeed, according to the implicit function theorem, one can then expressn of the
variables (qa,pa)—say (qJ,pA)—in terms of the remaining ones; in other words, Eqs.~67! im-
plies that

qJ5QJ~qA,pJ!, pA5PA~qA,pJ!

hold on then-manifold L with ~local! coordinates (qA,pJ). If the identity

dF5]aF dqa1]aF dpa

on T* M is pulled back toL, then, because of Eqs.~67!, one has the result that onL,

dF5pa dqa5]aF dqa5k, ~68!

i.e., the restriction ofF to L is a potential for the one-formk on L and hencev50. Thus,L is, in
fact, Lagrangian. Moreover, onL, we see thatF2qJpJ[G obeys Eqs.~62!.

This formulation in terms ofF, i.e., F being any function obeying the rank condition, E
~66!, allows the construction of Lagrangian submanifolds that may have regular points as w
critical points and that might require, for their local descriptions, several different gener
functions. In this sense, the description in terms ofF via Eqs.~66! and ~67! is more general and
‘‘less local’’ than the one in terms ofG and Eq.~62!. Any Lagrangian submanifold can locally b
obtained from someF.

The foregoing argument generalizes immediately to the Legendre case. We simply adF
~which is a function onT* M ! the additional variableu e R, and formu5F. Then a Legendrian
submanifold,E, on T* M3R is given by

u5F, pa5]aF, ]aF50. ~69!
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The complete theory of generating families now arises as a generalization of the prec
construction. At first sight there appear to be substantial differences, but on closer observat
see that it really is a generalization. We will show later how the previous case is a speciali
of the general theory.

The basic idea is to start with a configuration space,Mn, of dimensionn and then enlarge it
to a spaceMn1m5Mn3Mm of dimensionn1m, with local coordinates~qa, sJ!, a51, . . . .,n and
J51, . . . ,m. The dimensionsn andm are arbitrary. A ‘‘generating function’’F(qa,sJ) defined on
the large space,Mn1m, is then chosen, e.g., by physical or geometric arguments~examples of
which will be given shortly!.

F(qa,sJ) is arbitrary except for the following rank condition: The equations

]F

]sJ []JF50 ~70!

admit solutions for somem of the set (qa,sJ), and whenever they hold, the (n1m)3m matrix,

FFJa[
]2F

]sJ]qa , FJK[
]2F

]sJ]sKG , ~71!

has rankm.
FromF(xa,sJ), by an ingenious method, one can then either construct appropriate gene

functionson the cotangent bundle overMn and hence a Lagrangian submanifold or, inste
directly construct the Lagrangian submanifold from the generatingfamily.

Since the considerations are essentially local we can considerMn1m5RnxRm.
We first state the main result; namely how to construct ann-dimensional~Lagrangian! sub-

manifold from the generating familyF(xa,sJ). This is then followed by the proof that the su
manifold so constructed is in fact Lagrangian.

We first use the functionF(xa,sJ) as a generating function to generate a Lagrangian sectioL̂
in the cotangent space overMn1m,

pa5]F/]qa, qa5qa,
~72!

PJ5]F/]sJ, sJ5sJ.

We then define a subset ofMn1m by imposing the extremal condition

PJ5]F/]sJ~qa,sK!50. ~73!

According to the rank condition, the solutions of this equation form ann-dimensional sub-
manifold of Mn1m, that can be expressed by

qa5Qa~yb!, sJ5SJ~yb!. ~74!

When these are substituted intopa5]aF, one obtainspa5Pa(yb): the equations

qa5Qa~yb!, sJ5SJ~yb!, pa5Pa~yb!, PJ50 ~75!

define ann-dimensional submanifoldN of the large phase space. By its construction,N is the
intersection ofL̂ and the submanifoldP of T* Mn1m defined byPJ50.

The submanifold ofT* Mn, defined by

qa5Qa~yb!, pa5Pa~yb!, ~76!

is Lagrangian.
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What follows is the proof of this contention. As the proof is rather technical and difficult,
reader might simply prefer to accept the contention and bypass the proof. Doing so do
greatly affect the understanding of, or the ability to use, generating families. The proof is give
completeness.

Proof: Let j be a point ofN. The dimensions of the tangent spacesNj ,L̂j ,Pj , are n,n
1m,2n1m, respectively. Since (n1m) independent vectors atL̂j , @obtained from the derivatives
of Eq. ~72!# usingPJ5]JF andpa5]aF have the form

V(a)5~]abF!]b1FaK]K1]a , V(J)5FbJ]
b1FJK]K1]J ,

and vectors atPj have the form

Y5Ya]a1YJ]J1Ya]a

~with Ya,YJ,Ya arbitrary andYJ50!, we see immediately thatL̂j1Pj spans the tangent space
T* Mn1m at j and hence dim(L̂j1Pj)52n12m; i.e., L̂ and P intersect transversely.~This
statement is the geometric reformulation of the rank condition.!

The critical point to be established next is that the projection ofN into the small phase spac
T* Mn, a projection along thesJ direction is everywhere a local diffeomorphism, so that the im
L is ann-dimensional submanifold ofT* Mn, given by, Eq.~76!,

qa5Qa~yb!, pa5Pa~yb!.

To prove that, one has to show that no~nonvanishing! vector tangent toN is annihilated by the
projection. Following Arnold, this can be done elegantly as follows.

We first note that the kernel of the projection consists of all vectors of the formX5XJ]J ~i.e.,
vectors in thesJ directions! and then observe that~from the skew-orthogonal product of tange
vector ofT* Mn1m, defined by@X,Y#[XJYJ2XJY

J1XaYa2XaYa!, the kernel is skeworthogo
nal to all the vectorsY tangent toP, i.e., fromY5Ya]a1YJ]J1Ya]a, @X,Y#50. Suppose now
that X is in the kernel and tangent toN. ThenX is also tangent toL̂ sinceN,L̂. ThereforeX is
skew orthogonal to bothP and L̂ ~sinceL̂ is Lagrangian all vectors inL̂j are skew orthogonal!.
But since the tangents toP and L̂ together span the total tangent space ofT* Mn1m—i.e.,
transversality—X is skew orthogonal to ‘‘everything,’’ and thusX50, which was to be shown.

The submanifoldL given by Eqs.~76! is, in fact, Lagrangian. This again follows by pullin
back toL the identity

dF5]aF dqa1]JF dsJ,

which results in

dF5pa dqa5k. ~77!

QED

Note that any Lagrangian submanifold ofT* Mn can be obtained by the foregoing constru
tion. Suppose thatL is given locally byK(qA,pJ) as in Eq.~8!. Then the generating family@of the
type considered in Eq.~63!#,

F~qa,pJ!5K~qA,pJ!1qJpJ

~with pJ5sJ!, reproducesL, as is easily verified.
The projection ofL to the base is, of course given by

qa5Qa~yb!.
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Taking into account howQa(yb) was obtained via Eq.~73!, one can see that the kernel of th
projection consists of the solutionsXK of

FJKXK50;

thus the critical points ofL are given by

D[U ]2F

]sJ ]sKU50. ~78!

We may summarize and geometrically interpret the preceding construction as follows
each fixedsJ, pa5]aF(qa,sJ) defines a singularity-free Lagrangian submanifold ofT* Mn, i.e.,F,
acting as a generating function, defines anm-parameter family of ‘‘regular’’ Lagrangian subman
folds. By solving]JF50, i.e., Eq.~73!, and inserting them intopa5]aF(qa,sJ), we obtainpa

5Pa(yb), which with qa5Qa(yb) provides another Lagrangian submanifold, theenvelopeof the
former family. This Lagrangian submanifold has the projection mapp:yb→qa5Qa(yb). Its criti-
cal points are given as those points where the rank of the Jacobian matrix]aQb is not maximal or,
equivalently, where Eq.~78! holds.

Now we can also see that the previous construction via Eq.~67! is included in the genera
case. Ifm5n and if the first matrix in Eq.~71!, i.e.,FKa , has rankm, then one can express thesJ

as functions of thepa , andF(qa,pa)[F„qa,sJ(pa)… is a generating family of the former kind.
Equation~76! represents the Lagrangian submanifold in terms of some coordinatesyb. Due to

the implicit function theorem, theyb can always~locally! be chosen as subsets of the (qa,sJ).
We now consider the possible cases

~1! Let us first assume that at a solution point (q0
a ,s0

J),

D[uFJKuÞ0. ~79!

Then, Eqs.~73! can be solved uniquely for all thesJ,

sJ5SJ~qa!. ~80!

This result can be inserted intoF(qa,sJ), so that

F~qa,sJ!⇒G~qa!5F„qa,SJ~qa!… ~81!

yields a generating functionG(qa) for a Lagrangian submanifold. From the general theory,

pa5]G/]qa, qa5qa, ~82!

with a trivial ~diffeomorphism! Lagrangian map.
Conversely, whenD50, at (q0

a ,s0
J), the Lagrangian projection is not a diffeomorphism in a

neighborhood of the point, i.e., we have a Lagrangian singularity there, as noted in conn
with Eq. ~78!. The vanishing ofD is thus the necessary and sufficient condition for the occurre
of a caustic at the point in question.

~2! The other case to consider is when them equations]JF50 can be algebraically solved fo
a mixture of someqa’s and somesJ’s, i.e., where the solutions have the form

qa85Qa8~qa9,sK9!, sJ85SJ8~qa9,sK9!, ~83!

with m variables (qa8,sJ8) andn variables (qa9,sK9) such that at least onesK9 occurs.~The set of
qa9 might be empty.! The Lagrangian submanifold, parametrized by then variables (qa9,sK9), is
now given by
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qa85Qa8~qa9,sK9!,

qa95qa9, ~84!

pa5]aF5Pa~qa9,sK9!.

The generating function,

S~qa9,pa8!5F„Qa8~qa9,sK9!,qa9,SJ8~qa9,sK9!,sK9
…2pa8Q

a8~qa9,sK9!, ~85!

which does not depend onsK9, yields the same submanifold as do Eqs.~84!. To see thatS, in fact,
does not depend onsK9, one first treats the right side as a function of (qa9,pa8 ,sK9) and then by
differentiating with respect tosK9, and using Eqs.~84!, one sees that the derivative vanishes.

Since, from generating functions for Lagrangian submanifolds one can construct a c
coordinate@see Eqs.~26! and~27!# and hence a Legendrian submanifold and Legendrian map
construction of the Lagrangian submanifolds via generatingfamilies rather than generatingfunc-
tions, is easily extended@see Eq.~69!# to the Legendrian submanifolds and maps via

u5F~qa,sJ!, ]JF50, pa5]aF.

VII. APPLICATIONS OF GENERATING FAMILIES

Since many or perhaps most of the applications in the physics of Lagrangian and Lege
submanifolds and maps are associated with dynamical or optical systems and appear to b
directly or indirectly associated with Hamilton–Jacobi theory or the related eikonal equatio
will confine our discussion to showing how generating families can be constructed for sp
physical situations.

; We begin with a simple but important physical model. Consider four-dimensi
Minkowski space–time foliated by the standardt5const, space-like three-surfaces( t⇔R3, with
Cartesian coordinatesxi . We choose att50, an arbitrary two-surface,S, in (0 that ‘‘lightsup,’’
i.e., that is to be a source of light, with local coordinates (sJ), J51,2, i.e.,xi5x0

i (sJ), which
describesS parametrically. The (x1,x2,x3) in R3 are the points of physical space~observation
points! that will be reached by light rays fromS. At each instant of timet, the light fills a region
bounded by two ‘‘small wave fronts’’—from the ‘‘incoming’’ and ‘‘outgoing’’ rays. In space
time these small wave fronts, as time evolves, form a pair of null hypersurfaces~‘‘big’’ wave
fronts!, whose intersectionis S. We wish to find these small wave fronts.

Let the functiont5F(x1,x2,x3,s1,s2) represent the time it takes for light to go fromS to the
observation point,xi . From the constancy of the speed of light,c51, we have that

t5F~x1,x2,x3,s1,s2!5A„xi2x0
i ~sJ!…„xi2x0

i ~sJ!…, ~86!

which we will write as

F5A~r2r0~sJ!…"„r2r0~sJ!….

First of all we define, in accordance with Eq.~72!,

p5
]F

]r
5

„r2r0~sJ!…

ur2r0~sJ!u
. ~87!

From PJ5]F/]sJ50, we have that

PJ52
„r2r0~sJ!…

ur2r0~sJ!u
•TJ52p"TJ50, ~88!
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with TJ(s
K)5]r0 /]sJ, the two tangent vectors to the surface.~The physical meaning of]F/]sJ

50 is that, sincet5F„r,r 0(sJ)…, the travel time of a ray leaving from the surface atr0(sJ) and
arriving at r is an extremal~minimum!.# We see, below, that to satisfy this condition, rays m
leave normal to the surface,S.

We can solve Eqs.~88! by introducing the unit normal toS, given by

n~sJ!5
T1ÃT2

uT1uuT2u
, ~89!

and using the fact that Eq.~88! implies that

r5r0~sJ!1vn~sJ!. ~90!

Thus, from Eq.~87!,

p5n~sJ!, ~91!

i.e., if Eq. ~88! holds, the momentum is the unit normal to the surfaceS.
Equation~90!, for each fixed value ofv, defines a small wave front with the two signs ofv

yielding the incoming and outgoing fronts. For sufficiently largeuvu, these fronts could develop
singularities. For examples, see Figs. 6 and 7.

Equations~90! and ~91! define a~three-dimensional! Lagrangian submanifold in the six
dimensional phase space of (r ,p), in terms of the parametersv andsJ, while the Lagrangian map
p is given by Eqs.~90!.

Now with the use of generating families, this example generalizes~from two- three- dimen-
sional configuration spaces!, the construction;c from Sec. II. It covers the generic case of
optical wave front in (311)-dimensional Minkowski space.

The extension of this construction to a Legendrian submanifold,E, consists of simply adding
t as the contact coordinate and usingt5v with Eqs.~90! and ~91! to defineE, i.e.,

r5r0~sJ!1vn~sJ!, ~92!

p5n~sJ!, ~93!

FIG. 6. A two-dimensional wave front in three-space with two cusp ridges.
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t5v, ~94!

while the projection, the Legendrian map, to the space–time, (r ,t), is given by

r5r0~sJ!1vn~sJ!, ~95!

t5v. ~96!

~Compare with;f of Sec. II.! Qualitatively these examples can be generalized to arbit
four-dimensional Lorentzian space–times.13,16,22

As was stated earlier, the critical points of the Lagrangian map can be calculated eithe
the vanishing of the Jacobian of that map or from

D~sJ,v ![U ]2F

]sJ ]sKU50.

Directly from the latter expression we have, after a brief calculation, that

]2F

]sJ ]sK 5v21~gJK2vhJK!, ~97!

wheregJK5TJ"TK andhJK5n(sJ)•]TK /]sJ are, respectively, the first and second fundamen
forms ~or, respectively, the induced metric and extrinsic curvature tensors! of the surface,S. The
critical points@determined by the vanishing of the determinantD, of Eq. ~97!# are then given by
the values ofv5ur2r0u, such that

v2D5g1v~g11h2222g12h121g22h11!1v2h50, ~98!

whereg andh are the determinants ofgJK andhJK . The two rootsv1(sJ) andv2(sJ), of Eq.~98!,
can be recognized from the differential geometry of 2-surfaces inR3, as defining the two principa
radii of curvature ofS, and we have the following classical result.

The caustic of the wave front emerging normal from a two-surfaceS, acting as a light source
consists of the loci of the principal centers of curvature of that surface. They are given by

r ~sJ!5r0~sJ!1nv1~sJ!, ~99!

r ~sJ!5r0~sJ!1nv2~sJ!. ~100!

FIG. 7. A two-dimensional wave front in three-space with cusp ridges vanishing at swallowtail points.
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In other words, it consists of two different two-surfaces, each given parametrically in termssJ

by Eqs.~99! and ~100!. These two surfaces touch each other wheneverv1(sJ)5v2(sJ); in other
words, on the normals fromumbilic points ofS where the two radii of curvature coincide.23,24On
the caustic point, associated with the umbilic point, there occurs what is called an ‘‘umb
singularity. Other ‘‘singularities’’ of the caustic surfaces, which are cusp ridges and swallow
can be analyzed in terms of the local differential geometry of the surfaceS. They are associated
with extremals of the curvatures~k15v1

21 , k25v2
21! on the curves of a principal curvatur

coordinate system.
@An alternative way to obtain Eq.~98! is to calculate and set to zero the Jacobian of Eq.~90!;

J5U ]r

]p
,

]r

]s1 ,
]r

]s2U5n"H S T11v
]n

]s1 D3S T21v
]n

]s2 50D . ~101!

By usingn from Eq. ~89! and the identity (AÃB)•(CÃD)5(A"C)(B"D)2(A"D)(B"C) with the
definition of the first and second fundamental form, Eq.~101! is seen to be identical to Eq.~98!.#

Remark 9: We mention, without entering into the details, that from Eqs. (85),(86) and (88
can construct one of several generating functions for this case. A typical one, valid if nzÞ0, takes
the form

G~z,px ,py!5znz~sJ!2r0~sJ!"n~sJ!, ~102!

where the sJ are given implicitly as functions of the(px ,py) by (px ,py)5(nx ,ny).;
A much larger class of examples to which generating families can be applied is given b

following.
;. Consider any~autonomous! Hamiltonian system with phase space coordinates (qa,pa)

and Hamiltonian

H5H~qa,pa!, a51, . . . ,n ~H:T* M→R!,

and an associated~H–J! equation,

]S

]t
1HS qa,

]S

]qaD50 ~S:M3R→R!. ~103!

~The following considerations apply equally to the general relativistic H–J equation:

gab ]aS]bS1m250).

We use the existence of ann-parameter family, (sa), of solutions to the H–J equation,
‘‘complete solution,’’

S5S* ~qa,sb,t !,

i.e., a solution depending onn parameterssb, such that the equation,

]S*

]sa 5aa ,

can be solved uniquely with respect to the variablesqa.
We now define what is to be our generating family, the functionF(qa,sb,t) by

F5S* ~qa,sb,t !2F~sb!, ~104!

whereF(sb) is an arbitrary function such thatF obeys the rank condition. We now require, fro
the theory of generating families, the extremal condition, i.e., Eq.~73!, that
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]F/]sb[]S* /]sb2]F/]sb50. ~105!

From the general theory we infer that Eq.~105! can be solved for eithersb or qa or some
combination of them, or alternatively it allows us to describe the solution parametrically, i.e

sa5Sa~yb,t !, qa5Qa~yb,t !.

Moreover, the resulting equations,

qa5Qa~yb,t !,

pa5
]

]qa F~qa,sb,t !5Pa~yb,t !,

define a one-parameter family of Lagrangian submanifolds ofT* M , parametrized byt.
They also define a Lagrangian submanifold of the phase space overM3R5$qa,t% with

canonical coordinates (qa,t,pa ,2E), contained in the ‘‘physical hypersurface’’~constraint sub-
manifold,E! given byE5H(qa,pa). A ‘‘classical’’ solution S(qa,t) to the H–J equation may b
geometrically characterized as the generating function of a Lagrangian section ofT* (M3R)
contained inE. Therefore, it is reasonable to call any generating function of any Lagran
submanifoldL, contained inE @explained earlier in connection with generating families; see
~85!# a ‘‘generalized solution’’ of the H–J equation, since it extends through singularities
Lagrangian submanifold defined~locally! by a ‘‘classical’’ solutionS. ~Such an extension is
unique sinceL is ruled by phase trajectories determined by Hamilton’s equations and in
conditions.!

Note that indeed a generating function of this type does satisfy the generalized H–J eq

H~qa,pa![H~qA,qJ,pA ,pJ!⇒H~qA,2]JK,]AK,pJ!1
]K

]t
50,

where we have used Eq.~5!.
In this sense, the construction, via Eqs.~104! and~105!, provides ‘‘generalized’’ solutions of

the H–J equation, in that it extends an ordinary solution through singular points.16 It is also a
‘‘general’’ solution, in the sense that by a suitable choice of a complete solutionS* (qa,sb,t) of
the H–J equation and the functionF(sb), it can be adapted to any Cauchy data. If one begins w
arbitrary Cauchy data,S0(qa), it is possible to convert it into an expression forF(sb). See the
corresponding argument for the eikonal equation in Sec. IV.

This procedure allows us to choose an ensemble~of noninteracting particles in three-spac!
for a classical system and then see how the entire ensemble evolves and study the density
for example, the high density in the neighborhood of caustics. See Sec. III.;

; An example closely related to the preceding one is that of the eikonal equation
arbitrary four-dimensional Lorentzian manifold, namely,

gab~xc!]aS]bS50, ~106!

where gab is the inverse metric andxc are some local coordinates. This time we start from
two-parameter family of solutions,

S5Z~xc,z,z̄ !, ~107!

with (z,z̄) the parameters, chosen as the complex stereographic coordinates onS2 in order to label
the sphere of null directions at the space–time pointxc. ~We write expressions in terms of bothz

andz̄ in order to point out that the functions used are not holomorphic inz. Also, it is convenient
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to employ the independent directional derivatives with respect to bothz andz̄.! It is often difficult
or even practically impossible to find such solutions though there are perturbation techniq
construct approximations to such solutions.

We now define our generating family by25,22

F~xc,z,z̄ !5Z~xc,z,z̄ !2F~z,z̄ !, ~108!

with F(z,z̄) an arbitrary function.~Often F is chosen as a regular function onS2, though this is
not necessary.! The extremal condition, Eq.~73!, is now

]F/]z50, ]F/]z̄50. ~109!

If these equations can be solved byz5z(xa), thenF@xa#5F„xc,z(xa),z̄(xa)… also satisfies the
eikonal equation.~See Sec. IV for the flat-space version of this with three parameters.! Note that
this constructiondoes notallow the construction of the general solution; to do thatF(z,z̄) would
have to depend on three parameters rather than two. However, this procedure does al
construction of any arbitrary single null hypersurface.22 The first example of this section is a
illustration of this construction. A much more valuable example is the construction26 of the
lightcone of some arbitrary but fixed space–time point,x0

a . This can be used to generalize th
usual treatment of gravitational lensing. In fact, in this case, Eq.~110! below, becomes the len
equation when two of the coordinates, the radial distance from an observer and the time, a
constant.27

If F is held constant~say zero! then the resulting three equations, Eqs.~108! and ~109!, can,
in general, be solved forthree, (xi), of the six variables (xa,z,z̄) in terms of the remaining
variables@say (x* ,z,z̄)], i.e., they have the form

xi5Xi~x* ,z,z̄ !. ~110!

Equation~110! represents the set of null geodesics that generate the big wave front,F50; they are
labeled by the (z,z̄) and parametrized by one of its coordinates,x* . ;

; As a final example, we show how the N-plane lens map~in the standard weak field, thin
lens approximation! of gravitational lens theory can be obtained naturally via a generating fam
as a Lagrangian projection.

Suppose that the light rays emitted from some point sources on a source planeP are con-
secutively gravitationally deflected by N thin mass distributionsMi before they reach an observe
O. The Mi are represented by surface mass densities inN planesPi orthogonal to a straight line
going throughO and perpendicular to the source planeP. A virtual light path is represented as
polygon figure fromO to s with vertices on thePi . The influence of theMi on light can be
expressed in terms of two-dimensional potentialsC i on the planesPi . The travel time of a light
ray depends not only on its geometrical pathlength, but also on the gravitational Shapir
delay suffered when the rays passes a ‘‘lens’’Mi . If the positionssi of a virtual ray on the plane
Pi and the positionq[sN11 of s on a source plane P, are scaled suitably, the~variable part! of the
travel time has the form9

F~s1 ,s2 . . . .,sN ,q!5(
i 51

N

CiF1

2
~si2si 11!22b iC i~si !G , ~111!

where the constantsCi ,b i depend on the distances ofs and theMi from O. Fermat’s principle
~which singles out the ‘‘real’’ from the virtual rays! in this idealization takes the form

]F

]si
50. ~112!
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We considerF(s1 ,s2 , . . . ,sN ,q) as a generating family with—in the notation of Sec. V,

sJ5~s1 ,s2 , . . . ,sN!, qa5q5sN11 ,

i.e., in this case we haven52 andm52N. The rank condition is satisfied; indeed, the soluti
from Eq. ~112! has the form

s25 f 2~s1!, s35 f 3~s2 ,s1!5 f 3@s1#, . . . , q5 f N11~s1!.

If we put

p5
]F

]q
5P~s1!,

then according to the general theory the equations

q5 f N11~s1!, p5P~s1!

describe a Lagrangian submanifold ofT* R25$q,p%, parametrized by the ray direction~corre-
sponding tos1! at the observerO. The associated Lagrangian projection is given by the lens

s1°q5 f N11~s1!,

which takes a ray directions1 at O to the source positionq. ~Note that this is a gradient map
N51 but a more general Lagrangian map forN.1.! Critical curves, caustics, types of singular
ties then can be analyzed according to the general theory.;

We mention, with no discussion, that Lagrangian submanifolds play a role in the char
ization and construction of physical states of~linear! quantum fields on~classical! curved, globally
hyperbolic space–times (M ,g). Such~Hadamard! states can be characterized by the ‘‘wave fro
sets’’ of their two-point ‘‘functions,’’ subsets ofT* (M3M ),28,29 which have been shown to b
contained in Lagrangian submanifolds ofT* (M3M ).

VIII. EPILOGUE

The study of caustics and wave front evolution has a rich history; it dates back to the
studies of Newton and Huygens, Cayley studied the normal wave front evolution from the tr
ellipsoid in the middle of the 19th century. The contemporary study of generic wave fron
caustic behavior arose in the mid-century via the classification studies of the singularit
functions and mappings. It arose mainly via the efforts of the mathematicians, Whitney, T
and Arnold; the work of the latter on Lagrangian maps has been the main concern here
several notable exceptions, in particular Berry and Zeldovich, physicists seem to have l
ignored the subject, even though it has implications for a wide range of physical application
forms of wave propagation, both classical and quantum mechanical; from geometric
through to physical optics; intensity distributions in interference and diffraction phenom30

~e.g., evaluations of the Fresnel and Airy integrals!; gravitational lensing; structure formation i
the early universe and in galaxies via density waves; finite size image disruption,31 Hamilton–
Jacobi theory; stability problems; thermodynamics; elasticity theory; and states of quantum
in curved space–times.29

We have only attempted to give the most rudimentary treatment of the basic mathem
ideas that lie at the origin of this large subject and to introduce several potential applications
general theory to physics. For a variety of reasons we have avoided completely several r
topics, e.g., global topological questions, the theory of classification of critical points of funct
the surprising relationship between the classification of functions and the Weyl groups, etc

There are several articles and books that contain extensive bibliographies and historic
veys of the origin and development of singularity theory. The bookCatastrophe Theory,2 besides
                                                                                                                



nsive
Math
bli-

’s
ugh
-
point
almost
of the

ry

ned in

light-
this

nts No.
p for

onts
ry to
rical
ecial

y

hys.

elativ-

I,

3377J. Math. Phys., Vol. 41, No. 6, June 2000 The theory of caustics and wave front singularities

                    
being a wonderful introduction to the subject, contains both a brief history and an exte
annotated bibliography to both the theory and its many applications. The article in Russian
Surveys,32 dedicated to Arnold on his 60th birthday, contains a complete list of Arnold’s pu
cations while Arnold’s article,15 on large-scale issues in wave propagation~and as a delightful
aside, a discussion on Mathematics Education!, also has a large bibliography as does Arnold
article5 in Vol. V in Dynamical Systems of the Encyclopedia of Mathmatical Sciences. Tho
Arnold’s book33 ‘‘ Huygens & Barrow, Newton & Hooke’’ only touches on the details of singu
larity theory, it must be mentioned for its wealth of fascinating historical observations. We
out that though most of our references are to books and articles published later than 1980,
all of the fundamental mathematical work was completed by the mid-1970s. We list several
principle early references.34–37

Note: Arnold on Mathematicians. ‘‘It is almost impossible for me to read contempora
mathematicians who instead of saying

‘Petya washed his hands’ write simply ‘There is at1,0 such that the image oft1 under the
natural mappingt1°Petya(t1) belongs to the set of dirty hands and at2 , t1,t2,0, such that the
image oft2 under the above mentioned mapping belongs to the complement of the set defi
the preceding sentence’.’’
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Reduction theory for mechanical systems with symmetry has its roots in the clas-
sical works in mechanics of Euler, Jacobi, Lagrange, Hamilton, Routh, Poincare´,
and others. The modern vision of mechanics includes, besides the traditional me-
chanics of particles and rigid bodies, field theories such as electromagnetism, fluid
mechanics, plasma physics, solid mechanics as well as quantum mechanics, and
relativistic theories, including gravity. Symmetries in these theories vary from ob-
vious translational and rotational symmetries to less obvious particle relabeling
symmetries in fluids and plasmas, to subtle symmetries underlying integrable sys-
tems. Reduction theory concerns the removal of symmetries and their associated
conservation laws. Variational principles, along with symplectic and Poisson ge-
ometry, provide fundamental tools for this endeavor. Reduction theory has been
extremely useful in a wide variety of areas, from a deeper understanding of many
physical theories, including new variational and Poisson structures, to stability
theory, integrable systems, as well as geometric phases. This paper surveys
progress in selected topics in reduction theory, especially those of the last few
decades as well as presenting new results on non-Abelian Routh reduction. We
develop the geometry of the associated Lagrange–Routh equations in some detail.
The paper puts the new results in the general context of reduction theory and
discusses some future directions. ©2000 American Institute of Physics.
@S0022-2488~00!02006-5#

CONTENTS

I. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3380
A. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3380
B. Bundles, momentum maps, and Lagrangians. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3384
C. Coordinate formulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3385
D. Variational principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3386
E. Euler–Poincare´ reduction. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3386
F. Lie–Poisson reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3387
G. Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3389

II. THE BUNDLE PICTURE IN MECHANICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3394
A. Cotangent bundle reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3394
B. Lagrange–Poincare´ reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3395
C. Hamiltonian semidirect product theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3396

a!Electronic mail: marsden@cds.caltech.edu
b!Electronic mail: Tudor.Ratiu@epfl.ch
c!Electronic mail: scheurle@mathematik.tu-muenchen.de
33790022-2488/2000/41(6)/3379/51/$17.00 © 2000 American Institute of Physics

                                                                                                                



come

ry
ins in

ssical
addi-
ate
bi’s
ion
General

sson
-
is was
e

f Lie
n of

rigid

not

3380 J. Math. Phys., Vol. 41, No. 6, June 2000 Marsden, Ratiu, and Scheurle

                    
D. Semidirect product reduction by stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3397
E. Lagrangian semidirect product theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3398
F. Reduction by stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3400

III. ROUTH REDUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3402
A. The global realization theorem for the reduced phase space. . . . . . . . . . . . . . . . . . . . 3402
B. The Routhian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3404
C. Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3405
D. Hamilton’s variational principle and the Routhian. . . . . . . . . . . . . . . . . . . . . . . . . . . .3405
E. The Routh variational principle on quotients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3407
F. Curvature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3409
G. Splitting the reduced variational principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3412
H. The Lagrange–Routh equations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3414
I. Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3416

IV. RECONSTRUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3417
A. First reconstruction equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3417
B. Second reconstruction equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3418
C. Third reconstruction equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3419
D. The vertical Killing metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3420
E. Fourth reconstruction equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3421
F. Geometric phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3422

V. FUTURE DIRECTIONS AND OPEN QUESTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3423
REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3425

I. INTRODUCTION

This section surveys some of the literature and basic results in reduction theory. We will
back to many of these topics in ensuing sections.

A. Overview

A brief history of reduction theory . We begin with an overview of progress in reduction theo
and some new results in Lagrangian reduction theory. Reduction theory, which has its orig
the classical work of Euler, Lagrange, Hamilton, Jacobi, Routh, and Poincare´, is one of the
fundamental tools in the study of mechanical systems with symmetry. At the time of this cla
work, traditional variational principles and Poisson brackets were fairly well understood. In
tion, several classical cases of reduction~using conservation laws and/or symmetry to cre
smaller dimensional phase spaces!, such as the elimination of cyclic variables as well as Jaco
elimination of the node in then-body problem, were developed. The ways in which reduct
theory has been generalized and applied since that time has been rather impressive.
references in this area are Abraham and Marsden@1978#,2 Arnold @1989#,12 and Marsden
@1992#.103

Of the above-mentioned classical works, Routh@1860,1884#140,142 pioneered reduction for
Abelian groups. Lie@1890#88 discovered many of the basic structures in symplectic and Poi
geometry and their link with symmetry. Meanwhile, Poincare´ @1901#133 discovered the generali
zation of the Euler equations for rigid body mechanics and fluids to general Lie algebras. Th
more or less known to Lagrange@1788#80 for SO~3!, as we shall explain later in the paper. Th
modern era of reduction theory began with the fundamental papers of Arnold@1966#8–10 and
Smale@1970#.147 Arnold focused on systems on Lie algebras and their duals, as in the works o
and Poincare´, while Smale focused on the Abelian case giving, in effect, a modern versio
Routh reduction.

With hindsight we now know that the description of many physical systems such as
bodies and fluids requiresnoncanonical Poisson bracketsandconstrained variational principles
of the sort studied by Lie and Poincare´. An example of a noncanonical Poisson bracket ong* , the
dual of a Lie algebrag, is called, following Marsden and Weinstein@1983#,112 the Lie–Poisson
bracket. These structures were known to Lie around 1890, although Lie seemingly did
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recognize their importance in mechanics. The symplectic leaves in these structures, nam
coadjoint orbit symplectic structures, although implicit in Lie’s work, were discovered by Kiril
Kostant, and Souriau in the 1960s.

To synthesize the Lie algebra reduction methods of Arnold@1966#8 with the techniques of
Smale@1970#147 on the reduction of cotangent bundles by Abelian groups, Marsden and Wein
@1974#110 developed reduction theory in the general context of symplectic manifolds and eq
riant momentum maps; related results, but with a different motivation and construction~not
stressing equivariant momentum maps! were found by Meyer@1973#.114

The construction is now standard: Let~P, V! be a symplectic manifold and let a Lie groupG
act freely and properly onP by symplectic maps. The free and proper assumption is to a
singularities in the reduction procedure, as is discussed later. Assume that this action
equivariant momentum mapJ:P→g* . Then thesymplectic reduced spaceJ21(m)/Gm5Pm is a
symplectic manifold in a natural way; the induced symplectic formVm is determined uniquely by
pm* Vm5 i m* V, wherepm :J21(m)→Pm is the projection andi m :J21(m)→P is the inclusion. If
the momentum map is not equivariant, Souriau@1970#148 discovered how to centrally extend th
group ~or algebra! to make it equivariant.

Coadjoint orbits were shown to be symplectic reduced spaces by Marsden and We
@1974#.110 In the reduction construction, if one choosesP5T* G, with G acting by ~say left!
translation, the corresponding spacePm is identified with the coadjoint orbitOm throughm to-
gether with its coadjoint orbit symplectic structure. Likewise, the Lie–Poisson bracket ong* is
inherited from the canonical Poisson structure onT* G by Poisson reduction, that is, by simply
identifying g* with the quotient (T* G)/G. It is not clear who firstexplicitly observed this, but it
is implicit in many works such as Lie@1890#,88 Kirillov @1962,1976#,69,70Guillemin and Sternberg
@1980#,44 and Marsden and Weinstein@1982, 1983#,111,112 but is explicit in Marsden et al.
@1983#,113 and in Holmes and Marsden@1983#.51

Kazhdan, Kostant, and Sternberg@1978#66 showed thatPm is symplectically diffeomorphic to
an orbit reduced spacePm>J21(Om)/G and from this it follows thatPm are the symplectic leave
in P/G. This paper was also one of the first to notice deep links between reduction and inte
systems, a subject continued by, for example, Bobenko, Reyman, and Semenov-Tian-S
@1989#20 in their spectacular group theoretic explanation of the integrability of the Kowalew
top.

The way in which thePoissonstructure onPm is related to that onP/G was clarified in a
generalization ofPoisson reductiondue to Marsden and Ratiu@1986#,97 a technique that has als
proven useful in integrable systems~see, e.g., Pedroni@1995#132 and Vanhaecke@1996#151!.

Reduction theory for mechanical systems with symmetry has proven to be a powerfu
enabling advances in stability theory~from the Arnold method to the energy–momentum meth!
as well as in bifurcation theory of mechanical systems, geometric phases via reconstructio
inverse of reduction—as well as uses in control theory from stabilization results to a d
understanding of locomotion. For a general introduction to some of these ideas and for f
references, see Marsden and Ratiu@1994#.98

More about Lagrangian reduction. Routh reduction for Lagrangian systems is classically as
ciated with systems having cyclic variables~this is almost synonymous with having an Abelia
symmetry group!; modern accounts can be found in Arnold@1988#11 and in Marsden and Ratiu
@1994#,98 Sec. 8.9. A key feature of Routh reduction is that when one drops the Euler–Lag
equations to the quotient space associated with the symmetry, and when the momentum
constrained to a specified value~i.e., when the cyclic variables and their velocities are elimina
using the given value of the momentum!, then the resulting equations are in Euler–Lagrange fo
not with respect to the Lagrangian itself, but with respect to theRouthian. In his classical work,
Routh @1877#141 applied these ideas to stability theory, a precursor to the energy–mome
method for stability~Simo, Lewis, and Marsden@1991#;145 see Marsden@1992#103 for an exposi-
tion and references!. Of course, Routh’s stability method is still widely used in mechanics.31

Another key ingredient in Lagrangian reduction is the classical work of Poincare´ @1901#133 in
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which theEuler–Poincaréequationswere introduced. Poincare´ realized that both the equations o
fluid mechanics and the rigid body and heavy top equations could all be described in Lie alg
terms in a beautiful way. The importance of these equations was realized by H
@1904,1949#47,48 and Chetayev@1941#.30

Tangent and cotangent bundle reduction.The simplest case of cotangent bundle reduction
reduction at zero in which case one choosesP5T* Q and then the reduced space atm50 is given
by P05T* (Q/G), the latter with the canonical symplectic form. Another basic case is whenG is
Abelian. Here, (T* Q)m>T* (Q/G) but the latter has a symplectic structure modified by magn
terms; that is, by the curvature of the mechanical connection.

The Abelian version of cotangent bundle reduction was developed by Smale@1970#147 and
Satzer@1977#143 and was generalized to the non-Abelian case in Abraham and Marsden@1978#.2

Kummer @1981#77 introduced the interpretations of these results in terms of a connection,
called themechanical connection. The geometry of this situation was used to great effect in,
example, Guichardet@1984#,40 Iwai @1987c, 1990#,61,62 and Montgomery @1984, 1990,
1991#.116,120,121Routh reduction may be viewed as the Lagrangian analog of cotangent b
reduction.

Tangent and cotangent bundle reduction evolved into what we now term as the ‘‘b
picture’’ or the ‘‘gauge theory of mechanics.’’ This picture was first developed by Montgom
Marsden, and Ratiu@1984#115 and Montgomery@1984, 1986#.116,118That work was motivated and
influenced by the work of Sternberg@1977#149 and Weinstein@1978#155 on aYang–Mills construc-
tion that is, in turn, motivated by Wong’s equations, that is, the equations for a particle movi
a Yang–Mills field. The main result of the bundle picture gives a structure to the quotient s
(T* Q)/G and (TQ)/G whenG acts by the cotangent and tangent lifted actions. We shall rev
this structure in some detail in the following.
Nonabelian Routh reduction. Marsden and Scheurle@1993a, 1993b#107,108showed how to gen-
eralize the Routh theory to the non-Abelian case as well as realizing how to get the E
Poincare´ equations for matrix groups by the important technique ofreducing variational prin-
ciples. This approach was motivated by related earlier work of Cendra and Marsden@1987#27 and
Cendra, Ibort, and Marsden@1987#.26 The work of Blochet al. @1996#17 generalized the Euler–
Poincare´ variational structure to general Lie groups and Cendra, Marsden, and Ratiu@2000#28

carried out a Lagrangian reduction theory that extends the Euler–Poincare´ case to arbitrary con-
figuration manifolds. This work was in the context of the Lagrangian analog of Poisson redu
in the sense that no momentum map constraint is imposed.

One of the things that makes the Lagrangian side of the reduction story interesting is th
of a general category that is the Lagrangian analog of Poisson manifolds. Such a category,
Lagrange–Poincaré bundles, is developed in Cendra, Marsden, and Ratiu@2000#,28 with the
tangent bundle of a configuration manifold and a Lie algebra as its most basic example. Tha
also develops the Lagrangian analog of reduction for central extensions and, as in the c
symplectic reduction by stages~see Marsdenet al. @1998, 2000#90,91!, cocycles and curvature
enter in this context in a natural way.

The Lagrangian analog of the bundle picture is the bundle (TQ)/G, which, as shown later, is
a vector bundle overQ/G; this bundle was studied in Cendra, Marsden, and Ratiu@2000#.28 In
particular, the equations and variational principles are developed on this space. ForQ5G this
reduces to Euler–Poincare´ reduction and forG Abelian, it reduces to the classical Routh proc
dure. Given aG-invariant LagrangianL on TQ, it induces a Lagrangianl on (TQ)/G. The
resulting equations inherited on this space, given explicitly later, are theLagrange–Poincaré
equations~or the reduced Euler–Lagrange equations!.

Methods of Lagrangian reduction have proven very useful in, for example, optimal co
problems. It was used in Koon and Marsden@1997#71 to extend the falling cat theorem of Mon
gomery@1990#120 to the case of nonholonomic systems as well as nonzero values of the mo
tum map.
Semidirect product reduction. Recall that in the simplest case of a semidirect product, one
a Lie groupG that acts on a vector spaceV ~and hence on its dualV* ! and then one forms the
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semidirect productS5GsV, generalizing the semidirect product structure of the Euclidean gr
SE~3!5SO~3!sR3.

Consider the isotropy groupGa0
for somea0PV* . Thesemidirect product reduction theorem

states that each of thesymplectic reduced spaces for the action of Ga0
on T* G is symplectically

diffeomorphic to a coadjoint orbit in(gsV)* , the dual of the Lie algebra of the semidire
product. This semidirect product theory was developed by Guillemin and Sternberg@1978,
1980#,43,44 Ratiu @1980, 1981, 1982#,135–139 and Marsden, Ratiu, and Weinstein@1984a,
1984b#.100,101

This construction is used in applications where one has ‘‘advected quantities’’~such as the
direction of gravity in the heavy top, density in compressible flow and the magnetic fie
magnetohydrodynamics!. Its Lagrangian counterpart was developed in Holm, Marsden, and R
@1998b#54 along with applications to continuum mechanics. Cendraet al. @1998#24 applied this idea
to the Maxwell–Vlasov equations of plasma physics. Cendraet al. @1998#25 showed how Lagrang-
ian semidirect product theory fits into the general framework of Lagrangian reduction.
Reduction by stages and group extensions. The semidirect product reduction theorem can
viewed using reduction by stages: If one reducesT* S by the action of the semidirect produc
groupS5GsV in two stages, first by the action ofV at a pointa0 and then by the action ofGa0

.
Semidirect product reduction by stages for actions of semidirect products on general sym
manifolds was developed and applied to underwater vehicle dynamics in Leonard and M
@1997#.84 Motivated partly by semidirect product reduction, Marsdenet al. @1998, 1999#90,91 gave
a significant generalization of semidirect product theory in which one has a groupM with a normal
subgroupN,M ~so M is a group extension ofN! andM acts on a symplectic manifoldP. One
wants to reduceP in two stages, first byN and then byM /N. On the Poisson level this is eas
P/M>(P/N)/(M /N), but on the symplectic level it is quite subtle.

Cotangent bundle reduction by stages is especially interesting for group extensions. A
ample of such a group, besides semidirect products, is the Bott–Virasoro group, whe
Gelfand–Fuchs cocycle may be interpreted as the curvature of a mechanical connection. Th
of Cendra, Marsden, and Ratiu@2000#28 briefly described previously, contains a Lagrangian a
log of reduction for group extensions and reduction by stages.
Singular reduction. Singular reduction starts with the observation of Smale@1970#147 that z
PP is a regular point ofJ iff z has no continuous isotropy. Motivated by this, Arms, Marsden,
Moncrief @1981, 1982#6,7 showed that the level setsJ21(0) of an equivariant momentum mapJ
have quadratic singularities at points with continuous symmetry. While such a result is ea
compact group actions on finite dimensional manifolds, the main examples of Arms, Marsde
Moncrief @1981#6 were, in fact, infinite dimensional—both the phase space and the group.
@1987#130 has shown that ifG is a compact Lie group,J21(0)/G is an orbifold. Singular reduction
is closely related to convexity properties of the momenum map.42,45

The detailed structure ofJ21(0)/G for compact Lie groups acting on finite dimension
manifolds was developed in Sjamaar and Lerman@1991#146 and extended for proper Lie grou
actions toJ21(Om)/G by Bates and Lerman@1997#,13 if Om is locally closed ing* . Ortega
@1998#129 and Ortega and Ratiu@2000#128 redid the entire singular reduction theory for proper L
group actions starting with the point reduced spacesJ21(m)/Gm and also connected it to the mor
algebraic approach to reduction theory of Arms, Cushman, and Gotay@1991#.5 Specific examples
of singular reduction and further references may be found in Cushman and Bates@1997#.33 This
theory is still under development.
The method of invariants. This method seeks to parametrize quotient spaces by group inva
functions. It has a rich history going back to Hilbert’sinvariant theory. It has been of great use i
bifurcation with symmetry~see Golubitsky, Stewart, and Schaeffer@1988#39 for instance!. In
mechanics, the method was developed by Kummer, Cushman, Rod, and co-workers in the
We will not attempt to give a literature survey here, other than to refer to Kummer@1990#,78 Kirk,
Marsden, and Silber@1996#,68 Alber et al. @1998#,4 and the book of Cushman and Bates@1997#33

for more details and references.
The new results in this paper. The main new results of the present paper are as follows.
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~1! In Sec. III A, a global realization of the reduced tangent bundle, with a momentum
constraint, in terms of a fiber product bundle, which is shown to also be globally diffeo
phic to an associated coadjoint orbit bundle.

~2! Section III E shows how to drop Hamilton’s variational principle to these quotient space
~3! We derive, in Sec. III H, the corresponding reduced equations, which we call theLagrange–

Routh equations, in an intrinsic and global fashion.
~4! In Sec. IV we give a Lagrangian view of some known and new reconstruction and geom

phase formulas.

The Euler free rigid body, the heavy top, and the underwater vehicle are used to illustrate so
the points of the theory. The main techniques used in this paper build primarily on the wo
Marsden and Scheurle@1993a, 1993c#107,108 and of Jalnapurkar and Marsden@2000a#64 on non-
Abelian Routh reduction theory, but with the recent developments in Cendra, Marsden, and
@2000#28 in mind.

B. Bundles, momentum maps, and Lagrangians

The shape space bundle and Lagrangian. We shall be primarily concerned with the followin
setting. LetQ be a configuration manifold and letG be a Lie group that acts freely and proper
on Q. The quotientQ/GªS is referred to as theshape spaceandQ is regarded as a principal fibe
bundle over the base spaceS. Let pQ,G :Q→Q/G5S be the canonical projection. The theory
quotient manifolds guarantees~because the action is free and proper! that Q/G is a smooth
manifold and the mappQ,G is smooth. See Abraham, Marsden, and Ratiu@1988#3 for the proof of
these statements. We call the mappQ,G :Q→Q/G the shape space bundle.

Let ^^•, •&& be a G-invariant metric onQ, also called amass matrix. The kinetic energy
K:TQ→R is defined byK(vq)5 1

2^^vq ,vq&&. If V is a G-invariant potential on Q, then the
LagrangianL5K2V:TQ→R is also G-invariant. We focus on Lagrangians of this form, a
though much of what we do can be generalized. We make a few remarks concerning this
body of the paper.
Momentum map, mechanical connection, and locked inertia. Let G have Lie algebrag and
JL :TQ→g* be the momentum map onTQ, which is defined byJL(vq)•j5^^vq ,jQ(q)&&. Here
vqPTqQ, jPg, andjQ denotes the infinitesimal generator corresponding toj.

Recall that aprincipal connectionA:TQ→g is an equivariantg-valued one-form onTQ that
satisfiesA(jQ(q))5j and its kernel at each point, denoted Horq , complements the vertical spac
namely the tangents to the group orbits. LetA:TQ→g be themechanical connection, namely the
principal connection whose horizontal spaces are orthogonal to the group orbits.~Shape space an
its geometry also play an interesting and key role in computer vision. See e.g., Le and K
@1993#.83! For eachqPQ, the locked inertia tensorI(q):g→g* , is defined by the equation
^I(q)j,h&5^^jQ(q),hQ(q)&&. The locked inertia tensor has the following equivariance prope
I(g•q)5Adg21* I(q)Adg21, where the adjoint action by a group elementg is denoted Adg and
Adg21* denotes the dual of the linear map Adg21:g→g. The mechanical connectionA and the
momentum mapJL are related as follows:

JL~vq!5I~q!A~vq!,
~I.1!

i.e., A~vq!5I~q!21JL~vq!.

In particular, or from the definitions, we have thatJL(jQ(q))5I(q)j. For free actions and a
Lagrangian of the form kinetic minus potential, the locked inertia tensor is invertible at eaq
PQ. Many of the constructions can be generalized to the case of regular Lagrangians, wh
locked inertia tensor is the second fiber derivative ofL ~see Lewis@1992#87!.
Horizontal and vertical decomposition. We use the mechanical connectionA to expressvq ~also
denotedq̇! as the sum of horizontal and vertical components:
                                                                                                                



f

g
iven
y

nt

3385J. Math. Phys., Vol. 41, No. 6, June 2000 Reduction theory and the Lagrange–Routh equations

                    
vq5Hor~vq!1Ver~vq!5Hor~vq!1jQ~q!,

wherej5A(vq). Thus, the kinetic energy is given by

K~vq!5 1
2^^vq ,vq&&5 1

2^^Hor~vq!,Hor~vq!&&1 1
2^^jQ~q!,jQ~q!&&.

Being G-invariant, the metric onQ induces a metriĉ ^•,•&&S on S by ^^ux ,vx&&S5^^uq ,vq&&,
whereuq ,vqPTqQ are horizontal,pQ,G(q)5x andTpQ,G•uq5ux , TpQ,G•vq5vx .
Useful formulas for group actions. The following formulas are assembled for convenience~see,
e.g., Marsden and Ratiu@1994#98 for the proofs!. We denote the action ofgPG on a pointq
PQ by gq5g•q5Fg(q), so thatFg :Q→Q is a diffeomorphism.

~1! Transformations of generators:TFg•jQ(q)5~Adg j)Q(g•q). which we also write, using
concatenation notation for actions, asg•jQ(q)5~Adg j)Q(g•q).

~2! Brackets of generators:@jQ ,hQ#52@j,h#Q .
~3! Derivatives of curves. Letq(t) be a curve inQ and letg(t) be a curve inG. Then

d

dt
~g~ t !•q~ t !!5~Adg~ t ! j~ t !!Q~g~ t !•q~ t !!1g~ t !•q̇~ t !5g~ t !•@~j~ t !!Q~q~ t !!1q̇~ t !#, ~I.2!

wherej(t)5g(t)21
•ġ(t).

It is useful to recall theCartan formula. Let a be a one form and letX andY be two vector
fields on a manifold. Then the exterior derivativeda of a is related to the Jacobi–Lie bracket o
vector fields byda(X,Y)5X@a(Y)#2Y@a(X)#2a(@X,Y#).

C. Coordinate formulas

We next give a few coordinate formulas for the case whenG is Abelian.
The coordinates and Lagrangian. In a local trivialization,Q is realized asU3G whereU is an
open set in shape spaceS5Q/G. We can accordingly write coordinates forQ asxa,ua wherexa,
a51,...,n are coordinates onS and whereua, a51,...,r are coordinates forG. In a local trivial-
ization, ua are chosen to be cyclic coordinates in the classical sense. We writeL ~with the
summation convention in force! as

L~xa,ẋb,u̇a!5 1
2gabẋaẋb1gaaẋau̇a1 1

2gabu̇
au̇b2V~xa!. ~I.3!

The momentum conjugate to the cyclic variableua is Ja5]L/]u̇a5gaaẋa1gabu̇
b, which are the

components of the mapJL .
Mechanical connection and locked inertia tensor. The locked inertia tensor is the matrixI ab

5gab and its inverse is denotedI ab5gab. The matrixI ab is the block in the matrix of the metric
tensorgi j associated with the group variables and, of course,I ab need not be the correspondin
block in the inverse matrixgi j . The mechanical connection, as a vector valued one form, is g
by Aa5dua1Aa

a dxa, where the components of the mechanical connection are defined bAa
b

5gabgaa . Notice that the relationJL(vq)5I(q)•A(vq) is clear from this component formula.
Horizontal and vertical projections. For a vectorv5( ẋa,u̇a), and suppressing the base poi
(xa,ua) in the notation, its horizontal and vertical projections are verified to be

Hor~v !5~ ẋa,2gabgabẋa!, Ver~v !5~0,u̇a1gabgabẋa!.

Notice thatv5Hor(v)1Ver(v), as it should.
Horizontal metric . In coordinates, the horizontal kinetic energy is

1
2g~Hor~v !,Hor~v !!5 1

2gabẋaẋb2gaagabgbbẋaẋb1 1
2gaagabgbbẋaẋb

5 1
2~gab2gaagabgbb!ẋaẋb. ~I.4!
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Thus, the components of the horizontal metric~the metric on shape space! are given byAab

5gab2gadgdagba .

D. Variational principles

Variations and the action functional. Let q:@a,b#→Q be a curve and letdq5(d/de)ue50qe be
a variation ofq. Given a LagrangianL, let the associatedaction functionalSL(qe) be defined on
the space of curves inQ defined on a fixed interval@a,b# by

SL~qe!5E
a

b

L~qe ,q̇e!dt.

The differential of the action function is given by the following theorem.
Theorem I.1: Given a smooth Lagrangian L, there is a unique mappingEL(L):Q̈→T* Q, defined
on thesecond-order submanifold

Q̈[H d2q

dt2
~0!Uq a smooth curve in QJ

of T TQ, and a unique one-formQL on TQ, such that, for all variationsdq(t),

dSL~q~ t !!•dq~ t !5E
a

b

EL~L !S d2q

dt2 D •dq dt1ULS dq

dt D •dq̂U
a

b

, ~I.5!

where

dq~ t ![
d

deU
e50

qe~ t !, dq̂~ t ![
d

deU
e50

d

dtU
t50

qe~ t !.

The one-formQL so defined is called the Lagrange one-form.
The Lagrange one-form defined by this theorem coincides with the Lagrange one-form

tained by pulling back the canonical form onT* Q by the Legendre transformation. This term
readily shown to be given by

ULS dq

dt D •dq̂ua
b5^FL~q~ t !•q̇~ t !!,dq&ua

b .

In verifying this, one checks that the projection ofdq̂ from TTQ to TQ under the mapTtQ , where
tQ :TQ→Q is the standard tangent bundle projection map, isdq. Here we useFL:TQ→T* Q for
the fiber derivative ofL.

E. Euler–Poincare´ reduction

In rigid body mechanics, the passage from the attitude matrix and its velocity to the
angular velocity is an example of Euler–Poincare´ reduction. Likewise, in fluid mechanics, th
passage from the Lagrangian~material! representation of a fluid to the Eulerian~spatial! repre-
sentation is an example of Euler–Poincare´ reduction. These examples are well known and
spelled out in, e.g., Marsden and Ratiu@1994#.98

For gPG, let TLg :TG→TG be the tangent of the left translation mapLg :G→G; h°gh.
Let L:TG→R be a left invariant Lagrangian. For what follows,L does not have to be purel
kinetic energy~any invariant potential would be a constant, so is ignored!, although this is one of
the most important cases.
                                                                                                                



hange

, see

e

s
n

l

t

t is
ight

3387J. Math. Phys., Vol. 41, No. 6, June 2000 Reduction theory and the Lagrange–Routh equations

                    
Theorem I.2 „Euler–Poincaré reduction…: Let l: g→R be the restriction of L tog5TeG. For a
curve g(t) in G, letj(t)5TLg(t)21ġ(t), or using concatenation notation, j5g21ġ. The following
are equivalent.

~a! The curve g(t) satisfies the Euler–Lagrange equations on G.
~b! The curve g(t) is an extremum of the action functional

SL~g~• !!5E L~g~ t !,ġ~ t !!dt,

for variationsdg with fixed end points.
~c! The curvej(t) solves the Euler–Poincaréequations

d

dt

d l

dj
5adj*

d l

dj
, ~I.6!

where the coadjoint actionadj* is defined by^adj* n,z&5^n,@j,z#&, where j, zPg, nPg* ,
^•,•& is the pairing betweeng and g* , and @•,•# is the Lie algebra bracket.

~d! The curvej(t) is an extremum of the reduced action functional

sl~j!5E l ~j~ t !!dt,

for variations of the formdj5ḣ1@j,h#, whereh5TLg21dg5g21dg vanishes at the end points.
There is, of course, a similar statement for right invariant Lagrangians; one needs to c

the sign on the right-hand side of~I.6! and use variations of the formdj5ḣ2@j,h#. See Marsden
and Scheurle@1993b#108 and Sec. 13.5 of Marsden and Ratiu@1994#98 for a proof of this theorem
for the case of matrix groups and Bloch, Krishnaprasad, Marsden, and Ratiu@1996#17 for the case
of general finite dimensional Lie groups. For discussions of the infinite dimensional case
Kouranbaeva@1999#76 and Marsden, Ratiu, and Shkoller@1999#.99

F. Lie–Poisson reduction

Lie–Poisson reduction is the Poisson counterpart to Euler–Poincare´ reduction. The dual spac
g* is a Poisson manifold with either of the twoLie–Poissonbrackets

$ f ,k%6~m!56 K m,F d f

dm
,

dk

dmG L , ~I.7!

whered f /dmPg is defined bŷ n,d f /dm&5Df (m)•n for nPg* , and whereD denotes the Fre´-
chet derivative.~In the infinite dimensional case one needs to worry about the existence ofd f /dm.
See, for instance, Marsden and Weinstein@1982, 1983#111,112 for applications to plasma physic
and fluid mechanics and Marsden and Ratiu@1994#98 for additional references. The notatio
d f /dm is used to conform to the functional derivative notation in classical field theory.! In
coordinates, (j1,...,jm) on g relative to a vector space basis$e1 ,...,em% and corresponding dua
coordinates (m1 ,...,mm) on g* , the bracket~I.7! is

$ f ,k%6~m!56maCbc
a ] f

]mb

]k

]mc
,

whereCbc
a are the structure constants ofg defined by@ea ,eb#5Cab

c ec . The Lie–Poisson bracke
appears explicitly in Lie@1890#88 Sec. 75, see Weinstein@1983#.156

Which sign to take in~I.7! is determined by understanding how the Lie–Poisson bracke
related toLie–Poisson reduction, which can be summarized as follows. Consider the left and r
translation maps to the identity:l:T* G→g* defined by ag°(TeLg)* agPTe* G5g* and
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r:T* G→g* , defined byag°(TeRg)* agPTe* G5g* . Let g2* denoteg* with the minus Lie–
Poisson bracket and letg1* be g* with the plus Lie–Poisson bracket. We use the canon
structure onT* Q unless otherwise noted.
Theorem I.3 „Lie-Poisson reduction–geometry…: The maps

l:T* Q→g2* and r:T* Q→g1*

are Poisson maps.
This procedure uniquely characterizes the Lie–Poisson bracket and provides a basic e

of Poisson reduction. For example, using the left action,l induces a Poisson diffeomorphism
@l#:(T* G)/G→g2* .

Every left invariant Hamiltonian and Hamiltonian vector field is mapped byl to a Hamil-
tonian and Hamiltonian vector field ong* . There is a similar statement for right invariant syste
on T* G. One says that the original system onT* G has beenreducedto g* . One way to see tha
l andr are Poisson maps is by observing that they are equivariant momentum maps for the
of G on itself by right and left translations, respectively, together with the fact that equiva
momentum maps are Poisson maps. The fact that equivariant momentum maps are Poisso
has a cloudy history. It was given implicitly in the works of Lie and in Guillemin and Sternb
@1980#44 and explicitly in Marsdenet al. @1982#,113 and Holmes and Marsden@1983#.51

If ( P,$ , %) is a Poisson manifold, a functionCPF(P) satisfying$C, f %50 for all f PF(P) is
called aCasimir function. Casimir functions are constants of the motion foranyHamiltonian since
Ċ5$C,H%50 for anyH. Casimir functions and momentum maps play a key role in the stab
theory of relative equilibria~see, e.g., Marsden@1992#103 and Marsden and Ratiu@1994#98 and
references therein for a discussion of the relation between Casimir functions and mom
maps!.
Theorem I.4 „Lie–Poisson reduction–dynamics…: Let H:T* G→R be a left invariant Hamil-
tonian and h:g* →R its restriction to the identity. For a curvea(t)PTg(t)* G, let m(t)
5(Te* Lg(t))•a(t)5l(a(t)) be the induced curve ing* . The following are equivalent:

~i! a(t) is an integral curve of XH , i.e., Hamilton’s equations on T* G hold.
~ii ! For any smooth function FPF(T* G), Ḟ5$F,H% alonga(t), where$ , % is the canonical

bracket on T* G.
~iii ! m(t) satisfies the Lie–Poisson equations

dm

dt
5addh/dm* m, ~I.8!

whereadj :g→g is defined byadj h5@j,h# and adj* is its dual.
~iv! For any fPF(g* ), we have f˙5$ f ,h%2 along m(t), where $ , %2 is the minus Lie–

Poisson bracket.
There is a similar statement in the right invariant case with$•,•%2 replaced by$•,•%1 and a sign
change on the right-hand side of~I.8!.

The Lie–Poisson equations in coordinates areṁa5Cba
d (dh/dmb)md .

Given a reduced Lagrangianl :g→R, when the reduced Legendre transformFl :g→g* de-
fined by j°m5d l /dj is a diffeomorphism~this is theregular case!, then this map takes the
Euler–Poincare´ equations to the Lie–Poisson equations. There is, of course a similar inverse
starting with a reduced Hamiltonian.
Additional history . The symplectic and Poisson theory of mechanical systems on Lie gr
could easily have been given shortly after Lie’s work, but amazingly it was not observed fo
rigid body or ideal fluids until the work of Pauli@1953#,131 Martin @1959#,105 Arnold @1966#,8 Ebin
and Marsden@1970#,34 Nambu @1973#,125 and Sudarshan and Mukunda@1974#,150 all of whom
were apparently unaware of Lie’s work on the Lie–Poisson bracket and of Poincare´’s @1901#133

work on the Euler–Poincare´ equations. One is struck by the large amount of rediscovery
confusion in this subject, which evidently is not unique to mechanics.
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Arnold @1988#11 and Chetaev@1989#32 brought Poincare´’s work on the Euler–Poincare´ equa-
tions to the attention of the community. Poincare´ @1910#134 goes on to study the effects of th
deformation of the earth on its precession—he apparently recognizes the equations as Eule
tions on a semidirect product Lie algebra. Poincare´ @1901#133 has no bibliographic references, so
is rather hard to trace his train of thought or his sources; in particular, he gives no hints th
understood the work of Lie on the Lie–Poisson structure.

In the dynamics of ideal fluids, the Euler–Poincare´ variational principle is essentially that o
‘‘Lin constraints.’’ See Cendra and Marsden@1987#27 for a discussion of this theory and fo
further references. Variational principles in fluid mechanics itself has an interesting history,
back to Ehrenfest, Boltzmann, and Clebsch, but again, there was little, if any, contact wi
heritage of Lie and Poincare´ on the subject. Interestingly, Seliger and Witham@1968#144 remarked
that ‘‘Lin’s device still remains somewhat mysterious from a strictly mathematical view.’’
also Bretherton@1970#.22

Lagrange@1788#,80 Vol. 2, Eq. A on p. 212, are the Euler–Poincare´ equations for the rotation
group written out explicitly for a reasonably general Lagrangian. Lagrange also developed th
concept of the Lagrangian representation of fluid motion, but it is not clear that he understoo
both systems are special instances of one theory. Lagrange spends a large number of page
derivation of the Euler–Poincare´ equations for SO~3!, in fact, it is a good chunk of Vol. 2 of
Mécanique Analytique.

G. Examples

The free rigid body—The Euler top. Let us first review some basics of the rigid body. W
regard an element.APSO(3), giving the configuration of the body as a map of a referen
configurationB,R3 to the current configurationA(B); the mapA takes a reference or label poin
XPB to a current pointx5A(X)PA(B). When the rigid body is in motion, the matrixA is time
dependent and the velocity of a point of the body isẋ5ȦX5ȦA21x. SinceA is an orthogonal
matrix, A21Ȧ and ȦA21 are skew matrices, and so we can writeẋ5ȦA21x5v3x, which
defines thespatial angular velocity vectorv. The correspondingbody angular velocityis defined
by V5A21v, i.e., A21Ȧv5V3v so thatV is the angular velocity relative to a body fixe
frame. The kinetic energy is

K5
1

2 EB
r~X!iȦXi2d3X, ~I.9!

wherer is a given mass density in the reference configuration. Since

iȦXi5iv3xi5iA21~v3x!i5iV3Xi ,

K is a quadratic function ofV. Writing K5 1
2VTI V defines themoment of inertia tensor I, which,

if the body does not degenerate to a line, is a positive definite 333 matrix, or equivalently, a
quadratic form. This quadratic form can be diagonalized, and this defines the principal axe
moments of inertia. In this basis, we writeI 5diag(I1,I2,I3).

The functionK(A,Ȧ) is taken to be the Lagrangian of the system onTSO~3!. It is left
invariant. The reduced Lagrangian isk(V)5 1

2VTI V. One checks that theEuler–Poincaréequa-
tions are given by the classical Euler equations for a rigid body:

Ṗ5P3V, ~I.10!

whereP5I V is the body angular momentum. The corresponding reduced variational princi

dE
a

b

l ~V~ t !!dt50

for variations of the formdV5Ṡ1V3S.
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By means of the Legendre transformation, we get the corresponding Hamiltonian desc
on T* SO~3!. The reduced Hamiltonian is given byh(P)5 1

2P•(I 21P). One can verify directly
from the chain rule and properties of the triple product that Euler’s equations are also equi
to the following equation for allf PF(R3): ḟ 5$ f ,h%, where the corresponding~minus! Lie–
Poisson structure onR3 is given by

$ f ,k%~P!52P•~¹ f 3¹k!. ~I.11!

Every functionC:R3→R of the form C(P)5F(iPi2), whereF:R→R is a differentiable
function, is a Casimir function, as is readily checked. In particular, for the rigid body,iPi2 is a
constant of the motion.

In the notation of the general theory, one choosesQ5G5SO~3! with G acting on itself by left
multiplication. The shape space isQ/G5a single point.

As explained previously, the free rigid body kinetic energy is given by the left invariant m
on Q5SO~3! whose value at the identity iŝ^V1 ,V2&&5I V1•V2 , where V1 ,V2PR3 are
thought of as elements ofso(3), the Lie algebra of SO~3!, via the isomorphismVPR3°V̂

Pso(3), V̂vªV3v. The Lagrangian equals the kinetic energy.
The infinitesimal generator ofĵPso(3) for the action ofG is, according to the definitions

given by ĵSO~3!(A)5 ĵAPTASO~3!. The locked inertia tensor is, for eachAPSO(3), thelinear
map J(A):so(3)→so(3)* given by ^J(A) ĵ,ĥ&5^^ĵQ(A),ĥQ(A)&&5^^ĵA,ĥA&&. Since the
metric is left SO~3!-invariant, and using the general identity (A21j) ˆ 5A21ĵA, this equals

^^A21ĵA,A21ĥA&&5^^A21j,A21h&&5~A21j!•~ IA21h!5~AIA21j!•h.

Thus, identifyingJ(A) with a linear map ofR3 to itself, we getJ(A)5AIA21.
Now we use the general definition^JL(vq),j&5^^vq ,jQ(q)&& to compute the momentum ma

JL :T SO~3!→R for the action ofG. Using the definitionV̂5A21Ȧ, we get

^JL~A,Ȧ!,ĵ&5^^Ȧ,ĵA&&A5^^A21Ȧ,A21ĵA&& I5~ I V!•~A21j!5~AI V!•j.

Letting p5AP, whereP5I V, we getJL(A,Ȧ)5p, the spatial angular momentum.
According to the general formulaA(vq)5I(q)21JL(vq), the mechanical connectio

A(A):TASO~3!→so(3) is given byA(A,Ȧ)5AI 21A21p5AV. This isA(A) regarded as tak-
ing values inR3. Regarded as taking values inso(3), the space of skew matrices, we ge
A(A,Ȧ)5AV̂5AV̂A215ȦA21, the spatial angular velocity. Notice that the mechanical c
nection is independent of the moment of inertia of the body.
The heavy top. The system is a spinning rigid body with a fixed point in a gravitational field
shown in Fig. 1.

One usually finds the equations written as

Ṗ5P3V1MglG3x,

Ġ5G3V.

Here,M is the body’s mass,P is the body angular momentum,V is the body angular velocity,g
is the acceleration due to gravity,x is the body fixed unit vector on the line segment connect
the fixed point with the body’s center of mass, andl is the length of this segment. Also,I is the
~time independent! moment of inertia tensor in body coordinates, defined as in the case of the
rigid body. The body angular momentum and the body angular velocity are related, as befo
P5I V. Also, G5A21k, which may be thought of as the~negative! direction of gravity as seen
from the body, wherek points upward andA is the element of SO~3! describing the curren
configuration of the body.
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For a discussion of the Lie–Poisson nature of these equations on the dual of the Lie a
se(3) of the Euclidean group and for further references, see Marsden and Ratiu@1994#.98 For the
Euler–Poincare´ point of view, see Holm, Marsden, and Ratiu@1998#.53 These references als
discuss this example from the semidirect product point of view, the theory of which we
present shortly.

Now we discuss the shape space, the momentum map, the locked inertia tensor, a
mechanical connection for this example. We chooseQ5SO~3! andG5S1, regarded as rotation
about the spatialz axis, that is, rotations about the axis of gravity.

The shape space isQ/G5S2, the two sphere. Notice that in this case, the bun
pQ,G :SO~3!→S2 given by APSO(3)°G5A21k is not a trivial bundle. That is, the angle o
rotationf about thez axis is not aglobal cyclic variable. In other words, in this case,Q cannotbe
written as the productS23S1. The classical Routh procedure usually assumes, often implic
that the cyclic variables are global.

As with the free rigid body, the heavy top kinetic energy is given by the left invariant me
on Q5SO~3! whose value at the identity iŝ^V1 ,V2&&5I V1•V2 , where V1 ,V2PR3 are
thought of as elements ofso(3). This kinetic energy is thus left invariant under the action of t
full group SO~3!.

The potential energy is given byMglA21k•x. This potential energy is invariant under th
groupG5S1. As usual, the Lagrangian is the kinetic minus the potential energies.

We next compute the infinitesimal generators for the action ofG. We identify the Lie algebra
of G with the real lineR and this is identified with the~trivial! subalgebra ofso(3) by j°j k̂.
These are given, according to the definitions, byjSO~3!(A)5j k̂APTASO~3!.

The locked inertia tensor is, for eachAPSO~3!, a linear mapI(A):R→R which we identify
with a real number. According to the definitions, it is given by

I~A!jh5^I~A!j,h&5^^jQ~A!,hQ~A!&&5^^j k̂A,h k̂A&&.

Using the definition of the metric and its left SO~3!-invariance, this equals

^^j k̂A,h k̂A&&5jh^^A21k̂A,A21k̂A&&5jh^^A21k,A21k&&5jh~AIA21k!•k.

Thus,I(A)5(AIA21k)•k, that is, the~3,3!-component of the matrixAIA21.
Next, we compute the momentum mapJL :TSO~3!→R for the action ofG. According to the

general definition, namely,̂JL(vq),j&5^^vq ,jQ(q)&&, we get

^JL~A,Ȧ!,j&5^^Ȧ,j k̂A&&A5j^^A21Ȧ,A21k̂A&& I5j^^V,A21k&&.

FIG. 1. Heavy top.
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Using the definition of the metric, we get

j^^V,A21k&&5j~ I V!•~A21k!5j~AP!•k5jp3 ,

wherep5AP is the spatial angular momentum. Thus,JL(A,Ȧ)5p3 , the third component of the
spatial angular momentum. The mechanical connectionA(A):TASO~3!→R is given, using the
general formulaA(vq)5I(q)21JL(vq), by A(A,Ȧ)5p3 /(AIA21k)•k.
Underwater vehicle. The underwater vehicle is modeled as a rigid body moving in ideal pote
flow according to Kirchhoff’s equations. The vehicle is assumed to be neutrally buoyant~often
ellipsoidal!, but not necessarily with coincident centers of gravity and buoyancy. The vehic
free to both rotate and translate in space.

Fix an orthonormal coordinate frame to the body with origin located at the center of buoy
and axes aligned with the principal axes of the displaced fluid~Fig. 2!.

When these axes are also the principal axes of the body and the vehicle is ellipsoid
inertia and mass matrices are simultaneously diagonalized. Let the inertia matrix of the bod
system be denoted byI 5diag(I1,I2,I3) and the mass matrix byM5diag(m1,m2,m3); these matrices
include the ‘‘added’’ inertias and masses due to the fluid. The total mass of the body is denom
and the acceleration of gravity isg.

The current position of the body is given by a vectorb ~the vector from the spatially fixed
origin to the center of buoyancy! and its attitude is given by a rotation matrixA ~the center of
rotation is the spatial origin!. The body fixed vector from the center of buoyancy to the cente
gravity is denotedl x, wherel is the distance between these centers.

We shall now formulate the structure of the problem in a form relevant for the present n
omitting the discussion of how one obtains the equations and the Lagrangian. We refer the
to Leonard@1997#86 and to Leonard and Marsden@1997#84 for additional details. In particular
these references study the formulation of the equations as Euler–Poincare´ and Lie–Poisson equa
tions on a double semidirect product and do a stability analysis.

In this problem,Q5SE~3!, the group of Euclidean motions in space, the symmetry grou
G5SE~2!3R, andG acts onQ on the left as a subgroup; the symmetries correspond to transl
and rotation in a horizontal plane together with vertical translations. Because the centers of
and buoyancy are different, rotations around nonvertical axes are not symmetries, as w
heavy top.

FIG. 2. Schematic of a neutrally buoyant ellipsoidal underwater vehicle.
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The shape space isQ/G5S2, as in the case of the heavy top because the quotient oper
removes the translational variables. The bundlepQ,G :SO~3!→S2 is again given by A
PSO(3)°G5A21k, whereG has the same interpretation as it did in the case of the heavy

Elements of SE~3! are pairs~A, b! whereAPSO(3) andbPR3. If the pair (A,b) is identified
with the matrix

FA b

0 1G ,
then, as is well-known, group multiplication in SE~3! is given by matrix multiplication. The Lie
algebra of SE~3! is se(3)5R33R3 with the bracket@(V,u),(S,v)#5(V3S,V3v2S3u).

As shown in the cited references, the underwater vehicle kinetic energy is that of th
invariant metric on SE~3! given at the identity as follows:

^^~V1 ,v1!,~V2 ,v2!&&5V1•I V21V1•Dv21v1•DTV21v1•Mv2 , ~I.12!

whereD5mx̂. The kinetic energy is thus the SE~3! invariant function onT SE~3! whose value at
the identity is given byK(V,v)5 1

2V•I V1V•Dv1 1
2v•Mv. The potential energy is given b

V(A,b)5mglA21k•x andL5K2V.
The momenta conjugate toV andv are given by

P5
]L

]V
5I V1Dv, P5

]L

]v
5Mv1DTV,

the ‘‘angular momentum’’ and the ‘‘linear momentum.’’ Equivalently,V5AP1BTP and v
5CP1BP, where

A5~ I 2DM 21DT!21, B52CDTI 2152M 21DTA, C5~M2DTI 21D !21.

The equations of motion are computed to be

Ṗ5P3V1P3v2mglG3x,
~I.13!

Ṗ5P3V, Ġ5G3V,

which is the Lie–Poisson~or Euler–Poincare´! form in a double semidirect product.
The Lie algebra ofG is se(2)3R, identified with the set of pairs (j,v) wherejPR and v

PR3 and this is identified with the subalgebra ofse(3) of elements of the form (j k̂,v).
The infinitesimal generators for the action ofG are given by

~j,v!SE~3!~A,b!5~j k̂A,jk3b1v!PT~A,b!SE~3!.

The locked inertia tensor is, for each (A,b)PSE~3!, a linear mapI(A,b):so(2)3R
→(so(2)3R)* . We identify, as previously, the Lie algebrag with pairs (j,v) and identify the
dual space with the algebra itself using ordinary multiplication and the Euclidean dot produ

According to the definitions,I is given by

^I~A,b!~j,v!,~h,w!&5^^~j,v!SE~3!~A,b!,~h,w!SE~3!~A,b!&&~A,b!

5^^~j k̂A,jk3b1v!,~h k̂A,hk3b1w!&&~A,b! .

The tangent of left translation on the group SE~3! is given byTL(A,b)(U,w)5(AU,Aw). Using
the fact that the metric is left SE~3! invariant and formula~I.12! for the inner product, we arrive
at
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I~A,b!•~j,v!5~j~AIA21k!•k1j~ADA21k!•k

1@ADA21~jk3b1v!#•k1@AMA21~jk3b1v!#•~k3b!,

ADTA21k1AMA21~jk3b1v!!. ~I.14!

The momentum mapJL :T SE~3!→se(2)* 3R for the action ofG is readily computed using
the general definition, namely,^JL(vq),j&5^^vq ,jQ(q)&&; one gets

JL~A,b,Ȧ,ḃ!5~~AP1b3AP!•k,AP!,

where, recall,P5]L/]V5I V1Dv andP5]L/]v5Mv1DTV.
The mechanical connectionA(A,b):T

„A,b…SE(3)→se(2)* 3R is therefore given, according
to the general formulaA(vq)5I(q)21JL(vq), by

A~A,b,Ȧ,ḃ!5I~A,b!21
•~~AP1b3AP!•k,AP!,

whereI(A,b) is given by~I.14!. We do not attempt to invert the locked inertia tensor explici
in this case.

II. THE BUNDLE PICTURE IN MECHANICS

A. Cotangent bundle reduction

Cotangent bundle reduction theory lies at the heart of the bundle picture. We will desc
from this point of view in this section.
Some history. We continue the history begun in the Introduction. From the symplectic viewp
a principal result is that thesymplectic reduction of a cotangent bundle T* Q at mPg* is a bundle
over T* (Q/G) with fiber the coadjoint orbit throughm. This result can be traced back in
preliminary form, to Sternberg@1977#149 and Weinstein@1977#.154 It was refined in Montgomery,
Marsden, and Ratiu@1984#115 and in Montgomery@1986#.118 See also Abraham and Marsde
@1978#2 and Marsden@1992#.103 It was also shown that the symplectically reduced cotang
bundle can be symplectically embedded inT* (Q/Gm)—this is theinjective version of the cotan
gent bundle reduction theorem. From the Poisson viewpoint, in which one simply takes quotie
by group actions, this reads: (T* Q)/G is a g* -bundle overT* (Q/G), or a Lie–Poisson bundle
over the cotangent bundle of shape space. We shall return to this bundle point of view shor
sharpen some of these statements.
The bundle point of view. We choose a principal connectionA on the shape space bundle. Th
general theory, in principle, does not require one to choose a connection. However, there ar
good reasons to do so, such as applications to stability theory and geometric phases. Dg̃
5(Q3g)/G, theassociated bundleto g, where the quotient uses the given action onQ and the
coadjoint action ong. The connectionA defines a bundle isomorphismaA :TQ/G→T(Q/G)
% g̃ given byaA(@vq#G)5TpQ,G(vq) % @q,A(vq)#G . Here, the sum is a Whitney sum of vect
bundles overQ/G ~the fiberwise direct sum! and the symbol@q,A(vq)#G means the equivalenc
class of (q,A(vq))PQ3g under theG-action. The mapaA is a well-defined vector bundle
isomorphism with inverse given byaA

21(ux% @q,j#G)5@(ux)q
h1jQ(q)#G , where (ux)q

h denotes
the horizontal lift ofux to the pointq.
Poisson cotangent bundle reduction. The bundle view of Poisson cotangent bundle reduct
considers the inverse of the fiberwise dual ofaA , which defines a bundle isomorphism
(aA

21)* :T* Q/G→T* (Q/G) % g̃* , whereg̃* 5(Q3g* )/G is the vector bundle overQ/G asso-
ciated with the coadjoint action ofG on g̃* . This isomorphism makes explicit the sense in whi
(T* Q)/G is a bundle overT* (Q/G) with fiber g* . The Poisson structure on this bundle is
synthesis of the canonical bracket, the Lie–Poisson bracket, and curvature. The inherited P
structure on this space was derived in Montgomery, Marsden, and Ratiu@1984#115 ~details were
given in Montgomery@1986#118! and was put into the present context in Cendra, Marsden,
Ratiu @2000a#.28
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Symplectic cotangent bundle reduction. Marsden and Perlmutter@1999#95 show that each sym
plectic reduced space ofT* Q, which are the symplectic leaves in (T* Q)/G>T* (Q/G) % g̃* , are
given by a fiber productT* (Q/G)3Q/GÕ, whereÕ is the associated coadjoint orbit bundle. Th
makes precise the sense in which the symplectic reduced spaces are bundles overT* (Q/G) with
fiber a coadjoint orbit. They also give an intrinsic expression for the reduced symplectic
which involves the canonical symplectic structure onT* (Q/G), the curvature of the connection
the coadjoint orbit symplectic form, and interaction terms that pair tangent vectors to the orbi
the vertical projections of tangent vectors to the configuration space; see also Zaalani@1999#.160

As we shall show in the next section, the reduced spacePm for P5T* Q is globally diffeo-
morphic to the bundleT* (Q/G)3Q/GQ/Gm , whereQ/Gm is regarded as a bundle overQ/G. In
fact, these results simplify the study of these symplectic leaves. In particular, this make
injective version of cotangent bundle reduction transparent. Indeed, there is a natural inc
mapT* (Q/G)3Q/GQ/Gm→T* (Q/Gm), induced by the dual of the tangent of the projection m
rm :Q/Gm→Q/G. This inclusion map then realizes the reduced spacesPm as symplectic sub-
bundles ofT* (Q/Gm).

B. Lagrange–Poincare ´ reduction

In a local trivialization, writeQ5S3G whereS5Q/G, andTQ/G asTS3g. Coordinates on
Q are written xa,sa and those for (TQ)/G are denoted (xa,ẋa,ja). Locally, the connection
one-form onQ is written dsa1Aa

a dxa and we letVa5ja1Aa
aẋa. The components of the cur

vature ofA are

Bab
b 5S ]Ab

b

]xa 2
]Aa

b

]xb 2Ccd
b Aa

c Ab
d D ,

where Cbd
a are the structure constants of the Lie algebrag. Later, in the text, we review the

intrinsic definition of curvature.
Let, as explained earlier,L:TQ→R be aG-invariant Lagrangian and letl :(TQ)/G→R be the

corresponding function induced on (TQ)/G. The Euler–Lagrange equations onQ induce equa-
tions on this quotient space. The connection is used to write these equations intrinsicall
coupled set of Euler–Lagrange type equations and Euler–Poincare´ equations. Thesereduced
Euler–Lagrangeequations, also called theLagrange–Poincaréequations~implicitly contained in
Cendra, Ibort, and Marsden@1987#26 and explicitly in Marsden and Scheurle@1993b#108! are, in
coordinates,

d

dt

] l

] ẋa2
] l

]xa 5
] l

]Va ~Bab
a ẋb2Cdb

a Aa
bVd!,

d

dt

] l

]Vb 5
] l

]Va ~Cdb
a Vd2Cdb

a Aa
dẋa!.

Using the geometry of the bundleTQ/G>T(Q/G) % g̃, one can write these equations intri
sically in terms of covariant derivatives~see Cendra, Marsden, and Ratiu@2000a#28!. Namely, they
take the form

] l

]x
~x,ẋ,v̄ !2

D

Dt

] l

] ẋ
~x,ẋ,v̄ !5 K ] l

] v̄
~x,ẋ,v̄ !,i ẋCurvA~x!L ,

D

Dt

] l

] v̄
~x,ẋ,v̄ !5adv̄

*
] l

] v̄
~x,ẋ,v̄ !.

The first of these equations is thehorizontal Lagrange–Poincaréequationwhile the second is the
vertical Lagrange–Poincaréequation. The notation here is as follows. Points inT(Q/G) % g̃ are
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denoted (x,ẋ,v̄) and l (x,ẋ,v̄) denotes the Lagrangian induced on the quotient space fromL. The
bundlesT(Q/G) % g̃ naturally inherit vector bundle connections andD/Dt denotes the associate
covariant derivatives. Also, CurvA denotes the curvature of the connectionA thought of as an
adjoint bundle valued two-form onQ/G—basic definitions and properties of curvature will b
reviewed shortly.
Lagrangian reduction by stages. The perspective developed in Cendra, Marsden, and R
@2000a#28 is motivated byreduction by stages. In fact, that work develops a context~of Lagrange–
Poincare´ bundles! in which Lagrangian reduction can be repeated. In particular, this theory t
successive reduction for group extensions. Reduction for group extensions, in turn, bui
semidirect product reduction theory, to which we turn next.

C. Hamiltonian semidirect product theory

Lie–Poisson systems on semidirect products. The study of Lie–Poisson equations for syste
on the dual of a semidirect product Lie algebra grew out of the work of many authors inclu
Sudarshan and Mukunda@1974#,150 Vinogradov and Kupershmidt@1977#,153 Ratiu @1980, 1981,
1982#,135,138,139Guillemin and Sternberg@1980#,44 Marsden@1982#,102 Marsdenet al. @1983#,113

Holm and Kupershmidt@1983#,49,50 Kupershmidt and Ratiu@1983#,79 Holmes and Marsden
@1983#,51 Marsden, Ratiu, and Weinstein@1984a,b#,100,101Guillemin and Sternberg@1984#,46 Holm
et al. @1985#,56 Abarbanelet al. @1986#,1 Leonard and Marsden@1997#,84 and Marsdenet al.
@1998#.90 As these and related references show, the Lie–Poisson equations apply to a surp
wide variety of systems such as the heavy top, compressible flow, stratified incompressible
MHD ~magnetohydrodynamics!, and underwater vehicle dynamics.

In each of the above-mentioned examples as well as in the general theory, one can vi
given Hamiltonian in the material representation as a function depending on a paramete
parameter becomes a dynamic variable when reduction is performed. For example, in the
top, the direction and magnitude of gravity, the mass and location of the center of mass m
regarded as parameters, but the direction of gravity becomes the dynamic variableG when reduc-
tion is performed.

We first recall how the Hamiltonian theory proceeds for systems defined on semidirect
ucts. We present the abstract theory, but of course historically this grew out of the exam
especially the heavy top and compressible flow. When working with various models of conti
mechanics and plasmas one has to keep in mind that many of the actions are right actions
has to be careful when employing general theorems involving left actions. We refer to H
Marsden, and Ratiu@1998#53 for a statement of some of the results explicitly for right actions
Generalities on semidirect products. Let V be a vector space and assume that the Lie grouG
actson the leftby linear maps onV ~and henceG also acts on the left on its dual spaceV* ). The
semidirect productS5GsV is the setS5G3V with group multiplication given by

~g1 ,v1!~g2 ,v2!5~g1g2 ,v11g1v2!,

where the action ofgPG on vPV is denotedgv. The identity element is (e,0) wheree is the
identity in G and the inverse of (g,v) is (g,v)215(g21,2g21v). The Lie algebra ofS is the
semidirect product Lie algebra,s5gsV, whose bracket is

@~j1 ,v1!,~j2 ,v2!#5~@j1 ,j2#,j1v22j2v1!,

where we denote the induced action ofg on V by j1v2 .
The adjoint and coadjoint actions are given by

~g,v !~j,u!5~gj,gu2~gj!v !, ~g,v !~m,a!5~gm1rv* ~ga!,ga!,

where (g,v)PS5G3V, (j,u)Ps5g3V, (m,a)Ps* 5g* 3V* , gj5Adg j, gm5Adg21* m, ga
denotes the inducedleft action ofg on a ~the left action ofG on V induces aleft action ofG on
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V* —the inverse of the transpose of the action onV!, rv :g→V is the linear map given by
rv(j)5jv, and rv* :V* →g* is its dual. ForaPV* , we write rv* a5vLaPg* , which is a
bilinear operation inv anda. Equivalently, we can writêha,v&52^vLa,h&. Using this nota-
tion, the coadjoint action reads (g,v)(m,a)5(gm1vL(ga),ga).
Lie–Poisson brackets and Hamiltonian vector fields. For a left representation ofG on V the
6Lie–Poisson bracket of two functionsf ,k:s* →R is given by

$ f ,k%6~m,a!56 K m,F d f

dm
,

dk

dmG L 6 K a,
d f

dm

dk

da
2

dk

dm

d f

daL ,

whered f /dmPg, andd f /daPV are the functional derivatives off. The Hamiltonian vector field
of h:s* →R has the expression

Xh~m,a!57S addh/dm* m2
dh

da
La,2

dh

dm
aD .

Thus, Hamilton’s equations on the dual of a semidirect product are given by

ṁ57addh/dm* m6
dh

da
La,

ȧ56
dh

dm
a.

Symplectic actions by semidirect products. Consider aleft symplectic action ofSon a symplec-
tic manifoldP that has an equivariant momentum mapJS :P→s* . SinceV is a~normal! subgroup
of S, it also acts onP and has a momentum mapJV :P→V* given by JV5 i V* +JS , wherei V :V
→s is the inclusionv°(0,v) and i V* :s* →V* is its dual. We think ofJV as the second compo
nent ofJS . We can regardG as a subgroup ofSby g°(g,0). Thus,G also has a momentum ma
that is the first component ofJS but this will play a secondary role in what follows. Equivarian
of JS underG implies thatJV(gz)5gJV(z). To prove this relation, one uses the fact that for t
coadjoint action ofS on s* the second component is the dual of the given action ofG on V.
The classical semidirect product reduction theorem. In a number of interesting application
such as compressible fluids, the heavy top, MHD, etc., one has two symmetry groups that
commute and thus thecommuting reduction by stages theoremof Marsden and Weinstein
@1974#110 does not apply. In this more general situation, it matters in what order one perform
reduction, which occurs, in particular for semidirect products. The main result covering the c
semidirect products has a complicated history, with important early contributions by man
thors, as we have listed previously. The final version of the theorem as we shall use it, is
Marsden, Ratiu, and Weinstein@1984a,b#.100,101

Theorem II.1 „Semidirect product reduction theorem…: Let S5GsV, chooses5(m,a)
Pg* 3V* , and reduce T* S by the action of S ats giving the coadjoint orbitOs through s
Ps* . There is a symplectic diffeomorphism betweenOs and the reduced space obtained b
reducing T* G by the subgroup Ga ~the isotropy of G for its action on V* at the point aPV* ) at
the pointmuga wherega is the Lie algebra of Ga .

This theorem is a consequence of a more general result given in the next section.

D. Semidirect product reduction by stages

A theorem on reduction by stages for semidirect products acting on a symplectic manif
due to Leonard and Marsden@1997#84 ~where the motivation was the application to underwa
vehicle dynamics! and Marsdenet al. @1998#.91
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Consider a symplectic action ofS on a symplectic manifoldP that has an equivariant mo
mentum mapJS :P→s* . As we have explained, the momentum map for the action ofV is the
mapJV :P→V* given byJV5 i V* +JS .

We carry out the reduction ofP by S at a regular values5(m,a) of the momentum mapJS

for S in two stages. First, reduceP by V at the valuea ~assume it to be a regular value! to get the
reduced spacePa5JV

21(a)/V. Second, form the isotropy groupGa of aPV* . One shows~this
step is not trivial! that the groupGa acts onPa and has an induced equivariant momentum m
Ja :Pa→ga* , wherega is the Lie algebra ofGa , so one can reducePa at the pointmaªmuga to
get the reduced space (Pa)ma

5Ja
21(ma)/(Ga)ma

.
Theorem II.2 „reduction by stages for semidirect products…: The reduced space(Pa)ma

is

symplectically diffeomorphic to the reduced space Ps obtained by reducing P by S at the poi
s5(m,a).

Combined with the cotangent bundle reduction theorem, the semidirect product red
theorem is a useful tool. For example, this shows that the generic coadjoint orbits for the E
ean group are cotangent bundles of spheres with the associated coadjoint orbit symplectic s
given by the canonical structure plus a magnetic term.
Semidirect product reduction of dynamics. There is a technique for reducing dynamics that
associated with the geometry of the semidirect product reduction theorem. One proceeds
lows.

We start with a HamiltonianHa0
on T* G that depends parametrically on a variablea0

PV* . The Hamiltonian, regarded as a mapH:T* G3V* →R, is assumed to be invariant o
T* G3V* under the action ofG on T* G3V* . One shows that this condition is equivalent to t
invariance of the functionH defined onT* S5T* G3V3V* extended to be constant in th
variableV under the action of the semidirect product. By the semidirect product reduction
rem, the dynamics ofHa0

reduced byGa0
, the isotropy group ofa0 , is symplectically equivalent

to Lie–Poisson dynamics ons* 5g* 3V* . The Lie–Poisson structure determines the redu
dynamics~given explicitly above! using the functionh(m,a)5H(ag ,g21a) wherem5g21ag .

E. Lagrangian semidirect product theory

Lagrangian semidirect product reduction is modeled after the reduction theorem for the
Euler–Poincare´ equations, although they arenot literally special cases of it. To distinguish thes
we use phrases likebasicEuler–Poincare´ equations for Eq.~I.6! and simply the Euler–Poincar´
equationswith advectionor the Euler–Poincare´ equationswith advected parameters, for the equa-
tions that follow.

The main difference between the invariant Lagrangians considered in the Euler–Po´
reduction theorem earlier and the ones we work with now is thatL and l depend on an additiona
parameteraPV* , whereV is a representation space for the Lie groupG andL has an invariance
property relative to both arguments.

The parameteraPV* acquires dynamical meaning under Lagrangian reduction as it did
the Hamiltonian case:ȧ56(dh/dm)a. For the heavy top, the parameter is the unit vectorG in the
~negative! direction of gravity, which becomes a dynamical variable in body representation
compressible fluids,a becomes the density of the fluid in spatial representation, which becom
dynamical variable~satisfying the continuity equation!.

The basic ingredients are as follows. There is aleft representation of the Lie groupG on the
vector spaceV and G acts in the natural way on theleft on TG3V* :h(vg ,a)5(hvg ,ha).
Assume that the functionL:TG3V* →R is left G-invariant. In particular, ifa0PV* , define the
LagrangianLa0

:TG→R by La0
(vg)5L(vg ,a0). ThenLa0

is left invariant under the lift toTG of
the left action ofGa0

on G, whereGa0
is the isotropy group ofa0 . Left G-invariance ofL permits

us to definel :g3V* →R by l (g21vg ,g21a0)5L(vg ,a0). Conversely, this relation defines fo
any l :g3V* →R a left G-invariant functionL:TG3V* →R. For a curveg(t)PG, let j(t)
ªg(t)21ġ(t) and define the curvea(t) as the unique solution of the following linear differenti
equation with time-dependent coefficientsȧ(t)52j(t)a(t), with initial conditiona(0)5a0 . The
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solution can be written asa(t)5g(t)21a0 .
Theorem II.3: With the preceding notation, the following are equivalent:

~i! With a0 held fixed, Hamilton’s variational principle

dE
t1

t2
La0

~g~ t !,ġ~ t !!dt50 ~II.1!

holds, for variationsdg(t) of g(t) vanishing at the end points.
~ii ! g(t) satisfies the Euler–Lagrange equations for La0

on G.
~iii ! The constrained variational principle,

dE
t1

t2
l ~j~ t !,a~ t !!dt50, ~II.2!

holds ong3V* , using variations ofj and a of the formdj5ḣ1@j,h# and da52ha, where
h(t)Pg vanishes at the end points.

~iv! The Euler–Poincaréequations hold ong3V* ,

d

dt

d l

dj
5adj*

d l

dj
1

d l

da
La. ~II.3!

Remarks:

~1! As with the basic Euler–Poincare´ equations, this is not strictly a variational principle in th
same sense as the standard Hamilton’s principle. It is more of a Lagrange–d’Alember
ciple, because we impose the stated constraints on the variations allowed.

~2! Note that Eq.~II.3! is not the basic Euler–Poincare´ equations because we are not regard
g3V* as a Lie algebra. Rather, these equations are thought of as a generalization
classical Euler–Poisson equations for a heavy top, written in body angular velocity vari
as we shall see in the examples. Some authors may prefer the term Euler–Poisson–P´
equations for these equations.

We refer to Holm, Marsden, and Ratiu@1998#53 for the proof. It is noteworthy that thes
Euler–Poincare´ equations~II.3! are not the~pure! Euler–Poincare´ equations for the semidirec
product Lie algebragsV*
The Legendre transformation. Start with a Lagrangian ong3V* and perform apartial Leg-
endre transformationin the variablej only, by writing

m5
d l

dj
, h~m,a!5^m,j&2 l ~j,a!.

Since

dh

dm
5j1 K m,

dj

dm L 2 K d l

dj
,

dj

dm L 5j,

anddh/da52d l /da, we see that~II.3! and ȧ(t)52j(t)a(t) imply the Lie–Poisson dynamic
on a semidirect product for theminus Lie–Poisson bracket. If this Legendre transformation
invertible, then we can also pass from the minus Lie–Poisson equations to the Euler–Po´
equations~II.3! together with the equationsȧ(t)52j(t)a(t).
Relation with Lagrangian reduction. The Euler–Poincare´ equations are shown to be a spec
case of the reduced Euler–Lagrange equations in Cendraet al. @1998#.25 We also refer to Cendra
et al. @1998#,25 who study the Euler–Poincare´ formulation of the Maxwell–Vlasov equations fo
plasma physics.
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The Kelvin–Noether theorem. There is a version of the Noether theorem that holds for solut
of the Euler–Poincare´ equations. Our formulation is motivated by and designed for ideal c
tinuum theories~and hence the name Kelvin–Noether!, but it may be also of interest for finite
dimensional mechanical systems. Of course it is well known~going back at least to Arnold
@1966#8! that the Kelvin circulation theorem for ideal flow is closely related to the Noe
theorem applied to continua using the particle relabeling symmetry group.

Start with a LagrangianLa0
depending on a parametera0PV* as above and introduce

manifold C on which G acts ~we assume this is also a left action! and suppose we have a
equivalent mapK:C3V* →g** . In the case of continuum theories, the spaceC is usually a loop
space and̂ K(c,a),m& for cPC and mPg* will be a circulation. This class of examples als
shows why wedo notwant to identify the double dualg** with g.

Define theKelvin–Noether quantity I:C3gV* →R by

I ~c,j,a!5 KK~c,a!,
d l

dj L . ~II.4!

Theorem II.4 „Kelvin –Noether…: Fixing c0PC, let j(t), a(t) satisfy the Euler–Poincaréequa-
tions and define g(t) to be the solution of g˙ (t)5g(t)j(t) and, say, g(0)5e. Let c(t)
5g(t)21c0 and I(t)5I (c(t),j(t),a(t)). Then

d

dt
I ~ t !5 KK~c~ t !,a~ t !!,

d l

da
LaL . ~II.5!

Again, we refer to Holm, Marsden, and Ratiu@1998#53 for the proof.
Corollary II.5: For the basic Euler–Poincaréequations, the Kelvin quantity I(t), defined the

same way as above but with I:C3g→R, is conserved.
The heavy top. As we explained earlier, the heavy top kinetic energy is given by the left inva
metric on SO~3! whose value at the identity iŝV1 ,V2&5I V1•V2 , where V1 ,V2PR3 are
thought of as elements ofso(3), the Lie algebra of SO~3!, via the isomorphismVPR3→V̂

Pso(3), V̂vªV3v.
This kinetic energy is thus left invariant under SO~3!. The potential energy is given b

MglA21k•x. This potential energy breaks the full SO~3! symmetry and is invariant only unde
the rotationsS1 about thek axis.

For the application of Theorem II.3 we think of the Lagrangian of the heavy top as a fun
on T SO~3!3R3→R. DefineU(uA ,v)5MglA21v•x which is verified to be SO~3!-invariant, so
the hypotheses of Theorem II.3 are satisfied. Thus, the heavy top equations of motion in th
representation are given by the Euler–Poincare´ equations~II.3! for the Lagrangianl :so(3)3R3

→R. defined byl (V,G)5L(A21uA ,A21v)5 1
2P•V2U(A21uA ,A21v)5 1

2P•V2MglG•x. It
is then straightforward to compute the Euler–Poincare´ equations for this reduced Lagrangian a
to verify that one gets the usual heavy top equations.

Let C5g and let K:C3V* →g** >g be the map (W,G)°W. Then the Kelvin–Noether
theorem gives the statement (d/dt)^W,P&5Mgl^W,G3x&, whereW(t)5A(t)21w; in other
words,W(t) is the body representation of a space fixed vector. This statement is easily ve
directly. Also, note that̂W,P&5^w,p&, with p5A(t)P, so the Kelvin–Noether theorem may b
viewed as a statement about the rate of change of the momentum map of the system~the spatial
angular momentum! relative to the full group of rotations, not just those about the vertical ax

F. Reduction by stages

Poisson reduction by stages. Suppose that a Lie groupM acts symplectically on a symplecti
manifoldP. Let N be a normal subgroup ofM ~soM is anextensionof N!. The problem is to carry
out a reduction ofP by M in two steps, first a reduction ofP by N followed by, roughly speaking
a reduction by the quotient groupM /N. On a Poisson level, this is elementary:P/M is Poisson
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diffeomorphic to (P/N)/(M /N). However, symplectic reduction is a much deeper question.
Symplectic reduction by stages. We now state the theorem on symplectic reduction by sta
regarded as a generalization of the semidirect product reduction theorem. We refer to M
et al. @1998, 2000#90,91 and Leonard and Marsden@1997#84 for details and applications.

Start with a symplectic manifold (P,V) and a Lie groupM that acts onP and has an
Ad*-equivariant momentum mapJM :P→m* , wherem is the Lie algebra ofM. We shall denote
this action byF:M3P→P and the mapping associated with a group elementmPM by Fm :P
→P.

Assume thatN is a normal subgroup ofM and denote its Lie algebra byn. Let i :n→m denote
the inclusion and leti * :m* →n* be its dual, which is the natural projection given by restricti
of linear functionals. The equivariant momentum map for the action of the groupN on P is given
by JN(z)5 i * (JM(z)). Let nPn* be a regular value ofJN and letNn be the isotropy subgroup o
n for the coadjoint action ofN on its Lie algebra. We suppose that the action ofNn ~and in fact that
of M! is free and proper and form thefirst symplectic reduced space: Pn5JN

21(n)/Nn .
Since N is a normal subgroup, the adjoint action ofM on its Lie algebram leaves the

subalgebran invariant, and so it induces a dual action ofM on n* . Thus, we can considerM n ,
the isotropy subgroup ofnPn* for the action ofM on n* . One checks that the subgroupNn,M
is normal in M n , so we can form the quotient groupM n /Nn . In the context of semidirec
products, with the second factor being a vector spaceV, M n /Nn reduces toGa wheren5a in our
semidirect product notation.

Now one shows that there is a well-defined symplectic action ofM n /Nn on the reduced spac
Pn . In fact, there is a natural sense in which the momentum mapJM :P→m* induces a momen-
tum mapJn :Pn→(mn /nn)* for this action. However, this momentum map in generalneed notbe
equivariant.

However, nonequivariant reduction is a well-defined process and soPn can be further reduced
by the action ofM n /Nn at a regular valuerP(mn /nn)* . Let this second reduced spacebe
denoted byPn,r5JMn /Nn

21 (r)/(M n /Nn)r where, as usual, (M n /Nn)r is the isotropy subgroup fo

the action of the groupM n /Nn on the dual of its Lie algebra.
Assume thatsPm* is a given regular element ofJM so that we can form the reduced spa

Ps5JM
21(s)/Ms whereMs is the isotropy subgroup ofs for the action ofM on m* . We also

require that the relation (r n8)* (r)5kn* s2 n̄ holds wherer n8 :mn→mn /nn is the quotient map,
kn :mn→m is the inclusion, andn̄ is some extension ofn to mn . We assume that the following
condition holds.
Stages hypothesis:For all s1 ,s2Pm* such thats1umn5s2umn and s1un5s2un, there exists
nPNn such thats25Adn21* s1 .
Theorem II.6 „symplectic reduction by stages…: Under the above hypotheses, there is a sy
plectic diffeomorphism between Ps and Pn,r .
Lagrangian stages. We will just make some comments on the Lagrangian counterpart to Ha
tonian reduction by stages. First of all, it should be viewed as a Lagrangian counterpart to P
reduction by stages, which, as we have remarked, is relatively straightforward. What mak
Lagrangian counterpart more difficult is thea priori lack of a convenient category, like that o
Poisson manifolds, which is stable under reduction. Such a category, which may be viewed
minimal category satisfying this property and containing tangent bundles, is given in Ce
Marsden, and Ratiu@2000a#.28 This category must, as we have seen, contain bundles of the
T(Q/G) % g̃. This gives a clue as to the structure of the general element of thisLagrange–
Poincarécategory, namely direct sums of tangent bundles with vector bundles with fiberwise
algebra structure and certain other~curvature-like! structures. In particular, this theory can hand
the case of general group extensions and includes Lagrangian semidirect product reducti
special case.

The Lagrangian analog of symplectic reduction is non-Abelian Routh reduction to whic
turn next. Developing Routh reduction by stages is an interesting and challenging open pr
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III. ROUTH REDUCTION

Routh reduction differs from Lagrange–Poincare´ reduction in that the momentum map co
straintJL5m is imposed. Routh dealt with systems having cyclic variables. The heavy top h
Abelian group of symmetries, with a free and proper action, yet it does not have global c
variables in the sense that the bundleQ→Q/G is not trivial; that is,Q is not globally a product
S3G. For a modern exposition of Routh reduction in the case whenQ5S3G andG is Abelian,
see Marsden and Ratiu@1994#,98 Sec. 8.9, and Arnold@1988#.11

We shall now embark on a global intrinsic presentation of non-Abelian Routh reduc
Preliminary versions of this theory, which represent our starting point are given in Marsde
Scheurle@1993a#107 and Jalnapurkar and Marsden@2000a#.64

A. The global realization theorem for the reduced phase space

Let Gm denote the isotropy subgroup ofm for the coadjoint action ofG ong* . BecauseG acts
freely and properly onQ and assuming thatm is a regular value of the momentum mapJL , the
spaceJL

21(m)/Gm is a smooth symplectic manifold~by the symplectic reduction theorem!. The
symplectic structure is not of immediate concern to us.
Fiber products. Given two fiber bundlesf :M→B and g:N→B, the fiber product is M3BN
5$(m,n)PM3Nu f (m)5g(n)%. Using the fact thatM3BN5( f 3g)21(D) whereD is the diag-
onal inB3B, one sees thatM3BN is a smooth submanifold ofM3N and a smooth fiber bundle
over B with the projection map (m,n)° f (m)5g(n).
Statement of the global realization theorem. Consider the two fiber bundlestQ/G :T(Q/G)
→Q/G andrm :Q/Gm→Q/G. The first is the tangent bundle of shape space, while the seco
the map taking an equivalence class with respect to theGm group action and mapping it to th
larger class~orbit! for the G action onQ. We write the maprm as@q#Gm

°@q#G . The maprm is
smooth being the quotient map induced by the identity. We form the fiber product bu
pm :T(Q/G)3Q/GQ/Gm→Q/G.

A couple of remarks about the bundle structures are in order. The fibers of the b
rm :Q/Gm→Q/G are diffeomorphic to the coadjoint orbitOm throughm for the G action ong* ,
that is, to the homogeneous quotient spaceG/Gm . Also, the spaceJL

21(m)/Gm is a bundle over
both Q/Gm andQ/G. Namely, we have the smooth maps

sm:JL
21~m!/Gm→Q/Gm , @vq#Gm

°@q#Gm
,

sm :JL
21~m!/Gm→Q/G, @vq#Gm

°@q#G .

Theorem III.1: The bundlesm :JL
21(m)/Gm→Q/G is bundle isomorphic (over the identity) to th

bundle pm :T(Q/G)3Q/GQ/Gm→Q/G.
The maps involved in this theorem and defined in the proof are shown in Fig. 3.

Proof: We first define a bundle map and then check it is a bundle isomorphism by produci
inverse bundle map. We already have defined a mapsm that will give the second component o
our desired map. To define the first component, we start with the mapTpQ,GuJL

21(m):JL
21(m)

→T(Q/G). This map is readily checked to beGm-invariant and so it defines a map of the quotie
spacer m :JL

21(m)/Gm→T(Q/G), a bundle map over the baseQ/G. The mapr m is smooth as it is
induced by the smooth mapTpQ,GuJL

21(m).
The map we claim is a bundle isomorphism is the fiber productfm5r m3Q/Gsm. This map is

smooth as it is the fiber product of smooth maps. Concretely, this bundle map is given as fo
Let vqPJL

21(m). Thenfm(@vq#Gm
)5(TqpQ,G(vq),@q#Gm

).
We now construct the inverse bundle map. From the theory of quotient manifolds, reca

one identifies the tangent spaceTx(Q/G) at a pointx5@q#G with the quotient spaceTqQ/g•q,
whereq is a representative of the classx and whereg•q5$jQ(q)ujPg% is the tangent space to th
group orbit through q. The isomorphism in question is induced by the tangent m
TqpQ,G :TqQ→Tx(Q/G), whose kernel is exactlyg•q.
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Lemma III.2: Let ux5@wq#PTqQ/g•q. There exists a uniquejPg such that vqªwq

1jQ(q)PJL
21(m). In fact, j5I(q)21(m2JL(wq)).

Proof: The condition thatJL(vq)5m is equivalent to the following condition for allhPg:

^m,h&5^JL~wq!,h&1^JL~jQ~q!!,h&

5^JL~wq!,h&1^^jQ~q!,hQ~q!&&5^JL~wq!,h&1^I~q!j,h&.

Thus, this condition is equivalent tom5JL(wq)1I(q)j. Solving for j gives the result. ,

As a consequence, note that for eachuxPTx(Q/G), and eachqPQ with @q#G5x, there is a
vqPJL

21(m) such thatux5@vq#.
We claim that an inverse forfm is the mapcm :T(Q/G)3Q/GQ/Gm→JL

21(m)/Gm defined by
cm(ux ,@q#Gm

)5@vq#Gm
, wherex5@q#G and ux5@vq#, with vqPJL

21(m) given by the above-
mentioned lemma. To show thatcm is well-defined, we must show that if we represent the p
(ux ,@q#Gm

), x5@q#G , in a different way, the value ofcm is unchanged.

Let ux5@ v̄ q̄#, with @q#Gm
5@ q̄#Gm

and v̄ q̄PJL
21(m). Then we must show that@vq#Gm

5@ v̄ q̄#Gm
. Since @q#Gm

5@ q̄#Gm
, we can write q̄5h•q for some hPGm . Consider h21

• v̄ q̄

PTqQ. By equivariance ofJL , and the fact thathPGm , we haveh21
• v̄ q̄PJL

21(m). However,

ux5TqpQ,G~vq!5Tq̄pQ,G~ v̄ q̄!5TqpQ,G~h21
• v̄ q̄!

and therefore,vq2h21
• v̄ q̄Pg•q. In other words,vq2h21

• v̄ q̄5jQ(q) for somejPg. Applying
JL to each side gives 05JL(jQ(q))5I(q)j and soj50. Thus,vq5h21

• v̄ q̄ and so@vq#Gm

5@ v̄ q̄#Gm
. Thus,cm is a well-defined map.

To show thatcm is smooth, we show that it has a smooth local representative. If we w
locally, Q5S3G where the action is on the second factor alone, then we identifyQ/Gm5S
3Om andT(Q/G)3Q/GQ/Gm5TS3Om . We identifyJL

21(m) with TS3G since the level set of
the momentum map in local representation is given by the product ofTS with the graph of the
right invariant vector field onG whose value ate is the vectorzPg such that̂ ^z,h&&5^m,h&. In

FIG. 3. The maps involved in the proof of the global realization theorem.
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this representation,JL
21(m)/Gm is identified with TS3G/Gm and the mapcm is given by

(ux ,@g#Gm
)PTS3G/Gm°(ux ,g•m)PTS3Om . This map is smooth by the construction of th

manifold structure on the orbit. Thus,cm is smooth.
It remains to show thatcm andfm are inverses. To do this, note that

~cm+fm!~@vq#Gm
!5cm~TqpQ/G~vq!,@q#Gm

!5@vq#Gm

sincevq is, by assumption, inJL
21(m). h

Associated bundles. We now show that the bundlerm :Q/Gm→Q/G is globally diffeomorphic to
an associated coadjoint orbit bundle. LetOm,g* denote the coadjoint orbit throughm. The
associated coadjoint bundleis the bundleÕm5(Q3Om)/G, where the action ofG on Q is the
given ~left! action, the action ofG on Om is the left coadjoint action, and the action ofG on Q
3Om is the diagonal action. This coadjoint bundle is regarded as a bundle overQ/G with the
projection map given byr̃m :Õm→Q/G;@(q,g•m)#G°@q#G .
Theorem III.3: There is a global bundle isomorphismFm :Õm→Q/Gm covering the identity on
the base Q/G.
Proof: As in the preceding theorem, we construct the mapFm and show it is an isomorphism b
constructing an inverse. DefineFm by @q,g0•m#G°@g0

21
•q#Gm

. To show thatFm is well defined,

suppose thatg0•m5ḡ•m and gPG. We have to show that@g0
21

•q#Gm
5@((gḡ)21)•(g•q)#Gm

,

i.e., @g0
21

•q#Gm
5@ ḡ21

•q#Gm
, which is true becauseg0

21ḡPGm . Define Cm :Q/Gm→Õm by

@q#Gm
°@q,m#G . It is clear thatCm is well defined and is the inverse ofFm . Smoothness of each

of these maps follows from general theorems on smoothness of quotient maps~see, e.g., Abraham
Marsden, and Ratiu@1988#3!. h

A consequence of these two theorems is that there are global bundle isomorphisms b
the three bundlesJL

21(m)/Gm , T(Q/G)3Q/GQ/Gm , andT(Q/G)3Q/GÕm .
The second space is convenient for analyzing the Routhian and the reduced variationa

ciples, while the third is convenient for making links with the Hamiltonian side.

B. The Routhian

We again consider Lagrangians of the form kinetic minus potential using our earlier not
Given a fixedmPg* , the associatedRouthian Rm:TQ→R is defined by

Rm~vq!5L~vq!2^m,A~vq!&.

Letting Am(vq)5^m,A(vq)&, we can write this simply asRm5L2Am .
Proposition III.4: For vqPJL

21(m), we have Rm(vq)5 1
2iHor(vq)i22Vm(q), where the amended

potential Vm is given by Vm(q)5V(q)1Cm(q) and Cm5 1
2^m,I(q)21m& is called the amend-

ment.
Proof: Because the horizontal and vertical components in the mechanical connection are
cally orthogonal, we have

Rm~vq!5 1
2ivqi22V~q!2^m,A~vq!&5 1

2iHor~vq!i21 1
2iVer~vq!i22V~q!2^m,A~vq!&.

For vqPJL
21(m), we have

iVer~vq!i25i~A~vq!!Q~q!i25^I~q!A~vq!,A~vq!&

5^JL~vq!,A~vq!&5^m,A~vq!&5^m,I~q!21~m!&. h

Using this, one now verifies the following:
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Proposition III.5: The function Rm is Gm-invariant and so it induces, by restriction and quo
enting, a function onJL

21(m)/Gm and hence, by the global realization theorem, a funct
Rm:T(Q/G)3Q/G(Q/Gm)→R called the reduced Routhian; it is given by

Rm~ux ,@q#Gm
!5 1

2iuxiS
22Vm~@q#Gm

!,

where x5@q#G , the metric on S5Q/G is naturally induced from the metric on Q (that is, if ux

5TqpQ,G(vq) then iuxiS5iHor(vq)i), and Vm :Q/Gm→R is the reduced amended potenti
given byVm(@q#Gm

)5Vm(q).
Additional notation will prove useful. LetV be the function onQ/G induced by the function

V on Q and letCm be thereduced amendment, the function onQ/Gm induced by the amendmen
Cm . Thus,Vm5V+rm1Cm . Let the Lagrangian onQ/G be denotedL5K2V, whereK(ux)
5iuxiS

2/2 is the kinetic energy on the shape spaceQ/G.

C. Examples

Rigid body. Here the shape space is a point sinceQ5G, m5p, the spatial angular momentum
so T(Q/G)3Q/GQ/Gp5Sipi

2 , the sphere of radiusipi, a coadjoint orbit for the rotation group
The reduced RouthianRp:Sipi

2 →R is the negative of the reduced amendment, namely2 1
2P

•I 21P. This is of course the negative of the reduced energy.
Heavy top. In this caseQ5SO~3! andG5S1 is the subgroup of rotations about the vertical ax
Shape space isQ/G5S1

2, the sphere of radius 1. As with any Abelian group,Gm5G, so
T(Q/G)3Q/GQ/Gm5T(Q/G). In the case of the heavy top, we getTS1

2.
The isomorphism fromJL

21(m)/Gm→TS2 is induced by the map that takes (A,Ȧ) to (G,Ġ
5G3V). One checks that the horizontal lift of (G,Ġ) to the point A is the vector (A,Ȧh)
satisfyingA21Ȧh5Vh , where

VhªĠ3G2
~Ġ3G!•I G

G•I G
G.

In doing this computation, it may be helpful to keep in mind that the condition of horizontali
the same as zero momentum. Thus, the reduced Routhian is given by

Rm~G,Ġ!5 1
2^Vh ,I Vh&2MglG•x2

1

2

m2

G•I G
.

Underwater vehicle. As we have seen,Q5SE~3!, G5SE~2!3R and so againQ/G5S1
2. How-

ever, becauseG is non-Abelian, formÞ0, the bundleQ/Gm→Q/G has nontrivial fibers. These
fibers are coadjoint orbits for SE~2!, namely cylinders. A computation shows thatQ/Gm

5SO~3!3R, regarded as a bundle overS1
2 by sending ~A, l! to A21k. Thus, T(Q/G)

3Q/GQ/Gm5T(S1
2)3S

1
2SO~3!3R, a six-dimensional space, a nontrivial bundle over the t

sphere with fiber the product of the tangent space to the sphere with a cylinder. The re
Routhian may be computed as in the previous example, but we omit the details.

D. Hamilton’s variational principle and the Routhian

Now we shall recast Hamilton’s principle for the LagrangianL in terms of the Routhian. To
do so, we shall first work out the expression fordSRm.

Recalling thatRm5L2Am and that on the space of curves parametrized on a fixed inte
@a,b#, SL(q(•))5*a

b L(q(t),q̇(t))dt, we see thatSRm5SL2SAm
, and hence that
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dSRm•dq~ t !5dSL•dq~ t !2dSAm
•dq~ t !. ~III.1!

We know from the formula fordSL given in Proposition I.1 that

dSL~q~ t !!•dq~ t !5E
a

b

EL~L !S d2q

dt2 D •dq dt1QLS dq

dt D •dq̂U
a

b

. ~III.2!

To work out the termdSAm
•dq(t) we shall proceed in a more geometric way.

Variations of integrals of forms. We shall pause for a moment to consider the general ques
of variations of the integrals of differential forms. Consider a manifoldM, a k-dimensional com-
pact oriented submanifoldS ~with boundary! and ak-form v defined onM. By avariation of Swe
shall mean a vector fieldds defined alongS in the following way. Letwe :M→M be a family of
diffeomorphisms ofM with w0 the identity. Set

ds~m!5
]

]eU
e50

we~m!, dE
S
v5

]

]eU
e50

E
we~S!

v.

Proposition III.6: The above variation is given by

dE
S
v5E

S
ids dv1E

dS
idsv,

whereidsv denotes the interior product of the vector fieldds with the k-formv.
Proof: We use the definition, the change of variables formula, the Lie derivative, and St
formula as follows:

dE
S
v5

]

]eU
e50

E
we~S!

v5
]

]eU
e50

E
S
we* v5E

S
£dsv5E

S
idsdv1E

S
didsv5E

S
idsdv1E

]S
idsv.

h

Application to the mechanical connection. In particular, we can apply the preceding propositi
to the variations of the integral of the one-formAm over curves. We get

dE
a

b

Am5E
a

b

idqBm1Am~dq~b!!2Am~dq~a!!,

whereBm5dAm , the exterior derivative of the one formAm .
The computation of boundary terms. Summing up what we have proved so far, we write

dSRm~q~ t !,q̇~ t !!•dq5dSL~q~ t !,q̇~ t !!•dq2dSAm
~q~ t !,q̇~ t !!•dq

5E
a

b

EL~L !S d2q

dt2 D •dq dt1QLS dq

dt D •dq̂U
a

b

2E
a

b

idqBm2@Am~dq~b!!2Am~dq~a!!#.

We now compute the boundary terms in this expression. Recalling the formula for the bou
terms in the variational formula forL, splitting the variation into horizontal and vertical parts, w
get
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QLS dq

dt D •dq̂U
a

b

5^FL~q~ t !,q̇~ t !!,dq&ua
b5^FL~q~ t !,q̇~ t !!,Hordq&ua

b1^FL~q~ t !,q̇~ t !!,Verdq&ua
b

5^^q̇~ t !,Hordq&&ua
b1^^q̇~ t !,Verdq&&ua

b .

Assuming the curve (q(t),q̇(t)) lies in the level set of the momentum map, we have

^^q̇~ t !,Verdq&&5^^q̇~ t !,@A~dq!#Q~q!&&5^JL~q~ t !,q̇~ t !!,A~dq!&5^m,A~dq!&5Am~dq!.

Therefore, we get

QLS dq

dt D •dq̂U
a

b

5^^q̇~ t !,Hordq&&ua
b1Am~dq!ua

b .

Noticing that the terms involvingAm cancel, we can say, in summary, that

dSRm~q~ t !,q̇~ t !!•dq5dSL~q~ t !,q̇~ t !!•dq2dSAm
~q~ t !,q̇~ t !!•dq

5E
a

b

EL~L !S d2q

dt2 D •dq dt2E
a

b

idqBm1^^q̇~ t !,Hordq&&ua
b .

We can conclude the following.
Theorem III.7: A solution of the Euler–Lagrange equations which lies in the level setJL5m,
satisfies the following variational principle:

dE
a

b

Rm~q~ t !,q̇~ t !!dt52E
a

b

idqBm~q~ t !,q̇~ t !!dt1^^q̇~ t !,Hordq&&ua
b .

It is very important to notice that in this formulation, there are no boundary condition
constraints whatsoever imposed on the variations. However, we can choose vanishing bo
conditions fordq and derive:
Corollary III.8: Any solution of the Euler–Lagrange equations which lies in the level s
JL5m, also satisfies the equations

EL~Rm!S d2q

dt2
~ t ! D5 iq̇~ t !Bm .

Conversely, any solution of these equations that lies in the level setJL5m of the momentum map
is a solution to the Euler–Lagrange equations for L.

In deriving these equations, we have interchanged the contractions withdq andq̇ using skew
symmetry of the two-formBm . One can also check this result with a coordinate computation
was done in Marsden and Scheurle@1993#;108 see also Marsden and Ratiu@1994#98 for this
calculation in the case of Abelian groups.

E. The Routh variational principle on quotients

We now show how to drop the variational principle given in Sec. III C to the reduced s
T(Q/G)3Q/GQ/Gm . An important point is whether or not one imposes constraints on the v
tions in the variational principle. One of our main points is that such constraintsare not needed;
for a corresponding derivation with the varied curves constrained to lie in the level set o
momentum map, see Jalnapurkar and Marsden@2000a#.64

Later in this section we illustrate the procedure with the rigid body, which already contain
key to how one relaxes the constraints. Some readers may find it convenient to study that e
simultaneously with the general theory.
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Our first goal is to show that the variation of the Routhian evaluated at a solution dep
only on the quotient variations. Following this, we shall show that thegyroscopic termsiq̇(t)Bm

also depend only on the quotient variations.
Analysis of the variation of the Routhian. We begin by writing the Routhian as follows:

Rm~vq!5 1
2iHor~vq!i21 1

2iVer~vq!i22V~q!2^m,A~vq!&. ~III.3!

We next analyze the variation of two of the terms in this expression, namely

1
2iVer~vq!i22^m,A~vq!&5 1

2^I~q!A~vq!,A~vq!&2^m,A~vq!&.

We choose a family of curvesq(t,e) with the property thatq(t,0) is a solution of the Euler–
Lagrange equations with a momentum valuem and letvq be the time derivative ofq(t,0). As
usual, we also letdq be thee derivative evaluated ate50. Then, the desired variation is given b

]

]eU
e50

S 1

2 KI~q!AS ]q

]t D ,AS ]q

]t D L 2 K m,AS ]q

]t D L D
5

1

2
^~TqI•dq!A~vq!,A~vq!&1K I~q!A~vq!2m,

]

]eU
e50

AS ]q

]t D L . ~III.4!

Here,Tq denotes the tangent map at the pointq. Since the curveq(t,0) is assumed to be a solutio
with momentum valuem and sinceI(q)A(vq)5JL(vq), the second term in the preceding displ
vanishes. Thus, we conclude that

]

]eU
e50

S 1

2 KI~q!AS ]q

]t D ,AS ]q

]t D L 2 K m,AS ]q

]t D L D5
1

2
^~TqI•dq!A~vq!,A~vq!&. ~III.5!

Next, we observe that

d~ 1
2^m,I~q!21m&!•dq52 1

2^m,I~q!21~TqI•dq!I~q!21m&. ~III.6!

On a solution with momentum valuem, we havem5JL(vq)5I(q)A(vq). Substituting this into
the preceding expression, we get

d~ 1
2^m,I~q!21m&!•dq52 1

2^I~q!A~vq!,I~q!21~TqI•dq!I~q!21I~q!A~vq!&

52
1

2
^~TqI•dq!A~vq!,A~vq!&. ~III.7!

Therefore, on a solution with momentum valuem, we have

]

]eU
e50

S 1

2 KI~q!AS ]q

]t D ,AS ]q

]t D L 2 K m,AS ]q

]t D L D ~III.8!

52dS 1

2
^m,I~q!21m& D •dq. ~III.9!

We conclude that when evaluated on a solution with momentum valuem,

]

]eU
e50

RmS ]q

]t D5
]

]eU
e50

S 1

2 IHorS ]q

]t D I
2

2Vm~q! D5
]

]eU
e50

R̄mS ]q

]t D , ~III.10!
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whereR̄m(vq)5 1
2iHor(vq)i22Vm(q). Proposition III.4 shows thatR̄m agrees withRm on JL

21(m)
and, more important,R̄m5Rm+(TpQ,G3Q/GpQ,Gm

), where, recall, pQ,G :Q→Q/G and

pQ,Gm
:Q→Q/Gm are the projection maps. Thus,R̄m drops to the quotient with no restriction t

the level set of the momentum map. Differentiating this relation with respect toe, it follows that
the variation ofR̄m drops to the variation ofRm.
Analysis of the variation of the gyroscopic terms. Now we shall show how the exterior deriva
tive of the one formAm drops to the quotient space. Precisely, this means the following.
consider the one-formAm on the spaceQ and its exterior derivativeBm5dAm . We claim that
there is a unique two-formbm on Q/Gm such thatBm5pQ,Gm

* bm , where, recall,pQ,Gm
:Q

→Q/Gm is the natural projection. To prove this, one must show that for anyu,vPTqQ, the
following identity holds:

dAm~q!~u,v !5dAm~g•q!~g•u1jQ~g•q!,g•v1hQ~g•q!!, ~III.11!

for any gPGm , andj,hPgm . To prove this, one first shows that

dAm~g•q!~g•u1jQ~g•q!,g•v1hQ~g•q!!5dAm~q!~u1~Adg21 j!Q~q!,v1~Adg21 h!Q~q!!

using the identitiesjQ(g•q)5(Adg21 j)Q(q) andFg* Am5Am , whereFg(q)5g•q is the group
action. Second, one shows thatdAm(q)(u1zQ(q),v)5dAm(q)(u,v) for any zPgm . This holds
becauseizQ

dAm50. Indeed, fromFg* Am5Am we get £zQ
Am50 and henceizQ

dAm1dizQ
Am

50. However,izQ
Am5^m,z&, a constant, so we get the desired result.

Now we can apply Theorem III.7 to obtain the following result.
Theorem III.9: If q(t),a<t<b, is a solution of the Euler–Lagrange equations with momentu
value m,y(t)5pQ,Gm

(q(t)), and x(t)5pQ,G(q(t)), then y(t) satisfies thereduced variational
principle

dE
a

b

Rm~x~ t !,ẋ~ t !,y~ t !!dt5E
a

b

i ẏ~ t !bm~y~ t !!•dydt1^^ẋ~ t !,dx~ t !&&Sua
b .

Conversely, if q(t) is a curve such that q˙ (t)PJL
21(m) and if its projection to y(t) satisfies this

reduced variational principle, then q(t) is a solution of the Euler–Lagrange equations.
It is already clear from the case of the Euler–Poincare´ equations that dropping the variation

principle to the quotient can often be easier than dropping the equations themselves. Noti
that there is a slight abuse of notation, similar to that when one writes a tangent vector as
(q,q̇). The notation~x,y! is redundant sincex can be recovered fromy by projection fromQ/Gm

to Q/G. Consistent with this convenient notational abuse, we use the notation (x,ẋ) as an alter-
native toux .

F. Curvature

We pause briefly to recall some key facts about curvatures of connections, and establ
conventions. Then we shall relatebm to curvature.
Review of the curvature of a principal connection. Consider a principal connectionA on a
principal G bundlepQ,G :Q→Q/G. The curvature B is the Lie algebra-valued two-form onQ
defined byB(uq ,vq)5dA(Horq(uq),Horq(vq)), whered is the exterior derivative.

Using the fact thatB depends only on the horizontal part of the vectors and equivariance
shows that it defines an adjoint bundle~that is, g̃!-valued two-form on the baseQ/G by
CurvA(x)(ux ,vx)5@q,dA(uq ,vq)#G , where @q#G5xPQ/G, uq and vq are horizontal,TpQ,G

•uq5ux , andTpQ,G•vq5vx .
Curvaturemeasures the lack of integrability of the horizontal distributionin the sense that on

two vector fieldsu, v on Q one has
                                                                                                                



ket:

t
s the

cture
need it,

n

int
ithin
c
this

f a
e. This
e

t

n

3410 J. Math. Phys., Vol. 41, No. 6, June 2000 Marsden, Ratiu, and Scheurle

                    
B~u,v !52A~@Hor~u!,Hor~v !# !.

The proof uses the Cartan formula relating the exterior derivative and the Jacobi–Lie brac

B~u,v !5Hor~u!@A~Hor~v !!#2Hor~v !@A~Hor~u!!#2A~@Hor~u!,Hor~v !# !.

The first two terms vanish sinceA vanishes on horizontal vectors.
An important formula for the curvature of a principal connection is given by theCartan

structure equations: for any vector fieldsu, v on Q one has

B~u,v !5dA~u,v !2@A~u!,A~v !#,

where the bracket on the right-hand side is the Lie bracket ing. One writes this equation for shor
asB5dA2@A,A#. An important consequence of these equations that we will need below i
following identity ~often this is a lemma used to prove the structure equations!:

dA~q!~Horuq ,Vervq!50 ~III.12!

for any uq ,vqPTqQ.
Recall also that when applied to the left trivializing connection on a Lie group, the stru

equations reduce to the Mauer–Cartan equations. We also remark, although we shall not
that one has theBianchi identities: For any vector fieldsu, v, w on Q, we have

dB~Hor~u!,Hor~v !,Hor~w!!50.

The connection on the bundlerm . The bundlerm :Q/Gm→Q/G has an Ehresmann connectio
induced from the principal connections on the two bundlesQ→Q/Gm andQ→Q/G. However,
we can also determine this connection directly by giving its horizontal space at each poy
5@q#Gm

PQ/Gm . This horizontal space is taken to be the orthogonal complement w
Ty(Q/Gm)>TqQ/@gm•q# to the vertical space@g•q#/@gm•q#. This latter space inherits its metri
from that onTqQ by taking the quotient metric. As before, since the action is by isometries,
metric is independent of the representatives chosen.

This horizontal space is denoted by Horrm
and the operation of taking the horizontal part o

vector is denoted by the same symbol. The vertical space is of course the fiber of this bundl
vertical space at a pointy5@q#Gm

is given by kerTyrm , which is isomorphic to the quotient spac

@g•q#/@gm•q#. This vertical bundle will be denoted by Ver(Q/Gm),T(Q/Gm) and the fiber at
the point yPQ/Gm is denoted Very(Q/Gm)5kerTyrm . The projection onto the vertical par
defines the analog of the connection form, which we denoteArm

. Thus, Arm
:T(Q/Gm)

→Ver(Q/Gm), which we think of as a vertical valued one-form.
Compatibility of the three connections. We shall now work toward the computation ofbm on
various combinations of horizontal and vertical vectors relative to the connectionArm

. To do this,
keep in mind thatrm+pQ,Gm

5pQ,G by construction. We shall need the following.
Lemma III.10: Let uqPTqQ and uy5TypQ,Gm

•uq , where y5pQ,Gm
(q). Then

~1! uy is rm-vertical if and only if uq is pQ,G-vertical.
~2! The identity TpQ,Gm

•Horuq5Horrm
(uy) holds, whereHor denotes the horizontal projectio

for the mechanical connectionA.
~3! The following identity holds: TpQ,Gm

•Veruq5Verrm
(uy).

Proof. „1…: Becauserm+pQ,Gm
5pQ,G , the chain rule gives

Tyrm•uy5Tyrm•TqpQ,Gm
•uq5TqpQ,G•uq ,
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so Tyrm•uy50 if and only if TqpQ,G•uq50, which is the statement of part 1.
2. Let vyPkerTyrm,Ty(Q/Gm) and write vy5TqpQ,Gm

•vq . By the definition of the metric

^^•,•&&Q/Gm
on Q/Gm we have

05^^Horuq ,vq&&Q5^^TqpQ,Gm
•Horuq ,TqpQ,Gm

•vq&&Q/Gm
5^^TqpQ,Gm

•Horuq ,vy&&Q/Gm
.

Hence, sincevy is an arbitrary rm-vertical vector, we conclude thatTqpQ,Gm
•Horuq is

rm-horizontal. Next, write

Horrm
~TpQ,Gm

•uq!5Horrm
~TpQ,Gm

•Horuq!1Horrm
~TpQ,Gm

•Veruq!5TpQ,Gp
•Horuq

by assertion 1 of this lemma.
3. As in 1,TqpQ,Gm

•Veruq is rm-vertical. Therefore,

Verrm
uy5Verrm

~TqpQ,Gm
•uq!5Verrm

~TqpQ,Gm
•Veruq!1Verrm

~TqpQ,Gm
•Horuq!

5TqpQ,Gm
•Veruq ,

sinceTqpQ,Gm
•Horuq is rm-horizontal by part 2. h

The pairing betweeng̃ and g̃* . We shall need to define a natural pairing between the adjoint
coadjoint bundles. Recall that, by definition,g̃5(Q3g)/G and g̃* 5(Q3g* )/G, whereG acts
by the given action onQ and by the adjoint action ong and the coadjoint action ong* . For
@q,m#GPg̃* and@q,j#GPg̃, the pairing iŝ @q,m#G ,@q,j#G&5^m,j&. One shows that this pairing
is independent of the representatives chosen.

We define, fory5@q#Gm
PQ/Gm , the (y,m)-component of CurvA by

CurvA
~y,m!~x!~ux ,vx!5^@q,m#G ,CurvA~x!~ux ,vx!&, ~III.13!

where@q#G5x. One shows that this is independent of the representativeq chosen fory.
Hor –hor components ofbm . Now we compute the horizontal–horizontal components ofbm as
follows. Let uq ,vqPTqQ, and

uy5TqpQ,Gm
•uq , vy5TqpQ,Gm

•vq .

Using Lemma III.10, the definition of curvature, and~III.13!, we have

bm~y!~Horrm
uy ,Horrm

vy!5bm~pQ,Gm
~q!!~TqpQ,Gm

•Horuq ,TqpQ,Gm
•Horvq!

5~pQ,Gm
* bm!~q!~Horuq ,Horvq!5Bm~q!~Horuq ,Horvq!

5^m,dA~q!~Horuq ,Horvq!&

5^@q,m#G ,@q,dA~q!~Horuq ,Horvq!#G&

5^@q,m#G ,CurvA~x!~ux ,vx!&5CurvA
~y,m!~x!~ux ,vx!,

wherex5pQ,G(q)5rm(y), ux5TqpQ,G•uq5Tyrm•uy , and similarly forvx .
We summarize what we have proved in the following lemma.

Lemma III.11: The two-formbm on horizontal vectors is given by

bm~y!~Horrm
uy ,Horrm

vy!5CurvA
~y,m!~x!~ux ,vx!. ~III.14!
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Hor-ver components of bm . Now we compute the horizontal–vertical components ofbm as
follows. Let uq , vqPTqQ, and uy5TqpQ,Gm

•uq , vy5TqpQ,Gm
•vq . Using Lemma III.10, we

have

bm~y!~Horrm
uy ,Verrm

vy!5bm~pQ,Gm
~q!!~TqpQ,Gm

•Horuq ,TqpQ,Gm
•Vervq!

5~pQ,Gm
* bm!~q!~Horuq ,Vervq!

5Bm~q!~Horuq ,Vervq!5^m,dA~q!~Horuq ,Vervq!&50,

by ~III.12!. We summarize what we have proved in the following lemma.
Lemma III.12: The two-formbm on pairs of horizontal and vertical vectors vanishes:

bm~y!~Horrm
uy ,Verrm

vy!50. ~III.15!

Ver–ver components ofbm . Now we compute the vertical–vertical components ofbm as fol-
lows. As previously, letuq , vqPTqQ, anduy5TqpQ,Gm

•uq , vy5TqpQ,Gm
•vq . Using Lemma

III.10, we have

bm~y!~Verrm
uy ,Verrm

vy!5bm~pQ,Gm
~q!!~TqpQ,Gm

•Veruq ,TqpQ,Gm
•Vervq!

5~pQ,Gm
* bm!~q!~Veruq ,Vervq!

5Bm~q!~Veruq ,Vervq!

5^m,dA~q!~Veruq ,Vervq!&5^m,@A~q!Veruq ,A~q!Vervq#&

by the Cartan structure equations. We now write

Veruq5jQ~q!, Vervq5hQ~q!,

so that the preceding equation becomes

bm~y!~Verrm
uy ,Verrm

vy!5^m,@j,h#&. ~III.16!

Now given Verrm
uyPkerTyrm , we can represent it as a class@jQ(q)#Pg•q/gm•q. The map

j°jQ(q) induces an isomorphism ofg/gm with the rm-vertical space. Note that the abov
mentioned formula depends only on the class ofj and ofh.

We summarize what we have proved in the following lemma.
Lemma III.13: The two-formbm on pairs of vertical vectors is given by the following formula

bm~y!~Verrm
uy ,Verrm

vy!5^m,@j,h#&, ~III.17!

whereVerrm
uy5@jQ(q)# and Verrm

vy5@hQ(q)#.

G. Splitting the reduced variational principle

Now we want to take the reduced variational principle, namely

dE
a

b

Rm~x~ t !,ẋ~ t !,y~ t !!dt5E
a

b

i ẏ~ t !bm~y~ t !!•dy dt1^^ẋ~ t !,dx~ t !&&ua
b

and relate it intrinsically to two sets of differential equations corresponding to the horizonta
vertical components of the bundlerm :Q/Gm→Q/G.
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Recall that in this principle, we are considering all curvesy(t)PQ/Gm andx(t)5rm(y(t))
PQ/G. For purposes of deriving the equations, we can restrict ourselves to variations suc
dx vanishes at the end points, so that the boundary term disappears.

Now the strategy is to split the variationsdy(t) of y(t) into horizontal and vertical compo
nents relative to the induced connection on the bundlerm :Q/Gm→Q/G.
Breaking up the variational principle . Now we can break up the variational principle by d
composing variations into their horizontal and vertical pieces, which we shall write

dy5Horrm
dy1Verrm

dy,

where

Arm
dy5Verrm

dy.

We also note that, by construction, the mapTrm takesdy to dx. Since this map has kernel give
by the set of vertical vectors, it defines an isomorphism on the horizontal space to the ta
space to shape space. Thus, we can identify Horrm

dy with dx.
Horizontal variations . Now we take variations that are purely horizontal and vanish at the
points; that is,dy5Horrm

dy. In this case, the variational principle,

dE
a

b

Rm~x~ t !,ẋ~ t !,y~ t !!dt5E
a

b

i ẏ~ t !bm~y~ t !!•dy dt1^^ẋ~ t !,dx~ t !&&ua
b ~III.18!

becomes

dE
a

b

@L~x~ t !,ẋ~ t !!2Cm~y~ t !!#dt•Horrm
dy~ t !5E

a

b

~ i ẏ~ t !bm~y~ t !!!•Horrm
dy~ t !dt.

~III.19!

Since, by our general variational formula, for variations vanishing at the end points,

dS E
a

b

L~x~ t !,ẋ~ t !!dtD •dx5E
a

b

EL~L!~x~ t !,ẋ~ t !,ẍ~ t !!•dx~ t !dt,

~III.19! is equivalent to

EL~L!~ ẍ!5Horrm
@dCm~y!1 i ẏ~ t !bm~y~ t !!# ~III.20!

where, for a pointgPTy* (Q/Gm), we define

Horrm
gPTx* ~Q/G!

by

~Horrm
g!~Tyrm•dy!5g~Horrm

dy!.

This is well defined because the kernel ofTyrm consists of vertical vectors and these are ann
lated by the map Horrm

.
Vertical variations . Now we consider vertical variations; that is, we take variationsdy(t)
5Verrm

dy(t). The left-hand side of the variational principle~III.18! now becomes

dE
a

b

Rm~x~ t !,ẋ~ t !,y~ t !!dt5dE
a

b

@2Cm~y~ t !!#dt5E
a

b

@2dCm~y~ t !!•Verrm
dy~ t !#dt.
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As before, the right-hand side is*a
b( i ẏ(t)bm(y(t)))•Verrm

dy(t)dt. Hence, the variational prin
ciple ~III.18! gives

Verrm
@dCm~y!1 i ẏ~ t !bm~y~ t !!#50, ~III.21!

where, for a pointgPTy* (Q/Gm), we define

Verrm
gPVery* ~Q/Gm!

by

~Verrm
g!5guVery~Q/Gm!.

We can rewrite~III.21! to isolate Verrm
ẏ as follows:

Verrm
~ iVerrm

ẏbm~y!!52Verrm
@dCm~y!1 iHorrm

ẏ~ t !bm~y~ t !!#. ~III.22!

H. The Lagrange–Routh equations

We now put together the information on the structure of the two-formbm with the reduced
equations in the previous section.
The horizontal equation. We begin with the horizontal reduced equation:

EL~L!~ ẍ!5Horrm
@dCm~y!1 i ẏ~ t !bm~y~ t !!#. ~III.23!

We now compute the term Horrm
i ẏ(t)bm(y(t)). To do this, letdxPTx(Q/G) and write dx

5Tyrm•dy. By definition,

^Horrm
i ẏ~ t !bm~y~ t !!,dx&5^ i ẏ~ t !bm~y~ t !!,Horrm

dy&

5bm~y~ t !!~ ẏ~ t !,Horrm
dy!

5bm~y~ t !!~Horrm
ẏ~ t !,Horrm

dy!

1bm~y~ t !!~Verrm
ẏ~ t !,Horrm

dy!. ~III.24!

Using Lemmas III.11 and III.12, this becomes

^Horrm
i ẏ~ t !bm~y~ t !!,dx&5CurvA

~y~ t !,m!~x~ t !!~Ty~ t !rm•~Horrm
ẏ~ t !!,Ty~ t !rm•~Horrm

dy!! ~III.25!

5CurvA
~y~ t !,m!~x~ t !!~Ty~ t !rm•~Horrm

ẏ~ t !!,Ty~ t !rm•dy!, ~III.26!

sinceTy(t)rm annihilates the vertical component ofdy. Next, we claim that

Ty~ t !rm•~Horrm
ẏ~ t !!5 ẋ~ t !. ~III.27!

To see this, we start with the definition ofx(t)5rm(y(t)) and use the chain rule to getẋ(t)
5Ty(t)rm• ẏ(t)5Ty(t)rm•(Horrm

ẏ(t)) since Tyrm vanishes onrm-vertical vectors. This proves
the claim. Substituting~III.27! into ~III.26! and usingdx5Tyrm•dy, we get

^Horrm
i ẏ~ t !bm~y~ t !!,dx&5CurvA

~y~ t !,m!~x~ t !!~ ẋ~ t !,dx!. ~III.28!

Therefore,
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Horrm
i ẏ~ t !bm~y~ t !!5 i ẋ~ t !CurvA

~y~ t !,m!~x~ t !!. ~III.29!

Thus,~III.23! becomes

EL~L!~ ẍ!5 i ẋ~ t !CurvA
~y~ t !,m!~x~ t !!1Horrm

dCm~y!. ~III.30!

The vertical equation. Now we analyze in a similar manner, the vertical equation. We start

Verrm
~ iVerrm

ẏbm~y!!52Verrm
@dCm~y!1 iHorrm

ẏ~ t !bm~y~ t !!#. ~III.31!

We pair the left-hand side with a vertical vector, Verrm
dy and use the definitions to get

^Verrm
~ iVerrm

ẏbm~y!!,Verrm
dy&5bm~y!~Verrm

ẏ,Verrm
dy!5^m,@j,h#&5^adj* m,h&

~III.32!

by Lemma III.13, where Verrm
ẏ5@jQ(q)# and Verrm

dy5@hQ(q)#.
We can interpret this result by saying that thevertical–vertical componentof bm is given by

the negative of the fiberwise coadjoint orbit symplectic form.
The second term on the right-hand side of~III.31! is zero by Lemma III.12. The first term o

the right-hand side of~III.31! paired with Verrm
dy is

^Verrm
dCm~y!,Verrm

dy&5^dCm~y!,Verrm
dy&5^dCm~y!,@hQ~q!#&. ~III.33!

Now define, by analogy with the definition of the momentum map for a cotangent bundle a
a mapJ:T* (Q/Gm)→(g/gm)* by

^J~ay!,@j#&5^ay ,@jQ~q!#&,

wherey5@q#Gm
5pQ,Gm

(q), ayPTy* (Q/Gm), and where@j#Pg/gm . Therefore,

^Verrm
dCm~y!,Verrm

dy&5^J~dCm~y!!,h&. ~III.34!

From ~III.32! and ~III.34!, the vertical equation~III.31! is equivalent to

adj* ~m!52J~dCm~y!!. ~III.35!

Thus, the reduced variational principle is equivalent to the following system ofLagrange–
Routh equations:

EL~L!~ ẍ!5 i ẋ~ t !CurvA
~y~ t !,m!~x~ t !!1Horrm

dCm~y!, ~III.36!

2adj* ~m!5J~dCm~y!!, ~III.37!

where Verrm
ẏ5@jQ(q)#.

The first equation may be regarded as a second-order equation forxPQ/G and the second
equation is an equation determining therm-vertical component ofẏ. This can also be thought o
as an equation for@j#Pg/gm which in turn determines the vertical component ofẏ. We also think
of these equations as the two components of the equations for the evolution in the fiber p
T(Q/G)3Q/GQ/Gm .

We can also describe the second equation by saying that the equation for Verrm
ẏ is Hamil-

tonian on the fiber relative to the fiberwise symplectic form and with Hamiltonian given byCm

restricted to that fiber. This can be formalized as follows. Fix a pointxPQ/G and consider the
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fiber rm
21(x), which is, as we have seen, diffeomorphic to a coadjoint orbit. Consider the v

field Xx on rm
21(x) given by Xx(y)5Verrm

ẏ. Let vx
2 denote the pullback of2bm to the fiber

rm
21(x). Then we haveiXx

vx
25d(Cmurm

21(x)), which just says thatXx is the Hamiltonian vector
field on the fiber with Hamiltonian given by the restriction of the amendment function to the fi

We summarize what we have proved with the following.
Theorem III.14: The reduced variational principle is equivalent to the following system
Lagrange–Routh equations:

EL~L!~ ẍ!5 i ẋ~ t !CurvA
~y~ t !,m!~x~ t !!1Horrm

dCm~y!, ~III.38!

iverrm
ẏvx

25d~Cmurm
21~x!!. ~III.39!

For Abelian groups~the traditional case of Routh! the second of the Lagrange–Routh equ
tions disappears and the first of these equations can be rewritten as follows. Recall that the r
Routhian is given byRm5L2Cm and in this case, the spacesQ/G andQ/Gm are identical and
the horizontal projection is the identity. Thus, in this case we get

EL~Rm!~ ẍ!5 i ẋ~ t !CurvA
~y~ t !,m!~x~ t !!. ~III.40!

Note that this form of the equations agrees with the Abelian case of Routh reduction discus
Marsden and Ratiu@1994#,98 Sec. 8.9 and in Marsden and Scheurle@1993#,107 namely we start
with a Lagrangian of the form

L~x,ẋ,u̇ !5 1
2gab~x!ẋaẋb1gaa~x!ẋau̇a1 1

2gab~x!u̇au̇b2V~x!,

where there is a sum overa, b from 1 to m and overa, b from 1 to k. Here, theua are cyclic
variables and the momentum map constraint readsma5gaaẋa1gabu̇

b. In this case, the compo
nents of the mechanical connection areAa

a5gabgba , the locked inertia tensor isI ab5gab , and the
Routhian is Rm5 1

2(gab2gaagabgbb) ẋaẋb2Vm(x), where the amended potential isVm(x)
5V(x)1 1

2g
abmamb . The Lagrange–Routh equations are

d

dt

]Rm

] ẋa 2
]Rm

]xa 5Bab
a maẋb ~III.41!

~with the second equation being trivial; it simply expresses the conservation ofma!, where, in this
case, the components of the curvature are given by

Bab
a 5

]Ab
a

]xa 2
]Aa

a

]xb .

I. Examples

The rigid body. In this case, the Lagrange–Routh equations reduced only to a coadjoint
equation and simply state that the equations are Hamiltonian on the coadjoint orbit. This
statement is true of course for any system withQ5G.
The heavy top. In this case, the coadjoint orbit equation is trivial and so the Lagrange–R
equations reduce to second-order equations forG on S2. These equations are computed to be
follows:

G̈52iĠi2G1G3S,

where

S5bĠ2nĠ1I 21@~ I ~Ġ3G!1~n2b!I G!3~~Ġ3G!1~n2b!G!1MglG3x#,
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b5@(Ġ3G)•I G#/(G•I G), and n5m/(G•I G). Notice that one can writeS5S01mS11m2S2 ,
which represent the three terms in the Lagrange–Routh equations that are independent ofm, linear
in m, and quadratic inm. In particular, the term linear inm is the magnetic term:

S15~G•I G!21@2Ġ1I 21~ I ~Ġ3G!3G1I G3~Ġ3G!!#.

This of course is the ‘‘curvature term’’ in the Lagrange–Routh equations. Notice that
according to the general theory, linear in the ‘‘velocity’’Ġ. The remaining terms are the Euler
Lagrange expression of the reduced Routhian with those quadratic in the velocity bein
differential of the amendment.

IV. RECONSTRUCTION

A. First reconstruction equation

The local formula. For a curve with known constant value of momentum, the evolution of
group variable can be determined from the shape space trajectory. Thisreconstruction equationis
usually written in a local trivializationS3G of the bundleQ→Q/G in the following way. Given
a shape space trajectoryx(t), the curveq(t)5(x(t),g(t)) has momentumm ~i.e., JL(q(t),q̇(t))
5m) if and only if g(t) solves the differential equation

ġ5g•@Jloc~x!21Adg* m2Aloc~x!ẋ#. ~IV.1!

Here,Iloc is the local representative of the locked inertia tensor andAloc is the local representative
of the mechanical connection. This equation is one of the central objects in the study of phas
locomotion and has an analog for nonholonomic systems~see Marsden, Montgomery, and Rat
@1990#92 and Blochet al. @1996#16!.
The intrinsic equation. We will now write this equation in an intrinsic way without choosing
local trivialization.

Let x(t)PS5Q/G be a given curve and letm be a given value of the momentum map. W
want to find a curveq(t)PQ that projects tox(t) and such that its tangentq̇(t) lies in the level
set JL

21(m). We first choose any curveq̃(t)PQ that projects tox(t). For example, in a loca
trivialization, it could be the curvet°(x(t),e) or it could be the horizontal lift of the base curv
Now we writeq(t)5g(t)•q̃(t).

We shall now make use of the following formula for the derivatives of curves that was g
in Eq. ~I.2!:

q̇~ t !5~Adg~ t ! j~ t !!Q~q~ t !!1g~ t !•q8 ~ t !,

wherej(t)5g(t)21
•ġ(t). Applying the mechanical connectionA to both sides, using the identit

A(vq)5I(q)21
•JL(vq), the fact thatA(hQ(q))5h, equivariance of the mechanical connectio

and assuming thatq̇(t)PJL
21(m) gives

I~q!21m5Adg~ t ! j~ t !1Adg~ t ! A~q8 ~ t !!.

Solving this equation forj(t) gives

j~ t !5Adg~ t !2t I~q~ t !!21m2A~q8 ~ t !!.

Using equivariance ofI leads to thefirst reconstruction equation:

g~ t !21ġ~ t !5I~ q̃~ t !!21Adg~ t !* m2A~q8 ~ t !!. ~IV.2!

Notice that this reproduces the local equation~IV.1!.
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Example—The rigid body. In this example, there is no second term in the preceding equa
since the bundle has a trivial base, so we chooseq̃(t) to be the identity element. Thus, th
reconstruction process amounts to the following equation for the attitude matrixA(t):

Ȧ~ t !5A~ t !I 21A~ t !21p.

This is the method that Whittaker@1907#159 used to integrate for the attitude matrix.

B. Second reconstruction equation

In symplectic reconstruction, one needs only solve a differential equation on the subgroGm

instead of onG since the reduction bundleJ21(m)→Pm5J21(m)/Gm is one that quotients only
by the subgroupGm . See Marsden, Montgomery, and Ratiu@1990#92 for details. This suggests tha
one can do something similar from the Lagrangian point of view.
Second reconstruction equation. Given a curvey(t)PQ/Gm , we find a curveq̄(t)PQ that
projects to y(t). We now write q(t)5g(t)•q̄(t) where g(t)PGm and require thatq̇(t)
PJL

21(m). Now we use the same formula for derivatives of curves as above and again app
mechanical connection for theG-action to derive thesecond reconstruction equation

g~ t !21ġ~ t !5I~ q̄~ t !!21m2A~q8 ~ t !!. ~IV.3!

Notice that we have Adg(t)* m5m sinceg(t)PGm .
This second reconstruction equation~IV.3! is now a differential equation onGm , which

normally would be simpler to integrate than its counterpart equation onG. The reason we are abl
to get an equation on a smaller group is because we are using more information, namely
y(t) as opposed tox(t).
The Abelian case. For genericmPg* , the subgroupGm is Abelian by a theorem of Duflo and
Vergne. In this Abelian case, the second reconstruction equation reduces to a quadrature. O
in fact,

g~ t !5g~0!expF E
0

t

(I(q̄(s))21m2A(qG (s))dsG . ~IV.4!

Example—The rigid body. In the case of the free rigid body,G5SO~3! and thus ifpÞ0, we
haveGp5S1, the rotations about the axisp. The above formula leads to an expression for
attitude matrix that depends only on a quadrature as opposed to nonlinear differential equa
be integrated. The curvey(t) is the body angular momentumP(t) and the momentum is the
spatial angular momentump. The curveq̄(t) is the choice of a curveĀ(t) in SO~3! such that it
rotates the vectorP(t) to the vectorp. For example, one can choose this rotation to be about
axis P(t)3p through the angle given by the angle between the vectorsP(t) andp. Explicitly,

Ā~ t !5expFw~ t !
P~ t !3̂p

iP~ t !3pi G , ~IV.5!

where cosw(t)5P(t)•p/ipi2.
The group elementg(t) now is an anglea(t) that represents a rotation about the axisp

through the anglea(t). Then~IV.4! becomes

a~ t !5a~0!1F E
0

t p

ipi •~I~Ā~s!!21p2A~AG ~s!! ˇ !dsG
5a~0!1F E

0

t p

ipi •~Ā~s!I 21Ā~s!21p2@AG ~s!Ā~s!21# ˇ !dsG .
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Some remarks are in order concerning this formula. We have used the hat map and its i
the check map, to identifyR3 with so(3). In this case, the group elements inS1 are identified with
real numbers, namely, the angles of rotations about the axisp. Thus, the product in the genera
formula ~IV.4! becomes a sum and the integral over the curve ingm becomes an ordinary integra
The integrand at first glance, is an element ofg, but, of course, it actually belongs togm . For the
example of the rigid body, we make this explicit by taking the inner product with a unit ve
alongp.

C. Third reconstruction equation

The second reconstruction equation used the information on a curvey(t) in Q/Gm as opposed
to a curvex(t) in Q/G in order to enable one to integrate on the smaller, often Abelian, gr
Gm . However, it still used the mechanical connection associated with theG-action. We can derive
yet a third reconstruction equation by using the mechanical connection associated wi
Gm-action.

The momentum map for theGm-action onTQ is given byJL
Gm5im* +JL whereim :gm→g is the

inclusion and whereim* :g* →gm* is its dual~the projection, or restriction map!. We can also define
the locked inertia tensor and mechanical connection for theGm-action, in the same way as wa
done for theG-action. We denote these by

IGm~q!5im* +I~q!+im :gm→gm* , AGm:TQ→gm .

In the third reconstruction equation we organize the logic a little differently and in effect,take
dynamics into account. Namely, we assume we have a curveq(t)PJL

21(m), e.g., a solution of the
Euler–Lagrange equations with initial conditions inJL

21(m). We now let y(t)PQ/Gm be the
projection ofq(t). We also letm̄5im* m5mugm . We first choose any curveq̄(t)PQ that projects
to y(t). For example, as before, in a local trivialization, it could be the curvet°(y(t),e) or it
could be the horizontal lift ofy(t) relative to the connectionAGm. Now we write q(t)5g(t)
•q̄(t), whereg(t)PGm .

As before, we use the following formula for the derivatives of curves:

q̇~ t !5~Adg~ t ! j~ t !!Q~q~ t !!1g~ t !•qG ~ t !,

wherej(t)5g(t)21
•ġ(t)Pgm . Applying the mechanical connectionAGm to both sides, using the

identity AGm(vq)5IGm(q)21
•JL

Gm(vq), the fact thatAGm(hQ(q))5h, equivariance of the me
chanical connection gives

IGm~q!21m̄5Adg~ t ! j~ t !1Adg~ t ! A
Gm~qG ~ t !!.

Solving this equation forj(t) givesj(t)5Adg(t)21 IGm(q(t))21m̄2AGm(qG (t)). Using equivari-
ance ofIGm leads tog(t)21ġ(t)5IGm(q̄(t))21Adg(t)* m̄2AGm(qG (t)), where in the last equation
Adg(t)* is the coadjoint action forGm . One checks that Adg(t)* m̄5m̄, using the fact thatg(t)
PGm , so this equation becomes

g~ t !21ġ~ t !5IGm~ q̄~ t !!21m̄2AGm~qG ~ t !!. ~IV.6!

The same remarks as before apply concerning the generic Abelian nature ofGm applied to this
equation. In particular, whenGm is Abelian, we have the formula

g~ t !5g~0!expF E
0

t

~IGm~ q̄~s!!21m̄2AGm~qG ~s!!!dsG . ~IV.7!

Example—The rigid body: Here we start with a solution of the Euler–Lagrange equationsA(t)
and we letp be the spatial angular momentum andP(t) be the body angular momentum. W
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choose the curveĀ(t) using formula~IV.5!. We now want to calculate the anglea(t) of rotation
around the axisp such thatA(t)5Ra,pĀ(t), whereRa,p denotes the rotation about the axisp
through the anglea. In this case, we get

a~ t !5a~0!1F E
0

t

~IGm~Ā~s!!21m̄2AGm~AG ~s!!!dsG . ~IV.8!

Now we identifygm with R by the isomorphisma°ap/ipi . Then, forBPSO(3),

IGm~B!5
p•~BIB21!p

ipi2 .

Taking B5Ā(s), and using the fact thatĀ(s) mapsP(s) to p, we get

IGm~Ā~s!!215
ipi2

p•~Ā~s!I Ā~s!21!p
5

ipi2

P~s!•I P~s!
.

The elementm̄ is represented, according to our identifications, by the numberipi , so

IGm~Ā~s!!21m̄5
ipi3

P~s!•I P~s!
.

Thus,~IV.8! becomes

a~ t !5a~0!1F E
0

tS ipi3

P~s!•I P~s!
2AGm~AG ~s!! DdsG . ~IV.9!

This formula agrees with that found in Marsden, Montgomery, and Ratiu@1990#,92 Sec. 5.1.2.

D. The vertical Killing metric

For some calculations as well as a deeper insight into geometric phases studied in th
section, it is convenient to introduce a modified metric.
Definition of the vertical Killing metric . First, we assume that the Lie algebrag has an inner
product which we shall denotê•,•& +, with the property that Adg :g→g is orthogonal for everyg.
For example, ifG is compact, the negative of the Killing form is such a metric. For SO~3!, we
shall use the standard dot product as this metric. For convenience, we shall refer to the
product^•,•& + as theKilling metric.

Now we use the Killing metric ong to define a new metric onQ by using the same horizonta
and vertical decomposition given by the mechanical connection of the original~kinetic energy!
metric. On the horizontal space we use the given inner product while on the vertical space, w
the inner product of two vertical vectors, sayjQ(q) andhQ(q) to be^j,h& +. Finally, in the new
metric we declare the horizontal and vertical spaces to be orthogonal. These properties de
new metric, which we shall call thevertical Killing metric. This metric has been used by a varie
of authors, such as Montgomery@1990, 1991#.120,121Related-modifications of the kinetic energ
metric are used by Bloch, Leonard, and Marsden@1998,1999#18,19,63,65for the stabilization of
relative equilibria of mechanical control systems and we shall denote it^^•,•&& +.

The metric^^•,•&& + is easily checked to beG-invariant, so we can repeat the previous co
structions for it. In particular, since the horizontal spaces are unchanged, the mechanical c
tion on the bundleQ→Q/G is identical to what it was before. However, for our purposes, we
more interested in the connection on the bundleQ→Q/Gm ; here the connections need not be t
same.
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The mechanical connection in terms of the vertical Killing metric. We now compute the
momentum mapJ+ and the locked inertia tensorI+ for the metric^^•,•&& + associated with the
G-action onQ. Notice that by construction, the mechanical connection associated with this m
is identical to that for the kinetic energy metric.

First of all, the locked inertia tensorI+(q):g→g* is given by

^I+~q!j,h&5^^jQ~q!,hQ~q!&& +5^j,h& +.

In other words, the locked inertia tensor for the vertical Killing metric is simply the map as
ated with the Killing metric on the Lie algebra.

Next, we compute the momentum mapJ+ :TQ→g* associated with the vertical Killing met
ric. For hPgm , we have, by definition,

^J+~vq!,h&5^^vq ,hQ~q!&& +5^^Hor~vq!1Ver~vq!,hQ~q!&& +5^A~vq!,h& +,

whereA is the mechanical connection for theG-action.
Notice that these quantities are related by

A~vq!5I+~q!21J+~vq!. ~IV.10!

It is interesting to compare this with the similar formula~I.1! for A using the kinetic energy
metric.
The Gm-connection in the vertical Killing metric . We now compute the momentum mapJ

+

Gm,

the locked inertia tensorI
+

Gm, and the mechanical connectionA
+

Gm for the metric^^•,•&& + and the
Gm-action onQ.

First of all, the locked inertia tensorI
+

Gm(q):gm→gm* is given by

^I+

Gm~q!j,h&5^^jQ~q!,hQ~q!&& +5^j,h& +.

Next, we computeJ
+

Gm:TQ→gm* ; for hPgm , we have

^J+

Gm~vq!,h&5^^vq ,hQ~q!&& +5^^Hor~vq!1Ver~vq!,hQ~q!&& +5^A~vq!,h& +5^prm A~vq!,h& +,

whereA is the mechanical connection for theG-action ~for either the original or the modified
metric! and where prm :g→gm is the orthogonal projection with respect to the metric^^•,•&& + onto
gm .

As before, these quantities are related byA
+

Gm(vq)5I
+

Gm(q)21J
+

Gm(vq), and so from the

preceding two relations, it follows thatA
+

Gm(vq)5prm A(vq).
The connection on the bundlerm . We just computed the mechanical connection on the bun
pQ,Gm

:Q→Q/Gm associated with the vertical Killing metric. There is a similar formula for t
associated with the kinetic energy metric. In particular, it follows that in general,these two
connections are different. This difference is important in the next section on geometric phas

Despite this difference, it is interesting to note that each of them inducesthe same Ehresman
connectionon the bundlerm :Q/Gm→Q/G. Thus, in splitting the Lagrange–Routh equations in
horizontal and vertical parts, there is no difference between using the kinetic energy metric a
vertical Killing metric.

E. Fourth reconstruction equation

There is yet a fourth reconstruction equation that is based on a different connection. Th
connection will be that associated with the vertical Killing metric.

As before, we first choose any curveq̄(t)PQ that projects toy(t). For example, in a loca
trivialization, it could be the curvet°(y(t),e) or it could be the horizontal lift ofy(t) relative to
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the connectionA
+

Gm. Now we writeq(t)5g(t)•q̄(t), whereg(t)PGm . Again, we use the fol-
lowing formula for the derivatives of curves:

q̇~ t !5~Adg~ t ! j~ t !!Q~q~ t !!1g~ t !•qG ~ t !, ~IV.11!

wherej(t)5g(t)21
•ġ(t)Pgm .

Now we assume thatq̇(t)PJL
21(m) and apply the connectionA

+

Gm to both sides. The left-
hand side of~IV.11! then becomes

A
+

Gm~ q̇~ t !!5prm A~ q̇~ t !!5prm I~q~ t !!21JL~ q̇~ t !!5prm I~q~ t !!21m.

The right-hand side of~IV.11! becomes Adg(t) j(t)1Adg(t) A
+

Gm(qG (t)). Thus, we have proved
that

prm I~q~ t !!21m5Adg~ t !~j~ t !1A
+

Gm~qG ~ t !!!.

Solving this equation forj(t) and using the fact that Adg(t) is orthogonal in the Killing inner
product ong gives

j~ t !5Adg~ t !21@prm I~q~ t !!21m#2A
+

Gm~qG ~ t !!5prm@Adg~ t !21 I~q~ t !!21m#2A
+

Gm~qG ~ t !!.

Using equivariance ofI leads to thefourth reconstruction equation for q(t)5g(t)•q̄(t)
PJL

21(m) given y(t)PQ/Gm :

g~ t !21ġ~ t !5prm@I~ q̄~ t !!21m#2A
+

Gm~qG ~ t !!, ~IV.12!

where, recall,q̄(t) is any curve inQ such that@ q̄(t)#Gm
5y(t).

WhenGm is Abelian, we have, as with the other reconstruction equations,

g~ t !5g~0!expF E
0

t

~prm@I~ q̄~s!!21m#2A
+

Gm~qG ~s!!!dsG . ~IV.13!

F. Geometric phases

Once one has formulas for the reconstruction equation, one gets formulas for geo
phases as special cases. Recall that geometric phases are important in a wide variety of phe
such as control and locomotion generation~see Marsden and Ostrowski@1998#93 and Marsden
@1999#104 for accounts and further literature!.

The way one proceeds in each case is similar. We consider aclosed curve y(t) in Q/Gm ,
with, say, 0<t<T, and lift it to a curveq(t) according to one of the reconstruction equations
the preceding sections. Then we can write the final pointq(T) asq(T)5gtotq(0), which defines
the total phase, gtot . The group elementgtot will be in G or in Gm according to which reconstruc
tion formula is used.

For example, suppose that one uses Eq.~IV.12! with q̄(t) chosen to be the horizontal lift o
y(t) with respect to the connectionA

+

Gm with initial conditionsq0 covering y(0). Then q̄(T)
5ggeoq0 , whereggeo is the holonomy of the base curvey(t). This group element is called th
geometric phase. Then we getq(T)5gdynggeoq(0) wheregdyn5g(T), andg(t) is the solution of
g(t)21ġ(t)5I(q̄(t))21m in the groupGm with g(0) the identity. The group elementgdyn is often
called thedynamic phase. Thus, we havegtot5gdynggeo. Of course in caseGm is Abelian, this
group multiplication is given by addition and the dynamic phase is given by the explicit inte

gdyn5E
0

T

prm@I~ q̄~s!!21m#ds.
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Example: The rigid body. In the case of the rigid body, the holonomy is simply given by
symplectic area on the coadjoint orbitS2 since the curvature, as we have seen, is, in this case
symplectic form and since the holonomy is given by the integral of the curvature over a su
bounding the given curve~see, e.g., Kobayashi and Nomizu@1963#75 or Marsden, Montgomery
and Ratiu@1990#92 for this classical formula for holonomy!.

We now compute the dynamic phase. Write the horizontal lift asĀ so that we have, as before
A(t)P(t)5p, Ā(t)P(t)5p andA(t)5Ra,p(t)Ā(t).

Now I(Ā(t))5Ā(t)I Ā(t)21. Therefore,

I~Ā~ t !!21p5Ā~ t !I 21Ā21~ t !p5Ā~ t !I 21P~ t !5Ā~ t !V~ t !.

But then

prm@I~ q̄~s!!21m#5prp@I~Ā~s!!21p#5I~Ā~s!!21p•

p

ipi

5Ā~s!V~s!•
p

ipi 5V•

Ā~s!21p

ipi 5
V•P

ipi 5
2E

ipi ,

whereE is the energy of the trajectory. Thus, the dynamic phase is given by

gdyn5
2ET

ipi ,

which is the rigid body phase formula of Montgomery@1991b#122 and Marsden, Montgomery, an
Ratiu @1990#.92

V. FUTURE DIRECTIONS AND OPEN QUESTIONS

The Hamiltonian bundle picture. As we have described earlier, on the Lagrangian side,
choose a connection on the bundlepQ,G :Q→Q/G and realizeTQ/G as the Whitney sum bundle
T(Q/G) % g̃ over Q/G. Correspondingly, on the Hamiltonian side we realizeT* Q/G as the
Whitney sum bundleT* (Q/G) % g̃* over Q/G. The reduced Poisson structure on this space
we have mentioned already, has been investigated by Montgomery, Marsden, and Ratiu@1984#,115

Montgomery@1986#,118 Cendra, Marsden, and Ratiu@2000a#,28 and Zaalani@1999#.160 See also
Guillemin, Lerman, and Sternberg@1996#,41 and references therein.

The results of the present paper on Routh reduction show that on the Lagrangian sid
reduced spaceJL

21(m)/Gm is T(Q/G)3Q/GQ/Gm . This is consistent~by taking the dual of our
isomorphism of bundles! with the fact that the symplectic leaves of (T* Q)/G can be identified
with T* (Q/G)3Q/GQ/Gm . The symplectic structure on these leaves has been investigate
Marsden and Perlmutter@1999#95 and Zaalani@1999#.160 It would be interesting to see if the
techniques of the present paper shed any further light on these constructions.

In the way we have set things up, weconjecturethat the symplectic structure onT* (Q/G)
3Q/GQ/Gm is the canonical cotangent symplectic form onT* (Q/G) plusbm ~that is, the canoni-
cal cotangent symplectic form plus CurvA

(x,m) , the (x,m)-component of the curvature of the me
chanical connection,xPQ/G, pulled up fromQ/G to T* (Q/G)) plus the coadjoint orbit sym-
plectic form on the fibers.

It would also be of interest to see to what extent one can derive the symplectic~and Poisson!
structures directly from the variational principle as boundary terms, as in Marsden, Patrick
Shkoller @1998#.94

Singular reduction and bifurcation . We mentioned the importance of singular reduction in S
I. However, almost all of the theory of singular reduction is confined to the general sym
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tic category, with little attention paid to the tangent and cotangent bundle structure. How
explicit examples, as simple as the spherical pendulum~see Lerman, Montgomery, and Sjama
@1993#!85 show that this cotangent bundle structure together with a ‘‘stitching construction
important.

As was mentioned already in Marsden and Scheurle@1993#107 in connection with the double
spherical pendulum, it would be interesting to develop the general theory ofsingular Lagrangian
reductionusing, amongst other tools, the techniques of blow up. In addition, this should be d
a similar effort for the general theory of symplectic reduction of cotangent bundles. We be
that the general bundle structures in this paper will be useful for this endeavor. The links
bifurcation with symmetry are very interesting; see Golubitsky and Schaeffer@1985#,37 Golubitsky
et al. @1995#,36 Golubitsky and Stewart@1987#,38 and Ortega and Ratiu@1997#,127 for instance.
Groupoids. There is an approach to Lagrangian reduction using groupoids and algebroids
Weinstein @1996#157 ~see also Martinez@1999#106!. It would of course be of interest to mak
additional links between these approaches and the present ones.
Quantum systems. The bundle picture in mechanics is clearly important in understanding q
tum mechanical systems, and the quantum-classical relationship. For example, the mec
connection has already proved useful in understanding the relation between vibratory an
tional modes of molecules. This effort really started with Guichardet@1984#40 and Iwai@1987c#.61

See also Iwai@1982, 1985, 1987a#.57–60 Littlejohn and Reinch@1997#89 ~and other recent refer
ences as well! have carried on this work in a very interesting way. Landsman@1995, 1998#81,82

also uses reduction theory in an interesting way.
Multisymplectic geometry and variational integrators. There have been significant develo
ments inmultisymplectic geometrythat have led to interesting integration algorithms, as in Ma
den, Patrick, and Shkoller@1998#94 and Marsden and Shkoller@1999#.109 There is also all the work
on reduction for discrete mechanicswhich also takes a variational view, following Veselo
@1988#.124,152 These variational integrators have been important in numerical integration of
chanical systems, as in Kaneet al. @2000#,67 Wendlandt and Marsden@1997#,158 and references
therein. Discrete analogs of reduction theory have begun in Ge and Marsden@1988#,35 Marsden,
Pekarsky, and Shkoller@1999#,96 and Bobenko and Suris@1998#.21 We expect that one can gen
eralize this theory from the Euler–Poincare´ and semidirect product context to the context
general configuration spaces using the ideas of Lagrange–Routh reduction in the present
Geometric phases. In this paper we have begun the development of the theory of geom
phases in the Lagrangian context building on work of Montgomery@1985, 1988, 1993#117,119,123

and Marsden, Montgomery, and Ratiu@1990#.92 In fact, the Lagrangian setting also provides
natural setting for averaging which is one of the basic ingredients in geometric phases. We
that our approach will be useful in a variety of problems involving control and locomotion.
Nonholonomic mechanics. Lagrangian reduction has had a significant impact on the theor
nonholonomic systems, as in Blochet al. @1996#16 and Koon and Marsden@1997a,b,c, 1998#.71–74

The almost symplectic analog was given in Bates and Sniatycki@1993#.14 These references als
develop Lagrangian reduction methods in the context of nonholonomic mechanics with sym
~such as systems with rolling constraints!. These methods have also been quite useful in m
control problems and in robotics; see, e.g., Bloch and Crouch@1999#.15 One of the main ingredi-
ents in these applications is the fact that one no longer gets conservation laws, but rath
replaces the momentum map constraint with a momentum equation. It would be of consid
interest to extend the reduction ideas of the present paper to that context. A Lagr
d’Alembert–Poincare´ reduction theory, the nonholonomic version of Lagrange–Poincare´ reduc-
tion, is considered in Cendra, Marsden, and Ratiu@2000b#.29

Stability and block diagonalization. Further connections and development of stability and bif
cation theory on the Lagrangian side~also in the singular case! would also be of interest. Already
a start on this program is done by Lewis@1992#.87 Especially interesting would be to reformula
Lagrangian block diagonalization in the current framework. Weconjecture that the structure of
the Lagrange–Routh equations given in the present paper is in a form for which block diag
ization is automatically and naturally achieved.
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Fluid theories. The techniques of Lagrangian reduction have been very useful in the stu
interesting fluid theories, as in Holm, Marsden, and Ratiu@1986, 1998, 1999#52,54,55and plasma
theories, as in Cendraet al. @1998#,24 including interesting analytical tools~as in Cantor@1975#23

and Nirenberg and Walker@1973#!.126 Amongst these, the averaged Euler equations are espec
interesting; see Marsden, Ratiu, and Shkoller@1999#.99

Routh by stages. In the text we discussed the current state of affairs in the theory of reductio
stages, both Lagrangian and Hamiltonian. The Lagrangian counterpart of symplectic reduc
of course what we have developed here, namely Lagrange–Routh reduction. Naturally th
development of this theory for reduction by stages for group extensions would be very intere
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Some aspects of the classical three-body problem
that are close or foreign to physical intuition
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We propose a simple oscillator model for the reduced three-body problem to un-
derstand the stability of orbits with small eccentricity of a light planet. It models the
main short-time features for small mass ratios of the other bodies. These results are
confronted with the exact mathematical analysis for stability for all times, and with
computer simulation results for bigger mass ratios, where chaotic features emerge.
© 2000 American Institute of Physics.@S0022-2488~00!00806-9#

I. INTRODUCTION

The three-body problem is very old~see Ref. 1 for a historical review which starts even w
the Babylonians! and an immense literature has accumulated over the centuries.2 How can one
think that one can make a new contribution to it? It is not that we possess new observationa
but that the computer puts us in a better position than previous generations. Any idea which
have taken years to verify or falsify with a slide rule can now be settled within seconds. Fu
more, unlike astronomers, we can change the mass ratios at will to understand the various
nisms and to see when and why things become chaotic. Of course, a general solution is imp
and would also be too complicated to be of any use. So we concentrate on some limit
relevant questions mainly on the restricted three-body problem,3 where one body is so light that i
does not influence the~circular! motion of the other two. The answers to these questions req
different tools and we shall formulate them such that they make use of physical intuition, rig
analysis, and computational methods.

Question 1:Even if the second body is much lighter than the heaviest one, its influence o
third is much less than a naive estimate would tell us. For instance,M Jupiter/M (;1/1000, but
without the Sun it would take Mars at rest only about 200 years to fall freely into Jupiter. B
near-Kepler orbit is stable for a much longer time, merely its eccentricity is about six times th
the Earth. What exactly is the mechanism that stabilizes the orbit?

Answer 1:The radial motion of nearly circular orbits is like a harmonic oscillator, and
influence of Jupiter is like periodic kicks~better pulls!. From the kicked oscillator one knows tha
the amplitude of the induced oscillations gets damped again if one is not at a resonance,
kicks get out of phase. We shall underpin this by an elementary calculation and illustrate
computer simulations in the following. If resonance conditions apply, the amplitude incre
linearly with time, but then one gets into the nonlinear domain and out of phase with the k
Whether this comes in time to quench the oscillations or whether the situation is already
hand depends on the strength of the kicks, i.e.,MJ .

Question 2:In general, for which initial conditions can one guarantee stabilityad aeterni-
tatem?

a!Electronic mail: posch@ls.exp.univie.ac.at
b!Electronic mail: fwagner@ap.univie.ac.at
34300022-2488/2000/41(6)/3430/18/$17.00 © 2000 American Institute of Physics
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Answer 2:Since the orbits can become so complex, this question cannot be settled by
models and computers cannot calculate tot5`. So this is the domain of mathematical proo
Generally there are plenty of even periodic orbits, but the question is whether the stable
apart from that determined by the Jacobi constant—have finite measure or are even open
sweeping proof one has to be prepared for the worst situation, and any rational frequency
a possible resonance. Though one can show that for small perturbations there are regions
measure~not open! which are stable, one had to cut out~perhaps unnecessarily! so many pieces in
phase space that for the system sun1Jupiter1small planet one is still far away from a proof o
stability of sets of finite measure for a mass ratioMJ /M (;1023.

Question 3:One has learned at school that if there is no other constant of the motion tha
Hamiltonian, the system becomes ergodic. Computer studies show that for confining pot
uxi2xj un, n.0, the orbits for several particles seem ergodic on the energy–angular mome
shell.4 Is this still true here?

Answer 3:According to Answer 2, for small perturbations this is not the case. But only
computer can give a hint as to how strong the perturbation has to be for ergodicity. Answ~1!
gives a clue for the mechanism of instability. If the kicks are too strong so that the planet wil
over and come near the Sun or Jupiter before the quenching becomes effective, it will be
pletely thrown out of its orbit and there is no stabilizing mechanism any more. A simple est
shows that this happens forMJ /M (.1/100, and then the computer shows that there are la
chaotic regions but they contain islands of regularity. They shrink with increasingMJ /M ( and
look rather weird, not like a submanifold given by another constant of motionK(x,y,px ,py)
5const. Sometimes they are connected by a small bottleneck with other parts of the energ
and the orbit fails to find the hole in a reasonable time.

The impression one gets from these considerations is that our solar system must b
cleverly constructed to be stable over such a long time.5,6 Extensive computer-aided calculation7

show that the Liapunov time in the planetary system is of the order of 107 years, much shorter tha
its age, destroying the hope of a general stability proof for 43109 yr. Jupiter is not too heavy bu
far enough from the Sun to carry most of the angular momentum. This stabilizes its pla
motion, otherwise the inclination of the orbits would be random. Furthermore, all planetary
are nearly circular, and the two groups of outer and inner planets are fairly evenly sp
Presumably, in the early solar system there were many more planets, but their orbits d
comply with the above stability specifications, so they collided, fell into the Sun or were th
out of the solar system. In the newly discovered planetary systems,8,9 where the heaviest plane
has about 1/10 of the mass of the central star the orbits of the other unseen planets mus
chaotic that they cannot provide a sufficiently well-tempered climate for life to exist.

II. INTUITIVE ARGUMENT

We consider here the situation where the two heavy bodies~‘‘Sun and Jupiter’’! make a
circular orbit, and the third~the ‘‘planet’’! has a negligible mass~restricted three-body problem!.
Furthermore, all move in the same plane. For the planet’s motion the configuration space
dimensional, the phase space is four dimensional, and there is one constant of the moti
Hamiltonian in the rotating system~equivalent to the ‘‘Jacobi constant’’!. In those parts of phase
space where the planet cannot escape, no other constant is known and we have the
situation of a nonintegrable system. We shall start with an almost circular orbit of the p
because in our solar system most eccentricities are small and these orbits are apparently t
stable ones. Without Jupiter the effective radial potential is

Veff~r !52
1

r
1

L2

2r 2 ,

and the circular orbit is in the minimum of this potential. Throughout, we use reduced uni
which the sum of the massesM (1MJ of the primaries, the Sun-Jupiter distance, and the ang
velocity of Jupiter are unity.r is the distance of the light planet from the Sun, andL is its angular
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momentum. The potential is depicted in Fig. 1. Now we shall naively guess what the effe
Jupiter might be on an orbit inside its circle. We are interested in mass ratiosMJ /M ( between
1021 and 1023, so Jupiter should not immediately throw the planet out of orbit. Since the forc
;MJux2xJu22 it should be most noticeable when the planet is on Jupiter’s side of the Sun
Jupiter pulls the planet outward of the minimum ofVeff . Of course, there will also be an azimuth
force, but this will be first accelerating and then decelerating, so we think it will largely ave
out and forget about it. About the forcef of Jupiter, we only assume that it is periodic with
periodt52p/(v21), wherev is the unperturbed angular velocity of the planet, that of Jup
being unity in our units.t is the time between successive conjunctions of Jupiter and the pl
Though the orbit of Jupiter is strictly periodic, the one of the planet is not, sof (t)5 f (t1t) is not
quite correct. But we think it is a good approximation. Thus, if we concentrate on the r
motion of the planet, the complex coordinatez5pr1 iv(r 2r 0), Veff8 (r0)50 obeys

ż~ t !5 ivz~ t !1 f ~ t !, Veff9 ~r 0!5
v2

2
~1!

near the minimumr 0 . In the solution

z~ t !5eivtz~0!1E
0

t

dt8 eiv~ t2t8! f ~ t8! ~2!

the two terms have spectra$v% and$v%ø(v21)Z, respectively. In particular,

E
0

t

dt8 f ~ t8!eiv~t2t8!5..eivtK

shows that for all times the change ofz during a periodt,

z~t!5eivt~z~0!1K !, ~3!

depends only onv5r 0
23/2 and the constantK. Since the detailed form off (t) does not enter, this

gives us confidence that~3! might be a good guess, and we iterate it to the symplectic map

z~nt!5einvtS z~0!1K
12e2 invt

12e2 ivt D , nPZ. ~4!

To get an idea of the planetary motion, we have in Fig. 2 replaced the effect of Jupiter by pe
kicks, f (t)5K Sn d(t2nt), where, in a generous mood, we have computedK as half of the total
accumulated force of a planet passing Jupiter on a straight line with the correct minimal dis
12r 0 and relative velocityv51/Ar 021,

FIG. 1. Effective potentialVeff for the 2:1 resonance,r 05222/3. The dashed curve is the harmonic approximation for
kicked-oscillator model.
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K5
MJ

2 E
2`

` dt~12r 0!

@~12r 0!21~vt !2#3/25MJ

Ar 0

~12r 0!~12Ar 0!
. ~5!

We do not insist on this hair-raisingly crude approximation, but to our surprise it worked r
well as will be shown in the following.

What we learn from~4! is that the periodic pull of Jupiter excites radial oscillations of t
planet, but unless there is a resonance,vt52pg, gPZ, for which the denominator in~4! van-
ishes, these oscillations eventually get out of phase with the period of the pull. Thus, after
time there will be a ‘‘thrust reversal,’’ and the oscillations will be damped again until one co
close to the original configuration. More in detail, the influence of Jupiter will be most notice
near a resonancevt52pg1e, gPZ, e!1. For n!1/e, the relevant factor (12e2 invt)/(1
2e2 ivt) becomes aboutn2 i en2/2, whereas, forn;1/e, bothpr andr 2r 0 become of orderK/e.
For ne nearp we get thrust reversal, and forne near 2p pr andr 2r 0 go back to the order ofK.
SinceK is of the orderMJ /M (;1023, only a small region nearvPZ is dangerous. However
evenvt52pg might not be catastrophic because the resonances have a built-in self-quen
mechanism. If we start, say, withv5r 0

23/252, t52p, thenr max5r0 max2pn,t,2p(n11) Im z(t) will
determine the frequency after some time. The harmonic approximation toVeff will break down and

FIG. 2. Radial planetary motion, perturbed by Jupiter, for various unperturbed circular-orbit radiir 0 . The mass ratio
MJ /M :50.001/0.999.r (t) denotes the separation from the Sun. The smooth lines are the ‘‘exact’’ computer-simu
results, and the dashed lines are for the kicked-oscillator model described in the text. From top to bottom:r 050.55, 0.60,
0.62, and 1/22/350.629 96.
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v becomesr max
23/2Þ2. Hence, we will get thrust reversal and whether this comes in time be

r max;r01nK is close to one depends on the strength ofK. To follow this analytically by improv-
ing our crude model is very tedious and at this stage it is better to consult the computer to se
is going to happen.

For our numerical work in this section the equations of motion are derived from the Ha
tonian in the~synodic! center-of-mass frame rotating with Jupiter,

H5
1

2
~px

21py
2!2xpy1ypx2

M (

@~x2MJ!
21y2#1/22

MJ

@~x1M (!21y2#1/2, ~6!

where the Sun and Jupiter are located at (MJ,0) and (2M (,0), respectively, and whereM (

1MJ51. They are integrated with a variable-step-size Runge–Kutta algorithm of fourth o
keeping the energy constant to ten significant digits for 30 000 Jupiter periods. Since i
section only slightly perturbed circular orbits are considered, no regularization of the equatio
motion is required.3 In all cases, the planet is initially located on thex axis atx(0)5r 02MJ , with
a velocity in they direction corresponding to the respective unperturbed circular orbit (MJ50)
with radiusr 0 .

In Fig. 2 we compare the ‘‘exact’’ simulation results~smooth lines! with the predictions of the
kicked-oscillator model~dashed lines! for a perturbed orbit near and at the 2:1 resonance.
mass ratioMJ /M (50.001/0.999. As before,r (t) denotes the radial distance from the Sun. T
unperturbed radiusr 0 corresponds, from top to bottom, to 0.55, 0.60, 0.62, and 222/350.629 96,
and is indicated by the labels. According to this model,r (t) oscillates between the kicks occurrin

FIG. 3. Radial planetary motion, perturbed by Jupiter, for various mass ratiosMJ /M ( as indicated by the labels. Th
unperturbed radiusr 050.60. The smooth lines are the ‘‘exact’’ computer-simulation results, and the dashed lines a
the kicked-oscillator model described in the text.
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at the timesnt, n50,1,2,..., with the unperturbed angular velocityv and with an amplitude
determined from~4!. It is surprising that away from the major 2:1 resonance, which occur
r 05222/3, this simple model gives a rather good description of the eccentricity of the orbit.
unexpectedly, the model breaks down at the resonance, for which it predicts an undisturbed
increase of the amplitude with time, whereas the exact oscillations are damped by self-que
as mentioned earlier. From the different scales in Fig. 2 we infer that the oscillations are muc
pronounced when one moves away from the resonance.

For a givenr 0 close to the resonance, the oscillation amplitudes are proportional toMJ /M ( .
This is demonstrated in Fig. 3 forr 050.60, whereMJ /M ( is varied between 1/999 and 5/99
For smaller mass ratios<2/998 the kicked oscillator model provides a reasonable descriptio
the ‘‘exact’’ simulation results. It fails forMJ /M (55/995 due to the dephasing induced by t
frequency changes in the nonlinear regime of the effective potential.

To study this phase mismatch between the orbit and the periodic pull in more detail, we
in Fig. 4 the radial oscillations at the 2:1 resonance,r 05222/3. The perturbed amplitude starts t
grow linearly with time, until it reaches the nonlinear regime of the effective radial pote
depicted in Fig. 1, and the trajectory gets out of phase with Jupiter. As a consequence, the

FIG. 4. Radial oscillations of the perturbed planetary orbit for the 2:1 resonance with Jupiter. The mass ratioMJ /M (

50.001/0.999.r is the distance from the Sun.

FIG. 5. Time differenceD between successive maxima for the perturbed orbit shown in Fig. 4, plotted at timest at the end
of each interval. The unperturbed planetary period isp.
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displacement is quenched again and the whole process repeated. This phase mismatch
apparent also in Fig. 5, where the time intervalsD between successive maxima ofr (t) in Fig. 4 are
plotted at the end of each interval.D differs significantly fromp, which is the unperturbed perio
of the planet in this case, equal to half the period of Jupiter. For most of the time,D,p, and the
phase shift accumulates until the force exerted by Jupiter damps the motion again. We also
from Fig. 4 that the radial oscillations of thisv52/1 resonance are not symmetrical aroundr 0 .
The largest amplitudes occur forr ,r 0 , for which the effective potentialVeff increases more
steeply than forr .r 0 . This subtlety cannot be captured by the kicked-oscillator model
severely limits our intuition. A closer look at the exact computer-generated trajectories revea
the largest amplitudes forr (t) mainly occur in a direction not aligned with Jupiter in our cor
tating frame.

For comparison we show in Fig. 6 also the next fractional resonance for whichv53/2, r 0

5v22/3.0.7631, andt54p. Now the planet is closer to Jupiter, andK is bigger. The nonlinear
regime is reached sooner, and the quenching time is shorter than before. In spite of the
complicated structure ofr (t), the orbit appears to be quasiperiodic with a smooth and ring-sh
Poincare´ map.

Unlessvt52pg, the maximum amplitude in~4! is bounded for alln. Interesting phenomena
appear for fractional resonances such as thev52/5 resonance of Jupiter–Saturn~see Fig. 7!.
There, the first conjunction occurs when Saturn is at the anglef1 , f1 /(f112p)52/5⇒f1

54p/3, and the next atf258p/3. Forf3512p/3;0 we are back again. Thus,vt54p/3, the
force f is periodic with period 3t, and the amplitude is periodic inn with period 3.

FIG. 6. Radial oscillations of the perturbed planetary orbit for a fractional resonance,v53/2, with Jupiter. The mass ratio
MJ /M (50.001/0.999, and the unperturbed radiusr 05(3/2)22/3.0.7631. The smooth lines are the ‘‘exact’’ simulatio
results, and the dashed lines are for the kicked-oscillator model.

FIG. 7. Radial oscillations of the perturbed planetary orbit for a fractional 2:5 resonance with Jupiter. The mas
MJ /M (50.001/0.999, and the unperturbed radiusr 05(2/5)22/3.1.8420.
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Also fractional resonances like the Saturn–Jupiter 2:5 resonance depicted in Fig. 7 a
contained in~4!. As the figure shows, however, the radial oscillations are small and sho
interesting double periodicity. This orbit is not bound by the Jacobi constant~see Fig. 13! to a
finite region in configuration space. Nevertheless it is stable for a long time due to the action
Coriolis forces in the rotating frame.

III. RIGOROUS MATHEMATICS

One of the dogmas of classical statistical mechanics is that even if a system is not in
librium, since in addition toH there are some other constants of the motion a little speck of
~‘‘Staubkörnchen’’! will break them and render the system ergodic. Many great scientists trie
prove that, or even thought that they could prove it, but finally light was shed on this questi
Kolmogorov, Arnold and Moser~KAM theorem!.10 What they proved was not that some consta
persist for small perturbations but that in regions of phase space with a finite measure th
stays on a submanifold homeomorphic to a torus. Thus, for small perturbations the system
not become ergodic. The proof proceeds as follows. If we have an integrable system with
variablesI j and an unperturbed HamiltonianH1(I j ) and addlH18(I j ,w i), w j the angular vari-
ables, andl the perturbation parameter, then by a canonical transformationI ,w→ Ī ,w̄ we try to
castH5H11lH18 into the formH2( Ī j )1l2H28( Ī j ,w̄ j ). If successful, we iterate the procedure
get H5H31l4H38 and keep on to finally reach, for smalll, H5H`(I (`)) for which the orbit
remains on an invariant torus. Thus we are faced with three problems:

~a! Do we succeed in the first step, and if not, why not?
~b! Under which conditions do we keep succeeding?
~c! Does the procedure converge to anH`?

~a! Standard perturbation theory proceeds as follows: For the transformation (I ,w)→( Ī ,w̄) we
use a generatorS( Ī ,w): I j5 Ī j1l]S/]w j , w̄ j5w j1l]S/] Ī j such that for some value ofI, say
I j50, the system remains integrable up toO(l2). With

v j5
]H1

]I J
U

I 50

, H18~ I ,w!5 (
kPZm

H̃k~ I !ei ~k•w!,

we set

v j

]S

]w j
1H8~ Ī ,w!5H̃k50~ Ī !. ~7!

Then

H5H0~ Ī !1lH̃k50~ Ī !1l2H28~ Ī ,w̄,l! ~8!

with H28( Ī ,w̄,0),` if everything is sufficiently differentiable. Equation~7! is solved in Fourier
space by

S~ Ī ,w!52 (
kÞ0

ei ~k•v!

i ~v•k!
H̃k~ I !, ~9!

and we fail if
(a1) (v•k)50 for some 0ÞkPZm, or
(a2) (kÞ0 diverges.

(a1) means that thev j are not linearly independent,'0ÞkPZm, v1k11v2k21¯1vmkm

50 and we have the resonance situations considered in Sec. II. Although a term in~9! becomes
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infinite in this case, this does not mean that in the orbit something becomes infinite. It only m
that it cannot be described by~8!. To see this more explicitly consider a simplified ‘‘Jupiter
Saturn’’ resonance

H52I 115I 21l sin~5w122w2!: ~10!

ẇ152, ẇ255, İ 155l cos~5w122w2!52
5

2
İ 2

w1~ t !5w1~0!12t, w2~ t !5w2~0!15t,

I 1~ t !5I 1~0!15ltc, I 2~ t !5I 2~0!22ltc, c5cos~5w1~0!22w2~0!!.

Thus, nothing drastic happens except that the action variables increase linearly in time.
ematically, this is harmless, since the group structure of the time evolution tells us that the
case is exponential growth. In reality this would be catastrophic if it were to go on forever, b
have seen in Sec. II that the linear increase of the amplitude of oscillation is quench
nonlinear effects, which break the resonance. Nevertheless, in our strategy we have to be p
for the worst and stay away from points in phase space where the frequencies are rat
related. In fact, in our restricted three-body problem we seem to be in trouble right at the b
ning because in the two-body Kepler problem the angular and radial frequencies (vw ,v r) are not
only rationally related on some points but equal in all of phase space whereH,0. This difficulty
is spurious since we have to go into the frame rotating with Jupiter and there~Ref. 11, 4.4.12! the
Hamiltonian becomes (MJ5m, M (51, xW J5(1,0))

H15
1

2 S pr
21

pw
2

r 2 D 2pw2
1

r

andvw5v r21. ~Jupiter is now fixed and for circular orbitsv r5r 0
3/2, so for r 051 we havevw

50.) However, the perturbationH185m(r 222r cosw11)21/2 is not a polynomial in the exponen
tials of the angle variables sincer is rather complicated when expressed by action-angle varia
~Ref. 13, 5.3.15,2!. Thus allH̃k1 ,k2

(I ) will be different from zero and to avoidv rk11vwk250 we

have to delete all rationalvw /v r512r 0
23/2. Since this set is dense in phase space,H5H`(I k)

cannot hold in an open set and we still seem to be in trouble. One might hold some hope b
this set has no interior points and is of measure zero. This hope is destroyed by:

(a2) For the series~9! to converge we need not only (v•k)Þ0 but it has to stay sufficiently
far away from zero. However, since the rationals are dense inR we can approximatev r /vw

closely by k2 /k1 if the k8s are sufficiently big. So the situation can be saved only if theH̃k

decrease sufficiently with increasingk. It is known that ifH8 is r-times differentiableH̃ decreases
with a powerr, and if H̃ is analytic it decreases exponentially. Away fromr 51, w50 we have the
latter situation, soH̃k can beat any power. Thus, if

uH̃ku,ce2ukur, uku5(
j 51

m

ukj u,

in the regions of phase space where for somen we have

~v•k!>
«

ukun
;0ÞkPZm, ~11!

there is no problem with the convergence in~9! since
                                                                                                                



orhood
make

hat the
r for
tion

e
y,

eck

he
oving

that the

ation
eds is
the

nt

3439J. Math. Phys., Vol. 41, No. 6, June 2000 The classical three-body problem

                    
(
k

ukune2ruku1 i ~w•k!,`.

We even have analyticity foruIm wju,r. But are therev’s which satisfy~11!? The good setG is
in our planar case

G5 H ~v r ,vw!:;kÞ0Uvw

v r
2

k1

k2
U> «/v r

uk2uuk11k2unJ , ~12!

so its complement does not only contain all the rationals. It even contains an open neighb
of each of them. To some extent this agrees with our previous experience where it did not
much difference whether one is exactly on the resonance or just close, but now we learn t
bad setGc is not only dense but also open. It is surprising that there is still something left ove
G, and people with a brilliant physics intuition thought that it is not. Yet simple considera
shows that the measure ofGc goes withe to zero. We may consider in our case 0<vw /v r<1, so
k1 and k2 have the same sign~say positive! and k1,k211. Now we just add the length of th
dangerous intervals aroundvw /v r given by~12!. Since they might overlap we get an inequalit
which, however, goes in the right direction,

mS vw

v r
PD D<2 (

k211.k1.0
k2.0

«/v r

k2
11n <

2«

v r
(

k2.0

k211

k2
11n ,

2«

v r
S 1

n21
1

1

nD . ~13!

Thus forn sufficiently big and for small«, there is a lot left over forG where first-order pertur-
bation theory works.

~b! The iteration. If we includelH̃k50 into H1 then the Hamiltonian regains its original form
except thatl is replaced byl2. Before starting the same procedure again we have to ch
whether the resonance condition holds. In fact, the new term will addl(]/]I )Hk50 to the fre-
quencies and may break a resonance inH1 , the effect we encountered in Sec. II. However, by t
same token it may also throw us into a resonance and we have to be able to avoid that by m
a little with the action variables. This would not help in the simple example~10! where the
frequencies are fixed. One needs at least some quadratic terms in the action variables such
Hessian

CªdetS ]

]I j

]

]I j
H1DÞ0.

If H1 is quadratic in theI j one can manage this with some effort,11 for the general case we
recommend Ref. 12, or for more courageous people the original paper by Arnold.13

~c! The convergence. In the terminology of physicists we have carried out a renormaliz
group transformation, and now we have to prove that it leads to a fixed point. What one ne
that for some normi i at each stepiHn8i gets smaller than the square of the previous one, since
recursive relation

iHn8i<iHn218 i2gdn

implies

iHn8i<
~gd3iH18i !2n21

gdn12 . ~14!

Thus, if gd3iH18i,1 for n→`iHn8i converges to zero, we have reached our goal. The constag
contains among other things the perturbation parameterl, and by making it sufficiently small we
can always satisfy this inequality. The estimate ofd is very cumbersome and contains alsoiC21i
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and, alas, the price for stability from now to eternity is high. An estimate by He´non 14 limits l to
be,10250. Celletti and Chierchia15 have truncated(kH̃ke

i (v•k) and got the limit down to 1026,
but what one would need isMJ /M (;1023. This truncation is not mathematically rigorous b
physically reasonable since in our planetary system there are more important influences.
like in music where a consonant interval contains higher overtones which are strongly diss
but they are only faintly excited and do not bother us.

Since the question of stability to eternity does not seem to be amenable to a complete
standing, we turn to another feature of the problem which can be easily deduced and unde
It is the problem of energy gain by a test planet interacting with a rotating system. This
obvious importance as a fuel saving measure for space travel and leads, in the extreme
celebrated example of a planet gaining so much energy between two rotating binaries tha
push them to infinity within a finite time.16 The simple general rule is expressed by the followin

Theorem 1: Let a body with coordinatesX(t) rotate around the origin,uX(t)u5constant, and
interact with the test planet~coordinatesx! through a central potentialV(r ). Denote by the future
~respectively, past! half space the half space bounded by the plane perpendicular toẊ(t) and going
throughX(t) and the origin, into whichX(t) moves~respectively, which it leaves!. Then, ifV(r )
is attractive (V8.0), the test planet gains energy if it is located in the past half space, and
energy when it is in the future half space. For repulsiveV, it is the other way around.

Proof: For a potential depending explicitly on the timet, the change of the test-planet ener
E(t) in the fixed frame is simply given bydE/dt5]V/]t. In our case,V(r )5V(uX(t)2xu) and
]uX(t)2xu2/]t522(Ẋ(t)•x). Thus,

]V

]t
52

~Ẋ~ t !•x!

uX~ t !2xu
V8,

which, in the attractive case, is positive in the past half space, (Ẋ•x),0, and negative otherwise
For repulsive potentials,V8,0, it goes the other way.

Remarks:~1! To accumulate energy,x has to remain in the past half space for some time
has to followX(t). This gives some intuitive basis for the theorem since it means that the
planet gains energy as it is dragged along.~2! In our two-dimensional example with the Newto
potential V52m/r , and with X(t)5(cost,sint), we have with polar coordinates (r ,f) for
x:uX(t)2xu5(122r cos(f2t)1r2)1/2 and dE/dt5mr sin(t2f)(122r cos(t2f)1r2)21/2. If we
assume in a first approximation thatx follows a circular orbit (r ,vt) with v5r 23/2, the accumu-
lated energy gain betweent50 andt5p/(12v) becomes

mE
0

p/~12v!

dt
r sin~ t~12v!!

~122r cost~12v!1r 2!3/25
m

12v H 2/~r 221! for r .1

2r/~12r 2! for r ,1.

Sincev,1 for an outside orbit, andv.1 for an inside orbit, the former gains energy~the test
planet is dragged along! and the latter looses energy~it is pulled back!. Sincev5r 23/2, the planet
is ejected after one swing ifm(r 21)22;1.

~3! In our system actually both the Sun and Jupiter rotate around their center of gravity
there is a contribution to Theorem 1 also from the Sun with the opposite sign, since the Su
up when Jupiter moves down. Although the force of the Sun is;M ( , its velocity is;M (

21 and
the mass dependence cancels out. Only the distance matters. If the Sun and Jupiter are lo
~1/2, 0! and~21/2, 0!, respectively, then the quadrants II and IV in the corotating frame are en
increasing, the others energy decreasing.

We illustrate this behavior in Fig. 8 by a trajectory of a test particle in the synodic, corot
frame, for which Jupiter is located at~21/2, 0! and the Sun at~1/2, 0!. Initially, the particle is at
(x,y)5(2cos(a)10.5,sin(a)), a5p/18, with a synodic velocity (20.9 cos(a),0.9 sin(a)) pointing
away from the origin. In the absence of Jupiter, the particle is trapped by the Sun with a ne
fixed-frame energyE520.095, and follows the dashed trajectory in Fig. 8. For the same in
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conditions but with a mass ratioMJ /M (50.1/0.9, the test particle traces out the smooth line
the figure. As predicted by Theorem 1, betweenA andB in the past half space it is attracted b
MJ , and the fixed-frame energy increases from20.6465 to10.0668. As follows from Remark
~3!, the energyE starts to decrease slightly again between the pointsB andC in the first quadrant
as is shown in Fig. 9. For small mass ratios this second-order correction to Theorem 1 be
negligible. The final energy in our example remains positive, and the particle escapes to in
Since the trajectory is represented here in the corotating frame, this path to infinity appea
spiral. It is interesting to note that some comets actually perform such loops around Jupite

FIG. 8. Example of an unperturbed~dashed! and a perturbed trajectory~full line, mass ratioMJ /M (51/9) in a synodic,
corotating coordinate system for an initial position (2cos(a)10.5,sin(a)), a5p/18, and an initial synodic velocity
(20.9 cos(a),0.9 sin(a)). The position of the Sun at~1/2, 0! and of Jupiter at~21/2, 0! are indicated by dots. The
unperturbed trajectory is trapped by the Sun, the perturbed trajectory escapes to infinity. In this rotating frame a
trajectory to infinity is represented by a spiral.

FIG. 9. Time dependence of the total fixed-frame energy for the perturbed test particle of Fig. 8. The labels corres
the positions in Fig. 8.
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In Fig. 10 we show another example of a trajectory in the synodic frame, for which the
particle is in the past half space between the pointsA and B and, as a consequence, gai
considerable energy during that time. The time dependence of the total fixed-frame energy is
in Fig. 11. Between the pointsB andC the particle is in the future half plane and loses so mu
energy that the subsequent energy gain in the past half space beyond the pointC still leaves the
energy negative asymptotically. The particle remains trapped and does not escape. Also
example the mass ratioMJ /M (50.1/0.9, and the synodic locations of the Sun and of Jupiter
indicated by big and small circles, respectively. The large variation of the energy in Fig.
reminiscent of the energy oscillations in the Sitnikov problem.17,18

IV. THE COMPUTER

Let us return for a moment to the self-quenching phenomenon which led to the introduct
the kicked-oscillator model in Sec. II. If the perturbationMJ /M ( becomes bigger than abou

FIG. 10. Perturbed test-particle trajectory in the corotating frame displaying motion in the past half plane~between the
pointsA andB! in the future half plane~between the pointsB andC!, and in the past half plane again~beyondC!.

FIG. 11. Time dependence of the total energy in the fixed~inertial! frame for the trajectory in Fig. 10. The labeled poin
refer to the corresponding locations in Fig. 10.
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1/100, then the orbit gets out of its harmonic shelter too soon for the stabilizing factor to be
effective, and the orbit will come close to the Sun or Jupiter. Then the test body will be throw
of its original circle and the orbit becomes chaotic. This is demonstrated in Fig. 12 for a
‘‘exact’’ perturbed trajectories distinguished by the mass ratioMJ /M ( . In terms of the kicked-
oscillator model, for the quenching mechanism to be effective it is essential that the beat is s
observed. If the planet is thrown out too far of its harmonic regime and the frequency of the
motion becomes strongly dependent on the amplitude, it never gets the rhythm. Thus, it is
to happen that a few kicks will throw the planet beyond the point of no return. Then there
stabilizing mechanism, and chaos prevails.

For these large perturbations the analysis of Sec. III certainly does not apply, and th
guess is that then the system becomes ergodic. For this to be true one first has to make s
the orbit remains in a compact region in phase space. If it escapes to infinity then with prob
it has also come from infinity and one has a scattering situation. In this case one even h
maximal number of constants of the motion~three in our case! and one is in the opposite extrem
of ergodicity. However, in the synodic rotating frame the Hamiltonian~6! can be written11,3

H5 1
2@~px1y!21~py2x!2#1V~x,y!,

thus like for a particle in a constant magnetic field perpendicular to the plane of motion
subjected to a potential

FIG. 12. Radial planetary motion, perturbed by Jupiter, for the unperturbed circular-orbit radiusr 050.6. The mass ratio
MJ /M ( increases from top to bottom as indicated by the label.
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V~x,y!52
1

2
~M (r (

2 1MJr J
2!2

1

2 S M (

r (

1
MJ

r J
D1

M (MJ

2

~see Fig. 13!. Here, r (5@(x21/2)21y2#1/2 and r J5@(x11/2)21y2#1/2 are the distance of the
planet from the Sun and from Jupiter, respectively, where we use for convenience a coro
frame in which the Sun is located at~1/2,0! and Jupiter at~21/2,0!. The regionsV,E0 are time
invariant and are compact in configuration space for sufficiently low synodic energyE0 . So the
question is in this case whether the energy shellH5E0 is covered uniformly by the orbit or
whether it is divided further by hitherto undiscovered constants. We shall see that neither se
be the case. Since neither physical intuition nor rigorous mathematics is in a position to a
this question we have to avail ourselves of modern computer technology. In Fig. 14 a cut th
the surfaceV along thex axis is shown.

Ergodicity means that the time average of the orbit gives a homogeneous density o
energy shell. The former we have to calculate on the computer and the latter,d(H(x,y;px ,py)
2E0), becomes particularly simple when projected onto configuration space as follows fro
more general Bohr–van Leeuwen-type~see Ref. 19, 2.5.39,1!

Theorem 2: In two dimensions the microcanonical density in configuration space of a pa
in an arbitrary potential and arbitrary magnetic field is constant in the energetically allo
region.

FIG. 13. The surfaceV(x,y) for a mass ratioMJ /M (51/9. The Sun is located at~0.5, 0!, Jupiter at~20.5, 0!.

FIG. 14. Cut through theV surface of Fig. 13 along thex axis. The mass ratioMJ /M (51/9. The horizontal line
corresponds to an energyE0521.795 in the synodic frame.
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Proof:

H5 1
2@~px2Ax~x,y!!21~py2Ay~x,y!!2#1V~x,y!,

r~x,y!5E dpx dpy d~H2E0!

5E dvx dvy dS 1

2
~vx

21vy
2!1V~x,y!2E0D

52pQ~E02V~x,y!!

with v i5pi2Ai andQ the step function.
To study this chaotic behavior in more detail we have followed the dynamical evolutio

the computer. Since we are concerned with long chaotic trajectories, a regularization pro
according to Birkhoff is used to remove the singularities at the position of both primaries.20,3 In
combination with a Runge–Kutta fourth-order algorithm with variable time step we ascertain
the energy is conserved to ten significant digits over the whole length of the simulation. In F
a stroboscopic map reflecting the probability density in configuration space is shown. The e
E0521.795 was chosen to allow for a narrow channel between the Sun and Jupiter, and
sponds to the dashed horizontal line in Fig. 14. The initial configuration for this trajectory, w
is followed for 30 000 Jupiter years, is at the position of the central saddle point between th
and Jupiter in Fig. 13, with the planet velocity pointing toward the Sun. Clearly, the distributio
points in Fig. 15 is almost homogeneous. The fact that the theorem does not strictly app
some accumulation of points appear at the boundary is a consequence of the fact that the
is not ergodic.

This may be seen more clearly by looking at other phase-space projections, say on
(x,vx) plane, which are harder to treat theoretically. In Fig. 16 a double-sided Poincare´ map in the
(x–vx) plane is shown for the same chaotic trajectory as in Fig. 15. The plotted points corre
to states for which the velocitiesẏ[vy in theg direction may be positive or negative. The resu
show that there are large islands of regularity in the chaotic sea, so the system is not e
Nevertheless, the consequences of Theorem 2 are quite well satisfied, and the density in c
ration space is nearly homogeneous. In Fig. 16 the sections of a few regular tori are also sh
some of the regularity islands for the same energy,E0521.795.

FIG. 15. Probability density in configuration space for a synodic energyE0521.795 corresponding to the horizonta
dashed line in Fig. 14. The points of this stroboscopic map are taken from a single chaotic trajectory lasting fo
30 000 Jupiter years. The mass ratioMJ /M (51/9. The Sun in this rotating frame is located at~0.5, 0!, Jupiter at
~20.5, 0!.
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V. SUMMARY

The ~reduced! three-body problem, the cradle, and for more than a century a paradigm o
science of chaotic dynamical systems,21–23still provides new and surprisingly simple results. F
weakly perturbed circular orbits one gets away with a very crude and intuitive kicked-osci
model, which provides a good representation of the eccentricity of the test-particle motion. I
II we have explored the strengths and limitations of this model. For a small-enough mass
MJ /M ( , even resonance conditions may not be catastrophic for the orbit of the test partic
to a self-quenching mechanism supplied by the nonlinearity of the effective potential in
corotating frame. For large perturbations, however, the model is not applicable and only com
simulations may provide test-particle trajectories for a reasonable length of time.

If one considers conditions for which the test particle may visit the neighborhood of the
and of Jupiter but is still bounded by the Jacobi constant in the frame corotating with Jupite
phase space consists of a chaotic sea with regularity islands enbedded. The existence
islands demonstrates that the system is not ergodic in spite of considerable nonlinearities
potentialV. According to Theorem 2 of Sec. IV, ergodicity requires that the probability densit
the test particle in configuration space is constant in the allowed domain. Computer simulat
Sec. IV demonstrate that this is not strictly the case due to nonergodicity.

What one really wants to know is what is the measure associated with the regular dom
phase space, in which the trajectory stays on a toroidal submanifold, for which the charac
function is an additional constant of the motion. Only rigorous mathematics is capable of an
ing this question, if at all. Impressive progress has been achieved recently by Cellet
Chierchia,15 although one is still a few orders of magnitude away from this goal. Howe
analytical theory in Sec. III provides a surprisingly simple answer to a less-ambitious que
concerning the gain and loss of the test-particle energyE(t) in the fixed, inertial frame. Let us
consider a synodic corotating frame in which Jupiter is located at~21/2, 0! and the Sun at~1/2, 0!.
Then we conclude from Theorem 1 and the following remarks in Sec. III thatĖ.0 whenever the
particle is in the second or fourth quadrant of that frame of reference, andĖ,0 whenever it is in
the first or third quadrant. This simple result has been confirmed by numerical simulations
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FIG. 16. Double-sided Poincare´ map for mass ratioMJ /M (51/9 and a synodic energyE0521.795 corresponding to the
horizontal dashed line in Fig. 14. The Sun in the rotating frame is located at~0.5, 0!, Jupiter at~20.5, 0!. In some of the
larger regularity islands the closed sections of regular tori for the same total energy are also shown.
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4Lj. Milanović, H. A. Posch, and W. Thirring, Phys. Rev. E57, 2763~1998!.
5J. Laskar, Icarus88, 266 ~1990!.
6J. Laskar and Ph. Robutel, Nature~London! 361, 608 ~1993!.
7N. W. Evans and S. Tabachnik, Nature~London! 399, 41 ~1999!.
8M. Mayer and D. A. Queloz, Nature~London! 378, 355 ~1995!.
9A. C. Cameron, K. Horne, A. Penny, and D. James, Nature~London! 402, 751 ~1999!.

10J. Moser,Stable and Random Motions in Dynamical Systems~Princeton University Press, Princeton, 1973!.
11W. Thirring, Classical Mathematical Physics: Dynamical Systems and Field Theories~Springer, New York, 1997!.
12G. Gallavotti,The Elements of Mechanics~Springer, New York, 1983!.
13V. Arnold, Dokl. Akad. Nauk142, 758 ~1962!.
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The quantum N-body problem
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This selective review is written as an introduction to the mathematical theory of the
Schrödinger equation forN particles. Characteristic for these systems are the clus-
ter properties of the potential in configuration space, which are expressed in a
simple geometric language. The methods developed over the last 40 years to deal
with this primary aspect are described by giving full proofs of a number of basic
and by now classical results. The central theme is the interplay between the spectral
theory of N-body Hamiltonians and the space–time and phase-space analysis of
bound states and scattering states. ©2000 American Institute of Physics.
@S0022-2488~00!01306-2#

I. INTRODUCTION

The quantumN-body problem has been posed since 1926 in a precise mathematical form
Schrödinger equation forN particles interacting pairwise by two-body potentials which vanish
infinity. Together with the general principles of quantum mechanics this equation represen
simple, unifying basis for understanding all forms of nonrelativistic matter from the atomic p
of view. Of course spin and statistics as well as the coupling to electromagnetic fields m
included to substantiate this claim, but these aspects will not be considered in our review.

The theories of atoms, molecules and solids evolving from this basis did not solve theN-body
problem ~for N.2) in any mathematical sense, but from the point of view of physics t
achieved much more. Due to its classical flavor the Schro¨dinger equation lends itself beautifully t
heuristic simplifications, thus leading to intermediate models describing particular situations
process is of course necessary to reduce the quantitative complexity of the underlying ‘‘e
theory to human~or machine! proportions, not only for doing computations, but also for und
standing the results. Some of these model theories have also been studied from the mathe
point of view, but again this is not a topic of our review.

The mathematical theory ofN-body quantum systems presented here is the result of a com
mentary effort, essentially over the last 40 years, to derive some basic dynamical proper
N-body systems directly from the Schro¨dinger equation and from general assumptions on
interactions. An overview is presented by the following condensed history:

1926 Schrödinger: The time-dependent Schro¨dinger equation forN-body systems.84

1932 von Neumann:Abstract Hilbert space and the mathematical foundations of quan
mechanics.108

1951 Kato: Self-adjointness and lower bound for a large class ofN-body Schro¨dinger Hamilto-
nians including Coulomb systems.63 These systems therefore fit into von Neumann’s abst
framework with all its methods and results~dynamics described by a one-parameter unitary gro
spectral theorem, etc.!.

1959 Hack: Existence of scattering states for any prescribed asymptotic motion of indepen
34480022-2488/2000/41(6)/3448/63/$17.00 © 2000 American Institute of Physics
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bound fragments in the case of short-range potentials~falling of faster thanr 21).40 The conjecture
stands that these scattering states together with the bound states span the entire Hilbe
~asymptotic completeness60!.

1960 Zhislin: Determination of the essential spectrum of atomic Hamiltonians.118 In the context
of generalN-body systems this result was rediscovered independently by Hunziker47 and van
Winter.104 It forms the basis for all variational methods applied to the discrete spectrum
example, the energy spectrum of atoms and positive ions below the first ionization thre
consists of infinitely many isolated eigenvalues of finite multiplicities.

1963 Faddeev:The first mathematical theory of three-body systems,29 based on a system o
coupled integral equations for the three-body Green’s function~Faddeev equations!, which be-
comes of Fredholm type after a number of iterations. This approach was later extended to a
N by Yakubowsky117 and Hepp,43 but its power is limited by supplementary assumptions c
cerning the spectral properties of all subsystems of less thanN particles.

1969 Ruelle: Ergodic space–time characterization of bound states versus continuum st82

simplified and generalized by Amrein and Georgescu7 and by Enss.26

1970 Efimov:In contrast to the two-body case, three-body Hamiltonians with short-range p
tials can have an infinite number of discrete eigenvalues~Efimov effect!.23,24The first mathemati-
cal treatment is due to Yafaev.113

1971 Lavine:Asymptotic completeness ofN-body systems with purely repulsive potentials.68,69

The first time-dependent proof using a positive commutator argument~developed in general by
Putnam80 and Kato64!.

1971 Balslev, Combes:Application of spectral deformation4 to N-body Hamiltonians with
dilation-analytic potentials.10 This method reveals the general structure of the essential spec
of H ~thresholds, embedded eigenvalues, absence of singular continuous spectrum!, and provides
the basis for a theory of resonances.96

1972 Iorio, O’Carroll: Asymptotic completeness ofN-body systems in the limit of weak
potentials.57 A simple perturbative approach using the Dyson expansion.

1973 O’Connor: Isotropic exponential bounds forN-body eigenfunctions in the discrete spe
trum, with an exponent determined by the masses and the energy difference to the
threshold.76 Later generalized in the dilation-analytic case to nonthreshold eigenvalues emb
in the continuous spectrum,14 where absence of positive eigenvalues can be proved in a varie
cases~see e.g., Ref. 81, Vol. IV, Thm. XIII. 61!.

1977 The advent of ‘‘geometric’’~configuration space! methods of spectral analysis and sc
tering theory.18,25,97,17,87These methods combine the local analysis of a Schro¨dinger Hamiltonian
~as a partial differential operator! with the global ~operator! analysis in a very effective way
leading to essential simplifications and new results.

1978 Deift et al.: Anisotropic exponential bounds forN-body eigenfunctions in terms of th
energy, all thresholds and the masses.17 A concise form of this result is later given by Agmon2

~Agmon distance!.

1978 Enss:A short inspiring proof of asymptotic completeness forN52, using only Ruelle’s
theorem and the propagation properties of free wave packets,26 later extended toN53.27 This
proof marks the turning point from geometric to phase-space analysis.

1981 Mourre: Mourre’s inequality forN53,75 soon extended to generalN by Perry, Sigal and
Simon.79 Mourre’s inequality establishes the structure of the essential spectrum for very ge
interactions. It also exhibits the strict positivity of the virial in any sufficiently narrow energy s
                                                                                                                



sulting
.

resh-

ables
c

v.

cribe
red
r
c
present
er

m

shows
space

e

3450 J. Math. Phys., Vol. 41, No. 6, June 2000 W. Hunziker and I. M. Sigal

                    
in the continuous spectrum which is separated from thresholds and eigenvalues. The re
propagation estimate~local decay! plays a key role in the proofs of asymptotic completeness

1982 Froese, Herbst:Exponential bounds for eigenfunctions belonging to embedded, nonth
old eigenvalues, and absence of positive eigenvalues,31 supplemented by Perry.78 The proofs are
based on Mourre’s inequality.

1987 Sigal, Soffer:The first general proof of asymptotic completeness for arbitraryN and
short-range potentials.91 The proof rests on the construction of a set of phase space observ
f(x,p,t) which have locally positive commutators withH and which control the asymptoti
propagation into the possible scattering channels.

1990 Graf: A much simpler proof of the Sigal–Soffer theorem.38 The improvement resultsfrom
the construction of new propagation observables which are better tuned to the geometry ofN-body
configurations. A variant of this construction is introduced later in the proof given by Yafae116

1993 Dereziński: Proof of asymptotic completeness for long-range potentials~falling off faster
than r 2m, m5)21).19 This proof was prepared by preliminary results of Sigal and Soffer,93,94

who give an independent proof for the Coulomb casem51.95

This short history is necessarily incomplete, and so is our review. As a rule we only des
results which have been obtained for generalN and for general classes of potentials. Not cove
are, in particular, the Faddeev theory and its generalizations,29,117,43the many beautiful results fo
Coulomb systems including the stability of matter,70,30 and N-body systems in external electri
and magnetic fields, e.g., Refs. 44, 8, 120, 36, 37, 67, 1, and 101. On the other hand, we
some of the methods originating fromN-body theory in abstract form since they have a wid
range of applicability: e.g., spectral deformation, resonances, higher order Mourre theory.

II. BASIC DYNAMICS

In this section we discuss two fundamental properties of Schro¨dinger operators

H5p21V~x! onH5L2~X!, ~2.1!

whereX is a Euclidean space,xPX and p252D. The first one is Kato’s celebrated theore
which states that

H5H* >E0.2`

for a large class of potentials includingN-body systems with Coulomb interactions.63 This result
may be regarded as the mathematical foundation of nonrelativistic quantum mechanics: it
that the standard models of atoms and molecules fit into von Neumann’s abstract Hilbert
theory of quantum systems. In particular, the Schro¨dinger equation

i ] tc5Hc

generates a unitary groupUt5e2 iHt : c0→c t describing the time evolution of any initial stat
c0PH for all tPR. Moreover,H has a spectral representationH5*ld El which in turn defines
the energy distributiond(c,Elc) for any statec ~i.e., anycPH with ici51) as a probability
measure on the spectrums(H) of H. The result that the energyH has a finite lower boundE0

explains, e.g., the stability of atoms~even before invoking the Pauli principle!. In fact, this lower
bound is obtained in the stronger form

p2<aH1b ~2.2!
                                                                                                                



e
-
lt

er
er
cern-

of

3451J. Math. Phys., Vol. 41, No. 6, June 2000 The quantum N-body problem

                    
for some constantsa,b depending onV. This upper bound for the kinetic energyp2 in terms of
the conserved total energy plays a fundamental role. Inclassical mechanics~2.2! holds only if the
function V(x) is bounded from below. Then the inequalities

uxu<R, ~x,p!<E

define a finite volume in phase space. Since the canonical flow (x0 ,p0)→(xt ,pt) generated by
H(x,p) is volume preserving~Liouville’s theorem!, it follows that almost all orbitst→(xt ,pt) fall
into two classes: eitherxt remains bounded for allt, or xt becomes unbounded in both tim
directionst→6` ~‘‘capture is a process of probability zero’’!. This theorem is due to Schwarzs
child ~see, e.g., Ref. 85!. Its quantum analog, given by Ruelle,82 is the second fundamental resu
we wish to discuss. In the quantum case~2.2! implies that the set of statesc satisfying the
inequalities

~c,uxuc!<R, ~c,Hc!<E

is compact inH, and Liouville’s theorem is replaced by the unitarity of the flowUt in H. As a
resultH splits into twoUt-invariant orthogonal subspaces

H5HB% HC .

HereHB is the subspace of bound states, spanned by the eigenvectors ofH. An orbit t→c t in HB

is characterized by the condition that, for any«.0,x stays with probability 12« in some finite
ball uxu<R(«) for all t. HC5H B

' is the continuous spectral subspace ofH. For an orbitt→c t in
HC the probability to findx in any finite balluxu<R at time t vanishes in the time average ov
both time directions2`,t<0 and 0<t,1`. This general result sets the stage for the furth
analysis ofN-body systems, where we will eventually arrive at much sharper statements con
ing the localization of bound states and continuum states.

A. Self-adjointness

The construction of self-adjoint Hamiltonians of the type~2.1! is a well-developed art~see,
e.g., Ref. 81, Vol. II!. Here we only recall the original construction of Kato.63

Definition: A Kato potential on X is a real function VPL loc
2 (X) which, as a multiplication

operator on L2(X), satisfies an estimate

iVci<aip2ci1b~a!ici ~2.3!

for any a.0 and all cPC0
`(X).

Theorem 2.1:63 If V is a Kato potential on X, then H5p21V is self-adjoint with domain
D(H)5D(p2) and bounded from below. Moreover, p2 is H-bounded with a bound

ip2ci<~12a!21~ iHci1b~a!ici ! ; 0,a,1. ~2.4!

Proof: V is a closed operator on its natural domain. SinceC0
`(X) is a core ofp2, ~2.3! extends

to all cPD(p2). ThusH is defined as a symmetric operator onD(p2), where

z2H5@12V~z2p2!21#~z2p2! ~2.5!

for Re(z),0. From ~2.3! we find iV(z2p2)21i<a1b(a)uRe(z)u21,1, if we choosea,1 and
uRe(z)u sufficiently large. Then~2.5! shows that Ran(z2H)5L2(X) and thatz2H has a bounded
inverse. Thus the resolvent setr(H) of H contains a left half-plane, which proves the first part
the theorem. Equation~2.4! follows from ~2.3!. h

Here is a summary on Kato potentials:
Theorem 2.2:(a) A real function VPLp(X) is a Kato potential if p>2 and 2p.dim(X). (b)

Let X5X1% X2 be an orthogonal decomposition of X with adapted coordinates x5x11x2 . Sup-
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pose that V depends only on x1 :V(x)5V(x1). Then V is a Kato potential on X if and only if it i
a Kato potential on X1 . (c) The Kato potentials on X form a real vector space.

For a proof of~a! see Ref. 81, Vol. II, Thm.X.20.~b! and ~c! are elementary.
Example: V(x)5uxu21 is a Kato potential onX5R3 since it is the sum of anL2-function

@which is Kato by~a!# and a bounded function. LetX5R3N with coordinatesx1 ,...,xnPR3. By
~b! the potentialsVik5uxi2xku21 ( iÞk) are Kato potentials onX. By ~c! this is also true for any
real linear combination of the potentialsVik . Therefore the total Coulomb potential of a system
N charged particles inR3 is a Kato potential onR3N. According to~b! this remains true if we fix
the center-of-mass by restricting the configuration spaceR3N to the subspace$xu(k51

N mkxk50%
wheremk is the mass of the particlek.

B. Bound states and continuum states

Lemma 2.3: Suppose that H is a self-adjoint operator on L2(X) satisfying (2.2) for some
constants a, b. Let fPL`(X) with f(x)→0 as uxu→`. Then the operator

f ~x!~z2H !21 is compact ~2.6!

for any z in the resolvent setr(H). We will refer to this by saying that H has the local compa
ness property.

Proof: We use Cartesian coordinatesx5(x1 ,...,xn) in X and the corresponding momentu
operatorsp5(p1 ,...,pn), pk52 i ]/]xk . Let gPL`(X) with g(x)→0 as uxu→`. Then the op-
erator f (x)g(p) is compact. This follows by observing thatf (x)g(p) is a norm limit of Hilbert–
Schmidt operatorsf n(x)gn(p), obtained by settingf (x) and g(x) equal to zero foruxu.n and
letting n→`. @Notice that f n(x)gn(p) is an integral operator with the square-integrable ker
K(x,y)5 f n(x)ĝn(x2y), whereĝn is the Fourier transform ofg.] As a norm limit of compact
operatorsf (x)g(p) is compact. By~2.2! the operator (11p2)(z2H)21 is bounded. Therefore the
product f (x)(11p2)21(11p2)(z2H)21 is compact. h

Self-adjointness and the local compactness property ofH are the only ingredients of Ruelle’
theorem:

Theorem 2.4:82,7,26Suppose that H5H* on L2(X) has the local compactness property (2.6
Let HB be the subspace spanned by all eigenvectors of H, and HC5H B

' . If xR(x) is the char-
acteristic function of some balluxu,R, then

wPHB⇔ lim
R→`

i~12xR!e2 iHtwi50 uni f ormly in 0<t,` ; ~2.7!

cPHC⇔ lim
t→`

t21E
0

t

ds ixRe2 iHsci250 f or any R,`. ~2.8!

ReplacingH by 2H, we obtain the analogous theorem for negative times. We also note
two statesw andc with the space–time characteristic~2.7! and ~2.8! are orthogonal:

~f,c!50. ~2.9!

In fact, ~2.8! implies xRe2 iHtc→0 for some sequencet→`. Thus we can make

~w,c!5~e2 iHtw,xRe2 iHtc!1~~12xR!e2 iHtw,e2 iHtc!

arbitrary small by first choosingR and thent large enough.
Proof of Theorem 2.4:Let H be a self-adjoint operator on a Hilbert spaceH and suppose tha

zero is not an eigenvalue ofH. By the mean ergodic theorem,

lim
t→`

t21E
0

t

ds e2 iHsc50 ;cPH. ~2.10!
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~This follows for c5Hw by explicit integration, and thesec are dense inH since zero is not an
eigenvalue ofH.) Now suppose thatH has no eigenvalues. Then zero is not an eigenvalue of
operatorH ^ 121^ H on H^ H ~a consequence of the spectral theorem!, so that by~2.10!

05 lim
t→`

t21E
0

t

ds~w ^ c,e2 iHsc ^ eiHsw!

5 lim
t→`

t21E
0

t

dsu~w,e2 iHsc!u2;w,cPH. ~2.11!

Now let H5H* be arbitrary and suppose thatK( i 1H)21 is compact for some bounded operat
K. Then we claim that

lim
t→`

t21E
0

t

ds iK e2 iHsci250 ~2.12!

for any vectorc in the continuous spectral subspaceHC of H. Since it suffices to prove this fo
the dense set of vectorsc5( i 1H)21w,wPHC , we may assume thatK itself is compact. ThenK
is the norm limit of finite rank operators, which leaves us to prove~2.12! for operatorsK of rank
one: K e2 iHsc5(u,e2 iHsc)v; u,vPH. SincecPHC we can chooseuPHC . Then ~2.12! fol-
lows from ~2.11! becauseH has no eigenvectors inHC . In the context of~2.4! this proves the
direction ⇒ of ~2.8!, sincexR( i 1H)21 is compact. On the other hand the direction⇒ of ~2.7!
holds trivially for any eigenvectorw of H and thus for any wPHB . The opposite
directions ⇐ of ~2.7! and ~2.8! now follow from ~2.9!. h

III. N-BODY SYSTEMS

A system ofN particles inR3 with pair-interactions is described by the Hamiltonian

H5 (
k51

N pk
2

2mk
1 (

i ,k

1,...,N

Vik~xi2xk!, ~3.1!

with Vik(x)→0 asuxu→`. From this standard case we extract the following basic notions:

A. Configuration space

The configuration spaceX of an N-body system is a Euclidean space with scalar prod
denoted byx•y. In the case of~3.1!, regarded in the center-of-mass~CM! frame:

X[ H x5~x1 ,...,xN!UxkPR3; ( mkxk50J ;

x•y[( mk~xk•yk!R3. ~3.2!

Here 1
2 ẋ• ẋ5 1

2 ẋ2 is the classical kinetic energy, andp5 ẋ is the momentum conjugate tox. In
quantum mechanics,

H5 1
2 p21V~x! on L2~X! , ~3.3!

wherep52 i¹ and p252D have the usual form in Cartesian coordinates~not particle coordi-
nates! of X.
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1. Channels

In X there is a distinguished, finite latticeL of subspacesa,b,... ~channels!. L is closed under
intersections and contains at leasta5$0% anda5X. In the case of~3.1! the channels correspon
to all partitions of (1,...,N) into clusters. For example, ifN54:

partition channel

~12!~34!↔a5$xux15x2 ;x35x4%. ~3.4!

In general the partial ordering ofL is defined by

a,b↔a,b; aÞb. ~3.5!

For eachaPL there is an orthogonal decomposition:

X5a% a' : x5xa1xa . ~3.6!

This corresponds to the introduction of CM-coordinates. See Fig. 1 for the example~3.4!.
The relationp25(pa)21(pa)2 expresses the familiar decomposition of the kinetic energy

CM-parts and internal parts with respect to the clusters.

2. Intercluster distance

The basic feature ofN-body systems is that they can split into widely separated, alm
independent clusters. As a measure of the separation we might use the minimal distanceda(x) in
R3 of the clusters, e.g.,

da~x!5 min
i P~12!;kP~34!

uxi2xku ~3.7!

in the example~3.4!. However, we prefer to express the separation in terms of the geometryX.
Some reflection shows thatda(x)50⇔ xPb,bùa,a.

Figure 2 shows the unit sphere inX, intersected by two channelsa,b with bùa5c,a. This
leads to the definition of theintercluster distance

uxua[ min
bùa,a

uxbu for any a.$0%. ~3.8!

In the example~3.4! one finds

uxua5 min
i P(12);kP(34)

S mimk

mi1mk
D 1/2

uxi2xku.

FIG. 1. The coordinatesxa andxa.
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The set of all configurationsxPa with uxua.0 is given by

a* 5a\ ø
c,a

c ~3.9!

~empty for a5$0%), and these sets form a disjoint covering ofX\$0%. We note thatux1syua
→` as s→` for the translations

x→x1sy; sPR, yPa* . ~3.10!

These translations separate the clusters in channela without affecting their internal configuration
xa.

B. Hamiltonians

We assume that for eacha.$0% the potentialV(x) has the cluster property

V~x!5Va~xa!1I a~x!;
~3.11!

I a~x!< f ~ uxua!→0 as uxua→`.

In particularI a5V for a5X. For a5$0% we defineI a50. In the example~3.4!,

Va5V121V34; I a5V131V141V231V24.

Corresponding toL2(X)5L2(a) ^ L2(a'), we write

H5Ha1I a ;

Ha5 1
2 ~pa!2

^ 111^ Ha; ~3.12!

Ha5 1
2 ~pa!21Va~xa! on L2~a'!.

HereHa describes the dynamics of the system of noninteracting clusters, andHa describes their
~joint! internal dynamics.

1. Conditions on the potential

The rate at whichI a(x) @and later also derivatives ofI a(x)] vanishes asuxua→` will be
essential for many dynamical aspects. In addition to the cluster properties some global co
is required to make all the Hamiltonians~3.12! self-adjoint. For the purpose of this review w
assume thatV is a Kato potential. This property is automatically inherited by the potentialsVa.
Let

Ts : c~x!→c~x2sy! ~3.13!

FIG. 2. Intercluster distance.
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be the unitary translation operator corresponding to~3.10!. By ~3.11! the potentialVa is then
determined by

Vac5 lim
s→`

T2sVTsc ;cPC0
`~X!. ~3.14!

Sincep2 is translation invariant it follows thatVa(xa) is a Kato potential onX and thus ona'.
Therefore all the Hamiltonians~3.12! are self-adjoint and possess the local compactness prop
In the following we will not reiterate these basic assumptions onV(x). All of the results we report
have been established for substantially larger classes of potentials. For a particularly lucid
sion of this aspect we refer to Ref. 39.

2. Induction principle

As a result we have arrived at a simple mathematical definition ofN-body systems involving
only three ingredients:

~1! a configuration spaceX,

~2! a lattice L of channelsa,X, ~3.15!

~3! conditions on I a~x!.

In this sense each HamiltonianHa also describes anN-body system with reduced configuratio
spacea', with channelsbùa', b>a and with corresponding intercluster potentialsI b(xa), which
we call a subsystem. Any propositionP derived from ~3.16! can therefore be established b
induction on the latticeL. To begin with, P is verified in the trivial casea5X:Ha50 on
L2($0%)5C. ThenP is proved fora5$0%:Ha5H, under the induction hypothesis thatP holds
for anyHa with a.$0%. This induction in subsystemsis in fact more convenient than an inductio
in the particle numberN.

C. Discrete and essential spectrum

Here we prove that the spectrums(H) is of the form in Fig. 3:

S5 min
a.$0%

Sa ; Sa5min ~s~Ha!!.

S is the lowest energy threshold for breaking the system into independent parts. Therefores(H)
contains the continuous part@S,`). Less obvious is the fact thatH has onlydiscrete spectrum
belowS. By definition, the discrete spectrumsdisc(H) of a self-adjoint operatorH is the set of all
isolated eigenvalues of finite multiplicity~isolated from the rest of the spectrum!. The essential
spectrumof H is the complement

sess~H ![s~H !\sdisc~H !. ~3.16!

Theorem 3.1:47,104,118

sess~H !5@S,`!. ~3.17!

FIG. 3. Discrete and essential spectrum ofH.
                                                                                                                



ct

by

ion

3457J. Math. Phys., Vol. 41, No. 6, June 2000 The quantum N-body problem

                    
Proof: Step 1:@S,`),s(H). By ~3.12! s(Ha)5@Sa ,`) for a.$0%, since the kinetic en-
ergy makes the spectrum continuous. To prove thats(Ha),s(H), let lPs(Ha). Then i(l
2Ha)ci,« for any «.0 and somecPC0

`(X), ici51. By ~3.14!

HTsc→HaTsc ~s→`!

in norm. Thereforei(l2H)Tsci,« for somes, which shows thatlPs(H).
Step 2:sess(H),@S,`). We introduce apartition of unity on X, i.e., a finite family$ j a% of

real C`-functions onX with the property

(
a

j a
2~x![1. ~3.18!

ThenH can be decomposed into pieces localized in the supports ofj a plus a localization error:

H5(
a

j aH j a1
1

2 (
a

@ j a , @ j a , H##5(
a

j aH j a2
1

2 (
a

u¹ j au2. ~3.19!

In our casea labels all channelsa.$0%. Then the sets

Sa5$xPXu uxu51 ;uxua.0%

form an open covering of the unit sphereS of X. Therefore there exists a partition of unity$ j a% on
S with supp (j a),Sa . Since these supports are compact it follows that

uxua>«.0 on supp~ j a! ;a.$0%.

Next, the partition of unity$ j a% is extended fromS to the regionuxu.1 by setting j a(x)
5 j a(x uxu21). In the regionuxu,1 we choose an arbitrary smooth extension satisfying~3.19!. The
resulting partition onX has the properties

j a~lx!5 j a~x! for uxu>1,l>1;
~3.20!

uxua>«uxu for uxu>1,xPsupp~ j a! .

Therefore the functionsu¹ j a(x)u2 and j aI a(x) j a vanish asuxu→`: as operators they are compa
relative toH. As a result

H5 (
a.$0%

j aHaj a1K

with K compact relative toH. By a theorem of Weyl~Ref. 81, Vol. IV, Thm. XIII. 14!

sess~H !5sessS (
a.$0%

j aHaj aD . ~3.21!

SinceHa>S it follows with ~3.19! that the operator appearing on the right is bounded below
S, and we conclude thatsess(H),@S,`). h

IV. DISCRETE SPECTRUM

A. Exponential bounds for eigenfunctions

We consider a discrete eigenvalueE,S of H and a corresponding bound state wave funct
c(x). In the two-body case~whereS50) c(x) has a universal exponential bound

f ~x!5ux12x2uA22mE
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in the following sense: for anya,1 there is a constantCa such that

uc~x!u<Cae2a f (x).

The reason why we cannot seta51 is exemplified by the polynomial factors in the hydrog
wave functions. In this section we construct the analogous exponential bound in theN-body case:
a positive functionf (x), homogeneous of degree 1, determined implicitly by the energyE and by
the thresholds

Sa5min ~s~Ha!!; a.$0%.

Although an analytic expression off (x) is not known, weaker bounds can be given explicitly. A
these bounds are expressed by the Euclidean metric~3.2! which describes their dependence on t
masses.

Theorem 4.1:17 Let Hc5Ec,E,S. If f (x) is homogeneous of degree 1, and has the Li
chitz properties

u f ~x!2 f ~y!u<laux2yu; la[A2~Sa2E! ~4.1!

for all aPL,a.$0%, and all x,yPa, then f is an exponential bound forc in the sense that

ea fcPL`~X! f or any a,1. ~4.2!

In particular, the pointwise supremum f¯of all these exponential bounds f is an exponential bou.
The boundf̄ is determined by the energyE and the thresholdsSa . Weaker bounds obtaine

from Theorem 4.1 are also useful, especially the isotropic bound

f ~x!5uxuA2~S2E! ~4.3!

due to O’Connor.76 In general, the boundf̄ will be highly anisotropic with range in

uxuA2~S2E!< f̄ ~x!<uxuA22E.

Some examples are found in Ref. 17, but a general explicit form off̄ is not known. Agmon2 has
expressed the boundf̄ as a geodesic distance in terms of the following Riemannian metric oX.
To anyxPX there is associated a unique minimal channelm(x)PL containingx:

m~x!5ù
a{x

a. ~4.4!

Expressed in particle coordinates (x1 ,...,xN): two particlesi ,k belong to the same cluster ofm(x)
exactly if xi5xk . We remark thatm(x)<m(y) for all y in some neighborhood ofx. TheAgmon
metric on X is defined in terms of the Euclidean metric~3.2! by the line element

ds252~Sm(x)2E!dx2, ~4.5!

where, by the remark above, the coefficient function (Sm(x)2E) is lower semi-continuous inx. A
pathp,X, given by a functionx(t) on 0<t<1, has the Agmon length

s~p!5E
0

1

dt lm(x(t))uẋ~ t !u
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with la defined by~4.1!. Sincel(x(t)) is semi-continuous int this is well defined for square
integrableẋ(t). The Agmon distanced(x,y) betweenx andy is the infimum ofs(p), taken over
all pathsp joining x,y. We refer to Ref. 13 for a proof that this infimum is a minimum, and
a discussion of Agmon geodesics.

Theorem 4.2:2 The exponential bound f¯given in Theorem 4.1 is f(̄x)5d(0,x)[r(x).
Proof: Evidently r(x) is homogeneous of degree 1. By the geodesic triangle inequality,

ur~x!2r~y!u<d~x,y!<laux2yu

for x,yPa. This provesr< f̄ . To show the converse we choose a pathp from 0 to x with s(p)
,r(x)1«. Approximatingẋ(t) by a step function inL2-sense, we see thatp may be taken as a
polygon of straight linesp1 ,...,pn . For eachpk we define

ak5 ù
a.pk

aPL.

Thenlm(x)5lak
for all xPpk , with the possible exception of a single point~a straight linepúa

can intersecta only in one point!. Therefores(pk)5lak
upku, whereupku is the Euclidean length o

pk . On the other hand,~4.1! implies uD f̄ u<lak
upku for the incrementD f̄ k of f̄ alongpk . Therefore

f̄ (x)5(kD f̄ k<(klak
upku5s(p)<r(x)1«. h

We now return to the derivation of Theorem 4.1. Instead of~4.2! we will only prove the
L2-bound:

ea fcPL2~X! for any a,1. ~4.6!

Since f is uniformly Lipschitz, theL`-bound~4.2! then follows by a general argument given
Ref. 17. The basic tool for estimating exponential tails of eigenfunctions is simple:

Lemma 4.3: Suppose that Hc5Ec. Let J, f PC2(X) be non-negative with bounded deriva
tives, and letsupp (¹J) be compact. If

J~H2 1
2 u¹ f u22E!J>dJ2 ~4.7!

for somed.0, then

iefJci<d21ief@H,J#ci . ~4.8!

The hypothesis allowsf (x)→` as x→`. The bound~4.8! is finite, sincef is bounded on
supp (¹J). Typically, J will be a smoothed characteristic function of a setuxu.R. Then ~4.8!
implies exp(f )cPL2(X).

Proof: Suppose first thatf is bounded, and let

H f[efHe2 f5H2
1

2
u¹ f u21

i

2
~¹ f •p1p•¹ f !.

Then (H f2E)u50 for u5efc, so that~4.7! implies

diJui2< Re~Ju,~H f2E!Ju!<iJui i@H f ,J#ui ,

which proves~4.8!. If f is unbounded, we replace it byf «5 f (11« f )21,g.0. Since u¹ f «u
<u¹ f u, ~4.8! holds for f « uniformly in «, and extends tof in the limit «→0. h

The next step is to prove a smooth version of Theorem 4.1:
Lemma 4.4: Theorem 4.1 holds if the Lipschitz condition (4.1) is replaced by the stro

differentiability condition
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f PC2~X\$0%!; u¹ f ~x!u2<2~Sm(x)2E! ~4.9!

for all xPS5 unit sphere of X.
Proof: Let g5a f ,a,1. Then

u¹gu2<2~Sm(x)2E2«! ~4.10!

for some«.0 and allxPS. EachyPS has a neighborhoodSy,S given by

Sy[$xPSu2uxum(y).uyum(y) ;u¹g~x!u2,u¹g~y!u21«%, ~4.11!

where we have used the definitions~3.8! and ~4.4!. As in the proof of Theorem 3.1, we pick
finite covering$Sy% of S, and then construct a partition of unity$ j y% on X with the properties

supp~ j y!,Sy ; j y~x!5 j y~x/uxu! for uxu.1.

From ~3.20! we obtain

H2
1

2
u¹gu22E5(

y
j yS H2

1

2
u¹gu22ED j y2

1

2 (
y

u¹ j yu2.

By construction,u¹ j y(x)u→0 and I m(y) j y(x)→0 as x→`. Let J be a real, smooth, bounde
function supported in$uxu.R%. Using ~4.10!, ~4.11! andHa>Sa we find

JS H2
1

2
u¹gu22ED J>S «

2
2o~R! D J2.

Taking R sufficiently large, we conclude from Lemma 4.3 thategcPL2(X). h

The proof of Theorem 4.1 is by regularization:f can be approximated by a smooth expone
tial bound according to Lemma 4.4. Since this regularization is somewhat technical, we re
Ref. 53.

B. The number of discrete eigenvalues

1. Infinite discrete spectrum

For N52 the discrete spectrum ofH is finite if the potentialV(x) has short range, whereas
long-range attractive potential will always produce an infinite number of bound states belo
continuous spectrum. The border line between short- and long-range potentials is marked
asymptotic behaviorV(x);uxu2m(uxu→`) with m52, sinceuxu22 scales withx like the Laplac-
ian. ~In scattering theory there is a different border linem51.) For N.2 the question whethe
sdisc(H) is finite or infinite cannot be answered solely in terms of the asymptotic fall-off of s
intercluster potentialsI a(x): the nature of the thresholdS at the bottom of the continuous spe
trum also plays a decisive role. We begin with some results for the case whereS is a two-cluster
threshold. This means that for the energyS and slightly above, the system can only desintegr
into two bound clustersC1 , C2 ~see Fig. 4!.

This situation can be represented by a product wave function

c~x!5u~xa!f~xa!; Haf5Sf ~4.12!

with (u,pa
2u) arbitrary small. The condition thatS is a two-cluster threshold means thatS is a

discreteeigenvalue ofHa, so thatf has an exponential bound

uf~xa!u<const exp~2auxau!, a.0. ~4.13!
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Using statesc of the form~4.12! as trial states to make (c,Hc),S, it is a simple matter to show
thatsdisc(H) is infinite if I a(x) has a long-range attractive part. For simplicity we write this ou
the case of Coulomb potentials

I a~x!5 (
i PC1 ;kPC2

eiek

uxi2xku
; (

i PC1 ;kPC2

eiek,0,

assuming that the clusters have opposite total charges. Using the exponential bound~4.13! it
follows that

u~c,~ I a~x!2I a~xa!!c!u<constuxau22,

and therefore

~c,~H2S!c!<S u,S 1

2
pa

22
q

uxau
1constuxau22DuD ; q,0.

Now let uPC0
`(R3), iui51 and supp (u) in 1,uxau,2. Then the orthonormal functions

un~xa!5n23/2u~n21xa!, n51,2,4,8,...,

have disjoint supports, so that the corresponding trial statescn satisfy

~cn ,Hcm!50 ~nÞm!; ~cn ,~H2S!cn!<
q

n
1constn22,0,

if n is sufficiently large. Therefore, by the min–max principle,H possesses infinitely man
~discrete! eigenvalues belowS. The same proof applies to attractive pair potentials;2uxi

2xku2m, 0,m,2, and also if additional short-range potentials are present inI a(x). The result
shows that neutral atoms and positive ions always have infinite discrete spectrum.118 The accu-
mulation of eigenvalues atS can be discussed by using trial wave functionscnlm of the form
~4.12! with hydrogenic eigenfunctionsunlm(xa) corresponding to an energy2n22 in suitable
units. Then it can be shown that

i~H2En!cnlmi<constn2a; a.3

for En5S2n22, if l<n grows sufficiently fast withn (l5n corresponding to a circular classic
hydrogen orbit!. This means thatH has groups of eigenvalues close toEn compared to the spacin
En112En asn→` ~Rydberg states!. By taking symmetries into account this result can be es
lished for any multiplet system.48

FIG. 4. Two bound clusters.
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2. Finite discrete spectrum

Here we show thatsdisc(H) is finite if the relevant intercluster potentials have short range
if S is a two-cluster threshold. A channelaPL is said to be atwo-cluster channelif

b,a⇒b5$0%. ~4.14!

These channels correspond to the partitions of (1,...,N) into two clusters. The set of two-cluste
channels will be denoted bym. The lowest thresholdS of H always coincides withSa for some
aPm, sinceSa<Sb if a,b. S is called a two-cluster threshold ifSa5S only for aPm.

Theorem 4.5:114,119,121,87Suppose thatSa5S only if aPm and in that case

I a~x!>2c~11uxua!2m, m.2 ~4.15!

for large uxua . Then the discrete spectrum of H is finite.
Proof: We give an outline of the proof, deferring the details to the subsequent discussion

starting point is the localization formula~3.20! for a specially adapted partition of unity$ j a% on X.
The first step is a purely geometric estimate of the localization error in the form

F[(
a

u¹ j au2<(
a

j aFaj a ~4.16!

with multification operatorsFa5Fa(x), leading toH>(aj a(H2Fa) j a . Each term in this sum is
then further estimated from below by

j a~H2Fa! j a> j aBaj a , ~4.17!

whereBa is self-adjoint with purely discrete and finite spectrum belowS, i.e.,

Ba>Ca1S; Caof finite rank. ~4.18!

ThereforeH has an estimateH>C1S with C5(aj aCaj a of finite rank. It follows from the
min–max principle that the number of eigenvalues~including multiplicities! of H below S is
bounded by the finite number of negative eigenvalues ofC. h

We now describe the steps of the proof in detail. The geometry of two-cluster channels i
simple: fora,bPm

a* 5a\ø
b,a

b5a\$0%; aùb5$0% if aÞb.

It follows from ~3.9! that, on the unit sphereuxu51, the channelsaPm aredisjoint, and that the
intercluster distanceuxua is strictly positive for allxPa. The partition of unity$ j a% used in the
proof of Theorem 3.1 can therefore be adapted to have the following properties:

~1! j $0%(x) is equal to one foruxu<R21 and vanishes foruxu.R, whereR may be fixed arbitrary
large.

~2! The functionsj a for aPm have disjoint supports.
~3! For a.$0% the functionsj a are homogeneous of degree zero foruxu.R, and, on supp(j a),

uxua.luxu for somel.0.

In particular we takeR sufficiently large so that for alla with Sa5S

I a~x!>2Cuxu2m on supp~ j a!. ~4.19!

Lemma 4.6: For any«.0 the estimate (4.16) holds with
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Fa5~11uxu!22H « i f aPm,

c« i f aÞm.
~4.20!

Proof: SinceF(x) is homogeneous of degree22 for uxu.R while j a(x) is homogeneous o
degree zero, it suffices to prove that

F<« (
aPm

j a
21c« (

aÞm
j a
2

for uxu<R and any«.0. Since the functionsj a with aPm have disjoint supports,

F50 on the setH xU (
aPm

j a
2~x!51J .

Therefore, by continuity,

F<
«

12d (
aPm

j a
2,

whered5d(«)→0 as«→0. On the complement of this set

(
aÞm

j a
2>d⇒F<F

1

d (
aÞm

j a
2.

h

To derive the estimates~4.17! and~4.18! we distinguish between different types of channe
The channel a5$0%. Here we setB$0%5 f (x)(H2c«) f (x), where f PC0(X) is equal to one

on supp(j $0%). Let P be the projection onto the spectral subspaceH,c« . ThenB$0%> f (x)P(H
2c«)P f(x). By the local compactness property ofH this lower bound is a compact operator wi
purely discrete spectrum below zero, of which only a finite part is belowS,0.

The channels a withSa.S. Here we set

Ba5Ha1 Ĩ a~x!2c«~11uxu!22; Ĩ a~x!5I a~x!xa~x!,

wherexa(x) is the characteristic function of supp(j a). Since Ĩ a(x) vanishes asuxu→` we have
sess(Ba)5sess(Ha)5@Sa ,`). Therefore, the spectrum ofBa belowS,Sa is discrete and finite.

The channels a withSa5S. Here we chooseBa5Ha2Wa(x), where2Wa(x) is a lower
bound ofI a(x)2«(11uxu)2m, restricted to the support ofj a :

Wa~x!5xa~x!@const~11uxu!2m1«~11uxu!22#. ~4.21!

By hypothesisS is the lowest, discrete eigenvalue ofHa. Let Pa be the corresponding eigen
projection andQa512Pa. On L2(X)5L2(a) ^ L2(a') we define

Pa51^ Pa; Qa51^ Qa.

Next we apply the Combes–Simon inequality: LetA be a self-adjoint operator andP an orthogo-
nal projection which maps the domain ofA into itself. LetQ512P andd.0. Then

A>PAP1Q~A2d!Q2d21PAQAP, ~4.22!

which just another form of writing

0<~d21PA11!dQ~d21AP11!.
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Using ~4.22! to estimateBa from below we obtain

Ba>Pa~Ha2Wa2d21WaQaWa!Pa1Qa~Ha2Wa2d!Qa ~4.23!

sincePa commutes withHa . Now we are left with proving that the two terms on the right
~4.23!, viewed respectively as operators on Ran(Pa) and Ran(Qa), have purely discrete, finite
spectra belowS. The same then follows by the min–max principle for the operatorBa on H. The
first term, as an operator on Ran(Pa), is bounded below by

S1~ 1
2 24«!pa

22const~11uxau!2m ~4.24!

for the following reasons:

Ha>S1 1
2 pa

2 on Ran~Pa!;

Wa~x!<Wa~xa!<const~11uxau!2m1«~11uxau!22;

«~11uxau!22<«uxau22<4«pa
2;

WaQaWa<Wa
2<const~11uxau!24.

Now we fix «,1/8. Then, apart from the constantS, ~4.24! is a Schro¨dinger operator onL2(a)
with a regular, spherically symmetric potentialV(uxu) vanishing faster thanuxu22 at `. This
operator has a discrete, finite spectrum below zero, and the same follows for the spect
~4.24! below S.

In discussing the second term of~4.23! we only use thatWa is compact relative toHa on
L2(X). Since Qa commutes withHa it follows that QaWaQa is compact relative toHa on
Ran(Qa), wheresess(Ha)5@S1 ,`), S1.S. By Weyl’s theoremHa2d2QaWaQa has essentia
spectrum@S12d,`) on Ran(Qa). Fixing now d,S12S it follows that the operatorQa(Ha

2d2Wa)Qa on Ran(Qa) has a purely discrete, finite spectrum belowS. This concludes the proo
of Theorem 4.5.

Notes: Exponential bounds for eigenfunctions. For a review of other results, see Ref. 46.
Finite vs. infinite discrete spectrum. If S is not a two-body threshold in the sense of Theor

4.5, then the discrete spectrum ofH is still finite if none of the operatorsHa with Sa5S has a
resonance at the bottom of its spectrum, i.e., a solution ofHac5Sc which vanishes asuxau
→` too slowly to be square integrable~see Refs. 110, 111, and 109, and references qu
therein!. For bounds on the number of eigenvalues, see Refs. 115, 66, and 88. However,
no-resonance condition stated above is violated, then shortrange forces can create infinite
spectrum. This was discovered for three-body systems by Efimov23,24,5 and proven by
Yafaev.113,112

Coulomb sytems. Atoms and stable ions provide examples whereS is a two-cluster threshold
The proof of Theorem 4.5 can be extended to prove that negative ions have finite di
spectrum.114,87 It was shown by Ruskai83 and Sigal87 that a given nucleus can bind only a fini
number of electrons. To find a sharp estimate for this number as a function of the nuclear
is a challenging open problem~see Ref. 70 for some of the original papers and Ref. 90 fo
review!.

V. ESSENTIAL SPECTRUM I. SPECTRAL DEFORMATION

A. Spectral deformation

The nature of the essential spectrum ofN-body Hamiltonians was first established by Balsl
and Combes10 for the special class of dilation-analytic potentials. We review this theory sinc
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also provides the framework for a description of resonances.96 In abstract form, the idea is to tes
the spectral properties of a self-adjoint operatorH on a Hilbert spaceH by analyzing the family
of transformed Hamiltonians

H~j!5U~j!HU~j!21

for a suitably chosen one-parameter unitary group

U~j!5e2 i jA; A5A* ; jPR.

We use the notation

C65$zu6Im~z!.0%; R~z!5~z2H !21;R~z,j!5~z2H~j!!21.

The analysis rests on the following two conditions:
Analyticity condition: H(j) extends fromjPR to a family of operators defined on a com

plex strip J5$juuIm(j)u,a% such that the resolventR(z,j) exists for somez5z0PC1 and is
holomorphic injPJ.

Spectral condition: See Fig. 5.
For somej0PJ there is an open, connected complex regionG{z0 with the properties

Gùsess~H~j0!!5B,

G6[GùC6is connected, ~5.1!

G6ÞB.

Equation ~5.1! is the condition of spectral deformation: ifH has essential spectrum inI
5GùR, then this spectrum is removed fromG by passing fromH to H(j0). Here we use the
definition sess(L)5s(L)\sdisc(L) of the essential spectrum for a general operatorL on H. The
discrete spectrumsdisc(L) is the set of allisolated spectral pointslPs(L) for which the projec-
tion

P5~2p i !21 R
G
dz~z2L !21

hasfinite rank, whereG is a loop in the resolvent set aroundl which separatesl from the rest of
s(L). Then l is an eigenvalue ofL and the resolvent (z2L)21 has a pole of~finite! order n
>1 at z5l. l is called asemi-simple eigenvalueif n51: then ~and only then! all vectors in
Ran(P) are eigenvectors. Nevertheless we will callP the ‘‘eigenprojection’’ for the eigenvaluel.
We will show that the two conditions stated above have important consequences for the sp
of H in I 5GùR.

FIG. 5. The spectral condition.
                                                                                                                



r

-

o

fied,

3466 J. Math. Phys., Vol. 41, No. 6, June 2000 W. Hunziker and I. M. Sigal

                    
1. Preparation

The two relations

H~j1a!5U~a!H~j!U~a!21, aPR;

H~j!5H~ j̄ !*

hold for jPR and extend by analyticity to alljPJ via their resolvent equivalents. In particula
the spectrum ofH(j) depends only on Im(j). We also see that the preference given above toC1

is purely conventional, sinceR(z,j)5R( z̄,j̄)* is also holomorphic injPJ for z5 z̄0 . Therefore
we can also start from the equivalentconjugate picturein which z0 , j0 , G, G6 are replaced by
their complex conjugates. The unitary groupU(j) is extended to alljPC via the spectral repre
sentation

U~j!5e2 i jA5E
R
e2 i js dF~s!,

F(s) being the spectral family ofA. U(j) is a closed operator with domain

wPU~j!⇔E
R
e2s Im~j!diF~s!ci2,`

and satisfiesU(j)* 5U( j̄). @We note thatU(j0) and thereforeA must be unbounded if there is t
be any spectral deformation.#

The setA of analytic vectorsc is defined by the condition that the measurediF(s)ci2 has
compact support. For cPA the function

j→U~j!c[c~j!PH ~5.2!

is entirely analytic.A is a core ofU(j) and invariant underU(j). With this preparation the
following facts are easily derived:

Lemma 5.1: (a) Let B be a bounded operator onH such that the functionjPR
→U(j)BU(j)21 has a bounded-holomorphic extension B(j) on J. Then

B~j!5U~j!BU~j!21 on D~U~j!21!. ~5.3!

(b) Let «.0 and J«5$juuIm(j)u,a2«%. Then there exists a neighborhoodV« of z0 such that

R~z,j!5U~j!R~z!U~j!21 on D~U~j!21! ~5.4!

for all (z,j)PV«3J« .
Theorem 5.2:Suppose that the analyticity and spectral conditions stated earlier are satis

and letjPJ be such that

Gùsess~H~j!!5B ~5.5!

~e.g, j5j0). Then we have the following.
(a) For any w, cPA the holomorphic function z→(w,R(z)c) on G1 has a meromorphic

extension to G given by

M ~w,c,z!5~w~ j̄ !,R~z,j!c~j!! ~5.6!

and by the definition (5.2).
(b) The (discrete) spectrum of H(j) in G is given by
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sdisc~H~j!!ùG5 ø
w,cPA

$poles of M ~w,c,• !%, ~5.7!

which is independent ofj [as long as (5.5) holds].
(c) H(j) has no spectrum in G1, where

R~z!5U~j!21R~z,j!U~j! on D~U~j!!. ~5.8!

The same is true for G2 if s(H) has a gap in I.
(d) H and H(j) have the same eigenvalues in I. Any such eigenvalue is semi-simple for

and for H(j), with corresponding eigenprojections P and P(j) satisfying

P5U~j!21P~j!U~j! on D~U~j!!;

dim~P!5dim~P~j!!,`; ~5.9!

Ran~P!,D~U~j!!.

These relations also hold ifj is replaced byj̄, so thatRan(P) is contained in

D~U~j!!ùD~U~ j̄ !!. ~5.10!

(e) Let E(s) be the spectral family of H and letD,I be an open interval whose endpoints a
not eigenvalues of H. Then the spectral projection ED of H corresponding toD is given by

ED5
i

2p E
D
dx@U~j!21R~x,j!U~j!2U~ j̄ !21R~x,j̄ !U~ j̄ !# ~5.11!

on the domain (5.10). Therefore(c,E(s)c) is real analytic in sPD for any c in the domain
(5.10). Since the eigenvalues of H in I form a discrete set it follows that H has no sin
continuous spectrum in I. If D contains a single eigenvaluel with eigenprojection P, then (5.11)
holds for the reduced operators

ĒD5ED~12P!,

R̄~x,j!5R~x,j!~12P~j!!,

so that(c,Ē(s)c) is real analytic in sPD for c in the domain (5.10).
(f ) If s(H) has a gap in I, then the spectrum of H in I is purely discrete.
Proof: ~a! Since jPJ« for some«.0, ~5.6! holds for zPV« . R(z) is holomorphic inz

PG1, andR(z,j) is meromorphic inzPG: its poles are the eigenvalues ofH(j) in G.
~b! is a direct consequence of~a! sinceA is dense and invariant underU(j);jPC. Inde-

pendence ofj follows from the uniqueness of meromorphic continuations.
~c! follows from ~b! sinceM (w,c,z)5(w,R(z)c) for zPG1. This relation extends by ana

lyticity to zPG2 if s(H) has a gap inI .
~d! Let lPI be an eigenvalue ofH. By the spectral theorem its eigenprojectionP is given by

P5 lim«↘0(2 i«)R(l1 i«), so that by~5.8!

~w,Pc!5s2 lim
«↘0

~2 i«!~w~ j̄ !,R~l1 i«,j!c~j!! ;w,cPA. ~5.12!

Since this is nonzero for somew, cPA, l is a first order pole ofR(z,j), i.e., a semi-simple
eigenvalue ofH(j). By ~5.12! the corresponding eigenprojectionP(j) satisfies

~w,Pc!5~w~ j̄ !,P~j!c! ;w,cPA,
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which impliesP.U(j)P(j)U(j)21 and therefore dim(P)5dimP(j) which is finite by the defi-
nition of the essential spectrum. MoreoverD(U(j))ùRan(P) is dense in—and therefore equ
to—Ran(P). The same analysis in the conjugate picture shows that~5.9! also holds forj̄. Now let
lPI be an eigenvalue ofH(j), i.e., a pole of some ordern>1 of R(z,j). Then

lim
«↘0

«n~w,R~l1 i«!c!5 lim
«↘0

~w~ j̄ !,R~l1 i«,j!c~j!!Þ0

for somew, cPA. SinceiR(l1 i«)i<«21, it follows thatn51 and thatl is an eigenvalue ofH.
~e! follows from the spectral formula

ED5s2 lim
«↘0

i

2p E
D
dx@R~x1 i«!2R~x2 i«!#.

After expressingR(x1 i«) andR(x2 i«) by ~5.8! and its adjoint,« can be set equal to zero.
~f! If s(H) has a gap inI , then ~5.8! holds in G1øG2 so thatED50 if D contains no

eigenvalue ofH. h

2. Resonances

According to Theorem 5.2 there are only two cases. EitherI ùsess(H)5B, thenH andH(j)
have the same~discrete, real! spectrum inG. Or I ,sess(H), then the real~discrete! eigenvalues
of H(j) are the embedded eigenvalues ofH in I , which have finite multiplicities. In additionH(j)
may have~discrete! complex eigenvalues inG2 which are also independent ofj as long as
sess(H(j)) stays away fromG. They are commonly calledresonance eigenvaluesor simply
resonances of Hand actually occur in complex conjugate pairs together with the eigenvalu
H( j̄) in G2. Alternatively, resonances are defined as the poles of the meromorphic continu
of the functions

z→~w,~z2H !21c!; w,cPA,

on C6. This definition seems closer to the physicist’s notion of a resonance, since po
resolvent matrix elements near the real axis are expected to show up in the energy depend
observable quantities like transition probabilities or scattering cross sections. However, it m
noted that these resonances are not uniquely defined byH since their construction involves th
choice of a unitary groupU(j), or of a setA of analytic vectors. The physical interpretation
resonances is therefore a delicate matter.98 A related and also commonly expected feature
resonances near the real axis is their association with long-living metastable states showing
exponential decay under the time evolution generated byH. This will be further discussed below

B. Dilation-analytic N-body systems

In this section we apply the general theory to the case where

H5 1
2 p21V~x!

is anN-body Schro¨dinger operator onL2(X), andU(j) is the dilation group defined forjPR by

U~j!:c~x!→ejdim(X)/2c~ejx!. ~5.13!

This group has the generator

A5 1
2 ~x•p1p•x! ~5.14!

and transformsH into
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H~j!5U~j!HU~j!215e22j 1
2 p21V~ejx!. ~5.15!

H(j) is extended from realj to the complex stripJ5$juuIm(j)u,a% under the following two
conditions:

„a… Dilation-analyticity. For anyjPJ, V(ejx)[V(j,x) is defined as a function with value
in L loc

2 (X). Moreover, the corresponding multiplication operatorV(j) is holomorphic in the sense
that the functionj→V(j)cPL2(X) is holomorphic injPJ for any cPC0

`(X) and satisfies an
estimate

iV~j!ci<«i 1
2 p2ci1b~«! ici ~5.16!

for any «.0, uniformly in j.
„b… N-body structure. For anyaPL there is a decomposition

V~j,x!5Va~j,xa!1I a~j,x!,

whereVa(j,x) satisfies condition~a! as an operator onL2(a') and where

lim
uxua→`

I a~j,x!50.

We will refer to these two conditions by saying thatV is adilation-analytic N-body potential. An
example is the Hamiltonian~3.1! with Vik(r ); 1/r (a5`) or Vik(r ); (1/r ) e2mr ; m.0(a
5p/2).

Herej H(j) is defined for anyjPJ onC0
`(X) by the explicit expression~5.15!. This operator

has a closure with domainD(p2) which we again denote byH(j). The numerical range and th
spectrum ofH(j) are contained in a complex sectorS«(j) of the form shown in Fig. 6 with«
arbitrary small. Forz¹«(j) the resolventR(z,j) is bounded by

iR~z,j!i<@dist~z,S«~j!!#21 ~5.17!

and holomorphic injPJ as long asS«(j) does not coverz. For simplicity we restricta to a
,p/2. Then the sectorsS«(j) do not sweep the entire complex plane for small« and uIm (j)u
,a. In particular,R(z,j) is holomorphic injPJ for z in some open set straddling the negati
real axis.

For the application of Theorem 5.2 the main task is to determine the essential spectr
H(j) for Im (j)Þ0. We define the set of thresholds ofH(j) as the set

t~H~j!!5 ø
a.$0%

sdisc~Ha~j!!. ~5.18!

Theorem 5.3:10 Under the conditions (a) and (b) stated earlier,

FIG. 6. The sectorS«(j).
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sess~H~j!!5 ø
a.$0%

s~Ha~j!!5t~H~j!!1e22jR1. ~5.19!

Proof: We fix jPJ and we shorten the notation by writingH, Ha for H(j), Ha(j), etc. The
induction hypothesis is that for alla.$0%

sess~Ha!5t~Ha!1e22jR1; t~Ha!5ø
b.a

s~Hdisc
b !.

This is trivially satisfied fora5X. From

Ha5e22j 1
2 pa

2
^ 111^ Ha on L2~a! ^ L2~a'!

it follows that

s~Ha!5e22jR11s~Ha!, ~5.20!

e.g., by reducingHa to fibers of constantpaPa. Therefore,

s̃[ ø
a.$0%

s~Ha!5 ø
a.$0%

~sdisc~Ha!øsess~Ha!!1e22jR15t~H !1e22jR1.

We note that the sets̃ is a closed, countable union of parallel rays. Its complement is conne
to the resolvent set ofH: for z¹s̃ the ray$z2e22jR1% is in the complement ofs̃ and leaves the
sectorS«(j). It remains to prove thats̃5sess(H). The inclusions̃,sess(H) follows exactly as in
the casej50 ~Theorem 3.1!. To prove the opposite inclusion it suffices to show that

]sess~H !,s̃, ~5.21!

where]sess(H) denotes the boundary ofsess(H). For suppose thatzPsess(H) but z¹s̃. Then
the ray$z2e22jR1% must cross]sess(H) which contradicts~5.20!. To prove~5.21! we refer to a
generalization of Weyl’s criterion,55 valid for any closed operatorH: if lP]sess(H), then there
exists a sequencecnPD(H) with icni51 such that

i~l2H !cni→0 and cn⇀0 ~weak convergence!. ~5.22!

This is exploited using the local compactness property ofH ~which holds sincep2 is H-bounded!.
Let xR be a smoothed characteristic function of the ball$uxu,R%. SincexR is H-compact it
follows from ~5.22! that ixRcni→0 for any fixedR. By passing to a new sequence$cn% we can
therefore replace the conditioncn⇀0 by the stronger formcn(x)50 for uxu,n. Now let Ja

5 j a
2 be the partition of unity used in the proof of Theorem 3.1. Since@p2,Ja# is H-compact it

follows from ~5.22! that i(l2H)Jacni→0. Moreover,i I aJacni→0 ;a.$0% sinceuxua→` on
supp (Jacn). Therefore

i~l2Ha!Jacni→0 ;a.$0%. ~5.23!

On the other hand,i(a.$0%Jacni→1, which implies thatiJacni>«.0 for somea.$0% and for
an infinite subsequence of$cn%. Then it follows from~5.23! that lPs(Ha).

h

Hereafter we revert to the original notation which distinguishes betweenH and H(j). The
threshold set ofH is defined by

t~H !5 ø
a.$0%

sdisc~Ha!. ~5.24!

With S(H) we denote the lowest threshold ofH ~formerly calledS in Theorem 3.1!.
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Theorem 5.4:10 Suppose that V is a dilation-analytic N-body potential, jPJ and 0
,uIm(j)u,p/2. Let SH(j) be the complex sector

SH~j!5@S~H !,`!1e22jR1.

Then

~a! sess(H(j)),SH(j);
~b! s(H(j))\SH(j)5sdisc(H);
~c! t(H)5t(H(j))ùR; and
~d! t(H) is closed and countable. The nonthreshold eigenvalues of H are the discrete

eigenvalues of H(j). They have finite multiplicities and can accumulate only at threshold
H.

Proof: Proceeding by induction we assume that~a! and ~b! hold for Ha if a.$0%. For a
5X this is trivial. ~b! follows from ~a! and Theorem 5.2.~a! Let a.$0%. By the induction
hypothesis

s~Ha~j!!,sdisc~Ha!øSHa~j!,SH~j! .

Therefore, by ~5.20!, s(Ha(j)),SH(j) for all a.$0% which proves ~a!. ~c! Let l
Pt(H(j))ùR. Thenl is a discrete, real eigenvalue ofHa(j) for somea.$0% and therefore an
eigenvalue ofHa by Theorem 5.2. This proves thatt(H).t(H(j))ùR. Now let lPt(H). Then
l is an eigenvalue ofHa for somea.$0%. By the induction hypothesist(Ha)5t(Ha(j))ùR.
ThereforelPt(Ha) implies lPt(H(j))ùR. If l¹t(Ha), thenl is a real, discrete eigenvalu
of Ha(j) which also implieslPt(H(j))ùR. ~d! t(H) is countable by its definition. By~c! it is
equal tosess(H(j))ùR which is closed. The rest of~d! follows directly from ~b! and from
Theorem 5.2. h

1. Discussion

In the picture ofs(H(j)) ~Fig. 7!, drawn for Im (j).0, we have indicated the pointsD
5discrete eigenvalue ofH; E5embedded non-threshold eigenvalue ofH; T5thresholds ofH,
among them 0 andS(H); R5discrete, complex eigenvalue ofH(j) ~resonance!; and S
5complex threshold ofH(j).

The essential spectrum ofH(j) is a closed, countable union of parallel rays emerging fr
the thresholds ofH(j). The picture does not show possible accumulations of thresholds
eigenvalues and is therefore deceptively simple. Under a change of Im (j) the pointsR, S remain
fixed as long as they are not touched by one of the rays forming the essential spectrum ofH(j).
However, in the sectors swept by these rays the spectrum ofH(s) may be altered completely
This indicates that the meromorphic extensions of (f,(z2H)21c) acrossI live on a complicated
Riemann surface with branch pointsT, S.

FIG. 7. The spectrum ofH(j).
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C. Resonances arising from bound states

Spectral deformation is particularly useful to study the perturbation of eigenvalues emb
in the continuous spectrum. LetHk5H1kV be a family of self-adjoint operators, defined fo
small kPR, and suppose that there exists a corresponding family

Hk~j!5U~j!HkU~j!215H~j!1kV~j!

satisfying the analyticity and spectral conditions uniformly for smallk. Let lPI ,s(H) be an
embedded eigenvalue ofH. After spectral deformationl becomes a discrete, semi-simple eige
value ofH(j), whose perturbation bykV(j) may be studied by standard methods. We consi
the simplest case whereV(j) is bounded relative toH(j) so that analytic perturbation theory fo
semi-simple, discrete eigenvalues applies65 ~see Fig. 8!.

For smallk the operatorHk(j) has a group of eigenvalueslk¹G1 which converge tol as
k→0. Thelk are the eigenvalues of a finite-rank operatora(k) acting on the unperturbed eigen
space RanP(j), whereP(j) is the eigenprojection ofH(j) corresponding to the eigenvaluel.
For smallk the operatora(k) has a convergent Rayleigh–Schro¨dinger expansion:65

a~k!5a01a1k1a2k21¯ ;

a05lP~j!;
~5.25!

a15P~j!V~j!P~j!;

a25P~j!V~j!R̄~l,j!V~j!P~j!.

Here R̄(z,j) is the reduced resolvent

R̄~z,j!5R~z,j!~12P~j!!, R~z,j!5~z2H~j!!21, ~5.26!

which is holomorphic inz near l. The important point is that the description~5.25! of the
perturbed eigenvalues can be reformulated entirely in terms ofH and V without reference to
spectral deformation. This is the essence of the following theorem due to Simon96 for which we
first state a more precise hypothesis.

1. Hypothesis

H(j)5U(j)HU(j)21 satisfies the analyticity and spectral conditions stated at the begin
of this section.V is symmetric and bounded relative toH, so thatB[VR(z0) is bounded.
Moreover, it is assumed that the family of bounded operatorsB(j)5U(j)BU(j)21, jPR, has a
bounded-holomorphic extension to alljPJ. ThenV(j) is defined byV(j)5B(j)(z02H(j)),
which is bounded relative toH(j). We remark that by Lemma 5.1

B~j!5U~j!BU~j!21 on D~U~j!21!.

FIG. 8. Perturbation of a real eigenvalue ofH(j).
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Theorem 5.5:96 Under the previous hypothesis letlPI be an eigenvalue of H with eigen
projection P. Then the corresponding perturbed eigenvalueslk of Hk(j) are the eigenvalues o
the finite rank operator

b~k!5U~j!21a~k!U~j!uRan(P) ,

which mapsRan(P) into itself. The expansion of b(k) corresponding to (5.25) is

b~k!5b01b1k1b2k21¯ ;

b05lP;
~5.27!

b15PVP;

b25PE ~l2s!21d~PVĒ~s!VP!2 ip
d

ds
~PVĒ~s!VP!s5l0

.

HereP denotes the principal value, and E(̄s)5E(s)(12P) is the reduced spectral family of H.
(The negative imaginary term in b2 is the precise form of the Fermi golden rule.)

Proof: According to Theorem 5.2,U(j) maps Ran(P) onto Ran(P(j)) with the inverse
U(j)21 restricted to Ran(P(j)). Thereforea(k) and b(k) have the same eigenvalues. O
Ran(P) we have

b05lU~j!21P~j!U~j!5lP;

b15U~j!21P~j!B~j!~z02H~j!!P~j!U~j!

5PB~z02H !P5PVP.

By the same argument we can express

b25 lim
«↘0

U~j!21P~j!V~j!R̄~l1 i«,j!V~j!P~j!U~j!

5 lim
«↘0

PVR̄~l1 i«!VP

in terms ofH andV. Using the spectral theorem this can be written as

b25 lim
«↘0

E ~l1 i«2s!21 d~PVĒ~s!VP!.

According to Theorem 5.2~e!, the functions→PVĒ(s)VP is real-analytic in some open interva
D{l. Equation~5.27! thus follows from the identity

lim
«↘0

E
D
ds~l1 i«2s!21f ~s!52 ip f ~l!1PE

D
ds~l2s!21f ~s!,

valid for any integrable functionf on D which is Hölder continuous ats5l. h

2. Exponentially decaying metastable states

In the general framework of spectral deformation it is not clear how to associate long-l
metastable states with resonance eigenvalues ofH. However, for resonances arising from bou
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states, the unperturbed eigenvectors ofH will turn into metastable states under the time evoluti
generated byHk . For simplicity we will treat the case wherel is a nondegenerate eigenvalue
H with normalized eigenvectorc. Following Ref. 51 we will show that

~c,e2 iH ktc!5e2 ilkt1O~k2! ~5.28!

uniformly in 0<t,` as k→0. In this sensec has exponential decay in time governed by t
complex resonance eigenvaluelk .

Theorem 5.6:51 Under the hypothesis of Theorem 5.5, suppose thatl is a simple eigenvalue
of H with normalized eigenvectorc. Let gPC0

`(I ) be a smoothed characteristic function wi
g(x)[1 on some open intervalD{l and such thatl is the only eigenvalue of H insupp (g).
Then

~c,e2 iH ktg~Hk!c!5A~k!e2 ilkt1B~k,t !; ~5.29!

A~k!5~c~ j̄ !,Pk~j!c~j!!511O~k2!; ~5.30!

uB~k,t !u<k2cm~11t !2m ;m.0 ~5.31!

as k→0, uniformly in 0<t,`.
Proof of (5.28):Here we choose 0<g<1. For t50 we obtain from~5.29!–~5.31!

~c,~12g~Hk!!c!5i~12g~Hk!!1/2ci25O~k2!,

and therefore

~c,e2 iH kt~12g~Hk!!c!5O~k2!

uniformly in t. With this estimate~5.28! follows from ~5.29! and ~5.30!. h

Proof of Theorem 5.6:Let Rk(z)5(z2Hk)21. By the spectral theorem

F~ t ![~c,e2 iH ktg~Hk!c!

5 lim
«↘0

1

2p i ER
dx g~x!e2 i tx~c,@Rk~x2 i«!2Rk~x1 i«!#c!. ~5.32!

Using ~5.8! and its adjoint,F(t) can be expressed in terms of (z2Hk(j))215Rk(z,j) as

F~ t !5 f ~ t,j̄ !2 f ~ t,j!;
~5.33!

f ~ t,j!5
1

2p i ER
dx g~x!e2 i tx~c~ j̄ !, Rk~x,j!c~j!!.

Here we have assumed that Im(lk),0. Otherwise the path of integration must be modified b
detour aroundlk in C1, which does not affect the estimates below. Now we splitRk(z,j) into
singular and regular parts:

Rk~z,j!5
Pk~j!

z2lk
1R̄k~z,j!. ~5.34!

By hypothesis we can pick a contourG enclosing supp(g) which separatesl from the rest of
s(H(j)). ~See Fig. 9.! Then, for smallk, G also separateslk from the rest ofs(Hk(j)), so that
R̄k(z,j) is holomorphic inz in the interior ofG. SinceiRk(z,j)i is bounded by a constant fo
small k and allzPG it follows from ~5.34! by the maximum principle that
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iR̄k~z,j!i<const ~5.35!

for small k and allz in the interior ofG.
Inserting~5.34! into ~5.33! we obtain two contributions which are estimated separately.

3. Contribution of the regular part

SincePk(j)R̄k(z,j)50, the contribution of the regular part tof (t,j) is given by

1

2p i ER
dx g~x!e2 i tx~uk~ j̄ !,R̄k~x,j!uk~j!!;

~5.36!
uk~j!5~Pk~j!2P~j!!c~j!5O~k!.

By partial integration this integral is seen to have a bound of the form~5.31! for anym.0, since
the x derivatives ofR̄k(x,j) are powers ofR̄k(x,j) and therefore bounded by~5.35!.

4. Contribution of the singular part

The singular part ofRk(z,j) contributes toF(t) the term

A~k!
1

2p i ER
dx g~x!e2 i tx~x2lk!212A~k!

1

2p i ER
dx g~x!e2 i tx~x2lk!21, ~5.37!

whereA(k) is given by~5.30!.
Sinceg[1 on some open intervalD{l we can deform the path of integration intoC2 as

shown in Fig. 10. From the second integral in~5.37! we then pick up the residue

A~k!e2 ilkt.

The remainder is given by~5.37! with both integrals now taken over the pathg whereg(x)
51 for Im(x),0. Using the identity

P~j!Pk~j!P~j!5P~j!1~Pk~j!2P~j!!~Pk~j!21!~Pk~j!2P~j!!

FIG. 9. Choice of the contourG.

FIG. 10. Deforming the integration contour.
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and the fact that (c( j̄),c(j))5(c,c)51, we see thatA(k)511O(k2). The remainder can
therefore be written in the form

2
Im~lk!

p E
g
dx g~x!e2 i tx~x2lk!21~x2lk!21

1O~k2!E
g
dx g~x!~e2 i tx~x2lk!211eitx~x2lk!21!.

Using that Im(lk)5O(k2) and partial integration as before, we conclude that the remainde
a bound of the form~5.31! for any m.0. h

Notes:Spectral deformation is also discussed in Ref. 81, Vol. IV, and in Ref. 45. For a cr
review of the corresponding notion of resonances see Ref. 98. As a tool to effect a sp
deformation the dilation groupx→ejx on Rn can be replaced by other flows or more gene
distortions.99,86,15,49,34In particular, the Balslev–Combes results hold under the weaker hypot
that only the tails of the intercluster potentialsI a(x) for largeuxua have some analyticity.34 One of
the few perturbative results forN-body systems is the Stark effect44,51,89which requires asymptotic
rather than analytic perturbation theory.50 Another example is the atom coupled to a quantiz
radiation field.9 A time-dependent perturbation approach to the resonance problem was initia
Soffer and Weinstein102 ~see also Ref. 73!. Generally speaking, all results on the existence a
interpretation of resonances so far rely on some sort of perturbation argument.

VI. ESSENTIAL SPECTRUM II. MOURRE’S INEQUALITY

The significance of Mourre’s inequality75,79 for the analysis ofN-body systems can hardly b
exaggerated. As a tool for exploring the nature of the essential spectrum ofH it is both more
general and more powerful than the~formally related! concept of dilation-analyticity. In addition
it provides a direct insight into the propagation properties of continuum states which form
basis for time-dependent scattering theory. As it appears later in Theorem 6.1, Mourre’s ine
has no immediate heuristic appeal. However, the following considerations provide some pr
nary understanding of its form. For trajectoriesc t5e2 iHtc in the continuous spectral subspa
HC we may expect that

^x2& t5~c t ,x2c t!'ut2 ~ t→`! ~6.1!

for some constantu>0. This constant should be equal to the second time derivative of^x2/2& t in
the time mean, or for statesc with sufficiently sharp energy distribution. Noting that

d2

dt2 K x2

2 L
t

5^ i @H,A#& t ;

A5 i FH,
x2

2 G5
1

2
~p•x1x•p!; ~6.2!

i @H,A#5p22~x•¹V~x!!, ~6.3!

we are led to a special case of Mourre’s inequality: ifE is not an eigenvalue ofH, then

BD~H ![ED~H !i @H,A#ED~H !>~u~E!2«!ED~H ! ~6.4!

for someu(E)>0 and any«.0, whereED is the spectral projection ofH for a sufficiently small
open intervalD{E. The Mourre constantu(E) is directly related to the effect of thresholds.
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threshold ofH is an eigenvaluela of Ha for somea.$0%, corresponding to a stationary sta
caPL2(a') of the subsystemHa. In the energy range abovela, we expect the existence o
scattering trajectoriesc t with a behavior like

c t'e2 i (1/2pa
2
1la)tca^ ca ~ t→`!, ~6.5!

wherecaPL2(a) is arbitrary. For such trajectories, with energy distribution sufficiently locali
near some energyE.la, we will have

^x2& t'^xa
2& t'^pa

2&t2'2~E2la!t2 ~ t→`!. ~6.6!

For fixedE all thresholds<E might contribute scattering states with energies localized neaE.
For E.S, the Mourre constantu(E) is in fact twice the distance of E from the highest thresh
<E. Equation~6.4! also holds forE,S if we defineu(E)50. This is trivial if E¹s(H). If E is
an eigenvalue ofH, then^x2& t is constant for the corresponding bound states. In this caseED(H)
reduces to an eigenprojection for smallD, andBD(H)50 follows from thevirial theorem:

~c,i @H,A#f!50 ~6.7!

if c,f are eigenvectors ofH with the same eigenvalueE. Equation~6.7! is formally obvious for
any A5A* , since (c,i @H,A#f)5 iE@(c,Af)2(Ac,f)#50. All these are special cases of
more general Mourre inequality:(6.4) holds for any real E, up to an error term which is a
compact operator. From this powerful inequality we will derive a number of basic results c
cerning the structure of the continuous spectrum ofH:

~i! Eigenvalues away from thresholds have finite multiplicities and can accumulate on
thresholds, and only from below. Since thresholds are eigenvalues of subsystems, it f
that the set of thresholds is closed and countable.

~ii ! Eigenfunctions for nonthreshold eigenvalues decay at least like exp (2uxuA2(l2E), where
l is the lowest threshold.E.

~iii ! H has no eigenvalues~and thus no thresholds! .0.

Later we will exploit Mourre’s inequality to analyze the large time behavior of continuum st
thereby confirming the heuristic arguments used in this introduction.

A. The virial theorem and Mourre’s inequality

We definei @H,A# by the explicit form~6.3! as a Schro¨dinger operator onD(p2), assuming
that thevirial (x•¹V(x)) also satisfies the conditions imposed on the potentialV(x). Then the
virial theorem~6.7! can be proven by using some regularization ofA, e.g.,

A→A«5 1
2 ~p•xe2«x2

1e2«x2
x•p! ~«.0!. ~6.8!

HereA« is bounded relative top2, andi @H,A«# is defined by an expression similar to~6.3!. The
formal argument given for~6.7! is correct forA« , sincec,fPD(A«). Thus (c,i @H,A«#f)50,
and ~6.7! follows in the limit «→0.

Definition: A threshold of His an eigenvalue ofHa for somea.$0%. t(H) is the set of all
thresholds ofH. TheMourre constantu(E) is defined for any realE by

u~E!5H 0 for E,S;

inf
lPt(H);l<E

2~E2l! for E>S. ~6.9!

Theorem 6.1:75,79 Suppose that the virial(x•¹V(x)) satisfies the same condition as th
potential V(x). Let i@H,A# be defined by (6.3), and let ED(H) be the spectral projection of H fo
an intervalD. Then we have the following.
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( i ) Given EPR and«.0, there exists an open intervalD{E and a compact operator K suc
that

BD~H ![ED~H !i @H,A#ED~H !>~u~E!2«! ED~H !1K. ~6.10!

( i i ) Nonthreshold eigenvalues of H have finite multiplicities and can accumulate on
thresholds. Thereforet(H) is closed and countable.

Notation: We will use the abbreviation ‘‘D{E’’ to say thatD is an open interval containing
E and ‘‘D→$E% ’’ for a sequence of such intervals with lengthuDu→0.

Corollary: Equation~6.4! follows from ~6.10! if E is not an eigenvalue ofH.
Proof: Multiplying ~6.10! from both sides byED(H) we see thatK may be replaced by

EDKED . Then we letD→$E% while keepingK fixed. SinceE is not an eigenvalue ofH,

ED(H)→
s

0 and thereforeiKED(H)i→0. h

Proof of Theorem 6.1:32 We proceed by induction in subsystems, assuming that Theorem
holds for allHa with a.$0% in the following form:t(Ha) consists of the eigenvalues of allHb

with b.a, ua(E) is defined with respect tot(Ha), and~6.10! reads

BD~Ha!>~ua~E!2«!ED~Ha!1K on L2~a'!, ~6.11!

whereBD(Ha)5ED(Ha) i @Ha,Aa#ED(Ha); i @Ha,Aa#52Da2(xa
•¹Va(xa)). This induction hy-

pothesis is trivially satisfied fora5X.
Lemma 6.2: Part (ii) of Theorem 6.1 follows from part (i).
Proof: By part ~ii ! of the induction hypothesis,t(H) is closed and countable. LetEn→E be

an infinite sequence of eigenvalues ofH with orthonormal eigenvectorscn . From Theorem 2.1
we know thatE>S, so thatu(E)50 impliesEPt(H). By ~6.7! and ~6.11!,

0>~u~E!2«!1~cn ,Kcn!

for any «.0 and largen. Since cn→
w

0 we haveiKcni→0 and thereforeu(E)50, i.e., E
Pt(H). h

Lemma 6.3:

BD~Ha!>~u~E!2«!ED~Ha! ~6.12!

for any EPR, any «.0 and someD{E.
Proof: If E is not an eigenvalue ofHa we haveBD(Ha)>(ua(E)2«)ED(Ha) by the induc-

tion hypothesis and by the Corollary to Theorem 6.1, and~6.12! follows sinceua(E)>u(E). Now
let E be an eigenvalue ofHa with eigenprojectionP. Then we have to prove~6.12! with u(E)
50. Since dim(P)5` is not excluded, we representP as a strong limit of finite rank projection
Pn<P. We abbreviateBD(Ha)[BD and ED(Ha)[ED . By the virial theorem PnBDP
5PnPBDP50, so that

BD5~12Pn!BD~12Pn!1PnBD~12P!1~12P!BDPn .

Using ~6.11! in the formBD>2«1EDKED to estimate the first term on the rhs, we obtain

BD>2«2iK~P2Pn!i2iKED~12P!i22iPnBD~12P!i .

SinceK andPnBD are compact, and sinceED(12P)→
s

0 asD→$E%, we can first fixn and then
D to make the last three norms arbitrarily small, and multiplying the result from both sides
ED proves~6.12!. h

Lemma 6.4: Given a compact I,R and«.0, there existsd.0 such that

BD~Ha!>~u~E1«!22«!ED~Ha! ~6.13!
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for any EPI and anyD{E of lengthuDu,d.
Proof: Suppose this is false. Then~6.13! is violated for some sequenceEn→E in I and

correspondingDn{En with uDnu→0. From~6.12! we obtain

BD~Ha!>S u~E!2
«

2DED~Ha! ~6.14!

for someD{E. Let n be so large thatuEn2Eu,«/2 andDn,D. Sinceu(E1x)<u(E)1x for
any x>0, we then have

u~E!>u~En1«!2«1E2En>u~En1«!23
«

2
.

From this, Dn,D and ~6.14! we deduce thatBDn
(Ha)>(u(En1«)22«)EDn

(Ha), which
contradicts our assumption. h

Lemma 6.5:

BD~Ha!>~u~E1«!22«!ED~Ha! ~6.15!

for any EPR, any «.0 and someD{E.
Proof: We represent the functionsc(x)5c(xa ,xa) by their partial Fourier transforms with

respect toxa , i.e., by functionscF(k) on a taking values inL2(a'). In this representation:

~c,f!5E
a
dk~cF~k!,fF~k!!L2(a') ;

~Hac!F~k!5S k2

2
1HaDcF~k!;

~ED~Ha!c!F~k!5ED2k2/2~Ha!cF~k!;

~ i @Ha ,A#c!F~k!5~k21 i @Ha,Aa# !cF~k!.

For c5ED(Ha)c we thus obtain

~c,BD~Ha!c!5E
a
dk~cF~k!,~k21BD2 k2/2~Ha!!cF~k!!L2(a') .

Since Ha is bounded from below, the integrand has compact support:cF(k)
5ED2 k2/2(H

a)cF(k)50 for largek2. By ~6.13! it thus has a lower bound

S k21uS E2
k2

2
1« D22« D icF~k!i2>~u~E1«!22«!icF~k!i2

which proves~6.15!. h

Proof of (6.10):Let f PC0
`(D) be real withf 51 on someD1{E. Applying the localization

formula ~3.20! to the Schro¨dinger operatori @H,A#, we obtain in analogy to~3.21!

f ~H !i @H,A# f ~H !5(
a

f ~H ! j ai @Ha ,A# j af ~H !1compact.

We note that

L[ f ~H ! j a2 j af ~Ha! is compact ~6.16!
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for any f PC0
`(R). In fact, by the Helffer–Sjo¨strand formula~9.1!, it suffices to verify that

j a~z2H !212~z2Ha!21 j a5~z2Ha!21~ 1
2 @ j a ,p2#1I aj a!~z2H !21

is compact. This follows from local compactness since both¹ j a(x) and I a(x) j a(x) vanish as
uxu→`. Using ~6.16! and ~6.15! we arrive at

f ~H !i @H,A# f ~H !>~u~E1«!22«! f ~H !21compact.

Multiplying both sides withED1
(H) we obtain

BD1
~H !>~u~E1«!22«!ED1

~H !1compact.

This is equivalent to~6.10!, sinceu(E1«)5u(E)1« for small « if E¹t(H). h

We now give a precise form of the estimate~6.1! which plays an important role in scatterin
theory. A finite, open intervalD will be called aMourre interval if

ED~H !i @H,A#ED~H !>uED~H ! for some u.0. ~6.17!

Let HD[Ran(ED(H)). Then~6.17! implies

lim
t→`

infK x2

t2 L
t

>u.0 ~6.18!

for all initial statesc in the domainHDùD(uxu), which is invariant undere2 iHt and dense inHD .
By the virial theorem a Mourre intervalD contains no eigenvalue ofH so thatHD,HC . If E is
not an eigenvalue nor a threshold ofH, thenE is contained in a Mourre interval by~6.4!. Since
the set of eigenvalues and thresholds is closed and countable, it follows thatthe spectral subspace
HD ~D a Mourre interval! span a dense linear set inHC .

B. Exponential bounds for eigenfunctions and absence of positive eigenvalues

As a first application of Mourre’s inequality we prove the following results of Froese, He
and Perry:

Theorem 6.6:31 Under the hypothesis of Theorem 6.1, let Hc5Ec and

a5sup$bPRuebrcPL2~X!%, ~r 5uxu!.

Then E1 1/2a2 is either infinite or a threshold of H.
Proof: The proof is indirect: we assume 0<a,` andE1 1/2a2¹t(H), which will lead to

a contradiction. We construct a sequence of smooth, bounded functionsFn(x) which approximate
F(x)5ar from above in successively larger regions:

Fn~x!5anr j ~r !~12 j ~«nr !!. ~6.19!

Here j (r ) is a smoothed characteristic function of$r .1%, an is some sequence withan↘a, and
«n↘0 is chosen such that

ieFnci→`. ~6.20!

We define

cn5eFncieFnci21; ^•••&n5~cn , . . . ,cn!. ~6.21!

Lemma 6.7: (i)cn→
w

0. (ii) p 2cn→
w

0. (iii) iG(x)cni→0, and iG(x)(11p2)1/2cni→0 for any
function GPL`(X) which vanishes at̀ .
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Proof: ~i! follows from ~6.18!; ~iii ! follows from ~ii ! and from the compactness property~2.6!.
To prove~ii ! it remains to show thatip2cni is bounded. We set

Hn5eFnHe2Fn5H2 1
2 u¹Fnu21 ign ; ~6.22!

gn5 1
2 ~¹Fn•p1p•¹Fn!. ~6.23!

ThenHncn5Ecn , andE5Rê Hn&n5^H&n2 1/2^u¹Fnu2&n . Since¹Fn(x) is uniformly bounded
in (n,x), we obtain successive bounds for^H&n , ^p2&n , igncni , iHcni and ip2cni .

h

Remark:In the following estimates we will need higher derivatives ofFn(x). They are of the
form

Fn,k1 , . . . ,ks
~x!5anS ]sr

]xk1
¯ ]xks

D j ~r !~12 j ~«nr !!, ~6.24!

plus terms of fixed compact support@involving derivatives of j (r )], plus terms of order«n

@involving derivatives ofj («nr )]. By Lemma 6.7~iii !, and since«n→0, these terms will give no
contributions in the limitn→` to the expectation values^¯ &n estimated later. The same is tru
for the leading term~6.24! if s.1, since it is of orderr 12s as r→`.

Lemma 6.8:

lim
n→`

i~H2 1
2 a22E!cni50.

Proof:

05^~Hn* 2E!~Hn2E!&n

5^~H2 1
2 u¹Fnu22E!2&n1^gn

2&n1^ i @H2 1
2 u¹Fnu2,gn#&n . ~6.25!

We show that the third term vanishes asn→`. By the remark above we need only consid
^ i @V,gn#&n52^¹V•¹Fn&n since the other commutators involve higher derivatives ofFn . By
~6.24!,

lim
n→`

^¹V•¹Fn&n5 lim
n→`

^~x•¹V!r 21 j ~r !&n50,

sincex•¹V(x) is p2-bounded andr 21 j (r )→0 asr→`. Because the first two terms in~6.25! are
positive, we now have limn→`i(H2 1/2u¹Fnu22E)cni50. Therefore it suffices to show tha
i(an2u¹Fnu)cni→0. By Lemma 6.7, the contribution from any bounded region to this no
vanishes asn→`, so we need only show thatanI n→0 for I n5i j («nr )cni . This is trivial if a
50. Otherwise, we splitI n into contributions from the regionsj («nr ),d and j («nr ).d, obtain-
ing I n<d1iean(12d)rc)iieFnci21. This bound becomes arbitrarily small by first fixingd small
and thenn sufficiently large, since eventuallyan(12d),a. h

Lemma 6.9:

lim inf
n→`

^ i @H,A#&n.0.

Proof: Let B5 i @H,A#. SinceE1 1/2a2¹t(H), we have a Mourre inequality:

^ED~H !BED~H !&n>u^ED~H !&n1^K&n ~6.26!
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with u.0 and compactK, for some intervalD5(E1 a2/22«,E1 a2/21«). By Lemma 6.7,

^K&n→0 for n→`. SettingĒD512ED we also obtain

iĒDcni<«21i~H2 1
2 a22E!cni→0 ~6.27!

from Lemma 6.8. Noŵ B&n>^EDBED&n2iĒDcni(2iBEDi1iBĒDcni). By ~6.27! the second
term vanishes asn→`, sinceHcn is bounded. Therefore

lim inf
n→`

^B&n> lim inf
n→`

^EDBED&n> lim inf
n→`

u^ED&nu.0.

h

The next statement is in contradiction to Lemma 6.9 and thus completes the proof of Th
6.6:

Lemma 6.10:

lim sup
n→`

^ i @H,A#&n<0.

Proof: From the identity 052 Im(Acn ,(Hn2E)cn) we obtain

^ i @H,A#&n5 1
2 ^ i @ u¹Fnu2,A#&n22 Rê gnA&n .

The only contribution involving only first order derivatives ofFn is

2^pk~xkFn,l1Fn,kxl !pl&n .

By ~6.24! this is equal to

22anK ~p•x!
j ~r !

r
~x•p!L

n

<0,

modulo terms vanishing asn→`. h

Theorem 6.11:78 Under the hypothesis of Theorem 6.1, eigenvalues can accumulate at th
olds only from below.

Proof: Proceeding inductively, we assume that thresholds can accumulate at a given thr
E only from below: there is an interval (E, . . . ,E1 1/2a2# (a.0) containing no thresholds
Now suppose there is an infinite sequence of eigenvaluesEn↘E in this interval, with correspond-

ing orthonormal eigenfunctionsfn→
w

0. This leads to a contradiction. The proof is a straight co
of the proof of Theorem 6.6. The functionF(x)[ar j (r ) corresponds to the functionsFn(x) of
~6.17! for an5a and «n50. By Theorem 6.6,eFfnPL2(X). Thereforecn5eFfnieFfni21

→
w

0, and the rest of the proof~Lemmas 6.7–6.10! goes through with minimal changes: as
eigenvalue,E is replaced byEn . h

Theorem 6.12:31 Under the hypothesis of Theorem 6.1, H has no eigenvalue E.0.
Proof: Since thresholds arise from eigenvalues of subsystems, we can proceed by ind

assuming thatH has no positive threshold, we prove thatH has no positive eigenvalue. The pro
is again indirect: we derive a contradiction fromHc5Ec; E.0. By Theorem 6.6,earc
PL2(X) for any a.0. We first fixr such that

E
r ,r

dx ucu2<E
r .2r

dx ucu2, ~6.28!

Then we choose aC`-function F(r )<r , with F8(r )>0, andF(r )5r for r .r, and we define
ca5eaFcieaFci21; ^ . . . &a5(ca , . . .ca). By ~6.28!,
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E
r ,r

dx ucau2<e22ar. ~6.29!

Lemma 6.13: For some constant c1 and all a.0,

^H&a[~ca ,Hca!>E1
a2

2
2c1a2e22ar. ~6.30!

Proof: We define

Ha5eaFHe2aF5H2
a2

2
u¹Fu21 iag;g5

1

2
~¹F•p1p•¹F !.

Then Haca5Eca and ^H&a5E1 (a2/2) ^u¹Fu2&a . Sinceu¹Fu251 for r .r, we obtain from
~6.29! u^u¹Fu2&a21u<c1e22ar. h

Lemma 6.14: For some constants c2 , c3 and all a.0,

^ i @H,A#&a5^p2&a2^x•¹V~x!&a<c2a2e22ar1ac3 . ~6.31!

Proof: From the identity 052 Im(Aca ,(Ha2E)ca) we obtain

^ i @H,A#&a5
a2

2
^ i @ u¹Fu2,A#&a22a Rê gA&a .

Sinceu¹Fu251 for r .r, the first term is bounded byc2a2 exp(22ar). For the second term we
compute

2 Re~gA!5pk~xkF, l1F,kxl !pl2
d

2
F, l l 2

1

2
xkF, l lk ,

whered5dim(X). The first term is positive sinceF, l5xlr
21F8(r ), F8(r )>0, and the remaining

two terms are bounded. h

Completion of the proof of Theorem 6.12:Subtracting~6.30! from ~6.31! we arrive at

1
2 ^p2&a2^V&a2^x•¹V~x!&a<2E2 1

2 a21~c11c2!a2e22ar1ac3 .

This is a contradiction: the left-hand side is bounded below, while the right-hand side goes t2`
for a→`. h

Notes:The use of the dilation generatorA in Mourre’s inequality is as arbitrary as the use
the dilation group to effect a spectral deformation. The following variant of Theorem 6.1 is d
Skibsted,100 a simpler proof suggested by Graf is given in Ref. 39. The starting point is to rep
the observablex2 in ~6.1! by a convex functionG(x) with the same growth:

c1x2<G~x!<c2x2. ~6.32!

Then ~6.2! and ~6.3! take the form

A5
i

2
@H,G#5

1

2
~p•¹G1¹G•p!,

~6.33!

i @H,A#5pG9p2 1
2 D2G2¹G•¹V~x!,
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where~in Cartesian coordinates! pG9p[piG,ikpk>0 by the convexity ofG. The proof of Theo-
rem 6.1 in this case is based on a special construction of the functionG(x) due to Graf.38 Up to
a regularizationG(x) is given by

G~x!5max
aPL

~xa
21«a! ~6.34!

for a suitable choice of the parameters«a . This construction is similar to~and in fact the model
of! a later construction by Yafaev116 which we discuss more fully in Sec. VII. In particular th
«a’s can be adjusted so that only the tails of the intercluster potentialsI a(x) enter into~6.33!. As
a result Theorem 6.1 holds in exactly the same form and with the same definition ofu(E)
provided only that¹I a(x) exists for largeuxua with

u¹I a~x!u5o~ uxua
21! as uxua→`. ~6.35!

This generalization of Mourre’s theorem avoids a global condition on¹V(x), so that potentials
with strong singularities~e.g., hard cores! can be allowed. And sinceG(x) andx2 have the same
growth, most of the applications of Mourre’s inequality hold under the weaker hypothesis~6.35!.39

VII. SCATTERING THEORY

A. Scattering states

The existence and the asymptotic form of scattering orbitsc t for t→` depends crucially on
the rate at which the intercluster potentialsI a(x) vanish for large separation. We will state su
fall-off conditions in the form

]x
kI a~x!5O~ uxua

2m2uku!, uxua→`, ~7.1!

with k a multi-index. The required values ofm.0 and uku will be specified according to the
context.

1. Short-range systems: mÌ1

Here outgoing scattering statesc are characterized by the asymptotic condition

c t5e2 iHtc→
ii

(
aPL

e2 iH atwa ~ t→1`!;waPHa[L2~a! ^ HB~Ha!, ~7.2!

whereHB(Ha) is the subspace ofL2(a') spanned by the eigenvectors ofHa. Each term in the
sum~7.2! represents a surface wave inX propagating freely along the channela,X or, viewed in
R3, a free motion of independent bound clusters. For convenience we have included the
state channela5$0%: if cPHB(H), then~7.2! holds trivially with w$0%5c, wa50 for a.$0%.
The existence of a unique scattering statec for any given set$wa% is one of the earliest results i
N-body scattering theory:40 if I a(x)5O(uxua

2m), m.1, then the wave operators

Va
15s2 lim

t→1`

eiHte2 iH at ~7.3!

exist onHa , so that~7.2! holds for

c5(
a

Va
1wa .

The wave operators are isometric fromHa to H. Moreover, their rangesH a
15Ran(Va

1) satisfy

H a
1'H b

1 ~aÞb!,
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expressing the fact that

lim
t→1`

~e2 iH atwa ,e2 iH btwb!50 ~aÞb!. ~7.4!

Therefore, the outgoing scattering states form a closed subspace

H 15 %
aPL

‘ H a
1,H.

The proofs of~7.3! and~7.4! involve only the free center-of-mass motion of the clusters~see e.g.,
Ref. 81, Vol. III!.

Since the early days of scattering theory, when this formalism was developed~e.g., in Ref. 60!
the main fundamental problem was to prove the conjecture ofasymptotic completeness, i.e., th
conjecture that every statecPH is an outgoing scattering state in the sense of~7.2!. This
problem was first solved by Sigal and Soffer:91

Theorem 7.1:91,38,116,103,52Under the hypothesis of Theorem 6.1 and if

uI a~x!u5O~ uxua
2m!, m.1, ~7.5!

thenH 15H.
By time reversal the same result holds for the subspaceH 2 of incoming scattering states

defined by an asymptotic condition of the form~7.2! for t→2`. This means that every orbitc t

of the system has an asymptotic form~7.2! in both time directions.

2. Long-range systems: „mÏ1…

For m not too small it is known22,12 that the appropriate asymptotic condition generaliz
~7.2! is

c t5e2 iHtc→
ii
(

a
e2 iH at2 iaa,t(pa)wa ~ t→t`! ~7.6!

with waPHa as before. Compared to~7.2! only the free center-of-mass propagator of the fra
ments in channela is modified from

e2 ~ i /2! pa
2t to e2 ~ i /2! pa

2t2 iaa,t(pa),

which still conserves the momentumpa . Herea t(pa) is an adiabatic phase arising from the fa
that classically the fragments are located atxa5pat(11O(t2m)) ~as t→`), so that

I a~x!5I a~pat !1O~ t22m!, ~7.7!

provided that¹I a(x)5O(uxua
2m21) as uxua→`. For 2m.1 the error term in~7.7! decays inte-

grably in time, while the leading term is of ordert2m and therefore not integrable ifm<1.
According to this classical picture the ansatz

aa,t~pa!5E t

dsIa~pas!

should work form. 1
2. The reason why we have not fully definedaa,t(pa) is twofold. First, it is

clear that the modified propagator is insensitive to a change ofaa,t(•) on a null set ofa. This
allows us to restrictpa to the seta* ~3.9!, where I a(pas) indeed decays likes2m. Second,
aa,t(pa) is arbitrary within gauge transformations of the kind

aa,t~pa!→aa,t~pa!1 f t~pa!
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if lim t→` f t(pa)5 f `(pa) exists, since in~7.6! the phasef `(pa) can be absorbed inwa . This is
why the integrable error in~7.7! has no effect and why~7.6! is equivalent to~7.2! if m.1. A
complete definition ofaa,t(pa) modulo gauge transformations is therefore

aa,t~pa!5E
Rupaua

21

t

dsIa~pas! ~paPa* !, ~7.8!

if, for uxua.R, uI a(x)u<constuxua
2m . For a5$0% we havepa50 and we seta$o%,t50. An impor-

tant example is a system of charged particles~the Coulomb case!. Then forpaPa*

I a~pat !5t21 (
a,b

eaebU pa

ma
2

pb

mb
U21

,

where the sum runs over allpairs of clustersin the channela with ~total! chargesea , massesma

and momentapaPR3. A corresponding phaseaa,t(pa) is obtained by changing the factort21 to
log(t). @This phase differs from~7.8! by a gauge transformation.# The formulas~7.2!–~7.4! can
now be transcribed to the long-range case simply by replacing

Ha→Ha1aa,t~pa!. ~7.9!

The existence ofVa
1 is more difficult to prove than in the short-range case. In fact the first gen

proofs ~without ad hocassumptions on the fall-off of bound state wave functions! appeared as
by-products of the proofs of asymptotic completeness.

Theorem 7.2:19 If (7.1) holds foruku<2 and somem.)21, thenH 15H.
This is the result first obtained by Derezin´ski.19 A proof for the Coulomb casem51 was also

given by Sigal and Soffer.95 The borderlinem5)21 was identified previously by Enss.28 Other
proofs are given in Refs. 122 and 52. In this review we give the proof of Theorem 7.1, follo
by an outline of the strategy used in the long-range case. The common basis for both proofs
propagation estimates and the asymptotic observables discussed in the next two sections
are based in Ref. 52.

B. Propagation observables and propagation estimates

Mourre’s inequality in the integrated form~6.18! only states that the expectation valu
^x2& t5(c t ,x2c t) diverges quadratically int ast→` for any initial statecPHD , whereD is any
Mourre interval. To derive from this the detailed asymptotic form~7.2! or ~7.6! of c t , it is
necessary to construct a set of phase-space propagation observablesf t(x,p) which control the
asymptotic propagation into all possible channels. The basic technique for deriving the
sponding propagation estimates requires that the Heisenberg derivative off t is essentially posi-
tive, in the sense that

Dtf t[ i @H,f t#1] tf t5Pt1Rt ,

where Pt>0 and iRti5O(t2r), r.1. If f t is uniformly bounded int, it then follows by
integration that

E
0

`

dt^Pt& t<constici2,

where^Pt& t5(c t ,Ptc t)>0. This is the type of propagation estimate which forms the basis o
proofs of asymptotic completeness.

1. The Graf –Yafaev construction

The following geometric construction inX was introduced by Graf,38 then simplified in Ref.
19, and later modified by Yafaev.116 Following Ref. 52 we use a time-dependent version
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Yafaev’s construction, which results in a functiongt(x); xPX, t.0. The motivation for the
construction will become evident when we introduce phase space observables built ongt(x). Let
s be a positive, decreasing function onL:

s$0%.sa.sb.sX51

for $0%,a,b,X, to be adjusted in the course of the construction. We define

f a~x!5H s$0% ~a5$0%!;

sauxau ~a.$0%!.

Then the prototype of the time-independent Graf–Yafaev functiong(x) is given by

g~x,s!5max
aPL

f a~x!. ~7.10!

A radial section ofg(x,s) is shown in Fig. 11 for a directionxPa.
Hereg(x,s) is convex, constant on some compact set containing the balluxu,1, and homo-

geneous of degree 1 in the complement of this set. We decomposeg(x,s) into maximal pieces:

g~x,s!5 (
aPL

ga~x,s!; ga~x,s!5H f a~x! if f a~x!5g~x,s!;

0 otherwise.
~7.11!

The pieceg$0%(x,s) has compact support on which it is constant. The piecesga(x,s) for a
.$0% are homogeneous of degree 1 on conical supports whose intersection with a sphuxu
5R>s$0% is shown in Fig. 12. This figure corresponds to Fig. 2 and serves to explain the c

FIG. 11. A radial section ofg(x,s).

FIG. 12. The pieces ofg(x,s).
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of s. Suppose first thatsa5sb5sc51. Then Fig. 12 reduces to Fig. 2 sincesauxau5uxu exactly
if xPa, etc. We now increasesa , sb by arbitrary small amounts. Then the supports ofga , gb

broaden into narrow belts shown in Fig. 12. Now we increasesc to sc.sa , sb , so that supp(gc)
grows to a disc covering the intersection of the two belts. This indicates the general constr
scheme for the functions on L which can be carried out analytically.116,52,39Figure 12, together
with the definition~3.8! of the intercluster distance, suggests what can be achieved: There
~largely arbitrary! choice ofs such that

uxua.luxu on supp~ga! ~7.12!

for somel.0. Moreover, sincega(x,s) is, on its support, a function ofxa ,

¹g~x,s!Pa on supp~ga! ~7.13!

except at boundary points, where¹g(x,s) is discontinuous. This discontinuity is removed by
regularizationg(x,s)→g(x) which preserves convexity:

g~x!5E g~x,m! )
aPL

d~ma2sa! dma ,

where 0,dPC0
`(R) is a regularization of the Dirac distribution with sufficiently narrow suppo

The same regularization is applied toga(x,s), so that

g~x!5 (
aPL

ga~x!. ~7.14!

The effect of this regularization on Fig. 12 is that the boundaries are slightly smeared, but
from these strips the functional form ofg(x) remains the same. For further reference we list
relevant properties ofg andga ~Ref. 116, see also Ref. 52 or 39!:

Lemma 7.3~Properties of g):
(i) g is smooth, convex, and homogeneous of degree 1 outside some ball:uxu.R2 .
(ii) g (x)5g(0) inside some ball:uxu,R1 .
(iii) For any xPsupp(¹g) there exists aPL, a.$0%, such that

¹g~x!Pa and uxua.luxu. ~7.15!

To explain~iii !, consider the boundary pointP shown in Fig. 12: There the intercluster distanc
with respect toa and X are both strictly positive, and after regularization we certainly ha
¹g(P)PX. The functionsga have corresponding propertiesexceptconvexity:

Lemma 7.4 (Properties of ga):
( i ) ga is smooth, and homogeneous of degree 1 foruxu.R2 .
( i i ) g$0% has compact support inuxu,R2 . For a.$0%,ga is supported inuxu.R1 , and uxua

.luxu on supp(ga).
( i i i ) ¹ga is supported inuxu.R1 . For any xPsupp(¹ga) there exists bPL, b.$0% such

that

¹gaPb and uxub>luxu. ~7.16!

( iv) For each aPL there exists a function g˜ sharing the properties of g given in Lemma 7
and such that the Hessians ga9 and g̃9 satisfy

6ga9<g̃9.
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2. The basic propagation estimate

All our propagation observables are derived from

gt~x![tdg~ t2dx!, 0,d,1, ~7.17!

for t.0. By Lemma 7.3gt is smooth and convex inx,

gt~x!5H tdg~0! ~ uxu,tdR1!,

g~x! ~ uxu.tdR2!,

and, sinceg has bounded derivatives,

]x
kgt~x!5O~ td(12uku)!, ] t

kgt~x!5O~ td2k!, ~7.18!

as t→`, uniformly in x. Now we compute

g t[Dtgt5
1
2 ~¹gt•p1p•¹gt!1] tgt ;Dt~g t22] tgt!5pgt9p2 1

4 D2gt2¹gt•¹V2] t
2gt .

~7.19!

In the first term of~7.19! gt9 denotes the Hessian ofgt(x), i.e., pgt9p[pkgt,klpl ~in Cartesian
coordinates!, which is positive due to the convexity ofgt(x). The second and fourth terms are
orderst23d and td22, respectively, uniformly inx. The special geometric properties ofgt(x) are
essential to estimate the remaining term

i @g t ,V#5¹gt•¹I a . ~7.20!

Here¹gt is bounded and has support inuxu.tdR1 . For anyx in this support there existsaPL
such that¹gt(x)Pa anduxua.ltd for somel.0. DecomposingV(x)5Va(xa)1I a(x) it follows
that for t sufficiently large

¹gt~x!•¹V~x!5¹gt•¹I a~x!<constt2d(m11), ~7.21!

if ~7.1! holds for uku51 ~as we assumed in the long-range case!. Then the constant in~7.21! is
independent ofx. As a result

Dt~g t22] tgt!5pgt9p1O~ t2r! ~7.22!

as t→`, with r5min(3d,d(m11),d22). As long asm.0,d can be chosen in 0,d,1 such that
r.1. In the short-range case the occurrence of¹I a can be avoided by treating the commutat
g tV2Vg t directly as a form onD(upu) which ~for the same geometric reason! is seen to be of
order t2dm relative to the formp2 if only uI a(x)u5O(uxua)2m. For m.1 and a proper choice o
d this leads again to~7.22! with r5min(3d,dm,d22).1.

Theorem 7.5:Let c be a constant such that H1c>1. If (7.22) holds in form sense on D(upu)
with r.1, then

E
1

`

dt ^pgt9p& t<const̂H1c&c ;cPD~ upu!. ~7.23!

Proof: Integrating~7.22! over t0<t<t1 with t0 sufficiently large we obtain

E
t0

t1
dt^pgt9p& t<const̂H1c&c

uniformly in t1 . Since the integrand is>0, the limit t1→` exists. h
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C. Asymptotic observables

Corresponding to~7.14! we decompose

gt5(
a

ga,t ; ga,t~x!5tdga~ t2dx!;

~7.24!

g t5(
a

ga,t ; ga,t5Dtga,t .

We also introduce the Heisenberg observables

g~ t !5eiHtgte
2 iHt ; g~ t !5eiHtg te

2 iHt5] tg~ t !, ~7.25!

and similarly forga(t), ga(t). The operatorg(t) is defined onD(upu), both the operatorsg(t)
andg(t) are defined on the domainD(uxu)ùD(upu), which is invariant under exp(2iHt).

Theorem 7.6:Under the hypothesis of Theorem 7.5 the strong limits

g15s2 lim
t→`

g~ t !, ga
15s2 lim

t→`

ga~ t !, ~7.26!

exist on D(upu) and have the following properties:

@g1,H#50, ~7.27!

g15s2 lim
t→`

1

t
g~ t !>0 ~7.28!

on D(uxu)ùD(upu), and similarly forga
1 . In particular,

g$0%
1 50; i .e., g15 (

a.$0%
ga

1 . ~7.29!

Moreover, g1 and ga
1 are independent ofd within the ranges allowed by the hypothesis

Theorem 7.5, since

g15s2 lim
t→`

eiHt
g~x!

t
e2 iHt on D~ uxu!ùD~ upu!, ~7.30!

where g(x) is the unscaled Graf–Yafaev function~and similarly forga
1).

Proof: ~Step 1! Existence ofg1. It suffices to prove strong convergence ofg t on the range of
(H1c)22. First we show that

s2 lim
t→`

eiHtg te
2 iHt~H1c!225s2 lim

t→`

~H1c!21eiHtg te
2 iHt~H1c!21 ~7.31!

if one of these limits exists. Sincei] tgti5O(td21) we can replaceg t by g t2] tgt . Then~7.31!
follows since

i @H,g t2] tgt#5pgt9p2 1
4 D2gt2 i @g t ,V#, ~7.32!

so that by our previous estimates

i@g t2] tgt ,~H1c!21#i→0.

To establish the second limit in~7.31! it suffices to prove convergence of
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w t5~c1H !21eiHt g̃ te
2 iHt~c1H !21c

for all cPH, where we have setg̃ t[g t22] tgt . Then

] tw t5~H1c!21eiHt~Dtg̃ t!e
2 iHt~H1c!21c, ~7.33!

and we show that this is norm-integrable. By~7.19! and by our previous estimatesDtg̃ t5pgt9p,
modulo terms which give integrable contributions. Therefore it remains to prove that

utª~H1c!21eiHtpgt9pe2 iHt~H1c!21c

is norm-integrable over some intervalt0,t,`. Factorizing the positive operatorpgt9p into
pgt9p5Bt

2; Bt5Bt* , we use the Schwarz inequality twice to estimate

I E
t1

t2
dt utI 2

5 sup
ivi51

U E
t1

t2
dt ~v,ut!U2

< sup
ivi51

S E
t1

t2
dt iBte

2 iHt~H1c!21viiBte
2 iHt~H1c!21ci D 2

< sup
ivi51

E
t1

t2
dt iBte

2 iHt~H1c!21vi23E
t1

t2
dt iBte

2 iHt~H1c!21ci2. ~7.34!

By Theorem 7.5 the first factor is bounded uniformly int1 , t2 , and the second factor vanishes
t1,2→`.

~Step 2! Existence ofga
1 . This is proved in the same way with two notable differenc

Instead ofi @g t ,V# we encounter the commutator

i @ga,t ,V#5¹ga,t•¹V.

This commutator is estimated likei @g t ,V#. Second, sincega is not convex,pga,t9 p is not positive.
Therefore we use Lemma 7.4~iv! to split pga,t9 p into positive and negative parts:

pga,t9 p5At
12At

2 with 0<At
6<pg̃t9p.

Treating the contributions fromAt
6 separately, we then factorizeAt

65(Bt
6)2 and use the propa

gation estimate~7.23! for g̃t .
~Step 3! Properties ofg1, ga

1 . Sinceg1 exists, it follows from~7.31! that

g1~H1c!225~H1c!21g1~H1c!21,

i.e., @g1,H#50 ~and similarly forga
1). Using thatg(t)5] tg(t) we have onD(uxu)ùD(upu):

g15s2 lim
t→`

1

t E1

t

ds]sg~s!5s2 lim
t→`

1

t
g~ t !>0

and similarly forga
1 . In particular, sinceig$0%(t)i<consttd,

g$0%
1 5s2 lim

t→`

1

t
g$0%~ t !50.

Equation ~7.30! now follows from ~7.28! and from the fact thatt21igt2gi<consttd21 since
gt(x)5g(x) for uxu>consttd. h

Next we discuss the connection betweeng1 and Mourre’s inequality.
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Lemma 7.7: LetHD be the spectral subspace of H for a Mourre intervalD (6.17). Theng1

reduces to a strictly positive operatorHD→HD . In particular, HD,Ran(g1).
Proof: Sinceg1 is H-bounded and commutes withH it reduces to a bounded operatorHD

→HD . Let cPHDùD(uxu) andc t5e2 iHtc. Then, by~7.27! and ~6.18!

~c,~g1!2c!5 lim
t→`

t22~c,gt~x!2c!> lim
t→`

inf t22~c t ,x2c t!>u.0

sincegt(x)>uxu. h

D. The short-range case

Theorem 7.8: If I a(x)5O(uxua
2m),m.1, then the Deift–Simon wave operators

va
15s2 lim

t→`

eiH atga,te
2 iHt ~7.35!

exist on D(upu) for d satisfyingmin(dm,3d,22d).1.
The nameDeift–Simon wave operatorscomes from Ref. 18 where limits of this general ty

were introduced in scattering theory.
Proof: The proof is almost the same as the proof of the existence ofga

1 . The modifications
are as follows. Instead of~7.31! we first show that

s2 lim
t→`

eiH atga,te
2 iHt~H1c!225s2 lim

t→`

~Ha1c!21eiH atga,te
2 iHt~H1c!21

if one of these limits exists. This follows from

~ga,t2] tga,t!~H1c!212~Ha1c!21~ga,t2] tga,t! ~Ha1c!21

5~@H,ga,t2] tga,t#2I a~ga,t2] tga,t!! ~H1c!21. ~7.36!

The extra term involvingI a gives no contribution in the limitt→` since by Lemma 7.4 (i i )
uI a(x)u<constt2dm on supp(ga,t). Therefore, it suffices to prove convergence of

w t5~Ha1c!21eiH atg̃a,te
2 iHt~H1c!21c,

whereg̃a,t5ga,t22] tga,t . Instead of~7.33! we then obtain

] tw t5~Ha1c!21eiH at~Dtg̃a,t2 i I ag̃a,t!e
2 iHt~H1c!21c.

Here the term involvingI a gives an integrable contribution of ordert2dm. The rest of the proof
goes through because the propagation estimate~7.23! also holds for the dynamics generated
Ha . h

Proof of Theorem 7.1:For cPHB the asymptotic condition~7.2! is trivially satisfied. Since
the subspacesHD ~D a Mourre interval! spanHC it suffices to show that everycPHD is an
outgoing scattering state. Then, by Lemma 7.7 and Theorem 7.6,

c5 (
a.$0%

ga
1w' (

a.$0%
eiHtga,te

2 iHtw,

where the relation' means that the difference of the two related expressions vanishes in no
t→1`. By Theorem 7.8
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c t5e2 iHtc' (
a.$0%

e2 iH ateiH atga,te
2 iHtw

' (
a.$0%

e2 iH atwa ; wa5va
1w. ~7.37!

This last relation is calledasymptotic clustering:the difference from~7.2! is that thewa need not
be inHa . We now invoke the induction hypothesis that asymptotic completeness holds for aHa

with a.$0%, which is trivially satisfied fora5X. This is equivalent to saying that for anywa

PH

e2 iH atwa' (
b>a

e2 iH btwab ; wabPL2~b! ^ HB~Hb!.

Inserting this into~7.37! gives

c t'(
b

e2 iH bt (
a<b

wab ,

which provescPH 1. h

E. The long-range case

A strategy to deal with the long range case was developed in Refs. 93 and 94 and
mented in Refs. 19 and 95. Here we describe it in the form used in Ref. 52 to prove Theore
and we refer to that proof for a central part which is too technical to be discussed in a short r
In the long-range case the occurrence of weakly time-dependent Hamiltonians, e.g., in~7.9!
suggests an inductive scheme for Hamiltonians of the form

Ht5H1Wt~x! on L2~X!, ~7.38!

whereH is the originalN-body Hamiltonian andWt(x) is an external, time-dependent potent
which, in the reduction process described below, will be generated by the long-range tails
intercluster potentialsI a(x). Therefore the conditions onI a(x) andWt(x) are linked in the fol-
lowing way:

u]x
kI a~x!u<constuxua

2m2uku ~ uxua→`!; ~7.39!

u]x,t
k Wt~x!u<const~11t1uxu!2m2uku. ~7.40!

In contrast to~7.39!, the bounds~7.40! are global bounds holding for allxPX and allt.0, anduku
also counts the derivatives with respect tot. The simple reductionH→Ha used in the short-range
case~and inverted in the induction proof of Theorem 7.1! is now broken into several intermedia
steps involving the following time evolutions~for the interval from zero tot.0) and their
generators:

Ut :Ht5H1Wt~x!;

Ũa,t :H̃a,t5Ha1Wa,t~x!;
~7.41!

Ua,t :Ha,t5Ha1Wa,t~pat1xa!;

Ua,t
` :Ha,t

` 5Ha1Wa,t~pat !.

HereWa,t(x) is defined by
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Wa,t~x!5~ I a~x!1Wt~x!!xa,t~x!, ~7.42!

wherexa,t(x) is a smoothed characteristic function of the set

$xuuxu.~11t !dR1 ; uxua>uxu12«% ~7.43!

with «.0 arbitrary small, andR1 is the ~arbitrary large! constant appearing in the Graf–Yafae
construction~Lemmas 7.3 and 7.4!. In the region~7.43! the clusters are separated by a distan
growing like td(12«) so thatWa,t(x) inherits the long-range part ofI a(x) and is nonzero even if we
start withWt(x)[0: this is the reason for the generalized induction scheme. In the evolutionUa,t

the centers-of-mass of the clusters are positioned atxa5pat, corresponding to the classical pictu
~7.7!. The generating HamiltonianHa,t commutes withpa and can therefore be analyzed on fibe
of constantpa5jPa, where it reduces to the operator

Ha,t~j!5Ha1 1
2 ja

21Wa,t~jt1xa! on L2~a'!. ~7.44!

Moreover, it suffices to perform this analysis for the fibersjPa* ~3.9! for which ujtua→` as t
→`. Then the potential Wa,t(jt1xa) on a' essentially inherits the properties (7.40). @The irrel-
evant difference is that the exponent2(m1uku) is changed by a factor (12«) coming from
~7.43!.# This allows an inductive proof of the following theorem which reduces to Theorem 7.
settingWt(x)[0 ~after performing the induction!.

Theorem 7.9: If (7.39) and (7.40) hold for0<uku<2 and somem.)21, any cPH is an
outgoing scattering state in the sense that

Utc →
i i

(
a

e2 iH at2 iaa,t(pa)wa ~ t→1`!, ~7.45!

wherewaPHa5L2(a) ^ HB(Ha) and

aa,t~pa!5E
t0(pa)

t

ds~ I a~pas!1Ws~pas!! ~a.$0%!; a$0%,t5E
0

t

ds Ws~0!. ~7.46!

In the remaining part of this section we describe the main steps of the proof following Re

1. Construction of U t

SinceWt is bounded the operatorsHt are self-adjoint with constant domainD(H)5D(p2).
Therefore,Ht generates a unitary propagatorUt : c→c t for the interval 0,...,t where ^p2& t

<const̂H1c&0. SinceDtx5p it still follows that the domainD(uxu)ùD(p2) is Ut-invariant. A
useful concept is the asymptotic energy

H15 lim
t→`

Ut
21HtUt5 lim

t→`

Ut
21H Ut , ~7.47!

which exists sincei] tWti5O(t2m21) is integrable int. H1 is self-adjoint onD(H) and has the
same spectrum asH.

2. The basic propagation estimate

In ~7.19! the operatorg t remains unchanged buti @g t ,V# receives an additional term¹gt

•¹Wt;t2d(11m). Therefore the propagation estimate~7.23! still holds for d in the range

1
3,d,1 ; d~m11!.1, ~7.48!

provided that~7.39! and ~7.40! hold for somem.0 and uku<1. Under these conditions th
existence of the asymptotic observable
                                                                                                                



ng

is

3495J. Math. Phys., Vol. 41, No. 6, June 2000 The quantum N-body problem

                    
g15s2 lim
t→`

g~ t !; g~ t !5Ut
21g tUt

~and similarly forga
1) follows as before. In the first step of that proof (H1c)22 is replaced by

(H11c)21, which then leads to

@g1,H1#5@ga
1 ,H1#50. ~7.49!

All the other properties ofg1,ga
1 listed in Theorem 7.8 remain unchanged. In particularg1 and

ga
1 are independent of the choice of the scaling parameterd in the range~7.48!.

3. Deift –Simon wave operators

This is the only place where the conditionm.1 was used in the short-range case. Followi
Ref. 20 we factorize

va
1
ªs2 lim

t→`

Ua,t
21ga,tUt5wa

1ṽa
1 ;

wa
15s2 lim

t→`

Ua,t
21Ũa,t ; ~7.50!

ṽa
15s2 lim

t→`

Ũa,t
21ga,tUt .

The limit ṽa
1 is established likeva

1 in the short-range case, but in place of the termI a(ga,t

2] tga,t) in ~7.36! we now obtain

~Ht2H̃a,t!~ga,t2] tgt!5~ I a1Wt!~12xa,t!~ga,t2] tgt!.

This expression vanishes exactly for sufficiently larget, since thenxa,t51 on supp(ga,t). As
a result,ṽa

1 exists ford in the range~7.48!, provided that the limitwa
1 exists ford in the range

1
3,d,1, d~m11!. 3

2, d~m12!.2, ~7.51!

and provided that~7.39! and~7.40! hold for somem. 1
2 anduku<2. The proof20,52uses the identity

] tUa,t
21Ũa,tc52 iU a,t

21@Wa,t~x!2Wa,t~pat1xa!#Ũa,tc,

where the middle factor can be expressed as

@¯#5E
0

1

ds¹aWa,t~sxa1~12s!pat1xa!•~xa2pat !1
i t

2 E
0

1

dsDaWa,t~sxa1~12s!pat1xa!.

This formula comes from evaluating the operator identity

f ~x!2 f ~pt!5E
0

t

ds
d

ds
f ~pt1s~x2pt!!,

which is linear inf and holds forf 5exp(ik•x) by the Campbell–Hausdorff formula. The result
as follows.

Theorem 7.10:For any a.$0% the Deift–Simon wave operator

va
15s2 lim

t→`

Ua,t
21ga,tUt ~7.52!
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exists on D(upu) for d in the range (7.51), provided that (7.39) and (7.40) hold for somem. 1
2 and

uku<2. Asymptotic clustering follows as in the short-range case: ForcPRan (g1)

Utc→
i i

(
a.$0%

Ua,twa ;wa5va
1c ~ t→1`!. ~7.53!

We now come to the induction proof of Theorem 7.9. The induction hypothesis is that asym
completeness in the sense given by Theorem 7.9 holds for the time evolutionUa,t(j) generated by
the Hamiltonian~7.44! for any jPa* . After integrating over the fibersj this amounts to the
hypothesis that for anya.$0% and anywaPH

Ua,twa→
i i

(
b>a

e2 iH bt2 iab,t(pb)wab , wabPHb ,

as t→1`. Inserting this into~7.53! it follows that anycPRan (g1) is an outgoing scattering
state. However, with all this preparation we have only cleared the path to the hard core
long-range problem :to prove that (7.45) also holds ifg1c50.

Theorem 7.11:Let g1c50 and suppose that (7.39) and (7.40) hold for somem.)21 and
uku<1. Then for t→1`

Utc→
i i

e2 iHt 2 i *0
t dsWs(0)w; wPHB~H !. ~7.54!

For a proof we refer to Ref. 52 or to the original proof in Ref. 19~see also Ref. 20, where th
same problem is dealt with in a different form!. Basically the problem arises since strict ener
conservation is lost for the dynamics generated byHt : thresholds and embedded eigenvalues oH
cannot be avoided by restricting the analysis to suitable energy shellsD as in the short-range case
Essentially, a statec with g1c50 propagates underUt in a regionuxu<consttd with 0,d,1,
and ~7.54! shows that this is only possible ifc is a bound state ofH. The still rather involved
estimates which are used to establish this fact also allow us to prove the existence of the
range wave operators in full generality:

Theorem 7.12:19,122,52Suppose that (7.39) and (7.40) hold for somem.)21 and uku<2.
Then the wave operators

Va
15s2 lim

t→`

Ut
21Ua,t

`

exist onHa for all aPL and have mutually orthogonal ranges.
Notes:For a comprehensive treatment of scattering theory of classical and quantumN-particle

systems, see Ref. 21, where many additional references can be found.N-body scattering theory for
potentials with strong~repulsive! singularities is treated in Refs. 56, 11, and 39.

Presently a considerable effort is under way to develop an extension of microlocal an
coveringN-body scattering theory,71,72,41,105–107which in particular leads to a better understandi
of the singularities of theN-body scattering matrix.

VIII. HIGHER ORDER MOURRE THEORY

The results of this section follow from Mourre’s inequality under the additional assump
that the multiple commutators

adA
(k)~H !, k51,...,n, ~8.1!
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are H-bounded for some numbern.1 depending on the context. The analysis will be qu
general, i.e., not restricted toN-body Hamiltonians. However, we will be somewhat cavalier
handling commutators between unbounded operators like~8.1!. For a rigorous treatment of thi
point we refer to Ref. 62 and especially to Ref. 6.

The results onresolvent smoothnessstate that for certain operatorsBPL(H) and for the
resolventR(z)5(z2H)21 the holomorphic functions

z→F~z!5B* R~z!BPL~H! on C65$zu6Im~z!.0% ~8.2!

are bounded and have boundary values

F~x6 i0!5 lim
«↘0

F~x6 i«!PL~H!

in norm sense forx in any Mourre intervalD ~6.17! with a certain degree of smoothness inx.
Boundary values of this type are relevant for many dynamical aspects involving the conti
spectrum ofH, e.g., for the perturbation of embedded eigenvalues~Fermi golden rule! and for the
transition to time-independent scattering theory~which is not yet fully developed forN-body
systems!. The notion oflocal decayis related to resolvent smoothness in the following way
I ,R is compact and covered by~finitely many! Mourre intervals, then it follows from resolven
smoothness that

iB EI~H !R~z!EI~H ! B* i<const ~8.3!

uniformly in zPC6. Therefore, the operatorB EI(H) is H-smooth, which is equivalent to

E
2`

1`

dt iB e2 iHtci2<constici2 ~8.4!

for all c5EI(H)c ~see Ref. 81, Vol. IV, Theorem XIII.25 and Corollary!. Equation~8.4! is
generally referred to aslocal decaysince it was first derived for Schro¨dinger Hamiltonians with
B5(11x2)2a, a. 1

2.
75,79 This result requires~8.1! only for n52 and will be discussed first. Fo

any self-adjoint operatorA we use the notation

^A&[~11A2!1/2. ~8.5!

Theorem 8.1:75,79 Suppose that adA
(k)(H) is H-bounded for k51,2. Let I,R be a compact

interval covered by Mourre intervals, and

I 65$zPC6uRe~z!PI %.

Then for anya. 1
2 the function

F~z!5^A&2aR~z!^A&2aPL~H! ~8.6!

on I6 has the properties

iF~z!i<const; ~8.7!

iF~z!2F~z8!i<constuz2z8ub,b5
2a21

2a11
. ~8.8!

In particular the boundary values F(x6 i0) exist in norm sense for xPI and have bounds cor-
responding to (8.7) and (8.8). Moreover,~8.7! implies the local decay estimate
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E
2`

1`

dt i^A&2ae2 iHtci2<constici2 ~8.9!

for a. 1
2 and allc5EI(H)c.

Corollary 8.2: Let fPC0
`(R) be such thatsupp(f ) is covered by Mourre intervals. Then fo

any a. 1
2 the function

F~z!5^A&2a f ~H !R~z! f ~H !^A&2a,

now defined for all zPC6, also satisfies the estimates (8.7) and (8.8), with corresponding p
erties of the boundary values F(x6 i0) on R.

Proof: It suffices to considera in 1
2,a<1. Let I be a compact interval containing supp (f )

in its interior, but still covered by Mourre intervals. For Re(z)¹I the bounds are trivial. For
Re(z)PI they follow by factorizing

F~z!5^A&2a f ~H !^A&a^A&2aR~z!^A&2a^A&a f ~H !^A&2a,

since

^A&2a f ~H !^A&aPL~H! ~8.10!

for 0<a<1. It suffices to check this fora51; the general case then follows by complex inte
polation~Ref. 81, Vol. II, Appendix to IX. 4!. For a51 one can use, e.g., the Helffer–Sjo¨strand
formula ~9.1! for f (H) and the fact that@H,A# is H-bounded. h

Corollary 8.3: Let H be a Schro¨dinger operator onH5L2(X) and A be the dilation genera
tor. Then^A&2a can be replaced bŷx&2a in Theorem 8.1

Proof: Again it suffices to takea in 1/2,a<1. Let gPC0
`(R), g51 on I and supp(g) still

be covered by Mourre intervals. By factorizing^x&2ag(H)5^x&2ag(H)^A&a
•^A&2a and assum-

ing that

^A&ag~H !^x&2aPL~H!, ~8.11!

it follows that the functionF(z)5^x&2ag(H)R(z)g(H) ^x&2a satisfies~8.7! and ~8.8!. For
Re(z)PI the factorsg(H) can be removed. To prove~8.11! it again suffices to takea51.

h

To prepare the proof of Theorem 8.1 we estimate the resolvent

Rs~z!5~z2Hs!
21; Hs5H2 isB; B5 i @H,A#. ~8.12!

This part uses only the Mourre inequality and the condition thatB is bounded relative toH.
Lemma 8.4: Let I be a compact subset of a Mourre intervalD. If B is H-bounded, there exis

constants s0 ,c1.0 such that

iRs~z!i<c1s21 ~8.13!

for 0,s<s0 , uniformly in zPI 1.
Proof: Let ED5ED(H) and ĒD512ED . For Im (z)>0 the Mourre inequality implies

Im ~ED~z2Hs!ED!>suED .

Therefore,

iED~z2Hs!ui>iED~z2Hs!EDui2siEDBĒDui

>suiEDui2sM1iEDui
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sinceEDB is bounded. If Re (z)PI, then i(z2H)ĒDui>«iĒDui for some«.0. Setting«5As
with s sufficiently small we find

iĒD~z2Hs!ui5i~z2H !ĒD~11 isR~z!B!ui

>s1/2iĒD~11 isR~z!B!ui

>s1/2iĒDui2s3/2M2iui

since ĒDR(z)H and thereforeĒDR(z)B is bounded uniformly inzPI 1. Combining the two
estimates we arrive at

iED~z2Hs!ui1iĒD~z2Hs!ui>~su2s3/2M2!iEDui1~s1/22sM12s3/2M2!iĒDui

>sM~ iEDui1iĒDui !

for someM.0. This implies

i~z2Hs!ui>sc1iui for some c1.0

and ~8.13! follows sincezPr(Hs) for s sufficiently small. h

Lemma 8.5: In the situation of Lemma 8.4, iRs(z)ui2 and iRs* (z)ui2 are bounded by

c2~s21uIm ~u,Rs~z!u!u1iui2! ~8.14!

for all uPH and 0,s<s0 , uniformly in zPI 1.
Proof: Since (z2Hs)2(z2Hs* )52i (Im (z)1sB) for Im (z).0 we obtain the two estimates

1

2is
~Rs* 2Rs!>Rs* BRs ;

1

2is
~Rs* 2Rs!>RsBRs* . ~8.15!

In the first caseRs* BRs is bounded from below as follows:

~u,Rs* BRsu!5~Rsu,EDBEDRsu!1~Rsu,EDBĒDRsu!1~ĒDRsu,BRsu!

>uiEDRsui22M iui~ iRsui1iui !. ~8.16!

The first term comes from the Mourre estimate. In the remainder we have used that

ĒDRs5ĒDR2 isĒDRBRs

is bounded for smalls uniformly in zPI 1. This follows from~8.13! and from the fact thatĒDRB
is bounded. From~8.16! and ~8.15! we obtain

uiEDRsui2< const~s21uIm ~u,Rsu!u1iui iRsui1iui2!,

which implies

iEDRsui2< const~s21uIm ~u,Rsu!u1iui2!. ~8.17!

The bound~8.14! for iRsui2 now follows sinceĒDRs is bounded for smalls uniformly in z
PI 1. The bound~8.14! for iRs* ui2 follows from the second inequality~8.15!. h

Proof of Theorem 8.1:79 We consider the casezPI 1. By a covering argument we can assum
that I is contained in a single Mourre intervalD. We define the operators

rs~A!5^A&2a^sA&a21,
~8.18!

Fs~z!5rs~A!Rs~z!rs~A!,
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for 0,s<s0 ; zPI 1. For Fs(z) we will derive the differential inequality

I d

ds
Fs~z!I< const~11sa21!~s21/2iFs~z!i1/211!. ~8.19!

This inequality gives the bound

iFs~z!i< const, ~8.20!

since the functionsa23/2 is integrable ats50 for a. 1
2. Substituting~8.20! back into~8.19! we

obtain

iF~z!2Fs~z!i< constsa21/2. ~8.21!

The bounds~8.20! and ~8.21! prove ~8.7!. The differential inequality~8.19! is based on the
following estimates. First,

Idrs

ds I< constsa21. ~8.22!

Second, by Lemma 8.5, bothirsRs(z)i and iRs(z)rsi have bounds of the form

const~s21/2iFs~z!i1/211!. ~8.23!

Equation~8.19! is now obtained from

d

ds
Fs~z!5

drs

ds
Rsrs1rsRs

drs

ds
1rs@A,Rs#rs 2 isrsRs@B,A#Rsrs . ~8.24!

We note that in the last term~and only there! the double commutator@@H,A#,A# appears. It
follows from ~8.22! and~8.23! that all terms in~8.24! have bounds of the form~8.19!. In particu-
lar, the term involving@A,Rs# is estimated using

iArsi5irsAi<i^A&12a^sA&a21i< constsa21.

This concludes the proof of~8.7!. By the resolvent identity and~8.23!,

iFs~z!2Fs~z8!i<constuz2z8u irsRs~z!i iRs~z8!rsi

< consts21uz2z8u . ~8.25!

Combining this with~8.21! we find

iF~z!2F~z8!i<iF~z!2Fs~z!i1iFs~z!2Fs~z8!i1iFs~z8!2F~z8!i

< const~sa21/21uz2z8us21!.

Equation~8.8! now follows by settings5uz2z8un, n5(a1 1
2)

21. h

We conclude this section with some results concerning the stability of the preceding est
under small perturbations

H→Hk5H1kV, kPR,

whereV is any symmetric operator such that the commutators
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adA
(k)~V!, k50,...,2, ~8.26!

areH-bounded. HereHk is self-adjoint for smallk andRk(z) denotes the resolvent ofHk . We
begin with the stability of the Mourre estimate~6.17!.

Lemma 8.6: LetD be a Mourre interval for H andD8 a closed subinterval ofD. Then there
exist constantsu8.0 and c.0 such that

ED8~Hk!i @Hk ,A#ED8~Hk!>u8ED8~Hk! ~8.27!

for all k with uku,c.
Proof: Let f PC0

`(D) with f 51 on D8. Equation ~6.17! implies that f (H) i @H,A# f (H)
>u f 2(H). By the Helffer–Sjo¨strand formula

f ~Hk!2 f ~H !5kE d f̃~z!R~z!VRk~z!,

where the integral represents a bounded operatorH→D(H); D(H) equipped with theH-norm.
Therefore, and since@V,A# is H-bounded,

f ~Hk!i @Hk ,A# f ~Hk!>u f 2~Hk!2constk

for small k. Multiplying this from both sides withED8(H) yields ~8.27! with u85u2constk.0
for small k. h

Using this result it is straightforward to extend the estimates leading to Theorem 8.1 froH
to Hk for smallk, with constants independent ofk. We will refer to some of these estimates in t
proof of the following stability result:

Theorem 8.7:In the situation of Theorem 8.1 let Hk5H1kV, where V is symmetric and ha
H-bounded commutators

adA
(k)~V!; k50,...,2.

Let I be a compact interval covered by (finitely many) Mourre intervals. Then fora. 1
2 the

function

~k,z!→Fk~z!5^A&2aRk~z!^A&2aPL~H!,

defined for smallk and zPI 6, has the properties

iFk~z!i<const, ~8.28!

iFk8~z8!2Fk~z!i<const~ uk2k8u1uz2z8u!b, b5
2a21

2a11
. ~8.29!

In particular the boundary values Fk(x6 i0) for xPI exist and are Ho¨lder continuous in(k,x).
Proof: Again we may assume thatI is contained in a Mourre intervalD. We consider the case

I 1 and prove Ho¨lder continuity ink, which is the new element not present in~8.8!. Beginning
with ~8.12! we replaceH by Hk , defining

Hks5Hk2 isBk , Bk5 i @Hk ,A#, Rks~z!5~z2Hks!
21,

and noting that for smallk, s the operatorsHks are all uniformly bounded relative to each othe
As a result the function

Fks~z!5rs~A!Rks~z!rs~A!,
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defined for smallk, smalls.0 andzPI 1, satisfies the estimates~8.20! and~8.21! uniformly in k.
To prove Hölder continuity ofFks in k we use the identity

Rk8s2Rks5Rks~Hks2Hk8s!Rk8s ,

Hks2Hk8s5~k2k8!~V1s@V,A# !5~k2k8!Ws ,

where the operatorWs is bounded relative toH and therefore toHks uniformly for small k, s.
Therefore,

iFks~z!2Fk8s~z!i<constuk2k8u irsRksi iWsRk8srsi

<constuk2k8us21

by the bounds~8.23! and~8.20! for Rks andFks . This corresponds to the estimate~8.25! used to
prove Hölder continuity inz, so that Ho¨lder continuity ink of Fk(z) follows in the same way.h

A. The Fermi golden rule „FGR… and instability of embedded eigenvalues

In the framework of spectral deformation we have found the following instability criterion
an embedded eigenvaluel of H with eigenprojectionP under small perturbationsH→Hk5H
1kV:

1. FGR criterion

Let P̄512P and R̄(z)5 P̄R(z) P̄. Then

G52Im~PVR̄~l1 i0!VP! ~8.30!

exists, which impliesG5G* >0. If G.0, then there exists an open intervalD{l, such that the
spectrum of Hk in D is absolutely continuous for smallkÞ0.

This criterion makes no reference to spectral deformation, and can in fact be establish
the basis of Mourre’s inequality.3 The situation considered is the following:H and A are self-
adjoint operators such that@H,A# is H-bounded.D,R is an open interval for which there is
Mourre inequality

ED~H !i @H,A#ED~H !>uED~H !1K, u.0, ~8.31!

andK is a compact operator.lPD is an eigenvalue ofH with eigenprojectionP. It follows from
~8.31! that dim(P),` and thatl is the only eigenvalue ofH in D if we chooseD{l sufficiently
small. The result of this section is the following.

Theorem 8.8:3 In the situation described above the FGR criterion holds if the commuta

adA
(k)~H ! and adA

(k)~V! for k50,1,2 ~8.32!

are H-bounded, and if

RanP,D~A2!. ~8.33!

Remark:This result applies toN-body HamiltoniansH, whereA is the dilation generator and
l is any nonthreshold eigenvalue ofH. Equation~8.33! then follows from the Froese–Herbs
exponential bound~Theorem 6.6!.

For the proof of Theorem 8.8 we work with the fixed reduction ofH given by

15P1 P̄:H5M % M̄ , ~8.34!

and we define reduced operatorsM̄→M̄ :
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H̄k5 P̄HkP̄, R̄k~z!5 P̄~z2H̄k!21P̄,
~8.35!

V̄5 P̄VP̄, Ā5 P̄AP̄.

The first step is to establish the corresponding Mourre estimate onM̄ :
Lemma 8.9: There exists an open intervalD{l and constantsu.0, c.0 such that foruku

,c

ED~H̄k!i @H̄k ,Ā#ED~H̄k!>uED~H̄k!. ~8.36!

In particular, H̄k has no eigenvalues inD.

Proof: Multiplying ~8.31! from both sides withED(H̄) and using the fact thatED(H̄)→
s

0 for
D→$l% we see that~8.36! holds fork50. Next we note that the commutators

@H̄,Ā#5 P̄@H,A# P̄,

@V̄,Ā#5 P̄@V,A# P̄2 P̄~VPA2APV!P̄

are bounded relative toH̄. Therefore~8.36! is a consequence of Lemma 8.6. h

Lemma 8.10: Suppose that for some fixedk in 0,uku,c, Hk has an eigenvaluemPD with
eigenvectorc. Then

Im~c,PVR̄k~l1 i0!VPc!50. ~8.37!

Proof: In the reduction~8.34! the equationHkc5mc is equivalent to two equations onM
andM̄ :

PHkPc1PHkP̄c5mPc; P̄HkPc1 P̄HkP̄c5m P̄c. ~8.38!

SinceP̄HkPc5k P̄VPc the second equation can be written as

R̄k~m1 i«!k P̄VPc5 P̄c2 i«R̄k~m1 i«!P̄c

for «.0. The last term vanishes as«→0 since, by Lemma 8.9,m is not an eigenvalue ofH̄k .
Therefore

P̄c5kR̄k~m1 i0!P̄VPc.

Inserting this expression forP̄c into the first equation~8.38! and taking the scalar product withc
we find

~l2m!~c,Pc!1k~c,PVPc!1k2~c,PVR̄k~m1 i0!VPc!50.

Equation~8.37! follows by taking the imaginary part. h

Lemma 8.11: There exists an open intervalD{l and a constant c.0 such that foruku,c the
boundary values

Fk~x!5PVR̄k~x1 i0!VP ~8.39!

exist for all xPD and satisfy

iFk~x!2Fk8~x8!i<const~ uk2k8u1ux2x8u!1/3. ~8.40!
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Proof: For Im(z).0 we factorize

Fk~z!5~PVP̄^Ā&!~^Ā&21R̄k~z!^Ā&21!~^Ā&P̄VP!. ~8.41!

Here the first and last factors are bounded sinceAP̄VPPL(H). To see this we expand

AP̄VP5AVP2APVP(* )

where the superscript~* ! indicates that the operator is bounded. Also

AVP5VAP1@A,V#P(* ),

and sinceV is H-bounded it suffices to note that

HAP5lAP(* )1@H,A#P(* ).

Lemma 8.11 now follows from Theorem 8.7, applied to the middle factor in~8.41!. The
hypothesis of that theorem requires that the first and second commutators ofĀ with H̄ andV̄ are
bounded relative toH̄. As an example we treat the double commutator@@V̄,Ā#,Ā#. After dropping
the outermost factorsP̄ this commutator takes the form

@@V,A#,A#12APVA12AVPA22APVPA2APAV2VAPA1VPAPA2VPA22A2PV

1APAPV.

By hypothesis@@V,A#,A# is H-bounded. All other terms except those containingA2 are easily
bounded as in the first part of the proof. For theA2-terms we need the hypothes
Ran(P),D(A2). h

Proof of Theorem 8.8:By Lemma 8.11 the limit~8.30! exists. Suppose thatG.0. Then, in the
notation~8.39!,

2Im~F0~l1 i0!!.0,

and therefore by~8.40!

2Im~Fk~m1 i0!!.0

for small k and allm in some open intervalD{l. This is in contradiction to~8.37!, so for small
k the operatorsHk have no eigenvalues inD. h

B. Escape velocity and resolvent smoothness

According to Theorem 2.4 the orbitsc t in the continuous spectral subspaceHC of H are
escaping from finite regions inX in the mean ergodic sense~2.8!. In this section we discuss shar
quantitative escape estimates of the form

E
uxu,vt

uc t~x!u2<const~11utu!22m, ~8.42!

valid for a dense set of initial statesc in any spectral subspaceH. , D a Mourre interval~6.17!.
This estimate says that the orbitc t escape at least with velocityv. In fact ~8.42! holds for any
v,Au whereu is the Mourre constant~8.42! for the intervalD. In this senseAu is theminimal
escape velocityfor the orbits inH. Minimal velocity estimates were first derived by Sigal a
Soffer92 also for certain time-dependent Hamiltonians. The first step towards~8.42! is an analo-
gous result for the observableA instead ofuxu, which we state in abstract form:

Theorem 8.12:54 For a pair H,A of self-adjoint operators onH suppose that
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adA
(k)~H ! is H2bounded fork50,...,n>2, ~8.43!

and letx6 be the characteristic function of R6. Then

ix2~A2a2qt !e2 iHtg~H !x1~A2a!i<constt2m~ t.0! ~8.44!

for any gPC0
`(D), any q in 0,q,u and any m,n21, uniformly in aPR.

Remarks:To explain the significance of~8.44! we note that the vectors of the form

c5g~H !x1~A2a!w, wPH, ~8.45!

form a dense set inHD sincegPC0
`(D) andaPR are arbitrary. Equation~8.44! expresses the fac

that for any initial statec of this form c t is in the spectral subspaceA>a1qt of A, up to a
remainder of ordert2m in norm. This is the analog of~8.42! for the observableA in place ofuxu.

Theorem 8.12 can also be used to derive some useful, although not optimal, resu
resolvent smoothness. Settinga52qt/2 and using that

^A&2a5^A&2ax6~A6qt/2!1O~ t2a!

we conclude from~8.44! that

i^A&2ae2 iHtg~H !^A&2ai<const~11utu!2min(a,m). ~8.46!

For a, m.1 ~i.e., n.2), this bound is integrable over2`,t,1` and thus leads~via Fourier
transform! to the resolvent estimate

sup
z¹R

i^A&2a~z2H !21g~H !^A&2ai,`. ~8.47!

It also follows that the operator functionF(z)5^A&2a(z2H)21^A&2a has continuous boundar
valuesF(x6 i0) in norm sense forxPD. With Theorem 8.1 we have already obtained this res
under the weaker hypothesisa. 1

2 andn52. On the other hand, Theorem 8.12 immediately giv
similar bounds for the derivatives~powers! of (z2H)21: If ( a,m).11p, then

sup
z¹R

I ^A&2aS d

dzD
p

~z2H !21g~H !^A&2aI,` ~8.48!

with corresponding smoothness inx of the boundary valuesF(x6 i0) in D. Resolvent smoothnes
estimates of this form have been derived in Ref. 62 under weaker conditions ona,m by time-
independent methods as in the proof of Theorem 8.1. All these techniques and results
useful in many respects, e.g., for the transition to time-independent scattering theory a
discussion of scattering amplitudes. Finally we return to the Schro¨dinger caseH5 1

2p
21V(x)

where the relation

A5Dt~
1
2 x2!

can be used to transform the spectral shift formula~8.44! with respect toA into a spectral shift
with respect tox2:

Theorem 8.13:54 If H ,A given above satisfy the conditions of Theorem 8.12, then

ix2~ 1
2 x22at2 1

2 qt2!e2 iHtg~H !x1~A2a!i<constt2m ~ t.0! ~8.49!

for any gPC0
`(D), 0,q,u, m,n21 and aPR.
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For the dense set of initial states~8.45! this implies the escape estimate~8.1!. For the proofs
of Theorems 8.12 and 8.13 we refer to Ref. 54. The methods used in these proofs also allo
treat time-dependent Hamiltonians.92

Notes: Resolvent bounds and resolvent smoothness. Among the papers in this field which ar
not reviewed here we mention Refs. 62, 35, 58, 61, and 74. A basis for treating these and
problems in a generalized form of Mourre’s theory is provided by Ref. 6.

Resonances in Mourre theory. Beyond the instability criterion for embedded eigenvalu
given in Theorem 8.8 it is also possible to give a perturbative notion of resonances and
sponding exponential decay estimates in this case.77,102

Escape velocity and resolvent smoothness. Other results similar to Theorems 8.12 and 8.1
generally referred to asminimal velocity estimates, are due to Refs. 33 and 100~see also Ref. 21!.

IX. THE HELFFER–SJÖSTRAND FORMULA

A convenient operator calculus for functionsf (A) of self-adjoint operatorsA can be based on
a formula of Helffer and Sjo¨strand:42,16

f ~A!52
1

2p E
R2

~z2A!21] z̄f̃ ~z! dx dy, ~9.1!

wherez5x1 iy and] z̄5]x1 i ]y . Heref is some given complex function onR, and f̃ is a largely
arbitrary extension off to the complex plane, which must bealmost analyticin the sense that it
satisfies the Cauchy–Riemann equationson the real axis:

] z̄f̃ ~z!50 for zPR. ~9.2!

We abbreviate~9.1! by writing

f ~A!5E d f̃ ~z!~z2A!21; d f̃~z![2
1

2p
] z̄f̃ ~z!dx dy. ~9.3!

For example, iff PC0
2(R), we can construct the almost analytic extension

f̃ ~z!5~ f ~x!1 iy f 8~x!!x~z! ~9.4!

in C0
1(C) by takingxPC0

`(C) with x51 on some complex neighborhood of supp(f ). Then] z̄f̃

has compact support and vanishes on the real axis, so thatu] z̄f̃ (z)u<constuyu. On the other hand
i(z2A)21i<uyu21. Therefore, the integral~9.3! converges absolutely in norm sense, and~9.1!
follows by verifying that

f «~ t ![E
uyu.«

d f̃ ~z!~z2t !21

converges pointwise tof (t) for tPR as«↘0. Often it is useful to replace~9.4! by the extended
version

f̃ ~z![x~z!(
k50

n

f (k)~x!
~ iy !k

k!
, ~9.5!

with x as before andn arbitrary large. Thenu] z̄f̃ (z)u<constuyun so that the integral* uIm(z)u2n]z̄f̃(z)
converges absolutely. As an application, suppose thatA1 and A2 are self-adjoint and thatK is
compact relative toA1 or A2 . Taking ~9.5! with n>2 we find that the integral
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E d f̃ ~z!~z2A1!21K~z2A2!21

is a compact operator since it is the norm limit of compact operators. This argument was u
the proof of~6.16!. Of course that particular case can be treated without using~9.1!. The reason
why we advertise the Helffer–Sjo¨strand formula is that it also serves as the basis for a gen
method of commutator expansions and commutator estimates,59,52which is used extensively in the
omitted proofs in Secs. VI and VIII.
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Ionization of a model atom by perturbations
of the potential

Alexander Rokhlenkoa) and Joel L. Lebowitz
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We study the time evolution of the wave function of a particle bound by an attrac-
tive d-function potential when it is subjected to time-dependent variations of the
binding strength~parametric excitation!. The simplicity of this model permits cer-
tain nonperturbative calculations to be carried out analytically both in one and three
dimensions. Thus the survival probability of bound stateuu(t)u2, following a pulse
of strengthr and durationt, behaves asuu(t)u22uu(`)u2;t2a, with bothu~`! and
a depending onr. On the other hand, a sequence of short pulses produces an
exponential decay over an intermediate time scale. ©2000 American Institute of
Physics.@S0022-2488~00!02306-9#

I. INTRODUCTION

While there has been much progress in our understanding of the processes leading
ionization of atoms and/or the dissociation of molecules subjected to time-dependent field
mathematical difficulties presented are such that there are no explicitly solvable models fo
sitions from a bound state into the continuum.1–15 This motivates us to investigate here th
ionization probability of a particle bound by an attractive pointd-function potential in one
dimension5,6,15 and a spherically smeared outd function in three dimensions. We obtain explic
expressions for the ionization probability and for the energy distribution of the ejected elec
for certain time-dependent parametric excitations, i.e., when we suddenly change the value
coupling constant for a time intervalt. For such changes the survival probability of the bound s
shows no regime of exponential decay but approaches its asymptotic value as a power la11–13

The situation is different for periodic forcing with short pulses that is also treated here and
generally in Ref. 16. The survival probabilities now include intermediate exponential reg
followed by power law asymptotics.

A. General formulation

We consider first the one-dimensional system with an unperturbed Hamiltonian,5,6,15

H052
\2

2m

d2

dx22gd~x!, g.0, 2`,x,`. ~1!

H0 has a single bound state,

ub~p,x!5Ape2puxu, p5
m

\2 g, ~2!

with energy2E052\v052\2p2/2m and a continuous uniform spectrum on the positive r
line, with generalized eigenfunctions

a!Electronic mail: rokhlenk@math.rutgers.edu
35110022-2488/2000/41(6)/3511/12/$17.00 © 2000 American Institute of Physics
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u~p,k,x!5
1

A2p
S eikx2

p

p1 i uku
ei ukxu D , 2`,k,`, ~3!

and energies\2k2/2m ~with multiplicity two for kÞ0). Hereub is normalized to 1 andu(k,x) to
d(k2k8).

Beginning at some initial time, sayt50, a perturbing potentialV(x,t)52R(t)d(x) is applied
to the system, i.e., we change the parameterg in H0 ,

g→g1R~ t !, t>0. ~4!

We note here that the matrix elements,u^ubuVuk&u25R2(t)(p/2p)k2/(p21k2), which vanish as
k→0 and approachR2(t)(p/2p) as uku→`. This implies, in particular, that the integral of th
transition matrix over allk is infinite.

To solve the time-dependent Schro¨dinger equation,

i\
]c~x,t !

]t
5H0c~x,t !2R~ t !d~x!c~x,t !, t>0, ~5!

we expandc(x,t) for t>0 in the complete set of functionsu:

c~x,t !5u~ t !ub~p,x!ei ~\2/2m!t1E
2`

`

Q~k,t !u~p,k,x!e2 i ~\k2/2m!t dk, t>0, ~6!

and monitor the evolution ofu(t) and Q(k,t) starting from the initial bound stateu(0)51,
Q(k,0)50.

The ionization probability at timet caused by a pulse, which coincides withR(t8) for t8,t
and vanishes fort8>t, is given by

P~ t !512uu~ t !u25E
2`

`

uQ~k,t !u2 dk, ~7!

while uu(t)u2 is the survival probability.
This model can be extended to a three-dimensional shell-like delta function potential

Hamiltonian,

H052
\2

2m
D2gd~r 2a!, a.0, r 5ur u, rPR3, ~8!

has bound states with angular momentuml for all l 50,1,..., such thatl ,mga/\22 1
2. The time-

dependent perturbation is now of the formV(r ,t)52R(t)d(r 2a). The results for three dimen
sions, which are similar to those in one dimension, are described in Sec. V. This follows c
lations ofu(t) andQ(k,t) in one dimension.

II. INTEGRAL EQUATION FOR THE ONE-DIMENSIONAL „1-D… CASE

Using the orthonormality of the eigenfunctions~2!, ~3! and substituting~6! into ~5! yields the
following set of equations for the time-dependent amplitudes att>0:

i\
du

dt
52ApT~ t !, i\

]Q

]t
5

i uku

A2p~p2 i uku!
ei ~\/2m!~p21k2!tT~ t !, ~9!

where
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T~ t !5FApu~ t !1
1

A2p
E

2`

` i uku
p1 i uku

e2 i ~\/2m!~p21k2!tQ~k,t !dkGR~ t !, ~10!

determines bothu andQ:

u~ t !511 i
Ap

\ E
0

t

T~ t8!dt8, ~11!

Q~k,t !5
uku

A2p~p2 i uku!\
E

0

t

T~ t8!ei ~\/2m!~p21k2!t8 dt8. ~12!

Substituting~11! and~12! into ~10! yields an integral equation forT(t), which, using dimension-
less variables obtained by setting\52m5g/251 ~implying p51, v051), yields

u~ t !5112i E
0

t

Y~ t8!dt8, Q~k,t !5A2

p

uku
12 i uku E0

t

Y~ t8!ei ~11k2!t8 dt8, ~13!

whereY(t) is to be found from the integral equation

Y~ t !5h~ t !H 11E
0

t

@2i 1M ~ t2t8!#Y~ t8!dt8J , ~14!

andh(t)5R(t)/g. The functionM (s) in ~14! is given by

M ~s!5
2i

p E
0

` u2e2 is~11u2!

11u2 du5
1

2
A i

p E
s

` e2 iu

u3/2 du. ~15!

M (s) behaves as

M ~s!55
12 i

A8ps3
e2 is1O~s25/2!, when s→`,

11 i

A2ps
2 i 1O~s1/2!, when s→0.

~16!

III. IONIZATION BY A RECTANGULAR PULSE

We study perturbations having the form of a step function,h(t)5r for t>0. The calculation
of P at any timet will then correspond to the ionization probability caused by a pulse of ampli
r and durationt. Substituting theh(x) into ~14! and taking the Laplace transform, we find, cf. Re
16,

Ỹ~s!5E
0

`

Y~x!e2sx dx5
r

s2r ~ i 1Ais21!
, ~17!

where

TAis21.0. ~18!

Using the inverse transform, Eq.~13! has the form
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u~ t !511
r

p E
2 i`1a

i`1a est21

s@s2r ~ i 1Ais21!#
ds, a.0. ~19!

To evaluate~19! we make a cut in the complex plane ofs along the imaginary axis from2 i`
to 2 i . In the left half-plane bounded by the left side of the cut and the vertical line from2 i
1a to 1 i`1a, the integrand in~19! is analytic, except for a simple pole ats5 ir (r 12) when
r 11.0. There are no poles ifr ,21, i.e., when the coefficient of thed function is positive and
the potential fort.0 represents repulsion. The integral along the left half-circle of an infini
large radius is clearly zero; therefore one may rewrite~19! as

u~ t !5
r

p E est

s@s2r ~ i 1Ais21!#
ds12

r 111ur 11u
~r 12!2 eir ~r 12!t,

with counterclockwise integration around the cut. Straightforward manipulations with the int
term allow us to writeu finally in the form

u~ t !5
4r 2

p E
0

` e2 i ~11u2!t

~11u2!2@~r 11!21u2#
u2 du12

r 111ur 11u
~r 12!2 eir ~r 12!t. ~20!

The integral in~20! can be expressed in terms of Fresnel’s functions and the dependence
survival probability onr is shown in Figs. 1 and 2, where it seen that it is monotone
r ,21 but not forr .1 so we can have ‘‘atomic stabilization.’’14,15

Using ~12! and~17! one can calculateuQ(k,t)u2, which gives fort>t the energy distribution
of electrons kicked out from the bound state by a pulse of durationt. We find in the original units,

Q~k,t !5A2p

p

i uku~p2q!

~p2 i uku! H ~q1uqu!ei ~\q2/2m!t

~q21k2!~p1q!
2

e2 i ~\k2/2m!t

~p1 i uku!~q2 i uku!

1
1

p1q
Fpe~\p2/2m!t

p21k2 ErfcS i 11

2
A\p2t

m D 2
uquei ~\q2/2m!t

p21k2 ErfcS i 11

2
A\q2t

m D G
1

i uku~p2q!e2 i ~\k2/2m!t

~p21k2!~q21k2!
ErfcS i 21

2
A\k2t

m D J , t>t, ~21!

FIG. 1. The survival probability of the bound state following the imposition of rectangular pulses of durationt for different
relative amplitudesr .21; see Eqs.~23!, ~24!.
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whereq5(11r )p and Erfc(z) denotes the probability integral. For largek,uQ(k,t)u2 decays like
k24, giving a very long tail to the energy distribution of the emitted electrons. In Fig. 3 we
uQ(k,t)u2 vs k for several values oft whenr 521, i.e., when the pulse just destroys the attract
interaction. It is seen that the longer the pulse the more peaked is the distribution wit
maximum moving toward small values ofk.

The total energy of the electrons ejected by the pulse is given by

E~ t !5
\2

2m E
2`

`

k2uQ~k,t!u2 dk, t>t.

For measurements made outside the range of the potential, this energy will be the same
kinetic energy of the emitted electrons. An analytical evaluation ofE(t) yields a very long and no
very illuminating formula. Instead, we present in Fig. 4 a numerical plot ofE(t) for r 521. When
the pulse lengtht→`, E(t) approaches the value

FIG. 2. The normalized survival probability following the imposition of repulsive rectangular pulses,r ,21. Plots of
uu(t)/uas(t)u2 vs t, whereuuas(t)u2 is 4/pt for r 521 and (r /r 11)4/pt3 if r ,21; see Eqs.~24!, ~26!.

FIG. 3. The plot ofuQ(k,t)u2, which represents the energy distribution of electrons kicked out by the rectangular p
of durationt; see Eq.~21!.
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E~`!5E0S r

ur 11u11D 2F112ur 11u12~r 111ur 11u!
~r 11!~r 13!

~r 12!2 G ,
which increases linearly withuru when ur u→`:

E~`!→2E0u2r 1ur i .

Attractive long pulses,r .0, thus give three times as much energy to the ejected electrons th
the repulsive ones,r ,0. This is shown in Fig. 5, where it is seen thatE(`) is monotone for both
positive and negativer.

We note that a rectangular pulse perturbation is a special case of a sudden jump fro
initial HamiltonianH0 to a new time-independent HamiltonianH1 , which in return jumps toH0

when the perturbation ends. The amplitudesu and Q can thus also be calculated by projectin
~twice! a new state onto the old one, which is just the evaluation of overlap integrals. The La
method, which givesu(t) for the general time dependence ofR(t) in the form

FIG. 4. The total energy of states of electrons in the continuum spectrum ejected by the rectangular pulse of duratt for
r 521.

FIG. 5. The plot of the electron kinetic energy versus the amplitude of very long rectangular pulses.
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u~ t !511
1

p E
2 i`1a

i`1a est21

s
Ỹ~s!ds, ~22!

shows thatuu(t)u2 will have an exponential decay fort→` only whenỸ(s) has poles in the left
half of the complex planes.

A. Power law decay

When the pulse lengtht goes to infinity, the integral in~20! vanishes, and in the limit we hav

uu~`!u25H 16~r 11!2/~r 12!4, if r>21,

0, if r ,21.
~23!

It is seen from~23! that any two very long pulses~at least one of them must be repulsive! produce
the same ionization if their amplitudesr and r 8 satisfy the relation 1/r 11/r 8521.

For larget the asymptotics of the integral term in~20! can be easily found. Using contou
integration we can rewrite the integral as

1

~r 11!2tAi t
E

0

` y2e2y2

~12 iy2/t !2@12 iy2/t~11r !2#
dy,

and integrate by expanding the integrand in powers ofy2/t. Let us first study the caser 521,
which corresponds to the perturbation removing the potential and making the electron evo
t.0 like a free particle. The decay of the bound state in this case is rather slow:

uu~ t !u25
4

pt
1O~ t22!, r 521. ~24!

When botht and tur 11u are large we get

u~ t !52
r 111ur 11u

~r 12!2 eitr ~r 12!1
r 2

~r 11!2tAipt
e2 i t1O~ t25/2!. ~25!

For the survival probability of the bound state we have

uu~ t !u2'5 uu~`!u21
8r 2 cos@~r 11!2t#

~r 11!~r 12!2tApt
, if r .21,

r 4

~r 11!4pt3 , if r ,21.

~26!

Thus, forr<21, when the evolution takes place with a repulsived function, the approach to zer
of uu(t)u2 is like t23, compared to thet21 decay given in~24! for the free evolution; see Fig. 2
Note that the coefficient oft23 becomes independent ofr for ur u@1. For r .21 the approach of
uu(t)u2 to its nonvanishing asymptotic value is oscillatory with an envelope that decays liket23/2.
These oscillations are very rapid for larger ~Fig. 1!, but their amplitude is small, of order 1/r .
These asymptotic power law decays are in agreement with general results for the decay of i
localized states; cf. Refs. 5–8.

IV. IONIZATION BY PERIODIC SHORT PULSES

The behavior ofP(t) for short pulses of duration,t!1, is very different for cases whena
5rAt is large or small comparing with 1. WritingP(t)5P(t,a), we analyze Eq.~20! and have in
the case of a single pulse,
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P~ t,a!54A2t

p H 2a2/3, for a!1,

1 for a@1.
~27!

We turn now to the survival probability when we bombard our system with a whole tra
short pulses of durationt!1 repeated periodically with periods;1. Using~13! yields

u~ns1t!5un5112i (
k50

n

Jk
0, un51 if n,0, ~28!

where we have defined

Jn
m5E

ns

ns1t

~ns1t2x!mY~x!dx. ~29!

By integrating Eq.~13! for u(t) in t from t5ns to t5ns1t and using~16!, we obtain

r 21Jn
m5

tm11

m11 F11 (
k50

n21

~2i 1Mn2k!Jk
0G1A i

p
kmJn

m11/2

1
i

m11
Jn

m111
3km

Aip~2m13!
Jn

m13/21O~tm12!, ~30!

where Mn5M (ns), km5ApG(m11)/G(m1 3
2). The inequalityuunu<1 implies uJk

0u<1, and
therefore by integration by parts we get

uJk
mu<tm. ~31!

Let us eliminate in~30! the termJn
m11/2 by using~30! with m→m1 1

2, which gives

r 21Jn
m5S tm11

m11
12kmrA i

p

tm13/2

2m13D F11 (
k50

n21

~2i 1Mn2k!Jk
0G

1 i S 1

m11
1

rkmkm11/2

p D Jn
m111O~tm12!. ~32!

Combining~31! with the estimateuM (s)u,Ap/2s3, we have an upper bound on the sum in~32!
in the form uSk50

n21Mn2kJk
0u,2.4s23/2maxjP@0,n21#uJj

0u. Treating the amplituder as a quantity of
order of unity, one can immediately improve the upper bounds~31! for Jn

m to

uJn
mu;tm11. ~33!

Equation~33! allows us to rewrite Eq.~32! for m50 as a simple recurence,

Jn
05rS 112i (

k50

n21

Jk
0D 1t2f n~t!, ~34!

where, fors>1, r<1 we haveu f n(t)u,7 uniformly in n and

r5ttF11
4rAt~11 i !

3A2p
G .

Starting withJ0
05r;t one can find successivelyJn

0 using~34!. The terms of such a sequence w
be close to the corresponding terms of the solution of the simplified equations,
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J̃n5rS 112i (
k50

n21

J̃kD , ~35!

until uJ̃nu@t2 and uJ̃nu@urunt2. It is easy to solve~35! to find

J̃n5r~112ir!n, ~36!

and thereforeuJ̃nu'urue2ng, whereg58r 2t3/2/3A2p!1. Our condition for approximatingJn
0 by

J̃n now has the form

e2ng@nt2. ~37!

Using J̃n and ~28!, we find

u~ t !'expS 2g12ir t

s
t D , ~38!

if the duration of a train of pulsest5ns is not too long and satisfies~37!. One can obtain from
~37! that the decay of survival probabilityuu(x)u2 up to a valuem is accurately described by~38!
if At,2r 2Am/ ln m21; for m50.01,r'1 this givesAt,0.04 and a train of about 300 pulses. F
shortert the train can be longer and the ionization more complete.

For longer trains of perturbation the term(k50
n21Mn2kJk

0 in ~30! cannot be ignored, and i
makes the eventual decay slower with strong oscillations due to interference with the eig
quency. We see that in the exponentially decaying regime the survival probability is indepe
of s. This is very different from the case where the time-dependenth(t)5r sinvt considered in
Ref. 16. In that case the exponential decay depends strongly onv. In our caset→0, which means
that h(t) will contain all ranges of frequencies.

V. THREE-DIMENSIONAL MODEL

The Hamiltonian~8! has eigenfunctions in the continuum spectrum,

C l ,m~k,r !5Yl ,m~u,w!Rl~k,r !, r>0, 0<u<p, 0<w<2p, ~39!

where the radial functions are

Rl~k,r !5AlAk

r
Jl 11/2~kr !

1AlAk

r H 0, if r<a,

p i

4
QJl 11/2~ka!@Hl 11/2

~1! ~ka!Hl 11/2
~2! ~kr !2Hl 11/2

~1! ~kr !Hl 11/2
~2! ~ka!#, if r .a.

~40!

The dimensionless parametersAl normalizeRl(r ) to a d function,

Al~k!5$11QpJl 11/2~ka!Nl 11/2~ka!1Q2p2Jl 11/2
2 ~ka!@Jl 11/2

2 ~ka!1Nl 11/2
2 ~ka!#%21/2,

and the notations for normalized spherical harmonicsYl ,m and Bessel functions are the usual on
The energy correspondingc l ,m(k,r ) is \2k2/2m.

The parameterQ52mga/\2 plays a crucial role for the existence of the bound states,

QKl 11/2~pla!I l 11/2~pla!51 ~41!
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is the equation for the energy2\2pl
2/2m of all boundl states~they are of different axial symme

try!. The left side of~41! is a monotonically decreasing function of its argumentg5pla and it is
equal toQ(2l 11)21 wheng50, therefore

Q.2l 11

is the condition to have the bound states for alll 8< l .
The radial normalized eigenfunctions can be written in the form

Rl
b~r !5

Blpl

Ar
H I l 11/2~plr !, if r<a,

I l 11/2~pla!Kl 11/2~plr !/Kl 11/2~pla!, if r .a,
~42!

where

Bl5
&Kl 11/2~pla!

A12plaKl 11/2~pla!@ I l 21/2~pla!1I l 13/2~pla!#
,

and I, K are the modified Bessel functions.
There are no transitions between states of different angular symmetry if both the poten

~8! and perturbationV(t,r ) are central. For simplicity we consider our three-dimensional mo
with Q.1 in the s state. Dropping the indexl 50, Eq. ~41! for the energy of the bound stat
2\2p2/2m is

Q5
2ap

12e22ap .

The eigenfunctions~42! of the bound and the continuum states are, respectively,

Cb~r !5
p1/2

rAp~e2pa2122pa!
H sinhpr, if r<a,

e2p~r 2a! sinhpa, if r .a,
~43!

C0,0~k,r !5
221/2

prA12Q
sin 2ka

ka
1Q2

sin2 ka

k2a2

H sinkr, if r<a,

sinkr2Q
sinka

ka
sink~r 2a!, if r .a.

~44!

Assuming that the particle is in the bound stateCb(r ) at t50 and the perturbation has th
form V(r ,t)52R(t)gd(r 2a), we use the method of projections that was described in Sec. I
find the ionization probability induced by the rectangular pulsesR(t)5rg for t.0. After the end
of pulse att5t we have foru~t! an equation similar to~21!,

u~t!5
4pq

~e2pa2122pa!~e2qa2122qa! Fe~p1q!a

p1q
2

pe~p2q!a2qe~q2p!a

p22q2 G2

ei ~hq2/2m!t

18p
@~pa2Q1!sinhpa1pa coshpa#2

pa2 E
0

` e2 i ~hk2/2m!t sin2 ka

~p21k2!2S 12Q1

sin 2ka

ka
1Q1

2 sin2 ka

k2a2 D dk,

~45!

whereq is the solution of Eq.~41! with Q15(11r )Q instead ofQ ~q gives the energy of the new
bound state!. If Q1,1 the first term in~45! vanishes; otherwise the square of its absolute va
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represents the probability 12P(`) of the electron to remain in the bound state whent→`. Using
the dimensionless timev0t→t, the asymptotics of the decaying term in~45! when t→` is

u~ t !5u~`!2&
@~pa2Q1!sinhpa1pa coshpa#2

~Q121!2

11 i

tApt
1O~ t25/2!, t→`, ~46!

or

uu~ t !u2'uu~`!u21H O~ t23/2!, if Q1.1,

O~ t23!, if Q1,1.

The dimensionality as one can see changes the character of asymptotics only of the free ev
(t23/2 vs t21/2). An interesting case isQ151, when the perturbed Hamiltonian has a ‘‘zero ene
bound state.’’ The asymptotic behavior ofu(t) is now given by

u~ t !5
4@~pa2Q1!sinhpa1pa coshpa#2~12 i !

p2a2A2pt
1O~ t23/2!, t→`, ~47!

which has the same character as for the free decay in the one-dimensional model.
In three dimensions the same technique as that used in Sec. III allows us to derive

dimensional integral equations similar to~14! for each pair of quantum numbersl, m< l :

Tl ,m~ t !5R~ t !a2FRl
b~a!u l ,m~0!1

i

\ E
0

t

Kl~ t2t8!Tl ,m~ t8!dt8G , ~48!

which determines the evolution. In particular, the amplitude of the bound state develops in ti

u l ,m~ t !5u l ,m~0!1 i
Rl

b~a!

\ E
0

t

Tl ,m~ t8!dt8. ~49!

The functionKl in Eq. ~48!,

Kl~q!5@Rl
b~a!#21E

0

`

uRl~k,a!u2e2 i\~k21pl
2
!q/2m dk, ~50!

is independent of the quantum numberm. Each spherical harmonic evolves autonomously an
u l ,m was zero att50 it does not change for our perturbation. Though the kernel of Eq.~48! even
for l 50,

K0~q!5
4p sinh2 pa

a2~e2pa2122pa!
1

2

pa2 E
0

` e2 i\@k21p2/2m#qsin2 ka

12Q sin 2ka/ka1Q2 sin2 ka/k2a2 dk, ~51!

cannot be expressed in terms of standard functions numerical calculations are quite feasib

VI. CONCLUDING REMARKS

Some general features of our results with possible implications for realistic systems in
the following.

~a! The ionization probability approaches its asymptotic value ast23/2 if the electron can be
bound in the perturbed state, goes to zero ast21 if the perturbation makes the electron a fr
particle, and ast23 when the perturbation converts the attractive well into a repulsive one.
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~b! A finite train of periodically repeated short pulses makes the survival probability of
bound state decay exponentially without oscillations. When the frequency of repetition is co
rable with the eigenfrequency of the bound state or is lower, the decay scales in such a w
only the total number of pulses is important.

~c! The three-dimensional potential gives a similar behavior of the ionization. The free
lution in one dimension corresponds here to a marginal situation with the ‘‘zero-energy’’ b
state.
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Clusters6, 83 ~1987!; G. Casatti and L. Molinari, Prog. Theor. Phys. Suppl.98, 286 ~1989!.

4S. Guerin and H.-R. Jauslin, Phys. Rev. A55, 1262~1997!, and references there; E. V. Volkova, A. M. Popov, and
V. Tikhonova, Zh. Eksp. Teor. Fiz.113, 128 ~1998!.

5Yu. N. Demkov and V. N. Ostrovskii,Zero Range Potentials and Their Application in Atomic Physics~Plenum, New
York, 1988!; S. Albeverio, F. Gesztesy, R. Ho”egh-Krohn, and H. Holden,Solvable Models in Quantum Mechanic
~Springer-Verlag, Berlin, 1988!.

6M. Susskind, S. C. Cowley, and E. J. Valeo, Phys. Rev. A42, 3090 ~1994!; G. Scharf, K. Sonnenmoser, and W. F
Wreszinski,ibid. 44, 3250 ~1991!; S. Geltman, J. Phys. B5, 831 ~1977!; E. J. Austin,ibid. 12, 4045 ~1979!; K. J.
LaGattuta, Phys. Rev. A40, 683~1989!; A. Sanpera and L. Roso-Franco,ibid. 41, 6515~1990!; R. Robusteli, D. Saladin,
and G. Scharf, Helv. Phys. Acta70, 96 ~1997!; T. P. Grozdanof, P. S. Kristic, and M. H. Mittleman, Phys. Lett. A149,
144 ~1990!; J. Mostowski and J. H. Eberly, J. Opt. Soc. Am. B8, 1212~1991!; A. Sanpera, Q. Su, and L. Roso-Franc
Phys. Rev. A47, 2312~1993!.

7H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon,Schrödinger Operators~Springer-Verlag, Berlin, 1987!.
8C.-A. Pillet, Commun. Math. Phys.102, 237 ~1985!; 105, 259 ~1986!; K. Yajima, ibid. 89, 331 ~1982!.
9I. Siegel, Commun. Math. Phys.153, 297 ~1993!.

10A. Maquet, S.-I. Chu, and W. P. Reinhardt, Phys. Rev. A27, 2946~1983!; C. Holt, M. Raymer, and W. P. Reinhard
ibid. 27, 2971~1983!; S.-I. Chu, Adv. Chem. Phys.73, 2799~1988!; R. M. Potvliege and R. Shakeshaft, Phys. Rev.
40, 3061~1989!.

11A. Soffer and M. I. Weinstein, J. Stat. Phys.93, 359–391~1998!.
12G. Garcia-Caldero´n, J. L. Mateos, and M. Moshinsky, Phys. Rev. Lett.74, 337~1995!; Ann. Phys.249, 430–453~1996!.
13J. Stalker, ‘‘An essentially singular classical limit,’’ preprint, Princeton, 1998.
14A. Fring, V. Kostrykin, and R. Schrader, J. Phys. B29, 5651~1996!; C. Figueira de Morisson Faria, A. Fring, and R

Schrader,ibid. 31, 449 ~1998!; A. Fring, V. Kostrykin, and R. Schrader, J. Phys. A30, 8559~1997!.
15C. Figueira de Morisson Faria, A. Fring, and R. Schrader, ‘‘Analytical treatment of stabilization,’’ preprint phy

9808047 v2.
16O. Costin, J. L. Lebowitz, and A. Rokhlenko, ‘‘Exact results for the ionization of a model quantum system,’’ pre

~1999!, Los Alamos, 9905038, and work in preparation.
                                                                                                                



general
nding
ke the
antum

iew of
y, and

f un-
ubjects

short
a

bly by

plec-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 6 JUNE 2000
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I. INTRODUCTION

The twentieth century is the century of science. In a century that has seen special and
relativity, quantum electrodynamics and chromodynamics, a total revamping of our understa
of molecules and of the cosmos, plate tectonics, and the rise of microbiology, one can ma
case that the most spectacular scientific development was the discovery of nonrelativistic qu
mechanics in the first quarter of the century. Its aftermath not only changed the physicist’s v
matter, but it set the stage for the revolutions in chemistry, our understanding of stars, biolog
practical electronics.

In what is one of the more striking cases of serendipity, just as Heisenberg and Schro¨dinger
were discovering the ‘‘new’’ quantum theory, von Neumann was developing the theory o
bounded self-adjoint operators and Weyl the representations of compact Lie groups—two s
of great relevance to the mathematics underlying nonrelativistic quantum mechanics. In
order they produced books~von Neumann271 and Weyl275! that used this mathematics to give
mathematical foundation to the framework of quantum mechanics. With later additions, nota
Bargmann, Wigner, and Mackey, the basic foundations are mathematically firm.

This is analogous to having formulated classical mechanics as Hamiltonian flows on sym

*Dedicated to Tosio Kato~1917–1999!, father of the modern theory of Schro¨dinger operators.
a!Electronic mail: bsimon@caltech.edu
35230022-2488/2000/41(6)/3523/33/$17.00 © 2000 American Institute of Physics
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tic manifolds. What remains is what might be called the second-level foundations—existen
solutions of the time-dependent Schro¨dinger equation~which is equivalent to self-adjointness o
these operators! and general qualitative issues in dynamics. It is this subject, essentially bo
years ago, that I will review here. The subject matter is vast with hundreds of contributor
thousands of papers. Each section of this paper is a proxy for what deserves a book or at
very long review article. In attempting to overview such a vast area in a few pages, I have
focus on the high points. No proofs are given and I have settled for usually quoting the init
especially significant papers. I have no doubt that I have left out some important papers, an
I ask the forgiveness of the reader~and their authors!!.

To keep this paper a reasonable size, I have focused almost entirely on the general ba
Schrödinger operators and some simple applications to atomic and molecular Hamiltonians
means, among other areas, I have not considered general second-order operators onRn and on
general manifolds~but see Davies and Safarov,57 Davies,55 and Kenig154! nor have I considered
some of the detailed papers on perturbations of Hamiltonians with periodic potential~see, e.g.,
Deift and Hempel58 and Gesztesy and Simon91! nor the extensive literature on Dirac operators n
the considerable work on Schro¨dinger operators in a bounded region with some boundary co
tions including subtle results on what happens at irregular boundary points~see Davies55! nor the
results on phenomena like the quantum Hall effect that apply and extend the general the
results in condensed matter physics. While there are a few results about2D1V for cases where
V(x)→` asuxu→`, again there is a large literature we will not attempt to review. While Sec
has a brief discussion of constant magnetic field, we have not attempted to discuss the
extensive literature on nonconstant magnetic fields.

There is a companion piece to this one on open problems.260

II. MATHEMATICAL TOOLS AND ISSUES

The mathematics most relevant to the modern theory of Schro¨dinger operators is functional
real, harmonic, and complex analysis. In this section, we will briefly set the stage to fix not
For more details, see Reed and Simon.214,211

Quantum Hamiltonians are unbounded operators, defined on a dense subspace rather
whole Hilbert space. Physics books tend to emphasize the symmetry~‘‘Hermiticity’’ ! of the
Hamiltonian; that is, that̂Hw,c&5^w,Hc& for all w,c in D(H). But more important is a property
called self-adjointness. The adjointH* of an operatorH is defined to be the maximal operator s
that ^H* w,c&5^w,Hc& for all cPD(H), wPD(H* ). Hermiticity says only thatH* is an
extension ofH.

We sayH is self-adjoint if H5H* , H is called essentially self-adjoint if and only ifH is
symmetric and has a unique self-adjoint extension. This holds if and only ifH* is self-adjoint.
Self-adjointness is important in the first place because ifH is self-adjoint, one can form the unitar
group e2 i tH and so solvei ẇ t5Hw t ~as w t5e2 i tHw! for initial conditions wPD(H). Indeed,
Stone’s theorem says that any one-parameter continuous unitary group is associated with
adjoint operator. Second, self-adjointness implies the spectral theorem. There is for each B
A,R, a projection,EA(H), so thatH5*l dEl and e2 i tH5*e2 i tH dEl . One defines spectra
measuresdmw

H by

mw
H~A!5~w,EA~H !w! ~II.1!

so that

E e2 i tldmw
H~l!5~w,e2 i tHw! ~II.2!

and
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E dmw
H~l!

l2z
5~w,~H2z!21w!. ~II.3!

s(H), the spectrum ofH, is preciselyøw supp(dmw
H).

Much of what we discuss in this paper involves two distinct decompositions of the spec
of H. The first is

sdisc~H !5$lul is an eigenvalue of finite multiplicity and an isolated point ofs~H !%

sess~H !5s~H !\sdisc~H !.

Equivalently,lPsdisc(H) if and only if for some«.0, dimE(l2«,l1«)(H) is finite and for all
«.0, E(l2«,l1«)(H)Þ0. sdisc(H) captures the notion of bound states.

The second breakup involves the fact that any measuredm on R has a decomposition

dm5dmpp1dmac1dmsc,

wheredmpp is a pure point measure~sum of delta functions!, dmac is F(l)dl, with F a non-
negative locally integrable density, anddmsc is a singular continuous measure~like the Cantor
measure!. I will define spp(H) to be the set of eigenvalues ofH; it is not the union of the support
of mpp because it may not be closed

sac~H !5ø
w

supp~dmw
H!ac,

sac~H !5ø
w

supp~dmw
H!sc.

One often defines a refined setSac with S̄ac5sac(H), the essential support of the ac measu
Basically, the essential support of the a.c. measureF(l)dl is $luF(l)Þ0%. It is defined modulo
sets of Lebesgue measure zero.Sac is the union of the essential support of (dmw

H)ac over a
countable dense set ofws.

III. SELF-ADJOINTNESS

The theory of Schro¨dinger operators was born with Kato’s famous self-adjointness theo
for atomic Hamiltonians. His theorem abstracted states the following:

Theorem III.1: ~Kato144! Let H5L2(R3N) where xPR3N is written (x1 ,...,xN) with xi

PR3. Let D i be the Laplacian in xi and let Vi ,Vi j be functions onR3 in L2(R3)1L`(R3). Let

H052(
i 51

N

~2m i !
21D i , ~III.1!

V5(
i 51

N

Vi~xi !1(
i , j

Vi j ~xi2xj ! ~III.2!

and let H5H01V. Then H defined on D(H0) is self-adjoint and is essentially self-adjoint o
C0

`(R3N).
Remarks:
~1! See Reed and Simon211 for a proof.
~2! The basic idea of the proof is a perturbation theoretic one. There is a general theore~the

Kato–Rellich theorem! that if A is a self-adjoint operator andB is a symmetric operator with
D(B).D(A) and for somea,1 andb.0 and allwPD(A), that
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iBwi<aiAwi1biwi , ~III.3!

then A1B is self-adjoint onD(A) and essentially self-adjoint on any domain of essential s
adjointness forA. If ~III.3! holds, we will sayB is A bounded. The infimum over alla is called the
relative bound ofB with respect toA.

~3! If one looks at a general bound of type~III.3! with a,1 whereA52D on L2(Rk) andB
is multiplication byV, then in terms of requirements thatVPL loc

p (Rk), one needs

p>2 k51,2,3 ~III.4a!

p.2 k54 ~III.4b!

p>
k

2
k>5 ~III.4c!

by using Sobolev estimates~see, e.g., Cyconet al.53!.
~4! If k53N and we useonly the Lp requirements of Remark 3, Coulomb potentials st

working already atN52. Thus, for Kato’s theorem, it is critical to use Sobolev estimates
subsets of variables as Kato did.

An industry developed in understanding when2D1V is essentially self-adjoint onC0
`(Rn).

An illustrative example is
Example: Let H52D2cuxu22 on C0

`(Rk) with n>5 ~needed forHwPL2 for all w
PC0

`(Rk)). Then it can be seen~Reed and Simon,211 Example 4 in Sec. X.2! that if c.c05(n
24)n/4, thenH is not self-adjoint onC0

` . This is a quantum analog of the classical fact tha
V52cuxu22 for any c.0, a set of initial conditions of positive measure falls intox50 in finite
time (c0.0 is a reflection of an uncertainty principle repulsion!.

This example shows that for pureLp requirements, one cannot do better than~III.4! since
uxu22PLp1L` if p,k/2. But it turns out this is only so ifV is allowed to have any sign. Fo
V>0, one can do much better. The best result of this genre is

Theorem III.2: ~Leinfelder and Simader173! Let V>0, VPL loc
2 (Rk), $aj% j 51

k PL loc
4 (Rk) with

¹•aPL loc
2 (Rk) ~distributional derivatives!. Then

H5(
j 51

k

~ i ] j2aj !
21V ~III.5!

is essentially self-adjoint on C0
`(Rk).

Remarks:
~1! For a proof, see Cyconet al.53

~2! This is essentially a best possible result. Ifa50, H is defined onC0
` if and only if V

PL loc
2 ; so the result says for positiveV, we have essential self-adjointness if and only ifH is

defined. Similarly, unless there are cancellations,ajPL loc
4 and¹•aPL loc

2 is required forH to be
defined onC0

` .
~3! It was Simon239 who first realized that forV>0, there only needed to be localL2 condi-

tions. However, he required a global condition* uV(x)u2e2bx2
dx,` for some b.0. It was

Kato152 who proved the generala50 result~and also allowed for smootha’s!. Kato’s paper used
the distributional inequality, now called Kato’s inequality

Duuu>Re~sgnuDu! ~III.6!

that is also critical to the Leinfelder–Simader proof.
~4! ~III.6! is essentially equivalent to the fact thatetD is positivity preserving. The version o

~III.6! with magnetic fields is equivalent to diamagnetic inequalities:

u~e2tHw!~x!u<~etDuwu!~x! ~III.7!
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for theH of ~III.5! ~with V>0). These ideas were discovered by Nelson,198 Simon,241,247and Hess
et al.119

While there are best possible self-adjointness results for magnetic fields and positive
tials, the results forV’s which can be negative are not in such a definitive form. All the ba
principles are understood but I am not aware of a single result that puts them all together~one of
the best results is in Kato’s paper151 although, as we will see, it is not quite optimal with regard
local singularities!. So I will present the general principles that are understood in this case.

~a! 2uxu2 borderline for behavior at infinity. Negative potentialsV of compact support for
which H52D1V is essentially self-adjoint onC0

` normally obey a global estimate of the form
~III.3! ~with A52D, B5V! and, in particular,H is bounded from below. However, ifV is not of
compact support, it can go to minus infinity at infinity without destroying self-adjointness. Mo
less, the borderline for keeping self-adjointness is2uxu2. For example, it can be proven~see, e.g.,
Reed and Simon,211 Theorem X.9! that2(d2/dx2)2uxua on L2(2`,`) is essentially self-adjoint
on C0

`(2`,`) if and only if a<2. This is attractive since a classical particle with the sa
potential reaches infinity in finite time if and only ifa.2. Nelson has examples~see Reed and
Simon,211 p. 156! of V(x) with V(x)<2cx4 so 2(d2/dx2)1V(x) is still essentially self-adjoint
and thus, the borderline will not be if and only if, but the general version of this is that ifV(x)
>2cx2 in some averaged sense, then2D1V(x) will be essentially self-adjoint onC0

` . The
earliest version of this is Ikebe and Kato.130 My favorite theorem of this genre is due to Faris a
Lavine80 ~see Reed and Simon,211 Theorem X.38!. In particular, Stark Hamiltonians whereV
5c"x1V0 are essentially self-adjoint for suitableV0 . In any event, I will focus henceforth on
cases where2D1V is not unbounded from below.

~b! Stability of relative boundedness under adding V>0 or a magnetic field. SupposeA>0.
Then ~III.3! holds for somea,1 if and only if

lim
g→`

iB~A1g!21i,1.

On the other hand,~III.7! implies that forV>0, anya and any multiplication operatorW:

iW~H1g!21i<iW~2D1g!21i

and so the second principle is that in studying the negative part ofV, one can assumeV is negative
and then add back an arbitrary positiveL loc

2 positive V. While this is true, it ignores situation
where there are cancellations between the positive and negative parts which can occur~see, e.g.,
Combescure and Ginibre48!.

~c! Relative bounds need only hold uniformly locally. The following proposition holds:
Proposition III.3: Suppose V is a function onRd so that for somea, b and every y,

iVx~•2y!wi<ai2Dwi1biwi , ~III.8!

wherex is the characteristic function of the unit cube. Then for anyã.a, there is someb̃ so that

iVwi<ãi2Dwi1b̃iwi . ~III.9!

This result is proven by a variant of an idea of Sigal.231 Find a ‘‘partition of unity’’ $ j m%m so
that S j m

2 51, eachj m is supported in some unit cube~so j mx(•2ym)5 j m for somej m), and the
j m’s are locally finite,((“ j m)2 is uniformly bounded~the j m’s can be translates of a singlej m!
andSuD j mu is uniformly bounded. IfH052D, we have~whereC is related toiS(¹ j m)2i` and
iS(D j m)i`!

(
m

@ j m ,@ j m ,H0
2##<C~H011!

and from this that
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( iH0 j mwi2<~11«!iH0wi21C«iwi2. ~III.10!

Thus

iVwi25(
m

iVx~•2ym! j mwi2

<~11«!a2(
m

iH0 j awi21~11«21!b2iwi2 ~by ~III.8!

<~11«!2a2iH0wi21~~11«21!b21C«!iwi2 ~by III.10!

which yields~III.9!.
Proposition III.3 states that the proper condition onV to yield a2D bound is a uniform local

condition.
~d! Convolution results are the proper local condition. As discussed earlier,Lp conditions on

V do not properly control functions on subspaces. Explicitly, letp:Rk→Rl be a projection and
V(x)5W(p(x)). Then forV to be2D bounded~assumingk> l>5), we needWPL loc

p (Rl) for
p> l /2 and soVPL loc

p (Rk) with p> l /2. But if V is not a function of a subset of variables,
general we needp>k/2. It is a discovery of Stummel262 that by stating conditions in terms o
convolution estimates, one can find conditions that respect subsets of variables. In particu
following is a spaceSn introduced in Stummel:262 Let V be a function onRn; we sayVPSn if and
only if

lim
a↓0

Fsup
x
E

ux2yu<a
ux2yu42nuV~y!2udnyG50 if n>5,

lim
a↓0

Fsup
x
E

ux2yu<a
ln~ ux2yu21!uV~y!u2dnyG50 if n54

sup
x
E

ux2yu<1
uV~y!u2dny,` if n<3.

This class respects functions of subvariables in the sense that ifp:Rk→Rl is a projection,
V(x)5W(p(x)) and WPSl , then VPSk . Moreover, it is not hard to show~see, e.g., Cycon
et al.53! that if VPSn , then V is 2D bounded with relative bound zero. Moreover~see Cycon
et al.,53 Theorem 1.9!, if for somea,b.0 andd with 0,d,1 and all 0,«,1 andwPD(H0)

iVwi2<«iDwi21a exp~b«2d!iwi2, ~III.11!

thenV is in Sn . See Schechter226 for more on Stummel conditions.
~3! The Kato class and going beyond relative boundedness. In his inequality paper,152 Kato

introduced a form analogKn of Sn : Let V be a function onRn; we sayVPKn if and only if

lim
a↓0

Fsup
x
E

ux2yu<a
ux2yu22nuV~y!udnyG50 if n>3, ~III.12a!
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lim
a↓0

Fsup
x
E

ux2yu,a
ln~ ux2yu21!uV~y!udnyG50 if n52, ~III.12b!

sup
x
E

ux2yu<1
uV~y!udny,` if n51. ~III.12c!

Then Kato151 proved if max(2V,0)PKn and VPL loc
2 (R), then 2D1V is essentially self-

adjoint onC0
`(Rn). While it is not Kato’s proof, this is intimately connected with the semigro

result discussed in Sec. IV. Defining the form sumH, one knows exp(2tH):L2→L` so
L`ùL2ùD(H) is a domain of essential self-adjointness. It is not hard to then showL0

`ùD(H),
theL` functions of compact support are a domain of essential self-adjointness. Then convo
allows one to getC0

` approximations.
~f! Logarithmic improvements. NeitherSn nor Kn is quite the ideal space for essential se

adjointness. For example, ifn>5 andV(x)5uxu22(11u loguxuu)2a, V is in Kn only if a.1, in Sn

only if a. 1
2, but 2D bounded with relative bound zero ifa.0.

Analogous to the issue of self-adjointness is a question of whether maximal and mi
forms agree. This is discussed in Kato152 and Simon248 ~see Theorem 1.13 in Cyconet al.53!.

IV. PROPERTIES OF EIGENFUNCTIONS, GREEN’S FUNCTIONS, SEMIGROUPS, AND
ALL THAT

I wrote a long review of these subjects 20 years ago~Simon250! and the situation has hardl
changed since then, although there has been extensive interesting work on what happ
general elliptic operators and for bounded regions~see, e.g., Davies55!. So it will suffice to hit a
few major themes. The basic theorem is

Theorem IV.1: Let V1PL loc
1 (Rn) and V2PKn , the space of~III.12!. Let H52D1V as a

form sum. Then for any p<q,e2tH maps Lp to Lq and for t<1,

ie2tHip,q<Ct2a, ~IV.1!

where

a5
n

2 S 1

p
2

1

qD . ~IV.2!

Remarks:
~1! SemigroupLp bounds were first found by Davies,54 Herbst and Sloan,118 and Kovalenko

and Semenov161 with further developments by Carmona,41 Simon,246 and Aizenman and Simon.12

~2! In particular, it was Aizenman and Simon12 who found thatKn is the natural class forLp

bounds. Indeed, they not only proved Theorem IV.1 in this form but also showed that ifV<0 and
exp(2tH) mapsL` to itself with limt↓0 ie2tHi`,`51, thenVPKn .

~3! The result holds when magnetic fields are added~by a diamagnetic inequality!.
~4! Most of these authors use a combination of path integral estimates andLp interpolation

theory. In particular, the Feynman–Kac and Feynman–Kac–Itoˆ formulas~see Simon246 for exten-
sive discussion! are useful tools in studying Schro¨dinger operators. See Simon259 for an extension
to cases whenV(x)>2cx2.

~5! In fact, e2tH takesLp not only intoL` but into the continuous functions~see Simon,250

Theorem B.3.1!.
~6! ~IV.1!/~IV.2! are precisely the best results forH52D.
~7! This theorem says thatH can be defined as the generator of a semigroup on eachLp space.

The spectrum has been shown to beLp independent in Hempel and Voight.113 For a general
discussion ofLp Schrödinger operators, see Davies.56
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Once one has these estimates, they can be used to derive:
~a! Sobolev estimates:As in the free case ifV obeys the conditions of Theorem IV.1, the

(H2z)2n takesLp to Lq if

p212q21,S 2a

n D . ~IV.3!

The result~see Simon,250 Theorem B.2.1! is obtained by integrating the semigroup bound.~IV.3!
comes from~IV.2! and the requirement of integrability att50.

~b! Integral kernels:Bounded operators fromL1 to L` have bounded integral kernels and
Theorem IV.1 can be used~see Simon,250 Theorem B.7.1! to provee2tH, (H2z)2a (a.n/2) are
integral operators with continuous integral kernels. One can also show~Simon,250 Theorem B.7.2!
that for 0,a,n/2, (H2z)2a is an integral operator with an integral kernel that is continuo
away fromx5y with a precise singularity atx5y.

~c! Eigenfunctions:Since global eigenfunctions~i.e., wPL2 that obeyHw5Ew! are in
Ran(e2tH), Theorem IV.1 implies such eigenfunctions are inL`. In fact, all this can be done
locally. Any eigenfunction~distributional solution ofHw5Ew! is automatically continuous an
one can prove Harnack inequalities and subsolution estimates. This is discussed in de
Aizenman and Simon12 and Simon.250

We end this section with a discussion of some issues involving eigenfunctions. There is
literature on when Schro¨dinger operators have positive solutions. This was begun by Allegre13

and Piepenbrink206 with later results by Agmon5 and Pinchover.207

Here is a typical theorem~Simon @Ref. 250, Theorem C.8.1#!:
Theorem IV.2: Let V2PKn and K1PKn

loc . Then Hu5Eu has a nonzero distributiona
solution which is everywhere positive if and only ifinf spec(H)>E.

There is also much literature on the issue of exponential decay of eigenfunctions. One
~see Simon250, Theorem C.3.1! says that anyL2 eigenfunction actually goes to zero pointwise—
interest only for eigenfunctions of embedded eigenvalues. For discrete spectrum, the dec
least exponential under minimal regularity hypothesis onV. The original key papers on this them
are by O’Connor200 and Combes and Thomas.47 From their ideas, one obtains~see Sec. C.3 of
Simon!;250

Theorem IV.3: Let V2PKn , V1PKn
loc and let H52D1V and let Hu5Eu with uPL2.

Then

uu~x!u<Ce2Auxu, ~IV.4!

where:

~i! For general E in the discrete spectrum, ~IV.4! holds for some A.0 and C.0.
~ii ! If H has compact resolvent, then~IV.4! holds in the sense for any A.0, there is a suitable

C.0.
~iii ! If Sess5inf sess(H) and E,Sess, then ~IV.4! holds in the sense that for any A

<AE2(ess, there is a suitable C.0.

One can go beyond this to get fairly detailed behavior on decay in cases whenH has compact
resolvent or forN-body potentials. In one dimension, one can justify under some regul
conditions the WKB formula that states whenV(x)→`, eigenfunctions decay like

V~x!21/4expS 2E
a

x
AV~y!2E dyD . ~IV.5!

It was Agmon4 who realized the proper higher-dimensional analog for this involves wh
now called the Agmon metric:r(x) is the geodesic distance ofx to 0 in the Riemannian metric
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r i j (x)5d i j (V(x)2E)1d2x. There is a related but more subtle definition forN-body systems. See
Agmon4 and Deiftet al.59 for further discussions. See Simon253 and Helffer and Sjo¨strand111 for
an application to tunneling probabilities.

Eigenfunctions play a critical role in explicit spectral representations of Schro¨dinger opera-
tors. The basic ideas go back to work of Browder,39 Garding,88 Gel’fand,89 Kac,137 and especially
Berezanskii.29,30 See Sec. C.5 of Simon250 and Last and Simon170 for some additional one-
dimensional results.

Finally, we mention issues of cusps and nodes of eigenfunctions. Kato148 has a famous pape
on cusps at Coulomb singularities for atomic eigenfunctions. See Hoffmann-Ost
et al.108,120,121for recent developments in this area.

V. ONE-DIMENSIONAL DECAYING POTENTIALS

One-dimensional Schro¨dinger operators

2
d2

dx2 1V~x! ~V.1!

on L2(2`,`) andL2(0,̀ ) and their discrete analogs

hu~n!5u~n11!1u~n21!1V~u!u~n! ~V.2!

on l 2(2`,`) and l 2@0,̀ ) have been heavily studied for two reasons. First, ordinary differen
equation~ODE!/difference equation methods allow one to study them in much greater detail
one can the higher-dimensional analogs. Second, ifV(x)5V(uxu) is a spherically symmetric
function onRn, then2D1V is unitarily equivalent to a direct sum of operators onL2(0,̀ ) or the
form ~V.1! where the effectiveV’s have the formVl(x)5k l uxu221V(x) for suitablek l ’s. The
details can be found, for example, in Reed and Simon,211 Example 4 to the Appendix for X.1.

The one-dimensional theory has been in and out of vogue. It was extensively studied
1930 to 1950 with important contributions by Titchmarsh, Kodaira, Gel’fand, Hartman–Win
Levinson, Coddington–Levinson, and Jost. Significant developments during the next 25
were mainly in the area of inverse spectral theory~a major exception was Weidmann’s work,273 to
be discussed shortly! which will be discussed in Sec. VI. From about 1975 starting with the w
of Goldsheidet al.98 and Pearson,204 this has been an active area with extensive study of
one-dimensional case, especially with long-range and with ergodic potentials.

One special feature of one dimension is that one can limit spectral multiplicities under
general conditions onV:

Theorem V.1:

~a! Let H52(d2/dx2)1V(x) on L2(0,̀ ) with fixed hu(0)1u8(0)50 boundary conditions
and suppose H is essentially self-adjoint on C0

`@0,̀ ). Then H has simple spectrum~multi-
plicity 1!.

~b! Let H52(d2/dx2)1V(x) on L2(2`,`) and suppose H is essentially self-adjoint o
C0

`(2`,`). Then

~i! The absolutely continuous spectrum of H is of multiplicity at most 2.
~ii ! The singular spectrum of H is of multiplicity 1.

Remarks:
~1! All one needs for local regularity ofV is VPL1@0,R# for all R.0 or L loc

1 (2`,`).
~2! The result holds even ifH is not essentially self-adjoint(V limit circle at 6`! so long as

a boundary condition is imposed at` or at 2`.
~3! The only subtle part of the result is that the singular continuous spectrum is simple o

real line. This is a theorem of Kac;138,139see also Berezanskii.29,30 My preferred proof is due to
Gilbert.95,96
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In this section, we will discuss the case whereV(x)→0 at infinity. In Sec. VI, we will discuss
inverse spectral theory, and in Sec. VII, we will discuss ergodic potentials.~These two subjects ar
mainly one dimensional.! The issue of the asymptotic eigenvalue distribution whenV→` as6`
is discussed in Sec. XIV on the quasiclassical limit.

This section will discuss~V.1!/~V.2! in situations whereV(x) ~or V(n)! goes to zero~at least
in an average sense! as x→` ~or n→`). The interesting thing is that there are three natu
breaks in behavior. Expressed in terms ofuxu2a behavior, they are

~i! At a52, we shift between a finite number of bound states (a.2) or an infinite number
(a,2) at least ifV(x),0.

~ii ! At a51(VPL1), we shift between a pure scattering situation for positive energiea
.1) and the possibility of positive energy bound states (a,1).

~iii ! At a5 1
2, (VPL2), we shift from there being a.c. spectrum for almost everywhere pos

energy (a. 1
2) to at least the possibility of very different spectrum.

~i! and~ii ! have been known since the earliest days of quantum mechanics. Thea5 1
2 border-

line first occurred in Simon251 who found that random decay potentials had point spectrum w
a, 1

2. Delyonet al.64 then showed ifa5 1
2, there may be some nonpoint spectrum. As we will s

subsequent results confirmed this borderline.
The negative spectrum for decaying potentials is easy: So long as*x

x11uV(y)udy→0, H is
bounded below and has@0, `! as essential spectrum by Weyl’s criterion~see, e.g., Reed an
Simon,213 Sec. XIII.4!, which means that~2`, 0! has only discrete eigenvalues of finite mul
plicity, which can only accumulate at energy 0. Indeed, by Theorem V.1, the point spectrum
multiplicity 1. Once these basics are established for the discrete spectrum, a number of d
questions about it arise:

~a! Is sdisc finite or infinite? The borderline, as mentioned above, isr 22 decay. Explicitly, one
has Bargmann’s bound24 that the number of eigenvalues on a half line withu(0)50 boundary
conditions is bounded by*xuV(x)udx and on a whole line by 11*2`

` uxuuV(x)udx ~see Simon240

for a review of bounds on the number of bound states!. On the other hand, iflimx→`uxu2V(x)
<2 1

4, one can prove thatH has an infinity of bound states~see, e.g., Reed and Simon,213 Theorem
XIII.6 !.

~b! If sdisc is infinite, how doesliml↑0 dimE(2`,l)(H) diverge? This is a quasiclassical limi
and discussed in Sec. XIV.

~c! Bounds on moments of eigenvalues. Lieb and Thirring,186 motivated in part by their work
on the stability of matter,185 initiated extensive study on the best constantLg,1 in

(
j

uej ug<Lg,1E uV~x!ug11/2dx,

which holds ifg> 1
2. Here$ej% are the negative eigenvalues ofH. For g> 3

2, the constantLg,1 is

known to be quasiclassical~Aizenman and Lieb!.9 For gP@ 1
2,

3
2), it is known thatLg,1 is strictly

larger than the quasiclassical result.186 It is conjectured to be the optimal value for a single bou
state, as explained in Lieb and Thirring,186 but this is still open~except atg5 1

2 ~Hundertmark
et al.125!.

~d! Is there a bound state for weak coupling?In one~and two! dimensions,H has bound states
even for very weak coupling. The result~Simon242! is that if * uxuuV(x)udx,` and *V(x)dx
<0 andVÞ0, thenH always has a bound state and the binding energy of2D1mV is ;cm2 as
m↓0 ~if *V(x)dx,0; it is ;cm4 if *V(x)50).

As for positive energies, the situation is simple ifVPL1:
Theorem V.2: Let VPL1(2`,`) or L1(0,̀ ). Then HE(0,̀ )(H) is unitarily equivalent to

2d2/dx2 ~on L2(2`,`) or L2(0,̀ ) with u(0)50 boundary conditions!.
Remarks:
~1! This result is essentially due to Titchmarsh.267

~2! In terms ofr 2a falloff, VPL1 meansa.1.
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~3! Using scattering theoretic ideas, one can prove wave operators exist and are comple~see
Sec. VIII!.

~4! This says there is no point of singular continuous spectrum at positive energies and t
a.c. spectrum has essential support~0, `! with multiplicity 2 or 1.

~5! We have stated the result foru(0)50 boundary condition for simplicity; it holds for al
boundary conditions at 0.

As for slower decay thanL1, if one has control of derivatives, one can still conclude
positive spectrum is purely absolutely continuous. The simplest result of this genre is

Theorem V.3: ~Weidmann273! Let V5V11V2 where V1 is in L1, V2(x)→0 as x→6`, and
V2 is of bounded variation. Then, HE(0,̀ )(H) is unitarily equivalent to2d2/dx2 ~on L2

(2`,`) or on L2(0,̀ ) with u(0)50 boundary conditions!.
Remarks:

~1! V2 of bounded variation withV2→0 at infinity essentially says that2dV2 /dxPL1; in fact,
any V2 of bounded variation can be writtenV31V4 with V3PL1 andV4 a C1 function with
dV4 /dxPL1.

~2! Pure power potentialsr 2a for any a.0 are included in this theorem; indeed, any monoto
function V(x) with V(x)→0 asx→` is of bounded variation.

For a short proof of Theorems V.2/V.3, see Simon.256 Both theorems can be understood
coming from the fact that all solutions of2u91Vu5lu with l.0 are bounded. That such
conclusion implies the spectrum is purely absolutely continuous was first indicated by Carm42

~who required some kind of uniformity inl!. Important later developments that capture this id
are due to Gilbert and Pearson,97 Last and Simon,170 and Jitomirskaya and Last.135 The tools in
those papers are also important for the proofs of the results of Sec. VII.

Once one allows decay slower thanr 212e for both V and V8, the conclusion of Theorem
V.2/V.3 can fail because of embedded point spectrum. The original examples of this were
by von Neumann and Wigner.272 Basically, if V(x)5guxu21 sin(x) for x large andg.1, then
2u91Vu5 1

4 u has a solution which isL2 at infinity ~see, e.g., Theorem XI.67 in Reed an
Simon213!. By adjustingV at finite x, one can arrange for any boundary condition one want
x50. In fact, if one allows slightly slower decay thanuxu21, one can arrange dense point spe
trum. Naboko197 and Simon257 have shown that for any sequence$ln%n51

` of energies in~0, `!
~Naboko has a mild restriction on thel’s! and anyg(r ) obeying limr→` rg(r )5`, there is aV(x)
obeying:

~i! uV(x)u<g(uxu) for x large;
~ii ! 2u91Vu5lnu has a solutionL2 at infinity and obeying a prescribed boundary conditi

at x50.

Remark:It is an interesting open question about whether there exist potentials decaying
than uxu21/22« with dense singular continuous spectrum~rather than dense point spectrum!.

The interesting fact is that even though potentials of Naboko–Simon type have dense
spectrum, they may also have lots of a.c. spectrum. The best result is:

Theorem V.4: ~Deift and Killip60! Let VPL2. Then the essential support of the a.c. spectr
of H52(d2/dx2)1V is @0, `!.

Remarks:
~1! In terms ofr 2a decay, this result requiresa. 1

2.
~2! This result is optimal in that it is known for any Orlicz space strictly larger thanL2 in

terms of behavior at infinity, there areV’s whose associatedH has no a.c. spectrum.
~3! The first result of this genre was found by Kiselev156 who proved the conclusion of thi

theorem foruV(x)u<Cx23/42e. There were subsequent improvements of this by Kiselev,157 Christ
and Kiselev,46 and Remling.218

~4! Killip 155 has a partially alternate proof of Theorem V.4.
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Once the decay is allowed to be slower thanr 21/2, one can have much different spectrum
@0, `!:

~i! If W is a suitable family of random homogeneous potentials andV(x)5uxu2aW(x) with
a, 1

2, thenH has only dense point spectrum in~0, `!. This was first proven in the discrete case
Simon251 and later in the continuum case by Kotani and Ushiroya.160

~ii ! Generic potentials decaying likeuxu2a( 1
2.a.0) produce singular continuous spectrum

discovered by Simon.255 For example, in$VPC(R)usupxuxuauV(x)u[iVia% viewed as a complete
metric space ini•ia , a denseGd of V’s are such that2d2/dx21V(x) has purely singular
continuous spectrum on@0, `!.

~iii ! Much more is known in the borderlinea5 1
2 case, at least for the discrete Schro¨dinger

operator~V.2!. For example, ifan are independent, identically distributed random variables u
formly distributed in@21, 1# and V(n)5mn21/2an , then for suitable coupling constantsm and
energiesE in @22, 2#, the spectral measures have fractional Hausdorff dimension with an ex
computable local dimension. This is discussed in Kiselevet al.158 There are earlier results on th
model by Delyonet al.64 and Delyon.62

~iv! A very different class of decaying potentials was studied by Pearson.204 His potentials are
of the form

V~x!5 (
n51

`

anW~x2xn!, ~V.3!

whereW>0, an→0, andxn→` very rapidly so the bumps are sparse. He showed that for suit
an ,xn , the correspondingH has purely singular spectrum—providing the first explicit example
such spectrum. Strong versions of his results were found by Remling217 and Kiselevet al.158 In
particular, the latter authors proved if (xn11 /xn)→` ~e.g.,xn5n!), then potentials of the form
~V.3! lead toH’s with purely singular spectrum ifSan

25` and to ones with purely a.c. spectru
if (an

2,`.

VI. INVERSE SPECTRAL THEORY

One area related to Schro¨dinger operators, especially in one dimension, is the questio
inverse theory: How does one go from spectral or scattering information to the potential. Th
much literature, including three books I would like to refer the reader to: Chadan and Saba45

Levitan,176 and Marchenko.190 I will only touch some noteworthy ideas here.
In one dimension, a key role is played by the Weylm function and the associated spectr

measuredr. Given a potentialV so thatH is self-adjoint withu(0)50 boundary conditions, for
eachz with Im z.0, there is a solutionu(x;z) of 2u91Vu5zu which is L2 at infinity. Them
function is defined by

m~z!5
u8~0;z!

u~0,z!
. ~VI.1!

Im m(z).0 in Imz.0 so by the Herglotz representation theorem

m~z!5B1E dr~l!F 1

l2z
2

l

11l2G ~VI.2!

for a suitable constantB. dr is called the spectral measure forH. One can recoverdr from m by

1

p
Im m~l1 i«!dl→dr~l! ~VI.3!

weakly as«↓0 and ~VI.2! allows the recovery ofm from dr given the known asymptotics
~Atkinson,15 Gesztesy and Simon93!
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m~2k2!52k1o~1! ~VI.4!

as uku→` with d,Argk,(p/2)2d. dr really is a spectral measure for letw̃(x,l) solve2w̃9
1Vw̃5lw̃ with boundary conditionsw̃(0,l)50, w̃8(0,l)51, and define forf PC0

`(0,̀ )

~U f !~l!5E w̃~x,l! f ~x!dx. ~VI.5!

ThenU is a unitary map ofL2(0,̀ ,dx) to L2(R,dr(l)); in particular,

E u~U f !~l!u2dr~l!5E u f ~x!u2dx ~VI.6!

or formally

E w~x,l!w~y,l!dr~l!5d~x2y!. ~VI.7!

Moreover, (UH f )(l)5l(U f )(l). dr and its equivalent functionm is therefore close to spectra
information. One way of seeing this explicitly is ifV(x)→`. In that case,m is meromorphic, the
poles ofm are precisely the eigenvalues ofH with u(0)50 boundary conditions and by definitio
of m, the zeros are precisely the eigenvalues withu8(0)50 boundary conditions.m is uniquely
determined by these two sets of eigenvalues.

In many ways, the fundamental result in inverse theory is the following one:
Theorem VI.1: ~Borg37–Marchenko188! m determines q, that is, if q1 and q2 have equal

m’s, then q15q2 .
Recently, the following local version of the Borg–Marchenko theorem was proven
Theorem VI.2: Let q1 and q2 be potentials and m1 and m2 their m functions. Then q15q2 on

@0,a# if and only if

um1~2k2!2m2~2k2!u5O~e22ak!

as k→` for k obeyingd<argk<p/22d.
Remarks:
~1! This result was first proven by Simon258 whenq1 andq2 are bounded from below.
~2! The general result which even allowsqi to be limit circle at infinity was first obtained by

Gesztesy and Simon.93

~3! A simple proof of Theorem VI.2 was subsequently obtained by Gesztesy and Simo94

Given the uniqueness result, it is natural to ask about concrete methods of determiningq given
m. There are two approaches for the general case. The first is due to Gel’fand and Levitan90 and
depends on the orthogonality relation~VI.7!, while the other, due to Simon,258 is a kind of
continuum analog of the continued fraction approach to solving the moment problem.

The Gel’fand–Levitan approach depends on a representation of the solutionsw due to
Povzner208 and Levitan:175

w~x,l!5
sin~kx!

k
1E

0

x

K~x,y!
sin~ky!

k
dy, ~VI.8!

wherel5k2. In essence,~VI.7! leads to a linear Volterra integral equation forK whose kernel is
determined byr. Once one hasK, one can determineV from ~VI.8! and2w91Vw5lw or from
more direct relations ofK to V.

The approach of Simon depends on a representation ofm as a Laplace transform
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m~2k2!52k2E
0

a

A~l!e22kada1O~e22ak!, ~VI.9!

which determinesA given m ~there is also a direct relation ofA to r given in Gesztesy and
Simon93!. One can introduce a second variable and functionA(x,a) so A(x50,a)[A(a). A
obeys

]A

]x
5

]A

]a
1E

0

b

A~x,b!A~x,a2b!db ~VI.10!

and

lim
a↓0

A~x,a![V~x!. ~VI.11!

In this approach,m determinesA(x50,•) by ~VI.9!; the differential equation~VI.10! determines
A(x,a), and then~VI.11! determinesV.

Inverse spectral theory is connected to inverse scattering for short-range potentials sindr
on @0, `! is determined by scattering data. Scattering data also determine the positions
negative eigenvalues. One needs to supplement that with the weight of the pure points a
negative eigenvalues known as norming constants. Marchenko190,189 has an approach to invers
scattering related to the Gel’fand–Levitan approach by using a different representation
~VI.8!. When*0

`xuV(x)udx,`, Levin174 has proven that in Imk.0, there is a solutionc(x,k) of
2c91Vc5k2c given by

c~x,k!5eixk1E
x

`

K̃~x,y!eikydy.

Krein162–164also developed an approach to inverse problems. A different approach to in
scattering is due to Deift and Trubowitz.61 For another approach to inverse problems, see Melin195

Inverse theory for periodic potentials also has an extensive literature starting with Dub
et al.,70 Its and Matveev,132 McKean and van Moerbeke,193 McKean and Trubowitz,192 and
Trubowitz.268

As for higher-dimensional inverse scattering, these scattering data overdetermine the
tial. For example, for short-rangeV’s, the scattering amplitude at fixed momentum transfer
proaches the Fourier transform ofV at large energy, so the large energy asymptotics of scatte
determineV. There is considerable literature on recoveringV from partial scattering data, which
we will not try to summarize here.

One reason for the interest in inverse theory is the connection it sets up between s
theory of Schro¨dinger operators and the analysis of certain nonlinear partial differential equa
like KdV ~see Doddet al.,68 Novikov et al.,199 and Belokoloset al.26!.

VII. ERGODIC POTENTIALS

Let V be a compact metric space with probability measuredg andTt with tPRn or Tn with
nPZn be an ergodic family of measure-preserving transformations. Letf :V→R be continuous.
For vPV, define

Vv~x!5 f ~Txv! ~VII.1!

and

Hv52D1Vv . ~VII.2!
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Note: To allow unboundedV’s as seen, for example, in Gaussian random potentials,
wants to extend this picture to either allowf to be discontinuous and/or take values inRø$`%,
and/or allowV to be noncompact; for simplicity, we will discuss this model for motivation.

Hv is a family of Schro¨dinger operators, not a single one, but by the ergodicity and an obv
translation covarianceVTyv(x)5Vv(x1y), many spectral properties occur with the probabil
one. So one can speak of typical properties. In particular, it is known that the full spectrumS, the
essential support of the absolutely continuous spectrumSac, the closure of the point spectrum
S̄pp, and the singular continuous spectrumSsc are a.e. constant inc ~see, e.g., Theorems 9.2 an
9.4 in Cyconet al.53 for proofs; the result forS and S̄pp is due to Pastur202 and the other results
to Kunz and Souillard165!. Note onlyS̄pp is a.e. constant;Spp, the actual set of eigenvalues is no

Examples:

~1! Let V5@a,b#Zn
and letdg be the infinite product of normalized Lebesgue measure

@a,b#. Let (Tmv)n5vn1m . The corresponding discrete Schro¨dinger operator is called the Ande
son model and is typical of random potential models.

~2! If V is a compact Abelian group withZn or Rn as a dense subgroup,dg is the Haar
measure andTx is the group translate, thenV is a periodic or almost periodic function. A fre
quently discussed example is

V~n!5l cos~pan1u!, ~VII.3!

wherea is irrational,u runs in @0, 2p# ~which is V!, andl is a parameter. The correspondin
discrete Schro¨dinger operator is called the almost Mathieu model.

The simplest example of this framework—which is atypical in many ways—is the peri
potential. The basic facts in this case go back to physics literature at the start of quantu
chanics~Bloch, Brillouin, Kramer, and Wigner! and, in one dimension, to work on Hill’s equatio
~Floquet, Lyapunov, Hamel, and Haupt!. A critical early mathematical paper on the multidime
sional case is Gel’fand.89 The key result is that for periodicV’s with a mild local regularity
condition, H52D1V has purely absolutely continuous spectrum. This result is discusse
detail in Reed and Simon,212 Sec. XIII.16!. The only subtle part of the argument is to eliminate t
possibility of what are called flatbands, a result of Thomas.264

In the mathematical physics literature, the period from 1975 onwards has seen eno
interest in the study of almost periodic and random models and special cases thereof. Thre
that discuss this are part of Carmona and Lacroix,44 Cyconet al.,53 and Pastur and Figotin.203 We
will only touch some of the general principles, leaving the details—especially of det
models—to the books and the vast literature. We will make references to the Lyapunov exp
without defining it; see Cyconet al.,53 Sec. 9.3.

For random potentials, the most interesting results concern localization. While the spect
typically an interval~e.g., for the Anderson model inn dimensions, it is@a22n,b12n#), the
spectrum is pure point with eigenvalues dense in the interval and exponentially decaying
functions.

In one dimension, localization was first rigorously proven by Goldsheidet al.98 with a later
alternative by Kunz and Souillard.165 Following an idea of Kotani,159 Simon and Wolff,261 and
Delyon et al.63 found another proof. Typical is

Theorem VII.1: For the one-dimensional Anderson model, the spectrum is@a22,b12# and
is pure point with probability one with eigenfunctions decaying at the Lyapunov rate.

Carmonaet al.43 and Shubinet al.228 have approaches that work if the single site distribut
is discrete~the other quoted approaches require an absolutely continuous component fo
distribution!.

In higher dimensions, the two main approaches to localization are due to Fro¨hlich and
Spencer87 ~see also von Dreifus and Klein270! and to Aizenman and Molchanov.10 ~See also
Aizenman and Graf8 and Aizenmanet al.11! Basically, these authors and the many papers
extend their ideas prove dense point spectrum in regimes where the coupling constant is l
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one is near the edge of the spectrum. It is believed—but not proven—that in suitable re
whenn>3, there is absolutely continuous spectrum.

For almost periodic models, one can have any kind of spectral type. The almost Ma
model has been almost entirely analyzed and the spectral type shows a great variety. Reca
the discrete model with potential

Va,l,u~n!5l cos~pan1u!,

wherel, a are fixed parameters andu runs throughV. Then
~i! If l,2, there is always~i.e., for any irrationala! lots of a.c. spectrum and it is known fo

somea and believed for alla that is all there is~see Last,169 Gesztesy and Simon,92 Gordon
et al.,100 Jitomirskaya;134 the earliest results of this genre are due to Dinaburg and Sinai67!.

~ii ! If l52 anda is an irrational whose continued fraction integers are unbounded~almost all
a have this property!, then the spectrum is known to be purely singular continuous for almos
u ~see Gordonet al.100!.

~iii ! If l.2 anda is an irrational with good Diophantine properties (ua2p/qu>Cq2 l for
someC, l and allp, q, PZ!, then for a.e.u, the spectrum is dense pure point~Jitomirskaya;134 see
also Bourgain and Goldstein38!.

~iv! If l.2 anda is irrational, there are always lots ofu ~a denseGd! for which the spectrum
is purely singular continuous~Jitomirskaya and Simon136!. For somea, like those in~iii !, the set
while a denseGd has measure 0. For Liouvillea ~irrational a’s with lim(1/q)lnusinpaqu52`),
the spectrum is purely singular continuous~Avron and Simon22 using results of Gordon99!.

In general, for almost periodic models, the spectral type is dependent on the number th
properties of the frequencies. Among the general spectral results known for almost pe
models is that the spectrum is everywhere constant onV ~rather than only almost everywher
constant; Avron and Simon22! and that the essential support of the a.c. spectrum is everyw
constant~Last and Simon170!. It is known @see~iv!# that s̄pp andssc may only be almost every
where constant and fail to be constant on all ofV.

VIII. TWO-BODY HAMILTONIANS

Hamiltonians of the form2D1V whereV(x)→0 at infinity are often referred to as two-bod
Hamiltonians since the Hamiltonian of two particles with a potentialW(r12r2) reduces to2D
1V ~whereV is a multiple ofW depending on the masses! after removal of the center of mas
The issues are essentially the same as for one-dimensional decaying potentials as discusse
V.

With regard to the negative spectrum, again Weyl’s criterion easily shows thatsess(H)
5@0,̀ ) so thatH has only discrete spectrum of finite multiplicity in~2`, 0! and only 0 can be an
accumulation point. Typical is:

Theorem VIII.1: For aPZn, let xa be the characteristic function of the unit cube abouta.
Let V:R→R. Suppose VPKn and that asa→`, ixaViKn

→0. Thensess(2D1V)5@0,̀ ).
As for whetherN(V), the number of negative bound states~counting multiplicity, i.e.,

N(V)5dim E(2`,0)(H)), is finite or infinite, there is considerable literature. The earliest boun
due to Birman32 and Schwinger227 for n53. It states

N~V!<
1

~4p!2 E uV~x!uuV~y!u
ux2yu2 dx dy ~n53!. ~VIII.1 !

Perhaps the most famous bound is that of Cwickel,52 Lieb,177 and Rosenbljum:220

N~V!<L0,nE uV~x!un/2dx ~n>3!. ~VIII.2 !
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One reason this is of special interest is that for niceV’s asl→`, N(lV)/* ulVun/2dx converges
to a universal constant~see Sec. XIV!. In particular,~VIII.1 ! has the wrong largel behavior while
~VIII.2 ! has the right such behavior.~Simon243 had the first bounds with the right largel behavior
for nice enoughV’s; he also conjectured~VIII.2 !.!

As in the one-dimensional case, there are Lieb–Thirring-type bounds on the moments
negative eigenvaluesej of 2D1V

(
j

uej ug<Lg,nE dxuV~x!ug1n/2dnx

for g.0 if n52 andg>0 if n>3. These were proven first in Lieb and Thirring.185 There has
been considerable literature on the best values ofLg,n . In particular, a recent pair of papers o
Laptev and Weidl168 and Hundertmarket al.124 has obtained a breakthrough in understanding
n dependence ofLg,n . In particular, they show that forg> 3

2, Lg,n is given by the quasiclassica
value. On the other hand, it is known thatLg50,n.Lg50,n

q.c. , the quasiclassical value for alln
~Helffer and Robert109,110!.

For a review of the literature on bounds on the number of eigenvalues, especially the
two-dimensional case, see Birman and Solomyak.36

The absence of eigenvalues at positive energies is a specialized issue largely indepen
the rest of the analysis of positive spectrum. Given the examples of Wigner–von Neuman
related ones of Naboko and Simon discussed in Sec. V, one needs some condition on the fa
lack of oscillations. Here is a simple result:

Theorem VIII.2: Let V(x)5V1(x)1V2(x) where uxuuV1(x)u→0 and u(x•¹)V2(x)u→0.
Then2D1V has no eigenvalues in@0, `!.

Remarks:
~1! The stated theorem requires local regularity (V1 bounded near infinity andV2 is C1), but

there are extensions that allow local singularities.
~2! Rellich216 proved that ifV has compact support, there are no positive energy eigenva

Theorem VIII.2 whenV250 is due to Kato150 and the full result to Agmon2 and Simon.235

~3! See Froeseet al.86 for another result of this genre; we will discuss their result further
Sec. IX.

The methods we will discuss below typically show thatsppù(0,̀ ) is finite; one can then
usually use Theorem VIII.2 to prove that the set is actually empty.

As for positive spectrum, it is intimately related to scattering theory. Given two self-ad
operatorsA, B, one says the wave operators exist if

V6~A,B!5s-lim
t→7`

eitAe2 i tBPac~B!

exists wherePac is the projection onto the a.c. subspace forB. We say they are complete i
RanV6(A,B)5RanPac(A), in which caseV6(A,B) are unitary maps of RanPac(B) to
RanPac(A) which intertwineA andB. See Reed and Simon,213 Baumgärtel and Wollenberg,25 or
Yafaev277 ~or many other books! for a discussion of the physics involved.

The development of abstract scattering theory is closely intertwined~pun intended! to its
applications to Schro¨dinger operators. Fundamental work was done by Jauch,133 Cook,51

Rosenblum,221 Kato,149 Birman,33 and Birman and Krein.35

The basic result for positive spectrum for ‘‘short-range’’ potentials is:
Theorem VIII.3: Let V be such that(11uxu)11«V(x)PLp1L`(Rn) for max(2,n/2),p

,` and let H52D1V and H052D. ThenV6(H,H0) exist and are complete. Moreover,
has no singular continuous spectrum and any eigenvalues in~0, `! are isolated~from other
eigenvalues! and of finite multiplicity.

Remarks:
~1! The first results on absence of singular continuous spectrum depended on eigenfu

expansions and were obtained by Povzner209 (V’s of compact support! and Ikebe129 (V’s which
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wereO(uxu222«) at infinity!. The earliest results on completeness of wave operators depend
the trace class theory of scattering~of Rosenblum221 and Kato149! and were obtained by
Kuroda.166,167From 1960 to 1972, the decay was successively improved until Agmon3 obtained
the O(uxu212«) result quoted.

~2! Enss77 has a different, quite physical, approach to this result. Enss’ work depends in
on an earlier geometric characterization of the continuous subspace of a Schro¨dinger operator by
Ruelle222 and Amrein and Georgescu.14 This is sometimes called the RAGE theorem after
initials of the authors.

~3! It is known ~e.g., Dollard69! that if V(x)5O(uxu21), V6(H,H0) may not exist.
For long-range behavior decaying slower thanO(uxu21), there are results if¹V decays faster

than O(uxu212«). Basically, there is only a.c. spectrum at positive energy ifV5V11V2 with
V15O(uxu212«) andx•¹V25O(uxu2«). For details, see Lavine,172 Agmon and Ho¨rmander,6 and
Hörmander.122 These works use modified wave operators as introduced by Dollard.69

IX. N-BODY HAMILTONIANS

Let H̃ be the Hamiltonian ofN particles inRn. Explicitly, H̃ is an operator onL2(RnN) given
by H̃5H̃01V where

H̃052(
j 51

N
1

2mj
Dxj

with x5(x1 ,...,xN) a point inRnN5Rn3Rn3...3Rn ~N times! and

V5(
i , j

Vi j ~xi2xj !,

with Vi j a function inRN which decays at infinity. There is a standard way of removing the ce
of mass and getting an associated HamiltonianH on L2(Rn(N21)). For a more extensive review o
the subject than this brief discussion, see Hunziker and Sigal.128

For any partitiona of $1,...,N% into disjoint subsets, one definesI (a)5S ( i , j )úaVi j over the
pairs ~i, j! in distinct clusters andH(a)5H2I (a).

The issues one faces are similar to those in the two-body case but often more subtle. T
thing one needs to establish aboutN-body systems is where the essential spectrum ofH lies. The
result involves

S~a!5 inf spec~H~a!!, ~IX.1!

S5 min
]a>2

~S~a!!. ~IX.2!

S is the minimum energy the system can have after it is broken into two pieces moved ve
from each other. That makes the following physically attractive:

Theorem IX.1: ~HVZ Theorem! Suppose each Vi j viewed as an operator on L2(Rn) obeys
Vi j (2D i j 11)21 is compact. Then

sess~H !5@S,`!.

Remarks:
~1! The name ‘‘HVZ’’ comes from work of Hunziker,126 van Winter,269 and Zhislin280 who

first proved it.
~2! The original proofs used resolvent equations; a geometric proof was later found by E76

and Simon.244
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The next issue is whether the discrete spectrum is finite or infinite. A great deal of atte
has been paid to atomic or ionic Hamiltonians. Define onL2(R3N):

HM~N,Z!5(
i 51

N S 2D i2
Z

uxi u
D1

1

M (
i , j

¹ i¹ j1(
i , j

1

uxi2xj u
,

which describesN electrons moving around a nucleus of chargeZ and massM. A basic result
states that neutral atoms and positive ions always have an infinite number of bound states

Theorem IX.2: ~Zhislin280! If N<Z, dim E(2`,S)(HM(N,Z))5` for any M ~including M
5`).

Remarks:
~1! The first result of this genre was Kato145 who proved the result ifN5Z52 andM5`

~Helium!. He did not properly handleM,` because he did not use the right coordinate syste
As shown by Simon,236 Kato’s idea, which involved placingN21 electrons in the ground state
for the N21 ion and theNth in a hydrogen-like state around the core, can prove Theorem I

~2! This result holds even if one adds Fermi statistics~see, e.g., Simon236!.
~3! If Z is not restricted to be an integer, the proper condition isN,Z11.
As for negative ions, we have
Theorem IX.3: ~Zhislin281! dim E(2`,S)(HM(Z11,Z)),`
Remarks:
~1! This result also has a geometric proof by Sigal231 and Simon.244

~2! This result may not be true for fermion electrons because theN21 problem may have a
degenerate ground state which allows one with a nonzero dipole moment.

~3! While it is presumably true that dimE(2`,S)(HM(N,Z)),` for all N>Z11, that is not
known.

Finally, with regard to bound states of atoms, there is the issue of when dimE(2`,S)50. The
result is the following:

Theorem IX.4: Let M5`.

~a! ~Ruskai223,224and Sigal231,232! For any Z, there is an N0(Z) so that for N>N0(Z), there is
no spectrum in~2`, S!. N0(Z) denotes the smallest N0 for which this is true.

~b! ~Lieb et al.181! For fermions, N0(Z)/Z→1 asZ→`.
~c! ~Benguria and Lieb28! Without Fermi statistics, N0(Z).1.2Z for Z large.
~d! ~Lieb178! N0(Z)<2Z.

Remarks:
~1! If N>N0 , then inf spec(H(N,Z))5 inf spec(H(N0 ,Z)), inf spec(H(N021,Z)).
~2! Some of these results hold ifM,`.
With short-range potentials, the situation is simple if the bottom of the essential spectr

two body. Define

S35 min
]~a!>3

~S~a!!.

Then ~see Cyconet al.,53 Sec. 3.9!
Theorem IX.5: ~Sigal231! SupposeS3.S, n>3, and each Vi j lies in Ln/2(Rn). Then

dim E(2`,S)(H),`.
On the other hand, ifS35S, there can be an infinite number of bound states even if theVi j ’s

have compact support~in xi j ). In particular, ifN53, V125V235V1352cx1 , with x the charac-
teristic function of a unit ball andc chosen so that inf spec(H)50 but inf spec(H1«V),0 for all
«.0, it is known that dimE(2`,0)(H)5`. This is known as the Efimov effect after work o
Efimov.74,75 For proofs of this phenomenon, see Yafaev276 and Ovchinnikov and Sigal.201

In analyzing the spectrum ofH on @S, `!, a particular class of physically significant energi
occurs, the thresholds. For each partitiona of $1,...,N% with ]a>2, there is a natural decompo
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sition of L2(Rn(N21))5Ha^ Ha whereHa are functions ofxi2xj with i and j in the same cluster
of a andHa are functions ofRa2Rb , whereRa is the center of mass of a cluster~see Ref. 128
for an elegant way of doing this kinematics!. Under the decompositionH(a)5Ha^ I 1I ^ Ta. Ha

is the internal energy of the cluster andTa the kinetic energy of the cluster centers of mass.I(a)
is the set of eigenvalues ofHa ~with the condition that if](a)5N, so Ha is 0 onC, thenI(a)
5$0%. The set of thresholds is defined as

I5ø
a

I~a!.

Note: An energy inI(a) is a sum of eigenvalues of individual cluster Hamiltonians.
particular, the statement in the theorems below that the set of thresholds is a closed count
follows by induction from the other statement that eigenvalues can only accumulate at thres

The three-body problem turns out to have some aspects that make it simpler than the g
N-body problem, and Faddeev79 and later Enss78 ~using very different methods! have fairly com-
plete results on spectral and scattering theory forN53. We will focus here on results that app
for all N.

Historically, the first aspect of the continuous spectrum for generalN-body systems controlled
was the absence of a singular continuous spectrum. The earliest result required analyticity
potentials but included atoms:

Theorem IX.6: ~Balslev and Combes23! Suppose each Vi j (x)5 f i j (xi2xj ) where fi j is a
function onRn\$0% that obeys

A~u!5V~eux!~2D11!21

is compact and has an analytic continuation fromuPR to $uuu Im u u,«% for some«.0. Then
ssc(H)5B.

Moreover,

~i! Any eigenvalue of H inR\I is of finite multiplicity, and eigenvalues can only accumulate
thresholds.

~ii ! The set of eigenvalues union thresholds is a closed countable set.

Remarks:
~1! Such potentials are called dilation analytic.
~2! This result was first proven for two-body systems by Aguilar and Combes.7

~3! See Simon237,238for extensions of this result.
The most general results on absence of singular continuous spectrum depend on the i

Mourre.196

Theorem IX.7: Suppose Vi j (x)5 f i j (xi2xj ) where fi j is a function onRn that obeys~as
operators on L2(Rn)!

~i! f i j (x)(2D11)21 is compact;
~ii ! (2D11)21x•¹ f i j (2D11)21 is compact.

Thensess(H) is empty. Moreover, any eigenvalue inR\I is discrete, eigenvalues can only acc
mulate at thresholds, and the set of eigenvalues and thresholds is a closed countable set.

Remarks:
~1! This theorem was proven forN53 by Mourre.196 His methods were extended and eluc

dated by Perryet al.205 who obtained the generalN-body result. Substantial simplifications of th
proof were found by Froese and Herbst.85

~2! Condition ~ii ! does not require thatf i j be smooth because¹ f i j 5@¹, f i j # and ¹(2D
11)21 is bounded. Basically,~i!, ~ii ! hold if f i j 5 f i j

(1)1 f i j
(2) , wherex f i j

(1)(2D11)21 is compact
and f i j

(2) is smooth with (x•¹) f i j
(2)(2D11)21 and f i j

(2)(2D11)21 compact.
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~3! Froese and Herbst85 have some general results that imply thatIù(0,̀ )5B ~see Theorem
4.19 in Cyconet al.53!.

Finally, there has been extensive study of scattering theory and completeness. For each
with ](a)>2, let Pa on Ha be the projection onto the point spectrum ofHa and letP(a)5Pa

^ I , the projection onto vectors which are bound within the clusters and arbitrary for the ce
of mass coordinates. The cluster wave operators are defined by

V6~a!5s-lim
t→7`

e1 i tHe2 i tH ~a!P~a!. ~IX.3!

Ran(V1(a)) are those states which in the distant past look like bound clusters~corresponding to
the partitiona! moving freely relative to one another.

The existence of cluster wave operators~IX.3! was proven first by Hack.103 It is not hard to
see ~e.g., Theorem XI.36 in Reed and Simon213! that for aÞb, RanV1(a) is orthogonal to
RanV1(b). Asymptotic completeness is the statement that

%

]~a!>2

Ran~V1~a!!5Hac~H !,

whereHac(H) is the absolutely continuous subspace forH. After fairly general results forN53
~Faddeev79 and Enss78! and for generalN with weak coupling~Iorio and O’Carroll131! and repul-
sive potentials~Lavine171!, Sigal and Soffer233 solved the general result. Their theorem is

Theorem IX.8: ~Sigal and Soffer233! If each Vi j (x)5 f i j (xi2xj ) where u(Da f i j (x)u<C(1
1uxu)2uau2«21 for all multiindices withuau<2, then asymptotic completeness holds.

Extensions and clarifications of this work are due to Graf,101 Hunziker,127 and Yafaev.278

Long-range potentials are discussed in Derezinski,65 Sigal and Soffer,234 and Derezinski and
Gerard.66

X. CONSTANT ELECTRIC AND MAGNETIC FIELDS

Quantum mechanics with a potential and constant electric or magnetic field played a c
role experimentally and theoretically in the earliest days of the subject, and there has bee
siderable mathematical literature on the spectral properties of these operators. The basi
Hamiltonian onL2(Rn) is

H52D1Ex11V~x!, ~X.1!

whereV is short range. A key role has been played by an explicit formula of Avron and Her18

for the operator whenV50, viz.,

exp~2 i t ~2D1x1!!5exp~2 i t 3/3!exp~2 i tx1!exp~2 i tD1 ip1t2!, ~X.2!

wherep15(1/i )(]/]x1). Classically in an electric field, a particle hasx15N2ct2 as t→` and
~X.2! realizes this with thep1t2 term. It means the borderline for short range isuxu21/22« rather
than uxu212«. The result is

Theorem X.1: SupposeuV(x)u<C(11uxu)2«(11ux1u)21/22«. Then H given by~X.1! has
complete wave operators and empty singular continuous spectrum. Eigenvalues are isolat
of finite multiplicity.

This result and ones similar to it are discussed by Herbst,114 Yajima,279 and Simon.249 Mul-
tiparticle completeness in electric fields has been studied by Herbstet al.,116 and Adachi and
Tamura.1

There is much literature on both constant and variable magnetic fields but an extensive
of it is beyond the scope of this paper. One can begin looking at the literature by consul
series by Avronet al.19–21 and Chapter 6 of Cyconet al.53 and references therein. See also S
XII.
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XI. COULOMB ENERGIES

While much of the mathematical theory of nonrelativistic quantum mechanics has focus
general potentials, nature uses the Coulomb potential and there is considerable literature o
ing energies of Coulomb systems, especially as some parameter goes to infinity. Section~see
Theorem IX.4! already discussed one such result. We will only introduce some seminal the
consult Lieb179 for a review of the subject.

The most famous of these results is the stability of matter. In its simplest form, it concern
Hamiltonian

H~N,M ;R1 ,...,RM !52(
i 51

N

D i2(
i ,a

1

uxi2Rau
1(

i , j

1

uxi2xj u
1 (

a,b

1

uRa2Rbu

of N electrons moving in the field ofM infinitely massive protons. LetHf be the functions on
L2(R3N) thought of as functionsc(x1 ,...,xN) of N variables inR3 which are antisymmetric, tha
is,

c~xp~1! ,...,xp~n!!5~21!pc~x1 ,...,xN!

for any permutationp; that is,Hf is the wave function with Fermi statistics~we ignore spin which
is easily accommodated!. Define

E~N,M !5 inf
cPHf

R1 ,...,RM

^c,H~N,M ;R1 ,...,RM !c&.

Stability of matter states that

E~N,M !>2c~N1M !. ~XI.1!

Among other things, this bound is important because it is equivalent to the fact that the rad
a chunk of matter withN5M does not shrink to zero asN→`.

The first proof of~XI.1! was obtained by Dyson and Lenard72,73 with a constantC that was
many powers of ten too large. Lieb and Thirring186 found an elegant proof with a constantC that
is on the order of magnitude of Rydbergs. The result~XI.1! fails if one does not impose Ferm
statistics~see Dyson71 and Conlonet al.50!. Extensions that involve relativistic kinetic energ
magnetic and/or radiation fields can be found in Conlon,49 Lieb et al.,180 and Feffermanet al.81

Another Coulomb energy problem that has been extensively studied is the total bi
energy in the limit of large ofZ. One defines

H~N,Z!5(
i 51

N S 2D i2
Z

uxi u
D1(

i , j

1

uxi2xj u

on Hf and

E~N,Z!5 inf
cPHf

^c,H~N,Z!c&

and

E~Z!5min
N

E~N,Z!.

One knows that

E~Z!5aZ7/31bZ21gZ5/31o~Z5/3!. ~XI.2!
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The a term is given by Thomas–Fermi theory and this leading asymptotics was proven by
and Simon.182 Theb term is called the Scott correction and it was established by a combinatio
ideas of Hughes123 and Siedentop and Weikard.229,230The full asymptotics~XI.2! was obtained by
Fefferman and Seco.82 Results for largeZ and large magnetic field can be found in Lie
et al.183,184

XII. EIGENVALUE PERTURBATION THEORY

Some of Schro¨dinger’s earliest papers on quantum mechanics concerned eigenvalue p
bation theory. Kato’s book153 is a source of detailed information on what we will call regular a
asymptotic perturbation theory below. A review of some of the other aspects can be found in
and Simon212 and Simon.254

If A is self-adjoint andB is A-bounded in the sense of~III.3!, and if E0 is a simple eigenvalue
of A, then forb small,A1bB has a unique eigenvalueE(b) nearE0 andE(b) is analytic inb.
This is a result of Rellich215 and Kato.142,143An example is

2D12D22
1

ux1u
2

1

ux2u
2

1

Z

1

ux12x2u
~XII.1!

about 1/Z50 which is equivalent after scaling~of space and energy! to

2D12D22
Z

ux1u
2

Z

ux2u
1

1

ux12x2u
.

The numerical radius of convergence inu1/Zu is about 1.06 soH(Z52) andH(Z51) are both
included. Kato147 developed the theory for form perturbations. Rellich and Kato included de
erate eigenvalues.

Titchmarsh265,266 and Kato146 also developed the theory of asymptotic situations like
anharmonic oscillator

2
d2

dx2 1x21bx4, ~XII.2!

where each eigenvalueEn(b) for b.0 has an asymptotic series

En~b!; (
n50

`

anbn

even though this series can be divergent~and is for the case~XII.2!, as shown by Bender an
Wu27!. See Herbst and Simon117 for an example where an asymptotic series converges but to
wrong answer! See Simon252 for a study of multiwell problems.

In some cases, including~XII.2!, it is known that the divergent perturbation series can
made to give the right eigenvalue with a summability method, either Pade´ approximation~Loeffel
et al.187! or Borel summation~Graffi et al.102!. Borel summability is also known to work for th
Zeeman series for hydrogen–hydrogen perturbed by turning on a constant magnetic fie
Avron et al.21 and Avronet al.17

In certain cases, eigenvalues are perturbed into resonances, the subject of Sec. X
eigenvalues embedded in continuous spectrum under regular perturbations~like ~XII.1!!, the con-
vergence of the perturbation series for a resonance and its related time-dependent pertu
theory and the Fermi golden rule is discussed in Simon.237,238For Stark Hamiltonians, the basi
paper is Herbst.115 Harrell and Simon107 found the leading resonance asymptotics in this case
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XIII. RESONANCES

Almost everything we have discussed so far has involved a single operator and prop
invariant under unitary transformations. The notion of resonances has got to involve add
structure. For example, the operators2D2uxu212Fx5H(F) are unitarily equivalent for allF
Þ0. But according to the physics lore, there is a resonance with anF-dependent position. We wil
not emphasize the extra structure, but it is there. We will focus on two definitions of resona
one suitable for potentials that decay very rapidly~see Zworski284,285for reviews! and the method
of complex scaling already discussed in a different context in Sec. IX.~See Reed and Simon212

and Simon245 for reviews.!
Let n be an odd dimension, letV be a bounded potential of compact support onRn , and for

Rek.0, define

B~k!5uVu1/2~2D1k2!21V1/2,

whereV1/25uVu1/2sgn(V). Then2k2 is an eigenvalue of2D1V if and only if 21 is an eigen-
value ofB(k). Sincen is odd,B(k) has an analytic continuation as a compact operator-va
function of k to all of C ~when n51, there is a simple pole atk50 but kB(k) is entire!. If
Rek,0 and21 is an eigenvalue ofB(k), we say2k2 is a resonance of2D1V.

Froese83 has a lovely formula that relates resonances defined by this method to scat
theory. For allk, B(k)2B(2k) is trace class so (11B(2k))(11B(k))21 is 1 plus trace class
and has a determinant as an operator onL2(Rn). For k real andS(k), theS matrix onL2(Sn21),

det~S~k!!5det~~11B~2 ik !!~11B~ ik !!21!,

so resonances are related to poles of the analytic continuation ofS.
There has been considerable literature on the number of resonances. LetN(R) be the number

of resonances with energyE obeyinguEu,R. In one dimension, one has a complete result:
Theorem XIII.1: ~Zworski282! Let n51 and suppose@a,b# is the convex hull of the suppor

of V. Then

lim
R→`

R21/2N~R!5
2

p
ub2au.

Remarks:
~1! The result depends on a theorem of Titchmarsh and Cartwright on the zeros of F

transforms of functions of compact support.
~2! Froese83 has obtained some results for cases when a potential decays faster tha

exponential but may not have compact support.
In higher dimensions, much less is known. Zworski283 proved that forV of compact support,

N(R)<C(R11)n/2 ~see also Froese84!. On the other hand for generalV’s, it is only known~Sá
Barreto and Zworski225! that limR→` N(R)5`.

SupposeV is a dilation analytic potential in the sense of Theorem IX.6. Let

H~u!52e22uD1V~eut!.

Because of the analyticity assumption,H(u) is analytic in $uuuIm(u)u,a% for some a. Then
Aguilar and Combes7 found the essential spectrum ofH(u) for N52 and Balslev and Combes23

for generalN:
Theorem XIII.2: sess(H(u))5øEPI(u)(E1e22uR)
Remarks:
~1! I~u! is the thresholds ofH(u) defined analogously to the caseu50. It is not hard to see

that sess(H(u)) andI~u! depend only on Imu.
~2! If Im u.0, sess(H(u))ùR consists precisely ofI. Basically as we increase Imu from 0,

the essential spectrum rotates about the thresholds. In doing that, it can uncover resonanc
                                                                                                                



cal cal-
d

gnetic

his

lassical
-

tegral
se
siclas-

ll
e to

e

by

g

alues
k to

f
nell

irk

Grant

3547J. Math. Phys., Vol. 41, No. 6, June 2000 Schrödinger operators in the twentieth century

                    
Resonances defined by this method have been used by quantum chemists for numeri
culations as well as a theoretical tool. Simon237,238 used it to study the Fermi golden rule an
Harrell and Simon107 to prove various one-dimensional tunneling estimates.

Avron16 used these ideas to study large-order perturbation theory for hydrogen in a ma
field; a rigorous proof of his results was obtained by Helffer and Sjo¨strand.112

Herbst115 has extended the ideas to Hamiltonians with constant electric field. Among
results is the surprising one that if 0,Im u,p/3, then2e22uD1eux has empty spectrum!

XIV. THE QUASICLASSICAL LIMIT

There has been considerable literature on the connection between quantum and c
mechanics. Much of it has focused on what happens as\→0, but there are other limiting situa
tions where a classical or semiclassical picture is appropriate—for example, the largeZ limit of
atoms. We will touch on some of the subjects considered, but the literature is vast. Robert219 has
an excellent review of those results obtained for very smooth potentials using the Fourier in
operator methods pioneered by Ho¨rmander and Maslov. Therefore, I will not try to cover the
results here. We note that in Sec. XI, we referenced the Thomas–Fermi limit, which is qua
sical.

Consider first the\↓0 limit. Let H\52(\2/2m)D1V. Kac140,141had the idea that the sma
\ limit of exp(2sH\) was the same as the zero time limit in Brownian motion. This allows on
prove under great generality that the quantum partition function Tr(exp(2sH\)) approaches a
classical partition function as\↓0; see, for example, Theorem 10.1 in Simon.246 The earliest
results I know of on this subject are due to Berezin.31

Quantum dynamics,e2 isH\ /\c\ , on suitable statesc\ make an elegant classical limit—on
takesc\ to be a coherent state which collapses to a single point in phase space as\↓0. Such
results were found by Hagedorn104–106 ~similar methods were developed independently
Ralston210!.

Since 2\2D1V5\2@2D1\22V#, the small\ limit is the same as the large couplin
constant limit for2D1lV. In particular, ifN(V)5dim E(2`,0)(2D1V), the quantity discussed
in Sec. VIII, one has

Theorem XIV.1: Let n>3 and VPLn/2(Rn). Then liml→` N(lV)/ln/25(2p)2ntn*V<0

(2V(x)n/2dnx), wheretn is the volume of a unit ball inRn.
Remarks:
~1! This theorem is quasiclassical since the right side is (2p)2n times the volume of the

classical phase space region wherep21V(x)<0.
~2! The historical thread for this theorem goes back to a celebrated paper of Weyl274 on

Dirichlet Laplacians. Theorems like XIV.1 with stronger conditions onV are due to Birman and
Borzov,34 Kac,141 Martin,191 and Tamura.263 See Reed and Simon,212 Theorem XIII.80! for the
proof under the stated assumptions.

Let V(x)→` as uxu→` in a fairly regular way~e.g., supposeV is an elliptic polynomial!.
Then 2D1V has discrete spectrum and the asymptotics of the number of eigenv
dim E(2`,a#(2D1V) as a→` is determined by phase space. Results of this type go bac
Titchmarsh;267 see also Reed and Simon,212 Theorem XIII.81!. Similarly, if V(x)→0 but so
slowly that N(V)5`, for example, V(x);2uxu2b with 0,b,2, then the divergence o
dim E(2`,a#(2D1V) asa↑0 is sometimes given by quasiclassical considerations; see Brow
and Clark,40 McLeod,194 and Reed and Simon,212 Theorem XIII.82!.
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45K. Chadan and P. C. Sabatier,Inverse Problems in Quantum Scattering Theory, 2nd ed.,~Springer, New York, 1989!.
46M. Christ and A. Kiselev, ‘‘Absolutely continuous spectrum for one-dimensional Schro¨dinger operators with slowly

decaying potentials: Some optimal results,’’ J. Am. Math. Soc.11, 771–797~1998!.
47J. M. Combes and L. Thomas, ‘‘Asymptotic behavior of eigenfunctions for multi-particle Schro¨dinger operators,’’

Commun. Math. Phys.34, 251–270~1973!.
48M. Combescure and J. Ginibre, ‘‘Spectral and scattering theory for the Schro¨dinger operator with strongly oscillating

potentials,’’ Ann. Inst. Henri Poincare´, Sect. AA24, 17–29~1976!.
49J. Conlon, ‘‘The ground state energy of a classical gas,’’ Commun. Math. Phys.94, 439–458~1984!.
50J. Conlon, E. Lieb, and H.-T. Yau, ‘‘TheN7/5 law for charged bosons,’’ Commun. Math. Phys.116, 417–448~1988!.
51J. Cook, ‘‘Convergence of the Moller wave matrix,’’ J. Math. and Phys.36, 82–87~1957!.
52M. Cwickel, ‘‘Weak type estimates for singular values and the number of bound states of Schro¨dinger operators,’’ Ann.

Math. 106, 93–102~1977!.
53H. Cycon, R. Froese, W. Kirsch, and B. Simon,Schrödinger Operators With Application to Quantum Mechanics a

Global Geometry~Springer, Berlin, 1987!.
54E. B. Davies, ‘‘Properties of Green’s functions of some Schro¨dinger operators,’’ J. London Math. Soc.7, 473–491

~1973!.
55E. B. Davies,Heat Kernels and Spectral Theory~Cambridge University Press, Cambridge, 1989!.
56E. B. Davies, ‘‘Lp spectral theory of higher-order elliptic differential operators,’’ Bull. London Math. Soc.29, 513–546

~1997!.
57E. B. Davies and Y. Safarov~eds.!, Spectral Theory and Geometry, London Math. Soc. Lecture Notes, Vol. 27

~Cambridge University Press, Cambridge, 1999!.
58P. Deift and R. Hempel, ‘‘On the existence of eigenvalues of the Schro¨dinger operatorH2lW in a gap ofs(H), ’’

Commun. Math. Phys.103, 461–490~1986!.
59P. Deift, W. Hunziker, B. Simon, and E. Vock, ‘‘Pointwise bounds on eigenfunctions and wave packets inN-body

quantum systems, IV,’’ Commun. Math. Phys.64, 1–34~1978!.
60P. Deift and R. Killip, ‘‘On the absolutely continuous spectrum of one-dimensional Schro¨dinger operators with square

summable potentials,’’ Commun. Math. Phys.203, 341–347~1999!.
61P. Deift and E. Trubowitz, ‘‘Inverse scattering on the line,’’ Commun. Pure Appl. Math.32, 121–251~1979!.
62F. Delyon, ‘‘Apparition of purely singular continuous spectrum in a class of random Schro¨dinger operators,’’ J. Stat.

Phys.40, 621–630~1985!.
63F. Delyon, Y. Levy, and B. Souillard, ‘‘Anderson localization for multidimensional systems at large disorder or

energy,’’ Commun. Math. Phys.100, 463–470~1985!.
64F. Delyon, B. Simon, and B. Souillard, ‘‘From power pure point to continuous spectrum in disordered systems,’

Inst. Henri Poincare´ Phys. Theor.42, 283–309~1985!.
65J. Derezinski, ‘‘Asymptotic completeness of long-rangeN-body quantum systems,’’ Ann. Math.138, 427–476~1993!.
66J. Derezinski and C. Ge´rard,Scattering Theory of Classical and Quantum N-Particle Systems~Springer, Berlin, 1997!.
67E. Dinaburg and Ya. Sinai, ‘‘The one-dimensional Schro¨dinger equation with a quasiperiodic potential,’’ Funct. Ana

Appl. 9, 279–289~1975!.
68R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris,Solitons and Nonlinear Wave Equations~Academic, London,

1982!.
69J. Dollard, ‘‘Asymptotic convergence and the Coulomb interaction,’’ J. Math. Phys.5, 729–738~1964!.
70B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, ‘‘Nonlinear equations of Korteweg-de Vries type, finite-zone l

operators, and Abelian varieties,’’ Russ. Math. Surveys31:1, 59–146~1976!.
71F. Dyson, ‘‘Ground-state energy of a finite system of charged particles,’’ J. Math. Phys.8, 1538–1545~1967!.
72F. Dyson and A. Lenard, ‘‘Stability of matter, I,’’ J. Math. Phys.8, 423–434~1967!.
73F. Dyson and A. Lenard, ‘‘Stability of matter, II,’’ J. Math. Phys.9, 698–711~1968!.
74V. N. Efimov, ‘‘Energy levels arising from resonant two-body forces in a three-body system,’’ Phys. Lett.B33,

563–564~1970!.
                                                                                                                



mmun.

.

s.

tic

f

low

nd ,

SSR

zv.

nection

’’

Soc.

athieu

ath.

,’’ Ann.

Math.

hirring

hirring

3550 J. Math. Phys., Vol. 41, No. 6, June 2000 Barry Simon

                    
75V. N. Efimov, ‘‘Weakly-bound states of three resonantly-interacting particles,’’ Sov. J. Nucl. Phys.12, 589–595~1971!.
76V. Enss, ‘‘A note on Hunziker’s theorem,’’ Commun. Math. Phys.52, 233–238~1977!.
77V. Enss, ‘‘Asymptotic completeness for quantum-mechanical potential scattering, I. Short-range potentials,’’ Co

Math. Phys.61, 285–291~1978!.
78V. Enss, ‘‘Completeness of three-body quantum scattering,’’ inDynamics and Processes, edited by P. Blanchard and L

Streit, Lecture Notes in Math, Vol. 1031~Springer, Berlin, 1983!, pp. 62–88.
79L. Faddeev,Mathematical Aspects of the Three Body Problem in Quantum Scattering Theory~Steklov Institute, 1963!.
80W. Faris and R. Lavine, ‘‘Commutators and self-adjointness of Hamiltonian operators,’’ Commun. Math. Phy35,

39–48~1974!.
81C. Fefferman, J. Fro¨hlich, and G. M. Graf, ‘‘Stability of ultraviolet-cutoff quantum electrodynamics with non-relativis

matter,’’ Commun. Math. Phys.190, 309–330~1997!.
82C. Fefferman and L. Seco, ‘‘On the energy of a large atom,’’ Bull. Am. Math. Soc.23, 525–530~1990!.
83R. Froese, ‘‘Asymptotic distribution of resonances in one dimension,’’ J. Diff. Eqns.137, 251–272~1997!.
84R. Froese, ‘‘Upper bounds for the resonance counting function in odd dimension,’’ Can. J. Math.50, 538–546~1998!.
85R. Froese and I. Herbst, ‘‘A new proof of the Mourre estimate,’’ Duke Math. J.49, 1075–1085~1982!.
86R. Froese, I. Herbst, M. Hoffmann-Ostenhof, and T. Hoffmann-Ostenhof, ‘‘L2-exponential lower bounds to solutions o

the Schro¨dinger equation,’’ Commun. Math. Phys.87, 265–286~1982/83!.
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122L. Hörmander,The Analysis of Linear Partial Differential Operators, IV. Fourier Integral Operators~Springer, Berlin,

1994!.
123W. Hughes, ‘‘An atomic energy lower bound that agrees with Scott’s correction,’’ Adv. Math.79, 213–270~1990!.
124D. Hundertmark, A. Laptev, and T. Weidl, ‘‘New bounds on the Lieb-Thirring constants,’’ Invent. Math.~to be

published!.
125D. Hundertmark, E. Lieb, and L. Thomas, ‘‘A sharp bound for an eigenvalue moment of the one-dimensional¨-

dinger operator,’’ Adv. Theor. Math. Phys.2, 719–731~1998!.
126W. Hunziker, ‘‘On the spectra of Schro¨dinger multiparticle Hamiltonians,’’ Helv. Phys. Acta39, 451–462~1966!.
127W. Hunziker, ‘‘Mathematical theory ofN-body quantum systems,’’ Helv. Phys. Acta71, 26–43~1998!.
128W. Hunziker and I. M. Sigal, ‘‘The quantumN-body problem,’’ preprint.
129T. Ikebe, ‘‘Eigenfunction expansions associated with the Schro¨dinger operators and their application to scatteri

theory,’’ Arch. Ration. Mech. Anal.5, 1–34~1960!.
130T. Ikebe and T. Kato, ‘‘Uniqueness of the self-adjoint extension of singular elliptic differential operators,’’ A

Ration. Mech. Anal.9, 77–92~1962!.
131R. Iorio and M. O’Carroll, ‘‘Asymptotic completeness for the multi-particle Schro¨dinger Hamiltonians with weak

potentials,’’ Commun. Math. Phys.27, 137–145~1972!.
132A. R. Its and V. B. Matveev, ‘‘Schro¨dinger operators with finite-gap spectrum andN-soliton solutions of the

Korteweg-de Vries equation,’’ Theor. Math. Phys.23, 343–355~1975!.
133J. M. Jauch, ‘‘Theory of the scattering operator,’’ Helv. Phys. Acta31, 127–158~1958!.
134S. Jitomirskaya, ‘‘Metal-insulator transition for the almost Mathieu operator,’’Ann. Math.~to be published!.
135S. Jitomirskaya and Y. Last, ‘‘Dimensional Hausdorff properties of singular continuous spectra,’’ Phys. Rev. Le76,

1765–1769~1996!.
136S. Jitomirskaya and B. Simon, ‘‘Operators with singular continuous spectrum, III. Almost periodic Schro¨dinger opera-

tors,’’ Commun. Math. Phys.165, 201–205~1994!.
137G. Kac, ‘‘Expansion in characteristic functions of self-adjoint operators,’’ Dokl. Akad. Nauk SSSR119, 19–22~1958!.
138I. S. Kac, ‘‘On the multiplicity of the spectrum of a second-order differential operator,’’ Sov. Math. Dokl.3, 1035–1039

~1962!.
139I. S. Kac, ‘‘Spectral multiplicity of a second-order differential operator and expansion in eigenfunction,’’ Izv. A

Nauk SSSR, Ser. Mat.27, 1081–1112~1963!.
140M. Kac, ‘‘On some connections between probability theory and differential equations,’’ Proceedings 2nd Be

Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley and Los Angeles
pp. 189–215.

141M. Kac, ‘‘On the asymptotic number of bound states for certain attractive potentials’’ inTopics in Functional Analysis,
edited by I. Gohberg and M. Kac~Academic, New York, 1978!, pp. 159–167.

142T. Kato, ‘‘On the convergence of the perturbation method, I,’’ Prog. Theor. Phys.4, 514–523~1949!.
143T. Kato, ‘‘On the convergence of the perturbation method, II,’’ Prog. Theor. Phys.5, 95–101~1950!; 5, 207–212

~1950!.
144T. Kato, ‘‘Fundamental properties of Hamiltonian operators of Schro¨dinger type,’’ Trans. Am. Math. Soc.70, 195–211

~1951!.
145T. Kato, ‘‘On the existence of solutions of the helium wave equation,’’ Trans. Am. Math. Soc.70, 212–218~1951!.
146T. Kato, ‘‘On the convergence of the perturbation method,’’ J. Fac. Sci., Univ. Tokyo, Sect. I6, 145–226~1951!.
147T. Kato, ‘‘Perturbation theory of semi-bounded operators,’’ Math. Ann.125, 435–447~1953!.
148T. Kato, ‘‘On the eigenfunctions of many particle systems in quantum mechanics,’’ Commun. Pure Appl. Mat10,

151–171~1957!.
149T. Kato, ‘‘Perturbation of continuous spectra by trace class operators,’’ Proc. Jpn. Acad.33, 260–264~1957!.
150T. Kato, ‘‘Growth properties of solutions of the reduced wave equation with variable coefficients,’’ Commun.

Appl. Math. 12, 403–425~1959!.
151T. Kato, ‘‘Schrödinger operators with singular potentials,’’ Isr. J. Math.13, 135–148~1972!.
152T. Kato, ‘‘Remarks on Schro¨dinger operators with vector potentials,’’ Int. Equ. Operator Theory1, 103–113~1978!.
153T. Kato, Perturbation Theory for Linear Operators, 2nd ed.~Springer, Berlin, 1980!.
154C. E. Kenig,Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems~American Math-

ematical Society, Providence, RI, 1994!.
                                                                                                                



th

g

ional

n.

o

Dokl.

ys.

ants,’’

nsional

ct.

equa-

band

ssical

ev.

tt.

R

order,

any

c.

3552 J. Math. Phys., Vol. 41, No. 6, June 2000 Barry Simon

                    
155R. Killip, ‘‘Perturbations of one-dimensional Schro¨dinger operators preserving the a.c. spectrum,’’ preprint.
156A. Kiselev, ‘‘Absolutely continuous spectrum of one-dimensional Schro¨dinger operators and Jacobi matrices wi

slowly decreasing potentials,’’ Commun. Math. Phys.179, 377–400~1996!.
157A. Kiselev, ‘‘Stability of the absolutely continuous spectrum of the Schro¨dinger equation under slowly decayin

perturbations and a.e. convergence of integral operators,’’ Duke Math. J.94, 619–646~1998!.
158A. Kiselev, Y. Last, and B. Simon, ‘‘Modified Pru¨fer and EFGP transforms and the spectral analysis of one-dimens

Schrödinger operators,’’ Commun. Math. Phys.194, 1–45~1998!.
159S. Kotani, ‘‘Lyapunov exponents and spectra for one-dimensional random Schro¨dinger operators,’’Contemporary

Mathematics~American Mathematical Society, Providence, RI, 1986!, Vol. 50.
160S. Kotani and N. Ushiroya, ‘‘One-dimensional Schro¨dinger operators with random decaying potentials,’’ Commu

Math. Phys.115, 247–266~1988!.
161V. Kovalenko and Yu. Semenov, ‘‘Some problems on expansions in generalized eigenfunctions of the Schr¨dinger

operator with strongly unique potentials,’’ Rus. Math. Surveys33, 119–157~1978!.
162M. G. Krein, ‘‘Solution of the inverse Sturm-Liouville problem,’’ Dokl. Akad. Nauk SSSR76, 21–24~1951!.
163M. G. Krein, ‘‘Determination of the density of a nonhomogeneous symmetric cord by its frequency spectrum,’’

Akad. Nauk SSSR76, 345–348~1951!.
164M. G. Krein, ‘‘On determination of the potential of a particle from itsS-function,’’ Dokl. Akad. Nauk SSSR105,

433–436~1955!.
165H. Kunz and B. Souillard, ‘‘Sur le spectre des operateurs aux differences finies aleatoires,’’ Commun. Math. Ph78,

201–246~1980!.
166S. Kuroda, ‘‘Perturbations of continuous spectra by unbounded operators, I,’’ J. Math. Soc. Jpn.11, 247–262~1959!.
167S. Kuroda, ‘‘Perturbations of continuous spectra by unbounded operators, II,’’ J. Math. Soc. Jpn.12, 243–257~1960!.
168A. Laptev and T. Weidl, ‘‘Sharp Lieb-Thirring inequalities in high dimensions,’’ Acta Math184, 87–111~2000!.
169Y. Last, ‘‘A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approxim

Commun. Math. Phys.151, 183–192~1993!.
170Y. Last and B. Simon, ‘‘Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dime

Schrödinger operators,’’ Invent. Math.135, 329–367~1999!.
171R. Lavine, ‘‘Absolute continuity of Hamiltonian operators with repulsive potentials,’’ Proc. Am. Math. Soc.22, 55–60

~1969!.
172R. Lavine, ‘‘Absolute continuity of positive spectrum for Schro¨dinger operators with long range potentials,’’ J. Fun

Anal. 12, 30–54~1973!.
173H. Leinfelder and C. Simader, ‘‘Schro¨dinger operators with singular magnetic vector potentials,’’ Math. Z.176, 1–19

~1981!.
174B. Ya. Levin, ‘‘Fourier- and Laplace-type transformations by means of solutions of a second-order differential

tion,’’ Dokl. Akad. Nauk SSSR106, 187–190~1956!.
175B. M. Levitan,Theory of Generalized Translation Operators, 2nd ed.~Nauka, Moscow, 1973!.
176B. M. Levitan, Inverse Sturm-Liouville Problems~VNU Science, Utrecht, 1987!.
177E. Lieb, ‘‘Bounds on the eigenvalues of the Laplace and Schro¨dinger operators,’’ Bull. Am. Math. Soc.82, 751–753

~1976!.
178E. Lieb, ‘‘Bound on the maximum negative ionization of atoms and molecules,’’ Phys. Rev. A29, 3018–3028~1984!.
179E. Lieb, ‘‘The stability of matter: From atoms to stars,’’ Bull. Am. Math. Soc.22, 1–49~1990!.
180E. Lieb, M. Loss, and J. P. Solovej, ‘‘Stability of matter in magnetic fields,’’ Phys. Rev. Lett.75, 985–989~1995!.
181E. Lieb, I. M. Sigal, B. Simon, and W. Thirring, ‘‘Asymptotic neutrality of large Z ions,’’ Phys. Rev. Lett.52, 994–996

~1984!.
182E. Lieb and B. Simon, ‘‘The Thomas-Fermi theory of atoms, molecules, and solids,’’ Adv. Math.23, 22–116~1977!.
183E. Lieb, J. P. Solovej, and J. Yngvason, ‘‘Asymptotics of heavy atoms in high magnetic fields, I. Lowest Landau

regions,’’ Commun. Pure Appl. Math.47, 513–591~1994!.
184E. Lieb, J. P. Solovej, and J. Yngvason, ‘‘Asymptotics of heavy atoms in high magnetic fields, II. Semicla

regions,’’ Commun. Math. Phys.161, 77–124~1994!.
185E. Lieb and W. Thirring, ‘‘Bound for the kinetic energy of fermions which proves the stability of matter,’’ Phys. R

Lett. 35, 687–689~1975!.
186E. Lieb and W. Thirring, ‘‘Inequalities for the moments of the eigenvalues of the Schro¨dinger Hamiltonian and their

relation to Sobolev inequalities,’’ inStudies in Mathematical Physics: Essays in Honor of Valentine Bargmann, edited
by E. Lieb, B. Simon, and A. Wightman~Princeton University Press, Princeton, 1976!, pp. 269–303.

187J. Loeffel, A. Martin, B. Simon, and A. Wightman, ‘‘Pade´ approximants and the anharmonic oscillator,’’ Phys. Le
30B, 656–658~1969!.

188V. A. Marchenko, ‘‘Certain problems in the theory of second-order differential operators,’’ Dokl. Akad. Nauk SSS72,
457–460~1950!.

189V. A. Marchenko, ‘‘Some questions in the theory of one-dimensional linear differential operators of the second
I,’’ Am. Math. Soc. Transl.101, 1–104~1973!.

190V. A. Marchenkov,Sturm-Liouville Operators and Applications~Birkhäuser, Basel, 1986!.
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We follow the development of probability theory from the beginning of the last
century, emphasizing that quantum theory is really a generalization of this theory.
The great achievements of probability theory, such as the theory of processes,
generalized random fields, estimation theory, and information geometry, are re-
viewed. Their quantum versions are then described. ©2000 American Institute of
Physics.@S0022-2488~00!01006-9#

I. INTRODUCTION

There are few mathematical topics that are as badly taught to physicists as probability t
Maxwell, Boltzmann, and Gibbs were using probabilistic methods long before the subjec
properly established as mathematics. Their language, of ensembles, complexions, fluctuatio
most probable state, is still used. When quantum theory came along, the same notions we
into the new theory, sometimes leading to confusion. We review the mathematical developm
probability, emphasizing that quantum theory is a generalization. The approach to history is
same spirit as that used by Milligan in Ref. 1.

There are three ‘‘philosophies’’ concerning probability. In the easy case, when ther
finitely many possible outcomes to the experiment being considered, Laplace’s principle of
ignorance tells us that the probability of each of the outcomes is the same. In the case of a d
six sides, experiments suggest that the probabilities are not all exactly equal. Nevertheless,
not much error if we assume that the probability of each number is 1/6. An objection to Lap
principle in general is that it is not always clear that the outcome of a particular experimen
matter of chance, even when we do not know which outcome will turn up; it could even be
particular outcome is inevitable. Thus a more robust version of Laplace’s principle might b
in events governed by chance, the probability of each possible outcome is the same. Th
leaves open the meaning of the phrase, ‘‘governed by chance.’’ The difficulty of definin
‘‘uniform’’ distribution when variates take continuous values is illustrated by Bertrand’s para
~Ref. 2, p. 246!. This demolished Laplace’s principle for continuous variables.

The philosophy of Laplace applied to probability theory might be described asPlatonic. A
real die is the shadow of the ideal die, which has perfect sides and exact probabilities of 1
each outcome. This has a modern form of expression: We model the real die by the sample
V5$1,2,...,6% whose elementsv are calledoutcomes, and assign the probability 1/6 to each. T
value of arandom variable fis known if we know the outcomev; f is therefore a real-valued
function onV. More generally, if the sample space is a finite setV, an eventE is a subset ofV;
we say that the event has occurred if thev that occurs lies inE. The probability thatE occurs is
the sum of the probabilities of the points inE:

p~E!5 (
vPE

p~v!. ~1!

We say that two events,E, F, are independent ifp(EùF)5p(E)p(F). In this way the binomial

a!Electronic mail: ray.streater@kcl.ac.uk
35560022-2488/2000/41(6)/3556/48/$17.00 © 2000 American Institute of Physics
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distribution can be derived for the total shown byn dice thrown independently, and all o
Laplace’s probability theory can be derived. It can tell us what bets to lay on an eventE, even
when only one trial is going to occur.

Laplace’s method has been successfully applied to statistical mechanics; the space of s
discretized, thus avoiding Bertrand’s paradox~the choice of bins being suggested by quant
mechanics!. Each bin is said to be equally probable, and some hypotheses about independe
postulated. Then it is shown that the complexion~macroscopic state! given by the Gibbs distri-
bution is not just the most probable, but isoverwhelminglythe most probable. The chance of an
complexion minutely different is put at 102170. The Gibbs distribution is, of course, the equilib
rium state; if it is so probable, how come systems manage to be out of equilibrium, and rem
for years at a time? This remark is not aimed at Tolman,3 who made it clear that the assumptio
of equal probabilities applies only to equilibrium, and is to be tested against experiment; it p
the test well, but he then spoils it by adding as a further justification, ‘‘without this postulate there
would be nothing to correspond to the circumstance that nature does not have any tende
present us with systems in conditions which we regard as mechanically entirely possib
statistically improbable.’’ The word ‘‘improbable’’ is itself based on Laplace’s assumption!

The second ‘‘philosophy’’ of probability can be described as Aristotelian; it had taken ho
1920, and is known as the ‘‘frequentist’’ approach. It is essential that we can reproduce a lo
of independent trials each conducted under exactly the same experimental conditions.
respect, the theory makes sense only within a scientific culture. Suppose that we have one
ate,’’ which may take continuous or discrete values. The result of a measurement of the va
assigned to one of a preassigned set of ‘‘bins,’’ which are intervals on the real axis. We re
number of times, to find the histogram, that is, the numberni of events~out of N trials! in the i th
bin. If the histogram settles down to a stable shape as we increaseN, we declare that the value o
the variate is random~or, random enough!. We then define the probability of the eventi to be

pi5 lim
N→`

ni

N
. ~2!

This approach avoids the above-mentioned problems that beset the Laplace philosophy. Ho
it is completely useless as mathematics; a ‘‘definition’’ should not depend on an infinite num
future experimental results. There is not one theorem that can be proved from this defi
Feller points out that we must avoid confusion between a definition, and a method of me
ment. There is great heuristic value to the frequentist approach. It is easy to teach;2 we do not
prejudge the possible values that the variate can have, or the probability of a given value; w
introduce another variateY, and observe its distribution, and its joint probability distribution w
X; we can by extending this idea get access to the joint probability distribution of any
number of variates; we can get some idea as to whether the variates are random by exam
sequence of independent trials. We can even cover situations in which two variates a
simultaneously observable, as in quantum mechanics, by listing only the joint distributio
compatible observables, and omitting those we cannot measure. If we measure a variateX with n
different valuesxi with relative frequencypi , we can construct a sample spacex1 ,...,xn , and
assign the probabilitypi to the occurrence of the outcomexi . Similarly, we can construct a samp
space and probability for any finite set of compatible variates if each measurement record
values. The observed probabilities are more reliable than assuming all points are equally pr

However, there is one grave disadvantage of the approach, apart from not being mathe
it is simply a description of data, and has much less predictive power than Laplace’s meth
particular, the method takes no position on the question as to what are the possible variateV
hasuVu5n points, then the random variables form a vector space, denotedA(V), of dimensionn,
so that at mostn random variables can be linearly independent. No similar constraint holds i
frequentist point of view. Thus a variate is not the same as a random variable. In fact, it h
definition, other than the statement that its values are random.
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The frequentist approach is the safest one to use in studies involving humans; soc
financial matters are so complicated that it is not likely that a sample space,V1 say, chosen to
accommodate the data observed so far, can describe all the possible new variates and th
available to them. In the frequentist approach, faced with a new variate,Y, one simply takes the se
of possible values ofY, say V25$y1 ,...,ym%, and usesV13V2 as the sample space of th
enhanced problem.

In a classical system in physics or chemistry, treated by classical statistical mechani
want to follow the scientific method: We model the system, do experiments, and reject the
if forced to. In that case, we make another model, estimate its parameters, and sugges
testing experiments. We want and expect to be able to make predictions about variates no
sured yet. So we must reject the frequentist approach.

The third philosophy of probability was made clear by Kolmogorov, and combines some
of the first two; it is to regard a probability theory as amodel, to be tested against experiment.
is like Plato’s ideal, in that it is based on a specified sample spaceV; but now the probabilityp is
not determined by pure thought; anyp satisfying the axioms below provides us with a model.

Definition 1.1: LetV be a countable space. A map p:V→@0,1# is a probability if p(v)>0
and (v p(v)51. The probability of an eventE#V, and the concept of independence of tw
events, are then as in Laplace’s theory and clearly depend on the choice ofp.

A random variablef :V→R is chosen to represent the variate being observed, the parti
choice being part of the interpretation of the model. A theoretical idea, or else the firs
experiments on the variatef, allow us to get some guidelines forV and the values ofp. This is the
subject ofestimation theory. We can judge the validity of the model@the choices we have mad
for (V,p, f )# by comparing the predictions of the model with the observed frequenciesni using
the theory ofsignificance tests. Both estimation theory and significance were developed be
Kolmogorov’s book. The founders of these techniques were often frequentists; they realize
one could not use an extreme frequentist point of view: in estimation, they often postulate
the data had Gaussian distributions, but with unknown parameters. In significance testing, to
a start, they assumed a probability distribution for the variate being measured; this is call
‘‘hypothesis H,’’ which is part of the model; it can be rejected if the data are significantly unlik
This has a version within Kolmogorov’s formulation, in which we are given a probability sp
the pair (p,V), and model the variate with a random variable,f. To make contact with the
well-established theory of estimation and significance, we must relate the probability distrib
of f to the probabilityp. We now remind the reader how this is done.

Given a finite probability space (p,V) and a random variablef :V→R, the probability dis-
tribution of f is denotedpf( i ), and is determined as follows: letxi , i 51,2,...,n be the values tha
f takes, and letpf( i ) be the probability that the event$v: f (v)5xi%. That is

pf~ i !ª (
v; f ~v!5xi

p~v!. ~3!

This is what is accessible to experiments when we measuref. The mean off is determined byxi

andpf :

Ep@ f #ª(
v

p~v! f ~v!5(
i

xipf~ i ! ~4!

also writtenp.f.
Given two random variables on (V,p), f ,g we define the joint distribution, denotedpf ,g( i , j )

to be

pf ,g~ i , j !ªp$v: f ~v!5xi and g~v!5yi%. ~5!
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We say two random variables~r.v.! are independent if the events$ f (v)5xi% and$g(v)5yj% are
independent for alli, j . This is equivalent to the frequentists’ version:pf ,g( i , j )5pf( i )pg( j ). The
joint distribution determinespf and pg as its marginals, and also all moments, e.g., the cr
momentEp@ f g# can be shown to be( i j xiy j pf ,g( i , j ).

A probability p defines a linear functional on the setA(V) by the expectation,(4): f °Ep@ f #.
We shall call any such functional astate: It is linear and positive, taking the value 1 on the su
function I. The dual spaceAd is the set of all linear functionals, so the states form a subset ofAd;
it is denotedS~V!. Given two statesp1 andp2 and 0,l,1, their mixture with probabilitiesl and
12l, p5lp11(12l)p2 , is again a state. So the states form a convex set.

WhetherV is countable or not, for a random variablef on ~V, p! the probability of the
occurrence of a single valuef 0 might be zero, even when there is anv0PV with f (v0)5 f 0 ; for
p(v0) might be zero. This often happens whenV is not countable, andf takes continuous values
Then, more information about the probability measure is provided by the ‘‘cumulative’’ distr
tion function

Pf~x!5p$v: f ~v!,x%. ~6!

This is an increasing function ofx, going from 0 atx52` to 1 atx5`. We say thatf possesses
a densityr f if Pf(x) is differentiable, and we write

r f~x!5
dPf~x!

dx
. ~7!

It is clear that we cannot cope with this subject without a certain amount of real analysis.
A cumulative probability distributionPf(x) is determined by its characteristic function

Cf~l!ªE eilx dPf~x!. ~8!

Here we use the Stieltjes integral. Any characteristic function satisfies the following:

~1! C(l) is continuous;
~2! C(0)51;
~3! C is of positive type:

(
i j

z̄izjC~l j2l i !>0.

Conversely, any functionC obeying~1!, ~2!, and~3! is the characteristic function of a probabilit
distribution; this is Bochner’s theorem. In terms of the original~V, p! and random variablef, the
characteristic function is

Cf~l!ªEp@eil f #. ~9!

If Cf is analytic inl aroundl50, we can easily justify the expansion

Cf~l!5(
n

~ il!nEp@ f n#/n! 5(
n

~ il!nMn /n!.

Here,Mn are thenth moments off; for this reason,Cf acts as amoment generating functionfor
the r.v. f. An important variant of this is the cumulant generating function

logCf~l!5(
n

~ il!nkn /n!.
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We prefer to keep the imaginary unit in these formulas, since if we drop it the meanCf(l) might
not be finite. The cumulantskn are determined by induction from the system

Mn5(
k

(Ik

kn1
...knk

. ~10!

Here,Ik5I1øI2ø...øIk is an arbitrary partition of$1,2,...,n% into k parts, including the identity
partition, andnj5uIj u, j 51,...,k. The condition for independence,pf ,g( i , j )5pf( i )pg( j ) for all i,
j is equivalent toCf 1g5CfCg ; it follows that then the cumulants off 1g are the sums of those
of f andg.

For a Gaussian distribution, all the cumulants beyond the second are zero. There are re
the following kind: If all the cumulantskn of a distribution are zero forn>N, then they are zero
beyondn52, and so the distribution is Gaussian. These results use the positivity of the me
a positive polynomial inf:

(
i j

z̄izjM i 1 j5EF(
i j

z̄izj f
i 1 j G5EFU(

j
zi f

jU2G>0. ~11!

Given a set of real numbers$Mn% satisfying the positivity condition in~11!, it is not obvious that
Mn is thenth moment of a random variablef, or that if so,f is unique. This has led to a body o
work called the moment problem.

The distribution of a random variablef determines that of any differentiable functiong( f ) of
f. This is also a random variable; the density of the distribution ofg is determined by the usua
rule: If g is bijective, so thatf is a function ofg, the probability thatg lies betweeny and y
1dy is rg(y)dy, and this occurs if and only iff lies betweenx and x1dx, wherey5g(x).
Thereforerg dy5r f dx, giving the relation

rg5u~d f /dg!ur f . ~12!

If g is not bijective, but has a local inverse with various branches,f i , then we have to sum ove
the contributionu(d fi /dg)ur f i

of each branch.
The remarkable thing is that the methods of probability theory give good results in many

that are not governed by chance, such as the distribution of digits inp. Another example is the
configuration of a chaotic system at the timet, wheret is large, given the initial configuration a
time zero. If the initial state is not specified sufficiently accurately, then the configuration at
t seems to be governed by chance, although it is not. It was suggested by Krylov4 that statistical
physics is a successful method exactly in the cases when the underlying dynamics is chaot
will occur when nearby initial points become exponentially far apart as time progresses, an
is signaled by a positive real part to the dominant eigenvalue of the linearized dynamics
largest real part is called the Lyapunov index. We are talking here about a chaotictheory; actual
experimental measurements will always have further uncertainty, influenced by small e
omitted from the theory. In a nonchaotic system small forces can be omitted in the firs
approximations. However, in a chaotic system, the inclusion of one such small force can c
the outcome of the calculation at the large timet, making it appear to be random. This is we
modeled by omitting any attempt to include all the actual forces, replacing those omitted
‘‘noise,’’ that is, a random term. Thus, we expect chaos to be well modeled by a system
increasing uncertainty, as measured by entropy. Kolmogorov and then Sinai took up Kr
cause, and were able to relate the rate of ‘‘entropy’’ production to the Lyapunov exponent
dynamics. However, Ruelle interprets this5 as an increase in information, available as time go
by.

Laplace’s problem whether to assign equal probabilities to each energy level of a sy
arises in quantum theory. Krylov takes von Neumann to task for assuming that the density
for the state of a particle with spin produced by a quantum process should, in the absence
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theory or experiment, be taken to be totally unpolarized. Krylov says that this is not true for
known processes, as the polarization is found to be nonzero, small for some and large for
Krylov’s view is that it should be assigned a general density matrix; we can then estimat
matrix in the light of experiments. This leads to the subject ofquantum estimation, for which there
is a body of theory. Krylov believed that physics is not in the gambling business; we do not s
guess the state of the system and follow a strategy of hedging against wrong guesses; ra
physics we predict what will happen~with various probabilities! at a later time, when the initia
state is known.

Estimation theory has received an impetus from a modern development, information th
Shannon introduced the entropy of the random variablef taking valuesxi as

Sfª2(
i

pf~xi !log pf~xi !. ~13!

Note thatSf does not depend on the actual values thatf takes. The distribution with the maximum
possible entropy is easily proved to be the uniform distribution. The school of probability kn
as Bayesian therefore argues that if we know nothing whatever aboutf it must be assigned the
uniform distribution, called theprior. Thus Laplace’s intuition gets very respectable supp
There is one big problem with this: The uniform distribution forf is not in general consistent with
the uniform distribution for sayg5 f 3, as we see from Eq.~12!; so the prior depends on th
random variable we choose to name as the one we know nothing about. This echoes Be
paradox.

A quantum version of entropy was given earlier by von Neumann. For the classical cas~V,
p! with V countable it reduces to

S~p!ª2(
v

p~v!log p~v!. ~14!

It does not make any reference to a random variable. We may obtain Shannon’s entrop
random variablef as the von Neumann entropy ofpf regarded as a probability on the space
values thatf takes.Sf5S(p) if f takes different values at different points ofV, that is, iff separates
the points ofV. We then say thatf is a sufficient statistic. Sf is in general less thanS(p), and it
reduces to zero whenf takes only one value. The entropies of Shannon and von Neumann ar
the same concepts, and this difference reflects their different interpretations; the pointv is the
message, andSf is the information about the message that is on average conveyed by mea
f; it cannot exceedS(p), which is the entropy~missing information! in the original probability
space. Naturally, iff is sure it conveys no information at all. SinceSf depends on the random
variablef only through its distribution, it has a meaning in the frequentist approach. To com
S(p), the model~V, p! must be given, and it does not depend onf. More generally, we can defin
the Shannon entropy of a set (f 1 ,...,f n) as the von Neumann entropy of their joint distribution
the sample space of their values. Some authors regard the Shannon entropy as the physica
of a reduced description of a physical model. The trouble with this idea is that the introducti
noise in the measurement off causes the Shannon entropy to decrease, instead of to increase
would want.

A simple example of noise is that caused by a mappingT:V→V. This defines a coaction on
the set of random variables:f °T* fª f +T, which in fact is an endomorphism ofA. If T is not
bijective, there might be points that can be distinguished by measuringf, but not by measuring
T* f ; thus ST* f<Sf . This also holds more generally whenT* is a convex linear sum of suc
maps, thus:T* 5(l iTi* . It can be shown that this is the most generalstochastic mapon A, that
is, linear map, takingI to I and non-negative functions to non-negative functions. The reductio
the information carried byf in the presence of noise is natural in telephony. The von Neum
entropy, on the other hand, increases if we add noise. This is achieved by a bistochastic mT ~a
stochastic map whose adjoint is also stochastic!. We write it as a right action, thusp°pT. By the
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deep theorem of Birkhoff,6,7 a bistochastic matrix is a mixture of permutations. Since a perm
tion V does not alterS(p), and2p log p is concave, we see thatS(pT)>S(p). Moreover, the
von Neumann entropy is not decreased by a reduced description, unlike the Shannon versio
S(p) is the correct concept to represent physical entropy.8

If we are given information about whichv has occurred, the probability onV, called the prior,
changes. Suppose thatp is the prior. If the information is that the sample lies in a known sub
~event! V0#V, then Bayes’s theorem on conditional probability is used; the conditional p
ability is

p~EuV0!ª
p~EùV0!

p~V0!
. ~15!

This is called the posterior probability, and correctly describes the probability among outcom
of which lie in V0 . A conditional probability satisfies the axioms of probability, definition~1.1!.

This use of information to modify the probabilityp should not be confused with estimatio
theory. There, we do not changep, since after the measurement of independent samples
continue to assume that new samples are governed by the originalp. The method of estimation
using the principle of maximum entropy proceeds as follows. Suppose that we knowV andf, with
uVu,` and we are also told the average off over a number of independent trials. We can varyp
over the simplexS~V! to find the point that maximizes the entropy of the probability, given
observed mean value,h say. Thus we use the method of Lagrange multipliers to maximize

2(
v

p~v!log~p~v!!

subject toEp@ f #5h. Gibbs knew that the solution to this is

p~v!5Z21 exp~2b f ~v!!, ~16!

whereZ5(v e2b f (v) is the Lagrange multiplier for the normalization condition(p(v)51, and is
called the partition function. The parameterb is the Lagrange multiplier for the conditionp• f
ªEp@ f #5h, and is determined by it. Then~16! is the least prejudiced estimate for the probabili
given the mean.9,10

The method of maximum entropy solves an important problem in the theory of estimation
X be a variate of which the distribution is known to be one of a family,M5$ph( i )%hPR ; we hope
to estimateh by measuringX independentlym times. An estimator f is a function of the data
x1 ,x2 ,...,xm that is used for this estimate. Thusf is a function ofX, and so is a random variable
Since we do not knowh, to be useful, the estimator must be independent ofh. We say an
estimator isunbiasedif its mean is the desired parameter, thus:

ph• fª(
i

ph~ i ! f ~xi !5h. ~17!

Apart from being unbiased, a good estimator should have a small chance of being far fro
mean; so we are interested in estimators of minimum variance,V5ph•@( f 2h)2#. To any prob-
ability pPM define theFisher informationas11,12

G5ph•S ] log ph

]h D 2

. ~18!

The Cramer–Rao theorem puts limits on the smallness of the variance of an estimator:
Theorem 1.2:

V>G21. ~19!
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For the proof, differentiate~17! with respect toh, to get

(
i

]ph~ i !

]h
f ~xi !51.

Now use]/]h@( i ph( i )#50, and rearrange, to get

(
i

S ] log ph~ i !

]h
ph~ i !1/2D ~ph~ i !1/2~ f ~xi !2h!!51. ~20!

Schwarz’s inequality then gives~19!.
The minimum variance allowed by~19! occurs when the Cauchy inequality is equality, whi

occurs when the factors in~20! are proportional~with ratio dependent onh!. Calling this factor
2]j/]h, we see that the distribution of minimum variance must satisfy

log ph~ i !52Eh
]j/]h~ f ~xi !2h!dh52j f ~xi !2c, ~21!

showing that a necessary and sufficient condition is that$ph% be the exponential family.
In the case of several parametersh1 ,...hn , we have estimatorsf 1 ,...,f n , which can be taken

to be linearly independent, but need not be functionally independent. The state of max
entropy, given the meansEp@ f i #5h i , i 51,...,n is easily shown to be of the form

p~v!5Z21 exp2$j1f 1~v!1¯jnf n~v!%5Z21 exp~2 f ! ~22!

say, where the Lagrange multipliersj i are determined by the given conditions on the means.
set of probabilities of the form Eq.~22! form the setM called the information manifold, or the
exponential family, determined by Span$ f i%. We can regard$j i% or indeedf as coordinates, called
canonical; or we can regard$h i% or indeedp as coordinates, called the expectation coordinates
this case the Fisherinformation matrixis defined to be

Gi j
ªp•S ] log p

]h i

] log p

]h j
D . ~23!

Then the Cramer–Rao inequality~19! becomes a matrix inequality, whereV is the covariance
matrix Vi jªp•@( f i2h i)( f j2h j )#. Equality holds only ifG5V21, which leads to the exponen
tial family.

Rao showed thatG defines a Riemannian metric on the tangent spaces ofM;13 as such, its
components depend on the coordinates chosen for the tangent space and it transforms as
under changes in variables. At the pointpPM, a vector in the tangent space is given in canoni
coordinates by a random variablef in the span of the ‘‘score variables’’f̂ jª f i2h j . Writing f

5(k jk f̂ k introduces contravariant componentsjk. These are dual to theh j , which are covariant
components. The covariant metric is the covariance matrix

Gi j 5G~ f̂ i , f̂ j !5Ep@ f̂ i f̂ j #. ~24!

It is the inverse of the contravariantGi j , which explains why we get equality in~19!.
The Massieu functioncª logZ, whereZ is the partition function, is related to the free energ

it is the generating function for the cumulants; so we have

h j52
]c

]j j , ~25!
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Gi jªVi j 5
]2c

]j i]j j . ~26!

The entropy is the Legendre transform ofc, and its second variation is the Fisher informati
matrix, Gi j , the metric in the coordinatesh.

Amari showed thatM is furnished with a pair of affine flat connections, for which the glo
affine coordinates arej i and h i .14 These connections are not metric connections, but are
relative toG. An important role in information geometry is played by therelative information
S(pup8)ª(v p(v)(log p(v)2log p8(v)). This distinguishes between the pointsp andp8 in M, in
that S(pup8)>0 and vanishes only whenp5p8. For a modern version, see Ref. 15.

The observables form the algebraA(V) in which multiplication is pointwise: (f g)(v)
ª f (v)g(v); the states lie in its dual. Thus states and observables are not the same kind of
and they transform as duals under stochastic maps. However, states like observables are f
of v; to distinguish them we can writep(v) for a state and (v) f for an observable. IfuVu,`,
either can be identified with an element of the formal vector space spanned byV, thus
(v a(v)v↔a, whethera is regarded as an observable or a state. ThenM is the interior of the
convex hull ofV. The permutation group ofV acts by right actionv°vT. Its inversev°vT21

is a coaction of the group~its product law is the opposite of that of the group! and so can be
written as a left action:v°TvªvT21. These induce a right action on probabilities, and a
action on observables, bypT(v)ªp(Tv) and (v)T fª(vT) f , the latter written without the dua
symbol ~* !. These express associativity, as does the dual relationpT• f 5p•T f .

These definitions can be extended to any mapT:V→V, whether invertible or not: We define
the action on probabilities usingT(v)ª($v%T21), the inverse image of the point-set$v%. Every
algebraic endomorphism ofA is of the form f °T f for some mapT:V→V, and these make up
exactly the extreme points of the convex set of stochastic maps.

In infinite dimensions, there is more than one useful topology on the states and observ
The modern view15 is that the statep and the observable2 log p are merely alternative coordinate
for a point in the information manifold. The natural class of charts are related by mono
convex functions, of which the stochastic maps,16 as well as the nonlinear mapsp°2 log p and
p°pa, 0,a,1 are examples.

An active field of research is to set up quantum analogs of all this.17

II. FROM BACHELIER TO WIENER

In 1900, Bachelier proposed a random model of the stock market;18 the idea was that the
decision to buy or sell a stock is randomly taken by independent investors. Let us suppose t
chancel that the price goes up one unitdx is the same as that for going down, during any u
trading perioddt. Let XPZ be the random price, andp(x,t) be the probability that the price isx
at time t; then the new probabilityp(x,t1dt) can be unchanged, or can change due to a mo
ment down fromx1dx or a movement up fromx2dx. The probabilities of these are, respe
tively, 122l, l, andl. Thus we get

p~x,t1dt!5~122l!p~x,t !1lp~x1dx,t !1lp~x2dx,t !. ~27!

Let T be the tridiagonal infinite matrix$l,122l,l%. Then the rowTxy , yPZ is the conditional
probability that the price will bey at time (N11)dt, given that it isx at timeNdt. In fact, T is a
stochastic matrix, which happens to be symmetric.

Suppose that att50 the price isx0 ; then in timeNdt, the price will follow the pathg
ªx0°x1°¯°xN with probability

p~g!5T~x0 ,x1!T~x1 ,x2!¯T~xN21 ,xN!. ~28!

This is called the random walk onZ determined byT, starting atx0 . The set of allowed paths
starting atx0 is a finite subset ofV5ZN. p(g) is a probability onV, and the structure is called
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Markov chain. An alternative point of view is to start withp0PS(Z), and to follow the path in
S(Z) given by the time evolution. By Bayes’s law, the probability that at timet51 the particle is
at x1 whatever its initial position, isp(x1,1)5(x0

p(x0,0)T(x0 ,x1); this can be written as the
matrix productp0T, wherept is a row vector made from the components ofp(xt ,t). By induc-
tion, the probability that at timeN the particle is atx is p0TN. In this way, a Markov chain is
described by a semigroup of stochastic mapsT(t)ªTt acting onS~L!. Obviously

T~0!51, ~29!

T~s!T~ t !5T~s1t !, s,tPN. ~30!

One of the themes of probability theory is the relationship between a semigroup of stochastic
and a probability on the corresponding path space. The latter is called adilation of the former.
SinceT is independent of time, the chain is said to bestationary; if we limit the allowed space to
be a finite setL#Z, we get a finite Markov chain, in which case there is at least one statio
distributionp* ; this means thatp* T5p* , so that 1 is a left eigenvalue ofT. If some power ofT
has all its matrix elements positive, then the Perron–Frobenius theorem tells us that 1 is a
eigenvalue, and all the others have modulus less than 1. One can then show thatpTn→p* asn
→`; the system converges exponentially to equilibrium. We then say that the dynamics is
ing. There are similar results in infinite dimensions, but to get exponential convergence we n
show that there is aspectral gap. This means that 1 is simple and lies a finite distance from
next eigenvalue ofTT* . To prove this in the case at hand is usually the key to the study of
long-time behavior. The Markov property is that the probability of getting tox at time t11
depends only on where the particle was at timet, and not on the previous path. The study
Markov chains was started in the 19th century, and is a huge subject.

Fick obtained an equation similar to~27! for the diffusion of particles in one dimension. Ifdx
and dt become small such that (dx)2/dt→a, a finite limit, we say the system is following th
diffusion limit. Rearranging, and taking the diffusion limit, Fick obtained the heat equation fo
probability density, which we callr:

]r

]t
5k

]2r

]x2 . ~31!

Here,k5al. This is not a very good model of the market; apart from the omission of drift,
gains in price should grow with the overall price. As it is, negative prices are possible.

The heat equation~31! can be written in the form of a conservation law:

]r

]x
1div j ~x,t !50, ~32!

where j (x,t)52k¹r. At this stage, mathematicians did not have the continuous version o
sample spaceV; this was to be Wiener’s great construction.

In his celebrated work of 1905,19 Einstein also used~31! to describe the Brownian motion o
small particles in a warm liquid. He was mindful of Stokes’s law of diffusion; this says that
viscous liquid a small particle under a constant force, such as gravity, will increase its
toward a terminal velocityv say, which is proportional to the force. Einstein required that
equilibrium the currentvr due to this flow should balance the diffusion due to the den
gradient, so that steady state should obey

2k¹r1vr50. ~33!

The solution to this in the case of gravity, wherev52uvu in the z direction, is

r~x,y,z!5conste2uvuz/k, ~34!
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and this should be the Maxwell–Boltzmann law at the temperatureQ of the liquid,

r~x!5Z21e2mgz/~kBQ!. ~35!

Einstein thus obtained the famous Einstein relation

F5kBQv/k. ~36!

His treatment is not complete, since he omitted the drift term in the diffusion equation! See
4, ~1! in Ref. 19. In a detailed study, Smoluchowski20 wrote down the diffusion equation with drif

]r

]t
5k

]r

]x22v
]r

]x
, ~37!

now known as the Smoluchowski equation, and is a special case of the Fokker–Planck o
ward Kolmogorov equation. He solved this by using the method of images for several sy
with boundaries, such as the mass of air above the ground, and obtained the approach
stationary state expected by Einstein.

It was known that one can solve Eq.~37! exactly, to fit a more or less arbitrary initial functio
r(x,0)5 f (x), by using the Green function~in one dimension!

G~x,t !ª@4pkt#2~1/2!e2~x2vt !2/~4kt !. ~38!

This satisfies Eq.~37!, and converges in the sense of distributions to the Diracd function ast
→0. Then

r~x,t !5E
2`

`

G~x2y,t ! f ~y!dy ~39!

satisfies Eq.~37! and the boundary condition. The operator whose kernel isG is the continuum
analog of the matrixTn of the Markov chain.

When the force and temperature are slowly varying, we get the coupled system

]r

]t
1div J50, ~40!

]Q

]t
5k8 div ¹Q1kF•F/kBQ. ~41!

Here,J(x,t)52k¹(r1Vr/Q), whereV is the potential giving rise to the forceF. The source
term in the heat equation isF•J, the power of the external force supplied to the particle, all
which is converted into heat. This system obeys the first and second laws of thermodynam21

Consider now the solution~39! to ~37!. BecauseG is positive, the density remains positive fo
all time, and the conservation law shows that the integral ofr over space is constant. So we ge
flow through the space of probabilities. The question arises, is there a process in continuou
associated with the Smoluchowski equation? The answer is yes, and this was the result of th
of Wiener, and later, Ito. An alternative idea was introduced by Langevin, who considered
ton’s laws, in which a part of the external force, denotedF, is random; friction enters as a dampin
force proportional to the velocity, parametrized byg.0. Thus his equation is

d2x

dt2
52

]V

]x
2g ẋ1F~ t !. ~42!

This is the equation for a single particle, but asF is random, the positionx(t) becomes random a
time goes by, even if its initial condition is given. Statistical properties ofx are determined by
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those ofF; the relation of these to the Smoluchowski equation were studied by Fokker and P
but were fully understood only in terms of stochastic calculus. One might assume thatF is
Gaussian distributed, and is of mean zero, with independent values at different times. This
now be described aswhitenoise. Langevin’s work started the enormous field of stochastic dif
ential equations.

In 1904 Lebesgue tried to set up a general theory in which every subset of@0, 1# is assigned
a measure.22 The very next year, Vitale showed that the scheme was inconsistent.23 Hausdorff24

and Banach and Tarski showed that the measure could not be additive.25 The point is that some
sets are so bad they cannot be assigned a measure, even a finitely additive one. This le
concept of measurable set. Let us start with the Borel measurable sets on@0, 1#.

Let V5@0,1#; let us say that a collectionB of subsets ofV form a tribe if

~1! VPB,
~2! wheneverBPB, we haveBc

ªV2BPB,
~3! wheneverAPB andBPB, we haveAøBPB.

Such a collection of subsets is also called a Boolean ring, or a Boolean algebra. The collecB
is actually a ring, with multiplication given by intersection, and addition given by symme
difference, that isA1BªAøB2AùB. It is also an algebra in the technical modern sense,
trivially in that any ring is an algebra over the field consisting of two numbers, 0 and 1. Sinc
ring structure plays no role in the theory, we prefer not to furnishB with the extra structure ‘‘1,’’
and will use the word ‘‘tribe’’ instead.

We define as tribe to be a collectionB of setsBi#V such that~3! above is replaced by
(3`) if BiPB is a countable family of disjoint sets, thenøBiPB.

The set of all subsets of a setV5@0,1# is obviously as tribe, and indeed satisfies uncountab
additivity as well. Thiss tribe is called thepowerset ofV. But, as we saw, there are no usef
definitions of measure on the power set. Another easy case is the collection of all cou
subsets ofV: the union of a countable collection of countable subsets is countable. Howeve
countable set has length zero, since it can be covered by a sequence of intervals of
<e/2,e/4e/8,..., of total lengthe. Sincee can be anything, the set has length zero. To get so
sets of nonzero length, let us consider the tribeB0 of all finite disjoint unions of open, closed, an
half-open intervals. We could add toB0 all countable unions of sets inB0 , and all complements
in V of sets in the tribe so obtained. Call thisB1 . Then we would need to consider the collecti
of countable unions of sets inB1 , and their complements, to get a new tribeB2 , and so on. Does
this end up with a well-defineds tribe? The following argument does the trick. LetG be anys
tribe containing all sets inB0 , and letC be the set of all suchs tribes. ThenC is nonempty, as it
contains the power set at least. Then form

B5ù
GPC

G. ~43!

That is,B contains those subsets ofV that lie in alls tribesG, and no other subsets. In particula
B contains all subsets inB0 ,B1 , etc. In fact, by using the techniques of set theory, one can p
that B is the smallests tribe containing all the open intervals inV5@0,1#; it is called theBorel
tribe. One can ask whether we have arrived at the power set after all, or have something w
the pathological sets. ThatB contains only nice sets follows the construction of a counta
measure on its sets, namely the Lebesgue measure.

A finitely additive measureon a tribeB is a mapm:B→R1ø$1`% such that

m~AøB!5m~A!1m~B! for all disjoint A,BPB.

If m(V)51, it is a finitely additive probability measure. To do analysis, we must be able to
some limits, and so we now assume thatB is a s tribe.

A probability measure on~V, B! is a mapm:B→R1 such that
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~1! m(B)>0 for all BPB,
~2! m(V)51,
~3! if Bi is a countable collection of disjoint sets inB, then

m~øBi !5(
i

m~Bi !.

Considering the tribeB0 of finite unions of disjoint open, closed, and half-open intervals, we
define theLebesgue measureof BPB0 to be the sum of the usual lengths of the intervals involv
It is then proved that there is a countably additive measure on the Borels tribe, which agrees with
the length on the intervals. This measure is called theLebesguemeasure.

It is sometimes useful to extend the concept of measure to unbounded sets such asR, whose
total length is infinite. For this, we just drop axiom~2! above.

So much for the measure; integration theory needs a remark as well. Suppose that we
functiony5 f (x), wherexP@0,1# andy is real-valued and bounded, and we seek a way of find
the area under the graph ofy againstx. In Riemann’smethod of integrationwe divide thex axis
into a large number of small intervals,@0,x1#,(x1 ,x2#,...,(xN,1#, and defineyi to be the smallest
value ofy in the interval (xi ,xi 11# andYi to be the largest value. Now define the two appro
mations to the area, known as the upper sum and the lower sum,R15( i Yi(xi 112xi) and R2

5( i yi(xi 112xi). As we refine the subdivision,R1 decreases andR2 increases. If the limits of
these are equal, we say that the function is Riemann integrable, and take their common v
the area under the curvey5 f (x),0<x<1. One shows that continuous functions are integra
and can establish the fundamental theorem of the calculus; a generalization, called the Rie
Stieltjes integral, can be defined, if we replacexi 112xi by P(xi 11)2P(xi), where P is an
increasing function of bounded variation, continuous from the left. We write the integra
*y(x)dP(x). To define the integral of unbounded functions, various limiting methods were
vented. The theory is not really satisfactory.

Lebesgue introduced a new form of integration: compared with Riemann’s method, it is
the other way round. As the first step, only positive functions are considered. Then, we divi
y axis into intervals (@0,y1#,(y1 ,y2#,...,(yN ,`)), and for each interval, look for the inverse imag
of each interval under the mapf. That is, we consider the subset of thex axis consisting ofx such
that f (x)P(yi ,yi 11#. This set, denoted byf 21(yi ,yi 11#ªBi , may consist of many pieces, and s
will not always be an interval. We require, however, that it should be a set in the Borels-tribe B;
if this holds for every subdivision of they axis into intervals, we say that the functionf is B
measurable. The setBi will have a ‘‘length,’’ namely, its Lebesgue measure,m(Bi). We approxi-
mate the area under the graph off by the sum

L~ f !ª(
i

yim~Bi !.

This is positive and increases as we refine the partition of they axis. If its supremum over al
partitions is finite, we say thatf is Lebesgue integrable, and write

E
0

1

f ~x!dx5supL~ f !. ~44!

We can integrate functions that are not positive, provided that the positive and negative pa
separately integrable, and we integrate complex functions by treating the real and imaginar
separately. This generalizes the Riemann integral in that any Riemann-integrable func
Lebesgue integrable, and then both versions give the same answer.
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Lebesgue integration has the following easy generalization, which is important for proba
Suppose thatV is any set, provided with as-tribe B; the pair~V,B! is called ameasurable space.
A real-valued function is said to beB measurable if the inverse image of every open interval
in B:

f 21~y1 ,y2!ª$vPV:y1, f ~v!,y2%PB.

A random variable is then simply a real-valuedB-measurable function onV. Given a measure
m on ~V,B!, not necessarily of finite total measure, we can regard as the same random varf
two that differ only on a set ofm-measure zero; they are calledversionsof f. The set of all
bounded random variables forms a commutativealgebra A~V! with norm i f i`

ª inf supvu f (v)u; here, inf is taken over all versions off. The sets inB are called events. The
integral of a positive measurable function~with respect to the measurem! is defined similarly to
the case whenV5R. If m is a probability measure, this integral is called the meanm• f of f in the
statem. and if m•u f u,` we write f PL1(V,B,m). More generally, we writef PLp(V,B,m), 1
<p,` if f is B measurable andu f up is integrable. These are Banach spaces with normi f ip

ª(* u f (v)updm)1/p. The probability of an eventB is taken to bem(B). Each measurem defines an
element of the dual space ofA by the linear formf °* f dm.

We have remarked that the original motivation for introducing thes tribe was to avoid
pathology. However, the concept has been very useful, in a heuristic way, to describe theinfor-
mationcarried by events and observables in a random theory based on a measure space~V,B,m!;
in particular, it is useful to consider a subtribe or sub-s-tribe, ofB. Suppose thatBPB is an event;
it is determined by itsindicator function, xB(v), which is 1 if vPB and zero outsideB. If
m(B)Þ0,1 andf are measurable, we can define the conditional expectation

E@ f uB#5(
v

f ~v!m~vuB!. ~45!

We may also find the conditional probability ofAPB, given thatB did not happen:m(AuBc)
5m(AùBc)/m(Bc), and the corresponding conditional expectation

E@ f uBc#5(
v

f ~v!m~vuBc!. ~46!

We may regard the pair of numbers$E@ f uB#,E@ f uBc#% as defining a simple measurable functio
on V, equal toE@ f uB# if vPB and toE@ f uBc# if v¹B. Let us now generalize this idea. Le
B1 ,...,BnPB be disjoint measurable sets such thatm(Bj )Þ0 for all j andm(U jBj )51. These sets
generate a tribe, sayB0 ~by various unions; there are 2n such unions!. If f is measurable, the
functions onV defined by

F f~v!5E@ f uBj # if vPBj ~47!

are measurable relative toB0 . They take constant values,E@ f uBj # on eachBj and so can be
written

F f~v!5(
j

x j~v!cj , ~48!

wherecj5E@ f uBj #.
Conversely, every functionF, measurable relative toB0 , has this form for some$cj%. The

map, f °F f , is linear and is called theconditional expectationof f given B0 . This map leaves
invariant the vector space ofB0-measurable functions, and indeed is the orthogonal projectio
L2(V,B,m) onto L2(V,B0 ,m).
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The tribeB0 tells how fine was the division into the setsBj , and determines how much deta
can be obtained from the functions that areB0 measurable. From the fact theF is the orthogonal
projection, we see thatE@ f uB0# is the best approximation~in the L2 sense! to f by functions that
areB0 measurable.

Consider for example the price of a stock at timet, wheret is a non-negative integer;S(t) t>0

are then a family of random variables onV, and while we can find out the prices up to the pres
time, we cannot know the future. Suppose thatt5N is the present. Theinformationcontained in
the knowledge of the prices atN11 previous times, namelyS(t50)5s0 , S(t51)5s1 ,...,S(t
5N)5sN , selects inV a particular level set of these functions: This is the event

$vPV:S~0!~v!5s0¯S~N!~v!5sN%.

Since we assume thatS(t) areB measurable, this set lies inB by the intersection property. It is th
same for any other possible set of values of these observations. There is a smallests tribe with
respect to which all these functions are measurable, and in fact, thiss tribe is generated by all the
level sets described above. Call thisB<N . The set of all random variables that areB<N measurable
is exactly the set of functions of the dataS(0),...,S(N), measurable in the Lebesgue sense; th
can therefore be computed from the data we have access to.

The increasing family$B<n% is called the filtration generated by the process. It provides a
formulation of the Markov condition for a processXn ; let Bn be thes tribe generated by the r.v
Xn . Then a process is called Markovian if

E@XnuB<m#5E@XnuBm# if n>m. ~49!

The idea is that the information contained inXm , the present value, tells us as much about
future as the whole previous history. Consider again the semigroup$Tn% of stochastic maps, acting
on S(Z) in one time step as in Eq.~27!. One can check that ifp0 is the initial probability
distribution of the initial point of the path, then

p0Tn5Epn
@xnuB0#. ~50!

Here,g5(x0 ,...,xn) andpn(g)5p0(x0)p(g) wherep(g) is as in~28!.
Wiener26 was able to put the Bachelier–Einstein diffusion theory on a rigorous footing

has to define, first, the sample spaceV; then he needs as tribe B and a measure on it; he als
needs a family ofB-measurable functionsXt(v) whose distribution has density of probabilit
equal tor(x,t) obeying the diffusion equation. Finally, he needs to get the continuum versio
Eq. ~50!.

Let V be the set of all continuous functionsv of t>0 with v(0)50; these are called
‘‘Brownian paths.’’ Let (x1 ,y1) be an interval of the real line, which we call agate; we now
consider the subset of paths which pass through the gate at timet1 . This set is called thecylinder
set basedon (x1 ,y1). In symbols, it is

$vPV:x1,v~ t1!,y1%.

The v(t) for various t are coordinates of the pointv; we have a condition on only one of th
coordinates; the rest run over the real line. Consider another cylinder set, similarly constru
time t2.t1 , based on another open interval (x2 ,y2). The intersection of these sets is a cylinder
based on rectangle (x1 ,y1)3(x2 ,y2) in the plane made by the coordinatesv(t1),v(t2). The path
v(t) passes through the first gate at timet1 and the second at timet2 ; it is a slalom. Consider the
collection of subsets ofV consisting of all these cylinder sets defined by slaloms with any fi
number of gates, at any selection of different positive times. The finite unions of these fo
tribe. The smallests tribe B containing all these is the one we choose, thus obtaining the m
surable space~V,B!.
                                                                                                                



e the

he

.

. The
e the

e union
ually.

ny
e

rme-
he
s seen
have

rval
easure
e of

3571J. Math. Phys., Vol. 41, No. 6, June 2000 Classical and quantum probability

                    
We first define a finitely additive measure on the tribe of cylinder sets. It is enough to giv
measure of a general cylinder set, and to use the finite additivity. Starting atx50, the probability
density that a diffusing particle reachesx1 at time t1 is taken to be the Gaussian given by t
Green function; thus the probability of lying in the intervalx1 ,y1 is

Prob$v~ t1!P~x1 ,y1!uv~0!50%5
1

~4pkt1!1/2E
x1

y1
e2x2/~4kt1!dx5E

x1

y1
G~x,t !dx. ~51!

The probability that the path goes through two gates, (x1 ,y1) at t1 and (x2 ,y2) at t2 is defined to
be

Prob$v~ t1!P~x1 ,y1! and v~ t2!P~x2 ,y2!uv~0!50%5E
x1

y1
dxE

x2

y2
dx G~x,t1!G~x82x,t22t1!.

~52!

This can be interpreted as Bayes’s theorem, in whichG is the conditional probability density
Similarly, the probability of any cylinder set, based on a finite set of gates, can be given
probability is the same, whether the gates are open, closed, or half-open. We would lik
measure we are constructing to be at least finitely additive. Thus we take the measure of th
of two disjoint cylinder sets to be the sum of the measures we have just given them individ
A possible problem arises if we add together infinitely many gates at timet1 to make up the whole
line; for we would like our measure to be countably additive, and we need theconsistency
condition between the two ways to define the probability of reaching the gate (x2 ,y2): from 0
directly, with no gate att1 , as given by Eq.~51!, or as the sum over all paths going through a
complete set of disjoint gates att1 , as obtained by summing Eq.~52!. Indeed, we do get the sam
answer, because of the propagating property ofG:

E
2`

`

dx8 G~x2x8,t1!G~x82y,t22t1!5G~x2y,t2!. ~53!

This is a continuous version of the obvious property of the stochastic matricesTn of a Markov
chain, namelyTmTn5Tm1n, in which the matrix product, expressed as the sum over an inte
diate index, is replaced by the integral over the pointx8. Thus our equation just expresses t
semigroup property of the time evolution of a first-order equation, here the heat equation. It i
here as the main point which establishes the additivity of the finitely additive measure we
constructed on the tribe of cylinder sets.

Let us defineB@s,t# as thes tribe generated by the cylinder sets labeled by times in the inte
@s,t#, andB that generated by all of these. Then Wiener proved that there exists a unique m
on the measurable space~V,B! that coincides with the above-mentioned measure on the trib
unions of such cylinder sets. This measure is now called theWiener measure. The Wiener process
starting at 0 is then the family of random variables defined byWt(v)ªv(t), t>0. The process
has the following properties:

~1! Wt2Ws is Gaussian with mean zero and variancet2s for t.s,
~2! Wt2Ws is independent ofWv2Wu if 0<u<v<s<t,
~3! W050.

These properties characterize the process. By requiring thatW0
x5x we get the Wiener processWt

x

starting atxPR.
We now need the concept of thesymmetric Fock spaceG~H! of a Hilbert spaceH. Then-fold

tensor product̂ nH is the completed span of the symbolŝi 51
n c i5c1^¯cn with the scalar

product
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^ ^ c i ,^ f i&ª)
i 51

n

^c i ,f i&.

The symmetric tensor productHn
ª^ S

nH is the subset of symmetric tensors, called then-particle
space; the zeroth tensor power is taken to beC. The Fock spaceG(H) is the direct sum% n50

` Hn.
This has the functorial property

G~H1! ^ G~H2!5G~H1! % G~H2!.

As a special case,G(C)5C% C% ... .
There is a unitary mapL2(V,B,m)→G(L2(@0,̀ ),dt), in such a way that% j 50

n Hj is identi-
fied with theL2-completed span of the polynomials inWt of degree<n.27 Then-particle space is
then identified successively by Gram–Schmidt orthogonalization with the part orthogonal
k-particle spaces,k,n. This is Wiener’schaos expansion.28 In particular, the one-particle space
spanned by$Wt% t>0 .

For each fixedt, the spaceL2(V,B,m) contains the random variablesI, Wt ,¯Wt
n
¯ . They

can act as multiplication operators successively on the vector 1, to getn vectors. Suppose we
orthogonalize them by the Gram–Schmidt procedure. SinceWt is Gaussian, we get the Hermit
polynomials in successive spaces, and anyL2 function ofWt has a convergent expansion as a s
of its components in these spaces. The subspace we get can be identified as the Fock sp
the one-dimensional space spanned byWt . We shall see that these polynomials are Wick-orde
powers29 of Wt , and that they are martingales.

Now suppose thatu.s; sinceWu is independent ofWu2Ws , and they are Gaussian, they a
orthogonal in the one-particle space, which can thus be written as the direct sumL2(@0,̀ ),dt)
5L2(@0,s),dt) % L2(@s,`),dt). By the functorial property of Fock space, we therefore can w

L2~V,B,m!5L2~V,B@0,s# ,m! ^ L2~V,B>s ,m!. ~54!

We can similarly split Fock space arbitrarily into many factors, corresponding to any partitio
the time axis into intervals: it has the property of a continuous tensor product.

The continuous analog of the semigroup (gTn)mªgm1n , m,n50,1,2... of the random walk is
the left-shift of the paths: (vTs)(t)5v(s1t). This induces the dual action on the observable

Ts* :L2~V,B,m!→L2~V,B>s ,m!, s>0. ~55!

This operator is isometric but not invertible. We can also embedL2(V,B,m) in the two-sided
spaceG(L2(2`,`)), on which the left shift is unitary, and induces the action of the groupR
rather than the semigroupR1. In that case the paths are not conditioned to pass through the o
and only the differences,Wt2Ws make sense as vectors or operators.

III. THE QUANTUM LEAP

The remarkable discovery of matrix mechanics by Heisenberg in 1925 is comparable to
the theory of relativity in 1917. Clifford had speculated that the world might have chos
geometry other than Euclidean. It was agreed that it was an experimental question, and t
data agreed with Einstein’s theory. Though the classical axioms were yet to be written do
Kolmogorov, Heisenberg, with help of the Copenhagen interpretation, invented a generaliza
the concept of probability, and physicists showed that this was the model of probability chos
atoms and molecules.

According to Einstein, Podolsky, and Rosen~EPR!30 a concept is deemed to be anelement of
reality within a specified theory if there is a mathematical object in the theory which is assi
to the concept, and which takes a definite value~when the state of the system is given!. This is
now called anobservable. For example, the choice of the zero level of a potential function is
an observable since it is not determined by the state of the system. They are not here dis
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random samples, which at the time would have been described as an ensemble. In that ca
might have conceded that a concept could be regarded as an element of reality if, in a r
selection of the system from an ensemble, there is a definite random variable assigned
physical concept. The interpretation of a theory is not complete unless it is specified at the
which mathematical objects arising in the theory correspond to observables. Thus in a theo
randomness in classical physics, there is a space (V,B) and an observable is a random variab
and an ensemble is a probability measure onV. A nonrandom state is given by a point measu
In this state any r.v. has zero variance, thus satisfying EPR.

In quantum mechanics, this is not the case; an observable is a Hermitian matrixA, or in
modern terms, a self-adjoint operator on a given Hilbert spaceH; the possible values one can fin
in a measurement are the eigenvalues ofA. A wave function is determined by a vectorcPH; but
only unit vectors are used, andeiuc represents the same state asc. Thus the state is the equiva
lence class$c%5$eiac,aPR%. If dim H5n,`, such equivalence classes make up the projec
spaceCPn21. An element ofCPn21 determines the expectation value of any observableA by
^c,Ac&, which according to the Copenhagen interpretation is the mean value ofA if measured
many times in the state$c%. It is seen to be independent of the representative vectorcP$c%. Such
a state is called avector state. The concept of state was generalized by von Neumann to inc
random mixtures of vector states. LetB(H) denote the set of bounded operators onH; this is a
complex vector space, and also*-algebra, where conjugation is given by the adjoint and mu
plication is the usual product of operators. A state is given by a positive operatorr of trace 1,
called a density operator, and the expectation of an observableA is taken to bem1(A)
ªTr(rA). Any density operator determines an element of the dual space toB(H) by the map
A°m1(A). We also can definemn(A)ªTr rAn to be the nth moment of A, and k2(A)
ªm2(A)2m1(A)2 to be the second cumulant, the variance, uncertainty, or dispersion ofA in the
stater. von Neumann showed that there are no dispersion-free states. Thus, quantum mech
intrinsically random. Heisenberg’suncertainty relation, which is a theorem, not a postulate, is th
best-known facet of this:

Theorem 3.1:Let A,B,CPB(H) be such that@A,B#ªAB2BA5C; then in any stater, we
havek2(A)k2(B)>m1(C)2/4.

There is no uncertainty relation for commuting operatorsA, B, and such observables are sa
to becompatible. If @A,B#Þ0, we say thatA andB are complementary.

Segal has emphasized that the bounded observables in any quantum theory should f
Hermitian part of aC* -algebra with identity. This is a complex vector spaceA with

~1! a productAB is defined for allA,BPA, which is distributive and associative, but not nece
sarily commutative;

~2! a conjugationA°A* , which is complex-antilinear, is specified;
~3! A is provided with a normi"i which obeys Gelfand’s condition

iA*Ai5iAi2; ~56!

~4! A is complete in the topology given by this norm.

This concept includes all the examples we have seen so far; the setMn(C), denotingn3n
matrices, with matrix addition and product, is aC* -algebra. The* operation is Hermitian conju-
gate, and the normiAi is the maximum eigenvalue ofuAu5(A* A)1/2. For any Hilbert space
B(H) is also aC* -algebra, and more generally, so is any von Neumann algebra, which ca
defined as any weakly closed*-subalgebra ofB(H) containing the identity. Another notabl
example is the subsetC(n) of M(n) consisting of real diagonal matricesA5diag(a1,...,an). This
is clearly commutative, and the diagonal elements are the eigenvalues. Thus, eachAPC deter-
mines uniquely a functioni °ai , 1< i<n from the setVn5(1,2,...,n) to R. Conversely, any
random variablef on Vn defines a unique diagonal matrix diag(f(1),...,f(n)). So the classical
observables onVn can be described as a special type of quantum mechanics, namely, the dia
matrices. Moreover, the interpretation in classical theory of the values of the random variablf as
possible observed values, coincides with the quantum interpretation of the eigenvalues. Als
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n3n density matrixr defines a unique probability measurep on Vn by using the diagona
elements:p( i )5r i i , 1< i<n. Clearly, a probabilityp can define a density matrix by the sam
formula, but there are other, nondiagonal density matrices giving the samep. If all the observables
are contained inC, then the off-diagonal elements of the density matrix are of no relevance, an
the information on the state of the system is contained inp. A concept that captures the essentia
of this idea, removing redundant description, is due to Segal. Given the algebra of observabA,
we say astateon A is a positive, normalized linear mapr: A→C. Thus

~1! r is complex linear,
~2! r(I )51,
~3! r(A* A)>0 for all APA.

Naturally, two constructions that lead to the same map are said to define the same state. We
note that we only need the expectations, i.e., the first moments, of the observables, becA
itself contains all powers ofA, and~as it is complete!, also elements such aseiA; so if we know
the state we know the characteristic function of every observable, and so its distribution to

More generally, the classical measure theory (V,B,m), wherem is a positive measure, can b
written as a~commutative! quantum theory by using the von Neumann algebraL`(V,m) acting as
multiplication operators onL2(V,B,m); its normal states correspond to~countably additive! prob-
ability measures, which vanish onm-null sets. Indeed, given a stater we can define the corre
sponding measure of a setBPB as r(xB). In this, setsB and B8 are indistinguishable if they
differ by a m-null set; we do not really needV itself, but only thes-tribe B, modulo this
equivalence.

The set of states of aC* -algebraA forms a convex set, which we shall callS(A) or just S.
The convex sum

r5lr11~12l!r2 ,

where

0,l,1 ~57!

represents the random mixing of the statesr1 andr2 with weightsl and 12l. All expectations
in the stater are then the same mixtures of the expectations in the statesr1 andr2 . If r1Þr2 we
say thatr is a mixed state. If r cannot be written as a mixed state@so that in any relation such a
Eq. ~57! we must haver15r2#, we say thatr is a pure state. EveryC* -algebra possesses man
pure states. For the full matrix algebraMn , every pure state is given by a unit ray$c% in the
Hilbert spaceCn, using the usual quantum-mechanical expression; every density operato
mixture of such. This is an example of the Krein–Milman theorem, which says that a
* -compact convex set in the dual of a Banach space is generated by its extreme poin
representation of a mixed state such as Eq.~57! is, in general, not unique. For example, ifH
5C2, the fully unpolarized state is (1/2)I , and this the equal mixture of the pure states,
eigen-vectors ofJ3 , the spin operator in the direction of quantization, as well as the equal mix
of the eigenstates ofJ1 , or any other spin direction. This means that all statistical properties o
observables are the same however the state was made up. We express this by saying that
space in quantum probability is in general not a simplex: in a simplex, any mixed state ha
one decomposition into pure states. In classical probability, in contrast, the state spaceS~V! is a
simplex. This is true in quantum probability only ifA is Abelian. The density matrix contains a
the information there is. Our inability to distinguish the history of how the state was made i
to the quantum phenomenon ofcoherentsums of wave functions.

There is an important connection between states and representations of aC* -algebra. A
representationp of A is a * -homomorphism fromA into B(H) for some Hilbert spaceH. Thus,
p(A) is an operator onH and the mapp satisfies, for allA,BPA,

~1! p(lA1B)5lp(A)1p(B) for all lPC ~linearity!,
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~2! p(A* )5(p(A))* ~hermiticity!.

A representation is said to be faithful ifp(A) is nonzero ifAÞ0. A stater is said to be faithful
if r(A* A)50 only for A50. To each stater there is a representationpr , on a Hilbert spaceHr ,
and a unit vectorcrPHr , such thatr is vector statecr ; that is,

r~A!5^cr ,pr~A!cr&, APA. ~58!

If the stater is faithful, then so is the corresponding representationpr . Moreover,p is irreducible
if and only if r is pure.

The proof of this theorem, which asserts the existence ofHr and the homomorphismpr ,
follows the common mathematical trick: We construct these objects out of the material at
Let us do this whenA has an identity andr is faithful. We start with the vector spaceA and
provide it with the scalar product

^A,B&ªr~A* B!.

The completion of this space is then taken to beHr . The operatorpr(A) is taken to be left-
multiplication ofA by A, thus:pr(A)BªAB. This definespr(A) on the dense setA#Hr , and
can be shown to be bounded. We takecr5I , the identity in the algebra. One can then verify th
(Hr ,pr ,cr) satisfy Eq.~58!. A slightly more elaborate construction can be given if there is
identity or the state is not faithful. This realization of the algebra is called the GNS constru
based onr after Gelfand, Naimark, and Segal.

It took some time before it was understood that quantum theory is a generalization of
ability, rather than a modification of the laws of mechanics. This was not helped by the
quantummechanics; moreover, the Copenhagen interpretation is given in terms of probab
meaning as understood at the time. Bohr has said31 that the interpretation of microscopic me
surements must be done in classical terms, because the measuring instruments are large
therefore described by classical laws. It is true that the springs and cogs making up a me
instrument themselves obey classical laws; but this does not mean that theinformationheld on the
instrument, in the numbers indicated by the dials, obey classical statistics. If the instru
faithfully measures an atomic observable, then the numbers indicated by the dials sho
analyzed by quantum probability, however large the instrument is.

We now present Gelfand’s theorem, which shows that any commutative quantum theo
be viewed as a classical probability theory. We give a proof in finite dimensions.

Theorem 3.2: Given a commutative* -algebra C of finite dimension, there exists a (finite
spaceV and an algebraic* -isomorphism J fromC ontoA(V), such that for any stater onC there
exists a probability p onV, such that for any element APC we have

r~A!5Ep@J~A!#. ~59!

Proof: Since dimC5n,`, the dimension of the dual space is the same. There is a fai
statev on C; this could be for example a mixture of a basis of the state space with non
coefficients. We can therefore construct a faithful realization ofC as a matrix algebra. In this, th
GNS construction, the Hilbert space is built out ofC and so is of dimensionn. A commutative
collection of normal matrices can be simultaneously diagonalized, so there is a basis in the
space such that each element ofC is a diagonaln3n matrix. Since exactlyn of these diagonal
matrices make up a linearly independent set, every diagonal matrix appears. Every elemenC is
therefore a sum of multiples ofunits$ej% of the algebra, satisfyingej

25ej andeiej50, iÞ j . In the
above matrix realization,ej is the matrix with 1 on the diagonal in positionj, and zero elsewhere
ThusA5( ajej . So letV5$ej% j 51,...,n , and letJA be the functionJA(ej )5aj . Then one verifies
thatJ is an algebraic* -isomorphism. To the stater we associate the probabilityp(ej )5r(ej ), and
see easily that Eq.~59! holds. h
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In this proof, instead of identifyingV with the collection of elementsej in the algebra, we
could have taken the dual, and identifiedV with the set ofcharacterson C. This is the set of
multiplicative states, that is, statesv obeying v(AB)5v(A)v(B) for all A,BPC. The set of
characters of aC* -algebra is called itsspectrum. Our proof shows that there are exactlyn of these,
defined byv j (ek)5d jk . PuttingA5B we see that any character is dispersion free. This is why
spectrum is taken by Gelfand to be the definition ofV in the infinite-dimensional case:

Theorem 3.3: Let C be a commutative C* -algebra with identity. Then the set of characte
can be given a topology so as to form a compact Hausdorff spaceV such thatC is C* -isomorphic
to C(V), and every state onC corresponds to a finitely additive measure onV ~with the Borel
tribe!.

Bohm asked whether the observed statistics, agreeing with experiment, can be obtaine
a larger, more complicated classical theory. This is the idea behind the attempts to intr
hidden variables. This is certainly true of the statistics of any fixed complete commuting s
observables; for they form an Abelian algebra, and so can be represented by the classical s
of multiplication operators on a sample space~the spectrum of the algebra!. Obviously the full
non-Abelian algebra cannot be a subalgebra of an Abelian algebra, so the way hidden variab
introduced must be more elaborate than extending the algebra by adding them. However, th
result of J. S. Bell shows~if the dimension is four or higher! that the full set of statistics predicte
by quantum theory cannot be obtained fromanyunderlying classical theory. In the quantum mod
of two spin-half systems, Bell constructs a sum of four correlations which in a certain sta
equal to 2A2, a factorA2 larger than the greatest value allowed in any classical theory.

Let us follow Refs. 32 and 33. LetP, Q be complementary projections, and also letP8,Q8 be
complementary projections, whileP is compatible withP8 and withQ8, andQ is compatible with
P8 andQ8. Definea52P2I , b52Q2I , and similarly fora8 andb8. For any stater defineR by

Rªr~aa81ab81bb82ba8!5r~C!,

whereC5a(a81b8)1b(b82a8). Thena25b25a825b8251, so

C2541@a,b#@a8,b8#54116@P,Q#@P8,Q8#. ~60!

Sinceiai5ibi5ia8i5ib8i51, it follows that

i@a,b#@a8,b8#i<4,

so C2<8 and uRu25ur(C)u2<r(C2)<8. So in quantum theory,uRu<2&. If there is a joint
probability space on which we can describea,...,b8 by the r.v.f ,...,g8 taking the values61, and
a measurep on it, thenR5Ep@h# where

h5 f ~ f 81g8!1g~g82 f 8!.

Then these r.v. commute, so Eq.~60! becomesh254, and

uR2u5Ep@h#2<Ep@h2#54.

So uRu<2 ~Bell’s inequality!. Bell showed that the entangled states of the Bohm–EPR setup
a r such thatR52A2, violating this. Thus no description by classical probability is possible.

The famous Aspect experiment tested Bell’s inequalities. This involves observing a syste~in
a pure entangled state! in a long run of measurements; the correlations singled out by B
between several compatible pairs of spin observables, were measured. The experiments
that R was just less than 2A2, in agreement with the quantum predictions.

The upshot is that in quantum probability there is no sample space; we have theC* -algebra
A, and this plays the role of the space of bounded functions.

Let us now examine Bohm’s claim that there is a hidden assumption in Bell’s proof, th
‘‘locality.’’ It is now generally agreed that the term ‘‘local,’’ referring to the space localization
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not the best, and that ‘‘noncontextual’’ is a better term; namely that the choice of random va
f assigned to represent a certain observablea which is being measured, does not depend on wh
of the other observables,a8 or b8, is being measured at the same time. This is now calle
noncontextual assignment. Bohm suggested that we should allow a contextual choice of
ment of random variable, so that the r.v. representing the observablea whena8 is also measured
is not the same as the choice of r.v. fora when it is measured withb8. The two choices will,
however, have the same distribution. It should be said straight away that this idea is contrary
practice of probabilists, who would expect there to be a unique random variable represen
observable. It also goes against the definition of ‘‘element of reality’’ of EPR as extended by
the random case. The quantum version does not suffer from this unreality, since the mathe
object assigned to the observable, the Hermitian matrix, does not depend on the context,
local in Bohm’s language.

Bohm’s idea leads to a theory with very few rules. However there are some restrictions,
the choice must be done so thatall statistical measurements of compatible observables~means,
correlations, third moments, etc.! of the model can be arranged to give the same answers a
quantum theory. This is achieved as follows. Leta,a8 be compatible, generating a commutati
C* -algebra,C and letr be a state on the full algebraA. By restriction,r defines a state onC. By
Gelfand’s isomorphism, we can construct a spaceV, the spectrum ofC, and a measurem on it,
such thata,a8 can be represented as multiplication operators onC(V), so they are random
variables,f,g. The joint probability distribution off, g is the same as that of the~diagonal! matrices
a,a8 in the stater. On the other hand,V, m depends on the seta,a8. Let us record this by
denoting this Gelfand representation byVa,a8 ,ma,a8 . If we measurea and b8, and proceed as
Bohm suggests, then we get a different spaceVa,b8 , the spectrum of a different algebraCa,b8, say.
The stater leads to a different measurema,b8 . The r.v. assigned toa cannot bef this time; it must
be a function onVa,b8 , a different space; it has the same distribution inma,b8 as thef had in
ma,a8 . In this setup, there is no obvious definition ofa81b8, as they are not functions on the sam
space. This problem does not arise in the quantum formulation: there is an underlyingC* -algebra,
in which we can add the operators.

Bohm’s suggestion might be said to be an interpretation of quantum mechanics in ter
classical probability.34 However, the construction is not a probability theory in the sense
Kolmogorov, as there is no single sample space; the theory is pre-Kolmogorovian, in the tra
of the frequentist school. One can generalize the frequentist point of view, and specify that c
collections of observations are compatible, and others are not; then we can by observatio
struct the joint probabilities of each compatible set, and have no need for the sample spa~the
space of joint values!. A different compatible set need have no analytic relation to the first, e
though it contains common observables. Bell’s inequality need not hold, but then neither ne
quantum version, which isA2 times more generous. It is a feeble theory, not much more than
collection, and has no predictive power. Mere data give us no more than mere data.

Another variant of quantum mechanics, a new form of algebra called ‘‘quantum logic,’’
developed in Ref. 35. New rules by which propositions can be manipulated are given. Th
worked on later by Jauch and co-workers,36 culminating in Piron’s thesis. This says that th
propositions form a lattice isomorphic to the lattice of subspaces in a Hilbert space~but not
necessarily over the complex field!. Apart from this result, quantum logic has not been ve
successful, and it is more productive to keep to classical logic, but to generalize the conc
probability algebra from commutative to noncommutative. Another alternative to quantum
ability is stochastic mechanics, founded but now abandonned by Nelson37 as not being correc
physics. Thus Segal’s approach is the one we adopt here. It is well explained in Refs. 38–

Quantum theory has its version of estimation theory.41,42 In finite dimensions, the method o
maximum likelihood is to find the density matrixr that maximizes the entropy, subject to give
values for the means,$h i%, of observables in the subspace of Hermitian operators spanned
named list$X1 ,...,Xn% of slow variables. Soh i5Tr@rXi #. It is well known that the answer is th
Gibbs state
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r5Z21 exp~2H !5Z21 exp2@j1X11...1jnXn#, Z5Tr@exp~2H !#. ~61!

Again, logZ is strictly convex, and its Hessian gives a Riemannian metric on the manifoldM of
all faithful density operators.43,16,44 In this case we get the Kubo–Mori–Bogoliubov metric;
terms of the centered variablesX̂iªXi2h i , the metric is

g~X̂i ,X̂j !5TrF E
0

1

rlX̂ir
12lX̂j dlG . ~62!

This is the closest point onM to any state with the given means, where ‘‘distance’’ is measu
by the relative entropyS(rur8)ªTr r@ logr2logr#. Again, thej j are uniquely determined by th
measured meansh i .

IV. KOLMOGOROV AND ITO

A stochasticprocess over a setT is a family $Xt ,tPT% of random variables on a measu
space~V, B, m!. We might haveT5$0,1,2,...%, or T5R1, when we interprett as time. From the
frequentist point of view, we can observeXt1

,Xt2
,...,XtN

at finitely many points of time. In this
way, we can test any model as to what the joint distribution of these r.v. is.

Kolmogorov’s existence theorem says that a family of joint~cumulative! distributions
F1,2,...,n(x1 ,...,xn), given for all finite subsets ofT, is the set of joint distributions of a stochast
process overT if and only if theconsistency conditionshold. Thus,~the variable with the caret is
omitted!:

~1! For any permutationp of (1,2,...,n), we have

F1 ,...,n~x1 ,...,xn!5Fp~1!,...,p~n!~xp~1! ,...,xp~n!!.

~2! For anyj, we have

F1,...n~x1 ,...,xj5`,xj 11 ,...,xn!5F1,...,ĵ,...,n~x1 ,...,x̂ j ,...,xn!.

If these hold, he shows that the sample spaceV may be taken to beRT, an enormous space~of
all functionsv of t!; the r.v.Xt is then the functionXt(v)5v(t). He proved the existence of
measurem, which reproduces the given joint distributions; thes-tribe B has the following struc-
ture. Let Bt be the smallests tribe such that allXs , for s<t, are measurable; then this is a
increasing family ofs tribes, called a filtration. ThenB is the smallests tribe containing all the
Bt .

Apply this to the Brownian paths, and the measures defined by a finite set of gates as
last section; this proves that there is a probability theory underlying the finite joint distribut
However, it does not prove Wiener’s theorem, in that the sample space obtained by the Ko
orov construction is the huge set of all functions of time. It is then a hard problem to show th
subset of continuous functions has measure 1. This fact is very important for specialists in B
ian motion, but is not a general feature of processes covered by Kolmogorov’s theorem, and
needed to construct the usualLp spaces of functional analysis. Without Wiener’s version we lo
the power of the pathwise methods, and also lots of intuition. The modern method is to get th
off the ice using Kolmogorov, and supplement it with further estimates, on tightness and ra
fying maps, if we need to find smaller carrier spaces for the measure.45,46 After Kolmogorov’s
treatise, the subject could develop ‘‘in the usual professional mathematical way,’’ to use S
phrase. That is, theorems could be stated and proved, and then sharpened. The most imp
these were the laws of large numbers, the zero-one laws, the central limit theorems, the th
large deviations, the classification of all processes with independent increments, martingal
stochastic integration.
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The conditional expectationEtªE@•uBt# takes a random variable inL2(V,B,m) into one in
L2(V,Bt ,m); since it is the identity on the latter space, and is Hermitian, it must be the orthog
projection ontoL2(V,Bt ,m). None of these ideas depends on which version of the sample s
we have.

The concept of conditional expectation can be extended to integrable r.v., thus:
Definition 4.1: Let~V, B, m! be a probability space, and letB0 be a sub-s-tribe of B. Let X

be a random variable with E@X#,`. Then there exists aB0-measurable r.v. Y, written E@XuB0#,
such that for each set BPB0 we have

E
B
Y dm5E

B
X dm. ~63!

Further, if Ŷ is another r.v. with these properties, then Yˆ 5Y almost everywhere.
See Ref. 25 for a proof, and other things.

A martingale is a stochastic processXt on (V,Bt>0 ,m) such thatXt is integrable, and

E@XtuXs#5E@Xs# for all t>s. ~64!

A martingale is a fair game. For example, consider the independent tosses of a fair coi
let Xn5Hn2Tn , whereHn is the number of heads andTn is the number of tails of thenth toss.
Let SN5( j 51

N Xj . ThenSN is a martingale, Ref. 47 p. 202.
There are four concepts of convergence of a sequence$Xn% to X in the space of random

variables on a probability space~V, B, m!.
~1! We sayXn→X almost surely~or, almost everywhere! if

m$v:Xn~v!→X~v!%51.

~2! We sayXn→X in i•i r if

iXn2Xi r→0 as n→`.

~3! We say thatXn→X in probability if

m$v:uXn~v!2X~v!u.e%→0 as n→` for all e.0.

~4! We sayXn→X in law if
m$v:Xn<x%→m$v:X<x%for all x at which FX~x!ªm$X<x%

is continuous.
These concepts are not equivalent;~1! and~2! are not comparable, but~1! or ~2! imply ~3!, which
implies ~4!.47 Convergence in law can be related to convergence of the characteristic functio
Xn to that ofX; we see that ifXn converges toX in law implies thatXn also converges toY in law
if Y has the same distribution asX. This shows that convergence in law in a very feeble conc
The four concepts of convergence do not depend on the version of sample space adopted
are the same whether we use Wiener space or Kolmogorov’s abstract construction.

For a givenm, we can complete thes-tribe B to include all subsets of sets ofm-measure zero;
then the events that can happen are described by the quotients tribe, in which events which differ
by a set of measure zero are identified. This idea is not wise when we are interested in me
with different sets of zero measure, as happens when we condition a Wiener path to pass
a given point. The Dirac measure onR is a simple example of the trouble we get into. If tw
measuresm1 , m2 have the same sets of zero measure in~V, B!, we say that they are equivalen
If m1(B)50 wheneverm2(B)50 we say thatm1 is absolutely continuous relative tom2 ; in that
case there exists a functionwPL1(V,B,m2) such thatm1(B)5*B w(v)dm2 for all BPB. We
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write w5dm1 /dm2 , the Radon–Nikodym derivative. This is the abstract version of Eq.~12!. We
shall be interested in other measures, singular relative to a given one. Then the best forma
to start with an AbelianC* -algebraA and consider its states.

Estimation is assisted by the law of large numbers. LetX be a random variable on a prob
ability space, whose meanh we wish to find, making use of a random experiment which
believed to be well modeled byX. We set up a sequence of independent copiesXn of X, and
consider the stochastic process$Xn% on e.g., the probability space constructed by the theorem
Kolmogorov. Thestrong law of large numberssays that ifE(X)5h andE(X2),`, then putting
Sn5( j 51

N Sj we have

SN /N→hI in i•i2 .

If EuXu,`, we get almost sure convergence. These are necessary and sufficient cond
Weaker conditions ensure that the sum converges in probability.47 This is called the weak law
Note that the meaning of convergence uses the measure on the Kolmogorov space, so for
all sequences, randomly chosen, we get convergence to the mean. It does not say how
convergence is. For example, ifXn is the number of heads minus the number of tails, at thenth
toss of a fair coin, thenSN is the number of heads inN tosses minus the number of tails, andSN /N
converges almost surely to zero. If we know thatSmÞ0 afterm results, the law does not say th
the bias evens out in the long run.Sn is a martingale, and its expected value forN.m is its present
valueSm . It is SN /N, which converges; the bias at timem gets divided byN, and so goes away
for largeN.

Another famous limit law is the central limit theorem; if the standard deviationX is 1 and the
mean is zero, then one can show that

Sn /~An!→N~0,1! in law.

Versions of this were known to Bernouilli and Gauss, if we assume that the moment-gene
function exists. It explains the ubiquity of the normal distribution; many random processes a
sums of small and independent random things, and so tend to be Gaussian. The theory
deviations tells us something about the rate of convergence ofSn ; this stuff is deeper.48–51There
is also a large body of work on sums of nearly independent random variables, and also
cases where the variances are not all equal.

Doob proved that martingales often converge, e.g.,
Theorem 4.2: If $Sn% is a martingale with E(Sn

2),M,` for some M and all n, then there
exists a random variable S such that Sn→S almost surely.

Consider now a process (Xt ,V,Bt>0 ,m) in continuous time with independent increments; th
is, Xt2Xs is independent ofXr for r ,s,t. Since we can writeXt2Xs as the sum of more and
more independent differences, we might expect thatXt2Xs must be Gaussian, by the central lim
theorem. However, this is not the case since the distributions of the differenceXt2Xs might
change as the interval is made smaller. This question led Levy to characterize all processes
stationary and have independent increments. This can be done by showing that the chara
function

C~l!ªE@expi ~Xt2Xs!l#

should not only be of positive type, but so should any fractional power. Such a function is c
infinitely divisible, and so is the corresponding random variable. The necessity is easy to se
can write Xt2Xs as the sum ofN identical and independent random variables, namely,
increments for time intervals (t2s)/N; then the characteristic function of this sum is the prod
of the N characteristic functions~which are all equal, by stationarity! of these increments, and s
C has anNth root that is of positive type. This condition is also sufficient, to which we s
return. The characteristic function of the Gaussian is infinitely divisible, and so is that fo
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Poisson distribution. This means that Gaussian and Poisson processes with independen
ments exist. Levy found that by mixing these he got some new processes~Levy processes!, and he
found the most general form of the characteristic function, which is

logC~l!52al21 ibl1E ds~a!@eial2~11 ial!Z~a!#, ~65!

wherea>0, b is real,ds(a)>0 obeys*21
1 a2 ds(a),`. There are some further conditions o

the weightds at infinity.52 If s50 we get the Gaussian, and ifs has a discontinuity, we get a
Poisson process. These conditions can be understood in terms of Hilbert space cohomologR,
as in Sec. V.

During this period, physicists and engineers studied stochastic differential equations, s
to the Langevin equation. Often the random force was chosen to be the derivative of Bro
motion, called white noise. SinceBt is at best continuous, this work lacked rigor, and remain
poorly defined even after appeal to Dirac’s generalized concept of function. This sorry st
affairs was cleared up by Ito.

Let W(t) be Brownian motion starting at zero. At first sight, an equation for an unknownX(t)
similar to the Langevin equation, of the form Eq.~42!,

dXt

dt
5a~ t !1b

dWt

dt
for almost all v,

makes no sense, since for almost allvPV, W(t) is not differentiable. The equation does ma
sense if written in the following form: Find a family of random variables,$X(t)%, such that for a
given initial random variableX(0), the r.v. X(t)2X(0)2*0

t a(s)ds is the known r.v.Wt for
almost allv. This does not prove that there is such a process, but it is does make sense.
more general case whena,b depend on the unknownX(t), the integral form is

X~ t !2X~0!5E
0

t

a~s,X~s!!ds1E
0

t

b~s,X~s!!dW~s!. ~66!

The last expression, called a stochastic integral, looks like a Stieltjes integral, but the n
condition of bounded variation onW(s) does not hold. Solve the equation by iteration~Picard’s
method!; we see that at each stage, the approximation toX(t) is a function ofW(s) only for s
<t. So it would appear that we need only give a meaning to the stochastic integral for the
whereX(t) is a function ofW(s) for s<t, and so the same holds forb(t,X(t)). This can be neatly
put in terms of the filtrationBt generated by the Wiener process: for allt>0, X(t) and so
b(t,X(t)) is measurable relative to thes-tribeBt . This makes sense physically; it says that we c
know the present configurationX(t) if we know the initial configurationX(0) and the outcomes
of all the randomness,Ws , s<t, so far. A random function of time,f, is said to beadapted to the
filtration Bt if f (t) is Bt measurable for allt>0.

Let f (t) be an adapted process in the time interval 0<t<T, which issimple: that is there is
a finite partition 05t0 ,t1 ,...,tn5T such that f (t)5 f j for t j 21<t,t j for all integers j
P(1,...,N). Here, f j is a random variable independent of time, and equality of random varia
means almost everywhere. Following Ito, we can define the stochastic integral of an ad
simple functionf to be the random variable

E
0

T

f ~ t !dWtª(
j

f j~Wt j 1t
2Wt j

!. ~67!

Note that the incrementdW is in the future of the random variablef j that multiplies it. The
mapping, f °*0

T f (t)dWt takes the linear space of simple adapted functions into the spac
random variables, and is clearly a linear map. The brilliant remark of Ito is then that the follo
identity, called Ito’s isometry, holds:
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EFU E
0

T

f ~ t !dWtU2G5E
0

T

E@ u f ~ t !u2#dt. ~68!

Proof:

EFU E
0

T

f ~ t !dWtU2G5(
i

(
j

E@ f i~Wi i 11
2Wti

! f j~Wt j 11
2Wt j

!#

5(
i

EF u f i u2~Wti 11
2Wti

!212(
i , j

f i f j~Wti 11
2Wti

!~Wt j 11
2Wt j

!G .
Now, the future incrementWti 11

2Wti
is independent off i , which is adapted, i.e., a function o

earlierW(s). So the expectation value in the first term factorizes:

E@ u f i u2~Wti 11
2Wti

!2#5E@ u f i u2#E@~Wti 11
2Wti

!2#5E@ f i u2#~ t i 112t i !,

by the property of Brownian motion. This gives the desired term in Eq.~68!. It remains to show
that the remaining double sum vanishes. This is true, because the factor (Wt j 11

2Wt j
) for j . i is

independent of the remaining factorsf i f j (Wti 11
2Wti

) and so the expectation of the product is t
product of the expectations; but the expectation of the future increment ofWt is zero. h

Ito’s isometry is a mapping from the set of simple adapted processes to random variab
a simple theorem of normed spaces, it can be extended by continuity to a linear isometry~unitary
transformation! between the completions of both sides in the norms given. The completio
simple functions in the norm

i f i25E
0

T

E@ u f ~ t !u2#dt ~69!

is the space of processes such thatE@ u f u2# is Lebesgue integrable; so Ito can define the stocha
or Ito integral, of all processes with this property; it is the limit in this norm of simple adap
processes approximating it. Naturally, we must prove that the adapted simple processesL2

dense in the square-integrable adapted processes; this is not difficult, since the projectionEt is a
bounded operator and maps onto the space ofBt-adapted square-integrable processes.

We can now give a meaning to the question, do there exist solutions to the stochastic
ential equation

dXt

dt
5a~Xt ,t !1b~Xt ,t !

dWt

dt
? ~70!

We say the a processXt satisfies this equation if, on substitutingXs in the integrals in Eq.~66!, we
get backXt2X0 .

For a wide class of functionsa andb of two variables we can then get a convergent itera
approximation, the Picard series, which converges to a processXt obeying the~integral form of!
the stochastic differential equation. This holds, for example, ifa(x,y) is uniformly Lipschitz iny
in a region, andb(x,y) is uniformly elliptic in y and measurable inx, y. This result can be
improved and generalized, so that vector-valued stochastic processes can be studied, and t
can be of a much more general martingale thanWt . This can be reworded as a ‘‘martinga
problem.’’53

The converse to Ito integration should be a form of differentiation: it is called~Ito! stochastic
differentiation; we may say that the processf (Wt ,t) is the stochastic derivative o
*0

t f (Ws ,s)dWs . The Ito integral is always a martingale, and every martingale is a stoch
integral, and so has a stochastic derivative, namely the integrand in its representation as
integral. One can show that this is unique. It is interesting to form the repeated stochastic in
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Wt5E
0

t

dWs ,

:Wt
2:5Wt

22t52E
0

t

Ws dWs ,

:Wt
3:53E

0

t

:Ws
2:dWs ,

... ...

in which the Wick ordered~Hermite polynomials! occurring in the Wiener chaos are the succ
sive stochastic integrals. They are all contained in the exponential martingale exp(lXt2

1
2l

2t). The
second one illustrates the Doob–Meyer decomposition:Wt

2 is a submartingale, and is written a
the sum of a martingale, :Wt

2:, and an increasing function,t, of bounded variation.
Manipulation of stochastic integration can be summarized by the Ito multiplication ta

Keep all differentials indt up to first order, usingdt•dW50 anddW•dW5dt. From this, we can
get the important relation between a certain parabolic partial differential equation known as
mogorov’s forward equation, and the corresponding stochastic differential equation. Suppo
Xt satisfies the stochastic differential equation, Eq.~70!, with initial r.v. equal toX0 , which has
law p(x). Let p(x,t) be the law ofXt ; then it can be shown thatp(x,t) is smooth and satisfies th
parabolic equation

]p

]t
5

1

2

]

]x S b~x,t !2
]p

]x D1
]

]x
~a~x,t !p!, ~71!

with initial condition p(x,0)5p(x). To see why this is, we note that iff (x) is any smooth
function, we can apply Ito’s lemma to the random processf (Xt). We recover*p(x,t) f (x)dx as
E@ f (Xt)uXt5x#. We now expandf (Xt1dt) in a Taylor series aboutXt up to second order indW:

f ~Xt1dt!5 f ~Xt!1
] f

]x
dX1

1

2

]2f

]x2 ~dX!2. ~72!

Equation~70! tells us that (dXt)
25b2 dt anddX5a dt1b dW. Here,dW is the forward differ-

ence. Then the expectation vanishes:E@ f 8b dWuXt2x#5E@ f 8buXt5x#E@dWuXt5x#50, since
dW is independent off 8b at timet and has zero expectation. So, taking the conditional expecta
of Eq. ~72!,

E@ f (Xt1dt2~Xt!uXt5x#5EF ] f

]x
aGdt1

1

2
E@b2f 9uXt5x#dt. ~73!

Sincea,b, f , f 8, f 9 are functions ofXt , t they become sure functions, evaluated atx under the
conditioning; thus we get the equation for the incrementf (x,t1dt)ªE@ f (Xt1dtuXt5x#:

~ f ~x,t1dt!2 f ~x!!/dtªLf 5~1/2!b~x,t !2f 91a~x,t ! f 8.

This is Kolmogorov’sbackwardequation, which applies to the dynamics of the process. To
the dynamics of the probability density, we take the dual operatorL* , defined by

E p~x,t !Lf ~x,t !dx5E L* p~x,t ! f ~x,t !dx,

which on integration by parts, and discarding the boundary term at`, gives
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L* fª
1

2

]

]x S b~x,t !2
]

]x
f D1

]

]x
~a~x,t ! f !.

Since f was arbitrary, we see thatp(x,t) satisfies the forward equation in the weak sense~after
smoothing with a test-functionf !. It is known from the theory of elliptic regularity that any wea
solution is a strong solution. Ifa andb are constants, we arrive at the Smoluchowski equation,
the continuum version of~50!:

p~x,t !5E@p~Xt,0!uX~0!5x#.

This representation for the solution of Eq.~71! gives an immediate proof that the solution rema
non-negative if the initial condition is non-negative, sincep(Xt,0)>0; also, one sees that the tim
evolution must be a contraction in theL` norm, and theL2 norm as the conditional expectation
a projection.

Sometimes, we can rewrite the solutionXt in terms of time-translationv°vTt if we modify
the measure.54 Supposem8 is absolutely continuous relative tom. Then there exists an adapte
processu(t) in ~V, B, m! such that

dXt5dWt1u~ t !dt, X050, ~74!

has a weak solutionXt whose law is the same asYt(v)ªv(t) as a r.v. on~V B, m8!. Then the
Radon–Nikodym derivative is

dm8/dm5expF E
0

t

u~s!dXs2~1/2!E
0

t

iu~s!i2 dsG . ~75!

Conversely, ifu is such that the right-hand side of~75! has Wiener expectation 1~as will happen
if u is bounded!, then there exists an absolutely continuous measurem8 given by~75!, such thatTt*
on ~V, B, m8! produces a weak solution to~74!. This is the Girsanov–Cameron–Martin theore

This change of measure is closely linked to the change of ground state in the corresp
quantum theory when an interaction is introduced. We see this in the Feynman–Kac form
the following.

One can, using similar methods, integrate adapted functions relative todM, whereM is any
martingale. The stochastic integral has other variants, such as the Stratonovitch version;28,37 one
can also integrate nonadapted processes, subject to other conditions~Skorokhod!, or use another
noise which is not quite a martingale.55,56 The Ito version has an interesting interpretation
mathematical finance. Suppose that the price of an asset is a random processSt , and it obeys the
Ito equation

dSt5a~St ,t !dt1b~St ,t !dWt .

If we choose to holdw(t) units of this asset, our portfolio at timet is worth w(t)St . The change
in the value of our portfolio in timedt is d(w(t)St), and we evaluate this asw(t)St , because we
do not change our holdingw(t) until after we have seen the change in the asset price. HeredSt

5St1dt2St , so the total change in the asset over the time interval@0,T# is the Ito integral
*0

T w(s)dSs , in which w is adapted and the stochastic increment is the forward difference.
We now give a brief account of the Feynman–Kac formula.57 Feynman related the quantum

transition amplitudê c,e2 iHtf& to the integral over histories of^c,exp(i*L(s)ds)f&, whereL is
the Lagrangian.58 The trouble is, the Feynman ‘‘integral’’ over histories is not based on meas
but on oscillatory integrals, and these rarely converge. In quantum physics, the spectrum
energy is bounded below~at least at zero temperature!. This expresses the stability of the theor
It follows that the unitary time-evolution groupe2 iHt has an analytic continuation to comple
times with negative imaginary part. In particular this is true of all the matrix elements of
operator. This is the underlying fact used in Euclidean quantum field theory, but also hol
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quantum systems without any large symmetry group; only invariance under time evolut
needed. In particular, we can consider the group for negative imaginary times, giving a sem
e2Ht. The large-time behavior of this is very good. This was used by Nelson59 to study certain
perturbations of the free Hamiltonian: It is easier to study perturbations of a contraction sem
than a unitary group.

Theorem 4.3:Let H052 1
2(]

2/]x2) and V be a real-valued C` function of xPR, vanishing
at `. Then H01V is self-adjoint onDomH0 and

^c,e2~H01V!tw&5E f~v~0!!w~v~ t !!expS 2E
0

t

V~v~s!!dsD dm. ~76!

For the proof, see Ref. 59 or 60. For a version within quantum probability, see Ref. 61. I
way, we construct an interacting theory in terms of a path integral using the Wiener measm,
weighted with an exponential function. The similarity with the Gibbs state of a system of pat
a potentialV is noteworthy. Suppose thatV50 outside a regionL, and converges to1` insideL.
Then we see from the Feynman–Kac formula that the measure vanishes on all paths that e
region L. After a normalization, the weighted measure thus becomes the conditional W
measure,m(•uv(t)¹L for all t!. The formula then solves the heat equation subject to the co
tion of no flow through the boundary]L. We do not need to find this conditioned measure to
the formula; we can, for example, use the Monte Carlo method, and sample paths by com
rejecting any that enterL; we can also use the conditioned measure to get results on monoton
since, e.g., if the regionL is enlarged, obviously more paths are allowed, and so the integral
positive integrand is increased. This relation with pdes has developed into the subject
potential theory,47 and is one of the tools used in constructive quantum field theory.62–65

Dyson saw the usefulness of using imaginary time in quantum field theory.66 Schwinger67 had
introduced the idea of the Euclidean quantum field as a way of avoiding the difficulties of Lo
invariance; these are replaced by invariance underO(4), theorthogonal group; since we analyt
cally continue all the time-ordered functions to imaginary time, timet gets replaced byit, often
attributed to Minkowski. In fact, Minkowski did not know about the consequences of pos
energy; he did not analytically continue anything, but simply replaced time by2 ix4 , wherex4

5 i t . This means that he considered the complexO(4), and theinvariance group was a particula
subgroupL of it consisting of matrices some of whose entries were complex. In fact,L is isomor-
phic to the real Lorentz group, and is thus noncompact. Nothing has been gained by Minko
trick. Indeed, lots of confusion arose in electromagnetic texts up until recently, where
four-vectors such asAm were regarded as having a complex zeroth component. Schwin
program of Euclidean field theory is a special case of a theory developed by Wightman,68,69 in
which the expectation values of the field are proved to have an analytic continuation in a
space–time components, into a domain that includes real position variables and purely ima
time.

Symanzik70 started the mathematical program of Euclidean quantum field theory. Glimm
Jaffe developed constructive quantum field theory using their theory of the perturbation o
traction semigroups. This is almost a Euclidean point of view. A beautiful probabilistic versio
the subject resulted from Nelson’s rewrite of Symanzik’s program. Let us outline this fo
quantum mechanics of an oscillator.

We start with the self-adjoint Hamiltonian

H5H01V5
1

2 S 2
]2

]qj
2 1q221D . ~77!

Then the lowest eigenvalue, say 0, is simple; letU(t)5e2 iHt and letc0 be the eigenfunction of
the eigenvalue 0. Thenc0.0 holds. That is, there are no nodes in the ground state, a kin
Perron–Frobenius theorem. It is then convenient to replace the Hilbert space of the theH
5L2(R,dq) by the unitarily equivalent spaceH85L2(R,uc0(q)u2dq). The unitary mapW:H
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→H8 is given by (Wc)(q)5c(q)/c0(q). This is obviously organized so thatWc051, the unit
constant function inH8. An observableA, acting onH, is converted toA85WAW21. The
operatorq commutes withW and so is unchanged; but its canonical conjugate,p, does not
commute withW, and neither doesq(t)ªU(t)qU(2t), so these operators do not take the us
Schrödinger form onH8.

The positivity of the energy ensures that the Wightman function^1,q(t1)¯q(tn)1& has an
analytic continuation to purely imaginary times,

t j5 isj such thatsj2sj 11.0, sjPR, j 51,...,n21. ~78!

Define theSchwinger function

Sn~s1 ,...,sn!5Wn~ is1 ,...,isn! ~79!

at points given by Eq.~78!; we takeSn to be defined by symmetry in the other regions; since
Wn are symmetric at real points, then! analytic functions coincide at a common boundary of re
dimensionn. So by the edge-of-the-wedge theorem69 there is one common analytic functio
coinciding with these Schwinger functions. Obviously,Sn determinesWn by the uniqueness o
analytic continuation.

Then two properties hold: There is a stochastic processX(t) such thatSn is thenth moment:

Sn~s1 ,...,sn!5E@X~s1!¯X~sn!#.

Moreover, the process is stationary and Markovian; that is

E@XtuB<s#5E@XtuBs# for t>s. ~80!

Here,B<s is the s tribe generated byXr , r<s, andBs that generated byXs . Neither of these
properties is true for a general Hamiltonian theory, so they somehow reflect the Lagrangian
of the theory.

We can recover the physical Hilbert space as the initial space,L2(V,B0 ,m), generated by
powersX(0) acting on the vacuum,c0 , which is the function 1. Alsoq is then the operator
multiplication byX(0). TheHamiltonian can be recovered by the identity@cf. ~50!#.

e2HtP~q!c05E@P~X~ t !!uB0# ~81!

for any polynomialP. This is the continuous version of the fact that the transition matrix o
Markov chain can be recovered as the conditional probability of one time step. We find

^c0 ,q~ t1!q~ t2!c0&5~1/2!exp$ i ~ t12t2!%. ~82!

This leads by analytic continuation to

S~s1 ,s2!5~1/2!exp$2us12s2u%5E@X~s1!X~s2!#, ~83!

whereX(t) is the Ornstein–Uhlenbeck process.
Nelson was able to follow this program for the free quantized field, and so rewrote

problem of finding solutions to relativistic quantum fields in terms of generalized random fiel
selection of good reading on this subject is Refs. 71–75.

V. QUANTUM PROCESSES

Is friction a classical concept? ‘‘There is no friction in quantum systems: the ground sta
the atom does not grind to a halt. The introduction of friction, e.g., the term2g ẋ in Newton’s
laws, is to account for atomic phenomena such as radiation of moving charges, in a very
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way. Such effects are treated exactly in quantum mechanics, and therefore frictional terms
appear.’’ The view is still widespread but not universal among physicists. Friction does not a
in classical mechanics either if it is not put in.

A quantum process is, in a general way, a Hilbert spaceH and a family of self-adjoint
operators$A(t)% t>0 on H. A quantum field used asnoiseappeared in Ref. 76. Senitzky obtaine
the approximate dynamics of a quantum oscillator by reduction from the dynamics of a
conservative system. He arrived at the following quantum Langevin equation with a Gau
positive-energy quantum driving term (w(t),p(t)) ~the noise!:

dQ~ t !

dt
5vP~ t !2gQ~ t !1w~ t !,

dP~ t !

dt
52vQ~ t !2gP~ t !1p~ t !. ~84!

He noticed that without the ‘‘noise,’’ the Heisenberg commutation relations fade with t
@Q(t),P(t)#5 ie22gt; he considered this to be inconsistent with quantum mechanics. With
noise, the solutions obey@Q(t),P(t)#' i for all time. The noise was a free quantum field wi
constant energy spectrum from 0 tò. This does not quite satisfy the requirement that
Heisenberg cummutation relations should hold for all time. In Ref. 77 we found the general
solution to this problem. A special case is

w~ t !5221/2~a~ t !1a* ~ t !!, p~ t !5 i221/2~a~ t !2a* ~ t !!,

where

a~ t !5~2g/p!1/2E
v

`

e2 ikta~k!dk, @a~k!,a* ~k8!#5d~k2k8!.

This has a constant energy spectrum fromv to `. The feature of this solution, and Senitzky
approximate solution, is the relationship between the dissipationg and the correlation of the
quantum noise, which at zero temperature is

^a~s!a* ~ t !&5
2g

p
eiv~ t2s!

1

t2s1 i e
.

This is called the fluctuation-dissipation theorem.
Lax78 used noise with all frequencies, with two-point function

^a~s!a* ~ t !&5
g

p
d~ t2s!.

This is closer to the classical white noise, in that the increments to the process are independ
the field obeys a quantum version of the Markov property. It was to be used later by Hudso
Parthasarathy in a rigorous body of theory.79,80As physics, it was criticized by Kubo and others
violating the condition, which comes from the axiom of positive energy.39 This is now known as
the KMS condition, after Kubo, Martin, and Schwinger.39 The correct treatment~at nonzero
temperature! was obtained by Ford, Kac, and Mazur81 by taking the limit of one oscillator coupled
to a large system of oscillators~or a string82!. This was truly the quantum Langevin equation,
that the noise is added only to the equation forP and not toQ. This can also be obtained83 as a
singular limit of the asymmetric solution given in Ref. 77. The quantum noises in Refs. 81 a
are not martingales and have no independent increments. They do fit in to the axiomatic s
offered in Ref. 84. In Ref. 85, Ford emphasizes the role played by causality. Instead of Eq~42!,
he considers the equation with memory

mẍ1E
2`

t

m~ t2s!ẋ~s!ds1V8~x!5F~ t !. ~85!
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The fact that the dissipation due to the future must be zero leads us to consider only thosem which
vanish for negative argument. Perhaps this is a lesson for those86,87,61,79,80who like to work on
Lax’s version.

The first work to use the words ‘‘continuous tensor products’’~CTP! was Ref. 86. The notable
conclusion was that the theory can always be embedded in a boson Fock space; the Wiene
is an example of this. We start with a definition of current algebra, or better, current group.G
be a Lie group, with Lie algebraG, and denote byD(G) the set ofC` maps fromRn into G, being
the identity outside a compact set. We can furnishD(G), the current group, with a group law b
pointwise multiplication:f g(x)ª f (x)g(x). This group has a Lie algebra, denotedD(G), which is
the set of allC` mapsF:Rn→G, of compact support, under the pointwise bracket

@F~ f !,G~g!#ª@F,G#~ f g!.

The problem is to find representations of the current groups and the current algebras, by un
self-adjoint operators, respectively.

Guichardet88 proposed a construction for the tensor product of Banach spaces or alg
labeled by a continuous index. The first thing is to define, if possible, the continuous prod
f (x) over xPRn, whenf has compact support. He tries

)
x

f ~x!ªexpS E log f ~x!dxD . ~86!

For Hilbert spaces, we wish to define the scalar product between two fields of vectorsc(x) and
f(x). We put f (x)5^c(x),f(x)& and use Eq.~86!, provided thatf (x)51 outside a compact se
and we take log 150 ~the principal branch!. We then need to be able to extend the scalar prod
to linear combinations of product vectors. In Ref. 89, we give an example of a nonexistent H
continuous product, in that the positivity fails on linear combinations. Guichardet presents a
of Hilbert spaces for which the construction works, and writes the Fock representation of th
field in these terms. To explain his examples, letH be a Hilbert space, andG~H! the Fock space
over H. We define the map expH→G(H) by

expfª1% f % 221/2f ^ f %¯% ~n! !21/2
^

nf¯ . ~87!

The expfPG(H) is called the coherent state determined by the one-particle statef. One shows
that they form a total set~their span is dense! in G~H!; clearly,

^expf,expc&5exp̂ f,c&. ~88!

In Ref. 88, the Hilbert spacesHx at each point is itself the Fock spaceG(H) of a Hilbert spaceH,
and the familyI consists of coherent states at each point. This is a special case of the const
given in the following.

The case of current groups was treated in Refs. 90 and 86. We give here a special cas
the continuous label isR, interpreted as time; we start with (H,U,c), whereH is a Hilbert space,
cPH, andU is a representation ofG on H such that$U(g)c,gPG% has dense span. The tripl
(H,U,c) is called a cyclic representation ofG.

We say that (H1 ,U1 ,c1) and (H1 ,U2 ,c2) are cyclic equivalentif there exists a unitary
isomorphismW:H1→H2 such that for allgPG,

WU1~g!W215U2~g!, Wc15c2 .

A cyclic representation gives us a function on the group, analogous to the characteristic fu
of a random variable. Indeed, it reduces to the characteristic function when the group isR. Thus

C~g!ª^c,U~g!c&. ~89!
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Let SpanG denote the complex vector space of finite formal sums of elements ofG. ThenC is
continuous and of positive type on SpanG, which determines (H,U,c) up to cyclic equivalence.
Conversely, a continuous functionC of positive type onG determines a cyclic representation~H,
p, c! related toC by Eq. ~89!. The construction is very similar to the proof of the GNS rep
sentation. First, we construct the vector space, SpanG, and furnish it with the scalar produc
determined by its values on the linearly independent elementsg1 ,g2 ,..., by

^gi ,gj&5C~gi
21gj !;

we complete SpanG in the norm~or, if a seminorm with kernelK, we complete the quotien
SpanG/K!, giving the spaceH. Then we choosec to be the identity of the group. The operat
U(g) can be defined on SpanG as left multiplication; this is easily shown to be unitary, and so c
be extended to the whole space to get the representationU of G.

In an infinite tensor product over a discrete index, von Neumann was able to end up w
separable Hilbert space only by labeling a special vector, saycx in each factorHx , and then
considering productŝ fx of vectors in a subsetD that at infinity are close tocx . Only then does
the infinite productP^fx ,cx& converge. The tensor product then carries the labels$c(x),D%.
Guichardet used a similar idea for the continuous product. We are less ambitious, in that w
for the tensor product of a cyclic representation (H,U,c) of a group. We use the same represe
tation at each point of the time axis, because we want to get a stationary quantum process. W
define the functionC:D(G)→C as

C~g~• !!ª)
x

^c,U~g~x!!c&, ~90!

which is well defined if we choose at eachx one branch of the logarithm. To get a representat
of the current group, it is necessary and sufficient that this be of positive type on the current
in which case we say that the CTP exists. We also want the function to be extendable t
functions, constant in an interval@s,t# and the identity outside. For such ag(•), we divide an
interval @s,t# into an arbitrary number,N, of equal intervals; thenC(g) is the product ofN equal
factors, each a characteristic function onG. ThusC has the property that it has anNth root that is
also a characteristic function. SuchC is calledinfinitely divisible. By the relation of characteristic
functions to cyclic representations, we are able to transfer the concept of` divisibility to cyclic
representations:

Definition 5.1: Let(H,U,c) be a cyclic representation of a group G. We say90 that it is `
divisible if, for any integer n.0, there is another cyclic representation(H1/n,U1/n,c1/n), called
the nth root, such that(H,U,c) is cyclically equivalent to

~ ^ H1/n,^ U1/n,^ c1/n!,

where the tensor product is over n factors, and the resulting representation is restricted
cyclic subspace spanned by the group acting on the product vector% c1/n.
We see immediately that if for somen the nth root of the representation exists, then it is uniq
~up to cyclic equivalence!. For the characteristic function of twonth roots,C1 ,C2 say, both satisfy
Ci

n5C, and so their ratio isvn , an nth root of unity. But this violates positivity unlessvn51.
The converse also holds: IfC is the product ofn functions of positive type, thenC itself is of
positive type. In Ref. 90 we assumed thatC(g) never vanishes; we prove this later.

Following Ref. 90 we can now give the criterion for the positivity of the scalar product
continuous tensor product̂ c,DHx of cyclic group representations, relative to the cyclic vectoc
and the set of statesDª$U(g)c:gPG%.

Theorem 5.2:The following are equivalent:

~1! The function C(g) is a continuous function of positive type on G with C(e)51, and is `
divisible.
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~2! There exists an`-divisible cyclic representation(H,U,c) of G such that C(g)
5^c,U(g)c&.

~3! ^
c,D exists.

~4! C(e)51 and a branch oflogC(g) is a conditionally positive function on G.

In ~3! and ~4! the branch of the logarithm is determined by which root ofC is of positive type.
Only item ~4! needs explanation. A functionF(g) on a group is said to be conditionally positiv
if

(
i j

z̄izjF~gi
21gj !>0

for all n-tuples (g1 ,...,gn) of group elements and all complexn-tuples (z1 ,...,zn) summing to
zero:( i zi50.

To sketch the proof, ifC is ` divisible, andC5eF, thenCs is also of positive type, for all
small s.0. Then

(
i j

z̄izj~11sFi j 1¯ !>0, ~91!

and so if( i zi50, we get thatF is conditionally positive semidefinite. For the converse, ifF is
conditionally positive definite, theneF is of positive type for alls.0, see Ref. 52, p. 280.

The following result is called an Araki–Woods embedding theorem,90 because of the similar
ity to Ref. 86~but with different hypotheses!. We remark that under the above-mentioned con
tions F is conditionally positive semidefinite; then the function

^g,h&ªF~g21h!2F~g!2F~h21! ~92!

is of positive type, and so can be used to define a semidefinite form on SpanG by sesquilinearity.
Let K be the~separated, completed! Hilbert space formed using this as the scalar product

SpanG. Let G0 be the subgroup ofG such thatU(g)c5eilc for some reall. We see that̂g, h&
vanishes on SpanG0 , and defines a scalar product on SpanG/~SpanG0) ~perhaps after identifying
vectors of zero norm with zero!. We then complete this to give a Hilbert space,K. We see that the
equivalence class of the identityePG is the zero vector inK. The original cyclic representation
(H,U,c) can then be embedded in the Fock space overK, as follows: Define the mapW from H
to G~K! by its action on the total setU(G)c:

W~U~g!c!5C~g!exp@g#,gPG. ~93!

One easily sees that this preserves the scalar product, using~92!. Thus it can be extended b
linearity and continuity toH. We see that the cyclic vectorc is mapped to the ‘‘vacuum’’ vector
c0 of the Fock space. As for the group action, we use the fact thatG/G0 is a g space, with left
multiplication tg@h#5@gh#. This defines an action exp$tg% on the Fock space as usual, by i
actions on the coherent vectors:

exp$tg%exp@h#ªexp@gh#.

Define an operatorU8 closely related to exp$tg%:

U8~g!C~h!exp@h#ªC~gh!exp@gh#. ~94!

Then by calculation one sees that (H,U,c) is cyclically equivalent to the cyclic subspace
(K,U8,c0); W intertwinesU andU8 and mapsc to c05exp@e#. From the unitarity ofU8 we see
that uC(g)u25e2^@g#,@g#&Þ0.
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The Gaussian measure is̀divisible, and the representation of the translation group,U(l),
with Gaussian cyclic vectorc(x)5(2p)21/4e2x2/4, is ` divisible. The corresponding CTP con
tains Brownian motion Sec. II; the continuous product^ 0

t U(l) is the exponential martingale. A
representation of the oscillator group is` divisible, and the CTP of this is the free nonrelativis
quantized fields.

Araki independently obtained similar results.91 Instead of̀ -divisible cyclic representations o
groups, Araki started with a factorizable representation of current algebra. He remarked
putting @g#5fg , the mapV(g)fhªfgh2fg is a unitary representation ofG; this is proved on
the vectorsfh ,fk by use of~92!. The equation expresses that the mapg°fgPK is aone-cocycle
of the group, with values inK. We briefly explain this.

So, let G be a group, and letK be a Hilbert space on whichG acts by unitary operators
g°V(g). We shall write the left actionf°V(g)f as left multiplication,f°gf. The right
action, which appears in the general theory of group cohomology, is taken to be triviafg
5f. An n-cochainwith values inK is a map fromGn into K, that is, it is a function ofn group
elements with values inK, thus:f(g1 ,...,gn). We shall need only the zero-cochains, which ma
up the spaceC0

ªK of vectors independent ofg, and the one-cochains, which are vector fie
f(g)PK defined on the group. These make up the vector spaceC1. We shall also need the
two-cochains, whenK5C; these are complex-valued functions of two group elements. We
that the cochains of any degreek form a vector spaceCk. Fundamental to any cohomology theo
is the coboundary operator, which is a linear map,d:Ck→Ck11, so increasing the degree of th
cochain. It obeysd250. In the case of a groupG and a left and right action ofG on K, d is the
linear map defined onC0 by

~df0!~g!5gf02f0g.

On C1, d is the linear map defined by

~df1!~g1 ,g2!5g1f1~g2!2f1~g1g2!1f1~g1!g2 .

On C2, d is the linear map defined by

~df2!~g1 ,g2 ,g3!5g1f2~g2 ,g3!2f2~g1g2 ,g3!1f2~g1 ,g2g3!2f2~g1 ,g2!g3 .

The vector space of cocycles of degreek in a vector spaceK, with left and right actionst1 ,t2 , is
denotedZk(G,K,t1 ,t2). One checks thatd250. A coboundary of degreek is a vector function of
the formdc, wheref is a cochain of degreek21. The coboundaries of degreek form the vector
spaceBk(G,V,t1 ,t2). Sinced250, we see that every coboundary is a cocycle. If the conve
holds, the cohomology group,Hk

ªZk/Bk, is trivial. One sees that iff is a one-cocycle in
C1(G,K,V), then^f(g1

21),f(g2)& is a two-cocycle inC2(G,C,I ).
A two-cocycles(g,h) with values in the unit circle is also called a multiplier for the grou

A multiplier representation of a groupG is a map g°U(g), gPG, such thatU(g)U(h)
5s(g,h)U(gh) for all g, hPG. Although Wigner’s analysis of symmetry in quantum mechan
leads naturally to multiplier representations, their occurrence is sometimes called an ‘‘ano
by physicists. When the CTP exists, we can represent the elementg(•) of the current group by the
operator (̂ U)g , defined on the product vectorŝxU(h(x))cx by

~ ^ U !g~ ^ xU~h~x!!fx!ª^ xU~g~x!h~x!!cx . ~95!

The space of the CTP is thenG(* %expK dx) and D consists of coherent states of the for
expfg(x) . So we obtain a local representation of the current algebra. We get a multiplier whe
branch of the logarithm in~90! obtained by the group law differs from the one needed to giv
function of positive type on the group. This gives rise to an anomaly.

Araki showed that iff is the cocycle defined by thè-divisible representationU, then it is
necessary that Im̂f(g1

21),f(g2)& be a coboundary. Conversely, given a cocyclef with this prop-
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erty, it comes from aǹ -divisible representation. He proved that ifG is compact, then any cocycl
is a coboundary, i.e., of the formfg5(V(g)2I )x for somexPK. Use of a coboundary leads t
a CTP of the form assumed by Guichardet.88 Araki was able to obtain analogs of the Levy formu
~65! for various groups; for the groupR this takes on a new meaning, as the decomposition
cocycle into its parts coming from primitive cocycles, some algebraic and some topologica
topological cocycles are of the form (V(g)2I )x; it is not a coboundary becausex is not inK, but
lies in a larger space that admits an extension ofV; the V(g)2I brings the vector back intoK.
Some groups, e.g.,R, also have cocycles called algebraic by Araki. For example, in the casG
5R, takeK5C, andV(a)5I for all aPG. The cocycle isf(a)5a. Then^fa ,fb&5ab is real,
andC(l)5exp$21

2l
2%, the characteristic function of the Gaussian distribution. The Poisson pa

the Levy formula comes from the coboundaries, and the Levy processes from the topo
cocycles.

The question arises, givenK, V and a cocycleg°fg , can we construct a CTP? We ca
construct (H,U(g),c) from C, which can be regarded as a function such thatC(e)51 and the
mapC(h)expfh°C(gh)expfgh is unitary. The next big step was by Parthasarathy and Schmi92

who showed that given a cocycle there is indeed an`-divisible representation associated with
but that it is a multiplier representation, with aǹ-divisible multiplier s. The corresponding
function C(g) is s positive. This means that

(
i j

z̄izjs~gi
21,gj !C~gi

21gj !>0. ~96!

Naturally, this gives rise to a multiplier representation of the current group in general, and
found the multiplier; this leads to a tidier theory than Ref. 91, since the condition for the ab
of multiplier can be dropped. Since the physical interpretation of a symmetry group leads~accord-
ing to Wigner93! to the ambiguity of the induced unitary representation up to a coboundary
projective theory is certainly the right setting. Holevo has presented some similar concepts
level of the algebra of observables, and found applications in quantum theory.41 Notable in the
development was the work of Gelfand, Graev, and Vershik,94 who used a cocycle ofSL(2,R) to
construct a factorizable representation of the corresponding current group. The whole the
well explained in Refs. 95 and 96.

A theory of processes with independent increments and values in a Lie algebraG was devel-
oped in Ref. 97, extended to multiplier representations by Mathon98 and to Clifford algebras in
Ref. 99. Corresponding central limit theorems were proved by Hudson, and Cushen
Hudson.100,101A Lie process can be obtained by differentiation of the corresponding object
Lie group. For example, near the identity any group elementg lies on a one-parameter subgrou
generated by anXPG, and we write~Exp to mean the exponential map fromG to G, not the Fock
map! g(t)5ExptX, g(0)5e, g(1)5g; given a representationU(g) we get a representation ofG
by p(X)5d/dt@U(g(t))# t50 . By Stone’s theorem,X is self-adjoint. However, given a cyclic
vectorc for U it does not follow thatc is cyclic for p, because of domain questions. LetE be the
universal enveloping algebra ofG. This is the non-Abelian polynomial algebra, modulo the id
generated by the commutatorsXY2YX2@X,Y#. Here,@X,Y#PG is the Lie product, a polynomia
of degree 1. A cyclic representation~H, p, c! is determined~up to equivalence! by a positive
linear functional, or state,c on E:

X1X2¯Xn°^c,p~X1!p~X2!¯p~Xn!c&5Wn~X1¯Xn!.

These are the noncommutative moments, or Wightman functions; they determine a represe
by the Wightman reconstruction theorem.69 They are generated by the characteristic function

C~l!5^c,U~Expl1X1!¯U~explnXn!c&, lPRn. ~97!

Here,$Xj% is a basis of the Lie algebra, and any moment out of order is determined by a deri
of C and use of the commutation relations. The truncated functionsWT are generated by logC,102
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and are related toW by a formula similar to Eq.~10!, relating cumulants to the moments. Tw
cyclic representations with the sameW, or the sameWT , are cyclic equivalent. The cumulants o
expU ~the Fock construction! are the same as the moments ofU; this follows from
expU(g)exp (U(h)c)5exp(U(gh)c) and ~97!.

Given two representationsU1 ,U2 of G, their tensor productU1^ U2 , restricted to the diag-
onal subgroup ofG3G, gives the representationp1^ I 1I ^ p2 of G. This led to the use of a
coproduct, though it was not recognized as such until Ref. 103. Whereas a product on an
A is a linear mapA^ A→A, a coproduct is a mapA→A^ A. For Lie algebras the coproduct i
X°X^ I 1I ^ X. Then we say that a cyclic representation~H, p, c! is ` divisible if for eachN
there is another (H1/N,p1/n,c1/N) such that~H, p, c! is cyclically equivalent top1/N

^ I 1I
^ p121/N. Starting atN52 this gives the concept of rational powers ofp.

The differentiation of a CTP representation̂tUt(g(t)) of the current group leads to a
ultralocal field.104,105These are such that the truncated Wightman functions have the form

WT~X1~ f 1!¯Xn~ f n!!5kn~X1¯Xn!E f 1~ t !¯ f n~ t !dt. ~98!

Here,$kn% are the cumulants ofp5dU. The commutative analog was analyzed in Ref. 52. F
Lie algebras, we found:98

Theorem 5.3:The following are equivalent:
(1) Eq. (98) defines a representation ofD(G),
(2) thekn are the cumulants of somè-divisible cyclic representation ofG,
(3) thekn are positive semidefinite onE1 , the subalgebra ofE with identity omitted.

We note that~3! is the expression of conditional positivity at the algebraic level. Since
cumulants of expU are the moments ofU, we can get a set ofkn that obey the positivity~3! by
using the moments of expU. These happen to have a positive extension toE. Theorem~5.3! has
a cohomological version, which we outline.

Let E be an associative algebra with identity,K a linear space, andt a representation ofE on
K. Thep-cochain groupCp(E,K,t) is the linear space ofp-multilinear mapsf:E3...E→K. The
coboundary operatord:Cp→Cp11 is given by (df)(X1 ,...,Xp11)5t(X1)f(X2 ,...,Xp11)
1S(21) jf(X1 ,...,XjXj 11 ,...,Xp11). Then d250 and we define as usual the cocycle gro
Z*ªkerd and the coboundary groupB*ªRand, and the cohomology asH*ªZ* /B* ~the
asterisk means for anyp!. We see that a one-cocycle is a mapf:E→K that satisfiesf(XY)
5t(X)f(Y), and a one-coboundary is a cocycle of the formf(X)5t(X)f0 for somef0PK.

The states onE1 are positive elements ofB2(E1 ,C,0). Thus if ~H, p, c! is ` divisible, then
its cumulantsWT define a state onE1 , and thus a scalar product:^X,Y&ªWT(X* Y). Here we
defineX* 52X, since we wantp to represent the generatorsiX of one-parameter subgroups b
Hermitian operators. DefineK as the separated pre-Hilbert space obtained fromE1 as usual. Let
f:E1→K be the embedding obtained from this, and define a*-actiont of G on monomials by

t~X!f~X1¯Xn!ªf~XX1¯Xn!.

This states thatf is a one-cocycle. We then show that there is a bijection between the s
`-divisible cyclic representations~H, p, c! of G and the triples~t, f, x!, wheret is a Hermitian
representation ofG on a pre-Hilbert spaceK, x is a real character, andfPZ1(E1 ,K,t) such that

gªIm^f~X!,f~Y!&PB2~E1 ,R,0!. ~99!

In this bijection,H is embedded inG~K!, c is mapped to the Fock vacuum, andp is related to
expt.97 So this is the Araki–Woods embedding theorem in this case. If~99! fails then we get a
projective representation ofG, with multiplier s related to the cocycleg.98,96We see that a cocycle
for R is defined by a functionxPL1(R) such thatxxPL2(R). We thus see the origin of the
condition neara50 in ~65!.
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In Ref. 99 we show that for Clifford algebras, the only possible`-divisible states are Gaussia
~all cumulants above the second vanish!. Here the coproduct is that of Chevalley,A°A^ I 1
(21)FI ^ A whereF is the degree ofA, for elements of even or odd degree.

The algebraic theory was extended to associative algebras~that were not enveloping algebra
of Lie algebras! by Hegerfeldt, who applied it to classifỳ-divisible quantum fields.102

Goldin, Menikoff, and Sharp have, independent of this work, constructed representation
vector form of charge-current algebra, starting with the Fock space creation–annihi
operators;106 they have been able to identify the representations in terms of the general anly
semidirect products.

Schürmann103 introduced the concept of infinite divisibility for a representation of a Ho
algebra, and obtained essentially all the results of Refs. 97–99 in this more general s
Stochastic integrals for these processes were also constructed. For a clear account, see R

Voiculecsu developed the algebraic side into a subject called ‘‘free probability,’’108 as it lives
in full Fock space, without symmetry or antsymmetry.

Albeverio and Hoegh-Krohn109 have constructed representations of current groups, and
able to replace the independence at every point by a covariance similar to the Nelson free

VI. QUANTUM STOCHASTIC SEMIGROUPS

These models of noncommutative noise, or quantum noise, are possible driving random
for noisy quantum dynamics. What should we be looking for in a nonequilibrium stoch
quantum dynamics? From 1970, Davies made progress in formulating stochastic qu
dynamics.110 Suppose that theC* -algebra of observables isA. We look at the Fokker–Planck
equation in the classical case, and we see that we might expect a quantum stochastic proce
determined by a semigroup~in continuous or discrete time! of mapsTt from the state spaceS~A!
to itself. It must map positive operators, the density matrices, to positive operators, and pr
the trace. We also do not want it to map a normal state to one of the finitely additive ones,
require astochastic mapto obey the following:

~1! T mapsS to itself;
~2! T is linear;
~3! in continuous time,i(Tt2I )ri1→0 ast→0.

We can throw the action onto to algebra, to get the dual actionT* :A→A, by the requirement tha
for APA,

^Tr,A&5^r,T* A& for all rPS.

T* is automatically normal. We see that ifA is Abelian, then our conditions reduce to th
properties needed for a classical stochastic process. It is obvious that a unitary time ev
gives us a one-parameter family of stochastic maps, which can be extended to a group by
ing the inverses. We can get a large class of stochastic maps by forming mixtures of u
groups; thus ift j is a family of invertible dynamics, thenT5( j l jt j is stochastic ifl j>0 and
(l j51. Any stochastic map is noninvertible if it is not unitary, and so is in this sense dissip
~Ref. 110, p. 25!. In addition, in the quantum case, Kraus111 has argued that to get a satisfacto
interpretation of the semigroup,T must becompletely positive. We say that a mapT:A→A is
n-positive if T^ I n is positive on the algebraA^ Mn. This is needed, since if our quantum syste
is described by the algebraA, and there is ann-state quantum system far away, then the combin
system will be described byA^ Mn, and the dynamics on the combined system could bT
^ I n . This must be positivity preserving, or else some state of the combined system will evo
give negative probabilities. Since we want to avoid this for alln, we wantT to ben-positive for all
n51,2,... . Such a condition is called complete positivity, abbreviated c.p. in the followin
should be said that any positive map on an Abelian algebra is always completely positive,
concept only seriously arises in quantum probability.
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Kraus showed that a mapT is completely positive if and only ifT(A) is a sum of maps of the
form Sn* ASn , where theSn are bounded~Ref. 110, p. 140!.

The great result in the subject is the classification of continuous semigroups of comp
positive maps. In finite dimensions this was achieved in Ref. 112, and independentl
Lindblad,113 whose result holds for norm-continuous dynamics onC* algebras. Their result is the
quantum analog of the heat equation, i.e., it is a dynamical equation for the density matrix.
simple derivation, see Ref. 114. The result is:

Theorem 6.1: Let Tt be a semigroup of completely positive stochastic maps onMn. Then
there exists a Hermitian matrix H and matrices Sj such that the generator of the semigroup h
the form

Z~A!5 i @H,A#2
1

2
~RA1AR!1(

j
Sj* ASj ,

where

R5(
j

Sj* Sj . ~100!

This can be thrown onto the density matrices by duality. The first termi @H,A# is nondissipative,
and is called the Hamiltonian term. The second term is the dissipation.

It is very interesting that the first two terms of the Heisenberg expansion of the dynamic
of this form. Thus,

~eiHtAe2 iHt2A!t215 i @H,A#2 1
2@H,@H,A##t1O~ t2!5 i @H,A#2 1

2~AS21S2A!1SAS,

where S5Ht1/2,

up to O(t), so it is of the form of Eq.~100! with R5S2. In theanti-van Hove limit8 we replace
S by lH.

It has been remarked that the commutatorA° i @H,A# is a derivation of the operator algebr
and so has many of the properties of a derivative. The double commutator has many
properties of the second derivative, including some positivity, which mimics the positive spe
of 2D and the positivity improving properties ofeDt. Lindblad has analyzed continuous sem
groups of cp maps, with generatorL, in terms of the ‘‘dissipation operator,’’ being minus th
coboundary ofL:

D~A,B!ª2dL~A,B!5L~AB!2L~A!B2AL~B!. ~101!

He proves thatTtª exp(iLt) is a continuous semigroup of cp maps if and only ifD is positive in
the sense that

(
i j

Ci* D~Ai* ,Aj !Cj>0 for all Ai ,CjPA. ~102!

Note the formal similarity with Refs. 91, 90, 97, and 92. Fannes and Quaegebeur115 have defined
the concept of̀ -divisible completely positive mappings on groups, in which the functionC(g) is
replaced by a cp operator. They prove an Araki–Woods embedding theorem for such stru

Recall that for Markov chains, Brownian motion, and Euclidean field theory, we can ex
the given semigroup as an isometric time translation, followed by the conditional expectation
the initial space. By using two-sided time, the isometries can be replaced by a unitary grou
finding of the appropriate unitary group is called thedilation of the semigroup. It is not unique, bu
there is a unique minimal one.116 It would be nice to interpret the dilated system as represen
the full physics of system plus environment, with a unitary evolution; the projection on
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subspace represents our loss of information due to incomplete knowledge. The ambiguity
dilation then shows that several different models give the same~crude! coarse-grained dynamics
However, it will rarely be the case that a dilation has the good properties, such as positivity
energy, needed for this interpretation.

This is illustrated in the quantum case, which in finite dimensions takes the form:110

Theorem 6.2: Let Tt be a semigroup of cp stochastic maps on Mn acting onH. Then there
exists a Hilbert spaceK, a pure stater on H^ K, and a one-parameter unitary group Vt on H
^ K such that

Tt~A!5Er@Vt* ~A^ I !Vt#

for all APM and all tPR.
This is proved by putting together Theorem~4.2! and Sec. 7.2 of Ref. 110. Note that th

Hilbert spaceK is constructed by adding Wiener noise, and so is not finite dimensional.
semigroup has been dilated to a unitary group on the Wiener space with two-sided tim
generator of time evolution is not bounded below, since it has white spectrum. This doe
represent an environment at any finite temperature. A special case is the dilation of the sem
given by the anti-van Hove limit. In that case the process is given by

X~ t !5~2ptl2!21/2E e2s2/~2l2t !U~s1t !XU~2s2t !ds. ~103!

This has the interpretation as the Heisenberg evolution, but with the timet slightly uncertain, and
getting more uncertain in the future. This interpretation is only a slight variation on the me
used in the justification of the microcanonical state by ergodic theory. There it is said th
atomic times are so small that we never measure an observableat a particular time; rather, we
measure the average over the time 0<s<t of the measurement, thusĀ5t21*0

t A(s)ds. Sincet is
so large compared with the atomic processes, we take the limitt→`. This idea is a nonstarter fo
nonequilibrium statistical mechanics, since if the limit exists it is time independent. Instea
may say that we cannot measure an observable at anexacttime, but form the weighted average
with Gaussian weight, around the desired timet. The uncertainty in the Gaussian isl2t, growing
with time.l is the dissipation parameter. In models it turns out to be the hopping parameter
atomic system.

Some authors limit the concept of quantum stochastic process to the case where the p
observed path of measurements themselves make up a classical process. The grounds fo
that the observations~in a set of repeated experiments! have actually been seen; these form t
quantum record; take them to form a sample space. However, this is not true. The processX(t) at
different times might not commute, so the measurement ofX(t) alters the state~by collapse!, and
subsequent measurements are not those predicted byX(t1s),s.0, as computed using the give
initial state. It needs conditioning to the new information, and quantum conditional expecta
only commute on Abelian subalgebras. Moreover, one can measureX(t) in one sampling andY(t)
in another, whereX andY do not commute. No classical model would predict the statistics of
process; the classical theorist is liable to be hit by the EPR paradox in acute form. We regarX(t)
as the observable seen at timet when no measurement has been made in$s:0,s,t%. So we
cannot agree with the idea that the randomness itself is caused by the reduction of the
function due to continuous measurement; it might be due to interaction with a large other
but not one designed to measure any particular observable.

Davies’s dilation of the Lindblad semigroup uses a number of independent Wiener proc
to provide the setup. The question arises whether there is a relation between quantum dyn
semigroups and a class of quantum stochastic differential equations, similar to the relati
tween the Fokker–Planck equation~71! and ~70!. For this, we need a quantum version of Ito
integral. In 1956, Umegaki defined the concept of conditional expectation in noncommu
integration theory.117 Let A be a von Neumann algebra with a semifinite trace, and say an ope
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A is integrable if TruAu,`. The vector space of integrable operators can be completed to form
spaceL1(A). Segal and Nelson showed that there is a closed operator representing an elem
the completion. LetAt be an increasing family of subalgebras which generateA and are right
continuous,118 such that the trace, restricted to eachAt , is semifinite. Then a conditional expec
tation relative to the trace is a linear mapM :L1(A)→L1(At), t>0, such that

Tr~XA!5Tr~Mt~X!A! for all APAt , XPL1~A!.

A martingale is a processXt of integrable operators such that

MsXt5Xs

for all 0<s<t. This concept can be generalized to a filtration of an algebra with specified
rather than trace.

Cuculescu119 proved a martingale convergence theorem for discrete time. Barnett118 obtained
a martingale theorem for continuous time. This work persuaded us to look for exampl
noncommuting martingales. Soon we found plenty within the theory of continuous te
products.120 Let (H,U,c) be an`-divisible representation of a Lie group G, and consider^ t50

` Ht

relative to the vector̂ c t and the setD of coherent vectors. Here, all factors are the same.
gPG we associate the family of unitary operators

Vt~g!ª^ 0
t U~g! ^ t

`I . ~104!

We call such an operatorsimple, localized in@0,t#. Let At be the algebra generated by$Vs(g)%
with 0<s<t andgPG. Then fors,t define the mapMs :At→As by continuous linear extensio
of Ms^ r 50

t Vr(g)5 ^ r 50
s Vr(g). Then Ms is a conditional expectation, and relative toMs , the

family Vt is a martingale. Applied toG5R with c a Gaussian state,Vt is the exponential
martingale of Brownian motion. WhenG is the oscillator group, the lie algebra is spanned byP,
Q, H and a central elementI. There is a representation by self-adjoint operators onL2(R), with the
ground state of the harmonic oscillator as cyclic vector. This is infinitely divisible, and the un
operators in~104! are copies of the exponential martingaleeiWi for the subgroups generated byP
andQ, and is the Poisson exponential martingale for the subgroup generated byH.121 This became
known as the gauge process.80 All these martingales are defined on the total set of coherent st
Since they are unitary, they can be extended to an everywhere-defined unitary group, the
tors of which are self-adjoint operators. This is the main technique of the Hudson–Parthas
calculus.122,79,80

Examples of martingales with trace were given in Ref. 123. Consider the Fock Fermi o
tors b( f ),b* (g) with anticommutation relations@b( f ),b* (g)#5^ f ,g& for f ,gPL2(R1). The
algebra generated by these and the Fock conditionb( f )u0&50 is represented on antisymmetr
Fock space overL2(R1) as theW* -algebra generated by the Fermi fieldc( f )5b( f )1b* ( f̄ )
acting on the Fock vacuumu0&. The Clifford process is the set of operators

C~ t !ªc~j@0,t#!. ~105!

The noncommutative integration theory,124–126taking the place of measure theory, is that based
the hyperfinite von Neumann factor of type II1, which is furnished with a faithful tracew(A)
5^0uAu0&. The completion ofA in the normiAi5w(A* A)1/2 is denotedL2(A,w). The projection
Mt from L2(A,w) onto L2(At ,w) is the same as the projection fromG(L2@0,̀ #) onto
G(L2@0,t#); it obeys the laws for a conditional expectation, andC(t) is a martingale.

The increments ofC(t) are independent, but anticommute. Otherwise, all the properties
analogous to Brownian motion. The isometric time evolution analogous to the left shift o
classical theory is that given by the mapUs :C(t)°C(s1t). The antisymmetric Fock space ove
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L2(R) carries a unitary extension ofUs , namely the second quantization of translation inR. We
define anadaptedprocessh(t) to be a family of operators such thath(t)PAt ; it is simpleif it can
be expressed as

h5 (
k51

n

hk21x@ tk21 ,tk! on @0,t !. ~106!

We then define the stochastic integral of any simple adapted process, relative toC, to be that
constructed in the manner of Ito, with the forward difference indC:

E
0

t

f ~s!dC~s!ª(
k51

n

hk21~C~ tk!2C~ tk21!!. ~107!

As in Ito’s theory, what makes it work is an isometry property:
Theorem 6.3: If h(t) is a simple process made up of L2 operators, then*0

t h(s)dC(s)
PL2, and

I E
0

t

h~s!dC~s!I
2

2

5E
0

t

ih~s!i2
2 ds.

The proof~Ref. 123! is similar to Ito’s. We use this to construct the integral of square-integr
adapted processes, and someLp processes, by extension to the completion of the space of sim
adapted processes. The stochastic integral is the quantized fieldC, smeared with an operatorh
rather than a test function. There is a Doob–Meyer theorem:Mt

2 is the sum of a martingale
denoted by@Mt ,Mt# in classical theory,~not the commutator!! and an increasing process o
bounded variation, denoted̂Mt ,Mt&. Any stochastic integral is a martingale, and we show
converse, that anyL2 martingale of mean zero is a stochastic integral. We also define the sto
tic integralN(t)5*0

t h(s)dM(s), whereh is adapted and square integrable relative to^Mt ,Mt&.
Here,M is anL2-martingale. This representation ofN is unique; we then writeh as the stochastic
derivative: h5]N/]M . We show that we can change variables in the integral: the stoch
Radon–Nikodym theorem.118

We are able to show127 that the quantum stochastic differential equation~qsde!

dXt5F~Xt ,t !dMt1dMt~Xt ,t !1H~Xt ,t !dt ~108!

has a solution inL2(A,w) for F, G, H continuous, adapted, and locally uniformly Lipschitz, f
any martingaleMt of degreen, and that the solution obeys the Markov property.128

Manipulations of differentials are similar to the Ito calculus: (dt)2505(dt)(dC); (dC)2

5dt. Pisier and Xu have obtained ‘‘Burkholder–Gundy’’ inequalities within this theory.129

The central statew of the Clifford algebra corresponds physically to an infinite temperat
For the CCR and CAR algebras, we constructed the stochastic integrals starting with qu
states with no Fock part, using the noncentral state in place of the trace.130,131 This theory is
somewhat technical~‘‘unreadable’’132!.

The general Lindblad semigroup can be dilated133 using the flow defined by a solution to
quantum stochastic equation in the sense of Hudson and Parthasarathy.79,80,134It was extended to
some unbounded cases by Belavkin.135 We now give a brief account of this, following Frigerio.136

Let Tt5exp(Lt) be a semigroup of completely positive normal stochastic maps on the alg
B(H).

Theorem 6.4: There exists a Hilbert spaceF, a group $a t :tPR% of * -automorphisms of
B(H^ F), and a conditional expectation E0 of B(H^ F) onto B(H) ^ I F such that

Tt~X! ^ I F5E0@a t~X^ I F0#, XPB~H!, tPR. ~109!
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The evolutiona t is a perturbation of the ‘free evolution’a t
0 on B(H), of the form

a t~ .!5U~ t !a t
0~ .!U~ t !* , ~110!

where$U(t):tPR% satisfies the cocycle condition

U~ t !a t
0~U~s!!5U~s1t !, t,sPr , ~111!

is unitary, and is the solution of a qsde in the sense of Refs. 79 and 80. We give the details
simplest case, Eq.~100!, with only one termS in the sum. We takeF5G„L2(R)…, with the total
set of coherent vectors expf:fPL2(R)ùL1(R). We define theannihilation process,creation
process, andgaugeprocess on this total set by

A~ t !expf5S E
0

t

f~s!dsD expf, ~112!

A* ~ t !expf5
d

de
exp~f1ex@0,t#!ue50 , ~113!

L~ t !expf5
d

de
exp~eex@0,t#f!ue50 . ~114!

The conditional expectationMt is as for the CTP,̂ s50
t (Fs), based on the Fock vacuum, an

A(t),A* (t) are the creators and annihilators defined by the generatorsP, Q of the Heisenberg
subgroup of the oscillator group;L is the number operator.

We identify any operatorX in B(H) with its ampliationX^ I F , and any operatorY with
domainD#F with the algebraic tensor productI H^ Y. A family U(t) is found by solving the
qsde

dU~ t !5U~ t !@ iS* dA~ t !1 iSdA* ~ t !1~ iH 2S* S/2!dt#, ~115!

with the initial conditionU(0)5I . The structure of the equation is designed to ensure that
solution, defined on the set of coherent states, is continuous, unitary, and adapted. The termS* S/2
arises as the Ito correction, or as due to the Wick ordering.137 To ensure thata t obeys the group
law, the usual free evolutiona0 on F, the second quantization of the translation group onL2(R),
is chosen. It is then proved thata2s

0 @U* (s)U(s1t)# satisfies the same qsde asU(t), and so, by
uniqueness, must beU(t). So U satisfies the cocycle condition. On multiplying out, we see t
$a t% is a group.

The theorem for a semigroup with a finite number of operatorsSj follows a similar line. h

There is a fermionic version of this dilation.138

Quantum stochastic calculus has become a mature field of mathematics. The approach
79, rather than Ref. 123, has the disadvantage that the stochastic integrals are defined as o
only on a dense set. It is not always clear that they have a unique closed extension. T
overcome in Refs. 79 and 80 by limiting the class of equations to those with unitary solu
Another help in the analysis is by the use of Maassen kernels.139 Alternatively,140 one may give a
meaning to these objects as maps between test functions and distributions using whit
analysis.

One problem with this work, and this includes Ref. 118 as well, is that the spectrum o
noise is white, so that random negative energy is added as well as positive energy. We s
positive energy seems to exclude martingales.76,77 In fact, the equilibrium condition of Kubo
Martin, and Schwinger, known as the KMS condition, excludes the existence of a condi
expectation except in trivial cases. It has been remarked that it also excludes the Markov p
and the regression theorem.141 Lindblad has remarked142 that for the oscillator, the KMS condition
is not compatible with the axioms of dynamical semigroups. So to model random external
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in a real system, coupled to a heat-bath, the white noise sde is an approximation, which m
good if the time interval is large compared with the memory time. These ideas are used to de
quantum systems like lasers, which are subject to external forces; this was the original inten
Senitzky and Lax. The modern version is described in Ref. 143. Since external forces intr
energy and entropy into a system, such models have two drawbacks:

~1! the first law of thermodynamics is not obeyed,
~2! the second law of thermodynamics is not obeyed.

This is the starting point of Refs. 144, 145, and 8. One step of the linear dynamics is given
bistochastic mapr°rT, so that entropy increases. We require thatT* maps any spectral projec
tion of the energy to itself; this will preserve energy. To reduce the description, we then proje
new staterT onto the information manifoldM defined by the set of slow variables, to get t
staterTQ. To preserve mean energy, the energy must be a slow variable. The mapQ is nonlinear
and is interpreted as the thermalization of the fast variables. Thus, after the mapT, the system
itself decides to find the best estimaterTQ to rT within M.146 The resulting map gives a
nonlinear motion through the manifold, obeying the first and second laws of thermodyna
This theory, calledstatistical dynamics, is still being explored.21,147,8
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In the book of Haag@Local Quantum Physics~Springer Verlag, Berlin, 1992!#
about local quantum field theory the main results are obtained by the older methods
of C* - and W* -algebra theory. A great advance, especially in the theory of
W* -algebras, is due to Tomita’s discovery of the theory of modular Hilbert alge-
bras @Quasi-standard von Neumann algebras, Preprint ~1967!#. Because of the
abstract nature of the underlying concepts, this theory became~except for some
sporadic results! a technique for quantum field theory only in the beginning of the
nineties. In this review the results obtained up to this point will be collected and
some problems for the future will be discussed at the end. In the first section the
technical tools will be presented. Then in the second section two concepts, the
half-sided translations and the half-sided modular inclusions, will be explained.
These concepts have revolutionized the handling of quantum field theory. Ex-
amples for which the modular groups are explicitly known are presented in the
third section. One of the important results of the new theory is the proof of the PCT
theorem in the theory of local observables. Questions connected with the proof are
discussed in Sec. IV. Section V deals with the structure of local algebras and with
questions connected with symmetry groups. In Sec. VI a theory of tensor product
decompositions will be presented. In the last section problems that are closely
connected with the modular theory and that should be treated in the future will be
discussed. ©2000 American Institute of Physics.@S0022-2488~00!00906-3#
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PRELIMINARY REMARKS

The original version of this review has been twice as long and contained all necessary p
On request of the editors I had to shorten it. Therefore, most of the proofs have only been sk
or dropped completely. Readers interested in details can get the entire script from the se
local quantumphysics:

http://www.lpq.uni-goettingen.de/papers/99/04/99042900.html

I. INTRODUCTION

In this section we start with some statements of general interest, and add the main co
and notations to be used in this note.

I.1. Some general remarks

Shortly after the invention of quantum mechanics, several scientists tried to generaliz
theory to systems of infinite many degrees of freedom.~See, e.g., P.A.M. Dirac,1 Jordan and
Wigner,2 Heisenberg and Pauli.3,4! In many of these attempts the authors wanted to incorporate
principle of special relativity at the same time. The combination of these two aspects is
relativistic quantum field theory, for which the term QFT will be used as short form in this n
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Nonrelativistic quantum field theory and QFT are usually used in different branches of
ics. The area of application for the first is quantum statistical mechanics, solid state physic
liquids. The latter theory is mainly used for elementary particle physics. Quantum electrodyn
and the standard model are two theories where the concepts of QFT are used. These exam
not imply that the concepts of one form of the field theory cannot be useful for the other
investigation of Bros and Buchholz5 on the relativistic KMS condition is such a case.

QFT has several different facets:
1. Lagrangian quantum field theory together with perturbation theory.
2. L.S.Z. theory, which is useful for scattering problems.6

3. Wightman’s quantum field theory7 and its derivative, the Euclidean field theory.
4. The theory of local observables in the sense of Araki, Haag, and Kastler.8

The Lagrangean QFT is closest to physical intuition. But it has the disadvantage that the e
sions which appear in this theory have only a formal meaning. Up to now there is no convi
scheme which puts the formal expressions onto a solid and consistent mathematical bas
existing perturbation and renormalization theory does not, in most cases, indicate anything
the quality of the approximation. Therefore, only comparison with experiment can indicat
quality of the Lagrange function and the approximation. Not in all cases is one as lucky
quantum electrodynamics, where the agreement between calculations and experiment is ex
If, as it is the case in the standard model, the Lagrange function depends on too many para
then some sceptics are not satisfied, since some experimentalists say: ‘‘With three parame
can fit an elephant and with a fourth parameter one can make him wiggle his tail.’’ Probab
right mathematics has still to be invented in order to make Lagrangean QFT acceptab
everyone.

Before and during World War II perturbation and renormalization theory consisted large
formal manipulations. This led R. Jost to the sarcastic remark: ‘‘In the thirties, under the de
alizing influence of quantum theoretic perturbation theory, the mathematics required of a th
ical physicist was reduced to a rudimentary knowledge of the Latin and Greek alphabets.’’
fifties there have been several attempts to put QFT on an axiomatic basis. This was possib
new mathematics had been developed, for instance the theory of distributions~see, e.g.,
Schwartz9,10! and the theory ofC* -algebras~see, e.g., Naimark11!. The theory of distributions is
needed for the LSZ6 and the Wightman7 approach, and the theory ofC* -algebras for the concep
of local observables. While the LSZ and the Wightman formalisms are still close to the ide
Lagrangein QFT, a new road was taken in the theory of local observables.

Since von Neumann12,13 it is known that in quantum mechanics one can replace the
bounded physical observables by bounded functions of them. This has the advantage t
many problems of a general nature, the annoying operator domain questions disappear. I
Segal14 proposed to use this method also for QFT. This idea has been taken up by R. Haa
it developed between 1959 and 196415–17 into the theory of local observables.

The increase of knowledge in functional analysis led also to partial progress in Lagra
QFT. With new techniques those theories which are superrenormalizable, could be rigo
handled. Glimm and Jaffe~see, e.g., Ref. 18! have been the main promotors of this subject. T
number of scientists who have contributed to this field is enormous, and it is impossib
mention them all.

Reviewing the past, the situation is as follows: The analyticity properties of the Wigh
functions allow one to choose the time coordinates to be purely imaginary. The functions ob
in this way are called Schwinger functions. These are~real! analytic for noncoinciding points and
in the case of Bose fields, symmetric in all variables. With help of the Hahn–Banach theore
can extend these functions to the coincidence points as symmetric distributions. It was the
Symanzik19 to identify these symmetric functions with the vacuum expectation value of a c
mutative and hence classical field. He also assumed that the representation of this field
Hilbert space with positive metric. In so doing the Schwinger functions can be considered
moments of a positive measure on the space of tempered distributionsS8. Since many approxi-
mation theorems exist for positive measures, one can, in favorable situations, first approxim
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dynamics on a lattice in a box and take the continuum limit and the limit for the box tending t
whole space.

Unfortunately, the positivity of the Hilbert space for the Wightman theory does not imply
the Schwinger functions define a positive linear functional~on the symmetrized test functio
algebra!. The positivity of the Wightman functional implies only the restricted Osterwald
Schrader positivity20,21 ~see, also, Glaser22!. This is the positivity condition for nonoverlappin
functions. If one uses the Osterwalder–Schrader condition also for overlapping functions, th
calls it extended positivity. If a theory fulfills extended Osterwalder–Schrader positivity
Euclidean covariance at the same time, then, by a result of Yngvason,23 the Schwinger functions
define a positive functional.

It is well known that broken time reversal~which is the case in nature! is not compatible with
a positive measure for describing the Schwinger functions. A generalization would be to
with a signed~complex! measure. Borchers and Yngvason24 have derived necessary and sufficie
conditions implying that the Schwinger functions are moments of a complex measure.
conditions are closely related to the existence of the Wilson–Zimmermann25,26 decomposition of
products of field operators. The restricted Osterwalder–Schrader positivity still has to hold.
opinion one has to learn to draw conclusions from this condition before one can handle c
gence problems for signed measures. It is not known whether or not the Wilson–Zimme
product expansion holds for every Lagrangean QFT. If this is not the case, one has to gen
the measure theory on Montel spaces~the test function space! as one has generalized the meas
theory onRn to distributions, except, one must find a completely different method to ha
Lagrangean QFT.

In the theory of local observables the theories of von Neumann andC* -algebras are the main
tools for the investigation. In 1967 the theory of von Neumann algebras made a big step fo
in Tomita’s discovery of the theory of modular von Neumann algebras. In this paper I will f
my attention on results obtained by this new theory. In the theory of local observables, abbre
QFTLO, many results have been obtained with the standard theory of von Neumann alg
Most of them are described in the book of R. Haag.8

This article is structured into several sections. Each of them is centered around one con
idea. The order of these sections does not follow some logical concept, but is done in s
manner that the number of references to succeeding sections is minimized. Each section
into subsections. This is done in order to facilitate the search for special topics. The last sec
reserved to open problems.

I.2. Assumptions of the theory of local observables

The investigations of this paper are based on the following assumptions:
In the theory of local observables one associates to every bounded open regionO in

Minkowski spaceRd a C* -algebraA(O). For any unbounded open setG the C* -algebraA(G)
is defined as theC* inductive limit of theA(O) with O,G. These algebras are subject to t
following conditions:
~1! They fulfill isotony, i.e., ifO1,O2 thenA(O1),A(O2).
~2! They fulfill locality, i.e., if O1 andO2 are spacelike separated regions then the correspon
algebras commute, i.e.,

APA~01!, BPA~O2! implies @A, B#50.

~3! They fulfill translational covariance, i.e., the translation group ofRd acts as automorphisms o
A(Rd). For everyaPRd there exists an automorphismaaPAut A(Rd) with

aaA~O!5A~O1a!.
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A representationp of A(Rd) is called a particle representation if:
~i! p is a nondegenerate representation on a Hilbert spaceH.
~ii ! There exists a strongly continuous unitary representation of the translation groupa°U(a),
such that:

~a! The spectrum ofU(a) is contained in the forward light-cone.
~b! The representationU(a) implements the automorphismaa , which means that for every

APA(Rd) one has

Ad U~a!p~A!ªU~a!p~A!U* ~a!5p~aaA!.

~iii ! A representationp is called a vacuum representation if:
~a! p is a particle representation.
~b! In H exists a vectorV with U(a)V5V ;aPRd.

In the following we will always deal with vacuum representations and we set

M~O!5p~A~O!!9.

~g! We require weak additivity, i.e., for everyO there holds

$ ø
aPRd

M~O1a!%95M~Rd!.

~4! Very often also the covariance under the whole Poincare´ group will be assumed. This mean
there shall exist a continuous unitary representationU(L) of the Lorentz group obeying the
correct relations with the translations and

~a! U~L!V5V,

~b! U~L!M~O!U~L!* 5M~LO!.

For the physical interpretation of these assumptions see the book of Haag8 or the lecture notes
of Borchers.27

I.3. Tomita–Takesaki theory

As already mentiond this representation is mainly based on the Tomita–Takesaki theo
the Baton Rouge conference in 1967 Tomita28 distributed a preprint containing his theory on th
standard form of von Neumann algebras. At the same time Haag, Hugenholtz, and Win29

published their paper on the description of thermodynamic equilibrium states using the
condition. Probably Hugenholtz and Winnink have been the first realizing the similarity bet
certain aspects of their approach and Tomita’s theory and hence the importance of th
mathematical theory for theoretical physics.~See, e.g., the thesis of Winnink.30! But general
awareness of Tomita’s theory, only by Takesaki’s31 treatment, published in the Lecture Notes
Mathematics. Since then this theory is usually called the Tomita–Takesaki theory.

Let H be a Hilbert space andM be a von Neumann algebra acting on this space w
commutantM8. A vectorV is cyclic and separating forM if MV andM8V are dense inH. If
these conditions are fulfilled then a modular operatorD and a modular conjugationJ is associated
to the pair~M, V! such that:
~i! D is self-adjoint, positive, and invertible

DV5V, JV5V.

~ii ! The unitary groupD i t defines a group of automorphisms ofM
Ad D i tM5M ;tPR.

This automorphism group will often be denoted as

Ad D i tA5..s t~A!. ~I.3.1!
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~iii ! For everyAPM the vectorAV belongs to the domain ofD1/2.
~iv! The operatorJ is a conjugation, i.e.,J is antilinear andJ5J* 5J21, whereJ commutes with
D i t . This implies the relation

Ad JD5D21. ~I.3.2!

~v! J mapsM onto its commutant

Ad JM5M8.

~vi! The operatorsSªJD1/2 andS* 5JD21/2 have the property

SAV5A* V ;APM,

S* A8V5A8* V ;A8PM8.

This implies thatAV, APM is in the domain ofD1/2 andBV, BPM8 is in the domain ofD21/2.
S will be called the Tomita conjugation of~M,V!.
~vii ! From ~iii ! one concludes that forAPM the vector valued function

t°D i tAV

has an analytic continuation into the stripS(2 1
2,0)ª$zPC;2 1

2,Imz,0%. Property~vi! implies

D i ~ t2 i /2!AV5D i tJA* V, APM. ~I.3.3!

For elementsBPM8 Eq. ~I.3.1! implies thatD i tBV has an analytic continuation into the str

S(0,1
2) and one gets by~vi!

D i ~ t1 i /2!BV5D i tJB* V, BPM8. ~I.3.38!

~viii ! Using Eq. ~I.3.3! and the fact thatJ is a conjugation one obtains that forA, BPM the
function (V,Bs t(A)V) can be analytically continued into the stripS(21,0). One finds at the
lower boundary the relation

~V,Bs~ t2 i !~A!V!5~V,s t~A!BV!, A,BPM. ~I.3.4a!

or equivalently

~V,BD i ~ t2 i !AV!5~V,AD2 i tBV!, A,BPM. ~I.3.4b!

The last two relations are called the KMS condition. They characterize the modular g
uniquely. If a unitary group fulfills the KMS condition forM then it is the modular group ofM.
~See Ref. 33 Thm. 9.2.16.!

For the proofs see Takesaki31 or textbooks as Bratteli and Robinson32 or Kadison and
Ringrose33 or Stratila.34

A central role in this theory is played by faithful normal states of von Neumann algebra
a consequence of the Reeh–Schlieder theorem35 we know that the vacuum state has this prope
for every local algebra in quantum field theory.

Faithful normal states do not exist for every von Neumann algebra. The generalization o
concept are the weights. With so called normal, faithful, semifinite weights the Tomita–Tak
theory can be developed also~see, e.g., Haagerup36!. The concept of weights will not be explaine
for the moment, but only when it has to be used. Also the mathematical results obtained
Tomita–Takesaki theory will be mentioned when needed.
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I.4. Remarks on the edge of the wedge problem

In this section we want to collect some results from the theory of analytic functions of se
complex variables. All the results are given without proofs.

The theory of several complex variables is an important tool in quantum field theory an
assume familiarity with these methods. The situation appearing here~and often in other physica
cases! is the edge of the wedge problem. One deals with two analytic functionsf 1(z) and f 2(z),
zPCn defined in a tubeT1 andT252T1, respectively. The tubeT1 is based on a convex con
C,Rn with apex at the origin and defined by

T~C!5T15$zPCn;z5x1 iy ,yPC,xPRn%.

One assumes thatf 1(z) and f 2(z) both have boundary valuesf 1(x), f 2(x), respectively~in the
sense of distributions! and that these boundary values coincide on some open setG,Rn. In this
situation one knows from the edge of the wedge theorem37 that both functions are analytic con
tinuations of each other and are analytic also in a complex neighborhood ofG.

I.4.1. Theorem: ~Edge of the Wedge!
Denote by B the ball

B5 H z;iziªS ( uzi u2D 1/2

,1J
and define BC

15BùT(C) and BC
25BùT(2C). Assume f1(z) and f2(z) are functions holo-

morphic in BC
1 andBC

2 , respectively, with f1 and f2 having continuous boundary values at re
points ixi,1 and assume that these boundary values coincide. Then there exists a co
neighborhoodN of RnùB and a function f holomorphic in BC

1øBC
2øN such that

f 5 f 1 on BC
1 and f5 f 2 on BC

2 .

In several applications one has functions depending on several real variables. One kno
one can analytically continue in one variable if the others are fixed. One would like to k
conditions which imply that one can analytically continue in all variables simultaniously.
important result on this question is the Malgrange–Zerner theorem.~For details see Epstein.38!
Since we need the result only for two variables, we will formulate it only for this situation.
generalization to more than two variables is straightforward.

I.4.2. Theorem: ~Malgrange–Zerner!
Let f(x1 ,x2) be a continuous function of two variables defined on(21,1)3(21,1). Assume for
fixed x2 the function f(x1 ,x2) has an analytic continuation f(z1 ,x2) holomorphic in z1PD1

5$z;uzu,1,Imz.0%, and for fixed x1 an analytic continuation f(x1 ,z2) holomorphic in z2
PD1. Assume f(z1 ,x2) and f(x1 ,z2) are bounded and continuous, i.e., f (z1 ,x2) is a continuous
function in x2 with values in the bounded analytic functions on D1, and the same for f(x1 ,z2).
Then exists a function f(z1 ,z2) holomorphic in some neighborhoodNùD13D1, whereN is
some neighborhood of D13(21,1)ø(21,1)3D1. This function has boundary values on
(21,1)3(21,1) which coincide with f(x1 ,x2).

The importance of holomorphic functions of several complex variables is the following
Not every domainG is a natural domain inCn. In such a situation every function holomorphic
G can be analytically continued into a larger domain. The domain into which every func
holomorphic inG, can be analytically continued is called the envelope of holomorphyH(G) of G.
We will need the tube theorem, the double cone theorem, and the Jost–Lehmann–Dyson th
The tube theorem can be found in every text book on several complex variables.

I.4.3. Theorem: ~Tube Theorem!
Let G be a connected domain G,Rn and let T(G)5$zPCn;ImzPG%. Then

H~T~G!!5T~Co G!,
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whereCo G denotes the convex hull of G.
Another result of importance in QFT is the double cone theorem discovered independen

Vladimirov39 and Borchers.40

I.4.4. Theorem: ~Double Cone Theorem!
Let G be a subdomain ofRd, and let N(G) be some complex neighborhood of G. LetG
5T(C)øT(2C)øN(G) and H(G) be its envelope of holomorphy. Assume c,dPG such that
d2cPC and c1l(d2c)PG for 0<l<1. Then

Dc,d,H~G!ùRn,

where Dc,d denotes the double cone(c1C)ù(d2C).
We also need a result of Bros, Epstein, Glaser, and Stora,41 which deals with the edge of th

wedge theorem in two variables.

I.4.5. Theorem: ~Bros, Epstein, Glaser, Stora!
Let T1 and T2 be tubes based on the first and third quadrant, respectively. Assume the c
dence domain is the first quadrant. If a real line ax11bx25c,a,b,cPR intersects interior of the
first quadrant, then all complex, nonreal points

az11bz25c, z1 ,z2 not both in R

belong to the envelope of holomorphy of the edge of the wedge problem.
Many results in QFT are based on the Jost–Lehmann–Dyson representation. This cha

izes the envelope of holomorphy in case the coneC is the forward light cone and the coincidenc
domain has some special properties. Jost and Lehmann have solved a special case.42 The general
solution is due to Dyson.43 In this proof one uses tempered distributions. But that the answ
general has first been shown by Bros, Messiah, and Stora.44 For more details on the Jost
Lehmann–Dyson representation see Ref. 27, Sec. III.4.

I.4.6. Theorem: ~Jost, Lehmann, Dyson!
Define h(u,m) to be the hyperboloid

h~u,m!5$zPCd;~z2u!25m2,uPRd,mPR%.

Let G,Rd be a domain bounded by two spacelike hypersurfaces. The complement of the en
of holomorphy of the edge of the wedge problem for

GøT~V1!øT~2V1!

consists of the closure of the union of all real and complex points of the hyperboloids h(u,m)
which do not intersect G.

I.5. Some notations

~i! If O is some open domain in the Minkowski space thenO8 denotes the interior of the
spacelike complement ofO.
~ii ! A domain of special importance is thewedge. Such a domain can be characterized in tw
ways:
~a! First characterization: Lett, s be two perpendicular vectors inRd, i.e., (t,s)50, such thatt2

51 andt belongs to the forward light-cone ands2521 is spacelike. In this situation one define

W~ t,s!ª$aPRd;u~a,t !u,2~a,s!%. ~I.5.1!

If, for instance,t is the time direction ands is the 1-direction then this becomesWR5$a;ua0u
,a1%.
~b! Second characterization: Every two-plane containing a timelike direction must cut the b
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ary of the forward light cone in two light rays. Let these light rays be described by the
lightlike vectors l 1 ,l 2 belonging to the forward light-cone. These vectors are different. N
define:

W~ l 1 ,l 2!ª$l1l 12l2l 21ã;l1 ,l i.0,~ ã,l i !50,i 51,2%. ~I.5.2!

It is easy to see that the two definitions result in the same set of wedges. The two defin
coincide if $t, s% and $ l 1 ,l 2% span the same two-plane and ifs5l1l 12l2l 2 with positive coeffi-
cients.

The opposite wedge of a wedgeW is the negative ofW and it is usually denoted byW8. It is
obtained by replacings by 2s in the first description and by interchanging the two lightli
vectors in the second description.
~iii ! Given a wedgeW there is exactly a one-parametric subgroup of the Lorentz boosts w
maps this wedge onto itself. In the above example of the zero- and one-direction, the L
transformations are the boosts in the~0,1!-plane. We will write these transformations~in case the
wedge is the right wedgeWR in the ~0,1!-plane! as

L~ t !5S cosh 2pt 2sinh 2pt 0 0

2sinh 2pt cosh 2pt 0 0

0 0 1 0

0 0 0 1

D . ~I.5.3!

~iv! Let A be aC* -algebra andp1 , p2 be two equally faithful representations. These repres
tations are calledquasi-equivalentif the isomorphism betweenp1(A) andp2(A) extends to an
isomorphism of the associated von Neumann algebras

p1~A!9>p2~A!9.

Two representationsp1 and p2 of a theory of local observables are called locally norma
p1(A(O)) andp2(A(O)) are quasi-equivalent for every bounded open regionO.

I.6. Things not treated

It is clear that I am not able to handle all subjects of QFTLO which are not in the boo
Haag. There is the reason of space, and more important, there are others who are more e
that particular field than myself.
~i! Low dimensional QFT’s:

If the dimension of the Minkowski space is two, then the set of points spacelike to the o
is no longer connected. This has for the definition of statistics the consequence that not o
permutation—but also the braid group is of importance.

It is well known that in the classical theory, the solution of the free wave equation is the
of two functions depending only on one light-cone coordinate. A similar phenomenon appe
two-dimensional conformal QFT’s. This means there exist quantum fields depending only o
of the light-cone coordinates. These are often called right- or left-movers. One can map th
line onto the circle and often one finds that such theory has an additional symmetry, name
rigid rotation of the circle. Such theories are usually called chiral field theories.

The braid group and the additional symmetry of chiral field theories opens a ‘‘wonderlan
new possibilities. Whether or not it is possible to get some important inspiration for the
dimensional QFT from these theories will only be answered in the future.
~ii ! General relativistic quantum fields:

It is a dream that one day it will be possible to combine quantum field theory with ge
relativity. As a first step it is probably reasonable to treat the QFT of test particles. Thes
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theories where the quantum fields are influenced by the gravitational field~which is treated clas-
sically!, but where the energy of the quantum field does not appear as a source of the gravit
field.

The main problem of this theory is the replacement of the spectrum condition. At the mo
it is not clear whether or not there exist states describing a finite number of particles. At le
theories with a horizon the Hawking–Unruh effect45,46 seems to indicate that no such states ex
in this situation. Therefore, the main stream of investigation focuses on the aspect that the
of particles should not be higher than that of light~defined by the gravitational field!. These
investigations use extensively the theory of wavefront sets.
~iii ! Renormalization group:

For a long time the renormalization group method has been used mainly in connection
perturbation theory. This theory is designed in order to understand the physics at very low o
high energies. Not long ago Buchholz and Verch47 were able to transcribe the renormalizatio
group technique to QFTLO. In this scheme there are no serious obstructions, that mean
method uses a sound mathematical basis. In examples they could show that the limiting t
can be different from the original theory. In some cases there is even more than one li
theory. In my opinion this is an important new aspect of QFT which deserves one’s atte
Buchholz will give a representation of this theory in the same volume.

An appendix to the references will be added containing a list of papers on the subjec
treated. This incomplete list might be a help for a start for those interested in some more det
one or more of these fields. I am obliged to K. H. Rehren and R. Verch for preparing these

II. ON VON NEUMANN SUBALGEBRAS

From the axioms of QFTLO there has been extracted a large number of beautiful resul
of them are in accordance with our physical intuition. Examples are the collision theory an
theory of superselection sectors described in the book of Haag,8 or the properties of the spectrum
of the translations presented in the lecture notes by Borchers.27

However, up to now it is not clear how to distinguish the theories with different dynam
from each other. Since for two different theories the local nets as a whole are not isomorp
each other, one should look~as a start! at the embedding of the algebra of one regionO1 into the
algebra of a bigger regionO2 . What is known about this question will be collected in this secti

II.1. Order by inclusion and order of modular operators

Let N be a von Neumann subalgebra ofM acting on the Hilbert spaceH. Assume that both
algebras have a common cyclic and separating vectorV. Then one hasNV,MV and hence the
Tomita conjugationSM of M is an extension of the Tomita conjugationSN of N.

Dropping the indexM of the Tomita conjugation, the operatorShas the following properties
~see I.3!:
~i! S is a densely defined closed antilinear operator with domain of definitionD(S) andMV is a
core forS.
~ii ! S251 on D(S).
~iii ! VPD(S) andSV5V.

SinceS is closed it has a polar decompositionS5JD1/2. The modular operatorD is invertible
andJ is a conjugation. Equation~I.3.2! reads

JDJ5D21, J5J* 5J21.

These properties follow from the conditionS251. ~See, e.g, Bratteli and Robinson, Ref. 32, Pro
2.5.11.!

Usually a Tomita conjugation will be a densely defined unbounded operator. The best w
describing an unbounded operatorX is by its graph. This is the set$@c,Xc#PH% H;c
PD(X)%. If the operator is closed then the graph ofX is a closed linear manifold ofH% H.
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Therefore, it can be characterized by the projectionP(X) onto the graph. The projectionP(X) can
be written as a two by two matrixpi ,k ,i ,k51,2 of operators onH fulfilling

pi ,k* 5pk,i , (
j

pi , j pj ,k5pi ,k . ~II.1.1!

If the operatorX is antilinear thenp1,2 andp2,1 are antilinear also. The domain ofX is given by
D(X)5p1,1c1p1,2w, c, wPH and its rangep2,1c1p2,2w. Therefore, one getsp2,15Xp1,1 and
p2,25Xp1,2. From these relations and from Eq.~II.1.1! one can easily expresspi ,k in terms ofX.
Of interest isp1,1 which has the form

p1,15~11X* X!21. ~II.1.2!

If X1 is an extension ofX then the graph ofX is a subset of the graph ofX1 . This implies in
particular P(X1)>P(X). If E1 is the projection onto the first Hilbert space then we g
E1P(X1)E1>E1P(X)E1 , and with Eq.~II.1.2!

~11X1* X1!21>~11X* X!21.

The matrix representing the projection onto the graph has been introduced by Stone.48 It is often
called the Stone- or characteristic matrix of the operator. More details can be foun
Nussbaum.49

If the operatorX is antilinear, then one has to replace the second Hilbert space by
conjugate complex Hilbert space. In this case the operatorsp1,2 andp2,1 are antilinear. With this
change one can deal with the graph in the same manner as if the operator would be linear
feels uneasy with this procedure one can fix a conjugationK on H and multiply the antilinear
operatorX by K. SinceKX is a linear operator the usual arguments can be applied. In the
N,M one obtains

~11DN!21<~11DM!21,

or

DN>DM . ~II.1.3!

This implies in particular that the domain ofDN
1/2 is contained in the domain ofDM

1/2. Since the
domain ofDN

1/2 is the range ofDN
21/2, the expression

DN
21/2DMDN

21/2

is a densely defined bounded and hence a closable operator, and one gets

closure DN
21/2DMDN

21/2<1. ~II.1.4!

As an application of this discussion we obtain:

II.1.1. Theorem:
Let Mi be an increasing family of von Neumann algebras, i.e., Mi,Mi 11 . Let

M5$ø
i
Mi%9.

AssumeV is cyclic and separating forMi and forM. Denote by(D i ,Ji) and ~D, J! the modular
operators and modular conjugations ofMi andM, respectively. ThenD i converges toD in the
resolvent sense and Ji converges strongly to J.

A similar result holds for decreasing sequences. This result has first been obtain
D’Antoni, Doplicher, Fredenhagen, and Longo.50
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II.2. The first fundamental relation

There are other aspects of the relation~II.1.4! which give some more information. Since th
result is needed several times, I quote it as in the report at the IAMP conference in Paris.51

Theorem A:
Let M,N be two von Neumann algebras with the common cyclic and separating vectorV. Denote
the modular operators and conjugations byDM ,JM andDN ,JN , respectively. Let VPB(H) be a
unitary operator with
~i! VV5V, and
~ii ! Ad VN,M,
then the function V(t)ªDM

2 i tVDN
i t has the properties:

~a! V(t) is * -strong continuous in tPR.

~b! V(t) possesses an analytic extension into the strip S(0,1
2)5$tPC;0,Imt, 1

2% as holomorphic
function with values in the normed spaceB(H).
~c! In this strip we have the estimate

iV~t!i<1. ~II.2.1!

~d! V(t) has boundary values atImt50 and atImt5 1
2 in the * -strong topology.

~e! On the upper boundary the value is given by

V~ t1 i 1
2!5JMV~ t !JN , ~II.2.2!

hence by (a) also this function is* -strong continuous in t.
II.2.1. Remarks:

~i! With N8.V* M8V one obtains

V* ~ t !5V~2t !* .

Notice that the functionV( z̄)* is again an analytic function holomorphic inS(2 1
2,0)

5$tPC;2 1
2,Imt,0%. Therefore, the last relation reads in the complex

V* ~z!5V~2 z̄!* . ~II.2.3!

Idea of the proof:The continuity properties are shown by standard methods. The intere
parts are the analyticity properties. Let us identify for a momentVNV* with P,M. SinceA
→Aa,0<a<1 is an operator monotone function on positive operators~see, e.g., Pedersen, Re
52, Prop. 1.5.8.! we obtain from Eq.~II.1.3!

DP
a>DM

a , 0<a<1

and hence

closure $DP
2aDM

2aDP
2a%<1, 0<a< 1

2.

This implies

iclosure DM
a DP

2ai<1, 0<a< 1
2.

From this one easily derives the statements of the theorem except Eq.~II.2.2!. This relation is
obtained by applyingV(t) to vectors of the formA8V with A8PN8 and then using the propertie
of the operatorsSN* andSM . h

A proof of the last theorem can be found in Ref. 51. A short version of the proof is du
Florig.53
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II.3. Characteristic functions and von Neumann subalgebras

In the special caseV51 one uses the following notations:

II.3.1. Definition:
AssumeN is a von Neumann subalgebra ofM andV is cyclic and separating for both algebra
We set

DM,N~ t !5DM
2 i tDN

i t . ~II.3.1!

The functionDM,N(t) satisfies the following relations:

II.3.2. Lemma:
For the function D(t)ªDM,N(t) defined in Eq.~II.3.1! the following holds:
~1! D(t) is unitary and strongly continuous in t. Moreover D(0)51.
~2! D(t)V5V, for all t PR.

~3! D(t) has a bounded analytic continuation into the strip S(0,1
2) and has strongly continuou

boundary values atImt50 and Imt5 1
2.

~4! D(t1 i/2) is unitary and strongly continuous in t.
~5! D(t) fulfills the following cocycle relation:

D~s1t !5sM
2t~D~s!!D~ t !. ~II.3.2!

~6! For complex values of the arguments one finds

D~ t1 i/2!* JMD~ t !5D~ t !* JMD~ t1 i/2!

is independent of t.
~7! Ad $D(t)D(i/2)* %M,M holds for all tPR.

All these properties follow from the definition ofDM,N(t).
Notice that the properties ofD(t) described in Lemma II.3.2 do not contain any reference to
algebraN. Therefore, we introduce the following notation:

II.3.3. Definition:
Let M be a von Neumann algebra acting onH with a cyclic and separating vectorV.
1. By Sub(M) we denote the set of von Neumann subalgebrasN of M which haveV as cyclic
vector.
2. An operator-valued functionD(t) which fulfills the properties~1!–~7! of Lemma II.3.2 will be
called a characteristic function ofM.
3. The set of characteristic functions belonging toM will be denoted byChar(M).

II.3.4. Theorem:
Let M be a von Neumann algebra with a cyclic and separating vectorV. Then to every charac-
teristic function D(t) of M exists a von Neumann subalgebraNPSub(M) such that D(t)
5DM

2 itDN
it . The correspondence

Sub~M!⇔Char~M!

is one to one.

Idea of the proof:First one defines

U~ t !5DM
i t D~ t ! and K5JMD~ i/2!, ~II.3.3!

and showsK5K* 5K21 and U(t)K5KU(t). For obtaining this one uses the cocycle relati
~II.3.2! and Lemma II.3.6~6!. Next one wants to construct the von Neumann algebraN or better
the algebraN8 which we define
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N85 ∨
tPR

Ad U~ t !M8. ~II.3.4!

This algebra is invariant under AdU(t). (s t
ªAd U(t).) First one shows thatKJMMJMK com-

mutes withs t(M8) and hence withN8. SinceKJM is unitary and mapsV onto itself it follows
that V is cyclic for N. The demonstration of this needs property~7! of Lemma II.3.2 and the
cocycle relation. Consequences are the relations

@s t1~A18!,Ks t2~A28!K#50, A18 ,A28PM8;t1 ,t2PR. ~II.3.5!

If one writesU(t)5D i t , one shows forA8PM8

D21/2s t~A8!V5Ks t~A8* !V. ~II.3.6!

The proof of this relation needs the analyticity property ofD(t). In order to extend this relation to
all of N8 one defines by integration the elementss f(A8) for A8PM8 and f PL1(R) entire
analytic. For such elements AdD i ts f(A8) is an entire analytic operator valued function. With su
elements one can extend Eq.~II.3.6! to products and by density arguments to arbitrary element
N8. With this result it is easy to show thatU(2t) fulfills the KMS-condition for N8 which
implies that it is the modular group for that algebra. It remains to show the uniqueness
mapping. IfD1(t) andD2(t) are different then follows from the construction used above that
algebras are different. Conversely assumeN1 ,N2PSub(M) andD1(t) andD2(t) coincide. Then
D1

i t and D2
i t coincide and alsoJ1 and J2 coincide by Eq.~II.3.3!. This implies thatN1ùN2 is

invariant underD1
i t5D2

i t . SinceJ1M8J1 is contained in the intersection it follows thatV is cyclic
for N1ùN2 . HenceN1 and alsoN2 coincide withN1ùN2 . ~See Ref. 33, Thm. 9.2.36.! Hence
the mapSub(M)⇔Char(M) is one to one.

The content of this subsection is taken from Ref. 54.

II.4. The second fundamental relation

There is a second fundamental relation which has to be used several times also. A spec
appeared first in Ref. 55. The present formulation is taken from Ref. 51 and this proof is d
Florig.53 It uses only functions of one variable and not of two variables as in the original dem
stration.

Theorem B:
Let M, N be two von Neumann algebras with the common cyclic and separating vectorV. Let
W(s)PB(H) be an operator family fulfilling the following requirements with respect to the tri
(M,N,V).
~i! For sPR the operators W(s) are unitary and strongly continuous and fulfill the equatio
W(s)V5V.

~ii ! The function W(s) possesses an analytic continuation into the strip S(0,1
2) with strongly

continuous boundary values.
~iii ! The operators W( i /21t) are again unitary.
~iv! The function W(s) is bounded, henceiW(s)i<1.
~v) For tPR one has W(t)NW(t)* ,M and W( i /21t)N8W( i /21t)* ,M8.
In this situation the modular operator and the transformations W(s) fulfill the following trans-
formation rules:

DM
i t W~s!DN

2 i t5W~s2t !,

JMW~s!JN5W~ i /21s!.

II.4.1. Remark:
In some applications one has to face the situation thatW(t1 i/2) has eventually a discontinuity a
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one point, but all other properties remain valid. Such singularity is harmless. The reason
follows: The proof of Theorem B is based on the continuation across a line, applied to m
elements of the operator valued function

~ t,s!°DM
i t W~s1t !DN

2 i t . ~II.4.1!

These matrix elements have bounded analytic continuations, which are continuous at the bo
of their domain with the possible exception of one point withImt5 i/2. By the dominated con-
vergence theorem and the boundedness of Eq.~II.4.1!, this piece-wise continuity is sufficient to
ensure coincidence of boundary values in the sense of distributions. The edge-of-the-wedg
rem, Thm. I.4.1, then implies analyticity in the coincidence region, so continuity in the except
point holdsa fortiori.

Proof: ChooseAPN andBPM8 and define for fixeds the two functions of the variablet:

F1~ t !5~V,BDM
i t W~s1t !DN

2 i tAV!,

F2~ t !5~V,ADN
i t W* ~s1t !DM

2 i tBV!.

SinceBPM8 andAPN and sinceW(t) has a bounded analytic extension into the stripS(0,1
2),

also the two functions have bounded extensions,F1(t) into the stripS(0,1
2) andF2(t) into the

strip S(2 1
2,0). Using modular theory one can compute the functionsF1(t1 i/2) and F2(t

2 i/2). By the assumption about the mapping property ofW(s1t) and ofW(s1t1 i/2) we obtain:

F1~ t !5F2~ t !, and F1~ t1 i/2!5F2~ t2 i/2!.

By these coincidences we obtain a periodic entire analytic function. Since this function is bo
by max$iB*Vi iAVi,iA*Vi iBVi% it is constant. This implies

~V,BDM
it W~s1t !DN

2 itAV!5~V,BW~s!AV!.

Since V is cyclic for N and for M8 follows the first statement of the theorem. The seco
statement is the same as Eq.~II.2.2!. h

II.5. Half-sided translations

From the general theory of von Neumann subalgebras described in Subsec. II.3 we
special cases. We start with half-sided translations.

II.5.1. Definition:
Let M be a von Neumann algebra acting onH with cyclic and separating vectorVPH.
1. Hstr(M)1 denotes the set of one-parametric continuous unitary groupsU(t), tPR with the
properties:

a. U(t) has a positive generator, i.e., we can write

U~ t !5exp$ iHt %, with H>0.

b. U(t)V5V;tPR.
g. Ad U(t)M,M for all t>0.

2. Hstr(M)2 denotes the set of one-parametric continuous unitary groupsU(t), tPR with g
replaced by

g8. Ad U(t)M,M for all t<0.
We call the groups belonging toHstr(M)6 6half-sided translations associated withM.

In the definition of the1half-sided translations it is not possible to replaceR1 by R because

Ad U~ t !M,M ;t
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implies together with the positivity of the spectrum and the invariance of the vacuumU(t)51 for
all tPR.

An example where half-sided translations appear, is the algebra of the wedgeM(W). If W
5W( l 1 ,l 2), then the translations along the directionl 1 fulfill the assumptions of1half-sided
translations and those along thel 2 direction the assumptions of2half-sided translations.

II.5.2. Theorem:
Let M be a von Neumann algebra with cyclic and separating vectorV and let U(t)
PHstr(M)1. Then holds:

D i tU~s!D2 i t5U~e2pts!,

JU~s!J5U~2s!.

This theorem appeared first in Ref. 55. The following proof is based on Theorem B.
Proof: If U(a) fulfills the assumptions of the theorem then it has an analytic continuation

the upper half plane. By assumptionU(a) mapsM into itself for positive arguments and henc
U(a) mapsM8 into itself for negative arguments. Therefore, we can apply Theorem B to
family W(s)5U(e2ps) and obtain together with the analyticity ofU(a)

Ad D i tU~e2ps!5U~e2p~s2t !!,

Ad D i tU~a!5U~e22pta!,

Ad JU~a!5U~2a!.

This shows the theorem.
II.5.3. Remarks:

~i! If U(t)PHstr(M)2 then one obtains the relations

D i tU~s!D2 i t5U~e2pts!,

JU~s!J5U~2s!.

~ii ! For a wedgeW( l 1 ,l 2) the two lightlike directions span the characteristic two-plane of
wedge. Ifx is in this plane then one finds the transformation formula

D itU~x!D2 it5U~L~ t !x!,

whereL(t) are the Lorentz boosts of the wedge described in Eq.~I.5.3!.
~iii ! Let U(t)PHstr(M)1 and defineN5D i1MD2 i1 then one finds by the last theorem

D itND2 it,N for t<0.

II.6. Half-sided modular inclusions

The last point of Remark II.5.3 led Wiesbrock56,57 to introduce the concept of half-side
modular inclusions.

II.6.1. Definition:
Let M be a von Neumann algebra acting onH with cyclic and separating vectorVPH. The
modular operator and conjugation of this pair will be denoted byD andJ.
1. By Hsmi(M)2 we denote the set of von Neumann subalgebrasN of M with the properties:

a. V is cyclic for N. It is also separating forN sinceN,M.
b. D itND2it

ªAd D itN,N for t<0.
2. By Hsmi(M)1 we denote the set of von Neumann subalgebrasN of M with the properties:

a. V is cyclic for N. It is also separating forN sinceN,M.
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b. D itND2it
ªAd D itN,N for t>0.

The elements ofHsmi(M)7 will be called the von Neumann subalgebras fulfilling the condit
of 7half-sided modular inclusion.

It should be remarked, that one cannot replaceR2 by R because

Ad D itN,N ;t

implies N5M. The principle of half-sided modular inclusion is closely related to the half-si
translations by the following result:

II.6.2. Theorem:
Let NPHsmi(M)2. Then there exists a group U(t)PHstr(M)1 such that the equation

N5Ad U~1!M

holds.
Theorem II.6.2 is in some sense the converse of Thm. II.5.2. In some cases where o

compute the modular group one can find subalgebras fulfilling the conditions of half-sided m
lar inclusion. In these cases the corresponding half-sided translations are known only if th
geometric groups. But this is not always the case.

Idea of the proof:If the theorem is true andN5U(1)MU(21) then one hasDM
2 i tDN

i t

5DM
2 i tU(1)DM

i t U(21)5U(e2pt21). Therefore, one has to show that the productDM
2 i tDN

i t

ªD(t) commutes for different values of the arguments. For this one uses Thm. B again. By

A D(t) has an analytic continuation into the stripS(0,1
2). On both boundaries the expression

unitary. By assumption of the modular inclusion one obtains:

D~ t !ND~ t !* ,N, for t>0,

D~ t !N8D~ t !* ,N8, for t<0,

D~ i /21t !N8D~ i /21t !* ,N8, for tPR.

The last statements follow fromD( i /21t)5JMD(t)JN . JN mapsN8 ontoN,D(t) maps this into
M and finallyJM maps this intoM8,N8. Consequently one can apply Thm. B to the express

W~s!5DS 1

2p
log~e2ps11! D .

If we setU(e2pt21)5D(t) then we obtain

U~e2pt21!U~e2px21!5U~e2px1e2pt22!.

This shows thatU(a) is additive for positive arguments and by analytic continuation it follo
that it is an additive unitary group with positive generator. It remains to show thatN is of the form
U(1)MU(21). To this end we introduce:

II.6.3. Definition:
Let N be a2modular inclusion then we set

N~e22pt!5DM
i t NDM

2 i t ,

N~2e22pt!5$DM
i t JMNJMDM

2 i t%8.

N~0!5$ø
t
N~e22pt!%9.

With this one finds
                                                                                                                



ary

ed

3621J. Math. Phys., Vol. 41, No. 6, June 2000 On revolutionizing QFT with modular theory

                    
II.6.4. Lemma:
The von Neumann algebrasN(t), defined above, fulfill the following relations:

t1,t2 implies N~ t1!.N~ t2!,

N~0!5M.

The first line follows from the definition of half-sided modular inclusions. The algebraN~0! is
a subalgebra ofM which is invariant under the modular group ofM, hasV as cyclic vector and
hence coincides withM. ~See. Ref. 33, Thm. 9.2.36.!

Proof of the theorem, continuation:From the observation thatU(a) is a continuous group it
follows that the familyN(t) is also continuous at zero. Hence we obtain

M5U~21!NU~1!.

This shows the theorem.
We end this subsection with some uniqueness result which is taken from Ref. 58.
II.6.5. Theorem:

Let Ma and Na , aPR be two families of von Neumann algebras on the Hilbert spacesHm ,Hn

with the cyclic and separating vectorVm , Vn , respectively. Assume there are continuous unit
one-parametric groups UM(a),UN(a) both fulfill spectrum condition and leaveVm ,Vn un-
changed. Assume

Ma5UM~a!M0UM~2a!, Na5UN~a!N0UN~2a!.

Let moreover

Ma,Mb , Na,Nb for a.b.

If there exists a unitary map W with WHn5Hm and WVn5Vm and in addition

M05WN0W* and M15WN1W* ,

then follows

Ma5WNaW* ; aPR,

UM~a!5WUN~a!W* .

The same is true if we require thatM0 and M1 as well asN0 and N1 both fulfill modular
inclusion for negative arguments of the modular groups.

The proof follows from Thm. II.5.2 and the uniqueness of the modular groups.

II.7. Remarks, additions, and problems

~I! For the definition of half-sided translations one has used that the groupU(s) maps the cyclic
and separating vector onto itself and thatU(s) has a positive generator. From this one conclud
Thm. II.5.2. The arguments can be reversed and one finds

II.7.1. Theorem:
Let U(s) be a continuous unitary group fulfilling U(s)MU(2s),M for s>0. Then any two of
the three conditions imply the third

a. U(s)5eiHs with H>0.
b. U(s)V5V for all sPR.
c. Ad D it(U(s))5U(e22pts),

JU(s)J5U(2s).
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The implicationb1c→a has been shown by Wiesbrock59 anda1c→b can be found in Ref.
60.

II.7.2. Remark: The conditions a, b, and c of Thm. II.7.1 do not imply the relati
Ad U(s)M,M for s>0. This is due to the fact that the modular groupD it does not determine
the algebraM. But if we know AdU(s0)M,M for one s0Þ0 then one findss0.0 and
Ad U(s)M,M for all s.0. The first line of c implies the inclusion for a half-line, and th
conditions a and b imply, together with the proof of Thm. II.5.2, that this is the positive half-
~II ! Let M be a von Neumann algebra with cyclic and separating vectorV. Assume there exists
a unitary groupU1(x1)PHstr(M)1 and a unitary groupU2(x2)PHstr(M)2. If these groups
commute, then one can construct a two-dimensional theory, which eventually does not fulfi
weak additivity property.
We set:
~a! U(x)5U1(x1)U2(x2) wherexPR2 and x1,x2 are the light-cone coordinates. ThisU(x)
fulfills the spectrum condition sinceU1 andU2 are half-sided translations.
~b! M(WR)5M and M(WL)5M8. The algebras of the shifted wedges are defined by
translations:M(WR1x)5Ad U(x)M(WR) andM(WL1x)5Ad U(x)M(WL).
~g! Notice that in the two-dimensional Minkowski space a double cone is the intersection
shifted right-wedge with a shifted left-wedge. Fora2bPWR we putDb,a5(WR1b)ù(WL1a)
and

M~Db,a!5M~WR1b!ùM~WL1a!.

It is easy to check that this defines a Poincare´ covariant net on the two-dimensiona
Minkowski space. We only do not know whether or notV is cyclic for M(Db,a).

II.7.3. Problem: Can one characterize those algebrasM which fulfill the assumption de-
scribed under~II ! and for whichV is also cyclic forM(Db,a)?
~III ! The spaceChar(M) can easily be furnished with a topology.

II.7.4. Definition:
Let M be a von Neumann algebra with a cyclic and separating vectorV. We introduce on
Char(M) the topologyt of simultaneous*-strong convergence ofDa(t) andDa(t1 i/2), andthis
uniformly on every compactK of the real line. The neighborhoods of an elementD(t) are given
by

U~c1 ,...,cn ,K,D~ t !!5$D8~ t !PChar~M!;i~D~ t !2D8~ t !!c i i1i~D~ t !* 2D8~ t !* !ci

1i~D~ t1 i/2!2D8~ t1 i/2!!ci1i~D~ t1 i/2!* 2D8~ t1 i/2!* !ci<1,

i 51,...,n;tPK%.

With this topology one obtains:
II.7.5. Theorem:

The spaceChar(M) is t complete.
For details see Ref. 54.
~IV ! Using the modular automorphisms ofM one sees thatSub(M) contains a continuous family
of different elements if it contains a nontrivial element. With help of the Longo endomorp
one can construct a decreasing family~by inclusion! of elements.~For NPSub(M) the Longo
endomorphism applied toN is Ad (JNJM)N.)

If NPSub(M), then there is a natural injection ofSub(N) into Sub(M). Hence if
Sub(M) is nontrivial it must have a rich structure.

II.7.6. Problems:~a! Since finite algebras have a trace it follows that the setSub(M) consists
of only one point, namely,M itself. That this is not the case for local algebras has first b
shown by Kadison61 and by Guenin and Misra.62 If the von Neumann algebra is infinite, does th
Sub(M) contain nontrivial points?
~b! The definition ofSub(M) ~Def. II.3.3! depends on the cyclic and separating vectorV. If V
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andC are two different cyclic and separating vectors ofM, does this imply thatCharV(M) and
CharC(M) are homeomorphic?
~V! II.7.7. Problem:If the algebraNPSub(M) is connected with a half-sided translation~or a
half-sided inclusion! then the characteristic functionD(t) is Abelian. AssumeD(t) is Abelian,
then do there exist two commuting half-sided translationsU1PHstr(M)1, U1PHstr(M)2,
such thatN5Ad (U1(1)U2(21))M holds?~One of the factors could be trivial.!

III. ON LOCAL MODULAR ACTION, EXAMPLES

Since the modular group of the pair~M(O), V! is defined but not very concrete, one wou
like to have examples where this group can be computed explicitly. These are those whe
modular group of the algebra, associated with some domain in the Minkowski space, defi
geometric transformation. We start with the result of Bisognano and Wichmann63,64 at which we
look in some detail. Afterwards the other examples known up to now will be discussed. Si
promotes the feeling for the modular groups, if they act local, it is interesting to look for o
possibilities. As the result of Trebels65 shows, there are no other cases in the vacuum sector

III.1. The result of Bisognano and Wichmann for the wedge domain

The first explicit determination of a modular group is due to Bisognano and Wichmann.
assumed that the local algebras are generated by Wightman fields, and that the Lorentz t
mations act on the indices of the fields by finite dimensional representations of the Lorentz
i.e.,

U~L!Ai~x!U* ~L!5(
j

Di
j~L!Aj~Lx!,

whereDi
j (L) is the direct sum of finite dimensional representations. In this situation the theo

also PCT invariant~Jost66!. Here the case of only one scalar field will be treated. For the gen
case see Ref. 64. All our calculations use theR4.

III.1.1. Remark:
~1! Let L(t) as in Eq.~I.5.3! and let the forward tubeT1 be defined by

T15$z;ImzPV1%.

Then we have:
For xPWR one hasL(t)xPT1 in the range2 1

2,Imt,0, and ifxPWL , one hasL(t)xPT2 for
0,Imt, 1

2.
For Imt50, or 6 1

2, the vectorL(t)x belongs again toR4.
~2! Let A(x) be the field operator, thenU(iy)A(x)V5A(x1 iy)V is defined foryPV1.
~3! Let x5(x0 ,x1 ,x2 ,x3)PWR then

L~2 i/2!~x0 ,x1 ,x2 ,x3!5~2x0 ,2x1 ,x2 ,x3!,

and hence

U~L~2 i/2!!A~x!V5A~2x0 ,2x1 ,x2 ,x3!V.

~4! On the other hand the PCT operatorQ gives

QA~x!V5A~2x!V.

This suggests for the modular conjugation the representation

J5QU~p,e1!5U~p,e1!Q,
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whereU(p,e1) represents the rotation around thex1 axis andp is the angle of rotation.
~5! If U(L(2 i/2)) is the square root of the modular operator of the wedge algebra then this
for any testfunction to the relation

JU~L~1 ip!!A~ f !V5A~ f̄ !V.

To show that all the remarks are true we need some notations from the theory of the
algebra.

III.1.2. Notations:
~1! SI denotes the tensor algebra generated byS(R4).
~2! For fIPSI , A( fI ) denotes the smeared field operator. As domain of definition for the
operators we choose

D5$A~ fI !V; fIPSI %.

~3! If G is a domain, then we denote byP(G) the algebra generated by elementsA( f ), wheref
has its support inG.
~4! We call a pointy right of x, if yPx1WR . If G1 ,G2 are two domains, then we sayG1 is right
of G2 if this is true for all pairs of points inG1 andG2 .

Now we are in the position to formulate the result of Bisognano and Wichmann.
III.1.3. Theorem:

Let A(x) be a scalar quantum field. SetD5U(L(2 i/2)) and J5QU(p,e1), as introduced in
III.1.1.~4!. Then holds:
~a! JP(WR)J5P(WL),
~b! D itP(WR,L)D2 it5P(WR,L), tPR,
~c! JD1/2XV5X* V ;XPP(WR),
JD21/2YV5Y* V ;YPP(WL),
~d! P(WR)V is a core forD1/2.

Statement~a! is Jost’s PCT theorem. Statement~b! is nothing else but the Lorentz covarianc
of the theory. We have added~d! because this is an important aspect of the Tomita–Take
theory.

Idea of the proof:If Gi 11 is right ofGi andxiPGi thenA(L(t)x1)A(L(t)x2)¯A(L(t)xn)V
has an analytic continuation int into the stripS(21/2,0). At the lower boundary it has the valu
A(L(t)x1

j )¯A(L(t)xn
j )V with xj5(2x0 ,2x1 ,x2 ,x3).

Since the domainsGi are chosen in such a way that the field operatorsA(xi) and alsoA(xi
j )

commute for different lower index one finds for suppf i,Gi and with the above definition ofJ the
relation

U~L~ i/2!!A~ f 1!¯A~ f n!V5J$A~ f 1!¯A~ f n!%* V. ~III.1.1!

Now let us denote byQ the set of operatorsA( fI ) where thef’s have the following properties:
~a! To fI exists a sequence of domainsGi , i 51,...,n such thatGiPWR andGi 11 is right of Gi .
~b! f is a product function with support offI,G13¯3Gn . Then Eq.~III.1.1! holds also for this
set. It remains to show that one can extend~III.1.1! to all of P(WR). To this end one first has to
show thatQV is a core forU(L(2 i/2)). Knowing this one can extend Eq.~III.1.1! to all of
P(WR). For the first problem one observes thatQV is invariant underU(L(t)) so that one can
use Nelsons theorem. For the second question one uses the commutativity ofJA( f ) with P(WR)
which follows from the fact thatxj belongs to the left wedge. h

III.1.4. Definition:
A representation of a QFTLO fulfills the Bisognano–Wichmann property if the modular grou
every wedge acts local, like the associated group of Lorentz boosts, on the underlying spa
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III.2. Other examples

~i! In a field theory of massless, noninteracting particles every influence travels alon
boundary of the light-cone. Therefore, there holds not only spacelike, but also timelike co
tativity. This implies that the vectorV is cyclic and separating also for the algebra of the forw
light-coneV1. In 1978, Buchholz67 determined the modular group for this situation. It coincid
with the dilatations.

III.2.1. Theorem:
In a field theory of noninteracting massless particles the modular group of the algebra o
forward light-cone V1 acts as follows:

DV1
i t

5V~e22pt!,

where

V~l!A~x!V1~l!5A~lx!, l.0

holds. This means V(l) implements the dilatations.
Since the calculation is similar to that of the Bisognano–Wichmann case, it will no

repeated here.
~ii ! If the theory is conformally covariant then the algebra of the double cone can be transfo
onto the algebra of the wedge or the forward light-cone. Since the modular groups are kno
the last two algebras, the modular group for the algebra of the double cone can be obtai
transformation. The result is:

III.2.2. Theorem:
Assume we are dealing with a conformal covariant theory. Let D be the double cone

D5$x:ux0u1ixW i,1%

and denote by

x65x06ixW i .

Then the modular group of the pair~M(D), V! induces on D a geometric transformation
given by the formula:

x6~l!5
2~12x6!1e22pl~11x6!

~12x6!1e22pl~11x6!
.

The modular group of the double cone has first been computed by Hislop and Longo.68

~iii ! The examples treated before and those of the next subsection are based on the
representation. There are also situations where one can compute the modular groups for
representations. These investigations are due to Borchers and Yngvason.69 In these cases the
domain is the forward light-cone or the wedge in two-dimensional models that factorize in
cone coordinates. In order that one obtains local action for the modular groups one has to de
Wightman fields of scale dimension 1. The results are as follows:

III.2.3. Theorem:
Assume we are dealing with a Weyl system over the two-dimensional Minkowski spac
factorize in light-cone coordinates. Letv be the quasi free KMS state andp the corresponding
representation of the Weyl algebra for a field of scale dimension 1. Then the modular grou
the forward light-cone and the wedge act local on the corresponding algebras. The transf
tions are:
For the forward light-cone:

x°wV1~ t,x!, xPV1.
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For the wedge:

x°wW~ t,x!, xPW.

Here t is the element of the modular group and the functionsw are given by

wV1~u,x!5~w1~u,xL!,w1~u,xR!!,

wW~u,x!5~w2~u,xL!,w1~u,xR!!,

with

w2~u,x!52w1~2u,2x!,

w1~u,x!5
b

2p
log$11e22pu~e2px/b21!%.

III.3. The counterexamples of Yngvason

The examples of Yngvason70 are treated separately, because they show examples of the
with special properties. From the result on half-sided translations~Sec. II.5! we know, that the
modular group of the wedge acts on the translations as the Lorentz boosts of the wedg
might give the impression that the modular group of this algebra acts local. That this is not t
general is shown by the first example. If one defines the algebras of the double cones by
section then the modular group acts local in the characteristic two plane of the wedge, b
necessarily local in the perpendicular direction, as shown by the last example.

SupposeF is a Hermitian Wightman field which transforms covariantly under space–
translations, but not necessarily under Lorentz transformations, and depends only on one
cone coordinate, sayx1. Locality implies that the commutator@F(x1),F(y1)# has support only
for x15y1. Moreover, from the spectrum condition it follows that the generator for translat
in the x1 direction is positive semidefinite. This implies that the Fourier transform of the t
point function has the form

W̃2~p!5u~p!pQ~p2!1cd~p!.

In this formulaV is the vacuum vector,Q(p2) is a positive, even polynomial inpPR andu(s)
51 for s>0 and zero else, andc5(V,F(x1)V)2>0 is a constant. Subtractingc1/2 from F if
necessary, we may drop thed(p) term. For simplicity of notation from now on we writex,y
instead ofx1,y1.

For our future investigations we can restrict our attention to the one-particle Hilbert s
HQ,1 . We know that the modular group of the half line acts as a delatation by the factore22pt.
This amounts in momentum space to a dilatation by the factorl5e2pt. This information is
sufficient to compute the action ofD1

i t and of D2
i t on the one-particle Hilbert space. Since t

modular groups do not change the support properties of the half-line, i.e., the analyticity pro
in momentum space, one obtains:

Since the algebra and its commutant have the same modular group we see that wedge
is fulfilled iff Q(p) has only real zeros.

The duality condition for bounded intervals is a little more difficult. Yngvason has shown:
The duality condition is violated if Q(p) is not a constant.

Finally we consider fields inn-dimensional Minkowski space. Guided by the low-dimensio
examples considered above we shall compute the modular groups of the wedge algeb
generalized free fields onRn. We treat the special case where the two-point function has in Fo
space the form
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W2~p!5M ~p!dm~p!,

wheredm is a positive Lorentz invariant measure with support in the forward light cone andM is
a polynomial that is positive on the support ofdm. The polynomialM allows a factorization,

M ~p!5F~p!F~2p!,

whereF(p) is a function~in general not a polynomial! with certain analyticity properties.
To describe the properties ofF we use the light-cone coordinatesx65x06x1 for x

5(x0,...,xn)PRn and denote (x2,...,xn) by x̂. The Minkowski scalar product is

^x,y&5 1
2 ~x1y21x2y1!2 x̂• ŷ.

There is no lack of polynomialsM allowing such a factorization; one example is

M ~p!5~p1!21¯1~pn!21m2

with

F~p!5Ap̂• p̂1m21 ip15Ap̂• p̂1m21~ i/2!~p12p2!.

By analogy with the first example we define forl.0 the unitary operatorsVR(l) on the Fock
spaceH over the one-particle spaceH15L2(Rn,M (p)dm(p)) by

f̃ l~p!5
Ap̂• p̂1m22~ i/2!~lp12l21p2!

Ap̂• p̂1m22~ i/2!~p12p2!
f̃ ~lp1,l21p2,p̂!.

This example demonstrates also that the modular group ofM(WR) may act nonlocal in thex̂
directions. In fact, letf be a test function with compact support inWR . Under this transformation
f̃ is no longer the Fourier transform of a function of compact support in thex̂ directions, because
it is not analytic inp̂. From this lack of analyticity it is not difficult to deduce thatW( f l) does not
belong to any wedge algebra generated by the field unless the wedge is a translate ofWR or WL ,
but we refrain from presenting a formal proof. The operatorW( f l) is still localized in thex0,x1

directions in the sense that it is contained in

M~WR1a!ùM~WR1b!8
for somea,bPWR .

III.4. The result of Trebels on local modular action

In the last subsections we saw that under special assumptions the modular groups of a
belonging to definite domains, can be computed. In many of these examples the modular
formations led to geometric transformations of the underlying sets. Therefore, it is natural
whether or not there might exist other cases where the modular group of the algebra of a s
as geometric transformations on the underlying set. It is impossible to answer this questi
arbitrary sets. Therefore we restrict the sets to the family of double cones and their limits, i
wedges, forward and backward lightcones. The following results are taken from the the
Trebels.65

III.4.1. Definition:
A unitary transformationV which mapsM(G) ~G open! onto itself and which mapsV onto itself
is called geometric, causal and order preserving if there exists a one to one mapg:G→G with the
properties:
~i! xPG implies xgPG,xg21PG.
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~ii ! x,yPG andx2y are spacelike, thenxg2yg andxg212yg21 are spacelike.
~iii ! x2yPV1 implies xg2yg andxg212yg21 belong toV1.
~iv! For everyG1,G one has

Ad VM~G1!5M~Gg
1!, with Gg

15$xg ;xPG%.

Notice thatg→xg maps double cones onto double cones. Since double cones form a b
the topology ofRd we see thatx→xg is continuous. Our first observation is the following.

With this notation the following result holds:
III.4.2. Theorem:

Assume we are dealing with a quantum field theory in the vacuum sector, and that the dim
of the Minkowski space is larger than two. Let D be a double cone and letD it be the modular
group ofM(D). Assume this group acts geometric and causal on D. ThenD it coincides with the
group of Hislop–Longo transformations (up to a positive scale transformation of the group
rameter).

If G is the generator of the Hislop–Longo transformation then we have shown thatg(t) is of
the formg(t)5exp$mGt% wherem is a positive constant. One would like to prove thatm51. To
this end one has to use the KMS condition.~See Sec. I.3.! With the methods available up to now
we are not able to give a general proof for the statementm51. However, if we would deal with
a finite number of Wightman fields then the modular transformation would beD itFk(x)D2 it

5Dk
j (t)F j (g(t)x). Here Dk

j (t) is a finite dimensional representation of the dilatations. In t
situation one can at least show thatm is bounded by one. We do not want to give the calculatio

III.4.3 Remark:The casem50 can be excluded. This case would mean that the algebr
every subdomainD1,D is invariant under the modular group ofD. But this implies by the
cyclicity of V thatM(D1) andM(D) coincide.~See Ref. 33, Thm. 9.2.36.! Such situation is only
possible if the theory is Abelian.

Idea of the proof:The dimension of the Minkowski space shall always be larger than 2.
us start with a geometric causal and order preserving mapg of the domainG. Sinceg is continu-
ous it maps closed light conesV1 onto closed light cones. From this one concludes thatg maps
light like lines onto lightlike lines.

It is our intention to look at the possible geometric, causal and order preserving maps
double cone. But, by an order preserving conformal transformationg we can send the double con
onto the forward light cone. Thenggg21 is a geometric, causal and order preserving map ofV1.
These are much easier to handle.

If we take a light rayl insideV1 then the closure of the setø$Vx
2ùV1,xP l % is the inter-

section of a closed half-space withV1. g maps such sets onto sets of the same kind. This is
true for the boundary of such half-spaces, sinceg is continuous. Henceg maps affine tangen
hyperplanes intersected withV1 onto sets of the same kind. Now one can draw the follow
conclusions:
~i! g maps parallel light rays onto parallel light rays.
~ii ! Since spacelike straight lines are intersections of tangent hyperplanesg maps spacelike straigh
lines onto spacelike straight lines.
~iii ! Since every two-plane containing a timelike direction is generated by a family of parallel
rays passing through one light ray one gets from~i! that every two-plane containing a timelik
direction is mapped onto a two-plane of the same kind.
~iv! Since every timelike line is the intersection of two such two-planes we see thatg maps also
timelike straight lines onto timelike straight lines.

From this one deduces thatg is a linear transformation. More precisely one finds
III.4.4. Proposition:

Every geometric, causal and order preserving map of the forward lightcone is an element
Lorentz group extended by the dilatation.

The modular group is a one-parametric group. This implies that every element is the squ
another element. Hence if the group acts geometric and causal on the underlying domain,
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acts automatically order preserving. If the modular group induces a geometric and causal ac
the underlying domain then we know from the last proposition that it is a one-parametric sub
of the (d(d21)/211)-dimensional Lie group generated by the Lorentz group and the dilatat
In order to restrict the possibilities we have to use the following properties:
1. The groupg(t) is induced by the modular group ofM(D), whereD is a double cone. This
implies that forAPM(D) the expression

D i tAV

has an analytic continuation into the stripS(2 1
2,0).

2. We are dealing with a quantum field theory in the vacuum sector. This implies in particula
the translations fulfill spectrum condition.

We want to compare the geometric modular action with the action of the translation
technical tool we need the following result which can easily be proved with help of the do
cone theorem, Thm. I.4.4. Here we will not present the proof.

III.4.5. Theorem:
Assume we are dealing with a quantum field theory in the vacuum sector, and that the dim
of the Minkowski space is larger than two. Let D1 , D2 be two double cones with center x1 , x2 ,
respectively. If x12x2 is lightlike and ifM(D1) and M(D2) commute then the whole quantu
field theory is Abelian.

We want to look at the modular group of the double coneD. Let xPD and if D i t acts
geometric and causal onD then g(t)x can be differentiated with respect tot since g(t) is a
subgroup of a Lie group. We want to investigate the direction ofg8(t)x and want to show

g8(0)xPV̄2. To this end we look at the situation described in Fig. 1.
With BPM(WL1y) andAPM(Dx) we set

f 1~l,t!5~V,BU~lt !D i tAV!,

f 2~l,t!5~V,AD2 itU~2lt !BV!,

whereU(x) is the representation of the translations. Using techniques of analytic functions o
complex variables one can deduce thatg8(0)x must lie inV1.

Since the considerations about the structure of the coincidence are stable under con
transformations, we will transform the double cone onto the forward lightcone. In this settin
have to show that the groupg(t) coincides with the dilatations. If we writeg(t)5exp$Mt% then
g8(t)xPV2 implies that~y,Mx! is smaller zero for allx,yPV1. By means of the structure of th

FIG. 1. Position of the double conesD, Dx and the wedgeW( l 8,l )1y.
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Lorentz group we find thatM is diagonal and henceM52m1, mPR1. Therefore, the trans
formedg(t) coincides with the scaled dilatations and consequently the original group coin
with the scaled Hislop–Longo transformations. h

III.5. Remarks, additions, and problems

~I! The result of Trebels deals only with double cones. Therefore, it is not possible to
that the factorm has to be 1. This is due to the fact that the Hislop–Longo transformationg(t

2 i 1
2) mapsD to real points but they are not all spacelike with respect toD. If, however, we replace

the double cone by the wedge then one can argue thatm must be 1.
III.5.1. Problem:Does there exist a convincing argument showing, thatm must be 1?~II ! In

the Trebels situation, the algebra of a subdouble cone with either the same upper or low
fulfills the condition of 2half-sided or1half-sided modular inclusion, respectively. If one
dealing with a conformally covariant theory, then the corresponding half-sided translations
for a proper chosen~finite! group element, the algebra of the double cone onto the algebra o
backward respectively forward light cone.
~III ! If the Bisognano–Wichmann property~Def. III.1.4! is fulfilled only for the subsets of the
wedge, then the modular group of the wedge define geometric transformations only for this w
This can be extended to geometric transformations of the wholeRd. ~See Guido, Ref. 71.!
~IV ! As shown by Kuckert72 the assumptions can be changed. If one replaces the Bisogn
Wichmann property for the wedge by other symmetry conditions, with some locality property
for the whole space, then one finds thatJW and DW

i t act local as in the Bisognano–Wichman
situation. A similar result holds for the forward light-cone, providedV is cyclic and separating fo
M(V1). In these cases the assumptions are: The symmetry shall map the local netinto the local
net. The associated modular groups shall transform the local algebras in the correspondin
ner.

One can replace the transformation property of the local net by transformation propert
localized operators. In this case one has to make more restrictive assumptions on the tran
tions and the net. For details see Ref. 72.

IV. THE PCT THEOREM AND CONNECTED QUESTIONS

The PCT theorem tells us that the product of time reversal, space reflection, and c
conjugation is always a symmetry. Reading the paper of Pauli73 on this subject one gets th
impression that a precurser of the PCT “theorem has been discovered by Schwinger.74 But it was
a mysterious transformation containing the interchange of operators. The first development
PCT theorem in the frame of Lagrangean field theory is due to Lu¨ders.75 This result has triggered
the clarification of the connection between spin and statistics and the role of the positive e
~See Pauli73 and also Lu¨ders and Zumino.76!

In 1957, Jost66 gave a proof of the PCT theorem in the frame of Wightman’s field theory.
beauty of this proof is the clarification of the role of the different conditions one has to imp
These are
1. Covariance of the theory under the~connected part of the! Poincare´ group.
2. Positivity of the energy.
3. There are only fields, which transform with respect to finite dimensional representations
Lorentz group.~Transformation of the index space.!
4. Locality, which means that for spacelike distances the Bose fields commute with all other
and the Fermi fields anticommute with each other.
5. The Minkowski space has even dimensions.
6. To every field in the theory appears its conjugate complex partner.

From the spectrum condition it follows that the Wightman functions have an analytic
tinuation into the forward tubeTn

1

Tn
15$z1 ,...,znPC4;Im~zi2zi 11!PV1%.
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Using locality, Poincare´ covariance of the theory, and the appearance of only finite dimens
representation of the Lorentz group in the index space, Hall and Wightman77 could show that the
analytically continued Wightman functions can be considered as functions on the complex L
group. If the index space transforms under infinite dimensional representation of the Lorentz
then the Hall–Wightman theorem fails because of lack of analyticity. Examples are give
Streater78 and by Oksak and Todorov.79 The Hall–Wightman theorem was the starting point
Jost’s investigation. If the Minkowski space has even dimensions then the complex Lorentz
contains the element21. This transformation is the product of time reversal and space reflec
But there is the time translation ei Et with the positive energy operator. In order to keep the ene
positive one has to change i into2i. Therefore, the time reversal has to be an antiunitary opera
If Q is an antiunitary total reflection one obtains for a scalar field

QF~x!Q5F* ~2x!.

The passage to the conjugate complex is closely related to the charge conjugation. Therefo
has to look at the product ofC andPT. One remark more to the role of locality: The transition
the conjugate complex interchanges the order of an operator product. At totally spacelike
the original order can be restored. Putting things together one gets the PCT theorem for
fields. The general case needs in addition the handling of finite dimensional matrices which
with fields of higher spin.

For a long time it was impossible to show the PCT theorem in the theory of local observ
because one did not know the meaning of condition 3 and 6 in the setting of local observa

A good candidate for the CPT operator is

Q5JWU~RW~p!! ~IV.0.1!

provided the origin is contained in the edge of the wedge.RW(a) denotes the rotation in the
two-plane perpendicular to the characteristic two-plane of the wedge, andJW the modular conju-
gation of the algebra of the wedge.

If the Ansatz~IV.0.1! is correct, then the representation of the Lorentz group and the mo
groups of the wedges have to fit together. Since on the vacuum sectorQ is a geometric transfor-
mation, alsoJW has to act local. Moreover the transformation (QU(RW(p)) maps the algebra o
the wedge onto the algebra of the opposite wedge. Therefore, the theory has to fulfill w
duality. First we treat the question of wedge duality and afterwards that of the locality ofJW .

IV.1. The wedge duality

The problem of this subsection is: When does a Lorentz covariant theory fulfill wedge
ity?

The result we present here is essentially a two-dimensional statement. In the proof w
think of sets which are cylindrical in all directions perpendicular to the characteristic two-pla
the wedge. Hence all the expressions depend only on two variables. In this situation we onl
two wedges which we call the right wedgeWr and the left wedgeWl . The wedges obtained b
applying a shift bya will be denoted byWa

r andWa
l , respectively. If we denote the double con

by K then this can be characterized by the intersection of two wedges.

Ka,b5Wa
r ùWb

l , b2aPWr .

Let Ma,b
0 be the given von Neumann algebra associated withKa,b fulfilling the mentioned as-

sumption. Starting from this we obtain for the wedges the algebras:

Ma
r 5$ ø

K,Wa
r

MK
0 %9, Ma

l 5$ ø
K,Wa

l

MK
0 %9. ~IV.1.1!

Moreover, we set
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Ma8
r5$Ma

r %8, Ma8
l5$Ma

l %8. ~IV.1.18!

Without loss of generality we can construct a net which might be slightly larger:

Ma,bªM~Ka,b!5Ma
r ùMb

l . ~IV.1.2!

This net fulfills again all requirements listed in the beginning. Moreover, the wedge alg
constructed withM(K) coincides with the wedge algebra constructed with theM0(K). In what
follows we only will work with the algebrasM(K).

In Wightman field theory one is dealing with quantitiesFn(x) localized at a point. Ifx
belongs to the right wedge one can analytically continue the expressionU(L(t))Fn(x)V into the
strip S(2 1

2,0). This is due to the fact that the representation of the Lorentz group in the i
space is defined for complex Lorentz transformations. The result which one obtains is an e
belonging to the left wedge, namely,U(L(t))Fn(2x)V ~for entire spin!. There are two problems
if one wants to generalize this:

First our objects are not localized at a point but in bounded domains. Here we will fi
natural generalization of the description.

The second problem consists of understanding the exchange of the left and the right we
the complex Lorentz transformations because of the following

IV.1.1. Remark:
If we are dealing with a von Neumann algebraM and a one-parametric, strongly continuo
group of automorphismsa t then one can define the analytic elementsManal for which a tA has an
entire analytic extension. The setManal is a * -strong dense subalgebra ofM and the elements
azA, APManal also belong toM.

Therefore, it is not easy to understand why for an elementA, localized in the right wedge, the
expressionU(L(2 i/2))AV can be written asÂV with an elementÂ localized in the left wedge.

From Remark II.5.3.~ii ! we know thatD r
i t and D l

i t act on the translations as the Loren
transformations. From this we obtain:

R~ t !D r
i t5U~L~ t !!, L~ t !D l8

i t5U~L~ t !!. ~IV.1.3!

HereD l8 denotes the modular operator of (M0
l )8. SinceU(L) commutes with the modular group

and acts on the translations in the same manner as the modular groups we obtain the fo
commutations:

@R~s!, D r
i t#5@R~s!, U~L!#5@R~s!, T~a!#5@R~s!, Jr #50,

~IV.1.4!
@L~s!, D l8

i t#5@L~s!, U~L!#5@L~s!, T~a!#5@L~s!, Jl #50.

The aim of this investigation is to show thatR(t) andL(t) coincide. Since the proof of this
result is rather involved we have to refer to the original paper80 or to the complete script. There
fore, we only quote the results.

IV.1.2. Proposition:
(i) For every APMa,b with aPWr such that U(L(t))AV has a boundes analytic extension in

the strip S(2 1
2,0) with continuous boundary values there exists an element Aˆ hM2b,2a such that

the following relation holds

U~L2~ i/2!!AV5ÂV.

(ii) For every APMa,b with bPWl such that U(L(t))AV has a bounded analytic extension in

the strip S(0,1
2) with continuous boundary values there exists an element A˜ hM2b,2a such that the

following relation holds

U~L~ i/2!!AV5ÃV.
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As mentioned before we have to establish a map fromMr to Ml and viceversa. This mean
there must exist sufficiently many elements which satisfy Prop. IV.1.2. In order to formulat
result we need some notation about the localization of operators.

Let APM be a local operator then we denote byK0 the smallest double cone such thatA
PM(K0). By K we denote the translate ofK0 such that the center ofK coincides with the origin.
Let K05K1x then we can write every localized operator in the form

A5A~K,x!. ~IV.1.5!

With this concept we can formulate the exact result about wedge duality.
IV.1.3. Theorem:

Given a Lorentz covariant QFTLO in the vacuum sector, then the following conditions are eq
lent:
~1! The theory fulfills wedge duality.
~2! The set$A(K,x)%, such that

~a! K1x,Wr ,
~b! U(L(t))A(K,x)V has a bounded analytic continuation into the strip S(2 1

2,0) with con-
tinuous boundary values,

~g! U(L(t))A* (K,2x)V has a bounded analytic continuation into the strip S(0,1
2) with

continuous boundary value,
is * -strong dense inM0

r .

IV.2. The reality condition and the Bisognano–Wichmann property

In the discussion at the beginning of this section we saw that we must solve two pro
before we can prove the PCT theorem. The first was the wedge duality, corresponding
properties of the index space of Wightman fields. The second was the reality condition imp
that every Wightman field has its conjugate complex partner. In analogy we pose:

IV.2.1. Reality conditon:
We say a Poincare´ covariant theory of local observables in the vacuum sector, which satisfie
wedge duality, fulfills the reality condition if:
~i! Every A(K,x) with K1x,Wr which fulfills the relation of Prop. IV.1.2 satisfies the equati

A*̂ ~K,PWx!5$Â~K,PWx!%* . ~IV.2.1!

PW is the reflection in the characteristic two-plane of the wedge.
~ii ! V is cyclic for the set$A(K,x);K1x,Wr which satisfy Eq. (IV.2.1)%.

With this notation we obtain:
IV.2.2. Theorem:

In a representation of a Poincare´ covariant theory of local observable in the vacuum sector
modular group associated with the algebra of any wedge coincides with the corresponding
entz boosts iff the theory fulfills wedge duality and the above reality condition with respect
Lorentz transformations.

Proof: If we know thatU(L(t)) andDW
i t coincide then by Thm. IV.1.3 one has wedge duali

Moreover, the reality condition is fulfilled because for everyA(K,x)PM(Wr) one has

A*̂ ~K,x!V5U~L~2 i/2!!A* V5DW
1/2A* V5JAJV,

and

DW
1/2Â~K,x!V5JA* JV5$JAJ%* V.

Hence the reality condition is fulfilled.
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Next assume wedge duality and the reality condition. LetA(K,x)PM(Wr) fulfill the reality
condition. Take an elementBPM(Wl) and look at the matrix elements

F1~s,t !5~V,BD isU~L~ t !!A~K,x!V!,

F2~s,t !5~V,A~K,x!U~L~2t !!D r
2 i sBV!.

By choice of the elementsB andA(K,x) we getF1(s,t)5F2(s,t). Moreover, wedge duality and
the modular theory yields

F1S s1
i

2
,t2

i

2D5F2S s2
i

2
,t1

i

2D .

By both coincidences and the edge of the wedge theorem, Thm. I.4.1, we obtain a bo
periodic functionF(s,t)5F(s2 i, t1 i). Since bounded entire functions are constant we find

F~s,2s!5const5F~0,0!,

~V,BD isU~L~2s!!A~K,x!V!5~V,BA~K,x!V!.

SinceM(Wl)V and$A(K,x)V% are dense inH we obtainD r
i sU(L(2s))51. h

IV.3. The PCT theorem

Now we are prepared for the proof of the PCT theorem under the assumption that the
duality and the reality condition are fulfilled. Starting from the Ansatz Eq.~IV.0.1! one has to
solve two problems:
~1! SinceQ shall be a local transformation, alsoJW must be local. Since the mapAV→A* V is
local, and since by Thm. IV.2.2DW

1/2 andU(LW(2 i/2) coincide, we know that the product

SW5JWDW
1/25JWU~LW~2 i/2!! ~IV.3.1!

acts local. Therefore,JW andU(LW(2 i/2)) must act local at the same time. The answer to t
question is closely related to the next one.
~2! The operator productJWU(RW(p)) shall be independent of the choice of the wedgeW. Using
Eq. ~IV.3.1! we obtainJW5U(LW(2 i/2))SW and consequently

JWU~RW~p!!5U~LW~2 i/2!!U~RW~p!!SW , ~IV.3.2!

where we have used the fact thatU(RW(p)) maps the algebraM(W) onto itself, which implies,
that SW and U(RW(p)) commute. We will apply the expression~IV.3.2! to vectors of the
form A(K,x)V with K1x,W. Therefore, problem ~2! is solved if
U(LW(2 i/2))U(RW(p))A* (K,x)V is independent ofW. ~As long asK1x,W.) The product
U(LW(2 i/2))U(RW(p)) is nothing else but the element21. Since we get to
U(LW(2 i/2))U(RW(p))A(K,x)V by analytic continuation, we have to make sure that the c
tinuation gives for differentW a unique answer.

We start with the uniqueness problem because its answer is needed for the solution
locality question. For simplicity of notation we restrict ourselves to the four-dimensi
Minkowski space. In this case the Lorentz group is six-dimensional. First, with help o
Malgrange–Zerner theorem I.4.2 we will construct a function on the complex Lorentz group
pointsU(LW(2 i/2)) will be points on the boundary of the domain which we construct. Theref
we must convince ourselves thatU(L) is single valued on that domain.

Let D be a double cone such that its closure does not contain the origin. We choose a
with D,W. Let G be the~connected! Lorentz group and set

N~D !5$gPG;D,gW%. ~IV.3.3!
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SinceW is open,N(D) is open and contains the identity of the group. From this one can ch
g1 ,g2 ,...,g6PN(D) and T1 ,...,T6.0 such that the productsLg6W(t6)¯Lg1W(t1) for ut i u,Ti

are still in N(D) and that the generators ofLgiW
(t) are linearly independent.

Since by assumption the unitary groupsU(LgiW
(t)) coincide with the modular groups o

M(giW) one can analytically continue the vector valued function

U~Lg6W~ t6!!¯U~LW~ t1!!AV, APM~D !, D,W ~IV.3.4!

in the variable t i into the strip S(2 1
2,0), provided one hasut1u,T1 ,...,ut i 21u,Ti 21 ,ut i 11u

,Ti 11 ,...,ut6u,T6 . Using the Malgrange–Zerner theorem I.4.2 one obtains a function holo
phic in all variables.

The domain of holomorphy of this function can be determined. This calculation will be d
by mapping the stripS(2 1

2,0) biholomorphic onto itself in such a way that the intervaluxu,T is
mapped ontoR and the rest of the boundary onto2 i/21R. In these new variables the domain
holomorphy is convex and hence the function is one-valued. Hence there are no mono
problems in these variables. Therefore, we have to show that the inverse transformation se
boundary points to some set where the inverse map is unique. The result of these investigat
collected in.

IV.3.1. Proposition:
Let D be a double cone such that the closure of D does not contain the origin. Then
PM(D) and g such that D,gW

U~LgW~2 i/2!!U~RgW~p!!AV

is independent of g.
Knowing this it is easy to show thatJW acts local and one obtains forD,W

JWAJWPM~PWD !.

This together with Prop. IV.3.1 and Eq.~IV.0.1! leads to
IV.3.2. Theorem:

Every QFTLO which fulfills wedge duality and the reality condition is PCT convariant.

IV.4. The Bisognano–Wichmann property and the construction of the Poincare ´ group

We saw that the PCT theorem is closely connected with the Bisognano–Wichmann pr
~see Def. III.1.4!, i.e., the modular group of every wedge acts like the associated group of Lo
boosts. If we assume that the theory fulfills the Bisognano–Wichmann property, then one c
whether or not all these modular groups fit together and give rise to a representation
Poincare´ group. If the dimension of the Minkowski space is two then one has only the right
the left wedge and their translates. Since the Bisognano–Wichmann property implies th
translates of the wedge along the lightlike vectors fulfill the condition of half-sided mod
inclusion, the translations are obtained by the construction of Wiesbrock56,57 ~see II.6! which
together with the modular group of the wedge give rise to a representation of the Poincare´ group.55

Hence the construction procedure contains new aspects if the dimension of the Minkowski
is at least three.

A first treatment of this problem is due to Brunetti, Guido, and Longo.81 They used the first
and the second cohomology of the Poincare´ group and showed that the modular groups of
wedges give rise to a representation of the covering of the Poincare´ group. In a second pape
Guido and Longo82 generalized their method to charged fields and showed that in this fram
connection between spin and statistics is fulfilled.

Here we will use a construction that is based entirely on the principle of half-sided mo
inclusions. It has the advantage that it gives directly a representation of the Poincare´ group and not
of its covering.83 In order to avoid index manipulation we represent the result for the fo
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dimensional Minkowski space. The construction is in three steps. First we construct the tr
tions by using the half-sided modular inclusions of wedges and their translates. Then we sho
the algebra of the intersection of two wedges with a common lightlike vector fulfill the cond
of half-sided modular inclusion with respect to the algebras of the wedges. This will allow
construct the translational part of the stabilizer group of the common lightlike vector. Since
group connects the modular groups of different wedges we can, in the third step, constru
whole Poincare´ group.
First step:Construction of the translations

We start our investigation by looking at a wedgesW@ l ,l 8,a# and its translateW@ l ,l 8,a
1l l #,l.0. The algebra of the second wedge fulfills the condition of2half-sided modular inclu-
sion with respect to the algebra of the first wedge. Hence by Thm. II.6.2 we obtain a unitary
U@a,l l #(t). The uniqueness Thm. II.6.5 implies that this group does not depend ona and that
U@l l #(t) can be written asU@ l #(lt). Moreover, we know thatU@ l #(t) acts local, which implies,
that U@ l #(lt) does not depend on the choice of the second light ray entering in the definiti
the wedge and hence ofU@ l #(lt).

It remains to show that the groupsU@ l #(s) and U@ l 8#(s) commute. This follows from the
uniqueness of the modular groups.

IV.4.1. Lemma:
Assume all modular groups of the wedge algebras act like their associated Lorentz groups
a unique continuous representation of the translation group V(a) exists which fulfills spectrum
condition and acts geometrically on the local algebras

Ad V~a!M~D !5M~D1a!,

where D denotes a double cone. @It is assumed, thatM(D) coincides with the intersection of th
wedge algebras of all wedge containing D.# This representation V(a) is contained in the algebra
generated by the modular groups.

Moreover, the modular groups of the wedges and the translations transform each othe
they were members of a unitary representation of the Poincare´ group.

Since Lemma IV.4.1 implies that we have a representation of the Poincare´ group on every
characteristic two-plane, where the boosts of the wedge are the same as the modular tran
tions, we obtain from Sec. IV.1:

IV.4.2. Proposition:
Let a representation of a theory of local observables fulfill the above-mentioned conditions.
this representation fulfills wedge duality, i.e.,

M~W@ l ,l 8# !85M~W@ l 8,l # !.

Second step:The stabilizer group of a light ray
Next we want to construct the translational part of the stabilizer group of any light rl

P]V1. To this end we look at the family of wedges having one light ray in common,

$W@ l ,l 2#; l fixed%. ~IV.4.1!

It is well known that the stabilizerS( l ) of a lightlike vector is isomorphic to the Euclidea
transformation ofR2. ~See, e.g., Gelfand, Minlos, and Shapiro.84! The rotations are the transfor
mations around the space direction of the light ray. In order to understand the translations
introduce a second lightlike vectorl 2 which we choose in such a way thatl, t, l 2 lie in one
two-plane. LetT( l ) be the tangent hyperplane at the forward lightconeV1 containing the vector
l. Then the affine hyperplanel 21T( l ) intersects]V1 in a two-dimensional set~parabola! homeo-
morphic toR2. The translations ofS( l ) have this set as orbit.

In the concrete examplel 5(1,1,0,0), l 25(1,21,0,0), these translations becomea
5(a1 ,a2)PR2)
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L l~a!5S 11
a2

2
2

a2

2
a1 a2

a2

2
12

a2

2
a1 a2

a1 2a1 1 0

a2 2a2 0 1

D . ~IV.4.2!

~See also Jost, Ref. 85, Appendix.! It is easy to check that this is a representation of the tw
dimensional translation group.

Starting with the above vectorl 2 and definel 2(a)5L l(a) l 2 one obtains betweenL l(a) and
the Lorentz boosts of the wedge the relation

L l~a2b!5 lim
t→`

L@ l ,l 2~a!#~ t !L@ l ,l 2~b!#~2t !. ~IV.4.3!

In order to show that the corresponding limits of products of modular operators exist and de
commutative group we need once more the principle of half-sided modular inclusion. The c
result is:

IV.4.3. Theorem:
Let the theory fulfill the Bisognano–Wichmann property. Then the algebraM(W@ l ,l 1#ùW@ l ,l 2#)
fulfills the condition of2half-sided modular inclusion with respect to both algebrasM(W@ l ,l 1#)
and M(W@ l ,l 2#).

Using this result and its generalization to the intersection of three wedges one can sho
the product

D@ l ,l 2~a!# itD@ l ,l 2~b!#2 it

converges fort→` strongly to a unitary operatorUl(a,b). Furthermore, this operator depen
only on the differencea2b, and gives rise to a unitary representation of the groupL l(a) @~see Eq.
~IV.4.2!!#. By construction this group acts local. The continuity of this group representa
follows from the relation between half-sided translations and the modular groups.

Third step:construction of the rotations
Up to now we have representations of the Lorentz boosts, the translations, and of the

lational part of the stabilizer group of the light rays. In order to get a representation of th
Poincare´ group one needs a representation of the rotation group.

Let x0 be a timelike vector in the two-plane spanned byl and l8, and letL l(a) be an element
in the stabilizer group ofl. ThenL l(a)x0 is a vector on which we can applyL l 8(b). There will
be an elementb(a) such thatL l 8(b(a))L l(a)x0 belongs to the two-plane containingl, l8 andx0 .
In this situations(a) exists such thatL@ l ,l 8#(s(a)) maps this vector back tox0 . Therefore, the
product represents a rotation

L@ l ,l 8#~s~a!!L l 8~b~a!!L l~a!5R~ l ,a!. ~IV.4.4!

Lengthy calculations show that the corresponding unitary groups

U~R~ l ,d,w!!5D@ l ,l 8# is~a!Ul 8~b~a!!Ul~a! ~IV.4.5!

do not depend onl and that they depend continuously ond.
Special care has to be taken about the rotationp. This problem can be solved by showing th

the rotations around a fixed axisd form a true representation of the circle group. Using this a
Mackey’s method of induced representation86 one obtains a single valued representation of
whole rotation group. Putting all results together we get
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IV.4.4. Theorem:
Assume the modular group of every wedge algebraM(W@ l 1 ,l 2 ,a#) acts on every algebra of a
double cone like the associated group of Lorentz boosts. Then the modular groupsD it@ l 1 ,l 2 ,a#
define a representation of the Poincare´ group.

IV.5. The approach of Buchholz and Summers

We saw that the Bisognano–Wichmann property for the modular groups implies Lo
covariance, wedge duality, and the PCT theorem, provided the algebras of the double cones
intersection of the wedge algebras. This implies in particular, that the modular conjugations
wedge algebras act as reflection, i.e.,

JWM~D !JW5M~PWD !. ~IV.5.1!

HerePW is the reflection in the characteristic two-plane of the wedgeW, which leaves the apex o
the wedge unchanged. Ifa is in the characteristic two-plane ofW andW5W( l 1 ,l 2 ,a) then with
x5l l 11m l 21x' one obtains

PWx52l l 12m l 21x'12a. ~IV.5.2!

If the theory fulfills Eq.~IV.5.1! for every double cone then we say it fulfills the Bisognan
Wichmann property for the modular conjugations. Since the Poincare´ group is generated by th
reflections~if the dimension of the Minkowski space is larger than two!, it is natural to ask
whether or not one can derive the Poincare´ covariance also from the Bisognano–Wichma
property for modular conjugations. Using some additional assumptions this question has
answered for the translation positively by Buchholz and Summers.87

Since every double cone is the intersection of wedges, it is no restriction if one require
~IV.5.1! only for wedges. In a recent paper Buchholz, Dreyer, Florig, and Summers88 have gen-
eralized this setting by requiring that the modular conjugation of every wedge algebra map
the family of all wedge algebras onto itself. This contains a hidden version of the wedge du
Adding to this the assumptions that the modular conjugations preserve~I! isotony and~II ! stability
of nonintersection, they were able to show the following: Every transformationT of the set of
wedges onto itself, and which together with its inverse fulfills~I! and~II !, is a Poincare´ transfor-
mation. If, in addition, the considered set of transformationsT is a group, which acts transitively
on the set of wedges and if the Minkowski space is four dimensional, then this group contai
identity component of the Poincare´ group. In a very recent paper Buchholz, Florig, and Summe89

showed that the adjoint representation of the translations of this group, acting on the
algebras, is necessarily continuous.

The group representation obtained from the modular conjugations must not fulfill the
trum condition. In order to obtain this condition one has to add additional assumptions
authors of Ref. 88 called one of the possibilities the modular stability condition.

It is interesting to notice that the method of Buchholz, Summers, and co-workers ca
transcribed to quantum field theories on de Sitter space. Whether or not this method c
generalized to other manifolds can only be answered by future calculations.

Here we will present the construction of the Poincare´ group and show the continuity propert
of the translations. The continuity of the Lorentz transformations will only be discussed.
construction of the Poincare´ transformation differs in some points from that of Ref. 88.

In this section we define wedges slightly different from the notation in Sec. I.5. H
W( l 1 ,l 2 ,a) means that the lightlike vectorsl 1 ,l 2 belong either to]V1,]V2 or to ]V2,]V1, i.e.,
( l 1 ,l 2),0, and that the wedgeW( l 1 ,l 2 ,a1r1l 11r2l 2),W( l 1 ,l 2 ,a) for r1 ,r2>0. This descrip-
tion is symmetric in both lightlike vectors and is better suited for dealing with time or sp
reflections.

IV.5.1. Definition:
Let W denote the set of all wedges. ByT we denote the set of all transformationsT,
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T:W→W,

such thatT21 exists andT as well asT21 fulfill:
~I! Isotony, i.e.,W1,W2 implies T(W1),T(W2) andT21(W1),T21(W2).
~II ! Stability of nonintersection, i.e.,W1ùW25B implies T(W1)ùT(W2)5B and
T21(W1)ùT21(W2)5B.

With these assumptions we will show:
IV.5.2. Theorem:

Let the dimension of the Minkowski space be larger than2. Then every transformation TPT is an
element of the full Poincare´ group enlarged by the dilatations.

The proof of this theorem is complicated. Therefore, we have to refer to the original pa88

or better to the complete script, where a shorter proof is given.
A special consequence of Thm. IV.5.2 is
IV.5.3. Theorem:

Let TW fulfill the requirementsIV.5.1, then one has TW5PW , where PW is the total reflection in
the characteristic two-plane. This implies in particular the wedge duality

TW~W!5W8.

Let Tj be the subgroup generated by the modular conjugations of all the wedges iW.
Assume one is dealing with a QFT on a Hilbert spaceH and that there exists a vectorVPH,
which is cyclic and separating for all wedge algebrasM(W). Assume, moreover, that the modul
conjugationJW fulfills the relation

JWM~W1!JW5M~TW~W1!!,

JWJW1
JW5JTWW1

, JW5JW8 .

Then theJW generate an adjoint representation of the determinant11 part of the Poincare´ group.
It is easy to see that this representation is a central extension of the Poincare´ group. Using the

above relation one obtains for arbitraryW and the equationP i 51
21 nTWi

51

)
i 51

n

JWi
JW5)

i 51

n

JWi¯
JTWn

WJWn
5¯5JTW1

•••TWn
W )

i 51

n

JWi
5JW )

i 51

n

JWi
.

Therefore,P i 51
n JWi

belongs to the center of the group generated by theJW’s. We now restrict to
the four-dimensional situation. Later we will see that the group representation is continuo
remains to show that we are dealing with a true representation of the Poincare´ group. We know
from Sec. IV.4 how tedious such calculations are. Therefore, we skip this demonstration an
to the original paper.88

Collecting the results we obtain
IV.5.4. Theorem:

The representation of the‘‘ 1’’ part of the Poincare´ group induced by the JW’s is a true repre-
sentation.

Next we come to the continuity problem and its solution described in Ref. 89.
IV.5.5. Proposition:

Let U(L,a) be the representation of the Poincare´ group obtained by the products of the JW’s.
Then U(1,a) is strongly continuous.

The proof of this result is based on Thm. II.1.1 from which we know that the mod
conjugations depend continuously on the algebras, if the algebras are continuous from ins~or
outside!.

The proof of the continuity of the Lorentz transformations will not be presented here. H
ever, one can imagine how the above proof can be adapted to the situation where one l
                                                                                                                



bra

he

of the
m
they

njuga-

t

de,

if
group
bras.
um

ari-
–
these

um in
tion. If
r not it
ce the
g that

n the
edges
ano–

y for
f con-
rator

dge.
e if

been
fore
e that it

ntation
ated
result

p only

3640 J. Math. Phys., Vol. 41, No. 6, June 2000 H. J. Borchers

                    
one-parametric subgroupsL(t) of the Lorentz group. One wants to compare the alge
M(L(t)W) with M(W). In order to do this one must assume, thatV is also cyclic for the
algebrasM(L(t)WùW), providedt is sufficiently small. If this is the case one can look at t
limit t↘0 and argue as above.

Finally we come to the spectrum condition. As mentioned before, the representation
translations induced by theJW’s does not have to fulfill it. In order to obtain the spectru
condition, Buchholz, Dreyer, Florig, and Summers introduced a new assumption, which
called:

IV.5.6. Modular stability condition:
The modular group of every wedge is contained in the group generated by the modular co
tions.

Since the group generated by theJW’s is the1 part of the Poincare´ group, it is easy to see tha
the modular group of the wedge coincides~up to a scale factor! with the group of the Lorentz
boosts associated with the wedge. SinceV is also cyclic for the shifted wedges one can conclu
as in Sec. IV.4, that the spectrum of the translations is contained in the closure of eitherV1 or V2.
In order to obtain this result one can also use the method of Wiesbrock59 which leads to the same
conclusion.

We end this section with some
IV.5.7. Remarks:

~i! If one knows that the operatorsJW fulfill all the conditions we have used in this section, and
one knows from other sources that the theory enjoys the spectrum condition, then the
generated by theJW’s must not necessarily contain the modular groups of the wedge alge
Even in the situation where one knows that theJW are modular conjugations and that the spectr
condition is fulfilled, a proof is missing thatTj contains the modular groups of the wedges.
~ii ! There exist QFTLO’s which do not fulfill wedge duality, or others where the Lorentz cov
ance is missing~also for the wedge algebras!. Such theories do not fulfill the Bisognano
Wichmann property neither for the modular groups nor for the modular conjugations. Hence
criteria are a selection criterium for both, the field theory and the vacuum state. The criteri
Ref. 88 has the advantage that it also applies to certain theories without spectrum condi
these methods apply to QFT’s on curved manifolds this might be an advantage. Whether o
is an advantage for theories on Minkowski space is a question of taste, in particular sin
so-called modular stability requirement is a sufficient but not a necessary condition implyin
the spectrum is contained in the forward or backward light cone.

IV.6. Remarks, additions, and problems

~I! If the local algebras are generated by Wightman fields with finite components the
result of Bisognano and Wichmann Thm. III.1.3 shows that the modular groups of the w
coincide with the associated Lorentz boosts. On the other hand if we know the Bisogn
Wichmann property then we can derive Poincare´ and PCT covariance for the local net~Secs. IV.4
and IV.3!. But it is still an open problem whether or not the Bisognano–Wichmann propert
a local net implies that this net is generated by Wightman fields. The existing attempts o
structing Wightman fields from local nets try to relate the field operator to the Hamilton ope
~generator of the time translationsH-bounds methods! Fredenhagen and Hertel.90 It might be
useful to try to find relations with respect to the modular operator of the algebra of the we
~II ! The construction of the Poincare´ group from the modular groups of the wedges is possibl
the Bisognano–Wichmann property holds. The first construction under this condition has
given by Brunetti, Guido, and Longo.81 Their method is based on group cohomology and there
more elegant than the method presented here. However, their method has the disadvantag
leads to a representation of the covering group. In order to obtain a true group represe
Guido and Longo82 enlarged the group by the modular conjugations. In addition they incorpor
charged fields. In this frame they proved the PCT and the spin and statistics theorem. This
implies that in the vacuum sector one has a true representation of the Poincare´ group.
~III ! In Tomita’s modular theory one makes statements about the action of the modular grou
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on the algebra and its commutant. Therefore, it is unnatural to formulate the Bisogn
Wichmann property for all local algebrasM(D). It should only be formulated for suchD which
belong toW or to W8. If one does this one does not lose any information. This is a consequ
of the following reason: The knowledge about the action insideW suffices to conclude that th
algebras associated with the translates of a wedge along one of its defining lightlike vectors
the condition of7half-sided modular inclusion with respect toM(W). With the help of Thm.
II.6.2 one obtains the translations in the characteristic two-plane ofW. Since by Thm. II.5.2 one
knows the commutation between these translations and the modular group one can determ
action of this group on arbitraryM(D). One finds the full Bisognano–Wichmann property for t
modular groups. This procedure has been worked out by Guido.71

Unfortunately the Bisognano–Wichmann property for the modular conjugations cann
replaced by a local version. If we only know the action inside the wedge then we cannot co
the action ofJW1

on JW2
. Therefore, we are not able to conclude that the productsJW1

JW2
give

rise to a representation of a central extension of the Poincare´ group. Hence if we assume that th
modular group of the wedge algebra is contained in the group generated by theJW’s, we are not
able to conclude that the modular groups fulfill the Bisognano–Wichmann property.
~IV ! The Bisognano–Wichmann property for the modular groups is essential for the derivat
the CPT theorem. Since this condition is probably hard to verify in concrete examples, one
look for conditions which imply this property. The whole Buchholz Summers program, if
stricted to the Minkowski space, is of this nature. If we start from a Poincare´ covariant theory, then
the wedge duality and the reality condition also implies the Bisognano–Wichmann proper
the modular groups. One should add other assumptions implying this property.
~V! If a Poincare´ covariant QFTLO fulfills the Bisognano–Wichmann property for the modu
groups then it can happen that the theory is covariant under two different representations
Poincare´ group. In this case holds:91

IV.6.1. Theorem:
Assume we are dealing with a local quantum field theory in the vacuum sector, which is cov
under two different vacuum representations of the Poincare´ group. Let U0(L,a) be the represen-
tation generated by the modular groups of the wedge algebras and U1(L,a) the second repre-
sentation. Then there exists a local gauge transformation of the Lorentz group G(L) with

U1~L,a!5U0~L,a!G~L!.

Moreover, G(L) commutes with U0(L8,a) for all a, L, L8. In addition G(L) is a gauge
transformation, i.e., it maps every local algebra onto itself.

That this situation occurs shows the following example: Take an infinite number of copi
a finite component Wightman field. LetU(L,a) be the representation of the Poincare´ group
transforming the Wightman field. LetG(L) be a representation of the Lorentz group which a
on the indices numbering the copies. ThenU(L,a) ^ 1 is the group generated by the modul
groups andU(L,a) ^ G(L) is the second representation.
~VI ! The reality condition together with the wedge duality implies the Bisognano–Wichm
property. Recently Guido and Wiesbrock~see Schroer and Wiesbrock92! have given a different
condition which replaces the reality condition IV.2.1.

IV.6.2. Theorem:
Assume we are dealing with a QFTLO on the vacuum sector. Assume that for every wedge t

AV→U~LW~2 i/2!!A* V

is bounded for APM(W). Here U(LW(t)) denotes the group of boosts associated with W. Then
the theory fulfills the Bisognano–Wichmann property.
~VII ! Inspired by the result thatM(W@ l ,l 1#)ùW@ l ,l 2#),l 1Þ l 2 fulfills the condition of 2half-
sided modular inclusion with respect to both algebrasM(W@ l ,l 1#) andM(W@ l ,l 2#) ~see Thm.
IV.4.3! Wiesbrock has introduced the concept of ‘‘modular intersection.’’
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IV.6.3. Definition:
Let M, N be two von Neumann algebras with a common cyclic and separating vectorV. One says
that ~M, N, V! have the7modular intersection property if:
I. MùN fulfills the condition of7half-sided modular inclusion with respect to both algebrasM
andN.
II. There holds

JN~s2 lim
t→6`

DN
i t DM

2 i t !JN5~s2 lim
t→6`

DM
i t DN

2 i t !.

In a QFTLO which fulfills the Bisognano–Wichmann property the modular intersection
dition is fulfilled for the algebras of two wedges which have the first- or the second light ra
common. The condition II can be derived from Thm. IV.4.3. In particular the existence o
strong limit is guaranteed by the first condition. If we set (s2 lim t→6` DN

i t DM
2 i t)5U then condi-

tion II readsJNUJN5U* .
Using a finite number of pairs fulfilling the condition of modular intersection one is abl

reconstruct the algebras of all nontranslated wedges. This program has been taken
Wiesbrock,93,94 where he solved the problem forR3. Here he needs three wedges which a
localized in such a way that the algebras of every pair fulfills the condition of2 or 1modular
intersection. Adding one shifted wedge which fulfills the condition of half-sided modular in
sion, he was able to construct the algebras of all wedges~including the translated ones! and a
continuous representation of the Poincare´ group which fulfills the spectrum condition.

Taking the intersection of wedge algebras on can construct the algebras for the double
Unfortunately one is not able to conclude thatV is also cyclic for these algebras except one sta
from a QFTLO.

V. PROPERTIES OF LOCAL ALGEBRAS

For several applications one wants to know the structure of the local algebras. The que
of interest are usually the factor property, the type of the algebra, and the action of sym
groups. Before entering into the subject we have to collect some results of the Tomita–Ta
theory.

V.1. Some mathematical consequences of the modular theory

The first concept is the generalization of the center of a von Neumann algerbra.
V.1.1. Definition:

Let M be a von Neumann algebra with cyclic and separating vectorV. Setv(A)5(V,AV), A
PM. The centralizer ofv consists of all elementsZPM for which

v~ZA!5v~AZ!, ; APM
holds.

If Z belongs to the centralizer, then the KMS condition implies

s t~Z!5Z, tPR

and vice versa. In particular the center ofM belongs to the centralizer.
It might happen that a von Neumann algebra is too large in order to possess separating

In this case one has to generalize the concept of states. They are called weights.
V.1.2. Definition:

~a! Let M be a von Neumann algebra. A weight is a mapping

v:M1→@0,`#

with the properties:
~a! v(rA)5rv(A), rPR1,APM1
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with the multiplication rule 0.̀ 50.
~b! v(A1B)5v(A)1v(B), A,BPM1

~b! A weight v is called semifinite if

nvª$APM;v~A* A!,`%

is strongly dense inM.
~c! v is called faithful if APM1 andv(A)50 impliesA50.
~d! A weight is called normal if for every increasing netAaPM1 there holds

v~ lim
a

Aa!5 lim
a

v~Aa!.

The setnv is a linear space and by the linear extension ofv this becomes a pre-Hilbert spac
Moreover,nv is a left ideal so that one gets a representation ofM by

pv~B!A&5BA&.

If v is a normal, faithful, semifinite weight, then one can handle the Tomita–Takesaki th
in almost the same manner as with normal faithful states.~See Haagerup, Ref. 36.! The advantage
of this concept is the existence of normal, faithful, semifinite weights for every von Neum
algebra. We need weights only for the discussion of symmetries in Sec. V.4. Otherwise w
only von Neumann algebras which have normal, faithful states.

Another important aspect of the Tomita–Takesaki theory is the natural cone associated
von Neumann algebra. It is often denoted byP\. Here we will use the notationH1.

V.1.3. Lemma:
Let M be a von Neumann algebra acting onH with cyclic and separating vectorV. Let ~D, J! be
the modular operator and conjugation of~M, V!. Then the following sets coincide and are calle
the natural cone of~M, V!.
~i! Closure ofD1/4M1,V.
~ii ! Closure ofD21/4M81V.
~iii ! Closure of$A j(A)V;APM%.

For the proof see Ref. 32, Prop. 2.5.26. Some of the properties ofH1 are listed in the
following:

V.1.4. Proposition:
Let H1 be the natural cone of~M,V!. Then the following holds:
~i! H1 is a proper cone, i.e., H1ù(2H1)5$0%.
~ii ! With Hr5$cPH;Jc5c% one getsHr5H12H1.
~iii ! H1 is a self-dual cone inHr , i.e., cPHr and (c,w)>0;wPH1 impliescPH1.
~iv! For everycPH1 and APM one has A j(A)cPH1.
~v) D itH15H1 for all t PR.

For the proof see Ref. 32, Props. 2.5.26, 2.5.27, 2.5.28. The natural cone has some un
ity properties listed in the following:

V.1.5. Theorem:
Let H1 be the natural cone of~M, V!. Then:
~i! To every normal, positive linear functionalv on M exists a unique vectorcvPH1 with

v~A!5~cv ,Acv!, APM.

~ii ! The mappingv↔cv is continuous in both directions. The following estimate holds:

icv2cri2<iv2ri<icv2criicv1cri .

~iii ! Assume the vectorcPH1 is cyclic and separating forM then the natural cones

H1~M,V! and H1~M,c!
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coincide.
~iv! Let aPAut M and define

U~a!cv5c~a21* v!

then by linearity this map can be extended to all ofH. This extension is a unitary operator
The set

$U~a!;aPAut M%

defines a unitary representation ofAut M, the adjoint action of which implements the aut
morphisms.

For the proof see Ref. 32, Thm. 2.5.31, Prop. 2.5.30, Cor. 2.5.32. Another important re
due to Connes95 which says that the algebrasM andM8 are uniquely characterized by the natur
cone. First some notations:

V.1.6. Definition:
~i! A face of a coneC is a subconeF,C with a,bPC,a,b in the order of the coneC andb
PF implies aPF.
~ii ! The setD(H1)ª$dPB(H);etdH15H1;tPR% is a Lie algebra.
~iii ! A map I :D(H1)→D(H1) is called an orientation ofH1 if it fulfills: I 2521, @ Id1 , d2#
5@d1 , Id2#5I @d1 , d2# and I (d* )52I (d)* . @To be precise, for this definition one first has
devideD(H1) by its center.#
~iv! Let F be a face ofH1, thenF' denotes the face ofH1 which is perpendicular toF. By a
result of Connes one has closureF5F''. PF denotes the projection onto the Hilbert subspa
generated byF. H1 is called facially homogeneous if et(PF2PF')H15H1, tPR and this for all
facesF of H1.

The concept of orientation and homogeneity can also be formulated for arbitrary cone
result of Connes is the following:

V.1.7. Theorem:
There is a one to one correspondence between von Neumann algebrasM acting onH and

selfdual, orientable, and facially homogeneous cones ofH.
Von Neumann has classified the factors by three types denoted by I, II, and III. For a

time there were only very few different type III factors known. Using canonical anticommuta
relations, Powers96 was able to construct a continuous family of different type III factors.
attempt to classify these factors were made by Araki and Woods.97 The question of the classifi
cation has finally been settled by Connes.98 This classification is based on the invariantSwhich is
defined as follows:

V.1.8.Definition:
Let M be a von Neumann algebra andv be a normal weight onM. Let EPM be the support of
v. Thenv is faithful on EME. Hence there exists a modular operatorDv for this algebra. One
defines:

S~M!5ù$spectrumDv ;v is a normal, semifinite weight onM%.

If M is of type III, then there are the following possibilities:
V.1.9. Theorem:
Let M be a type III factor, then for the Connes invariant exist the following possibilities

~1! S(M)5$0,1%,
~2! S(M)5$0%ø$ln;nPZ,0,l,1%,
~3! S(M)5R1.

If S(M) is $1% thenM is not of type III.
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V.1.10. Notation:
A factor with S(M)5$0,1% is called aIII 0-factor. The factors with the set~2! are calledIII l , and
those withS(M)5R1 are namedIII 1 factors.

Let M be a von Neumann algebra andv be a normal faithful state onM. Then it can happen
that for sometPR the modular transformationsv

t is inner, i.e., there exists a unitaryUPM with
sv

t (A)5UAU* , APM. In this case one shows

Dv
i t 5UJvUJv . ~V.1.1!

If sv
t is inner for one normal faithful state then this is true for every such state.
Connes98 has introduced the invariantT(M), consisting of alltPR such thats t is inner. It is

clear thatT(M) is a subgroup ofR. For instance an algebraM is semifinite iffT(M)5R. We do
not need the full relation betweenT(M) andS(M). We are only interested in the typeIII 1 case.
The result is the following:

V.1.11. Theorem:
A von Neumann factor is of Type III1 iff T(M)5$0%. This means that alls t, tÞ0 are outer
automorphisms ofM.

In every classIII l,0<l<1 no classification is known except for one algebra. These are
hyperfinite factors.

V.1.12. Definition:
A factor M is called hyperfinite if there exists an increasing netNa,M of type I algebras with

M5$ø
a

Na%9.

The importance of this concept is the following result.99,100

V.1.13. Proposition:
Every of the classes IIIl contains exactly one element which is hyperfinite.

V.2. The factor problem

The locality and the spectrum conditions together with the existence of a vacuum vector
that the global algebra is of type I. One finds that the commutant of the algebraM(Rd) is Abelian,
and that the projectionE0 onto all translational invariant vectors is an Abelian projection inM
with central support1. In this case the center is pointwise invariant under the translations. Thi
first been observed by Araki.101 The properties of the projectionE0 is a consequence of the clust
property.

The first proof of the cluster property is due to the author.102 A systematic study of this
property was started by Doplicher, Kadison, Kastler, and Robinson103 using the notation of
asymptotic Abelian systems introduced by Doplicher, Kastler, and Robinson in Ref. 104
independently by Ruelle.105 This notation has been weakend by Lanford and Ruelle106 introducing
the concept ofG-Abelian systems. The most general concept leading to the cluster propert
been introduced by Størmer.107 He called it large groups of automorphisms. One important c
sequence of the cluster property of the vacuum state is the additivity of the spectrum. The
is due to Wightman.108

Next we are looking at the algebra of the wedge. Here the following result is known:
V.2.1. Theorem:

Assume we are dealing with a QFTLO on the vacuum sector. LetM(W) be the algebra of the
wedge domain. Then

Z~M~W!!,Z~M~Rd!!,

whereZ(M) denotes the center ofM.
This result has first been obtained by Driessler.109 Our demonstration is taken from Ref. 6

First we show a result which has its interest of its own, and from which Thm. V.2.1 follows ea
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V.2.2. Lemma:
Let M be a von Neumann algebra with cyclic and separating vectorV. Assume U(s)
PHstr(M)1 or U(s)PHstr(M)2. Then:

a. If we write U(s)5eiHt and denote byD(H) the domain of definition for H then

D i tD~H !,D~H !.

b. If E0 denotes the projection onto the eigenspace to the value 0 of H then E0 commutes with
D it.

c. If F1 denotes the projection onto the eigenspace to the value 1 ofD, then one has

F1<E0 .

Proof: We show the lemma forU(s)PHstr(M)1. For U(s)PHstr(M)2 the arguments
are essentially the same.
a. Letw, cPD(H) then we obtain from Thm. II.5.2 (w,D itHc)5e22pt(Hw,D itc). Since the left
side is continuous inw it follows that D itcPD(H).
b. Let Hc50 then we obtain 05D itHc5He22ptD itc. From this we concludeD itE0H,E0H.
Because of the group property ofD it we getD itE0H5E0H.
c. Keep s real ands>0. From the assumption AdU(s)M,M for s>0 and fromD(D1/2)
5$XV;XhM,VPD(X)ùD(X* )% we conclude that onD(D1/2) the relation D itU(s)
5U(e22pts)D it can be analytically continued int as long as2 1

2<Imt<0. If we chooset

52 i 1
4 then we find

D1/4U~s!5e2HsD1/4, s>0.

Multiplying this equation from both sides withF1 we find F1U(s)F15F1e2HsF1 . This is only
possible forE0>F1 .

Next we have to show that the elements inZ(M) commute with the half-sided translation
V.2.3.Lemma:

Let U(t)PHstr(M)1, then

@U~ t !, Z#50 ;ZPZ~M! and ;tPR.

This result can also be found in Ref. 109.
Proof: Let Z5Z* PZ(M) and setZt5Ad U(t)Z. For t>0 the elementZt belongs toM and

for t<0 to M8. This implies thatZ commutes withZt for all tPR. Applying AdU(s) to the
commutator we obtain@Zt1

, Zt2
#50. Hence$Zt% generates an Abelian von Neumann algeb

invariant underU(t). SinceU(t) has a positive generator it follows that AdU(t) is inner in
$Zt%9.

110 This impliesZt5Z. h

For the algebras of the double cones no similar result can be obtained. Even in the case
M(Rd) is a factor, one can easily construct examples whereM(D) has a nontrivial center.@See
V.5.~II !.# Up to now there are no conditions known, implying, thatM(D) is a factor.

V.3. The type question

From the investigations of Kadison61 and from Guenin and Misra62 it is known that the local
algebras cannot be of finite type. In 1967, Borchers111 showed the following result:

V.3.1. Theorem:
~1! Let O1,O2 such that there existsO3,(O2ùO18). Assume E is a projection inM(O1), then
E is equivalent to its central support inM(O2),modM(O2).
~2! If O11x,O2 for x in some open neighborhood ofRd, then the central support of E inM(O2)
belongs to the center of the global algebra.
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There is not known more under the general assumptions. If one wants to obtain better r
one has to impose additional requirements.

The situation is much better for the algebra of the wedge. This is due to the existen
half-sided translations. The first result in this direction is due to Driessler.109 But he uses the
additional assumption that the spectrum has a mass gap. Here we follow the method of Lo112

with a slight variation, applying Thm. V.1.11. There exists also a proof which uses the inva
S(M) and Prop. V.1.9.~See Ref. 60.!

V.3.2. Theorem:
In a QFTLO on the vacuum Hilbert space with one vacuum vector, the algebraM(W) is of type
III 1 .

This result has used only the existence of half-sided translations. Therefore, the th
remains true for arbitrary algebras with half-sided translation. In conformal field theory thes
the algebra of the forward light cone and the algebras of the double cones.

The determination of the type of local algebrasM(D) is burdened with some difficulties. It is
known from examples, as the free massive field, that local algebras fulfill the split property113 if
specific conditions are fulfilled. This property is the following: LetD1,D be such thatD1

1x,D for x in some open neighborhood of the origin. In that case one can find a type I al
N with M(D1),N,M(D). This implies that one cannot expect any statement about the
from purely local considerations. Some more information about the structure ofM(D) has to be
used.

This difficulty has been circumvented by Fredenhagen114 by observing that there exists n
intermediate type I algebra if the domainsD1 andD have boundary points in common. Therefor
he puts the double coneD into the corner of the wedge and tries to compare the Connes inva
Sof M(D) andM(W). To do this he needs the assumption that the local algebras are gen
by Wightman fields which have the Haag–Narnhofer–Stein property.115

Let us first explain this concept. LetF(x) be a Wightman field, then we say forF(x) exists
a scaling limit if there exists a non-negative functionN(l) defined forl.0 such that for alln

N~l!n~V,F~lx1!¯F~lxn!V!

converges forl→0 to some nontrivial Wightman functional. With this concept we introduce
following

V.3.3. Requirement:
There exists a Wightman fieldF(x) such that:
~i! For everyf PD with supp. f PD the operatorF( f ) is affiliated withM(D).
~ii ! F(x) fulfills the Haag–Narnhofer–Stein scaling property.
~iii ! The theory fulfills the Bisognano–Wichmann property.~If the set of Wightman fields, which
fulfill ~i!, generateM(D) then ~iii ! is implied by the result of Bisognano and Wichmann Th
3.1.3.!

With this requirement Fredenhagen has shown the following result:
V.3.4. Theorem:

We are dealing with a QFTLO in the vacuum sector, such that the global algebra is a factor
which fulfills the RequirementV.3.3. Let W be a wedge such that zero belongs to its edge.
D,W be a double cone such that zero belongs to the boundary of D. LetN be a von Neumann
algebra with

M~D !,N,M~W!.

ThenN is of type III1 .
For details of the proof see the complete file or the original article of Fredenhagen.116

More about the structure of the local algebras can be said if in addition one assum
nuclearity condition introduced by Buchholz and Wichmann.117

First we must explain this concept. LetH be the generator of the time translation andV the
vacuum vector. The mapQb :M→H defined by
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Qb~A!5e2bHAV

is called nuclear if one can write it

Qb~A!5(
n

w~A!cn , wPM* , cnPH ~V.3.1!

with (n iwniicni,`.
The expression

N~Qb!ª infH(
n

iwniicni J ,

where the infimum is taken over all possible representations Eq.~V.3.1!. Buchholz and Wichmann
suggested the nuclearity condition by comparing the situation in a bounded region with tha
thermodynamical system in a box. If one does so, one obtains some suggestion about the b
of the normN(Qb) as function ofb, the dimension of the Minkowski space and the diamete
the double coneD, whenQb is applied toM(D). In the coming investigation we only need th
behavior inb. This we formulate as an assumption.

V.3.5. Condition:
We say a QFTLO fulfills the Buchholz–Wichmann property if the mapM(D)→H defined by

Qb~A!5e2bHAV, APM~D !

is nuclear and the nuclear norm fulfills the estimate

N~Qb!<Me~b0 /b!n
,

whereM ,b0 ,n are constants which may depend on the dimension of the space and the dia
of the double coneD.

With help of this condition Buchholz, D’Antoni, and Fredenhagen118 showed the following
result:

V.3.6. Theorem:
Assume a QFTLO fulfills the Buchholz–Wichmann property, Condition V.3.5. Let D1,D such
that the closure of D1 is contained in the interior of D. Then there exists a type I factorP with

M~D1!,P,M~D !.

For the proof of this theorem we refer to the original paper.118 We want to combine this resul
with Thm. V.3.4 and obtain:

V.3.7. Theorem:
Assume we are dealing with a QFTLO in the vacuum sector. Assume that the theory fulfi
Haag–Narnhofer–Stein assumption, Requirement V.3.3, and the Buchholz–Wichmann property,
Condition III.5.5.Assume in addition thatM(D) is continuous from inside or from outside. ~The
first statement meansM(D)5$øM(Di)%9 with closure Di, interior Di 11 and øDi5D.)
Then every local algebra is isomorphic to

M~D !>R^̄ Z,

whereR is the unique hyperfinite type III1 factor andZ is the center ofM(D).

V.4. On the implementation of symmetry groups

Assume we are describing a physical theory in terms of aC* -algebraA and a symmetry
groupG, i.e., we have a representation ofG by automorphisms ofA
                                                                                                                



e

an

variant
ok of

n of the
-
s to be
ing to
for the

ate

ntations.
tinuity

r

3649J. Math. Phys., Vol. 41, No. 6, June 2000 On revolutionizing QFT with modular theory

                    
a:G→Aut ~A!.

This situation is usually called aC* -dynamical system and denoted by the triple$A, G, a%. For
applications it is of interest to characterize those representationsp of A, for which there exists in
Hp a continuous unitary representationU(g) of the symmetry group which implements th
automorphism:

U~g!p~x!U* ~g!5p~agx!. ~V.4.1!

Let ag act strongly continuous, which means that the functiong→ag(A) is a continuous function
on G with values in the normed spaceA. If in addition the group is locally compact, then one c
integrate over the group. This led Doplicher, Kastler, and Robinson104 to introduce the
C* -completion of the algebra of continuousL1 functions onG with values inA. They called it the
covariance algebra. Nowadays it is called the crossed product ofA with G. The importance of the
covariance algebra stems from the fact that there is a one to one correspondence of co
representations ofA and representations of the covariance algebra. For details see the bo
Pedersen.52

If one is dealing with aC* -dynamical system and a representation$p, H% of A, then it is
usually hard to decide whether or not this representation can be extended to a representatio
covariance algebra. The difficulties are twofold: Ifp(A) has a center then the multiplicity prob
lem may appear. Moreover, by passing to the adjoint representation of the group, one ha
aware of central extensions of the group. Both problems can be circumvented by pass
quasi-equivalent representations. The reason for the first problem is clear. The reason
second problem is the following: IfU(g) is a ray representation ofG on H, then there exists a
second representationÛ(g) which is also a ray representation, but with the complex conjug
phase factor. ThereforeU(g) ^ Û(g) is a representation of the group onH^̄ H. Replacingp by
p ^ 1 we obtain a covariant representation. This leads to the following notation:

V.4.1. Definition:
Let $A, G, a% be aC* -dynamical system and$p, H% be a representation ofA then$p, H% is called
quasicovariant, if there exists a covariant representation$p1 ,U,H1% such that $p, H% and
$p1 ,H1% are quasi-equivalent.

Quasicovariant representations are much easier to characterize than covariant represe
The first result was obtained in Ref. 119 which was based on the assumptions of strong con
and the locally compactness of the group. Some time later Borchers120 observed, that it is neithe
necessary to assume thatag acts strongly continuous nor thatG is locally compact. To prove this
the natural cone will be used, in particular Thm. V.1.5.~iv!.

V.4.2. Theorem:
Let $A, G, a% be a C* -dynamical system. Letp be a representation ofA. Then this representation
is quasicovariant iff:
~a! The dual actionag* maps the folium ofp(A) onto itself.
~b! ag* acts strongly continuous on the folium ofp. This means the function

g→ag* ~v!

is a continuous function on G with values in the folium ofp, furnished with the norm topology.
The folium of a representation is the set of states, which extend to normal states ofp(A)9.

The proof is a simple consequence of Thm. V.1.5,
This result suggests to investigate closer that part ofA* on whichag* acts strongly continu-

ous. We introduce:
V.4.3. Definition:

By Ac* we denote the set offPA* , ~A* denotes the topological dual ofA!, such that for every
e.0 exists a neighborhoodU of the identity ofG such that

if+ag2fi<e
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holds forgPU.
Some properties of this set are described in the following:
V.4.4. Proposition:

Let $A, G, a% be a C* -dynamical system and assume G(t) is a topological group, then the spac
Ac* has the following properties:
~i! Ac* is a linear norm-closed space.
~ii ! Ac* is invariant under the action of the group, i.e., fPAc* implies f+agPAc* for every g
PG.
~iii ! With fPAc* one finds also thatf* and ufu belong toAc* . Ac* is generated by its positive
elements.

Since this result has no connection with the Tomita–Takesaki theory, we refer for the pr
the original paper.120

Recall that for every positive linear functionalvPA1 exists a vectorjvPH1, ~H1 denotes
the natural cone ofA** ! with v(A)5(jv ,Ajv). Next we introduce some concepts:

V.4.5. Notation:
Let $A,G,a% be a C* -dynamical system with G being a topological group. LetH be the Hilbert
space of the standard representation ofA** and letH1 be the natural cone associated with th
representation then we denote
~i! Hc

15$cv ;vP(Ac* )1%.
~ii ! Hc5smallestsub-Hilbert-space ofH containingHc

1 .
~iii ! Denote the canonical involution associated with the standard representation ofA** by J.
~iv! The algebraA** will usually be denoted byM. ThenA* and M* are the same space.

About this set we know:
V.4.6. Proposition:

With the assumptions and notations of V.4.5 one obtains
~i! Hc

1 is a closed cone.
~ii ! The spaceHc is invariant under the canonical involution J.
~iii ! If Hc

r denotes the vectorscPHc with Jc5c thenHc
1 is a self-dual cone inHc

r and Hc is
algebraically generated byHc

1 .
~iv! If Pc denotes the projection ontoHc then for everycPH1 one has PccPHc

1 .
The proof of this proposition uses Prop. V.4.4 and the modular theory. In particula

properties of the natural cone described in Sec. V.1 are used.
In order to investigate the structure ofAc* in some detail one must look at the coneHc

1 . By
this one wants to show thatHc

1 is the natural cone of some von Neumann algebraNc . One has to
show that the cone is facial homogeneous and oriented in the sense of Connes.95 ~See also Def.
V.1.6.! If this is done, then one wants to connect the algebraNc with some von Neumann
subalgebra ofM5A9.

In order to do this the following von Neumann algebras have to be introduced.
V.4.7. Definition:

~1! We define

Mc
05$APM;@A,Pc#50%.

~2! Let Av(.)ªv(A.) andvA(.)ªv(.A). Then we put

Mm
0 5$APM;AvPM* ,c ,vAPM* ,c ,;vPM* ,c%.

~3! Let Ec be the smallest projection inM with EcPc5Pc .
All these objects are invariant underag . First note that both sets are von Neumann algeb

The two algebras are not different. We have
V.4.8. Lemma:

~1! The two algebrasMc
0 and Mm

0 coincide.
~2! Every element inMc

0 commutes with Ec .
                                                                                                                



von

ll

mplete

, some
is

ann
are the

on

iant in

rength-
ons
lt.

th

3651J. Math. Phys., Vol. 41, No. 6, June 2000 On revolutionizing QFT with modular theory

                    
It turns out that the algebraMc can be used for defining an orientation for the coneHc
1 . By

this Nc can be identified withMc . The precise result is
V.4.9. Theorem:

~1! The coneHc
1 is facial homogeneous and oriented and is, therefore, the natural cone of a

Neumann algebraNc .
~2! The von Neumann algebraNc is isomorphic to the sub-von Neumann-algebraMc,MEc

where
~a! Ec is the smallest projection inM which is larger than the support projections of a

states belonging toM* ,c.
~b! Mc is the set of operators inMEc

which are right and left multipliers ofM* ,c .
~g! The automorphismsag are automorphisms ofMc .

~3! M* ,c is the predual ofMc .
Unfortunately the proof of this result cannot be presented here. For details see the co

text or Ref. 121.

V.5. Remarks, additions, and problems

~I! Since physical observables should be real, i.e., represented by selfadjoint operators
physicists like to start with Jordan algebras instead ofC* - or von Neumann algebras. In th
connection it is worthwhile to mention that Connes’ theory of the equivalence of von Neum
algebras with cones, fulfilling some properties, extends to certain Jordan algebras, which
analog of von Neumann algebras. This has been worked out by Iochum122 in his thesis.
~II ! It is easy to construct examples of QFTLO, whereM(D) is not a factor. Let
$M(O),H,Rd11% be a QFTLO on the (d11)-dimensional Minkowski space. Define a theory
thed-dimensional space as follows. LetD̂ be a double cone inRd andD its extension toRd11. Let
K(D̂) be the cylindrical set inRd11, i.e., (x0,...,xd21)PD̂ and xd arbitrary. ThenD8ùK(D̂)
contains interior points. Choose an Abelian algebraA(D̂),N(D8ùK(D̂)) and defineM(D̂)
5M(D)∨A(D̂). This algebra has at leastA as center. It is clear that one can chooseA(D̂) in an
Rd invariant manner. Notice that we obtain for the wedge

M~Ŵ!5∨$M~D !;D,W%

because of the double cone theorem I.4.4.
Problem:Do there exist conditions implying thatM(D) is a factor?

~III ! Also for the algebras of spacelike cones one knows their type. Driessler123 showed that the
algebra of a spacelike coneM(C) is of type III. Borchers and Wollenberg124 showed the follow-
ing result:

V.5.1. Theorem:
Let C be a spacelike cone and e be a direction inside C. Let W be a wedge which is invar
the e-direction. ThenM(CùW) is of type III1 .

Notice if C is a cone which is causally stable, i.e.,C5C9 then exists a larger coneC8.C
such thatC5C8ùW. Therefore, the algebras of such cones are of typeIII 1 .
~IV ! If one deals with special assumptions then the result of Sec. V.4 can sometimes be st
ened. If the group is the translation group ofRd and one is interested in those representati
where the spectrum ofU(a) is contained in some proper coneC then one obtains a stronger resu
But first we need some notation.

V.5.2. Definition:
Let $A,Rd,a% be a C* -dynamical system andC,Rd be a closed, convex, proper cone wi
interior points. LetĈ denote the dual cone ofC. Then we denote by
~1! A0* (C) the set of elementswPA* with the properties:

~a! a→w(xaay) is a continuous function onRd, x,yPA.
~b! w(xaay) is the boundary value of an analytic functionW(z) holomorphic in the tube
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T~Ĉ!5$zPCd;ImzP interior of C%.

~g! There exists a constantm such that

uW~z!u<iwiixiiyiemiImzi

holds forzPT(C).
~d! w* fulfills the same conditions asw.

~2! A* (C) is the norm-closure ofA0* (C).
With this notation one obtains:
V.5.3. Theorem:

Let $A,Rd,a% be a C* -dynamical system and C,Rd be a closed, convex, proper cone wi
interior points. Then there exists a projection E(C) in the center ofA** with
~1! wPA* (C) iff there holds

w~E~C!A!5w~A!, ;APA.

~2! Let $H,p% be a representation ofA. Then one can find a continuous unitary representat
V(a) acting onH, which implementsaa with spectrum V(a),C if and only if every vector state
vc belongs toA* (C).
~3! The representation V(a) can be chosen to be inp~A!9.

For details see Ref. 27.
~V! Part V.4 has some interest in connection with broken symmetries. If$A,G,a% is a
C* -dynamical system withG a topological group, then one is not only interested in represe
tions where the symmetry is implemented by a continuous unitary representation of the groG,
but also in representations with broken symmetries. By this we mean representations wh
symmetry is no longer exact, but where there is enough symmetry left in order that it c
observed as symmetry on some observables. One possibility is to assume that there is a
symmetry on some subalgebra. Adapting this point of view one should look for some al
which is isomorphic to a subalgebra ofMc , introduced in the last section.~Lagrangean field
theory suggests to look at some deformed algebra. But, in the general theory it is not clea
deformation means.!

VI. TENSOR PRODUCT DECOMPOSITION OF QUANTUM FIELD THEORIES

The axioms of quantum field theory are such that they allow to describe two or more
pendent theories in one object. There are several mathematical procedures which permit
struct a new theory out of two or more independent theories. In all the known examples th
theory does not describe new physics. The simplest example is the direct sum, or more ge
the direct integral of theories. The inverse operation is the integral decomposition with resp
the center of the global algebra. There are effective criteria implementing that a theory is
composable with respect to the direct sum operation. This is the cluster decomposition prop
equivalently the uniqueness of the vacuum vector.102,103

More complicated is the direct product of theories. Starting with two theo

$Mi(O),Ui(L,x),Hi ,V i%, i 51,2 one can define a new theory onH1^̄ H2 by M(O)5M1(O)
^̄ M2(O), U(L,x)5U1(L,x) ^ U2(L,x) and V5V1^ V2 . The new theory
$M(O),U(L,x),H,V% fulfills again all axioms of local quantum field theory. In order to discov
the direct product structure one has to look at the subtheory$M1(O) ^ 1,U(L,x),H,V% which
fulfills the assumptions of the theory of local observables except the cyclicity assumption fo
vacuum vector. In this section we want to develop the theory for the converse operation
decomposition of tensor products. Besides the usual assumptions we require that the glob
bra is a factor, and that the theory satisfies the Bisognano–Wichmann property.

VI.0.1. Remark:
~1! As a consequence of the Bisognano–Wichmann property one concludes that the theory
the wedge duality, i.e., for every wedge the relation
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M~W!85M~W8!

holds, whereW8 denotes the opposite wedge ofW. For the proof see Prop. IV.4.2.
~2! If one identifies the algebra of the double coneD with

M~D !5ù$M~W!;D,W%. ~VI.0.1!

then the general duality property

M~D !85M~D8!

holds, whereD8 denotes the~interior! of the spacelike complement ofD.

VI.1. On modular covariant subalgebras

In order to understand the problem let us start with the assumption that our theory is a
product.

$M1~O! ^̄ M2~O!,U1~x! ^ U2~x!,H1^̄ H2 ,V1^ V2%.

First we look at one algebraM for a suitable chosen domain. Then we haveM5M1^̄ M2 .
SinceV is a product state we know that also the modular group splits, i.e.,

D it5D1
i t

^ D2
i t .

If this is the case thenM1^ 1 is a subalgebra ofM which is mapped bys t onto itself

s t~M1^ 1!5M1^ 1.

Subalgebras which are mapped bys t onto itself are ‘‘modular covariant subalgebras.’’
We start our investigation by introducing modular covariant subalgebras and describing

relations to normal and faithful conditional expectations. In addition we describe Takesaki’s
on the structure of modular covariant subalgebras.125

Let M be a von Neumann algebra acting on the Hilbert spaceH and let the vectorVPH be
cyclic and separating forM. Then we denote byD, J the modular operator and the modul
conjugation associated with the pair~M,V).

VI.1.1. Definition:
A von Neuman subalgebraN,M(1PN) is called modular covariant if it fulfills the equation

D itND2 it5N, ;tPR.

The set of modular covariant subalgebras ofM will be denoted byMcs(M).
Notice that the vectorV is separating forN but not cyclic, because cyclicity impliesN

5M. ~See, e.g., Kadison and Ringrose, Ref. 33, Thm. 9.2.36.!
The symbol@NV# denotes the projection onto the Hilbert subspace generated byNV.

Modular covariant subalgebras have the following well known and easy to verify prope
~See Refs. 125, 126, 127, and 91.!

VI.1.2. Lemma: LetNPMcs(M). Let HN be the closure ofNV and denote by EN the

projection ontoHN . By N̂ we denote the restriction ofN to HN . Then:

1. EN commutes withD it and J. The restriction ofD and J toHN will be denoted byD̂ and Ĵ.
2. D̂ and Ĵ are the modular group and modular conjugation of(N̂,V).
3. The commutant ofN̂ in HN coincides with Jˆ N̂Ĵ.
4. The mapN→N̂ is an isomorphism of von Neumann algebras.
5. APM and @A,EN#50 implies APN.
6. APM and AVPHN implies APN.
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For the proof see the paper of Takesaki125 or the complete script. The results of the last lemm
have been strengthened.

VI.1.3. Theorem: ~Takesaki!
With the assumptions and notations of Lemma VI. 1.2 we obtain:

~1! For APM one has EAEPN̂.
~2! There exists a normal faithful conditional expectationE from M onto N.
~3! E commutes with the modular action:

E~Ad D itA!5Ad D itE~A!, A,M.
(4) There exists also a conditional expectationE8 from M8 to JE(M)J defined by

E8~A8!5JE~JA8J!J, A8PM8.
(5) Let E be a projection with EV5V. If there is a von Neumann algebraN,M with E
PN8 and the central support of E inN8 is 1 and in addition one has EME5NE thenN is a
modular covariant subalgebra ofM.

VI.2. Conditional expectations and half-sided translations

If M is a von Neumann algebra with cyclic and separating vector then we call the anti-
operatorSMªJMDM

1/2 the Tomita conjugation of~M, V!. In this section we will deal with
operators of the same kind, i.e., operatorsS fulfilling:
~i! S is a densely defined closed antilinear operator with domain of definitionD(S).
~ii ! S251 on D(S).
~iii ! VPD(S) andSV5V.
We will call such operators generalized Tomita conjugations.

Since S is closed it has a polar decompositionS5JD1/2. Then D is invertible andJ is a
conjugation, i.e.,

JDJ5D21, J5J* 5J21. ~VI.2.1!

These properties follow from the conditionS251. ~See, e.g., Bratteli and Robinson, Ref. 32, Pro
2.5.11.!

We often deal with the situation that we have a generalized Tomita conjugationS and a
Tomita conjugationSM which is an extension ofS. From Eq. ~II.1.3! we know (11DM)21

>(11D)21. This implies that the operator-valued functionC(t)ªDM
2 i tD it has a bounded ana

lytic extension into the stripS(0,1
2). We are interested in determining the value of this function

the upper boundary. We obtain as in Sec. II.3
VI.2.1. Lemma:

Let S be a generalized Tomita conjugation and SM be the Tomita conjugation ofM such that the
latter is an extension of S. Define C(t)ªDM

2 i tD it. Then C(t) has a bounded analytic continuatio

into the strip S(0,1
2) and at the upper boundary one has

C~ t1 i/2!5JMC~ t !J.

Moreover, the following estimate holds:

iC~t!i<1.

We saw in Sec. III.2 that the elements inChar~M! are in one to one correspondence with t
von Neumann subalgebras belonging toSub~M!. Therefore, it is interesting to know whic
condition of Lemma II.3.2 is the crucial one. It turns out that the conditions~1!–~6! can easily be
satisfied, but that condition~7! is the essential one. In order to overcome the lack of condition
Lemma II.3.2 we will use a property similar to that of half-sided modular inclusions.
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VI.2.2. Theorem:
Let M be a von Neumann algebra onH with cyclic and separating vectorV and let SM be the
Tomita conjugation ofM. Let S be a generalized Tomita conjugation and assume SM is an
extension of S. Assume in addition that S is an extension ofDM

i t SDM
2 i t for t<0. Then:

1. There exists a unitary group U(t) with
(a)U(t)V5V for all t PR.
(b)U(t) has a non-negative generator.

2. Between the modular group ofM and U(t) exist the relations

DM
i t U~s!DM

2 i t5U~e22pts!, JMU~ t !JM5U~2t !.

3. Define

St5DM
i t SDM

2 i t

which is monotonously increasing with t and set

S`5 lim
t→`

St .

Then there holds for s.0

U~s!S`U~2s!5S2~1/2p!log s .

Notice: There exists a variant of this theorem which is obtained by replacing everywhert by
2t.

The statement of the theorem needs some explanation. By assumption the familyDM
i t SDM

2 it is
increasing witht. Hence the projections onto the graphs are an increasing family of projec
which converges strongly. Since all these projections are majorized by the projection on
graph ofSM the limit is smaller or equal to the majorant.

The proof of this theorem is a variation of the proof of Wiesbrock’s theorem on half-s
modular inclusions presented in Sec. II.4 but unfortunately we cannot present it here. For
see the complete script.

From Thm. VI.2.2 one can draw several conclusions. We start with the following result
VI.2.3. Corollary:

Let M be a von Neumann algebra onH with cyclic and separating vectorV and let SM be the
Tomita conjugation ofM. Let S be a generalized Tomita conjugation and assume SM is an
extension of S. Assume also that S is an extension ofDM

i t SDM
2 i t for t<0. If we have in addition

SM5 lim
t→`

St ,

then S is the Tomita conjugation of a von Neumann algebraN which hasV as cyclic and
separating vector. Moreover, one has

N5U~1!MU~21!.

VI.2.4. Remark:
Unfortunately I could not show thatN is a von Neumann subalgebra ofM, although it is
suggested by the fact thatSM is an extension ofSN . Up to now one needs additional informatio
in order to conclude thatN is a subalgebra ofM.

Proof of the Corollary: With S`5 limt→` St we know from Thm. VI.2.2 the relation
S5U(1)S`U(21). With S`5SM it follows S5U(1)SMU(21). SinceMV is a core for
SM it follows with N5U(1)MU(21) that NV is a core for S. Hence the corollary is
proved. h

In connection with conditional expectations one can conclude that the algebraN, described in
Corollary VI.2.3, is a subalgebra ofM.
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A half-sided translation associated withM is a one-parametric unitary groupV(t) fulfilling:
~i! V(t)V5V for all tPR.
~ii ! V(t) has a non-negative generator.
~iii ! V(t)MV(2t),M for t>0 ~or for t<0).
With these concepts we show:

VI.2.5. Theorem:
Let M be a von Neumann algebra onH with cyclic and separating vectorV. AssumeN is a
modular covariant subalgebra ofM and E the associated conditional expectation. (See Th

VI.1.3.) Denote byN̂ resp. Ê the restriction ofN resp. E to the cyclic subspace ofN. Assume V(t)
is a 1half-sided translation forM. Then:
~i! E(V(t)MV(2t)) is dense in the von Neumann algebra$E(V(t)MV(2t))%9.

~ii ! There exists a1half-sided translation forN̂5 Ê(M) with

U~ t !N̂U~2t !5$Ê~V~ t !!M~V~2t !!%9.

Since V(t) has a non-negative generator we conclude by a Reeh–Schlieder type
ment, that EV(t)MV is dense in EH. Let S21/2p log t be the map EV(t)AV(2t)V
→EV(t)A* V(2t)V. It is not difficult to show that this map is preclosed. The closure, denote
the same symbol, fulfills the conditions of Thm. VI.2.2. Hence one gets a groupU(t) with

St5U~e2pt!SN̂U~2e2pt!.

The setsEV(e2pt)MV andU(e2pt)N̂V are both a core forSt which implies thatEV(e2pt)MV

is dense inU(e2pt)N̂V in the graph topology ofSt . Since the graph topology ofSt is stronger
than the Hilbert space topology we get the density in the Hilbert space topology.
V is separating and sinceEV(e2pt)MV(2e2pt)E is convex we conclude tha

EV(e2pt)MV(2e2pt)E is strongly dense inU(e2pt)N̂U(2e2pt). Hence the theorem is proved
For details see Ref. 128 or the complete script.

VI.3. Construction of subtheories

If we start with a wedgeW and assume the algebraM(W) has a modular covariant subalgeb
N(W). Let EW be the associated conditional expectation andEW the projection onto@N(W)V#. If
we now change the wedge toLW1x then of courseU(L,x)N(W)U(L,x)* is a modular cova-
riant subalgebra ofM(LW1x). But in order to obtain a decomposition of the global field theo
the projectionsEW andELW1x have to coincide. If this is the case then we also need conditi
expectations for the algebrasM(D) associated with double cones. In order to be able to cons
such conditional expectations the algebras must be closely related to the algebras of w
Therefore, we set

M~D !5ù$MLW1x ;D,LW1x%.

Now we can define what we mean by the coherence property.
VI.3.1. Definition:

Assume we deal with a quantum field theory in the vacuum sector. Assume with every d
cone D and every wedgeW is associated a modular covariant subalgebraN(D),M(D) and
N(W),M(W). Then we call this family coherent if the projectionsED andEW coincide for all
double conesD and for all wedgesW.

Unfortunately it is not always possible to transport the conditional expectation from
wedge to all others in a coherent way. Half-sided translations can be used only if the po

linear mapsLt(A):M→N̂ defined by

Lt~A!5U~2t !EV~ t !AV~2t !EU~ t !
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are trivial. These half-sided translations ofM(W) would be necessary in order to transport t
conditional expectations to the shifted wedges or to pass to other wedges with one light
common.~See Sec. IV.4.!

In case one knows that the translations in the characteristic two-plane of the wedgeW com-
mute withEW one can conclude more:

VI.3.2. Lemma:
Let the dimension of the Minkowski space be larger than 2. LetN(W) be a modular covariant
subalgebra ofM(W). Assume EW commutes with the translations in the characteristic two-pla
of W. Then EW commutes with all translations.

This is an easy consequence of the spectrum condition. Assume we have a coherent fa
modular covariant subalgebras for all wedges.

It remains to construct a modular covariant subalgebra for every double cone.
VI.3.3. Lemma:

Let N(W) be a coherent family of modular covariant subalgebras ofM(W). Define for any
double cone

N~D !5ù$N~W!;D,W%.

ThenN(D) is a modular covariant subalgebra of

M~D !5ù$M~W!;D,W%.

Moreover, one has

@N~D !V#5@N~W!V#.

One knowsN(W)5M(W)ø$E,1%8. In analogy one defines

N~D !5M~D !ù$E,1%8. ~VI.3.1!

Because ofN(D)V5EM(D)V we get thatV is cyclic for N̂(D) in EH. Using the fact thatV
is also separating forN(D) one finds that Thm. VI.1.3 is applicable, which shows thatN(D) is a
modular covariant subalgebra ofM(D).

We saw that the coherence property is not automatic. Therefore, we have to assume thi
future. Using the results of Sec. IV.4 one finds:

VI.3.4. Lemma:
Let $M(D),U(L,x),V% be a theory of local observables fulfilling the Bisognano–Wichmann
property. Let $N(W),N(D)% be a coherent family of modular covariant subalgebras and
5EW be the associated projection. Then EH is invariant under the Poincare´ transformations

U(L,x). Moreover, for every wedge the restrictionsD̂W
i t and Û(LW(t),0) coincide. HereLW(t)

denotes the Lorentz boosts which map W onto itself.
We collect the main results of this section in the following
VI.3.5. Theorem:

Let $M(D),U(L,x),H,V% be a theory of local observables fulfilling the assumptions of
introduction. Assume there exists a coherent family of modular covariant subalgebrasN(W) of

M(W). Then a local quantum field theory$N̂(D),Û(L,x),EH,V% exists which fulfills the axi-
oms listed in the introduction. In particular one has for every wedge

N̂~W!5∨$N̂~D !;D,W%.

For details of the proof see the complete script.
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VI.4. Decomposition of the global algebra

The investigations of this subsection are based on a result of Takesaki.125 Notice if N is a
modular covariant subalgebra ofM, then this is also true forN c

ªN8ùM.
The existence of the two conditional expectationsE andE c has some important consequence
VI.4.1. Theorem:

Let M be a von Neumann algebra with cyclic and separating vectorV. AssumeNPMcs(M) is
a von Neumann subfactor. LetN c be the relative commutant ofN in M and letR5N∨N c be the
von Neumann algebra generated byN and N c. Then the map

p:( Ai ^ BiPN^ N c→( AiBiPR,M

extends to an isomorphism ofN^̄ N c onto R5N∨N c. Moreover the vacuum state~V,.V! is a
product state onR, i.e., APN and BPN c implies

~V,ABV!5~V,AV!~V,BV!.

In order to apply Takesaki’s result on tensor products we have to know that the mo
covariant subalgebraN(W) of M(W) is a factor, which will be shown under the assumption th
M(W) itself is a factor. This is known to be the case if the global algebra is a factor. Sinc
factor property forM(D) is not known we are not able to show thatN(D) is a factor. Hence we
cannot use Takesaki’s result. Here we will use a characterization of tensor products due to
Kadison.129

For the factor property ofN(W) we use Lemma V.2.2: LetU(t) be a half-sided translation o
the von Neumann algebraM. Denote byE0 the projection onto theU(t) invariant vectors and by
F1 the projection onto the eigenvectors ofDM to the eigenvalue 1. Then one has

F1<E0 .

From this we conclude:
VI.4.2. Proposition:

Let $M(D),U(L,x),H,V% be a theory of local observables. Assume the global algebra
factor and henceM(W) is a factor. Then every modular covariant subalgebra ofM(W) is a
factor.

Proof: Let N(W) be a modular covariant subalgebra ofM(W) and letZ be in the center of

N(W). Then Ẑ is in the center ofN̂(W) and hence it commutes withD̂W
i t . Since the map

N(W)→N̂(W) is an isomorphism we find thatZ commutes withDW
i t . This implies ZV

PF1H,E0H. As the group generated by half-sided translations forM(W) contains the time
translation it followsE0H5CV. HenceZV5zV,zPC and the separability ofV implies Z5z1.
This shows the proposition. h

Knowing thatN(W) is a factor, we can use Takesaki’s result for the construction of te
products. But first we have to look at the relative commutants.

VI.4.3. Lemma:
Assume$N(W)% is a coherent family of modular covariant subalgebras of$M(W)%. Let N c(W)
be the relative commutant ofN(W) in M(W). DefineN p(W)5N(W)∨N c(W). Then$N c(W)%
and $N p(W)% are both coherent families of subalgebras of$M(W)%.

The proof of this lemma uses the covariance of the two families$M(W)% and $N(W)%. In
addition one has to look at the algebrasM(W( l ,l 1)ùW( l ,l 2)) andN(W( l ,l 1)ùW( l ,l 2)), where
the first vectors coincide in order to show thatN c(W( l ,l 1)ùW( l ,l 2)) fulfills the condition of
half-sided modular inclusion with respect to the algebrasN c(W( l ,l 1)) andN c(W( l ,l 2)). From
this one concludes the coherence property.
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VI.4.4. Remark:
The relative commutant ofN p(W) is trivial, because (N p(W))c belongs to the center of the facto
N p(W) ~see Prop. VI.4.1!.

Since we do not know whether or notM(D) andN(D) are factors, we will defineN c(D)
andN p(D) differently.

VI.4.5. Definition:
With the assumptions as before we set for double cones

N c~D !5ù$N c~W!;D,W%,
~VI.4.1!

N p~D !5ù$N p~W!;D,W%,

Since these definitions are similar to those in Lemma VI.3.3, the conclusion of that lemma
for N c(D) andN p(D) with the obvious changes.

Next we have to look at conditions which imply thatM(D) is isomorphic to a tensor produc
For the proof of such condition we need a result of Ge and Kadison which is based on the
slice mapping introduced by Tomijama.130 First we have to explain this concept.

Let R andS be von Neumann algebras acting on the Hilbert spacesH andK. Let v andr be
normal linear functionals onR and S, respectively. Then their productv ^ r defines a linear

functional onR^̄ S which is defined onH^̄ K. Keepingv fixed and takingc,xPK and choosing

TPR^̄ S then the expressionv ^ rc,x(T) defines a sesquilinear form onK. This form is continu-
ous and defines by the Riesz representation theorem a linear operatorCv(T). Since the commu-

tant ofR^̄ S is R8 ^̄ S8 it is easy to see thatCv(T) belongs toS. This is the tensor slice mappin

introduced by Tomijama. In the same manner there exists a mappingCr :R^̄ S→R.
With this concept the following result of Ge and Kadison129 holds, which we quote withou

proof:
VI.4.6. Proposition:

LetM be a von Neumann subalgebra ofR^̄ S, thenM splits, i.e., M5R1^̄ S1 with R1,R and
S1,S exactly if every tensor slice mapping sendsM into M.

Using this result we obtain:
VI.4.7. Proposition:

Let N(D) be defined as in Lemma VI.3.3 andN c(D), N p(D) as in Eq. (VI.4.1) then one has

N p~D !>N~D ! ^̄ N c~D !.

The proof uses the fact thatM(D),M(W) and that for the latter algebra we know the tens
product structure.

Collecting the results of this section we obtain:
VI.4.8. Theorem:

Let $M(O),U(L,x),H,V% be a theory of local observables fulfilling the assumptions listed in
introduction. Assume that$N(W)% is a coherent family of modular covariant subalgebras
$M(W)%. Let N c(W) be the relative commutant ofN(W) in M(W) and N p(W)
5N(W)∨N c(W). Then:
~1! There exists onH a subtheory of local observables

$N p~D !,N p~W!,U~L,x!%

covariant under the existing unitary group U(L,x). Moreover, $N p(D),N p(W)% are modular
covariant subalgebras of$M(D),M(W)% such thatN p(W) has a trivial relative commutant in
M(W). If Ep denotes the projection onto@N p(W)V# then Ep commutes withN p(D), N p(W)
and the group representation U(L,x). Moreover, V is cyclic forN p(D) in EpH. If we denote the

restriction ofN p(D) and U(L,x) by N̂ p(D) and Û(L,x), respectively, then
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$N̂p~D !,Û~L,x!,EpH,V%

defines a theory of local observables satisfying the axioms listed in the introduction.
~2! There exist two coherent families$N(D),N(W)% and $N c(D),N c(W)% of modular covariant
subalgebras of$M(D),M(W)%. If E and Ec are the projections onto@N(W)# and @N c(W)#,
respectively, then these projections commute with U(L,x) and E withN(D) and Ec with N c(D).
With this we obtain:

$N̂ p~D !,Û~L,x!,EpH,V%>$N̂0~D ! ^̄ N̂c~D !,Û0~L,x! ^ Ûc~L,x!,EH^̄ EcH,V0
^ Vc%.

In this formula X̂0 denotes the restriction to EH and X̂c the restriction to EcH.

VI.5. The hidden charge problem

If we look at the modular covariant subalgebrasN(W) of M(W), then it can happen that th
relative commutantN c(W) of N(W) in M(W) is trivial, i.e., N c(W)5C1. This is called the
hidden charge problem because of the following reason: If we start with a theory of local ob
ables$N(O),U(L,x),H,V% such that the theory has charged sectors which are connecte
localized Bose fields, then we can add these Bose fields and obtain a field a

$F(O),Û(L,x),Ĥ,V% which also fulfills the assumptions of the theory of local observab
Knowing only the latter theory one would like to discover the local net$N(O),U(L,x),H,V% and
the structure of the charged fields. The simplest case has been discussed in Ref. 131, nam
the charged fields are covariant under the action of a compact Abelian group. In this case o
unitary operators inM(W) which define automorphisms ofN(W). This is no longer true in the
general situation. The next, more complicated case is described by Doplicher, Haag
Roberts.132,133Here, or more general in the situation described by Buchholz and Fredenhag134

the commutant ofN(W)∨N(W8) is generated by minimal projections. In general one has to c
with the situation where the commutant ofN(W)∨N(W8) is not generated by minimal projec
tions. In both cases, the tensor product decomposition and the hidden charge situation, on
look at subtheories. Therefore, both problems are mingled and one has to disentangle and
them.

Let $N(W)% be a coherent family of modular covariant subalgebras of$M(W)% and assume
that the relative commutantN c(W) of N(W) in M(W) is trivial. Let E be the projection onto
@N(W)V#. We introduce:

VI.5.1. Definition:
~1! G denotes the set of wedges, double cones, and spacelike complements of double con
~2! For GPG we define

M1~G!5M~G!∨$1,E%9.

~3! N 1
c(G) denotes the relative commutant ofN(G) with respect toM1(G). Since by Remark

VI.0.1 duality holds insideG one has

M1~G!5N~G8!.

~4! N` denotes the von Neumann algebra generated by allN(G).
The following properties ofM1(G) are easy to derive.
VI.5.2. Lemma:

Let M1(G) be the algebra defined in VI.5.1. Then:
~1! For every wedge the algebraM1(W) is a factor.
~2! For the relative commutant ofM(G) in M1(G) one has

M1~G!ùM~G!85M~G8!ùN~G8!85N c~G8!.
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Hence for every wedgeM1(W)ùM(W)8 is trivial.
~3! For the relative commutantN 1

c(G) one has

N 1
c~G!5M1~G!ùM1~G8!5N 1

c~G8!.

~4! Ad DG
i tM1(G)5M1(G) and hence

Ad DG
i tN 1

c(G)5N 1
c(G)

Our first goal is to look at partial isometries inM(W).
VI.5.3. Definition:

Let N(W) be a modular covariant subalgebra ofM(W). We set:
~i! J(W)5$VPM(W);V partial isometry withV* V51,VV* 5R(V)%.
~ii ! P(W)5$VEV* 5..F;VPJ(W)%, whereE5@N(W)V#5@N(W8)V#.
~iii ! By U(W) we denote the set of unitaries inM(W).

With this notation we show:
VI.5.4. Lemma:

~1! Let FPP(W) and P be a projection inM1(W) with P<F. Then:
~a! PPP(W), i.e., there exists an element V1PJ(W) with P5V1EV1* .
~b! There exists an element WPJ(W)ùN(W) with V15VW where V is defined by F
5VEV* .
~g! If F 5P then W is unitary.

~2! Let F15V1EV1* , F25V2EV2* be in P(W). Assume(V1V1* )(V2V2* )50. Then exists an ele
ment VPJ(W) with VEV* 5F11F2 .
~3! Let FPP(W) then exists a unitary element UPU(W) with F<UEU* .

The proof of this lemma is based on the fact thatN(W) is a factor of type III. Hence for every
projectionH in N(W) exists a partial isometry inN(W) with support1 and rangeH.

By the result of the last lemma it is sufficient to look at unitary elements inJ(W), i.e., at
elements ofU(W). Now we introduce the sectors associated with elementsVPJ(W).

VI.5.5. Definition:
Let $N(W)% be a coherent family of modular covariant subalgebras of$M(W)%.
~1! For VPJ(W) we set

S~V!5@N~W!VEH#.

~2! N 8̀ 5ù
D
N(D)8ù

W
N(W)8

Notice that the projectionS(V) does not only belong toN(W)8 but also toN(W8)8. Since the
Hilbert spaceEH is invariant underN(W8) we observe

VI.5.6 Theorem:
Let $N(W)% be a coherent family of modular covariant subalgebras of$M(W)%. Then for every
VPJ(W) the projection S(V) belongs toN 8̀ .

The proof of this theorem consists of three parts. First assumeV belongs toJ(W1a) where
a belongs to the interior of the wedgeW, then the statement is true because of the spect
condition. Next we have to show thatS(Ad U(la)V) depends weakly continuous onl. The third
part consists of showing that the statement remains true if one takes limits of elements de
in the first part.

Little is known about the structure ofN 1
c . A special situation appears if one hasS(V)

5VEV* . In this case we obtain
VI.5.7. Proposition:

Assume VPJ(W) is such that S(V)5VEV* . Then it fulfills the following properties:
~i! V is unitary.
~ii ! S(V) is a minimal inN 1

c(W).
~iii ! V* induces an isomorphism ofN, i.e.,

V* N~W!V5N~W!.
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This proposition follows from the fact thatE is minimal in N 1
c(W).

Finally we are interested in the structure of the set ofV’s such thatS(V1)5S(V2) holds. We
obtain a result only ifS(V1) is a minimal projection inN 1

c(W).
VI.5.8. Theorem:

Assume V1 ,V2PU(W) such that S(V1)5S(V2)ÞE holds. If in addition S(V1) is a minimal
projection inN 1

c(W) then there exist two unitary operators W1 ,W2PM(W) with

V25W1V1W2 .

From this result we learn that the ‘‘minimal sectors’’S(V) are characterized by the left–righ
co-setsU(N(W))VU(N(W)). Hence one can multiply minimal sectors and decompose the p
uct into sectors. Unfortunately it is not known whether or not the algebraN 1

c(W) is of type I.

VI.6. Structure of decomposable theories

In this section it will always be assumed that$N(W)% is a coherent family of modula
covariant subalgebras of$M(W)%.

Having solved the decomposition problem for tensor products and the hidden charge pr
we shall have a look at the situations which might occur.
1. The simplest case is that, whereN(W) andN c(W) together generateM(W). In this situation
the theory is the tensor product of two ‘‘simpler’’ theories.
2. The other extreme is the case whereN c(W) consists of multiples of the identity. This is th
pure hidden charge situation.
3. If N c(W) is not trivial thenN(W) andN cc(W) are not necessarily the same. Since the rela
commutant ofN(W) in N cc(W) is trivial, the passage fromN(W) to N cc(W) is again a hidden
charge problem. If we have solved this problem, then there are again two possibilities:
3.a.N c(W) andN cc(W) generate the whole algebraM(W). This is the same as situation 1.

3.b.N c(W) andN cc(W) generate only a subalgebraN p(W)5N c(W) ^̄ N cc(W). In order to get
to M(W) one has to solve the hidden charge problem for the algebraN p(W).

4. Starting fromN(W) andN c(W) then it can happen thatN(W) ^̄ N c(W)5N p(W) is not the
whole algebraM(W). In this situation one has to solve the hidden charge problem forN p(W).

The discussion of the cases 1–4 can be summarized in the following diagram:

N c5MùN8.

t.p. stands for the construction of the tensor product.
B.f. stands for the construction of the Bose field.

If we have reached the algebraN(W) ^̄ N c(W) then one has to solve a hidden charge probl

in order to get toM(W). But the algebraN(W) ^̄ N c(W) is a subalgebra ofN cc(W)

^̄ N c(W). If these algebras are different then the relative commutant ofN(W) ^̄ N c(W) in

N cc(W) ^̄ N c(W) consists again of the multiples of the identity. Hence the passage

N(W) ^̄ N c(W) to N cc(W) ^̄ N c(W) is a hidden charge problem.
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It remains to explain why the algebraN cc(W) ^̄ N c(W) does not need to coincide wit
M(W), although we have solved a hidden charge problem in order to pass fromN(W) to
N cc(W). It might happen that both theories constructed fromN cc(W) andN c(W) have sectors
associated with Fermi fields. Let us denote these theories by$F cc(O)% and$F c(O)%. Now let us

take the tensor product$F cc(O) ^̄ F c(O)%. In this situation the theoryN cc(W) ^̄ N c(W) has
Bose as well as Fermi sectors because the tensor product of two Fermi fields is a Bose field
restrict the theory to all Bose sectors, then there are sectors which are Bose sectors but no

products of Bose sectors. Therefore,N cc(W) ^̄ N c(W) do not need to coincide withM(W).

VI.7. Remarks, additions, and problems

~i! The decomposition theory is based on the existence of modular covariant subalg
N(W)PM(W). Therefore, the structure of this setMcs(M) defined in VI.1.2 is of interest. In
particular one would like to know whether or not two different modular covariant subalge
must have a nontrivial intersection.
~ii ! The main problem of the decomposition theory is the construction of coherent famili
modular covariant subalgebras. In Sec. VI.2 we have investigated the relation of half-sided
lations to modular covariant subalgebras. Theorem VI.2.5 indicates that the family of mo
covariant subalgebras obtained from one such subalgebra by means of Poincare´ transformations is
often coherent. But conditions are missing implementing that this is the case.
~iii ! If N c(W) is trivial then only little is known about the algebraN 1

c(W). In the usual theory of
superselection sectors (d54) one finds thatS(V)N 1

c(W) is of type I. Is this true in the genera
case of hidden charges? If this holds then with help of the method of Doplicher and Roberts135 one
should be able to construct the compact gauge group. However, ifS(V)N 1

c(W) is of type II or III
then this implies that the gauge group cannot be compact.
~iv! Nothing has been said about the statistics of sectors. It would be nice if one could repe
arguments of Doplicher, Haag, and Roberts in the scheme presented here.
~v! During the investigation of the hidden charge problem we have envisaged the possibilit
continuous family of charged sectors. Can one construct such an example, eventually with
Guichardet’s continuous tensor product?136 During the construction one has to face the probl
that the field algebra shall be countably decomposable. The opposite possibility is the case
the center ofN 1

c(W) is purely atomic. To answer these questions further investigations
needed.
~vi! Although we derived the structure of the superselection sectors only for Bose fields, it s
be possible to do the same also for Bose and Fermi fields. In this caseF(O) is a graded algebra
which can be handled with small modifications as the pure Bose case.
~vii ! The content of Sec. VI has partly been explained in Ref. 128. The structure of subtheo
QFTLO has also been investigated by Davidson in his thesis.137

VII. PROBLEMS FOR THE FUTURE

At the end of every section we have mentioned some problems. Nevertheless, there ar
questions which should be discussed because they are, in my opinion, of importance for the
development of QFTLO.

VII.1. About the restriction to lower dimensions

Axiomatic approach to QFTLO has, compared to the Lagrangean setting, the disadva
that there exist mathematical operations, which allow to construct new theories out of two or
given ones. These new theories do not contain any new physics. Examples of such operat
the direct sum, direct product, and additions of charged Bose fields to the observables. The
one is interested in characterizing theories which are indecomposable with respect to such
tions. However, there is one operation which is of different nature. This is the restriction to
dimensions. For Wightman fields it is known138 that the field operators areC`-functions in
spacelike directions with values in the space of operator valued distributions~in the time direc-
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tion!. Hence one can restrict Wightman fields to lower dimensions, as long as the lower d
sional space contains the time direction. The restriction inx space corresponds to integration
momentum space. Therefore, if the original theory has an isolated mass, then such infor
gets lost by this operation. Hence also this operation is unwanted.

In QFTLO exists a similar operation. Assume$M(O),R d11,a% is a given theory, then one

can construct a theory onR d as follows: LetD̂ be a double cone inR d, then this is the intersec

tion of a double coneD(D̂) in R d11 with R d. On the other hand denote byK(D̂) the cylindrical

set obtained by choosing the firstd variables inD̂ and the last variable arbitrary.D̂ is again the

intersection ofK(D̂) with R d. Now we chooseN(D̂) such that

M~D~D̂ !!,N~D̂ !,M~K~D̂ !!

holds. Then$N(D̂),R d,a% defines a QFTLO provided we choose thatN(D̂) fulfills covariance
~in R d) and isotony, but these conditions are easily fulfilled. Therefore, there exist many diff
restrictions. Notice that for the wedge algebras all these different restrictions coincide an
equal toM(W). This follows from the double cone theorem, Thm. I.4.4.

Since the restriction leads to unwanted effects one would like to reconstruct the or
theory. I hope, that with help of Tomitas modular theory this will be possible one day. Let us
at examples, in order to see, that my hope is not completely unjustified.

VII.1.1. Example:Take a conformal QFT in two dimensions. Choose a fixed timelike dir
tion and restrict the theory to this line. As algebra of an interval take the algebra of the asso
double cone, i.e., if~a,b!, a,b is the interval then we associate to it the algebra of the double c
(a1V1)ù(b2V1) whereV1 denotes the forward light-cone. By this we obtain a theory on
line.

The algebraM(V11a) with a not on the linefulfills the condition of half-sided modula
inclusion with respect to the algebra ofR 1. This algebra is not associated with any set ofR 1.
Moreover, the associated translation commutes with the translation along the time axis. Fr
two-dimensional group of translations it should be possible to reconstruct the original theo
R 2.

VII.1.2. Example:Take a standard QFTLO in three dimensions and restrict it to two dim
sions. Then one should be able to recover the original theory since the al
M(W( l 1 ,l 2)ùW( l 1 ,l 3)) fulfills the condition of half-sided modular inclusion with respect to t
wedge algebra. This algebra is not associated to a subset ofR 2. But the corresponding half-side
translations allow to reconstruct the translational part of the stabilizer group ofl 1 . Also here one
should be able to reconstruct the original theory onR 3.

In order to be able to reconstruct the original theory one has to understand the spa
6half-sided translations~and the spaces of half-sided modular inclusions! for the algebras of the
wedge domains. In conformal field theories one has to look also at the algebra of the fo
light-cone.

When we constructed the Poincare´ group from the modular groups of the wedges~Sec. IV.4!
we were able to show that certain half-sided translations commute. One has to understan
the principle behind this phenomenon.

Looking at the example of the forward light-cone in conformal field theory one sees, tha
algebras of any subdomainS fulfilling S1V15S belong toHsmi(M(V1))2. Hence there exists
a half-sided translation associated with it. ForaPS one has the half-sided translation ofM(V1

1a) with its generator denoted byHa . It should be possible to express the generator of the gr
associated withM(S) in terms of the family$Ha%.

The spacesHsmi(M)2 andHsmi(M)1 have certain order and convexity properties. The
are explained in Ref. 139. Moreover, one can introduce an equivalence relation inHsmi(M)2

@and also inHsmi(M)1] as follows:
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VII.1.3. Definition:Let N1 , N2PHsmi(M)2 andUi(t), i 51, 2 their associated translation
Then AdUi(t21)Ni will be denoted byNi(t). We callN1 andN2 equivalent

N1;N2

if there exist two nonzero positive numbersl1 ,l2 with

N1~l1!,N2,N1~l2!.

Because of the decreasing monotony ofN1(l) one must havel2<l1 .
It is interesting to notice that this order structure survives if one passes to the space of equiv
classes. This discussion shows thatHsmi(M)2 has a rich structure, but up to now it is not cle
how to get to the geometric structure on which the algebraM is based.

In the example of the wedge one has to construct the algebraM(W( l 1 ,l 3)) from the knowl-
edge of the algebraM(W( l 1 ,l 2)ùW( l 1 ,l 3)). This is possible since the half-sided translati
connectingM(W( l 1 ,l 3)) with M(W( l 1 ,l 2)ùW( l 1 ,l 3)) is also a half-sided translation of th
latter algebra. Knowing this translation one can reconstructM(W( l 1 ,l 3)). The only problem here
is the normalization of the group. IfU(t)PHstr(M)1 and l.0, then U(lt)PHstr(M)1.
Therefore,l has to be fixed for the correct application.

VII.2. Vacuum states on the hyperfinite III1 algebra

As discussed in Thm. V.3.7 the Buchholz–Wichmann nuclearity property Cond. V.3.5 im
that the local algebras are hyperfiniteIII 1 algebras. Therefore, the algebras belonging to wed
are also hyperfinite and of typeIII 1 . By a result of Haagerup100 there exists~up to unitary
equivalence! only one hyperfiniteIII 1 factor. Therefore, it is tempting to ask whether or not t
vacuum state of a QFTLO can be characterized by algebraic means. What I have in mind
structure of the set of half-sided translations, or equivalently half-sided modular inclusions
nected with the vacuum state of the given theory. The situation shall be explained by exam

VII.2.1. Example:The QFTLO on the line.
Here the wedge algebra is associated with the half-lineR 15$(0,̀ )%. If we look at the

algebra associated with the set~1,̀ !, then this fulfills the condition of2half-sided modular
inclusion and the algebra belonging to~0,1! fulfills the condition of1half-sided modular inclu-
sion. In this situationM((0,1)) is the relative commutant ofM((1,̀ )) in M(R 1) and the
corresponding half-sided translations together with the modular group ofM(R 1) generate the
Möbius group.

VII.2.2. Example:QFTLO on thed-dimensional Minkowski space,d.1.
For d52 one has for the algebra of the wedge two half-sided translations with opposite

These are the translations along the two lightlike directions. In this case the two transl
commute and the two translations together with the modular group of the wedge algebra ge
the two-dimensional Poincare´ group. In higher dimension we will restrict to theories fulfilling th
Bisognano–Wichmann property. In this situation we know from Thm. IV.4.3 that the alg
M(W@ l ,l 1#)ùW@ l ,l 2#) fulfills the condition of2half-sided modular inclusion with respect to th
algebrasM(W@ l ,l 1#) andM(W@ l ,l 2#). In this situation we obtain forM(W@ l ,l 1#) a family of
half-sided modular inclusions labeled by the direction ofl 2 . A precise characterization of thi
situation is still missing. This is due to the fact that one is looking for Loerentz transforma
and not for the group generated by the half-sided translations.

VII.2.3. Example:Conformal field theories in higher dimension.
In this situation the set of half-sided modular inclusions is much larger. This is due to the

that one has timelike commutativity. LetG be a set withG1V15G then it is easy to see tha
M(GùW) fulfills the condition of 2half-sided modular inclusion with respect to the algeb
M(W). But the importance of the associated half-sided translations is not known.

VII.2.4. Example:QFT on the two dimensional de Sitter space.
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The two-dimensional de Sitter space is isomorphic to the one-sheeted hyperboloid
three-dimensional Minkowski space. A wedge in this space is the intersection of the wedge
ambient space with the hyperboloid. It turns out, that also in this situation the translations
the the lightlike directions are half-sided translations. But the situation is different as well from
field theory on the two-dimensional Minkowski space as from the field theory on the line. S
the ‘‘shifted wedges’’ of the de Sitter space can have an empty intersection it follows tha
vacuum vector is not cyclic for the corresponding algebras. This implies that the two transl
do not commute. Hence the situation is different from the Minkowski space theory. The situ
is probably different from that of the line, because it is unlikely, that the different subalge
fulfilling the condition of 6half-sided modular inclusion are relative commutants of each ot
~For details on QFT on de Sitter space, see, e.g., Ref. 140.!

VII.2.5. Problems:
~1! Can one characterize those states on a hyperfiniteIII 1 factor which permit one or more
6half-sided modular inclusions?
~2! If a state permits at least one half-sided modular inclusion, what are the different famil
such inclusions which can appear?
~3! Can one discriminate different theories of local observables by means of the set of half
modular inclusions?

VII.3. Can one interpret the local modular groups as local dynamics?

For many questions in quantum physics it is advantageous to have a local dynamics.
in particular the case if one is interested in defining Gibbs states of a system. If one starts fr
usual quantum theory one chooses as subsystems the particle in a box with reflecting w
periodic boundary conditions. This defines a quantum system and the corresponding Hami
is considered as the local one. In Lagrangean quantum field theory the energy is usually g
an integral over a Hamiltonian density. In this situation one takes as local energy the integ
the energy density over the region one is interested in. Sometimes one has to take for th
gration a smooth test function which is one in the domain of interest and which tends to zer
small neighborhood of that region. In the theory of local observables a definition of a
dynamics or an energy density is up to now only possible if the theory fulfills the nucle
condition of Buchholz and Wichmann.117 For the construction of a local dynamics, see, e
Buchholz and Junglas141 and for the energy density see Buchholz, Doplicher, and Longo.142 Since
for a general QFTLO there exists no concept which could be used as local dynamics, it is tem
to interprete the properly scaled modular groups of local regions as local dynamics.

First we have to explain what we want to understand by a local dynamics. Let us fix a v
x0 in the forward light coneV1 with x0

251. The double conesDR
x0 are defined by

DR
x05$Rx02V1%ù$2Rx01V1%. ~VII.3.1!

Let UR(t) be a family of unitary groups depending continuously onR such that the group
Ad UR(t) belongs to the automorphisms ofM(DR

x0). Then we say that these groups define
local dynamics if for every bounded setO the expression

UR~ t !AV, APM~O!

converges forR→` to T(tx0)AV in the topology of the Hilbert space and this uniformly on eve
compact of thet axis.

That the modular groups might be a good candidate is indicated by the following two
amples.

VII.3.1. Example:For a fixed double cone we chooseD5$x;ux0u1ixW i,1% and the running
double cone will be replaced by a running family of wedgesWRªW2Rx1 with R.1 andx1 is
a fixed vector perpendicular to the time directionx0 with (x1)2521. If we denote the modula
group ofWR by DR

it then we choose as local dynamics
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UR~ t !5DR
2 i~ t/2pR! .

Because of DR
2 i( t/2pR)5T(2Rx1)D0

2 i( t/2pR)T(Rx1) this becomes with Remark II.5.3
5T((LW(2t/2pR)21)Rx1)D0

2 i( t/2pR) , where T(x) denotes the representation of the trans
tions. With Eq.~I.5.3! we find:

S LWS 2
t

2pRD21DRx:15x0R sinh
t

R
1x1RS coshS 2

t

RD21D5x0t1OS 1

RD .

This implies

UR~ t !AV5T~ tx01O~1/R!!D0
2 i~ t/2pR!AV.

SinceD0
i t is strongly continuous we obtain by the unitarity of the operators

s2 lim
R→`

UR~ t !AV5T~ t !AV, APM~D !.

VII.3.2. Example:As a second example we look at conformal field theory, where the mod
groups of the double cones are known~Thm. III.2.2!. We choose as running domains the doub
cones of radiusR and choose

UR~ t !5DR
2 i~ t/pR! .

With the notation of Thm. III.2.2 this corresponds to the transformation

x6S 2
t

pRD5R
2~12x6/R!1e2t/R~11x6/R!

~12x6/R!1e2t/R~11x6/R!
.

For smallx6 and largeR we obtain

x6S 2
t

pRD5x61t1OS 1

RD .

Since the representation of the conformal group is continuous it follows, also in this example
U(t) converges for largeR to the time translation.

There is one essential difference between the two examples, namely, the scaling of th
responding modular groups differs by the factor 2. I think that one has to understand the or
the difference in the scaling factors before one is able to prove thatDR

2 i( t/pR) converges to the time
translation also in the general case.

VII.4. Modular theory in charged sectors

Almost all the results described in this review are based on the fact that cyclic and sepa
vector V for the local algebras is at the same time the only vector which is invariant unde
representation of the Poincare´ group. We do not have this situation in the charged sectors. B
we take a vectorc which has compact energy contribution and if l is one of the lightlike vec
defining the wedgeW( l ,l 8), thenU(l l ), lPR is again a group with positive generator whic
mapsM(W( l ,l 8) into itself. Moreover the vectorU(l l )c is again a vector which is cyclic an
separating forM(W). In addition the modular group ofU(l l )c can be computed from that ofc
with help of the cocycle Radon Nikodym derivative@DU(l l )c:Dc# t .143,144 If we denote the
Radon Nikodym derivative for a moment byut , then the cocycle relation means

us1t5ussc
s ~ut!. ~VII.4.1!

The action of the modular group belonging toU(l l )c can be computed with help of the formu
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sU~l l !c
t ~A!5@DU~l l !c:Dc# tsc

t ~A!@DU~l l !c:Dc# t* , APM~W!. ~VII.4.2!

VII.4.1. Problems:
~i! We know that the groupU(l l ) has an analytic continuation into the upper complex half-pla
What does this imply for the Radon Nikodym derivative@DU(l l )c:Dc# t? Note that for complex
l the vectorU(l l )c is again cyclic and separating forM(O), which implies that the Radon
Nikodym derivative is also defined for those values ofl.
~ii ! Does there exist any relation betweenDc

i t ,@DU(l l )c:Dc# t and U(l l ) besides the known
standard ones?

APPENDIX A: BIBLIOGRAPHY ON THE ALGEBRAIC THEORY OF SUPERSELECTION
SECTORS IN LOW DIMENSIONS

In the last decade, the algebraic theory of superselection sectors was supplemented b
reservoir of examples originating in two-dimensional conformal quantum field theory. As is
known, in low dimensions the possibility of braid group statistics is a new feature beyon
original DHR analysis, which is however easily incorporated into the original framework.
following is a list of prominent references in the algebraic theory of superselection sectors i
dimensions.

The DHR theory was adapted to the case of braid group statistics in Refs. 145 and 14
local von Neumann algebras for specific models based on non-Abelian current algebra
constructed and analyzed in Refs. 147–149. Modular theory was applied to a general st
global properties of chiral nets concerning Haag duality, conformal covariance, spin-sta
theorem and CPT theorem in Refs. 150 and 151. Models with a breakdown of Haag duali
the construction of the associated dual net were discussed in Refs. 152–154. Sufficient con
to reconstruct, using modular theory,55 a chiral net with conformal symmetry and spectrum co
dition from a single half-sided modular inclusion of von Neumann algebras were formulat
Refs. 56 and 57. For models with Haag duality in two dimensions it was shown that the
property for wedges~presumably related to a mass gap! excludes the existence of localize
superselection sectors at all,155 while solitonic sectors will generically emerge. Properties of
latter were studied in Refs. 156–158.

The issue of charged fields which create superselection sectors from the vacuum, an
underlying symmetry principle, was addressed from various sides. A reconstruction theorem
parable to the result by Doplicher and Roberts159 cannot be achieved since non-Abelian bra
group statistics poses an obvious obstruction. In the Abelian case, an anyonic field algeb
constructed in Ref. 160. The reduced field bundle~RFB! of intertwining nonlocal fields was
introduced as a general construction in Ref. 145, and conformal covariance properties o
algebras were analyzed in Ref. 161. Pointlike exchange fields associated with the RFB
constructed in Ref. 162, and the weakC* Hopf symmetry of the RFB was discovered in Refs. 1
and 164. Other, ultimately unsatisfactory, symmetry concepts were discussed in Refs. 1
166. A theory of sector induction and restriction between a theory and a subtheory equippe
a global conditional expectation was initiated in Ref. 167 and was further elaborated with a
on specific chiral models in Ref. 168.

APPENDIX B: REFERENCES FOR APPLICATIONS OF TOMITA–TAKESAKI THEORY IN
QUANTUM FIELD THEORY ON CURVED SPACETIME

Listed below are references containing applications of Tomita–Takesaki theory to qua
field theory on curved space–time.

On a generic curved space–time, there are in general no symmetries~space–time isometries!
present, and hence there is no natural candidate for a vacuum state. Likewise, in a generic
space–time, it is in general not clear which space–time regions, if any, play a similar role
wedge regions in Minkowski space–time in the sense that the modular objects correspon
von Neumann algebras associated with these regions and preferred vacuumlike vectors
                                                                                                                



antum
sessing
ano–
edge
jects
in the
the

erator-

ls. In
e–time,

–time
ciated

cted to
al ap-

wards

pectra
,

stance

to

s

um

o

s.

s.

r Func-

3669J. Math. Phys., Vol. 41, No. 6, June 2000 On revolutionizing QFT with modular theory

                    
suitable sense geometrical. Therefore, most applications of Tomita–Takesaki theory to qu
field theory in curved space–time so far have been restricted to a class of space–times pos
a structure which to certain extent mimics the geometrical features underlying the Bisogn
Wichmann situation, i.e., there are natural wedge regions and Killing flows leaving these w
regions invariant. In this case, a variety of versions of a geometric action of modular ob
associated with wedge regions and certain preferred states has been investigated
works.169–178 The pioneering work of this list is Ref. 169, where a situation analogous to
Bisognano–Wichmann setting is modeled on Schwarzschild–Kruskal space–time. An op
algebraic version of it appears in Ref. 170. The works171,172 deal with an investigation of this
Bisognano–Wichmann-like situation on black-hole space–times for free scalar field mode
Refs. 173 and 174, Bisognano–Wichmann-like scenarios are investigated on de Sitter spac
in Ref. 175 on black-hole space–times and in Ref. 88 on anti-de Sitter space–time.

An attractive line of thought is to try and characterize vacuum states on a generic space
by a suitable form of geometric modular action with respect to von Neumann algebras asso
with a class of distinguished regions~e.g., wedge regions, cf. also Ref. 173!. On a generic
space–time without isometries such a geometric action of modular objects cannot be expe
be given by point transformations on the underlying space–time manifold. A more gener
proach addressing this issue is developed in Ref. 87.

In Ref. 176 a somewhat different approach, compared to the works just cited, is taken to
the physical interpretation of modular objects in generally covariant quantum theories.

The type of the local von Neumann algebras of a quantum field theory is related to the s
of their associated modular operators~Connes’ invariant! and can, like on Minkowski space–time
be fixed on curved space–time via assumptions on the quantum field theory’s short-di
scaling limits. This question is considered in Refs. 177 and 178.
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9L. Schwartz,Théorie des Distributions, Vol. I ~Hermann, Paris, 1957!.
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76G. Lüders and B. Zumino, ‘‘On the connection between spin and statistics,’’ Phys. Rev.110, 1450–1453~1958!.
77D. Hall and A. S. Wightman, ‘‘A theorem on invariant analytic functions with applications to relativistic quantum

theory,’’ Danske Vidensk. Selskab, Mat.-fysiske Meddelelser31, no 5, 1–41~1957!.
78R. Streater, ‘‘Local Fields with the Wrong Connection Between Spin and Statistics,’’ Commun. Math. Phys.5, 88–96

~1967!.
79A. I. Oksak and I. T. Todorov, ‘‘Invalidity of the TCP-Theorem for Infinite-Component Fields,’’ Commun. Math. P

11, 125 ~1968!.
80H.-J. Borchers, ‘‘When does Lorentz Invariance imply Wedge-Duality,’’ Lett. Math. Phys.35, 39–60~1995!.
81R. Brunetti, D. Guido, and R. Longo, ‘‘Group cohomology, modular theory and space-time symmetries,’’ Rev.

Phys.7, 57–71~1994!.
82D. Guido and R. Longo, ‘‘An Algebraic Spin and Statistic Theorem,’’ Commun. Math. Phys.172, 517–533~1995!.
83H.-J. Borchers, ‘‘Half-sided Modular Inclusion and the Construction of the Poincare´ Group,’’ Commun. Math. Phys.

179, 703–723~1996!.
84I. M. Gel’fand, R. A. Minlos, and Z. Ya. Shapiro,Representations of the Rotation and Lorentz Groups and Th

Applications~Pergamon, New York, 1963!.
85R. Jost,The General Theory of Quantized Fields~American Mathematical Society, Providence, RI, 1965!.
86G. W. Mackey,Induced Representations of Groups and Quantum Mechanics~Benjamin, New York, 1968!.
87D. Buchholz and S. J. Summers, ‘‘An algebraic characterization of vacuum states in Minkowski space,’’ Commun

Phys.155, 449–458~1993!.
88D. Buchholz, O. Dreyer, M. Florig, and S. Summers, ‘‘Geometric Modular Action and Spacetime Symmetry Gro

Rev. Math. Phys.~to be published!.
89D. Buchholz, M. Florig, and S. J. Summers, ‘‘An algebraic characterization of vacuum states in Minkowski spac

preprint hep-th/9905178.
90K. Fredenhagen and J. Hertel, ‘‘Local algebras of observables and point like localized fields,’’ Commun. Math. Ph80,

555–561~1981!.
91H.-J. Borchers, ‘‘On Poincare´ transformations and the modular group of the algebra associated with a wedge,’’

Math. Phys.46, 295–301~1998!.
92B. Schroer and H.-W. Wiesbrock, Modular Theory and Geometry, Preprint~1998!.
93H.-W. Wiesbrock, ‘‘Symmetries and Modular Intersections of von Neumann algebras,’’ Lett. Math. Phys.39, 203–212

~1997!.
94H.-W. Wiesbrock, ‘‘Modular Intersections of von Neumann Algebras in Quantum Field Theory,’’ Commun. Math. P

193, 269–285~1998!.
95A. Connes, ‘‘Caracte´risation des alge`bres de von Neumann comme espaces vectoriels ordonne´s,’’ Ann. Inst. Fourier24,

121–155~1974!.
96R. Powers, ‘‘Representations of uniformly hyperfinite algebras and their associated von Neumann rings,’’ Ann. Ma86,

138–171~1967!.
97H. Araki and E. J. Woods, ‘‘A classification of factors,’’ Pub. R.I.M.S., Kyoto Univ.4, 51–130~1968!.
98A. Connes, ‘‘Un classification de factors de type III,’’ Ann. Sci. Ecole Norm. Sup.6, 133–252~1973!.
99A. Connes, ‘‘Classification of injective factors,’’ Ann. Math.104, 73–115~1976!.
100U. Haagerup, ‘‘Connes’ bicentralizer problem and uniqueness of injective factors of typeIII 1 ,’’ Acta Math. 158,

95–148~1987!.
101H. Araki, ‘‘On the algebra of all local observables,’’ Prog. Theor. Phys.32, 844–854~1964!.
102H. J. Borchers, ‘‘On the structure of the algebra of field operators,’’ Nuovo Cimento24, 214–236~1962!.
103S. Doplicher, R. V. Kadison, D. Kastler, and D. W. Robinson, ‘‘Asymptotically Abelian systems,’’ Commun. M

Phys.6, 101–120~1967!.
104S. Doplicher, D. Kastler, and D. W. Robinson, ‘‘Covariance algebras in field theory and statistical mecha

Commun. Math. Phys.3, 1–28~1966!.
105D. Ruelle, ‘‘States of Physical Systems,’’ Commun. Math. Phys.3, 133–150~1966!.
106O. E. Lanford and D. Ruelle, ‘‘Integral representations of invariant states onC* -algebras,’’ J. Math. Phys.8, 1460–

1463 ~1967!.
107E. Sto”rmer, ‘‘Large Groups of Automorphisms ofC* -Algebras,’’ Commun. Math. Phys.5, 1–22~1967!.
                                                                                                                



. A

om-

.

Phys.

m field

s.

plex

senta-

hys.

. Phys.

nn.

Lett.

incare

Math.

xchange

3672 J. Math. Phys., Vol. 41, No. 6, June 2000 H. J. Borchers

                    
108A. S. Wightman, ‘‘La the´orie quantique locale et la the´orie quantique des champs,’’ Ann. Inst. Henri Poincare, Sect
I , 403–420~1964!.

109W. Driessler, ‘‘Comments on Lightlike Translations and Applications in Relativistic Quantum Field Theory,’’ C
mun. Math. Phys.44, 133–141~1975!.

110H. J. Borchers, ‘‘Energy and momentum as observables in quantum field theory,’’ Commun. Math. Phys.2, 49–54
~1966!.

111H. J. Borchers, ‘‘A Remark on a Theorem of B. Misra,’’ Commun. Math. Phys.4, 315–323~1967!.
112R. Longo, ‘‘Notes on Algebraic Invariants for Non-commutative Dynamical Systems,’’ Commun. Math. Phys69,

195–207~1979!.
113S. Doplicher and R. Longo, ‘‘Standard and split inclusions of von Neumann algebras,’’ Invent. Math.73, 493 ~1984!.
114K. Fredenhagen, ‘‘On the Modular Structure of Local Algebras of Observables,’’ Commun. Math. Phys.97, 79–89

~1985!.
115R. Haag, H. Narnhofer, and U. Stein, ‘‘On quantum field theory in gravitational background,’’ Commun. Math.

94, 219–238~1984!.
116K. Fredenhagen, ‘‘On the Modular Structure of Local Algebras of Observables,’’ Commun. Math. Phys.97, 79–89

~1985!.
117D. Buchholz and E. H. Wichmann, ‘‘Causal independence and energy level density of states in local quantu

theory,’’ Commun. Math. Phys.106, 321 ~1986!.
118D. Buchholz, C. D’Antoni, and K. Fredenhagen, ‘‘The universal structure of local algebras,’’ Commun. Math. Phy84,

123–135~1987!.
119H. J. Borchers, ‘‘On the Implementation of Automorphism Groups,’’ Commun. Math. Phys.14, 305–314~1969!.
120H.-J. Borchers, ‘‘C* -Algebras and Automorphism Groups,’’ Commun. Math. Phys.88, 95–103~1983!.
121H. J. Borchers, ‘‘Symmetry Groups ofC* -algebras and Associated von Neumann Algebras,’’ in Dynamics of Com

and Irregular Systems, edited by Ph. Blanchard, L. Streit, M. Sirugue-Collin, and D. Testard~World Scientific, Sin-
gapore, 1993!, pp. 12–21.

122B. Iochum,Cones Autopolaires et Alge`bres de Jordan, Lecture Notes in Math., Vol. 1049~Springer-Verlag, Heidelberg,
1983!.

123W. Driessler, ‘‘On the type of local algebras in quantum field theory,’’ Commun. Math. Phys.53, 295–297~1977!.
124H.-J. Borchers and M. Wollenberg, ‘‘On the relation between types of local algebras in different global repre

tions,’’ Commun. Math. Phys.137, 161–173~1991!.
125M. Takesaki, ‘‘Conditional Expectations in von Neumann Algebras,’’ J. Funct. Anal.9, 306–321~1972!.
126H. Kosaki, ‘‘Extension of Jones’ Theory on Index to Arbitrary Factors,’’ J. Funct. Anal.66, 123–140~1986!.
127L. Kadison and D. Kastler,Cohomological aspects and relative separability of finite Jones index factors, Nachr. Akad.

d. Wissensch. Go¨ttingen ~1992!, pp. 95–105.
128H.-J. Borchers, Conditional Expectation and Half-sided Translations, Preprint~1999!.
129L. Ge and R. Kadison, ‘‘On tensor products of von Neumann algebras,’’ Invent. Math.123, 453–466~1966!.
130J. Tomijama, ‘‘On the projections of norm one inW* algebras,’’ Proc. Jpn. Acad.33, 608–612~1957!.
131H. J. Borchers, ‘‘Local Rings and the Connection of Spin with Statistics,’’ Commun. Math. Phys.1, 281–307~1965!.
132S. Doplicher, R. Haag, and J. E. Roberts, ‘‘Fields, observables and gauge transformations I,’’ Commun. Math. P13,

1 ~1969!.
133S. Doplicher, R. Haag, and J. E. Roberts, ‘‘Fields, observables and gauge transformations II,’’ Commun. Math

15, 173 ~1969!.
134D. Buchholz and K. Fredenhagen, ‘‘Locality an the structure of particle states,’’ Commun. Math. Phys.84, 1 ~1982!.
135S. Doplicher and J. E. Roberts, ‘‘Endomorphisms ofC* -algebras, cross products and duality of compact groups,’’ A

Math. 98, 157 ~1989!.
136A. Guichardet, Tensor Products ofC* -Algebras, Mat. Inst. Univ. Aarhus, Lecture notes no12, ~1969!.
137D. R. Davidson, Classification of Subsystems of Local Algebras, Dissertation, U.C. Berkeley~1988!.
138H. J. Borchers, ‘‘Field Operators asC` Functions in Spacelike Directions,’’ Nuovo Cimento33, 1600–1613~1964!.
139H.-J. Borchers, ‘‘On the Lattice of Subalgebras Associated with the Principle of Half-sided Modular Inclusion,’’

Math. Phys.40, 371–390~1996!.
140H.-J. Borchers and D. Buchholz, ‘‘Global Properties of Vacuum States in de Sitter Space,’’ Ann. Inst. Henri Po´

70, 23–40~1999!.
141D. Buchholz and P. Junglas, ‘‘On the existence of equilibrium states in local quantum field theory,’’ Commun.

Phys.121, 255–270~1989!.
142D. Buchholz, S. Doplicher, and R. Longo, ‘‘On Noether’s Theorem in Quantum Field Theory,’’ Ann. Phys.170, 1–17

~1986!.
143A. Connes ‘‘Sur le the´orème de Radon Nikodym pour les poids normaux fide`les semifinis,’’ Bull. Sci. Math.97,

253–258~1973!.
144A. Connes and M. Takesaki, ‘‘Flow of weights on a factor of type III,’’ Toˆhoku Math. J.29, 473–575~1977!.
145K. Fredenhagen, K.-H. Rehren, and B. Schroer, ‘‘Superselection sectors with permutation group statistics and e

algebras, I,’’ Commun. Math. Phys.125, 201–226~1989!.
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We discuss the status and some perspectives of relativistic quantum physics.
© 2000 American Institute of Physics.@S0022-2488~00!01206-8#

I. INTRODUCTION

The end of the first half of the century coincided with a notable incision in the searc
fundamental laws. The breakthrough in the handling of quantum electrodynamics had show
old equations contained much more physically relevant information than one had dared to b
It had restored faith in the power of quantum field theory. But side by side with the dom
feeling of great triumph there was a spectrum of mixed feelings ranging from bewilderme
severe criticism.

Dirac emphasized that there was no acceptable physical theory but only an ugly set of
Heisenberg felt that the success of renormalization had turned the minds away from the
important issues in shaping a new theory. Still there was the empirical fact that QED was c
of producing numbers agreeing with experiments to an unbelievable degree of accuracy w
any radical changes in its foundations and that there lacked any indication that the general s
of quantum field theory was at odds with experiments in high energy physics, though there
obviously great difficulties in eliminating conceptual and mathematical muddles abounding
existing formulation. So it appeared that the time called for a period of consolidation, of pa
work devoted to the separation of golden nuggets from the mud. What constitutes a quantu
theory? What is needed to extract the relevant physical information?

It is not our intention to present in this essay a retrospective of developments in the p
years. But it is important to recall some attitudes and prejudices prevailing at various perio
recall the questions asked then and see to what extent they have been answered in a sat
way in order to have a basis for the assessment of open questions today, to recognize ta
perspectives. Therefore we shall begin with a brief sketch of endeavors in the 1950s and
Since our paper necessitated a severe restriction in the topics addressed and thus an una
bias in the selection of references, it should not be used as a source for the ‘‘history of scie
We shall not be concerned with the disentangling of ‘‘who contributed what and when.’’ We
also suppress technical details as much as possible and refer the reader to the easily ac
books, where detailed references may be found and the methods and techniques allude
fully described. For the first sections most of this is given in Refs. 1–4

For the most part, we shall use the language of an approach which is often, but inapp
ately, called ‘‘algebraic quantum field theory,’’ because we feel that it provides the simples
most natural formulation in which the relevant principles can be expressed and it also prov
powerful mathematical structure which can be precisely described and applies to a wide ar
quantum fields appear in this formulation. In fact, the relation to quantum fields is not as clo
originally believed. In particular, it is important that it can also incorporate extended objects w
generalize the field concept. Thus a better name is ‘‘local quantum physics.’’ For detail
references see Ref. 5.

Our main aim is to describe the questions that presented themselves at various times,
36740022-2488/2000/41(6)/3674/24/$17.00 © 2000 American Institute of Physics
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the changes of perspective needed in answering them and indicate open questions to whic
not know the answer and which might suggest tasks to think about in the future.

II. TAKING STOCK

In the construction of models in quantum field theory one usually starts from a classica
theory and tries to ‘‘quantize’’ it following as closely as possible the rules which had prove
successful in the transition from classical to quantum mechanics. The dynamical variables a
a set of fields which transform covariantly under some finite dimensional representation
Lorentz group~e.g., spinors, vectors!. The key element in characterizing the model is the Lagra
ian from which the equations of motion and commutation relations can be guessed. One
feature appeared: For some fields the commutator had to be replaced by the anticommu
order to comply with the Pauli principle.

This scheme was immediately successful in the case of free fields. Such a field c
decomposed into a positive and a negative frequency part, yielding annihilation and cr
operators for some type of particle. The theory then just describes an arbitrary number of ide
noninteracting particles. This feature was interpreted as a manifestation of the well-known
particle dualism. There was, however, no easy way to extend this formalism to a theo
interacting fields. It became clear that the commutation relations could no longer be the can
ones but must have stronger singularities; that the equations of motion were sick becau
product of fields at the same point defied any simple definition; that one had to think
carefully about the relation between fields and particles.

What to keep and what to throw overboard? We shall divide the tentative answers give
two groups. The first, groupA, concerns the general setting, the second, groupB, the field concept.
In the first group we have the following:

(A1) Keep the notion of space time as a classical manifold with pregiven geometry~the
Minkowski spaceM! as the arena in which physics plays. Its symmetry group is the ‘‘Poin´
group,’’ generated by translations and Lorentz transformations.

(A2) Keep the standard formalism of quantum physics in which pure states are describ
‘‘rays’’ in a Hilbert spaceH ~unit vectors up to a phase factor! and observables as self-adjoi
operators acting inH.

(A3) Incorporate the results of Wigner’s analysis: A symmetry is implemented by a
representation’’ of the symmetry group. In the case of the Poincare´ groupP this is equivalent to
a representation of the covering groupP̃ by unitary operators.

This already provides important physical information. For instance, the infinitesimal ge
tors of the translationsPm may be interpreted as observables corresponding to the total en
momentum. It is a purely mathematical problem to determine all irreducible representation
this problem has been solved. It turns out that an irreducible representation with positive e
describes the state space of a single stable particle. All other representations can be constr
direct sums and tensor products from the irreducibles. Since the restriction to positive en
seems to be well motivated~for instance to ensure stability!, one comes to the first basic postula
~axiom, principle!:

~S! The spectrum of the energy-momentum operatorsPm in H is restricted to the closed
forward coneV̄15$p:p0>upu%. One usually also assumes that there is a unique ground staV,
the vacuum.

Since we are talking about field theory, we decide in groupB:
(B1) Keep the idea that the basic dynamical variables, in terms of which all operatorsH

should be expressed, are fields:
The naive idea that a fieldw assigns to each space-time pointx an operatorw(x) in H is not

tenable. Therefore a considerable amount of mathematical care and sophistication is ne
avoid pitfalls. One may consider a field as an ‘‘operator valued distribution’’ on a suitably de
domain inH or as a sesquilinear form on this domain. This being done, one may formulat
postulateB2 .
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(B2) The theory is completely described by a finite number of covariant fields~each having a
finite number of components!.

Why fields? This question is asked at regular intervals. One strong argument was, of c
the success in QED. But more deeply, the notion of field allows us to encode the relativistic
structure of space time in the theory and this is implemented by the basic locality postulat

~L! Field quantities in regions which lie spacelike to each other either commute or anti
mute.

Experiments in high energy physics are concerned with particles and cross sections, n
fields. So one needs to know the connection between fields and particles. An important step
direction were the asymptotic relations of Lehmann, Symanzik, and Zimmermann6 which pro-
vided an elegant algorithm relating correlation functions of fields toS-matrix elements.

The strategy of starting from precisely defined postulates, analyzing their consequenc
focusing first on general structure instead of specific equations, created an enterprise with
novel style ~‘‘axiomatic quantum field theory’’!. The emphasis on mathematical rigor, stati
results in the form of theorems and lemmas, was instrumental in establishing a very f
discussion between mathematical physicists and pure mathematicians, closing a deplorab
On the other hand, it was not to the taste of all parts of the physics community, as illustrat
a joke circulated in the early 1960s: ‘‘The contribution of axiomatic quantum field theor
physics is smaller than any preassigned positive number«.’’ To balance this joke, we should als
mention another one: ‘‘In the thirties, under the demoralizing influence of quantum theo
perturbation theory, the mathematics required of a theoretical physicist was reduced to a ru
tary knowledge of the Latin and Greek alphabets’’~Res Jost, as quoted in Ref. 1!.

Well, there is no point in arguing with good jokes. But they do contain messages which s
be taken seriously. A belief that mathematics is the prime mover for progress in physics
warranted and if it leads to an overemphasis on mathematical rigor, there is the danger
tracting attention from the essential points and contributing to a language problem so that di
camps abandon the effort to understand each other’s vocabulary. On the other hand, a narro
of what constitutes ‘‘real physics’’ fosters an ill-founded snobbism. It takes many kinds of cr
men to construct a building. The enterprise whose origins were sketched above did contrib
‘‘real physics’’ in many ways. Not only by clarifying issues and proving or disproving conject
but also by providing tools, essential for many subsequent developments. A prime example
analyticity properties ofn-point functions, derived as consequences of postulatesS and L by
Wightman,7 seminal for a variety of subsequent developments~dispersion relations, renormaliza
tion theory, Euclidean formulation, etc.!. And it raised new questions. One of them concerne
deeper understanding of the relation between fields and particles. We shall devote the next
to this.

III. FIELDS AND PARTICLES

In the early years of quantum field theory, the prevailing picture was that there are a few
of ‘‘elementary’’ particles which serve as the building stones for more complex structures~from
nuclei to crystals! and to each species of elementary particle there corresponds a fundam
quantum field. If this is a good picture then the relation between a basic field and the states
corresponding particle~isolated before or after a collision! is adequately described by the LS
formalism and these relations may be regarded as an ‘‘asymptotic condition’’ needed for
sonable interpretation of the theory. The problem of how to deal with composite particles~‘‘bound
states’’! could be postponed as a later worry.

But evidence from a variety of sources eroded this simple picture. It was difficult to de
whether newly discovered particles should be regarded as elementary and honored by ass
a new basic field with them. It was recognized that no simple and clear distinction bet
elementary and composite was available, neither for fields nor for particles. In the proc
developing a collision theory for composite particles, it was discovered that the LSZ form
could be rather easily extended to also cover this case. Furthermore, there was no need
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close connection between particle type and basic field. The asymptotic condition was not a
condition but a consequence of the postulatesSandL. All that was needed was the existence o
discrete part in the mass spectrum~single particle states, no matter whether elementary or c
posite! and the existence of some ‘‘quasilocal operators’’ connecting the vacuum with
states.8–12

The term ‘‘quasilocal’’ brings us back to the original significance of the field concept, nam
the establishment of a relation between space time and the dynamical variables of the the
allow us to characterize those operations which~at least approximately! pertain to a specific region
in space time. In other words: there is no general field-particle duality. A particle is a s
quasilocal excitation. The determination of the types of particles appearing in the theor
dynamical problem which bears some analogy with the determination of the ground state
atom with one important difference. We cannot regard the particle as a composite of dis
elementary objects.

But what about leptons, quarks and the parton picture? Is the success of the ‘‘standard m
not evidence to the contrary? Not really. The message of the standard model has much in c
with the message received from QED. It does suggest that a field theory in which the propeB2

is concretized by a specific set of fermionic fields and gauge fields has more physical rele
than one dared to hope. But again this achievement is accompanied by a host of puzzling
tions. From a formal point of view we have a successful field theory encompassing the pos
B2 andL. But the dynamical variables do not operate in the space of physical states.13,14The road
to the Hilbert space to which the above-mentioned itemsA2 , A3 , andS refer is quite involved.
This appliesa fortiori to the description of particles, as illustrated by the fragmentation mo
used in the discussion of jets in high energy reactions. The important progress, the salient f
is the discovery of a relevant set of charge quantum numbers~color, flavor, electric, weak!. The
finite number of elementary objects refers to these, not to particles. The basic fields a
vehicles to handle the creation and transport of such charges. But none of these fields is obs
in the sense ofA2 .

This accentuates an old question. If postulateL intends to express only the relativistic caus
structure of space time, then it should simply read

(LO) Observables relating to spacelike separated regions commute.
The intrinsic information of the theory~as contrasted to the particular way in which the theo

is described! ultimately concerns the relation between observables. This raises the question
can we characterize the intrinsic structure and what is the role of quantum fields in it? This w
addressed in the next section.

IV. FIELDS AND ALGEBRAS

If we want to adhere to the first group of assumptions, fromA1 to S in Sec. II, and want to
incorporate the causality principle in the formLO , then we must classify the observables acco
ing to space-time regions, i.e., focus on a correspondence

O→R~O! ~4.1!

between space-time regionsO and the algebrasR(O) generated by the observables in the resp
tive region. More precisely,O shall denote an open, bounded region inM.15 As elements of the
algebras we may take bounded operators acting inH, thereby escaping the complications wi
domain problems. After all, the most elementary observables are projectors. This suggests
specifyR(O) to be von Neumann algebras~also called von Neumann rings!.16–18It appears to be
the most natural choice since a von Neumann algebra is the set of all bounded operators
commute with a given set of others. This fits well with the formLO of the causality requirement

In addition to the von Neumann algebrasR(O), acting onH, we have a representation of th
Poincare´ group by unitary operators, satisfying the spectrum conditionS, and a distinguished
Poincare´ invariant pure ground state, the vacuum. An individual algebraR(O) carries hardly any
physical information. It is the relation between algebras of different regions and the corre
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dence~4.1! which contains the physics. This correspondence requires, on the mathematica
that the set$R(O)% of algebras satisfies certain structural requirements.5 The essential ones are

~a! inclusion relations~‘‘isotony’’ !, i.e., O1,O2 implies R(O1),R(O2),
~b! causality~the principleLO), and
~c! covariant action of the Poincare´ group on the local algebras.

We shall call the set$R(O)% of algebras, labeled by the space-time regionsO and endowed with
this structure, the ‘‘net’’ of local algebras.

It is clear that the correspondence~4.1! provides a starting point for the physical interpret
tion. It is, however, remarkable that nothing more is needed. In other words, the net of alg
defines the theory, including the full physical interpretation. Once the net is given, we can an
its physical predictions in terms of particles, collision cross sections, etc. We shall not de
this here but just indicate the reasons. The net allows us to construct the mathematical coun
of coincidence arrangements of detectors. The specification of what the individual detector d
need not be fed in. It suffices that we can extract information about the energy-momentum
it selects, using the action of the Poincare´ group, and that we have information about the pla
ment, using the net structure. Exploiting judiciously just the information from different geom
constellations one is able to disentangle the particles and their collision cross sections wh
described by the net. In this analysis the spectrum conditionS plays a significant role. The
essential arguments are given in Refs. 19 and 20. For further details see Ref. 5.

Thus we may say that a netO→R(O) gives an intrinsic description in which the physical
relevant information is encoded. One might therefore conjecture that quantum fields sho
regarded as a~more or less convenient! way to coordinatize the net. This point of view is su
ported by a result which Borchers obtained in the context of the LSZ formalism.21 We get, for
instance, the same physical information whether we consider a free fieldw0 or its Wick power
w5 :w0

3: as the basic field, though there is an obvious difference in convenience. A less
example, where the identification of two at first sight very different looking field theories requ
much more work can be found in Ref. 22. Other surprising examples have attracted much
tion. So the equivalence of the Thirring model with the Sine–Gordon model23 and recently ex-
plored equivalences in supersymmetric Yang–Mills theories.24

As experienced in other areas of study, depending on the problem and on the taste
investigator, there are advantages in the use of coordinates and there are advantages in
intrinsic ~coordinate free! formulation. So the clarification of the relation between fields a
algebras is an important issue.

A. From fields to algebras

Heuristically one would like to defineR(O) as the von Neumann algebra generated by
~smoothed out! observable fields in the regionO. Appealing to von Neumann’s double commuta
theorem,17 this may be symbolically written as25

R~O!5$w~x!:xPO%9, ~4.2!

where w stands for the set of observable fields. Because of subtle questions concerni
commutativity of unbounded operators, it is, however, not clear from the outset whethe
heuristic idea can be really implemented. The first steps in the analysis of this problem were
by Borchers and Zimmermann.26 They showed that if the vacuumV is an analytic vector for the
fields, i.e., if the formal power series of the exponential function of a smeared field appliedV
converges absolutely, then the passage from fields to local algebras via~4.2! can be accomplished
Further progress on this problem was made in Ref. 27, where it was shown that fields sat
so-called linear energy bounds generate acceptable nets of local algebras. This result cove
of the interacting quantum field theories which have been rigorously constructed so far
endeavor of ‘‘constructive quantum field theory.’’
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As for the general situation, the most comprehensive results are contained in Ref. 28 a
references quoted there. In that analysis certain specific positivity properties of Wightman
tions were isolated as the crucial prerequisite for the passage from fields to algebras. Alto
the result of these investigations could be summarized by saying that, while the original fo
the Wightman axioms is not sufficient to allow the transition from fields to algebras along the
indicated by~4.2!, this can be remedied by adding some rather unsuspicious requirements.

More serious is the fact that in~4.2! we were talking about ‘‘observable fields.’’ As alread
indicated, the development of field theory has led to a situation in which none of the basic
is observable. The proper assessment of this problem becomes, however, clearer in follow
opposite road.

B. From algebras to fields

As already mentioned, the characterization of the theory by a net of local algebras is
general than the traditional field theoretic approach. It covers also the case of observables
are not built from pointlike objects but are localizable in extended~though finite! regions, such as
Wilson loops or~finitely extended! Mandelstam strings. Nevertheless, the point field content i
great interest since we believe that it contains such distinguished observables as the compo
the energy momentum tensor, certain currents, etc. Heuristically, the point fields can be rec
from the algebra by a formula like

$w~x!%5 ù
O{x

R~O!. ~4.3!

The bar on the right-hand side indicates that one cannot take the intersection of the local a
themselves, which is known to consist only of multiples of the identity. Therefore, one first h
complete the algebras in a suitable topology which allows the appearance of unbounded op
respectively, linear forms. This was carried through in Ref. 29, where the needed complet
the local algebras was defined with the help of ‘‘energy norms’’ which are sensitive to
energy-momentum transfer of the observables. Using this device, it was shown that, provid
the algebras are generated from sufficiently regular fields in the sense indicated by~4.2!, one can
recover the fields from the algebras via~4.3!. From a general point of view it would be desirab
to clarify the status of point fields without assuming their existence from the outset. An intere
proposal in this direction was recently made in Ref. 30. We shall come back to it in Sec. V

C. Unobservable fields

One circle of nagging questions was known for a long time but mostly regarded as of m
importance. It begins with the original formulationL of the causality principle. Why the Bose
Fermi alternative? In the sequel of his discussion of the ray representations of the Poincare´ group,
Wigner noted that the relative phase between a state vector belonging to a double valued
sentation~spinorial wave function! and one belonging to integer spin could have no phys
meaning. Then it was recognized that such limitations of the superposition principle occu
between states of different electric charge due to the principle of gauge invariance in QED a
they may be expected in still other circumstances.31 This called for a modification of assumptio
A2 in Sec. II: The Hilbert space decomposes into a direct sum of mutually orthogonal subs
called the ‘‘coherent sectors,’’ and the relative phase between state vectors in different sec
void of physical meaning. The unobservable fields can then be regarded as operators leadi
one sector to another. One might be inclined to accept these so-called ‘‘superselection rule
fact of life, producing some slight complication such as the appearance of unobservable field
this is somewhat artificial and calls for a more natural explanation.

Could it be that the coherent sectors were just the modules~representation spaces! of in-
equivalent representations of one basic algebra? Let us remember that, at the birth of q
mechanics, Dirac introduced the notion of ‘‘q numbers’’ defining some abstract algebraic struct
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and that the equivalence of this with the wave mechanical formulation~i.e., ultimately with Hilbert
space operators! depended on the uniqueness proof for the representation of the canonical
mutation relations. Now it was known~in circles of mathematical physicists since the early 195!
that in the case of infinitely many degrees of freedom the uniqueness theorem failed. In fact
was an innumerable host of inequivalent representations of canonical commutation relation
seemed that for the interpretation of the theory one needed more than an abstract algebra

In mathematics the theory of a class of abstract algebras which allowed representat
Hilbert space, the so-called ‘‘C* algebras,’’ had been developed. Therefore Irving Segal, on
the fathers of the mathematical theory, had advocated for several years to base the physica
on an abstractC* algebra. But quantum field theorists who were aware of the difficulty of
appropriate physical interpretation and of the problem of overabundance of inequivalent rep
tations had no use for this advice.

Two things were necessary before the idea of using abstract algebras could be implem
On the one hand, strange as it may seem in retrospect, one had to recognize that we are no
about a single algebra but about a net of algebras whose interpretation was hinged to spa
Secondly, one had to realize that unitary inequivalence of representations was a much t
distinction to be of any physical relevance because we can measure only with finite accura
consider only a finite number of observables at a time. Thus it was indeed possible and reas
to consider the abstract algebraic structure as the primary definition of the theory and Hilbert
and representations as secondary.

To avoid confusion of concepts, we shall in the following use the Gothic letterA for a C*
algebra andR for a von Neumann algebra, the symbolp to denote a representation.16 Thusp(A)
is a concrete algebra of operators in a Hilbert space. It leads us back to a von Neumann a
the double commutant

R5p~A!9. ~4.4!

The reformulation of the theory so that the local algebras are considered as abstractC* algebras
A(O) was done in Ref. 32.

So one had reached a point in relativistic quantum physics, reminiscent of the situat
quantum mechanics in 1926, where the primacy of algebraic relations was emphasized
essence of the theory. It did suggest a natural way to understand the appearance of d
coherent sectors. But it raised new questions. On the one hand, it was apparent that the s
of those representations usually discussed in quantum field theory resulted from some con
idealizations, especially from simplifying assumptions concerning the physical situation at s
like infinity. A closer look at the ‘‘states of physical interest’’ showed, however, that this was
the whole truth. We have more information. This will be discussed in the next section.

V. STATES OF PHYSICAL INTEREST

In the algebraic setting a ‘‘state’’v is considered as a positive, linear, and normalized fu
tional over the algebraA. It assigns to eachAPA a complex number. It is real for self-adjoin
elements and is then interpreted as an expectation value. Any such state gives rise to a re
tationp of the algebra on some Hilbert spaceH, where it can be described by a unit vector~GNS
construction!.16 Convex combinations of states give again states. This mathematical ope
corresponds to the physical procedure of ‘‘mixing.’’ Conversely, pure states are the extrem
a convex decomposition~which, sometimes, may be physically meaningless!.

In physics we consider primarily two classes of states, corresponding to different situatio
‘‘particle physics’’ we are interested in states which are close to the vacuum, differing from it
by some more or less localizable disturbances. In statistical mechanics we are interested i
which are close to a thermal equilibrium state. These are idealized best by considering a m
with nonvanishing density, extending to infinity.33

One bonus of the formulation of the theory in terms of local algebras is that the com
features of both classes become apparent and some powerful tools for a structure analysis
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areas emerge. Not only has the characterization of a thermal equilibrium state by the ‘‘th
boundary condition,’’ arising from the work of Kubo and of Martin and Schwinger, a very sim
form in the algebraic setting.34 But it turned out surprisingly that this so-called KMS condition h
a very natural place in mathematics, the Tomita–Takesaki theory of modular automor
groups,35 which plays a central role in the classification of von Neumann algebras.16

It was a remarkable experience that the ideas of Tomita and Ref. 34 were presented
same workshop, motivated by entirely different purposes and in complete ignorance of each
This led to an intensive interaction between some groups of mathematicians and physicist
which both sides profited substantially. What is the crux of the matter? Suffice it here to sa
Tomita and Takesaki studied von Neumann algebras for which there existed a vector which
cyclic and separating for the algebra.16 They found that such a vector~or rather the correspondin
state! defines a distinguished one-parameter automorphism group for the algebra with so
markable properties and a conjugation mapping of the algebra on its commutant. This gr
modular automorphisms plays also an important role in physics. For instance, the extens
Gibbs’ characterization of thermal equilibrium states to an infinitely extended medium is eq
lent to the statement that equilibrium is described by any state whose modular group is
one-parameter subgroup of time translations and~global! gauge transformations.~In the nonrela-
tivistic limit, the latter corresponds to the conservation laws for independent species of pa
instead of charges.!

In the case of zero temperature this formalism degenerates. In particular, the vacuum ve
not separating for the global algebrap(A) of all observables. However, a theorem of Reeh a
Schlieder36 tells us that it is cyclic and separating forR(O)5p(A(O))9 whenever there is a
nonvoid causal complement of the regionO. What can we say about the modular automorphi
induced by the vacuum for such algebras? The first important discovery in this context was
by Bisognano and Wichmann37 who determined these automorphisms for special regions, ca
‘‘wedges,’’ such as

W5$x:x1.ux0u, x2 ,x3 arbitrary%. ~5.1!

They found that these automorphisms coincide with the Lorentz boosts, leaving the wedge
ant. The close connection of this fact to the Bekenstein–Hawking temperature of black hole
recognized somewhat later by Sewell38 and more fully discussed in Ref. 39. In the case of theo
with conformal invariance, such a geometric significance of modular automorphisms could a
established for double cones.40,41

Besides such specific identifications, it was gradually realized that the von Neumann al
of finitely extended regions are all of one universal type, irrespective of whether we con
thermal states or states in particle physics and that this is a consequence of important
properties of the physical states. Again, this development originated from a bunch of quite
ent questions.

A. Phase space properties

Since the connection between fields and particles is not very close and we even know
theoretical models which have no particle content whatsoever, one must ask for the con
under which particles appear in the theory. We stated earlier that states of particles are qu
excitations. Naively, one would be inclined to define ‘‘localized states’’ by application of a l
algebraR(O) to the vacuum. But the Reeh–Schlieder theorem tells us that this leads to a
set in H and all reminiscence of the regionO is lost. The reason for this paradox is that t
vacuum state incorporates correlations between observables in far separated regions which
vanish exactly because of analytic properties of the correlation functions.

For a vector

C5AV with APR~O! ~5.2!

there is the ratio between ‘‘cost and effect,’’
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CA5
iAi
iCi , ~5.3!

which in general is larger than 1. IfcA is close to 1, thenC does describe an excitation which
approximately localized inO, i.e., the expectation value of an observable in a region spacelik
O in this state is approximately equal to the vacuum expectation value. But ascA gets larger, this
significance ofO for the interpretation ofC is lost. In other words, denoting the unit ball ofR by
R1 ~the set of allAPR with iAi<1), the set of vectorsR(O)1V characterizes a part ofH which,
apart from vectors of very small length, describes approximate localization inO.

If we choose forO a bounded region, for instance the double cone15 Or , and impose in
addition a restriction of the total energy~and thereby also of the total linear momentum!, we get
a part ofH which we can attribute to a bounded region of phase space. The restriction of e
can be done, in a somewhat brutal fashion, by applying the projection operatorPE for energies
belowE to the set of vectorsR(Or)1V. A smooth cutoff function of the energy, such ase2bH for
some sufficiently large positiveb, is mathematically more convenient and leads to the subse
vectors inH,

Nb,r5e2bHR~Or !1V. ~5.4!

It was argued in Ref. 42 that a necessary condition for a physically reasonable theory
‘‘compactness criterion:’’

~C! The set of vectorsNb,r is compact in the norm topology of Hilbert space. In other wor
for any choice of a positive number«, the vectors inNb,r with norm larger than« are contained
in the unit ball of some finite dimensional subspace ofH. As «→0, the dimensionN«→`.

Twenty years later Buchholz and Wichmann43 realized within a different context that th
estimates in Ref. 42 could be considerably improved and that the criterionC should be replaced by

~N! The setNb,r is a nuclear set44 for sufficiently largeb.
They argued that this requirement together with certain bounds on the nuclearity index

dependence onr andb is necessary to ensure known thermodynamic properties, cf. also Re
and 46 for further applications of this condition in the analysis of thermal states.

Several variants of the compactness and nuclearity criteria have been proposed. We s
touch here the extensive work about their relation and consequences. References may be
Ref. 5. Rather, we shall focus in the following on an aspect which emerges from the fore
discussion. Irrespective of whether we consider thermodynamics or particle physics, th
Neumann algebras of all bounded, contractible regions~such as double cones! are isomorphic.

B. The universal structure of local algebras

In Ref. 47 Fredenhagen studied the following geometric constellation: the wedgeW, defined
in ~5.1!, and enclosed in it a sequence of double conesOr n

, tangent to the wedge at the origin
with decreasing radiusr n115lr n for fixed l,1, so that they contract to the origin asn→`. He
found that a nontrivial ‘‘scaling limit’’ of the corresponding algebras could only exist if all
double cone algebras are of type III1.

16 In Ref. 48 it was shown that the phase space proper
imply that the local von Neumann algebras are hyperfinite. Moreover, according to our p
knowledge, their center is trivial,49 they are ‘‘factors.’’16 In Ref. 50 Haagerup had shown that a
hyperfinite factors of type III1 are isomorphic. Thus we conclude that all local algebras
isomorphic to a uniquely defined and well-studied mathematical object. This emphasizes
more that the physical information is not carried by a single algebra. We may compare thi
the situation in nonrelativistic quantum mechanics, where we encounter only type I alg
irrespective of the system considered.
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C. Split property

Of special interest are inclusion relations between algebras, see Sec. IX. We shall addre
the caseR(O1),R(O2), where the closure of the regionO1 is contained in the interior of the
bounded regionO2 . The ‘‘split property’’ asserts that then there exist ‘‘intermediate’’ factors
type I such that16

R~O1!,N,R~O2!, ~5.5!

where N denotes such a factor~to which we can, however, not assign a definite localizat
region!. One of the consequences is the ‘‘statistical independence’’ in the situation where
regionsOA andOB are spacelike separated so that there is a regionO which properly containsOA

and is disjoint fromOB . In this case the von Neumann algebra generated by the two local alg
is isomorphic to their tensor product. In symbols

R~OA!∨R~OB!.R~OA! ^ R~OB!. ~5.6!

This may be regarded as a strengthened form of the locality postulate. It tells us that the
states which have no correlations between the two regions and that the Hilbert space in wh
two algebras act can be factored into a tensor productHA^ HB , analogous to the notion o
subsystems in nonrelativistic quantum mechanics. This, incidentally, implies that the discuss
entanglement and nonlocality of EPR correlations can be done in the same way as in qu
mechanics. But the distinction between causal effects, which are restricted byLO , and EPR
correlations, which may persist over~large! spatial distances, is seen more clearly in the rela
istic setting.51

If two observers, nowadays called Alice and Bob, operate in two laboratories, there is no
that Bob can do which changes the statistics of any experiment which Alice can make, as l
they operate at spacelike separation. These statistics are governed by a well-defined ‘
state,’’ referring to the lab of Alice, which necessarily is impure because it ignores the situ
outside her lab and it does not depend on Bob’s activities. However, if they look at the sta
of a coincidence experiment in a state representing a~common! ensemble, there will in general b
correlations in thejoint probability distribution.

Such correlations persist over large distances if they are related to some conservatio
This is not the surprising aspect of the EPR correlations. It is encountered in ‘‘classical’’ s
tions, for instance a state of charge zero decomposing into two subsystemsA and B, carrying
opposite charge. Obviously, if Alice finds positive charge, she knows that Bob must ob
negative charge in a coincidence experiment. The quantum aspect comes from the possibi
Alice as well as Bob each can decide to choose among a set of incompatible measurements~which
mutually are compatible!. The correlations observed in the pairs of such choices are such tha
cannot be explained if one tries to describe the total state as a probabilistic distribution ove
of states of ‘‘subsystems’’ in any realistic sense. The separation of the observation labs do
correspond to a partition of the system into realistic subsystems. The notion of ‘‘state’’ shou
be interpreted as the ‘‘mode of existence’’ of some ‘‘object’’ with ontological significance
describes probability assignments for the occurrence of events~here the clicks of detectors in th
labs of Alice and Bob!. These are real and localized.

The split property has been considered for some time as an additional assumption and
dard split inclusions’’ have been studied in detail in Ref. 52. The recognition in Refs. 43 an
that it is a consequence of the phase space properties came as a gratifying surprise. If th
density in a theory increases too fast, then a minimal distance between the boundaries
regionsO1 and O2 may be necessary for relation~5.5! to hold. If the regions have a commo
boundary point, then~5.5! does not hold.
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VI. CHARGES AND STATISTICS

The transition from operator algebras to abstract algebras in Ref. 32 was motivated
desire for a natural understanding of the role of different coherent sectors whose existen
been pointed out in Ref. 31. Related to this there was the challenge to understand the reas
the Bose–Fermi alternative. The arguments in quantum mechanics were not adequate
their starting point, namely the description of a state of several indistinguishable particles
wave function in configuration space, took for granted part of what had to be explained. In
other possibilities called ‘‘parastatistics’’ had been suggested by Green.53

In Ref. 32 it was argued that the choice of a particular representation was largely a ma
convenience and that superselection rules concerning charge and spin must result from ide
the situation at spacelike infinity. Since charges are of eminent physical importance, the nec
idealizations had to be understood clearly and related to the appearance of charge sect
statistics. The extensive work devoted to this task in the 1970s and 1980s need not be r
here in detail. This is described in Chap. IV of Ref. 5 and in Refs. 54 and 55, where the per
references may be found.

We shall take here, however, a closer look at the idealizations used and the ensuing
ences in the properties of charges arising from them.

A. Sharply localizable charges

The approach by Doplicher, Haag, and Roberts~DHR picture56! started from the idealization
that we restrict attention to all those statesv which become indistinguishable from the vacuumv0

by any observation in the causal complement of a sufficiently large double cone15 Or . In symbols,

iv2v0iA~Or8!→0 as r→`, ~6.1!

whereOr8 denotes the causal complement ofOr .
It was clear from the outset that thereby one excludes electric charges from conside

because the flux of the field strength through a sphere of arbitrarily large radius measur
charge. But it was believed then that this feature was intimately related to the zero mass
photon and could not happen in a theory with a mass gap. Though it is true that Gaus
excludes the possibility of a mass gap,57 it turned out that condition~6.1! is too stringent a
restriction even for a purely massive theory~see below!.

From ~6.1! it followed that there are also states in which the charge is localized sharply
bounded region. This is surprising in view of the discussion in the last section where we sa
the notion of ‘‘localization of a state’’ is in general only a qualitative one. Indeed, this fea
following from the idealization~6.1!, will have to be modified, most significantly in Sec. VII.
follows further in this picture that the charge structure arises from the existence of loca
automorphisms or endomorphisms of the net, i.e., mappings which preserve the algebraic re
and act trivially on the algebras in the causal complement of some regionO. We call such
mappings local morphisms. The main consequences of this picture, derived in Refs. 56 and
be quickly summarized:

~a! There is charge conjugation symmetry.
~b! There is a composition law of charges with permutation symmetry. It leads to an elab

calculus of intertwiners between morphisms localized in different regions.
~c! Each charge is either of bosonic or fermionic type and this distinction is reflected in

intertwiner calculus. Note that this appears as a consequence of the intrinsic stru
outlined in Sec. IV, withoutad hocintroduction of anticommuting elements.

~d! There is a compact group associated with the charge structure. It may be interpreted
global gauge group. This is a deep result, obtained by Doplicher and Roberts.58 By estab-
lishing a novel duality theorem in group theory, they showed that the structure of
morphisms and intertwiners, alluded to above, defines precisely the dual object of a
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~e! Elementary charges correspond to irreducible representations of this gauge group. T
mension of the representation corresponds to the order of the parastatistics associat
the charge.

The simplest case, where the gauge group is the Abelian group U~1!, gives the well-known
situation where all integer values of the charge appear and we have standard Bose or
statistics. For non-Abelian groups we get parastatistics.

These results are put in proper perspective if one carries through the same analysis for t
of two-dimensional space time. There one essential step, namely the exchange of the pos
two spacelike separated charges by continuous motion, keeping them always spacelike
longer possible and this leads to a much more complicated structure.59,60The permutation group is
replaced by the braid group, the Bose–Fermi alternative is changed by the appearance of
and plektons. In the case of less sharply localizable charges, discussed below, these
appear already in three-dimensional spacetime. By now, there is an extensive literature co
these aspects. References and surveys are given in Refs. 55 and 61.

B. Charges localized in spacelike cones

Borchers proposed a different selection criterion: Consider all representations satisfyin
spectrum conditionS. This also serves to exclude states where the matter density does not v
at infinity, but it is weaker than the DHR criterion. Buchholz and Fredenhagen used this crit
restricting the analysis to massive theories.62 They found that the charges were not necessa
localizable in bounded regions, there can occur representations where the optimal localiza
charge needs a cone extending to spacelike infinity.

The results~a!–~e! remain valid in this situation,62,58but one needs~at least! four-dimensional
space-time to rule out the braid group. Even then, time honored arguments had to be re-ex
if particles carrying such ‘‘BF charges’’ were involved. But it turned out that no serious cha
resulted and even the dispersion relations forS-matrix elements were not affected.63 In a massive
theory, the placement and direction of the charge carrying cone plays no role for the u
equivalence class of the representation~the superselection sector!. Only the topological property
that the sphere at spacelike infinity has to be punctured somewhere is relevant.

C. Absence of mass gap

If there are excitations of arbitrarily small energy, then the description of the set of sup
lection rules becomes a formidable task due to ‘‘infrared clouds.’’ In the case of QED the di
sion of this64 led to some interesting consequences. The optimal localizability of charge
spacelike cone remains, but different placements of this cone correspond to different in
clouds and thereby to unitarily inequivalent representations.

Since a charged particle is always accompanied by an infrared cloud which depends
state of motion, its mass is not sharply defined and represents only a lower bound of the e
momentum spectrum~infraparticle problem65–67!. But it is possible to give a precise meaning
the notion of ‘‘improper state of a charged particle with sharp four-momentum’’~a generalized
Dirac ket! as a ‘‘weight’’ on the algebraA. In contrast to the case of neutral particles, a sup
position of these improper states to form a wave packet with specified localization properties
possible. Nevertheless, a clear formulation of collision theory for charged particles and
photons is available.20

D. Summary and questions

The analysis described in this section started from the aim of understanding the superse
structure. In the massive case it led to the appearance of charge quantum numbers re
equivalence classes of local morphisms~charge creation!. The laws of composition and conjuga
tion of these morphisms miraculously turned out to correspond precisely to the dual objec
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compact group~global gauge group!. Locality leads to a permutation symmetry whose implem
tation demands~para! Bose or Fermi statistics. If, instead of Minkowski space, one consi
theories in lower dimensions, then these statements must be modified.

But there is evidence that the charge structure has deeper roots and is not necessarily r
by superselection rules. In the standard model it is associated with a ‘‘principle of local g
invariance’’ which has not been incorporated in the scheme discussed so far. Superselectio
and observable charges appear only as the survivors in the ‘‘unbroken part’’ of a very
symmetry. The notion of ‘‘spontaneous symmetry breaking’’ relates to the possible existen
different ‘‘phases’’ with different behavior at spacelike infinity, e.g., ‘‘long range order.’’ T
observable charges may depend on the phase. We shall address the meaning of ‘‘symme
general and of the ‘‘local gauge principle’’ in particular in the next section.

VII. SYMMETRIES, LOCAL GAUGE PRINCIPLE

The word ‘‘symmetry’’ has several connotations. InA3 we used it in the ‘‘active’’ sense. An
element of the symmetry group changes the physical situation, noticeable by an observer
equivalent situation. By ‘‘change of situation’’ we mean in standard quantum theory that the
and all observables are altered. ‘‘Equivalent’’ means that all laws of nature apply in uncha
form in the new situation. More often, however, symmetry is understood in the ‘‘passive’’ s
as providing alternative descriptions for the same physical situation, expressing the fact th
~known! laws of nature do not distinguish a preferred way of coordinatization within a clas
equivalent ones. In either case, we have to consider reference frames~coordinate systems! for the
symmetry group and for the objects on which it acts.

In the case of the Poincare´ symmetries we have implicitly assumed that an observer
establish a global reference frame in Minkowski space~fixing a point as the origin and a Loren
zian tetrad!. He does this with the help of some macroscopic bodies and clocks which ar
included in the physical system considered in the theory.~They are part of the ‘‘observer side’’ o
the Bohr–Heisenberg cut.! Then, keeping this reference frame fixed, he can interpret the Poin´
transformations in the active sense. We shall accept this idealization here and ignore its limi
~indicated by general relativity on the one hand and the quantum nature of bodies used
establishment of the frame on the other hand!.

The active interpretation is, however, not possible in many cases where the symme
speak about is more indirectly inferred~or assumed! and the macroscopic objects available do n
define a reference frame which the observer could control and change. Thus the global
groups mentioned in the last section may be regarded as describing a symmetry of the theo
the objects on which the group acts cannot be measurable quantities in the sense of s
quantum theory. They cannot be accommodated in the algebra of observables because the
operational way of establishing a reference frame relating to this group and thus the obse
cannot depend on it. They must be invariants. One can extend the net of observable a
R(O) to a net of ‘‘field algebras’’F(O) on which the global~compact! gauge groupG acts.58 But
linear relations between elements ofF(O) which transform according to inequivalent represen
tions of G are void of physical meaning. This reflects the limitations of the superpos
principle31 and the related feature that the causality requirement, expressed byLO , does not apply
to the netF(O).

Apart from the possibility of fixing a reference frame in an operational way, there is an
problem whose recognition was one of the keys leading to the development of the the
general relativity: The comparison of reference systems used by observers in different reg
ambiguous because it requires some bridge connecting them~some transport of information68! and
the choice of the bridge plays a role. If we regardlocal gauge transformations as an intern
symmetry, then both aspects enter. There is no observable way to fix a reference frame an
is no unambiguous way of comparing frames in different locations. The observables mu
independent of the choice of these frames. Thus, to incorporate the local gauge princi
specifying an internal symmetry group, we must again augment the algebraic scheme.
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A symmetry is expressed by a mapping of the mathematical structure onto itself. In the
of the structure outlined in Secs. IV and V, this means that it is described by an automorpha
of the algebraA which conserves the net structure. In other words, the image of the algebraR(O)
must again be the algebra of some space-time regionOa ,

aR~O!5R~Oa!. ~7.1!

Since this should hold for arbitrarily small regions, the mapO→Oa must result from a point
transformationga ,

x→gax, ~7.2!

which furthermore has to conserve the causal structure in Minkowski space. For a precise
sion see Ref. 69. This limitsga to the elements of the Poincare´ group, possibly extended b
dilations. Apart from these ‘‘geometrical symmetries,’’ which change the regions, there ma
also internal symmetries, corresponding to automorphisms transforming eachR(O) onto itself,

aR~O!5R~O!, ~7.3!

a prominent example being charge conjugation.
An automorphism ofA is called ‘‘inner’’ if it is implemented by a unitary elementU belong-

ing to the globalC* -algebraA,

aA5UAU21, APA. ~7.4!

None of the global symmetries can be inner since they act nontrivially on observables loc
arbitrarily far, whereasA contains only quasilocal elements. However, it appears that a much
important notion is local implementability of~possibly only local! symmetries. This means that w
focus attention on the action ofa on some chosen algebraR(O). Thena may be called ‘‘locally
inner’’ if there exists some finitely extended regionÔ such that

aA5UAU21 for some UPR~Ô! and all RPA~O!. ~7.5!

It is then important to characterize a lower bound for the choice ofÔ. If the symmetry shiftsO to
Oa , then the split property implies that one may choose forÔ in ~7.5! any connected region which
contains the closure of the causal completion ofOøOa .

This entails the following analogue to Noether’s theorem in the algebraic setting: The i
tesimal generator of any continuous symmetry is locally implemented by a Hermitian ope
which is affiliated with a slightly larger region.70 ~If the charge structure is adequately describ
by the considerations in Sec. VI, then this holds likewise for the global gauge symmetries
on the field algebra.! One may expect that these local generators determine a pointlike
~density! r in the limit asO shrinks to a point~cf. Sec. IV!. Moreover, if the symmetry commute
with time translations, there should hold a continuity equation,

ṙ5div j , ~7.6!

where j is again a Wightman field. As discussed in Ref. 70, there remain some unres
ambiguities in carrying through this intuitive argument whose significance is not yet pro
understood. But these remarks may indicate the role of pointlike fields, such as the compon
the energy-momentum tensor and certain currents within the general scheme.

Let us finally discuss the case of internal symmetries relating to the local gauge prin
There the mathematical structure referring to the noninvariant elements is much more sub
fix ideas, let us think of an internal symmetry group like SU~2! or U~1!. In the classical theory, the
appropriate structure is described by fiber bundles in which the notion of a field configurat
some regionO is replaced by that of a section in some~associated! bundle. The section obtain
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physical relevance only in conjunction with a connection. This demands that we endow the
O ~assumed to be contractible! with a collectionC of paths linking a fixed reference pointx0

PO uniquely to every other pointxPO. Second, that we attach a ‘‘charge transporter’’Gx0 x to
each such path with the help of the connection form. Using this device, we can compa
elements in different fibers and thus obtain the analogue of an ordinary field, saywC(x), for which
the algebraic operations of addition and multiplication at different points are meaningful an
which the transformation by elements of the symmetry group, referring now to all ofO, is defined.

In adapting this to the noncommutative situation, we meet several difficulties. The first
cerns the proper assessment of the singular quantities associated with points and lines. S
connection forms are no longer ordinary functions, there is the question of whether thewC(x) can
still be regarded as ‘‘operator-valued distributions,’’ as assumed for ordinary fields in Sec. II
is presumably not the case. But let us for the moment ignore this problem and proceed as
IV. This would lead us to local field algebrasFC(O). The fixed points withinFC(O) under the
action of the group could be interpreted as elements of the observable algebrasR(O) which have
significance without reference to the choice ofC. If furthermore we could find withinFC(O)
subspaces of partial isometries transforming under a specific irreducible representation
symmetry group, then we could define endomorphisms forR(O), in complete analogy to the cas
of global gauge symmetries. We would thus arrive in the area studied in Ref. 58 with
difference: instead of ‘‘localized endomorphisms’’ for all ofA, we would have to consider now
endomorphisms restricted to the algebraR(O) for some region. Also, we would follow the pat
in Ref. 58 in the opposite direction. Instead of starting with the endomorphisms and their
twiners and ending with a group, we would start from the group from which the dual stru
emanates.

The purpose of the excursion in the last paragraph was just to indicate some parallelism
superstructure met in quantized gauge theories with that found in theories with a global
group. The main problem with this ‘‘as if’’ picture comes from the feature that we cannot rem
the singular nature ofwC(x) just by smearing out with a test functionf (x), keepingC fixed. On
the other hand, the algebraic relations between objects referring to different choices ofC are not
meaningful. Work in lattice gauge theory71 and perturbation theory72 indicates, however, tha
‘‘quantum charge transporters’’Gxy may be definable as distributions inx andy. These objects,
corresponding in the field theoretic setting to finite Mandelstam strings, would allow us to
struct by algebraic operations special elements in the observable algebrasR(O) for which we can
distinguish two kinds of supports: ‘‘charge supports,’’ relating to the supports of the test func
in x, respectivelyy, used for the smearing ofGxy , and a ‘‘causal support,’’ involving in addition
a bridge region between the charge supports. The intrinsic significance of the notion of ‘‘co
tion’’ should then be understood by studying the effect of cutting such objects between di
charge supports.

Let us add one comment. In general the group structure just distinguishes conjugacy
within the group so that a reference frame is also needed to characterize individual grou
ments. In the case of an Abelian group this is not necessary. A conjugacy class consists on
single element. This brings some simplifications since the symmetry may be locally imple
able by an observable fieldr ~the charge density in QED!. The trivial action of the group on the
observables is then expressed by Gauss’ law, i.e., the existence of a local observable fieldE such
that

r5div E. ~7.7!

As already mentioned, the consequences of this feature have been studied extensively.
There are many aspects of the local gauge principle we cannot touch here~mostly because

they are not worked out in adequately clear form!. The elaboration of this rich structure to a degr
of conciseness comparable to that of the preceding sections appears to us as a task worth
sweat of the noble. It is presumably an essential step towards the characterization of a s
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theory within the general frame described in the preceding sections along the lines sugge
the progress of high energy physics in the past decades.

VIII. SHORT DISTANCE STRUCTURE

The preceding sections were concerned with the development of a conceptual fram
corresponding mathematical structure, which can be accepted as reasonably complete and
and provides natural answers to a variety of questions coming mainly from quantum field th
But it is, of course, of paramount importance to see how a specific theory can be charac
within this general frame. From the observation that the local gauge principle together w
postulate of ‘‘minimal coupling’’ and some knowledge about the relevant degrees of freedom
the choice of a Lagrangian in classical field theory almost uniquely, we may surmize tha
information which is needed to define a theory, beyond that supplied already by general prin
and specification of internal symmetries, is encoded in the short distance structure.

A. Scaling algebras

Renormalization group methods have proven to be a powerful tool for the classification o
structure in quantum field theory. So it is gratifying that they have a very simple counterpart
algebraic approach.73 The essential idea is to consider functionsAI of a scaling parameterl
PR1 with values in the algebra of observables. In other words, the ‘‘value’’AI (l) is an element
of A. These functions form, under the obvious pointwise defined algebraic operations, a n
algebraAI on which the Poincare´ transformations (x,L) act by automorphismsaI x,L related to
those inA by

~aI xAI !~l!5alx AI ~l!, ~aI LAI !~l!5aLAI ~l!. ~8.1!

The norm is defined by

iAI i5sup
l

iAI ~l!i . ~8.2!

The local structure of the original net is lifted toAI by setting

AI ~O!5$AI :AI ~l!PR~lO!, lPR1%, ~8.3!

and the momentum space properties of the elementsAI of the scaling algebra are controlled by th
requirement thataI xAI and aI LAI depend norm-continuously onx and L, respectively. The latter
condition entails that the valuesAI (l) of AI , being localized inlO, have a momentum transfer o
order l21, in accord with the uncertainty principle. In this way one obtains a local, Poin´
covariant net which is canonically associated with the original theory.

One may regard the valuesAI (l) as observables in the theory ‘‘at scalel’’ corresponding to
a change of the original unit of length and thereby of the metric tensor by the factorl. The graph
of a function AI establishes a relation between observables at different scales, in analo
renormalization group transformations. However, in contrast to the field theoretic setting, th
no need to identify individual observables at different scales. All functions satisfying the
straints indicated above are admitted. It may seem strange at first sight that with such
constraints the netAI could provide any interesting information. But this may be understood
recalling that the relevant physical information is contained in the net structure and onl
identification of the sets of operators associated to regions is necessary. For that reason
much more freedom in choosing the relation between observables at different scales.

The next step is to describe the states in the theory at given scalel with the help of the scaling
algebra. This can be done by lifting the statesv of the underlying theory at scalel51 to AI ,
setting

vI l~AI BI ¯CI !5v~A~l!B~l!¯C~l!!. ~8.4!
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The short distance properties of the theory can then be analyzed by proceeding to

vI 0~AI BI ¯CI !5 lim v~A~l!B~l!¯C~l!!, ~8.5!

where we understand the symbol lim as denoting any limit point of the sequence on the righ
side for l→0. The existence of such limit points is guaranteed by general mathem
theorems.74 Any such limit point is a pure vacuum state onAI , irrespective of the statev from
which one starts.

By the GNS construction one obtains fromvI 0 a representation of a local net of von Neuma
algebras, acting in a Hilbert space, which we call the scaling limit of the theory. Three di
possibilities can arise. The limit may yield a classical theory~commutative algebras!. This arises
when all functionsAI become multiples of the unit element asl→0. Second, there may exist man
different limit theories~indicating the presence of an ‘‘unstable ultraviolet fixed point’’!. The third
alternative that the limit points~8.5! define a unique theory and that this is not classical is,
course, the most interesting one. It may be regarded as a distinctive mark characterizing
malizable theories with a stable ultraviolet fixed point in an intrinsic way, i.e., without referen
perturbation expansions or other approximation methods. One may expect that the scalin
theory is simpler than the original one; in the extreme case it may turn out to be a theory o
fields ~asymptotic freedom!.75

This suggests that it is a reasonably well-defined mathematical problem to investigate
algebraic setting the existence and uniqueness of theories which have prescribed symmetrie
sense of the preceding section and are asymptotically free. The aims of such an enterprise
be similar to those pursued in ‘‘constructive quantum field theory,’’ but the methods may com
ment previous efforts.76

B. Germs of states

There is another way to look at the short distance structure30 which yields a somewha
different type of information, relating to point fields and operator product expansions.77 Any state
v has~as an expectation functional! a restriction to each subalgebraR(O), called the partial state
in O. For givenR(O) we may consider the set of the corresponding partial states, or rath
complex hull S(O), which is a Banach space with distinguished positive cone. The m
S(O2)→S(O1), which are obtained by restricting the functionals inS(O2) to R(O1) if O1,O2 ,
induce the structure of a presheaf on the collection ofS(O): A partial state onO1 corresponds to
an equivalence class of partial states inO2 . One may define an equivalence relation with resp
to a pointx,

c .
x

c8, ~8.6!

meaning that there exists some neighborhood ofx in which the restrictions ofc andc8 coincide.
We shall call such an equivalence class$c%x a ‘‘germ at the pointx.’’

The nuclearity property, discussed in Sec. V, suggests that one may obtain a tractable d
tion of such germs in the following way: Focus attention on functionalscE with total energy
belowE and restrict them to the algebras15 R(Or). The resulting spaces are denoted bySE(Ot).
Disregarding functionals of small norm, each of them is finite dimensional. A measure fo
accuracy of these finite approximations is the distancedn(E,r ) between the unit balls inSE(Or)
and in the closestn-dimensional subspace of functionals. This distance decreases asr→0 and
increases asE→`; moreover, for fixedE, r it decreases with growingn.

Under reasonable assumptions, the distance functionsdn(E,r ) vanish with increasingn of
increasingly high order asr→0. In the example of the theory of a free scalar fieldw0 one has for
Er,1,

dn~E,r !.~Er !dn, where d151, d252, d35¯5d753 etc. ~8.7!
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Proceeding to the dual picture~the co-germs, which are associated with the algebra!, this gives an
increasing number of pointlike fields which are needed to distinguish the functionals inSE(Or)
with increasing accuracydn(E,r ). In the free scalar theory, the unit operator corresponds tn
51. Forn52, the fieldw0 is needed also, forn<7 the four derivatives]mw0 enter as well as the
Wick power :w0

2:. Ultimately, all elements of the Borchers class appear. The field equations
a reduction in the number of new independent elements for increasingn. Thus one has an orderin
of the elements of the Borchers class according to their significance in the regime of smallEr and
one may consider approximation schemes corresponding to operator product expansions.

IX. INCLUSIONS

There are two distinct types of questions in which the study of inclusions of algebras p
role. The obvious one in our context comes from the inclusions of regions in space time. Th
obvious one from endomorphisms of the algebraA. We shall begin with the latter because
provides another surprising example for ‘‘prestabilized harmony’’ between physics and math
ics.

The analysis in Sec. VI related charge creation to the existence of endomorphisms ofA. This
led to the recognition that, associated with each type of charge, there is a ‘‘statistics paramel
which, in the case of four-dimensional space time, could only take the values6n21, wheren is
an integer, the statistics dimension, and the sign distinguishes the Bose and Fermi cas56 In
two-dimensional space time there is a much wider range of possibilities. The ‘‘statistics d
sion’’ ulu21 can take noninteger values and, instead of a sign, complex phase factors can a
Instead of the Bose–Fermi alternative one has ‘‘braid group statistics.’’59

Motivated by a quite different circle of questions in mathematics, Vaughan Jones disco
that for certain inclusions of type II factors there exists an ‘‘index’’ which can take on
restricted set of values and that there is a relation of this structure with representations of th
group. This initiated a mathematical development leading for example to substantial gene
tions and applications to the theory of knots. It took several years till the close connection of
mathematical developments with the composition laws of charge quantum numbers was
nized by Longo,78 who showed that the statistical dimension is a~generalized! Jones index. While
in four-dimensional space time the latter is restricted to integers and this feature is connecte
the permutation group, the full complexity appears in the analysis of possible charge structu
two-dimensional space time.

Coming now to the inclusions in the net of algebras, we may restrict ourselves here to
remarks since this is extensively discussed in the contribution of Borchers to this issue. The
result is that a few algebras suffice to determine the whole net as well as the operators repre
the Poincare´ group and the TCP operator. This amazing fact, recognized by Wiesbrock79,80 using
basic results of Borchers,81 can be made plausible intuitively by starting from the discovery
Bisognano and Wichmann37 which indicated that the modular automorphism group for
vacuum state and the wedge region~5.1! gives the Lorentz transformations in thex0–x1 plane. If
one takes a second wedge, included in the first one, one obtains ‘‘half-sided modular inclus
for which the modular operators and conjugations generate a whole family of algebras a
translation operator in a lightlike direction in thex0–x1 plane. Repeating this construction, chan
ing x1 to x2 and x3 , the whole net is obtained by intersections and the full Poincare´ group is
obtained.

One comment should be added. Each of the six algebras used in the construction is isom
to the unique hyperfinite type III1 factor. Their association with specific regions in Minkows
space could be regarded as secondary. It only serves to fix a general relation betwee
algebras. So one may replace the assumptionLO , implying that the labelO in the basic corre-
spondence~4.1! should be interpreted as a region in Minkowski space, by a weaker one.82 The
main structural relations needed refer to inclusions and complements and these are direc
coded in the algebraic relations.
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X. SUMMARY, COMMENTS, CONCLUSIONS, PERSPECTIVES

Looking back at the understanding of relativistic quantum physics 50 years ago, it may b
to say that the second half of the century brought no revolution comparable in impact to the r
changes of basic concepts which shook the first three decades of this century. It was a pe
steady evolution, but it led to significant changes of perspective.

We discussed here the synthesis of quantum theory and special relativity, incorporating
information from other sources and striving to bring out the essentials of a coherent conc
and mathematical structure. On the side of quantum theory, we started from the orthodox po
distinguishing the observer and his instruments from the ‘‘physical system’’ which here, in
ciple, could be the whole universe minus the observer. We also adopted the point of vi
Heisenberg and Dirac that observables and manipulations of the system by the obser
mathematically described by elements of a noncommutative algebra and that the~abstract! alge-
braic relations constitute the essence of the theory. Keeping in mind Niels Bohr’s message t
must be able to ‘‘tell our friends what we have done and what we have learned’’ and his co
sion that this forces us to describe the side of the observer in the ‘‘language of classical phy
we note that indeed we retain one classical anchor, namely classical space time in wh
describe the placement of instruments and the Poincare´ symmetry, used in the active sense
pushing around instruments.

The bridge between the mathematical formalism and the communication with our frien
provided by the correspondence~4.1! between space-time regions and algebras and by the
ization of the Poincare´ group by automorphisms~7.1!, ~7.2! of the net of local algebras. Its
combination allows us to describe geometric constellations of instruments and to analy
energy transfer between the instruments and the ‘‘system,’’ which suffices for a full phy
interpretation of the information contained in the mathematical scheme.

How much do we know about the net of algebras? The two central pillars come from
relativistic causal structure of space time, expressed by the postulateLO of Sec. III, and from the
stability requirement, expressed as postulateS in Sec. II. But the closer study in Sec. V leads
important refinements. On the one hand, it shows that if we focus attention only on regio
finite extension, there is a faithful representation of the abstract algebraic elements by op
acting on a Hilbert spaceH. Each individual subalgebraR(O) is isomorphic to a universal
known and well-studied object: the unique hyperfinite factor of type III1.

On the other hand, the consideration of different classes of states brings out clearly th
abstract algebras are the basic objects whereas their representations in terms of operators i
space is a matter of convenience which may be adapted to the situation under conside
Inequivalent representations of one and the same net of abstract algebras describe differ
alizations which are useful in different regimes. Prime examples are thermal equilibrium stat
states carrying some~global! charge quantum number~Sec. VI!.

PostulateS is strengthened to the nuclearity postulateN, implying roughly that finite phase
space volumes correspond to finite dimensional subspaces ofH. The locality principleLO is
strengthened to the ‘‘split property’’~5.5! which allows a factorization ofH for disjoint, spacelike
separated regions in analogy to the notion of subsystems in nonrelativistic quantum mec
This, incidentally, implies that the discussion of entanglement and nonlocality of the EPR c
lations can be done in the same way as in quantum mechanics. But in this setting the dist
between causal effects whose propagation is limited by light cones, as demanded byLO , and EPR
correlations, which may persist over~large! spatial distances, is seen clearly.

Comment:If instead of Minkowski space one considers curved space time, then the alge
part of the theory carries over smoothly since the net structure refers only to inclusion rel
and causal complementation and both remain well defined if the metric structure is clas
given in terms of a gravitational background field.83 The loss of Poincare´ symmetry demands
however, that the stability requirementS must be replaced. Suggestions of how this may be d
have been proposed. See for example, Refs. 84, 85, 5, and 82. The most interesting p
consequences which can be treated in this setting are the Bekenstein temperature and H
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radiation associated with black holes. One should note, however, that our present understan
the stability requirement is not fully satisfactory.

We must now face up to the essential task of defining one specific theory within the still r
general frame. The most significant progress in high energy theory in the past decades ha
the development of the standard model. It combines the choice of specific internal sym
groups with the sharpened locality principle which, more than 80 years ago, had led to the g
theory of relativity: there is no preferred global reference frame; the relation between fram
different locations depends on the choice of a path connecting them.

But here and now we talk about reference frames for the degrees of freedom associate
internal symmetries, not about the frame for space-time coordinates. The incorporation of in
symmetries subject to this ‘‘local gauge principle,’’ which demands that there is no pref
global reference system for them, is addressed in Sec. VII. It is not a straightforward ta
transfer the notions of sections and connections, familiar from the classical formulation with
bundles, to the quantum level. We briefly sketched an approach which could lead to an in
understanding of the meaning of quantum connection. One essential aspect appears to be
addition to the causal supportO, used in the correspondence~4.1!, one must introduce fine
distinctions inR(O) by so-called ‘‘charge supports.’’ Specifically, one needs special elemen
R(O) with disjoint, complementary charge supports related to representations of the gauge

Much remains to be done in the development of such ideas until a concise and com
structure is reached. But it is an effort well worthwhile since it can open the gate to a very
field. We mentioned already the need for a good definition of a specific theory along the
suggested by the standard model. Combined with the short distance analysis~Sec. VIII!, the
question of existence and uniqueness could be approached in precise mathematical ter
beyond that let us mention some old dreams: the supersymmetric unification of interna
geometric symmetries, treated as local gauge symmetries. This may, in fact, even suggest a
approach to the synthesis of general relativity and quantum physics since, once we sacrifi
global nature of translations, we may also treat the Lorentz group as an internal SL(2,C) symme-
try.

None of these perspectives is of a truly revolutionary nature. They constitute a natural
opment of existing ideas. But it seems that this development has not yet reached its e
essential limits. The road from QED to QCD exemplifies that old equations and principles,
erly understood and adapted, contain a lot of relevant new physics. The problems mentioned
indicate the wide range of efforts still needed to clarify and round off this era.

At the same time one cannot ignore the signs indicating the approach of some radical c
in basic concepts. What will be the role of space time in the paradigm of a future theory an
will the orthodox position of quantum theory be affected? It is already evident that the cla
anchor, provided by the operational interpretation of space time as the bridge between the
ematical formalism of the theory and the simple language needed for ‘‘telling what we
learned’’ cannot be pushed to extremes. We do not place and control instruments in regi
10216cm extension. If we look for a synthesis of quantum physics with general relativity
instance along the lines indicated above, then this means that we introduce on the side
mathematical structure of the theory substantially more detailed ontological extrapolation
can be directly related to observations. The needed bridge on which Bohr insisted~for good
reasons! must be established on an intermediate level, such as the definition of some~classical!
background which must first be derived from the theory as an approximation under su
circumstances.

There arises the question of how we can~within the scope of physics! divide the universe into
distinct, individual parts to which we can give a name. This is indeed the main message b
home by the EPR-type experiments, because we see that the notions of ‘‘system’’ and ‘‘stat
approximate or relative unless we consider the whole universe as the system. As long as we
space time as a pregiven continuum, we may use this for the purpose of subdivision. If we g
this anchor, then what remains?

If we believe in a fundamental indeterminism of the theory, then we must distinguish bet
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the realm of facts and the realm of possibilities, represented by probability assignments
former is, at present, reduced to ‘‘observation results,’’ the latter to the notion of ‘‘state.’’ Str
speaking, an observation result is a macroscopic change which enters the consciousness o
human beings. This is certainly necessary for testing a theory. But hardly as a basic conce
it be generalized by the notion of an ‘‘event’’ which does not depend on the senses and cons
ness of humans? Is the role of space time ultimately just the set of relations within a patt
events? Does the distinction between potentialities and facts imply a fundamental significa
the arrow of time? Facts belong to the past, possibilities to the future. For some tentative s
such directions compare Ref. 86.

Let us conclude this essay with the acknowledgment that there remain many questions
are very far from a ‘‘theory of everything.’’

APPENDIX: OPERATOR ALGEBRAS

For the convenience of the reader, we collect here some facts and notions from the the
operator algebras which are used in the main text.

In the algebraic approach to quantum theory, the basic mathematical objects areC* algebras.
A C* algebraA is a complex linear space, equipped with an associative product, a* operation
~defining the adjoint! and a distinguished normi•i. With respect to the corresponding nor
topology,A is complete, i.e., a Banach space. We assume thatA contains a unit element 1.

A state v on A is a complex linear functional which attains non-negative values on
elements of the positive coneA15$A* A:APA%,A and which is normalized,v(1)51. It is a
basic fact, established by Gelfand, Naimark, and Segal~GNS construction!, that any statev
determines~a! some Hilbert spaceH, ~b! a mappingp from A into the algebra of bounded linea
operators onH which preserves the algebraic relations~i.e., a homomorphism!, and ~c! some
normalized vectorFPH such that

v~A!5~F,p~A!F! for APA. ~A1!

In this way,A is mapped to a concreteC* algebrap(A) of Hilbert space operators and the sta
v is interpreted as an expectation functional onp(A).

On a Hilbert space one can introduce the notion of weak convergence of sequen
bounded operators~all matrix elements of the sequence converge!. The resulting limits are again
bounded linear operators. It is therefore meaningful to proceed fromp(A) to its ‘‘weak closure’’
R5p(A)2, i.e., the set of operators consisting ofp(A) and all weak limit points. The setR is
again aC* algebra but, in contrast top(A), it is also closed with respect to weak limits. Su
weakly closed algebras are called von Neumann algebras.87

In the analysis of von Neumann algebrasR one uses various notions which enter also in
present discussion. The ‘‘center’’Z of R is the subalgebra of operators commuting with
operators inR. If this center consists only of multiples of the unit operator,R is called a ‘‘factor.’’
The decomposition of an algebra into factors is unique and corresponds to the simulta
spectral resolution of all operators in the center. Another important notion is ‘‘hyperfinite,’’ w
means that the algebra can be approximated~in the sense of weak limits! by its finite dimensional
subalgebras.

In their seminal investigation, entitled ‘‘rings of operators,’’ von Neumann and Murray fo
that there were several types of factors. The ones with which physicists were familiar~‘‘type I’’ !
correspond to the algebra of all bounded operators on some Hilbert space. Different factors
I can thus be distinguished by the dimension of the underlying space. Then there was a con
generalization, called type II, in which a trace could still be defined for a class of elem
Everything else was lumped together as ‘‘type III.’’

The Tomita–Takesaki theory provided tools for a finer subdivision. In this theory, the b
ingredients are, besides a von Neumann algebraR, cyclic and separating vectorsC, i.e., vectors
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for which RC is dense in the Hilbert space and which are annihilated by none of the operat
R, apart from 0. Given such a pair~R, C!, one can consistently define an antilinear operatorS, the
Tomita conjugation, setting

SAC5A* C for APR. ~A2!

The conjugationS can be decomposed in a unique way~polar decomposition! into the product
S5JD1/2 of an anti-unitary operatorJ and a positive self-adjoint operatorD1/2 whose square is
called the modular operator affiliated with~R, C!. It is a central result in this theory that th
corresponding unitary operatorsD i t , tPR, map by their adjoint action the algebraR onto itself.
These maps are the modular automorphisms mentioned at various points in the main text

Based on these notions, an essentially complete classification of factorsR was achieved by
Alain Connes,88 who showed that the ‘‘spectral invariant,’’ obtained from the intersection of
spectra of modular operators affiliated withR, is ~disregarding the value 0! always a closed
subgroup of the multiplicative group of positive real numbers. All such groups occur in
classification, but we mention only the ones which will concern us here. In the case of the
I and II the group consists only of the unit element. The opposite situation is that the g
consists of all positive real numbers. This was called ‘‘type III1.’’ As was shown later by
Haagerup,50 the hyperfinite factor of type III1 is unique. It is this factor which generically appea
in quantum field theory.
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A twist field on a cylindrical space–time has the defining property that translation
about a spatial circle results in multiplying the field by a phase. In this paper we
investigate how such multivalued twist fields fit into the framework of constructive
quantum field theory. Twisted theories have an interest in their own right; the twists
also serve as infrared regulators that partially preserve the underlying symmetries
of the Hamiltonian. The main focus of this paper is to investigate the extent that
boson–fermion twist-field systems are compatible with the Lie symmetry and with
theN52 supersymmetry that one expects in the same examples without twists. We
consider free systems and nonlinear boson–fermion interactions that arise from a
holomorphic, quasihomogeneous, polynomial superpotential. We choose the twist-
ing angles to lie on a chosen line in twist parameter space~leaving one free twist
parameter!. Doing this, we can obtain Lie symmetry and half the number of super-
symmetry generators that one expects in our examples without the twists. We also
show that the Hamiltonians for scalar twist fields yield twisted, positive-
temperature expectations with the ‘‘twist-positivity’’ property. This is important
because it justifies the existence of a functional integral representation for twisted,
positive-temperature trace functionals. We regularize these systems in a way that
preserves symmetry to the maximal extent. We pursue elsewhere other aspects and
applications of this method, including bounding the extent of supersymmetry
breaking. © 2000 American Institute of Physics.@S0022-2488~00!01506-1#
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I. INTRODUCTION

The pioneering work of early nonrelativistic quantum theory led to the understanding
quantum dynamics on Hilbert space is a comprehensive predictive framework for micros
phenomena. The incorporation of special relativity and field theory into quantum theory ext
the scope of perturbative calculations, and these were tested through precision measurem
spectra and magnetic moments. Beginning in the 1940s, experimental tests detected t
effects that one can ascribe to fluctuations in quantum electrodynamics, and that deviated fr
predictions of equations describing a fixed number of particles. Today these experiment
evolved to yield quantitative agreement with the most precise observations and calcu
achieved in physics. The success of this work, as well as the success of other less accur
compelling, predictions for weak and strong interactions, convince us to accept quantum
theory as the correct physical arena to describe particle physics down to the Planck scale

But the success of relativistic field theory calculations and of perturbative renormalization
led to a logical puzzle: Is any physically relevant, relativistic quantum field theory logic
~mathematically! consistent? Put differently, can one give a mathematically complete examp
any nonlinear theory, relevant for the description of interacting particles, whose solutions
porate relativistic covariance, positive energy, and causality? If the answer to this ques
positive, can one find the properties of such examples both perturbatively and nonperturba
The problems that need to be solved to answer these questions include understanding re
ization divergences in perturbative calculations from a nonperturbative~or ‘‘exact’’ ! point of
view. These problems also encompass understanding more sophisticated questions,
whether a field theory may appear correct on a perturbative level, while it may have no me
at a nonperturbative level. Related questions about quantum electrodynamics or scalar
theory were raised early by Dyson and Landau. They recur from the point of view of the r
malization group in the work of Kadanoff and Wilson, as well as in the analysis of ‘‘asymp
freedom’’ in the 1970s.

These questions remain open today for interactions in four-dimensional space–time, d
the success to date of constructive quantum field theory methods. Some particle physicis
ambitious attempts to imbed quantum field theory within a theory of strings, by which they
to combine quantum theory with general relativity, and to predict the structure of space–
There is also the appealing attempt to integrate noncommutative geometry, as founded by
in the 1980s, into the picture. One would like to introduce the notion of quantization directly a
level of space–time, rather than only applying to the functions on space–time. For the time
all these methods remain beyond the realm of full understanding.
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Constructive quantum field theory~CQFT! emerged in the 1960s as a framework to show t
nonlinear quantum fields can be found and that these examples actually fit within a mathema
complete description of quantum mechanics. CQFT represents a direct attack on the prob
establishing both the existence and the properties of particular examples of quantum field
within a mathematical realm. The efforts of constructive quantum field theorists are directe
only to the justification of expected phenomena, but also to the broader exploration of phy
a fundamental level, consistent with historical precedents of mathematical integrity. The
basic questions revolve about whether examples could be found within the frameworks form
earlier by Wightman or by Haag and Kastler. These questions can be attacked by establish
existence of solutions to quantum field equations, thereby establishing examples of field th
satisfying the Wightman axioms~or variations on the Wightman axioms associated with a co
pactified space!.

Fundamental progress on answering these questions led to the nonperturbative constru
field theories with nonlinear interaction in two- and in three-dimensional space–times. Th
this approach, one established the compatibility of quantum field theory with special relativ
these space–times.~See Ref. 1 for a further discussion of these and other points, as well a
references.! This work also led to establishing physical properties of these examples, inclu
many features of their particle spectrum, the description of scattering in these examples, a
qualitative behavior of the examples as a function of the coupling constants. For examp
certain theories one can establish the existence of a second-order phase transition as one v
coupling constant. In some such cases, there are critical coupling constants for which the
the mass spectrum vanishes. One common constructive method follows from the discov
Nelson, Osterwalder, and Schrader that the framework of Euclidean field theory~originally pro-
posed by Schwinger and by Symanzik! not only can be used as the fundamental tool to investig
Minkowski field theory, but that for a certain type of field theory the two approaches are prec
equivalent. Euclidean methods lead to mathematically sound, functional-integral represen
of the solutions to field theory problems, and these representations often reflect underlying
metries of the field theories in a simple way. These techniques have been justified and rea
the lower-dimensional examples. The explicit integral representations lend themselves to th
perturbative analysis of the examples. One has discovered expansion techniques to ana
functional integrals in the limits as one removes an infrared cutoff or an ultraviolet cutoff.
tinued developments in the theory of renormalization and phase cell localization point
optimistic outlook. One can envision the positive future answer to the question of the existe
an asymptotically free, four-dimensional gauge theory on a cylindrical space–time, althoug
infrared ~infinite-volume! limit still seems beyond grasp.

In this paper we study twist fields on a cylindrical space–time from the point of view
constructive quantum field theory. A twist field has the defining property that translation abo
spatial circle results in multiplying the field by a phase~or twist!. We begin with a cylindrical
space–timeM3R, the product of a spatialn-torusM, with coordinatesx, times a real-valued
time R, with coordinatet. Let D denote the vector space of smooth functionsf on M3R with an
appropriate topology. LetH denote an appropriate Hilbert space.@In the examples studied here
this Hilbert space is a bosonic or fermionic Fock space over a number of copies ofL2(M), or a
tensor product of a number of copies of these spaces.# Quantum fieldswRT(x,t) are operator-
valued distributions, namely linear maps fromD to linear operators onH. The subscript RT
denotes a real-time field, andwRT(x,t) satisfies a hyperbolic partial differential equation.

Fundamental to the notion of quantum field is the assumption that the Abelian group of
and time translations ofM3R has a unitary representation onH generated by the self-adjoin
operatorsP and H, called the momentum and the Hamiltonian. This translation groupeixP1 i tH

also implements translation of the fields,

wRT~x82x,t81t !5eixP1 i tHwRT~x8,t8!e2 ixP2 i tH . ~I.1!

Given the constantV, define thetwist groupof the fieldwRT by
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wRT→eiVuwRT, parametrized byuPR. ~I.2!

We assume that the twist group is implemented by a unitary groupU(u)5eiuJ on H, with the
self-adjoint, infinitesimal generatorJ, so

U~u!wRTU~u!* 5eiVuwRT. ~I.3!

We assume that the groupeiuJ commutes with the groupeixP1 i tH , so the groupeixP1 i tH 1 iuJ is a
three-parameter Abelian group acting onH. We also use the notationU(g)5eixP1 iuJ, whereg
5(x,u)PM3R, to denote the two-parameter Abelian symmetry group of translations and t
of H.

We call the fieldw a twist field, if the spatial translated groups and the twist group are rela
In this case we assume that translation about a spatial periodl j ~the period of thej th coordinate!,
results in a spatial twist implemented byJ,

wRT~x1 ,x2 ,...,xj1 l j ,...,xn ,t !5eix jwRT~x1 ,...,xn ,t !, ~I.4!

wherex j5V juP@0,2p# is a fixed twisting angle. In order to achieve a regularization, we req
that x j lie strictly between 0 and 2p. Here we generally letwRT denote a scalar field and w
similarly introduce a fermionic twist fieldc with its own set of twisting angles.

In an earlier paper,2 one of us~A.J.! analyzed a property of bosonic fields calledtwist posi-
tivity, which leads to the existence of a countably additive measure defining a functional in
representation for the bosonic heat kernel. Consider the bosonic fieldwRT acting on the bosonic
Hilbert spaceHb, with a HamiltonianH that commutes with the symmetry groupU(g), and with
the following additional property: the HamiltonianH has a unique ground state vectorVvacuum

b and
U(g) is normalized so that

U~g!Vvacuum
b 5Vvacuum

b . ~I.5!

Define the twisted partition function

c5TrHb~U~g!* e2bH!5TrHb~e2 ixP2 iuJ2bH!. ~I.6!

We say thatc has thetwist positivityproperty with respect to the representationU(g), if

c.0 for all gPG and all b.0. ~I.7!

We show in Sec. II that the free bosonic twist fields we introduce here are twist positive
respect to the above-described representationU(g)5eixP1 iuJ, and that twist fields have a
Feynman–Kac representation for expectations in the twisted functional

^•&5
TrHb~•e2 ixP2 iuJ2bH!

TrHb~e2 ixP2 iuJ2bH!
5E •dmx,u,b,x

b , ~I.8!

where dmx,u,b,x
b is a countably additive, probability measure. In the free case, this measu

Gaussian and has a covariance that is a Green’s function of the form

Cx,u,b,x5~2Dx,u,b,x!21, ~I.9!

and we find in Sec. II E thatDx,u,b,x is a Laplacian with twisted boundary conditions depending
the parametersx, u, b, x. ~We abstract the Gaussian twist positivity property in Ref. 3.!

In Sec. V we introduce Dirac twist fields. In this case, we takeH to be the tensor product o
a bosonic Fock spaceHb used in the purely bosonic examples just described, with a fermi
Fock spaceHf , so H5Hb

^ Hf . There is a similar Gaussian fermionic expectation for a f
fermionic system, and in this case it is natural to also include the symmetryG5(2I )Nf

in the
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expectation. HereNf is the fermionic number operator, and the self-adjoint operatorG has eigen-
values61, and provides an additionalZ2 symmetry. We chooseJ in such a way that the fou
operatorsH, P, J, andG mutually commute. We obtain the Green’s function for the Dirac oper
in Sec. V H of the form

Sx,u,b,x5~]” x,u,b,x!21, ~I.10!

where the subscript again denotes twisted boundary conditions. The twisted expectation on
Hilbert space relates to a construction in noncommutative geometry, as explained in Ref.
application to twist field theory can be found in Refs. 5 and 6.

The main question we investigate is whether a system of boson and fermion twist field
compatible with conventionalN52 supersymmetry, as characterized by the algebra

Q1
25Q̃1

25H1P, Q2
25Q̃2

25H2P, ~I.11!

and the independence relations

Q1Q21Q2Q15QaQ̃b1Q̃b Qa5Q̃1Q̃21Q̃2Q̃150. ~I.12!

In the case of free fields, we obtain this standard supersymmetry algebra—as long as the
and the fermionic twisting angles are equal, as must be the bosonic and the fermionic mass
resulting HamiltonianH is translation invariant under the group generated by the momen
operatorP, and the Hamiltonian also possesses a one-parameter,U(1) group of symmetries tha
we denoteU(u) and we call thetwist group.

In Sec. VII, we introduce interaction between bosonic and fermionic fields, mediated
holomorphic, quasihomogeneous, polynomial superpotentialW. For an appropriate one-paramet
family of twisting angles, we obtain a translation-invariant Hamiltonian which possesses a g
U(1)-twist group symmetryU(u)5eiuJ. But in this case the twist fields are not fully compatib
with the standardN52 supersymmetry algebra, and the twisting breaks supersymmetry
regular way. Nevertheless, one can preserve one of the two components of the supercharg
operator that is both translation invariant and twist invariant. This operatorQ1 ~or the second copy

Q̃1) is the integral of a local density, it is symmetric~we show elsewhere that it is self-adjoint!,
and it satisfies the standard relation with the Hamiltonian and momentum operators,

Q1
25H1P5Q̃1

2, ~I.13!

as well as the independence relations

@P,Q1#5@P,Q̃1#5@J,Q1#5@J,Q̃1#5@J,P#5Q1Q̃11Q̃1Q150. ~I.14!

~Consequently, we preserve the property thatH, P, andJ are mutually commuting operators. Th
allows us to use the twist fields in applications.7! We also remark on how twist fields provide
natural infrared regularization for quantum field theory.

In Sec. VII, we give the explicit error operatorsR andR̃ that arise in those supersymmet
relations involving the second component of the supercharge. The errors in the algebra a
portional to these operators and to a twisting parameterf, which is proportional to both the
bosonic and to the fermionic twisting angles. The operatorR is a fermionic number operator

independent of the superpotentialW, and it commutes with bothP and J. The operatorR̃ is a
Fourier mode of the superpotential, and it commutes with neitherP nor J. Both operators are wel
behaved and amenable to the estimates of constructive quantum field theory, as we show
7. The error terms in the supersymmetry algebra vanish in a regular way proportional
twisting parameterf, asf→0. In particular,
                                                                                                                



e of

r

ional

isfies

3703J. Math. Phys., Vol. 41, No. 6, June 2000 Twist fields and broken supersymmetry

                    
Q2
22~H2P!5Q̃2

22~H2P!5fR, ~I.15!

while

$Q1 ,Q2%5$Q̃1 ,Q̃2%5f~R̃1R̃* !, ~I.16!

and

$Q1 ,Q̃2%5$Q̃1 ,Q2%52 if~R̃2R̃* !. ~I.17!

This leads to the representations

H5 1
2 ~Q1

21Q2
22fR!5 1

2 ~Q11Q2!22 1
2 f~R1R̃1R̃* !, ~I.18!

and

P5 1
2 ~Q1

22Q2
21fR!. ~I.19!

Finally, in Sec. VIII we analyze these results from the point of view of superfields.

II. BOSONIC TWIST FIELDS ON A TORUS

In this section, we consider a bosonic fieldwx on a compact spatial manifoldM equal to a
torus. The corresponding space–timeM3R is related to the compactified space–timeS5M
3S1. Random fields onS arise when we consider certain trace functionals on the spac
quantum fields.

A. Basic notation

Denote thes-torus byTs, and letl 5$ l 1 ,l 2 ,...,l s% denote its periods. The bosonic fieldwx is
a section of ann-dimensional complex vector bundle overM5Ts. In the casen51, the field is
a section of a line bundle, and we quantize each component of the fieldw i as a section of a line
bundle. The twist anglex i j will characterize the twist of thei th component of the field unde
translation by one period in thej th-coordinate direction. Let

x5$x i j :1< i<n, 1< j <s% ~II.1!

denote the collection of the twisting angles for all components. In case of a two-dimens
space–time,s51 andj takes only one value, so we write

x5$x i%,

where

x i5$x i1%. ~II.2!

Let

L j5~0,0,...,l j ,...,0! ~II.3!

denote thes-vector with thej th coordinate given by thej th period ofTs. Correspondingly, letl
5$ l i :1< i<n% denote the set of periods. By definition, each component of the twist field sat
the relations

w i
x~x1L j ,t !5eix i j w i

x~x,t !, i 51,2,...,n. ~II.4!

We will exclude the periodic case for any component, so we assume that
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x i j ¹2pZ for all 1< i<s,1< j <n. ~II.5!

Thuswx must be a complex field.
We now analyze the Fourier representation of the field. The twist condition~II.4! ensures that

the Fourier coefficients of the componentw i
x live on the union of the lattice

Ki
x5$kPRs: l jkjP2pZ2x i j , 1< j <s% ~II.6!

and the lattice2Ki
x . As a consequence of the assumption~II.5!,

0¹Ki
x for each 1< i<n. ~II.7!

The Hilbert spaceHb,x for a free bosonic twist field on a spatial torusM5Ts is a Fock space
~depending on the twisting anglex!. The one-particle Hilbert space for a single-component fiel
l 2(Ki

x) % l 2(2Ki
x), and in the case of a vector bundle of dimensionn,

Kx5 %
i 51

n

~ l 2~Ki
x! % l 2~2Ki

x!!. ~II.8!

The Fock spaceHb,x is the symmetric tensor algebra overKx,

Hb,x5exp̂
s
Kx, ~II.9!

where^ s denotes the symmetric tensor product. Define two independent sets of canonical c
operators on this Fock space. For each 1< i<n, let

a1,i
x ~k!* , kPKi

x , a2,i
x ~2k!* , kPKi

x . ~II.10!

Denote these operators.
The time-zero fieldwx has components with Fourier representations

w i
x~x!5

1

AuMu
(

kPKi
x

qi
x~k!e2 ikx, ~II.11!

whereuMu5 l 1l 2¯ l s is the volume ofM, and where forkPKi
x the coordinates

qi
x~k!5

1

~2uku!1/2~a1,i
x ~k!* 1a2,i

x ~2k!! ~II.12!

and their adjointsqi
x(k)* generate an Abelian algebra. The time-zero fields~II.11! satisfy the twist

relation ~II.4!. Similarly, the components of the conjugate fieldpx have Fourier representations

p i
x~x!5

1

AuMu
(

kPKi
x

pi
x~k!eikx, ~II.13!

where the coordinates

pi
x~k!52 i ~ uku/2!1/2~a1,i

x ~k!2a2,i
x ~2k!* ! ~II.14!

and their adjointspi
x(k)* also generate an Abelian algebra. Furthermore, the commutation

tions between thepi
x(k)’s and theqi

x(k)’s are canonical,

@pi
x~k!,qi 8

x
~k8!#52 id i i 8dkk8I , @pi

x~k!,qi 8
x

~k8!* #50. ~II.15!
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The conjugate fields satisfy a spatial twist relation,

p i
x~x1L j !5e2 ix i j p i

x~x!. ~II.16!

We also use the number operators

N1,i
x ~k!5a1,i

x ~k!* a1,i
x ~k!, N2,i

x ~2k!5a2,i
x ~2k!* a2,i

x ~2k! for kPKi
x . ~II.17!

In terms of these define

H0
b,x5(

i 51

n

(
kPKi

x
uku~N1,i

x ~k!1N2,i
x ~2k!!, ~II.18!

Pb,x5(
i 51

n

(
kPKi

x
k~N1,i

x ~k!2N2,i
x ~2k!!. ~II.19!

Also define

Jb,x5(
i 51

n

(
kPKi

x
V i~N1,i

x ~k!2N2,i
x ~2k!!, ~II.20!

whereV5$V1 ,V2 ,...,Vn% are fixed positive constants in the interval 0,V i<
1
2. The operators

H0
b,x , Pb,x, and Jb,x commute pairwise, soPb,x and Jb,x generate symmetries ofH0

b,x . The
zero-particle Fock state is annihilated byH0

b,x , Pb,x, andJb,x.
The real-time dependent field is defined by the evolution given by the Schro¨dinger group,

wRT,i
x ~x,t !5exp~ i tH 0

b,x!w i
x~x!exp~2 i tH 0

b,x!, ~II.21!

namely

wRT,i
x ~x,t !5

1

AuMu
(

kPKi
x

1

~2uku!1/2~eit ukua1,i
x ~k!* 1e2 i t ukua2,i

x ~2k!!e2 ikx. ~II.22!

As a consequence, the real time field satisfies the wave equation

]2

]t2 wRT
x ~x,t !5¹2wRT

x ~x,t !, ~II.23!

and the equal-time canonical commutation relations. It has initial data

wRT
x ~x,0!5wx~x!, S ]w RT

x

]t D ~x,0!5px~x!* . ~II.24!

We denote the adjoints of the time-zero fields by

w̄ i
x~x!5~w i

x~x!!* , p̄ i
x~x!5~p i

x~x!!* . ~II.25!

The fields satisfy the canonical commutation relations

@w i
x~x!,w i 8

x
~y!#5@p i

x~x!,p i 8
x

~y!#5@w i
x~x!,w̄ i 8

x
~y!#

5@p i
x~x!,p̄ i 8

x
~y!#5@p i

x~x!,w̄ i 8
x

~y!#50, ~II.26!
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as well as

@p j
x~x!,w j 8

x
~y!#52 id j j 8d~x2y!I . ~II.27!

The Dirac measured(x2y) on the torusTs equals

1

uMu (
kPK j

x50
e2 ik~x2y!, ~II.28!

independent ofj. Hence

@p j
x~x!,w j 8

x
~y!#52 id j j 8

1

uMu (
kPK j

x
e2 ik~x2y!I

52 id j j 8

1

uMu (
kPK j

x50
expS 2 i (

j 851

s

x j j 8~xj 82yj 8!/ l j 8e
2 ik~x2y!D I

52 i expS 2 i (
j 951

s

x j j 9~xj 92yj 9!/ l j 9D d j j 8d~x2y!I

52 id j j 8d~x2y!I . ~II.29!

Two other unitary groups play a special role. Each component of the momentumPb,x gener-
ates aU(1)-translation group, so forsPTs,

wx~x2s,t !5eisPb,x
wx~x,t !e2 isPb,x

. ~II.30!

The other group is aU(1)-twist generated by the operatorJb,x, namely

Ub,x~u!5eiuJb,x
. ~II.31!

This group acts on the field as

Ub,x~u!w j
x~x,t !Ub,x~u!* 5eiV juw j

x~x,t !. ~II.32!

Sometimes we use the following notation for the (s11)-parameter product of theseU(1) groups:

Ub,x~u,s!5eiu j b,x1 isPb,x
. ~II.33!

We define unbounded operators on certain regular domains. We often use the domain

Dt5 ø
t8.t

Range ~e2 i 8H~b,x/0!!, t>0. ~II.34!

A convenient maximal domain is

D5D0 . ~II.35!

A convenient minimal domain is the dense domain

D`5 ù
t.0

Dt . ~II.36!
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Definition II.A.1: We say that a bilinear form T with the domainDt is Dt-bounded, if for every
s.t the form

e2sH0
b,x

Te2sH0
0,x

~II.37!

extends to a bounded operator onHb,x. We say that a form isD`-bounded if it isDt-bounded for
some t,`.

If T is a D0-bounded form onHb,x, define theDt-bounded form

T~ t !5e2tH0
b,x

TetH0
b,x

. ~II.38!

Let T1 ,T2 ,...,Tn denoteD0-bounded forms, and lett1 ,t2 ,...,tn denote increasing, distinct time
t i 1

,t i 2
,¯,t i n

. The time-ordered productof T1(t1)¯Tn(tn) is

~T1~ t1!¯Tn~ tn!!15Ti 1
~ t i 1

!Ti 2
~ t i 2

!¯Ti n
~ t i n

!. ~II.39!

This form isDs-bounded, wheres5maxj$tj%. Thewx(x,0)5wx(x) is a bilinear form onD0 . The
components of the time-zero fieldsw i

x(x) andp i
x(x) as well as their adjoints areD0-bounded.

B. Partition functions

Define the twisted bosonic partition functioncb(T) by

cb~T!5TrHb,x~e2 iuJb,x2 isPb,x2bH0
b,x

!. ~II.40!

HereT denotes the set of parameters that specifies the size of the space–time, the twisting
for spatial periods and for the generatorJb, and the translation parameters,

T5$x,uV,s,l ,b%. ~II.41!

Denote byg j (k)5g j (k,T) the function

g i~k!5e2 iuV i2 isk2buku, kPKi
x . ~II.42!

Also let

dx5 inf
1< i<n

dist~0,Ki
x!, du5 inf

1< i<n
dist~V iu,2pZ!. ~II.43!

In case all thex i j lie in the interval~0, p#, then

dx5 inf
1< i<n

S (
j 51

s

~x i j / l j !
2D 1/2

. ~II.44!

Proposition II.B.1: Letb,dx.0. Then
~a! The partition function (II.40) is strictly positive and equals the convergent product

cb~T!5)
i 51

n

)
kPKi

x
S 1

u12g i~k!u2D . ~II.45!

~b! For fixed $b, l, s%, there exists a constant M1,` such that for all$x, s, u%,

0,cb~T!<S M1

dx
D 2n

. ~II.46!
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~c! If also s50, then for all $x, u%,

0,cb~T!<S M1

du
D 2n

. ~II.47!

~d! In each domain of uniform boundedness as specified by (b) or (c), the partition fun
cb(T) is continuous in$x, s, u% or $x, u%, respectively.

Remark:The positivity of the partition function is what we calltwist positivity in Ref. 2.
Furthermore, asb→0, the partition function has an essential singularity, reflecting the infi
dimensionality of the system.

Proof: We establish the representation~II.45! as in TP, and so omit the details. As 1/(
2g)511g/(12g), the product~II.45! converges absolutely if

(
i 51

n

(
kPKi

x
U g i~k!

12g i~k!
U,`. ~II.48!

But ug i(k)u5e2buku,1 and ug i(k)u→0 exponentially asuku→`, so the product does converg
absolutely.

The bound~II.46! follows from elementary lower bounds. For complexz in the unit disk, it is
easy to see that

u12zu>12uzu. ~II.49!

We may writeuzu5e2x for 0<x. Note that 12e2x> 1
2 x for 0<x<1, so we also have the boun

u12zu> 1
2u ln~ uzu!u,

in the annulus

0< ln~ uzu21!<1. ~II.50!

We now derive the estimate

1

u12g i~k!u
<H 2

buku
if buku<1

e2e2buku
if buku>1.

~II.51!

If buku<1, we infer from~II.49! and ~II.50! that

u12g i~k!u>12e2buku>
buku

2
, ~II.52!

from which the first bound in~II.51! follows. If, on the other hand,buku>1, thenug i(k)u< 1
2, and

we have

1

u12g i~k!u
5U11

g i~k!

12g i~k!
U<11

ug i~k!u
12ug i~k!u

<112ug i~k!u<e2ug i ~k!u5e2e2buku
, ~II.53!

establishing the other bound of~II.51!.
By definition,

dx<minH uku,
p

l J . ~II.54!

Also, either
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uku5dx ,

or else

p

l
<uku, ~II.55!

with the first equality holding for exactly one value ofkPKi
x . Therefore, in casebuku<1, we

have from~II.51!,

1

u12g i~k!u2 <S 2

buku D
2

<
4

b2dx
2 . ~II.56!

Such a bound also holds~with a different coefficient! for the casebuku>1. We derive this using
~II.51! in the form

1

u12g i~k!u2
<e4e2buku

<e4/e<S 3bdx

bdx
D 2

<S 9b2p2

l 2 D 1

b2dx
2 . ~II.57!

We use either~II.56! or ~II.57! in the case thatuku5dx . For other values ofk, we use the bound
~II.51! directly. For these values ofk, the magnitudeuku is bounded away from zero, so th
resulting product overkPKi

x and over 1< i<n is convergent. This completes the proof of~II.46!.
We now establish~II.47!. For z5uzueif, anduzu<1, we have the lower bound

u12zu>UsinS f

2 D U. ~II.58!

Furthermore, the definition~II.43! leads to

UsinS V iu

2 D U> du

p
. ~II.59!

Thus

u12g i~k!u22<UsinS V iu

2 D U22

<S p

du
D 2

. ~II.60!

Use this bound in order to estimateu12g i(k)u22 for the modes for whichuku5dx . ~These modes
may haveuku arbitrarily small.! Estimate the remaining modes, for whichuku>p/ l , using the
bound~II.51! in the same fashion as in proving~II.46!. This completes the proof of~II.47!.

Finally, the claimed continuity of~c! follows from a direct estimate of the difference of th
representation~II.45! when evaluated at two distinct values of the parameters. For exam
denoting a changed parameter by a prime,

US 1

12g i~k! D2S 1

12g i8~k! DU5U~g i8~k!2g i~k!!S 1

12g i~k!

1

12g i8~k! DU. ~II.61!

Let us vary the angleu. Then

u~g i8~k!2g i~k!!u52UsinS ~u2u8!V i

2 D U. ~II.62!

This difference isO(uu2u8u). The convergence of the sum over the differences in these fa
does not influence the estimate of convergence of the product, and the continuity inu follows. The
proof of continuity in the other parameters is similar, and we omit further details.
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C. The Gaussian expectation and its pair correlation matrix

Define the normalized expectation

^•&T 5
TrHb,x~•e2 iuJb,x2 isPb,x2bH0

b,x
!

TrHb,x~e2 iuJb,x2 isPb,x2bH0
b,x

!
. ~II.63!

In this section we define the pair correlation function, and we establish the Gaussian nature
expectation~II.63!. Since the proof of each result closely follows the proofs of Propositions V
II.3, and VI.2 of Ref. 2, we only state the results.

Introduce theimaginary timefield wx(x,t), that is related to the real time field~II.21! by

wx~x,t !5wx
RT~x,i t !5e2tH0

b,x
w~x!etH0

b,x
. ~II.64!

The fieldwx(x,t) is Dt-bounded. Also introduce theDt-bounded field

w̄x~x,t !5e2tH0
b,x

w̄x~x!etH0
b,x

. ~II.65!

Let w# denote a component of eitherwx or w̄x. In an identity, we need to make the same cho
of # applied to a given factor on both sides of an identity.

Definition II.C.1: Let t1 ,...,tn be distinct times with ti 1,t i 2
,¯,t i n

. The time ordered prod-

uct of w#(x1 ,t i),w
#(x2 ,t2),...,w#(xn ,tn) is

~w#~x1 ,t1!w#~x2 ,t2!¯w#~xn ,tn!!15w#~xi 1
,t i 1

!w#~xi 2
,t i 2

!¯w#~xi n
,t i n

!. ~II.66!

Definition II.C.2: The pair correlation matrix CT (x2y,t2s) i j of the fieldwx is the expecta-
tion

CT ~x2y,t2s! i j 5^~ w̄ i
x~x,t !w j

x~y,s!!1&T , ~II.67!

defined for0<t,s<b.
Proposition II.C.3: With the notation above,

CT ~x2y1L j ,t2s! i i 85d i i 8e
2 ix i j CT ~x2y,t2s!, j 51,2,...,s, ~II.68!

and

CT ~x2y,t2s1b! i i 85d i i 8e
2 iV iuCT ~x2y2s,t2s!. ~II.69!

Also

^w i
x~x,t !&T 5^w̄ i

x~x,t !&T 5^~w i
x~x,t !w j

x~y,s!!1&T 5^~ w̄ i
x~x,t !w̄ j

x~y,s!!1&T 50. ~II.70!

Since the time ordered product of fields is symmetric,

^~w i
x~x,t !w̄ j

x~y,s!!1&T 5^~ w̄ j
x~y,s!w i

x~x,t !!1&T , ~II.71!

and the above-defined pair correlation matrix is Hermitian, the other nonzero pair corre
matrix equals

^~w i
x~x,t !w̄ j

x~y,s!!1&T 5CT~x2y,t2s! i j . ~II.72!

Proposition II.C.4: The functional (II.63) is Gaussian, namely
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^~w j 1

# ~x1 ,t1!¯w j n

# ~xn ,tn!!1&T

5 (
pairings

^~w j i 1

# ~xi 1
,t i 1

!w j i 2

# ~xi 2
,t i 2

!!1&T¯^~w j i n21

# ~xi n21
,t i n21

!w j i n

# ~xi n
,t i n

!!1&T .

~II.73!

Here the functional vanishes for odd n. If n is even, the sum runs over the(n21)!!
5n!/ @2n/2(n/2)!# pairings $( i 1 ,i 2),(i 3 ,i 4),...,(i n21 ,i n)% of the n indices$1,...,n%.

D. Evaluating the pair correlation matrix

Introduce the (s11)-torus S5Ts3S1, whereS1 denotes the circle with periodb. Let L
5$ l 1 ,l 2 ,...,l s ,b% denote the set of periods ofS, and letuSu5 l 1l 2¯ l sb denote the volume. We
introduce a vector bundleST (S) of C`, multivalued functions onS with the i th component
satisfying

f i~x1L j ,t !5e2 ix i j f i~x,t ! for all 1< j <s,

and

f i~x,t1b!5e2 iV iu f i~x1s,t !. ~II.74!

HereL j denotes the period displacements~II.3!. Functions satisfying~II.74! have a Fourier rep-
resentation

f i~x,t !5
1

AuSu
(

~k,E!PŜ

f̂ ~k,E!expS ikx1 iEt2 iV iut/b1 i ~k•s!t/b2 i (
j 51

s

x i j xj / l j D .

~II.75!

The latticeŜ denotes

Ŝ5$~k,E!: l jkjP2pZ, j 51,2,...,s, and bEP2pZ%. ~II.76!

Smoothness of the functionsf (x,t)PST (S) entails that the coefficientsf̂ (k,E) decrease rapidly
as a function ofk and E. The spaceST (S) is a dense subspace of% i 51

n L2(S), with the inner
product

^ f ,g&5(
i 51

n E
S

f i~x,t !gi~x,t !dsx dt. ~II.77!

Define the operatorsD j52 i (]/]xj ) and Dt52 i (]/]t) with the domainST (S), % i 51
n L2(S).

Designate the closures of these operators byD j
T andDt

T . The superscriptT designates the twisting
parameters~II.41! for functions in the original domain of definition of the operators.

Proposition II.D.1: The operators Dj
T and Dt

T are self-adjoint.
Proof: We see thatD j andDt are Hermitian operators on the domainST (S). For example,

we claim that

^ f ,D jg&5(
i 51

n E
S

f iD jgid
sx dt5(

i 51

n E
S

D j f igid
sx dt1(

i 51

n E
S

D j~ f igi !d
sx dt

5(
i 51

n E
S

D j f igid
sx dt5^D j f ,g&. ~II.78!
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To justify ~II.78!, we verify that

(
i 51

n E
S

D j ~ f igi !d
sx dt50. ~II.79!

The boundary condition~II.74! ensures

f i~x,t !gi~x,t !uxj 50
xj 5 l j50. ~II.80!

Hence

(
i 51

n E
S

D j~ f igi !d
sx dt5(

i 51

n E f i~x,t !gi~x,t !dx1¯dx̂j¯dxs dtuxj 50
xj 5 l j50, ~II.81!

wheredx̂j denotes the lack of integration over thej th coordinate, completing the proof of~II.78!.
In a similar fashion, we infer that

E
M

f ~x,t !g~x,t !dxu t50
t5b50, ~II.82!

as a consequence of~II.74! and the translation invariance of the inner product onL2(M). There-
fore we may repeat the above argument to demonstrate thatDt is Hermitian on the domain
ST (S).

For fixedT andS, define the following functions in thei th component ofST (S):

ei ,k,E~x,t !5
1

AuSu
expS ikx1 iEt2 iV iut/b2 i ~k•s!t/b2 i (

j 51

s

x i j xj / l j D , ~II.83!

where (k,E)PŜ and 1< i<n. These functions form an orthnormal basis for% i 51
n L2(S), since

they differ from the standard Fourier basis by a unitary transformation. Furthermore the
simultaneous eigenfunctions ofD1 ,...,Ds , andDt , with eigenvalueskj2x i j / l j in the case ofD j ,
andE2(V iu1k•s)/b in the case ofDt . Thus each operatorD j or Dt in question has a basis o
eigenfunctions, and therefore has self-adjoint closure, completing the proof of Proposition

We define the positive Laplacian operatorDT on % i 51
n L2(S). This is a diagonal matrix on

the n copies ofL2(S), so that on thei th-copy ofL2(S) it acts as

DTi
5~Dt

Ti !21(
j 51

s

~D j
Ti !2, ~II.84!

whereTi denotes the twist conditions for thei th-component of the field. Since this Laplacia
leaves the domainST (S) invariant, the Laplacian is essentially self-adjoint onST (S). The
spectrum ofDT is discrete and does not include 0. HenceDT is invertible.

Proposition II.D.2: The pair correlation matrix CT (x2y,t2s) i j defined in (II.67) equals the
matrix of integral kernels of the operatorDT

21 acting on% i 51
n L2(S). The Fourier representation

of CT (x2y,t2s) i j is

CT ~x2y,t2s! i j 5d i j

1

uSu (
~k,E!PŜTi

1

E21k2 eik~x2x8!1 iE~ t2t8!, ~II.85!

where

ŜTi
5$~k,E!:~kj1x i j / l j ,E1~V iu2~k•s!!/b!PŜ%. ~II.86!
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Proof: The proof follows the proof of Propositions III.1 and~VI.4! of Ref. 2. The main
difference is that we set the massm of Ref. 2 to zero. We may do this, as the twistx ensures that
the null space ofDT is empty. We omit the details.

E. Random fields and the Feynman–Kac identity

Recall thatST (S) denotes the space ofC`, but multivalued functions onS, that satisfy the
relations~II.74!. EndowST (S) with the standard Freˆchet topology determined by the countab
norms,

ui f iu i5iDt
i 0D1

i 1
¯Dn

i nf iL2~S! . ~II.87!

The space ofrandom fieldsFT(x,t) is the space of generalized functionsST8 (S) topologically
dual toST (S). The pairing betweenST8 (S) andST (S) has the form

FT~ f !5(
i 51

n E
S

F i
T~x,t ! f i~x,t !dsx dt. ~II.88!

Since this pairing is real, the adjoint operatorCT
1 to the pair correlation operatorCT acts on the

random fields according to the definition

~CT
1FT!~ f !5FT~cTf !. ~II.89!

Note thatST8T(S) contains a subspace of smooth functions, namely functionsFTPST1(S), with
the dual parameters given by

T 15$2x,2uV,s,l ,b%. ~II.90!

Correspondingly as operators onL2(S),

CT
15CT1, ~II.91!

and we have twist relations

F i
T~x1L j ,t !5eix i j F i

T~x,t !, ~II.92!

and

F i
T~x,t1b!5eiV iuF i

T~x2s,t !. ~II.93!

We also have

CT
1~x1L j ,t ! ik5d ikeix i j CT

1~x,t ! ik , ~II.94!

and

CT
1~x,t1b! ik5d ikeiV iuCT

1~x2s,t ! ik . ~II.95!

Let dmT denote the Gaussian probability measure onST8 (S) with mean zero, and with cova
riance matrix equal to (CT) i j . In more detail, let

FT5$F1
T ,F2

T ,...,Fn
T% ~II.96!

and
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E F i
T dmT 50, ~II.97!

and

E F̄ i
T~x,t !F j

T~y,s!dmT 5CT ~x2y,t2s! i j 5^~ w̄ i
x~x,t !wx

j~y,s!!1&T . ~II.98!

Proposition II.E.1: The Feynman–Kac identity holds, namely

^~w i 1
# ~x1 ,t1!w i 2

# ~x2 ,t2!¯w i n
# ~xn ,tn!!1&T

5E F i 1
T ~x1 ,t1!#F i 2

T ~x2 ,t2!#
¯F i n

T ~xn ,tn!# dmT . ~II.99!

Proof: The functional on the left-hand side of~II.99! is Gaussian by Proposition II.C.4. Th
functional on the right-hand side is Gaussian by definition. The first and second moments co
by Proposition II.D.2, and the definition ofdmT . Therefore the functionals agree.

III. INFRARED REGULARIZATION

Twist fields defined on a compact manifold provide an infrared regularization for qua
fields. This can be traced to the lack of a constant Fourier mode in the representation~II.75!, and
as a consequence the corresponding free fields are infrared regular. This regularity carries
interacting~nonlinear! quantum fields with certain polynomial nonlinearities in the energy den
In this section we compare three mechanisms for regularizing fields at low momentum:

~i! regularization by using a twist field,
~ii ! regularization by introducing a massm.0, and
~iii ! regularization using the classical string theory method.

We compare these methods for bosonic fields on a circle, and we prove that when use
certain stable interactions they give the same expectations after removal of the regularizat

One reason for having alternative regularization schemes is the possibility that different
larization procedures may be compatible with different symmetries. The existence of a Lie
metry or supersymmetry in the regularized problem may be essential. For example, an equi
index requires the exact Lie symmetry group. In Ref. 8 we studied a symmetry that is destro
introducing a mass, and in using such a regularization we required a detailed argument to r
the desired invariant as we remove the regularization. Twist fields provide an alternative re
ization that both preserves the symmetry and supersymmetry for the examples in Ref. 8. Th
one pays is that the regularized theories with different values ofx live on different Hilbert spaces
Hb,x, and the Feynman–Kac representations are integrals over spaces of generalized fu
that depend on the twist anglex. This can complicate identifying the limits one obtains asx
→0.

In order to take into account theories that live on a family of Hilbert spaces, we conside
field theories as defined by sequences of expectations. By definition, two limits will agree i
have the same expectations of fields. From these expectations we reconstruct the Hilber
fields, Hamiltonian, and symmetries using the Wightman, GNS, Osterwalder–Schrader, or
similar reconstruction theorems.

A. Hamiltonians and regularizations

In this section we study the free-field HamiltoniansH0
b associated with the appropriate field

We also consider Hamiltonians of the form

Hb5H0
b1V, ~III.1!
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which are~nonlinear! perturbations of a free Hamiltonian. In each of the three cases, the free
problem will have an energyH0

b , a momentumPb, and a symmetry generatorJb. We choose a
perturbed Hamiltonian with the samePb and we choose the weightsV ~that occur inJb) so that
Jb generates a symmetry ofHb. In other words, with

U~s,u!5eiuJb1 isPb
, ~III.2!

we require that for all realu, s, and forb>0,

U~s,u!e2bHb
5e2bHb

U~s,u!. ~III.3!

We generate the perturbationV in ~III.1! from a polynomialW such that
~QH! The polynomialW(z) : Cn→C is a holomorphic and quasihomogeneous, and
~EL! The polynomialW satisfies certain elliptic bounds.
In more detail, letWj denote thej th-component of the gradient ofW,

Wj~z!5
]W~z!

]zj
. ~III.4!

The polynomialW(z) is quasihomogeneous if there are a set of rational numbersV5$V j% for
which

W~z!5(
j 51

n

V j zjWj~z!. ~III.5!

A homogeneous polynomialW(z) has equal weights. Here we assume that the rational wei
satisfy

V5$V j :0,V j<
1
2, 1< j <n%. ~III.6!

In particular, this excludes constant or linear terms fromW(z). We say that the set of holomor
phic, quasihomogeneous polynomials with a given set of weights belong to aclassof holomor-
phic, quasihomogeneous polynomials characterized byV.

The relation~III.5! is the infinitesimal form of aU(1) symmetry group acting onW(z),
parametrized by a real angleu. The group acts on coordinates inCn by zj→eiV juzj , and it acts on
the polynomialW by

W~eiV juzj !5eiuW~z!. ~III.7!

As a consequence of~III.7!, the real polynomial

V~z!5ugradW~z!u25(
j 51

n

uWj~z!u2 ~III.8!

is an invariant polynomial. In other words,

V~eiV iuzi !5V~z!. ~III.9!

In the following, we begin by taking the interactionV in ~III.1! to have the form

V5E
S1

:V~w j
cutoff~x!!:dx, ~III.10!

wherewcutoff denotes one of the three types of regularized fields that we discuss. In later se
we study a bilocal approximation to this interaction.
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We now consider the invariance of an interactionV under translations and twists. Let u
choose the coefficientsV j in the definition~II.20! of Jb to be the weights~III.6! that characterize
the quasihomogeneous class of the polynomialW. Then

eiuJb
Ve2 iuJb

5V. ~III.11!

In other words,V is invariant under the action of theU(1) twist groupeiuJb
.

It is also important that our Hamiltonian also be translation invariant. This will lead to ano
assumption on our fields, namely to a restriction on the twist angles. Translation invarianceV
is a consequence of periodicity of the energy densityV(wcutoff(x)). Our regularized fields have th
property

w i
cutoff~x1L j !5H eix i j w i

cutoff~x! case ~ i !

w i
cutoff~x! cases~ii ! and ~iii !,

~III.12!

whereL j are the spatial period~II.3!. We are therefore led to the restriction on the twisting ang
reducing the freedom of the twists to one real parameterf, and we pose this as the followin
hypothesis.

~TA! Choose the twist anglesx i j to satisfy

x i j 5V if. ~III.13!

In particular, x i j is independent ofj, and x i j /x i 8 j5V i /V i 8 . With this choice, the potentia
function V(wcutoff(x)) is periodic in each coordinate direction. For all three regularizations,

V~wcutoff~x1L j !!5V~wcutoff~x!!, ~III.14!

for 1< j <s. As a consequence,

U~s,u!V5VU~s,u!. ~III.15!

By construction the free HamiltoniansH0
b are also invariant underU(s,u), so

U~s,u!Hb5HbU~s,u!. ~III.16!

So far we have discussed properties~a! and ~b! of the polynomialW. Property~c! is the
analytic information we require in order to establish essential self-adjointness of the sum~III.1!,
and to lift the symmetry~III.16! of the Hamiltonian to a symmetry of the heat kernels~III.3!. The
requirement thatW is elliptic means thatugradWu grows at infinity. First there exist constantsM1 ,
M2,` such that

uzu<M1ugrad W~z!u1M2 . ~III.17!

Second, for any monomial derivativeD j5(]/]z1) j 1
¯(]/]zn) j n of total degreeu j u5 j 11¯1 j n

>2, and for any givene.0, there existsM3,` such that

uD jWu<eugradWu1M3 . ~III.18!

The bound~III.18! allows us to estimate the normal ordering terms in~III.10!. We take the domain
of definition of Hb to be

D5ù
b.0

Range~e2bH0
b
!, ~III.19!

which is consistent with the previous definition~II.36!.
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B. Regularized fields

We specify the regularized fields we use in the following.

1. Twist fields wx

The twist fieldwx acting on the Hilbert spaceHb,x has been introduced in Sec. II, and we
not discuss it further here.

2. Massive fields wm

The second type of field is the massive field, and this may be introduced with or with
twist. For simplicity we take zero twist and denote the massive field bywm. This field lives on the
Hilbert spaceHb5Hb,x50. The time zero fieldwm and its conjugatepm as well as the operator
H0

b , Pb, and Jb all have expressions which are minor modifications of those in Sec. II A
particular, we use the canonical variablesa6,i(k)5a

6,i
x i50(k) and their adjoints. The relativistic

energy expression

mm~k!5~k21m2!1/2 ~III.20!

occurs in many formulas. For example, in place of~II.11! and ~II.13!, we have

w i
m~x!5

1

AuMu
(
kPK

qi
m~k!e2 ikx, p i

m~x!5
1

AMu
(
kPK

pi
m~k!eikx. ~III.21!

Here

K5Ki
x505$kPRs: l jkjP2pZ, 1< j <s% ~III.22!

is independent ofi, and

qi
m~k!5

1

A2mm~k!
~a1,i~k!* 1a2,i~2k!!, pi

m~k!52 iAmm~k!

2
~a1,i

m ~k!2a2,i
m ~2k!* !.

~III.23!

We denote the number operators for these modes by

N6,i
a ~k!5a6,i~k!* a6,i~k!,

where

kPK52K. ~III.24!

The expression of the free Hamiltonian as the integral of a density takes the form

H0
b,m5(

i 51

n E
Ts

:p̄ i
mp i

m1(
j 51

s

] j w̄ i
m] jw i

m1m2w̄ i
mw i

m :dsx

5(
i 51

n

(
kPK

m~k!~N1,i
a ~k!1N2,i

a ~2k!!. ~III.25!

The real-time fieldwRT
m is

wRT,i
m ~x,t !5eitH 0

b,m
w i

m~x!e2 i tH 0
b,m

5
1

AM (
kPK

qi
m~k,t !e2 ikx, ~III.26!
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where

qi
m~k,t !5

1

A2mm~k!
~a1,i~k!* ei ukut1a2,i~2k!e2 i ukut!. ~III.27!

The momentum operator and twist generator are

Pb,m5(
i 51

n

(
kPK

k~N1,i
a ~k!2N2,i

a ~2k!!, ~III.28!

and

Jb,m5(
i 51

n

(
kPK

V i~N1,i
a ~k!2N2,i

a ~2k!!. ~III.29!

3. String fields wstr

The third infrared field we call the ‘‘classical string scheme’’ and denote the field bywstr(x).
In this case the field also lives on the Hilbert spaceHb. In this case, the field is identical to th
m50 limit of w i

m(x,t), except in the constant Fourier modes; in fact the constant modes ow i
m

have nom→0 limit. Instead, define the time-zero field as

w i
str~x!5

1

AuMu
(
kPK

qi
str~k!e2 ikx, ~III.30!

where

qi
str~k!55

1

&
~a1, j~k!* 1a2, j~2k!! for k50

1

A2uku
~a1, j~k!* 1a2, j~2k!! for kPK, and kÞ0.

~III.31!

Similarly, define the conjugate time-zero string field as

p i
str~x!5

1

AuMu
(
kPK

pi
str~k!e2 ikx, ~III.32!

where

pi
str~k!55 2 i

1

&
~a1, j~k!* 2a2, j~2k!! for k50

2 iAuku
2

~a1, j~k!* 2a2, j~2k!! for kPK, and kÞ0.

~III.33!

These time-zero fields satisfy the canonical relations@p i
str(x),w i 8

str(y)#52 id i i 8d(x2y)I . The
free Hamiltonian has the form

H0
b,str5(

i 51

n S S pi
str~0!* pi

str~0!2
1

2
I D1 (

kPK
kÞ0

uku~a1,i~k!* a1,i~k!1a2,i~k!* a2,i~k!!D ,

~III.34!
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which can be expressed as the integral of the energy density

H0
b,str5(

i 51

n E
M

:p̄ i
strp i

str1(
j 51

s

] j w̄ i
str] jw i

str:dx. ~III.35!

The real time field is

wRT,i
str ~x,t !5

1

AuMu S qi
str~0!1pi

str~0!* t1 (
kPK
kÞ0

1

~2uku!1/2~a1, j~k!* ei ukut1a2, j~2k!e2 i ukut!e2 ikxD .

~III.36!

This is a solution to the wave equation

]2

]t2 wRT
str ~x,t !5¹2wRT

str ~x,t !, ~III.37!

satisfying the equal-time canonical commutation relations, and with initial data

wRT
str ~x,0!5wstr~x!, S ]wRT

str

]t D ~x,0!5pstr~x!* . ~III.38!

The momentum operatorPb,str and twist generatorJb,str have the same form as~III.28! and
~III.29!.

IV. INTERACTIONS ON THE CIRCLE

In this section we complete the definition of the perturbed HamiltonianHb,cutoff introduced in
~III.1!. Here wcutoff denotes one of the three infrared regularized fields of Sec. III andH0

b,cutoff

denotes the corresponding free field Hamiltonian acting onHb,cutoff. We consider the cases51 in
this section, namely a spatial manifoldM5S1 of length l. In this section we denote the twis
angle byx5$x i%, dropping the second index.

A. The mass perturbation

We begin with a quadratic interaction

HM
b,cutoff5H0

b,cutoff1M2(
i 51

n E
0

l

:w̄ i
cutoffw i

cutoff :dx. ~IV.1!

This Hamiltonian arises from the choiceW(z)5 1
2 MS i 51

n zi
2. We are interested in the zero-poin

energy

E0
cutoff,M5 inf spectrum~HM

b,cutoff!. ~IV.2!

We shall diagonalize the quadratic Hamiltonian~IV.1!, and we show:
Proposition IV.A.1: The three cutoff methods lead to the zero-point energyE0

cutoff,M for the
Hamiltonian HM

b,cutoff of (IV.1) equal to

E0
x,M52

1

2 (
i 51

n

(
kPKi

x
mM~k!S S mM~k!

uku D 1/2

2S uku
mM~k! D

1/2D 2

, ~IV.3!

E0
m,M52

n

2 (
kPK

m~M21m2!1/2~k!S S m~M21m2!1/2~k!

mm~k! D 1/2

2S mm~k!

m~M21m2!1/2~k! D
1/2D 2

, ~IV.4!
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and

E0
str,M52

n

2
~M21!22

n

2 (
kPK
kÞ0

mM~k!S S mM~k!

uku D 1/2

2S uku
mM~k! D

1/2D 2

. ~IV.5!

Here mM(k) is defined in (III.20).
Remark:For fixedM.0, the function

mM~k!S S mM~k!

uku D 1/2

2S uku
mM~k! D

1/2D 2

has the asymptotic behavior

mM~k!S S mM~k!

uku D 1/2

2S uku
mM~k! D

1/2D 2

;H uku23, uku→`

uku21, uku→0.
~IV.6!

As a consequence, each of the above zero-point energies in Proposition IV.A.1 is summab
k, and the corresponding Hamiltonian is bounded from below. This result extends to three s
time dimensions, but the zero-point energy diverges logarithmically in four space–time d
sions. Furthermore, for fixedM, the zero-point energyE0

x,M diverges asx→0 with M.0 fixed.
Also, E0

m,M diverges asm→0 with M.0 fixed. On the other hand,E0
str,M is well defined for fixed

M.0.
Proof: The momentum-k modes from thei th component of the field that enter the mas

perturbation Hamiltonian only couple to other modes from the same component and with m
tum 6k. Thus we consider these modes separately. Their contribution to the twist-cutoff H
tonian is

Hi
b,x~k!5uku~a1,i

x ~k!* a1,i
x ~k!1a2,i

x ~2k!* a2,i
x ~2k!!

1
M2

2uku ~a1,i
x ~k!* a1,i

x ~k!1a2,i
x ~2k!* a2,i

x ~2k!

1a1,i
x ~k!a2,i

x ~2k!1a1,i
x ~k!* a2,i

x ~2k!* !, ~IV.7!

and

Hb,x5(
i 51

n

(
kPKi

x
Hi

b,x~k!. ~IV.8!

We rewrite the Hamiltonian~IV.7! in the form

Hi
b,x~k!5mM~k!~A1,i

x ~k!* A1,i
x ~k!1A2,i

x ~2k!* A2,i
x ~2k!!1E0

b,x~M ,k,i !, ~IV.9!

whereE0
b,x(M ,k,i ) is the zero-point energy for the modes under consideration. Thus

E0
x,M5(

i 51

n

(
kPKi

x
E0

b,x~M ,k,i !, ~IV.10!

and

Hb,x5(
i 51

n

(
kPKi

x
~mM~k!~A1,i

x ~k!* A1,i
x ~k!1A2,i

x ~2k!* A2,i
x ~2k!!1E0

b,x~M ,k,i !!.

~IV.11!
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We do this by making a canonical transformation depending on a parametera5a(M ,uku).
For kPKi

x , define

A1,i
x ~k!5a1,i

x ~6k!cosha1a2,i
x ~2k!* sinha,

~IV.12!
A2,i

x ~2k!5a2,i
x ~2k!cosha1a1,i

x ~k!* sinha.

The new canonical variables satisfy

@A1,i
x ~k!,A2, j

x ~k8!##50, @A6,i
x ~k!,A6, j

x ~k8!* #5d i j dkk8I . ~IV.13!

Comparing~IV.7! with ~IV.9! we find that the parametera must satisfy

cosha1sinha5u, cosha2sinha5u21, ~IV.14!

where

u5AmM~k!

uku
.

This yields

a5arccosh~ 1
2 ~u1u21!!. ~IV.15!

Also this comparison leads to

E0~M ,k,i !52
1

2
mM~k!S u2

1

uD 2

, ~IV.16!

from which ~IV.3! follows. The mass cutoff can be handled in a similar fashion, leading to~IV.4!.
Finally we treat the string method cutoff, and this can also be handled in a similar fas

The one difference from the above concerns the constant Fourier modes, which under
different canonical transformation. In fact, thek50 mode contribution to the Hamiltonian for th
i th component is not thek→0 limit of ~IV.7!, but rather it is

Hb,str~0!5(
i 51

n S pi* pi1M2qi* qi2
1

2
~11M2! D5(

i 51

n

:pi* pi1M2qi* qi :. ~IV.17!

The quadratic term inpi arises from the free Hamiltonian~III.35!, the quadratic term inqi arises
from the quadratic interaction~IV.1!, and the constant has a contribution from each,

qi5
1

&
~a1,i* ~0!1a2,i~0!!, pi5

2 i

&
~a1,i~0!2a2,i* ~0!!. ~IV.18!

Define the canonical annihilation variables

A6,i5a6,i~0!cosha1a7,i* ~0!sinha

with

a5a~M !5 1
2 ln M , ~IV.19!

in terms of which the identity
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Hb,str~0!5M(
i 51

n

~A1,i* A1,i1A2,i* A2,i !2
n

2
~M21!2, ~IV.20!

completes the proof of Proposition VI.A.1.
Further elaboration of the diagonalization leads to:
Proposition IV.A.2: The operator HM

b,cutoff has the following properties:
~a! For M.0, the operators HM

b,cutoff are bounded from below and essentially self-adjoint
D.

~b! The heat kernelexp(2bHM
b,cutoff) commutes with U(s,u).

~c! The ground stateVvac for HM
b,cutoff is unique, and it satisfies

U~s,u!Vvac5Vvac. ~IV.21!

~d! For b.0 the heat kernel is trace class, and

ccutoff,M~T!5TrHb,cutoff~U~s,u!* e2bHM
b,cutoff

!5)
i 51

n

)
kPKi

cutoff

e2bE0
b,cutoff

~M ,k,i !

u12g i
T~k!u2

, ~IV.22!

where

g i
T~k!5H e2 iuV i2 isk2bmM~k! for twist and string regularization

e2 iuV i2 isk2bmM8~k!, M 85AM21m2 for the mass regularization.
~IV.23!

Proof: The proof of essential self-adjointness claimed in~a! is a consequence of the repr
sentation~IV.8! of the Hamiltonian as a sum of mutually commuting Hamiltonians. EachHi

b,x(k)
is essentially self adjoint as a consequence of the standard arguments. See, e.g., Ref. 8. In a
we have an explicit diagonalization ofHM

b,cutoff . We give the details for the twist field; the othe
cases of the massive field and the string field are similar. We use the same representation a
proof of Proposition IV.A.1. This procedure also diagonalizesPb,cutoff andJb,cutoff, and using this
analysis we show that the ground state ofHM

b,co is annihilated byPb,cutoff and byJb,cutoff, proving
~b! and ~c!.

Recall the definition~II.12! of the coordinatesqi
x(k). With A6,i

x (k) defined in~IV.12!, define
the related coordinates

Qi
x~k!5

1

A2mM~k!
~A1,i

x ~k!* 1A2,i
x ~2k!!. ~IV.24!

Also denote the number ofA6,i
x (k) quanta as

N6,i
Ax

~6k!5A1,i
x ~6k!* A1,i

x ~6k!, ~IV.25!

where we use the superscriptAx to denote the choice of canonical variables. We denote
corresponding number operators for thea6,i

x (6k) quanta as

N6,i
ax

~6k!5a1,i
x ~6k!* a1,i

x ~6k!. ~IV.26!

We note two important algebraic identities whose proof are straightforward consequen
~IV.12!–~IV.15!:

Lemma IV.A.3: The choice (IV.12) of canonical variables yields for kPKi
x ,

qi
x~k!5Qi

x~k!, ~IV.27!

and
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N1,i
Ax

~k!2N2,i
Ax

~2k!5N1,i
ax

~k!2N2,i
ax

~2k!. ~IV.28!

As a result of~IV.28!,

Pb,x5(
i 51

n

(
kPKi

x
k~A1,i

x ~k!* A1,i
x ~k!2A2,i

x ~2k!* A2,i
x ~2k!!, ~IV.29!

and

Jb,x5(
i 51

n

(
kPKi

x
V i~A1,i

x ~k!* A1,i
x ~k!2A2,i

x ~2k!* A2,i
x ~2k!!. ~IV.30!

Thus bothPb,x andJb,x have similar expansions when expressed in terms of theAx variables as
in the ax variables.

A standard argument in quantum theory, for example, Corollary 3.3.4 of Ref. 1, ensure
the ground stateVvac of HM

b,x is unique. EachHM ,i
b,x 2E0(M ,k,i )>0, and the sum of these operato

has the ground stateVvac with eigenvalue zero. The wave function for the eigenstate of this m

has the formc(k)e2uQi
x(k)u2, wherec(k) is a normalization constant. Thus eachHM ,i

b,x satisfies
HM ,i

b,x Vvac5E0(M ,k,i )Vvac, or

A6,i
x ~6k!* A6,i

x ~6k!Vvac5N6,i
Ax

~6k!Vvac50. ~IV.31!

Therefore the ground state vectorVvac of Hb,x satisfies

Hb,xVvac5E0
b,xVvac, Pb,xVvac50, Jb,xVvac50. ~IV.32!

As a consequence,Vvac is invariant under the symmetry groupU(s,u),

U~s,u!Vvac5Vvac, ~IV.33!

which is the normalization required in the general discussion of twist positivity.2

This justifies our use of the new canonical coordinates~IV.19! to simultaneously diagonalize
Hb,x, Pb,x, andJb,x. The orthonormal eigenstates have the form

S )
1< i<n

)
kPKi

x

1

An1~ i ,k!!n2~ i ,k!!
A1,i

x ~k!* n1~ i ,k!A2,i
x ~2k!* n2~ i ,k!D Vvac, ~IV.34!

where only a finite number of then6( i ,k)PZ1 are nonzero. This also justifies using the proof
Proposition VI.1.1 of Ref. 2, modified to take into account the fact that the zero-point energy
not vanish. Hence the proof of Proposition IV.A.2 is complete.

Having established the trace class property of the heat kernel, we define the corresp
normalized functional

^•&T
cutoff,M5

TrHb,cutoff~•U~s,u!* e2bHM
b,cutoff

!

TrHb,cutoff~U~s,u!* e2bHM
b,cutoff

!
. ~IV.35!

In this section we letT5$s,u,b%, while ‘‘cutoff’’ denotesx in the case of twist fields,m in the
case of massive fields, and ‘‘string’’ in case of the string field. Our main observation in
section is

Proposition IV.A.4: Let M.0, let b.0, and letT be fixed.
~a! The functional (IV.35) is a Gaussian function of time-ordered fields. The expectati

each field vanishes, ^wcutoff&T
cutoff,M50. The pair correlation matrix for the twist fields equals
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^~ w̄ i
x~x,t !w j

x~y,s!!1&T
x,M5d i j ~Dx,T1M2!21~x2y,t2s!. ~IV.36!

Here Dx,T denotes the Laplacian (II.84) onST (T2) with twist relations

f i~x1 l ,t !5e2 ix i f i~x,t !, f i~x,t1b!5e2 iV iu f i~x1s,t !. ~IV.37!

~b! The pair correlation function for the massive cutoff equals

^~ w̄ i
m~x,t !w j

m~y,s!!1&T
m,M5d i j ~DT1m21M2!21~x2y,t2s!. ~IV.38!

Here DT denotes the Laplacian (II.84) onST (T2) with twist relations

f i~x1 l ,t !5 f i~x,t !, f i~x,t1b!5e2 iV iu f i~x1s,t !. ~IV.39!

~c! The pair correlation function in the string case equals

^~ w̄ i~x,t !w j~y,s!!1&T
str,M5d i j ~DT1M2!21~x2y,t2s!. ~IV.40!

Here DT denotes the same Laplacian as in (b).
~d! For M.0 and fixed, the limit of the twist-field pair correlation matrix exists asx→0. The

limit of the massive-field pair correlation matrix exists as m→0. These limits both exist in the
sense of distributions on( ^ i 51

n C`(S))8, and entail the convergence of the corresponding fi
theories in the sense defined in Ref. 9. Both limits agree with the string-field pair correl
function (IV.40).

Proof: We establish the fact that the functionals~IV.35! are Gaussian using the same meth
as we establish Proposition II.C.4, namely the proof of Propositions II.3 and VI.2 of Ref. 2
omit the details. This method also allows us to evaluate the expectations~IV.40!. It is clear that for
each example the trace factors over Hilbert spaces associated with each component of th
and over momenta as well, if we retain the modes involving6k in the same factor. In terms of th
pair correlation matrix, this means that the matrix is diagonal.

Using Lemma IV.A.3, we express the fieldw i
x(x), originally defined in~II.11!, in terms of the

new canonical variablesA6,i
x (k). In the cases51 we have

w i
x~x!5

1

l 1/2 (
kPKi

x
qi

x~k!e2 ikx5
1

l 1/2 (
kPKi

x
Qi

x~k!e2 ikx. ~IV.41!

We can compute the pair correlation matrix in the basis of new creation and annihilation ope
and in this basis we can simultaneously diagonalize the Hamiltonian~IV.9!, the momentum op-
eratorPb,x, and the twist generatorJb,x. For example, for 0<t,s<b, and with imaginary time
propagation,

^~qi~k!* ~ t !qi~k!~s!!1&T
x,Meik~x2y!5^qi~k!* ~ t !qi~k!~s!&T

x,Meik~x2y!

5^Qi~k!* ~ t !Qi~k!~s!&T
x,Meik~x2y! ~IV.42!

on the subspace spanned by the degrees of freedoma6,i(6k) or A6,i(6k). The full pair corre-
lation matrix ~II.67!, multiplied by l, is the sum of~IV.42! over kPKi

x . Following the proof of
Theorem VI.8 c–d of Ref. 2, we obtain

^~ w̄ i
x~x,t !w j

x~y,s!!1&T
x,M5d i j ~D$x,T%1M2!21~x2y,t2s!. ~IV.43!

Here we useD$x,T% to denote the Laplace operator~II.84! of Sec. II D. As a bounded operator o
L2(S)5L2(S13S1), the resolvent (Dx,T1M2)21 converges weakly asx→0. Thus it converges
in the sense of distributions to~IV.40!.
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For the massive field, we clearly can carry out exactly the same argument, to obtain~IV.40! as
m→0 with M.0 fixed. We do not give the details. In the string case, the zero-momentum m
also satisfy

qi
str~0!5

1

~2M !1/2~A1,i* 1A2,i !, ~IV.44!

and

A1,i* A1,i2A2,i* A2,i5a1,i~0!* a1,i~0!2a2,i~0!* a2,i~0!. ~IV.45!

This gives the desired representations for the constant modes, and completes the proof of
sition IV.A.3.

B. Stable nonlinearities

In this section we extend the construction to nonlinear interactions arising from the pote
ugradWu2 introduced in~III.8!. We take the nonlinear term inHb to be

V~W!5E
0

l

:ugrad W~wcutoff~x!!u2:dx5(
j 51

n E
0

l

:uWj~wcutoff~x!!u2:dx, ~IV.46!

whereW is a polynomial introduced in Sec. III B. We require estimates onV(W) that are uniform
at high frequency. To obtain these, we introduce a family of ultraviolet mollifiersKL, j (x), pa-
rametrized by a positive numberL. The mollifiers act on the time-zero fieldswcutoff by convolu-
tion, and they converge to the identity asL→`. Denote the doubly regularized bosonic field

wL, j~x!5E
0

l

KL, j~x2y!w j
cutoff~y!dy. ~IV.47!

We construct the mollifierKL, j (x) in the following manner. LetSj5SV jf denote the linear
space ofC` functions on the circle that satisfy the twist relationf (x1 l )5eiV jf f (x). Let S2 j

5S2V jf denote the complex conjugate space. The spaceSj is a subspace of the space of gen

alized functions (S2 j )8 dual toS2 j . Take a real, even,C`-function K̂(k) defined forkPR, with
the additional property that it satisfies the bounds

1

~11k2!e
<K̂~k!<K̂~0!51, ~IV.48!

where 0,e is a given constant. We first used a lower bound of this sort in Ref. 10, wher
called it ‘‘slow decrease at infinity’’ or sdi. It is convenient to choose

K̂~k!5
1

~11k2!e . ~IV.49!

Define the family of kernels by the Fourier representations

KL, j~x!5
1

l (
kPK j

x
K̂~k/L!e2 ikx,

where

K j
x5$ lk jP2pZ2V jf%, ~IV.50!
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and where the sum converges in the sense of (S2 j )8. Consequently, the kernelsKL, j act as
convolution operators on the fieldswL, jP(S2 j )8, mapping (S2 j )8 continuously into (S2 j )8, and

wL, j~x!5E
0

l

KL, j~x2y!wL, j
cutoff~y!dy5

1

Au l u
(

kPKi
x

1

~2uku!1/2~a1,i
x ~k!* 1a2,i

x ~2k!!K̂~k/L!e2 ikx.

~IV.51!

The family $KL, j% converges as a sequence of convolution operators on (S2 j )8 to the Dirac
measured concentrated at the origin,

lim
L→`

KL, j5d. ~IV.52!

This choice of mollifier allows us to generalize constructive field theory methods~originally
established for local perturbations ofH0

b) to certain bilocal perturbations ofH0
b , namely

VL
nonlocal~W!5(

j 51

n E
0

l E
0

l

:Wj~wL, j
cutoff~x!!vL, j~x2y!Wj~wL, j

cutoff~y!!:dx dy. ~IV.53!

Here the bilocal kernelvL, j (x2y) is an approximate Dirac measure

vL, j~x!5ei ~122V j !fx/ lS 1

l (
kPK j

x
uK̂~k/L!u2e2 ikxD , ~IV.54!

that is a distribution of positive type. We introduce this particular kernel because the b
potential ~IV.53!, without normal ordering, and withvL, j (x) of the form ~IV.54!, arises from
introducing high-frequency mollifiers into a supersymmetric interaction. We show in Propos
VII.A.3 that the kernelvL, j (x) arises as the bosonic part of the Hamiltonian~VII.53!.

Let us define

HL
b,cutoff~W!5H0

b,cutoff1VL
nonlocal~W!, ~IV.55!

with VL
nonlocal(W) defined in~IV.53!, and with domainD` . The methods of Ref. 10 immediatel

lead to the following.
Proposition IV.B.1: Let W be a holomorphic, quasihomogeneous polynomial that satisfie

bounds (III.17) and (III.18). LetKL, j denote thesdi mollifier (IV.50), with 0,e5e(W) suffi-
ciently small, and with0,L,`. Let VL

nonlocal(W) be given by (IV.53), and let the Hamiltonia
HL

b,cutoff(W) be defined by (IV.55). Then,

~a! the operator HL
b,cutoff(W) is essentially self-adjoint,

~b! for b.0, the heat kernel e2bHL
b,cutoff(W) is trace class.

V. DIRAC TWIST FIELDS ON A CIRCLE

A. Spinors

There are two sorts of Fermi fields on the circle; they are neutral~or Majorana! fields and
charged~or Dirac! fields. The twist condition applies naturally to charged fields, so as in
bosonic case, we introduce Dirac fields directly.

Let Mat2(C) denote the space of 232 complex matrices with the standard transpose
Hermitian adjoint denoted byST andS* respectively,

~ST! i j 5Sji , ~S* ! i j 5Sji . ~V.1!

Also let S̄ denote the complex conjugate matrix,
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~S̄! i j 5~S* T! i j 5Si j . ~V.2!

We use an explicit representation for the Dirac matricesg0,g1PMat2(C), whereg0 is Hermitian
andg1 is skew-Hermitian,

g05S 0 2 i

i 0 D , g15S 0 i

i 0D . ~V.3!

Define

s5g0g15S 1 0

0 21D . ~V.4!

With $A,B%5AB1BA, these matrices satisfy

$g i ,g j%52gi j I , sg i52g is, ~V.5!

where g0051, g11521, andg015g1050. These conventions are consistent with much of
particle physics literature, and differ from our previous papers.

Let these matrices act onspinorshPC2 that we denote

h5S h1

h2
D ,

with the Hermitian adjoint

h* 5~h1* ,h2* !. ~V.6!

On components,h j* denotes complex conjugation. Following physics notation, we also defin
adjoint spinorh̄ by

h̄5h* g0,

or in components

h̄5~ ih2* ,2 ih1* !. ~V.7!

~In previous sections we useā to denote the complex conjugate ofaPC. However, we believe tha
no confusion will occur in following the physics convention to denote adjoint spinors byh̄.)

Another standard involutionh→hc on spinors is charge conjugation,

hc5h* T5S h1*

h2*
D . ~V.8!

This can also be written

hc5Ch̄T5C~g0!Th* T, ~V.9!

whereC is called the charge conjugation matrix. In~V.8! we make the choice

C~g0!T5I , ~V.10!

as discussed further in Sec. V B.
We call these elements ofC2 spinors, because of their transformation under Lorentz boo

The Lorentz ‘‘boost’’ is generated bys5 1
2 @g0,g1#5g0g1, and we define the boost as th

SL(2,C)-transformation
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h→h85esf/2h5S ef/2 0

0 e2f/2Dh, ~V.11!

wherefPR is a parameter~hyperbolic angle!. The adjoint spinorh̄ combines with a spinorz to
form a Lorentz scalar,

h̄z5h* g0z5 i ~h2* z12h1* z2!. ~V.12!

The combination~V.12! is a scalar in the sense that

h̄8z85h̄z. ~V.13!

The spinorh̄ also combines withz and the Dirac matrices to form the components of a two-vec

h̄g0z5h* z5h1* z11h2* z2 , h̄g1z5h* sz5h1* z12h2* z2 . ~V.14!

These quantities transform under Lorentz boosts according to the hyperbolic rotation

S h̄8g0z8
h̄8g1z8 D5S coshf sinhf

coshf coshf D S h̄g0z
h̄g1z D . ~V.15!

We also considern-copies of such spinorsha,i with componentsha,i . Here the second
subscripti labels the copy, while the first subscripta labels the component within thei th copy. In
that case, we also use the notation

h̄z5 i(
i 51

n

~h2,i* z1,i2h1,i* z2,i !, h̄g jz5(
i 51

n

h̄ ig
jz i5(

i 51

n

(
a,b51

2

ha,i* ~g0g j !.abzb,i . ~V.16!

In order to define free fermion quantum fields, we introduce the fermionic Hilbert space
in the case of bosons, the one particle space depends on the twists. We define the time zer
quantum fieldcx(x) by their Fourier representations. The components will be$ca,i

x (x)%, where
the index 1< i<n designates a copy~as for the bosonic felds! and the index 1<a<2 labels the
components of the particular copy. The twist angles for fermions may be chosen indepen
from the twist angles for bosons. Thus we letx denote the set of bosonic and fermionic twists

x5~xb,x f !,

where

x f5~xa,i
f :1<a<2,1< i<n!. ~V.17!

The fermionic twists depend on bothi anda. We choose fermionic twist angles such that

eixa,i
f

Þ1 ~V.18!

for all 1<a<2 and 1< i<n. Then the distinct components of the field also involvenonzero
momenta. We define the fields and their time dependence in such a fashion that they sat
holonomy relations

ca,i
x ~x1 l ,t !5eixa,i

f
ca,i

x ~x,t !. ~V.19!

We begin by introducing momentum sets for the components of the fields

Ka,i
x f

5$k : lkP2pZ2xa,i
f %. ~V.20!
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The condition~V.18! ensures that

0P” Ka,i
x f

. ~V.21!

It is also natural to introduce momentum sets for the6-modes of the creation and annihilatio

operators. We useb1,i
x f

(k) for kPK1,i
x f

, andb2,i
x f

(2k) for kPK2,i
x f

. Here

K1,i
x f

5$k:$k.0 and kPK1,i
x f

%ø$k,0 and kPK2,i
x f

%%, ~V.22!

and

K2,i
x f

5$k : $k,0 and kPK1,i
x f

%ø$k.0 and kPK2,i
x f

%%. ~V.23!

We can invert these relations, for example,

K1,i
x f

5$k : $k.0 and kPK1,i
x f

%ø$k,0 and kPK2,i
x f

%%. ~V.24!

The one-particle Hilbert space is

Kx f
5 %

i 51

n

~ l 2~K1,i
x f

! % l 2~2K2,i
x f

!!. ~V.25!

The Fock spaceHf ,x is the skew tensor algebra overKx f
,

Hf ,x5exp∧ Kx f
, ~V.26!

where∧ denotes the skew-symmetric tensor product. On this Hilbert space, we define two
pendent sets of canonical creation operators on this Fock space.

The creation and annihilation operators satisfy the canonical anticommutation relation~the
CAR!

$b1,i
x f

~k!,b1,i 8
x f

~k8!%50, $b1,i
x f

~k!,b2,i 8
x f

~2k8!#%50, ~V.27!

as well as

$b1,i
x f

~k!,b1,i 8
x f

~k8!* %5d i i 8dk,k8I , ~V.28!

whereb1,i
x f

(k)# denotes eitherb1,i
x f

(k) or b1,i
x f

(k)* , and

$b2,i
x f

~2k!,b2,i 8
x f

~2k8!* %5d i i 8dk,k8I . ~V.29!

We express the fields in terms of their Fourier representation,

c1,i
x ~x!5

21

Al
(
k.0

kPK1,i
x f

b1,i
x f

~k!* e2 ikx1
1

Al
(
k,0

kPK2,i
x f

b2,i
x f

~2k!e2 ikx5
1

Al
(

kPK1,i
x f

j1,i
x ~k!e2 ikx, ~V.30!

and

c2,i
x ~x!5

2 i

Al
(
k,0

kPK1,i
x f

b1,i
x f

~k!* e2 ikx1
i

Al
(
k.0

kPK2,i
x f

b2,i
x f

~2k!e2 ikx5
1

Al
(

kPK2,i
x f

j2,i
x ~k!e2 ikx. ~V.31!
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Hereja,i
x (k) denote fermionic coordinates. Explicitly,

j1,i
x ~k!5H b1,i

x f
~k!* with kPK1,i

x f
if k.0

b2,i
x f

~2k! with kPK2,i
x f

if k,0
~V.32!

and

j2,i
x ~k!5H ib2,i

x f
~2k! with kPK2,i

x f
if k.0

2 ib1,i
x f

~k!* with kPK1,i
x f

if k,0.
~V.33!

Under a spatial translation around the circle, the fields have the holonomy~V.19!, which we infer
from the relations

e2 ikl5eixa,i
f

, for kPKa,i
x f

. ~V.34!

As a consequence of the CAR for the creation and annihilation operators, the ferm
coordinates satisfy the CAR

$ja,i
x ~k!#,ja8,i 8

x
~k8!#8%5daa8d i i 8dkk8d#* #8I , for kPKa,i

x f
, k8PKa8,i 8

x f
. ~V.35!

Hered#* #850 when # and #8 are the same, whiled#* #851 when # and #8 differ. Thus the above
relations are shorthand for the relations$ja,i

x (k),ja8,i 8
x (k8)%50, $ja,i

x (k),ja8,i 8
x (k8)* %

5daa8d i i 8dkk8I , and their adjoints. We infer that the fields satisfy the CAR

$ca,i
x ~x!#,ca8,i 8

x
~x8!#8%5daa8d i i 8d#* #8d~x2x8!I . ~V.36!

Here we use the representation for the Dirac measure with periodl, namely

d~x!5
1

l (
kPKa,i

x f
e2 ikx, ~V.37!

justified as in~II.29!. We combine this with the calculation

$ca,i
x ~x!#,ca8,i 8

x
~x8!#8%5

1

l (
kPKa,i

x f
(

k8PK
a8,i 8
x f

$ja,i
x ~k!#,ja8,i 8

x f
~k8!#8%e2 ikx1 ik8x8

5
1

l (
kPKa,i

x f
(

k8PK
a8,i 8
x f

daa8d i i 8dkk8d#* #8e
2 ik~x2x8!I

5daa8d i i 8d#* #8d~x2x8!I . ~V.38!

Standard normal ordering of creation and annihilation operators is

:b6,i
x f

~k!b68,i 8
x f

~k8!ªb6,i
x f

~k!b68,i 8
x f

~k8!, :b6,i
x f

~k!* b68,i 8
x f

~k8!*ªb6,i
x f

~k!* b68,i 8
x f

~k8!* ,

~V.39!

:b6,i
x f

~k!* b68,i 8
x f

~k8!ªb6,i
x f

~k!* b68,i 8
x f

~k8!, :b6,i
x f

~k!b68,i 8
x f

~k8!*ª2b68,i 8
x f

~k8!* b6,i
x f

~k!,

extending linearly to the products of fields. The Hamiltonian for the free Dirac field is
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H0
f ,x5(

i 51

n S (
kPK1,i

x f
ukub1,i

x f
~k!* b1,i

x f
~k!1 (

kPK2,i
x f

ukub2,i
x f

~2k!* b2,i
x f

~2k!D , ~V.40!

and the momentum operator is

Pf ,x5(
i 51

n S (
kPK1,i

x f
kb1,i

x f
~k!* b1,i

x f
~k!2 (

kPK2,i
x f

kb2,i
x f

~2k!* b2,i
x f

~2k!D . ~V.41!

We can express the Hamiltonian and momentum operators in terms of the fields by

H0
f ,x1Pf ,x522i(

i 51

n E
0

l

:c1,i
x* ]xc1,i

x :dx,

~V.42!

H0
f ,x2Pf ,x522i(

i 51

n E
0

l

:c2,i
x* ]xc2,i

x :dx,

where]x5]/]x . Noting ~V.14! and ~V.16!, we infer that~V.40! and ~V.41! also equal

H0
f ,x52 i E

0

l

:cxg1]xc
x:dx, P0

f ,x52 i E
0

l

:cxg0]xc
x:dx. ~V.43!

The real-time free field, with initial data equal to~V.30! and ~V.31!, is

cRT,a,i
x ~x,t !5eitH 0

f ,x
ca,i

x ~x!5e2 i tH 0
f ,x

5eitH 0
f ,x

2 ixPf ,x
ca,i

x ~0!5e2 i tH 0
f ,x

1 ixPf ,x
. ~V.44!

B. The real-time Dirac equation

Define the real-time Dirac operator as

]”5g0
]

]t
1g1

]

]x
5S 0 2 i

]

]t
1 i

]

]x

i
]

]t
1 i

]

]x
0

D . ~V.45!

This operator is neither symmetric nor skew-symmetric. The corresponding real-time Dirac
tion is

i ]”cRT,j
x ~x,t !50, ~V.46!

where the factori is conventional. In terms of components, one can write the equations
left-moving and for right-moving solutions, respectively, as

S ]

]t
2

]

]xDcRT,2,j
x ~x,t !50, S ]

]t
1

]

]xDcRT,1,j
x ~x,t !50. ~V.47!

We mention thecharge conjugationtransformation

cRT
x ~x,t !→cRT

x ~x,t !c5CcRT
x ~x,t !T ~V.48!

for the Dirac field. We retain the previous definition~V.8!–~V.9! adapted to the situation with
n-copies of the two-component, real-time field, namely
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cRT
x ~x,t !5S cRT,1,1

x ~x,t !
cRT,2,1

x ~x,t !
cRT,1,2

x ~x,t !
]

cRT,2,n
x ~x,t !

D , cRT
x ~x,t !c5S cRT,1,1

x ~x,t !*
cRT,2,1

x ~x,t !*
cRT,1,2

x ~x,t !*
]

cRT,2,n
x ~x,t !*

D . ~V.49!

Here cRT,a,i
x (x,t)* denotes the Hermitian conjugate ofcRT,a,i

x (x,t). The condition thatcRT
x is

charge self-conjugate then reduces tocRT
x being a real~Majorana! spinor. For the field~V.49! with

n copies, we also use]” to denote the real-time Dirac operator acting on each copy, and
matricesgm andC also act as block matrices composed ofn identical copies. Charge conjugatio
maps a solutioncRT

x (x,t) to the Dirac equation into the charge conjugate solutioncRT
x (x,t)c. To

derive this, take the complex conjugate of~V.46! ~writing gm the matrix complex conjugate togm)
and multiply byC(g0)T. We obtain the Dirac equation for a charge conjugate as long as

C~g0!Tgm5constgmC~g0!T. ~V.50!

In our purely imaginary representation of the Dirac matrices,gm52gm, so our earlier choice
C(g0)T5I in ~V.10! yields the constant in~V.50! equal to21.

In the following section we also study the massive Dirac equation. With our choiceC(g0)T

5I , the charge conjugation transformation also maps solutions of the massive Dirac eq

( i ]”2m)cRT(x,t)50 into ~charge-conjugate! solutions that satisfy (i ]”2m)cRT(x,t)c50.

C. Twist symmetry

We introduce a self-adjoint twist generatorJf ,x. This operator acts on the fermionic Hilbe
space and generates a unitary groupU f ,x(u)5eiuJf ,x

that twists each componentca,i
x -component

of the Dirac field. The twist is by a phaseeiVa,i
f u, where the twisting angles are proportional to t

set of independent, real twist parameters$Va,i
f % that we specify. In other words,

U f ,x~u!cRT,a,i
x U f ,x~u!* 5eiVa,i

f ucRT,a,i
x . ~V.51!

Define the fermionic twist generator as

Jf ,x5(
i 51

n

(
a51

2

Va,i
f E

0

l

:ca,i
x ~x!ca,i

x ~x!* :dx1M ~V!, ~V.52!

whereM (V) is the constant

M ~V!5
1

2 (
i 51

n

~V1,i
f 2V2,i

f !. ~V.53!

In the bosonic case, we chose the additive constant in the bosonic twist generator so thJb,x

annihilates the ground state of the bosonic HamiltonianHb; this led to the twist positivity property
of the bosonic partition function. Fermionic partition functions do not have the twist posit
property, so we now explain the rational for our choice ofM (V). An elementary computation
shows that

E
0

l

:c1,i
x ~x!c1,i

x ~x!* :dx5 (
k.0

kPK1,i
x f

b1,i
x f

~k!* b1,i
x f

~k!2 (
k,0

kPK2,i
x f

b2,i
x f

~2k!* b2,i
x f

~2k!, ~V.54!

and
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E
0

l

:c2,i
x ~x!c2,i

x ~x!* :dx5 (
k,0

kPK1,i
x f

b1,i
x f

~k!* b1,i
x f

~k!2 (
k.0

kPK2,i
x f

b2,i
x f

~2k!* b2,i
x f

~2k!. ~V.55!

Thus Jf ,x is a sum of commuting, self-adjoint generators for each component of the ferm
fields, and has a simple expression in terms of the positive and negative frequency parts
number operators. Let us define angles for the twist generation for the creation operators,

V i
f~k!5H V1,i

f if k.0

V2,i
f if k,0.

~V.56!

Then we can writeJf ,x as

Jf ,x5(
i 51

n

(
kPK1,i

x f
V i

f~k!N1,i
f ,x 2(

i 51

n

(
kPK2,i

x f
V i

f~2k!N2,i
f ,x 1M ~V!. ~V.57!

Next we pair each momentumkPK1,i
x f

with a dual momentumk̃PK2,i
x f

such that

k1 k̃52x1,i
f 2x2,i

f . ~V.58!

Note thatk and k̃ have opposite signs, unlesslk52x6,i
f , namely unlessk is the momentum in

K1,i
x f

or in K2,i
x f

that is closest to zero. In particular, if also we takek.0, thenk̃,0. Accounting
for these relationships, we rewrite the fermionic twist generatorJf ,x in the form

Jf ,x5(
i 51

n

(
k.0

kPK1,i
x f

S V i
f~k!S N1,i

f ,x ~k!2
1

2D2V i
f~2 k̃!S N2,i

f ,x ~2 k̃!2
1

2D
1V i

f~ k̃!S N1,i
f ,x ~ k̃!2

1

2D2V i
f~2k!S N2,i

f ,x ~2k!2
1

2D D
2(

i 51

n S V i
f S x1,i

f

l D S N2,i
f ,x ~2x1,i

f !2
1

2D2V i
f S 2

x2,i
f

l D S N1,i
f ,x ~x2,i

f !2
1

2D D . ~V.59!

In the representation~V.59!, the four factors of1
2 in the summand overk.0 actually cancel

identically. On the other hand, the remaining two factors of1
2 that occur outside the sum overk

reflect the constant

M ~V!5(
i 51

n S 1

2
V i

f S x1,i
f

l D 2
1

2
V i

f S 2
x2,i

f

l D D 5
1

2 (
i 51

n

~V1,i
f 2V2,i

f !, ~V.60!

as chosen in~V.53!. The representation~V.59! exhibits that the operators6Jf ,x have the same
spectrum and the same spectral multiplicities. In fact, each summand in this representation
property. This justifies our choice of the constantM (V) that normalizesU f ,x(u).

Since the twist generatorJf ,x is an elementary function of the number operators, it commu
with the free fermionic Hamiltonian and with the momentum operator,

@Jf ,x,H0
f ,x#50, @Jf ,x,Pf ,x#50. ~V.61!

Hence the two-parameter group

U f ,x~u,s!5U f ,x~u!eisPf ,x
~V.62!
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is an Abelian symmetry group of bothH0
f ,x andPf ,x,

U f ,x~u,s!H0
f ,x5H0

f ,xU f ,x~u,s!, U f ,x~u,s!P0
f ,x5P0

f ,xU f ,x~u,s!. ~V.63!

We can summarize the above-mentioned symmetries by the twist relation for the real-time

U f ,x~u,s!cRT,a,i
x ~x1 l ,t !U f ,x~u,s!* 5eiuVa,i

f
1 ixa,i

f
cRT,a,i

x ~x2s,t !, ~V.64!

whereu,sPR.

D. Partition functions

Define the free fermionic partition functioncf(T) by

cf~T!5TrHf ,x~GU f ,x~s,u!* e2bH0
f ,x

!5TrHf ,x~Ge2 isPf ,x2 iuJf ,x2bH0
f ,x

!. ~V.65!

HereG5(2I )Nf ,x
is theZ2-grading defined by the total fermion number operatorNf ,x,

Nf ,x5(
i 51

n

(
kPK1,i

x f
b1,i

x f
~k!* b1,i

x f
~k!1(

i 51

n

(
kPK2,i

x f
b2,i

x f
~2k!* b2,i

x f
~2k!. ~V.66!

The operatorsG,U f ,x(s,u), andH0
f ,x not only mutually commute, but they all have simultaneo

eigenstates inHf ,x labeled by the states withn6,i ,k50 or 1 quanta created byb6,i
x f

(k)* .
In terms of these parameters, let

g1,i
f ~k!5e2 iuV i

f
~k!2 isk2buku with kPK1,i

x f
,

and g2,i
f ~2k!5e2 iuV i

f
~2k!2 isk2buku with kPK2,i

x f
. ~V.67!

Also let

ga,i
f ~k!5e2 iuVa,i

f
2 isk2buku with kPKa,i

x f
, for a51,2. ~V.68!

Since we assume that the fermionic twists satisfy~V.18!, we infer that allowed momenta satisf
kÞ0, and consequentlyga,i

f (k)Þ1. We then establish as in the bosonic case:
Proposition V.D.1: Letb.0, and assume the fermionic twists satisfy the nontriviality con

tion (V.18).
~a! The partition function is given by the convergent product

cf~T!5expS 2 i(
i 51

n

~V1,i
f

2V2,i
f

!/2D)
i 5 i

n S )
kPK1,i

x f
~12g1,i~k!! )

k8PK2,i
x f

~12g2,i~2k8!!D Þ0.

~V.69!

~b! If x1,i
f 5x2,i

f and V1,i
f 5V2,i

f for all i, then cf(T) is positive.
~c! If also xa,i

f 5x i
b and Va,i

f 5V i
b for all a, i, then cf(T) and c(T) given by (II.45) are

inverses of one another.

E. Imaginary-time Dirac fields and pair correlations

In this section, we define theimaginary timeDirac fieldcx(x,t). We also define the fermionic
expectation̂ •&T

f ,x , analogous to the Bosonic expectations of Sec. II C.
Define the imaginary-time fermionic field by
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cx~x,t !5cRT
x ~x,i t !5e2tH0

f ,x
c f~x!etH0

f ,x
. ~V.70!

Use the adjointc̄5c* g0, and define

~cx!~x,t !5~cRT
x !~x,i t !5e2tH0

f ,x
cx~x!etH0

f ,x
, ~V.71!

with components (cx)a,i(x,t). To simplify the notation we write the components of the adjo
field as

~ca,i
x !~x,t !5~cx!a,i~x,t !. ~V.72!

Now we define the expectation. Use the unitary elementGU f ,x(s,u)* to twist expectations,

and regularize the expectation by the fermionic heat kernele2bH0
f ,x

, which is trace class. Denot
the parameters for the Dirac field by

T5$x,uV,s,l ,b%. ~V.73!

In Proposition V.D.1 we saw that the fermionic partition function does not vanish,cf(T)Þ0, so
one can normalize the fermionic expectation,

^•&T
f ,x5

TrHf ,x~•Ge2 iuJf ,x2 isPf ,x2bH0
f ,x

!

TrHf ,x~Ge2 iuJf ,x2 isPf ,x2bH0
f ,x

!
. ~V.74!

The normalized expectation has the property that^I &T
f ,x51. Furthermore, the expectation is twis

invariant, in the sense that for an operatorT for which the expectation is defined,

^T&T
f ,x5^U f ,x~u!TUf ,x~u!* &T

f ,x . ~V.75!

As the time-zero fermion fields have a nonzero spatial twist, namely as given by~V.51!, and
the imaginary time fields have the same twist transformation law,

U f ,x~u!ca,i
x ~x,t !U f ,x~u!* 5eiuVa,i

f
ca,i

x ~x,t !, ~V.76!

it follows that

^ca,i
x ~x,t !&T

f ,x5^ca,i
x ~x,t !&T

f ,x50. ~V.77!

Similarly, for 0<t<t8<b,

^ca,i
x ~x,t !ca8, j

x
~x8,t8!&T

f ,x5^ca,i
x ~x,t !ca8, j

x
~x8,t8!&T

f ,x50. ~V.78!

Define the time-ordered product of two components of the fermion field as

~ca,i
x ~x,t !ca8, j

x
~x8,t8!!15H ca,i

x ~x,t !ca8, j
x

~x8,t8! if t,t8

2ca8, j
x

~x8,t8!ca,i
x ~x,t ! if t8,t.

~V.79!

We have not defined the time-ordered product fort5t8, and the two limits limt→t6 of the time
ordered product~V.79! differ on the diagonal (x,t)5(x8,t8). The fermionic pair correlation
matrix Sx(x2x8,t2t8) is the time-ordered expectation of two Dirac fields,

ST,aa8,i j
x

~x2x8,t2t8!5^~cx
a,i~x,t !ca8, j

x
~x8,t8!!1&T

f ,x . ~V.80!
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Osterwalder and Schrader proved,11 as part of their construction of quantum fields from Euclide
Green’s functions, that the above ambiguity of the pair correlation matrix~V.80! on the diagonal
(x,t)5(x8,t8) does not affect the real-time quantum field theory.

Furthermore, the matrix elements vanish foriÞ j , so we denote thei 5 j entries with one
fewer indices,

ST,aa8,i j
x

~x2x8,t2t8!5d i j ST,aa8,i
x

~x2x8,t2t8!. ~V.81!

It is natural to introduce the matricesST,i
x (x2x8,t2t8) of 232 blocks for eachi, with entries

ST,aa8,i
x (x2x8,t2t8). Let

ST,i
x ~x2x8,t2t8!5S ST,11,i

x ~x2x8,t2t8! ST,12,i
x ~x2x8,t2t8!

ST,21,i
x ~x2x8,t2t8! ST,22,i

x ~x2x8,t2t8!
D

5S 0 i ^~c2,i
x ~x,t !* c2,i

x ~x8,t8!!1&T
f ,x

2 i ^~c1,i
x ~x,t !* c1,i

x ~x8,t8!!1&T
f ,x 0

D .

~V.82!

F. Fermion holonomy moves

We explain the idea ofholonomy movesa useful set of identities to evaluate expectations.
introduced this method in Ref. 8 and elaborated in the bosonic case in Ref. 2. Here we g
corresponding elaboration relevant for the expectation of fermion operators. We define an o
X to be fermionic, ifGXG52X. Let

K5K~s,u,b!5GU f ,x~s,u!* e2bH0
f ,x

5Ge2 iuJf ,x2 isPf ,x2bH0
f ,x

. ~V.83!

We say the operatorX has an elementary holonomy law with respect to the expectation^•&T
f ,x

defined in~V.74!, if

XK56sKX,

where

sPC, sÞ1. ~V.84!

We call this abosonicholonomy law in the case of the plus sign, and we call it afermionic
holonomy law in case of the minus sign.
Proposition V.F.1: Let X denote an operator that has a nontrivial, elementary holonomy law
respect to the expectation̂•&T

f ,x . Then

^XY&T
f ,x5

1

~12s!
^$X,Y%&T

f ,x5
2s21

~12s21!
^$X,Y%&T

f ,x . ~V.85!

Remark:We call the identity~V.85! a fermionic holonomy move.
Proof: It is sufficient to prove the first identity. Take the expectation of the identityXY

52YX1$X,Y%, to obtain^XY&T
f ,x52^YX&T

f ,x1^$X,Y%&T
f ,x . Using the definition of the expec

tation ~V.74!, the elementary holonomy move identity, and cyclicity of the trace, we infer

^XY&T
f ,x5s^XY&T

f ,x1^$X,Y%&T
f ,x , ~V.86!

yielding ~V.85!.
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G. Evaluation of the pair correlation matrix

We use the fermionic holonomy identity~V.85!, among other things, to compute the pa
correlation matrix~V.82!. For realuÞ0, define the step function

u~u!5H 1 if u.0

0 if u,0.
~V.87!

Using the definition of the fields we obtain
Proposition V.G.1: For0<t,t8<b, and 0,ut2t8u,b, the nonzero elements of the pa

correlation matrix~V.82! are given by absolutely convergent Fourier representations

S21,j
x ~x2x8,t2t8!52 i ^~c1,j

x ~x,t !* c1,j
x ~x8,t8!!1&T

f ,x

5
i

l
(

kPK1,j
x f
H u~2k!S g1,j

f ~k!

12g1,j
f ~k!

1u~ t2t8!D e2uku~ t2t8!

2u~k!S g1,j
f ~k!

12g1,j
f ~k!

1u~ t82t !D euku~ t2t8!J eik~x2x8!, ~V.88!

and

S12,j
x ~x2x8,t2t8!5 i ^~c2,j

x ~x,t !* c2,j
x ~x8,t8!!1&T

f ,x

5
i

l
(

kPK2,j
x f
H u~2k!S g2,j

f ~k!

12g2,j
f ~k!

1u~ t82t !D euku~ t2t8!

2u~k!S g2,j
f ~k!

12g2,j
f ~k!

1u~ t2t8!D e2uku~ t2t8!J eik~x2x8!. ~V.89!

Furthermore ifV1,j
f 5V2,j

f and x1,j
f 5x2,j

f , then Sx satisfies the Hermiticity condition

S12,j
x ~x2x8,t2t8!5S21,j

x ~x82x,t82t !. ~V.90!

Proof: First assume the above representations and consider their convergence. By assu
0,ut82tu,b. Therefore the terms in~V.88! and~V.89! that are proportional tou(6(t2t8)) are
well-defined, and the magnitude of these terms decay exponentially asuku→`. This remark also
ensures that terms in the sums~V.88! and ~V.89! proportional to the exponentially growin
functions eukuut2t8u always occur multiplied by eitherga, j

f (k) or g a, j
f (k). Hence the bound

uga, j
f (k)u<e2ukub ensures that these terms also converge to zero exponentially asuku→`. There-

fore each sum converges absolutely.
We now computê (c1,j

x (x,t)* c1,j
x (x8,t8))1&T

f ,x for 0<t<t8<b. In this case, use cyclicity
and the diagonal nature of the trace to obtain
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^~c1,j
x ~x,t !* c1,j

x ~x8,t8!!1&T
f ,x5

1

l (
k.0

kPK1,j
x f

^b1, j
x f

~k!b1, j
x f

~k!* ~ t82t !&T
f ,xeik~x2x8!

1
1

l (
k,0

kPK1,j
x f

^b2, j
x f

~2k!b2, j
x f

~2k!* ~ t82t !&T
f ,xeik~x2x8!.

~V.91!

The operatorsb6, j
x f

(6k) have a fermionic holonomy law with respect to the expectation in qu
tion. In particular,

b1, j
x f

~k!K52g1,j
f ~k!Kb1, j

x f
~k!, b2, j

x f
~2k!* K52~g1,j

f ~k!!21Kb2, j
x f

~2k!* . ~V.92!

Furthermore,

$b1, j
x f

~k!,b1, j
x f

~k!* ~ t82t !%5$b1, j
x f

~k!,b1, j
x f

~k!* %e2buku~ t82t !5e2buku~ t82t !, ~V.93!

and

$b2, j
x f

~2k!* ,b2, j
x f

~2k!~ t82t !%5$b2, j
x f

~2k!* ,b2, j
x f

~2k!%ebuku~ t82t !5ebuku~ t82t !. ~V.94!

So from Proposition V.F.1 we infer~V.88!. The computation for 0<t8<t<b and for the other
component ofSj

x are similar, so we do not include further details of the derivation of~V.88! and
~V.89!. Finally, we remark that the conditionV1,j

f 5V2,j
f and x1,j

f 5x2,j
f ensures thatK1,j

f 5K2,j
f .

Also for eachkPK1,j
f , it follows that g1,j

f (k)5g2,j
f (k). We then read off the symmetry relatio

~V.90! from ~V.88! to ~V.89!.

H. The Euclidean Dirac operator

In this section we define and study the Euclidean Dirac operator]”E , and its symmetries, on a
Hilbert space of square-integrable functionsT. Functions inT5$ f a,i(x,t)% have 2n components,
each anL2 function on the space–timeS5S13@0,b#. This takes into account then copies, each
with two components. LetTi denote the Hilbert space ofL2 functions for a single copy of the tes
function space,

Ti5L2~S;dx dt! % L2~S;dx dt!. ~V.95!

Likewise letT denote the direct sum over then copies,

T5 %
i 51

n

Ti . ~V.96!

Elementsf 5$ f a,i%PC0
`ùT that are smooth and compactly supported are test functions fo

Euclidean Dirac fields, and these functions pair with the imaginary time Dirac fieldscx according
to

cx~ f !5(
a,i

ca,i
x ~ f a,i !5(

a,i
E

0

l

dxE
0

b

dt ca,i
x ~x,t ! f a,i~x,t !. ~V.97!

We extend the domain of test functions in the following.
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In this section, we also define the pair correlation operatorST
x . The operatorST

x is the integral
operator whose integral kernel is the pair correlation matrix~V.80!. We will prove thatST

x is a
bounded operator onT, and thatST

x5(]”E)21. In other words, the pair correlation matrix is th
Green’s function for the Euclidean Dirac operator.

The real Dirac matrices~V.3! are Hermitian and skew-Hermitian, respectively. Define
Euclidean Dirac matrices by

gE
052 ig05S 0 21

1 0 D , gE
15g15S 0 i

i 0D . ~V.98!

Using these matrices, both skew-Hermitian, define the Euclidean Dirac operator as

]”E5gE
0 ]

]t
1gE

1 ]

]x
5S 0 2

]

]t
1 i

]

]x

]

]t
1 i

]

]x
0

D . ~V.99!

Also let ]”E denote the direct sum ofn copies of this operator acting on then-copies of the
two-component Dirac field, or as an operator on the HilbertT. Correspondingly let]”E,i denote the
action of]”E restricted toTi . This will be a diagonal 232 block of the form~V.99! in the matrix
for ]”E on the Hilbert spaceT, namely

]”E5S ]”E,1 0 ¯ 0

0 ]”E,2 ¯ 0

] ] ] ]

0 0 ¯ ]”E,n

D . ~V.100!

In order to study]”E as an operator onT, we must specify its domain. Begin with the doma
C0

` of smooth, 2n-component, compactly supported functions. Then each]”E,i is symmetric; for
f ,gPC0

` , we have

^]”Ef ,g&5^ f ,]”Eg&. ~V.101!

But the operator]”E defined onC0
` is not essentially self-adjoint. The elements of the defect spa

D6 for this operator are the spaces of square-integrable solutionsf to the (mass51) Dirac equa-
tions

~]”E7 i ! f 50. ~V.102!

Each defect space is infinite dimensional. For example, givenj with 1< j <n, and anykPR, the
vector

S f 1,j 8
f 2,j 8

D5d j j 8S i
Ak2112kDeikx1tAk211 ~V.103!

is an element ofD1 .
In order to specify the operator]”E,i as a symmetric operator on a maximal domain, we ext

the domain fromC0
` to include certain functions that are not compactly supported. Give

specific set of twist angles$xa, j
f %, and $Va, j

f %, we extend the domain of the operator]”E to
functions f 5$ f a, j% that are finite linear combinations of single component functions of the f
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f a8, j 85$ f a, j
a8, j 8%5da8ad j 8 je

ikx1 iEt, ~V.104!

where

~k,E!PŜT
a, j
f ,

defined by

lkP2pZ2xa, j
f , bEP$2pZ2Va, j

f f2ks%. ~V.105!

The functions~V.104! labeled bya8, j 8 are themselves an orthonormal basis forL2(S). Further-

more, the componentsf a, j
a8, j 8 of f a8, j 8 satisfy the twist relations

f a, j
a8, j 8~x1 l ,t !5e2 ixa, j

f
f a, j

a8, j 8~x,t !, f a, j
a8, j 8~x,t1b!5e2 iVa, j

f u f a, j
a8, j 8~x2s,t !. ~V.106!

Let DTi
denote the domain of two-component functions inTi that are finite linear combinations o

functions inC0
` with those of the form~V.104! and ~V.105!. Let

DT5 %
i 51

n

DTi
. ~V.107!

Correspondingly, let]”E,Ti
denote the operator]”E,i extended to the domainDTi

, and let]”E,T denote
the extension of]”E to the domainDT . The operator]”E,Ti

is not in general symmetric; the
condition for symmetry of the full]”E,T is:

Proposition V.H.1: The operator]”E,T with domainDT is symmetric if and only if

eix1,i
f

5eix2,i
f

, eiV1,i
f u5eiV2,1

f u for all 1< i<n. ~V.108!

If ~V.108! holds, then]”E,T is essentially self-adjoint.
Proof: Exponential functions of the form~V.104! have the property that the twist relation

~V.106! carry over to derivatives. As the representation~V.99! illustrates that]”E,T is off-diagonal
in the a-index, the boundary terms that arise from integration by parts of]/]x or ]/]t vanish if
and only if the (1,i ) and (2,i ) components have the same twists. Hence~V.108! is necessary and
sufficient for]”E,T to be symmetric on the domainDT .

In case~V.108! holds, the domainDT contains a basis of orthonormal eigenfunctionsg6
j ,k,E

for ]”E,T . The corresponding eigenvalue of]”E,T is 6Ak21E2, where (k,E)PŜT
i
f5ŜT

a,i
f . The

eigenvectors have the form

~g6
i ,k,E!a, j~x,t !5d i j

1

AuSu
c6,a, je

ikx1 iEt, ~V.109!

where the coefficientsc6,a, j are given as follows: letE6 ik5re6 if, where r 5AE21k2.0
denotes the positive square root. Define (E6 ik)1/25r 1/2e6 if/2, where againr 1/2.0, so e6 if/2

5(E6 ik)1/2(E21k2)21/4. Choose

S c1,1,j

c1,2,j
D5

1

&
S e2 if/2

e1f/2 D , S c2,1,j

c2,2,j
D5

1

&
S 2e2 if/2

eif/2 D . ~V.110!
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Sincek never vanishes for (k,E)PŜT
i
f the two choices yield distinct~orthogonal! eigenvectors.

By inspection, the vectors~V.109! and~V.110! provide an orthonormal basis of eigenfunctions f
each]”E,Ti

, from which we conclude that the operator]”E,T is essentially self-adjoint. This com
pletes the proof.

Given T, we introduce a twist/translation semigroupuT (u8,x8,t8) that acts on the Hilbert
spaceT. This group is the natural action of twists and space translations that leave invaria
subspaces of functionsf a,i(x,t) with fixed indicesa, i. Specifically, we defineuT on functionsf
that satisfy the twist relations~V.106! for DT. For u8, x8PR and t8PR1 , let

~uT ~u8,x8,t8! f !a,i~x,t !5~uT ~u8,x8,t8!a,i f a,i !~x,t !5eiVa,iu8 f a,i~x1x8,t2t8!. ~V.111!

Each vector of the form~V.104! is a simultaneous eigenvector for each of theuT (u8,x8,t8) as
u8,x8,t8 vary. Thus eachuT (u8,x8,t8) extends uniquely to all vectors inT. With this definition,
the semigroupuT leaves the subspaceDT,T invariant, whereDT is defined in~V.106! and
~V.107!. The parametersT determine a specific representation of this group, so that whenu8
5u, x85s, and t85b agrees with the twist and translation ofT, or whenu85xa,i /Va,i , x8
5 l , andt850, we obtain

uT ~u,s,b!a,i5I , uT ~xa,i /Va,i ,l ,0!a,i5I , ~V.112!

for all 1<a<2 and 1< i<n. The special operators~V.112! ~and their integer powers! act as the
identity on the domainDT, and they also extend uniquely from this dense domain to act as
identity on all ofT.

Consider the Dirac twist fieldcx paired with a smooth test functionf PDT. The fieldcx( f )
transforms under the action of the two-parameter Abelian, groupU f ,x(u8,x8) onHf ,x, compatibly
with the action of the twist semigroupuT (u8,x8,0). Namely

U f ,x~u8,x8!cx~ f !U f ,x~u8,x8!* 5cx~uT ~u8,x8,0! f !. ~V.113!

Inspection of the eigenbasis above yields the following:
Proposition V.H.2: The operator]”E,T commutes with the group uT (u8,x8,0) if and only if

(V.108) holds.
Independent of this condition on twists, the operator

]”E,Ti
* ]”E,Ti

52S ]2

]t2 1
]2

]x2 0

0
]2

]t2 1
]2

]x2

D ~V.114!

has a diagonal representation onTi . Let us denote this operator

DTi
5]”E,Ti

* ]”E,Ti
,

and let

DT5 %
i 51

n

DTi
5]”E,T* ]”E,T . ~V.115!

Proposition V.H.3: Regardless of the restrictions (V.108), the operatorDT , with the domain
DT defined in (V.107) is essentially self-adjoint. Furthermore, the operatorsDT and uT (u8,x8,0)
commute.
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Proof: The functionsgPDTi
labeled by$a,i ,k,E%, for (k,E)PŜT

a,i
f , and with components

equal to

ga8,i 8
$a,i ,k,E%~x,t !5d i i 8daa8

1

AuSu
eikx1 iEt, ~V.116!

are a complete, orthonormal set of eigenfunctions for]”E,Ti
* ]”E,Ti

. Thus]”E,Ti
* ]”E,Ti

~respectively,
]”E,T* ]”E,T) are essentially self-adjoint on the domainsDT

i
fPTi ~respectively,DTPT). These

eigenfunctions are also eigenfunctions ofU f ,x(u), which is a product of commuting operato
indexed bya and i. ThusDT andU f ,x(u) commute, completing the proof.

Let us denote the self-adjoint closures byDTi
and DT . The eigenvalues ofDTi

are E21k2,

with (k,E)PŜT
i
f and hence askÞ0, the operatorDTi

has a bounded inverse. Let

CT
i
f5~DTi

!21. ~V.117!

HereCT
i
f acts diagonally onT5 % i 51

n Ti , namelyCT f5 % i 51
n CT

i
f , with the action onTi given by

the 232 matrix

C Ti

f 5S DT1,i

21
0

0 DT2,i

21D . ~V.118!

Let us also designateT * as T, but with T1,i interchanged withT2,i , for each 1< i<n. For
example,

C T
i*

f
5S DT2,i

21
0

0 DT1,i

21D . ~V.119!

The second operator we define onT is the pair correlation operatorST
x . This operator is

defined as an integral operator, using as the integral kernels the elements of the pair cor
matrix ST,aa8,i i 8

x (x2x8,t2t8), defined in~V.80!. Define

~ST
x f !a,i5 (

i 851

n

(
a851

2 E
S
ST,aa8,i i 8

x
~x2x8,t2t8! f a8,i 8~x8,t8!dx8 dt8. ~V.120!

Proposition V.H.4: The fermionic pair correlation operator is the Green’s function for
Euclidean Dirac operator,

ST
x 5~]”E,T!21. ~V.121!

Also

CT
f 5~]”E,T * ]”E,T!21, ]”E,T 5~]”E,T * !* , ST

x 5]”E,T* CT *
f . ~V.122!

Proof: We verify the identity

]”E,T ST
x 5I ~V.123!

by differentiating the representations of Proposition V.G.1. This yields

~]”EST
x!aa8,i i 8~x2x8,t2t8!5d i i 8daa8d~x2x8!d~ t2t8!, ~V.124!
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and thereby~V.121! holds.

VI. FERMIONIC REGULARIZATION

A. Massive fields

We introduce massm.0 fields for fermions, that correspond to the bosonic massive field
Sec. III B 2. We express the fermionic wave functions in terms of the parameter

nm~k!5Amm~k!1k, ~VI.1!

where as beforemm(k)5Ak21m2. Then

nm~k!21nm~2k!252mm~k!, nm~k!nm~2k!5m. ~VI.2!

Also

nm~k!22nm~2k!252k. ~VI.3!

As in the bosonic case, we define the massive field without a twist. Thus we restrict our att

to the momentum setK5$k:klP2pZ%5Ki
m505Ka,i

f ,x f 50
5K6,i

f ,x f 50
. The fields take the form

c1,i
m ~x!5

1

Al
(
kPK

j1,i
m ~k!e2 ikx,

where

j1,i
m ~k!5

1

A2mm~k!
~nm~k!b1,i~k!* 1nm~2k!b2,i~2k!! ~VI.4!

and

c2,i
m ~x!5

1

Al
(
kPK

j2,i
m ~k!e2 ikx,

where

j2,i
m ~k!5

2 i

A2mm~k!
~nm~2k!b1,i~k!* 2nm~k!b2,i~2k!!. ~VI.5!

From the identities~VI.2!, we infer that these fermionic coordinates satisfy the CAR

$ja,i
m ~k!#,ja8,i 8

m
~k8!#8%5daa8d i i 8dkk8d#* #8I . ~VI.6!

As a consequence the fields satisfy the CAR

$ca,i
m ~x!#,ca8,i 8

m
~x8!#8%5daa8d i i 8d#* #8d~x2x8!I . ~VI.7!

Likewise the identity~VI.3! leads to expressions for the Hamiltonian and momentum op
tors for the massive fields as integrals of local densities,
                                                                                                                



will

3744 J. Math. Phys., Vol. 41, No. 6, June 2000 O. Grandjean and A. Jaffe

                    
H0
f ,m5E

0

l

:cm~2 ig1]x!c
m2m:cmcm:dx

5(
i 51

n

(
kPK

mm~k!~b1,i~k!* b1,i~k!1b2,i~2k!* b2,i~2k!!, ~VI.8!

and

P0
f ,m5E

0

l

:cm~2 ig0]x!c
m:dx

5(
i 51

n

(
kPK

k~b1,i~k!* b1,i~k!2b2,i~2k!* b2,i~2k!!. ~VI.9!

The massive, real-time free field, with initial data~VI.4! and ~VI.5!, has the components

cRTa,i
m ~x,t !5eitH 0

f ,m
ca,i

m ~x!e2 i tH 0
f ,m

5eitH 0
f ,m

2 ixPf ,m
ca,i

m ~0!e2 i tH 0
f ,m

1 ixPf ,m
. ~VI.10!

This field is the solution to the real-time Dirac equation

~ i ]”2m!cRT
m ~x,t !50, ~VI.11!

as can be seen by taking the time derivative of~VI.10!.
We may define a global twist generatorJf ,m for the massive Dirac fields,

Jf ,m5(
i 51

n

(
a51

2

Va,i
f E

0

l

:ca,i
m ~x!ca,i

m ~x!* :dx. ~VI.12!

However, unlike in the case of the massless Dirac field, we need to takeV1,i
f ,m5V2,i

f ,m in order for
Jf ,m to be a symmetry ofH0

f ,m . In particular, this requirement ensures that the symmetry
leave the mass termm* :c i

m:c i
m :dx in ~VI.8! invariant.

B. Dirac string fields

The Dirac string fieldscstr(x,t) are the zero-mass limits of the massive Dirac fieldscm(x,t)
of Sec. VI A. Remark that

lim
m→0

nm~k!

A2mm~k!
55

1 if k.0

1

&
if k50

0 if k,0,

~VI.13!

and the limitsm→0 andk→0 in ~VI.13! cannot be interchanged. Thus

c1,i
str~x!5

1

Al
(
kPK

j1,i
str~k!e2 ikx5

1

Al
j1,i

str1
1

Al
(
k.0
kPK

b1,i~k!* e2 ikx1
1

Al
(
k,0
kPK

b2,i~2k!e2 ikx,

~VI.14!

and
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c2,i
str~x!5

1

Al
(
kPK

j2,i
str~k!e2 ikx5

1

Al
j2,i

str1
1

Al
(
k,0
kPK

b1,i~k!* e2 ikx2
1

Al
(
k.0
kPK

b2,i~2k!e2 ikx,

~VI.15!

so

j1,i
str~k!55

b1,i~k!* if k.0

1

&
~b1,i~0!* 1b2,i~0!! if k50

b2,i~2k! if k,0,

~VI.16!

and

j2,i
str~k!55

2b2,i~2k! if k.0

1

&
~b1,i~0!* 2b2,i~0!! if k50

b1,i~k!* if k,0.

~VI.17!

As in the other cases, the CAR for the string coordinates are

$ja,i
str ~k!#,ja8,i 8

str
~k8!#8%5daa8d i i 8dkk8d#* #8I , ~VI.18!

giving

$ca,i
str ~x!#,ca8,i 8

str
~x8!#8%5daa8d i i 8d#* #8d~x2x8!I . ~VI.19!

VII. NÄ2 SUPERSYMMETRY

Consider the initialt50 data for ann-component complex scalar fieldwx5$w j
x :1< j <n%,

andn-copies of a two-component Dirac fieldcx5$ca, j
x : 1<a<2, and 1< j <n%. We define these

fields on the coverR of the circleS1 with periodl. We assume that they satisfy the twist relatio

w j
x~x1 l !5eix j

b
w j

x~x!, ca, j
x ~x1 l !5eixa, j

f
ca, j

x ~x!. ~VII.1!

Such fields aretwisted periodic, with period l, and with twisting angles$x%5$x j
b ,xa, j

f %.
Take these fields together, acting on the tensor product Hilbert spaceH5Hb

^ Hf . Denote the
lattice of bosonic momenta and the lattice of fermionic momenta for the components an
copies of the bosonic and fermionic fields by

Kb5$K1
b ,...,Kn

b%, K1
f 5$K1,1,

f ...,K1,n
f %, K2

f 5$K2,1
f ,...,K2,n

f %. ~VII.2!

This replaces the notationK j
x ,Ka, j

x f
,K6, j

x f
, etc., used in Secs. II and V.

Let Pb,x and Pf ,x denote the bosonic and fermionic momentum operators defined in~II.19!
and ~V.41!, and denote the total momentum operator as

P5Pb,x
^ I 1I ^ Pf ,x5Pb,x1Pf ,x. ~VII.3!

In order to simplify notation, if the operatorPb is defined onHb, then denote the operatorPb

^ I acting onH also by Pb, and likewise for other operators onHb or Hf . The operatorP
generates a unitary translation groupeix8P that acts on the fields byeix8Pwx(x)e2 ix8P5wx(x
2x8) and alsoeix8Pcx(x)e2 ix8P5cx(x2x8).
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We study densitiesD(x) that are functions ofwx(x) and of cx(x). We say thatD(x) is
translation covariant, if

eix8PD~x!e2 ix8P5D~x2x8!. ~VII.4!

We also assume that the densities we study obey a spatial twist relation of the form

D~x1 l !5eiqD~x!, ~VII.5!

whereq is a real constant depending on the specific densityD(x). In other words,D(x) is twisted
periodic with periodl and twisting angleq.

We wish to integrate the densityD(x) over a period of lengthl to obtain a chargeD. In order
to get a well-behaved charge, we modify the densityD(x) by forcing it to be periodic. Namely we
take the charge density to beD(x)e2 ixq/ l , and define the chargeD by

D5E
0

l

D~x!e2 iqx/ l dx. ~VII.6!

The chargesD that we study generally have the property of a cohomology operator,

D250. ~VII.7!

SinceD is the integral of a periodic density, integrating the density over any interval@a,a
1 l # of lengthl would yield the sameD. However, shifting the interval does not correspond to
action of the unitary translation groupe2 iaP on H. In fact D is invariant under spatial translation
generated byP, only if q50. The translation groupe2 iaP acts onD as

e2 iaPDeiaP5eiaq/ lD, ~VII.8!

as follows from expanding the left-hand side of~VII.5! as a power series ina, and summing this
series using

@2 iP,D#5E
0

l ]D~x!

]x
e2 ixq/ l dx5 i

q

l
D. ~VII.9!

The second equality in~VII.9! results from integration by parts.
Let J5Jb,x1Jf ,x be the total twist generator; this is defined as the sum of the bosonic

fermionic generators of twists introduced in~II.20! and ~V.52!. We also will assume that ou
densitiesD(x) transform under twists as

eiuJD~x!e2 iuJ5eiuLD~x!, ~VII.10!

whereL is another constant depending onD(x). Then the two-parameter unitary groupU(u,s)
of twists defined by

U~u,s!5eiJu1 isP, ~VII.11!

acts onD as

U~u,s!DU~u,s!* 5eiuL2 isq/ lD. ~VII.12!

The chargeD is invariant under the full groupU(u,s) if and only if L5q50. Equivalently,D is
invariant under the action of the groupU(u,s), if for all x, u,

eiuJD~x1 l !e2 iuJ5D~x!. ~VII.13!
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Such densities aretwist invariant and l-periodic.
We are mainly interested in chargesQ that are symmetric~and essentially self-adjoint!. We

obtain symmetric charges as the real or imaginary parts ofD. In particular, define the chargeQ

5D1D* , and the second chargeQ̃52 i (D2D* ), whereD is a charge of the form above. If w
assumeD250, as remarked in~VII.7!, then also (D* )250 and

Q25 1
2 $Q,Q%5D* D1DD* 5 1

2 $Q̃,Q̃%5Q̃2. ~VII.14!

FurthermoreQ andQ̃ are automatically independent, in the sense that

$Q,Q̃%52 i $D1D* ,D2D* %50. ~VII.15!

In the following, we introduce a HamiltonianH for a class ofN52 supersymmetric interac
tions. These examples have two densitiesD1(x) andD2(x) of the above type, yielding chargesD1

andD2 . The chargeD1 yields two independent, symmetric superchargesQ1 andQ̃1 , defined as

Q15D11D1* , Q̃152 i ~D12D1* !. ~VII.16!

Furthermore, the chargesQ1 andQ̃1 are square roots ofH1P,

Q1
25Q̃1

25H1P, $Q1 ,Q̃1%50. ~VII.17!

The first identity also can be written

H1P5D1* D11D1D1* . ~VII.18!

The chargeD1 occurs as the integral of a twist-invariant,l-periodic densityD1(x). ThusD1 will
be invariant under twists and under translations. As a consequence,

U~u,s!D15D1U~u,s!, U~u,s!D1* 5D1* U~u,s!. ~VII.19!

Thus the chargeH1P commutes withU(u,s). AssumingP also commutes withU(u,s), it
follows thatH commutes withU(u,s),

U~u,s!H5HU~u,s!. ~VII.20!

The chargeD2 yields two symmetric superchargesQ25D21D2* and Q̃252 i (D22D2* ).
The chargeD2 has the propertyD2

250, so

Q2
25Q̃2

2, $Q2 ,Q̃2%50. ~VII.21!

These charges are related toH andP by

Q2
25Q̃2

25H2P1fR. ~VII.22!

HereR is an error term, not in the usual supersymmetry algebra.~Of course we could have chose
different twists so thatQ2

25H2P, with the error term appearing in the expression forQ1
2.) The

error termR is translation and twist invariant,

U~u,s!R5RU~u,s!. ~VII.23!

The operatorR turns out to be a difference of two fermionic number operators, see~VII.54!. It is
independent ofW, and it depends on the twist anglesx only implicitly through the choice of the
Fourier momenta. Furthermore it satisfies ana priori estimate of the form
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6R<M ~H11!, ~VII.24!

whereM is a constant. As a consequence, the domain ofH1/2 provides a form domain forR.
Hence using~VII.17! we infer that

2P<H, P<H1f~M11!~H1I !. ~VII.25!

Thus we can use the representations

H5 1
2 ~Q1

21Q2
2!2 1

2 fR5 1
2 ~Q̃1

21Q̃2
2!2 1

2 fR, ~VII.26!

and

P5 1
2 ~Q1

22Q2
2!1 1

2 fR. ~VII.27!

This error arises because the densityQ2(x) has the form Q2(x)5D2(x)e2 ixf/ l

1D2(x)* eixf/ l , where

eiuJe2 i lPD2~x!eilPe2 iuJ5eiuD2~x1 l !5eiu1 ifD2~x!. ~VII.28!

Unlike the first pair of charges, the pair of chargesQ2 and Q̃2 areneither translationnor twist-
invariant under the action ofU(u,s). As a consequence of~VII.28! and ~VII.12!,

U~u,s!D2U~u,s!* 5eiu2 ifs/ lD2 . ~VII.29!

The different components of each pair of charges are independent, in the sense that

$Q1 ,Q̃1%505$Q2 ,Q̃2%. ~VII.30!

In the spirit ofN52 supersymmetry, we would also like the pair of chargesQ1 ,Q̃1 to be inde-

pendent of the second pairQ2 ,Q̃2 . However, we find that

$Q1 ,Q2%5$Q̃1 ,Q̃2%5f~R̃1R̃* ! ~VII.31!

and

$Q1 ,Q̃2%5$Q̃1 ,Q2%52 if~R̃2R̃* !. ~VII.32!

HereR̃ is a second error term, and in our examples, the operatorR̃ is given in~VII.55!. The error

term R̃, like the error termR, it is amenable to estimates. Thus we may also use the repres
tion

H5 1
2 ~Q11Q2!22 1

2 f~R1R̃1R̃* !, ~VII.33!

claimed in ~I.18!. In this relationH is invariant under the twist-translation groupU(u,s), but

neitherQ2 nor R̃1R̃* commutes withU(u,s).

Supercharges. The chargesQa and Q̃a exist both for free~noninteracting! fields, as well as
for certain nonlinear supersymmetric interactions between bosons and fermions~generalized
Yukawa interactions!. Wess and Zumino introduced such models~without twists!; they are pa-
rametrized by a polynomialW(z) called thesuperpotential. In the physics literature, the interac
tions we study are also called ‘‘Landau–Ginsburg’’ interactions. We analyze the properties
superchargesQ both for noninteracting fields and for interactions with an ultraviolet regular
tion.
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We make three basic assumptions, two on the superpotential and one on the twisting
These assumptions are identical to, or elaborations of, the assumptions in Sec. III. We requ
the superpotentialW(z) satisfy the following:

~QH! The functionW(z) is a holomorphic, quasihomogeneous polynomial with weightsV as

defined in~III.5! and ~III.7!. The weights must lie in the intervalV iP(0,1
2#.

~EL! The functionW(z) satisfies the elliptic stability bounds~III.17! and ~III.18!.
In order to obtain densities with the desired twist relations, we begin by making some g
restrictions concerning the bosonic and the fermionic twisting angles$x%5$xb,x f%, relating these
angles to the weightsV and to each other. LetfPR denote a real parameter. We state the tw
assumption~TA! on the twisting angles:

~TA! The bosonic and fermionic twisting angles are all proportional to one real paramef,
and satisfy the relations

x j
b5V jf, x1,j

f 5V jf, x2,j
f 5~12V j !f. ~VII.34!

In addition, the angles involved in the symmetry generatorJ5Jb,x1Jf ,x of twists is specified by
the bosonic generator~II.20! and the fermionic generator~V.52!. The bosonic and fermionic
weights$V%5$V i

b ,V1,i
f ,V2,i

f % are chosen as

V i
b5V i , V1,i

f 5V i , V2,i
f 512V i . ~VII.35!

An immediate consequence of~TA! is the fact that

x1,j
f 1x2,j

f 5f, ~VII.36!

is j independent. This restricts the allowed bosonic and fermionic sets of momenta~II.6! and
~V.20!, so in particular

K j
b5K1,j

f for1< j <n. ~VII.37!

Furthermore, ifk1PK1,j
f 5K j

b andk2PK2,j
f , then

~k11k2!l 52p~n11n2!f, where n1 ,n2PZ,

so

e2 i ~k11k2!xe2 ixf/ l5e22p i ~n11n2!x/ l , ~VII.38!

with f the parameter in~VII.34!.
Define the densities

D1~x!5 i (
j 51

n

c1,j
x ~x!~p j

x~x!2]xw̄ j
x~x!!1(

j 51

n

c2,j
x ~x!Wj~wx~x!! ~VII.39!

and

D2~x!5 i (
j 51

n

c2,j
x ~x!~p̄ j

x~x!1]xw j
x~x!!1(

j 51

n

c1,j
x ~x!Wj~wx~x!!. ~VII.40!

The following properties follow immediately.
Proposition VII.1: Assume that the potential W satisfies (QH) and that the twist angles obe
restrictions (TA) of (VII.34). Then

~i! The densities (VII.39) and (VII.40) satisfy the twist relations

eiuJD1~x1 l !e2 iuJ5D1~x!, eiuJD2~x1 l !e2 iuJ5eiu1 ifD2~x!, ~VII.41!
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leading to the charges

D15E
a

a1 l

D1~x!dx, D25E
a

a1 l

D2~x!e2 ixf/ l dx, ~VII.42!

that are independent of aPR. ~We take a50).
~ii ! The charges D1 and D2 transform under U(u,s) as follows:

U~u,s!D1U~u,s!* 5D1 , U~u,s!D2U~u,s!* 5eiu2 isf/ lD2 . ~VII.43!

Proposition VII.2: Assume the W satisfies (QH) and that the twist angles obey the restri
(TA) of (VII.34). Then

D15(
i 51

n

(
kPKi

b
~b1,i

x f
~k!* a1,i

x ~k!n~k!2b2,i
x f

~2k!a2,i
x ~2k!* n~2k!!1(

i 51

n E
0

l

c2,i
x Wi~wx~x!!dx,

~VII.44!

and

D252 i(
i 51

n

(
k8PKi

b

k52~k81f/ l !

~b1,i
x f

~k!* a2,i
x ~2k8!n~k8!

1b2,i
x f

~2k!a1,i
x ~k8!* n~2k8!!1(

i 51

n E
0

l

c1,i
x Wi~wx~x!!e2 ixf/ l dx. ~VII.45!

Proof: The representations forD1 and D2 are a consequence of the Fourier representat
~II.11!, ~II.13!, ~V.30!, and~V.31!, combined with the relations~VII.38!–~VII.40!.

The chargesD j are densely defined sesquilinear forms, with the domainD0 ; see, for example,

Ref. 5. Thus we may also define the symmetric chargesQ1 and Q̃1 as ~twice! the real and

imaginary parts ofD1 , and likewiseQ2 andQ̃2 as~twice! the real and imaginary parts of andD2 ,
namely

Q15D11D1* , Q̃152 i ~D12D1* !, ~VII.46!

Q25D21D2* , Q̃252 i ~D22D2* !. ~VII.47!

The free charges also define operators, however the domain questions are straightforward
the free case withW50. In order to investigate the charges nonzeroW, we need to regularize
these expressions. We require regularized Dirac fields, in analogy with the regularized b
fields introduced in~IV.47!. Define the mollifiersKL,a, j

f implicitly by the relations

cL,1,j
x ~x!5E

0

l

KL,1,j
f ~x2y!c1,j

x ~y!dy5
1

Al
(

kPK1,j
f

j1,j
x ~k!K̂~k/L!e2 ikx, ~VII.48!

cL,2,j
x ~x!5E

0

l

KL,2,j
f ~x2y!c2,j

x ~y!dy

5
1

Al
(

kPK2,j
f

j2,j
x ~k!K̂~~k/L1~122V j !f/ lL!!e2 ikx. ~VII.49!
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Here the bosonic momenta lie inK j
x5$k:kl jP2pZ2V jf%, while the fermionic momentaKa, j

f

satisfyK1,j
f 5K j

x5K2,j
f 1(122V j )f. Thus

KL, j~x!5KL, j~2x!5ei2V jfx/ lKL, j~x!,

KL,1,j
f ~x!5KL, j~x!, ~VII.50!

KL,2,j
f ~x!5ei ~122V j !fx/ lKL, j~x!,

whereKL, j is the bosonic mollifier~IV.50!. With this definition, the components of the fields on

depend on the values ofK̂ at the bosonic momentaK j
x .

We also introduce regularized supercharge densities with the regularization in the inter
terms,

DL,1~x!5 i (
j 51

n

c1,j
x ~x!~p j

x~x!2]xw̄ j
x~x!!1(

j 51

n

cL,2,j
x ~x!Wj~wL

x ~x!!, ~VII.51!

DL,2~x!5 i (
j 51

n

c2,j
x ~x!~p̄ j

x~x!1]xw j
x~x!!1(

j 51

n

cL,1,j
x ~x!Wj~wL

x ~x!!. ~VII.52!

Define the regularized Hamiltonian for the generalized Yukawa interaction determined b
quasihomogeneous, holomorphic polynomialW as

HL5HL~W!5H0
b,x1H0

f ,x1(
j 51

n E
0

l E
0

l

Wj~wL, j~x!!vL, j~x2y!Wj~wL, j~y!!dx dy

1 (
i , j 51

n E
0

l

cL,1,i
x ~x!cL,2,j

x ~x!* Wi j ~wL
x ~x!!dx1 (

i , j 51

n E
0

l

cL,2,i
x ~x!cL,1,j

x ~x!* Wi j ~wL
x ~x!!dx,

~VII.53!

wherevL, j (x) is given by~IV.54!. Also take the momentum operatorP to be given by~VII.3!. In
addition, define

R52
2

l (
i 51

n E
0

l

:c2,i
x ~x!c2,i

x ~x!* :dx

5
2

l (
i 51

n S (
kPK2,i

f

k.0

b2,i
x ~2k!* b2,i

x ~2k!2 (
kPK2,i

f

k,0

b1,i
x ~k!* b1,i

x ~k!D , ~VII.54!

and

R̃52
2

l E0

l

W~wL~x!!e2 ixf/ l dx. ~VII.55!

Proposition VII.3: Assume W satisfies (QH) and that the twist angles obey the restric
(TA) of (VII.34).

~i! Then the charges DL,1 and DL,2 are nilpotents,

DL,1
2 5DL,2

2 50. ~VII.56!
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~ii ! The charge DL,1 yields HL1P, and the charge DL,2 approximately yields HL2P
through the relations

$DL,1 ,DL,1* %5HL1P, $DL,2 ,DL,2* %5HL2P1fR, ~VII.57!

whereR is given in (VII.54). In addition,

U~u,s!R5RU~u,s!. ~VII.58!

~iii ! The charges DL,1 and DL,2 are approximately independent in the sense that

$DL,1 ,DL,2%50, $DL,1* ,DL,2%5fR̃, ~VII.59!

whereR̃ is defined in (VII.55).
Proof: Without the ultraviolet mollifiers likeKL, j , the supercharge formsD j have no obvious

operator domains. The important fact is that when we use the above-defined mollified field
obtain operator domains forDL, j , on which the anticommutators determine sesquilinear for
We need to verify that the mollifiers combine in a way that leads to the anticommutation rela
stated in the proposition. We refrain from giving complete details, but in order to illustrate
computations involved we give two sample calculations. For the first illustration we show
$DL,1 ,DL,1* %5HL1P, as claimed in~VII.57!. The commutation relations that involve only th
free parts of theDL, j ’s does not involve the mollifiers in question, so we only check terms
involve the potential functionW. Therefore, we calculateX5$DL,1 ,DL,1* %2H02P, namely

X5 (
1< j , j 8<n

E
0

l E
0

l

F j j 8~x,y!dx dy, ~VII.60!

where

F j j 8~x,y!5$cL,2,j
x ~x!Wj~wL

x ~x!!,cL,2j 8
x

~y!* Wj 8~wL
x ~y!!%

1$ ic1,j
x ~x!p j

x~x!,cL,2,j 8
x

~y!* Wj 8~wL
x ~y!!%

1$cL,2,j
x ~x!Wj~wL

x ~x!!,ic1,j 8
x

~y!* p̄ j 8
x

~y!%. ~VII.61!

We claim that the first anticommutator in~VII.61! equals the bosonic self-interaction term
~VII.53!. Using the canonical anticommutation relations~V.36! and the definition of the fermionic
mollifier ~VII.49!, compute

$cL,2,j
x ~x!Wj~wL

x ~x!!,cL,2,j 8
x

~y!* Wj 8~wL
x ~y!!%5Wj~wL

x ~x!!dL, j , j 8
f

~x,y!Wj 8~wL
x ~y!!,

~VII.62!

where

dL, j , j 8
f

~x,y!5$cL,2,j
x ~x!,cL,2,j 8

x
~y!* %5d j j 8E

0

l

KL,2,j
f ~x2u!KL,2,j

f ~y2u!du. ~VII.63!

Taking into account the relation~VII.51! and the definition~IV.50!, we obtain

dL, j , j 8
f

~x,y!5d j j 8e
i ~122V j !~x2y!f/ lE

0

l

KL, j~x2u!KL, j~y2u!du

5d j j 8e
i ~122V j !~x2y!f/ lS 1

l (
kPK j

x
uK̂~k/L!u2e2 ik~x2y!D , ~VII.64!
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showing thatdL, j , j
f (x,y) equals the kernelvL, j (x2y) defined in~IV.54!. Integrating expression

~VII.62!, and summing overj , j 8, we obtain

(
1< j , j 8<n

E
0

l

dxE
0

l

dy$cL,2,j
x ~x!Wj~wL

x ~x!!,cL,2,j 8
x

~y!* Wj 8~wL
x ~y!!%

5(
j 51

n E
0

l

dxE
0

l

dyWj~wL
x ~x!!vL, j~x2y!Wj~wL

x ~y!!, ~VII.65!

which is the bosonic self-interaction in~VII.53!, as claimed.
The other two anticommutators in~VII.61! give rise to the boson–fermion interaction terms

~VII.53!. In the case of the second anticommutator, the density is

$ ic1,j
x ~x!p j

x~x!,cL,2,j 8
x

~y!* Wj 8~wL
x ~y!!%5c1,j

x ~x!cL,2,j 8
x

~y!* @ ip j
x~x!,Wj 8~wL

x ~y!!#

5c1,j
x ~x!cL,2,j 8

x
~y!* KL, j~y2x!Wj j 8~wL

x ~y!!.

~VII.66!

Here we have used@ ip j
x(x),wL, j 8

x (y)#5d j , j 8KL, j (y2x). Note thatKL,1,j
f 5KL, j . Therefore if we

integrate this expression overx andy and sum overj , j 8, we obtain

(
1< j , j 8<n

E
0

l

dxE
0

l

dy$ ic1,j
x ~x!p j

x~x!,cL,2,j 8
x

~y!* Wj 8~wL
x ~y!!%

5 (
1< j , j 8<n

E
0

l

cL,1,j
x ~y!cL,2,j 8

x
~y!* Wj j 8~wL

x ~y!!dy, ~VII.67!

which is the first boson–fermion interaction term in~VII.53!. An analogous computation yield
the third anticommutator in~VII.61! as the adjoint of~VII.67! and completes the proof that

$DL,1 ,DL,1* %5 (
1< j , j 8<n

E
0

l E
0

l

F j j 8~x,y!dx dy5HL1P. ~VII.68!

The second sample calculation that we explain in detail shows$DL,1* ,DL,2%5fR̃, as stated in
~VII.59!. Again the free terms do not need elaboration, and in this case they give no contrib
to the anticommutator. Therefore$DL,1* ,DL,2%(1< j , j 8<n*0

l *0
l Gj j 8(x,y)dx dy, where

Gj j 8~x,y!5$2 ic1,j
x ~x!* ~p̄ j

x~x!2]xw j
x~x!!,cL,1,j 8

x
~y!Wj 8~wL

x ~y!!%e2 iyf/ l

1$cL,2,j
x ~x!* Wj~wL

x ~x!!,ic2,j 8
x

~y!~p̄ j 8
x

~y!1]yw j 8
x

~y!!%e2 iyf/ l

1$cL,2,j
x ~x!* Wj~wL

x ~x!!,cL,1,j 8
x

~y!Wj 8~wL
x ~y!!%e2 iyf/ l . ~VII.69!

In fact the third anticommutator in~VII.69! vanishes. Hence,

Gj j 8~x,y!52 id j j 8KL,1,j
f ~y2x!~p̄ j

x~x!2]xw j
x~x!!Wj 8~wL

x ~y!!e2 iyf/ l

1 id j j 8KL,2,j
f ~x2y!Wj~wL

x ~x!!~p̄ j 8
x

~y!1]yw j 8
x

~y!!e2 iyf/ l . ~VII.70!

We use relation~VII.51! to obtain

KL,2,j
f ~x2y!e2 iyf/ l5KL,1,j

f ~x2y!e2 ixf/ l5KL, j~x2y!e2 ixf/ l . ~VII.71!
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From this we conclude that after integratingGj j (x,y), the terms proportional top j
xWj cancel, and

we obtain

E
0

l E
0

l

Gj j ~x,y!dx dy52i E
0

l E
0

l

KL, j~y2x!]xw j
x~x!Wj~wL

x ~y!!e2 iyf/ ldx dy. ~VII.72!

SinceKL, j (x2 l )5e2 iV jfKL, j (x), we infer that the bilinear formKL, j (y2x)w j
x(x) is periodic in

x with period l. Thus integration by parts in the variablex gives no end-point contribution, and

E
0

l

KL, j~y2x!]xw j
x~x!dx52E

0

l

~]xKL, j !~y2x!w j
x~x!dx

5E
0

l

~]yKL, j !~y2x!w j
x~x!dx5]ywL, j

x ~y!. ~VII.73!

Insert this in~VII.72!, and sum overj. Integrate by parts~this time in the variabley! to obtain

$DL,1* ,DL,2%5(
j 51

n E
0

l E
0

l

Gj j ~x,y!dx dy52i E
0

l S d

dy
W~wL

x ~y!! De2 iyf/ ldy

52
2f

l E
0

l

W~wL
x ~y!!e2 iyf/ ldy5fR̃, ~VII.74!

as claimed. SinceW(wL
x (y))e2 iyf/ l is periodic in the variabley with periodl, the end points give

no contribution to the integration by parts. This completes our analysis of Proposition VII.A

VIII. SUPERFIELDS

In this section, we derive the results presented in Sec. VII from the point of view of su
fields. Then, we introduce Euclidean superfields and derive the Feynman–Kac formula.

A. NÄ2 superspace

Let $e1 ,...,e4% denote the canonical basis ofR4, and$u1,...,u4% its image in the complexified
exterior algebra (L* R4)C5L* R4

^ RC under the canonical injection. Complex conjugation inC
induces a conjugation on (L* R4)C. It is convenient to introduce the following generators of t
complexified exterior algebra:

u15u11 iu2, u25u31 iu4,

ū15 ū12 i ū2, ū25 ū32 i ū4.

The space of functions onN52 superspace is defined by

C~M̂ !ªC~M ! ^ ~L* R4!C, ~VIII.1 !

whereM denotes a~possibly compactified! Minkowski space with coordinatest andx. It is useful
to introduce light cone coordinatesx65 1

2 (t7x). We shall use the notation

]6[
]

]x6 5
]

]t
7

]

]x
. ~VIII.2 !

The generators ofN52 supersymmetry onN52 superspace are the differential operators
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G65
]

]u6 1 i ū6]6 , ~VIII.3 !

Ḡ65
]

]ū6
1 iu6]6 , ~VIII.4 !

acting on the space of functions onN52 superspace. The only nonvanishing anticommuta
between theG’s are

$G6 ,Ḡ6%52i ]6 . ~VIII.5 !

The identifications

H5 i
]

]t
, P5

1

i

]

]x
, D15

1

&
G1 , D25

1

&
G2 , ~VIII.6 !

give a realization of theN52 algebra~VII.56!, ~VII.57!, and ~VII.59! without error terms, i.e.,

with R5R̃50.
The construction of irreducible representations of theN52 algebra is greatly simplified usin

the so-calledcovariant derivatives,

¹65
]

]u62 i ū6]6 , ~VIII.7 !

¹̄65
]

]ū6
2 iu6]6 . ~VIII.8 !

The covariant derivatives anticommute with the superchargesG6 , Ḡ6 , and they satisfy the
‘‘conjugate’’ N52 algebra,

$¹6 ,¹̄6%522i ]6 , ~VIII.9 !

while all other anticommutators vanish.

B. NÄ2 chiral superfields

A generalN52 superfieldF is ~classically! a function onN52 superspace. Expanding
superfield in powers of the Grassmann coordinates and their complex conjugate, we can ex
in terms of 16 fields on two-dimensional Minkowski space. However, the resulting represen
of the N52 algebra is highly reducible. One obtains irreducible representations by introd
covariant constraints on the superfield. The constraints we shall be interested in read

¹̄6F~x6,u6,ū6!50, ~VIII.10!

and they define so-calledchiral superfields. In order to solve the constraint~VIII.10!, we introduce
chiral coordinates onN52 superspace by setting,

y65x62 iu6ū6. ~VIII.11!

The chiral coordinates satisfy

¹̄6y650, ~VIII.12!
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and the most general solution to~VIII.10! is of the form

F~x6,u6,ū6!5w~y6!1&u1c1~y6!1&u2c2* ~y6!12u1u2F~y6!

5w~x6!1&u1c1~x6!1&u2c2* ~x6!12u1u2F~x6!2u1ū1i ]1w~x6!

2u2ū2i ]2w~x6!1&u1u2ū1i ]1c2* ~x6!2&u1u2ū2i ]2c1~x6!

1u1u2ū1ū2]1]2w~x6!, ~VIII.13!

wherew, a are complex bosonic- andc1 , c2 are complex fermionic fields.
Let e1 , ande2 denoteconstantcomplex Grassmann parameters, i.e., elements of degree

(L* R4)C. A general supersymmetry transformation is generated by

G5e1G11e2G21 ē1Ḡ11 ē2Ḡ2 , ~VIII.14!

where as beforeē6 denotes the conjugate element ofe1 in (L* R4)C. Using~VIII.3 !, ~VIII.4 !, and
~VIII.13!, one verifies that under supersymmetry, the component fields transform as follow

dw5&~e1c11e2c2* !, ~VIII.15!

dc15&~e2F2 i ē1]1w!, ~VIII.16!

dc25&~2 ē1F* 1 i e2]2w* !, ~VIII.17!

dF5& i ~ ē1]1c2* 2 ē2]2c1!, ~VIII.18!

where, for example,dw denotes (GF)u65 ū650 . Since the covariant derivatives commute with t
supersymmetry transformations, chiral superfields are mapped to chiral superfields.

C. Supersymmetric Lagrangians

Let W be a holomorphic, quasihomogeneous polynomial with weights$V i% i 51,...,n and with
the same properties as described at the beginning of Sec. VII A. We denote byF5$F i% i 51,...,n a
family of chiral superfields. Let us momentarily, for the rest of this section, consider clas
fields. The Lagrangian density,

L5E d2ud2ūS 2
1

4
F* F D1S E d2uW~F!U

ū650
1h.c.D

5(
i 51

n S 1

2
]1w i* ]2w i1

1

2
]2w i* ]1w i i 1 ic1,i* ]2c1,i1 ic2,i* ]1c2,i1Fi* Fi

1S Fi] iW~w!2(
j 51

n

c1,ic2,j* ] i] jW~w!1h.c.D 1divergence, ~VIII.19!

is invariant under supersymmetry transformations. The so-calledauxiliary fields Fi are not dy-
namical and their equations of motion read

Fi1] iW~w!50. ~VIII.20!

Eliminating the auxiliary fields form the Lagrangian density~VIII.19! using their equations o
motion, one obtains
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L5(
i 51

n S 1

2
]1w i* ]2w i1

1

2
]2w i* ]1w i2u] iW~w!u21 ic1,i* ]2c1,i1 ic2,i* ]1c2,i

2S (
j 51

n

c1,ic2,j* ] i] jW~w!1h.cD D , ~VIII.21!

which is invariant under supersymmetry transformations up to equations of motion. The s
charge densities associated toN52 supersymmetry are those given in~VII.39! and ~VII.40!,

D1~x!5(
j 51

n

~ ic1,j~x!]1w j* ~x!1c2,j~x!] jW~w~x!!!, ~VIII.22!

D2~x!5(
j 51

n

~ ic2,j~x!]2w j~x!1c1,j~x!] jW~w~x!!!, ~VIII.23!

as is easily verified using Noether’s theorem. Throughout this section, we shall slightly
notation and set

p j~x!5
]

]t
w j* ~x!, p̄ j~x!5

]

]t
w j~x!. ~VIII.24!

D. Twist fields

We investigate the case of twist fields. Suppose the spatial coordinatex is compactified on a
circle of lengthl and that the component fields satisfy the twist relations

w j
x~x1 l !5eiV j

bfw j
x~x!, ~VIII.25!

ca, j
x ~x1 l !5eiVa, j

f fca, j
x ~x!, ~VIII.26!

wheref is a real parameter. Since the Lagrangian density~VIII.19! must be periodic with period
l, we obtain the following relations between the twisting angles and the weights of the sup
tential,

V j
b5V j , ~VIII.27!

V1 j
f 5V j2~c1 1

2!, V2 j
f 52V j2~c2 1

2!, ~VIII.28!

for all j 51,...,n, wherec is an arbitrary real parameter. Furthermore, the auxiliary field ha
satisfy the twist relation

F j
x~x1 l !5eiV j

FfF j
x~x!, ~VIII.29!

with

V j
F5V j21, ~VIII.30!

for all j 51,...,n. The above-mentioned relations can be rewritten as a twist relation for
superfields,

e2 iV jfF j
x~ t,x1 l ,ei ~c11/2!fu1,e2 i ~c21/2!fu2!5F j

x~ t,x,u1,u2!. ~VIII.31!

It follows from ~VIII.15! to ~VIII.18! that supersymmetry transformations are well defined
twist fields only if
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e6~x1 l !5ei ~c61/2!fe6~x!. ~VIII.32!

This implies that it is not possible to have bothe1 and e2 constant. Thus, in the case of twi
fields, N52 supersymmetry is broken down to eitherN51 supersymmetry if we choosec
561/2 orN50 supersymmetry for other choices ofc. In Sec. VII we chosec521/2 and we saw
how supersymmetry was broken down toN51. The commutation relations of the regularize
superchargesDL,1 , DL,2 and their adjoints for general values ofc are the same as those given
Sec. VII, except for

$DL,1 ,DL,1* %5HL1P1~c1 1
2!fR8 ~VIII.33!

$DL,2 ,DL,2* %5HL2P2~c2 1
2!fR, ~VIII.34!

where

R852
2

l (
j 51

n E
0

l

:c1,j
x ~x!c1,j

x* ~x!:dx. ~VIII.35!

E. Euclidean fields

The construction of Euclidean scalar and Dirac fields is not unique. The Osterwa
Schrader theory shows that ambiguities in the Euclidean Green’s at coinciding times d
influence the quantum fields they determine, see Ref. 11. Furthermore a natural choice of
ean Dirac fields involves doubling the number of degrees of freedom, see Ref. 12, which
here. We begin with the free field caseW50, but we still impose relations~VIII.27!, ~VIII.28!,
and ~VIII.30!. Since there are no interactions, the fieldsw j

x , ca, j
x , andF j

x are independent free

massless fields. The Euclidean fieldsw j
E , w̄ j

E , ca, j
E , andc̄a, j

E are defined on the Euclidean spa
@0,b#3@0,l # and are required to satisfy the following conditions

~E1! The Euclidean fields~anti!commute consistently with their satistics.
~E2! The Euclidean fields act on a Euclidean Fock space,HE, in such a way that the following

correspondences between the imaginary time and the Euclidean sectors define an isomorp
Gaussian expectations

Imaginary time ↔ Euclidean

(t,x)P@0,b#3@0,l # xW5(t,x)P@0,b#3@0,l #

w̄ j
x(t,x) w̄ j

E(xW )

w j
x(t,x) w j

E(xW )

c̄a, j
x (t,x) c̄a, j

E (xW )

ca, j
x (t,x) ca, j

E (xW )

^(•)1&T ^•&0

where^(•)1&T denotes the time ordered twisted Gibbs expectation defined in Secs. II C and
and ^•&0 denotes the vacuum expectation on the Euclidean Fock space. Recall tT
5$V,u,s,l ,b% specifies the twisting angles, the twisting group element inserted in the G
expectation, and the size of space–time. The above-mentioned correspondence means for
that

^~ c̄a, j
x ~ t,x!cb,k

x ~s,y!!1&T 5^c̄a, j
E ~xW !cb,k

E ~yW !&0 . ~VIII.36!

The expressions for the Euclidean fields are not unique and we may choose any conv
representation. In the following we give explicit formulas for these fields.

For eachj 51,...,n, we define
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K j
b5

2p

l
Z2

V jf

l
,

K j
b~k!5

2p

b
Z2

V jf1sk

b
, kPK j

b ,

L j
b5$~E,k!ukPK j

b ,EPK j
b~k!%.

We construct the Euclidean bosonic Hilbert spaceHb
E in the same way as we did for the real tim

Hilbert space in section Sec. III A, i.e.,

Hb
E5exp̂

s
Kb , ~VIII.37!

where

Kb5 %

i 51

n

~ l 2~L j
b! % l 2~2L j

b!!. ~VIII.38!

We shall denote the creation operators acting onHb
E by A6, j* (6pW ), wherepW PL j

b . The Euclidean
bosonic fields can be written as

w j
E~xW !5

1

Ab l
(

pW PL j
b

1

upW u ~A1, j* ~pW !1A2, j~2pW !!e2 ipW xW,

w̄ j
E~xW !5~w j

E~xW !!* .

It is easily verified that the vacuum expectation of two Euclidean bosonic fields reproduce
twisted Gibbs expectation of imaginary time bosonic fields computed in Proposition II.D.2

Next, we describe the Euclidean Fermi fields. As for the bosonic fields, we define for
j 51,...,n,

Ka, j
f 5

2p

l
Z2

Va, j
f f

l
,

Ka, j
f ~k!5

2p

b
Z2

Va, j
f f1sk

b
, kPKa, j

f ,

La, j
f 5$~E,k!ukPKa, j

b ,EPKa, j
b ~k!%.

We construct the Euclidean fermionic Hilbert space as in Sec. VI A,

Hf
E5exp∧ Kf , ~VIII.39!

where

Kf5 %
i 51

n

%
a51,2

~ l 2~La, j
f ! % l 2~2La, j

f !!. ~VIII.40!

The creation operators acting onHf
E will be denoted byds, j* (pW ) and es, j* (2pW ) for pW PLs11,j

f ,
wheres11 is meant modulo 2.

In order to describe the Euclidean fermionic fields, we need to introduce the follo
spinors.
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For eacha51, 2 andpW PLa11,j
f , we define

uj
1~pW !5

1

Ab l ~E2 ik !
S 1
0D , uj

2~pW !5
1

Ab l ~E1 ik !
S 0
1D , ~VIII.41!

va, j
1 ~2pW !5ua, j

1 ~pW !, va, j
2 ~2pW !5ua, j

2 ~pW !, ~VIII.42!

and forpW PLa, j
f , we set

û j
1~pW !5

1

Ab l ~E2 ik !
S 0

21D , û j
2~pW !5

1

Ab l ~E1 ik !
S 1
0D , ~VIII.43!

v̂a, j
1 ~2pW !52ûa, j

1 ~pW !, v̂a, j
2 ~2pW !52ûa, j

2 ~pW !. ~VIII.44!

We are ready to write down the Euclidean fermionic operators,

c̄a, j
E ~xW !5 (

pW PLa11
s51,2

~ds, j~pW !ua, j
s ~pW !1es, j* ~2pW !va, j

s ~2pW !!eipW xW, ~VIII.45!

ca, j
E ~xW !5 (

pW PLa
s51,2

~es, j~2pW !v̂a, j
s ~2pW !1ds, j* ~pW !ûa, j

s ~pW !!e2 ipW xW. ~VIII.46!

The explicit form of the Euclidean Fermi fields is quite simple,

c1,j
E ~xW !5 (

pW PL1,j
f

1

Ab l ~E1 ik !
~2e2,j~2pW !1d2,j* ~pW !!e2 ipW xW,

c2,j
E ~xW !5 (

pW PL2,j
f

1

Ab l ~E2 ik !
~e1,j~2pW !2d1,j* ~pW !!e2 ipW xW,

~VIII.47!

c̄1,j
E ~xW !5 (

pW PL2,j
f

1

Ab l ~E2 ik !
~e1,j* ~2pW !1d1,j~pW !!eipW xW,

c̄2,j
E ~xW !5 (

pW PL1,j
f

1

Ab l ~E1 ik !
~e2,j* ~2pW !1d2,j~pW !!eipW xW.

Using these equations, it is straightforward to check that the requirements~E1! and ~E2! are
satisfied.

Finally, we introduce the auxiliary Euclidean fields. They are defined to be Gaussian
with pair correlation functions given as follows:

^~F j
x~ t,x!Fk

x~s,y!!1&5^~ F̄ j
x~ t,x!F̄k

x~s,y!!1&50, ~VIII.48!

^~ F̄ j
x~ t,x!Fk

x~s,y!!1&5d j ,kd~ t2s!d~x2y!. ~VIII.49!

It is thus straightforward to write down the Euclidean auxiliary fields, the only subtlety being
twist relations satisfied by these fields. As above, we introduce
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K j
F5

2p

l
Z2

V j
Ff

l
, ~VIII.50!

K j
F~k!5

2p

b
Z2

V j
Ff1sk

b
, kPK j

F , ~VIII.51!

L j
F5$~E,k!ukPK j

F ,EPK j
F~k!%. ~VIII.52!

The auxiliary Euclidean Hilbert space is given by

HF
E5exp̂

s
KF, ~VIII.53!

where

KF5 %
j 51

n

~ l 2~K j
F! % l 2~2K j

F!!. ~VIII.54!

We denote the creation operators byf 6, j* (6pW ), wherepW PL j
F . The auxiliary Euclidean fields can

then be written as

F j
E~xW !5

1

Ab l
(

pW PL j
F

~ f 1, j* ~pW !1 f 2, j~2pW !!e2 ipW xW, ~VIII.55!

F̄ j
E~xW !5~F j

E~xW !!* . ~VIII.56!

This finishes our description of the Euclidean fields. They all act on the Euclidean Hilbert s

HE5Hb
E

^ Hf
E

^ HF
E . ~VIII.57!

In Sec. VIII F, we shall use the regularized Euclidean auxiliary fields,

FL, j
E ~xW !5

1

Ab l
(

pW PL j
F

~F1, j* ~pW !1 f 2, j~2pW !!~K!S S k1V j
F f

l D Y L De2 ipW xW, ~VIII.58!

FL, j
E ~xW !5~FL, j

E ~xW !!* . ~VIII.59!

These fields satisfy

^FL, j
E ~xW !FL,k

E ~yW !&05^F̄L, j
E ~xW !F̄L,k

E ~yW !&050, ~VIII.60!

^F̄L, j
E ~xW !FL,k

E ~yW !&05^FL,k
E ~yW !F̄L, j

E ~xW !&05d j ,kd~ t2s!vL, j~x2y!. ~VIII.61!

F. The Feyman–Kac formula

Having introduced the Euclidean fields, we describe the Feynamn–Kac identity in the s
field formalism. First, we define the Euclidean chiral superfields,FE5$F j

E%, and their ‘‘conju-
gate,’’

F j
E~x6,u6,ū6!5w j

E~y6!1&u1c1,j
E ~y6!1&u2c̄1,j

E ~y6!12u1u2F j~y6!, ~VIII.62!

F̄ j
E~x6,u6,ū6!5w̄ j

E~y6!1& ū1c̄2,j
E ~y6!1& ū2c2,j

E ~y6!12ū1ū2F̄ j~y6!. ~VIII.63!
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The regularized Euclidean action density reads

LL
E5

1

2 E d2uW~FL
E !ū6501

1

2 E d2uW~F̄L
E !u650

5(
j 51

n

~] jW~wL
E !FL, j1 ]̄ j W̄~ w̄L

E !F̄L, j ~VIII.64!

2 (
k51

n

~cL,1,j
E c̄L,1,k

E ] j]kW~wL
E !2cL,2,j

E c̄L,2,k
E ]̄ j ]̄kW̄~ w̄LE!!).

~VIII.65!

The covariance for the regularized Euclidean auxiliary fieldsFL, j
E together with the isomorphism

of Gaussian expectations realized by the Euclidean fields lead to the Feynman–Kac fo
linking the imaginary time to the Euclidean sector

^~•e2S1!1&T5^•e2 iSE
&0 , ~VIII.66!

where the interaction actionSI is given by

SI5(
j 51

n E
0

l

dxE
0

b

dtF E
0

l

dyWj~wL, j
x ~ t,x!!vL, j~x2y!Wj~wL, j

x ~ t,y!!

1 (
k51

n

~cL,1,j
x ~ t,x!c̄L,2,k

x ~ t,x!] j]kW~wL
x ~ t,x!!1cL,2,j

x ~ t,x!c̄L,1,k
x ~ t,x!]̄ j ]̄kW̄~ w̄L

x ~ t,x!!!G ,

and the Euclidean action is given by

SE5E
0

b

dx1E
0

l

dx2 LE. ~VIII.67!

The proof of~VIII.66! goes as follows for one auxiliary field,

^•exp~2 i *d2x( j 51
n ~FL, j

E ~xW !] jW~wL
E~xW !!1F̄L, j

E ~xW !]̄ j W̄~ w̄L
E~xW !!!!&0

5 (
k50

`
~2 i !k

k! K •)
l 51

k E d2xl~FL, j
E ~xW l !] jW~wL

E~xW l !!1F̄L, j
E ~xW l !]̄ j W̄~ w̄L

E~xW l !!!L
0

5 (
k50

`
~2 i !2k

~2k!!

~2k!!

k!

3K •)
l 51

k E
0

b

dtlE
0

l

dxlE
0

l

dylWj~wL, j
E ~ t l ,xl !!vL, j~xl2yl !Wj~wL, j

E ~ t l ,yl !!L
0

5^•exp~2*0
bdt*0

l dx*0
l dyWj~wL, j

E ~ t,x!!vL, j~x2y!Wj~wL, j
E ~ t,y!!&0

5^~•exp~2*0
bdt*0

l dx*0
l dyWj~wL, j

x ~ t,x!!vL, j~x2y!Wj~wL, j
x ~ t,y!!1!&T ,

where we used~VIII.49! and condition~E2! in the second and fourth steps, respectively.
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Constructive field theory and applications: Perspectives
and open problems
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In this paper we review many interesting open problems in mathematical physics
which may be attacked with the help of tools from constructive field theory. They
could give work for future mathematical physicists trained with constructive meth-
ods well into the 21st century. ©2000 American Institute of Physics.
@S0022-2488~00!02206-4#

I. INTRODUCTION

Constructive field theory started in the 1970s as a program to study the existence and
erties of nontrivial particular interacting field theories, those with simple Lagrangians. Inde
was not obvious at that time that such structures~fulfilling a suitable set of axioms such as th
Wightman axioms89! existed mathematically at all. In three decades, not only models of
theory, first superrenormalizable, then just renormalizable, have been built and to some
analyzed, but also the methods and techniques developed in constructive field theory hav
applied to a wide variety of problems outside the initial scope of the program. Constru
techniques have been applied to equilibrium statistical mechanics, particularly to the stu
critical phenomena, and to disordered systems. They have been introduced successfully
analysis of many fermions models, such as those of condensed matter. They have also insp
renewed studies in classical mechanics, and in time-dependent problems, such as nonequ
phenomena. It is no longer easy to draw the contours of this nebula. However the initial gro
people who pioneered constructive field theory in the early 1970s, together with a second an
a third generation of bright students, although working in very different domains nowadays
share in common a certain number of features. They are usually faithful to long-term prog
maybe even stubborn. Beyond the adjective ‘‘constructive,’’ they share in common with
‘‘constructive’’ trend in mathematics, advocated for instance by Kronecker, a taste for ex
solutions, together with explicit bounds, rather than abstract existence theorems. In princip
means that when translated into algorithms, and implemented on computers, the ‘‘constru
analysis of a physical model can lead to quantities computed with better precision and
controlled accuracy.

In this paper we will be brief concerning the successes of the past and refer to existing
~For classical references on constructive field theory, see Refs. 34, 82 and 54; for revie
constructive renormalization, and the problem of asymtotic completeness, see, respectively
81 and 63; and for the most recent proceedings on constructive field theory, see Ref. 21!. Instead
we will focus on open problems, conjectures and challenges that lie ahead in a subject tha
now perhaps be called ‘‘constructive physics’’ rather than ‘‘constructive field theory,’’ and w
remains characterized by the rigorous treatment of models issued from physics by hard a
methods. This paper does not contain any equation; its purpose is to entice the reader to
among the challenging problems just mentioned, and then to go for the references, whe
formalism for the corresponding problems are more precisely defined. Finally we apologize f
fact that the list of open problems emphasized inevitably reflects our personal biases and in
37640022-2488/2000/41(6)/3764/12/$17.00 © 2000 American Institute of Physics
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II. CONSTRUCTIVE FIELD THEORY

This is the historical core of the theory, and in spite of some spectacular successes, it r
largely a mine of open problems.

We recall that using the Euclidean functional integral approach, models of nontrivial inte
ing field theories have been built over the past 30 years, which satisfy Osterwalder–Sch
axioms, hence in turn have a continuation to Minkowski space that satisfy Wigh
axioms.89,80,90Such models are unfortunately yet restricted to space-time dimensions 2 or
they include now both the first wave of superrenormalizable models, such asP(f)2 ,56,54,82

f3
4 55,35,44,76or the Yukawa model in two and three dimensions, as well as just renormaliz

models such as the massive Gross–Neveu model in two dimensions, or GN2.
58,38,28Most of these

models have been built in the weak coupling regime, using expansions such as the clus
Mayer expansions; the harder models require multiscale versions of these expansions, re
according to the renormalization group philosophy.

In most cases the relationship of the nonperturbative construction to the perturbative o
been elucidated, the nonperturbative Green’s functions being the Borel sum of the corresp
perturbative expansion.33,76,38

We identify and discuss several main areas for future progress.

A. Asymptotic freedom, four-dimensional models

By ‘‘Coleman’s theorem,’’ renormalizable asymptotically free field theories in dimensio
must involve non-Abelian gauge fields. However these fields lead to dreadful infrared prob
e.g., confinement. Therefore no theory satisfying the flat infinite volume Wightman’s axiom
dimension 4~the historic goal of constructive field theory! has been constructed yet. However
a finite volume Balaban succeeded in proving ultraviolet stability of the effective action
non-Abelian lattice gauge theories~after an arbitrarily large number of renormalization gro
steps!.4 We mention also a less advanced attempt to construct this ultraviolet limit in a parti
nonstandard gauge, using gauge symmetry breaking cutoffs.77 This situation is not completely
satisfying. We list the open problems.

1. Nonlinear sigma model

Construct the ultraviolet limit of the two-dimensionalO(N) nonlinear sigma model, which is
a well-behaved asymptotically free bosonic field theory~see e.g., Ref. 59 for construction of th
hierarchical version of the model!. It is quite irritating that we still do not have such a constru
tion: many experts in the field tried it without success. The infrared mass generation has
obtained recently~see Refs. 67 and 66!.

2. Yang –Mills

Construct the Yang–Mills4 correlation functions in a finite volume and a standard gauge~such
as the Landau gauge!. This presumably implies a front attack on the Gribov problem.

Simplify and rewrite Balaban’s results on the lattice gauge theory. This is no small task
references in Ref. 4 total hundreds of pages.

3. f4
4

Elucidate the nature off4
4 renormalized perturbation series, proving for instance that re

malons do exist~see Ref. 26!. Can one prove in full generality that its ultraviolet limit i
trivial?1,36,81

4. Supersymmetric and topological field theory

Develop constructive versions of the now-popular supersymmetric field theories, and
logical field theories: develop a constructive understanding of Montonen–Olive dualit
N54 SUSY Yang–Mills4, and of Seiberg–Witten duality forN52 SUSY Yang–Mills4.
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Since these issues represent rather formidable challenges, it may be worth attacking firs
two-dimensional problems:87 polynomial ~hence super-renormalizable! N52 supersymmetric
field theories allow the construction of interesting quantities sensitive to topological change;88 then
the more difficult Wess–Zumino–Witten model at large parameterk, and the Calabi–Yau models
are field theories in which the field takes value in a nontrivial manifold as target space.

According to the point of view of Witten,87 developing constructive theory of functional fie
theoretic integrals for these models could attract more mathematicians to field theory an
speed up the constructive programs in other more traditional areas too.

B. Strong coupling or low temperature results

In the regime of strong coupling or low temperature, there are less results. Contour expa
have been used to prove the existence of thef2

4 phase transition.57 Many results have been
obtained for models with an ultraviolet cutoff, i.e., models inspired by field theory but which
truly statistical mechanics models. For instance the phase transition and nonperturbativ
generation has been proved for the GN2 model with an ultraviolet cutoff,69 and continuous sym-
metry breaking~in dimensions greater or equal to 3! has been studied with renormalization gro
techniques.5 An interesting challenge would be to glue this nontrivial low-temperature analys
the construction of the ultraviolet limit when it is possible. Since the weak-coupling expansio
the ultraviolet limit is somewhat in contradiction with the low-temperature expansion, this sh
be done first for models with another auxiliary small parameter, such asN-vector models at large
N, where the 1/N expansion can complete in the infrared the small coupling expansion in
ultraviolet.

Therefore the first problems to attack in that direction could be as follows.

1. Constructive dimensional transmutation

Glue the ultraviolet analysis of the Gross–Neveu model58,38,28with the nonperturbative mas
generation of the same model69 at largeN, to obtain the first example of so-called dimension
transmutation.

One could also glue the ultraviolet construction off3
4 to the infrared continuous symmetr

breaking analysis of Ref. 5 to control the largeN componentf3
4 model in the continuous sym

metry broken phase without an ultraviolet cutoff.

2. Constructive conformal field theory

Develop rigorous links between conformal field theory in dimension 2 and constructive
theory: along this line, the first significant result should be to prove that the phase transitionf2

4

is in the same universality class~i.e., has the same critical exponents! than the Ising 2 phase
transition. This could be later extended toP(f2) models with more vacua and Potts models.

More generally it should be nice to develop contact points between conformal field theo
two dimension,17 the theory of integrable systems, which relies more onto algebraic tools,
constructive theory which relies more on analysis. For instance there exist integrable lattice
els of the ADE type which scale to conformal field theories of the17 classification at their critical
point;79 can we find a model which can be built with constructive methods for every such
formal theory?

C. Scattering, asymptotic completeness, and Minkowski space

Develop phase space analysis and nonperturbative methods for field theory that work d
in Minkowski space. This should lead to first proofs of asymptotic completeness~see Ref. 63! for
quantum field theory models.

The easiest model in this direction may be the Gross–Neveu model since it is ‘‘p
perturbative:’’ although it is just renormalizable, hence has a worse ultraviolet power cou
thanf2

4, it can be written purely as a reshuffled perturbation series,28 so that in order to build it
directly in Minkowski space one does not need to develop a theory of functional integrati
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Minkowski space, based on stationary phase analysis; it should be enough to simply dev
renormalization group analysis around the mass shell hyperbola, which should resemble the
malization group around the Fermi surface of Sec. IV.

D. Other problems

Complete in full detail the construction of the first nonrenormalizable field theory, the Gr
Neveu model in three dimensions and large number of components.24,31Construct other models o
this type, for instance the corresponding regime of the sine-Gordon model.

Develop constructive field theory in curved space–time.
Make better contact with theC* -algebra approach~sometimes called axiomatic field theory!.

We refer to Ref. 20 for a point of view on the renormalization group in algebraic field theo

III. EQUILIBRIUM STATISTICAL MECHANICS

In this category we already mentioned the constructive study of continuous symm
breaking5 and dimensional transmutation in Sec. II B 1.

A. Coulomb gases

After proofs of Debye screening and Kosterlitz–Thouless~KT! phase transition, this are
~together with the study of the sine-Gordon and Thirring model! remains very active among
constructivists. For background in this subject we refer to Ref. 16. Here is a list of open pro
for which we thank D. Brydges.

~1! Find a direct proof of convergence of the Mayer expansion for dipoles at low activity~which
does not use a cluster expansion!. The dipole–dipole interaction should be smoothed at sh
distance so that it is stable.

~2! Convergence of the Mayer expansion at low activity for the KT phase of the 2D Coulomb
This is harder than the previous problem, and involves presumably an effective analy
that gas in terms of multipoles.

~3! Prove exponential screening in the 2D Coulomb gas at not particularly small temper
~down to the KT transition?!.

~4! Control the correlations at the KT transition.
~5! Are the transitions betweenbKT and 1/2bKT in the D52 Coulomb gas visible in any corre

lations?

B. Disordered systems

The proof by Imbrie that the three-dimensional random field Ising model develops symm
breaking at zero temperature64 remains a beautiful example in which rigorous constructive me
ods have solved a controversial physical issue. Disordered systems are common in natur~con-
ductors or semiconductors with structural defects or doping, spin glasses, real glasses, gra
porous media, etc.!. They pose particularly challenging mathematical problems, and we re
here only a few of them.

1. Anderson model of an electron in a random potential

Hereafter the main results of Refs. 45, 46 and followers on the localization regime at
disorder or out of the continuous spectrum of the free Hamiltonian, we feel that the main ar
open problems is the weak-coupling phase. It is expected that the Anderson 2 model A2 is
always localized but with exponentially small localization length when the coupling constant
to 0. A proof of this statement through constructive field theory methods seems to require fi
proof of decay of a single averaged Green’s function^G6& on a scale proportional tol2, the
square of the coupling constant~this also controls the density of states of the system!. A construc-
tive analysis is under way, based on sector decomposition~as in Ref. 39!, a random matrix
analogy, and Ward identities.73 Then the real study of localization involves the study of^G1G2&,
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and requires a resummation of leading ladders plus a study of the associated ‘‘Goldstone m
Therefore the whole program is certainly as hard to complete as the BCS2 program for inter
fermions defined in Sec. IV.

In dimension 3 one expects the small coupling phase to be diffusive, hence the system
undergo an ‘‘Anderson–Mott’’ phase transition from insulating to conducting at a certain cr
coupling. To prove this one should again first control the decay on a length scale ofl22 of a
single averaged Green’s function: this seems much harder than in dimension 2 essentially
same reason that BCS3 is much harder than BCS2: the random potential viewed as a
matrix between angular directions is not of the usual type~i.e., is not independent identicall
distributed, see Ref. 74!. After that difficulty has been solved, however, the task of controlling
square modulus of the Green’s function^G1G2& should be easier than in dimension 2, since
expect diffusion rather than localization.

2. Constructive study of spin glasses

This area is not familiar, but it contains certainly very challenging problems which do
often belong to the culture of main stream constructivists. To ‘‘solve’’ in a constructive s
models like the Sherrington–Kirckpatrik model is certainly an ambitious goal for the future.
should understand the correct notion of states for the model~in particular in connection with the
ultrametric structure conjectured by the physicists!. It would be fascinating to also understand
a more precise and constructive sense the replica symmetry breaking tool of Parisi. Rece
explicit formula for the partition function at low temperature has been obtained.70

C. Polymers

Polymers and self-avoiding walks~SAW! are related to zero-component field theories a
have been often studied by constructive theorists. Among the established results are the w
Refs. 2, 19, 62, and 65, which explore the behavior of these systems in four dimensions or
Scaling dimensions of SAW with specific interactions in two dimensions can also be st
rigorously through conformal invariance. See Ref. 23 for a recent result in this area using qu
gravity methods.

Here is a list of open problems.

~1! Polymers with partly attractive interactions: prove that they scale to Brownian motiond
.4, at least if the interaction is stable and small. Existence of transitions when the inter
is stable but attractive?

~2! d54, Self-avoiding walk: find new proofs that the end-to-end distance has an exponent
with log corrections.

~3! Find new proofs that random walk in random environment scales to Brownian motiond
.2.

~4! Prove anything at all about the expected end-to-end distance of a self-avoiding walkd
,4. Is it greater than that of simple random walk? Does it have an exponent? If it does,
exponent different from 1/2?

~5! Prove that the scaling limit of true self-avoiding walk ind.2 is Brownian motion.

D. Interfaces, Wulff construction

The constructive study of functional integrals associated to interacting surfaces~Polyakov’s
functional integral! is much harder than the ordinary random walk. The importance of th
functional integrals~for instance in string theory! nevertheless justify that constructivists shou
become interested in them.

1. Wetting

The study of interfaces is more advanced for solid-on-solid models than for real models
as the Ising model in the two phase regime.
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An important open problem is to construct the nontrivial renormalization group fixed poin
a solid-on-solid model of an interface with two competing exponentials. This should be doa
least in the regime where this fixed point is closed to a Gaussian one, thanks to a small par
in the rate of the two exponentials.15

Another important problem is to give rigorous meaning to the Wulff construction for s
models.27

There are also perturbative results on the renormalization surfaces interacting, e.g.,
single impurity25 which one would like to connect to a constructive analysis.

E. Nonequilibrium statistical mechanics

The study of situations far from equilibrium made a big conceptual progress with the i
duction of the SRB steady states.85 A typical recent rigorous result in this domain is the fluctuati
theorem of Gallavotti and Cohen52 on entropy production. See Ref. 50 for a discussion of t
result.

We remark that the quantum nonequilibrium statistical mechanics remain a widely
subject. An important long term goal for constructive theory should be, after many body sy
are better understood and the main problems of Sec. IV are solved, to develop the corresp
theory near equilibrium, namely to put on a firm mathematical microscopic analysis the
formula and the Joule effect, and more generally transport theory.

IV. CONDENSED MATTER

In the constructive theory of condensed matter, the main event of the past was the ada
of renormalization group techniques to models with a Fermi surface.9,48,49,39–43

A. Interacting fermions in two dimensions

In two dimensions there is a well-defined strategy which should lead ultimately to the
plete construction of the BCS2 model, namely the control of the BCS phase at zero tempera43

There exists already a control of the model until a scale where the coupling constant be
small but of order unity, which proves that any transition temperature has to be expone
small in the coupling and that it is a Fermi liquid in the sense of Ref. 84.29,30Then the zone where
the coupling constant is of order unity should be under control through some kind of 1/N expan-
sion, where hereN is no longer anad hoc parameter but is the effective number of angu
directions on the Fermi surface at the scale considered;40 this expansion is not easy to write, an
one may start with a simpler model which has only quartic interaction at the BCS scale, as i
69; then one has to glue this analysis to the previous one, hence treat the corrections to the
effective action. Finally one has to control the distance scales much longer than the BCS
where the physics is governed by the infrared singularity of the Goldstone boson. Here th
tool should be a multiscale renormalization group analysis that relies on Ward identities42 like in
Ref. 5. This is a long and difficult program~even by the constructive standards!.

B. Interacting fermions in three dimensions „BCS3…

In dimension 3 the BCS program is less advanced. Although perturbative power counti
the Fermi liquid is independent of dimension, and the Goldstone boson problem is easie
11 than in 211 dimensions, the initial regime~the equivalent of Refs. 39 and 29! is harder to
control for BCS3 because the momentum conservation laws are not as restrictive in three
two dimensions: vertices can be nonplanar, or ‘‘twisted’’ in three dimensions.41 The only rigorous
result so far is that the radius of convergence of perturbation theory in a slice around the
surface is independent of the distance of that slice to the singularity.75 To find the analog of Refs
39 and 29, namely that the sum of all ‘‘convergent contributions’’ to the theory is analytic in
coupling constant remains in our opinion a major challenge of constructive theory.
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C. Bose–Einstein condensation

Develop the theory of Bose–Einstein condensation. This can be viewed as a piece
previous BCS program where the bosons are Cooper pairs, i.e., bound states of Fermions,
independent program if the bosons are given from the start~see Ref. 7!.

D. Nonspherical surfaces: Hubbard model

~1! Treat nonspherical surfaces. After the work on the renormalization of convex surface37,47

treat surfaces with flat pieces and/or singular points: the regular Hubbard model at half-
on a square lattice has both these features. Until now, this has to rely for at least some
numerical rather than analytical tools.

~2! Develop a rigorous nonperturbative mean-field theory for condensed matter, i.e., devel
nonperturbative version of the dynamical mean-field ord5` limit of models such as the
Hubbard model: this dynamical mean-field model is really a one-dimensional theory w
self-consistent condition, but without an explicit action.61

E. Quasiperiodic potentials, quasicrystals

Develop the mathematical theory of conduction in quasicrystals.
In one dimension it is believed that fermions develop a charge density wave instabil

small temperature with period equal to the inverse of the density. An interesting goal is to
the generation of such CDW in a system of interacting fermions. In this direction an expansi
interacting fermions with an incommensurate external potential satisfying a proper dioph
conditions was shown to converge in Ref. 72; this is a first bridge on the gap between solid
physics and classical mechanics~the KAM theorem below!, since it amounts to solve a sma
denominator problem ‘‘with loops.’’ It would be nice to extend this bridge to other models
particular in greater dimensions.

V. CLASSICAL MECHANICS

Again this is an area I do not feel too competent to review and my remarks will be b
Contributions from constructive theorists have been devoted in particular to the area of the
theorem, where the Italian school around G. Gallavotti has developed the renormalization
approach to the KAM theorem, but also to classical and quantum chaos, and to classical m
ics in a random environment.

A. KAM theory

Invariant tori in Hamiltonian systems analytically close to integrable systems can be writt
perturbative Lindstedt series in the perturbation parameter. A direct proof of the converge
such series, done by Eliasson,32 can also be obtained in the quantum field theory language, u
multiscale analysis as in the renormalization group, and cancellations.51 ~These cancellations ca
be interpreted as Ward identities related to translation invariance.11!

An interesting open question is what happens to Lindstedt series in the nonanalytic
Moser, by using Nash theorem, proved that KAM tori exist also in this case, with sui
conditions, but in general they are not analytic. In Ref. 10 analyticity was nevertheless prov
a class of nonanalytic perturbations by direct analysis of new cancellations in the Lindstedt
In more general cases where the summability of Lindstedt series may fail it is an open ques
know if some extended notion of summability, like Borel summability~quite frequent in quantum
field theory!, may still hold.

Another set of problems concern Arnold’s diffusion. Ina priori unstable systems, a ke
quantity is the splitting which is the determinant of a certain matrix whose elements are
whose first order is exponentially small, but the others are not. However, the determinant it
exponentially small due to cancellations. Using Dyson equation for classical mechanics, A
diffusion can be proved in certaina priori stable systems,53 but the same question is open
generala priori stable systems such as those arising from celestial mechanics.
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B. Classical chaos, turbulence

Of course the solution of the Navier–Stokes equation and their scaling laws remain a
lenge, much as it was at the beginning of the century. In the fully developed turbulence, e
mentally observed deviations from Kolmogorov’s scaling of the velocity correlators sign
non-Gaussian character of the velocity distributions at short distances, called intermittency
intermittency, or deviations from Kolmogorov’s scaling, has been more or less understood
particular case of the passive advection of a scalar quantity~temperature, or density of a pollutan!
by a random velocity field.60,12 However an explanation of the origin of intermittency in th
general case of developed turbulence remains one of the main open problems of theo
hydrodynamics.

C. Quantum chaos

Here let us mention the results22 on the Gutzwiller trace formula, that one would like to exte
to longer time evolution. A main challenge is to put the heuristic connection between qua
chaos and the spectra of random matrices on a mathematically rigorous footing.

D. Partial differential equations and renormalization

The work of Bricmont and Kupiainen have studied random walks in a random environm13

and more generally the application of renormalization group methods to partial differe
equations.14

The major open problems listed in Ref. 14 are the study of stability of fronts in dissip
equations; extension of renormalization group methods to hyperbolic equations; the stu
invariant measures for dynamical systems called coupled map lattices,68 and of nonequilibrium
‘‘phase transitions’’ in which these invariant measures change as the coupling is varied.

VI. IMPROVING CONSTRUCTIVE TECHNIQUES

In this section we would like to gather some list of mathematical techniques which are
general, so that they ought to be useful not only for a single problem but for many mod
different branches of physics.

A. Renormalization group

A central problem in constructive theory is to simplify and further rationalize the var
techniques which allow to perform rigorous renormalization group computations. The indu
version of the renormalization group itself has been better formalized by Brydges
co-workers;8,18 the multiscale phase space expansions which are some kind of expanded s
of the renormalization group induction have been also recently formalized more explicitly,3 and
also recast using wavelets.6 These efforts should be continued if we want the rigorous approac
become part of the regular cursus of field theory. An open problem which could be ment
along these lines is to find an inductive rigorous constructive renormalization which would
simple as Polchinski’s induction for perturbative renormalization;78 even for fermions, this re-
mains an open problem.83,84,28

B. Gluing together various expansions

Techniques to glue together different expansions or different regimes of the renormali
group~e.g., small coupling/1/N coupling! should be developed. This is a condition to treat ma
interesting models with ‘‘nonperturbative’’ phases. Somewhat like the geometric descripti
nontrivial manifolds requires to glue several local charts together, the construction of non
models with nonperturbative effects requires to develop some experience in such gluing ope
~see Sec. II B 1!.
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In a similar vein it is interesting to combine together several expansion techniques whic
usually treated separately. For instance one can study the many body models of Sec. IV w
additional complication of random or quasiperiodic environment~see Ref. 72 for a one
dimensional example!.

C. Symmetries and Ward identities

Many difficult constructive problems involve symmetries which are crucial to their un
standing~gauge symmetries, supersymmetry, replica symmetry!. One would like to have more
general methods to quotient out or break these symmetries, and develop a more general th
nonperturbative Ward identities.

D. Noninteger dimensions

Noninteger dimensions is an interesting perturbative tool~e.g., for the renormalization o
non-Abelian gauge fields or for thee expansion in statistical mechanics! that has no constructive
analog. One should understand why and build the nonperturbative theory of functional integ
in noninteger dimensions. This is a long-term difficult goal, perhaps related to noncommu
geometry, where ordinary space is lost and the ordinary algebra of functions is replaced
noncommutative algebra.

E. Random matrices

Random matrices is a powerful tool for a wide range of physical problems, from nu
physics to quantum chaos, localization, quantized gravity, andM theory. The classical theory i
the theory of independent identically distributed random matrices, and relates them to orth
polynomials and integrable PDE’s.71 An important progress may come from the understanding
random matrices with nonindependent coefficients. In the point of view of Voiculescu,86 the
Wigner law for independent identically distributed matrices model is the noncommutative a
of Gaussian integration. Constructivists, just as they developed the theory of non-Gaussia
tional integration, may therefore try to develop a more general theory of random matrices, in
ing in particular those with constraints of geometric origin~see e.g., Ref. 74!. This could presum-
ably be very useful for the physics in spatial dimensions higher than two~condensed matter
scattering, phase transitions!.

VII. STRING THEORY AND CONCLUSION

When the constructive field theory program began in the 1960s, field theory was the p
nent candidate for a fundamental theory of nature at the microscopic level~although it did not
include quantization of gravity!. Today the main stream of theoretical physics holds the view
field theory is only an effective theory and that superstring orM theory is the best candidate for
fundamental global theory of nature, a ‘‘theory of everything.’’ Even if on a philosophical le
the very existence of such a final theory is dubious, it is certainly a fascinating dream. So in
to remain faithful to its initial quest, one could ask whether constructivists should not join
efforts to find and build this TOE?

I would be tempted to adopt a rather cautious answer to this question, namely ‘‘perhap
not yet.’’ There are three reasons for this cautious attitude.

String theory orM theory are mathematically very difficult: even the perturbative theory
superstring amplitudes contain enormous difficulties: a proof of finiteness, e.g., of the
dimensionalE83E8 heterotic superstring amplitudes is a very difficult program in itself.

The theory is in such a state of rapid evolution that it is not clear what should really be
In the recent years, the different models had a rather short life time before they were abso
a more general formalism. Under such circumstances, to launch a major constructive effor
be premature, since the model might be outdated well before the rigorous construction is
pleted.
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The theory has not yet received direct experimental confirmation. We can at best ho
indirect hints, which may come in the next decades~spatial experiments such as those probing
background cosmic radiation, large cosmic rays detectors, new accelerators such as the LH
may select along various cosmological or high energy scenarii, and give indirect support to
or such models!.

For these three reasons I do not think that the time is ripe to launch ‘‘constructive s
theory,’’ as ‘‘constructive field theory’’ was launched by Wightman and followers in the 196

To soften slightly these remarks, let me add that of course I consider string theory extr
important for the future of mathematical physics. Indeed string theory has not only been a
successful motivation to attract some of the best minds to theoretical physics and to lead t
brilliant insights; it has also opened up a new interface with mathematicians, mostly cen
around geometry~differential, symplectic, and algebraic geometry, mirror symmetry, quan
cohomology, knot theory, etc.!. However, this rapidly growing interface is very different from th
one opened in the past by constructive theory. Algebra and geometry dominate over analys
there are no longer precise programs centered around axioms; but various pieces of the the
various cross-consistent results emerge progressively from this interaction between math
cians and theoretical physicists.

In conclusion, although at the present stage I would still rather personally favor the ap
tions of constructive field theory methods to well established physics, I would be happy,
some of the dust has settled, to see new generations of mathematical physicists attack
constructive spirit the problem of building rigorously the high energy models that will emerge
survive in the coming century.
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The century of the incomplete revolution: Searching
for general relativistic quantum field theory
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In fundamental physics, this has been the century of quantum mechanics and gen-
eral relativity. It has also been the century of the long search for a conceptual
framework capable of embracing the astonishing features of the world that have
been revealed by these two ‘‘first pieces of a conceptual revolution.’’ The general
requirements on the mathematics and some specific developments toward the con-
struction of such a framework are discussed. Examples of covariant constructions
of ~simple! generally relativistic quantum field theories have been obtained as to-
pological quantum field theories, in nonperturbative zero-dimensional string theory
and its higher-dimensional generalizations, and asspin foam models. A canonical
construction of a general relativistic quantum field theory is provided byloop
quantum gravity. Remarkably, all these diverse approaches have turned out to be
related, suggesting an intriguing general picture of general relativistic quantum
physics. © 2000 American Institute of Physics.@S0022-2488~00!00506-5#

I. NEW MATHEMATICS FOR FUNDAMENTAL PHYSICS

In fundamental physics, the first part of the 20th century has been characterized b
important steps toward a major conceptual revolution: quantum mechanics and general re
~GR!. Each of these two theories has profoundly modified some key part of our understand
the physical world. Quantum mechanics has changed what we mean by matter and by ca
and general relativity has changed what we mean by ‘‘where’’ and ‘‘when.’’ The last part o
century has then been characterized by the search for a new synthesis: a unitary and com
sive conceptual framework, capable of replacing the Newtonian framework and embracin
astonishing features of the world that have been revealed by quantum mechanics and by
relativity. Lacking a better expression, we can loosely denote a theoretical framework capa
doing so as a ‘‘background independent theory,’’ or, more accurately, ‘‘general relativistic q
tum field theory.’’

The mathematics needed to construct such a theory must depart from the one emplo
general relativity—differentiable manifolds and Riemannian geometry—to describe cla
spacetime, as well as from the one employed in conventional quantum field theory—algeb
local field operators, Fock spaces, Gaussian measures,¯—to describe quantum fields. Indeed, th
first is incapable of accounting for the quantum features of space–time; the second is incap
dealing with the absence of a fixed background spatiotemporal structure. The new mathe
should be capable of describing the quantum aspects of the geometry of spacetime. For in
it should be able to describe physical phenomena such as the quantum superposition
distinct space–time geometries, and it should provide us with a physical understanding of
tum space–time at the Planck scale and of the ‘‘foamy’’ structure we strongly suspect it to

Here, I wish to emphasize that what we have learned in this century about the ph
world—with quantum mechanics and general relativity—represents a rich body of knowledg

a!Electronic mail: rovelli@cpt.univ-mrs.fr
37760022-2488/2000/41(6)/3776/25/$17.00 © 2000 American Institute of Physics
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strongly constrains the form of the general theory for which we are searching. If we disrega
or the other of these constraints for too long, we just delay the confrontation with the
problems. For example, string theory has developed to a large extent disregarding the
physical lesson of general relativity: as a result, string theorists are facing today the probl
searching for a genuinely background independent formulation, thus realizing that after so
years of research the structure of the fundamental theory is still unknown.

In the first part of this essay~Sec. II!, I give a general discussion of the main physic
‘‘lessons’’ we have learned from general relativity and from quantum field theory, and on
consequent constraints on the general form of the theory for which we are searching. In par
I discuss the physical meaning and the theoretical implications of diffeomorphism invarianc
I stress the fact that common concepts such as Poincare´ invariance, or the Hamiltonian, are wea
field limit concepts that lose their physical significance when the gravitational field is strong.
are therefore unlikely to play any role in the fundamental theory.

In the second part of this essay~Sec. III!, I illustrate some of the ideas and lines of resea
aimed at developing a general relativistic quantum field theory. A well-developed attemp
rigorous construction of a general relativistic quantum field theory isloop quantum gravity, a
Hamiltonian quantization of general relativity. Loop quantum gravity has obtained remar
physical results on the Planck scale quantum structure of space. Of particular interest
derivation of thediscretespectrum for the physical area of a generic surface, and the phy
volume of a generic spatial region.1 This result represents a set of detailed and, in princip
falsifiable quantitative physical predictions, it provides a physical interpretation for the spin
work states, the basis states of the theory,2 and gives us an intuitive picture of quantum spac
time.

On the side of covariant formalisms, several examples of generally covariant quantum
theories have been constructed. Some of these are very simple theories with a finite num
degrees of freedom, such as the topological quantum field theories.3 Of particular relevance here
are combinatorial state sum constructions of topological quantum field theories in three4 and
four5–7 dimensions. Nonperturbative string theories ‘‘in zero dimensions,’’ or two-dimensi
~2D! quantum gravity matrix models8 represent another simple example in low dimension. Ma
models have been generalized to three and four dimensions, by Boulatov9 and by Ooguri6 in the
form of 3-D and 4-D topological quantum field theories. There are several tentative formula
of quantum GR itself as a model of this kind,10–13some of which are based on the fact that GR c
be seen as a constrained form ofBF theory, a topological field theory. All these theories can
represented asspin foam models: Feynman sums over 2-complexes~branched surfaces! carrying
spins.14 Thus, spin foam models seem to represent a generic covariant formalism for g
relativistic quantum field theory.

Remarkably, canonical and covariant approaches are related. A space–time manifestly
riant formulation of loop quantum gravity can be obtained by expanding the operator that ev
the quantum states in the coordinate time, a` la Feynman. This yields precisely a spin foam mod
The spin foam represents in this case the history of the evolution of a spin network. Th
surprising number of very different approaches converge toward a somewhat unitary desc
of a general relativistic quantum field theory. In this formulation, a spin foam provides an intu
picture of the foamy features of the quantum space–time geometry.

Here, I present only a brief view of some intriguing developments and their connections
a more comprehensive overview of current approaches to quantum gravity, see Ref. 15. M
aim is to show that there is a field of converging ideas on the problem of constructing ge
relativistic quantum field theory. Hopefully, these ideas will lead us to a well-defined nontr
theory whose classical limit is general relativity; and thus to the conclusion of the bea
conceptual revolution opened at the beginning of the century by quantum mechanics and g
relativity.
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II. WHY A GENERAL RELATIVISTIC QUANTUM FIELD THEORY

A. The lesson of general relativity: Diffeomorphism invariance

General relativity~GR! is the present theory of the gravitational interaction. It is a hig
successful theory, which in recent years has obtained spectacular empirical support—bina
sar’s period decay due to gravitational radiation, discovery of black holes in the sky ...—
pervaded several branches of physics—astrophysics, cosmology ...—, and has even foun
nological application—in the global positioning system—a development unthinkable not long

However, GR is much more than just the theory of a specific physical force. Indeed, GR
theory of space and time. It has modified in depth our understanding of what space and tim
radically changing the Newtonian picture. This modification of the basic physical picture o
world does not refer to the gravitational interaction alone. Rather, it affectsany physical theory.
Indeed, GR has taught us that the action ofall physical systems must be generally covariant,
just the action of the gravitational field. Thus, GR is a theory with a universal reach, w
implications involve the redefinition of our description of the whole of fundamental physics

More in detail, GR has modified the physical meaning of the space–time coordinatesxm that
enter our basic description of the world~as argument of the fields, or position of fundamen
physical objects such as particles, strings, branes,...!. In Newtonian and special relativistic physic
the coordinatesxm describe the space–time localization of the events. Events are thoug
happen ‘‘in’’ space–time. Intuitively, space–time can be thought of as a stage over which ph
happens. Concretely, the localization of an event is determined with respect to a physical ref
system, namely a set of physical objects chosen as spatiotemporal reference. For instan
value in xW50 and t50 of the electric fieldEW (xW ,t) represents a physical quantity that can
measured in a certain space–time location determined by a physical reference system.

If we take GR into account, this picture does not hold anymore, and the meaning o
coordinatesxm is altered. In fact, in a general relativistic theory physical quantities that ha
coordinate dependence are not gauge invariant. Only quantities thatdo notdepend on the coordi
nates may correspond to concretely physically observable quantities. Localization with resp
a background space–time, or with respect to a fixed external reference system, has no m
What has physical meaning is only therelative localization of the dynamical objects of the theo
~the gravitational field among them! with respect to one another. The physical picture of the wo
provided by GR is not that of physical objects and fields over a spatiotemporal stage. Rathe
a more subtle picture of interacting entities~fields and particles! for which spatiotemporal coin-
cidences only, and not space–time localization, have physical significance. Once again, this
fication of the meaning of the coordinates does not refer to the gravitational force alone: it
to our entire description of the world at the fundamental level.

At the classical~nonquantum! level, this novel view of space and time is expressed by the
of physical theories that are still defined over a ‘‘space–time’’ differential manifoldM, but that
are invariant under~active! diffeomorphismsf:M→M of the space–time manifoldM into
itself. The mapsf form a group, denoted DiffM . More in detail, one first defines the fieldsw of
the theory as if they were located over space–time. That is, as functions over the ma
w:M→F, whereF is some field-value space. Similarly, the dynamics of a particle is describe
the worldlineX:R→M of the particle inM. Then, however, one chooses a diffeomorphis
invariant action functional,

S@w,Xn#5S@f~w!,f~Xn!#, ;fPDiff M , ~1!

wherew represents all the fields andXn , n51¯N representsN particles’s worldlines. In~1!,
Diff M acts geometrically on the space of the fields and of the particle trajectories.~It acts on the
dynamical variables of the theory only, not on fixed nondynamical structures.! For instance, ifw
is a scalar field,f(w)5w+f, and, for the particle worldline,f(Xn)5f+Xn .

One of the main results of the 20th century’s fundamental physics is that at the fundam
level the physical world is described by theories with property~1!.
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Property~1! implies that space–time localization is relational, for the following reason
(w,Xn) is a solution of the equations of motion, then so is„f(w),f(Xn)…. But f might be the
identity for all coordinate timest before a givent0 and differ from the identity for somet.t0 . The
value of a field at a given point inM, or the position of a particle inM, change under the activ
diffeomorphismf. If they were observable, determinism would be lost, because equal initial
could evolve in physically distinguishable ways respecting the equations of motion. The
classical determinism forces us to interpret the invariance under DiffM as a gauge invariance: w
must assume that diffeomorphic configurations are physically indistinguishable. That is

~w,Xn!;„f~w!,f~Xn!…, ~2!

where; means physically indistinguishable. A~classical! physical gauge-invariant state of th
systems is not described by a field configuration~or by the location of the particles!, but rather by
the equivalence class of field configurations~and particle locations!, related by diffeomorphisms

The quantities that have physical meaning, namely that can be predicted by the theor
the state is known, or whose measurement gives information on the state of the syste
diff-invariant quantities, that is, functionsQ of the dynamical variablesw andX that satisfy

Q@w,Xn#5Q@f~w!,f~Xn!#, ;fPDiff M . ~3!

These quantities are the ‘‘observables’’ of a general relativistic theory. They do not ha
dependence on the coordinatesxm, and they are not functions onM. Indeed anything that depend
on the coordinatesxm or is a functions onM is gauge noninvariant, and therefore does n
represent a physical quantity. Examples of diff-invariant quantities satisfying~3! are the Earth–
Venus distance during the last solar eclipses, the number of pulses of a pulsar in a binary
that reach the Earth during one revolution of the system~that is, between two Doppler maxima!,
the energy deposited on a gravitational antenna by a gravitational wave pulse, and, in fa
significative physical quantity measured in general relativistic experimental or observational
ics. For a more detailed discussion on observability in GR, see Refs. 16–18.

I will say that an observable quantity in a field theory is ‘‘weakly local’’ if it is localized
the manifold, that is, if it depends on the coordinates. I will say that it is ‘‘weakly nonlocal’’
does not. The adjective ‘‘weak’’ is to distinguish this notion of locality from others employe
physics, such us spacelike commutativity of the quantum fields or the absence of nonloca
actions. Observables in a general relativistic theory are weakly nonlocal. On the other
general relativistic observables are typically ‘‘local’’ in a weaker, relational, sense: for insta
the value of the Ricci scalar in the space–time point in which two particles’ worldlines inte
is local in the sense that it is localized in terms of physical degrees of freedom, the particles
say that observables of this type are ‘‘relationally local.’’ Typical GR observables are thus
tionally local and weakly nonlocal.

In a general relativistic context, the space–time manifoldM, whose points are labeled by th
coordinatesxm, is thus nothing more than an auxiliary mathematical device for describing
tiotemporal relations between dynamical objects. These relations are given by spatiote
coincidence, not by localization with respect to space–time, or with respect to external refe
system objects. A displacement, or an arbitrary smooth deformation of all dynamical object
the manifold M, is a change of mathematical description, not a change of physical s
Coordinate-dependent quantities have no operational meaning. Only quantities that do not
on the coordinates have physical meaning. Localization overM has no physical meaning. Onl
localization of the dynamical objects with respect to one other has physical meaning. Th
deep change in the way physics treats localization. As we shall see below, the effects
change on quantum field theory are considerable.

I conclude this section by briefly discussing a few important theoretical notions whose m
ing has to be slightly generalized in order to make sense in a general relativistic conte
particular, I will mention the phase space, the observable algebra, and time.
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The phase spaceG is commonly defined as the space of the initial data at some initial time
to gauge invariance, if any. In general, however,G admits a more covariant definition, as the spa
of the solutions of the equations of motion, up to gauge. This definition makes sense in the g
relativistic context. LetC be the space of the solutions of the equations of motion of a
invariant theory. DiffM acts onC. The phase space of the theory is

G5
C

Diff M
. ~4!

G carries a natural simplectic structure, determined by the action. Concretely, this symp
structure can be computed using the conventional Hamiltonian framework.@In the Hamiltonian
framework, a solution of the equations of motion is coordinatized by its value on a~physically
fictitious! ‘‘initial value ADM hypersurface,’’ and the quotient~4! is obtained by factoring away
the gauge transformations generated by the Dirac, or ADM constraintsCm. In this formalism,~3!
becomes

$Q,Cm%50. ~5!

An observable is a quantity having vanishing Poisson brackets with the ADM constraints.# How-
ever, it can also be directly computed in a covariant fashion.

The physical observables of the theory, such as the examples mentioned above, satisfy~3!,
or Eq. ~5!, and are thus real functions onG. An observable, indeed, has a well-defined value
every physical states. ~Actually, observables of physical interest are often defined onportionsof
G only, that is, only for certain classes of physical states.! In general, the space of the smoo
functions on a phase spaceG, equipped with the Poisson brackets determined byG’s symplectic
structure, is a noncommutative algebraAcl , the classical observables Poisson algebra.~In general,
G fails to be a manifold, due, in particular, to the different dimensionality of the orbits of DiM
in C, and care must be accordingly taken in defining smoothness. From the physical point of
what matters are the not points ofG, but open sets inG, because physical measurements ha
errors and the state is never exactly known. Thus, in principle, we can disregard the singular
of G without changing physical predictions. In practice these singular points—spaces
symmetries—are often the only ones in which we are able to compute something!! A physical
state determines~and can be identified with! a positive functional on the observable algebra,

s~q!5q~s!, sPG, qPAcl . ~6!

That is, a state can be viewed as an ensemble of values that the observables can take. We
take the algebra of the observablesAcl and its positive functionals as the fundamental eleme
that define the theory.

In a nongeneral relativistic theory, the dynamics is given by assigning the Hamiltonian o
action of the Poincare´ group, onG. In a general relativistic theory there is, in general, no Ham
tonian defined onG. Coordinate time evolution is a gauge, and is washed away by~3!. The algebra
of the diffeomorphism-invariant observablesAcl codes the full dynamical content of the theory. O
course,Acl is highly nontrivial. Evolution in clock time is described by the diff-invariant~and thus
coordinate-time-independent! correlations between a physical variableq and a clock variablet.
For each realt,q(t) is a diff-invariant function onG ~see Refs. 16, 19!.

On the other hand, the physical ‘‘flowing’’ of time is not described by the theory. In
opinion, such a flow is thermodynamical in origin and is state dependent; this ‘‘thermal time’
be identified as the state-dependent flow defined by the~generic! statistical states over the ob-
servables algebra

dq

dt
52$q, logs%. ~7!
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In words, it is not the HamiltonianH that defines a thermal Gibbs states5exp$2bH%, but rather
the other way around: the statistical states in which the system happens to be determine
‘‘Hamiltonian’’ H;2 logs, and therefore a time flow. This point of view allows one to deve
a statistical mechanics of the gravitational degrees of freedom, a problem that is still ope
idea is discussed and developed in Refs. 20, 21.

B. The lesson of quantum mechanics and quantum field theory: Weakly local operator
algebras

I begin this section with some general considerations on quantum mechanics~QM!. This
century has replaced Newtonian mechanics with QM as the fundamental mechanical theor
is a curious theory, which we probably have not fully understood yet. The meaning of qua
mechanics is completely clear as far as the theory is applied to describe a quantum sysS
interacting with a ‘‘classical’’ or ‘‘macroscopic’’ systemsO, the ‘‘measuring apparatus,’’ o
‘‘observing system.’’ On the other hand, the physical meaning of quantum mechanics as a g
mechanical theory ofall dynamical systems is viewed by many as controversial.

I myself understand quantum mechanics as a theory that describes the interaction betweany
two physical systems. Given two systems,S and O, the wayS affects O in the course of an
interaction is described by the quantum theory ofS, whereO is formally regarded as the classic
measuring device,whatever its physical properties. This implies that the properties thatS mani-
fests in interacting withO are not necessarily the same it manifests in interacting with ano
physical system, sayO8. The last, in fact, may be affected by the quantum properties ofO and, in
particular, by theO2S quantum correlations. These do not affect the wayS interacts withO alone
and are not taken into account in the quantum theory ofS alone. It follows that all~contingent!
properties of a system are relative to another system. There are no absolute properties
absolute state, of a system. A statement such as ‘‘thez component of the spin of the electronS is
up’’ should be interpreted as ‘‘thez component of the spin of the electronS, with respect to the
physical system O, is up.’’ I have elaborated relational this point of view on quantum mecha
in Ref. 22, to which I refer for more details and related references.

It has been suggested by some that this issue—the interpretation of quantum mecha
must be solved together with the problem of combing QM and GR. I do not think that this i
case. In fact, QM is uncontroversial as long as a macroscopic classical physical systemO, which
could be used as measuring apparatus or observing system, is available. And a system of
is certainly available~say, the Earth!. GR forbids us from using external physical referen
systems, but the external reference system that serves to localize objects should not be c
with the apparatus that performs a quantum measurement. A measuring apparatus can pe
quantum measurement of a diffeomorphism-invariant quantity.

On the other hand, it seems to me that there could be some deep connection betwe
relational aspect of the world revealed by GR~localization is relative to other dynamical object!
and the relational aspects that, I think, characterize QM~states and outcome of measurements
relative to the observing, or interacting, object!. After all, an observing object is somewhere
space–time and, as we know from special relativity, any interaction requires spatiotempo
incidence. The other way around, a spatiotemporal coincidence can only be revealed by m
a physical, and thus quantum, interaction. Therefore the weaving itself of space–time seem
woven with a thread of quantum interactions. However, I think we are still too far from a th
capable of describing the world so intimately. I think that it is more productive, today, to re
grounded on what we know well about the world, that is GR and QM, and simply search
general relativistic quantum theory. Let me thus close this parenthesis of general consider
and get back to what we have learned from QM.

The main lesson of quantum mechanics is that the states of a physical system have a~projec-
tive! complex linear structure, such that, given any set of statessi , in which the measurement o
a quantityQ yields the resultsqi , there exist also statess5( ia isi , with ( i ua i u251, in which the
quantityQ can take any valueqi , each with probabilityua i u2. The linear spaceH of the states has
a Hilbert structure and, for every observable quantityQ, there is an orthonormal basissn in which
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Q is determined and has valueqn . Thus, for anyQ a self-adjoint operatorQ̂ on H is defined by
Q̂sn5qnsn . Since distinct observables in general do not share eigenbases, the operators
commute. In general, the set of the observables that characterize a system forms a nonco
tive operator algebraA, the quantum observable algebra, andH provides a representation ofA.
The algebraA is related to the algebraAcl of the classical theory that describes the\→0 limit. In
particular,A is a linear representation of~possibly a subalgebra of! Acl , or of a deformation~in \!
of the same. Thus, Poisson brackets are remnants of quantum noncommutativity.

This is the general form of a quantum mechanical system. In the course of the ce
however, it has become increasingly clear that nature can be described in terms of fields
fundamental level. All the forces we know, as well as the special relativistic quantum behav
the elementary particles, are well described by field theories. The present picture of nature,
is extraordinary empirically successful, is thus a theory of fields. The observable quantitie
nongeneral relativistic field theory are weakly local: they are values of fields and local functio
these. They depend on the value of the fields at a point~or Fourier transforms of the same!, or in
an open region of space–timev,M. A nongeneral relativistic quantum theory of fields is
representation of an algebraA of space–time-dependent observables, ora weakly local operator
algebra. The set of the observables with support on a regionv form a subalgebraAv and

v,v8⇒Av,Av8 , ;v,v8,M, Av ,Av8,A, ~8!

as subalgebras. In particular,A, with suitable properties, may be an algebra of the quantum fi
operators.23 We denote a theory having this structure aweakly local quantum field theory.

The quantum field theories that have proven so enormously successful in particle phys
weakly local quantum field theories. Examples of observable in these theories are Whig
functions, scattering amplitudes, or the energy in a spatial region. These quantities are defi
the space–time manifold. Physically, they describe a system that islocatedsomewhere in space–
time, and that is studied by means of an external reference system that determines ‘‘wher
‘‘when’’ measurements are performed. The space–time, or momentum, dependence of the
tum fields represents the spatiotemporal location of the field excitation. More precisely, the s
time dependence of the observables represents the spatiotemporal location of the appar
reveal these field excitations.

String theory is a weakly local field theory of this type as well. The physical interpretatio
the scalar fieldsXm(s,t) defined on the two-dimensional string world sheet is thelocationof the
string on the space–time manifold, the target space. Thus, in order to interpret the theory, w
assume that physical reference systems exist in the target space. The theory describes the
of the string with respect to these objects. The target space equipped with its fixed metr
pregeneral relativistic ‘‘absolute’’ space–time.@Clearly, the fact that the quantitiesXm(s,t) are
quantum operators does not mean that ‘‘space–time is quantized,’’ anymore than the fact t
position of a conventional particle in Minkowski spaceXm(t) is an operator does.#

In conclusion, a quantum theory is defined by an operator algebraA. In a nongeneral relativ-
istic quantumfield theory,A is a weakly local operator algebra. Observables and states ha
well-defined space–time dependence, which represents the spatiotemporal localization of t
excitations and of the measurement apparata.

C. General relativistic quantum field theory

We can now compare the two previous sections. As discussed in Sec. II A, if we take
tivistic gravity and GR into account, we have to weaken the notion of localization. The obser
quantities of a general relativistic theory are weakly nonlocal. Therefore they cannot fo
weakly local operator algebra of the kind~8!. Thus, the mathematical structure of quantum fie
theory recalled in the previous section is incompatible with the general relativistic notio
localization described in Sec. II A.

A general relativistic quantum theory is a quantum field theory in which the observ
algebraA and the states have no remnant of localization in space–time. Such a structure
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different from that of nongeneral relativistic quantum field theory. A quantum state, in partic
will not represent a field excitation ‘‘somewhere’’ in space. Localization has to be defined
nally, with respect to the quantum states themselves.

The theory should then reduce to a conventional weakly local quantum field theory in the
in which we disregard the quantum and dynamical properties of the gravitational field. In
limit, relational localization with respect to the gravitational field is reinterpreted as abs
localization, defined with respect to a fixed nondynamical space–time. In simpler words, if w
not consider the gravitational field as a dynamical entity, then we can useit as the background
‘‘stage’’ over which, and with respect to which, the other fields and the particles are localized
move.

Is conventional QM sufficiently general to deal with diffeomorphism invariance and
relational locality? The answer is subtle, and depends on what one precisely means by c
tional QM. In the Schro¨dinger picture, the statesc(t) depend on time, and time evolution
governed by the Schro¨dinger equation. This structure is not general enough to deal with ge
relativistic theories, in which there is no external time–parameter evolution. Indeed, an ex
clock is precisely a minimal form of external reference system. However, QM can be formu
in the Heisenberg picture as well. In the Heisenberg picture, a quantum statec has no temporal
connotations. A Heisenberg state is often viewed as the value of the Schro¨dinger state at some
fixed moment of time, but a more useful view of a Heisenberg state is to see it as represent
entire ‘‘history’’ of the system~at least until the next measurement!. Thus, a Heisenberg state
the quantum analog of the classical states defined in Sec. II A as a solution of the equations
motion up to gauge, without any reference to time. In the Heisenberg picture of a nong
relativistic theory, observables have a time dependence, governed by a HamiltonianĤ,

dQ̂

dt
5 i\@Q̂,Ĥ#. ~9!

In a general relativistic theory there is no Hamiltonian. Observables, however, must be
invariant, namely satisfy the quantum equivalent of Eq.~3!. In the Hamiltonian framework, this
means that the observable must satisfy the quantum version of~5!, that is

@Q̂,Ĉm#50, ~10!

whereĈm are the quantum constraints. Equation~10! is the general relativistic generalization o
Eq. ~9!. @Any Hamiltonian theory admits a formulation in this more general framework.
instance, the mechanics of a free particle in one dimension can be formulated over the
dimensional phase space (X,PX ,T,PT) with the single constraintC5PT1P2/2m, and no Hamil-
tonian. It is easy to see in this case that~10! reduces precisely to~9!.# Thus, QM admits a
formulation that is sufficiently general to deal with general relativistic systems. This is a He
berg formulation, in which the Heisenberg equation of motion~9! is replaced by the constrain
equation~10!. Clock time evolution is described in this context by appropriate diffeomorphi
invariant operators that express the correlation between a physical variable and the clock19

These are denoted ‘‘evolving constant of the motion.’’ An alternative explicitly covariant ge
alization of QM that can deal with general relativistic systems is Hartle’s generalized QM.24 See
also Ref. 25.

As mentioned at the end of Sec. II A, in the classical theory the physical ‘‘flow’’ of time
presumably of a thermodynamical origin. Remarkably, there is an intriguing quantum field
retical analog of~7!, given by a key structural property of von Neumann algebras, the Tom
Takesaki theorem.26 As shown in Ref. 21, the state-dependent thermal time flow can be iden
with the one-parameter group of automorphisms of the observable algebra given by the T
flow of a generic state. A state-independent characterization of the time flow is then provid
the cocycle Radon–Nikodym theorem,27 which defines acanonicalone-parameter group of oute
automorphisms of the algebra.
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The problem of merging GR and QM, and concluding a century long scientific revolutio
the problem of constructing a nontrivialweakly nonlocalquantum field theory, in which locality is
only relationally defined. To define such a theory, we need a Hilbert space of statesH and an
operator algebra of observablesA on H that do not carry spatiotemporal dependence, but, inst
represent diffeomorphism-invariant physical states and observables. In the rest of this e
briefly illustrate several concrete attempts to construct theories of this type.

III. TOWARD GENERAL RELATIVISTIC QUANTUM FIELD THEORY

Two main avenues toward the construction of a rigorous four-dimensional general relat
quantum field theory are being explored: the canonical and the covariant one. I discu
canonical approach in Sec. III B and some covariant approaches in Sec. III C, below. I then d
the convergence of the two approaches. Before going into this, however, in Sec. III A I b
recall the old explorations of the canonical and covariant approaches developed during the
and the 1970s. These explorations were very ‘‘formal:’’ badly ill-defined mathematical sym
appear in the equations, and any attempt to a nontrivial calculation yields uncontrolled infi
In spite of this, the explorations of the 1960s and 1970s have played an important role in op
the way toward general relativistic quantum field theory, because they suggested the g
structure the theory should have, and built the physical intuition on general relativistic qua
physics. In a sense, many of the later developments can be seen as efforts to transform the
constructions into rigorous mathematics.

A. Old ideas and intuitive constructions

The canonical framework has been introduced by DeWitt and Wheeler.28 It is synthesized in
their celebrated equations, which, in the absence of matter, read as

ĤC@q#5F S qacqbd2
1

2
qabqcdD d

dqab

d

dqcd
2detqR@q#GC@q#50; ~11!

C@q#5C@f~q!#, FPDiff S . ~12!

Hereq is the 3-D metric of a spatial hypersurfaceS,a,b,...51,2,3 are tangent space indices,R is
the Ricci scalar, and the quantum state of the gravitational field is represented by the
functionalC@q#. Equation~12! requiresC@q# to be invariant under diffeomorphisms ofS, while
the first, the actual Wheeler–DeWitt equation, a system of infinite~becauseĤ is a function on
3-space! coupled functional differential equations, is obtained as the Dirac quantization o
constraint that generates coordinate time translations in classical Hamiltonian general rel
The two equations~11!, ~12! can be seen as an implementation of 4-D diff-invariance.

The interpretation ofuC@q#u2 as a probability density for a measurement of the spatial ge
etry to yield the resultq is unfortunately common in the literature, but is wrong, because only
diff-invariant quantities are observable. To extract physical information from the Wheeler–D
theory, one needs a 4-D diff-invariant observableQ@q,p# written in terms ofq and its conjugate
momentump, and a corresponding quantum operatorQ̂5Q@q,d/dq#, commuting with the
Wheeler DeWitt operatorĤ. Then the expectation value ofQ in a stateC that solves~11!, ~12! is
given by^CuQ̂uC&, where^ u & is a scalar product on the space of the solutions of~11! determined
by the requirement that the operators corresponding to real observables be self-adjoint.

Formal solutions of~11! can be obtained by using a covariant formalism based on Hawki
Euclidean sum over Riemannian geometries,29

Z5E @Dg#e2S@g#. ~13!
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g is a Riemannian metric of a 4-D compact manifoldM and S@g# is the Euclidean Einstein–
Hilbert action. The restriction of the above integration to the 4-metrics on a 4-D manifoldM
bounded by a compact 3-D manifoldS with induced metricq, gives the celebrated Hartle
Hawking’s solution of~11!:30

C@q#5E
]g5q

@Dg#e2S@g#. ~14!

One can consider a 4-D cylinderM5S3@0,1# and integrate over the 4-metrics onM that induce
the two 3-metricsq8,q on the two components of its boundary. The quantity

PS~q8,q!5E
]g5q8øq

@Dg#e2S@g# ~15!

is formally a projector on the solutions of~11!,~12!. It can also be seen as a ‘‘propagator,’’ fro
the initial to the finalS. It is a propagator, however, that acts as the identity on physical states
surprisingly, since evolution over the ‘‘space–time’’ manifoldM, or coordinate time evolution, is
actually pure gauge.

As already mentioned, both the canonical theory~11! and the covariant theory~13! are ill
defined and little can be computed with them. But a number of well-defined constructions
been inspired by these theories.

B. Canonical approach: loop quantum gravity

‘‘I feel that there will always be something missing from other methods which we can
get by working from a Hamiltonian (or maybe from some generalization of the conce
Hamiltonian)’’ — P. A. M. Dirac.

Loop quantum gravity is a well-developed attempt to define a general relativistic qua
field theory using canonical methods. It is a canonical quantization of general relativity, wi
conventional matter couplings. The theory is based on the idea of using loop variables f
scribing the gravitational field. Loop variables have long been suspected to play a key r
gauge theories and gravity.31 The discovery of the loop representation is that the use of th
variables turns out to greatly simplify the treatment of diff invariance and of the dynamic
quantum gravity. In turn, the theory suggests that one-dimensional excitations~more precisely,
excitations dual to surfaces in three dimensional! are natural diff-invariant quantum excitations
the gravitational field.

I sketch here the basics of the formalism, focusing on its main structure and leaving out
important details. For a general overview of loop quantum gravity and complete reference
Ref. 32. For a pedagogical introduction, see Ref. 33. LetA5$A% be the space of the smoot
SU(2) connections on a fixed compact 3-D manifoldS. The spaceA can be taken as the con
figuration space for GR; see, for instance Refs. 34–36. The momentum conjugate toA is asu(2)
valued 2-form E, which is physically interpreted as the densitized triad, where (detq)qab

5Tr@EaEb#. ~I identify a vector densityEa and the corresponding 2-formE5Eaeabcdxb dxc.)
Continuous functionalsC(A) form a topological vector spaceL. Let U@A,g# be the holonomy of
the connectionA along the curveg. Let a graphG5$g1 ,...,gn% be a finite collection ofn
piecewise smooth curves, or links,g i , i 51,...,n in S, that meet, if at all, only at their end points
Given a graphG and a complex, Haar-integrable, functionf on @SU(2)#n, consider the functiona

CG, f~A!ª f ~U@A,g1#,...,U@A,gn# !. ~16!

These functionals are dense inL. Obviously, a functional based on a graphG can always be
rewritten as one based on a larger graphG8 that containsG as a subgraph: it suffices to takef
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independent from the holonomies of the links inG8 but not inG. Therefore, any two cylindrica
functions can be viewed as being defined on the same graph. Taking this into account, a
product is defined for any two such functionals by

^CG, f uCG,g&ªE
@SU~2!#n

dU1¯dUnf ~U1 ,...,Un!g~U1 ,...,Un!. ~17!

dU1¯dUn is the Haar measure on@SU(2)#n. The scalar product~17! is invariant under the
natural transformation ofC(A) underSU(2) gauge transformations and diffeomorphisms. T
extended Hilbert spaceHext of the quantum theory is obtained by completion. There exis
number of mathematical developments connected with the construction given above. They i
projective families and projective limits, generalized connections, representation theory oC*
algebras, measure theoretical techniques, and others. See, for instance, Refs. 37, 38.

An algebra of well-defined self-adjoint field operators is defined inHext. The trace of the
holonomy ofA around a loopa,

T@a#5Tr U@A,a#, ~18!

is a multiplicative self-adjoint operator. By replacing the conjugate momentumE ~a 2-form, we
recall! with a functional derivative and integrating it over a 2-D surfaceC in S, we obtain a
self-adjoint Lie algebra-valued operator,

E~C!5E
C
dsa dsb eabc

d

dAc„x~sW !…
. ~19!

T(a) andE(C) are the elementary operators of the theory, in the same sense in which the cr
and annihilation operatorsa(k) anda†(k) are the elementary operators in conventional quan
field theory. Unlikelya(k) anda†(k), the operatorsT(a) andE(C) do not require a backgroun
metric to be defined.

The integralA(C) over the surfaceC of the su(2) norm ofE,

A~C!5E
C
uEu ~20!

is the standard geometrical classical expression for the area ofC.39 The corresponding quantum
operator can be constructed onHext. SinceA(C) involves the square ofE, to define it we actually
need to regularize the classical expression and to study the limit of the regularized operator
regulator is removed. Remarkably, the limit is finite and well defined.1 The resulting operator is
self-adjoint and has discrete spectrum. The main sequence of the spectrum, restoring p
units, is1

A58p\G (
i 51,n

Aj i~ j i11!, ~21!

where the (j i) are an arbitraryn-tuplet of half-integers. This result is the source of the lo
quantum gravity physical prediction, first suggested in Ref. 40 and in Ref. 41, that the a
quantized, namely, that a Planck scale sensitivity measurement of an area can only yield d
outputs from~21!.

An orthonormal basis that diagonalizes the area operator is given by thespin network
states.2,42 Given a graphG, embedded in the 3-manifoldS, the assignment a nontrivial irreducibl
representation ofSU(2), labeled by its spinj i , to each one of its linksg i is called acoloring of
the links. Consider then a noden of the graph, withk adjacent linksg1 ,...,gk , colored as
j 1 ,...,j k . Fix an orthonormal basis in the tensor productHn5 ^ i 51,kH

( j i ) of the Hilbert spaces of
theSU(2) representationsj 1 ,...,j k . The choice of an elementNn of this basis is called acoloring
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of the node n. A ~nongauge-invariant! spin network S5(G, j i ,Nn) is a graph embedded in space
which links and nodes are colored. See Fig. 1. Thespin network stateCS(A) is defined by

CS~A!5 ^
links i

Rj i~U@A,g i # !• ^
nodes n

N n . ~22!

Rj (U) is the representation matrix of the group elementU in the spin-j irreducible representation
of SU(2), seen here as an element inH ( j )

^ H ( j ), and • indicates the scalar product inH
5 ^ links i eG(H ( j )

^ H ( j )). By varying the graph and the colors we obtain a family of states, wh
can be easily normalized. As a straightforward consequence of the Peter–Weyl theorem
states form an orthonormal basis inHext.

If a surfaceC cuts the linksg1¯gn of a spin networkS, then the spin network stateCS is an
eigenstate of the area operator with eigenvalue~21!, where thej i ’s are the spin associated to th
links g i . See Fig. 2. Therefore a spin network state can be thought as quantum excitation
metric in which each link carries a quantum of area, proportional to the square root of the C
of the representation that colors the link. A similar result holds for the volume1 ~see the details in
Ref. 43!: the discrete quanta of volume are localized on the nodes of the spin network
depends on the colors of the node. The fact that the volume operator vanishes outside th
can be intuitively understood as follows: the result of the action of the triad operator, which
functional derivative on the holonomy, is proportional to the tangent of the loop. In the vo
element,eabcTr@EaEbEc#, we need at least three distinct tangents at a point in order to ha
nonvanishing triple product. Thus, we need a node. Thus, spin network states can be s
elementary quantum excitations of the gravitational field, carrying quanta of volume~‘‘chunks of
space’’! at their nodes, and quanta of area on the links that separate the nodes, or, more pr
on the surfaces separating the quanta of volume, and that are dual to the links.

So far, I have illustrated the kinematics of the theory. The next step is to implemen
constraints, namely to define the analog of Eqs.~11!, ~12!. In addition, we have to impose the loc
SU(2) gauge invariance that is peculiar to the connection formulation of GR.SU(2) local gauge

FIG. 1. A simple spin network with two trivalent nodes.

FIG. 2. A spin networkS intersecting the surfaceC.
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transformations act on a spin network state simply by theSU(2) action on the spacesHn . By
restricting the colors of the nodes to basis elementsNn in the spin zero irreducible component o
Hn , we easily obtain theSU(2)-invariant subspaceH0 of Hext. SuchNn are called ‘‘intertwin-
ers,’’ since they define invariant mappings betweenSU(2) representations.

H0 carries a unitary representationU~Diff ! of Diff S . There are no invariant proper states, b
using standard generalized states techniques, we can nevertheless define

Hdiff;
H0

Diff S
, ~23!

as the diff-invariant subspace ofS8 in a Gelfand tripleS8.H0.S. It is natural to takeS as the
space of the finite linear combinations of spin network states. The spin network basis inH0 yields
a simple description ofHdiff and a definition of the Hilbert structure on it. Let ans knot, or abstract
spin network,s be an equivalence class under Diff(S) of ~embedded! spin networksS. In fact, by
slightly enlarging DiffS we can eliminates a moduli space structure in the equivalence class
the nodes with intersections,44 and obtain aseparableHilbert spaceHdiff . On this, see also Ref
45. ~The unconstrained space stateHext is nonseparable.! A basis inHdiff is given by the stateŝsu
in S8, defined by

^suS&5H 0 if S¹s

1 if SPs,
~24!

where we have used a Dirac bra-ket notation for the elements ofS08 andS. Furthermore, one can
prove ~see Ref. 38 and references therein! that observables onH0 that are self-adjoint~and thus
correspond to real classical quantities! and diff invariant~and thus are well defined onHdiff) are
self-adjoint under the scalar product

^sus8&5H 0, if sÞs8,

c~s!, if s5s,
~25!

where c(s) is the number of discrete symmetries of the abstracts knot. This is therefore the
appropriate scalar product we need on physical grounds, picked up by the requirement th
classical quantities become self-adjoint operators.

The statesus& are ~3-D! diffeomorphism-invariant quantum states of the gravitational fie
They are labeled bys knots: abstract, nonembedded, knotted, colored, graphss. As we have seen
above, each link of the graph can be seen as carrying a quantum of area, and each node q
volume. An s knot represents an elementary quantum excitation of space: its nodes rep
‘‘chunks’’ of space with quantized volume, separated by ‘‘elementary surfaces,’’ dual to the
with quantized area. The key point is that ans knot does not live on a manifold. It is not ‘‘locate
somewhere.’’ It is not a quantum excitationsin space–time. Rather, it is a quantum excitationsof
space–time. The quantized space does not reside ‘‘somewhere:’’ it itself defines the ‘‘wh
This is the picture of quantum space that emerges from loop quantum gravity. It is profo
different from the structure of the states of a weakly local quantum field theory.

The last step in the definition of the theory is the construction of the quantum Hamilto
constraint, namely the rigorous analog of the Wheeler DeWitt equation~11!. This is obtained by
promoting the classical GR Hamiltonian constraint, which in the connection formalism ca
written46 as

H@N#5E N Tr@F`$A,V%#, ~26!

into a quantum operator. HereN is a scalar smearing function;F is the curvature ofA; $ , % are
Poisson brackets; andV is the volume ofS. To promoteH@N# to an operator, we need first t
regularize it. We replace the classical expression~26! by a regularized,e-dependent one,He@N#,
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written in terms of quantities that we know how to promote to quantum operators. In particuF
is replaced by the holonomy of ane-size loop. The classical quantities are then replaced by
corresponding quantum operators, leading to the Hamiltonian operatorĤe@N#. Finally, we study
the limit e→0:Ĥe@N#→Ĥ@N#. This can be done in detail,46 with surprising results.

First, the action of the operator vanishes on the holonomyU@A,g# anytime the smearing
function N is zero on the end points ofg.47 In other words,Ĥ acts only at the nodes of the sp
networks. This can be seen as a consequence of the presence in~26! of the volume. Indeed, as
described above, the volume operator vanishes outside the nodes.

Second, the result of the action of the Hamiltonian operator on a spin network state tur
to be given by

Ĥ@N#uS&5 (
nodes n of s

N~xn!AnD̂nuS&. ~27!

xn is the point in which the noden is located. The action of the operatorDn on the stateuS& is
given in Fig. 3: the operator acts by creating an extra link that joins two pointsn1 andn2 lying on
distinct links adjacent to the noden.48 ~A sum over all couples of adjacent links is understoo!
The extra triangular loop that the new link forms is essentially thee-size loop whose holonomy
gives the regularization of the curvatureF in ~26!. The coefficientsAn can be explicitly
computed.49

Now, the key point of this construction is thatĤ@N# is well defined onHdiff . More precisely,
the limit in which the regulator is removed makes sense and isfinite on the diffeomorphisms-
invariant states, and only on those states. It is here that one sees the deep interplay b
general covariance and quantum field theory. What happens is that the size of the triangle
3, or, equivalently, the precise position of the two new nodes, depends on the regulatore. How-
ever, since the action of the operator on a state^su in Hdiff is defined by duality, the relevant limi
is

^Ĥ@N#suS&[ lim
e→0

^suĤe@N#S&. ~28!

But when acted upon by the diff-invariant state^su, the precise position of the link inuĤe@N#S&
is irrelevant, because different positions are related by a diffeomorphism, fore sufficiently small.
Therefore the limit~28! turns out to be trivial~constant!.50 In a precise sense, potential ultraviol
divergences are washed away by diffeomorphism invariance.

This concludes the description of the theory. The theory has been applied, for instan
black hole physics, leading to a finite computation of the Bekenstein–Hawking entropy
Schwarzschild black hole.51 Several aspects of the theory are still poorly understood~low-energy
limit, general observables!. Furthermore, the general lines of the construction of the Hamilton
constraint are understood, but a number of variants are possible, reflecting rather wide qu
tion ambiguities, and it is not clear which variant, if any at all, yields the physically correct the
with the right low-energy limit. Still, loop quantum gravity provides a construction of a w
defined and nontrivial general relativistic quantum field theory.

FIG. 3. The action of the Hamiltonian constraint on a trivalent node.
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C. Covariant approaches

1. Topological quantum field theories and the Turaev Viro model

Well-defined, although very simple, examples of a covariant formulation of general rela
tic quantum field theory are provided by topological quantum field theories~TQFT!. Topological
field theories are theories in which the number of gauges matches the number of fields, so
local degrees of freedom are washed away by gauge invariance. If the space topology is non
a finite number of global degrees of freedom may remain gauge invariant, leaving a non
dynamical theory.

A prejudice hard to die wants any diffeomorphism invariant field theory to be topologica
the sense of having a finite number of global degrees of freedom, unless diffeomorphism
ance is broken. This is wrong, and, as far as we know from GR, the world is described pre
by a diffeomorphism invariant field theory in which diffeomorphism invariance is not broken
the number of degrees of freedom is infinite.~Of course, we may gauge fix it.! These degrees o
freedom are ‘‘local’’ in the relational sense: they are localized with respect to each other. In
we can distinguish three kinds of theories. First, there are non-diff-invariant theories like
They have weakly local degrees of freedom—weaves—interpreted as localized in space
~with respect to a reference system!. Second, there are theories like GR. These are diffeomorph
invariant, have an infinite number of degrees of freedom—gravitational waves. These degr
freedom are relationally local and weakly nonlocal~hence the long historical confusion, no
completely over, on whether gravitational waves are ‘‘real’’ or not!. Finally, there are topologica
theories, which are diffeomorphism invariant, and, in addition, have only a finite number of g
degrees of freedom.

GR, on the other hand,is topological in three space–time dimensions~there are no gravita-
tional waves in three dimensional!. Quantum GR in three dimensions has been intensiv
studied.52–54 A state sum formulation of a TQFT that yields Euclidean 3-D GR in an approp
limit is provided by the celebrated Turaev–Viro model.4 The Turaev–Viro model can be define
over an arbitrary triangulationD of the space–time 3-manifold. An assignment of an irreduci
representationj e of the quantum groupSU(2)q to each 1-simplex~edges! e of the triangulation is
called a coloringc of the triangulation. We choseq a root of unity so that the number o
irreducible representations is finite. The partition function of the model is defined as a sum o
colorings ofD by

ZTV5(
c

)
e

dim~ j e!)
t

$6 j % t~c!. ~29!

dim( j e) is the ~quantum! dimension of the representationj e . The second product is over th
tetrahedrat of the triangulation.$6 j % t(c) is the q analog of the Wigner 6-j symbol of the six
representations assigned to the edges that bound the tetrahedront. The Winger 6-j symbol of
SU(2) can be computed as the value, forA50 of the spin network state~22! where the spin
network is given by the colored one skeleton oft. The analog calculation for a quantum group c
be done using the Temperley–Lieb recoupling theory techniques developed in Ref. 55. Th
~29! turns out to be independent from the triangulation. All triangulations are connected by a
set of elementary moves, and~29! does not change if we perform an elementary move on
triangulation. The invariance of~29! under these moves follows from the properties of the Wig
6- j symbols. In turn, these reflect the fact that the irreducible representations form anassociative
tensor category.56

The Turaev–Viro model can be defined over a triangulated 3-manifoldwith boundary. We
associate a Hilbert spaceHS to each componentS of the boundary of the 3-manifoldM. This is
done as follows. First, associate toS a Hilbert spaceLS , spanned by an orthonormal basis
statesus&S , wheres is a coloring of the triangulation ofS. Then, consider a 3-manifold bounde
by SøS8. Define a linear map betweenLS andLS8 with matrix elements
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PS,S8~s,s8!5S^suPus8&S85 (
c,]c5søs8

)
t

$6 j % t~c!. ~30!

The sum is over the coloring of the internal edges only. IfS5S8 and M is the cylinderS
3@0,1#, ~30! defines a projector,

PS~s,s8!5PS,S~s,s8!, ~31!

on LS . HS is the kernel of this projector, and is triangulation independent.
In general, the map~30!, restricted as a map fromHS to HS8 , is independent from the

triangulation. In fact, this construction defines a functor from the categoryM whose object are
2-manifolds and morphism are 3-manifolds with boundaries, into the categoryH of Hilbert spaces.
From this point of view, the projection

P:LS→HS ~32!

defined by~31! is the standard technique to get a functor from a semifunctor. Atiyah has prov
a compelling general definition of TQFT as a functor fromM to H.3 Atiyah’s general scheme
captures the structure we expect from a general relativistic quantum field theory, and, in par
from a quantum theory of gravity. Notice that the projection~32! provides precisely the analog o
the Wheeler–DeWitt equation. In particular, it represents a realization of Hawking’s proje
~15! on the solutions of~11!, which is also defined on a cylinder. The point is that evolution alo
the cylinderS3@0,1# is the evolution in coordinate time generated by the Hamiltonian constr
This evolution, I recall, is a nonphysical gauge transformation in the classical theory. The an
between quantum gravity and TQFT goes much further than this formal similarity structure:
shall see in Sec. III C 4, the solution of the loop quantum gravity version of the Wheeler–D
equation, can be computed by a formula surprisingly similar to~30!.

On the other hand, the axioms of a TQFT in Atiyah’s formulation require the spacesHS to be
finite dimensional. It is this feature that reflects the topological nature of the theories, and
compatible with quantum gravity, where we expect the theory to have an infinite numb
degrees of freedom and an infinite dimensional state space. The rest of the formal struc
Atiyah’s definition of TQFT, on the other hand, reflects only the diffeomorphism invariance o
theory, and it is thus likely to underlie a full quantum theory of gravity as well.

Now, remarkably, in the Turaev–Viro model the states inLS have a natural representation
spin network states. This is the first of a number of structural similarities between TQFT and
quantum gravity. To see this, consider thedual D8 of the triangulationD. Going to the dual
triangulation will be a crucial technique below.57 D8 is a cellular complex whose 1-cells corre
spond to the triangles inD and whose 2-cells correspond to the edges inD. The coloring ofD
induces a coloring of the 2-cells ofD8. Consider now a connected componentS of the boundary.
The dual of the triangulation ofS, or, equivalently, the boundary ofD8, is a trivalent graph. A
state, namely a coloring ofS, determines a coloring of the links of this graph. This is precisel
~trivalent! spin network. A link carrying the trivial representation is viewed as a nonexisting
Recall thatLS is spanned by the coloring of the triangulation of the boundary: it follows thatLS

admits a basis of spin network states.
In the q51 case the model diverges because there is an infinite number of represent

The divergent sum is the Ponzano–Regge model, a formal quantization of 3-D GR constru
the late 1960s,58 which has inspired most of the later developments. Theq51 model can be also
seen as a quantization of a 3-D topological field theory,BF theory.59 The fields ofBF theory are
a SU(2) connectionA, and asu(2)-algebra valued 1-formB. The action is

S@A,B#5E Tr@B∧F#. ~33!
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A discretization and path integral quantization of this theory yields~29!. Because of the topologi
cal aspect of the theory, the discretization turns out not to change the theory itself; that
degrees of freedom are lost in the discretization, or, equivalently, the continuum limit o
discretization is trivial. A canonical quantization52 yields the same quantum theory, and, rema
ably, one finds that the spin network states are precisely represented by spin network func
of the connection.60,61

2. Four dimensions: The Turaev –Ooguri –Crane –Yetter model

Let us now move to four dimensions. The generalization of the Turaev–Viro model to
dimensions was found by Turaev, Ooguri, and Crane and Yetter.5–7,62 The key idea is to color
2-simplices ~faces! f of the triangulation with irreducible representationsj f and to color
3-simplices~tetrahedra! t with intertwinersNt . One then defines

ZCY5(
c

)
f

dim~ j f !)
s

$15j %s~c!, ~34!

where the second product is now over the 4-simplicess of the triangulation, and the Wigner 6-j
symbol is replaced by the 15-j symbol. The Wigner 15-j symbol can be computed as follows. I
the dual triangulation, the 2- and 3-simplices that bounds correspond to 2-cells and 1-cells. Th
intersection of these with a ball surroundings ~which in the dual triangulation is a point! is again
a spin network. The 15-j symbol is theA50 value of the corresponding spin network state. T
Turaev–Ooguri–Crane–Yetter~TOCY! model is the quantization of 4-DBF theory. In 4-DBF
theory the actions is as in~33!, but B is now a two-form.

In Sec. III C 1, I have shown that the states of the Turaev–Viro model can be described a
networks: a basis of states in the~unconstrained, that is, before the projection! state spaceLS is
given by the colored 1-skeletons of the cellular complex dual to the boundaryS, and this is
precisely a spin network. The same is true for the TOCY model. Indeed, the boundaryS is now
three dimensional; the colored triangulation ofS carries spins over its triangles and intertwine
over its tetrahedra. Its dual carries spins over its edges and intertwiners over its nodes. The
define precisely a spin network. Therefore spin networks label states in three as well as
dimensions.

Now, the Euclidean GR action can be written as

S@A,E#5E Tr@E∧E∧F#, ~35!

whereA is anSO(4) connection andE the ~inverse! tetrad field, which can be seen as aSO(4)
algebra-valued 1-form. Comparing with~33!, we see that GR can be considered as anSO(4) BF
theory plus a suitable constraint, imposing, essentially, the two-formB to be the exterior produc
of two 1-form fieldsE.63 It was then natural to search for a formulation of quantum Euclidean
as a~nontopological! modification of aSO(4) TOCY state sum model. There are several attem
to do that, leading to some tentative formulations of quantum Euclidean GR as state sums
form ~34!. In particular, Reisenberger64 has proposed to directly implement the constraint
appropriate tensor products of the IIilbert spaces on which the irreducible representatio
defined. The constraint has an appealing geometrical interpretation as conditions for tri
defined byB ~in four dimensions! to join into tetrahedra.65 Barrett and Crane11 noticed that these
conditions, in turn, admits a direct interpretation in terms ofSO(4) representation theory: they ar
implemented within anSO(4) Crane–Yetter state sum model simply by~appropriately! restricting
the sum toSIMPLE SO(4) representations.@Irreducible representations ofSO(4) are labeled by
two half-integers~two spins! ( j 8, j 9), where j 81 j 9 is an integer. A representation is simple
j 85 j 9. Thus, simple representations are labeled by just one spin,j 5 j 85 j 9.] A number of results
support the idea that these models are indeed related to quantum GR.66,67
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The key problem in these models is the following. In the topological theories, the introdu
of a fixed triangulation is justified by the triangulation independence of the quantum th
Triangulation independence reflects the topological aspect of the theory and the absence
local degrees of freedom: simply speaking, a finite number of variables suffice to capture
physical degrees of freedom of the theory. In modifyingBF theory to obtain GR, one lose
triangulation independence. This is to be expected, since GR has infinite relationally loc~al-
though weakly nonlocal! physical degrees of freedom. In this context, a triangulation represe
genuine cut off of the degrees of freedom. Thus, the theory defined over a fixed triangu
cannot be the physical theory for which one is searching. To get the physical theory, we
either to ‘‘sum over all triangulations’’ or to take a limit ‘‘in which the triangulation becomes fi
and finer.’’ These limits are poorly understood. Some control over a sum over triangula
however, can be obtained from an alternative approach to these models, which I illustrate
next section.

3. Nonperturbative string theory in 0 dimensions, field theories over a group and
summing over triangulations

An intriguing nonperturbative and genuinely background-independent formulation of
quantum gravity was obtained some time ago in the context of string theory ‘‘in zero di
sions.’’ This is the theory obtained by dropping the scalar fields on the string world shee
represent the location of the string in the target space, and retaining just the 2-D metri
dynamical variable. The resulting theory can be expressed as a sum over the geometri
two-dimensional surface, as in~13!. This sum can be concretely defined by triangulating the 2
surface with triangles with sides of fixed length, and summing over all topologically dis
triangulations. The number of triangles joining on a vertex determines the local curvature
manifold at the vertex. Remarkably, the sum over such triangulations can be reinterpreted
Feynman expansion of the partition function of a quantum theory of matrices with a simple
potential.8 Indeed, thedual of a triangulation is a trivalent graph, and can be seen as one o
trivalent Feynman graphs of the cubic matrix theory.

A remarkable extension to three dimensions of the idea of these matrix models was ob
by Boulatov in Ref. 9. Boulatov considers a field theory over three copies ofSU(2), with the
action

S@f#5E dg1 dg2 dg3„f~g1 ,g2 ,g3!…2

1~l/4! !E dg1¯dg6 f~g1 ,g2 ,g3!f~g3 ,g4 ,g5!f~g2 ,g4 ,g6!f~g1 ,g5 ,g6!. ~36!

Notice that if we represent the field by a vertex and its three arguments with three edges a
to this vertex, then the second term in the action has the structure of a tetrahedron. Now
expandf in modes, harmonic analysis onSU(2) teaches us that the ‘‘momenta’’ of the fieldf,
that is, its modes, are labeled by the irreducible representations of the group. If we express~36! in
terms of these modes and then compute the Feynman’s perturbative expansion inl of the partition
function,

Z5E @Df#eiS@f#5(
G

ln~G!ZB@G#, ~37!

we obtain Feynman graphsG @with n(G) vertices# formed by tetravalent vertices connected
propagators. Each propagator has three indices, carrying momenta, namelySU(2) irreducible
representations. These indices are paired across the vertex, and summed over in such a
they define closed loops, or cycles, along the graph. If we interpret these cycles as defining
the Feynman graph is a 2-complex with 2-cells colored bySU(2) irreducibles. Most remarkably
if the 2-complexG is the dual 2-skeletonG(D) of a triangulationD, then the sum over momenta
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ZB@G#5(
c

A@G,c#, ~38!

is precisely the Turaev–Viro sum over colorings ofD, with q51. That is, the possible moment
on G(D) match exactly the possible colorings onD, and each Feynman amplitude is equal to t
corresponding Turaev–Viro amplitude,

A@G~D!,c#5)
e

dim~ j e!)
t

$6 j % t~c!. ~39!

Therefore, as formal series

ZTV@D#5ZB@G~D!#. ~40!

The same trick works in four dimensions, as realized by Ooguri.6 The Ooguri theory is a field
theory over four copies ofSU(2). Its action has the structure

S@f#5E dg1¯dg4 f21
l

5! E dg1¯dg10f5, ~41!

where the potential term has now the structure of a 4-simplex. The Feynman expansion
theory determines a state sum for a triangulated 4-D space–time, which is precisely theq51 case
of the TOCY state sum~34!. Again, the theory is, formally, triangulation independent.

Now, the modification introduced into theSO(4) TOCY model in order to obtain GR from
BF theory can be implemented directly in the above model.68 In fact, it is sufficient to replace
SU(2) with SO(4) in ~41! and to constrainf to be invariant under a fixedSO(3) subgroupH of
SO(4):

f~g1 ,g2 ,g3 ,g4!5f~h1g1 ,h2g2 ,h3g3 ,h4g4!, ;hiPH. ~42!

Remarkably, this constraint implements precisely the restriction of the modes to the simpl
resentations ofSO(4), which, in turn, is the quantum implementation of the constraint t
reduces GR to BF. Given a triangulationD with a dual 2-complexG(D), the value of the Feynman
graphG is preciselythe Barret–Crane partition function over the triangulationD. But unlike in the
previous cases, which were topological, and therefore triangulation independent, this time w
something crucial: the full Feynman expansion of the theory defines precisely a ‘‘sum
triangulations,’’ restoring full general relativistic invariance.

The terms in the expansion can be interpreted as a ‘‘quantized space–time geometry.’’ I
the interpretation of the links and nodes of the spin network states as carriers of quanta of a
volume extends, as we shall see in the next section, to the space–time colored triangu
Thus, these models provides a concrete definition of Hawking’s sum over geometries. The
tum geometries can be generated as Feynman graphs, as in the 2-D quantum gravity mode
in this context, we can view a triangulated space–time as a term in a Feynman expa
Alternatively, we can interpret the fieldf ~more precisely, its ‘‘Fourier’’ transform! as a quantum
amplitude for the geometry of a tetrahedron~see Ref. 65!. Then the quantum field theory can b
seen as a ‘‘multiparticle theory’’ for many ‘‘tetrahedra,’’ or elementary chunks of space, b
created and destroyed in interactions. A space–time is a Feynman history of creations a
structions of chunks of space.

4. Spin foam models

All the models described above admit a common description asspin foam models. This is a
surprising and remarkable fact. Let me sketch the general structure of a spin foam model.
foam model is a Feynman-like sum over histories, in which the histories are spin foams. A
foam s is a colored 2-D complex. A 2-D complex is an~abstract! collection of ‘‘faces,’’ which
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join at ‘‘edges,’’ which, in turn, join at ‘‘vertices.’’ Two 2-complexes are considered distinc
they are combinatorially distinct. A coloringc of a 2-complex is an assignment of spins to t
faces and intertwiners to the edges. A spin foam model is determined by choosing a
amplitudeAn(c), a function of the colorings of faces and edges adjacent to the vertex. The
foam model is then defined as the state sum

Z5 (
spin

foamss

)
vertices
nPs

An , ~43!

or, possibly, including amplitudes of edges and faces as well:

Z5 (
spin

foamss

)
faces
f Ps

Af )
edges
ePs

Ae )
vertices
nPs

An . ~44!

If D is a triangulation of a manifoldM, and D8 the corresponding dual complex, then th
2-skeleton ofD8 is a 2-D complex, which we indicate ass(D). The vertices ofs(D) correspond
to the then-simplices ofD; the edges to then21 simplices and the faces to then22 simplices.
Notice that in the 3-D models described above, spins were carried by the edges ofD, while in the
4-D models, spins were carried by the triangles ofD: in both cases, we obtain a spin foam wh
using the dual description.@In the Turaev–Viro model, edges are trivalent and thus intertwin
are unique, because there is a single normalized-invariant tensor between threeSU(2) represen-
tations#. Furthermore, in all models described above, the state sum does not depend on t
combinatorial data of the triangulation, but only on the structure of itsn, n21, andn22 sim-
plices: that is to say, just on the data that are represented by the corresponding spin foam
for instance, we obtain the Turaev–Viro model by choosingAn to be the Wigner 6-j symbol on the
vertices that have the structure of the dual of a tetrahedron, and to vanish otherwise. We ob
TOCY model by choosingAn to be the Wigner 15-j symbol on the vertices that have the structu
of the dual of a 4-simplex, and to vanish otherwise; and so on.

Surprisingly, however, spin foams come from the canonical quarters. Spin foams wer
introduced to describe the dynamics of loop quantum gravity, under the name branched c
surfaces.64 As I illustrate below, indeed, the covariant formulation of loop quantum gravity yie
a partition function that is again a spin foam model. The idea that quantum space–time co
described in terms of a sum over surfaces had been proposed earlier, in particular by Baez69 and
then by Reisenberger,64 and Iwasaki,70 who realized the importance of 2-complexes. The gen
notion and the term ‘‘spin foam model’’ were introduced by Baez.10 The possibility of defining a
causal structure over spin foams has also been explored.13 See Refs. 10 and 71 for details and fu
references.

Now, recall that in all the models described above, irrespectively of the dimension, a ba
~unconstrained! states is labeled by spin networks. Consider the state sumPS(s,s8) defined in
~30!, ~31! over the manifoldS3@0,1#. As discussed, this quantity defines an evolution in co
dinate time, as well as the projector on the physical state space. Now, a moment of reflectio
convince the reader that in the spin foam formulation,PS(s,s8) has a remarkable interpretation:
is a sum over ‘‘histories’’s of evolutions of the spin network states8 into the spin network state
s. That is to say, a spin foam can be seen as the space–time world sheet of a spin netwo
faces of the spin foam are the world sheets swept by the links of the spin network and the
of the spin foam are the worldlines swept by the nodes of the spin network. Vertices are
dynamics happen, precisely as in Feynman diagrams. That is to say, a spin foam vertex
seen as a ‘‘vertex’’ in the sense of the Feynman graphs of conventional quantum field the
spin foam withn vertices represents thus a transition amplitude acrossn21 intermediate states, o
an n-order term is a perturbative expansion of the transition amplitude.

In the Turaev–Viro theory, for instance, the vertex is the dual of a tetrahedron. Thus,
four adjacent edges. Consider one of these edges as coming from the past, and three going
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future. Then the vertex represents a process in which a trivalent node of the spin network op
in three trivalent nodes. See Fig. 4. A Hamiltonian that could generate such a vertex mus
have precisely the action described in Fig. 3, and the vertex amplitude can be seen as a
element of this Hamiltonian between the initial and final state. But Fig. 3 represents the act
the Hamiltonian constraint of canonical quantum gravity, which was derived by starting from
ADM constraint and promoting it to an operator! This is a remarkable convergence.

I now sketch the formal derivation of the spin foam formulation of loop quantum gravity f
the canonical theory.13 Once more, I give here only a very sketchy account of the derivation,
refer to the literature for all details. The problem in canonical quantum gravity is to defin
physical Hilbert spaceHphys, which is the space of the solutions of the Hamiltonian constra
starting from the diffeomorphism-invariant Hilbert spaceHdiff spanned by thes-knot states. Con-
sider the ‘‘projector’’ operator,

P5E @dN#eiĤ @N#, ~45!

to be compared with the expression of Dirac’s delta as the integral of an exponenti
diffeomorphism-invariant notion of integration exists for this functional integral.13,72Consider the
matrix elements ofP in the s-knots basis, and expand the exponent. The expansion ha
structure

^suPus8&;^sus8&1E @dN#~^suĤ@N#us8&1^suĤ@N#Ĥ@N#us8&1¯ !. ~46!

Using now the action~27! of Ĥ on spin network states, we can compute explicitly the action of
Ĥ@N# operators. The resulting integrals of the type*@dN#„N(x1)¯N(xn)… can be integrated
explicitly, leaving a sum of terms, each corresponding to a sequence of actions of the Hamil
constraint over ans knot. The amplitude of each term is essentially the product of theAn factors
in ~27!, one for each action ofĤ. Each term can be seen as a history in which thes-knot stateus8&
evolves until it reachesus&. The resulting sum admits a graphical interpretation: The sequenc
actions ofĤ on us8& can be represented by the space–time world sheet swept bys8 moving in time
and undergoing a discrete transition at each action ofĤ. This world sheet is a precisely a sp
foam. The faces of the complex are swept out by the spin network links and the edges
nodes. Faces are colored just as the underlying link, and edges as the underlying nod
transitions generated byĤ given in Fig. 3, is represented by the vertex illustrated in Fig. 4.
amplitude is given by the corresponding matrix elementsAn of Ĥ, defined in~27!. For instance,
a term of order one is represented in Fig. 5. The 4-D ‘‘space–time’’ in which this evolution t
place corresponds to the classical coordinate spacetime: a mathematical artifact.

FIG. 4. The elementary vertex.
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The result is that the expansion~46! of ^suPus8& can be written as a sum over topological
inequivalentspin foamss, bounded by the initial and final spin networkss8 ands. Each surfaces
represents the history of the initials-knot state, and is weighted by the product of coefficientsAn ,
associated to the vertices ofs. That is, we obtain a spin foam model as in~43!, where the vertex
amplitude is determined by the matrix elements of the Hamiltonian constraint.

The spin foam inherits from the spin networks a geometrical interpretation in terms of q
of areas and volume, and can be seen as an evolving quantum 3-geometry, that is as a q
4-geometry. In fact, a spin foam can be seen as the formalization of Weehler’s intuition o
foamy structure of Planck scale geometry.28 In this picture, the problem of specifying the corre
Hamiltonian constraint is translated into the problem of finding the right vertex amplitude,
general covariance is manifest, and we have the usual advantages of the covariant forma
particular, 4-D diff-invariant quantum observables can be understood24 in a form more simple and
intuitive than in the canonical framework.

Before concluding, it might be instructive to compare the spin foam formalism with
covariant formalism of a bosonic string theory as an integral over surfaces,

Z5E @Dsstring#e
2 iA@sstring#. ~47!

Heresstring is the embedding of the string world sheet in the target space–time, andA@sstring# is
the area of the string world sheet, which is induced by the fixed background metric of the
space–time. The spin foam partition function~43! can be easily rewritten as

Z5 (
spin

foamss

exp2 i (
vertices
nPs

an. ~48!

There is a similarity between~47! and~48!. They are both sums over surface configurations, w
amplitudes that are exponentials of a local expression on the surface. There are, howev
crucial differences. The first is that the surfaces in~48! branch off and carry spins, while th
bosonic string world sheets do not. The second, and most important, difference is that the
of the string, namely the areaA@sstring# depends on the target space metric, and therefore dep
on the precise location ofsstring in the target space. The sum over surfaces in~47! is thus an
integral in which two slightly deformed locations ofsstring in the target space count as differen
On the contrary, in~48! no manifold background structure enters the action~the exponent!, and the
weight does not depend on the location of the spin foam in the manifold, but only on its
invariant features. Accordingly the sum over surfaces is over diff-inequivalent classes only,
is a sum and not an integral.

It has been suggested, on the other hand, that the background-independent, general rel
formulation of string theory, whose lack is the most serious open problem in that theory,

FIG. 5. A first-order diagram.
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look like a spin foam model.73 For instance,~47! could perhaps be obtained as an approximat
of an expression of the form~48!, when expanding small fluctuationssfluctuation of s over a
‘‘background’’ sbackground, representing the background geometry. The area in~47! could then
emerge as the result of local diff-invariant interactions betweensfluctuation and sbackground. Since
sbackground can be interpreted as a 4-geometry and the area is the lowest dimension ad
functional for a surface, it is not unlikely that an expression like~47! could emerge from~48!.

In conclusion, the picture of the theory as a sum over spin foams is thus common to bot
quantum gravity and the covariant approaches: a common and compelling formalism for g
relativistic quantum field theory seems to be emerging from different quarters. It is remar
different from the formalism of nongeneral relativistic quantum field theory. The spin foam
malism is explicitly diff invariant and background independent. Diff invariance is strictly rela
to the short scale discreteness of the theory, which is reflected in the formalism by the
combinatorial nature of~48!. In turn, this fundamental short scale discreteness seems to be ca
of taking care of the conventional quantum field theory ultraviolet divergences.

IV. CONCLUSION

Hopefully, the picture that I have described and that is emerging from different quarters,
variant of this picture, or maybe a different picture, will lead us to the definition of a consi
quantum general relativistic theory with general relativity as its classical limit, and thus
successful conclusion of the 20th century revolution in fundamental physics.

Such a successful conclusion, in my opinion, is not to be searched in a omnicompreh
Lagrangian, or in a theory of everything. Rather, it is to be searched in a new conceptual
work for describing the physical world at the fundamental level. A conceptual framework ca
of replacing the extraordinary powerful Newtonian framework, but taking into account the
modification of the basic notions of matter, causality, space, and time that represent a major
of this tormented century.

The ‘‘great’’ scientific revolution, the 17th century’s one, was opened by CopernicusDe
Revolutionibusand successfully concluded by Newton’sPrincipia. That is to say, it lasted a
century and a half. The current revolution still has a chance to be a bit shorter.
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Particle physics and quantum field theory at the turn
of the century: Old principles with new concepts
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The present state of quantum field theory~QFT! is analyzed from a new viewpoint
whose mathematical basis is the modular theory of von Neumann algebras. Its
physical consequences suggest new ways of dealing with interactions, symmetries,
Hawking–Unruh thermal properties and possibly also extensions of the scheme of
renormalized perturbation theory. Interactions are incorporated by using the fact
that theS matrix is a relative modular invariant of the interacting—relative to the
incoming—net of wedge algebras. This new point of view allows many interesting
comparisions with the standard quantization approach to QFT and is shown to be
firmly rooted in the history of QFT. Its radical ‘‘change of paradigm’’ aspect
becomes particularly visible in the quantum measurement problem. ©2000
American Institute of Physics.@S0022-2488~00!02506-8#

I. LOOKING AT THE PAST WITH HINDSIGHT

To a contemporary observer, the area which half a century ago was very appropriately
particle or high-energy physics, with quantum field theory~QFT! being its main theoretical tool
has gradually lost its homogeneous presentation and appears presently somewhat fractu
several highly specialized regions, whose mutual relations are often lost. Despite analogi
would be very hard pressed to interpret, e.g., the standard perturbative formulation~especially of
gauge theory!, conformal field theory and massive factorizingd5111 models as manifestation
of the same physical principles. For this reason the value of controllable low-dimensional m
of QFT as a theoretical laboratory to understand and explore the general principles of
quantum physics1 has remained opaque, despite the considerable sophistication of their form
which went into their presentation. As no other previous theory in its long history, inclu
relativity and quantum mechanics, QFT has resisted construction~apart from some low-
dimensional super-renormalizable models! to the degree that we do not know whether tho
operators and their correlation functions which one postulates and perturbatively ‘‘approxim
really exists in the presence of four-dimensional nontrivial interactions.~Despite numerous at
tempts to convert this problem into a small nuisance which will be repaired at the future
length physics, the problem did not go away. The problem of mathematical consistency of
cal principles cannot be solved by referring it to the next still unknown layer of physical rea!
The coexistence of such a curious state of affairs for almost 70 years with a set of perturb
consistent rules and recipes of a stunning predictive power is the most remarkable, eni
heritage and a gift of 20th century particle physics to the 21st century.

We will have little to say about string theory which has separated from theS-matrix aspects
of QFT more than 3 decades ago and still undergoes rapid changes. The reason is that in
to the absence of any tangible contact with the nature of particle physics, string theory has
to compare its underlying principles with those of QFT or to formulate its own principles
theory which claims to transcend QFT without offering at the same time new physical princ
by which its underlying philosophy can be secured against physical equivalence2 with field theo-
retic principles is difficult to position, and here we will not even try.

a!Electronic mail: schroer@cbpf.br
38010022-2488/2000/41(6)/3801/31/$17.00 © 2000 American Institute of Physics
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A different and potentially more productive kind of dissatisfaction with the present sta
particle theory results from theories with impressive predictive power but whose conceptua
leaves too much to be desired in order to be considered in the long run as completed and
theories. Here the very successful Bohr–Sommerfeld theory could serve as an exampl
incorporation into QM, which showed its transitory character, would not have happene
swiftly. Potential contemporary candidates are electroweak theory and quantum chromodyn
Most of their theoretical discoveries and crucial theoretical developments occurred in the
years starting in the late 1960s, although some of the important experimental verifications
much later. Compared with the speed of theoretical progress during a good part of the
century, the time from the middle 1970s up to now begins to appear more and more as a t
stagnation. The fact that an increasing number of renowned theoretical particle physicist
uneasy feelings about accepting the present gauge theoretic models extended by the Higgs
nism as a mature description, which constitutes a closed chapter in particle physics, shows t
is more than an overcritical interpretation on my part.

Experience with past crises in particle theory~vis. the ultraviolet divergency crisis of th
1940s solved by the renormalization theory of the 1950s! suggests using a combination of co
servative adherence to physical principles and leaving the revolutionary changes to the co
and the mathematical formalism.

Most of the remedies that for the last two decades have enjoyed popularity~as, e.g., string
theory and physics based on noncommutative geometry! were revolutionary with regard to phys
cal principles as well.@A closer look reveals that they are in fact amazingly conservative w
regard to formalism~e.g., the use of functional integral representations of the Lagrangian qu
zation approach orad hocnoncommutative modifications thereof!.# As the history that led up to
renormalization theory has shown, it is easier to be revolutionary if one allows modificatio
principles~e.g., postulating an elementary length or fundamental cutoff, abandoning QFT in
of a pureS-matrix approach! than to maintain principles and limit the changes to new conce
~physical reparametrization, changing the canonical formalism for causal perturbations!. It is in-
dicative that even when a change of principles became unavoidable, as in the case of relativ
quantum theory, there was an intense conceptual struggle with the old principles, including t
of sophisticated Gedankenexperiments. It seems that this intellectually demanding art ha
lost in the second half of the 20th century.

In the following I would like to expose some recent ideas which maintain a strictly con
vative attitude with respect to physical principles. So our wanderlust to step into the ‘
yonder’’ ~to borrow a phrase used by Feynman! will be controlled by the valuable compass
physical principles underlying local quantum physics and not by the extension of existing fo
isms. The scheme which allows the most natural and clear formulation for our purposes is
days referred to as algebraic quantum field theory~AQFT! or local quantum physics~LQP!. Since
it is awkward to use the terminology ‘‘quantum field theory without pointlike fields,’’ we will u
those acronyms whenever we want the reader not to think in terms of the standard te
methods. Its impractical and nonconstructive aspects~of which it often stood accused! belongs to
the past, and in the following we will go a long way to demonstrate this. LQP as enriche
modular theory contains both of the two most successful aspects of past particle physic
formalism of local quantum physics but blended and controlled with the Wigner particle co
and a new modular role of theS-matrix.

Since I do not want to pose too many technical/mathematical barriers around these new
I use the more flexible essay style~‘‘statements’’ instead of ‘‘theorems’’!. I also assume that the
reader is familiar with the standard framework of quantum field theory~QFT!.3

For motivation I will first present some weak spots in the standard textbook approach to
Most of the presentations start with the canonical formalism~Heisenberg–Pauli! or with the
~Euclidean! path-integral formalism~Feynman!. Both of them are closely related quantizatio
procedures. This means that they are based on a classical parallelism starting from a c
Lagrangian or Hamiltonian in analogy to the way quantum mechanical systems are define~and
named after their classical Hamiltonian!. @In the case of Fermions it has been standard pra
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~Berezin! to invent a classical reality in form of Grassmann dynamical variables in order to ex
the quantization parallelism.# But there is one significant difference to the quantum mechan
case. Whereas in the latter the canonical formalism and the Feynman–Kac path-integral re
tation have a firm mathematical status even in the presence of interactions, the use o
quantization methods in QFT is~with the already mentioned exception of free fields and sup
renormalizable interactions! what one may call more of an ‘‘artistic’’ nature. This means th
although the quantization requirements offer enough guide to start perturbative calculation
final renormalized answers do not fulfil the original requirements:the renormalized physica
correlation functions simply do not obey the canonical commutation relations nor are
Feynman–Kac representable. The only generically remaining structure unaffected by renorm
ization is Einstein causality/locality, i.e., the statement of mutual~anti!commutation of fields
separated by spacelike distances. In view of this delicate fact and despite the resulting la
logical conceptual balance between the quantization requirement and the physical renorm
answers, quantization in this sense became an acceptedfait accompli. The remarkable succes
swept aside worries for what appeared to be just small mathematical imperfections.

What enhanced the willingness of many physicists to live comfortably with this conce
flaw of the formulation of QFT was the fact that their mathematical friends also became attr
to the differential-geometric appeal of path integral quantization and often succumbed
delicate artistic fascination to such a degree that its conceptual and mathematical flaw
ignored and the artistic computational tools became accepted as a kind of experimental ma
ics ~and in several cases even received the admirations and blessings of mathematicians!. There is
a lot of irony in the present state of affairs where QM~for which the Feynman–Kac setting i
rigorous but in praxis too difficult and time consuming! is presented with operator methods, a
on the other hand QFT~for which the method is a nice but artistic device to get calculati
started! is done almost exclusively in path-integral formulation. Anybody who tried to giv
physically balanced course on QM using path integrals knows at least one side of these pro

There exists an alternative method of deforming free fields with interaction Wick polynom
within the setting of causal perturbation which uses the above-mentioned fact that causalit~and
not the Feynman–Kac representability! survives renormalization. The interaction polynomials
terms of free fields enter the causality- and unitarity-based equation for time ordered or re
function as a perturbative input. All iterative steps are then shown to be uniquely fixed b
mentioned principle and minimality requirements for an order-independent minimal scale d
sion. The mathematical problem is the extension of time-ordered distributions from a c
subspace of test functions with nondiagonal support to such containing supports with coal
points. There is no actual infinity and the difference renormalizable/nonrenormalizable
implementability of such a minimality requirement~which is tantamount to a unique theory wit
a finite number of physical parameters!. This method explains the infinities of many of th
textbook quantization methods as a result of their unwarranted relation to classical structu
other words, the prize of infinities of the old classical particle models of Poincare´ and Lorentz has
enter nolens volens via quantization and represent a technical nuisancce which needs re~as
first pointed out by Kramers!. @According to Wigner’s analysis particles in QFT enter~to the
degree that the QFT possesses them! automatically via the representation theory of the Poinc´
group; there is no room for separate particle models ala Poincare´/Lorentz.# Despite differences in
the conceptual setting the renormalized results of all approaches~with or without intermediate
infinities! are identical and the apparent restrictive relation between the possible existenc
renormalizability of a theory and the ‘‘good short distance behavior’’ of those particular ‘‘fi
coordinatizations’’ in terms of which the interaction density was defined is common to al
proaches which use pointlike fields.

With this remark we have come to the point of departure of the new framework from th
setting: the substitution of individual fields by nets of algebras corresponding to spacetim
gions. This step is to be seen in analogy to the spirit underlying the transition of old fashi
geometry in terms of coordinates to modern coordinate-free intrinsic differential geometry.

There were strong historical indications pointing towards a field-coordinate-free formul
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of local quantum physics; one of the earliest was the observation about the insensitivity
~on-shell! scattering matrix with respect to changes of the interpolating local fields. In the t
tional setting of Lagrangian this was done by carrying out extremely formal field transforma
As in geometry one meets of course also preferred field-coordinates which have charac
intrinsic properties; notably conserved Noether currents and other natural local objects
result from the localization of~global! symmetries or have a direct relation to superselec
charges. I would even go as far as saying that it was basically the arbitraryad hoc nature of
selection of particular fields in particle physics which led to the~hard to understand from a
contemporary point of view! sometimes fanatical ‘‘cleansing’’ attitude against QFT~which even
entered the publications of someS-matrix purists!. Our modular localization approach will dem
onstrate, that also the opposite ideology againstS-matrix theory~for quotations of famous saying
see Ref. 21! is unwarranted. SinceS is an important relative modular invariant, a constructi
method based on modular theory should use and construct it together with the local algebr
not only at the end. Our approach combines on- and off-shell aspects in one formalism
particular presents the construction of the observable algebras from anS-matrix point of view
without introducing individual fields; hence it accomplishes those steps which in the oldS-matrix
theory were missing or even thought to be impossible.

In fact this coordinate-free formulation already exists for quite some time.1 Up to very re-
cently it was limited to structural questions and contributed little in the direction of classifica
and investigations of concrete models~a fact which perhaps also explains the widespread ig
rance about it!. The main motivation for this paper is to inform the reader about two new c
structive ideas, both related to the Tomita–Takesaki modular theory for wedge-localized alg
The first idea uses ‘‘polarization-free generators’’ of the wedge algebra whose structure is c
related to the scattering matrix. This structure is, e.g., behind the bootstrap-form-factor pr
for d5111 factorizing theories. The second idea is to relate a higher dimensional massive
to a finite number of isomorphic copies of one chiral conformal field theory whose rel
positions in one Hilbert space are defined in terms of ‘‘modular inclusions and intersections
picturesque terms this should be thought of as some sort of ‘‘chiral scanning’’ or AQFT h
raphy. One encodes the rather complex structure of higher-dimensional massive QFT into a
of very simple chiral conformal QFT and their relative modular position. Such modular refo
lations may also shed new light on the existence problem of higher dimensional QFT since
is good control of existence of their chiral conformal building blocks.

The organization of the content is as follows. As a ‘‘warm up’’ we explain in the next sec
a presentation of interaction-free systems without the use of field coordinates. We then u
formalism for a presentation of the Hawking–Unruh thermal aspects of modular localization
section continues with a totally intrinsic characterization of what one means by interactions.
results suggest to look at wedge algebras as the smallest spacetime regions which offer
compromise between particles and fields; in fact if the often cited ‘‘particle-field dualism’’ m
any sense at all, it is in this context of wedge localization. In the third section we explai
relative modular invariance of theS matrix. The crucial concepts here are certain wedge-local
operators which if applied once to the vacuum even in the presence of interactions do not ge
particle/antiparticle vacuum polarization clouds but just pure one-particle vectors. By spec
tion to two-dimensional models without real particle creation, they are identified
Zamolodchikov–Faddeev operators which in this way acquire for the first time a profound s
time interpretation. We also comment on wedge-localized states and operators in the pres
real pair creation away from factorizing models. The section ends with a modular extens
standard symmetries to ‘‘hidden’’ symmetries.

Section III presents the ‘‘re-conquest’’ of notions known from basic quantum mecha
within LQP with the help of the ‘‘split property.’’ In this section the conceptual change
paradigm of the new approach becomes most evident. In this section we also look at ‘‘locali
entropy,’’ the other thermal manifestation in addition to localization temperature.

In the same futuristic last section I mention some potential areas of applications wher
expects the modular ideas to enlarge the conceptual realm of models beyond what would be
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ordinarily ‘‘nonrenormalizable.’’ We also present various other poorly studied consequenc
modular theory, including an LQP version of ‘‘holography’’ and ‘‘chiral conformal scanning

This paper is intended to fill some of the space left between two other major papers o
present state of local quantum physics in this issue of J. Math. Phys.; one is a broadly base
with a strong emphasis on recalling the history and the spirit of times of particle physics du
good part of the 20th century,4 and the other5 presents an exhaustive account of more rec
developments about modular stuctures of LQP. In the following we will continue to use
acronyms QM, QFT, AQFT, and LQP for quantum mechanics, quantum field theory, alge
quantum field theory, and local quantum physics, respectively.

II. MODULAR STRUCTURE OF LQP

For pedagogical explanations of the new modular concepts, the interaction free theor
still the simplest. As in some of the textbooks~Haag, Weinberg!, one starts from the Wigne
approach which assigns a unique irreducible representation of the Poincare´ group with every
admissable value of the mass and spin/helicity (m,s). The Wigner theory also pre-empts th
statistics of particles and assigns in the case ofd5311, where the particles can only be fermion
bosons~with the exception of the essentially unexplored case of continuous spin!, unique momen-
tum space creation and annihilation operators acting in a multiparticle Fock space. The uniq
is only lost at the moment one uses a manifestly local formalism in terms of pointlike fields
covariant field construction is synonymous with the introduction of intertwiners between
unique Wigner (m,s) representation and Lorentz-covariant momentum dependent spinorial~dot-
ted and undotted! tensors which under the homogenousL-group transform with the irreducible
D [A,B] (L) matrices:

u~p!D (s)~R~L,p!!5D [A,B]~L!u~L21p!. ~1!

The only restriction is

uA2Bu<s<A1B ~2!

which leaves infinitely manyA,B ~half integer! choices for a givens. Here theu(p) intertwiner
is a rectangular matrix consisting of 2s11 column vectorsu(p,s3),s352s, . . . ,1s of length
(2A11)(2B11). Its explicit construction using Clebsch–Gordan methods can be found in W
berg’s book.3 Analogously there exist antiparticle~opposite charge! v(p) intertwiners:
D (s)* (R(L,p))→D [A,B] (L). The covariant field is then of the form

c [A,B]~x!5
1

~2p!3/2E S e2 ipx(
s3

u~p1 ,s3!a~p1 ,s3!1eipx(
ss

v~p1 ,s3!b* ~p1 ,s3! D d3p

2v
. ~3!

Since the range of theA andB ~undotted/dotted! spinors is arbitrary apart from the fact th
they must fulfil the inequality with respect to the given physical spins, the number of covarian
fields is countably infinite.~For the massless case the helicity inequalities with respect to
spinorial indices are more restrictive, but one Wigner representation has still a countably i
number of covariant representations.! Fortunately it turns out that this loss of uniqueness does
cause any harm in particle physics. If one defines the algebrasP(O) as the operator algebra
generated from the smeared field with suppf PO,6 one realizes that these localized algebras
not depend on the representative field chosen from the (m,s) class. In fact all the different
covariant fields which share the same creation/annihilation operators. This gave rise to the
ers equivalence classes of relatively local fields6 which generalized the family of Wick po¨lyno-
mials to the realm of interactions and gave a structural explanation of the insensitivity ofS
operator.
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A. Modular aspects of Wigner particle theory

The conceptually and mathematically natural way to implement the idea of independen
physics from different field coordinatizations is to use instead of smeared unbounded fields~with
their technically difficult domain properties! the associated von Neumann algebras of boun
operators1 which have lost their reference to particular field coordinates. In the case at hand
Wigner particle theory of free particles this step recovers the Wigner uniqueness of (m,s) particle
representations~which got lost as a result of the introduction of covariant fields!. The obvious
question is therefore:is it possible to extract the spacetime indexed net of algebras directly
the Wigner theory without the intermediate appearance of fields?A question like this was prob-
ably on Wigner’s mind when he was looking~without success! for a relativistic localization
concept within his representation–theoretical framework.

Recently this question of covariant localizaton received a positive answer as a result
introduction of ‘‘modular localization.’’7,8 The idea can be traced back to a seminal pape
Bisognano and Wichmann in which it was shown that the modular Tomita–Takesaki theo1 of
von Neumann algebras has not only some deep use in quantum statistical mechanics~as was
already known from the Haag–Hugenholtz–Winnink work which appeared at the same tim
Tomita’s notes1! but is also an inexorable part of field theoretic wedge-localization.~It is impor-
tant to emphasize that physicists have a significant share in the discovery of modular the
particular with physicists whose only contact with this theory arose through ‘‘noncommut
geometry’’ without revealing the natural physical origin.! What one needs here is in some sen
the inverse of the Bisognano–Wichmann arguments namely the use of modular theory f
actual construction of a net of wedge algebras and their smaller descendents via intersecti
adaptation to the case at hand would look for a kind of pre-Tomita theory which can be formu
within the Wigner theory and with the help of canonical commutation relation~CCR! or anticom-
mutation~CAR! functors pre-empts the net structure of the interaction-free LQP. This is in
feasible and the resulting formalism is mathematically not more complicated than the formal
free fields. Since it has appeared in different publications, a short description should suffice
purpose of this paper.

The premodular theory alluded to is a spatial invariant of the Tomita theory for real Hi
spaces positioned within a complex Hilbert space. For its adaptation to the Wigner theor
starts with the boost transformation associated with a wedge and its reflection transform
along the rim of the wedge. For the standardx– t wedge these are theLx2t(x) Lorentz boost and
thex– t reflectionr x2t : (x,t)→(2x,2t) which according to well-known theorems is represen
antiunitarily in the Wigner theory.~In case of charged particles the Wigner theory should
suitably extended by a particle/antiparticle doubling.! One then starts from the unitary boost gro
u(L(x)) and forms by the standard functional calculus the unbounded ‘‘analytic continuat
In terms of modular notation we define

s5jd1/2,

j5u~r !, ~4!

d i t5u~L~22pt !!,

whereu(L(x)) andu(r ) are the unitary/antiunitary representations of these geometric tran
mations in the~if necessary doubled! Wigner theory. Note thatU(r ) is apart from ap-rotation
around thex-axis the one-particle version of the TCP operator. On the other hand,s is a very
unusual object namely an unbounded antilinear operator which on its domain is involutis2

51. The real subspace

sc5c ~5!

which consists of momentum space wave functions which are boundary values of analytic
tions in the lowerip strip of the rapidity variableu. The21 eigenvalues ofS do not give rise to
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a new problem since multiplication of the11 eigenfunctions withi convert them into the21
eigenfunctions. The real subspaceHR(W) is closed in the complex Hilbert space topology but t
complexificationHR(W) gives a space which is only dense in the complex Wigner space.
surprising fact~which is the Wigner one-particle analogue of the Reeh–Schlieder densene
local field states in full quantum field theory! has no parallel in any other area of quantum phys
It suggests that the above mentioned unusual property of theS-operator may be the vehicle b
which geometric physical properties of space time localization are encoded into the ab
domain properties of unbounded operators. Some rather straightforward checks reveal th
interpretation is consistent: namely in the present setting this localization interpretation
consistency with the net properties of the spacesHR(O)’s:

HR~O![ùW.OHR~W! ~6!

as well as with the conventional field theoretic construction using pointlike fields where it a
with localized covariant functions defined in terms of support properties of Cauchy initial
The relation of Wigner subspaces and localized subalgebras is accomplished with the help
CCR or CAR functors which map real subspacesHR(O) into von NeumannA(HR(O)) subalge-
bras and which define a limited but rigorous meaning of the word ‘‘quantization’’

J,D,S5G~ j,d,s!, ~7!

where the functorial mapG carries the functions of the Wigner theory into the Weyl operators
Fock space~for the fermionic CAR algebras there is an additional modification!. Whereas the
‘‘premodular’’ operators denoted by small letters act on the Wigner space, the modular ope
J,D have anAd action on the von Neumann algebras which are functorially related to
subspaces and which makes them objects of the Tomita–Takesaki modular theory

SAV5A* V, S5JD1/2, ~8!

Ad D i tA5A, ~9!

Ad JA5A 8.

This time theS operator is that of Tomita, i.e., the unbounded densely defined operator w
relates the dense setAV to the dense setA* V and givesJ andD1/2 by polar decomposition. The
nontrivial miraculous properties of this decomposition are the existence of an automor
sv(t)5Ad D i t which propagates operators withinA and only depends on the statev ~and not on
the implementing vectorV! and that of an antiunitary involutionJ which mapsA onto its
commutantA 8. The theory of Tomita assures that these objects exist in general if onlyV is a
cyclic and separating vector with respect toA. Our special case at hand, in which the algebras
the modular objects are constructed functorially from the Wigner theory, suggest that the m
structure for wedge algebras may always have a geometrical significance with a funda
physical interpretation in any QFT. This is indeed true, and within the Wightman framework
was established by Bisognano and Wichmann.1

The existence of this coordinate–free formulation for interaction free theories has imme
consequences. Although in the present form it is not yet suited to incorporate interactions w
the use of field coordinates, it does shed an additional helpful light on the standard causal
bation theory. Among other things it formally explains why an interaction which has been de
in terms of concrete free fields can be rewritten without change of content in terms of any
field coordinates and that moreover Euler–Lagrange coordinates which associate free fields
bilinear zero order LagrangiansL0 are not necessary in a real time operator formulation. Of cou
since an Euler–Lagrangian field coordinatization exists for each free theory and physical
remain the same if one properly tranforms the interaction density, the use of such field is
restriction of generality.
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B. Thermal aspects of modular localization

Another valuable suggestion which can be abstracted from the premodular structure
Wigner theory concerns thermal aspects which originate from localization. In modular theo
dense set of vectors which are obtained by applying~local! von Neumann algebras in standa
position to the standard~vacuum! vector forms a core for the Tomita operatorS. The domain of
S can then be described in terms of the11 ~or 21! closed real subspace ofS. In terms of the
‘‘premodular’’ objectss in Wigner space and the modular Tomita operatorsS in Fock space we
introduce the following nets of wedge-localized dense subspaces:

HR~W!1 iH R~W!5dom~s!,HWigner, ~10!

HR~W!1 iHR~W!5dom~S!,HFock. ~11!

These dense subspaces become Hilbert spaces in their own right if we use the graph no~the
thermal norm! of the Tomita operators. For thes operators in Wigner space we have

~ f ,g!Wigner→~ f ,g!G[~ f ,g!Wig1~s f,sg!Wig5~ f ,g!Wig1~ f ,dg!Wig . ~12!

This graph topology insures that the wave functions are strip-analytic in the wedge rapidityu:

p05m~p'!coshu, p15m~p'!sinhu, m~p'!5Am21p'
2 , ~13!

strip:0,Im z,p, z5u11 iu2 ,

where the ‘‘G-finiteness’’~12! is precisely the analyticity prerequisite for the validity of the KM
property1 for the two-point function. In this way one finally arrives at~for scalar Bosons!:

~ f ,g!Wig
W [~ f ,g!K,T52p , ~14!

where on the left-hand side the Wigner inner product is restricted toHR(W)1 iH R(W) and the
right-hand side is the thermal inner product which contains the characteristic thermald/12d
factor whered5e2pK with K the infinitesimal generator of theL-boost.~The Unruh Hamiltonian
is different from the boostK by a factor 1/a wherea is the Unruh acceleration.! The fact that the
boost K with a two-sided spectrum appears instead of the one-sided bounded HamiltonH
reveals one difference between the two situations. More explicitly for the heat bath tempera
a Hamiltonian dynamics the modular operatord5e22bH is bounded on one particle wave fun
tions, whereas the unboundedness ofd5e2pK enforces the localization~strip analyticity! of the
Wigner wave functions, i.e., the two-sidedness of the spectrum does not permit a KMS state
full algebra. In fact localization-temperatures are inexorably linked with unbounded mo
symmetry operators. With the localization temperatureT52p in this way having been mad
manifest, the only difference between localization temperatures and heat bath temperature~for a
system enclosed in a box described by a Gibbs formula! on the level of field algebras in Foc
space corresponds to the difference between hyperfinite type III1 and type I von Neumann alge
bras. But even this distinction disappears if one passes from the Gibbs box situation to the
volume thermodynamic limit: the GNS reconstruction using the limiting correlation funct
reveals that the algebra has become hyperfinite type III1.

Passing from Wigner one-particle theory to free field theory we may now consider m
elements of wedge-localized operators between wedge-localized multiparticle states. Th
KMS property allows to move the wedge-localized particle state as an antiparticle with the
lytically continued rapidityu1 ip from the ket to the bra. The simplest illustration is the tw
particle matrix element of a free current of a charged scalar fieldj m(x)5:f* ]Jmf: . The analytic
relation
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^p8u j m~0!up&5anal cont
z→u1 ip

^0u j m~0!up,p̄8~z!&, ~15!

wherep̄8(z) represents the analytic rapidity parametrization of the antiparticle is the simplest
of a crossing relation. It is an identity which is known to hold also in each perturbative ord
renormalizable interacting theories and which together with TCP-symmetry constitutes the
profound property of QFT. But it has never been derived in sufficient generality within a no
turbative framework of QFT nor~different from TCP! has its relation to the causality and positiv
energy property of QFT been adequately understood. It is often thought of as a kind of on
momentum space substitute for Einstein causality.

If crossing symmetry is really a general property of local QFT, then it should be the on-
manifestation of the off-shell KMS property for modular wedge localization not only in
previous free case but also in the presence of interactions. In fact we will show in the next s
that the main step towards a deeper understanding of crossing symmetry is the existence o
on-shell operators*F(x) f (x)dx(suppf PW) which generate the wedge algebra and upon ap
cation to the vacuum create a one-particle state vector without the vacuum polarization
which are characteristc for interacting operators in smaller than wedge localization region
will call them polarization-free generators or PFG’s. In the case ofd5111 factorizing models
their mass shell Fourier transforms satisfy the Zamolodchikov–Faddeev algebraic relations
momentum space rapidity,9 and the derivation of crossing symmetry is similar~albeit more in-
volved! to the previously mentioned case of form factors in free theories.~As will become clear in
the next section, although these operators are nonlocal, they generate the wedge localized
and as a consequence the modular KMS formalism is applicable to them.!

C. Wedge localization for special interactions

A major challenge to ones conceptual abilities is the transposition of these modular att
to the realm of interactions. Here the first step should be a clear intrinsic definition of wha
means by interactions without the use of, e.g., Lagrangians, Feynman rules or other w
computing but solely based on intrinsic properties of correlation functions or nets of local
bras. The example of Wick polynomials in the free Borchers class, which despite their co
cated looking vacuum correlation functions still represent only free theories in the veil of diff
field coordinates, gives a first taste of the magnitude of the problem. This will be addressed
next section.

We start with the Fock space of free massive bosons or fermions. In order to save notat
will explain the main ideas first in the context of self-conjugate~neutral! scalar bosons. Using th
Bose statistics we will use for our definitions the ‘‘natural’’ rapidity-ordered notation
n-particle state vectors

a* ~u1!a* ~u2!¯a* ~un!V, u1.u2.¯.un ~16!

and define new creation operatorsZ* (u) in case ofu i.u.u i 11 and with the previous conventio

Z* ~u!a* ~u1!¯a* ~u i !¯a* ~un!V5S~u2u1!¯S~u2u i !a* ~u1!¯a* ~u i !a* ~u!¯a* ~un!V.
~17!

With Z(u) as the formal adjoint one finds the following two-particle commutation relations

Z* ~u!Z* ~u8!5S~u2u8!Z* ~u8!Z* ~u!,
~18!

Z~u!Z* ~u8!5S~u82u!Z* ~u8!Z~u!1d~u2u8!,

where the formalZ adjoint ofZ* is defined in the standard way. The*-algebra property require
S(u)5S(u)* 5S(u)215S(2u). Although our notation already pre-empted the relation with
Zamolodchikov–Faddeev algebra, the conceptual setting here is quite different. We do n
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mand that the structure functionS is the crossing symmetricS matrix where certain poles repre
sent bound states of particles. Rather we will show that all these properties including their ph
interpretation are consequences of modular wedge localization of PFG’s formed from theZ’s.
This structure leads in particular to

Z* ~u1!¯Z* ~un!V5a* ~u1!¯a* ~un!V,

Z* ~un!¯Z* ~u1!V5)
i . j

S~u i2u j !a* ~u1!¯a* ~un!V ~19!

for the natural/opposite order with all other cases between these extreme orders. Note t
momentum space rapidities it is not necessary to say something about coinciding rapiditie
only theL2 measure theoretical sense and no continuity is relevant here. In fact the mathem
control of these operators, i.e., the norm inequalities involving the number operator hold as
standard creation/annihilation operators. Let us now imitate the free field construction an
about the localization properties of theseF fields

F~x!5
1

A2p
E ~e2 ipxZ~u!1h.c.!. ~20!

This field has all the standard properties of operator-valued tempered distributions, but it can
local if S depends onu since the on-shell property together with locality leads to the free fi
formula. In fact it will turn out ~see next section! that the smeared operatorsF( f )
5*F(x) f (x)d2x with

suppf PW05$x;x1.ux0u% ~21!

have their localization in the standard wedgeW and that, contrary to smeared pointlike localiz
fields, the wedge localization cannot be improved by improvements of the test function su
insideW. Instead the only way to come to a local net of algebras~and, if needed, to their pointlike
field generators! is by intersecting oppositely localized wedge algebras~see below!. Anticipating
their wedge localization properties these operators are our first examples of polarizatio
generators~PFG!. Like free fields their one-time application to the vacuum creates a one-pa
state without a~vacuum! polarization cloud admixture.

We want to show that the operatorsF( f ) are generators of a wedge localized algebra

A~W!5alg$F~ f !;suppf PW%. ~22!

As in the case of free fields the algebra may be defined as the weak closure of theC* -algebra
generated by the spectral projection operators in the spectral resolution

F~ f !5E ldEf~l!. ~23!

We first show thatn-point functions of theF( f )’s obey a KMS condition with respect to th
Lorentz-boost subgroup which leaves the wedgeW0 invariant if and only if the commutation
functions~in addition to their holomorphy properties in theu strip! are crossing symmetric which
is the symmetry of reflections through the pointu5 i (p/2) ~with the additional appearance of th
charge conjugation for nonneutral particles!. One can show the following statement.

Statement:~Ref. 7! The KMS-thermal property of the wedge algebra generated by the P
is equivalent to the crossing symmetry of theS-matrix
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~V,F~ f 18!F~ f 28!F~ f 2!F~ f 1!V![^F~ f 18!F~ f 28!F~ f 2!F~ f 1!& therm

5
KMS

^F~ f 28!F~ f 2!F~ f 1!F~ f 18
22p i

!& therm
~24!

⇔S~u!5S~ ip2u!. ~25!

Here we only used the cyclic KMS property~the second line containing the imaginary 2p shift!
for the four-point function. The relation is established by Fourier transformation and contour
u→u2 ip. One computes

F~ f̂ 2!F~ f̂ 1!V5E E f 2~u22 ip! f 1~u12 ip!Z* ~u1!Z* ~u2!V1c.t. ~26!

5E E f 2~u22 ip! f 1~u12 ip!$x12a* ~u1!a* ~u2!V

1x21S~u22u1!a* ~u2!a* ~u1!%V1cV, ~27!

where thex are the characteristic function for the differently permutedu orders. The analogou
formula for the bra-vector is used to define the four-point function as an inner product. IfS has a
crossing symmetric pole in the physical strip ofS the contour shift will produce an unwanted ter
which wrecks the KMS relation. The only way out is to modify the previous relation

F~ f̂ 2!F~ f̂ 1!V5~F~ f̂ 2!F~ f̂ 1!V!scat ~28!

1E du f 1~u11 iub! f 2~u22 iub!uu,b&^u,buZ* ~u2 iub!Z* ~u1 iub!uV. ~29!

The second contribution is compensated by the pole contribution from the contour shift. In g
the shift will produce an uncompensated term from a crossed pole whose position is obtain
reflecting in the imaginary axis aroundi (p/2) , which creates the analogous crossed bound s
contribution. In our simplified self-conjugate model it is the same term as above. In the pre
of one or several poles one has to look at higher point functions. Despite the different conc
setting one obtains the same formulas as those for theS-matrix bootstrap of factorizing model
and hence one is entitled to make use of the bootstrap technology in this modular program
is behind is the so-called GNS construction which converts the numerical poles inS and its higher
bound versions into new states, i.e., the original Fock-space structure has to be enlarge
initially forgot to include theb particles. Even though the description of the wedge alge
appears like QM, there is one important difference which is worthwhile noticing. This is
principle of ‘‘nuclear democracy’’ between particles. In QM there is a hierarchy between fu
mental and bound: elementary states do not reappear as bound states of others and in parti
of composites of themselves. We will see in the following that this realization of nuclear de
racy for double cone algebras is no longer with particles and their binding, but rather with ch
and their fusion. The reason is of course the appearance of polarization clouds below
localization. This nuclear democracy idea was the basis of theS-matrix bootstrap approach an
was first made to work in special two-dimensional situations in Refs. 10–12.

With the derivation of crossing symmetry and the bound state and fusion structure ofS we
achieved our aim to present an example of the constructive power of the modular locali
method. In fact our fusion formulas for multi-F vectors correctly interpret theZ formulas in Refs.
9 and 13 which if taken literally are not true. As an unexpected gratification we also obtaine
equivalence between the crossing symmetry of particle physics and the thermal KMS prope
the Hawking–Unruh effect.
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Strictly speaking the check of the KMS property with the Lorentz boost as the automorp
of the wedge algebra does not yet prove that the modular theory is completely geometric.
could show that the Tomita involution is equal to the TCP operator, we would be done. For t
hold, we define

J5SsJ0 . ~30!

This relation between the incoming Tomita involutionJ0 and that of the interacting theoryJ is
nothing else as the TCP transformation for the scattering matrix in a general local QFT.

With J0 being the Tomita involution (5TCP) for the wedge algebra of the free field theo
we can now directly check

Ẑ* ~u!ªJZ* ~u!J,

@ Ẑ* ~u!,Z* ~u8!#50, ~31!

@ Ẑ~u!,Z* ~u8!#5d~u2u8!. ~32!

In other words the two operatorsẐ#(u) andZ#(u8) have relative canonical commutation relatio
which in turn leads to the relative commutativity

@ F̂~ f̂ !,F~ ĝ!#50, suppf̂ PWopp, suppgPW. ~33!

The F( f̂ ) and F(ĝ) PFG’s generate algebrasA(W) and A(W)85alg$F̂(ĝ);suppĝPWopp%
5JA(W)J and one easily checks

JD1/2F~ f 1!¯F~ f n!V~F~ f 1!¯F~ f n!!* V,
~34!

D i t5U~L~2p i !!

which is the defining relation for the Tomita operatorS5JD1/2.
The KMS computation can be extended to ‘‘formfactors,’’ i.e., mixed correlation funct

containing in addition toF ’s one generic operatorAPA(W) so that the previous calculatio
results from the specializationA51. This is so because the connected parts of the mixed co
lation function are related to the various (n,m) form factors obtained by the different ways o
distributing n1m particles in and out states using the relation betweenZ’s and Fock space
creation and annihilation operators. These different form factors are described by different b
ary values of one analytic master function which is in turn related to the various forward/back
on shell values which appear in one mixedA–F correlation function. We may start from th
correlation function with oneA to the left and sayn F’s to the right and write the KMS condition
as

^AF~ f̂ n!¯F~ f̂ 2!F~ f̂ 1!&5^F~ f̂ 1
2p i !AF~ f̂ n!¯F~ f̂ 2!&. ~35!

Then-fold application of theF ’s to the vacuum on the left-hand side creates besides ann-particle
term involvingn operatorsZ* to the vacuum~or KMS reference state vector! V also contributes
from a lower number ofZ’s together withZ–Z* contractions. As with free fields, then-particle
contribution can be isolated by Wick ordering

^A:F~ f̂ n!¯F~ f̂ 2!F~ f̂ 1!:&5^F~ f̂ 1
2p i !A:F~ f̂ n!¯F~ f̂ 2!:&. ~36!

~Note that as a result of theZ–F commutation relation the change of order within t
Wick-ordered products will produce rapidity dependent factors.! Rewritten in terms ofZ’s and
using the denseness of thef ’s this relation reads
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^V,AZ* ~un!¯Z* ~u2!Z* ~u122p i !V&

5^V,Z~u11 ip!AZ* ~un!¯Z* ~u2!V&

5^Z* ~u12 ip!V,AZ* ~un!¯Z* ~u2!Z* ~u!V&. ~37!

The analytic continuation by 2p i refers to the correlation function and not to the operators.
the natural order of rapiditiesun.¯.u1 this yields the following crossing relation~assuming
absence of boundstates!

^V,Aain* ~un!¯ain* ~u2!ain* ~u12p i !V&5^aout* ~u1!V,Aain* ~un!¯ain* ~u2!V&. ~38!

The out scattering notation on the bra-vectors becomes only relevant upon iteration of the
condition since the braZ’s have the opposite natural order. By iteration one finally obtains
general mixed matrix elements

^aout* ~uk!¯aout* ~u1!V,Aain* ~un!¯ain* ~uk21!V& ~39!

as analytic continuations from̂V,AZ* (un)¯Z* (u2)Z* (u1)V& which a posteriori justifies the
use of the name form factors in connection with the mixedA–F correlation functions.

The upshot of this is that such anA must be of the form

A5(
1

n! EC
¯ E

C
an~u1 ,. . . ,un!:Z~u1!¯ Z~un!:, ~40!

where thean have a simple relation to the various form factors ofA ~including bound states!
whose different in–out distributions of momenta correspond to the different contributions t
integral from the upper/lower rim of the strip bounded byC consisting of two contributions, which
are related by crossing. The transcription of thean coefficient functions into physical form factor
~39! complicates the notation, since in the presence of bound states there is a larger num
Fock space particle creation operators than the initial PFG wedge generatorsF. It is comforting to
know that the wedge generators, despite their lack of vacuum polarization clouds, never
contain the full~bound state! particle content. The wedge algebra structure for factorizing mo
is like a relativistic QM, but as soon as one sharpens the localization beyond wedge localiz
the field theoretic vacuum structure will destroy this simple picture and replace it with the ap
ance of the characteristic virtual particle structure which separates local quantum physic
quantum mechanics.

In order to see by what mechanism the quantum mechanical picture is lost in the next s
localization, let us consider the construction of the double cone algebras as relative commut
a shifted wedge~shifts bya inside the standard wedge!

A~Ca!ªA~Wa!8ùA~W!,
~41!

Ca5Wa
oppùW.

For APA(Ca),A(W) and Fa( f̂ i)PA(Wa),A(W) the KMS condition for theW localization
reads as before, except that whenever aFa( f̂ i) is crossed to the left side ofA, we may commute
it back to the right side since@A(Ca),Fa( f̂ i)#50. The new relation resulting from the compa
localization ofA is

^AFa~ f̂ 1!:Fa~ f̂ n! . . . Fa~ f̂ 2!:&5^A:Fa~ f̂ n!¯Fa~ f̂ 2!Fa~ f̂ 1
2p i !:&. ~42!

Note that theFa( f̂ 1) in the first line is outside the Wick-ordering. Since it does neither act on
bra nor the ket vacuum, it contains both frequency parts. The creation part can be combine
the otherF ’s under one common Wick-ordering whereas the annihilation part via contraction
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one of the Wick-orderedF ’s will give an expectation value of oneA with (n22) F ’s. Using the
density of thef ’s and going to rapidity space we obtain14 the so-called kinematical pole relation15

Resu125 ip^AZ* ~un!¯Z* ~u2!Z* ~u1!&52iC12̂ AZ* ~un!¯Z* ~u3!&~12S1n¯ S13!. ~43!

Here the product of two-particleS matrices results from commuting theZ(u1) to the right so that
it stands to the left ofZ* (u2), whereas the charge conjugation matrixC only appears if we relax
our assumption of self-congugacy.

It is remarkable that this kinematical pole relation does not contain the size of the localiz
region for A. It is a relation which characterizes all operator spacesA(O), OPW down to the
pointlike limits. The individual localization sizes only influence the Payley–Wiener exponen
asymptotic imaginary rapidity directions.

The existence problem for the QFT associated with an admissableS matrix ~unitary, crossing
symmetric, correct physical residue at one-particle poles! of a factorizing theory is the nontrivi-
ality of the relative commutant algebra, i.e.,A(Ca)ÞC•1. Intuitively the operators in double con
algebras are expected to behave similar to pointlike fields applied to the vacuum; name
expects the full interacting polarization cloud structure. For the case at hand this is in
consequence of the above kinematical pole formula since this formula leads to a recursion
for nontrivial two-particleS matrices is inconsistent with a finite number of terms in~40!. Only if
the bracket containing theS products vanishes, the operatorA is a composite of a free field.

The modular method has therefore converted the existence problem, which hitherto was
nated by the well-known ultraviolet behavior of special~Lagrangian! field coordinates, into the
problem of nontriviality of algebraic intersections or in more applied terms to the nontrivialit
form factor spaces. For special fields which have an intrinsic meaning as conserved curre
their related order/disorder structure~example, the conserved current and its Sine–Gordon po
tial in the massive Thirring model! one expects to be able to identify them individually and
compute their form factors as well as their correlation function. The considerations in the
section will propose arguments that this modular construction method is not limited to facto
models.

The determination of a relative commutant or an intersection of wedge algebras is even
context of factorizing models not an easy matter. We expect that the use of the following ‘‘
graphic’’ structure significantly simplifies this problem. We first perform alightlike translationof
the wedge into itself by letting it slide along the upper light ray by the amount given by
lightlike vectora1 . We obtain an inclusion of algebras and an associated relative commuta

A~Wa6
!,A~W!,

~44!

A~Wa6
!8ùA~W!.

The intuitive picture is that the relative commutant lives on thea6 interval of the upper/lower
light ray, since this is the only region insideW which is spacelike to the interior of the respecti
shifted wedges. This relative commutant subalgebra is a light ray part of the above double
algebra, and it has an easier mathematical structure. One only has to take a generic operat
wedge algebra which formally can be written as a power series in the generatorsZ and find those
operators7,16 which commute with the shiftedF ’s,

@A,U~e1!F~ f !U* ~e1!#50. ~45!

Since the shiftedF ’s are linear expressions in theZ’s, the nth order polynomial contribution to
the commutator comes from only two adjacent terms inA namely froman11 and an21 which
correspond to the annihilation/creation term inF. The result is precisely the same as the one fr
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the KMS property, the above kinematical pole formula~43!, so we do not learn anything new
beyond what was already observed with the KMS technique. However as will be explained b
the net obtained from the algebra

A~R6!ª~b6
Ad U~b6!$~a6

A~Wa6!8ùA~W!% ~46!

~in words the net of von Neumann algebras created by translating the relative commutants
a6 with b6 along the upper/lower light rays! is a chiral conformal net on the respective subsp
H65A6V which is indexed by intervals on the light ray. If our initial algebra wered5111

conformal theories, the total space would factorizeH5H1 ^̄ H25(A1 ^̄ A2)V, and we would
recover the well-known fact that two-dimensional local theories factorize into the two ligh
theories. For massive theories we expectH5A1V5A2V, i.e., the Hilbert space obtained from
one light ray horizon already contains all state vectors. This would correspond to the differe
classical propagation of characteristic massless versus massive data ind5111. There it is known
that although for the massless case one needs the characteristic data on the two light ra
massive case requires only one light ray. In fact there exists a rigorous proof that this cla
behavior carries over to free quantum fields: with the exception ofm50 massless theories, in a
other cases~including light-front data for higher dimensionalm50 situations! the vacuum is
cyclic with respect to one light frontH5A6V.17 The proof is representation–theoretical a
holds for all cases except thed5111 massless case. The result may be written as an identi
global algebras

A~W!5A~R1
.!, ~47!

where the superscript refers to the fact that we are considering the right half of the upper lig
~with the same relation for the lower light ray!. This identity of global algebras, which we consid
as an AQFT version of holography, does not extend to the natural net structure which cons
double cones inW, respectively, intervals onR1

. . This means that certain geometric actions as
lower light cone translationU(a2) on theW-net will be extremely nonlocal in their action o
A(R1

.). The appearance of these ‘‘hidden symmetries’’ is the price one has to pay fo
simplifications of lower dimensional holographic images. More remarks on holography for h
dimensional QFT can be found in a later part.

It almost goes without saying that the various restrictions we have imposed for pedag
reasons on theZ-algebra structure~as diagonal structure ofS and absence of poles! can easily be
lifted.

D. Case with real particle creation

For models with real particle creation it is not immediately clear how to construct PFG
fact it is not obvious whether they exist. On the other hand, it is quite easy to see that fo
smaller localization region~whose causal completion will not be as big as a wedge! there can be
no PFG-like operators unless the theory is trivial~i.e., free in the sense of no interaction!. This
means that PFG’s are ideal indicators for interactions because only polarization caused b
actions will appear.~The vacuum polarization clouds which are responsible for the localiza
entropy in the later section are also present in the free case.! With other words any operator with
compact or even spacelike cone localization which couples the one-particle state with the v
if applied once to the vacuum will generate a polarization cloud on top of the one-particle
unless the particles are noninteracting. The proof of this theorem uses similar analytic tech
as that of the Jost–Schroer theorem.6 In fact the proof follows almost literally the arguments
Mund18 where these analytic techniques were recently used to show that thed5211 braid-group
particles even in their ‘‘freest’’ form cannot be quantum mechanical objects, i.e., they cann
described by localized operators which carry a defined~incoming! particle number like free
bosons/fermions and hence a nonrelativistic limit which maintains the plektonic spin-sta
connection will also maintain the vacuum polarization structure and hence be outside of qu
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mechanics. In terms of a representation–theoretical setting of multiparticle states one los
tensor product structure ofn-particle scattering states in terms of Wigner one-particle states.
more remarks on the ‘‘No-Go theorem for interacting PFG’s with smaller than wedge loca
tion’’ I refer to a forthcoming paper.19

An existence proof of wedge-localized PFG which are unbounded operators affiliated
A(W) is simple. One first studies the wedge-localization spaces, i.e., the vectors spanni
domain ofD1/2 which are the vectors in the thermal subspaceHR(W)1 iH R(W) whereHR(W) is
the closed real subspace of solutions of the localization equation

Sc5c, S5JD1/2, J5SscatJ0 . ~48!

This space has a nontrivial intersection with the one-particle subspace

HR~W!ùHWigner
(1) Þ0 ~49!

which is a consequence of the fact that the modular operatorD i t is shared with that of the wedg
algebra generated by the free asymptotic~incoming! fields. The possibility of representing eac
vector as an unbounded operator associated withA(W) is guaranteed by modular theory and th
applies in particular to a dense set of one-particle vectors.

In order to get a clue for the construction of the spaces we look atd5111 theories which do
not have any transversal extension to wedges. Furthermore we assume that there is only o
of particle~absence of particle poles in theS matrix! so that in terms of incoming particles one
in the situation of a Fock space with one kind of particle.

From the previous discussion we take the idea that we should look for a relation betwe
ordering of rapidities and the action of the scattering operator. Therefore we define a su
indexed by two-particle wave functions as follows~omitting again the scat subscript!:

C f 2 , f 1
[E E du1 du2 f 2~u2! f 1~u1!C~u2 ,u1!,

~50!
C~u2 ,u1!;x21a* ~u2!a* ~u1!V1x21Sa* ~u1!a* ~u2!V.

It is easy to check that this vector fulfils~48! if the f ’s have the properties of the previous sectio
TheJ0 sends theS into aS* and thef ’s into their complex conjugate whereas theS together with
the unitarity reproduces the linear combination. Finally theD1/2 makes aip shift in theu ’s which
may be absorbed into thef * ’s with the result that the originalf ’s are reproduced.

The generalization to states indexed by 3f ’s contain six contributions which correspond
the six permutations

C f 3f 2f 1
[E E E du1 du2 du3 f 3~u3! f 2~u2! f 1~u1!C~u3 ,u2 ,u1!

3C~u3 ,u2 ,u1!˜x321a* ~u3!a* ~u2!a* ~u1!V1x312S21a* ~u3!a* ~u2!a* ~u1!V

1x231S32a* ~u3!a* ~u2!a* ~u1!V1x123S321a* ~u3!a* ~u2!a* ~u1!V1x132S321

•S23* a* ~u3!a* ~u2!a* ~u1!V1x213S321•S12* a* ~u3!a* ~u2!a* ~u1!V.

This expression results from writing each permutation as the nonoverlapping product of ‘‘m
permutations.’’ The smallest mirror permutations are transpositions of adjacent factors as
third and fourth term. For those one replaces the action of the permutation by the action ofS
matrix restricted to the adjacent transposed tensor factors~which is used as a subscript ofS!. An
example for an overlapping product of transpositions is the product of two transpositions
have one element in common, e.g., 123→132→312; this sequence of mirror permutations cann
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be associated with subsequentS-matrix actions on tensor products. However, the composi
123→213→312 has a meaningfulS-matrix counterpart: namelyS•S12a* (u1)a* (u2)a* (u3)V
whereS12 leaves the third tensor factor unchanged. The resulting vector under theS12 action has
no well-defined incoming particle number and can also be written in tensor product notat
(Sa* (u1)a* (u2)V) ^ a* (u3)V. The third particle has remained a spectator and only enters
process when the finalS is applied~which corresponds to the mirror permutation of all thr
objects!. This action of nested mirror transformations is well-defined. In general if one m
permutation is completely inside a larger one the scattering corresponding nested product oS’s is
a well-defined physical meaning. The last two terms correspond to such nested mirror co
tions. The inner products of such vectors with themselves will lead to matrix elements of the

^u38 ,u28 ,u18uS•S12* uu3 ,u2 ,u1&. ~51!

In a graphical scattering representation particle 1 and 2 would scatter first and produce arb
many particles~subject to the conservation laws for the total energy momentum! which together
with the third incoming particle~which hitherto was only a spectator! enter an additional scatterin
process of which only the three-particle outgoing component is separated out by the
element in~51!. The dot means summation over all admissable intermediate states and co
represented by, e.g., a heavy line in the graphical representation in order to distinguish it fro
one-particle lines. Whereas in the calculation of cross sections the summation over interm
states lead to diagonal inclusive processes, the nested structure of the localized vectors cor
to nondiagonal inclusive processes. The proof that the space of vectors of the above formC f n¯ f 1

fulfil ~48! is analogous to the previous case: the first and the fourth term change their role a
as the second and third terms change role with the two nested terms.

For a 4f labeled state vectorC f 4f 3f 2f 1
there is the new possibility of having two-particleS’s

acting on two nonoverlapping pairs of in-particles before the action of either the identity or th
S matrix is applied. For further details we refer to Ref. 20. The full real wedge localization s
is defined as the real closure of all the labeled spaces~labeled by wedge localized one-partic
wave functions!

HR~W!5real closure$C f ,C f 2f 1
,C f 3f 2f 1

,C f 4f 3f 2f 1
, . . . u; f iPH (1)~W!%. ~52!

The remaining problem is whether one can generate the wedge localization spaces
iterated application of PFG operators. The check of the equivalence between KMS and o
crossing symmetry would then proceed as before by forming inner products between these v
The understanding of the precise mathematical status of these PFG’s was still an open pro
the time of writing. It is clear that in the case of real particle creation one loses the uniformiz
aspect in the rapidity in which theS matrix and form factors were meromorphic functions. T
distribution theoretical aspect of functions with infinitely many piled-up cuts on the real rap
axis, i.e., their localization in rapidity space may cause problems~in the above expressions the
are integrated with boundary values of analytic wave functionsf !. For more information we again
refer to a forthcoming publication.19

There are several reasons why constructions based on modular localization could be im
for particle physics. Besides the improvement in the understanding the structure of inter
QFT one expects that they could lead to a perturbation theory of local nets which bypasses
of the nonintrinsic field coordinatizations and also the appearance of short-distance ultra
divergencies. The perturbative construction of vacuum expectations of PFG’s which ge
wedge algebras is reminiscent to the revival of the perturbative version of the old drea
construct anS matrix just using crossing symmetry~and the analyticity which is required for it
formulation! in addition to unitarity. The oldS-matrix bootstrap program failed, even on a pe
turbative level no formulation without the use of fields was found. But thanks to modular w
localization we can now formulate a similar but structurally richer program which already sh
its power in the case of factorizing models. It is clear now that the weak point of the oldS-matrix
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bootstrap was not primarily in its concepts but rather in its almost ideological and unfou
stance against QFT and anything ‘‘off-shell.’’ For a recent review ofS-matrix theory I refer to
Ref. 21. Finally the claim that it is a unique theory and that it constituted a ‘‘TOE’’~a theory of
everything, in this case everything minus quantum gravity! contributed to its downfall. The
present modular localization approach is different on all counts. Even the avoidance o
coordinatizations in favor of nets has entirely pragmatic reasons. In sharpening the local
beyond wedges via algebraic intersections of wedge algebras instead of using the local cou
fields with its short distance problems and ratherad hocresulting separation into renormalizabl
nonrenormalizable, one has the chance to shed an entirely new light on problems which are
to QFT.

E. Modular origin of quantum symmetries

Modular theory reproduces all the standard space time and internal symmetries, but
produces new symmetries which remained hidden to the Lagrangian approach.

Before we look at the hidden symmetries, it is interesting to note that even the sta
symmetries~i.e., those having a classical Noetherian counterpart! reappear in a very unusual an
interesting way. To illustrate this point let us ask how can we characterize a chiral conf
theory, i.e., its algebraic description in terms of a net on the circle. The well-known answerby
two algebras which are in the relative position of ‘‘half-sided modular inclusion’’ (hsm).22 The
prototype are two half-circle algebras rotated byp/2 relative to each other~the quarter-circle
situation!.23 The 1

4-circle of their intersection is compressed towards one of its endpoints unde
action of each of the dilations associated with the half-circle which are the modular groups
associated algebras. In fact the compression only happens for one particular~6! sign of the
dilation parameter (6hsm). This together with the analytic results by Borchers coming from
energy positivity within the modular setting,24 inspired Wiesbrock to introduce a general theory
modular inclusions and modular intersection. With respect to chiral conformal theories W
brock’s result was that the study of abstract ‘‘standard hsm inclusions’’ is equivalent to
classification of chiral conformal nets.

Encouraged by this success, this modular inclusion concept was enriched by an add
requirement of a more geometric nature whereupon it became possible to characterize also
dimensional nonconformal nets in terms of the modular relations~inclusions, intersections! of a
finite family of von Neumann algebras. The surprising aspects of these investigations we
both the space–time symmetries~the Poincare´ or conformal symmetries! as well as the physics
encoding net structure follow from abstract relations~modular inclusions, intersections! between a
finite number of copies of one and the same unique von Neumann algebra~the hyperfinite III1
factor!. In view of the fact that the modular groups of most causally complete regions a
unknown nonpointlike transformations, it was interesting to get more information about
interpretation in terms of physical symmetries.14 Again it appeared reasonable to study this qu
tion in the simplest context of chiral conformal theories. In contrast to higher dimensions
theories we do have infinitely many geometrically acting one-parametric diffeomorphisms w
are unitarily implemented by unitaries which change the vacuum. It turns out that by takin
large parameter limit~see the next section for an example! the transformed correlation function
stabilize and define a new state over the algebra which is invariant under the respective su
A closer examination reveals that these states have a modular interpretation with respect to
interval algebras which are cyclic and separating with respect to this state~but lose this cyclicity
upon restriction to one algebra!. This explains the modular aspects of all space–time region
the circle, including disconnected ones. By contrast, in higher dimensions the modular gro
massive theories~with the exception of wedge regions! are for no choice of states pointlike~the
best one can hope for is that they act asymptotically pointlike near the causal horizon!; they
preserve the causal closure of the localization region but act nonlocally inside~they would act on
localizing test functions in a support preserving but otherwise nonlocal fuzzy way!. By analogy
one should then view a suitably defined universal infinite parametric modular group genera
all the individual modular groups of space–time regions as the hidden symmetry analogue
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chiral diffeomorphism group. The Poincare´ group is the maximal geometric subgroup and it
generated from a finite subset of (A(W),V) WPW. One also meets ‘‘partially hidden’’ symme
tries in the space–time analysis of modular inclusions/intersections, i.e., automorphisms wh
geometrically on subnets.

The present method of analysis based on modular groups is not the only one; a very in
ing alternative approach based on the modular involutionJ has been proposed by Ref. 25.

Closely related to the issue of hidden symmetries is the inverse of the Unruh obser
namely the question of existence of a geometrical interpretation ‘‘behind the horizon’’ of the
Neumann commutant of a thermal heat bath system. Conditions under which this is possibl
been studied in Refs. 26 and 27.

The reduction of LQP to the study of inclusions and intersections has changed the unde
philosophical basis of particle physics. The different outlook had been occasionally describ
Haag in terms of a change from the Newtonian picture of reality as a manifold filled w
material content~relativity and quantum mechanics included! to the world of monades of Leibnitz
which although lacking individuality, create a rich reality by their interrelations.

The reader is invited to try to translate Leibnitz’s monades into hyperfinite type III1 von
Neumann factors. The latter are as structureless entities and like points in geometry w
individuality with one important difference: one factor can be included in the other and both
have nontrivial intersection. One should mention that this mode of thinking is also quite visib
the mathematics discovered by Connes and in the Vaugn–Jones subfactor theory.

III. LOCAL QUANTUM PHYSICS VERSUS QUANTUM MECHANICS: A CHANGE OF
PARADIGM

The consequences of modular localization as explained in the previous section are not th
source of radical conceptual change in QFT. Another equally drastic conceptual change o
digm ~however with a strict adherence to the physical principles of LQP! is the ‘‘degree of
freedom’’ or phase space property of QFT and the positioning of QM versus QFT.

A. The LQP phase space

Again this has a quite interesting history behind it, although some of its more dram
consequences were only noticed in more recent times. It goes back to attempts by Ha
Swieca to make some of the consequences of the density of local states as expresse
Reeh–Schlieder density theorem more physically acceptable by introducing additional con1

@The Reeh–Schlieder denseness theorem6 is often presented together with the assertion of a on
one correspondence between localized operators and vectors in the dense subspace of
states, the so-called separability property~the ‘‘operator-state correspondence’’!. Modular theory
allows a profound understanding and relates denseness and separability as dual propertie
sense of von Neumann’s commutant notion.# Whereas in quantum mechanics the box localizat
separates the physical description via tensor-product factorization into an ‘‘inside and o
Hilbert space’’ ~and a corresponding tensor-product of full operator algebras!, the long range
vacuum structure due to the omnipresence of vacuum fluctuations destroys such a pictu
replaces it by an extreme opposite denseness~cyclicity! property of localized state vectors, th
so-called Reeh–Schlieder property. This denseness property of localized states

A~O!V5H

has been sometimes provocatively referred to by some of the protagonists of these investi
as the ‘‘particle creation behind the moon’’—paradox: by applying appropiate observables
ized in space time to the vacuum one may approximate any local change anywhere in
neously. Even if one~as one learned from the analysis of ERP Gedankenexperiment! is prepared
to make a distinction between causal ties of events and long range correlations in states, th
not explain why there is such an impressive conceptual difference between the tensor factor
of quantum mechanical localization and the localization in LQP.
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In an attempt to reconcile the strange-looking aspects with common sense in quantum
Haag and Swieca introduced the notion of phase space into LQP. They restricted the local
states by the requirement thatPEA (1)(O)V be a compact set of vectors inH. Here the superscrip
on A(O) denotes the unit ball in the operator norm of the local algebra andPE is the projector on
vectors of energy smaller thanE which feature in the spectral representation of the Hamilton
H5*E dPE . They argue that the creation of ‘‘behind the moon states’’ in an earthly laborato
not possible with a limited supply of energy, i.e., the incredible small vacuum polarization c
lations which exist as a matter of principle even over large distances cannot be suffic
amplified in the desired region with a limited energy supply. Using the same type of intuitio
sharper estimates, Buchholz and Wichmann proposed a variant of this requirement which b
known under the name nuclearity requirement and has the advantage that it is easier to
calculations and closer to properties of thermal states. It reads

PEA~O!V or e2bHA~O!V is nuclear. ~53!

This amounts to the nuclearity of the mapQ: A(O)→e2bHA(O)V, i.e., the requirement tha
this map has a representation

QA5( f i~A!c i , ~54!

where thef i are bounded linear forms on the algebra and thec i are vectors in the Hilbert spac
such that

( if i iic i i,`, ~55!

iQi1ª inf( f i~A!c i ~56!

with the norms having the respective natural meaning and the last equation defines a new ‘‘n
norm.’’ 1 The requirement implies that the image set in the Hilbert space is ‘‘nuclear’’ ana
fortiori compact as demanded by Haag–Swieca. In physics terms such maps are only nu
the mass spectrum of LQP is not too accumulative in finite mass intervals; the excluded ca
those which in quantum statistical mechanics would cause the strange appearance of a m
‘‘Hagedorn’’ temperature or the complete loss of thermal concepts, so that one expects a
relation between nuclearity and the thermal aspects of QFT. Indeed the nuclearity assure
QFT, which was given in terms of its vacuum representation, also exists in a thermal state.
the nuclearity index turns out to be the counterpart of the quantum mechanical Gibbs pa
function28,1 for open systems and behaves in an entirely analogous way to the Gibbs formu
closed quantization box. The nuclearity property and the resulting phase space properties
~localization in space time and limitation of energy! goes a long way to reconcile the loc
denseness of state property with common sense in that it associates with an approxima
quence of ‘‘particle behind the moon creation’’ an ever increasing expenditure in energy.

B. The split property

Before we link nuclearity with the pivotal ‘‘split property,’’ let us motivate the latter taking
helping hand from the history of QFT. The peculiarities of the above degrees-of-freedom co
are very much related to one of the oldest ‘‘exotic’’ and at the same time characteristic aspe
QFT, namely vacuum polarization. As first noticed by Heisenberg~and later elaborated and use
by Euler, Weisskopf and many others!, the partial charge:
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QV5E
V

j 0~x!d3x5` ~57!

diverges as a result of uncontrolled vacuum particle/antiparticle fluctuations near the bound
order to quantify this divergence one acts with more carefully defined partial charges o
vacuum (s5dimension of space)

QR5E j 0~x! f ~x0!gS x

RDdsx. ~58!

The vectorsQRV only converge weakly forR→` on a dense domain. Their norms diverge a29

~QRV,QRV!<constRs21;area. ~59!

The surface character of this vacuum polarization is reflected in the area behavior. Differen
the vacuum polarization clouds in the previous sections this surface vacuum polarization
even without interactions.

The algebraic counterpart of this age-old observation is the so-called ‘‘split property,’’ na
the statement1 that if one leaves between say the double cone~the inside of a ‘‘relativistic box’’!
observable algebraA(O) and its causal disjoint~its relativistic outside! A(O 8) a ‘‘collar’’ ~geo-
metrical picture of the relative commutant! O 18ùO, i.e.,

A~O!,A~O1!, O!O1 , properly ~60!

then it is possible to construct in a canonical way a type I tensor factorN which extends in a
‘‘fuzzy’’ manner into the collarA(O)8ùA(O1), i.e.,A(O),N,A(O1). With respect toN the
Hilbert space factorizes, i.e., as in QM there are states with no fluctuations~or no entanglement!
for the ‘‘smoothened’’ operators inN. Whereas the original vacuum will be entangled from t
box point of view, there also exists a disentangled product vacuum onN. The algebraic analogue
of a smoothening of the boundary by a test function is the construction of a factorization o
vacuum with respect to a suitably constructed type I factor algebra which uses the above
extension ofA(O). It turns out that there is a canonical, i.e., mathematically distinguished
torization, which lends itself to define a natural ‘‘localizing map’’F and which has given valuabl
insight into an intrinsic LQP version of Noether’s theorem,1 i.e., one which does not rely on
quantizing classical Noether currents. It is this ‘‘split inclusion’’ which allows to bring back
familiar structure of pure states, tensor product factorization, entanglement and all the
properties at the heart of standard quantum theory and the measurement process. However
all the efforts to return to structures known from QM, the original vacuum retains its the
~entanglement! properties with respect to all localized algebras, even with respect to the ‘‘fuz
localizedN.

Let us collect in the following some useful mathematical definitions and formulas for ‘‘s
dard split inclusions.’’30

Definition: An inclusionL5(A,B,V) of factors is called standard split if the collarA8ùB as
well asA,B together withV are standard in the previous sense, and if in addition it is possib
place a type Ì factor N betweenA andB.

In this situation there exists a canonical isomorphism ofA~B 8 to the tensor productA
^̄ B 8 which is implemented by a unitaryU(L): HL→H1^̄ H2 ~the ‘‘localizing map’’! with

U~L!~AB8!U* ~L!5A^̄ B8,

APA, B8PB 8,
~61!

U* ~L!~V ^̄ V![hLPHL ,
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^hLuAB8uhL&5v~A!v~B8!Þv~AB8!.

This map permits to define a canonical intermediate type I factorNL ~which may differ from the
N in the definition!

NLªU* ~L!B~H1! ^ 1U~L!,B,B~HL!. ~62!

It is possible to give an explicit formula for this canonical intermediate algebra in terms o
modular conjugationJ5U* (L)JA^ JBU(L) of the collar algebra (A 8ùB,V)30

NL5A~JAJ5B`JBJ. ~63!

The tensor product representation gives the following equivalent tensor product represe
formulas for the various algebras:

A;A^ 1,

B 8;1^ B 8, ~64!

NL;B~HL! ^ 1.

As explained in Ref. 30, the uniqueness ofU(L) andNL is achieved with the help of the ‘‘natura
cones’’PV(A~B 8) andPV ^ V(A^ B 8). These are cones in Hilbert space whose position inHL

together with their facial subcone structures pre-empt the full algebra structure on a spatia
The corresponding marvelous theorem of Connes31 goes far beyond the previously mentione
state vector/field relation which follows from the Reeh–Schlieder density theorem.

Returning to our physical problem, we note that we have succeeded to find the right an
of the QM box for open LQP subsystems. Contrary to the hyperfinite type III1 algebras for
causally closed double cone regions with their sharp light cone boundaries~‘‘quantum horizons’’!,
the ‘‘fuzzy box’’ type I factor NL constructed above~apart from its fuzzy geometrical aspect!
permits all the properties we know from QM: pure states, inside/outside tensor-factoriz
~dis!entanglement, etc. WhereasA as a type III algebra is ‘‘intrinsically entangled,’’ the fuzzy bo
is a conventional quantum mechanical algebra whose only unusual aspect is that the restri
the vacuum generates entanglement and a Hawking–Unruh temperature. Mathematica
means that the statevuA^̄ B 8 represented in the tensor product conePV ^ V(A^̄ B 8) is not the
tensor product of those of the separate restrictions ofv to A andB 8 but rather a highly entangled
KMS temperature state.~Such algebras have neither pure states nor can they appear as
factors in the factorization of bigger algebras. Their properties from the quantum measur
point of view are nicely explained in Ref. 32.! This is obviously the result of vacuum fluctuation
i.e., the fact that a physical vacuum in a LQP, different from the no-particle state of Schro¨dinger
QM, correlates spatially separated regions. Note also that the restriction of the product sv
^ v to B or B 8 is not faithful, respectively, cyclic on the corresponding vectors and therefore
application of those algebras to the representative vectorshv ^ v yields projectors@e.g., PL

5U* (L)B(H1) ^̄ 1U(L)].

C. Localization entropy

Since the fuzzy box algebraNL is of quantum mechanical type I, we are allowed to use
usual trace formalism based on the density matrix description, i.e., the vacuum state is a
entangled density matrixrV on NL which leads to a well-defined von Neumann entropy

~V,AV!5tr rLA, APA, ~65!

S~rL!52tr rL logrL . ~66!
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It turns out to be quite difficult to actually computerL which describes the von Neumann entro
of the fuzzy boxS(rL). Taking into account the above historical remarks on the early obse
tions of vacuum fluctuations near the boundary of a box softened by test functions~59!, we expect
that only degrees of freedom in the fuzzy surface around the horizon contribute to this locali
entropy.

In order to overcome the computational problems one could try to employ similar defini
of localization entropy which have a similar intuitive content but avoid the direct constructio
NL . The definition which seems to be most suitable for computations is that of the mathema
Kosaki who extended Araki’s definition of relative entropy by a variational formula.@The sug-
gestion to use this~or another closely related! definition I owe to Heide Narnhofer who was th
first to study the issue of localization-entropy.33# ~This entropy concept was recently successfu
used by R. Longo34 in order to generalize some aspects of the Kac-Wakimoto formula from
special setting of rational conformal theories to the theory of superselection sectors.! Araki’s
definition uses his relative modular theory with respect to a von Neumann algebraM

S~v1uv2!M52^ logDv1 ,v2
& ~67!

and Kosaki35 converted this~in the most general setting! into a variational formula

S~v1uv2!M5supE
0

1Fv~1!

11t
2v1~y* ~ t !y~ t !!2

1

t
v2~x* ~ t !x~ t !!

dt

t G ,
~68!

x~ t !512y~ t !, x~ t !PM,

where in our casev15v3v, v25v, M5A~B 8. An additional simplification should be gaine
by studying these localization entropies first in conformal QFT; the reason being that the m
aspects tend to be more geometrical. They offer the additional advantage of reducing the
arity ~and hence the split-! property to the tracial condition

tr e2bnmLm,`, ~69!

Lm5Pm1IPmI , ~70!

whereI denotes the geometric conformal inversion,n is a timelike vector andLm turns out to be
an operator with discrete spectrum~L6 are the well-known rotation generators of thed5111
chiral decomposition! with L0 positive definite.

Let us first look at chiral conformal nets indexed by intervals on a light ray. The simplest
is obtained by choosing an interval of length 2a symmetrically around the origin and a sl
bigger one of length 2b enclosing the first such that the collar size of the split situation isd5b
2a and A5A(I a), B5A(I b). It is easy to see that the localization entropy~with any of the
possible definitions! for this situation can only depend on the harmonic ratio of these four po
The modular groupsv3v(t) is the tensor product of thesv’s and therefore known since th
modular group for the vacuum restricted toA or B 8 is geometric.

The nongeometric culprit is the vacuum restricted to the two-interval algebraA~B8. The
‘‘geometrically natural’’ state forA~B8 is not the vacuum but rather that state which is l
invariant under the diffeomorphism which leaves precisely the four endpoints fixed. This is
Moebius transformation, but it is closely related. It is well known that by the succes
application14

Möb2[~z→Az!•Möb•~z→z2!, ~71!

where we have used the compactz5eiw coordinates instead of the light ray line, one obtain
well-defined diffeomorphism~second quasisymmetric deformation of Mo¨b! on the circle~not in
the complex plane!!. These are precisely the diffeomorphisms mentioned before in conne
                                                                                                                



h the

ups of
the

e a

is

f the

l theo-
e,
-

re has
f specu-

hole
ects.
ndane
ees of
violet

ase, I
ical
in

ange
d the
ement of
ation

-

3824 J. Math. Phys., Vol. 41, No. 6, June 2000 Bert Schroer

                    
with enlarging the realm of geometric modular groups beyond those which are visible throug
vacuum properties. In fact one can easily check that, e.g.,U(Dil 2(t)) which fixes the four end-
points 0,1,2`,21 and acts geometrically on chiral fieldsA(x) ~for simplicity take free fields!
leads to a limit

limt→`^VuA~x1 ,t! ¯A~xn ,t!uV&[v2~A~x1! ¯A~xn!!,
~72!

A~x,t![A dU~Dil 2~t!!A~x!,

which defines a statev2 such that (A~B8,V2) turns out to haveA dU(Dil 2(t)) as its modular
group. This state agrees precisely with the one constructed in Ref. 14. The modular gro
higher dimensional double cone in conformal theories are known and their proximity to
two-dimensional case (a→r , x6→r 65t06r ) suggest that all the modular constructions hav
higher dimensional generalization.

The calculational idea is now to compute first

S~v3vuv2!A~B8 ~73!

and then to use the dominance ofv by v2 to bound the original split entropy. Our conjecture
that for d2 the split entropy behaves as

S~v3vuv!A~B8.S a

dD d22

, ~74!

a

d
@1 ~75!

for small d or largea such that the ratio becomes large. This would entail the area law o
localization entropy~associated with the causality horizon! in conformal field theories. Since
massive theories according to common wisdom are short distance dominated by conforma
ries, the short distance behavior in the size of the fluctuation collard→0 has the same divergenc
and barring the presence of a competing~pathological! m/d singularity, the short distance diver
gence remains coupled to the surface dependence.

The main reason for emphasizing this conjecture~analogies are not yet proofs!! on the quan-
tum version associated with the classical Bekenstein area law in a paper like this is that the
been hardly any subject in the last decade which has received such an amazing amount o
lative attention going as far as postulating some new mysterious degrees of freedom.~The causal
horizons in Minkowski QFT and the Unruh effect is analogous but not identical to black
physics. Unruh states and Hartle–Hawking states are different but share the thermal asp36!
This is quite surprising in view of the fact that the localization temperature has a rather mu
explanation in terms of the KMS properties of the restricted vacuum on conventional degr
freedom. The situation resembles that of the speculative ideas of how to get rid of the ultra
divergencies before renormalization. Although I do not know the result in the present c
would favor the LQP spirit of limiting all revolutionary ideas to physical and mathemat
concepts and not to muddle with physical principles~as it was done without success with QFT
prerenormalization times!.

D. The LQP paradigm: quantum measurement

Despite its conservative way of dealing with physical principles AQFT leads to radical ch
of paradigm. This is nowhere more visible than in its relation to quantum mechanics an
measurement process. As we have seen, the standard concepts about purity and entangl
states lose their meaning, i.e., LQP is quite remote from what is done in quantum inform
theory ~note that the word ‘‘local’’ there has a very different meaning!. Instead of tensor factor
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ization associated with the inside/outside localization in quantum mechanics, the sharp rela
boxes ~double cones! do not have pure states and an attempt to use them together with
causally disjoint outside for the introduction of the entanglement concept along this inside/o
division will fail: all states are intrinsically entangled vector states thus rendering the distinc
meaningless.32 Even if we use the factorization along fuzzy boxes and their outside, we
recover these concepts at the expense of a thermally parametrized highly mixed vacuum in
all its local excitations which constitute the natural set of states in particle physics. As a r
most of the famous Gedankenexperiments as, e.g., the ‘‘Schro¨dinger cat’’ receive important quali
tative modifications. But all effects are of the ridiculously small order of the Unruh temperatu~at
feasible acceleration values!. Thus quite different from the recently measured decoherence t
for ‘‘small Schrödinger cats’’~a very small number of photons in a cavity probed with atoms!, the
additional effects of modular localization, i.e., the difference between sharp and fuzzy boxe
the entangled nature of the vacuum state with respect to any of them will never be di
accessible. Rather one is limited to study the indirect manifestations of, e.g., the Unruh~wedge!
thermality within particle physics. In the previous section we learned that the crossing sym
is equivalent to the KMS thermal properties of the Hawking–Unruh effect. As such it is a
large effect. Crossing symmetry is a property which was used in dispersion theory an
Kramer–Kronig dispersion relations for particles were experimentally tested a long time ag

IV. A PEEK AT 21st CENTURY LOCAL QUANTUM PHYSICS

A glance at the future consist mostly of personal expectations and, if one looks at the
attempts at predictions about the future and the many resulting unfulfilled promises during th
2 decades, one gets a little bit discouraged. But just in order to prove that the modular fram
is also capable to lead to interesting conjectures and expectations let me present some of

A. Extension of renormalized perturbation theory?

There is certainly general agreement that gauge theories belong to the most important
butions to 20th century particle physics. But on the other hand, they hardly constitute a c
mature chapter in particle physics. In fact it is very indicative that all the important observa
about them have been made within the first five years after their~re-!discovery and adaptation t
the purposes of particle physics at the end of the 1960s and that the rate of progress leve
steeply afterwards. So it is natural to ask if one could expect the modular localization meth
contribute to their future development. I believe that this question will have a positive answ

In order to explain my reasons I find it convenient to place the problem behind gauge t
into the slightly physically more general context of search for renormalizable theories in w
massive higher spin particles participate. It is well known that within the causal perturb
approach~as with any alternative approach based on Lagrangian quantization! massive theories
with spin s>1 necessarily produce interaction densitiesW ~i.e., scalar Wick polynomials in free
fields! of at least third degree whose operator short distance dimension dimW>5 surpasses the
value 4 allowed by renormalizable power counting. The reason is of course that the op
dimension of physical quantum vector fields dimAm52 is too high as compared with its classic
counterpart dimAm

class51. In fact this is not a consequence of a bad selection of a covariant
associated with the (m,s) Wigner particle description; any other choice would have given at le
a value 2. Can one think of anad hoccovariantization which reduces this value to 1 and at
same time does not destroy the hope that the resulting violation of the quantum aspects
covariant description, the spin51 Wigner particle, has permanently wrecked the physical aspe
To be more specific. Is it conceivable that the ‘‘ghost degrees of freedom’’ which achieve s
reduction of the covariantized propagation degree act like a mysterious kind of catalyzer whi
not visible in the original problem and leave no traces in the final physical answer but nevert
play a beneficial intermediate role?

Everybody knows that the answer is positive and that this is formally done with BRS g
in Fock space. The reason why this mathematical trick preempts the final return to physics
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fact that it amounts to a cohomological representation. In fact, and this is our new addition37 in
the massive case this can already be implemented on the level of the (m,s) one-particle Wigner
space

HWig5
kers

im s
~76!

wheres is a cohomological operators250 which acts on the ghost-extended Wigner spaceHWig

~not to be confused with the pre-Tomita operator!. ~This should be viewed as an operator versi
of the Faddeev–Popov trick.! The Fock space operator version of this cohomological Wig
space representation for the operator algebras

Aphys5
kerQ

im Q
~77!

~where the formal operatorQ acts on the extended algebra by commutation! is nothing but a
special version of the BRS formalism in which the position of the physical space with resp
the ghost-extended space does not change with the perturbative order. This simple for
would not have been available with vanishing mass because in that case the free fields
order would not have been interpretable as the in-fields in the sense of time-dependent sc
theory ~appearance of infrared divergencies!. Massive field theories, even if analytically mo
complicated, are conceptually simpler. The findings of this way of looking at spin51 interactions
can be described as follows.37

Physical consistency within the renormalizability requirement demands the existence of
tional physical degrees of freedom which in their simplest~and probably only! realizations are
scalar particles as in the Higgs mechanism of gauge theories but without vacuum conde
which was characteristic of that mechanism. The intrinsic role of this field is the implement
of the Schwinger–Swieca charge screening.

Some of the ‘‘elementary’’ physical fields~i.e., those which interpolate the perturbative p
ticles! appear composite in the extended formalism. The rules for a direct characterizat
physical fields remain presently complicated and their intrinsic nature is essentially not u
stood; they certainly do not follow simple invariance rules as the fixpoint algebras under a
symmetry, rather their representation in the extended formalism lead to ever changing w
perturbative order linear combinations of composites.

Apart from the renormalization induced self-interaction of the scalar Higgs analogues
renormalization requirement is more restrictive~classically the appearance of more Lorentz in
ces for increasing spin would enlarge the possibilities of invariant couplings! than expected and
governed by just one coupling strength. In this sense the renormalization within the causal
leads to gauge structure of the coupling: the gauge groups are not put in but result fro
assumed particle multiplicities in conjunction with the cohomological trick which is part of re
malization of spin one fields and has nothing to do with group symmetry. In the standard p
tation this appears the other way around and goes with the dictum that local gauge sym
implies renormalizability.

Here we have tacitly assumed that there are several mutually interacting spin-1 obje
order to avoid the Abelian case. In the case of Abelian vector mesons there are two renorma
models: the above one in which all physical matter fields~including the new scalar degree o
freedom! have their expected short-distance dimension, and ‘‘massive QED’’ for which, e.g
physical spinor matter field has an ever increasing short distance behavior~i.e., it is an unrenor-
malizable field within an otherwise renormalizable theory! or a renormalizable representation in i
unphysical~‘‘gauge dependent’’! extended realization.

This last remark suggests the following question:is it conceivable that there are theorie
which are partially renormalizable, i.e., in which suitably restricted observable subalgebras
a normal short-distance behavior?Could it be that Lagrangian field coordinates~in particular if
they belong to higher spin! are not minimal in the sense of short distances, i.e., the same th
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allows better behaved field coordinatizations which are not Lagrangian? What at all is the ph
meaning of ‘‘short distance’’ in a field-coordinatization-free formulation in the LQP spirit; sh
distance behavior of what?

Especially this last question brings us back to the main theme of this essay: the m
localization approach. Since the wedge-localized algebra is a field-coordinate independent
and the local net of spaces and algebras is obtained by intersection of wedge-localized situ
such a procedure would directly confront these questions. There is no worry about ghosts
pearing in such a setting since the short distance behavior of pointlike objects has gone whi
their reason d’etre.

In fact the modular formalism can be interpreted as an extension of the Wigner theory
realm of interactions. Its starting point, the wedge algebra is on-shell. The improvement of lo
ization, i.e., the transition to off-shell double cone subspaces and algebras is done by inters
and in no way calls for ghosts, or touches in any other way the standard short-distance issu~The
fact that on-shell quantities are free of ghosts has been used in the tree approximation u
S-matrix arguments in favor of a gauge theoretic description of vector mesons.! So the interesting
remaining problem is the following: can these ideas be supplemented with some new pertu
technology which extends the realm of the standard renormalization theory. This implies i
ticular the reproduction of the correct old results.

Looking back to the particle physics of the 1960s, one even gets the impression th
ill-fated S-matrix bootstrap approach was an attempt in this direction. For an outside obser
the present author it is too hard to find out why the program of perturbative constructio
crossing symmetricS matrices by pure on-shell methods failed ind5113. If the reason was the
lack of additional concepts which are capable to convert the loose ideas about crossing sym
and its analyticity requirements together with unitarity into an efficient formalism, then the
modular framework is therefore expected to do much better. Indeed the transition from cr
symmetry to the thermal KMS properties for the correlations of PFG’s as in Sec. II is expec
give a physically richer and formally more systematic starting point than the old bootstra
proach since it uses field theoretic concepts and formalism already for the introduction
on-shell wedge-localized algebras. Needless to say that the modular approach does not sup
‘‘cleansing ideology’’ of theS-matrix bootstrap approach of the 1960s against off-shell conc
from QFT. To the contrary, the modular structure, more than any other method of particle ph
places causality and space–time localization back onto the center of the stage. In doing
sheds new and quite unexpected light on the old on-shell/off-shell dichotomy of particle ph
which remained unaccessible to differential geometric methods. It promises to elevate the in
spirit of Wigner’s 1939 quantum theory of free relativistic particles to the level of interacting l
quantum physics.

It is well known that infrared problems indicate a change of the Wigner particle picture.38 In
the present proposal this shows up in the appearance of violent~off-shell! infrared divergencies
due to the breakdown of the Fock-space structure and the loss of physically defined~by scattering
theory! reference~free! fields. In terms of the above BRST-like cohomological extension in
setting of pointlike fields this means that, e.g., the physicalc fields ~describing the spinor matter!
which are equal to the originalc fields, do not have zero mass limits. This is a manifestation
charge liberation which is the inverse mechanism to the aforementioned Schwinger–S
charge screening. From general LQP structure results we expect that charge-carrying fi
QED-like theories do not admit compact localization since the accompanying photon clou
necessarily semi-infinite noncompact objects.~The photon clouds require semi-infinite spaceli
cone regions for their localization. This is pre-empted on a formal level by the spacelike Ma
stam strings of gauge theory.! Therefore one must modify the physicalc fields before taking the
massless limit in such a way that the worsening of localization is pre-empted. It is interest
note that this must go together with the expected decoupling of the Higgs-type degrees of fre
Both phenomena should show up after projection to the physical perturbation theory. The in
issue and the resulting modification of particle structure can also be dealt with in the sta
gauge approach by separating the algebraic aspects from those due to states.39 Finally one should
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also mention that there are other less conservative ideas which promise to adjust the~semi!clas-
sical gauge idea directly to the noncommutative setting. Their motivation is different from
above attempts of extending renormalized perturbation theory beyond its present borde
keeping the existing renormalized results unchanged.

B. Conformal scanning?

For the analysis of nonperturbative aspects modular theory offers a different method
was already alluded to before, namely the reduction of a complicated higher dimensional m
theory to a finite number of copies of a simpler chiral conformal theory which reside in a com
Hilbert space and have a carefully tuned relative position to each other. This use of chira
lography’’ or ‘‘scanning’’ for general QFT is possible because the LQP version of chiral con
mal theory is more general than the standard framework which ties chiral theories to the
sentation theory of a two-dimensional energy-momentum tensor with zero physical mass.
have seen in Sec. II the wedge algebra of a higher dimensional theory with its light ray trans
and the Lorentz boost is naturally encoded into the half light ray algebra. By its constructio
modular inclusion the light ray theory has automatically a conformal rotation and therefore is
Möbius covariant, i.e., the more general version leads to the same vacuum structure as th
dard. The spectrum of the light ray translation is gapless as it should be in a chiral conf
theory, since light cone momenta are even gapless in a massive theory. The abstract chir
ray theory does however not possess an energy-momentum tensor with aLn Virasoro algebra
structure which is the hallmark of an autonomous two-dimensional conformal field theory
physical mass–gap spectrum can be recovered in the chiral light-ray holography of the we
a careful reinterpretation of the geometric transformations in the wedge. In this way the lig
translation on the lower wedge horizon becomes a ‘‘hidden symmetry,’’ namely a totally non
~‘‘fuzzy’’ ! transformation; whereas the transversal translations generated byPW' are presenting
themselves in the light-ray world as a kind of noncompact inner symmetry. The local gen
P1 of the light-ray translation together with its hidden counterpartP2 and the fake interna
symmetry generatorPW' define the massive physical spectrum of

PmPm[P1P22PW'
2 . ~78!

In view of this additional partially hidden structure of chiral theories originating from hologra
projections of higher dimensional massive ones as compared to the standard ones~based on the
existence of a Virasoro-type energy-momentum tensor!, it is sometimes helpful to picture th
chiral projections as associated with thed21-dimensional~upper! horizon of the wedge. This
does no harm as long as one remains aware of the fact that this picture does not include
structure associated with theP2 andPW' translations. The remainingL transformations which are
not symmetries of the standard wedgeW, are transformingA(W) into a differently positioned
A(W8), i.e., are isomorphisms within the total algebraB(H). For d5211 one only needs one
particular operator from the one-parametric family of ‘‘tilting’’ boosts which fix the upper li
ray. Such transformations are well known from the Wigner ‘‘little group’’ of light-like vectors.
the present case ofd5211 the little group is generated by just one ‘‘translation’’~within the L
group!. Any special transformation from this one-parametric family different from the identity
via a W8 and its holographic light cone projectionA 8(R1) lead to an isomorphism withinB(H)
of A(R1) to A 8(R1). It is plausible that such isomorphism between two differently positio
light-ray algebras can encode the missing covariances and net structure. This can be demo
by applying the theory of modular intersections to the two light-ray~alias wedge! algebras. In
dimensiond one needs preciselyd22 specially positioned chiral theories in order to recover
full Poincarésymmetry and thed-dimensional net structure. As far as counting parameter
concerned, this corresponds precisely to a light front holography onto the horizon of the w
but a better picture is that of a scanning byd21 ~isomorphic! copies of a chiral theory. In orde
to apply these ideas for practical constructive purposes in higher dimensional field theorie
should look for an extension of the notion of modular intersection to more than two alge
                                                                                                                



ion

ories
al QFT

her
is com-
id
struc-
d
the
the use
for-
ltimate
ically

ysical
specu-

well-
are
r par-
th

cs
up

arated
nstruc-
m of

ions
ries
ly in
t by
like to
ith the

should
cture.
hich

n for-
n is
sons/
ormal
which
gainst
eory.

3829J. Math. Phys., Vol. 41, No. 6, June 2000 Particle physics and QFT at the turn of the . . .

                    
Using a similar historical analogy as above~modular wedge localization method.extension of
Wigner representation theory!, it is tempting to interpret the modular holography as a clarificat
and extension of light cone~or p→` frame! physics.

In order to accomplish such a program, the understanding of chiral conformal field the
themselves should be improved. Its present sectarian role with respect to higher dimension
and the general principles is clearly caused by the heavy reliance on special algebras~energy-
momentum tensor, affine, current! which have no higher dimensional counterpart. On the ot
hand, the theory of superselection rules and their consequences for particle/field statistics
mon to all theories. In the particular case at hand40 the admissible statistics belongs to the bra
group and can be in fact classified by Markov traces on the braid group which via GNS con
tion lead to combinatorical type II von Neumann algebras~sometimes inappropriately calle
‘‘topological field theories’’!. They contain the statistics information in such a way that
permutation group statistics emerges as a special case. The missing field theoretic part is
of the quantized statistics~the statistical dimensions follow the famous trigonometric Jones
mula! for the construction of the spacetime carriers of these superselected charges. The u
test should consist in the derivation of FQS quantization of the central charge from the phys
more universal statistics quantization. Here the modular theory will play an important role.41

C. A higher dimensional theory of anomalous dimension?

In order to avoid the impression that the conservative attitude of LQP with respect to ph
principles prevents addressing presently fashionable subjects, I would like to explain some
lative ideas on so-called SYM~supersymmetric Yang–Mills! models. This is clearly part of the
general question of nontrivial aspects of higher dimensional conformal QFT. As in the
studiedd5111 conformal theories, interpolating local fields which create Wigner particles
necessarily canonical free fields. Hence nontrivial fields cannot be associated with Wigne
ticles and must have noncanonical anomalous dimensions~which at best can be associated wi
infraparticles!. So the first step in unraveling the structure ofd5111 conformal theories should
be the understanding of its spectrum of anomalous dimensions. Ford5111 conformal models
such a theory of anomalous dimension~critical indices of associated critical statistical mechani!
exists; these numbers are determined~modulo 2p! by the statistical phases of the braid gro
statistics of the fields~the R matrices of the exchange algebra!. The classification of physically
admissable braid group statistics is a well-defined mathematical problem which can be sep
from the space–time aspects of QFT and treated by the technique of Markov traces. The co
tion of nets fulfilling exchange algebra relations can be converted into a well-defined proble
modular theory. Can one achieve a similar situation with respect to anomalous dimens~
.critical indices! in higher dimensional conformal theories? The answer is positive for theo
which admit observable algebras which fulfil timelike commutativity, i.e., which propagate on
lightlike directions ~Huygens principle! as zero mass free fields. There are arguments tha
choosing the observable algebra sufficiently small, this can always be achieved. One would
interpret anomalous dimension fields as carriers of superselection charges associates w
timelike local observable algebra and one glance at the two-point function reveals that one
expect timelike braidgroup commutation relations associated with the timelike ordering stru
~In fact the time-like net in the forward light cone admits a projection onto the timelike line w
is a chiral conformal theory without the Virasoro structure.! This is indeed what a sytematic DHR
analysis in terms of localized endomorphisms confirms. We obtain the whole superselectio
malism with braidgroup~R-matrix! commutation relations except that the statistic interpretatio
missing: from the viewpoint of spacelike commutation relations we are dealing with bo
fermions. The two- and three-point functions of the observable fields suffer the usual conf
restrictions, i.e., they are determined by their dimensions modulo a normalization constant
carries the memory about the interaction. If supersymmetry ‘‘protects’’ these parameters a
changes due to interactions, then such a model is in dangerous proximity of a free field th
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My conviction that the present modular framework and more generally the LQP approac
have a rich future stems primarily from the fact that the intrinsic logic of LQP is strong
convincing that it appears a safer guide than that obtained from the quantization app
Whereas the canonical formalism, the interaction picture, the formalism of time-ordering, etc
~and has been! be used outside of relativistic QFT, the modular approach istotally specific for real
time LQP. In fact it is the only truly noncommutative entrance into QFT which came really fr
physics~rather than physical illustrations of mathematical concepts as done, e.g., with non
mutative geometry!. Admittedly, it is an area, which because of its strong conceptual roots
demanding mathematical apparatus is not easy to enter; neither does the subject render
fast publications. But in compensation, even if progress at times is very slow, it carries a co
tual profoundness and mathematical solidity which, if coupled with the belief in the guiding p
of physical principles~especially through times of crisis!, is hard to match.

A superficial observer would conclude from the present account that particle physics is
and healthy with a promising 21st century future. Such an observer has missed to noti
radical change of values which also profoundly altered the exact sciences. An outburst of st
creativity as it happened at the beginning of last century~Plank, Einstein, Bohr, Heisenberg! is
only possible under very special sociological conditions in which the search for scientific trut
universality has a high social ranking and were new emerging ideas in sciences were
confronted with historical and traditional aspects. These are not necessarily the good times
explosion of sciences and the arts in the imperial as well as in the humiliated post-war Ge
of the Weimar republic shows.

Present sociology and philosophy of life is totally different. The high social ranking of sh
holder values and globalization over productive values in modern capitalism has found its
terpart also in particle physics. It consists of using ones knowledge, including mathem
sophistication primarily for improving ones status within a scientific community and not for
benefit of furthering science. This works because it is tacitly accepted by a majority. In e
times there still existed a perceived difference of ‘‘physics’’ and what at one or the other
‘‘physicist were doing,’’ whereas nowadays this distinction disappeared. How can one othe
explain that theories which already exist for 30 years and besides making their inventors f
never contributed anything to particle physics enjoy such popularity? And how can one e
that rewards are starting to be given to inventors, thus setting examples for the young gene
The acquired profound knowledge about quantum field theory is now rapidly getting lost an
a truly amazing experience to meet young people who do not have the slightest idea
scattering theory, dispersion theory and the Wigner particle theory although they know mor
necessary about Calabi–Yao spaces, Riemann surfaces and all those theories which hide
big Latin letters. At most places it is already impossible to have a carrier in physics outside
trends; the academic freedom is rapidly losing its economic basis. Fast returns as with shar
values are incompatible with the flourishing of particle physics. If this trend continues anoth
years, the profound knowledge about real problems of 20th century particle physics and QF
have been lost with the young generation. Even if one believes that truths in exact scienc
always eventually find its way, one does not want to be proven correct on such a rather pess
outlook.
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A short survey of noncommutative geometry
Alain Connesa)

Collège de France, 3, rue Ulm, 75005 Paris, France
and I.H.E.S., 35, route de Chartres, 91440 Bures-sur-Yvette, France

~Received 12 January 2000; accepted for publication 2 March 2000!

We give a survey of selected topics in noncommutative geometry, with some em-
phasis on those directly related to physics, including our recent work with Dirk
Kreimer on renormalization and the Riemann–Hilbert problem. We discuss at
length two issues. The first is the relevance of the paradigm of geometric space,
based on spectral considerations, which is central in the theory. As a simple illus-
tration of the spectral formulation of geometry in the ordinary commutative case,
we give a polynomial equation for geometries on the four-sphere with fixed vol-
ume. The equation involves an idempotente, playing the role of the instanton, and
the Dirac operatorD. It is of the form^(e2 1

2)@D,e#4&5g5 and determines both the
sphere and all its metrics with fixed volume form. The expectation^x& is the pro-
jection on the commutant of the algebra of 4 by 4 matrices. We also show, using
the noncommutative analog of the Polyakov action, how to obtain the noncommu-
tative metric~in spectral form! on the noncommutative tori from the formal naive
metric. We conclude with some questions related to string theory. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!01706-0#

I. INTRODUCTION

The origin of noncommutative geometry is twofold.
On the one hand, there is a wealth of examples of spaces whose coordinate algebr

longer commutative but which have obvious relevance in physics or mathematics. The fir
amples came from phase space in quantum mechanics but there are many others, such as
spaces of foliations, the duals of non-Abelian discrete groups, the space of Penrose tilin
Brillouin zone in solid state physics, the noncommutative tori which appear naturally inM theory
compactification, and the Adele class space which is a natural geometric space carrying an
of the analog of the Frobenius for global fields of zero characteristic. Finally, various mode
space–time itself are interesting examples of noncommutative spaces.

On the other hand, the stretching of geometric thinking imposed by passing to noncom
tive spaces forces one to rethink most of our familiar notions. The difficulty is not to add
trarily the adjective quantum to our geometric words, but to develop far-reaching extensio
classical concepts, ranging from the simplest, which is measure theory, to the most sophis
which is geometry itself.

II. MEASURE THEORY

The extension of the classical concepts was achieved a long time ago by operator alge
as far as measure theory is concerned. The theory of non-Abelian von Neumann algebras is
a far-reaching extension of measure theory, whose main surprise is that such an algebraM inherits
from its noncommutativity a god-given time evolution. It is given by the group homomorph1

d:R→Out~M !5Aut~M !/Int~M ! ~2.1!

a!Electronic mail: connes@ihes.fr
38320022-2488/2000/41(6)/3832/35/$17.00 © 2000 American Institute of Physics
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from the additive groupR to the group of automorphism classes ofM modulo inner automor-
phisms.

This uniqueness of thea priori state-dependent, modular-automorphism group of a s
together with the earlier work of Powers, Araki-Woods, and Krieger, were the first steps
eventually led to the complete classification of approximately finite-dimensional factors~also
called hyperfinite!. They are classified by their module,

Mod~M !,
;

R1* , ~2.2!

which is a virtual closed subgroup ofR1* in the sense of G. Mackey, i.e., an ergodic action ofR1* .
The classification involves three independent parts,
~A! the definition of the invariant Mod(M ) for arbitrary factors,
~B! the equivalence of all possible notions of approximate finite dimensionality, and
~C! the proof that Mod is a complete invariant and that all virtual subgroups are obtain

The module of a factorM was first defined1 as a closed subgroup ofR1* by the equality

S~M !5ù
w

Spec~Dw!,R1 , ~2.3!

wherew varies among~faithful, normal! states onM and the operatorDw is themodular operator
of the Tomita–Takesaki theory.2

The virtual subgroup Mod(M ) is theflow of weights1,3–5of M. It is obtained from the module
d as the dual action ofR1* on the Abelian algebra,

C5Center of~M’dR!, ~2.4!

whereM’dR is the crossed product ofM by the modular automorphism groupd. This takes care
of ~A!. To describe~B! let us simply state the equivalence6 of the following conditions:

M is the closure of the union of an increasing sequence of finite-dimensional algeb
~2.5!

M is complemented as a subspace of the normed space

of all operators in a Hilbert space. ~2.6!

The condition~2.5! is obviously what one would expect for an approximately finite-dimensio
algebra. Condition~2.6! is similar to amenability for discrete groups and the implicatio
(2.6)⇒(2.5) is a very powerful tool.

Besides the reduction from type III to type II,1,3 the proof of~C! involves the uniqueness o
the approximately finite-dimensional factor of type II` ,6 the classification of its automorphisms7

for the IIIl case, and the results of Krieger4 for the III0 case. The only case which was left ope
in 1976 was the III1 case, which was reduced to a problem on the bicentralizer of states.8 This
problem was finally settled by U. Haagerup in Ref. 9. Since then, the subject of von Neu
algebras has undergone two major revolutions, thanks first to the famous work of Vaughan
on subfactors and then to the pioneering work of Dan Voiculescu who created and develop
completely new field of free probability theory.

Von Neumann algebras arise very naturally in geometry from foliated manifolds~V, F!. The
von Neumann algebraL`(V,F) of a foliated manifold is easy to describe; its elements are rand
operatorsT5(Tf), i.e., bounded measurable families of operatorsTf parametrized by the leavesf
of the foliation. For each leaff the operatorTf acts in the Hilbert spaceL2( f ) of square integrable
densities on the manifoldf. Two random operators are identified if they are equal for almos
leavesf ~i.e., outside a set of leaves whose union inV is negligible!. The algebraic operations o
sum and product are given by
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~T11T2! f5~T1! f1~T2! f , ~T1T2! f5~T1! f~T2! f , ~2.7!

i.e., are effected pointwise.
All types of factors occur from this geometric construction, and the continuous dimensio

Murray and von Neumann play an essential role in the longitudinal index theorem.
Finally, we refer to Ref. 10 for the role of approximately finite-dimensional factors in num

theory as the missing Brauer theory at Archimedean places.

III. TOPOLOGY

The development of the topological ideas was prompted by the work of Israel Gel’
whoseC* algebras give the required framework for noncommutative topology. The two m
driving forces were the Novikov conjecture on homotopy invariance of higher signature
ordinary manifolds as well as the Atiyah–Singer index theorem. It has led, through the wo
Atiyah, Singer, Brown, Douglas, Fillmore, Miscenko, and Kasparov,11–15 to the recognition that
not only the Atiyah–Hirzebruch K theory but, more importantly, also the dual K-homology ad
Hilbert space techniques and functional analysis as their natural framework. The cycles in
homology groupK* (X) of a compact spaceX are indeed given by Fredholm representations of
C* algebraA of continuous functions onX. The central tool is the Kasparov bivariantK theory. A
basic example ofC* algebra to which the theory applies is the group ring of a discrete group
restricting oneself to commutative algebras is an obviously undesirable assumption.

For aC* algebraA, let K0(A), K1(A) be itsK theory groups. ThusK0(A) is the algebraic
K0-theory of the ringA andK1(A) is the algebraicK0 theory of the ringA^ C0(R)5C0(R,A). If
A→B is a morphism ofC* algebras, then there are induced homomorphisms of Abelian gr
Ki(A)→Ki(B). Bott periodicity provides a six-termK-theory exact sequence for each exa
sequence 0→J→A→B→0 of C* algebras and excision shows that theK groups involved in the
exact sequence only depend on the respectiveC* algebras. As an exercise to appreciate the po
of this abstract tool one should, for instance, use the six-termK theory exact sequence to give
short proof of the Jordan curve theorem.

Discrete groups, Lie groups, group actions, and foliations give rise through their convo
algebra to a canonicalC* algebra, and hence toK-theory groups. The analytical meaning of the
K theory groups is clear as a receptacle for indices of elliptic operators. However, these grou
difficult to compute. For instance, in the case of semi-simple Lie groups the free Abelian g
with one generator for each irreducible discrete series representation is contained inK0Cr* G
whereCr* G is the reducedC* algebra ofG. Thus an explicit determination of theK theory in this
case in particular involves an enumeration of the discrete series.

We introduced with P. Baum16 a geometrically definedK theory which specializes to discret
groups, Lie groups, group actions, and foliations. Its main features are its computability an
simplicity of its definition. In the case of semi-simple Lie groups it elucidates the role of
homogeneous spaceG/K ~K is the maximal compact subgroup ofG! in the Atiyah–Schmid
geometric construction of the discrete series.17 Using elliptic operators we constructed a natu
map from our geometrically definedK theory groups to the above analytic~i.e., C* algebra! K
theory groups. Much progress has been made in the past years to determine the range of
of the isomorphism between the geometrically definedK theory groups and the above analyt
~i.e., C* algebra! K theory groups. We refer to the three Bourbaki seminars18–20 for an update on
this topic.

IV. DIFFERENTIAL TOPOLOGY

The development of differential geometric ideas, including de Rham homology, connec
and curvature of vector bundles, etc., took place during the 1980s thanks to cyclic cohom
which came from two different horizons.21–25 This led, for instance, to the proof of the Noviko
conjecture for hyperbolic groups,26 but got many other applications. Basically, by extending
Chern–Weil characteristic classes to the general framework, it allows for many concrete c
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tations of differential geometric nature on noncommutative spaces. It also showed the depth
relation between the above classification of factors and the geometry of foliations. For ins
using cyclic cohomology together with the following simple fact,

‘ ‘A connected group can only act trivially on a homotopy invariant cohomology theory
~4.1!

one proves~cf. Ref. 27! that for any codimension one foliationF of a compact manifoldV with
nonvanishing Godbillon–Vey class one has

Mod~M !has finite covolume inR1* , ~4.2!

whereM5L`(V,F) and a virtual subgroup of finite covolume is a flow with a finite invaria
measure.

In its simplest form, cyclic cohomology is the cohomology theory obtained from the coc
complex of (n11)-linear form onA, n arbitrary, such that

w~a0,a1,...,an!5~21!nw~a1,a2,...,a0! ;ajPA, ~4.3!

with coboundary operator given by

~bw!~a0,...,an11!5(
0

n

~21! jw~a0,...,ajaj 11,...,an11!1~21!n11w~an11a0,a1,...,an!.

~4.4!

Its first important role is to provide invariants ofK theory classes as follows. Given a
n-dimensional cyclic cocycle onA, n even, the following scalar is invariant under homotopy
projectors~idempotents! EPMn(A),

wn~E,E,...,E!, ~4.5!

wherew has been uniquely extended toMn(A) using the trace onMn(C), as in~4.9!. This defines
a pairing^K(A),HC(A)& between cyclic cohomology andK theory. When we takeA5C`(M )
for a manifoldM and let

w~ f 0, f 1,...,f n!5^C, f 0d f1`d f2`¯`d fn& ; f jPA, ~4.6!

where C is an n-dimensional closed de Rham current, the above invariant is equal to~up to
normalization!

^C,Ch~E!& ~4.7!

where Ch(E) is the Chern character of the vector bundleE on M whose fiber atxPM is the range
of E(x)PMn(C). In this example we see that for any permutation of$0,1,...,n% one has

w~ f s~0!, f s~1!,...,f s~n!!5«~s!w~ f 0, f 1,...,f n!, ~4.8!

where«(s) is the signature of the permutation. However, when we extendw to Mn(A) as wn

5w ^ Tr,

wn~ f 0
^ m0, f 1

^ m1,...,f n
^ mn!5w~ f 0, f 1,...,f n!Tr~m0m1

¯mn!, ~4.9!

the property~4.8! only survives forcyclic permutations. This is at the origin of the name,cyclic
cohomology, given to the corresponding cohomology theory.
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Both the Hochschild and Cyclic cohomologies of the algebraA5C`(M ) of smooth functions
on a manifoldM were computed in Refs. 23 and 24, thus showing how to extend the fam
differential geometric notions to the general noncommutative case according to the follo
dictionary:
~A! Space Algebra

Vector bundle Finite projective module
Differential form ~Class of! Hochschild cycle
DeRham current ~Class of! Hochschild cocycle
DeRham homology Cyclic cohomology
Chern Weil theory PairinĝK(A),HC(A)&

A simple example of cyclic cocycle on a non-Abelian group ring is provided by the follow
formula. Anygroup cocycle cPH* (BG)5H* (G) gives rise to a cyclic cocyclewc on the algebra
A5CG

wc~g0 ,g1 ,...,gn!5H 0 if g0¯gnÞ1

c~g1 ,...,gn! if g0¯gn51
, ~4.10!

wherecPZn(G,C) is suitably normalized, and~4.10! is extended by linearity toCG.
Cyclic cohomology has an equivalent description by means of the bicomplex~b, B! which is

given by the following operators acting on multi-linear forms onA,

~bw!~a0,...,an11!5(
0

n

~21! jw~a0,...,ajaj 11,...,an11!1~21!n11w~an11a0,a1,...,an!,

~4.11!

B5AB0 , B0w~a0,...,an21!5w~1,a0,...,an21!2~21!nw~a0,...,an21,1!,
~4.12!

~Ac!~a0,...,an21!5 (
0

n21

~21!~n21! jc~aj ,aj 11,...,aj 21!.

The pairing between cyclic cohomology andK theory is given in this presentation by the follow
ing formula for the Chern character of the class of an idempotente. Up to normalization one has

Chn~e!5~e2 1
2! ^ e^ e^¯^ e, ~4.13!

wheree appears 2n times on the right-hand side of the equation.
At the conceptual level, cyclic cohomology is a way to embed the nonadditive catego

algebras and algebra homomorphisms in an additive category of modules. The latter is the a
category ofL-modules whereL is the cyclic category. Cyclic cohomology is then obtained as
Ext functor.21

The cyclic category is a small category which can be defined by generators and relati
has the same objects as the small categoryD of totally ordered finite sets and increasing ma
which plays a key role in simplicial topology. Let us recall~we shall use it later! that D has one
object@n# for each integern, and is generated by facesd i , @n21#→@n# ~the injection that misses
i!, and degeneraciess j , @n11#→@n# ~the surjection which identifiesj with j 11), with the
relations

d jd i5d id j 21 for i , j , s js i5s is j 11 i< j
~4.14!

s jd i5H d is j 21 , i , j ,

1n , if i 5 j or i 5 j 11

d i 21s j i . j 11

.
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To obtainL one adds for eachn a new morphismtn , @n#→@n# such that

tnd i5d i 21tn21 , 1< i<n, tnd05dn,

tns i5s i 21tn11 , 1< i<n, tns05sntn11
2 , ~4.15!

tn
n1151n .

The original definition ofL ~cf. Ref. 21! used homotopy classes of nondecreasing maps f
S1 to S1 of degree 1, mappingZ/n to Z/m and is trivially equivalent to the above. Given a
algebraA one obtains a module over the small categoryL by assigning to each integern>0 the
vector spaceCn of n11 linear formsw(x0,...,xn) on A, while the basic operations are given b

~d iw!~x0,...,xn!5w~x0,...,xixi 11,...,xn!, i 50,1,...,n21,

~dnw!~x0,...,xn!5w~xnx0,x1,...,xn21!,
~4.16!

~s jw!~x0,...,xn!5w~x0,...,xj ,1,xj 11,...,xn!, j 50,1,...,n,

~tnw!~x0,...,xn!5w~xn,x0,...,xn21!.

These operations satisfy the relations~4.14! and ~4.15!. This shows that any algebraA gives rise
canonically to aL-module and allows21,28 us to interpret the cyclic cohomology groupsHCn(A)
as Extn functors. All of the general properties of cyclic cohomology, such as the long e
sequence relating it to Hochschild cohomology, are shared by Ext of generalL-modules and can
be attributed to the equality of the classifying spaceBL of the small categoryL with the classi-
fying spaceBS1 of the compact one-dimensional Lie groupS1. One has

BL5BS15P`~C!. ~4.17!

For group ringsA5CG as above the cyclic cohomology bicomplex corresponds exactly29 to the
bicomplex computing theS1-equivariant cohomology of the free loop space of the classify
spaceBG, which is, in essence, dual to the space of irreducible representations ofG.

In recent years J. Cuntz and D. Quillen30–32 have developed a powerful new approach
cyclic cohomology which allowed them to prove excision in full generality. A great dea
activity has also been generated around the work of Maxim Kontsevich on deformation theo
the Deligne conjecture on the fine structure of the algebra of Hochschild cochains~see Ref. 33!.

V. GEOMETRY

The basic data of Riemannian geometry34 consist of a manifoldM whose points are locally
labeled by a finite number of real coordinates$xm% and ametric, which is given by the infinitesi-
mal line element

ds25gmndxmdxn. ~5.1!

The distance between two pointsx, yPM is given by

d~x,y!5Inf$Length gug is a path betweenx and y%, ~5.2!

where

Length g5E
g
ds. ~5.3!
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One of the main virtues of Riemannian geometry is to be flexible enough to give a good mo
space–time in general relativity~up to a sign change! while simple notions of Euclidean geometr
continue to make sense. Homogeneous spaces which are geometries in the sense of th
program are too restrictive to achieve that goal. For instance, the idea of a straight line giv
to the notion of geodesic, and the geodesic equation

d2xm

dt2
52Gnr

m dxn

dt

dxr

dt
, ~5.4!

whereGnr
m 5 1

2g
ma(gan,r1gar,n2gnr,a), gives the Newton equation of motion of a particle in t

Newtonian potentialV provided one uses the metricdx21dy21dz22„112V(x,y,z)…dt2 instead
of the Minkowski metric~cf. Ref. 35 for the more precise formulation!. The next essential point is
that the differential and integral calculus is available and allow us to go from the local to
global.

The central notion of noncommutative geometry comes from the identification of the
commutative analog of the two basic concepts in Riemann’s formulation of geometry, na
those of manifold and of infinitesimal line element. Both of these noncommutative analogs
spectral nature and combine to give rise to the notion of spectral triple and spectral ma
which will be described in detail below. We shall first describe an operator theoretic frame
for the calculus of infinitesimals which will provide a natural home for the line elementds.

VI. CALCULUS AND INFINITESIMALS

It was recognized at an early stage of the development of noncommutative geometry th
formalism of quantum mechanics gives a natural home both to infinitesimals~the compact opera
tors in Hilbert space! and to the integral~the logarithmic divergence in an operator trace!, thus
allowing for the generalization of the differential and integral calculus which is vital for
development of the general theory.

The following is the beginning of a long dictionary which translates classical notions into
language of operators in the Hilbert spaceH:

Complex variable Operator inH
Real variable Self-adjoint operator
Infinitesimal Compact operator
Infinitesimal of ordera Compact operator with characteristic values

mn satisfyingmn5O(n2a), n→`
Integral of an infinitesimal
of order 1

*–T5Coefficient of logarithmic
divergence in the trace ofT

The first two lines of the dictionary are familiar from quantum mechanics. The range
complex variable corresponds to thespectrumof an operator. The holomorphic functional calcul
gives a meaning tof (T) for all holomorphic functionsf on the spectrum ofT. It is only holomor-
phic functions which operate in this generality which reflects the difference between comple
real analysis. WhenT5T* is self-adjoint, thenf (T) has a meaning for all Borel functionsf.

The size of the infinitesimalTPK is governed by the order of decay of the sequence
characteristic valuesmn5mn(T) as n→`. In particular, for all real positivea, the following
condition defines infinitesimals of ordera:

mn~T!5O~n2a! when n→` ~6.1!

~i.e., there existsC.0 such thatmn(T)<Cn2a ;n>1). Infinitesimals of ordera also form a
two-sided ideal and, moreover,

Tj of order a j⇒T1T2 of order a11a2 . ~6.2!
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Hence, apart from commutativity, intuitive properties of the infinitesimal calculus are fulfille
Since the size of an infinitesimal is measured by the sequencemn→0 it might seem that one

does not need the operator formalism at all, and that, it would be enough to replace the ideK in
L(H) by the idealc0(N) of sequences converging to zero in the algebra l`(N) of bounded
sequences. A variable would just be a bounded sequence, and an infinitesimal a sequenmn ,
mn↓0. However, this commutative version does not allow for the existence of variables with
a continuum since all elements of l`(N) have a point spectrum and a discrete spectral meas
Only noncommutativityof L(H) allows for the coexistence of variables with Lebesgue spect
together with infinitesimal variables. As we shall see shortly, it is precisely this lack of com
tativity between the line element and the coordinates on a space that will provide the measu
of distances.

The integral is obtained by the following analysis, mainly due to Dixmier,36 of the logarithmic
divergence of the partial traces

TraceN~T!5 (
0

N21

mn~T!, T>0. ~6.3!

In fact, it is useful to define TraceL(T) for any positive realL.0 by piecewise affine interpola
tion for nonintegerL.

Define for all order 1 operatorsT>0

tL~T!5
1

logL E
e

L Tracem~T!

logm

dm

m
, ~6.4!

which is the Cesaro mean of the function Tracem(T)/ logm over the scaling groupR1* .
For T>0, an infinitesimal of order 1, one has

TraceL~T!<C logL, ~6.5!

so thattL(T) is bounded. The essential property is the followingasymptotic additivityof the
coefficienttL(T) of the logarithmic divergence~6.5!:

utL~T11T2!2tL~T1!2tL~T2!u<3C
log~ logL!

logL
~6.6!

for Tj>0.
An easy consequence of~6.6! is that any limit pointt of the nonlinear functionalstL for L

→` defines a positive and linear trace on the two-sided ideal of infinitesimals of order 1.
In practice, the choice of the limit pointt is irrelevant because in all important examplesT is

a measurableoperator, i.e.,

tL~T! converges whenL→`. ~6.7!

Thus the valuet(T) is independent of the choice of the limit pointt and is denoted

E– T. ~6.8!

The first interesting example is provided by pseudodifferential operatorsT on a differentiable
manifoldM. WhenT is of order 1 in the above sense, it is measurable and*–T is the noncommu-
tative residue ofT.37 It has a local expression in terms of the distribution kernelk(x,y), x, y
PM . For T of order 1 the kernelk(x,y) diverges logarithmically near the diagonal,

k~x,y!52a~x! log ux2yu10~1! ~ for y→x!, ~6.9!
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wherea(x) is a one-density independent of the choice of Riemannian distanceux2yu. Then one
has~up to normalization!

E– T5E
M

a~x!. ~6.10!

The right-hand side of this formula makes sense for all pseudodifferential operators~cf. Ref. 37!
since one can see that the kernel of such an operator is asymptotically of the form

k~x,y!5( ak~x,x2y!2a~x! log ux2yu10~1!, ~6.11!

whereak(x,j) is homogeneous of degree2k in j, and the one-densitya(x) is defined intrinsi-
cally.

The same principle of extension of*– to infinitesimals of order,1 works for hypoelliptic
operators and, more generally, as we shall see later, for spectral triples whose dimension sp
is simple.

VII. MANIFOLDS

As we shall see shortly, this framework gives a natural home for the analog of the infin
mal line elementdsof Riemannian geometry, but we need first to exhibit its compatibility with
notion of manifold.

It was recognized long ago by geometors that the main quality of the homotopy type
manifold ~besides being defined by a cooking recipe! is to satisfy Poincare´ duality not only in
ordinary homology but also inK homology. Poincare´ duality in ordinary homology is not suffi-
cient to describe homotopy type of manifolds,38 but D. Sullivan39 showed~in the simply connected
PL case of dimension>5 ignoring two-torsion! that it is sufficient to replace ordinary homolog
by KO homology.

The characteristic property ofdifferentiable manifoldswhich is carried over to the noncom
mutative case isPoincaréduality in KO homology.

Moreover,K homology admits, as we saw above, a fairly simple definition in terms of Hil
space Fredholm representations.

In the general framework of noncommutative geometry the confluence of the Hilbert s
incarnation of the two notions of metric and fundamental class for a manifold led very natura
defining a geometric space as given by aspectral triple,

~A,H,D !, ~7.1!

whereA is an involutive algebra of operators in a Hilbert spaceH andD is a self-adjoint operator
on H. The involutive algebraA corresponds to a given spaceM like in the classical duality
‘ ‘Space↔Algebra’’ in algebraic geometry. The infinitesimal line element in Riemannian ge
etry is given by the equality

ds51/D, ~7.2!

which expresses the infinitesimal line elementds as the inverse of the Dirac operatorD, hence
under suitable boundary conditions as a propagator.

The significance ofD is twofold. On the one hand, it defines the metric by the above equa
On the other hand, its homotopy class represents theK homology fundamental class of the spa
under consideration. The exact measurement of distances is performed as follows: inst
measuring distances between points using the formula~5.2!, we measure distances between sta
w, c on Ā by a dual formula. This dual formula involves sup instead of inf and does not use
in the space
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d~w,c!5Sup$uw~a!2c~a!u; aPA, i@D,a#i<1%. ~7.3!

A state is a normalized positive linear form onA such thatw(1)51,

w:Ā→C, w~a* a!>0, ;aPĀ, w~1!51. ~7.4!

In the commutative case the points of the space coincide with the characters of the alge
equivalently, with its pure states~i.e., the extreme points of the convex compact set of states!. As
it should, this formula gives the geodesic distance in the Riemannian case. The spectra
(A,H,D) associated to a compact Riemannian manifoldM, K-oriented by a spin structure, i
given by the representation

~ f j!~x!5 f ~x!j~x! ;xPM , f PA, jPH, ~7.5!

of the algebraA of functions onM in the Hilbert space

H5L2~M ,S! ~7.6!

of square integrable sections of the spinor bundle. The operatorD is the Dirac operator~cf. Ref.
40!. The commutator@D, f #, for f PA5C`(M ), is the Clifford multiplication by the gradient¹ f
and its operator norm is

i@D, f #i5SupxPMi¹ f ~x!i5Lipschitz norm f . ~7.7!

Let x, yPM and w, c be the corresponding characters:w( f )5 f (x), c( f )5 f (y) for all f PA.
Then formula~7.3! gives the same result as formula~5.2!, i.e., it gives the geodesic distanc
betweenx andy.

Unlike the formula~5.2!, the dual formula~7.3! makes sense in general, namely, for examp
for discrete spaces and even for totally disconnected spaces.

The second role of the operatorD is to define the fundamental class of the spaceX in K
homology, according to the following table,

SpaceX AlgebraA
K1(X) Stable homotopy class of the spectral

triple ~A, H, D!
K0(X) Stable homotopy class ofZ/2 graded

spectral triple

~i.e., for K0 we suppose thatH is Z/2 graded byg, whereg5g* , g251, andga5ag ;aPA,
gD52Dg).

This description works for the complexK homology which is two-periodic. We shall com
back later to its refinement toKO homology.

VIII. OPERATOR THEORETIC INDEX FORMULA

Before entering in the detailed discussion of the spectral notion of manifold let us mentio
local index formula. This result allows, using the infinitesimal calculus, to go from local to gl
in the general framework of spectral triples (A,H,D).

The Fredholm index of the operatorD determines~in the odd case! an additive mapK1(A)

→
w

Z given by the equality

w~@u# !5Index~PuP!, uPGL1~A!, ~8.1!
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whereP is the projectorP5(11F)/2, F5Sign(D).
This map is computed by the pairing ofK1(A) with the following cyclic cocycle

t~a0,...,an!5Trace ~a0@F,a1#¯@F,an# ! ;ajPA, ~8.2!

whereF5SignD and we assume that the dimensionp of our space is finite, which means th
(D1 i )21 is of order 1/p, alson>p is an odd integer. There are similar formulas involving t
gradingg in the even case, and it is quite satisfactory41,42 that both cyclic cohomology and th
chern Character formula adapt to the infinite-dimensional case in which the only hypothesis
exp(2D2) is a trace class operator.

It is difficult to compute the cocyclet in general because the formula~8.2! involves the
ordinary trace instead of the local trace*– and it is crucial to obtain a local form of the abov
cocycle.

This problem is solved by a general formula43 which we now describe.
Let us make the following regularity hypothesis on (A,H,D)

a and @D,a#Pù Dom dk, ;aPA, ~8.3!

whered is the derivationd(T)5@ uDu,T# for any operatorT.
We let B denote the algebra generated bydk(a), dk(@D,a#). The usual notion ofdimension

of a space is replaced by thedimension spectrum, which is a subset ofC. The precise definition of
the dimension spectrum is the subsetS,C of singularities of the analytic functions

zb~z!5Trace~buDu2z!, Rez.p, bPB. ~8.4!

The dimension spectrum of a manifoldM is the set$0,1,...,n%, n5dimM ; it is simple. Multiplici-
ties appear for singular manifolds. Cantor sets provide examples of complex pointsz¹R in the
dimension spectrum.

We assume thatS is discrete and simple, i.e., thatzb can be extended toC/S with simple
poles inS.

We refer to Ref. 43 for the case of a spectrum with multiplicities. Let (A,H,D) be a spectral
triple satisfying the hypothesis~8.3! and ~8.4!. The local index theorem is the following:43

~1! The equality
*–P5Resz50 Trace~PuDu2z!

defines a trace on the algebra generated byA, @D,A#, anduDuz, wherezPC.
~2! There is only a finite number of nonzero terms in the following formula which defines the

components (wn)n51,3,... of a cocycle in the bicomplex~b, B! of A,

wn~a
0,...,an!5(

k
cn,k*–a0@D,a1#~k1!...@D,an#~kn!uDu2n22uku ;ajPA,

where the following notations are used:T(k)5¹k(T) and ¹(T)5D2T2TD2, k is a multi-
index, uku5k11...1kn ,

cn,k5~21!ukuA2i ~k1!...kn! !21~~k111!¯~k11k21¯1kn1n!!21GS uku1
n

2D .

~3! The pairing of the cyclic cohomology class (wn)PHC* (A) with K1(A) gives the Fredholm
index of D with coefficients inK1(A).

For the normalization of the pairing betweenHC* andK(A), see Ref. 44. In the even case, i.e
whenH is Z/2 graded byg,

g5g* , g251, ga5ag ;aPA, gD52Dg,
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there is an analogous formula for a cocycle (wn), n even, which gives the Fredholm index ofD
with coefficients inK0 . However,w0 is not expressed in terms of the residue*– because it is not
local for a finite-dimensionalH.

IX. DIFFEOMORPHISM-INVARIANT GEOMETRY

The power of the above operator theoretic local trace formula lies in its generality
showed in Ref. 45 how to use it to compute the index of transversally hypoelliptic operato
foliations.46 This allows us to give a precise meaning to diffeomorphism-invariant geometry
manifold M, by the construction of a spectral triple (A,H,D) where the algebraA is the crossed
product of the algebra of smooth functions on the finite-dimensional bundleP of metrics onM by
the natural action of the diffeomorphism group ofM. The operatorD is an hypoelliptic operator
which is directly associated to the reduction of the structure group of the manifoldP to a group of

triangular matrices whose diagonal blocks are orthogonal. By construction the fiber ofP→
p

M is
the quotientF/O(n) of the GL(n)-principal bundleF of frames onM by the action of the
orthogonal groupO(n),GL(n). The spaceP admits a canonical foliation: the vertical foliatio
V,TP, V5Kerp* and on the fibersV and onN5(TP)/V the following Euclidean structures. A
choice of GL(n)-invariant Riemannian metric on GL(n)/O(n) determines a metric onV. The
metric onN is defined tautologically: for everypPP, one has a metric onTp(p)(M ) which is
isomorphic toNp by p* .

The computation of the local index formula for diffeomorphism-invariant geometry45 was
quite complicated even in the case of codimension one foliations: there were innumerable te
be computed; this could be done by hand, by three weeks of eight hours per day tedious c
tations, but it was of course hopeless to proceed by direct computations in the general case
and I finally found how to get the answer for the general case after discovering that the co
tation generated a Hopf algebraH(n) which only depends onn5codimension of the foliation, and
which allows us to organize the computation provided cyclic cohomology is suitably adapt
Hopf algebras.

Hopf algebras arise very naturally from their actions on noncommutative algebras.47 Given an
algebraA, an action of the Hopf algebraH on A is given by a linear map,

H^ A→A, h^ a→h~a!,

satisfyingh1(h2a)5(h1h2)(a), ;hiPH, aPA, and

h~ab!5( h~1!~a!h~2!~b! ;a,bPA,hPH. ~9.1!

where the coproduct ofh is

D~h!5( h~1! ^ h~2! . ~9.2!

In concrete examples, the algebraA appears first, together with linear mapsA→A satisfying a
relation of the form~9.1! which dictates the Hopf algebra structure. This is exactly what occu
in the above example@see Ref. 45 for the description ofH(n) and its relation with Diff(Rn)].

The theory of characteristic classes for actions ofH extends the construction48 of cyclic
cocycles from a Lie algebra of derivations of aC* algebraA, together with aninvariant tracet
on A.

This theory was developed in Ref. 45 in order to solve the above computational proble
diffeomorphism-invariant geometry but it was shown in Ref. 49 that the correct framework fo
cyclic cohomology of Hopf algebras is that of modular pairs in involution. It is quite satisfac
that exactly the same structure emerged from the analysis of locally compact quantum group
resulting cyclic cohomology appears to be the natural candidate for the analog of Lie a
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cohomology in the context of Hopf algebras. We fix a grouplike elements and a characterd of H
with d(s)51. They will play the role of the module of locally compact groups.

We then introduce the twisted antipode,

S̃~y!5( d~y~1!!S~y~2!!, yPH, Dy5( y~1! ^ y~2! . ~9.3!

We associate a cyclic complex~in fact aL-module, whereL is the cyclic category! to any Hopf
algebra together with a modular pair in involution. By this we mean a pair~s, d! as above, such
that the~s, d!-twisted antipode is an involution,

~s21S̃!25I . ~9.4!

ThenH(d,s)
\ 5$H^ n%n>1 equipped with the operators given by the formulas~9.5!–~9.7! defines a

module over the cyclic categoryL. By transposing the standard simplicial operators underly
the Hochschild homology complex of an algebra, one associates toH, viewed only as a coalgebra
the natural cosimplical module$H^ n%n>1 , with face operatorsd i :H^ n21→H^ n,

d0~h1
^¯^ hn21!51^ h1

^¯^ hn21,

d j~h1
^¯^ hn21!5h1

^¯^ Dhj
^¯^ hn, ;1< j <n21, ~9.5!

dn~h1
^¯^ hn21!5h1

^¯^ hn21
^ s,

and degeneracy operatorss i :H^ n11→H^ n,

s i~h1
^¯^ hn11!5h1

^¯^ «~hi 11! ^¯^ hn11, 0< i<n. ~9.6!

The remaining two essential features of a Hopf algebra—productandantipode—are brought into
play to define thecyclic operatorstn :H^ n→H^ n,

tn~h1
^¯^ hn!5„Dn21S̃~h1!…•h2

^¯^ hn
^ s. ~9.7!

The theory of characteristic classes applies to actions of the Hopf algebra on an algebra en
with a d-invariants-trace. A linear formt on A is a s-trace under the action ofH iff one has

t~ab!5t„bs~a!… ;a,bPA.

A s-tracet on A is d-invariant under the action ofH iff

t„h~a!b…5t„aS̃~h!~b!… ;a,bPA, hPH.

The definition of the cyclic complexHC(d,s)* (H) is uniquely dictated in such a way that th
following defines a canonical map fromHC(d,s)* (H) to HC* (A),

g~h1
^¯^ hn!PCn~A!, g~h1

^¯^ hn!~x0,¯ ,xn!5t„x0h1~x1!¯hn~xn!….

X. HOPF ALGEBRAS, RENORMALIZATION, AND THE RIEMANN–HILBERT PROBLEM

There are layers in the theoretical physics community and topics are stratified accord
their validation by experiments. While it is certainly pleasant to have tea in open air, it is h
ening that some hard workers50,51continue to dig in the bottom of the mine and actually find go
I had the luck to meet one of them, Dirk Kreimer, dealing with that part of quantum field th
which did receive lots of birthday presents from experiment, namely perturbative renormaliz
and to join him in trying to unveil the secret beauty of these computations.
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Dirk Kreimer showed52–54 that, for any quantum field theory, the combinatorics of Feynm
graphs is governed by a Hopf algebraH whose antipode involves the same algebraic operation
in the Bogoliubov–Parasiuk–Hepp recursion and the Zimmermann forest formula.

His Hopf algebra is commutative as an algebra and we showed in Ref. 55 that it is the
Hopf algebra of the enveloping algebra of a Lie algebraGI whose basis is labeled by the on
particle irreducible Feynman graphs. The Lie bracket of two such graphs is computed
insertions of one graph in the other and vice versa. The corresponding Lie groupG is the group of
characters ofH.

We also showed that, using dimensional regularization, the bare~unrenormalized! theory
gives rise to a loop

g~z!PG, zPC, ~10.1!

whereC is a small circle of complex dimensions around the integer dimensionD of space–time.
Our main result,56,57which relies on all the previous work of Dirk, is that the renormalized the
is just the evaluation atz5D of the holomorphic partg1 of the Birkhoff decomposition ofg.

The Birkhoff decomposition is the factorization

g~z!5g2~z!21g1~z!, zPC, ~10.2!

where we letC,P1(C) be a smooth simple curve,C2 be the component of the complement ofC
containing`¹C, andC1 be the other component. Bothg andg6 are loops with values inG,

g~z!PG ;zPC,

andg6 are boundary values of holomorphic maps~still denoted by the same symbol!

g6 :C6→G. ~10.3!

The normalization conditiong2(`)51 ensures that, if it exists, the decomposition~10.2! is
unique~under suitable regularity conditions!. It is intimately tied up to the classification of holo
morphic G-bundles on the Riemann sphereP1(C) and for G5GLn(C) to the Riemann–Hilbert
problem. The Riemann–Hilbert problem comes from Hilbert’s 21st problem which he formu
as follows:

‘‘Prove that there always exists a Fuchsian linear differential equation with given singula
and given monodromy.’’

In this form it admits a positive answer due to Plemelj and Birkhoff. When formulated in term
linear systems of the form,

y8~z!5A~z!y~z!, A~z!5 (
aPS

Aa

z2a
, ~10.4!

whereS is the given finite set of singularities,̀¹S, theAa are complex matrices such that

( Aa50, ~10.5!

to avoid singularities at̀ , the answer is not always positive, but the solution exists when
monodromy matricesMa are sufficiently close to 1. It can then be explicitly written as a serie
polylogarithms.

For G5GIn(C) the existence of the Birkhoff decomposition~10.2! is equivalent to the van-
ishing,

c1~L j !50, ~10.6!
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of the Chern numbersnj5c1(L j ) of the holomorphic line bundles of the Birkhoff–Grothendie
decomposition,

E5 % L j , ~10.7!

whereE is the holomorphic vector bundle onP1(C) associated tog, i.e., with total space

~C13Cn!øg~C23Cn!. ~10.8!

WhenG is a simply connected nilpotent complex Lie group the existence~and uniqueness! of the
Birkhoff decomposition~10.2! is valid for anyg. When the loopg:C→G extends to a holomor-
phic loop: C1→G, the Birkhoff decomposition is given byg15g, g251. In general, forz
PC1 , the evaluation

g→g1~z!PG ~10.9!

is a natural principle to extract a finite value from the singular expressiong(z). This extraction of
finite values coincides with the removal of the pole part whenG is the additive groupC of
complex numbers and the loopg is meromorphic insideC1 with z as its only singularity.

As I mentioned earlier, our main result is that the renormalized theory is just the evaluat
z5D of the holomorphic partg1 of the Birkhoff decomposition of the loop given by the unreno
malized theoryg.

We showed that the groupG is a semi-direct product of an easily understood Abelian gro
by a highly nontrivial group closely tied up with groups of diffeomorphisms, thanks to the rela
that we had uncovered in Ref. 55 between the Kreimer Hopf algebra of rooted trees and th
algebraH of Sec. IX involved in the computation of the index formula. The analysis of
relation between these two groups is intimately connected with the renormalization grou
anomalous dimensions. This will be the content of our coming paper~part 2!.

XI. SPECTRAL MANIFOLDS

Let us now turn to manifolds and explain by giving concrete examples the content o
characterization58 of spectral triples associated to ordinary Riemannian manifolds. It will be
cial that it applies to any Riemannian metric with fixed volume form. What we shall sho
particular is that even in that classical case there is a definite advantage in dealing with the s
noncommutative algebra of matrices of functions. The pair given by the algebra and the
operator is then the solution of a remarkably simple polynomial equation. We shall also g
very natural ‘‘quantization’’ of the volume form of the manifolds which will appear most natur
in our examples, namely the spheresSn for n51, 2, and 4.

Let us start with the simplest example, namely, let us show that the geometry of the cirS1

of length 2p is completely specified by the presentation:

U21@D,U#51, where UU* 5U* U51. ~11.1!

Of courseD is as above an unbounded self-adjoint operator. We letA be the algebra of smooth
functions of the single elementU. One hasS15Spectrum(A) as one easily checks using th
invariance of the spectrum ofU by rotations implied by the above equation. Any elementa of A
is of the forma5 f (U) and one has

@D, a#5US ]

]U
f D ~U !5g~U !, ~11.2!

and, thus,
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i@D,a#i5Sup
X

ug~x!u, g5U
]

]U
f . ~11.3!

This shows that the metric onS15Spectrum(A) given by~7.3! is the standard Riemannian metr
of length 2p. Let us now assume thatds5D21 is an infinitesimal of order 1. It is easy to see th
this holds iff the commutant of the algebra generated byU andD is finite dimensional. We then
claim that

E– f udsu5np21E f ~x!Ag dx ; f PA, ~11.4!

where the metricg on S1 is the above Riemannian metric and where the integern is the index

n52Index~PUP!, ~11.5!

whereP is the projectorP5(11F)/2 andF5Sign(D). This formula is simple to prove directly
since it is enough to check it for irreducible pairsU, D in which case the spectrum ofD is of the
form

Spec~D !5Z1l ~11.6!

for somel, while U is the shift.
It is important for our later purpose to understand that it is a special case of the general

formula. Indeed both sides of~11.4! are translation invariant and the equality forf 51 follows
from

Index~PUP!521/2E–U21@D,U# udsu, ~11.7!

which follows from the following expression44 for the n-dimensional Hochschild class of th
Chern character of a spectral triple of dimensionn,

tn~a0,...,an!5E– a0@D,a1#¯@D,an#uDu2n ;ajPA,

where we insert ag in the even case. This formula is weaker than the local index formula of
VIII since it only gives then-dimensional Hochschild class of the character, but it has the s
riority to hold in full generality, with no assumption on the dimension spectrum. It is easy to
it to compute the index pairing withK theory classes which come from the algebraicK theory
groupKn since the Chern character of such classes is ann-dimensional Hochschild cycle. In th
above toy example,U defines an element inK1(A) and its Chern character is the one-dimensio
Hochschild cycleU21

^ U so that~11.7! follows.
Of course this toy example is a bit too simple, but the aboveK theory discussion tells us how

to proceed to higher dimension by relying on the formula~4.13! for the Chern character an
requiring the vanishing of the lower components.

It is crucial that we do not restrict ourselves to the homogeneous case.
We shall now show that all geometries with fixed total area on the two-sphereS2 are indeed

described by the following even analogs of Eq.~11.1!:

^e2 1
2&50, ^~e2 1

2!@D,e#@D,e#&5g, ~11.8!

where, as above,D5D* is an unbounded self-adjoint operator ande, e* 5e, e25e is a self-
adjoint idempotent.

The right-hand side of~11.8!, namelyg, is theZ/2 grading of the Hilbert spaceH which is a
characteristic feature of even dimensions, as we saw above. One has

g251, g5g* , ge5eg, Dg52gD. ~11.9!
                                                                                                                



u-

3848 J. Math. Phys., Vol. 41, No. 6, June 2000 Alain Connes

                    
We still need to explain the symbol^T& for any operatorT in H. We let

^T&5EM~T!, ~11.10!

whereM,L(H) is isomorphic toM2(C) andEM is the conditional expectation onto its comm
tantM 8, given, for instance, as the integral over its unitary group of the conjugatesuTu* of T. We
assume thatD andg commute withM,

DPM 8, gPM 8. ~11.11!

One has the factorizationL(H)5M2(C) ^ M 8, and anyTPL(H) can be uniquely written as

T5( « i j T
i j , Ti j PM 8, ~11.12!

where« i j are the usual matrix units inM2(C). We can apply~11.12! to T5e and we letA be the
algebra of operators generated by the componentsei j of e. Let us show thatA is Abelian and is
the algebra of functions on the two-sphereS2.

We let t5e11 andz5e12 so that

e22512t, e215z* ~11.13!

using ^e2 1
2&50 and e5e* . Also t5t* and 0%t%1 follow from e5e* and e25e. Thus e

5@z*
t

(12t)
z # and the equatione25e means thatt21zz* 5t, tz1z(12t)5z, z* t1(12t)z*

5z* , andz* z1(12t)25(12t). This shows thatzz* 5z* z and thattz5zt so thatA is Abelian.
It also shows that the joint spectrumX of t andz in C3C is a compact subset of

$~ t,z!P@0,1#3C;~ t22t !1uzu250%5P1~C!. ~11.14!

Let us now compute the left-hand side of~11.8! usinge5@z*
t

(12t)
z # and the notation

dx5@D,x#. ~11.15!

We just expand the product of matrices,

F ~ t2 1
2! z

z* ~ 1
22t !

G F dt dz

dz* 2dtGF dt dz

dz* 2dtG , ~11.16!

and take the sum of the diagonal elements. We get the terms

~ t2 1
2!~dtdt1dzdz* !1z~dz* dt2dtdz* !1z* ~dtdz2dzdt!1~ 1

22t !~dz* dz1dtdt!

5~ t2 1
2!~dzdz* 2dz* dz!1z~dz* dt2dtdz* !1z* ~dtdz2dzdt!.

Thus the second equation~11.8! is equivalent to

~ t2 1
2!~@D,z#@D,z* #2@D,z* #@D,z# !1z~@D,z* #@D,t#2@D,t#@D,z* # !

1z* ~@D,t#@D,z#2@D,z#@D,t# !5g. ~11.17!

Equivalently we can write it as

p~c!5g, ~11.18!

wherec is the Hochschild two-cycle,

cPZ2~A,A! ~11.19!
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given by the formula,

c5~ t2 1
2! ^ ~z^ z* 2z* ^ z!1z^ ~z* ^ t2t ^ z* !1z* ^ ~ t ^ z2z^ t !, ~11.20!

and wherep is the canonical map from Hochschild chains to operators44

p~a0
^ a1

^¯^ an!5a0@D,a1#¯@D,an# ;ajPA. ~11.21!

We letvPC`(S2,∧2T* ) be the two-form onS25P1(C) associated to the Hochschild class ofc.24

It is given up to normalization by

v5
1

122t
dz∧dz̄ ~11.22!

and vanishes nowhere onS2.
We shall now show thatany Riemannian metricg on S2 whose associated volume form

equal tov,

Agd2x5v, ~11.23!

gives canonically a solution to our equations~11.8!–~11.11!.
It is very important for our later considerations on gravity that not only the round metric

all possible metrics fulfilling~11.23! actually appear as solutions.
The solution associated to a given metricg fulfilling ~11.23! is constructed as follows. On

lets

H5L2~S2,S! ^ C2 ~11.24!

be the direct sum of two copies of the space ofL2 spinors onS2. The algebraM is just

M5C^ M2~C!. ~11.25!

The operatorD is given by

D5]” ^ 1, ~11.26!

where]” is the Dirac operator~of the metricg!. Finally, theZ/2 grading is

g5g5^ 1, ~11.27!

whereg5 is the chirality operator on spinors. We identifyS2 with P1(C) which is the space

P1~C!5$xPM2~C!, x25x5x* , trace x51%, ~11.28!

and we let

ePC`~S2! ^ M2~C! ~11.29!

be the corresponding self-adjoint idempotent inH where C`(S2) is acting by multiplication
operators inL2(S2,S).

One has~11.9!–~11.11! by construction as well aŝe2 1
2&50 using~11.28!.

Let us check the second equality of~11.8!, or rather the equivalent form~11.17!. For any f
PA5C`(S2) one has

@D, f #5d f ^ 1, ~11.30!

whered f5@]” , f # is the Clifford multiplication by the differential of the functionf.
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For any f 0, f 1, f 2PA one has

f 0~@D, f 1#@D, f 2#2@D, f 2#@D, f 1# !5rg, ~11.31!

wherer is the smooth function such that

f 0d f1∧d f25rAgd2x, ~11.32!

whereAgd2x is the volume form of the metricg. By ~11.23! we haveAgd2x5v and by con-
struction ofv as the two-form associated to the class ofc we get from~11.31! and ~11.32! that

p~c!5rg, v5rv, ~11.33!

i.e., r51.
This is enough to check that any Riemannian metricg onS2 with volume form equal tov does

give a solution of equations~11.8!–~11.11!.
To establish the converse one still needs technical assumptions in order to use the theo

Ref. 58, the main additional hypothesis being the order one condition which requires

@@D, ei j #,ekl#50 ; i , j ,k,l . ~11.34!

Let us show now that the index formula~11.4! admits a perfect analogue in the general framew
of solutions of~11.8! –~11.11!, assuming the following control of the dimension,

ds5D21 is of order 1
2, ~11.35!

i.e., thenth characteristic valuemn(D21) is of order ofn21/2 asn→`.
One hasePM2(A) and the Chern character ofe in the cyclic homology bicomplex~b, B! is

given by its components,

~11.36!

where thê & means that we take theM2(C) trace of the corresponding elements.
Let us recall the index formula,

IndexDe
15^ch~e!,ch~D !&, ~11.37!

which computes the index of the compressioneD1e of D1
•@(11g)/2# H→@(12g)/2#H, in

terms of the pairing between cyclic homology and cyclic cohomology. In general this require
full knowledge of the Chern character ch(D) in cyclic cohomology.

However, in our case,~11.8! shows that ch0(e)50, so that ch2(e) is a Hochschild cycle.
Moreover, by~11.35! all the higher components of ch(D) vanish and44 its component of degree 2
ch2(D), has a Hochschild class given by

t2~a0,a1,a2!5E– ga0@D, a1#@D, a2#D22. ~11.38!

The integral* is a trace and, when specializing~11.38! to aj5e, we can replace the integrand b
its averagê (e2 1

2)@D, e#@D, e#D22&5gD22.
Sinceg251 we thus obtain,

E– ds25Index De
1 . ~11.39!

In particular the area, taken in suitable units, is ‘‘quantized’’ by this equation since the ind
always an integer.
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This simple fact will take more meaning in the four-dimensional case where the Eins
Hilbert action will appear.

To close the discussion of this two-dimensional example we note that the natural algebr
is not A but ratherM2(A), which admits an amazingly simple presentation. It is generated
M2(C) ande with the only relations

e5e* , e25e, ^e2 1
2&50, ~11.40!

where^ & is the conditional expectation on the commutant of the subalgebraM2(C). Indeed the
above computations show that theC* algebra generated byM2(C) ande with the relations~11.40!
is

C„S2,M2~C!…5C~S2! ^ M2~C!. ~11.41!

Let us now move on to the four-dimensional case.
We first determine theC* algebra generated byM4(C) and a projectione5e* such that̂ e

2 1
2&50 as above and whose matrix expression~11.12! is of the form

@ei j #5Fq11 q12

q21 q22
G , ~11.42!

where eachqi j is a 232 matrix of the form,

q5F a b

2b* a* G . ~11.43!

Sincee5e* , bothq11 andq22 are self-adjoint; moreover, since^e2 1
2&50, we can findt5t* such

that

q115F t 0

0 t G , q225F ~12t ! 0

0 ~12t !
G . ~11.44!

We let q125@2b*
a

a*
b

#. We then get frome5e*

q215Fa* 2b

b* a G . ~11.45!

We thus see that the commutantA of M4(C) is generated byt, a, b and we need to find the
relations imposed by the equalitye25e.

In terms ofe5@q*
t

12t
q #, the equatione25e means thatt22t1qq* 50, t22t1q* q50, and

@ t,q#50. This shows thatt commutes witha, b, a* , andb* and, sinceqq* 5q* q is a diagonal
matrix

aa* 5a* a, ab5ba, a* b5ba* , bb* 5b* b, ~11.46!

so that theC* algebraA is Abelian, with the only further relation~besidest5t* )

aa* 1bb* 1t22t50. ~11.47!

This is enough to check that

A5C~S4!, ~11.48!

whereS4 appears naturally as quaternionic projective space,
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S45P1~H!. ~11.49!

The originalC* algebra is thus

B5C~S4! ^ M4~C!. ~11.50!

The analog of~11.8! is

^~e2 1
2!@D,e#2n&50, n50,1, and 5g for n52. ~11.51!

As above we assume

DPM 8, gPM 8, ~11.52!

whereM5M4(C) is the algebra of 434 matrices.
We shall first check by a direct computation that the equality^(e2 1

2)@D,e#2&50 is automatic
with our choice ofe ~11.42!. We use~11.15! for notational convenience and first compute exac
as in ~11.16!, with z replaced byq5@2b*

a
a*
b

#. We thus obtain

^~e2 1
2!@D,e#2&5^~ t2 1

2!~dqdq* 2dq* dq!1q~dq* dt2dtdq* !1q* ~dtdq2dqdt!&,
~11.53!

where the expectation on the right-hand side is relative toM2(C).
The diagonal elements ofv5dqdq* are

v115dada* 1dbdb* , v225db* db1da* da,

while for v85dq* dq we obtain

v118 5da* da1dbdb* , v228 5db* db1dada* .

It follows that, sincet is diagonal,

^~ t2 1
2!~dqdq* 2dq* dq!&50. ~11.54!

The diagonal elements ofqdq* dt5r are

r115ada* dt1bdb* dt, r225b* dbdt1a* dadt,

while for r85q* dqdt they are

r118 5a* dadt1bdb* dt, r228 5b* dbdt1ada* dt.

Similarly for s5qdtdq* ands85q* dtdq, one obtains the required cancellations, so that

^~e2 1
2!@D,e#2&50 ~11.55!

holds irrespective of the operatorD fulfilling ~11.52!.
As in ~11.22! we let v be the natural volume form onS4 given by

v5
1

122t
da∧dā∧db∧db̄. ~11.56!

We shall now show that any Riemannian metricg on S4 whose associated volume form isv gives
a solution to~11.51! and ~11.52!, thus,

Agd4x5v. ~11.57!
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For this we proceed exactly as in~11.24!–~11.33!, and we need to check that the Hochschild cy
c obtained in the computation of

^~e2 1
2!@D,e#4&5p~c! ~11.58!

is totally antisymmetric, i.e., of the form

c5(
i ,s

«~s!a0
i

^ as~1!
i

^¯^ as~4!
i , ~11.59!

wheres ranges through all 24 permutations of$1,...,4%. With the above notations one has

~e2 1
2!@D,e#45F t2 1

2 q

q* 1
22t

G F dt dq

dq* 2dtG
4

, ~11.60!

and the sum of the diagonal elements is

~ t2 1
2!„~dt21dqdq* !21~dtdq2dqdt!~dq* dt2dtdq* !…2~ t2 1

2!„~dt21dq* dq!21~dq* dt

2dtdq* !~dtdq2dqdt!…1q„~dq* dt2dtdq* !~dt21dqdq* !1~dq* dq1dt2!~dq* dt

2dtdq* !…1q* „~dt21dqdq* !~dtdq2dqdt!1~dtdq2dqdt!~dq* dq1dt2!….

Sincet anddt are diagonal 232 matrices of operators and the same diagonal terms appe
dqdq* anddq* dq as we saw in the proof of~11.54!, the first two lines only contribute by

^~ t2 1
2!~dqdq* dqdq* 2dq* dqdq* dq!&. ~11.61!

Similarly, the two last lines only contribute by

^q* ~dtdqdq* dq2dqdtdq* dq1dqdq* dtdq2dqdq* dqdt!

2q~dtdq* dqdq* 2dq* dtdqdq* 1dq* dqdtdq* 2dq* dqdq* dt!&. ~11.62!

The direct computation of~11.61! then gives

( «~s!~ t2 1
2!das~1!

0 das~2!
0 das~3!

0 das~4!
0 , ~11.63!

wherea1
05a, a2

05ā, a3
05b, anda4

05b̄.
The direct computation of~11.62! gives

(
is

«~s!a0
i das~1!

i das~2!
i das~3!

i das~4!
i , ~11.64!

wherei P$1,2,3,4%, and

a0
15a, a1

15t, a2
15ā, a3

15b̄, a4
15b,

a0
25ā, a1

25t, a2
25a, a3

25b, a4
25b̄,

a0
35b, a1

35t, a2
35b̄, a3

35ā, a4
35a,

a0
45b̄, a1

45t, a2
45b, a3

45a, a4
45ā.
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We thus obtain the required formula for the cyclec. Whendx5@D,x# with D the Dirac operator
associated to a Riemannian metricg on S4, we obtain as above, using the Clifford algebra, th

p~c!5rg, ~11.65!

wherer is the smooth function such that

v5rAgd4x, ~11.66!

wherev is the differential form associated toc. Now, up to normalization, one has

v5~ t2 1
2!da`dā`db`db̄2adt`dā`db`db̄1ādt`da`db`db̄

2bdt`db̄`da`dā1b̄dt`db`da`dā,

which, usingt22t1aā1bb̄50, gives up to a factor 2,

v5
1

2t21
da`dā`db`db̄. ~11.67!

Thus by hypothesis ong we getr51 andp(c)5g, which by the above computation means

^~e2 1
2!@D,e#4&5g. ~11.68!

This shows that any Riemannian structure, with the given volume form onM5S4, does give
us a solution to our basic equation. Conversely, exactly as in the two-dimensional case we
provided thatds5D21 is of order 1

4,

E– ds452IndexDe
1 . ~11.69!

In particular the four-dimensional volume, taken in suitable units, is ‘‘quantized’’ by this equa
since the index is always an integer.

Let p5(e,D,g) be a solution of Eqs.~11.42!, ~11.51!, and~11.52! and let us assume~11.34!,
together with harmless regularity conditions.58 Then there exists a unique Riemannian structurg
on M such that the geodesic distance is given by

d~x,y!5Sup$ua~x!2a~y!u;aPA,i@D,a#i<1%.

The metricg5g(p) depends only on the unitary equivalence class ofp. The fiber of the map
$unitary equivalence classes%→g(p) is an affine spaceA on which the functional*–ds2 is a
positive quadratic form with a unique real minimump0 which is the representation describe
above inL2(S4,S) given by multiplication operators and the Dirac operator associated to
Levi-Civita connection of the metricg.

The value of*–ds2 on p0 is the Hilbert–Einstein action of the metricg,

E–ds252~48p2!21E rAg d4x.

We use the convention that the scalar curvaturer is positive for the round sphereS4, in particular,
the sign of the action*–ds2 is the correct one for the Euclidean formulation of gravity. We re
to Refs. 58–60 for detailed computations.

XII. NONCOMMUTATIVE SPECTRAL MANIFOLDS

The main nuance in passing to the noncommutative case is that, since the diagonal
square no longer corresponds to an algebra homomorphism~the mapx^ y→xy is no longer an
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algebra homomorphism!, the algebraA^ A0 now plays a central role. Thefundamental classof a
noncommutative space~cf. Ref. 61! is a classm in the KR homology of the algebraA^ A0

equipped with the involution

t~x^ y0!5y* ^ ~x* !0 ;x,yPA, ~12.1!

whereA0 denotes the algebra opposite toA. TheKR homology cycle representingm is given by
a spectral triple, as above, equipped with an antilinear isometryJ on H which implements the
involution t,

JwJ215t~w! ;wPA^ A0. ~12.2!

Instead of giving the action of the algebraA^ A0 in H one can equivalently give an action ofA
satisfying the commutation rule,@a,b0#50 ;a, bPA, where

b05Jb* J21 ;bPA. ~12.3!

The KR homology15,62 is periodic with period 8 and the dimension modulo 8 is specified by
following commutation rules. One hasJ25«, JD5«8DJ, and Jg5«9gJ where «,«8,«9
P$21,1% and withn the dimension modulo 8,

n 0 1 2 3 4 5 6 7

« 1 1 21 21 21 21 1 1
«8 1 21 1 1 1 21 1 1
«9 1 21 1 21

The antilinear isometryJ is given in Riemannian geometry by the charge conjugation oper
and in the noncommutative case by the Tomita–Takesaki antilinear conjugation operator.2 Given
an involutive algebra of operatorsA on the Hilbert spaceH, the Tomita–Takesaki theory asso
ciates to all vectorsjPH, cyclic for A and for its commutantA8,

Aj5H, A8j5H, ~12.4!

an anti-linear isometric involutionJ:H→H obtained from the polar decomposition of the opera

Saj5a* j ;aPA. ~12.5!

It satisfies the following commutation relation:

JA9J215A8. ~12.6!

In particular@a,b0#50;a, bPA, where

b05Jb* J21 ;bPA, ~12.7!

so H becomes anA-bimodule using the representation of the opposite algebra. The clam
specifies only the stable homotopy class of the spectral triple~A, H, D! equipped with the
isometryJ ~andZ/2 gradingg if n is even!. The nontriviality of this homotopy class shows up
the intersection form

K* ~A!3K* ~A!→Z,

which is obtained from the Fredholm index ofD with coefficients inK* (A^ A0). Note that it is
defined without using the diagonal mapm:A^ A→A, which is not a homomorphism in th
noncommutative case. This form is quadratic or symplectic according to the value ofn modulo 8.
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The Kasparov intersection product15 allows us to formulate the Poincare´ duality in terms of
the invertibility of m,

'bPKRn~A0
^ A!, b ^ Am5 idA0, m ^ A0b5 idA .

It implies the isomorphismK* (A)→
ùm

K* (A).
The condition thatD is an operator of order one becomes

@@D,a#b0#50 ;a,bPA.

~Notice that sincea and b0 commute this condition is equivalent to@@D,a0#,b#50 ;a, b
PA.)

One can show that the von Neumann algebraA9 generated byA in H is automatically finite
and hyperfinite and there is a complete list of such algebras up to isomorphism as we saw
II. The algebraA is stable under smooth functional calculus in its norm closureA5Ā so that
K j (A).K j (A), i.e.,K j (A) depends only on the underlying topology~defined by theC* algebra
A!. The integerx5^m,b&PZ gives the Euler characteristic in the form

x5RangK0~A!2RangK1~A!,

and the general operator theoretic index formula of Sec. VIII gives a local formula forx.
The group Aut1(A) of automorphismsa of the involutive algebraA, which are implemented

by a unitary operatorU in H commuting withJ,

a~x!5UxU21 ;xPA,

plays the role of the group Diff1(M ) of diffeomorphisms preserving theK homology fundamenta
class for a manifoldM.

In the general noncommutative case, parallel to the normal subgroup IntA,AutA of inner
automorphisms ofA,

a~ f !5u f u* ; f PA, ~12.8!

whereu is a unitary element ofA ~i.e.,uu* 5u* u51), there exists a natural foliation of the spa
of spectral geometries onA by equivalence classes ofinner deformationsof a given geometry. To
understand how they arise we need to understand how to transfer a given spectral geome
Morita equivalent algebra. Given a spectral triple~A, H, D! and the Morita equivalence63 between
A and an algebraB where

B5EndA~E!, ~12.9!

whereE is a finite, projective, Hermitian rightA-module, one gets a spectral triple onB by the
choice of aHermitian connectionon E. Such a connection¹ is a linear map¹:E→E^ AVD

1

satisfying the rules44

¹~ja!5~¹j!a1j ^ da ;jPE, aPA, ~12.10!

~j,¹h!2~¹j,h!5d~j,h! ;j, hPE, ~12.11!

whereda5@D, a# and whereVD
1 ,L(H) is theA-bimodule of operators of the form

A5Sai@D, bi #, ai ,biPA. ~12.12!

Any algebraA is Morita equivalent to itself~with E5A) and, when one applies the abov
construction in the above context, one gets the inner deformations of the spectral geometr
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Such a deformation is obtained by the following formula~with suitable signs depending on th
dimension mod 8! without modifying either the representation ofA in H or the antilinear isometry
J,

D→D1A1JAJ21, ~12.13!

whereA5A* is an arbitrary self-adjoint operator of the form~12.12!. The action of the group
Int ~A! on the spectral geometries is simply the following gauge transformation ofA:

gu~A!5u@D, u* #1uAu* . ~12.14!

The required unitary equivalence is implemented by the following representation of the u
group ofA in H:

u→uJuJ215u~u* !0. ~12.15!

The transformation~12.13! is the identity in the usual Riemannian case. To get a nontri
example it suffices to consider, as we did in Sec. XI, the product of a Riemannian triple b
unique spectral geometry on the finite-dimensional algebraAF5MN(C) of N3N matrices onC,
N>2. One then hasA5C`(M ) ^ AF , Int(A)5C`

„M ,PSU(N)… and inner deformations of the
geometry are parametrized by the gauge potentials for the gauge theory of the group SU(N). The
space of pure states of the algebraA, P(A), is the productP5M3PN21(C) and the metric on
P(A) determined by the formula~7.3! depends on the gauge potentialA. It coincides with the
Carnot metric64 on P defined by the horizontal distribution given by the connection associate
A. The group Aut~A! of automorphisms ofA is the following semi-direct product

Aut~A!5U’Diff 1~M ! ~12.16!

of the local gauge transformation group Int~A! by the group of diffeomorphisms. In dimensio
n54, the Hilbert–Einstein action functional for the Riemannian metric and the Yang–Mills a
for the vector potentialA appear with the correct signs in the asymptotic expansion for largeL of
the numberN(L) of eigenvalues ofD which are< L ~cf. Ref. 65!,

N~L!5#eigenvalues ofD in @2L,L#. ~12.17!

This step functionN(L) is the superposition of two terms,

N~L!5^N~L!&1Nosc~L!.

The oscillatory partNosc(L) is the same as for a random matrix, governed by the statistic dict
by the symmetries of the system and does not concern us here. The average part^N(L)& is
computed by a semiclassical approximation from local expressions involving the familiar
equation expansion. Other nonzero terms in the asymptotic expansion are cosmological
gravity, and topological terms. As we saw above in our characterization of Sec. XI we are
dealing with metrics with a fixed volume form so that the bothering cosmological term doe
enter in the variational equations associated to the spectral action^N(L)&. It is tempting to
speculate that the phenomenological Lagrangian of physics, combining matter and gravi
pears from the solution of an extremely simple operator theoretic equation along the line
scribed above. As a starting point for such investigations, see Ref. 66.

XIII. NONCOMMUTATIVE TORI

A more sophisticated example of a spectral manifold is provided by the noncommutative
Tu

2. The parameteruPR/Z defines the following deformation of the algebra of smooth functio
on the torusT2, with generatorsU,V. The relations
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VU5exp 2p iuUV and UU* 5U* U51, VV* 5V* V51 ~13.1!

define the presentation48 of the involutive algebraAu5$San,mUnVn;a5(an,m)PS(Z2)% where
S(Z2) is the Schwartz space of sequences with rapid decay. We shall first describe a com
canonical procedure for constructing theK cycle (H,D,g) overAu from the fundamental class in
cyclic cohomology, i.e., the choice of orientation, and the formal positive element

G5dU~dU!* 1dV~dV!* PV1
2 ~Au!, ~13.2!

which specifies the metric in the naive classical sense.
This transition from thegmn to the spectral triple extends in principle to arbitrary form

metricsGPV1
2 (Au), but we stick to this specific flat example for simplicity. The construct

will be possible thanks to the noncommutative analog of the Polyakov action of string theo
We need first to explain briefly how this works in the commutative case. The basic data

fundamental class in cyclic cohomology, and the formal positive element

G5 (
m,n51

d

gmndxm~dxn!* PV1
2 ~A!. ~13.3!

The first key notion is that of positivity in Hochschild cohomology. By definition~cf. Ref. 67! a
Hochschild cocyclec on a *-algebraA is positive if it has evendimensionn52m and the
following equality defines a positive sesquilinear form on the vector spaceA^ (m11):

^a0
^ a1

^¯^ am,b0
^ b1

^¯^ bm&5c~b0* a0,a1,...,am,bm* ,...,b1* ! ~13.4!

for any aj ,bjPA.
In general the positive Hochschild cocycles form a convex cone

Z1
n ~A,A* !,Zn~A,A* ! ~13.5!

in the vector spaceZn of Hochschild cocycles onA.
Let M be a two-dimensional oriented compact manifold,A be the*-algebra of smooth func-

tions onM, and take for the classC the fundamental class, i.e., the class of the de Rham cur
C,

^C, f 0d f1`d f2&5
21

2p i EM
f 0d f1`d f2 ; f jPC`~M !. ~13.6!

There is a natural correspondence between conformal structures onM and extreme pointsof
Z1

2 ùC. Thus, letg be a conformal structure onM or, equivalently, sinceM is oriented, acomplex
structure. Then, to the Lelong notion of positive current corresponds the positivity in the a
sense of the following Hochschild two-cocycle:

wg~ f 0, f 1, f 2!5
i

p E
M

f 0] f 1` ]̄ f 2, ~13.7!

where] and]̄ are inherited from the complex structure. The mappingg°wg is an injection, since
one can read off fromwg what it means for a functionf to be holomorphic in a given small ope
setU,M . Eachwg is an extreme point of the convex setZ1

2 ùC, and, conversely, the expose
points of this convex set can be determined as follows: for any element of thedual cone(Z1

2 )∧ of
Z1

2 , of the form

G5 (
m,n51

d

gmndxm~dxn!* PV2~A!, ~13.8!
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where gmn is a positive element ofMd(A), one can show, assuming a suitable condition
nondegeneracy, that the linear form

^G,w&5( w„gmn ,xm,~xn!* … ~13.9!

attains its minimum at a unique point inZ1
2 ùC, and that this point is equal towg , whereg is the

conformal structure onM associated with the classical Riemannian metric

g5( gmndxm~dxn!* . ~13.10!

This allows us to understand the complex structures onM as the solutions of a variational proble
involving the fundamental class ofM andpositivity in Hochschild cohomology. This problem i
by no means restricted in its formulation to thecommutativecase, but it requires the notion o
fundamental class in cyclic cohomology. It can be taken as a starting point for developing co
geometry in the noncommutative case.

Let us now show that the previous considerations extend without change to the nonco
tative case and treat the noncommutative torus from a metric point of view. The cyclic coh
ogy groupHC0(Au) is one-dimensional and is generated by the unique tracet0 of Au ,

t0S ( an,mUnVmD5a0,0PC, ~13.11!

whereas the cyclic cohomologyHC2(Au) is two-dimensional and besidesSt0PHC2 ~whereS is
the periodicity operator in cyclic cohomology! is generated by the class of the cyclic two-cocyc

t2~a0,a1,a2!52p i (
n01n11n250

m01m11m250

~n1m22n2m1!an0 ,m0

0 an1 ,m1

1 an2 ,m2

2 . ~13.12!

Note that only theclassof this cocycle matters, not the above specific representative. This nu
is very important since the above class only involves the smooth algebraAu ; we shall now fix the
metric:

G5dU~dU!* 1dV~dV!* PV1
2 ~Au!. ~13.13!

On the intersection of the cyclic cohomology classt21b(KerB) with the positive coneZ1
2 in

Hochschild cohomology, the functionalG defined by

wPZ2°^G,w&5w~1,U,U* !1w~1,V,V* ! ~13.14!

reaches its minimum at a unique pointw2 given by

w2~a0,a1,a2!52p (
n01n11n250

m01m11m250

~n12 im1!~2n22 im2!an0 ,m0

0 an1 ,m1

1 an2 ,m2

2 . ~13.15!

We then use the noncommutative analog of a conformal structure, i.e., the positive cocyw2

together with the tracet0 , to construct the analog of the Dirac operator forAu , that is, we shall
obtain a~2,̀ !-summableK cycle (H,D) on Au . The Hilbert spaceH is the direct sumH5H1

% H2 of the Hilbert spaceH25L2(Au ,t0) of the G.N.S. construction oft0 , and a Hilbert space
H1 of forms of type~1,0! on the noncommutative torus which is obtained canonically fromw2 as
follows: LetA be a*-algebra and letw2PZ1

2 (A,A* ) be a positive Hochschild two-cocycle onA.
Let H1 be the Hilbert space completion ofV1(A) equipped with the inner product
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^a0da1,b0db1&5w2~b0* a0,a1,b1* !. ~13.16!

Then the actions ofA on H1 by left and right multiplications are unitary. They are automatica
bounded ifA is a pre-C* -algebra.

Thus,H1 is a bimodule overA and the differentiald:A→V1(A) gives a derivation which,
for reasons that will become clear, we shall denote by]:A→H1.

In our specific example, the computation is straightforward and givesH15L2(Au ,t0) as an
Au-bimodule and]:A→H1 given by]5(1/A2p)(d12 id2), whered1 ,d2 are the standard deri
vations ofAu :

d152p iU
]

]U
, d252p iV

]

]V
, ~13.17!

so thatd1(SbnmUnVm)52p iSnbnmUnVm and similarly ford2 . One has, of course,

d1d25d2d1 , ~13.18!

and thed j are derivations of the algebraAu ,

d j~bb8!5d j~b!b81bd j~b8! ;b,b8PAu . ~13.19!

One can immediately check the following: LetA5Au act on the left on bothH25L2(Au ,t0) and
H1. Then, the operator

D5F 0 ]

]* 0G ~13.20!

in H5H1
% H2 defines a~2,̀ !-summableK cycle overAu . The Z/2 gradingg is given by the

matrix g5@0
1

1
0# and the real structureJ is given simply in terms of the Tomita–Takesaki antiline

isometry~cf Ref. 58!.
Translation-invariant geometries onTu

2 are parametrized by complex numberst with a posi-
tive imaginary part like in the case of elliptic curves. Up to isometry the geometry depends
on the orbit oft under the action of PSL(2,Z). However, a new phenomenon appears in
noncommutative case, namely, theMorita equivalencewhich relates the algebrasAu1

andAu2
if

u1 andu2 are in the same orbit of the PSL(2,Z) action onR.63,68 We first need to give a concret
description of the finite projective modules overAu . It is obtained by combining the results o
Refs. 48, 69 and 70. The finite projective modules are classified up to isomorphism by a p
integers~p, q! such thatp1qu>0. Let us describe the simplest example of the modulesHp,q

u .
The underlying linear space is the usual Schwartz space,

S~R!5$j,j~s!PC ;sPR%, ~13.21!

of smooth functions on the real line all of whose derivatives are of rapid decay.
The right module structure is given by the action of the generatorsU,V:

~jU !~s!5j~s1u!, ~jV!~s!5e2p isj~s! ;sPR. ~13.22!

One of course checks the relation~13.1!, and it is a beautiful fact that as a right module overAu

the space 21 isfinitely generatedandprojective~i.e., complements to a free module!. It follows
that it has the correct algebraic attributes to deserve the name of ‘‘noncommutative vector bu
over Tu

2 according to the first line of the dictionary of Sec. IV,

SpaceTu
2 AlgebraAu

Vector bundle Finite projective module
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The algebraic counterpart of a vector bundleE on a spaceX is its space of smooth section
C`(X,E) and one can, in particular, compute its dimension by computing the trace of the id
endomorphism ofE. If one applies this method in the above noncommutative example, one

dimAu
~S!5u. ~13.23!

The appearance of nonintegral dimension displays a basic feature of von Neumann alge
type II. The dimension of a vector bundle is the only invariant that remains when one looks
the measure theoretic point of view~Sec. II!. The von Neumann algebra which describes
noncommutative torusTu

2 from the measure theoretic point of view is the well-known hyperfin
factorR of type II1. In particular the classification of finite projective modules overR is given by
a positive real number, the Murray and von Neumanndimension,

dimR~E!PR1 . ~13.24!

The next point48 is that even though thedimensionof the above module is irrational, when w
compute the analog of the first Chern class, i.e., of the integral of the curvature of the v
bundle, we obtain an integer. We first need to determine the connections@in the sense of~12.10!#
on the finite projective moduleS. It is not hard to see@using ~13.17!# that they are characterize
by a pair of covariant differentials

¹ j :S~R!→S~R! ~13.25!

such that

¹ j~jb!5~¹ jj!b1jd j~b! ;jPS,bPB. ~13.26!

One checks that, as in the usual case, the trace of the curvatureV5¹1¹22¹2¹1 is independent
of the choice of the connection. Now the remarkable fact here is that~up to the correct powers o
2p i ) the integral curvature ofS is an integer. In fact, for the following choice of connection t
curvatureV is constant, equal to 1/u so that the irrational numberu disappears in the integra
curvature,u31/u,

~¹1j!~s!52
2p is

u
j~s! ~¹2j!~s!5j8~s!. ~13.27

With this integrality, one could get the wrong impression that the noncommutative torusTu
2 looks

very similar to the ordinary two-torus. A striking difference is obtained by looking at the rang
Morse functions. These are, of course, connected intervals for the two-torus. For the abov
commutative torus the spectrum of a real-valued function such as

h5U1U* 1m~V1V* ! ~13.28!

can be a Cantor set, i.e., have infinitely many disconnected pieces. This shows that th
dimensional shadows of our spaceTu

2 are considerably different from the commutative case. T
above noncommutative torus is the simplest example of noncommutative manifold; it arises
rally not only from foliations but also from the Brillouin zone in the quantum Hall effect
understood by J. Bellissard, and in M theory as we shall see in Sec. XIV.

We shall now describe the natural moduli space~or more precisely, its covering Teichmu¨ller
space! for the noncommutative tori, together with a natural action of SL~2,Z! on this space. The
discussion parallels the description of the moduli space of elliptic curves but we shall find th
moduli space is the boundary of the latter space.

We first observe that as the parameteruPR/Z varies from 1 to 0 in the above labelling o
finite projective modulesHp,q

u one gets a monodromy, using the isomorphismTu
2;Tu11

2 . The
computation shows that this monodromy is given by the transformation@0

1
1

21#, i.e., x→x2y, y
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→y in terms of the~x, y! coordinates in theK group. This shows that in order to follow theu
dependence of theK group, we should consider the algebraA together with a choice of isomor
phism,

K0~A!.
r

Z2, r~ trival module!5~1,0!. ~13.29!

Exactly as the Jacobian of an elliptic curve appears as a quotient of the~1,0! part of the coho-
mology by the lattice of integral classes, we can associate canonically toA the following data:

~1! the ordinary two-dimensional torusT5HCeven(A)/K0(A) quotient of the cyclic homology of
A by the image ofK theory under the Chern character map,

~2! the foliationF ~of the above torus! given by the natural filtration of cyclic homology~dual to
the filtration ofHCeven), and

~3! the transversalT to the foliation given by the geodesic joining 0 to the class@1#PK0 of the
trivial bundle.

It turns out that the algebra associated to the foliationF, and the transversalT, is isomorphic
to A, and that a purely geometric construction associates to every elementaPK0 its canonical
representative from the transversal given by the geodesic joining 0 toa. @Elements of the algebra
associated to the transversalT are just matricesa( i , j ) where the indices~i, j! are arbitrary pairs of
elementsi, j of T which belong to the same leaf. The algebraic rules are the same as for ord
matrices. Elements of the module associated to another transversalT8 are rectangular matrices
and the dimension of the module is the transverse measure ofT8.]

This gives the correct description of the modulesHp,q . The above is in perfect analogy wit
the isomorphism of an elliptic curve with its Jacobian. The striking difference is that we us
evencohomology andK group instead of the odd ones.

It shows that, using the isomorphismr, the whole situation is described by a foliationdx
5udy of R2 where the exact value ofu ~not only modulo 1! does matter now. Now the space
translation invariant foliations ofR2 is the boundaryN of the spaceM of translation invariant
conformal structures onR2, and withZ2,R2 a fixed lattice, they both inherit an action of SL~2,Z!.
We now describe this action precisely in terms of the pair~A,r!. Let g5@c

a
d
b#PSL(2,Z). Let E

5Hp,q , where (p,q)56(d,2c). We define a new algebraA8 as the commutant ofA in E, i.e.,
as

A85EndA~E!. ~13.30!

It turns out~this follows from Morita equivalence! that there is a canonical mapm from K0(A8)
to K0(A) ~obtained as a tensor product overA8) and the isomorphismr8:K0(A8).Z2 is obtained
by

r85g+r+m. ~13.31!

This gives an action of SL~2,Z! on pairs ~A,r! with irrational u @the new value ofu is (au
1b)/(cu1d) and for rational values one has to add a point at`#.

Finally, another group SL~2,Z! appears when we discuss the moduli space of flat metric
Tu

2. Provided we imitate the usual construction of Teichmu¨ller space by fixing an isomorphism,

r1 :K1~A!→Z2 ~13.32!

of theodd Kgroup withZ2, the usual discussion goes through and the results of Ref. 58 show
for all values ofu one has a canonical isomorphism of the moduli space with the upper half-p
M divided by the usual action of SL~2,Z!. Moreover, one shows that the two actions of SL~2,Z!
actually commute. The striking fact is that the relation between the two Teichmu¨ller spaces,
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N5]M , ~13.33!

is preserved by the diagonal action of SL~2,Z!.

XIV. NONCOMMUTATIVE GAUGE THEORY AND STRING THEORY

The analog of the Yang–Mills action functional and the classification of Yang–Mills con
tions on the noncommutative tori was developed in Ref. 71, with the primary goal of findi
‘‘manifold shadow’’ for these noncommutative spaces. These moduli spaces turned out ind
fit this purpose perfectly, allowing us, for instance, to find the usual Riemannian space of
equivalence classes of Yang–Mills connections as an invariant of the noncommutative metr
next surprise came from the natural occurence~as an unexpected guest! of both the noncommu-
tative tori and the components of the Yang–Mills connections in the classification of the
states inM theory.72 In the matrix formulation ofM theory the basic equations to obtain perio
icity of two of the basic coordinatesXi turn out to be the following variant of Eq.~11.1!:

UiXjUi
215Xj1ad i

j , i 51,2, ~14.1!

where theUi are unitary gauge transformations.
The multiplicative commutatorU1U2U1

21U2
21 is then central and in the irreducible case

scalar valuel5exp 2piu brings in the algebra of coordinates on the noncommutative torus.
Xj are then the components of the Yang–Mills connections. It is quite remarkable that the
picture emerged from the other information one has aboutM theory concerning its relation with
11-dimensional supergravity and that string theory dualities could be interpreted using M
equivalence. The latter relates, as we saw in Sec. XIII, the values ofu on an orbit of SL~2,Z!, and
this type of relation would be invisible in a purely deformation theoretic perturbative expan
like the one given by the Moyal product.

In their remarkable paper, Nekrasov and Schwarz73 showed that Yang–Mills gauge theory o
noncommutativeR4 gives a conceptual understanding of the nonzeroB-field desingularization of
the moduli space of instantons obtained by perturbing the ADHM equations. In their pa74

Seiberg and Witten exhibited the unexpected relation between the standard gauge theory
noncommutative one.

The question of renormalizability of quantum field theories on noncommutative spaces75–79

which was the basis of Ref. 80, is generating remarkable similarities with string theory81 which
hopefully should yield a better formulation ofM theory than what is currently available. The ra
at which progress is occuring in this interplay between noncommutative geometry and p
makes it rather futile to try and foresee what will happen even in the near future, but there
few issues on which I cannot help to make brief comments~as a nonexpert!. The first has to do
with locality. The expressions discussed in Sec. VIII which involve the residue, applied to
tiple products of elements of the algebra and the operatorD, do generate the natural candidate f
local cochains in the general case. This was the basic procedure used in Ref. 80 to generalocal
interactions.

Also the transformation from one standard gauge theory to the noncommutative one in R
has the basic feature of respecting the foliations of gauge potentials by gauge equivalence
gauge transformations are isospectral deformations of the corresponding Dirac operator~with
potential! it is natural to wonder whether the Seiberg–Witten transformation can be interpre
spectral terms.

String theory is a generalization of ordinary geometry whose onshell formulation is u
stood via conformal field theory. The corresponding mathematical question of existen
s-models should benefit from the investigation of the Riemann–Hilbert problem attached
renormalization of such a theory as in Sec. X.

Finally, one should probably also look for an offshell formulation of string geometry.
well known that the spectral information on a homogeneous Riemannian space can be g
using Lie group representations, but what we showed in Sec. XI is that even the nonhomog
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metrics are accessible to such a Hilbert space representation treatment. The new feature is
basic equations are no longer related to Lie group representations but to algebraicK-theory
considerations. It is tempting to speculate that a similar adaptation of the Lie algebra repre
tion theoretic approach to conformal field theory could yield the desired offshell formulatio
stringy geometry.
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Noncommutative geometry and fundamental physical
interactions: The Lagrangian level—Historical sketch
and description of the present situation
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These notes comprise~i! a descriptive account of the history of the subject showing
how physics and mathematics interwove to develop a mathematical concept of
quantum manifold relevant to elementary particle theory;~ii ! a detailed technical
description, from scratch, of the spectral action formalism and computation.
© 2000 American Institute of Physics.@S0022-2488~00!01806-5#

I. INTRODUCTION

This report consists of two heterogeneous parts. The descriptive section II is a tale
history of the subject written by a witness of the first hour, showing how physics and mathem
interwove to develop a mathematical concept of quantum manifold relevant to elementary p
theory. The following, more technical, Sec. III, provides access from scratch to the presen
trine of the ‘‘spectral action.’’ In this report we confine ourselves to classical~5Lagrangian!
aspects. For an exposition spelling out all the details of proofs, respectively, for information o
important conceptualization of field-quantization~renormalization! undertaken over the last
years by Connes and Kreimer, we refer the reader to the quotations at the end of the refere59

Connes successively proposed two Pandora’s boxes: ‘‘quantum Yang–Mills’’ and ‘‘spe
action,’’ both miraculously spilling~granted the required computational work! all the complicated
terms of the bosonic Lagrangian of the standard model of elementary particles—the spectra
even in combination with the Lagrangian of gravitation~Glashow–Salam–Weinberg–Einstein
Hilbert—with some admixture of Weyl—in a thimble!. These Lagrangian-creating paradigms a
both confined to the classical~‘‘tree’’ ! level of the theory, stopping short of field quantizatio
hence without firm physical predictions—however, seriously hinting at a potential capac
compute masses, e.g., the ratio of the Higgs to the top mass.

The relationship between both schemes is for the moment unclear. The question of w
and to which extent the second~carrying the ‘‘primal matter’’ philosophy, with renormalization
group ‘‘descent’’ to accelerator energies! relegates the first@which has mainly been studied i
view of ~hints of! realistic predictions#, is open.

We conclude these notes with a short evocation of perspectives.

II. NONCOMMUTATIVE GEOMETRY AND BASIC PHYSICS „SKETCH AND GLIMPSE
THROUGH HISTORY…

After a study, now appearing as a detour, of the noncommutative geometry ofC* -dynamical
systems based on their~plentiful! derivations,1~b! Connes realized the inadequacy for noncomm
tative geometry at large of the Koszul-complex context with its wedge-product~Grassmann alge
bra of a Lie algebra of derivations!. Inspired by Atiyah’s ‘‘Global elliptic operators’’2 and Kas-
parov’s work3 ~see also Mishenko and Fomenko4!, he discovered cyclic cohomology as the rig
conceptual backbone of noncommutativity—the habitat, in duality withK-theory, of the index
theorems.5 In his hands the abstract equipment of cyclic cohomology andK-theory has strategic

a!Also at: Universite´ de la Méditerranne´e.
38670022-2488/2000/41(6)/3867/25/$17.00 © 2000 American Institute of Physics
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importance for checking the fundamentality of supposedly basic physical concepts. How
physics requires a more concrete ground for its computational practice~differential operators
rather than homology classes!.

The equipment for physics comes with the ‘‘metric geometry’’6,7 @Ref. 1~a! Chap. VI# origi-
nating in the crucial recognition that all the information of a~compact closed! spin manifoldM

lies in its Dirac operatorD̃: a profound truth borne out by the fact thatD̃ probes the geodesi
distance between pointsx,yPM as the sup ofua(x)2a(y)u for all Lipshitzian functions fulfilling

i@D̃,a#i<1: to be precise, we mean by Dirac operator and denote byD̃ the Atiyah–Singer–

Lichnérowicz–Dirac operator D̃5gm
“̃m acting onL2 of the spin bundleSM ~we affect with; the

items pertaining to the spin-structure!. Identifying the~smooth! functions onM with their multi-

plicative action, we recall that@D̃,a#5gm]ma is a bounded operator for each functiona; that the

resolvent ofD̃ is compact; and that the characteristic valuesmn areO(n21/d), d the dimension of

M . Since these constitutive properties ofD̃ do not mention commutativity, they still make sen
in a noncommutative~or, for that matter, discrete! context. This suggests todefinethe differential
geometry of noncommutative and/or discrete algebras as the existence of a generalized
operator formalized as follows: an~even, d-summable! K-cycle ~H,D! of the *-algebraA over C
~or R! is the data of aZ/2-graded complex Hilbert spaceH carrying a C ~or R! linear
* -representation ofA by even bounded operators, moreover endowed with an odd self-ad
operatorD with the following features: all commutators@D,a#, aPA, are bounded; the resolven
(D1 i )21 is compact; and one hasmn5O(n21/d) for the nth characteristic value ofD. We call
~even, d-dimensional! spectral triplesthe ‘‘metric quantum spaces’’~A,H,D! obtained in this way,
defining thegauge groupof the triple~A,H,D! as the group of unitaries ofA ~note that the relevan
algebras are*-subalgebras ofC* -algebras which are ‘‘small’’ in the sense that their ‘‘cohom
logical dimension’’d is finite!. As an important consequence of ‘‘d-dimensionality,’’7 one has the
existence of aquantum integrationr(D2d

•) stemming from aquantum volume formr, ~con-
structible! common value on ‘‘measurable operators’’ of allDixmier tracesTrv ~nonconstructive!
v limits of the renormalized logarithmically divergent traces of discrete-spectrum operators
characteristic valuesmn5O(n21) @(D1 i )2d is a particular example among the PDOs of ord
2d, on whichr reduces to the Wodzicki residue#. In what precedesD2d stands for (D1 ia)2d,
aPR ~the choice of a is indifferent, the difference between two choices beeing absorbed
Dixmier trace which vanishes onL1).

The so-defined notion of spectral triple evidently encompasses the ‘‘classical c

@A5C`(M ),H5L2(SM),D5D̃# which served as a model, and whose features should now
ceed from the~archetypical! ‘‘Dirac K-cycle’’ as a first test of the theory. We now show how o
actually constructs the DeRham complexV(M ) of M and the Yang–Mills action~physically>
classical electrodynamics! by means of the Dirac operatorD̃.

~i! DeRham complex. We proceed as follows: first construct a differential algebra (VA,d) of
‘‘formal forms’’ by symbols a, da, aPA, and relations stating whatever should be the ca
linearity of a and da w.r.t. a, and productab in VA, reducing to those inA, d150, and the
Leibniz ruled(ab)5(da)b1a db—this allows to write any ‘‘word’’ as a linear combination o
words of the type v5a0 da1¯dan ,a0 ,...,anPA. The ~coherent! requirement dv
5da0 da1¯dan then yields a differential algebra (VA,d) which by itself carries little informa-
tion ~e.g., it is acyclic!, however, becomes richly informative when represented onH as follows:

pD~a0 da1¯dan!5a0@D,a1#¯@D,an#. ~1!

(pD is a representation of the algebraVA because the substitutiond→@D,•# replaces a derivation
by another one, the multiplication algorithm inVA essentially proceeding from the derivatio
rule.! Note that, since (@D,•#)2Þ0,pD(VA) is not a differential algebra~the kernelK of pD is not
a differential ideal!, however one easily checks thatK1dK is a differential ideal, allowingd to
pass to the quotientVDA5VA/(K1dK) to yield a differential algebra (VDA,d). It now turns
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out that in the caseA5C`(M ) the differential algebras(VDA,d), and (V(M ),d) are isomor-
phic: we thus reconstructed the DeRham complex ofM via the Dirac operator—this moreover b
means of a construction valid for general spectral triples~A,H,D!, thus producing their ‘‘quantum
DeRham complex’’ (VD ,A,d).

~ii ! Yang–Mills action:6 given a connection“ of a smooth bundle overA ~acting on its
A-moduleE of smooth sections! we want to ‘‘integrate the square of the curvature.’’ Looking
connections“ in the guise of their covariant exterior derivatives, these are grade-oned derivations
of the A-module E^ AVDA5E^ C`(M )V(M ) ~of E-valued differential forms!, the associated
curvature being the endomorphism~5two-form! Q representing the square“2. Note that these
items exclusively use the differential algebraVDA constructed viaD, thus persist in the noncom
mutative and/or discrete case. The ‘‘quantum integration’’ then allows to define the ‘‘qua
Yang–Mills action’’ as r(D2dQ2) @definition valid for general spectral triples~A,H,D!, and
merging in the classical caseE5A5C`(M ) as it should into the usual classical Yang–Mil
action#. Note that, to achieve manifest gauge-invariance,D2d has to be replaced in the integratio
by the equivalent (D1A)2d—the difference is absorbed by the Dixmier trace. Note that
‘‘quantum Yang–Mills’’ formalism needs as data a spectral triple~A,H,D! plus a projective finite
moduleE as the receptacle of connections. In most of our cases howeverE will be A itself taken
as a rightA-module~as happens for electrodynamics!.

Where are we now? We have constructed generic ‘‘quantum versions’’@using the spectra
triples ~A,H,D! embodying our ‘‘quantum geometries’’# of both the DeRham complex and th
Yang–Mills action, these quantum objects merging into the customary items in the case
classical even-dimensional spin manifold. We somewhat wronged history by presenting the
tum DeRham complex prior to Yang–Mills. The order of discovery was first Yang-Mills, p
formed with the formal (VA,d) instead of (VDA,d), thus dragging along the ‘‘junk’’ (K1dK in
second order! as ‘‘adynamical fields’’~not figuring in the action! to be eliminated by minimization
of the action, a procedure subsequently streamlined byVDA. We now look for a nonclassica
example for inaugurating our ‘‘metric quantum geometry.’’ At this point something remark
happens: the simplest possible choice~derisively simple—still commutative, butdiscrete! turns
out to be~germinally! of the highest significance for elementary particle physics. This examp
the following: the algebra is the ‘‘two-point algebra’’A5C% C; the Z/2-graded Hilbert spaceH
5CN

% CN,NPN ~with grading involution 1% 21) is acted upon by (p,q)PC% C asp1% q1; the

Dirac operator isD5(M
0

0
M* ), M a N3N matrix ~note that, as should be the case, the algebr

even and the Dirac operator is odd!. Working out the DeRham complex, the Hermitian conne
tions of the~right! A-moduleA, their curvatures, and the Yang–Mills action is an easy exerc
The connections are parametrized by a complex numberf in terms of which the Yang–Mills
action turns out to be (ufu221)2—an expression which a physicist recognizes with gleaming e
asthe typical expression of the Higgs potentialof the standard model of elementary particles. W
find the Higgs in a nutshell, the ‘‘embryonic Higgs.’’ This at once enlightens our physical pic
the world is two-sheeted, the mysterious Higgs is nothing but a gauge boson, however n
noncommutative geometry to be recognized as such because the corresponding potential
connection within the realm of classical differential geometry, but adiscrete connection~so-to-
speak with parallel transport jumping from one world-sheet to the other!. The standard model o
elementary particles is a puzzling object in that its phenomen~ologic!al success—seeking devia
tions from it is a thoroughy frustrating sport—seems in total contrast with the completelyad hoc
way in which it was historically constructed: namely through heuristic ‘‘symmetry-breaking
the esthetical U~1!3SU~2!3SU~3! gauge theory~unphysical because leading to massless p
ticles! by a mysterious ‘‘Higgs boson’’ scalar field subject to a double-well potential. This m
gloriously survives in contrast with the waste-basket-destiny of hundreds of other models! R
ing the right model was a long and strenuous process.

This tempting insight gained from the ‘‘embryonic Higgs’’~inner degrees of freedom! made
us already extrapolate towards a multisheeted space-time combining space-time with the
space.’’ For describing the realistic space-time Higgs we now need to perform the actua
struction of such a compound object. At this point mathematics plays into our hands. The ‘‘
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tum Yang–Mills’’ indeed allows a natural tensoring of two spectral triples (A8,H8,D8) and
(A9,H9,D9) to yield a compound triple~A,H,D! as follows: one hasA5A8^ A9; H5H8^ H9;
g5g8^ g9; a5a8^ a9, aPA, a8PA8, a9PA9; and D5D8^ 191g8^ D9. This procedure is
mathematically canonical as the exterior multiplication of KasparovK-cycles. Applied to the
classical space–time Dirac–K-cycle as the primedK-cycle and the embryonic Higgs as the doub
primed, it now produces a sensible toy model: the electroweak sector of the~simplified! standard
model of a fictitious word withN generations of a single fermion. We are thus on the right tra
but need a more elaborate spectral triple to become realistic. In their original paper8~a! ~the pro-
gram was annonced by Connes verbally in 1989 at the Cortona meeting on Quantum grou
in writing at the 1990 Oxford Conference9! Connes and Lott first considered the case of
bipoint algebraC% C endowed with aK-cycle featuring a projective-finite module generated b
projection tailored so as to feature the leptons—a rather complicated formalism which the
traded, while appending the quarks, for a simpler and more natural scheme based on the
C% H dictated by the electroweak gauge-group U~1!3SU~2! serving also as a right module ove
itself for accommodating connections~as was above the case for the pure electrodynamics in
quantum Yang–Mills guise!. The inner Hilbert spaceH is then chosen so as to fit phenomenolo
~with a basis indexed by the fermions—leptons and quarks—as we know them by phenom
ogy; with the action of the algebra dictated by the gauge-group behavior of the fermions; a
inner Dirac operatorD a couple of finite matrices, in fact the ‘‘Cabibbo–Kobayashi–Maskaw
matrix and its Hermitian conjugate acting in an odd way~for details which would encumber thi
historical sketch we refer to Sec. III C below!. An involved computation of the quantum Yang
Mills action ~elimination of the junk somewhat nightmarish! thenyields the bosonic electrowea
sector of the standard model (Glashow–Salam–Weinberg)—a hardly fortuitous ‘‘miracle.’’ There
follows another striking situation: while we got above the correct terms in the action, the ferm
however come out with wrong hypercharges. In order to describe physics~the full standard
model!, we have to append the chromodynamics sector to the previously constructed electr
sector, with the gluon-field a ‘‘vectorial field’’ producing no Higgs particles. We achieve this
tensoring the previous ‘‘inner electroweak spectral triple’’ by a ‘‘inner chromodynamics spe
triple’’ made up of the algebraC% M3(C) and a vanishing Dirac~the compound Dirac of the
tensor-product triple is thus entirely on the electroweak side!. Now, providentially, the necessar
‘‘modular adjustment’’ collapsing the three U~1!’s into a single one in order to obtain the righ
gauge group ~a procedure mathematically coherent using the DeLaHarpe–Skan
determinant10—but physically heuristic! can be achieved in such a way as to correct for the wro
hypercharges. Modular adjustment corrects for the fact that the SU~3! gauge group of the gluon
is imperfectly represented by the algebraM3(C) with unitary group U~3!, whence the necessity t
assign to the gluons the algebraC% M3(C) and then collapse the three ambient U~1!’s into one.
Interestingly this ‘‘modular adjustment’’ is precisely required by anomaly freeness.19# Noncom-
mutative geometry thus refuses to treat the electroweak sector in isolation~wrong hypercharges!,
asking~even exactly, cf. Ref. 11! for tensorization by the gluons for their hypercharge-correct
virtue. There is more to this: this electroweak-chromodynamics ‘‘duality’’~structureless in the
usual theory! is recognized by Connes as amanifestation of a mathematically canonical nonco
mutative Poincare´ duality: a novel concept of pure mathematics suggested by the inner spa
the full standard model of elementary particles. This generalization of classical Poincare´ duality
features a couple of algebras sitting in a bimodule~K-homology of the one mapped on th
K-cohomology of the other!. In our case the bimodule is the tensor-product spectral triple w
one of the algebras is viewed as its opposite. It seems extremely rewarding that the comb
of the electroweak and chromodynamics sectors be required by noncommutative geometry
basic mathematical motivation. We now formalize generically the concept which we used f
Connes–Lott compound inner space: our electroweak, respectively, chromodynamic inne
bras are the archetypes of pairsA,B of the following type: Ametric dual pair~personal termi-
nology: this concept will later turn up to coincide with theS0-real specialization ofreal spectral
triples—see below! is defined as a spectral triple (A^ B,H,D) fulfilling the first-order condition:
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@@D,a#,b#50, aPA,bPB ~2!

~symmetric inA and B owing to the Jacobi identity!. The metric dual pair moreoverfulfills
Poincaréduality whenever its intersection form is nondegenerate. The first definition of noncom-
mutative Poincare´ duality1 incorporated the first-order condition. The more recent usage~cf.
definition below of ‘‘spectral geometries’’! defines Poincare´ duality as the nondegeracy of th
intersection form, mappingK-homology ofA on K-cohology ofB.

Up to now we mentioned only the bosonic part of the action. The fermionic part of
standard-model action is, on the other hand, compactly expressed~third ‘‘miracle’’ ! as

~c,~D1A!c!, ~3!

c in the compound Hilbert space~indexed by the fermions, asked to be chiral!, D1A the com-
pound covariant generalized Dirac operator~A is the potential!.

The Connes–Lott model based on the metric dual pair ((C% H) ^ (C% M3(C),H,D) accumu-
lates an impressive amount of coherence. Contact with the traditional standard-model Lagr
of elementary-particle~both bosonic and fermionic! is perfect. The generic ‘‘Connes–Lo
~5quantum Yang–Mills! models’’ are in fact much more constraining than the comparativ
loose traditional Yang–Mills models,12 thus entail more information. The above Connes–L
model describes the Higgs in a much tighter way than the traditional standard model for whi
Higgs mass is a totally loose parameter. Noncommutative geometry implies constraints allo
tree-approximation computation of the Higgs mass in terms of the top mass~for what such
calculations are worth in absence of renormalization, but any indication of a possible all-imp
computation of masses is worth investigating!. This aspect has been intensively studied. Ea
investigations using a one-parameter coupling constant had revealed for the most sym
choice a situation reminiscent of grand unification.13,14 Connes later advocated15 an oppositely
maximally uncommitted choice of the coupling constant~matricial, within the commutant of
algebra and Dirac!, a prescription which was noticed by Schu¨cker16,17 to lead to very coheren
tree-approximation-constraints~upset,19 but slowly, by the renormalization group! practically fix-
ing the tree-level Higgs mass irrespective of the possible choices. In spite of their app
features, these considerations are now abandoned for the doctrine, requireded by the s
action theory, that the Lagrangian-creating paradigm yields the action of ‘‘primal matter
structured and subtle return to the ‘‘new grand unification’’ philosophy of Ref. 13.

Interesting as it is, the Connes–Lott theory has however imperfections.
The notion of metric dual pair pertains only to inner space~since one does not wish t

tensorially double space–time!.
The relevant connections are not all the connections, but the ‘‘biconnections’’@‘‘remember-

ing’’ the tensorial splitting (C% H) ^ (C% M3(C)#. Connes motivated the use of biconnections b
gauge-group argument.15 We attempted a more basic justification.18 The problem evaporates whil
passing to the real spectral triples below.

The theory understresses particle–antiparticle~5charge-conjugation! symmetry.
The ‘‘modular correction’’ is heuristic, not conceptual, thus insufficiently understood de

the link with anomaly freeness.19

The elimination of the ‘‘junk’’ may appear unesthetically complicated.
In 1994 Connes proposed his notion of ‘‘real spectral triple’’20 which removes the first two

drawbacks and halves the third. The concept originates in a combination of the Tomita–Ta
theory,21 KO theory22 and the idea of charge-~particle-antiparticle-! conjugation. Two distinct
things have to be considered.

~1! The general mathematical notion of real spectral triple—along with itsS0-real specialization.
~2! theS0-real ‘‘spectral triple of the standard model’’ replacing~and constructed from! the above

dual metric pair.
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It is interesting to note that the general notion arose as a common generalization
‘‘classical example’’ and the ‘‘spectral triple of the standard model.’’

~1! A d-dimensional real spectral triple~A,H,D,J! is a d-dimensional even spectral tripl
~A,H,D!, A over the reals, with areal structure, i.e., an antilinear operatorJ of H fulfilling the
following properties:J* J51 ~antiunitarity!; J commutes withD; JAJ* commutes with bothA
and@D,A# ~‘‘order one’’!; J25«1;Jx5«8xJ ~x the grading involution ofH! with the signs« and
«8 as follows:

d mod 8 0 2 4 6

« 1 21 21 1

«8 1 21 1 21

. ~4!

Definitions:
we set

ajb5aJb* J21j ~5Jb* J21aj!, a,bPA, jPH. ~5!

The elementsu of the gauge groupG of the spectral triple~unitaries ofA! act onH by the
adjoint representation

j→uj5uJu* J21j ~5uju* !. ~6!

The covariant Dirac operator DA , indexed byAPVD(A), is defined as

DA5D1A1JAJ21. ~7!

The fermionic actionis defined as

I F~A,c!5~c,DAc!, cPH, APVD~A!. ~8!

Results:
H acquires by~5! the structure of aA bimodule such thatJaJ215•a* , aPA, where•a*

denotes multiplication inH by a* from the right@as in ~5!#.
Equation ~6! defines a unitary representation ofG on H, such thatJ(uj)5u(Jj), jPH, u

PG.
For eachAPVD

1 (A),(A,H,DA ,J) is a d-dimensional even spectral triple.
The fermionic action is gauge-invariant: one has

I F~uA, uc!5I F~A,.c!, cPH, APVD~A!, uPG, ~9!

whereuA5A1u* du.
The ~euclidean! ‘‘charge conjugation C ~such that C* 5C2152C,Cg55g5C,Cgm

5gmC, m51,2,3,4) is a real structure of the classical spectral triple (C`(M ),L2(SM),D̃).
Tensoring as above as spectral triples thed8-, respectively,d9-dimensional real spectra

triples (A8,H8,D8,J8) and (A9,H9,D9,J9) yields a (d81d9)-dimensional real spectral triple with
real structureJ8^ J9 if d850 or 4 mod 8 andd950.

The following specialization of real spectral triples arises in a one-to-one fashion from ‘‘
ric dual pairs:’’ A S0-real spectral triple~A,H,D,J,P! with grading involutionx is a real spectral

triple ~A,H,D,J! ~with grading involutionx! together with an Hermitian projectionP(512 P̄) of

H fulfilling: PJ1JP5J(↔PJ5JP̄↔ P̄J5JP);Px5xP(5PxP);PD5DP(5PDP);Pa
5aP(5PaP), aPA.

Proposition: ~i! S0-real spectral triples~A,H,D,J,P! are one-to-one with metric dual pair
(A8^ A9,H,D,J), bijection specified in both ways as follows:
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A5A8% A9, H5PH
H5H % H̄, A85PAP

A95 P̄AP̄

J~j,h̄ !5~h,«j̄ !, j,hPH, x5restr. to H of PxP5Px5xP,

x5~x %I «8x!, D5restr. to H of PDP5PD5DP,

D5~D %I D !, a85restr. to H of P~a8,0!5~a8,0!P,

~a8,a9!5~a8%I a9! a95restr. to H of PJ~0,a9!* J* P5PJ~0,a9!* 5~0,a9!* J* P.

~10!

@Here H̄ is the conjugate Hilbert space ofH, and the shorthandaS%I bT, S,TPEndH, a,b
PR, means the prescription (aS%I bT)(j,h̄)5(aSj,bT* h), j,hPH. We use the same symbo
x on both sides which should not create confusion.#

~ii ! A S0-real spectral triple (A0% A8% A80% A9,H,D,J,P) with A80'A0 can be ‘‘cut down’’
to (A0% A8% A9, H,D,J,P) by identifying A80 with A0 .

~2! The S0-real ‘‘inner spectral triple of the Connes model’’ (C% H% M3(C),H,D,J) ~de-
scribed in detail in Sec. III C below, and also used in the spectral-action theory below! then arises
by applying the above procedure~i!, and ~ii ! ~with A05C), to the ‘‘inner dual metric pair ((C
% H) ^ (C% M3(C),H,D) of the Connes–Lott model.’’ TheS0-real ‘‘~full ! spectral triple of the

Connes model’’ is then the compound real spectral triple (A,(H5HI % H̄,X,D),J) obtained by

tensorizing the space-time real tensor triple (C`(M ),(L2(S(M )),g5,D̃),C) by the inner real spec

tral triple (A,H5H % H̄,X,D,J). There should be no confusion between the particle-, res

tively, antiparticle Hilbert spaceHI , respectively,H̄, and the quaternion algebraH.
The passage from the Connes–Lott model based on a metric dual pair to the Conn

spectral triple standard model achieves a threefold progress:~i!: particle–antiparticle symmetry is
now duly emphasised,~ii ! the ‘‘biconnections’’ come automatically with one-forms the char
conjugation-symmetrizedA1JAJ, ~iii ! half of the modular adjustment is automatic@reduction by
1 of the number of plethoric U~1!s#. One shows that the passage from the definition represent
to the adjoint representation of the gauge-group does not alter the hypercharges of the fer

For a time we believed that trading the Connes–Lott model based on a metric dual pair f
Connes real spectral triple standard model would not change the action. That this was fal
recognized by Carminati~the point is that for the junk-computation the simplifying use of t
tensor structure23 is no longer available!: this slightly upsets the conclusions on tree-level m
constraints mentioned above as was shown in Refs. 24 and 25.

The notion of real spectral triple leads to the following notion of ‘‘noncommutative s
manifolds.’’26 A spectral geometryis the specification of ad-dimensional real spectral triple
~A,H,D,J!, even or odd, thus~in both cases! fulfilling @for the definition of the odd case, se
Ref. 1~a!#.

~‘‘Reality’’ !: existence of an antiunitaryJ as above in the even case, for the odd case we r
to Ref. 26!:

~‘‘Dimension’’ !: (D1 i )21 is compact; andmn5O(n21/d) for the nth characteristic value o
D.

~‘‘First order’’ !: JAJ commutes with bothA and@D,A#, moreover endowed with the follow
ing properties.

~‘‘Regulariry’’ !: for eachaPA, a and @D,a# belong toùnPN Domaindn,d5@ uDu, •#.
~‘‘Finitude’’ !: the A-moduleE5ùnPN DomainDn is projective-finite with Hermitian struc-

ture:

~aj,h!5Trv~D2da~j,h!!, j,hPE, aPA. ~11!

3873J. Math. Phys., Vol. 41, No. 6, June 2000 Noncommutative geometry and physical interactions
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~‘‘Orientability’’ !: there is a Hochschild cyclecPZn(A,A ^ A0) such thatpD(c)5g ~even
case! or pD(c)51 ~odd case! wherepD(c)5a0@D,a1#¯@D,an#.

~‘‘Poincaré-duality’’ !: the intersection form:K* (A)3K* (A)→Z composition of the Fred-
holm index ofD and the diagonalK* (A)3K* (A)→K* (A^ A)→K* (A) is invertible.

These axioms are comforted by the remarkable fact that their abelian version~where the
algebraA is abelian and the bimoduleH has the natural real structureJaJ5a* ,aPA) goes quite
far towards an axiomatic characterization of classical spin manifolds26 ~the gap in the proof seem
essentially technical!. In spite of this undubitable progress over the traditional definition~assem-
bling flat neighborhoods! falling regrettably short of the ideal pursuit of axiomatic definitions
clearcut frames for a subsequent search of invariants, a mathematician averted from ph
likely to be puzzled by a system of axioms which seems strange to someone ignoring its his
genesis: namely the inventory of the features shared by the ‘‘classical example’’ and the~deri-
sively minute?—but astonishingly revealing! inner spectral triple of the Connes standard mode
elementary particles: the latter apparently the only man-made object ‘‘quantal’’ enough to m
the search for ‘‘noncommutative manifolds’’~the rest of mathematics is too ‘‘classical’’!. In this
development mathematics and physics beautifully interwove their strides towards the explo
of the right~noncommutative! space. In fact Connes claims that the role of the CERN accele
is ‘‘exploring the right space.’’ His recent work with Kreimer on renormalization is bringing h
nearer this claim.

An exhaustive classification of the finite Poincare´-dual real spectral triples has bee
performed27—see also Ref. 28.

III. THE SPECTRAL ACTION

A. Prehistory

I may evoque personal recollections illustrating the course of discovery. In 1992, while b
ing me to the airport in his car on his way home from a Colle`ge de France lecture, Alain Conne
asked: ‘‘did you notice that the Dirac operator contains the information of gravitation?
mentioning that the Einstein–Hilbert action sticks in the Wodzicki residue of~Dirac!22. I was
fascinated: so the wondrous Dirac operator, in addition to producing electrodynamics~even, if
decorated, the standard model! generated also general relativity. Wishing to know the detail
performed the computation~one has to dive by two levels of PDO indices!, actually leading to:
const3scalar curvature.29 Was there more to it?—unfortunately not: replacement of the nac
Dirac by the Dirac plusgmAm ends in frustration: one gets no coupling with electrodynamics,
six additional terms cancelling each other. Since, conversely, the spin connection drops ou
Connes–Lott computation, I sadly concluded that ‘‘the two theories seem to repel each o
that level.’’ Kalau and Walze reported about identical results in a Marseilles talk.30 On the other

hand, I knew that resW(D̃22) equals the second coefficienta2(D̃2) of the heat expansion up to
constant—but alas I neglected this aspect, a negligence dispensing me of looking at th

coefficienta4(D̃2). The shock came with a telephone call from Connes in the 1996 reporting
he had found a formalism yielding jointly gravitation and the standard model and synthes
diffeomorphisms with the gauge group31—he was then alarmed to get the right relative sig
particularly of a term which he hoped coherently tractable by the renormalization group a
scribed by Wilson. Shortly afterwards, we learned more from Chamseddine who was spe
three weeks in Marseille before going to IHES for the final writing of their spectral action pap32

I decided to perform independently the computation of the spectral action, asking my friends
the same for the renormalization group corrections: this resulted in Refs. 33 and 34 continui
Marseilles tradition of performing computations independently for self-education and expou
them in detail. Ironically, I was asked to referee the Chamseddine–Connes paper whic
submitted to a physics magazine in an attempt to break out of the noncommutative clu
enthusiastic recommendation—competent to the extent that I had just independently chec
action computation—was willingly ignored by the editor of the magazine who rejected a ‘‘p
without experimental confirmations’’~in contrast with the rest of the mathematical physics lite
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ture, including the strings abounding in this magazine—and overseeing the hardly fort
correctness of seven relative signs, as though stability of the world was no important experi
fact!.

B. Definition and results

The ~bosonic! spectral actionis the following functional of the metricg of M and the
one-formA:

I ~g,A!5~4p!22Tr FS 1

L2 DA
2 D , ~12!

where DA5D1A1JAJ is the ‘‘covariant Dirac operator’’ of the standard model in the re
spectral triple formalism, andc an element ofE5S(M ) ^ H. F is a function:R1* →R such that
F@(1/L)DA

2 # is trace class, whereL is a cutoff parameter>inverse of the Plank length:L
5 l p

21.
The required trace-class property, as well as positivity of the bosonic action are achiev

choosing forF:@0,1#→@0,F(0)# a positive smooth function decreasing from a positive va
F(0) to the value 0 at 1 mimicking the characteristic functionx@0,1# of the interval@0,1#. Note that
the alternative choiceF(u)5e2u possibly yields a canonical definition of the spectral action.

Remark:Call an endomorphismX of H an observablewheneverX has discrete spectrum

leavesHI H and H% stable, and fulfillsX5JXJ21. Functions of observables are observables. T
operatorsX, D1A1JAJ, APV(A)1, andF@(1/L2)DA

2# are observables. One sees immediat
that, for X an observable, one has TrHI X5TrH% X51/2 TrHX: thus restricting the trace in~12! to
either the particle or the antiparticle Hilbert space just loses a factor 1/2. Further, sinc
euclidean X5X12X2 commutes with J, TrHI X5TrHI @(X11X2)X# equals TrHI @(X1X)
1TrH̄(X2X), a welcome sum over chiral particles and antichiral antiparticles.

Results:
~i! The three first terms of the asymptotic development inL22 of the spectral action densit

read

I B~x,g,A!590~2 f 0!L42 f 2L2$15s28Af uFu2%1 f 4$
80
9 Nfmnfmn1 4

3Nhs
mnhs

mn

1 4
3Nga

mnga
mn14Af uDFu21 2

3AfsuFu214Bf uFu42 9
4C

2%

1the surface termsf 4$11p2x41 8
3Ds1 4

3AfD~ uFu2!%, ~13!

where f 05*F(u)u du, f 25*F(u)du, f 45F(0) @note that forF5x@0,1# one has 2f 05 f 25 f 4

51; while for F(u)5e2u one hasf 05 f 25 f 451#, x4 dv is the Euler form, and

Af5trN@3~Mu* Mu1Md* Md!1Me* Me#,
~14!

Bf5trN@3~Mu* MuMu* Mu1Md* MdMd* Md!1Me* MeMe* Me#.

Note that~13! is obtained after modular adjustment. This is an asymptotic development,
negligible terms~negative powers ofL!. This development is obtained from the heat-ker
expansion via Laplace transform ofF, ~23! stemming from

Tr FS 1

L2 DA
2 D5L4f 0a0~DA

2 !1L2f 2a2~DA
2 !1 f 4a4~DA

2 ! where aj~DA
2 !5*Maj~x,DA2!dv.

~13a!

~ii ! Tree-level computation: Identification of the corresponding terms in~23! with the bosonic
action density of the standard model:
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Lstand5
1

4
Ga

mnGa
mn1

1

4
Ws

mnWs
mn1

1

4
BmnBmn1~DmF!* ~DmF!2

m2

v2 ~f* f!21m2f* f,

~15!

where

MH5A2m,

Ga
mn5]mGa

n2]nGa
m1g3f abcG

b
mGc

n , MZ5 1
2vg,

Ws
mn5]mWs

n2]nWs
m1g2«srtW

r
mWt

n , MW5MZ cosuW5 1
2vg2 ,

Bmn5]mBn2]nBm ,
tguW5

g1

g2
,

~16!

yields F52Af 21/2g2f, m252L, v5(Af /2Bf 1/2)u, thus the relations~dominance of the top mas
implies A/AB5A3):!

g25g3 , sin2 uW5
3

8
, MH52L,

MW5
1

2
vg25

Af

2A~2B!
L, under top dominanceMW5

A3

2A2
L. ~17!

These results show that the spectral action pertains to very high energies—or early
~primal matter!. Realistic results are expected to result from a renormalization-group treatm
the most conservative estimate of the Higgs mass is then 182619 GeV. For a detailed discussio
of this or alternative results we refer to Refs. 32, 33, 34~a!, 34~b!. Interestingly, the quantum
Yang–Mills procedure performed with the scalar product of the differential envelope sugges

the Hilbert spaceH % H% leads very similar results.34~b!

The spectral action depends only upon the eigenvalues of the covariant Dirac operaDA

~spectral invariance principle, a strengthening of the Einstein equivalence principle, imply
invariance under the automorphism group of the tensor-product algebraA5C`(M ) ^ A semidi-
rect product of the diffeomorphisms and the gauge transformations!.

The rest of this section, devoted to a description of the spectral action computation, is
nized as follows: Sec. III C describes in detail the Connes spectral standard model outlined
Section III D displays the covariant~generalized! Dirac operatorDA as a classical Dirac operato
of a twisted Clifford bundle. Section III E displays the canonical decomposition of the genera
LaplacianDA

2 as the sum of connection-LaplacianD¹ and an endomorphismE. The remaining
sectionsF, G treat the routine evaluation of the heat-expansion coefficients as given in terms¹
andE.35

C. The Connes spectral model

The input of the spectral action formalism is the same as that of the Connes–Yang–
model evoqued earlier, viz. theS0-real inner spectral triple (C% H% M3(C),H,D,J), derivate of
the inner dual metric pair ((C% H) ^ (C% M3(C),H,D)) of the Connes–Lott model. We now nee
a detailed description of these objects. We recall our euclidean frame:M is a four-dimensional
smooth compact oriented spin manifold without boundary, with algebra of smooth func
C`(M ), volume elementdv, and Levi-Civita connexion¹M ~with scalar curvature and Ricci
tensor denoteds, respectively,R!. SM denotes the spin-bundle ofM , Z/2 graded byg5, with
module of smooth sectionsS(M ), the latter a Clifford module under the actiong of the ~arche-
typical! Clifford module Cl (M ) of M. The C`(M )-module S(M ) is acted upon by the spin

connection¹̃M5¹̃, by the Atiyah–Singer–Lichne´rowicz–Dirac operatorD̃ and by the~Euclid-
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ean! charge conjugationC52C21. These data are subsumed as the ‘‘space-time real spe

triple’’ ( C`(M ),(L2(SM),g5,D̃),C). We recall that in our euclidean settingS(M ) is endowed
with a Hermitian scalar product for which thegm andg5 are Hermitian and commute withC.

The metric dual pair ((C% H) ^ (C% M3(C),H,D)). We recall that there are 45 types o
fermions coming in three analogous generations~the e, m, andt generation! and two chiralities
~right and left!: the leptons eR , nL , eL , and thequarks: uR ,dR ,uL ,dL ~u stands for upper:d for
lower; the subscriptsq andl stand for quark, respectively, lepton; the subscriptsR andL stand for
right, respectively, left;N is the number of generations~experimentallyN53); the quarks have a
threefold color while the leptons are colorless. There are no right-handed neutrinos~right–left
asymmetry—parity breaking!. The fermions are acted upon by SU~2!, the right-handed particles a
singlets (eR),(uR),(dR) ~acted upon by the representationD0), the left-handed particles as dou
blets (nLeL),(uLdL) ~acted upon byD1/2). The inner Hilbert spaceH5Hq% Hl is thus the direct
sum of a quark summand:

Hq5~CR
2

% CL
2! ^ CN

^ C3

uRdR uLdL generations color
~dimHq512N536!, ~18q!

and a lepton summand:

H15~CR
1

% CL
2! ^ CN

^ C1

cR nLeL generations no color
~dimH153N59!, ~18l!

themselves direct sums of a right-handed and a left-handed part yielding theZ/2 grading of
~right–left! parity x ~1 at right,2 at left!. Denoting the endomorphisms ofHq , respectively,Hl ,
by 434 matrices with entries inMN(C) tensorized byM (Ccolor

3 ), respectively by 333 matrices
with entries inMN(C), we then have the algebraC% H acting as (p,q)5(p,q)q% (p,q) l , the
algebraC% M3(C) acting as (p,m)5(p,m)q% (p,m) l , and the Dirac operatorD5Dq% Dl given
as follows:

~p,q!q5S uR dR uL dL

p̄^ 1N 0 0 0

0 p^ 1N 0 0

0 0 a^ 1N b^ 1N

0 0 2b̄^ 1N ā^ 1N

D ^ 13 , S q5S a b

2b̄ āD D , ~19q!

~p,q! l5S eR nL eL

p^ 1N 0 0

0 a^ 1N b^ 1N

0 2b̄^ 1N ā^ 1N

D , ~19l!

~p,m!q5S uR dR uL dL

1N 0 0 0

0 1N 0 0

0 0 1N 0

0 0 0 1N

D ^ m, ~20q!
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~p,m! l5pS eR nL eL

1N 0 0

0 1N 0

0 0 1N

D , ~20l!

Dq5S uR dR uL dL

0 0 Mu* 0

0 0 0 Md*

Mu 0 0 0

0 Md 0 0

D p^ 13 , ~21q!

Dl5S eR nL eL

0 0 Me

0 0 0

Me* 0 0

D ~21l!

with Mu5Mu* , Md , Me5Me* PEnd CN the fermion mass matrices. We comply to the comm
usage of choosing our fermion mass-matrices such thatMe andMu are diagonal positive matri-
ces, while Md5CuMdu, with C unitary anduMdu strictly positive.Furthermore we assume thatall
fermion masses are different~the eigenvalues ofMe , Mu , anduMdu consists of positive number
~the masses of leptons and quarks! all different from one another—experiment!. We further as-
sume thatno eigenstate ofuMdu is an eigenstate of C~experiment!.

Inner-space one-forms. Since the inner Dirac operatorD ~21q,1! commutes with the chromo
dynamics part~20q,1! of the inner algebraA, the latter does not contribute to the inner one-for
which thus exclusively stem from the electroweak part~19q,1! of A ~as the linear combinations o
the commutators ofD with the latter!. They are thus of typeA5Aq1Al with

Aq5S uR uR uL dL

0 0 h82^ Mu8 h81
^ Mu8

0 0 2h81^ Md8 h82
^ Md8

h2^ Mu h1
^ Md 0 0

2h1^ Md h2
^ Md 0 0

D ^ 13 , ~22q!

Al5S eR nL eL

0 2h81^ Md8 h82
^ Md8

h1^ Md 0 b

0 h2^ Md 0

D , ~22l!

expressions indexed by a pair of quaternions (
2h1

h2
h2
h1

), (
2h81

h82
h82
h81

), which should be taken Hermitian

conjugate of each other to get Hermitian one-forms.
TheS0-real inner spectral triple (C% H% M3(C)H,D,J) is then obtained as in~2! above by the

procedure~i! with A85C% H,A95C% M3(C), cf. ~10!, followed by the compression~ii ! where
A05C. Specifically the inner real spectral triple is as follows: the ‘‘inner Hilbert space,’’ dir

sumH5H % H̄ of the ‘‘particle inner Hilbert space’’H and the ‘‘antiparticle inner Hilbert space’

H̄ ~taken as the conjugate Hilbert space ofH1 with conjugation denotedj→ j̄, and multiplication
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by aPC: j→ā j̄, whenceMj5M̄ ,j̄,M a matrix,M̄ the complex-conjugate matrix! is acted upon
as follows by the chiralityx, the element~p,q,m! of A, the Dirac operatorD , and the charge
conjugationJ5J21:

x~j,h̄ !5~xj,xh!

~p,q,m!~j,h̄ !5~~p,q!j,~p,m!h!, ~p,q,m!PA,

D~j,h̄ !5~Dj,Dh!, ~j,h̄ !PH

J~j,h̄ !5~h,j̄ !,

~23!

@note thatx, ~p,q,m!, andD preserveH and H̄, while J exchanges them#.

The compound real spectral triple (A,(H5HI % H̄,X,D),J). We now tensorize as follows th

space time real tensor triple (C`(M ), (L2(S(M )),g5,D̃),C) by the inner real spectral triple@A,

(H5H % H̄,x,D ,J)#:

A5C`~M ! ^ A,

H5L2~S~M !! ^ H, ~HI 5L2~S~M !! ^ H !

X5g5
^ x,

D5D̃ ^ idE1g51 ^ D.

~24!

Note that whileJ exchanges the ‘‘particle space’’HI and the ‘‘antiparticle space’’H̄, all other

operatorsX of the theory leaveHI andH̄ stable. Denoting the endomorphisms ofHI q , respHI l , by
434 matrices with entries in EndS(M ) ^ MN(C) tensorized by M(Ccolor

3 ), respectively, by 333
matrices with entries in EndS(M ) ^ MN(C), the compound Dirac operatorD5Dq% Dl is then
specified by the matrices~of restrictions toHI )

Dq5S uR dR uL dL

D̃ ^ 1N 0 g5
^ Mu* 0

0 D̃ ^ 1N 0 g5
^ Md*

g5
^ Mu 0 D̃ ^ 1N 0

0 g5
^ Md 0 D̃ ^ 1N

D ^ 13 , ~25q!

respectively,

Dl5S eR nL eL

D̃ ^ 1N 0 g5
^ Me*

0 D̃ ^ 1N 0

g5
^ Me 0 D̃ ^ 1N

D . ~25l!

The compound one-forms have the tensorial decomposition:25

V~A!15V~M !1
^ A% g5C`~M ! ^ V~A!1, ~26!

yielding in combination with~16q,l! the formA5Aq1Al with the following matrices in restriction
to HI :
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Aq5S uR dR uL dL

2g~a! ^ 1N 0 H2g5
^ Mu* 2H1g5

^ Mu*

0 g~a! ^ 1N H1g5
^ Md* H2g5

^ Md*

H2g5
^ Mu H1g5

^ Md g~b1
1! ^ 1N g~b1

2! ^ 1N

2H1g5
^ Mu H2g5

^ Md g~b2
1! ^ 1N g~b2

2! ^ 1N

D ^ 13 , ~27q!

Al5S eR nL eL

g~a! ^ 1N H1g5
^ Me* H2g5

^ Me*

H1g5
^ Me g~b1

1! ^ 1N g~b1
2! ^ 1N

H2g5
^ Me g~b2

1! ^ 1N g~b2
2! ^ 1N

D , ~27l!

whereHi , Hi5H̄ iPC`(M ,C) @note thatH•

•
(

2H1

H2
H2
H1

)PC`(M ,H).#;

~JAJ!q5S uR dR uL dL

g~c0! ^ 1N 0 0 0

0 g~c0! ^ 1N 0 0

0 0 g~c0! ^ 1N 0

0 0 0 g~c0! ^ 1N

D ^ 13

1S uR dR uL dL

g~ca! ^ 1N 0 0 0

0 g~ca! ^ 1N 0 0

0 0 g~ca! ^ 1N 0

0 0 0 g~ca! ^ 1N

D ^
la

2
, ~28q!

~JAJ! l5S eR nL eL

g~a! ^ 1N 0 0

0 g~a! ^ 1N 0

0 0 g~a! ^ 1N

D . ~28l!

Remark:Note that the operators pertaining to the leptons are obtained from the correspo
operators pertaining to the quarks by the following process ofleptonic reduction:~i! suppress the
first row and the first column of the matrix~ii ! effect the changes:Mu→0, Me→Me .

D. Conversion into classical objects: the covariant Dirac operator DAÄD¿A¿JAJ as a
differential operator

From now on we shall use instead of the particle Hilbert spaceHI ~which it suffices to consider
by charge-conjugation symmetry! its smooth dense sub-C`(M )-moduleE5S(M ) ^ H, left invari-
ant by all the operators under consideration. We have the following situation

~i! E is a finite-projectiveC`(M )-module, expressible as the tensor product

E5S~M ! ^ C`~M !E with E5C`~M ! ^ H, ~29!

becoming a Clifford module~E,c! under theZ/2-gradingX and the Clifford action

c5g ^ idE , ~30!
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and split in a direct sum of a quarkonic and the leptonicC`(M )-module according to the decom
positionE5Eq% El , whereEq5C`(M ) ^ Hq andEl5C`(M ) ^ Hl .
~ii ! We haveDA5D“1F5 icm¹m1F, direct sum (DA)q% (DA) l of the quark and the lepton
parts:

~DA!q5~D“!q1Fq ,
~DA! l5~D“! l1F l

, with
~D“!q5 icm

“qm ,
~D“! l5 icm

“ lm
, ~31!

where the endomorphismsFq , F l of E, respectively, act on the quark and lepton subspaces a
matrices~note thatF anticommutes with thecm, whilst C commutes with thecm):

Fq5S uR dR uL dL

0 0 F2g5
^ Mu* 2F1g5

^ Mu*

0 0 F1g5
^ Mb* F2g5

^ Md*

F2g5
^ Mu F1g5

^ Md 0 0

2F1g5
^ Mu F2g5

^ Md 0 0

D ^ 13 ~32q!

and

F l5S eR nL eL

0 F1g5
^ Me* F2g5

^ Me*

F1g5
^ Me 0 0

F2g5
^ Me 0 0

D , ~32l!

whereF i5F̄ iPC`(M ,C); F•

•
5H•

•
11 @note thatF•

•
5(

2F1

F2
F2
F1

)PC`(M ,H)#.

The connection“ of E is the tensor-product:

“5¹̃ ^ idE1 idS~M ! ^ ¹E, ~33!

of the spin connection¹̃ of S(M ) by the connection¹E of E specified as follows:¹E is the direct
sum ¹E

q% ¹E
l of a quark and a lepton connexion acting, respectively, on the quark and le

subspaces as the sum of the exterior derivative and the matrices:

idS~M ! ^ ~¹E
q2]!m52 iS uR dR uL dL

~2am1c0
m! ^ 1N 0 0 0

0 ~am1c0
m! ^ 1N 0 0

0 0 b1
1m ^ 1N b1

2m ^ 1N

0 0 b2
1m ^ 1N b2

2m ^ 1N

D ^ 13

2 iS uR dR uL dL

c0
m ^ 1N 0 0 0

0 c0
m ^ 1N 0 0

0 0 c0
m ^ 1N 0

0 0 0 c0
m ^ 1N

D ^
la

2
~34q!

and
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idS~M ! ^ ~¹E
l2]!m52 i S cR nL cL

2am ^ 1N 0 0

0 b11m ^ 1N b12m ^ 1N

0 b21m ^ 1N b22m ^ 1N

D . ~34l!

Here a and c0 are classical U~1!-vector-potentials:ā5a,PV(M ,C)1; b•

•
is a classical U~2!-

vector-potentials:

b•

•
5S b1

15b̄1
1 b1

25b̄2
1

b2
1 b2

252b1
1
D PV~M ,iHtraceless!

1,

c•5(ca)a51,...,8 is a SU~3!-vector-potentials~thela are the eight Gell–Mann matrices!. Following
the physicists’ usage we multiply byi our connection one-forms to make them self-adjoint~‘‘vec-
tor potentials’’!. Note that a quaternion is anti-Hermitian iff it is traceless.

Note that¹ is a Clifford connection, thus fulfills

@“m ,c~l!#5c~¹m
Ml!, lPV~M !1. ~35!

Proof: E5S(M ) ^ H is the finite-projectiveC`(M )-module pull-back of theC-moduleH by
the A-C-bimoduleS(M ), thus obviously expressible as the tensor product ofC`(M )-modulesE
5S(M )A^ E. The action~27! of Cl (M ) on E then makes it a Clifford module~E,c!: indeedE is a
Z/2-gradedCl (M )-module owing to the Clifford relationscmcn1cncm5gmn. The remaining
claims follow from the matrix form of the Dirac operators and of the vector-potentials, cf.~25q,l!,
~27q,l!, and~28q,l!.

E. Canonical Decomposition of DA
2

The generalized LaplacianDA
2 has the canonical splttingDA

25D“1E into the connection-
Laplacian D“52gmn(“m“n2Gmn

a
“a) plus the endomorphism@cf. Appendix A. Note that

@“m ,F# lies in EndA(E) as the commutator of a]m-derivation and a 0-derivation#:

E5 1
4s12 1

2c~RE!1 icm@“m ,F#1F2 with c~RE!52gmgn
^ RE~em ,en!. ~36!

wheres is the scalar curvature ofM , andRE is the curvature of“E, and we have the following
matrix expressions:

cm@“qm ,Fq#

5S 0 0 g~DF2!g5
^ Mu* 2g~DF1!g5

^ Mu*

0 0 g~DF1!g5
^ Md* g~DF2!g5

^ Md*

g~DF2!g5
^ Mu g~DF1!g5

^ Md 0 0

2g~DF1!g5
^ Mu g~DF2!g5

^ Md 0 0

D ^ 13 ,

~37q!

cm@“1m ,F1#5S 0 g~DF1!g5
^ Me* g~DF2!g5

^ Me*

g~DF1!g5
^ Me 0 0

g~DF2!g5
^ Me* 0 0

D , ~37l!

where
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DF j5dF j1 i ~aF j2bj
kF

k!

DF j5dF j2 i ~aF j2bk
jFk!

, i 51,2, F i.e.,

DF•5dF•1 i S a2ba
ta

2 DF•

DF
•
5dF

•
2 iF

•S a2ba
ta

2 D G . ~38!

Proof: We have

DA
2~ icm

“m1F!~ icn
“n1F!52cm

“mcn
“n1 icm

“mF1 iFcm
“m1F25D21 icm@“m ,F#1F2

5D“1 1
4s12 1

2c~RE!1 icm@“m ,F#1F2, ~39!

where we plugged in the Lichne´rowicz formula for the square ofD, cf. Appendix A:

D25D“1 1
4s12 1

2c~RE!. ~40!

The expressions~37q,l! we computed using~32q,l! and~34q,l! ~details in Ref. 33—observe thatF
commutes with the spin-connection one-form since the latter commutes withg5. It also commutes
with the gluon-connection one-forms whose matrices are diagonal with entries Clifford sc
Thus it suffices to compute@ idS(M ) ^ (“8E

q2])m ,F#, with “8E obtained from“E by deleting the
gluon-connection!.

We now have all the ingredients to compute the heat-expansion coefficients:

a0~x,DA
2 !5~4p!22trx~1!,

a2~x,DA
2 !5~4p!22trx~

1
6s12E!, ~41!

a4~x,DA
2 !5~4p!22 1

360trx$5s2122r2112R21260sE1180E2130RmnR
mn%,

wheres, r , R are the Levi-Civita scalar curvature, Ricci tensor, and Riemann curvature te
of M , with r25rmnrmn , R25RmnRmn , andR is the Riemann curvature tensor of the connection“

of E.

F. Computation of fiber-traces

Lemma E1:Using the shorthand trx for the trace on the fiberEx , and denoting the trace on th
fiber Ex by tr x

E , we have the following traces on the fiberEx of xPM:

trx1q5144,

trx1l536,
~42a!

trx15180,

trx
E1545,

trx~Fq
2!58AquFu2 with Aq53 tr~mu1md!, mu5MuMu*

trx~F1
2!58A1uFu2 with Al5tr r e , md5MdMd*

trx~F2!58Af uFu2 with Af5tr@3~mu1md!1me#, me5MeMe*
~42b!

trx(Fq
4)58BquFu4 with Bq53 trN(mu

21md
2)

trx(F1
4)58B1uFu4 with Bl5trN r e

2 ~42c!

trx~F4!)58Bf uFu4 with Bf5tr[3~mu
21md

2)1me
2]
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trx~cm@“qm ,Fq# !5trx~cm@“1m ,F1# !5trx~cm@“m ,F#!50, ~42d!

trx$~ icm@“qm ,Fq# !2%58AquDFu2,

trx$~ icm@“1m ,F1# !2%58A1uDFu2, ~42e!

trx$~ icm@“m ,F#!2%58Af uDFu2,

trx@c~RE!2#58 trx
E~RE

mnREmn!, ~42f!

trx@RmnR
mn#52 1

2~rankE!R214trE~RE
mn REmn!, ~42g!

trx
E~RE

mnREmn!52~ 20
3 Nfmnfmn1Nhs

mnhs
mn1Ngamngamn!, ~42h!

after modular adjustment@here f and g0 are classical U~1! curvaturesf̄5f,PV(M ,C)2; h•

•
is a

classical U~2! curvatures

h•

•
5S h1

15h̄1
1 h1

25h̄2
1

h2
1 h2

252h1
1
D P~M ,iHtraceless!

2;

@g•5(ga)(la/2) is a SU~3! curvatures~the la , a51,...,8, are the Gell–Mann matrices!#.
Proof: We refer to Ref. 33 for the routine matrix computations. In fact formula~30! of Ref. 33

is erroneous: the lower right 232 submatrix has nonvanishing off-diagonal entries which howe
do not affect the computation of traces. Check of~42g!:

r x@c~RE!2#5trx@~~gmgn
^ RE~em ,en!!2#

5trx@~gmgngagb
^ RE~em ,en!RE~ea ,eb!#

54~gmngab1gmbgna2gmagnb!trE~Rmn
E Rab

E !

54~gmbgna2gmagnb!trE~Rmn
E Rab

E !

54 trE~Rn
EbRb

En2Rn
EaRa

En!

54 trE~Rbn
E REnb2Ran

E REan!

528 trE~Rmn
E REmn!. ~43!

Check of~42h!:

trx@RmnR
mn#5trx@~R̃mn ^ idE1 idSM

^ Rmn
E !~R̃mn

^ idE1 idSM
^ REmn!.#

5trx~R̃mnR̃mn
^ idE!1trx~ idSM

^ Rmn
E REmn!12 trx~R̃mn ^ REmn!

5~rankE!trSM
~R̃mnR̃mn!14 trE~Rmn

E REmn!

52 1
2 ~rankE!R214 trE~Rmn

E REmn!. ~44!

G. Gathering the pieces

We compute~13a! replacingD by its restrictionD to H.
Computation ofa0(x,DA

2): we have (4p)2a0(x,DA
2)5trx(1)54 rankE.
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Computation ofa2(x,DA
2): we have to compute (4p)2a2(x,DA

2)5trx(
1
6s-E), recalling that we

foundE5 1
4s11( i /2)c(RE)1 icm@“m ,F#1F2 @cf. Eq. ~36!#. With > denoting equality under trx ,

we have1
6s12E> 1

6s2 1
4s12F2, whence (4p)2a2(x,DA

2)52(rankE/3)s128Af uFu21.
Computation ofa4(x,DA

2): we have, with the shorthandsr25rmnrmn, R25RmnabRmnab:

360~4p!2a4~x,DA
2 !5trx$5s2122r2112R21260sE1180E2130RmnR

mn%

5trx$~
5
4s

222r212R2!1130sF21180F41180~ icm@¹m ,F#!2

145c~RE!2130RmnR
mn%

5~rankE!~5s228r227R2!1240AfsuFu211440Bf uFu4

11440Af uDFu21120 trV~Rmn
E REmn!

5218~rankE!C21240AfsuFu211440Bf uFu411440Af uDFu2

2240 trE~Rmn
E REmn!. ~45!

We first took account of the fact that we have

260sE1180E2>260@ 1
4s

211sF2#145@ 1
4s

211c~RE!214~ icm@“m ,F#!214F412sF2#

>2 15
4 s21130sF21180F41180~ icm@“m ,F#!2145c~RE!2, ~46!

neglecting the cross terms inE2 involving c(RE) or/and cm@¹m ,F# ~these vanish under trx ,
owing to trgm50 and trgmgn5tr gngm). We then plugged into~45! the values~43! and~44!, and
finally effected the replacement:

5s228r227R2588p2x4218C2, ~47!

where C25R222r21 1
3s

2 is the square of the Weyl tensor, andx4 dv52(4p)22(R224r2

1s2)dv is the Euler characteristics. We found, neglecting the latter,

~4p!2a0~x,D8A
2!5180,

~4p!2a2~x,D8
A

2
!5215s128Af uFu2,

~4p!2a4~x,D8A
2 !5 1

8~5s228r227R2!1 2
3AfsuFu2

14Bf uFu414Af uDFu21 4
3@

20
3 Nfmnfmn1Nhs

mnhs
mn1Nga

mnga
mn#. ~48!

Setting this into

Tr FS 1

L2 FDA
2 D5L4f 0a0~DA

2 !1L2f 2a2~DA
2 !1 f 4a4~D8A

2 !,

f 05*F~u!u du,
f 25*F~u!du,
f 45F~0!

~49!

yields the two first lines of the spectral action~12‘!. The surface terms in the third line stem fro
x4 and the surface-term1

360trx$12s;aa1260E;aa% in a4
35 which we ignored.

Outlook: The spectral action rests on the combination of a general conceptual app
~non-commutative spin manifolds, alias spectral geometry!, and a heuristically constructed objec
the real spectral triple~described in Sec. II C above! patterned after phenomenology. Now,
signaled by Connes in Ref. 20, the quantum group Slq(2) for q5e2p i /3 @a covering of Sl~2!36# has
its quotient by its nilradical isomophic to the algebraM1(C) % M2(C) % M3(C), thus almost coin-
ciding with the inner algebraM1(C) % H% M3(C) of the standard model.37–41This quantum group
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or some analog may thus play a fundamental role in the basic structure of the fermions—hop
ultimately providing a first-principle construction of the so far heuristic real spectral triple:
would make the theory entirely conceptual. The recently found ‘‘Hopf bar-operation’’ of Slq(2) at
the roots of unity~Ref. 58! is possibly a useful feature in this connection. This perspective ra
the hope for two major advances. On the one hand a first-principle Dirac operator would p
a theoretical Cabibbo–Kobayashi–Maskawa matrix, therefore theoretical~primal! fermion masses
hopefully yielding realistic masses via renormalization group—a first prospective scenario f
computation of fermion masses! Second, one would be tempted to try and base the theory
full root-of-unity-quantum group rather than on its semi-simple quotient, hoping to obta
sensible~generalized, possibly ternary?! supersymmetric model. Quite generally, one should pr
ably try to evade from the~protective, since hilbertian and semi-simple! ghetto to investigate
interesting and mysterious non-semi-simple environments~which we call ‘‘medusae,’’ we pre-
sume that they act on Hilbert spaces with indefinite metric, featuring semipositivity as synon
with semi-simplicity—this holds for electrodynamics in Lorentz gauge, with the longitud
photons the null-space—and also for Slq(2) at cubic~also at fourth! root of unity where the radica
is the null-space—the trace of the adjoint representation having the nilradical as its kernel,
ing the matrix-trace on the semi-simple quotient.38

Other interesting questions and perspectives:
One wishes to understand the deeper relationship between the present spectral action

former quantum Yang–Mills~also for gravitation, cf. Ref. 41!.
Would a theory of ‘‘noncommutative spin structures’’ and accompanying Dirac opera

obtain the standard model as one of the first nonclassical examples lying around?
Are the physical notions of anomalies and BRS in fact general items of spectral geome
Can one work out a Minkowskian version of the theory~as suggested in Ref. 42!?
More ambitiously: could one reach a further level of the theory by basing it on a more d

noncommutative algebra?—seeking inspiration in the fascinating ‘‘fuzzy sphere’’ modificatio
gauge field theories43,44—see also the attempt.45 I heard Connes say that he gets a deep hint fr
algebraicK-theory~impenetrable to me! that the ultimate noncommutative algebra might be of
nature of the discreteC* -algebras considered by logicians—in our case coding the procedur
the accelerator~congruous with Einstein–Podolsky–Rosen? The Connes–Keimer60 development
seemingly points towards this direction!—a physical landscape clearly more fundamental than
kantian space we learn to know in the cradle.

Progress is expected in the important~largely open! direction of ‘‘differential calculi’’ on
modules, bimodules, quantum groups, etc. related to quantum principal bundles, etc., a
worthy of more than this furtive reference and arbitrary quotations amongst a weal
contributions46–53 ~see the monographs54,55!.

One of the main future concerns is of course the passage to the~field-theoretic! quantum
level—functional integration and all that~now decisively initiated with the Connes–Kreime
analysis of renormalization. Here, owing to formal beauty and apparent fundamentality o
spectral action, one is tempted to try and quantize directly from there rather than from
asymptotic approximation through the heat expansion. Such a program would require ph
physics in terms of the eigenvalues of the Dirac operator—a quest which already started.56

Carried by enthusiasm, I once mythologized the standard model as a Shakespearia
disguised as a beggar~no mediocre role!. Connes retorted that he preferred to consider him a
beggar carrying diamonds in his pockets—so far he has tricked the beggar to show us som
diamonds~see Ref. 57 for a physicist’s comment!—but there should be more of them.

I end up with an anecdote. Long before the standard model project,8 Connes was trying to
describe electrodynamics in noncommutative guise. Having realized the importance of the
~Dirac reached a form of immortality where he became an operator!, he showed me an essa
featuring a sum of two Hilbert spaces, the first with the Dirac acting asd5@D,•#, the second with
a kind of a screwed action in order to fight the annoying featured2Þ0. I studied this conscien
tiously and was happy to provide a lemma removing an obscurity. The kind of electrodyn
thus concocted had two exciting features: sorts of nonlocal kernels~improving divergencies?!, and
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curious objects floating around which vaguely resembled Higgs particles. Connes’ discov
the embryonal Higgs revealed what was actually happening: the Higgs aspect came jus
doubling the space—and the nonlocal kernels were a sort of a lame~?! ‘‘junk’’!... The Gods must
smile when watching the half-gods stumble~stumbling of ordinary mortals is not worth the
attention!.

APPENDIX A: GENERALIZED LAPLACIANS AND THEIR CANONICAL DECOMPOSITION

Definitions:Let E be a smooth vector-bundle overM , with C`(M )-module of smooth section
E.

~i! A generalized Laplacian ofE is a second-order differential operatorH of E with principal
symbol @we recall the definitionss1(H)(df )52 i @ f ,H#, s2(H)(df )52 1

2@ f ,@ f ,H###:

s2~H !~df !52 1
2@ f ,@ f ,H##52 1

2@H, f #5udf u2, f PC`~M ! ~A1!

@implying by polarization via Jacobi identity@in what follows we consistently identify elements o
C`(M ) with their multiplicative action onE#:

@@H, f #,g#5@@H,g#, f #522~df ,dg!, f ,gPC`~M !]. ~A2!

Local formulation:DPDiff 2 E is a generalized Laplacian iff one has for the coordinate patch (xm)
of M and the trivializing frame (ei) of E

D52gmn]m]n1D1 with D1PDiff 1 E. ~A3!

The set of generalized Laplacians ofE is denoted LaplE.
~ii ! With ¹ a connection ofE, the following composition ofR-linear maps:

E→
¹

V~M !1
^ E →

id ^ ¹1¹M
^ id

V~M !1
^ V~M !1

^ E →
2g~ .,.! ^ id

E ~A4!

defines the connection-LaplacianD¹ of ¹, locally given as follows in the coordinate patch$xm% of
M and the trivializing frame$ei% of E: with ¹a5¹]a

, andGmn
a are the Christoffel symbols

D¹52gmn~¹m¹n2Gmn
a ¹a!. ~A5!

~ii ! One has

2 is1~dv !5@v,D¹#52¹gradv2Dv, vPC`~M !, ~A6!

i.e., D¹ determines in turn¹ as follows:

¹ugradv5 1
2u$@v,D¹#1Dv%, u,vPC`~M !, ~A7!

thus the connections and the connection-Laplacians are one-to-one: we have a bij
ConnE∋¹↔D¹PConnlaplE.

Proposition:Let E be a smooth vector-bundle overM , with C`(M )-module of smooth sec
tionsE. And let HPLaplE. Then, identifying elements ofC`(M ) with their multiplicative action
on E.

~i! H determines both
a connection¹H of E called the horizontal connection of H, specified by

¹ugradv
H 5 1

2u$@v,H#1Dv%~5 1
2u$2 is2~H !~dv !1Dv%, u,vPC`~M !, ~A8!
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whereD denotes the scalar Laplacian;
an elementFHPEndA called the endomorphism of H, given by the difference

FH5H2D¹H
. ~A9!

~ii ! In fact the splittingH5D¹H
1FH is unique: one has the implication

H5D1F with DP ConnlapE,FPEndA⇒D5D¹H
,F5FH. ~A10!

~iii ! Consequently LapE is a fiber-space with basis ConnE'ConnlapE's2(LapE), and
fiber EndC`(M ) acting on LapE by translations: LapE∋D→D1F.

APPENDIX B: LICHNÉ ROWICZ FORMULA

We first have theBochner formulavalid for any Dirac operator on a Clifford bundle assoc
ated with a Clifford connection¹ with curvatureR:

D25D“1 1
2c~R! where c~R!5cmcnRmn . ~B1!

Proof:

D25~cm
“m!~cn

“n!5cmcn
“m“n1cm@“m ,cn#“n

5cmcn
“n2Gma

n cmca
“m

5 1
2~cmcn1cmcn!“m“n1 1

2~cmcn2cmcn!“m“n

2 1
2~cmcn1cmcn!Gma

n
“

52gmn~“m“n2Gmn
a
“a!1 1

2c
mcn~“m“n2“n“m!

52gmn~“m“n2Gmn
a
“a!1 1

2c
mcn@“ @]m ,]n#

1 1
2c

mcnR~]m ,]n!#, ~B2!

where we took account of the fact that

@“m ,cn#5c~dm
Mg~dxn!!5~c+g!~¹m

Mdxn!52~c+g!~Gma
n dxa!52Gma

n ca. ~B3!

For the Dirac operatorD, acting on the twisted bundleS(M ) ^ E, associated to the compoun

connection“5¹̃^ idE1 idS(M ) ^“

E,“E a connection ofE with curvatureR we have theLi-
chnérowicz formula:

D25D“1 1
4s12 1

2c~RE!, g ig j
^ RE~ei ,ej !, ~B4!

wheres is the scalar curvature, and$ei ,« i% i 51,...,d a local orthonormal frame.

Proof: PluggingR5RE1R̃ in ~B1!, we get

D25D1 1
2c~R!5D1 1

2c~FE!1 1
2c~RE!5D1 1

2c~FE!2 1
8Ri jmncmcncicj ~B5!

taking account of the fact that

Rmn5
1
2Ri jmn« i∧« j5 1

2Ri jmn~« i
^ « j2« j

^ « j !5Ri jmn« i
^ « j ~B6!

whencec(Rmn)5Ri jmncicj , whencec(RE)5 1
4Ri jmncmcncicj . Now, owing to the orthonormality

of the « i , and to the Clifford relations we have that

cmcnci5 1
6 SsPS3

x~s!csmcsncs i2dnicm1dmicn2dmnci ~B7!
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@one verifies that this holds~i!: for m,n,i all different rhs reducing to its first term#; ~ii ! for m
Þn5 i ~rhs reducing to its second term!; ~iii !: for nÞm5 i ~rhs reducing to its third term!; ~iii !: for
iÞm5n ~rhs reducing to its fourth term!#. This in turn implies.

Ri jmncmcncicj5Rmni jc
mcncicj5Rmni j@2dnicm1dmicn#cj

52Rmni jd
micncj

5Rmni jd
mi~cncj1cjcn!

522Rmni jg
mign j

522Ri j
i j 522s ~B8!

which turns~B5! into ~B4! @we took account of the relationsRmni j1Rnim j1Rimn j50 andRmni j

1Rnmi j50 making the first, respectively, the last term of~B8! ineffective; and also of the fact tha
Rmni j is symmetric inn and j#.
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Quantum groups emerged in the latter quarter of the 20th century as, on the one
hand, a deep and natural generalization of symmetry groups for certain integrable
systems, and on the other as part of a generalization of geometry itself powerful
enough to make sense in the quantum domain. Just as the last century saw the birth
of classical geometry, so the present century sees at its end the birth of this quan-
tum or noncommutative geometry, both as an elegant mathematical reality and in
the form of the first theoretical predictions for Planck-scale physics via ongoing
astronomical measurements. Noncommutativity of space–time, in particular,
amounts to a postulated new force or physical effect called cogravity. ©2000
American Institute of Physics.@S0022-2488~00!00406-0#

I. INTRODUCTION

Now that quantum groups and their associated quantum geometry have been around fo
than a decade, it is surely time to take stock. Where did quantum groups come from, wha
they achieved and where are they going? This article, which is addressed to nonspecialis~but
should also be interesting for experts! tries to answer this on two levels: first of all, on the level
quantum groups themselves as mathematical tools and building blocks for physical model
equally importantly, quantum groups and their associated noncommutative geometry in te
their overall significance for mathematics and theoretical physics, i.e., at a more conceptua
Obviously this latter aspect will be very much my own perspective, which is that of a theor
physicist who came to quantum groups a decade ago as a tool to unify quantum theory and
in an algebraic approach to Planck scale physics. This is, in fact, only one of the two main o
in physics of quantum groups, the other being integrable systems, which I will try to cover as
Let me also say that noncommutative geometry has other approaches, notably the one
Connes coming out of operator theory. I will say something about this too, although, unt
cently, this has largely been a somewhat different approach.

We start with the conceptual significance for theoretical physics. It seems clear to m
future generations looking back on the 20th century will regard the discovery of quantum
chanics in the 1920s, i.e., the idea to replace the coordinatesx, p of classical mechanics by
noncommuting operatorsx, p, as one of its greatest achievements in our understanding of Na
matched in its significance only by the unification of space and time as a theory of gravity
whereas the latter was well-founded in the classical geometry of Newton, Gauss, Rieman
Poincare´, quantum theory was something much more radical and mysterious. Exactly which
ables in the classical theory should correspond to operators? They are local coordinates o
space, but how does the global geometry of the classical theory look in the quantum theory
does it fully correspond to? The problem for most of this century was that the required m
ematical structures to which the classical geometry might correspond had not been invent
such questions could not be answered.

As I hope to convince the reader, quantum groups and their associated noncomm
geometry have led in the last decades of the 20th century to the first definitive answers to th
of question. There has, in fact, emerged a more or less systematic generalization of ge
every bit as radical as the step from Euclidean to non-Euclidean, and powerful enough not to
down in the quantum domain. I do doubt very much that what we know today will be the
38920022-2488/2000/41(6)/3892/51/$17.00 © 2000 American Institute of Physics
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formulation, but it is a definitive step in a right and necessary direction and a turning point i
future development of mathematical and theoretical physics. For example, any attempt to b
theory of quantum gravity with classical starting point a smooth manifold—this includes l
variable quantum gravity, string theory and quantum cosmology—is necessarily misguided
as some kind of effective approximation: smooth manifolds should come out of the alge
structure of the quantum theory and not be a starting point for the latter. There is no eviden
the real world is any kind of smooth continuum manifold except as a macroscopic approxim
and every reason to think that it is fundamentally not. I therefore doubt that any one of the
could be a ‘‘theory of everything’’ until it becomes an entirely algebraic theory founded
noncommutative geometry of some kind or other. Of course, this is my personal view.

At any rate, I do not think that the fundamental importance of noncommutative geometr
be overestimated. First of all, anyone who does quantum theory is doing noncommutative
etry whether wanting to admit it or not, namely noncommutative geometry of the phase s
Less obvious but also true, we will see in Sec. II that if the position space is curved, the
momentum space is by itself intrinsically noncommutative. If one gets this far, then it is
natural that the position space or space–time by itself could be noncommutative, which
correspond to a curved or non-Abelian momentum group. This is one of the bolder predi
coming out of noncommutative geometry. It has the simple physical interpretation as what
cogravity, i.e., curvature or ‘‘gravity’’ in momentum space. As such it is independent of, i.e.,
to, curvature or gravity in space–time and would appear as a quite different and new ph
effect. Theoretically cogravity can, for example, be detected as energy dependence of the s
light. Moreover, even if cogravity was very weak, of the order of a Planck scale effect, it c
still, in principle, be detected by astronomical measurements at a cosmological level. The
just in time for the new millennium, we have the possibility of an entirely new physical effe
Nature coming from fresh and conceptually sound new mathematics.

Where quantum groups precisely come into this is as follows. Just as Lie groups and
associated homogeneous spaces provided definitive examples of classical differential ge
even before Riemann formulated their intrinsic structure as a theory of manifolds, so qu
groups and their associated quantum homogeneous spaces, quantum planes, etc., prov
~i.e., infinite! classes of examples of proven mathematical and physical worth and clear geo
cal content on which to build and develop noncommutative differential geometry. They are
commutative spaces in the sense that they have generators or ‘‘coordinates’’ like the nonco
ing operatorsx, p in quantum mechanics but with a much richer and more geometric alge
structure than the Heisenberg or CCR algebra. In particular, I do not believe that one can
theory of noncommutative differential geometry based on only one example such as the H
berg algebra or its variants~however fascinating! such as the much-studied noncommutative tor
One needs many more ‘‘sample points’’ in the form of natural and varied examples to ob
valid general theory. By contrast, if one does a search of BIDS one finds, see Fig. 1, vast nu
of papers in which the rich structure and applications of quantum groups are explored and ju
in their own right~data compiled from BIDS: published papers since 1981 with title or abs
containing ‘‘quantum group* ,’’ ‘‘Hopf alg * ,’’ ‘‘noncommutative geom*,’’ ‘‘braided categ* ,’’
‘‘braided group* ,’’ ‘‘braided Hopf* ’’ !. This is the significance of quantum groups. And of cou

FIG. 1. Growth of research papers on quantum groups.
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something like them should be needed in a quantum world where there is no evidence
classical space such as the underlying set of a Lie group.

Finally, it turns out that noncommutative geometry, at least of the type that we shall des
is in many ways cleaner and more straightforward than the special commutative limit. One s
does not need to assume commutativity in most geometrical constructions, including diffe
calculus and gauge theory. The noncommutative version is often less infinite, differentia
often more regular finite-differences, etc. And noncommutative geometry~unlike classical geom-
etry! can be specialized without effort to discrete spaces or to finite-dimensional algebras
simply a powerful and natural generalization of geometry as we usually know it. So my ov
summary and prediction for the next millennium from this point of view is as follows.

~i! All geometry will be noncommutative~or whatever comes beyond that!, with conventional
geometry merely a special case.

~ii ! The discovery of quantum theory and its correspondence principle~and noncommutative
geometry is nothing more than the elaboration of that! will be considered one of the
century’s greatest achievement in mathematical physics, commensurate with the dis
of classical geometry by Newton some centuries before.

~iii ! Quantum groups will be viewed as the first nontrivial class of examples and the
pointers to the correct structure of this noncommutative geometry.

~iv! Space–time, too~not only phase space!, will be known to be noncommutative~cogravity
will have been detected!.

~v! At some point a future Einstein will combine the then-standard noncommutative geom
cal ideas with some deep philosophical ideas and explain something really fundam
about our physical reality.

In the fun spirit of this article, I will not be above putting down my own thoughts on this last po
These have to do with what I have called for the last decade thePrinciple of representation-
theoretic self-duality.1 In effect, it amounts to extending the ideas of Born reciprocity, Mac
principle and Fourier theory to the quantum domain. Roughly speaking, quantum gravity s
be recast as gravity and cogravity both present and dual to each other and with Einstein’s e
appearing as a self-duality condition. The longer-term philosophical implications are a Kant
Hegelian view of the nature of physical reality, which I propose in Sec. V as a new foundatio
the next millennium.

We now turn to another fundamental side of quantum groups, which is at the heart of
other origin in physics, namely as generalized symmetry groups in exactly solvable lattice m
It leads to diverse applications ranging from knot theory to representation theory to Po
geometry, all areas that quantum groups have revolutionized. What is really going on here,
opinion, is not so much the noncommutative geometry of quantum groups themselves as a
ent kind of noncommutativity or braid statistics which certain quantum groups induce on
objects of which they are a symmetry. The latter is what I have called ‘‘noncommutativity o
second kind’’ or outer noncommutativity since it is not so much a noncommutativity of
algebra as a noncommutative modification of the exchange law or tensor product of an
independent algebras or systems. It is the notion of independence which is really being de
here. Recall that the other great ‘‘ization’’ idea in mathematical physics in this century~after
‘‘quantization’’! was ‘‘superization,’’ where everything isZ2-graded and this grading enters in
how two independent systems are interchanged. Physics traditionally has a division into bos
force particles and fermionic or matter particles according to this grading and exchange be
So, certain quantum groups lead to a generalization of that as braided geometry2 or a process of
braidification. These quantum groups typically have a parameterq and its meaning is a general
zation of the21 for supersymmetry. This in turn leads to a profound generalization of con
tional ~including super! mathematics in the form of a new concept of algebra wherein one ‘‘w
up’’ algebraic operations much as the wiring in a computer, i.e., outputs of one into inpu
another. Only, this time, the under or over crossings are nontrivial~and generally distinct! opera-
tions depending onq. These are the so-called ‘‘R-matrices.’’ Afterwards one has the luxury o
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both viewingq in this way or expanding it around 1 in terms of a multiple of Planck’s cons
and calling it a formal ‘‘quantization’’—q-deformation actually unifies both ‘‘ization’’ processe
For example, Lorentz invariance, by the time it isq-deformed,3 induces braid statistics even whe
particles are initially bosonic. In summary, we have the following.

~i! The notion of symmetry or automorphism group is an artifact of classical geometry a
a quantum world should naturally be generalized to something more like a quantum
symmetry.

~ii ! Quantum symmetry groups induce braid statistics on the systems on which they a
particular, the notion of Bose–Fermi statistics or the division into force and matter par
is an artifact of classical geometry.

~iii ! Quantization and the departure from bosonic statistics are two limits of the same phe
enon of braided geometry.

Again, there are plenty of concrete models in solid state physics already known with qua
group symmetry. The symmetry is useful and can be viewed~albeit with hindsight! as the origin
of the exact solvability of these models.

These two points of view, the noncommutative geometrical and the generalized symmet
to date the two main sources of quantum groups. One has correspondingly two main flav
types of quantum groups which really allowed the theory to take off. Both were introduced i
mid-1980s, although the latter has been more extensively studied in terms of applications t
They include the deformations

Uq~g! ~1!

of the enveloping algebra U(g) of every complex semisimple Lie algebrag.4,5 These have as
many generators as the usual ones of the Lie algebra but modified relations and, addition
structure called the ‘‘coproduct.’’ The general class here is that of ‘‘quasitriangular’’ quan
groups. They arose as generalized symmetries in certain lattice models but are also visible
continuum limit quantum field theories~such as the Wess–Zumino–Novikov–Witten model
the Lie groupG with Lie algebrag!. The coordinate algebras of these quantum groups are fu
quantum groupsCq@G# deforming the commutative algebra of coordinate functions onG. There is
again a coproduct, this time expressing the group law or matrix multiplication. Meanwhile
type coming out of Planck-scale physics6 are the ‘‘bicrossproduct’’ quantum groups

C @M #ZU~g! ~2!

associated to the factorisation of a Lie groupX into Lie subgroups,X5GM. Here the ingredients
are the conventional enveloping algebra U(g) and the commutative coordinate algebraC @M #. The
factorization is encoded in an action and coaction of one on the other to make a semidirect p
and coproductZ. These quantum groups arose at about the same time but quite independe
the Uq(g), as the quantum algebras of observables of certain quantum spaces. Namely it tu
that G acts on the setM ~and vice versa! and the quantization of those orbits are these quan
groups. This means that they are literally noncommutative phase spaces of honest quantu
tems. In particular, every complex semisimpleg has an associated complexification and its L
group factorizesGC5GG! ~the classical Iwasawa decomposition! so there is an example

C @G!#ZU~g! ~3!

built from just the same data as for Uq(g). In fact, the Iwasawa decomposition can be underst
in Poisson–Lie terms withg! the classical ‘‘Yang–Baxter dual’’ ofg. In spite of this, there is,
even after a decade of development, no direct connection between the two quantum grou

g

↙ ↘
Uq~g!←?→C @G!#ZU~g!.

~4!
                                                                                                                



erent

eneous
ere is a
out

ments
ime
der a

n
les.
nown
trinsic
t
pe. It

ing
uation

was
ans and
e with
d
ic coho-
hout

ra

3896 J. Math. Phys., Vol. 41, No. 6, June 2000 Shahn Majid

                    
They are both ‘‘exponentiations’’ of the same classical data but apparently of completely diff
type ~this remains a mystery to date!.

Associated to these two flavors of quantum groups there are corresponding homog
spaces such as quantum spheres, quantum space–times, etc. Thus, of the first type th
q-Minkowski space introduced in Ref. 7 as aq-Lorentz covariant algebra, and independently ab
a year later in Ref. 8 as 232 braided Hermitian matrices. It is characterized by

@xi ,t#50, @xi ,xj #Þ0. ~5!

Meanwhile, of the second type there is a noncommutativel-Minkowski space with

@xi ,t#5lxi , @xi ,xj #50, ~6!

which is the one that provides the first known predictions testable by astronomical measure
~by gamma-ray bursts of cosmological origin9!. This kind of algebra was proposed as space–t
in Ref. 10 and in the four-dimensional case it was shown in Ref. 11 to be covariant un
Poincare´ quantum group of bicrossproduct form. These are clearly in sharp contrast.

There are, of course, many more objects than these:q-spheres,q-planes, etc., see Fig. 2. I
Sec. IV we turn to the notion of ‘‘quantum manifold’’ that is emerging from all these examp
Riemann was able to formulate the notion of Riemannian manifold as a way to capture k
examples like spheres and tori but broad enough to formulate general equations for the in
structure of space itself~or after Einstein, space–time!. We are at a similar point now and wha
this ‘‘quantum groups approach to noncommutative geometry’’ is is more or less taking sha
has the same degree of ‘‘flabbiness’’ as Riemannian geometry~it is not tied to specific integrable
systems, etc.! while at the same time it includes the ‘‘zoo’’ of already known naturally occurr
examples, mostly linked to quantum groups. Such things as Ricci tensor and Einstein’s eq
are not yet understood from this approach, however, so I would not say it is the last word.

This approach is in fairly sharp contrast to ‘‘traditional’’ noncommutative geometry as it
done before the emergence of quantum groups. That theory was developed by mathematici
mathematical physicists also coming from quantum mechanics but being concerned mor
topological completions and Hilbert spaces. Certainly a beautiful theory of von Neumann anC*
algebras emerged as an analog of point-set topology. Some general methods such as cycl
mology were also developed in the 1970s, with remarkable applications throug
mathematics.12 However, for concrete examples with actual noncommutativedifferential geom-
etry one usually turned either to an actual manifold as input datum or to the Weyl algeb~or
noncommutative torus! defined by relations

vu5e2pıuuv. ~7!

This in turn is basically the usual CCR or Heisenberg algebra

FIG. 2. The landscape of noncommutative geometry today.
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@x,p#5ı\ ~8!

in exponentiated form. And, at an algebraic level~i.e., until one considers the preciseC* -algebra
completion!, this is basically the usual algebraB(H) of operators on a Hilbert space as in quantu
mechanics. Or, as roots of unity, it isMn(C) the algebra ofn3n matrices. So, at some level thes
are all basically one example. Unfortunately, many of the tricks one can pull for this kin
example are special to it and not a foundation for noncommutative differential geometry o
type we need. For example, to do gauge theory Connes and Rieffel13 used derivations for two
independent vector fields on the torus. The formulation of ‘‘vector field’’ as a derivation of
coordinate algebra is what I would call the traditional approach to noncommutative geometr
quantum groups such asCq@G# one simply does not have those derivations~rather, they are in
general braided derivations!. Similarly, in the traditional approach one defines a ‘‘vector bund
as a finitely generated projective module without any of the infrastructure of differential geom
such as a principal bundle to which the vector bundle might be associated, etc. All of that
not emerge until quantum groups arrived~one clearly should take a quantum group as fiber!. This
is how the quantum groups approach differs from the work of Connes, Rieffel, Madore and o
It is also worth noting that string theorists have recently woken up to the need for a nonco
tative space–time but, so far at least, have still considered only this ‘‘traditional’’ Heisenberg
algebra. In the last year or two there has been some success in merging these approach
ever; a trend surely to be continued. By now both approaches have notions of ‘‘noncommu
manifold’’ which appear somewhat different but which have as point of contact the Dirac o
tor.

A. Preliminaries

A full text on quantum groups is Ref. 14. To be self-contained we provide here a q
definition. Later on we will see many examples and various justifications for this concept. Th
quantum group or Hopf algebra is

~i! A unital algebraH, 1 over the fieldC ~say!.
~ii ! A coproductD:H→H ^ H and counite:H→C forming a coalgebra, withD, e algebra

homomorphisms.
~iii ! An antipodeS:H→H such that•(S^ id)D51e5•( id ^ S)D.

Here a coalgebra is just like an algebra but with the axioms written as maps and arrows
maps reversed. Thus the coassociativity and counity axioms are

~D ^ id !D5~ id ^ D!D, ~e ^ id !D5~ id ^ e!D5 id. ~9!

The antipode plays a role that generalizes the concept of group inversion. Other than that, th
new mathematical structure that the reader has to contend with is the coproductD and its associ-
ated counit. There are several ways of thinking about the meaning of this depending on ou
of view. If the quantum group is like the enveloping algebra U(g) generated by a Lie algebrag,
one should think ofD as providing the rule by which actions extend to tensor products. Thus, Ug)
is trivially a Hopf algebra with

Dj5j ^ 111^ j, ;jPg, ~10!

which says that when a Lie algebra elementj acts on tensor products it does so byj in the first
factor and thenj in the second factor. Similarly, it says that when a Lie algebra acts on an alg
it does so as a derivation. On the other hand, if the quantum group is like a coordinate a
C @G#, thenD expresses the group multiplication ande the group identity elemente. Thus, if f
PC @G#, the coalgebra is

~D f !~g,h!5 f ~gh!, ;g,hPG, e f 5 f ~e!, ~11!
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at least for suitablef ~or with suitable topological completions!. In other words, it expresses th
group productG3G→G by a map in the other direction in terms of coordinate algebras. From
another point of viewD simply makes the dualH* also into an algebra. So a Hopf algebra
basically an algebra such thatH* is also an algebra, in a compatible way, which makes the axi
‘‘self-dual.’’ For every finite-dimensionalH there is a dualH* , and similarly in the infinite-
dimensional case. It said that in the Roman empire, ‘‘all roads led to Rome.’’ It is remarkabl
several different ideas for generalizing groups all led to the same axioms. The axioms them
were first introduced~actually in a super context! by H. Hopf in 1947 in his study of group
cohomology but the subject only came into its own in the mid-1980s with the arrival f
mathematical physics of the large classes of examples~as above! that are neither like U(g) nor like
C @G#, i.e., going truly beyond Lie theory or algebraic group theory.

An announcement of this article appears in a short millennium article15 and a version more
focused on the meaning for Planck scale physics appears in Ref. 16.

II. QUANTUM GROUPS AND PLANCK SCALE PHYSICS

This section covers quantum groups of the bicrossproduct type coming out of Planck
physics6 and their associated noncommutative geometry. These are certainly less well dev
than the more familiar Uq(g) in terms of their concrete applications; one does not have interes
knot invariants, etc. On the other hand, these quantum groups have a clearer physical mea
models of Planck scale physics and are also technically easier to construct. Therefore, the
good place to start.

Obviously if we want to unify quantum theory and geometry then a necessary first step
cast both in the same language, which for us will be that of algebra. We have already men
that vector fields can be thought of classically as derivations of the algebra of functions o
manifold, and if one wants points they can be recovered as maximal ideals in the algebra, et
is the more or less standard idea of algebraic geometry dating from the late 19th century an
on in the 20th. It will certainly need to be modified before it works in the noncommutative c
but it is a starting point. The algebraic structure on the quantum side will need more atte
however.

A. Cogravity

We begin with some very general considerations. In fact, there are fundamental reason
one needs noncommutative geometry for any theory that pretends to be a fundamental one
gravity and quantum theory both work extremely well in their separate domains, this com
refers mainly to a theory that might hope to unify the two. As a matter of fact I believe
through noncommutative geometry, this ‘‘Holy Grail’’ of theoretical physics may now be in si

The first point is that we usually do not try to apply or extend our geometrical intuition to
quantum domain directly, since the mathematics for that has traditionally not been known.
one usually considers quantization as the result of a process applied to an underlying cl
phase space, with all of the geometrical content there~as a Poisson manifold!. But demanding any
algebra such that its commutators to lowest order are some given Poisson bracket is cle
illogical and ill-defined process. It not only does not have a unique answer but also it depen
the coordinates chosen to map over the quantum operators. Almost always one takes the
bracket in a canonical form and the quantization is the usual CCR or canonical commu
relations algebra. Maybe this is the local picture, but what of the global geometry of the cla
phase space? Clearly all of these problems are putting the cart before the horse: the real w
to our best knowledge, quantum, so that should come first. We should build models guided
intrinsic ~noncommutative! geometry at the level of noncommutative algebras and only at the
consider classical limits and classical geometry~and Poisson brackets! as emerging from a choice
where possible, of ‘‘classical handles’’ in the quantum system.

In more physical terms, classical observables should come out of quantum theory as
kind of limit and not really be the starting point; in quantum gravity, for example, class
geometry should appear as an idealization of the expectation value of certain operators in
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states of the system. Likewise in string theory, one starts with strings moving in classical s
time, defines Lagrangians, etc., and tries to quantize. Even in more algebraic approaches,
axiomatic quantum field theory, one still assumes an underlying classical space–time and c
Poincare´ group, etc., on which the operator fields live. Yet if the real world is quantum, then p
space and hence probably space–time itself should be ‘‘fuzzy’’ and only approximately mo
by classical geometrical concepts. Why then should one take classical geometrical concept
the functional integral except other than as an effective theory or approximate model tailo
the desired classical geometry that we hope to come out. This can be useful but it cannot p
be the fundamental ‘‘theory of everything’’ if it is built in such an illogical manner. There
simply no evidence for the assumption of nice smooth manifolds other than now-discre
classical mechanics. And in certain domains such as, but not only, in Planck scale phys
quantum gravity, it will certainly be unjustified even as an approximation.

Next let us observe that any quantum system which contains a non-Abelian global sym
group is already crying out for noncommutative geometry. This is in addition to the more ob
position-momentum noncommutativity of quantization. The point is that if our quantum sy
has a non-Abelian Lie algebra symmetry, which is usually the case when the classical s
does, then from among the quantum observables we should be able to realize the generator
Lie algebra. That is, the algebra of observablesA should contain the algebra generated by the
algebra,

A$U~g!. ~12!

Typically, A might be the semidirect product of a smaller part with external symmetryg by the
action of U(g) ~which means that in the bigger algebra the action ofg is implemented by the
commutator!. This may sound fine, but if the algebraA is supposed to be the quantum analog
the ‘‘functions on phase space,’’ then for part of it we should regard U(g) ‘‘upside down,’’ not as
an enveloping algebra but as a noncommutative space withg the noncommutative coordinates. I
other words, if we want to elucidate the geometrical content of the quantum algebra of o
ables, then part of that will be to understand in what sense U(g) is a coordinate algebra,

U~g!5C @?#. ~13!

Here ? cannot be an ordinary space because its supposed coordinate algebra U(g) is noncommu-
tative.

A concrete example is provided by Mackey quantization of a homogeneous space. Thu
compact groupG acts on a spaceM, then it induces a metric on it such that the geodesics
basically the flows under the group action, i.e., particles move on orbits. The orbits ca
quantized in one go as the algebra of observables given by the cross product

~14!

~in an algebraic setting, say!. The natural momentum coordinates here are the Lie algebrag itself
and its cross relations with the position functionsC @M # provide a curved-space analog of th
Heisenberg commutation relations. There is also a Poisson structure onM3g* , which is the
classical phase space. U(g) is the Kirillov–Kostant quantization of theg* part. This class of
models is an example of a general principle: curvature in position space corresponds to no
mutativity of the natural momentum generators. On a general curved space it means nonc
tativity of covariant derivatives.

So we need noncommutative geometry both for noncommutative phase space~due to
Heisenberg-type relations between position and momentum! and for noncommutative momentum
space~when there is curvature!. Finally, since we need a noncommutative geometric formal
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anyway, we may as well allow noncommutative position space or space–time, too. Only i
way could one restore any kind of Born reciprocity or symmetry between position and mome
in the quantum theory. Or, more generally, only in this way could we really imagine cano
transformations mixing position and momentum coordinates. In other words, when Mackey
tization is combined with symplectic ideas or with ideas of position-momentum symmetry o
led naturally to expect that space or space–time, too, should be allowed to be noncommu

Let us put these arguments in a more down-to-earth manner. Thus, in conventional flat
quantum mechanics we take thex commuting among themselves and their momentap likewise
commuting among themselves. The commutation relation

@xi ,pj #5ı\d i j ~15!

is symmetric in the roles ofx,p ~up to a sign!. To this symmetry may be attributed such things
wave-particle duality. A wave has localizedp and a particle has localizedx. Meanwhile, the
meaning of curvature in position space is, roughly speaking, to make the natural consep
coordinates noncommutative. For example, when the position space is a three-sphere the
momentum issu2 . The enveloping algebra U(su2) should be there in the quantum algebra
observables with relations

@pi ,pj #5
ı

R
e i jkpk , ~16!

whereR is proportional to the radius of curvature of theS3. By Born reciprocity then there shoul
be another possibility which is curvature in momentum space. It corresponds under Fourier
to noncommutativity of position space. For example, if the momentum space were a spher
m proportional to the radius of curvature, the natural position space coordinates would corre
ingly have noncommutation relations

@xi ,xj #5
ı

m
e i jkxk . ~17!

Mathematically speaking, this is surely a symmetrical and equally interesting possibility w
might have observable consequences. And if gravity is, loosely speaking, curvature in po
space or space–time, then this other effect should be called ‘‘cogravity.’’ In general term
have the following.

~i! For systems constrained in position space one has the usual tools of differential geo
curvature, etc., of the constrained ‘‘surface’’ in position space or tools for noncommut
algebras~such as Lie algebras! in momentum space.

~ii ! For systems constrained in momentum space one has conventional tools of geom
momentum space or, by Fourier theory, suitable tools of noncommutative geome
position space.

Of course, we do not absolutely need noncommutative geometry to work effectively
enveloping algebras of Lie algebras. But if we wish to view~16! and ~17! geometrically as
noncommuting coordinates, then we will correspondingly need to generalize our notion of g
etry. What are ‘‘vector fields’’ on U(su2)? What are differential forms? And so forth. This is wh
we have called in Ref. 17 a ‘‘quantum-geometry transformation’’ since a quantum symmetry
of view ~such as the angular momentum generators in a quantum system! is turned ‘‘upside
down’’ to a geometrical one. These are nontrivial~but essentially solved! questions. Understand
ing them, we can proceed to construct more complex examples of noncommutative geo
which are neither U(g) nor C @G#, i.e., where both quantum and geometrical effects are unifie
where both gravity and cogravity are present.
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Notice also that the three effects exemplified by the three equations~15!–~17! are all inde-
pendent. They are controlled by three different parameters\, R, m~say!. Of course, in a full theory
of quantum gravity all three effects could exist together and be unified into a single nonco
tative algebra containing suitable position and momentum modes. Moreover, even if we d
know the details of the correct theory of quantum gravity, if we assume that something like
reciprocity survives, then all three effects indeedshouldshow up in the effective theory where w
consider almost-particle states with position and momentax, p. It would require fine tuning or
some special principle to eliminate any one of them.

Finally, our choice of parameterm is suggestive of mass, which may be appropriate in
case of a mass-shell in momentum space, but this is not the only source of curvature in mom
space. If this case is anything to go by, however, it does suggest the following symme
picture.

~i! Curvature in position space–time or gravity governs the background in which test par
are to move. It is related to its active gravitational mass.

~ii ! Curvature in momentum space or cogravity governs the wave equation or rules by w
test particle moves even in flat space. It is related to its passive inertial mass.

Although these remarks are all somewhat vague, we see at least that noncommutative geo
ideas should, in principle, help make precise some of the deepest insights, such as Mach
ciple that motivated Einstein himself.18,1 This approach to Planck scale physics based particul
on Fourier theory to extend the familiarx, p reciprocity to the case of non-Abelian Lie algebr
and beyond was developed by the author in the 1980s.19 See also Refs. 17 and 16.

B. Algebraic structure of quantum mechanics

In the above discussion we have assumed that quantum systems are described by a
generated by position and momentum. Here we will examine this a little more closely.
physical question to keep in mind is the following: what happens to the geometry of the cla
system when you quantize?

To see the problem consider what you obtain when you quantize a sphere or a torus. In
quantum mechanics one takes the Hilbert space on position space, e.g.,H5L2(S2) or H
5L2(T2) and as ‘‘algebra of observables’’ one takesA5B(H) the algebra of all bounded~say!
operators. It is decreed that every self-adjoint such operatora is an observable of the system an
its expectation value in stateuc&PH is

^a&c5^cuauc&. ~18!

The problem with this is thatB(H) is the same algebra in all cases. The quantum system
know about the underlying geometry of the configuration space or of the phase space in
ways; the choice of ‘‘polarization’’ on the phase space or the choice of Hamiltonian etc.—
things are generally defined using the underlying position or phase space geometry—b
abstract algebraB(H) does not know about this. All separable Hilbert spaces are isomor
~although not in any natural way! so their algebras of operators are also all isomorphic. In o
words, whereas in classical mechanics we use extensively the detailed geometrical structu
as the choice of phase space as a symplectic manifold, all of this is not recorded very dire
the quantum system. One more or less forgets it, although it resurfaces in relation to the
restricted kinds of questions~labeled by classical ‘‘handles’’! that one asks in practice about th
quantum system. In other words,

• the true quantum algebra of observables should not be the entire algebraB(H) but some
restricted subalgebraA,B(H).

The choice of this subalgebra is called the kinematic structure and it is precisely here th
~noncommutative! geometry of the classical and quantum system is encoded. This is som
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analogous to the idea in geometry that every manifold can be visualized concretely embed
someRn. Not knowing this and thinking that coordinatesx were always globally defined would
miss out on all physical effects that depend on topological sectors, such as the difference b
spheres and tori.

Another way to put this is that by the Darboux theorem all symplectic manifolds are loca
the canonical formdx∧dp for each coordinate pair. Similarly one should take~15! @which essen-
tially generates all ofB(H), one way or another# only locally. The full geometry in the quantum
system is visible only by considering more nontrivial algebras than this one to bring out the g
structure. We should, in fact, consider all noncommutative algebras equipped with certain
tures common to all quantum systems, i.e., inspired byB(H) as some kind of local model o
canonical example but not limited to it. The conditions on our algebras should also be eno
ensure that there is a Hilbert space around and thatA can be viewed concretely as a subalgebra
operators on it.

Such a slight generalization of quantum mechanics which allows this kinematic structure
exhibited exists and is quite well known in mathematical physics circles. The required alge
a von Neumann algebra or, for a slightly nicer theory, aC* -algebra. This is an algebra overC with
a * operation and a normi i with certain completeness and other properties. The canon
example isB(H) with the operator norm and* the adjoint operation, and every other is
subalgebra.

Does this slight generalization have observable consequences? Certainly. For exam
quantum statistical mechanics one considers not only state vectorsuc& but ‘‘density matrices’’ or
generalized states. These are convex linear combinations of the projection matrices or expe
associated to state vectorsuc i& with weightssi>0 and( isi51. The expectation value in such
‘‘mixed state’’ is

^a&5(
i

si^c i uauc i&. ~19!

In general these possibly-mixed states are equivalent to simply specifying the expectation d
as a linear map̂ &:B(H)→C. This map respects the adjoint or* operation onB(H) so that
^a* a&>0 for all operatorsa ~i.e., a positive linear functional! and is also continuous with respe
to the operator norm. Such positive linear functionals onB(H) are precisely of the above form
~19! given by a density matrix, so this is a complete characterization of mixed states with
ence only to the algebraB(H), its * operation and its norm. The expectations^&c associated to
ordinary Hilbert space states are called the ‘‘pure states’’ and are recovered as the extreme
in the topological space of positive linear functionals~i.e., those which are not the convex line
combinations of any others!.

Now, if the actual algebra of observables is some subalgebraA,B(H), then any positive
linear functional on the latter of course restricts to one onA, i.e., defines an ‘‘expectation state
A→C which associates numbers, the expectation values, to each observableaPA, but not vice
versa, i.e., the algebraA may have perfectly well-defined expectation states in this sense whic
not extendible to all ofB(H) in the form ~19! of a density matrix. Conversely, a pure state
B(H) given by uc&PH might be mixed when restricted toA. The distinction becomes cruciall
important for the correct analysis of quantum thermodynamic systems; for example, see R

The analogy with classical geometry is that not every local construction may be glo
defined. If one did not understand that, one would miss such important things as the B
Aharanov effect, for example. Although I am not an expert on the ‘‘measurement problem’’ i
philosophy of quantum mechanics, it does not surprise me that one would get into inconsis
if one did not realize that the algebra of observables is a subalgebra ofB(H). And from our point
of view it is precisely to understand and ‘‘picture’’ the structure of the subalgebra for a g
system that noncommutative geometry steps in. I would also like to add that the proble
measurement itself is a matter of matching the quantum system to macroscopic features
the position of measuring devices. I would contend that to do this consistently one first h
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know how to identify aspects of ‘‘macroscopic structure’’ in the quantum system without alr
taking the classical limit. Only in this way can one meaningfully discuss concepts such as
measurement or the arbitrariness of the division into measurer and measured. Such an ide
tion is exactly the task of noncommutative geometry, which deals with extending our macros
intuitions and classical ‘‘handles’’ over to the quantum system. Put another way, the corre
dence principle in quantum mechanics typically involves choosing local coordinates likex, p to
map over. Its refinement to correspond more of the global geometry into the quantum world
practical task of noncommutative geometry.

The algebraic structure of quantum theory that we have described here was used by
Mackey and I. Segal in the 1960s and also became a key ingredient in axiomatic quantum
theory. From the point of view of noncommutative geometry the turning point was a theore
Gelfand and Naimark in the 1940s that every commutativeC* -algebra corresponds to a local
compact topological space as its algebra of functions vanishing at infinity. Based on this, on
regardany noncommutativeC* -algebra as a ‘‘noncommutative topological space.’’ Similarly
later theorem of Serre and Swann characterized a vector bundle as a finitely generated pr
module over the algebra of functions in the commutative case, so one could adopt this
noncommutative case too. This led to the operator theory~or functional analysis! approach to
noncommutative geometry developed further by A. Connes and others, as explained in
Here cyclic cohomology reproduces DeRahm cohomology in the commutative case. More re
Connes has introduced an operator notion of a ‘‘spectral triple’’ which apparently in the com
tative case reproduces a spin manifold structure and Dirac operator; see Ref. 12.

This operator theory approach to noncommutative geometry is focused in Hilbert sp
spectral properties of the ‘‘Dirac operator,’’ etc., i.e., comes out of quantum mechanical thi
in a kind of ‘‘top-down’’ manner. It complements the more algebraic and ‘‘bottom-up’’ appro
coming out of quantum groups which is more focused in the differential geometry~e.g.,
q-deforming usual formulas in differential geometry!. The two approaches certainly can an
should benefit each other. For example, just because an elegant construction gives the right
in the commutative case does not mean it is the ‘‘right’’ formulation in the noncommutative
This can only be known through experience with concrete examples that one wishes to inc
the more general theory.

C. Non-Abelian Fourier theory and cosmological g-ray bursts

We now begin to use noncommutative geometry and particularly quantum group techn
to make precise some of the ideas in Sec. II A about position and momentum and their corr
dence through Fourier theory. We need to extend this to the non-Abelian case.

Fourier theory onR is of course familiar. Let us recall that it also works perfectly well for a
~locally compact! Abelian groupG. The conjugate groupĜ is the set of characters onG. There is
a pairing between a characterx and a group elementg, namely to evaluatex(g). The Fourier
transform is then

F~ f !~x!5E
G

dg f~g!x~g!, ~20!

and similarly for the inverse with the roles ofG andĜ interchanged. Its key feature is that it turn
differential operators onG into multiplication by functions inĜ.

However, for non-Abelian groups one still hasĜ as the set of irreducible representations, b
it does not form a group any more and it does not carry enough information to reconstru
original group, i.e., to allow Fourier transform. The latter is possible but the Fourier transfo
functions are not functions onĜ exactly but rather they are matrix-valued ‘‘functions’’ where t
value atrPĜ lies in End (Vr), whereVr is the vector space of the representationr and where the
function is constrained to be consistent with all~iso!morphisms between differentr’s. Put another
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way, one has to work with the entire category of representationsand the morphisms between
them, not only the setĜ. This is not a bad point of view and we will return to it in Sec. III fo
quasitriangular quantum groups, but it is not a very geometrical one.

Quantum groups provide a more geometrical alternative to this which keeps the flavor
Abelian case but at the price of generalizing our notions to noncommutative geometry. Thu
any Hopf algebraH, recall from~11! that if we think of it as like ‘‘functions on a group,’’ then th
coproduct corresponds to the group product law. Hence a translation-invariant integral me
general a map* :H→C such that

S E ^ id DD51E . ~21!

Meanwhile, the notion of plane wave or exponential should be replaced by the canonical e

exp5(
a

ea^ f aPH ^ H* , ~22!

where$ea% is a basis and$ f a% is a dual basis. We can then define Fourier transform as

F:H→H* , F~h!5E ~exp!h5S E (
a

eahD f a. ~23!

There is a similar formula for the inverseH* →H. In the infinite-dimensional case one will nee
bases of our two mutually dual Hopf algebras and either formal power series or a topol
completion of the tensor product~i.e., some real analysis! for this to make sense.

First of all, we check that we recover the usual Fourier theory at least at some formal
Thus, takeH5C @x#, the algebra of polynomials in one variable, as the coordinate algebraR.
It forms a Hopf algebra with

Dx5x^ 111^ x, ex50, Sx52x, ~24!

as an expression of the additive group structure onR. Similarly we takeC @p# for the coordinate
algebra of another copy ofR with generatorp dual tox ~the additive groupR is self-dual!. The two
Hopf algebrasH5C @x# andH* 5C @p# are dual to each other witĥxn,pm&5(2ı)ndn,mn! ~under
which the coproduct of one is dual to the product of the other!. The ~formal! exp element and
Fourier transform is therefore

exp5( ın
xn

^ pn

n!
5eıx^ p, F~ f !~p!5E

2`

`

dx f~x!eıx^ p. ~25!

Apart from an implicit^ symbol which one does not usually write, we recover the usual Fou
theory. Both the notion of duality and the exponential series are being treated a bit formal
can be made precise, of course.

On the other hand, we can apply the formalism just as well toH5C @G#, the coordinate
algebra of a non-Abelian complex Lie group~for the real forms one afterwards introduces
*-operation on the algebra!. These can typically be understood concretely as matrix groups
C @G# generated by the coordinate functionst i

j which assign to a group element itsij matrix entry,
modulo some relations~and afterwards we can take topological completions!. Their coproduct
according to~11! is

Dt i
j5t i

k^ tk
j ~26!

corresponding to the matrix multiplication or group law. This quantum group is dual to
enveloping algebra U(g) of the associated Lie algebrag with duality pairing
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^t i
j ,j&5r~j! i

j , ~27!

wherer is the corresponding matrix representation of the Lie algebra. The canonical elem
exp is given by choosing a basis for U(g) and finding its dual basis. We do have integrals a
hence, at least formally, a Fourier transform.

F:C @G#→U~g! ~28!

and back. The action of vector fields given by elements ofg become multiplication in U(g), etc.
In the reverse direction we have to take the view that U(g) is a noncommutative space and find
integral on it, etc. But since it is a perfectly good Hopf algebra we have no problem in doing
of this or in proving the usual properties of Fourier theory. Thus there are ‘‘vector fields’’ in Ug)
given by the action of thet i

j and they Fourier transform to multiplication inC @G#, etc.
For example, one could apply this toH5C @SU2#5C @a,b,c,d# modulo the relationad

2bc51 ~and a*-operation to express unitarity!. It has coproduct

Da5a^ a1b^ c, etc., DS a b

c dD 5S a b

c dD ^ S a b

c dD . ~29!

The duality pairing with U(su2) in its usual anti-Hermitian generators$ei% is

K S a b

c dD ,ei L 5
ı

2
s i , ~30!

defined by the Pauli matrices. Let$e1
ae2

be3
c% be a basis of U(su2) and$ f a,b,c% the dual basis. Then

we have a Fourier transform

F:C @SU2#→U~su2!, F~ f !5S E
SU2

du f~u! f a,b,c~u! D e1
ae2

be3
c . ~31!

Heredu denotes the right-invariant Haar measure onSU2 . For a picture ofei as the coordinates
on momentum space conjugate to position spaceSU2 , we have to regard U(su2) as coordinates of
a ‘‘noncommutative space.’’ Or we could equally well reverse the roles of these quantum g
~i.e., focus on the inverse Fourier transform! as connecting noncommutative position space w
coordinates U(su2) and commutative but curvedSU2 momentum space. Note that one can c
tainly put in the functional analysis in both cases. For example, asC* -algebras the role of U(g) is
more properly played by the groupC* -algebraC* (G), etc.

@x,t#5ılx. ~32!

S elv k

0 1D ~33!

Delv5elv
^ elv, Dk5k^ 11elv

^ k. ~34!
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exp5eıkxeıvt, F~ : f ~x,t !: !5E
2`

` E
2`

`

dx dt eikxeıvt f ~elvx,t !, ~35!

l22~elv1e2lv22!2kW2e2lv5m2 ~36!

uvu5e2vl. ~37!

Some heuristic speculations of this type first appeared in Ref. 22 from thinking about the C
in the deformed Poincare´ quantum group~one needs the non-Abelian Fourier theory, however
connect this with waves in space–time and justifyv as energy, etc.!.

This theoretical prediction can actually be measured for gamma-ray bursts that travel c
logical distances, even ifl is very small, of the order of the Planck scale. The known gamma-
occur in a spread of energies from 0.1–100 MeV and are known to travel cosmological dist
Hence the accumulated difference in their arrival times

dt5l
L

c
elvdv ~38!

due to the above effect could be of the order of milliseconds, which is observable. Of cours
does not know how much of the actual spread in arrival times is due to the effect and how
is part of the initial structure. For this one needs to know the distanceL over many bursts and us
the predictedL-dependence to filter out other effects and our lack of knowledge of the in
spectrum. Such better data should, however, be forthcoming in the near future. It was als
jectured in Ref. 9 that the non-Abelianness of the momentum group shows up as CPT vio
and might be detected by ongoing neutral-kaon system experiments. Of course, there is n
stopping one doing field theory in the form of Feynman rules on our classical momentum
either, except that one has to make sense of the meaning of non-Abelianness in the add
momentum. These are the first and, I believe at the moment, the only concretely testable
tions for Planck scale physics coming out of noncommutative geometry, in contrast to theo
and conceptual ideas.
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D. Fourier theory and loop variables

Fourier theory also ties up with other approaches to quantum gravity such as the loop va
one that grew out of the approach to QCD in the 1970s based on Wilson loops. And it
another point of view on the deep connection between Chern-Simons theory, the Wess–Zu
Novikov–Witten CFT and the knot invariants related to quantum groups. We will say more a
the latter in Sec. III, but for the moment we offer a different and more heuristic point of v
based on Fourier transform. As far as I know, it is due to the author in Refs. 23–25, and
aspects, such as the regularized linking number, have certainly turned up in modern develo
in loop variable quantum gravity. We refer to Ref. 16 for more details.

We will discuss only the Abelian or U~1! theory in any depth, leaving as open the problem
really pushing through these ideas in the non-Abelian case. The required groups are not, ho
locally compact so there is no well-defined translation-invariant measure. However, this
matter of regularization and as physicists we can also apply these ideas formally by pret
that there is such a measure. With this caveat, the elementsk of the group are disjoint unions o
oriented knots~i.e., links! with a product law that consists of erasing any overlapping segmen
opposite orientation. The dual group isA/G of U~1! bundles and~distributional! connectionsA on
them. Thus given any bundle and connection, the corresponding character is the holonom

xA~k!5eı*kA. ~39!

The inverse Fourier transform of some well-known functions onA/G as functions on the group o
knots are

F21~CS!~k!5E dA CS~A!e2ı*kA5e~ ı/2a!link~k,k!, ~40!

F21~Max!~k!5E dA Max~A!e2ı*kA5e~ ı/2b!ind~k,k!, ~41!

where

CS~A!5e~aı/2!*A∧dA, Max~A!5e~bı/2!** dA∧dA ~42!

are the Chern–Simmons and Maxwell actions, link denotes linking number, and ind de
mutual inductance. The diagonal ind(k,k) is themutual self-inductance, i.e., you can literally cut
the knot, put a capacitor and measure the resonant frequency to measure it. By the way, t
sense of this one has to use a wire of a finite thickness—the self-inductance has a log dive
This is also the log divergence of Maxwell theory when one tries to make sense of the func
integral, i.e., renormalization has a clear physical meaning in this context. Meanwhile, the
onal link(k,k) is the self-linking number of a knot with itself, where link(k,k8) between two
possibly intersecting knots is defined as the limite→0 of the regularized linking number24

linke~k,k8!5E
ieW i,e

d3eW link~k,keW8!. ~43!

HerekeW8 is the second knot displaced by the vectoreW . This link (k,k8) gives, for example,61
2 for

each transversal intersection. One can also define it by the Gauss formula, which is part
proof of the above results. Note also that this point of view is distributional because, as w
considering honest smooth connections, one considers ‘‘connections’’ defined entirely by
holonomy. In particular, given a knotk one may define the distributionAk by its character as

eı*k8Ak5eı link~k,k8!. ~44!
                                                                                                                



ction

ry by
ons
v

se
at are
ons
ually

just

by
here

picture.
—this
tion of
d, there
re of
e-
ts.
tion to
ly, our

have

ourier
space

ecture

or the

ra

3908 J. Math. Phys., Vol. 41, No. 6, June 2000 Shahn Majid

                    
Such distributions are quite interesting. For example, if one formally evaluates the Maxwell a
on these one has23–25

Max~Ak!5e~ ı/4b!d2~0!*kdtk̇•k̇, ~45!

the Polyakov string action. In other words, string theory can be embedded into Maxwell theo
constraining the functional integral to such ‘‘vortex’’ configurations. An additional Chern–Sim
term becomes similarly a ‘‘topological mass term’’ link~k, k! that could be added to the Polyako
action.

Now the point is that on the side ofA/G there is no problem passing to the non-Abelian ca
and no problem writing down Yang–Mills and Chern–Simons functionals on this space. Wh
their Fourier transforms? In theSU2 case the inverse Fourier transform of the Chern–Sim
functional should surely be some kind of Jones invariant in place of self-linking number. Act
the Jones invariant is connected only to the fundamental representation ofSU2 , but in a conven-
tional setting~see later sections! there is such a knot invariant for every representation. Now,
as gauge fields are something like U~1! fields ‘‘tensored’’ by U(g), the dual should be loops
‘‘tensored’’ by the dual of U(g). In conventional terms this would be therefore loops labeled
representations inĜ and the universal Jones invariant would indeed be a functional on this. T
are many complications here that we have glossed over, i.e., this is a somewhat heuristic
First of all, as written above the group of loops is not sensitive to under or over crossings
enters in the regularization needed to make sense of the theory as well as in the defini
self-linking number in the answer. The same has to be done in the non-Abelian case. Secon
is not a simple ‘‘tensor product’’ here, but rather the Lie algebra and the differential structu
the gauge field are nontrivially mixed up~a gauge field is not simply a Lie-algebra-valued on
form!. At least at the heuristic level, however, this is one way of thinking about knot invarian24

Presumably the same approaches can be applied to Fourier transform the Yang–Mills ac
understand QCD and presumably also to understand loop-variable quantum gravity. Final
results above suggest a noncommutative geometrical formulation in which the loops would
values not inĜ but in U(g) regarded as a noncommutative space. In other words,

• non-Abelian gauge theories should be more or less equivalent under non-Abelian F
transform to a theory of loops with values in a manifold crossed by a noncommutative
U(g).

At the time of writing such models and such ideas have yet to be explored, i.e., this is a conj
for the future.

There is also another connection with noncommutative geometry. Thus the CCRs f
gauge field can be equivalently formulated as

F E
k
A,E

S
EG54pıa link~k,]S!, ~46!

which is a signed sum of the points of intersection of the loopk with the surfaceS. This is the
point of view by which loop variables were introduced~as an approach to QCD on lattices! by
Mandelstam and others. Now, just as the noncommutative torus~7! takes the Heisenberg algeb
in an exponentiated form with relations

vnum5e2pıumnumvn, ~47!

one has for gauge fields in canonical quantization23–25

vkuk85e4pıa link~k,k8!uk8vk , ~48!

where integers are replaced by knots or links. Here the physical picture is
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uk5eı*kA, vk5eı*kÃ, ~49!

whereÃ is a dual connection such thatE5dÃ. So constructing theu,v is equivalent to construct
ing some distributional operatorsA,E with the usual CCRs. The point here is that CCRs and
noncommutative torus are but the most elementary examples of noncommutative geome~at
least at an algebraic level!. As we will see in the next section, there are variations of the C
algebra that preserve more of the geometric structure of phase space in the quantum ca
could envisage similar variants for quantization of photons and Yang–Mills fields. This is a
something for the future.

E. The Planck scale quantum group

We are now ready to move from simple examples like U(g) regarded ‘‘up side down’’ as a
noncommutative space to noncommutative spaces that are genuinely different from both U(g) and
its dual C @G#. In fact, our goal is to unify these two. We do this in the category of quan
groups because quantum groups should be the simplest examples of noncommutative geom
this category we want to have something that really is a quantum algebra of observables
honest quantum system and at the same time preserves something of the geometrical stru
phase space in the quantum case. In the simplest 111-dimensional model the phase space isR2

with its additive group structure. This in turn leads to the usual vector fields, etc., onR2. We want
to be able to keep all that geometry even in the quantum setting. This line of thinking led
mid-1980s to the Planck scale quantum groupC @x#Z\,GC @p# generated byx, pwith relations and
coproduct6

@x,p#5ı\~12e2x/G!, Dx5x^ 111^ x, Dp5p^ e2x/G11^ p. ~50!

This should be viewed as some kind of ‘‘toy model’’ or effective theory of Planck scale phy
with stripped-down degrees of freedom but incorporating the more fundamental ideas in pr
sections. This is how bicrossproduct quantum groups first appeared, at least in a modern c

Notice, first of all, the quantum flat spaceG→0 limit. In any situation wherex can effectively
be treated as having values. 0, i.e., for a certain class of quantum states where the partic
confined to this region, we clearly have flat space quantum mechanics with the Heisenberg
@x,p#5ı\. asG→0. So this quantum group leads to a modification of usual quantum mech
by this parameterG.

To get some idea of the meaning of this deformation byG, suppose thatp is the natural
conserved momentum and the Hamiltonian ish5p2/2m ~say!. The different@x, p# commutation
relations then correspond to different dynamics. This is the natural point of view as a dyna
system, but if one prefers an even more conventional point of view one is free to defip̃
5p(12e2x/G)21, which then has the usual canonical commutation relations, withh a certain
Hamiltonian consisting ofp̃2/2m plus derivative interaction terms. Either way, one finds

ṗ50, ẋ5
p

m
~12e2x/G!1O~\!5v`S 12

1

11x/G1¯

D1O~\!, ~51!

where we identifyp/m to O(\) as the velocityv`,0 at x5`. We see that as the particl
approaches the origin it goes more and more slowly and, in fact, takes an infinite amount o
to reach the origin. Compare with the formula in standard radial in-falling coordinates

ẋ5v`S 12
1

11 1
2 ~x/G!

D ~52!

for the distance from the event horizon of a Schwarzschild black hole with
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G5
GNewtonM

c2 , ~53!

where M is the background gravitational mass andc is the speed of light. Thus the heurist
meaning ofG in our model is that it measures the background mass or radius of curvature
classical geometry of which our Planck scale Hopf algebra is a quantization.

Next we notice the classical limit where\→0. In this case we have the commutative alge
of x, p, i.e., a classical space but with coproduct that of the group of matrices of the form

S e2x/G 0

p 1D , ~54!

mM!mPlanck
2 , ~55!

while the curved classical limit is valid if

mM@mPlanck
2 . ~56!

In the general case both points of view coexist in a unified structure.
We envisage that this model could appear as some effective limit of an unknown theo

quantum gravity, which to lowest order would appear as space–time and conventional mec
on it. But actually we can make a much stronger statement, for there is a sense in which the
scale quantum group is not merely a quantization of a certain Poisson space but rather com
the intrinsic structure of noncommutative algebras themselves. The idea is that even if the
of quantum gravity is unknown, we can use the intrinsic structure of noncommutative algeb
classifya priori different possibilities. This is much as a phenomenologist might use knowled
topology or cohomology to classify differenta priori possible effective Lagrangians withou
knowing the full high energy theory.

Specifically, ifH1 , H2 are two quantum groups, there is a theory of the space Ext0(H1 ,H2)
of possible extensions

0→H1→E→H2→0 ~57!

by some Hopf algebraE obeying certain conditions. We do not need to go into the mathema
details here, but in general one can show thatE>H1ZH2 by a ‘‘bicrossproduct’’ Hopf algebra
construction. Suffice it to say that the conditions are ‘‘self-dual,’’ i.e., the dual of the ab
extension gives

0→H2* →E* →H1* →0 ~58!

as another extension dual to the first, in keeping with a philosophy of self-duality of the cat
in which we work. We also note that by Ext0 we mean quite strong extensions. There is als
weaker notion that admits the possibilities of cocycles as well, which we are excluding, i.e
is only the trivial sector in a certain non-Abelian cohomology. Then it was found that6,18

Ext0~C @x#,C @p# !5R\ % RG, ~59!

a two-parameter space, and that any extension
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0→C @x#→E→C @p#→0 ~60!

of position C @x# by momentumC @p# forming a Hopf algebra is of the bicrossproduct formE
>C @x#Z\,GC @p#. In physical terms what we are saying is that if we are givenC @x# the position
coordinate algebra andC @p# defineda priori as the natural momentum coordinate algebra, then
possible quantum phase spaces built fromx, p in a controlled way that preserves duality ide
~Born reciprocity! and retains the group structure of classical phase space as a quantum gro
of this form labeled by two parameters\, G. We have not put these parameters in by hand—t
are simply the mathematical possibilities being thrown at us. Also, although one cannot dra
many conclusions from the analogy with a Schwarzschild black-hole~given that the toy mode
here is not even relativistic!, the emergence of a coordinate singularity is again something tha
have not put in by hand. In summary, we have the following.

~i! The model shows how one can be forced to discover both quantum and gravitational e
from the intrinsic structure of the theory of noncommutative algebras.

~ii ! Such methods lead to tight constraints on the dynamics, with features such as coo
singularities.

In particular, it is not possible to make a Hopf algebra forx, p with the correct classical limit in
this context without a coordinate singularity. In fact, solving~60! is a second order differentia
equation for the possible action of the momentum generators, playing the role in our toy mo
something like Einstein’s equation for the metric.

We can also take a ‘‘deep quantum gravity’’ limit\, G→` in the above, withG/\5l held
constant. In this case we obtain

@x,p#5ılx, Dx5x^ 111^ x, Dp5p^ 111^ p, ~61!

There are some other remarkable features of the Planck scale quantum group which cou
us some qualitative insight into even more novel phenomena at the Planck scale. The
important is that it is not only of self-dual type in the sense that its dual is also a Hopf alg
extension, but it is actually isomorphic to its own dual,

~C @x#Z\,GC @p# !* >C @ p̄#Y1/\,G/\C @ x̄#. ~62!

whereC @p#* 5C @ x̄# andC @x#* 5C @ p̄# in the sense of an algebraic pairing. Here^p,x̄&5ı etc.,
which then requires a change of the parameters as shown to make the identification prec
there is a dual theory which has just the same form but the roles ofx, p interchanged and differen
parameter values. This means that whereas we would look for observablesaPC @x#ZC @p# as the
algebra of observables and statesfPC @ p̄#YC @ x̄# as the dual linear space, withf(a) the expec-
tation of a in statef ~see Sec. II B!, there is a dual interpretation whereby

Expectation5f~a!5a~f! ~63!

for the expectation off in ‘‘state’’ a with C @ p̄#YC @ x̄# the algebra of observables in the du
theory. More precisely, only self-adjoint elements of the algebra are observables and only p
functionals are states, and a statef will not be exactly self-adjoint in the dual theory, etc. But th
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physical self-adjoint elements in the dual theory will be given by combinations of such state
vice versa. This is what I have calledobservable-state duality. It was introduced in Ref. 6 in the
1980s.

Also conjectured at the time of Ref. 6 was that this duality should be related toT-duality in
string theory. As evidence is the inversion of the constant\. In general terms coupling inversion
are indicative of such dualities. Notice also that Fourier transform implements thisT-duality-like
transformation as

F:C @x#Z\,GC @p#→C @ p̄#Y1/\,G/\C @ x̄#. ~64!

Explicitly, it comes out as21

F~ : f ~x,p!: !5E
2`

` E
2`

`

dx dp e2ı~ p̄1ı/G!xe2ı x̄~p1px ! f ~x,p!, ~65!

where

px f 52ı\~12e2x/G!
]

]x
f ~66!

and f (x,p) is a classical function considered as defining an element of the Planck scale qu
group by normal orderingx to the left.

The observable-state duality here is not exactlyT-duality in string theory but has some fea
tures like it. On the other hand, it is done here at the quantum level and not in terms o
Lagrangians. Rather, this approach suggests the following.

~i! A fundamental theory of physics including quantum gravity should be defined by s
kind of algebraic structure possessing one or more dualities in a representation-theor
observable-state sense.

~ii ! Classical geometry, Lagrangians, etc., would only appear in classical limits of the alge
structure and be related to each other under the duality~ies!.

In the above self-dual model the classical picture in the dual is the same as in the original
with a change of parameters, but for more general bicrossproducts the model and its dual
can be quite different in their classical mechanics. This algebraic duality point of view
introduced by the author in the 1980s in Refs. 1 and 19, but we note that some similar ide
beginning to be bandied about by string theorists a decade later under the name of ‘‘M-theory.’’
This is an unknown theory but deemed to have different classical limits connected by dua

Finally, the Planck scale quantum group allows us to take a first look at how classical g
etry emerges or, conversely, how it corresponds in the quantum theory. For example, an
tesimal coproduct defines partial differentials,

]p : f ~x,p!ª
G

ı\
:S f ~x,p!2 f S x,p2ı

\

GD D :, ]x : f ~x,p!ª:
]

]x
f :2

p

G
]p : f :, ~67!

which shows the effects of\ in modifying the geometry. Differentiation in thep direction be-
comes ‘‘lattice regularized,’’ albeit a little strangely with an imaginary displacement. In
l-deformed Minkowski space setting wherep5t it means that the Euclidean version of the theo
related to the Minkowski one by a Wick rotation is being lattice regularized by the effects o\.

Also note that for fixed\ the geometrical picture blows up whenG→0, i.e., the usual flat
space quantum mechanics CCR algebra does not admit a deformation of conventional diffe
calculus onR2. Similarly the associated differential forms have relations with ‘‘functions’’f in the
Planck scale quantum group given by
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f dx5~dx! f , f dp5~dp! f 1
ı\

G
df , ~68!

which blow up asG→0. Thus,

• one needs a small amount of ‘‘gravity’’ to be present for a geometrical picture in the qua
theory.

The higher exterior algebra looks more innocent with

dx`dx50, dx`dp52dp`dx, dp`dp50. ~69!

Starting with the differential forms and derivatives, one can proceed to gauge theory, Riema
structures, etc., in some generality. The above formulas are all from a recent work,21 where one
also finds ‘‘quantum’’ Poisson brackets and Hamiltonians~and in principle, Lagrangians! in the
full noncommutative theory. Such tools should help to bridge the gap between model buildin
classical Lagrangians, which I personally do not think can succeed at the Planck scale, an
of the more noncommutative-algebraic ideas above.

F. General construction of bicrossproducts

The general construction for bicrossproduct quantum groups is as follows. Suppose th

X5GM ~70!

is a factorization of Lie groups. Then one can show thatG acts on the set ofM andM acts back
on the set ofG such thatX is recovered as a double cross productX>GqM ~simultaneously by
the two acting on each other!. The actions are defined by consideringsu wheresPM anduPG
are in the wrong order. By unique factorization there are elementssxuPG andsvuPM such
that su5(sxu)(svu). In effect, an action ofG on M and a ‘‘backreaction’’ ofM on G are
created at the same time. This was motivated in Ref. 18 from Mach’s principle or the genera
that every action has ‘‘equal and opposite’’ reaction.

C @M #ZU~g!. ~71!

The roles of the two Lie groups is symmetric and the dual is

~C @M #ZU~g!!* 5U~m!YC @G#, ~72!

wherem is the Lie algebra ofM. What this means is that there are certain families of homo
neous spaces~the orbits of one group under the other! which come in pairs, with the algebra o
observables of the quantization of one being the algebra of expectation states of the quan
of the other.

This is the general construction alluded to in Sec. I and we see that it comes out of M
principle in a quantum mechanical setting. There are also plenty of examples. In particular,
complexification of a semisimple Lie group factorizes into its compact real formG and a certain
solvable groupG!, i.e.,GC5GG! so there is at least one quantum groupC @G!#ZU(g) for every
Lie algebra. The dual is another quantum group U(g!)YC @G#. Let us note that some years late
in the mid-1990s, there appeared a similar proposal for non-AbelianT-duality between a suitable
sigma-model onG and another onG! ~Ref. 26! which has a similar flavor to the above except th
it is at the classical level~not at the level of quantum theory as above! and applies to the evolution
of strings in G,G! rather than to points. The extension of sigma-modelT-duality to the full
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quantum theory~as well as to general factorizationsGM! using such methods as above is
direction for ongoing research at the moment. We refer to Ref. 27 for a first step.

Moreover, general Hopf algebra theory shows thatC @M #ZU(g) always acts covariantly on
U(m), so the latter is always a noncommutative analog of the space of fields on which to
some kind of ‘‘Schroedinger’’ representation for the cross product. There is also a more co
tional Hilbert space representation. From this point of view one could, for example, regardm)
as space or space–time andC @M #ZU(g) as a deformation of the enveloping algebra of a gro
of motions on it.

For example, the bicrossproduct quantum group

~73!

sW• tW5sW1~s311! tW. ~74!

~75!

@p0 ,Mi #50, @pi ,M j #5e i jkpk , @p0 ,Ni #52pi , ~76!

@pi ,Nj #52d i j S 12e22lp0

2l
1

l

2
pW 2D1lpipj . ~77!

DNi5Ni ^ 11e2lp0^ Ni1le i jkpj ^ Mk , Dpi5pi ^ 11e2lp0^ pi , ~78!

andp0 ,Mi as for usual enveloping algebras. It was also shown to be~nontrivially! isomorphic to
a much more complicated ‘‘k-Poincare´ algebra’’ which was obtained by contraction from th
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Uq(so3,2) q-deformation quantum group~see Sec. III! but for which no covariant Minkowski
space had been known~until Ref. 11 only inconsistent non-covariant actions of this quant
group on classical commutative Minkowski coordinates had been considered!. This completes the
mathematics behind theg-ray bursts prediction of Sec. II C.

More recently, Connes and H. Moscovici studied a quantum group of bicrossproduct
corresponding to the factorization

~79!

~80!

~81!

where the coordinate algebra of the diffeomorphisms was described as a certain poly
algebra in a countable number of generatorsdn . Next, just as the basisun,vn in Sec. II D for the
noncommutative torus could be taken as a model for physics with integern replaced by knots,
Connes and D. Kreimer31 proposed a variant of the above withdn replaced by a labelling by
rooted trees as a bookkeeping device for overlapping divergences in the renormalizatio
general quantum field theory. This is certainly an interesting direction for current research.

III. QUANTUM GROUPS AND q-DEFORMATION

In this section we want to turn to the other and in many ways more famous class of qua
groups, the deformed enveloping algebras Uq(g) and their associated coordinate algebrasCq@G#.
The simplest and most well-known example of this type is the quantum group Uq(su2) with
generatorsH,X6 and relations and coproduct

@H,X6#562X6 , @X1 ,X2#5
qH2q2H

q2q21 , ~82!

DX65X6 ^ qH/21q2H/2
^ X6 , DH5H ^ 111^ H. ~83!

The coproductD here is a deformation of the usual additive one, which is recovered asq→1. The
deformation modifies how an action ofX6 extends to tensor products.

Likewise, the coordinate algebrasCq@G# are deformations of the classical coordinate algeb
C @G#. As such one could saymathematicallythat they are ‘‘quantizations’’ of the latter. This i
not quantum physics, however, because any noncommutative algebra which is a nice defor
~a flat one! of a commutative coordinate algebra of classical space implies~by looking at the
deformation to lowest order! a Poisson structure in the classical space of which the noncom
tative algebra could be viewed as ‘‘quantization;’’ this is tautological and it does not neces
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come from these quantum groups arising as the algebra of observables of any natural q
system~in contrast to the bicrossproduct quantum groups!. Rather, the Uq(g) have their structure
dictated by their roles as generalized symmetries. Their key property is that their represen
form a braided category and that anything on which they act acquires braid statistics. After
one may indeed semiclassicalize and obtain new ideas for Poisson geometry.

This is more or less but not quite what happened. On the one hand, quantum groups a
symmetries in exactly solvable lattice models and provided a new interpretation of the ‘‘c
transfer matrix method’’ that had been developed by Baxter in the 1970s. On the other hand
had independently been developing, particularly in the then-Soviet Union, a theory of cla
integrable systems and ‘‘classical inverse scattering’’ for soliton equations; see Ref. 32
review. Initially this was done through a notion of Lax pairs and zero curvature equations,
the same time it turned out that many such systems could be formulated in terms of a ‘‘cla
Yang–Baxter equation’’ that one obtains by semiclassicalizing the methods for exactly so
lattice models. So quantum groups indeed turned out to form a bridge between these scho
it could be said that all three influenced each other in their development.

Nevertheless, the role of inducing braid statistics would appear to be deeper than the ‘
tization’’ point of view here, and therefore I will concentrate on this. It leads ultimately to a w
new kind of ‘‘braided geometry,’’ somewhat different from the noncommutative geometry in
preceding section. As explained in the Introduction, the true meaning of the parameterq in this
context is that it controls the braiding matrix that generalizes the minus sign in Bose–F
statistics to ‘‘braid statistics.’’ This is the minus sign that is the origin of the Pauli exclu
principle that two electrons cannot be in exactly the same state. Note that the latter has a
similarity to the Heisenberg uncertainty principle itself; in fact the idea of noncommutativity a
quantization and the idea of braid statistics are intimately related both mathematically and
cally.

A. Knot invariants

Thus, if V, W are representations of Uq(g), thenV^ W is ~as for any quantum group! also a
representation. The action is

hx~v ^ w!5~Dh!.~v ^ w! ~84!

for all hPUq(g), where we use the coproduct~for example, the linear form of the coproduct ofH
means that it acts additively!. The special feature of quantum groups like Uq(g) is that there is an
elementRPUq(g) ^̄ Uq(g) ~the ‘‘universalR-matrix or quasitriangular structure’’! which ensures
an isomorphism of representations

CV,W :V^ W→W^ V, CV,W~v ^ w!5P+R.~v ^ w!, ~85!

From this one can see how such quantum groups lead to knot invariants.33 Thus, consider the

FIG. 3. Braid relation and corresponding Yang–Baxter equation for braidingC as a matrixR.
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knot as describing the trajectories of particlesV and antiparticlesV* with time flowing down the
page as in Fig. 4~b!. Note that rather than thinking of a single kind of particle moving along
knot @as in Fig. 4~a!#, we instead regard the upward arcs as antiparticles flowing down the p
When one particle passes over or under another, we apply some kind of operationR according to
the flavor of the crossing. In this way we ‘‘scan’’ the knot from top to bottom, creating parti
as needed, interacting them at the crossings and finally fusing particles and antiparticles as
The total process is computable and, very roughly speaking, is the knot invariant as a func
any parameterq on which the matricesR might depend.

Note that this process exists not in three dimensions~where our original knot lived! but for
particles and antiparticles moving in one space and one time dimension, according to how th
looks on the page. We need to know that if we drew the knot from a different angle and di
process from that point of view, we should get the same answer. We also need to know tha
distort the knot without cutting it, then we get the same answer, all of which depends on cho
R carefully. The latter part of the problem can be reduced mainly to the braid relation in F
These braids are topologically the same, so replacing one by the other in a complicated knot
not change it. Therefore, we require that the corresponding operationsR should give the same tota
process on three particles, which is the Yang–Baxter equation. We also require similar re
where some strands are antiparticles. The remainder of the problem can be focused mainly
observation that a harmless twist in the knot can appear untwisted when viewed from a di
angle, so that the number of crossings themselves can change. In typical examples, the maR,
while not invariant under such harmless twists, usually change in a simple way that c
compensated for by hand. Actually, what one obtains in this way is not exactly a knot invaria
an invariant of ribbons or framed knots. Apart from these subtleties, these are the main cons
that the matricesR have to satisfy.

Also, in particle physics one understands particles as labeled by representationsV of a Lie
algebrag, and their conjugates by the dual representationV* . When particles are interchanged on
usually has either an exchange factorR521 ~for Fermionic particles like the electron! or the
trivial exchangeR51 ~for Bosonic particles like the photon!. Neither of these choices giv
interesting knot invariants, but when we look instead at representations of the quantum
Uq(g) we find a much more nontrivial matrixR ~depending onq! whenever two representations o
the quantum group are exchanged. We can then proceed as with the heuristic particle
above but withV a representation of the quantum group Uq(g) and V* its dual representation
They are created together as the canonical element ofV^ V* ~or a certain other element ofV*
^ V! and are fused by the evaluation mapV* ^ V→C ~or a certain other mapV^ V* →C!. The
result is a function ofq and this, more precisely, is the construction of the knot invariants f
quantum groups.

For standard Uq(g) and genericq the construction of representations is not hard, all
standard ones ofg just q-deform. For example, the spin 1/2 representation ofsu2 deforms to a

FIG. 4. Trefoil knot~a! and construction~b! of its invariant.
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two-dimensional representation of Uq(su2). The associated knot invariant is the Jones polynom
knot invariant.34 Jones himself came to this more from the solvable lattice point of view~see later
in this article!, with the quantum group’s point of view coming later.

There is a lot more to the deep mathematical structure of the Uq(g) that is not that much
applied so far in physics. In particular, there is an important subalgebra Uq(n2)#Uq(g) which can
be used to generate representations of the whole quantum group from a highest-weight ‘‘va
vector. G. Lusztig in the early 1990s introduced a nice description of this subalgebra in ter
certain ~shifted! ‘‘perverse sheaves,’’ using concepts from algebraic geometry.35 Without going
into details, he obtained in this way a basis of the subalgebra with many remarkable integral
positivity properties, called the Kashiwara–Lusztig canonical basis~a similar ‘‘global crystal
basis’’ was found by Kashiwara at about the same time!. The most remarkable property of th
basis is that it induces a basis of every highest weight representation that Uq(n2) generates. This
might seem esoteric but all these results continue to hold even whenq51, and as such they
provided unsuspected and revolutionary results in the representation theory of ordinary Lie
bras g themselves. The algebras Uq(n2) generated by the negative roots themselves are
actually quantum groups but braided versions or ‘‘braided groups’’ as introduced by the a
~see a later subsection!. Using some of the theorems for these objects, one has further results
as an inductive construction of the Uq(g) as a decomposition into a series of quantum-braid
planes.36,37 Again, the result is useful even for U(g) and is relevant to their noncommutative
geometric picture as in Sec. II.

B. Exactly solvable lattice models

Here we give the briefest of expositions of how, at least conceptually, quantum group
braiding matricesR came out of solid state physics in the early 1980s. This is surely one o
great triumphs of the interaction between physics and pure mathematics.

We recall that in statistical mechanics one has a large collection of distinct states of the s
and studies its bulk properties through the partition function, a certain weighted sum ov
states. For example, consider the model of a crystal in Fig. 5, where a state is an assignm
bonds throughout the lattice. We write the Boltzmann weight at each vertex as the entr
matrix R according to the value of the bonds around the vertex. The partition function is

Z~l!5 (
states

)
vertices

Ri
j
k
l~l!, ~86!

whereijkl are the values of the bonds in the given state surrounding the given vertex. We su
the weight depends on a parameterl. Working in a different~but broadly equivalent! setting, R.
Baxter in the early 1970s described conditions onR which allowed for the partition function to be
computed explicitly using a ‘‘corner transfer matrix method.’’38 The resulting functions often ha
beautiful connections with number theory and the theory of modular forms~not connected with A.
Wiles’ recent proof of Fermat’s theorem but in the same general ballpark!. The required condi-
tions were thatR depends on a parameterl and obeys a parametrized version of the Yang–Bax
equation in Fig. 3. So, the key idea behind the knot invariants also makes these models so
Later on, I. Sklyanin, L. D. Faddeev and others recast the corner transfer matrix method
algebraically in terms of an abstract algebra with generatorst i

j (l) and relations

FIG. 5. Solvable lattice model in statistical mechanics has weightR at each vertex.
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Ri
a

k
b~l1m!ta

j~l!tb
l~m!5tk

b~m!t i
a~l!Ra

j
b

l~l1m!. ~87!

Using the Yang–Baxter equations many times it is easy to see that the product of the w
along an entire row of the lattice and withi, j on the ends of the row,

~ t i
j !

K
L5Ri

a1

k1
l 1

Ra1
a2

k2
l 2
¯RaN21

j
kN

l N
~88!

is a matrix representation of the above algebra. Here there areN columns, say, andK
5(k1 ,...,kN), etc., is a multiindex. If we are interested in periodic boundary conditions, then
should consider the traceT(l)5t i

i(l). On the other hand, for any operators obeying the relati
~87! it is easy to see that

@T~l!,T~m!#50 ~89!

for all l, m, i.e., the single row transfer matricesT(l) form an infinite number of mutually
commuting operators. This is the origin of the exact solvability of the models. The par
function itself is the trace over the multiindex of theT(l). Another variant of this method base
on open or twisted boundary conditions involved instead a ‘‘reflection’’ form of~87! where two
R’s appear on both sides.

One does not actually need the abstract algebra here—it is just a convenient way to e
certain computations involving repeated use of the Yang–Baxter equations. On the other
there is a coproduct structure

Dt i
j~l!5t i

a~l! ^ ta
j~l! ~90!

~forming a quantum group without antipode! which is the underlying reason that~88! is a repre-
sentation, namely it is the repeated tensor product of the one-column representationt i

j )
k
l

5Ri
j
k
l provided byR itself ~which is easier to see—it is just the Yang–Baxter equation!. This

observation is not true for the other ‘‘reflection’’ variant~which tends to be more like a braide
group as we will see in a later section!. More importantly, the focus on an abstract algebra~87!
suggested the possibility to realize such algebras in terms of other simpler algebras by me
various ansatze. One of the models was the so-calledXXZ model consisting of nearest-neighb
spin interactions and a uniform magnetic field~controlled by a parameterq! running through the
lattice, and this turned out to be realized in terms of the quantum group Uq(su2). So this quantum
group is in the background of this model playing the role of inducing the requiredR(l)-matrices.
One can also focus on the finite-dimensional version of the above by looking atR(`) or R(0),
etc., which takes us to the simplerR-matrices used above for the construction of knots.

We should also consider the continuum limits of such models as the lattice spacing te
zero. In many cases one obtains a conformally invariant quantum field theory. Such ‘‘conf
field theories’’ turned out to have their own rich algebraic structure of vertex algebras and
connected with modular forms, the ‘‘monster group’’ and other topics. One of them~the Wess–
Zumino–Novikov–Witten model! underlies the quantum group knot invariants above. And
classical mechanical systems underlying the continuum limits of the exactly solvable lattice
els turned out to be a certain nonlinear but completely integrable partial differential equation
‘‘soliton’’ solutions. So one can trace a certain continuity of ideas through several key dev
ments in mathematical physics.

C. q-coordinate algebras and Poisson–Lie groups

If one did want to take a quantization point of view, then one should consider not so
Uq(g) as we have done above but their coordinate algebraCq@G#. These are also suggested by t
lattice model picture.

We consider first of all the quantum planeCq@x,y#. This is the algebra generated by variabl
x, y but with the relations
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yx5qxy ~91!

instead of commutativity. Hereq is a nonzero numerical parameter. Whenq51 we can consider
x, y as the coordinates on an actual plane as we did above, but whenqÞ1 the algebra is noncom
mutative and hence there is no usual space underlying it. We also have higher-dimensiona
tum spaces of many kinds depending on the relations and parameters. In particular, the q
groupCq@SU2# has generatorsa, b, c, d with the six relations

ba5qab, dc5qcd, ca5qac, db5qbd
~92!

bc5cb, ad2da5~q212q!bc,

which describe a four-dimensionalq-space~they become the relations of commutativity whenq
51!, and the additional relation

ad2q21bc51, ~93!

which sets the ‘‘q-determinant’’ to 1. There is also a* operation to express unitarity. There
nothing much that need concern us about the exact form of the above relations; the main t
that asq51 they recover the commutativity and determinant relations that we expect fo
coordinates on the classical groupSU2 of 232 matrices of determinant 1. Their exact form
however, fine tuned in such a way that various properties of 232 matrices and their action o
vectors go through even whenqÞ1. Thus, ifx, y generate a quantum plane, then

x85ax1by, y85cx1dy ~94!

obey the relationsy8x85qx8y8 of the quantum plane as well. In mathematical terms this ‘‘qu
tum transformation’’ is an algebra mapDL :Cq@x,y#→Cq@SU2# ^ Cq@x,y# called a ‘‘coaction.’’
Note that the arrow goes in the reverse direction to what one might have expected if one th
that an actual matrix was being combined with a vector to give another vector.

To complete the picture here, we need to check that the group structure itself is expres
our algebraic language. In the above example, the ability to multiply two matrices to get a
matrix corresponds to the assertion that ifa8,b8,c8,d8 are a second mutually commuting copy
Cq@SU2#, then

S a9 b9

c9 d9
D 5S a b

c dD S a8 b8

c8 d8
D ~95!

obeys the same relations. In mathematical terms the group law is expressed as an algeb
D:Cq@SU2#→Cq@SU2# ^ Cq@SU2# which is the coproduct of the quantum group. It has the sa
matrix formDa5a^ a1b^ c, etc., as forC @SU2# in Sec. II C. These constructions are algebr
but one can cast them into an operator algebra setting as in Sec. II.39

Next we note that in the above example and many like it theq-commutativity relations can be
cast as

Ri
a

k
bta

j t
b

l5tk
bt i

aRa
j
b

l ~96!

for suitableR obeying the Yang–Baxter equations. This is a ‘‘constant’’ version40 of ~87! focused
on l5` or l50, etc.@One has to make some other equivalences to get to the actual formR
from the more physicalR(l) and one should also note that in Sec. III B the generators are m
related to enveloping algebras than to coordinate algebras.# Initially it was often mistakenly
written that the Yang–Baxter relation is what makes these algebrasA(R) into quantum groups,
which is not at all true. In fact, for any tensorci 1¯ i n

j 1¯ j m there is a quantum group~without
antipode! M (c) with a matrix t i

j of generators and the relations
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ca1¯an

j 1¯ j mta1
i 1
¯tan

i n
5t j 1

b1
¯t j m

bm
ci 1¯ i n

b1¯bm. ~97!

For example,ci
jk could be the structure constants of an associative algebra and thenM (c) is its

universal comeasuring~or ‘‘automorphism’’! quantum group.41 Rather, the meaning ofR obeying
the Yang–Baxter equations is that this ensures that the comodules ofA(R) form a braided cat-
egory, i.e., that quantum groups such asCq@SU2# are quasitriangular in a comodule sense.

Probably the most immediate significance of these quantum group coordinate algebrasCq@G#
is that one can consider them formally as ‘‘quantizations’’ of interesting Poisson brackets o
classical groupG ~even though they are not really the algebra of observables of a true qua
system andq need not be related to Planck’s constant!. The Poisson brackets so obtained
semiclassicalization are always degenerate at the group identity, so this kind of Poisson b
was missed by those focusing on symplectic manifolds only. Instead they form a Poisso
group in the sense that the group productG3G→G respects the Poisson structure~taking the
direct product Poisson structure onG3G!. Among the matrixt i

j of coordinates inC @G# the
Poisson bracket has the form

$t i
j ,tk

l%5t i
atk

br a
j
b

l2r i
ab

kta
j t

b
l , ~98!

wherer is the lowest order deviation from the identity matrix ofR. Clearlyr obeys an infinitesimal
version of the Yang–Baxter equation, called the ‘‘classical Yang–Baxter equation.’’ The ab
picture here is perhaps more easily seen in a dual form as the lowest order part in the defor
from U(g) to Uq(g). Thus the deformation of the coproduct to lowest order is a ‘‘Lie cobrack
d:g→g^ g forming a Lie coalgebra~so thatg* is a Lie algebra! and respecting the Lie bracket o
g in a suitable sense. This is the infinitesimal analog of a quantum group and is called
bialgebra.42 Such ad typically extends to all ofG as a bivector field which defines the Poiss
bracket. In the quasitriangular case as above it has the special formdj5adj(r ) wherer Pg^ g
obeys the abstract classical Yang–Baxter equation

@r 12,r 13#1@r 12,r 23#1@r 13,r 23#50. ~99!

The numerical suffices here denote in which factor ofg^ g^ g one should view the two legs ofr.
The latter is the leading deviation from one of the quasitriangular structure of Uq(g) mentioned in
Sec. III A.

These ideas have allowed mathematicians to go back and understand many construc
conventional Lie theory in a more elegant and natural manner, as well as to obtain entirel
results. They also allow one to present a cleaner treatment~at the level of finite-dimensional Lie
algebras! of the integrability of the classical mechanical systems underlying the solvable la
models of Sec. III B. At least at the simplified level an outline is as follows. Suppose that
groupX factorizes intoGM and its Lie algebraÑ has a nondegenerate ad-invariant bilinear formK.
Using the latter one can view the difference of the projection operatorsp6 on Ñ corresponding to
Ñ5g% m as defining a solutionr PÑ^ Ñ. This equipsX with a certain Poisson bracket. Now give
a choice of ad-invariant Hamiltonian functionh on X one may analyze the induced Hamilton
Jacobi equations of motion in terms ofG,M and find that they are completely solvable. In fact t
evolution ofxPX is given by the Adler–Kostant–Symes theorem

xt5stx0st
215ut

21x0ut , ~100!

whereut ,st are paths inG,M determined by the factorization

e2tK21+Lx0*
* ~dh!5utst ~101!

of an exponential flow inX. HereLx* denotes the differential of left multiplication inX. For the
actual nonlinear integrable systems of interest with solitons, etc., one should work with a p
etrized version of similar constructions. In this case the factorization is typically that of
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groups into loops in a target group that are analytic outside and inside the unit disc i
parameter space, which is the classic Riemann–Hilbert factorization problem. We refer to R
for a fuller treatment and the relation with Lax pairs and other topics. This makes a little
precise the remarks at the end of Sec. III B.

D. Braided geometry and q-space–time

After the great success of the quantum groups Uq(g) there was a period in the 1990s whe
physicists enthusiastically went aboutq-deforming everything they could think of where Li
groups has been involved. One hasq-oscillators,44,45 q-Brownian motion, etc., etc. It is not clea
what it all adds up to in the longer term, but there clearly does appear to be a natural~if not exactly
unique! q-deformation of almost everything.

And according to what we have said in the Introduction, the systematic way to go about
this was braided geometry. This is because the braiding is the key property of the quantum
Uq(g) and other ‘‘quasitriangular Hopf algebras’’ of similar type. It meant in particular that
algebra on which the quantum group acts covariantly becomes braided, which was the
indicative of a whole braided approach to noncommutative geometry via algebras or ‘‘bra
spaces on which quantum groups Uq(g) act as generalized symmetries. Note that we are no
much interested from this point of view in the noncommutative geometry of the quantum g
Uq(g) themselves, although one can study this as a source of mathematical examples. Th
tematic braided approach was introduced by the author at the end of the 1980s; see Refs.
for reviews.

To get an immediate flavor for what these ideas mean in practice, consider the follo
elementary computation. For a polynomial functionf in one variable, define differentiation by

f 8~y!5~x21~ f ~x1y!2 f ~y!!!x50 . ~102!

If xy5yx is assumed in making the calculation, one obtains the usual Newtonian differenti
But if we supposeyx5qxy in computing the right-hand side, for some parameterq, we obtain

f 8~x!5
f ~x!2 f ~qx!

~12q!x
. ~103!

This is the celebrated ‘‘q-deformed derivative,’’ so called because it tends to the usual deriva
asq→1. Although known to mathematicians in a different context in 1908,46 suchq-derivatives
have their natural place in the geometry of quantum groups. We also see by this examp
noncommutativity leads to a kind of ‘‘finite-difference’’ or discretization, which is therefor
general feature of the differential geometry of the quantum world and also in keeping
applications to lattice models. This point of view also leads to the correct properties of integr
Namely there is a relevant indefinite integration to go with]q characterized by47

E
0

x1y

f 5E
0

x

f ~~ !1y!1E
0

y

f ~104!

providedyx5qxy, etc. In the limit this gives the infinite Jackson integral previously known
this context. One also has braided exponentials, braided Fourier theory, etc., for these b
variables. What is going on here is that one is working not with the usual line with bos
coordinatex but with thebraided line. This is the braided groupB5C @x#, which is the usual
polynomial algebra but with braid statistics, such that two copies of the braided line hav
relationsyx5qxy. The additionx1y refers to an additive braided group structure or coprod

This is a powerful point of view and more systematic than simply sprinkling inq by trial and
error. For example, we haveB5Cq@x,y# the quantum-braided plane generated byx, y with the
relationsyx5qxy, where two independent copies have the braid statistics
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x8x5q2xx8, x8y5qyx8, y8y5q2yy8, y8x5qxy81~q221!yx8. ~105!

Herex8,y8 are the generators of the second copy of the plane. There is again an additive b
coproduct in the sense thatx1x8,y1y8 is another copy of the quantum-braided plane, i.e., o
can check that

~y1y8!~x1x8!5q~x1x8!~y1y8!. ~106!

And by similar definitions as above, one has braided partial derivatives

]q,xf ~x,y!5
f ~x,y!2 f ~qx,y!

~12q!x
, ]q,yf ~x,y!5

f ~qx,y!2 f ~qx,qy!

~12q!y
~107!

for expressions normal ordered tox on the left, etc. Note in the second expression an extraq as
]q,y moves past thex to act ony.

Thus you can add points in the quantum-braided plane, and then~by an infinitesimal addition!
define partial derivatives, etc. One then has multivariableq-exponentials and so on. This is
problem~multivariableq-analysis! which had been open since 1908 and was systematically so
in the early 1990s by the braided approach.48 We note in passing thatyx5qxy is sometimes called
the ‘‘Manin plane.’’ Manin considered only the algebra and a quantum group action on it, wi
the braided addition law and the braided approach.

Finally, there is a more formal way by which all such constructions are done systemati
which we now explain. It amounts to nothing less than a new kind of algebra in which alge
symbols are replaced by braids and knots. First of all, given two algebrasB, C in a braided
category@such as the representation of Uq(g)# we have a braided tensor productB Î C algebra in
the same category defined like a superalgebra but with21 replaced by the braidingCC,B :C
^ B→B^ C. Thus the tensor product becomes noncommutative~even if each algebraB, C was
commutative!—the two subalgebras ‘‘commute’’ up toC. This is the mathematical definition o
braid statistics. In the braided line the joint algebra of the independentx, y is C @x# Î C @y# with
C(x^ y)5qy^ x. In the braided plane the braided tensor product is between one copyx, y and the
otherx8,y8. The braidingC in this case is more complicated. In fact, it is the same braiding fr
the Uq(su2) spin 1/2 representation that gave the Jones polynomial. The miracle that make
invariants is the same miracle that allows braided multilinear algebra and multivariableq-analysis.

The addition law in both the above examples makes them into braided groups.49 They are like
quantum groups or super-quantum groups but with braid statistics. Thus, there is a coprod

Dx5x^ 111^ x, Dy5y^ 111^ y, ~108!

FIG. 6. ~a! Main axioms of a braided group as diagrams and~b! example of a braided calculation.
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Clearly such braided groups are, in particular, the correct foundation forq-deformed geometry
based onq-planes and similarq-spaces. One of their main successes in the early 1990s was a
or less complete and systematicq-deformation of the main structures of special relativity a
electromagnetism, i.e.,q-Minkowski space and basic structures,

This general braided approach8,41,47,48,50–56worked for any braiding or ‘‘R-matrix.’’ For ex-
ample, the correct notion of ‘‘braided matrices’’B(R) that goes along with the braided plane, e
above is generated byui

j , with the braided matrix relations

FIG. 7. Conjugation written as a diagram.
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Rk
a

i
bub

cR
c

j
a

dud
l5uk

aRa
b

i
cu

c
dRd

j
b

l . ~109!

Just as the quantum matricesA(R) in the previous section could be viewed as parameter-
versions of the algebra~87! but have their own life as geometric objects, these braided mat
B(R) could also be viewed as a parameter-free version of the variants of~87! with two R’s on
each side. On the other hand, all of their key properties, such as covariance under a back
quantum group, the braid statistics and braided coproduct,

R21i
b

k
au8b

cR
c

j
a

dud
l5uk

aR21i
c
a

bu8c
dRd

j
b

l , Dui
j5ui

a^ ua
j , ~110!

and so on, came out of the theory of braided groups as part of a close mathematical relat
called transmutation betweenA(R) andB(R), i.e., from the quantum to the braided versions.
fact, this suggests a physical equivalence between the periodic and the open lattice syst
such transmutation that has not been explored much so far.

The specific choice of the sameR-matrix as for the quantum plane or forCq@SU2# gives the
algebra8

ba5q2ab, ca5q22ac, da5ad, bc5cb1~12q22!a~d2a!,
~111!

db5bd1~12q22!ab, cd5dc1~12q22!ca

Gq~xW !5F21~pW •pW 2m2!21 ~112!

so that, in principle, this is now defined.
There are some fundamental problems at the moment with thisq-space–time before one ca

expect real physical predictions~in contrast to the simpler model in Sec. II!. First of all, one does
not generally have closed expressions such as for theq-Green’s functions above. The methods
q-analysis as in Refs. 46 and 58 are simply not yet far enough advanced to have nice nam
properties for the kinds of power series functions encountered. This is a matter of time. S
while theq-Poincare´ coordinate algebra has a natural* -algebra structure so that one can study
representations in Hilbert spaces, etc.~this was first done in the Euclidean case by G. Fiore!, the
*-structure does not respect the coproduct in the obvious way. One can understand this a
fundamental to braided geometry for the following reason: when we deform classical con
tions to braided ones we have to chooseC or C21 whenever wires cross. Sometimes neither w
do, things get tangled up. But if we succeed it means that for everyq-deformation there is anothe
where we could have made the opposite choice in every case. So classical geometry bifurca
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two q-deformed geometries according toC or C21. Moreover, the role of the* operation is that
it interchanges these two.54 Roughly speaking,

↗ q-geometry

classical geometry l*
↘ conjugateq-geometry

, ~113!

where the conjugate is constructed by interchanging the braiding with the inverse braiding~i.e.,
reversing braid crossings in the diagrammatic construction!. For the simplest cases like the braide
line it means interchangingq,q21. This is rather interesting given that the*-operation is a centra
foundation of quantum mechanics and our concepts of probability. But it also means one pr
cannot doq-quantum mechanics, etc. withq-geometry alone; one needs also the conjugate ge
etry.

Although there are such difficulties which make it hard at the moment to assess the ph
significance of this kind ofq-deformation, there are some important motivations and one sh
expect that some of them will eventually be realized using some later version of our present
in this direction. First of all we have said that the true meaning ofq is that it generalizes the21
of fermionic statistics. That is why it is dimensionless. It is nothing other than a paramete
mathematical structure~the braiding! in a generalization of our usual concepts of algebra a
geometry, going a step beyond supergeometry. It is very likely, if not clear, thatq a root of unity
would therefore be the correct setting for the treatment of certain anyonic systems where pa
of anyonic statistics should be found. Or conversely one should identify and study known m
with q-symmetry atq a root of unity from the point of view of identifying the modes with anyon
statistics. This is clear but should be elaborated further.q-deformed constructions should then he
in understanding the geometry of such systems. And of course there is the original ph
meaning whereq is related to an anisotropy such as that due to an external magnetic field.

Other than these, there are some potential long-term reasons toq-deform, particularly space–
time as stated previously. Thus, in Ref. 10 it was proposed that sinceq was dimensionless an
somewhat ‘‘orthogonal’’ to physics it should be an ideal parameter for regularizing any qua
field theory. Since most constructions in physicsq-deform, such a regularization scheme is mu
less brutal than, say, dimensional or Pauli–Villars regularization as it preserves symmet
q-symmetries, theq-epsilon tensor, etc. In this context it seems at firsttoo gooda regularization.
Something has to go wrong for anomalies to appear. For example, it would be interesting
exactly how the axial anomaly appears in this regularization approach. The main thing th
regularization loses is that only the Poincare´1scaleq-deforms~the two get mixed up!, which
means that only massless particles should be treated in the first place. The massive cas
break even this invariance, giving different results for the two. Pushing the problem into the
generator also suggests that a much nicer treatment of the renormalization group should
sible in this context. Again a lot of this must await more development of the tools ofq-analysis.
At any rate the result in Ref. 10 is thatq-deformation does indeed regularize, turning some of
infinites from a Feynman loop integration into poles (q21)21.

Also, q-deformation might be useful as a next-order approximation to the geometry co
out of a known or unknown theory of quantum gravity. Thus, as well as being a good reg
one can envisage~in view of our general ideas about noncommutativity and the Planck scale! that
the actual world is in reality better described byqÞ1 due to Planck scale effects. This was t
original reason given in Ref. 10 forq-deforming the basic structures of physics. TheUV cutoff
provided by a ‘‘foam-like structure of space time’’ would instead be provided byqÞ1. Moreover,
if this is so, thenq-deformed quantum field theory should also appear coming out of quan
gravity as an approximation one better than the usual. Such a theory would be massless ac
to the earlier remarks~because there is noq-Poincare´ without the scale generator!. Or at least
particle masses would be small compared to the Planck mass. How theq-scale invariance break
would then be a mechanism for mass generation.
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Recently, it was argued59 that since loop gravity is linked to the Wess–Zumino–Noviko
Witten ~WZNW! model, which is linked to Uq(su2) ~or some other quantum group!, that indeed
q-geometry should appear coming out of quantum-gravity with cosmological constantL. There is
even provided a formula

q5e2pi /~21k!, k5
6p

GNewton
2 L

. ~114!

If so, then the many tools ofq-deformation developed in the 1990s would suddenly be applic
to study the next-to-classical structure of quantum-gravity. The fact that loop variable and
network methods ‘‘tap into’’ the revolutions that have taken place in the last decade a
quantum groups, knot theory and the WZNW model makes such a conjecture reasonable.

Whether it is a matter ofq-regularization of flat space or of actual Planck scale effects, th
are several new things that happen forqÞ1 which are not visible forq51. Their physical
meaning can only be guessed at, but whatever it is, it should be deep.

~i! q-Minkowski space has two classical limits, related by duality. One is the commut
coordinates onR1,3, but there is another as the homogenized enveloping algebra Usu2

% u(1)).
~ii ! q-Minkowski space ‘‘quantizes’’ a Poisson bracket onR1,3 given by the action of the

special conformal translations.
~iii ! When qÞ1 this action of special conformal transformations is the braided group ad

action ofq-Minkowski space on itself as an additive braided group.

This first item is a version of the general result that the braided group versions~by transmu-
tation! of the enveloping algebras Uq(g) and theirq-coordinate algebras are isomorphic. That
there is essentially only one object inq-geometry with different scaling limits asq→1 to give
either the classical enveloping algebra ofg or the coordinate algebra ofG. These self-duality
isomorphisms involve dividing byq21 and are therefore singular whenq51, i.e., this is totally
alien to conventional geometric ideas. A homogenized enveloping algebra just means wit
tionsjh2hj5C@j,h# where the right-hand side is the Lie bracket andC is a central element. In
theq-deformed case there is a similarC5ad2q2cb which is theq-Minkowski length; the mass-
shell hyperboloid ofq-Minkowski space is essentially the same algebra as Uq(su2),

C @mass shell# ←
1←q

~Rq
1,3/C51!>Uq~su2! →

q→1

U~su2!, ~115!

S a b

c dD >S qH q21/2~q2q21!qH/2X2

q21/2~q2q21!X1qH/2 q2H1q21~q2q21!2X1X2
D , ~116!

which is aq-geometrical point of view on previously known ‘‘matrix generators’’40 for quantum
groups such as Uq(su2)—in our case it comesq-geometrically from a covering isomorphism o
Rq

1,3 with the braided enveloping algebra U(glq,2) of a braided-Lie algebraglq,2 . Axioms and a
general theory of such Lie algebra objects underlying quantum groups was one of the imp
technical achievements of braided groups in the mid-1990s.60 Notice also that the two differen
scaling limitsq→1 exactly implement the Fourier duality between noncommutative position
constrained momentum discussed in Sec. II A.

Finally, we note that probably the greatest significance in the long term of the braide
proach is that it solves the following ‘‘uniformity of quantization problem.’’

• There is only one universe. How do we know when we have quantized this or that
separately that they are consistent and fit together to a single quantum universe?

The braided approach solves this because we do not start with the Poisson brackets—the
from classicalization—but from the deeper principle of braid statistics. Apart from giving
q-deformation of most structures in physics, it does it uniformly and in a generally consisten
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because what we deform is actually the category of vector spaces into a braided catego
constructions based on linear maps then deform coherently and consistently with each o
braid diagram constructions~so long as they do not get tangled!. After that one inserts the
formulas for specific braidings~e.g., generated by specific quantum groups! to get the
q-deformation formulas. After that one semiclassicalizes by taking commutators to lowest
to get the Poisson bracket that we have just quantized. Moreover, different quantum groupsq(g)
are all mutually consistent being related to each other by the inductive construction36 mentioned at
the end of Sec. III A. We have seen this with theq-Lorentz andq-conformal groups for
q-Minkowski space above.

IV. QUANTUM MANIFOLDS

In this section we take a closer look at the progress towards the more general noncomm
differential geometry of which quanutm groups and braided groups should be a part. If one
by differential geometry ‘‘bundles,’’ ‘‘connections,’’ gauge theory, etc., then such a theory
emerge in the early 1990s in the work of T. Brzezinski and the author, with the by-now sta
example of theq-monopole. Leading from this there is today a more or less complete theory
includes most of the naturally occurring examples but is a general theory not limited to s
examples and models, i.e., it has the same degree of ‘‘flabbiness’’ as conventional geome

There are open problems, so it should not be thought that this section represents the las
the subject is still evolving but there is now something on the table. Among other things
constructions are purely algebraic with operator andC* -algebra considerations not fully worked
On the other hand, there is plenty of concrete motivation. As well as what has already bee
let us note that as a bonus this program of noncommutative geometry will include discrete
etry as a special case. It gives a systematic way to do geometry on lattices, for example, som
different from existingad hocmethods. This is depicted in Fig. 8. Thus, the idea is to fin
general algebraic notion of geometry that includes usual commutative coordinate algebra
special case and that includes the kind of naturalq-deformation and other examples coming out
quantum groups. The latter are a good testing ground because they have a parameter which
setq→1 to verify the correct classical limit, i.e., we maintain ‘‘eye-contact’’ with conventio
geometry~this is not true of more abstract approaches based onC* -algebras, for example!. Next,
when we are satisfied that we have the natural definitions we can specialize to finite-dimen
algebras, for example, even commutative ones, which would be differential geometry on
sets.

~i! If one can do all of geometry on finite sets, then functional integrals, etc. become fi
dimensional integrals, etc. and we can analytically compute the vacuum of QCD, qua
gravity, etc. in the discrete model.

~ii ! We can apply the formalism to finite~commutative or noncommutative! algebras to provide
natural Dirac operators on quaternionsH, etc., which can figure in the internal structure
Lagrangians.

For example, Connes and J. Lott at the start of the 1990s proposed a way to noncommu

FIG. 8. Noncommutative geometry found with the help ofq-deformations can then specialize to finite-dimension
algebras.
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geometrically package the contents of the standard model in a kind of Kaluza–Klein mann
working with the coordinate algebra of usual space–time tensored with a finite-dimensiona
bra C% H. In other words, instead of a compact internal symmetry group one has a nonco
tative space. One can build a ‘‘Dirac’’ operator on the tensor product from one on the
space–time and one on the finite-dimensional algebra. The latter encodes the mass ma
related phenomenological aspects of the theory. This was a novel approach which gave,
ticular, a nice way to think about the Higgs field Mexican-hat potential. On the other hand,
an abstract point of view almost any matrix can be taken as the ‘‘Dirac’’ operator on the fi
dimensional algebra, so one does not really get theoretical predictions for the details of tha
latter can only come from knowing more of the infrastructure of noncommutative differe
geometry to determine what is the geometrically natural operator to take as Dirac onC% H. While
particular applications like this remain to be developed in the near future, it is clear that for
of the above reasons the general noncommutative differential geometry, even specialized to
dimensional algebras, can translate very directly into physical predictions.

A. Quantum differential forms

We begin here with the first of the different ‘‘layers’’ of differential geometry, namely
notion of differential structure itself. Since we omitC* -algebra considerations our coordina
algebra can be practically any~possibly noncommutative! algebraM. To specify the differential
structure we in effect choose the cotangent space or differential one-formsV1. Since one can
multiply forms by ‘‘functions’’ from the left and right, this should be anM-bimodule. There
should also be a linear map d:M→V1 such that

d~ab!5~da!b1adb, ;a,bPM , ~117!

and V1 should be spanned by elements of the formadb. The main difference from what on
might naively take here is that we do not assume that the left and right multiplications bM
coincide. For ifadb5(db)a for all a, b, we would have d@a,b#50, which would not be at all
suitable for a generic noncommutative algebra. Differential structures are not unique even
cally, and even more nonunique in the quantum case. There is, however, one universal exa
which others are quotients. This is

Vuniv
1 5ker•,M ^ M , da5a^ 121^ a. ~118!

The universal calculus was studied by algebraic topologists in the 1970s and is comm
practically all approaches to noncommutative geometry. Our first task is to choose an appr
quotient.

Classically, we do not think about this much because on a group there is a unique trans
invariant differential calculus; since we generally work with manifolds built on or closely rel
to groups we tend to take the inherited differential structure without thinking. In the quantum
i.e., whenM is a quantum group, one has a similar notion: a differential calculus is bicovaria
there are coactionsV1→V1

^ M ,V1→M ^ V1 forming a bicomodule and compatible with th
bimodule structures and d. This natural definition was proposed by Woronowicz61 at the end of the
1980s along with a couple of examples, but it took another decade before systematic classi
results for the possible such calculi appeared.62 By now the complete range of possibilities for a
main classes of Hopf algebras are more or less understood. We begin with a sample of the
results, taken from Refs. 63 and 62 by the author.

For the one-dimensional case of polynomialsM5k@x# with values in any fieldk, the coirre-
ducible calculi~those with no further quotients! have the formV15kl@x# wherekl is a field
extension of the formk@l# modulo m(l)50 and m is an irreducible monic polynomial. The
differential and bimodule structures are
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df ~x!5
f ~x1l!2 f ~x!

l
, f ~x!•g~l,x!5 f ~x1l!g~l,x!, g~l,x!• f ~x!5g~l,x! f ~x!

~119!

for functionsf and one-formsg. For example, the calculi onC @x# are classified byl0PC @here
m(l)5l2l0# and one has

V15dxC @x#, df 5dx
f ~x1l0!2 f ~x!

l0
, xdx5~dx!x1l0 . ~120!

We see that the Newtonian casel050 is only one special point in the moduli space of quant
differential calculi. But if Newton had not supposed that differentials and forms commute
would have had no need to take this limit. What one finds with noncommutative geometry i
there is no need to take this limit at all. In particular, noncommutative geometry extends our
concepts of geometry to lattice theory without taking the limit of the lattice spacing going to
It is also interesting that the most important field extension in physics,R,C, can be viewed
noncommutative-geometrically with complex functionsC @x# the quantum one-forms on the alg
bra of real functionsR@x#.

We can similarly consider functionsM5C @G# on a finite group. Then the coirreducibl
calculi correspond to nontrivial conjugacy classesC,G and have the form

V15C•C @G#, df 5 (
gPC

g•~Lg~ f !2 f !, f •g5g•Lg~ f !, ~121!

whereLg( f )5 f (g•) is the translate off. The cases ofC @x# andC @G# are trivial enough to have
been observed by hand before the general classification theorems arrived.

Next, for true examples of noncommutative coordinates we can considerM5CG generated
by a finite group. It is the dual of theC @G# case but regarded ‘‘up side down’’ as a noncomm
tative space whenG is non-Abelian. One has that the coirreducible calculi correspond to p
(V,r,l) where (V,r) is a nontrivial irreducible representation andlPV/C. They have the form

V15V•CG, dg5~~r~g!21!l!•g, g•v5~r~g!v !•g, ~122!

wheregPG is regarded as a ‘‘function.’’ ForM5U(g) as in Sec. II one has a similar constructio
for any irreducible representationV of the Lie algebrag and choice of rayl in it. The complete
classification in the Lie cases of either the enveloping or the coordinate algebra are not kn

V15~V^ V* !•Cq@G#. ~123!

In fact, one has one natural calculus for each irreducible representation plus some ‘‘shado
technical variants allowed according to the precise formulation of the relevant quantum g
and their duality~this is more a deficit in the technical definitions than anything else!. For ex-
ample, forCq@SU2# there is basically one bicovariant calculus for each spinj with dimension
(2 j 11)2. The lowest is four-dimensional. Actually the spanning vector space here is the
dimensional braided-Lie algebraglq,2 mentioned at the end of Sec. III D. It is irreducible fo
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genericq but asq→1 it degenerates intosu2% u(1). Correspondingly the four-dimensional ca
culus becomes a direct sum of the usual three-dimensional calculus onSU2 and an additional
operator, the Casimir operator or Laplacian:

~i! BicovariantV1 for all main classes of quantum groups have been classified.
~ii ! In particular, when weq-deformSU2 its usual differentials and its Laplacian are necess

ily bound up in one coirreducible four-dimensional bicovariant calculus.

Other non-bicovariant calculi are possible also, including a standard three-dimensiona
covariant calculus onCq@SU2# known since the original work of Woronowicz.

Finally, on a quantum group there is a natural extension to higher order forms and in fa
entire exterior algebra once the bicovariant one-forms have been chosen.61 Other extensions are
also possible. Given the extension, one has a quantum cohomology defined in the usual
closed forms modulo exact ones. To close with one nonquantum group example, consid
actual manifold with a finite good cover$Ui% i PI . Instead of building geometric invariants on
manifold and studying them modulo diffeomorphisms we can use the methods here to first p
the skeleton of the manifold defined by its open set structure and do differential geometry d
on this indexing setI. Thus we takeM5C @ I # which just means collections$ f iPC%. The universal
V1 is just matrices$ f i j % vanishing on the diagonal. We use the intersection data for the open
to set some of these to zero, and similarly for higher forms. Thus65

V15$ f i j uUiùUjÞB%, V25$ f i jk uUiùUjùUkÞB%,
~124!

~df ! i j 5 f i2 f j , ~df ! i jk5 f i j 2 f ik1 f jk ,

and so on. Then one has that the quantum cohomology is just the additive Cech cohomolog
original manifold.

Apart from cohomology one can start to do gauge theory, at least with trivial bundles. A
level a ‘‘U~1!’’ gauge field is just a differential formaPV1 and its curvature isF5da1a∧a,
etc. A gauge transform is

ag5g21ag1g21dg, Fg5g21Fg, ~125!

for any invertible ‘‘function’’ gPM , and so on. One can certainly obtain interesting results e
when the base is classical~but the calculus is quantum!. For the example associated to open s
one has that the zero curvature gauge fields modulo gauge transformations recovers again
Cech cohomology, but now in a multiplicative form. Or by choosing a quantum calculus eve
usualRn it is clear that nonlinear and higher-derivative equations could be viewed as zero c
ture ones. Solutions would typically then be provided bya5g21dg, i.e., pure gauge. There hav
been some first efforts in this direction in the physics literature. It should be clear at leas
noncommutative differentials have the potential to unify and make clearer a whole ran
otherwisead hocconstructions ranging from group theory to number theory to lattice differen
and integrable systems.

B. Bundles and connections

The next layer of differential geometry is bundles, connections, etc. Usually in physics
needs only the local picture with trivial bundles in each open set—but for a general nonco
tative algebraM there may be no reasonable ‘‘open sets’’ and one has therefore to develo
global picture from the start. We need nontrivial bundles to cover physics such as in the B
Aharanov effect, potential effects such as the monopole and also to cover homogeneous
and the frame bundles of general ‘‘manifolds.’’ None of these could be understood with
global point of view. In particular, the next quantum spaces after quantum groups and qua
braided planes are quantum homogeneous spaces and examples such as the quantum
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Cq@S2# ~actually a two-parameter family of them! were known already by the end of the 1980s66

The required noncommutative differential geometry to really understand them as bundles c
few years later in Ref. 67.

Also note that this is a different problem from going from U~1! gauge theory to non-Abelian
but the two can be handled together, i.e., we want a general quantum group as gauge gro
trivial bundles we could just take a gauge field asaPV1

^ Uq(g) for example and write down
similar formulas to those at the end of the last section. A gauge transform is an invertible el
gPM ^ Uq(g), etc. For our global geometrical picture, however, we need to think of the qua
group geometrically and work withH viewed as more likeC @G# or aq-coordinate algebraCq@G#,
etc. This is the setting for the present section. Also, to keep things simple we give formula
for the universal differential calculus but the general case is also covered by making su
quotients.

Basically, a classical bundle has a free action of a group and a local triviality property. I
algebraic terms we need an algebraP in the role of ‘‘coordinate algebra of the total space of t
bundle’’ and a coactionDR :P→P^ H of the quantum groupH such that the fixed subalgebra
M,

M5PH5$pPPuDRp5p^ 1%. ~126!

Freeness and local triviality are replaced by the requirement that

0→P~V1M !P→V1P ——→
ver

P^ ker e→0 ~127!

is exact, where ver5(•^ id)DR plays the role of generator of the vertical vector fields correspo
ing classically to the action of the group~for each element ofH* it mapsV1P→P like a vector
field!. Exactness on the left says that the one-formsP(V1M )P lifted from the base are exactly th
ones annihilated by the vertical vector fields.

One can then define a connection as an equivariant splitting

V1P5P~V1M !P% complement, ~128!

i.e., an equivariant projectionP on V1P. One can show the required analog of the usual the
i.e., that such a projection corresponds to a connection form

v:ker e→V1P, ver + v51^ id, ~129!

wherev intertwines with the adjoint coaction ofH on itself. Finally, one can define associat
bundles. IfV is a vector space on whichH coacts, then we define the associated ‘‘bundles’’E*
5(P^ V)H and E5homH(V,P), the space of intertwiners. The two bundles should be view
geometrically as ‘‘sections’’ in classical geometry of bundles associated toV and V* . Given a
suitable~strong! connection one has a covariant derivative

Dv :E→E^

M
V1M , Dv5~ id2P!+d. ~130!

All of this can be checked out on theq-monopole bundle over theq-sphere.67 Recall that
classically the inclusion U~1!,SU2 in the diagonal has coset spaceS2 and defines the U~1! bundle
over the sphere on which the monopole lives. The same idea works here, but since we de
coordinate algebras the arrows are reversed. The coordinate algebra of U~1! is the polynomials
C @g,g21# and the classical inclusion becomes the projection

p:Cq@SU2#→C @g,g21#, pS a b

c dD 5S g 0

0 g21D . ~131!
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Its induced coactionDR5( id^ p)D is by the degree defined as the number ofa, c minus the
number ofb, d in an expression. The quantum sphereCq@S2# is the fixed subalgebra, i.e., th
degree zero part. Explicitly, it is generated byb35ad,b15cd,b25ab with q-commutativity
relations

b6b35q62b3b61~12q62!b6 , q2b2b15q22b1b21~q2q21!~b321!, ~132!

and the sphere equationb3
25b31qb2b1 . When q→1 we can writeb656(x6ıy), b35z

11/2 and the sphere equation becomesx21y21z251/4 while the others become thatx, y, z
commute. It turns out that we have a quantum bundle in the sense above and that the
connectionv(g21)5dda2qbdc which, as q→1, becomes the usual Dirac monopole co
structed algebraically.

It is easy to see that the ‘‘matter fields’’ or sections of the associated vector bundlesEn for
each chargen are just the degreen parts ofCq@SU2#. The associated covariant derivative acts
these. This is also where the noncommutative differential geometry coming out of quantum g
links up with the more traditionalC* -algebra approach ofA. Connes and others. Traditionally
vector bundle over any algebra is defined as a finitely generated projective module. How
there was no notion of quantum principal bundle before quantum groups. The associated b
En for theq-monopole bundle indeed turned out to be finitely generated projective modules,68 i.e.,
there is an (unu11)3(unu11)-matrix en with values in Cq@S2# with en

25en and En

5enCq@S2# unu11. The covariant derivative for the monopole in these terms has the formenden .
For the lowest charge the projector is

e15S b3 2qb2

b1 q2~12b3!
D . ~133!

The projectors are elements of the noncommutativeK-theory K0(Cq@S2#) and have a duality
pairing with Connes’ cyclic cohomology12 which for theq-monopole gives the correct answer
its Chern class. Thus the quantum groups’ approach ties up in the end with Connes’ approa
provides more of the~so far algebraic! infrastructure of differential geometry—principal bundle
connection forms, etc., otherwise missing.

The potential applications of quantum group gauge theory hardly need to be elabo
Among the more esoteric let us note that non-Abelian gauge fields provide invariants of man
and hence similarly one could obtain ‘‘geometric’’ invariants of noncommutative algebrasM. For
example, for a classical manifold

HFlat connections onG2bundle
modulo gauge J >hom~p1 ,G!/G ~134!

using the holonomy. One can view this as a functor from groups to sets and the homotopy
p1 as more or less the representing object in the category of groups. The same idea with q
group gauge theory definesp1(M ) as a homotopy quantum group for any algebraM as more or
less the representing object of the functor that assigns to a quantum groupH the set of zero-
curvature gauge fields with this quantum structure group. This goes somewhat beyond
bundles andK-theory alone. Although in principle defined, this idea has yet to be developed
computable form. It is one of many directions for the future. Other directions include discrete
finite models of QCD and functional integration in this setting.

Finally we mention that one needs to make a slight generalization of the above to in
other noncommutative examples of interest. In fact~and a little unexpectedly! the general theory
above can be developed with only a coalgebra rather than a Hopf algebraH. Or dually it means
only an algebraA in place of the enveloping algebra of a Lie algebra. This was achieved m
recently, in Refs. 69 and 70, and allows us to include the full two-parameter quantum sphe
well as~in principle! all knownq-deformed symmetric spaces. Beyond that, we can, as mentio
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apply the theory to our favorite finite-dimensional algebras or to commutative algebras
quantum differential calculi, etc. Again it seems likely that some startling applications along
lines will emerge in coming years.

C. Quantum soldering forms and metrics

We are finally ready to take the plunge and define a ‘‘quantum manifold.’’ If our primary
is to unify quantum theory and gravity through some noncommutative generalization of geom
then the following at least puts something on the table to try out. This theory was only rec
proposed in Ref. 71 and has therefore been little explored so far. But it does already pre
slight generalization even of conventional Riemannian geometry as naturally appearing by
classicalization. One could use conventional geometric methods to first explore the classic
dictions of that generalization even before getting into the noncommutative theory. The app
we take is basically that of a vierbein or, in global terms, a soldering form. This expresses g
as a gauge theory of the frame bundle so that we can use the formalism of the previous s

The first step is to define a generalized frame bundle or frame resolution of our algebraM as
a quantum principal bundle (P,H,DR) over M, a comoduleV and an equivariant ‘‘soldering
form’’ u:V→PV1M,V1P such that the induced map

E* →V1M , p^ v°pu~v !, ~135!

is an isomorphism. What this does is to express the cotangent bundle as associated to a p
one. Other tensors are then similarly associated, for example, vector fields areE>V21M . Of
course, all of this has to be done with suitable choices of differential calculi onM, P, H whereas
we have been focusing for simplicity on the universal calculi. There are some technicalitie
but more or less the same definitions work in general. The working definition71 of a quantum
manifold is simply this data (M ,V1,P,H,DR ,V,u). The definition works in that one has analo
of many usual results. For example, a connectionv on the frame bundle induces a covaria
derivativeDv on the associated bundleE* which maps over under the soldering isomorphism
a covariant derivative

¹:V1M→V1M ^

M
V1M . ~136!

Its torsion is defined as corresponding similarly toDvu.
Defining a Riemannian structure is harder. It turns out that it can be done in a ‘‘self-d

manner as follows. Given a framing, a ‘‘generalized metric’’ isomorphismV21M>V1M be-
tween vector fields and one-forms can be viewed as the existence of another framingu* :V*
→(V1M )P, which we call the coframing, this time withV* . Nondegeneracy of the metri
corresponds tou* inducing an isomorphismE>V1M . The working definition of a quantum
Riemannian manifold is therefore the data (M ,V1,P,H,DR ,V,u,u* ), where we have a framing
and at the same time (M ,V1,P,H,DR ,V* ,u* ) is another framing. The associated quantum me
is

g5u* ~ f a!u~ea!PV1M ^

M
V1M , ~137!

where$ea% is a basis ofV and $ f a% is a dual basis~cf. the canonical element exp from Fourie
theory in Sec. II C!.

Now, this self-dual formulation of ‘‘metric’’ as framing and coframing is symmetric betwe
the two. One could regard the coframing as the framing and vice versa. From our original po
view its torsion tensor corresponding toDvu* is some other tensor, which we call the cotorsi
tensor. This is a new concept which did not exist in conventional differential geometry. We
define a generalized Levi–Civita connection on a quantum Riemannian manifold as the¹ of a
connectionv such that the torsion and cotorsion tensors both vanish. The Riemannian curva
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course corresponds to the curvature ofv, which is dv1v∧v, via the soldering form. I would no
say that the Ricci tensor and Einstein tensor are understood abstractly enough in this form
but of course one can just write down the relevant contractions and proceed blindly.

This is about as far as the program has come at present. It is known71 that every quantum
group with bicovariant calculus is a quantum manifold in this sense. And for quantum groups
asCq@SU2# there is an ad-invariant nondegenerate braided Killing form on the braided-Lie alg
glq,2 in Ref. 60 which provides a coframing from a framing—so that quantum groups suc
Cq@SU2# with such differential calculi are quantum Riemannian manifolds in the required s
At least with the universal calculus every quantum homogeneous space is a quantum ma
too. That includes quantum spheres, quantum planes, etc. In fact, there is a notion of come
or automorphism quantum group41 for practically any algebraM and when this has an antipod
~which typically requires some form of completion! one can writeM as a quantum homogeneou
space. So anyM is more or less a quantum manifold for some principal bundle~at least rather
formally!. This is analogous to the idea that any manifold is, rather formally, a homogen
space of diffeomorphisms modulo diffeomorphisms fixing a base point. So the formalism
appear to be ‘‘flabby’’ or general enough to sensibly write down field equations, etc.

Finally, to get the physical meaning of the cotorsion tensor and other ideas coming out
noncommutative Riemannian geometry, let us consider the semiclassical limit. What we fi
that noncommutative geometry forces us to slightly generalize conventional Riemannian geo
itself. If noncommutative geometry is closer to what comes out of quantum gravity, then
generalization of conventional Riemannian geometry should be needed to include Planck
effects or at least to be consistent with them when they emerge at the next order of approxim
The generalization, more or less forced by the noncommutativity, is as follows:

~i! We have to allow any groupG in the ‘‘frame bundle,’’ hence the more general concept
a ‘frame resolution’ (P,G,V,um

a ) or generalized manifold.
~ii ! The generalized metricgmn5um*

auna corresponding to a coframingum*
a is nondegenerate

but need not be symmetric.
~iii ! The generalized Levi–Civita connection defined as having vanishing torsion and van

cotorsion respects the metric only in a skew sense
¹mgnr2¹ngmr50. ~138!

~iv! The groupG is not unique~different flavors of frames are possible, e.g., anE6-resolved
manifold!, not necessarily based onSOn . This gives different flavors of covariant deriva
tive ¹ that can be induced by a connection formv.

~v! Even whenG is fixed andgmn is fixed, the generalized Levi–Civita condition does not
¹ uniquely, i.e., one should use a first order (gmn ,¹) or (u,u* ,v) formalism.

To explain~138! we should note the general result71 that for any generalized metric one ha

¹mgnr2¹ngmr5CoTorsionmnr2Torsionmnr , ~139!

where we use the metric to lower all indices.
This generalization of Riemannian geometry includes special cases of symplectic geo

where the generalized metric is totally antisymmetric. So the two are unified in our formula
which is what we would expect if the theory is to be the semiclassicalization of a theory uni
quantum theory and geometry. It is also remarkable that metrics with an antisymmetric pa
exactly what are needed in string theory to establishT-duality. In summary, one has on the tab
a general noncommutative Riemannian geometry to play with. One can try it out on s
examples such as quaternions or on discrete spaces~for example, doing a functional integral as
finite-dimensional integral to do quantum gravity!. This is a direction for ongoing work at presen
One can also explore the duality ideas of Sec. II. In particular, the observable-state duality
translate into a relation between gravity and thermodynamical entropy in this algebraic s
Finally, it is at least clear that there are immediate predictions even at the classical level in
of a classical generalization of Riemannian geometry with antisymmetric parts to the m
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something that can be explored using conventional geometric methods. This is more or le
state of the art at the time of writing. While I doubt that these are anything more than
exploratory efforts, it does seem that something like this has to be a step in the right directi
the unification of quantum theory and gravity.

V. A NEW PHILOSOPHICAL FOUNDATION FOR THE NEXT MILLENNIUM

Since the millennium happens only once in a thousand years, this may now be a good
sit back and think a bit about the long-long-term implications~if any! of what we are doing. After
all, lay persons turn to physicists for insights into the nature of physical reality. Apart
technical calculations, do we have anything to really tell them? While I doubt that quantum g
and noncommutative geometry are the end of the line, i.e., even more powerful concepts
needed later on, they do demonstrate some general ideas which I will try to explain here.
more general ideas are, in a nutshell, about the nature of the relationship between mathema
physics. It seems clear to me that, on top of technical advancements, a future revolution
understanding of Nature will probably also need new philosophical input and so we should n
away from thinking about that. I have saved this best part for the last, not least because
necessity very much my personal view even more than previous sections. Most of it was e
ally published in my 1987 essay on the nature of physical reality1 and it may be considered a
background motivation for almost all of my own work since then.

A safe starting point should be that whatever we may say today about fundamental p
that is based on our past experience and not on the deepest philosophical principles is not l
be correct or to survive very far into the next millennium other than as an approximation. S
basis we should stick only to some of the deepest principles. In my opinion one of the de
principles concerns the nature of mathematics itself. Namely, throughout mathematics one fi
intrinsic dualism between observer and observed as follows. When we think of a functionf being
evaluated onxPX, we could equally well think of the same numbers asx being evaluated onf a
member of some dual structuref PX̂:

Result5 f ~x!5x~ f !. ~140!

Such a ‘‘turning of the tables’’ is a mathematical fact. For any mathematical conceptX one may
consider maps or ‘‘representations’’ from it to some self-evident class of objects~say rational
numbers or for convenience real or complex numbers! wherein our results of measurements a
deemed to lie. Such representations themselves form a dual structureX̂ of which elements ofX can
be equally well viewed as representations.But is such a dual structure equally real? It was
postulated in Ref. 1 that indeed this should be so in a complete theory.

• The search for a complete theory of physics is the search for a self-dual formulation
above representation-theoretic sense~the principle of representation-theoretic self-duality!.

Put another way, a complete theory of physics should admit a ‘‘polarization’’ into two ha
each of which is the set of representations of the other. This division should be arbitrary
should be able to reverse interpretations~or indeed consider canonical transformations to ot
choices of ‘‘polarization’’ if one takes the symplectic analogy!.

Note that by completeness here I do not mean knowing in more and more detail what
in the real world. That consists of greater and greater complexity but it is not theoretical ph
I am considering that a theorist wants to know why things are the way they are. Ideally I w
like on my deathbed to be able to say that I have found the right point of view or theore
conceptual framework from which everything else follows. Working out the details of that w
be far from trivial of course. We are taking at this point a more or less conventional reduct
viewpoint except that the principle asserts that we will not have found the required point of
unless it is self-dual in the above sense.
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We have already seen in Sec. II how such a general philosophy could translate in prac
the setting of quantum gravity we take the view first of all that geometry—or ‘‘gravity’’—is d
to quantum theory or matter. We discussed this for simple models such as spheres with c
curvature where it was achieved by Fourier theory. If we accept this, then in general terms P
scale physics has to unify these mutually dual concepts into one structure. Einstein’s equa

Gmn}Tmn ~141!

may then even appear as some kind of self-duality equation within this self-dual context. He
stress-energy tensorTmn relates to how matter responds to the geometry, while the Einstein te
Gmn measures how geometry responds to matter. This is the part of Mach’s principle w
apparently inspired Einstein. To do it properly one needs clearly some kind of noncommu
geometry becauseTmn should really be the quantum operator stress-energy and its couplin
Gmn through its expectation value is surely only the first approximation or semiclassical limit
operator version of~141!. But an operator version ofGmn only makes sense in the context
noncommutative geometry. What we would hope to find, in a suitable version of these idea
self-dual setting where there is a dual interpretation in whichTmn is the Einstein tensor of som
dual system andGmn its stress-energy. In this way the duality and self-duality of the situa
would be made manifest.

While the above remarks cannot yet be made fully precise at that level of generality, qu
groups provide a simple and soluble version of this unification problem. This is shown in F
Thus, the simplest theories of physics are based on Boolean algebras~a theory consists of classi
fication of a ‘‘universe’’ set into subsets!; there is a well-known duality operation interchanging
subset and its complement. The next more advanced self-dual category is that of~locally compact!
Abelian groups such asRn. In this case the set of one-dimensional~ir!reps is again an Abelian
group, i.e., the category of such objects is self-dual. In the topological setting one hasR̂n>Rn so
that these groups~which are at the core of linear algebra! are self-dual objects in the self-dua
category of Abelian groups. Of course, Fourier theory interchanges these two. More gener
accommodate other phenomena we step away from the self-dual axis. Thus, non-Abeli
groups such asSU2 as manifolds provide the simplest examples of curved spaces. Their d
which means constructing irreps, appear as central structures in quantum field theory~as judged by
any course on particle physics in the 1960s!. Wigner even defined a particle as an irrep of t
Poincare´ group. The unification of these two concepts, groups and groups duals, was for
years an open problem in mathematics. Hopf algebras or quantum groups had alread
invented in the 1940s and provided in particular the next more general self-dual category co
ing groups and group duals@or both coordinate algebrasC @G# and enveloping algebras U(g)# in
which to attempt this unification. So the language existed but the problem to find examples
quantum groups going genuinely beyond these and unifying them was open. It is remarkab

FIG. 9. Representation-theoretic approach to Planck scale physics. The unification of quantum and geometrical e
a drive to the self-dual axis. Arrows denote inclusion functors.
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at the same time as this mathematical problem was going on, the problem of unifying qu
theory and gravity was going on in physics. Moreover, in a self-dual category we can ev
further and look for self-dual objects as a further constraint on the detailed structure of the m
This was the thinking behind the bicrossproduct quantum groups in Sec. II E.19,18We saw that the
Planck scale Hopf algebra indeed has both quantum and geometrical features and detaile
ture, including dynamics not unlike a black-hole event horizon, coming out of the self-du
constraint. We also saw how the self-duality can be understood physically as an observab
symmetry as in~140! between the geometry and the quantum aspects.

On the other hand, the kind of general principle listed above is not just tied to this one se
It could, in principle, both help predict the structure of more advanced theory of physics and
hindsight, help us to conceptually organize its already known structure. This is because the
ture of the theory of self-dual structures is nontrivial and not everything is possible. Knowing
is mathematically possible and combining with some postulates such as the above is not
For example, back in 1989 and motivated in the above manner it was shown that the categ
monoidal categories~i.e., categories equipped with tensor products! was itself a self-dual category
i.e., that there was a constructionĈ for every such categoryC.72 Since then it has turned out tha
both conformal field theory and certain other quantum field theories can indeed be expres
such categorical terms. Geometrical constructions can also be expressed categorically.73 On the
other hand, this categorical approach is still underdeveloped and its exact use and the exac
of the required duality as a unification of quantum theory and gravity is still open. I would c
only ‘‘something like that’’ ~one should not expect too much from philosophy alone!.

Another point to be made from Fig. 9 is that if quantum theory and gravity already take
very general structures such as categories themselves for the unifying concept then, in lay
what it means is that the required theory involves very general concepts indeed of a simila
to semiotics and linguistics~speaking about categories of categories, etc.!. It is almost impossible
to conceivewithin existing mathematics~since it is itself founded in categories! what fundamen-
tally more general structures would come after that. In other words, the required mathema
running out at least in the manner that it was developed in this century~i.e., categorically! and at
least in terms of the required higher levels of generality in which to look for self-dual struct
If the search for the ultimate theory of physics is to be restricted to logic and mathematics~which
is surely what distinguishes science from, say, poetry!, then this indeed correlates with our phys
cal intuition that the unification of quantum theory and gravity is the last big unification
physics as we know it, or that theoretical physics as we know it is coming to an end. I would
with this assertion except to say that the new theory will probably open up more questions
are currently considered metaphysics and make them physics, so I do not really think we w
out of a job even as theorists~and there will always be an infinite amount of ‘‘what’’ work to b
done even if the ‘‘why’’ question was answered at some consensual level!.

As well as seeking the ‘‘end of physics,’’ we can also ask more about its birth. Again ther
many nontrivial and nonempty questions raised by the self-duality postulate. Certainly th
generalization of Boolean logic to intuitionistic logic is to relax the axiom thataøã51 ~thata or
not a is true!. Such an algebra is called a Heyting algebra and can be regarded as the b
quantum mechanics. Dual to this is the notion of a co-Heyting algebra in which we relax th
that aùã50. In such an algebra one can define the ‘‘boundary’’ of a proposition as

]a5aùã ~142!

and show that it behaves like a derivation. This is surely the birth of geometry. How exactl
complementation duality extends to the Fourier duality for groups and on to the duality be
more complex geometries and quantum theory is not completely understood, but there a
ceptual ‘‘physical’’ arguments that this should be so, put forward in Ref. 1. Thus, in the sim
‘‘theories of physics’’ based only on logic one can work equally well with ‘‘apples’’ or ‘‘no
apples’’ as the names of subsets.
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• What happens to this complementation duality in more advanced theories of physics? A
curve space while not-apples do not, i.e., in physics one talks of apples as really ex
while not-apples are merely an abstract concept.

Clearly the self-duality is lost in a theory of gravity alone. But we have argued1 that when one
considers both gravity and quantum theory, the self-duality can be restored. Thus when w
that a region is as full of apples as general relativity allows~more matter simply forms a black hol
which expands!, which is the right-hand limiting line in Fig. 10, in the dual theory we might s
that the region is as empty of not-apples as quantum theory allows, the limitation being th
slope in Fig. 10. Here the uncertainty principle in the form of pair creation ensures that
cannot be totally empty of ‘‘particles.’’ Although heuristic, these are arguments that qua
theory and gravity are dual and that this duality is an extension of complementation duality.
a theory with both would be self-dual. Also, in view of a ‘‘hole’’ moving in the opposite direct
to a particle, the dual theory should also involve time reversal. The self-duality is somethin
CPT invariance but in a theory where gravitational and not only quantum effects are consi
We are proposing it as a key requirement for quantum-gravity. Diagrams similar to the right
side of Fig. 10 have been attributed to Brandon Carter as a tool to plot stellar evolution.

Note that as theoretical physicists we are not obliged to explain why the above should
crude model for some of the structure of physics. We need only observe that it is a non
postulate with predictive and explanatory power. However, it is possible to speculate a
further and come to some philosophical conclusions. I will do this now. Why the principl
self-duality? Why such a central role for Fourier theory? The answer I believe is that some
very general like this underlies the very nature of what it means to do science. The basic pr
was proposed by Plato and comes under the heading of ‘‘Plato’s cave.’’ Namely, how can o
the difference between reality and its representation or shadow. The modern answer accor
Ref. 1 was that one should consider not one representation~or one angle of projection in Plato’
cave! but all of them. Their collection is as much a valid mathematical structure as the origin
explained in above. Thus suppose that some theorist puts forward a theory in which ther
actual groupG say ‘‘in reality’’ ~this is where physics differs from mathematics! and some
experimentalists construct tests of the theory and in so doing they routinely build represen
or elements ofĜ. They will end up regardingĜ as ‘‘real’’ and G as merely an encoding ofĜ.
The two points of view are in harmony because mathematically~in the appropriate context!

G>G9 . ~143!

FIG. 10. Range of physical phenomena, which lie in the wedge region with us in the middle. Log plots are mass
versus size.
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So far so good, but through the interaction and confusion between the experimental and the

points of view one will eventually have to consider both, i.e.,G3Ĝ as real. But then the theorist
will come along and say that they do not like direct products, everything should interact

everything else, and will seek to unifyG,Ĝ into some more complicated irreducible structureG1 ,

say. Then the experimentalists buildĜ1 ... and so on. This is a kind of engine for the evolution
science. For example, if one regarded, following Newton, that spaceRn is real, its representation
R̂n are derived quantitiespW 5mẋW . But after making diverse such representations one eventu
regards bothxW and pW as equally valid, equivalent via Fourier theory. But then we seek to u
them and introduce the CCR algebra~15!. And so on. Note that this is not intended to be
historical account but a theory for how things could have gone in an ideal case without the
and turns of human ignorance.

This is the plausibility reason that something like the principle of representation-theo
self-duality should be observed. We have given arguments above that there is at least a cor
between the mathematical structure of self-dual structures and the progressive theories of
from their birth in ‘‘logic’’ to the projected forthcoming complete theory of everything. It sho
at least provide a guide to the properties that should be central in unknown theories of ever
such as what have become fashionable to call ‘‘M-theory.’’ Now what if this kind of self-duality
of structure was not only observed~in a crude form! but something like it, perhaps along wit
some other key postulates, actually fully-characterized the structure of the allowed theor
physics? This is not out of the question given what we have said above about the le
generality already reached. It would be like giving a list of things that we expect from a com
theory, such as renormalizability, CPT-invariance, etc., except that we are considering suc
eral versions of these ‘‘constraints’’ that they are practically what it means to be a group of p
following the scientific method. If this really pins down the ultimate theory then it would mean
following.

• The ultimate theory of physics may be no more and no less than a self-discovery
constraints in thinking that are taken on when one decides to look at the world as a phy

This is not at all the usual view of Nature as blindly ‘‘out there’’ and is what I meant by a
philosophical foundation for theoretical physics. As big ideas go it is basically Kantian or H
lian as opposed to the more conventional reductionist one that most physicists take for g
The difference is that whereas Kant could only speculate, science backed by experimen
actually be coming to the same conclusion in the not impossibly far future. It is important to
that this would not mean that physics is arbitrary or random any more than the different po
manifolds ‘‘out there’’ are arbitrary. The space of all possible manifolds up to equivalence
deep and rich structure and feels every bit as real to anyone who studies it; but it is a mathe
reality ‘‘created’’ when we accept the axioms of a manifold. So what we are saying is that
is not such a fundamental difference between mathematical reality and physical reality. The
difference is that mathematicians are aware of the axioms while physicists tend to discove
‘‘backwards’’ by theorizing from experience. I call this subjunctive point of viewrelative
realism.1 In it, we experience reality through choices that we have forgotten about at any
moment. If we become aware of the choice, the reality it creates is dissolved or ‘‘unconstruc
On the other hand, the reader will say that the possibility of the theory of manifolds—tha
game of manifold-hunting could have been played in the first place—is itself a reality, not
trary. It is, but at a higher level: it is a concrete fact in a more general theory of possible a
systems of this type. To give another example, the reality of chess is created once we chose
the game. If we are aware that it is a game, that reality is dissolved, but the rules of chess
a reality although not within chess but within the space of possible board games. This g
treelike or hierarchical structure of reality. Reality is experienced as we look down the tree
‘‘awareness’’ or enlightenment is achieved as we look up the tree. When we are born we ta
millions and millions of assumptions or rules through communication, which creates our d
day perception of reality. We then spend large parts of our lives questioning and attempt
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unconstruct these assumptions as we seek understanding of the world. And from this pers
the fact that life appears somewhere near the middle of Fig. 10~apart from the obvious explana
tion that phenomena become simpler as we approach the boundaries, hence most comple
middle, so this is statistically where life would develop! has a different explanation: we create
our picture of physical reality around ourselves and so not surprisingly we are near the midd
may in effect have painted ourselves in a box by taking on certain assumptions about how
about looking at the world. This would not be a bad thing but rather a statement about the
of the laws of physics. I do doubt that it is ever going to be as simple as all that, but it is some
to think about on a rainy day in the next millennium.
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67T. Brzeziński and S. Majid, ‘‘Quantum group gauge theory on quantum spaces,’’ Commun. Math. Phys.157, 591–638

~1993!; Erratum,167, 235 ~1995!.
68P. Hajac and S. Majid, ‘‘Projective module description of theq-monopole,’’ Commun. Math. Phys.206, 246–464

~1999!.
69T. Brzeziński and S. Majid, ‘‘Coalgebra bundles,’’ Commun. Math. Phys.191, 467–492~1998!.
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In this short survey paper, we shall discuss certain recent results in classical grav-
ity. Our main attention will be restricted to two topics in which we have been
involved; the positive mass conjecture and its extensions to the case with horizons,
including the Penrose conjecture~Part I!, and the interaction of gravity with other
force fields and quantum-mechanical particles~Part II!. © 2000 American Insti-
tute of Physics.@S0022-2488~00!00606-X#

I. POSITIVE MASS CONJECTURE AND RELATED TOPICS

One of the most difficult problems in classical relativity is to understand how and w
singularities form. In the 1960’s, Hawking and Penrose proved that the existence of a c
trapped surface in an asymptotically flat spacelike hypersurface gives rise to a singula
space–time. However, no proof based on pure partial differential equation arguments was
and many questions remain unanswered.

Given an initial data set (gi j ,pi j ) on a three-dimensional manifold so thatgi j is asymptoti-
cally Euclidean andpi j ~the induced second fundamental form in an embedding! falls off asymp-
totically, it is interesting to ask the following questions:

~1! When will such an initial data set contain a closed trapped surface? If so, how to locat
~2! If the initial data contains no closed trapped surface, how to tell whether such a surfac

appear at a later time under the evolution of Einstein’s equations?
~3! If we assume that the trace ofpi j is zero, will a singularity occur without the existence of

closed trapped surface?
~4! If a singularity does occur, what is the structure of the null geodesics in a neighborhood

singularity, and what is the structure of the curvature tensor in this neighborhood? What
criterium on the initial data set for the curvature to blow up at the singularity?

~5! Can one define physically relevant local~or quasilocal! quantities such as mass and angu
momentum to describe regions in a strongly gravitationally interacting space–time? F
ample, when two bodies interact, what is the binding energy and what is the mass
resulting configuration? How can one estimate the gravitational radiation for strongly
acting bodies? How can one justify the linearized theory of gravitational radiation?

For all the above questions related to singularity formation, one usually studies only generic
data. However, it has been a difficult problem in nonlinear partial differential equations to u
stand how to perturb away the singularity.

For all these questions, it would be good if the known class of spherically symmetric solu
of the Einstein equations were rich. Except for the Schwarzschild case, such solutions can
vacuum solutions. Hence to consider these questions, one is forced to couple gravity to
matter fields. For the case of a massless scalar field, Christodoulou1–4 has studied the question o
the formation of singularities quite extensively. If a singularity exists, it is located at the or
39430022-2488/2000/41(6)/3943/21/$17.00 © 2000 American Institute of Physics
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While much is known in this case, the details of how the singularity forms is still poorly un
stood.~When naked singularities form, one would like to know the behavior of null geodes!
Based on numerical studies, Choptuik5 has found the new phenomena that, for a one-param
family of initial data, the mass function exhibits some critical phenomena similar to those w
occur in statistical mechanics, at the time when a black hole forms. However, a detailed theo
study is lacking. An interesting consequence of the above study is that after gravitational rad
the space–time is either time-asymptotic to the flat space–time or to the Schwarzschild s
time. This raises an interesting question when we couple gravity to a Yang–Mills field or to
spinors; What is the possible asymptotic state of spherically symmetric initial data? Would
stable coupled solutions found by us~cf. Sec. II below! be the only possible states? When we wa
to extend the spherically symmetric case to an axisymmetric geometry, the space-time is fa
complicated. While it is clear that angular momentum may be used to make many configur
stable, the number of degrees of freedom is large and it is difficult to find solutions of gr
coupled to other fields.~For stationary black holes with a vacuum background, it has to be
Kerr solution.! It is still not known whether one can find multiblack holes which can be stabili
by the addition of angular momentum.

Beyond axisymmetric solutions, Bartnik6,7 proposed a class of initial data sets which can
foliated by round spheres. Using this ansatz, he was able to parametrize a large set of init
having zero or nonnegative scalar curvature.~For the initial data set, if it is a maximal slice, th
scalar curvature is always non-negative.! According to his numerical study, this ansatz has be
very useful in understanding radiation from a single black hole. Perhaps the theoretical stu
critical data in this class would be interesting.

Let us now turn to general space–time with no spherical symmetry. We restrict oursel
asymptotically flat space–times. In this case, we have asymptotic space–time Lorentzian s
try. Based on this asymptotic symmetry, it is well known that one can define the concept of
and linear momentum associated to each initial data set~which is invariant under the Lorentzia
symmetry at asymptotic infinity8!. About 20 years ago, Schoen–Yau9 ~subsequently10 and others!
proved the positive mass conjecture which says that the total~mass, linear momentum! is a
nonspacelike four-vector. The total mass is therefore always non-negative. It is zero only wh
space–time is flat.

The positivity of the mass says that the trivial space–time is stable~the dynamic stability
among a class of reasonable initial data has recently been demonstrated by Christodou
Klainerman11!. However, the nonlinear stability of the Schwarzschild solution is still unkno
Based on the ‘‘Cosmic Censorship conjecture,’’ Penrose proposed an inequality relating th
mass of the black hole to the area of the outermost horizon. It says that among all initial da
with fixed mass, the time-symmetric Schwarzschild solution initial data set has the largest a
its outermost apparent horizon.

In general, if the initial data set is a maximal slice for the space–time, the scalar curvat
the three-dimensional manifold is non-negative. In such a case, the conjecture of Penro
recently settled by Huisken and Ilmanen,12 obtaining the optimal result only under the assumpt
that the outermost black hole is connected. It was based on an idea of Geroch that the H
~quasilocal! mass is monotonic along an evolution of a surfaceS t which starts from the hole to the
sphere at infinity. The evolution is governed by the requirement that it moves the surfaces
the normal direction and with magnitude minus the inverse of mean curvature. Geroch notice
for the sphere at infinity, the Hawking mass is simply the total mass of the initial data set,
at the black hole, the Hawking mass is, up to a universal constant, the square root of the
the black hole. Hence if the flow of the surfaceS t exists, the Penrose conjecture would then
proved. Huisken and Ilmanen developed the mathematical framework in which these ideas
be made precise. However, the flow exhibits jump phenomena and much care is needed to
that the inequality jumps in the right manner. Much more recently, Bray13 has been able to
improve the result in the case of a nonconnected outermost horizon by a new method,
relying on the ideas of Schoen–Yau9 and certain curvature estimates.14

For the proof of the Penrose conjecture, one still must answer the question as to wh
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initial data set is not maximal. It would also be nice to see the corresponding inequality fo
Bondi mass~total mass after radiation!.

Besides the total mass and linear momentum, an important conserved quantity is a
momentum. This was studied extensively by Ashtekar.15 One needs to study the relation betwe
angular momentum and other conserved quantities such as the total mass and linear mome
seems reasonable to believe that the total mass should dominate the square of the angu
mentum if the initial data set is nonsingular.

To better understand angular momentum, Huisken and Yau16 defined the concept of center o
mass of an initial data set. It is Lorentz invariant and, remarkably, under the evolution of
stein’s equations, the velocity of the center of gravity is the linear momentum divided bym,
wherem is the total mass of the initial data set.

One hopes to study all possible naturally conserved quantities and the relations amon
conserved quantities, when the initial data set is nonsingular. It is always interesting to know
radiation effects all those quantities. For an isolated gravitational system, what would
asymptotic state after radiation? We conjecture that the time-asymptotic state is just the su
sition of several known stationary solutions including the charged Kerr black holes and the
coupled solutions found above~e.g., when we are coupling the Einstein equations to the Ya
Mills, Dirac particles, or a real scalar field!.

The global behavior of the Einstein system is difficult to study, partially because we d
have~quasi-!local quantities which behave well under time evolution. The Hawking mass is
such example. It is monotonic in some directions. Unfortunately, it is not positive in genera
certain important closed surfaces, which are obtained by minimizing area under a volum
straint, Christodoulou and Yau were able to prove the positivity of the Hawking mass.17 However,
they assumed that the scalar curvature is non-negative. It would be nice to remove this a
tion.

If one considers sufficient conditions for the formation of black holes in a general setting
best theorem is due to Schoen–Yau.18 This says that, by suitably defining the diameterd(V) of a
regionV, then if the matter density in the regionV is greater thand22 up to a universal constant
a closed trapped surface can be found. This implies that a black-hole type singularity exists.
theorem, the existence of black holes results from the condensation only of matter. It wou
desirable to include the contribution of gravitation effects. Namely, it is interesting that in
argument by Schoen–Yau, only the lower bound of the first eigenvalue of the operato2D
1 1

6R is used. In the time symmetric case~i.e., with pi j [0), 1
2R is the local matter density. I

would be nice to see if this method can be extended to the general case, in the sense
spectrum of some operator can be used to yield a condition for the formation of black hole

II. THE INTERACTION OF GRAVITY WITH OTHER FORCE FIELDS AND DIRAC
PARTICLES

According to Einstein’s Theory of General Relativity, gravity is described geometric
through Einstein’s equations. The understanding of gravity has been driven by the discov
special solutions of these equations. The most important examples are the Schwarzschild s
the Kerr–Newman solution, and the Friedmann–Robertson–Walker solution.19 Particularly inter-
esting effects are obtained when one couples gravity, as expressed through Einstein’s equa
other fundamental force fields. The simplest such example is the Reissner–Nordstro¨m solution
resulting from the coupling of gravity to electromagnetism~Maxwell’s equations!. This solution,
like the Schwarzschild solution, has an essential singularity at the origin. The generalizat
non-Abelian Yang–Mills fields led to the discovery of Bartnik and McKinnon~BM! ~Ref. 20! ~see
also Refs. 21 and 22! of everywhere regular solutions. This came as a surprise because s
results for related systems led to the conjecture that such solutions cannot exist. Indeed, nei
vacuum Einstein equations, nor the pure Yang/Mills equations have nontrivial static, glo
defined, regular solutions.23,24 The existence of these solutions depends on the coupling o
different force fields, whereby the attractive gravitational force is balanced by the YM repu
force. But this balance is rather delicate; for example, the BM solutions are unstable with re
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to small perturbations.25 Other interesting solutions of Einstein’s equations result from coup
gravity to quantum mechanical matter fields. The case of a complex scalar field was conside
Lee et al.,26 who found solitonlike solutions modeling~bosonic! stars; see too, Christodoulou2

who studied the gravitational collapse of a real massless scalar field.
We report here on recent work~see Refs. 27–30 for details! of a different type of coupling;

namely, gravity coupled to both quantum mechanical particles with spin~Dirac particles!, and to
an electromagnetic field. We first study the resulting Einstein–Dirac–Maxwell~EDM! equations
for a static, spherically symmetric system of two fermions in a singlet spinor state. We find s
solitonlike solutions, and we discuss their properties for different values of the electroma
coupling constant. We note too that the inclusion of gravity has a regularizing effect on solu
in the sense that our solutions are more regular than one would expect from a naive analysi
Feynman diagrams; see Ref. 31. We then study black-hole solutions for these equations~see Refs.
21 and 32!, and we find, surprisingly, that under rather weak regularity conditions on the for
the event horizon, the only black-hole solutions of the EDM equations are the Reis
Nordström ~RN! solutions. That is, the spinors must vanish identically. Applying this to
gravitational collapse of a ‘‘cloud’’ of relativistic spin-1

2-particles to a black hole, our resu
indicates that the Dirac particles must eventually disappear inside the event horizon. We als
that the Dirac equation has no normalizable, time-periodic solutions in a RN black-hole
ground. The physical interpretation of this result is that the Dirac particles cannot remain
periodic orbit around the black hole. This result has recently been extended to an axisym
black hole geometry.33

In our study of the coupled EDM equations, we employ a special ansatz for the spinors.
ansatz, we do not assume that the Dirac particles are in a spherically symmetric state; inde
are allowed to have angular momentum. However, we arrange (2j 11) of these particles in such
a way that the total system is static and spherically symmetric.~In the language of atomic physics
we consider the completely filled shell of states with angular momentumj. Classically, this
multiparticle system can be thought of as several Dirac particles rotating around a common
such that their angular momentum adds up to zero.! Since the system of fermions is spherica
symmetric, we obtain a consistent set of equations if we also assume spherical symmetry
gravitational and electric fields. We can thus separate out the angular dependence, and the
then reduces to a system of nonlinear ODEs.

A. The EDM equations

The general Einstein–Dirac–Maxwell equations are

Rj
i 2

1

2
Rd j

i 528pTj
i , ~G2m!Ca50, ¹kF

jk54pe(
a

CaGjCa , ~1!

where Tj
i is the sum of the energy-momentum tensor of the Dirac particles and the Ma

stress-energy tensor. TheGj are the Dirac matrices which are related to the Lorentzian metric
the anticommutation relations,

gjk~x!15 1
2$G

j~x!,Gk~x!%[ 1
2~GjGk1GkGj !~x!.

F jk denotes the electromagnetic field tensor, andCa are the wave functions of fermions of ma
m and chargee. The Dirac operator is denoted byG, and it depends on both the gravitational a
electromagnetic field; for details see Refs. 27 and 28.

We now specialize to the case of static, spherically symmetric solutions of the EDM sy
~1!. In polar coordinates~t, r, q, w!, we write the metric in the form

ds25
dt2

T~r !22
1

A~r !
dr22r 2~dq21sin2 qdw2! ~2!
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with positive functionsT and A. Depending on whether we consider particlelike solutions
black-hole solutions, the region of space–time which we consider isr .0, or r . r̄ .0, respec-
tively; in the latter case, we assume thatr 5 r̄ is the event horizon. We always consider solutio
for which the metric~2! is asymptotically Minkowskian,

lim
r→`

A~r !515 lim
r→`

T~r !, ~3!

and has finite~ADM ! mass; i.e.,

lim
r→`

r

2
~12A~r !!5r,`. ~4!

In the static case, the fermions only generate an electric field, and thus we may assume
electromagnetic potentialA has the formA5(2f,0), wheref5f(r ) is the Coulomb potential.

The Dirac operatorG can be written as

G5 iG j~x!
]

]xj 1B~x!

5 iTg0S ]

]t
2 ief D1g r S iAA

]

]r
1

i

r
~AA21!2

i

2
AA

T8

T D1 igq
]

]q
1 igw

]

]w
, ~5!

whereg t, g r , gq, andgw are theg-matrices in polar coordinates, in Minkowski space namel

g t5g0,

g r5g1 cosq1g2 sinq cosw1g3 sinq sinw,

gq5
1

r
~2g1 sinq1g2 cosq cosw1g3 cosq sinw!,

gw5
1

r sinq
~2g2 sinw1g3 cosw!,

where

g05S 1 0

0 21D , g i5S 0 s i

2s i 0 D , i 51,2,3,

ands i denote the Pauli matrices.
In analogy with the central force problem in Minkowski space,34 this Dirac operator com-

mutes with~a! the time translation operatori ] t , ~b! the total angular momentum operatorJ2, ~c!
thez component of the total angular momentumJz , and~d! with the operatorg0P, whereP is the
parity. Since these operators also commute with each other, any solution of the Dirac equat
be written as a linear combination of solutions which are simultaneous eigenstates of the
erators. We use this ‘‘eigenvector basis’’ to separate out both the angular and time depen
and to calculate the total current and energy momentum tensor of the Dirac particles. Usi
ansatz in Refs. 27, 28, 29, we can describe the Dirac spinors using two real functionsa, b. We
arrive at the following system of ordinary differential equations for the five real functionsa, b, A,
T, andf:

AAa856
2 j 11

2r
a2~~v2ef!T1m!b, ~6!
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AAb85~~v2ef!T2m!a7
2 j 11

2r
b, ~7!

rA8512A22~2 j 11!~v2ef!T2~a21b2!2r 2AT2uf8u2, ~8!

2rA
T8

T
5A2122~2 j 11!~v2ef!T2~a21b2!62

~2 j 11!2

r
Tab

12~2 j 11!mT~a22b2!1r 2AT2uf8u2, ~9!

r 2Af952~2 j 11!e~a21b2!2S 2rA1r 2A
T8

T
1

r 2

2
A8Df8. ~10!

Equations~6! and~7! are the Dirac equations~the 6 signs correspond to the two possible eige
values ofg0P); ~8! and ~9! are the Einstein equations, while Maxwell’s equations reduce to
single equation~10!. Here j 5 1

2,
3
2,..., theconstantv enters via the plane wave dependence of

spinors; namely, exp(2ivt), and as for the general equations~1!, m and e denote the mass an
charge, respectively, of the fermions. We also require that, in addition to~3!, ~4!, the electromag-
netic potential vanishes at infinity,

lim
r→`

f~r !50. ~11!

Since Eqs.~6!–~10! are invariant under the gauge transformations,

f~r !→f~r !1k, v→v1ek, kPR, ~12!

we see that~11! can be fulfilled by a suitable gauge transformation, provided thatf has a limit at
infinity.

In Secs. II A–II D, we shall be concerned with two different types of solutions of Eqs.~6!–
~10!; namely,particlelike solutions~smooth solutions defined for allr>0), andblack hole solu-
tions~solutions defined for allr . r̄ .0, whereA( r̄ )50 andA(r ).0 for all r . r̄ ;r 5 r̄ is the event
horizon!. In the first case, we require the following normalization condition on the spinors:

E
0

`

~a21b2!
T

AA
dr51 ~particlelike!, ~13!

while in the second case we require that for allr 0. r̄ ,

0,E
r 0

`

~a21b2!
T

AA
dr,` ~black holes!. ~14!

These conditions are necessary in order that the Dirac spinors define physically meaningfu
functions.

B. Particlelike solutions

In this section we shall describe our numerical construction of particlelike solutions for
~6!–~10!. For simplicity we shall restrict ourselves to the casej 51/2. We shall also discuss th
stability and properties of the ground state solutions for different values of the electroma
coupling constant (e/m)2. We shall show that solutions exist even when the em coupling i
strong that the total interaction is repulsive in the nonrelativistic limit. In addition, for small
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coupling, (e/m)2,1, we shall show thatstableparticlelike solutions exist for small values ofm,
and using certain topological techniques, we show that this stable solution becomes unstabm
increases.

The construction of particlelike solutions is obtained via a rescaling argument~see Refs. 27
and 28!. The idea is to weaken the conditions~2!, ~11!, and~13! to

0ÞE
0

`

~a21b2!
T

AA
dr,`, 0Þ lim

r→`

T~r !,`, lim
r→`

f~r !,`, ~15!

and instead set

T~0!51, f~0!50, m51. ~16!

This enables us to use a Taylor expansion aroundr 50, and we obtain the following expansion
nearr 50:

a~r !5a1r 1O~r 2!, b~r !5O~r 2!,

A~r !511O~r 2!, T~r !511O~r 2!, f~r !5O~r 2!.

Solutions to our equations now depend on the three real parameterse, v, anda1 . For a given
value of these parameters, we can construct initial data atr 50, and using the standard Math
ematica ODE solver, we ‘‘shoot’’ for numerical solutions of the modified system~6!–~10!, ~16!.
By varying v ~for fixed e anda1), we can arrange that the spinors~a, b! tend to the origin for
large r, and the conditions~4! and ~15! also hold.

Given a solution~a, b, A, T, f! of this modified system, we consider the scaled function

ã~r !5At

l
a~lr !,b̃~r !5At

l
b~lr !,

Ã~r !5A~lr !, T̃~r !5t21T~lr !, f̃~r !5tf~lr !.

By direct computation, these functions satisfy the original Eqs.~6!–~10! and Eqs.~3!, ~4!, and
~13!, provided that the physical parameters are transformed according to

m̃5lm, ṽ5ltv, ẽ5le, ~17!

where the scale factorsl andt are given by

l5S 4pE
0

`

~a21b2!
T

AA
dr D 1/2

, t5 lim
r→`

T~r !.

Finally, condition~11! can be fulfilled by a suitable gauge transformation. Notice that the pa
eter (ẽ/m̃)25e2 is invariant under the above scaling. It is thus convenient to choose (ẽ/m̃)2 ~and
not ẽ2) as the parameter used to describe the strength of theemcoupling. We point out that the
above scaling technique is used only to simplify the numerics; for the physical interpret
however, we must always work with the scaled~tilde! solutions. Since the transformation from th
un-tilde to the tilde variables is one-to-one, our scaling method yields all the solutions o
original system. From now on, we shall only consider the scaled solutions, and for simplic
notation, we shall omit the tilde.
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C. Properties of the particlelike solutions

We have found solutions having different rotation numbersn50, 1, 2,... of the vector~a, b!.
In the nonrelativistic limit,n is the number of zeros of the corresponding Schro¨dinger wave
functions, and thusn50 corresponds to the ground state,n51 to the first excited state, and so o
However due to the nonlinearity of our equations,n no longer has this simple interpretation. F
simplicity in what follows, we shall only discuss then50 solutions. The graphs of a typical suc
solution is shown in Fig. 1. For each solution, the spinors~a, b! decay exponentially to zero a
infinity. We interpret this to mean that the fermions have a high probability to be confined
neighborhood of the origin. In view of this rapid decay of the spinors, our solutions asymptot
go over into the spherically symmetric RN solutions of the Einstein–Maxwell equations,19 as r
→`. That is, for larger,

A~r !'T22~r !'12
2r

r
1

~2e!2

r 2 .

In other words, our solution, for larger, looks like the gravitational and electrostatic field gen
ated by a point particle at the origin with massm and charge 2e. Note that in contrast to the RN
solution, however, our solutions have no event horizon or singularities. One can understa
from the fact that we consider here quantum mechanical particles, rather than point pa
Therefore the wave functions are delocalized according to the Heisenberg Uncertainty Pri
and so the distributions of matter and charge are also delocalized, thereby preventing the
from forming singularities. In general, we can parametrize solutions by the rest massm, and the
energyv of the fermions. In Fig. 2, we plot the binding energym2v vs m for different values of
the parameter (e/m)2, and we see thatm2v is always positive, indicating that the fermions a
in a bound state. For weakemcoupling, (e/m)2,1, the curve is a spiral which starts at the orig
The binding energy decreases for fixedm and increasing (e/m)2, since theemrepulsion weakens
the binding. The mass energy spectrum when (e/m)2!1 becomes similar to the case of th
Einstein–Dirac equations~without the em interaction!; see Ref. 27. We can use linearizatio
techniques to show numerically that for smallm, if ( e/m)2,1, the solutions are stable wit
respect to spherically symmetric perturbations. For larger values ofm, we can investigate the

FIG. 1. Solution of the EDM equations for parameter values (e/m)250.7162,m50.7639,v50.6807,r51.15416 (a8(0)
50.05361).
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stability using Conley index theory~see Ref. 35!, wherem is taken to be the bifurcation paramete
This technique shows that the stability/instability of a solution remains unchanged ifm is varied
continuously and no bifurcations occur. Moreover, at bifurcation points, the Conley index th
provides a powerful technique to analyze changes of stability. Using this, we find that all solu
on the ‘‘lower branch’’ of the spiral curves A and B of Fig. 2~i.e., on the curve from the origin
up to the maximal value ofm!, are stable, and all solutions on the ‘‘upper branch’’ are unsta

From Fig. 2, we see that this form of the mass energy spectrum changes when (e/m)2'1, the
regime where, in the classical limit, the electrostatic and gravitational forces balance each
To better understand this situation, we take the nonrelativistic limit in our EDM equations. T
this, we fix (e/m)2, and assume thate andm are small. In this limit, the coupling of the spinor
to both the gravitational andem forces becomes weak;A, T'1 andf'0. The Dirac equations
imply that v'm anda@b. Thus the EDM equations go over to the Schro¨dinger equation with
the Newtonian and Coulomb potentials; namely,

S 2
1

2m
D1ef1mVDC5EC, ~18!

2DV528pmuCu2, 2Df58peuCu2, ~19!

whereE5v2m, C(r )5a(r )/r , V(r )512T(r ), andD is the radial Laplacian onR3. From~19!
we see that the Newtonian and Coulomb potentials are multiples of each other; namV
52m/ef. Thus if (e/m)2>1, the total interaction is repulsive so that the Schro¨dinger equation
~18! has no bound states. It follows that in the limit of smallm, the EDM equations have no
particlelike solutions, if (e/m)2>1. This means that the mass-energy curves in Fig. 2 can
start atm50 if (e/m),1. This is confirmed by the numerics~Fig. 2, curves C, D, and E!. For
(e/m)251, the curve tends tom2v50 asm→`.

If ( e/m)2.1, Fig. 2 shows that the EDM equations admit solutions only ifm is sufficiently
large, and smaller than some threshold value where the binding energy of the fermions g
zero.

We can also consider the total binding energyr22m, wherer is defined in~4!. In Fig. 3, we
plot r22m vs m, for various values of (e/m)2. If ( e/m)2,1, r22m is negative for the stable
solutions, whiler22m.0 if (e/m)2.1. This indicates that if (e/m)2.1, such solutions should
be unstable because energy is gained by breaking up the binding.

D. Nonexistence of black hole solutions

As we have noted in the last section, particlelike solutions of the EDM equations in a
state~e.g., the ground state! cease to exist if the rest massm of the fermions exceeds a certa
threshold valuems . The most natural physical interpretation of this statement is that ifm.ms ,

FIG. 2. Binding energym2v of the Fermions for (e/m)250 ~A!, 0.7162~B!, 0.9748~C!, 1 ~D!, and 1.0313~E!.
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the gravitational interaction becomes so strong that a black hole would form. This sugges
there should be black hole solutions of the EDM equations for large fermion masses. I
section, we shall show that this intuitive picture of black hole formation is incorrect. In fact
prove that under weak regularity conditions on the form of the horizon, any black hole soluti
the EDM equations must either be the RN solution~in which case the Dirac wave function i
identically zero!, or the event horizon has the same general form as the extreme RN metric.
latter case, we show numerically that the Dirac wave functions cannot be normalized. It fo
that the EDM system doesnot admit black hole solutions. Thus the study of black holes in
presence of Dirac spinors leads to unexpected physical effects. If we apply this result
gravitational collapse of a ‘‘cloud’’ of Dirac particles, our result indicates that the Dirac part
must eventually disappear inside the event horizon.

In order to establish these results, we first recall what is meant by black hole solutions
EDM equations. These are solutions of Eqs.~6!–~10! defined in the regionr . r̄ .0, which are
asymptotically flat~so that~3! holds!, and have finite~ADM ! mass~so that~4! holds!, and satisfy
the normalization condition~14!. In addition, we assume thatA(r ).0 for r . r̄ , and
limr↘ r̄ A(r )50, while T(r ).0 and limr↘ r̄ T(r )5`.

We make the following three assumptions on the regularity of the functionsA, T, andf on the
form of the event horizonr 5 r̄ :
~I! The volume elementAudetgij u5r2A21/2T21 is smooth and nonzero on the horizon; i.e.,

T22A21,T2APC`~@r̄,`!!.
~II ! The electromagnetic field tensor isFi j 5] iAj2] jAi ; we assume that the strength of the e

field tensorFi j F
i j 522uf8u2AT2 is bounded near the horizon. In view of~I!, this means

that we assume
uf8~r!u,c1, r̄,r,r̄1«

for some positive constantsc1 ,«.0.
~III ! The functionA(r ) obeys a power law, i.e.,

A~r!5c~r2r̄!s1O~~r 2 r̄ !s11!, r . r̄ ~20!

for some positive constantsc ands.

A brief discussion of these assumptions is in order. Thus, if~I! or ~II ! were violated, then an
observer freely falling into a black hole would feel strong forces when crossing the hor
Assumption~III ! is a technical condition which seems sufficiently general to include all physic
relevant horizons; for example,s51 corresponds to the Schwarzschild horizon, ands52 corre-
sponds to the extreme RN horizon. However,~III ! does not seem to be essential for our non
istence results, and with more mathematical effort, we believe that it could be weakened o
omitted completely.

Here is the main result in this section.
Theorem 4.1: Any black hole solution of the EDM equations (6)–(10) which satisfies the

FIG. 3. Total binding energyr22m for (e/m)250 ~A!, 0.7162~B!, 0.9748~C!, 1 ~D!, and 1.0313~E!.
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regularity conditions (I)–(III) either is a nonextreme RN solution witha(r )[0[b(r ), or s52
and the following expansions are valid near the event horizon r5 r̄ :

A~r !5A0~r 2 r̄ !21O~~r 2 r̄ !3!, ~21!

T~r !5T0~r 2 r̄ !211O~~r 2 r̄ !0!, ~22!

f~r !5
v

e
1f0~r 2 r̄ !1O~~r 2 r̄ !2!, ~23!

a~r !5a0~r 2 r̄ !k1O~~r 2 r̄ !k11!, ~24!

b~r !5b0~r 2 r̄ !k1O~~r 2 r̄ !k11!, ~25!

with positive constants A0 , T0 , and real parametersf0 , a0 , andb0 . The exponentk satisfies the
constraint

1

2
,k5A0

21Am22e2f0
2T0

21S 2 j 11

2r̄ D 2

, ~26!

and the spinor coefficientsa0 and b0 are related by

a0SAA0k6
2 j 11

2r̄ D52b0~m2ef0T0!, ~27!

where‘‘ 6’’ refers to the two choices of the signs in (6)–(10).
We shall now outline a proof of this result; we first consider the case that the expons

,2 in ~20!.
Lemma 4.2: Assume that s,2 and that~a b,A,T, f! is a black-hole solution where(a,b)Ó0.

Then there are constants c,«.0 satisfying

c<a~r !21b~r !2<
1

c
, r̄ ,r , r̄ 1«. ~28!

Proof: According to~6! and ~7!, we have

AA
d

dr
~a21b2!52S a

b D S 6
2 j 11

2r
2m

2m 7
2 j 11

2r

D S a
b D<S 4m21

~2 j 11!2

r 2 D 1/2

~a21b2!.

~29!

The uniqueness theorem for ODEs implies that (a21b2)(r ).0 for all r, r̄ ,r , r̄ 1«, for any
«.0. Dividing ~29! by AA(a21b2) and integrating fromr . r̄ to r̄ 1« gives

u log~~a21b2!~ r̄ 1«!!2 log~~a21b2!~r !!u<E
r

r̄ 1«

A21/2~ t !S 4m21
~2 j 11!2

t2 D 1/2

dt. ~30!

Sinces,2, ~20! implies thatA21/2 is integrable onr̄<r< r̄ 1«, so that the integral in~30! is
majorized by

E
r̄

r̄ 1«
A2~1/2!~ t !S 4m21

~2 j 11!2

t2 D 1/2

dt,
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and this yields~28!. j

We can now dispose of the case 0,s,2; namely, we have
Proposition 4.3: If0,s,2, then the only black hole solutions of the systems (6)–(10) are the

nonextreme Reissner–Nordström solutions.
Proof: We assume that we have a solution such that (a,b)(r )Ó0, and show that this gives

contradiction.
The last lemma implies that the spinors are bounded nearr 5 r̄ . From ~8! and ~9!, we find

r
d

dr
~AT2!524~2 j 11!~v2ef!T4~a21b2!62

~2 j 11!2

r
T3ab12~2 j 11!mT3~a22b2!.

~31!

Assumption ~I! implies that the left-hand side of~31! is regular so the same is true of th
right-hand side. SinceT→` as r↘ r̄ , we conclude that

lim
r̄ ,r→ r̄

~v2ef~r !!50. ~32!

From Maxwell’s equation

f952
1

A

~2 j 11!e

r 2 ~a21b2!2
1

r 2AAT
@r 2AAT#8f8, ~33!

we see that~I! implies that the coefficient off8 is smooth. Ifs>1, A21 is not integrable atr̄ , so
that uf8u is unbounded atr̄ , thereby contradicting~II !. Thuss,1, and integrating~33! twice and
using ~32! gives nearr 5 r̄ the following expansions:

f8~r !5c1~r 2 r̄ !2s111c21O~~r 2 r̄ !2s12!,

and

f~r !5c1~r 2 r̄ !2s121c2~r 2 r̄ !1
v

e
1O~~r 2 r̄ !2s13!.

Using these in~8!, and noting thatA and r 2AT2uf8u2 are bounded nearr 5 r̄ , and that (v2ef)
5O(r 2 r̄ ), andT2(a21b2);(r 2 r̄ )2s, s,1, we see that the rhs of~8! is bounded nearr 5 r̄ . On
the other hand, the lhs of~8! diverges nearr 5 r̄ since rA8(r )5(r 2 r̄ )2s11; this contradiction
completes the proof. j

In the cases>2, we first prove the following two facts~cf. Ref. 29!:

lim
r↘ r̄

~r 2 r̄ !2~s/2!~a21b2!50 ~34!

and

lim
r↘ r̄

uf8~r !u5 r̄ 21 lim
r↘ r̄

A2~1/2!T21.0. ~35!

From ~35!, we find that

~w2ef!~r !5c1d~r 2 r̄ !1o~r 2 r̄ !,

whered5e/ r̄ limr↘ r̄ A21/2T21.0. Thus (v2ef)T diverges monotonically. From~6! and ~7!,
this implies that lim infr↘ r̄(a

21b2).0, thereby contradicting~34!. Thus if s.2, there are no
solutions of~6!–~10!.
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Proof of Theorem 4.1:We must only consider the case thats52 and~21!, ~22! hold. From
~34! we see that limr↘ r̄a

21b250, and we can show that (v2ef)T cannot diverge monotoni
cally nearr 5 r̄ ~see Ref. 30!. But ~35! shows that (v2ef) has a Taylor expansion nearr 5 r̄ with
a nonzero linear term. Thus~35! holds, the constant term in the Taylor expansion of (v2ef)
vanishes, and limr↘ r̄(v2ef)T5l, where from~35!, ulu5 r̄ 21 limr↘ r̄ A2(1/2)T21.0. As in Ref.
30, we may write the Dirac equations in the variable

u~r !52r 2 r̄ ln~r 2 r̄ !

and apply the stable manifold theorem to conclude thata andb satisfy the power laws~24!, ~25!,
and ~34! yields thatK. 1

2. Using ~21!–~25! into ~6! and ~7! gives

AA0ka056
2 j 11

2r̄
a01~ef0T02m!b0 ,

AA0kb052~ef0T01m!a07
2 j 11

2r̄
b0 ,

which are equivalent to~26! and ~27!. This completes the proof of Theorem 4.1. j

Notice that in the case of nonzero spinors (s52), Theorem 4.1 places severe constraints
the behavior of black hole solutions near the event horizon, in the sense that sincek. 1

2, the
spinors decay so fast atr 5 r̄ , that both the metric and theemfield behave like the extreme RN
solution on the event horizon. Physically speaking, this restriction to the extremal case mea
the electric charge of the black hole is so large that the electric repulsion balances the gravit
attraction, and prevents the Dirac particles from ‘‘falling into’’ the black hole. Of course, th
not the physical situation that one expects in the gravitational collapse of, say, a star. Ho
extreme RN black holes are physically important since they have zero temperature,36 and can be
considered to be the asymptotic states of black holes emitting Hawking radiation. It is
interesting to see if the expansions~21!–~25! yield global black hole solutions of the EDM
equations.

This question is especially interesting since in the next section we shall show that f
extreme RN background field, spinors satisfying the expansions~24!, ~25! cannot be normalized
The question thus becomes whether the influence of the spinors on the gravitational and e
can yield black hole solutions with normalized spinors. This is a very difficult question bec
one must analyze the global behavior of these solutions of the EDM equations. Our num
investigations show that the answer to the above question is negative; namely solutions
develop a singularity for somer . r̄ , or the spinors~a, b! are not normalizable. We thus conclud
that the expansions~21!–~25! do not give normalizable solutions of the EDM equations.

E. Dirac particles in a Reissner–Nordstro ¨ m background

In this section, we shall consider solutions of the EDM equations where we fix the backg
metric andemfield to be a RN solution. Near a collapsing black hole one might guess that D
particles can get into a static or time periodic state. However, we shall show that in contrast
classical situation, the Dirac equations do not admit any normalizable time-periodic solutio
particular, they admit no normalizable static solutions. We do not assume any spatial symm
the wave functions. This result can be physically interpreted as saying that Dirac particle
either disappear into the black hole of escape to infinity, but they cannot remain on a periodi
around the black hole. We note that it is essential for our arguments that the particles hav
In fact, in the case where the particles do not have spin, the Dirac equation must be replaced
Klein–Gordon equation, and our arguments fail; cf., Ref. 26.

The RN metric can be written in polar coordinates as
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ds25S 12
2r

r
1

q2

r 2 Ddt22S 12
2r

r
1

q2

r 2 D 21

dr22r 2~dq21sin2 qdw2!, ~36!

wherer is the ~ADM ! mass of the black hole, andq its charge. Theempotential is of the form
~2f, 0! with Coulomb potential

f~r !5
q

r
. ~37!

In the ‘‘nonextremal’’ case (q,r), the metric coefficient (12(2r/r )1(q2/r 2)) vanishes twice,
and thus there are two horizons 0,r 0,r . If q5r, the metric is called an extreme Reissne
Nordström ~ERN! metric and has a single horizon atr 5r. If q.r, the above metric coefficien
is nonvanishing, and so the metric does not describe a black hole; this case will not be cons

We consider time-periodic solutions, noting that static solutions are a special case. Sin
phase of the Dirac wave functionC has no physical significance, we defineC to be periodic with
periodT if for some realV,

C~ t1T,r ,q,w!5e2 iVTC~ t,r ,q,w!. ~38!

Our main theorem in this section is the following:
Theorem 5.1: (i) In a nonextreme RN background, there are no normalizable, time-peri

solutions of the Dirac equation. (ii) In an ERN background, every normalizable, time-per
solution of the Dirac equation is identically zero in the region r.r.

We shall begin by deriving conditions which relate the wave functionC on both sides of the
event horizon. We first consider the case of a nonextreme RN background, and analy
behavior ofC near the event horizon. For this, we begin by studying the behavior ofC in a
Schwarzchild background metric, and we shall also consider the Dirac equation in differe
ordinate systems. This is done with the aim of passing to Kruskal coordinates, in order to re
the ‘‘Schwarzschild singularity.’’

The Schwarzschild metric is

ds25S 12
2r

r Ddt22S 12
2r

r D 21

dr22r 2~dq21sin2 qdw2!,

wherer is the~ADM ! mass, and the event horizon is atr 52r. Some straightforward calculation
~see Ref. 30!, shows that outside the horizon (r .r), the Dirac operator can be written as

Gout5
i

S
g t

]

]t
1g r S iS

]

]r
1

i

r
~S21!1

i

2
S8D1 igq

]

]q
1 igw

]

]w
, ~39!

where

S~r !5U12
2r

r U1/2

.

The normalization integral is considered over the hypersurfacet5const; i.e.,

~CuC!out
t
ªE

R3\B2r

~C̄g tC!~ t,x!S21d3x, ~40!

whereB2r denotes the ball of radius 2r about the origin, andC̄5C* g0 is the adjoint spinor. In
the regionr ,2r, the Dirac operator is given by
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Gin5g r S i

S

]

]t
2

i

r D2g tS iS
]

]r
1

i

r
S1

i

2
S8D1 igq

]

]q
1 igw

]

]w

with corresponding normalization integral

~CuC! in
t
ªE

B2r

~C̄g rC!~ t,x!S21d3x. ~41!

Our description of spinors in this coordinate system poses certain difficulties. Namely,
the t variable is spacelike inside the horizon, the normalization integral~41! is not definite since
the integrand is not positive. Thus we can no longer interpret the integrand as a prob
density. Moreover, the Dirac equations corresponding to the operatorsGin andGout describe the
wave functions inside and outside the horizon, respectively. But it is not evident how to matc
wave functions on the horizon. To handle these issues, we remove the singularity atr 52r by
going over to Kruskal coordinates. Recall~see Ref. 19! that Kruskal coordinatesu and v are
defined by

u55A
r

2r
21e~r /4r! coshS t

4r D for r .2r

A12
r

2r
e~r /4r! sinhS t

4r D for r ,2r

~42!

v55 A
r

2r
21e~r /4r! sinhS t

4r D for r .2r

A12
r

2r
e~r /4r! coshS t

4r D for t,2r

. ~43!

The horizonr 52r maps to the originu505v, and the singularityr 50 maps to the hyperbola
v22u251, v.0. In Kruskal coordinates, the metric~36! becomes

ds25 f 22~dv22du2!2r 2~dq21sin2 qdw2!,

wheref 225(32r3/r )e(r /2r). Takingv andu as time and space variables, respectively, and no
that the metric is regular at the origin, we can extend the Dirac operator smoothly acro
origin. A straightforward computation gives the Dirac operator in Kruskal coordinates as

G5g tS f i
]

]v
1

i

r
f ~]vr !2

i

2
]v f D1g r S f i

]

]v
1

i

r
~ f ~]ur !21!2

i

2
]uf D1 igq]q1 igw]w .

~44!

Observe that the Dirac operator is smooth across the event horizon. Moreover, the norma
integrals~40! and ~41! on the surfacet50 become

~CuF!5E
H

C̄GjFn jdm,

where

H5$u50,0<v<1%ø$v50,u.0%,

n is the normal toH pointing into the regionu.0, v.0, andGj are the Dirac matrices

Gv5 f g t, Gu5 f g r , Gq5gq, Gw5gw.
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We remark that for smooth solutions of the Dirac equation, one can use current conservat

¹C̄GjC50. ~45!

to continuously deform the hypersurfaceH keeping fixed the value of the normalization integr
For example, one can deformH to Ĥ as depicted in Fig. 4, thereby avoiding integrating across
horizon. On the other hand, one must exercise extreme care whenever a solution of the
equation is singular near the origin.

As shown in Ref. 30, the Dirac operator in Kruskal coordinates can be written as

G5UGoutU
215UGinU

21, ~46!

whereU is the time-dependent matrix,

U~ t !5coshS t

8r D11sinhS t

8r Dg tg r , ~47!

and the Dirac operatorsGout andGin in Kruskal coordinates are

Gout5
i

4rS
~ug t1vg r !

]

]v
1

i

4rS
~vg t1ug r !

]

]u
1S i

r
~S21!1

i

2
S8Dg r1 igq

]

]q
1 igw

]

]w
,

Gin5
i

4rS
~vg t1ug r !

]

]v
1

i

4rS
~ug t1vg r !

]

]u
2S i

r
S1

i

2
S8Dg t2

i

r
g r1 igq

]

]q
1 igw

]

]w
.

It follows that the Dirac operatorsGout andGin can be identified with the Dirac operatorG in the
region,

R5$u1v.0,v22u2,1%.

We next see how solutions of the Dirac equation inside and outside the horizon match
horizon,u505v. To do this, we first study the behavior of these solutions on the horizon. L
first considerstatic solutions of the Dirac equation, so

C~ t,r ,q,w!5e2 ivtC~r ,q,w!.

FIG. 4. Kruskal coordinates.
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We assume thatC is a solution of the Dirac equations (Gin2m)50 and (Gout2m)50, and that
C is smooth on both sides of the horizonr ,2r and r .2r. Using ~46! and ~47!, we have

C~u,v,q,w!5U~ t !e2 ivtC~r ,q,w!,

wherer andt are determined implicitly fromu andv in the usual way~see Ref. 19!. This implies
thatC is only defined inR, and solves there the Dirac equation (G2m)C50. Since we are only
considering black holes, we demand thatC vanishes in the half-planeu1v,0; thus we must
analyze solutionsC of the form

C~u,v,q,w!5H U~ t !e2 ivtC~r ,q,w! for u1v.0,uÞv

0 for u1v,0
.

Such a wave function might be singular along the linesu56v, in which caseC must satisfy the
Dirac equation in a generalized sense. An analysis carried out in Ref. 30 shows thatC must satisfy
the two matching conditions

lim
«→0

~g t1g r !u«u1/4C~ t,2r1«,q,w!50, ~48!

u«u1/4~C~ t,2r1«,q,w!2C~ t,2r2«,q,w!!5o~11u«u1/4C~ t,2r1«,q,w!! as «→0. ~49!

Note that since these only depend on the local behavior ofC near the horizon, they are als
applicable when we are in the case of a nonextreme RN background having event horizor
52r.

We now consider Dirac particles in a RN background. Since the gravitational and EM
ground fields are spherically symmetric and time independent, we can separate out the angu
time dependence of the wave functions via spherical harmonics and plane waves in the
manner and, as shown in Ref. 30, we obtain the following two component Dirac equatio
regions where thet-variable is timelike,

S
d

dr
F jkv

6 5F S 0 21

1 0 D ~v2ef!
1

S
6S 1 0

0 21D 2 j 11

2r
2S 0 1

1 0DmGF jkv
6 , ~50!

and in the regions wheret is spacelike,

S
d

dr
F jkv

6 5F S 0 21

1 0 D ~v2ef!
1

S
6 i S 0 1

1 0D 2 j 11

2r
1 i S 1 0

0 21DmGF jkv
6 . ~51!

In these equations,

S~r !5U12
2r

r
1

q2

r 2U1/2

, ~52!

j 5 1
2,

3
2,..., k52 j ,2 j 11,...,j , and the6 signs correspond as before to the two eigenvalues of

operatorg0P ~cf. Sec. II!. Here we have chosen for the Dirac wave functions the two ansat

C jkv
1 5e2 ivt

S21/2

r S x j 21/2
k F jkv1

1 ~r !

ix j 11/2
k F jkv2

1 ~r ! D , ~53!

C jkv
2 5e2 ivt

S21/2

r S x j 11/2
k F jkv1

2 ~r !

ix j 21/2
k F jkv2

2 ~r ! D , ~54!

with 2-spinorsF jkv
6 , andx j 61/2

k are defined by
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x j 21/2
k 5Aj 1k

2 j
Yj 21/2

k21/2S 1
0D1Aj 2k

2 j
Yj 21/2

k11/2S 0
1D , ~55!

x j 11/2
k 5Aj 112k

2 j 12
Yj 11/2

k21/2S 1
0D2Aj 111k

2 j 12
Yj 11/2

k11/2S 0
1D , ~56!

whereYl
k are the usual spherical harmonics,l 50,1,2,...,k52 l ,...,l .

We shall show that the matching conditions~48!, ~49! do not yield normalizable, time-
periodic solutions of the Dirac equation. This will be done by showing that, for every non
solutions of Dirac’s equation, the normalization integral outside and away from the horizon

~CuC! t5E
R3\B2r 1

C̄g tCS21d3x, ~57!

is infinite for somet. Note that for a normalizable wave function, this integral is the probab
that the particle lies outside the ball of radiusr 1 , and thus cannot exceed 1. So if~57! is infinite,
the wave function cannot be normalized.

Now assume thatC is a T-periodic solution of Dirac’s equation. Expanding the period
function e2 iVtC(t,r ,q,w) in a Fourier series, and using the basis~51!, ~52! yields

C~ t,r ,q,w!5 (
n, j ,k,s

C jkv~n!
s ~ t,r ,q,w!, ~58!

wheres56, andv(n)5V12pn/T. Using the orthonormality of the spinorsx j 61/2
k , the integral

~55! becomes

~CuC! t5E
R3\B2r 1

(
n,n

(
j ,k,s

C jkv~n!
s g tC jkv~n8!

s
S21d3x.

In order to eliminate the oscillating time dependence of the integrand, we average over one
~0, T! to get

1

T E
0

T

~CuC! tdt5 (
n, j ,k,s

~C jkv~n!
s uC jkv~n!

s !.

For a normalizable wave function, this expression is finite, and hence all summands are fini
all s, j, k, n,

~C jkv~n!
s uC jkv~n!

s !,`. ~59!

We shall show that~59! cannot hold for nontrivial solutions of the Dirac equation; for this w
begin with

Lemma 5.2: The functionuF jkv
6 (r )u2 has finite boundary values on both horizons, and if it

zero on one horizon, then it is identically zero.
Proof: For simplicity, we omit the indicesj, k, andv. Choosed, 0,d,r 0 , and notice that the

t-direction is timelike on the intervals (d,r 0) and (r 1 ,`). In these regions, we can use~50! to
obtain

S
d

dr
uF6u2~r !5 K S

d

dr
F6,F6L 1 K F6,S

d

dr
F6L

56
2 j 11

r
~ uF1

6u22uF2
6u2!24m Re~~F1

6!* F2
6!,
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so that

2cuF6u2<S
d

dr
uF6u2<cuF6u2,

where c52m1(2 j 11)/d. Dividing by uF6u2 and integrating gives, ford,r ,r 8,r 0 , or r 1

,r ,r 8,

2cE
r

r 8
S21< loguF6u2ur

r 8<cE
r

r 8
S21. ~60!

In the regionr 0,r ,r 1 , ~51! gives similarly

S
d

dr
uF6u2~r !5 K S

d

dr
F6,F6L 1 K F6,S

d

dr
F6L 50,

since the square bracket in~51! is an anti-Hermitian matrix. ThusuF6u2 is constant in this region
so ~60! trivially holds for r 0,r ,r 8,r 1 . SinceS21 is integrable on the event horizons,~60!
shows thatuF6u2 has finite boundary values on each side of the horizon, and these are no
unless ifF6 vanishes identically on the corresponding region (d,r 0), (r 0 ,r 1), or (r 1 ,`).

We now use~53! and ~54! in the matching condition~49! to get for j 50,1,

F6~r j1«!2F6~r j2«!5o~11uF6~r j1«!u!, «→0.

SinceuF6(r )u2 has 2-sided limits asr j , we conclude that these limits must coincide atr j ; i.e.,

lim
0,«→0

uF6~r j1«!u25 lim
0,«→0

uF6~r j2«!u2.

Using ~60! again, we conclude that the wave function vanishes on the entire interval~d, `!, if it is
zero onr j . This completes the proof sinced was arbitrary. j

The final step is to use current conservation~cf. Ref. 27!,

¹ jC̄GjC50 ~61!

to study the decay ofF jkv(n)
s (r ) at infinity, and to prove Part~i! of Theorem 5.1.

Theorem 5.3„radial flux argument…: Either C jkv
s vanishes identically, or the normalizatio

condition (59) is violated.
Proof: For simplicity, we again omit the indicess, j, k, andv. Suppose thatCÓ0. For r 1

,r ,R and T.0, let V be the annulus outside the horizonr, given by V5(0,T)3(B2R\B2r).
Using ~59!, we find

05E
V
¹ j~C̄GjC!Augud4x

5E
0

T

dtr2S~r !E
S2

~C̄g rC!~ t,r !2E
0

T

dtR2S~R!E
S2

~C̄g rC!~ t,R!

2E
2r

2R

dss2S21~s!E
S2

~C̄g rC!~ t,r !u t50
t5T .
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Since the integrand is static, the last term vanishes, and we conclude that the radial
independent of the radius,

r 2S~r !E
S2

~C̄g rC!~r !5R2S~R!E
S2

~C̄g rC!~R!. ~62!

Using ~53! and ~54!, we have

r 2S~r !E
S2

~C̄g rC!~r !5E
S2

F* ~r !S 0 i

2 i 0DF~r !. ~63!

The matching condition~48!, expressed in terms ofF gives

lim
r 1,r→r 1

S 1 i

i 21DF50.

Using this, we have from~63!,

lim
r 1,r→r 1

r 2S~r !E
S2

~C̄g rC!~r !5 lim
r 1,r→r 1

E
S2

FF* S 1 i

2 i 1DF2uFu2G
5 lim

r 1,r→r 1

E
S2

FF* S 1 0

0 21D S 1 i

i 21DF2uFu2G
52 lim

r 1,r→r 1

E
S2

uFu2Þ0,

sinceF is finite and nonzero on the horizonr 1 .
Now we consider the radial flux for largeR. Since the flux is independent ofR, we have from

the last inequality

0, lim
R→`

UR2S~R!E
S2

~C̄g rC!~R!U5 lim
R→`

UR2S21~R!E
S2

~C̄g tC!~R!U,
because the metric is asymptotically Minkowskian. Thus the integrand of our normalization
gral

~CuC!`5E
2r 1

`

dRR2S21~R!E
S2

~C̄g tC!~R!

converges to a positive number, so that the normalization integral is infinite. j

We have thus proven Part~i! of Theorem 5.1. For Part~ii !, the case of an extreme RN
background field, we use a quite different method; cf. Ref. 30.

We remark that, using Chandrasekhar’s separation method, the results in this section
extended to the axisymmetric case. Namely, for a quite general class of axisymmetric blac
geometries, including the nonextreme Kerr–Newman solution, it is proven in Ref. 33 tha
Dirac equation admits no normalizable, time-periodic solutions.
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Discrete approaches to gravity, both classical and quantum, are reviewed briefly,
with emphasis on the method using piecewise-linear spaces. Models of three-
dimensional quantum gravity involving 6j -symbols are then described, and
progress in generalizing these models to four dimensions is discussed, as is the
relationship of these models in both three and four dimensions to topological theo-
ries. Finally, the repercussions of the generalizations are explored for the original
formulation of discrete gravity using edge-length variables. ©2000 American
Institute of Physics.@S0022-2488~00!00206-1#

I. INTRODUCTION TO DISCRETE GRAVITY

A. Basic formalism

The original motivation for the development of a discrete formalism for gravity1 arose from a
number of problems with the continuum formulation of general relativity. These included
difficulty of solving Einstein’s equations for general systems without a large degree of symm
the problems of representing complicated topologies, and the need for considerable geo
insight and capacity for visualization. It turned out, as we shall see, that the discretization s
to be described not only helped with these problems but also found a vital role in num
relativity and in attempts at a formulation of quantum gravity.

The related branches of mathematics which found their application to physics in this fo
lation of gravity are those of piecewise-linear spaces and topology and the geometric no
intrinsic curvature on polyhedra. The immediate aim was to develop an approach to g
relativity which avoided the use of coordinates, since the physical predictions of the theo
coordinate independent. The basic idea of the approach, which has subsequently become k
Regge calculus, is as follows. Rather than considering spaces~or space–times! with continuously
varying curvature, we deal with spaces where the curvature is restricted to subspaces of co
sion two. This is achieved by considering collections ofn-dimensional blocks, which are glue
together by identification of their flat (n21)-dimensional faces. The curvature lies on then
22)-dimensional subspaces, known ashingesor bones. For technical reasons, it is convenient
use blocks which aresimplices~triangles, tetrahedra, and their higher dimensional analogs!.

Consider first the realization of these ideas in two dimensions. Here we have examp
everyday life, geodesic domes; these consist of networks of flat triangles which are fitted to
to approximate curved surfaces, usually parts of a sphere. Since two triangles with a commo
can be flattened out without distortion, there is no curvature on the edges. However, w
collection of triangles meeting at a vertex is flattened, there will be a gap, indicating the pre
of curvature at the vertex. The amount of curvature there depends simply on the size of the
deficit angle.

a!Electronic mail: regge@polito.it
b!Electronic mail: r.m.williams@damtp.cam.ac.uk
39640022-2488/2000/41(6)/3964/21/$17.00 © 2000 American Institute of Physics
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It is relatively simple to visualize the generalization of a triangulated surface to three di
sions, where a collection of flat tetrahedra are glued together on their flat triangular fac
general, the tetrahedra at an edge will not fit together exactly in flat space, so there will be a
angle at that edge giving a measure of the curvature there. In four dimensions, the curva
restricted to the triangles between the tetrahedra where the four-simplices meet. And so
higher dimensions. Thus we have a set of flat simplices glued together to approximate a
space.

There is another way of viewing the scheme that has just been described. Piecewise-flat
are interesting in their own right, so in addition to using them as an approximation schem
some curved ‘‘reality,’’ we may also study such spaces for their own sake. It has been a
~e.g., by Friedberg and Lee2! that space–time is actually discrete at the smallest scales, so
could also regard curved spaces as approximations to a discrete reality. A` chacun ses gouˆts!

In order for the piecewise-flat spaces to be of any practical use in relativity, beyond ea
visualization, it must be possible to calculate geometric quantities like curvature and volum
in particular to evaluate the Einstein action of such a space. In Ref. 1 it was shown heuris
that the analog of the Einstein action

I 5
1

2 E RAgdnx, ~1!

is given by

I R5 (
hinges i

us i ue i , ~2!

whereus i u is the measure of a hinges i ande i is the deficit angle there, equal to 2p minus the sum
of the dihedral angles between the faces of the simplices meeting at that hinge. Rigorous
cation for this formula followed in Ref. 3, where it was shown that it converges to the contin
form of the action, in the sense of measures, provided that certain conditions on the fatness
simplices are satisfied. Friedberg and Lee4 approached the problem from the opposite directi
deriving the Regge action from a sequence of continuum spaces approaching a discrete o

The reason for choosing the building blocks to be simplices is that the geometry of
simplex is completely determined by the specification of its edge lengths, so a simplicial
may be described exactly by these lengths without the need for any further variables like a
This means that the simplest choice of variables for the discrete theory is the edge lengths;
the action may be calculated once they are specified and they are also the obvious analog
metric tensor, which serves as variable in the continuum theory. There, an elegant way of d
Einstein’s equations is from the principle of stationary action, varyingI with respect to the metric
The analog in Regge calculus is to varyI R with respect to the edge lengths, giving the simplic
equivalent of Einstein’s equations:

(
i

]us i u
] l j

e i50, ~3!

where we have used the result in Ref. 1, that the variation of the angular terms gives zero
summed over each simplex~Schläfli’s differential identity!.

At first sight, it appears that there is one equation for each variable, promising the poss
of a complete solution for the edge lengths. However the situation is not as simple as that
are analogs of the Bianchi identities in Regge calculus,1,5–8which in the case of flat space provid
exact relations between sets of equations, and approximate relations in the nearly flat case
equations may not provide sufficient information for a complete solution. In that case the
freedom to specify certain variables, in analogy with the freedom to specify lapse and shift
311 version of continuum general relativity.
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B. Classical applications

In the ten years after its formulation, Regge calculus was applied almost exclusive
problems in classical relativity, in particular to the time development of simple model unive
~Rather than give a complete list of references here, we refer the reader to the bibliography
9, which contains a comprehensive list for the first 20 years.! The basic idea was really 311 in
nature: Take a triangulation of a three-dimensional~3D! surface~usually closed but not necessa
ily so! to represent a hypersurface at a particular moment of time and join its vertices t
corresponding vertices of a second three-dimensional triangulation, representing the same
surface at a later time. The edges used to join these vertices are taken to be timelike and t
of four-dimensional space–time between the two triangulations is then divided into four-sim
by inserting appropriate diagonals. Given the edge lengths on the first 3D triangulation
specifying the timelike edge lengths, the Regge equations may in principle be solved for the
lengths on the second 3D triangulation. By repetition of this process, the classical evolution
initial spacelike surface may be calculated. This sounds simple enough, but unless quite
assumptions of symmetry are made, the numerical calculation, involving large sets of sim
neous equations for the edge lengths, can be very time consuming and complicated.

Significant progress with this approach was made in the early 1990s when, based on a
of Sorkin,10 it was realized that in general, the Regge equations decouple into a collection of
smaller groups. These groups of equations can then be solved in parallel, which means t
computer time required for an equivalent calculation is much less. This parallelizable im
evolution scheme is described in detail in Ref. 11 and the basic mechanism is as follows. Co
a single vertex in a triangulated three-dimensional spacelike hypersurface and introduce
vertex ‘‘above’’ this. Connect the new vertex by a ‘‘vertical’’ edge to the chosen vertex, an
‘‘diagonal’’ edges to all the vertices in the original hypersurface to which the chosen vertex
joined. Each tetrahedron in the original surface now has based on it a four-simplex, with a
the new vertex. Note that there is one diagonal corresponding to each edge in the original
radiating from the chosen vertex. We now use the Regge equations for these edges in the
surface and for the vertical edge; the only unknown edges which these equations involve
new vertical edge and the diagonal edges, and there is precisely the same number of equa
unknowns. Thus, in principle, we can solve exactly for the unknown edge lengths.~In practice,
because of the approximate relationship between the equations from the Bianchi identitie
often more convenient to ignore some of the equations and instead specify conditions equ
to the lapse and shift.!

We have described how to evolve vertices one by one in the Sorkin evolution scheme, a
entire hypersurface can be evolved in this way. The method is very general and can be use
hypersurface with arbitrary topology. However, advancing the vertices one by one will not
narily be the most efficient way of evolving a hypersurface. If any two vertices in a hypersu
are not connected by an edge, then they can be evolved to the next surface at the sam
without interfering with each other, which is why the method is obviously parallelizable.

C. Some quantum applications

The earliest application of Regge calculus to quantum gravity was in three dimensions12 and
involved 6j -symbols. This work, and subsequent developments along those lines, will b
subject of Secs. II and III and we shall not discuss it further here.

From the early 1980s onwards, there have been many attempts to formulate a the
quantum gravity based on Regge calculus, and we shall summarize the salient features of s
those approaches, both analytic and numerical.

The first work on quantum Regge calculus in four dimensions involved using a study of
perturbations about a flat background to relate the discrete variables with their conti
counterparts.13 The discrete propagator was derived in the Euclidean case and shown to agre
the continuum propagator in the weak field limit.~More details of this calculation will be given in
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Sec. IV.! The technique of weak field approximation has proved to be very useful not onl
comparisons with the continuum theory but also as a guide in numerical calculations.

The difficulties of analytic calculations in quantum Regge calculus, coupled with the nee
a nonperturbative approach and also the availability of sophisticated techniques develo
lattice gauge theories, have combined to stimulate numerical work in quantum gravity, bas
Regge calculus. One approach is to start with a Regge lattice for, say, flat space, and allo
evolve using a Monte Carlo algorithm~see e.g., Refs. 14–16!. Random fluctuations are made
the edge lengths and the new configuration is rejected if it increases the action, and accept
a certain probability if it decreases the action. The system evolves to some equilibrium co
ration, about which it makes quantum fluctuations, and expectation values of various operat
be calculated. It is also possible to study the phase diagram and search for phase transiti
nature of which will determine the vital question of whether or not the theory has a contin
limit. Many of the simulations have involved an action with an extra term, quadratic in
curvature, to avoid problems of convergence of the functional integral; some have included
fields coupled to gravity.17 Recent work by Riedler and collaborators in four dimensions descr
evidence for a new continuous phase transition, essential for a continuum limit, at negative
tational coupling.18

The choice of measure in the functional integral is still a matter for controversy, depe
both on attitude to simplicial diffeomorphisms and also on the stage at which translation fro
continuum to the discrete takes place. The numerical simulations just described mainly
simple scale invariant measure.19 Menotti and Peirano have derived an expression for the fu
tional measure in two-dimensional Regge gravity, starting from the DeWitt supermetric
giving exact expressions for the Fadeev–Popov determinant for bothS2 and S13S1 topologies
~see Ref. 20, and references therein!.

A rather different approach to numerical simulations of quantum gravity is that ofdynamical
triangulations. ~For a review containing an extensive set of references, see Ref. 21!. This also uses
Regge lattices and the Regge action, but there are important differences. In the tradition
proach, we are effectively integrating over the edge lengths in the functional integral, b
dynamical triangulations, the lattice is taken to be equilateral, with a certain length scale, a
summation is over different triangulations, which are generated by a set of~k,l! moves.22 In two
dimensions, there are just two possible moves~and their inverses!: the reconnection of vertices in
two triangles with a common edge, and the insertion of a vertex and edges in a triangle to
it into three triangles~2-2 and 1-3 moves!. There are straightforward generalizations of the
moves to higher dimensions. The moves are ergodic in the sense that any combinatorially e
lent triangulation can be generated by a finite succession of these moves. It is argued t
restriction to equilateral triangulations is a way of avoiding over-counting gauge-related co
rations. The approach has been very successful in two dimensions, where there are analytic
with which to compare the calculations. In three and four dimensions, there has been progr
for example, deriving the crucially important exponential bound on the number of triangula
for a given number of vertices,23 but there are still open questions on the continuum limit, si
the phase transition appears to be first order~see the review by Loll24!. Recently a Lorentzian
version of dynamical triangulations has been formulated in (111) dimensions.25 Numerical simu-
lations have revealed a new universality class for pure gravity, with Haussdorf dimension

Discrete gravity has also proved very useful in calculations of the wave function o
universe.26 According to the Hartle–Hawking prescription, the wave function for a given th
geometry is obtained by a path integral over all four-geometries which have the given
geometry as a boundary. To calculate such an object in all its glorious generality is impossib
one can hope to capture the essential features by integrating over those four-geometries
might, for whatever reason, dominate the sum over histories. This has led to the conc
minisuperspacemodels, involving the use of a single four-geometry~or perhaps several!. In the
continuum theory, the calculation then becomes feasible if the chosen geometry depends
a small number of parameters, but anything more complicated soon becomes extremely d
For this reason, Hartle27 introduced the idea of summing oversimplicial four-geometries as an
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approximation tool in quantum cosmology. Although this is an obvious way of reducing
number of integration variables, there are still technical difficulties: The unboundedness
Einstein action~which persists in the discrete Regge form! leads to convergence problems for th
functional integral, and it is necessary to rotate the integration contour in the complex pla
give a convergent result.28,29

In principle, the sum over four-geometries should include not only a sum over metrics bu
a sum over manifolds with different topologies. One then runs into the problem of classi
manifolds in four and higher dimensions, which led Hartle30 to suggest a sum over more gene
objects than manifolds,unruly topologies. Schleich and Witt31 have explored the possibility o
using conifolds, which differ from manifolds at only a finite number of points, and this has
investigated in some simple cases.32,33 However, a sum over topologies is still very far fro
implementation.

Yet another area of application of Regge calculus in quantum gravity involves the study
simplicial supermetric, the metric on the space of three-geometries. Its signature is cruc
determining spacelike surfaces in superspace, which are important in Dirac quantization
quantum cosmology. In the continuum, there are limited results on the signature and this led
possibility of investigating it in the discrete case,34 where the analog is the Lund–Regg
supermetric.35 This supermetric was constructed for some simple manifolds~S3 and T3! and its
signature calculated. The results agreed with the continuum predictions and also showed
supermetric can become degenerate. We still do not have a complete understanding of the
of the modes into ‘‘vertical’’~corresponding to metrics related by diffeomorphisms! and ‘‘hori-
zontal’’ ones.

D. Other approaches to discrete gravity

Of course Regge calculus is not the only way of setting up a theory of discretized ge
relativity. In this section, we shall describe some alternatives.

One important class of schemes involves treating gravity as a gauge theory. For ex
Mannion and Taylor36 defined a theory of gravity on a fixed hypercubic lattice, and Kaku37 used
a fixed random lattice. However a dynamical lattice seems more appropriate in a theory aim
describe the quantum fluctuations of space–time, and this was used in much earlier w
Weingarten.38

In an approach closely related to Regge calculus, Caselle, D’Adda, and Magnea39 defined a
theory of gravity on the dual lattice, giving both first- and second-order formulations. The a
they obtained was a compactified form of the Regge action, involving the sine of the deficit a
D’Adda and Gionti showed40 that Regge calculus is a solution of the first-order formulation in
limit of small deficit angles. The action of Caselle, D’Adda, and Magnea was also use
Kawamoto and Nielsen41 in their version of lattice gravity with fermions.

Immirzi investigated the links between canonical general relativity in the continuum,
quantum gravity, and spin networks, in an attempt to formulate a quantized version of di
gravity in the spirit of Regge calculus but ran into problems over hermiticity.42

A totally different approach to discrete gravity is ’t Hooft’s polygon model in (211)
dimensions.43 This was introduced as a way to refute Gott’s claim of acausality in (211) gravity
coupled to point particles.44 ’t Hooft’s method is to split space–time into the direct product
cosmological time and a Cauchy surface tessellated by flat polygons. The local flatness of
time in the pure gravity regime and the conelike structure introduced by particles, as in R
calculus,45 are expressed in terms of conditions on the edges and vertices of the polygons. A
Lorentz frame is attached to each polygon and two constraints imposed; these are, first, th
runs at the same rate in each polygon~which corresponds to a partial gauge fixing! and, second,
that all vertices are trivalent~which is acceptable because higher order vertices can always be
into trivalent vertices connected by edges of zero length!. The consequences of these conditio
are that the length and velocity of an edge are the same in both polygons to which it belong
that the velocity of each edge is orthogonal to it in both frames. These facts result in tran
rules for the vertices in the tessellation.
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The method for evolving such a space–time is as follows. Initial data~lengths and velocities!,
subject to consistency conditions, are assigned to the edges on a polygonally tessellated h
face. The configuration evolves linearly until an edge collapses to zero length or a vertex c
another edge. A transition, governed by the vertex conditions, then takes place to anothe
figuration which will, in general, have different numbers of vertices, edges, and polygons
new data will still satisfy the consistency conditions and the process is then repeated. Whe
are particles present at the vertices, there are deficit angles proportional to their masses,
transition rules are modified accordingly.

It is not an easy task to follow the time evolution of a (211)-dimensional model with
particles, even though the system has a finite number of degrees of freedom. ’t Hooft did n
cal simulations on a small computer, with some unexpected predictions. His big-bang an
crunch hypotheses were based on the evolution of a Cauchy surface withS2 or S13S1 topology,
tessellated by a single polygon.46 It would be interesting to test these predictions for more comp
initial configurations, and as a means to this, there has been recent work47 in which the constraint
equations have been interpreted in terms of hyperbolic geometry~see also Ref. 48!, and various
consistent sets of initial data set up, but the evolution calculations have not yet been com
Part of the motivation for this work is to compare ’t Hooft’s method with other approache
(211) gravity, in particular Regge calculus. A (211)-dimensional code has been set up
Regge space–times and a number of calculations performed,49 with a view to making detailed
comparisons with the ’t Hooft method. The ultimate aim is to understand the exact relatio
between the two approaches, which seem rather different but have many concepts in com

Based on the polygon approach, various toy models of (211)-dimensional gravity have bee
constructed,46,50 issues of topology been addressed,50,51 and particle decay and space–time kin
matics investigated.52 ’t Hooft himself has proposed quantized models of (211)-dimensional
space–time,53 showing that gravitating particles live on a space–time lattice. For anS23S1

topology, first quantization of Dirac particles is possible. Waelbroeck has suggested a s
approach, using canonical quantization in (211) dimensions.54

Back at the classical level, Brewin has formulated55 a discretization of gravity which he feel
is closer to the original theory of general relativity. Preliminary calculations are encouraging
other important work on lattice gravity by Bander, Jevicki and Ninomiya, Khatsymovsky
Lehto, Nielsen and Ninomiya, we refer the reader to the Regge calculus review and bibliogr9

We emphasize again that this paper is not meant to be an exhaustive review of the subjec
After this rather rapid survey of applications of Regge calculus, and some other approac

discrete gravity, we shall now concentrate on one particular approach and show how it has
exciting new developments in the search for a quantum theory of gravity.

II. 6j -SYMBOLS IN THREE-DIMENSIONAL QUANTUM GRAVITY

As promised, we now look in detail at the earliest link forged between Regge calculu
quantum gravity, now known as the Ponzano–Regge model.12 This emerged from a paper o
6 j -symbols and we will first give the background to these.

A. 6 j -symbols

6 j -symbols, which are generalizations of the more well-known Clebsch–Gordan coeffic
first arose as tools for the computation of matrix elements in the theory of complex spectra,56 and
are now used routinely by atomic physicists and theoretical chemists in quantum mech
calculations involving angular momentum. In particular, they relate the possible basis wave
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tions when three angular momentum are added:

u j 1 ,~ j 2 , j 3! j 23,J&5(
j 12

A~2 j 1211!~2 j 2311!~21! j 11 j 21 j 31JH j 1 j 2 j 3

j 12 j 23 J J u~ j 1 , j 2! j 12, j 3 ,J&.

~4!

An alternative and useful definition involves therecouplingdiagram:

5(
J

H j1 j2 j

j3 j4 JJ

A graphical representation is obtained by associating a 6j -symbol with a tetrahedron:

~5!

with the arguments of the 6j -symbol corresponding to the edge lengths of the tetrahedron.~For
technical reasons, it turns out to be more accurate to associate a symbol with argumentsa, b, ... to
a tetrahedron with edge lengthsa11/2, b11/2,... .! For the 6j -symbol to be nonzero, the argu
ments have to satisfy the analog of the triangle inequalities for each face of the tetrahedro

j 3< j 11 j 2 , etc. ~6!

They can be evaluated from the formula

H a b c

d e fJ 5AD~a,b,c!D~a,e, f !D~c,d,e!D~b,d, f !

3(
x

~21!x~x11!! @~a1b1d1e2x!! ~a1c1d1 f 2x!! ~b1c1e1 f 2x!!

3~x2a2b2c!! ~x2a2e2 f !! ~x2c2d2e!! ~x2b2d2 f !! #21, ~7!

where

D~a,b,c!5~a1b2c!! ~b1c2a!! ~c1a2b!! @~a1b1c11!! #21. ~8!

These 6j -symbols are based on the group SU~2!, but as we shall see, it is also possible to ha
q-deformed 6j -symbols based on quantum groups. For example, define57
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q5exp~2p i /r ! ~9!

and

@n#5
~qn/22q2n/2!

~q1/22q21/2!
. ~10!

Then theq-deformed 6j -symbol for SUq(2) is defined in the same way as the undeform
one, withn replaced everywhere by@n#. Note that@n#→n asq→1 andr→`.

B. The Ponzano–Regge model

The main purpose of the paper by Ponzano and Regge12 was to derive asymptotic formulas fo
classical~i.e., undeformed! 6 j -symbols in the limit when certain arguments became large.
case most relevant to the exposition here is when all six parameters become large. Th
lengths of the corresponding tetrahedron are really related toj i\ and these quantities are ke
finite asj i→` while \→0 so this process corresponds to the semiclassical limit. This asymp
behavior is given by

H j 1 j 2 j 3

j 4 j 5 j 6
J ;

1

12pV
cosS (

i
j iu i1p/4D , ~11!

whereV is the volume of the terahedron andu i is the exterior dihedral angle at edgei ~i.e., the
angle between the outward normals to the faces meeting there!. This was recently proved rigor
ously by Roberts.58

To see the connection between this formula and quantum gravity, consider the followingstate
sumdefined in Ref. 12. Take a closed two-dimensional surface, triangulate it and divide its in
into tetrahedra, possibly inserting internal vertices. Label the internal edges byxi and the external
ones byl i . Define

S~$ l i%!5(
xi

)
tetrahedra

$6 j %~21!X)
i

~2xi11!, ~12!

where theX in the phase factor is a function of the edge lengths.
Although this expression is infinite in many cases, it has some extremely interesting p

ties. In particular, noting that in the sum over the internal edges, the large values dominate,
replace the sum by an integral with respect to those edge lengths and use the above
asymptotic formula. Then the dominant contribution to the integral comes from the poin
stationary phase, which are given by

(
tetrahedrak meeting on edgei

~p2u i
k!52p. ~13!

This means that the sum of the dihedral angles at each edge is 2p, which is precisely the
condition for local flatness in a three-dimensional simplicial space. What is more, the state
given approximately by

S'
1

A12p
E )

i
dxi~2xi11!~21!X)

tet k

1

AVk

cosS (
l Ptet k

j lu l
k1

p

4 D . ~14!

Now this contains a term of the form
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E )
i

dxi~2xi11!expS i (
edges l

j l S 2p2 (
tet k{ i

~p2u l
k! D D 5E )

i
dxi~2xi11!expS i( j le l D ,

~15!

which looks precisely like a Feynman sum over histories with the Regge calculus action in
dimensions:

E )
i

dm~xi !exp~ i I R! ~16!

with

I R5(
l

j le l , ~17!

wheree l is the deficit angle at edgel anddm(xi) is the measure on the space of edge length
This result was rather puzzling and, although Hasslacher and Perry59 emphasized the connec

tion between spin networks and simplicial gravity, its significance was not fully appreciated
much later, when a very similar expression was written down in a different context.

C. The Turaev–Viro model

In the late 1980s and early 1990s, mathematicians put a lot of effort into searchin
invariants of manifolds, the hope being, at least in part, that such quantities would help wi
classification of manifolds. Without being aware of the Ponzano–Regge work, Turaev and60

defined a state sum for triangulated three-manifolds, which in many aspects was identical
of Ponzano and Regge. The main differences were that they gave formulas for closed manif
well as those with boundary, they showed explicitly that the quantity obtained was independ
triangulation, and finally, they used 6j -symbols for the quantum group SLq(2). Only some of the
irreducible representations of this group, the ones withj taking finite values, have suitable alge
braic properties, which means that the edge lengths are not summed up to infinite values;j i can
take only integer and half-integer values from the set (0, 1/2, 1,...,(r 22)/2), with r>3. A very
important consequence of this is that the answer obtained is finite, and so the model appea
a regularized version of the Ponzano–Regge model.

The obvious question to ask is how the Turaev–Viro state sum is connected to qu
gravity. Witten61 conjectured that it was equivalent to a Feynman path integral with the Ch
Simons action for SUk(2)^ SU2k(2), andthis and equivalent results were proved by a numbe
people.62–64 To see how this works,65,66 consider the Chern–Simons Lagrangian for this gro
product:

L5
k

4p E
M

TrS A1`dA11
2

3
A1`A1`A1D2

k

4p E
M

TrS A2`dA21
2

3
A2`A2`A2D ,

~18!

where

A65Ai (6)
a Ta dxi ~19!

with Ta a basis of the SU~2! Lie algebra. Making the change of variables

Ai (6)
a 5v i

a6
1

k
ei

a , ~20!

whereei
a is the dreibein and
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v i
a5 1

2 eabcv ibc , ~21!

with v ibc being the connection two-form, we obtain

E S e`R1
lk

3
e`e`eD , ~22!

which is the Einstein–Hilbert action for gravity with cosmological constant given by

lk5S 4p

k D 2

. ~23!

~Note that thek here is equal tor 22, wherer appears in the definition ofq.! By taking the
limit as k→`, we obtain three-dimensional gravity with zero cosmological constant, i.e.
theory represented by the Ponzano–Regge model. This result is consistent with the fact t
q→1 limit of the Tuaev–Viro model is the Ponzano–Regge model.

The properties of the Turaev–Viro state sum show that the formalism is an example
topological quantum field theory~see e.g., Ref. 67!. This is perfectly appropriate for a theory o
gravity in three dimensions where there are no local degrees of freedom. As for the Pon
Regge theory, the dominant classical configurations are locally flat~recall that in Chern–Simons
gravity, the solutions involve the space of flat connections!.

The relationship between the Turaev–Viro invariant and three-dimensional quantum gra
an extremely important one. It means that in three dimensions, we have in principle a w
calculating the partition function for triangulated manifolds. This has been done for many o
simpler three-manifolds~see Refs. 68 and 69, for example!. The Turaev–Viro expression can als
be used for calculating topology-changing amplitudes in three-dimensional gravity; the m
here is to construct a cobordism between two two-dimensional triangulated surfaces and th
the Turaev–Viro expression for a manifold with boundaries to evaluate the trans
probability.70

D. Spin networks

The Turaev–Viro expression is not the only method of calculating this particular invaria
three-manifolds. Various other prescriptions have been written down, and one that is wor
scribing at this stage is that using spin networks. These were invented by Penrose,71 who wanted
to formulate a purely combinatorial approach to space–time. His networks had trivalent ve
and the edges of the graphs were labeled by spins. He developed a method of calculating th
of an arbitrary spin network and was able to show that this led to the usual angles of
dimensional space.

Penrose’s spin networks were later generalized in a number of ways. The edges were
by representations of quantum groups and it was necessary to introduce intertwining opera
intertwiners at the vertices.72 In some cases a framing was introduced and the graphs be
‘‘ribbon graphs.’’73 Kauffman74 showed how to calculate the Turaev–Viro invariant by taking
graph dual to a triangulation to be a spin network; the edges of the graph inherit the labels
triangulation edges which they cross. Spin networks have also been introduced into loop qu
gravity,75 where they are an important calculational tool, for instance in the derivation o
spectrum of the area and volume operators.75 @Note that Freidel and Krasnov also obtained
discrete spectrum for the volume operator in BF theory~see Sec. III D! by differentiating the
Turaev–Viro amplitude with respect to the cosmological constant.76# As we shall see, spin net
works also play a role in recent attempts at formulations of four-dimensional quantum grav
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III. EXTENSIONS TO FOUR DIMENSIONS

After it was realized that the Turaev–Viro state sum provides a finite theory of th
dimensional gravity, the search began for a generalization to four dimensions. Before
described, we shall stop to ask what we hope to achieve by this. In classical general rel
there are enormous qualitative differences between gravity in three and four dimensions.
ticular, there are gravitons in four dimensions, but not in three, so although it seems reason
describe three-dimensional gravity by a topological invariant of a manifold, it seemslikely that an
invariant of a four-manifold might describe only some topological sector of gravity. We s
return to this point later.

The obvious way of setting about extending the three-dimensional model, base
6 j -symbols, to four dimensions is by using some 3n j-symbol for a value ofn larger than 2. The
3n j-symbols in the state sum would then be expanded in terms of 6j -symbols, and the Ponzano
Regge formula for their asymptotic values inserted, the hope being that this would give a
pression looking like a path integral with the four-dimensional Regge action. The problem
this is that the asymptotic formula involves the three-dimensional dihedral angles and it is
difficult to relate these to four-dimensional angles. This indicates that a more radical gene
tion may be needed.

We shall now describe some of the attempts at generalization, leading up to some recen
which seems very promising.

A. The Ooguri model

A source of inspiration for some generalizations of the Ponzano–Regge and Turaev
models was Boulatov’s generalized matrix model,77 which involved a scheme for generatin
three-dimensional simplicial complexes as terms in a perturbative expansion. The contri
from each simplicial complex was weighted by its Ponzano–Regge or Turaev–Viro inva
depending on the value ofq. Boulatov’s model was formulated in a way that it could be exten
to higher dimensions, and the four-dimensional case forq51 was worked out by Ooguri.78

The essential ingredients in Ooguri’s model are the assigning of group variables to the
hedra and spinj labels to the triangles in the triangulated four-manifold. The terms in Oogu
action are of two types: The first is a product of two functions of the group variables, and
represents two glued tetrahedra; the second is a product of five functions and represe
tetrahedra in a four-simplex. A Fourier decomposition is performed in terms of rotation ma
and the group variables are then integrated out, using the standard relationship between
matrices and 3j -symbols, and the invariant Haar measure normalized to unity. The resu
expression has four 3j -symbols associated with each tetrahedron; these may then be di
between the four-simplices meeting on that tetrahedron, and then each four-simplices ends
ten 3j -symbols which can be combined to give a 15j -symbol. At first sight, it seems odd t
associate a 15j -symbol with a four-simplex, which has only ten triangles labeled by spin val
The way to interpret the symbol is to consider the dual graph, which has ten edges an
four-valent vertices~corresponding to each tetrahedon in the original triangulation!. Each of these
four-valent vertices can be split into two trivalent ones, and an extra spin label can be assig
the edge joining them. This splitting sounds rather arbitrary but different splittings are relat
6 j -symbols~see the second diagram in the section on 6j -symbols! and when all summations ar
performed, the result is independent of splitting.

The partition function is calculated by integrating the exponential of minus the action ove
Fourier coefficients, and the resulting expression is

Z5(
C

1

Nsymm~C!
lN4~C!Z~C!, ~24!

with Z(C) given by
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Z~C!5(
j

)
triangles

~2 j t11! )
tetrahedra

$6 j % )
four-simplices

$15j %. ~25!

The summation inZ is over simplicial complexesC, with Nsymm being the rank of the
symmetry group ofC, andN4 the number of four-simplices inC. By writing the contributions
from all the tetrahedra meeting on a particular triangle in terms of rotation matrices, one can
that the holonomy around any triangle is trivial. This ties up with the proposed link betw
Ooguri’s model and BF theory, as we shall see later.

B. The Archer, Crane–Yetter, and Roberts models

The extension of the Ooguri model to general values ofq was worked out by various people
Archer79 showed how to construct aq-deformed topological quantum field theory in gene
dimension, giving realizations in three and four dimensions based on the quantum
Uq(SLN), and suggesting that his theory corresponded to BF theory with a cosmological con

Crane and Yetter80 outlined the construction of aq-deformed version of Ooguri’s model an
recognized its relationship to the work of Roberts,64 who had defined a four-dimensional gene
alization of his own ‘‘chain-mail’’ formulation of the Turaev–Viro invariant. Roberts showed t
his invariant for a four-manifoldM depended on two simple functions ofr, one raised to the powe
of s(M ), the signature, and the other to the power ofx(M ), the Euler character.

The result of Roberts was disappointing but instructive for those trying to construct a th
of four-dimensional quantum gravity by this method. Since the models do not give any
information about four-manifolds, it showed that a more radical generalization was needed

C. The Barrett–Crane model

An important step forward in these generalization attempts has been taken recently w
formulation of the Barrett–Crane model.~Although the details of some aspects of the model, a
other related models, have yet to be worked out, we consider the ideas sufficiently impor
include in this review.! First came the realization that it made sense to generalize spin netwo
relativistic spin networksappropriate to four dimensions.81 The symmetry group SO~3! in three
dimensions is replaced by SO~4! in four dimensions, which has spin covering SU~2!^SU~2!.
Barrett and Crane therefore label the triangles by two spin labels rather than one. Thu
relativistic spin network, the edges~dual to the triangles in the four-complex! carry labels (j 1 , j 2)
and the vertices~dual to tetrahedra! carry the appropriate intertwiners. Barrett and Crane sugge
that the two labelsj 1 and j 2 should be equal to satisfy the constraints at the vertices,
Reisenberger82 showed that this solution is unique. Thus the Barrett–Crane model is a constr
doubling of the earlier attempts described in Secs. III A and III B which can thus be regard
just describing the self-dual section of gravity.

We now describe the Barrett–Crane model in a little more detail. Consider a single
simplex, draw its dual graph, and then split the vertices as described for the Ooguri mode
first expression written down by Barrett and Crane for the amplitude of a four-simplex was o
form

I 15 (
extra edges

cj$15j %2, ~26!

wherecj is a weight factor and the 15j -symbol is squared because of the~j, j! labeling on each
edge of the dual graph. It turned out to be very difficult to evaluate the asymptotic value o
expression, so Barrett and Crane tried a second approach.

Label the five tetrahedra in a four-simplex byk; the spin label on the triangle where tetrahed
k and l meet is then denoted byj kl . The matrix representing the elementgPSU~2! in the
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irreducible representation of spinj kl is denoted byrkl(g). VariableshkPSU~2! are assigned to
the tetrahedra and the invariantI 2 ~the second Barrett–Crane model! is obtained by integrating a
function of these variables over each copy of SU~2!:

I 25~21!Sk, l2 j klE
hPSU~2!5 )

k, l
Tr rkl~hkhl

21!. ~27!

The measure used is the Haar measure normalized to unity.
The next step is to relate this expression to the geometry of the four-simplex.83 Using the fact

that SU~2! is isomorhic toS3, and embeddingS3 in R4, we can regard the elementhkPSU~2! as
a unit vector inR4, normal to the three-dimensional hyperplane in which tetrahedronk lies. Then
according to a well-known formula in representation theory,

Tr r~hkhl
21!5

sin~2 j 11!f

sinf
, ~28!

where cosf5hk•hl , i.e., f is the angle between the normals and thus the exterior angle bet
the two hyperplanes.

Note that the five hyperplanes define a four-simplex up to translation and an overall
Thus integration over the elementshk may be interpreted as integration over all possible fo
simplices.

Recalling the equivalence of the asymptotic value of the Ponzano–Regge model to
integral with the three-dimensional Regge calculus action, we now look for a similar result h84

We write sin(2j11)f in terms of exponentials and, for largej, use the method of stationary pha
to find the asymptotic value of the integral. Settingekl561, we writeI 2 as

I 25
~21!Sk, l2 j kl

~2i !10 (
ekl561

)
hPSU~2!5

ekl

sinfkl
expS i(

s< l
ekl~2 j kl11!fklD , ~29!

which makes it clear that we need the stationary points of

I 5(
k< l

ekl~2 j kl11!fkl . ~30!

Now thefkl’s for a four-simplex are not independent variables; as is shown in the orig
formulation of Regge calculus,1 their variations are related by

(
k, l

Akldfkl50. ~31!

Adding this constraint toI with a Lagrange multiplierm, we find that for each triangle,

ekl~2 j kl11!5mAkl . ~32!

The overall scale can then be fixed by takingm561.
What has been established is that for a stationary phase point, first, the anglesfkl are those of

a geometric four-simplex with triangle areas

Akl52 j kl11, ~33!

and, second, the integrand is exp(imIR), with

I R5 (
triangleskl

Aklfkl , ~34!
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the Regge calculus version of the Einstein action for a four-simplex, withm561.
The formulation of this model is by no means complete. The next step is to sum

four-simplices, which is likely to be more difficult than for the first model, where the extra la
on tetrahedra could provide links between neighboring four-simplices. The resulting expre
will need to be regularized by passing to representations of the quantum group Uq~SL2!, as in the
transition from the Ponzano–Regge state sum to that of Turaev and Viro. This analogy
precise because the Barrett–Crane amplitude isnot independent of triangulation. The covarian
lost here may perhaps be restored by summing over triangulations using a generalized
model approach, as suggested by De Pietriet al.85 ~Note that these authors refer to what we ha
called the ‘‘second Barrett–Crane model’’ as their ‘‘first version.’’!

We shall return to the interpretation of this model in Sec. III D, but first note that the for
lation described so far is Euclidean. There have been Lorentzian models proposed rece
(211) dimensions, Freidel86 has set up a version in which SU~2! is replaced by SL(2,R), for
which both discrete and continuous representations are used. This results in a model in whi
is discrete and space continuous. The partition function requires summation over causal stru
which obviously has no analog in the Euclidean case. The 6j -symbols for the discrete serie
representation of SL(2,R) were defined first by Davids,87 who also obtained the analogou
Ponzano–Regge formula, which here involves exp(iI L), whereI L is the Lorentzian Regge action
In (311) dimensions, Barrett and Crane88 have proposed versions based on the classical Lor
group and on the quantum Lorentz algebra, but the second of these is still at a preliminary

D. Relation to BF theory

This is not the place for a review of BF theory, but let us briefly mention its relev
properties. It is a gauge theory which can be defined in any dimension and is ‘‘background
in the sense that no pre-existing metric or other geometrical structure on space–time is nee
is a theory with no local degrees of freedom.

The action for BF theory in four dimensions is

I BF5E
M

Tr~B`F !, ~35!

whereB is a Lie algebra-valued two-form, andF5dA1A`A, with A the connection one-form
It gives rise to the constraintF50, which means that the connectionA is flat. This ties up with the
trivial holonomy around triangles in the Ooguri model. The other constraint,dAB50, is the
statement of a particular type of gauge symmetry in BF theory.

To understand the relationship between general relativity and BF theory in four dimensi89

consider the Palatini formulation of general relativity, which has action

I P5E
M

Tr~e`e`F !, ~36!

with e a one-form on the manifoldM, andF defined in terms of the connection as for BF theori
It is immediately apparent that there is a relationship between this Palatini formulation an
theory with B constrained to be of the forme`e. There is a subtle difference between t
equations of motion derived from the two actions: For general relativity, we have

e`F50, dAB50 ~37!

as compared with the BF equations

F50, dAB50. ~38!

Thus the equations of general relativity are weaker here than those for BF theory, w
heuristically, is why general relativity in four dimensions is more general than a topolo
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theory. We see that general relativity in four dimensions is equivalent to BF theory with an
constraint (B5e`e) ~giving rise to the paradoxical statement that adding a constraint produ
less restricted theory!!

We see now a further justification of why, in the Barrett–Crane model, the two spin labe
each triangle should be equal@i.e., we see the parallel between~j, j! ande`e#. Thus the constraint
which Reisenberger82 derived may be interpreted as equivalent to the constraint which relate
theory to general relativity in four dimensions.

Reisenberger90 has explored further the relationship between the Barrett–Crane mode
continuum theories, showing that the model corresponds to an SO~4! BF theory in which the right-
and left-handed areas, defined by the self-dual and anti-self-dual components ofB, are constrained
to be equal.

Before considering an extension of BF theory in four dimensions, let us return to the ca
three dimensions. It can be shown that three-dimensional general relativity without matte
special case of BF theory, where the equations of motion give simply that the connection is t
free and flat. Adding an extra term to the BF Lagrangian has a very interesting effect. St
from the modified action

I BF8 5E
M

TrS B`F1
l

6
B`B`BD ~39!

and making the transformation

A65A6AlB, ~40!

we can show thatI BF8 is equal to the difference of the two Chern–Simons actions as in Sec.
It was shown there that this was equivalent to three-dimensional general relativity with a co
logical constantl related to the deformation parameterq, which gives a finite theory of quantum
gravity in that dimension.91 Thus a role of the cosmological constant is to regularize the the

In four dimensions, the extra term that we need seems to be slightly different. The pro
modified action is

I BF9 5E
M

TrS B`F1
l

12
B`BD . ~41!

The form of this extra term was first suggested by Archer,79 whose contribution is describe
earlier. It has been discussed more recently by Baez,89,92who gives a very comprehensive discu
sion of BF theory and the discrete models of quantum gravity in three and four dimen
~Reference 89 is recommended strongly for fuller details of these issues.! Imposing the constrain
B5e`e as before, the action becomes that for the Palatini formulation of general relativity
cosmological constant,

I P8 5E
M

TrS e`e`F1
l

12
e`e`e`eD . ~42!

This suggests the possibility of finding a regularized version of four-dimensional qua
gravity by constructing aq-deformed version of the Barrett–Crane model, satisfying the relat
ship

l→0 as q→1. ~43!

Another possible~and related! way forward is through spin foam models, as described bri
in Sec. III E.
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E. Spin foam

As mentioned in the section on three-dimensional gravity, spin networks have playe
important role in calculations of invariants of three-manifolds, and in loop quantum gravity, w
they provide a gauge-invariant basis of states.75,93 If we wish to describespace–timeby this type
of method, we need, as we have already remarked, an extension of the concept of spin ne
An alternative to the idea of relativistic spin networks is provided by what has been calledspin
foam,94 because one can think of a spin foam as a soap film connecting two spin netwo
different times. ‘‘Sums over surfaces’’ formulations of loop quantum gravity have been give
Reisenberger and Rovelli,95 and Iwaski96 has formulated the Ponzano–Regge model in term
surfaces. Turaev and Viro60 formulated their theory not only in terms of a triangulation of t
three-manifold but also in terms of simple 2-polyhedra forming a two-complex embedded
manifold, and we can interpret this second method as the first example of a spin foam mode
relationship between the evolution of spin networks and the approach using triangulated ma
has been explored and illuminated by Markopoulou.97

The theory of spin foam is a way of formalizing the calculation of the partition function in
theory by triangulating manifolds. Recall that a spin network is a graph with edges label
irreducible representations and vertices by interwiners. Imagine moving such an object th
space, or ratherspace–time, so that it traces out a two-dimensional surface, a generic slice thro
which would be a spin network; this, heuristically, is what we mean by a spin foam. It
two-complex, the faces of which are labeled by irreducible representations and the edg
interwiners. The dual triangulation of a manifold is an example of such an object.

Baez89 has outlined how to calculate transition amplitudes in BF theory using sums over
foams, and the derivation of the spin foam model from the classical action principle based
theory has been discussed by Freidel and Krasnov.98 It has already been shown99 that a particular
type of spin network may be evaluated as a Feynman graph, and the idea in the evaluation
foam sums is to use Feynman’s sum over histories approach, with BF theory playing the r
the free theory and spin foams as two-dimensional analogos of Feynman diagrams. Thes
niques have produced agreement with the lowest order terms in the known state sum mo98

Markopoulou and Smolin100 have defined a model of the time evolution of spin networks base
local causality rules, which are equivalent to those for spin foams.

Recently Smolin101 has suggested a connection between evolving spin networks, spin f
and such approaches related to loop quantum gravity, and string theory, where there are
intuitive similarities in the evolution of strings and membranes. Any precise equivalence
needs to be worked out, but Smolin’s suggestion is typical of recent ideas in which a num
apparently unrelated approaches to quantum gravity seem at last to be coming together.

IV. AREA REGGE CALCULUS

It seems that those attempts at formulating a theory of quantum gravity in four dimen
described in Sec. III all need one ingredient to be at all successful; this is the assignm
labeling to the triangles instead of~or possibly as well as! the edges.~This fits in with work by
Birmingham and Rakowski,102 who constructed state sum models based onZp for four-
dimensional triangulated manifolds. When the colorings fromZp were assigned only to the edge
the invariant depended only on the three-dimensional boundary manifold, but when coloring
assigned also to the triangles, the invariant depended on the four-dimensional structure.! Even the
spin foam description fits into this pattern when one considers the triangulation to which it is
By considering the asymptotic value of the amplitude of a four-simplex, we have seen that
case, it appears to be related to the path integral with the Regge calculus action but w
triangle areas playing the most important role, rather than the edge lengths.

A. Problems with the basic idea

The idea that, in four dimensions, the triangle areas could be regarded as the basic va
in a modified form of Regge calculus was first suggested by Rovelli103 and the possibility was
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discussed in some detail in Ref. 104. In this section, we shall consider the advantages and
vantages of the approach, and report on some progress in understanding the relationship
the two types of variable.

A four-simplex not only has ten edges, it also has ten triangles. Thus at first sight, the c
from edge lengths to triangles areas as basic variables looks very straightforward, but th
actually a number of problems.104

Consider first a single four-simplex. It is simple to express the triangle areas in terms
edge lengths. However, to express the Regge action in terms of the new variables, we n
invert the relationship between areas and edge lengths to be able to calculate the deficit
Unfortunately the Jacobian is singular in cases where a number of triangles are right-angl
there is not necessarily a unique set of edge lengths corresponding to a given set of area105,106

This means that, right from the start, certain regions in the space of edge lengths must be a
Second, for a collection of four-simplices joined together, there will not in general be e

numbers of edges and triangles so there may be ambiguity about which is the correct num
variables.

Third, by considering two four-simplices meeting on a tetrahedron with all triangle a
assigned, we can envisage the following bizarre situation. Solve for the edge lengths of one
four-simplices in terms of its triangle areas. Repeat this for the other four-simplex. It is pos
that the edge lengths of the common tetrahedron will differ according to the four-simplex w
the calculation was done~see Ref. 104 for an example!. Clearly there are difficulties in interpret
ing the edge lengths as real physical quantities in the usual sense.

In this section, we shall now discuss possible theories in terms of equations of motio
then investigate the dynamical content of area Regge calculus by studying the weak-field
sion about a flat background in terms of variations in the areas.

B. Equations of motion

The counting of degrees of freedom in a discrete theory is never completely straightfor
In a simplicial theory, the usual argument is that inn dimensions, ann-simplex hasn(n11)/2
edges, which corresponds to the number of independent degrees of freedom of the metric te
n dimensions. If one thinks of these variables as being at some chosen point in each simp
counting becomes somewhat less clear when one realizes that each of the edges is sha
number of other simplices, so the number of variables per point is quite obscure.

Given this ambiguity, we can take two attitudes to the counting problem in area R
calculus. Either we can take the areas as the fundamental variables, worrying about the d
numbers of edge lengths only inasfar as we need them to calculate deficit angles or volumes
can regard some of the areas as redundant variables and aim to reduce their number to the
of edge lengths in the simplicial complex.

In the theory where the areas are taken seriously as variables~which is our principal interest
here since we aim thereby to understand the models described as four-dimensional genera
of the Turaev–Viro theory!, we concentrate on the restricted class of metrics where the Jac
is nonsingular. Then the hyperdihedral angles are well defined and the Regge action m
written as

I R~As!5(
t

Ate t~As!, ~44!

where the sum is over trianglest ande t is the deficit angle at trianglet. Variation of the action
with respect to the areaAu , use of the chain rule, an interchange of the orders of summation,
use of the Regge identity1 leads to

eu50 for all u. ~45!
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For details, see Ref. 104. Since all deficit angles vanish, the space is locally flat; the holo
around any triangle is trivial. This agrees with Ooguri’s state sum model for BF theory.78 The
interpretation of this result is not obvious and the investigation of such spaces using p
transport is under way.

The other possibility, that of regarding some of the areas as redundant variables, ha
investigated by Ma¨kelä.107 Clearly in order to recover the conventional view of simplicial grav
where the edge lengths are real physical quantities, it is necessary to impose the condition
given edge has the same length in whichever four-simplex that length is calculated. This le
a large number of constraints: For each edge, there is a constraint for each pair of four-sim
meeting there. For a simplicial complex withN1 edges andN2 triangles, a total ofN22N1 of these
constraints will be independent, but it is not easy to give any general rule for picking out w
these are.~An ad hocrule has been formulated for a particular model and it is likely that ther
some group-theoretic basis for the rule!.108 Mäkelä has shown that if the variations of the co
straints are added in with Lagrange multipliers to the variation of the Regge action expres
area variables, then the usual Regge calculus equations of motion are recovered.

C. Dynamics

Restricting our attention now to the area variable theory without constraints, we investig
dynamical content by performing a weak field expansion about a flat background.109 This is in
analogy with the weak field expansion for edge length variables,13 which we now describe briefly

In the original calculation, a four-dimensional hypercubic lattice is divided into simplice
drawing in various diagonals, giving 15 edges per vertex. Small variations of the edge le
about their flat space values are made by setting

l i5 l i
~0!~11d i ! ~46!

with d i!1. The second variation of the Regge action~the first nonvanishing term! is evaluated as
a quadratic expression in thed’s, written as

d2S5d iM i j d j , ~47!

with Mi j a sparse infinite dimensional matrix. A Fourier transform is then performed by rel
d in then direction and based at the lattice point~i, j, k, l! steps in the~1, 2, 4, 8! directions from
the origin ~see Ref. 13 for details of the binary notation! to the correspondingd at the origin by

dn
~ i , j ,k,l !5v1

i v2
j v4

kv8
l dn

~0! ~48!

with vm5exp(2pi/nm), wherenm is the period in them direction. Acting on periodic modes,M
reduces to a block diagonal matrix with 15315 dimensional blocks,Mv . This matrixMv has four
zero modes, corresponding to periodic translations of points of the lattice, and a fifth zero
corresponding to periodic fluctuations of the hyperbody diagonal. Block diagonalizingMv de-
couples four further modes; they enter withoutv’s and so do not contribute to the dynamics at a
Their equations of motion constrain them to vanish. We see from this that an apparent mis
in the number of components~15 per vertex! is corrected by the dynamics of the theory, leavi
ten degrees of freedom per vertex, as would be expected from the continuum theory.~The zero
modes correspond of course to gauge fluctuations.!

We now perform the analogous calculation with area variables. In this case, it is necess
use a ‘‘distorted’’ hypercubic lattice because the original one contains many right angles
lead to vanishing of the Jacobian when transforming between areas and edge lengths.
obtained by squeezing each unit hypercube along its hyperbody diagonal until it has leng
lattice units, like the edges originally along the coordinate axes. The face and body diagona
all have lengthA(3/2). Small variations of these edge lengths about their flat space values ar
made and the second variation of the action within each four-simplex calculated. These var
in edge lengths induce changes in the triangle areas represented by
                                                                                                                



as in

pecta-
length
and six
ing

m the
ch for
ne, the

That

aper.
ncil.

,

,

a

3982 J. Math. Phys., Vol. 41, No. 6, June 2000 T. Regge and R. M. Williams

                    
Ai5Ai
~0!~11D i ! ~49!

with D i!1. Within each four-simplex, the expressions for theD i ’s in terms of thed i ’s are inverted
~uniquely! and the second variation of the action written in terms of theD i ’s. Adding together the
contributions from all four-simplices gives

d2S5D iNi j D j , ~50!

with Ni j again a sparse infinite dimensional matrix. A Fourier transform is then performed
the edge-length variable case, andN reduces to a block diagonal matrix with 50350 dimensional
blocks Nv ~note that there are 50 triangles based at each vertex!. The size ofNv makes it
necessary to investigate the modes numerically, and, somewhat contrary to our original ex
tions, it turns out that the number of dynamical modes is exactly the same as in the edge
case. There are again four zero modes, corresponding to periodic fluctuations of the lattice,
further modes scaling withk2, wherek is the momentum in the Fourier transform. The remain
40 modes enter nondynamically~they are massive and do not scale with momentum! and are
constrained to vanish by their equations of motion.

Thus the theory with area variables is equivalent to the edge length variable theory fro
point of view of dynamical content. This is very encouraging and gives impetus to the sear
the exact correspondence between the variables in models like that of Barrett and Cra
variables of Regge calculus and ultimately the variables of conventional general relativity.
search continues.
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We study an atom with finitely many energy levels in contact with a heat bath
consisting of photons~blackbody radiation! at a temperatureT.0. The dynamics
of this system is described by a Liouville operator, or thermal Hamiltonian, which
is the sum of an atomic Liouville operator, of a Liouville operator describing the
dynamics of a free, massless Bose field, and a local operator describing the inter-
actions between the atom and the heat bath. We show that an arbitrary initial state
that is normal with respect to the equilibrium state of the uncoupled system at
temperatureT converges to an equilibrium state of the coupled system at the same
temperature, as time tends to1` ~return to equilibrium!. © 2000 American In-
stitute of Physics.@S0022-2488~00!02406-3#

I. INTRODUCTION AND SUMMARY OF MAIN RESULTS

In this paper, we study open quantum systems consisting of a small, compact subsyste
finitely many degrees of freedom coupled to an infinitely extended reservoir or heat bath, w
asymptotically, is in thermal equilibrium corresponding to a temperatureT.0. By ‘‘asymptotic
thermal equilibrium’’ we mean that, roughly speaking, the states of interest of the system
indistinguishable from thermal equilibrium states at a fixed, positive temperatureT.0 in a neigh-
borhood of spatial infinity.

Our main concern is to analyze the phenomenon of ‘‘return to equilibrium:’’ We exhibit a
class of open quantum systems with the property that the time evolution drives anarbitrary initial
state describing ‘‘asymptotic thermal equilibrium’’ at a temperatureT.0 toward an equilibrium
~or KMS! state at thesametemperatureT, as time tends tò . In other words, the limiting state o
an open system with the property of return to equilibrium, as time tends to`, is a time-translation-
invariant KMS state corresponding to a temperature equal to that of the heat bath near
infinity.

A consequence of return to equilibrium is that the entropy of the state of the small subs
tends toincreaseunder the time evolution, for sufficiently large times. This means that, if only
degrees of freedom of the small subsystem are observed, the dynamics isdissipative, dissipation
arising through energy exchange with the thermal heat bath. This kind of dissipative beha
sometimes called ‘‘quantum friction.’’

The phenomenon of ‘‘return to equilibrium’’ is similar to the phenomenon of ‘‘approach to a
ground state,’’ which is observed at zero temperature: If a suitable small subsystem, such
electron bound to a static nucleus, is coupled to a dispersive medium with infinitely many de
of freedom, such as the quantized electromagnetic field, atzero temperature, then an arbitrar
initial bound state of the small subsystem approaches aground state of the coupled system, as time
tends tò . The reason is that excited bound states of the small subsystems becomeunstablewhen
the subsystem is coupled to the dispersive medium; they decay into lower-energy bound

*Dedicated to Joel Lebowitz and David Ruelle.
a!Electronic mail: vbach@mathematik.uni-mainz.de
39850022-2488/2000/41(6)/3985/76/$17.00 © 2000 American Institute of Physics
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through emission of dispersive modes~photons! and eventually converge to a ground state. T
phenomenon is sometimes called ‘‘dissipation through dispersion~emission of dispersive radia
tion!.’’

The two phenomena of ‘‘return to equilibrium’’ (T.0) and ‘‘approach to a ground state
(T50) can be formulated asspectral problemsfor the generator of the time evolution, i.e., for th
Liouville operator, or thermal Hamiltonian (T.0) and theHamiltonian (T50), respectively: If
one can show that thepoint spectrumof the Liouville operator generating the dynamics of an op
quantum system in asymptotic thermal equilibrium at a temperatureT.0 consists of a simple
eigenvalue at 0 then the property of ‘‘return to equilibrium’’ can be proven to hold as a ge
consequence of the so-calledKMS condition. A prerequisite for establishing ‘‘approach to
ground state’’ is to show that the point spectrum of the Hamiltonian generating the dynam
the system atzero temperature consists of asingle eigenvalue, the ground state energy, of finit
multiplicity. In particular, one must show that all excited bound states of the small subsystem~e.g.,
an atom! are turned intoresonancesof a finite lifetime when the latter is coupled to the dispers
medium. However, this kind of information on the energy spectrum of the Hamiltonian doesnot,
by itself, suffice to prove the property of ‘‘approach to a ground state.’’~In addition, one needs to
establish some properties ofscatteringrelated to asymptotic completeness, and this tends to
very hard analytical problem.!

The idea that initial excited bound states of an atom approach a ground state through em
of photons, as time tends tò, first appeared in Bohr’s theory of the hydrogen atom coupled to
quantized radiation field, at zero temperature, and remained a guiding idea in laterperturbative
analyses of the quantum theory of atoms coupled to the electromagnetic field by some
founding fathers of quantum mechanics. See, e.g., Ref. 14 for a review of results. Mathema
rigorous, nonperturbative results on the quantum theory of charged particles interacting w
quantized radiation—~or the phonon! field at zero temperature started to appear surprisingly
cently, see, e.g., Refs. 11, 19, 20, 30, 5–10, 26, 23, 24, 39, 38, 17, and 36.

First traces of the idea of ‘‘return to equilibrium’’ at positive temperature appear in the w
of Planck, in Einstein’s 1917 derivation of the law of blackbody radiation, and in much subse
work on radiation theory; see, e.g., Refs. 31 and 32. Mathematically, precise results wer
obtained within various approximate treatments, such as the van Hove limit; see, e.g., Refs.
29 and references given there. A complete proof of the return to equilibrium for a simple in
quantum system, the so-calledXYchain, was first presented in Ref. 35. A reformulation of retu
to equilibrium as aspectral problemfor Liouville operators was proposed by Jaksˇić and Pillet in
Refs. 27 and 28, drawing on previous fundamental work due to Araki and Woods,3 Haag, Hugen-
holz, and Winnink,22 and Araki;1 see also Refs. 12, 13, 21. In the present paper, we follow
general ideas of the spectral approach to the problem of return to equilibrium due to Jaksˇić and
Pillet.27,28 Due to some confusion in the literature, we find it necessary, however, to care
review the general formalism of the quantum theory of finite and infinite systems in or clo
thermal equilibrium, as developed in Refs. 3, 22, and 1~see also Refs. 12, 13, and 21!, in a form
convenient for applications to concrete models, and to introduce several novel technical d
within the spectral approach. Furthermore, we intend to present the general formalism in a f
that will make future applications to more complicated problems, e.g., to the problem ofstationary
statesof infinite quantum systems, or to some problems of transport theory, feasible. Un
nately, some of our purposes in our work make the present paper quite long.

Next, we describe the class of open quantum systems considered in this paper. Thesmall,
bounded subsystemconsists of a confined atom or molecule. In this paper, an idealized descri
of the small subsystem as a quantum-mechanical system with afinite-dimensional state space,

Hel>CN, N,`, ~I.1!

is chosen, i.e., we consider an atom or molecule with only finitely many energy levels. Whe
coupling between the small subsystem and the reservoir, or heat bath, is turned off, the dy
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is given by a Hamiltonian,Hel , which is a self-adjoint operator onHel . The spectrum ofHel

consists of eigenvaluesE0 ,E1 ,...,EN21 . For simplicity, we assume that these eigenvalues
nondegenerate,

E0,E1,¯,EN21 . ~I.2!

Every eigenvalueEj corresponds to an eigenvectorw j of Hel , i.e.,

Helw j5Ejw j . ~I.3!

These eigenvectors form a complete orthonormal system inHel . In particular, in the natural scala
product,^•u•&, on Hel ,

^w i uw j&5d i j , ~I.4!

for all i , j 50,1,...,N21.
The reservoir is chosen to consist of the quantized electromagnetic field or of the quan

vibrations, or phonons, of an infinitely extended, harmonic material medium. The modes
reservoir are indexed by wave vectorskWPR3 and for photons, a helicityl561. The Hilbert
space,h, describing pure states of asinglephonon or photon is given by

h5H L2~R3,dk!, for phonons,

L2~R33Z2 ,dk!, for photons,
~I.5!

where

E f ~k!dkª5 ER3
f ~kW ! d3k, for photons,

(
l561

E
R3

f ~kW ! d3k, for photons.

~I.6!

At zero temperature, the Hilbert space of pure state vectors of the reservoir is chosen to
Fock space,

Fª%
n50

`

h~n!, ~I.7!

whereh(0)
ªC, andh(n)

ªh^ sn, n>1, denotes the symmetric tensor product appropriate for
description of quantum-mechanical particles with Bose–Einstein statistics. A vectorCPF is a
sequence,

C5$cn%n50
` , ~I.8!

of wave functions,cn(k1 ,...,kn)Ph(n), with kj5kW jPR3, for phonons, andkj5(kW j ,l j )PR3

3Z2 , for photons. These wave functions are completely symmetric in their arguments. The
product for two vectors,C andF, in F is given by

^CuF&ª(
n50

` E dk1¯E dkn cn~k1 ,...,kn!wn~k1 ,...,kn!. ~I.9!

For f Ph, we define anannihilation operator, a( f ), on F by setting

a~ f !Cª$wn, f~k1 ,...,kn!%n50
` , ~I.10!
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where

wn, f~k1 ,...,kn!ªAn11E dkn11 f ~kn11!cn11~k1 ,...,kn ,kn11!. ~I.11!

@Note that f °a( f ) is linear in f, rather than antilinear.! For every f Ph, a( f ) extends to an
unbounded, densely defined, closed operator onF. For f Ph, we definet f to be the complex
conjugate off, (t f )(k)ª f (k). We define thecreation operator, a* ( f ), to be the unbounded
densely defined, closed operator onF given by the adjoint ofa(t f ), i.e.,

a* ~ f !ª„a~t f !…* . ~I.12!

Annihilation and creation operators obey the canonical commutation relations,

@a* ~ f !,a* ~g!#5@a~ f !,a~g!#50, ~I.13!

@a~t f !,a* ~g!#5^ f ug&h1, ~I.14!

where ^•u•&h denotes the scalar product onh. We note that thevacuum vector, V5(1,0,0,...),
spansh(0) and has the property that

a~ f !V50, for all f Ph. ~I.15!

The dynamicsof the reservoir atzero temperatureis determined by the Hamiltonian,

H f5E dk a* ~k!v~k!a~k!. ~I.16!

We choosev(k) to be given by

v~k!5ukW u, ~I.17!

corresponding tomassless, relativistic photons or phonons. The operatorH f defined by~I.16!
extends to an unbounded, self-adjoint, positive operator onF. It has a simple eigenvalue at 0
corresponding to the eigenvectorV. The rest of the spectrum ofH f is purely absolutely continu-
ous. See Refs. 34, 33 for a more complete summary of the theory of free, quantized fields

The Hilbert space of the combined system, consisting of the idealized atom and the res
at zero temperature, is given by

HªHel^ F. ~I.18!

When the coupling between the atom and the reservoir is turned off, the dynamics is given
Hamiltonian

H05Hel^ 111^ H f , ~I.19!

with Hel as in~I.2!, ~I.3! andH f as in~I.16!. The coupling between the atom and the reservoi
described by an interactiongI, wheregPR is a coupling constant, and

IªE dk$G~k! ^ a* ~k!1G~k!* ^ a~k!%, ~I.20!

where, for eachkPR3(3Z2),G(k) is an operator onHel , i.e., anN3N complex matrix. One
could add toI terms quadratic ina* anda ~or even of higher than second order!. But, for the sake
of a clear exposition of the key ideas of our analysis, let us not do that. The Hamiltonian,Hg , of
the combined, coupled system atzero temperaturecorresponds to the formal sum
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Hg5H01gI. ~I.21!

For notational simplicity, we assume without loss of generality thatg>0. We have studied the
zero-temperature dynamics of similar systems in Refs. 5–9. Our purpose in this pape
characterize the space of states of the class of open systems introduced in~I.1!–~I.3! and ~I.7!,
~I.16!, ~I.18!–~I.21! describing ‘‘asymptotic thermal equilibrium’’ at apositive temperatureT
.0, and to study properties of the dynamics of such states, asformally generated by the Hamil
tonian H of Eq. ~I.21!. Under appropriate conditions onHel and on the coupling matrixG(k)
appearing in~I.20!, we establish ‘‘return to equilibrium’’ for initial states describing asymptotic
equilibrium. Somewhat surprisingly, it appears that the proper mathematical formalism en
us to formulate these problems precisely and then solve them is not widely known, although
been developed in the 1960s and early 1970s. For this reason, a self-contained summ
presented in Secs. II, III, and IV A.

Before we give a survey of the contents of this paper, we now state the conditions onHel and
on the coupling matrixG(k) on which our analysis is based. In later sections, we refer to th
conditions wherever we formulate precise results. Our first condition is as follows.

Hypothesis H-1: The spectrum of Hel consists of simple eigenvalues,

E0,E1,¯,EN21 , ~I.22!

corresponding to a complete, orthonormal system$w j% j 50
N21#Hel of eigenvectors.

Next, let

Gi j ~k!ª^w i uG~k!w j& ~I.23!

denote the matrix elements of the coupling matrix,G(k); see Eq.~I.20!, in the basis of eigenvec
tors of Hel . These matrix elements are assumed to have the following properties.

Hypothesis H-2: ForuPR, consider the functions Gi , j (e
2uk). For each wave vector k

PR3 ~and helicity l561) and all i, j 51,...,N, Gi , j (e
2uk) extends to a function ofu, also

denoted by Gi , j (e
2uk), analyticon a domain inC containing the strip

Sq0
ª$uuIm uu,q0%, ~I.24!

for someq0.0 independent of kWPR3, (l561) and i and j. The same property then holds for t
functions

Gi , j* ~e2uk!ª^w j uG~e2 ūk!w i&. ~I.25!

We also require a variety ofboundedness conditionson the coupling functions$Gi , j (e
2uk)%.

Hypothesis H-3: We assume that there exists positive constantsm.0 and M,`, such that,

for all 0PSq0
and kWPR3 ~and l61),

(
i , j 51

N

uGi , j~e2uk!u<eM uReuuv~k!m, ~I.26!

wherev(k)5ukW u.
In concrete physical models, based on the dipole approximation for the coupling of an

with finitely many energy levels to the quantized electromagnetic field, one finds that~I.26! holds
for m5 1

2.
Our next requirement is a condition on the choice of anultraviolet cutoffin the interactionI

that can be stated in the form of decay properties of the coupling functionsGi , j (e
2uk),

as ukW u→`.
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Hypothesis H-4: There exists a constant0,L,` such that, for alluPSq0
,

(
i , j 51

N E uGi , j~e2uk!u2@v~k!1v~k!23#dk<e2M uReuuL2, ~I.27!

where M,` is the same constant as in Hypothesis H-3.
This condition will play a crucial role in our analysis of spectral properties of the Liouv

operator or thermal Hamiltonian. Among such properties the most crucial one is thatall but one
eigenvaluesof the Liouville operator of the uncoupled system (g50) consisting of the~finite-
level! atom and the reservoirdissolvein ~absolutely! continuous spectrum when the interactio
between the atom and the reservoir is turned on. We will show that the Liouville operator o
interacting system (g.0) has a simple eigenvalue at 0 corresponding to its unique equilib
~KMS! state, the rest of the spectrum of the Liouville operator being purelyabsolutely continuous.
This is quite remarkable, because the Liouville operator of the uncoupled system (g50) has
eigenvalues at$Ei2Ej u i , j 51,...,N,iÞ j % and anN-fold degenerate eigenvalue at 0. Our proof th
N221 of theseN2 eigenvalues dissolve in continuous spectrum when the interaction is turne
is based on a mathematically rigorous variant ofFermi’s Golden Rule. To make this method work
we require the following condition.

Hypothesis H-5: Lettminªmin$uEi2Ej u uiÞj% and tmaxªmax$uEi2Eju%. For any iÞ j and any
tmin<t <2tmax,

E dk d@v~kW !2t#uGi , j~k!u2.0. ~I.28!

Actually, condition~H-5! can be weakened considerably at the price of rendering the com
tational aspects of our analysis more complicated; see Appendix B.

Our proof of the result that the spectrum of the Liouville operator of the interacting syste
purely absolutely continuous, away from 0, will involve a combination of the method ofcomplex
spectral deformations, more precisely a novel variant of dilatation analyticity, with a mathem
cally precise form of Fermi’s Golden Rule based on the so-calledFeshbach mapof Refs. 7, 9. The
appearance of the complex parametere2u,uPC, in conditions~H-2!–~H-4!, above, can be trace
to our use of dilatation analyticity.

We now state our main results in the form of a theorem.
Theorem I.1: Consider an open quantum system with dynamics corresponding to the fo

Hamiltonian Hg defined in (I.21), where H0 is given in (I.19) and I in (I.20). We assume that H0

and I satisfy conditions (H-1)–(H-5) described above. Let

Lg5Lg
~b! , b5~kBT!21, ~I.29!

denote the Liouville operator acting on a Hilbert space, Ĥb , of states of the system describin
asymptotic thermal equilibrium at a temperature T.0. The operator Lg

(b) generates the dynamic

of the states inĤb .
Then we have that, for an arbitrary temperature T.0, the following hold.
~i! Lg

(b) is essentially self-adjoint on a natural domain dense inĤb .
~ii ! If 0<g,g* , for some g* .0 independent of T, then Lg

(b) has a simple eigenvalue at
corresponding to the unique equilibrium (KMS) state of the system, and the rest of the spect
Lg

(b) covers the entire real axis and is absolutely continuous.
~iii ! Under the same assumptions, the states inĤb have the property of ‘‘return to equilib-

rium,’’ in the sense described above.
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~iv! Under certain more stringent assumptions, see Sec. VI C [in particular, m5 1
2 in (I.26)],

there exists a natural linear subspace, D0 , of states dense inĤb with the property that every
vector in D0 converges to the unique equilibrium state of the system at temperatu
5(kBb)21 exponentially fast in time.

Remark I.2: Under the hypotheses of part (iv) of Theorem I.1 stated above, one can es
precise links between our methods and those in Ref. 28: on one hand, and various he
treatments of ‘‘return to equilibrium’’ involving quantum master equations, on the other han.

We conclude this introduction with a brief summary of contents of the various sections o
paper.

In Sec. II, we review the general theory of pure and mixed states and of their dynamics~in the
‘‘Schrödinger picture’’! for quantum mechanical systems confined to bounded regions of phy
space. We characterize their thermal equilibrium states and derive the Kubo–Martin–Sch
~KMS! condition. We derive explicit expressions for the Liouville operator~or thermal Hamil-
tonian! in terms of the Hamiltonian and for the ‘‘modular operator’’ and the ‘‘modular conju
tion.’’ We describe perturbation methods for the construction of equilibrium states of intera
systems.

In Sec. III, we extend the results of Sec. II to the thermodynamic limit, following Refs. 22
1. In particular, we clarify what we mean by the notion of states in ‘‘asymptotic thermal equ
rium’’ at temperatureT5(kBb)21; see Secs. III B and III C. We introduce the Liouville operato
generating the dynamics on states that are in ‘‘asymptotic thermal equilibrium;’’ see Secs
and III C. In Sec. III D, we derive the property of ‘‘return to equilibrium’’ from a spectral prope
of the Liouville operator of a system and the KMS condition characterizing its equilibrium st
In Sec. III E, we review the perturbation theory for equilibrium states in the thermodynamic

In Sec. IV, we first review the Araki–Woods representation of equilibrium states of
quantized, free electromagnetic field. We then introduce a class of open quantum systems d
ing an idealized, confined atom coupled to the quantized electromagnetic field in ‘‘asym
thermal equilibrium’’ at a temperatureT.0. We establish self-adjointness of the Liouville ope
tors of such systems and of related operators needed in the perturbation theory of equi
states. We prove that, at an arbitrary temperatureT.0, the systems studied in this paper have
equilibrium state that can be constructed from the equilibrium state of the quantized electr
netic field with the help of convergent perturbation theory; see Sec. IV C. We also establish
simple technical estimates important for our analysis.

Our main results~see Theorem I.1 stated above! are proven in Sec. V. In Sec. V A, w
describe these results and sketch the basic analytical methods, a novel form ofdilatation analyt-
icity for the Liouville operators encountered in the analysis of our class of systems an
Feshbach map of Refs. 7, 8, on which our proofs are based. All key elements of our proofs
relevant spectral properties of the Liouville operators are explained quite carefully. In Sec
we compare and combine our approach with the one proposed in Ref. 28. We exhibit a de
of states in ‘‘asymptotic thermal equilibrium’’ that converge to a unique equilibrium state e
nentially fast in time.

The remaining subsections of Sec. V and two appendices are devoted to a variety of~partly
rather tedious! technical considerations. We recommend especially Sec. V G~a renormalization
group analysis of the spectrum of Liouville operators! and Appendix B~concerning Fermi’s
Golden Rule! to the attention of the reader.

II. THERMAL EQUILIBRIUM STATES OF FINITE SYSTEMS

In this section, we recapitulate some results of Ref. 22; see also Refs. 21, 12, 13.

A. Pure and mixed states of quantum-mechanical systems

We consider a quantum-mechanical system confined to a bounded region of physica
~either by hard or soft walls!. The pure states of the system correspond to unit rays in a sepa
Hilbert spaceH, with scalar product denoted by~•u•!. The algebra of observables of the system
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a C* algebra,A, contained in or equal to the algebraB(H) of all bounded operators onH. We
assume thatA contains the identity operator1. The dynamics of the system is determined by
Hamiltonian,H, which is a semibounded, self-adjoint operator onH with a discrete spectrum.

Let Tr@•# denote the usual trace onB(H). We assume that exp(2bH) is trace class, i.e.,

Tr@e2bH#,`, ~II.1!

for arbitraryb.0.
We are interested in describing general mixed states of the system, including its th

equilibrium states, for arbitrary inverse temperatureb5(kBT)21, wherekB is Boltzmann’s con-
stant andT denotes the absolute temperature. Furthermore, we wish to study the time evolu
general mixed states, as determined by the HamiltonianH.

According to Landau and von Neumann, a mixed state of the system corresponds to a
matrix, i.e., to a positive, self-adjoint operator onH of unit trace.

The two-sided ideal of trace-class operators inB(H) is denoted byL1(H), the two-sided ideal
of Hilbert–Schmitt operators inB(H) by L2(H). A density matrixr is a positive element of
L1(H) of unit trace. Then

kªr1/2 ~II.2!

is Hilbert–Schmitt, with

Tr@k2#5Tr@k* k#5Tr@r#51. ~II.3!

As a linear space, L2(H) is a Hilbert space with a scalar product given by

^•u•&: L2~H!3L2~H!→C, ~k,s!°^k,s&ªTr@k* s#. ~II.4!

For brevity, we denoteL2(H) by K. This Hilbert space is isomorphic toH^ H. It carries a
representationl of the algebraA given by

l @a#kªakPK, ~II.5!

for arbitrarykPK,aPA. To every elementkPK, we can associate a state of the system given
the density matrix

rª^kuk&21kk* . ~II.6!

The expectation value of an observableaPA in the stater is given by

^a&rªTr@ra#5^kuk&21 Tr@kk* a#5^kuk&21 Tr@k* ak#5^kuk&21^ku l @a#k&. ~II.7!

where we have used the cyclicity of the trace. Fork,sPK, with ^kuk&5^sus&51, andaPA, we
may define thetransition amplitudes,

^ku l @a#s&. ~II.8!

Pure states of the system correspond to orthogonal projectionsPPK of rank 1, i.e.,

P5c~cu• !5uc&^cu, cPH, ~II.9!

in Dirac’s bra–ket notation. Then

^Pu l @a#P&5Tr@PaP#5Tr@Pa#5~cuac!. ~II.10!

As an algebra,K5L2(H) is what is called aHilbert algebra, i.e., it is a* algebra, and, as a
linear space, it is a Hilbert space, with the property that
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^k1k2uk3&5^k2uk1* k3& and ^k1uk2&5^k2* uk1* &, ~II.11!

which follows from ~II.4!; see Refs. 22, 18.
The time evolution of an observableaPA in the Heisenberg pictureis defined, as usual, by

a t~a!ªeitHae2 i tH . ~II.12!

Then, fork,sPK,

^ku l @a t~a!#s&5Tr@k* a t~a!s#5Tr@k* eitHae2 i tHs#,

5Tr@~e2 i tHkeitH !* a~eitHseitH !#,

5^a2t~k!u l @a#a2t~s!&, ~II.13!

by cyclicity of the trace. Thus, it is useful to define the time evolution of an elementkPK in the
Schrödinger pictureby

k°k tªa2t~k!ªe2 i tHkeitH , ~II.14!

for tPR. We define a self-adjoint linear operatorL, theLiouvillian, on K by setting

Lkª@H,k#, ~II.15!

where @•,•# denotes the commutator. Under our hypotheses onH, the operatorL is essentially
self-adjoint on the following coreD dense inK,

Dªspan$uc i&^c j uu i , j 50,1,2,...%, ~II.16!

where$c i% i 50
` is a complete orthonormal system of eigenvectors ofH, i.e.,

Hc i5Eic i , i 50,1,2,..., ~II.17!

with

E0<E1<E2<¯ . ~II.18!

It is instructive to verify thatL is a symmetric operator onD{k,s by computation,

^Lkus&5Tr@~Lk!* s#5Tr~@H,k#* s!52Tr~@H,k* #s!5Tr~k* @H,s#!5^kuLs&,
~II.19!

using the cyclicity of the trace. Equation~II.14! can now be rewritten as

k t5e2 i tLk, ~II.20!

and one easily verifies that

eitLl @a#e2 i tL5 l „a t~a!…. ~II.21!

B. Equilibrium states of bounded systems

Since we are interested in studying systems in thermal equilibrium, we must identify
vectors inK that describe equilibrium states at an arbitrary inverse temperatureb; see Refs. 22,
18, 12, 13 for more details. LetA8 denote the von Neumann algebra of all bounded operator
H that commute with all operators inA, thecommutantof A. A self-adjoint operatorQ on H is
said to be affiliated withA8 iff all spectral projections ofQ belong toA8. We say thatQ
commutes withH iff all spectral projections ofQ commute with all spectral projections ofH.
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According to Gibbs, Landau, and von Neumann, every equilibrium state of the syste
inverse temperatureb is given by a density matrix,

rb,QªZb,Q
21 exp@2b~H2Q!#, ~II.22!

whereQ is an arbitrary self-adjoint operator onH affiliated withA8, commuting withH, and such
that

Zb,Q
21

ªTr„exp@2b~H2Q!#…,`. ~II.23!

The physical interpretation ofQ is that of aconserved chargeof the system. SinceQ is affiliated
with A8, observables~i.e., elements ofA! areneutral with respect toQ.

An elementk of K describes a thermal equilibrium state of the system iff

k[kb,Q5Zb,Q
21/2exp@2b~H2Q!/2#U, ~II.24!

for an arbitrary unitary operatorU on H. For

^kb,Qu l @a#kb,Q&5Tr@kb,Q* akb,Q#5Zb,V
21 Tr@kb,Vkb,Q* a#

5Zb,Q
21 Tr„exp@2b~H2V!#a…5^a&b,Q . ~II.25!

Next, we recall some general properties of equilibrium states~see Refs. 22, 21, 12, and 13!.
First, sincerb,Q is strictly positive, forb,`, we have that, for arbitraryaPA,

^a* a&b,Q50⇒a50. ~II.26!

Equivalently,

l @a#kb,Q50⇒a50. ~II.27!

Thus, the vectorkb,QPK is separatingfor the algebral @A#.
Second, the staterb,Q satisfies theKubo–Martin–Schwinger (KMS) condition:

^aa t~b!&b,Q5Zb,Q
21 Tr@exp@2b~H2Q!#aeitHbe2 i tH #

5Zb,Q
21 Tr@ebQeitHbe2~b1 i t !Ha#

5Zb,Q
21 Tr@e2b~H2Q!e~b1 i t !Hbe2~b1 i t !Ha#

5^a2 ib1t~b!a&b,Q . ~II.28!

In the second equation, we have used the cyclicity of the trace and the fact thatH andb commute
with ebQ, in the strong sense specified above. Defining

Fab~ t !ª^aa t~b!&b,Q , ~II.29!

Gab~ t !ª^a t~b!a&b,Q , ~II.30!

the KMS condition says that the functionGab(t) is the boundary value of a functionGab(z)
analytic inz in the strip

S2bª$zu2b,Im z,0%, ~II.31!

and

lim
h↗b

Gab~ t2 ih!5Fab~ t !. ~II.32!
                                                                                                                



stems
tems,
erties
mics
must

3995J. Math. Phys., Vol. 41, No. 6, June 2000 Return to equilibrium

                    
Equivalently,Fab(t) is the boundary value of a functionFab(z) analytic inz in the stripSb , with

lim
h↗b

Fab~ t1 ih!5Gab~ t !. ~II.33!

Third, we have that

^aa t~b!&b,Q5^a2t~a!b&b,Q , ~II.34!

as follows from a trivial calculation similar to that in~II.28! or directly from the KMS condition.
In particular,

^a t~b!&b,Q5^b&b,Q , ~II.35!

i.e., the staterb,Q is time-translation invariant; @seta51 in ~II.34!#.
We also note that the time-translation invariance~II.38! and the KMS condition imply that

^a* b&b,Q5^a ib/2~a* b!&b,Q5^a ib/2~a* !a ib/2~b!&b,Q

5^a2 ib/2~b!a ib/2~a* !&b,V

5^a2 ib/2~b!~a2 ib/2~a!* !&b,Q . ~II.36!

We have used~II.35! in the first and the KMS condition~II.28! in the third equation.
We have now summarized all important elements of the quantum mechanics of finite sy

in or close to thermal equilibrium. However, we shall shortly pass to the study of infinite sys
which may be viewed as thermodynamic limits of finite systems. We shall analyze their prop
in or close to thermal equilibrium and their behavior under small perturbations of their dyna
by coupling them to finite subsystems. In order to prepare the ground for our analysis, we
elaborate on several aspects of the theory of finite systems.

C. The commutant of the representation l of A on K
First, we note that the Hilbert spaceK of Hilbert–Schmitt operators carries a second,antilin-

ear representation,r, of the observable algebraA that commutes with the representationl intro-
duced in~II.5!. It is defined by

r @a#kªka* , ~II.37!

for kPK andaPA. It is now clear thatl stands forleft representationandr for right represen-
tation. Obviously

r @za#5 z̄r @a#, zPC, ~II.38!

and

r @ab#5r @a#r @b#. ~II.39!

It is not hard to show that ifA is weakly dense inB(H), i.e.,

Āw5~A8!8[A95B~H!, ~II.40!

then

l @A#95r @A#8. ~II.41!

It is instructive to try to understand where Eq.~II.41! comes from. LetC be an antiunitary
involution onH, i.e.,
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C251 and ~CcuCw!5~wuc!, ~II.42!

for arbitrary w, cPH. ~In a suitable orthonormal basis ofH, C acts oncPH as 6 complex
conjugation of the components ofc in that basis.! Given C, we construct an isomorphism,

I C :K→H^ H. ~II.43!

If k5(c2u•)c1PK, i.e.,

k5uc1&^c2u, ~II.44!

in Dirac’s bra–ket notation, then

I Ckªc1^ Cc2PH^ H. ~II.45!

Next, we note that, fork as in ~II.47!,

I Cl @a#k5I C~ak!5I C~ uac1&^c2u!5ac1^ Cc25~a^ 1!I Ck, ~II.46!

and

I Cr @a#k5I C~ka* !5I C~ uc1&^ac2u!5c1^ Cac25~1^ CaC!I Ck, ~II.47!

where we have used~II.37! in the first, ~II.44! in the second,~II.45! in the third, and~II.42!
(C251) in the last equation.

Thus I C intertwines the linear representationl̂ of A on H^ H, given by

l̂ @a#5a^ 1, aPA, ~II.48!

with the linear representationl of A onK and the antilinear representationr̂ of A onH^ H, given
by

r̂ @a#51^ CaC, aPA, ~II.49!

with the antilinear representationr of A on K. We shall henceforth identifyl, r and l̂ , r̂ .
If A is weakly dense inB(H), then

l @A#95B~H! ^ 1, r @A#951^ B~H!, ~II.50!

where we use that the weak closure of an* algebra of operators on a separable Hilbert spac
equal to its double commutant. Clearly,

„1^ B~H!…85B~H! ^ 1, ~II.51!

and, using that the commutant of a* algebra of operators on a separable Hilbert space is the s
as the commutant of its weak closure,~II.41! follows.

D. The modular operators S and T
There is a distinguished linear operatorE acting on the Hilbert spaceH^ H, defined by

E~w ^ c!ªc ^ w. ~II.52!

The operatorE is calledexchange operator. In terms ofE and the antiunitary involutionC, we
may define what is called themodular conjugation Jby setting

JªE~C^ C!5~C^ C!E. ~II.53!
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Clearly,J is an antiunitary involution, and, remarkably~though trivially!,

JlJ5r . ~II.54!

For

Jl@a#J~c ^ w!5Jl@a#Cw ^ Cc5J~aCw ^ Cc!5c ^ CaCw

5~1^ CaC!~c ^ w!5r @a#~c ^ w!. ~II.55!

It is easy to check that

I C
21JICk5k* , for kPK. ~II.56!

The operatorI C
21JIC is denoted byT.

Let A be weakly dense inB(H), and letr be astrictly positivedensity matrix onH. Let
krªr1/2. As in ~II.26!–~II.27!, one notes thatkr is separating forl @A# and for r @A#. The
separating property ofkr and Eq.~II.41! then imply thatkr is cyclic for r @A# and for l @A#, i.e.,
the subspaces

l @A#kr and r @A#kr ~II.57!

are densein K. We may therefore define an~in general unbounded! antilinear operatorS, the
modular operator, by setting

S~ l @a#kr!ª l @a* #kr . ~II.58!

Thus

S~ l @a#kr!5a* kr5kr
21kra* kr5kr

21~r @a#kr!kr5kr
21

„T~ l @a#kr!…kr , ~II.59!

by ~II.54!–~II.55!, and becausekr* 5kr . Sincer is strictly positive, the operator

Hª2
1

b
ln r ~II.60!

is a semibounded, self-adjoint operator onH: Eq. ~II.59! can then be rewritten as

S~ l @a#kr!5ebH/2
„T~ l @a#kr!…e2bH/2. ~II.61!

If L denotes the Liouvillian associated with theHamiltonian H, i.e., if

Lk5@H,k#5~ l @H#2r @H# !k, ~II.62!

then ~II.61! boils down to

S~ l @a#kr!5ebL/2T~ l @a#kr!, ~II.63!

or, by ~II.57!,

S5ebL/2T, ~II.64!

i.e.,

ebL/25uSu, T5uSu21S. ~II.65!
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In other words,~II.64! describes thepolar decompositionof S. Equation~II.58! is the starting
point of a theory that works in much greater generality:Tomita–Takesaki theory~see, e.g., Refs
41, 12!. Equation~II.65! thendefineexp@bL/2# andT, respectively@after a painful proof that the
operatorS defined by~II.64! is closed#.

If we prefer to work on the Hilbert spaceH^ H, instead ofK, the operatorsS and L are
replaced by

S5I C S I C
21, L5I CL I C

21, ~II.66!

andJ5I CT I C
21 is given by~II.53!.

It is instructive to determine the explicit forms ofS andL. By ~II.48! and ~II.66!,

Sl@a#I Ckr5SICl @a#kr5I C S I C
21I Cl @a#kr5I Cl @a* #kr5 l @a* #I Ckr . ~II.67!

Next, for k5uc&^wu, with c, wPH,

Lk5uHc&^wu2uc&^Hwu, ~II.68!

by ~II.15!. Thus

I CLk5~Hc! ^ ~Cw!2c ^ ~CHw!

5~Hc! ^ ~Cw!2c ^ „~CHC!Cw…

5~H ^ 121^ CHC!~c ^ Cw!

5~H ^ 121^ CHC!I Ck. ~II.69!

We conclude that

L5H ^ 121^ CHC. ~II.70!

In their important paper3 on the equilibrium states of noninteracting bosons, Araki and Wo
make a special choice forC: They chooseC to be given by thetime-reversal operator, T, which,
according to a result of Wigner, is indeed an antiunitary involution onH. For this choice,

THT5H, ~II.71!

and hence, for the Araki–Woods isomorphismI T :K→H^ H,

L5H ^ 121^ H. ~II.72!

E. Perturbation theory for equilibrium states

Next, we consider a finite system with dynamics determined by a HamiltonianH of the form

H5H01I , ~II.73!

whereH0 is the Hamiltonian of an~unperturbed! referencesystem, andI is a perturbation. In this
section, we assume thatI is aboundedself-adjoint operator~because we want to avoid obscurin
the general theory with operator domain problems!. The equilibrium state of the system is give
by the density matrix

rb,Q5Zb,Q
21 exp@2b~H2Q!#, ~II.74!

which corresponds to the vector

kb,Q5rb,Q
1/2 PK. ~II.75!
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We assume thatQ is affiliated withA8 and that it commutes withH0 and withI and thus withH.
Then

kb,Q5ebQ/2Zb,Q
21/2e2bH/2. ~II.76!

The equilibrium state of the reference system is given by

kb,Q
0 5~Zb,Q

0 !21/2ebQ/2 e2bH0/2, ~II.77!

corresponding to the density matrix

rb,Q
0 5~kb,Q

0 !2. ~II.78!

Note that

Zb,Q5Tr@e2b~H2Q!#5Tr@e2b~H02Q1I !#

<Tr@e2b~H02Q!e2bI #

<uebi I i Tr@e2b@H02Q##5ebi I iZb,Q
0 , ~II.79!

where the first inequality is the so-called Golden–Thompson inequality~which follows from the
Trotter product formula and the Ho¨lder inequality; see, e.g., Refs. 13, 37!, and the second inequa
ity follows from ie2bI i<ebi I i, for b.0. Thus, whenI is bounded,Zb,Q is finite iff Zb,Q

0 is.
The Liouvillian of the reference system and the Liouvillian of the interacting system are g

by

L0ª l @H0#2r @H0#, ~II.80!

Lª l @H#2r @H#5L01 l @ I #2r @ I #, ~II.81!

respectively. We also define twoRadon–Nikodym operators, Ll andLr , by setting

LlªL01 l @ I #, LrªL02r @ I #. ~II.82!

Note that

ezl@a#5 l @eza#, ezr@a#5r @ez̄a#, ~II.83!

for aPA and zPC, as follows from the fact thatl is a linear homomorphism, whiler is an
antilinear homomorphism. By~II.82! and ~II.83!,

e2bLl /2kb,Q
0 5e2~b/2!~ l @H0#1 l @ I #2r @H0# !kb,Q

0

5e2~b/2!~H01I !kb,Q
0 e~b/2!H0

5~Zb,Q
0 !21/2e2~b/2!He~b/2!e2~b/2!H0e~b/2!H0

5~Zb,Q /Zb,Q
0 !1/2~Zb,Q!21/2e2~b/2!~H2Q!

5~Zb,Q /Zb,Q
0 !1/2kb,Q , ~II.84!

and a similar calculation yields

ebLr /2kb,Q
0 5~Zb,Q /Zb,Q

0 !21/2kb,Q . ~II.85!

It follows from ~II.79! and~II.84!, ~II.85! thatkb,Q
0 is in the domain of definition of the~generally

unbounded! operators exp@2bLl /2# and exp@bLr /2#, and
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kb,Q5~Zb,Q
0 /Zb,Q!1/2e2~b/2!Ll kb,Q

0 5~Zb,Q
0 /Zb,Q!1/2e~b/2!Lr kb,Q

0 . ~II.86!

Formula ~II.86! is a noncommutative version of the Radon–Nikodym derivative in mea
theory; see Refs. 1, 2.

Under the isomorphismI C , L, Ll , andLr are mapped to

LªI C L I C
215L01I ^ 121^ CIC5:L01W, ~II.87!

LlªI CLl I C
215L01I ^ 1, ~II.88!

LrªI CLr I C
215L021^ CIC, ~II.89!

with

L0ªH0^ 121^ CH0C, ~II.90!

WªI ^ 121^ CIC. ~II.91!

These formulas will turn out to be very useful in our analysis of concrete systems.

III. EQUILIBRIUM STATES IN THE THERMODYNAMIC LIMIT

A. Thermodynamic limit

In this section, we recapitulate the general theory of infinite systems, i.e., systems
thermodynamic limit, in or close to thermal equilibrium, and we discuss spectral properties o
time evolution that guaranteereturn to equilibriumof states that are local perturbations of eq
librium states.

The data we need for our construction are aC* algebra,A, of observables of a system i
question, a one-parameter* automorphism group,a t of the algebraA, and a KMS statevb, at
inverse temperatureb, with respect to the dynamicsa t. In Secs. III A 1 and III A 2 and the first
two paragraphs of Sec. III A 3 we sketch a standard construction of the required data for an i
system starting with its restrictions to finite regions,L of the physical space. It is assumed that t
latter restrictions, indexed byL, are in fact finite systems and the results of Chapter II
applicable to them. The thermodynamic limit is reached asL increases to all of physical space

1. Observable algebras

Let AL denote the observable algebra of a system confined toL. Then, forL1#L2 ,

AL1
#AL2

#A, ~III.1!

whereA is a C* algebra describing theobservablesof the system in the thermodynamic limit.
is usually assumed that if$Li%iPN is a family of regions increasing to all of physical space th

A5 ∨
iPN

ALi

n, ~III.2!

where the closure is taken in the operator norm.

2. Time evolution

As described in Sec. II, the algebrasAL are assumed to be contained inB(HL), whereHL is
a separable Hilbert space wheneverL is a bounded subset of physical space. The dynam
is determined by a semibounded, self-adjoint HamiltonianHL on HL with the property that
exp@2bHL# is trace class, i.e.,

exp@2bHL#PL1~HL!, ~III.3!
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for arbitraryb.0, and that

a t
L~a!5eitH Lae2 i tH L, for aPAL , ~III.4!

defines an* automorphism group ofAL , i.e., a t
L(a)a t

L(b)5a t
L(ab), a t

L(a)* 5a t
L(a* ), and

a t
L(a)PAL , for arbitraryaPAL , tPR. By ~III.1!, a t

L(a) is well defined and belongs toAL , for
all aPAL8 , with L8#L. We denote∨ iPNALi

, by A` . For anyaPA` ,a t
Li(a) is thus well

defined, fori sufficiently large. In a general theory of thermal equilibrium states, one will ass
that

lim
i

s t
Li~a!5:a t~a! ~III.5!

exists, for allaPA` and alltPR, and that$a t% tPR is a one-parameter* -automorphism group of
the algebraA. It describes the time evolution of theobservablesof the infinite system in the
Heisenberg picture.

3. Equilibrium states (Ref. 40)

As discussed in Sec. III A 2, Assumptions~III.3! and ~III.4! guarantee that a finite system
confined to a regionL has equilibrium stateŝ•&b,Q

L , see Eq.~II.25!, which satisfy the KMS
condition, Eqs.~II.28!, ~II.32!, ~II.33!.

For aPA` , we may consider the sequence of expectation values^a&b,Q
Li , which are well

defined ifi is large enough, depending ona. Let vb(•) denote a limit of a~suitable subsequenc
of! the sequencê•&b,Q

Li of states onA` . Thenvb is a time-translation-invariantKMS state on
A` , i.e.,

vb„a t~a!…5vb~a!, ~III.6!

and, defining

Fab~ t !ªvb„aa t~b!…, ~III.7!

Gab~ t !ªvb„a t~b!a…, ~III.8!

we have the KMS condition

Gab~ t2 ib!5Fab~ t !, ~III.9!

Fab~ t1 ib!5Gab~ t !, ~III.10!

for a,bPA` ; see Eqs.~II.35!, ~II.32!, ~II.33!. By continuity, these equations continue to hold f
arbitrarya,bPA.

We define an* algebraÅ by

Åª Haf5E dt f~ t !a t~a!UaPA, f̂ PC0
`~R!J , ~III.11!

where f̂ denotes the Fourier transform off. Sincea t has been assumed to be an* automorphism
group ofA,Å is an * subalgebra ofA, anda t leavesÅ invariant. For anyaPÅ, a t(a) is the
boundary value of anÅ-valued entire functionaz(a), zPC. For aPA andbPÅ, we can rewrite
the KMS condition as the equation

vb„aa2~b!…5vb„a2 ib1t~b!a…. ~III.12!
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Note that

az~a!* 5a z̄~a* !, ~III.13!

for zPC, aPÅ. The invariance~III.6!, the KMS condition~III.12!, and~III.13! then imply that,
for a,bPÅ,

vb~a* b!5vb„a ib/2~a* b!…5vb„a2 ib/2~b!@a2 ib/2~a!#* …. ~III.14!

This equation has a noteworthy consequence: IfA is asimple C* algebra~i.e.,A does not contain
any two-sided* ideals other than$0% andA! then Eq.~III.14! implies that, for anyaPA,

vb~a* a!50⇒a50. ~III.15!

To see this, we show thatNª$aPAuvb(a* a)50% is a two-sided* ideal. Clearly, ifvb(a* a)
50 andbPA then

vb~a* b* ba!<vb~a* b* bb* ba!1/2vb~a* a!1/250, ~III.16!

by the Schwarz inequality. HenceAN#N. Furthermore, ifvb(a* a)50 andbPÅ then

vb~b* a* ab!5vb~„b* a* a!b…5vb„a2 ib/2~b* a* a!…5vb„a2 ib~b!a2 ib/2b* a* a…50.
~III.17!

In the second equation, we have used~III.14!, in the third one invariance, i.e.,~III.6!, and in the
last one again the Schwarz inequality, i.e.,

uvb~b* a!u2<vb~b* b!vb~a* a!. ~III.18!

Thus,AN,NA#N, andN is a two-sided* ideal.

B. The GNS construction

For the purpose of mathematical precision, it is useful to assume that there exists adenumer-

able subspaceÃ#A such that, for everyaPA, there exists a sequence$al%lPN#Ã with the
property that

lim
l→`

vb„~a2al!* ~a2al!…50, ~III.19!

and that

vb„aa t~b!…5vb„v2t~a!b… ~III.20!

is continuousin t, for arbitrarya,bPÃ.
Next, we recapitulate the GNSconstructionin a situation where~III.6!, ~III.12!, ~III.19!, and

~III.20! hold: To the data (A,a t ,vb), as specified above, one can associate a separable H
spaceHb , a representationl of A on Hb , a vectorVbPHb that is cyclic for l @A#, and a
continuous one-parameter group of unitary operators$e2 i tL% tPR , whereL is a self-adjoint opera-
tor on Hb , such that, for allaPA,

vb~a!5^Vbu l @a#Vb&, ~III.21!

l @a t~a!#5eitLl @a#e2 i tL, ~III.22!

LVb50. ~III.23!
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To constructHb , Vb , l, andL, let Nª$aPAuvb(a* a)50%. As noted aboveN is trivial if A is
simple, by the KMS condition. We set@a#ªamodN, for all aPA. Clearly,Dª$@a#uaPA% is a
linear space. It is equipped with a scalar product,

^@a#u@b#&ªvb~a* b!. ~III.24!

The Hilbert spaceHb is then the closure ofD in the norm induced bŷ•u•&. By ~III.19!, Hb is
separable. We setVbª@1# and define the representationl :A→B(Hb) by

l @a#@b#ª@ab#, ~III.25!

which extends continuously fromD to Hb . Finally, we define a one-parameter unitary gro
$e2 i tL% tPR on Hb by

eitL@a#ª@a t~a!#. ~III.26!

Unitarity follows from the invariance ofvb undera t . By ~III.20!, e2 i tL is strongly continuous on
the separable Hilbert spaceHb , and hence it is generated by a self-adjoint operatorL, the
Liouvillian ~Stone’s theorem!.

C. Modular operator and modular conjugation

WhetherA is simple or not, we shall henceforth always assume thatVb is separating for
l @A#, i.e., Eq. ~III.15!, or, equivalently, thatN50. Then, by~III.20!, Vb is also cyclic and
separating forl @Å#, with Å as in~III.11!. Under these assumptions, we can define an~unbounded!
antilinear operatorS on Hb by

S~ l @a#Vb!ª l @a#* Vb , ~III.27!

for aPA ~or aPÅ). SinceVb is separating forl @A#, S is well defined, and, sinceVb is cyclic
for l @A#, it is densely defined.

For aPÅ, we define an operatorJ by

J~ l @a#Vb!ªSl @a2 ib/2~a!#Vb5 l @a ib/2~a* !#Vb , ~III.28!

by ~III.27! and ~III.13!. Then, fora,bPÅ,

^Jl @a#VbuJl @b#Vb&5u^ l @a ib/2~a* !#Vbu l @a ib/2~b!* #Vb&5^Vbu l @a2 ib/2~a!a ib/2~b* !#Vb&

5vb„a2 ib/2~a!a ib/2~b* !…5vb~b* a!5^ l @b#Vbu l @a#Vb&

5^ l @a#Vbu l @b#Vb&, ~III.29!

where we have used Eq.~III.14! in the fourth equation. It follows from~III.29! thatJ extends to
an antiunitary operatoron Hb , which is calledmodular conjugation. Note that, by~III.26! and
~III.28!,

J5SebL/25e2bL/2S,

i.e.,

S5Je2bL/25ebL/2J, ~III.30!

which describes the polar decomposition ofS. Tomita–Takesaki theory~see, e.g., Refs. 41, 12! is
a far-reaching generalization of these considerations,22 which starts from the definition~III.27!,
then shows thatS is closable, and, finally, constructsJ and exp@6bL/2# by polar decomposition
of S. But we shall not have any occasion to make use of this theory.
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Next, we establish some remarkable properties of the modular conjugationJ. Using J, we
may define anantilinear representation,r, of A on Hb :

r @a#ªJ l @a#J, for aPA. ~III.31!

We claim that

r @A## l @A#8, ~III.32!

i.e., r @a# commutes withl @b#, for arbitrarya,bPA. It is instructive to verify~III.32!: SinceVb

is cyclic for l @Å#, it suffices to show that

r @a# l @b# l @c#Vb5 l @b#r @a# l @c#Vb , ~III.33!

for arbitrary a,b,cPÅ. Equation~III.33! follows from the definition~III.28! of J by a little
algebra,

r @a# l @b# l @c#Vb5J l @a# l @a ib/2~c* b* !#Vb5J l @aa ib/2~c* b* !#Vb5 l @a ib/2„a2 ib/2~bc!a* …#Vb

5 l @b# l @a ib/2„@aa ib/2~c* !#* …#Vb5 l @cb#J l @aa ib/2~c* !#Vb

5 l @b#J l @a#J l @c#Vb5 l @b#r @a# l @c#Vb , ~III.34!

which proves~III.33!. One can show~see Ref. 22! that, under our assumptions,

l @A#95r @A#8. ~III.35!

Next, we show thatJ commutes with the time evolution, i.e.,

Je2 i tL5e2 i tLJ. ~III.36!

For aPÅ, Eqs.~III.26! and ~III.28! yield

Je2 i tLl @a#Vb5J l @a2t~a!#Vb5 l @a ib/2„a2t~a* !…#Vb5 l @a2t„a ib/2~a* !…#Vb

5e2 i tLl @a ib/2~a* !#Vb5e2 i tLJ l @a#Vb , ~III.37!

and we have used~III.13!. As a corollary of~III.36!, ~III.31!, and~III.26!, we have that

eitLl @a#e2 i tL5 l @a t~a!#, ~III.38!

eitLr @a#e2 i tL5r @a t~a!#. ~III.39!

Equation~III.36! implies thatJiL5 iLJ, wherei is multiplication byA21. SinceJ is antiuni-
tary, this is equivalent to

JL52LJ, ~III.40!

which is consistent with the last equation in~III.30!. This equation has an interesting consequen
If c is an eigenvector ofL corresponding to an eigenvaluel, and

Jc5c, ~III.41!

thenl50. This is seen as follows:

lc5Lc5LJc52JLc52Jlc52l̄Jc52l̄c, ~III.42!

and hence
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l1l̄50. ~III.43!

SinceL is self-adjoint,l is real, and hence~III.43! implies thatl50. ~A slight generalization of
this fact will be used in Sec. V.!

D. Return to equilibrium

A state, r, on the C* algebraA is normal with respect to the representationl ~and the
representationr! iff 0 <rPL1(Hb), i.e., r is of the form

r~a!5 (
n51

`

pn^cnu l @a#cn&, ~III.44!

wherecnPHb , with ^cnucn&51, andpn>0, for all nPN; (n51
` pn51. Every vectorcn can be

approximated in norm by vectors of the forml @an
m#Vb , with an

mPA, mPN, by the cyclicity of
Vb .

The time evolution,r t , tPR, of a normal stater is defined by

r t~a!ªr„a t~a!…. ~III.45!

We are interested in understanding under which conditions

r t~a!→vb~a!, as t→`, ~III.46!

in a sense to be made precise. Equation~III.46! expresses the property ofreturn to equilibrium.
We give sufficient conditions involving spectral properties ofL for return to equilibrium.

Lemma III.1: Assume that 0 is a simple eigenvalue ofL corresponding to the eigenvectorVb

and that the rest of the spectrum ofL is continuous. Let aPA and r be a normal state. Then

lim
T→`

1

T E
0

T

r6t~a!dt5vb~a!. ~III.47!

If s(L)\$0% is absolutely continuous then

lim
t→6`

r t~a!5vb~a!. ~III.48!

Proof: First, the continuity of the spectrum away from 0 implies that

v2 lim
T→`

1

T E
0

T

e6 i tL dt5uVb&^Vbu. ~III.49!

If s@L#\$0% is absolutely continuous then we even have that

w2 lim
t→6`

e6 i tL5uVb&^Vbu. ~III.50!

To derive~III.47! from ~III.49!, it is enough to show that

lim
T→`

1

T E
0

T

^ l @b#Vbu l @a6t~a!# l @c#Vb&dt5vb~b* c!vb~a!, ~III.51!

for arbitrarya,b,cPÅ, by ~III.44! and the remarks thereafter. Using the KMS condition~III.12!,
the integrand on the left side of~III.51! is seen to equal
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vb„b* a6t~a!c…5vb„a2 ib~c!b* a6t~a!…

5^ l @b# l @a ib~c* !#Vbu l @a6t~a!#Vb&

5^ l @b# l @a ib~c* !#Vbue6 i tLl @a#Vb&. ~III.52!

Sincea,b,cPÅ,

l @b# l @a ib~c* !#Vb , l @a#VbPHb . ~III.53!

Thus, using~III.49! and ~III.52!, we find that

lim
T→`

1

T E
0

T

vb„b* a6t~a!c…dt5^ l @b# l @a ib~c* !#VbuVb&^Vbu l @a#Vb&

5vb„a2 ib~c!b* …vb~a!

5vb~b* c!vb~a!, ~III.54!

and we have used the KMS condition once more. Thus~III.51!, and hence~III.47! are proven. The
proof that~III.50! implies ~III.48! is similar.

h

E. Perturbation theory

This section amounts to a transcription of Sec. II E to the thermodynamic limit. LetI PA. To
the pair ($a t% tPR ,I ) we can associate a perturbed Heisenberg picture time evolution as fol
Let

I ~ t !ªa t~ I !. ~III.55!

Then the equation

a t
~ I !~a!ª(

n50

`

i nE
0

t

dt1E
0

t1
dt2¯E

0

tn21
dtn@ I ~ tn!,¯@ I ~ t2!,@ I ~ t1!,a t~a!##¯# ~III.56!

defines a perturbed one-parameter group$a t
(I )% tPR on the algebraA. In the GNS representationl

of A corresponding to ana t KMS statevb on A, a t
(I ) can be implemented unitarily,

l @a t
~ I !~a!#5exp~ i tLI

~ l !!l @a#exp~2 i tLI
~ l !!. ~III.57!

Using ~III.38! and applying the representationl to ~III.56!, we readily find that

LI
~ l !5L1 l @ I #1R, ~III.58!

where R is an arbitrary operator inl @A#85r @A#9. Of course,a t
(I ) can also be implemente

unitarily on Hb in the antilinear representationr of A,

r @a t
~ I !~a!#5Jl @a t

~ I !~a!#J5J exp~ i tLI
~ l !!l @a#exp~2 i tLI

~ l !!J5exp~ i tLI
~r !!r @a#exp~2 i tLI

~r !!,

~III.59!

where

exp~ i tLI
~r !!5J exp~ i tLI

~ l !!J, ~III.60!

i.e., becauseJ is antilinear,
                                                                                                                



r the

lity

t
e of

ec-
e
nded
r, like

4007J. Math. Phys., Vol. 41, No. 6, June 2000 Return to equilibrium

                    
LI
~r !52JLI

~ l !J5L2r @ I #2JRJ, ~III.61!

where we have used~III.58!, ~III.40!, and~III.31!. It would be pleasant to haveLI
( l )5LI

(r ) . This
equation has the unique solution

LI
~ l !5LI

~r !5..LI5L1 l @ I #2r @ I #1Z, ~III.62!

whereZ is in the center of the von Neumann algebral @A#9, which is given byl @A#9ùr @A#9.
Without loss of generality, we setZ50. Then

LI52JLIJ. ~III.63!

In our applications of the general theory, we shall use the following notation:

LIªL1WªL1 l @ I #2r @ I #, ~III.64!

with Wª l @ I #2r @ I #. It is natural to ask whether we can construct a perturbed KMS state fo
dynamics described by$a t

(I )% tPR , starting from the data (Hb ,l @A#,J,LI). The considerations
presented in Sec. II E suggest that the answer is affirmative. As in Eq.~II.82!, we introduce the
Radon–Nikodym operators,

LI ,lªL1 l @ I #, LI ,rªL2r @ I #. ~III.65!

We note that, by~III.31! and ~III.40!,

JLI ,lJ52LI ,r . ~III.66!

We claim that the vectorVb is in the domain of the unbounded operators exp@2bLI ,l /2# and
exp@bLI ,r /2#, and that the vector

Vb,IªZb,I
21e2bLI ,l /2Vb5Zb,I

21ebLI ,r /2Vb ~III.67!

defines a KMS state,vb,I , on A, for the time evolution given by$a t
(I )% tPR . In ~III.67!, Zb,I is a

positive, finitenormalization factor for which we shall give an explicit formula. The equa
between the two definitions ofVb,I implies that

JVb,I5Zb,I
21Je2bLI ,l /2Vb5Zb,I

21ebLI ,r /2JVb5Zb,I
21ebLI ,r /2Vb5Vb,I , ~III.68!

by ~III.66!; i.e., Vb,I is invariant underJ. The statevb,I is defined by

vb,I~a!ª^Vb,I u l @a#Vb,I&, ~III.69!

for aPA. Araki1,2 has proven thatvb,I is indeed a KMS state for$a t
(I )% tPR and hence is invarian

under $a t
(I )% tPR . ~The time-translation invariance of a KMS state is a simple consequenc

Liouville’s theorem, which says that a bounded entire function onC is constant.! From the fact
that exp(2itLI) implementsa t

(I ) unitarily on Hb and Eqs.~III.63! and ~III.68!, it follows that

LIVb,I50, ~III.70!

i.e., 0 is an eigenvalue ofLI with corresponding eigenvectorVb,I .
The construction ofVb,I can thus also be viewed as aspectral problemfor LI : If we can

show that 0 is a simple eigenvalue ofLI thenVb,I can be defined as the corresponding eigenv
tor. The results summarized in this section mostly due to Araki,1,2 are plausible extensions of thos
of Sec. II E. For KMS states obtained as thermodynamic limits of equilibrium states of bou
systems, they could be derived from the results in Sec. II E by limiting arguments. Howeve
all other resultsin Sec. III, they can be provendirectly, by using the KMS condition forvb , the
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Lie–Schwinger series~III.56! and the Dyson series for exp@2bLI ,l /2#•exp@bL/2# in moderately
clever ~and somewhat tedious! ways. Reviewing the details goes beyond the scope of this pa
but see Refs. 1, 2, 12, 13. But we present the most essential tools and explicit formulas foVb,I

andZb,I .
For aPÅ, we may define

a~t1 i t !ªa i ~t modb!1t~a!. ~III.71!

Temperature~imaginary-time! ordering, T, of a product of operatorsa(t1 i t ) is defined by

T@a1~t11 i t 1!¯an~tn1 i t n!#ªap~1!~tp~1!1 i t p~1!!¯ap~n!~tp~n!1 i t p~n!!, ~III.72!

wherep is the permutation of$1,2,...,n% with the property that, fort iÞt j , iÞ j ,

tp~1!,tp~2!,¯,tp~n! , ~III.73!

for arbitrarya1 ,a2 ,...,anPÅ. Then the KMS condition forvb implies that, for arbitrarynPN,
the temperature-ordered Green functions,

vb„T@a1~z1!¯an~zn!#…, ~III.74!

are analytic inz1 ,z2 ,...,zn on the domains

Tn
p
ª$z1 ,...,znu0,Rezp~1!,¯,Rezp~n!,b%, ~III.75!

with

uvb„T@a1~z1!¯an~zn!#…u<)
j 51

n

iaj i , ~III.76!

whereiai is theC* norm of a; see Refs. 1, 2. Furthermore,

vb„T@a1~z1!¯an~zn!#…5vb„T@a1~z11t!¯an~zn1t!#…, ~III.77!

for any realt. By ~III.76!, ~III.74!, Eqs.~III.75! and ~III.77! hold for arbitrarya1 ,...,anPA, n
PN.

The GNS construction implies that

vb„T@a1~z1!¯an~zn!#…5K VbU)
j 51

n

l @ap~ j !#e
~zp~ j !2zp~ j 11!!LVbL

5K VbU)
j 51

n

r @ap~ j !#e
2~ z̄p~ j !2 z̄p~ j 11!!LVbL . ~III.78!

The second equation follows from the first one by conjugating withJ and using thatJVb

5Vb .
Applying theDuhamel~or Dyson! seriesfor the expressions forVb,I in ~III.67!, we find that

Vb,I5Zb,I
21e2bLI ,l /2Vb5Zb,I

21(
n50

` E
0

b/2

dt1E
0

t1
dt2¯E

0

tn21
dtn l @ I ~tn!#¯ l @ I ~t1!#Vb .

~III.79!

NormalizingVb andVb,I to have norm 1 and using~III.78!, we find that
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Zb,I5 (
n50

`
1

n! E0

b

dt1¯E
0

b

dtn vb„T@ I ~t1!¯I ~tn!#…. ~III.80!

With ~III.76! we find that, for 0,b,`,

0<Zb,I<exp~bi I i !. ~III.81!

Similar formulas hold when one replacesLI ,l by LI ,r . The KMS condition forvb,I @see~III.69!#
with respect toa t

(I ) can be derived from~III.56!, ~III.77!, and ~III.79! by straightforward, albeit
somewhat tedious, calculations.

Formulas~III.79! and~III.80! are very useful in the analysis of concrete models; see Sec

IV. KMS STATES AND LIOUVILLIANS FOR IDEALIZED ATOMS COUPLED TO THE
QUANTIZED ELECTROMAGNETIC FIELD

A. KMS states for the quantized free electromagnetic field

In this section, we illustrate the general theory developed in Secs. II and III on the exam
the equilibrium~KMS! states of the free electromagnetic field in the thermodynamic limit
described by Araki and Woods in Ref. 3. Similar results can be derived for gases of free fer
at positive density and temperature; see Ref. 4.

It is convenient to describe the free electromagnetic field in terms of creation and annihi
operatorsal* (kW ), al(kW ) satisfying the canonical commutation relations,

@al* ~kW !,al8
* ~kW8!#5@al~kW !,al8~kW8!#50, ~IV.1!

@al~kW !,al8
* ~kW8!#5dl,l8d~kW2kW8!, ~IV.2!

as described in the Introduction. We thus consider observable algebras that are* algebras of
unbounded operators, instead of theC* algebras appearing in the general theory of Secs. II
III. By using the bounded Weyl operators we could, however, translate our results intoC* -algebra
language. But in the analysis of concrete models,* algebras are more convenient.

For notational convenience, we setkª(kW ,l)PR33Z2 , wherekWPR3 is the wave vector and
l561 is the polarization index, and we denote*dkª(l561*d3k. We define

d~k2k8!ªdl,l8d~kW2kW8!, ~IV.3!

and

a* ~k!ªal* ~kW !, a~k!ªal~kW !. ~IV.4!

Let S0(R3) denote the Schwartz space test functions vanishing at the origin ofR3. For f
5( f 1 , f 2)PS0(R3)2, we define

a* ~ f !ª (
l56

E d3k fl~kW !al* ~kW !, a~ f !ª (
l56

E d3k fl~kW !al~kW !, ~IV.5!

and the complex conjugation

~t f !@k#[„~t f !1~kW !,~t f !2~kW !…ª„f 1~kW !, f 2~kW !…. ~IV.6!

We set
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~ f ,g!ª (
l56

E d3k f l~kW !gl~kW !. ~IV.7!

Then ~IV.1! and ~IV.2! can be written as

@a* ~ f !,a* ~g!#5@a~ f !,a~g!#50, ~IV.8!

@a~t f !,a* ~g!#5~ f ,g!1. ~IV.9!

We shall, however, continue to also use the operator-valued distributionsa(k), a* (k).
Let P denote the polynomial algebra generated by

$a~ f !,a* ~g!u f ,gPS0~R3!2%. ~IV.10!

It is a * algebra for the* operation defined by

„a~ f !…*ªa* ~t f !. ~IV.11!

The time evolution of operators inP is described by a one-parameter group of* automorphisms,
$a t

f% tPR , of P, determined by

a t
f
„a* ~k!…ªeitv~k!a* ~k!, a t

f
„a~k!…ªe2 i tv~k!a~k!, ~IV.12!

wherev(k)ªukW u is the energy of a photon of wave vectorkW ~we set\51).
A quasifreestater on the* algebraP defined in~IV.11! is a state with the property that th

connected, or ‘‘truncated,’’ expectations,

r„a#1~ f 1!¯a#n~ f n!…c, ~IV.13!

all vanish, except forn51 and 2. It is not hard to show that there is auniquestatevb
f on P that

is a KMS state for the time evolution$a t
f% tPR at inverse temperatureb. The statevb

f is quasifree
and hence completely determined by the equations

vb
f
„a* ~k!…5vb

f
„a~k!…5vb

f
„a* ~k!a* ~k8!…5vb

f
„a~k!a~k8!…50, ~IV.14!

and the functionvb
f
„a(k)a* (k8)…. The KMS condition@see~IV.16! below# implies that

vb
f
„a~k!a* ~k8!…5

d~k2k8!

ebv~k!21
. ~IV.15!

Expectation values of products of more than two creation and annihilation operators are giv
sums of products of expectation values ofa* (k)a(k8), as given by~IV.15!, according toWick’s
theorem, which holds for quasifree states. The KMS condition forvb

f is a direct consequence o
applying ~IV.2! and ~IV.12! to ~IV.15!:

vb
f
„a~k!a* ~k8!…5d~k2k8!1vb

f
„a* ~k8!a~k!…5ebv~k!

d~k2k8!

ebv~k!21
5vb

f ~a2 ib
f

„a* ~k8!…a~k!!,

~IV.16!

where, in the first equation, we have used~IV.2!, in the second~IV.15!, and in the last one~IV.12!.
The GNS construction~in a form originally due to Borchers and Wightman! tells us that the

data (P,a t
f ,vb

f ) determine a Hilbert spaceHb
f , a representationl of P on Hb

f , a vectorVb
f

PHb
f cyclic for l @P#, and a unitary one-parameter group$e2 i tLf% tPR, such that

vb
f ~a!5^Vb

f u l @a#Vb
f &, ~IV.17!
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l @a t
f~a!#5eitLf l @a#e2 i tLf , ~IV.18!

for arbitraryaPP. Furthermore, one easily shows thatVb
f is separating forl @P# ~which follows

from the KMS condition forvb
f and the faithfulness of the representationl; see Sec. III!, and that

there is a modular conjugationJ such that the antilinear representationr of P on Hb
f , given by

r @a#ªJ l @a#J, for aPP, ~IV.19!

commutes withl @b#, for all bPP, and

JVb
f 5Vb

f , JLfJ52Lf . ~IV.20!

These are immediate corollaries of the general theory outlined in Sec. III.
Following Ref. 3, we now present an explicit realization of the representationsl andr of P, of

the vectorVb
f , and of the modular conjugationJ, which is reminiscent of the description of th

quantum theory of bounded systems in thermal equilibrium presented in formulas~II.45!–~II.53!
of Sec. II.

Let F denoteFock spacecarrying the standard Fock representation ofP. Fock space contains
a distinguished vectorV ~unique up to a phase! characterized by the property that

a~ f !V50, for all f PS0~R3!2, ~IV.21!

which is called thevacuum vector. Fock spaceF and the vacuumV arise by GNS construction
from the quasifreestatev` on P given by lettingb tend to` in ~IV.15! and ~IV.16!. In our
notation, we identifyP with its representation onF.

We define an antiunitary operatorT on F, thesecond quantizationof t, by setting

TV5V, ~IV.22!

Ta#~ f !T5a#~t f !, ~IV.23!

T5T* 5T21. ~IV.24!

Physically,T describestime reversal@compare~IV.12! and ~IV.23!#.
Next, we describe an isomorphism,I T , betweenHb

f and F^ F and between appropriat
representations. OnF^ F, we introduce the creation and annihilation operators,

al
#~ f !ªa#~ f ! ^ 1, ~IV.25!

ar
#~ f !ª1^ Ta#~ f !T51^ a#~t f !. ~IV.26!

Note thatar , ar* yield anantilinear representation of the canonical commutation relations~IV.8!–
~IV.9!. Let

rb~k![r~k!ª
1

exp@bv~k!#21
.0. ~IV.27!

The isomorphismI T :Hb
f →ĤªF^ F is determined by the following equations:

I TVb
f 5V ^ V, ~IV.28!

I Tl @a~ f !#I T
21

ªal~A11r f !1ar* ~Ar f !, ~IV.29!

I Tr @a~ f !#I T
21

ªal* ~Art f !1ar~A11rt f !. ~IV.30!
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Note that, by~IV.25!–~IV.26!, Eq. ~IV.29! is linear in f, while Eq.~IV.30! is antilinear inf, as it
should be. SinceV is cyclic for P in F and Vb

f is cyclic for l @P# and r @P# in Hb
f , Eqs.

~IV.28!–~IV.30! determineI T completely. It is a trivial calculation to show thatI Tl @a##I T
21 and

I Tr @a##I T
21 satisfy the canonical commutation relations~IV.8!–~IV.9!, becauseal

# andar
# satisfy

them. It follows that l @P# is * homomorphicto I Tl @P#I T
21 and r @P# is * homomorphicto

I Tr @P#I T
21. Furthermore, sincea( f )V50, for all f PS0(R3)2, whereV is the vacuum inF, we

find that

^V ^ VuI Tl @a* ~k!# l @a~k8!#I T
21V ^ V&5^V ^ VuAr~k!ar~k!Ar~k8!ar* ~k8!V ^ V&

5Ar~k!r~k8!d~k2k8!5
d~k2k8!

exp@bv~k!#21

5vb
f
„a* ~k!a~k8!…5^Vb

f u l @a* ~k!# l @a~k8!#Vb
f &,

~IV.31!

where the first equation follows from~IV.29! and~IV.21!, the second from~IV.9! and~IV.21!, and
the remaining equations from~IV.27!, ~IV.15!, and~IV.17!. Likewise,

^V ^ VuI Tr @a* ~k!#r @a~k8!#I T
21V ^ V&5vb

f
„a* ~k!a~k8!…5^Vb

f ur @a* ~k!#r @a~k8!#Vb
f &.
~IV.32!

It follows that I T :Hb
f →F^ F, defined by~IV.28!–~IV.30!, is an isometry.

Next, we calculateL fªI TLf I T
21. We claim that

L f5E dk v~k!@al* ~k!al~k!2ar* ~k!ar~k!#. ~IV.33!

Then

eitL fal~k!e2 i tL f5e2 i tv~k!al~k!, ~IV.34!

eitL far~k!e2 i tL f5eitv~k!ar~k!. ~IV.35!

Thus, using~IV.29!, we find that

eitL f I Tl @a~k!#I T
21e2 i tL f5e2 i tv~k!I Tl @a~k!#I T

215I Tl @a t
f
„a~k!…#I T

21, ~IV.36!

as required. Similarly, by~IV.30! and ~IV.33!,

eitL f I Tr @a~k!#I T
21e2 i tL f5eitv~k!I Tr @a~k!#I T

215I Tr @e2 i tv~k!a~k!#I T
215I Tr @a t

f
„~k!…#I T

21,
~IV.37!

becauser is antilinear. This,~IV.18!, and the corresponding relation forr prove ~IV.33!.
For c ^ wPF^ F, we define

Ec ^ w5w ^ c, ~IV.38!

and we set

JªE~T^ T!. ~IV.39!

Then

Jal
#~ f !J5ar

#~t f !, ~IV.40!

and, using thatJ l @a#( f )#J5r @a#(r f )# and Eqs.~IV.29!–~IV.30!, we verify that
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JITl @a#~ f !#I T
21J5I Tr @a#~t f !#I T

215I TJl@a#~ f !#JIT
21. ~IV.41!

By ~IV.39!,

JV ^ V5V ^ V, ~IV.42!

andJ5J* 5J21. It follows from ~IV.41!–~IV.42! that

J5I TJ I T
21, ~IV.43!

i.e., J is the modular conjugation in the Araki–Woods representation. Note that

J~P^ 1!J51^ TPT. ~IV.44!

Our account summarizes all essential features of the quantum theory of the free electr
netic field in thermal equilibrium.

B. An idealized atom and the quantized free electromagnetic field

As a next step, we consider a system consisting of an idealized atom with finitely many
and the electromagnetic field, coupled to each other and in thermal equilibrium.

We begin by describing an idealized atom with finitely many levels. This system is a sp
example of those described in Sec. II A. We briefly recall the main objects and notions. The
spaceHel has dimensionN,`,

Hel5CN, ~IV.45!

and the Hamiltonian,Hel , is a self-adjointN3N matrix onHel . According to Hypothesis H-1, the
eigenvalues ofHel are simple. We choose the standard basis inHel to consist of eigenvectors
$w j% j 50

N21 of Hel corresponding to the eigenvaluesE0,E1,¯,EN21 , i.e., Helw j5Ejw j . The
atomic Liouvillian acts onKel5MN{k by

Lelk5@Hel,k#, ~IV.46!

whereMN denotes the algebra of complexN3N matrices, and the atomic KMS state is given

rb
el5Zb,0

21 (
j 50

N21

e2bEj uw j&^w j u. ~IV.47!

Recall from~IV.17! thatvb
f denotes the unique KMS state of the electromagnetic field at inv

temperatureb. The reference state of the systems consisting of an atom and the quantized
tion field is

rb
0
ªrb

el
^ vb

f . ~IV.48!

Let (Hb ,Vb,0 ,l ,r ) denote the GNS Hilbert space, the cyclic vector, the left representationA
ªMN^ P, and the right antirepresentation ofA, respectively, associated to (rb

0,A). The Liou-
villian of the uncoupled system is

L05Lel1Lf , ~IV.49!

whereLf5I T
21L fI T , with L f as in~IV.33! andI T as in~IV.28!–~IV.30!. Note thatrb

0 is the unique
KMS state of the uncoupled system.

We defineI PA by
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IªE dk$G~k! ^ a* ~k!1G~k!* ^ a~k!%, ~IV.50!

where, as in Hypothesis H-3, the coupling functionG:R33Z2→MN is assumed to obey

iG~k!i<v~k!m, ~IV.51!

for somem.0. The Liouvillian of the interacting system is defined by

LgªL01g$ l @ I #2r @ I #%, ~IV.52!

and the ‘‘Radon–Nikodym’’ operators by

Lg,lªL01gl@ I #, Lg,rªL02gr@ I #. ~IV.53!

For the purpose of our analysis it is convenient to work in the Araki–Woods represent
i.e., to conjugate the above operators by the isomorphism

I 0ªI C^ I T :Hb→ĤªHel^ Hel^ F^ F, ~IV.54!

where conjugation byI C denotes complex conjugation inMN in the standard basis$w i

^ w j% i , j 50
N21 . We set

V̂ b,0ªI 0Vb,0 , ~IV.55!

and note that

V̂ b,05Zb,0
21 (

j 50

N21

e2bEjw j ^ w j ^ V ^ V. ~IV.56!

Defining

L0ªI 0L0I 0
21, LgªI 0LgI 0

21, ~IV.57!

we find that

Lg5L01gW, ~IV.58!

where

L05Lel^ 1f11el
^ L f , ~IV.59!

Lel5Hel^ 1el21el^ Hel , ~IV.60!

L f is defined in~IV.33!, and the interaction is given by

WªI 0$ l @ I #2r @ I #%I 0
21. ~IV.61!

By means of~IV.50!, and Eqs.~IV.29!, ~IV.30!, we readily find that

W5E dk$„A11r~k!Gl~k!2Ar~k! Gr* ~k!…al* ~k!„A11r~k!Gl* ~k!2Ar~k! Gr~k!…al~k!

3„Ar~k!Gl* ~k!2A11r~k! Gr~k!…ar* ~k!„Ar~k!Gl~k!2A11r~k! Gr* ~k!…ar~k!%,

~IV.62!
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which we may rewrite as

W5al* ~A11rGl2Ar Gr* !1al~A11rGl* 2Ar Gr !1ar* ~ArGl* 2A11r Gr !

1ar~ArGl2A11r Gr* !, ~IV.63!

using the shorthand notationm̄ªI CmIC
21, mlªm^ 1el , mrª1el^ m, and

as* ~mm!ªE dk mm~k!as* ~k!, as~mm!ªE dk mm~k!as~k!, ~IV.64!

for s, mP$ l ,r % and matrix-valued functionsm:R33Z2→B(Hel).
Similarly, setting

Lg,lªI 0Lg,l I 0
21, Lg,rªI 0Lg,r I 0

21, ~IV.65!

we have that

Lg,l5L01gWl , Lg,r5L01gWr , ~IV.66!

where

Wl5I 0l @ I #I 0
215al* ~A11rGl !1al~A11rGl* !5ar* ~ArGl* !1ar~ArGl !, ~IV.67!

Wr52I 0r @ I #I 0
2152al* ~Ar Gr* !2al~Ar Gr !2ar* ~A11r Gr !2ar~A11r Gr* !.

~IV.68!

BesidesL f , the following positive operator:

Laux5H f ^ 1f11f ^ H f , ~IV.69!

plays an important role in our analysis. It is straighthforward to see thatLaux is self-adjoint on its
natural domain,

Dom@Laux#5$cPF^ F u iLauxci,`%, ~IV.70!

and thatLaux dominatesL f , in the sense that Dom@L f #$Dom@Laux# and

uL f u<Laux. ~IV.71!

Moreover, we have the following standard estimates~see, e.g., Refs. 7–9!.
Lemma IV.1: If fPL2(R33Z2 ,MN) and v21/2f PL2(R33Z2 ,MN) then

ias~ f m!Laux
21/2PV

' i ,
iLaux

21/2PV
' as* ~ f m!i ,

i~Laux11!21/2as~ f m!i ,
ias* ~ f m!~Laux11!21/2i

J <S E dkS 11
1

v~k! D i f ~k!i2D 1/2

, ~IV.72!

for s, mP$ l ,r %.
From these relative bounds and Hypothesis H-4, i.e.,

S E dk„v~k!1v~k!23
…iG~k!i2D 1/2

<L,`, ~IV.73!

we conclude self-adjointness ofLg by Nelson’s commutator theorem.
Theorem IV.2: The operators Lg , Lg,l , and Lg,r are essentially self-adjoint onDom@Laux#.
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Proof: By ~IV.71! and ~IV.72!, we have, forw, cPDom@Laux#,

u^cuLg,#w&u<„1116gb21/2~11b!1/2L…i~Laux11!1/2cii~Laux11!1/2wi , ~IV.74!

where Lg,#5Lg , Lg,l , or Lg,r . Next, we observe thatL f and Laux commute and that on
Dom@Laux

3/2#, we have

@as~ f m!,Laux#5as~v f m!. ~IV.75!

Hence, forw, cPDom(Laux
3/2),

u^cu@Laux11,Lg,##w&u<16gb21/2~11b!1/2L i~Laux11!1/2ci i~Laux11!1/2wi . ~IV.76!

Thus,Lg is essentially self-adjoint by a variant~Ref. 33, Theorem X.368! of Nelson’s commutator
theorem. h

Next, we recall the expression for the modular conjugation in the Araki–Woods repres
tion,

J5I 0J I 0
215E~C^ C^ T^ T!, ~IV.77!

where the exchange operator acts as

E~w ^ c ^ w8^ c8!5~c ^ w ^ c8^ w8!, ~IV.78!

for c ^ w ^ c8^ w8PĤ, where Ĥ is defined in ~IV.54!. Note that the invariance propert
J Vb,05Vb,0 translates to the invariance property

J V̂ b,05 V̂ b,0 . ~IV.79!

C. KMS states for an idealized atom coupled to the quantized electromagnetic field

The self-adjointness of the interacting LiouvillianLg guarantees the existence of the dynam
as a strongly continuous unitary group$exp@2itLg#%tPR on Ĥ. We define the Heisenberg-pictur
time evolution of a bounded operatorb on Ĥ by

a t
g~b!ªeitL gbe2 i tL g. ~IV.80!

In the following theorem we construct a perturbed KMS state for the dynamics describ

$a t
g% tPR , starting from the data (Ĥ,l @MN^ P#,J,Lg ,I 0).

Theorem IV.3: Assume that G fulfills Hypothesis H-4. Then the vectorV̂b,0 is in the domain
of the two unbounded operatorsexp@2bLg,l /2# and exp@bLg,r /2#, and the vector

V̂b,gªZb,0
21e2bLg,l /2V̂b,05Zb,0

21ebLg,r /2V̂b,0 ~IV.81!

where Zb,g5ie2bLg,l /2V̂b,0i5iebLg,r /2V̂b,0i , defines a KMS state, vb
g , on MN^ P, for the time

evolution given by$a t
g% tPR . Moreover, the normalization factor Zb,g obeys the estimate

0,Zb,g<ATr$e2bHel% expS g2b2E „11@bv~k!#21
…iG~k!i2 dkD,`. ~IV.82!

In particular, LgV̂b,050.
Proof: We first note that due to the definition ofZb,g ,

Zb,g
2 5^V̂b,0ue2bLg,lV̂b,0&5^Vb,0ue2bLg,lVb,0&. ~IV.83!
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Thus, if we can prove~IV.82! then Vb,0 is in the domain ofe2(b/2)Lg,l and, similarly, in the
domain ofe(b/2)Lg,r. To demonstrate~IV.82!, we introduceI(t)ªe2tL0l @ I #etL0, and observe tha

^Vb,0ue2bLg,lVb,0&5 (
n50

`

gnE
0

b

dt1E
0

t1
dt2¯E

0

tn21
dtn^Vb,0uI~t1!¯I~tn!Vb,0&

5 (
n50

`

g2nE
0

b

dt1E
0

t1
dt2¯E

0

t2n21
dt2n^Vb,0uI~t1!¯I~t2n!Vb,0&,

~IV.84!

using that ) j 51
n (ennL0l @ I #)Vb,0PHb , for n1 ,...,nnPR1 with ( j 51

n nn<b. Abbreviating
e2tv(k)a* (k)5..a1(k,t), etv(k)a(k)5..a2(k,t), G(k)5..G1(k), andG* (k)5..G2(k), and using
~IV.36!, with t5 i t, and~IV.50!, we may write

I~t!5 (
s56

E dk l@e2tHelGs~k!etHel^ as~k,t!#. ~IV.85!

Inserting this expression in~IV.84!, we then obtain

^Vb
0 ue2bLg,lVb

0&5 (
n50

`

(
sP$1,2%2n

g2nE
0

b

dt1E
0

t1
dt2¯E

0

t2n21
dt2nE dk1¯dk2n

3Tr@e2~b1t12t2n!HelGs1~k1!e~t12t2!Hel̄ e~t2n212t2n!HelGs2n~k2n!#

3vb
0~as1~k1 ,t1!¯as2n~k2n ,t2n!!. ~IV.86!

Applying Hölder’s inequality for the trace,

Tr@A1B1¯AnBn#<)
j 51

n

iBj i)
j 51

n

~Tr$uAj upj%!1/pj , ~IV.87!

wherepj>0 and 1/p11¯11/pn51, we observe that

Tr@e2~b1t12t2n!HelGs1~k1!e~t12t2!Hel̄ e~t2n212t2n!HelGs2n~k2n!#<Tr@e2bHel#)
j 51

2n

iG~kj !i .

~IV.88!

Next, sincevb
0 is quasifree, Wick’s theorem implies that

vb
0
„as1~k1 ,t1!¯as2n~k2n ,t2n!…5 (

pPP2n
)
j 51

n

vb
0
„asp~2 j 21!~kp~2 j 21! ,tp~2 j 21!!

3asp~2 j !~kp~2 j ! ,tp~2 j !!…, ~IV.89!

where P2n is the set of pairings, i.e., all permutationspPS2n such thatp(1),p(3),¯

,p(2n21) and p(2 j 21),p(2 j ). Sincevb
0(a1a1)5vb

0(a2a2)50, the only nonvanishing
contributions in~IV.89! come from

vb
0
„a2~k,t!a1~k8,t8!…5d~k2k8!

e~t2t8!v~k!

ebv~k!21
, ~IV.90!

vb
0
„a1~k,t!a2~k8,t8!…5d~k2k8!

e~b2t1t8!v~k!

ebv~k!21
. ~IV.91!
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Thus, for 0<t8<t<b, we have the estimate

d~k2k8!
2ebv~k!/2

ebv~k!21
> (

s,s856

vb
0
„as~k,t!as8~k8,t8!…>d~k2k8!

ebv~k!11

ebv~k!21
. ~IV.92!

The number of pairings is

uP2nu5~2n21!~2n23!¯15
~2n!!

2nn!
. ~IV.93!

Hence, first summing over allsP$1,2%2n, taking ~IV.89! and the upper bound in~IV.92! into
account, and using~IV.93!, we obtain

^Vb,0ue2bLg,lVb,0&~Tr$e2bHel%!21< (
n50

`
~2n!!

2nn! S g2E coth@bv~k!/2#iG~k!i2 dkD n

3E
0

b

dt1E
0

t1
dt2¯E

0

t2n21
dt2n

5 (
n50

`
1

n! S g2b2

2 E coth@bv~k!/2#iG~k!i2 dkD n

5expS g2b2

2 E coth@bv~k!/2#iG~k!i2 dkD
<exp~g2~11b!bL!,`, ~IV.94!

due to~IV.73!, and using cothx<212/x.

V. SPECTRAL ANALYSIS OF THE INTERACTING LIOUVILLIAN

A. Main results and outline of proofs

In this section we present our main results on the spectrum of the interacting LiouvilliaLg

introduced in Eqs.~IV.52!, ~IV.58!. Throughout our analysis, we assume that Hypotheses~H-1!–
~H-5! stated in the Introduction, Sec. I, are satisfied. Our goal is to prove thatLg has purely
absolutely continuous spectrumcovering the real axis, except for asimpleeigenvalue at 0. The
eigenvector corresponding to this eigenvalue is the perturbedKMS state V̂ b,g constructed in
Theorem IV.3.

Our method to prove this result involvestwo key ingredients:a novel variant of the techniqu
of complex spectral deformations~see, e.g., Refs. 15, 33!, and theisospectral Feshbach ma
introduced in Refs. 7, 8. We shall first qualitatively describe these ingredients and then outli
basic strategy underlying our method.

Recall that the Hilbert space of temperature states of the system, in the Araki–Woods
sentation, is given by

Ĥ5Hel^ Hel^ F^ F; ~V.1!

see Eq.~IV.54!. The wave function of a photon in momentum space is given by a pair of funct
„f 1(kW ), f 2(kW )…, kWPR3. On the space of one-photon wave functions we definedilatations,
$u(u)%uPR , by setting

u~u!„f 1~kW !, f 2~kW !…5e23u/2
„f 1~e2ukW !, f 2~e2ukW !…. ~V.2!
                                                                                                                



r
hen

ain

y
e
uous

on

4019J. Math. Phys., Vol. 41, No. 6, June 2000 Return to equilibrium

                    
Note thatu(u) is unitary in the usualL2 scalar product. We defineU(u) to be the unitary operato
on Fock spaceF obtained fromu(u) by second quantization; see, e.g., Ref. 7 and Sec. V C. T

u~u!V5V, ~V.3!

whereV is the vacuum vector. We define a representation$Û(u)%uPR of the group of dilatations
on the Araki–Woods Hilbert space by

Û~u!ª1^ 1^ U~u! ^ U~2u!. ~V.4!

For the purposes of our analysis of the spectrum ofLg , it is crucial that the arguments,u and2u,
in the third and fourth factor on the R.S. of~V.4! haveopposite signs. Our method of complex
spectral deformations relies on extendingu to a complex domain,Sp/2 , which is the strip sym-
metric about the real axis and of widthp. It is easy to see that there is a natural dense dom
D#Ĥ with the property that, for everycPD, Û(u)c is an analytic Ĥ-valued function ofu
PSp/2 .

We start by considering the spectrum ofL05Lg50 ; see~IV.59!. Its eigenvalues are given b
those ofLel , i.e., by$Ei2Ej u i , j 50,...,N21%; the eigenvalue 0 is thusN-fold degenerate. Thes
eigenvalues are covered byN2 branches of continuous spectrum that are copies of the contin
spectrum ofL f . In the example, whereN52, E050, E15«0 , the spectrum ofL0 is depicted in
Fig. 1.

We define the dilated Liouvillian by

L0~u!ªÛ~u!L0Û~2u!. ~V.5!

From formulas~IV.33!, ~IV.59!, and~IV.69!, we infer that

L0~u!5Lel1cosh~u!•L f2sinh~u!•Laux, ~V.6!

whereLaux is thepositiveoperator defined in~IV.69!. The operatorL0(u) is clearly analytic inu
on the stripSp/2 . If u¹R then the spectrum ofL0(u) intersects the real axisonly in the eigen-
values$Ei2Ej u i , j 50,...,N21% of Lel . If Im u5..q.0 it is containedin the closed lower half-
plane, while ifq,0 it lies in the closed upper half-plane. In deriving Eq.~V.6! and establishing
these properties ofs„L0(u)…, therelative minus signbetween the third and the fourth argument
the R.S. of Eq.~V.4! is crucial! In the example considered above, the spectrum ofL0(u) for
Reu50 and Imu5q.0 is depicted in Fig. 2.

FIG. 1. The spectrum ofL0 .

FIG. 2. The spectrum ofL0(u), for Reu50, Im u5q.0.
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The absolutely continuous nature of the spectrum ofL05L0(u50) away from its eigenvalues
can be inferred from the spectral properties ofL0(u), u¹R, by considering matrix elements of th
resolvent ofL0 between vectors in the dense domainD of dilatation-analytic vectors, and usin
that

^wu~L02z!21c&5^Û~ ū !wu~L0~u!2z!21Û~u!c&, ~V.7!

for w andc in D. Clearly the R.S. of~V.7! is analytic inz in the complement ofs„L0(u)…, and this
provides an analytic continuation inz of the L.S. of~V.7! to the complement ofs„L0(u)….

The idea is now to study what happens to the spectrum ofL0(u) when the perturbation

gW~u!ªgÛ~u!WÛ~u!21 ~V.8!

is added toL0(u). In defining the operatorW(u) for complex values ofuPSq0
, we shall make

use of Hypothesis~H-2! stated in Sec. I. There are some important technical points in the
struction of an analytic continuation of the operatorW(u) and of the interacting Liouvillian,

Lg~u!5Û~u!LgÛ~2u!5L0~u!1gW~u!, ~V.9!

that require careful examination. They are dealt with in Sec. V C and in Appendix A. The u
is that there exists a natural domainD0#D dense inĤ such that, for arbitrary vectorsw andc in
D0 , the matrix elements

^Û~u!wu~Lg~u!2z!21Û~u!c&, Im zÞ0, uPR, ~V.10!

are the boundary values on the real axis of the function,

^Û~ û !wu„Lg~u!2z…21Û~u!c&, ~V.11!

which is analytic inu on the stripSq0
, defined in Eq.~I.24!, thanks to Hypothesis H-2. Sinc

U(u)215U(u)* 5U(2u), for uPR, the matrix elements~V.10! are independent ofu, and hence

^wu~Lg2z!21c&5^Û~ ū !wu~Lg~u!2z!21Û~u!c&, ~V.12!

for w, cPD0 , and Imz.0,0,Im u,q0.
If we are able to find out where the spectrum,s„Lg(u)…, of Lg(u) is located for, e.g., purely

imaginaryu5 iq, with 0,q,q0 , then we can use Eq.~V.12! to construct an analytic continu
ation inz of matrix elements of (Lg2z)21 between vectors inD0 from the upper half-plane to the
complement ofs„Lg(u)… in the lower half-plane.

We shall attempt to locate the spectrum ofLg( iq) with the help ofperturbative methods,
using that we knows„L0( iq)… explicitly. The form ofs„L0( iq)…, for q.0, see Fig. 2, Formula
~V.6!, and the bounds presented in Lemma IV.1 suggest we apply the method of theisospectral
Feshbach mapdeveloped in Refs. 7, 8, in order to explore the properties ofs„Lg( iq)…, 0,q
,q0 . We thus recall the definition and properties of theFeshbach map.

Let H be a closed operator on a Hilbert spaceH and letP be a closed bounded projectio
operator whose range is in the domain ofH. We define

H̄ª P̄HP̄, P̄ª12P. ~V.13!

Let z belong to theresolvent setof H̄u P̄H . We assume that the operators

PHP̄uH̄2zu21/2 and uH̄2zu21/2P̄HP ~V.14!
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are bounded. Then we can define an operatorFP(H2z), the Feshbach map~associated to the
projectionP! at H2z, acting on the Hilbert spacePH, by setting

FP~H2z!ªP~H2z!P2PHP̄~H̄2z!21P̄HP. ~V.15!

In Refs. 7, 8 we have proven the following theorem.
Theorem V.1: Under the hypotheses on H, P, and z just stated, one has the following.

~i! z is an eigenvalue of H iff 0 is an eigenvalue ofFP(H2z), and the multiplicity of z
Pspp(H) is the same as the multiplicity of0Pspp„FP(H2z)….

~ii ! z belongs to the resolvent set of H iff 0 belongs to the resolvent set ofFP(H2z).
~iii ! For w, cPPH and z¹s(H),

^wu~H2z!21c&5^wuFP~H2z!21c&. ~V.16!

Our strategy, in this section, is based on applying Theorem V.1 to the concrete situ
studied in this paper, with the following identifications:

HªĤ, H5Lg~ iq!, ~V.17!

for some 0,q,q0 , to be chosen optimally. Furthermore, the projectionP is given by

PªPh
el

^ Pr
aux, ~V.18!

whereh is an eigenvalue ofLel ~i.e., h5Ei2Ej , with Ei , Ej eigenvalues ofHel , i , j 50,...,N
21), andPh

el is the orthogonal projection onto the eigenspace ofLel corresponding to the eigen
valueh. Moreover,Pr

aux is a spectral projection of the operatorLaux introduced in~IV.69!; more
precisely,

Pr
aux

ªx@Laux,r#, r.0, ~V.19!

wherex@x,r# is the characteristic function of~2`, r!. The positive numberr is later chosen to
depend on the coupling constantg; (r;g220(«), or r;g210(«), for a small«.0).

Next, we define a family of subsets,S. , S0,. , S0,, , and Si , j , 1< i , j <N, iÞ j , of the
complex plane. Our choice of a projectionP, as in Eqs.~V.18!, ~V.19!, in the definition of the
Feshbach map,FP , applied to the operatorLg( iq)2z1, i.e.,

FP„Lg~ iq!2z…, ~V.20!

will depend on which of these subsets,S(•) , the variablez belongs to. For the definition ofS(•) ,
we pick 0,«, 2

3 and set

r0ªg22«, r1ªg21e/2, ~V.21!

and, furthermore,

SªH zPCUIm z.2
sinq

4
r0J . ~V.22!

Usingr0 , r1 , andi , j P$0,...,N21%, iÞ j , the setsS(•) are defined to be the following subsets
S:

S.ªH zPSUdist~Rez,s@Lel# !>
r0

2 J , ~V.23!

Si , jªH zPSUuRez2Ei1Ej u<
r0

2 J , ~V.24!
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S0,.ªH zPSU sin~q!

2
r1<uzu<

r0

2 J , ~V.25!

S0,,ªH zPSUuzu,
sin~q!

2
r1J . ~V.26!

In the example, whereN52, E050, andE15e0 , these subsets are shown in Fig. 3.
We note that~V.23!–~V.26! define a covering ofS,

S#S.ø~ ø
iÞ j

Si j !øS0,.øS0,, , ~V.27!

as one easily checks.
Next, we describe, qualitatively, how one analyzes the intersection of the spectrum ofLg( iq)

with any one of the setsS. , S0,. , S0,, , andSi , j , iÞ j . The easiest problem is the determinati
of the following.

1. s†L g„ i q…‡ŸSÌ

We show that

s@Lg~ iq!#ùS.50” , for g.0 sufficiently small. ~V.28!

To this end, we show that, forzPS. , „Lg( iq)2z…21 is a bounded operator. This can be do
by expanding„Lg( iq)2z…21 in a Neumann seriesin the perturbationgW(u) and, after using that
zPS. and applying the bounds of Lemma IV.1, proving that this Neumann seriesconverges in
norm, for g.0 small enough. Details are presented in Sec. V D.

The second easiest problem is the study of the following.

2. s†L g„ i q…‡ŸSi , j

s@Lg( iq)#ùSi j for g.0 sufficiently small. Here we make use of the Feshbach map as
ated to the projection

P5Pi , jªPEi , j

el
^ Pr0

aux, ~V.29!

wherer05g222«, for a suitable«.0, andEi , jªEi2Ej . Without loss of generality, we assum
that the coupling constantg is so small that

uEi , j2Ek,l u.2r0 , ~V.30!

if Ei , jÞEk,l . For simplicity, we also assume thatEi , j is a simple eigenvalue ofLel , but this
assumption is only made, in order to explain the key ideas without technical complications

We now note that ifzPSi , j , as defined in~V.24!, then

FIG. 3. The subsetsS. ,S0,. ,S0,, ,Si j .
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@~ L̄g~ iq!2z!u P̄i , jĤ#21, ~V.31!

where L̄g( iq)5 P̄i , jLg( iq) P̄i , j ; see ~V.13!, is a bounded operator onP̄i , jĤ. This is seen by
expanding the resolvent~V.31! in a Neumann seriesin gW̄( iq), whereW̄( iq)5 P̄i , jW(u) P̄i , j .
Using ~V.30! and the definition ofPr0

aux, Eq. ~V.19!, one proves norm convergence of this Ne
mann series, for sufficiently smallg.0, with the help of the bounds of Lemma IV.1. Similarl
one proves that

Pi , jW~ iq!P̄i , j uL̄g~ iq!2zu21/2, uL̄g~ iq!2zu21/2P̄i , jW~ iq!Pi , j ~V.32!

are bounded operators; note that

Pi , jgW~ iq!P̄i , j5Pi , jLg~ iq!P̄i , j , ~V.33!

becausePi , j commutes withL0( iq) @see~V.6!#.
Thus, the Feshbach map onLg( iq)2z1 is well defined. It is given by

FPi j
„Lg~ iq!2z…5Pi , j„Lg~ iu!2z…Pi , j2g2Pi , jW~ iq!P̄i , j„L̄g~ iq!2z…,21P̄i , jW~ iq!Pi , j .

~V.34!

The operatorFPi , j
„Lg( iq)2z… acts on the spacePi , jĤ and is bounded. Theleading contribution

to the first term on the R.S. of Eq.~V.34! is given by

@Ei , j11L f~ iq!ux@Laux,r0##uPi , jĤ , ~V.35!

up to corrections ofo(g2); @see~V.19!#.
Since, forzPSi , j , the resolvent~V.31! has a norm-convergent Neumann series ingW̄( iq),

the leading contribution to the second term on the R.S. of~V.34! is seen to be given by

2g2Pi , jW~ iq!P̄i , j„L̄0~ iq!2Ei , j…
21P̄i , jW~ iq!Pi , j , ~V.36!

up to corrections ofo(g2).
In Eq. ~V.36!, one may replace the projectionsPi , j on the left and the right byPEi , j

el

^ PV ^ V , at the price of an error term ofo(g2). The resulting operator is thenindependentof q,
for 0<q,q0 , by analyticity. We decompose it into a ‘‘real’’ and ‘‘imaginary’’ part, i.e., into
self-adjoint and an anti-self-adjoint operator. The real~self-adjoint! part is denoted byDEi , j (g)
^ PV ^ V , while the imaginary part is written asig2G ( i , j )

^ PV ^ V whereG ( i , j ) is a self-adjoint
operator. Since we temporarily assumedEi , j to be a simple eigenvalue ofLel , the rank ofPEi , j

el is

one, andDEi , j (g)5g2Dei , j PEi , j

el andG i , j5g i , j PEi , j

el are determined by two numbers,Dei , j and

g~ i , j !
ª^P̄i , jWc i , j ud~ L̄02Ei1Ej !P̄Wc i , j&, ~V.37!

with c i , jªw i ^ w j ^ V ^ V, andw i is the eigenvector ofHel corresponding to the eigenvalueEi ;
see Sec. IV B, after Eq.~IV.45!.

Expression~V.37! and Hypothesis~H-5! on G(k) stated in Sec. I guarantee thatg ( i , j ) is
strictly positive,

g~ i , j !.0. ~V.38!

An explicit estimate ofg ( i , j ) can be found in Appendix B.
Putting everything together, Eqs.~V.34!–~V.38!, and recalling that the Feshback mapFPi , j

is
isospectral, more specifically, applying Theorem V.1,~ii !, we conclude that
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dist~s@Lg~ iq!#ùSi , j ,R!. 1
2g

2g~ i , j !, ~V.39!

for g.0 sufficiently small. For more~but standard! details see Sec. V E.
We turn to the study of the following.

3. s†L g„ i q…‡ŸS0,Ì

We haves@Lg( iq)#ùS0,. for g.0 small enough, to which we now turn our attention. F
this purpose we consider the Feshbach map,FP0

, applied to the operatorLg( iq)2z,

FP0
~Lg~ iq!2z!, PS0,. , ~V.40!

where

P0ªP0
el

^ Pr0

aux. ~V.41!

In ~V.41!, P0
el is the orthogonal projection onto theN-dimensional subspace,Hel

(0) , of Hel^ Hel ,
given by

span$w0^ w0 ,w1^ w1 ,...,wN21^ wN21%, ~V.42!

which is the kernel ofLel .
In a first step, we proceed as in Sec. V. A 2, above. The Feshbach map,

Lg~ iq!2z1°FP0
„Lg~ iq!2z…, ~V.43!

with zPS0,. , is well defined, by the same arguments as in Sec. V A 2, andFP0
„Lg( iq)2z… is

given by formula~V.34!, with Pi , j ,P̄i , j , replaced byP0 ,P̄0 , respectively. Thus

FP0
„Lg~ iq!2z…5P0„Lg~ iq!2z…P02g2P0W~ iq!P̄0„L̄g~ iq!2z…21P̄0W~ iq!P0 ,

~V.44!

with 0,q,q0 . This is a bounded operator onP0Ĥ. The first term on the R.S. of~V.44! is given
by

L f~ iq!uP0Ĥ1o~g2!, ~V.45!

which is shown in the same way as~V.35!. Up to errors of orderg«, the second term on the R.S
of ~V.44! is given by

2 ig2
„G~0!~g,z! ^ Pr0

aux
…, ~V.46!

where the operatorG (0)[G (0)(g,z)5P0
elG (0)(g,z)P0

el is given by

G~0!
^ PVªP0

el
^ PVWd~L0!WP0

el
^ PV . ~V.47!

More explicitly, the matrix elementsG i , j
(0)
ª^w i ^ w i uG (0)w j ^ w j& of G (0) in the orthonormal basis

$w i ^ w i% i 50
N21 of Ran.P0

el are given by

G i , j
~0!5^Ww i ^ w i ^ V ^ Vud~L0!Ww j ^ w j ^ V ^ V&. ~V.48!

It follows from arguments similar to those in~III.41!–~III.43! that, foru5 iq, 0,q,q0 , and
for z purely imaginary, the spectrum ofG (0)(g,z) is symmetric about the real axis, and th
coefficient,G (0), of the leading contribution toG (0)(g,z) is anN3N matrix acting onHel

0 with
real spectrum. From Eq.~V.48!, it is obvious that
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G~0!>0. ~V.49!

The matrixG (0) is studied in Appendix B. One result of the calculations in Appendix B is thatG (0)

satisfies adetailed-balance equation,

G i ,i
~0!e2~b/2!Ei52(

kÞ i
G i ,k

~0!e2~b/2!Ek, ~V.50!

and that

G i ,i
~0!.0, G i ,k

~0!<0, for iÞk. ~V.51!

From Eq.~V.50!, it follows that

kbª (
i 50

N21

e~2b/2!Eiw i ^ w i ~V.52!

is an eigenvector ofG (0) corresponding to the eigenvalue 0. Equation~V.51! then implies that 0 is
an eigenvalue ofG (0) of multiplicity 1. The last claim follows from~V.51! with the help of a
standardPerron–Frobeniusargument. Note thatkb is theunperturbed Gibbs stateof the atom@in
the Araki–Woods representation~II.43!–~II.48!#. It follows that there is a positive constantĝ0

.0, such that

^cuG~0!c&>ĝ0.0, ~V.53!

for all normalized vectorscPHel
(0) that are orthogonal tokb . In Appendix B we give a lower

bound on the value ofĝ0.0.

Let Pkb

el denote the orthogonal projection ontokb , and let P0,'
el

ªP0
el2Pkb

el . Our analysis

shows that, forzPS.,0 ,

FP0
„Lg~ iq!2z…5F11F21O~g21e!, ~V.54!

where

F1ªPkb

el
^ Pr0

aux
„L f~ iq!2z…, ~V.55!

and

F2ªP0,'
el

^ Pr0

aux@L f~ iq!2z2 ig2G~0!#. ~V.56!

It follows from these formulas that~for z50!) the spectra ofFP0
„Lg( iq)2z…, F1 , andF2 are

contained in the shaded regions sketched in Fig. 4. In Sec. V F we then use this informa
prove the invertibility ofFP0

„Lg( iq)2z…, for zPS0,.\C(q8), 0,q8,q, andg.0 sufficiently
small, whereC(a)#C is the cone~see Fig. 4!,

C~a!ª$zPC u uRezu<cot~a!Im z%. ~V.57!

By far thehardest analytical problems, and the physically most interesting phenomena,
pear in the study of the following.
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4. s†L g„ i q…‡ŸS0,Ë

Formulas~V.54!–~V.56! and Fig. 4 suggest we apply a second Feshbach map to the op
FP0

„(Lg( iq)2z…, requiring now thatz belongs to the setS0,, defined in Eq.~V.26!. For this
purpose, we define an orthogonal projection,P0,, , by setting

P0,,ªPkb

el
^ Pr1

aux, ~V.58!

recalling from ~V.21! that r15g21e/2. With the help of formula~V.54!, ~V.55!, ~V.56!, and
Lemma IV.1, one verifies without difficulties that the Feshbach map,

FP0
„Lg~ iq!2z…°K ~0!~g,z!ªFP0,,

„FP0
~Lg~ iq!2z!… ~V.59!

is well defined, forzPS0,, , and that the spectrum ofK (0)(g,z) is contained in the shaded regio
shown in Fig. 5.

The operatorK (0)(g,z) is now chosen as the initial condition for arenormalization operator
~map!, R, very similar to the one introduced in Refs. 7, 8. The effect of the renormaliza
operator is tolower the spectral scalecorresponding toLaux by a factorr, 0,r,1, to be chosen
appropriately. It is defined as thecomposition of a Feshbach mapwith a dilatation,
r21U„ln(1/r)…^ U„ln(1/r)… ~note that the signs in the two arguments are nowequal!. The Fesh-
bach map involved in the definition ofR maps operators on the range of

P~n21!
ªPkb

el
^ Pr1rn21

aux , ~V.60!

to operators on the range ofP(n), for arbitrary n51,2,..., while simultaneously locating th
‘‘spectral parameter’’z in ever smaller disksaround a pointE(`)PC ~depending on the initial
condition!. For the initial conditionK (0)(g,z), it follows from Theorem V.1,~i!, and the fact that
Lg has an eigenvalue at 0, proven in Theorem IV.3, thatE(`)50. Using Hypothesis~H-3!, Sec. I,
on the interactionI, one sees that iterated application of the renormalization mapR to
K (0)(g,z) drives this operator towards atrivial fixed point, which is given by the operato
L f( iq)P(0). This is the phenomenon ofinfrared asymptotic freedom, which one encounters in al

FIG. 4. s15s@F1#, s25s@F2#, s@FP0
„Lg( iq)…##s1øs2øA, z50. The regionA is of width O(g21e), q8,q.

FIG. 5. The set containings@K (0)(g,z)#.
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the models studied in Refs. 5, 7, 8, as well as in the model studied in this paper. With a
experience, the details of this process of infrared renormalization can be carried out by insp
They are studied in more detail in Secs. V F and V G.

The conclusion of the discussion presented in Secs. V A 1/ V A 4, above, is that, for,q
,q0 , and forg.0 sufficiently small, there is an angle 0,q9,q such that

s@Lg~ iq!#ù$zPCuIm z>2g2%#C~q9!5$zPCuIm z<0,uRezu<cot~q9!uIm zu%. ~V.61!

Furthermore,Lg has asimpleeigenvalue at 0. In the example, whereN52, E050, E15«0 , the
spectrum ofLg( iq), 0,q,q0 , for g.0 small enough, is contained in the shaded region, sho
in Fig. 6.

Using Eq.~V.12! we see that our analysis proves that, away from thesimpleeigenvalue 0 of
Lg , the spectrum ofLg is purely absolutely continuous. The general results of Sec. III D the
imply that the model studied in this paper has the property of ‘‘return to equilibrium.’’

B. A comment on exponentially fast return to equilibrium

The results on the spectrum ofLg( iq) presented in the last section are not sufficient to pro
exponentially fastreturn to equilibrium of dilatation-analytic initial states. In fact, there is
compelling reason to expect that, for the general class of interactions between the atom a
quantized radiation field considered in this paper@see Hypotheses~H-1!–~H-5! of Sec. I#, arbitrary
dilatation-analytic initial states of the system return to the unique equilibrium state construc
Theorem IV.3 exponentially fast. However, for a ratherspecialclass of interactions introduced b
Jakšić and Pillet,27,28 one can prove exponentially a fast return to equilibrium of initial sta
belonging to a certain fairly natural dense subset ofĤ by combining our methods with some of th
ideas developed in Refs. 27, 28. The key arguments are outlined in this section.

To begin with, it is useful to use polar coordinates in momentum space,

R3{kW5veW , ~V.62!

wherev5ukW u andeW is a unit vector inR3. Then

d3k→v2 dv dVeW , ~V.63!

wheredVeW is the uniform measure on the unit sphere inR3. In the following, we shall extend the
range of values of the variablev from the positive half-axis to theentire real line.

It is convenient to introduce new creation and annihilation operators,a* anda, by setting

a#~v,«!ªH val ,l
# ~veW !, v.0,

var ,l
# ~2veW !, v,0,

~V.64!

wherel561 is the polarization index and«5(eW ,l). We also define

dV«ª (
l561

dVe , ~V.65!

FIG. 6. The approximate location ofs@Lg( iq)#.
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and

d̃~«2«8!ªdll8d~eW2eW !. ~V.66!

Thena(v,«) anda* (v,«) satisfy the canonical commutation relations,

@a~v,«!,a~v8,«8!#5@a* ~v,«!,a* ~v8,«8!#50, ~V.67!

and

@a~v,«!,a* ~v8,«8!#5d~v2v8!d̃~«2«8!. ~V.68!

We set

fªV ^ V, ~V.69!

and note that

a~v,«!f50, for all v,«. ~V.70!

The Liouvillian, L f , of the radiation field is then given by

L f5E
R
dvE dV« a* ~v,«!va~v,«!; ~V.71!

see Ref. 27, whileLaux becomes

Laux5E
R
dvE dV« a* ~v,«!uvua~v,«!. ~V.72!

Let G(k) denote the form factor of the interaction,I, between the atom and quantized rad
tion field, as defined in~I.20! and~IV.50!; G(k) is an operator onHel , i.e., it is anN3N matrix.
We define matrix-valued functions,Fl(v,«) andFr(v,«), by

Fl~v,«!ªH v21/2Gl~veW ,l!, v.0,

2~2v!21/2Gl* ~2veW ,l!, v,0,
~V.73!

and

Fr~v,«!ªH v21/2CGr* ~veW ,l!C, v.0,

2~2v!21/2CGr~2veW ,l!C, v,0,
~V.74!

whereC is the conjugation introduced in Sec. II C.
We now assume thatFl(v,«) and Fr(v,«) are the restrictions to the real axis of matri

valued functions, also denoted byFl(v,«) andFr(v,«), which areanalytic in v on the strip

Stª$vuIm vu,t%, ~V.75!

for some positivet<`. We also assume that theL2 norm ~w.r.t. dj) of

~ uju3/21uju21/2!iF#~j1 ih,«!iB~Hel!
, ~V.76!

is bounded uniformlyin h, if uhu<dt, for an arbitraryd,1.
It is not hard to construct form factorsG(k) for which these assumptions hold; see Refs.

28 for some simple examples. But we emphasize that if
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iG~k!iB~Hel!
;ukW um, for ukW u→0, ~V.77!

for somem.0 ~as required in this paper!, then the assumptions described in~V.73!–~V.76! only
hold if

m5 1
2,

3
2,..., ~V.78!

while the techniques described in Sec. V A are applicable forarbitrary m.0!
Given an inverse temperatureb.0, we define

Fl
~b!~v,«!ªAv~12e2bv!21Fl~v,«!, ~V.79!

and

Fr
~b!~v,«!ªA2v~12ebv!21Fr~v,«!. ~V.80!

It is important to observe that the functions

A6v~12e6bv!21 ~V.81!

are analytic inv in the stripS2pb21; ~the function under the square root has simple poles at
points 62p ib21n, n51,2,3,...). ThusFl

(b) and Fr
(b) are analytic on the stripSk , with k

5min$t,2pb21%.
The interacting Liouvillian,Lg , can be expressed in terms ofa, a* , Fl

(b) , andFr
(b) by

Lg5Lel1L f1g~Wl2Wr !, ~V.82!

whereL f is given by~V.71!, and

W#5E dvE dV«@a* ~v,«!F#
~b!~v,«!1a~v,«!F#

~b!~v,«!* #, ~V.83!

where #5 l or r. Formula~V.83! follows directly from~V.79!, ~V.80!, and Eqs.~IV.67!, ~IV.68!.
Given anN3N matrix M (v)5„Mi , j (v)… expressed in the basis$w i% i 50

N21 of eigenvectors of
Hel , we define

M̄ i , j~v!ªMi , j~v̄ !, ~V.84!

and

Mi , j* ~v!ªM j ,i~v̄ !. ~V.85!

We introduce the generator,T, of translations along thev axis,

TªE dvE dV« a* ~v,«!S 2 i
]

]v
a D ~v,«!. ~V.86!

Then

Lg~s!ªe2 isTLgeisT5Lel1L f2sN1g„Wl~s!2Wr~s!…, ~V.87!

whereW#(s) is obtained fromW# by replacingF#
(b)(v,«) in ~V.83! by F#

(b)(v1s,«), with #
5 l or r, and

N5E dvE dV« a* ~v,«!a~v,«! ~V.88!
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is the number operator. The assumptions on the form factorG(k) described above and Eqs
~V.84!, ~V.85! ensure that the operatorLg(s) extends to a family of operatorsanalytic on the
strip,

Smin$t,2pb21%ª$s uIm su,min$t,2pb21%%. ~V.89!

The proof is similar to the one presented in Appendix A. Clearly, there are natural dense s
translation-analytic vectors inĤ. Thus, we can apply the techniques of complex spectral de
mation theory. In fact, the thing to do is tocombine complex translationswith the complex
dilatationsused in Sec. V A, i.e.,

v°v1s°e2u~v1s!. ~V.90!

Note that translations and dilatations do not commute. Hence, it is important that wefirst translate
andthendilateLg . Reversing the order of these operations does not yield an analytic family s
e.g.,Laux is not translation analytic. So, after translating and then dilatingLg , we obtain a family
of operators,

$Lg~s,u!%, ~V.91!

analytic ins andu on a domain,

Lh0 ,q0
ª$~s,t!PC2uIm su,h0 ,uIm uu,q0% ~V.92!

in C2, for some positive constants,

h05O~b21! and q05O~1!. ~V.93!

There is a naturaldensedomainDA of vectors inĤ that are contained inD(Laux)ùD(N) and are
translation and dilatation analytic on the domainLh0 ,q0

. Assuming that the conditions on the form
factorG(k) described in Secs. I and V A and in~V.73!–~V.76! hold, we are then able to constru
an analytic continuation inz of the matrix elements,

^cu~Lg2z!21w&, c,wPDA , ~V.94!

to the complement of

ù
~s,u!PLh0 ,q0

s@Lg~s,u!#. ~V.95!

In order to see what can be accomplished with these methods, we set

s5 ih, u5 iq, ~V.96!

with 0,h,h0 , 0,q,q0 , and study the spectrum ofLg( ih,iq) with the help of the technique
described in the last section. In the example whereN52, E050, andE15«0 , the spectrum of
L0( ih,iq) has the form sketched in Fig. 7.

We define subsetsS. , Si , j , S0,. , andS0,, of C in a way very similar to the one in Sec. V A
The analysis of the spectrum ofLg( ih,iq) on the subsetsS. , Si , j , andS0,. is virtually identical
to the one ofs@Lg( iq)# outlined in Sec. V A~and completed in Secs. V C–V G!. It is only in the
analysis of

s@Lg~ ih,iq!#ùS0,, , ~V.97!

where the usefulness of complex translations becomes manifest: Applying the renormal
operatorR mentioned in Sec. V A~see Refs. 7, 8 and Sec. V G! to the operator
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L ~0!~g,z!ªG~r1!FP0,,
~FP0

„Lg~ ih,iq!2z…!G~r1!* , ~V.98!

where we use the notation introduced in Sec. V A, andG(r1)ª1^ 1^ U(2 ln r1)^U(2ln r1) is
the unitary dilatation that mapsLaux into r1Laux, one encounters the phenomenon that, forh
.0, q.0, the continuous spectrum ofL (0)(g,z) is pushed farther and farther into the low
half-plane. If the renormalization operatorR lowers the scale of theLaux spectrum by a factor
r,1, then the distance between the continuous spectrum ofL̃ (0)(g,z), uzu;O(rn), and the real
axis, aftern applications of the renormalization operatorR, is O(r2n). This follows from the fact
that

R„L f~ ih,iq!…5R„cos~q!L f2 i sin~q!Laux2 ihN…

5cos~q!L f2 i sin~q!Laux2 ihr21N

5L f~ ihr21,iq!, ~V.99!

which follows from Eqs.~V.6!, ~V.87! and from the definition ofR; see~V.59!–~V.60! and Sec.
V G. Thanks toinfrared asymptotic freedom, it follows that, forzPS0,, ,

L ~n!~g,z!ªRn
„L ~0!~g,z!…5L f~ ihr2n,iq!Pkb

el
^ P1

aux1O~ uzur2n!1O~gran!, ~V.100!

for somea.0 @which depends on the behavior ofG(k) nearukW u50#.
It follows from the isospectrality of the Feshbach map, Theorem V.1,~i!, and Theorem IV.3

~the existence of a perturbed KMS state!, thatL (n)(g,0) has an eigenvalue at 0. This fact and E
~V.100! then imply that 0 is asimpleeigenvalue~analytic perturbation theory!! and that for 0
,uzu,O(1),L (n)(g,z) is invertible on the range ofPkb

el
^ P1

aux.

By Theorem V.1, we conclude that, in a small disk around 0, the spectrum ofLg( ih,iq) is
empty, except for a simple eigenvalue at 0.

In the example whereN52, E050, andE15«0 , the location ofs@Lg( ih,iq)# is sketched in
Fig. 8, for g.0 small enough.

It follows from these results by arguments due to Hunziker,25,9 that an initial statec

PDA,Ĥ returns to equilibrium exponentially fast, with a rate ofO(b21), for g.0 sufficiently
small.

FIG. 7. A sketch ofs@L0( ih,iq)#.

FIG. 8. A sketch ofs@Lg( ih,iq)#.
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In the remaining sections and in two appendices, we present some analytical details re
to render the analysis presented in this and the last section mathematically rigorous.

C. Complex dilatation of the Liouvillian

In this section, we discuss the dilatation analyticity of the LiouvillianLg . The technical
details of this discussion are given in Appendix A.

Recall from~V.2!–~V.4! the definition of the unitary dilatation operatorÛ(u), for uPR. We
define the dilated Liouvillian by

Lg~u!ªÛ~u!LgÛ~u!21. ~V.101!

We find that

Lg~u!5Lel^ 1f11el
^ L f~u!1gW~u!, ~V.102!

where

L f~u!5e2u~H f ^ 1f !2eu~1f ^ H f !, ~V.103!

and

W~u!5e23u/2E dk$„A11r~e2uk!Gl~e2uk!2Ar~e2uk! Gr* ~e2uk!…al* ~k!

1„A11r~e2uk!Gl* ~e2uk!2Ar~e2uk! Gr~e2uk!…al~k!%

1e3u/2E dk$„Ar~euk!Gl* ~euk!2A11r~euk! Gr~euk!…ar* ~k!1„Ar~euk!Gl~euk!

2A11r~euk! Gr* ~euk!…ar~k!%, ~V.104!

ande2ukª(e2ukW ,l).
In order to obtain an analytic continuation of the dilated interactionW(u) in Eq. ~V.104! from

real to complexuPSq0
, we recall that Hypothesis H-2 ensures the dilatation analyticity

G(e2uk), for uPSq0
, and thus also ensures the dilatation analyticity ofeuv(k)21/2G(e2uk). We

follow the convention that, for a matrix-valued functionM (z),zPC3,

^w i uM̄ ~z!w j&ª^w i uM ~ z̄!w j&, ~V.105!

^w i uM* ~z!w j&ª^w j uM ~ z̄!w i&. ~V.106!

Furthermore, foruPR, we set

mu~k!ªAv~k!r~e2uk!5Av~k!„exp@e2ubv~k!#21…21, ~V.107!

nu~k!ªAv~k!„11r~e2uk!…5exp@e2ubv~k!/2#mu~k!, ~V.108!

and similar to the discussion of the function in~V.81!, we extendu°mu(k),nu(k) to the strip
Sp/25$uIm zu,p/2% aboutR by analytic continuation.

With Eqs.~V.105!–~V.108!, we see that the interaction is dilatation analytic.
Lemma V.2: Assume Hypotheses H-1, H-2, and H-4. Then the map

W:Sq0
→B†Dom@Laux#,H‡, u°W~u! ~V.109!

is analytic.
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Proof: We first writeaªReu,qªIm u, and observe that

uexp@e2ubv~k!#21u5uexp@e2a cos~q!bv~k!#exp@ ie2a sin~q!bv~k!#21u

>uexp@e2a cos~q!bv~k!#21u>e2a cos~q!bv~k!, ~V.110!

and hence

umu~k!u,unu~k!u<Av~k!S ea/2

Acos~q!bv~k!
11D . ~V.111!

So, defining

w1,l
~u! ~k!ªe2uv~k!21/2

„nu~k!Gl~e2uk!2mu~k!Gr* ~e2uk!…, ~V.112!

w2,l
~u! ~k!ªe2uv~k!21/2

„nu~k!Gl* ~e2uk!2mu~k!Gr~e2uk!…, ~V.113!

w1,r
~u! ~k!ªeuv~k!21/2

„m2u~k!Gl* ~euk!2n2u~k!Gr~euk!…, ~V.114!

w2,r
~u! ~k!ªeuv~k!21/2

„m2u~k!Gl~euk!2n2u~k!Gr* ~euk!…. ~V.115!

Hypotheses H-3 and H-4 ensure the following estimate:

iws,t
~u! ~k!i<

2e~M11!uReuu

Acos~q!
S 11

1

bv~k! D
1/2

ukW umk~k!, ~V.116!

for anyuPSq0
, with qªIm u andM,` as in Hypotheses H-3 and H-4, andk<1 is a function

such that

E „v~k!1v~k!23
…ukW u2muk~k!u2 dk<L2. ~V.117!

Furthermore, the matrix-valued functionsu°ws,t
(u) (k) are analytic inSq0

. Hence, the standard
bounds given in Lemma IV.1 ensure that

W~u!5al* ~w1,l
~u! !1al~w2,l

~u! !1ar* ~w1,r
~u! !1ar~w2,r

~u! !5 (
s56

(
t5 l ,r

at
s~ws,t

~u! !, ~V.118!

with a#
1
ªa#* anda#

2
ªa# , is dilatation analytic, and the following norm bound holds, for so

constantC,`,

iW~u!~Laux11!21i<
Ce~M11!uReuu~b11!

b cos~q!
L.

h

~V.119!

Our next goal is to establish the analyticity of the resolvent,

Rg~u,z!ª„Lg~u!2z…21, ~V.120!
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as an operator-valued function ofu and z. This is not immediate from a direct application o
standard techniques in dilatation analyticity becauseu°Lg(u) is not a family of type A, foru
PSq0

. Indeed, as we point out in Appendix A,u°Lg(u) is not even an analytic family onH in
the sense of Kato~see, e.g., Ref. 33!.

To make a precise statement, we introduce a dense set of vectors,

DªD1ùD2#H, ~V.121!

where

D1ª ù
uuu<u0

Dom@~Laux11!Û~u!#, ~V.122!

and D2 consists of all vectors that are analytic w.r.t.uPSq0
. We see thatD#H is dense by

observing that

D$span$w l ^ w r ^ c l ^ c r uw l /rPHel ,c l /rPDGauss%, ~V.123!

whereDGaussconsists of all translates and dilates of Gaussians,

DGaussª$a* ~ f 1!¯a* ~ f n!Vu f j~kW ,l!

5exp@2~kW2kW j !
2/s j #dl j ,l ,nPN0 ,kW jPR3,s j.0,l jP$61%%. ~V.124!

For w, cPD, we establish the existence of the desired analytic continuation of

~u,z!°Fw,c~u,z!ª^Û~ ū !wu„Lg~u!2z…21Û~u!c& ~V.125!

in the following theorem, which is an immediate consequence of Theorem A.4 proven in Ap
dix A.

Theorem V.3: Let 0,q08,q0,p/2, and assume thatIm z.0,0,g!q08(p/22q0), and u
PSq0

,Im u>q08 . Then we have the following.
~i! For all w, cPD, the function z°^wu(Lg2z)21c& has an analytic continuation from th

upper half-plane intoG8, given by

^wu~Lg2z!21c&5^Û~ ū !wu„Lg~u!2z…21Û~u!c&. ~V.126!

~ii ! On the rectangular domain Rª$uPCuuReuu<a,q08<Im u<q0%, where aª
21/2 ln cos(2q08).0, the map

R{u°Lg~u!PB@Dom@Laux#,H# ~V.127!

is an analytic family of type A.
~iii ! s@Lg(u)##C2\G8, whereG8 is the connected component of$zPCuiRg(u,z)i,`% con-

taining C1.

D. Invertibility of L g„u…Àz on SÌ

In this section we study the spectral properties ofLg(u) on S. . In the previous section, we
established the analytic continuation of matrix elements of„Lg(u)2z…21 in u andz. This allows
us now to choose purely imaginary values ofu, and we shall henceforth assume that 0,q08
,q0,p/2,

u5 iq and q08<q<q0 . ~V.128!
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We first demonstrate thatS.#r@Lg(u)#, the resolvent set ofLg(u), simply by expanding
„Lg(u)2z…21 in a norm-convergent Neumann series.

Theorem V.4: For g.0 sufficiently small, S.#r@Lg(u)#, and

i~Lg~u!2z!21i<O~r0
21!, ~V.129!

for any zPS. .
Proof: We expand the inverse ofLg(u)2z in a Neumann series,

„Lg~u!2z…215 (
n50

`

„L0~u!2z…21$2gW~u!„L0~u!2z…21%n, ~V.130!

which is easily seen to be norm convergent since, by Lemma IV.1, we have

i~Laux1r0!21/2gW~u!~Laux1r0!21/2i5O~gr0
21/2!5O~g«!, ~V.131!

and

I Laux1r0

L0~u!2zI5 sup
0<ur f u<r aux

lPs@Lel#

U r aux1r0

l1cos~q!r f2 i sin~q!r aux2zU<C~q!, ~V.132!

where C(q),` is a q-dependent constant, andr aux,r f are points in the joint spectrum o
Laux,L f , respectively.

To check~V.132!, we distinguish the casesr aux,tr0 andr aux>tr0 , with t>0 to be picked
later. Forr aux,tr0 , we have

ul1cos~q!r f2 i sin~q!r aux2zu>ul1cos~q!r f2Re~z!u

>S r0

2
2cos~q!tr0D

1

>
~122t cosq!

2~11t!
~r aux1r0!, ~V.133!

and, forr aux>tr0 ,

ul1cos~q!r f2 i sin~q!r aux2zu>usin~q!r aux1Im~z!u

>S sin~q!2
tanq

4t D
1

r aux

>
~t sinq2tanq!1

4~11t!
~r aux1r0!. ~V.134!

Choosing tª(sinq12 cosq)(4 cosq)21(sinq1cosq)21, we obtain C(q)5(sinq/2)21(sinq
1cosq). h

E. Invertibility of L g„u…Àz in the vicinity of atomic eigenvalues away from zero

In this section we investigate the invertibility ofLg(u)2z in Si , j , for any iÞ j . In Theorem
V.7 below, we show the existence of a positive constantgÞ0.0, such that

Si , jù$zPC:Im z.2g2gÞ0%#r@Lg~u!#, ~V.135!
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providedg.0 is sufficiently small, and«.0 is as in Eq.~V.21!. Theorem V.7 and Theorem V.4
imply, in particular, that the spectrum ofLg(u) in (2`,2r0#ø@r0 ,`) is absolutely continuous

Let zPSi , j . We recall from the definition~V.24! of Si , j that

uRe~z!2hu<r0/2 and Im z<2
sin~q!

4
r0 , ~V.136!

where hªEi , jÞ0 is a nonzero eigenvalue ofLel . The proximity of z to h implies thatz is
uniformly in g away from any other eigenvalue ofLel ,

dist~z,s@Lel#\$h%!> 1
2 min
m,nPs@Lel#/mÞn

um2nu.0. ~V.137!

As in Ref. 7, Sec. IV and in Ref. 9, Sec. III, we establish the invertibility ofLg(u)2z by
means of theFeshbach map, FP(Lg(u)2z), corresponding to the projection

PhªPh
el

^ Pr0

aux, P̄hª12Ph , ~V.138!

wherePh
el
ªx$h%@Lel# is the projection ofLel ontoh, andPr0

aux
ªx@Laux,r0# is the projection onto

spectral values ofLaux strictly less thanr0 . To prove the existence ofFPh
„Lg(u)2z…, we require

the following preparatory lemma.
Lemma V.5: Assume (V.128) and (V.136). Then, for g.0 sufficiently small, Ph(Lg(u)

2z) P̄h is invertible onRanP̄h .
Proof: We construct the inverse ofP̄hLg(u) P̄h2z on RanP̄h by an expansion in a Neuman

series,

„P̄hLg~u!P̄h2z…21P̄h5 (
n50

`
P̄h

L0~u!2z
S 2gW~u!

P̄h

L0~u!2z
D n

5
~Laux1r0!1/2P̄h

L0~u!2z (
n50

` H ~Laux1r0!21/2
„2gW~u!…~Laux1r0!21/2

3S ~Laux1r0!P̄h

L0~u!2z
D J n

~Laux1r0!21/2. ~V.139!

By Lemma IV.1, we have

i~Laux1r0!21/2gW~u!~Laux1r0!21/2i5O~gr0
21/2!. ~V.140!

We make use of

P̄h5 P̄h
~1!1 P̄h

~2! , ~V.141!

P̄h
~1!
ªPh

el
^ 1f , P̄h

~2!
ªPh

el
^ x@Laux>r0#, ~V.142!

wherePh
el
ªxR\$h%@Lel# is the projection onto the eigenvalues ofLel different fromh. Since both

P̄h
(1) and P̄h

(2) commute withLaux and withL0(u), we have that

I ~Laux1r0!P̄h

L0~u!2z
I5max

j 51,2
I ~Laux1r0!P̄h

~ j !

L0~u!2z
I . ~V.143!

On RanP̄h
(1) , we observe that
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I ~Laux1r0!P̄h
~1!

L0~u!2z
I5supH U r 1r0

m1cos~q!r f2 i sin~q!r aux2zUJ , ~V.144!

where the supremum is taken overmPs@Lel#\$h% and 0<r f<r aux. Since sinq>sinq08.0 and
um2Rezu>c, for some constantc.0, we have

um1cos~q!r f2 i sin~q!r aux2zu> 1
2„c2cos~q!r f…11 1

4„r aux2sin~q!r0…1

> 1
2~2r02r aux!11 1

4~r aux2r0!1> 1
8~r01r !, ~V.145!

and hence

I ~Laux1r0!P̄h
~1!

L0~u!2z
I<8. ~V.146!

On RanP̄h
(2) , we estimate

I ~Laux1r0!P̄h
~2!

L0~u!2z
I< sup

r>r0

H r 1r0

ur sinq1Im zuJ < sup
r>r0

H 2~r 1r0!

r 2r0/2 J 58, ~V.147!

and putting together~V.146! and ~V.147!, we obtain

I ~Laux1r0!P̄h

L0~u!2z
I<8. ~V.148!

Inserting ~V.148! and ~V.140!, the Neumann series~V.139! is seen to converge in norm sinc
O(gr0

21/2)5O(ge)!1, for g.0 sufficiently small.
h

Lemma V.5 establishes the existence of the following Feshbach operator:

FPh
ªFPh

„Lg~u!2z…ª„L0~u!2z…Ph1gPhW~u!Ph

2g2PhW~u!P̄h„P̄hLg~u!P̄h2z…21P̄hW~u!Ph . ~V.149!

The importance ofFPh
lies in the following identity~see Refs. 7–9!:

„Lg~u!2z…215@Ph2g~ P̄hLg~u!P̄h2z!21P̄hW~u!Ph#

3F Ph

21@Ph2gPhW~u!P̄h„P̄hLg~u!P̄h2z…21#1 P̄h„P̄hLg~u!P̄h2z…21P̄h ,

~V.150!

which manifestly shows thatLg(u)2z is invertible iff FPh
„Lg(u)2z… is invertible on RanPh .

Indeed,

i„Lg~u!2z…21i<„11O~gr0
21/2!…iFPh

21
„Lg~u!2z…i1O~r0

21/2!, ~V.151!

by Lemma V.5 and the estimates in its proof.
To apply the Feshbach map, we introduce the level-shift operator,

QE^ PVª lim
e↘0

$PVWP̄V~L02E2 i e!21P̄VWPV%, ~V.152!
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whereEPR and PVªuV ^ V&^V ^ Vu is the projection onto the vacuumV ^ V in F^ F. An
explicit computation shows thatQE is bounded and has a non-negative imaginary part,

GE^ PVªIm QE^ PV5PVWP̄Vd~L02E!P̄VWPV>0. ~V.153!

It is convenient to omit the trivial tensor factor̂PV in our notation, i.e., to identifyQE with
QE^ PV andGE with GE^ PV .

In Theorem B.1 of Appendix B, we show that ifh5Ei2EjÞ0, then

PhGhPh<g~ i , j !Ph , ~V.154!

for some strictly positive constantg ( i , j ).0.
Theorem V.6: Assume (V.128). For any0,e, 2

3,

iFPh
2Ph„L0~u!2z2g2Qh…Phi5O~g21e!. ~V.155!

Proof: Denotingx r(v)ªx@v,r #, we first observe that, by Lemma IV.1,

ial~ws,n
~u! !Phi5ial~xr0ws,n

~u! !Phi

<O~r0
1/2!ial~xr0ws,n

~u! !~Laux1r0!21/2Phi

<O~r0
1/2!S E

v~k!,r0

dkS 11
1

v~k! D Ivs,n
~u! ~k!I 2D 1/2

<O„r0
~11t!/2b21/2~b11!1/2

…S E
v~k!,r0

dkS 11
1

v~k!21tD 4e2pk~k!

cos2 q D 1/2

5O„q24r0
~11t!/2b21/2~b11!1/2

…, ~V.156!

for any 0,t,1. Using similar estimates for the other terms, we obtain

igPhW~u!Phi5O~gr0
~11t!/2!5O~g11~12e!~11t!!. ~V.157!

Compare to@Ref. 7, ~IV.101!#. Next, the second resolvent equation and Lemma V.5 yield

ig2PhW~u!P̄h„P̄hLg~u!P̄h2z…21P̄hW~u!Ph2g2PhW~u!P̄h„P̄hL0~u!P̄h2z…21P̄hW~u!Phi

5O~g3r0
21/2!5O~g21e!. ~V.158!

Compare to@Ref. 7, ~IV.101!#. Third, we defineP̄h(v)ª12x$h%@Lel# ^ x@L f1v,r0# and

M ~u,z!ªE dkH w2,l
~u! ~k!S P̄h„v~k!…

L0~u!1e2 iqv~k!2z
Dw1,l

~u! ~k!

2w2,r
~u! ~k!S P̄h~v~k!!

L0~u!1eiqv~k!2z
Dw1,r

~u! ~k!J , ~V.159!

similar toQ in @Ref. 7,~IV.67!#. A normal-ordering procedure as in Ref. 7,~IV.66!–~IV.76!, then
gives, for any 0,t8,1,

ig2PhW~u!P̄h„P̄hL0~u!P̄h2z…21P̄hW~u!Ph2g2PhM ~u,z!Phi5O~g2r0
t8!5O~g212t8~12e!!.

~V.160!

Fourth, using the first resolvent equation, we obtain
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ig2Ph„M ~u,z!2M ~u,h!)Phi<g2uIm zu E dk
8e2p

cos2 q S 11
1

bv~k! D S k~k!

r01v~k! D
2

5O~g2r0
12t9!5O~g21~12e!~12t9!!, ~V.161!

for any 0,t9,1. Fifth, a similar estimate as~V.161! and an analytic continuationq→0 give

ig2PhM ~u,h!Ph2g2PhQhPhi5O~g2r0
12t-!5O~g21~12e!~12t-!!, ~V.162!

for any 0,t-,1. Estimates~V.161! and ~V.162! are similar to Ref. 7, Lemmata IV.11, IV.12
Choosing t-ªt9ª12t8ª12t and observing that 112t(12e)<min$11(12e)(11t),2
12t(12e)%, we arrive at

iFPh
2Ph„L0~u!2z2g2Qh…Phi5O~g21e1g112t~12e!!, ~V.163!

from which ~V.155! follows upon choosingtª2e(12e)21. h

Next, thanks to~V.154!, we have

i„L0~u!2z2g2Qh…
21Phi<dist$s@L0~u!2g2Qh#,z%<2~g~ i , j !!21g22, ~V.164!

wheneveruIm zu<g(i,j)g2/2. Combining this with~V.155!, we obtain a convergent Neumann ser
expansion forFPh

21,

iFPh

21i<Cg22(
n50

` S Cg21e

g2 D n

5O~g22!. ~V.165!

Defining

gÞ0ªmin$g~ i , j !u iÞ j %.0, ~V.166!

we thus arrive at the following theorem.
Theorem V.7: Assume (V.128), zPSi , j , iÞ j , and Im(z)>2gÞ0g

2/2. For sufficiently small
g.0, the dilated Liouvillian Lg(u)2z is bounded invertible,

s@Lg~u!#ù$zPCuRez>r0/2,Imz>2gÞ0g2/2%50” . ~V.167!

F. Invertibility of L g„u…Àz in S0,Ì outside the cone C„q8…ÄˆzRe zzÏÀcot „q8…Im z‰, for
q8Ëq

Our purpose in this section is to study the invertibility ofLg(u)2z in S0,. . Thus, we
henceforth assume~V.128! and uzu<r0/2. We introduce the projections

P0ªP0
el

^ x@Laux,r0#, ~V.168!

P̄0ª12P05 P̄0
~1!1 P̄0

~2! , ~V.169!

P̄0
~1!
ª P̄0

el
^ 1, P̄0

~2!
ªP0

el
^ x@Laux>r0#, ~V.170!

whereP0
el is the projection of rankN onto KerLel ,

P0
el5x$0%@Lel#5 (

n50

N21

uwn^ wn&^wn^ wnu, ~V.171!
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andx@Laux,r0# is the projection onto spectral values ofLaux strictly less thanr0 . Again, we first
establish the applicability of the Feshbach map.

Lemma V.8: Assume (V.128) anduzu<r0/2. Then, for g.0 sufficiently small,
P̄0(Lg(u)2z) P̄0 is invertible onRanP̄0 .

Proof: Analogous to Lemma V.5. h

By Lemma V.8, Lg(u)2z is invertible ~on H! iff FP0
ªFP0

(Lg(u)2z) is invertible on
RanP0 . As in the previous section, the level shift operatorQE , introduced in~V.152!, plays an
important role. Note thatJ(wn^ wn^ V ^ V)5wn^ wn^ V ^ V, and hence

P0
el

^ PV5JP0
el

^ PV5P0
el

^ PVJ, ~V.172!

whereJ is defined in~IV.77!. Since, furthermore,JL0J52L0 , andJWJ52W, we have that

P0
el

^ PVWP̄V~L02 i«!21P̄VWP0
el

^ PV5P0
el

^ PVJWP̄V~L02 i«!21P̄VWJP0
el

^ PV

52P0
el

^ PVWP̄V~L01 i«!21P̄VWP0
el

^ PV ,

~V.173!

and, therefore,

Q0P05 iG0P0 ~V.174!

is purely imaginary.
Lemma V.9: Assume~V.128! and uzu<r0/2. Then, for g.0 sufficiently small and any0,e, 2

3,

iFP0
2P0~L0~u!2z2 ig2G0!P0i5O~g21e!. ~V.175!

Proof: Analogous to Theorem V.6, taking into account~V.174!. h

We now distinguish between spectral parameters,z, very close to zero and those that are
least of magnitudeO(g21e). The latter can be dealt with by a standard Neumann series expan
provided they are outside the coneC~q8!, q8,q, while for the spectral parameters close to ze
we apply the renormalization group arguments developed in Refs. 7, 8. This is done in Sec

We turn to proving the invertibility of the resolvent ofLg(u)2z for z outside ofC~q8! and of
magnitude betweenO(g21e) andr0/2; see Fig. 4.

Theorem V.10: Assume (V.128), 0,q8,q, and 0,«, 1
3. Suppose that C0g21e<uzu

<r0/2 and z¹C(q8), where C0,` is sufficiently large. Then, for g.0 sufficiently small,
Lg(u)2z is bounded invertible.

Proof: We first observe that„L0(u)2 ig2G0…P0 is a normal operator. SinceG0>0, we have
that s@L f(u)2 ig2G0##s@L f(u)#5C(q). Hence we obtain

i~L0~u!2z2 ig2G0!21P0i<dist$z,C~q!%21<„C0 sin~q/2!g21e
…

21. ~V.176!

Inserting this estimate into a Neumann series expansion and using~the analog of! ~V.155!, we
arrive at the assertion

iFP0
i<O~g222«! (

n50

` S const

C0 sin~q/2! D
n

5O~g222«!, ~V.177!

providedC0 is chosen sufficiently large. h
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G. Renormalization group study of the spectrum of L g„u… in S0,Ë

Having dealt with the spectral parameters of magnitude larger thanC0g21e, we shall hence-
forth assume thatzPS0,, , i.e., thatuzu<sin(q)g21e/2/2. The analysis of the spectrum ofLg(u) in
S0,, is the most involved part of our analysis, as it requires an application of the renormaliz
transformation developed in Refs. 7, 8.

To apply the renormalization group map, it is necessary to convertFP0
[FP0

„Lg(u)2z… into
a normal-ordered form. More precisely, we expandFP0

in a Neumann series,

FP0
5„L0~u!2z…P01 (

n51

`

~21!n21gnP0W~u!S P̄0

L0~u!2z
W~u!P0D n21

, ~V.178!

which is norm convergent, as we have seen in the previous section.
To convertFP0

into its normal-ordered form, it is convenient to adopt the following notati
We henceforth denote

kª~kW ,l,t!PR33$1,2%3$ l ,r %, ~V.179!

E dk f~k!ª (
l51,2

(
t5 l ,t

E
R3

d3kW f ~kW ,l,t!, ~V.180!

and

a1~kW ,l,t!ªat* ~kW ,l!, a2~kW ,l,t!ªat~kW ,l!, ~V.181!

w6
~u!~kW ,l,t!ªw6,t

~u! ~kW ,l!. ~V.182!

Furthermore, we writev(k)ªukW u, etc. In this new notation the operators to deal with appear
more compact form as

W~u!5a1~w1
~u!!1a2~w2

~u!!, ~V.183!

Laux5E dk v~k!a1~k!a2~k!, L f5E dk tv~k!a1~k!a2~k!. ~V.184!

Thus the term in~V.178! of ordergn can be written as

(
s1 ,...,sn56

P0as1~ws1

~u!!S P̄0

L0~u!2z
D¯S P̄0

L0~u!2z
D asn~wsn

~u!!P0 . ~V.185!

For future purposes, we introduce some more notation. We collect the eigenvalues ofLel in a
set$h0 ,h1 ,...,hM%5$Ei , j u0< i , j <N21%, whereh0ª0 andM<N(N21). We then introduce

xel
~a!

ªPha

el 5x$ha%@Lel#, ~V.186!

x̄ f
~a!~v!ªH 1f , for a51,2,...,M ,

x@Laux1v,r0#, for a50,
~V.187!

and we observe that

P̄05 (
a50

M

xel
~a!

^ x̄ f
~a!~0!. ~V.188!
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For k1 ,...,km ,k̃1 ,...,k̃nPR33$1,2%3$ l ,r %, we further denote

k~m!
ª~k1 ,...,km!, k̃~n!

ª~ k̃1 ,...,k̃n!, ~V.189!

LI ª~L f ,Laux!, rIª~r f ,r aux!, ~V.190!

a1~k~m!!ª)
j 51

m

a1~kj !, a2~ k̃~n!!ª)
j 51

n

a2~ k̃ j !, ~V.191!

dk~m!
ª)

j 51

m

dkj , dk̃~n!
ª)

j 51

n

dk̃j , ~V.192!

K ~m,n!
ª~k~m!,k̃~n!!, dK~m,n!

ªdk~m! dk̃~n!, ~V.193!

v~k~m!!ª(
j 51

m

v~kj !, xr@v#ªx@0,r#@v#. ~V.194!

Equipped with this notation, we rewrite~V.185! as

(
s1 ,...,sn56

a1 ,...,an2150,...,M

E dk~n!xel
~0!ws1

~u!~k1!xel
~a1!

¯xel
~an21!wsn

~u!~kn!xel
~0!

^ xr0
@Laux#a

s1~k1!
x̄ f

~a1!
~0!

ha1
1L f~u!2z

¯

x̄ f
~an21!

~0!

han21
1L f~u!2z

asn~kn!xr0
@Laux#.

~V.195!

Now we normal order the product of creation and annihilation operators in the second li
~V.195!. By ~a two-component variant of! Ref. 8, Lemma A.3, we have, for arbitrary function
f 1 , f 2 ,...,f n21 ,

as1~k1! f a1
@L f ,Laux#¯ f an21

@L f ,Laux#a
sn~kn!

5 (Q#N )
j PQ1

a1~kj !K VU)j 51

n H @as j~kj !#
x@ j ¹Q# f a jF L f1r f1 (

i 51
i PQ2

j

~21!t jv~ki !

1 (
i 51

j 11PQ1

n

~21!t jv~ki !,Laux1r aux1 (
i 51

i PQ2

j

v~ki !1 (
i 51

j 11PQ1

n

v~ki !G J VL U
r5L

3 )
j PQ2

a1~kj !, ~V.196!

where Nª$1,2,...,n%, Q6ª$ j PQus j56%, and @as j(kj )#x@ j ¹Q#5as j(kj ), for j ¹Q, and
@as j(kj )#x@ j ¹Q#51, for j PQ. To apply this formula to the second line of~V.195!, we choose

f a@r f ,r aux#ª
x̄ f

~a!~r aux!

ha1cos~q!r f2 i sin~q!r aux2z
. ~V.197!

Note that, similar to~V.143!–~V.148!, we have
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sup
0<ur f u<r aux

a50,...,M
H ~r aux1r0!U f a@r f ,r aux#uJ <C, ~V.198!

for someC,`. Inserting formula~V.196! into ~V.195! and summing up the contributions to a
orders ing, we obtain an effective Liouvillian on RanP0 ,

L ~0!@z#2zªFP0
~Lg~u!2z!5P0~E~0!@z#2z1T~0!@z,LI #1W~0!@z# !P0 , ~V.199!

where

E~0!@z#ªxel
~0!

^ PV„FP0
~Lg~u!2z!1z…xel

~0!
^ PV , ~V.200!

52 (
n52

`

~2g!n (
s1 ,...,sn56

a1 ,...,an2150,...,M

E dk~n! xel
~0!ws1

~u!~k1!xel
~a1!

¯xel
~an21!wsn

~u!~kn!xel
~0!

3^Vuas1~k1! f a1
@LI #¯ f an21

@LI #asn~kn!V&,

T~0!@z,r #5xel
~0!

^ PV~FP0
„r f~u!1Lg~u!2z…2FP0

„Lg~u!2z…!xel
~0!

^ PV , ~V.201!

5r f~u!2 (
n52

`

~2g!n (
s1 ,...,sn56

a1 ,...,an2150,...,M

E dk~n! xel
~0!ws1

~u!~k1!xel
~a1!

¯xel
~an21!wsn

~u!~kn!xel
~0!

3^Vu$as1~k1! f a1
@LI 1rI #¯ f an21

@LI 1rI #asn~kn!2as1~k1! f a1
@LI #¯ f an21

@LI #asn~kn!V&,

usingLI ª(L f ,Laux), rIª(r f ,r aux), andr f(u)ªcos(q)r f2i sin(q)raux. Furthermore,

W~0!@z#ª (
m,n50

m1n>1

`

Wm,n
~0! @z#, ~V.202!

Wm,n
~0! @z#ªE dK~m,n! a1~k~m!!wm,n

~0! @z,LI ,K ~m,n!#a2~ k̃~n!!, ~V.203!

and we shall not display the dependence ofL (0) , E(0) , T(0) , andW(0) on u unless necessary. Not
thatE(0) is an operator on Ranxel

(0) , i.e.,E(0)PMN is anN3N matrix. Similarly,rI°T(0)@z,rI # is
anN3N matrix-valued function, andrI°wm,n

(0) @z,rI ,K (m,n)# areN3N matrix-valued functions, for
m1n>1, pointwise inK (m,n). Equation~V.196! yields the following explicit expressions forwm,n

(0)

~compare to Ref. 8, Lemma III 6!:

wm,n
~0! @z,LI ,K ~m,n!#52 (

p50

`

(
bPBm,n,p

(
a1 ,...,an2150

M

~2g!nE dX~p,p! Sm,n$Fb@X~p,p!,K ~m,n!#%,

~V.204!

where Bm,n,p denotes the set of partitionsb5(bk ,bk̃ ,bx ,bx̃) of $1,2,...,m1n12p% such that
ubku5m, ubk̃u5n, and ubxu5ubx̃u5p, i.e., bk ,bk̃ ,bx ,bx̃ are pairwise disjoint subsets o
$1,2,...,m1n12p% whose union give$1,2,...,m1n12p%.

Given bPBm,n,p and denotingMªm1n12p, the matrix-valued functionFb is defined by
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Fb@X~p,p!,K ~m,n!#ªxel
~0!wb

~u!~1,X~p,p!,K ~m,n!!xel
~a1!

¯xel
~an21!wb

~u!~M ,X~p,p!,K ~m,n!!xel
~0!

•^Vuab~1,X~p,p!,K ~m,n!! f a1
@LI 1mI 1#¯ f an21

@LI 1mI n21#

3ab~M ,X~p,p!,K ~m,n!!V&, ~V.205!

where

wb
~u!~ j ,X~p,p!,K ~m,n!!ª5

w1
~u!~kl !, if j is the l th member ofbk ,

w2
~u!~ k̃l !, if j is the l th member ofbk̃ ,

w1
~u!~xl !, if j is the l th member ofbx ,

w2
~u!~ x̃1!, if j is the l th member ofbx̃ ,

~V.206!

and

ab~ j ,X~p,p!,K ~m,n!!ªH 1, if j Pbkøbk̃ ,

a1~xl !, if j is the l th member ofbx ,

a2~ x̃l !, if j is the l th member ofbx̃ .

~V.207!

Moreover,Sm,n denotes the symmetrization operator,

Sm,n$F%@X~p,p!,Km,n#ª
1

m!n! (
pPSm
pPSn

F@X~p,p!,kp~1! ,...,kp~m! ; k̃p̃~1! ,...,k̃p̃~n!#. ~V.208!

We have the following estimates on these coefficients.
Lemma V.11: Assume that zPS0,, . Then there exists a constant, C,`, such that, for g

.0 sufficiently small,

iE~0!@z#1 ig2G0i<Cg212e, ~V.209!

i] r aux
T~0!@z,rI #1 i sinqi<Cg2«, ~V.210!

iwm,n
~0! @z,rI ,K ~m,n!#i<Cr0S Cg

r0
D m1n

)
j 51

m
k~kj !

v~kj !
1/22m )

j 51

n
k~ k̃ j !

v~ k̃ j !
1/22m

, ~V.211!

E
Br0

m1n
i] r aux

wm,n
~0! @z,rI ,K ~m,n!#i)

j 51

m S d3kj

v~kj !
3/21mD )j 51

n S d3k̃ j

v~ k̃ j !
3/21m

D <C~Cg!m1n,

~V.212!

where Brª$kuv(k),r %.
Proof: The asserted estimates follow from adaption of Ref. 8, Sec. III. For illustration

give a proof of~V.209!. We first rewriteE(0)@z# as

E~0!@z#52g2M @u,z#2 (
n54

`

~2g!n (
s1 ,...,sn56

a1 ,...,an2150,...,M

E dk~n!xel
~0!ws1

~u!~k1!xel
~a1!

¯xel
~an21!wsn

~u!

3~kn!xel
~0!^Vuas1~k1! f a1

@LI #¯ f an21
@LI #ann~kn!V&, ~V.213!

where
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M @u,z#ª (
a50

M E dk fa@~21!tv~k!,v~k!#xel
~0!w2

~u!~k!xel
~a!w1

~u!~k!xel
~0! . ~V.214!

Here,k5(kW ,l,t)PR33$1,2%3$ l ,r %, and (21)t
ª1, for t5 l , and (21)t

ª21, for t5r . We
recall that

f a@~21!tv,v#5
x̄ f

~a!@v#

ha1e2 i ~21!tqv~k!2z
, ~V.215!

and that an analytic continuation fromu50 to u5 iq yields

G05 (
a50

M E dk
1

ha1e2 i ~21!tqv~k!
xel

~0!w2
~u!~k!xel

~a!w1
~u!~k!xel

~0! ,

5 (
a50

M E dk
1

ha1v~k!2 i0
xel

~0!w2
~0!~k!xel

~a!w1
~0!~k!xel

~0! , ~V.216!

sinceG0 is independent ofu. In view of the fact that

U x̃ f
~a!@v~k!#

ha1e2 i ~21!tqv~k!2z
2

1

ha1e2 i ~21!tqv~k!
U5O~ uzu!, ~V.217!

for a>1, and

U x̃ f
~0!@v~k!#

e2 i ~21!tqv~k!2z
2

ei ~21!tq

v~k! U< 2uzu
~v~k!1r0!2 1

xr0
@v~k!#

v~k!
, ~V.218!

we obtain that

iK@u,z#2 iG0i5O~g2!. ~V.219!

Second, we observe that

u^Vuas1~k1! f a1
@L#¯ f an21

@L#asn~kn!V&u

5r0u^Vu~Laux1r0!21/2as1~k1!~Laux1r0!21/2

3~Laux1r0! f a1
@L#¯~Laux1r0! f an21

@L#~Laux1r0!21/2asn~k1!~Laux1r0!21/2V&u

<r08n21)
j 51

n

i~Laux1r0!21/2as j~kj !~Laux1r0!21/2i , ~V.220!

using ~V.198!. The standard estimate from Lemma IV.1 implies that

E dkj iws j

~u!~kj !ii~Laux1r0!21/2as j~kj !~Laux1r0!21/2i5O~r0
21/2!. ~V.221!

Inserting~V.219!–~V.221! into the sum in~V.213! and summing up the terms of ordern>4 as in
Ref. 8, Lemma III.7, we obtain that

iE~0!@z#1 ig2G0i< (
n54

`

Cr0S Cg

r0
1/2D n

5O~g212e!, ~V.222!
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thus establishing~V.209!. h

In Theorem B.2 in Appendix B, we prove that KerG05Ckb , where

kb5Z21 (
n50

N21

e2bEn/2wn^ wn , ~V.223!

andZ5(n50
N21e2bEn is a normalization factor. Hence, denoting by

Pkb

el
ªukb&^kbu, ~V.224!

the orthogonal projection ontokb , we have that

G05G0Pkb

el >ĝ0Pkb

el , ~V.225!

for some positiveĝ0.0. Our strategy is now to apply the Feshbach map again, using the pr
tion

P1ªPkb

el
^ x@Laux,r1#, ~V.226!

where

r1ªg21e/2. ~V.227!

We haveP1P05P0P15P1 and

P̄1ª12P15 P̄1
~1!1 P̄1

~2! , ~V.228!

where

P̄1
~1!
ª P̄kb

el
^ 1, P̄1

~2!
ªPkb

el
^ x@Laux>r1#. ~V.229!

Again, for the Feshbach map to be defined, we prove the invertibility of the operator restric
RanP̄1P0 . We divide the proof into a series of lemmata.

Lemma V.12: Assume zPS0,, . Then

I ~T~0!@z,LI #1E~0!@z#2z!P̄1P0

Laux1r1
U<O~1!. ~V.230!

Proof: According to~V.209!, ~V.210!, and~V.225!, we have

2Im$T~0!@z,LI #1E~0!@z#2z%>„sinq2O~g2e!…Laux1„ĝ02O~ge/2!…g2 ~V.231!

on RanP̄1
(1) . Conversely, on RanP̄(2), we estimate

2Im$T~0!@z,LI #1E~0!@z#2z%>„sinq2O~g2e!…Laux2
sinq

2
r12O~g212e!

>„sin~q!/22O~g3e/2!…Laux, ~V.232!

h

sinceO(g21e)5r1O(g3e/2)5LauxO(g3e/2).
Lemma V.13: Assume zPS0,, . Then

iP0~Laux1r1!21/2W~0!@z#~Laux1r1!21/2P0i5O„g~r0 /r1!1/2
…5O~g123e/4!. ~V.233!
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Proof: The proof is an adaption of Ref. 8, Theorem B.2, using the bounds~V.211!, for all
m1n>1, and summing up all contributions. h

Putting together Lemma V.12 and Lemma V.13, we obtain the invertibility ofL (0)@z#2z

restricted to RanP̄1P0 by a Neumann series expansion of (L (0)@z#2z)21 around (T(0)@z,LI #
1E(0)@z#2z)21.

Lemma V.14: Assume (V.128) anduzu<C0g21e. Then, for g.0 sufficiently small, P̄1(L (0)

2z) P̄1 is invertible onRanP̄1P0 .
Lemma V.14 justifies a second application of the Feshbach map with projectionP1 . That is,

the operatorFP1
(L (0)@z#2z) is well defined. To formulate this result, we define a bijection,

Z~0! :S0,,→D1/2, Z~0!~z !ª
i z

sin~q!r1
, ~V.234!

and we introduce the unitary dilatation,

U ~0!VªV, U ~0!a
s~kW ,l,t!U ~0!

* ªr1
23/2as~kW /r1 ,l,t!, ~V.235!

noting that

U ~0!LI U ~0!
* 5r1LI ~u,U ~0! Ranxr1

@Laux#5Ranx1@Laux#, ~V.236!

whereLI 5(L f ,Laux).
Theorem V.15:Let zPD1/2. Then, for g.0 sufficiently small, Lg(u)2z is isospectral (in the

sense of Refs. 7, 8) to

L ~1!@z#2zª
i

sin~q!r1
U ~0!FP1

„L ~0!@Z~0!
21~z!#2Z~0!

21~z!…U ~0!
* , ~V.237!

defined onHredªRanx1@Laux#.
Similar to L (0)@z#, we writeL (1)@z# as

L ~1!@z#2z5x1@Laux#~E~1!@z#2z1T~1!@z,LI #1W~1!@z# !x1@Laux#, ~V.238!

where

E~1!@z#ª
i

sin~q!r1
^VuFP1

„L ~0!@Z21~z!#2Z21~z!…V&1z, ~V.239!

T~1!@z,rI #ª
i

sin~q!r1
^VuFP1

+FP0
„rI1Lg~u!2Z21~z!…2FP1

+FP0
„rI1Lg~u!2Z21~z!…V&,

~V.240!

W~1!@z#ª (
m,n50

m1n>1

`

Wm,n
~1! @z#, ~V.241!

Wm,n
~1! @z#ªE dK~m,n! a1~k~m!!wm,n

~1! @z,LI ,K ~m,n!#a2~ k̃~n!!. ~V.242!

From Lemma V.11 and using the techniques from Ref. 8, Sec. IV, we derive the follo
estimates on these operators.

Lemma V.16: Assume zPD1/2. Then there exists a constant, C,`, such that, for g.0
sufficiently small,
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uE~1!@z#u<Cg3e/2, ~V.243!

u] r aux
T~1!@z,rI #21u<Cg2e, ~V.244!

uwm,n
~1! @z,rI ,K ~m,n!#u<~Cg!m1n)

j 51

m
k~kj !

v~kj !
1/22m )

j 51

n
k~ k̃ j !

v~ k̃ j !
1/22m

, ~V.245!

E
B1

m1n
u] r aux

wm,n
~1! @z,r ,K ~m,n!#u)

j 51

m S d3kj

v~kj !
3/21mD )j 51

n S d3k̃ j

v~ k̃ j !
3/21m

D <C~Cg!m1n,

~V.246!

where Brª$kuv(k),r %.
Proof: To prove~V.243!, we observe that due to Lemma V.13 we have

r1
21u^VuW~0!@z# P̄1„P̄1L ~0!@z# P̄12z…21P̄1W~0!@z#V&u

<O~1!iP0~Laux1r1!21/2W~0!@z#~Laux1r1!21/2P0i25O~g223e/2!. ~V.247!

Thus, using~V.222!, andG0P150, we obtain

uE~1!@z#u5
i

sin~q!r1
P1E~0!@Z21~z!#P11O~g223e/2!

5
i

sin~q!r1
P1„E~0!@Z21~z!#1 ig2G0…1O~g223e/2!5O~g3e/2!. ~V.248!

A similar argument yields~V.244!. The proof of~V.245! and ~V.246! is rather lengthy, and we
shall only examine the tree level contributions towm,n

(1) , i.e., those resulting from rescalingwm,n
(0) .

It actually turns out that these contributions are the dominant ones. We set

wm,n
~1!,T@z,r ,K ~m,n!#ª

i

sin~q!
r1

3/2~m1n!21wm,n
~0! @Z21~z!,r1r ,r1K ~m,n!#. ~V.249!

One then easily checks that~V.211! and~V.212! imply the bounds~V.245! and~V.246!, with wm,n
(1)

replaced bywm,n
(1),T . h

Using these bounds, it is not difficult to verify that, for a suitable choice ofr andj,

D1/2{z°L ~1!@z#PWD8 ~V.250!

defines an analytic family, whereWD8 is the Banach space of operators defined in Ref. 8,~I.46!.
Hence,L (1)PWD , and Lemma V.16 implies the following theorem.

Theorem V.17: For some constant C,` and sufficiently small g.0, L (1) belongs to the
polydisk,

L ~1!PB~Cg2e,Cg3e/2!, ~V.251!

defined in Ref. 8,~I.164!.
In other words,L (1) is a proper initial operator for the renormalization group mapRr defined

in Ref. 8. We may thus invoke Ref. 8. Theorems V.7 and V.10 to obtain the following resu
Theorem V.18: Let 0,q8,q. For sufficiently small g.0, there exists a number, E(`)

PS0,, , such that~i! E(`) is a simple eigenvalue of Lg(u), and ~ii ! the spectrum of Lg(u) obeys

s@Lg~u!#ùS0,,,„E~`!1C~q8!…ùS0,, . ~V.252!
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A simple corollary~see Fig. 6! is the following.
Corollary V.19: Let0,q8,q. For sufficiently small g.0,
~i! 0 is a simple eigenvalue of Lg(u), and
~ii ! the spectrum of Lg(u) obeys

s@Lg~u!#ùS0,,,C~q8!ùS0,, . ~V.253!

Proof: We first note thats@Lg(u)##C2, by analytic continuation and the fact that the spe
trum of Lg is real. Thus ImE(`)<0.

Second, 0 is an eigenvalue ofLg(u), so 0PE(`)1C(q8), which implies thatE(`)50. h
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APPENDIX A: ANALYTIC CONTINUATION OF THE RESOLVENT OF THE LIOUVILLIAN

1. Outline of the strategy

Our goal in this appendix is to establish the analyticity of the resolvent,

Rg~u,z!ª„Lg~u!2z…21, ~A1!

as an operator-valued function ofu and z. This does not follow from a direct application o
standard techniques in dilatation analyticity, in contrast to Refs. 7–9, becauseu°Lg(u) is not a
family of type A, for uPD(0,p/2). Indeed, as we point out below,u°Lg(u) is not even an
analytic family onH in the sense of Kato~see, e.g., Ref. 33!.

Note, however, that we are not really interested in global analyticity properties ofRg(u,z).
For our spectral analysis, it suffices to have an analytic continuation ofRg(0,l1 i e), with
l1 i ePC1, 0,e!1, in the upper half-plane, toRg( iq,z8), with z8PC2 in the lower half-plane
andq.0. Hence, it suffices to have a connected domainA#C2, containing (0,z) and (iq,z8),
such thatA{(u,z)°Rg(u,z) is analytic.

The construction ofA or, rather, of the curve inA linking (0,l1 i e) and (iq,z8) is as
follows.

~i! First, using the self-adjointness ofLg , we pass fromRg(0,l1 i e) to Rg(0,l12i ), by usual
analytic continuation inz.

~ii ! Second, for (u,z)5(0,l12i ), we pass fromRg(u,z) to a more regular resolvent,

R̃g~u,z!ª~Laux11!21Rg~u,z!~Laux11!21. ~A2!

Note that the restriction ofRg(u,z) to Dom(Laux) can be reconstructed fromR̃g(u,z).
~iii ! The key step of our construction is as follows. Introducing

Sr
1
ª$uPCu0<Im u,r%, ~A3!

we prove that

Sq0

1 {u ° R̃g~u,l12i! ~A4!

defines an analytic family with

iR̃g~u,l12i!i<dist$Num Ran@Lg~u!#,l12i %21. ~A5!

The main difficulty we are facing here is that the coefficient in front of the domin
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operator Laux is linearly vanishing, asu→0, since Lg(u)5cosh(u)Lf2sinh(u)Laux

1gW(u). So, while all other terms inLg(u) are relatively bounded w.r.t.Laux, their
relative bounds are divergent, asu→0. Our main observation, however, is that we on
need to control theimaginary partof Lg(u) and that the imaginary part is asymptotically
the form ImLg(u)52i Im(u) @Laux1gW̃(u)], whereW̃(u) is relativelyLaux-bounded with
a zero relative bound, asu→0. Hence, for sufficiently smalluuu with Im u>0, the imaginary
part ofLg(u) is negative definite. The assumption Imz>2 now ensures the differentiability
of R̃g(u,l12i ) at u50.

~iv! Fourth, continuing fromu50 to u5 iq, 0,q08<q<q0,p/2, the norm estimate~A5!

enables us to analytically continueR̃g( iq,z) in z from z5l12i to the connected compo
nentG of

$zPCuiLg~u!2zi,`%, ~A6!

containingl12i . Since, on Dom(Laux), we can obtainRg( iq,z) from R̃g( iq,z), we arrive
at the desired analytic continuation of matrix elements^wuRg(0,z)c&, for w, c in the dense
setD defined in~V.123!.

2. Key step

To carry out the third step indicated above, we first prove some preparatory lemmata.
Lemma A.1: Let0,q0,p/2, and assume thatuPSq0

1 , Im z>2, and 0,g!Mq0
ªq0(p/2

2q0). Then Lg(u)2z is invertible and

i~Lg~u!2z!21i<dist$Num Ran@Lg~u!#;z%21. ~A7!

Proof: It suffices to prove~A7! only for purely imaginaryu5 iq, 0<q,q0 , since the real
part ofu gives rise to a unitary dilatation that leaves norms and numerical ranges and henc
sides of~A7! unchanged. We observe that, by Cauchy’s estimate and~V.116!, we have

i]uws,t
~u! ~k!i<S 2

p/22q0
D 2

Acos~q!
S 11

1

bv~k! D
1/2

ukW umk~k!. ~A8!

This and Lemma IV.1 imply that

i Im$W~u!%~Laux11!21i5uIm$W~u!2W~0!%~Laux11!21i5O~q/Mq0
!, ~A9!

and, similarly,

iRe$W~u!%~Laux11!21i5O~1/Mq0
!. ~A10!

Next, we note that

Lg~u!* 5cosqL f1 i sinqLaux1gW~u!* 5cosqL f1g Re$W~u!%1 i ~sinqLaux1g Im$W~u!* %!.
~A11!

Thus, for anycPDom@Laux##Dom@Lg(u)* #, we have

Im^~Laux11!21cuLg~u!* c&5U12^cu@~Laux11!21,g Re$W~u!%#c&1sinq K cUS Laux

Laux11Dc L
1Rê ~Laux11!21cug Im$W~u!* 2W~0!%c&. ~A12!

As in ~IV.74!–~IV.75!, we obtain from Lemma IV.1 that
                                                                                                                



,

nge

4051J. Math. Phys., Vol. 41, No. 6, June 2000 Return to equilibrium

                    
u^cu@~Laux11!21,g Re$W~u!%#c&u5gu^~Laux11!21cu@Laux,Re$w~u!%#~Laux11!21c&u

<Cg^cu~Laux11!21c&, ~A13!

whereas~A9! implies that

u^~Laux11!21cug Im$W~u!* 2W~0!%c&u5O~gqMq0

21!^cuc&. ~A14!

These estimates yield

Im^~Laux11!21cuLg~u!* c&>sinq K cUS Laux

Laux11Dc L 2O~gqMq0

21!^cuc&

2Cg^cu~Laux11!21c&

>2~11Cg!^cu~Laux11!21c&1~sinq2~gqMq0

21!!^cuc&

>2~11Cg!^cu~Laux11!21c&, ~A15!

provided thatg!Mq0
. Note that~A15! extends to anycPDom@Lg(u)* #, by continuity.

Assuming now thatcPKer$Lg(u)* 2 z̄%, we derive from estimate~A15! the following in-
equality:

2Im~z!^~Laux11!21cuc&5Im^~Laux11!21cuz̄c&

5Im^~Laux11!21cuLg~u!* c&

>2~11Cg!^cu~Laux11!21c&. ~A16!

Since Imz>2, this estimate implies thatc50, provided g.0 is sufficiently small. Hence
Ran$Lg(u)2z% is dense, and we may define an inverse,„Lg(u)2z…21. Furthermore, the density
of Ran$Lg(u)2z% ensures the validity of the second equation in the following numerical ra
estimate:

i~Lg~u!2z!21i

5sup$i~Lg~u!2z!21ciucPDom@Lg~u!#, ici51%

5sup$i~Lg~u!2z!ci21uwPRan$Lg~u!2z%, iwi51%

<sup$u^wuLg~u!w&2zu21uwPRan$Lg~u!2z%,iwi51%

5dist$Num Ran@Lg~u!#,z%21. h

~A17!

Lemma A.2: Let0,q0,p/2, and assume thatuPSq0

1 , Im z>2, and 0,g!Mq0
ªq0(p/2

2q0). Then

B6~u!ª~Laux11!71
„Lg~u!2z…21~Laux11!61 ~A18!

is defined onDom@Laux# and extends to a bounded operator onH of norm

iB6~u!i<e2uReuu
„11O~g/Mq0

!…dist$Num Ran@Lg~u!#,z%21. ~A19!

Proof: We first notice that Dom@B6(u)#5Dom@B6(Im u)# and

iB6~u!i<e2uReuuiB6~ i Im u!i . ~A20!
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Thus, it suffices to prove the assertion foru5 iq, 0<q,q0 , which we henceforth assume. Ne
we observe that

„Lg~u!2z…21~Laux11!212~Laux11!21
„Lg~u!2z…21

5„Lg~u!2z…~Laux11!21@Laux,Lg~u!#~Laux11!21
„Lg~u!2z…21. ~A21!

Indeed, thanks to Lemma A.1 and Dom@Lg(u)#$Dom@Laux#, both sides in~A21! define a
bounded operator. Note that on Dom@Laux#,

@Laux,Lg~u!#5g@Laux,W~u!#, ~A22!

and hence, by the same argument as in~IV.73!, ~IV.74!–~IV.75!, we even have that

i~Laux11!21@Laux,Lg~u!#i5O~g!. ~A23!

On the other hand, Imz>2 andg!Mq0
ensures the condition that dist$Num Ran@Lg(u)#,z%>1.

HenceiXi5O(g), where

Xª~Lg~u!2z!21~Laux11!21@Laux,Lg~u!#, ~A24!

and

~12X!~Laux11!21
„Lg~u!2z…21~Laux11!215„Lg~u!2z…21. ~A25!

This implies that12X is invertible and that

i~12X!21i511O~g!. ~A26!

Multiplying ~A25! by (12X)21 and using~A26!, we arrive at the assertion forB1( iq). The
proof for B2( iq) is similar. h

Putting together Lemma A.1 and Lemma A.2, we arrive at the following.
Theorem A.3: Let 0,q0,p/2 and 0,g!Mq0

ªq0(p/22q0).
Then, for all zP$zPCuIm z>2%,

R̃~•,z!: Sq0

1 →B@H^ H#,

u ° R̃~u,z!5~Laux11!21
„Lg~u!2z…21~Laux11!21 ~A27!

is analytic, i.e., u ° Lg(u) defines an analytic family onSq0

1 in the sense of Kato.

Proof: We start with the observation that

]uLu~u!521el
^ ~e2uH f ^ 1f1eu1f ^ H f !1g ]uW~u!, ~A28!

where@see~V.118!#

]uW~u!5al* ~]uw1,l
~u! !1al~]uw2,l

~u! !1ar* ~]uw1,r
~u! !1ar~]uw2,r

~u! !. ~A29!

By Lemma IV.1 and~A8!, we clearly have

i]uW~u!~Laux11!21i5O~euReuuMq0

21!, ~A30!

and hence

i]uLg~u!~Laux11!21i5O„e2uReuu~11gMq0

21!…. ~A31!
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Using Lemmata A.1, A.2, and~A.31!, we thus obtain

i~Laux11!21]u$„Lg~u!2z…21%~Laux11!21i

5i~Laux11!21
„Lg~u!2z…21 ]uLg~u!~Lg~u!2z!21~Laux11!21i

5iB1~u!~Laux11!21]uLg~u!~Laux11!21B2~u!i

<C dist$Num Ran@Lg~u!#,z%22<C8,`, ~A32!

for some constantsC, C85O(e4uReuu),`. h

Theorem A.4: Let 0,q08,q0,p/2, and assume thatIm z>2, 0,g!q08(p/22q0), and u

PSq0

1 ù$Im u>q08%. Define R8(u,z)ª(Laux11)R̃(u,z)(Laux11) on Dom@Laux#. Then we have

the following.
~i! R8(u,z) extends to a bounded operator onH^ H.
~ii ! Lg(u)2z is invertible onH^ H, and its inverse, R(u,z)ª„Lg(u)2z…21, is given by the

extension of R8(u,z).
~iii ! On the rectangular domain Rª$uPCuuReuu<a,q08<Im u<q0%, where

aª21/2 ln cos(2q08).0, the map

R{u ° Lg~u!PB@Dom@Laux#,H^ H# ~A33!

defines an analytic family of type A.
~iv! s@Lg(u)##C2ù(C\G8), whereG8 is the connected component of$zPCuiR(u,z)i,`%

containingC1.
Proof: Statements~i! and ~ii ! easily follow from Lemmata A.1, A.2, and Theorem A.3.

For ~iii !, we setaªReu, qªIm u, and we observe that

L f~u!5cosh~u!L f2sinh~u!Laux52sinh~u!@Laux2coth~u!L f #. ~A34!

Since sinhu5sinha cosq1i cosha sinq andq>q08.0, we have that

usinhuu>uIm sinhuu>sinq>sinq08.0. ~A35!

Next, we observe that, forcPDom@Laux
1/2#,

u^cuL f~u!c&u<usinhuu~11ucothuu!^cuLauxc&, ~A36!

because6L f<Laux. To construct a lower bound, we use

u^cuL f~u!c&u<usinhuuuRê cu„Laux2coth~u!L f…c&u<usinhuu~12Re$coth~u!%!^cuLauxc&.

~A37!

To have a nontrivial lower bound, we therefore require that

Re$cothu%5
sinh~2a!

cosh~2a!2cos~2q!
,1, ~A38!

or, equivalently, cos(2q),cosh(2a)2usinh(2a)u. By our assumption onq08 , we have that
cos(2q),cosh(2a)2usinh(2a)u, and~A38! holds. Thus, for alluPD(0,q0)ù$Im z>q08%, the qua-
dratic form L f(u) is sectorial, and DomQ@L f(u)#5DomQ@Laux#. Since W(u) is a relatively
bounded form perturbation w.r.t.Laux, with zero relative bound, so it is with respectL f(u) and
henceL0(u). This proves~iii !.

To prove~iv!, we observe that, by analytic continuation,Lg(u)2z is invertible inC1, since
L0(u)2z is. h
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APPENDIX B: POSITIVITY OF THE LEVEL-SHIFT OPERATOR GE

1. Definitions

Recall from Hypothesis H-1 that the spectrum ofHel is assumed to entirely consist of simp
eigenvaluesEm,Em11 with corresponding orthonormal eigenvectorswm , mPNª$0,1,...,N
21%. Thus$w i u i PN%#Hel is an orthonormal basis. We also have

LelªHel^ 1el21el^ H f , ~B1!

L fªH f ^ 1f21f ^ H f , ~B2!

L0ªLel^ 1f11el
^ L f , ~B3!

where1el
ª1el^ 1el and1f

ª1f ^ 1f . Henceforth, we frequently omit trivial tensor factors, like^1,
unless they clarify the exposition.

Recall from ~IV.62! that the interaction in the Liouvillian at inverse temperatureb in the
Araki–Woods representation is given by

W5al* ~A11rGl2Ar Gr* !1al~A11rGl* 2Ar Gr !

1ar* ~ArGl* 2A11r Ge!1ar~ArGl2A11r Gr* !, ~B4!

where the coupling functionG:R33Z2→B(Hel) is a matrix-valued function and

r[r~j!5~ebv~j!21!21. ~B5!

We further recall from~V.152!–~V.153! that, for EPR, the imaginary partGE of the level
shift operatorQE is given by

GE^ PVªPVWPV
' d@L0PV

' 2E#PV
' WPV , ~B6!

where,PV is the orthogonal projection onto the vacuum vectorV f
ªV f ^ V f in Ff ^ Ff .

Applying the modular conjugationJ5E(C^ C^ T^ T) @see Eq.~IV.77!#, we see thatJ(GE

^ PV)J5G2E^ PV . Introducing the corresponding restriction,Jel5Eel(C^ C), of J to Hel

^ Hel , where Eel(w3c)ªc ^ w is the corresponding exchange operator, we find thatGE is
antiunitarily equivalent toG2E ,

JelGEJel5G2E . ~B7!

In particular,JelG0Jel5G0 .
For any Borel setD#R, we denotexDªxD(Lel), and further,

ADª$~ i , j !PN2uEi , jPD%, ~B8!

AD
~1!
ª$ i PNu' j PN:Ei , jPD%, ~B9!

AD
~2!
ª$ j PNu' i PN:Ei , jPD%, ~B10!

@AD
~n!#c

ªN\AD
~n! , n51,2. ~B11!

Note thatAD
(2)5A2D

(1) and that@AD
(1)#c5@AD

(2)#c5B if D{0. Moreover,

D5$Ei , j%#~0,̀ !⇒AD
~1!{ i , @AD

~1!#c{0, ~B12!

D5$Ei , j%#~2`,0!⇒AD
~1!{ i , @AD

~1!#c{N21. ~B13!
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Furthermore, we denote the corresponding canonical projections by

p~1!:AD→AD
~1! , ~ i , j !° i , ~B14!

p~2!:AD→AD
~2! , ~ i , j !° j , ~B15!

and we call a Borel setD#R nondegenerateiff p(1) or p(2) is bijective.~Note thatp(1) is bijective
iff p(2) is.! The assumption of simplicity of the eigenvaluesEm,Em11 implies that$E% is non-
degenerate, for anyEPR. For any nondegenerateD#R, there exists a bijectionN[ND :AD

(1)

→AD
(2) such that

AD5$~ i ,ND~ i !!u i PAD
~1!%. ~B16!

The caseD5$Ei , j% andE5Ei , j is of special interest, and we denote

G~Ei , j !
ªG i , j uRanP

Ei , j

el , ~B17!

recalling thatPi , j
el 5x$Ei , j %

@Lel#.
We conclude this section with a computation of the matrix elements ofGE . To this end we

abbreviatew i , jªw i ^ w j , Ei , jªEi2Ej , andGi , j[Gi , j (j), jª(jW ,l). We obtain

^w i , j uGEwk,l&5^w i , j ^ V f ual~A11rG* ^ 1el2Ar1el^ Ḡ!PV
' d@L0PV

' 2E#PV
'

3al* ~A11rG^ 1el2Ar1el^ Ḡ* !~wk,l ^ V f !&

1^w i , j ^ V f uar~ArG^ 1el2A11r1el^ Ḡ* !PV
' d@L0PV

' 2E#PV
'

3ar* ~ArG* ^ 1el2A11r1el^ Ḡ!~wk,l ^ V f !&

5E dj$^w i , j u~A11rG* ^ 1el2Ar1el^ Ḡ!d@Lel2E1v~j!#

3~A11rG^ 1el2Ar1el^ Ḡ* !wk,l&

1^w i , j ^ V f u~ArG^ 1el2A11r1el^ Ḡ* !d@Lel2E2v~j!#

3~ArG* ^ 1el2A11r1el^ Ḡ!wk,l&%, ~B18!

and hence

^w i , j uGEwk,l&5E dj (
m,n50

N21

$d@Em,n2E1v~j!#^w i , j u~A11rG* ^ 1el2Ar1el^ Ḡ!wm,n&

3^wm,nu~A11rG^ 1el2Ar1el^ Ḡ* !wm,n&

1d@Em,n2E2v~j!#^w i , j u~ArG^ 1el2A11r1el^ Ḡ* !wk,l&

3^wm,nu~ArG* ^ 1el2A11r1el^ Ḡ!wk,l&%. ~B19!

Hence, the final result is
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^w i , j uGEwk,l&5E dj (
m,n50

N21

$d@Em,n2E1v~j!#~A11rḠm,id j ,n2Ard i ,mḠj ,n!

3~A11rGm,kdn,l2Ardm,kGl ,n!

1d@Em,n2E2v~j!#~ArGi ,md j ,n2A11rd i ,mGn, j !

3~ArḠk,mdn,l2A11rdm,kḠn,l !%. ~B20!

In particular, forE50, i 5 j , andk5 l , we have

^w i ,i uG0wk,k&5d i ,kS (
j Þk

hk, je
2bEk, j /2D 2~12d i ,k!h i ,k , ~B21!

where

h i ,kª2E ~d@v~j!2Ei ,k#1d@v~j!1Ei ,k# !Ar~j!~11r~j!!uGi ,k~j!u2 dj. ~B22!

Formula~B21! is equivalent to the detailed-balance equation~V.50!. To derive~B21!, we use

11r~j!

r~j!
511

1

r~j!
5ebv~j!/2, ~B23!

which implies the following two identities:

d@v~j!2Ei ,k#~11r~j!!5d@v~j!2Ei ,k#Ar~j!„11r~j!…ebEi ,k/2, ~B24!

d@v~j!1Ei ,k#r~j!5d@v~j!1Ei ,k#Ar~j!„11r~j!…ebEi ,k/2. ~B25!

2. Strict positivity of GE for EÅ0

Our next task is to show that under certain assumptionsxDGExD>axD , for somea.0 and
all EÞ0. SinceGE is antiunitarily equivalent toG2E , we may restrict ourselves to considerin
E.0.

Theorem B.1: Assume Hypotheses H-1 and H-5. Let E.0 and D#R be a nondegenerate
Borel set. Then

xDGExD>gE~D!xD , ~B26!

where the numbergE(D)>0 is defined by

gE~D!ª min
m̃PAD

~1!

E dj (
mP@AD

~1!
#c

$d@Em,N~m̃!2E1v~j!#uGm,m̃~j!u2

1d@Em̃,N~m!2E2v~j!#uGN~m̃!,N~m!~j !u2%. ~B27!

Furthermore, for Ei , jÞ0,

G~Ei , j !>g~ i , j !
ªGEi , j

~$Ei , j%!.0, ~B28!

uniformly in b→`.
Proof: SinceD is nondegenerate,$w i ,N( i )u i PAD

(1)% is an ONB in RanxD(Lel). We may there-
fore write any normalized vector inFPRanxD(Lel) as F5( i PN ciw i ,N( i ) , where ( i PN uci u2

51 andci50, for all i P@AD
(2)#c. Inserting this into~B20! yields
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^FuGEF&5E dj (
m,n50

N21

$d@Em,n2E1v~j!#uA11rGm,N21~n!cN21~n!2ArGN~m!,ncmu2

1d@Em,n2E2v~j!#uArGN21~n!,mc̄N21~n!2A11rGn,N~m!c̄mu2%. ~B29!

Now we observe that the rangeN 2 of summation contains the following two disjoint subsets:

AD
~1!3@AD

~2!#c, @AD
~1!#c3AD

~2! . ~B30!

Using this and the fact thatci vanishes fori P@AD
(1)#c, we obtain the following lower bound:

^FuGEF&>g81g9, ~B31!

where

g8ªE dj (
mPAD

~1!
ucmu2 (

nP@AD
~2!

#c
$d@Em,n2E1v~j!#uArGN~m!,nu2

1d@Em,n2E2v~j!#uA11rGN~m,n!u2% ~B32!

ªE dj (
m̃PAD

~1!
ucm̃u2 (

mP@AD
~1!

#c
$d@Em̃,N~m!2E1v~j!#r

1d@Em̃,N~m!2E2v~j!#~11r!%uGN~m̃!,N~m!u2, ~B33!

and, similarly,

g9ªE dj (
m̃PAD

~1!
ucm̃u2 (

mP@AD
~1!

#c
$d@Em,N~m̃!2E1v~j!#~11r!

1d@Em,N~m̃!2E2v~j!#r%uGm,m̃u2. ~B34!

Adding g8 andg9, we arrive at the first assertion, Eq.~B27!,

g81g9> (
m̃PAD

~1!
ucm̃u2E dj (

mP@AD
~1!

#c
$d@Em,N~m̃!2E1v~j!#uGm,m̃u2

1d@Em̃,N~m!2E2v~j!#uGN~m̃!,N~m!u2%. ~B35!

To prove ~B28!, we assume thatD5$Ei , j% and E5Ei , j.0. Then i PAD
(1) and 0P@AD

(1)#c, so
retaining only the termm50 in ~B27!, we find that

g~ i , j !> min
m̃PAD

~1!

E dj d@E0,N~m̃!2Ei , j1v~j!#uGm,m̃~j!u2. ~B36!

Since E0,N(m̃)<0, we have thattmin<Ei,j2E0,N(m̃)<2tmax, and Hypothesis H-5 directly yields
g ( i , j ).0. h

3. Spectral gap above 0 for G „0…

In this section we assume thatD5$0% and thatE50. Furthermore, we shall make use
Hypothesis H-3, in addition to Hypotheses H-1 and H-5. Note that since the eigenvalues ofHel are
nondegenerate,$0% is nondegenerate and symmetric. Moreover,G (0)5G0uRanP

0
el commutes with

Jel .
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Theorem B.2: The infimum of the spectrum ofG (0) is a simple eigenvalue and equals 0, wi
eigenvectorkb5(m50

N21e2bEm/2w i ,i . Furthermore, the gap above 0 can be estimated by

0,ĝ0<min$s@G~0!#\$0%%, ~B37!

where

ĝ0ª2S (
m50

N21

e2bEmD min
0<m,n<N21

$hm,neb~Em1En!/2%, ~B38!

and hm,n.0 is defined in~B21!.
Remark B.3: Note that

lim inf
b→`

ĝ0> min
0<m,n<N21

H E djuGm,n~j!u2d@Em,n1v~j!#J , ~B39!

so ĝ0.0, uniformly in b→`, thanks to Hypothesis H-5.
Proof: Since $0% is nondegenerate,$w i ,i u i PN% is an orthonormal basis in RanP0

el , and we
may write any normalized vectorkPRanP0

el ask5( i PN k iw i ,i , where( i PN uk i u251. Inserting
this into ~B21! and denotingmm,nªhm,neb(Em1En)/2, we obtain

^kuG0k&5 (
m,n50

N21

hm,n~e2bEm,n/2@kn#22kmkn!

5 (
m,n50

N21

mm,n~e2bEmuknu22e2bEn/2kme2bEm/2kn!

5 (
m,n50

N21

mm,nue2bEm/2kn2e2bEn/2kmu2

52 (
0<m,n

N21

mm,nue2bEm/2kn2e2bEn/2kmu2. ~B40!

From Eq.~B40!, it is obvious that

^kbuG0kb&50. ~B41!

Moreover, we obtain the lower bound

^kuG0k&>2G8 (
0<m,n

N21

ue2bEm/2kn2e2bEn/2kmu2

5G8 (
m,n50

N21

ue2bEm/2kn2e2bEn/2kmu252G8~Z82u^kbuk&u2!, ~B42!

whereZ8ª(m50
N21e2bEm5^kbukb& andG8ªmin0<m,n<N21$mm,n%. Hence,

^kuG0k&>2G8Z8, ~B43!

wheneverk'kb and iki51. h
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20J. Fröhlich, ‘‘Existence of dressed one-electron states in a class of persistent models,’’ Fortschr. Phys.22, 159–198

~1974!.
21R. Haag,Local Quantum Physics, Fields, Particles, Algebras, Text and Monographs in Physics~Springer-Verlag, Berlin,

1992!.
22R. Haag, N. Hugenholz, and M. Winnink, ‘‘On the equilibrium states in quantum statistical mechanics,’’ Com

Math. Phys.5, 215–236~1967!.
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Nonequilibrium in statistical and fluid mechanics:
Ensembles and their equivalence. Entropy driven
intermittency
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We present a review of the chaotic hypothesis and discuss its applications to inter-
mittency in statistical mechanics and fluid mechanics proposing a quantitative defi-
nition. Entropy creation rate is interpreted in terms of certain intermittency phe-
nomena. An attempt at a theory of the experiment of Ciliberto–Laroche on the
fluctuation law is presented. ©2000 American Institute of Physics.
@S0022-2488~00!01406-7#

I. INTRODUCTION

A general theory of nonequilibrium stationary phenomena extending classical thermody
ics to stationary nonequilibria is, perhaps surprisingly, still a major open problem more th
century after the work of Boltzmann~and Maxwell, Gibbs, etc.!, which made the breakthroug
toward an understanding of properties of matter based on microscopic Newton’s equations
atomic model.

In the last 30 years, or so, some progress appears to have been achieved since the rec
that nonequilibrium statistical mechanics and stationary turbulence in fluids are closely r
problems and, in a sense, in spite of the apparently very different nature of the equations d
ing them, they are essentially the same.

The unifying principle, originally proposed for turbulent motions by Ruelle1,2 in the early
1970s has been extended to statistical mechanics and eventually called the ‘‘chaotic hypothesis:’’ 3

Chaotic hypothesis: Asymptotic motions of a chaotic system, be it a multiparticle syst
microscopic particles or a turbulent macroscopic fluid, can be regarded as a transitive An
system for the purpose of computing time averages in stationary states.

It may be useful to make a few comments on how this is to be interpreted. The conclu
that we draw here from the chaotic hypothesis are summarized in Sec. XIII, which mig
consulted at this point. For a review on the subject from a different perspective see Ref. 4

II. MEANING OF THE CHAOTIC HYPOTHESIS

Anosov systems are well-understood dynamical systems: they play a paradigmatic rol
respect to chaotic systems parallel to the one harmonic oscillators play with respect to o
motions. They are so simple, and yet very chaotic, that their properties are likely to be the
everybody develops in thinking about chaos, even without having any familiarity with An
systems, which certainly are not~yet! part of the background of most contemporary physicis
Informally a mapx→Sx is an Anosov map if at every pointx of the bounded phase spaceM one
can set up a local system of coordinates with origin atx, continuously dependent onx and
covariant under the action ofS and such that in this comoving system of coordinates the poix
appears as a hyperbolic fixed point forS. The corresponding continuous time motion, when
evolution isx→Stx,tPR, requires that the local system of coordinates contains the phase

a!Electronic mail: gallavotti@roma1.infn.it
40610022-2488/2000/41(6)/4061/21/$17.00 © 2000 American Institute of Physics
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velocity ẋ as one of the coordinate axes and that the motion transversal to it seesx as a hyperbolic
fixed point. Note that a motion in continuous time cannot possibly be hyperbolic in all direc
and it has to be neutral in the direction ofẋ because the velocity has to be bounded ifM is
bounded, while hyperbolicity would imply exponential growth as eithert→1` or t→2`. Fur-
thermore there should be no equilibrium points and the periodic points should be dense in
space. When the system has one or more~the so-called ‘‘hysteresis phenomenon,’’ see Ref.!
attracting sets which do not occupy the whole phase space, the chaotic hypothesis can b
preted as saying that each attracting set is a smooth surface on which the time evolution fl~or
map! acts as an Anosov flow~map!. In general an Anosov system has asymptotic motions wh
approach one of finitely many invariant closed setsC1 ,...,Cq , each of which contains a dens
orbit: one says that the systems (Cj ,St) are ‘‘transitive.’’ One of them, at least, must be a
attractive set.

To say that ‘‘the asymptotic motions form a transitive Anosov system’’ means that

~1! each of the setsCj which is attractive is a smooth surface in phase space and
~2! only one of them is attractive.

The last ‘‘transitivity’’ assumption is meant to exclude the trivial case in which there are m
than one attractive sets and the systemde factoconsists of several independent systems.

The smoothness ofCj is astrong assumption, which means that one does not regard a poss
lack of smoothness, i.e., fractality, as a really relevant property in systems with a large num
degrees of freedom. In any event, one could consider~if necessary! replacing ‘‘Anosov systems’’
with some slightly weaker property like ‘‘axiom A’’ systems which could permit more gen
asymptotic motions. Here we adhere strictly to the chaotic hypothesis in the stated original3

III. BASIC IMPLICATIONS OF THE CHAOTIC HYPOTHESIS AND RELATION WITH THE
ERGODIC HYPOTHESIS

The chaotic hypothesis boldly extends to nonequilibrium theergodic hypothesis: applied to
equilibrium systems, i.e., to systems described by Hamiltonian equations, it implies the l6

This means that if a Hamiltonian system at a given energy is assumed to verify the c
hypothesis, i.e., to be a transitive Anosov system, then for all observablesF ~i.e., for all smooth
functionsF defined on phase space!

T21E
0

T

F~Stx!dt ——→
T→`

E
M

F~y!mL~dy!, ~3.1!

wheremL is the Liouville distribution on the constant energy surfaceM, and~3.1! holds for almost
all pointsxPM , i.e., for x outside a setN of zero Liouville volume onM.

Being very general one cannot expect that the chaotic hypothesis will solve any s
problem typical of nonequilibrium physics, like ‘‘proving’’ Fourier’s law of heat conductio
Ohm’s law of electric conduction, or the K41 theory of homogeneous turbulence.

Nevertheless, like the ergodic hypothesis in equilibrium, the chaotic hypothesis accomp
the remarkable task of giving us the ‘‘statistics’’ of motions. IfM is the phase space, which w
suppose to be a smooth bounded surface, andt→Stx is the motion starting atxPM , the time
average

T21E
0

T

F~Stx!dt ——→
T→`

E
M

F~y!mSRB~dy! ~3.2!

of the observableF exists forx outside a setN of zero phase space volumeand it isx independent,
thus defining the probability distributionmSRB via ~3.2!.
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Note, in fact, that the probability distributionmSRB defined by the left-hand side of~3.2! is
uniquely determined~provided it exists!: it is usually called the ‘‘statistics of the motion’’ or the
‘‘ SRB distribution’’ associated with the dynamics of the system.

To appreciate the above-mentioned property~existence and uniqueness of the statistics! the
following considerations seem appropriate.

An essential feature, and the main novelty, with respect to equilibrium systems is thanon-
conservative forcesmay act on the system: this is in fact the very definition of ‘‘nonequilibriu
system.’’

Since nonconservative forces perform work it is necessary that on the system also ac
forces that take energy out of it, at least if we wish that the system reaches a stationary
showing a well-defined statistics.

As a consequenceany modelof the system must also contain, besides nonconservative fo
which keep it out of equilibrium by establishing ‘‘flows’’ on it ~like a heat flow, a matter flow
etc.!, dissipative forces preventing the energy from increasing indefinitely and forcing the m
to visit only a finite region of phase space.

The dissipation forces, also called ‘‘thermostating forces,’’ will in general be such tha
volume in phase space isno longerinvariant under time evolution. Mathematically this means t
the divergence2s(x) of the equations of motion will be not zero and its time avera

*Ms(y)mSRB(dy)5
def

s1 will be positive or zero as it cannot be negative~‘‘because phase space
supposed bounded’’: see Ref. 7!.

One calls a system ‘‘dissipative’’ if s1.0 and we expect this to be the case as soon as t
are nonconservative forces acting on it.

We see that if a system is dissipative then its statisticsmSRB mustbe concentrated on a set o
zero volumein M: this means thatmSRB cannot be very simple, and in fact it is somewhat hard
imagine it.

If the acting forces depend on a parameterE, ‘‘strength of the nonconservative forces,’’ an
for E50 the system is Hamiltonian we have a rather unexpected situation. AtE50 the chaotic
hypothesis and the weaker ergodic hypothesis imply that the statisticsmSRB is equal to the Liou-
ville distributionmL ; but if EÞ0, no matter how small,it will not be possible to expressmSRB via
some densityrE(y) in the formmSRB(dy)5rE(y)mL(dy), becausemSRB attributes probability 1
to a setN with zero volume in phase space@i.e., mL(N)50#. Neverthelessnatura non facit saltus
~no discontinuities appear in natural phenomena! so that sets that have probability 1 with respe
to mSRB may all still be dense in phase space, at least forE small. In fact this is a ‘‘structural
stability’’ property for systems which verify the chaotic hypothesis~see Ref. 8!.

The above-mentioned observations show one of the main difficulties of nonequilibrium
ics: The unknownmSRB is intrinsically more complex than a functionrE(y) and we cannot hope
to proceed in the familiar way we might have perhaps expected from previous experie
namely to just set up some differential equations for the unknownrE(y).

Hence it is important that the chaotic hypothesis not only guarantees us the existence
statisticsmSRB but also that it does so in a ‘‘constructive way’’giving at the same time forma
expressions for the distributionmSRB which should possibly play the same role as the fami
formal expressions used in equilibrium statistical mechanics in writing expectations of obser
with respect to the microcanonical distributionmL .

For completeness we write a popular expression formSRB. If g is a periodic orbit in phase
space,xg a point ong, T(g) the period ofg then

E F~y!mSRB~dy!5 lim
T→`

Sg:T~g!<T exp~2*0
T~g!s~Stxg!dt!*0

T~g!F~Stxg!dt

Sg:T~g!<T exp~2*0
T~g!s~Stxg!dt!T~g!

. ~3.3!

This is simple in the sense that it does not require an even slight understanding of any
properties of Anosov or hyperbolic dynamical systems to be formulated. But in many respit
is not a natural formula: As one can grasp from the fact that it is far from clear that in
                                                                                                                



Sinai

odic
ysics

Never-
esis: the

o
he

rgy

s
t even
ed as

agine,
yields
really

y paper

aturn

um,
quence

s,

4064 J. Math. Phys., Vol. 41, No. 6, June 2000 Giovanni Gallavotti

                    
equilibrium cases~3.3! is an alternative definition of the microcanonical ensemble~i.e., of the
Liouville distribution mL), in spite of the fact that in this cases[0 and~3.3! becomes slightly
simpler.

To prove~3.3! one first derives alternative and much more useful expressions formSRB which,
however, require a longer discussion to be formulated, see Ref. 9: the original work is due to
and in cases more general than Anosov systems to Ruelle and Bowen.

IV. WHAT CAN ONE EXPECT FROM THE CHAOTIC HYPOTHESIS?

In equilibrium statistical mechanics we know the statistics of the motions, if the erg
hypothesis is taken for granted. However this hardly solves the problems of equilibrium ph
simply because evaluating the averages is a difficult task which is also model dependent.
theless there are a few general consequences that can be drawn from the ergodic hypoth
simplest~and first! is embodied in the ‘‘heat theorem’’ of Boltzmann.

Imagine a system ofN particles in a box of volumeV subject to pair interactions and t
external forces with potential energyWV , due to the walls and providing the confinement of t
particles to the box. Define

T5average kinetic energy,

U5total energy, ~4.1!

p5average of]vWv ,

where the averages are taken with respect to the Liouville distribution on the surface of eneU.
Imaging varying the parameters on which the system depends~e.g., the energyU and the

volumeV) so thatdU, dV are the corresponding variations ofU, V, then

~dU1pdV!/T5exact ~4.2!

expresses the heat theorem of Boltzmann.
It is a consequence of the ergodicity assumption, but it isnot equivalent to it as it only

involves a relation between a few averages (U,p,V,T), see Refs. 9–11. Not only does it give u
a relation which is a very familiar property of macroscopic systems, but it also suggests tha
if the ergodic hypothesis is not strictly valid some of its consequences might, still, be regard
correct.

The proposal is to regard the chaotic hypothesis in the same way: It is possible to im
that, mathematically speaking, the hypothesis is not strictly valid and that, nevertheless, it
results which are physically correct for the few macroscopic observables in which one is
interested in.

The ergodic hypothesis implies the heat theorem as a general~‘‘somewhat trivial’’! mechani-
cal identityvalid for systems ofN particles withN51,2,...,1023,... . ForsmallN it might perhaps
be regarded as a curiosity; such as it must have been considered by most readers of the ke
~Ref. 11! who were possibly misled by several examples withN51 given by Boltzmann in this
and other previous papers. Like the example of the system consisting of one ‘‘averaged’’ S
ring, i.e., one homogeneous ring of mass rotating around Saturn with energyU, kinetic energyT,
and ‘‘volume’’ V ~improbably identified with the strength of the gravitational attraction!!. But for
N51023 it is no longer a curiosity and it is a fundamental law of thermodynamics in equilibri
which, therefore, can be regarded on the same footing of a symmetry being a direct conse
of the structure of the equations of motion~Ref. 8 appendices to Chaps. 1 and 9!. It reflects in
macroscopic terms a simple microscopic assumption~i.e., Newton’s equations for atomic motion
in this case!.
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No new consequences of even remotely comparable importance are known to follow fro
chaotic hypothesis besides the fact that it implies the validity of the ergodic hypothesis
~hence of all its consequences, the first of them is classical equilibrium statistical mechani!.

Nevertheless the chaotic hypothesisdoeshave some rather general consequences. We men
here thefluctuation theorem. Let s(x) be the phase space contraction rate ands1 be its SRB
average@i.e., s15*s(x)mSRB(dx)#, let t.0 and define

p~x!5t21E
2t/2

t/2 s~Stx!

s1
dx ~4.3!

and study the fluctuations of the observablep(x) in the stationary statemSRB. We writept(p)dp
as the probability that, in the distributionmSRB, the quantityp(x) has actually value betweenp
andp1dp as

pt~p!gp5constezt~p!tdp. ~4.4!

Then limt→` zt(p)5z(p) exists and is convex inp; and
Theorem: (fluctuation theorem) Assume the chaotic hypothesis and suppose that the d

ics is reversible, i.e., that there is an isometry I of phase space such that

ISt5S2tI , I 251 ~4.5!

and that the attracting set is the full phase space. It is perhaps important to stress that w
distinguish betweenattracting setandattractor: the first is a closed set such that the motions t
start close enough to it approach it ever closer; an attractor is a subset of an attracting set~1!
has probability 1 with respect to the statisticsm of the motions that are attracted by the attracti
set ~a notion which makes sense when such statistics exists, but for a zero volume set of
data, and is unique! and that~2! has the smallest Hausdorff dimension among such probabili
sets. Hence density of an attracting set in phase space does not mean that the corres
attractor has dimension equal to that of the phase space: it could be substantially lower, s
3. Then

z~2p!5z~p!2s1p for all p, ~4.6!

wheres15mSRB(s).
It should be pointed out that the above-mentioned relation was first discovered in an e

ment, see Ref. 12, where also some theoretical ideas were presented, correctly linking the r
the SRB distributions theory and to time reversal symmetry. Although such hints were no
lowed by what can be considered a proof,13 still the discovery has played a major role and grea
stimulated further research.

The interest of~4.6! is that, in general, it is a relation without free parameters. The ab
theorem, proved in Ref. 3 for discrete evolutions~maps! and in Ref. 14 for continuous time
systems~flows!, is one among the few general consequences of the chaotic hypothesis, se
15–17 for others.

V. NONEQUILIBRIUM ENSEMBLES: THERMODYNAMIC LIMITS, EQUIVALENCE

The chaotic hypothesis gives us, unambiguously, the probability distributionmSRB which has
to be employed to compute averages of observables in stationary states.

For each value of the parameters on which the system depends we have, therefore,
defined probability distributionmSRB. Calling aI 5(a1 ,...,ap) the parameters andmaI the corre-
sponding SRB distribution we consider the collectionE of probability distributionsmaI obtained by
letting the parametersaI vary. We call such a collection an ‘‘ensemble.’’

For instance,aI could be the average energyU of the system, the average kinetic energyT, the
volumeV, the intensityE of the acting nonconservative forces, etc.
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Nonequilibrium thermodynamics can be defined as the set of relations where the variati
the parametersaI and of other average quantities are constrained to obey as some of the
varied. In equilibrium the heat theorem is an example of such relations. In reversible nonequ
the fluctuation theorem~4.6! is an example.

In nonequilibrium systems the equations of motion play a much more prominent role th
equilibrium: In fact one of the main properties of equilibrium statistical mechanics is that dy
ics enters only marginally in the definition of the statistical distributions of the equilibrium st

The necessity of a reversibility assumption in the fluctuation theorem already hints a
usefulness of considering the equations of motion themselves as ‘‘parameters’’ for the ens
describing nonequilibrium stationary states: we are used to irreversible equations in des
nonequilibrium phenomena~like the heat equation, the Navier Stokes equation, etc.! and unless we
are able to connect our experiments with reversible dynamical models we shall be unable to
use of the fluctuation theorem.

Furthermore it is quite clear that once a system is not in equilibrium and thermostating f
act on it, the exact nature of such forces might be irrelevant within large equivalence classe
it might be irrelevant which particular ‘‘cooling device’’ we use to take heat out of the sys
Hence one would like to have a frame into which to set up a more precise analysis of
arbitrariness. Therefore we shall set

Definition 1: A stationary ensembleE for a system of particles or for a fluid is the collectio
of SRB distributions, for given equations of motion, obtained by varying the parameters en
into the equations.

It can happen that for thesame systemone can imaginedifferent models. In this case we
would like that the models give the same results, i.e., the same averages to the same obse
at least in some relevant limit—like in the limit of infinite size in which the numberN, the volume
V, and the energyU tend to infinity butN/V andU/V stay constant. Or in the limit in which the
Reynolds numberR tends to infinity in the case of fluids.

This gives the possibility of giving a precise meaning to the equivalence of different the
stating mechanisms. We shall declare

Definition 2 (equivalence of ensembles): Two thermostating mechanisms are equivale
the thermodynamic limit’’ if one can establish a one to one correspondence between the ele
of the ensemblesE andE8 of SRB distributions associated with the two models in such a way
the same observables, in a certain classL of observables, have the same averages in correspo
ing distributions, at least when some of the parameters of the system are sent to suitable l
values to which we assign the generic name of ‘‘thermodynamic limit.’’

In the following sections we illustrate possible applications of this concept.

VI. DRUDE–LORENTZ’S ELECTRIC CONDUCTION MODELS

Understanding of electric conduction is in a very unsatisfactory state. It is usually bas
linear response theory and very seldom a fundamental approach is attempted. Of course th
for a good reason, because a fundamental approach would require imposing an electric fieE on
the system and, at the same time, a thermostating force to keep the system from blowing
to let it approach a steady state with a currentJE flowing in it, and then taking the ratioJE /E ~with
or without taking also the limit asE→0).18

However, as repeatedly mentioned, it is an open problem to study steady states out o
librium. Hence most theories have recourse to linear response where the problem of st
stationary nonequilibria does not even arise.

The reason why this is unsatisfactory is that as long as we arein principle unable to study
stationary nonequilibria we are alsoin principle unable to estimate the size of the approximati
and errors of linear response.

In spite of many attempts the old theory of Drude, see Ref. 19 seems to be among th
conduction theories which try to establish a conductivity theory based on the study of el
current at nonzero fields.
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We imagine a set of obstacles distributed randomly or periodically and among them co
tion electrons move, roughly with density of one per obstacle.

The ~screened! interactions between the electrons are, at a first approximation, ignored
collisions between electrons and obstacles~‘‘nuclei’’ ! will take place in the average after th
electrons have traveled a distancel5(ra2)21 if r is the nuclei density anda is their radius.

Between collisions the electrons, with electric chargee, accelerate in the direction of a
imposed fieldEI incrementing, in that direction, velocity by

dv5
eEl

mv
5

eE~ra2!21

mAkBT/m
, ~6.1!

wherekB is Boltzmann’s constant. At collision they are ‘‘thermalized’’: an event that is mode
by giving them a new velocity of sizev5AkBT/m and a random direction.

The latter is the ‘‘thermostating mechanism’’ which is a, somewhat rough, description o
energy transfer from electrons to lattice which physically corresponds to electrons losing ene
favor of lattice phonons, whichin turn are kept at constant temperature by some other ther
stating mechanism which prevents the wire melting. All things considered the total curren
flows will be

JE5
e2

ra2AmkBT
E 5

def

xE ~6.2!

obtaining Ohm’s law.
We arrive at the same conclusion by a different thermostat model. We imagine tha

electrons move exchanging energy with lattice phonons but keeping theirtotal energyconstant
and equal toNkBT: i.e., 221S j 51

N mẋI j
253NkBT/2, wherekB is Boltzmann’s constant. There ar

several forces that can achieve this result.
We select the ‘‘Gaussian minimal constraint’’ force. Not because it plays any fundam

role but because it has been studied by many authors and because it represents a mechan
close to that proposed by Drude. We recall, for completeness, that theeffort of a constraint
reaction on a motion on which the active force isfI ~with 3N components! andaI is the acceleration
of the particles~with 3N components! and m is the mass ise(aI )5( fI2maI )2/m; then Gauss’
principle is that the effort is minimal ifaI is given the actual value of the acceleration, at fix
space positions and velocities. This is the force that is required to keepSmẋI j

2 strictly constant and
that is determined by ‘‘Gauss least effort’’ principle, see Ref. 9, Chap. 9, appendix 4, for inst
as is well known this is, on thei th particle, a force

2a ẋI i5
def

2
eEI •( j ẋI j

( j ẋI j
2 ẋI i[2

mEI •NJI

3NkBT
ẋI i . ~6.3!

If there areN particles andN is large it follows thatJI 5N21e( j ẋI j is essentially constant, see Re
20, and each particle evolves, almost independently of the others, according to

mẍI i5eEI 2n ẋI i ~6.4!

between collisions, with a suitably fixed constantn. If we imagine that the velocity of the particle
between collisions changes only by a small quantity compared to the average velocity the
tion term’’ which in the average will be of orderE2 will be negligibleexceptfor the fact that its
‘‘only’’ effect will be of ensuring that thetotal kinetic energy stays constant and the speeds of
particles are constantly renormalized. In other words this is the same as continuously
collisions between electrons and phonons even when there is no collision between electro
obstacles. Hence the resulting current is the same~if N is large! as in ~6.2!.
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VII. ENSEMBLE EQUIVALENCE: THE EXAMPLE OF ELECTRIC CONDUCTION
THEORIES

We have derived three models for the conduction problem.
~1! The classical model of Drude,19 in which atevery collisionthe electron velocity is reset to

the average velocity at the given temperature, with a random direction, cf.~6.1! and ~6.2!.
~2! The Gaussian model in which the total kinetic energy is kept constant by a therm

force

mẍI i5EI 2
mEI •JI

3kBT
ẋI i1 ‘ ‘collisional forces,’ ’ ~7.1!

where 3NkBT is the total kinetic energy~a constant of motion in this model!. The model has been
widely studied and it was introduced by Hoover and Evans~see, for instance, Refs. 21 and 22!.

~3! A ‘‘friction model’’ in which particles independently experience a constant friction

mẍI i5EI 2n ẋI i1 ‘ ‘collosional forces,’ ’ ~7.2!

where n is a constant tuned so that theaverage kinetic energyis eNkBT/2. This model was
considered in the perspective of the conjectures of ensemble equivalence in Refs. 23 and

The first model is a ‘‘stochastic model’’ while the second and third are deterministic: the
is ‘‘irreversible’’ while the second is reversible because the involutionI (xI i ,vI i)5(xI i ,2vI i) anti-
commutes with the time evolution flowSt defined by Eq.~7.1!: ISt5S2tI ~as the ‘‘friction term’’
is odd underI!.

Let md,T be the SRB distribution for~7.1! for the stationary state that is reached starting fr
initial data with energy 3NkBT/2. The collection of the distributionsmd,T , as the kinetic energyT
and the densityd5N/V vary, define a ‘‘statistical ensemble’’E of stationary distributions asso
ciated with Eq.~7.1!.

Likewise we callm̃d,n the class of SRB distributions associated with~7.2! which forms an
‘‘ensemble’’ Ẽ.

We establish a correspondence between distributions of the ensemblesE and Ẽ: we say that
md,T and m̃d8,n are ‘‘corresponding elements’’ if

d5d8, T5E 1

2 S (
j

mẋI j
2D m̃d,n~dxI dẋI !. ~7.3!

Then the following conjecture was proposed in Ref. 16.
Conjecture 1 (equivalence conjecture): Let F be a ‘‘local observable,’’ i.e., an observ

depending solely on the microscopic state of the electrons whose positions are inside a fix
V0 . Then, ifL denotes the local smooth observables

lim
N→`,N/V5d

m̃d,n~F !5 lim
N→`,N/V5d

md,T~F ! FPL ~7.4!

if T and n are related by (7.3).
This conjecture has been discussed in Ref. 22, Sec. 5, and Ref. 14, see Secs. 2 and 5

Ref. 20 arguments in favor of it have been developed. The idea of this kind of ensemble e
lence was present since the beginning as a motivation for the use of thermostats like the´–
Hoover or Gaussian thermostats. It is clearly analyzed in Ref. 35 where previous work
quoted.

Clearly the conjecture is very similar to the equivalence in equilibrium between canonica
microcanonical ensembles: Here the frictionn plays the role of the canonical inverse temperat
and the kinetic energy that of the microcanonical energy.
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It is remarkable that the above-mentioned equivalence suggests equivalence between
versible statistical ensemble,’’ i.e., the collectionE of the SRB distributions associated with~7.1!
and an ‘‘irreversible statistical ensemble,’’ i.e., the collectionẼ of SRB distributions associate
with ~7.2!.

Furthermore it is natural to consider also the collectionE8 of stationary distributions for the
original stochastic model~1! of Drude, whose elementsmn,T8 can be parametrized by the quantiti
T, temperature~such that1

2S j mẋI j
25 3

2NkBT, and N/V5d). This is an ensembleE8 whose ele-
ments can be put into one to one correspondence with the elements of, say, the enseE
associated with model~2!, i.e., with ~7.1!: an elementmn,T8 PE8 corresponds tomd,nPE if T
verifies ~7.3!. Then

Conjecture 2: Ifmd,TPE and md,n8 PE8 are corresponding elements [i.e. (7.3) holds] then

lim
N→`,N/V5d

md,T~F !5 lim
N→`,N/V5d

md,T8 ~F ! FPL ~7.5!

for all local observables FPL.
Hence we see that there can be statistical equivalence between a viscous irreversible

tion model and either a stochastic dissipation model or a reversible dissipation model, at le
far as the averages of special observables are concerned.

The argument in Ref. 20 in favor of conjecture 1 is that the coefficienta in ~6.3! is essentially
the averageJ of the current over thewhole box containing the system of particles,J
5N21eS j ẋI i : henceJ should be constant with probability 1, at least if the stationary S
distributions can be reasonably supposed to have some property of ergodicity with respect tospace
translations.

VIII. ENTROPY DRIVEN INTERMITTENCY IN REVERSIBLE DISSIPATION

A further argument for the equivalence conjectures in the above-mentioned electric co
tion models can be related to the fluctuation theorem: The quantitya(x) is also proportional to the
phase space contraction rates(x)5(3N21)a(x). Therefore, denoting in general with
subscript1 the SRB average~or the time average! of an observable, the probability thats(x)
deviates from its averages15(3N21)a1 can be studied as follows.

If the numberN of particles is large the time scalet0 over whichs(Stx) evolves will be large
compared to the microscopic evolution rates, becauses t(x) is the sum of the ;6N rates of
expansion and contraction of the;6N phase space directions out ofx ~sometimes called the
‘‘local Lyapunov exponents’’!. The exact number of exponents depends on how many constan
motion the system has: For instance in the case of the conduction model~1! in Sec. VI above the
number of exponents is 6N21 because the kinetic energy is conserved and the system ha
other ~obvious! first integrals. Furthermore one of such exponents is 0 since every dyna
system in continuous time has one zero exponent~corresponding to the directionẋ of the flow!.

Consider a large numberm of time intervalsI 1 ,I 2 ,...,I m of sizet0 and lets j be the~average!
value ofs(Stx) for tPI j . Then the fraction of thej’s such thats j2s1.s1p will be propor-
tional to

pt0
~p!.et0z~p! ~8.1!

and z(p),z(1) if pÞ1. Since we can expect thatz(p) is proportional toN we see that the
fraction of time intervalsI j in which s jÞs1 will be exponentially small withN.

For instance the fraction of time intervals in whichs j.2s1 will be, by the fluctuation
theorem,

e2~3N21!a1t0. ~8.2!
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In order that the above argument holds it is essential thatN is large to the point where we can thin
that the time scalet0 over whichs(Stx) varies is much larger than the microscopic scales—
that we can regardt0 as large enough for the fluctuation theorem to apply. In this respect th
not really different from the previously quoted argument in Ref. 20. However the chang
perspective gives further information.

In fact we get the following picture:N is large and for most of the time the~stationary!
evolution uneventfully proceeds as ifs(Stx)[s1 ~thus justifying conjecture 1!. Very rarely,
however, does it proceed as ifs(Stx)Þs1 , for instance, withs(Stx)52s1 : such ‘‘bursts of
anomalous behavior’’ occur very rarely. But when they occur ‘‘everything else goes the w
way’’ because, as discussed in detail in Ref. 24, while the phase space contraction is opp
what it ‘‘should be’’ ~on average! then it also happens thatall observables evolve following path
that are the time reversal of the expected paths. This is the content, see Ref. 24, of the followin
theorem, which is quite close~particularly if one examines its derivation! to the Machlup–Onsage
theory of fluctuation patterns~note that, however, it does not require closeness to equilibrium!.

Theorem: (Conditional reversibility theorem) If F is an observable with even (or odd),
simplicity, time reversal parity and ift is large, then the evolution or ‘‘fluctuation pattern’’w(t)
and its time reversal Iw(t)[w(2t),tP@2t0/2,t0/2# will be followed with equal likelihood if the
first is conditioned to an entropy creation rate p and the second to the opposite2p.

In other words, systems with reversible dynamics can be equivalent to systems with irr
ible dynamics but they show ‘‘intermittent behavior’’ with intermittency lapses that become
tremely rare very quickly asN→`. Sometimes they can be really dramatic, as in the case
which s52s1 : alas they are unobservable just for this reason and one can wonder~see Sec. IX!
whether this is really of any interest.

IX. LOCAL FLUCTUATIONS AND OBSERVABLE INTERMITTENCY

As a final comment upon the analysis of the equivalence of ensembles attempted ear
consider a very large system with volumeV and a small subsystem of volumeV0 , which is large
but not yet really macroscopic, so that the number of particles inV0 is not too large, a nobler way
to express the same notion is to say that we consider a ‘‘mesocopic’’ subsystem of our m
scopic system.

Here it is quite important to specify the system because we want to make use of aspects
equivalence conjectures that are model dependent. Therefore we consider the conduction
~2! or ~3! of Sec. V: These are models in which dissipation occurs ‘‘homogeneously’’ throug
the system. In this case we can imagine looking at the part of the system in the boxV0 . If
j 1 ,...,j N0

are the particles which at a certain instant are insideV0 andxİ j5 fI j (xI ) are the equations
of motion we can define

sV0
~x!5(

i 51

N0

]xj k
f j k

~x!, ~9.1!

which is ~by definition! the part of phase space contraction due to the particles inV0 .
Since the part of the system inside the microscopically large but macroscopically smallV0 can

be regarded as a new dynamical system whose properties should not be different from the
the full system enclosed in the full volumeV, we may expect that the subsystem insideV0 is in
a stationary state and the quantitysV0

has the same fluctuation properties assV , i.e.,

~1! ^sV0
&15V0s̄1 , ^sV&15Vs̄1 ,

~9.2!

~2! pt
V0~p!5ez̄~p!tV0, pt

V~p!5ez̄~p!tV,
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where z̄,s̄1 are the samefor V, V0 , and p5t21*2t/2
t/2 sV0

(Stx)/^sV0
&dt or, respectively,p

5t21*2t/2
t/2 sV(Stx)/^sV&dt. HeresV0

is naively defined as the contribution tos coming from the
particles inV0 .

In other words, in large stationary systems with homogeneous reversible dissipation,
space contractions fluctuate in an extensive way, i.e., they are regulated by the same de

function z̄(p) ~volume independent!.
This is very similar to the well-known property of equilibrium density fluctuations in a ga

densityr: If V.V0 are a very large volumeV in a yet larger container andV0 is a small but
microscopically large~i.e., mesoscopic! volumeV0 , then the total numbers of particles inV and
V0 will be N andN0 and the average numbers will berV andrV0 , respectively. Then setting

p5~N2rV!/rV, or p5~N02rN0!/rV0 , ~9.3!

the probability that the variablep has a given value will be proportional to

pV~p!5ez̄~p!V, pV0~p!5ez̄~p!V0 ~9.4!

again with the same functionz̄(p).
This means that wecan observez̄(p) by performing fluctuations experiments in small boxe,

ideally carved out of the large container, where the density fluctuations are not too rare. A ‘
fluctuation law’’ should hold more generally in cases of models in which dissipation oc
homogeneously across the system, like the above considered conduction models.

The intuitive picture for the above ‘‘local fluctuation relation’’ inspired~and was substanti
ated! a mathematical model in which a local fluctuation relation can be proved as a theorem:
been discussed in Ref. 24, see also the following.

Going back to the conduction model we see that the above-discussed intermittency ph
ena can be actually observed by looking at the fluctuations of the contribution to phase
contraction due to a small subsystem.

And such ‘‘entropy driven’’ intermittency will be model independent for models which
equivalent in the sense of the previous sections provided the models used are equivalent a
of them is reversible.

An extreme case is provided by models~1!–~3!, Sec. VII, for electric conduction~conjectured
to be equivalent, see Sec. VII!. In fact at first the model~3!, the viscous thermostat, might loo
uninteresting as, obviously, in this case

sV~x!53Nn, sV0~x!53N0n ~9.5!

andsV/V has no fluctuations.
However the equivalence conjecture makes a statement about expectation values of thsame

observable: hence we should consider the quantityŝV0(x)5EI •JI V0
/( j xİ j

2 and we should expec
that its statistics with respect to an element of the ensembleE8is the same as that of the sam
quantity with respect to the corresponding elements of the ensemblesE,Ẽ. Hence in particular the
functionsz̄(p) which control the large fluctuations ofsV(p) will verify

z̄~2p!5 z̄~p!2p^ŝV0&1 /V05 z̄~p!23rnp5 z̄~p!2
eEmJ1

kBT
p, ~9.6!

where the first equality expresses the validity of a fluctuation theorem type of relation due
fact that the small system, by the equivalence conjecture, should behave as a closed sys
second equality expresses a consequence of the equivalence conjecture between models~2! and
~3! while the third is obtained by expressing the current via Drude’s theory~again assuming the
conjectures of equivalence 1,2 of Sec. VII!.
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X. FLUIDS

The chaotic hypothesis was originally formulated to understand developed turbulence1 it is
therefore interesting to revisit fluid motions theory.

The incompressible Navier–Stokes equation for a velocity fielduI in a periodic containerV of
side L can be considered as an equation for the evolution in time of its Fourier coefficienuI kI

where the ‘‘mode’’kI has the form 2pL21nI with nI Þ0I andnI an integer components vector. Th
value nI 50I is excluded because, having periodic boundary conditions, it is not restrictiv
suppose that the space average ofuI vanishes~galilean invariance!. The convention for the Fourie
transform that we use isuI (xI )5(kI eikI •xIuI kI . FurthermoreuI kI5uĪ 2kI andkI •uI kI[0. If p is the pressure
field and fI a simple forcing we shall fix the ideas by consideringfI (xI )5 f eI sinkI f•xI wherekI f is
some prefixed mode andeI is a unit vector orthogonal tokI f .

The Navier–Stokes equation is then

uİ 1u> •]uI 52]I p1 fI1nDuI ~10.1!

and it is convenient to usedimensionless variables uI 0 ,p0 ,wI 0 ,jI ,t: so we define them as

uI ~xI ,t !5 f L2n21uI 0~L21xI ,L22nt !, jI 5L21xI , t5L22nt,

p~xI ,t !5 f Lp0~L21xI ,L22nt !, R 5
def

f L3n22, ~10.2!

fI ~xI ,t !5 f wI 0~L21xI !

with maxuwI 0u51. Theresult,dropping the label0 and again callingxI ,t the new variableswI ,t, is
that the Navier–Stokes equations become an equation for a divergenceless fielduI defined onV
5@0,1#3, with periodic boundary conditions and equations

uİ 1Ru> •]>uI 52]I p1wI 1DuI , ]I •uI 50 ~10.3!

with maxuwI u51.
Equation~10.3! is our model of fluid motion, whereR plays the role of ‘‘forcing intensity’’

and the termDuI represents the ‘‘thermostating force.’’ AsR varies the stationary distribution
mR , which describe the SRB statistics of the motions~10.3!, define a setE of probability distri-
butions which forms an ‘‘ensemble.’’

The mathematical theory of the Navier–Stokes equations is far from being understood:
ever, phenomenology establishes quite clearly a few key points. The main property is that if~10.3!
is written as an equation for the Fourier components ofuI , then one can assume thatuI kI[0I for
ukI u.K(R), for some finiteK(R).

Therefore Eq.~10.3! should be thought of as a ‘‘truncated equation’’ in momentum space
identifying it with the equation obtained by also projectingu> •]>uI on the same function space.

Should one develop anxiety about the mathematical aspects of the Navier–Stokes eq
one should therefore think that an equally good model for a fluid is the mentioned trunc
provided K(R) is chose-large enough.

The idea is that forK(R)5Rk, with k larger than a suitablek0 , the results of the theory, i.e.
the statistical properties ofmR , becomek independent forR large.

The simplest evaluation ofk0 givesk059/4 as a consequence of the so-called K41 theory
homogeneous turbulence, see Ref. 25.

If ~10.3! is a good model for a fluid whenL is large then it provides us with an ‘‘ensemble
E of SRB distributions~on the space of the velocity fields componentsuI kI of dimension
;8pK(R)3/3). There are about 4pK(R)3/3 vectors with integer components inside a sphere
radiusK(R), thus the number of complex Fourier components with mode labelukI u,K(R) would
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be three times as much, but the divergenceless condition leaves only two complex compone
uI kI along the two unit vectors orthogonal tok and the reality condition further divides by two th
number of ‘‘free’’ components.

We should expect, following the discussion of the statistical mechanics cases, that the
be other ‘‘ensembles’’Ẽ which are equivalent toE.

HereRplays the role of the volume in nonequilibrium statistical mechanics, so thatR→` will
play the role of the thermodynamic limit, a limit in which the effective number of degree
freedom,;4pR3k/3, becomes infinite. The role of the local observables will be played by
~smooth! functionsF(uI ) of the velocity fieldsuI which depend onuI only via its Fourier compo-
nents that have modekI with kI u,B for someB:F(uI )5F($uI kI% ukI u<B).

We shall callL the space of such observables: examples can be obtained by settingF(uI )
5u*eikI •xIuI (xI )dxI u2 or F(uI )5*cI (xI )•uI (xI )dxI where the function has only a finite number of ha
monics,cI (xI )5*( ukI u,BeikI •xIuI (xI )dxI , etc.

As in nonequilibrium statistical mechanics we can expect that the equations of motion
selves become part of the definition of the ensembles. For instance one can imagine defin
ensembleẼ of the SRB distributionsm̃V for the equations

uİ 1Ru> •]>uI 52]I p1cI 1n~uI !DuI ~10.4!

called GNS equations in Ref. 26, or ‘‘Gaussian Navier–Stokes’’ equations, wheren(uI ) is so
defined that

J5E
V
~]>uI !2dxI /~2p!35(

kI
kI 2uuI kI u2 ~10.5!

is exactly constant and equal toJ. Equation~10.4! is interpreted as above with the same mome
tum cut off K(R)5Rk.

An elementm̃J of Ẽ and onemR of E, SRB distributions for the two different dynamics~10.3!
and ~10.4!, ‘‘correspond to each other’’ if

J5E mR~duI !S E
V
~]>uI !2dxI /~2p!3D 5

def

JR , ~10.6!

wheremRPE is the SRB distribution at Reynolds numberR for the previous viscous Navier–
Stokes equation,~10.3!, and we naturally conjecture

Conjecture 3 (equivalence GNS-NS): If R→` then for all local observables FPL it is
mR(F)5m̃JR

(F) if ~10.6! holds.
This conjecture is similar to the corresponding one for particle systems: even for fluids

not really new as it is quite closely related to the work of She and Jackson.36

It is easy to check that the GNS model ‘‘viscosity’’n(uI ), having to be such that the quantit
J in ~10.5! is exactly constant, must be

n~uI !5
*V~wI •DuI 2RDuI •~u> •]uI !!dxI

*V~DuI !2dxI
~10.7!

and we see that while~10.3! is anirreversibleequation the~10.4! is reversible, with time reversal
symmetry given by

IuI ~xI ,t !52uI ~xI ,t ! ~10.8!

as one can check.
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More generally one may wish to leave the ‘‘Kolmogorov parameter’’k as a free parameter: In
this case the SRB distributions will form an ensemble whose elements can be parametrizeR,
k and the equivalence conjecture can be extended to this case yielding equivalence betwemR,k

and m̃J,k . This is of interest, particularly if one has numerical experiments in mind.
If k.k0 then the value ofk should be irrelevant: but if k,k0 the phenomenology will be

different from the one of the Navier–Stokes equation and equivalence might still hold, bu
cannot expect either equation to have the properties that we expect for the usual Navier–
equations~i.e., in this situation one would have to be careful in making statements base
common experience!.

If we takek to be exactly equal to the valuek059/4 ~i.e., if we take the ultraviolet cutoff to
be such that, according to the K41 theory, for larger values it isneedlessly largeand for lower
values it isincorrectly lowand shows a phenomenology which will depend on its actual va!
then we may speculate that the ‘‘attracting set’’ is the full phase space~available compatibly with
the constraintJ5JR). Therefore the divergence of the equations of motion, which is given
rather involved expression in which only the first term seems to dominate at largeR, namely

s~uI !5S (
ukI u,K~R!

kI 2D n~uI !2S E
V
DwI •DuI dxI D S E

V
@~DuI !22RDuI •~D~u> •]>uI !!2R~Du> !•~DuI !

•~]>uI !2RDuI •~D]>uI !u>1n~uI !DuI •D2uI #dxI D Y E
V
~DuI !2dxI ~10.9!

will verify the fluctuation theorem, i.e., the rate functionz(p) for the average phase space co
tractionp5t21*2t/2

t/2 s(StuI )dt/ts1 will be such thatz(2p)5z(p)2ps1 .
If the chaotic hypothesis is valid together with the equivalence conjecturethe validity of the

fluctuation relation can be taken as a criterion for determiningk: it would be the lastk before
which the fluctuation relation betweenz(p) andz(2p) holds.However this conclusion can onl
be drawn if the attracting set in phase space is the full ellipsoidJ5JR at least forK(R)
5Rk0.

The latter property might not be realized: and in such case the fluctuation theorem do
apply directly, although the equivalence conjectures still hold. In fact one can try to exten
fluctuation theorem to cover reversible cases in which the attracting set is smaller than th
phase space left available by the constraints. In such casesunder suitable geometric assumption,
Ref. 28 and the earlier work Ref. 27, one can derive a relation like

z~2p!5z~p!2ps1q, 0<q<1, ~10.10!

whereq is a coefficient that can be related to the Lyapunov spectrum of the system cf. Re
and 26. In fact numerical work to check the theory proposed in Ref. 25 is currently being
formed ~private communication by Rondoni and Segre! with not too promising results which
optimistically, can be attributed to the fact that the ultraviolet cutoff is too small due to nume
limitations. Clearly there is more work to do here. The preliminary numerical results give, s
the somewhat surprising linearityin p but with a slope that, although of the correct order
magnitude, seems to have a value that does not match the theory within the error bounds

Coming back to the Navier–Stokes equation we mention that we may imagine to write
~10.3! but with the different constraint

U5E
V
uI 2dxI 5const ~10.11!

rather than~10.5!
This case has been considered in Ref. 29 and the multipliern(uI ) is in this case
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n~u!5
*Vw•uI dxI

*VuI 2 dxI
, s~uI !5S 3 (

uku,K~R!
uku221D n~uI ! ~10.12!

and we can~almost! repeat the above-mentioned considerations and equivalence conjecture
constraint is a Gaussian constraint thatU is constant obtained by imposing its constancy on
Euler evolution via Gauss’ principle with a suitable definition of the notion of ‘‘constraint effo
~this notion is not unique, see Ref. 26 for another definition! and we do not discuss it here to avo
overlapping with Sec. XII.

The intuitive motivation for the equivalence conjectures is that for largeR the phase space
contractions(uI ) and the coefficientn(uI ), which in the case~10.9! are simply proportional and in
the case of~10.4! they are related in a more involved way, see~10.8! and~10.9!, but which are still
probably proportional to leading order asR→`. are ‘‘global quantities’’ and depend on the glob
properties of the system@e.g.,s(uI ) is the sum of all the local Lyapunov exponents of the syst
whose number isO(K(R)3)#: They will ‘‘therefore’’ vary over time more slowly than any tim
scale of the system and can be considered constant.

The argument is not very convincing in the case of the equations with the constraint~10.11!
because thes(uI ) in ~10.12! is proportional to*V wI •uI dxI , which clearly dependsonly on har-

monics ofuI with kI small, i.e., it is a ‘‘local observable.’’ Note that this does not apply to the G
equations with the constrained vorticityJ, ~10.6!, where the ‘‘main’’ contribution tos(uI ), see
~10.7!, comes from the term proportional toR which contains all harmonics. Therefore the res
in Ref. 29 about the equivalence between the GNS equations,~10.4! with the constraint~10.5!, and
the equations with constraint~10.11! is interesting and puzzling: It might be an artifact of th
smallness of the cutoff that one has to impose in order to have numerically feasible simula

Finally s1(uI )/s1 , i.e., essentiallyn(uI )/n1 will fluctuate taking values sensibly differen
from their average value 1, at very rare intervals of time: But when such fluctuations will o
one shall see ‘‘bursts’’ of anomalous behavior, i.e., the motion will be ‘‘intermittent’’ as in
case discussed in non equilibrium statistical mechanics.

XI. ENTROPY CREATION RATE AND ENTROPY DRIVEN INTERMITTENCY

Of course ifR is large the number of degrees of freedom is large and intermittency on
scale of the fluid container will not be observable due to its extreme unlikelihood~expected and
quantitatively predicted by the fluctuation theorem!.

Therefore we look also here, in fluid motions, for alocal fluctuation relation. Fluids seem
particularly suitable for verifying such local fluctuations relations because dissipation occuho-
mogeneously, i.e., friction strength is translation invariant.

This implies that we can regard a very small volumeV0 of the fluid as a system in itself~as
always done in the derivation of the basic fluid equations, e.g., see Ref. 30! and we can expect tha
the phase space contraction due to such volume elements is simplys(uI ), given by ~10.9! or
~10.12! ~‘‘equivalently’’ because of our equivalence conjectures! with the integrals in the numera
tor and denominator being extended to the volumeV0 rather than to the whole box, and expressi
~essentially by definition! the ‘‘local phase space contraction’’sV0

(uI ).

Thenp5t21*2t/2
t/2 sV0

(StuI )/^sV0
&1 will have a rate functionz(p) which will verify, under

the same assumptions as in~10.10!, a large deviation relation as

z~2p!5z~p!2p^sV0
&1q ~11.1!

for someq: As mentioned the theoretical value of this slopeq seems currently inaccessible
theory @as the theory proposed in Ref. 26 may need substantial modifications, cf. the com
following ~10.10!#. The ^sV0

& and z(p) will be proportional to V0 : z(p)5V0z̄(p) with a

V0-independentz̄(p). Note thatz(p) depends also onR.
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The small volume element of the fluid will therefore be subject to rather frequent variat
In spite ofz(p) being proportional to V0 , because now V0 is not large. The consequent intermi
tency phenomena can therefore be observed. And as in Sec. IX once the phase space con
is intermittent all properties of the system show the same behavior.

And in fact intermittency in observations averaged over a time spant will appear with a time

frequency of the formeV0( z̄(p)2 z̄(1))t: The quantityp can be interpreted as a measure of t
‘‘strength of intermittency’’ observable in measurements averaged over a timet because as note
in Sec. IX and in Ref. 17 the size ofp controls the statistical properties of ‘‘most’’ other obser
ables.Therefore the functionz̄(p) @hencez(p)# might be directly measurable and it should b
rather directly related to the quantities that one actually observes in intermittency experim.
And the differencez(p)2z(2p) can be tested for linearity inp as predicted by the analysi
above.

Note that in an extended system the volumeV is much larger thanV0 and we shall see ‘‘for
sure’’ intermittency~for observables averaged over a timet! of strengthp in a region of volume
V0 somewherewithin a volumeW such that

W

V0
eV0~ z̄~p!2 z̄~1!!t.1. ~11.2!

At this point it seems relevant to recall that it is rather heatedly being debated wheth
name of ‘‘entropy creation rate’’ that some authors~including the present one! give to the phase
space contraction rate is justified or not, see Ref. 31. The above-mentioned properties n
propose the physical meaning of the quantityp and bring up the possibility of measuring its ra
functionz(p) in actual experiments but also provide a further justification of the name givens
as ‘‘entropy creation rate’’ and fuel for the debate thatinevitably the word entropy generates a
each and every occurrence.

XII. BENARD CONVECTION, INTERMITTENCY, AND THE CILIBERTO–LAROCHE
EXPERIMENT

A very interesting attempt at checking some of the above-mentioned ideas has been
recently by Cilberto and Laroche in an experiment on real fluids which has been performed
the aim of testing the relation~11.1! locally in a small volume element.32 By ‘‘real’’ we mean here
non-numerical: A distinction that, however, has faded away together with the twentieth cen
but that some still cherish: the system is physically macroscopic~water in a container of a size o
the order of a liter!.

This being a real experiment one has to stretch quite a bit the very primitive theory deve
so far in order to interpret it and one has to add to the chaotic hypothesis other assumptio
have been discussed in Refs. 28 and 26 in order to obtain the fluctuation relation~10.12! and its
local couterpart~11.1!.

The experiment attempts at measuring a quantity that is eventually interpreted as the
encez(p)2z(2p), by observing the fluctuations of the productquz, whereq is thedeviationof
the temperature from the average temperature in asmall volume elementD of water at a fixed
position in a Couette flow anduz is the velocity in thez direction of the water in the same volum
element.

The result of the experiment is in a way quite unexpected: It is found that the functionz(p)
is rather irregular and lacking symmetry aroundp51: Nevertheless the functionz(p)2z(2p)
seems to be strikingly linear. As discussed in Ref. 26, predicting the slope of the entropy crea
rate would be difficult but if the equivalence conjecture considered above and discussed m
detail in Ref. 26 is correct, then we should expect linearity ofz(p)2z(2p).

In the experiment of Ref. 31 the quantityquz did not appear to be the divergence of the pha
space volume simply because there was no model proposed for a theory of the expe
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Nevertheless Ciliberto–Laroche select the quantity*Dquz dxI on the basis of considerations o
entropy and dissipation so that there is hope that in a model of the flow this quantity can be r
to the entropy creation rate discussed in Secs. X and XI.

Here we propose that a model for the fluid, that can be reasonably used, is Rayleigh’s
of convection, Refs. 33, 25, and 30 in Sec. V. An attempt for a theory of the experiment cou
the following.

One supposes that the equations of motion of the system in thewhole container~of linear size
of the order of 30 cm! are written for the quantitiest,x,z,q,uI in terms of the heightH of the
container~assumed to be a horizontal infinite layer!, of the temperature difference between top a
bottomdT and in terms of the phenomenological ‘‘friction constants’’n, x of viscosity, dynamical
thermal conductivity, and of the thermodynamic dilatation coefficienta. We suppose that the fluid
is three-dimensional but stratified, so that velocity and temperature fields do not depend
coordinatey, and gravity is directed along thez axis: gI 5geI ,eI 5(0,0,21). The temperature
deviationq is defined as the difference between the temperatureT(x,y,z) and the temperature tha
the fluid would have at heightz in absence of convection, i.e.,T02zdT/H if T0 is the bottom
temperature.

In such conditions the equations, including the boundary conditions~of fixed temperature a
top and bottom and zero normal velocity at top and bottom!, the convection equations in th
Rayleigh model, see Ref. 33 Eqs.~17! and~18! where they are called theSaltzman equations, and
Ref. 30, Sec. 1.5, become

]I •uI 50, E ux dxI 5E uy dxI 50,

u̇I 1ũ• ]̃uI 5nDuI 2aqgI 2]I p8, ~12.1!

q̇1ũ• ]̃q5xDq1
dT

H
uz , q~0!505q~H !, uz~0!505uz~H !.

The functionp8 is related to the pressurep: within the approximations it isp5p02r0gz1p8. We
shall impose for simplicity horizontal periodic boundary conditions inx,y so that the fluid can be
considered in a finite containerV of sidea for somea.0 prefixed~which in the original variable
would correspond to a container of horizontal sizeaH!.

It is useful to define the following adimensional quantities:

t5tnH22, j5xH21, h5yH21, z5zH21,

q05
aq

adT
, uI 05~AgHadT!21uI , ~12.2!

R25
gH3adT

n2 , RPr5
n

k

and one checks that the Rayleigh equations take the form

u̇I 1Rũ• ]̃uI 5DuI 2RqeI 2]I p,

q̇1Rũ• ]̃q5RPr
21Dq1Ruz ,

]I •uI 50, ~12.3!

uz~0!5uz~1!50, q~0!5q~1!50,

E
V
ux dxI 5E

V
uy dxI 50,
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where we again callt,x,y,z,uI ,q the adimensional coordinatest,j,h,z,uI 0,q0 in ~12.2!. The
numbersR,RPr are, respectively, called theReynoldsand Prandtl numbersof the problem:RPr

5;6.7 for water whileR is a parameter that we can adjust, to some extent, from 0 up to a r
large value.

According to the principle of equivalence stated in Ref. 26 here one could impose the
straints

E
V
S uI 21

1

RPr
q2DdxI 5C ~12.4!

on the ‘‘frictionless equations’’~i.e., the ones without the terms with the Laplacians! and deter-
mine the necessary forces via Gauss’ principle of minimal effort, see Refs. 15 and 26. We
effort functionalof an acceleration fieldaI and of a temperature variation fields the quantity

E~aI ,s!5
def

~~aI 1]I p2 fI !,~2D!21~aI 1]I p2 fI !!1~~s2w!,~2D!21~s2w!! ~12.5!

with

f 5
def

2RqeI , w 5
def

Ruz

and require it to be minimal over the variationsdI (xI ) of aI 5duI /dt andt(xI ) of s5dq/dt with the
constraints that for allxI it is ]I •dI 50, besides those due to the boundary conditions. The resu

]I •uI 50,

u̇I 1Rũ• ]̃uI 5RqeI 2]I p81tI th ,
~12.6!

q̇1Rũ• ]̃q5Ruz1l th ,

q~0!505q~H !, E
V
ux dxI 5E

V
uy dxI 50,

where the frictionless equations are modified by thethermostats forcestI thl th : The latter impose
the nonholonomic constraint in~12.4! with the effort functional defined by~12.5!. Looking only at
the bulk terms we see that the equations obtained by imposing the constraints via Gauss’ p
become the~12.3! with coefficients in front of the Laplace operators equal tonG ,nGRPr

21, respec-
tively, with the ‘‘Gaussian multiplier’’nG being anodd functions of uI , see Ref. 26: setting
C̃V(uI ,q)5*V(( ]̃uI )21RPr

21(]I q)2)dxI one finds

nG5G̃V~uI ,q!21R~11RPr
21!E

V
uzq dxI . ~12.7!

And the equations become, finally,

]I •uI 50,

u̇I 1Rũ• ]̃uI 5RqeI 2]I p81nGDuI ,
~12.8!

q̇1RuI • ]̃q5Ruz1nG

1

RPr
Dq,

q~0!505q~H !, E ux dxI 5E uy dxI 50.
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If one wants the equivalence between the ensembles of SRB distributions for Eqs.~12.8! and for
~12.3! one has to tune, Ref. 26, the value of the constantC in ~12.4! so that the time average valu
^nG&1 of nG is precisely the physical one: namely^nG&51 by ~12.3!. This is ~again! the same,
in spirit, as fixing the temperature in the canonical ensemble so that it agrees with the mi
nonical temperature, thus implying that the two ensembles give the same averages to th
observables.

Equation~12.8! is time reversible@unlike ~12.3!# under the time reversal map:

~uI ,q!5~2uI ,q! ~12.9!

and they should be supposed, by the arguments in Ref. 26 and Secs. X and XI, ‘‘equivalent’’
irreversible ones~12.3!,

Equation~12.8! should therefore have a ‘‘divergence’’s(uI ,q) whose fluctuation function
z(p) verifies a linear fluctuation relation, i.e.,z(p)2z(2p) should be linear inp. Note that the
divergence of the above equations is proportional tovG if one supposes that the high momen
modes withukI u.K(R)5Rk with k suitable can be set equal to 0 so that Eq.~12.8! becomes a
system of finite differential equations for the Fourier components ofuI ,q.

For instance the Lorenz equations, Ref. 33 see also Sec. 17 of Ref. 30, reduced the nu
Fourier components necessary to describe~12.3! to just three components, thus turning it into
system of three differential equations.

Proceeding in this way the divergence of the equations of motion can be computed as
of two integrals, one of which proportional tonG in ~12.7!. If instead of integrating over the whol
sample we integrate over a small regionD, like in the experiment of Ref. 31, we can expect to s
a fluctuation relation for the entropy creation rate if the fluctuation theoremholds locally, i.e., for
the entropy creation in a small region.

As for the cases in Sec. XI this is certainly not implied by the proof in Ref. 3: howeverwhen
the dissipation is homogeneous through the system, as is the case in the Rayleigh model there
hope that the fluctuation relation holds locally because ‘‘a small subsystem should be equiva
a large one.’’ As noted in Sec. IX the actual possibility of a local fluctuation theorem in sys
with homogeneous dissipation has been shown in Ref. 24, after having been found throu
merical simulations in Ref. 34, and this example was relevant because it gave us some justi
to imagine that it might apply to the present situation as well.

The entropy creation is due to the termR*Duzq dxI /C̃D(uI ,q), whereD is the region where
the measurements of Ref. 32 are performed, hence we have a proposal for the explanatio
remarkable experimental result. Unfortunately in the experiment of Ref. 32 the contribution
explicitly proportional toR to the entropy creation rates have not been measured nor has be
Ĉ in ~12.7! which also fluctuates~or might fluctuate!. In any event they might be measurable
improving the same apparatus, so that one can check whether the above attempt to an exp
of the experiment is correct, or try to find out more about the theory in case it is not rig
correct the above-mentioned ‘‘theory’’ of the experiment in Ref. 32 would be quite importan
the status of the chaotic hypothesis.

XIII. CONCLUSIONS

The chaotic hypothesis promises a point of view on nonequilibrium that has proved so
be of some interest. Here we have exposed the basic ideas and attempted to draw some
quences: admittedly, the most interesting rely on rather phenomenological and heuristic gr
They are summarized below.

~1! The definition of nonequilibrium ensembles with the proposal that out of equilibrium
equation of motion should also be considered as part of the definition of ensemble. It is tak
account that while in equilibrium the system is uniquely defined by its microscopic forces
constituentsin nonequilibrium it is not so. Systems must be put in contact with thermostats if
want them to become stationary after a transient time. And~for large systems! there may be
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several equivalent ways of taking heat out of a system, i.e., several thermostats, without af
the properties of stationary state that is eventually reached by the system itself.

~2! Equivalence of ensembles has the most striking aspect that systems which evolv
equations that are very different may exhibit the same statistical properties. In particular, r
ible evolutions might be equivalent to nonreversible ones, thus making it possible to apply r
that require reversibility, in particular the fluctuation relations, to cases in which it is not va

~3! An interpretation of the quantityp that intervenes in the fluctuation theorems in terms
an intermittency phenomenon and as a further quantitative measure of it.

~4! The possibility of applying the theory to strongly turbulent motions was the origin
Ruelle’s principle that evolved into the chaotic hypothesis: therefore, not surprisingly, the
can be applied to fluid dynamics. We have discussed a possible approach. The approac
again to a proposal for the theory of certain intermittency phenomena which appear quantit
related to entropy creation fluctuations.

~5! The possibility of measurement of the ratez(p) leads to a possible prediction of the spat
frequency of intermittent events of strengthp or, as I prefer, with entropy creation ratep ~see~4!,
~11.2! and Sec. XII!. This seems testable in concrete experiments~both real and numerical!.

~6! We have used the results in~2!–~8! to hint at an interpretation of the experiment b
Ciliberto and Laroche on Benard convection in water.

Although the theory is still at its beginning and it might turn out to be not really of inter
it seems that at this moment it is worth trying to test it both in its safest, cf. Secs. II–VIII, an
its most daring, cf. Secs. IX–XII, predictions.
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Past and future of inverse problems
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Inverse problems are those where a set of measured results is analyzed in order to
get as much information as possible on a ‘‘model’’ which is proposed to represent
a system in the real world. Exact inverse problems are related to most parts of
mathematics. Applied inverse problems are the keys to other sciences. Hence the
field, which is very wealthy, yields the best example of interdisciplinary research
but it has nevertheless a strong individuality. The obtained results and explored
directions of the 20th century are sketched in this review, with attempts to predict
their evolution. © 2000 American Institute of Physics.@S0022-2488~00!00106-7#

I. INTRODUCTION

We try to describe natural phenomena as mathematical systems of quantities which are
to each other by ‘‘laws of natural sciences.’’ These quantities are functions of the space va
x or others, and are calledparameters.

The system is a ‘‘mathematical model’’ if giving the parameters enables us to predic
result of any possible measurement, i.e., if there exists a mappingM from the setC of all possible
parameters into the setE of all possible measurement results~of a given kind!. Giving M explic-
itly is called ‘‘the direct problem.’’ Going back fromE to C is called ‘‘the inverse problem.’’ If
several models are possible, we assume throughout that they are embedded into one only
they can be distinguished from each other by ‘‘structural parameters.’’ With this working
assumption, the tripletE,M,C yields a very general scheme for inverse problems. We also ma
distinction throughout the paper between ‘‘exact inverse problems,’’ where only exact inpu
~elements ofE! and exact solutions are managed, and ‘‘applied inverse problems,’’ where uncer
tainties on inputs, calleddata, are taken into account, and generalized solutions are sought.

Inverse problems appeared with the beginning of physical sciences, but the first clear
fined example was given by Abel1 for a mechanical problem whose mappingM is defined~we
simplify! from C(0,a) to C(0,a)(a.0) by

g~y!5E
0

y

f ~z!~y2z!2 1/2dz ~0<y<a!. ~1.1!

One trivially shows

E
0

x

dz f~z!5p21E
0

x

g~y!~x2y!2 1/2dy ~0<x<a!. ~1.2!

The image of$C%5C(0,a) by $M% is not $E%5C(0,a) but the subsetM(C) of functionsg
such that~1.1! makes sense, i.e., which have a continuous fractional derivative of order1

2. The
‘‘formula’’ ~1.2! yields f in C if g is in M(C). If not, this exact inverse problem does not have
exact solution. Nevertheless, the formula~1.2! can be used for an approximate managemen
Abel’s inverse problem, and since the formula~1.1!, or similar ones, appears in several appro
mate models@Jeffreys–Wentzel–Kramers–Brillouin~JWKB!, rays, etc.#, it is not surprising to see
40820022-2488/2000/41(6)/4082/43/$17.00 © 2000 American Institute of Physics
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that the couple~1.1! and~1.2! was met in so many problems of physics. Still, in the 1970s, it w
the most frequent example showing a so-called ‘‘profile’’~f !, related to ‘‘measurements’’~g!, and
being recovered by a ‘‘profile inversion formula’’~1.2!!

Thus,profile inversion started as an exact solution for an approximate model. However
development of inverse problems throughout the 20th century rapidly went out of this schem
was boosted by several particularly important ideas both in the domain of exact and/or t
applied inverse problems. Let us scan the essential ones. Hadamard2 analyzed mathematical mod
els of physics and contended that a good physical problem should be ‘‘possible et de´terminé,’’ and
that other ones are not well posed. ‘‘Possible et de´terminé’’ is primarily an affirmation of exis-
tence and uniqueness of solution for the corresponding inverse problem. Later, it was realiz
in a physical model an elementx of C which is the reciprocal image ofy in E is not really
determined if infinitesimal displacement ofy may correspond to an uncontrolled displacement
x, i.e., if the inverse mapping fromE to C is not ‘‘stable.’’ Hence the three requirements of
well-posed problem are defined as ‘‘existence, uniqueness, and stability’’ of solutions.

In the development of microphysics, information furnished by scattering experiments
almost the only information available for deriving the interaction. Hence, it was essential to
that the exact inverse problem has unique solutions. Take, for instance, the case of two p
interacting through a potentialV(r ) depending only on their distance. It is felt, and it is corre
that if the input is the cross section known as a functionf of the scattering angleu and the energy
k2, V is determined. In fact, it isoverdetermined, i.e., we cannot choose the inputf arbitrarily
inside an usual mathematical set, but only in a very special one. However, physics is not th
at highestk, and best measurements done at low k give the isotropic cross-section comp
Thus one studied exact inverse problems relying on a partial range of information, in part
that which uses as an input thes-wave phase-shiftd0(k). This exact inverse problem does not,
general, have a unique solution but3,4 finitely many branches of solutions: each one can be labe
by the energy2kn

2 of a ‘‘bound state’’ and a ‘‘normalizing parameter,’’Cn . Only thekn’s may
be measurable~by a different kind of experiment!. With this case it was realized for the first tim
that the management of a physical exact inverse problem may be achieved even if a uniq
property is missing, provided that the nonuniqueness can be completely described by me
well-defined parameters, hopefully related to other classes of experiments.

Even when approximate solutions for applied inverse problems were, in fact, exact sol
of approximate models, physicists had been aware of problems due to the uncertain
measurements5 if stability is not ‘‘strong enough.’’ Let us remark at this point that one usua
makesC andE normed spaces, at the price of redefining inC by means of ‘‘a priori assumptions’’
the subsetC0 of ‘‘admissible’’ parameters and to only keep inE norms thatmake sensefor
appraising the uncertainties on measurements. The need for a management of ill-posed
problems becoming more and more urgent with the increasing computational faci
mathematicians6 introduced the concept of regularization. To give briefly the main idea, an inv
problem is ‘‘regularized’’ if a proper definition of generalized~approximate! solutions enables one
going by a continuous mappingM̄ from any data inE ~i.e., any pointy known with a range of
uncertainty! to the corresponding generalized solutionx in C0 , C0 being limited by a priori
assumptions that show the information we had before doing the considered set of experim
measures. For example, consider the linear mappingM of C5Rn to E5Rm:

y5Mx, xPRn, yPRm. ~1.3!

With Euclidean norms, first suppose ‘‘a priori’’ information that C0 is the ballB(0,h) and
assume also that errors on data are bounded in norm by«. The inverse problem is the following
given yPE, derivexPC such that

h22ix2x0i2<1, «22iy2Mxi2<1. ~1.4!

It is easy to see that the set of solutionsX may be void, exceptionally reduces to one poi
and in other cases is such thatE1,X,E2 whereEj is defined by the equation
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F~x!5:h22ix2x0i21«22iy2Mxi2< j . ~1.5!

The ellipsoidsEj have a common centerx1 where the minimum ofF(x) is achieved. IfF(x1)
is larger than 2, there is no solution. If it is smaller than 1, the problem~1.4! has infinitely many
solutions. Furthermore,x1 is an element ofX and depends continuously ony. Therefore,x1 can
be considered as an approximate solution, representing the set of solutionsX provided the exten-
sion of X is not too large~it can be appraised by rotating the coordinate systems ofRn to the
principal axes ofE1 andE2). Hence, one may also think it is sound to forget the bounds~1.4! and
to define as a regularized solution of the inverse problem@for the mapping~1.3!# the pointx1 for
which the cost functionalF(x) is minimum. ClearlyF(x) is thus interpreted as a tradeoff betwe
two requirements: ‘‘likelihood’’ ofx, which decreases asix2x0i increases, and ‘‘measureme
discrepancy,’’ which increases asiM(x)2yi increases. These or other tradeoff attempts
common guides for most regularization methods, together with a few other ideas for improvinM̄
stability or robustness~lack of sensitivity to a few erroneous measurements! and for improving
the quality of construction algorithms.

Many other ideas underlined the study of inverse problem, but their emergence and
interest were more diffuse.7 Roughly speaking, we can put them into several categories acco
to their scope; in addition, the methods they suggest may be relevant to different fields of res
Here is a flavor of them:

~a! For a given triplet (C,M,E) there are ideas suggesting new regularizations, i.e., new w
of definingM̄, or new algorithms for solutions. This research seems relevant to numerical a
sis only but it is not. For instance, simulated annealing, genetic algorithms, are algorithms
ing that the sequence to a solution be trapped in irrelevant minima of a cost functional. Ye
idea did not appear spontaneously in numerical analysis but was suggested by physics or b
Layer stripping methods, where information is obtained and used sequentially step afte
could have been a very natural idea in numerical analysis but historically was suggested by
processing.8

~b! A number of ideas came from signal processing or from imaging. Signal processi
essentially a way to put the values of measurements made along a propagating wave in
framework that the information they deliver is easily compared and completed. Imaging
choice of representation for the solutions of the inverse problem by selecting one desc
parameter and showing it from any desired point of view, giving also ways to see modificatio
this image in relation with modifications ofa priori assumptions. These two aspects of invers
should often be done in real time, and the various points of view or assumptions shou
designed to help the decision of a practitioner. Because these are special needs, they su
special ideas9 for fast algorithms of analysis~e.g., fast Fourier transform! and, more recently, as
we shall see later, ideas of direct algebraic managements for images or signals.

~c! Ideas were sought to circumvent the two most unpleasant features of many inverse
lems: nonuniqueness and instabilities, i.e., those which remain after taking into account ‘‘ph
a priori assumptions.’’ We mean by physical~or relative to any other field we consider! the
assumptions imposed by our previous knowledge of the field. The remaining nonuniquenes
be due only to the finiteness and errors of data sets, and disappear at the limit of a complet
input: in this case of ‘‘weak’’ nonuniqueness, regularization methods are many and are effic
But nonuniqueness can still be due to the model~typically, if it remains for a ‘‘complete’’ set of
exact results, the meaning of ‘‘complete’’ being of course relative to a given class of mea
ments!. Reducing or removing themodel nonuniquenesshas suggested several ideas, wh
should be kept only if they agree with the logic of physics~or the field of science where the mod
is defined!. The simplest idea is to restore uniqueness by imposing an ‘‘additional assumption’’
on parameters that is consistent with, but not imposed by, the ‘‘physicala priori assumptions.’’
For instance, a very popular one has been that of assuming the parameters are finitely sup
In many cases, analytic properties of Fourier transform then restore uniqueness~but constructing
generalized solutions cannot be done without regularizations techniques!. However, if there are
exact invisible parameters which are not of finite support but nevertheless decrease quite ra
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`, this mathematical uniqueness may be not very relevant in physics.10 A more drastic method to
deal with nonuniqueness is to redefine from the model descriptive parameters sets of func
calleddecisive parameters, defined in such a way that both their extreme values can be obta
from data by solving a well-posed problem and these values contain together enough infor
on the model to enable one’s decisions. It is the technique of ‘‘well-posed questions f
ill-posed problem,’’11 where we have thus substituted a ‘‘decisive modeling’’ for the former
‘‘descriptive modeling.’’

A very simple example shows clearly model nonuniqueness: suppose we wish to findf PC
5L2(R) from measurementFPE5L2(R) being given the mapping

F~l!5E
2`

1`

e22iplxf ~x! dx. ~1.6!

~c1! It is well known that a trivial and unphysical nonuniqueness has been removed i
definition ofL2 by considering equivalent to zero the elements which are almost everywhere

~c2! As it stands the problem is well-posed, and Parseval theorem guarantees a strong
ity.

~c3! However, suppose the measurements ofE were done behind a linear filter such that w
seeF(l) only on the intervalulu,b. The reciprocal images of elementsF whose support is
outside of@2b, b# are invisible parameters.

~c4! This nonuniqueness isremoved if the a priori information on f is such that forF
5M(C) the values ofF(l) inside @2b, b# determine those outside which is the case iff has
imposed on it, for instance, such an assumption that its image is analytic~e.g., for finitely sup-
ported or exponentially bounded functionf !. This possible continuation ofF is the basis of
‘‘ superresolution.’’

~c5! However, stability problems in the continuation need a regularization and, even so
errors or noise result in a strong limitation of the resolving power of measurements, and thus
‘‘superresolution’’ effect.

~d! Still farther from the precise subject ‘‘inverse problem,’’ a number of mathematical id
were underlying all studies. Fourier analysis and Tauberian theorems, harmonic analys
D-bar method, differential geometry and generalized translation operators, variational me
and optimization were not invented for managing exact or applied inverse problems, but kn
them is a prerequisite to any research in the subject. The mathematical accomplishment wh
the closest to the subject is certainly the theorem relating a self-adjoint operator to its sp
family of projectors. It inspired the famous paper of Gelfand and Levitan,4 whose various gener
alizations were the cornerstone of so many successful studies.

~e! An introduction to ideas of inverse problems cannot avoid talking a little bit about
ardous ones, especially when they are still around and may lead people to dead ends. Th
dangerous one is the belief in a universal method for solving applied inverse problems. It u
grows like so: an author well versed in statistical sciences shows that if physicala priori assump-
tions are consistent with some form of information state, and if a large number of measure
are done and repeated and if weak nonuniqueness only is present, a solution can be distin
because it has what one calls, say, the ‘‘best flavor.’’ One gives an algorithm for construct
which turns out to be a regularizing one, although not necessarily very good as regards s
and speed of ‘‘convergence.’’ One shows several examples made of ‘‘synthetic’’ data, i.e., d
from parameters of good ‘‘flavor’’ by solving the direct problem and spoiled by some artifi
noise. Then a lot of engineers who like this kind of parameter apply the algorithm to their
data, stopping the sequence after a few steps to save time, and ‘‘calibrate’’ their techniq
synthetic examples. At no moment do they care either abouta priori assumptions available in th
real world on parameters, or about the fact that they can do only a few measurements. A
method becomes more and more popular, in spite of the fact that its working assumption can
checked on real data and that other authors obtain more or less an equal ‘‘flavor’’ when
construct parameters by means of other regularizing algorithms stopped also after a few
                                                                                                                



obtain
er on

aticians

were
a-
n that
rrent
because
strated

ms for
e 20th
zations.
than

ound-

. The
blems.
inverse
ed.
s, but
qua-

eld of
nt an

, then
eces-
in its

which
nverse
words

idly

verse
own
t the
.’’ We

in the
n done.

hysics
space

ized.

4086 J. Math. Phys., Vol. 41, No. 6, June 2000 Pierre C. Sabatier

                    
Clearly such a method is not a careful analysis of an inverse problem but a practical way to
a fit, which is justified by synthetic examples, but cannot be guaranteed ‘‘better’’ than any oth
arbitrary real data. Sorry,there is no universal method.

Less dangerous, because they progressively disappear, are errors of some mathem
deprived of ‘‘physical taste’’~this ‘‘taste’’ in fact is made of logic and respect for the real world!.
Up to the 1980s, it was still common to find papers calling ‘‘stable’’ inverse mappings which
continuous for a topology inE that involved several, or an infinity, of derivatives of data me
surements! Still in the 1980s, I read papers that called ‘‘characterization of data’’ an operatio
could not be done without almost completely solving the inverse problem ! And still in the cu
litterature, one may see that many studies of nonuniqueness are not satisfactory essentially
the real needs of physicists are ignored. This remark is also a support to the strongly demon
statement that inverse problems are, basically, an interdisciplinary field.

In each of the five main sections of this paper, we address an aspect of inverse proble
which we review the main ideas, corresponding to the main methods that appeared in th
century, with some more emphasis on the more recent ones, and a brief survey of generali
Then we give our own feeling of what directions are likely to be more important in the future
now.

In Sec. II we deal with exact analyses of inverse problems, and mainly survey inverse b
ary value problems, inverse spectral problems, and inverse scattering problems.

In Sec. III we deal with applied inverse problems and the analysis of numerical methods
main ideas of regularization methods are demonstrated on the example of linear inverse pro
The research of strategies for constructing solutions are demonstrated on the example of
scattering problems. New ideas in these domains and that of images improving are sketch

In Sec. IV we deal with inverse methods. The section is short, as are the following one
for a different reason: the application of inverse scattering to nonlinear partial differential e
tions was in 1967 the beginning of integrability studies for these equations and a whole fi
knowledge grew out of it. It is reviewed separately by Fokas in this issue. We only prese
example of derivation which is not well known and is closely related to inverse problems.

In Sec. V we address modeling. We first see how approximate models are still useful
consider more drastic ways of modifying modeling for the inverse problem analysis. The n
sary dialog between modeling a real world problem and solving the inverse problem is only
very beginning!

Section VI is devoted to side applications of the research on inverse problems—those
are not relevant to inverse methods. We go through the nonlinear signal processing by i
scattering and through the improvement of measurements resolving power and we say a few
about stealth targets. No doubt this little field of interest is growing.

Our conclusion is rather a call for more combined effort in this field, which is still rap
growing, and is a typical interdisciplinary area of research.

II. EXACT ANALYSES OF BOUNDARY VALUE, SPECTRAL, AND SCATTERING
INVERSE PROBLEMS

If a mathematical model is taken for granted, it yields a well-defined mathematical in
problem, and the first thing to do is a careful analysis of this problem, aiming at writing d
conditions onC andE such that a solution is determined for each input and if possible such tha
inverse problem is well posed, or such that the nonuniqueness can be ‘‘completely described
call such a work a complete exact analysis of the inverse problem, and we first survey
present section three wide classes of problems of mathematical physics for which it has bee

A. Boundary values problem

The presence of Laplace operators and of time operators in equations of mathematical p
is related to conservation laws and currents, so that many models involve second-order
partial differential equations~pde’s!. There are often ranges where the equations can be linear
One knows that, contrary to the case of ordinary differential equations~ode!, the set of solutions
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of a linear pde is not easily described, and strongly depends on values imposed on the s
~representing here a physical state! and its derivatives~currents! on prescribed surfaces. Construc
ing the solution of an elliptic pde from Dirichlet, Neumann, or mixed boundary values o
smooth enclosing surface might be called already an exact inverse problem~solved by means of
the Green’s function!, but, of course, in physical models, it is part of the direct problem. T
inverse boundary value problems are those where a parameter of the differential operator is
from boundary measurements. A typical example is the inverse conductivity problem: the p
tial u(x) is defined in then-dimensional closed bounded domainV by the equations

div~a gradu!50, xPV, ~2.1!

u5g, xP]V, ~2.2!

where the conductivitya is a scalar, measurable, and bounded function,a>«.0. The direct
problem is well posed12 if gPH1/2(]V) and]V is Lipschitz. Now, assume thata is constant near
]V, that ]VPC2, andgPC2(]V). The Neumann data on]V are well defined:

a
]u

]n
5h, xP]V. ~2.3!

The inverse conductivity problem is to finda, givenh for oneg ~one boundary measureme
problem! or for all g ~‘‘full problem’’ ! or, respectively, in a symmetric way, giveng for oneh,
etc.

Hence, in the full problem, one knows the Dirichlet to Neumann map fromH1/2(]V) to
H21/2(]V) ~respectively the Neumann to Dirichlet map!. It is clear that the space dimensionali
modifies the number of independent space variables in this ‘‘Dirichlet–Neumann’’~or
‘‘Neumann–Dirichlet’’! operator: 2(n21) for the full problem. Now, analyzing a problem ofte
begins with heuristic rules and a very popular one, called the ‘‘dimension rule,’’ says that the
inverse problem has no chance to be well posed if it reduces to determining a functio
depends onp independent variables from a function that depends onq independent variables
unlessp5q. In the present problem, one expects that the full problem is overdetermined u
n52. Mathematical studies of the problem and similar ones were initiated with a pape
Calderon in 1980 and were conducted after 1985 by several mathematicians~in particular, Fried-
man, Isakov, Kohn, Nachmann, Pidcock, Santosa, Sun, Sylvester, Uhlman, and Vogelius!.

A typical theorem for the conductivity problem~2.1!, is the following.13

Theorem: Let n>3, and let the conductivity coefficienta be in H2
`(V). Thena is uniquely

determined by the Dirichlet to Neumann map for the conductivity equation~2.1!.
It has been extended to other assumptions ona and ton52. Similar or related results wer

obtained for other problems, for example, the following one,14 applying to the Helmholtz equation
which relates the pressure field atx generated by a point source aty oscillating harmonically with
frequencyv:

Dxpv~x,y!1
v2

c2~x!
pv~x,y!52d~x2y!. ~2.4!

The field is given throughoutR3 and is outgoing at infinity. Herec(x).0 is the speed of
sound, equal to a known constantc0 outsidev, and may be discontinuous. The problem is
reconstructc(x) insideV from measurements ofpv(x,y) at all receivers on]V for all sourcesy
on ]V at one fixed frequencyv. The theorem14 is as follows

Theorem: Let V be a bounded domain whose boundary]V is of classC1,1 and Rn\V̄ is
connected. Supposec(x)PL`(Rn) is real valued with a positive lower bound andc(x)
5c0(x¹V̄). Let v be a fixed frequency chosen so thatv2 is not a Dirichlet eigenvalue o
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2c2(x)D or 2c0
2D in V. Let pv(x,y) be the solution of~2.4! satisfying the Sommerfeld radiatio

condition. Thenc(x) is uniquely determined by the surface datapv(x,y) given at allxP]V, y
P]V.

This field of inverse problems uses for proofs methods of complex analysis~D-bar method,
etc.!, integral equations for potentials on]V, and other methods of harmonic analysis~complete-
ness of products of solutions of partial differential equations, etc.!. Because of the multidimen
sionality, results in closed form~profile inversion! cannot be expected. For the same reas
linearizations need much care12 and are only approximations. However, applications to pract
problems are many and their number will certainly grow in the future. Systems as biolo
bodies, wires, bridges or other buildings, nuclear reactors, furnaces, etc., give examples
basic equations are different~Helmholtz, Maxwell, transport, heat, etc.! but the same location only
is possible for soundings—on a ‘‘natural’’ boundary. The whole field of nondestructive~or non-
invasive! testing is now growing exponentially with time. Of course, the computational meth
which are associated are keys for applications, and we shall say a few words about them
III, but exact analyses will always be the prerequisite for them. The present state of the art
found in the book of Isakov.12

B. Spectral problems

Spectral problems are those where the input is the spectrum of an operator, and one w
determine an unknown parameter of the operator. One of the oldest ones relies on the fol
mathematical question: can one determine a domainV by the eigenvaluesl5lk of the Dirichlet
problem:

2Du5lu ~xPV!; u50 ~xP]V!, ~2.5!

i.e., ‘‘can one hear the shape of a drum,’’ as it was asked by Mark Kac in a famous lecture15 on
the case of a strictly convexV in R2 ~the lk are resonance frequencies!. Examples showing the
solution nonuniqueness were given by Milnor (n517), Vigneras~nonisometric but isospectra
n-dimensional compact manifolds,n>2), and Gordonet al. ~nonisometric isospectral polygons!.
For reviews and related problems, see Refs. 16–18. It has been shown also that the asy
behavior oflk at largek yields the volume and the total scalar curvature ofV or the length of]V,
thanks to the ‘‘Weyl’’ formula for the numberN(l) of eigenvalues~obviously positive! smaller
thanl:

N~l!5
~4p!2 n/2

G~n/211!
vol ~V!ln2

~4p!2 (n21)/2

4G„~n21!/211…
vol ~]V!ln211o~ln21!l→`, ~2.6!

wheren is the space dimension. This kind of inverse spectral problem has not been given re
applications, but, in some way, it is one of the pillars of the so-called ‘‘geometric scatt
theory.’’ It has always been more popular among mathematicians than among mathematica
cists.

The problem of determining coefficients of an elliptic operator from a given boundary v
spectrum goes back to Lord Rayleigh,19 who showed by means of an approximate model that
possible to derive the variable mass distribution of a clamped vibrating string from its reso
frequencies when it isa priori known that this distribution is symmetric between the two e
points. This one-dimensional problem has now been thoroughly studied, after the works o
barzumian, Borg,20 Krein,21 Gelfand and Levitan,4 and Marchenko.22 If the coefficients of the
elliptic operator are of classC2, it can be reduced to the Sturm–Liouville–Schrodinger form:

S 2
d2

dx2 1qDw5lw, ~2.7!

cosaw~0!1sinaw8~0!505cosbw~ l !1sinbw8~ l !, ~2.8!
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whereq(x) can be chosen inL`(0,l ) and we standardizew(x,l) ~for any q or l! by fixing the
valuew ~or w8) at 0 @we have chosen herew8(0)51]. The spectral boundary value problem~2.7!
and ~2.8! is self-adjoint, with a denumerable set of simple eigenvaluesl1,l2, ¯ ,ln

, ¯ . Theln’s and the normsiwni of the corresponding eigenvaluesw(x,ln) yield the spectral
measure

dr~l!5(
1

`

iwni22d~l2ln! ~2.9!

of the Sturm–Liouville operator~2.7! and~2.8!. The operator can be reconstructed fromdr(l) by
the Gelfand–Levitan method: denoting asw(x,l) the functionsw which correspond toy50, i.e.,
sinAlx/Al, we derive the ‘‘symmetric kernel’’

G~x,y!5E d@~r~l!2r0~l!# w0~x,l!w0~y,l! ~2.10!

of a linear integral equation

K~x,y!1G~x,y!1E
0

x

dt K~x,t !G~ t,y!50, ~2.11!

whose solutionK(x,y) yields the operator as

K~x,x2!5
1

2 E0

x

q~ t ! dt ~2.12!

andw from w0, independently ofl, as

w~x,l!5w0~x,l!1E
0

x

K~x,t !w0~ t,l!dt. ~2.13!

It is possible to show thatK(x,y), y,x, can be recovered fromG and Eq.~2.11! in a stable
and unique way, so that the only little stability problem comes from~2.12! when data are no
synthetic ones. The input of a spectral measure can also be replaced by that of two seque
eigenvalues corresponding to independent couples of homogeneous boundary condition~e.g.,
Dirichlet versus Neumann!. For mathematically more general problems and complete proofs
the books of Marchenko,22 Levitan and Sargsjan,23 and Poschel and Trubowitz.24 For some more
physical issues see Ref. 25 and 26, where the matrix versions of the problem are also rev
The reconstruction of tridiagonal matrices from their eigenvalues is close to the inverse S
Liouville problem, and closely related there are also problems of vibrating modes for a bea
for an elastic ball, or for Dirac operators.23 More recently, a different kind of inverse spectr
problem appeared in the works of Hald and Mc Laughlin,27 where the input is the position o
nodes, or nodal lines. Extensions of the classical ‘‘Kac’’ problem were also developed into
tions axes like the research for isospectral domains already cited, and the billiard problem.
tion ~2.6! holds if the periodic billiard trajectories inV form a subset of Lebesgue measure zero
the phase space of the billiard inV and thus the answer to generalized Kac questions is relate
the geometry of reflecting rays, in particular periodic reflecting rays.28

C. Scattering problems

The simplest example of scattering model, which can apply as well to the quantum sca
and to the medium acoustic scattering, is ruled by the equation

DC1~k22V!C50, ~2.14!
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whereC is the wave function,V is a real function ofxPR3, called the potential,k is the wave
number (k25k"k), and k̂5k/k. Provided thatV decreases fast enough at` ~e.g., asuxu232«, «
.0), we can write down

C~k,x!5exp@ ik"x#1x21 exp@ ikx#F~ x̂,k̂,k!1o~x21!, ~2.15!

where the bold letters are for vectors, the italic letters are for their length, and the hatted lett
elements of the unit sphere. The input in exact analyses of the inverse problem is the sca
amplitudeF which, in principle, can be constructed from measurable values ofuFu by using
unitarity ~in fact, a separate inverse problem; see Ref. 25!. If F is given for all x̂,k̂,k, the
dimension rule predicts that the inverse problemF→V is overdetermined. The prediction i
correct for a regular potentialV since the asymptotic behavior ofF as k→` is the Fourier
transform ofV ~the Born approximation becomes valid at largek) and therefore knowing it is
sufficient for derivingV. If F is given for all x̂,k̂, and one value ofk ~inverse problem at fixed
energy!, V is not uniquely determined fromF, and invisible, or ‘‘transparent,’’ potentials do
exist. However, additionala priori assumptions onV are able to guarantee uniqueness,
instance,29 if there exist two positive numbersa andb such that

uV~x!u<a exp@2bx# ~xPR3!. ~2.16!

Physicists were interested in the problem from the very beginning of quantum mech
because almost all the information on microphysics was given by scattering experiments. Th
a particlea colliding a nucleus or another targetb at nonrelativistic energies were consistent w
an interactionV depending only the particle–target distance, or that froma to the center of mass
~CM! 0 of a and b. In the CM system, the model equation~2.14! is symmetric around the axi
a0b, which can be chosen for defining spherical coordinatesr ,u,w, whereu is the scattering
angle, and the quantities of interest do not depend onw. In particular, the scattering amplitud
F(k,cosu) can then be expanded as

F~k,cosu!5~2ik !21(
l 50

`

~2l 11!„12exp~2id l !…Pl~cosu!. ~2.17!

In Eq. ~2.17!, the ‘‘phase shifts’’d l are real~unitarity! and can be calculated by solving for
‘‘partial wave’’ ul(r ) an ordinary differential equation. The contribution oflÞ0 being negligible
at low energies, it made sense in the 1940s to investigate the inverse problemd0→V, two
functions of one variable only, for which the ‘‘dimension rule’’ is therefore in favor of w
posedness.

The direct problem is then modeled by the equations

d2

dr2 u0~k,r !1„k22V~r !u0~k,r !…50, ~2.18!

u0~k,0!50, ~2.19!

u0~k,r !;A0~k! sin@~kr1d0!# ~r→`!, ~2.20!

and we assume

E
0

`

r uV~r !u dr,`. ~2.21!

Unexpectedly, it was shown~by Bargmann3! that the solution is not unique: Bargmann p
tentials produce a zero phase-shiftd0(k) for all real k. They satisfy Eq.~2.21! and, in fact,
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decrease exponentially at larger . The problem was fully understood after the results
Gelfand–Levitan,4 applied to the physical problem by Jost and Kohn30 and Levinson.31 As in the
regular Sturm–Liouville problem~2.7! and ~2.8!, the self-adjoint operator defined by~2.18! and
~2.19! is still22,23 determined by its spectral measure. Its spectrum is made of a continuou
kPR ~positive energiesk2) and a discrete part of finitely many eigenvalueskn5 ikn , knPR1.
For eachkn there is a normalizing factorcn @as iwni22 in ~2.9!#. In the spectral measure, a pa
corresponding to the continuous spectrum can be derived fromd0(k) whereas a part correspond
ing to the discrete spectrum~bound statesEn52kn

2) is not derivable from scattering data. Su
pose we knowa priori that the size of the potential negative part enables us to say that there
mostN bound states. The nonuniqueness of the inverse problem is described by 2N parameters
~the kn’s and cn’s). If they are known, the spectral function is known and it is possible
construct a spherically symmetricV by solving a Gelfand–Levitan inversion equation similar
that given in Eq.~2.11!, with a relation to the potential similar to that of Eq.~2.12!. Hence, the
stability property is the same as above~but if no information is given on bound states, the
possible existence is an additional source of instability!. There exists also a method25,32 due to
Marchenko and which is similar to that given below for the Schrodinger inverse problem o
line.

The fixed energy version for spherically symmetricV was given in several studies in th
1960s. AgainV can be related to a symmetrical functionf (r ,r 8) ~solution of a known linear pde
see below! by the Regge–Newton equations:33,34

k~r ,r 8!5 f ~r ,r 8!2E
0

r

k~r ,r! f ~r,r 8!r22 dr, ~2.22!

V~r !522r 21
d

dr
r 21k~r ,r 2!, ~2.23!

and the question is howf is related to the scattering amplitudeF of ~2.17!, i.e., to the phase shifts
d l , which are themselves given fromV in the direct problem by solving the model equatio
~where we setk51):

d2

dr2 ul~r !1@12V~r !2 l ~ l 11!r 22#ul~r !50, ~2.24!

ul~0!50, ~2.25!

ul~r !;Al sinS r 2 l
p

2
1d l D ~r→`!, ~2.26!

assuming there existsa.0 and«P]0,1] such that

E
0

a

r uV~r !u dr1E
a

`

r «uV~r !u dr,`. ~2.27!

An answer is thatf (r ,r 8) is a sum of productsul(r )ul(r 8) @wherel is a continuous inter-
polation of (l 1 1

2)], with convenient coefficients. If the interpolationd(l) of d l is known, andV
in the Bargmann class~2.21!, V, K, and f , which would reproduce it, are complete
determined.34 It is also possible to show that if it is bounded for finiter , f (r ,r ) determinesV, but
the d l ’s determine only a part of the Fourier transform off (r ,r ). Thus one may describe th
nonuniqueness by the remaining part.25,35 However, physicists did not wait so long to realize th
a ‘‘good’’point of nonuniqueness is making easier the research of ansatz for constructing
tions. In the inverse problem starting ford0(k), it is easy to notice that ifK(x,y) ~one calls it a
transmutation kernel! acts onw0(x,l) as in Eq.~2.13!, then it is cancelled by the differentia
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operator]2/]x2 2q(x)2 ]2/]y2 , whereas the symmetric kernelG(x,y) is cancelled by the dif-
ferential operator]2/]x2 2 ]2/]y2 . Moreover, if G(x,y) has the latter property, withG(x,0)
5G(0,y)50, andK is derived fromG by means of Eq.~2.11!, K(x,y) has the former property
with q given in ~2.12!. In a similar way, by simple algebra, one can show that iff (r ,r 8) is
cancelled by r 2(]2/]r 2 11)2r 82(]2/]r 82 11), with f (r ,0)5 f (0,r 8)50, then k(r ,r 8) con-
structed by means of Eq.~2.22! is cancelled byr 2@]2/]r 2 112V(r )#2r 82(]2/]r 82 11), where
V(r ) is given by~2.23!, and it acts onul

0(r ) as a transmutation kernel:

ul~r !5ul
0~r !2E

0

r

k~r ,p!ul~p!p22 dp. ~2.28!

Writing down an efficient ansatz is then easy: choosef (r ,r 8) as a linear combination of the
productsul(r )ul(r 8), with coefficientcl , such thatf is cancelled by the symmetric differentia
operator, and determine thecl from the d l ’s. This is the so-called ‘‘Newton–Sabatier’’~NS!
method, which proceeds by matrix inversions, and works for any sequence of phase shifts
does not cancel a special determinant. Hence, it yields generally a potential which is unique
kind in the class restricted by the condition~2.27! with «> 1

2, and it gives a one-parameter fami
of equivalent potentials if in~2.27! we allow«, 1

2. The potentials that can be obtained by the N
method correspond to a certain interpolation of phase shifts25 that is not consistent with the
interpolation produced, for instance, by potentials that decrease at` as fast as or faster than a
exponential. Hence the NS class cannot contain these potentials, but this fact does not pre
from finding a NS potential that reproduces exactly the same physical phase shifts! If one
lates a scattering amplitude, for instance, from a finitely supported potentialV0 , then reconstructs
from the calculated scattering amplitude the NS potentialV1 , and comparesV1 to V0 , they cannot
be identical, unless they are zero. Thirty years after exact analyses of this inverse proble
nonuniqueness should not be surprising any longer! Notice finally that the NS method enab33,36

construction of the first example of a potential that is ‘‘transparent’’ ~i.e., F50) at a given
energy—an ‘‘exact’’ grandfather of stealth targets, but which is spherically symmetric an
creasing at̀ only as ar 23/2sin (r2b), a,bPR. Other examples were given later, in oth
classes.29 As we have seen already,a priori conditions such as~2.16! restore uniqueness in th
general case, and, of course, also in the radial case.

D. Inverse scattering problem on the line

Among one-dimensional inverse scattering problems, and in view of its applications in
IV, this problem deserves detailed treatment. Again, the model is described by the equatio

F2
d2

dx2 1V~x!GC~k,x!5k2C~k,x!, ~2.29!

whereV belongs to the classL1
1 such that

E
2`

1`

~11uxu!uV~x!u dx,`. ~2.30!

With this assumption, and, after transforming@Eq. ~2.29! 1 asymptotic condition# into an integral
equation, it can be shown that ‘‘Jost solutions’’f 6(k,x) can be defined as functions solving E
~2.29! and respectively asymptotic to exp@6ikx# as x goes respectively to6`. They can be
continued as holomorphic functions in the upper half-plane Imk>0, continuous to the real axis
and there exists a numberC such that the following bounds hold uniformly in Imk>0:

uexp@7 ikx# f 6~k,x!21u,CH uku21

~11uxuu~7x!
. ~2.31!
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Equation~2.31! proves that we can Fourier transform the contents of its left-hand sid
L2(R), obtaining functionsK6(x,y) that vanish respectively fory"x, so that the inverse Fourie
transform yields the transmutation formula:

f 1~k,x!5exp@ ikx#1E
x

`

K1~x,y! exp@ iky# dy ~2.32!

and its twin for f 2(k,x). Substituting it in Eq.~2.29! gives the Volterra integral equation fo
K1(x,y), y.x:

K1~x,y!5
1

2 E~1/2!(x1y)

`

ds H V~s!12E
0

~1/2!(y2x)
V~s2r !K1~s2r ,s1r ! drJ , ~2.33!

which reduces asy→x to

K1~x,x1!5
1

2 Ex

`

ds V~s!, ~2.34!

and, of course, one would get similar results forK2 . Notice also that Eq.~2.33! implies the partial
differential equation

F ]2

]x2 2
]2

]y2 2V~x!GK6~x,y!50, ~2.35!

and vanishing boundary conditions asy goes to infinity.
The solutionsf 1(6k,x) of Eq. ~2.29! are linearly independent forkÞ0. Hence, the scattering

coefficients on the right,T, andR1, can be defined by the equality

T~k! f 2~k,x!5 f 1~2k,x!1R1~k! f 1~k,x!. ~2.36!

The spectrum of the operator in Eq.~2.29! contains the continuous part (kPR) and a discrete
spectrum@kn# for which f 6(kn ,x) goes to zero~exponentially! at infinite x on both sides:kn

5 ikn , kn.0]. For VPL1
1 , the eigenvalueskn are all simple and their numberN is finite. From

Eqs.~2.36! and ~2.32! we obtain

T~k! f 2~k,x!2e2 ikx5E
x

`

K1~x,y!e2 iky dy1R1~k!E
x

`

K1~x,y!eiky dy, ~2.37!

and Fourier transforming it, we derive the Faddeev–Marchenko equations forK1(x,y) (y.x):

K1~x,y!1M 1~x1y!1E
x

`

dz K1~x,z!M 1~z1y!50 ~y.x!, ~2.38!

where

M 1~x!5
1

2p E
2`

1`

dkR1~k! exp@ ikx#1(
1

N

rp
1 exp@2kpx#, ~2.39!

rp
15S E

2`

1`

dx@ f 1~ ikp ,x!#2D 21

. ~2.40!

Here R1(k), with the kn8’s and thern8’s, are together an input sufficient to determineV,
which can be constructed by solving Eq.~2.38! and using Eq.~2.34!. Consistency conditions on
the properties ofR1(k) and the class of potentials where the inverse problem toK1(x,x1) is well
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posed were given by Deift and Trubowitz inL2
1 @this space is defined by replacinguxu by x2 in Eq.

~2.30!, then inL1
1 by several authors25,37#. Extensions25 to matricial problems,38 to impedance and

steplike potentials,39 and to other inputs40 as potentials that are polynoms ofk1/p, pPZ, are
available41 and also time domain approaches.25 It has even been shown39 how the uniqueness ca
disappear if we allowr 2V finite amplitude oscillations at̀ , just getting out ofL1

1! All the one
~space! dimension inverse scattering problems we have sketched are solved by means of
techniques of analysis, which we can call collectively Gelfand–Levitan–Marchenko approa
Extensions of these methods in view of specific applications, on real data, were also manag
example, the Sondhi–Gopinath method~acoustics! and the modified Newton–Sabatier metho
~nuclear physics!.42

The dependence on the spectrum in the inversion equations could also be written
dependence of a function ofk and k̄ ~which is not everywhere holomorphic ink) on limiting
values at either sides of cuts where itsD-bar derivative is not zero. Up to the end of the 198
authors43,25 tried to generalize these techniques of analysis to the three-dimensional Schro¨dinger
problem and succeeded to obtain a very deep insight of its structure, but it was not conveni
applied results. Comprehensive reviews of one- and three-dimensional inverse problem qu
scattering theory, as well as acoustic and electromagnetic scattering theory prior to 199
available.25,44

In the last 10 years, studies of scattering problems for Eq.~2.14! and generalizations to
acoustic or electromagnetic or elastodynamic waves were managed as in a common wo
using similar ideas and directed on one hand to inverse boundary value problems, and on th
hand to medium or obstacle inverse scattering problems. Let us review them briefly.45

E. 3D inverse scattering problems

They can be investigated either in the time domain or in the frequency domain. Results
time domain have often proved their interest for completing or explaining some results o
frequency domain. However, the recent trends are to investigate them by numerical method
where solving the direct problem is the object of complicated codes and solving the in
problem is either done by trial and error or by minimizing a convenient cost functional. Fo
reason I will not say more in the present section.

Sticking at the frequency domain, we first remark that the prerequisite is that a good
ematical model be defined. This looks obviousand is not, because we need for it a prope
definition of what is called aradiating „or purely outgoing… wave, i.e., we need a ‘‘Sommerfeld
condition.’’ Such a condition is well known for the acoustic scattering in open space of dime
3: a radiating solution45 u of the model equation must satisfy in the exterior of some ball~con-
taining the targetD) the condition

lim
r→`

r S ]u

]r
2 ikuD50, ~2.41!

wherer 5ixi and the limit holds in all directionsx/r . It follows that such a function is 0(r 21) as
r goes to infinity. If it goes to zero more rapidly, and, precisely, if

lim
r→`

E
ixi5r

uu~x!u2 ds50, ~2.42!

thenu50 in R3\D̄ ~Rellich theorem45!. These results are thecornerstoneof uniqueness proofs fo
all the tools used in scattering theory~Green’s function, etc.!. They are generalized in open spa
electromagnetic scattering~Silver–Muller condition! and in elastodynamic scattering.46 When the
scattererDi is contained in a closed part or a semi-open part ofR3, the situation is quite differen
and has been the object of recent studies, in particular by Kleinman and co-workers,47 who were
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able to formulate the radiation condition in the most simple and general form. Where i
difficulty? We assumeDi is in a wave guide. The field is decomposed into a finite numbe
propagating modes, each of which satisfies a condition of the form

]uj

]r
2 ik juj50~r 21! as r→` ~2.43!

as well as an infinite number of evanescent modes which decay exponentially asr→`. Their
existence means that there is no counterpart of the Rellich theorem. Uniqueness has been
by Werner47 for nonresonant wave numbers, and nonuniqueness at real resonant frequ
~trapped modes! was known a long time ago.48 A relatively simple uniqueness proof valid fo
nontrapping waves and using a counterpart of the Sommerfeld condition was lacking, and47

has been given in a formulation that covers a variety of physical settings including scatter
free spaceR3, or a half-spaceDe5$xuxn,0%, or the parallel wave guideDe5$xu2h,xn,0%.
The formulation of the scattering problem then isfirst , definingu0(x), which is the primary field
that would exist in the absence of the scatterer, incident field or source field, with conve
conditions on the boundaries~finite or infinite! of De ; next, finding the scattered field such tha
for a givenu0(x), k.0, andG5]Di ~and assuming for convenience a frequency dependenc
e2 iNvt),

~¹21k2!u~x!50, xP~De\D̄ i !, ~2.44!

u~x!52u0~x! ~xPG, xP]De!, ~2.45!

lim
R→`

E
SR

uuu2 ds5c0,`, ~2.46!

lim
R→`

Im E
SR

ū
]u

]n
ds5c.0. ~2.47!

The surfaceSR is taken to be the boundary of the intersection ofDe and a domain param
etrized byR and approachingR3 asR→`. Equation~2.47! is required to hold for every compo
nent of any orthogonal decomposition ofu on S: if u5u11u2 and *SR

u1u2 ds50, we should
have

lim
R→`

Im E
SR

ūj
]uj

]n
ds5cj.0, j 51,2. ~2.48!

The normal derivative is directed into the portion ofDe that does not containG. Of course,
~2.47! and~2.48! embody the physical principle that the flux of energy scattered byG through any
surface containingG is positive. The uniqueness theorem can then be stated as follows:

If u satisfies conditions~2.44!–~2.48! andu050, thenu50.
In a medium scattering problem, after the radiation condition is fixed, it is possible to us

Green’s function and Green’s theorem for deriving an integral equation whose solution is t
the direct problem. For instance, the Schrodinger scattering problem~2.14! and ~2.15! is equiva-
lent to the Lippmann–Schwinger equation,

C~x,k!5exp@ ik "x#2E
V

exp@ ikuxÀyu#
4puxÀyu

V~y!C~y,k… dy, ~2.49!

on which the Sommerfeld radiation condition~2.41! can be verified ifV satisfies the Rollnik
condition43
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E E
R3

uV~x!uuV~y!u
dxdy

ux2yu2
,`. ~2.50!

Writing ux2yu5uxu„12uxu22x•y10(uxu22)…, where 0 is uniform with respect toy, and com-
paring to~2.15!, we obtain the well-known representation for the scattering amplitude:

F~ x̂,k̂,k!5~4p!21E
V

e2 ikx̂.yV~y!C~y,k!dy. ~2.51!

The second term in Eq~2.49! goes to zero ask1`, and Eq.~2.51! reduces to a Fourie
transform, so thatV can then be determined from the asymptotic behavior ofF and, as we already
said, the input of an exactly known functionF of x̂,k̂,k yields V. In fact, the inverse problem
F→V is overdetermined. The formulas~2.49!–~2.51!, and similar results on ill posedness
conditions for uniqueness on~2.16!, hold as well for the inverse medium problem of acous
waves and, with some complications, for that of electromagnetic or elastodynamic waves.
ever, in these matters, the following problem, whereV is supported by a finite domainV, bounded
by a surface]V which must be determined, becomes physically more important.

F. The inverse obstacle problem

A limit case of scattering is that where the interaction is irrelevant insideV ~which we assume
simply connected, to be simple! and a fixed boundary condition is given on]V, which is the
‘‘obstacle’’ to be determined. If we stick to the equation~2.14! outsideV, with V50, and set
C50 on ]V, we define the simplest example, the scattering49 from a sound soft obstacle. A
Neumann boundary condition, or a ‘‘mixed’’ one as

]C

]n
1bC50~xP]V!, ~2.52!

with b independent ofk, would correspond to a hard obstacle. If the acoustic parameters o
medium are known insideV, one also gets a fixed condition as~2.52!, but withb depending onk.
Excellent studies of these problems are available in recent books.45,49We can sketch most of them
as so: For a given incident waveC i , which is an entire solution of the Helmholtz equation~2.14!
with (V50) outside ofV, e.g., exp@ik"x#, the direct problem is that of constructingC as a
solution of ~2.52! on ]V, which is outside ofV, the sum ofC i and of a scattered waveCs

satisfying Sommerfeld condition~2.41!. This direct problem has a unique solution because
Rellich’s lemma, it can be treated by using boundary surface integrals and potentials, and
general, well posed. The asymptotic behavior ofCs in the case of an incident plane wave is~2.15!
and the inverse problem, given the far-field patternF of Cs on the unit sphere for one or sever
incoming wavesC i with different directions and wave numbersk, determines the shape of th
scattererV. The question of uniqueness has been adressed by several people after the prel
work of Schiffer.50 The obstacleV is uniquely determined for a countable set of plane wa
either with one fixed incident direction and different wave numbers or with one fixed w
number and different incident directions. But even when uniqueness is ensured by the inp
problem is ill posed,51 because the far-field operator is extremely smoothing. In particular,
far-field pattern is an analytic function on the unit shere, and its Fourier coefficients with re
to spherical harmonics decay faster than exponentially. No stability holds for any reasonable
and hence there is a strong need for regularization.

The problem has been managed by trial and error, Newton methods, minimization of a
venient cost functional, and, which is more original, by methods where we need not solv
direct problem.52 These methods proceed by deriving representations ofC i andCs consistent with
F, and then achieving the determination of]V by locating the zeros of the left-hand side
~2.52!, with C5C i1Cs . An example is the method using Herglotz wave functions45,52which are
represented by their coefficients on a linear superposition of incident plane waves with dif
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directionsk̂. Whereas the previous methods were derived from well-known methods of num
analysis~see Sec. III!, these ones are more relevant to exact analyses of the scattering prob
Generalizations to electromagnetic and elastodynamic problems are available45,53with more com-
plicated but essentially similar results. Cases where symmetry properties ofF impose symmetry
properties of the obstacle were also studied, a classical result, relevant to spherical sym
being the Karp theorem.54

G. Exact analyses of other inverse problems

Using the present order for our review may lead the reader to guess that the exact anal
inverse boundary and inverse scattering problems, with all their generalizations, are the es
part of inverse problem exact analyses. This is not true. On one hand, we did not talk about i
transport problem, diffuse scattering, heat problems, and other parabolic inverse problems55 On
the other hand, by far the largest stock of fully studied inverse problems is that of linea
linearized inverse problems. It is also the most important for applications in imaging, and pa
larly in medical imaging. X- org-ray tomography,56 optical instruments imaging,57 nuclear mag-
netic resonance imaging, and many others58 are treated as linear~ized! inverse problems. The
theoretical studies usually proceed in two steps: in the first one, the structure of the mathem
problem, and the way it is posed, is described. The second one discusses the methods
structing solutions and is relevant to Sec. III. We give only the simplest example, X-ray to
raphy, where parallel beams go across a two-dimensional object of opacityf (x,y), the attenuation
along a ray of slopea, distancex to O, in the systemOxy, gives the measured result

Pa~x!5E
2`

1`

f ~x cosa2y sina, x sina1y cosa!dy, ~2.53!

whose value is called in mathematics the projection off on the directiond(a,x). The functionP
is the so-called Radon transform off and its knowledge determinesf . In order to construct
solutions one can pursue the analysis in three directions—either Eq.~2.53! is discretized yielding
a linear system whose conditioning can be studied directly~for instance, by singular value de
composition!, or eigensystems for singular value decompositions can be derived in a do
where f is embedded, or one can Fourier transform~2.53! to get

P̃~a,v!5E
2`

1`

Pa~x!e22ipvx dx5F~v cosa,v sina!, ~2.54!

whereF(y1 ,y2)5**e22ip(x1y11x2y2) f (x1,x2)dx1dx2 is the Fourier transform off , i.e., a homeo-
morphism, so that problem ill posedness can be read from Eq.~2.54!. Indeed, it does, with
nonuniqueness because of the finite number of possible anglesa i , and lack of stability because o
the factorv in the argument of~2.54! ~regularizations are easy, but specific real-time problems
related to the use in medical imaging!.

There are so many studies of the linear inverse problems, easily available in scholarly
that we do not say more here. The singular value decomposition and some other methods fo
systems or Fredholm integral equations will be recalled in Sec. III, but only as example
understanding regularization, information, or numerical problems. Another reason for being
is that most inverse problems of mathematical physics are not linear ones but linearized one~e.g.,
curved rays may be used in diffraction tomography problems whose limit would be simil
X-ray tomography!. It is often in their transitions between linearity and nonlinearity that phys
problems belong to current research. Let us finally notice that the first modern studies of non
applied inverse problems often showed applications or adaptations of exact methods or var
them58 ~in particular the Gelfand–Levitan ones!, sometimes given with specific regularizations,
with specific adaptations, e.g., the Sondhi–Gopinath method for inverse problems of the
tract.5,42
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H. The future of exact analyses

Three kinds of elements are essential for predicting the future of any scientific study:
A: the needsfor it,
B: the existence of principles enabling us to constructstrategies for processing the study

~these elements are particularly important for predicting the near future! and
C: the existence ofa dynamicsimplying a continuousrenewal of problems~this is important

for the far future!.
In the present case, elements of classes A, B, and C are present. As we shall see in S

the field of applied inverse problems is infinite, whether they come from soundings, imagin
more generally interpreting external physical measurements. For each applied inverse pro
serious management~not always done! begins with an exact analysis of the inverse problem a
its relations to the model. Other elements of class A come from the position of inverse pro
in mathematics. Generally connected with partial differential equations, integral equations,
ential and integral geometry, their exact studies are themselves a very remarkable dyn
element in these fields.

Elements of class B can be observed in the ‘‘versatility’’ of the examples we treated. See
instance, what is common to all Gelfand–Levitan~or Marchenko! methods. You can choos
between a triangular transmutation kernel, couples of partial differential equations whereV ap-
pears as a perturbation, or, if you take some more insight, existence of an operatorU that
interwines the perturbed and unperturbed wave operators, i.e.,

~2D1V!U5U~2D!. ~2.55!

Operators such asU map the generalized eigenfunctions exp(ik•x) of the unperturbed opera
tor into those of the perturbed operator. In the methods we described, they are, in ad
triangular. Understanding how they work has already suggested strategies for using them
inverse problem at fixed energy, and then in the three-dimensional inverse Schrodinger pr
As a still more general idea, reducing the research of solutions for an inverse problem to
mizing a twice-differentiable cost functional defines strategies whose future is ensured as l
our knowledge of calculus of variations and optimization strategies increases. On the othe
a smart general idea may be a little bit disappointing. For example, the so-called layer stri7

has, in principle, a very large range of possible applications. In its basic form, it is assume
the targetV of a scattering problem~in R, R2, or R3), is star shaped. Working in time domain, th
idea is to identify from the main signal components an external layer ofV, i.e., the values of
parameters at points internal toV and no more distant than, say,d ~small! from ]V. Then the
contribution of this ‘‘external layer’’ to the signal is subtracted, and the layer is suppos
stripped fromV, giving new values for the same problem but with a smaller target, for which
can proceed again. In one-dimensional cases a differential equation is obtained. Things ar
complicated in several dimensions, but in all cases, errors and instabilities may grow rapidly
the sequence if the problem is not regularized. It can be well managed, for instance,
‘‘ invariant imbedding ’’ approach of the method, where upward and downward continuatio
the waves are analyzed. But although regularizations have been done successfully, the met
does not look as good as expected. On the other hand, methods using, for instance, Herglo
functions may still prove useful in scattering problems not studied up to date.

Elements of class C are enlightening the future of inverse exact studies. It is clear that ph
models of soundings are more and more ‘‘studied in three space dimensions,’’ and more and
morenonlinear. This makes it possible to have several classes of possible solutions, which c
identified or not by physical parameters. Whereas the inverse problems whose solution is s
nonunique for structural reasons are rarely studied nowadays, they will be more and mo
quently. Simultaneously, the analysis of posedness will require more and more subtle unde
ing of the physical models. As we shall see,joint interpretations of different classes of dataare
still exceptional. It is clear that they also will become more and more frequent and will re
deeper and deeper exact analyses.
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I will talk later of byproducts of exact analyses, which for them are also a dynamical so
of renewal. Finally, notice again the position of exact inverse analyses in mathematics—no
are they themselves sources of study in analysis, numerical analysis, and differential and al
geometry, but these fields and others can themselves create exact inverse problems. After
research of a self-adjoint operator which might reproduce the zeros of the Riemann zeta fu
on the critical line is nothing but an unsolved one~as yet!!

III. ANALYSES OF APPLIED INVERSE PROBLEMS FOR NUMERICAL INVERSION

Our aim isnot to give details concerning algorithms, their speed of convergence, etc.
only to review the geometric or other principles which lead us to choosing them. Algorithm
themselves are part of a well-defined science,numerical analysis. But choosing them should b
done only after performing first the exact problem analysis~Sec. II! and next its analysis for
numerical inversion~the present section!, both implying an interaction with the way of modelin
the real problem.

The first prerequisite in applied inverse problems is the mathematical definition ofC andE, or,
assuming we can make them linear spaces, the definition of norms. The norm to be usedE is
usually almost imposed by its required consistency with measurement errors. Fortunately
no mathematician still uses norms or topologies inE that involve data derivatives or other non
measurable quantities~they were chosen to give a continuity property, but it had nothing to
with a physically meaningful stable model!. There is more freedom in the choice of norms forC,
and this freedom is necessary since they are used to representa priori information and constraints
as well as the likelihood of a solution~the word ‘‘likelihood’’ is used with its common meaning!,
and alsoa priori model constraints~for instance, the range where a linearized model makes se!.
Weighted L2 norms involving derivatives or not have been mostly used, and alsoL1 or L`

norms.59–61Notice that the dual effects of weighted norms inC andE were used in studies of th
first kind Fredholm equation,58 but they are often difficult to reconcile with the physical meani
of ‘‘model parameters’’ and ‘‘data.’’

It is also useful to have~when it exists! a ‘‘reference solution.’’ If there was no measureme
discrepancy, i.e., if the input of the inverse problem was an elementy of the setM(E), there
would be at least one reciprocal imagexPC of y, and in the case of nonuniqueness, we co
select a unique solution, say,x1, by minimizing in C appropriate functionals. Hence, for eac
elementy of M(C) we might define a generalized inversex1 ~not necessarily stable! which could
be a ‘‘reference’’ solution. In the linear finite-dimensional case,C5Rn, E5Rm, x1 is the so-called
‘‘Moore Penrose’’ or ‘‘natural’’ inverse, and the functional used inC to get a unique solution eve
if the rank ofM is smaller thann is ixi2. In the following, we stick to linear examples to sho
how the analysis of applied inverse problems is managed, i.e., essentially, how regular
strategies are introduced.

A. A simple linear example and its singular value decomposition

The singular value decomposition~SVD! is an exact analysis of a linear inverse problem9 and
also its analysis in view of numerical computations. We demonstrate it here on a particu
simple ~discrete! example, trivially extended to multiple eigenvalues and easily extended to
tinuous problems. The example is that ofC5Rn, E5Rm; M is a linear mapping represented b
the matrixM , with rankk, M* its adjoint, andN(M ) its null space, which is also that ofM* M .
As is well known, the self-adjoint matricesM* M andMM* have the same positive eigenvalu
s1

2>s2
2>¯>sk

2.0, with the same multiplicity, which we assume here to be 1~only for using
simple notations!. We denote byv1 ,v2 , . . . ,vk the corresponding eigenvectors ofM* M . They
form an orthonormal basis in the orthogonal complementN(M )' of N(M ) to C, which is also the
‘‘range’’ ~or ‘‘image’’ ! of M* , R(M* ). For a given eigenvaluesp

2 , sp being its square root, an
eigenvectorvp of M* M is related to an eigenvectorup of MM* by the Lanczos pair of equations

Mvp5spup , M* up5spvp ~3.1!
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The sp8’s are called the singular values ofM .
The up8’s form an orthonormal basis inN(M* )', which is alsoR(M) or M(C). The or-

thogonal projection ofyPE on M(C) is

ȳ5 (
p51

k

^y,up&E up . ~3.2!

In the following, we drop the index to the scalar product when it is clear in what space
defined.

Now, for anyx in C, its orthogonal projectionx̄ onN(M )' is a linear combination of thevp’s,
and its image is, inE,

x15 (
p51

k

^x,vp&Mvp5 (
p51

k

sp^x,vp&up . ~3.3!

It follows that the natural inverse of an elementȳ of M(E) ~i.e., the solution of minimal norm
in C) is

x15 (
p51

k

sp
21^ ȳ,up&vp . ~3.4!

Now, measurement discrepancy onȳ may be located anywhere, for example, on its largep
components. The norm of the resulting perturbation forx1 may be multiplied bys1 /sp . If the
‘‘condition number’’ s1 /sk is large, we see that the natural inverse stability can become
poor. However, it is not difficult to define a regularized natural inverse by shunting hard
smoothly the effect of the singular valuessp8’s for which s1 /sp becomes inconsistent with th
desired stability, using for example either of these formulas

ȳ→ x̄h5 (
p51

h

sp
21^ ȳ,up&vp , ~3.5!

ȳ→ x̄h5( sp~sp
21sh

2!21^ ȳ,up&vp . ~3.6!

The regularized inverse ofȳ in both cases becomes the natural inverse if (k2h) vanishes.
Notice also that it is trivial to extend the range of these generalized inverses to the whole sE
by projectingy on M(E), hence following the pathy→ ȳ→x1. This extended natural inverse
often called the ‘‘least squares’’ solution. Compared to the exact resultx̄, the regularized inverse
x̄h differ by a ‘‘filtering’’ of large p values in the singular value decomposition~because of many
physical examples, one often calls them high frequencies!.

Thus we see that using the SVD suggests a way of filtering which is a regularization str
Unfortunately, the SVD is known only in linear examples and, even so, it leads to len
numerical computations in the cases ofn large, which are the general case if a continuous prob
is given a fine discrete representation. We shall see further that SVD is also a way for app
the informative content of data, but now we only keep it in mind to understand regulariz
strategies, which have a larger range of applications.

B. Regularization strategies

Most regularization strategies introduce a family of continuous mappingsM̄a from E to C,
such thatM̄a reduces to the natural inverse if it is applied to an element ofM(E) anda goes to
zero.
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Geometry in function spaces is the most usual guide for constructing a regularization fa
Typically, one constructs a sequence of bounded operatorsM̄a

(p) , which make ‘‘generalized so
lutions’’ xp(a) walking down accross the level surfaces of the discrepancy functional. Stop
this algorithm at a stepp, and comparing the effects ofa, we can select the ‘‘best’’ regularize
inverse, best in some sense~e.g., stability!. As an example, we try to solve either of the equatio
~1.3! or the equation

ỹ5:M* y5M* Mx. ~3.7!

Landweber62 suggested rewriting these equations in the form, after, say,x(0)50:

x(p)5~ I 2tM* M !x(p21)1tM* y, ~3.8!

wheret is called ‘‘the relaxation parameter.’’ At each step, the correction follows the des
direction of the discrepancy functionaliMx2yi2. For fixedt, the step is not optimal. Replacin
t by an optimal valuetp makes the ‘‘algorithm of steepest descent.’’ More refined transformat
make the ‘‘conjugate gradient’’ methods, an example of which will be seen further. If the
quence in~3.8! is stopped at numberp, and if we use the singular value decomposition, we obt

x(p)5(
l 51

k

^y,ul&v l

12~12ts l
2!p

s l
, ~3.9!

which goes to the natural inversex̄ as the regularization parameterp21 goes to zero, and for fixed
p, is a filtered value ofx̄. We can evaluate the measurement discrepancy and the signal ‘‘ene
ixi2. They depend contrarily onp21 and there is a solution which is optimally regularized, w
a good stability. Similar remarks hold for other strategies~there are many,63 and they can be
extended to weakly nonlinear problems!.

Statisticsandinformation theories are also guides for constructing generalized inverses.64 To
be short, and using the language of imaging because it yields the most justifed stock of a
tions, there are two main classes of approaches among the methods which have been pr
The first one relies on assuming a deterministic object, whose parameters should be es
from the image, blurred by a random noise, whose statistical properties should be used~but are
they known ?!. Such are the ‘‘maximum likelihood methods.’’ In the second approach, the obje
itself is assumed to be a realization of a random process, with a given probability distribution
is a form of ‘‘a priori information’’ about the object. Evaluating the information on this rand
process before and after measurements is characteristic of ‘‘Bayesian methods.’’ 65 Choosing as
a generalized inverse the process for which a given distribution is extremal makes the diffe
between standard Bayesian methods and special ones as themaximum entropy method. As a
matter of fact, if we compare to geometrical methods, we can say that the standard Ba
methods yield generalized least squares inverse where weights in the quadratic norms are
ance matrices to be estimateda priori and after the measurements, a very seducing represent
of the measurements effect indeed but one which often relies on arbitrary assumptions.
other hand, the maximum entropy method and all the other special ‘‘methods’’ are not a
used with a sufficient preanalysis of thea priori information and no more of the identificatio
purposes. We must recall that there is no universal method for defining the best gene
inverse and it can be the best only for given purposes. Up to now, methods where the geom
structure is used and adapted to the kind of information we need certainly show the most
parent flexibility, and the number of algorithms and regularization methods they have pro
confirm it. Although cost functionals are in linear cases and weakly nonlinear ones chosen
quadratic, in order to be differentiable, other kinds of functionals were used, both to defin
generalized solution and to represent the constraints, sometimes constructed onL1 or L` norms,
which may give more ‘‘robust’’ solutions.

During the last 40 years, many ways have been given for understanding and desc
illposedness, in an enormous number of problems of mathematical physics, and they are stu
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so many books, monographs, and workshops, including an annual one66,67 that most applied
mathematicians and mathematical physicists now have in their common background at le
elementary knowledge of ill-posed inverse problems. In the last 20 years these studies hav
standard methods63 to introduce regularizations: they are now available every time there exis
C, for eachyPE, either only one admissible point giving an acceptable fit~i.e., a small measure
ment discrepancy! and maximizing its adequacy to thea priori information ~for instance, by
minimizing a cost functional! or several points with this property, but ordered in such a way
a global extremum of the cost functional exists–convexity of the set of posssible gener
solutions being of course a golden case. In most methods, the value of the cost functional a
fitting error usually depend contrarily on the regularization parameter, and the ‘‘best regul
tion’’ often corresponds to an ‘‘equal discrepancy’’ ~a principle which is not always true!.

But what happens in more nonlinear problems?

C. Analysis of a nonlinear problem for numerical inversion

1. Example of a scattering problem

We begin with an example of the problems analyzed in Sec. II, the scattering of aco
waves by, say, a sound soft obstacle. It is posed inR3 but even inR2, no analytic method can
produce an exact solution. Let us recall that the Helmholtz equation@~2.14! with V50] holds
outsideV, whose boundary]V is hence related to the far-fieldF of Eq. ~2.15!, say,

M ~]V!5F. ~3.10!

We can try solving this ill-posed nonlinear operator equation by applying standard inve
methods to the triplet:

C;M,L2~S! ~3.11!

(k is fixed andS is the unit sphere inR3). Several iterative methods were first proposed to getM̄;
for instance, inR2, the Newton–Kantorowich method68 ~where the Frechet differential is used lik
the ordinary derivative is in the elementary Newton method, but strong regularizations ar
necessary!; in R3, the method of quasisolutions, where the inverse problem is replaced by
mizing the discrepancyiM(v)2FiL2(S) over all surfacesv in a suitable admissible setC0 . In
order to restore stability,C0 is assumed to be a compact subset of the space of all starlike c
C2 surfacesv. The method of generalized solutions in the Tichonov sense was also used,
the constraint forC0 to be compact is replaced by minimizing a cost functional of the form

iM~v!2FiL2(S)1p~v! ~3.12!

with a suitable penalty termp(v). The Landweber iteration scheme was also used.49 More
recently, the direct methods cited in Sec. II were used for preparing the numerical inversi52

For instance, the following scheme45 uses Herglotz wave functions to get a first approximation
]V, which can then be improved by iterative algorithms.

The basic idea is to find a superposition of a plane wave~i.e., a Herglotz wave function! such
that the corresponding scattered wave coincides with a point sourceG(x,j) located atj insideV.
In R2, the Green’s functionG is

G~x,y!5 1
4 iH 0

(1)~kux2yu! ~xÞy!. ~3.13!

It follows that a Herglotz wave function

C i~x,j!5E
(
g~d,j!eikx"dds~d! ~xPR2! ~3.14!

satisfies our requirement if
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E
(
g~d,j!F~k,d! ds~d!5

eip/4

A8pk
e2 ik .j, ~3.15!

hence we have that

E
(
g~d,j!Cs~x,d! ds~d!5G~x,j!, xPR2/V̄, ~3.16!

and lettingx tend to]V we conclude thatC i is a solution to the interior Dirichlet problem

DC i1k2C i50 ~3.17!

in V, with boundary condition

C i1G~x,j!50, xP]V. ~3.18!

Conversely, if the Herglotz wave function~3.14! solves~3.17! and ~3.18!, its kernelg is a
solution of ~3.15!. If we can solve this integral equation for all pointsjPV, we conclude that
ig(.;j)iL2(V)→` as the source pointj approches]V, enabling us to get it. However, the solutio
to ~3.17! and~3.18! will have an extension across]V only in special cases and therefore so do
the integral equation~3.15!. Nevertheless, a regularized version of it will yield an approximat
for ]V through the points whereigi large—to be improved by iterative methods.

Another example of direct method is more obvious. It is indeed natural to define]V as the
location of zeros of the total fieldC i1Cs. Then one has to manage a way for constructingCs

from a knowledge of the far-field patternF, an ill-posed problem, according to studies of Sec.
But these studies also suggest another method to solve it. Choose a closedC2-surfaceG, say, a
sphere, not resonating at the given frequency, and contained inV. It can be used to give a
single-layer representation of the scattered field

F~x!5E
G
w~y!G~x,y! ds~y!, ~3.19!

so that we have to solve forw:

F~ x̂!5~Mw!~ x̂!5~4p!21E
G
e2 ikx̂•yw~y! ds~y!. ~3.20!

It can be shown45 that M has dense range for our choice ofG. It remains to regularize the
problem, whose singular values are rapidly decreasing. This can be done by standard tech
The method works for synthetic data, and allows multiple incident wave analysis.

We gave these methods because they are specially adapted to this kind of problem an
can give ideas for those with similar geometry. It is of interest to notice that other method
classical ones of numerical analysis and that similar ones also apply in the following probl

2. Inverse medium problem

Again we shall stick to the frequency domain. A number of known incident fieldsuj
inc

3( j 51,2,...,J) are scattered at fixed frequency by a conducting obstacle contained in thetest
domain’’ D, enclosed by a surfaceS. For each excitation, the direct scattering problem is ref
mulated as the domain integral equation~for xPD, j 51,2, . . .,J)

L~x! j~x!ªuj~x!2~GDuj !~x!5uj
inc~x!, ~3.21!

where
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x; is/v«0 , ~3.22!

s is the conductivity,«0 is the free space permittivity,

~GDxuj !~x!5k2E
D

G~x,y!x~y!uj~y! dy, ~3.23!

and G(x,y) is the free space Green’s function. The operatorGD mapsL2(D) into itself. The
scattered fielduJ

sct on S is given by GSxuj , whereGS is the restriction ofGD to xPS, and
therefore mapsL2(D) into L2(S).

Now, assumeuj
sct is measured onS, and denote asf j (x) the measured data. The conductivi

problem is that of appraisingx by solving the equations

~GSxuj !~x!5 f j~x!, j 51,2,. . . ,J, ~3.24!

subject to the condition~3.20! be satisfied. The basic idea for achieving the strategy is
regularizing this reconstruction problem is well done by combining the data fit discrepancy
the defect in matching~3.23!, with the model discrepancy, i.e., the defect in matching~3.20!. The
authors choose as a simple and fixed combination the sum of the two normalized cost funct

F5wD(
j 51

J

iuj
inc2Lxuj iD

2 1wS(
j 51

J

i f j2GSxuj iS
2, ~3.25!

where

wD5S (
j 51

J

iuj
inciD

2 D 21

; ws5S (
j 51

J

i f j iS
2D 21

~3.26!

or discrete equivalent forms if it is useful. MinimizingF on u andx can be done, and has bee
done, by many different algorithms, a typical scheme being the iterative construction

ui ,n5ui ,(n21)1anv i ,n , xn5x (n21)1bndn , ~3.27!

where the functionsv i ,n anddn are ~in thesegradient methods! updated directions forui ,n and
xn , while the parametersan andbn are weights to be determined. The method is very flexib
Cost functionals can be constructed as well if a finite number of measurements only is inv
but x is then to be sought in a finite-dimensional manifold, in order to suppress the nonuniqu
This is achieved by using the linear span of conveniently chosen functions, whose seq
becomes total~complete! in L2(D) as the number of measurements goes to infinity. It is a
possible to modify the method in such a way that additionala priori conditions can be matche
~for instance, non-negativity of the imaginary part of the contrast!. In this case, the method, whic
was basically designed for a medium inverse scattering problem, enables also reconstruc
location and shape of the boundary of an impenetrable object without assuminga priori its
impenetrability. For similar purposes, one can also accomodate binary functions and the
rithms can be refined to derive either a bounded contrast reconstruction, or multifrequency
mation, or a reconstruction minimizing the total variation. In the past few years se
authors69–72 have adapted the modified gradient algorithms to noisy synthetic data or to rea
and they showed that, when noise is introduced, it yields better results than, for instanc
Newton–Kantorovitch method. Synthesis problems, where the far field to be obtained is k
and the antenna is to be designed, can also be managed by a similar strategy, with good r
complicated or too big physical systems are avoided, and possible applications of the me
other physical problems.
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From the examples we survey, we may think that although these real problems are non
their nonlinearity is not too large, and although they are multidimensions, their complexity i
an obstacle, since generalizations of classical methods apply. What happens if we go furth

D. Stronger nonlinearity and complexity

Here we get to problems where several admissible sets of solutions appear, and/or
secondary minima in using cost functionals, either because they are strongly nonlinear
because they are large size and complicated. It is clear that real data problems of wave prop
in the ground, and many others, may have these properties. The first reaction was, of cou
homogenize in layers,73 and use ray theory; the second one was to use Bayesian methods
standard functionals as if the problem was simpler.74 In many cases, the limits of this strategy a
reached rapidly. Mathematicians tried to find generalizedL2 algorithms75 that go in some way
beyond the traps of convexity. Some of these strategies are suggested by physics. For insta
can include in the algorithm evolutionsort of a kinetic energy that enables us to overpass sm
relative minimax in a function space, and sort ofa dissipationwhich fixes the algorithm limit on
the global minimum~algorithm of the falling ball!. Another approach is that of random walks
the function spaceC. It began in the 1960s with basic random choices~Monte Carlo method!
which used too much computer time and were slightly improved later by detecting the neighb
of a generalized solution and going to it by means of auxiliary iterative algorithms~hedgehog
method76!. In the 1970s and the 1980s, a strategy for getting the global minimum in a large-
combinatorial optimization problem was directly inspired by statistical physics: the so-c
simulated annealing.77

In simulated annealing, C is the space of configurations, depending on a control parametc,
andF is a cost functional onC, whose minimum is sought. Now annealing denotes~in condensed
matter physics! a physical process in which a solid in a heat bath is heated up by increasin
temperature of the heat bath up to a value where all particles of the solid randomly ar
themselves in the liquid phase, followed by a cooling which is slow enough that at each tem
ture the solid is allowed to reach its thermal equilibrium. Thus the low energy state o
corresponding lattice is eventually obtained. In the algorithm, the control parameterc takes the
role of temperature, and the value ofF takes the role of energy. For a given value of the cont
parameter, the sequence of configurations are generated by imposing a small displacem
randomly chosen particle~i.e., element of a configuration, or part of a function belonging toC!,
and continuing by a new perturbation only if the effect of the previous one onF has been negative
the aim being to obtain the thermal equilibrium. Then the control parameter is lowered in
this simulates the slow cooling. The final ‘‘frozen’’ configuration is the desired solution.
conditions for convergence are available.

More recently, another sort of algorithm based onrandom walks was inspired by the bio-
logical evolution. They are called thegenetic algorithms,78 which we now introduce:

Let F be defined on the spaceB5$0,1%N, with values inR1 (N is large!. The aim is to
localize global maxima ofF. The idea is that points ofB are words ofN ~binary! letters and sets
of m points are populations of individuals~or ‘‘chromosomes’’! whoseadaptation to environ-
ment is measured byF. Following the natural selection principles, one defines a stochastic
iterative algorithm on ‘‘populations’’ which is made of three operators: mutation, crossing-o
selection. LetXn5(Xn

1 , . . . .,Xn
m) be a population at ‘‘time’’n, i.e., stepn. The stepXn→Xn11

proceeds by three operations.
Xn→Yn : mutation. Let pP(0,1) ~small! be the ‘‘mutation’’ probability. For each letter o

each chromosomeXn
1
¯Xn

m , it is decided with probabilityp whether it is modified (0→1,1
→0) and with probability (12p) it is not.

Yn→Zn : crossing-over. Let q←(0,1) be the cross-over probability. We first constructm/2
couples inYn ~for example, by gatheringYn

p andYn
p11p51,2,. . . , or byproceeding randomly and

uniformly!. For each couple, it is decided with probabilityq whether the crossing-over will be
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done or not. If yes, the cutoff position is decided randomly and uniformly between 1 andN21,
and the end segments of the two chromosomes are exchanged as so:

000 0011 01101 001

100 1110 00110 111
→

000 0011 00110 111

100 1110 01101 001.
~3.28!

Hence a new couple of individuals is obtained and belong to the populationZn . q is generally
not small.

Zn→Xn11 : selection. The m individuals Xn11 are selected independently by means o
probability distribution onZn in favor of the best adapted individuals. For instance,

;hP$1, . . . ,m%P~Zn
h!5F~Zn

h!Y (
p51

m

F~Zn
p!. ~3.29!

It is possible to show that the sequence (Xn) is an ergodic Markov chain for which

lim
n→`

P~Xn115yn /Xn5x!5m~y! ~3.30!

exists. Hence, this algorithm works, and selects points with higher values ofF. But it is a random
walk throughC rather than a practical iterative algorithm, and it gives only the first principle
more operational ones, which belong to current research. It is clear that the presence of sec
extrema is not an obstacle for the algorithms exploring the function space by random walk
with the attraction of a cost functional. It is clear also that such an exploration consumes
computer time.

We cannot stop these remarks without one: in the case of very rough models whereC is Rn,
with n small, the cost functionalF is a function ofn variables which can nevertheless be difficu
to study if it has many secondary minima. There exists a ‘‘scanning method’’ for reducin
research to that of extrema of a one-variable79 function, and it may work for sufficiently smalln.

E. The informative content of data

Even if the solution is theoretically ‘‘determined’’ for exact data, there is a part of nonuni
ness~when a solution at least exists!, because a finite set of measurements cannot deter
completely a function defined on an infinite set of points. Hence we are led to the question
possible to appraise rapidly the real informative content of data? Of course, the only~approxima-
tive! answers are given in linear or quasilinear analyses. Let us be givenm linear measurements o
a functionx defined onV,R, with values inR

yi5E
V

Ki~s!x~s! ds, i 51,2,. . . ,m, ~3.31!

where theKi ’s and theyi ’s are known. It is clear that discretizingV into n subdomains where
x(s) is a priori homogenized may suppress the nonuniqueness question ifn<m, but at the price
of a completely unjustifieda priori assumption. On the other hand,n@m can be used if it
simplifies the mathematics or the computation without really modifying the true problem.

~1! In the end of the 1960s, Backus and Gilbert80 gave a very simple way for appraising th
resolving power of linear measurements. Suppose we consider a linear combination of theKi ’s,
with the best choice of coefficients such that the result has non-negligible values only aroun
t0 :

L~ t,t0!5(
i 51

m

l i~ t0!Ki~ t !. ~3.32!
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After normalizing thel i ’s so that*VL(t,t0) dt51, we insert Eq~3.33! into ~3.32! and obtain

(
i 51

m

yi l i~ t0!5E
V

L~s,t0!x~s! ds, ~3.33!

which is a function oft0 averagingx(s) in the range, sayt;t06d(t0) where L(t,t0) is not
negligible. The so-calledd-nessof L(t,t0),d(t0), is clearly an appraisal of the ‘‘resolving length
of data neart0 .

~2! More sensible results are obtained from the singular value decomposition. Let us go
to the problemy5Mx and Eqs. ~3.1!–~3.6!. We introduce also the orthonormal vecto
uk11 , . . . ,un and vk11 , . . . .,vm . HereM can be written as the Lanczos productUSVT, where
the square matricesU andV are made of the orthonormal vectorsui andv i , respectively, whereas
the m3n matrix S is made of zeros, except on its diagonal which shows in the o
s1 ,s2 , . . . ,sk .. SettingVTx5x8,UTy5y8, which represents a rotation of coordinate axes inC
andE and hence an isometry, the input equation becomes

y85Sx8. ~3.34!

Equation~3.35! trivially shows that the componentsyk118 , . . . ,ym8 must be due to errors o
noise; cancelling them gives the projectionȳ8 on R(M ). It is also clear thatxk118 , . . . ,xn8 cannot
be ‘‘seen,’’ cancelling them gives the least square quasisolution or natural inversex̄8, whose
nonzero components satisfy

ȳp85spx̄p8 , p51,2,. . . ,k. ~3.35!

If y8 is perturbed by a noisedy8, with idy8i;«1 whereasix8i;h, the values ofp for which
sph affords only a contribution to noise are irrelevant. Hence, for a given ratio signal/noise
can talk of a~limited! number ofdegrees of freedomin the systems. The extension of SVD
continuous andL2 kernels in first kind Fredholm integral equations corresponds ton and m
extended to infinity, and an infinity of singular values. Their asymptotic distribution gives in
mation on the behavior ofid x̄i as idyi→0, which is a measurement of the continuity for th
inverse or generalized inverse which is constructed. Ifid x̄i /idyib is bounded away from zero
with b.0 ~Holder continuity!, the stability is strong. But when thesp’s go to zero exponentially
as p→`, there are cases whereid x̄i goes to zero only as, say,u log idȳiu2b,b.0 ~logarithmic
continuity!. Stability is weak, and a strong regularization should be done. The SVD analys
measurements informative content was extended by Bertero, de Mol, and Pike to many e
mental inverse problems described by an underlying first kind Fredholm equation. Such pro
include, for example, diffraction-limited electromagnetic imaging and quasi-elastic laser
scattering. The orthonormal bases are used for the description of sampled and truncated m
data and for the reconstructed continuous object solution of the inversion. The singular-s
approach81,82 may then be regarded as a theory of information which generalizes in several
tions the well-known classical concepts of Shannon and Nyquist. An example of more g
mathematical application is the analysis of the inversion of Laplace and finite Laplace trans

~3! The resolving power ofvery few linear measurementscan be analyzed in principle b
means of the SVD, but, in practical cases, the importance ofa priori assumptions and that of th
data regularity are overwhelming. The problem is important in all cases experiments are d
exceptional conditions~e.g., fracturation due to an explosion!, or no experiment was done but
natural physical event happened, and one must cope with the available information. Not
work has been done in this direction.83 On the other hand, the resolving power of a finite num
of weakly nonlinear measurements can be analyzed, but strong nonlinearity is a ho
obstacle.84

~4! Image and signal processing are meant to give information whose dependence on th
they have been obtained is completely controlled, and which are recognizable by a good ob
Hence their studyintersectsonly inverse theory, since the parameter identification is done by
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observer. But the filters used to reduce ‘‘noise’’ or ‘‘blurring,’’ or any other ‘‘alteration,’’ act
fact as a regularizer, and it is important to control how they alter the data informative conte
wide literature exists on the subject.85

The last 30 years saw the development by Matheron and Serra86 of mathematical morphol-
ogy, and, in this framework, an approach to image processing based on abstract algeb
geometry. The idea is to represent the geometrical structure of an image with the help of
patterns at various locations in the image, called ‘‘structuring elements.’’ By varying their siz
shape, one can extract useful information about the shape of the different parts of the ima
their interrelations. Take the example of a black and white imageX, and a small movable setA ~a
‘‘structuring element’’!. Information onX is gained by probing it withA, i.e., by testing whether
A in position h hits X, missesX, or lies entirely insideX. One can construct ‘‘set operators
acting on the space of images~in the example, binary images! and with them a mathematica
machinery which is well suited for the analysis of the geometrical and topological structure
image.

F. Future of applied inverse problems

There is hardly any need for discussing the future of applied inverse problems. The ele
A–C cited at the end of Sec. II are overpresent in this study. Nondestructive sensing, m
imaging ~including future techniques as magneto encephalography and diffuse tomograp87!,
radar~sonar, lidar! shape reconstruction and identification, polarimetry, interferometry, anten
remote sensing and all kinds of detection and of geophysical or astrophysical soundings, th
raphy, groundwater modeling, etc.,88,89 there is almost no measurement process which escape
needs for solving an inverse problem, generally ill posed. We sketched the classical app
after the exact study is done, the study in view of computerized inversion makes clear con
for which the solution is determined and defines the strategy for regularization. At this point
good also to appraise as much as possible the informative content of measurements. But f
purposes, the future studies must cope with more and more strongly nonlinear problems, for
the present techniques are showing their limits. The algorithms using random walks were t
improved in 40 years but are still too slow. Others must be adapted closely to the par
problem. Maybe a classification of nonlinear problems could be tried for this purpose. A
understanding the data informative content in nonlinear cases, to my knowledge, there do
exist anything comparable to the SVD, and the available generalizations of the Backus–G
method are not very convincing. Actually, we have known since the 1970s trivial example
which quasilinear methods must fail, because of the existence of several sets of equ
solutions.84

Nonlinearity , three space dimensions, and other constraints such as the need for inversio
real time~while the process diagnosis decision is done by an observer! have already renewed onc
many strategies for applied inverse problems. We are inclined to predict the increasing impo
of several other elements in analyses:

~a! The need ofcombining data coming from measurements of different kind: although su
a joint interpretation of data was done from time to time90,91it remained, in many cases, a simp
recollection and comparison of separately identified parameters.

~b! With the probablyincreasing risk of climatic hazards and connected ones such
avalanches and ground slides, not to speak of tsunamis and seisms, there is the need to c
a few bad data to make prevision and protection.92

~c! The problems arising fromvery large complicated systems~we mean that they remain s
after all the possible homogenizations or simplifications are done!. There are limit cases where th
complicated structures are only on the boundary of a general medium which interacts with th
a known way~e.g., coastal studies around an ocean! and a ‘‘patchwork’’ analysis93 can work, as
the domain decomposition methods do in numerical analysis. There are fully complicated
where it is nevertheless possible to say something~seismic waves in earth!.94 In all these cases
there is certainly much to do.
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~d! Data assimilation95 is a technique where the evolution of a system yields at each timt i

a set of data which is used to refine the description of this system as it evolved in the near p
to use the supply of information to improve the predictions on the system evolution in the
future. Hence the central problem is an inverse problem and, considering the range of appli
in weather forecast and other environnemental previsions, these problems all have chance
studied more and more, and the specific techniques they use to be improved again and a

IV. INVERSE METHODS AND DIFFERENTIAL OPERATORS

Inverse methods were generated by exact analyses of inverse problems.A posteriori, one can
say they derive from a very simple idea. An exact method yields a bijectionM betweenC andE.
Let Y5$y(t)% be a family of elements ofE, representing the evolution ofy with t. Let X
5$x(t)% be its reciprocal image. IfY is known,X can be constructed asM 21(Y). Hence, if, for
instance, solving an equationE enables us to calculatey(t) from y(0), we cancalculatex(t) from
x(0) as

y~0!5Mx~0!; y~0!⇒Ey~ t !; x~ t !5M 21y~ t !. ~4.1!

Here t can be a continuous variable or a discrete one, labelling discrete steps. Since a cha
nonlinear exactly solvable equations is given in this issue, we shall only give two basic exam
but seen from a personal point of view.

A. First example. The inverse scattering transform „IST…

We give an example of deriving IST, in the famous ‘‘Korteveg–de Vries’’ case, wh
method is less well known than others and shows well the present problems related to bo
values. Letx,tPR, andF(k,x,t) be a two-vector continuous solution of the equations

]

]x
F~k,x,t !5M ~k,x,t !F~k,x,t !, ~4.2!

]

]t
F~k,x,t !5N~k,x,t !F~k,x,t !, ~4.3!

where

M5M01V; N5N01W; N05k2M0 , ~4.4!

and

M05S 0 1

2k2 0D , V5S 0 0

V~x,t ! 0D , ~4.5!

W5S V1 V0

k2V01V2 2V1
D , ~4.6!

V05 1
2 V~x,t !, V152 1

4 V8, V25 1
2 V22 1

4 V9. ~4.7!

In these formulas, prime denotes the derivative with respect tox. Now, it is readily seen tha
if F(k,x,t) has continuous second derivatives~as a function ofx andt), the consistency condition
between~4.2! and ~4.3! reads

]M

]t
2

]N

]x
1@M , N#50, ~4.8!
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which holdsif and only if the ‘‘Korteveg–de Vries’’ equation~KdV! holds:

]V

]t
1

1

4
V-2

3

2
VV850. ~4.9!

Thus, a solutionFPC2 yields a solutionV of KdV. The idea is to constructF5(F2

F1) with the

help of Eq.~4.2!, which is nothing but the Schro¨dinger problem for the componentF1 :

F ]2

]x2 1k22V~x,t !GF1~k,x,t !50; F25F
1
8 . ~4.10!

Suppose we knowV(x,0), say, inL2
1(R). The scattering and inverse scattering problems

the x-line t50 are well defined, in particular, the Jost solutions for the problem~4.2!,

GQ 6~k,x,0!
x→`

kPR S 7 i

kD e6 ikx, ~4.11!

gQ 6~k,x,0!
x→2`

kPR S 7 i

kD e6 ikx. ~4.12!

Because the second components in these vectors are x-derivatives of the first ones, t
trivially related to the Jost solutionsf 1 and f 2 , for 6k, defined in Sec. II. Now the equation~4.3!
is obviously equivalent to a Volterra integral equation@obtained by integrating both sides o
(0,t)], which yields, if V(x,t) is known, a unique continuation of a solution from its value at

50 to its values att. Let Gª 6(k,x,t) andgª6(k,x,t) be the continuations of the functions define
by ~4.11! and~4.12!. SinceM andN are zero trace matrices, the determinant of two solution
~4.2! and ~4.3! depends only onk, and the space of these solutions has dimension 2. Fort50, the
determinants made out of the Jost solutionsGQ 6 andgQ 6 give the scattering coefficients. If we see
V(x,t) with the working assumption, to be checked afterwards, that there exists an in
containingt50 whereV(x,t) is still in L2

1(R) as a function ofx, the asymptotic behavior o
Gª 6(k,x,t) andgª6(k,x,t) asx→6` can be derived by solving~4.3! in the limit V→0, which is
trivial, and it shows that the Jost solutions at a givent, with the standardization defined by th
right-hand side of~4.11! and ~4.12!, are simply related toGª 6 andgª6. For instance,

GQ 6~k,x,t !5exp@7 ik3t#Gª 6~k,x,t ! ~4.13!

and a similar formula forgQ 6. From them one readily obtains gets the evolution of the scatte
coefficients

R1~k,t !5R1~k,0! exp@2ik3t#, ~4.14!

and, by going in the complex plane, one can see that the discrete eigenvalues are invariant~so that
the evolution, keeping both the continuous and discrete spectrum, is isospectral!, whereas their
coefficient is multiplied by exp@22kn

3t#. It suffices now to solve the inverse scattering problem
deriving V(x,t). This is possible by means of the Faddeev–Marchenko equation~2.38!. The
interest of this approach96 is that it can be treated in a somewhat symmetric way by commuting
roles ofx and t, and can also be used by replacing one axis by an elbow@for instance, the set o
two half axes (t50,x>0) and (x50,t>0) where a scattering problem can also be defined#, but
the analysis produces then two competitive ways for determiningV(x,t), either by following lines
of fixed t or lines of fixedx. It follows that V(x,t) can be determined only if the dataV(x,0)
(x>0) andV(0,t), V8(0,t), V9(0,t) (t>0) satisfy consistency conditions. These difficulties d
to boundary values are also shown by spectral methods.97
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There are many integrable nonlinear partial differential equations in addition to KdV an
‘‘hierarchy,’’ and they have been ‘‘integrated’’ or ‘‘linearized’’ by many different methods98

including or not inverse scattering. Spectral methods and D-bar methods are still closely con
to it, as well as the classical ‘‘Lax approach,’’ in which one studies isospectral transformatio
the parameter~above it wasV) in the spectral operator~above, the Schro¨dinger one! depending on
one parameter (t). But direct linearization methods,99 algebraic methods, and methods of alg
braic geometry are available and, in some ways, more powerful. As we already said, this is b
the present review.

B. Second example. Scanning C with Darboux transforms

For mPC Im m.0, kPC let u be any given solution of

u9~m,x!1~m22V!u~m,x!50 ~4.15!

and f be a solution of

f 9~k,x!1~k22V! f ~k,x!50. ~4.16!

It is easy to check that if

f T~k,x!5
d

dx
f ~k,x!2

u8~m,x!

u~m,x!
f ~k,x!, ~4.17!

then

f T9~k,x!1~k22Ṽ! f T~k,x!50, ~4.18!

where

Ṽ~x!5V~x!22
d

dx

u8~m,x!

u~m,x!
. ~4.19!

Hence, if a one-dimensional Schro¨dinger equation can be solved, so can the transform
equation. A Jost solutionf 6(k,x) of Eq. ~4.16! yields a Jost solutionf̃ 6(k,x) of ~4.18! after we
have used the transformation~4.17! and a restandardization of the asymptotic behavior
follows25 that the spectral data corresponding toṼ are simply related to those corresponding toV.
For instance, ifm is not a discrete eigenvalue andu(m,x) is chosen equal tof 2(m,x), we get an
isospectral transformation

T̃~k!5T~k!, R̃1~k!5
m1k

m2k
R1~k!, ~4.20!

whereas ifu(m,x) is chosen equal tof 1(2m,x), the transformation introducesm as a new
discrete eigenvalue and

T̃~k!52
m1k

m2k
T~k!, R̃1~k!5

m1k

m2k
R1~k!. ~4.21!

Thanks to the Darboux transformations, two discrete families of points are generated,
C, the other inE, and the mappingM and its inverseM 21 of Sec. II map them to each othe
Hence, if those inE are dense enough to yield good approximations to elements ofE, we have an
algorithmic way for solving the inverse problem. Suppose, for instance, we know the couplV0 ,
R1

0 , and we are givenR1(k). We can approximateR1(k)/R1
0 (k) by a rational fraction, equal to

the product) i 51
N (m i1k)/(m i2k), and deriveVN from V0 by applyingN times Darboux trans-
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formations~4.19!. The ambiguity between~4.20! and~4.21! shows the possible nonuniqueness
we have no information on ‘‘bound states.’’ The remark above is the basis of the meth
‘‘rational scattering coefficient.’’25 Many others use Darboux transformation for the same p
pose, in connection with other inverse problems governed by differential equations100 ~in particu-
lar, we give another example in Sec. V!. Unfortunately, the method is convenient only in the ca
of ordinary differential equations. It has been so far the best way to produce exactly so
examples of Schro¨dinger equations.~Most of these examples can also be explained in the fra
work of supersymmetry.! Needless to say, the spectral properties of Darboux transformations
many generalizations are also used considerably in the research on integrable nonlinear
differential equations but, again, this is not our present survey.

C. Future of inverse methods

The renewal of topics for inverse scattering and related techniques is now coming again
framework of boundary value problems of nonlinear partial differential equations. The u
Darboux transformations and generalizations for generating exactly solvable examples ha
stopped growing and never stopped generating applications.101,102 They can even be used as
guide to design an experimental structure with given resonance properties.102

V. INVERSE PROBLEM AND MODELING

We essentially discussed descriptive modeling. When should approximate modeling o
sive modeling be used? In the Introduction, we talked about the first analyses of inverse pro
to be achieved with a profile inversion formula. They worked because the model was ap
mated. In particular, when the difficult point was in the model part related to wave propagat
was simplified. As a matter of fact, this kind of model simplification is still of common use
applied nonlinear inverse problems.

For example, in electromagnetic, acoustic, or elastic waves soundings of a medium
propagation of waves whose wave length is short compared to details is modelized by D
JWKB,25 or eikonal, or ray theory.103 Similarly, electromagnetic sounding of a target is oft
modelized by physical optics approximation,7 which makes use of the Huyghens principle on t
enlightened side and neglects the shadow. If wave lengths are very large compared to deta
details are small or very smooth, even if this is true only in part of the target, models
first-order approximations may work, for instance, those using Born or Rytov formulas,104 and
they are even able to show the limitations of a technique~e.g., diffraction tomography105 with
limited angle!. In all these ‘‘linearized cases,’’ tomographic scanning leads to Fourier slice t
rem and to results somewhat similar to those given in formulas~2.53!–~2.55!.7 Actually, linear-
ized models are usually the first ones to be used, and they give much information on th
problem~even if it is ill posed, see further on in this paper!. However, one should be careful at n
omitting in the model thosea priori constraints which show where the size of parameters goes
of the range for which the approximation is justified.

I have no point in going further on how linearized or weakly nonlinear approximate mo
are built~for instance, those using curved rays!. The problem is thoroughly studied case after ca
in a considerable number of books and papers. I only emphasize that these models will alw
at the beginning study of a real problem, and their future seems endless.

Let us see cases where the inverse problem is ill posed, and particularly when it is
structural reasons, i.e., not only because the small number and errors of data prevent the
affording enough information. The question is ‘‘what modeling should be used?’’ There are
possible cases, but three ones are frequently met.

A. First case

The problem would be overdetermined with more data and exact values from the
‘‘class’’ of measurements. There is no point in changing the model, regularization and imp
ment of data get satisfactory results, cf. Sec. III.
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B. Second case

Even with all the data the specified class of measurements can furnish, and with th
precision, the problem would be undetermined~this is really a structurally ill-posed problem!. But
the nonuniqueness can be labelled by a finite number of physical parameters that corresp
information partially or totally contained in other sources of knowledge. This case is obtaine
instance in quantum scattering by a potential~see Sec. II!. Of course, one might remark that if onl
a complete solution of the exact inverse problem could give full information on nonuniquene
approximate study might be irrelevant. Fortunately, we can show an example that an appro
modeling may sometimes tell everything on the ill posedness of the true problem.

C. Example of approximate modeling giving the whole ill posedness 106

Again we consider the exact scattering problem defined from~2.14! at fixedk in the caseV is
spherically symmetric. ThenF can be related to the phase shiftsd l of the so-called ‘‘partial
waves,’’

2ikF~k,cosu!5(
l 50

`

~2l 11!~12exp@2id l # !Pl~cosu!. ~5.1!

Now there are Darboux transformations such that ifV→$d l%, the phase shiftsd̃ l correspond-
ing to the transformed potentialṼ can be calculated. More precisely, the following is true. Len

be a complex number,n! its conjugate. Letf l and f̄ l be two independent solutions of the equati

f 91@k22V2x22~l22 1
4!# f 50. ~5.2!

Let Fl and F̄l be the logarithmics derivative off l and f̄ l . The transformed potential

Ṽ~x!5V~x!22x21~n!22n2!
d

dx
~Fn!2F̄n!] 21 ~5.3!

corresponds to the transformed phase shifts

exp@2i d̃~l!#5
l22n!2

l22n2 exp@2id~l!#. ~5.4!

For l5 l 1 1
2, we obtain the physical phase shiftsd( l 1 1

2) or d l . Now suppose it is possible to
find N and$nn%, n51,2,. . . ,N, such that, forl 50,1,2 . . . ,

exp@2id l #5exp@2id l
0# )

n51

N ~ l 1 1
2!

22nn
!2

~ l 1 1
2!

22nn
2

. ~5.5!

Using the algebraic expansion

)
n51

N ~ l 1 1
2!

22nn
!2

~ l 1 1
2!

22nn
2

511 (
n51

N
An

~ l 1 1
2!

22nn
2

, ~5.6!

elementary calculations yield

2ikF~k,x!5(
l 50

`

~2l 11!~12exp@2id0# !Pl~x! ~5.7!
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1(
l 50

N

An(
l 50

`

~2l 11!~12exp@2id l
0# !F S l 1

1

2D 2

2nn
2G21

Pl~x! ~5.8!

2 (
n51

N

An(
l 50

`

~2l 11!Pl~x!F S l 1
1

2D 2

2nn
2G21

. ~5.9!

The first is the scattering amplitude which correspond a potentialV0 , obtained by applying
the transformationN times to V. The third term is made of a superposition ofN Regge pole
contributions. The second term can be derived by composing the first one and the third oneV0

satisfies the conditions of the Born approximation, which are somewhat equivalent to assum
d l

0 are small enough, the ill posedness of the problem forV has been transferred to that forV0 ,
which is approximately the inverse Fourier transform of a function known only on@2k, 1k#. It
is true in the generic case that a Pade´ approximant for thed l

0’s can fix $d l
0% in such a way thatN

is finite and the Born approximation applies toV0 , so that we describe the ill posedness of t
inverse problem at fixed energy. In an exact study based on the Regge–Newton equation, th
low-pass-filter ill posedness studied in Sec. II holds for a functionf (r ,r ) bijectively associated to
the potential. Hence the heuristic way of ill posedness analysis yields here the correct res

D. Third case and decisive modeling

In this third case, the problem is underdetermined because the number of measurem
necessarily finite whereas the complexity of the system is such that only an infinite numb
experiments might give enough information. An example is that of limited angle tomograph105

Another one is that of gravity measurements. They are linearly related to the specific mas
bodies underground. But they may be at most a few thousand on a field of, say, 1003100 km2,
which means that even if we allow representing the densities in the first 10 km undergrou
homogenized pixels of 1 km3 each, 100.000 of them are necessary, certainly several time
number of measurements ! In addition, bodies of different volumes~e.g., balls of different radius!,
but with similar total masses, can have the same effect at the points where the measurem
done. So as to get hopefully representative solutions, there is no escape but to reconsi
modeling and/or making stronga priori assumptions:

~a! It is sometimes assumed that, underground, only a few bodies of geometric shape~e.g.,
polyedral! show a significant density contrast to the background.107

~b! One may also try to ‘‘represent’’ contrasted bodies by those which are ‘‘equivalent’’
have the most concentrated mass, and look for a distribution of concentrated masses.108

~c! Finally, one may try to describe the set of solutions, which is a bounded convex set an
in a space of finite dimension if a finite number of pixels is used, by means of its ext
points—or by theoretical measurements on it! So, as to be more precise, letx5$xN% in RN be the
vector whose coordinates are the specific masses in then pixels. The equation to be solved is~if
errors are denoted asdy, and the linear mapping is represented by the matrixM )

Mx5y1dy, ~5.10!
to be completed by the condition on specific masses:

0<xn<b. ~5.11!

If the system has a solution, it has a whole bounded convex set of solutions, and the e
points of this set can be derived by linear programming~e.g., by the oldsimplex method!. For
instance, assumedy50 for the sake of simplicity, and introduce positive weightswn which tell us
that a parameterx is more ‘‘likely’’ if (nwnxn is smaller. We have to derive 2N non-negative
variablesxj such that the system holds:

(
n51

N

Mi
nxn2yi50, i 51,2,. . . ,P,N, ~5.12!
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xn1xN1n5b, n51,2,. . . ,N, ~5.13!

and the following cost function is minimized:

(
n51

N

wnxn5c. ~5.14!

~We introducedN dummy variablesxj , labeled fromN11 to 2N.) It is known that if the solution
is an ‘‘extremal’’ one,N2P of the 2N variablesxj vanish, i.e.,N2P of the important ones (j
<N) are either 0 orb. Because of these two attracting values, whose physical relevance
always obvious, this ‘‘bang bang’’ solution is usually not very satisfactory. One may think it b
to look for a solutionxn , n51,2,. . . ,N, whose largest componenta is the smallest among al
solutions~minimum contrast solution!. This again leads us to a bang bang solution and the num
of pixels where the value ofxn is neither 0 ora is still equal toP. In both cases, the discretizatio
becomes finer and finer, the volume of theseP pixels becomes negligible compared to the
minder, and the minimum contrast solution or solutions are two valued.

The other way to use this analysis is to try asking questions which correspond to
well-defined geometric property of the set of solutions and enable the engineer to decide on
investigations, such as, for instance, the upper and lower bounds of any linear moment

(
n51

N

cnxn . ~5.15!

There are also extreme properties109 that make it possible to decide whether digging down
certain depth and obtaining nothing, combined with the information obtained on the set of po
solutions, proves anything. The method works on real data.109 More generally, decisive modeling
needs represention of complex media by few parameters enabling decisions: all techniques
representation are welcome, e.g., wavelets in the one-dimensional case, Mathematical morp
in the two- or three-dimensional cases.

E. The future

The technique of ‘‘well-posed questions’’ for an ‘‘ill-posed’’ problem109 may become very
important in computerized analyses of strongly underdetermined problem and we believe it w
used more and more in the future. The only reason for which imaging parameters are~nowadays!
felt as so important is because the eye of managers helps them taking decisions. Des
modeling may be gradually superseded by decisive modeling, adapted to the questions
answer enables computer decisions.

As for approximate modeling, it is clear that it will always remain the best introductio
more realistic studies of a real problem. In particular, it is the only way to prepare a study w
much information is missing and where one knows or suspects that information is destroyed
very structure of the direct problem. A typical example is the inverse tsunami problem: ver
data usually are available in the generation range, whereas data after propagation are so
modified by topographical details that a wave 20 cm high in deep water may produce mor
15 m runups on some beaches! Combinations of approximate studies well adapted to th
environment along the wave propagation give much more reliable studies than attempts
numerical codes!

Finally, let us again emphasize that the joint interpretation of data, when it becomes effi
will require probably special ways of modeling; some of them are already appearing i
so-called multidisciplinary optimization.
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VI. SIDE APPLICATIONS OF INVERSE THEORY

From time to time, a theory yields results which prove useful in other~related! fields. We give
here three examples in the case of inverse theory.

A. Nonlinear signal processing

The usual mathematical methodology in time series analysis is harmonic analysis. The r
for using Fourier transform are justified for stationary or quasistationary processes and fo
gressive waves that propagate linearly: because of linearity and translation invariance, eac
rier component of the spectrum has a physical meaning. In the case of transients, justificati
weaker, and the wavelet analysis may supersede the Fourier one. What about progressiv
that propagate nonlinearly? One still needs a spectrum such that each component has a
meaning, i.e., it can be identified along the propagation, and filtering, for instance, makes

We discuss here the case of a KdV wave propagation, successively on linearized and
models. If a signalh propagates according to linearized KdV, it obeys the equation

]h

]t
1c

]h

]x
1b

]3h

]x3 50, ~6.1!

where

c5Agh; b5 1
6 ch2; v~k!5k~c2bk2!, ~6.2!

v(k) is the dispersion, andc is the group velocity. The equation~6.1! and Fourier transforming it
yield the evolution ofh :

h~x,t !5~2p!21E
2`

1`

F~k,t !eikx dk, ~6.3!

where

F~k,t !5e2 iv(k)tE
2`

1`

h~x,0!e2 ikx dx. ~6.4!

A scheme for processingh is by derivingF(k,0) from h(x,0) and Eq.~6.4! ~direct problem!,
and analyzing or filteringF(k,0) ~if we manage real data!. Then lettingF evolve, we can recove
h(x,t) from F(k,t) ~inverse problem!. All this is possible ifh(x,0) belongs either toL1(R) or
L2(R). Let us now assume thath propagates according to KdV:

]h

]t
1c

]h

]x
1ah

]h

]x
1b

]3h

]x3 50, ~6.5!

wherec andb are given by Eq.~6.2!, and we introduce

a53c/2h56bl. ~6.6!

Following the analysis of Sec. II, the evolution ofh(x,t) can be obtained in three steps:
~a! First deriver (k), $kn%, and$cn% from h(x,0) by solving the direct scattering and spect

problems for the Schro¨dinger operator on the line:

]2c

]x2 1@lh~x,0!1x2#c50, ~6.7!

wherex5 1
2k. Knowing these spectral data enables analysis and/or filtering of the signal spec

which is invariant through the signal propagation,
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~b! Through the signal propagation, the spectral data evolution is given for the discrete
trum by

kn~ t !5kn~0!; cn~ t !5cn~0! exp@Vnt#, ~6.8!

where

Vn5kn~c14bkn
2!, ~6.9!

and that of the reflection coefficient is

r ~k,t !5r ~k! exp@2 iv~k!t#. ~6.10!

~c! The recovering ofh(k,t) at time t is obtained by solving the inverse problem. With th
notation used here, the Faddeev–Marchenko method of Sec. II reads as

R~z,t !5 (
h51

N

cn~ t ! exp@2knz#1
1

4p E
2`

1`

r ~k!eikz/2 dk, ~6.11!

Kt~x,y!1R~x1y,t !1E
x

`

Kt~x,z!R~z1y,t ! dz50, ~6.12!

h~x,t !52l21
]

]x
Kt~x,x1!. ~6.13!

The similarities between linear and nonlinear processing are obvious in formulas~6.1!–~6.13!.
This analysis was applied by Osborne and co-workers110 to the internal~density! waves observed
by satellites in the Andaman sea. These waves interfere with surface waves, creating r
which the sea surface reflectivity is modified, which enables electromagnetic waves scatteri
observations. Solitons were identified and they are consistent with the analysis described
Similar analyses were conducted with KdV and periodic conditions110 and on signals or mode
ruled by other nonlinear partial differential equations that correspond to isospectral evolution
can be solved by inverse methods. Extensions to two-dimensional systems and to nearly int
systems is also possible, at least approximately.

B. Increasing instruments resolving power

The resolving power of an imaging system is a measure of its ability to separate the ima
two neighboring points.111 Usually, the image of a point source is a diffraction pattern, wh
intensity is called the point spread function~PSF!. Hence, in an ordinary optical microscope~we
shall call it optical system I, or OSI!, two point sources cannot be discriminated if they are clo
than, say, the Rayleigh resolving length, trivially related to and of the order of the light w
length l. The optical system can be viewed as a linear system characterized by its im
response, the point spread functionS(x). If the system is invariant for space translations, t
imageg(x) is given from the objectf (x) by

g~x!5E dy S~x2y! f ~y!. ~6.14!

The Fourier transformŜ(v) of S has compact support because diffraction effects impos
cutoff ~spatial! frequency and hence produces the Rayleigh resolving length.

In confocal scanning microscopes~we call them OSII!, the specimen is not illuminated by
diffuse source of light but put under a sharp laser spot focused by a first lens, called the ‘‘i
nation lens.’’ The image is formed by the ‘‘collector lens’’~which has the same focus!, and is
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recorded by a detector. Pointwise detection is achieved thanks to a small pin hole, and the
is detected only on the optical axis. Two-dimensional views of the specimen are genera
scanning. For a fixed scanning position, we obtain

g~x!5E dy S2~x2y!S1~y! f ~y!, ~6.15!

whereas at a scanning position (t),

g~x,t!5E dy S2~x2y!S1~y! f ~y1t!, ~6.16!

whereS1 is the PSF of the illuminating lens andS2 that of the imaging one,f is the transparency
of the specimen, andg is the light amplitude in the image plane. The case with detection on
optical axis is obtained by settingxaxis50. Now, the Fourier transformĤ(v) of the product
S2(2y)S1(y) has a larger support than any of them~in the common case whereS15S2 , the cutoff
frequency can be multipled by 2!, and this leads to a significant improvement in resolut
compared to an OSI. However,Ĥ is small near the limits and the improvement is limited by t
noise and does not go beyond 1.4 or so.

The idea of Berteroet al.111 was to replace the single on-axis detector by an array of detec
in order to measure, at each scanning position, the complete diffraction image~and not only its
value on the optical axis!. These supplementary data are used to reconstruct the object a
confocal point by solving the linear inverse problemg→ f modeled by Eq.~6.16!. Compared to
OSII, this system, say, OSIII, requires a different data treatment. An array of detectors has
introduced to record also a few off-axis image values. A data inversion procedure has to
mented in the associated computer~or by an optical system of ‘‘masks’’!. Experimental tests
showed a significant improvement of resolving power.

C. Future of side applications

It is, of course, not possible to predict whether different side applications will be discov
But it is easy to see that each of the two examples we showed defines a fruitful line of res

In the case of Example 6.1, one could object that KdV and other integrable nonlinear e
tion equations are very special nonlinear equations, and that isospectrality is necessary fo
processing, so that it is unlikely to see many practical generalizations of the method. Th
objection is not good follows from the fact that in asymptotic conditions, and more generally
some scale conditions are fulfilled by the observed signals, integrable nonlinear evolution
tions hold for wave propagation. The studies of Calogeroet al.112 have shown it clearly in mon-
odimensional cases and in the case of wave motions which are on a 2d surface but are monodi
mensional because they are trapped. Analogous treatments in two-dimensional cases are a
but, admittedly, they are more unlikely to generalize because the inverse methods are muc
complicated.

In the case of Eq.~6.2!, the idea of refining the resolution by solving the inverse problem
the impulse response is simple, sound, and one should remember it each time an image is o
by scanning point responses. We would like to suggest research which may be som
related—that of making irradiation instruments with zero penumbra, i.e., with a sharp edg
tween the ‘‘illuminated’’ part and the dark ‘‘one.’’ In many medical applications~and others!,
penumbra is a nuisance.

It is important to realize that applications of inverse theory are not always straightforwa113

Ideas may be generated in a very indirect way, since mathematical connections to inverse
lems generate apparently uncorrelated directions of research. Notice, for example, that int
pde and Darboux transforms of Sec. V are thus connected to the theory of commuting diffe
operators and signal band limiting in the theory of information as well as they are connec
Calogero–Moser models in classical and quantum mechanics, to the theory of orthogona
nomials and to the Huyghens principle.114
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D. Invisible structures

‘‘Invisible’’ details exist in many soundings whose range is not sufficient. There are
places for submarines if a centered acoustic sounding is used because of the ray curvatu
even in diffraction tomography. In the case of radars, the signature and cross section of rad
be modified by using appropriate coverings and shapes, and one obtains stealth targets, w
almost invisible in the limited frequency range of commercial radars and with the common m
static use of them. Of course, the property disappears with other measurements, and you
a stealth plane at an airport. Although it is a side application of inverse problems, I will no
more on that. It is clear that this kind of application has a rich ‘‘future.’’

VII. CONCLUDING REMARKS: OPENINGS OF THE FIELD

The field of ‘‘inverse problems’’ is wealthy. We concluded the first international workshop5 in
1971. We created the first journal115 on the subject, with the help of the ‘‘Institute of Physics,’’
1985. There are now several international workshops, or special sessions in large cong
every year. There are now three scientific journals and an electronic bulletin, that of I.P.N.E
addition to several internet sites. Although the definition of our problems looks very gen
attendance at any of our workshops shows our specific ways of treating information in or
avoid losing or unconsciously creating pieces of it. Mathematical physics, mathematics, a
gineering use only parts of the field, and we discover every year new openings in these sc
but also in biology, chemistry, or economics.116 It is clear that the research of ways for gettin
information on our real world models is open unboundedly in time. But several previsions ar
trivial: let us give a flavor of possible ones.

A. Previsible openings in modeling

We already noticed that going from imaging, or from any descriptive modeling, to a m
‘‘decisive’’ modeling, where a set of well-posed questions can get at the required informa
both reduces the processing time and improves the regularity of the problem—essentially b
it reduces the amount of information which is sought to that which is necessary. Followin
examples we cited~very underdetermined problems!, we can predict that strategies for modelin
will take more and more into account both what is to be really used in the desired results an
the corresponding inverse problem is posed, in order to increase the reliability of decision
course, the strategy needs a thorough dialog between modeling and setting the inverse p
Besides, in this dialog, all other criteria of quality for a model should be respected, a
particular the adequacy to real world problems should be improved as much as possibl
recent available studies of strongly nonlinear media or of very complicated media go this wa
increasing importance of hazards evaluation, in the moving environmental conditions which
to prevail, will create more and more problems relevant to such an analysis.

B. New directions for informative contents of measurements

The two best representations of the informative content of measurements are still imagin
identification of descriptive parameters. In the last few years, authors have produced an imp
number of ways to take into accounta priori information or to insert it in order to make predic
tions in a dynamical model~data assimilation!. In the case of imaging, in addition to the classic
filtering techniques, we see the emergence of morphomathematics, and of technics whic
replace the human~or mind! eye for reconstructing a pattern by following a definite logic. In t
case of identification, most regularization techniques still go through minimizing appropriate
functionals, and use standard techniques of functional analysis. However, some others use
cal ideas or biological ideas for smoothing or overpassing a distribution of secondary mi
Others ~domain decomposition, patchwork! can use the interaction between local and glo
analyses, and so do the methods of data assimilation.
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C. New methods and new applications

It is clear that I cannot predict new mathematical methods or new applications of in
methods. But I can see that the next step in applying inverse scattering methods to no
partial differential equations must deal with boundary value problems for these equations.
see that signal processing when the information is not propagated in a linear way will re
analyses where the information given at various places has to be compared, and new
problems will grow out of it. I can see that all the medical imaging, the medical diagnosis,
imagings, other diagnoses, and that of phenomena occuring in very short time~explosion! or long
time ~weather, ocean! or very long time~climate! will require special inverse problems analyse
I am afraid stealth targets always will be popular for military people who use them and the
for seeing them for those of the other side. I also think it is obvious that combining the inte
tation of data coming from various soundings will be more and more systematic. In medical
tomography, for instance, this is done by comparing images obtained by x-ray scanner, n.m
p.e.t. thermography, and maybe tomorrow by magneto-encephalography. It is clear tha
oriented and more systematic ways for this kind of data joint interpretation will be developed
fields.

D. Old and new trends

When I try to project into the future, I clearly see that all the interesting developmen
inverse problems will require more and more collaboration between different fields of knowl
and this is not only because the dialog between modeling and setting the problem will
increasing importance. The need for an interdisciplinary approach to inverse problems was a
apparent 30 years ago because of the redundant methods of solution which were used in d
fields. It is for this reason that I created67 ~in 1972! the interdisciplinary meeting ‘‘RCP 264,’
following the pioneering work of Newton117 and of Colin.5 But the need for an interdisciplinar
approach is inherent to the very structure of the field. Unfortunately, there are so many me
on inverse problems which are focused on one field of knowledge—pure mathematics,
differential equations, mechanics, optics, electromagnetics, acoustics, engineering, etc,—
interdisciplinary meeting may be described by some ‘‘specialists’’ as a workshop of ‘‘dilettante.’’
If one looks more carefully, one easily sees that meetings of specialists gather algorithms, m
of solutions, and synthetic or real world examples, but thatreally new ideas on inverse problems
most times come from a collision between the needs and accomplishments of people wor
different areas.
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1986!, pp. 185–191.

101B. Zachariev and M. Suzko,Direct and Inverse Problems: Potentials in Quantum Scattering~Springer, Berlin, 1990!;
B. Zachariev and V. M. Chabanov, Inverse Probl.13, R47–R78~1998!.

102 a H. J. Krappe and R. Lipperheide~eds!, Advanced Methods in the Evaluation of Nuclear Scattering Data~Springer,
Berlin, 1985!;b P. C. Sabatier, in Proc. Ann. GAMM Meeting, Regensburg~1997!.

103J. D. Achenbach, A. K. Gautesen, and H. Mc Maken,Ray Methods for Waves in Elastic Solids~Pitman, London, 1982!.
                                                                                                                



s
,

,

revent
results.
eodesy

l section

ds and

edical
on

4124 J. Math. Phys., Vol. 41, No. 6, June 2000 Pierre C. Sabatier

                    
104A. J. Devaney, Opt. Lett.6, 374–376~1981!; D. Pommet, M. A. Fiddyet al., in Experimental and Numerical Method
for Solving Ill-posed Inverse Problems: Medical and Non Medical Applications, edited by R. L. Barbour, M. J. Carvlin
and M. A. Fiddy, SPIE Proc. Series. Vol.2570, ~1995!, pp. 38–48.

105A. J. Devaney, Inverse Probl.5, 501–521~1989!.
106P. C. Sabatier, Ref. 102a, pp. 1–19.
107M. A. Brodski, Geophys. J. R. Astron. Soc.66, 727–732~1981!; SIAM ~Soc. Ind. Appl. Math.! J. Appl. Math.46,

345–350~1986!; M. A. Brodski and E. Panakhov, Inverse Probl.6, 320–330~1990!.
108D. Zidarov, Inverse Gravimetric Problem in Geoprospecting and Geodesy~Elsevier, Amsterdam, 1990!; R. Barzaghi

and F. Sanso, Inverse Probl.14, 499–520~1998!.
109See Ref. 11 and P. C. Sabatier, Geophys. J. R. Astron. Soc.48, 443–469~1977!; V. Richard, R. Bayer, and M. Cuer

Geophysics42, 1215–1229~1984!; P. C. Sabatier, inInverse and Ill-Posed Problems, edited by H. W. Engl and C. W.
Groetsch~Academic, Boston, 1987!; V. Richard, Ph.D. thesis, Montpellier, 1983.

110A. R. Osborne, inNonlinear Topics in Ocean Physics, edited by A. R. Osborne~North Holland, Amsterdam, 1991!, pp.
669–698.

111C. de Mol,The Superresolving Scanning Microscope: State of the Art, Universitélibre de Bruxelles~January 1992!; M.
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In this article we use one-dimensional nonlinear Schro¨dinger equations~NLS! to
illustrate chaotic and turbulent behavior of nonlinear dispersive waves. It begins
with a brief summary of properties of NLS with focusing and defocusing nonlin-
earities. In this summary we stress the role of the modulational instability in the
formation of solitary waves and homoclinic orbits, and in the generation of tempo-
ral chaos and of spatiotemporal chaos for the nonlinear waves. Dispersive wave
turbulence for a class of one-dimensional NLS equations is then described in
detail—emphasizing distinctions between focusing and defocusing cases, the role
of spatially localized, coherent structures, and their interaction with resonant waves
in setting up the cycles of energy transfer in dispersive wave turbulence through
direct and inverse cascades. In the article we underline that these simple NLS
models provide precise and demanding tests for the closure theories of dispersive
wave turbulence. In the conclusion we emphasize the importance of effective sto-
chastic representations for the prediction of transport and other macroscopic behav-
ior in such deterministic chaotic nonlinear wave systems. ©2000 American In-
stitute of Physics.@S0022-2488~00!01606-6#

I. INTRODUCTION

The description and understanding of turbulence remains one of the most challenging
problems in classical physics. Turbulent waves are prevalent throughout nature. Examples
waves on the surface of the ocean and storms in the atmosphere. Turbulent states invo
interaction of coherent structures with a background of fluctuating waves. This stochastic
ground could arise from deterministic instabilities that create spatiotemporal chaos, or fro
ternally imposed noise, or both. The goal of theories of turbulence is to predict behavior in
chaotic systems, where only certain phenomena are possible to quantify; others may be i
minant. One task of turbulence theory is to circumscribe what is unpredictable and what is

Turbulent states are so complex that their description must be statistical. Constantly, sta
descriptions of turbulent waves are being proposed and developed that would play a ro
nonlinear waves similar to that played by statistical physics for mechanics—namely, to pr
macroscopic descriptions of observable phenomena. These theories would~i! predict wave spectra
and other macroscopic observables, and~ii ! provide parametrizations of small-scale behavior
large-scale numerical simulations. The validity of these theories is very difficult to assess, p
rily because of mathematical and computational difficulties in the nonlinear partial differe
equations~pdes! which provide the fundamental description of the waves’ evolution.

Nonlinear dispersive waves in one spatial dimension are proving to be very useful tools
design and validation of theoretical descriptions of wave turbulence. The single spatial dime
renders the waves nearly amenable to analytical description, and certainly to careful and con
numerical simulation. In this article, we will summarize some of these developments, using a
of one-dimensional nonlinear Schro¨dinger equations~NLS! as examples.

a!Electronic mail: cai@cims.nyu.edu
41250022-2488/2000/41(6)/4125/29/$17.00 © 2000 American Institute of Physics
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NLS equations possess two distinct types of nonlinearity: ‘‘focusing’’ and ‘‘defocusin
which significantly affect the behavior of the nonlinear wave. Throughout this article, we
emphasize distinctions in behavior between the focusing and defocusing cases—for com
integrable waves, for temporally chaotic waves, for spatiotemporal chaotic waves, and for d
sive wave turbulence. In the focusing case for NLS, waves can be linearly unstable~Sec. II!. When
perturbed, with one unstable mode, this modulational instability can give rise to temporal
~Sec. III!, and with two or more instabilities, it can induce spatiotemporally chaotic wave dyn
ics ~Sec. IV! and dispersive turbulence~Secs. V and IV!. NLS equations provide some of th
simplest examples of the interaction of localized coherent structures with a background o
chastic waves. Properties of this interaction will be described throughout the article.

The mathematical methods used in these studies of nonlinear dispersive waves include
ous and formal analysis of pdes, dynamical systems theory~for pdes!, geometric singular pertur
bation theory, stochastic equations, and scientific computation.

In Sec. II, ‘‘Background,’’ we define a class of NLS equations with focusing and defocu
nonlinearities, and we describe the ‘‘modulational instability’’ in the focusing case. We
mention the ‘‘completely integrable’’ NLS equation, and its integration through the ‘‘inve
spectral transform.’’ For this integrable case, distinctions between focusing and defocusin
linearities are again emphasized—with the very special localized waves known as ‘‘soli
occurring in the focusing case.

In Sec. III, representations of ‘‘homoclinic orbits’’ are presented for the integrable focu
case, under spatially periodic boundary conditions, and their role in the generation of tem
chaos under weakly damped and driven deterministic perturbations is discussed.

In Sec. IV, spatiotemporal chaos is defined and shown to exist for deterministic dampe
driven perturbations of NLS, in the focusing case. We note in passing that there is a great
work on the phenomena of spatiotemporal chaos for the Ginzburg–Landau equation and
Kuramoto–Sivashinsky equation~see a review,1 and references therein!.

In Sec. V,dispersive wave turbulenceis summarized, within the context of a family of NL
equations. The weak turbulence theory of dispersive waves is a mathematical theory of the
excitations between spatial scales. It involves beautiful mathematical concepts—including
nant wave–wave interactions, normal forms for Hamiltonian systems, stochastic closure
kinetic equations for correlation functions.

In Sec. VI, new numerical experiments on dispersive wave turbulence are described f
family of NLS equations. The dependence of the turbulent state upon focusing and defo
nonlinearities is emphasized, as well as the interaction of coherent structures with resonan
tion in setting up the cycles of energy transfer in dispersive wave turbulence.

While dispersive wave turbulence provides a description of the intrinsic stochastic
ground, aneffective stochastic dynamicswill be required to provide a tool for the prediction o
observable behavior. Theories that describe the interaction of coherent structures with a
ground of fluctuating waves~that is, with an ‘‘active heat bath’’! are needed to provide a
algorithm for the prediction of macroscopic transport behavior. These matters of predictabili
discussed in the Conclusion.

The material in Secs. II, III, and IV on integrability, instabilities, homoclinic orbits, tempo
chaos, and spatiotemporal chaos has been discussed in detail in the two surveys.2,3 Here we
present a condensed version—emphasizing distinctions between focusing and defocusing
earities, as well as consequences of the modulational instability and spatially localized co
structures. These features in dispersive wave turbulence are highlighted in Sec. VI, which co
new material only partially announced in Ref. 4. This section, together with the Conclusio
predictability, looks toward future work.

II. BACKGROUND

The classical NLS equation in one spatial dimension is of the form

iqt5qxx72~qq̄!q, ~1!
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with the 1~2! sign denoting focusing~defocusing! nonlinearity. It is a Hamiltonian system,

iqt5
dH

dq̄
, ~2!

with the Hamiltonian

H~q,q̄![E $qxq̄x6uqq̄u2%dx. ~3!

Note that the Hamiltonian is indefinite in the focusing case. The Hamiltonian,L2 norm, and linear
momentum are constants of motion—associated to the symmetries of time, phase, and
translation, respectively. For focusing nonlinearity, the equation supports localized traveling
solutions of the form

q~x,t;l,v,g,x0!5l sech@l~x2x02vt !#e~ i/4![(v224l2)t22vx1g] . ~4!

This wave is~exponentially! localized in space, and has many of the characteristics of a ‘‘
ticle.’’ The parameters (l,v,g,x0) represent its amplitude~inverse-width!, velocity, phase, and
spatial location, respectively. This particle-like wave travels at constant velocityv and is very
stable to perturbations of both the initial data and the equation. The stability and properties
solitary wave have been established with many numerical experiments in the physical lite
with formal asymptotics, and with rigorous pde analysis.

But the solitary waves of the one-dimensional cubic NLS equation have far more remar
properties than merely linear stability; namely, they emerge from direct collisions with o
solitary wavescompletely unscathed. Their velocities and shapes are not altered by the collis
In fact, the only consequence of the nonlinear collision is a phase shift in their relative loca
This remarkable stability under collisions makes the solitary waves of one-dimensional~1-D!
cubic NLS equation behave as particles under elastic collisions. Solitary waves that satis
elastic collision property are calledsolitons, to emphasize the particle-like properties of the
nonlinear waves.

A. Integrability of NLS

The 1-D cubic NLS equation~1! is equivalent to the following linear system:5–7

wx5U (l)w,
~5!

w t5V(l)w,

where

U (l)[ ils31 i S 0 q

7q̄ 0D ,

~6!

V(l)[ i @2l21v26~qq̄2v2!#s31S 0 2ilq1qx

7~22ilq̄1q̄x! 0 D ,

and wheres3 denotes the Pauli matrixs3[diag(1,21). This equivalence follows from the
integrability condition for the overdetermined linear system~5!: Note that system~5! consists in
two equations for only one unknownw. As such, it is overdetermined and will possess a solut
iff w t,x5wx,t . Explicitly calculating this condition, using system~5!, shows that the integrability
condition is equivalent to the NLS equation~1!.

The Zakharov–Shabat linear system~5! is a ‘‘Lax pair for NLS.’’ 6,7 From it, the nonlinear
Schrödinger equation~1! inherits a ‘‘hidden linearity,’’ which is the key to an explanation of th
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truly remarkable properties of 1-D NLS. This discovery by Zakharov and Shabat7 of the Lax Pair
for NLS was an extremely important step in the history of soliton theory. It showed that the e
integration of the Korteweg-de Vries equation by Gardner, Greene, Kruskal, and Miura5 was not
a single isolated example; rather, it was a part of a general integration procedure for c
nonlinear dispersive waves. Moreover, the NLS equation has far richer phenomena than
Thus, the work of Zakharov and Shabat showed that a nonlinear equation with rich phen
arising from instabilities could be integrated through linear spectral methods.

The primary way the ‘‘hidden linearity’’ has been used to study 1-D NLS begins from
‘‘ x flow’’ of ~5!:

L̂w5lw, ~7!

where

L̂[2 is3

d

dx
2S 0 q

6q̄ 0D . ~8!

This linear ‘‘x flow’’ is viewed as a Sturm–Liouville eigenvalue problem, with eigenvalue
rameterl. The spectral and inverse spectral theory for this differential operator leads t
complete integration of the NLS equation.

For example, consider the 1-D NLS equation~1! on the whole line (2`,x,1`), for
smooth rapidly decaying functions ofx; i.e., in Schwarz class.@Actually, in the defocusing case
uq(x)u→c.0, while in the focusing case, the limitc vanishes.# Consider the ‘‘Zakharov–Shabat’
operatorL̂, Eq. ~8!, as an~unbounded! differential operator onL2(R). Denote its point spectra
@eigenvalues withL2(R) eigenfunctions# by $l1 ,l2 ,...,lN%. As the coefficientsq(x,t) of this
differential operator evolve in timet according to the 1-D NLS equation~1!, one expects the
eigenvaluesl j (t) to change with time. But they do not! A simple calculation using the Lax p
~5! shows that the eigenvalues are constant int. These eigenvalues provideN invariants for the
1-D NLS equation~1!—where the numberN, as determined by the initial data, can be very lar
and often exceeds three, the number of classical invariants. Thus, the 1-D NLS equation po
some unusual invariants, in addition to the classical ones.

These additional invariants arise after considering the eigenvalues as functionals of the
ficientsq(•,t):

l j~ t !5l j@q~•,t !#.

This viewpoint leads one to consider the inverse problem of determiningq(•,t) from spectral data
of the differential operatorL̂. Clearly the finite numberN of eigenvalues will be insufficient dat
to determine the function$q(x,t),;xP(2`,1`)%, and the eigenvalues will have to be au
mented with additional spectral data. But this is a well-known problem in mathematical ph
known as the ‘‘inverse scattering problem’’—particularly so for the Schro¨dinger operator of
nonrelativistic quantum mechanics, but also for the operatorL̂, which is a form of the Dirac
operator of relativistic quantum mechanics.

This viewpoint from inverse spectral theory shows that the discrete bound state eigen
$l1 ,l2 ,...,lN% and a continuum of reflection coefficients$r (l),;lP(2`,`)% are constants of
motion for 1-D cubic NLS. This infinite collection of constants of motion explains the remark
stability and elastic collision properties of solitons: First, one must understand the conn
between spectral data and solitons. A formula forN solitons exists that establishes that there i
one-to-one correspondence between the solitons in the spatial profile and the bound state
values in the spectral data. TheN eigenvalues correspond toN solitons, with the amplitude and
speed of each fixed by the real and imaginary part of the associated eigenvalue. Moreo
reflection coefficientr (l) in the spectral data of the Zakharov and Shabat operator fixes
amplitude of thel th radiative component of the nonlinear wave. The temporal behavior of
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spectral data shows that the speeds and amplitudes of the solitons are invariant in time, and
altered by ‘‘interactions of the solitons.’’ And, sinceur (l,t)u5ur (l,0)u, no radiation can be
generated by these interactions. In other words, the infinite number of invariants so rigidly
strain the solution that the elastic collision properties of 1-D NLS~1! result!

Such spectral considerations have lead to the complete integration of the NLS equatio~1!,
under either ‘‘whole-line’’ or ‘‘periodic’’ spatial boundary conditions—and have provided
tailed explanations of the remarkable properties of solutions of this equation. Equation~1! is a
completely integrable Hamiltonian system.

B. Modulational instability

There is an important instability for the NLS equation withfocusing nonlinearity, known as
the ‘‘modulational instability,’’ which is responsible for soliton formation, collapse to singu
structures in finite time~in dimensions D.1!, unstable tori and homoclinic orbits, and tempo
and spatiotemporal chaos for perturbed NLS equations. Under periodic spatial boundary
tions, specific examples of this instability are easy to describe.

Consider elementary ‘‘plane wave solutions’’ of the NLS equation:

qc~x,t;c,g!5c exp@2 i ~2c2t1g!#, ~9!

where (c,g) denote two real parameters. Linearizing the NLS equation about this exact so
yields

q~x,t !5qc~x,t !1d f ~x,t !exp@2 i ~2c2t1g!#;

i f t5 f xx12c2f 12c2 f̄ 1O~d!;

f ~x,t !5 f̂ ~k!exp@ i ~kx2v~k!t !#;

v2~k!5k2@k224c2#.

From this dispersion relationv(k), the plane wave~9! is unstable to fluctuations with wav
numbers 0,k2,4c2; while shorter-wavelength fluctuations are neutrally stable according to
ear stability theory. The ‘‘quantization condition’’ that ensures spatial periodicity,

kj5
2p j

l
, j 5...,21,0,11,...,

shows that the number of unstable Fourier modes scales linearly with the sizel of the periodic
spatial domain. This instability of the plane wave~9! to long-wavelength fluctuations is a speci
case of a famous instability in nonlinear dispersive wave theory, known as the ‘‘Benjamin
instability’’ in the context of water waves8 and as the ‘‘modulational instability’’ in the context o
plasma physics.9 This instability is only present in the case of focusing nonlinearity. Plane w
solutions of defocusing NLS are neutrally stable.

III. HOMOCLINIC ORBITS AND TEMPORAL CHAOS

Under periodic spatial boundary conditions, solutions of the integrable NLS equation r
on tori ~which arise as the level sets of the constants of motion!. For focusing nonlinearity, thes
tori can be unstable due to the modulational instability.~The level sets have a ‘‘saddle structure
in functional space.! In this setting, the spectral transform provides representations of these
and explicit representations of their unstable manifolds and homoclinic orbits.10,11 Next, we de-
scribe these representations.
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Fix a periodic solution of NLS that is quasiperiodic int, unstable, and for which the operato
L̂(q) has a complex double eigenvaluen of multiplicity 2. We denote two linearly independen
Zakharov–Shabat eigenfunctions at (n,q) by (f1,f2). Thus, a general solution of the Zakharo
Shabat linear system~5! at (q,n) is given by

f~x,t;n;c1 ,c2!5c1f11c2f2.

We usef to define atransformation matrix Gby

G5G~l;n;f![NS l2n 0

0 l2 n̄
DN21, ~10!

where

N[Ff1 2f̄2

f2 f̄1
G .

Then we defineQ andC by

Q~x,t ![q~x,t !12~n2 n̄ !
f1f̄2

f1f̄11f2f̄2

~11!

and

C~x,t;l![G~l;n;f!c~x,t;l!, ~12!

wherec solves the Zakharov–Shabat linear system~5! at (q,l). Formulas~11! and ~12! are the
Bäcklund transformations of the potential and eigenfunctions, respectively. We10,11 have the fol-
lowing.

Theorem III.1: Define Q(x,t) and C(x,t;l) by (11) and (12). Then (i) Q(x,t) is a solution

of NLS, with spatial period l; (ii) The spectrums„L̂(Q)…5s„L̂(q)…; (iii) Q (x,t) is homoclinic to
q(x,t) in the sense that Q(x,t)→qu6

(x,t), exponentially asexp(2snutu) as t→6`. Here qu6
is

a ‘‘torus translate’’ of q, sn is the nonvanishing growth rate associated to the complex do
point n, and explicit formulas can be developed for the growth ratesn and for the translation
parametersu6 ; (iv) C(x,t;l) solves the linear system (5) at(Q,l).

This theorem is quite general, constructing homoclinic solutions from a wide class of st
solutionsq(x,t). Its proof is one of direct verification, following the sine-Gordon model.10 Peri-
odicity in x is achieved by choosing the transformation parameterl5n to be a double point.

Several qualitative features of these homoclinic orbits should be emphasized:~i! Q(x,t) is
homoclinic to a torus, which itself possesses rather complicated spatial and temporal structu
is not just a fixed point;~ii ! nevertheless, the homoclinic orbit typically has still more complica
spatial structure than its ‘‘target torus.’’~iii ! When there are several complex double points, e
with a nonvanishing growth rate, one can iterate the Ba¨cklund transformations to generate mo
complicated homoclinic manifolds.~iv! The number of complex double points with nonvanishi
growth rates counts the dimension of the unstable manifold of the critical torus in that
unstable directions are coordinatized by the complex ratioc1 /c2 . Under even symmetry only
one real dimension satisfies the constraint of evenness.~v! These Ba¨cklund formulas provide
coordinates for the stable and unstable manifolds of the critical tori; thus, they provide ex
representations of the critical level sets, which consist in ‘‘whiskered tori.’’12

The simplest examples of these homoclinic orbits begins with the spatially uniform p
waveqc , Eq. ~9!, for which the entire construction can be carried out explicitly.11,3 Rather than
repeat this simple analytical formula, we just show sample homoclinic orbits that result in Fi
2, and 3.
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In this example the target is always the plane wave; hence, it is always a circle of dime
one, and in this example we are constructing whiskered circles. On the other hand, in this ex
the dimension of the whiskers need not be one, but is determined by the number of
imaginary double eigenvalues, which in turn is controlled by the amplitudec of the plane wave
target and by the spatial period.~When there are several complex double points, the Ba¨cklund
transformations must be iterated to produce complete representations of the unstable man!

Thus, Bäcklund transformations give global representations of the critical level sets. The
sets in the neighborhood of these of critical ones have fascinating topological structure.13,11 The
plane wave example under even symmetry and with only one instability provides the sim
case. Here, the dimension of the unstable manifold of the plane wave circle is 2—the dime
of each homoclinic orbit plus the dimension of the target circleq5S. In addition, NLS also
possesses a four-dimensional invariant manifold that contains the unstable manifoldWu(q5S).
This 4-D manifold can be viewed as the result of ‘‘shutting-off’’ all degrees of freedom excep
the spatial mean and the ‘‘first radiation mode.’’ In this four-dimensional space, the leve
topologically form a trouser diagram shown in Fig. 4. Note in particular the symmetric pa
homoclinic orbits and their relationship to the two legs, one of which represents a~periodic!
soliton located at the center of the periodic domain atx50, and the other a soliton located one-ha
period away atx5 l /2. When all other radiation degrees of freedom are excited, each for
small disk~a center for each additional radiation degree of freedom!, and the full phase space ca
be represented topologically~locally, near the trouser! as the product of the trouser with a coun
able number of disks. More complex examples are described in Ref. 11.

FIG. 1. Homoclinic orbit associated with one instability: Center location. Plotted isuq(x,t)u.

FIG. 2. Homoclinic orbit associated with one instability: Edge location~cf. Fig. 1!.
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A. Temporal chaos

The existence of instabilities and their associated homoclinic orbits for the integrable
equation indicate that external perturbations could induce chaotic responses in perturbed
ministic NLS equations. Moreover, the trouser topology nearby critical level sets, together
the correlation of the two legs of the trouser with two distinct spatial locations for a so
~‘‘center’’ and ‘‘edge’’ of the periodic domain!, indicates that chaotic behavior under determ
istic perturbations might involve a ‘‘random jumping’’ of a solitary wave between these
spatial locations. Our numerical experiments14,2 show that these expectations are realized, and
these temporally chaotic states are relatively easy to observe.

In Refs. 14 and 2, we considered a damped-driven perturbation of the NLS equation
form

iqt1qxx12uqu2q52 iaq1Gei (vt1g), ~13!

with periodic boundary conditions,q(x1 l )5q(x), wherel is the system length, andv andg are
the driving frequency and phase, respectively. The damping coefficienta and the driving strength
G are small. The initial condition is a periodic extension of the single soliton waveform,

q~x,0!5h sech~hx!. ~14!

These numerical experiments are described in detail in the survey,2 including~i! the numerical
algorithms and their validation, which is essential when studying long-time temporal integra
of chaotic behavior of unstable orbits;~ii ! the collection of chaotic diagnostics with which w
post-processed the numerical data; and~iii ! a detailed discussion of our numerical observatio
Here we only give a brief description of typical observations, for the simplest case where tem
chaos was observed.

FIG. 3. Homoclinic orbit associated with two instabilities~cf. Fig. 1!.

FIG. 4. Trouser diagram: One of the legs corresponds to the center location~Fig. 1! and the other to the edge~Fig. 2!. The
right figure is the ‘‘end view’’ of the trouser along the direction of the arrow.F indexes the level sets.
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We organized our numerical studies intobifurcation experimentsin which all parameters were
fixed, except for the amplitude of the driving forceG, which was increased from experiment
experiment as a ‘‘bifurcation parameter.’’ Sample results are pictured in Fig. 5. While the d
of the bifurcation sequence are somewhat involved,2 the general pattern may be summarized
follows. As G increases, the long-time behavior of the wave undergoes the following sequen
changes:~i! spatially flat, time independent;~ii ! ‘‘sech-like’’ in space, time independent;~iii !
sech-like in space, but time periodic;~iv! sech-like in space with a background, quasiperiodic
time; ~v! chaotic in time, with the sech-like excitation jumping from the center to the edge o
periodic spatial domain, which should be compared with the homoclinic orbits in Figs. 1 a
Standard chaotic diagnostics2 were used to identify chaotic behavior—including Poincare´ sections,
power spectra, Lyapunov exponents, and information dimension. Figure 5 shows four s
‘‘cross sections’’—for time-independent, periodic, quasiperiodic, and chaotic temporal beha

This experiment is the simplest that we have found that has chaotic behavior, and it is
important for our theoretical studies. In it, the chaotic state contains only one spatially loca
coherent structure. At times this solitary wave is located at the center, and at other times
edges of the periodic spatial domain. These two locations are the only two allowed unde
boundary conditions. We believe that one source of the chaotic behavior is an irregular~random?!
jumping of the solitary wave between center and edge locations~see Fig. 6!. This center–edge
jumping of the solitary wave through homoclinic transitions forms the basis for the sim
description and model of chaotic behavior in NLS pdes.

B. Persistent homoclinic orbits

The first step toward analytical descriptions of such chaotic behavior is to assess the
tence of homoclinic orbits. These can provide a ‘‘skeleton’’ for chaotic trajectories. Tha
persistent stable and unstable manifolds, and their intersections provide a framework with
chaotic behavior can be described. Procedures for this description are well known for
dimensional dynamical systems,15,16and have recently been developed for the NLS pde.17 See also
Refs. 18 and 3 for rather detailed overviews of these mathematical arguments.

Here we merely state the persistence theorem:17 Consider a perturbed NLS equation of th
form

iqt5qxx12@qq̄2v2#q1 i e@D̂q21#, ~15!

where the constantvP( 1
2,1), e is a small positive constant, andD̂ is a boundednegative definite

linear operator on the Sobolev spaceHe,p
1 of even, 2p periodic functions. Specific examples of th

dissipation operatorD̂ include the discrete Laplacian and a ‘‘smoothed Laplacian’’ given by

D̂q52aq2bB̂q, ~16!

where the operatorB̂ has symbol given by

b~k!5H k2, k,k,

0, k>k.

Extending Melnikov analysis and geometric singular perturbation theory to a pde setting,17

establish the following.
Theorem III.2: The perturbed NLS equation (15) possesses a symmetric pair of orbits

are homoclinic to a saddle fixed point Q, provided the parameters lie on a codimension 1 se
parameter space, which is approximately described by

a5E~v!b.
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FIG. 5. Perturbed solitonic dynamics. From top to bottom:~1! locked state,~2! periodic state,~3! quasiperiodic state, and
~4! temporal chaotic state~which should be contrasted with homoclinic orbits in Figs. 1 and 2!. Plotted here areuq(x,t)u.
The right panels are the corresponding surface cross sections$Req(0,t), Im q(0,t),;t%. Note that for the case of the
quasiperiodic and chaotic dynamics shown here, the values of the drivingG differ only by 0.4%.
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Formulas exist that describe, approximately for smalle, the characteristic properties of thes
homoclinic orbits such as the constant E(v) and a ‘‘take-off’’ angle.

These two homoclinic orbits differ by the location of a transient spatial structure—a so
wave which is located either at the center (x50) or the edge (x5p) of the periodic box. As such
this theorem provides a key step toward the exciting possibility of horseshoes19 and chaotic
symbol dynamics16 for the pde—with the jumping of the solitary wave between the two spa
locations as ‘‘random as a coin toss.’’ Recently, Li20 has made a further step toward such p
behavior by establishing a symbol dynamics for an infinite dimensional geometric mod
perturbed NLS.

Recent extensions and related work about temporal chaos for NLS pdes include the follo
~1! The removal of the assumption of bounded perturbations, so that the theorem now a

to diffusion.21

~2! The existence of very long~but finite! complex transients, which are more robust a
easier to observe than symbol dynamics.22,23

~3! The lack of persistence of NLS homoclinic orbits under complex Ginzburg Lan
perturbations.24

~4! The behavior under conservative perturbations.25–28

~5! The removal of the constraint of even symmetry.27

~6! The realization of chaotic dynamics in wave tanks.29

IV. SPATIOTEMPORAL CHAOS—EXISTENCE

The temporal chaosjust discussed consists of spatially coherent localized waves that d
chaotically in time. As Fig. 5 shows, these waves are very regular in space. Their time se
location x, $q(x,t),;t%, appears to be statistically well correlated to the time series at loca
yÞx, $q(y,t),;t%. On the other hand, waves ofdispersive turbulenceshould behave chaotically
in both space and time. At least the time series$q(x,t),;t% and $q(y,t),;t% should become
statistically independent as the distance fromx to y increases.

Recall that the numerical experiment described in Sec. III was for small spatial domains
only one instability and only one solitary wave. Intuitively, spatial decorrelation might
achieved by increasing the sizel of the spatial domain~because the number of instabilities, an
thus, the number of spatially localized states within the spatial domain, increases with doma
l !. Spatial decorrelation is indeed seen in our numerical experiments for the damped-drive
~13!. An example with only one instability is shown in Fig. 7, while one with two instabilities

FIG. 6. Center–edge jumps of the soliton. The dark line segments are the temporal traces of the maximum ofuq(x,t)u.
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Fig. 8. Clearly, the two figures display drastically different spatial patterns. It is instructiv
compare Fig. 7 with the homoclinic orbits shown in Figs. 1 and 2 and to compare Fig. 8 wit
homoclinic orbit shown in Fig. 3.

A natural question arises: Given a temporally chaotic solution of Eq.~13!, how large a spatial
domain, or how many instabilities, is required for effective decorrelation in space? Before i
tigating such questions further, we need first to formulate a precise definition of the conc
spatiotemporal chaos.

A. Definition of spatiotemporal chaos

There have been many definitions proposed to capture the essence of spatiotemporal1

We prefer a ‘‘working definition’’ that includes two points:~i! A temporally chaotic waveq(x,t),
~ii ! for which the time series$q(x,t),;t% and$q(y,t),;t% become statistically independent as t
distance fromx to y increases.

For a definition, we must make precise the meanings of ‘‘temporal chaos’’ and ‘‘statis
independence.’’ Fortemporal chaoswe will accept any common definition, such as a bound
attractor with positive Lyapunov exponents.

Statistical independenceis often estimated through the decay of the two-point correla
function:

FIG. 7. Temporal chaos in the presence of one linearly unstable mode,l 56.4; the evolution of system~13! with a
50.004,G50.144,v51. The initial conditionq5A1e exp(i2px/l), A50.8, e5231025. Plotted here isuq(x,t)u.

FIG. 8. Spatiotemporal chaos in the presence of two linearly unstable modes,l 59.6, for system~13!. ~For parameters see
Fig. 7.!
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C~x2y![ lim
T→`

1

T E
0

T

@„q~x,t !2^q&…„q̄~y,t !2^q̄&…#dt, ~17!

where^•& denotes the temporal mean, and where we have assumed translational invariance
system. However, the vanishing of the two-point correlation function is only a necessary con
for statistical independence; thus, we prefer to base the definition uponmutual information—
whose vanishing is a necessary and sufficient condition for statistical independence.

For two stochastic variablesU and V, with probability density functionsp(u) and p(v),
respectively, and with joint probability density functionp(u,v), the mutual information between
these two variablesU andV is defined as30

I~U,V!5E du dv p~u,v !log
p~u,v !

p~u!p~v !
. ~18!

In this application of spatiotemporal chaos, the probability distributions will be generate
the chaotic time series:

px~q!: $q~x,t !,;t%,

py~q!: $q~y,t !,;t%,

px,y~q,r !: $@q~x,t !,r ~y,t !#,;t%,

wherer (y,t)5q(y,t). Intuitively, px(q)dq is the fraction of time thatq(x,•)P(q,q1dq), etc.
Thus, we define the mutual information between pointsx andy by

I~x,y!5E du dv px,y~u,v !log
px,y~u,v !

px~u!py~v !
. ~19!

In terms of this mutual information between spatial points, we arrive at our working definitio
follows.

Working definition:A wave q(x,t) is spatiotemporalchaotic if ~1! q(x,t) is a temporally
chaotic orbit~for example, as characterized by bounded, not asymptotically periodic, orbits
positive Lyapunov exponents!; ~2! whose mutual information between two spatial pointsI(x,y)
decays exponentially in space asux2yu→`.

B. Numerical measurements of spatiotemporal chaos for NLS waves

Now we return to chaotic NLS waves~13! and establish by numerical experiments the ex
tence of spatiotemporal chaos.31,32 First, we calculate numerically the spatial correlation functi
C(x) @Eq. ~17!#.

Figure 9 shows the dependence of the correlation functionC(x) on the system length. Fo
L56.4, which corresponds to the one linearly unstable mode, the whole system is correlate
is intuitively consistent with the observations of Fig. 7, since, for most times of the evolution,
one solitary wave is present in the periodic spatial domain. When the system size is increa
that larger numbers of solitary waves are present, Fig. 9 shows that the correlation function r
vanishes. Therefore, the system becomes increasingly decorrelated, indicating an onset
tiotemporal chaos. As shown in the inset of Fig. 9, the correlation at the half-system lengt
function of L displays a clear transition around the valueL th52p/A, above which the second
linearly unstable mode enters~note thatA is the amplitude of the plane wave; see Fig. 7!.

Mutual information can be used to make these results more precise. Figure 10 summari
mutual information as a function of the distancex between any two points in space for both o
and two linearly unstable modes, which corresponds to the cases in Figs. 7 and 8, respectiv
one linearly unstable mode the mutual information remains nonzero across the system, sig
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no sufficient loss of information over the whole system, while it vanishes rapidly for the
linearly unstable mode case. It can be further determined that this decay isexponentialas shown
in the inset of Fig. 10; that is,

I~x!→expS 2
x

j D , for large x, ~20!

with a decay lengthj;0.30. As solitons are phase locked to the external driver, i.e.,V5v, we
anticipate that the driving frequencyv controls this decay length, i.e., the soliton’s frequencyV
determines its spatial width, and hence should detemine its coherence length in space.

These results establish that spatiotemporal chaos exists for NLS waves, with the tra
from temporal chaos to spatiotemporal chaos occurring at the system size at which a
instability arises, provided the constraint of even symmetry is relaxed. Onlytwo instabilities seem
to be required—a somewhat unexpected result, as the prevalent belief in the physical lite
requires very large systems with many unstable modes.1,33–35~See, however, the recent work.36!

FIG. 9. Dependence of the correlationC(x) on the system sizeL. Inset: Transition ofC(L/2) aroundL th52p/A ~dashed
line!. For L56.4, 9.6, see Figs. 7 and 8.

FIG. 10. Mutual informationI(x). Fine line: one linearly unstable mode; Dotted line: two linearly unstable modes as
shown in the inset on the linear-log scale~the straight line is a fit to an exponential form!.
                                                                                                                



under-
everal

e
th a
from

tatis-
hich

chastic
scribed

cales,
stically
atial
ted
the

d
state of
of the

e two-

ge, or

he
qua-
that
assess
d com-
aves.
chastic
ist with
esent,
sed of
obtain

in the
ons that
ersive
nition
and in
ia-
wave

4139J. Math. Phys., Vol. 41, No. 6, June 2000 Chaotic and turbulent behavior of dispersive waves

                    
C. Descriptions of the spatiotemporal chaotic state

Given the existence of a spatiotemporal chaotic state, one seeks ways to describe and
stand it. Clearly such states are so complex that statistical descriptions will be required. S
possibilities exist, including~i! equilibrium statistical mechanics,~ii ! closure theories of dispersiv
wave turbulence, and~iii ! effective stochastic dynamics of coherent states in interaction wi
background of fluctuating waves. Next, we describe this background with the methods
dispersive wave turbulence.

V. DISPERSIVE WAVE TURBULENCE

A spatiotemporal chaotic collection of waves is so complex that it must be described s
tically. Ensembles of chaotic waves form a stochastic state or an ‘‘active heat bath’’ for w
wave spectra, instead of individual wave trajectories, are natural observables. In this sto
state, the fundamental excitations consist in resonant wave–wave interactions, which are de
statistically by the theory of dispersive wave turbulence.

Dispersive wave turbulence is a theory of the flow of wave excitations between spatial s
or fluxes, ink space. It assumes that the active stochastic state is created as a state of ‘‘stati
steady flow ink space’’ as follows: Excitations are being injected into the system at one sp
scale~say a long spatial scale! by an external forcing, and removed by dissipation that is restric
to a second spatial scale~say a short scale!. Resonant wave–wave interactions transport
excitations, setting up a steady flow from the injection to the dissipation regions ofk space. At the
intermediate scales~the ‘‘inertial’’ or ‘‘Kolmogorov’’ scales!, there is no forcing or damping, an
the waves satisfy a conservative Hamiltonian system. These waves reside in a statistical
steady flow ink space and their wave spectra are believed to be universal, i.e., independent
details of forcing and dissipation.

Dispersive wave turbulence seeks equations that govern the temporal evolution of th
point correlation functionsn(k,t),

n~k,t ![^a~k,t !ā~k,t !&,

wherea(k,t) denotes the spatial Fourier transform of the wave profileq(x,t), and^•& denotes an
average—either an ensemble average with respect to initial conditions, a local time avera
both. In principle, averaging does not lead to ‘‘closed’’ evolution equations forn(k,t). That is, the
evolution of the two-point functionsn(k,t) depends upon four-point functions; those for t
four-point functions depend upon six-point functions, resulting in an infinite hierarchy of e
tions for correlation functions.Ad-hocclosures have been developed through approximations
rely upon weak nonlinearity and/or Gaussian random phase assumptions. It is difficult to
the accuracy and validity of these closure schemes, primarily because of mathematical an
putational difficulties in the nonlinear pdes that provide the fundamental description of the w

Resonant radiation waves are the fundamental excitations that comprise the active sto
background. However, in nonlinear wave systems, localized coherent structures often coex
radiation. With focusing nonlinearities these localized coherent structures typically are pr
and it is unnatural to restrict to nonlinearities so weak that the wave system is solely compri
radiation. When both classes of excitations are present, it is a major theoretical challenge to
and validate a description of the rich structure of dispersive wave turbulence.

Here, we attempt to illustrate the richness of dispersive wave turbulence by itself, and
presence of coherent structures, by using a class of one-dimensional nonlinear wave equati
was introduced in Ref. 37. The model is constructed such that the validity of theories of disp
wave turbulence can be precisely checked numerically. This model permits an explicit defi
of each of the concepts just described. It has both focusing and defocusing nonlinearities,
the focusing case, has both types of excitations~localized coherent structures and resonant rad
tion!. With this model, one obtains a very precise and detailed description of dispersive
turbulence.
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A. Background about weak turbulence

If there is only one type of wave present in a nonlinear medium, one can describe the w
the absence of dissipation by a complex amplitudeak satisfying the Hamiltonian system,

i
]ak

]t
5

dH

dāk
. ~21!

We consider Hamiltonians of the form

H5H01H int , ~22!

where

H05E v~k!akāk dk

is the Hamiltonian of the linearized problem,v(k) denotes its dispersion relation, andH int is a
perturbation describing the interaction among those degrees of freedom represented, ink space, by
ak . Generally,H int can be expressed in terms of power series inak and āk .

The dispersion relationv(k) affects the nature of wave interactions and their resulting tur
lence properties. For example, if

v~k!5v~k1!1v~k2!,
~23!

k5k11k2 ,

holds for somek, the wave coupling leads to the resonant interaction of wavesak1
andak2

with
ak11k2

. This situation is calledthree-waveresonance. If~i! Eq. ~23! does not have solutions, an
if ~ii !

v~k1!1v~k2!5v~k3!1v~k4!,
~24!

k11k25k31k4 ,

has nontrivial (k3Þk1 ,k2) solutions, then four-wave resonances are responsible for the
energy transfer between weakly nonlinear dispersive waves. It can be easily shown that, un
above two conditions, a normal form near-identity transformation will place the Hamiltonian~22!
in the form

H5E v~k!akāk dk1E Skk1k2k3
ākāk1

ak2
ak3

d~D4!dk dk1 dk2 dk3 , ~25!

whereD4[k1k12k22k3 . This is the canonical form of a Hamiltonian system with four-wa
resonances. Clearly in this case, the ‘‘particle’’ number,

N5E nk dk5E nv dv, ~26!

is conserved and wherenk[uaku2 andnv[nk dk/dv. In addition, the linear energy can be writte
as

H05E vknk dk5E vnv dv. ~27!
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B. The direct and inverse cascades

These two quantities~26! and ~27! have a direct implication on the flux of energy and wa
‘‘particle’’ number under four-wave resonances withlocal interaction kernels, when the system
forced at some wave numbers and damped at others. This implication can be easily see
global balances of ‘‘particles’’ and energy. Assuming local interaction, we consider an idea
situation in whichN particles are being created per unit time at frequencyv, andN2 and N1

particles are being removed at frequenciesv2 andv1 . In a steady state, conservation of particl
and ~linear! energy leads to

N5N21N1 ,

vN5v2N21v1N1 .

Solving for N2 andN1 , we have

N25
N~v12v!

v12v2
, ~28!

N15
N~v2v2!

v12v2
. ~29!

SinceN2 ,N1.0, v has to lie betweenv2 andv1 . Without loss of generality, we choosev2

,v,v1 . As neitherN2 , N1 nor v2N2 , v1N1 vanish, there are fluxes of particles and ene
in both directions fromv. If v2 is near zero, there will be almost no energy removal at the
frequencies, and the energy will flow upward fromv to v1 , resulting in an upward~direct!
cascade of energy from the low frequencies to the high ones. Ifv1 is very large, Eq.~29! shows
that the number of particles removed atv1 will be very small, and the particles have to flow fro
v to v2 , creating a downward~inverse! cascade of particles. As a consequence, if the dissipa
takes place only at frequencies near zero and at very high values, there is an ‘‘inertial’’ ran
which the energy flows upward from its source to the sink at the high frequencies, whil
particles flow downward from their source to the sink at the low frequencies. As we will
below, these cascades provide an intuitive physical basis for understanding the steady flo
tions in weak-turbulence theories. However, note that nonlinearities often give rise to no
interactions. Because of nonlocality, injection of energy at a particular frequency can c
particles over a wide range of frequencies extremely rapidly compared with the wave–
resonance time scale; similarly, dissipation at a particular scale can remove particles s
neously over a range of scales. Our numerical study seems to indicate that interactions ink space
are more nonlocal in many situations than usually believed.

C. A simple model problem

Consider the class of one-dimensional waves introduced in Ref. 37:

iqt5u]xuaq6u]xu2sS U u]xu2sqU2

u]xu2sqD , ~30!

or equivalently in ‘‘k space,’’

i ȧk5v~k!ak 6E ak1
ak2

āk3

uk1k2k3kus
d~k11k22k32k!dk1 dk2 dk3 , ~31!

where the2~1! sign labels focusing~defocusing! nonlinearities. This model depends upon tw
real parameters,a.0 and s. The parameters is introduced to control the nonlinearity. Th
parametera controls the dispersion relation
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v~k!5ukua,

which, for a,1, has resonant quartets in this one-dimensional model.
Note that, fora>1, resonance conditions~24! have only trivial (k15k3 ork15k4) solutions.

Obviously,a52 ands50 constitute the usual NLS equation, which has no nontrivial four-w
resonances in one dimension. We usea,1, and usuallya5 1

2.
Weak turbulence theory is a statistical description of weakly nonlinear dispersive wav

terms of a closed, kinetic equation for certain two-point spectral functions. Starting with Eq~31!
in k space, one obtains

nt~k,t !56E 2 Im~ak1
ak2

āk3
āk!

uk1k2k3kus
d~k11k22k32k!dk1 dk2 dk3 , ~32!

for the two-point functionn(k,t)5^ak(t)āk(t)&. Under a Gaussian random phase approximat
and the assumption that

]

]t
^ak1

ak2
āk3

āk&.0,

justified by an asymptotics of multiscale times, one obtains theclosure condition,

Im^ak1
ak2

āk3
āk&.62pd~v11v22v32v!

n2n3nk1n1n3nk2n1n2nk2n1n2n3

uk1k2k3kus
.

Using this condition, one can close Eq.~32! to arrive at

nt54pE n1n2n3nk

uk1k2k3ku2s S 1

nk
1

1

n3
2

1

n2
2

1

n1
D d~v11v22v32v!d~k11k22k32k!dk1 dk2 dk3 ,

~33!

which is the weak-turbulence kinetic equation forn(k,t). It is important to note that both the
defocusingand thefocusingnonlinearity lead to the same kinetic equation~33!. Weak turbulence
does not discriminate between modulationally stable and unstable waves.

D. The wave spectra

The angular averaged kinetic equation~33!37 possesses time independent~stable! solutions of
the weak turbulence that describe steady-state spectra:

n~k!5c, equipartition of particle number; ~34!

n~k!5
c

v~k!
, equipartition of energy; ~35!

n~k!5cuku8s/321, direct cascade; ~36!

n~k!5cuku8s/3211(a/3), inverse cascade. ~37!

The first two ‘‘equilibrium spectra’’ can immediately be shown to satisfy~33!. In fact, each is a
special case of the general solution

n~k!5
c

v~k!1m
,
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where the constantm denotes the ‘‘chemical potential.’’ The interpretation of these first two ste
states as ‘‘equipartition of particles’’ and ‘‘equipartition of energy’’ comes from the invariant~26!
and ~27!.

The other two spectra of the ‘‘direct’’ and ‘‘inverse’’ cascades were obtained by Zakha38

as special solutions of the kinetic equation. His beautiful argument uses a conformal trans
tion, and is motivated and described in Ref. 37 for model~30!.

In the numerical experiments reported in Refs. 37 and 4, another spectrum was also ob
For Eq.~30! at a5 1

2, this spectrum is

n~k!5cuku2s25/4, MMT. ~38!

As shown in Ref. 37, the MMT spectrum is not a solution of the weak-turbulence equa
~33!. Rather, it satisfies an alternative closure~referred to as the MMT closure!, which was
heuristically proposed in Ref. 37.

VI. NUMERICAL RESULTS ON DISPERSIVE WAVE TURBULENCE

We simulate the full dynamics of system~30! using a pseudospectral method in combinat
with an integrating factor method.~For details, see Ref. 37!. For the time dynamics, we use
fourth-order adaptive step size Runge–Kutta integrator. For most runs, the total number of
is 213, and the system sizeL;400.

In the following, we will describe some results of our numerical experiments. We will use
convention that the unit for the wave numberk is 2p/L: thusk is labeled by integers.

A. Four spectra

We begin in afreely decayingsetting, in which both the direct and inverse weak-turbule
~WT! cascades are observed. These specific studies are all initialized from the same identic
~for both defocusing and focusing nonlinearities and for variouss’s anda’s!, which is constructed
as follows: First, a sufficiently stirred state is created from the evolution of smooth initial
under a random forcing at long wavelengths. Then, to study freely decaying turbulence, w
this state as initial data, with the force set at 0 and with damping of the form2 iG jak , j 51,2,
with G1 on large spatial scalesuku;1, G2 on small spatial scalesuku.Kd ~Kd52600 for most
experiments! and no damping in between. WhenG1!G2 , the state gradually relaxes to thedirect
WT cascade.

As shown in Fig. 11~b!, this WT spectrum is observed overfour decades of energy, andthree
decades of spatial scales. This result4 constitutes the clearest and most striking numerical ob
vation of weak turbulence spectra to date. Alternatively, whenG1@G2 ~stronger dissipation on
large spatial scales!, the state relaxes to theinverseWT cascade, as clearly shown in Fig. 11~c!.
We emphasize that throughout these studies of freely decaying turbulence, the states, a
decaying, decrease very slowly in theL2 norm, and remain nonlinear throughout the time cou
of the numerical experiments.

For focusing nonlinearity, in addition to the two WT spectra, there is athird spectrum emerg-
ing under relaxation dynamics@see Fig. 11a#—a thermodynamic equilibrium of equipartition o
energy:n(k);v(k)21;k21/2. Unlike the defocusing case, focusing nonlinearity can destab
long waves when their amplitude is sufficiently large, and create~through the modulational insta
bility ! spatially localized coherent structures, whose statistical behavior can be captured
‘‘most probable state description,’’ which predicts that these states live in thermodynamic
librium. Similar scenarios have been observed in the case of perturbed NLS equations.31 In the
context of nondissipative NLS equations, a recent equilibrium statistical theory for most pro
states successfully predicts coherent structures and energy equipartition.39,40

We now turn to afourth spectrum~MMT !, which is shown in Fig. 12 for the defocusin
nonlinearity. This steady state is achieved by random forcing~Gaussian white noise in time! on
low k, with strong damping at highuku.Kd . Our numerical experiments demonstrate that, w
defocusing nonlinearity, a state with MMT spectrum can be very long lived. Moreover, in s
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focusing cases, the MMT spectrum can persist for a very long time—as long as;33105 time
units ~not shown!. The MMT spectra reported in Ref. 37 were in this weakly nonlinear regim

Finally, we present a case of thedefocusingnonlinearity, in which~numerically! the MMT
spectrum describes statistical steady states. Figure 13 shows an example in which the def
dynamics initially exhibits a WT direct cascade, but eventually becomes the MMT spectrum
transition from the WT direct cascade to the MMT spectrum provides our strongest num
evidence that the MMT can describe a stable statistically steady state.~Alternatively, for much
weaker damping in the highk dissipative range, we note that a WT direct cascade describe
statistical steady state.!

FIG. 11. ~a! Thermodynamical equilibriumunder relaxation dynamics~focusing nonlinearity,a5
1
2, s50.25!. The short

dashed line has the slope of energy equipartition,n(k);v(k)21. ~b! Direct cascadeWT spectrum under relaxation

dynamics~defocusing nonlinearity,a5
1
2, s520.125!. The slope of the dotted line is the prediction of the WT theory

the direct cascade.~c! Inverse cascadeWT spectrum under relaxation dynamics~defocusing nonlinearity,a5
1
2, s50!.

The slope of the dot–dashed line is the prediction of WT theory for the inverse cascade. For comparison, the pred
the WT direct cascade is also shown~dashed line!. Note that, for clarity, spectra~b! and~c! have been shifted down by a
factor of 10 and 100, respectively.

FIG. 12. MMT spectrumof driven-damped dynamics~defocusing nonlinearity witha5
1
2, s50!. The system is driven by

a random force atuku52 and is damped atuku51 anduku.2600. The slope of the dotted line is the prediction of the MM
closure and, for comparison, the dashed line has the direct WT cascade slope.
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Having established the existence of four distinct stable spectra, we next examine mo
tailed behavior such as distinctions between the focusing and defocusing cases, and the
localized coherent structures in dispersive wave turbulence.

B. Deterministic forcing

With steady~time-independent! forcing, the system is completely deterministic and any t
bulence that is observed is a form of spatiotemporal chaos in a deterministic system. In this
we observe clear distinctions between focusing and defocusing nonlinearities.

When the system is driven by steady~time-independent! forcing on lowuku ’s, thedefocusing
dynamics has a spectrum shown in Fig. 14~a!, which exhibits a statistically steady state with th
coexistence of a direct WT spectrum on highk’s and a resonance spectrum on lowk’s. These
Hamiltonian resonances permeate from lowk through intermediatek’s and create a ‘‘stochastic
layer’’ on higherk’s. Waves in this stochastic layer in turn pump energy to highk’s and induce
sufficient decoherence of those highk waves to result in a WT direct cascade. In contrast,
focusingnonlinearity with steady driving at a moderate amplitude, the motion of long wa
becomes chaotic due to modulational instability, which quickly generates a wave turbu
inertial range starting from very lowk’s. In this focusing case, initially the MMT spectrum
observed over the entire initial range. However, it is a transient and the WT direct ca
spectrum gradually invades from lowk’s, while the range of the MMT spectrum shrinks towa
high k’s and eventually disappears, leaving the WT spectrum over the entire inertial range. F
14~b! shows an intermediate stage of this transition, in which both spectra coexist.

Distinctions between the focusing and defocusing nonlinearities are also apparent
space–time profiles of the turbulent waves. As shown in Fig. 15, coherent structures that a
localized in space dominate the spatial profile in the focusing case, in contrast with the defo
case, where the turbulent waves ride on the long-wavelength ‘‘global’’ radiation modes, whic
driven by the low-k deterministic force~Fig. 16!.

If we trace the phase,f(x,t)5Arg q(x,t), of the waveq(x,t), the dynamics of focusing
nonlinearity exhibits far more chaotic phase evolution than that of defocusing nonlineari
shown in Figs. 17 and 18. Plotted is the functionf(x,t) evenly sampled in time. Figure 18 show
that, for the defocusing case, the phase of the wave is more or less ‘‘locked’’~at f;p in the

FIG. 13. MMT ~thick line! state as the statistically steady state in thedefocusingdynamics~a5
1
2, s50!, driven by a

random force, which evolves from a transient WT direct cascade. The WT direct cascade is indicated by the shor
line and, for clarity, is shifted up by a factor of 10, as indicated by the fine line. The dotted line has the MMT exp
and the dashed line has the WT direct cascade exponent.
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figure! to the external forcing, with a small random spattering around the locking phase.~Note that
p and 2p should be identified!. In contrast, Fig. 17 displays an efficient randomization of
phase over the entire interval@2p,p# for the focusing nonlinearity.

The efficiency of chaoticization as illustrated in the phase of the wave has strong implica
for the validity of weak turbulence. Recall that the essence of weak-turbulence theories is th
distribution of turbulent waves are nearly Gaussian, which leads to mean-field closures for k
equations. Strong phase randomization as in the focusing case naturally indicates Gauss
dom phase approximation, and, thus, indicates the validity of a weak-turbulence descript
wave turbulence. Our numerical study confirms this argument: Gaussianity is well satisfied f
focusing nonlinearity, as shown in Fig. 19 for allak—this underlies the observation of the wea
turbulence direct cascade over the entire inertial range in Fig. 14~b!. Note that for a Gaussian
distribution of a complex variable, thenth moment,mn , is related tom2 by mn5cnm2

pn, where
c452, p452, c656, andp653. In the focusing case, our numerical values for the expon
agree with these theoretical values within 2% and those for thec4,6 within 5%—indicating a high

FIG. 14. Steady deterministic force. ~a! Coexistence of a WT direct cascade with Hamiltonian resonances in a statist

steady state, for thedefocusingdynamics~a5
1
2, s50!, driven by a steady force on 2<uku<4. ~b! Invasion of a WT direct

cascade into the MMT transient regime, for thefocusingnonlinearity~a5
1
2, s50!, driven by a steady force on 2<uku

<3. The initial data for these cases is smooth, composed of a simple sum ofAi sech„Ai(x2xi)…, 1< i<3, the locationxi

being arbitrarily chosen. Note that spectrum~b! has been shifted up by a factor of 102 for clarity.

FIG. 15. Focusing nonlinearity: Localized coherent structures in the evolution of system~30! under a time-independen

deterministic forcing on 2<uku<3 and a constant dampingG2 for k.Kd , a5
1
2, s50. Plotted here isuq(x,t)u. Only a

small portion of the total systemL5410 is shown.
                                                                                                                



In
in Fig.

n-WT
r
to the

ciency
e
on the
s.
tability

an the

using
ave

system

4147J. Math. Phys., Vol. 41, No. 6, June 2000 Chaotic and turbulent behavior of dispersive waves

                    
degree of Gaussianity since the deviation fromc4,6 is a more stringent test for Gaussianity.
contrast, for the case of the defocusing nonlinearity under a deterministic forcing, as shown
20, there is more than 10% deviation fromp6 and nearly 100% deviation fromc6 , indicating a
large deviation from Gaussianity. As expected, this non-Gaussianity gives rise to a no
resonance spectrum over a largek range in Fig. 14~a!. Interestingly, Fig. 20 shows that only fo
small n(k) is there a roughly approximate Gaussian region, which precisely corresponds
region in highk’s in Fig. 14~a!, where a weak-turbulence direct cascade is observed.

Thus, one distinction between the focusing and defocusing cases is the manner and effi
by which the deterministic force at smallk is converted into an ‘‘effective random stirring’’ of th
intermediate spatial scales. In the focusing case, this conversion is very efficient, relies
modulation instability, involves only relatively smallk modes, with completely random phase
On the other hand, in the deterministic defocusing case, the absence of the modulational ins
forces the conversion to be less efficient, and to take place through a larger range ofk modes
~presumably through a breakdown of KAM tori!, with limited phase randomization.

We mention that, although the defocusing case in Fig. 14 has stronger nonlinearity th
focusing case in Fig. 14—e.g., theL2 norm,N, for the defocusing case isN;27 whileN;7 for
the focusing case, the focusing nonlinearity exhibits a far larger inertial range. For the defoc
nonlinearity, a sufficient strong nonlinearity is required for a possible chaoticization of w

FIG. 16. Defocusing nonlinearity: Turbulent waves riding on coherent long-wavelength modes in the evolution of

~30! under a time-independent deterministic forcing on 2<uku<4 and a constant dampingG2 for k.Kd , a5
1
2, s50.

Plotted here isuq(x,t)u. Only a small portion of the total systemL5410 is shown.

FIG. 17. Chaotic phase distribution for thefocusingnonlinearity under deterministic drive.
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motions. Recall that, however, weak-turbulence theories are often justified on the ground o
nonlinearity. This obviously raises the question of how to identify a validity regime of w
turbulence for the defocusing nonlinearity under deterministic forcing.

C. The cycles of dispersive wave turbulence

The next numerical experiment illustrates, for the focusing case, the cycle of energy tr
in the statistical steady state of dispersive wave turbulence—a cycle that involves the inter
of coherent structures and resonant waves as they form the equilibrium, inverse and dire
cascades simultaneously. As described above, modulation instability in focusing dynamics in
spatially coherent ‘‘solitonic’’ excitations at random spatial locations to form a thermal equ
rium bath~Fig. 21!. The formation of these excitations can actively transfer energy into highks via
their focusing processes in space, where the order of magnitude of wave numberks is determined
by the spatial scale at which these localized waves saturate. This energy injection process
ated with the creation of the localized excitations is a relatively fast process, while the dec

FIG. 18. Phase distribution for thedefocusingnonlinearity under deterministic drive.

FIG. 19. Gaussianity for thefocusingnonlinearity under a deterministic drive. The best fit for the sixth moment~crosses!
as a function of the second moment ism656.30m2

2.95 ~white line! and for the fourth moment~dots! is m452.05m2
1.98

~dashed line!. Note thatm25n(k) and the relationsm656 m2
3 andm452 m2

2 hold for Gaussian distribution.
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these coherent structures is slow. At moderate forcing amplitudes, the saturation process o
intermediate spatial scales, andks resides in the middle of the inertial range; however, at la
forcing amplitudes, the saturation process occurs at very short wavelengths, andks resides within
the dissipation range. In the latter case, some radiation is dissipated and some generates,
resonant quartet interactions, an inverse cascade toward long wavelengths—where the m
tional instability acts to create self-focusing coherent structures and complete the cycle.
former case~of moderate forcing amplitudes!, the saturating states in the center of the iner

FIG. 20. Deviation from Gaussianity for thedefocusingnonlinearity under deterministic drive. The best fit~dashed line!
for the nearly power law tail for the sixth moment~crosses! as a function of the second moment ism6511.9m2

2.62 and the
best fit ~dot–dashed line! for the fourth moment~dots! is m452.54m2

1.84. Note thatm25n(k) and the relationsm6

56 m2
3 andm452 m2

2 hold for Gaussian distributions.

FIG. 21. Formation of the coherent structures, their saturation, and the generation of the inverse cascades~which can be
observed in the decay process of those localized structures into long-wavelength radiation!. Plotted here is the space–tim

profile of uq(x,t)u. ~a5
1
2, s50, focusing nonlinearity!.
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range generate, again through resonant quartet interactions, both the direct~toward shorter scales!
and the inverse~toward longer scales! cascades. Dissipation terminates the flux toward sho
scales, and the modulational instability terminates the flux~of the inverse cascade! toward longer
scales. And again, the cycle continues.

Figure 22~a! shows an excellent example of the coexistence of a thermodynamical equilib
state of these coherent structures and the inverse cascade induced by their slow radiation
coherent waves. For spectrum~a!, we haveks.1000. We note that, fork higher thanks , the usual
WT direct cascade should be expected, since the coherent excitations do not have a stron
ence on energy transfer at spatial scales much smaller than their coherence length. Figur~b!
demonstrates this phenomenon, where we have tuned the dynamics to a regime such that o
few long waves are unstable. These inject energy intoks;100, resulting in an inverse cascade f
k,ks and a direct cascade fork.ks . @To help in the interpretation of these equilibrium spect
we note that, in general, the distribution for the thermodynamical equilibrium is 1/(v1m), where
m is chemical potential. We are able to specify the value ofm in our experiments by controlling
the forcing strength. The thermodynamical equilibrium distribution of those unstable long m
k̃ in Fig. 22 corresponds to the limit in whichm@v( k̃), whereas, spectruma in Fig. 11 corre-
sponds to the case ofm50, i.e.,n(k);v(k)21.#

The formation and decay of coherent excitations in thermal equilibrium, together with
resonance wave interaction of the direct and inverse cascades, form a complete cycle of
transfer in the statistical steady state—in contrast from standard descriptions in plasma turb
which primarily utilize collapse with high-k dissipation.41 Notice that the location of the spatia
scaleks at which the coherent structures saturate depends upon the strength of the nonli
~which can be controlled by the strength of amplitude of the external forcing!. This saturation
wave numberks can reside either within the inertial range or within the dissipation scales. W
it resides within the inertial range, both the direct and inverse cascades are present. Fig
illustrates schematically the energy transfer cycle in these two situations. In a freely dec
situation, the cycle changes dynamically. As the turbulence decays, the saturation scaleks moves
from the high-k dissipation scale of strong nonlinearity, through the intermediate inertial ra
where both cascades appear, to the low-k injection range itself, where only a weak turbulen
direct cascade remains. Finally we point out that, even when driven extremely strongly, e
value so strong that the total norm is increased by a factor of 102 with respect to the cases show

FIG. 22. ~a! Coexistence of thermodynamical equilibrium and theinverseWT cascade, for thefocusingnonlinearity~a

5
1
2, s50!, driven by a steady force onuku51. The flat part of the spectrum~dot–dashed line! shows thermodynamica

equilibrium. ~b! Coexistence of theinverseand direct WT cascades. The dotted~dashed! line has the exponent of the
inverse~direct! WT cascade.
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in Fig. 22, thedefocusingdynamics does not possess this energy transfer cycle simply beca
does not have long wave instabilities, andlocalizedexcitations.

D. Summary

As shown above, there are rich spectra of the dispersive wave turbulence within the
model ~30!—the direct and inverse cascades of weak-turbulence theory, thermodynamic e
rium, and the MMT spectrum. The weak turbulence spectra are intrinsic properties of free w
while the MMT spectrum is associated with a damped-driven situation. It seems that the
spectrum usually arises in the force dominating regime, wave front propagation of focusing
in k space,4 or as a steady-state matching to driving and dissipation. Although the WT cas
spectra and thermodynamic equilibrium spectra can be encapsulated by a single theoretica
work, namely, weak-turbulence theory, in order to fully understand this MMT spectrum, it s
that we need more insight into matching asymptotics between the inertial range and fo
dissipation ranges. In other words, understanding the full dynamics of wave turbulence w
quire a weak-turbulence theory which takes into account fully the noninertial effects of fo
and damping. In addition to the confirmation of wave turbulence spectra, we have also d
strated that the interplay among these wave turbulence spectra in the focusing case is contr
spatially localized, coherent structures—in the focusing case, the instability of long waves c
spatially randomly distributed, coherent structures, which inject energy into the high-k region and
establish an energy transfer cycle within wave turbulence, thus, giving rise to the coexiste
multiple turbulence spectra in a statistically steady state.

VII. CONCLUSION—EFFECTIVE STOCHASTIC DYNAMICS AND PREDICTION

States of spatiotemporal chaos exist. In the setting ofdispersive wave turbulencethese states
can be comprised of spatially localized coherent structures in interaction with the fluctu
radiation waves of the ‘‘active heat bath.’’ These deterministic wave systems act as if they
stochastic. While a basic and fundamental description of the~universal ?! properties of the active
nonlinear heat bath is important, for applications it is even more important to develop equ
that predict macroscopic transport of observable quantities. In the chaotic deterministic syst
dispersive wave turbulence, one seeks effective stochastic equations with which to quant
behavior of coherent structures and other macroscopic observables.

FIG. 23. The cycle of energy transfer in dispersive wave turbulence.~a! The saturation scaleks of the spatially localized
coherent structures is in the dissipation range—Coexistence of energy equipartition and the WT inverse cascade~b! The
saturation scaleks of the spatially localized coherent structures is in the middle of the inertial range—Coexistence
WT inverse cascade and direct cascade.
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Fundamental issues and questions immediately arise: Which properties and observab
be predicted? Do properties exist for which prediction is impossible in principle? Is it possib
describe these deterministic systems of spatiotemporal chaos by an effective stochastic dyn
Can an effective stochastic dynamics be realized in principle and in practice? If so, how c
equations of effective stochastic dynamics be constructed and verified? Such issues are
ginning to be addressed in the literature.

The first fundamental issue is the existence and realizability of an effective stochastic d
ics. This issue was initially studied by Zalesky33 in the setting of spatiotemporal chaos for th
Kuramoto–Sivashinsky nonlinear wave equation. Earlier, Yakhot34 had proposed, using very heu
ristic renormalization arguments, that the longest waves in this deterministic spatiotempora
otic system could be described by a stochastically forced Burgers’ equation with a renorm
diffusion coefficient. Zalesky designed and performed some numerical experiments on the o
deterministic Kuramoto–Sivashinsky equation, which provided positive evidence that su
effective stochastic dynamics could indeed exist. Later, in the setting of a damped-driven
equation, we31,32 refined these numerical studies, making them more detailed and precise
work confirmed Zalesky’s original conclusions; moreover, it established that the existence
effective stochastic dynamics demands only temporal chaos and does not require spatiote
chaos. Furthermore, our numerical results are consistent with the notion that spatiotempora
with increasing large domains~or the number of modes! can give rise to Gaussianity of th
effective stochastic forcing—in this limit, thus, a universal description of effective stochastic
may be available for macroscopic dynamics.

Very recently, in their mathematical study of idealized models for stochastic climate pr
tion, Majda, Timofeyev, and Vanden Eijnden42 developed an effective stochastic dynamics fo
single climate variableU, and tested its predictions against the original Hamiltonian system~with
57 degrees of freedom!. Here the effective stochastic dynamics provided successful predictio
the presence of the ‘‘active heat bath.’’

Effective stochastic dynamics appears indeed to be realizable. However, procedures
construction of stochastic dynamics for the original system are not well understood and nee
further developed. Fundamental issues of predictability emerging out of these development
to be addressed and clarified. Such topics will be active areas of research for the next dec
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Functional integration
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Three approaches to functional integration are compared: Feynman’s definition and
the Feynman–Kac formula, Bryce DeWitt’s formalism, and the authors’ axiomatic
scheme. They serve to highlight the evolution of functional integration in the sec-
ond half of the twentieth century. ©2000 American Institute of Physics.
@S0022-2488~00!00306-6#

I. INTRODUCTION

Functional integration is a natural product of the twentieth century during which mathem
and mathematical physics have been dominated by the identification of useful infinite-dimen
spaces and the discovery of their powers:

• Marvelous connections between apparently disconnected subjects have been disc
thanks to infinite-dimensional spaces.

• Many disciplines, in particular quantum physics, cannot be formulated without infi
dimensional spaces. Indeed, a synoptic table of physics subjects and mathematical th
which enrich each other, brings together
Newtonian Mechanics and Calculus~both Newton’s achievements!,
General Relativity and Riemannian Geometry,
Quantum Physics and Infinite-dimensional Spaces.
As early as 1927, J. von Neumann clarified and unified the works of Heisenberg~1925! and
Schrödinger ~1926! in one simple statement: ‘‘To each physical system there correspon
complex Hilbert space whose one-dimensional subspaces define the states of the sys1

And, nowadays much is expected from integration over function spaces in the develo
of quantum physics.

A function space is much richer, or less constrained, than the limit ofRm for m5`. Therefore
a crucial landmark in the development of functional integration was the definition of path inte
which do not resort to limits of integrals overRm when m5`. As pointed out by Feynman
replacing a functional integral by the limit of an integral overRm is as crude a procedure a
replacing an ordinary integral by the limit of a Riemann sum of areas of narrow rectangles

The simplest functional integral is a path integral, i.e., an integral in which the variab
integration is a function~a path! defined onR or some time intervalT,R. Functional integration
in Quantum Field Theory is more than a formal transcription of path integration, and has n
reached the degree of development of path integration.

We single out three approaches to functional integrals because they can serve as pro
for many others; namely, the definitions proposed by Richard Feynman~Sec. II!, Bryce DeWitt
~Sec. III!, and Pierre Cartier/Ce´cile DeWitt-Morette ~Sec. IV!. Each definition is the seed o
computational techniques, and specific problems are best treated by an appropriate defin
functional integration.

We are not writing a review on functional integration in physics. For readers interest
Constructive Quantum Field Theory we recommend an introduction2 written by J. C. Baez, I. E.
41540022-2488/2000/41(6)/4154/34/$17.00 © 2000 American Institute of Physics
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Segal, and Z. Zhou which includes, in particular, a glossary to clarify terminology, and a ser
lexicons to correlate the mathematical formulation with the physical interpretation. For a bib
raphy of the subject up to 1987, we recommend the bibliography of the second edition
classicQuantum Physics, a functional integral point of view3 by J. Glimm and A. Jaffe. And to
size up the explosion of the subject we quote from the Preface of another classicFunctional
Integration and Quantum Physics4 ‘‘It seemed~said B. Simon in 1979! that path integrals were a
extremely powerful tool used as a kind of secret weapon by a small group of mathem
physicists.’’

We do not follow the same approach to functional integration as do the constructivists. W
not approach Feynman path integrals by the Wiener route. On the other hand we will show,
appropriate places, how our work presented in Sec. IV is related to the works of S. Bochner5 I. E.
Segal,6 P. Malliavin,7 and the White Noise School.8

In Sec. V we relate the three definitions examined in this paper. The conclusion~Sec. VI!
sketches avenues to explore so that functional integration will be as powerful a tool as or
integration is nowadays.

II. FEYNMAN’S DEFINITION AND KAC’S PROPOSAL 9

Path integral as a limit m Ä` in Rm

Functional integration entered Quantum Physics in 1942 in the doctoral dissertation of
ard P. Feynman, ‘‘The Principle of Least Action in Quantum Mechanics.’’ The goal wa
formulation of quantum electrodynamics based on direct interaction at a distance between c
particles. The problem was to find a ‘‘generalization of quantum mechanics applicable to a s
whose classical analogue is described by a principle of least action10’’—and not necessarily by
Hamiltonian equations of motion. Feynman solved the problem by writing11 the probability am-
plitude (qt8uqT8) for finding at timet in positionqt8 a particle known to be at timeT in positionqT8
as follows:

~qt8uqT8 !5E E ¯E ~qt8uqm8 !dqm8 ~qm8 uqm218 !dqm218 ¯~q28uq18!dq18~q18uqT8 !, ~II.1!

where the interval@T, t# has been divided into a large number of small intervals

@T,t1#,...,@ tm ,t#;

qk8 is an abbreviation forqtk
8 [q~ tk!,

and,L(q̇,q) being the Lagrangian for the classical system considered,

~qt1dt8 uqt8! is ‘‘often equal to exp
i

\ FLS qt1dt8 2qt8

dt
,qt1dt8 D dtG

within a normalization constant in the limit asdt approaches zero.’ ’ ~II.2!

Feynman notes the ‘‘vagueness12’’ of the normalization constant as one of the difficulties of h
equation. Its absolute value was obtained by Ce´cile Morette in 1951 by requiring that (qt1dt8 uqt8)
satisfy a unitary condition. Its complex value is still a matter of debate. Eachqk8[q(tk) is inte-
grated over its full domain. The limit of~II.1! for large m is a sum over all continuous path
q:@T,t#→R with fixed end points. It is a path integral.~See Fig. 1.!

The goal, action at a distance quantum electrodynamics, was not achieved by path int
But quantum mechanics had been formulated in terms of the action functional
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S~q!5E
T

t

L„q̇~s!,q~s!…ds. ~II.3!

Feynman concluded his doctoral dissertation: ‘‘The final test of any theory lies, of cours
experiment... . The author hopes to apply these methods to quantum electrodynamics.’’

Quantum Electrodynamics

The opportunity came in 1947 when Hans Bethe made a nonrelativistic, somewhat he
but basically correct calculation of the energy difference between the 2S1/2 and 2P1/2 levels of the
hydrogen atom recently discovered by Lamb, and brought to Feynman’s attention the n
make a relativistic quantum field theoretic calculation of the Lamb shift, using a relativistic c
procedure. Feynman knew that the formalism beginning with~II.1! could do it, but he ‘‘had to
learn how to make a calculation.13’’ He developed techniques based on his path integral form
lation of probability amplitudes ‘‘making diagrams to help analyze perturbation theory quick
Path integration was ready to make its debut.

How was ‘‘she14’’ received? By physicists? By mathematicians? Apart from a handful,15,16,17

physicists were either negative or uninterested. The tide began to turn when Freeman J. Dy18,19

made the connection between the radiation theories of Tomonaga, Schwinger, and Feynm
theory of Feynman differs profoundly in its formulation from that of Tomonaga and Schwin
but Dyson established their connections by constructing a series expansion to the
Tomonaga–Schwinger equation,

i\c@]C/]s~x0!#5H1~x0!C, ~II.4!

whereC is the state vector of the system,H1 the photon–electron interaction,x0 a point on a
spacelike surfaces, and then showing that the rules for computing the series expansion
identical to Feynman’s rules for computing the expansion of a functional integral in powers o
coupling constant of the interaction.

Feynman’s rules are stated in terms of graphs: ‘‘The graph corresponding to a par
matrix element is regarded, not merely as an aid to the calculation, but as a picture of the p

FIG. 1. A dotted line has been drawn for visual purpose fromqT8 to q18 , to q28 ... to qt8 , but nothing is said in~II.1! about
a path connectingqT8 ,q18 ,...,qt8 . The only relevant quantity is the short time propagator (qk118 uqk8). Whenq18 ,...,qm8 vary,
the dotted line varies. The limit of them-fold integral ~II.1! for largem can then be said to be a ‘‘sum over all possib
paths’’ with fixed end pointsqT8 andqt8 .
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process which gives rise to that matrix element.18’’ These graphs, embodying both the physics a
the mathematics of a problem, rapidly became popular. Computations of quantum electrody
processes were carried out furiously with this new technique. It was far more reliable than
ous techniques for handling infinite terms, and far simpler. With the same amount of wor
could compute terms one or two orders higher in a power expansion.

Path integration, from which the diagram technique had been developed, was for a num
years largely forgotten,20,21 and much effort was spent in obtaining the graphical rules fr
formalisms other than a path integral representation of the solution.22 These other methods wer
not safer mathematically than path integration, but path integration was too unusual a formu
to be easily accepted.

The Feynman –Kac formula

A typical path integral is the limit of anm-fold integral ~II.1! when m is infinite, written
symbolically. We come now to the gist of Feynman’s method. Let us rewrite formula~II.1! by
collecting the phase factors coming from the approximate formula~II.2!. We get an approximation

~qt8uqT8 !.E
Rm

Gm)
k51

m

dqk8e
iSm /\, ~II.5!

whereGm is the ‘‘rather vague’’ normalization constant, and where

Sm5 (
k51

m

LS qk118 2qk8

tk112tk
,qk118 D ~ tk112tk!, ~II.6!

with the conventionstm115t, qm118 5qt8 . It is striking thatSm is the Riemann sum approximatio
to the action

S~q!5E
T

t

ds L~ q̇~s!,q~s!! ~II.7!

evaluating along a pathq:@T,t#→RD with given end pointsq(T)5qT8 , q(t)5qt8 . Feynman took
the bold step to take the limitm5` inside the integral in~II.5! and therefore to write an exac
~meaningless! formula

~qt8uqT8 !5E DqeiS~q!/\. ~II.8!

The symbolDq is formally the limit ofGm)k51
m dqk8 incorporating the normalization constantGm .

The symbolDq is often written asG )T<s<tdq(s) and *Dq... is interpreted as ‘‘sum over al
possible paths as best as you can.’’ The symbolDq is lacking not only a mathematical definition
but even an unambiguous heuristic one. Much effort was spent to give a direct meaning to b
normalization constantG and to the product)sdq(s) over all time valuess. To say that~II.8! is
the limit of ~II.5! for m infinite implies that the short time propagator (qt1dt8 uqt8) is known, and that
the limit exists. Our thesis is:we should treatDq as a pure symbol, a black box not to be ope
and all that matters is the set of rules for manipulating it.

Meanwhile, Mark Kac in 1951 made the connection with the Wiener measure. Since the
beginning~in the 1920s! Wiener noticed that the integral of a functionalF(q) of a pathq of the
Brownian motion with respect to the Wiener measure could be calculated as a limit form5` of
an integral

E
Rm

Cm)
k51

m

dqk8e
2Sm~q18¯qm8 !F~q!, ~II.9!
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where the interpolating path is as in Fig. 1. Here the term in the exponential factor is given

Sm5
1

2C (
k51

m
~qk118 2qk8!2

tk112tk
. ~II.10!

What produces the convergence form5` is the replacement of the imaginary exponentialeiSm /\

by a positive damping factore2Sm. The Wiener measure is abona fidemathematical construction
and has been around for seventy-five years. Following in the footsteps of Feynman, we coul
it as

E Dqe2Sc~q!F~q! ~II.11!

instead of the customaryE@F(q)# used by the probabilists. Here the ‘‘action,’’ derived from t
kinetic energy alone, is given by

Sc~q!5
1

2C E
T

t

q̇~t!2dt, ~II.12!

which could also be written as

Sc~q!5
1

2C E
T

t ~dq!2

dt
. ~II.13!

Writing the Wiener integral as

E@F~q!#5E Dq•expH 2
1

2C E
T

t ~dq!2

dt J F~q! ~II.14!

brings many benefits; for instance, the so-called Cameron–Martin formula is just a reflect
the invariance of the ‘‘volume element’’Dq under a shift ofq into q1q0 ~for q0 fixed!. But this
point of view was never accepted by the ‘‘standard’’ probabilists.

The transition amplitude (qt8uqT8) is used in quantum mechanics to solve the Schro¨dinger
equation. Let the Lagrangian be the standard one for a particle under an exterior force
namely

L~ q̇,q!5
m

2
~ q̇!22V~q!. ~II.15!

Then the Schro¨dinger equation takes the form

i\] tc52
\2

2m
Dc1Vc, ~II.16!

and the Feynman solution is given by

c~ t,qt8!5E dqT8~qt8uqT8 !c~T,qT8 ! ~II.17!

with a propagator given by~II.8!. Let us introduce an imaginary timet5 i t . Then Schro¨dinger’s
equation goes into a diffusion equation

]tw5
C

2
Dw2Ww ~II.18!
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with C5\/m and W5V/\. Let us now perform the changet5 i t directly into the integral
*DqeiS(q)/\ for the propagator (qt8uqT8). Formally iS(q)/\ goes into2SI(q) ~‘‘imaginary time
action’’! given by23

SI~q!5E
iT

it H 1

2C

~dq!2

dt
1W~q!dtJ , ~II.19!

and (qt8uqT8) goes into a kernelK(qit8 uqiT8 ) given by

K~qit8 uqiT8 !5E Dqe2SI ~q!. ~II.20!

Notice the imaginary parameters inK(qit8 uqiT8 ). Kac’s remark24 is as follows: according to formu
las ~II.14! and ~II.19!, we can rewrite~II.20! in the form

K~qt8uqT8 !5EFexp2E
T

t

W„q~t!…dtG ~II.21!

~for real parameters now! and indeed a solution to the diffusion equation~II.18! is given by

w~ t,qt8!5E dqT8K~qt8uqT8 !w~T,qT8 !. ~II.22!

To sum up, we get

E Dq•expH i

\
S~q!J 5EFexp2

1

\ E
iT

it

V„q~t!…dtG . ~II.23!

The imaginary limits of integration mean that the two integrals on the r.h.s. (a functional inte
over q, an ordinary integral overt) have to be performed witht real, then followed by an analytic
continuation.

Kac concludes: ‘‘Because ofi ([A21) in the exponent, Feynman’s theory is not easily ma
rigorous. On the other hand,@the left hand side of~II.23!# is most conveniently handled whe
transformed into the form@of the right hand side#.’’ The issues raised by Kac are:

~i! The validity of settingt5 i t ; analytic continuation of theintegral is relatively easy to
justify; analytic continuation of theintegrandand integrator is a different issue.

~ii ! The use of stochastic calculus in setting up and computing Feynman integrals; where
integral is often the solution of a differential equation, the variable of integration is oft
stochastic process.

~iii ! The possibility that~II.21! makes better sense than~II.8!. It is certainly less appealing
physically: Wiener’s integral ‘‘spoils the physical unification of kinetic and potential p
of the action,25’’ which is an important feature of Feynman’s integrals when setting th
up in quantum field theory.

In the 1972 Gibbs Lecture at Yale,26 Dyson presented Feynman’s integral as an ‘‘open oppo
nity’’ for mathematicians: The ‘‘ ‘sum over histories’ is mathematical nonsense27–29 @but# if ma-
nipulated in a purely formal style without regard for rigorous justification, gives all the r
answers.’’ In particular, Dyson challenged his colleagues to find ‘‘a rigorous definition of F
man sums which are invariant under general coordinate transformations’’—in brief, to fi
rigorous path-integral formulation of quantum gravity.
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Some later developments

Feynman’s integral~also known as a path integral, a sum over fields, or a sum over histo!
gained gradual acceptance in the 1960s.30 It was presented31,32 at the 1963 session of the Le
Houches school, not at center stage but along with many of the techniques developed
DeWitt that are used in modern quantum field theory: background field method, effective a
presence of invariance groups, commuting and anticommuting variables.

The Kac formula was readily accepted in Quantum Statistical Mechanics where the
quantity of interest is the statistical operator exp(2bH) given in terms of the HamiltonianH of the
system and its inverse temperatureb. We refer the reader to the Lecture notes of J. Ginibre33 for
the situation in 1970. The use of the Wiener measure in Statistical Mechanics is so extensi
so rich that we can only give a glimpse into the subject by quoting the proceedings of a
summer school on functional integration.34

In the 1970s, with the advent of supercomputers, K. Wilson initiated the study of gauge
defined on lattices. Lattice quantum field theory is the most direct transcription of Feynm
original ideas that one can imagine. It is particularly important for field theories that cann
handled by perturbation expansions: theories of strongly interacting fields, and theories in
renormalization cannot be achieved order by order but which may nevertheless possess co
and nontrivial continuum limits. Supercomputers give, to problems cast in functional-int
form, answers that cannot be obtained from graphical expansions. In addition, they allow res
ers direct access to topologically nontrivial configuration spaces and spaces of histories.

The topological power of functional integration appeared35 in 1971 when the variable o
integration was chosen to be a path taking its value in a multiply connected space. A basic th
for systems whose configuration space is homotopically nontrivial was obtained from the
integral representation of its propagator. In the 1980s, E. Witten suggested and develope
tional integrals of type~II.8! which yield finite-dimensional topological invariants:

~1! If the action is supersymmetric,36 the functional integral can be used for proving the Atiya
Singer index theorem, and for computing the index.

~2! If the action is a Chern–Simons action,37 it can be used for computing Jones polynomials

There is now a rich literature on the topological uses of functional integrals.

III. BRYCE DEWITT’S FORMALISM

In a chapter entitled ‘‘The Heuristic Road to Quantization’’ of a forthcoming book ‘‘T
Global Approach to Quantum Field Theory’’ Bryce DeWitt gives a comprehensive descriptio
the heuristic formal approach to functional integration which he has introduced and deve
since the 1960s leading to the standard formal rules used by quantum field theorists.31,32 It is
elegantly set up in the framework of supermanifolds, so that both bosons and fermions are
on an equal footing. Here we confine our attention to boson fields~i.e., c-type!.38

Schwinger variational principle

The B. DeWitt formulation of functional integrals starts from the Schwinger variational p
ciple; this principle assumes an actionS, functional of operatorswI acting on a space of stat
vectorsu.; it states that the variation of the transition amplitude^AuB& generated by the variation
dS of the action functional is

d^AuB&5 i ^AudS/\uB&, ~III.1!

or, equivalently, if one is interested in the amplitude of a transition from an in-state to an out

d^outu in&5 i ^outudS/\u in&. ~III.2!
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Henceforth the actionS is measured in units of Planck’s constant,\51. To simplify the presen-
tation we consider the case when the operators are vector-valued and when the action poss
invariant flows. Let the variation of the action be bilinear in the field operatorwI and a sourceJ,

dS5dJjwI
j , ~III.3!

then

dW

idJj
^outu in&5^outuwI j u in&.

If subsequently the action suffers a second variationdJiwI
i , then

dW

idJi

dW

idJj
^outu in&5^outuwI iwI

j u in&. ~III.4!

‘‘Subsequently,’’ symbolically writteni, j , means that the time associated with the indexi lies to
the future of the time associated with the indexj. Let T be a chronological order operator, then E
~III.4! can be written

dW

idJi

dW

idJj
^outu in&5^outuTwI

iwI
j u in&. ~III.5!

The T operation is required to commute with both differentiation and integration with respe
space–time coordinates. Equation~III.5! can be applied to the Taylor expansion of an arbitra
functional of the field operators.

Canonical commutation relations

The heuristic operator quantization rule which has been found to be of the widest appli
is to assume that the~super!commutator of quantum operators is equal to their Peierls’ bracke
to a factori:

@A,B#5 i ~A,B!, ~\51!, ~III.6!

or more explicitly@A,B#5 i\(A,B). The Peierls’ bracket is a covariant formulation which ge
eralizes the classical canonical Poisson bracket; its definition follows from the theory of me
ment. LetA andB be two physical observables, letDA

2B be the retarded effect ofA on B andDA
1B

be the advanced effect ofA on B. The Peierls bracket is by definition

~A,B!ªDA
2B2DA

1B. ~III.7!

If the retarded/advanced effect ofA andB is due to the change of the action functionalS of the
classical~unquantized! fields w, then

~A,B!5E dxE dy
dA

dw i~x!
G̃i j ~x,y!

dB

dw j~y!
5..A,i•G̃i j

• j ,B, ~III.8!

where G̃ is the difference between the advanced and retarded Green functions of the s
variation of the action

G̃i j
ªG1 i j 2G2 i j , ~III.9!

and where
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j ,S,i•G6 ik52 jd
k, ~III.10!

with G2 i j 50 if i+ j ,G1 i j 50 if i, j and j ,S,i5d2S/dw i(x)dw j (y).
In Eqs.~III.7!–~III.10! the fieldsw are vector-valued functions. In Eq.~III.6! Peierls’ bracket

is extended to~functions of! quantum field operatorswI . The structure of~A, B! is assumed to be
the same as the structure of~A, B!:

~A,B!5A,i "G̃
i j "j ,B with G̃ªG12G2, ~III.11!

which implies

@wI
k,wI

j #5 i G̃k j. ~III.12!

The quantumG̃ is called the~super!commutator operator and the classicalG̃ the ~super!commu-
tator function. A key problem is the relationship between the classical Peierls’ bracket~III.8! and
the quantum Peierls’ bracket~III.11!, i.e., betweenG̃ and G̃. We note right away, for later use
that

i G̃1k j~x,x8!5wI
k~x!wI

j~x8!2T„wI
k~x!wI

j~x8!…5 iG̃2 jk~x8,x!. ~III.13!

The relationship betweenG̃ and G̃ is encoded into the relationship between the opera
formalism of quantum physics and its functional integral formalism; for instance one can loo
a functional integral solution of the operator Schwinger variational equation~III.2!; choose, for an
ansatz, the Fourier transform of a functionalX

^outuin&5E
F
Dw•X~w!exp~ iJw!, wPF, ~III.14!

where the domain of integrationF is determined in part by the chosen ‘‘in’’ and ‘‘out’’ states; b
definition

DwªPx,idw i~x!. ~III.15!

A procedure for determiningX(w) consists in finding a differential equation forX; the cal-
culation begins by an integration by parts~which incidentally is a fundamental tool of Malliavin
calculus7!:

E
F
Dw•X~w!

dQ

idw i exp~ iJw!52E
F
Dw•X~w!Ji exp~ iJw!52^outuJi u in&; ~III.16!

Ji is obtained from the operator dynamical equation~III.20!; the property~III.5! of matrix ele-
ments of chronologically ordered products gives the r.h.s. in the form of derivatives with re
to J of ^outuin&. Replacinĝ outuin& by the ansatz~III.14! yields a differential equation forX.

Operator dynamical equation

A stationary point of the actionS(w)1Jw is a classical fieldw which satisfies the following
dynamical equation, in condensed notation@see~III.8!#:

S,i~w!1Ji50. ~III.17!

The operator dynamical equation is obtained from

S,i~wI !1Ji50 with wI 5w1fI , ~III.18!
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wherewI andfI are quantum fields.
Taking the~super!commutator of~III.18! with wI

i , after having Taylor-expanded it to orde
O(fI

3) @i.e., to orderO(\2) when\ is not set equal to 1# one obtains

i ,S,k~w!•G̃k j1 1
2i ,S,kl~w!•~G̃l j fI

k1fI
l G̃k j!50. ~III.19!

An easy manipulation using~III.9!, ~III.10!, ~III.13!, and ~III.17! yields the operator dynamica
equation

T•„S~wI !2 i ln m~wI !…
dQ

dwI
i 52Ji , ~III.20!

where

m~w!ªu~super!determinantG1~w!u21/21¯[u~sdet G1~w!u21/21¯ . ~III.21!

Having obtained an explicit expression forJi , we return to the computation~III.16! of X

E
F
Dw•X~w!

dQ

idw i exp~ iJw!5^outuT•„S~wI !2 i ln m~wI !…
dQ

dwI
i u in&. ~III.22!

A straightforward generalization of~III.5! gives the r.h.s. in terms of a functionF(dW / idJ) acting
on ^outuin&. Returning to the proposed ansatz~III.14!

FS dW

idJ
D ^outu in&5E

F
Dw•X~w!FS dW

idJ
D exp~ iJw!5E

F
Dw•X~w!F~w!exp~ iJw!.

~III.23!

Finally Eq. ~III.22! establishes a differential equation forX:

E
F
Dw•X~w!

dQ

idw i exp~ iJw!5E
F
Dw•X~w!„S~w!2 i ln m~w!…

dQ

dw i exp~ iJw!. ~III.24!

Its solution is

X~w!5Nm~w!exp@ iS~w!#. ~III.25!

N is an integration constant and the operator Schwinger variational equation~III.2! has been
solved:

^outu in&5NE
F

m~w!Dw•exp@ iS~w!1 iJw# ~III.26!

with m~w! given by ~III.21!. The termm~w! is often called the ‘‘measure functional.’’ Facto
ordering, and chronological products played a key role in its computation. The termm~w! can be
obtained by a totally different route, using Bogoliubov’s relations, which we outline below.

The vacuum persistence amplitude

The vacuum persistence amplitude^out,vacuin,vac&5..exp(iW) is given by settingJ50 in
~III.26!. Let us assume that in~III.26! the measurem~w! has not yet been determined by th
operator dynamical equation.
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The vacuum persistence amplitude can be computed independently of the functional in
~III.26! via the Bogoliubov’s relations; the value of exp(iW) thus obtained is then set equal
~III.26! with J50, andm~w! is found equal to~III.21!.

We shall come back tom~w! in Sec. V when comparing the Bryce DeWitt’s approach
functional integration and the approach of Cartier and DeWitt-Morette, in particular we
explain why the Bryce DeWitt’s functional integral solves a Schro¨dinger equation modified by a
term, 1

8 R, whereR the Riemann scalar curvature.
The ‘‘measure functional’’m~w! plays an important role in the quantum theory of nonline

fields as well as in quantum mechanics; for example, it plays a role in the Wick rotation, i
ghost formalism, in checking the consistency to 2-loop order of the functional proof of the i
theorem.39

IV. CARTIER AND DEWITT-MORETTE’S AXIOMATIC SCHEME

A. Early steps

The first definition of Feynman path integrals to be given directly on function spaces,40,41was
a direct generalization of the notion ofpromeasuresdue to Bourbaki. In Book VI, Chapter IX o
his well-known treatise,42 this author deals with the integration theory on a locally convex ve
spaceX; we refer the reader to theNote historiqueof this Bourbaki volume for an account of th
development of ideas leading to the definition of promeasures.

A promeasurem on a spaceX is a collection of bounded measuresmV , whereV runs over the
closed vector subspaces ofX, such thatX/V is of finite dimension, and where the measuremV

lives onX/V. There is a coherence relation between themV’s; asS. Bochner remarked in Ref. 5
the best way to express the coherence relation is via Fourier transform. More precise
projective system associated toX consists of spacesX/V, where the subspacesV are determined
by the topological dualX8 of X: such a spaceV consists of the elementsx of X such that

^xj8 ,x&50 for a finite number ofxj8PX8. ~IV.1!

If m5(mV) is a promeasure, it is completely determined by its Fourier transformFm, a function
on the dualX8 of X characterized by the relation~IV.5!.

The most important class of promeasures are the Gaussians. On a Hilbert spaceH, identified
to its dual by F. Riesz’s theorem, there is a canonical promeasure, with Fourier transform eq
exp(2 1

2ixi2). It has been first introduced by I. E. Segal in Ref. 6, under the name of ‘‘w
canonical distribution’’ or ‘‘isonormal distribution.’’ But, in quantum physics, we ought to c
sider objects with Fourier transform of the form exp(2iixi2). To achieve this, we need to define
prodistribution in a way similar to promeasures, by replacing the bounded measuresmV above by
more general distributionsTV @for instance, of the form expi(x1

21,...,1xD
2 )dDx on RD#.

We can consider a promeasure as anintegrator, where theintegrandsare the bounded con
tinuous cylinder functions: a cylinder function F on X is a function of the formF(x)
5F(^x18 ,x&,... ,̂ xD8 ,x&) for xj8 in X8 and a functionF andRD. By imposing suitable conditions
on the derivatives ofF, we can define suitable integrands for the prodistributions. Admitte
integrating only cylinder functions is a severe restriction. The next step is the integration of
of cylinder functions, like in ordinary integration we integrate limits of step functions. A lo
experimentation has been done with various classes of test functions on an infinite-dimen
space, and the dual classes of distributions. We refer the reader to the works of Malliavin,7 Krée,43

and also the White Noise School.8

Prodistributions, abstract as they may seem, are very practical; one can often use the
niques without knowing their definitions—let alone their name. One of the techniques exploi
transformation under linear mappings of Fourier transforms.
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Linear maps

Linear mapsP:X→Y on the infinite-dimensional spaceX are much more varied than th
linear maps onRn, and a spaceX of pathsx:T→RD can be linear even whenx is not a linear map.
~See Fig. 2.! On the dualX8 of X, the Fourier transformFm is given by

Fm~x8!5E
X
dm~x!exp~22p i ^x8,x&!. ~IV.2!

Let n be the image ofm under the linear mapP:X→Y, andP̃:Y8→X8 be the transposed map o
their respective duals,

^x8,x&5^y8,y& with y5Px and x85 P̃y8; ~IV.3!

then

Fn5Fm+ P̃. ~IV.4!

This formula is valid for a prodistributionm because

Fm~x8!5FmV~x8!5E
X/V

dmV~u!exp~22p i ^x8,u&! ~IV.5!

for x8PV0, whereV0 is the orthogonal ofV, i.e., V0 is the linear span of the set of points$xj8%
used in~IV.1! to defineV.

This simple technique has been used in great many applications.@See, for instance, two
review articles~Refs. 44 and 45!#. A particularly illuminating one is the calculation of the glor
scattering of waves by black holes.46 It is too long to reproduce here because the process invo
conservation laws and interfering degeneracies of the second variation of the action function
shall only quote the result, and extract from the calculation two applications of~IV.4! in a simpler
but similar context.

An example: Polarized glory scattering

The WKB approximation of glory scattering cross sections~backward scattering! breaks
down; but in a full semiclassical expansion, the dominating term of the intensity variationds(V)
of a wave scattered in the solid angledV by an axisymmetric potential, computed from fir
principles by functional integration, is

ds~V!54p2l21B2~u!
dB~u!

du
J2s

2
„2pl21B~u!sinu…dV, ~IV.6!

FIG. 2. A linear map onRD is only a D3D matrix; a linear map on an infinite-dimensional spaceX has many more

possibilities. Therefore the mapP:X→Y ~not necessarily finite-dimensional!, and its consequenceFn5Fm+ P̃, offer tech-
niques of integration useful in many circumstances.
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wherel is the wave length,dV52p sinudu, B(u) is the impact parameter of the eikonal rays
the wave,J2s is the Bessel function of order 2s, s50 for scalar waves,s5 1

2 for electromagnetic
waves, ands51 for gravitational waves. Equation~IV.6! is the polarized glory scattering cros
section valid foru close top.

Discretization

In Fig. 2, any linear mapP:X→Rn ~n finite! is a discretization. For example, letxPX be a
pathx:T→R with T5@ ta ,tb#, and

P:x→u5$uj% where uj5x~ t j !5^d t j
,x& ~IV.7!

for a finite partition$t1 ,...,tn% of the intervalT. Equation~IV.4! gives the prodistributionn onRn,
off which one can read the short time propagator corresponding tom on X. The casex:T→RD

requires only a heavier notation.
The most general discretization is obtained by choosing

uj5^xj8 ,x& where $xj8% is a finite set inX8. ~IV.8!

We shall work out explicitly an example in order to demystify prodistributions. Let

X be the space of continuous pathsx with one fixed end point, e.g.,

x~ ta!5a for every xPX,

m be defined byFm~x8!5exp@2pW~x8!# where W is a quadratic form onX8
~IV.9!

W~x8!5^x8,Gx8&X ; ~IV.10!

let

P:x→u5$uj% where uj5^xj8 ,x&, xj85d t j 11
2d t j

. ~IV.11!

The transposedP̃ of P is defined by~IV.3!; let Rn be the dual ofRn andu85$uj8%PRn , then~Fig.
2!

^x8,x&X5^u8,u&Rn,

i.e.,

^P̃u8,x&5^u8,Px&5(
j

uj8u
j5(

j
uj8^xj8 ,x&,

hence

P̃u85(
j

uj8xj8 . ~IV.12!

Equation~IV.4! says that the Fourier transform of the prodistributionn on Rn is

Fn~u8!5Fm~ P̃u8!5exp@2pW~ P̃u8!#.

In the case of the Wiener measure

W~x8!5^x8,Gx8&X with G~ t,s!5 inf~ t2ta ,s2ta!. ~IV.13!

Then, together with~IV.12! and ~IV.11!
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W~ P̃u8!5( uk8uj8K d tk11
~ t !2d tk

~ t !,E ds inf~ t2ta ,s2ta!d t j 11
~s!2d t j

~s!L
5( uk8uj8E dtE ds„d~ t2tk11!2d~ t2tk!…inf~ t2ta ,s2ta!@d~s2t j 11!2d~s2t j !#

5(
k

uk8
2~ tk112tk!. ~IV.14!

Given the Fourier transformFn(u8) on Rn , a standard calculation givesn on Rn:

dn~u!5dg1~u1!¯dgn~un!, ~IV.15!

with dgk(u
k)5(tk112tk)

21/2exp@2p(uk)2/(tk112tk)#duk.
Conclusion: The probability distribution~IV.15! shows that the random process$x(t);t

>ta% defined by the Wiener measure is a Brownian path.

Semiclassical expansions

The linear mapP:X→Y of interest when computing semiclassical expansions is the map
the space of vector fields along a classical path to the space of eigenvectors of the corresp
Jacobi operator~IV.25!. We constructP and show its usefulness, in particular when the criti
points of the action functional are degenerate~caustics, conservation laws!.

Let X be a space of functionsx:T→MD ~a D-dimensional manifold not necessarilyRD). The
functional representation of the probability amplitude^b,tbua,ta& of the transition of a systemS
from a statea at ta to a stateb at tb is an integral over a domainXab,X restricted by the state
a andb. The domainXab of integration is such that the action functional onXab is finite:

S~x!,` for xPXab . ~IV.16!

Let S(q) be a minimum ofS for qPXab ; the pathq is a classical path~a critical point ofS!
defined by 2D constants of integration:D at ta andD at tb such thatqPXab .

A semiclassical expansion begins with the functional Taylor expansion ofS aroundq. Let
x(a)PX be a one parameter family of paths such thatx(0)5q. The functional Taylor expansion
of S„x(a)… in the directionj, where

jª
dx~a!

da U
a50

, ~IV.17!

is an ordinary Taylor expansion in powers ofa; at a51,

S„x~1!…5S~q!1 1
2 S9~q!•jj1¯ . ~IV.18!

Explicitly

S9~q!•jj5E
T
dt ja~ t !Jab„q~ t !…jb~ t !, ~IV.19!

whereJab„q(t)… is the differential Jacobi operator on the space of vector fields alongq; moreover

Jab~q,s,t !ª
1

2

d2

dja~s!djb~ t !
@S9~q!•jj# ~IV.20!

is the functional Jacobi operator on the tangent spaceTqXab .
                                                                                                                



n

e
ical

e

f

ace

ation

4168 J. Math. Phys., Vol. 41, No. 6, June 2000 P. Cartier and C. DeWitt-Morette

                    
Provided it is not degenerateS9(q)•jj is a quadratic form onTqXab which can be used for
constructing a Gaussian prodistributionm on TqXab . See in Ref. 45 a study of the approximatio
of an integral onXab by an integral onTqXab .

If S9(q) is degenerate one can either expandS aroundx0Þq and/or keep higher terms in th
Taylor expansion ofS(x). WhetherS9(q) is degenerate or not, the computation of semiclass
expansions is conveniently explained on the following diagram. LetU be the 2D-dimensional
space of classical pathsq(a,b) whereaPRD andbPRD stand for the 2D constants of integration
in the Euler–Lagrange solutions ofS8(q)50. ~See Fig. 3.! Let

Uab5UùXab,X. ~IV.21!

If S9(q) is not degenerate,Uab consists of isolated points.
If S9(q) is degenerate, one needs to distinguish the case whereUab is of dimensionl .0 and

the case whereqPUab is a multiple root ofS8(q)50. Finally, it can happen thatUab is an empty
set.

For quantitative purposes we choose a basis ofTqXab made of normalized eigenvectors of th
Jacobi operator~IV.19!

J~q!ck~ t !5akck~ t ! kP$0,1,...%. ~IV.22!

There may bel zero eigenvaluesak50 for k5$0,1,...l 21%. ~See Refs. 47 and 48 for details o
this case.! The orthonormalization holds

E
T
dt„ck~ t !uc j~ t !…5dk j . ~IV.23!

We expand the vector fieldj in the eigenvector basis

ja~ t !5 (
k50

`

ukck
a~ t !. ~IV.24!

Let Y be the space of pointsu with coordinatesuk such that(ak(u
k)2,`.

Equation~IV.24! defines a linear map

P:TqXab→Y by j°$uk%. ~IV.25!

Because the basis ofY is countable, it is straightforward to isolate its finite-dimensional subsp
Y0 spanned by the eigenvectorsck with zero eigenvaluesak50. The functional integral onY
splits into an ordinary integral overY0 and an integral overY/Y0 . The split is already formulated
in the second variationS9(q)•jj which is diagonal in the eigenvector basis,

S9~q!•jj5 (
k50

`

ak~uk!2501(
k5 l

`

ak~uk!2 if ak50 for kP$0,1,...,l 21%. ~IV.26!

FIG. 3. The nature of the intersection of the spaceXab of paths with given boundary conditions~dictated by the domain
of integration!, and the spaceU of solutions of the Euler–Lagrange equations of the given system is the key inform
in semiclassical analysis.
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Equation~IV.22! says that ifak50, the eigenvectorck is a Jacobi field, thusck is both inTqXab

andTgU and the intersectionUab5XabùU does not consist of isolated points.

B. An axiomatic scheme for path integration

Prodistributions are only a first step in defining functional integrals on function space
order to develop a practical axiomatic scheme for functional integration, we have studied45 many
aspects of the subject and have identified a few simple basic ideas. Path integrals are introd
Sec. II as representations of probability amplitudes^b,tbua,ta&; the boundary informationsa and
b are, in Sec. II, the positions atta and tb . In Sec. III, functional integrals are defined by mea
of ^outuin& amplitudes; here we approach path integration as a mathematical operation in it
right, not as a representation of the matrix elements of an operator.

Domain of integration

The definition of a functional integral begins with the choice of its domain of integrationX.
The importance of a domain of integration cannot be overestimated. Writing*Xg5^X,g& gives to
the domain itsletters de noblesse: it presents the domain as a linear functional on a spac
functions, i.e., as a distribution. It is a landmark of new developments which began with F.
in 1909 and culminated in the 1940s with the works of G. de Rham, A. Weil, I. M. Gelfand
Schwartz, and others.

In this sectionX is, most often but not exclusively, a space of paths,

x:T,R→MD. ~IV.27!

T is a time interval, but not necessarily a fixed one; for instance it can be an interval (t0 , first exit
time of x out of a domainU,MD). The rangeMD can beRD, or a Riemannian manifold, or a
multiply connected space, or a symplectic manifold, or a complex manifold, etc.

SpacesX of pathsx are usually simpler than the paths:

• The spaceP0M
D of pointed paths onMD ~paths withstrictly onefixed point! is contractible,

even whenMD is a complicated manifold. Therefore one can map, biunivocally,P0M
D into

the spaceP0R
D of pointed paths onRD, and carry out onP0R

D the computation of an
integral overP0M

D. Let P be a map on the space of paths

P : P0R
D→P0M

D by z°x ~not z~ t !°x~ t !! ~IV.28!

such that writingx(t,z) for the position at timet for the pathx associated toz, one gets
x(t0 ,z)5x0 andz(t0)50. In generalP is not defined by a rule calculatingx(t) from z(t) for
every givent; the pathx is a functionalof z. Instead we can often write

x~t,z!5x0•S~t,z!, x0PMD, ~IV.29!

whereS(t,z):MD→MD is a map depending ont andz.
A great many applications of~IV.28! and ~IV.29! for computing path integrals overP0M

D

can be found in Ref. 45. We only state below a general theorem~IV.55!–~IV.57! exploiting
~IV.28! and ~IV.29!, and two applications of the theorem~IV.58!–~IV.63! and ~IV.64!–
~IV.66!.

• Changes of variable of integration@e.g., ~IV.11!, ~IV.25!# should be done on the space
paths, not in the range of the paths. For example, the changex°y defined by

y~t!5E
0

t

dsK~t,s!x~s! ~IV.30!

is a trivial linear change of variable onX, but a nonlocal map onMD.

• There is an incredibly rich variety of function spacesX which can be used as domains
integrations. Too often path integrals are thought of as solutions of parabolic partial d
ential equations~diffusion or Schro¨dinger equations!. They are also useful as solutions
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wave equations, Dirac equations, elliptic equations. For instance solutions of wave equ
can be expressed as integral over spaces of Poisson paths. For use both in probability
quantum physics, a Poisson path is characterized by a number of jumps and the jum
during a given finite time intervalT5@ ta ,tb#:

X5øXn , Xn the space of paths which jumpn times. ~IV.31!

A path xPXn is characterized by the jump times

ta<t1<¯<tn<tb . ~IV.32!

See below~IV.38!–~IV.42! for a volume element defined on a spaceX of Poisson paths.
The domain of integrationX contains the following information:xPX is a function defined
by its domain, its range, and its analytic properties@continuous,S(x),`, etc.#. If a func-
tional integral is a representation of a matrix element^BuoperatoruA&, the functionsx are
restricted by the statesA andB.

A domain of integration which is the proper arena for a large class of functional integra
the Schwartz spaceS8 of tempered distributions; it is extensively used in White Noise calcu
The basic volume element in White Noise calculus is defined by a Gaussian integral o
~IV.35! where the covarianceG is ad function. We often work with a Banach spaceX and its dual
X8, related to the Schwartz spacesS andS8 as follows:

S,X8�
D

G

X,S8,

where elements ofX are fields and elements ofX8 are sources. Arigged Hilbert space~also
known as a Gelfand triple!

S,H,S8

is a particular case of the above quadruplet, corresponding to an identification ofX5H with X8,
henceG5D51, and used almost exclusively in White Noise calculus.

Volume elements

There is no universal definition of a volume element on a Banach spaceX but there is a
definition of a class of volume elements appropriate toX. A simple example shows the failure o
the Lebesgue measure on an infinite-dimensional space and suggests a definition of volu
ments. Let

I D~a!ªE
IRD

dDx•expS 2
p

a
uxu2D5aD/2, ~IV.33!

where, as usual,dDxªdx1dx2,...,dxD. In the limit D5`

I `~a!5H 0 if 0,a,1

1 if a51

` if a.1

henceI `(a) is not a continuous function ofa, as should reasonably be expected ifd`x existed.
To begin with, this example suggests that we scale the Lebesgue measuredDx and introduce

a dimensionless volume element~only dimensionless quantities can be generalized to infin
dimensional spaces!:

Dax5dDx/aD/2. ~IV.34!
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Equation~IV.33! now reads

E
IRD

Dax•expS 2
p

a
uxu2D51

and suggests defining volume elements implicitly.
A volume element onX is naturally defined implicitly by an integral overX. For example,

Leibnitz might have had a better time defining implicitlydx by

E
a

b

dx5b2a

rather than definingdx by itself. In the context of functional integration it is sufficient to defineDx
by an implicit equation; we give two examples.

Example: Gaussian volume element

E
X
Ds,Q,Wx•expS 2

p

s
Q~x! Dexp~22p i ^x8,x&!5exp@2spW~x8!# ~IV.35!

with s positive or purely imaginary,Q(x) a quadratic form onX positive if s is positive, real ifs
is purely imaginary,W(x8) a quadratic form on the dualX8 of X, inverse ofQ in the following
sense:

Q~x!5^Dx,x&, W~x8!5^x8,Gx8&, ~IV.36!

DG51. ~IV.37!

Unless otherwise stated, we uses equal to 1 or i; another frequently used choice iss
P$2p,2p i %.

D is often a differential operator@e.g.,~IV.19!#; when restricted toX @e.g.,Xab in ~IV.16!# it
has usually a unique inverse; however, it is preferable to state explicitlyW, even when determined
implicitly by Q on X. A complete specification of the volume element includess, as well asQ and
W. The specification of a volume element by formula~IV.35! is independent of the dimension o
the domain of integrationX.

Example: Poisson paths

Another example is a volume element on the spaceX of Poisson paths~IV.31! and ~IV.32!.
There a pathxPXn is characterized byn jump times$t1 ,...,tn%, and is interpreted as the sum
d t1

1d t2
1,...,d tn

. The spaceX is the union of allXn .
Let a be a not necessarily real constant. Letdv(t) be the dimensionless volume element

the time intervalT5@ ta ,tb#, tb2ta5T;

dv~ t !5adt, vol~T!5aT, ~IV.38!

vol~Xn!5anTn/n! ~IV.39!

vol~X!5exp~vol T!. ~IV.40!

We can even say

X5expT ~IV.41!

because addition of time intervals gives products of the corresponding spacesX.
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We can define the Fourier transform of a measureDa,Tx on X by

E
X
Da,Tx•exp~ i ^x, f &!5expE

T
dv~ t !ei f ~ t ! ~IV.42!

Hint:^x, f &5 f ~ t1!1¯ f ~ tn! . j

If a is a real constant, the Poisson path can be described by a sequence of waiting timTk

between jumps: Pr(tk<Tk<tk1dt)5a exp(2atk)dt. For the case where the decay ratea varies in
time, see Ref. 49.

In general a volume elementDQ,Z on a Banach spaceX can be defined implicitly by

E
X
DQ,Zx•Q~x,x8!5Z~x8!, ~IV.43!

whereQ:X3X8→C is continuous and bounded andZ:X8→C is continuous and bounded.
Choosing a volume element is an art. In the integral

I 5E
X
DXx•F~x! ~IV.44!

one can choose first the volume element, then identify the functionals onX integrable with respec
to DXx, or one can choose a spaceF of functionalsF, then identifyDXx such thatI ,`.

Here are a few rules of thumb which can help in choosing a volume element:

• The probability requirements to be satisfied by a measurem are not appropriate:

m>0 is irrelevant in quantum physics because quantum processe
expressed in terms
of amplitudes and products of amplitudes. We have lost posi
measures; we must
go beyond Lebesgue integration.

E
X
dm51

is a normalization requirement which may be unwise to imp
a priori.
See, for instance, the normalization of~IV.67!.

• A volume element must be dimensionless to be meaningful on an infinite-dimensional s
This requirement has dictated our normalizations of Gaussians and of Fourier transfo

• Let x:V→M, whereV is not necessarilyT,R. If V decomposes into subdomains

V5V1øV2 , V1ùV25B

and if x, x1 , x2 are paths defined, respectively, onV, V1 , V2 , then a desirable volume ele
ment should satisfy

Dx5Dx1Dx2 .

This is the substitute of independence, or Markov property, in probability.

• Invariance, or simple covariance, under action of some group, such as
—diffeomorphism ofV onto V ~e.g., if V[T, time reparametrization!,
—diffeomorphisms ofM onto M ~e.g., nonlinears-model!,
—any group action onV or M,
may help select an appropriate volume element.
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• Usual integration techniques, such as integration by parts, change of variable of integ
may suggest desirable volume elements. For instance, in a change of variabley5f(x), one
may require the volume element to be such that

Dy5det~df/dx!Dx for bosonic variables, ~IV.45!

Dy5@det~df/dx!#21Dx for fermionic variables. ~IV.46!

• If there is a term exp@2(p/s)Q(x)# in the integrand, then the Gaussian volume elem
~IV.35! is a natural choice.

Spaces of integrable functionals

The volume elementDQ,Z may be defined by~IV.43!

E
X
DQ,Zx•Q~x,x8!5Z~x8!. ~IV.47!

In quantum field theory,x is a field,x8 is a source.
The spaceFQ,Z of complex valued functionalsF on X such that

F~x!5E
X8

dm~x8!Q~x,x8!, ~IV.48!

wherem is a bounded measure onX8, possibly complex, is a space of integrable functionals w
respect toDQ,Z . This space is an easy generalization of the Albeverio–Hoegh–Krohn spa50

Although ~IV.48! does not necessarily definem, it serves to prove the existence of

IªE
X
DQ,Zx•F~x!. ~IV.49!

Formally,

E
X
DQ,Zx•F~x!5E

X
DQ,ZxE

X8
dm~x8!Q~x,x8! by ~ IV.48!

5E
X8

dm~x8!Z~x8! by ~ IV.47!.

We note, moreover, that it is in practice not necessary to identifym for computing~IV.49!.
In integration theory, volume elements and spaces of integrable functions can be defin

integrals.
An A-type norm can be defined onFQ,Z ~like in Fourier analysis! by the equation

iFiAªmin
m
E

X8
udm~x8!iZ~x8!u. ~IV.50!

Other spaces of integrable functionals with respect to Gaussian volume elements i
spaces of polynomialsFn(x)5(d/dx8)n exp(2pi^x8,x&), and the spaceL2 ~X, Gaussian! of white
noise. We shall come back to spaces of integrable functionals in Sec. IV C.

A general theorem

Definitions of domains of integration, volume elements, integrable functionals are onl
scaffolding of functional integration; it serves to build theorems, applications, and give and
interactions with other branches of mathematics. Such constructions can be found in the S
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Issue of J. Math. Phys. on Functional Integration@Vol. 36, No. 5, May~1995!#. Because of space
and time limitations we mention only one theorem from our article in this issue, and only tw
its many applications.

The goal of the theorem is to solve a generalized Schro¨dinger equation for functionsC(T,x0)
whenx0 is on a manifoldMD. The solution is a functional integral on the spaceP0M

D of pointed
paths onMD reduced, thanks to the theorem, to a functional integral on the spaceP0R

D of L2,1

pointed paths51 on RD ~IV.28! and ~IV.29!. The change of variable is provided by the map

P:P0R
D→P0M

D, ~IV.51!

mappingz to x, wherex(t,z) is a function oft and a functional ofz satisfying

dx~ t,z!5X~a!~x~ t,z!!dza1Y~x~ t,z!!dt,

x~ t0 ,z!5x0 , z~ t0!50. ~IV.52!

In general the vector fieldsX(a) ,Y on MD do not commute

@X~a! ,X~b!#Þ0, @X~a! ,Y#Þ0. ~IV.53!

The solution of~IV.52! is of the form

x~ t,z!5x0•S~ t,z!. ~IV.54!

The transformationS(t,z) on MD can be expressed as a function oft andz(t) only when the
vector fieldsX(a) ,Y commute.

Theorem

Let f:MD→R, let

Q0~z!5E
T
dthabża~ t !żb~ t !, ~IV.55!

andDs,Q0
be an abbreviation ofDs,Q0 ,W0

defined by~IV.35!. The functional integral

C~T,x0!ªE
P0IRD

Ds,Q0
~z!•expS 2

p

s
Q0~z! Df„x0•S~ t,z!… ~IV.56!

is a solution of

]C

]T
5

s

4p
habLX~a!

LX~b!
C1LYC,

C~0,x0!5f~x0!, ~IV.57!

whereLX is the Lie derivative with respect to the vector fieldX andhabhbg5dg
a .

C andf are functions onMD, but because the pathsx on MD are in a one-to-one correspon
dence with pathsz on RD, the functional integral is an integral onP0R

D.

Example (John LaChapelle): Paths in coordinates other than Cartesian

Let z1(t),z2(t) be the Cartesian coordinates ofz(t)PR2, andx1(t)5r (t), x2(t)5u(t) be the
polar coordinates ofx(t)PR2\$0%. Equation~IV.52! is then

dxi~ t,z~ t !!5X~ j !
i @x„t,z~ t !…#dzj~ t ! i , j P$1,2%,
~IV.58!
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@X~ j !
i ~x!#5S cosu sinu

2
1

r
sinu

1

r
cosuD

and the Lie derivatives with respect toX(1) andX(2) are

LX~1!
5cosu

]

]r
2

sinu

r

]

]u
,

~IV.59!

LX~2!
5sinu

]

]r
1

cosu

r

]

]u
.

Define alsohab5hab5dab . According to the theorem,C(T,x0) defined by~IV.56! is a solution
of

]C

]T
5

s

4p
~LX~1!

2 1LX~2!

2 !C ~IV.60!

with

LX~1!

2 1LX~2!

2 5
]2

]r 2 1
1

r 2

]2

]u2 1
1

r

]

]r
5Laplacian in polar coordinates.

This example is particularly simple because in the general expression

x~ t !5x0•S~ t,z!

S(t,z) is not a functional ofz but a function ofz(t). Because of this very simplicity, man
publications have been, and still are, treating path integrals in non-Cartesian coordinates b
ing x(t) to z(t).

In order to compute the point-to-point transition amplitude in polar coordin
^tb ,r b ,ubuta ,r a ,ua12np& we setx05(r b ,ub) and

f„x~ ta ,z!…5d~r cosu2r a cosua!d~r sinu2r a sinua! ~IV.61!

5
1

r a
(
nPZ

d~r 2r a!d~u2ua12np!. ~IV.62!

At this point we recognize thatR2\$0% is multiply connected; by completing the above calcu
tion, we obtain not the path integral representation of^tb ,r b ,ubuta ,r a ,ua12np& but the path
integral representation of

1

r a
(
nPZ

^tb ,r b ,ubuta ,r a ,ua12np&, ~IV.63!

which can be shown to be equal to the point-to-point transition amplitude in Cartesian coord
For integrals overP0M

D when MD is multiply connected, see Refs. 35 and 45. For extrac
^tb ,r b ,ubuta ,r a ,ua12np& from ~IV.63!, see Ref. 45.

Example: MD is a Riemannian manifold

The general theorem~IV.56! and ~IV.57! was formulated after we had studied the work
Eells and Elworthy.52 They use the Cartan development map which mapszPP0R

D into x
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PP0M
D as follows. LetN be the orthonormal frame bundle on a compact Riemannian man

MD. The parametrization ofP0M
D by P0R

D is the result of a composition of two parametrization

P0R
D�P0

HN�P0M
D, byz�r�x,

the fixed point in P0M
D is x~ tb!5xb ,

~IV.64!
the fixed point in P0

HN is r~ tb!5rb ,

the fixed point in P0R
D is z~ tb!50.

The spaceP0
HN consists of pathsr:T→N with velocity ṙ(t) in the horizontal tangent spaceTr(t)

H N
for every tPT. The projectionp:N→MD induces a bijection betweenP0

HN and P0M
D. The

parametrization ofP0
HN by P0R

D is defined by

dr~ t !5X~a!„r~ t !…dza~ t !. ~IV.65!

The vector fieldsX~a! are defined by the chosen connection on the frame bundle: the horizont
of ẋ(t) by the connections is

ṙ~ t !5s„r~ t !…ẋ~ t !. ~IV.66!

Given the framer(t):RD→Tx(t)M
D, and insertingr(t)+@r(t)#21 in ~IV.66!, one gets

ṙ~ t !5@s„r~ t !…+r~ t !#@„r~ t !…21ẋ~ t !#

5X~a!„r~ t !…ża~ t !.

In Elworthy’s work, we note that in~IV.65! r andz are stochastic processes, but herer andz are
L2,1 paths.

By definition the Cartan development map ofz is Devz5p+r.
Using~IV.65! in the general theorem gives a parabolic equation onN whose projection onMD

is the parabolic equation with the Laplace–Beltrami operator.

C. An approach to functional integration

Path integration is a prototype for a functional integration in quantum field theory, but f
tional integration for systems with an infinite number of degrees of freedom is not simply a fo
transcription of path integration. In this section we consider~Gaussian! functional integrals, and
examine two problems which have no counterparts in Gaussian path integrals:

• Definition of the volume elements~effective actions!.

• One-parameter family of scale dependent fields~renormalization!.

Volume elements

The functional integration definition corresponding to~IV.43! can be written as

E Dw•expS i

\
S~w!2 i ^J,w& D5expS i

\
W~J! D5Z~J!/Z~0!, ~IV.67!

wherew is either a self-interacting field, or a collection of interacting fields. But the genera
functionalZ(J) is difficult to ascertaina priori for the following reason. LetG(w̄) be the Leg-
endre transform ofW(J):

\w̄ª
dW~J!

dJ
, G~w̄!ªW„J~ w̄ !…2\^J~ w̄ !,w̄&. ~IV.68!
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Then G(w̄) is the inverse ofW(J) in the same sense asQ and W are inverse of each othe
@~IV.36!#, butG(w̄) is theeffective actionwhich has to be used for computing observables. IfS(w)
is quadratic, thebare action S(w) and the effective actionG(w) are identical, the fields do no
interact. But in the case of interacting fields, the exact relation between bare and effective
is the main difficulty embodied in the model.

In the following we break up the actionS into a quadratic formQ and a remainderU5S
2Q. We defineDQw as in Eq.~IV.35! by

d2W~J!

dJadJb
and

d2G~w̄!

dw̄cdw̄d , ~IV.69!

but G(w̄) is theeffective actionwhich has to be used for computing observables, and canno
chosen arbitrarily.

E
X
DQw•expS 2

p

s
Q~w! Dexp~22p i ^J,w&!ªexp@2psW~J!#, ~IV.70!

or more convenientlydmG by

E
X
dmG~w!exp~22p i ^J,w&!ªexp@2psW~J!#. ~IV.71!

The integralI 5*XDQw•exp@(i/\)S(w)# becomes~under the substitutions5p\ i )

I 5E
X
dmG~w!expS i

\
U~w! D[ K mG ,exp

i

\
U L . ~IV.72!

Breaking up the action is not always desirable, but we shall learn interesting properties of
tional integration from~IV.71!. The covarianceG is defined by

W~J!5^J,GJ&; ~IV.73!

it is the inverse of the operatorD defined by

Q~w!5^Dw,w&; ~IV.74!

it is also the two-point function

s

2p
G~x,y!5E

X
dmG~w!w~x!w~y!. ~IV.75!

We shall contrast covariances in quantum mechanics and quantum field theory on two
examples:

Qm Let D52
d2

dt2
; its inverse on the spaceXab of paths

with two fixed end points is

G~ t,s!5u~s2t !~ t2ta!~ tb2s!
1

T
1u~ t2s!~ tb2t !~s2ta!

1

T

with Tªtb2ta. ~IV.76!

QFT Let D52D on RD; then
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G~x,y!5
CD

ux2yuD22 , ~IV.77!

with a constantCD equal to GS D

2
21D /4pD/2. ~IV.78!

Notice thatG(t,s) is a continuous function,G(x,y) is singular at the origin for Euclidean fields
and singular on the lightcone for Minkowskian fields. However, we note that the quanti
interest is not the covarianceG but the varianceW:

W~J!5^J,GJ&,

which is singular only ifJ is a pointlike sourcêJ,w&5w(x).

Scale dependent covariances and fields

The beauty of covariances is that they can be decomposed into scale dependent contri
and the decomposition of the covariance carries with it a field decomposition. A field is
expressed as an integral over a scaling variablel P@0,̀ @ of scale dependent fields. A scal
parameter family of fields provides a simple formulation of renormalization. We follow here
work of D. C. Brydges, J. Dimock, and T. R. Hurd.53

Notation: \5c51; physical dimensions are physical length dimensions. Physical scalin

Slu~x!ª l @u#u~x/ l !, @u#ªphysical dimension ofu. ~IV.79!

Multiplicative differentials:

d3l 5dl/ l ,
~IV.80!

]3/] l 5 l ]/] l .

Objects defined by a covariance:

functional Laplacian DGª
s

2p E
RD

dxE
RD

dyG~x,y!
d2

dw~x!dw~y!
, sP$1,i %, ~IV.81!

convolution ~mG* F !~w!ªE
X
dmG~c!F~w1c!, ~IV.82!

hence mG* F5exp~ 1
2 DG!F, ~IV.83!

Bargmann–Segal transformBGª5mG* 5exp~ 1
2 DG!, ~IV.84!

Wick transform : :G ªexp~2 1
2 DG!. ~IV.85!

A covariance can be written, in Minkowski or Euclidean space as

G~x,y!5E
0

`

d3l •Slu„~x2y!2
…, ~IV.86!

where@u#5@G#522D. If G(x,y) is given by~IV.77!, then the only requirement onu is

E
0

`

d3k•k2@u#u~k2!5CD ~IV.87!
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in the Euclidean case, and moreoveru(2k2)5 i D22u(k2) in the Minkowski case. The domain o
integration@0, `@ of the scaling variable can be broken up into a union of subdomains,

@0,̀ @5 ø
2`

`

@2 j l 0,2j 11l 0[, ~IV.88!

which expresses the possibility of separating different scale contributions. The correspo
decompositions of covariance and field is

G5 (
j 52`

1`

G@2 j l 0,2j 11l 0@ , ~IV.89!

w5 (
j 52`

1`

w@2i l 0,2j 11l 0@ . ~IV.90!

Henceforth the suffixG in mG ,DG ,BG ,: :G is replaced by the interval defining the scale dep
dent covariance; for example

m@ l 0`@5m@ l 0 ,l @* m@ l ,`@ . ~IV.91!

The goal is to compute~IV.72!, which we can write

lim
l 050

I ~ l 0!5 lim
l 050

^m@ l 0 ,`@ ,Z&, Z is an abbreviation for exp
i

\
U~w!. ~IV.92!

With the decomposition~IV.91!

I ~ l 0!5^m@ l ,`@ ,m@ l 0 ,l @* Z&. ~IV.93!

The convolutionm@ l 0 ,l @* Z integrates out the contributions of the scale dependent fields in
range@ l 0 ,l @ ; it substitutes toZ an l-dependent effective integrand.

An important operatorPl introduced by Brydges provides the construction of a parab
equation inl satisfied by an effective integrandPlZ:

PlªSl / l 0
B@ l 0 ,l [ , ~IV.94!

with S the physical scaling~IV.79! andB the Bargmann transform~IV.84!. The Brydges operato
~IV.94! rescales the Bargmann–Segal transform so that all integrals are performed w
l-independentGaussian. Indeed, it can be shown that

I ~ l 0!5^m@ l 0 ,`@ ,Z&5^m@ l 0 ,`@ ,PlZ&. ~IV.95!

The scaling evolution equation satisfied byPlZ is readily obtained from the definition ofPl

]3

] l
PlZ5~Ṡ1 1

2 Ḋ !~PlZ!, ~IV.96!

where

Ṡ5
]3

] l U
l 5 l 0

Sl / l 0
and Ḋ5

]3

] l U
l 5 l 0

D@ l 0 ,l @ . ~IV.97!

The evolution equation~IV.96! determines the renormalization group flow equation.
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To a given spaceF(X) of functionalsF on X, integrable with respect to a GaussianmG , the
pair of mappings~Bargmann, Wick! associates a corresponding Fock space Fock (X,G). There
are several examples of the pattern

Fock~X,G! ←
→

: :G

BG

F~X!.

The largest Fock space consists of all entire functions on the complexifiedXC . The corresponding
F~X! consists of suitable distributions onX.

V. FEYNMAN, DEWITT, AND CARTIER AND DEWITT-MORETTE COMPARED

How does the axiomatic scheme presented in Sec. IV account for the Feynman definitio
the Bryce DeWitt formalism?

~1! The Feynman definition is obtained by discretization of the time intervalT5@ ta ,tb#, and
a linear map~IV.7!:

P:X→Rnbyx°u5$^d t j
,x&% j . ~V.1!

By projection inRn, one obtains the short time propagator

^b,t j 11ua,t j&.

Examples:

• The first short time propagator proposed21 for the action S(x)5*Tdt@(m/2)„ẋ(t)…2

2V„x(t)…# was

K~ j11,j !5S m

2p i\ D D/2

uD~ j 11,j !u1/2expS i

\
S~ j11,j ! D , ~V.2!

where S( j 11,j ) is the value of the actionS computed along a linear path fromx(t j ) to
x(t j 11), andD( j 11,j ) is the Van Vleck determinant for the actionS( j 11,j ), that is

D~ j 11,j !5~D j t !
2D det@]2S~ j11,j !/]xj 11]xj #, ~V.3!

with D j t5t j 112t j .

The method used for computing~V.2! was not the projectionP because in 1950 there was n
definition of Feynman path integrals on function spacesX. The condition used for computing
~V.2! was a unitarity condition which could not give more than the absolute value of the shor
propagator. Unfortunately~V.2! was used without the absolute value sign in the determinant,
Pauli remarked that ifx(t)PMD (MD Riemannian!, Feynman path integral with

K~ j 11,j !5S m

2p i\ D D/2

D~ j 11,j !1/2expS i

\
S~ j 11,j ! D ~V.4!

is a solution of the Schro¨dinger equation modified by a term proportional to the scalar curvatuR
of the Riemannian manifoldMD, namely

i\]c/]t5S H1a
\2

m
RDc; ~V.5!

a is a numerical constant whose value depends on the chosen short time propagatorK( j 11,j ).
Several proposals~see Refs. 54 and 55! have been made for the short time propagator wh
x(t)PMD.
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The short time propagator obtained from the general theorem~IV.56! and ~IV.57! applied to
the example~IV.65! of paths taking their values inMD is

K~ j 11,j !5S m

2p i\
D j t D D/2

D~ j 11,j !expS i

\
S~ j 11,j ! D , ~V.6!

whereS( j 11,j ) is evaluated along a geodesic, and where the Van Vleck determinant~V.3! is now
multiplied by g21/2(xj 11)g21/2(xj ), whereg is the absolute value of the metric determinant. W
note that bothK( j 11,j ) given by ~V.2! and K( j 11,j ) given by ~V.6! are proportional to
(D j t)

2D/2 becauseD( j 11,j ) carries a different exponent in these two formulas. If computed w
the short time propagator~V.6!, the Schro¨dinger equation has no additional term proportional
R(a50), as expected from~IV.57!.

~2! In order to compare as simply as possible the functional integrals in Secs. III and IV

I B5E
F

@dw#m@w#expi ~S@w#!, B for B. DeWitt ~V.7!

5E
F

@dw#expi ~S@w#2 i ln m@w#! ~V.8!

and

I C5E
X
Dw•exp

i

\
S~w!, C for Cartier and DeWitt-Morette. ~V.9!

The domain of integrationF of I B as it stands is the limit ofRn whenn5` @see~V.11!#. If
I B is the solution̂ outuin& of

d^outu in&5 i ^outu^dJ,w&u in& ~V.10!

then, in general,I B includes ordinary integrals over two sets of parametersa andb associated with
the ‘‘in’’ and ‘‘out’’ regions respectively, and the actionS@w# includes an additional termJw. By
definition

^dw&ª)
x,a

dwa~x!. ~V.11!

The so-called ‘‘measure functional’’m@w# has been obtained by requiringI B to be a solution of
~V.10!, and has been found proportional to the inverse square root of the determinant
advanced Green functionG1 of the Jacobi operator of the action functionalS@w#

m~w!'u~super!detG1@w#u21/2. ~V.12!

The domain of integrationX in I C is defined by the range, the domain, and the anal
properties of the variable of integrationw. If I C represents a matrix element^AuoperatoruB&, the
domainXAB,X is restricted by the statesA andB. The volume elementDw is defined in genera
by ~IV.43!. In the example used for comparingI B andI C, the volume elementDQ0

w is defined by

E
X
DQ0

w•exp@ ipQ0~w!#exp~22p i ^J,w&!5exp@2 ipW0~J!# ~V.13!

and the actionS is set equal toQ01(S2Q0):

S5Q01~S2Q0!5..Q01U. ~V.14!
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Both formalisms have been developed along different research plans.I B has been develope
for use in Quantum Field Theory.I C has been worked out, so far, primarily for path integration
order to provide simple or robust tools useful for a great variety of problems.

In comparingI B and I C, we note that the actions in~V.8! and ~V.9! are different. Different
actions give different Schro¨dinger equation. FromI B one obtains

i\]c/]t5S H1
1

8m
\2RDc,

the term (1/8m)\2R is absent if one works withI C.
For comparing the use ofDw defined by~V.13! and the use ofm@w# given by~V.12!, we shall

work out the simplest possible example, namely, the WKB approximation of the point-to-
amplitude^b,tbua,ta& for a,bPRD. Let

x:T5@ ta ,tb#→RD, ~V.15!

S~x!5E
T
dtS m

2
uẋ~ t !u22V„x~ t !…D . ~V.16!

The computation ofIª^b,tbua,ta& usingI B can be found in Ref. 56, its computation usingI C can
be found in Ref. 44.I ~no B, no C! will be found to be the same in both cases.

(i) Computing I C with the techniques of Sec. IV

I C5^b,tbua,ta&5E
Xb

Dx•expS i

\
S~x! D d„x~ ta!2a…. ~V.17!

Xb is the space of pointed pathsx(tb)5b. The fixed point is chosen to be the end point so that
functional integral represents a wave functionC(tb ,b) rather than a ‘‘backward’’ wave function
C(tb ,a).

According to the general theorem~IV.56! the integralI C can be restated as an integral over t
spaceZb of pointed paths withz(tb)50. In this nearly trivial case~IV.52! reduces to

dx~ t !5ldz~ t !,
~V.18!

x~ t,z!5b1lz~ t !.

We setl5(2p\/m)1/2 so thatQ0 in ~V.22! is dimensionless.
Let z°j be a reparametrization inZb defined by

x~ t,j!5xcl1lj~ t !, xcl is the classical path,xcl~ ta!5a,xcl~ tb!5b. ~V.19!

It is simply a translation in the path spaceZb , henceDz5Dj by a fundamental property of ou
Dx.

According to the general theorem, we get therefore

I 5E
Zb

Dj• expS i

\
S~xcl1lj! D d„lj~ ta!…. ~V.20!

The Taylor expansion of the action functional is

i

\
S~xcl1lj!5

i

\
S~xcl!1 ip„Q0~j!1QV~j!…1O~\1/2!, ~V.21!

where
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Q0~j!5E
T
dtu j̇~ t !u2 ~V.22!

and the parameterl has been chosen so thatQ0(j) is dimensionless. Moreover

QV~j!52
1

m E
T
dt]a]bV„xcl~ t !…ja~ t !jb~ t !. ~V.23!

The volume elementDj5DQ6
j on Zb is characterized by the invariance under translation and

normalization

E
Zb

DQ0
j• exp@ ipQ0~j!#51. ~V.24!

The computation of the WKB approximationI WKB of I reduces to the computation of

I VªE
Zb

DQ0
j• exp@ ip„Q0~j!1QV~j!…#d„lj~ ta!…. ~V.25!

Three easy steps conclude the calculation ofI v :

• Changing by a linear map the volume elementDQ0
into DQ01QV

IV5I1I2 ~V.26!

with

I15Udet
Q0

Q01QV
U1/2

i 2Ind~Q01QV!/2, ~V.27!

I25E
Zb

DQ01QV
j• exp@ip„Q0~j!1QV~j!…#d„lj~ ta!…. ~V.28!

• Another linear mapj°j(ta) gives I 2 as an integral overRD, i.e., I 2 as the square root of a
finite-dimensional determinant.

• The ratio of infinite-dimensional determinants inI 1 can be expressed as a finite-dimensio
determinant.57,58

Gathering the terms which contribute to the WKB approximation of~V.20! one gets

IWKB5ep i ~p2q!/4~2p\!2D/2Udet
]2S~a,b!

]aa]bb U1/2

expS i

\
S~a,b! D , ~V.29!

whereS is the action function equal toS(xcl), andp andq are the number of positive an
negative eigenvalues of the Van Vleck–Morette matrix]2S/]aa]bb.

(ii) Computing I B with the techniques of Sec. III

Superficially, computingI B is very similar to computingI C, expansion of the actionSaround
S(xcl), Gaussian integrations of quadratic terms, ratio of finite-dimensional determinants eq
finite-dimensional determinants. The differences, small, when computing^b,tbua,ta&, are never-
theless useful for comparingI B and I C. Equation~V.19! has become

x~ t !5xcl~ t !1j~ t !, ~V.30!
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that is x is no longer identified as a functional ofj, and l51 hides the fact that WKB is an
expansion in\1/2. The change of variable of integration fromx to j is admittedly trivial in this
case. InI B, G1(xcl1j) andS(xcl1j) are expanded around their values atxcl . The only integral
to be computed for the WKB approximationI WKB of ^b,tbua,ta& is

E Dj• expS i

2
S9~xcl!•jj D5const~detG!1/2,

where G is the Green function of the Jacobi operator~IV.19! and ~IV.20!, J(xcl) for xcl(ta)
5a, xcl(tb)5b. The constant is determined independently from the combination law of prob
ity amplitudes. The Green functionG is said to be boundary adapted.59 Gathering all the terms
contributing toI WKB , one obtains

I WKB5const detS G

G1D 1/2

expiS~xcl!. ~V.31!

The ratio of infinite-dimensional determinants can also be expressed as a finite-dimensio
terminant and~V.31! is found identical to~V.29! where the constant has been obtained explici

(iii) Comparing I B and I C

In the WKB approximation of a very simple exampleI B and I C give the same result; on th
other hand, the Schro¨dinger operators for a wave function on a Riemannian manifold differ
(1/8m)\2R.

In the definition~V.7! the termm@w# is ubiquitous in Quantum Field Theory and justifies ma
expected results derived without concern for undefined terms. The actionS@w# stays as a whole

The example~V.18! and~V.29! is a particular application of the general theorem~IV.56! and
~IV.57! Equation~V.18! is a very trivial case of~IV.52!. The restriction ofZb to paths with both
ends fixed is achieved by replacingf„x0•S(t,z)… in ~IV.56! by d„lj(ta)… in ~V.20!. The power of
the general theorem lies in its focus on the domain of integration and in the variety of its
many applications.

VI. CONCLUSION: FEYNMAN, THE MODERN LEIBNITZ

Functional integration is still really in its infancy. To make a comparison, let us recal
main steps in the development of ordinary calculus. It all started in the 17th century with ex
solutions to old geometrical problems: lengths, areas, volumes of various geometrical o
There were basically two methods at hand:

• A rigorous, but very cumbersome one, in the hands of people like Fermat and Pascal
geniuses could handle it.

• A more intuitive, but much less rigorous one, the ‘‘indivisibles’’ of Cavalieri.

With the help of these two methods, a large body of knowledge was developed~Huygens, Rob-
erval,...!.

At the end of the 17th century, Leibnitz invented a beautiful algorithm, the ‘‘dx’’ notation.
Using this algorithm, many of the previously difficult results were reduced to a rather si
algebraic manipulation, and many more results were found. For the practitioner of mathem
who is not interested in logical foundations, this step is still today all one needs. This is n
place to compare the contributions of Leibnitz and Newton, but together they provided the
ground for a century of astonishing discoveries.

The third period, to be dubbed ‘‘the critical one,’’ began with Cauchy around 1820 and la
well into the middle of the 20th century. Step by step, all the logical questions connected wi
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basic notions were raised and solved: nature of numbers and functions, continuity, deriva
integrability,... . The modern ‘‘Functional Analysis’’ with its norms, Hilbert spaces, Ban
spaces, is the crowning of this period.

The last word has not been said. For example, Non-standard Analysis has not yet bee
exploited.

The three periods ‘‘pre-Leibnitz, Leibnitz and post-Leibnitz’’ have their counterparts in
development of functional integration in Quantum Physics. Before Feynman introduced
integration and its offspring, the diagram technique, computations of Quantum Field T
processes were arduous and cumbersome, particularly when plagued by infinities—and bes
the hands of~near! geniuses.

Feynman—the modern Leibnitz—created the algorithm symbolized by his*Dq... symbol.
From there a very useful technology was developed. More and more often, it is realize
functional integration provides the shortest route for solutions. Its very formulation encod
multaneously the dynamics of the system and the boundary conditions which characteri
system. Not in-frequently the functional integration provides, or at least suggests, solutio
unsolved problems. Just like the Leibnitz’ formulation is all what a practitioner needs, Feynm
formulation is sufficient for many purposes. See for instance the classic book of L. S. Schul60

and more recently the Table of Integrals compiled by Grosche and Steiner.61

We are now entering a period similar to the post-Leibnitz’ period. Several explorat
particularly in the areas of the topology of low-dimensional manifolds, quantum gauge
theory, and renormalization, have given new results which have been later on justified by
methods. We quote only three papers62–64 whose references lead to other investigations. S
explorations create a fruitful environment for the next period—a period similar to the ‘‘cri
period’’ ushered in by Cauchy–Weierstrass–Lebesgue during which ordinary integration rec
its complete logical foundation. And so far ‘‘It works as advertised.62’’

Note added. Quantum Fields and Strings: A Course for Mathematicians, Vols. 1 and 2, e
by P. Deligneet al. ~American Mathematical Society, Institute for Advanced Study, 1999! con-
tains fifteen hundred pages, not devoted to functional integration, but with functional inte
throughout.

1We have not been able to locate the reference to this well known sentence.
2J. C. Baez, I. E. Segal, and Z. Zhou,Introduction to Algebraic and Constructive Quantum Field Theory~Princeton
University Press, Princeton, NJ, 1992!.

3J. Glimm and A. Jaffe,Quantum Physics: A Functional Integral Point of View, 2nd ed.~Springer-Verlag, New York,
1987!.

4B. Simon,Functional Integration and Quantum Physics~Academic, New York, 1979!.
5S. Bochner,Harmonic Analysis and the Theory of Probability~University of California Press, Berkeley, 1960!.
6I. E. Segal, ‘‘Distributions in Hilbert space and canonical systems of operators,’’ Trans. Am. Math. Soc.88, 12–42
~1958!.

7P. Malliavin, Stochastic Analysis~Springer-Verlag, Berlin, 1997!.
8T. Hida, H.-H. Kuo, J. Potthof, and L. Streit,White Noise, An Infinite Dimensional Calculus~Kluwer Academic,
Dordrecht, 1993!.

9Section II is based on the article ‘‘Functional integration; a semi-historical perspective,’’ by one of us~C. DeW.! in
Symposia Gaussiana, Conf. A, edited by Behara, Fritsch, and Lintz~Walter de Gruyter, Berlin, 1995!.

10R. P. Feynman, ‘‘The Principle of Least Action in Quantum Mechanics,’’ Princeton University Publication No. 294
73 ~1942!.

11See Ref. 10, Eq.~24!.
12See Ref. 10, p. 72.
13R. P. Feynman, ‘‘The development of the space-time view of quantum electrodynamics,’’ Phys. Today No. 8,

~1966!.
14Path integration is referred to as ‘‘she’’ not because integration is feminine in French but because Feynman

accepting the Nobel Prize, referred to it as a lady: ‘‘So what happened to the old theory that I fell in love with as a
Well, I would say it’s become an old lady who has very little attractive left in her, and the young today will not have
hearts pound when they look at her anymore. But, we can say the best we can for any old woman, that she ha
very good mother and has given birth to some very good children. And I thank the Swedish Academy of Scien
complimenting one of them. Thank you.’’~Feynman, 1966, p. 44!.

15According to subsequent accounts, only four or five physicists appreciated path integration from the very beginni
for instance, Ref. 13; Dyson, 1989; and Mehra, 1988.

16F. J. Dyson, ‘‘Feynman at Cornell,’’ Phys. Today42 ~2!, 32–38~1989!.
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17J. Mehra, ‘‘My Last Encounter with Richard P. Feynman,’’ memorial talk delivered on 24 February 1988, Co
University.

18F. J. Dyson, ‘‘The radiation theories of Tomonaga, Schwinger, and Feynman,’’ Phys. Rev.75, 486–502~1949!.
19J. Gleick,Genius~New York, 1992! pp. 269–270.~See the interoffice memorandum from Dyson to J. Robert Opp

heimer in the early Fall of 1948 and the interoffice reply a couple of months later ‘‘Nolo contendre. R.O.’’!
20The semiclassical approximation of a path integral~Morette, 1951! had been constructed but had not yet proved

usefulness.
21C. Morette, ‘‘On the definition and approximation of Feynman’s path integral,’’ Phys. Rev.81, 848–852~1951!.
22See, for instance, the state of the art in G. t’Hooft and M. Veltman, ‘‘Diagrammar,’’ CERN preprint 78–9, 1–114~1973!,

subsequently expanded into M. Veltman,Diagrammatica: the path to Feynman rules~Cambridge University Press
Cambridge, 1994!.

23This can also be written as*T
t $q̇2/2C1W(q)%dt. Hence the Hamiltonian and not the Lagrangian!

24M. Kac, Probability and Related Topics in Physical Sciences Vol. I, 167 ~Interscience, New York, 1957–1959!.
25Feynman, Letter to Ce´cile DeWitt-Morette, 10 December 1971.
26F. J. Dyson, ‘‘Missed opportunities,’’ Bull. Am. Math. Soc.78 ~5!, 635–652~1972!.
27See for instance Cameron, 1960, p. 126; but see also Cameron and Storvick, 1980.
28R. H. Cameron, ‘‘A family of integrals serving to connect the Wiener and Feynman integrals,’’ J. Math. Phy39,

126–140~1960!.
29R. H. Cameron and D. A. Storvick,Some Banach Algebras of Analytic Feynman Integrable Functionals, Springer-Verlag

Lecture Notes in Mathematics, Vol. 798~Springer-Verlag, Berlin, 1980!.
30E.g., references to sum over histories sprinkle J. A. Wheeler’s discussions at the 1957 Chapel Hill conferen

possible approach to quantum gravity. Recorded in ‘‘On the Role of Gravitation in Physics,’’ Chapel Hill confer
Astia Document No. AD 11 81 80, Wright Air Development Center~1957!.

31B. S. DeWitt, ‘‘Dynamical Theory of Groups and Fields,’’ inRelativity Groups and Topology, edited by C. DeWitt and
B. DeWitt ~Gordon and Breach, New York, 1963–1964!, pp. 585–820, developed further in Ref. 32.

32B. S. DeWitt, ‘‘The Spacetime Approach to Quantum Field Theory,’’ inRelativity, Groups and Topology II, edited by
B. DeWitt and R. Stora~North-Holland, Amsterdam, 1983–1984!, pp. 382–738.

33J. Ginibre, ‘‘Some Applications of Functional Integration in Statistical Mechanics,’’ inStatistical Mechanics and Quan
tum Field Theory, edited by C. DeWitt and R. Stora~Gordon and Breach, New York, 1971!, pp. 327–427.

34Functional Integration, Basics and Applications, edited by C. DeWitt-Morette, P. Cartier, and A. Folacci~Plenum, New
York, 1997!.

35M. G. G. Laidlaw and C. DeWitt-Morette, ‘‘Feynman functional integrals for systems of indistinguishable partic
Phys. Rev. D3, 1375–1378~1971!.

36L. Alvarez-Gaume´, ‘‘Supersymmetry and Index Theorem,’’Supersymmetry, Proceedings of the 1984 NATO Schoo
Bonn, edited by K. Dietz, R. Flume, G. V. Gehlen, and V. Rittenberg~1984!.

37E. Witten, ‘‘Quantum field theory and the Jones polynomial,’’ Commun. Math. Phys.121, 351–399~1989!.
38For the convenience of the reader interested in studying B. DeWitt’s work, we introduce in this section the a

condensed notation, including the different labelling for right and left derivatives as required for fermion fields@see, e.g.,
Eqs.~III.8!#.

39A. Mostafazadeh, ‘‘Supersymmetry and the Atiyah–Singer index theorem. I. Peierls Brackets, Green’s functions
proof of the Index theorem via Gaussian superdeterminants,’’ J. Math. Phys.35, 1095–1124~1994!; 35, 1125–1138
~1994!. ~The scalar curvature factor in the Schro¨dinger equation.!

40C. Morette DeWitt, ‘‘Feynman’s path integral; definition without limiting procedure,’’ Commun. Math. Phys.28, 47–67
~1972!.

41C. DeWitt-Morette, ‘‘Feynman path integrals I. Linear and affine techniques. II. The Feynman Green function,’’
mun. Math. Phys.37, 63–81~1973!.

42N. Bourbaki,Intégration, ~Hermann, Paris, 1969!, Chap. IX.
43P. Krée, ‘‘Introduction aux the´ories des distributions en dimension infinie,’’ Bull. Soc. Math. France46, 143–162

~1976!, and references therein, in particular, Seminar P. Lelong, Springer-Verlag Lecture Notes in Mathematics
410 and 474~Springer-Verlag, Berlin, 1972–1974!.

44C. DeWitt-Morette, A. Maheswari, and B. Nelson, ‘‘Path integration in non-relativistic quantum mechanics,’’ Phys
50, 266–372~1979!.

45P. Cartier and C. DeWitt-Morette, ‘‘A new perspective on functional integration,’’ J. Math. Phys.36, 2237–2312~1995!.
~Located on the World Wide Web at http://godel.ph.utexas.edu/Center/Papers.html and http://babbage.sissa.it/l
an/9602.!

46C. DeWitt-Morette, ‘‘Feynman path integrals. From the Prodistribution Definition to the Calculation of Glory Sc
ing,’’ in Stochastic Methods and Computer Techniques in Quantum Dynamics, edited by H. Mitter and L. Pittner, Acta
Phys. Austriaca, Suppl.26, 101–170~1984!. Reviewed in Zentralblatt fu¨r Mathematik 1985.

47P. Cartier and C. DeWitt-Morette, ‘‘Physics on and near caustics,’’NATO–ASI Proceedings, ‘‘Functional Integration:
Basics and Applications’’~Carǵese 1996, Plenum, NY, 1997!.

48P. Cartier and C. DeWitt-Morette, ‘‘Physics on and near caustics. A simpler version,’’ RCTP~Jagna, January 1998!.
49See Kit Foong, ‘‘Functional integration and wave propagation,’’ in Ref. 34, pp. 97–180.
50S. A. Albeverio and R. J. Hoegh-Krohn,Mathematical Theory of Feynman Path Integrals, Springer-Verlag Lecture

Notes in Mathematics, Vol. 523~Springer-Verlag, Berlin, 1974–1976!.
51Continuous, first derivative~in the sense of distributions! square integrable, one fixed end pointx0 either atta , or at tb ,

or at anyt0P@ ta ,tb#.
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52K. D. Elworthy, Stochastic Differential Equations on Manifolds~Cambridge University Press, Cambridge, MA, 1982!.
53D. Brydges, J. Dimock, and T. R. Hurd, ‘‘A non-Gaussian fixed point forf4 in 42e dimensions,’’ Commun. Math.

Phys.198, 111–156~1998!.
54C. Morette, ‘‘On the definition and approximation of Feynman’s path integral,’’ Phys. Rev.81, 848–852~1951!.
55C. DeWitt-Morette, K. D. Elworthy, B. L. Nelson, and G. S. Sammelmann, ‘‘A stochastic scheme for constru

solutions of the Schro¨dinger equation,’’ Ann. Inst. Henri Poincare´, Sect. A32, 327–341~1980!.
56B. S. DeWitt,Supermanifolds, 2nd ed.~Cambridge University Press, Cambridge, MA, 1992!, pp. 281 and 334.
57See Ref. 45, pp. 2260–2263.
58See Ref. 56, pp. 358.
59Note thatG is not the Green function ofQ01QV which is defined onZb , becauseG is boundary-adapted to paths wit

two fixed points.
60L. S. Schulman, ‘‘Introduction to the Path Integral,’’ inPath Summation: Achievements and Goals, edited by S.

Lundquist, A. A. Ranfagni, V. Sa-yakanit, and L. S. Schulman~World Scientific, Singapore, 1987–1988!, pp. 3–46.
61C. Grosche and F. Steiner,Handbook of Feynman Path Integrals~Springer-Verlag, Berlin, 1998!.
62D. S. Freed and R. E. Gompf, ‘‘Computer calculation of Witten’s three-manifold invariant,’’ Commun. Math. Phys147,

563–604~1992!.
63L. H. Kauffman, ‘‘Witten’s Integral and the Kontsevich Integral’’~preprint!.
64M. Blau and G. Thompson, ‘‘Localization and diagonalization: A review of functional integral techniques for

dimensional gauge theories and topological field theories,’’ J. Math. Phys.36, 2192–2236~1995!.
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On the integrability of linear and nonlinear partial
differential equations

A. S. Fokasa)

Department of Mathematics, Imperial College, London SW7 2BZ, United Kingdom

~Received 30 November 1999; accepted for publication 28 January 2000!

A new method for studying boundary value problems for linear and for integrable
nonlinear partial differential equations~PDE’s! in two dimensions is reviewed. This
method provides a unification as well as a significant extension of the following
three seemingly different topics:~a! The classical integral transform method for
solving linear PDE’s and several of its variations such as the Wiener–Hopf tech-
nique.~b! The integral representation of the solution of linear PDE’s in terms of the
Ehrenpreis fundamental principle.~c! The inverse spectral~scattering! method for
solving the initial value problem for nonlinear integrable evolution equations. The
detailed implementation of the method is presented for:~a! An arbitrary linear
dispersive evolution equation on the half line.~b! The nonlinear Schro¨dinger equa-
tion on the half line.~c! The Laplace, Helmholtz and modified Helmholtz equations
in an arbitrary convex polygon. In addition, several other applications are briefly
considered. The possible extension of this method to multidimensions is also dis-
cussed. ©2000 American Institute of Physics.@S0022-2488~00!02106-X#

I. INTRODUCTION

For most of this paper, we will concentrate on two-dimensional PDE’s. For such PDE’
will first review three seemingly different topics. We will then introduce a new method w
provides a unification as well as a significant extension of these subjects.

A. Transform methods for linear PDE’s

Almost as soon as linear two-dimensional PDE’s made their appearance, d’Alembe
Euler discovered a general approach for constructing large classes of their solutions. Th
proach involved separating variables and superimposing solutions of the resulting ODE’s
method of separation of variables led naturally to the solution of PDE’s by a transform pair
prototypical such pair is the direct and the inverse Fourier transforms; variations of this f
mental transform include the Laplace, Mellin, sine, cosine transforms, and their discrete
logues.

The proper transform for a given boundary value problem is specified by the PDE, b
domain, and by the given boundary conditions. For example, the initial value problem o
general dispersive evolution equation

S ] t1 i(
0

n

a j~2 i ]x!
j D q~x,t !50, ~1.1!

2`,x,`, t.0, q~x,0!5q0~x!PS~R!, ~1.2!

wherea j are real,S(R) denotes the space of Schwarz functions andq and its derivatives decay to
zero asuxu→` uniformly in t, can be solved by the Fourier transform

a!Electronic mail: a.fokas@ic.ac.uk
41880022-2488/2000/41(6)/4188/50/$17.00 © 2000 American Institute of Physics
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q~x,t !5
1

2p E
2`

`

eikx2 iv~k!tq̂0~k!dk, ~1.3!

where

v~k!5(
j 50

n

a j k
j , q̂0~k!5E

2`

`

e2 ikxq0~x!dx. ~1.4!

Similarly, the initial boundary value problem for the second order equation on the half line

iqt1qxx50, 0,x,`, t.0, ~1.5!

q~x,0!5q0~x!, q~0,t !5 f 0~ t !, ~1.6!

whereq0(x)PS(R1), f 0(t)PC1, andq0(x), f 0(t) are compatible atx5t50, can be solved by
the sine transform:

q~x,t !5
2

p E
0

`

sin~kx!Fe2 ik2tq̂0~k!1 ikE
0

t

e2 ik2~ t2t! f 0~t!dtGdk, ~1.7!

where

q̂0~k!5E
0

`

sin~kx!q0~x!dx. ~1.8!

For some simple boundary value problems, there exists an algorithmic procedure for derivi
associated transform, see for example Refs. 1 and 2. This procedure involves construct
Green’s function of asingle eigenvalue equation and integrating this Green’s function in
complexk plane, wherek denotes the eigenvalue.

The transform method has been enormously successful for solving a great variety of
and boundary value problems. However, for sufficiently complicated problems the classical
form method fails. For example, there does not exist a proper analogue of the sine transfo
solving a third order evolution equation on the half line. Similarly, there do not exist pr
transforms for solving boundary value problems for elliptic equations even of second order
simple domains. The failure of the transform method led to the development of several inge
but ad hoc techniques, which include conformal mappings for the Laplace and the biharm
equations; the Jones method3 and the formulation of the Wiener–Hopf factorization problem;4 the
use of some integral representation, such as that of Sommerfeld; the formulation of a diffe
equation, such as the Malyuzhinet’s equation. The use of these techniques has led to the
of several classical problems in acoustics, diffraction, electromagnetism, fluid mechanics, e
Wiener–Hopf technique played a central role in the solution of many of these problems.

B. The Ehrenpreis fundamental principle

In 1950, Schwartz posed the problem of whether, given a polynomialP on Cn, an elementary
solution of the differential operatorP( i ]/]t), tPRn, always exists, i.e., if there exists a distrib
tion E solving P( i ]/]t)E5d, where d is the Dirac delta function. The existence of such
elementary solution was established independently by Malgrange and Ehrenpreis; both o
proofs are nonconstructive. Thus in the same decade, techniques of functional analysis we
to try to construct this elementary solution explicitly. For example, if one considers the equ

PS i ]

]t Dq~ t !50, tPV, ~1.9!
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whereV is a convex domain inRn, it follows that q(t)5e2 ik•t, kPCn, is a solution of~1.9! if
P(k)50. Forn51, the Euler principle states that every solution of~1.9! is a linear combination of
exponentials. The generalization of Euler’s principle forn.1 was established by Ehrenpreis a
Palamodov.5 The statement of this result, called by Ehrenpreis thefundamental principle, is as
follows.

The fundamental principle: If q is a solution of Eq. (1.9) in an appropriate functional spac
in a convex domainV in Rn, then there exists a measurem, whose support lies in P21(0), such
that

q~ t !5E
P21~0!

A~k,t !e2 ik•t dm~k!, tPRn, kPCn,

where A is a polynomial such that the trigonometric polynomial A(k,t)e2 ik•t is a solution of (1.9)
for every fixed kPP21(0).

The proof of this beautiful result is based on an interpolation theorem for holomorphic
tions with a given growth rate on a subdomain ofCn; the measurem is not constructed explicitly.

Recently, using certain generalizedd-bar formulas derived by Henkin,6 there has been som
progress in determining the explicit form of the measuredm in the case of a smooth, bounde
convex domain, see Refs. 7 and 8.

An elementary implication of the Ehrenpreis principle is that for the equation~1.1! formulated
in 0,x,`, 0,t,T, there exists a measure such that

q~x,t !5E eikx2 iv~k!t dm~k!.

We note that for the second order equation~1.5! it is possible to rewrite the solution~1.7! in the
Ehrenpreis form, withdm supported on the real axis and on the positive imaginary axis.

C. The inverse spectral „scattering … method

There exist nonlinear evolution equations which can be written as the compatibility cond
of linear eigenvalue equations. Such equations are calledintegrable and the associated linea
equations are calledLax pairs.9 A celebrated such equation is the nonlinear Schro¨dinger ~NLS!
equation

iqt1qxx22luqu2q50, l561. ~1.10!

It can be verified that ifq(x,t) satisfies Eq.~1.10!, then the following linear eigenvalue equatio
are compatible:10

cx1 iks3c5Qc, ~1.11!

c t12ik2s3c5Q̃c ~1.12!

where

s35S 1 0

0 21D , Q5S 0 q

lq̄ 0D , Q̃52 iluqu2s312kQ2 iQxs3, ~1.13!

andc(x,t,k) is a 232 matrix-valued function.
It is a remarkable fact that many physically significant equations are integrable. Calog11

has elucidated the reasons why certain nonlinear PDE’s are both integrable and widely app
The two equations in a Lax pair are usually referred to as thex part and thet part of the Lax

pair. A method for solving the initial-value problem with decaying initial data was discovere
1967.12 This method is based on thex part of the Lax pair: the spectral analysis of thex part yields
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a ‘‘nonlinear Fourier transform,’’ while thet part is used only to determine the evolution of t
associated nonlinear Fourier data, usually calledthe inverse scattering dataor the spectral data.
This nonlinear Fourier transform cannot be expressed in closed form but is given throug
solution of a classical mathematical problem, the so-called matrixRiemann–Hilbert problem.13,14

~In certain cases this problem can be solved through an integral equation known as the Ge
Levitan–Marchenko equation.! This problem is equivalent to a linear integral equation of
second Fredholm kind.

Some of the integrable nonlinear equations support localized solutions calledsolitons. These
solutions are mathematically and physically significant because they behave like particles
interaction and because they dominate the behavior of the solution after a long time~see Secs. II
and III!.

A method for solving the initial value problem with space-periodic initial data was develo
in the mid-1970s.15–18 This method involves algebraic–geometric techniques and can be i
preted as formulating a Riemann–Hilbert problem which can be solved using functions defin
a Riemann surface.

Integrable equations, solitons, the inverse spectral method and the associated alg
geometric machinery, have had an important impact on modern mathematical physics. Ho
in spite of this success, these methods are limited. Indeed, they are applicable only to the s
of the initial value problem with either decaying or space-periodic initial data. Thus an outsta
open problem in the analysis of integrable equations became the generalization of these m
to initial boundary value problems. The simplest such problem is formulated on the half li
was mentioned earlier that the inverse spectral method on the infinite line can be thought
nonlinearization of the Fourier transform. Thus a natural strategy for solving a problem on th
line is to solve the associated linear problem by anx transform and then to nonlinearize th
transform. However, this strategy fails: for the Korteweg–de Vries equation it fails immedia
since the associated linear equation isqt1qxxx50, for which there does not exist an appropria
x transform. For the nonlinear Schro¨dinger equation, the associated linear equation can be so
by either the sine or the cosine transforms, depending on whetherq(0,t) or qx(0,t) is given, but
neither of these transforms nonlinearizes. It is the author’s opinion that this failure reflects th
that neither of these transforms is fundamental. The fact that they are limited only to second
equations provides further support for this claim. Indeed, there exists a new formalism for s
any linear dispersive equation on the half line, and this formalismcan be nonlinearized~see Sec.
III !.

D. A new method

A general approach to solving boundary value problems for two-dimensional linear and
grable nonlinear PDE’s was announced in Ref. 19 and further developed in Refs. 20–22
method can be applied tolinear PDE’s with constant coefficientsand to integrable nonlinear
PDE’s in an arbitrary domain. It involves the following three steps:~1! Given a PDE, construct
two compatible linear eigenvalue equations, called a Lax pair. ~2! Given a domain, perform the
simultaneous spectral analysis of the Lax pair. ~3! Given appropriate boundary conditions, ana
lyze the global relation satisfied by the solution and by its derivatives on the boundary o
domain. The concrete implementation of these three steps for several evolution and elliptic
tions is presented in Secs. III–V.

We now discuss the relation of this method with the three topics presented earlier.
~1! Suppose thatq(x,y) satisfies a linear PDE. Performing the spectral analysis of thex part

of the Lax pair corresponds to constructing anx transform, similarly performing the spectra
analysis of they part corresponds to constructing ay transform. The advantage of the Lax pair
that it provides the tool for performing thesimultaneousspectral analysis. This gives raise to
new transform, which in contrast to both thex andy transforms is ‘‘custom made’’ for the given
PDE and the given domain. In this sense the new method provides the synthesis of separ
variables.
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~2! Suppose thatq(x,y) satisfies a linear PDE in a convex polygon~see Sec. IV!. In this case,
step~2! yields forq(x,y) an integral representation in the complexk plane, which has an explici
x andy dependence and which involves a certain functionq̂(k), kPC, which we call the spectra
function. This function can be expressed in terms of an integral ofq and of its derivatives along
the boundary of the polygon. However, some of these boundary values are unknown. T
order to computeq̂(k) @and thusq(x,y)] one needs to determine the part ofq̂(k) involving the
unknown boundary values. An important aspect of the new method is the understanding th
can be achieved using step~3!, i.e., analyzing theglobal equationsatisfied by the boundary value
of q and of its derivatives. For evolution equations and for elliptic equations with simple boun
conditions, this involves the solution of a system of algebraic equations, while for elliptic e
tions with arbitrary boundary conditions, it involves the solution of a Riemann–Hilbert prob
For simple polygons, this Riemann–Hilbert problem is formulated on the infinite line, thus
equivalent to a Wiener–Hopf problem. This explains the central role played by the Wiener–
technique in many earlier works.

~3! An important advantage of the new method is that it can be nonlinearized. Indee
results valid for linear PDEs obtained by this method can be generalized to integrable non
PDE’s.

~4! For linear equations, the explicitx, y dependence ofq(x,y) is consistent with the Ehren
preis formulation of the solution. Thus this method provides the concrete implementation a
as the generalization to concave domains of this fundamental principle. For nonlinear equat
provides the extension of the Ehrenpreis principle to integrable nonlinear PDE’s.

Regarding this new method, we also note the following.
~1! There were the following important precedent results:~a! It was shown by I. M. Gelfand

and the author that linear PDE’s possess a Lax pair formulation.23 ~b! It was realized by A. R. Its
and the author that for the solution of initial boundary value problems of integrable nonl
evolution equations, one needs to perform, in addition to the spectral analysis of thex part of the
Lax pair, the spectral analysis of itst part.24 But the importance of performing thesimultaneous
spectral analysis was not understood at that time.

~2! For linear PDE’s a Lax pair can be found algorithmically.
~3! It is well known that the integral representation of the solution of a linear ODE in

complex plane provides a powerful tool for the study of many properties of the solution, inclu
its asymptotic behavior. For linear equations the new method provides the extension o
integral representations from ODE’s to PDE’s.

~4! It was mentioned earlier that a matrix Riemann–Hilbert problem is the fundamental o
appearing in the solution of the initial value problem on the infinite line for integrable nonli
evolution equations. There exists a generalization of the Riemann–Hilbert problem, calle
d-bar problem.13 This problem is the fundamental object in the solution of the initial va
problem on the infinite plane for integrable nonlinear evolution equations in two space vari
The implementation of the new method for linear and for nonlinear equations in apolygonal
domain, yields a scalar and a matrix Riemann–Hilbert problem, respectively. It is interestin
note that, for a domain involving curves one obtains a scalar or a matrixd-bar problem. Thus the
d-bar problem plays a fundamental role even for equations in two dimensions.

~5! It was also mentioned earlier that for linear equations,q(x,y) has an explicitx, y depen-
dence. Similarly for nonlinear equations one obtains a Riemann–Hilbert or ad-bar problem with
explicit x and y dependence. This makes it possible to study the asymptotic properties o
solution. For example, for linear evolution equations one can use the steepest descent met
nonlinear evolution equations one can analyze the associated Riemann–Hilbert problem b
the elegant nonlinearization of the steepest descent method of Deift and Zhou.25

E. Outline of the paper

In Sec. II we discuss evolution equations on the infinite line. This is mainly for pedago
reasons. Indeed, this is theonly case in two dimensions that the old and the new approaches
identical results. This is a consequence of the fact that the new method always yields the s
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in the Ehrenpreis form and Eq.~1.3! is already in this form. Thus this problem can be analyzed
performing the spectral analysis ofonly thex part of the Lax pair. In Sec. II A we derive a Lax pa
of Eq. ~1.1!. In Sec. II B we rederive Eq.~1.3! by performing the spectral analysis of thex part of
the Lax pair. This seems to be a complicated way of solving a simple problem. Howeve
approach has the advantage that it can be nonlinearized. Indeed, the conceptual steps use
II C for the solution of the nonlinear Schro¨dinger equation are similar with those used in Sec. II

In Sec. III we discuss evolution equations on the half line. In Sec. III A we solve Eq.~1.1! in
0,x,`, 0,t,T. In Sec. III B we analyze the analogous problem for the nonlinear Schro¨dinger
equation. The long time asymptotics of the solution of this problem is discussed in Sec. III

In Sec. IV, we discuss general~not necessarily evolution! two-dimensional linear equations i
a convex polygon. As a particular example we present the general integral representations
solutionq(x,y) and for the spectral functionq̂(k) for the Laplace, the Helmholtz and the modifie
Helmholtz equations in a convex polygon. These formulas and the analysis of the asso
global relations can be used for the solution of typical boundary value problems. This is disc
in Sec. IV C.

In Sec. V, we briefly discuss other applications of this method, including evolution equa
in l (t),x,`, 0,t,T, where l (t) is a given smooth function; systems of PDE’s; two-po
boundary value problems; a new approach to the spectral theory of ordinary differential ope

In Sec. VI we discuss the possible extension of this method to more than two dimension
formulate an important open problem.

F. Notations

In order to minimize technical complications, we formulate most of the results in the spa
Schwartz functions:q(x)PS(R) means thatq is a C` function on ~2`, `! which is rapidly
decreasing asuxu→` @ limuxu→`xm]x

l q(x)50, for any nonnegative integersm and l#. Other spaces
used areHm(R1), m.0; for m integer,q(x)PHm(R1) means that for 0,x,`, q(x) and its
first m derivatives are square integrable; for the definition whenm is not integer see Ref. 21.

NLS and RH are standard abbreviations for nonlinear Schro¨dinger and Riemann–Hilbert
respectively.

2 denotes complex conjugation.

II. EVOLUTION EQUATIONS ON THE LINE

In what follows we first summarize the important role played by the RH problem in
solution of the Cauchy problem for integrable nonlinear evolution equations. Then in Sec. II
discuss an algorithm for constructing a Lax pair for linear PDE’s. This, in addition to provi
the starting point of the new method, it also provides useful guidelines when searching for
pair for nonlinear equations. In Secs. II B and II C we study the initial value problem on the
for the linear dispersive equation~1.1! and the NLS equation, respectively. We note that
investigation of initial value problems is theonly case for which it is sufficient to perform th
spectral analysis ofonly the x part of the Lax pair.

Integrable nonlinear evolution equations: The best known integrable nonlinear evolutio
equations in one space variable are the Korteweg–de Vries, the sine-Gordon and the no
Schrödinger equations. The latter equation is given by Eq.~1.10!, where the casesl51 andl
521 are referred to as the defocusing and focusing cases, respectively. It will be shown i
II B that the RH problem associated with this equation, has the form

m2~x,t,k!5m1~x,t,k!e2~ ikx12ik2t !s3r~k!e~ ikx12ik2t !s3, kPR, ~2.1!

m5I 1OS 1

kD , k→`, ~2.2!
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whereI 5diag(1,1),s35diag(1,21) andm1, m2, r are 232 matrices with unit determinant. Fo
the Korteweg–de Vries and the sine-Gordon equations there exist similar RH problems
matrix r(k) contains the ‘‘nonlinear Fourier data.’’ For the nonlinear Schro¨dinger the
Korteweg–de Vries and the sine-Gordon equations, the matrixr(k) can be computed from the
initial dataq(x,0) through the solution of linear integral equations of the Volterra type.

A RH problem of the type~2.1!–~2.2!, with r(k)PH1 @i.e., r(k) and r8(k) are square
integrable# is equivalent to a linear Fredholm integral equation of the second kind.26 Thus the
question of solvability reduces to establishing that the associated homogeneous RH probl
only the trivial solution; for the homogeneous RH problem, Eq.~2.2! is replaced bym
5O(1/k), k→`. For the RH problems associated with the NLS, the Korteweg–de Vries an
sine-Gordon equations, this can be established using the fact thatr(k) has certain symmetry
properties, see for example, Sec. II C. Proving this result is sometimes referred to in the s
literature as proving the vanishing lemma. If the matricesm1 andm2 areholomorphicin C1 and
C2, whereC1 andC2 denote the upper and lower halfk-complex planes, then the RH problem
called regular. If the matricesm1 and m2 are meromorphicin C1 andC2, the RH problem is
called singular. There is a simple procedure, see, for example, Ref. 24, of mapping a singu
problem to a regular RH problem supplemented by a system of algebraic equations. The p
m6 arise from the discrete spectrum of the underlyingx part of the Lax pair. The singular part o
m6 gives rise to the solitonic part of the solutionq(x,t).

An important advantage of the inverse spectral method in comparison to the standard
techniques is that it provides an effective way of finding the long-time behavior of the solu
This is a consequence of the fact that the solutionq(x,t) can be obtained through the solution
a matrix RH problem withan explicit x and t dependence. In particular, using the technique o
Ref. 25, it can be shown that the solution of a regular RH problem gives rise to a solutionq(x,t)
which decays likeO(1/At) ast→` andx/t5O(1), while the solution of a singular RH problem
gives rise to aq(x,t) which is dominated byqN(x,t), whereqN(x,t) is the associatedN-soliton
solution. This underlines the physical and mathematical significance of solitons:They are the
asymptotic coherent structures emerging from any generic initial data as t→`.

A. Lax pairs for linear PDE’s

Observation 2.1:Let L(]x1
,]x2

) be a linear differential operator in]x1
and]x2

with constant

coefficients. A Lax pair of the equation Lq(x1 ,x2)50, is given by

mx1
2 ikm5q, ~2.3a!

Lm50. ~2.3b!

This means that if q satisfies Lq50, then Eqs. (2.3) are compatible.
Indeed,

Lq5L~]x1
2 ik !m5~]x1

2 ik !Lm50.

In order to simplify the spectral analysis of Eqs.~2.3!, we rewrite these equations in a mo
convenient form. Using the first of Eqs.~2.3! to eliminate the]x1

derivatives in the second of Eqs
~2.3!, the latter equation becomes an ODE. For evolution equations, this ODE is of first or

Example 2.1:A Lax pair of the equation

iqt1qxx50, ~2.4!

is given by

mx2 ikm5q, ~2.5!

m t1 ik2m5 iqx2kq. ~2.6!
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Indeed, using~2.5! as well asmxx52k2m1 ikq1qx , in the equationim t1mxx50, we find Eq.
~2.6!. Similarly, we find the following.

Example 2.2:A Lax pair of the Eq. (1.1) is given by Eq. (2.5) and

m t1 iv~k!m52q* ~x,t,k!, v~k!5(
0

n

a j k
j , ~2.7!

q* ~x,t,k!5(
j 51

n

a j@~2 i ]x!
j 211k~2 i ]x!

j 221k2~2 i ]x!
j 231¯kj 21#q~x,t !. ~2.8!

Remark 2.1: ~1! A second Lax pair for an evolution equationL(]x ,] t)q50 is given by

m t2 ikm5q, Lm50. ~2.9!

However, if we use the first of these equations to eliminate thet derivatives of the second
equation, we obtain an equation with highx derivatives. Thus, this isnot a convenient Lax pair.
Actually, this is a ‘‘multicopy’’ of the Lax pair based on~2.5!. Consider, for example, Eq.~2.4!.
In this case, Eqs.~2.9! yield

mxx2km52 iq

or

S mx

m D
x

1S 0 2k

21 0 D S mx

m D5S 2 iq
0 D .

Diagonalizing the above matrix and callingn the first component of the vectorX(mx ,m)t, where
X is the matrix of the eigenvectors, we find

nx1Akn52 iaq,

n t2 ikn5a~qx2Akq!,

wherea is a constant. Lettinga5 i and renamingAk by 2 ik, we find Eqs.~2.5! and ~2.6!.
~2! For nonlinear integrable equations there doesnot exist an algorithm for constructing a La

pair. However, the Lax pair of the associated linearized equation provides useful guide
Consider, for example, the NLS equation. In this case a Lax pair of the linearized equation is
by Eqs.~2.5! and ~2.6!. A Lax pair for the linearized equation satisfied byq̄ is

nx1 ikn5q̄, n t2 ik2n52 i q̄x2kq̄.

Writing these equations and Eqs.~2.5! and~2.6! in a matrix form, and keeping only the left-han
side ~lhs! of this matrix, we find

Mx2 iks3M , Mt1 ik2s3M , s35diag~1,21!,

where M5(m,n)t. These expressions are precisely the lhs of the usual Lax pair of the
equation, see Eqs.~1.11! and~1.12!. We emphasize, that the so-called dressing method27 implies
that the ‘‘undressed’’ part of the Lax pair completely determines the ‘‘dressed’’ part. In this
the lhs of Eqs.~1.11! and~1.12! completely determines their right-hand side~rhs!. We expect that
these arguments can be formalized so that the Lax pair of a given linear equation can det
the Lax pair of all possible associated integrable nonlinearizations.
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~3! Remarks 1 and 2 suggest that the NLS must have a second Lax pair, namely th
obtained from the nonlinearization of Eqs.~2.9!. This is indeed the case, this new Lax pair is giv
in Ref. 19.

B. Linear evolution equations on the line

Let q(x,t) satisfy Eq.~1.1! in 2`,x,`, t.0, with q(x,0)5q0(x)PS(R). The unique
solution of this problem, which decays asuxu→` uniformly in t, is given by Eqs.~1.3! and~1.4!.
In what follows we rederive this result using the Lax pair of this equation, namely Eqs.~2.5! and
~2.7!.

We first assume thatq(x,t) exists, has sufficient smoothness and decay, and perform
spectral analysis of Eq.~2.5!. This means that we construct a solutionm, which for fixed 2`
,x,`, t.0, is bounded ink, kPC, and which is ofO(1/k) ask→`. Actually such a solution
is sectionally holomorphic and is given by

m5H m1, Im k>0,

m2, Im k<0,
~2.10!

wherem1, m2 are the following particular solutions of Eq.~2.5!:

m1~x,t,k!5E
2`

x

eik~x2x8!q~x8,t !dx8, ~2.11a!

m2~x,t,k!52E
x

`

eik~x2x8!q~x8,t !dx8. ~2.11b!

These equations are both valid if Imk50; in this case subtracting Eqs.~2.11! we find

m1~x,t,k!2m2~x,t,k!5eikxr~k,t !, kPR, ~2.12!

where

r~k,t !5E
2`

`

e2 ikx8q~x8,t !dx8, kPR. ~2.13!

Equations~2.11! imply that m5O(1/k). This estimate and Eq.~2.12! define an elementary RH
problem for the scalar functionm(x,t,k). The unique solution of this problem is

m~x,t,k!5
1

2ip E
2`

` eilxr~ l ,t !

l 2k
dl, kPC.

This equation and Eq.~2.5! yield

q~x,t !5
1

2p E
2`

`

eikxr~k,t !dk. ~2.14!

In summary, the spectral analysis of Eq.~2.5! yields Eqs.~2.13! and ~2.14!, which are the direct
and the inverse Fourier transform.

In order to find the time evolution of the Fourier data we use thet part of the Lax pair:
Equation~2.11a! implies that

r~k,t !5 lim
x→`

~e2 ikxm1~x,t,k!!.

This equation, the assumption thatq→0 asx→`, and Eq.~2.7!, yield

r t1 iv~k!r50.
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Solving this equation in terms ofr(k,0), using Eq.~2.13! at t50, and denotingr(k,0) by q̂0(k),
it follows that Eqs.~2.13! and ~2.14! become Eqs.~1.3! and ~1.4!.

These equations can be used to construct the solution of the initial-value problem of Eq.~1.1!,
without the a priori assumption of existence: Givenq0(x)PS(R), define qˆ 0(k) by Eq. ~1.4!.
Given q̂0(k), define q(x,t) by Eq. ~1.3!. Since the dependence ofq(x,t) on x, t is of the form
exp(ikx2iv(k)t), it immediately follows thatq satisfies Eq.~1.1!. All that remains is to show tha
q(x,0)5q0(x), i.e.,

q~x,0!5
1

2p E
2`

`

eikxq̂0~k!dk. ~2.15!

If one assumes the validity of the inverse formula for the Fourier transform, this is a conseq
of the definition ofq̂0(k). Alternatively, Eqs.~1.4! and ~2.15! can be obtained by repeating th
spectral analysis of the Eq.~2.5! but with q(x,t) replaced with theknown function q0(x)
PS(R).

C. The NLS equation on the line

Theorem 2.1„Ref. 10…: Let q(x,t) satisfy the NLS equation (1.10) in2`,x,`, t.0, with
q(x,0)5q0(x)PS(R). The defocusing NLS equation, i.e., Eq. (1.10) withl51, has a unique
global solution which decays to zero asuxu→` uniformly in t. This is also the case for th
focusing NLS equation, i.e., Eq. (1.10) withl521, provided that the function a(k), Im k.0,
defined below, has at most a finite number of zeros all of which are simple and nonreal. In
cases this solution can be obtained as follows: Given q0(x) define the vectorn(x,k)5(n1 ,n2)t as
the unique solution of

n1x
12ikn15q0~x!n2 , n2x

5lq̄0~x!n1 , Im k>0, 2`,x,`,

lim
x→`

n5~0,1!t. ~2.16!

Givenn(x,k), define the functions a(k) and b(k) by

a~k!5 lim
x→2`

n2~x,k!, Im k>0; b~k!5 lim
x→2`

~e2ikxn1~x,k!!, kPR. ~2.17!

Given a(k) and b(k) definem as the solution of the following232-matrix RH problem.
~1!

m2~x,t,k!5m1~x,t,k!S 1 2
b~k!

ā~k!
e2u

l
b̄~k!

a~k!
eu 12l

ubu2

uau2
D , kPR, ~2.18a!

wherem5m1 for Im k>0, m5m2 for Im k<0, and u52i (kx12k2t).

~2!

m5I 1OS 1

kD , k→`. ~2.18b!

~3!

detm51. ~2.18c!
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~4! If l51, m6 are holomorphic, ifl521 the first column vector ofm1 and the second

column vectorm2 are meromorphic with poles at the zeros of a(k) and ofa( k̄), respectively; the
residues of these poles are given by

reskj
~m1!15cje

u j~m1!2~kj !, u j52i ~kjx12kj
2t !,

~2.18d!
resk̄ j

~m2!252 c̄ je
ū j~m2!1~ k̄ j !,

where the subscripts 1 and 2 denote the first and second column vectors. This RH has a
solution. Givenm1, define q(x,t) by

q~x,t !522i lim
k→`

~km12
1 !, ~2.19!

where the subscripts 12 denotes the 1, 2 component of the matrixm1.
Proof: We will analyze this problem by following similar conceptual steps to those use

Sec. II B. We first assume thatq(x,t) exists, has sufficient smoothness and decay, and perform
spectral analysis of Eq.~1.11!. In analogy with Eqs.~2.11! we define the 232 matrix-valued
functionsC andF by

C~x,t,k!5I 2E
x

`

e2 ik~x2x8!s3Q~x8,t !C~x8,t,k!eik~x2x8!s3 dx8, ~2.20!

andF is defined by a similar equation with*2`
x instead of2*x

` . The equations forF andC can
be derived as follows. Letc(x,t,k) andf(x,t,k) be the solutions of Eq.~1.11! specified by the
boundary conditions

lim
x→`

~c~x,t,k!eikxs3!5I , lim
x→2`

~f~x,t,k!eikxs3!5I , ~2.21!

respectively. The matrixc satisfies the equation

c~x,t,k!5e2 ikxs32E
x

`

e2 ik~x2x8!s3Q~x8,t !c~x8,t,k!dx8.

Letting

F~x,t,k!5f~x,t,k!eikxs3, C~x,t,k!5c~x,t,k!eikxs3, ~2.22!

the equation forc yields Eq.~2.20!; similarly for F.
It is straightforward to show that the matricesF andC have the following properties.
~1! If we denote the column vectors ofF andC by

F5~F1,F2!, C5~C2,C1!, ~2.23!

thenF1, C1 are holomorphic for Imk.0, andF2, C2 are holomorphic for Imk,0.
~2!

F5I 1OS 1

kD , C5I 1OS 1

kD , k→`. ~2.24!

~3!

detF5detF51. ~2.25!
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~4! There exists some symmetry conditions; suppressing for convenience of writing thx, t
dependence, these symmetries are

F1
1~ k̄!5F2

2~k!, F1
2~ k̄!5C2

1~k!, F2
1~ k̄!5lF1

2~k!, F2
2~ k̄!5lC1

2~k!, ~2.26!

where subscripts 1 and 2 denote the first and second component of the given vectors.
For realk, both matricesf andc are solutions of the same Eq.~1.11!, thus they are related by

c5fr(k,t), hence

C~x,t,k!5F~x,t,k!e2 ikxs3r~k,t !eikxs3, kPR, ~2.27!

wherer(k,t) is a 232 matrix with unit determinant. Evaluating this equation atx→2` we find

r~k,t !5I 2E
2`

`

eikx8s3Q~x8,t !C~x8,t,k!e2 ikx8s3. ~2.28!

Equations~2.27! and ~2.28! are the nonlinear analogues of Eqs.~2.12! and ~2.13!.
In order to find the time evolution ofr(t,k), we use thet part of the Lax pair. Equation~2.20!

implies that

r~k,t !5 lim
x→2`

eikxs3C~x,t,k!e2 ikxs3. ~2.29!

This equation, the assumption thatq→0 asx→`, and Eq.~1.12!, yield

r t12ik2@s3 ,r#50.

Thus

C~x,t,k!5F~x,t,k!e2~ ikx12ik2t !s3r0~k!e~ ikx12ik2t !s3, kPR, ~2.30!

wherer0(k) is defined by Eq.~2.28! evaluated att50.
Equation~2.27! together with the estimate~2.24! define a RH problem. In order to write thi

RH problem in a canonical form we let

r0~k!5S ā b

lb̄ aD ,

where we have used the symmetry relations~2.26! to relate the 2, 1 and 2, 2 components of t
above matrix, with its 1, 2 and 1, 1 components. We note thata(k) is holomorphic for Imk>0.
Using detr051, i.e.,

uau22lubu251,

Eq. ~2.27! can be rewritten in the form

S C2~x,t,k!,
F2~x,t,k!

a~ k̄!
D 5S F1~x,t,k!

a~k!
,C1~x,t,k!D S 1 2

b~k!

ā~k!
e2u,

l
b̄~k!

a~k!
eu 12l

ubu2

uau2
D , kPR,

~2.31!

whereu52i (kx12k2t).
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This equation is of the form~2.1!; there exist two cases: Ifa(k)Þ0, Imk.0, this is a regular
RH problem, while ifa(kj )50, j 51,...,N, Im kj.0, this is a singular RH problem. It can b
shown that ifl51, a(k) cannot have zeros. Ifl521, a(k) can have zeros, but as mentioned
the introduction, a singular RH problem can be mapped to a regular one supplemented
system of algebraic equations.

Equation~1.11! implies that

q~x,t !522i lim
k→`

~kC1
1~x,t,k!!.

We note that if the second column vector of the matrixC(x,0,k) is denoted byn(x,k), then
Eq. ~2.20! and ~2.29! imply

lim
x→`

n5~0,1!t, b~k!5 lim
x→2`

e2ikxn1 , a~k!5 lim
x→2`

n2 .

Equations~2.16!–~2.19! can be used to construct the solution of the initial-value problem
Eq. ~2.1!, without the a priori assumption of existence:
Given q0PS(R), the vectorn(x,k) can be computed as the solution of a linear Volterra integ
equation@the second column vector of Eq.~2.20! evaluated att50], thus it is well defined. This
equation also implies thata(k) is a holomorphic function ofk for Im k>0.
If a(k), Im k>0, has no zeros, then the RH problem defined by~2.18! has a unique solution. This
follows from the fact that ifJ(x,t,k) denotes the ‘‘jump’’ matrix in Eq.~2.18a!, then

det~J1J* !54 if l521 and
4

~11ubu2!
if l51,

where* denotes complex conjugation and transposition. This together with the fact that th
element of this matrix is 2, implies that both its eigenvalues are positive. Therefore, the qua
form x(J1J* )x* is positive definite and the RH problemx25x1J; x5O(1/k),k→`, has only
the zero solution:

x2~x1!* 5x1J~x1!* 5 1
2 @x1~J1J* !~x1!* #, kPR.

Integrating this equation along the real axis, it follows thatx50, since the lhs of the abov
equation is holomorphic for Imk<0 and it is ofO(1/k),k→`. The case thata(k) has a finite
number of zeros can be mapped to the case with no zeros supplemented by an algebraic sy
equations which is always solvable. Using arguments of the dressing method,27 it can be verified
directly that if m is defined as the unique solution of the RH problem~2.18!, and if q(x,t) is
defined by Eq.~2.19!, thenq andm satisfy both parts of the Lax pair, henceq solves Eq.~2.1!. In
order to prove thatq(x,0)5q0(x), we repeat the spectral analysis of Eq.~1.11!, but with q(x,t)
replaced by the given functionq0(x). QED

Remark 2.2:
~1! It is shown in Ref. 26 that the case thata(k) has a finite number of simple nonreal zero

is the generic case.
~2! The first column of the matrix Eq.~2.31! yields

C22
F1

a
5l

b̄

a
euF1, kPR. ~2.32!

If l51, using the symmetry relations~2.26!, this equation yields the following linear integra
equation:
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S C̄2
1~x,t,k̄!

C̄1
1~x,t,k̄!

D 5S 1
0D2

1

2ip E
2`

` C1~x,t,l !e2i ~ lx12l 2t !

l 2k

b̄~ l !

a~ l !
dl, Im k<0.

~3! A general procedure for mapping a singular RH problem to a regular one is discuss
Ref. 24. Here we show how the 1-soliton solution can be obtained by using an alternative
dure. Suppose thata(k) has a simple zero atk5kj , Im kj.0; Eq. ~2.32! can be rewritten as

H C2~k!2
F1~kj !

a8~kj !~k2kj !
J 2H F1~k!

a~k!
2

F1~kj !

a8~kj !~k2kj !
J 5l

b̄~k!

a~k!
euC1~k!, kPR,

~2.33!

where we have suppressed thex, t dependence of the functionsC6(k) and F1(k). The terms
enclosed by the first and second brackets above are holomorphic for Imk,0 and Imk.0, respec-
tively. Thus this equation defines the jump condition of a regular RH problem. The relatio
a(k)5det(F1,C1) implies F1(kj )5a8(kj )cjC

1(kj )e
u j . Using this equation and assumin

b(k)50, Eq. ~2.33! together with the symmetry relations~2.26!, imply

sC1~ k̄!2
cjC

1~kj !e
u j

k2kj
5S 1

0D , s5S 0 1

21 0D , u j52i ~kjx12kj
2t !.

This equation evaluated atk5 k̄ j , and the complex conjugate of the resulting equation, are

algebraic equations forC1(kj ) andC1( k̄ j ). Their solution yields

C1~kj !5
1

11ur j u2
S 2 r̄ j

1 D , r j5
cje

u j

k̄ j2kj

.

This equation and Eq.~2.19! imply that the 1-soliton solution of the NLS equation is given by

q~x,t !5
2i r̄ j

11ur j u2
. ~2.34!

III. EVOLUTION EQUATIONS ON THE HALF LINE

In Sec. III A we solve an initial boundary value problem on the half line for the linear equa
~1.1!. In Sec. III B we show how the method used in Sec. III A can be generalized to the ca
the NLS equation.

A. Linear evolution equations

Theorem 3.1 „Ref. 21…: Let q(x,t) satisfy Eq. (1.1) in0,x,`, 0,t,T, where T is a
positive constant. Let q(x,t) satisfy the following conditions:

q~x,0!5q0~x!PHñ~0,̀ !,

~2 i ]x!
lq~0,t !5 f l~ t !PH ~1/2!1@~2ñ22l 21!/2n#~0,T!, 0< l<N21, ~3.1!

f l~0!5~2 i ]x!
lq0~0!, 0< l<N21,

where N5n/2 if n is even, N5(n11)/2 if n is odd andan.0, N5(n21)/2 if n is odd andan

,0; ñ5n/2 if n is even and n˜5(n11)/2 if n is odd.
The above initial-boundary value problem has a unique solution which for every tP@0,T#

belongs to Hñ(0,̀ ). This solution is given by
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q~x,t !5E
2`

`

eikx2 iv~k!tq̂0~k!dk1E
]D1

eikx2 iv~k!tQ̂~k!dk, ~3.2!

where

q̂0~k!5E
0

`

e2 ikxq0~x!dx, Im k<0, ~3.3!

]D1 is the boundary of the domain D1 ,

D15$kPC:Im v~k!.0,Imk.0%, ~3.4!

oriented in such a way that D1 is on the lhs of the increasing direction of]D1 , and the function

Q̂(k) is defined as follows:

Q̂~k!5(
j 51

n

a j~Q̂j 21~k!1kQ̂j 22~k!1¯1kj 22Q̂1~k!1kj 21Q̂0~k!!; ~3.5a!

Q̂0(k),...,Q̂N21(k), are given by

Q̂j~k!5E
0

T

eiv~k!t f j~ t !dt, 0< j <N21, kPC; ~3.5b!

Q̂N(k),...,Q̂n21(k), are given through the unique solution of the(n2N)3(n2N) linear system
of algebraic equations

(
j 5N11

n

wn2 j~l l ,m~k!!Q̂j 21~k!52q̂0~l l ,m~k!!2(
j 51

N

wn2 j~l l ,m~k!!Q̂j 21~k!, ~3.5c!

where the polynomial wj (k) is defined by

wj~k!5ankj1an21kj 211¯1an2 j , 0< j <n21, ~3.6a!

and l l ,m(k) are the roots of the equation

v~l l ,m~k!!5v~k!, N11< l<n, 1<m<N, kPD̄ l ,m , ~3.6b!

where D̄ denotes the closure of the domain D and the N domains DR,1 ,...,DR,N are the N
components of DR,15$kPD1 :uv(k)u.R,Im k.0% for R.0 sufficiently large.

Proof: For brevity of presentation we only sketch the proof, details can be found in Ref
The first step of the new method is the construction of a Lax pair; this was achieved in Sec.
Eqs. ~2.5! and ~2.7!. The second step is the simultaneous spectral analysis of the Lax pair.
means constructing a solutionm which satisfies both equations defining the Lax pair, and whic
sectionally bounded in the complexk plane. We will show that such a solution is actually se
tionally holomorphic and has the form

m5H m2 , kPD1

m3 , kPE15$kPC,Im v~k!,0,Imk.0%

m4 , Im k,0,

, ~3.7!
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where the functionsm2 , m3 , andm4 will be defined below. Indeed, assume that there exis
solutionq(x,t) with sufficient smoothness and decay. Letz5t1 ix; the domain 0,x,`, 0,t
,T is a polygon in thez plane with cornersz15(T,`), z25(T,0), z35(0,0), z45(0,̀ ). The
Lax pair, i.e., Eqs.~2.5! and ~2.7!, can be written in the form

~me2 ikx1 iv~k!t!x5e2 ikx1 iv~k!tq,
~3.8!

~me2 ikx1 iv~k!t! t52e2 ikx1 iv~k!tq* .

Let z j be an arbitrary constant and let*z j

z denote the line integral fromz j to z. Then the function

m j~x,t,k!5E
z j

z

eik~x2x8!2 iv~k!~ t2t8!@q~x8,t8!dx82q* ~x8,t8,k!dt8#, ~3.9!

is a particular solution of Eqs.~3.8!. Furthermore, this function remains invariant if the lin
integral is replaced by any curve fromz j to z. We must now choose the constantsz j in such a way
that this function is analytic ink. It is shown in Ref. 20 that for a polygon there exists a canon
way of choosing thez j ’s, namely they are the corners of the polygon. For the above poly
m15m4 and

m2 :E
z2

z

, m3 :E
z3

z

, m4 :E
z4

z

. ~3.10!

In particular,

m45 Èx

eik~x2x8!q~x8,t !dx8.

Splitting the integral*z3

z into one along thet axis and one parallel to thex axis we find

m352eikxE
0

t

e2 iv~k!~ t2t8!q* ~0,t8,k!dt81E
0

x

eik~x2x8!q~x8,t !dx8.

The functionm4 is holomorphic for Imk,0; the functionm3 is an entire function ofk which is
bounded ask→` if Im k.0 and if Imv(k),0, i.e., if kPE1 ; similarly for m2 .

Using the representations~3.10!, the ‘‘jump’’ of m can be computed in terms of line integra
along the boundary of the polygon; for example,m22m35*z2

z3. Hence

m22m35eQ̂~k!, kPL1, e5eikx2 iv~k!t,

m22m45e~Q̂~k!1q̂0~k!!, kP l 1 , ~3.11!

m32m45eq̂0~k!, kP l 2 ,

whereq̂0 andQ̂ are given by Eqs.~3.3! and ~3.5a! with

Q̂j~k!5E
0

T

eiv~k!t~2 i ]x!
jq~0,t !dt;

L15$kPC: Im v(k)50,Imk.0%, l 1 denotes the part of the real axis that is a part of the bound
of D1 , and l 2 denotes the part of the real axis that is a part of the boundary ofE1 .

Equations~3.11! together with the estimatem5O(1/k) define an elementary scalar RH pro
lem, whose unique solution is given by
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m5
1

2p i F E2`

`

eilx 2 iv~ l !tq̂0~ l !
dl

l 2k
1E

]D1

eilx 2 iv~ l !tQ̂~ l !
dl

l 2kG .
This equation and Eq.~2.5! imply Eq. ~3.2!.

Green’s theorem implies that the integral of exp(2ikx1iv(k)t)(q dx2q* dt) along the bound-
ary of the polygon vanishes. This yields the important global relation

Q̂~k!52q̂0~k!1eiv~k!Tq̂T~k!,kPD25$kPC2,Im v~k!.0,Imk,0%, ~3.12!

whereq̂T(k) denotes the Fourier transform ofq(x,T).
The third step of the method involves the analysis of this global relation. The functionq̂0(k)

is the Fourier transform of the initial dataq0(x), thus it is known. The functionq̂T(k) is unknown
but doesnot contribute to the integral~3.2!, thus can be neglected, see Ref. 21. This is a con
quence of the fact thatq(x,t) remains invariant ifQ̂(k) is replaced byeiv(k)Tq̃(k), whereq̃(k) is
a function analytic for Im(k).0. The functionQ̂(k) involves the known functionsQ̂j (k), 0< j

<N21, defined by Eq.~3.5b!, and the unknown functionsQ̂l(k)5C l(k),

C l~k!5E
0

T

eiv~k!t~2 i ]x!
lq~0,t !dt, N< l<n21.

Using the polynomialswn2 j defined in~3.6a! and neglectingq̂T(k), the relation~3.12! is a single
equation for then2N unknown functionC l(k),

(
j 5N11

n

wn2 j~k!C j 21~k!52q̂0~k!1(
j 51

N

wn2 j~k!Q̂j 21~k!, kPD2 . ~3.13!

Each functionC l(k) remains invariant under the transformationk→l(k), where v(l(k))
5v(k). It can be shown that there exist preciselyn2N rootsl in D2 . Thus the above equatio
implies then2N equations~3.5c!.

Starting with the formulas~3.1!–~3.6!, it is possible to prove that the functionq(x,t) solves
the IBV problem~1.1! and ~3.1!. For smooth data this is straightforward; for data in a fractio
Sobolev space, there exist some technical difficulties discussed in Ref. 21.

Example 3.1:Let q(x,t) satisfy

qt1qx1qxxx50, 0,x,`, 0,t,T,

q~x,0!5q0~x!, q~0,t !5 f 0~ t !,

where q0(x)PH2(R1), f 0(t)PH@0;T# and q0(0)5 f 0(0).
The solution of this problem is given by

q5
1

2p E
2`

`

eikx1 i ~k32k!tq̂0~k!dk1
1

2p E
]D1

eikx1 i ~k32k!tQ̂~k!dk,

whereq̂0(k) is the Fourier transform ofq0(x) @see Eq.~3.3!#; v(k)52k31k;]D1 is the union
of the two curveskI

223kR
21150 with kI.0 and of the segment of the real axis21/),kR

,1/) ~see Fig. 1!; Q̂(k) is defined by

Q̂~k!5~123k2!Q̂0~k!1
1

2 F S 3k

iA3k224
21D q̂0~l2~k!!2S 3k

iA3k224
11D q̂0~l1~k!!G ,

with
                                                                                                                



m

4205J. Math. Phys., Vol. 41, No. 6, June 2000 On the integrability of linear and nonlinear . . .

                    
l15
2k1 iA3k224

2
, l25

2k2 iA3k224

2
, Q̂0~k!5E

0

T

e2 i ~k32k!t f 0~ t !dt.

Indeed, in this casea3521, thus N51. The equation Imv(k)50 yields kI(kI
223kR

211)50.
Equation~3.6b! becomes

2k31k52l31l or l21kl1k22150.

If we denote byl1 andl2 the two roots of this equation, then Eqs.~3.5c! become

C21 il1C15~l1
221!Q̂02q̂0~l1!,

C21 il2C15~l2
221!Q̂02q̂0~l2!.

Solving these equations forĈ1 andĈ2 and substituting the resulting expressions in

Q̂~k!5C2~k!1 ikC1~k!1~12k2!Q̂0~k!,

we find the expression forQ̂(k) given above.

B. The NLS equation on the half line

Theorem 3.2„Ref. 21…: Let q(x,t) satisfy the defocusing NLS equation@i.e., Eq. (1.10) with
l51] in 0,x,`, 0,t,T, where T is a positive constant. Let q(x,t) satisfy q(x,0)5q0(x)
PS(R1),qx(0,t)5 f (t)PC1@0,T#, where q0(x) and f(t) are compatible at x5t50. This problem
has a unique global solution which decays to zero as x→`, uniformly in t. This solution can be
obtained as follows: Given q0(x), the vectorn(x,k) and the scalars a(k),b(k) are defined as in
the case of the NLS equation on the line, see Eqs. (2.16) and (2.17), but now x.0. The vector
m(t,k) and the scalar function q(0,t)5g(t) are defined as the solution of the following syste:

m~ t,k!5S b~k!e24ik2t

a~k!
D 1E

0

tS @2 i ug~t!u2m1~t,k!1~ i f ~t!22kg~t!!m2~t,k!#e4ik2~ t2t!

~2 i f ~t!22kḡ~t!!m1~t,k!1 i ug~t!u2m2~t,k!
Ddt,

~3.14!

p

2
g~ t !1E

]III
e24ik2tS E

0

`

q0~x!n2~x,k!e22ikx dxD dk

FIG. 1. The domainD1 and the orientation of its boundary for example 3.1.
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5E
]III
E

0

t

@2 i ug~t!u2m1~t,k!1~ i f ~t!m2~t,k!22kg~t!~m2~t,k!21!#

3e4ik2~ t2t! dt dk, ~3.15!

where]III is the union of@2 i`,0)] and @0, `#. Given the spectral functions a, b, andm(0,k),
definem(x,t,k) as the unique solution of the following232 matrix RH problem for the holomor
phic matricesm1 and m2:

~1!

m2~x,t,k!5m1~x,t,k!J~k!, kPRø iR, ~3.16a!

where the jump matrix J is given by J2 for kPR1, J1 for kP iR1, J3 for kP iR2, J3J2
21J1 for

kPR2, and

J15S 1 0

geu 1D , J25S 1 2be2u

b̄eu 12ubu2D , J35S 1 2g~ k̄!e2u

0 1
D , ~3.16b!

where

b~k!5
b~k!

a~ k̄!
, g~k!5

m1~0,k̄!

a~k!d~k!
, d~k!5m2~0,k̄!a~k!2m1~0,k̄!b~k! ~3.16c!

~see Fig. 2!.
~2!

m5I 1OS 1

kD , k→`. ~3.16d!

~3!

detm51. ~3.16e!

Givenm, define q(x,t) as in the case of the NLS equation on the line, see Eq. (2.19).
Proof: We will analyze this problem using similar conceptual steps with those used in

III A. In analogy with m4 ,m3 ,m2 we define the 232 matricesM, C, F by

M ~x,t,k!5I 1 Èx

e2 ik~x2x8!ŝ3Q~x8,t !M ~x8,t,k!dx8, ~3.17!

FIG. 2. The RH problem for the NLS equation on the half line.
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C~x,t,k!5I 1E
0

x

e2 ik~x2x8!ŝ3Q~x8,t !C~x8,t,k!dx8

1e2 ikxŝ3E
0

t

e22ik2~ t2t8!ŝ3Q̃~0,t8k!C~0,t8,k!dt, ~3.18!

and F(x,t,k) is defined by a similar equation as~3.18! where *0
t is replaced by2*T

t . The
notation exp@aŝ3#A, wherea is an arbitrary scalar andA is an arbitrary 232 matrix, means

eaŝ3A5eas3Ae2as3. ~3.19!

It is straightforward to show that the functionsM, C, F have the following properties.

~1! They satisfy the Lax pair of the NLS equation, i.e., the equations obtained from~1.11! and
~1.12!, under the transformationC5c exp@iks3#.

~2! If their column vectors are denoted by
M5~M2,M1!, C5~C1,C4!, F5~F2,F3!, ~3.20a!

thenM 2 is analytic for Imk,0,M 1 is analytic for Imk.0, C andF are entire functions of
k which are bounded in the domains indicated by the superscripts, where 1,..., 4 deno
first,..., fourth quadrants of the complexk plane.

~3!

detM5detC5detF51. ~3.20b!
~4! If m denotes any of these matrices, then

m5I1OS1kD, k→`, Im kÞ0, RekÞ0. ~3.20c!

~5!

M~x,t,k!5C~x,t,k!e2u~x,t,k!/2ŝ3m~k!,
~3.21a!F~x,t,k!5C~x,t,k!e2u~x,t,k!/2ŝ3w~k!,

where
u52ikx14ik2t, m~k!5M ~0,0,k!, w~k!5F~0,0,k!. ~3.21b!

~6! The components of the matricesw andm satisfy the relations
m11m222m12m2151, w11w222w12w2151,

~3.21c!
m11~k!5m22~ k̄!, m21~k!5lm12~ k̄!, w115w22~ k̄!, w21~k!5lw12~ k̄!.

~7! Using ~3.21c!, Eqs.~3.21a! can be written in the form

SM2,
C4

m̄22
D 5S C1

m22

,M 1D J2 ,

S F2

d
,M 1D 5S C1

m22

,M 1D J1 , ~3.22!

SM2,
C4

m̄22
D 5S M 2,

F3

d̄
D J3 ,

where the matricesJj , j 51,2,3, are defined in~3.16b! and the spectral functionsb(k) and
g(k) are defined by

b~k!5
m12~k!

m22~ k̄!
, g~k!5l

w12~ k̄!

m22~k!d~k!
, d~k!5w22~ k̄!m22~k!2lw12~ k̄!m12~k!.

~3.23!
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Equations~3.20! and ~3.22! define a RH problem. It can be shown that ifl51, this is a
regular RH problem; the casel521 is briefly discussed in Sec. III C.

If the second column vector of the matrixC(x,0,k) is denoted byn(x,k), then b(k)

5b(k)/a( k̄), wheren,b,a are defined by Eqs.~2.16! and ~2.17!.
The functionM (0,t,k) admits the alternative representation

M ~0,t,k!5E
0

t

e22ik2~ t2t8!ŝ3~Q̃M !~0,t8,k!dt81e22ik2tŝ3M ~0,0,k! ~ I,IV !,

where the notation~I, IV ! means that the first column is valid in the first quadrant of the comp
k plane, and the second column in the fourth quadrant. Using the notation (m1(t,k),m2(t,k))t, for
the second column vector ofM (0,t,k), this equation becomes Eq.~3.14!.

In analogy with the global relation~3.12! we find

E
0

`

q~x,0!n2~x,k!e22ikx dx5e4ik2TE
0

`

q~x,T!M2~x,T,k!e22ikx dx

1E
0

T

@2 iluqu2~0,t !m1~ t,k!

1~ iqx~0,t !22kq~0,t !!m2~ t,k!#e4ik2t dt, kPIII. ~3.24!

Multiplying this equation bye24ik2t and integrating along the boundary of III, the first term of t
rhs gives zero.

The rigorous justification of Theorem 3.2 involves proving that~i! n(x,k) is well defined;~ii !
m(t,k) is well defined;~iii ! the RH problem~3.16! has a unique solution;~iv! q(x,t) satisfies the
NLS equation andq(x,0)5q0(x); ~v! q(x,t) satisfiesqx(0,t)5 f (t). The steps~i!, ~iii !, ~iv! are
similar with the analogous steps in Sec. II C. Step~ii ! is the most difficult step: It is straightfor
ward to show that Eqs.~3.14! and ~3.15! have a unique solution under a ‘‘small norm’’ assum
tion. This assumption can be avoided using the fact that for largek, these equations become linea
see Ref. 21 for details. QED

C. The long time asymptotics of the NLS

If q(x,t) satisfies the focusing NLS equation, i.e., Eq.~1.10! with l521, then the regular RH
problem~3.16! must be replaced by a singular one. The singular RH problem can be mappe
regular RH problem supplemented by a system of algebraic equations.24 This system gives rise to
the solitonic part of the solution. Using the method of Ref. 25, it is shown in Ref. 24, thatq(x,t)
is dominated by the solitonic part of the solution ast→`: Let kj , j 51,...,n, be the zeros of
d(k),p/2,Im k. Let

g j5g~kj !, h j5Im~kj !, j j5Re~kj !.

Then

q~x,t !522h j

exp@22i j j x24i ~j j
22h j

2!t2 iw j #

cosh@2h j~x14j j t !2D j #
10~ t21/2!,

t→`,2
x

4t
5j j1OS 1

t D , j 51,...,N,

wherew j andD j are defined by
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w j52
p

2
1argg j1 (

l 51lÞ j

N

@sign~j l2j j !21#argS kj2kl

kj2kl
D

1
1

p
E

2`

2x/4t log@11ub~m!1g~m!u2#

~m2j j !
21h j

2 ~m2j j !dm,

D j52 log 2hj1logugju

1 (
l 51lÞ j

N

@sign~j l2j j !21# logUkj2kl

kj2 k̄l
U

2
h j

p E
2`

2p/4t log@11ub~m!1g~m!u2#

~m2j j !
21h j

2 dm.

The summation terms in the above equations describe the interaction among solitons, wh
integration terms describe the interaction between solitons and the dispersive part.

IV. TWO-DIMENSIONAL LINEAR PDE’s IN A CONVEX POLYGON

Let q(x1 ,x2) satisfy a linear two-dimensional PDE,Lq50, in a polygonV. We propose the
following steps for identifying and solving well-posed boundary value problems forLq50,
(x1 ,x2)PV.20 ~1! Construct its Lax pair, see Sec. IV A.~2! Under theassumption of existence o
a solution q(x1 ,x2), construct the spectral functionsr i , j (k) and expressq(x1 ,x2) in terms of
r i , j (k), see Sec. IV B.~3! Investigate the global relationS1

nr j 11,j (k)50, kPC, for a closed
polygon, or the analogous equation for an open polygon, see Sec. IV C.~4! Rigorously justify the
formulas constructed in~2! and~3! without the a priori assumption of existence: Definer i , j (k) in
terms of the given boundary conditions through the formula obtained in~3! and defineq(x1 ,x2) in
terms ofr i , j (k) through the formula of~2!. Then, by choosing the given data in an appropri
Sobolev space, prove thatq(x1 ,x2) is well defined, it solves the given PDE and it satisfies
given boundary conditions.

In what follows, we discuss steps~1!–~3!.

A. The Lax pair formulation

Recall that a Lax pair for the equationL(]x1
,]x2

)q(x1 ,x2)50 is given by Eqs.~2.3!. Using
Eq. ~2.3a! to eliminate the]x1

derivatives in Eq.~2.3b!, the latter equation becomes an ODE. If t
highest]x2

derivative in the operatorL is of orderm, the resulting ODE is of orderm. However,
by rewriting this equation in a matrix form we can reduce its order. In particular, if the assoc
matrix can be diagonalized, then the resulting equation is of first order. We illustrate the g
case by a simple example. Letq(x,y) satisfy

qxx1qyy14aq50, ~4.1!

wherea is a constant. Equations~2.3! imply that a Lax pair of this equation is

mx2 ikm5q,
~4.2!

myy2~k224a!m52~qx1 ikq!.

Writing the second equation in~4.2! in a matrix form we find

S my

m D
y

1S 0 2~k224a!

21 0 D S my

m D5S 2~qx1 ikq!

0 D .
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The relevant matrix has zero trace and determinant equal to2(k224a). Thus it diagonalizes as
follows:

S 0 2~k224a!

21 0 D 5X21Ak224as3X, s35diag~1,21!.

Let the vectorM be defined by

M5XS my

m D .

Equations~4.2! can be rewritten in the form

Mx2 ikM5XS qy

q D ,

M y1Ak224as3M5XS 2~qx1 ikq!

0 D .

If n denotes the first component of the vectorM, the first component of these equations yields

nx2 ikn5g~qy2Ak224aq!,
~4.3!

ny1Ak224an52g~qx1 ikq!,

where g is an arbitrary nonzero constant. In order to simplify the dependence on the sp
parameter, we letk5l1a/l. Also Eqs.~4.3! indicate that

n;2 igq1OS 1

l D , l→`;

in order to have a solution which decays asl→`, we letñ5n1 igq. Renamingl andñ ask and
m, and choosing for convenienceg52 i /2, we find

mx2 i S k1
a

k Dm5
1

2
~qx2 iqy!2

ia

k
q,

~4.4!

my1S k2
a

k Dm5
1

2
~ iqx1qy!2

a

k
q.

Letting z5x1 iy , z̄5x2 iy ,

]z5
1
2 ~]x2 i ]y!, ] z̄5

1
2 ~]x1 i ]y!, ~4.5!

Eq. ~4.1! and its Lax pair~4.4! can be written as

qzz̄1aq50, ~4.6!

mz2 ikm5qz , m z̄2
ia

k
m52

ia

k
q. ~4.7!

Thus we have derived the following result.
Proposition 4.1: A Lax pair for Eq. (4.1) is given by Eqs. (4.4). An alternative form of E

(4.1) and its Lax pair is given by Eq. (4.6) and (4.7).
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We note that in this simple example, Eqs.~4.7! can be derived by viewing Eq.~4.6! as an
evolution equation forqz ,

~qz! z̄1aq50.

This means that its Lax pair is given by

mz2 ikm5qz , qzz̄1aq50. ~4.8!

Substituting the first of these equations in the second equation, and using Eq.~4.6!, we find Eq.
~4.7b!.

B. The simultaneous spectral analysis

Here we only discuss the generic case of a Lax pair, i.e., we assume that when writing th
pair in a matrix form we obtain a matrix which can be diagonalized. In this case the equ
Lq50 can be written as the compatibility condition of two first order equations,

mx1
2 i f 1~k!m5q1~x1 ,x2 ,k!, mx2

2 i f 2~k!m5q2~x1 ,x2 ,k!, ~4.9!

wheref 1(k), f 2(k) are given analytic functions ofk, andq1 , q2 are analytic functions ofq and of
its derivatives which depend analytically onk. The essential step in the spectral analysis of
~4.9! is the construction of a solutionm(x1 ,x2 ,k) which is sectionally analytic in the complexk
plane. This means thatm has different representations in different domains of the complexk plane,
m5m j for kPD j , whereø jD j5C, and eachm j is analytic.

Writing Eqs.~4.9! in the form

~em!x1
5eq1 , ~em!x2

5eq2 , e5exp@2 i f 1~k!x12 i f 2~k!x2#, ~4.10!

it immediately follows that a particular solution of~4.9! is given by

m j~x1 ,x2 ,k!5E
z j

z

ei f 1~k!~x12x18!1 i f 2~k!~x22x28!~q1~x18 ,x28 ,k!dx181q2~x18 ,x28 ,k!dx28!, ~4.11!

where*z j

z denotes the line integral from the fixed pointz j to the arbitrary pointz5x11 ix2 . We

note that the functionm j is a solution of Eqs.~4.9! even if the line integral is replaced by an
smooth curve fromz j to z, and furthermore it is independent of the particular choice of this cu
Indeed, since equations~4.9! are compatible, Green’s theorem implies that for any smooth clo
curve,

R ~eq1 dx11eq2 dx2!5E E ~~eq2!x1
2~eq1!x2

!dx1 dx250. ~4.12!

It is shown in Ref. 20 that there is a canonical way to choosez j : if z j , j 51,...,n, are the
corners of the polygon, thenm j is holomorphic in the domainSj , and furthermore the union o
these domains is the entire complexk plane. Suppose thatLi j is a curve in the intersection ofSi

andSj ; then on this curve

m i2m j5ei f 1~k!x11 i f 2~k!x2r i , j~k!, ~4.13!

r i , j~k!5E
z i

z j
e2 i f 1~k!x12 i f 2~k!x2~q1 dx11q2 dx2!. ~4.14!

Thus it is possible to reconstructm(x1 ,x2 ,k) as the unique solution of a Riemann–Hilbert pro
lem
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m~x1 ,x2 ,k!5
1

2ip (
i , j

E
Li j

ei f 1~k8!x11 i f 2~k8!x2
r i , j~k8!

k82k
dk8. ~4.15!

Equation~4.15! expressesm in terms of the spectral functionq̂(k), where q̂(k)5r i , j (k). The
spectral function involves integrals ofq and of its derivatives along the boundary of the polygo
Then, either of Eqs.~4.9! yields q(x1 ,x2) as an integral ofq̂(k) along the curveL, which is the
union of the curvesLi j .

For some problems, it is more convenient to analyze the Lax pair in the (z,z̄) coordinates.
Suppose that instead of Eqs.~4.9! we have

mz2 i f 1~k!m5q1 , m z̄2 i f 2~k!m5q2 , z5x1 iy . ~4.16!

Then the particular solution

m j~z,z̄,k!5E
zj

z

ei f 1~k!~z2z8!1 i f 2~k!~ z̄2 z̄8!~q1~z8,z̄8,k!dz81q2~z8,z̄8,k!dz̄8!, ~4.17!

is also well defined. This follows from the complex form of Green’s theorem,

R A dz52E E Az̄ dz∧dz̄, R B dz̄5E E Bz dz∧dz̄,

wheredz∧dz̄522i dx dy. In analogy with Eqs.~4.14! and ~4.15!, we now find

r i , j~k!5E
zi

zj
e2 i f 1~k!z2 i f 2~k!z̄~q1 dz1q2 dz̄!, ~4.18!

m~z,z̄,k!5
1

2ip (
i , j

E
Li j

ei f 1~k8!z1 i f 2~k8!z̄
r i , j~k8!

k82k
dk8. ~4.19!

An example of the above general construction is given in proposition 4.2.
Proposition 4.2: Let V be a convex closed polygon in the complex z plane, z5x1 iy , with

corners z1 ,...,zn (see Fig. 3). Let q(x,y) be a real-valued function which satisfies Eq. (4.1) inV.
Assume that appropriate boundary conditions are prescribed on the boundary ofV such that there
exists a solution q(x,y) which is sufficiently smooth up to the boundary ofV. Then q(x,y) can be
expressed as follows:

~i! For the Laplace equation, i.e., Eq. (4.1) witha50,

]q

]z
5

1

2p (
j 51

n E
l j

eikzr j 11,j~k!dk, ~4.20a!

FIG. 3. The convex polygonal domain of proposition 4.2.
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where

r j 11,j~k!5E
zj 11

zj
e2 ikzqz~z!dz, ~4.20b!

and lj are the rays in the k complex plane defined by

l j5$kPC:argk52arg~zj2zj 11!%, j 51,...,n, ~4.21!

and oriented from zero to infinity.
~ii ! For the modified Helmholtz equation, i.e., Eq. (4.1) witha52b2,

q5
1

2p i (j 51

n E
l j

eikz2~ ib2/k!z̄r j 11,j~k!
dk

k
, ~4.22a!

where

r j 11,j~k!5E
zj 11

zj
e2 ikz1~ ib2/k!z̄S qz~z,z̄!dz1

ib2

k
q~z,z̄! Ddz̄, ~4.22b!

l j are as in~i!, and improper integrals are assumed if needed.
~iii ! For the Helmholtz equation, i.e., Eq. (4.1) witha5b2,

q5
1

2p i F (j 51

n E
l̃ j

eikz1~ ib2/k!z̄r j 11,j~k!
dk

k
1(

j 51

2n E
L j

eikz1~ ib2/k!z̄r~ j !~k!
dk

k G , ~4.23a!

where

r i , j~k!5E
zi

zj
e2 ikz2~ ib2/k!z̄S qz~z,z̄!dz2

ib2

k
q~z,z̄! Ddz̄, ~4.23b!

l̃ j ,L j ,r ( j )(k) are defined as follows: l̃ j is the union of the two rays, oriented away from the orig
given by

l̃ j5$kPC:@argk52arg~zj2zj 11!,uku.b#ø@argk5p2arg~zj2zj 11!,uku,b#%; ~4.24!

L j are the circular arcs formed by the intersection of the ray l˜
j with the circle uku5b; if

a j 11 ,Ai ,a j are the points of intersection of the circleuku5b with the rays$ l̃ j 11 ,uku,b%,

$ l̃ i ,uku.b%, $ l̃ j ,uku,b%, where Ai is betweena j 11 anda j , thenr ( j ) on Lj5(Ai ,a j ) is r i , j 11 ,
see Fig. 4.

The spectral functionsr j 11,j (k) satisfy the global relation

(
j 51

n

r j 11,j~k!50, kPC. ~4.25!

If V is open the following modifications are made: The corners z1 ,zn are moved to infinity
and q(x,y) is assumed to have sufficient decay as z→`. The spectral functionr1,n is zero thus the
summations in Eqs. (4.20a), (4.22a), (4.23a) are only up to n21. The functionsr2,1(k) and
rn,n21(k) are not defined for all k but for k in S1 and Sn , respectively, where S1 and Sn are
defined as follows: For the Laplace and the modified Helmholtz equations, S1 and Sn are the half
planes

S15$kPC,argkP@2arg~z22z1!,p2arg~z22z1!#%,

~4.26!
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Sn5$kPC,argkP@2arg~zn212zn!,p2arg~zn212zn!#%,

for the Helmholtz equation S1 and Sn are the domains in the k plane obtained from the mapl
5(12b2/uku2)k of the sectors S˜

1 ,S̃n in the l plane, where S˜ 1 ,S̃n are as in (4.26), but with k
replaced byl. Finally, the global relation (4.25) is replaced by

(
j 51

n21

r j 11,j~k!50, kPS1ùSn . ~4.27!

Proof: We only discuss the modified Helmholtz equation in a bounded polygon. The pro
the other cases are similar, see Ref. 20.

Comparing Eqs.~4.7! evaluated ata52b2, with Eqs. ~4.16!, it follows that f 15k, f 25
2b2/k, q15qz , q25 ib2q/k. Equation~4.18! yields ~4.22b!. There exists two singular points i
the complexk plane,k50 andk5`. The function defined by Eq.~4.17! is analytic and bounded
for kPSj , where

Sj5$kPC:arg~k!P@2arg~zj 212zj !,p2arg~zj 112zj !#%. ~4.28!

HenceLi j is l j . Equation~4.19! together withq5 limk→0 m, yields Eq.~4.22a!.
Remark 4.1: The transformation

l5$Re~ f 12 f 2!1 i Im~ f 11 f 2!% ~4.29!

maps the exponential appearing in the definition ofr i j (k) @see Eq.~4.18!# to the exponentiale2 ikz

appearing in the particular case of ther i j (k) for the Laplace equation@see Eq.~4.20b!#. This
suggests that results obtained by the new method for the Laplace equation, can be genera
other elliptic equations using this fundamental transformation. For the modified Helmholtz
Helmholtz equations, Eq.~4.29! yields, respectively,

l5S 11
b2

uku2D k, l5S 12
b2

uku2D k. ~4.30!

Example 4.1: Let V be the equilateral triangle with cornerszj5Re2i(2p/3)( j 21), j 51, 2, 3.
Using, arg(z12z2)5arg(z22z1)2p5p/6, arg(z22z3)5arg(z32z2)2p52p/2, arg(z32z1)55p/6, it
follows that the raysl j , j 51, 2, 3, are defined by argk52p/6, p/2, 5p/6, respectively. The
contours and the spectral functions are indicated in Fig. 5 for the Laplace and for the mo
Helmholtz equations, and in Fig. 6 for the Helmholtz equation.

FIG. 4. The spectral functions for the Helmholtz equation.
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Example 4.2: Let V be the first quadrant of the complexz plane,z15`, z250, z35 i`.
Using arg(z12z2)50 and arg(z22z3)5arg(z32z2)2p52p/2, it follows that the raysl j , j 51, 2,
are defined by argk50, p/2, respectively. For the Laplace and for the modified Helmholtz eq
tions, if kPS1 ,Sn , then argkP@p,0#,@p/2,3p/2#, respectively; thus the global relation is valid fo
any kP@p,3p/2#. For the Helmholtz equation the contours and the spectral functions are
cated in Fig. 7; in this case Eq.~4.27! is valid for kPS, where

FIG. 5. The contours and spectral functions for example 4.1 for the Laplace equation.

FIG. 6. The contours and spectral functions for example 4.1 for the Helmholtz equation.
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S5H kPC, S argkPFp,
3p

2 G ,uku.b DøS argkPF0,
p

2 G ,uku,b D J .

C. The analysis of the global relation

The formulas presented in proposition 4.2 are valid foranyboundary conditions, provided tha
these boundary conditions yield a well-posed problem. A fundamental limitation of these form
is that they are derived under thea priori assumption of existence of solutions. Furthermore,
spectral functions involve some unknown boundary values. Indeed, a necessary condition
~4.1! to be well posed is that one relation be prescribed amongq, qx , andqy on the boundary, thus
eachr j 11,j (k) involves one unknown function.

A general method for using the global relation to obtain the unknown part of the spe
function is presented in Ref. 20. It involves three algorithmic steps:~i! Use the definition of the
functionsr i , j (k) to express them in terms of the given boundary conditions and of some unk
functions denoted byC j (k). Substitute these expressions in the global relation to obtain
equation for the unknown functionsC j (k). ~ii ! Use certain invariants transformations in th
complexk plane to derive from this equation a set of additional equations.~iii ! Use these equation
to obtainC j (k) through the solution of a system of algebraic equations or through the soluti
a Riemann–Hilbert problem.

For concreteness we consider a closed polygon and we assume that on every side
polygon,q(x,y) satisfies the boundary condition specified by

a jqx1b jqy5 f j , Aa j
21b j

251, ~4.31!

wherea j ,b j are real constants andf j is a real smooth function. Unbounded polygons and ot
boundary conditions can be treated in a similar way. For brevity of presentation we give the d
for the Laplace equation and indicate the modifications needed for other elliptic equations.

1. Laplace equation

The first step of the method introduced above involves substituting the boundary con
~4.31! in the definition ofr j 11,j (k). For the Laplace equation, using the local coordinatesz5zj

1s exp@iuj#, this yields

r j 11,j~k!5~b j1 ia j !e
iu j 2 ikzjE

0

uzj 112zj u
e2 ieiu j ksqj~s!ds2F j~k!, ~4.32!

whereqj52b jqx1a jqy , and F j is a known function. Substituting Eq.~4.32! into the global
relation ~4.25! we find

FIG. 7. The contours and spectral functions for example 4.2 for the Helmholtz equation.
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(
j 51

n

eiv j 2 ikzjc j~2 ieiu jk!5F~k!, kPC, ~4.33!

where

v j5u j1arg~b j1 ia j !, c j5E
0

uzj 112zj u
e2 ieiu j ksqj~s!ds, ~4.34!

andF(k) is a known function. The complex conjugate of Eq.~4.33! yields

(
j 51

n

e2 iv j 1 ikz̄jc j~ ie2 iu jk!5F~ k̄!, kPC. ~4.35!

Equations ~4.33! and ~4.35! are two equations for then pairs of unknown functions$c j

(2 ieiu jk),c j ( ie
2 iu jk)%.

The second step involves finding the transformations in the complexk plane which leave each
of the above pairs invariant. For the pair corresponding to the fixed subscriptl, this transformation
is $k°2exp(22iul)k; k °2exp(2iul)k%. In general, the transformations corresponding to differ
l’s are different, thus this procedure can be continued. This leads to a proliferation of the unk
functions, and thus for an arbitrary polygon the general construction becomes cumbersom
step will be illustrated below for two simple examples.

The third step involves using the equations obtained in the second step to determi
unknown functions either through the solution of a system of algebraic equations or throug
solution of a Riemann–Hilbert~RH! problem.

Example 4.3: Let q(x,y) satisfy the Laplace equation in a wedge of anglep/4, with the
boundary condition~4.31! on each side of the wedge. In this case,

qx2 iqy5E
l 1

eikzr2,1~k!dk1E
l 2

eikzr3,2~k!dk, ~4.36!

where the raysl 1 ,l 2 are depicted in Fig. 8, and the spectral functions are defined by

r2,1~k!5eiv1E
0

`

e2 ikxq1~x!dx2F1~k!, r3,2~k!5eiv2E
0

`

e2 ieip/4ksq2~s!ds2F2~k!,

~4.37!

whereF1 ,F2 are known functions andv15arg(2b12ia1),v25arg(b21ia2)1p/4. Let c1 andc2

be the unknown functions in Eqs.~4.37!. The global relation~4.27! yields

c1~2 ik !1eivc2~2 ieip/4k!5F~k!, argkP@p,2p2p/4#, ~4.38a!

wherev5v22v1 andF(k) is a known function. The complex conjugate of Eq.~4.38a! is

FIG. 8. The contours for example 4.3.
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c1~ ik !1e2 ivc2~ ie2 ip/4k!5F~ k̄!, argkPFp4 ,pG . ~4.38b!

The set$c1(2 ik);c1( ik)% is invariant underk°2k, while the set involvingc2 is invariant
under$k° ik;k°2 ik%. Thus Eqs.~4.38! are supplemented by the equations

c1~k!1eivc2~ ie2 ip/4k!5F~ ik !, argkPFp2 ,
5p

4 G , ~4.39a!

c1~k!1e2 ivc2~2 ieip/4k!5F~2 i k̄ !, argkPF3p

4
,
3p

2 G , ~4.39b!

and the equations obtained by replacingk with 2k in ~4.38! and ~4.39!; we refer to the latter
equations as~4.388! and ~4.398!.

Equations~4.38!, ~4.39!, ~4.388!, ~4.398! are the basic equations needed for the determina
of c1 andc2 : Eqs.~4.38! and~4.39! are valid forkPR2 and the function$c1(2 ik),c1( ik)% has
a jump across this ray; thus we must use these equations to compute this jump. Using~4.38a!,
~4.39b!, ~4.39a!, ~4.38b!, we find

c1~2 ik !2e4ivc1~ ik !5 f ~k!, kPR2, ~4.40a!

wheref (k) is a known function. Lettingk°2k in this equation@which is equivalent to using Eqs
~4.388!, ~4.398!# we find

c1~2 ik !2e24ivc1~ ik !5e24iv f ~2k!, kPR1. ~4.40b!

Equations~4.40! together with the estimatec1(k)5O(1/k),k→`, define a scalar RH problem
which can be solved in closed form by standard methods. We note that this RH probl
discontinuous at the origin, unless exp(8iv)51.

We will now show that if the condition exp(8iv)51 is satisfied, it is possible to avoid solvin
the above RH problem and to determine the spectral functions using only algebraic manipul
Indeed, we first note that exp(ikz) is bounded in the wedge formed by the raysl 1 and l 2 :0
,argk,3p/4,0,argz,p/4, thus 0,arg(kz),p. Hence the rhs of Eq.~4.36! is invariant if r2,1

→r2,11q̃(k),r3,2→r3,22q̃(k), where q̃(k) is analytic and bounded for 0,argk,3p/4. Using
Eqs.~4.38b8!, ~4.39a8!, ~4.39b8!, ~4.38a8!, and Eqs.~4.39b!, ~4.39a!, ~4.38b!, respectively, we find

c1~2 ik !5e24ivc1~ ik !1 f 1~k!, c2~2 ieip/4k!52e3ivc1~ ik !1 f 2~k!,

where f 1(k) and f 2(k) are known functions. Thus

qx2 iqy5E
l 1

eikzeiv124ivc1~ ik !dk2E
l 2

eikzeiv213ivc1~ ik !dk1G~k!, ~4.41!

whereG(k) is a known function. Hence if exp(iv124iv)5exp(iv213iv), i.e., exp(8iv)51, the
unknown functionc1( ik) gives zero contribution. For Neumann boundary conditionsqy is given
on (z2 ,z1) and qy2qx is given on (z2 ,z3), thus a150,b151,a252b251/&. For Dirichlet
boundary conditionsqx is given on (z2 ,z1) and qy1qx is given on (z2 ,z3), thus a151,b1

50,a25b251/&. In both cases exp(8iv)51; thus the spectral functions for the Neumann a
Dirichlet problems can be obtained purely through algebra.

The case of a wedge of an arbitrary angle can be solved through a discontinuous RH pr
see Ref. 28.

Example 4.4: Let q(x,y) satisfy the Laplace equation in a right isosceles triangle, with
boundary condition~4.31! on each side of the triangle. In this case,
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qx2 iqy5E
l 1

eikzr2,1~k!dk1E
l 2

eikzr3,2~k!dk1E
l 3

eikzr1,3~k!dk, ~4.42!

where the raysl 1 ,l 2 ,l 3 are depicted in Fig. 9, and the spectral functions are given by

r2,1~k!5eiv1E
0

l

e2 ikxq1~x!dx2F1~k!, r3,2~k!5eiv2E
0

l

ekyq2~y!dy2F2~k!,

~4.43!

r1,3~k!5eiv3eklE
0

l

e2~11 i !kxq3~x!dx2F3~k!,

where F j , are known functions andv15arg(2b12ia1), v25arg(2a21ib2), v35arg(b31ia3)
2p/4. If c j ’s denote the unknown functions in Eqs.~4.43!, the global relation~4.25! and its
complex conjugate yield

eiv1c1~2 ik !1eiv2c2~k!1eiv3eklc3~~212 i !k!5F~k!, ~4.44a!

e2 iv1c1~ ik !1e2 iv2c2~k!1e2 iv3eklc3~~211 i !k!5F~ k̄!, ~4.44b!

whereF(k)5( j 51
3 F j (k). The set involvingc3 remains invariant under$k°2 ik;k° ik%. Thus

we supplement Eqs.~4.44! with the equations

eiv1c1~2k!1eiv2c2~2 ik !1eiv3e2 iklc3~~211 i !k!5F~2 ik !, ~4.45a!

e2 iv1c1~2k!1e2 iv2c2~ ik !1e2 iv3eiklc3~~212 i !k!5F~2 i k̄ !. ~4.45b!

The terms involvingc1 in Eqs.~4.44!, andc2 in Eqs.~4.45! remain invariant underk°2k, thus
we supplement the above equations with the equations obtained from Eqs.~4.44! and ~4.45! by
replacingk with 2k; we refer to the latter equations as~4.448! and ~4.458!.

Equations~4.44!, ~4.45!, ~4.448!, ~4.458! can be used to obtain a RH problem for the unkno
functions. In the particular case of exp@4iv12#51, and exp@8iv32#51, wherev i j 5v i2v j , it is
possible to avoid solving this RH problem and to obtain the spectral functions using only alge
manipulations, see Ref. 28 for details. Both, the Neumann and Dirichlet boundary cond
belong to this particular case.

FIG. 9. The contours for example 4.4.
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2. Modified Helmholtz equation

Using integration by parts it follows that the unknown part ofr j 11,j (k) is given by

e2 ikzj 1 i ~b2/k!z̄jF ~b j1 ia j !e
iu j

2
1

b2~a j sinu j2b j cosu j !

b22k2e2iu j
Gc j S 2 ieiu jk1 i

b2

k
e2 iu j D ,

~4.46!

wherec j is defined in Eq.~4.34b!. The complex conjugate ofc j yields c j ( ie
2 iu jk2 ib2eiu j /k),

thus the pair of the unknown functions corresponding toj 5 l remains invariant under thesame
transformation used for the Laplace equation. This implies that the procedure for obtainin
c j ’s is identicalwith that for the Laplace equation. In particular, one obtains similar RH probl
but with more complicated jump conditions, since exp@2ikzj1ivj# is now replaced by the coeffi
cient of c j in Eq. ~4.46!. It is important to emphasize that, just as in the case of the Lap
equation, for a large class of boundary value problems, the RH problems can be avoided a
spectral functions can be obtained through algebraic manipulations.

Example 4.5: Let q(x,y) satisfy the modified Helmholtz equation in a wedge of anglep/4,
with the boundary conditions~4.31! on every side of the wedge. In this case

r2,1~k!5
eiv1k21b2e2 iv1

2~b22k2!
C1S 2 ik1

ib2

k D2F1~k!,

r3,2~k!5
eip/4~eiv2k21b2e2 iv2!

2~b22 ik2!
C2S 2 ieip/4k1

ib2e2 ip/4

k D2F2~k!,

wherev15arg(b11ia1), v25arg(a22ib2) andF1 ,F2 are known functions. Following steps iden
tical to those used in example 4.3, we find a RH problem for the functionC1(k) with a jump
along the real axis given byJ(k) for kPR2 andJ21(k) for kPR1, where

J~k!52e4iv
~k42b4e4iv1!~k42b4e24iv2!

~k42b4e24iv1!~k42b4e4iv2!
.

This problem is continuous atk50 if and only if e8iv51. If the conditione4iv51 is valid, then
J(k)5J21(k). In this case it is possible to avoid solving this RH problem and to determine
spectral functions using only algebraic manipulations.

Remark 4.2: Other elliptic equations can be treated similarly. For example, the unkn
functions for Helmholtz equation remain invariant under the transformation used for the La
equation and the transformationk°2b2/k.

Remark 4.3:
~1! Several other boundary value problems for Eq.~4.1! are discussed in Refs. 20, 28–3

Boundary value problems for the bi-harmonic equation are investigated in Ref. 31.
~2! The formulas presented here can be nonlinearized. In particular, the elliptic sine-G

equation, which is a nonlinear version of the Helmholtz equation is under investigation.

V. FURTHER APPLICATIONS

Here we briefly discuss some further applications of the new method, as well as some
lems currently under investigation. We only highlight some of these developments and we r
preprints for details.

A. Moving boundary value problems

The implementation of the general method for the case of moving boundary problem
linear and for integrable nonlinear evolution equations can be found in Refs. 22 and 32. He
only make some remarks about the linear dispersive equation~1.1! in the domain
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l ~ t !,x,`, 0,t,T, ~5.1!

where l (t) is a given differentiable function oft whose first derivative is monotonic, andT is a
positive fixed constant.

We recall that for a polygonal domain, there exists a solutionm(x,t,k) of the associated Lax
pair which is sectionally holomorphic, i.e.,m has different representations in different domains
thek complex plane and each of these representations is analytic. Furthermore, these dom
fixed, that is independent ofx1 andx2 . This implies thatm can be reconstructed as the solution
a RH problem which has jumps along a fixed contour in thek complex plane. The novelty o
moving boundary value problems is that this RH problem must now be replaced by either
problem formulated with respect to atime-dependentcontour, or by ad-bar problemformulated
with respect to a fixed two-dimensional domain. For linear equations this, in turn, yield
integral representation forq(x,t) in the k complex plane involving either an integral along
time-dependent contour, or integrals along a fixed contour and a fixed two-dimensional dom
particular, if l (t),x,`, 0,t,T, it can be shown that there exist two cases:~a! If l 9(t),0,
which corresponds to a concave domain in the~x,t! plane,q(x,t) admits an integral representatio
involving a time-dependent contour.~b! If l 9(t).0, which corresponds to a convex domain in t
~x,t! plane,q(x,t) admits an integral representation involving an integral along the realk-axis and
a double integral over a fixed two-dimensional domain.

Proposition 5.1 (Ref. 22): Let q(x,t) satisfy Eq. (1.1) in the domain (5.1). Assume that t
equation is supplemented with appropriate initial and boundary conditions such that there
a solution q(x,t) which is sufficiently smooth (up to the boundary) and which has sufficient d
as x→`, uniformly in 0,t,T. Then q(x,t) can be represented in the following form.

~a! l 9(t),0:

q~x,t !5
1

2p E
2`

`

eikx2 iv~k!tq̂0~k!dk1
1

2p E
]D1~ t !

eikx2 iv~k!tQ̂~k!dk, ~5.2!

wherev(k) and q̂0(k) are defined in Eqs. (1.4) and (3.3), ]D1 is the oriented boundary of the
domain D1(t),

D1~ t !5$kPC:Im~v~k!2kl8~ t !!.0,Im~k!.0%, ~5.3!

and the function Qˆ (k) is defined by

Q̂~k!5E
0

T

eiv~k!t2 ikl ~ t !@q* ~ l ~ t !,t,k!2 l 8~ t !q~ l ~ t !,t !#dt, ~5.4!

where q* ( l (t),t,k) is the value at x5 l (t) of the function q* (x,t,k) defined by Eq. (2.8).
~b! l 9(t).0:

q~x,t !5
1

2p H E
2`

`

eikx2 iv~k!tq̂0~k!dk1E
L1

eikx2 iv~k!tQ̂~k!dk1E
L2

eikx2 iv~k!tQ̂~k,S!dk

1E E
D1~0!ùE1~T!

eikx2 iv~k!t
]Q̂~k,S!

] k̄
dk` k̄J , ~5.5!

where

dk∧dk̄522i dkR dkI , ~5.6!

the contours L1 ,L2 , the domain E1(T) and the function Qˆ (k,S) are defined as follows:
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E1~ t !5$kPC:Im~v~k!2kl8~ t !!,0,Im~k!.0%; ~5.7!

L1 is the oriented contour consisting of the part of the real axis which is also part of D1(T);L2

is the oriented contour consisting of the part of the real axis which is also part of D1(0)ùE1(T);
the orientation of L1 and L2 is from left to the right; Q̂(k,S) is defined by an equation similar t

the equation defining Qˆ (k) but with T replaced by S(v I /kI), where S is the inverse of the functio
l 8(t), i.e.,

v I /kI5 l 8~ t !↔t5S~v I /kI !. ~5.8!

Furthermore, the functions qˆ 0(k) and Q̂(k) satisfy the following global relations.
~a! l 9(t),0:

q̂0~k!52Q̂~k!1eiv~k!TE
l ~T!

`

e2 ikxq~x,T!dx, kPC2, ~5.9!

q̂0~k!52Q̂~k,S!1eiv~k!SE
l ~S!

`

e2 ikxq~x,S!dx, kPE2~T!ùD2~0!, ~5.10!

where D2(t) and E2(t) are defined by equations similar to Eqs. (5.3) and (5.7), but w
Im(k).0 replaced byIm(k),0.

~b! l 9(t).0:

q̂0~k!52Q̂~k!1eiv~k!TE
l ~T!

`

e2 ikxq~x,T!dx, kPC2. ~5.11!

Remarks 5.1:
~1! Equations~5.9!–~5.11! play a crucial role in identifying and solving well-posed initi

boundary value problems. However, in contrast with the casel (t)50, the functionsQ̂(k) and
Q̂(k,S) cannot be computed explicitly, but are determined through the solution of a syste
Volterra linear integral equations.

~2! The occurrence of the double integral in Eq.~5.5! is due to the following: there exists
solution m of Eqs. ~2.5! and ~2.7! which is bounded inkPC for all l (t),x,`, 0,t,T. This
solution has four different representations in four different domains of the complexk plane; three
of them are analytic but the fourth isnot. This lack of analyticity gives rise to ad-bar problem
instead of a RH problem. The functionm can be reconstructed in terms of its]m/] k̄ derivative,
using the formula

m~k,k̄!5
1

2p i
E

]D

m~l,l̄ !

l2k
dl1

1

2p i
E E

D

]m~l,l̄ !

]l̄

dl`dl̄

l2k
, kPD. ~5.12!

The second term of the rhs of this equation gives rise to the double integral of Eq.~5.5!.
~3! An important advantage of the representations~5.2! and ~5.5! is that they haveexplicit x

andt dependence. This implies that it is possible to study the long-time asymptotic behavior
solution. Similarly, the matrix RH andd-bar problems associated with nonlinear integrable PD
have an explicitx andt dependence; thus in the former case one can directly obtain the long
asymptotic behavior of the solution using the method of Ref. 25.

B. Other results

We summarize some other results obtained by this method.
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1. Nonlinear integrable equations

There exist integrable nonlinear PDE’s for which the spectral function can be comp
directly in terms of the given initial and boundary data. For these PDE’s, there exist no ‘‘miss
boundary values, thus it is not necessary to analyze the associated global relation. Tw
problems are the following.

~i! The interaction of colliding gravitational waves.33 This problem is described by a particu
lar exact reduction of the vacuum Einstein equations. Letg(x,y) be a real, symmetric, 232
matrix-valued function ofx and y for x, y in the triangular regionD5$(x,y)PR2,21<x,y
<1%. The functiong(x,y) solves the Goursat problem

2~x2y!gxy1gx2gy1~x2y!~gxg
21gy1gyg

21gx!50,

g~21,y!5g1~y!, 21,y<1,

g~x,1!5g2~x!, 21<x,1.

This equation admits the Lax pair

]c

]x
5

1

2 F12
~y2k!1/2

~x2k!1/2Ggxg
21c, kPC,

]c

]y
5

1

2 F12
~x2k!1/2

~y2k!1/2Ggyg
21c.

By performing the simultaneous spectral analysis of these equations, it can be shown thatg(x,y)
can be expressed in terms of the solution of a 232 matrix RH problem, which is uniquely define
in terms ofg1(y) andg2(x).

~ii ! Transient stimulated Raman scattering.34 This phenomenon can be described by the th
coupled nonlinear PDE’s,

]b

]x
5 i ~X̄Y2XȲ!,

]Y

]x
52ibX,

]X

]t
52

i

2
Y,

whereb(x,t) is a real valued function,X(x,t),Y(x,t) are complex valued functions, bar denot
complex conjugation, and

b~0,t!5b0~t!, Y~0,t!5Y0~t!, 0<t<1,

X~x,0!5X0~x!, 0<x< l .

These equations admit the Lax pair

]c

]x
5S 2 ik X

2X̄ ik D c, kPC,

]c

]t
5

1

4k S ib 2Y

Ȳ 2 ib D c.

Performing the simultaneous spectral analysis of these equations, it can be shown that th
tions b, Y, andX, can be expressed in terms of the solution of a 232 matrix RH problem, which
is uniquely defined in terms ofb0 , Y0 , andX0 . The largel behavior of this problem is dominate
by the underlying self-similar solution which satisfies a particular case of the third Pain´
transcendent.
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2. Spectral theory revisited (Ref. 35)

An important step in the rigorous implementation of the new method is the spectral an
of ordinary linear differential operators. For example, the Laplace equation in the domain$0<x
<L, 0<y< l (x)%, is associated with the differential operator

1

12 i l 8~x!
]x , 0<x<L.

Motivated by these developments we have introduced an alternative definition of the spect
a differential operator and have presented a constructive procedure for finding itsspectral repre-
sentation. In the cases where a comparison is possible, this spectral representation is th
whose existence is guaranteed by the classical spectral theorem~see also Ref. 72!. We note that in
the usual approach to spectral theory, one imposes the particular boundary conditionsbefore
computing the associated Green’s function; this is to be contrasted with our approach whe
boundary conditions are imposedafter the maximal representation has been constructedindepen-
dently of the boundary conditions. We emphasize that we construct the maximal represen
without resorting to the Green’s function, but rather by an analyticity argument that involve
solution of aRiemann–Hilbert problem, or of ad-bar problem.

3. Systems of linear PDE’s (Ref. 36)

It is straightforward to construct a Lax pair for such systems. For brevity we state the
only for evolution equations.

Observation 5.1:Let the N-vector q(x,t) satisfy the linear evolution equation

L~] t ,]x!q50,

where L is an N3N matrix linear differential operator of] t and ]x with constant coefficients in
which ] t appears only in the first power. A Lax pair of this equation is

~]x2 ik !m5q, ~5.13!

L~] t ,]x!m50, ~5.14!

wherem(x,t,k) is an N vector.
The Lax pair ~5.13!, ~5.14! can be rewritten in a more convenient form. Using~5.13! to

eliminate thex derivatives inLm, Eq. ~5.14! takes the form

m t1 iV~k!m5L̃~] t ,]x ,k!q, ~5.15!

whereL̃ is anN3N matrix linear differential operator of] t and]x with k dependent coefficients
in which ] t appears only in the first power.

Suppose that the matrixV(k) can be diagonalized, i.e., suppose that there exists a nonsin
N3N matrix X(k) such that

V~k!5X21v~k!X,

wherev(k) is a diagonal matrix. Then Eqs.~5.13! and ~5.15! become

Mx2 ikM5Xq,

Mt1 iv~k!M5XL̃q, M5Xm.

This approach has been used in Ref. 36 to study Boussinesq-type equations in 0,x,` and
in 0,x,1.
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4. Two-point boundary value problems for evolution equations (Refs. 37 and 38)

The general dispersive evolution Eq.~1.1! in the domain 0,x,1, 0,t,T, is studied in Ref.
37. Since the associated polygon in the~x,t! plane has four corners, there now exist four ba
solutionsm j , j 51,...,4. The novelty of this problem in comparison to the case of 0,x,`, is that
the global relation gives rise to a system of algebraic equations which involves a matrix whic
be singular; this gives rise to a discrete spectrum. It is shown in Ref. 37 that for a well-p
problem the following boundary conditions must be prescribed: ifn is even,n/2 boundary con-
ditions at each end; ifn is odd andan.0, (n11)/2 boundary conditions atx50, and (n21)/2
boundary conditions atx51; if n is odd andan,0, (n21)/2 boundary conditions atx50 and
(n11)/2 boundary conditions atx51.

The nonlinear Schro¨dinger equation in the domain 0,x,1, 0,t,T, is studied in Ref. 38. In
analogy with the case of 0,x,`, the most difficult step is the analysis of the associated n
linear global relation. It is interesting that in the case of periodic boundary conditions, this re
linearizes.

C. Problems under consideration

The following are some of the problems which are currently under consideration.
~1! Free boundary value problems. The results of Sec. V A suggest a new approach to stu

ing free boundary value problems. An example of such a problem is Eq.~1.1! in l (t),x,`, t
.0, wherel (t) is unknown but an additional boundary condition is given atx5 l (t). Although
such problems appear naturally in applications only the case of equations which are secon
in the space derivative have been extensively studied.

~2! Two-dimensional PDE’s in a curvilinear domain. Combining the results of Secs. V A an
IV B, it is possible to study convex domains consisting of piecewise curves.

~3! Forced problems and PDE techniques. It is possible to obtain integral representations
forced problems. Given a nonlinearnonintegrablePDE, the nonlinear terms can be considered
a forcing of the associated linear system. Then, at least for sufficiently small data or for
ciently small time, it should be possible to prove well posedness for the nonlinear PDE.

VI. TOWARDS A METHOD IN MULTIDIMENSIONS

Although both the transform methods for linear PDE’s and the Ehrenpreis principle ca
formulated inanydimensions, nonlinear evolution equations admitting a Lax pair have been f
only in two spatial dimensions. We have begun a program of study of extending the new m
presented in Secs. III–V to any number of dimensions. However, these results are prelim
thus will only be mentioned briefly in Sec. VI C.

In what follows we first summarize the main developments for the solution of the Ca
problem for integrable nonlinear evolution equations in two spatial dimensions. In Sec. VI
study the initial value problem on the plane for a linear evolution equation, by constructing
analyzing an appropriate Lax pair. In analogy with Sec. II A this is done for pedagogical rea
Also, as in Sec. II A, this problem can be effectively analyzed by performing the spectral an
of only thet-independent part of the Lax pair; this analysis reproduces the solution obtained
two-dimensional Fourier transform. In Sec. VI B we use the same conceptual steps used
VI A for the analysis of the analogous problem for the Davey–Stewartson II equation. S
recent results and open problems are also discussed in Sec. VI B. In Sec. VI C we mention
some ideas and open problems regarding the generalization of the new method to any num
dimensions.

Integrable nonlinear evolution equations in two spatial variables. Every integrable non-
linear evolution equation in one spatial dimension has several integrable versions in two
dimensions. Two such integrable physical generalizations of the Korteweg–de Vries equati
the so-called Kadomtsev–Petviashvili I~KPI! and II ~KPII! equations.39 In the context of water
waves, they arise in the weakly nonlinear, weakly dispersive, weakly two-dimensional limit
in the case of KPI when the surface tension is dominant. The nonlinear Schro¨dinger equation has
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three physical integrable versions known as the Davey–Stewartson I~DSI!, the defocusing
Davey–Stewartson II~DSII! and the focusing DSII40 equations. They can be derived from th
classical water wave problem in the shallow water limit and govern the time evolution of the
surface envelope in the weakly nonlinear, weakly two-dimensional, nearly monochromatic
The KP and DS equations have several physical applications, see for example Refs. 41–4

A method for solving the Cauchy problem for decaying initial data for integrable evolu
equations in two spatial dimensions emerged in the early 1980s. This method is sometim
ferred to as the]̄ ~d-bar! method. It was shown in Sec. II that the inverse spectral method
solving nonlinear evolution equations on the line is based on a matrix RH problem. This pro
expresses the fact that there exist solutions of the associatedx-part of the Lax pair which are
sectionally meromorphic. Analyticity survives in some multidimensional problems: it was sh
formally in Refs. 48 and 49 that KPI gives rise to anonlocal RH problem. However, for other
multidimensional problems, such as the KPII, the underlying eigenfunctions are nowhere an
and the RH problem must be replaced by the]̄ ~d-bar! problem. Actually, a]̄ problemhad already
appeared in Refs. 50 and 51 where the RH problem appearing in the analysis of one-dime
systems was considered as a special case of a]̄ problem. Soon thereafter it was shown in Ref.
that KPII required the essential use of the]̄ problem. The situation for the DS equations
analogous to that of the KP equation.53

There exist two types of localized coherent structures associated with integrable evo
equations in two spatial variables: thelumpsand thedromions. The spectral meaning, and ther
fore the fact that these solutions are generic, was elucidated by Fokas and Ablowitz49 and Fokas
and Santini,54 respectively.

The first results of the application of the above method were formal. A rigorous method
emerged after the works of several authors.55–60 A review of this rigorous methodology can b
found in Refs. 61 and 62.

A. Linear evolution equations on the plane

Example 6.1:Let q(x,y,t) satisfy

iqt1
1
2 qxx2

1
2 qyy50, 2`,x,`, 2`,y,`, t.0, ~6.1!

q~x,y,0!5q0~x,y!PS~R2!. ~6.2!

The unique solution of this problem, which decays asx21y2→`, is given by

q~x,y,t !5
1

~2p!2 E
R2

eikx1 i ly q̂0~k,l !dk dl, ~6.3!

whereq̂0(k,l ) is the Fourier transform of the initial data,

q̂0~k,l !5E
R2

e2 ikx2 i lyq0~x,y!dx dy. ~6.4!

In what follows we rederive this result using a Lax pair formulation. Equation~6.1! can be
rewritten in the form

iqt1qzz1qz̄ z̄50, z5x1 iy . ~6.5!

In order to find a Lax for this equation we use the following observation.
Observation 6.1:Let q(z,z̄,t), satisfy the linear PDE with constant coefficients

L~]z ,] z̄,] t!q50. ~6.6!

Then the equations
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m z̄2km5q, kPC, ~6.7a!

Lm50, ~6.7b!

form a Lax pair for this equation.
Indeed, ifq satisfies Eq.~6.6!, then Eqs.~6.7! are compatible,

Lq5L~] z̄2k!m5~] z̄2k!Lm50.

In the particular case thatq satisfies Eq.~6.5!, the equationLm50, becomes

im t1mzz1m z̄ z̄50.

Using Eq.~6.7a! to eliminate the termm z̄ z̄ , we find that a Lax pair of Eq.~6.5! is given by Eq.
~6.7a! and by the equation

m t2 imzz2 ik2m5 ikq1 iqz̄ . ~6.8!

We now assume thatq(z,z̄,t) exists, has sufficient smoothness and decay, and perform
spectral analysis of Eq.~6.7a!. This means that we construct a solutionm, which for every fixedz
and z̄ is bounded ink, kPC, and which is ofO(1/k) ask→`. Equation~6.7a! can be written as

] z̄~me2kz̄1 k̄z!5qe2kz̄1 k̄z,

where the term exp(k̄z) is used to ensure the boundness of exp(2kz̄1k̄z). This equation, togethe
with the assumption thatq→0 asz→`, imply @see Eq.~5.12!#

m~z,z̄,t,k!5
1

2ip E
R2

ek~ z̄2 z̄ !2 k̄~z2z!q~z,z̄,t !

z2z
dz`dz̄. ~6.9!

Computing]m/] k̄, we find

]m

] k̄
5ekz̄2 k̄zr~k,k̄,t !, ~6.10!

where

r~k,k̄,t !5
1

2ip E
R2

e2kz̄1 k̄zq~z,z̄,t !dz̀ dz̄. ~6.11!

Equation~6.9! implies thatm5O(1/k), k→`. This estimate, and Eq.~6.10! imply

m~z,z̄,t,k!5
1

2ip E
R2

elz̄2 l̄ zr~ l , l̄ ,t !

l 2k
dl`d l̄ . ~6.12!

Substituting, this equation into Eq.~6.7a!, we find

q~z,z̄,t !5
1

2ip E
R2

elz̄2 l̄ zr~ l , l̄ ,t !dl`d l̄ . ~6.13!

In summary, the spectral analysis of Eq.~6.7a! yields Eqs.~6.11! and~6.13!, which are the direct
and the inverse Fourier transform in two dimensions~note that2kz̄1 k̄z522ikIx12ikRy).

In order to find the time evolution of the Fourier data, we use thet part of the Lax pair:
Equation~6.9! implies that
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r~k,k̄,t !52 lim
z→`

~ze2kz̄1 k̄zm~z,z̄,t,k!!.

This equation, the assumptionq→0 asz→`, and Eq.~6.8!, yield

r t2 i ~ k̄21k2!r50.

Solving this equation in terms ofr(k,k̄,0), and using Eq.~6.11! at t50, it follows that

q~z,z̄,t !5
1

2ip E
R2

ekz̄2 k̄z1 i ~k21 k̄2!tr0~k,k̄!dk`dk̄, ~6.14!

where

r0~k,k̄!5
1

2ip E
R2

e2kz̄1 k̄zr0~z,z̄!dz̀ dz̄. ~6.15!

Equations~6.14! and~6.15! can be used to construct the solution of the initial value prob
~6.1! and ~6.2!, without the a priori assumption of existence: Givenq0(z,z̄)PS(R2), define

r0(k,k̄) by Eq. ~6.15!. Givenr0(k,k̄), define q(z,z̄,t) by Eq. ~6.14!. Since, the dependence ofq

on z,z̄,t is of the form exp@kz̄2k̄z1i(k21k̄2)t#, it immediately follows thatq satisfies Eq.~6.5!. All
that remains is to show thatq(z,z̄,0)5q0(z,z̄), i.e.,

q0~z,z̄!5
1

2ip E
R2

ekz̄2 k̄zr0~k,k̄!dk`dk̄. ~6.16!

If one assumes the validity of the inversion formula for the two-dimensional Fourier trans
Eq. ~6.16! is a consequence of the definition~6.15!. Alternatively, Eq.~6.15! and ~6.16! can be
obtained by repeating the spectral analysis of the Eq.~6.7a! but with q(z,z̄,t) replaced with the
known functionq0(z,z̄)PS(R2).

B. The Davey–Stewartson II equation on the plane

Theorem 6.1„Ref. 62…: Let the complex-valued scalar function q(z,z̄,t),z5x1 iy , satisfy

iqt1qzz1qz̄ z̄22lq~] z̄
21uquz

21]z
21uqu z̄

2!50, ~6.17!

2`,x,`, 2`,y,`, t.0, q~z,z̄,0!5q0~z,z̄!PS~R2!, ~6.18!

wherel561, and the operator] z̄
21 is defined by

~] z̄
21f !~z,z̄!5

1

2ip E
R2

f ~z,z̄ !

z2z
dz`dz̄. ~6.19!

The defocusing DSII equation, i.e., Eq. (6.17) withl51, has a unique solution which decays
zero as z→` uniformly for t.0. This is also the case for the focusing DSII, i.e., Eq. (6.17) w
l521, provided that the L̀ and the L1 norms of q0 and of its Fourier transform qˆ 0 , satisfy

iq0i`iq0i1 ,
p

2
,

i q̂0i`i q̂0i1

~12t!2 ,
p

2
, t5

1

pA2p
Ai q̂0i1iq0i1,1. ~6.20!

In both cases the solution can be obtained as follows: Given q0(z,z̄), define(n1 ,n2)t as the
unique solution of the linear integral equations
                                                                                                                



t to

4229J. Math. Phys., Vol. 41, No. 6, June 2000 On the integrability of linear and nonlinear . . .

                    
n1~z,z̄,k!511
1

2ip E
R2

q0~z,z̄ !n2~z,z̄,k!

z2z
dz`dz̄,

~6.21!

n̄2~z,z̄,k!5
l

2ip E
R2

ek̄~ z̄2 z̄!2k~z2z!q0~z,z̄ !n̄1~z,z̄,k!

z2z
dz`dz̄.

Given q0 and n1 , definer0(k,k̄) by

r0~k,k̄!5
1

2ip E
R2

ek̄z̄2kzq0~z,z̄ !n1~z,z̄,k!dz`dz̄. ~6.22!

Givenr0 , define(m1 ,m2)t as the unique solution of the linear integral equations

m̄1~z,z̄,t,k!512
1

2ip
E

R2

elz2 l̄ z̄1 i ~ l 21 l̄ 2!tr0~ l , l̄ !m2~z,z̄,t,l !

l̄ 2 k̄
dl`d l̄ ,

~6.23!

m̄2~z,z̄,t,k!52
l

2ip
E

R2

elz2 l̄ z̄1 i ~ l 21 l̄ 2!tr0~ l , l̄ !m1~z,z̄,t,l !

l̄ 2 k̄
dl`d l̄ .

Givenr0 and m1 , define q by

q~z,z̄,t !5
1

2ip E
R2

ekz2 k̄z̄1 i ~k21 k̄2!tr0~k,k̄!m1~z,z̄,t,k!dk`dk̄. ~6.24!

Proof: Equation~6.17! is associated with the two-dimensional Dirac problem for the 232
matrix-valued eigenfunctionc. Because this problem has a certain symmetry, it is sufficien
study only one of the column vectors ofc, which we denote by (c1 ,c2)t. It can be verified that
the DSII is the compatibility condition of the two-dimensional vector problem

c1z̄
5qc2 , c2z

5lq̄c1 , ~6.25!

coupled with the time-evolution equations

ic1t
1c1zz

2qc2z̄
1qz̄c222l~] z̄

21uquz
2!c150,

~6.26!
2 ic2t

1c2z̄z̄
1lq̄zc12lq̄c1z

22l~]z
21uqu z̄

2!c250.

Let the vector (m1 ,m2)t be defined by

~c1 ,c2!t5~m1 ,m2!tekz. ~6.27!

Equations

]m1

] z̄
~z,z̄,t,k!5q~z,z̄,t !m2~z,z̄,t,k!, ~6.28a!

]m2

]z
~z,z̄,t,k!1km2~z,z̄,t,k!5lq̄~z,z̄,t !m1~z,z̄,t,k!, ~6.28b!

together with the equations obtained from Eqs.~6.26! under the substitution~6.27!, form a Lax
pair for the DSII equation.
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We first assume that there exists a solutionq(z,z̄,t) with sufficient smoothness and decay a
with sufficiently small norms. We look for a solution of Eq.~6.28! which for every fixedz,z̄,t, is
bounded ink, kPC, and which satisfies

~m1 ,m2!t→~1,0!t, z→`. ~6.29!

Noting that Eq.~6.28b! can be written in the form

] z̄~m2ekz2 k̄z̄!5lqm1ekz2 k̄z̄, ~6.30!

it follows that this solution is uniquely defined by the linear integral equations

m1~z,z̄,t,k!511
1

2ip E
R2

q~z,z̄,t !m2~z,z̄,t,k!

z2z
dz`dz̄,

m̄2~z,z̄,t,k!5
l

2ip E
R2

ek̄~ z̄2 z̄!2k~z2z!q~z,z̄,t !m̄1~z,z̄,t,k!

z2z
dz`dz̄. ~6.31!

Differentiating these equations with respect to]/] k̄ and to]/]k we find

]m1

] k̄
5

1

2ip
E

R2

q
]m2

] k̄

z2z
dz`dz̄,

]m̄2

]k
52lr~k,k̄,t !e2 k̄z̄1kz1

l

2ip E
R2

ek̄~ z̄2 z̄!2k~z2z!q
]m̄1

]k

z2z
dz`dz̄,

where

r~k,k̄,t !5
1

2ip E
R2

ek̄z̄2kzq~z,z̄,t !m̄1~z,z̄,t,k!dz`dz̄. ~6.32!

These equations can be written in the form

lek̄z̄2kz
]m̄2

]k
52r1

1

2ip E
R2

qek̄z̄2kz
]m̄1

]k

z2z
dz`dz̄,

ekz2 k̄z̄
]m1

] k̄
5

l

2ip
E

R2

ek̄~ z̄2 z̄!2k~z2z!qS lekz2 k̄z̄
]m2

] k̄
D

z2z
dz`dz̄.

Comparing these equations with Eqs.~6.31!, it follows that

lek̄z̄2kz
]m̄2

]k
52rm1 , ek̄z̄2kz

]m̄1

]k
52rm2 . ~6.33!

Equations~6.31! imply the estimate
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m1511OS 1

kD , m25OS 1

kD , k→`. ~6.34!

Equations~6.33! and ~6.34! define (m1 ,m2)t in terms of r(k,k̄,t). The time evolution of this
function can be found by using thet part of the Lax pair. Using

r~k,k̄,t !5 lim
z→`

~lek̄z̄2kzm̄2!,

and the assumption thatq→0 asz→`, Eqs.~6.26! yield

r t5 i ~k21 k̄2!r.

This equation and Eqs.~6.33! and~6.34! imply that (m1 ,m2)t is given by Eqs.~6.23!, wherer0 is
defined by Eq.~6.22! and (n1(z,z̄,k),n2(z,z̄,k))t5(m1(z,z̄,0,k),m2(z,z̄,0,k))t. Finally, Eqs.
~6.23! and the second of Eqs.~6.28! yield Eq. ~6.24!.

The above discussionmotivatesthe definitions~6.21!–~6.24!. We now show that these equa
tions yield a solution of the Cauchy problem for the DSII equation.

l51. We must first show that ifq0PS(R2), Eqs. ~6.21! have a unique solution. Thes
equations are equivalent to@compare with Eqs.~6.28a! and ~6.30!#

] z̄@n1ekz2 k̄z̄6~n2ekz2 k̄z̄!#56q@l~n1ekz2 k̄z̄!6n2ekz2 k̄z̄#,

~n1 ,n2!t→~1,0!t, z→0.

If l51, the function in the bracket above defines a generalized analytic function,71 thus Eqs.
~6.21! have a unique solution. Indeed, consider the equation

f ~z,z̄!511
1

2ip E
R2

q~z,z̄ ! f̄ ~z,z̄ !

z2z
dz`dz̄. ~6.35!

It can be shown that ifqPL1ùL` , this equation is of a Fredholm type, thus the question of
solvability reduces to the question of existence of nontrivial homogeneous solutions. Eq
~6.35! hasno such solutions: Suppose thatw(z,z̄) is a homogeneous solution, i.e.,w solves an
equation similar to Eq.~6.35!, where 1 is replaced by 0. Thenw→0 asz→`, butw can be written
as

w~z,z̄!5w~z!expF 1

2ip E
R2

S q
f̄

f
D dz`dz̄

z2z G ,

thus sincew→0 asz→`, it follows that w50 ~we note that the integral in the exponential
bounded sinceu f̄ / f u51).

Similarly, Eqs.~6.23! are equivalent to@compare with Eqs.~6.33!#,

]

]k
@m̄16m̄2#57r0ek̄z̄2kz1 i ~k21 k̄2!t@lm16m2#.

If l51, the function in the brackets above defines a generalized analytic function, therefor
~6.23! have a unique solution.

Thus, ifl51,q(z,z̄,t) defined by Eq.~6.24! is well defined without a small norm assumptio
However, ifl521, one cannot appeal to the theory of generalized analytic functions. In this
the following results are proven in Ref. 62:~i! Equations~6.21! have a unique solution provide
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that iq0i`iq0i1,p/2. ~ii ! Equations~6.23! have a unique solution provided thatir0i`ir0i1

,p/2. ~iii ! The norms ofr0 can be estimated in terms of the norms ofq0 ,

ir0i`<
i q̂0i`

12t
, ir0i1<

i q̂0i1

12t
,

wheret is defined in Eqs.~6.20!.
The final step involves proving that the functionq(z,z̄,t) defined by Eq.~6.24! solves the

DSII equation and it satisfiesq(z,z̄,0)5q0(z,z̄). This proof is similar to the one outlined in Se
II C ~see Ref. 62 for details!. QED

1. Lumps for the focusing DSII

If the norms ofq0 are not sufficiently small, Eqs.~6.31! with l521 can have homogeneou
solutions. Letw j (z,z̄,t) denote such a solution corresponding tok5kj , i.e., w j satisfies an equa
tion similar to Eq.~6.31!, where 1 is replaced by 0,k is replaced bykj , andl521. In this case
the formalism presented earlier must be modified as follows.63,64

We make two observations:~i! By direct substitution it can be verified that if the vectorw j

satisfies Eqs.~6.28! with k5kj , then the vector

sw̄ je
k̄j z̄2kjz, s5S 0 1

21 0D , ~6.36!

also satisfies the same equations.~ii ! Let m j (z,z̄,t) be defined by

m j5 lim
k→kj

S m1
w j

k2kj
D . ~6.37!

If the vectorm satisfies Eqs.~6.28!, and the vectorw j satisfies Eqs.~6.28! with k5kj , thenm j

satisfies an equation whose homogeneous part is identical to the equation satisfied byw j . Fur-
thermore, a particular solution of this equation is (m j )p5zw j . Thus

m j5~z1a j~ t !!w j1b j~ t !sw̄ je
k̄j z̄2kjz. ~6.38!

The above facts can also be verified using Eqs.~6.31! and their homogeneous versions instead
Eqs.~6.28!. Since Eqs.~6.31! have a homogeneous solution atk5kj , it follows thatm is singular
at this point. Assuming that this singularity is a simple pole, it follows that

m5S 1
0D1m̃~z,z̄,t,k!2

w j~z,z̄,t !

k2kj
, ~6.39!

wherem̃ is bounded atk5kj andw j is normalized by limz→` zw j51. Using Eq.~6.38!, we find

S 1
0D1m̃~z,z̄,t,kj !5~z1a j~ t !!w j1b j~ t !sw̄ je

k̄j z̄2kjz. ~6.40!

Since the functionm̃ is bounded, it can be computed in terms of]m̃/] k̄, using an analysis simila
to the one presented in the proof of theorem 6.1. Ifm̃50, Eq.~6.40! and its complex conjugate ar
two algebraic equations forw j and w̄ j . Their solution is

w j~z,z̄,t !5
1

uz1a j u21ub j u2 S z̄1ā j

b je
k̄j z̄2kjzD .

Equation~6.28b! implies thatq̄52 limk→` m2 ; thus q̄5(w j )2 , i.e.,
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q~z,z̄,t !5
b̄ je

kjz2 k̄ j z̄

uz1a j u21ub j u2 . ~6.41!

The t part of the Lax pair implies

a j~ t !5a j~0!12ik j t, b j~ t !5b j~0!e2 i ~kj
2
1 k̄ j

2
!t. ~6.42!

Equations~6.41! and ~6.42! define the 1-lump solution of the focusing DSII equation.
We note that the generalization toN lumps is straightforward:

m5S 1
0D2(

j 51

N
w j

k2kj
,

S 1
0D2(

j 51
j Þ l

N
w j

k2kj
5~z1a l !w l1b lsw̄ le

k̄l z̄2klz,

q5(
j 51

N

~ w̄ j !2 .

2. Interaction of lumps with 1-line soliton for the focusing DSII

It is possible to use similar arguments with the ones used in the derivation of the 1-
solution, to derive a solution describing the interaction of 1 lump with 1-line soliton.65

~i! If the vectorw j satisfies Eqs.~6.28! with k5kj the vector

sw̄ je
k̄j z̄2~kj 1L!z

satisfies the same equation withk5kj1L.
~ii ! If m j (z,z̄,t) is defined by Eq.~6.37!, then m j5(z1a j (t))w j . Thus Eq.~6.39! is now

replaced by

m5S 1
0D1m̃2

w j

k2kj
2

cj~ t !Lsw̄ je
k̄j z̄2~kj 1L!z

k2~kj1L!
.

Hence, ifm̃50

S 1
0D1cj~ t !sw̄ je

k̄j z̄2~kj 1L!z5~z1a j !w j .

This equation and its complex conjugate are two algebraic equations forw j andw̄ j . Their solution
yields

w j5
1

uz1a j u21ucjeu2 S z̄1ā j

2cje
D , e5ek̄j z̄2~kj 1L!z.

This equation together with the equations

q5~ w̄ j !22 c̄ jL̄~w j !1ekjz2~ k̄ j 1L̄ !z̄, ~6.43!

a j~ t !5a j~0!12ik j t, ~6.44a!

cj~ t !5cj~0!e2 i @ k̄ j
2
1~kj 1L!2#t, ~6.44b!
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define the 1-lump, 1-soliton solution.
If L is either real or purely imaginary, this solution does not evolve in time; an examp

such a case is plotted in Fig. 10.
Remark 6.1:
~1! The long-time behavior of the defocusing DSII equation is similar to the long t

behavior of the corresponding linearized equation.66

~2! The rigorous incorporation of the lump solutions to the inverse spectral formalism rem
open. If the poles giving rise to the lump solutions are the only generic singularities that ex
this problem, then it is expected that the long-time behavior of the solution will be dominate
the N-lump solution.

~3! The derivation of the 1-lump, 1-soliton solution is based on the analysis of the ‘‘inv
problem.’’ The analysis of the ‘‘direct problem’’ remains open. This involves constructing
analogue of Eqs.~6.21! for initial data given byq̃0(z,z̄)1qs(z,z̄), whereqs(z,z̄) is the 1-line
soliton of DSII evaluated att50 andq̃0(z,z̄) is decaying to zero asz→`.

~4! Lump solutions of the KPI equation are investigated in Ref. 49; a generalization of
solutions corresponding to higher order singularities is presented in Ref. 67. The Cauchy pr
for the KPI equation in the background of line solitons is investigated in Refs. 68 and 69.

C. A new formulation of linear PDE’s in multidimensions

We recall that a crucial step in the implementation of the new method is the constructi
the solutionm j defined by Eq.~4.11!. This solution is independent of the path of integrati
because the following 1-formV is closed,

V5~eq1!dx11~eq2!dx2 , e5e2 i f 1~k!x12 i f 2~k!x2.

Indeed,

dV5~eq1!x2
dx2`dx11~eq2!x1

dx1`dx25~~eq2!x1
2~eq1!x2

!dx1`dx250.

Thus, if we assume a trivial cohomology, it follows that there exist a functionm such thatV
5d(em). This equation, yields Eqs.~4.9!. This observation, together with the fact th
exp@if1(k)x11if2(k)x2# is a particular solution of the linear equation satisfied byq, suggests the
following.

Definition 6.1: Let q(x1 ,...,xn) satisfy the linear PDE with constant coefficients

FIG. 10. A stationary 1-lump, 1-soliton solution.
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L~]x1
,...,]xn

!q50.

Let exp@i(j51
n f j(k1,...,kn)xj#, kjPC, be a particular solution of this PDE. Suppose that there ex

an (n21)-form

V5(
l

e2 i ( j 51
n f j xjV~ l !~x1 ,...,xn ,k1 ,...,kn!dxl 1

`¯`dxl n21
, ~6.45!

such that dV50. Then we call the equations

V5d~e2 i ( j 51
n f j xjm!, ~6.46!

wherem is an (n22) form, a linear system associated with the equation Lq50.
Regarding this definition we note:~i! In order for Eqs.~6.46! to be useful for constructing the

spectral decomposition ofq, it is crucial that the parametersk1 ,...,kn , are chosen in such a wa
that the relevant exponential is bounded.~ii ! It is possible to findV algorithmically.~iii ! A similar
formulation for the Laplace equation in three dimensions has been formally constructed in R
~In this work a particular solution is taken in the form exp@k1x1k2y1k3z# without parametrizing
the kj ’s in a form that ensures the implementation of the spectral analysis.!

Example 6.2:A linear system associated with the Eq. (6.5) is

V5d~em!, e5e2kz̄1 k̄z2 i ~k21 k̄2!t, ~6.47!

where

V5~eq!dz̀ dz̄1 ie~ k̄q2qz!dz̄̀ dt2 ie~kq1qz̄!dt`dz,
~6.48!

m5m1 dz1m2 dz̄1m3 dt.

Indeed,e21 is a particular solution of Eq.~6.5!, thus we defineV by

V5~eq!dz̀ dz̄1~eb!dz̄̀ dt1~ec!dt`dz.

We chose the functionsb andc so that Eq.~6.5! implies dV50, i.e.,

~eq! t1~eb!z1~ec! z̄50,

or

qt2 i ~k21 k̄2!q1bz1 k̄b1cz̄2kc50. ~6.49!

Let

b5b01 k̄b1 , c5c01kc1 ,

whereb0 ,b1 ,c0 ,c1 are independent ofk andk̄. Substituting these equations in Eq.~6.49!, we find

b052 iqz , b15 iq, c052 iqz̄ , c152 iq.

The explicit form of Eq.~6.47! is

m2z
1 k̄m22m1z̄

1km15q,

m1t
2 i ~k21 k̄2!m12m3z

2 k̄m352 i ~qz̄1kq!, ~6.50!
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m3z̄
2km32m2t

1 i ~k21 k̄2!m252 i ~qz2 k̄q!.

Remark 6.2:
~1! It is possible to relate these equations with the Lax pair formulation given by Eqs.~6.7a!

and~6.8!, by takingm250. This choice is with no loss of generality since there exists the ga
d(em)→d(em1d f ). ~2! It is possible, using Eq.~6.47!, to expressm in terms of two-dimensiona
integrals. This formula is the proper generalization of Eq.~4.11!, and can be used for the solutio
of initial-boundary value problems.~3! The above results suggest that the Lax pair formulatio
not appropriate for nonlinear integrable evolution equations in multidimensions. For evol
equations in two-space dimensions, Lax pairs work because of the existence of the und
gauge. A fundamental open question is the following:Does there exist a nonlinearization o
equation (6.46) for n.3?
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On a multidimensional Schro ¨ dinger–Poisson scattering
model for semiconductors
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MIP, Laboratoire CNRS (UMR 5640), Universite´ Paul Sabatier 118,
route de Narbonne, 31062 Toulouse Cedex, France

~Received 7 November 1997; accepted for publication 10 February 1999!

We consider a stationary Schro¨dinger–Poisson problem modeling a self-consistent
transport in a quantum coupler. The Schro¨dinger equation is set on a bounded
domain with transparent boundary conditions describing incoming scattering states
of the Schro¨dinger operator. The coupling with the Poisson equation is done thanks
to a nonlinear limiting absorption procedure. The charge density of the limit po-
tential is shown to be equal to the sum of the scattering state and bound state
densities. ©2000 American Institute of Physics.@S0022-2488~99!04706-4#

I. INTRODUCTION

One of the most important issues in semiconductor device modeling is the obtention
current–voltage characteristics. This requires the use of models with boundary conditions
ing for nonzero current flows. Such boundary conditions can be naturally obtained for k
models by prescribing the distribution function on the boundary for incoming velocities only
ultrashort devices, kinetic equations are no more valid since quantum effects have to be tak
account. Among the various possible descriptions which can be used in such contexts, the
equation1 represents the advantage of having a similar structure as the Vlasov equation;2–4 indeed
the Wigner functionW(x,v,t) is a solution of the Wigner equation

]W

]t
1v.¹xW1Q\@V#W50,

whereQ\@V# is a pseudodifferential operator acting on the velocity variable and which tends\
tends to zero to¹V.¹v leading to the Vlasov equation. Moreover, the macroscopic quantities
like in the classical case~Vlasov!, the velocity moments ofW ~e.g.,n(x,t)5*W(x,v,t)dv!. It is
then tempting to prescribe the Wigner function on the boundary and for incoming veloc
Unfortunately, this would lead to numerous problems due to the nonpositivity of the W
transform. Indeed, the Wigner function is obtained by a transformation of the density m
r(x,y),

W~x,v,t !5
1

~2p!d E
Rd

eih.vrS x2
\

2
h,x1

\

2
h Ddh.

The density matrix has to be positive in the sense of kernels~e.g.,r(x,y)5(l ic i(x)c̄ i(y) with
l i>0!. This property leads among others to the positivity ofn5*Wdv despite the nonpositivity
of W. The Wigner equation is then deduced from the quantum Liouville equation

i\
]r

]t
5~Hx2Hy!r,

a!Electronic mail: naoufel@mip.ups-tlse.fr
42410022-2488/2000/41(7)/4241/21/$17.00 © 2000 American Institute of Physics

                                                                                                                



atrix
ity of

o the

undary
used
chro

ing this
d 9. In
a
also
w

o-called

exit

itable
ates of
undary

solu-
ix and
we add
oint

4242 J. Math. Phys., Vol. 41, No. 7, July 2000 Naoufel Ben Abdallah

                    
whereHr52\2D r1V(r ) is the Schro¨dinger operator acting on ther variable (r PRd). Whenr

is written r(x,y)5(l ic i(x)c̄ i(y), the quantum Liouville equation is written in terms ofc i ,

i\
]c

]t
5Hc.

When inflow boundary conditions are prescribed for the Wigner equation, the density m
structure lying behind the Wigner transform ceases to be valid leading to the nonpositiv
charge concentration!

An alternative approach is then to go back to the density matrix level, or equivalently t
wave function level and define ‘‘reasonable’’ boundary conditions for the Schro¨dinger equation.
This was done in Refs. 5–7 for the equilibrium steady state by imposing homogeneous bo
conditions. To allow currents to flow through the domain, the Dirichlet condition cannot be
and one has to look for boundary conditions which allow to catch scattering states of the S¨-
dinger equation rather than bound states. A one-dimensional steady state model answer
question was introduced and studied by Degond, Markowich, and the authors in Refs. 8 an
these papers, transparent boundary conditions for the Schro¨dinger equation are derived and
self-consistent Schro¨dinger–Poisson model with these boundary conditions is studied. It is
shown that transparent boundary conditions lead, when\ tends to zero, to the standard inflo
boundary conditions for the Vlasov equation.

In the stationary two dimensional case, scattering states are needed to simulate the s
quantum couplers~see Ref. 10! which are quantum structures consisting of a device~bounded
domain! linked to the exterior through several leads~semi-infinite waveguides! from which elec-
trons are injected~see Fig. 1!. In practice, the electron beams are injected at one lead~V1 for
instance, Fig. 1! and, following the geometry of the device, they split into several beams that
the device by the other leads (V2 ..). Theelectron states are scattering states of the Schro¨dinger
operator and are therefore current carrying. In Ref. 11, Lent and Kirkner have derived su
boundary conditions, at the device interface with the lead, in order to compute scattering st
the system and proposed a finite element method for their numerical computation. These bo
conditions are a generalization of the one-dimensional transparent boundary conditions.8

We write this model in an arbitrary dimension and prove existence and uniqueness of
tions for almost every energy. Afterwards, we construct a physically admissible density matr
discuss the self-consistent effects. In order to show existence of self-consistent solutions,
an absorption term to the Schro¨dinger equations which allows the use of a Schauder fixed p

FIG. 1. The domainV.
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procedure. The limiting absorption procedure is done thanks to the nonlinearity which gi
uniform estimate on the potential. In the nonlinear limiting absorption procedure, we show th
electron density is equal to the sum of the density of scattering states of the Schro¨dinger operator
and that of bound states~corresponding to possible trapped particles!.

II. BOUNDARY CONDITIONS FOR CURRENT CARRYING STATES

We write in an arbitrary dimension the model introduced by Lent and Kirkner11 ~see also Ref.
12!. Let us consider a bounded smooth domainV0 of Rd whose boundary is split into a partG0

andn flat domainsG j of dimensiond21. Let V j be the exterior half-cylinder with basisG j and
G j ,0 its lateral boundary and letV be the interior of the union of the closures of theV j ’s j
50,1,...,n ~see Fig. 1!. Note that

]V5G0øG1,0,....øGn,0 .

Let now E be a given energy and let us find a generalized eigenfunction of the HamiltoniaH\

52\2D1V in V ~whereV is a given potential!. This means

2\2Dc1Vc5Ec, in V, ~1!

c50, on ]V, ~2!

c is bounded. ~3!

The last hypothesis allowsc to be nonintegrable and thereforec will be ~we shall see it later! a
scattering state of the Schro¨dinger operator and consequently transports a current.

For the moment, the potentialV is given and satisfies the hypothesis

(H21) V in the leadsV j ( j 51,...,n) has only a transversal dependenceV5Vj (j j ) wherej j

PG j , h jPR1 are local coordinates ofV j ~see Fig. 2!

With this hypothesis, the leadsV j behave like waveguides and the Schro¨dinger Eqs.~1! and
~2! can be solved explicitly. Indeed, let (xm

j ,Em
j ) be the eigenfunctions and the eigenvalues of

j th transversal Schro¨dinger operator with homogeneous Dirichlet data

H 2\2Dj j
xm

j 1Vj~j j !xm
j 5Em

j xm
j

xm
j PH0

1~G j !, E
G j

uxm
j u2dj j51.

~4!

FIG. 2. Local coordinates.
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The (xm
j )mPN* is an orthonormal basis ofL2(G j ), and for eachj the sequence (Em

j ) is a nonde-
creasing sequence tending to infinity. A functionc satisfying~1! on V j can then be written

c~j j ,h j !5 (
m51

`

f m~h j !xm
j ~j j !, ~5!

where thef m solves the equation

2\2
d2f m

dh j
2 5~E2Em

j ! f m . ~6!

Hence, setting

km
j ~E!5AuE2Em

j u ~7!

Nj~E!5sup$m>1, E.Em
j % ~8!

we obtain

f m~h j !5am
j e2 ikm

j
~h j /h!1bm

j eikm
j

~h j /h! if m<Nj ~9!

f m~h j !5bm
j e2km

j
~h j /h! if m.Nj , ~10!

wherei is the square root of21. The positive exponential term in~10! is missing because of~3!.
The coefficientsam

j are those of the incoming waves and are supposed to be known, wh
thebm

j are the reflection-transmission coefficients and should be deduced from the equations
succeed to eliminate, by means of an algebraic manipulation, the coefficientsbm

j , we would obtain
a boundary condition onG j for c and could therefore solve the Schro¨dinger equation on the
bounded domainV0 instead of the whole unbounded domainV. This elimination is done in Ref
11 by first noticing that

c~j j ,h j50!5 (
m51

Nj

~am
j 1bm

j !xm
j ~j j !1 (

m5Nj 11

`

bm
j xm

j ~j j !,

whereas the differentiation of~5! with respect toh j gives forh j50,

\
]c

]h j
U

G j

5 (
m51

Nj

ikm
j ~2am

j 1bm
j !xm

j ~j j !2 (
m5Nj 11

`

km
j bm

j xm
j ~j j !.

Sincexm
j is an orthonormal basis ofL2(G j ), we have

cuG j
5 (

m51

`

cm
j xm

j ~j j !, where cm
j 5E

G j

cxm
j dj j . ~11!

Finally, by noticing that

cm
j 5H am

j 1bm
j if m<Nj

bm
j if m.Nj

we obtain the following transparent boundary condition
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\
]c

]h j
U

G j

5 (
m51

Nj ~E!

ikm
j ~E!~22am

j 1cm
j !xm

j ~j j !2 (
m5Nj ~E!11

`

km
j ~E!cm

j xm
j ~j j !. ~12!

To summarize this paragraph, the wave functionc is a solution of the Schro¨dinger Eq.~1! on V0

with the boundary condition~12! on G j for i 51,...,n and with the boundary condition

c50, on G0 . ~13!

Problems~1!, ~12!, ~13! can be set under a variational form that we precise now.
Proposition II.1: The set

H5H cPH1~V0 ;C!, c50 on G0 , (
j 51

n

(
m51

`

km
j ~E!ucm

j u2,`J ~14!

is a separable Hilbert space with the scalar product

^c,w&H5\2E
V0

¹c.¹w̄dx1\(
j 51

n

(
m51

`

km
j ~E!cm

j w̄m
j . ~15!

The spaceH as well as the topology induced by the above scalar product does not dependE.
Proof: The fact thatH is a separable Hilbert space is straightforward since it is the clo

with respect to the normiciH
2 5^c,c&H of the set

$cPD~V̄0!, c50 in vicinity G0%.

To prove thatH does not depend onE, we first notice that, sincexm
j is an orthonormal basis o

L2(G j ), then

iciL2~G j !
2

5 (
m51

`

ucm
j u2.

Using the properties of the trace onG j We deduce that

(
j 51

n

(
m51

`

ucm
j u2<CiciH1/21a~V0!

2

for every positivea. But since, by Sobolev injections and Poincare´ inequality

iciH1/21a~V0!
2 <iciH1~V0!

2 <CE
V0

u¹c~x!u2dx

~for a,1/2!, we deduce that for every fixedMPN, we have

C0E
V0

u¹c~x!u2dx<E
V0

u¹c~x!u2dx1(
j 51

n

(
m51

M

km
j ~E!ucm

j u2<C1E
V0

u¹c~x!u2dx.

For large indicesm, we can replacekm
j (E) by AuEm

j u. Hence, after some straightforward algeb
we finally get the following estimate:

C2iciH
2 <E

V0

u¹c~x!u2dx1(
j 51

n

(
m51

`

AuEm
j uucm

j u2<C3iciH
2 .

j
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Remark II.2: Actually the space H is nothing but the space of H1 functions with a vanishing
trace onG0 . Indeed, ifw is in the latter space, then the trace onG j is in

H00
1/2~G j !5@L2~G j !,H0

1~G j !#1/25H cPL2~G j !, (
m

AuEm
j uucm

j u2,`J
which is equivalent to the condition

(
m

km
j ucm

j u2,`.

j

Problem~1!, ~12!, ~13! is then equivalent to findingcPH such that for allwPH, we have

\2E
V0

¹c.¹w̄dx1E
V0

~V2E!cw̄dx2\ i (
j 51

n

(
m51

Nj ~E!

km
j ~E!cm

j w̄m
j 1\(

j 51

n

(
m5Nj ~E!11

`

km
j ~E!cm

j w̄m
j

522\ i (
j 51

n

(
m51

Nj ~E!

km
j ~E!am

j w̄m
j . ~16!

The first question we answer is whether the above problem has a solution for a fixedV and a fixed
value ofE. Afterwards, we construct the electron density and couple it to the electrostatic pot
through the Poisson equation.

III. THE LINEAR EQUATION

Theorem III.1: Let Emin5infm, jEm
j and let V be given inL`(V0). Then there exists an

nondecreasing sequence (Ej (V)) j PN* tending to` such that the variational problem~16! has a
unique solution for every prescribedam

j and everyEP$E>Emin , EÞEp ,;p>1%.
Proof: Similar problems arise in electromagnetism~see Ref. 13!, and some details of the

proof, based on the Fredholm alternative, are similar to those of Ref. 13 and are therefore s
Let us first introduce the following notations:

Q~c,w!5\2E
V0

¹c.¹w̄dx1\(
j 51

n

(
m51

`

km
j ~E!cm

j w̄m
j , ~17!

C~c,w!5E
V0

~V2E!cw̄2\ i (
j 51

n

(
m51

Nj ~E!

km
j ~E!cm

j w̄m
j 2\(

j 51

n

(
m51

Nj ~E!

km
j ~E!cm

j w̄m
j , ~18!

L~w!522\ i (
j 51

n

(
m51

Nj ~E!

km
j ~E!am

j w̄m
j . ~19!

The variational problem~16! can be written

Q~c,w!1C~c,w!5L~w!, ~;wPH !.

We can easily prove the following estimates:

Q~c,c!5iciH
2 ~20!
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C~c,w!<CiciL2~V0!iwiL2~V0!1C(
j 51

n

iciL2~G j !
iwiL2~G j !

<CiciH1/21a~V0!iwiH1/21a~V0! ,

;a.0. ~21!

Setting

Q~c,w!5^AQc,w&H , C~c,w!5^ACc,w&H , L~w!5^ f L ,w&H ,

the variational problem~16! reads

AQc1ACc5 f L . ~22!

We notice thatAQ5Id, whereasAC satisfies

iACciH1/21a<CiciH ,

and is therefore a compact operator fromH to H. Therefore the Fredholm alternative insures th
the variational problem~16! is uniquely solvable for all inputsam

j if AQ1AC is injective. But this
is equivalent to prove that the variational problem~16! with vanishing right-hand side has n
solution but the identically vanishing one.

We thus consider a solutionc of where the right-hand side is set equal to zero, chose the
function w5c and take the imaginary part of~16!. We get

(
j 51

n

(
m51

Nj ~E!

km
j ~E!ucm

j u250.

Hencec is also a solution of the following variational problem:

5
cPH, and ;wPH

\2E
V0

¹c.¹w̄dx1E
V0

~V2E!cw̄dx

1\(
j 51

n

(
m5Nj ~E!11

`

km
j ~E!cm

j w̄m
j 50

~23!

and relation~12! turns to

\
]c

]h j
U

G j

52 (
m5Nj ~E!11

`

km
j ~E!cm

j xm
j ~j j !. ~24!

Let

HE5$cPH, s.t. ~24! holds% ~25!

and define the unbounded operatorAE on L2(V0), by

D~AE!5$cPHE , and DcPL2~V0!% ~26!

and

AEc52\2Dc1Vc. ~27!
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Then, it is easy to check thatAE is a densely defined selfadjoint operator bounded from below
with compact resolvent. The existence of a nonidentically vanishingc satisfying~24! is equivalent
to

EPsp~AE!, ~28!

where sp(AE) is the spectrum ofAE and consists of a nondecreasing sequence (lp(E)) tending to
`. The end of the proof is exactly the same as that of Ref. 13; thelp(E) are given by the
min–max formula,

lp~E!5 max
c1 ,...,cpPL2~V!H min

cPH,iciL251

*c j c̄50, j 51,...,p

G~V,E,c!J , ~29!

where

G~V,E,c!5\2E u¹cu21E Vucu21\(
j 51

n

(
m5Nj ~E!11

1`

km
j ~E!ucm

j u2, ~30!

and are therefore continuous decreasing functions ofE. This implies that the equationE
5lp(E) admits a unique solutionEp . The theorem is then proved. j

IV. A SELF-CONSISTENT MODEL

We first parameterize the solutions of~16! by setting

H c j 0 ,m0 ,k , ~1< j 0<n,mPN* ,kPR1* ! solution of ~16! with

E5Em0

j 0 1k2, am
j 5d j , j 0

dm,m0
. ~31!

Of course, thec j 0 ,m0 ,k are defined only for almost every value ofk ~see Fig. 3!. Moreover, when
they are extended naturally on the whole domainV via ~9! and~10!, thec j 0 ,m0 ,k are the incoming
scattering states of the operator2\2D1V with homogeneous Dirichlet boundary conditions, a
corresponding to them0

th transversal mode in thej 0
th lead and with the longitudinal wave vectork.

They also form an asymptotically complete basis ofHac and the values of the energy for whic
there is no uniqueness for~16! ~maybe all theEp , some of them or none! correspond to bound

FIG. 3. c j 0 ,m0 ,k .
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states of the above operator~point spectrum!. These results as well as a decomposition ofH\ over
this basis are performed by means of scattering techniques~limiting absorption theorems! for an
identically vanishing potentialV by Lyford.14 His proof can be carried out for our case witho
any difficulty ~thanks to hypothesis (H21) andVPL`!. In order to simplify the presentation w
shall denote in the sequelI 5( j 0 ,m0 ,k) and use the notation

E f ~ I !dI5(
j 0

(
m0

E f ~ j 0 ,m0 ,k!dk

and

EI5Em0

j 0 1k2.

We denote in application with Theorem III.1 (Ej (V)) j PN* the energies of possible bound stat
corresponding to the limit potentialVs and set

Sl5ker~AEl
2El !, ~32!

whereAE is defined in~27!, ~26! and

dl5dimSl . ~33!

The density matrix representing the state of the electrons is defined by

r~x,y!5E
I
F~ I !c I~x!c̄ I~y!dI1(

l 50

`

(
q51

dl

l l
qf l

q~x!f̄ l
q~y!,

whereF(I ) is a non-negative function representing the amplitude of each scattering state al l
q

are non-negative constants andf l
q is an orthonormal basis ofSl . In the above formula, the profile

F(I ) of injected electrons is a given function while the coefficientsl l
q will be deduced from the

construction of the solution. In the one-dimensional case~see Ref. 8!, bound states do not ente
into account because the point spectrum is not embedded in the continuous one.

Remark IV.1: The possible existence of bound states with energies embedded in the c
ous spectrum is noted in the paper of Lyford (see Ref. 14, and references therein) in the ca
vanishing potential. A simple example can be constructed in the following way. LetV be a tube
Rh3vj . Let V(h) be a one dimensional compactly supported potential such that the Schro¨dinger
operator2\2d/dh21V, defined on the real line has an eigenfunction f(h)PL2(R) correspond-
ing to an eigenvaluel. Let cm be the eigenfunction of2\2Dj on v (with Dirichlet boundary
condition) corresponding to the energy Em . It is readily seen that the function gm(h,j)
5cm(j) f (h)PL2(V) is an eigenfunction of2\2D1V corresponding to the energyl1Em

which is embedded in the continuous spectrum for m large enough. j

The electron density, the current density and the kinetic energy density are then given

n~x!5E
I
F~ I !uc I~x!u2dI1(

l 50

`

(
q51

dl

l l
quf l

q~x!u2, ~34!

J~x!5E
I
F~ I !\Im~ c̄ I~x!¹c I~x!!dI, ~35!

K~x!5E
I
F~ I !u\¹c I~x!u2dI1(

l 50

`

(
q51

dl

l l
qu\¹f l

q~x!u2. ~36!

There is no contribution of bound states to the current since thef l
q’s are real-valued.
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The electrons induce a self-consistent effect in the device regionV0 . Therefore, we split the
potentialV on V0 into an exterior partVe , involving the doping and boundary effects, and
self-consistent partVs solution of the Poisson equation with homogeneous Dirichlet bound
conditions

2DVs5n, in V0 , ~37!

Vs50, on ]V0 , ~38!

V5Vs1Ve . ~39!

A serious problem comes from the possible existence of embedded eigenvalues in the a
continuous spectrum which leads to a difficulty in defining the particle densityn. Indeed, an
estimate one can hope forc I when the energy approaches the energy of a bound stateE0 is of the
form

ic I iL2
2 <

C

uEI2E0u2

which gives rise to a nonintegrable singularity in~34!.
To overcome this difficulty, we first add an absorption term in the Schro¨dinger equation; we

replace the energyE by E1 i\n in the second term of the left-hand side of~16!. The constantn
is positive and intended to go to zero. The wave functions are then solution of the follo
variational problem:

5 \2E
V0

¹c.¹w̄dx1E
V0

~V2E!cw̄dx1\(
j 51

n

(
m5Nj ~E!11

`

km
j ~E!cm

j w̄m
j

2\ i F nE
V0

cw̄dx1(
j 51

n

(
m51

Nj ~E!

km
j ~E!cm

j w̄m
j G522\ i (

j 51

n

(
m51

Nj ~E!

km
j ~E!am

j w̄m
j

~40!

which is uniquely solvable thanks to the Fredholm alternative. We then solve a self-cons
Schrödinger–Poisson problem withn.0. Afterwards, we pass to the limitn→0. We shall see tha
the nonlinearity of the coupled problem providesa priori estimates allowing to pass to the limi
The nonlinearity is crucial, since lettingn tend to zero for a fixedV consists of a limiting
absorption principle which in general does not allow to estimate the behavior of scattering
in the vicinity of an embedded eigenvalue.

V. THE MODIFIED PROBLEM

In this section, we shall prove existence of solution for the following modified problem:

5 \2E
V0

¹c I
n .¹w̄dx1E

V0

~Ve1Vs
n2EI !c I

nw̄dx1\(
j 51

n

(
m5Nj ~EI !11

`

km
j ~EI !~c I

n!m
j w̄m

j

2\ i F nE
V0

c I
nw̄dx1(

j 51

n

(
m51

Nj ~EI !

km
j ~EI !~c I

n!m
j w̄m

j G522\ ikw̄m0

j 0 ,

~41!

H 2DVs
n5nn, nn~x!5E

I
F~ I !uC I

n~x!u2dI

Vs
n50, on ]V0 .

~42!
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The charge densitynn does not have any contribution of ‘‘bound states,’’ corresponding to s
tions of ~41! with a vanishing right hand. The reason is that such solutions are identically equ
zero because of the absorption termi\n.

Theorem V.1: Let F be a non-negative L` function such that*(11ukEI u)3F(I )dI,`.
Assume d52 or 3, VePL`(V0) andn.0. Then, systems (41)–(42) have a solution(Vs

n ,c I
n) such

that Vs
nPW0

2,3(V0) and c I
nPH, where

W̃0
m,p~V0!5$cPWm,p~V0!, cuG0

50%. ~43!

Proof: The proof relies on a Leray–Schauder fixed point procedure; starting from a pot
Vs in L`, we construct a charge density according to~42! and a new potential via the Poisso
equation. To prove the existence of a fixed point of this map, we need to prove that a fixed
of this map lies in a compact set ofL`.

For this aim, we first notice that the Fredholm alternative yields existence and uniquen
a solutionc I of ~41!, for every Vs in L` and I ~n is positive!. To lighten the already heavy
notations, we dropped the indexn of c I

n . Choosing in~41!, w5c I and taking imaginary and rea
parts we obtain the following identities:

nE uc I~x!u2dx1(
j 51

n

(
m51

Nj ~EI !

AEm0

j 0 1k22Em
j u~c I !m

j u2522kRe~~c I !m0

j 0 !, ~44!

\2E
V0

u¹c I
nu2dx1E

V0

~Ve1Vs
n2EI !uc I

nu2dx1\(
j 51

n

(
m5Nj ~EI !11

`

km
j ~EI !u~c I

n!m
j u252k\Im~c I !m0

j 0 .

~45!

Equation~44! implies thatu(c I)m0

j 0 u<2 and leads

nE uc I~x!u2dx1(
j 51

n

(
m51

Nj ~EI !

AEm0

j 0 1k22Em
j u~c I !m

j u2<4k. ~46!

Now, using the fact thatVs is non-negative thanks to the maximum principle, we obtain from~45!
that

ic I iH
2 <C~EI1iVeiL`11!k, ~47!

whereC depends onn. This leads to anH1 bound on thec I ’s which gives by Sobolev injections
an L6 bound (d<3). Indeed, we have

ic I iL6
2 <CiciH1

2 <C~EI1iVeiL`11!k. ~48!

Besides, using Ho¨lder inequality for the integral definingnn ~42!, we obtain

iniL3
3 <S E F~ I !dI D 2S E F~ I !ic I iL6

6 dI D . ~49!

Hence, we deduce from~48! and the Agmon Douglis Nirenberg inequalities for the Poiss
equation~42! that Vs lies in a bounded set ofW0

2,3. Since this space is compactly injected inL`,
we conclude that there exists a constantCn such that every self-consistent potentialVs of the
modified problems~41!, ~42! satisfies

Vs>0, iVsiL`<Cn . ~50!
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Now the end of the proof is a standard fixed point procedure that we skip~compactness and
continuity are straightforward!. j

VI. LETTING THE ABSORPTION VANISH

A. Uniform bounds

To pass to the limitn→0, we need an-independent estimate. This is made possible by tak
advantage of the nonlinear character of the problem as will be proven in the following propos

Proposition VI.1:AssumeF is compactly supported. Then there exists a constantC0 inde-
pendent ofn such that

iAnni H̃
0
11iVs

niW
0
2,3<C0 .

Proof: First, we deduce from~44! and ~45! that

\2E u¹c I u2dx1E ~Vs
n1Ve2EI !uc I u2dx1\(

j 51

n

(
m51

1`

km
j ~EI !u~c I !m

j u2<8\k. ~51!

Multiplying this inequality byF and integrating with respect toI, we obtain, using the compac
ness of the support ofF,

E
V0

Kn~x!dx1E
V0

Vs
n~x!nn~x!dx<C1CE

V0

nn~x!dx,

where

Kn~x!5\2E
I
F~ I !u¹c I~x!u2dI. ~52!

Using the Poisson equation~42! we obtain the following estimate:

E
V0

Kn~x!dx1E
V0

u¹Vs
n~x!u2dx<C1CE

]V0

]Vs
n

]n
ds. ~53!

Since]V0 is smooth then the right-hand side of the above inequality can be controlled by thL2

norm of ¹Vs
n on the boundary, which is controlled by theH1/21a norm of ¹Vs

n in V0

Besides, an immediate Cauchy Schwartz inequality yields the pointwise estimate

\2u¹An~x!u2<Kn~x!. ~54!

Using this estimate, we find

\2E
V0

u¹An~x!u2dx1i¹Vs
niL2

2 <C1Ci¹Vs
niH1/21a. ~55!

Now sincenn50 on G0 , then the Poincare´ inequality, the Sobolev injections, and the A.D.N
estimates for the Poisson equation yield

iVs
niW

0
2,3<CinniL35CiAnniL6

2 <CiAnniH1
2 <CE

V0

u¹An~x!u2dx. ~56!

In particular, this yields
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E
V0

u¹An~x!u2dx>Ci¹Vs
niH1

which implies in view of~55!,

C1i¹Vs
niH11i¹Vs

niL2
2 <C21C3i¹Vs

niH1/21a. ~57!

The crucial point now is that, in the above estimate, the homogeneity of the left-hand side is
than that of the right-hand side, and this is due to the nonlinear character of the system an
to a n-independent bound. Indeed, a classical interpolation result leads to

i f iH1/21a<i f iL2
1/22ai f iH1

1/21a<
1

p
i f iH1

p/21pa
1

1

p8
i f iL2

p8/22p8a

for all conjugate (p,p8). Applying this inequality to~57! leads to

C1i¹Vs
niH11i¹Vs

niL2
2

2C3

1

p
i¹Vs

niH1
p/21pa

2
C3

p8
i¹Vs

niL2
p8/22p8a<C2

which in turn yields the boundedness ofi¹Vs
niH1 ~choose, for instance,a51/10, p53/2, and

p853!. This bound yields in view of~53! the boundedness ofKn in L1. Therefore~54! and~56!
lead to the boundedness ofiAnni H̃

0
1 and iVs

niW
0
2,3. j

Corollary VI.2: The densitynn is bounded inL3 and inW̃0
1,3/2.

Proof: SinceH1 is embedded inL6 ~for d52,3!, thereforeAnn is bounded inL6 and therefore
nn is bounded inL3. Now to prove the boundedness ofnn in W̃0

1,3/2 we write

¹nn~x!52Ann~x!¹Ann~x!.

SinceAnn is bounded inL6 and¹Ann(x) is bounded inL2 then¹nn is bounded inL3/2. j

B. The limit problem

We first deduce from Proposition VI.1 and Corollary VI.2 the existence ofVsPW0
2,3 and

AnPH̃0
1 such that after a possible extraction of a sequence

Vs
n→Vs C0 strong, W0

2,3 weak, ~58!

nn→n L2 strong, W̃0
1,3/2 weak. ~59!

Let c I be the solution of the variational problem~41! with n50 andVs being the limit potential.
Thec I are defined for all energies but the values (El) l PN* . The densityn0 corresponding to these
states

n0~x!5E
I
F~ I !uc I~x!u2dI. ~60!

The main result of the paper is the following:
Theorem VI.3: The density n0 is in L3(V0). Moreover, there exists a sequence of no

negative real numbers(l l
p) l PN,pP@1,dl #

and an orthonormal basis (for the L2(V0) product)

(f l
p) l PN,pP@1,dl #

of % Sl such that

n~x!5n0~x!1(
l 51

`

(
p51

dl

l l
puf l

p~x!u2. ~61!
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SinceF is compactly supported, thel l
p are equal to zero for l large enough.

The remainder of this section is devoted to the proof of this theorem. Before going o
introduce some notations that will be used along the proof.

We first notice that the energyEl(Ve1Vs) of a bound statecPSl can be written~in a
nonunique way! under the formEl5Em

j 1k2. We then defineIl as the set of indicesI with energy
El(Ve1Vs) andql the number of such indices,

Il5$I PI, EI5El%5$I l
q , q51,...,ql%. ~62!

We denote by

Il ,e5øq51
ql @ I l

q2e,I l
q1e#, ~63!

where

@ I 2e,I 1e#5def~ j 0 ,m0 ,@k2e,k1e#!

and

Te5$I , s.t. ; l PN* I ¹Il ,e%. ~64!

We finally set

Pl the L2 orthogonal projection onSl ~65!

and

Ql5Id2Pl ~66!

We begin the proof by the following:
Lemma VI.4: Let(Vs

n ,c I
n) be the solution of the modified problem described in Theorem

Then, there exist C1 ,C2 ,C3 independent ofn such that for every index I in the support ofF
(which is compact), we have the following estimate:

C1ic I
niL2<ic I

niH<C2ic I
niL21C3 ,

where H is defined in (14)
Proof: The first inequality is a straightforward consequence of the Poincare´ inequality. To

prove the second inequality, we deduce from~44! that the right-hand side of~45! is bounded.
Therefore, adding~44! and ~45! lead to

ic I
niH

2 1E
V0

~Vs
n1Ve2EI !uc I

nu2dx5O~1!,

and we conclude by noticing thatVs
n1Ve2EI is bounded inL`. j

The results of last section give a bound on the densitynn and not on thec I
n . The following

lemma and its corollaries provide us with bounds on thec I
n .

Lemma VI.5: Let(I n) be a sequence of indices converging, whenn tends to zero to some
index I 0 and assume that

lim
n→0

ic I n

n iL251`.

Then, there existsl PN* andqP$1,...,ql% such thatI 5I l
q . Moreover,

iQl~c I n

n !iL25o~ ic I n

n iL2!.
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Remark VI.6: A sequence In5( j n ,mn ,kn) is said to converge to I05( j 0 ,m0 ,k0) whenn tends
to zero if jn5 j 0 and mn5m0 for n small enough, and kn converges to k0 . j

Proof: We first deduce from Lemma VI.4 that

un5
c I n

n

ic I n

n iL2

which lies in the unit sphere ofL2 is bounded inH and therefore converges strongly inL2 and
weakly in H towards a functionu0 with L2 norm equal to one. Dividing~41! by ic I n

n iL2
2 , we can

pass to the limit weakly inH and find thatu0 is a solution of~24! with energyEI 0
. Sinceu0 is

nonvanishing, thenEI 0
is the energy of a bound state. Hence there existsl andqP@1,ql # such that

I 05I l
q andu0PSl .

Let us now prove the second part of the Lemma. For this, we just recall thatQl(u0)50 since
u0PSl and sinceun converges strongly inL2 towardsu0 then

iQl~un!iL25o~1!,

which is the desired result. j

Corollary VI.7: Let us denote for every positivee,

ne
n5E

I PTe

F~ I !uc I
n~x!u2dI

and

ne5E
I PTe

F~ I !uc I~x!u2dI,

whereTe was defined in~64!. Thenne
n converges tone in L3(V0) weak andL2 strong.

Proof: First we notice that Proposition VI.1 and Corollary VI.2 still hold withnn replaced by
ne

n . Therefore there exists a densityne
0 to whichne

n converges inL3(V0) weak andL2 strong. We
just have to prove now thatne

0 is nothing butne .
For this aim, we deduce from Lemma VI.5 that

ic I
niH<Ce , ;I PTe .

This implies thatc I
n converges after extraction weakly inH and strongly inL6 for every indexI

in Te to the solution of~41! with n50 andVs
n replaced byVs . Hence the limit ofc I

n is nothing
but c I , and by uniqueness the whole sequence converges.

We can pass now to the limit in the following expression:

lim E
V0

g~x!ne
n~x!dx5 lim E

Te

g~x!F~ I !uc I
n~x!u2dIdx

5E
Te

g~x!F~ I !uc I~x!u2dIdx5E
V0

g~x!ne~x!dx

for all g in L3/2 which proves thatne
05ne . j

Corollary VI.8: The densityn0 is in L3(V0).
Proof: We deduce easily fromne

n<nn thatne<n and passing now to the limite→0, we find

0<n0<n

and sincenPL3(V0), the result follows immediately. j
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Let us now turn to indicesI PIl ,e . We have the following:
Proposition VI.9:For all l PN* , we have~i!

lim
e→0

lim
n→0

E
I PIl ,e

F~ I !iQl~c I
n!iL2

2 dI50;

(ii) there exist non-negative real numbers(l l
p)pP@1,dl #

and an orthonormal basis(f l
p) l PN* ,pP@1,dl #

of Sl (with the L2(V0) scalar product) such that

lim
e→0

lim
n→0

E
I PIl ,e

F~ I !uPlc I
n~x!u2dI5 (

p51

dl

l l
puf l

p~x!u2

strongly inL1(V0).
To prove this proposition, we first need the following lemma which proof is elementary

deferred to the Appendix.
Lemma VI.10: Let fn>0, 0<gn<1 be a sequence of continuous functions defined onR and

m a positive measure such thatm<AL whereL is the Lebesgue measure and A is a posit
constant. Assume that there exists C0>0 such that

E f ndm<C0 .

Assume moreover that the following property holds. For any subsequence(xnk
) of real numbers

tending to x0 such that fnk
(xnk

) tends to1`, we have gnk
(xnk

)→0.
Then the following limit holds:

lim
e→01

lim sup
n→1`

E
x02e

x01e

f n~x!gn~x!dm50.

Proof of Proposition VI.9:
To prove~i!, we set

gn~ I !5
iQl~c I

n!iL2
2

ic I
niL2

2 f n~ I !5ic I
niL2

2

and

dm5F~ I !dI.

The boundedness ofinniL1 implies

E f ndm<C0 .

Also Lemma VI.5 implies that the second hypothesis of Lemma VI.10 holds true~wherex05I l
q!.

We now apply Lemma VI.10 and prove the first part of the proposition.
In order to prove~ii !, we begin by choosing an orthonormal basis (f l

1,...,f l
dl) of Sl , and in all

the remainder of this proof we may sometimes skip the indexl to simplify the notations.
Now, for all I PIl ,e , we can writePl(c I

n) under the form

Plc I
n5S (

p51

dl

an
p~ I ! f p~x!D ic I

niL2,
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where the coefficientsan
p satisfy

(
p51

d

uan
pu2<1. ~67!

This yields

E
I PIl ,e

F~ I !uPlc I
n~x!u2dI5 (

p,p851

d

An
e~p,p8! f p~x! f p8~x!,

where

An
e~p,p8!5E

I PIl ,e

an
p~ I !ān

p8~ I !ic I
niL2

2 F~ I !dI. ~68!

We deduce from~67! and from the boundedness ofinniL1 that

@An
e~p,p8!#p,p851,...dl

is a bounded sequence of non-negative Hermitian matrices. Passing to the limitse,n→0, we find

lim
e→0

lim
n→0

E
I PIl ,e

F~ I !uPlc I
n~x!u2dI5 (

p,p851

d

Al~p,p8! f p~x! f p8~x! ~69!

in L1(V0), whereAl is a non-negative Hermitian matrix~the limit of An
e!. We now diagonalize

Al : there exists a unitary matrixU anddl non-negative real numbers (l l
1,...,l l

dl) such that

Al5Ūt diag~l1,...,ld!U.

Setting

Fl5~ f l
1,...,f l

dl ! t

and

UFl5~f l
1,...,f l

dl ! t,

we easily deduce, from the unitarity ofU and the orthonormality of (f l
1,...,f l

dl), that (f l
p)p51,...,dl

,
is an orthonormal basis ofSl and that

(
p,p851

d

Al~p,p8! f p~x! f p8~x!5 (
p51

dl

l l
puf l

p~x!u2

which ends the proof of the proposition. j

End of the proof of Theorem VI.3:
Let

De
n5nn2ne

n2(
l 51

1` E
I PIl ,e

F~ I !uPlc I
nu2dI.

It is sufficient to prove thatDe
n converges to zero inL1 as n and e successively tend to zero

Afterwards, we just have to apply the results of Proposition VI.9~ii ! and Lemma VI.7.
To do so, we notice that
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De
n5(

l 51

1` E
I PIl ,e

F~ I !uQlc l
nu2dI12ReS (

l 51

1` E
I PIl ,e

F~ I !~~Qlc I
n!~Pl c̄ I

n!!dI.

By a straightforward Cauchy Schwartz inequality, we obtain the estimate

iDe
niL1<(

l 51

` E
I PIl ,e

F~ I !iQlc I
niL2

2 dI1(
l 51

`

inniL1
1/2S E

I PIl ,e

F~ I !iQlc I
niL2

n dI D 1/2

and the results follows immediately from Proposition VI.9~i! by lettingn ande successively tend
to zero.~Note that the above sums are finite since the support ofF is compact.! j

VII. SOME REMARKS

The question of the semiclassical limit of the scattering Schro¨dinger–Poisson system w
studied in this paper was partially solved in the one-dimensional case8 and is in the multidimen-
sional case an open question~due to the lack of estimates!. However, we conjecture that when\
tends to zero, the transparent boundary conditions~12! would lead to the standard inflow bounda
condition for the stationary Vlasov equation.

In Theorem VI.3, we have shown that the electrons are in both the scattering states a
bound states of the Schro¨dinger operator. This is the quantum analogue of open and cl
trajectories in the classical description. The addition of an absorption term was used f
steady-state analysis of Vlasov–Poisson systems in Ref. 15. The estimates in the classical
done using the maximum principle for which we did not find any analog in the quantum cas
treat in this paper. This is why we cannot generalize our result to the noncompactly sup
source profileF. Moreover, the convergence of the modified problem to the nonmodified o
done in the classical case in terms of the distribution function and not in terms of trajectorie
we do not know whether there exists or not a nonvanishing density of electrons on the
trajectories of the Vlasov equation.

Analogously, in our case~Theorem VI.3! the coefficientsl l
p are non-negative, but we do no

know whether they are in the general case positive or equal to zero. However, when the co
is small enough, we can prove that these coefficient are equal to zero. Another situation wh
l l

p’s are equal to zero happens when the support ofF is included in the set of indicesI with
energy lower than the minimum energyE1(Ve) of the exterior potential. To prove these resul
we setEl(V) to be the energy of a bound state of Theorem III.1 corresponding to a potentiV.
Due to formulas~29! and ~30!, the functionEl(d) is a continuous nondecreasing function
L`(V0). This implies, since the self-consistent potentialVs is non-negative, that

El~Ve1Vs!>El~Ve!.

This immediately implies
Theorem VII.1: Let the support ofF be included in the set of indices I with energy El smaller

(strictly) than E1(Ve), then the coefficientsl l
p introduced in Theorem VI.3 are all equal to zer.

In the following theorem, we treat the case of a small coupling profileF whose support is far
enough from the set

$El~Ve!, l PN* %.

Let for a given potentialV in L`(V0),

d~F,V!5 inf
I PsuppF,l PN*

uEI2El~V!u, ~70!

iFi5E ~11k2EI !F~ I !dI, ~71!
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and

M ~F!5sup$EI , I PsuppF%. ~72!

Then we have
Theorem VII.2: For all d0.0 and all M0.0, there exists ane0.0 such that for everyF

satisfying

d~F,Ve!.d0 , M ~F!,M0 , iFi,e0

the coefficientsl l
p of Theorem VI.3 are all equal to zero ande0 can be chosen such that

d~F,Ve1Vs!,
d0

2
. ~73!

Moreover, e0 can be chosen even smaller so that the nonmodified Schro¨dinger–Poisson system
(41)–(42) (with n50! admits a unique solution such that (73) holds.

Idea of the Proof:In Fig. 4, we give an illustration of Theorems VII.1 and VII.2. Let us gi
now a sketch of proof for Theorem VII.2. We first remark that the constantC2 appearing in~57!
can be chosen proportional toiFi, whereas the constantC3 in the same formula is proportional t
M0 . This implies that the constantC0 of Proposition VI.1 can be made small by fixingM0 and
letting iFi be small enough. This implies that the self-consistent potentialVs stays in a small ball
of L` and therefore the eigenvaluesEl(Ve1Vs) are close toEl(Ve). Now choosinge0 small
enough, we can insurea priori that

d~F,Ve1Vs!.
d0

2

which yields that the coefficientsl l
p are equal to zero.

The uniqueness of the solution whene0 is small enough is due to the fact that the fixed po
procedure defined in Sec. V~taking n50! yields a contraction map inL` for the potential. j

Let us finally note that the results can be generalized to a source profileF which is not anL`

function but a bounded positive measure like

FIG. 4. Hypotheses of theorems VII.1 and VII.2.
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F~ I !5( Fkd~ I 2I k!,

whereI k are given indices andFk are non-negative weights. The regularity of the domain can
be weakened in dimension 2. We can, for example, take a square forV0 . In this case, the Poisso
equation should provide aW2,p estimate, and this is possible by taking mixed homogene
boundary conditions; Dirichlet on two parallel edges and Neumann on the other two.

APPENDIX: PROOF OF LEMMA VI.10

We first notice that the second hypothesis of the lemma yields the following property:

~;a.0!~'n0 ,b,M.0!s.t.F S n>n0

ux2x0u<b
f n~x!>M

D ⇒gn~x!<aG .

Now, we have

E
x02e

x01e

f ngndm5E
ux2x0u<e,u f nu<M

f ngndm1E
ux2x0u<e,u f nu>M

f ngndm,

which implies that

E
x02e

x01e

f ngndm<CMe1aE f ndm

for e<b andn>n0 . Letting successivelyn tend to` ande to zero, we find

lim
e→01

lim sup
n→1`

E
x02e

x01e

f n~x!gn~x!dm>C0a,

which yields that the left-hand side of the above inequality vanishes,a being arbitrary.
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Factorization and small-energy asymptotics for the radial
Schrö dinger equation
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The radial Schro¨dinger equation is considered when the potential is real valued, is
integrable, and has a finite first moment. The Jost function, the scattering matrix,
the number of bound states for the potential are expressed in terms of the corre-
sponding quantities associated with the fragments of the potential. An improved
expansion on the small-energy asymptotics of the Jost solution is presented.
© 2000 American Institute of Physics.@S0022-2488~00!05307-X#

I. INTRODUCTION

Consider the radial Schro¨dinger equation

c9~k,x!1k2c~k,x!5V~x!c~k,x!, xP~0,1`!, ~1.1!

where the potentialV is real valued and belongs toL1
1(R1), i.e.,*0

`dx(11x)uV(x)u is finite. The
prime denotes the derivative with respect to the spatial coordinatex. We refer the reader to Ref.
for the analysis of the scattering theory for~1.1!. We choose our notations and conventions
conform with those given in Ref. 2. For the quantities associated withV, we useS(k) for the
scattering matrix,F(k) for the Jost function,f (k,x) for the Jost solution,w(k,x) for the regular
solution,c(k,x) for the physical solution,d(k) for the phase shift, andN for the number of bound
states. We define

dªH 0, F~0!Þ0,

1, F~0!50,
~1.2!

and say thatV is generic ifF(0)Þ0 and is exceptional ifF(0)50.
We recall the definition of these quantities below. The regular solution of~1.1!, w(k,x),

satisfies the boundary conditions

w~k,0!50, w8~k,0!51, ~1.3!

and the Jost solutionf (k,x) satisfies

e2 ikxf ~k,x!511o~1!, e2 ikxf 8~k,x!5 ik1o~1!, x→1`. ~1.4!

The Jost functionF(k) is defined as

F~k!ª f ~k,0!, ~1.5!

and the phase shiftd(k) is defined in terms of the phase of the Jost function as

F~k!ªuF~k!ue2 id~k!,

whered(k) is the continuous branch of the phase function such thatd(1`)50. The scattering
matrix is defined as
42620022-2488/2000/41(7)/4262/9/$17.00 © 2000 American Institute of Physics
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S~k!ª
F~2k!

F~k!
, ~1.6!

and the physical solution of~1.1! satisfies

c~k,x!5eid~k! sin~kx1d~k!!1o~1!, x→1`. ~1.7!

Let us use an asterisk to denote complex conjugation. The following are known.1,2

F~2k!5F~k!* , kPR, ~1.8!

c~k,x!5
k

F~k!
w~k,x!, ~1.9!

w~k,x!5
1

2ik
@F~2k! f ~k,x!2F~k! f ~2k,x!#, ~1.10!

S~k!5e2id~k!. ~1.11!

The bound states ofV correspond to the zeros ofF(k) on the positive imaginary axis inC1, and
according to the Levinson theorem

d~01!5S N1
d

2Dp,

whered is the quantity defined in~1.2!.
In this paper we study the small-k asymptotics of the Jost solution by fragmenting the pot

tial into two pieces and using the small-k properties related to the fragments. The reader is refe
to Refs. 3 and 4 for the history and further references on the small-k limits of the Jost solution of
~1.1!. The derivation of the ‘‘factorization formulas’’ in Sec. II has been motivated by sim
formulas ~see, e.g., Ref. 5! for the one-dimensional Schro¨dinger equation. It should be state
however, that the formulas in the radial case are somewhat different from the correspo
formulas on the full line; this is not surprising because the factorization formulas on the ful
possess certain symmetries, e.g., under a reflection through the origin or an interchange of
fragments, whereas such symmetries are missing in the radial case. Nevertheless, such fa
tion formulas are useful because in general the properties related to the fragments are e
obtain than the properties related to the whole potential; the factorization formulas allow
obtain the properties related to the whole potential in terms of those related to its fragmen

This paper is organized as follows. In Sec. II we fragment the potentialV into two pieces and
express its Jost function and scattering matrix in terms of the corresponding quantities ass
with the two fragments. In Sec. III we analyze the small-k asymptotics of the Jost solution an
show that for each fixedxPR1 the quantityf 8(k,x)/ f (k,x) or its reciprocal has a derivative wit
respect tok at k50 and we explicitly find that derivative. In Sec. IV we study the relation betw
the number of bound states ofV and the corresponding numbers for its fragments; we show
the sum of the number of bound states for the two fragments is either equal to or one large
the number of bound states ofV. In Sec. IV we also investigate exactly whenV is generic or
exceptional depending on its fragments being generic or exceptional.

II. FACTORIZATION

Let us fragment the potential asV5V11V2 such thatV1 is supported in (0,a) and V2 is
supported in (a,1`) for some positive constanta. Our purpose in this section is to relate Jo
function and the scattering matrix ofV to the Jost functions and scattering matrices ofV1 andV2 .
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Let us use the subscripts 1 and 2 to identify the quantities related toV1 andV2 , respectively.
Thus, for example,S1 andS2 are the scattering matrices,F1 andF2 are the Jost functions,f 1 and
f 2 are the Jost solutions,w1 andw2 are the regular solutions, andd1 andd2 are the phase shifts fo
V1 andV2 , respectively.

Theorem 2.1: AssumeV is real valued and belongs toL1
1(R1). Let V1 and V2 be the

fragments ofV with supports in (0,a) and (a,1`), respectively, for somea.0. Then

F~k!

F1~k!F2~k!
5

1

2
@11S1~k!#1

1

2
@12S1~k!#x2~k!, ~2.1!

where

x2~k!ª
f 28~k,0!

ik f 2~k,0!
. ~2.2!

Consequently

S~k!5S2~k!
ik@11S1~k!# f 2~2k,0!1@12S1~k!# f 28~2k,0!

ik@11S1~k!# f 2~k,0!1@12S1~k!# f 28~k,0!
. ~2.3!

Proof: The regular solutions forV andV1 satisfy the same equation on (0,a) and the same
boundary conditions atx50; thus

w~k,x!5w1~k,x!, w8~k,x!5w18~k,x!, xP@0,a#. ~2.4!

Similarly, the Jost solutions forV and V2 satisfy the same equation on (a,1`) and the same
boundary conditions atx51`, and hence

f ~k,x!5 f 2~k,x!, f 8~k,x!5 f 28~k,x!, xP@a,1`!. ~2.5!

Let @ f ;g#ª f g82 f 8g denote the Wronskian. The Wronskian of any two solutions of~1.1! is
independent ofx. For example, from~1.4! we see that

@ f ~k,x!; f ~2k,x!#522ik,

and hence from~1.5! and ~1.10! we get

F~k!5@ f ~k,x!;w~k,x!#. ~2.6!

Evaluating the Wronskian in~2.6! at x5a and using~2.4! and ~2.5!, we get

F~k!5 f 2~k,a!w18~k,a!2 f 28~k,a!w1~k,a!. ~2.7!

On the other hand, sinceV1[0 for x.a, using~1.7! and ~1.9! we obtain

w1~k,x!5
F1~k!

k
eid1 sin~kx1d1!, xP@a,1`!, ~2.8!

and similarly, sinceV2[0 for x,a, we have

f 2~k,x!5 f 2~k,0!coskx1 f 28~k,0!
sinkx

k
, xP@0,a#,

or equivalently, by using~1.5! and ~2.2!, we get

f 2~k,x!5F2~k!@coskx1 ix2~k!sinkx#, xP@0,a#. ~2.9!
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Using ~2.8! and ~2.9! in ~2.7!, we obtain

F5F1F2eid1@coska1 ix2 sinka#cos~ka1d1!2F1F2eid1@2sinka1 ix2 coska#sin~ka1d1!,

which simplifies to

F5F1F2eid1@cosd12 ix2 sind1#. ~2.10!

Converting the trigonometric functions in~2.10! into complex exponentials and using the anal
of ~1.11! for S1 , we obtain~2.1!. Then, with the help of~1.6!, ~1.8!, ~1.11!, ~2.1!, and~2.2!, we get
~2.3!. j

III. SMALL-ENERGY ESTIMATES

In this section we consider the small-energy asymptotics of the Jost solution. Our main
is given in Theorem 3.5, where we show that forVPL1

1(R1), at each fixedx the quantity
f 8(k,x)/ f (k,x) or its reciprocal can be differentiated with respect tok at k50.

The following result is well known.1

Theorem 3.1: If V is real valued and belongs toL1
1(R1), then ask→0 in R we haveS(k)

511o(1) generically andS(k)5211o(1) in the exceptional case. IfV1 is real valued, it has
support in (0,a) for some finitea.0, andV1PL1(0,a), then the corresponding Jost functionF1

is entire in the complex planeC and hence

F1~k!5F1~0!1kḞ1~0!1O~k2!, k→0 in C,

where the overdot denotes the derivative with respect tok. In the generic case we haveF1(0)
Þ0 and

S1~k!5122k
Ḟ1~0!

F1~0!
1O~k2!, k→0 in C. ~3.1!

In the exceptional case,F1(0)50 andḞ1(0)Þ0, and we haveS1(k)5211O(k) ask→0 in C.
Let g(k,x) be the solution of~1.1! satisfying

g~k,0!51, g8~k,0!50. ~3.2!

We have

g~k,x!5coskx1
1

k E0

x

dy sink~x2y!V~y!g~k,y!. ~3.3!

The regular solutionw(k,x) satisfies

w~k,x!5
sinkx

k
1

1

k E0

x

dy sink~x2y!V~y!w~k,y!. ~3.4!

Let f(k,x) be the solution of~1.1! satisfying

f~k,0!5 f ~0,0!, f8~k,0!5 f 8~0,0!. ~3.5!

Thus

f~0,x!5 f ~0,x!, xP@0,1`!, ~3.6!
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f~0,x!5 f ~0,0!1x f8~0,0!1E
0

x

dy ~x2y!V~y!f~0,y!. ~3.7!

Since f (0,x)511o(1) asx→1`, with the help of~3.6!, by lettingx→1` in ~3.7! we get

f 8~0,0!52E
0

`

dy V~y!f~0,y!, ~3.8!

f ~0,0!511E
0

`

dy yV~y!f~0,y!. ~3.9!

Moreover, from~1.3!, ~3.2!, and~3.5! it follows that

f~k,x!5 f ~0,0!g~k,x!1 f 8~0,0!w~k,x!. ~3.10!

Proposition 3.2:AssumeV is real valued and belongs toL1
1(R1). Then,

uf~k,x!2f~0,x!u<CS ukxu
11ukxu D

2

, xPR1, kP@2e,e#, ~3.11!

for any fixed positivee, whereC denotes a constant independent ofx andk.
Proof: The proof can be found in Lemma 2.2 of Ref. 6. j

Using ~1.3! and ~3.2! we get

f ~k,0!5@ f ~k,x!;w~k,x!#, f 8~k,0!52@ f ~k,x!;g~k,x!#. ~3.12!

Evaluating the Wronskians in~3.12! asx→1`, with the help of~3.3! and ~3.4! we get

f ~k,0!511E
0

`

dy eikyV~y!w~k,y!, ~3.13!

f 8~k,0!5 ik2E
0

`

dy eikyV~y!g~k,y!. ~3.14!

Proposition 3.3:AssumeV is real valued and belongs toL1
1(R1). ThenP(k)52 ik1o(k) as

k→0 in C1, whereP(k) is the quantity defined as

P~k!ª2 f 8~k,0! f ~0,0!1 f 8~0,0! f ~k,0!. ~3.15!

Proof: From ~3.5! and~3.15! it follows that P(k)5@ f (k,x);f(k,x)#. Using~3.12! and~3.13!
in ~3.15! we get

P~k!5 f ~0,0!F2 ik1E
0

`

dy eikyV~y!g~k,y!G1 f 8~0,0!F11E
0

`

dy eikyV~y!w~k,y!G .
~3.16!

Using ~3.10! in ~3.16! we have

P~k!52 ik f ~0,0!1 f 8~0,0!1E
0

`

dy eikyV~y!f~k,y!. ~3.17!

Evaluating~3.13! and~3.14! at k50 and using the result on the right-hand side of~3.17!, with the
help of ~3.8! and ~3.9! we getP(k)52 ik1J11J2 , where
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J1ªE
0

`

dy @eiky212 iky#V~y!f~0,y!, ~3.18!

J2ªE
0

`

dy eikyV~y!@f~k,y!2f~0,y!#. ~3.19!

Let us useC to denote a constant not necessarily assuming the same value at different a
ances. Using the inequality

ueiz2 iz21u<
Cz2

11z
, z>0,

from ~3.18! we get

uJ1u<Cuku E
0

`

dy
ukyu

11ukyu
yuV~y!u,

and henceJ15o(k) ask→0. Similarly, using~3.11! in ~3.19! we get

uJ2u<Cuku E
0

`

dy
ukyu

11ukyu
yuV~y!u,

and henceJ25o(k). Thus, the theorem is proved whenk→0 in R. With the help of the
Phragme´n–Lindelöf theorems it follows that the limit is valid also whenk→0 in C1. j

Theorem 3.4:AssumeV is real valued and belongs toL1
1(R1). Then, if f (0,0)Þ0 we have

f 8~k,0!

f ~k,0!
5

f 8~0,0!

f ~0,0!
1

ik

f ~0,0!2 1o~k!, k→0 in C1, ~3.20!

and if f 8(0,0)Þ0 we have

f ~k,0!

f 8~k,0!
5

f ~0,0!

f 8~0,0!
2

ik

f 8~0,0!2 1o~k!, k→0 in C1. ~3.21!

Proof: When f (0,0)Þ0, from ~3.15! we get

f 8~k,0!

f ~k,0!
2

f 8~0,0!

f ~0,0!
5

P~k!

f ~k,0! f ~0,0!
.

Thus, using Proposition 3.3 and the continuity off (k,0) atk50, we get~3.20!. On the other hand
if f 8(0,0)Þ0, we obtain~3.21! by using

f ~k,0!

f 8~k,0!
2

f ~0,0!

f 8~0,0!
52

P~k!

f 8~k,0! f 8~0,0!
,

and by applying Proposition 3.3 and the continuity off 8(k,0) atk50. j

Next, we show that the result in Theorem 3.4 holds not only atx50 but for anyxPR1.
Theorem 3.5: AssumeV is real valued and belongs toL1

1(R1). Then, for each fixedx
PR1, if f (0,x)Þ0 we have

f 8~k,x!

f ~k,x!
5

f 8~0,x!

f ~0,x!
1

ik

f ~0,x!2 1o~k!, k→0 in C1 , ~3.22!

and if f 8(0,x)Þ0 we have
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f ~k,x!

f 8~k,x!
5

f ~0,x!

f 8~0,x!
2

ik

f 8~0,x!2 1o~k!, k→0 in C1. ~3.23!

Proof: The proof is similar to the proof of Theorem 3.4. For any fixeda>0, define the
solutionswa , ga , andfa of ~1.1! satisfying

wa~k,a!50, wa8~k,a!51,

ga~k,a!51, ga8~k,a!50,

fa~k,a!5 f ~0,a!, fa8~k,a!5 f 8~0,a!.

Similar to ~3.6!–~3.10! we get

fa~0,x!5 f ~0,x!, xP@0,1`!,

fa~0,x!5 f ~0,a!1~x2a! f 8~0,a!1E
a

x

dy ~x2y!V~y!fa~0,y!,

f 8~0,a!52E
a

`

dy V~y!fa~0,y!,

f ~0,a!511a f8~0,a!1E
a

`

dy yV~y!fa~0,y!,

fa~k,x!5 f ~0,a!ga~k,x!1 f 8~0,a!wa~k,x!.

Proposition 3.2 still holds6 if we usefa instead off in ~3.11!. Proceeding as in the proof o
Proposition 3.3, we obtain

f ~0,a! f 8~k,a!2 f 8~0,a! f ~k,a!5 ik1o~k!, k→0 in C1. ~3.24!

Imitating the proof of Theorem 3.4, from~3.24! we get~3.22! and~3.23! holding at anyx5a.j
When VPL1

1(R1), even though in generalf (k,x) and f 8(k,x) are not differentiable with
respect tok at k50, the above theorem shows that their ratio is indeed differentiable with res
to k at k50. Note that~3.22! does not hold at thex values wheref (0,x)50. We will see in
Proposition 4.2~iv! that the number of suchx values is equal to the number of bound states ofV.

IV. BOUND STATES

In this section we relate the number of bound states ofV to the number of bound states of i
fragmentsV1 and V2 . We also analyze the circumstances ofV being generic and exceptiona
depending on whether the fragments are generic or exceptional. A similar analysis on the
line was given in Ref. 7.

The first two propositions contain known results.8 A brief proof of Proposition 4.1 is included
merely to remind the reader the oscillation properties of the Jost function whenk is on the positive
imaginary axis.

Proposition 4.1:AssumeV is real valued and belongs toL1
1(R1), and let its bound state

correspond tok5 ik j with 0,k1,¯,kN . Then,

~i! F( ib) has simple zeros atb5k j for j 51,...,N.
~ii ! F( ib).0 whenb.kN .
~iii ! (21)N2 jF( ib).0 whenbP(k j ,k j 11) for j 51,...,N21.
~iv! (21)NF( ib).0 whenbP(0,k1).
                                                                                                                



s

4269J. Math. Phys., Vol. 41, No. 7, July 2000 Factorization and small-energy asymptotics

                    
~v! Generically (21)NF(0).0 and in the exceptional caseF(0)50.

Proof: The proof is standard:~i! is known, and the rest follow from the fact thatF(k)51
1O(1/k) ask→` in C1, the only~simple! zeros ofF(k) in C1\$0% occur atk5 ik j , and that
F( ib) is real and continuous onbPR1. j

The number of bound states is also related to the zeros off ( ib,x) on xPR1, as summarized
in the following proposition.

Proposition 4.2:AssumeV is real valued and belongs toL1
1(R1), and let its bound state

correspond tok5 ik j with 0,k1,¯,kN . Then we have the following:

~i! For eachb>0, we havef ( ib,x)5e2bx@11o(1)# asx→1`.
~ii ! For each fixedb>kN , f ( ib,x) has no zeros onxP(0,1`).
~iii ! For each fixedbP@k j ,k j 11) with j 51,...,N21, the quantityf ( ib,x) has exactlyN2 j

zeros onxP(0,1`).
~iv! For each fixedbP@0,k1), f ( ib,x) hasN zeros onxP(0,1`).

Proposition 4.3:AssumeV is real valued and belongs toL1
1(R1), and letV5V11V2 , where

V1 is supported in (0,a) andV2 in (a,1`) for somea.0. If V1 is generic, then

f ~0,x!5H F~0!

F1~0!
f 1~0,x!1F f 8~0,0!2

F~0!

F1~0!
f 18~0,0!Gw~0,x!, x<a,

f 2~0,x!, x>a.

~4.1!

If V1 is exceptional, then

f ~0,x!5H F~0!g1~0,x!1
f 8~0,0!

f 18~0,0!
f 1~0,x!, x<a,

f 2~0,x!, x>a,

~4.2!

whereg1(k,x) is the solution of~1.1! corresponding to the potentialV1 with the boundary con-
ditions @cf. ~3.2!#

g1~k,0!51, g18~k,0!50.

Proof: If V1 is generic, from~2.6! we see thatf 1(0,x) andw1(0,x) are linearly independent on
xPR1. Writing f (0,x) as a linear combination off 1(0,x) andw1(0,x), we determine the coeffi-
cients in terms off (0,0) andf 8(0,0) and get~4.1!. In the exceptional case, writingf (0,x) as a
linear combination off 1(0,x) andg1(0,x) and determining the coefficients in terms off (0,0) and
f 8(0,0), we get~4.2!. j

Proposition 4.3:AssumeV1 is real valued, has support in (0,a) for somea.0, belongs to
L1(0,a), and hasN1 bound states. IfV1 is generic, thenf 1(0,x) hasN1 zeros all located in (0,a)
with no zeros atx50 and no zeros in@a,1`). If V1 is exceptional, thenf 1(0,x) hasN1 zeros all
located in (0,a), an additional zero atx50, and no zeros in@a,1`).

Proof: The proof follows from Proposition 4.2~iv! and the fact thatf 1(0,x)51 for all x
P@a,1`). j

Proposition 4.4:Assume thatV2 is real valued, has support in (a,1`) for some a.0,
belongs toL1

1(a,1`), and hasN2 bound states. IfV2 is exceptional, thenf 2(0,x) hasN2 zeros in
(a,1`), no zeros in (0,a#, and one zero atx50. If V2 is generic andf 28(0,0)/f 2(0,0)>0, then
f 2(0,x) has N2 zeros in (a,1`) and no zeros in@0,a#. If V2 is generic andf 28(0,0)/f 2(0,0)
,0, then f 2(0,x) hasN221 zeros in (a,1`), and one zero in (0,a#, and no zeros atx50.

Proof: The proof is obtained by using Proposition 4.2~iv! and the fact that

f 2~0,x!5F2~0!1 f 28~0,0!x, x<0,
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which implies thatf 2(0,x) has exactly one zero in (0,a# if f 28(0,0)/f 2(0,0),0. j

Theorem 4.5: AssumeV is real valued, belongs toL1
1(R1), and hasN bound states; letV

5V11V2 , whereV1 has support in (0,a) andV2 in (a,1`) for somea.0, and supposeV1 has
N1 bound states andV2 hasN2 bound states. Then we have the following:

~i! If V2 is generic andf 28(0,0)/f 2(0,0),0, thenN5N11N221; in any other cases, we hav
N5N11N2 .

~ii ! If both V1 andV2 are exceptional, thenV is also exceptional.
~iii ! If V1 is exceptional,V2 is generic, andf 28(0,0)Þ0, thenV is generic.
~iv! If V1 is exceptional,V2 is generic, andf 28(0,0)50, thenV is exceptional.
~v! If V1 andV2 are both generic andf 28(0,0)50, thenV is also generic.
~vi! If V1 and V2 are both generic andf 28(0,0)Þ0, then V is exceptional ifF1(0)F2(0)

5 i Ḟ 2(0) f 28(0,0) and otherwise generic.

Proof: According to the Sturm–Liouville theory,8 f (0,x) and f 1(0,x) must have the same
number of zeros in (0,a); hence, from Proposition 4.3 it follows thatf (0,x) hasN1 zeros in (0,a);
on the other hand, the number of zeros off (0,x) in (a,1`) is determined in terms ofN2 by
Proposition 3.4. Thus,~i! is proved. Recall from Theorem 3.1 thatS(0)51 generically and
S(0)521 in the exceptional case. When bothV1 andV2 are exceptional, we haveS1(0)521
and f 28(0,0)Þ0; thus, lettingk→0 in ~2.3!, we see thatS(0)5S2(0), and henceS(0)521,
which proves~ii !. The proof of ~iii ! is obtained similarly as in the proof of~ii !; from S(0)
5S2(0) it follows that V is generic asV2 is. To get~iv! note that~2.2! and ~3.20! imply that
x2(k)51/F2(0)21o(1) ask→0, and hence from~2.3! we getS(0)52S2(0), which implies that
V is exceptional becauseV2 is generic. The proof of~V! is obtained from~2.1! ask→0, i.e., from
F(0)5F1(0)F2(0), which is obtained by usingS1(k)511o(1) andx2(k)51/F2(0)21o(1) as
k→0. Finally, to prove ~vi!, using ~3.1! and ~3.21! in ~2.1!, we get F(0)5F1(0)F2(0)
2 i Ḟ 1(0) f 28(0,0), from which the conclusion follows. j
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A particle-field Hamiltonian in relativistic quantum
electrodynamics
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We mathematically analyze a HamiltonianHt(V,g) of a Dirac particle—a relativ-
istic charged particle with spin 1/2—minimally coupled to the quantized radiation
field, acting in the Hilbert spaceFª@ %

4L2(R3)# ^ Frad, whereFrad is the Fock
space of the quantized radiation field in the Coulomb gauge,V is an external
potential in which the Dirac particle moves,g is a photon-momentum cutoff func-
tion in the interaction between the Dirac particle and the quantized radiation field,
andtPR is a deformation parameter connecting the Hamiltonian with the ‘‘dipole
approximation’’ (t50) and the original Hamiltonian (t51). We first discuss the
self-adjointness problem ofHt(V,g). Then we considerHtªHt(0,g), the Hamil-
tonian without the external potential. It is shown that, under a general condition on
g, the closure ofHt is unitarily equivalent to a direct integral*R3

% Ht(p)dp with a
fiber HamiltonianHt(p) acting in the four direct sum%

4Frad of Frad, physically
the polaron Hamiltonian of the Dirac particle with total momentumpPR3.
© 2000 American Institute of Physics.@S0022-2488~00!05507-9#

I. INTRODUCTION AND MAIN RESULTS

In this work we initiate mathematical studies on a quantum system of a Dirac partic
relativistic charged particle with spin 1/2—coupled to the quantized radiation field. There m
some models for this quantum system. But, in this article, we investigate the standard mo
the quantum system whose Hamiltonian is given by the sum of the Dirac operator wit
minimal coupling to the quantized radiation field and the free Hamiltonian of the quan
radiation field. An approximate version of this model was discussed by Bloch and Nordsie1 in
view of the infrared problem of quantum electrodynamics. The Hamiltonian they treated is th
obtained by replacing the anticommuting matrices contained in the Dirac operator byc-number
constants and is much easier to analyze than the original one.

Discussions using informal perturbation methods2 suggest that the model may have a physi
meaning in a range of quantum electrodynamic phenomena such as the Lamb shift of a
genlike atom and the Compton scattering of the electron where the effects of the qua
radiation field play essential roles. Besides this point, we think that mathematical analysis
model is interesting also in its own right, because the Hamiltonian of the model belongs to
class of Hamiltonians on a Hilbert space of Fock type. Moreover the model may be regarde
model for a quantum mechanical system unstable under the influence of the quantized ra
field. To our best knowledge, no mathematically rigorous analysis has been made on the m
far.3

A. Description of the model

For a Hilbert spaceH, we denote its inner product and norm by (• , • )H ~complex linear in
the second variable! andi • iH respectively, but, if there is no danger of confusion, then we o

a!Electronic mail: arai@math.sci.hokudai.ac.jp
42710022-2488/2000/41(7)/4271/13/$17.00 © 2000 American Institute of Physics
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omit the subscriptH of them. For a linear operatorT on H, we denote its domain byD(T) and by
s(T) the spectrum ofT. For two objectsa5(a1 ,a2 ,a3) andb5(b1 ,b2 ,b3) such that products
ajbj ( j 51,2,3) and their sum can be defined, we seta•bª( j 51

3 ajbj .
The free Dirac particle of massm>0 is described by the free Dirac operator

HDªa•~2 i“ !1mb ~1.1!

acting in the Hilbert space

HDª%
4L2~R3! ~1.2!

with domain D(HD)ª%
4H1(R3) @H1(R3) is the Sobolev space of order 1#, where a j ( j

51,2,3) andb are 434 Hermitian matrices satisfying

$a j ,ak%52d jk , j ,k51,2,3, ~1.3!

$a j ,b%50, b251, j 51,2,3, ~1.4!

$A,B%ªAB1BA, and¹ª(D1 ,D2 ,D3), D j being the generalized partial differential operator
the variablexj @x5(x1 ,x2 ,x3)PR3#. It is well known thatHD is self-adjoint and essentially
self-adjoint on%

4C0
`(R3\$0%) ~Ref. 4, p.11, Theorem 1.1!. Moreover, the spectrums(HD) of HD

is purely absolutely continuous and

s~HD!5~2`,2m#ø@m,`!. ~1.5!

As for the radiation field, we use the Coulomb gauge in quantizing it. In general, giv
Hilbert spaceH, we have the symmetric~Boson! Fock space

Fs~H!ª% n50
` ~ ^ s

nH! ~1.6!

over H, where^ s
nH denotes then-fold symmetric tensor product Hilbert space ofH with con-

vention ^ s
0HªC. For basic facts on the theory of the Boson–Fock space, we refer the rea

Ref. 5, Sec. X.7.
The Hilbert space of one-photon states in momentum representation is given by

HphªL2~R3! % L2~R3!, ~1.7!

whereR3
ª$k5(k1 ,k2 ,k3)ukjPR, j 51,2,3% physically means the momentum space of photo

The Boson–Fock space

FradªFs~Hph! ~1.8!

over Hph serves as a Hilbert space for the quantized radiation field in the Coulomb gauge.
We take a nonnegative Borel measurable functionv on R3 to denote physically the one fre

photon energy. We assume that, for almost everywhere~a.e.! kPR3 with respect to the Lebesgu
measure onR3, 0,v(k),`. Then the functionv defines uniquely a multiplication operator o
Hph which is nonnegative, self-adjoint and injective. We denote it by the same symbolv also. The
free Hamiltonian of the quantized radiation field is then defined by

H radªdG~v!, ~1.9!

the second quantization ofv. The operatorH rad is a non-negative self-adjoint operator.
Remark 1.1:Usually v is taken to be of the form

vphys~k!ªuku, kPR3, ~1.10!

but, in this paper, for mathematical generality, we do not restrict ourselves to this case.
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We denote bya(F) (FPHph) the annihilation operator with test vectorF on Frad. By
definition, a(F) is a densely defined closed linear operator and antilinear inF. The Segal field
operator

Fs~F !ª
a~F !1a~F !*

&
~1.11!

is self-adjoint, where, for a closable operatorT, T̄ denotes its closure.
There existR3-valued continuous functionse(r ), r 51,2, on the nonsimply connected spac

M0ªR3\$~0,0,k3!uk3PR% ~1.12!

such that, for allkPM0 ,

e(r )~k!•e(s)~k!5d rs , e(r )
•k50, r ,s51,2. ~1.13!

We sete(r )(0,0,k3)ª0 for all k3PR. These vector-valued functionse(r ) are called the polarization
vectors of one photon.

Let gPL2(R3). Then, for eachxPR3 and j 51,2,3, we can define an elementgj
x of Hph by

gj
x~k!ª~g~k!ej

(1)~k!e2 ik•x,g~k!ej
(2)~k!e2 ik•x!PC2.

Then the quantized radiation fieldAg(x)ª(A1
g(x),A2

g(x),A3
g(x)) with momentum cutoff function

g is defined by

Aj
g~x!ªFS~gj

x!, j 51,2,3. ~1.14!

Remark 1.2:The caseg51/A(2p)3v corresponds to the case without momentum cutoff.
We now move to the Hilbert space

FªHD ^ Frad ~1.15!

of state vectors for the coupled system of the Dirac particle and the quantized radiation field
Hilbert space can be identified as

F5L2~R3; %
4Frad!5E

R3

%

%
4Fraddx ~1.16!

the Hilbert space of% 4Frad-valued Lebesgue square integrable functions onR3 @the constant fiber
direct integral with base space (R3,dx) and fibre%

4Frad ~Ref. 6, Sec. XIII.6!#. We freely use this
identification.

Let tPR be a constant. Since the mappingx→gj
tx from R3 to Hph is strongly continuous, we

can define a decomposable operator

Aj
g,t

ªE
R3

%

Aj
g~tx!dx ~1.17!

acting inF which is self-adjoint~Ref. 6, Theorem XIII.85!.
We denote byqPR\$0% the charge of the Dirac particle. We consider the situation where

Dirac particle is in an external potential described by a 434 Hermitian matrix-valued Bore
measurable functionV5(Vab)a,b51,...,4. Then the Hamiltonian of the Dirac particle is given b

HD~V!ªHD1V. ~1.18!
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The minimal interaction between the Dirac particle and the quantized radiation field
momentum cutoffg is given by

HI ,t~g!ª2qa•Ag,t. ~1.19!

Thus the total Hamiltonian of the coupled system is defined by

Ht~V,g!ªHD~V!1H rad1HI ,t~g!. ~1.20!

This is the main object of the mathematical analysis in the present paper.
Remark 1.3:The original Hamiltonian of the model isH1(V,g) ~the caset51!. On the other

hand,H0(V,g) ~the caset50! is the Hamiltonian with the ‘‘dipole approximation.’’ Hencet is
regarded as a deformation parameter connecting the original Hamiltonian and the d
approximated one. Note that the dipole-approximated HamiltonianH0(V,g) gives a kind of gen-
eralization of the standard spin-boson model. The analysis ofH0(V,g) may be harder than that o
the standard spin-boson model.

Remark 1.4:For a class ofV, the essential spectrumsess(HD(V)) of HD(V) coincides with
that of HD :

sess~HD~V!!5~2`,2m#ø@m,`!, ~1.21!

so that the discrete spectrumsd(HD(V)) of HD(V) is a subset of the interval (2m,m) if m is
positive ~Ref. 4, p. 116, Theorem 4.7!. Suppose that~1.21! holds with sd(HD(V))5$En%n51

N

(N,` or N is countably infinite! and that$v(k)ukPR3%5@n,`) with a constantn>0. Then we
have

sess~HD~V!1H rad!5R

and eachEn is an eigenvalue ofHD(V)1H rad embedded in its continuous spectrum. Hence the
spectral analysis ofHt(V,g) includes a perturbation problem of embedded eigenvalues. We
sider this problem in a subsequent paper.

Basic hypotheses to analyzeHt(V,g) are as follows.
Hypothesis (H.1): g,g/AvPL2(R3).
Hypothesis (H.2):For all a,b51,...,4,Vab is in the set

L2~R3! locª$ f :R3→C;Borel measurableu* uxu<Ru f ~x!u2 dx,` for all R.0%.

B. The symmetricity and the numerical range of Ht„V,g …

According to a basic axiom of quantum mechanics that a quantum mechanical observa
represented by a self-adjoint operator on the Hilbert space of state vectors, we first h
examine self-adjointness of the HamiltonianHt(V,g).

For a linear operatorT on a Hilbert spaceH, its numerical range is defined by

Q~T!ª$~u,Tu!HuuPD~T!, iuiH51% ~1.22!

~Ref. 7, Chap. V, Sec. 3-2!.
The following theorem is concerned with symmetricity ofHt(V,g) and its numerical range
Proposition 1.1: LettPR. Assume (H.1) and (H.2). Then Ht(V,g) is a symmetric operator

with D(Ht(V,g))5D(HD)ùD(V)ùD(H rad). Moreover

Q~HD~V!!,Q~Ht~V,g!!. ~1.23!

Remark 1.5:The relation ~1.23! shows that, ifHD(V) is not semibounded~i.e., neither
bounded from below nor above!, then so isHt(V,g). It is well known that, for a wide class ofV,
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HD(V) is not semibounded~Ref. 4, Chap. 4, Sec. 4.3!. Hence, for such a potentialV, ~1.23!
implies thatHt(V,g) is not semibounded. In particular, in the case of the Coulomb potentia

V~x!5VC~x!ª2
Z

uxu ~Z.0:a constant!,

which is a physically important case, one can show that, under~H.1!, Ht(VC ,g) is not semi-
bounded for alltPR.

Remark 1.6:By the preceding remark, the model may be unphysicalin view of stability of
matter. From this point of view, we may consider a modified version of the model: LetED be the
spectral measure ofHD andL1ªED(@0,̀ )), the projection ofHD onto the non-negative spectra
subspace of the free Dirac operatorHD . Then the operator

Ht
BR~V,g!ªL1Ht~V,g!L1 ~1.24!

may be a Hamiltonian for a quantum system of a Dirac particle interacting with the quan
radiation field. This operator is an extended version of the Brown–Ravenhall Hamilto8

L1HD(V)L1 . As for certain aspects~e.g., self-adjointness, boundedness from below!, the op-
eratorHt

BR(V,g) is more tractable thanHt(V,g). The model discussed in Ref. 3 is in fact the o
described byHt

BR(V,g). The method presented below can be applied to the Hamilto
Ht

BR(V,g) too and results similar to those onHt(V,g) can be established.

C. Existence of a self-adjoint extension of Ht„V,g …

We denote byCD the complex conjugation onHD : (CDf )(x)ª f (x), f PHD , xPR3. By
Pauli’s lemma~Ref. 4, pp. 14 and 74!, there exists a 434 unitary matrixUC such that

UC
2 5I , UCCD5CDUC , ~1.25!

UC
21a jUC5ā j , j 51,2,3, UC

21bUC52b̄, ~1.26!

where, for a matrixM , M̄ denotes its complex conjugate.
The following theorem guarantees the existence of a self-adjoint extension ofHt(V,g).
Theorem 1.2:Let tPR. Assume (H.1) and (H.2). Suppose that g is real-valued and tha

UC
21V~x!UC5V~2x! ~1.27!

for a.e.x. Then Ht(V,g) has a self-adjoint extension.
Remark 1.7:It is obvious that, ifV is a real-valued scalar potential inL2(R3) loc with property

V(x)5V(2x) a.e. xPR3, then it satisfies~1.27!. In particular, the Coulomb potentialV5VC

~Remark 1.5!, which is inL2(R3) loc , satisfies~1.27!.
Condition ~1.27! has a physical meaning. LetP be the parity transformation~or the space

inversion! on HD :

~P f !~x!ª f ~2x!, f PHD , ~1.28!

which is unitary. Then the operator

TDªPUCCD ~1.29!

on HD is antiunitary. It is easy to see that~1.27! is equivalent to that

TDV,VTD , ~1.30!
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i.e., V commutes withTD . The operatorUCCD is called the charge conjugation. Hence~1.27!
means the invariance ofV under the charge conjugation and the parity transformation~the CP
invariance!. Thus the self-adjoint extension ofHt(V,g) in Theorem 1.2 is related to the C
invariance of the external potentialV. In this sense Theorem 1.2 has an interest.

D. Essential self-adjointness

The next problem to be considered is the uniqueness of self-adjoint extension ofHt(V,g),
i.e., essential self-adjointness of it.

We define

Dª(
j 51

3

D j
2 ~1.31!

the Laplacian acting inHD .
Let V0ª$1,0,0,0,...% be the Fock vacuum inFrad. For a subspaceD of Hph, we define

Frad
fin (D),Frad to be the subspace algebraically spanned byV0 and all the vectors of the form

a~F1!*¯a~Fn!* V0 , n>1, F jPD, j 51,...,n.

If D is dense inHph, thenFrad
fin (D) is dense inFrad.

Theorem 1.3:Let tPR. Assume (H.1), (H.2) and that

vg, ukug,
ukug

Av
PL2~R3!. ~1.32!

Moreover, assume the following (V.1) and (V.2):
~V.1! V is 2D bounded.
~V.2! For each j51,2,3 and a,b51,...,4, the distribution DjVab is in L2(R3) loc and there

exists a constant c.0 such that, for all fP %
4C0

`(R3),

i~D jV! f i<ci~2D11!1/2f i , j 51,2,3.

Let D,Hph be a core of the self-adjoint operatorv. Then Ht(V,g) is essentially self-adjoint on
@ %

4C0
`(R3)# ^ algFrad

fin (D)(^ alg means algebraic tensor product) and its closure is essentially s
adjoint on every core of2D1H rad.

Remark 1.8:Unfortunately Theorem 1.3 does not cover the Coulomb potential casV
5VC .

As a corollary to Theorem 1.3, we have the following.
Theorem 1.4:Let tPR. Assume (H.1), (H.2), and (1.32). Suppose that V is bounded. LD

be as in Theorem 1.3. Then Ht(V,g) is essentially self-adjoint on@ %
4C0

`(R3)# ^ algFrad
fin (D) and

its closure is essentially self-adjoint on every core ofHt(0,g).

E. Direct integral decomposition in the case VÄ0

The final topic in this paper is concerned with the Hamiltonian without the external pote
V:

HtªHt~0,g!5HD1H rad1HI ,t~g!. ~1.33!

This is a Hamiltonian of arelativistic polaron with spin 1/2. We show, as in the case of nonre
ativistic polarons9–14 or a spinlessrelativistic polaron,15 that Ht has a natural direct integra
decomposition corresponding to a ‘‘deformed’’ translation invariance.

The momentum operatorPrad
ª(P1

rad,P2
rad,P3

rad) of the quantized radiation field is defined b
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Pj
rad
ªdG~kj !, ~1.34!

the second quantization of the multiplication operatorkj on Hph. For eachtPR, we define

L~t!ªH rad2ta•Prad, ~1.35!

acting in the Hilbert spaceC4
^ Frad5 %

4Frad. Let

HIª2q(
j 51

3

a jAj
g~0!52q(

j 51

3

a jFS~gj ! ~1.36!

with

gj~k!ªgj
0~k!5~g~k!ej

(1)~k!,g~k!ej
(2)~k!!PC2 ~1.37!

and, for eachpPR3,

hD~p!ªa•p1mb. ~1.38!

In terms of these operators, we define

Ht~p!ªhD~p!1L~t!1HI ~1.39!

acting in %
4Frad.

We introduce a subspace ofFrad:

Frad,0
`

ªFrad
fin ~C0

`~R3! % C0
`~R3!!. ~1.40!

Theorem 1.5:Let tPR. Assume (H.1) and (1.32). Suppose thatvPL2(R3) loc . Then, for all
pPR3, Ht(p) is essentially self-adjoint on% 4Frad,0

` .
Remark 1.9:The operatorHt(p) may be regarded as a Hamiltonian of a four component s

interacting with a Bose field. In this sense it is an extended version of the standard spin-
model where the spin is two component. But note that there is a big difference in thatHt(p)
contains a singular term2ta•Prad, which makes the analysis ofHt(p) more difficult.

Remark 1.10:Let

vD~p!ªAp21m2, ~1.41!

the energy of the free Dirac particle with momentump. It is well known ~or easy to see! that

s~hD~p!!5sd~hD~p!!5$6vD~p!%, ~1.42!

the multiplicity of each eigenvalue being two. Suppose that$v(k)2utu uku ukPR3%5@M t ,`)
with some constantM t>0. Then sess(hD(p)1L(t))5@2vD(p)1M t ,`). Hence, if 2vD(p)
>M t , then the eigenvaluevD(p) of hD(p)1L(t) is embedded in its continuous spectrum. Th
Ht(p) gives rise to a preturbation problem of embedded~degenerate! eigenvalues. This problem
concerns the instability of the Dirac particle with a positive energy under the influence o
quantized radiation field. We will discuss this aspect in a separate paper.

We say that a set$Tj% j 51
n of self-adjoint operators on a Hilbert space is strongly commut

if the spectral measures ofTi andTj commute for alli , j 51,...,n, iÞ j .
It is easy to see that$Pj

rad% j 51
3 is strongly commuting. Hence it follows from the three variab

functional calculus that, for allxPR3, the operator

Q~x!ª(
j 51

3

xj Pj
rad ~1.43!
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acting inFrad is self-adjoint. Since the mapping:x→ei tQ(x) is strongly continuous, we can defin
a decomposable operator

WtªE
R3

%

ei tQ(x)dx ~1.44!

on F5*R3
%

%
4Fraddx. It follows thatWt is unitary.

The Fourier transform onHD5 %
4L2(R3) can be naturally extended to a unitary operator

F by

~UFC!~p!ª
1

A~2p!3 ER3
e2 ip•xC~x!dx, a.e.pPR3, CPF. ~1.45!

We define a unitary operator onF by

UtªUFWt . ~1.46!

Then we have a direct integral decomposition

UtF5E
R3

%

%
4Fraddp. ~1.47!

Theorem 1.6: Under the same assumption as in Theorem 1.5, Ht is essentially self-adjoint
and

UtHtUt
215E

R3

%

Ht~p!dp. ~1.48!

Remark 1.11:In Ref. 16, spectral aspects ofHt(p) ~properties of the ground state energ
existence of the ground state, location of the essential spectrum! andHt are discussed in the cas
where~i! mt(k)ªv(k)2utuuku.0 for a.e.kPR3 and~ii ! g, g/AmtPL2(R3). But this case does
not cover the physical casev(k)5uku.

II. PROOF OF PROPOSITION 1.1

For f PL2(R3) and j 51,2,3, we definef jPHph by

f jª~ f ej
(1) , f ej

(2)!PHph. ~2.1!

Using the fact that, for allkPM0 ,

(
r 51

2

ej
(r )~k!el

(r )~k!5d j l 2
kjkl

uku2
, j ,l 51,2,3, ~2.2!

we have

i f j i25E
R3

u f ~k!u2S 12
kj

2

uku2Ddk. ~2.3!

We set

uuu f uuuª(
j 51

3

i f j i . ~2.4!

Lemma 2.1: Assume(H.1). Then D(H rad
1/2),D(HI ,t(g)) and, for all CPD(H rad

1/2) and «.0,
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iHI ,t~g!Ci<A2~11«!uquUUU g

Av
UUUiH rad

1/2Ci1
uqu

&
A11

1

«
uuuguuu iCi . ~2.5!

Proof: It is well known that, for allFPHph andcPD(H rad
1/2), c is in D(a(F))ùD(a(F)* )

and

ia~F !ci<I F

Av
I iH rad

1/2ci , ia~F !* ci<I F

Av
I iH rad

1/2ci1iFiici . ~2.6!

Hence,D(H rad
1/2),D(FS(F)) and

iFS~F !ci<&I F

Av
I iH rad

1/2ci1
1

&
iFiici . ~2.7!

By this estimate, we have for allcPD(H rad
1/2) andxPR3

iAj
g~x!ciFrad

<&I gj

Av
I iH rad

1/2ciFrad
1

1

&
igj iiciFrad

. ~2.8!

Let C be in the domainD(H rad
1/2) as a subspace ofF. Then, by ~2.8! and the elementary

inequality

~a1b!2<~11«!a21S 11
1

« Db2, a,b>0, «.0, ~2.9!

we have for a.e.x

iAj
g~tx!C~x!iFrad

2 <2~11«!I gj

Av
I 2

iH rad
1/2C~x!iFrad

2 1
1

2 S 11
1

« D igj i2iC~x!iFrad

2 .

Integrating the both sides with respect tox, we see thatCPD(Aj
g,t) with

iAj
g,tCi<A2~11«!I gj

Av
I iH rad

1/2Ci1
1

&
A11

1

«
igj iiCi . ~2.10!

ThusCPù j 51
3 D(Aj

g,t)5D(HI ,t(g)). By using the factia j i51 and~2.10!, we obtain~2.5!. j

Proof of Proposition 1.1:Lemma 2.1 implies thatD(Ht(V,g)5D(HD)ùD(V)ùD(H rad).
By ~H.2!, we have %

4C0
`(R3),D(V). Hence D(Ht(V,g)) is dense. It is easy to see th

(C,Ht(V,g)F)5(Ht(V,g)C,F) for all C,FPD(Ht(V,g)). Thus Ht(V,g) is a symmetric
operator.

Let lPQ(HD(V)). Then l5( f ,HD(V) f ) for some f PD(HD(V)) with i f i51. Let C f

ª f V0 . ThenC fPD(Ht(V,g)), iC f i51. Using the fact thata(F)V050, FPHph andH radV0

50, we have

~C f ,Ht~V,g!C f !5~ f ,HD~V! f !5l.

HencelPQ(Ht(V,g)). Thus~1.23! follows.

III. PROOF OF THEOREMS 1.2–1.4

A mappingC on a Hilbert space is called a conjugation if it is antilinear, norm-preserving
C25I ~identity!.
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Lemma 3.1:Let C be a conjugation on a Hilbert spaceH andS be a linear operator onH such
that CS,SC. ThenCS5SC.

Proof: We need only to show thatD(SC),D(S). Let cPD(SC). ThenCcPD(S). Hence,
by the assumption,C(Cc)PD(S) and SC(Cc)5CS(Cc), which means thatcPD(S) and
Sc5CSCc. Thus the assertion follows. j

Note that the mappingTD defined by~1.29! is a conjugation. Using~1.26! and Lemma 3.1,
one can easily prove the following lemma.

Lemma 3.2: For j51,2,3,

TDa j5a jTD , TDD j52D jTD . ~3.1!

In particular,

TDa•~2 i“ !5a•~2 i“ !TD . ~3.2!

Let Cph be the complex conjugation onHph:

Cph~F1 ,F2!ª~F1,F2!PHph, FrPL2~R3!, r 51,2, ~3.3!

and j C be the complex conjugation onC. Then

Jradª j C% ~ % n51
`

^
nCph! ~3.4!

is a conjugation onFrad.
Lemma 3.3: We have

JradH rad5H radJrad ~3.5!

and, for all FPHph,

JradFS~CphF !5FS~F !Jrad. ~3.6!

Proof: Relation ~3.5! follows from the reality of v. As for ~3.6!, we first show that
FS(F)Jrad5JradFS(CphF) on the subspace of finite particle vectors

Frad,0ª$c5$c (n)%n50
` PFraduc (n)50 for all but finitely manyn’s%. ~3.7!

Then, by a limiting argument using the fact thatFrad,0 is a core of FS(F), we see that
JradFS(CphF),FS(F)Jrad. By this fact and Lemma 3.1, we obtain~3.6!. j

Proof of Theorem 1.2:The operatorJªTD ^ Jrad acting inF is a conjugation. By Lemmas 3.
and 3.3 and the present assumption, we haveJ(Ht(V,g)2mb)5(Ht(V,g)2mb)J. Hence, by
von Neumann’s theorem~Ref. 5, Theorem X.3!, Ht(V,g)2mb has a self-adjoint extensio
Ht8(V,g). Sincemb is bounded,Ht8(V,g)1mb is self-adjoint by the Kato–Rellich theorem~Ref.
5, Theorem X.12!. It is obvious thatHt8(V,g)1mb is a self-adjoint extension ofHt(V,g).

Proof of Theorem 1.3:The method of proof is to apply Nelson’s commutator theorem~Ref. 5,
Theorem X.37!. We take as the comparison operator the self-adjoint operator

K0ª2D1H rad11>1.

We recall a useful identity: LetTj , j 51,2,3, be linear operators on a Hilbert spaceH such
that TjTl 5Tl Tj on D(TjTl )ùD(Tl Tj ), j ,l 51,2,3, and setTª(T1 ,T2 ,T3). Then, by using
~1.3!, one can easily show that

~a•T!25T2 on ù j ,l 51
3 @D~TjTl !ùD~Tl Tj !#, ~3.8!

wherea jTj ( j 51,2,3) is considered as an operator on%
4H.
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Let f PD(2D). Then, by~3.8!,

ia•~2 i“ ! f i25~ f ,2D f !<i f ii2D f i .

By this inequality and~V.1!, we can show that

iHD~V! f i<c1i~2D11! f i , ~3.9!

wherec1.0 is a constant. By the elementary inequality

ab<«a21
1

4«
b2,

holding for all a.0, b.0, «.0, we have for allCPD(H rad)

aiH rad
1/2Ci<aiCi1/2iH radCi1/2<«iH radCi1

a2

4«
iCi .

Hence, by Lemma 2.1, for all«.0, there exists a constantb«>0 such that

iHI ,t~g!Ci<«iH radCi1b«iCi , CPD~H rad!. ~3.10!

Estimates~3.9! and ~3.10! imply that

iHt~V,g!Fi<c2iK0Fi , FPD~K0!, ~3.11!

wherec2.0 is a constant.
Let CP@ %

4C0
`(R3)# ^ algFrad

fin (D). Then

~HD~V!C,K0C!2~K0C,HD~V!C!52i (
j 51

3

I~~D jV!C,D jC!.

Hence, using~V.2! and the fact that

iD jCi<i~2D!1/2Ci<iK0
1/2Ci ,

we can show that

u~HD~V!C,K0C!2~K0C,HD~V!C!u<c3iK0
1/2Ci2, ~3.12!

wherec3.0 is a constant. We have

~HI ,t~g!C,DC!2~DC,HI ,t~g!C!522iq (
j ,l 51

3

I~D l C,a jBl jC!, ~3.13!

whereBl jª*R3
% FS(]gj

tx/]xl )dx. By Lemma 2.1 withg replaced by2 ik l g, we can estimate
iBl jCi . Hecne we obtain

u~HI ,t~g!C,2DC!2~2DC,HI ,t~g!C!u<c4iK0
1/2Ci2,

wherec4.0 is a constant. It is easy to see that

@HI ,t~g!,H rad#C5q(
j 51

3

a jBjC,
                                                                                                                



–

ith

tum

4282 J. Math. Phys., Vol. 41, No. 7, July 2000 Asao Arai

                    
whereBjª*R3
% FS( ivgj

tx)dx. By Lemma 2.1 withg replaced byivg, we can estimateiBjCi to
obtain

u~HI ,t~g!C,H radC!2~H radC,HI ,t~g!C!u<c5iK0
1/2Ci2,

wherec5.0 is a constant. Since (H radC,K0C)2(K0C,H radC)50, it follows that

u~@H rad1HI ,t~g!#C,K0C!2~K0C,@H rad1HI ,t~g!#C!u<~c41c5!iK0
1/2Ci2. ~3.14!

The subspace@ %
4C0

`(R3)# ^ algFrad
fin (D) is a core ofK0 . Thus, by~3.11!, ~3.12!, and ~3.14!, we

can apply Nelson’s commutator theorem to obtain the desired result.
Proof of Theorem 1.4:We write Ht(V,g)5Ht(0,g)1V. By Theorem 1.3,Ht(0,g) is essen-

tially self-adjoint on @ %
4C0

`(R3)# ^ algFrad
fin (D). Since V is bounded, we can apply the Kato

Rellich theorem to obtain the desired result.

IV. PROOF OF THEOREMS 1.5 AND 1.6

We define a deformed total momentum operatorP(t)ª(P1(t),P2(t),P3(t)) with parameter
tPR:

Pj~t!ª2 iD j1tPj
rad ~4.1!

on F ( j 51,2,3). EachPj (t) is self-adjoint and its spectrum is purely absolutely continuous w

s~Pj~t!!5R. ~4.2!

PhysicallyPj (t) is interpreted as the generator of a unitary representation of a~deformed! trans-
lation to thej th direction. It is not difficult to see16 that, for all tPR,

eitP j (t)Ht,Hte
itP j (t). ~4.3!

This shows a deformed translation invariance ofHt .
We can show that, forj 51,2,3,

UtPj~t!Ut
215E

R3

%

pj dp. ~4.4!

Thus the Hilbert spaceUtF carries a spectral representation ofP(t) and the index parameterp in
the decomposition~1.47! physically means an observed value of the deformed total momen
P(t).

Proof of Theorem 1.5:Let pPR3 be fixed andLª( j 51
3 (pj2tPj

rad)21H rad11. ThenL is
self-adjoint, non-negative and reduced by each closed subspace%

4( ^ s
nHph) with its reduced part

Ln being the multiplication self-adjoint operator by the funciton (p2t( j 51
n k j )

21( j 51
n v(k j )

11. By the present assumption, this function is inL2(R3n) loc . HenceLn is essentially self-adjoint
on %

4Sn( ^ alg
n @C0

`(R3) % C0
`(R3)#), whereSn denotes the symmetrizer on̂nHph. It follows that

L is essentially self-adjoint on% 4Frad,0
` . Let cP %

4Frad,0
` . Then, by~3.8!,

ia•~p2tPrad!ci<iL1/2ci .

In the same way as in Lemma 2.1, we can show that

iHIci<&uquUUU g

Av
UUUiH rad

1/2ci1
uqu

&
uuuguuu ici . ~4.5!

By these estimates, we obtainiHt(p)ci<c1iLci with a constantc1.0. In the same way as in
the proof of Theorem 1.3, we can show that
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u~Ht~p!c,Lc!2~Lc,Ht~p!c!u<c2iL1/2ci2,

with a constantc2.0. Thus we can apply Nelson’s commutator theorem to obtain the de
result. j

Lemma 4.1: Let zPC\R. Then, under the same assumption as in Theorem 1.5, the oper
valued funciton: p→(Ht(p)2z)21 on R3 is strongly continuous.

Proof: The setC\R is a subset of the resolovent set ofHt(p), sinceHt(p) is self-adjoint. Let
p,p8PR3. Then, for all cP %

4Frad,0
` , we have by ~3.8! iHt(p8)c2Ht(p)ci5up82puici

→0(p8→p). Since%
4Frad,0

` is a common core for the family$Ht(p)%pPR3 of self-adjoint opera-
tors, it follows from a convergence theorem@Ref. 17, Theorem VIII.25~a!# that (Ht(p8)2z)21

→(Ht(p)2z)21 strongly asp8→p. j

Proof of Theorem 1.6:The essential self-adjointness ofHt follows from the present assump
tion and Theorem 1.4. By Theorem 1.5, Lemma 4.1 and a general theorem@Ref. 6, Theorem
XIII.85~a!#, we haveHt8ª*R3

% Ht(p)dp is self-adjoint. On the other hand, by direct computatio
we see thatUtHtUt

21,Ht8 . The essential self-adjointness ofHt implies that ofUtHtUt
21 . Thus

~1.48! follows.
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Companion equations for branes
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The quantum mechanical transition between a free particle Lagrangian and the
Klein–Gordon field description of a free particle~particle-wave duality! is conjec-
tured to extend to an analogous construction of relativistically invariant wave equa-
tions associated with strings and branes. Electromagnetic interactions in the two
systems are discussed. It is emphasized that all integrable free field theories, in-
cluding those of Dirac–Born–Infeld type, are associated with Lagrangians equiva-
lent to divergences on the space of solutions of the equations of motion. ©2000
American Institute of Physics.@S0022-2488~00!05607-3#

I. INTRODUCTION

In standard textbooks on quantum mechanics, the description of free particle motion b
classical point particle Lagrangian

L15A( S ]Xm

]t D 2

~1!

goes over in terms of a field theory, to that given by the Lagrangian of a Klein–Gordon fie

L25
1

2 ( S ]f

]xm
D 2

~2!

~for a massless field!. This may be cited as an example of particle-wave duality. To disting
between Lagrangians which involve square roots and those which do no we use a cursive n
for the former and a capital for the latter. Is there a similar alternative description of string
branes? One goal of this paper is to suggest that there is a natural extension. The idea
corresponding to each direction in the world-volume there should be associated a fiel
example, the strings described by the Nambu–Goto string Lagrangian

L35A( F S ]Xm

]s

]Xm

]t D 2

2S ]Xm

]s D 2S ]Xn

]t D 2G ~3!

should also admit a description in terms of two fields with Lagrangian which is some power o
following:

L45( F S ]f

]xm

]c

]xm
D 2

2S ]f

]xm
D 2S ]c

]xn
D 2G52

1

2 (
m,n

S ]f

]xm

]c

]xn
2

]f

]xn

]c

]xm
D 2

. ~4!

Heref(xm), c(xm) are two fields andm,n range over the dimensionality of space time. Likewis
a simple brane Lagrangian,

a!Electronic mail: l.m.baker@durham.ac.uk
b!Electronic mail: david.fairlie@durham.ac.uk
42840022-2488/2000/41(7)/4284/9/$17.00 © 2000 American Institute of Physics
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AdetU ]Xm

]s i

]Xm

]s j
U

may be conjectured to be equivalent to a field theory with as many components as the
world-volume coordinates with Lagrangian a power of

L5detU]f i

]xm

]f j

]xm
U5S n! ~d2n!!

d! D( S ]$f1, f2, . . . ,fn%

]$xm1
,xm2

. . . xmn
% D 2

. ~5!

Here the sum is over all permutations of the squares of Jacobians of then fields with respect to
selections ofn ~the dimension of the world volume! out of thed coordinatesxm of space–time.
This higher dimensional analog of particle-wave duality we might facetiously describe as b
wave duality, but we shall refrain from using the overworked word ‘‘duality’’ in a mislead
context. We may call the field equations arising in this manner the companion field equa
Very similar ideas have been advanced before by Hosotani1 and Morris.2,3 Hosotani writes a
Lagrangian for two string associated fields in four dimensions. What Morris does is to descri
string in terms of the intersection ofd22 hypersurfaces. He takes the Lagrangian for a string
d-dimensions and relates it to a Lagrangian ford22 fields ind dimensions. They both show tha
the classical equations of motion are equivalent under interchange of dependent and indep
variables when the latter are complemented byd22 additional variables. However, we should lik
to advocate that since the quantum mechanical equation which describes a free particle
Klein–Gordon equation, for only one field, independently of the dimension of the embed
space, it would seem that in the case ofn branes the field theories describing them quant
mechanically should depend upon onlyn, rather thand2n fields. This point of view was adopte
by Hosotani and Nakayama recently4 in a paper in which they have already obtained~4! together
with a four field interaction as an equation which reduces to the Hamilton–Jacobi equation
limit \→0.

We shall argue however, that it seems more attractive to take a square root as the
power, as this, as we shall demonstrate, guarantees covariance of the equations of mot
counterpart of the reparametrization invariance of the original Dirac–Born–Infeld b
Lagrangians. We have subsequently found another justification for taking the square root,
upon the Hamilton–Jacobi formalism; this will be reported in a sequel to this paper.

The two properties found for the Nambu–Goto Lagrangian (L3), namely that it transforms
under reparametrization of the independent variables with a factor which is the Jacobian
transformation and thatL3 vanishes or is constant on the space of solutions of the equatio
motion of the Schild Lagrangian (L3)2,5,6 have recently been shown to persist for Lagrangians
the Dirac–Born–Infeld type,7–9

L5Adetugi j 1Fi j u5AdetU]Xm

]xi

]Xm

]xj
1S ]Aj

]xi
2

]Ai

]xj
D U ~6!

even in the presence of electromagnetic fields.10 Analogs of both these properties may be deduc
for the wave field Lagrangians introduced in this paper~5!. We see the first of these as bein
common to all theories describing free objects, and devote the next section to a catalog
amples. These may in certain cases be extended to include supersymmetry. We then dem
how the diffeomorphism invariance of the brane Lagrangians translates into covariance o
tions for the wave fields with square root Lagrangians. We then analyze in some detail the c
the point particle and the string. Some special cases of these Lagrangians are shown to b
pletely integrable in implicit form and finally we make some speculative remarks concernin
coupling of gauge theories to the wave fields.
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II. LAGRANGIANS FOR FREE FIELDS

In fact we may note that a generic property of free fields is that their Lagrangians vani
are divergences on the space of solutions of the equations of motion which vanish, with van
first derivatives on the boundary. This is trivial forL2 , the Klein–Gordon Lagrangian, which ma
be rewritten after partial integration as

L252
1

2 ( f
]2f

]xm
2

. ~7!

Likewise for the Dirac Lagrangian,i c̄gm]mc2mc̄c which is already in null form, the Maxwel
theory and pure gravity all vanish on the space of solutions of the equations of motion. It
true of non-Abelian gauge theory, except for the self-dual sector, where, by definition

FmnFmn5 1
2 emnrsFmnFrs, ~8!

and the right-hand side is a divergence. This principle extends to the wave Lagrangians of
Infeld type in a straightforward manner. Here, under field redefinitionsf→F(f,c), c
→C(f,c) the LagrangianL45AL4 scales with a conformal factor which is the Jacobian of
transformation. Also the quantity

f
]

]xm S ]L4

]
]f

]xm

D ~9!

considered as a Lagrangian, reproduces the same equation of motion as doesL4 and is zero on the
space of solutions. It thus differs fromL4 by a divergence. In a similar fashion

c
]

]xm S ]L4

]
]f

]xm

D ~10!

is itself a divergence. Similar remarks, mutatis mutandis, can be made about the same co
tions with f↔c. These statements are easy to prove and simply depend upon the determ
nature ofL4 . The key result, which obtains also in general dimension for~5! is that

(
m

]f i

]xm

]L

]
]f j

]xm

52d j
i L. ~11!

Consider

f
]

]xm S ]L4

]
]f

]xm

D 5
]

]xm S f
]L4

]
]f

]xm

D 2
]f

]xm S ]L4

]
]f

]xm

D . ~12!

The first term on the right-hand side is a divergence, the second is simply22L4 , as a conse-
quence of the determinantal properties ofL4 . Thus, the left-hand side of~12! serves as an
equivalent Lagrangian, giving the same equations of motion as the original one. In the case~10!
the corresponding term left over after extracting the divergence is zero, again as a consequ
determinantal properties. Obviously this argument extends to dual brane Lagrangians
dimension. This property suggests that these Lagrangians have a pseudo-topological aspec
were equivalent to divergences without any further constraint, they would be fully topologica
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here the equivalence works only for solutions of the equations of motion. We may rem
parenthetically, that a large class of supersymmetric Lagrangians also exhibit the same pr

III. SUPERSYMMETRIC LAGRANGIANS

The Lagrangians for a free chiral superfield and a free vector superfield are both total d
tives when the equations of motion are satisfied. This is true for both the massive and m
cases.

A. Chiral superfields

A general chiral superfield in superspace (x,u,ū) has the form

F5A~x!1 iusmū]mA~x!1 1
4 uuūūhA~x!1A2uc~x!2 iuu]mc~x!smū1uuF~x!. ~13!

Consider the Lagrangian involving only chiral superfields as below.

L5F i
†F i uuuūū1 1

2 mi j ~F iF j uuu1F i
†F j

†u ū ū !, ~14!

wheremi j is symmetric with respect to indicesi and j. It is possible to write the Lagrangian i
terms of the equations of motion plus total derivatives. The Lagrangian is therefore a total d
tive when the equations of motion are satisfied:

L5 1
2 i ~]mc̄ i s̄

m2mi j c j !c i2
1
2c̄ i~ i s̄m]mc i1mi j c̄ j !1 1

2 Ai* ~hAi1mi j F j* !1 1
2 Ai~hAi* 1mi j F j !

1total derivatives. ~15!

A more general supersymmetric Lagrangian for chiral fields would involve the addition o
terms 1

3gi jkF iF jFk and l iF i and their Hermitian conjugates but if these are added then
Lagrangian is no longer a total derivative when the equations of motion are satisfied.

B. Vector superfields

The action for a general massive free vector superfieldV can be rewritten as11

S@V#5
1

8 E d4x d4u VDaD̄2DaV1m2E d4x d4u V2 ~16!

and the equations of motion are

1
8 DaD̄2DaV1m2V50. ~17!

From this it is easy to see that the Lagrangian is a total derivative when the equations of m
are satisfied. For the massive case, simply setm50. This does not work for other Lagrangian
which involve interaction terms.

IV. EQUATIONS OF MOTION OF BORN–INFELD TYPE

For the classical point particle Lagrangian~1! then the equations of motion can be written

]2Xm

]t2

]Xn

]t
2

]2Xn

]t2

]Xm

]t
50. ~18!

For d dimensions then it is easy to verify that there ared21 independent equations of motion
Now consider the string case ind53 dimensions. The Nambu–Goto LagrangianL3 gives the
single equation of motion
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~ Ĵ1 Ĵ2 Ĵ3!S Xss
1 Xst

1 Xtt
1

Xss
2 Xst

2 Xtt
2

Xss
3 Xst

3 Xtt
3
D S ~Xt

1!21~Xt
2!21~Xt

3!2

22~Xs
1Xt

11Xs
2Xt

21Xs
3Xt

3!

~Xs
1 !21~Xs

2 !21~Xs
3 !2

D 50, ~19!

where

Xi j
m5

]2Xm

]s i]s j
, Xi

m5
]Xm

]s i
, and s i5~s,t!, ~20!

Ĵr5ermnXs
mXt

n5
1

2
ermnUXs

m Xs
n

Xt
m Xt

nU. ~21!

In general, a typical equation of motion, of which onlyd22 are independent can be written in th
following form:

ĴnXi j
n ~L21! i j 50, ~22!

whereL is the matrix with components@L# i j 5(]Xm/]s i)(]Xm/]s j ) andn is chosen from three o
the valuesn1 , n2 , n3 of the index m which runs over1 . . .d. Ĵn1

denotes the Jacobia
](Xn2,Xn3)/](s1 , s2), omitting Xn1, etc. This can be extended to strings ind dimensions and to
branes. The only essential difference is that in the typical equation of motion,n is now an arbitrary
choice ofn11 values andĴn is now a Jacobian of a subset ofn of those variablesxn, with respect
to then world sheet coordinatess j .

Computer calculations show that for the Nambu–Goto Lagrangian there ared22 independent
equations of motion. In general, an object~particle/string/brane! which sweeps out an
n-dimensional world volume ind-dimensional space–time has onlyd2n independent equation
of motion. The basic reason for this is that in the cased5n the Lagrangian is a divergence, so a
the equations of motion vanish.

V. EQUATIONS OF MOTION OF INVERSE TYPE

For the Lagrangians of inverse type, i.e.,L25AL2, L45AL4, etc., there is just one equatio
for L2 and two forL4 and so on, irrespective of the dimension of the total space; however,
equations fall into sums of equations appropriate to the minimal dimension for a nontrivia
bedding. What this means is that forL2 in two dimensions, the minimal case, the equation is
well-known Bateman equation12

S ]f

]x1
D 2 ]2f

]x2
2

1S ]f

]x2
D 2 ]2f

]x1
2

22S ]f

]x1
D S ]f

]x2
D ]2f

]x1]x2
50, ~23!

to be discussed at greater length in Sec. VII, while in three dimensions the equation is the
three Bateman equations, corresponding to the three ways of selecting two coordinates
three. A particular class of solutions to these equations can be found by simultaneously
these three Bateman equations to zero. It is also noteworthy that these three equations als
from the transformation of the three equations of the form~18! by exchanging the roles o
dependent and independent variables. Much the same happens forL4 . Here the minimal dimen-
sion is 3. The two equations of motion ind dimensions fall into the sum of (3

d) copies of the
minimal equations, whose solution is discussed in Sec. VII.
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VI. COVARIANCE

This section deals with special properties of Lagrangian densities of the previous form
where the square root has been taken, as in the standard Born–Infeld. Here the feature of
covariance plays an important roˆle. This works for arbitrary dimension; under the transformat
of the LagrangianL of square root type under the field redefinition

f i→F i~f1,f2, . . . ,fn!, ~24!

L acquires a factor which is the Jacobian of the transformation and the equations of moti
unaffected on account of~11! since they are given by

]J

]f i
L2

]

]xm S J
]L

]
]f

]xm

D 5
]J

]f i
L2

]J

]f j

]f j

]xm

]L

]
]f

]xm

2J
]

]xm S ]L

]
]f

]xm

D 52J
]

]xm S ]L

]
]f

]xm

D 50,

~25!

as the first two terms cancel on account of~11!. Thus the square root of the determinantal form
a generally covariant Lagrangian, which means that any function of a solution remains a so
of the equations of motion. In fact the equations of motion arising from these Lagrangians,
case where the number of coordinatesxm exceeds that of the numbern of wave fields by one are
a generalization of the Bateman equation~for a generalization in a somewhat different directi
see Ref. 12! and are expected to be completely integrable, since this is the case forn51 andn
52, as we shall demonstrate in the next section.

VII. INTEGRABILITY IN SPECIAL CASES

Consider the Lagrangian

Ltwo5A( S ]f

]xm
D 2

~26!

in the case of two dimensions (m51,2). This action is fully integrable as the equation of moti
is just the Bateman equation~23!.

This equation has the general solution

F~f!x11G~f!x25c5constant, ~27!

whereF,G are two arbitrary functions. It is clearly covariant; iff is a solution so is any function
of f. It is equivalent to a Monge nonlinear wave equation

]u

]x1
5u

]u

]x2
, ~28!

where

u5

]f

]x1

]f

]x2

. ~29!

What is the situation with the next Lagrangian with two fields in three dimensions (m,n
51,2,3),
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Lthree5A( F S ]f

]xm

]c

]xm
D 2

2S ]f

]xm
D 2S ]c

]xn
D 2G? ~30!

We know that the equations of motion are covariant; therefore we expect that they are expr
in first order form in terms of two ratios of the Jacobians

u5
fx1

cx2
2fx2

cx1

fx2
cx3

2fx3
cx2

,

~31!

v5
fx3

cx1
2fx1

cx3

fx2
cx3

2fx3
cx2

,

wherefxm
denotes the partial derivative]f/]xm . The Lagrangian in the first case takes the fo

Ltwo5fx2
A~11u2!. ~32!

Working out the equation of motion gives

]

]x2

1

A11u2
1

]

]x1

u

A11u2
50. ~33!

This equation is equivalent to~28!. The remarkable feature of this Lagrangian is that any diff
entiable functionf (u) instead ofA11u2 will give the same equations of motion.12 This general-
izes; In the second case

Lthree5~fx2
cx3

2fx3
cx2

!A~11u21v2! ~34!

and the two independent equations of motion are

]

]x2

1

A11u21v2
2

]

]x1

v

A11u21v2
50,

~35!
]

]x3

1

A11u21v2
2

]

]x1

u

A11u21v2
50.

A(11u21v2) may be replaced by any arbitrary differentiable function of two variables,f (u,v)
and an equivalent pair of equations of motion is as follows:

]u

]x1
5u

]u

]x3
1v

]u

]x2
,

~36!
]v
]x1

5u
]v
]x3

1v
]v
]x2

.

These equations admit an implicit solution for (u,v) given by solving the equations

u5F~x31ux1 , x21vx1!, v5G~x31ux1 , x21vx1!, ~37!

whereF, G are two arbitrary functions of two variables. The general solution to the equatio
motion is given by settingu5U(f, c) and v5V(f, c), whereU, V are two further arbitrary
functions, and solving~36! for f, c. This demonstrates the integrability of the equations
motion. The generalization ton fields inn11 dimensions will be straightforward. It is anticipate
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that there will be an integrable generalization ton fields in d dimensions along the lines of th
universal field equation,12,13 but that would take us too far afield and away from the spirit of
present investigation.

VIII. ELECTROMAGNETIC INTERACTIONS

The subject of electromagnetic interactions in the study of these new Lagrangians is
stage somewhat speculative. In the original theory, electromagnetic interactions are implem
by the ratherad hoc procedure of adding an antisymmetric piece to the induced metric;gi j

→gi j 1Fi j . This is consistent with the picture of having gauge fields living on the brane,
presumably confined to it by some Meissner-type effect. However, the natural way to c
electromagnetic fields to the dual theory is through a coupling to the conserved currents
theory. This will ensure gauge invariance. It is easy to construct such conserved quantities

Jm
i j 5

]L

]
]f i

]xm

f j , iÞ j ~38!

and in the casei 5 j , the currentsJii 2Jj j are also conserved. There is however an embarass
richesse here as these currents carry two indices. Thus the natural coupling is to a two index
field Am

i j transforming under SO(n), i.e., the contribution

Lcurrent5(
i , j

Am
i j Jm

i j ~39!

represents the part of the Lagrangian coupling a non-Abelian gauge field to the fieldsf i . This
suggestion, though appealing, is rather unorthodox. It is however gauge invariant up to a
gence, as in the gauge transformation

Am
i j →OikAm

klOl j 1Oik
]

]xm
Ok j ~40!

the rotation matrices may be removed by a linear transformation of the fieldsf i and the inhomo-
geneous term converted to an innoccuous divergence. If one wants instead to mimic the
Born–Infeld incorporation of electromagnetism, the simplest assumption would be to suppo
Am depends upon the coordinatesxn only through their dependence uponf j with direction in a
linear combination of the gradients off j . Then we may set

Am5(
j

]f j

]xm
A j~f i !. ~41!

Then a new Lagrangian which adds a term to the matrix components anti-symmetric in (i , j ), the
antisymmetry being related to that ofFmn takes the form withLi j 5(]f i /]xm)(]f j /]xm):

L85AdetU ]f i

]xm

]f j

]xm
1

]

]
]f i

]xm

log~L!
]

]
]f j

]xn

log~L!S ]Am

]xn
2

]An

]xm
DU

5AdetULi j 1~L21! ip~L21!q j
]fp

]xm

]fq

]xn
S ]Am

]xn
2

]An

]xm
D U5AdetU]f i

]xm

]f j

]xm
1S ]A i

]f j
2

]A j

]f i D U .
This manifestly gauge invariant suggestion is in the same spirit as the original Born–I
Lagrangian especially if the square root form is taken.
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An alternative suggestion to compare the Kalb–Ramond string interaction

Bmn

]Xm

]s

]Xn

]t
~42!

seems less satisfactory, because on the dual brane side this would give

Bmn

]f

]xm

]c

]xn
~43!

and this interaction, though gauge invariant is more like a Pauli term than one coming
minimal coupling.

IX. CONCLUSION

While our answer might require some modification, we believe that we have posed an
esting and important question; to find Lagrangians for fields which bear a similar relation to
and brane Lagrangians as does the Klein–Gordon to that of the classical point particle. A co
characteristic of these Lagrangians, as indeed of all free theories, is that they are p
topological, i.e., the Lagrangian is equivalent to a divergence on the space of solutions
equations of motion. If the square root form is taken then the new Lagrangians are covaria
the equations of motion are integrable and coincide in the case that the dimensions of spac
exceeds that of the fields by one, with the universal field equations proposed earlier.12–14 Some
ideas for the introduction of gauge fields have been discussed.
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In this paper a mean-field theory for the evolution of an electron in a crystal is
proposed in the framework of the Schro¨dinger formalism. The well-posedness of
the problem as well as the conservation laws associated to the invariances of the
Action Functional of the problem and the stability of the minimal energy solution
are studied. ©2000 American Institute of Physics.@S0022-2488~00!02507-X#

I. INTRODUCTION AND MAIN RESULTS

The analysis of transport phenomena in solids~specially in semiconductors! has attracted
much attention from a physical, engineering and mathematical point of view due to the incre
miniaturization of electronic devices. The relevant scales are of the order of nanomete
quantum effects are shown to become relevant. Under these circumstances the charge car~for
example, electrons! must be handled from a quantum-mechanical perspective. The general
lem is rather complicated to be described from first principles in the general case, hence sim
models provide useful insight into this problem. An outstanding semirealistic and already s
example is provided by the motion of an electron in a polar crystal. The effect of the attra
electron–ion interaction is to dress the electron in such a way that it behaves as a different
the polaron. In our attempt to establish a rigorous mathematical theory for this system, w
study the case of the time evolution of a single electron in a pure quantum-mechanica
characterized by its wave function,c(t,x), interacting with a continuum of classical charged ion
described by a classical polarization fieldP(t,x).

The motion of the ions is considered to be classical, and in the continuum limit this c
sponds to a classical polarization field. In a more realistic approach, one has to take into a
the quantum nature of the ions as well. In the continuum limit this procedure corresponds
quantization of the polarization field in Fock space. On the other hand, a mean-field approxim
of the polarization field may be justified in the limit where the electron interacts very strongly
the ions, since in that case the full quantum phonon state can be represented a a coherent state o
phonons.

The study of the polaron problem has been treated in the literature in different contex
the one hand, the Fro¨lich Hamiltonian for the polaron problem as a model for the Coulo

a!Electronic mail: phbe@visitante-ma.ugr.es
b!Electronic mail: jjmnieto@ugr.es
c!Electronic mail: earriola@ugr.es
d!Electronic mail: jsoler@ugr.es
42930022-2488/2000/41(7)/4293/20/$17.00 © 2000 American Institute of Physics
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interaction of one or more electrons with the quantized phonons of an ionic crystal has
extensively studied, see for example the following works: Gerlach and Lo¨wen,1 Lieb and
Thomas,2 and Haug and Jauho.3 On the other hand, the Schro¨dinger–Poisson system is consider
as a classical approach to this problem in the framework of the Schro¨dinger/Wigner formalism,
see, for example, Illner, Zweifel, Lange,4 Gérard, Markowich, Mauser and Poupaud,5 Lions and
Paul,6 and Castella.7 Lieb proved in Ref. 8 that there is a uniqueH1 solution of the Schro¨dinger–
Poisson system

cL~x,t !5e2 i eLt/\fL~x!

such thatfL minimizes the Choquard energy functional

E@f#5E
Rx

3S \2

2m
u“fu21

1

8p E
R

x8
3

uf~x!u2uf~x8!u2

ux2x8u
dx8D dx

the ‘‘eigenvalue’’eL being the Lagrange multiplier and where the ‘‘eigenfunction’’fL(x) solves
the stationary Schro¨dinger equation

eLfL52
\2

2m
DxfL1VLfL , ~1!

lim
uxu→`

fL50, ~2!

coupled to the Poisson equation

DxVL5ufLu2, ~3!

lim
uxu→`

VL50, ~4!

where\ is the Planck constant andm is the mass of the electron.
Let us summarize the main results of this paper. In Sec. II we rederive the model fo

evolution of an electron in a crystal by using a mean-field approach which consists in the co
of the Schro¨dinger equation with an equation for the potential in which the effect of the Coul
interaction between electrons and phonons is not instantaneous and incorporates the me
the previous evolution. In Sec. III we study the action functional associated with the sy
deduced in Sec. II which makes easier a Lagrangian interpretation. As a by-product it is
simple, within the Lagrangian formulation, to identify through Noether’s theorem the constan
motion, such as norm, energy, linear momentum and angular momentum. The method o
son’s brackets does not produce any new conserved quantities. Section IV is devoted to st
well-posedness of the system: existence and uniqueness. We first prove an existence resuH1

which justifies the definition of the energy of the system and we extend this result to thL2

context. In Sec. V we prove that the Lieb’s solution is the absolute minimizer also in the po
problem and its stability in the Liapunov sense. In Sec. VI we analyze the stability of the min
energy solution under linear perturbations of the minimal energy solution. Finally, in Sec. V
study the Wigner formulation of the system and also the Vlasov formulation by means o
semiclassical limit.

Throughout the paper we have considered a single-particle approach, although we ma
consider the more general motion of an ensemble of electrons. In that case, a Coulomb re
among electrons should be also considered. The interesting point is that, in the strong ele
phonon coupling limit, the motion of the ions can be regarded as classical, although the el
still retains its quantum behavior. Another interesting point lies in the possibility of a two-ele
bound state formation, called bipolaron.
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II. DERIVATION OF THE POLARON MODEL

The derivation of the polaron model is well known, and the reader can find many varia
the literature, see e.g., Refs. 9 or 10, where a treatment of the polaron model is given in th
integral formulation. This model has attracted much attention as it provides a simple bu
nontrivial example of the interaction of a particle with a field. For completeness we try here a
and hopefully comprehensive presentation. The ions oscillate in the optical branch classica
to the presence of a charged quantum electron, which feels at the same time the elect
potential created by the ions. This yields a system of partial differential equations for the ele
wave functionc(t,x) and the electrostatic potentialV(t,x) felt by the electron. Finally, we
reformulate our equations in terms of the polarization vector fieldPW .

We will study the dynamics of an ionic crystal. LetL be a lattice inR3 with respect to the
basis (a1 ,a2 ,a3), given by

L5$n5m1a11m2a21m3a3 , with ~m1 ,m2 ,m3!PZ3%.

For the sake of simplicity we consider here a simple model, but we could easily generaliz
theory to models that involve some phenomenologies. Thus, we focus on a three-dimen
cubic crystal with two types of charged ions. At the equilibrium, the positive ions with massM 1

are at the lattice pointsnPL corresponding to coordinates withm11m21m3 even and the nega
tive ions with massM 2 are at the other points ofL. Let us denote byn1 andn2 the position of
a positive and negative ions, respectively. We assume that each ion is interacting only with i
neighbors. This implies that each positive ion interacts with its six next negative neighbor ion
vice versa. The interaction is elastic with a uniform restoring constantk. Moreover, we assume
that there exists an external electric field acting on the ions.

The motion of positively and negatively charged ions with massesM 1 andM 2 in the pres-
ence of an external electric field is described by

M 1j9n152k(
l

~jn12jn11 l !1eE n1~ t !, ~5!

M 2j9n252k(
l

~jn22jn21 l !2eE n2~ t !, ~6!

for any n1,n2PL, wheree is a positive constant related with the charge of the electron5
2e). Here,jn1 andjn2 are the time-dependent displacement vectors with respect to the eq
rium position at the lattice siten1 and n2 which are occupied by a positive and negative io
respectively,En(t) is the electric field at siten and l P$6ai ,i 51,2,3%. Going to the continuum
limit: a1 ,a2 ,a3→0 andn→x, with x any point of space, we get

j19 ~ t,x!52
k

M 1 (
l

~j1~ t,x!2j2~ t,x!!1
e

M 1 E~ t,x!,

j29 ~ t,x!52
k

M 2 (
l

~j2~ t,x!2j1~ t,x!!2
e

M 2 E~ t,x!,

where

j1~ t,x!5 lim
n1→x

jn1~ t !, j2~ t,x!5 lim
n2→x

jn2~ t ! and a1 ,a2 ,a3→0.

Substracting both equations we have
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] t
2j~ t,x!1V2j~ t,x!5

e

M
E~ t,x!, ~7!

where M 215M 1
211M 2

21 , V256k/M and the displacement fieldj(t,x) is defined asj(t,x)
5j1(t,x)2j2(t,x).

The rigorous justification of these limits will not be given here.
The polarization of the ionic crystal~dipole moment per unit volume! is due both to the

displacement of the ions, represented by the fieldj(t,x), and to the deformation of the ion
themselves, i.e., displacement of the electrons with respect to their nuclei. If we neglect f
moment the latter contribution we haveP(t,x)5er̄j(t,x), with r̄ denoting the number of ions pe
unit volume. We will come to this point below.

The electric field produced by a free moving quantum mechanical electron with charge
sity re(t,x)52euc(t,x)u2,0, is given by Gauss’s law:E52¹VE , with the electrostatic poten
tial given by Poisson’s equationDVE5euc(t,x)u2. Thus,E(t,x) is given by

E~ t,x!5
e

4p
¹E

R3

uc~ t,x8!u2

ux2x8u
dx8. ~8!

Then, in terms of the polarization field, we have

] t
2P~ t,x!1V2P~ t,x!5

e

4pm
¹E

R3

uc~ t,x8!u2

ux2x8u
dx8, ~9!

wherem5M /( r̄e2). We supplement the previous equation with Schro¨dinger’s equation for the
electron with a potentialV(t,x)52eVP(t,x), whereVP(t,x) is the electrostatic potential pro
duced by the ion polarizationP(t,x). Taking into account the relation¹VP5P, which implies
DVP5div P, and taking the divergence of the previous equation, we have the following syste
coupled partial differential equations:

~] t
21V2!DV5

e2

m
ucu2, ~10!

i\] tc52
\2

2m
Dc1Vc. ~11!

So far the effect due to the intrinsic ionic deformation has been neglected, what makes the
somewhat less realistic. A more detailed analysis shows that this effect can be included, s
9 by setting

1

m
5

r̄e2

M
5V2S 1

e`
2

1

e0
D5

defV2

ē
, ~12!

wheree0 ande` are the experimentally measurable dielectric constants at low and high freq
cies, respectively. We have also introduced the effective dielectric constantē. Experimentally one
hase0.e` , whenceē.0.

To conclude this section, let us note that in the limitV2→` the Schro¨dinger–Poisson~SP!
system is recovered, since the term containing the second derivative in time can be neglec
that case, from the solution of the first equation we see that the potentialV(t,x) entering Schro¨-
dinger’s equation turns out to be negative, i.e., it corresponds to the attractive case.

III. VARIATIONAL FORMULATION AND CONSERVATION LAWS

If written in terms ofP andc, the Eqs.~10! and~11! can be derived by minimizing the actio
functional
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S@c,c* ,P#5E
R1

E
R3

L~ t,x!dx dt ~13!

with respect toc, its complex conjugatec* and the polarization fieldP. Here the Lagrangian
density is given by

L~ t,x!5
m

2
~~] tP!22V2P 2!1 i\c* ] tc2

\2

2m
¹c* ¹c2

e

4p
div PE

R3

uc~ t,x8!u2

ux2x8u
dx8. ~14!

Using Noether’s theorem~see Ref. 11! it is straightforward to obtain the conserved quantiti
These are the total energy, the total linear and angular momentum and the mass, which
deduced, respectively, from the invariance of the action functional under:

Time translationsc(t,x)→c(t1s,x), which implies conservation of the total energy

E5
m

2 E
R3

~~] tP!21V2P 2!dx1
\2

2m E
R3

¹c* ¹c dx1
e

4p E
R3

div PS E
R3

uc~ t,x8!u2

ux2x8u
dx8D dx,

~15!

which is the sum of a phonon energy, an electron energy and a electron–phonon inte
energy.

Space translationsc(t,x)→c(t,x2a), which produces the conservation of the linear m
mentum that is a vector whose Cartesian components are given by

Pj5E
R3S (

k51

3

m] tPk

]

]xj
Pk1

\

i
c*

]

]xj
c D dx ~16!

which is additive in the phonon and the electron contributions.
Space rotationsc(t,x)→c(t,R21x), which gives the conservation of the angular moment

that whose Cartesian components can be written as

L j5E
R3S (

k51

3

m] tPk~x`¹! jPk1
\

i
c* ~x`¹! jc D dx ~17!

and are also an additive quantities.
Finally, global phase transformationsc(t,x)→eiac(t,x), which yields to the conservation o

the mass~total charge!

N5E
R3

uc~ t,x!u2 dx, ~18!

where the mass of the electron is typically normalized to the unity.
The set of conserved quantities constitutes a closed algebra in the sense of Poisson’s b

~see Ref. 11!, isomorphic to the Lie algebra associated with the direct product of the Eucli
group and the phase group,E(3)^ U(1). In addition, one also has discrete parity and tim
reversal symmetries.

The latter possesses an additional Galilean invariance which results very naturally fro
absence of retardation. This invariance was crucial to prove many properties of the SP syste~see
Ref. 11!. Retardation is physically compelling since in our model ions react harmonically to
electric field created by the electron while travelling along the crystal. Notice that this retard
does not disappear after some time, but remains along the evolution as there is no damping
This may be a drawback of the classical treatment of the polarization field. If the polarization
is quantized, there appear quantum fluctuations which might give rise to energy dissipation
the electron to the phonons. This point will not be treated here.
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The total energy is conserved, so that one can imagine a situation where both the phono
the electron oscillate at the expense of each other. We will illustrate this possibility belo
analyzing the linear stability problem. Actually, we shall prove that small amplitude harm
oscillations are unavoidable if we are close enough to the absolute energy minimum. Rec
for the SP system such a possibility was realized independently of the linear approximation
case of total negative energy~see Ref. 11!.

Another case would be that the electron steadily transfers energy to the phonons in such
that it reduces its energy to the smallest possible value.

IV. EXISTENCE AND UNIQUENESS OF SOLUTIONS

As already mentioned, the motion of an electron interacting with phonons in a crystal l
is described by the following Schro¨dinger–Poisson system with memory~SPM!:

i\
]

]t
c52

\2

2m
Dxc1V@c#c, ~19!

c~0,x!5w~x!, ~20!

lim
uxu→`

c~ t,x!50, ~21!

whereV5V@c# solves the equation

S ]2

]t2 1V2DDxV52g
e2V2

ē
ucu2, ~22!

with xPR3, t>0 and whereV is the pulsation of the phonons. Also the total charge has b
normalized to unity:

E
R3

uc~ t,x!u2 dx51 ;t>0.

Although we have derived the model for the attractive Coulomb potential, we have
extended in this section the analysis of this model to the repulsive case by introducing the p
eterg, which equals 1 in the repulsive case and21 in the attractive case. Equations~19!–~22!
should be understood in a weak~distributional! sense. In the sequel we will not specify any mo
the dependence of the potential on the wave function,V5V@c#. Solving Eq.~22! with V(0,•)
5] tV(0,•)[0, we find that the potentialV is given by

V~ t,x!5g
e2V

4pē E0

tE
R3

sin~V~ t2s!!
uc~s,x8!u2

ux2x8u
dx8 ds. ~23!

We remark that the energy of the system is given by

E~ t !5
\2

2m E
R3

u¹xc~ t,x!u2 dx1E
R3

V~ t,x!uc~ t,x!u2 dx

2g
ē

2e2 E
R3

u¹xV~ t,x!u2 dx2g
ē

2e2V2 E
R3

u¹xVt~ t,x!u2 dx. ~24!

We will show that the energy is well-defined as soon as the SPM system is posed inH1(R3). Also,
it can be easily checked that the energy is conserved.

In this section, we shall develope two different existence theories for the solutions o
system~19!–~22!. For that, we start by making precise the concept of solution to be consid
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Definition 4.1: A mild solution of the SPM system is a pair(c,V) such thatcPC(0,T;X)
~with X5H1(R3) or L2(R3)! for any T.0 and verifies the following Schro¨dinger equation in
integral form:

c~ t,x!5U~ t !w~x!2 i E
0

t

U~ t2s!~V@c#c!~s,x!ds, ~25!

where V@c# is given by (23) and U(t) is the propagator of the free Schro¨dinger equation (see Ref
12).

The first result we prove concerns the existence and uniqueness of solutions inH1(R3). For
the existence and uniqueness problem inL2(R3) we need to use the space–time Strichartz
equalities as defined in Ref. 7, which allow to control the nonlinear termV@c#c. To this aim, we
will use a regularization of the initial data inH1 and then apply a fixed-point argument on~25!. In
both cases we show thatV@c#c is locally Lipschitz continuous, uniformly in time~see Ref. 12!.

A. Existence and uniqueness in H1
„R3

…

We study separately the potential inside and outside a ball~denoted byV1 andV2 , respec-
tively!. First, we write the potential in convolution form:

V@c#5g sin~Vt !* tK* xucu2, ~26!

where

K~x!5
e2V

ē

1

4p

1

uxu

is the kernel associated with2(e2V/ ē)D in R3. Remark that* t is not exactly a convolution in
time, but just the expression written in~23!. Now we considerK5K11K2 , with K15xK and
K25(12x)K, wherex is a C` function such thatx51 if uxu<1 andx50, if uxu.2. Thus, we
have the following decomposition forV:

V@c#5V1@c#1V2@c#5
def

g sin~Vt !* tK1* xucu21g sin~Vt !* tK2* xucu2.

Let us now give the main result of this section.
Theorem 4.1: Let wPH1(R3). Then, the SPM system has a unique global solutionc

PC(0,̀ ;H1(R3)!, and the energy functional (24) is well-defined for every tP@0,̀ ).
Before proving the theorem, we need the following result.
Lemma 4.1: Let T.0 and u,v,w in L`(0,T;H1(R3)!. Then, there exists a constant C su

that the inequality

i~~sin~Vt !* tK* xuv !w!~ t,• !iH1(R3)<CTiuiL`(0,T;H1(R3))iviL`(0,T;H1(R3))iwiL`(0,T;H1(R3)) ,

holds for all tP@0,T#.
Proof: We shall first prove the following estimates:

i~~sin~Vt !* tK* xuv !w!~ t,• !iL2(R3)<C1TiuiL`(0,T;L2(R3))iviL`(0,T;H1(R3))iwiL`(0,T;H1(R3)) ,
~27!

i~~sin~Vt !* tK* xuv !w!~ t,• !iL2(R3)<C2TiuiL`(0,T;H1(R3))iviL`(0,T;H1(R3))iwiL`(0,T;L2(R3)) .
~28!

The Hölder and Minkowski inequalities give
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i~~sin~Vt !* tK* xuv !w!~ t,• !iL2(R3)<usin~Vt !u* ti~K1* xuv !~ t,• !iL3(R3)iw~ t,• !iL6(R3)

1usin~Vt !u* ti~K2* xuv !~ t,• !iL4(R3)iw~ t,• !iL4(R3) .

Using now the Young and Ho¨lder inequalities it yields,

i~K1* xuv !~ t,• !iL3(R3)<iK1iL2(R3)iu~ t,• !iL2(R3)iv~ t,• !iL3(R3)

and

i~K2* xuv !~ t,• !iL4(R3)<iK2iL4(R3)iuiL2(R3)iviL2(R3) .

Finally, using the Sobolev embeddings we get~27! with

C15max$iK1iL2(R3) ,iK2iL4(R3)%.

We follows the same step to get~28! with C25max$iK1iL2(R3) ,iK2iL`(R3)%.
For the derivative we can write

¹x~~sin~Vt !* tK* xuv !w!5~sin~Vt !* tK* xuv !¹xw,

1~sin~Vt !* tK* x~¹xu!v !w

1~sin~Vt !* tK* xu~¹xv !!w. ~29!

The proof concludes by using~27!–~28!, to estimate theL2-norm of ~29!. h

Proof of Theorem 4.1:Using the triangle inequality and Lemma 4.1 we get

i~V@c1#c12V@c2#c2!~ t,• !iH1(R3)<3Ct max$ic1iL`(R1 ;H1(R3)) ,

ic2iL`(R1 ;H1(R3))%
2ic12c2iL`(R1 ;H1(R3)) .

As a consequence the map (t,u)°(V@u#u)(t) is locally Lipschitz inu, uniformly in t on bounded
intervals@0,T#. This implies that there exists a unique solutioncPC(0,Tmax;H

1(R3)) ~see Theo-
rem 6.1.4 of Ref. 12!. To prove thatTmax5` it suffices to show thatic(t,•)iH1(R3) is bounded on
intervals@0,T#, for all T.0.

For that, we need to use the property of energy conservation. First we show that the fun
~24! is well defined. The following properties are verified:

V~ t,• !PL`~R3!, ¹xV~ t,• !PL2~R3!,
]¹xV

]t
~ t,• !PL2~R3!.

In fact, we can estimate theL` norm of V(t,•) as in Lemma 4.1

iV~ t,• !iL`(R3)<E
0

t

usin~V~ t2s!!uiK1iL2(R3)ic~s,• !iL4(R3)
2 ds1tiK2iL`(R3) .

Taking into account thatH1,L2ùL6 by the Sobolev embeddings, we have

iV~ t,• !iL`(R3)<C t1CE
0

t

ic~s,• !iH1(R3)
2 ds, ~30!

which implies thatV(t,•)PL`(R3) for 0<t<T,Tmax. We can also write

¹xV5g~sin~Vt !* t¹xK* xuc2u!

and
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]¹xV

]t
5gV~cos~Vt !* t¹xK* xuc2u!.

Thus both terms are analogous. Let us prove that (sin(Vt)* t¹xK* xuc2u)(t,•)PL2(R3). Then, as in
Lemma 4.1, we have

i~sin~Vt !* t¹xK* xuc2u!~ t,• !iL2(R3)

<usin~Vt !u* ti¹xK1iL6/5(R3)iucu2~ t,• !iL3/2(R3)

1usin~Vt !u* ti¹xK2iL2(R3)iucu2~ t,• !iL1(R3) , ~31!

which is bounded ascPH1. Therefore, the energy functional is well defined.
In the repulsive case it is easy to prove that¹xc is bounded inL2. However, we give an

argument which is valid for both repulsive and attractive cases. Using the interpolating inequ
and the Sobolev inclusionH1,L6 we find

iucu2~ t,• !iL3/2(R3)<Cic~ t,• !iL2(R3)ic~ t,• !iH1(R3) .

Then, using~31! and the mass conservation, we obtain

max$i¹xV~ t,• !iL2(R3)
2 ,i¹xVt~ t,• !iL2(R3)

2 %<S CT1CE
0

t

ic~s,• !iH1(R3) dsD 2

. ~32!

Now, from ~24! we find

\2

2m
i¹xc~ t,• !iL2(R3)

2 <E~0!1U E
R3

V~ t,x!Uc~ t,x!u2 dxu1
ē

2e2 i¹xV~ t,• !iL2(R3)
2

1
ē

2e2V2 i¹xVt~ t,• !iL2(R3)
2

which combined with~30! and ~32! gives

i¹xc~ t,• !iL2(R3)
2 <C~11T!1E

0

t

ic~s,• !iH1(R3)
2 ds1S CT1E

0

t

ic~s,• !iH1(R3) dsD 2

.

The property of mass conservation allows to write

ic~ t,• !iH1(R3)
2 <CS 11T1T21~11T!E

0

t

ic~s,• !iH1(R3)
2 dsD .

The Gronwall inequality finally yields

ic~ t,• !iH1(R3)
2 <C~11T1T2!eCT.

ThereforeTmax5`. h

B. Existence and uniqueness in L 2

The aim of this section is to extend the results of the previous one to the case of initia
belonging toL2(R3). The L2 theory for the Schro¨dinger–Poisson system has been recently
veloped by Castella in Ref. 7. We shall extend these results to the polaron model under stu
us begin with some notations and definitions.

Definition 4.2: Given T.0 and p,qP@1,̀ #, we define the following spaces:
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LT
q,p5

def

Lq~0,T;Lp~R3!!,

Lloc
q,p5

def

L loc
q ~R1 ;Lp~R3!!,

Lq,p5
def

Lq~R1 ;Lp~R3!!,

XT
q,p5

def

LT
q,pùLT

`,2 , with the norm iciX
T
q,p5

def

iciL
T
q,p1iciL

T
`,2,

YT
q,p5

def

LT
q8,p81LT

1,2 , with the norm iciY
T
q,p5

def

infc11c25c$ic1iL
T
q8,p81ic2iL

T
1,2%.

Definition 4.3: We will say that a pair(q,p) is admissible, and we write(q,p)PA, if the
following properties are verified:

2<p,6 and
2

q
53S 1

2
2

1

pD .

The next result use the Strichartz inequalities~see Ref. 7!.
Theorem 4.2:Let T.0 and (q,p) be an admissible pair. Then, the following properties a

verified: (i) There exists a positive constant C(q), such that

iU~ t !wiL
T
q,p<C~q!iwiL2(R3)

for all wPL2(R3). ~ii ! For all (a,b)PA, there exists C(a,q) such that

I E
0

t

U~ t2s! f ~s!dsI
L

T
a,b

<C~a,q!i f iL
T
q8,p8.

for all f PLT
q8,p8 . ~iii ! In particular, there exists a constant C(q), depending only on q, such that

I E
0

t

U~ t2s! f ~s!dsI
X

T
q,p

<C~q!i f iY
T
q,p

for all f PYT
q,p .

Using Theorem 4.2~i! we can control theL2-norm of the first term of the integral equatio
~25!. Here, the mapc°V@c#c is not Lipschitz inL2(R3), but it will be Lipschitz inLT

q,p for any
T.0 and (q,p)PA.

Theorem 4.3:(Existence and Uniqueness for the SPM system in L2(R3)!. Let wPL2(R3). Let
alsosP]3/2,3@ , p52s/(s21).3, and let q be such that(q,p) is admissible. Then, there exis
a unique function

cPLloc
q,pùC~R1 ;L2~R3!!

which solves the SPM system (19)–(22) with initial dataw. In this case, the nonlinear term V@c#c

belongs to LT
q8,p81LT

1,2 . Moreover, the following properties are verified:

~i! For all t>0,ic(t)iL2(R3)5iwiL2(R3) .
~ii ! For all (a,b)PA, thencPLloc

a,b .
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~iii ! If $wn%nPN is a sequence of initial data converging tow in L2(R3), then the corresponding
sequence of solutions$cn% to the SPM verifies:

cn→c in Lloc
a,b

for all admissible pair(a,b).
To prove this theorem we first need a technical result which essentially gives the Lips

property inLT
q,p . We will show that the potentialsV1 and V2 are Lipschitz and their Lipschitz

constants go to zero asT→0.
Lemma 4.2: Letc, c̃ be two solutions of the SPM system with initial dataw and w̃, respec-

tively. Let M5max$iwiL2(R3) ,iw̃iL2(R3)%, and let T,s,p and q as in Theorem 4.3. Then, th
following properties are verified:

~i! iV1@c#c2V1@c̃#c̃iL
T
q8,p8<C(p)M2T22(2/q)ic2c̃iL

T
q,p,

~ii ! iV2@c#c2V2@c̃#c̃iL
T
1,2<CM2T2ic2c̃iL

T
`,2.

~iii ! In particular, we have

iV@c#c2V@c̃#c̃iY
T
q,p<C~p!M2 max$T2,T22 ~2/q!%ic2c̃iX

T
q,p.

Proof: We remark thatic(t,•)iL2(R3) and ic̃(t,•)iL2(R3) are constant in time, thusM is an
upper bound for these quantities. We first prove part~i! of the lemma. Notice thatK1PLs(R3). In
addition, for alluPL`(0,T;Lp(R3)) andv,wPL`(0,T;L2(R3)), we have

i~~sin~Vt !* tK1* xuv !w!~ t,• !iLp8(R3)

<C~p!~ usin~Vt !u* tiu~ t,• !iLp(R3)iv~ t,• !iL2(R3)!iw~ t,• !iL2(R3) . ~33!

Also, for all u,vPL`(0,T;L2(R3)) andwPL`(0,T;Lp(R3)) we have

i~~sin~Vt !* tK1* xuv !w!~ t,• !iLp8(R3)

<C~p!~ usin~Vt !u* tiu~ t,• !iL2(R3)iv~ t,• !iL2(R3)!iw~ t,• !iLp(R3) . ~34!

It is a simple matter to prove~33! and~34! @with C(p)5iK1iLs# by using the Ho¨lder, Young and
Minkowski inequalities as well as the relations betweenp ands.

Let now 1<q8<`. Then for all f PLq8(0,T) we have

isin~Vt !* t f iLq8(0,T)<Ti f iLq8(0,T) . ~35!

As consequence, from~33! and ~34! we find the following estimate:

iV1@c#c2V1@c̃#c̃iLp8(R3)5i~sin~Vt !* tK1* xucu2!c2~sin~Vt !* tK1* xuc̃u2!c̃iLp8(R3)

<C~p!~ usin~Vt !u* tic2c̃iLp(R3)ic̃iL2(R3)!iciL2(R3)

1C~p!~ usin~Vt !u* tic̃iL2(R3)ic2c̃iLp(R3)!iciL2(R3)

1C~p!~ usin~Vt !u* tic̃iL2(R3)
2

!ic2c̃iLp(R3) .

Therefore

iV1@c#c2V1@c̃#c̃iLq8,p8<C~p!M2Tic2c̃iLq8,p.

Applying now the Ho¨lder inequality gives
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iV1@c#c2V1@c̃#c̃iLq8,p8<C~p!M2T[22 ~2/q!] ic2c̃iLq8,p.

The same argument can be applied to prove assertion~ii !, since

i~~sin~Vt !* tK2* xuv !w!~ t,• !iL1(R3)<C~ usin~Vt !u* tiu~ t,• !iL2(R3)iv~ t,• !iL2(R3)!iw~ t,• !iL2(R3) ,

for all u,v,wPL`(0,T;L2(R3)), whereC5iK2iL`(R3) . h

Proof of Theorem 4.3:We first prove the existence of solutions inL2. Consider a sequence o
initial data$wn%nPN satisfying that

wnPH1~R3!;nPN and wn→w in L2~R3! as n→`.

Let cn(t)PH1(R3) be the solution of the SPM system corresponding to the initial datawn , which
is meaningful from the existence result inH1. Let M be such thatiwn(t)iL2(R3)<M for all t
.0 and nPN. We want to show thatcn is a Cauchy sequence in the spacesLT

a,b for every
admissible pair (a,b), and forT small enough. We chose the integral form of the Schro¨dinger
equation~25! and write,

cn~ t,• !5U~ t !wn2 i E
0

t

U~ t2s!~V@cn#cn!~s,• !ds.

Then, form, nPN and tPR1 , we can splitV as in Lemma 4.1 to have

cm~ t !2cn~ t !5U~ t !~wm2wn!

2 i E
0

t

U~ t2s!~V1@cm#cm2V1@cn#cn!~s!ds

2 i E
0

t

U~ t2s!~V2@cm#cm2V2@cn#cn!~s!ds

5
def

a1b1s.

Then, we can estimate theLa,b norm of a by using Theorem 4.2:

iaiL
T
a,b<C~a!iwm2wniL2(R3) . ~36!

Also we have

ibiL
T
a,b<C~a,q!iV1@cm#cm2V1@cn#cniL

T
q8,p8,

where (q,p) is the admissible pair defined as before. Moreover, from Lemma 4.2~i! we find

ibiL
T
a,b<C~a,q,p!M2T22 ~2/q!icm2cniL

T
q,p. ~37!

Finally, from Theorem 4.2~ii ! and Lemma 4.2~ii ! we obtain

isiL
T
a,b<CiV2@cm#cm2V2@cn#cniL

T
1,2<CM2T2icm2cniL

T
`,2. ~38!

Combining~36!, ~37!, and~38! we obtain the following inequality:

icm2cniL
T
a,b<C~ iwm2wniL2(R3)1T22 ~2/q!icm2cniL

T
q,p1T2icm2cniL

T
`,2!, ~39!
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which is valid for any admissible pair (a,b) and whereC5C(a,p,q). If we now choose (a,b)
5(q,p) and (a,b)5(`,2) in ~39! we find

icm2cniX
T
a,b<C~ iwm2wniL2(R3)1max$T22 ~2/q!,T2%icm2cniX

T
a,b!.

Then, takingT0,min$1,C21/[22 (2/q)]% we obtain

icm2cniX
T0

a,b<C~p,q!iwm2wniL2(R3) . ~40!

Finally, from ~39! and ~40! and due to the continuous injections ofLT
q,p andLT

`,2 in XT
q,p we get

icm2cniL
T0

a,b<C~a,p,q!iwm2wniL2(R3) .

Therefore, we have proved the existence of a limit wave functionc such that

cn→c in LT0

a,bùLT0

`,2 . ~41!

Since the sequencecn belongs toC(@0,T0#;L2(R3)) and theL2 norm is preserved in time, the
convergence properties inLT0

`,2 imply that

cPC~@0,T0#;L2~R3!!, ic~ t,• !iL2(R3)5iwiL2(R3)<M . ~42!

If we reiterate the above argument with initial datac(T0),c(2T0), . . . , we cancover the
whole real line and obtain~41! and ~42! for all T0.0, so that

cn→c in L loc
a,b and cPC~R1 ;L2~R3!!.

Let us now show that the equations are satisfied by the limit functionc. For nPN and t
PR1 we have

i\
]

]t
cn52

\2

2m
Dxcn1V1@cn#cn1V2@cn#cn . ~43!

The convergence properties ofcn in C(R1 ;L2(R3)) yield

cn→c, Dcn→Dc in D8~R13R3! as n→`. ~44!

In addition, Lemma 4.2~ii ! leads to

V2@cn#cn→V2@c#c in L loc
1,2. ~45!

On the other hand,cn→c in L loc
q,p implying that

V1@cn#cn→V1@c#c in L loc
q8,p8 , ~46!

where we have used Lemma 4.2~i!. Hence, this convergence holds inD8(R13R3) for each
component ofV. Thus, the statements~43!–~46! clearly imply that the Schro¨dinger equation

i\
]

]t
c52

\2

2m
Dxc1V~c!c

is satisfied byc in the sense of distributions. This concludes the first part of the proof.
We now prove uniqueness. For that, we assume that there exists two different solutionsc and

c̃, and using the same argument as in the existence part we obtain that
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ic2c̃iX
T0

a,b<C~q,p!ic~0,• !2c̃~0,• !iL2(R3)50,

which implies uniqueness in@0,T0#. Reiterating the same arguments in virtue of the continuity
c we conclude that uniqueness holds globally in time. It remains to prove the continuous d
dence on the initial data, but it is an easy consequence of the ideas developed in the existe
of the proof.

V. THE STATIONARY MINIMUM OF THE POLARON SYSTEM AND LIAPUNOV
STABILITY

In the following sections we focus our attention on the attractive Coulombian model. We
show that the Lieb stationary solution of the Schro¨dinger–Poisson system is also a minimum
our functional energy~15! and is stable in the Liapunov sense. Note that any stationary solutio
the SP system is also an stationary solution of the SPM problem.

Theorem 5.4:The energy associated with the SPM system inH1(R3) has a minimum given
by the Lieb solutioncL . Moreover, the energy functional is a Liapunov functional, hencecL is a
stable minimum of the SPM system in H1(R3).

Proof: From the definition of the total energy~15! of the SPM system it is clear that

E@c,P#>Ē5
def

E@c,P#u] tP50

5
\2

2m E
R3

u¹cu2 dx1
e

4p E
R3

div PS E
R3

uc~ t,x8!u2

ux2x8u
dx8D dx

1
m

2 E
R3

V2P 2 dx.

The first component of the Euler–Lagrange equation is the variation ofĒ with respect toP, which
is given by

DPĒ[2
e

4p
¹E

R3

uc~ t,x8!u2

ux2x8u
dx81mV2P50, ~47!

whereDP denotes the Fre´chet derivative with respect toP. From ~47! we deduce the relation
div P52(e/ ē)ucu2. Therefore, we have

min
c,P

Ē>min
c

H \2

2m E
R3

u¹c~ t,x!u2 dx2
e2

2ē

1

4p E
R6

uc~ t,x!u2uc~ t,x8!u2

ux2x8u
d~x,x8!J , ~48!

which is just the Choquard energy functional. As we have remarked in the introduction o
paper, it is well known that this functional has an infimumcL constructed by Lieb in Ref. 8. Thus
the polaron energy functional has also an infimum corresponding to the Lieb solution. Now w
easily show thatE is a Liapunov functional. AscL is a minimum ofE in H1(R3), this implies that
E is positive definite in a neighborhood ofcL . Moreover, since we have shown that the energy
conserved, we have

d

dt
E@c~ t !,P@c#~ t !#50,

for any c solution of the SPM system, and thereforeE is a Liapunov functional. Then, the Lie
stationary solution is stable. h

The Lieb solution enjoys some symmetry properties with respect to transformations o
wave functionc, namely global phase transformations, translations and rotations. This mean
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if the minimizer is denoted bycL(x) with energy EL5E@cL#, then eiacL , cL(x2a), and
cL(R21x) have the same energyEL , independently on the phasea, the translation vectora and
the rotation matrixR. These properties agree with the invariance properties of the action
tional studied in Sec. III and are also valid for any~not necessarily a minimizer! wave function.
This means that there exist special variations aroundcL verifying

dE

da
50,

dE

da
50,

dE

dR
50, ;a, a and R,

which make the second~and in fact all orders! variation around the Lieb solution to become ze
Hence, there are 1131357 zero modes, corresponding to symmetry transformations of
minimum, which do not correspond to true deformations. In what follows we identify any
functions which differ by a symmetry transformation of the type mentioned above, as belong
the same class.

VI. LINEAR STABILITY OF THE POLARON

The purpose of this section is to establish the linear stability of the time-dependent po
system around the static Lieb solution. We carry out this analysis in terms of the variablesc(t,x)
andV(t,x). The coupled system of equations is

] t
2~DV!1V2~DV!5

V2e2

ē
ucu2,

i\] tc52
\2

2m
Dc1Vc.

A stationary solution of the previous set of equations is provided by the Lieb solution

cL~ t,x!5e2 i eLtfL~x!,

V~ t,x!5VL~x!,

which fulfills the nonlinear Lieb eigenvalue problem.
This suggests to make a linearization around this solution and prove the linear stability

minimal energy solution.
To analyze the stability of the Lieb solution, we propose a solution of the form

c~ t,x!5e2 i eLt~fL~x!1h~ t,x!!,

V~ t,x!5VL~x!1j~ t,x!,

whereh(t,x) andj(t,x) are fluctuations around the Lieb solution. Assuming these fluctuation
be small, we get the linearized system of equations

] t
2~Dj!1V2~Dj!52

V2e2

ē
fL Re~h!,

i\] th52
\2

2m
Dh1~VL2eL!h1fLj.

Splitting the fluctuationh into real and imaginary parts,h5Re(h)1i Im(h), we propose the
following particular shape forh:

Re~h!~ t,x!5a~x!e2 ivt1a* ~x!eiv* t, ~49!
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Im~h!~ t,x!5b~x!e2 ivt1b* ~x!eiv* t, ~50!

j~ t,x!5s~x!e2 ivt1s* ~x!eiv* t, ~51!

so that we get the system

2 i\va52
\2

2m
Db1~VL2eL!b,

1 i\vb52
\2

2m
Da1~VL2eL!a1fLs,

~V22v2!Ds52
V2e2

ē
afL . ~52!

Eliminating s from ~52! we get the following equation fora:

\2v2B 21a5Ba12
V2

V22v2

e2

ē
fLD21~fLa!, ~53!

whereB is the operator

B52
\2

2m
Dx1~VL2eL!,

which is positive definite in a neighborhood of 0 as we shall see in Proposition 6.1. Let us mu
~53! by a* and integrate with respect tox. Then,v solves the biquadratic equation

\2v4^B 21a,a&2v2~^Ba,a&1\2V2^B 21a,a&!1V2

3S ^Ba,a&12
e2

ē
^D21~fLa!,fLa& D50. ~54!

The discriminant of this equation:

D5~^Ba,a&2\2V2^B 21a,a&!228
\2e2V2

ē
^D21~CLa!,CLa&^B 21a,a&

is strictly positive, which proves thatv2 is real.
Let us now prove thatv is real. To do that we will show thatv1

21v2
2 andv1

2v2
2 are positive,

wherev1
2 andv2

2 are the two roots to the quadratic equation~54!. Firstly, it is a simple matter to
check that

v1
21v2

25
^Ba,a&1\2V2^B 21a,a&

^B 21a,a&
>0. ~55!

On the other hand, we can write

v1
2v2

25
V2

\2^B 21a,a& S ^Ba,a&12
e2

ē
^D21~fLa!,fLa& D . ~56!

The following result gives the positiveness ofv1
2v2

2.
Proposition 6.1: In a neighborhood of0, the quantity
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^Ba,a&12
e2

ē
^D21~fLa!,fLa&>0.

As a consequence, B is positive definite in a neighborhood of0.
Proof: Let us consider a small perturbationd(t,x)PR of the energy aroundfL . Since the

Lieb energy is given by~48!:

E~c!5
\2

2m E
R3

u¹xcu2 dx2
e2

8pē ER6

uc~ t,x!u2uc~ t,x8!u2

ux2x8u
dx dx8>E~fL!5EL ,

we can compute the total energy ofc5fL1d:

E~fL1d!5
\2

2m E
R3

u¹xfLu2 dx2
e2

8pē ER6

ufL~x!u2ufL~x8!u2

ux2x8u
dx dx8

12E
R3

F S 2
\2

2m
DfL1VLfLD d~x!2eLfLd~x!Gdx

1
\2

2m E
R3

u¹xdu2 dx2
e2

4pē ER6

ufL~x!u2ud~x8!u2

ux2x8u
dx dx8

2
e2

2pē ER6

fL~x!d~x!fL~x8!d~x8!

ux2x8u
dx dx8

2eLE
R3

ud~x!u2 dx2o~d2!, ~57!

where we have add and substracted

22eLE
R3

cL~x!Re~d~x!!dx5eLE
R3

ud~x!u2 dx,

using the normalizationifiL2(R3)5if1diL2(R3)51. Note that the first two terms constitute th
energy associated with the Lieb solution (EL) and the third term equals 0, sincecL solves the
eigenvalue problem

2
\2

2m
DfL1VLfL5eLfL .

The other terms in~57! are the second order terms and we know by the Lieb theorem that
quantity must be positive forudu small enough. Thus the quantity

K 2\2

2m
Dd1~VL2eL!d,d L 1 K 2e2

ē
D21~fLd!,fLd L >0

is non-negative. We now considerd5Re(a) andd5Im(a). Adding we obtain

0<^B Re~a!,Re~a!&12
e2

ē
^D21~fL Re~a!!,fL Re~a!&1^B Im~a!,Im~a!&

12
e2

ē
^D21~fL Im~a!!,fL Im~a!&5^Ba,a&12

e2

ē
^D21~fLa!,fLa&,

which is the desired inequality. h
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Hence, the above inequalities~55! and~56! allow us to deduce thatv must be real. Then, from
~49!–~51! we have the following stability result.

Theorem 6.5:The minimal energy solution of the SPM system is linearly stable inH1.

VII. SEMICLASSICAL LIMIT FOR THE SPM SYSTEM

In this section, we derive transport equations from our quantum model by performin
semiclassical limit\→0. We consider an electron ensemble interacting with the crystal la
~phonons!. The system of equations reads:

i\
]

]t
c j

\52
\2

2m
Dxc j

\1V\c j
\ , xPR3,t.0,j PN,

c j
\~ t50,x!5c j

I~x!,
~58!

1

V2

]2

]t2 DxV
\1DxV

\5
e2

ē
n\,

V\~ t50,x!5
]V\

]t
~ t50,x!50,

where c j
\ is the pure state wave function of an electron interacting with the phonon w

potential isV\. The electron densityn\ is defined by

n\~ t,x!5 (
j PN

l j
\uc j

\u2,

where thel j.0 are the mixed state occupation probabilities. They verify( j PNl j
\51. The tran-

sition from the quantum model to the classical one has been done first by Wigner,13 who intro-
duced the Wigner transform of the wave functionc. This kind of limit has been performed
rigorously by Ge´rard14 and Lions and Paul,6 Mauser and Markowich15 in the linear case and fo
Schrödinger–Poisson by using Wigner measure. We can do exactly the same in this cas
assumption of mixed states allows us with the help of the Lieb–Thirring inequality of Ref.
pass to the limit in the nonlinear term. On a classical level of description, this system w
replaced by the Vlasov equation

] f ~ t,x,j!

]t
1j•¹xf ~ t,x,j!2¹xV~ t,x!•¹j f ~ t,x,j!50, ~59!

whereV verifies the same equation as in the quantum case andn(t,x) is given by

n~ t,x!5E
R3

f ~ t,x,j!dj.

We also assume as in Refs. 16 and 17 that for everyp>1

(
j PN

~l j
\!p<C\3(p21). ~60!

Definition 7.4: The Wigner transform of a Hilbert–Schmidt kernel is defined in terms of th

density matrixr\(t,x,x8)5( j PNl j
\c j

\* (t,x)c j
\(t,x8) as follows:

W\~r\!~ t,x,j!5E
R3

r\S t,x1
\y

2
,x2

\y

2 Dei j.y dy.
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In our context, we consider kernels such thatn\(t,x)5r\(t,x,x)PL5/3(R3), which corre-
sponds to the natural mixed state bound. Let us also consider the space of test functions

A5$w~x,j! such that ŵ~x,y!PL1~Ry
3 ;L5/2~Rx

3!!%

endowed with the norm

iw~•,• !iA5E
R3

iŵ~•,y!iL5/2(R3) dy,

whereŵ(x,y) is the Fourier transform ofw(x,j) with respect toj. W\(r\) satisfies the Wigner
equation

] tW
\~ t,x,j!1j•¹xW

\~ t,x,j!1Q\~V\!W\~ t,x,j!50, x,jPR3, t.0, ~61!

whereQ\(V\) is a pseudodifferential operator given by

Q\~V\!~W\!~ t,x,j!5
1

~2p!3 E
R6

1

\ S V\S t,x1
\

2
yD

2V\S t,x2
\

2
yD DW\~ t,x,j8!ei (j2j8).y dy dj8.

Then, the following result is a consequence of the results in Refs. 16, 6 or 14.
Theorem 7.6: Let c j

\ satisfy the SPM system (58) and (60). Then, up to subsequenc
necesary) we have

W\~r I
\~x,j!→ f I~x,j! in A8 weak* ,

W\~r\!~ t,x,j!→ f ~ t,x,j! in L`~0,T;A8!2weak* ùC~0,T;D8!,

where f(t,x,j)PC(0,T;M(R6)-weak* ) satisfies (in the sense of distributions) the Vlasov eq
tion (59) with initial condition f(t50,x,j)5 f I(x,j). In addition, we have the following conve
gence results:

n\~ t,x!→n~ t,x! in L`~0,T;Lq~R3!!2weak* for qP]1,5/3],

where n(t,x)5*R3f (t,x,j)djPC(0,T;M) and

V\~ t,x!→V~ t,x!PC~0,T;L loc
r ~R3!! for r .3,

with V satisfying

V~x,t !52
e2V

4pē E0

t

sin~V~ t2s!!S 1

uxu * n~s,x! Dds.
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Abelian BF-theory and spherically symmetric
electromagnetism

Martin Bojowalda)

Institute for Theoretical Physics, RWTH Aachen, D-52056 Aachen, Germany

~Received 16 December 1999; accepted for publication 21 January 2000!

Three different methods to quantize the spherically symmetric sector of electro-
magnetism are presented: First, it is shown that this sector is equivalent to Abelian
BF-theory in four spacetime dimensions with suitable boundary conditions. This
theory, in turn, is quantized by both a reduced phase space quantization and a spin
network quantization. Finally, the outcome is compared with the results obtained in
the recently proposed general quantum symmetry reduction scheme. In the mag-
netically uncharged sector, where all three approaches apply, they all lead to the
same quantum theory. ©2000 American Institute of Physics.
@S0022-2488~00!01007-0#

I. INTRODUCTION

Recently, Kastrup and the author proposed a general framework for a quantum sym
reduction procedure of diffeomorphism invariant theories of connections.1 In the case of a reduc
tion of electromagnetism to its spherically symmetric sector an explicit expression for the qua
symmetry reduction and for the observables of the reduced theory was obtained. In the p
paper we study this sector in more detail by providing another approach to symmetry red
and quantization which, however, has the drawbacks of being applicable for this special
only and of requiring a vanishing magnetic charge~or an explicit coupling to an external one!.
Nevertheless, the methods involved are more standard and this alternative quantization ca
as a simple test of the general quantum symmetry reduction of Ref. 1.

The new approach makes use of a novel identification of an AbelianBF-theory2 with the
spherically symmetric sector of electromagnetism. More precisely, it is proved that a partial
fixing of an AbelianBF-theory with suitable boundary conditions is equivalent to this symme
sector upon a straightforward identification of their variables. The two constraints o
BF-theory provide the Gauß constraint of electromagnetism, and a second constraint which
one hand serves to perform after gauge fixing a symmetry reduction of the theory and on th
hand constrains the magnetic charge to vanish.

At first sight it may be surprising that we identify a sector of electromagnetism wi
topological field theory, but this causes no problems because the kinematics of the sphe
symmetric sector is indeed diffeomorphism invariant, which leads to boundary observable
~the electric charge and its conjugate momentum! after solving the Gauß constraint. But th
dynamics is not diffeomorphism invariant because we need a background metric to constr
Hamiltonian. Alternatively, we can couple the spherically symmetric sector to gravitation, the
rendering the metric dynamical and restoring diffeomorphism invariance. This leads to an
pretation of the spherically symmetric sector of electromagnetism as the electromagnetic pa
Reissner–Nordstro”m gravitational system~which was our original motivation to study this secto!.
However, as the gravitational degrees of freedom complicate the theory considerably, we w
study their dynamics in this article.

In order to be able to ignore the gravitational degrees of freedom, and at the same
maintain diffeomorphism invariance~which is necessary to employ a spin network quantizati!

a!Electronic mail: bojowald@physik.rwth-aachen.de
43130022-2488/2000/41(7)/4313/17/$17.00 © 2000 American Institute of Physics
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we regard the electromagnetic sector as a spherically symmetric sector of electromag
coupled to gravity, but on a degenerate gravitational sector. Thereby the electromagnetic d
of freedom are decoupled and we can study them isolated from the complicated gravita
dynamics. Note that a degeneracy of the metric does not prevent electric and magnetic flow
the densitized electric and magnetic fields from being well-defined. The usual electroma
Hamiltonian, however, vanishes, so we can study a static electromagnetism only.

The plan of the paper is as follows: In Sec. II we will prove the central assertion of this p
namely the equivalence of the AbelianBF-theory with the spherically symmetric sector of ele
tromagnetism, discuss the boundary conditions and present the reduced phase space qua
The corresponding spin network quantization, which is also useful for a generalBF-theory and
not just for the special case related to spherically symmetric electromagnetism, is develo
Sec. III leading to the same results as in the reduced phase space quantization of Sec. II.
we will recall results obtained in the general symmetry reduction scheme of Ref. 1 and co
them with the approaches of the present paper. In the appendices we will describe the dim
used here, and recall the classical reduction from Ref. 3 as well as basics aboutU(1)-spin
networks.

II. BF -THEORY

As already noted above, the quantization of spherically symmetric electromagnetism
sented here is related to aBF-theory which requires a vanishing magnetic fieldma. We thus are
lead to study an AbelianBF-theory2,4 which has, besides the Gauß constraint analogous to th
electromagnetism, a second constraintFab5eabcm

c'0 which constrains the curvature of
U(1)-connection to vanish.

A. Action and constraints

The theory we start with has as variables a two-formB and aU(1)-connectionv on a
four-dimensional spacetime manifold of the formM5S3R. The curvature ofv is given byF
5dv and appears in theBF-action~for the definitions of our dimensions and the constantsq and
a see Appendix A!,

SBF5
q

a E
M

B∧dv. ~1!

We now insert the 311-decompositionB5 1
2 Bab dxa∧ dxb1B0a dt∧ dxa andv5v0 dt1va dxa

to obtain the Hamiltonian formulation~a dot denotes a time derivative!,

SBF5
1

2

q

a E
S3R

d3x dt eabc~Babv̇c2Bab ]cv01B0aFbc!

5
q

a E
S3R

d3x dtS ecv̇c2ec ]cv01
1

2
eabcjaFbcD . ~2!

In the last step we introduced the fieldea
ª

1
2 eabcBbc , which will later be identified with the

electric field. These field components are canonically conjugate tova with the Poisson structure
given by Eq.~A1!. The remaining componentsjaªB0a of B and v0 are Lagrange multipliers
which upon variation lead to the~smeared! constraints

G@v0#ªE
S
d3x v0 ]aea'0, F0@ja#ª

1

2 ES
d3x jaeabcFbc'0. ~3!

Boundary conditions, which are important because we had to integrate by parts, are discu
the next subsection.
                                                                                                                



s
that

tric’’

s

o the
metric

ld. In

non-

rence

ame

y sym-

sm in
nerated
he

lue

4315J. Math. Phys., Vol. 41, No. 7, July 2000 Abelian BF-theory

                    
The Gauß constraint generates gauge transformations ofv as in electromagnetism, wherea
the new constraintsF0 constrains the magnetic field to vanish. More important here is the fact
F0 generates gauge transformations ofea which affect the symmetry reduction ifS carries an
action ofSO(3). This is stated as the following.

Lemma 1: LetS be a three-dimensional manifold carrying an action of the group SO(3) and
(x,q,w) be a (local) system of polar coordinates adapted to the spherical symmetry.

The set of all spherically symmetric (time-dependent) fieldsea5„e(t,x),0,0… with the bound-
ary conditione(t,`)50 is, a set of representatives of the gauge equivalence classes of ‘‘elec
fields in the BF-theory Eq. (1), vanishing at infinity.

Proof: Because of$F0@ja#,vb%50,$F0@jd#,ea%5aq21eabc]bjc the gauge transformation
generated byF0 lead to the addition of an exact two-form to the dual two-formeabce

c of ea.
First we show that two different symmetric electric fieldse1

a and e2
a cannot lie in the same

F0-gauge class. By assumption the differencedea5e1
a2e2

a of these fields fulfillsdeq5dew50. If
that difference was a gauge transformation generated by someja , this function had to obey the
equations

deq5]wjx2]xjw50, dew5]xjq2]qjx50.

This, in turn, would imply

]xdex5]x~]qjw2]wjq!5]q]wjx2]w]qjx50,

i.e., the difference of the electric fields would be a constant which had to vanish due t
boundary condition. Therefore, each gauge class contains at most one spherically sym
electric field.

We now prove that each class contains at least one spherically symmetric electric fie
order to show this we need a vector fieldNa on S which is spherically symmetric, i.e.,Na

5„N(t,x),0,0…, and which is subject to the conditions]aNa50 and *Sx
d2Sa Na51 for all

SO(3)-orbits Sx in S. Such a field exists because, for the symmetry reduced theory to be
trivial, we have to assume that there is at least one spherically symmetric electric fielde0

a , by
means of which we can construct

Na~ t,x!ªS E
Sx

d2Sa e0
aD 21

e0
a .

The existence of such a nontrivial fielde0
a depends on the topology ofS. It always exists in the

manifolds of Appendix B. The properties ofNa postulated above follow from the ones ofe0
a and

the fact that*Sx
d2Sa e0

a does not depend onx ~due to]ae0
a50!.

Let ea(t,x,q,w) now be a field vanishing at infinity. Due to the properties ofNa the averaged
field ēa(t,x)ªNa*Sx

d2Sb eb is spherically symmetric and fulfills the Gauß constraint]aēa50.
Furthermore, we have*Sx

d2Sa(e2 ē)a50, which remains valid after replacingSx by an arbitrary
closed surface. According to de Rham duality of homology and cohomology groups the diffe
of the two fields is cohomologically trivial and, therefore, exact:ea2 ēa5eabc]bjc with an ap-
propriatejc . An electric field and its spherically symmetric average, therefore, lie in the s
gauge class.

Summarizing, we have proved that each gauge class contains exactly one sphericall
metric electric field. h

The meaning of this lemma is that the spherical symmetry reduction of electromagneti
its magnetically uncharged sector can be viewed as gauge fixing of the transformations ge
by the constraintF0 of the associated AbelianBF-theory. The remaining Gauß constraint has t
same meaning in both theories generating the gauge transformationsva°va1]av0 . Using
Fab50 and a fixed basis (@v (k)#) of H1(S,R) any connection can be written asva5va

(k)1]al
with some functionl :S→R. Each functionl can be gauged to the spherically symmetric va
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l 50 by the gauge transformationl ° l 1v0 with v0ª2 l . Analogously,Bab dxa∧dxb is closed
due to the Gauß constraintG, and F0 generates an additional exact two-form added
Bab dxa∧dxb. This shows that on a manifold without a boundary the reduced phase spa
BF-theory is given by the productH1(S,R)3H2(S,R) of first and second de Rham cohomolog
groups.2

However, in the manifolds used in the spherically symmetric context~Appendix B! we have
H1(S,R)50, whereasH2(S,R) does not need to be even dimensional and is, therefore, inap
priate as phase space. This is possible because we use manifolds with a boundary whereH1(S,R)
and H2(S,R) do not have necessarily the same dimension. Furthermore, the constraints a
fected by the presence of a boundary and the consideration of the preceding paragraph ca
applied unaltered: The functionl can now be gauged to be zero only in the interior ofS, whereas
it remains arbitrary at the boundary. Taking the boundary properly into account will thus le
new boundary degrees of freedom, which will render the reduced phase space even dime

B. Surface terms and boundary degrees of freedom

Before discussing boundary conditions we will slightly generalize in theBF-theory context
the manifolds defined in Appendix B by increasing the number of boundary components. Be
we are interested mainly in the boundary degrees of freedom, we will confine ourselves to
folds with a trivial first homology group only.

Besides the wormhole manifoldW3
ªR3S2 with H2(W3,Z)5Z and boundary

]W35..]`W35..]1W3ø]2W3>S2ø̇S2,

with two boundary components at positive and negative infinity~the boundary is a disjoint union
of two S2!, we will use the punctured manifoldsPn

3
ªR3\$p1 , . . . ,pn% with H2(Pn

3 ,Z)5Zn.
Equivalently, we can cut out ofR3 a small ball centered in each of the pointspi resulting in new
boundary components] i Pn

3>S2, the full boundary

]Pn
35]`Pn

3 ø̇ i 51
n ] i Pn

3,

havingn11 components. Similar to the wormhole manifold above we denote with]`Pn
3 the part

of the boundary lying at infinity, which topologically is just a specification of a distinguis
boundary component. Due to the nontrivial second homology groups these manifolds allow
logical electric charge, and therefore we do not have to couple matter fields as sources of
Of course,W3 is homeomorphic toP1

3, but the interpretation is different as a spacelike section
the Reissner–Nordstro”m manifold as opposed to a point charge sitting in the origin.

For the constraints to be functionally differentiable we have to impose boundary condi
and to correct the action by boundary terms. Boundary conditions forBF-theories have already
been discussed in Refs. 5–8, but here we choose different ones adapted to the interpret
spherically symmetric electromagnetism.

The variation of the constraints is

dG@v0#5E
S

d3x v0]adea52E
S

d3x dea ]av01E
]S

d2Sa v0 dea, ~4!

dF0@ja#5E
S

d3x jaeabc]bdvc52E
S

d3x eabc~]bja!dvc1E
]S

d2Sb eabcja dvc . ~5!

In order to achieve functional differentiability the surface integrals have to vanish or to be
pensated by appropriate boundary terms in the action.

This can be enforced, first for the variation ofG, by the conditionv0u]S50 for gauge
transformations. If we have insteadv05O(1) on ]S, the generated transformation is viewed
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symmetry transformation. For the surface integral to vanish in this case we must requide
5O(r 2(21d)), d.0 on]`S anddeu] iS

50 which is also necessary for symmetry transformatio
not to change the charge. Surface variables are given by

O@v0#ªE
S

d3x ea ]av05E
]S

d2Sa v0ea, v05O~1!, ~6!

further constrained byF0 , however.
According to Lemma 1 the transformations generated byF0 are necessary for a symmetr

reduction. Therefore, we want to regard them as gauge transformations in any case w
specifying further boundary conditions onja . We need a surface term in the action~3! with a
variation eliminating the surface integral in Eq.~5!. The corrected action is

SªSBF2
q

a E
]S3R

d2Sb dt eabcjavc , ~7!

leading to the Hamiltonian

H5
q

a E
S

d3xS ea ]av02
1

2
eabcjaFbcD1

q

a E
]S

d2Sb eabcjavc

52
q

a E
S

d3xS v0 ]aea1
1

2
eabcjaFbcD1

q

a E
]S

d2Sb~v0eb1eabcjavc!. ~8!

The boundary values ofv0 on ]S are prescribed functions, which are determined by an exte
observer, depending on the time variablet. In contrast,ja is regarded as a Lagrange multiplie
also at the boundary leading to the corrected curvature constraint,

F@ja#5F02E
]S

d2Sb eabcjavc .

Note that we did not specify boundary conditions forja in the context ofF. Therefore, variation
of the boundary values leads to the so-called natural boundary conditions. Thereby we obt
surface constraintsnaeabcvcu]S'0 ~na being the normal on]S!, which yield thatl is locally
constant on the boundary, i.e., constant on each boundary component, after insertingvc5]cl .
Together with Lemma 1 we can now see full equivalence to spherically symmetric electro
netism of Appendix B~for the manifoldsW3 or P1

3!.
Theorem 1: The partially reduced phase space of the Abelian BF-theory obtained

solving only the constraintF is equivalent to the phase space of spherically symmetric elec
magnetism.

Before reducing the theory completely we check the algebra of constraints. BecauseG andF
contain eitherea or va , we have

$G@v0#,G@v08#%5$F@ja#,F@jb8#%50. ~9!

The mixed Poisson bracket is
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$G@v0#,F@ja#%52
a

q E
S

d3x~]cv0!]bja eabc

5
a

q E
S

dv0`dj

52
a

q E
S
d~dv0`j!52

a

q E
]S

dv0`j, ~10!

which vanishes for gauge transformations because thenv0 has to vanish on the boundary. Ther
fore, the constraints are first class. For the Poisson bracket to vanish we must have dv0u]S50
which is also fulfilled for some special symmetry transformations~for whichv0u]SÞ0, but locally
constant!. Becausej is arbitrary at the boundary the surface variablesO@v0# are observables
exactly if v0u]S is locally constant:

$O@v0#,F@ja#%50. ~11!

The observablesO@v0# ~with unrestrictedv0! have already appeared in Ref. 6, together w
additional surface observables which are integrals ofva associated with boundary values ofja .
These latter observables are excluded here by our special boundary conditions~free boundary
values of the Lagrange multiplierja!. It also leads to the restriction ofv0 in O@v0# to be locally
constant on]S. The special treatment ofja , leading to these two effects, is crucial for th
identification with the spherically symmetric sector of electromagnetism@see also Eq.~12! below#;
and we will see that the remaining surface observables are just the correct ones for this a
tion.

C. Reduction and quantization

The constraints are easy to solve:F forces the connectionva to be flat, i.e.,va5]al for some
l :S→R. SinceG generates the gauge transformationl ° l 1v0 with an arbitraryv0 vanishing on
the boundary, only the boundary values ofl have physical meaning. Furthermore, due to
boundary constraints

C@jbu]S#ªE
]S

d2Sa eabcjbvc5E
]S

d2Sa eabcjb]cl'0, ~12!

l has to be constant on each boundary component because theja are arbitrary at]S. This is the
most important consequence of our special boundary conditions introduced above.

The physical degrees of freedom associated withea can also be localized at the boundary a
given by integrals

pA
ªE

]AS
d2Sa ea, ~13!

over each of then11 boundary components, i.e.,pA5O@v0
A# with v0

Au]BS5dB
A . They are not all

independent, however, because of(ApA5*]S d2Sa ea5*S d3x ]aea50 as a consequence of th
Gauß constraint. As above, the constraints imply that the class ofeabce

c in the second de Rham
cohomology group represents the physical degree of freedom specified by its evaluation
classes of the second homology group. Choosing as representatives for a basis of the
homology groups of the two manifolds (]1S) and (] iS)1< i<n , respectively, we arrive at the
independent observablesp1 andp1,...,pn.

From Eq.~9! we derive the reduced Hamiltonian: At first we insert the bulk constraint
obtain
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H85
q

a E
]S

d2Sa~v0ea2eabcjbvc!5
q

a E
]S

d2Sa~ l̇ ea2eabcjb ]cl !. ~14!

In the second part of this equation we provided a time dependence forl by definingl̇ªv0 , which
formally extends the relationva5]al to the four-dimensional connection onS3R.

The boundary values ofja are the remaining Lagrange multipliers, and their variation lead
the boundary constraintsC of Eq. ~12!. The solution of these requires a locally constantl on the
boundary eliminating the second term inH8:

H95
q

a E
]S

d2Sa l̇ ea5
q

a (
A

l̇ AE
]AS

d2Sa ea5
q

a (
A

l̇ ApA, ~15!

where A runs over alln11 boundary components andl A is the constant value ofl on the
component]AS.

Up to now the constraints are not solved completely: There remains the condition(ApA

5*]S d2Sa ea'0 implied by G'0. Therefore, onlyn of the n11 boundary variablespA are
independent. At the same time, the remaining constraint generates the gauge transfo
l A° l A1c with somec being constant on the full boundary~not just locally constant!. One of the
l A can thereby be gauged to zero, and we end up with onlyn independent values of thel A . In our
manifolds we will choose the gauge fixingl 250 in W3 andl `50 in Pn

3 , respectively. Finally we
obtain the reduced Hamiltonian,

H red5
q

a (
A

l̇ ApA, A51 or AP$1, . . . ,n%. ~16!

A comparison with Appendix B shows that this is, on the manifoldsW3 or P1
3, the reduced

Hamiltonian of spherically symmetric electromagnetism with the prescribed function oft being
l̇ 5U, which reveals that its boundary dynamics is equivalent to that ofBF-theory, too. The
canonical variables,

~pA,qa21FA!A51 or AP$1, . . . ,n% ,

are action-angle coordinates of the reduced Hamiltonian. The equations of motion are solv

pA5cA , FA5cA82 l A~ t !,

with constantscA ,cA8 to be specified by initial values.
This system with phase spaceT* Rn can be quantized without problems. As Hilbert space

chooseL2(Rn,dnx), n11 being the number of boundary components. In theF-representation

states are given byc(F1 , . . . ,Fn), acted on byF̂A and p̂A as usually:

F̂Ac5FAc, p̂Ac5
\

i

a

q

]

]FA
c5

q

i

]

]FA
c. ~17!

This quantization leads to a continuous spectrum of the chargespA, but a quantization condition
can be imposed byFAPS1>R/2pZ, justified by the fact thatF represents aLU(1) element:l
and l 12p yield the same element expil5expi(l12p) of the gauge group. This periodical iden
tification of the phase space leads to charge quantization: Simultaneous eigenstates ofp̂A

52 iq (]/]FA) are given byc$KA%(F1 ,...,Fn)5)A expiKAFA with eigenvalueqKA of p̂A. The
periodic identification demandsKAPZ leading to

pAPqZ, for all A, ~18!
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which is the observed charge quantization with a ‘‘fundamental charge’’q. Its value, however,
cannot be determined because the theory contains one free parametera. In the present context the
periodic identification ofFA looks somewhatad-hoc, but the quantization condition~18! will arise
in the following spin network quantization more naturally.

III. SPIN NETWORK QUANTIZATION OF BF-THEORY

In the preceding section we arrived at a quantization of AbelianBF-theory, which can be
interpreted as a quantum theory of spherically symmetric electromagnetism. In order to co
with the results of the quantum symmetry reduction procedure it is, however, more instruct
present a spin network quantization, too. The solution of the constraints will be given in the
order as in the symplectic reduction of the previous section: We first solve the Gauß cons
then the curvature constraint to arrive at a boundary theory, and finally the boundary cons
Our notation forU(1)-spin networks, which are extensively used in this section, is describe
Appendix C.

A. Gauß constraint

Of course, the Gauß constraint can be solved by using only gauge invariant spin network
those withkv50 for each vertexv, but for the sake of completeness we will give also a qua
zation of the classical constraintG.

Let g be a graph andf g be a cylindrical function which depends on a connectionva only via
the edge holonomieshe for all ePE(g). On that function the Gauß constraint acts as

Ĝ@v0# f g5E
S
d3x v0 ]aêaf g

5
\

i

a

q E
S

d3x v0~x!]a

d

dva~x!
f g

5q (
ePE(g)

E
S

d3x v0~x!E
e

dt ėa]ad„x,e~ t !…he

]

]he
f g

52q (
ePE(g)

E
S

d3x v0~x!E
e

dt
d

dt
d„x,e~ t !…he

]

]he
f g

52q (
ePE(g)

E
S

d3x v0~x!~d„x,e~1!…2d„x,e~0!…! he

]

]he
f g

52q (
ePE(g)

~v0„e~1!…2v0„e~0!…! he

]

]he
f g

52q (
vPV(g)

v0~v ! (
ePE(g)

sgn~v,e!kef g .

Recall the definition of sgn(v,e) given in Appendix C which implies that in the last sum only edg
incident inv contribute.

The Ĝ@v0# commute with one another which means that the classical algebra of const
is represented anomaly-free. Applied to a spin network stateTgk the constraint yields
Ĝ@v0#Tgk52q(vPV(g)v0(v)kvTgk , implying that the solution space of the constraint is giv
by gauge invariant spin networks withkv50 for all verticesv¹]S, as anticipated. This con
strains, however, only vertices in the interior ofS because at the boundary we had to dema
v0u]S50 in the constraint. Therefore,kv for vP]SùV(g) is arbitrary meaning that at th
boundary edges of a spin network can end. This is analogous to the boundary observaO
appearing in the second section, and it makes possible electric charge. The electric chargQ@S#
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enclosed by a closed surfaceS,S is given by the integral*S d2Sa ea in the classical case, which
depends only on the homology class ofS. This lead us to use topologies ofS with nontrivial
second homology groups to allow electric charge, and it follows classically from the S
theorem in a well-known fashion: IfS1 andS2 are the equally oriented boundary components
a domainB,S, we have 05*B d3x ]aea5*S1

d2Sa ea2*S2
d2Sa ea as a consequence of the Gau

constraint]aea'0.
The reason for our dwelling on that point is that in the quantum theory there is an analo

but quite differently, namely topologically realized version. Here, the Gauß constraint man
itself in the conditionkv50. At first we quantize the charge functional applied to a funct
cylindrical with respect to a graphg which is chosen such that all the intersection pointsv
PV(gùS) are vertices ofg:

Q̂@S#5E
S

d2y naêa

5qE
S

d2y (
ePE(g)

E
e

dtnaėad„y,e~ t !…he

]

]he

5q (
vPV(g)ùS

(
e{v

sgn~e,S!he

]

]he
. ~19!

Here, sgn(e,S) is the intersection number ofe with S which is defined to be12 if eùS,]e. The
charge of a spin network stateTgk is proportional to(eùSÞ0” sgn(e,S)ke which can be interpreted
as the intersection number ofS with a curve associated toTgk . This curve, which is disconnecte
in general, can be constructed by stackingukeu copies of each edgeePE(g) on top of each other.
All such copies incident in a vertexv can be linked there to form curves with no endpoints inv
if and only if kv50. In the interior of a domainB as above we therefore obtain pieces of curv
ending only at the boundary]B5S1øS2

! ~S! is S in opposite orientation! if and only if the spin
network state is gauge invariant. If there are only divalent vertices at]B, the chargesQ̂@S1#Tg,k

andQ̂@S2#Tg,k are equal being given by intersection numbers of homologically equivalent cl
surfaces with a closed curve: Each curve enteringB throughS1 has to leaveB either again through
S1 , which does not contribute to both charges measured byS1 and S2 , or it runs throughS2

contributing to the two charges the same amount.

B. Curvature constraint

As opposed to the Gauß constraint the curvature constraint cannot be solved in a subs
the space of cylindrical functions, but it has to be solved by means of a rigging map.9 This map
can be written formally as multiplication with a delta function supported on the space o
connections which will be constructed in this subsection.

1. The space Ā0 of pure gauge connections

In the simply connected topologies used hereF50 means thatva5]al is pure gauge. Ho-
lonomies associated with an edgee are

he~ l !5expS i E
e

dl D 5exp„i ~ l „e~1!…2 l „e~0!…!…,

which depend onl only in the starting pointe(0) and the endpointe(1) of e. A spin network
state, therefore, depends only on the values of the gauge potentiall in its vertices:

)
e

exp„i sgn~v,e!kel ~v !…5exp„ikvl ~v !….
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By using the pure gauge connection each pointvPS is mapped to aU(1) group elementl(v)
ªexp„i l (v)…, and a spin network state evaluated in this connection takes the form)vPV(g)l(v)kv.
The functionl:S→U(1) is smooth for a classical connection, but it will be generalized to
arbitrary function in the course of quantization.

Definition 1: A0ª$l:S→U(1)smooth% is the space ofpure gauge connections.
The space ofgeneralized pure gauge connections isĀ0ª$l:S→U(1)%.
Analogously toḠ in Ref. 9, the spaceĀ0 can be constructed as a projective limit with ind

set being the set of all finite subsetss,S,usuPN0 of S, and with cylindrical spacesA0,s

ªU(1)s being the spaces of all maps froms to U(1) and projectionsps8s(ls)5lsus8 for ls

PA0,s . Then we have

Ā05proj lims,SA0,s5proj lims,SU~1!s[U~1!S.

A cylindrical basis of functions onĀ0 associated to the index set of all finite subsetss
together with labelingsk:s→Z\$0% is given by the functionsts,k(l)ª)pPsl(p)kp. For s fixed
these are the monomials in the finitely many variablesl(p),pPs, which certainly span the spac
of functions onA0,s modulo functions which are constant in somel(p), i.e., functions on a spac
A0,s8 with s8,s. Analogously to the Ashtekar–Lewandowski measure we can define a me
on Ā0 cylindrically:

Lemma 2: A diffeomorphism invariant probability measure onĀ0 is given by

m~ f !ªE
Ā0

dm fªms~ f s!ªE
U(1)usu

dmH
usu~l1 , . . . ,l usu! f s~l1 , . . . ,l usu!,

for some representative fs of f . Diff( S) acts onA0,s by U(f) f s5 f f(s) .
The monomials ts,k form an orthonormal basis with respect to this measure.
Proof: The cylindrical consistency condition for the measure and its normalization as w

diffeomorphism invariance follow from properties of the Haar measure.
If ts,k and ts8,k8 are two monomials, then

^ts,k ,ts8,k8&5m~ ts,k̄ts8,k8!5E
U(1)usøs8u

dmH
usøs8u~l! )

pPsøs8
l~p!kp82kp5dss8dkk8 , ~20!

proving orthonormality. h

For s5V(g) andk being the vertex labeling of a spin network stateTg,k8 we havets,k(l)
5Tg,k8(l

21 dl) showing that thets,k emerge by restriction of spin network states to pure ga
connections. To each spin networkTg,k8 we can associate a monomialts,k5..]Tg,k8 and continue
the operation] to the spaceF of all cylindrical functions onĀ. Formally, we can writets,k

5d(F)Tg,k8 with

d~F!ª)
e,S

)
pPS

E
U(1)

dmH~l~p!!d~Ae ,l„e~0!…21l„e~1!…!.

Given a cylindrical functionf g we have to interpretd(F) f g as a distribution on the space o
cylindrical functions, and equivalentlyd(F):F→F8 as a rigging map according to

„d~F! f g…~gg8!ªE
Ā0

dm~l!)
e
E

U(1)
dmH~Ae!d~Ae ,l„e~0!…21l„e~1!…! f̄ ggg8

5E
Ā0

dm~l!] f̄ g ]gg8 . ~21!

This map solves the constraintF on a subspace ofF8.
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2. Boundary spin networks

Up to now we solved the constraintsG andF separately. To solve them together we have
investigate the spaceA0 /G. In contrast toA0 , the spaceG consists of functionsg:S→U(1)
which have to become unity on the boundary]S, and it acts onĀ0 as (g•l)(p)5g(p)l(p) ~note
that l is the exponentiated gauge potential of a connection; therefore,g does not act by conjuga
tion!. ForS without boundary we haveA0 /G5$1%, and similar to the boundary observables in t
classical theory nontrivial states emerge only in presence of a boundary. We have the pro
spaces

A0,s /Gs5$l:s→U~1!ul~p!51 if p¹]S%,

with the limit

A0 /G5Ā0 /Ḡ5$l:]S→U~1!%.

All degrees of freedom are localized at the boundary ofS motivating the following.
Definition 2: The space of functions on the spaceA0 /G of gauge invariant pure gauge

connections is spanned byboundary spin networksts,k with finite setss,]S and labelings
k:s→Z\$0%. The associated boundary state is given by ts,k(l)ª)pPsl(p)kp.

These functions ts,k span the boundary Hilbert space when completed with respect to
measurem of Lemma 2.

The fundamental operations can also be projected down from the spin network ba
inserting pure gauge connections. The holonomy to an edgee in S with eù]S5e(1)5..p is

he5
l~p!

l~e~0!!
.

Gauge invariant is onlyl(p) leading to the multiplication operatorlpªl(p) instead ofhe . Its
action on a boundary spin networkts,k is to increasekp by one.

The other fundamental operator associated toe is the derivative operatorke :

kets,k5he

]

]he
ts,k5

l~p!

l„e~0!…

]

]l„e~0!…21l~p!
ts,k5l~p!

]

]l~p!
ts,k5kpts,k ,

where we used independence ofts,k on l„e(0)…. This operator also acts only in the pointp and
can be written as

kpªlp

]

]lp
.

In this way we obtain multiplication and differentiation on the monomials, out of wh
together with the adjoint oflp , we can build all local operators. The space of boundary s
networks resembles the construction of a Fock space with ‘‘one-particle Hilbert spa
L2

„U(1),dmH… associated to each pointpP]S, but without any symmetrization~it is neither
bosonic nor fermionic!. The operatorslp and kp act as creation and number operator, resp
tively. In contrast to a usual Fock space~as, e.g., used in Ref. 6 for similar purposes! we can
represent the full group of boundary diffeomorphisms on our boundary Hilbert space w
diffeomorphism invariant measure, which is, of course, a consequence of our usage o
network techniques.

C. Boundary constraints

The bulk constraintsG andF are now solved onA0 /G. However, the boundary constraintsC,
which forcel to be constant on each of then11 boundary components, still remain to be solve
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We have to impose them on boundary spin network states by restricting these functions to
constantl5lA on each]AS. A restricted state is completely determined by an integer,

KAª (
pPsù]AS

kp ,

for each boundary component]AS, which can be seen from the calculation

ts,k~l!uC505)
A

l
A

SpPsù]ASkp5)
A

lA
KA5..uK1 ,...,Kn11&. ~22!

As in the classical reduction there remains one last condition following from gauge in
ance. The boundary spin networks descend from gauge invariant spin networks in the co
constraint reduction, which implies(AKA50. Again, onlyn of the n11 numbersKA are to be
chosen freely. Accordingly, thelA can be multiplied by somel0 which is constant on the whole
boundary, because states change then by multiplication with a factorl0

(AKA51. This freedom can
be fixed by imposing the conditionlA51 for some fixed boundary componentA, analogous to the
classical case, and discarding its chargeKA . The statesuK1 ,...,Kn& labeled by the remainingn
charges build an orthonormal basis of the physical Hilbert spaceHphys5L2

„U(1)n,dmH
n
… with the

inner product descending from the space of boundary spin networks:

^K1 ,...,KnuK18 ,...,Kn8&ª^ts,k ,d~C!ts8,k8&ª)
A

E
U(1)

dmH~lA!lA

KA82KA5)
A

dKA ,K
A8
, ~23!

where, formally,

d~C!ª)
A

)
pP]AS

E
U(1)

dmH~lA!d~lp ,lA!. ~24!

Finally, we need a representation of the Poisson algebra of the canonical variables (pA,FA)
on the physical Hilbert space. The operators are to be built from the boundary operatorslp and
kp , and they can be deduced from their action on three-dimensional spin network states.

According to Appendix B,pA and FA are in generalization from the spherically symmet
case, i.e., from the manifoldsW3 or P1

3, given by the charge on the boundary component]AS and
by the holonomy associated with a radial curveBA ending on]AS:

pA5E
]AS

d2Sa ea, FA52E
BA

v5 i loghBA
. ~25!

These expressions are the same as the reduced phase space variables of the preceding s
obtain independent variables we have to choosen out of then11 boundary components@as in Eq.
~16!, for instance#, the indexA running over them in the following. The excluded component c
be used to provide a starting point for the curvesBA ~for FA to be gauge invariantBA cannot start
in the interior ofS!. In this way, each curve intersects only one of the distinguished compon
]AS.

The chargespA are quantized by using Eq.~19!. The surfaceS in this equation is chosen to b
homologically equivalent to the boundary component]AS and lying in the interior ofS. S must
not be the boundary component itself because this would introduce a factor of1

2 since all edges
would end onS. Note that charges are defined in the classical calculation also by choos
surface in the interior and computing the limit where this surface approaches the bound
infinity ~which is, of course, only necessary if there is no Gauß law, as, e.g., for the ADM ma
a theory of gravity!. However, for a boundary around a point charge we could equally
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integrate over the boundary in the classical theory. In quantum theory this is no longer th
due to the distributional nature of generalized connections. On boundary spin networks we

p̂Ats,k5q (
pPsù]AS

lp

]

]lp
ts,k5q (

pPsù]AS
kpts,k5qKAts,k ,

which is to be projected into the physical Hilbert space:

p̂AuK1 ,...,Kn&5qKAuK1 ,...,Kn&. ~26!

On spin network states the basic multiplication operator is notFA , but the holonomy,

hAªhBA
5expS i E

BA

v D 5exp~2 iFA!,

with operation

exp~2 i F̂A!uK1 ,...,Kn&5ĥAuK1 ,...,Kn&5uK1 ,...,KA11,...,Kn&, ~27!

becausehA reduces to multiplication withl„BA(1)… ~see Sec. III B 2;BA(1) denotes the endpoin
of BA!. The operatorĥA can be interpreted as shifting charge from the excluded boundary c
ponent to the component]AS along the curveBA ~or rather its diffeomorphism class!. In this way,
the total charge situated on all the boundary components remains constant, namely zero.

We can now quote from Ref. 1 the following.
Theorem 2: The equations (26) and (27) define a representation of the classical Po

!-algebra onHphys.
Proof: The proof is the same as in Ref. 1 except for an obvious generalization ton vari-

ables. h

We note that the adjointness relations—p̂A being self-adjoint andĥA being unitary—uniquely
~up to a constant factor! determine the inner product~23! which was derived by descending from
the Ashtekar–Lewandowski measure. Moreover, holonomy variables of spin network quanti
turn out to be well suited to represent the classical algebra of observables. As opposed to Re
did not have to use a normal ordering to define charge creation~or rather shifting! operators: Due
to the basic assumption of every spin network quantization, namely that holonomies ar
defined in quantum theory, the operatorsĥA are perfectly well defined in our Hilbert space.

In complete analogy to the reduced phase space method we arrived at the same q
theory with one degree of freedom per boundary component given by the electric charge.
over, we obtain automatically a discrete charge spectrum@this has already been observed in R
10 in case of unreducedU(1)-spin networks# with eigenvaluesqKA of the charge operator be
longing to the boundary component]AS being integer multiples ofq, which is however undeter
mined. This leads again to the charge spectrum~18!.

D. Rigging map

As noted already, the curvature and boundary constraints cannot be solved in a subs
the spaceF spanned by spin network states, but they have according to refined alge
quantization9 to be solved in its topological dualF8. What we have to do now is to present
rigging map implementing the constraints. This can be constructed by using partial rigging
corresponding to the curvature and boundary constraints, respectively.

The basic ingredient for the rigging maph1 :F→F8 has already been given in Eq.~22!.
There we named it more pictoriallyh1f gªd(F) f g .

In a second step we have to implement the boundary constraintC. With the help ofh1 we
went to the spaceC of boundary spin networksts,k , which is interpreted as a subspace ofF8
analogously to Eq.~22!. Now we have to start fromC to go over to its dualC8. Again, this can
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formally be done by means of a delta distribution,d(C) in Eq. ~24!, which enforcesl to take the
constant valuelA at each boundary componentA. The result of a multiplication withd(C) is a
function depending only on then variables lA which we denoted above asuK1 ,...,Kn&
5)AlA

KA @see Eq.~22!#. This function is in the dual ofC by means of

uK1 ,...,Kn&~ ts,k!ª)
A

dKA ,(pPsù]ASkp

5E
U(1)n

dnmH~l1 , . . . ,ln!)
A

l
A

SpPsù]ASkp2KA

5E
U(1)n

dnmH~l1 , . . . ,ln!)
A8

l
A8

2KA8

3)
A

)
pPsù]AS

E
U(1)

dmH~lp!d~lp ,lA!ts,k~l!. ~28!

In the last step it is written as an integral of the two functions multiplied with the delta distribu
d(C). Equation~28! leads to the second rigging map,

h2 :C→C8, ts,k°UKAª (
pPsù]AS

kpL ,

which has to be extended anti-linearly, implementing the boundary constraints.
The composition of the two maps,h2+h1 :F→C8, cannot be used as a rigging maph:F

→F8 because it has the wrong domain as its image. It can, however, easily be extended
a map by interpretings ~the labels of functions inC! as V(g)ù]S for a graphg labeling a
function in F. This leads us to the rigging map

h:Tg,k°UKAª (
vPV(g)ù]AS

kvL
by extending anti-linearly. NowuK1 ,...,Kn& is interpreted as a distribution inF8 analogously to
Eq. ~28!:

uK1 ,...,Kn&~Tg,k!ª)
A

dKA ,(vPV(g)ù]ASkv
.

This rigging map solves both constraintsF andC at once by incorporating both delta expressio
Moreover, it is real and positive: (hf1)(f2)5(hf2)(f1) and (hf1)(f1)>0 for f1 ,f2PF.
Finally, h commutes with physical observablesO by construction of the observablesp̂A and ĥA

via kp andlp :

~hf1!~Of2!5~hO* f1!~f2!.

The inner product in the solution spaceh(F) is given by

^h~Tg,k!,h~Tg8,k8!&phys5~h~Tg,k!!~Tg8,k8!5)
A

d(vPV(g)ù]ASkv ,(v8PV(g8)ù]ASk
v8
8 .

The same properties are fulfilled for the partial rigging mapsh1 andh2 yielding the inner products
~20! and ~23!.
                                                                                                                



d here
and to

., the
istri-
y. The
ee of

c

ed here
state,

t
ap
s the
con-
quite

gnetic

of the

d there

n. The
spin

then
nnec-

t it is a

tion

s with

we can
twork
roup of
e to be
e see

4327J. Math. Phys., Vol. 41, No. 7, July 2000 Abelian BF-theory

                    
IV. QUANTUM SYMMETRY REDUCTION

The application of the general quantum symmetry reduction scheme to the case treate
has already been carried out in Sec. 4.2 of Ref. 1, and it suffices to recall the main results
compare with the methods of the present paper.

This framework implements a symmetry reduction procedure at the quantum level, i.e
theory is spin network quantized first followed by singling out symmetric states which are d
butional and represented by one-dimensional spin networks in case of spherical symmetr
results for spherically symmetric electromagnetism are the following: There is one degr
freedom given by the electric charge. The physical Hilbert space is spanned by statesuK& exactly
as in the preceding section. Recall that in the interpretation ofBF-theory as spherically symmetri
electromagnetism there is only one independent boundary component leading ton51 in the
formulas above. Moreover, the observables are represented in the same way as deriv
yielding the same quantum theory. Furthermore, the application of a symmetric spin network
which is a generalized state inF8, on a nonsymmetric one,

sg„~hB!K
…~Tgk!5bg,k

g dK,p(k) , ~29!

is reminiscent of the rigging maph. Here (hB)K is a one-dimensional spin network with chargeK
in the radial manifoldB, g is the magnetic charge,bg,k a phase factor, andp(k) is a labeling of
a one-dimensional spin network projected from the labelingk which yields for gauge invarian
spin networks the charge~see Ref. 1 for details!. Note, however, that there appears no rigging m
in that paper: In general there will be no constraint implementing the symmetry reduction a
constraintF here. Therefore, no rigging map, which solves gauge as opposed to symmetry
ditions, is needed. Indeed the methods for tackling symmetry developed in Ref. 1 are
different from those to deal with gauge. In the present paper we show that in the electroma
example both these methods apply and lead to the same quantum theory.

In particular, both approaches manage to reduce the infinitely many degrees of freedom
nonsymmetric field theory to only one in quite different ways.

There are two main advantages of the general method: First, magnetic charge is include
from the outset leading to superselection sectors labeled by the magnetic charge. In theBF-theory
approach we could implement magnetic charge by coupling one in theBF-action. However, this
had to be done by hand, whereas all sectors arise directly in the quantum symmetry reductio
constraint reduction in spin network quantization then had to be performed by evaluating
network states in connections of the formva5va

(g)1]al , whereva
(g) is a fixed connection with

magnetic chargeg, leading again to the same boundary spin networks. The magnetic charge
appears only in a phase factor which is given by the value of a spin network in the fixed co
tion v (g) and which depends on its geometry@compare Eq.~29!#.

The second, and more important advantage of the quantum symmetry reduction is tha
general procedure which applies to any theory with compact and semisimple@up toU(1)-factors#
gauge group and any compact symmetry group~the condition of compactness can be relaxed!. In
particular, it applies to symmetry reduction of general relativity in the real Ashtekar formula
@the gauge group beingSU(2)# which was our main motivation to develop that procedure.

The treatment in the present article also allows a comparison of spin network technique
the standard Fock space methods used in Refs. 6 and 7 in the context ofBF-theory. If we do not
impose the surface constraints to provide a more direct comparison with these two articles,
use the boundary theory obtained in Sec. III B 2. The Hilbert space of boundary spin ne
functions obtained there has some advantages over the Fock space quantization: The full g
boundary diffeomorphisms can be represented, and operators creating charge do not hav
normal ordered, but they are well defined from the outset in the spin network context. Thus w
that the spin network representation is well suited for the kinematical sector ofBF-theory.
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APPENDIX A: DIMENSIONS

In the present article we use electromagnetic dimensions which are unconventional, but
gous to the geometrical ones used in the gravitational part of the theory. This means that
nates as well as theU(1)-connectionva are dimensionless. The electric fieldea integrated over a
surface yields the enclosed charge, and therefore it should carry the dimension of electric c
~We reserve the lettersA and E for the respective gravitational fields, although they will n
appear in this paper. For the electromagnetic fields we usev, e andm as in Ref. 3.!

A Liouville form with the dimension of an action is given by

q

a E
S

d3x ea dva ,

wherea is a dimensionless constant which fixes the norm of the electromagnetic part of the a
andq is a unit of electric charge providing the correct dimension of an action. This leads t
symplectic structure

$va~x!,eb~y!%5
a

q
da

bd~x,y!. ~A1!

Up to now we have two constants,a and q, which provide the norm and the dimensio
respectively, of the action. We can fix one of them to obtain a theory with only one undeterm
parameter. This will be done by choosingq in such a way thata5q2\21 becomes a fine structur
constant, and thereby the only parameter. This leads to the commutator@v̂a(x),êb(y)#
5 iqda

bd(x,y) in a quantum theory.

APPENDIX B: CLASSICAL REDUCTION

Here we recall the main formulas from Ref. 3 which are used in the present paper. The
fields are the electric fieldea with density weight one and theU(1)-connectionva which are
conjugate to one another. The Gauß constraint reads]aea'0. Symmetry reduction is done b
imposing the restrictions

~ex,eq,ew!5„e~x,t !,0,0… ~B1!

and

~vx ,vq ,vw!5„v~x,t !,0,0…, ~B2!

in spherical coordinates (x,q,w) provided by the givenSO(3)-action on the spacelike sectionS.
Here we demand that there is no magnetic charge. If we use the electric flowpª4pe, we obtain
the two conjugate fields (v,qa21p) on a radial manifold subject to the Gauß constraintp8'0.

For simplicity we restrictS to be simply connected and to be either the wormhole mani
R3S2, which is the case for a Reissner–Nordstro”m black hole, orR3\$0%>R13S2, which
simulates the presence of a nondynamical point charge in the origin. These manifolds ar
interesting in the context of spherical symmetry, but are generalized slightly in theBF-theory
approach. Due to simple connectedness and vanishing of the magnetic field we haveva5]al with
a function l :S→R. Symmetry reduction implies thatl is spherically symmetric, i.e., locally
constant on the boundary.
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After solving the Gauß constraint, conjugate variables on the reduced phase space are f
bep, which is constrained to be constant, andFª2*dx v. The reduced Hamiltonian accountin
for boundary dynamics isH red5qa21pU with a prescribed functionU(t) which is the value of
the Lagrange multiplier of the Gauß constraint at infinity.

APPENDIX C: U„1…-SPIN NETWORKS

To fix our notation we present in this appendix the basic definitions ofU(1)-spin networks.
Due to Abelianess and the simple representation theory ofU(1) they are more easy to deal wit
thanSU(2)-spin networks. They also appeared in Ref. 10.

The irreducible representations of the AbelianU(1) are all one-dimensional and given b
rk:U(1)→C* ,g°gk for all kPZ. The dual representation ofrk is given byr2k, and the tensor
product of two representations isrk1^ rk25rk11k2. A U(1)-spin network is a graphg with a
labeling kP(Z\$0%)E(g) of its edge setE(g) with irreducible, nontrivialU(1)-representations
Since the representations are not self-dual, an inverted edge has to be labeled with th
representation:ke2152ke . Contrary to the case ofSU(2)-spin networks, we do not need con
tractors in the vertex setV(g), because intertwiners ofU(1)-representations are unique up to
constant. If we do not restrict to gauge invariant spin networks, a coloring of the vertices w
determines the transformation of the spin network under gauge transformations in that vert
be computed from the edge labeling bykv5(ePE(g) sgn(v,e)ke where v is a vertex ofg and
sgn(v,e) is defined to be 1 ife is an edge starting atv, 21 if e ends inv and 0 otherwise, i.e., if
v is not contained ine. Given a graphg with edge labelingk we can form the spin network stat
as a function on the space of generalizedU(1)-connections9 given by

Tgk~v!ª )
ePE(g)

rke
„v~e!…,

which transforms under a gauge transformationg:S→U(1) by multiplication with the
U(1)-element)vPV(g)r

kv(g(v)). Of course, gauge invariant spin networks are obtained if in
vertices we havekv50.

The basic operators are multiplication by a holonomyhe(v)ªexpi*edt ėava along an edge
e which changes the edge labeling byke°ke11, and a derivative operator which is the invaria
vector field ike(he)ª ihe (]/]he) on U(1). Again for U(1) being Abelian these operators a
much simpler than their analogs inSU(2). Spin network states are eigenvectors ofke(he) with
eigenvalueke : ke(he)Tgk5keTgk .
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Probability amplitude dynamics for a two-level system
John K. Boyda)

Lawrence Livermore National Laboratory, Livermore, California 94551

~Received 12 November 1999; accepted for publication 15 February 2000!

The time-dependent probability amplitudes are determined for a two-level system
without invoking the rotating wave approximation. A new analytic solution is ob-
tained in the limit of small ratio of Rabi frequency to driver frequency. An analytic
solution is also obtained in the limit of large ratio of Rabi frequency to driver
frequency for a restricted range of parameters. The form of this solution guides the
selection of parameters that cause substantial changes in the character of the solu-
tion. The dependence on parameter values is studied numerically for the transition
probability and the coherent spectrum.@S0022-2488~00!01107-5#

I. INTRODUCTION

A two-level system described by a time-dependent Hamiltonian models many features
atom. The particular application in view is an atom subjected to monochromatic radiation, w
stimulates a transition to a state of higher energy. This problem has been studied experim
and theoretically under many circumstances, and there are large compilations of spectro
data.1,2 Research has been conducted in fields ranging from lasers to chemistry3–13 usually em-
phasizing transition dynamics at a resonance. In this work the transition probability solut
investigated over a wide parameter range. The two-level model relies on the assumption t
correspondence to a real atom implies other levels are only weakly coupled, and thus tran
among those levels are negligible. At high laser intensities exceeding the regime of 1017W/m2

multiphoton ionization becomes possible, which means transitions are occurring between
states and the continuum.14 Under these circumstances, the energy between the two levels c
longer be considered as distinct.

One of the main features of atoms subjected to high-intensity radiation is the adve
harmonic generation.15,16 Harmonic generation has been numerically calculated,17 but it has also
been extensively studied with the two-level atom model. It is noted by Fiordilino18 that the
two-level atom model has had success in producing the main features of harmonic generatio
two-level model has been used by Sundram19 to successfully produce the plateau and cut
features of the harmonic spectrum. He found the cutoff to be linearly proportional to the ra
the Rabi frequency to the external field frequency; and noted experimental confirmation
linear dependence of the cutoff on the field strength. He also found the intensity depende
higher harmonics approximately agreed with earlier work of Kulander,20 where the Schro¨dinger
equation was numerically integrated. Plaja21 applied the two-level model to determine an adiaba
theory that is useful for describing the intensity distribution of the spectrum harmonics. His r
relied on the Floquet methodology. The Floquet methodology and related continued fr
solutions was pioneered by Autleret al.22 In the Floquet formulation they were able to derive
general treatment for the effects of a sinusoidal field on a two-level system. Their semicla
treatment was later extended by use of the quantized Hamiltonian by Finneyet al.23 Kaplan24 used
the two-level model in combination with Fourier expansion theory, which is also related t
Floquet method.

In the context of the two-level system, a standard method used to predict the tran

a!Electronic mail: boyd3@llnl.gov
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probability is the rotating wave approximation~RWA!. The RWA results in an easily solved set
equations and has thus been widely applied. There are examples of its use in laser applicat25,26

and also in the field of magnetic resonance.27–35 Though the RWA is useful it does leave o
important physics. Fang and Zhou36 studied quantum entropy evolution, using the RWA a
found that it left out an important high-frequency amplitude modulation. For analyzing det
response needed for ultrafast lasers Drummond37 could not use the RWA since it became com
pletely invalid on a time scale of a few cycles. Vyas and Singh38 found both transient and secula
effects when their analysis went beyond the RWA. Milonniet al.39 showed the transition prob
ability of a two-level atom can exhibit chaotic behavior. Furthermore, they determined the R
approximation to their equations did not manifest chaos. The RWA could not be used by
bukhet al.40 since they were interested in obtaining quasienergies and intensities of harmon
a two-level system of arbitrary driver strength. They restricted their formulation to low freque
where low frequency means the ratio of driver frequency to the resonance frequency is les
one. A related constraint was invoked in the two-level solution of Duvallet al.41 Again the
objective was to allow the driver field strength to be arbitrary, but to restrict the product o
driver frequency and field strength to be much less than the square of the resonance freq
This restriction allowed them to develop a theory, without the RWA, for the time evolution o
two-level system that is asymptotic in the ratio of the driver frequency to the resonance frequ
The magnetic resonance experiment of Doddet al.42 is a situation where the ratio of perpendicul
time-varying magnetic field to the static field was studied from a small value up to four. For
values of the ratio it was found that the RWA was satisfactory, however, at large value
spectrum changed substantially. In the two-level atom framework this situation correspon
high-intensity radiation.

In this work solutions for the probability amplitude are found with small and large rati
driver frequency to resonance frequency. The two-level system considered in this work do
account for finite state lifetime. In other words, there is not an interaction term that ca
spontaneous emission from the excited state. Also, the driver radiation will be assumed to h
amplitude that is constant in time. Thus, the effect of driver pulse shape is not included.

In this work, the probability amplitudes needed to determine the transition probability
derived without the RWA. The form of the probability amplitude solution is expressed as a s
cosine of a new dependent variable, and two related functions. The derived probability amp
are compared to the RWA solution, which is obtained by approximating the basic equatio
Sec. II. The Floquet solution is briefly discussed in Sec. II since various forms of Floq
theorem have been previously applied to the analysis of state transition dynamics.22,23,43–45In Sec.
III, a transformation is used to obtain a new perspective on the probability amplitude sol
Exact analytic expressions for the probability amplitudes are obtained for a two-level syst
terms of two functions that are determined in several limits. In the first limit the two functions
derived for the case of the small ratio of Rabi frequency to driver frequency. Under some c
tions it will be shown, the two functions, and therefore the analytic solution for the probab
amplitudes, is valid for the large ratio of Rabi frequency to driver frequency.

The transition probability and coherent spectrum are investigated in Sec. IV. The form
new probability amplitude solution is shown to manifest coefficients that are integer order B
functions. The zeros of the Bessel functions point out interesting parameter values, whe
character of the solution can be substantially altered. Regions around several zeros are num
studied to show the dependence of the transition probability and coherent spectrum on the
tion of parameter values near Bessel function zeros.

In Sec. V, equations are derived that demonstrate the application of the transition prob
solution to the dynamics of a spin-1

2 magnetic resonance. A correspondence is obtained betw
parameters allowing the two-level system solution derived in Sec. III to completely map on
magnetic resonance model. Similarly, it is also shown that the equations describing the two
system can be transformed to become mathematically equivalent with the equation for the
function obtained from a periodic spatial potential.
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II. THEORY FOR THE TWO-LEVEL SYSTEM AND APPLICATION
TO THE RWA AND FLOQUET’S THEOREM SOLUTION

The derivation of the equations governing the probability amplitudes, assuming a co
amplitude driver field, and infinite lifetime energy levels, results in a set of two coupled first-o
differential equations. For purposes of comparing exact solution results and previous res
there are two solution procedures that are utilized in this section to obtain expressions f
probability amplitudes. The first procedure is the RWA, which is based on neglecting
frequency components of the complete solution. The second solution procedure relies on Fl
theorem. The presentation of the second solution explains why the Floquet methodology co
the physics of the underlying parameter dependence of the probability amplitude solution,
is revealed in the Sec. III formulation.

A. General time-dependent equations

The two-level system is described by two states coupled by an electric dipole
interaction.46–48 It is, however, not a requirement of the theory that the interaction be the ele
dipole. Other interactions are possible candidates as long as there are only two states invo
the interaction. It is assumed that selection rules allow the transition, and the electric
dominates any other possible transition. The Hamiltonian is assumed to be separable into
H5H01HR1HI for the atom, the radiation, and the dipole interaction, respectively. The di
operator is

dW 5y~s121s21!x̂, ~1!

wherey5y125y21 is the electric dipole transition matrix element46 ands12 ands21 are the raising
and lowering operators. The electric field has a single frequency,EW (t)5 x̂E0 cosvlt and the inter-
action Hamiltonian is then

HI52dW •EW ~ t !5\V0~s121s21!cosv l t, ~2!

where the Rabi frequency isV052E0y/\. In the Schro¨dinger picture, the state is a time-varyin
mixture of the ground and excited level,

uc~ t !&5c1~ t !u1&1c2~ t !u2&, ~3!

which satisfies the time-dependent Schro¨dinger equation,

i\
]

]t
uc&5Huc&. ~4!

Using the orthonormality relations among states, two coupled probability amplitude equatio
derived from Eq.~4!,

dc1

dt
5 ic12 i

b

2
c2 cosat, ~5a!

dc2

dt
52 ic22 i

b

2
c1 cosat, ~5b!

where the energy separation between levels is\v0 , t5v0t/2, a52v l /v0 , andb54V0 /v0 .
The two coupled equations~5a! and~5b! are the basic equations that must be solved to unders
the dynamics of the two-level system.

In order to generate an appropriate second-order differential equation for later solution
vations, new variables are chosen,
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c15~c11c2!ei ~b/2a!sin at, ~6a!

c25~c22c1!e2 i ~b/2a!sin at, ~6b!

which, after substituting into Eq.~5!, satisfy two coupled equations:

dc1

dt
52 ic2ei ~b/a!sin at, ~7a!

dc2

dt
52 ic1e2 i ~b/a!sin at. ~7b!

To derive linear second-order differential equations and resolve the coupling betweenc1 andc2

in Eq. ~7a! and Eq.~7b!, the derivative with respect tot is taken to obtain

d2c1

dt2 2 ib
dc1

dt
cosat1c150, ~8a!

d2c2

dt2 1 ib
dc2

dt
cosat1c250. ~8b!

The difficulty in solving Eq.~8! is caused by the periodic coefficient cosat, which multiplies the
first derivative term.

B. Rotating wave approximation solution

In this section, the RWA is used to solve Eq.~5!. To facilitate the RWA solution, the
probability amplitudes are expressed asc15y1ei t andc25y2e2 i t. Substituting these expression
into Eq. ~5!,

dy1

dt
52 i

b

4
y2~ei (a22)t1e2 i (a12)t!, ~9a!

dy2

dt
52 i

b

4
y1~ei (a12)t1e2 i (a22)t!. ~9b!

The RWA assumes high-frequency terms can be neglected. Thus the RWA eliminates
proportional toe6 i (a12) in Eq. ~9!,

dy1

dt
52 i

b

4
y2ei (a22)t, ~10a!

dy2

dt
52 i

b

4
y1e2 i (a22)t. ~10b!

Note in Eq.~10! that the size ofb does not enter into the approximation used by the RWA. It
however, found in the RWA solution, detailed in Appendix A, thatb enters the solution as
frequency term similar toa.

C. Floquet solution procedure

The Floquet solution is applicable to a differential equation having periodic coefficients.
is the form of the equations derived earlier in Eq.~8!. It is noted that Eq.~8a! is nearly identical
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to the fundamental equation~3.10! solved in related, recently published work.45 However, in this
discussion of the Floquet solution for Eq.~8a!, the formalism of Whittaker49 is applied to Eq.~8a!,

d2q

dt̂2 1~u012u1 cos 2t̂12u2 cos 4t̂ !q50, ~11!

wheret̂5(2at2p)/4 and

q5c1e2 i ~b/2a!sin(2t̂1p/2),

u05
81b2

2a2 ,

u152
ib

a
,

u252
b2

4a2 .

The Floquet solution consists of an unknown exponential coefficientm and an infinite series o
sinusoids,

q~ t̂ !5emt̂ (
n52`

`

bne2ni t̂. ~12!

Substitutingq( t̂) into Eq. ~11!, it is found thebn coefficients must satisfy,

u2bn221u1bn211@u02~ im22n!2#bn1u1bn111u2bn1250. ~13!

The coefficients ofbn form an infinite matrix. In order to have a solution other than zero,
determinant of thebn coefficient matrix must be zero,D( im)50. The zero determinant conditio
is used to specifym,

sin2~ 1
2 p im!5D~0!sin2~ 1

2 pu0
1/2!. ~14!

In order to solve Eq.~14!, it is necessary to approximateD(0), which is an infinite determinant
Fortunately, the band structure of the matrix is such that if all rows are divided by the
diagonal value (u024n2) the off-diagonal bands become small compared to 1 as the indn
increases. The determinant contribution from largen is essentially zero and the value of th
determinant is specified by a block finite dimension determinant about the middleb0 row. Oncem
is known, thebn coefficients are obtained in terms ofb0 and the cofactors ofD( im).

The Floquet procedure results in the solution for the probability amplitudes for the two-
system. Therefore, it contains every detail of the solution for any selection of parameters
difficulty with the Floquet solution is that it conceals the dependence ofm and thebn coefficients
with respect to variations of thea and b parameters. The role of thea and b parameters only
enters, in a complicated manner, in the process of obtaining the zero determinant of the infibn

coefficient matrix.

III. FORMULATION OF THE PROBABILITY AMPLITUDE EQUATIONS WITH A NEW
DEPENDENT VARIABLE

The t variable used in Eq.~7! is replaced with a new variables, in order to gain insight into
the probability amplitude solution dependence on thea andb parameters, and to avoid the nee
for an infinite determinant. The objective is to use a variable that is more natural to Eq.~7! and
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also contains as much of the characteristic behavior as possible. The new formulation pe
comparison with the RWA and also allows an interpretation of the Floquet solution.

A. The new two-level formulation

Thes coordinate is a generalization to arbitrary frequency of a variable used previously
strictly resonance solution,50

s5E
0

t

dx ei ~b/a!sin ax5tJ01
1

a (
n51

`

J2n

sin~2nat!

n
2

2i

a (
n50

`

J2n11

cos@~2n11!at#21

2n11
,

~15!

whereJn5Jn(b/a) is the ordern Bessel function evaluated atb/a. The integral required to
determine thes variable is obtained using Eq.~B1a! and Eq.~B1b! Bessel generating function
relations51 written in Appendix B.

The variables in Eq.~6! are now considered to be functions ofs. Replacing thet variable with
the s variable in Eq.~7!,

dc1

ds
52 ic2 , ~16a!

dc2

ds*
52 ic1 , ~16b!

and from the derivative of Eq.~16! the following two second-order differential equations a
obtained,

d

ds* Fdc1

ds G1c150, ~17a!

d

dsFdc2

ds* G1c250. ~17b!

It must be stressed that Eq.~17! is not simply the equation for a harmonic oscillator. For examp
the meaning of Eq.~17a! is that the derivative ofc1 must be taken with respect tos. The result
of that operation must then have a derivative taken with respect to the complex conjugate ofs, and
then when added to the original function must sum to zero. A solution of Eq.~17! has not been
derived directly in its stated form. To proceed toward a tractable solution, the relationds* /ds
5(ds/dt)22 is applied to Eq.~17a!,

d2c1

ds2 1c1~ds/dt!2250. ~18!

To facilitate the solution ofc1 the following substitution is made in Eq.~18!:

d log~c1!

ds
52 iu1 , ~19!

which results in a Riccati equation,

i
du1

ds
1~u1

221!5~ds/dt!2221. ~20!
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The constant one has been subtracted from each side of Eq.~20! to cause the first two terms of th
right side to become

@J0~2b/a!21#22iJ1~2b/a!sin@at~s!#, ~21!

whereJn(2b/a) is the ordern Bessel function evaluated at 2b/a. SinceJ0(2b/a)'1, for small
b/a, in a perturbation sense the lead right-hand side term scales asb/a. This makes it reasonabl
to takeup51 as a particular solution of the left side of Eq.~20!. The general solution for the lef
side of Eq.~20! is expressed asu15up11/v, wherev is a function to be determined. Substitutin
u1 into Eq.~20!, it is found thatv5(1/2)C0 exp(22is)21

2, whereC0 is an arbitrary constant, an
thus

u15
eis1C0e2 is

2eis1C0e2 is . ~22!

A possible solution to the left side of Eq.~20! with C0521, isu152 i tan(s), however, the actua
solution that is needed must account for the nonzero right side. Thus, the proposed solu
u152 i tan@(s1s* )/21p#, where the functionp is introduced to account for the nonzero rig
side. Substituting the proposed solution into Eq.~20! gives the equation that must be solved byp,

dp

ds
5

1

2
cos~s1s* 12p!

d

ds
~s* 2s!, ~23!

or converting back to thet coordinate,

dp

dt
52 i sinF S b

a D sin~at!Gcos~s1s* 12p!, ~24!

where from Eq.~15!,

s1s* 52J0t1
2

a (
n51

`

J2n

sin~2nat!

n
, ~25!

and, thus, the sums1s* can be viewed as a function oft. From Eq.~22!, it can be seen tha
another possible proposed solution withC051 could beu15 i cot@(s1s* )/21pc#, wherepc sat-
isfies

dpc

dt
5 i sinF S b

a D sin~at!Gcos~s1s* 12pc!. ~26!

Comparing the first-order differential equation in Eq.~26! with the complex conjugate of Eq.~24!,
it can immediately be seen thatpc5p* .

A function Q related to the Eq.~19! transformation is associated with theu1 tangent solution,

Q52 log@cos„~s1s* !/21p…#2 i E u1 ds52 i E sin@~b/a!sin~at!#sin@s1s* 12p#dt,

~27!

and a functionQc is associated with the cotangent solution

Qc52 log@sin„~s1s* !/21p…#1 i E u1 ds5 i E sin@~b/a!sin~at!#sin@s1s* 12pc#dt.

~28!
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Comparing the complex conjugate ofQ, defined by Eq.~27!, with the equation solved byQc in
the second line of Eq.~28!, it is clear thatQc5Q* .

Either of the two possible solutions of the Riccati equation can serve as a solution foc1 .
Sincec1 solves a linear second-order differential equation, superposition may be applied, a
solution forc1 can then be written as

c15C11cosF ~s1s* !

2
1pGeQ1C12sinF ~s1s* !

2
1p* GeQ* , ~29!

whereC11 andC12 are constants depending on initial conditions. It can be seen from Eq.~17! that
the complex conjugate of Eq.~17a! is exactly the equation solved byc2 in Eq. ~17b!. However,
because initial conditions may differ,c2Þc1* , but rather,c2 consists of the complex conjugate o
each part ofc1 with different arbitrary coefficients,

c25C21cosF ~s1s* !

2
1p* GeQ* 1C22sinF ~s1s* !

2
1pGeQ. ~30!

The complete solution of the two-level problem is given by Eq.~29! and Eq.~30!. All that is
needed to specifyc1 andc2 is the constants, thep function, and the Eq.~27! integral definingQ,
which also depends onp.

The two-level system solution is completely determined when the constantsC11, C12, C21,
andC22 have been related to the initial conditions ofc1 andc2 . From Eq.~6!,

c15 1
2 @c1e2 i ~b/2a!sin at2c2ei ~b/2a!sin at#, ~31a!

c25 1
2 @c1e2 i ~b/2a!sin at1c2ei ~b/2a!sin at#, ~31b!

and since att50, constants have been selected such thats1s* 50, p50, Q50, anddQ/dt
50,

C115@c1~0!1c2~0!#, ~32a!

C1252 i @c2~0!2c1~0!#, ~32b!

C215@c2~0!2c1~0!#, ~32c!

C2252 i @c1~0!1c2~0!#. ~32d!

The ratiob/a has a substantial influence on the solution ofc1 andc2 since it is fundamenta
to the solution of thep function. There is a kind of a mechanical gearing effect where the in
oscillation of sin(at) is geared into the sinusoid that drives thep function solution. This is a resul
of dp/dt, having a factor of sin@(b/a)sin(at)#. Any frequency content that entersp appears in the
argument of the Eq.~29! and Eq.~30! solutions. Like two gear wheels that may mesh with
variety of size ratios, the choice ofb/a may be large or small. When it is small corresponding
low intensity, the outer oscillation only achieves a value less than the maximum of one. How
under this condition it mimics the frequency selected by the choice ofa. At small values
sin@(b/a)sinat#'(b/a)sinat, and a has the character of a frequency. The ratiob/a has the
character of an amplitude, which is consistent with the relationship ofb to the amplitude of the
driver. Whenb/a5p/2 anda52, the outer sinusoid achieves its maximum value of one and
inner and outer sinusoids closely track each other. Forb/a slightly greater thanp/2, a new
phenomenon begins to occur. The outer sinusoid achieves its maximum beforeat5p/2, and at
the peak value of one for the inner sinusoid, the outer sinusoid has an argument beyondp/2 and
thus it has a value of less than one. The effect is to begin to cause a ripple structure on the
of the sin@(b/a)sinat# function. The ripple is a new frequency related to the magnitude ofb/a,
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and thusb/a takes on the character of a frequency. It would then be expected that harmon
the drive frequency would be produced whenb/a is made large. It is regularly observed expe
mentally that high intensity, which is largeb, leads to harmonic generation. Whenb/a is large
there is a frequency chirping effect, since the argument of the outer sinusoid has an instant
‘‘frequency’’ that isb cos@(b/a)sinat#. The times when sinat changes most slowly occur wher
its derivative a cosat50. No matter how largeb gets, whenat'p/21np, there are brief
periods of time when the solution seems to be driven by a very low frequency. Atat'p/2
1np, the argument of the outer sinusoid has its slowest change, and thus the lowest ap
frequency. This fundamental behavior is crucial to the derivation of the dwell point solu
which is presented in Sec. IV B 1.

B. Derivation of the lowest-order p and Q functions

The governing equation~24! for p is nonlinear sincep appears as an argument of the cosin
An analytic solution can be obtained for this equation, assumingb/a!1. This is possible becaus
dp/dt scales likeb/a when b/a!1. From Eq. ~25! at small b/a, it is found that s1s*
'2J0t. Under these conditions, Eq.~24! becomes

dp

dt
52 i sinF S b

a D sin~at!Gcos~2J0t!. ~33!

If the drive frequency is set near resonance such thata52J0 , then Eq.~33! is a perfect derivative
and

p5
i

b
cosF S b

2J0
D sin~2J0t!G2

i

b
. ~34!

For the situation whereaÞ2J0 ,

p5 i (
n50

`

J2n11Fcos@~2n11!a12J0#t21

~2n11!a12J0
1

cos@~2n11!a22J0#t21

~2n11!a22J0
G , ~35!

where the Eq.~B1b! relation has been used to expand the sine, and forb/a!1,

p5 iJ1Fcos~a12J0!t21

a12J0
1

cos~a22J0!t21

a22J0
G . ~36!

Also, to lowest order inb/a, Eq. ~27!, becomes fora52J0 ,

Q522iJ1E sin~2J0t!sin~2J0t!dt52 iJ1Ft2
sin~4J0t!

4J0
G , ~37!

and foraÞJ0 ,

Q522iJ1E sin~at!sin~2J0t!dt52 iJ1Fsin~a22J0!t

a22J0
2

sin~a12J0!t

a12J0
G . ~38!

C. Improvement of the accuracy of the p and Q function used by the probability
amplitude solution

The lowest orderb/a solution forp, in both Eq.~34! and Eq.~36!, is purely imaginary. The
p function is complex and thus, in general, it also has a real part. A solution for the real parp
requires extending the formulation to higher order inb/a. To improve the accuracy of thep
solution, and determine the real part, which requires higher order inb/a, Eq. ~24! is separated
into two coupled equations for the real part,pr , and imaginary part,pi , of p,
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dpi

dt
52sinF S b

a D sin~at!Gcos@~2J022k!t12~pr1kt!#cosh~2pi !, ~39a!

dpr

dt
52sinF S b

a D sin~at!Gsin@~2J022k!t12~pr1kt!#sinh~2pi !. ~39b!

In Eq. ~39!, kt has been added and subtracted from the argument of the sine and cosin
purpose of this modification is to make available the arbitrary constantk that can then be chose
later to ensure the quantity 2(pr1kt) is small and bounded in time. More specifically, if the re
partpr is allowed to have a term that is linear int, then it cannot be neglected on the basis ofb/a
being small. In the eventpr is allowed to have a term linear int, then it could grow arbitrarily
large as time increases. Later,k will be chosen to cancel out the part of thepr term that is linear
in t. On the other hand,dpi /dt scales like cosh(2pi) so pi tends to stay small, because a lar
positive or negative value is forced back toward zero as the sinusoids oscillate their sign. T
no need to extract a term linear int from pi , since it is bounded in time. The hyperbolic cosi
is always positive, however, the sign of the hyperbolic sine is the same as its argument. Th
equation in Eq.~39b! for dpr /dt that has the sinh(2pi) factor on the right-hand side, reflects th
sign of pi . It will be shown later that this factor can synchronize with the sinusoids and resu
a solution forpr that has a term linear int. By rearranging Eq.~39a!, the following equation is
obtained:

E 2 dpi

e2pi1e22pi
5Ri , ~40!

which can be integrated to yield

pi5~1/2!log@ tan~Ri1p/4!#, ~41!

where

Ri52E sinF S b

a D sin~at!Gcos@~2J022k!t12~pr1kt!# dt. ~42!

As shown by the preliminary solution forp in Eq. ~34! and Eq.~36!, there is only an imaginary
part of p present, and thus the real part,pr1kt, is higher order thanpi , and therefore the
approximation is made that

Ri52E sinF S b

a D sin~at!Gcos@~2J022k!t# dt, ~43!

where thepr1kt term is neglected. There are two cases forRi . First, if a52J022k, then Eq.
~43! can be integrated to obtain

Ri5
1

b
cosH S b

2J022kD sin@~2J022k!t#J 2
1

b
, ~44!

otherwise, for the situation whereaÞ2J022k,

Ri5J1Fcos~a12J022k!t21

a12J022k
1

cos~a22J012k!t21

a22J012k G , ~45!

where the Eq.~B1b! relation has been used to expand the sine, and only the first term is kept
it is assumed thatb/a!1. The expression in Eq.~45! can be substituted into Eq.~41! to obtain a
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solution for pi that is improved compared to the solution of Eq.~36!. To use the improvedpi

solution in Eq.~39b!, it is first necessary to obtain an expression for sinh(2pi),

sinh~2pi !5
1

2 F tanS Ri1
p

4 D2cotS Ri1
p

4 D G5tan@2Ri #'2Ri . ~46!

From Eq.~45!, Ri is first order inb/a, and thus to obtain the second-order expression fordpr /dt
in Eq. ~39b!, only the first term is taken from the expansion of sin@(b/a)sinat#,

dpr

dt
522J1 sin~at!sin@~2J022k!t#@2Ri #, ~47!

where againpr1kt has been neglected as a higher-order contribution. SettingRi5(J021
12J2 cos 2at)/b, it is found if a52J022k,

pr52
2

b
J1S b

2J022kD H J2S b

2J022kD Fsin@~4J024k!t#

2J022k
2t2

sin@~8J028k!t#

8J028k G
1~J021!Ft2

sin~4J024k!t

4J024k G J , ~48!

and, alternatively, ifaÞ2J022k substitutingRi from Eq. ~45! into Eq. ~47!,

pr5J 1
2F ~4J024k!F124aF2

a22~2J022k!2 1
sin~2a14J024k!t

2~a12J022k!2 2
sin~2a24J014k!t

2~a22J012k!2 G , ~49!

where

F15
sin~2at!

2a
1

sin~4J024k!t

4J024k
2t, ~50!

F25
sin~a12J022k!t

a12J022k
2

sin~a22J012k!t

a22J012k
. ~51!

From Eq.~48!, the term linear int defines k whena52J022k,

k5
2

b
J1S b

2J022kD H J0S b

2J022kD212J2S b

2J022kD J . ~52!

The above relationship is actually transcendental becausek appears on the right side of th
equation. Since Eq.~52! showsk is order (b/a)2, it is small compared toJ0;1, and thusk can
be accurately obtained in three steps:

k05
2

b
J1S b

2 D FJ0S b

2 D212J2S b

2 D G ,
k15

2

b
J1S b/2

F32k0
D FJ0S b/2

F32k0
D212J2S b/2

F32k0
D G , ~53!

k5
2

b
J1S b/2

F42k1
D FJ0S b/2

F42k1
D212J2S b/2

F42k1
D G ,

whereF35J0@(b/2)/(12k0)# and,k1 andF3 are used to determineF45J0@(b/2)/(F32k1)#.
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From Eq.~49!, the term linear int definesk when aÞ2J022k, and, as before,k can be
accurately obtained in three steps:

k05J 1
2 4J 0

a224J 0
2 ,

k15J 1
2 4J024k0

a22~2J022k0!2 , ~54!

k5J 1
2 4J024k1

a22~2J022k1!2 .

The only remaining function that is needed to complete the improved solution isQ. As before,
the linear term is removed frompr andpr1kt is treated as second order in (b/a)2,

Q52 i E sin@~b/a!sinat#@sin~2J022k!t cosh~2pi !1 i cos~2J022k!t sinh~2pi !#dt

52E dRi

dt
tan~2Ri ! dt2 i E sin@~b/a!sin~at!#sin~2J022k!t

dt

cos~2Ri !
. ~55!

Approximate tan(2Ri)'2Ri , and 1/cos(2Ri)'112Ri
2 , then sin@(b/a)sinat#Ri

2 is third order so it is
neglected, and the result is

Q52Ri
222iJ1E sinat sin~2J022k!t dt, ~56!

and thus, fora52J022k,

Q52Ri
22 iJ1S b

2J022kD Ft2
sin~4J024k!t

4J024k G , ~57!

and foraÞ2J022k,

Q52Ri
22 iJ1Fsin~a22J012k!t

a22J012k
2

sin~a12J022k!t

a12J022k G . ~58!

IV. RESULTS AND DISCUSSION

A. Results from the analytic solution

In this section the analytic solution is compared to the RWA to demonstrate the addi
physics contained in the new solution. To delineate the parameter regime where the new p
is valid, uc1u, calculated with the approximatep and Q derived in Sec. III C, is compared to
numerical solution. An interpretation of the Floquet solution is given in the framework of the
probability amplitude solution to explain the relationship of the Floquet coefficients to the in
order Bessel functions. The structure of the new probability amplitude solution is discuss
highlight the influence of the properties of the integer order Bessel functions on the solutio

1. Comparison of the analytic probability amplitude solution with the rotating wave
solution

The RWA from Eq.~A1! can be used to obtain an expression for the sum of the probab
amplitudes,
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c112
RWA5y1a expF i ~a1A~a22!21b2/4!

t

2G1y1b expF i ~a2A~a22!21b2/4!
t

2G
1y2a expF2 i ~a1A~a22!21b2/4!

t

2G1y2b expF2 i ~a2A~a22!21b2/4!
t

2G .
~59!

The basic frequency behavior ofc112
RWA can be approximated by considering the smallb behavior,

c112
RWA'y1a exp@ i ~a21!t#1y1b exp@ i t#1y2a exp@2 i ~a21!t#1y2b exp@2 i t#. ~60!

There are two separate oscillations in Eq.~60!. The first is ata21, which corresponds to a
response to the driver frequencya, and the second is at 1, which corresponds to halfv0 .

For comparison, an expression corresponding toc112
RWA is given by thep solution of Eq.~36!

substituted into Eq.~29!. The corresponding lowest-orderQ function from Eq.~38! is also used,
to obtain

c11c25c1e2 i ~b/2a!sin at

5$C11cos@J0t1p#eQ1C12sin@J0t1p* #eQ* %

3FJ0S b

2a D22iJ1S b

2a D sin~at!G . ~61!

At small b/a, the zeroth-order Bessel function has a nearly zero argument and thusJ0'1 and
thereforeJ0„b/(2a)… multiplying the bracketed quantity in Eq.~61! results in an oscillation a
about 1, which is similar to the terms, multiplyingy1b andy2b in Eq. ~60!. In Eq. ~61!, there are
also small modifications due top and exp(Q). Other product terms in Eq.~61! such asTcs

5cos@J0t1p#sin(at) can be combined,

Tcs5~sin@~a1J0!t1p#1sin@~a2J0!t2p# !/2, ~62!

to display frequenciesa2J0 anda1J0 . The frequencya2J0 is similar to the terms multiplying
y1a and y2a in Eq. ~60! that have frequencya21, however there is no correspondence in t
RWA solution to frequencya1J0 . As seen from Eq.~38!, theQ exponent could be expanded
display harmonics ofa22J0 anda12J0 , however, in contrast, the RWA completely neglec
the wealth of higher harmonics.

2. Region of validity for the most accurate p and Q solution

The improved solution forp andQ in Eq. ~41!–~58! provides more physics than the RWA
however, asb/a is increased the probability amplitudes formed from these functions bec
increasingly less accurate. The Eq.~29! and Eq. ~30! expressions forc1 and c2 are exact,
however, the derivation of the formulas forp andQ relied on the assumption thatb/a is a small
parameter less than one. To gauge the range ofb/a over which the probability amplitude is valid
uc1u is compared to the numerical solution of Eq.~8! in Fig. 1.

The plots in Figs. 1~a!–1~c! are calculated witha53. In Fig. 1~a!, b/a50.30, and the curves
show a discrepancy of 1.5%. Atb/a50.50, in Fig. 1~b!, there is a noticeable discrepancy at
level of approximately 6%. At the highest value ofb/a50.70, in Fig. 1~c!, the discrepancy
between the two solutions is approximately 30%.

From these results, it can be seen that the analyticuc1u is in good agreement atb/a50.30.
For b/a50.50 the discrepancy between solutions ranges from 2.5% to 6%, and thus fo
,b/a,0.50 caution is needed. Depending on the application this may or may not be an a
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able level of accuracy. Whenb/a50.70 there can be differences of up to 30% between
analytic and numerical solution. Thus, atb/a50.70, the analytic solution forp andQ does not
have sufficient accuracy to determineuc1u.

3. Interpretation of the Floquet solution in the framework of the analytic probability
amplitude solution

The probability amplitude solution of Eq.~29! with p given in Eq.~36! andQ integrated in
Eq. ~38! can be multiplied by exp@2i„b/(2a)…sin(at)#. The result is the variable that was di
cussed in the Sec. II C description of the Floquet solution. Using the Eq.~B1! relations, all the
terms with sine embedded in a sinusoid could, in principle, be expanded. Following this ope
products of sinusoids could be combined, as was done in Eq.~62!. Ultimately, the result is an
infinite series of harmonics multiplied by complicated products of Bessel functions. This is ex
the form of the Floquet solution in Eq.~12!. Therefore, the unknown Floquet solutionbn coeffi-
cients are a complicated product of Bessel functions. This is the result of extracting cofactor
the infinite Floquetbn determinant. In essence, the transformation of Eq.~15! that defines thes

FIG. 1. The probability amplitude,uc1u is compared to the numerical solution for frequencya53.00, and three driver
strengths:~a! b/a50.30; ~b! a53.00, b/a50.50; ~c! a53.00, b/a50.70.
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variable, when applied to Eq.~7!, results in a sort of bundling of the infinite Floquet series in
known functions. The benefit of the new arrangement is that there is a much clearer display
dependence of the solution on the parametersa andb.

The benefit of the derived analytic solution is clear in the simplicity of the express
compared to the need to determine cofactors of an infinite determinant, as required by the F
formulation. It is more efficient to deal with an expression forp such as that written in Eq.~34!
rather than its equivalent expression,

p5
i

b FJ0S b

2J0
D21G1

2i

b (
n51

`

J2nS b

2J0
D cos~4nJ0t!. ~63!

4. Structure of the new probability amplitude solution

A primary advantage of the new solution is that it relies on just the specification of thep and
Q functions. An even more important benefit is that the form of the solution provides conside
information about the behavior of a two-level system. The key point is that the Bessel functio
integer order are all oscillatory. The zeroth-order Bessel function is one at zero, and all
orders are zero. The arguments of the Bessel functions scale like the Rabi frequency o
driver frequency. Often this ratio is small and then the solution is described in the region nea
where in the limit

c15C11cos@J0t#1C12sin@J0t#, ~64a!

c25C21cos@J0t#1C22sin@J0t#. ~64b!

The Eq.~64! result shows in the smallb/a limit that the coefficient oft is the zeroth-order Besse
function. BecauseJ0t is the first term of the real part ofs, it persists as theb/a argument is
increased. Atb/a52.4048 the zeroth-order Bessel function has its first zero. This means th
character of the time variation contributed bys1s* dramatically changes at this location
parameter space. In other words, selectingb/a52.4048 switches off the linear time variatio
contribution of s1s* . The same change happens at other zeros such asb/a55.520 or b/a
58.654. In fact, there are an infinite number of zeroth-order Bessel function nodes wher
occurs. The other terms ofs1s* are even harmonic sines with even order Bessel function
coefficients. Thus, it is equally possible to switch off any particular even harmonic contrib
from s1s* , and this may be done at any of the infinite sets of available zeros. The nodes
integer order Bessel functions are interlaced so the selection of the term to switch on or off
done while leaving all other terms active. Another interesting feature is that as the order
Bessel function increases the first zero appears at a larger value. For largeb/a, the asymptotic
form

Jn'S 2a

pb D 1/2

cosFba 2
pn

2
2

p

4 G , ~65!

shows an increasing density of nodes contributed by ever larger Bessel function order
spacing between nodes is approximatelyp.

From Eq.~25!, it can be observed that each term in thes1s* summation is an even Bess
function divided by its order multiplying a sine that is bounded by 1. Thus, the entire ter
bounded by the value of the Bessel function divided by its order. In Fig. 2~a!, the even order
Bessel functionsJ4/4, J8/8, andJ12/12 are plotted. In addition to the oscillatory behavior, it c
also be noted that, in general, the value ofJn /n is nearly zero until the argument is comparable
greater than the order. For example, in Fig. 2~a!, J8/8 begins to increase substantially at about
Prior to the initial increase, all Bessel functions of lesser order have already risen. For exam
Fig. 2~a!; J4/4 begins to increase first at about 2.5, thenJ8/8 begins to increase at about 7, an
finally J12/12 begins to increase at 10. The slow initial rise means the higher harmonics
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contribute tos1s* meaningfully whenb/a is comparable or greater than the order of the Bes
function factor associated with a particular harmonic. Lastly, it can be seen from Fig. 2~a! that the
initial maximum of successive first peaks ofJ2n /(2n) is less than the preceding peak. F
example,J8/8 at 9 is less thanJ4/4 at 5.

As previously discussed, the analytic solution in Sec. III requires thep andQ functions. From
Eq. ~24! and Eq.~27! it can be seen each of these functions is similar since ap/4 shift in thep
function in the argument of the sine on the right side ofdQ/dt givesdQ/dt(p1p/4)5dp/dt.
Additionally, bothdp/dt and dQ/dt are proportional to sin@(b/a)sin(at)#, which by using Eq.
~B1b!, can be expanded as

sinFbasin~at!G52(
n50

`

J2n11 sin@~2n11!at#. ~66!

The form of Eq.~66! reveals thatp andQ can be controlled to some degree by selectingb/a to
coincide with a zero of any odd integer order Bessel function. For example, to eliminat
sin(at) termb/a could be set to the first zero, 3.832, ofJ1 or a zero at a larger value ofb/a. The
odd order Bessel functions,J11, J21, andJ31 are plotted in Fig. 2~b!, where it can be seen as wit
the even order Bessel functions, the odd order Bessel functions are nearly zero until the ar
is comparable or greater than the order. However, in contrast the first peak of the odd order
function is larger than the size of preceding Bessel functions at the location of the peak. T
should be expected that the higher-order harmonics of Eq.~66! have a minuscule effect unless th
b/a argument is comparable to or greater than the order. In the vicinity of the first peak, th
dominance over the magnitude of all other Bessel functions.

FIG. 2. ~a! Even order Bessel functionJ4/4 ~solid curve!, J8/8 ~dashed curve!, andJ12/12 ~dotted curve!. ~b! Odd order
Bessel functionJ11 ~solid curve!, J21 ~dashed curve!, andJ31 ~dotted curve!.
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The integer order Bessel function zeros point out interesting parameter values for study
two-level system. Each integer order Bessel function has an infinite number of nodes. The p
parameter,b/a, is a ratio and, thus, there are two ways to select any particular Bessel zero.
the drive frequency that corresponds toa can be set, and then the Rabi frequency that correspo
to b can be scanned. An example of this strategy would be to select a resonance frequen
then progressively increase the intensity of the electric field. Second,b can be set and thena can
be scanned. Asa gets small, the ratiob/a can be made large. Normally there is an expec
resonance, so this amounts to going to a subharmonic. As explained previously, it is also p
to diminish the influence of a Bessel function and consequently its associated harmonic by
b/a less than the order. The oscillatory behavior of a Bessel function with an approximap
period does not begin in earnest until the argument of the Bessel function exceeds the ord

B. Numerical results

The values ofb/a needed to explore the locations where the Bessel zeros occur beg
b/a>2.4048. This value far exceeds the assumption ofb/a!1 used to derive analytic solutions
To provide an analytic solution for largeb/a the properties of thes variable are used. This result
in an analytic solution, referred to as the dwell point solution, that is most accurate whena is large
and b/a is near a zero ofJ0 . For general values ofa and b/a, it is necessary to resort to
numerical calculations to obtain the solution. Several examples are provided of numerical
lations of the transition probability and the coherent spectrum. As explained in Sec. IV A 4
functionsp, Q, and, thus, the probability amplitudes are strongly influenced by the properti
integer order Bessel functions. The choice of parameter values for the transition probabili
coherent spectrum calculations are guided by the properties of integer order Bessel functi

1. Dwell point solution

It becomes increasingly difficult to carry the analytic solution further than given in Sec.
using an ordering inb. However, there is one additional property of thes variable that permits a
locally valid solution for large values ofb/a. To explain why a local solution is possible, and t
circumstances when it is accurate, the trajectory ofs(t) is shown in Fig. 3~a! for a51 and
b/a5 1

2. This result is intuitively expected based ont0(s)5s/J0 , wheres is nearlyt at small
b/a. The oscillatory imaginary part ofs parametrically plotted against a persistently increas
real part ofs causes a familiar sinusoidal trajectory. Asb/a is increased to 2.0 in Fig. 3~b!, a
definite backtracking tendency is noticeable. The real part ofs at these parameter values period
cally develops a negatived(s1s* )/dt, and thus becomes multivalued. In Fig. 3~c!, at a51 and
b/a54.2, several new behaviors are manifested. First, the trajectory exhibits loops, wh
uniform increase oft results in the encounter of the same point in thes plane. Second,J0(4.2)
,0, and thus the trajectory moves from right to left, in contrast to the results in Fig. 3~a! and Fig.
3~b!, where the trajectory moves from left to right. To justify a local solution, it is necessary
the s-plane trajectory be confined to a region during a reasonable fraction of the solution
This effect can be emphasized by selectingb/a to be large and near a zero ofJ0 . In Fig. 4~a!, the
s-plane trajectory is plotted fora52 andb/a562.05. This is a location near a zero ofJ0 , where
in addition,J2 is also close to zero. This makes the lead term ofs1s* effectively J4 /a. The
trajectory is clearly seen to be locked in a small region. Ata52 andb/a562.5, which is slightly
removed from the zero ofJ0 , Fig. 4~b! shows the trajectory moving left to right with a repeatin
pattern of points, about which it spirals in and out. Fora52 andb/a562.5, the spiral pattern is
easily observed in Fig. 5, where thes plane is plotted witht as the third dimension. Thet axis in
Fig. 5 ranges from 0 top. The end of the first outward spiral is then at aboutp/4, and thusat
5p/2. The complete cycle of an inward spiral followed by an outward spiral is observed fo
rangep/4,t,3p/4, which corresponds top/2,at,3p/2.

The points where locality occur coincide with a near constancy of the transition probab
These points have a tendency to behave like a limit point or an attractor, however unleJ0

50, the trajectory moves away and never returns. Furthermore, even though thes-plane pattern
resembles a Lorenz attractor whenJ050, this is not an appropriate description sinces is not a
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solution of the Lorenz equations.52 Thus, the points where the real part ofs is nearly constant are
referred to as dwell points, since the transition probability dwells near a particular value,
though time is advancing.

For the circumstance of precisely constants1s* , Eq. ~24! is separable. During the time in
which thes-plane trajectory is localized,s1s* is approximately constant, and thus separability
Eq. ~24! is a good approximation. The time of validity for the near constancy ofs1s* is derived
by considering when the excursions occur between the locality regions of thes plane. In order for
s1s* to change quickly,d(s1s* )/dt must be as large as possible; which requires thatd2(s
1s* )/dt2 must be minimized. The minimization condition isd3(s1s* )/dt350, or from Eq.
~15!,

cosFba sin~at!Gcos2~at!5

sinFba sin~at!Gsin~at!

b/a
. ~67!

Becauseb/a is large to ensure locality, the right side of Eq.~67! is small and thus the low-

FIG. 3. Trajectory for a uniform increase oft, in the s plane fora51.0, ~a! b/a50.5; ~b! b/a52.0; ~c! b/a54.2.
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frequency solution to the equation is atat'p/21np. This means the fast oscillation ofd(s
1s* )/dt hasb/(2pa) oscillations of inward spiral in a region of locality andb/(2pa) oscil-
lations of an outward spiral. The fast oscillation occurs duringt5p/a, which is the half-period of
sinat, and thus a local solution would be expected to only model higher frequencies.

FIG. 4. Trajectory for a uniform increase oft, in the s plane fora52.0, ~a! b/a562.05; ~b! b/a562.5.

FIG. 5. Trajectory for a uniform increase oft, in the s plane fora52.0, b/a562.5, witht as the third dimension.
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On the basis of the results discussed for Fig. 3, an approximation to Eq.~24! can be formu-
lated. Sinces1s* is nearly constant in the vicinity of a dwell point (s1s* )/2'sdp, it is reason-
able to expect thats1s* 22sdp is small. The completep function equations without approxima
tion are

dpi

dt
52sinF S b

a D sin~at!Gcos@s1s* 12pr #cosh~2pi !, ~68a!

dpr

dt
52sinF S b

a D sin~at!Gsin@s1s* 12pr #sinh~2pi !. ~68b!

The pr function can always be shifted by a constantsdp, so without loss of generality, conside
sdp50. The equations forpr and pi are coupled, which previously allowed a solution only f
small b/a. The dwell point solution permits a decoupling of Eq.~68a! and Eq.~68b! under
conditions that allowpr to be specified in an average manner. The first step in the dwell p
solution is to expresspi in terms ofpr ,

E 2dpi

cosh~2pi !
522E sinFba sinatGcos~s1s* 12pr !dt, ~69!

which may be integrated by parts to obtain

tan21@sinh~2pi !#5 i ~s2s* !cos~s1s* 12pr !1 i E ~s2s* !sin~s1s* 12pr !
d~s1s* 12pr !

dt
dt.

~70!

The integral in Eq.~70! is neglected because in the vicinity of a dwell point,d(s1s*
12pr)/dt must be small. From this approximation

sinh~2pi !5tan@ i ~s2s* !cos~s1s* 12pr !#, ~71!

and using the identity cosh2(x)511sinh2(x),

cosh~2pi !5$cos@ i ~s2s* !cos~s1s* 12pr !#%
21. ~72!

An essential component of the dwell point solution is thatpr is nearly linear,pr'kt, and k
!1. Using this assumption and substituting Eq.~71! into Eq. ~68b!,

dpr

dt
52sinF S b

a D sin~at!Gsin@s1s* 12kt#tan@ i ~s2s* !cos~s1s* 12kt!#. ~73!

The value ofk is determined from the time average of the right side of Eq.~73!. To avoid a
transcendental equation, the time average is performed over a time interval in whichkt!1, and
thus

K dpr

dt L 52
1

T E
0

T

sinF S b

a D sin~at!Gsin@s1s* #tan@ i ~s2s* !cos~s1s* !#dt. ~74!

At this stage of the derivation the dwell pointp function is

pi5
1
2 sinh21$tan@Y1#%, ~75a!

pr5kt, ~75b!
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where k is obtained from^dpr /dt&, as expressed in Eq.~74!, and Y15 i (s2s* )cos(s1s*
12kt). The remaining function that must be calculated isQ. From Eq.~27!,

Re@Q#5E sinFba sinatGcos~s1s* 12pr !sinh~2pi !dt, ~76!

and substituting sinh(2pi) from Eq. ~75a!, pr from Eq. ~75b!, and integrating by parts,

Re@Q#'
1

2
log$cos@Y1#%cos~s1s* 12kt!1E log$cos@Y1#%

3sin~s1s* 12kt!$k1cos@~b/a!sinat#%dt, ~77!

where cos(s1s*12kt) is treated as a constant when integrating tanY1. Also, from Eq.~27!,

Im@Q#5E sinFba sinatGsin~s1s* 12pr !cosh~2pi !dt, ~78!

and substitutingpi from Eq.~75a! into Eq.~73!, substitutingpr from Eq.~75b!, and integrating by
parts,

Im@Q#'2
1

2
log$tan@2Y1/21p/4#%sin~s1s* 12kt!1E log$tan@2Y1/21p/4#%

3cos~s1s* 12kt!$k1cos@~b/a!sinat#%dt. ~79!

The dwell point solution presented in Eq.~75! to Eq.~79! is compared to a numerical solutio
for the relevant functions, which are cos@(s1s* )/21p#, sin@(s1s* )/21p#, andQ. The parameter
settings area52 andb/a562.05, which correspond to the important case of the solution at
zero of J0 , wheres1s* is most localized. All the plots in Figs. 6–8 are for 0,t<2p. The
quantitys1s* is defined by 40 terms up to harmonic sin(160t), and the quantitys2s* is defined
by 39 terms up to harmonic cos(158t). In Fig. 6~a!, Re$cos@(s1s* )/21p#% is plotted for the dwell
point solution along with the numerical solution. The two curves agree to within a linewidth.
numerical solution and dwell point solution for Im$cos@(s1s* )/21p#% are plotted in Fig. 6~b!. The
two curves also agree to within a linewidth. In Fig. 7~a!, the plotted function is Re$sin@(s1s* )/2
1p#%, and in Fig. 7~b!, the plotted function is Im$sin@(s1s* )/21p#%. In both these figures, the
dwell point solution is plotted along with the numerical solution. Again, the agreement is so
the curves are indistinguishable. In Fig. 8~a!, Re@Q# is plotted for the dwell point solution of Eq
~74!, along with the numerical solution. The agreement can be seen to be very close, excep
barely visible discrepancy where 5.5,t,6.2. The integral portion of the solution in Eq.~77! is
small relative to the portion that has been extracted using integration by parts. Thus, for Re@Q# the
integral is not needed. In contrast, the integral portion of Eq.~78! is about half the total solution
for Im@Q#. In Fig. 8~b!, the dwell point solution has 10% level deviations from the numer
solution. In the Im@Q# function, the approximation thatpr'kt results in noticeable errors. In
terms of impact on the overall solution, Im@Q# enters as a phase, and thus it contributes a ph
error to the dwell point solution.

The main conclusion that can be drawn from Figs. 6–8 is that the dwell point solution pre
pi very accurately. The reason for this can be derived from Eq.~23!, where settingpi5(s*
2s)/(2i ) andpr52sdp results in

15cos@~s1s* 22sdp!12ipi #. ~80!

To the extent thats1s* is localized aboutsdp, the cosine in Eq.~80! has an argument that is clos
to zero, whenpi is small, and thus Eq.~23! is approximately solved. In order to actually solve f
p, it therefore follows thatpr has a small part that is not constant andpi will deviate from pi
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FIG. 6. Dwell point solution fora52 andb/a562.05 compared to the numerical solution.~a! Re@cos($s1s* %/21p)#, ~b!
Im@cos($s1s* %/21p)#.

FIG. 7. Dwell point solution fora52 andb/a562.05 compared to the numerical solution.~a! Re@sin($s1s* %/21p)#; ~b!
Im@sin($s1s* %/21p)#.
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5(s*2s)/(2i). It is found the predominant small part ofpr is a term that is linear int. For the
plotted example, it is calculated numerically thatpr'2.631023t. In other words,pr is initially
very small, but it increases linearly in time introducing a low frequency that makes the dwell
solution less accurate, in the real and imaginary parts of cos@(s1s* )/21p#, sin@(s1s* )/21p#, and
Q. Thus, use of the dwell point solution must be restricted to earlier times of perhaps,t
,20p.

2. Transition probability calculations and dipole frequency spectrum

In order to explore the solution behavior for general values ofa andb/a, it is necessary to
resort to numerical calculations to solve Eq.~8!. Having obtained the numerical solution, there a
two interesting functions that can be studied. The first is the transition probability

c2c2* 5 1
4 @c1c1* 1c2c2* 1c1c2* e2 i (b/a)sin at1c1* c2ei (b/a)sin at#, ~81!

and the second is a function proportional to the time-dependent mean dipole moment,

d~t!/y5c1* c21c1c2* 5 1
2 @c1c1* 2c2c2* #. ~82!

The Fourier transform ofd(t)/y provides a function that is proportional to the cohere
spectrum,46

Lwd5 log10U E
2`

` 1

2
@c1c1* 2c2c2* #e2 ivt dtU2

. ~83!

In Fig. 9, the average transition probability is plotted fora52 ~solid curve! anda51 ~dashed
curve!. For each point on the two curves, the transition probabilityc2c2* is calculated for 100

FIG. 8. Dwell point solution fora52 andb/a562.05 compared to the numerical solution.~a! Re@Q#; ~b! Im@Q#.
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periods of the driver frequency, using the initial conditionc1(0)51 andc2(0)50. Two-thousand
points are sampled from each calculation and then averaged. There are 45 calculated re
each curve forb/a,9 and then 22 calculated results for 9,b/a<20.

The smallb/a results from Sec. III A are

c15cos~J0t1 ipi !e
Q1 i sin~J0t2 ipi !e

Q* , ~84a!

c252cos~J0t2 ipi !e
Q* 2 i sin~J0t1 ipi !e

Q. ~84b!

At resonance, the Eq.~84! results using Eq.~37! for Q and Eq. ~34! for p shows c2c2*
;sin2(b/4)t. The a52 curve is the resonant case and thus it begins at 0.5, consistent wit
value of 0.5 for the time average of sin2(b/4)t. The curve fora51 begins at zero since the Eq
~84! results using Eq.~38! for Q and Eq.~36! for p scale linearly inb. Along the axis in Fig. 9
there are two vertical marker lines placed at the first zero ofJ0 and the first zero ofJ1 . The first
peak of thea51 curve is near the first zero ofJ0 , at 2.4048, and the first peak of thea52 curve
is near the first zero ofJ1 at 3.832.

In Figs. 10–14 the spectrum ofd(t)/y, Lwd , is plotted fora52. For the Fig. 15 result,Lwd

is plotted fora50.172. For all these examples, the initial conditions arec1(0)51 andc2(0)

FIG. 9. The average transition probability is plotted fora52 ~solid curve!, anda51 ~dashed curve!.

FIG. 10. Frequency spectrum of the two-level system solution fora52 andb/a52.
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FIG. 11. Frequency spectrum of the two-level system solution fora52 andb/a52.4048.

FIG. 12. Frequency spectrum of the two-level system solution fora52 andb/a52.8.

FIG. 13. Frequency spectrum of the two-level system solution fora52 andb/a55.33.
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50. The procedure for obtaining the spectrum is to calculate the probability amplitudes fo
periods of the driver frequency in Figs. 10–14. In Fig. 15, 68 periods of the driver frequenc
used. Over the entire calculation, for all results, 65 536 (216) points are sampled, and then a fa
Fourier transform is executed. This implies for Fig. 10–14 results, the minimum frequen
v/v l50.007 854 and the maximum observable frequency isv/v l5257. For Fig. 15 results the
minimum frequency isv/v l50.091 and the maximum observable frequency isv/v l52992.
These ranges sufficiently cover the interesting portions of the spectrum for these paramete

In Figs. 10–12, a sequence ofLwd are illustrated for values ofa52, andb/a52.,2.4048,2.8,
respectively. As discussed earlier, the term linear int for the argument of the sine and cosine
Eqs. ~29! and ~30! has a contribution fromJ0 , and alsopr . At b/a52 in Fig. 10, a large
magnitude low frequency is shown. There is also the beginning of a small peak atv/v l slightly
greater than 2, and also a small peak atv/v l slightly greater than 6. In Fig. 11 and Fig. 12, th
low-frequency peak progressively shifts to a higher frequency, attaining approximately a
v/v l50.25 in Fig. 12. In both Fig. 11 and Fig. 12, the harmonics at 2, 4, and 6 are split into
peaks. The split separation is twice the low frequency. The peak atv/v l52 has amplitude 0.112
in Fig. 10. In Fig. 11, whereJ050, the upshifted peak nearv/v l52 is reduced by a factor of 2
down to a magnitude of 0.05. The harmonic atv/v l53 becomes more prominent, increasin
from a value of 0.000 63 in Fig. 10 to a value of 0.0032 in Fig. 11. The second harmon

FIG. 14. Frequency spectrum of the two-level system solution fora52 andb/a56.71.

FIG. 15. Frequency spectrum of the two-level system solution fora50.172 andb/a561.97.
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approximately the same between the Fig. 11 and Fig. 12 results, however, the third har
increases further from 0.0032 to 0.0125. The effect of the selection ofb/a such thatJ050 in Fig.
11 is to suppress the even harmonic and favor the odd harmonics.

The qualitative explanation of the form of the spectrum for odd and even harmoni
obtained from the behavior of thes, p, and Q functions contained in the (c1c1* 2c2c2* )/2
integral kernel in Eq.~83!. For the initial conditions ofc1(0)51 andc2(0)50,

c15cosF ~s1s* !

2
1pGeQ1 i sinF ~s1s* !

2
1p* GeQ* , ~85a!

c252cosF ~s1s* !

2
1p* GeQ* 2 i sinF ~s1s* !

2
1pGeQ, ~85b!

and substituting Eq.~85!,

c1c1* 2c2c2* 522 Re@ i sin~s1s* 12p!e2Q#

5@cosu8 cos~2Qi !1sinu8 sin~2Qi !#e
2Qr12pi

2@cosu8 cos~2Qi !2sinu8 sin~2Qi !#e
2Qr22pi, ~86!

where u85s1s* 12pr . The imaginary part ofQ is small compared tou8, and thus cos(u8
22Qi)'cos(u812Qi). As a consequence, the two terms on the right side of Eq.~86! have nearly
the same Fourier transform. Thus, for a qualitative discussion only the first term is considere
first term consists of cosu8 or sinu8 multiplying exp(2Qr12pi). The basic effect of the cosu8 and
sinu8 functions is to act as a frequency shifting operator on the spectrum of exp(2Qr12pi). The
spectrum of exp(2Qr12pi) is qualitatively determined by the spectrum of 2Qr12pi , with the
exponentiation performing a filtering operation. The exponentiation operation reduces the p
nence of the higher frequencies, combines and eliminates some weak intermediate fre
content, but otherwise leaves the fundamental spectral structure in tact. The precise re
exponentiation on the spectrum is understood by assuming 2Qr12pi5(m@ iAm cos(mat)
1iBmsin(mat)#, and applying the Appendix B Bessel relations,

e2Qr12pi5)
m

H J0~Am!12(
n51

`

~21!nJ2n~Am!cos~2nmat!

12i (
n50

`

~21!nJ2n11~Am!cos@~2n11!mat#J
3H J0~Bm!12(

n51

`

J2n~Bm!cos~2nmat!

12i (
n50

`

J2n11~Bm!sin@~2n11!mat#J . ~87!

The spectrum prior to exponentiation is recovered from then50 terms, with coefficients tha
depend on Bessel functions of the original coefficients.

To ascertain the spectrum of 2Qr12pi , the time derivatives are examined. The time deriv
tive can be thought of as an operation that multiplies the magnitude of a harmonic by th
quency. Thus the time derivative changes the relative magnitudes between harmonics, how
preserves the structure of the spectrum. The time derivative of bothQr andpi are proportional to
sin@(b/a)sinat#,

dQr /dt5sin@~b/a!sinat#sinh~2pi !cosu8, ~88a!
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dpi /dt52sin@~b/a!sinat#cosh~2pi !cosu8. ~88b!

In terms of the spectrum, the essential influence of the hyperbolic functions in Eq.~88! is the
introduction of many small magnitude frequency contributions due to the periodic rapid ch
associated with exponentials. The behavior of the hyperbolic functions for large expu2piu is of most
interest here, and thus cosh(2pi);2sinh(2pi). With this approximation,Qr'pi , because the right-
hand sides of Eq.~88a! and Eq.~88b! are the same, and it is thus only necessary to conside
spectrum ofQr . Furthermore, at this level of approximation,Qr is also proportional toQr2pi ,
considering just the spectrum, and thus the same arguments apply for exp(2Qr22pi).

The spectrum ofQr is determined by the spectrum of sin@(b/a)sinat#sinh(2pi) and the fre-
quency shifting action of cosu8. From the relations in Appendix B, sin@(b/a)sinat# can be con-
sidered to consist of an infinite sum of odd harmonics. The form of sinh(2pi) can be determined
from Eq. ~88b!,

sinh~2pi !52 tanJ/~12tan2 J!, ~89!

whereJ5* sin@(b/a)sin(at)#cosu8 dt. The tanJ dependence of sinh(2pi) results in a functional
behavior characterized by sharp variations. In general, the more drastically a function vari
greater the amount of frequency content that results in its spectrum. In the limit of a function
many rapid uncorrelated variations, the spectrum becomes flat with all frequencies presen
same amplitude. The sinh(2pi) function is not that extreme, however, its spectrum bears a res
blance to a function with a derivative that appears to be random. To estimate the spectr
sin@(b/a)sinat#sinh(2pi), consider the limit where the spectrum of sinh(2pi) is assumed to be flat
The product of two functions int space is the convolution of the transforms of those function
frequency space. The convolution with a flat spectrum for sinh(2pi) becomes an integration of th
transform of sin@(b/a)sinat#. Thus, the spectrum of sin@(b/a)sinat#sinh(2pi) becomes approxi-
mately the spectrum of sin@(b/a)sinat# with each odd harmonic divided by the frequency. T
true spectrum of sin@(b/a)sinat#sinh(2pi) bears the essence of the infinite sum of odd harmon
due to sin@(b/a)sinat#, in combination with a lesser significant frequency content resulting f
the fact that sinh(2pi) does not really have a perfectly flat spectrum. For these reasons,
harmonics are the prominent qualitative feature of the spectrum of sin@(b/a)sinat#sinh(2pi).

The final term multiplying the right side of Eq.~88a! is cosu8. The prominent features of th
spectrum of cosu8 are a frequency atv l or 1 in normalized units, and a low-frequency associa
with 2J0 , in combination with a low frequency produced by 2pr . Thepr function is not precisely
linear in t, and thus only part of 2pr combines with 2J0 to result in the net low frequency
Because of the sum and difference, argument combination rules among trigonometric func

2 sinu1 sinu25cos~u12u2!2cos~u11u2!,

2 sinu1 cosu25sin~u11u2!1sin~u12u2!, ~90!

2 cosu1 cosu25cos~u12u2!1cos~u11u2!,

the spectrum ofQr has two distinct parts, derived from combining the two prominent frequen
of cosu8 with the odd harmonics of sin@(b/a)sinat#sinh(2pi). The frequency 1 causes all the od
harmonics to shift to even harmonics. The low frequency splits each odd harmonic frequenc
two frequencies; the first that is slightly above the odd harmonic and the second that is s
below the odd harmonic.

The spectral structure that emerges after exponentiating to form exp(2Qr12pi) has even har-
monics and two spectral lines split about each odd harmonic. To arrive at the final sp
structure displayed in Fig. 10–12, the cosu8 function must act on the exp(2Qr12pi) spectrum. The
complete term under consideration is cosu8 cos(2Qi)exp(2Qr12pi), however, as discussed earlie
cos(2Qi);1, and thus it results in quantitative changes beyond the level of this qualitative di
sion. The frequency 1 of cosu8 shifts all the even harmonics of exp(2Qr12pi) to become odd
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harmonics. The frequencies split about the odd harmonics of the exp(2Qr12pi) spectrum are
shifted by frequency 1 of cosu8, to now be split about the even harmonics. The low frequenc
cosu8 further augments the frequency lines split about the even harmonics by splitting the or
exp(2Qr12pi) even harmonics. Lastly, the low frequency results in small upshifts and downs
to the originally split exp(2Qr12pi) odd harmonics. The upshift of the originally downshifte
frequency returns it to approximately the odd harmonic frequency. Likewise, the downshift o
originally upshifted frequency also returns it to approximately the odd harmonic frequency
downshift of the originally downshifted frequency, and the upshift of the originally upshi
frequency moves these frequencies such that they augment the peak structure about
harmonics. The spectrum does not have precise spectral ‘‘lines,’’ but rather peaks of v
degrees of sharpness. The double upshifting, and double downshifting, along with numerou
quantitative contributions, results in the final peak structure.

In the explanation of the spectrum of the plotted examples, 2<b/a<2.8 is far larger than a
perturbation size. Consequently, the even harmonic shifts are only distantly related to the
Bloch–Siegert shift.53 The origin of the Bloch–Siegert shift in the framework of the new solut
is the part of thes function that is linear int. As shown in Sec. III B the lowest order expansio
solution forc1 includes aJ0t contribution. For smallb/a,

J0'12
~b/a!2

4
1

~b/a!4

64
2

~b/a!6

2304
1¯ , ~91!

and it can be readily seen that the lowest-order frequency is then 12(b/a)2/4, rather than just 1.
The source of the Bloch–Siegert shift is the (b/a)2/4 change to the frequency. As demonstra
in Sec. III C, the first change to the Bessel function coefficient oft is thek factor obtained from
thepr function. The result is that the linear term inc1 is (J02k)t, which includes more than jus
the Bessel function contribution. At large values ofb/a the frequency associated with the lineart
coefficient is strongly affected byJ0 , especially in the vicinity of a zero ofJ0 . In the limit when
J050, as in Fig. 11, there is still a frequency shift, as evidenced by the split frequencies abo
even harmonics. In this case the frequency shift is attributable to the low frequency contai
the pr function.

The spectrum in Fig. 13 is forb/a55.33, and the spectrum in Fig. 14 is forb/a56.71. Both
results are calculated fora52. The choice of 5.33 causes bothJ0 andJ2 to be close to zero, and
therefore this tends to reduce the importance ofs1s* . In Fig. 13, the first, third, and fifth
harmonic all have a magnitude larger than the second and fourth harmonics. In Fig. 14, the
of b/a56.71 causes bothJ1 andJ3 to be close to zero and this suppresses the odd harmo
becausedp/dt is proportional to sin@(b/a)sinat#. The first harmonic has a value of 0.24 in Fi
13, but falls to a value of 0.0079 in Fig. 14. The third harmonic has a value of 0.025 in Fig
but is reduced to a value of 0.0083 in Fig. 14.

The spectrum in Fig. 13 shows peaks at each harmonic, however, there are no split peak
is due to the fact thatb/a has been chosen to causeJ0 to be very small. As a result there is a
extremely low frequency present, which is displayed as a narrow peak around frequency ze
up shift and down shift that results from the low-frequency part of the cosu8 term as discussed
earlier is so small in this case that it is lost in the peak structure. The spectrum of cosu8 does,
however, contain frequency 1 and 2. The shifting action of frequency 1 and 2 on the odd har
content of sin@(b/a)sinat#sinh(2pi) results in even and odd harmonics in the spectrum
exp(2Qr12pi). The even harmonics have larger magnitude since the frequency 1 compon
cosu8 is larger than the frequency 2 component. The final form of the spectrum results fro
shift caused by cosu8 cos(2Qi). The frequency 1 shifts the larger magnitude even harmonic
exp(2Qr12pi) to become odd harmonics, and it shifts the smaller magnitude odd harmon
exp(2Qr12pi) to become even harmonics. To this result is added the frequency 2 shifts of a
harmonics of exp(2Qr12pi). The frequency 2 shifts even and odd harmonics of exp(2Qr12pi) to
add with smaller magnitude to the already discussed frequency 1, even and odd harm
respectively. As shown in Fig. 14 forb/a56.71 there is a low-frequency component in t
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spectrum at aboutv l /v50.5. The low frequency results in a split about the even harmonics
reasons similar to those discussed earlier pertaining to the Fig. 12 spectrum.

The spectrum in Fig. 15 is fora50.172, andb/a561.97. In this example, the drive fre
quency is a subharmonic, andb/a is large, implying that the system is strongly driven. Fro
earlier results on the nature of the Bessel functions, it is clear that there are Bessel coeffici
comparable size for harmonics up to 62. Figure 15 shows a plateau of frequencies in the sp
all within an order of magnitude up tov/v l562. Consistent with expectations, the amplitude
the harmonics begin to fall off at aboutv/v l564 after which they plummet by three orders
magnitude. The rapid drop of the amplitude of the harmonics occurs where the Bessel fun
have not yet begun to have a meaningful value. For example,J70(62)50.004, however,J70(73)
50.16, which is a factor of 40 increase in size. In other words, the harmonic atv/v l570 would
be expected to be very small unlessb/a were increased to 73.

The expectation for the location of the cutoff based on properties of Bessel functions c
compared to the theory developed by Gautheyet al.48 From their picture of adiabatic following
they base the cutoff formula on the maximum difference between level quasienergies and

Nmaxv l52@~v0/2!21V0
2#1/2, ~92!

whereNmax is the maximum harmonic number. In terms of parametersa andb, introduced in Sec.
II, their formula becomes

Nmax5@~2/a!21~b/a!2#1/2. ~93!

For the parameter values of Fig. 15,Nmax563.05, which is in good agreement with the predicti
based on the properties of a Bessel function.

V. ANALOGY WITH SOLUTIONS FOR OTHER PHYSICAL SYSTEMS

The solution for the two-level system can be applied to other physical systems by cha
the interpretation of thea andb parameters. A set of equations mathematically equivalent to th
describing the two-level system can be derived for magnetic resonance, and also for the
function solving Schro¨dinger’s equation with a periodic spatial potential.

A. Magnetic resonance

There is an analogy between the probability amplitude solution derived in Sec. III an
magnetic resonance probability amplitudes for a spin-1

2 system. The importance of this correspo
dence is explained by Bloch and Rabi,54 who showed a system with total angular momentumj \,
subjected to a magnetic field of arbitrary time variation, can be reduced to the solution of a s
with angular momentum\/2. This is a consequence of earlier research by Majorana.55

The configuration for magnetic resonance is one of a steady-state magnetic field in
direction, in combination with a time-varying driver field in the x direction. Using spin matri
the time-dependent Schro¨dinger equation56 becomes

i
]

]t FC1

C2
G5 e

2m S B0 .F1 0

0 21G1B1 cosvtF0 1

1 0G D FC1

C2
G , ~94!

whereB0 is the magnitude of the steady-state magnetic field in the z direction,B1 is the magnitude
of the perpendicular time-varying magnetic field with frequencyv, e is the magnitude of the
electron charge, andm is the particle mass. The functionsC1 andC2 are the probability ampli-
tudes of the two states. A system of two simultaneous equations can be written from Eq.~94!:

dC1

dt
52 iC12 i S b̂

2
DC2 cosât, ~95a!
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dC2

dt
5 iC22 i S b̂

2
DC1 cosât, ~95b!

wherev̂05eB0 /(2m), â5v/v̂0 , b̂52B1 /B0 , andt5v̂0t. In the magnetic resonance problem
the static magnetic field determines an energy level separation in contrast to the two-leve
where the energy gap is determined by the eigenvalue pertaining to an intrinsic potential.

New variablescp andcm are introduced,

cp5~C11C2!expS i
b̂

2â
sinât D , ~96a!

cm5~C12C2!expS 2 i
b̂

2â
sinât D . ~96b!

Aside from the interpretation of the new constants,â and b̂, the form of the equations,

dcp

dt
52 icm expS i

b̂

â
sinât D , ~97a!

dcm

dt
52 icp expS 2 i

b̂

â
sinât D , ~97b!

satisfied by the Eq.~96! variables are identical to those derived earlier in Eq.~7!. Thus, the
analysis carried out on the original two-level system equations also applies to the situatio
spin-12 particle in a static magnetic field, which is also subjected to a perpendicular time-va
magnetic field.

B. Wave function solution for a one-dimensional periodic potential

Based on the transformation leading to Eq.~11!, there is an immediate solution of a on
dimensional wave function. This is an instance of a mathematical equivalence of thet variable
equation with a spatial variable equation. The time-independent Schro¨dinger equation in one
dimension is

2
\2

2m

d2C

dx2 1V~x!C5EC, ~98!

whereE is energy andV(x) is a spatially dependent potential. Comparing with Eq.~11!, and
making the identifications

E5
\2

2m
u0 ,

V~x!5
\2

2m
@22u1 cos~2x!22u2 cos~4x!#,

provides an immediate solution from Eq.~29!,

C~x!5c1F ~4x1p!

2a GexpF2 i
b

2a
sin~2x1p/2!G . ~99!

Everywheret appears in Eq.~29!, (4x1p)/(2a) must be substituted. The parameters,a andb,
may be chosen to determine the spatial dependence of the potential. SinceV(x) is periodic, the
                                                                                                                



ence
e one-

s of
ob-

e

rder

n

f

ement
onic

ance.
m
shift.

ood
litudes
e-
f

n de-
logy.
ability
n the
a

ficient

r
rties of
he

ctions.
loquet

of the
ros of
ion can

4361J. Math. Phys., Vol. 41, No. 7, July 2000 Probability amplitude dynamics for a two-level system

                    
wave function resembles the solution for a one-dimensional ‘‘crystal.’’ The solution depend
on the properties of Bessel functions discussed for the two-level system also applies to th
dimensional ‘‘crystal.’’

VI. SUMMARY AND CONCLUSIONS

The probability amplitudes for a two-level system have been analytically derived in term
variablesc1 andc2 , which are the weighted sum and difference of the familiar two-level pr
ability amplitudes. The analytic solution has the form displayed in Eq.~29! and Eq.~30! with a
simple dependence on complex variables, and functionsp andQ. The formulation of the analytic
solution relied on the introduction of the variables, which contains a substantial portion of th
trigonometric argument of the solution. The variables consists of a linear term int with Bessel
function coefficientJ0 , a sum of even harmonics of the driver frequency with even integer o
J2n Bessel coefficients, and a complex sum of odd harmonics with odd orderJ2n11 Bessel
coefficients. The new solution in Eq.~29! and Eq.~30! does not involve any approximation. If a
infinite number of terms are used ins and functionsp andQ are known precisely, thenc1 andc2

are determined exactly. In general, the number of terms used to specifys and the degree o
approximation ofp andQ determines the precision ofc1 andc2 .

For b/a!1, it was demonstrated thatJ2n'0, J2n11'0, and thens is real ands'J0t. In
this parameter regime the new analytic solution was compared with the RWA to show agre
with the RWA oscillation frequency. It was also shown that the new solution contains a harm
content that is lacking in the RWA. In addition, theJ0 coefficient oft in the new solution was
shown to be the origin of the Bloch–Siegert frequency shift in the field of magnetic reson
The linear coefficient oft, J0 , can be expanded to recover a 1 and a lowest-order correction ter
that is quadratic in the driver amplitude. The quadratic term is related to the Bloch–Siegert

The derivation of the analytic solution forp andQ detailed in Sec. III C relied onb/a!1.
The solution was explored over the parameter rangea53 and 0.30<b/a<0.70 in order to
determine how smallb/a must be for reasonable accuracy. It was found that there is g
agreement between the analytic solution and the numerically determined probability amp
for b/a<0.30. In the parameter range of 0.30,b/a,0.50, discrepancies of 2.5%–6% can d
velop between the analytic and numerical solutions. Whenb/a50.70 there can be differences o
up to 30% between the analytic and numerical solution. Thus, atb/a>0.70, the analytic solution
does not have sufficient accuracy.

A possible formulation of the two-level system is the second-order differential equatio
rived in Eq.~8!. In previous work, this equation has been solved with the Floquet methodo
This means the Floquet solution contains the same information provided by the new prob
solution. The difficulty with the Floquet solution is that it conceals the solution dependence o
a and b parameters. The role of thea and b parameters only enters the Floquet solution, in
complicated manner, in the process of obtaining the zero determinant of an infinite coef
matrix. In contrast, the new solution has an explicitly stated dependence ofa andb in the variable
s. Furthermore, the derivative ofp and Q each have a factor of sin@(b/a)sinat#, which is pro-
portional to the derivative of the imaginary part ofs. The behavior of sin@(b/a)sinat# over a
range ofb/a values revealed that there is a subtle transition atb/a'p/2. Forb/a,p/2, the ratio
b/a has the character of an amplitude. However, for Forb/a.p/2, the ratiob/a has the characte
of a frequency. The occurrence of harmonic generation can be deduced from the prope
sin@(b/a)sinat# by realizing that increasingb/a results in harmonics of the driver frequency. T
parameterb/a can be increased at fixed frequency by increasing the driver amplitude.

The new probability amplitude solution requires the determination of just two functions,p and
Q. The form of the solution based on these two functions displays integer order Bessel fun
The connection to the Floquet coefficients was discussed and it was explained why the F
coefficients consist of products of integer order Bessel functions. An interesting property
integer order Bessel functions is the oscillatory nature with regularly spaced zeros. The ze
the Bessel functions point out interesting parameter values, where the character of the solut
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be substantially altered. Regions around several zeros were numerically studied to sh
dependence of the transition probability and coherent spectrum on the selection of par
values near Bessel function zeros.

A major characteristic of the coherent spectrum is the dichotomy between the spectral
ture near odd and even harmonics. In general, there are well-defined peaks at odd harmon
the even harmonics are split into two peaks. The cause of even harmonic splitting was trace
properties of the real part ofQ and the spectrum of cos(s1s*12pr). When the spectrum o
cos(s1s*12pr) has a low frequency, the splitting of the even harmonics results. The appea
of the low frequency depends on the size ofJ0 and any low-frequency contribution frompr . The
size of J0 can be controlled by the selection ofb/a. As b/a approaches a zero ofJ0 then J0

becomes small. It has been demonstrated for values ofb/a where the low frequency is absent th
even harmonics are not split into two peaks.

Bessel functions are prominent in the composition of the variables, and thep andQ func-
tions. Related to this fact, the coherent spectrum was shown to be strongly influenced by p
ties of Bessel functions. One of the properties of Bessel functions that gives substantial insig
the expected spectrum, is the dependence of the location of the first maximum on the mag
of the argument. The value of an integer order Bessel function does not achieve significa
until the argument is comparable to the order. Thus, the position of the first maximum occur
after the argument attains a value greater than the order. At large values ofb/a;62, the plateau
and cutoff features of the harmonic generation spectrum were observed. The location
frequency cutoff based on properties of Bessel functions was compared to the cutoff deri
earlier research, and found to be in good agreement. This is a consequence of the structur
s function, where each harmonic is multiplied by a Bessel function with an order that match
harmonic number.

The calculation of the approximate determinant required for the Floquet solution ma
challenging, however, it does not, in general, place any restriction on permitted values ofa or b.
As discussed earlier, the solution derived forp andQ in Sec. III B requiresb/a!1. The reason
for this restriction on the solution technique is that asb/a;1, the couplings betweenpr and pi

cannot be ignored and the solution requires the calculation of several formidable integra
avoid this difficulty, for a restricted parameter range, the solution has been extended to a
ratio of Rabi frequency to driver frequency, based on an analysis of the behavior of thes variable.
The main property ofs that is useful in the construction of a largeb/a solution is the highly
nonuniform behavior ofds/dt(a,b). It has been shown that ast changes uniformly,s only
changes uniformly whenb/a is small. Asb/a is increased beyond 1,ds/dt can be positive,
negative, or very small. When it is very small thec1 andc2 functions tend to be approximatel
constant. Consequently, the solution under this condition is referred to as the dwell point so
The dwell point solution relies on the validity of the issue of locality ofs1s* . For the circum-
stance of precisely constants1s* , Eq. ~24! is separable. During the time in which thes-plane
trajectory is localized,s1s* is approximately constant, and thus separability of Eq.~24! is a good
approximation. It was found that to obtain the best locality it is advantageous to be near a z
J0 with a large. A comparison of the dwell point solution with a numerical solution for par
etersa52 andb/a562.05 showed good agreement except for deviations at the 10% lev
Im@Q#. The valueb/a562.05 is a zero ofJ0 , and thus, this example had the greatest poss
amount of locality.

The new solution for the two-level system has been applied to physical systems rela
magnetic resonance and also for the wave function solving Schro¨dinger’s equation with a periodic
spatial potential. The procedure for mapping the already derived probability amplitude so
onto these physical systems relied on interpreting thea andb parameters in order to create a s
of equations mathematically equivalent to those describing the probability amplitude.
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APPENDIX A: ROTATING WAVE APPROXIMATION SOLUTION

Taking the derivative of Eq.~10a! or Eq. ~10b! results in a second-order differential equati
with constant coefficients, which has a well-known solution,

c15y1aei (n111)t1y1bei (n211)t, ~A1a!

c25y2ae2 i (n111)t1y2be2 i (n211)t, ~A1b!

where

n15~a221@~a22!21b2/4#1/2!/2,

n25~a222@~a22!21b2/4#1/2!/2,

y1a52@n2c1~0!1~b/4!c2~0!#/~n12n2!,

y1b5@n1c1~0!1~b/4!c2~0!#/~n12n2!,

y2a52@n2c2~0!2~b/4!c1~0!#/~n12n2!,

y2b5@n1c2~0!2~b/4!c1~0!#/~n12n2!.

At a52, Eq. ~A1! simplifies to the special resonance solution,

c15Fc1~0!cos
b

4
t2 ic2~0!sin

b

4
tGei t, ~A2a!

c25Fc2~0!cos
b

4
t2 ic1~0!sin

b

4
tGe2 i t. ~A2b!

APPENDIX B: BESSEL GENERATING FUNCTION RELATIONS

cosS b

a
sinu D5J012(

n51

`

J2n cos~2nu!, ~B1a!

sinS b

a
sinu D52(

n50

`

J2n11 sin@~2n11!u#, ~B1b!

cosS b

a
cosu D5J012(

n51

`

~21!nJ2n cos~2nu!, ~B1c!

sinS b

a
cosu D52(

n50

`

~21!nJ2n11 sin@~2n11!u#. ~B1d!
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From unsharp to sharp quantum observables: The general
Hilbert space case

G. Cattaneo
Dipartimento di Scienze dell’Informazione, Universita` di Milano, Milano, Italy

G. Nisticòa)
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An unsharp quantum observable can be considered a realization of a sharp observ-
able if and only if it is commutative. In this paper we describe an explicit procedure
for reconstructing such a sharp observable and for establishing the probabilistic
correlations between the sharp reconstruction and the given unsharp observable.
© 2000 American Institute of Physics.@S0022-2488~00!01507-3#

I. SHARP AND UNSHARP QUANTUM OBSERVABLES

Since the aim of this work is to elaborate a particular relation between sharp and un
quantum observables, it is worth briefly recalling how such kinds of observables arise in qu
physics. Given a physical system, a measurable physical magnitude whose measured value
1 or 0 is called a yes–no observable. The occurrence of the outcome 1 of a yes–no obser
an event; conversely, every event for the physical system generates a yes–no observable
produces the outcome 1 when the event occurs and 0 when it does not occur. The basic ass
of standard quantum theory1,2 is the following:

Basic axiom.Projection operators of a complex and separable Hilbert spaceH bijectively
realize events of the physical system in such a way that the quantity

pc~P!5^cuPc&

is the probability of occurrence of the event realized by the projection P when the state
system is described by the unit vectorc(ici51) of the Hilbert space. Thus, the orthomodul
complete latticeE(H) of all projection operators onH is identified with the set of all events.

Any real observable~an observable whose possible values are real numbers, from no
simply called observable! can be described in terms of events by a projection valued~PV! map-
ping

E:B ~R!→E~H!, D→E~D!,

whereB (R) is the Borels-algebra ofR. The projection operatorE(D) is interpreted as the even
which occurs~outcome 1! when the measured valuel of the observable lies in the Borel setD.
Therefore,mc(D)5^cuE(D)c& is the probability that the outcome of a measurement of
observable lies inD when the physical system is prepared in a state described by the unit v
c. In order thatmc :B (R)→@0,1# turns out to be a probability measure, it is required that
observable satisfies the following conditions:

~O1! E~R!51,E~B !50,

~O2! E~økDk!5SkE~Dk! for every countable family$Dk% of pairwise disjoint Borel sets

a!Electronic mail: gnistico@pobox.unical.it
43650022-2488/2000/41(7)/4365/14/$17.00 © 2000 American Institute of Physics
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i.e., it must be a PV measure ofR. Then, by the spectral theorem3 for self-adjoint operators in
Hilbert spaces, an observable is equivalently represented by the self-adjoint operator

A5E
2`

`

ldEl ,

where El5E((2`,l#) is the resolution of the identity corresponding to the PV measureD
→E(D).

However, this theoretical scheme presents a difficulty, because there are physically rea
events which cannot be described by projection operators.4–7

Example I.1:Let us consider a Stern–Gerlach~SG! apparatus oriented along the directionn
5(sinu cosf,sinu sinf,cosu), used to test if the spin of entering spin-1

2 particles is ‘‘up’’ ~exit
up! or ‘‘down’’ ~exit down of the apparatus!. The projection operator on the Hilbert spaceC2,

En5F cos2~u/2! sin~u/2!cos~u/2!e2 if

sin~u/2!cos~u/2!eif sin2~u/2!
GPE ~C2!,

describes the event which occurs~answer yes! when the particle goes out from exitup of such a
SG apparatus. For a spin-1

2 particle prepared in the unit statec this happens with probability
pc(En)5^cuEnc&. The outcoming particle results in the state

cn5Fcos~u/2!e2 if/2

sin~u/2!eif/2 G ;
in other words, it has spin up along the directionn.

Now suppose that a spin-1
2 particle in the state

c5FabG
~whereuau21ubu251! enters a first SG apparatus oriented along the directionnz5(0,0,1) and, if
it goes out from exit up, enters in a second SG apparatus oriented along the directinx

5(1,0,0). The probability that the particle, entering the entire composite apparatusX in the state
c, goes out from its exit up is

pc~X,up!5pc~Enz!•pcnz
~Enx!5 1

2 uau2.

Such probability refers to a measurement which involves two variables represented by th
noncommutingprojection operatorsEnz andEnx. Therefore this measurement should not be r
resented by a projection operator. Indeed, the event which occurs~answer yes! when the particle
entering the compound apparatusX goes out from its exit up cannot be represented by a projec
operator, because the only linear operatorF on C2 such that

^cuFc&5p5 1
2 uau2

is

F5
1

2 F1 0

0 0G5EnxEnzEnx,

which is not a projection operator.
This example shows the existence of measurable physical events described by linear op

F which are not projections, and whose probability of occurrence in the state described by th
vectorc is given by^c u Fc&. In order to describe suchnonstandardevents within the mathemati
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cal formalism of quantum theory the notion ofeffecthas been introduced.4,8,9 By effectwe mean
every linear operatorF of H such that for every unit vectorcPH the following inequalities
holds: 0<^cuFc&<1 ~or, equivalently,0<F<1, where< is the usual partial order on self
adjoint operators!. The set of all effects will be denoted byF~H!. Theold events are effects, too
characterized by idempotency. We shall assume that to every yes–no observable there corr
an effectF such that the number^cuFc&P@0,1# is the probability of occurrence of the outcom
1 in statec. The generalization of the notion of events forces one to generalize the notio
observable, leading to the notion ofunsharpobservable, whose definition is an obvious con
quence of the definition of effect.

Definition I.1: LetB(R) be the Borels-algebra of the real lineR. An unsharp observable is
a mapping

F:B ~R!°F~H!, D→F~D! ~I.1!

such that
~i! F(R)51,
~ii ! if $D i% is a countable family of pairwise disjoint Borel sets, then

F~øD i !5(
i

F~D i !,

where the series converges in the weak operator topology.
The number̂ cuF(D)c& is interpreted as the probability that the outcome of a measurement o
observable belongs toD. An unsharp observable is nothing else but aneffect valuedmeasure. The
standard observables, corresponding to PV measures, are called sharp observables. The
theory is concerned only with sharp observables.

While for a sharp observable the set of all possible outcomes~physical spectrum! coincides
with the~mathematical! spectrums(A) of the self-adjoint operatorA realizing this observable, fo
an unsharp observable the notion of physical spectrum must be introduced.

Definition I.2: The physical spectrum of an unsharp observable F is the closed set

s̃~F !5$lPRu;d.0,F~~l2d,l1d!!Þ0%.

A point lPR lies in the physical spectrums̃(F) if and only if for every one of its neighborhood
Dl we haveF(Dl)Þ0. Therefore, the points of the physical spectrum may be interpreted a
possibleoutcomes of the observable. This is just an example of how both the formalis
quantum mechanics and its interpretation need a reformulation as a consequence of the in
tion of unsharp observables. In particular, it is important to understand the relations between
and unsharp observables.

Concerning this point, the problem of describing the observable resulting from stochas
unprecise measurements of a sharp observableA is widely treated in the literature.10 Suppose that
the outcome of a sharp observable is read as a different valuem in such a way that the probability
measureD→wD(l) gives the probability thatm is in D when the outcome ofA is l. Since in the
statec the numberdiElci2 is the probability that the outcomel is in (l,l1dl#, then the
probability of reading a valuem in D is

E
2`

`

wD~l!diElci25^cuwD~A!c&. ~I.2!

Since 0<wD(l)<1, the operatorwD(A) turns out to be an effect. Due to the additivity ofwD with
respect toD, the mappingD→F(D) is an unsharp observable, which may be considered
unsharp realization of the sharp observableA.

A more interesting problem is the inverse question:
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~i! Given an unsharp observableF:B(R)→F(H), is it an unsharp realization of some sha
observableA, in the sense that the identity^cuF(D)c&5^cuwD(A)c& holds for everyDPB(R)
and every unit vectorc?

~ii ! Once question~i! has an affirmative answer forF, is it possible to determine the shar
observableA and the functionswD?
Such a problem has been solved in Ref. 11 for the simple case of an unsharp observable wi
physical spectrum in a finite-dimensional Hilbert space. It has been found that in such a
questions~i! and ~ii ! have an affirmative answer if and only if@F(D1),F(D2)#50 for all
D1 ,D2PB(R). This result is based on the possibility of simultaneously diagonalizing all
operators of the~physical! spectral family$F(D),DPB(R)%; however, this simultaneous diago
nalization cannot be concretely performed when such spectral family is not finite or the spe
the effectsF(D) are not finite. The following theorem of von Neumann tells us when the prob
may be solved in the general case.12

Theorem I.1 „von Neumann…: Given any family$Fa%aPA of self-adjoint operators such tha
@Fa ,Fb#50 for all a,bPA, there exist
~a! a self-adjoint operator A,
~b! a family of measurable functions$ f a :R→R%aPA such that for everyaPA,

Fa5 f a~A!5E
2`

`

f a~l!dEl , ~I.3!

where El is the resolution of the identity of the self-adjoint operator A.
If F:B(R)→F(H) is a commutativeunsharp observable, i.e., if$F(D)%DPB(R) is a family of

effect operators such that for every pairD1 , D2PB(R), @F(D1),F(D2)#50, von Neumann’s
theorem implies that for such an unsharp observableF there exist a self-adjoint operatorA
bounded by0 and 1 with resolution of the identityEl , and a family of measurable function
$wD :R→@0,1#%DPB(R) such that for everyDPB(R),

F~D!5wD~A!5E
2`

`

wD~l!dEl . ~I.4!

On the other hand, if~i! has an affirmative answer, by~I.2! it follows thatF is commutative. Thus,
an unsharp observableF is an unsharp realization of some sharp observableA if and only if it is
commutative.

Example I.2:Let us consider the yes–no unsharp observableFF generated by the nontrivia
effect F:

FF~D!55
F[F1 if 1 PD and 0¹D

12F[F0 if 0 PD and 1¹D

1[F0,1 if 1,0PD

0[FB if 1 ¹D and 0¹D.

The family $FF(D)% contains only two nontrivial effectsF15F andF0512F. SinceF is itself
a self-adjoint operator, it has a resolution of the identityEl such thatF5*l dEl . If we put A
5F, then it is straightforward to find the four functionswk such thatFk5wk(A). These functions
arew1(l)5l, w0(l)512l, w0,1(l)51, andwf(l)50.

Hence question~i! of the inverse problem is answered by means of von Neumann’s theo
We face question~ii !. In the following, we shall give an explicit, concrete procedure for de
mining A to an arbitrary degree of approximation, under the condition that we are able to fin
resolution of the identity of every effectF(D). To be precise, in Sec. II we describe the proced
for finding the resolution of the identity of the sharp observableA to an arbitrary degree o
approximation. In Sec. III we also show how the functionswD in ~I.2! can be determined to a
arbitrary degree of approximation.
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II. RECONSTRUCTING A

To reconstructA from F, we can restrict ourselves toboundedunsharp observables.
Definition II.1: An unsharp observableF is bounded if its physical spectrum is bounded.
Let F be an unsharp observable andw:(0,1)→R a bijective measurable mapping. Then

Fb :B~R!→F~H!, Fb~D!5F~w~Dù~0,1!!! ~II.1!

is a bounded unsharp observable whose physical spectrums̃(Fb) is bounded, in fact it is a subse
of @0,1#. Now, an unsharp observableF is anunsharp realization of a sharp observable A if an
only if Fb is also an unsharp realization of the same sharp observable A. To see this, observe tha
~1! if F(D)5wD(A) thenFb(D)5F(w(Dù(0,1)))5ww(Dù(0,1))(A),
~2! If Fb(D)5wD

b (A) thenF(D)5ww21(D)
b (A).

Therefore we limit ourselves to giving the procedure for a bounded unsharp obser
without losing generality. LetF be an unsharp bounded observable with physical spectrum w
@0, 1#. Our procedure consists of a sequence of steps. At every step we improve the approxi
of the sharp observableA, by assigning the values of its resolution of the identityEl to a larger set
of pointsl in @0, 1#.

We shall make use of the following countable sequence$F j% of effects from the family
$F(D)%DPB(@0,1#) :

F15F~@0,1# !,

F25F~@0,1
2# !, F35F~~ 1

2,1!!, ~II.2!

F45FS F0,
1

22G D , F55FS S 1

22 ,
2

22G D , F65FS S 2

22 ,
3

22G D , F75 f S S 3

22,1G D ,

and so on; in the general case we set

F j5H FS F0,
1

2pG D if j 52p, for some pPN,

FS S j 22p

2p ,
j 22p11

2p G D if 2 p, j ,2p11, for some pPN.

~II.3!

In other words, we have

F j5F~D j ! ,

where

D j5H F0,
1

2pG if j 52p, for some pPN,

S j 22p

2p ,
j 22p11

2p G if 2 p, j ,2p11, for some pPN.

~II.4!

A. Approximation step

At stepn the following operations are performed.
~a! To construct then-dimensional hypercubeQ(n)5@0,1#n, whose n edges, denoted by

C1 ,C2 ,...,Cn , correspond, respectively, to the firstn effectsF1 ,F2 ,...,Fn defined by~II.3!. In
particular, the edgeCj contains the~mathematical! spectrums(F j ).

~b! To decompose each edgeCj into the 2n21 intervals
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Cj ,1
~n!5F0,

1

2n21G , Cj ,2
~n!5S 1

2n21 ,
2

2n21G ,...,Cj ,k
~n!5S k21

2n21 ,
k

2n21G ,...,Cj ,2n21
~n!

5S 2n2121

2n21 ,1G .
~II.5!

Such decompositions give rise to the decomposition of the hypercubeQ(n)5C13C23¯3Cn

into (2n21)n subhypercubes of the kindC1,k1

(n) 3C2,k2

(n) 3¯3Cn,kn

(n) [Q(n)(k1 ,k2 ,...,kn); here

(k1 ,k2 ,...,kn)[kP$1,2,...,2n21%n picks out the subhypercubeQ(n)(k). Notice thatk/(2n21) is
the vertex ofQ(n)(k) with the greatest distance from the origin~0,0,..., 0!.

~c! To assign the values of the resolution of the identityEl of the desired operatorA at the
following (2n21)n[N(n) points of @0,1#:

l1
~n!5

1

N~n!
, l2

~n!5
2

N~n!
,...,lk

~n!5
k

N~n!
,...,lN~n!21

~n! 5
N~n!21

N~n!
, lN~n!

~n! 51. ~II.6!

In order to assign the values in item~c!, we assign the spectral measureE(I k
(n)) associated withA

to theN(n) intervals

I 1
~n!5@0,l1

~n!#,I 2
~n!5~l1

~n! ,l2
~N!#,...,I k

~n!5~lk21
~n! ,lk

~n!#,...,I N~n!
~n! 5~lN~n!21

~n! ,1#

by means of formula~II.7! below. In so doing, since
~i! I j

(n)ùI k
(n)5B if j Þk, andøkI k

(n)5@0,1#,
we have thatEl

k
(n)5S j 51

k E(I j
(n)) andE(I k

(n))5El
k
(n)2El

k21
(n) , soEl turns out to be assigned at th

points$lk
(n)%#@0,1#

To get formula~II.7! we note that the numberN(n) of the intervalsI k
(n) is equal to the numbe

of subhypercubesQ(n)(k1 ,...,kn) in Q(n). Moreover,
~ii ! Q(n)( j 1 ,...,j n)ùQ(n)(k1 ,...,kn)5B if ( j 1 ,...,j n)Þ(k1 ,...,kn) and ø (k1 ,...,kn)Q

(n)

(k1 ,...,kn)5Q(n);
~iii ! the length of every intervalI k

(n) is 1/N(n), which coincides with the volume of each subh
percubeQ(n)(k1 ,...,kn).
Therefore, there is at least one bijective correspondenceI between the set of all subhypercub
Q(n)(k) and the set of all intervalsI j

(n) . By I (Q(n)(k)) we denote the interval corresponding to t
subhypercubeQ(n)(k).

Given every effectF j , j 51,2,...,n, by El
( j ) we denote the resolution of the identity of th

operatorF j , and byE( j )((a,b#)5Eb
( j )2Ea

( j ) the associated spectral measure of the interval~a, b#.
For each subhypercubeQ(n)(k1 ,...,kn)5C1,k1

(n) 3¯3Cn,kn

(n) , we consider the productE(1)

(C1,k1

(n) )•E(2)(C2,k2

(n) )¯E(n)(Cn,kn

(n) ) of the n projectionsE( j )(Cj ,kj

(n) ), j 51,...,n. Since@F j ,Fk#50,

also the projection operators in the product commute and hence this product is a projectio
Now, given any intervalI j

(n) , there is a unique subhypercubeQ(n)(k1 ,...,kn)5I 21(I j
(n)).

Then we define

E~ I j
~n!!5E~1!~C1,k1

~n! !E~2!~C2,k2

~n! !¯E~n!~Cn,kn

~n! !. ~II.7!

It is straightforward to verify that
~E1! if kÞ j thenE(I j

(n))'E(I j
(n)),

~E2! S j 51
N(n)E(I j

(n))51.
In Sec. II B, it will be proved that by a suitable choice of the mappingI formula ~II.7! defines the
spectral measure of the intervalI j

(n) , associated with the desired operatorA. As a consequence
since the correspondenceI is bijective, any intervalI j

(n) possesses a spectral measure; then~E1!,
~E2! enable us to assign the value of the resolution of the identity of the desired operatoA to
every pointlk

(n)5k/N(n) according to the following formula:
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El
k
~n!5(

j 51

k

E~ I j
~n!!. ~II.8!

At stepn we have assignedN(n)5(2n21)n such values. Therefore, by going from stepn to step
n11 we increase our knowledge ofEl , i.e., of the sharp observable of whichF is an unsharp
realization.

B. From step n to step n¿1

At stepn of the procedure we are describing, we are able to assign the projectionEl to every
point l of the setL(n)5$lk5k/(2n21)nuk51,...,(2n21)n%. The setL(n11) of the points to
which we assign the value of the resolution of the identity at stepn11 containsL(n). Indeed,
L(n11) may be obtained by adding a suitable set of points toL(n); namely, for each interva
I k

(n) we add the points in the interval which decompose it into 22n subintervals of the length
1/(N(n)22n)51/N(n11).

Thus for everylPL(n)ùL(n11), there must be an indexk such thatl5lk
(n) , but also

another indexk8 must exist such thatl5lk8
(n11) . The consistency of our procedure requires t

the value of the resolution of the identity ofA assigned tol in stepn must coincide with the value
assigned to the same pointl in stepn11; that is,

El
k
~n!5El

k8
~n11!. ~C!

Hence the passage from stepn to stepn11 must leave unaltered the resolution of the ident
assigned to the pointslPL(n). This result can be attained by means of a suitable choice, at e
step, of the correspondence between subhypercubesQ(n)(k1 ,...,kn) and intervalsI j

(n) . Indeed, it
is clear that an arbitrary choice of such a bijection does not satisfy the consistency conditio~C!.

By proposition 1 we show that if the mappingI preserves set theoretic inclusion, i.e., if

Q~n11!~ l 1 ,...,l n11!#Q~n!~k1 ,...,kn!3Cn11

implies

I ~Q~n11!~ l 1 ,...,l n11!!#I ~Q~n!~k1 ,...,kn!!,
J ~II.9!

then condition~C! is satisfied. First of all we see that, since theI’s are bijective,~II.9! is equivalent
to

I ~Q~n11!~ l 1 ,...,l n11!!#I ~Q~n!~k1 ,...,kn!!,

if and only if

Q~n11!~ l 1 ,...,l n11!#Q~n!~k1 ,...,kn!3Cn11 .
J ~II.10!

In the following lemma we collect some elementary results.
Lemma II.1:

Q~n11!5Q~n!3Cn11 , ~II.11!

E~n11!~Cn11!51, ~II.12!

Cn115øk51
2n Cn11,k

~n11! , Cj ,kj

~n! 5Cj ,2kj 21
~n11! øCj ,2kj

~n11! , ~II.13!

Q~n11!~ l 1 ,...,l n11!#Q~n!~k1 ,...,kn!3Cn11 i f and only i f Cj ,l j

~n11!#Cj ,kj

~n! for j

51,2,...,n. ~II.14!
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Proposition 1: If the bijections I satisfy~II.9! then condition (C) holds.
Proof: Let I (Q(n)(k1 ,...,kn))5I j

(n) . Then

E~ I j
~n!!5E~ I ~Q~n!~k1 ,...,kn!!! @by~ II.11!#

5E~1!~C1,k1

~n! !¯E~n!~Cn,kn

~n! !•E~n11!~Cn11! @by ~II.7!, ~II.12!]

5[E~1!~C1,2k121
~n11! !1E~1!~C1,2k1

~n11!!] • ... @by ~II.13!, ~II.14!#

•@E~n!~Cn,2kn21
~n11! !1E~n!~Cn,2kn

~n11!!#•(
k51

2n

E~n11!~Cn11,k
~n11!!

5 (
Q~n11!~ l 1 ,...,l n11!#Q~n!~k1 ,...,kn!3Cn11

E~1!~C1,l 1
~n11!

!¯E~n!~Cn,l n
~n11!

!•E~n11!~Cn11,l n11

~n11!
!

5 (
Q~n11!~ l 1 ,...,l n11!#Q~n!~k1 ,...,kn!3Cn11

E~ I ~Q~n11!~ l 1 ,...,l n11!!!

5 (
l
j 8
~n11!

#I j
~n!

E~ I j 8
~n11!

!. @by ~II.10!].

Therefore,

E~ I j
~n!!5 (

I
j 8
~n11!

#I j
~n!

E~ I j 8
~n11!

!.

This additivity result, together with~II.8!, ensures that condition~C! holds.

C. Choosing the mapping I

To show how the bijectionsI may be defined in order to satisfy~C!, we proceed by induction
First we defineI for the first step in such a way to satisfy~C!; second, we show how to defineI
satisfying~C! at stepn11, if I satisfies~C! at stepn.

Step 1:If n51 the hypercubeQ(1) is the segment@0,1#. The numberN(n) of the subhyper-
cubes is 2051; hence we have only one subhypercube@0,1# and the interval@0,1# is decomposed
into only one interval: itself. Then the only possible correspondenceI is

I ~Q~1!!5@0,1#.

Since L(1)5$1%, our procedure assigns a value toEl in correspondence of the unique poi
l1

(1)51: trivially

~R.1! E151.

Now, let us suppose that~C! holds up to a certain stepn. Going from step~n! to step (n11) we
add the edgeCn11 to the hypercubeQ(n). The hypercubeQ(n11) is decomposed intoN(n) boxes
Qj

(n)3Cn11 , j 51,2,...,N(n), where every subhypercubeQj
(n) there corresponds to some interva

say

I ~Qj
~n!!5I j

~n! .
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In turn, every box Qj
(n)3Cn11 is decomposed into 22n subhypercubes

Qj 1

(n11) ,Qj 2

(n11) ,...,Qj 22n

(n11) , and the corresponding intervalI j
(n)5I (Qj

(n)) is decomposed into 22n

subintervalsI j 1

(n11) ,I j 2

(n11) ,...,I j 22n

(n11) . Then we partially define the mappingI on the subhyper-

cubes contained in this box:

I ~Qj k

~n11!!5I j k

~n11! .

Condition ~II.9! is trivially satisfied by this part ofI. Since this holds for every part ofI
corresponding to every boxQj

(n)3Cn11 , the mappingI globally satisfies~II.9! and hence, via
proposition 1, condition~C!.

Remark II.1:The correspondenceI for the stepn11 is constructed by choosing for ever
hypercubeQj

(n) a bijective correspondence between the 22n subhypercubesQj 1

(n11) ,...,Qj 22n

(n11)

contained in the boxQj
(n)3Cn11 and the 22n subintervalsI j 1

(n11) ,...,I j 22n

(n11) contained in the

interval I j
(n)5I (Qj

(n)). A different choice of such partial correspondences does not chang
result: condition~II.9! equally holds. So, we may put some further conditions on the pa
correspondences without changing this result. In Sec. III A we shall impose a further conditio~D!
for determining the functionswD .

D. The sharp observable A

At every stepn we may define the self-adjoint and bounded operator

A~n!5 (
k51

N~n!

lk
~n!@El

k
~n!2El

k21
~n! #,

where

E
l

0
~n!

~n!
50. ~II.15!

The sequence$A(n)%nPN is Cauchy with respect to the strong operator norm, then it converge
a self-adjoint operatorA. The resolution of the identity ofA is defined onønPNL(n)[L. This set
is dense in@0,1#; therefore for everylP@0,1# there is a decreasing sequence$ln%#L such that
limn ln5l. Then the resolution of the identity ofA at l is defined by

Elc5 lim
n

Eln
c. ~II.16!

Taking into account~II.15! and ~II.16! we can writeA as

A5 lim
n

A~n!5E l dEl . ~II.17!

So we have constructed from an arbitrary bounded unsharp observableF a sharp observableA. To
complete the answer to question~ii ! we have to show thatF is an unsharp realization ofA, i.e., to
find the functionswD in such a way that~I.2! holds.

III. THE FUNCTIONS w D

Now we show how the functionswD such that

F~D!5E
2`

`

wD~l!dEl ~III.1!
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can be determined or, at least, approximated. In~III.1! the setD is taken from the Borels-algebra
B(@0,1#). We begin by considering the countable subfamily$D j% of B(@0,1#) defined in~II.4!.
Notice that $D j% generates the wholes-algebraB(@0,1#); this fact will allow us to generate
$wD%DPB(@0,1#) from $wD j

%.
Remark III.1:In the following we assume thatI is chosen in such a way that~II.9! and hence

condition~C! hold. A further, always praticizable condition~D!, which does not affect~II.9!, will
be imposed.

A. Construction of w D for DÄD j

Given any intervalD j defined in~II.4!, the effectF(D j )5F j in ~II.3! has a resolution of the
identity Em

( j ) ; then

F~D j !5E mdEm
~ j !5 lim

n→`
(
k51

2n21

k

2n21 E~ j !~Cj ,k
~n!!. ~III.2!

SinceF(D) is self-adjoint and bounded, the limit converges with respect to the strong ope

norm.3 Now, Sh51
2n21

E( l )(Cl ,h
(n))5E( l )(Cl)51 holds, then, setting hj

5(h1 ,h2 ,...,hj 21 ,hj 11 ,...,hn) we can write

E~ j !~Cj ,k
~n!!5E~ j !~Cj ,k

~n!!)
l 51
lÞ j

n

(
h51

2n21

E~ l !~Cl ,h
~n!!

5E~ j !~Cj ,k
~n!! (

hj P$1,2,...,2n21%n21
)
l 51
lÞ j

n

E~ l !~Cl ,hl

~n! !

5 (
hj P$1,2,...,2n21%n21

E~1!~C1,h1

~n! !E~2!~C2,h2

~n! !¯

•E~ j 21!~Cj 21,hj 21

~n! !E~ j !~Cj ,k
~n!!E~ j 11!~Cj 11,hj 11

~n! !• ¯E~n!~Cn,hn

~n! ! ~III.3!

5 (
hj P$1,2,...,2n21%n21

E~ I ~Q~n!~h1 ,h2 ,...,hj 21 ,k,hj 11 ,...,hn!!!.

Thus, settingh5(h1 ,h2 ,...,hn) and substituting~III.3! in ~III.2! we get

F~D j !5 lim
n→`

(
hP$1,2,...,2n21%n

hj

2n21 E~ I ~Q~n!~h!!!. ~III.4!

In ~III.4! the factorhj /2
n21 is the j th coordinate of the vertex ofQ(n)(h) with the greatest distanc

from the origin~0,0,...,0!.
Everylk

(n)PL(n) picks out a unique intervalI k
(n) , which, in its turn, picks out the subhype

cube Q(n)(h(n)(lk
(n)))[I 21(I k

(n)). In such a way we establish a bijective corresponde
h(n):L(n)°$1,2,...,2n21%n, l→h(n)(l) which depends onI. Since l5lk

(n)5lk8
(n11) implies

I k8
(n11)

#I k
(n) , the mappingh(n) satisfies

Q~n11!~h~n11!~l!!#Q~n!~h~n!~l!! ~III.5!

because of condition~II.9!. By using this mapping, from~III.4! we get
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F~D j !5 lim
n→`

(
lk

~n!PL~n!

w j
~n!~h~n!~lk

~n!!!

2n21 E~ I ~Q~n!~h~n!~lk
~n!!!

5 lim
n→`

(
k51

N~n! w j
~n!~h~n!~lk

~n!!!

2n21 @El
k
~n!2El

k21
~n! #, ~III.6!

where

w j
~n! :Rn→R, w j

~n!~y1 ,y2 ,...,yn!5yj

is a mapping defined for allj <n. Now we prove that if the mappingI satisfies condition~D!
below, then there is a functionwD j

:@0,1#→@0,1# such thatw j
(n)(h(n)(lk

(n)))/2n215wD j
(lk

(n)) for
all n and j <n, and therefore, by~III.6! and ~II.17!, thatF(D j )5wD j

(A).
When j <n, we have

w j
~n11!~h,h!5w j

~n!~h! holds for all hPRn and for all hPR. ~III.7!

Using the mappingsw j
(n) andh(n), we define the function

wj
~n! :L~n!→@0,1#, wj

~n!~lk
~n!!5

1

2n21 w j
~n!~h~n!~lk

~n!!!. ~III.8!

We stress thatwj
(n)(lk

(n)) is nothing else but thej th coordinate of the vertex of the subhypercu
Q(n)(h(n)(lk

(n))) with the greatest distance from the origin.
Suppose that the bijectionI satisfies the following condition:
~D! Let hP$1,2,...,2n21%n and lk

(n)PL(n) be such that

I ~Q~n!~h!!5@lk21
~n! ,lk

~n!# if k51 or I ~Q~n!~h!!5~lk21
~n! ,lk

~n!# if k.1.

There is a number hn11P$1,2,...,2n% such that

I ~Q~n11!~2h,hn11!!5S lk
~n!2

1

N~n11!
,lk

~n!G .
Remark III.2: The mappingI for the stepn11, as noticed previously, is constructed b

establishing, for every subhypercubeQj
(n) , a bijective correspondence between the 22n subhyper-

cubes contained in the boxQj
(n)3Cn11 and the 22n subintervals contained in the intervalI j

(n)

5I (Qj
(n)). The choice of such partial bijection does not affect condition~C!. Condition~D! is just

a further condition, to be imposed to such partial bijection, which is always practicizable. In
let hP$1,2,...,2n21%n be fixed. The subhypercubeQ(n)(h) has the vertex with the greatest distan
from the origin in the pointh/2n21. The boxQ(n)(h)3Cn11 contains any subhypercube of th
kind Qn11(2h,h): indeed, the latter has the vertex with the greatest distance from the origin i
point (2h,h)/2n5(h/2n21,h/2n) which belongs to the segmenth/2n213Cn11 . There are 2n sub-
hypercubes of the kindQ(n11)(2h,h) in the boxQ(n)(h)3Cn11 . Therefore there is no obstacle i
choosing the partial bijection in such a way that to one of theQ(n11)(2h,h)’s there corresponds
the last subinterval inI k

(n) , i.e., the subinterval

S lk
~n!2

1

N~n11!
,lk

~n!G .
Thus, the bijectionI may be chosen in such a way that both~C! and ~D! hold. From now on we
assume that~C! and ~D! in fact hold.

Proposition 2: If condition (D) holds and m,n are greater than j, then
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wj
~n!~l!5wj

~m!~l! ~III.9!

holds for all lPL(n)ùL(m).
Proof: Suppose thatm.n> j . If lPL(n) thenl5lk

(n)5lk8
(n11) ; I k8

(n11) is the last subinter-
val contained in the intervalI k

(n) . Condition~D! implies that toI k8
(n11) there corresponds a subhy

percube whose vertex with the greatest distance from the origin shares the firstn coordinates with
the first n coordinate of the vertex of the subhypercube corresponding toI k

(n) , with the greatest
distance from the origin. Then

1

2n hn11~l!5S 1

2n21 h~n!~l!,hD .

From this and~III.7! and ~III.8!

wj
~n!~l!5wj

~n11!~l!

follows. In the same way we can prove that

wj
~n11!~l!5wj

~n12!~l!.

Then we may arrive at~III.9!.
Hence, the functionswj

(n) defined in ~III.9! admit a common extensionwj to the setL
5ønL(n). Now we make use of this extension to define an extension ofwj to the whole interval
@0, 1#. For everynPN we define

s j
~n!~l!5H wj~l! if lPL~n!

wj~lk
~n!! if lk

~n!,l,lk11
~n! . ~III.10!

Every s j
(n) is a step function on@0, 1#. Sincewj

(n)(l) is the j th coordinate of a vertex of the
subhypercubeQ(n)(h(n)(l)) whose size is 1/2n21, by ~III.5! we get

us j
~n!~l!2s j

~n11!~l!u,
1

2n21 , ;l.

Therefore, (s j
(n))nPN is a sequence of step functions, which is Cauchy with respect to the uni

norm. This implies that the sequence (s j
(n)) converges everywhere to an integrable functionwD j

,

which is a common extension of allwj
(n) .

Then, the factorw j
(n)(h(n)(lk

(n)))/2n21 in ~III.6! can be replaced bywj (lk
(n)). Therefore

F~D! j )5 lim
n

(
k

wj
~n!~lk

~n!!E~ I k
~n!!5E wD j

~l!dEl ,

where the functionwD j
is the limit of the sequence$s j

(n)%n defined in~III.10!.

B. Construction for open sets

Let ~a, b! any open interval in@0, 1#. Then there exists a countable subfamily$D jk% of $D j%,
where theD jk are pairwise disjoint, such that (a,b)5økD jk . Making use of~ii ! in Definition I.1,
we have

F~a,b!5(
k

F~D jk!5(
k
E wD j k

~l!dEl5E S (
k

wD j k
D ~l!dEl .

Therefore we can write
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w~a,b!5(
k

wD j k
. ~III.11!

C. Construction for singletons

Let x be any point in@0, 1#, then there are two countable subfamilies$D j k
% and $D j l

% of
pairwise disjoint sets from$D j% such that

@0,x!5økD j k
, ~x,1#5ø lD j l

, ~III.12!

Then from$x%5@0,1#\(@0,x)ø(x,1#), it follows that F($x%)512Sk F(D j k
)2S l F(D j l

); there-
fore we get

w$x%512(
k

wD j k
2(

l
wD j l

. ~III.13!

D. Construction for Borel sets

Every Borel set inB(@0,1#) is a measurable set, with respect to the probability measure

mc :B~@0,1# !→@0,1#, mc~D!5^F~D!cuc&.

Thus for anyn there is a finite family$D j k
% of pairwise disjoint intervals from$D j% such that

mc~Dn@økD j k
# !,

1

n
.

Now,

umc~D!2mc~økD j k
!u,mc~Dn@økD j k

# !,
1

n
;

but mc(økD j k
)5Skmc(D j k

); thereforeF(D) may be approximated in the weak operator topolo
by Sk F(D j k

). Thus, also the functionwD is approximated bySk wD j k
.

IV. CONCLUSIONS

So far, we have described an explicit procedure to approximate the resolution of the id
El and hence the sharp observableA of which a given commutative unsharp observableF can be
considered an unsharp realization. Furthermore, the procedure also provides, by~III.10!, the func-
tions s j

(n) , which approximate, with respect to the uniform normi f i5sup$u f (x)u%, the functions
wD such that

F~D!5E wD~l!dEl .

Summarizing, to push the approximation up to stepn, i.e., with an error of 1/2n21, the following
are necessary.

~1! To find the resolution of the identity of the firstn effectsF j in ~II.3!.
~2! To decompose the hypercubeQ(n) into theN(n) subhypercubes$Q(n)(h)% and the interval

@0, 1# into theN(n) intervals$I k
(n)%.

~3! To establish a bijective correspondenceI between$Q(n)(h)% and $I k
(n)% and the bijection

h(n) in such a way that~II.9! and ~D! hold.
~4! By using I andh(n),
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~a! to define, according to~III.10! the mappingss j
(n) which approximatewD j

within an error
of 1/2n21,

~b! to assign the resolution of the identityEl
k
(n)5S j 51

k E(I j
(n)) according to~II.7! to the points

of L(n).
It is clear that, apart simple cases~example I.2!, the procedure requires an amount of calcu
more appropriately to be done by computer than by humans.

It is remarkable that the construction of the functionswD is completely independent of th
observableF; indeed it is the result of the geometrical construction of the hypercube and su
percubes and of the choice of the bijectionI. Thus the functionswD will be the same for all
unsharp observables. At first sight this independence seems to be in contrast with the fact
numberwD(l) bears a precise physical meaning closely linked to the observableF: it is the
probability to read the outcome ofF in D, when the value ofA is l. Actually, this connection
betweenwD(l) and the outcomes ofF is only apparent; what happens is that the procedure r
out the scale of the sharp observableA in such a way that the probabilitywD(l) is independent of
F. In other words, our procedure works in such a way that the difference between two com
tive unsharp observablesF1 andF2 is totally loaded on the resulting sharp observablesA1 andA2 .

While the present work yields a well-established procedure to get the sharp reconstrucA
of any commutative unsharp observable, some important theoretical questions remain ope
of these questions is to grasp the physical meaning of the sharp observableA. At present, we have
nothing to say about such a question; our only impression is that it is somehow connected w
above discussed independence betweenwD(l) andF.

The uniqueness of the sharp observableA is another problem to be faced. More precise
given a commutative unsharp observableF with sharp reconstructionA, there is, in general,
another sharp observableB and a family of functions$gD% such thatF(D)5gD(B). In the finite
dimensional case treated in Ref. 11, it has been found that there is a mappingf such thatA
5 f (B); therefore our reconstructionA should be thecoarsestsharp observable of whichF is an
unsharp realization. Is such a result valid in the general case treated in the present paper

These two important questions could be related to each other. We do not attempt an
here, but, we hope, in a forthcoming paper.
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We present a new topological tensor current ofp̃-branes by making use of the
f-mapping theory. It is shown that the current is identically conserved and behaves
asd(fW ), and every isolated zero of the vector fieldfW (x) corresponds to a ‘‘mag-
netic’’ p̃-brane. Using this topological current, the generalized Nambu action for
multi p̃-branes is given, and the field strengthF corresponding to this topological
tensor current is obtained. It is also shown that the magnetic charges carried by
p̃-branes are topologically quantized and labeled by Hopf index and Brouwer de-
gree, the winding number of thef mapping. © 2000 American Institute of Phys-
ics. @S0022-2488~00!01707-2#

I. INTRODUCTION

Extended objects withp spatial dimensional, known as ‘‘branes,’’ play an essential role
revealing the nonperturbative structure of the superstring theories andM -theories.1–4 Antisym-
metric tensor gauge fields have been widely studied in the theories ofp-branes.5–8 In the context
of the effectiveD510 or D511 supergravity theory ap-brane is ap-dimensional extended
source for a (p12)-form gauge field strengthF. It is well-known that the (p12)-form strength
F satisfies the field equation

¹mFmm1¯mp115 j m1¯mp11,

wherej m1¯mp11 is a (p11)-form tensor current, corresponding to the electric source, and the
field strength* F satisfies

¹m* Fmm1¯m p̃115 j̃ m1¯m p̃11

in which j̃ m1¯m p̃11 is a (p̃11)-form tensor current, corresponding to the magnetic source.9–11

Thef-mapping theory proposed by Professor Duan12,13 is important in studying the topologi
cal invariant and topological structure of physics systems and has been used to study th
logical current of magnetic monopole,12 topological string theory,13 topological structure of
Gauss–Bonnet–Chern theorem,14 topological structure of the SU~2! Chern density,15 and topo-
logical structure of the London equation in superconductor.16 We must point out that the
f-mapping theory is also a powerful tool to investigate the topological defects theory,17–19 and
here the vector fieldfW is looked upon as the order parameters of the defects.

a!Author to whom all correspondence should be addressed; electronic mail: lbfu@263.net
43790022-2488/2000/41(7)/4379/8/$17.00 © 2000 American Institute of Physics
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In this paper, we present a new topological tensor current of ‘‘magnetic’’p̃-branes by making
use of thef-mapping theory. One shows that each isolated zero of thed-dimensional vector field
fW (x) corresponds to ap̃-brane (p̃5D2d21), and this current is proved to be the general curr
density of multi-p̃-branes. Using this current, the generalized Nambu action for multi-p̃-branes is
obtained. This topological tensor current will give rise to the inner structure of the field strenF
including the contribution of the ‘‘magnetic’’p̃-branes. Finally, we show that the charges carr
by multi-p̃-branes are topologically quantized and labeled by the Hopf index and Brouwer de
the winding number of thef mapping.

II. THE TOPOLOGICAL TENSOR CURRENT OF p̃ -BRANES

Let X be a D-dimensional smooth manifold with metric tensorgmn and local coordinates
xm(m,n50,...,D21) with x05t as time, and letRd be an Euclidean space of dimensiond,D.
We consider a smooth mapf:X→Rd, which gives ad-dimensional smooth vector field onX,

fa5fa~x!, a51,2,...,d. ~1!

The direction unit field offW (x) can be expressed as

na5
fa

ifi , ifi5Afafa. ~2!

In thef-mapping theory, to extend the theory of magnetic monopoles12 and the topological string
theory,13 we present a new topological tensor current, with the unit ‘‘magnetic’’ chargegm ,
defined as

j̃ m1¯mD2d5
gm

A~Sd21!~d21!! S 1

Ag
D em1¯mD2dmD2d11mD2d12¯mD

3ea1a2¯ad
]m(D2d11)

na1]m(D2d22)
na2

¯]mD
nad, ~3!

where g is the determinant of the metric tensorgmn and A(Sd21) is the area of
(d21)-dimensional unit sphereSd21. Obviously, this ‘‘magnetic’’ tensor current is identicall
conserved,

¹m1
j̃ m1¯mD2d50, i 51,...,D2d. ~4!

From ~2! we have

]mna5
1

ifi ]mfa1fa]mS 1

ifi D , ~5!

]

]fa S 1

ifi D52
fa

ifi3 . ~6!

Using the above expressions, the general tensor current can be rewritten as

j̃ m1¯mD2d5gmCdS 1

Ag
D em1¯mD2dmD2d11¯mDea1¯ad

]m(D2d11)
fa1]m(D2d22)

fa2
¯]mD

fad(
a

]

]fa

]

]fa ~Gd~ ifi !!, ~7!
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whereCd is a constant

Cd5H 2
1

A~Sd21!d! ~d22!
for d.2

1

4p
for d52,

andGd(ifi) is a generalized function

Gd~ ifi !5H 1

ifid22 for d.2

ln~ ifi ! for d52.

If we define a generalized Jacobian tensor as

ea1¯adJm1¯mD2dS f

x D5em1¯mD2dmD2d11mD2d12¯mD]m(D2d11)
fa1]m(D2d22)

fa2
¯]mD

fad ~8!

and make use of the generalized Laplacian Green function relation inf space

(
a

]

]fa

]

]fa ~Gd~ ifi !!5H 2
4pd/2

G~d/221!
d~fW ! for d.2

2pd~fW ! for d52,

~9!

we obtain ad-function like tensor current13

j̃ m1¯mD2d5gmd~fW !Jm1¯mD2dS f

x D S 1

Ag
D . ~10!

We find that j̃ m1¯mD2dÞ0 only whenf50. So, it is essential to discuss the solutions of
equations

fa~x!50, a51,...,d. ~11!

Suppose that the vector fieldfW (x) possessesl isolated zeroes, according to the deduction
Ref. 13 and the implicit function theorem,20,21 when the zeroes are regular points off-mapping,
i.e., the rank of the Jacobian matrix@]mfa# is d, the solution offW (x)50 can be parametrized b

xm5zi
m~u1,u2,...,uD2d!, i 51,...,l , ~12!

where the subscripti represents thei th solution and the parametersu5u(u1,...,uD2d) span a
(D2d)-dimensional submanifold ofX, denoted byNi , which corresponds to ap̃-brane (p̃5D
2d21) with spatialp̃-dimension andNi is its world volume. One sees that the tensor curr
j̃ m1¯mD2d is not vanished only on the world volume manifoldsNi ( i 51,...,l ), each of which
corresponds to ap̃-brane. Therefore, every isolated zero offW (x) on X corresponds to magneti
p̃-branes. These ‘‘magnetic’’p̃-branes had been formally discussed and were not studied bas
topology theory.8,22 Here, we must point out that thep̃-branes sometimes may be considered
topological defects,11,23 in this case for our theory the vector fieldfa(x) (a51,...,d) may be
looked upon as the generalized order parameters19 for p̃-branes.

In the following, we will discuss the inner structure of the topological tensor cur
j̃ m1¯mD2d. It can be proved that there exists ad-dimensional submanifoldM in X with the
parametric equation
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xm5xm~v1,...,vd!, m51,...,D, ~13!

which is transversal to everyNi at the pointpi with

gmn

]xm

]uI

]xv

]vA U
pi

50, I 51,...,D2d, A51,...,d. ~14!

This is to say that the equationsfW (x)50 have isolated zero points onM .
As we have pointed in Refs. 14 and 15, the unit vector field defined in~2! gives a Gauss map

n:]Mi→Sd21, and the generalized winding number can be given by this Gauss map

Wi5
1

A~Sd21!~d21!! E]Mi

n* ~ea1¯ad
na1dna2`¯`dnad!

5
1

A~Sd21!~d21!! E]Mi

ea1¯ad
na1]A2

na2
¯]Ad

naddvA2`¯`dvAd

5
1

A~Sd21!~d21!! EMi

eA1¯Adea1¯ad
]A1

na1]A2
na2

¯]Ad
nadddv, ~15!

where]Mi is the boundary of the neighborhoodMi of pi on M with pi¹]Mi , MiùM j5B.
Then, by duplicating the derivation of~3! from ~10!, we obtain

Wi5E
Mi

d~fW ~v !!JS f

v Dddv, ~16!

whereJ(f/v) is the usual Jacobian determinant offW with respect tov,

ea1¯adJS f

v D5eA1¯Ad]A1
na1]A2

na2
¯]Ad

nad. ~17!

According to thed-function theory24 and thef-mapping theory, we know thatd(fW (v)) can be
expanded as

d~fW ~v !!5(
i 51

l

b ih id
d~vW 2vW ~pi !! ~18!

on M , where the positive integerb i5uWi u is called the Hopf index of the mapv→fW (v) and
h i5sgn(J(f/v))upi

561 is the Brouwer degree.14,16 One can find the relation between the Ho
index b i , the Brouwer degreeh i , and the winding numberWi ,

Wi5b ih i , ~19!

One sees that Eq.~18! is only the expansion ofd(fW (x)) on M . In order to investigate the
expansion ofd(fW (x)) on the whole manifoldX, we must expand thed-dimensionald function of
the singular point in terms of thed function on the singular submanifoldNi which had been given
in Ref. 24

d~Ni !5E
Ni

dD~x2zi~u!!Agud(D2d)u, i 51,...,l

in which
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gu5detS gmn

]xm

]uI

]xn

]uJD , I ,J51,...,~D2d!. ~20!

Then, from Eq.~18!, and by considering the property of thed function, one will obtain

d~fW ~x!!5(
i 51

l

b ih iE
Ni

dD~x2zi~u!!Agud(D2d)u. ~21!

Therefore, the general topological current of thep̃-branes can be expressed directly as

j̃ m1¯mD2d5S 1

Ag
D Jm1¯mD2dS f

x D(
i 51

l

b ih iE
Ni

dD~x2zi~u!!Agud(D2d)u, ~22!

which is a new topological current theory ofp̃-branes based on thef-mapping theory.
If we define a Lagrangian as

L5A 1

~D2d!!
gm1n1

¯gm(D2d)n(D2d)
j̃ m1¯mD2d j̃ n1¯nD2d, ~23!

which is just the generalization of Nielsen’s Lagrangian,25 from the above deductions, we ca
prove that

L5S 1

Ag
D d~fW ~x!!. ~24!

Then, the action takes the form

S5E
X
LAgdDx5E

X
d~fW ~x!!dDx. ~25!

By substituting the formula~21! into ~25!, we obtain an important result,

S5E
X
(
i 51

l

b ih iE
Ni

dD~x2zi~u!!Agud(D2d)udDx5(
i 51

l

b ih iE
Ni

Agud(D2d)u, ~26!

i.e.,

S5(
i 51

l

h iSi , ~27!

whereSi5b i*Ni
Agud(D2d)u. This is just the generalized Nambu action for multi-p̃-branes (p̃

5D2d21), which is the straightforward generalization of Nambu action for the string wo
sheet action.26 Here this action for multi-p̃-branes is obtained directly byf-mapping theory, and
it is easy to see that this action is just Nambu action for multistrings whenD2d52.13

III. THE GAUGE FIELD CORRESPONDING TO THE TOPOLOGICAL CURRENT

In this section, we will study the antisymmetric tensor gauge field corresponding to
topological tensor current presented in Sec. II. We know thatp-branes naturally act as the ‘‘elec
tric’’ source of a rankp12 field strength

F5dA, ~28!
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whereA is a (p11)-form as the tensor gauge potential and satisfies the gauge transforma

A→A1dLp .

From Eq.~28!, one has the Bianchi identity

dF[0, ~29!

and the ‘‘electric’’ current density associated with the source can be expressed as

j m1¯mp115¹mFmm1¯mp11. ~30!

Just as the usual Maxwell’s equation, we know that Eqs.~28!–~30! imply the presence of an
‘‘electric’’ charge, i.e.,p-branes, but no ‘‘magnetic’’ source.11

Now, let us discuss the case when there exists the ‘‘magnetic’’ source. For this case, on
introduce another (p12)-form G for the magnetic source, and the field strengthF must be
modified to

F5dA1G, ~31!

which is the generalized field strength including the contribution of the ‘‘magnetic’’ source,
‘‘magnetic’’ branes:p̃-branes withp̃5D2p24.

To obtain the explicit expression forG, let us consider that the current density correspond
the magnetic source which is given by

j̃ m1¯m p̃115¹m* Fmm1¯m p̃11. ~32!

Using ~31! and ~32!, we obtain

j̃ m1¯m( p̃11)5
1

Ag
]mS Ag

emm1¯m p̃11m p̃12¯mD21

Ag
Gm p̃12¯mD21D . ~33!

It has been pointed out in Sec. II that the current density of the ‘‘magnetic’’ branes is a topolo
current given by Eq.~3!, which can be rewritten as

j̃ m1¯mD2d5
gm

A~Sd21!~d21!! S 1

Ag
D ]m(D2d11)

~em1¯mD2dmD2d11mD2d12¯mD

3ea1a2¯ad
na1]m(D2d22)

na2
¯]mD

nad!, ~34!

where (D2d)5 p̃11, i.e., p̃5D2d21. Comparing Eq.~33! to ~34!, we can obtain

Gm1¯md21
5

~21!(D2d)gm

A~Sd21!~d21!!
ea1a2¯ad

na1]m1
na2

¯]md21
nad, ~35!

and

G5
~21!(D2d)gm

A~Sd21!~d21!!
ea1a2¯ad

na1dna2`¯`dnad. ~36!

Of equal interest is the ‘‘magnetic’’ charge carried by the multip̃-branes, which is given by

QM5E
S

j̃ m1¯m p̃11Agdsm1¯m p̃11
~37!
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where S is a d-dimension (d5p13) hypersurface inX, while dsm1¯m p̃11
is the convariant

surface element27 of S. From ~32! and ~37!, it is easy to prove that

QM5E
]S

F,

where]S is the boundary ofS and a (p12)-dimension hypersurface. Substituting~22! into ~37!,
we have

QM5gmE
S
Jm1¯m p̃11S f

x D(
i 51

l

b ih iE
Ni

dD~x2zi~u!!Agud(D2d)udsm1¯m p̃11
, ~38!

from ~8!, and the relation

1

~ p̃11!!
em1¯m p̃11n1¯nddsm1¯m p̃11

5dxn1`¯`dxnd,

expression~38! can be rewritten as

QM5gmE
f(S)

(
i 51

l

b ih iE
Ni

1

Ag
dD~x2zi~u!!Agud(D2d)ud(d)f. ~39!

Since on the singular submanifoldNi we have

fa~x!uNi
5fa~zi

1~u!,...,zi
D~u!![0, ~40!

this leads to

]mfa
]xm

]uI U
Ni

50. ~41!

Using this expression, one can prove

Jm1¯mD2dS f

x D U
fW 50

5
Ag

Agu

e I 1¯I (D2d)
]xm1

]uI 1
¯

]xm(D2d)

]uI (D2d)
. ~42!

Then we obtain a useful formula

d(d)fAgud(D2d)u5AgdDx. ~43!

By making use of the above formula and~39!, we finally get

QM5gm(
i 51

l

b ih iE
X
dD~x2zi~u!!dDx5gm(

i 51

l

b ih i . ~44!

Equation ~44! shows that thei th brane carries the ‘‘magnetic’’ chargeQi
M5gmb ih i5gmWi ,

which is topologically quantized and characterized by Hopf indexb i and Brouwer degreeh i , the
winding numberWi of the f mapping.

IV. CONCLUSION

In this paper thef-mapping theory is introduced to study thep̃-branes theory, which is a
development of our former theories of magnetic monopoles and topological strings. We pre
new topological tensor current of magnetic multi-p̃-branes and discuss the inner structure of t
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current in detail. It is shown that every isolated zero of the vector fieldfW ~i.e., order parameters!
is just corresponding to a magnetic brane,p̃-brane (p̃5D2d21). The generalized Nambu actio
for multi-p̃-branes can be obtained directly in terms of this topological current. The topolo
structure of the charges carried byp̃-branes shows that the magnetic charges are topologic
quantized and labeled by the Hopf index and Brouwer degree, the winding number off
mapping. The theory formulated in this paper is a new concept for topologicalp̃-branes based on
the f-mapping theory.
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Energy in Yang–Mills on a Riemann surface
Dana Finea)

Mathematics Department, University of Massachusetts, North Dartmouth,
Massachusetts 02747

~Received 7 January 2000; accepted for publication 20 March 2000!

Sengupta’s lower bound for the Yang–Mills action on smooth connections on a
bundle over a Riemann surface generalizes to the space of connections whose
action is finite. In this larger space the inequality can always be saturated. The
Yang–Mills critical sets correspond to critical sets of the energy action on a space
of paths. This may shed light on a conjecture of Atiyah and Bott concerning Morse
theory forA/G. © 2000 American Institute of Physics.@S0022-2488~00!05907-7#

I. INTRODUCTION

One approach1,2 to quantum Yang–Mills on a Riemann surface of genusg requires rewriting
the Yang–Mills action in terms of the energy of a 2g-tuple of paths in the symmetry groupG.
~This assumesg>1. Forg50, the energy is that of a based loop inG.! The energy of such path
appears more recently in Yang–Mills inequalities Sengupta has developed.3

Sengupta considers the space of smooth connections, grouped into subspaces by ce
quirements on holonomy. For each subspace, there is a loop inG whose energy bounds from
below the Yang–Mills action on that subspace. For appropriate choices of the requireme
holonomies, this lower bound can be saturated; Yang–Mills connections are precisely those
saturate this bound.

Uhlenbeck4 has shown that, in two dimensions, the space of connections whose Yang–
action is finite contains discontinuous connections. Theorem III.1 below provides a lower b
for the Yang–Mills action on this larger space. It is analogous to Sengupta’s, but in this spa
bound can always be saturated. One might then suppose that Yang–Mills connections aris
these saturating connections are also smooth; this is the import of Proposition III.1.

These relations between the Yang–Mills action and the energy of paths may help an
question raised in the seminal work of Atiyah and Bott5 on the topology of the moduli space o
Yang–Mills connections; namely, does the Yang–Mills action, which they show to be equ
antly perfect, in fact define a Morse stratification? Theorem III.2 describes the correspon
between the critical sets of the Yang–Mills action and those of the energy on the relevant sp
paths, for which there is reason to believe the analytic issues are more tractable.

II. THE GEOMETRY OF AÕGm

To describe the required energy requires some background on the structure of the q
A/Gm of the space of connections modulo gauge transformations. HereA refers to connections
with finite total curvature on a givenG-bundleP over a Riemann surfaceS, andGm refers to the
space of gauge transformations which are the identity at a specified pointmPS. What follows is
an overview of the essential elements; details are in Refs. 1 and 2.

Let D, a regular 4g-gon, be a fundamental domain forS, chosen so thatm corresponds to the
center ofD. The edges making up]D represent the generators$ai ,bi% i 51

g of p1(S), and are
identified in pairs, with opposite orientations, as in Fig. 1.

Theorem 3.1 of Ref. 2 states thatA/Gm is itself a principal fiber bundle over Path2g G with an
affine-linear fiber. Here Path2g G is the space of 2g-tuples of paths inG subject to a single relation
on the 4g endpoint values of the paths. There is an obvious energy function@see Eq.~2!# on this

a!Electronic mail: dfine@umassd.edu
43870022-2488/2000/41(7)/4387/4/$17.00 © 2000 American Institute of Physics
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base space Path2g G; its critical points are precisely the images of Yang–Mills connections.
understand how this arises, it will suffice to examine the projectionj: A/Gm→Path2g G.

Consider holonomies by a given connectionA about the following loops inS: Pick polar
coordinates (r ,u) on D centered atm. For a given pointp of the edgea1,]D, the radial
path fromm to that point followed by the radial path back tom from the corresponding pointp21

of a1
21 defines a loop inS. See Fig. 2. Relative to a fixed choice of basepoint in the fiber ovem,

the holonomy byA about this loop determines an element ofG. Now, let the pointp vary within
a1 . The corresponding holonomies trace out a patha1 in G. Holonomies about radial path
through the points of the other edgesb1 ,a2 ,b2 , . . . ,ag ,bg similarly determine pathsb1 ,a2 ,
b2 , . . . ,ag ,bg . Taken together, these define the 2g-tuple gW A5(a1 ,b1 , . . . ,ag ,bg). These 2g
paths are not completely independent of each other, however, as the radii to the vertices]D
each lie on two distinct loops inS whose holonomies define the endpoint values of distinct pa
in G. In fact, traversing, in the appropriate order, each such radius out to the vertex and back
to m gives a certain product of the endpoint values of the paths ingW A . On the other hand, by
construction, the holonomy about this path must be the identity inG. Equating these gives th
relation defining Path2g G:

a1~0!b1~1!21a1~1!21b1~0!¯ag~0!bg~1!21ag~1!21bg~0!51.

Definej(@A#)[gW A . This is well defined onA/Gm , since acting onA by an element ofGm has
no effect ongW A . Clearly, adding toA a Lie-algebra-valued one-formt which vanishes in the
radial directions ofD also has no effect ongW A . In fact, inA/Gm , as a bundle over Path2g G, the

FIG. 1. The fundamental domain D.

FIG. 2. A radial loop in D.
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fiber over gW A is the space$@A1t#:turadii50%. This, and the fact thatj is onto, is proven in
Theorem 3.1 of Ref. 2.

If the bundleP is not topologically trivial, then, as detailed in Ref. 6, its topology is det
mined by an elementz of the center of the universal coverĜ of G. On lifting P to aĜ bundle, the
space Path2g G is replaced by the corresponding space forĜ with the relation
a1(0)b1(1)21a1(1)21b1(0)¯ag(0)bg(1)21ag(1)21bg(0)5z. Henceforth, though we omi
the hats, we assume we are on the lifted bundle with the corresponding relation.

III. THE YANG–MILLS ACTION

Consider now the restriction of the Yang–Mills action onA/Gm to the fiber throughgW A .

S~@A# !5^FA ,FA&,

where the inner product combines the invariant inner product on the Lie algebra, the m
induced inner product on forms at each point and integration overS. Along the fiber,FA1t

5FA1DAt, since the term quadratic int vanishes. Thus,

S~@A1t#!5S~@A# !12^FA ,DAt&1^DAt,DAt&.

Theorem 4.2 of Ref. 2 ensures that the requirement^FÃ ,DAt&50, for everyt vanishing along
radii, singles out a unique choice for a continuous connectionÃ to serve as an ‘‘origin’’ in the
fiber. Note that@Ã# defines a section ofA/Gm over Path2g G. Relative to this choice of origin,

S~@Ã1t#!5S~@Ã# !1^DAt,DAt&. ~1!

~For t of the specified form,DÃt5DAt.) The key point is thatS(@Ã#) pulls back to the energy
of gW A . This follows from the condition onFÃ which implies directly that* FÃ is covariantly
constant along radii. Thus, inS(@Ã#)5^FÃ ,FÃ&, FÃ may replaced by its average along the radi
This, however, by a non-Abelian analog of Stoke’s theorem, or by Polyakov’s formula, isa i

21ȧ i

~or b i
21b i̇) for somei depending on the value ofu. In fact, for an appropriate choice of param

etrization, determined by the area element onS,

S~@Ã# !5
1

2 (
i 51

2g

i ġ i i2[E~gW A!, ~2!

as detailed in Sec. 5.1 of Ref. 2. Hereg i denotes thei th component ofgW A . For a generic
connection, which must be gauge equivalent toÃ1t, Eq. ~1! thus becomes

S~@Ã1t#!5E~gW A!1^DAt,DAt&. ~3!

It leads immediately to a lower bound on the Yang–Mills action on a given fiber.
Theorem III.1. For any connection A representing an element of the fiber throughgW A

PPath2g G,

S~@A# !>
1

2 (
i 51

2g

ig i i2,

with equality holding iff [A] agrees with the section@Ã#.
Proof. This is an immediate consequence of Eq.~3!, since the second term on the right-ha

side is positive semidefinite, and zero ifft50. h

Given this decomposition of the Yang–Mills action, it is easy to see how its critical po
correspond directly to critical points of the energyE.
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Theorem III.2. The connection A˜ represents a Yang–Mills critical point iff gW Ã is a critical
point of the energy E.

Proof. SupposeA5Ã1t is a Yang–Mills critical point; that is, a point at whichS(@Ã1t#) is
stationary.~There is no loss of generality in omitting a possible gauge transformation on one
of this equation.! By considering justt of the formt5tt0 , for tPR, it is clear from Eq.~3! that
t50 is a necessary condition forA to be a critical point. It then follows thatgW A must be a critical
point of the energy. The converse is immediate. h

To relate this picture, in which connections need not be smooth and the energy boun
always be saturated, to Sengupta’s, in which connections must be smooth and the energy
can only be saturated on the fibers containing Yang–Mills connections, note that in the fiber
critical points of the energy the connectionÃ is smooth.

Proposition III.1. If gW is a critical point of E, then the corresponding A˜ is smooth.
Proof. A simple calculus of variations computation shows thatgW extremizesE iff

]

]u
g i

21g i̇50.

On the other hand, this condition also ensures that the covariantly constant curvaturesFÃ , related
by the non-Abelian analog of Stokes theorem mentioned previously, are continuous atm. This was
the only placeÃ might have failed to be smooth. h

IV. A POSSIBLE APPLICATION

Atiyah and Bott suggest equivariant Morse theory might apply to the cohomology o
Yang–Mills moduli space, and, more particularly, their stratification may correspond to the M
stratification for the Yang–Mills action. With this in mind, they prove the Yang–Mills action is
equivariantly perfect Morse function. However, analytic concerns prevent them from devel
the theory more fully, except in genus zero. There Bott and Samuelson7 have shown thatA/G is
topologically equivalent to based loops inG, and that Morse theory arguments go through fo
wide variety of symmetric spaces including these based loops.

The geometric picture ofA/Gm as an affine-linear bundle shows it is topologically equival
to its base space Path2g G. Passing fromGm to G, this becomes Path2g G/G, where a given
elementgPG acts adjointly on each path:g i(t)°g21g i(t)g. Moreover Eq.~3! says the section

@Ã# pulls the Yang–Mills action back to the energy on Path2g G/G. Clearly, the Morse theory for
this base space, if such exists, would be the Morse theory forA/G. Moreover, the generality of the
results of Bott and Samuelson is nearly sufficient to apply them directly to Path2g G/G. The
endpoint condition, however, requires careful treatment, which we defer to future work.
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Resonances for laterally coupled quantum waveguides
S. V. Frolov and I. Yu. Popova)
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14 Sablinskaya, St.-Petersburg, 197101, Russia
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A system of two waveguides coupled laterally through a small window is consid-
ered. The asymptotics~in the width of window! of resonance~quasibound state!
close to the second threshold is obtained. The cases of two different and two
identical waveguides are considered. The technique is matching the asymptotic
expansions of the solutions. ©2000 American Institute of Physics.
@S0022-2488~00!03804-4#

I. INTRODUCTION

The recent development of microelectronics has stimulated remarkable progress in se
ductor physics. Many new ideas have appeared and the experimental framework has w
considerably. At the same time this progress has brought interesting mathematical problem
mentioned microstructures have some characteristic properties:~a! small size~typically from tens
to hundreds of nm!; ~b! high purity ~the electron-free path can be a fewmm or even larger!; ~c!
crystallic structure;~d! the wave functions are usually suppressed at the boundaries bet
different semiconductor materials. A combination of these properties allows us to simula
electron motion inside the microstructure as a free~spinless! particle living in the corresponding
spatial region with the Dirichlet condition on its boundary; an interaction term must be added
if the whole structure is placed into an external field. In such a way, the description of m
mesoscopic quantum systems reduces to the description of electron wave transport thr
system of waveguides~see, for example, Refs. 1–3!. The problem of bound states and resonan
for laterally coupled wavdeguides recently attracted a new wave of interest, because eigen
and resonances have great influence on the electron transport in the quantum systems. Tha
this problem is very important from a physical point of view.

In this paper we deal with a system of two-dimensional waveguides~strips! V1 , V2 of
widthsd1 ,d2 coupled laterally through small window of width 2a ~Fig. 1!. It has been proven in
Ref. 4 that the Dirichlet Laplacian for this system has an eigenvaluela close to the threshold an
there exist constantsc1 ,c2 such that

c1a4<
p2

d2
12la<c2a4, ~1!

for sufficiently smalla ~the order of this term was found in Ref. 5 on a physical level of rigo!,
d1.d2 . A more detailed treatment with some generalizations is in Ref. 6 Another approa
the problem is in Ref. 7, where a model based on the theory of self-adjoint extensions of
metric operators is suggested for the description of the system. Later, the asymptotics~in a! of the
eigenvalue in question was obtained.8,9 The scheme of matching of asymptotic expansions
solutions of boundary problems suggested in Refs. 10 and 11 was used.

The problem of resonances is more complicated. There are some estimates. It was sh
Ref. 5 that the real and imaginary parts of a resonance near theNth threshold are proportional
correspondingly, tok2a4/d2

4 and k2a6/d2
6 . The author used the technique of conformal m

There are no rigorous mathematical proofs and no asymptotics in Ref. 5.

a!Electronic mail: popov@mail.ifmo.ru
43910022-2488/2000/41(7)/4391/15/$17.00 © 2000 American Institute of Physics
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In the present paper we construct asymptotics of the resonance in question in a rig
mathematical way. We use the method of matching of asymptotic expansions of solutions
gous to that in Refs. 10 and 11. The cases of two different and two identical waveguide
treated.

The paper has the following structure. In the second section the construction of the a
totics of a resonance close to the thresholdp2/d2

2 , d1.d2 , is described for the case of tw
different waveguides. The case of two identical waveguides is considered in the third sect
the Appendix, estimates that show a quality of the approximation of the quasieigenfunctio
made.

II. CONSTRUCTION OF THE ASYMPTOTICS

We shall obtain asymptotic expansion of a resonance that tends to the lower bound
second branch of the continuous spectrum~second threshold! when a→0. The case of theNth
threshold (N.2) can be considered in a similar way. Let us construct the asymptotic series f
resonance. We shall follow the conventional scheme of matching suggested by Il’in
Gadil’shin.10,11The difference is that we start from another form of the asymptotic series and
for asymptotic expansion of some function of the quasibound state in question. The small p
etera is the half-width of the opening. Consider the case whend1.d2 . Let ka

2 be the resonance
closed to the pointp2/d2

2 . We shall seek the asymptotic series of the following form:

S p2

d2
2 2ka

2D 1/2

5(
j 52

`

(
i 50

@~ j 21!/2#

kji a
j S log

a

a0
D i

. ~2!

For the corresponding eigenfunctionca(x), the asymptotic series is the following:

ca~x!5S p2

d2
2 2ka

2D 1/2

(
j 50

`

aj Pj 11S Dy , log
a

a0
DG2~x,y,k!uy50 ,xPV2\Sa0~a/a0!1/2, ~3!

ca~x!5(
j 51

`

(
i 50

@~ j 21!/2#

v j i ~x/a!aj S log
a

a0
D i

, xPS2a0~a/a0!1/2, ~4!

ca~x!52S p2

d2
2 2ka

2D 1/2

(
j 50

`

aj Pj 11S Dy , log
a

a0
DG1~x,y,k!uy50 ,xPV1\Sa0~a/a0!1/2, ~5!

FIG. 1. Geometrical configuration of the system.d2 ,d1—widths of the waveguidesV2 ,V1 , correspondingly,a—half-
width of the aperture.
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wherea0 is the natural unit of length, for example,d2 , St is the sphere of radiust with the center
at the center of the opening,

v j i PW2,loc
1 ~V1øV2!,

P1S Dy , log
a

a0
D5a10

~1!
]

]ny
,

Pm are some polynomials inDy (Dy is a derivative in respect toy!:

PmS Dy , log
a

a0
D5 (

q51

m21

(
i 50

@$q21%/2#

aqi
~m!S log

a

a0
DDy

m2q11 , m>2, ~6!

Dy
2 j 115

]2 j 11

]ny
2 j 11 , Dy

2 j5
]2 j

]ny
2 j 21 ] l y

, l 5$1,0%, n5~0,21!.

Note that due to the choice of the asymptotic series forka we obtain such series forc(x) that is
analogous to that in Ref. 11, and we can use the analogous procedure of construction.

Remark:Note that the choice of power 1/2(a1/2) in the formulas for the radiai of the sphere
is not essential. It is essential that it would be strongly less than 1.

G6 are the Green’s functions for the waveguidesV6. Taking into account the well-known
representation for the Green’s function of the Dirichlet Laplacian in the strip

G6~x,y,k!5 (
n51

`
1

d6pn,6
sin

npx2

d6
sin

npy2

d6
exp~2pn,6ux12y1u!,

pn,65S n2p2

d6
2 2k2D 1/2

,

one gets the following representation for its derivatives in the close proximity of the pointp2/d2
2 :

Dy
j G6~x,0,k!5

1

d6
sin

px2

d6
Dx

j S sin
px2

d6
D U

x250
S p2

d6
2 2k2D 21/2

1F j~x,k!log
r

a0
1gj

6~x,k!

1 (
i 50

@ j /2#

(
t50

j 22i 21

bit
~ j !~k!r 2 j 12~ i 1t ! sin~ j 22i !u, ~7!

where~r, u! are polar coordinates. Termsbit
( j )(k),F j (x,k),gj

2(x,k) are analytic in respect tok in
some neighborhood of the pointp/d1 , F jPC`(R2) and is antisymmetric in respect tox2 , gj

6

PC`(V6),

b00
j 5~21!@~ j 11!/2#~ j 21!!/p, b10

~3!5k2/~2p!, F1n~0,k!52k2/~2p!. ~8!

Boundary problems for the coefficients of the series~4! are obtained by the following way
One substitutes the series~4! and ~2! @more precisely, not only~2!, but also the correspondin
series forka] into the Helmholtz equation~for k5ka) with the Dirichlet boundary condition. Then
one changes the variables:j5x/a. The coefficients in the terms with the identical powers ofa and
loga/a0 should be equal. Hence, one obtains the following problems:

Djv j i 52 (
p50

j 23

(
q50

@p/2#21

Lpqv j 2p22,i 21 , jPR2\g, ~9!
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v j i 50,jPg,

where

g5$j:j250,j1P~2`,21#ø@1,̀ !%,

Lpq are the coefficients of the series

ka
25(

p
(

q
Lpqa

pS log
a

a0
D q

.

Let ca
6(x,k) be the series~3!, ~5!, Pm

(N)@Dy , log(a/a0)# are the sums of type~6! where the
summation limitm21 is replaced by min(m21,N), ca,N

6 are the seriesca
6(x,k) in which Pj is

replaced byPj
(N) , ĉa

6(x,k), k̂N(a), v̂N(j,a) are the partial sums of the corresponding series. N
that theNth finite sums of the seriesca

6(x,k) andca,N
6 (x,k) coincide because of the definition o

Pj
(N) . Let us define the operatorM pq for the sumsU(x,a) of the type~3!, ~5! ~for k5ka) by the

following manner: decompose the coefficients ofU(x,a) in the asymptotic series forr→0, re-
place the variables (j5x/a), and, simultaneously, replace logr by logr1loga, r5uju. Marks as
M pq(U) the sum of all terms of the typeap@ log(a/a0)#

qf(j). Let

M p5(
q

M pq .

Lemma 1: Let ka has asymptotics given by~2!. DefineLN„Ca,N
6 (x,ka)… in the following way:

L1„Ca,1
6 ~x,ka!…5M1„Ca,1

6 ~x,ka!…,

LN„Ca,N
6 ~x,ka!…5LN21„Ca,N21

6 ~x,ka!…1MN„Ca,N
6 ~x,ka!….

Then forN>1 the following correlations take place:

LN„Ca,N
6 ~x,ka!…5(

j 51

N

(
i 50

@~ j 21!/2#

Vji
6~j!aj S log

a

a0
D i

,

LN„Ca,N
6 ~x,ka!…2LN~ ĉa,N

6
„x,k̂N~a!…!5OS ar2N1aNS log

a

a0
D N

r21D ,

„LN~Ca,N
6 ~x,ka!!…2LN~ ĉa,N

6
„x,k̂N~a!…!j i

5OS ar2N211aNS log
a

a0
D N

r22D ,

ĉa,N
6

„x,k̂N~a!…2LN~ ĉa,N
6

„x,k̂N~a!…!5OS r N111aN11S log
a

a0
D ND ,

~ ĉa,N
6

„x,k̂N~a!…!xi
2„LN~ ĉa,N

6
„x,k̂N~a!…!…xi

5OS r N1aN11S log
a

a0
D NY r D ,

for r→`,r→0, correspondingly. SeriesVji
6(j) does not depend onN, is asymptotic solution of

~9! for r→`, andvqm5Vqm
6 (j) in the right part of~9!, has a structure:

Vji
6~j!5 (

q52p

`

r2qf j iq
6 ~u!1 logr (

q51

p22

rqF jiq
6 ~u!, ~10!
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where p5 j 22i , F jiq
6 (u), f j iq

6 (u) are linear combinations of sinmu, and their sumsVji
2(j)

1Vji
1(j) are polynomials ofj 22i order. SeriesVNi

6 (j) has a form:

VNi
6 ~j!5V̂Ni

6 ~j!1kN11,ik20
21

„V10
6 ~j!

6V10
6̃ ~j!…6

k20

p (
i 50

@~N21!/2#

(
j 52

`

aNl
N211p~21!@~ j 11!/2#~ j 21!!r2 j sin j u,

whereV̂Ni
6 (j) does not depend onkq11,p ,aqp

(m) for q>N,

V10
6̃ ~j!5H 0, j2.0,

j2 , j2,0.

Note that this lemma is analogous to the corresponding lemma in Ref. 11 and the
consists of direct calculations using asymptotics~7!, ~8!. Thus, to make matching it is necessary
show that there exist valueskji , polynomialsPj , and functionsv j i being solutions of~9! such that
asymptotics ofv j i ,r→`,j2.0 (j2,0), coincides with the seriesVji

1(j)„Vji
2(j)…, correspond-

ingly. Below, confine our attention by the first termsk20,k30,k40,k41 only.
Let P15a10

(1)(]/]n). Then, taking into account the asymptotics of the Green’s function~7!,
one obtains

lim
k→l/d2

~p2/d2
2 2k2!1/2P1G2~x,0,k!52

p

d2
2 a10

~1! sinpx2 /d2 ,

lim
k→p/d2

~p2/d2
2 2k2!1/2P1G1~x,0,k!50,

a21M1„~p2/d2
2 2ka

2!1/2P1G2~x,0,ka!…52
1

p
k20r

21a10
~1! sinu2

p2

d2
3 a10

~1!r sinb, ~11!

a21M1„2~p2/d2
2 2ka

2!1/2P1G1~x,0,ka!…5
1

p
k20r

21a10
~1! sinu. ~12!

Boundary problems forv10,v20 have homogeneous right parts. To find these terms we us
following lemma, which is analogous to that in Ref. 11~where the result of Ref. 12 is used!.

Lemma 2: There exist harmonic functionsYq(j) in R2\„R\(21,1)…, YquR˜„21,1…50, Yq

PW2,loc
1 (R2), which have the following differentiable asymptotics inr,r→`:

Yq~j!55 2(
j 51

`

cq jr
2 j sin j u, j2.0,

rq sinqu1(
j 51

`

cq jr
2 j sin j u, j2,0.

~13!

Herecq j are real,c115
1
4, c2152c1250, c135

1
16, c315

3
16. Each harmonic inR2\„R\(21,1)… func-

tion V that satisfies the conditionVuR˜„21,1…50 and have the orderO(rq) is a linear combination
of Yj (j) andYj (j* ) for j <q, wherej* 5(j1 ,2j2).

To match the increasing term in~11! it is necessary to choosev10 in such a way:

v10~j!52
p2

d2
3 a10

~1!Y1~j!.

Let a10
(1)5d2 /p. Then forr→` we have
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v10~j!55 pd2
2 (

j 51

`

c1 jr
2 j sin j u, j2.0,

2pd2
22S r sinu1(

j 51

`

c1 jr
2 j sin j u D , j2,0.

~14!

Making coefficients of terms of orderar21 sinu in ~11! and ~14! @or in ~12! and ~14!# equal we
obtain (d2k20)/p

25p/4d2
2 , and, hence,

k205
p3

4d2
3 . ~15!

Let us determinea10
(2) ,a10

(3) . Taking into account~8! one gets the following correlations for th
second derivatives of the Green’s functions,

lim
k→p/d2

~p2/d2
2 2k2!1/2P2G6~x,0,k!50,

a21M1„7~p2/d2
2 2ka

2!1/2P2G6~x,0,ka!…56
1

p
k20r

22a10
~2! sin 2u. ~16!

Making equal terms of orderr22 sin 2u in ~16! and ~14!, one obtains6(1/p)k20a10
(2)50. Finally

due to~15!, we have

a10
~2!50. ~17!

Coefficienta10
(3) is determined by the analogous way. Taking into account~8!, we obtain

lim
k→p/d2

~p2/d2
2 2k2!1/2P3G1~x,0,k!50,

lim
k→p/d2

~p2/d2
2 2k2!1/2P3G2~x,0,k!52

p3

d4 a10
~3! sin

px2

d2
, ~18!

a2M1„7~p2/d2
2 2ka

2!1/2P3G6~x,0,ka!…57
2

p
k20r

23a10
~3! sin 3u.

Making equal coefficients of terms of orderr23 sin 3u in ~14! and ~18!, we get7(2/p)a10
(3)k20

56p/16d2
2 . Consequently, due to~15! we have

a10
~3!52

d2

8p
. ~19!

To find k30 we shall match terms of ordera2 in ~3!, ~4! and ~4!, ~5!. Due to~8!, one has

a22M2„7~p2/d2
2 2ka

2!1/2~P11P21P3!G6~x,0,ka!…

56
1

p
k30a10

~1!r21 sinu6
1

p
~k30a10

~2!1k20a20
~3!!r22 sin 2u7

2

p
k30a10

~3!r23 sin 3u.

~20!
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To determinev20(j), one notes that this function is a harmonic one and satisfies the follo
boundary condition:v20(j)u(2`,21#ø@1,̀ )50. Moreover, limr→` v20(j)50 @due to the matching
condition of v20(j) with ~20!#. Consequently, the maximum principle for harmonic functio
gives us

v20~j!50. ~21!

Hence, all coefficients of terms of orderr2 j sin ju, j 51,2,3, in ~20! should be zero. This
results in the following equalities:

k3050, ~22!

a20
~3!50. ~23!

To find k40 we shall match terms of ordera3 in ~3!, ~4! and ~4!, ~5!. First, let us expand
functionsgj

6(x,k),F j (x,k) in a series in powers ofx1 ,x2 . The functionF j (x,k) is antisymmetric
in respect tox2 . Hence,

F j~0,k!50,
] lF j~x,k!

]x1
l U

x50

50.

For the Green’s functions we haveG6(x,y,k)ux25050, Dy
j G6(x,y,k)ux25050. Representation

~7! gives us

gj
6~x,k!ux2505Dy

j G6~x,0,k!ux2502
1

d6
sin

px2

d6
Dx

j S sin
px2

d6
D U

x250
S p2

d6
2 2ka

2D 21/2

2F j~x,k!ux250 log
r

a0
2 (

i 50

@ j /2#

(
i 50

j 22i 21

bit
~ j !~k!r 2 j 12~ i 1t ! sin~ j 22i !uuu50,p50.

Hence,

]gj
6~x,k!

]x1
U

x50

50.

Introduce the following notation:

gx
65

]g1
6~x,k!

]x2
U

x50,k5k0

,

wherek05p2d2
22.

One can see that

] lF j~x,k!

]x2
l U

x50

5
k2

2p
,

due to ~8!. Let us replace the function sin(px2 /d2) by its expansion in powers ofx2 . Then
introduce polar coordinatesr, u, and use the identityr3 sin3 u5r3(3 sinu2sin 3u)/4. Taking into
account~8!, one comes to the following relations:
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a23M30„2~p2/d2
2 2ka

2!1/2~P11P3!G1~x,0,ka!…

5S pd2

d1
2 Ad2

2 2d1
2

2gx
1D a10

~1!k20r sinu2
p

2d2
2 a10

~1!k20r logr sinu

1S 1

p
a10

~1!k402
p

2d2
2 a10

~3!k20D r21 sinu2a10
~3!k20b01

~3!~k0!r21 sin 3u, ~24!

a23M30„~p2/d2
2 2ka

2!1/2~P11P3!G2~x,0,ka!…

52
p3

24d2
4 r3 sin 3u1

p3

8d2
4 r3 sinu1S p4

d2
5 a10

~3!1gx
2a10

~1!k20D r sinu

1
p

2d2
2 a10

~1!k20r logr sinu2S 1

p
a10

~1!k402
p

2d2
2 a10

~3!k20D
3r21 sinu1a10

~3!k20b01
~3!~k0!r21 sin 3u. ~25!

Let us determine the asymptotics ofv30(j) for r→`. In accordance with~9!, v30(j) is a
solution of the following boundary problem:

Djv30~j!52k0
2v10~j! jPR2\g,

v30~j!50,jPḡ, ~26!

where ḡ5$j:j250,j1P(2`,21#ø@1,̀ )%. Introduce a notation:ṽ30(j)—a particular solution
of an inhomogeneous Laplace equation~Poisson equation! satisfying the boundary conditions
v̂30(j)5v30(j)2 ṽ30(j)—a solution of a homogeneous Laplace equation satisfying the boun
conditions. One can see that we can choose the solutionṽ30(j) having the following asymptotics
for r→`:

ṽ30~j!5
p3

d2
4 5 2221c11r logr sinu1(

j 53

`
c1 j

4~ j 21!
r22 j sin j u, j2.0,

821r3 sinu1221c11r logr sinu2(
j 53

`
c1 j

4~ j 21!
r22 j sin j u, j2,0.

~27!

To find the asymptotics ofv̂30(j) we use Lemma 2. To match increasing at infinity terms
~24!, ~25! we choosev̂30(j) as follows:

v̂30~j!5a1Y1~j!1ā1Y1~j* !1a3Y3~j!. ~28!

One chooses coefficientsa1 ,ã1 ,a3 by a matching procedure. Finally, the asymptotics ofv30(j)
for r→` has a form:

v30~j!52ã1r sinu2
p3

2d2
4 c11r logr sinu1

p3

d2
4 (

j 53

`
c1 j

4~ j 21!
r22 j sinsu2, ~29!

(
j 51

`

„~a11ã1!c1 j1a3c3 j…r
2 j sin j u, j2.0,
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v30~j!5a3r3 sin 3u1
p3

8d2
4 r3 sinu1a1 sinu1

p3

2d2
4 c11r logr sinu

2
p3

d2
4 (

j 53

`
c1 j

4~ j 21!
r22 j sin j u1(

j 51

`

„~a11ã1!c1 j1a3c3 j…r
2 j sin j u, j2,0. ~30!

Making equal coefficients of termsr3 sin 3u, r sinu, r21 sinu, in ~24!, ~29! and also in~25!, ~30!
and substituting values of coefficientsc11, and c31 from Lemma 2, one obtains the followin
linear system fora1 ,ã1 ,a3 ,k40:

a352
p3

24d2
4 ,

2ã15
p3

4d1
2 d2Ad2

2 2d1
2

2
p2

4d2
2 gx

1 ,

a15
p2

4d2
2 gx

22
p3

8d2
4 ,

2
a11ã1

4
2

3a3

16
5

d2

p2 k401
p3

64d2
4 .

The system gives us the value ofk40:

k405
p4

16d2
2 S 3p

8d2
3 2

1

d2
~gx

11gx
2!1

p

d1
2 Ad2

2 2d1
2 D . ~31!

We assume thatd1.d2 . Hence,Ad2
2 2d1

2 is an imaginary number~we choose the main value o
the square root!; gx

1 ,gx
2 are real. Consequently,~31! gives us:

Jk405
p5

16d2
2 d1

2 Ad1
2 2d2

2
, ~32!

Rk405
p4

16d2
2 S 3p

8d2
3 2

1

d2
~gx

11gx
2! D . ~33!

To determinek41 we should match coefficient of terms of ordera3 log(a/a0) in ~3!, ~4! and~4!,
~5!. For this purpose we need only the first derivative of the Green function:

a23S log
a

a0
D 21

M31„7~p2/d2
2 2ka

2!1/2P1G6~x,0,k0!…

57
p

2d2
2 a10

~1!k20r sinu6
1

p
a10

~1!k41r
21 sinu. ~34!

In accordance with~9!, functionv31(j) satisfies the conditions of Lemma 2. To match increas
terms in~34!, one seeks the asymptotics ofv31(j) in a linear combination ofY1(j) andY1(j* ).
Due to symmetry in respect toj2 , it has a form:
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v31~j!5a~Y1~j!1Y1~j* !!55 2ar sinu22a(
j 51

`

c1 jr
2 j sin j u, j2.0,

ar sinu12a(
j 51

`

c1 jr
2 j sin j u, j2,0.

~35!

Making equal coefficients of termsr sinu ~and alsor21 sinu) in ~34! and ~35!, one obtains

a5
p3

8d2
4 ,

d2

p2 k4152
p3

16d2
4 ,

and, consequently,

k4152
p5

16d2
5 . ~36!

Finally, we result in the following asymptotics of the quasibound state~resonance! close to the
second thresholdk0

25p2d2
22:

ka
25k0

22k20
2 a422k20S k401k41 log

a

a0
Da62S k40

2 12k40k41 log
a

a0
1k41

2 S log
a

a0
D 2Da81o~a8!,

~37!

where coefficientsk20,k40,k41 are determined by~15!, ~32!, ~33!, and~36!, correspondingly.
Remark:In Ref. 5 the order of the real and imaginary parts of the main terms of the reson

asymptotics was obtained on a physical level of rigor.

III. TWO IDENTICAL WAVEGUIDES

Let us consider the case of two identical waveguides (d25d15d). In this situation the
described procedure gives the asymptotics of a bound state close to the threshold. Let us s
asymptotic expansion of (p2/d22ka

2)1/2 in the form~2! as earlier. We shall describe changes th
will take place in the procedure for the case in question. The asymptotic of the Green’s fun
and eigenfunctions are the same as earlier with (d25d15d). The derivatives of the Green’
functions are antisymmetric with respect toj2 . We also havegj

1
„(x1 ,x2),k…52gj

2
„(x1 ,

2x2),k…5gj„(x1 ,x2),k…52gj„(x1 ,2x2),k…, gx
15gx

25gx . Let a10
(1)5d/p. Thena10

(2) ,a10
(3) ,a20

(3)

are determined by~17!, ~19!, ~23!, correspondingly, withd25d.
For the first derivative of the Green’s function, we have

7 lim
k→p/d

~p2/d22k2!1/2P1G6~x,0,k!56
1

d
sinpx2 /d,

a21M1„7~p2/d22ka
2!1/2P1G6~x,0,ka!…56

p

d2 r sinu6
d

p2 k20r
21 sinu. ~38!

To match increasing at infinity terms in~38!, we choose asymptotics ofv10(j) for r→` as
follows:
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v10~j!52
p

d2 „Y1~j!1Y1~j* !…55
p

d2 r sinu1
2p

d2 (
j 51

`

c1 jr
2 j sin j u, j2.0,

2
p

d2 r sinu2
2p

d2 (
j 51

`

c1 jr
2 j sin j u, j2,0.

~39!

Making equal coefficients of terms of orderr21 sinu in ~38! and ~39!, one obtainsdk20/p2

5p/(2d2), that is,

k205
p3

2d3 . ~40!

The next step changes in the following way:

a22M2„7~p2/d22ka
2!1/2~P11P21P3!G6~x,0,ka!…

56
2

p3 k30r
21 sinu6

d

8p
k30r

23 sin 3u. ~41!

One obtains by the same way as earlier~for d1.d2),

v30~j!50. ~42!

We get from~41! and ~42!,

k3050. ~43!

Let us obtaink40. The relation~24!, ~25! is changed in the following way:

a23M30„7~p2/d22ka
2!1/2~P11P3!G6~x,0,ka!…

56
p3

24d4 r3 sin 3u7
p3

8d4 r3 sinu7S 2
p3

8d4 1gx

p2

2d2D r sinu7
p3

d4 r logr sinu

6S d

p2 k401
p3

32d4D r21 sinu6
p2

32d2 b01
~3!~k0!r21 sin 3u. ~44!

One has forṽ30(j),

ṽ30~j!5
p3

d4 5 2821r3 sinu2c11r logr sinu1(
j 53

`
c1 j

2~ j 21!
r22 j sin j u, j2.0,

821r3 sinu1c11r logr sinu2(
j 53

`
c1 j

2~ j 21!
r22 j sin j u, j2,0.

We choose the asymptotics ofv̂30(j) in the form
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v̂30~j!52
p3

24d4 ~Y3~j!1Y3~j* !!1S gx

p2

2d22
p3

8d4D ~Y1~j!1Y1~j* !!

5
p3

8d4 5
r3

3
sin 3u2S 4d2gx

p
21D r sinu22(

j 51

` S c3 j

3
1S 4d2gx

p
21D c1 j D r2 j sin j u,

j2.0,

2
r3

3
sin 3u1S 4d2gx

p
21D r sinu12(

j 51

` S c3 j

3
1S 4d2gx

p
21D c1 j D r2 j sin j u.

j2,0.

Making equal coefficients of terms of orderr21 sinu in ~44! and inv30(j)5 ṽ30(j)1 v̂30(j), one
obtains

d

p2 k401
p3

32d4 52
p3

4d4 S 2
1

16
1S gx

4d2

p
21DY4D ,

and, consequently,

k405
p4

4d3 S 2gx1
3p

16d2D . ~45!

Note thatk40 is real.
Let us determinek41,

a23S log
a

a0
D 21

M31„7~p2/d2
2 2ka

2!1/2P1G6~x,0,ka!…57
p3

4d4 r sinu6
d

p2 k41r
21 sinu.

~46!

One can choosev31(j) having the following asymptotics forr→`:

v31~j!5
p3

4d4 „Y1~j!1Y1~j* !…55 2
p3

4d4 r sinu2
p3

2d4 (
j 51

`

c1 jr
2 j sin j u, j2.0,

p3

4d4 r sinu1
p3

2d4 (
j 51

`

c1 jr
2 j sin j u, j2,0.

~47!

Making equal coefficients of terms of orderr21 sinu in ~46!, ~47!, one gets k41d/p2

52p3/(8d4). Hence,

k4152
p5

8d5 . ~48!

Finally, in the case of two identical waveguides, the asymptotics of an eigenvalue close
thresholdk0

25p2/d2 is given by formula~37! in which coefficientsk20,k40,k41 have the values
~40!, ~45!, ~48!, correspondingly.

Incorporating all obtained results one gets the following theorem.
Theorem: The asypmtotics ofka

2 close to the threshold is as follows:

ka
25k0

22k20
2 a422k20S k401k41 log

a

a0Da62S k40
2 12k40k41 log

a

a0
1k41

2 S log
a

a0
D 2Da81o~a8!,

~49!
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where

k0
25

p2

d2
2 ,

k205
p3

4d2
3 ,

k405
p4

16d2
2 S 3p

8d2
3 2

1

d2
~gx

11gx
2!1

p

d1
2 Ad2

2 2d1
2 D ,

k4152
p5

16d2
5 ,

for the cased1.d2 ,
and

k0
25

p2

d2 ,

k205
p3

2d3 ,

k415
p4

4d3 S 2gx1
3p

16d2D ,

k4152
p5

8d5 ,

for the case of two identical waveguides (d25d15d).

IV. DISCUSSION

The asymptotics of the quasibound state~resonance! near the thresholdp2/d2
2 is obtained.

One can see that analogous treatment with small modifications~and an analogous result! is for the
Nth threshold for arbitraryN.1 ~for N51 there is a bound state, the asymptotics of which w
obtained earlier!.8,9 Of course, the suggested scheme may be realized for the bound state,
gives us more detailed asymptotic expansion of the eigenvalue.

Note that in the case of two identical waveguides (d25d1), coefficients of the asymptotic
differ from that for different waveguides. Moreover, in this situation we obtain the asymptoti
the bound state~instead of the resonance! close top/d. The difference is not formal. One cann
obtain coefficients for the case of identical waveguides by a simple limiting procedure (d6→d)
from the formulas for different waveguides. From the point of view of physicists it is related
the fact that physical situations are essentially different. Namely, in the case of diff
waveguides we may have a situation when one waveguide is ‘‘open’’ and the second wav
is ‘‘closed’’ for a wave. Contrary, in the case of identical waveguides one has two ‘‘open’’~or two
‘‘closed’’ ! waveguides simultaneously.

Obtained results are in good correlation with estimates in Ref. 5. The advantage is th
have asymptotics, but the orders of real and imaginary parts of the resonance coincide with
estimates of Kunze. Our result can be generalized. The case of several windows can be con
by an analogous manner as in Ref. 8~for the bound state!. The approach is also applicable to th
problem of a resonator coupled with a waveguide through a small opening.
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Note that the investigation of resonances for a system of coupled waveguides is useful
problem of eigenvalues embedded in the continuous spectrum~see, for example, Refs. 13 and 7!.
This eigenvalue became a resonance when small perturbations destroy geometrical symm
the waveguide system.
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APPENDIX

Let us estimate„D1 k̂N
2 (a)…c̃a,N(x,k̂N(a)) for N51,2,3 to show the quality of the approx

mation of the eigenfunction. Here

c̃a,N„x,k̂N~a!…5k~ra21/2!~ ĉa,N
1

„x,k̂N~a!…1ĉa,N
2

„x,k̂N~a!…!1„12k~ra21/2!…ṽN~j,a!,

wherekPC`,

k~ t !5H 0, t<1,

1, t>2;

ĉ1,ĉ2 are continued by 0 intoR2. Consider

„D1 k̂N
2 ~a!…c̃a,N~x,k̂N~a!!

5„12k~ra21/2!…„D1 k̂N
2 ~a!…v̂N~j,a!1k~ra21/2!„D1 k̂N

2 ~a!…~ ĉa,N
1

„x,k̂N~a!…

1ĉa,N
2

„x,k̂N~a!…!2(
i 51

2

kxixi
~ra21/2!~ v̂N~j,a!2ĉa,N

1
„x,k̂N~a!…2ĉa,N

2
„x,k̂N~a!…!

2(
i 51

2

kxi
~ra21/2!~ v̂N~j,a!2ĉa,N

1
„x,k̂N~a!…2ĉa,N

2
„x,k̂N~a!…!xi

,

c̃a,N„x,k̂N~a!…uGa
50.

The first term in the right part has inL2(R2) a norm of orderO(a1/2); the second term is equal t
zero. As for the last two terms, one can make a transformation:

v̂N~j,a!2ĉa,N
1

„x,k̂N~a!…2ĉa,N
2

„x,k̂N~a!…5„v̂N~j,a!2MN~ ĉa,N
1

„x,k̂N~a!…1ĉa,N
2

„x,k̂N~a!…!…

1„MN~ ĉa,N
1

„x,k̂N~a!…2ĉa,N
1

„x,k̂N~a!…!…

1„MN~ ĉa,N
2

„x,k̂N~a!…2ĉa,N
2

„x,k̂N~a!…!….

Taking into account Lemma 1, one gets that the last two terms has inL2(R2) the norm of order
O(aN/2). Hence, the estimate of the residual is the following:

i„D1 k̂N
2 ~a!…c̃a,N„x,k̂N~a!…iR2<CaN/2.
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Note on coherent states and adiabatic connections,
curvatures

Kazuyuki Fujiia)

Department of Mathematical Sciences, Yokohama City University, Yokohama, 236-0027,
Japan

~Received 6 December 1999; accepted for publication 15 March 2000!

We give a possible generalization to the example in the paper of Zanardi and
Rasetti@Phys. Lett. A264, 94 ~1999!#. For this, explicit forms of adiabatic connec-
tion, curvature, etc., are given. We also discuss the possibility of another generali-
zation of their model. ©2000 American Institute of Physics.
@S0022-2488~00!05007-6#

This is a comment to the paper of Zanardi and Rasetti1 in which we aim to provide math-
ematical reinforcement to Ref. 1.

After the breakthrough by Shor2 there has been remarkable progress in quantum comput
~QC!. See Ref. 3.

On the other hand, gauge theories are widely recognized as the basis in quantum field th
Therefore it is very natural to intend to include gauge theories in QC¯ a construction of ‘‘gauge
theoretic’’ quantum computation or of ‘‘geometric’’ quantum computation in our terminolog

Zanardi and Rasetti proposed such and idea in Refs. 1 and 4 using a non-Abelian Berry
~quantum holonomy!, see also Refs. 5 and 6. In their model a Hamiltonian~including some
parameters! must be degenerated because an adiabatic connection is introduced usin
degeneracy.7

Zanardi and Rasetti gave a simple example to explain their idea. It is very interesting, b
calculation is not so easily followed by non experts.

We believe that this example will become important in the near future. Therefore we dea
it once more and give a possible generalization. For the generalized model, explicit for
adiabatic~Berry! connection, curvature, etc., are given.

It is not easy to predict the future of gauge theoretic quantum computation. However, it
arena worth challenging for mathematical physicists.

We start with mathematical preliminaries. LetH be a separable Hilbert space overC. For
mPN, we set

Stm~H![$V5~v1 ,...,vm!PH3¯3HuV†V51m%, ~1!

where 1m is a unit matrix inM (m,C). This is called a~universal! Stiefel manifold. Note that the
unitary groupU(m) acts on Stm(H) from the right:

Stm~H!3U~m!→Stm~H!:~V,a!°Va. ~2!

Next we define a~universal! Grassmann manifold

Grm~H![$XPM ~H!uX25X,X†5X and trX5m%, ~3!

whereM (H) denotes the space of all bounded linear operators onH. Then we have a projection

p:Stm~H!→Grm~H!, p~V![VV†, ~4!

a!Electronic mail: fujii@math.yokohama-cu.ac.jp
44060022-2488/2000/41(7)/4406/7/$17.00 © 2000 American Institute of Physics
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compatible with the action~2! @p(Va)5Va(Va)†5Vaa†V†5VV†5p(V)#.
Now the set

$U~m!,Stm~H!,p,Grm~H!% ~5!

is called a~universal! principal U(m) bundle, see Refs. 8 and 9.
Next let M be ann-dimensional differentiable manifold and the mapP:M→Grm(H) be

given. For thisP the pull-back bundle overM is defined as follows:8

~U~m!,E,pE ,M ![P* ~U~m!,Stm~H!,p,Grm~H!!,

E5$~x,V!PM3Stm~H!uP~x!5p~V!%,

pE :E→M , pE~~x,V!!5x,

U~m! U~m!

↓ ↓
E → Stm~H!

↓ ↓
M → Grm~H!. ~6!

For the~canonical! local section induced from that of~4!

f:U~open,M !→E, ~7!

we can writef(x)5(x,V(x)) on U, so the canonical one-formA ~gauge field! is defined as

A[V†dV on U, ~8!

whered is a differential form onU,M . This is a local form. From this we obtain a curvatu
form

F[dA1A∧A5dV†∧dV1V†dV∧V†dV. ~9!

Now if we define a mapP(x)5V(x)V(x)†, the curvature two-form of this~induced! bundle is
given byP dP∧dP, which is related to~9! by

P dP∧dP5V~dA1A∧A!V†. ~10!

The left-hand side of~10! is a global form.
We are very interested in the example in Ref. 1, so we give a possible generalization o

and study it in detail.
Let a(a†) be the annihilation~creation! operator of the harmonic oscillator. If we setN

[a†a ~: number operator!, then

@N,a†#5a†, @N,a#52a, @a,a†#51. ~11!

Let H be a Fock space generated bya anda†, and$un&unPNø$0%% be its basis. The actions o
a anda† on H are given by

aun&5Anun21&, a†un&5An11un11&, ~12!

whereu0& is a vacuum (au0&50).
For lPC the coherent stateul&PH is given by
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ul&5ela†2l̄au0&, ~13!

see Ref. 10. By the elementary Baker–Campbell–Hausdorff formula,10 the unitary operator in~13!
is decomposed into

ela†2l̄a5e2ulu2/2ela†
e2l̄a. ~14!

Next we assign

K1[ 1
2 ~a†!2, K2[ 1

2 a2, K3[ 1
2 ~a†a1 1

2!. ~15!

Then we have

@K3 ,K1#5K1 , @K3 ,K2#52K2 , @K1 ,K2#522K3 . ~16!

That is, the set$K1 ,K2 ,K3% gives a unitary representation of su(1,1) with spin 1/4.11 For m
PC the squeezed state~the coherent state of Perelomov’s type in our terminology12! um& is given
by

um&[emK12m̄K2u 1
4,0&, ~17!

whereu 1
4,0& is a vacuum (K2u 1

4,0&50). Now applying the disentangling formula11 to the unitary
operator in~17! we obtain

emK12m̄K25ezK1elog(12uzu2)K3e2 z̄K2, ~18!

wherez5m tanhumu/umu ~see also Ref. 12 for a further generalization!.
Under the above-mentioned preliminaries let us proceed to the main subject. LetH0 be a

Hamiltonian

H0[\vN~N21!¯~N2m11!, ~19!

for mPN ~the author does not know whether or not a Hamiltonian of this type is natura
quantum optics or quantum field theories. The casem52 is well-known in quantum optics, but a
a possibility we treat this Hamiltonian here!.

This has anm-fold degenerate vacuum because if we set

C[Vect$u0&,u1&,...,um21&%, ~20!

thenH0C50.
Now note that (u0&,u1&...,um21&)PStm(H) in ~1!. We consider a two-parameter isospect

family,

H (l,m)[U~l,m!H0U~l,m!†, ~21!

U~l,m![ela†2l̄aemK12m̄K2, ~22!

where (l,m)PC2. Since ~21! is isospectral we have no level crossing of eigenvalues for
parameters~adiabatic!!. In the following we focus our attention on them-fold degenerate vacuum

U[U(l,m) in ~22! is unitary, so

U~ u0&,u1&,...,um21&)5~Uu0&,Uu1&,...,Uum21&)PStm~H!, ~23!

US (
j 50

m21

u j &^ j u DU†PGrm~H!. ~24!
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Namely ~21! with ~22! gives a classifying map

P:C2→Grm~H!, P~l,m![U~l,m!S (
j 50

m21

u j &^ j u DU~l,m!† ~25!

in our terminology. From now on our target is the pull-back bundle~6! by the following map:

~U~m!,E,pE ,C2!5P* ~U~m!,Stm~H!,p,Grm~H!!,
~26!

E5$~~l,m!,U~l,m!~ u0&,u1&,...,um21&)b)u~l,m!PC2,bPU~m!%.

First of all let us calculate a canonical connection form~adiabatic connection! ~8! for ~26!. Setting
for simplicity

V~l,m!5U~l,m!~ u0&,u1&,...,um21&)[U~l,m!V0 , ~27!

the connection formA is

A5V~l,m!†dV~l,m!5V0
†U~l,m!†dU~l,m!V0 , ~28!

where

d5dl
]

]l
1dm

]

]m
1dl̄

]

]l̄
1dm̄

]

]m̄
.

To calculateU† dU we utilize ~14! and ~18!. Making use of

U[U~l,m!5ela†2l̄ae(m(a†)22m̄a2)/25e2ulu2/2ela†
e2l̄ae(m(a†)22m̄a2)/2 ~29!

or

5ela†2l̄aez(a†)2/2elog(12uzu2) (a†a1 1/2)/2e2 z̄a2/2, ~30!

wherez5m tanhumu/umu, we can calculateU21]lU andU21]mU. Before stating our calculation
we list some useful formulas:

]zS z
tanhuzu

uzu D5
1

2 S 12tanh2uzu1
tanhuzu

uzu D ,

]z log~12tanh2uzu!52
z̄ tanhuzu

uzu
,

]zS z̄
tanhuzu

uzu D5
z̄2

2uzu2 S 12tanh2uzu2
tanhuzu

uzu D .

Let us state our result.
Lemma 1: We have

U21]lU5
l̄

2
11coshumua†1

m̄ sinhumu
umu

a, ~31!
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U21]mU5
1

4 S 11
coshumusinhumu

umu D ~a†!21
1

2

m̄ sinh2umu
umu2 S a†a1

1

2D
1

1

4

m̄2

umu2 S 211
coshumusinhumu

umu Da2. ~32!

Compare~31! and ~32! with those of Ref. 1. Since the connectionA is anti-Hermitian (A †

52A), it can be written as

A5Al dl1Am dm2Al
† dl̄2Am

† dm̄, ~33!

so we have, fork5l,m,

Ak5V0
†U21]kUV05~^ i uU21]kUu j &!, 0< i , j <m21, ~34!

comparing~33! with ~28!.
Now it is easy to findAl andAm using Lemma 1 and~12!.
Proposition 2: For 0< i , j <m21 we have

Al5~@Al# i j !, @Al# i j 5
l̄

2
d i , j1Aj

m̄ sinhumu
umu

d i , j 211Ai coshumud i , j 11 , ~35!

Am5~@Am# i j !, @Am# i j 5~ 1
2 1 i !ad i , j1A~ j 21! j bd i , j 221A~ i 21!igd i , j 12 , ~36!

wherea, b, andg are, respectively,

g[
1

4 S 11
coshumusinhumu

umu D , a[
1

2

m̄ sinh2umu
umu2 , b[

m̄2

4umu2 S 211
coshumusinhumu

umu D . ~37!

A comment here is in order. By the diagonal parts of~35! and~36! we easily have the Berry
phase stated in Ref. 13.

Since we have obtained the adiabatic connection formA, let us calculate the curvature form
F in ~9!. A little calculation with~33! leads to

F5~]lAm2]mAl1@Al ,Am#!dl∧dm2~]lAl
†1]l̄Al1@Al ,Al

†# !dl∧dl̄

2~]lAm
† 1]m̄Al1@Al ,Am

† # !dl∧dm̄2~]mAl
†1]l̄Am1@Am ,Al

†# !dm∧dl̄

2~]mAm
† 1]m̄Am1@Am ,Am

† # !dm∧dm̄2~]l̄Am
† 2]m̄Al

†2@Al
† ,Am

† # !dl̄∧dm̄.

To calculate each term in~38! let us introduce some notations. We setE,F,K,LPM (m;C) such
that

E5~@E# i j !, F5E†, K5~@K# i j !, L5~@L# i j !,

where

@E# i j 5Aj d i , j 21 , @K# i j 5d i , jd j ,m21 , @L# i j 5d i , j~d j ,m221d j ,m21!. ~38!

Note that
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EK5~@EK# i j !, @EK# i j 5Am21d i ,m22d j ,m21 , KF5~EK!†. ~39!

Now we state our calculation.
Proposition 3:

F5H m
m̄2 coshumu

4umu2 S 211
coshumusinhumu

umu DEK

2m
m̄ sinhumu

4umu S 11
coshumusinhumu

umu DKFJ dl∧dm

2mKdl∧dl̄2H m
coshumu

4 S 11
coshumusinhumu

umu DEK

2m
m sinhumu

4umu S 211
coshumusinhumu

umu DKFJ dl∧dm̄

2H 2m
m̄ sinhumu

4umu S 211
coshumusinhumu

umu DEK

1m
coshumu

4 S 11
coshumusinhumu

umu DKFJ dm∧dl̄

2H m

2

coshumusinhumu
umu

K1
m~m21!

4

coshumusinhumu
umu

LJ dm∧dm̄

2H 2m
m sinhumu

4umu S 11
coshumusinhumu

umu DEK

1m
m2 coshumu

4umu2 S 211
coshumusinhumu

umu DKFJ dl̄∧dm̄. ~40!

This is our main result. We, in particular, consider the case ofm52. Since

E5S 1

0 D , F5S 0

1 D , K5S 0

1D , L5S 1

1D , EK5E, KF5F, ~41!

it is easy to see that the target ofF covers all of Lie algebrau(2). This means that the connectio
A is irreducible—the holonomy group ofA is just U(2). SeeRefs. 1, 4, and 8. However form
>3 the target ofF does not cover all ofu(m), soA is not irreducible.

Corollary 4: Whenm52, A is irreducible~Ref. 1!, while A is not irreducible form>3.

Now since we have obtained the connection formF, let us moreover calculateF 2 ~F k50 for
k>3 becomes dimC C252). A little calculation leads to

Corollary 5:

F 25H m2~m21!

4

coshumusinhumu
umu

L2
m2~m11!

2

coshumusinhumu
umu

KJ dl∧dm∧dl̄∧dm̄. ~42!

We have obtained only Abelian parts of Lie algebrau(m). We are now at a stage to calcula
several geometric quantities such as Chern class, Chern character, and Chern–Simons c~see
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Ref. 8! making use ofA ~Proposition 2!, F ~Proposition 3!, andF 2 ~Corollary 5!. However we
leave these calculations to the~young! readers because they are good exercises to learn
geometric method in mathematical physics.

We would like to close this paper by proposing a future subject. From Corollary 4
connection formA is not irreducible form>3. This is insufficient for ‘‘geometric’’ quantum
computation~Ref. 1!, so we must make a further generalization of our model. For example, fo
Hamiltonian~19! we would like to consider anm-parameter isospectral family:

H (l1 ,...,lm)[U~l1 ,...,lm!H0U~l1 ,...,lm!†, ~43!

U~l1 ,...,lm![P)
j 51

m

exp$~l j~a†! j2l̄ ja
j !/ j %, ~44!

where (l1 ,...,lm)PCm and P means path ordering. This model may be good at first si
However we meet a difficulty immediately. Since a disentangling formula such as~14! or ~18! is
not known as far as we know, we cannot calculate the connection formA from ~44!. As for
disentangling formulas see Ref. 12 or 14. It is an important subject to overcome this difficu

Note added. After this paper was submitted the following preprint appeared: J. Pachos a
Chountasis, ‘‘Optical holonomic quantum computer,’’ quant-ph/9912093. Similar calcula
were given in this paper. Moreover they gave different calculations based on coherent st
su~2! and su~1,1!. It could be possible to generalize su~2! and su~1,1! to su~N11! and su~N,1!. See
the following papers: K. Funahashi, T. Kashiwa, S. Sakoda, and K. Fujii, ‘‘Coherent states
integral, and semiclassical approximation,’’ J. Math. Phys.36, 3232 ~1995!; K. Funahashi, T.
Kashiwa, S. Sakoda, and K. Fujii, ‘‘Exactness in the Wentzel–Kramers–Brillouin approxim
for some homogeneous spaces,’’ J. Math. Phys.36, 4590~1995!.
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The Uq„sl n̂… analogue of the XXZ chain with a boundary
H. Furutsu and T. Kojima
Department of Mathematics, College of Science and Technology, Nihon University, 1-8,
Kanda-Surugadai, Chiyoda Tokyo 101-0062, Japan
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We study theUq(sln̂) analogue of theXXZ spin chain with a boundary magnetic
field h. We construct explicit bosonic formulas of the vacuum vector and the dual
vacuum vector with a boundary magnetic field. For an application of the explicit
formula of the vacuum vector, we derive the integral representation of the boundary
spontaneous magnetization. ©2000 American Institute of Physics.
@S0022-2488~00!02407-5#

I. INTRODUCTION

In the standard treatment of quantum integrable systems, one starts with a finite bo
impose periodic boundary conditions, in order to ensure integrability. Recently, there has
increasing interest in exploring other possible boundary conditions compatible with integra

For the free fermionic models, there have been obtained many explicit formulas of the
relation functions with nonperiodic boundary conditions. In this category, the work on the
dimensional Ising model by McCoy and Wu1 are among the earliest. They derived the spin–s
correlation functions with a boundary field. For an impenetrable Bose gas model, Kojima de
the ground state correlation functions2 and the time dependent correlation functions3 with Dirichlet
or Neumann conditions.

In this paper we are interested in the ‘‘non-free-fermion’’ model. For the non-free-ferm
model, Sklyanin4 began a systematic approach to open boundary problem, so-called open b
ary Bethe Ansatz. He formulated the transfer matrix to open boundary problem, and deriv
Bethe Ansatz equations. Jimboet al.5 united Sklyanin’s open boundary Bethe Ansatz and Ky
school’s method6—so-called representation theory approach to solvable models. They studie
XXZ model with a boundary magnetic fieldh, which is governed by the quantum affine symme
Uq(sl2̂). They constructed explicit bosonic formula of the vacuum vector with an arbitrary bo
ary magnetic field. They derived integral formulas of the boundary magnetization. Field the
ical extension were considered in Refs. 7 and 8. Ozaki9 studied theUq(sl3̂) analogue of theXXZ
chains with a boundary. He constructed explicit bosonic formulas of the vacuum vector fo
special boundary conditions.

In this paper we study theUq(sln̂) analogue of theXXZ chain with an arbitrary boundary
magnetic fieldh. Our results are new even forUq(sl3̂) case. The Hamiltonian of our model i
given by

HB5 (
k51

` H q (
a,b50
a.b

n21

eaa
(k11)ebb

(k)1q21 (
a,b50
a,b

n21

eaa
(k11)ebb

(k)2 (
a,b50
aÞb

n21

eab
(k11)eba

(k)J
1

12q2

2q H (
a50

L21

eaa
(1)2 (

a5M

n21

eaa
(1)J 1h (

a5L

M21

eaa
(1) , ~1!

whereh is a boundary magnetic field and 0<L<M<n21, 21,q,0. The Hamiltonian acts on
the semi-infinite tensor products ofCn. We construct explicit bosonic formulas of the vacuu
44130022-2488/2000/41(7)/4413/24/$17.00 © 2000 American Institute of Physics
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vector and the dual vacuum vector with a boundary magnetic field. Using bosonization o
vacuum, the dual vacuum and the vertex operators,11 we derive integral formulas of the one poin
correlation functions which give the boundary magnetization.

Now a few words about the organization of this paper. In Sec. II, we formulate our prob
In Sec. III, we construct explicit bosonic formulas of the vacuum vector and the dual vac
vector. In Sec. IV, we derive integral formulas of the one point correlation functions. In Appe
A we review the bosonizations of the Vertex operators.11 In Appendix B we review the genera
diagonal solution of the boundary Yang–Baxter equation.9

II. FORMULATION

The purpose of this section is to formulate our problem.

A. Notation

We fix a real number21,q,0 and an integernPN2$0,1%. In the sequel, we denote (qk

2q2k)/(q2q21) by @k#. Let P be a free Abelian group on lettersL1 ,...,Ln21 , d:

P5 % i 50
n21ZL i % Zd.

We call P the weight lattice. Leth1 ,...,hn21 ,d be an ordered basis ofP* 5Hom(P,Z) dual to
L1 ,...,Ln21 , d:

^L i ,hj&5d i j , ^L i ,d&50, ^d,hj&50, ^d,d&51.

Let us set the simple roots as

a052Ln2112L02L11d, a j52L j 2112L j2L j 11 ~ j 51,...,n21!.

The projection to classical lattice is given by

L̄ i5L i2L0 , d̄50.

The invariant bilinear form on (•u•):P3P→Z by

~a i ua j !52d i , j 2112d i , j2d i , j 11 , ~dud!50.

The quantum affine algebrasUq(sln̂) are algebras with 1 overC, defined by the generator
ei , f i ,t i

615q6hi,qd,(i 50,...,n21) through the following defining relations:

t i t j5t j t i , t iej t i
215q^a j ,hi &ej , t i f j t i

215q2^a j ,hi & f j ,

@ei , f j #5d i , j

t i2t i
21

q2q21 ,

(
k50

b

~21!kFb

kGei
kejei

b2k50, (
k50

b

~21!kFb

kG f i
kf j f i

b2k50,

where we have set

b512^a i ,hj&, FbkG5 @b#!
@k#! @b2k#! , @k#! 5@k#@k21#¯ .1

Let us setUq8(sln̂) be the subalgebra ofUq(sln̂) generated byt i ,ei , f i ,(i 50,...,n21). Let us set
Uq(sln) be the subalgebra ofUq(sln̂) generated byt i , ei , f i , (i 51,...,n21). We denote the
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irreducible highest weightUq-module with highest weightl by V(l). Let V be a finite dimen-
sional representation ofUq(sln). The evalutation moduleVz5V^ C@z,z21# in the homogeneous
picture is the followingUq(sln̂)-module defined by

e0~v ^ zm!5~ f 1v ! ^ zm11, ej~v ^ zm!5~ejv ! ^ zm, ~ j 51,...,n!,

f 0~v ^ zm!5~e1v ! ^ zm21, f j~v ^ zm!5~ f jv ! ^ zm, ~ j 51,...,n!,

t05t1
21 , t1~v ^ zm!5~ t1v ! ^ zm, d5z

d

dz
.

B. Solvable model

Fix the numberi P$0,1,...,n21%. Let V5Cv0% Cv1%¯% Cvn21 be a basic representation o
Uq(sln). Let PPEnd(V^ V) be the transpositionP(a^ b)5b^ a. Let us set the notation
(z;p)`5)k50

` (12pkz). Let the R-matrix R( i )(z1 /z2)PEnd(Vz1
^ Vz2

) be an intertwiner of

Uq(sln̂) in the homogeneous picture,

PR( i )~z1 /z2!: Vz1
^ Vz2

→Vz2
^ Vz1

.

Fixing the normalization constant, theR-matrix R( i )(z) is given as follows:

R( i )~z!vk1
^ vk2

5 (
j 1 , j 250

n21

v j 1
^ v j 2

R( i )~z! j 1 , j 2

k1 ,k2, ~2!

where the nonzero entries are

R( i )~z! j 1 , j 2

k1 ,k25
1

k ( i )~z!
35

1, j 15 j 25k15k2 ,

b~z!, j 15k1Þ j 25k2 ,

c~z!, j 15k2, j 25k1 ,

zc~z!, j 15k2. j 25k1 .

~3!

Here we have set

k ( i )~z!5zd i ,0
~q2z;q2n!`~q2nz21;q2n!`

~q2z21;q2n!`~q2nz;q2n!`
~4!

and

b~z!5
~12z!q

12q2z
, c~z!5

~12q2!

12q2z
. ~5!

The R-matrix R( i )(z) satisfies the Yang–Baxter equation. Let us fix the integer number 0<L
<M<n21 andr PR. Let us set the reflectionK-matrix K ( i )(z)PEnd(Vz),

9,10 by
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K ( i )~z!5
w ( i )~z!

w ( i )~1/z! 1
k0~z!

k0~1/z!

k1~z!

k1~1/z!

¯

kn22~z!

kn22~1/z!

kn21~z!

kn21~1/z!

2 , ~6!

where we have set

k0~z!5¯5kL21~z!5z,

kL~z!5¯5kM21~z!512rz,

kM~z!5¯5kn22~z!5kn21~z!51.

The scalar functionsw ( i )(z) are given by~34!, ~37!, ~38!, ~39!, ~54!, ~55!, and~56!. The reflection
matrix K ( i )(z) satisfies the boundary Yang–Baxter equation:

K2
( i )~z2!R21

( i )~z1z2!K1
( i )~z1!R12

( i )~z1 /z2!5R21
( i )~z1 /z2!K1

( i )~z1!R12
( i )~z1z2!K2

( i )~z2!. ~7!

Note. de Vega and Ruiz10 found the special diagonal solutions for the case L50, 1<M<n
21 and0<L5M<n21. Ozaki9 found the general diagonal solutions as the same argument
in Ref. 10. See Appendix B.

Graphically, an elements of theR-matrix R( i )(z1 /z2) j 1 , j 2

k1 ,k2 is the picture described in Fig. 1. A

element of the reflectionK-matrix K ( i )(z) j
k is the picture described in Fig. 2. The bounda

Yang–Baxter Eq.~7! is described by the Fig. 3.
The type-I vertex operatorFl

m,V(z) is an intertwining operator ofUq(sln̂) defined by

Fl
m,V~z!: V~l!→V~m! ^̂ Vz . ~8!

The type-I dual vertex operator is an intertwining operator ofUq(sln̂) defined by

Fm,V
l ~z!: V~m! ^ Vz→V̂~l!. ~9!

FIG. 1. Boltzmann weight.
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Let us set the components of the vertex operatorsFl, j
m,V(z) as follows:

Fl
m,V~z!uu&5 (

j 50

n21

Fl, j
m,V~z!uu& ^ v j for uu&PV~l!.

Let us set the components of the vertex operatorsFm,V, j
l (z) as follows:

Fm,V
l ~z!~ uu& ^ v j )5Fm,V, j

l ~z!uu& for uu&PV~m!.

Only FV(L j 11)
V(L j ),V (z), FV(L j ),V

V(L j 11)(z) are nontrivial. We take the following normalizations:

FV(L i 11)
V(L i ),V ~z!uL i 11&5uL i& ^ v i1¯ ,

FV(L i ),V
V(L i 11)

~z!uL i& ^ v i5uL i 11&1¯ ,

whereuL i& is the highest vector ofV(L i). Let us consider the product of the vertex operators.
us fix the following notation:

„1…FV(L i 21)
V(L i 22),V

~z1!„2…FV(L i )
V(L i 21),V

~z2!5 (
j 1 , j 250

n21

FV(L i 21), j 1

V(L i 22),V
~z1!FV(L i ), j 2

V(L i 21),V
~z2! ^ v j 1

^ v j 2
.

The vertex operators satisfy

R( i )~z1 /z2!„1…FV(L i 21)
V(L i 22),V

~z1!„2…FV(L i )
V(L i 21),V

~z2!5 „2…FV(L i 21)
V(L i 22),V

~z2!„1…FV(L i )
V(L i 21),V

~z1!. ~10!

FIG. 2. Boundary Boltzmann weight.

FIG. 3. Boundary Yang–Baxter equation.
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In the sequel, we use the abbreviations

F j
( i ,i 11)~z!5FV(L i 11), j

V(L i ),V ~z!, F j*
( i 11,i )~z!5FV(L i ),V, j

V(L i 11)
~z!.

Graphically, the vertex operator is the picture described in Fig. 4. The dual vertex operator
picture described in Fig. 5.

We define the normalized transfer matrix by

TB
( i )~z!5gn(

j 50

n21

F j*
( i ,i 21)~z21!K ( i )~z! j

jF j
( i 21,i )~z!, ~11!

where we have used

gn5
~q2;q2n!`

~q2n;q2n!`
.

Graphically, the transfer matrixTB
( i )(z) in the semi-infinite chain, is the picture in Fig. 6.

describes a semi-infinite two-dimensional lattice, with alternating spectral parameter. The
malized HamiltonianHB in ~1! is related to the transfer matrixTB

( i )(z) as followings:

S d

dz
TB

( i )D ~1!5
2q

12q2 HB1const, ~12!

where we set

h5
12q2

2q

r 11

r 21
. ~13!

Here the right-hand sideHB acts on the spaceH ( i ), where H ( i ) is the span of vectorsup&
5 ^ k51

` vp(k) , called paths, labeled by mapsp:Z>1→Z/nZ satisfying the asymptotic boundar
condition

p~k!5k1 i P$0,1,2,...,n21%5Z/nZ for k@1.

We have identified the highest weight moduleV(L i) and the path spaceH ( i ), following the
strategy proposed in Ref. 6. In order to diagonalize the HamiltonianHB in ~1!, we diagonalize the
transfer matrixTB

( i )(z). Using the boundary Yang–Baxter equations, we have

@TB
( i )~z!,TB

( i )~z8!#50, TB
( i )~1!5 id, TB

( i )~z!TB
( i )~z21!5 id.

This commuting relation of the transfer matrix asserts the integrability of this problem.

FIG. 4. Vertex operator.

FIG. 5. Dual vertex operator.
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III. VACUUM VECTORS

The purpose of this section is to construct the explicit bosonic formulas of the vacuum v
u i &B such that

TB
( i )~z!u i &B5u i &B ~ i 50,...,n21!, ~14!

which is realized as

u i &B5eFiu i &,

whereu i & is the highest weight vector ofV(L i), andFi is a quadratic in the boson operators.
Multiplying the vertex operatorF j

( i 21,i )(z21) from the left, and using the inversion relatio

gnF j
( i 21,i )~z!F j*

( i ,i 21)~z!5 id, gn5
~q2;q2n!`

~q2n;q2n!`
,

we know the eigenvalue problem~14! is equivalent to

K ( i )~z! j
jF j

( i 21,i )~z!u i &B5F j
( i 21,i )~z21!u i &B . ~15!

We construct the dual vacuum vectorsB^ i u such that

B^ i uTB
( i )~z!5B^ i u, ~ i 50,...,n21!, ~16!

which is realized as

B^ i u5^ i ueGi,

where^ i u is the lowest weight vector of the restricted dual moduleV* (L i), andGi is a quadratic
in the boson operators. As the same argument as the vacuum vectors, we know the eig
problem~16! is equivalent to

K ( i )~z! j
j
B^ i uF j*

( i ,i 21)~z21!5B^ i uF j*
( i ,i 21)~z!. ~17!

The scalar factor of the refrection matrixw ( i )(z) are given by~34!, ~37!, ~38!, ~39!, ~54!, ~55!, and
~56!.

Note. Ozaki9 constructed the vacuum vectoru0&B for Uq(sl3̂), V(L0), (a) L5M52 or

(b) L50, M52 cases. Our results are new for Uq(sl3̂)-case.

FIG. 6. Transfer matrix.
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A. Vacuum

Let us consider the vacuum vectoru i &B . Since the total spin is conserved, it should be a lin
combination of the states created by the oscillatorsas(2k) over the highest weight vectoru i &. We
make the ansatz that it has the following form:

u i &B5eFiu i &, ~18!

where

Fi5 (
s,t51

n21

(
k51

`

as,t~k!as~2k!at~2k!1 (
s51

n21

(
k51

`

bs
( i )~k!as~2k!. ~19!

The operatoreFi has the effect of a Bogoliubov transformation,

e2Fiaj~k!eFi5aj~k!1 (
s,t51

n21

as,t~k!S @~aj uas!k#@k#

k
at~2k!1~s↔t ! D

1 (
s51

n21

bs
( i )~k!

@~aj uas!k#@k#

k
.

Using the bosonic formulas of the vertex operators, we have the (n21)th component of Eq.~15!
as follows:

w ( i 11)~z!z~n2 i 21!/n 1(L̄n21uL̄ i 11)eP(z)qQ(z)eFi 11u i 11&5~z↔z21!. ~20!

Comparing the bosonic parts of the both sides, we have

as,n21~k!52
1

2

@sk#k

@k#2@nk#
q(2n12)k ~1<s<n21!.

Comparing the bosonic part of thej th component of Eq.~15!, we have

as,t~k!5
2kq2(n11)k

2@k#
3I s,t~k!. ~21!

Here the matrix (I s,t(k))1<s,t<n21 is the inverse matrix of the quantumA-type Cartan matrix
(@(asuat)k#)1<s,t<n21 :

S @2k# @2k# 0 ¯ 0 0

@2k# @2k# @2k# 0 ¯ 0

0 @2k# @2k# @2k# ¯ 0

¯ ¯ ¯ ¯ ¯ ¯

0 ¯ 0 @2k# @2k# @2k#

0 0 ¯ 0 @2k# @2k#

D . ~22!

Explict formula of the matrix elements are given by

I s,t~k!5
@sk#@~n2t !k#

@k#2@nk#
5I t,s~k! ~1<s<t<n21!. ~23!

Using the explicit formulas ofas,t(k), we have
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e2Fiaj~k!eF j5aj~k!2q2(n11)kaj~2k!1 (
s51

n21

bs
( i )~k!

@~aj uas!k#@k#

k
. ~24!

We have the simple formulas of the action of the basic operators to the vacuum vectors:

eQ(z)u i &B5h( i )~z!eP(1/z)u i &B , ~25!

eSj
2(w)u i &B5gj

( i )~w!eRj
2(q2(n11)/w)u i &B ~1< j <n21!, ~26!

where

h( i )~z!5expS 2
1

2 (
k51

`
@~n21!k#

@nk#k
qkz22k2 (

k51

`
@k#

k
bn21

( i ) ~k!q2(2n11)k/2z2kD ~27!

and

gj
( i )~w!5expS 2

1

2 (
k51

`
@2k#q(2n13)k

k@k#
w22k1 (

k51

`

(
s51

n21

bs
( i )~k!

@~asuaj !k#

k
qk/2w2kD . ~28!

The (n21)th component of Eq.~15! reduces to

w ( i )~z!5zd i ,021h( i )~z21! ~0< i<n21!. ~29!

When we find the functionsgj
( i )(w), (1< j <n21), we can determine bothb j

( i )(k), (1< j <n
21), andh( i )(z).

First we consider the caseu0&B , and 0<L,M<n21. We show the following pair of
gj

(0)(qn11w) give the vacuum vector:

gj
(0)~qn11w!5H ~121/w2!~12q2n12M2L/~rw !!, j 5L

~121/w2!~12qn2Mr /w!, j 5M

~121/w2!, j ÞL,M .

~30!

The (n22)th component of the Eq.~15! reduces to

R dwn21

2p iwn21

z21kn22~z!wn21gn21
(0) ~qn11wn21!

~12qwn21 /z!~12qz/wn21!~12q/~zwn21!!

3eP(z)1P(1/z)1Rn21
2 (qn11wn21)1Rn21

2 (qn11/wn21)u0&B5~z↔z21!,

where the contour encirclesw50, qz61 but notq21z61. Because the bosonic part of this equati
is invariant under the change of variablewn21→wn21

21 andz→z21, this equation reduces to th
following integrand relation:

gn22
(0) ~qn11w!

gn22
(0) ~qn11/w!

52w22
kn22~z!/z~12qz/w!2kn22~1/z!z~12q/~zw!!

kn22~z!/z~12qzw!2kn22~1/z!z~12qw/z!
.

Therefore we have

gn22
(0) ~qn11w!5H 121/w2 for kn22~z!51

~121/w2!~12rq/w! for kn22~z!512rz.

The (n2k)th component of Eq.~15! reduces to
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R dwn21

2p iwn21
¯ R dwn2k11

2p iwn2k11
wn2k11gn21

(0) ~qn11wn21!¯gn2k11
(0) ~qn11wn2k11!

3z21kn2k~z!
~12qzwn21!~12qwn21wn22!¯~12qwn2k12wn2k11!

D~z,wn21!D~wn21 ,wn22!¯D~wn2k12 ,wn2k11!

3eP(z)1P(1/z)eRn21
2 (qn11wn21)1Rn21

2 (qn11/wn21)1¯1Rn2k11
2 (qn11wn2k11)1Rn2k11

2 (qn11/wn2k11)u0&B

5~z↔z21!,

where we have set

D~w1 ,w2!5~12qw1 /w2!~12qw2 /w1!~12qw1w2!~12q/~w1w2!!.

Here the contour of the integralr dwj /2p iw j encircles 0 andqwj 11
61 but notq21wj 11

61 (wn5z).
Because the bosonic part of this equation and the functionD(wj ,wj 11) are invariant under the
change of variableswj→wj

21 and z→z21, this equation reduces to the following integra
relations:

gj
(0)~qn11w!

gj
(0)~qn11/w!

55
2w22, j ÞL,M ,

2w22
~12q2n12M2L/~rw !!

~12q2n12M2Lw/r !
, j 5L,

2w22
~12qn2Mr /w!

~12qn2Mrw !
, j 5M .

Therefore we have the relation~30!.
As the same arguments as the above, we can constructgj

(0)(qn11w) for the case 0<L5M
<n21. We have

gj
(0)~qn11w!5H 121/w2, j ÞL,

121/w4, j 5L.
~31!

Now we have solved the problem foru0&B case. The coefficients of the bosonic operators are g
by ~21! and

b j
(0)~k!5~q(n13/2)k2q(n11/2)k!uk(

s51

n21

Î j ,s~k!

1H 2 Î j ,L~k!q(2M2L11/2)kr 2k2 Î j ,M~k!q(2n2M11/2)kr k ~0<L,M<n21!

22~21!k/2ukÎ j ,L~k!q(n11/2)k ~0<L5M<n21!.
~32!

Here we have used the symmetric matrixÎ s,t(k) defined by

Î s,t~k!5H 0, ~st50!,

I s,t~k! ~1<s,t<n21!,
~33!

where we have used the inverse matrix of theA-type Cartan matrixI s,t(k) ~23!. We have used

uk5H 1 for k5even

0 for k5odd
.

Using the explicit formulas ofbn21
(0) (k), we have the scalar factor of the refrection matrix:
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w (0)~z!5
~q2n12z2;q4n!`

~q4nz2;q4n!`
3H ~rq2nz;q2n!`~r 21q2Mz;q2n!`

~rq2n22Mz;q2n!`~r 21q2M22Lz;q2n!`
~0<L,M<n21!,

~2q2(n1L)z2;q4n!`

~2q2(n2L)z2;q4n!`
~0<L5M<n21!.

~34!

As the same arguments as the above, we can constructu i &B (1< i<n21). For u i &B case, the
integrand functions satisfy the following relations:

gj
( i )~qn11w!

gj
( i )~qn11/w!

5w2d i , j
gj

(0)~qn11w!

gj
(0)~qn11/w!

.

We have

gj
(L)~qn11w!5H ~121/w2!

~12rqn22M1L/w!
, j 5L

~121/w2!~12qn2Mr /w!, j 5M

~121/w2!, j ÞL,M

S 1< i<n21
i 5L

0<L,M<n21
D ,

gj
(M )~qn11w!5H ~121/w2!~12q2n12M2L/~rw !!, j 5L

~121/w2!

~12qM2n/~rw !!
, j 5M

~121/w2!, j ÞL,M

S 1< i<n21
i 5M

0<L,M<n21
D ,

gj
( i )~qn11w!55

~121/w2!, j Þ i ,L,M

~121/w2!~12q2n12M2L/~rw !!, j 5L

~121/w2!~12qn2Mr /w!, j 5M

~121/w2!

~111/w2!
, j 5 i

S 1< i<n21
iÞL,M

0<L,M<n21
D ,

and

gj
( i )~qn11w!5H ~121/w4! j 5L

~121/w2! j Þ i ,L

~121/w2!

~111/w2!
j 5 i

S 1< i<n21
iÞL,0<L5M<n21D ,

gj
( i )~qn11w!5~121/w2! S 0< i<n21

0<L5M5 i<n21D .

The coefficients of the bosonic operators are given by
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b j
( i )~k!5~q(n13/2)k2q(n11/2)k!uk(

s51

n21

Î j ,s~k!

15
Î j ,L~k!q(2n22M1L11/2)kr k2 Î j ,M~k!q(2n2M11/2)kr k ~ i 5L !

2 Î j ,L~k!q(2M2L11/2)kr 2k1 Î j ,M~k!q(M11/2)kr 2k ~ i 5M !

2 Î j ,L~k!q(2M2L11/2)kr 2k2 Î j ,M~k!q(2n2M11/2)kr k

12~21!k/2ukÎ j ,i~k!q(n11/2)k ~ iÞL,M !

S 1< i<n21
0<L,M<n21D , ~35!

and

b j
( i )~k!5~q(n13/2)k2q(n11/2)k!uk(

s51

n21

Î j ,s~k!12~21!k/2ukq
(n11/2)k~2 Î j ,L~k!

1 Î j ,i~k!! S 1< i<n21
0<L5M<n21D , ~36!

where we have used the matrixÎ s,t(k) defined in~33!. The scalar factor of the refrection matrix
given by

w ( i )~z!5z21
~q2n12z2;q4n!`

~q4nz2;q4n!`
3H ~q2nrz;q2n!`

~q2L22M12nrz;q2n!`
~ i 5L !

~r 21z;q2n!`

~q2M22Lr 21z;q2n!`
~ i 5M !

S 1< i<n21
0<L,M<n21D ,

~37!

w ( i )~z!5z21
~q2n12z2;q4n!`

~q4nz2;q4n!`

~q2nrz;q2n!`~q2Mr 21z;q2n!`

~q2n22Mrz;q2n!`~q2M22Lr 21z;q2n!`

3
~2q2n22iz2;q4n!`

~2q2n12iz2;q4n!`
S 1< i<n21,iÞL,M

0<L,M<n21 D , ~38!

and

w ( i )~z!5z21
~q2n12z2;q4n!`

~q4nz2;q4n!`
3

~2q2(n1L)z2;q4n!`~2q2(n2 i )z2;q4n!`

~2q2(n2L)z2;q4n!`~2q2(n1 i )z2;q4n!`
, S 1< i<n21

0<L5M<n21D .

~39!

Let us consider the action of type-II vertex operators. Using the bosonic expression of the v
u i &B , we have

Cn21* ( i 11,i )~z!u i &B5z2(d i ,021)
w ( i )~q21z21!

w ( i )~q21z!
Cn21* ( i 11,i )~z21!u i &B .

For L50<M<n21, Doikou and Nepomechie13 derived the boundaryS-matrix by the Bethe
Ansatz method. Their result is expressed by theq-gamma function. By changing variables

z1/n5~21!1/n~q2!A21l/n, r 5~q2!j,

their results coincide to ours.
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B. Dual vacuum

Let us consider the dual vacuum vectorB^ i u. As the same arguments as the previous sect
we construct the bosonic formulas for the dual vacuum vectors. We make the ansatz that th
vacuum has the following form:

B^ i u5^ i ueGi, ~40!

where

Gi5 (
s,t51

n21

(
k51

`

gs,t~k!as~k!at~k!1 (
s51

n21

(
k51

`

ds
( i )~k!as~k!. ~41!

Using the bosonic formulas of the vertex operators, and comparing the both sides of the Eq~17!,
we have

gs,t~k!5
2kq22k

2@k#
I s,t~k!, ~42!

where we have used the element of the matrix~23!. Using the explicit formulas ofgs,t(k), we
have

eGial~2k!e2Gi5al~2k!2q22kal~k!1 (
s51

n21

ds
( i )~k!

@~asual !k#@k#

k
. ~43!

We have the simple formulas of the action of the basic operators to the dual vacuum vect

B^ i ueP* (z)5h* ( i )~z!B^ i ueQ* (1/z), ~44!

B^ i ueSj
2(w)5gj*

( i )~w!B^ i ueRj
2(q2/w) ~1< j <n21!, ~45!

where

h* ( i )~z!5expS 2
1

2 (
k51

`
@~n21!k#

@nk#k
qkz2k1 (

k51

`
@k#

k
d1

( i )~k!q3k/2zkD ~46!

and

gj*
( i )~w!5expS 2

1

2 (
k51

`
@2k#

@k#k
q2kw2k2 (

k51

`

(
s51

n21

ds
( i )~k!

@~aj uas!k#

k
qk/2wkD . ~47!

The 0th component of the Eq.~17! reduces to

w ( i )~z!5k0~z!21h* ( i )~z! ~0< i<n21!. ~48!

Let us consider the caseB^0u. As the same arguments as the previous section, the integ
relations reduce to the following relations:

gj*
(0)~qw!

gj*
(0)~q/w!

55
2w2, j ÞL,M

2
~12qLrw !

~12qLr /w!
, j 5L ~0<L,M<n21! .

2
~12qM22Lw/r !

~12qM22L/~rw !!
, j 5M
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Therefore we have

gj*
(0)~qw!55

~12w2!, j ÞL,M

~12w2!

~12q2Lw/r !
, j 5L ~0<L,M<n21!.

~12w2!

~12q2L2Mrw !
, j 5M

As the same arguments we have

gj*
(0)~qw!5H ~12w2!, j ÞL

~12w2!

~11w2!
, j 5L ~0<L5M<n21!.

Therefore the coefficients of the bosonic operators are given by~42! and

d j
(0)~k!52~q2k/22q23k/2!uk(

s51

n21

Î j ,s~k!

1H 2q(2L23/2)kr 2kÎ j ,L~k!2q(2L2M23/2)kr kÎ j ,M~k! ~0<L,M<n21!

22~21!k/2q23k/2ukÎ j ,L~k! ~0<L5M<n21!.
~49!

For the other boundary conditionsB^ i u, (1< i<n21), the integrand relations reduce to the fo
lowing relation:

gj*
( i )~qw!

gj*
( i )~q/w!

5w2d j ,i
gj*

(0)~qw!

gj*
(0)~q/w!

. ~50!

Therefore we have

gj*
( i )~qw!5H ~12w2!, j ÞL,M

~12w2!~12qLrw !, j 5L

~12w2!

~12q2L2Mrw !
, j 5M

S 1< i<n21, i 5L
0<L,M<n21 D ,

gj*
( i )~qw!5H ~12w2!, j ÞL,M

~12w2!

~12q2Lw/r !
, j 5L

~12w2!~12qM22Lw/r !, j 5M

S 1< i<n21, i 5M
0<L,M<n21 D ,

gj*
( i )~qw!55

~12w2!, j ÞL,M ,i

~12w2!~11w2!, j 5 i

~12w2!

~12q2Lw/r !
, j 5L

~12w2!

~12q2L2Mrw !
, j 5M

S 1< i<n21, iÞL,M
0<L,M<n21 D .

and
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gj*
( i )~qw!5H ~12w2!, j ÞL,i

~12w2!~11w2!, j 5 i

~12w2!

~11w2!
, j 5L

S 1< i<n21, iÞL
0<L5M<n21 D ,

gj*
( i )~qw!5~12w2! S 0< i<n21

0<L5M5 i<n21D .

Therefore the coefficients of the bosonic operators are given by~42! and

d j
( i )~k!52~q2k/22q23k/2!uk(

s51

n21

Î j ,s~k!

15
q(L23/2)kr kÎ j ,L~k!2q(2L2M23/2)kr kÎ j ,M~k!, i 5L

2q(2L23/2)kr 2kÎ j ,L~k!1q(M22L23/2)kr 2kÎ j ,M~k!, i 5M

2q(2L23/2)kr 2kÎ j ,L~k!2q(2L2M23/2)kr kÎ j ,M~k!

12~21!k/2q23k/2ukÎ j ,i~k!, iÞL,M

S 1< i<n21
0<L,M<n21D

~51!

and

d j
( i )~k!52~q2k/22q23k/2!uk(

s51

n21

Î j ,s~k!12~21!k/2q23k/2uk~ Î j ,i~k!

2 Î j ,L~k!! S 1< i<n21
0<L5M<n21D . ~52!

The scalar factors of the refrection matrixw ( i )(z) are given by

w ( i )~z!5
1

k0~z!

~q2n12z2;q4n!`

~q4nz2;q4n!`
~0<L5M5 i<n21!, ~53!

w (0)~z!5
1

k0~z!

~q2n12z2;q4n!`

~q4nz2;q4n!`

3H ~rq2Lz;q2n!`~~r 21z;q2n!`!12dL,0

~rq2n22M12Lz;q2n!`~~r 21q2n22Lz;q2n!`!12dL,0
~0<L,M<n21!,

~~2q2Lz2;q4n!`!12dL,0

~~2q4n22Lz2;q4n!`!12d l ,0
~0<L5M<n21!.

~54!
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w ( i )~z!5
1

k0~z!

~q2n12z2;q4n!`

~q4nz2;q4n!`

3

¦

~rq2nz;q2n!`

~rq2n22M12Lz;q2n!`

~1<L5 i ,M<n21!,

~r 21q2n22Lz;q2n!`~~r 21z;q2n!`!12dL,0

~r 21q2M22Lz;q2n!`~~r 21q2n22Lz;q2n!`!12dL,0
~0<L,M5 i<n21!,

~2q4n22iz2;q4n!`~rq2Lz;q2n!`~~r 21z;q2n!`!12dL,0

~2q2iz2;q4n!`~rq2n22M12Lz;q2n!`~~r 21q2n22Lz;q2n!`!12dL,0
~0<L,M<n21,iÞL,M !,

~2q4n22iz2;q4n!`~~2q2Lz2;q4n!`!12dL,0

~2q2iz2;q4n!`~~2q4n22Lz2;q4n!`!12d l ,0
~0<L5M<n21,iÞL !.

~55!

IV. BOUNDARY SPONTANEOUS MAGNETIZATION

In the preceding section we have constructed the bosonic formulas of the vacuum and th
vacuum. In this section we consider an application of these bosonic formulas. We have
structed both vacuum and dual vacuum for the same transfer matrix, in the following case

~1! L i , ~0< i<n21!, 0<L5M5 i<n21,

~2! L i , ~0< i<n22!, 0<L5 i ,M<n21,

~3! L i , ~1< i<n21!, 0<L,M5 i<n21.

Therefore we can derive the vacuum expectation value for the above cases.
Let L be a linear opertor on the semi-infinite tensor product of then-dimensional vector spac

¯^ V^¯^ V. The corresponding local operatorL acting on our space of statesV(L i) can be
defined in terms of the type-I vertex operators, in exactly the same way as in the bulk th6

Explicitly, if Ej ,k(m) is the spin operator at them-site:

Ej ,k~m!5¯^ id ^ Ej ,k^ id ^¯^ id, ~56!

the corresponding local operatorEj ,k
( i ) (m) is given by

Ej ,k
( i ) ~m!5gn

m (
j 1¯ j m2150

n21

F j 1
* ( i ,i 21)~1!¯F j m21

* ( i 2m12,i 2m11)~1!

3F j*
( i 2m11,i 2m)~1!Fk

( i 2m,i 2m11)~1!F j m21

( i 2m11,i 2m12)~1!¯F j 1

( i 21,i )~1!, ~57!

where we have used

gn5
~q2;q2n!`

~q2n;q2n!`
.

Therefore the boundary magnetization is given by

(
j 50

n21

v j Pj
( i )~1!, ~58!

wherev is an nth primitive root of 1, and we have used the one-point functionPj
( i )(z) with a

spectral parameterz, defined by
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Pj
( i )~z!5gn

B^ i uF j*
( i ,i 21)~z!F j

( i 21,i )~z!u i &B

B^ i u i &B
. ~59!

In order to evaluate the expectation value~59!, we invoke the bosonization formulas of variou
quantities. By normal ordering the product of vertex operators, forj 50, n21, we have

Pj
( i )~z!5qi~12q2!n R dw1

2p iw1

¯ R dwn21

2p iwn21

1

wi

3 )
l 51

n22 1

~12qwl /wl 11!~12qwl 11 /wl !
I ~z,w1 /q,...,wj /q,qn11wj 11 ,...,qn11wn21!

35
w1

z

1

~12qn11w1 /z!~12qz/wn21!~12qwn21 /z!
~ j 50!,

wn21

1

~12qz/w1!~12qw1 /z!~12qn13z/wn21!
~ j 5n21!,

~60!

where the contours of integrals are taken asuqwl /wl 11u, uqwl 11 /wl u,1 (1< l<n22) and, for
j 50 case we add the conditionsuqn11w1 /zu, uqz/wn21u, uqwn21 /zu,1, for j 5n21 case, we
add the conditionsuqz/w1u, uqw1 /zu, uqn13z/wn21u,1. For 1< j <n22, we have

Pj
( i )~z!5qi~12q2!n R dw1

2p iw1
¯ R dwn21

2p iwn21

1

wi

3 )
l 51
lÞ j

n22
1

~12qwl /wl 11!~12qwl 11 /wl !
I ~z,w1 /q,...,wj /q,qn11wj 11 ,...,qn11wn21!

3
wjwj 11

z

1

~12qz/w1!~12qw1 /z!~12qn13wj 11 /wj !~12qz/wn21!~12qwn21 /z!
,

~61!

where the contour of integrals is taken asuqwl /wl 11u, uqwl 11 /wl u,1 (1< lÞ j <n22) and
uqz/w1u, uqw1 /zu, uqn13wj 11 /wj u, uqz/wn21u, uqwn21 /zu,1. Here we have set

I ~z,w1 ,...,wn21!3B^ i u i &B5B^ i uexpS @2k#(
k51

`

(
p51

n21

(
l 51

n21

I p,l~k!xl~k!ap~2k!D
3expS @2k#(

k51

`

(
p51

n21

(
l 51

n21

I p,l~k!yl~k!ap~k!D u i &B , ~62!

where

xj~k!55
q3k/2

@2k#
zk2

qk/2

@k#
w1

k1
qk/2

@2k#
w2

k ~ j 51!,

qk/2

@2k#
wj 21

k 2
qk/2

@k#
wj

k1
qk/2

@2k#
wj 11

k ~2< j <n22!,

q(2n13)k/2

@2k#
zk2

qk/2

@k#
wn22

k 1
qk/2

@2k#
wn21

k ~ j 5n21!,

~63!

and
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yj~k!55
2

q2k/2

@2k#
z2k1

qk/2

@k#
w1

2k2
qk/2

@2k#
w2

2k ~ j 51!,

2
qk/2

@2k#
wj 21

2k 1
qk/2

@k#
wj

2k2
qk/2

@2k#
wj 11

2k ~2< j <n22!,

2
q2(2n11)k/2

@2k#
z2k1

qk/2

@k#
wn22

2k 2
qk/2

@2k#
wn21

2k ~ j 5n21!,

~64!

Here I p,l(k) is defined in~23!. To calculate the vacuum expectation values, we use the coh
states. Let us define the coherent state by

uj1¯jn21& i5expS (
p51

n21

(
k51

`
k

@k#@2k#
jp~k!ap~2k!D u i & ~65!

and

i^j̄1¯ j̄n21u5^ i uexpS (
p51

n21

(
k51

`
k

@k#@2k#
j̄p~k!ap~k!D . ~66!

The coherent states enjoy

ap~k!uj1¯jn21& i5 (
j 51

n21
@~apuaj !k#

@2k#
j j~k!uj1¯jn21& i ,

i^j̄1¯ j̄n21uap~2k!5 i^j̄1¯ j̄n21u (
j 51

n21
@~apuaj !k#

@2k#
j̄ j~k!,

and

id5E
2`

` S 21

2p i D
n21

)
i 51

n21

)
k.0

k@~ i 11!k#dj i~k!dj̄ i~k!

@2k#2@k#

3expS 2 (
i , j 51

n21

(
k51

`
@~ai uaj !k#k

@k#@2k#2 j i~k!j̄ j~k!D uj1¯jn21& i i ^j̄1¯ j̄n21u, ~67!

where the integration is taken over the entire complex plane with the measuredj dj̄
522i dx dy for j5x1 iy . Using this completness relation, we have the following:

I ~z,w1 ,...,wn21!5)
k51

`

expS 1

q2nk21

@2k#2

@k#@nk#k

3H (
l 51

n21

@ lk#@~n2 l !k#S 2q2nkxl~k!yl~k!1
q22k

2
xl~k!21

q2(n11)k

2
yl~k!2D

1 (
1< l 1, l 2<n21

@ l 1k#@~n2 l 2!k#~2q2nkxl 1
yl 2

2q2nkxl 2
yl 1

1q22kxl 1
xl 2

1q2(n11)kyl 1
yl 2

!1 (
l 51

n21

@ lk#@~n2 l !k#~ b̄ l
( i )~k!~q22kxl~k!2yl~k!!1 d̄ l

( i )~k!
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3~q2(n11)kyl~k!2xl~k!!!1 (
1< l 1, l 2<n21

@ l 1k#@~n2 l 2!k#~ b̄ l 1
( i )~k!

3~q22kxl 2
~k!2yl 2

~k!!1b̄ l 2
( i )~k!~q22kxl 1

~k!2yl 1
~k!!1 d̄ l 1

( i )~k!

3~q2(n11)kyl 2
~k!2xl 2

~k!!1 d̄ l 2
( i )~k!~q2(n11)kyl 1

~k!2xl 1
~k!!!J D ~68!

and

B^ i u i &B5)
k51

` S 1

A12q2nkD n21

)
k51

`

expS 1

q2nk21

@2k#2

@k#@nk#k H (
l 51

n21

@ lk#@~n2 l !k#

3S 2b̄ l
( i )~k!d̄ l

( i )~k!1
q22k

2
b̄ l

( i )~k!21
q2(n11)k

2
d̄ l

( i )~k!2D
1 (

1< l 1, l 2<n21
@ l 1k#@~n2 l 2!k#~2b̄ l 1

( i )d̄ l 2
( i )2 d̄ l 1

( i )b̄ l 2
( i )

1q22kb̄ l 1
( i )b̄ l 2

( i )1q2(n11)kd̄ l 1
( i )d̄ l 2

( i )!J D . ~69!

Here we have used

b̄ l
( i )~k!5 (

s51

n21
@~al uas!k#

@2k#
bs

( i )~k!, d̄ l
( i )~k!5 (

s51

n21
@~al uas!k#

@2k#
ds

( i )~k!.

The sum in the right-hand sides are evaluated as follows.
The Norm of the vacuum vectors.
~1! L i , (0< i<n21), 0<L5M5 i<n21 case

B^ i u i &B5
1

A~q4n;q4n!`
)
j 51

n21 HA~q4n1222 j ;q4n!`~q4n2222 j ;q4n!`

~q4n22 j ;q4n!`
J j (n2 j )

. ~70!

~2! L i , (0< i<n22), 0<L5 i ,M<n21 case

B^ i u i &B5
1

A~q4n;q4n!`
)
j 51

n21 HA~q4n1222 j ;q4n!`~q4n2222 j ;q4n!`

~q4n22 j ;q4n!`
J j (n2 j )

3 )
s51

M2L
~q4n22M12L22sr 2;q4n!`

~q2n22sr 2;q4n!`
~0<L5 i ,M<n21!. ~71!

~3! L i , (1< i<n21), 0<L,M5 i<n21 case

B^ i u i &B5
1

A~q4n;q4n!`
)
j 51

n21 HA~q4n1222 j ;q4n!`~q4n2222 j ;q4n!`

~q4n22 j ;q4n!`
J j (n2 j )

3 )
s51

M2L
~q2n12M22L22sr 22;q4n!`

~q4M24L22sr 22;q4n!`
~0<L,M5 i<n21!. ~72!

Integrand of correlation functions.
~1! L i , (0< i<n21), 0<L5M5 i<n21 case
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I ~z,w1 ,...,wn21!5J~z,w1 ,...,wn21!, ~0<L5M5 i<n21!. ~73!

~2! L i , (0< i<n22), 0<L5 i ,M<n21 case

I ~z,w1 ,...,wn21!5J~z,w1 ,...,wn21!3
~12rz!

~12rq2M21wM !
~ i 5L50,M<n21! ~74!

and

I ~z,w1 ,...,wn21!

5J~z,w1 ,...,wn21!

3
~qL21rwL!`~q2n1L11r /wL!`~q2n2M21rwM !`~q2n2M11r /wM !`

~q2n22M1L21rwL!`~q2n22M1L11r /wL!`~q2L2M21rwM !`~q2n12L2M11r /wM !`

3
~q2n12L22Mrz!`~q2n12L22Mrz21!`

~q2nrz!`~q2nrz21!`
~1<L5 i ,M<n21!. ~75!

~3! L i (1< i<n21), 0<L,M5 i<n21

I ~z,w1 ,...,wn21!5J~z,w1 ,...,wn21!3
~121/~rz!!

~12qM11/~rwM !!
~05L,M5 i<n21!, ~76!

and

I ~z,w1 ,...,wn21!

5J~z,w1 ,...,wn21!

3
~q2M2L21r 21wL!`~q2M2L11r 21wL

21!`~qM22L21r 21wM !`~q2n22L1M11r 21wM
21!`

~q2L21r 21wL!`~q2n2L11r 21wL
21!`~qM21r 21wM !`~qM11r 21wM

21!`

3
~r 21z!`~r 21z21!`

~q2M22Lr 21z!`~q2M22Lr 21z21!`

~1<L,M5 i<n21!. ~77!

Here we have set the functionJ(z,w1 ,...,wn21) by

J~z,w1 ,...,wn21!

5~q2n!`
n ~q2n12!`

n
~qnz;qn!`~qnz21;qn!`

~qz;qn!`~qz21;qn!`

A~q2nz2!`~q2nz22!`~q2z2!`~q2z22!`

3 )
j 51

n21 H ~q21wj ;qn!`~qn11wj
21 ;qn!`

~wj ;qn!`~qn12wj
21 ;qn!`

A~wj
2!`~q22wj

2!`~q2nwj
22!`~q2n12wj

22!`J
3 )

j 51

n22

$~q21wjwj 11!`~q2n11wjwj 11
21 !`~q2n11wj

21wj 11!`~q2n13wj
21wj 11

21 !`%21

3$~zw1!`~q2n12zw1
21!`~q2nz21w1!`~q2n12z21w1

21!`%21

3$~qnzwn21!`~q3n12zwn21
21 !`~qnz21wn21!`~qn12z21wn21

21 !`%21. ~78!

Here we have used the abbreviation:
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~z!`5~z;q2n!` .

We summarize the main result of this section. For the asymptotic boundary cond
V(L i),(i 50,...,n21), let us consider the following boundary conditions,

~1! 0<L5M5 i<n21, ~2! 0<L5 i ,M<n21, ~3! 0<L,M5 i<n21.

Then the boundary magnetization is given by

(
j 50

n21

v j Pj
( i )~1!, ~79!

where the correlation function Pj
( i )(z) is given in (60) and (61), the integrand function of th

correlation function Pj
( i )(z) is given in (73)–(78), andv is an nth primitive root of 1.
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APPENDIX A: BOSONIZATIONS OF VERTEX OPERATORS

For readers’ convenience, we summarize the results of bosonizations of the vertex oper11

Let C@ P̄# be theC-algebra generated by the symbols$ea2,...,ean21,eL̄n21% which satisfy the
following defining relations:

ea iea j5~21!(a i ua j )ea jea i, ~2% i , j %n21!,

ea ieL̄n215~21!d i ,n21eL̄n21ea i, ~2% i %n21!.

For a5m2a21¯1mn21an211mnL̄n21 , we denoteem2a2
¯emn21an21emnL̄n21 by ea. Let

((asua t))1%s,t%n21 stand for theA-type Catran matrix whose matrix element (asua t) is an inte-
ger. LetC@Q̄# be theC-subalgebra ofC@ P̄# generated by the symbols$ea1,...,ean21% which satisfy
the following defining relations:

ea iea j5~21!(a i ua j )ea jea i, ~1% i , j %n21!.

Note that

a152 (
r 52

n21

ra r1nL̄n21 , L̄ i52 (
r 5 i 11

n21

~r 2 i !a r1~n2 i !L̄n21 .

Let us consider theC-algebra generated by the bosonsas(k) (sP$1,...,n21%,kPZ) which
satisfy the following defining relations:

@as~k!,at~ l !#5dk1 l ,0

@~asua t!k#@k#

k
.

The highset weight moduleV(L i) is realized as

V~L i !5C@as~2k!, ~sP$1,...,n21%,kPZ^0!# ^ C@Q̄#eL̄ i.
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We considerC@Q̄#eL̄ i as a subspace ofC@ P̄#. Here the actions of the operatorsas(k),]a ,ea on
V(L i) are defined as follows:

as~k! f ^ eb5H as~k! f ^ eb, ~k,0!,

@as~k!, f # ^ eb, ~k.0!.

]a f ^ eb5~aub! f ^ eb,

ea f ^ eb5 f ^ eaeb.

The inner product is explicitly given as follows:

~a i uL̄ j !5d i , j , ~L̄ i uL̄ j !5
i ~n2 j !

n
~1% i % j %n21!.

The bosonizations of the vertex operators are given by

Fn21
( i ,i 11)~z!5eP(z)eQ(z)eL̄n21~qn11z!]L̄n21

1 ~n2 i 21!/n~21!(]L̄1
2 ~n2 i 21!/n)(n21)1 1/2(n2 i )(n2 i 21),

F j 21
( i ,i 11)~z!5@F j

( i ,i 11)~z!, f j #q5 R dwj

2p i
@F j

( i ,i 11)~z!,eRj
2(wj )eSj

2(wj )e2a jw
j

2]a j#q ,

F0*
( i 11,i )~z!5eP* (z)eQ* (z)eL̄1~~21!n21qz!]L̄1

1 ~ i /n!z211d i ,n21qi~21! in1 ~1/2! i ( i 11),

F j*
( i 11,i )~z!5@ f j ,F j 21* ( i 11,i )~z!#q215 R dwj

2p i
@eRj

2(wj )eSj
2(wj )e2a jw

j

2]a j ,F j 21* ( i 11,i )~z!#q21,

C0
( i ,i 11)~z!5e2P* (q21z)e2Q* (qz)e2L̄1~~21!n11qz!2]L̄1

1 ~n2 i 21/n!q2 i~21! in1 ~1/2! i ( i 11),

C j
( i ,i 11)~z!5@C j 21

( i ,i 11)~z!,ej #q5 R dwj

2p i
@C j 21

( i ,i 11)~z!,e2Rj
2(q21wj )e2Sj

2(qwj )ea jw
j

]a j#q ,

Cn21* ( i 11,i )~z!5e2P(q21z)e2Q(qz)e2L̄n21~qn11z!2]L̄n21
1 ~ i /n!

3~21!(]L̄1
2 ~n2 i !/n)(n21)1 ~1/2!(n2 i )(n2 i 21),

C j 21* ( i 11,i )~z!5@ej ,C j*
( i 11,i )~z!#q215 R dwj

2p i
@e2Rj

2(q21wj )e2Sj
2(qwj )ea jw

j

]a j ,C j*
( i 11,i )~z!#q21,

where we have used

P~z!5 (
k51

`

an21* ~2k!q~2n13/2! kzk, Q~z!5 (
k51

`

an21* ~k!q2 ~2n11/2! kz2k,

P* ~z!5 (
k51

`

a1* ~2k!q~3/2! kzk, Q* ~z!5 (
k51

`

a1* ~k!q2 ~1/2! kz2k,

Rj
2~w!52 (

k51

` aj~2k!

@k#
q~k/2!wk, Sj

2~w!5 (
k51

` aj~k!

@k#
q~k/2!w2k,
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an21* ~k!5 (
l 51

n21
2@ lk#

@k#@nk#
al~k!, a1* ~k!5 (

l 51

n21
2@~n2 l !k#

@k#@nk#
al~k!,

@aj~k!,an21* ~2k!#5d j ,n21

@k#

k
, @aj~k!,a1* ~2k!#5d j ,1

@k#

k
.

Note. In Ref. 11 Koyama reduced the relation (10) to the representation theory. For n52 case
the direct calculation proof of (10) is sketched in the Appendix of Lukyanov.12 [Strictly speaking
Lukyanov treated the Zamolodchikov–Faddev algebras of SU(2) invariant massive Thirring
model, whose integral contour is different from our considering case. However the integran
the bosonizations are quite similar.]

APPENDIX B: SOLUTIONS OF THE BOUNDARY YANG–BAXTER EQUATION

In this appendix we review the general diagonal solutions of the boundary Yang–B
equation.9,10 Let us use theR-matrix R(z) given in ~3!. We assume the matrixK(z) is diagonal.

K~z! j ,k5d j ,kkj~z!, ~0< j ,k<n21!. ~B1!

By straightforward calculation it is shown that the boundary Yang–Baxter equation is equiv
to the following equations:

S ka~z1!

kb~z1!
2

ka~z2!

kb~z2!

z1

z2
D b~z1z2!c~z1 /z2!1S z1z22

ka~z1!

kb~z1!

ka~z2!

kb~z2!
D b~z1 /z2!c~z1z2!50

~0<a,b<n21!. ~B2!

When we set

kA~z!5z2, kB~z!5
12rz

12rz21 , kC~z!51, ~B3!

the ratio of three quantities:

kA~z!

kB~z!
5

r 21z21

r 21z2121
,

kA~z!

kC~z!
5z2,

kB~z!

kC~z!
5

rz21

rz2121
, ~B4!

satisfy Eq.~B2!.
Conversely, differentiate the Eq.~B2! with respect toz2 and takingz251, we have

ka~z!

kb~z!
5

12sz

12sz21 . ~B5!

Now we have derived the general diagonal solutions of the boundary Yang–Baxter equatio~7!.
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Asymptotic dynamics in quantum field theory
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A crucial element of scattering theory and the LSZ reduction formula is the as-
sumption that the coupling vanishes at large times. This is known not to hold for
the theories of the Standard Model and in general such asymptotic dynamics is not
well understood. We give a description of asymptotic dynamics in field theories
which incorporates the important features of weak convergence and physical
boundary conditions. Applications to theories with three and four point interactions
are presented and the results are shown to be completely consistent with the results
of perturbation theory. ©2000 American Institute of Physics.
@S0022-2488~00!02907-8#

I. INTRODUCTION

Descriptions of scattering in quantum field theory assume that at large times the partic
widely separated and behave like free particles. This assumption, which underlies the LS
malism, is incorrect for many theories. The most obvious example of this is when the incom
outgoing system includes bound states, but it also fails if the physics is characterized b
range interactions. Since most of the physics of the standard model falls into at least one o
categories~confined quarks, massless gauge bosons! it is very important to have a precise unde
standing of the dynamics of quantum field theories at large times.

Generally, then, it is assumed that at asymptotic times the Heisenberg fields become fre

lim
t→`

f~x!→Z1/2fout~x!, ~1!

and similarly fort→2`. We should note that this behavior can only be taken to hold as a w
limit, between matrix elements, since otherwise~see Sec. 5-1-2 of Ref. 1! one can show, from the
Källen–Lehmann representation, that the fields are free at all times.

The limit in ~1! is sometimes discussed in the framework of an ‘‘adiabatic approximation,
which the coupling constant is taken to be multiplied by a function which is one during
scattering process and approaches zero for very large~positive or negative! times. This is unsat-
isfactory since it assumes the desired answer which ought rather to emerge from the theor
It can also be wrong, as in the case of Quantum Electrodynamics~QED!.

QED, the paradigm for the Standard Model, has long range interactions. The massless
the photon means that the potential between static charges falls off only as 1/r . It has been known
for a long time2,3 that this means that~1! does not hold and that any attempt to impose suc
relation generates infrared~IR! divergences in the wave-function renormalization constant
~charged! matter fields.

This has been studied4 in the relativistic theory by Kulish and Faddeev~KF! and their general
approach to asymptotic dynamics has been utilised by various authors, see, e.g., Refs. 5–
shall now give a brief sketch of the procedure adopted by KF and what their results se
indicate for QED.

a!Electronic mail: r.horan@plymouth.ac.uk
b!Electronic mail: m.lavelle@plymouth.ac.uk
c!Electronic mail: d.mcmullan@plymouth.ac.uk
44370022-2488/2000/41(7)/4437/15/$17.00 © 2000 American Institute of Physics
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They considered the usual QED interaction Hamiltonian

Hint~ t !52eE d3xAm~ t,x!Jm~ t,x!, ~2!

whereJm(t,x)5c̄(t,x)gmc(t,x) is the ~conserved! matter current. In order to carry out the LS
reduction of theS-matrix we must be in the interaction picture so that, although the time evolu
of the states is determined by~2!, the evolution of the fields themselves is given by the f
Hamiltonian. One may then insert the free field expansions in~2!. These plane wave expansion
are

c~x!5E d3p

~2p!3

1

A2Ep

$b~p,s!us~p!e2 ip•x1d†~p,s!vs~p!eip•x%, ~3!

where the notation implies a sum over thes indices. Working in Feynman gauge we have

Am~x!5E d3k

~2p!3

1

2vk
$am~k!e2 ik•x1am

† ~k!eik•x%, ~4!

wherep05Ep5Aupu21m2 andvk5uku. Inserting these into~2! results in eight terms which ma
be grouped according to the positive and negative frequency components of the fields. E
these pieces will have a time dependence of the formeict wherec involves sums and difference
of energy terms.

KF claimed that, forutu→`, only terms withc tending to zero contribute to the asymptot
dynamics. Since the spatial integration in~2! generates a momentum delta function, only fo
terms withc56(Ep1k2Ep6vk) would then have a larget-limit. This vanishing ofEp1k2Ep

6vk'0 can only take place in QED because the photon is massless, and it only occurs f
photons, i.e., forvk'0. This is in accord with perturbation theory; the breakdown of theS-matrix
occurs for soft photons and giving the photon a small mass acts as a cut-off on these diver
An asymptotic approximation to~2! is obtained from the lowest order term of the Taylor expa
sion, in powers ofk, of the Hamiltonian. This yields

Hint
as~ t !52eE d3xAm~ t,x!Jas

m~ t,x!, ~5!

where

Jas
m~ t,x!5E d3p

~2p!3

pm

Ep
r~p!d3S x2

p

Ep
t D , ~6!

andr(p) is the charge density

r~p!5(
s

~b†~p,s!b~p,s!2d†~p,s!d~p,s!!. ~7!

According to KF therefore, the asymptotic Hamiltonian is the integral over all momenta o
current associated with a charged particle of velocitypm/Ep . This nonvanishing Hamiltonian find
its perturbative expression in the branch cuts, rather than poles, in the on-shell Green’s fun
in the matter fields of QED. An attractive aspect of this theory is that it completely dispenses
the adiabatic approximation. Although this discussion seems to pick up the problems in ap
the LSZ scheme to QED and, in particular, correctly identifies the problem with long wavele
(vk'0) photons, it cannot be regarded as the end of the story.

These arguments are used extensively in other theories, such as QCD, where the physic
well understood, and where greater reliance is put on the mathematics. On the other ha
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theory is employed at the level of operators whereas it is more appropriate, in quantum
theories, to work at the level of matrix elements and weak limits. The KF approach also mak
connection between the large time limit and the separation of particles at large distance.
shall see below, the naive application of this approach to massivef4 theory would indicate that
the LSZ formalism should also break down, which it very evidently does not.

This paper is concerned with constructing a new approach to asymptotic dynamics with
context of weak convergence, and with appropriate physical boundary conditions correspon
the separation of particles. We will apply it to a variety of interactions and show that it y
results which are completely consistent with what is known from explicit perturbative cal
tions.

In Sec. II we will show that the KF argument cannot be applied to four point interacti
Section III, which is the heart of this paper, develops the method for massivef4 theory and then
applies it to both the three and four point interactions of scalar QED. In this way we will see
the well known spin independence of the IR structure in the Abelian theory with massive ch
and, for the three point vertex, regain the results of Ref. 4. A discussion of the implicatio
these results for perturbative calculations in the standard model is presented in Sec. IV.
technical details are given in the Appendix.

II. FOUR POINT INTERACTIONS

As we have indicated in the Introduction, there are objections to the KF view of asymp
dynamics; first, that the statements have been framed specifically for the picture of thevk'0
infrared theory, which is well known to suffer from divergences, and not as a general statem
the behavior of asymptotic limits; second, and more critically, that the prescription doe
translate to other quantum field theories. It is the latter objection which is the most serious a
one which we shall now demonstrate.

To be precise, we shall show that the KF argument applied to the case of massivef4 theory
is not sufficient to show that the asymptotic limit of the coupling term vanishes. Howeverf4

theory is the standard textbook example of an interacting quantum field theory and its pertur
theory is straightforward—the coupling must vanish for well separated particles.

To begin then, let us take the standard free field expansion of the scalar field

f~x!5E d3k

~2p!3

1

2Ek
~a~k!e2 ik•x1a†~k!eik•x!, ~8!

with Ek5Auku21m2 andm the mass of the particle. The commutator relations are

@a~k!,a†~k8!#5~2p!32Ekd
3~k2k8! ~9!

and the interaction part of the Hamiltonian for the theory under consideration is then

Hint5
l

4! E d3x: f4~x,t !:, ~10!

where the : : indicates normal ordering.
When the expansion~8! is inserted into~10! and the resulting expression is simplified, the

after normal ordering, it will be found to consist of twelve terms, each of which has an expon
term where the exponent is made up of sums and differences of the energy eigenvalues. S
these exponents are obviously nonvanishing. According to the methods of KF which we
scribed in the Introduction, the integrals containing these exponentials may be ignored. Ho
not all of the integrals involved have exponents which are so easily dealt with and one of
which we shall now consider, is
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E d3p d3qd3k

~2p!9

a†~k!a†~p1q2k!a~p!a~q!

2Ep2Eq2Ek2Ep1q2k
e2 i t (Ep1Eq2Ek2Ep1q2k). ~11!

Applying the methods described in the Introduction, any nonvanishing asymptotic dynamic
come from those terms and those momenta for which the exponent vanishes. To this end w
determine if the equation

Ep1Eq2Ek2Ep1q2k50 ~12!

has any solutions.
Far from this being a difficult problem, upon reflection it becomes obvious that there

infinitely many solutions! This is most easily seen by noting that the problem is equivalent to
of finding solutions to the simultaneous system of equations

Aupu21m21Auqu21m25Auku21m21Au lu21m2,
~13!

p1q5k1 l.

The incoming and outgoing momenta must have some connection with a scattering process
the obvious, trivial solutions, which can be found by taking, say,q5 l50, will be ignored.

Referring to Fig. 1, letp5AB, andq5BC. Now imagine pivoting the rigid triangleABC,
with the lineAC as the hinge, to get a new triangle which is congruent toABC. If the new triangle
is AB8C then takek5AB8 and l5B8C. The vectorsp, q, k, l then automatically satisfy both th
conditions of~13!.

One can do this with any two nonparallel vectors, for example~with m51! take p
5(1,1,0), q5(1,21,0), k5(1,1/&,1/&), l5(1,21/&,21/&). Another example is p
5(24/),2&/),0), q50, k5(22/),&/),1), andl5p1q2k.

No physical meaning could be given to such an arbitrary set of momenta. Followin
arguments of KF however, we conclude that the existence of this wide range of momen
which ~12! vanishes, indicates that the asymptotic dynamics of the system is determined by t
of points. This would suggest that problems could arise in the associated perturbation the
massivef4 theory, and this is well known to be false for this textbook example of a quantum
theory.

At this point we wish to stress that this apparent contradiction has implications beyon
simple example as there are many important quantum field theories, such as QCD and the
mechanism, in which four point interactions have a major role. If there is a deficiency in
understanding of the asymptotic dynamics in this simple scalar four point theory then it is dif
to see how one might proceed on this basis, with any confidence, in other theories of the st
model. It is clear from this that the KF argument needs considerable refinement if it is
applied to the standard model.

III. GENERAL APPROACH TO ASYMPTOTIC DYNAMICS

The major flaw in the KF argument is its reliance on strong operator convergence. Inste
concentrating on the Hamiltonian itself, we shall focus our attention on matrix elements
limits we shall consider are weak limits and this is in keeping with the LSZ formalism in quan
field theories.

FIG. 1. Triangle of Momenta.
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If C IN represents an incoming wave packet in this scattering experiment andCOUT is an
outgoing wave packet, then the matrix element of interest is^COUT

† uHintuC IN&. This is a time
dependentc-number and the elementary notion of convergence may be adopted in the inve
tion of its asymptotic limit. In the case of massive scalarf4 it will be shown that, under condition
which have a straightforward physical interpretation, its asymptotic limit is zero.

This section is organized as follows: In Sec. III A we shall use massivef4 theory as a vehicle
to study asymptotic dynamics. Having established the basic method and shown that it is con
with what is already known forf4 theory, we shall then employ it to determine the asympto
dynamics of scalar QED.

There is a particularly interesting feature of scalar QED which makes the study o
asymptotic dynamics worthwhile. The interaction Hamiltonian in scalar QED consists of a su
two terms, a three point interaction term, similar to that in~fermionic! QED, and a four point
interaction term, which has no parallel in QED, so that the dynamics of scalar QED is riche
that of fermionic QED. From perturbation theory it is known that~fermionic! QED and scalar
QED have the same infrared problems, so theirasymptoticdynamics are the same. Perturbati
theory also tells us that the four point interaction term is divergence free so it must have van
asymptotic dynamics. We would expect this to emerge, in a natural manner, from any satisf
theory which describes the asymptotic dynamics of scalar QED. Further, since the infrared
lem is spin independent, the asymptotic dynamics of the three point interaction will, with
obvious changes, be the same in either fermionic or scalar QED.

We shall begin our examination of scalar QED in Sec. III B with the quartic term, which t
out to be the easier to deal with. We shall show that its asymptotic dynamics is similar to t
the scalarf4 theory and has a zero limit. After this, in Sec. III C, we shall turn our attention to
cubic term and the infrared problem. We shall prove that the asymptotic dynamics for the in
problem is exactly the same as that for a system in which the Hamiltonian is derived fr
current associated with a moving charged particle with known, nontrivial asymptotic dynam

A. Scalar f4 theory

Consider the following incoming and outgoing wave packets:

C IN5E d3r d3w f~r!g~w!a†~r!a†~w!u0&,

COUT5E d3ud3vh~u!i ~v !a†~u!a†~v !u0&, ~14!

with the functionsf ,g,h,i being test functions for the wave packets. Referring to~8!, ~9!, ~10!, and
expressions~14!, one finds that̂COUT

† uHintuC IN& reduces to a single integral which is proportion
to

E d3p d3q d3k h~k!i ~p1q2k! f ~p!g~q!e2 i tc, ~15!

with the exponentc having the valuec5Ep1Eq2Ek2Ep1q2k .
Notice that the exponent in this term has essentially the same structure as the term~11!

which appeared to cause problems when applying the methods of KF. The difference now
~15! is a straightforward integral and not an operator, so that elementary methods may be a
to find the asymptotic limit. The machinery we shall employ is themethod of stationary phase.14

Briefly, this says that, provided there is no point in the region of integration at which all of the
order partial derivatives ofc are zero, then the integral~15! tends to zero asutu→`.

The terms inc have the formEl5Au lu21m2 and, sincemÞ0, they will all have first-order
partial derivatives for all values ofl. The first order derivatives ofc are then given by
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]c

]pi
5

pi

Ep
2

pi1qi2ki

Ep1q2k
,

]c

]qj
5

qj

Eq
2

pj1qj2kj

Ep1q2k
, ~16!

]c

]kn
5

kn

Ek
2

pn1qn2kn

Ep1q2k
.

If at some point all of these are zero then, in particular,]c/]pi5]c/]qj50 for all possible
values ofi , j . This implies thatp/Ep5(p1q2k)/Ep1q2k and q/Eq5(p1q2k)/Ep1q2k so we
must also havep/Ep5q/Eq . If we can exclude the set of points for which this condition ho
from the domain of integration, then the integral in~15! will vanish asutu→`.

In ~15!, the test functionsf ,g for the the incoming wave packet have the variablesp,q as
arguments. The expressionsp/Ep and q/Eq represent the velocities of the respective incom
wave packet. Experimentally, scattering is prepared by setting up the apparatus in such a w
the two beams of particles are brought together from different directions, i.e., with diffe
velocities. This information can be incorporated into the incoming wave packet by ensurin
the supports of the test functions exclude the possibility thatp/Ep5q/Eq . The precise statemen
of the requirement is thatthe test functions f,g must have nonoverlapping supports in veloc
space. This condition on the test functions, of having nonoverlapping supports in velocity s
is central to the construction of theS-matrix ~see Sec. 13.4 of Ref. 15!.

To restate, if the test functionsf ,g have nonoverlapping supports in velocity space then
integral in ~15! vanishes asutu→`. This is exactly the behavior that one would expect for t
particular scattering process but a further question remains to be answered: What constrain
this choice of test functions for the incoming wave packet impose on the outgoing wave pa
If this picture is to display all of the features of this particular scattering process then
combinations of outgoing particles must be excluded. The outgoing particles must behave
particles at asymptotically large times which means that, as was the case for the incoming
packets, their test functions must also have nonoverlapping support in velocity space. Ho
this must be a consequence of the condition imposed on the test functions for the incoming
packet and not an independently imposed condition.

The arguments of the test functions for the outgoing wave packet arep1q2k andk, and the
equality of these two variables is equivalent top1q52k. This is simply the expression of con
servation of momentum. Another principle in any scattering theory is conservation of ener
this case this is expressed asEp1Eq52Ek . Finally then, we must show that the two conditio

p1q52k, Ep1Eq52Ek , ~17!

are incompatible with the functionsf ,g having nonoverlapping support in velocity space. Sin
the masses of the two incoming particles are equal, the equationp/Ep5q/Eq is equivalent top
5q and nonoverlapping in velocity space is equivalent to nonoverlapping in momentum spa
this casewe need to show that ifpÞq then the conditions of (17) are impossible.

Again, for simplicity, let us take the massm51. The first equation in~17! means that the
vectorsp, q, k, are coplanar. In that case, we may choose a unit vectorn orthogonal to this plane
and writep85p1n,q85q1n,k85k1n. Sincen is orthogonal to the plane ofp, we haveup8u
5Aupu2115Ep , with similar expressions forq, k. This means that~17! may now be written as

p81q852k8, up8u1uq8u52uk8u. ~18!

From the triangle inequality we know that this is only possible whenp8 andq8 are parallel, i.e., if
there is a numberl such thatp85lq8. In terms ofp, q, andn, this can be rearranged into the for
p2lq5(12l)n. The only solution for this is withl51 so thatp5q.
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There are other possible matrix elements that are associated with the four point inter
term. There is the possibility that the incoming wave packet consists of a single field, wit
outgoing wave packet made up of three fields, and there is the reverse. Both of these cases
treated in precisely the same manner as the above case, and with precisely the same con
We omit the details.

B. Scalar QED: The four point interaction

The interaction in scalar QED is more complicated than that of QED due to the existen
the extra term representing a four point interaction. In this section we shall study the asym
properties associated with this term and show that it has trivial asymptotic dynamics. Thi
require extending our techniques since we shall have to deal with wave packets which
massless particles as an essential part of their structure.

The method of stationary phase that was used to determine the limit of~15!, in Sec. III A, was
dependent upon some of the properties of the partial derivatives~16! of the various energy
eigenvalues. In the case ofmasslessparticles the energy eigenvalues, which are of the formvk

5uku, are not differentiable at the origin but this will not be a barrier to the application of
technique.

We begin by writing out the full, normal ordered interaction Hamiltonian for scalar Q
which is

Hint~ t !52eE d3x:Jm~x!Am~x!: ~19!

with : : being normal ordering and where the currentJm is given by

Jm5 i ~f†]mf2]mf†f!2egimAif
†f5 iJ1

m2eJ2
m5 i ~J11

m 1J12
m !2eJ2

m , ~20!

with the obvious meaning given to the components ofJm defined in~20!.
We shall work in Feynman gauge and take the plane wave expansions given by

f~x!5E d3p

~2p!3

1

2Ep
~a~p!e2 ip•x1b†~p!eip•x!5f1~x!1f2~x!,

~21!

Am~x!5E d3k

~2p!3

1

2vk
~am~k!e2 ik•x1am

† ~k!eik•x!5Am
1~x!1Am

2~x!.

The commutator for the photon is given by

@am~p!,an
†~q!#52~2p!32vkgmnd3~p2q!. ~22!

When ~21! is substituted into~19! and rearranged, the quartic interaction will be found
consist of 12 terms, each of them with differing exponential terms corresponding to the dif
possible interactions. We shall consider the matrix element represented by the following dia

We shall take as our wave packets the following expressions:

C IN5E d3r d3w f~r!b†~r!cn~w!an
†~w!u0&,
~23!
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COUT5E d3ud3vg~u!b†~u!hm~v !am
† ~v !u0&,

where the f ,cn,g,hm are the respective test functions. One then finds that the ampl
^COUT

† uHint(t)uC IN& is a single term, constructed fromJ2
m , which is an integral proportional to

E d3pd3qd3kci~p!hi~q!g~k! f ~k1q2p!eict, ~24!

wherec5vp1Ek1q2p2Ek2vq .
Notice that the Einstein summation convention means that this integral is actually a s

three integrals, withi 51,2,3. The incoming and outgoing charged fields must be separated
the test functionsf andg must have disjoint support. If not, then, by conservation of moment
there will be no separation of the incoming and outgoing photons. In that case, no scatterin
have taken place. Thus it must follow that,for each i, the test functionsci ,hi must have disjoint
support so that at least one of them will not have the zero vector in its support. Without lo
generality, let us suppose that this isci .

The functionc will then have continuous partial derivatives inp, k and these are given by

]c

]pi
5

pi

vp
2

ki1qi2pi

Ek1q2p
,

]c

]kj
5

kj1qj2pj

Ek1q2p
2

kj

Ek
. ~25!

The vanishing of these expressions for alli , j would then imply thatp/vp5k/Ek which is impos-
sible, since the former is a unit vector while the latter is not. The method of stationary p
~applied only to the variablesp,k! can again be used to prove that~24! will vanish asutu→`.

There are other possible scattering events that are described by this four point inter
Hamiltonian, e.g., when the wave packets consist of two incoming photons and two out
charges~or vice versa!. If the photons are separated according to our scheme~their test functions
have disjoint support!, then a similar exercise will show that this picture also gives rise to v
ishing asymptotic dynamics.

C. Scalar QED: The infrared approximation

The cubic term in the interaction Hamiltonian~19!, which comes from theJ1
m term in ~20!, is

made up of two parts,J11
m and J12

m . These two terms are similar in their structure and b
contribute to the problem of infrared divergences. We shall consider only the first of theseJ11

m ,
the results forJ12

m being substantially the same.
As in QED, the infrared problem in scalar QED occurs in relation to a scattering proce

which an incoming charged particle emits a photon.

We shall consider the case when the wave packets are given by

C IN5E d3y f~y!b†~y!u 0&,

~26!

COUT5E d3ud3vg~u!b†~u! hm~v !am
† ~v !u0&.
                                                                                                                



ptotic

that

nian

,

een
the

y the
n be
ED

we
or
The
ories,
neral
o the
spond-

4445J. Math. Phys., Vol. 41, No. 7, July 2000 Asymptotic dynamics in quantum field theory

                    
The matrix element will then be found to be given by

^COUT
† uHint~ t !uC IN&52eE d3qd3k f~q1k!g~q!qmhm~k!e2 ict ~27!

wherec5Eq1k2Eq2vk . Now it is easy to see why the previous methodcannotbe applied in
this case. Since the photon is massless, the corresponding energy eigenvalue isvk5uku. The
expression forc, therefore, will not have partial derivatives inki at uku50, and the partial deriva-
tives inqj will vanish whenuku50, for any value ofq. It is this regime, whenuku50, which gives
rise to the problem of infrared divergences and the difficulties associated with its asym
dynamics cannot be avoided.

Following KF we shall compare the asymptotic dynamics of this scattering process with
governed by the scalar version of the asymptotic Hamiltonian~5!.

The system that we shall take for our comparison is then the one defined by theasymptotic
current given by

Jas
m~x!5 i E d3q

~2p!3 S 1

2Eq
D 2

b†~q!b~q!qmd3S x2
q

Eq
t D , ~28!

where we omit terms which do not contribute to this matrix element. The interaction Hamilto
is given by

Hint
as52eE d3xJas

m ~x!Am~x!. ~29!

If we take the incoming and outgoing wave packets~26! and contract, in the usual fashion
with Hint

as(t) then we obtain the amplitude,

^COUT
† uHint

as~ t !uC IN&52eE d3qd3k f~q!g~q!qmhm~k!e2 ic8t, ~30!

wherec85q"k/Eq2vk .
The asymptotic dynamics of the systems defined by the interaction Hamiltonians~19! and

~29!, and the wave packets~26!, will then be the same if we can prove that the difference betw
the integrals in~27! and ~30! vanish for asymptotically large time. This amounts to showing
following theorem whose proof is given in the Appendix.

Theorem 1: Using the notation above, we have

lim
t→6`

^COUT
† uHint

as~ t !2Hint~ t !uC IN&50. ~31!

This shows that the physics of scattering in scalar QED at large times is fully described b
asymptotic Hamiltonian~29!. The four point interaction vanishes and the three point one ca
described using the simple current~28!. We have thus extended the results of KF to scalar Q
and proved the spin independence of the asymptotic dynamics in abelian gauge theories.

IV. CONCLUSIONS

It is not necessary toassumethat the coupling constant asymptotically switches off. As
have seen, one can, for theories like massivef4, prove that the asymptotic dynamics is free or, f
theories like QED, with rather more effort, determine the form of this asymptotic interaction.
arguments for determining the asymptotic properties of interactions in quantum field the
proposed by Kulish and Fadeev,4 have been improved upon and made applicable to a more ge
type of interaction, including four point couplings. The principle refinement of our approach t
asymptotic dynamics is that we examine the asymptotic properties of matrix elements corre
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ing to specific interactions rather than considering operators. This has the advantage of re
only the machinery for the convergence of sequences ofc-numbers rather than the more elabora
needs of operator convergence.

In the case off4 theory it was found that, when the incoming wave packet had test func
with nonoverlapping supports in velocity space, the asymptotic interaction Hamiltonian is w
vanishing. This condition on the test functions, of having nonoverlapping support in vel
space, is exactly that which is required in the LSZ formalism and the construction of theS-matrix.
Our result is in complete agreement with perturbation theory and shows why it works.

In the case of scalar QED we used our methods to show that the matrix elements ass
with the four point interaction term are all asymptotically trivial which is again in line with
results of perturbation theory. For the three point interaction term of scalar QED, our me
show how the asymptotic dynamics associated with the event of a charged particle emi
photon can be shown to be exactly the same as that of a charged particle with known non
asymptotic dynamics, and this conformed to the approximation given by KF. The spin ind
dence of this result immediately translates to the fermionic theory.

What can we learn from this work about QED? First, that the coupling does not ‘‘switch
at large times. KF further showed that this implies that the Lagrangian matter field doenot
asymptotically approach the free field of the plane wave expansion. Rather there is a dis
factor which expresses itself in perturbation theory in the branch cuts~instead of poles! in the
matter field two point function. They drew the conclusion from this that it is not possibl
describe charged particles in QED. Although this paper supports the nonvanishing of the in
tion, we feel that this last conclusion is not justified. What one needs is to find the fields whi
asymptotically approach the plane wave expansion and can therefore be interpreted as part~It
is in fact clear from the start that the Lagrangian matter cannot hope to do this since it is not
invariant.! That such fields exist has been shown elsewhere16 and that their Green’s functions hav
a good pole structure has been amply demonstrated, see, e.g., Refs. 17–19. These are the
fields which should be identified with the charged particles seen in experiment. This has dr
consequences for the asymptotic states; these are theonly fields whose Green’s functions an
S-matrix elements can be calculated using free in-states and out-states. This is summarized
20, see also Ref. 18.

We would like to suggest here three further areas for study: massless QED is a theor
collinear divergences and as such a playground for understanding QCD. The asymptotic dy
of this theory21 requires further study, in particular the physical asymptotic fields need to
constructed. Finite temperature field theory is another area where infrared divergences are
tant, here, of course, the residual asymptotic dynamics of zero temperature will be acerba
excitations from the heat bath. Finally in QCD confinement shows that the interaction doe
switch off and the strong interaction between quarks and gluons is indeed supposed to gro
the separation. The application of the methods of asymptotic dynamics and the construc
physical fields at short distances22,23 could have implications for jets production. It has thou
been demonstrated that there is a topological obstruction to the construction of an isolated
or gluon,23 how this relates to nonperturbative effects in the asymptotic dynamics of QCD
topic for future work.
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APPENDIX: PROOF OF ASYMPTOTIC CONVERGENCE

In this section we shall provide a proof of Theorem 1. This is split into two parts: Firs
shall show that the two integrals
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E d3qd3k f~q!g~q!qmhm~k!e2 ic8t and E d3qd3k f~q1k!g~q!qmhm~k!e2 ic8t

are asymptotically equivalent. Then we shall show that the two integrals

E d3qd3k f~q1k!g~q!qmhm~k!e2 ic8t and E d3qd3k f~q1k!g~q!qmhm~k!e2 ict

are asymptotically equivalent. Together, they give the proof of the theorem. The first of
results is

Lemma 1: Let f,g,hm ,c8 be as defined in (30). Then the two integrals

E d3qd3k f~q!g~q!qmhm~k!e2 ic8t and E d3qd3k f~q1k!g~q!qmhm~k!e2 ic8t ~A1!

have the same asymptotic limit, i.e., ifIt is defined by

It5E d3q d3k @ f ~q1k!2 f ~q!#g~q!qmhm~k!e2 ic8t, ~A2!

thenIt→0 as utu→`.
Proof: We first take a fixed value ofq and consider

It~q!5E d3k @ f ~q1k!2 f ~q!#qmhm~k!e2 ic8t. ~A3!

This integral is clearly well defined and there is a a positive numberM , say, such that
*d3kuqmhm(k)u,M .

Now given «.0, choose ad.0 such thatu f (q1k)2 f (q)u,(«/2M ) if uku,d. Let U1

5$k:uku,d% and U25$k:uku.d/2% and letr1 ,r2 be a smooth partition of unity subordinate
U1 ,U2 , respectively. Write

I t
1~q!5E d3kr1~k!~ f ~q1k!2 f ~q!!qmhm~k!e2 ic8t,

~A4!

I t
2~q!5E d3k r2~k!~ f ~q1k!2 f ~q!!qmhm~k!e2 ic8t.

For the first of these we haveuI t
1(q)u,«/2 by construction. For the second, the integrand inI t

2(q)
is defined onU2 , which does not contain zero, so thatc8 is differentiable on the domain o
integration~i.e., U2!. One can then apply the method of stationary phase to this integral, usin
partial derivatives ofki , to show thatI t

2(q)→0 asutu→`.
We have shown thatIt(q)→0 asutu→`, for everyq. Note thatIt(q) satisfies the inequality

uIt(q)u<*d3ku f (q1k)2 f (q)uuqmhm(k)u, and the latter is in L1(q). The Lebesgue Dominate
Convergence Theorem24 may now be invoked to prove thatIt→0 asutu→`, and this completes
the proof. h

Lemma 1 means that we have to show that the two integrals,

E d3qd3k f~q1k!g~q!qmhm~k!e2 ic8t and E d3qd3k f~q1k!g~q!qmhm~k!e2 ict ~A5!

have the same asymptotic limits, wherec,c8 are defined in~30! and ~27!, respectively.
Before proceeding with this, let us recall the form of Taylor’s theorem for a smooth func

u, i.e.,
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u~q1k!2u~q!2] iu~q!ki5R~q,k!

and

uR~q,k!u
uku

→0 as uku→0. ~A6!

Thus, for a fixed value ofq and a given«.0, there is ad.0 such that if uku,d then
uR(q,k)u/uku,«. If the choice ofk is restricted to the set$k:uku,1%, then 't0.0 such that
;utu.t0 , we haveuR(q,k/t)u/uk/tu,« and from this we are able to conclude thatutR(q,k/t)u
,« for all utu.t0 .

We shall now prove our final theorem.
Theorem 2: Let f,g,hm ,c,c8 be defined as in (27) and (30). If we define It as

I t5E d3qd3k f~q1k!g~q!qmhm~k!~e2 ict2e2 ic8t!, ~A7!

then It→0 as utu→`.
Proof: In the following discussions the value of the functionsf ,g,hm in ~A3! are not important

and the only property that is required of them is that they are test functions. For conven
therefore, we shall write the integral as

I t5E d3qd3kh~q,k!~e2 ict2e2 ic8t!, ~A8!

with h(q,k) being a test function.
Take a fixed value ofq and write

I t~q!5E d3kh~q,k!e2 ict~12ei (c2c8)t!5E dS k

t DhS q,
k

t De2 ic(k/t)t~12eiF(k/t)t!. ~A9!

As in Lemma 1, we shall first show thatI t(q) has a zero asymptotic limit. In the latter integral w
have changed the variable fromk to k/t so that now we are writingc(k/t)5Eq1k/t2Eq2v (k/t)

andF(k/t)5Eq1k/t2Eq2(q"k)/(tEq). The latter expression is in a form that will allow the use
Taylor’s theorem.

Let U1 ,U2 be the open cover ofR3 given byU15$k:uku,1%, U25$k:uku. 1
2%, and letr1 ,r2

be a smooth partition of unity subordinate to this cover. We write the second integral in~A9! as
the sum of two integrals by incorporating this partition, i.e.,

I t
1~q!5E dS k

t D r1~k!hS q,
k

t De2 ic(k/t)t~12eiF(k/t)t!,

~A10!

I t
2~q!5E dS k

t D r2~k!hS q,
k

t De2 ic(k/t)t~12eiF(k/t)t!

5E dS k

t D r2~k!hS q,
k

t D ~e2 ic(k/t)t2e2 ic8(k/t)t!,

and we shall deal withI t
1(q) first.

Due to the presence ofr1 , the integral I t
1(q) is defined on$k:uku,1%. Now given «

.0,'d8.0 such that ifuuu,d8 then u12eiuu,«. From Taylor’s theorem,~see~A6! and the
paragraph following it! we can find at0.0 such that, for alluku,1, if utu.t0 then u(Eq1k/t2Eq
2(k"q)/(tEq))tu5utR(q,k/t)u,d8, say. Then ifutu.t0 , we have
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uI t
1~q!u<E dS k

t D UhS q,
k

t D U«5«E d3kuh~q,k!u, ~A11!

where the latter integral is well defined, is independent oft and has been obtained from th
previous one by changing the variables.

The next step is to show that the asymptotic limit ofI t
2(q) is zero. For this we consider the la

integral in ~A10! as the difference of the two obvious integrals given by their exponential te
i.e.,

I 1
2~ t,q!5E dS k

t D r2~k!hS q,
k

t De2 ic(k/t)t5E d3kr2~kt !h~q,k!e2 ic(k)t,

~A12!

I 2
2~ t,q!5E dS k

t D r2~k!hS q,
k

t De2 ic8(k/t)t5E d3kr2~kt !h~q,k!e2 ic8(k)t,

with the final forms ofI 1
2 , I 2

2 being obtained by the obvious change of variables.
We shall first examineI 1

2 and we begin by changing the variable fork again, this time tok
5v k̂ with uk̂u51 andv>0, i.e., polar coordinates. We now have

I 1
2~ t,q!5E dk̂E

0

`

v2dvr2~ k̂vt !h~q,k̂vt !e2 ic( k̂v)t. ~A13!

Note thatr2(kt)5r2( k̂vt) and this will be zero for 0<vt< 1
2. The exponent of the integra

in ~A13! is

c~ k̂v!5Eq1 k̂v2Eq2v

so that

j1~v!5
def]c

]v
5

q• k̂1v

Eq1 k̂v
21. ~A14!

As v→0, j1(v) tends, uniformly ink̂, to (q• k̂/Eq)21, and sinceuq• k̂/Equ<(uqu/Eq),1, we have
j1(v)5]c/]v is bounded, uniformly ink̂, strictly away from 0 in a neighborhood ofv50. It is
also easy to check thatj1(v) is nonzero for any finite value ofv.

We now have

I 1
2~ t,q!5E dk̂E

0

`

v2dvr2~ k̂vt !h~q,k̂v!S 2
1

i t j1~v! D ]

]v
e2 ic( k̂v)t

5
1

i t E dk̂E
0

`

dv
]

]v S r2~ k̂vt !v2h~q,k̂v!
1

j1~v! De2 ic( k̂v)t, ~A15!

with the latter expression being obtained after integration by parts inv, and noting that the
boundary terms vanish. This can then be written as the sum of two integrals

I 1
2~ t,q!5

1

i t E dk̂E
0

`

dvr2~ k̂vt !
]

]v
S v2h~q,k̂v!

j1~v!
D e2 ic( k̂v)t

1
1

i t E dk̂E
0

`

dvS ]

]v
r2~ k̂vt ! D S v2h~q,k̂v!

j1~v!
D e2 ic( k̂v)t. ~A16!
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If v1(q,k̂v)5
def

v2h(q,k̂v)/j1(v) then ]v1(q,k̂v)/]v is rapidly decreasing at infinity. The
first integral in ~A16! can now be disposed of since it is bounded
(1/utu)*dk̂*0

`dvu]v1(q,k̂v)/]vu and since this is well defined, vanishes asutu→`.
Before dealing with the second integral in~A16! it is worthwhile examining the properties o

the derivatives ofr2 . We can write this function asr2( k̂v)5r( k̂,v), emphasizing the fact tha
r2 is a function of two variables. Now let us write

%~ k̂v!5
def ]

]v
r2~ k̂v!5]2r~ k̂,v!. ~A17!

Sincer2 is smooth andr2( k̂v)51 for v.1, the function%( k̂v) is a smooth function which ha
the important property that it is zero forv.1, i.e.,% has its support in$v:1/2<v<1%.

The second integral in~A16!, which we denote byJ 1
t (q), is now

J 1
t ~q!5

1

i t E dk̂E
0

`

v2dv
]

]v
~r2~ k̂vt !!v1~q,k̂v!e2 ic( k̂v)t

5
1

i t E dk̂E
0

`

v2dv t%~ k̂vt !v1~q,k̂v!e2 ic( k̂v)t

5
1

i E dk̂E
0

`

v2dv%~ k̂vt !v1~q,k̂v!e2 ic( k̂v)t. ~A18!

The last integral in~A18! is now written in a form which is more convenient and which is obtain
by the following changes of variables. First replacek̂v by k, and then replacek by k/t. The form
of J 1

t (q) then changes to

J 1
t ~q!5

1

i E dS k

t D%~k!v1S q,
k

t De2 ic(k/t)t. ~A19!

In order to deal with~A19! we shall first have to examine the second integral in~A12!.
Applying the same methods toI 2

2 as we have toI 1
2 one can easily show thatI 2

2 can also be written
as the sum of two integrals, as in~A16!, but with the exponentc replaced withc8 andj1 replaced
with j2 , where

j2~v!5
def]c8

]v
~ k̂v!5

q• k̂

Eq
21. ~A20!

Thus,

I 2
2~ t,q!5

1

i t E dk̂E
0

`

dvr2~ k̂vt !
]

]v
S v2h~q,k̂v!

j2~v!
D e2 ic8( k̂v)t

1
1

i t E dk̂ E
0

`

v2dv
]

]v
~r2~ k̂vt !!S h~q,k̂v!

j2~v!
D e2 ic8( k̂v)t, ~A21!

cf. ~A16!. The functionj2 has similar properties toj1 and the first integral in~A21! vanishes
asymptotically in a similar fashion to the corresponding integral in~A16!. This leaves us with the
latter integral in~A21!, which we shall write asJ 2

t (q). Using the same changes of variables, t
can can be written as
                                                                                                                



e

of

-

4451J. Math. Phys., Vol. 41, No. 7, July 2000 Asymptotic dynamics in quantum field theory

                    
J 2
t ~q!5

1

i E d3 S k

t D%~k!v2S q,
k

t De2 ic8(k/t)t. ~A22!

The final objective is to show thatJ 1
t (q)2J 2

t (q) is asymptotically vanishing and this can b
achieved in two steps.

First defineJ 3
t (q) as

J 3
t ~q!5

1

i E d3 S k

t D%~k!v1S q,
k

t De2 ic8(k/t)t, ~A23!

i.e., thev2 in J 2
t (q) is replaced byv1 . Then it is straightforward to prove, along the lines

Lemma 1, that, for allq, we haveJ 2
t (q)2J 3

t (q)→0 asutu→`.
Secondly, we must show thatJ 1

t (q)2J 3
t (q)→0 asutu→`. This is also straightforward and

can be fashioned along the lines of the proof thatI t
1(q)→0 as utu→` ~see~A10! and the para-

graph that follows it.! We omit the details.
This proves that, for everyq, I t(q)→0 asutu→` ~see~A9!!. The Lebesgue Dominated Con

vergence Theorem now implies thatI t→0 asutu→`, as required. h

1I. Itzykson and J.-B. Zuber,Quantum Field Theory~McGraw–Hill, Singapore, 1980!.
2J. Dollard, J. Math. Phys.5, 729 ~1964!.
3V. Chung, Phys. Rev. B140, 1110~1965!.
4P. P. Kulish and L. D. Faddeev, Theor. Math. Phys.4, 745 ~1970!.
5H. D. Dahmen and F. Steiner, Z. Phys. C11, 247 ~1981!.
6C. A. Nelson, Nucl. Phys. B181, 141 ~1981!.
7G. Marchesini and B. R. Webber, Nucl. Phys. B238, 1 ~1984!.
8B. R. Webber, Nucl. Phys. B238, 492 ~1984!.
9F. V. Havemann, ‘‘Collinear Divergences and Asymptotic States,’’ Zeuthen Report No. PHE-85-14, 1985~unpublished!,
scanned at KEK.

10R. Kubo, Prog. Theor. Phys.73, 1235~1985!.
11S. Catani, M. Ciafaloni, and G. Marchesini, Nucl. Phys. B264, 588 ~1986!.
12H. F. Contopanagos and M. B. Einhorn, Phys. Rev. D45, 1291~1992!.
13B. M. Pimentel and J. L. Tomazelli, Prog. Theor. Phys.93, 1105~1995!, hep-th/9409115.
14V. Guillemin and S. Sternberg,Geometric Asymptotics~American Mathematical Society, Providence, 1977!.
15J. Glimm and A. Jaffe,Quantum Physics: A Functional Integral Point of View~Springer, New York, 1987!.
16E. Bagan, M. Lavelle, and D. McMullan, Ann. Phys.282, 471 ~2000!.
17E. Bagan, M. Lavelle, and D. McMullan, Phys. Rev. D56, 3732~1997!, hep-th/9602083.
18E. Bagan, M. Lavelle, and D. McMullan, Phys. Rev. D57, 4521~1998!, hep-th/9712080.
19E. Bagan, M. Lavelle, and D. McMullan, Ann. Phys.282, 503 ~2000!.
20E. Bagan, M. Lavelle, and D. McMullan, Phys. Lett. B477,396 ~2000!.
21R. Horan, M. Lavelle, and D. McMullan, Pramana, J. Phys.51, 317 ~1998!, hep-th/9810089,51, 235~E! ~1998!.
22M. Lavelle and D. McMullan, Phys. Lett. B436, 339 ~1998!, hep-th/9805013.
23M. Lavelle and D. McMullan, Phys. Rep.279, 1 ~1997!, hep-ph/9509344.
24W. Rudin,Real and Complex Analysis~McGraw–Hill, London, 1970!.
                                                                                                                



ndom
stand
bound-
r some

rum

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 7 JULY 2000

                    
Wave operators for the surface Maryland model
Vojkan Jakšića)
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We study scattering properties of the discrete LaplacianH on the half-space
Z1

d115Zd3Z1 with the boundary conditionc(n,21)5l tan(pa•n1u)c(n,0),
whereaP@0,1#d. We denote byH0 the Dirichlet Laplacian onZ1

d11. Khoruzenko
and Pastur@Phys. Rep.288, 109–126~1997!# have shown that ifa has typical
Diophantine properties then the spectrum ofH on R\s(H0) is pure point and that
corresponding eigenfunctions decay exponentially. We demonstrated in an earlier
paper@Lett. Math. Phys.45, 185 ~1998!# that for everya independent over the
rationals the spectrum ofH on s(H0) is purely absolutely continuous. In this paper,
we continue the analysis ofH on s(H0) and prove that whenevera is independent
over the rationals, the wave operatorsV6(H,H0) exist and are complete on
s(H0). Moreover, we show that under the same conditionsH has no surface states
on s(H0). © 2000 American Institute of Physics.@S0022-2488~00!00107-9#

I. INTRODUCTION

This work is a continuation of our series of papers~Refs. 1–3! which deals with spectral and
scattering theory of the discrete Laplacian on the half-space with a quasiperiodic or ra
boundary condition. This program was initiated in Ref. 4, and its principal goal is to under
the formation and the propagation properties of surface states in regions with corrugated
aries. The history of this problem and its physical aspects are discussed in Refs. 4 and 5. Fo
recent rigorous work on the subject we refer the reader to Refs. 1–12.

Let us recall the model. Letd>1 be given and letZ1
d11

ªZd3Z1 , whereZ15$0,1,...%. We
denote the points inZ1

d11 by n5(n,x), nPZd, xPZ1 . Let H be the discrete Laplacian onH
ª l 2(Z1

d11) with the boundary conditionc(n,21)5V(n)c(n,0). WhenV50 the operatorH
reduces to the Dirichlet Laplacian which we denote byH0 . The operatorH acts as

~Hc!~n,x!5H ( un2n8u11ux2x8u51c~n8,x8! if x.0

c~n,1!1( un2n8u151c~n8,0!1V~n!c~n,0! if x50
,

whereunu15( j 51
d unj u. Note that operatorH can be viewed as the Schro¨dinger operator

H5H01V, ~1!

where the potentialV acts only along the boundary]Z1
d115Zd, that is, (Vc)(n,x)50 if x.0 and

(Vc)(n,0)5V(n)c(n,0). We adopt this point of view in the sequel. We recall that the spect
of H0 is purely absolutely continuous and that

s~H0!5@22~d11!,2~d11!#.

a!Electronic mail: vjaksic@matrix.cc.uottowa.ca
44520022-2488/2000/41(7)/4452/12/$17.00 © 2000 American Institute of Physics
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The starting point of this paper is the following result proven in Ref. 9: For any boun
potentialV the wave operators

V6
ªs2 lim

t→7`

eitHe2 i tH 0 ~2!

exist. An obvious question is: Under what conditions onV are the wave operatorsV6 complete on
s(H0)? In this paper we answer this question ifV is the Maryland potential. Some physic
implications of the completeness of the wave operators are discussed in the following.

Before we introduce the surface Maryland model let us briefly recall the usual Mary
model. Leta5(a1 ,...,ad)P@0,1#d anduP@0,p# be given. TheMaryland potentialon Zd is the
function

Va,u~n!5tan~pa•n1u!, nPZd. ~3!

To avoid singular cases, we will always assume that for a givena, u is chosen so that;n,

pa•n1uÓ0 modp/2. ~4!

We remark thatu is an auxiliary parameter which will play only a small role in what follows. T
results described and proven in this paper hold for allu which satisfy~4!.

The usual Maryland model is a family of operators onl 2(Zd) of the form hl,a,u5h0

1lVa,u , wherel is a real parameter andh0 the discrete Laplacian onl 2(Zd). This model has
been extensively studied in Refs. 13–20. We say thata5(a1 ,...,ad) is independent over the
rationals if for any choice of rational numbersr 1 ,...,r dPQ,

( r kak¹Q.

We say thata has typical Diophantine properties if there exist constantsC,k.0 such that

un•a2mu.Cunu2k ~5!

for all nPZd andmPZ. The set ofa’s in @0,1#d for which ~5! holds has Lebesgue measure 1.
a has typical Diophantine properties then for alllÞ0, s(hl,a,u)5R, the spectrum is pure point
the eigenvalues ofhl,a,u are simple, and the corresponding eigenfunctions decay exponent
~See Refs. 18 and 21.! Thus, in any dimension and for typicala, the potential~3! is strongly
localizing.

The surface Maryland model is the family of operators onl 2(Z1
d11) defined by

Hl,a,uªH01lVa,u , ~6!

where Va,u acts only along the boundary]Z1
d115Zd. It follows from the existence of wave

operators~2! that for anyl anda, s(H0),sac(Hl,a,u).
Notation: In the sequel, we use the shorthandcd52(d11), sos(H0)5@2cd ,cd#.
To the best of our knowledge, model~6! was first studied in Ref. 5, where the following resu

was proven.
Theorem I.1 „Ref. 5…: Assume thata has typical Diophantine properties. Then, for alll

Þ0, s(Hl,a,u)5R and the spectrum of H on the setR\(2cd ,cd) is pure point. On this set, the
eigenvalues are simple and the corresponding eigenfunctions decay exponentially.
In Ref. 1 we have proven the following result.

Theorem I.2 „Ref. 1…: Assume thataP@0,1#d is independent over the rationals. Then, for a
l, the spectrum of Hl,a,u on (2cd ,cd) is purely absolutely continuous.
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We now turn to the subject of this paper, namely the scattering theory forHl,a,u on s(H0).
We first recall some basic facts. LetA andB be self-adjoint operators on a Hilbert spaceH. We
denote by1Q(A) the spectral projection ofA onto the Borel setQ. Assume that for a given Bore
setQ the wave operators

W6
ªs2 lim

t→7`

eitBe2 i tA1Q~A! ~7!

exist. Note that for any reals, eisBW65W6eisA, which yields that for any bounded Borel functio
f, f (B)W65W6 f (A). In particular, RanW6,Ran1Q(B). The wave operatorsW6 arecomplete
on Q if RanW65Ran1Q(B). One can easily show that the wave operatorsW6 are complete onQ
iff the wave operators

U6
ªs2 lim

t→7`

eitAe2 i tB1Q~B! ~8!

exist.
As we have already remarked, it is known that the wave operators

V6
ªs2 lim

t→7`

eitH l,a,ue2 i tH 0

exist for all l and a. If a is not independent over the rationals,Va,u is periodic and the wave
operatorsV6 in general are not complete ons(H0)—an additional scattering channel associa
with the surface states may overlaps(H0). The simplest case where this happens isa50. Then,
Va,u(n)5tanu is a constant boundary potential and the operatorHl,0,u is easily diagonalized by
separation of variables. Setaªl tanu. If uau.1, then

H5Hac~Hl,0,u!5Hac
~1!

% Hac
~2! ,

where both subspacesHac
(1) andHac

(2) are invariant underH and

s~HuH
ac
~1!!5s~H0!, ~9!

s~HuH
ac
~2!!5@22d,2d#1a1a21. ~10!

The generalized eigenfunctions associated with channel~9! do not decay in any direction~bulk
waves! while the generalized eigenfunctions associated with channel~10! decay exponentially in
the x direction ~surface waves!. Moreover,

RanV65Hac
~1! .

Thus if channels~9! and ~10! overlap then the wave operatorsV6 are not complete ons(H0).
If a is independent over the rationals, the natural question is whether there exists a non

scattering channel ons(H0). Our first result is
Theorem I.3: Assume thata is independent over the rationals. Then, for alll, the wave

operatorsV6 are complete on(2cd ,cd).
Theorem I.3 implies that for the surface Maryland model the nontrivial scattering chann

s(H0) may exist only in the periodic case. It also suggests that the surface states with ener
s(H0) may exist only in the periodic case, and we turn to this question now.

Physically, the surface states are wave packets which are concentrated near the surfac
medium for all time. The bulk states are the wave packets which propagate away from the s
of the medium. There are obviously many different ways to make these heuristic notions
ematically precise~see, e.g., Refs. 4 and 22 for alternative definitions!. We adopt the definition
proposed in Ref. 10. LetR>0 be a positive integer and
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GR5$~n,x!PZ1
d11:0<x<R%.

We denote by1R the characteristic function of the setGR and we use the same symbol for th
corresponding multiplication operator.

Let V be an arbitrary boundary potential andH5H01V. For anycPH we set

P~R,T,c!ª
1

2T E
2T

T

i1Re2 i tHci2dt.

The above-mentioned heuristic description of the bulk and surface states can be quanti
follows: We say that the vectorc is a bulk state if

;R, lim
T→`

P~R,T,c!50, ~11!

and that it is a surface state if

lim
R→`

lim
T→`

inf P~R,T,c!5ici2.

We denote byHb the set of all bulk states, and byHs the set of all surface states of the opera
H. These sets have the following properties:

Proposition I.4: Let V be an arbitrary boundary potential and H5H01V. Then,

~i! Hb and Hs are closed subspaces invariant under H.
~ii ! Hb'Hs .
~iii ! Ran1R\s(H0)(H),Hs , Hb,Ran1s(H0)(H).

This proposition is proven in Ref. 10. We remark that Proposition I.4 will not be used in
sequel, except for the obvious fact thatHb is a closed set.

With the above-mentioned preliminaries, we can state our second result.
Theorem I.5: Assume thata is independent over the rationals. Then, for alll, there exists a

setD, dense inRan1(2cd ,cd)(Hl,a,u), such that forcPD and R>0,

E
R

i1Re2 i tH l,a,uci2dt,`. ~12!

In particular, Ran1(2cd ,cd)(Hl,a,u),Hb .
Remark:The estimate~12! is the main technical result of this paper. It immediately impl

the absence of surface states with energies in (2cd ,cd). Also, we will prove Theorem I.3 using
this estimate and Kato’s theory of smooth perturbations.

Theorems I.1, I.2, I.3, and I.5 complete the program of Ref. 4 for the surface Maryland m
We will further discuss the relation between these results and the program of Ref. 4 in Se

II. THE KEY ESTIMATE

Notation: In the sequel, whenever the meaning is clear within the context, we will drop
subscriptsl, a, and u. Thus, we writeV for Va,u , H for Hl,a,u , etc. We will also use the
shorthandR(z)ª(H2z)21.

The goal of this section is to prove
Theorem II.1: Assume thata is independent over the rationals and that@a,b#,(2cd ,cd).

Then, for all mPZd, l and R>0,

sup
eÞ0,eP@a,b#

i1RR~e1 i e!d~m,0!i,`.
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For n,mPZ1
d11 we set

R~m,n;z!ª~dmu~H2z!21dn!.

We first note that

sup
eÞ0,eP@a,b#

i1RR~e1 i e!d~m,0!i5 sup
eÞ0,eP@a,b#

(
nPGR

uR~~m,0!,n;e1 i e!u2. ~13!

Let T5R/2pZ be the unit circle andTd thed-dimensional torus. We denote the points inTd

by f5(f1 ,...,fd) and by df the usual Lebesgue measure. LetC65$z:6Im z.0%, F(f)
52(k51

d cosfk , and, forzPC6 , let r (f,z) be the root of the quadratic equation

X1X211F~f!5z, ~14!

which satisfiesur (f,z)u,1. One easily verifies thatzPC6⇒6Im r(f,z),0. Explicitly, for z
PC6 , r (f,z) is given by

r ~f,z!5 1
2~F~f!2z2A~F~f!2z!2246!, ~15!

where the branch of the square root is fixed by

Aw65Ax1 iy5
&

2
~Auwu1x6 iAuwu2x!, 6Im w.0.

Obviously,r (f,z) has a well-defined continuous extension fromTd3C6 to Td3C̄6 . The values
of these extensions along the real axis we denote byr (f,e6 i0).

We denote the other root of Eq.~14! by r̃ (f,z). Clearly, r̃ (f,z)51/r (f,z), 6Im r̃(f,z).0
for zPC6 , etc.

Let

R̂~~m,0!,~f,x!;z!ª~2p!2d/2 (
nPZd

R~~m,0!,~n,x!;z!einf.

Lemma II.2: Assume that zPC6 . Then for any x>0,

R̂~~m,0!,~f,x!;z!5R̂~~m,0!,~f,0!;z!r ~f,z!x. ~16!

In particular, Theorem II.1 holds if and only if for all mPZd and l,

sup
eÞ0,eP@a,b#

E
Td

uR̂~~m,0!,~f,0!;e1 i e!u2df,`.

Proof: The proof of relation~16! is elementary, see, e.g., Ref. 2 or 9. Clearly,

(
nPGR

uR~~m,0!,n;z!u2>~2p!2dE
Td

uR̂~~m,0!,~f,0!;z!u2df,

and sinceur (f,z)u,1, relation~16! yields

(
nPGR

uR~~m,0!,n;z!u2<
R11

~2p!d E
Td

uR̂~~m,0!,~f,0!;z!u2df.

These relations and~13! yield the second part of the lemma. h

In the sequel we adopt the shorthand
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R̂m~f;z!ªR̂~~m,0!,~f,0!;z!.

The following result also follows from a simple computation. For the proof we refer the read
Ref. 2 or 9.

Proposition II.3: Assume thatl50. Then, for all mPZd,

R̂m~f,z!52~2p!2d/2eimfr ~f,z!.

In particular, for l50 Theorem II.1 holds.
In the sequel we will assume thatlÞ0.

We remark that all the results described so far are valid for an arbitrary boundary potenV.
To proceed, we have to use the particular structure of the Maryland potential. Let

hm~f!ª~2p!2d/2eimf~11e2 i ~2u12pa!!.

The following lemma was proven in Ref. 1.
Lemma II.4: Assume that zPC6 . Then, forfPTd,

e22iuR̂m~f22pa;z!~l i 2 r̃ ~f22pa,z!!2R̂m~f;z!~l i 1 r̃ ~f,z!!5hm~f!. ~17!

In what follows we distinguish two cases, depending whetherl and Imz have the same sign o
not:

Case 1. 6l.0, zPC6 .
Case 2. 6l.0, zPC7 .

We set

R̃m~f;z!ªR̂m~f;z!~l i 6 r̃ ~f,z!!,

and

g~f,z!ª
l i 7 r̃ ~f,z!

l i 6 r̃ ~f,z!
,

where we take651 in case 1 and652 in case 2. The signs are chosen so that forlÞ0 and
zPC6 ,

ug~f,z!u,1.

It follows from Lemma II.4 that in case 1,

e22iuR̃m~f22pa;z!g~f22pa,z!2R̃m~f;z!5hm~f!, ~18!

and that in the Case 2,

e22iuR̃m~f22pa;z!2R̃m~f;z!g~f,z!5hm~f!. ~19!

Equations~18! and ~19! will play a key role in what follows.
Lemma II.5: Assume that for all mPZd and lÞ0,

sup
eÞ0,eP@a,b#

E
Td

uR̃m~f;e1 i e!u2df,`.

Then Theorem II.1 holds.
Proof: It follows from the definition ofR̃m that
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uR̃m~f,z!u<ulu21uR̂m~f,z!u.

This observation and Lemma II.5 yield the statement. h

For ePR andd.0 we set

D~e,d!ª$z:RezP~e2d,e1d!,0,uIm zu<1%.

We will need
Lemma II.6: Let e0P(2cd ,cd) be given. Then there existd.0 and an open setO,Td, such

that

supug~f,z!u,1, ~20!

where supremum is taken overfPO and zPD(e0 ,d).
Proof: It follows from the definition ofg(f,z) that it suffices to show that

infuIm r̃ ~f,z!u.0, ~21!

where the infimum is taken as in~20!. Note that it follows from ~15! that for any e0

P(2cd ,cd) there existsf0PTd such that,

uIm r̃ ~f0 ,e06 i0!u.0. ~22!

Since the functionr̃ is continuous on the setsTd3C̄6 , the estimate~21! follows from ~22!. h

In the sequel we fixmPZd andlÞ0. Our next result is an improvement of the key estim
in Ref. 1.

Proposition II.7: Let e0P(2cd ,cd) be given and assume thata is independent over the
rationals. Then there existd.0 such that

supE
Td

uR̃m~f;z!udf,`,

where the supremum is taken over zPD(e0 ,d).
Remark:This proposition~see Ref. 1! implies that the spectrum ofH on (2cd ,cd) is purely

absolutely continuous.
Proof: We will consider case 1. One argues similarly in case 2. It follows from Eq.~18! that

for all zPC6 ,

uR̃m~f;z!u<2~2p!2d/21ug~f22pa,z!uuR̃m~f22pa;z!u.

Integrating overTd we derive

E
Td

uR̃m~f;z!udf<C01E
Td

ug~f,z!uuR̃m~f;z!udf, ~23!

whereC052(2p)d/2. Now letd andO be as in Lemma II.6. Splitting the integrals in~23! overO
andTd\O we derive

E
O

~12ug~f;z!!uR̃m~f;z!udf<C01E
O

~ ug~f;z!u21!uR̃m~f;z!udf<C0 ,

where we used thatug(f,z)u,1. It now follows from Lemma II.6 that there exists a constantC
such that
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supE
O

uR̃m~f;z!udf,C, ~24!

where the supremum is taken overzPD(e0 ,d).
Let Ta :Td°Td be the translation mapTa(f)5f12pa. We setOk5Ta

k (O). It follows
from Eq. ~18! and the estimate~24! that

supE
O1

uR̃m~f;z!udf,C01C, ~25!

and inductively that for anyk,

supE
Ok

uR̃m~f;z!udf,kC01C, ~26!

where the supremums are taken overzPD(e0 ,d). Sincea is independent over the rationals, th
translationTa is an ergodic map, and the open setsOk cover Td. Picking a finite subcover, we
obtain the statement. h

We are now able to prove
Proposition II.8: Let e0P(2cd ,cd) be given. Then there existsd.0 such that

supE
Td

uR̃m~f;z!u2df,`, ~27!

where supremum is taken over zPD(e0 ,d).
Proof: We again consider case 1. It follows from Eq.~18! that

E
Td

uR̃m~f;z!u2df<414~2p!2d/2E
Td

ug~f,z!uuR̃m~f;z!udf1E
Td

ug~f,z!u2uR̃m~f;z!u2df.

It follows from Proposition II.7 that there existd.0 and a constantC, independent ofz, such that
for zPD(e0 ,d),

E
Td

uR̃m~f;z!u2df<C1E
Td

ug~f,z!u2uR̃m~f;z!u2df.

From this point the proof follows line by line the proof of Proposition II.7. h

We are now ready to finish the
Proof of Theorem II.1:It follows from Proposition II.8 that for anyeP@a,b# we can findd

.0 so that the estimate~27! holds. Clearly, the open sets (e2d,e1d) cover @a,b#. Picking a
finite subcover, we derive the statement from Proposition II.5. h

III. DYNAMICS

In this section we establish some dynamical consequences of Theorem II.1 and prove
rem I.5. In the sequel we assume that the conditions of Theorem II.1 are satisfied and weR
>0, mPZd, l anda.

Proposition III.1: LetxPC0
`(R) be such thatsuppx,(2cd ,cd). Then

sup
eÞ0

E
R

i1RR~e1 i e!x~H !d~m,0!i2de,`.

Proof: Let @a,b# be an interval such that suppx,@a,b#,(2cd ,cd), where the first inclusion
is proper. Then there is a constantC such that;ePR\@a,b#,
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sup
eÞ0

i1RR~e1 i e!x~H !d~m,0!i<C/dist~e,suppx!.

Thus, it suffices to show that

sup
eÞ0,eP@a,b#

i1RR~e1 i e!x~H !d~m,0!i,`.

Let x̃ be an almost analytic extension ofx. By the Helffer–Sjo¨strand formula,

x~H !5
1

p E
C

]x̃~z!

] z̄
R~z!dx dy.

For the basic facts about almost analytic extensions and the Helffer–Sjo¨strand formula we refer
the reader to Ref. 23. It follows that for anywPC6 ,

1RR~w!x~H !d~m,0!5
1

p E
C
A~w,z!d~m,0!dx dy, ~28!

where

A~w,z!ª
]x̃~z!

] z̄

1

z2w
1R~R~w!2R~z!!. ~29!

In deriving ~28! we used the resolvent identity and that

E
C

iA~w,z!d~m,0!idx dy,`.

We recall that by the construction of the almost analytic extensions, suppx̃ is a compact set and
x̃(z)50 for Rez¹suppx. We denote byB(z0 ,r ) the ball of centerz0 and radiusr. If e
P@a,b# andeÞ0, we derive from~28!, ~29!, and Theorem II.1 that there exist constantsC andr,
independent ofe ande, so that

i1RR~e1 i e!x~H !d~m,0!i<CE
B~0,r !

1

uz2e2 i eu
dx dy.

This inequality yields

sup
eÞ0,eP@a,b#

i1RR~e1 i e!x~H !d~m,0!i<sup
z0

E
B~z0 ,r !

1

uzu
dx dy,`.

h

Proposition III.2: LetxPC0
`(R) be such thatsuppx,(2cd ,cd). Then,

E
R

i1Re2 i tHx~H !d~m,0!i2dt,`.

Proof: Let e.0 be given. By the well-known identity~see, e.g., Ref. 24, Sec. XIII.7!,

2pE
R
e22eutui1Re2 i tHx~H !d~m,0!i2dt5(

6
E

R
i1RR~e6 i e!x~H !d~m,0!i2de. ~30!

The result follows from this identity, Proposition III.1, and the Monotone convergence theo
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Proof of Theorem I.5:It is shown in Ref. 9 that the set$d (m,0) :mPZd% is cyclic for H. Let D
be the linear span of the set

$x~H !d~m,0! :mPZd,xPC0
`~R!,suppx,~2cd ,cd!%.

The setD is dense in Ran1(2cd ,cd)(H), and forcPD the relation

E
R

i1Re2 i tHci2dt,`,

holds by Proposition III.2. h

IV. WAVE OPERATORS

In this section we prove Theorem I.3. In the sequel we assume that the conditions o
theorem are satisfied and we fixl anda.

The proof of Theorem I.3 is based on Kato’s theory of smooth perturbations. We refe
reader to Ref. 24, Sec. XIII.7, for basic notions and results concerning this theory.

Lemma IV.1: If the wave operators

Ṽ6
ªs2 lim

t→7`

eitH 0e2 i tH1~2cd ,cd!~H ! ~31!

exist then the wave operatorsV6 are complete on(2cd ,cd).
The proof of this lemma is elementary.

Lemma IV.2: For anycPRan1(2cd ,cd)(H),

lim
utu→`

10e2 i tHc50. ~32!

Proof: Let D be as in Theorem I.5 andcPD. Let

w~ t !ªeitH10e2 i tHc.

By Theorem I.5,*iw(t)i2dt,`. Moreover, since@H,10#5@H0 ,10#, iw8(t)i<2iH0i . This
yields that limutu→` w(t)50 ~see Exercise 62 in Ref. 24!. SinceD is dense in Ran1(2cd ,cd)(H) the
statement follows. h

We will also make use of the following elementary result~for the proof see Ref. 9!
Lemma IV.3: For all R>0 the projection1R is H0-smooth. In particular, there are constan

CR such that for allcPH,

E
R

i1Re2 i tH 0ci2 dt<CRici2. ~33!

In the sequel we use the shorthand10̄ª1210 . Let T be a linear operator defined by

Td~n,x!5H 2d~n,1! if x50

d~n,0! if x51

0 if x.1

.

The next result we need is
Lemma IV.4: H010̄210̄H5T.
Proof: Since 10̄V50, we have to show that@H0 ,10̄#5T. This relation follows by direct

computation. h
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Proof of Theorem I.3:It follows from Lemmas IV.1 and IV.2 that to prove the statemen
suffices to show that for a set of vectorsc dense in Ran1(2cd ,cd)(H), the limits

lim
t→7`

eitH 010̄e2 i tHc ~34!

exist. The proof of this fact follows closely Theorem XIII.24 in Ref. 24.
Let D be as in Theorem I.5 andcPD. Let

w~ t !5eitH 010̄e2 i tHc,

and letfPH be arbitrary. Then, the functiont°(fuw(t)c) is differentiable and

d

dt
~fuw~ t !!5 i ~e2 i tH 0fuTe2 i tHc!,

where we used Lemma IV.4. Therefore, ift.s,

u~fuw~ t !2w~s!!u<E
s

t

u~11e2 i tH0fuT11e2 i tHc!udt

<S E
R

i11e2 i tH0fi2dt D 1/2S E
s

t

i11e2 i tHci2dt D 1/2

,

where we used thatT511T11 andiTi51. It follows from Lemma IV.3 that for some constantC,

iw~ t !2w~s!i<CS E
s

t

i11e2 i tHci2dt D 1/2

.

SincecPD, by Theorem I.5 the integrand on the right-hand side of the last equation is inL1(R).
Therefore the sequencew(t) is Cauchy ast→` or t→2`. SinceD is dense in Ran1(2cd ,cd)

3(H), this yields the statement. h

V. DISCUSSION

The reader may have noticed that the arguments in Secs. III and IV did not use the par
structure of the Maryland potential. These arguments are based only on Theorem II.1, and
easily cast in an abstract form~see Refs. 9 and 10!. In particular, we have

Theorem V.1: Let V be an arbitrary boundary potential and H5H01V. Assume that for all
mPZd and @a,b#,(2cd ,cd),

sup
eÞ0,eP@a,b#

i10R~e1 i e!d~m,0!i,`. ~35!

Then, the wave operatorsV6 are complete on(2cd ,cd) and Ran1(2cd ,cd)(H),Hb .
We remark that Lemma II.2 shows that if~35! holds then this relation also holds with1R instead
of 10 .

The most interesting question is whether suitable analogs of Theorems I.3, I.5, hold ifV is a
random process onZd. It is our hope that Theorem V.1~or some variant of it! will be also useful
in the study ofH with a random boundary potential.

The other point we wish to make is more conceptual. LetV be a given boundary potentia
SinceH0 has no surface states, the question whetherH5H01V has surface states is the questi
whether surface states can form under the influence ofV. A physically different and perhaps mor
interesting situation arises if one considers the operatorH5H01U01V, whereU0 is a constant
or periodic boundary potential for whichH01U0 has surface states. In this case, one can ex
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a richer class of phenomena related to the effects of the perturbationV on the existing surface
channel. For a related discussion in the context of the random boundary potentials we re
reader to Ref. 3. For the surface Maryland model we have the following result. LetVa be the
constant boundary potentialVa(n)5a and

H5H01Va1lVa,u .

Theorem V.2: Let a be arbitrary and assume thata is independent over the rationals. The
for all l, the wave operatorsV6 are complete on(2cd ,cd) and Ran1(2cd ,cd)(H),Hb .
The proof of this result is identical to the proof of Theorems I.3 and I.5. The only change is
in Eq. ~17! @and, consequently, in Eqs.~18!, ~19!# one has to replacer̃ (f,z) with r̃ (f,z)2a.
Sincea is a real number, this change does not affect the rest of the argument. We also rema
the result of Khoruzenko and Pastur, Theorem I.1, also holds forH and arbitrarya.

ACKNOWLEDGMENTS

We are grateful to Y. Last, L. Pastur, and B. Simon for many discussions on the subject
paper. The research of the first author~V.J.! was supported in part by NSERC and that of t
second author~S.M.! by NSF. Part of this work was done during the visit of S.M. to the Univers
of Ottawa which was supported by NSERC.
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We formulate a superspace field theory which is shown to be equivalent to thec
2 c̄ symmetric BRS/anti-BRS invariant Yang–Mills action. The theory uses a six-
dimensional superspace and one OSp~3,1u2! vector multiplet of unconstrained su-
perfields. We establish a superspace WT identity and show that the formulation has
an asymptotic OSp~3,1u2! invariance as the gauge parameter goes to infinity. We
give a physical interpretation of this asymptotic OSp~3,1u2! invariance as a sym-
metry transformation among the longitudinal/time like degrees of freedom ofAm

and the ghost degrees of freedom. ©2000 American Institute of Physics.
@S0022-2488~00!01807-7#

I. INTRODUCTION

Non-Abelian gauge theories are endowed with local gauge invariance.1 Local gauge invari-
ance leads to relations between Green’s functions of gauge and or ghost fields collectively d
by WT identities.2 Formulation of gauge theories in covariant gauges necessitates the inclus
unphysical degrees of freedom corresponding to the longitudinal and the timelike gauge
Unitarity of the S matrix ~whenever defined! requires that these modes do not contribute to
intermediate states in the cutting equations.3 The contributions from such intermediate states
canceled by contributions from diagrams containing ghost intermediate states. This is d
strated in gauge theories with the use of the~on-shell! WT identities.

Thus the cancellation of intermediate states coming from longitudinal/timelike gauge de
of freedom and the ghost degrees of freedom~we denote this set byR! together is one of the
essential consequences of WT identities. These, in turn, follow from the BRS symmetry~or gauge
invariance!.2 This, in turn, suggests that there should be a formulation of BRS symmetry wher
above mentioned set ofR degrees of freedom are explicitly linked together.

There exist many attempts to link (A,c,c̄) fields together. In view of both the commuting an
anticommuting degrees of freedom involved, this points to a ‘‘supersymmetric/superfields’
mulation. A number of superspace/superfield formulations have been written down which e
the BRS symmetry in terms of translations or rotations in superspace.4,5 For a brief summary of
superspace/superfields formulations and their comparison see the comments in Ref. 6, an
ences therein.

The superspace formulation of Ref. 7 constructed superfieldsA(x,u,ū),c(x,u,ū) and
c̄(x,u,ū) by hand by ascribing the values of the additional components~Au ,Aū ,..., etc.! equal to
the BRS/anti-BRS variations8 of these. They then exhibited the BRS/anti-BRS structure. Howe
as the structure of the superfields was restricted there one could not construct a full-fledge
theory of these superfields. References 5 and 9~and subsequent works! attempted to construct a
field theory of superfields in superspace. Here the superfields were entirely unconstrained

a!Electronic mail: sdj@iitk.ac.in
b!Author to whom correspondence should be addressed; electronic mail: bpm@tnp.saha.ernet.in
44640022-2488/2000/41(7)/4464/14/$17.00 © 2000 American Institute of Physics
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super-rotations could be carried out in the formulation. In fact the BRS and anti-BRS
identified with these super-rotations and the corresponding WT identities understood as
from these.9 These constructions had a broken OSp~3,1u2! symmetry, while these superspac
formulations exhibited the BRS/anti-BRS structure,10,9 and the renormalization properties11 of
gauge theories compactly and correctly. However, they treated the antighost field asymme
@and as far as we know it is necessary to do this in order to exhibit the renormalization prop
in linear gauges.# Moreover, the underlying OSp~3,1u2! symmetry was a broken one.

Following the motivations outlined earlier, we have attempted, in this work, a formulation
~i! is a superspace field theory as in Ref. 5,~ii ! treats gauge, ghost, and antighost fields togethe
one single supermultiplet,~iii ! has an underlying formal OSp~3,1u2! symmetry as the basis o
construction as a limiting symmetry of the Lagrange density, and~iv! has WT identities that
formally imply that this symmetry becomes exact as the gauge parameterh→`(v) corresponds to
the Yang–Mills theory in one of its formulations. In fact we find that the superspace formul
presented here corresponds to the BRS/anti-BRS invariant formulation of Baulieu
Thierry-Mieg8 with b51 ~c,c̄ symmetric case!.

We interpret heuristically the last property in the following manner. We note~as done in Sec.
II C! that ash→`, the gauge boson propagator is dominated by the longitudinal and tim
modes. Thus in this limit, the multiplet (A,c,c̄) is dominated by just the setR of extra modes
which enter the unitarity discussion via WT identities. It is precisely in this limit that
OSp~3,1u2! symmetry is becoming exact.

We now briefly present the plan of the paper. In Sec II, we shall review the under
superspace/superfield structure and the OSp group properties. We briefly discuss the BR
BRS symmetric formulation of Ref. 8. We also include a brief discussion on the mode struct
the propagator ash→`. In Sec. III, we present the superspace formulation and show its eq
lence to the BRS/anti-BRS symmetric formulation withb51.8 In Sec. IV, we show that the
generating functionalW@X̄# is asymptotically~h→`! invariant under the OSp~3,1u2! group. In
Sec. V, we elaborate on the physical meaning of the result so obtained.

II. PRELIMINARY

A. BRS Õanti-BRS symmetric action

In this section, we shall review the known results on BRS and anti-BRS symmetrie
effective action in gauge theories.8

We consider the most general effective action in linear gauges given by Baulieu
Thierry-Mieg8 that has BRS/anti-BRS invariance, when expressed entirely in terms of nece
fields A,c,c̄ ~and no auxiliary fields!,

Seff@A,c,c̄#5E d4xF2
1

4
Fmn

a Famn2(
a

~]•Aa!2

2h
2LGG ~2.1!

with

LG5S 12
1

2
b D ]mc̄Dmc1

b

2
Dmc̄]mc2

1

2
bS 12

1

2
b D h

2
g2@ f abgc̄bcg#2 ~2.2!

5]mc̄Dmc1
b

2
g fabg]•Aac̄bcg1

1

8
bS 12

1

2
b Dhg2f abgc̄bc̄g f ahjchcj.

~2.3!

Here we are assuming a Yang–Mills theory with a simple gauge group and introducin
following notations:

Lie algebra:@Ta,Tb#5 i f abgTg,
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Covariant derivative:~Dmc!a[Dm
abcb5~2]mdab1g fabgAm

g !cb.

f abg are totally antisymmetric. Note here that we have changed the convention for the cov
derivative just to bring it in line with notations of Ref. 5. This action has the global symme
under the following transformations.

BRS:

dAm
a5~Dmc!adL,

dca52 1
2 g fabgcbcgdL, ~2.4!

d c̄a5S 2
]•Aa

h
2

1

2
bg fabgc̄bcgD dL,

and anti-BRS:

dAm
a5~Dmc̄!adL,

d c̄a52 1
2 g fabgc̄bc̄gdL, ~2.5!

dca5S 2
]•Aa

h
2S 12

1

2
b Dg fabgc̄bcgD dL.

In the anti-BRS transformations the role ofc and c̄ are interchanged in addition to a change
some coefficients. Note thatb50 case yields the usual Faddeev–Popov action andb51 yields an
action symmetric inc and c̄.

B. Superspace, superfields, and invariants

We shall work in the superspace formulation of Yang–Mills theory given in Ref. 5, which
briefly review in this section. The superspace formulation uses an underlying six-dimen
superspace described by superspace coordinatex̄i[(xm,l,u) with l,u being real Grassmannia
variables. Superfields and supersources are functions of superspace coordinates. The supe
endowed with a metricgi j , with only nonzero components,

g0052g1152g2252g3352g455g5451. ~2.6!

The infinitesimal orthosymplectric coordinate transformations which leave the norm of the s
vector xigji x

j invariant consist of the following.~i! Six Lorentz transformations, which leav
gmnxmxn invariant.~ii ! Three simplectic transformations which leavelu invariant and character
ized by three infinitesimal parameters.~iii ! Eight SUSY transformations given by

x8m5xm1emal1dmbu,

l85l1dmxmb, ~2.7!

u85u2emxma,

whereem ,dm are arbitrary four vectors anda,b are real infinitesimal Grassmannians generated
S4m and S5m . S4m generates transformations withd50 andS5m generates transformations wit
e50. ]/]xi are transforms as a covariant vector under the OSp~3,1u2! transformations and are
given by
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]

]x8m 5
]

]xm 1ema
]

]u
2dmb

]

]l
,

]

]l8
5

]

]l
1ema

]

]xm
, ~2.8!

]

]u8
5

]

]u
1dmb

]

]xm
.

The vector superfieldsAi( x̄)[(Am( x̄),c4( x̄),c5( x̄)) also transform as covariants vectors und
these OSp~3,1u2! transformations and are given by

Am8 5Am1emac52dmbc4 ,

c485c41emaAm , ~2.9!

c585c51dmbAm .

The transformations for the vector supersourceX̄i( x̄) are such thatX̄i( x̄)Āi( x̄) remain invariant
under OSp~3,1u2!.

We define the scalar product as

A•B5Aig
ji Bj[AjBj ~2.10!

and the tensor invariants are defined as

A•BC•D5CiAjBkDlg
k jgli 5Ti j Tklg

k jgli , ~2.11!

whereAiBi is a commuting quantity. Using the above-mentioned definitions of scalar produc
construct the following OSp invariant quantities:~i! Fi j Fklg

k jgli , ~ii ! ] i@Ai]
jAj #, ~iii ! ] i@Aj] jAi #,

~iv! ] i@(] iA
j )Aj #, where the superspace field strength tensor,Fi j , is defined as

Fi j
a~ x̄!5] iAj

a~ x̄!2Ai
a]Q j1g fabgAi

b~ x̄!Aj
g~ x̄!. ~2.12!

C. Mode structure of gauge propagator

The propagator in the linear gauges is given by

iDFmn~k,h!5
2 i

k21 i e Fgmn2
kmkn

k21 i e
~12h!G . ~2.13!

We imagine expanding the gauge field~in the momentum space! in the basis consisting of the
transverse, the longitudinal, and the timelike degrees of freedom,

Am~k!5(
i 51

4

em
i ~k!a( i )~k2!. ~2.14!

em
(1) andem

(2)(k) are transverse degrees of freedom with

e0
( i )~k!50, kW•eW ( i )~kW !50, i 51,2 ~2.15!

and
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em
(3)~k!5S 0,

2kW

uku D , em
(4)5~1,0,0,0!. ~2.16!

We note the following orthonormality properties:

e* ( i )
•e ( j )52d i j 12d i0d j 0 ~ i , j 51,2,3,4!, ~2.17!

then the gauge boson propagator

^Am~k!An~2k!&5 (
i , j 51

4

em
( i )~k!en

( j )~2k!^a( i )~k2!a( j )~k2!&. ~2.18!

We recall

em
( i )~k!en

( i )~2k!52~gmn2dm0dn0!1
kmkn~12dm0!~12dn0!

kW2
. ~2.19!

We then find by comparison

^a( i )~k2!,a( j )~k2!&5
d i j

k21 i e
, 1< i , j <2,

^aj~k2!,ai~k2!&5^a( i )~k2!,a( j )~k2!&50, 1< i<2; 3< j <4,

^a(3)~k2!,a(3)~k2!&52~h21!
ukW u2

~k21 i e!2 , ~2.20!

^a(4)~k2!,a(4)~k2!&52F11
~h21!ukW u2

k21 i e
G 1

k21 i e
,

^a(3)~k2!,a(4)~k2!&5
~h21!

2

ukW uk0

~k21 i e!2 .

Thus we see that ash→`, the correlation functions of modes containinga(3) ~the longitudinal! or
a(4) ~the timelike! go to `, while those containing the transverse components remain unalt
We now scale as

a(3)5Ah

3
ã3 , a(4)5Ah

3
ã4 , ãi[ai , i 51,2. ~2.21!

~The factor of 1
3 is for future convenience only.! Then all correlation functionŝãi(k

2),ã j (k
2)&

haveh- independent limits. Then the expansion of the gauge field reads

Am~k!5(
i 51

2

em
( i )~k!ã( i )~k2!1Ah

3
em

(3)ã(3)~k2!1Ah

3
em

(4)ã(4)~k2![Am
T1Ah

3
Am

L 1Ah

3
Am

t .

~2.22!

The above-mentioned relation explicitly exhibits theAh factors that say that~after suitable nor-
malization! the longitudinal and timelike components of a general gauge field become domin
h→`. This remark will find application in Sec. V in the context of the supermultiplet structur
fields introduced.
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III. CONSTRUCTION OF SUPERSPACE ACTION

In this section, we shall present the construction of the superspace action which is equ
to the Yang–Mills theory in its BRS/anti-BRS invariant formulation withb51 ~See Sec. II A!.
The building block of the superspace action is a covariant vector fieldĀi( x̄)
5(Am( x̄),c4( x̄),c5( x̄)) ~c4 andc5 will turn out to be related to the antighost fieldc̄ and the ghost
field c!. We shall also introduce the commuting contravariant vector sourceX̄i( x̄). Unlike Ref. 6
we do not, however, need a scalar superfield and scalar supersource. As we shall see la
Lagrange density turns out to have a graded structure as the gauge parameterh→`: ~i! L0 is an
OSp invariant action of O(h0), ~ii ! L1 also turns out to be an OSp invariant, but of O(h21), and
~iii ! L2 is an Sp~2! invariant symmetry breaking term of O(h22). ~The parameterb in L1 is not
to be confused withb in the BRS/anti-BRS invariant action of Sec. II A which will always b
taken to be 1 in this work.! Explicitly,

L05 1
4 Fi j Fklg

k jgli ,

L15a] i@Ai]
jAj #1b] i@Aj] jAi #1g] i@Aj] iAj #, ~3.1!

L25
k

2
ca] i] ica , a54,5.

To this we add the source terms

Ls5
]

]u

]

]l
@X̄i Āi #. ~3.2!

Under OSp~3,1u2! transformationsLs changes at most by a total derivative. We then const
the generating functional

W@X̄#5E DA expi E d4x@L01L11L21Ls#, ~3.3!

where

DĀ[)
i 50

5

DAi~ x̄![)
i 50

5

DAi~x!DAi ,l~x!DAi ,u~x!. ~3.4!

In order to establish the equivalence of the above-mentioned generating functional with that
Yang–Mills theory, we explicitly carry out the integrations over the variablesAi ,l , Ai ,u as in Ref.
5. The procedure is very straightforward and hence we shall not present the details, but o
final result. Omitting the source terms for the present~as these are not relevant to the equivalen!
we find

W@X̄#5E DAm~x!Dc4~x!Dc5~x!expi @S0@Am ,c4 ,c5#1source terms# ~3.5!

by omitting redundant terms inAi ,lu , ~Ai ,lu here are not dynamical fields5 and can be dropped
i.e., can be set to zero by hand, in the future!
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S0@A,c4 ,c5#52
1

4
FmnFmn2

~a2b!2

2~2a2g2b!
~]•A!22

a2b

122g
@Dmc4]mc51]mc4Dmc5#

1
2g

122g
Dmc4Dmc52

3~g1b!

2~b1g11!
~g f c4c5!22@~a2b!22k#]mc4]mc5 .

~3.6!

Compared with Eq.~2.1!, we see thatS0 of ~3.6! is compatible with the action in Eq.~2.1! only if

the coefficient of ~ f Amc4!~ f Amc5!50⇒g50 ~3.7!

and

h5
2a2b

~a2b!2 . ~3.8!

Further, we use the freedom to definec4 andc5 to set

c55
1

A2~a2b!
c, c45

1

A2~a2b!
c̄. ~3.9!

Then the two actions coincide if, further,

2
3b

2~b11!
5

2a2b

2
, ~3.10!

and

k5~a2b!2. ~3.11!

The quadratic equation of~3.10! has solutions

b5~a11!F16A11
2a

~a11!2G . ~3.12!

Either value ofb would be acceptable for our purpose.
We shall see in Sec. IV that the solution in~3.12! with negative sign leads to a superspa

Lagrange density that has asymptotic~i.e., ash→`! symmetry, hence we shall make this choic
Thus the equivalence of the two action withb and k given in terms of~3.10! and ~3.11! is
established completely.

We shall, however, be particularly interested in a special case. We further use the freed
have in choosing the free parametera to let 0,a!1. Then,

b5~a11!F12A11
2a

~a11!2G.2
a

a11
.2a. ~3.13!

Then the gauge parameter becomes

h5
2a2b

~a2b!2 .
3a

~2a!2 5
3

4a
. ~3.14!

Thus, asa→01, our superspace action represents the BRS/anti-BRS action with the paramb
in ~2.2! set equal to 1 andh→`. Further,
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k5~a2b!2.4a2, ~3.15!

expressing all parameters in terms ofh ~ash→`!,

2b.a.S 3

4h D , k.4.
9

16h2 5
9

4h2 ~3.16!

and the scaling of~3.9! are re-expressed as

c55Ah

3
c, c45Ah

3
c̄. ~3.17!

To summarize, the superspace action with one free parameterh

E d4x$L01a] i@] jAjAi2Aj] jAi #14a2ca] i] ica% ~3.18!

~with a53/4h and coefficients valid forh large! is equivalent in the superspace generating fu
tional to the BRS/anti-BRS symmetric action with gauge parameterh~→`!. In Sec. IV we shall
establish the asymptotic OSp invariance forW@K̄#, in other words, the formal equation of th
form

@W@X̄8#2W@X̄##uX
,u
i 5050S 1

h D . ~3.19!

IV. OSP„3,1z2… WT IDENTITIES

In this section, we shall consider the consequence of the OSp~3,1u2! transformations on the
sourceX̄i( x̄) to obtain the WT identities for the broken OSp~3,1u2! symmetry. The result is
summarized by the statement which in effect says that ash→` W recovers OSp~3,1u2! invariance
under the conditions clarified earlier. It is also shown how this WT identity embodies e
BRS/anti-BRS symmetry in the form of the statements~4.28! and ~4.29!.

We begin with the generating functional

W@X̄~ x̄!#5E DĀ~ x̄!expH i E d4x@L0@Ā#1L1@Ā#1L2@Ā#1Ls#J . ~4.1!

We perform an OSp~3,1u2! rotation on the sourcesX̄i ,

X̄i~ x̄!→X̄i8~ x̄!, ~4.2!

with

X̄8 i~ x̄!5X̄j~L21x̄!L j
i . ~4.3!

Under this transformation, we have the invariance

Xi~ x̄!Ai~ x̄!5X8 i~L x̄!Ai8~L x̄!5X8 i~L x̄!L̃ i
jAj~ x̄!. ~4.4!

@HereL̃ is defined in~2.9!, in particular forS4m andS5m transformations.# Then using~4.4!, we
have

E d4xLs5E ]

]u

]

]l
@X̄i~ x̄!Ai~ x̄!#5E ]

]u

]

]l
@X̄i8~L x̄!L̃ i

jAj~ x̄!#. ~4.5!
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In view of the SO~3,1!3Sp~2! invariance of the entireS, we expect new information to
emerge from the transformations associated with additional supersymmetriesS4m andS5m . Hence
we now restrict ourselves to theL̃ of Eq. ~2.9! given in Sec. II B. We now note that

L~ x̄!5~xm1emal1dmbu,l1dmbxm ,u2emaxm! ~4.6!

and express

E d4xLs5E d4x
]

]u

]

]l
@X̄i8~ x̄!L̃ i

jAj~ x̄!

1$~emal1dbu!]mX̄i~ x̄!1d•xbX̄,l
i 2e•xaX̄,u

i %Ai~ x̄!#. ~4.7!

In the last term, we have used the infinitesimal nature ofem anddm to replaceX̄8→X̄ andL̃→1.
Further,

E d4xLs~X̄!2E d4xLs~X̄8!5E d4xF1~emal1dmbu!
]

]u

]

]l
~]mX̄i~ x̄!Ai~ x̄!!G

1E d4xFema
]

]u
~]mX̄iAi !1dmb

]

]l
~]mX̄iAi !G

1E d4x
]

]u

]

]l F X̄,lu
i e•xAi ,u2X̄,lu

i d•xAi ,l

1E d4x
]

]u

]

]l
@X̄m~emac52dmbc4!1X̄4emaAm1X̄5dmbAm#.

~4.8!

Using ~4.8! we can write down change inW@X̄# under an infinitesimal OSp transformation~2.7!,

dW@X̄#5W@X̄#2W@X̄8#

5K K E d4x~emal1dmbu!(
S

]mS~ x̄!
dW

dS
1 i E d4x@X̄,lu

m @e•xaAm,u

1emac52dmbc42d•xbAm,l#1X̄,lu
4 @e•xac4,u1emaAm2d•xbc4,l#

1X̄,lu
5 @e•xac5,u1dmbAm2d•xbc5,l#1X̄,l

m @2dmbc4,u1emac5,u#

2X̄,l
4 emaAm,u2X̄,l

5 dmbAm,u2X̄,u
m @emac5,l2dmbc4,l#1X̄,u

4 emaAm,l

1X̄,u
5 dmbAm,l1@ema]mX̄,u

i 1dmb]mX̄,l
i #Ai1ema]mX̄nAn,u

1dmb]mX̄nAn,l2ema]m~X̄4c4,u1X̄5c5,u!2dmb]m~X̄4c4,l1X̄5c5,l!#L L . ~4.9!

Here we have dropped terms proportional toA,lu
i ~as these fields can be set to zero!. The double

brackets,̂ ^ && have been used to denote that the expression inside it is actually inside the
integral.

We now evaluatedW@X̄# for the‘‘supersymmetry transformations’’S4m only, i.e., setd50.
We further note that the sources2X̄,u

m are to generate the Green’s functions of the compo
operator involved in the anti-BRS transformations. These are not required to evaluate the
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Green’s functions of the Yang–Mills theory, or the BRS WT identities. Hence, we evaluate~4.9!
at X̄,u

m 50. ~The spurious terms involving]mX̄i can also be set to zero asX̄i are sources forA,lu

which are redundant fields!.
Now, the first term on the right-hand side of~4.9! ~here(S goes over the sourcesX̄i ; X̄,l

i ;
X̄,u

i ; X̄,lu
i ! vanishes by the translational invariance ofW@X̄# in xm.

We organize the rest of the terms indW as

dW@X̄#uX̄
,u
i 505X̄i (x)5 K K i E d4x$X̄,lu

m ~e•xaAm,u1emac5!1X̄,lu
4 ~e•xac4,u1emaAm!

1X̄,lu
5 e•xac5,u1X̄,l

m emac5,u2X̄,l
4 emaAm,u%L L . ~4.10!

We shall simplify the expression on the right-hand side by employing the six-dimensional g
invariance ofL0 .12 We consider the gauge transformations

dAi5Di~c5e•xa! ~4.11!

and the consequent transformations

dAi ,u5
]

]u
@Di~c5e•xa!#, dAi ,l5

]

]l
@Di~c5e•xa!#. ~4.12!

Under ~4.11! and ~4.12!, L0 is gauge invariant

E d4xFdAi

dS0

dAi
1dAi ,u

dS0

dAi ,u
1dAi ,l

dS0

dAi ,l
G50. ~4.13!

We now invoke the equations of motion

dS0

dAm
52X̄,lu

m 1~a2b!]m~c4,u2c5,l!,

dS0

dc4
5X̄,lu

4 1~a2b!]m~Am,u!1k]2c5 ,

dS0

dc5
5X̄,lu

5 2~a2b!]mAm,l2k]2c4 ,

dS0

dAm,l
5X̄,u

m 2~a2b!]mc5 ,

dS0

dc4,l
5X̄,u

4 22bc5,u , ~4.14!

dS0

dc5,l
5X̄,u

5 1~a2b!]•A2~a2b!c5,l12ac4,u ,

dS0

dAm,u
52X̄,l

m 1~a2b!]mc4 ,

dS0

dc4,u
52X̄,l

4 1~a2b!]•A2~a2b!c4,u12ac5,l ,

dS0

dc5,u
52X̄,l

5 12bc4,l .
                                                                                                                



4474 J. Math. Phys., Vol. 41, No. 7, July 2000 S. D. Joglekar and B. P. Mandal

                    
~It is understood that these equations are in double brackets.!
Using ~4.14! in ~4.13!, we obtain

K K 2 i E d4xFDm~e•xac5!X̄,lu
m 2D4~e•xac5!X̄,lu

4 2D5~e•xac5!X̄,lu
5 1

]

]u
@Dm~e•xac5!#X̄,l

m

3
]

]u
@D4~e•xac5!#X̄,l

4 1
]

]u
@D5~e•xac5!#X̄,l

5 G5O~a,X̄,u
i !. ~4.15!

We now subtract~4.15! from ~4.10! to obtain

dW@X̄#uX̄
,u
i 505X̄i5 K K i E d4xFe•xaH ~Am,u1Dmc5!X̄,lu

m 2~c4,u2D4c5!X̄,lu
4

2~c5,u2D5c5!X̄,lu
5 2

]

]u
~Dmc5!X̄,l

m 1
]

]u
~D4c5!X̄,l

4 1
]

]u
~D5c5!X̄,l

5 J
2X̄,lu

4 emaAm 2X̄,l
4 emaAm,uG L L . ~4.16!

Now we recall the equations of motion

^^Am,u1Dmc51~a2b!]mc52X̄,u
m &&50, ~4.17!

^^c5,u2D5c512bc5,u2X̄,u
4 &&50, ~4.18!

and

]

]u
~D5c5!522 f abgc5,u

b c5
g50, ~4.19!

which can be obtained by using~4.18! at X̄,u
4 50. We further have the equation of motion ofc4,u

andc5,l .

K K c4,u1c5,l1g f c4c51b~c4,u1c5,l!2
X̄,l

4 2X̄,u
5

2 L L 50, ~4.20!

K K ~2a2b!~c4,u2c5,l!1~a2b!]•A2
X̄,u

5 2X̄,l
4

2 L L 50. ~4.21!

Subtracting~4.21! from ~4.20! and settingX̄,u
5 we obtain

^^c4,u2D4c5&&uX̄
,u
5 5052b^^c4,u1c5,l&&1~2a2b!^^c4,u2c5,l&&1~a2b!^^]•A&&5O~a!.

~4.22!

Further, using~4.17! and ~4.18!, we obtain~at X̄,u
i 50!

]

]u
~Dmc5!5O~a!. ~4.23!

@We recognize in~4.19! and in ~4.23!the usual BRS invariance statement of1
2 f cc andDmc.#

We further recall the equation of motion ofc4 ,
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^^2Dm
ba~Am,u1Dmc5!a1 f abgc4

g~2c5,u
a 1g fahdc5

hc5
d!2g fabgc5

g~c4,u
a 1c5,l

a 1g fahdc4
hc5

d!

2X̄,lu
4 2~a2b!]mAm,u1k]2c5&&50. ~4.24!

On account of~4.17!, ~4.18!, and ~4.22! used successively on the left-hand side of~4.24! these
terms vanish atX̄,u

i 50. We thus conclude,

^^X̄,lu
4 emaAm&&5^^O~a!&&. ~4.25!

Using ~4.17!, ~4.22!, ~4.18!, ~4.25!, ~4.23!, ~4.21!, ~4.19!, and~4.21! in the successive terms on th
right-hand side of~4.16! we obtain

dW@X̄#uX̄
,u
i 505X̄i5 K K OS 1

h D L L . ~4.26!

We could have alternatively considered the symmetry associated withS5m transformations
~dÞ0, e50! in ~4.9!. In view of the overall Sp~2! symmetry of the formulation, we will obtain the
analogous relation

dW@X̄#uX
,l
i 505Xi5OS 1

h D . ~4.27!

The relations~4.26! and ~4.27! are statements of formal OSp~3,1u2! symmetry ash→`. These
contain in them the consequences of BRS and anti-BRS invariance. These consequences
obtained in a manner analogous to the argument following Eq.~19! of Ref. 10~See also Ref. 12
for alternative procedure for the entire derivation!. They result in

]W

]u U
X

,u
i 505Xi

5OS 1

h D , ~4.28!

]W

]l U
X

,l
i 505Xi

5OS 1

h D ~4.29!

for BRS and anti-BRS symmetry, respectively.
These equations can also be alternatively verified by evaluatingW@X# along the lines of Ref.

5 and evaluating]W/]u and ]W/]l along the lines of Refs. 9 and 13 using BRS/anti-BR
symmetry of the resultantW

V. PHYSICAL MEANING OF OSP „3,1z2… INVARIANCE

We expand the multipletĀi( x̄) explicitly as

Āi~ x̄!5S Am~ x̄!

c4~ x̄!

c5~ x̄!
D [S Am

T~ x̄!1Ah

3
Am

L ~ x̄!1Ah

3
Am

t ~ x̄!

Ah

3
c̄~ x̄!

Ah

3
c~ x̄!

D
5Ah

3S Am
L ~ x̄!1Am

t ~ x̄!

c̄~ x̄!

c~ x̄!
D 1S Am

T~ x̄!

0 D[Ah

3F Ām
R~ x̄!1A3

h
Am

T~ x̄!G . ~5.1!
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Here Ām
R( x̄), in particular, contains the fields corresponding to the setR

We further expand the transformation laws for fields under OSp~3,1u2! viz.

Am8 ~ x̄!5Am~ x̄!2dmbc4~ x̄!1emac5~ x̄!2~eal1dbu!n]nAm~ x̄!2d•xbAm,l~ x̄!1e•xaAm,u~ x̄!,

c48~ x̄!5c4~ x̄!1emaAm~ x̄!2~eal1dbu!n]nc42d•xbc4,l~ x̄!1e•xc4,u~ x̄!, ~5.2!

c58~ x̄!5c5~ x̄!1dmbAm~ x̄!2~eal1dbu!n]nc52d•xbc5,l~ x̄!1e•xac5,u~ x̄!

in powers ofh. We find that these read

Am
R8~ x̄!5Am

R~ x̄!1Pmn
R @2dmbc̄~ x̄!1emac~ x̄!2~eal1dbu!n]nAm

R~ x̄!

2d•xbAm,l
R ~ x̄!1e•xaAm,u

R ~ x̄!#10S 1

Ah
D ,

c̄8~ x̄!5 c̄~ x̄!1eaAm
R~ x̄!2~eal1dbu!n]nc̄~ x̄!2d•xbc̄,l

R ~ x̄!1e•xac̄,u~ x̄!10S 1

Ah
D , ~5.3!

c8~ x̄!5c~ x̄!1dmbAm
R~ x̄!2~eal1dbu!n]nc~ x̄!2d•xbc,l~ x̄!1e•xac,u~ x̄!10S 1

Ah
D

and

Am8
T~ x̄!5Am

T~ x̄!10~Ah! ~5.4!

~Pmn
R is the projection operator that projects away the transverse part!. We note that ash→`,

~5.3! refers to the transformations within the setAR only.
Thus, in the limith→`, the OSp~3,1u2! transformations, in particular, contain a set of sy

metry transformations among the members of the redundant setR. The WT identities are a
particular consequence of these symmetries. A special consequence of the WT identities
cancellation of the contributions from the set R in the intermediate states in the unitarity rel
using the Cutkowsky rules.3

In the present superspace formulation, we have an explicit construction of a set of sym
transformations amongst this setR; originating from the original OSp~3,1u2! transformation
which, as we have shown, leads to WT identities in particular. Thus, this formulation ca
looked upon as an explicit realization of that relationship that is expected to exist within the
of the setR that is ultimately known to lead to mutual cancellations in the cutting equations
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Phase space tunneling for operators with symbols
in a Gevrey class *

Klaus Jung
Technische Universita¨t Berlin, Fachbereich Mathematik, Sekr. MA 7-1,
Strasse des 17. Juni 136, D-10623 Berlin, Germany
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Phase space tunneling and exponential decay of eigenfunctions in phase space are
well known for operators with symbols which are analytic in some neighborhood of
the real axis. This can be used to prove an adiabatic theorem of exponential order
if one assumes the Hamiltonian to depend analytically on time. However to study
compactly supported switching processes one has to weaken the analyticity as-
sumptions. Here we examine nonanalytic symbols with Gevrey class regularity and
show that we get an exponential decay of the corresponding eigenfunctions with
respect to\1/a as\→0, wherea.1. The loss of regularity causes a slower decay
in \. The analysis is done using the methods of Martinez and its generalization by
Nakamura. An upper bound for the rate of decay is given. ©2000 American
Institute of Physics.@S0022-2488~00!03607-0#

I. INTRODUCTION

This paper adapts the techniques of exponential weighted phase space estimates as s
Refs. 1–4 to a case where there is no analyticity, but regularity in the sense of Gevrey c
Such a case is of interest, if one regards, for example, its application to the adiabatic theo
quantum mechanics, which is understood in Ref. 1 as a phase space tunneling phenomen
this point of view the consideration of nonanalytic symbols is directly connected to the stu
nonanalytic switching processes in adiabatic theory~which in particular allows to consider com
pactly supported switching functions!.

Let T: L2(Rn)→L2(R2n) be the Bargmann transform, defined by

Tu~x,j!5~2m!n/4~2p\!23n/4eixj/(2\)E ei (x2y)j/\2m(x2y)2/(2\)u~y! dy. ~1!

Tu can be understood as a representation of the wave functionu in phase space.5 Let P
5p(x,\Dx) be a pseudo-differential operator with symbolp and cPC`(R2n,R) be a weight
function, which is bounded with all its derivatives. If the symbolp is analytic in a stripSv

5$uIm xu,v1,uIm ju,v2% and supu]xcu,v1 , supu]jcu,v2 , the main estimate in the theory o
phase space tunneling1,3,4 is given by

^ec/\Tu,ec/\TPu&5^ec/\Tu,p~x2]mc,j1 im]mc!ec/\Tu&1O~\!iec/\Tui2, ~2!

where ]mªm21]x1 i ]j . Consider an eigenfunctionu with Pu50. It can be shown that~2!
implies a decay ofTu in phase space: For any compactK,$p(x,j)Þ0% one has

iTuiL2(K)5O~e2d/\! ~3!

as\→0, whered5d(K).0 can be related explicitly to the geometry ofK andp.

*This paper is a rewritten part of the author’s dissertation~Ref. 2! under the supervision of Professor R. Seiler, TU-Berl
44780022-2488/2000/41(7)/4478/19/$17.00 © 2000 American Institute of Physics
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In this paper we follow closely the techniques of Ref. 4 and concentrate mainly on
difficulties which arise when the symbolp is only C`: What replaces the analytic continuation
p to the stripSv in ~2! and what replaces the bounds of]xc and ]jc? How to deal with a
nonvanishing]̄zp? What is the substitute of~3!?

The explicit calculus of the following sections is sometimes a little bit technical, but the m
idea is as follows: LetpPC`(R). If i]api5O(buaua!), p is analytic in the stripS1/b5$uIm z
u,1/b%. Replacing this condition byi]api5O(buaua! a) with a.1 we lose analyticity~p is called
an element of the Gevrey classa!. Neverthelessb rests an important quantity for measuring ho
‘‘good’’ one can extendp to the complex domain. In a similar way to Ref. 6 we will define su
an almost analytic extension to a stripSv by a a, b, andv dependent cutting of a formal Taylo
series ofp. The cutting point is chosen to minimize]̄zp in Sv . This produces an additional erro
term ~exponentially small with respect tov1/(a21) as v→0! which has to be controlled. By
choosingv \ dependent in an appropriate way, we end up with an estimate in the sense~2!

where we have to replaceec/\ by ec/\1/a
and explicitly givea andb dependent bounds for]xc,

respectively,]jc.
The plan of the paper is as follows: Section II introduces Gevrey class functions and

extensions to the complex domain. Some properties are shown and an estimate of their]̄z deriva-
tive is made. In Sec. III the key estimate in the sense of~2! is formulated and proven. Section IV
contains a Gevrey class version of the estimate~3! on the decay of eigenfunctions in the classica
forbidden region of the phase space.

II. FUNCTIONS OF GEVREY CLASS TYPE

For our purpose it is suitable to define Gevrey classes in a slightly different way than nor
done in the literature. We will see the reason for doing so in a moment, but let us first recall
basic facts.

The smoothness of aC` function can be controlled by the growth of its derivatives. T
Gevrey classes interpolate between the pureC` case and the analytic case. We will define the
for functions in C`(Rn,R) and will use the usual multi-index notation. In addition we set
a,bPNn andcPR

1ª~1,...,1!PNn,

ac
ªa1

c
• ¯ •an

c ,

ab
ªa1

b1
• ¯ •an

bn,

00
ª1,

a<b:⇔a i<b i for all i 51,...,n.

From Stirling’s formulak! 5(k/e)kA2pk (11O(1/k)), we deduce foraPNn,

a!<const
aa

euau ~a11!1/2. ~4!

Definition 1. Let aP@1,̀ ) and b.0. We denote byGa,b(Rn,R) the set of functions f
PC`(Rn,R) satisfying for some c0.0,

i]a f i`<c0~a11!c0buaua! a ~5!

for all aPNn. Ga,b is called Gevrey class of index(a,b), Ga5øb.0Ga,b is called Gevrey class
of index a.

Remarks.
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~a! Definitions of Gevrey classes may be found in the literature using (uau!) a, uauauau or
G(auau11) instead ofa! a. If one only regards Gevrey classes of indexa all these defini-
tions coincide. This is a consequence of Stirling’s formula anduau!<nuaua!. See Ref. 7.

~b! Definition 1 is a refinement of the classical definition found in the literature. See, e.g.,
8–12. We are using a second indexb for classification, and we are adding a term (a
11)c0. This term makesGa,b an algebra, stable under differentiation~see Proposition 1
below!. The classical definition gives an algebra which is only stable with respect to
parametera but not with respect tob. Absorbing (a11)c0 by enlarging the constantb
shows that our refined definition coincides with the classical one if one only cons
classes of single indexa. The refinement is necessary since we want to control the param
b in our estimates.

Proposition 1. Ga,b(Rn,R) is an algebra, stable under differentiation and translation.
Proof. We only show

f PGa,b⇒]b f PGa,b ~bPNn!,

f ,gPGa,b⇒ f •gPGa,b.

It suffices to prove the proposition forb5(1,0,...,0). So we can estimate

i]a1b f i`<c0~a1b11!c0buau1ubu~a1b!! a

<c0b2c0~a11!c01abuaua! a

and

i]a f gi`<c0c̃0 (
b<a

a!

b! ~a2b!!
~b11!c0~a2b11! c̃0bububua2bub! a~a2b!! a

<c0c̃0~a11!c01 c̃0buaua! a (
b<a

S a!

b! ~a2b!! D
12a

.

Sincea j !/b j !(a j2b j )! >1 and 12a,0 we get

i]a f gi`<c0c̃0~a11!c01 c̃011buaua! a.
j

In the analytic casea51 a functionf PG1,b(Rn,R) can be extended analytically to the stripSv

ª$zPCnu uIm zju,v for all j % with v<1/b. In the same spirit as in Ref. 6 we will define a
almost analytic extension for allaP@1,̀ ) in such a way that]̄zf is minimized.

Definition 2. Let aP@1,̀ ), b,v.0 and fPGa,b(Rn,R). Then for z5t1 isPSv we define the
almost analytic extension

~F a,b,v f !~ t1 is!ª (
uau<Na,b,v

i uausa

a!
]a f ~ t ! ~6!

with

Na,b,vª@~bv!21/(a21)# ~7!

for a.1 and N1,b,vª`, where@ • # denotes the integer part and sa5s1
a1
• ¯ •sn

an .
Remark. For a51 the series~6! converges forzPS1/b and gives the usual analytic extensio
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The following proposition gives an estimate for all derivatives of an antiholomorphic de
tive of the almost analytic extensionF a,b,v. The proof shows in which sense the cutoff~7! was
chosen optimal.

Proposition 2. Let aP(1,̀ ), b.0 and fPGa,b(Rn,R). Let furthermorea,bPNn. Then there
exists constants C0 ,C1.0, such that for all jP$1,...,n% and v.0 sufficiently small

sup
zPSv

u] t
a]s

b ]̄zj
F a,b,v f ~z!u<C0v2C1 expS 2

B

v1/(a21)D ~8!

with z5t1 is and B5(a21)b21/(a21). Hence, for anyd.0

sup
zPSv

u] t
a]s

b ]̄zj
F a,b,v f ~z!u5OS expS 2

B2d

v1/(a21)D D ~9!

as v→0.
Proof. Within this proofNa,b,v will be simply denoted byN. First we treat the casea5b

50. Inserting 2]̄zj
5] t j

1 i ]sj
in ~6! we see that only terms of orderN do not cancel. We get

2]̄zj
F a,b,v f ~ t1 is!5 (

uau5N

i uausa

a!
~] j]

a f ~ t !!, ~10!

where ] j[] t j
denotes thej th partial derivative with respect tot j . Using t1 isPSv and the

definition of Ga,b we can estimate

Usa

a!
~] j]

a f ~ t !!U<c0b 2c0~a11!c01a~bv! uaua! a21.

With ~4! and uau5N, a j<N, aa<(uau1)a5uau uau this implies

Usa

a!
~] j]

a f ~ t !!U<const~N11!n(c01a11/2)~be12av!NN(a21)N. ~11!

Let cªbe12av. We will now estimatecNN(a21)N5..exp(g(N)). The minimum of

g~x!5x~ ln c1~a21!ln x!

is given by

x05e21c21/(a21)5~bv!21/(a21),

g~x0!52
a21

~bv!1/(a21) 52
B

v1/(a21) .

Since we have chosenN5@x0# and because ofN;v21/(a21) for v→0 we can find constants
C̃0.0 andC̃1.0 such that~11! implies for uau5N andz5t1 isPSv ,

Usa

a!
~] j]

a f ~ t !!U<C̃0v2C̃1 expS 2
B

v1/(a21)D .

Finally using~10! and #$aPNnu uau5N%<(N11)n and againN;v21/(a21) we get the result~8!
for a5b50. Forv sufficiently small we can absorb negative powers ofv by making the constan
B smaller. This implies~9!.
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The casea,bÞ0 is proven in a similar way: LetF a,b,v f be denoted byf̃ . From ~10! it
follows

] t
a]̄zj

f̃ 5 ]̄zj
~]a f̃ !.

Using the stability ofGa,b under differentiation we obtain the same estimate~11! for ] t
a]̄zj

f̃

instead of]̄zj
f̃ . So we are left to estimate only derivatives with respect tos. For v→0 we get

sup
zPSv

u]s
b]̄zj

f̃ ~z!u5 sup
zPSv

U (
uau5N

i uau~]s
bsa!

a!
~] t j

]a f ~ t !!U
5O~v2ubu! sup

zPSv

u ]̄zj
f̃ ~z!u

5OS v2ubuexpS 2
B2d

v1/(a21)D D
5OS expS 2

B2 d̃

v1/(a21)D D .

j

Remark. We want to point out, that fora→1 Proposition 2 reduces to]̄zj
f̃ (z)50 for z

PSv , v,1/b. In fact, fixing v,1/b we get

ln ã2~1/ã!ln~bv!→1` ~ ã→01 !.

Using the definition ofB it follows

lim
a→11

expS 2
B

v1/(a21)D5 lim
ã→01

expS 2
ã

~bv!1/ãD 50.

In Ref. 6 almost analytic extensions are constructed by a ‘‘smooth’’ cut of the formal power s
This implies that the extension to a stripSv is smooth with respect to the widthv of the strip. So
the extension off tends tof if v→0.

In our case~see Definition 2! we are cutting the series at a pointNa,b,v which is the integer
part of (bv)21/(a21). So it does not depend smoothly onv. The fixed cutting point has the
advantage to simplify many calculations, but we have to pay the price that for fixedv.0

sup
tPR

uF a,b,v f ~ t1 is!2 f ~ t !u→0 ~s→0! ~12!

is not true. Nevertheless, the extensionF a,b,v is well behaved in the sense Proposition 3 belo
To obtain a result of the form of~12! a more refined version of an almost analytic extension
needed. Details can be found in Ref. 2. It uses a smooth cutoff of the power series where th
of cutoff depends ons.

Proposition 3. Let aP(1,̀ ), b.0 and fPGa,b(Rn,R). Then for all d.0 there exists an
v0.0 such that for allv,v0 ,

uF a,b,v f ~ t1 is!2 f ~ t !u,d ~ t1 isPSv!.

Proof. Within this proofNa,b,v will be simply denoted byN. Equation~7! implies N→` if
v→0, so we only have to show that
                                                                                                                



ro

udo-

to

4483J. Math. Phys., Vol. 41, No. 7, July 2000 Phase space tunneling for operators with . . . .

                    
dªF a,b,v f ~ t1 is!2 f ~ t !5 (
0,uau<N

i uausa

a!
]a f ~ t !

becomes small for largeN. Using Definition 2,usj u<v, bv<N2a11 and Stirling’s formula we
get

udu< (
0,uau<N

c0~a11!c0N2uau(a21)a! a21

<const (
0,uau<N

~a11!c011/2~Ne!2uau(a21)a (a21)a

<const (
0,uau<N

~ uau1n!n(c011/2)S uau
NeD

(a21)uau

<const(
k51

N

~k1n!n(c013/2)S k

NeD
(a21)k

. ~13!

For the last step we used #$aPNnu uau5k%<(k11)n. Let us choosec.1 andk0PN ~depending
on a andn) such that

ce2a11,1

and

~k1n!n(c013/2),ck ~k>k0!.

Splitting the sum of~13! into parts 1<k,k0 andk0<k<N we see that the first part tends to ze
if N→` and the second part can be estimated by

(
k5k0

N

ckS k

NeD
(a21)k

<(
k50

`

~ce2a11!k,`.

On the other hand, each term of the second sum tends to zero forN→`, so the sum itself tends
to zero. j

III. EXPONENTIAL WEIGHTED MICROLOCAL ESTIMATES

A. Symbol classes

The following definition will fix symbol classes, quantization and classes of pse
differential operators which we use in this paper.

Definition 3. For mPN a function pPC`(Rx
n3Rj

n ,R) is called a symbol pPS m if for all
aPN2n there exists constants ca.0 such that for all x,jPR2n and \.0

u]x,j
a p~\;x,j!u<ca\m.

The Weyl quantization of pPS m is given by

OpW~p!u~x!ª
1

~2p\!n E
R2n

ei (x2y)/\pS \;
x1y

2
,j Du~y!dy dj ~14!

for all uPL2(Rn).
Remark. A priori the integral in~14! does not make sense foruPL2(Rn). It is defined in the

sense of an oscillating integral foruPC0
`(Rn), and OpW(p) can afterwards be extended

L2(Rn).
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Sometimes we need generalized symbolsp(\;x,y,j) leading to pseudo-differential operato

Op~p!u~x!ª
1

~2p\!n E
R2n

ei (x2y)/\p~\;x,y,j!u~y!dy dj. ~15!

We keep the notationS m for this kind of symbols which means that in Definition 3 the spa
variablexPRn has to be replaced by (x,y)PR2n. The following~well-known! proposition shows
how to calculate a Weyl symbol associated to a generalized symbol.

Proposition 4. Let pPS m. Then there exists a symbol qPS m such that

Op~p!u5OpW~q!u ~uPL2~Rn!!

and for all NPN

q~\;x,j!5 (
uau<N21

\ uau

i uaua!
]y

a]h
apS \;x1

y

2
,x2

y

2
,j2h D U

y5h50

1r N~\;x,j!

with rNPS m1N.

B. Estimates for pseudo-differential operators with symbol in a Gevrey class

The following proposition is the main technical tool to prove a nonanalytic version of the
estimate~2!. It contains all the parts which are related to our Gevrey class assumptions
statement can be summarized as follows.

A pseudo-differential operator with exponential weighted symboleg(x,y)/\1/a
p, can be rewrit-

ten @modulo O(\`)# as an operator with bounded symbolq. The essential assumption is th
boundedness of the first derivatives ofg, where the bounds depend on the chosen Gevrey clas
p. The leading order ofq ~w.r.t. \! is explicitly given in terms ofp andg, all other terms can be
calculated with help of Proposition 4.

Proposition 5. Let aP(1,̀ ), b.0, and P5Op(p) be a pseudo-differential operator wit
symbol pPS m satisfying

]x
a]y

bp~x,y,• !PGa,b~Rj
n ,R!

for all a,bPNn and x,yPRn. Let furthermoreG0.0 and gPC`(Rx,y
2n ) be a weight function

satisfying

~1! all derivatives of g are bounded,
~2! g(x,x)50 (xPRn),
~3! u]xg(x,y)u,k, u]yg(x,y)u,k (x,yPRn) with kªb21/a@(a21)/G0#121/a,
~4! ug(x,y)u<(An)21/akG0(11 1/a ln(ux2yu/G0)) (ux2yu>G0),

then there exists a symbol qPS m @the Weyl-symbol related to b of Eq. (25)# such that

iOp~eg(x,y)/\1/a
p!2OpW~q!iB(L2(Rn))5O~\`!. ~16!

Furthermore,

q~\;x,j!2F a,b,vp~\,x,x,j1 i\121/ag̃~x!!PS m11, ~17!

whereF a,b,vp is the almost analytic extension of p~see Definition 2) with respect to the variab
j, defined in a strip Sv with v5\121/ak and

g̃~x!5 1
2 ~]1g~x,x!2]2g~x,x!!.

Proof. Let uPC0
`(Rn) and choosed.0 in such a way that
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~a21!121/aG0
1/a,a~G02d!1/a. ~18!

This is always possible since for alla.1 we can show by an elementary calculation thata
21)121/a,a.

Let xPC0
`(Rn) be a cutoff function with suppx,$usu,G0%, 0<x<1 andx(s)51 for usu

,G02d. See Fig. 1. We split the oscillating integral

Op~eg(x,y)/\1/a
p!u5~2p\!2nE

R2n
ei (x2y)j/\1g(x,y)/\1/a

p~\;x,y,j!u~y!dy dj

into two parts by inserting (12x)(x2y) andx(x2y), respectively. These parts will be denote
by A1u andA2u.

Examination of A1 .
The critical points of the oscillating phase are given byx5y50. Using (12x)(x2y) we

integrate only over noncritical points. So we can use the operator

Lª2 i\
x2y

ux2yu2 ]j

for partial integration. For allNPN we have

~12LN!ei (x2y)j/\50.

Partial integration leads to

A1u5~2p\!2nE
R2n

ei (x2y)j/\1g(x,y)/\1/a
~12x!~x2y!~Lt!Np~\;x,y,j!u~y!dy dj

5..~2p\!2nE
R2n

ei (x2y)j/\qN~\;x,y,j!u~y!dy dj

with Lt52L. In the next step we will make a suitable choice ofN5N(\) such that the symbo
qN satisfies

u]x,y,j
a qN~\;x,y,j!u<ca\ l ~19!

for all l PN and a finite number of derivativesaPN3n, uau,M . Using the theorem of Calderon
Vaillancourt this implies

iA1iB(L2(Rn))5O~\`!. ~20!

For the proof of~19! we use the fact that the derivatives ofqN with respect tox, y, andj act on

~1! (12x)(x2y),
~2! eg(x,y)/\1/a

, and

FIG. 1. Cutoff function.
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~3! (Lt)Np(\;x,y,j).

By assumption, all the derivatives ofx andg are bounded so that the first term can be estima
by a constant and the second term by

const\2M /aeg(x,y)/\1/a
.

To estimate the third term we first commute thex, y and j derivatives with (Lt)N. By the
assumptions onp and the stability of the Gevrey classes, we get

f ~x,y,• !ª]x,y,j
a p~\;x,y,• !PGa,b~Rj

n!.

Therefore we can estimate the derivatives off ~all of Nth order! in

u~Lt!Nf u<
\N

ux2yu2N (
j 1 ,...,j N51

n

uxj 1
2yj 1

u• ¯ •uxj N
2yj N

uu]j j 1
¯]j j N

f u

by

c0~b11!c0bubub! a<c0~N11!nc0bNN! a. ~21!

Writing djªxj2yj we get

udu2N (
j 1 ,...,j N51

n

udj 1
u¯udj N

u5S (
j 1 ,...,j N51

n

dj 1

2
¯dj N

2 D 21/2

(
j 1 ,...,j N51

n

udj 1
u¯udj N

u

<~#$ j PN$0%Nu1< j k<n%!1/25nN/2. ~22!

Equations~21! and ~22! and Stirling’s formula imply

u~Lt!Nf u<
\N

ux2yuN
c0~N11!nc0~Anb!NN! a

<c0~N11!nc011/2
\N

ux2yuN ~Anbe2a!NNaN

5..c0~N11!nc011/2S G02d

ux2yu D
N

exp~h~N!!

with

h~N!5N lnS Anb\Na

~G02d!eaD .

The minimum ofh is given by

N05S G02d

Anb\
D 1/a

, h~N0!52aS G02d

Anb\
D 1/a

.

ChoosingN5@N0# and usingN;\21/a as\→0 we can estimate for small\:

u~Lt!Nf u<const\2constexpS 2S a1 ln
ux2yu
G02d D S G02d

Anb\
D 1/aD .

Summarizing the estimates for the three terms in consideration we get
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u]aqNu<const\2const~12x!~x2y!expS S g~x,y!2S a1 ln
ux2yu
G02d D S G02d

Anb
D 1/aD \21/aD .

~23!

For G02d<ux2yu<G0 the assumptions~2! and ~3! imply

ug~x,y!u5ug~x,y!2g~x,x!u<sup
t

u] tg~x,t !uux2yu,kG05~a21!121/a~G0 /b!1/a.

Using ~18! we get

ug~x,y!u,aS G02d

b D 1/a

<S a1 ln
ux2yu
G02d D S G02d

Anb
D 1/a

.

Considering pointsux2yu>G0 we can use assumption~4! and again estimate~18!. This leads to

ug~x,y!u<~An!21/akG0S 11
1

a
ln

ux2yu
G0

D,S G02d

Anb
D 1/aS a1 ln

ux2yu
G02d D .

So there exists an«.0 such that the exponential term in~23! can be replaced bye2«/\1/a
. This

term decays faster in\ as any power of\ does, so we get estimate~19! which implies~20!.
Examination of A2 .
We write

A2u5~2p\!2nE
R2n

x~x2y!ei (x2y)(j2 i\121/ad(x,y))/\p~\;x,y,j!u~y!dy dj

with

d~x,y!ª
1

2 E0

1

~]1g~y1t~x2y!,y!2]2g~x,x1t~y2x!!!dt.

Using g(x,x)50 this implies

~x2y!•d~x,y!5g~x,y!.

For fixedx andy we make the following change of path of integration~see Fig. 2!:

j°j1 i\121/ad~x,y!5..j1 i ṽ~x,y!.

Let I ṽª@0,ṽ1#3¯3@0,ṽn# andSṽªRt
n3I ṽ,Cn. By assumption~3! we have

ud~x,y!u< 1
2 ~supu]xgu1supu]ygu!,k

FIG. 2. Path of integration.
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or

uṽu,\121/ak5v.

Let p̃ªF a,b,vp be the extension ofp to the stripjPSv.Suṽu . A2 has to be understood as a
oscillating integral. This implies that the parts Rej→6`, Im jPIṽ of a contour integral over]Sṽ j

vanish. On the other hand, such a contour integral can be replaced by an integral overSṽ j
where

p̃ has to be replaced by its antiholomorphic derivative]̄ j j
p̃. Successively shiftingj1°j11 i ṽ1 up

to jn°jn1 i ṽn we obtain

A2u5~2p\!2nE
R2n

ei (x2y)j/\x~x2y! p̃~\;x,y,j1 i ṽ !u~y!dy dj

1~2p\!2nE
Ry

nERj
nE0

ṽ1
ei (x2y)(j1 i (s1,0,...,0)2 i ṽ)/\x~x2y!

3 ]̄ j1
p̃~\;x,y,j1 i ~s1,0,...,0!!u~y!ds1 dy dj

1~2p\!2nE
Ry

nERj
nE0

ṽ2
ei (x2y)(j1 i (ṽ1 ,s2,0,...,0)2 i ṽ)/\x~x2y!

3 ]̄ j2
p̃~\;x,y,j1 i ~ṽ1 ,s2,0,...,0!!u~y!ds2 dy dj

1¯1~2p\!2nE
Ry

nERj
nE0

ṽn
ei (x2y)(j1 i (ṽ1 ,...,ṽn21 ,sn)2 i ṽ)/\x~x2y!

3 ]̄ jn
p̃~\;x,y,j1 i ~ṽ1 ,...,ṽn21 ,sn!!u~y!dsn dy dj

5..A20u1A21u1•••1A2nu.

With s( j )
ª(ṽ1 ,...,ṽ j 21 ,sj ,0,...,0) we can interpretA2 j as a pseudo-differential operator wit

symbol

aj~\;x,y,j!5E
0

ṽ j
e(x2y)(ṽ2s( j ))/\x~x2y!]̄j j

p̃~\;x,y,j1 is( j )!dsj

for j 51,...,n.
In the same manner as already done forA1 we will now estimate the derivatives of thes

symbols up to a finite orderM . Application of the theorem of Calderon–Vaillancourt afterwar
gives

(
j 51

n

iA2 j iB(L2(Rn))5O~\`!.

First we notice thatṽ j depends onx and y. So the boundaries of the integrals defining o
symbols are functions ofx andy. In view of

F~x!5E
0

g(x)

f ~x,s!ds⇒F8~x!5E
0

g(x)

]xf ~x,s!ds1 f ~x,g~x!!g8~x!,

we notice that derivatives ofaj with respect tox, y andj can be written as derivatives of the
integrands, some of them evaluated atṽ j (x,y), sometimes multiplied by derivatives ofṽ j and
integrated over somesj .

To estimate the derivatives ofaj we use the facts that
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~a! all derivatives ofx and ṽ5\121/ad are bounded,
~b! by definition of the extensionF a,b,v we have

]j
a~F a,b,vp~\;x,y,j1 is( j )!!5F a,b,v~]j

ap!~\;x,y,j1 is( j )!.

and the same for]x
a und ]y

a . In view of the stability of the Gevrey classes we can u
Proposition 2 to estimate the antiholomorphic derivatives of]ap̃.

~c! uṽ2s( j )u<uṽu for all sjP@0,ṽ j #. Sincex(x2y)50 if ux2yu>G0 this implies

x~x2y!e(x2y)(ṽ2s(j))/\<x~x2y!eux2yuuṽ2s(j)u/\<eG0uṽu/\.

~d! Derivatives of the exponential terms produce at mostM negative powers of\.

So we get for alluau<M and\ sufficiently small:

u]x,y,j
a aj u<const\2MeG0uṽu/\v2constexpS 2

B

v1/(a21)D
<const\2constexpS G0uṽu/\2~a21!121/aS G0

b\ D 1/aD . ~24!

For ~24! we usedṽ j5O(\121/a), v5\121/ak, the definition ofk and the definition of the
constantB in Proposition 2.

On the other hand, we have

G0uṽu/\,G0\21/ak5~a21!121/aS G0

b\ D 1/a

.

Therefore~as we did forA1! the exponent of~24! can be estimated by a negative constant2«,
and this exponential decay also absorbs negative powers of\. Finally we get

u]x,y,j
a aj u<const\ l

for all l PN and thus

(
j 51

n

iA2 j iB(L2(Rn))5O~\`!.

Examination of A20.
We rewriteA20 as a pseudo-differential operator

A20u5~2p\!2nE ei (x2y)j/\b~\;x,y,j!u~y!dy dj

with symbol

b~\;x,y,j!5x~x2y!F a,b,vp~\;x,y,j1 i\121/a d~x,y!!. ~25!

By the assumptions onp we havebPS m ~the derivatives ofd are bounded!. Let qPS m be the
associated Weyl symbol forb, i.e.,A20u5OpW(q)u ~see Proposition 4!. Then the leading order o
q is given by

b~\;x,x,j!5F a,b,vp~\;x,x,j1 i\121/a d~x,x!!

with

d~x,x!5 1
2 ~]1g~x,x!2]2g~x,x!!.
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This corresponds with~17!.
Putting together all the terms, we finally obtain

Op~eg(x,y)/\1/a
p!u5OpW~q!u1S A11(

j 51

n

A2 j D u

with iA11( j 51
n A2 j iB(L2(Rn))5O(\`). This finishes the proof of Proposition 5. j

Remark. Proposition 5 can be slightly generalized: If the weight functiong actually only
depends onm,n components of the variablesx andy, respectively,An in assumption~4! can be
replaced byAm. The proof has to be modified by using a cutoff functionx which only depends on
thesem components. Furthermore the integration by parts has to be done using an operL
containing only derivatives w.r.t. to thesem components. This is sufficient sinceg(x,y) is con-
stant with respect to the othern2m variables such that the corresponding components of]xg and
]yg do not cause an exponential increase which otherwise has to be compensated.

C. Microlocal estimates

This section contains the main result of this paper. It is the Gevrey class version of th
estimate~2! in phase space tunneling. It can be understood as an Agmon estimate in phase
Section IV contains an application obtaining exponential decay~in \1/a! for eigenfunctions of
pseudo-differential operators inside the classically forbidden region.

Theorem 1. Let aP(1,̀ ), b.0 and P5OpW(p) be a pseudo-differential operator wit
symbol pPS mùGa,b(R2n). Let furthermoreG0.0 and gPC`(R2n) be a weight function satis
fying the following:

~a! all derivatives of g are bounded,
~b! sup

(x,j)PR2nu]g(x,j)u,(A2n)21/ak with k5b21/a@(a21)/G0#121/a,
~c! supp]g,$(x,j)PR2nuu(x,j)u<G0/2%,

then there exist qPS m and RNPB(L2(Rn)) ~for all NPN! such that for all uPS(Rn) and \
sufficiently small

^eg/\1/a
Tu,eg/\1/a

TPu&5^eg/\1/a
Tu,~q~\;x,j!1RN!eg/\1/a

Tu& ~26!

with iRNi5O(\N),

q~\;x,j!2F a,b,vp~\;x2\121/ag̃m~x,j!,j1 i\121/amg̃m~x,j!!PS m11 ~27!

andv5\121/ak. F a,b,vp is the almost analytic extension to the strip Sv given by Definition 2 in
dimension2n and g̃m is given by

g̃mªm21]xg1 i ]jg.

Remarks.

~a! Equations~26! and ~27! imply ~for m50!

^eg/\1/a
Tu,eg/\1/a

TPu&5^eg/\1/a
Tu,F a,b,vp~\;x2\121/ag̃m ,

j1 i\121/amg̃m!eg/\1/a
Tu&1O~\!ieg/\1/a

Tui2,

which should be compared to formula~2! of the analytic case.
~b! Notice that by the assumptions on the bounds of]g we have uIm(\121/ag̃m)u,v and

uIm(i\121/ag̃m)u,v so that the expression~27! is well defined.
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The proof of Theorem 1 follows closely the outline of the corresponding proof found in
4 for the analytic case. It can be divided into three steps which will be formulated in the next
lemmata. Only the second step uses regularity conditions on the symbolp and has to be redone fo
the case of Gevrey classes. For this step we use the results of Sec. III B. For the proof of th
two steps we refer to Ref. 4. Using the notationDxª2 i ]x we can formulate.

Lemma 1. Let pPS m and P5OpW(p), then

TP5 P̃T ~28!

with P̃5OpW( p̃)5 p̃(\;x,j,\Dx ,\Dj) and

p̃~\;x,j,x* ,j* !5p~\;x/22j* ,j/21x* !PS m. ~29!

Remark. Note that the operatorP̃ located to the left ofT, acts onL2(Rx,j
2n ). So the symbolp̃

is a function of phase space variables (x,j,x* ,j* )PR2n3R2n, where the star denotes the corr
sponding dual variables.

Proof. Equation~28! follows from an explicit calculation as done in Ref. 4.

j

Lemma 2. Let aP(1,̀ ), b.0, p̃PS m and P̃5OpW( p̃) with

]x
ap̃~x,• !PGa,b~Rj

n!

for all aPNn and xPRn. Let furthermoreG0.0 and gPC`(Rx
n) be a weight function satisfying

the following:

~a! all derivatives of g are bounded,
~b! sup

xPRn

u]g(x)u,(An)21/ak with k as defined in Theorem 1,

~c! supp]g,$xPRnuuxu<G0/2%,

then there exist q˜PS m, Q̃ªOpW(q̃) and RNPB(L2(Rn)) ~for all NPN) such that for all\
sufficiently small

eg/\1/a
P̃e2g/\1/a

5Q̃1RN ,

whereiRNi5O(\N) and

q̃~\;x,j!2F a,b,vp̃~\;x,j1 i\121/a]g~x!!PS m12 ~30!

with v5\121/ak.
Proof. We use

eg/\1/a
P̃e2g/\1/a

5Op~e(g(x)2g(y))/\1/a
p̃!

and apply Proposition 5 with weight functiong̃(x,y)ªg(x)2g(y) and symbolp(x,y,j)ª p̃@(x
1y)/2 ,j#. The assumptions ong assure thatg̃ fulfills the assumptions of Proposition 5. To verif
assumption~4! we can estimate

ug̃~x,y!u< max
uxu<G0/2
uyu<G0/2

ug~x!2g~y!u< max
utu<G0/2

u]g~ t !uG0,~An!21/akG0 .

Proposition 5 then implies

ieg/\1/a
P̃e2g/\1/a

2OpW~ q̃!iB(L2(Rn))5O~\`!
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with

q̃~\;x,j!2F a,b,vp̃~\,x,j1 i\121/a]g̃~x!!)PS m11. ~31!

To show that the difference~31! is in S m12,S m11 first notice thatq̃ is given by the Weyl symbol
that corresponds tob(\,x,y,j) of Eq. ~25!. Since herep(x,y,j)5 p̃@(x1y)/2 ,j# it follows that
b(x,y,j) is symmetrically w.r.t. to an exchange ofx andy. Thus the term of order\m11 vanishes
according to Proposition 4. j

Lemma 3. Let q̃PS m and Q̃5OpW(q̃)5q̃(\;x,j,\Dx ,\Dj). Let furthermore gPC`(Rx,j
2n )

be a weight function with bounded derivatives, then there exist q5q(\;x,j)PS m and RN

PB(L2(Rn)) ~for all NPN! such that

^eg/\1/a
Tu,Q̃eg/\1/a

Tu&5^eg/\1/a
Tu,~q~\;x,j!1RN!eg/\1/a

Tu& ~32!

with

q~\;x,j!2q̃~\;x,j,j/22m\121/a]jg~x,j!,2x/21m21\121/a]xg~x,j!!PS m11 ~33!

and iRNi5O(\N).
Remark. In ~32! q acts as multiplication operator: Located to the left ofT it acts on phase

spaceR2n3R2n with (x,j) being position variables.
Proof. The proof can be adopted from Ref. 4. There the lemma is formulated using a w

ec/\. Analyticity of q is not used. Just setting

c5\121/ag

we can follow step by step the arguments in Ref. 4. Sincea.1 all derivatives ofc are uniformly
bounded for\,1. j

Proof of Theorem 1.
To estimatê eg/\1/a

Tu,eg/\1/a
TPu& we first use Lemma 1 to commuteP with T:

TP5 P̃T.

Then we apply Lemma 2 in dimension 2n with variablesx̃5(x,j) andj̃5(x* ,j* ). The assump-
tions onp andg(x,j) of Theorem 1 assure thatp̃ andg( x̃) fulfill the assumptions of Lemma 2

~a! For g this is trivially seen.
~b! Sincep̃(\; x̃,•) is obtained by shifting the arguments ofp(\;•,•) by x̃1/2, respectively,x̃2/2

and pPGa,b(R2n) by assumption of Theorem 1, we get, using the stability ofGa,b under
differentiation and translation,

] x̃
ap̃~\; x̃,• !PGa,b~R

j̃

2n
!.

Finally we apply Lemma 3: We rewriteQ̃ obtained from Lemma 2 acting oneg/\1/a
T as a

multiplication operatorq plus an error termRN . This leads to Eq.~26!.
The error terms from Lemma 2 and 3 sum up toRN from Theorem 1. Combining Eqs.~29!,

~30!, and~33! we end up with Eq.~27!.
j

A statement similar to~26! of Theorem 1 can be formulated for the normieg/\1/a
TPui . We

shall use this result in the next section.
Theorem 18. Under the same assumptions as in Theorem 1 there exists qPS m such that (26)

can be replaced by

ieg/\1/a
TPui5iq~\;x,j!eg/\1/a

Tui1O~\m11/2!ieg/\1/a
Tui ~34!
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with

q~\;x,j!5F a,b,vp~\;x2\121/ag̃m~x,j!,j1 i\121/amg̃m~x,j!!. ~35!

Proof. Let Tgªeg/\1/a
T. We use Lemmas 1 and 2 to obtain for arbitrary largeN:

iTgPui5ieg/\1/a
P̃Tui5i~Q̃1RN!Tgui5iQ̃Tgui1O~\N!iTgui .

So it is sufficient to estimate

iQ̃Tgui25^Q̃Tgu,Q̃Tgu&5^Tgu,Q̃* Q̃Tgu&.

According to the symbolic calculus we haveQ̃* Q̃PS 2m and

Q̃* Q̃5OpW~qD !OpW~ q̃!5OpW~qD q̃!1R2m11

with R2m11PS 2m11. Now we apply Lemma 3 to OpW(qD q̃). Only considering the leading orde
terms w.r.t.\ and using~29!, ~30!, and~33! we obtain

^Tgu,Q̃* Q̃Tgu&5^Tgu,~~ q̄q!~\;x,j!1R̃2m11!Tgu&

5iq~\;x,j!Tgui21O~\2m11!iTgui2

with iR̃2m11i5O(\2m11) andq as given in~35!.
j

IV. APPLICATION

From Theorem 1 one gets an exponential decay of the eigenfunctions of a pseudo-diffe
operator in the classically forbidden region. In the case of Gevrey classes this exponential
is w.r.t. \1/a.

Definition 4. Let aP@1,̀ ). For uPL2(Rn) the micro support MSGa(u) is the subset of phas
space defined by(x0 ,j0)¹MSGa(u) iff there existd.0 and a neighborhood U of(x0 ,j0) such
that

Tu~x,j!5O~e2d/\1/a
! uniformly in ~x,j!PU.

Remark. This definition is adopted to the case of Gevrey classes by adding the indexGa. a
51 gives the usual analytic case.

Definition 5. Let pPS 0 be a symbol of the form

p~\;x,j!5 (
k50

m

\kpk~x,j!

then the characteristic of P5OpW(p) is defined by

Char~P!ª$~x,j!PR2nup0~x,j!50%.

Theorem 2. Let aP(1,̀ ), b.0, pPS 0ùGa,b(R2n), P5OpW(p), and uPL2(Rn) be an
eigenfunction of P with zero eigenvalue:

Pu50

then

MSGa~u!,Char~P!.
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Remark. Theorem 2 is the generalization of estimate~3! mentioned in the introduction to th
case of Gevrey classes.

Physical interpretation.
Consider for example a Schro¨dinger operatorP52\2D1V(x). Its symbol is the correspond

ing Hamilton functionp(x,j)5p0(x,j)5j21V(x). Theorem 2 tells us that the zero ener
eigenfunctions are located in phase space at$j21V(x)50%. This is exactly where the classica
trajectories are located. Outside this areaTu decays exponentially w.r.t.\1/a.

Proof of Theorem 2. Let (x0 ,j0)¹Char(P), i.e., p0(x0 ,j0)Þ0. From continuity it follows
that there exist a neighborhoodU of (x0 ,j0) and a constantc.0 such that

up0�Uu>2c.

Let p̃0ªF a,b,vp0 be the almost analytic extension ofp0 with v5\121/ak as in Theorem 1. We
now apply Proposition 3. It follows that for sufficiently small\ we can estimate

u p̃0� Ũu>c ~36!

with Ũ5$(x,j)PSvuRe(x,j)PU%. We are now going to define a suitable weight functiong. It will
be constant in the neighborhood of (x0 ,j0) and will have sufficiently small derivatives.

Let U1,U2,U. For sufficiently smalld.0 we can find a functiongPC0
`(R2n) with

suppg,U2 ,

g�U1
5d ~37!

and ug̃mu5um21]xg1 i ]jgu,k. See Fig. 3.
From v5\121/ak it follows that

^x2\121/ag̃m~x,j!,j1 i\121/amg̃m~x,j!&PŨ ~38!

for all (x,j)PU2 and small\. Now we apply Theorem 18 with m50. UsingPu50 we get

05i p̃0~x2\121/ag̃m~x,j!,j1 i\121/amg̃m~x,j!!eg/\1/a
Tui1O~A\!ieg/\1/a

Tui .

This implies

i p̃0~x2\121/ag̃m~x,j!,j1 i\121/amg̃m~x,j!!eg/\1/a
TuiL2(U2)5O~A\!ieg/\1/a

Tui

and, using~36! and ~38!,

ieg/\1/a
TuiL2(U2)5O~A\!ieg/\1/a

Tui .

Let cU2 be the complement ofU2 . Via bootstrap we obtain for small\:

ieg/\1/a
TuiL2(U2)5O~A\!ieg/\1/a

TuiL2(cU2) .

Finally usingg�cU2
50 andU1,U2 we get

FIG. 3. Choice of the weight functiong.
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ieg/\1/a
TuiL2(U1)5O~A\!iTui

and, with help of~37!,

iTuiL2(U1)5O~e2d/\1/a
!.

Thus (x0 ,j0)¹MSGa and Theorem 2 is proven.
j

V. EXAMPLE

A typical example of the phase space tunneling can be found in Ref. 13. In this paper
considers analytic as well as smooth but nonanalytic potentials, and computes the asympt
the reflection coefficients for the one-dimensional Schro¨dinger equation on the real line by usin
a formal WKB expansion.

The results for the analytic case coincide with the results of Nakamura14 on the tunneling
effect in momentum space. For the nonanalytic case Berry uses a potential given by

V~x!5V0~12exp~2const/uxun!! ~39!

for n.0, and obtains a reflection coefficient which is dominated by a decay

exp~2const/\n/(n11)!. ~40!

In Ref. 15 it is shown that a function of type~39! is of Gevrey classGa with a5111/n.
Theorem 2 implies a decay in phase space given by exp(2const/\1/a)5exp(2const/\n/(n11)) which
completely coincides with Eq.~40!.

Thus the example of Berry shows that the microlocal estimates within this paper are op
In particular, the exponent in Eq.~40! is of completely general character, depending only on
type of the Gevrey class of the potential.

VI. CONCLUSION

A key estimate in the theory of phase space tunneling is proven for the case of a ps
differential operator with a symbol in some Gevrey class, being hence not necessarily an
Explicit bounds are given for an exponential decay with respect to\1/a, wherea.1 depends on
the smoothness of the symbol.
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Time ordering, energy ordering, and factorization
C. S. Lam
Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
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Relations between integrals of time-ordered product of operators, and their repre-
sentation in terms of energy-ordered products are studied. Both can be decomposed
into irreducible factors and these relations are discussed as well. The energy-
ordered representation was invented to separate various infrared contributions in
gauge theories. It is shown that the irreducible time-ordered expressions can be
used to accomplish the same purpose. Besides, it has the added advantage of being
factorizable. ©2000 American Institute of Physics.@S0022-2488~00!02505-6#

I. INTRODUCTION

Integrals of time-ordered products are often encountered in physics. For example, thnth
order high-energy tree amplitudeUn in the presence of an interactionH(t), is given by the
integral of the time-ordered product ofn such operators. In the energy representation, vertice
the scattering amplitude are given by the Fourier transformh(v) of H(t), and energy denomina
tors emerge from the time-ordered integrations.

It is known thatUn can be decomposed into sums of products ofirreducible amplitudes Cmi
,

with ( imi5n.1 The irreducible amplitudesCm are identical to the scattering amplitudesUm ,
except the time-ordered products ofH(t i)’s are replaced by their time-ordered nested commu
tors. In the energy representation, ordinary product ofh(v i)’s turn into their nested commutators

This decomposition formula embraces afactorization property which turns out to be ver
useful. A review of its applications can be found in Ref. 2. Its basic properties will be review
Sec. II.

On the other hand, it is also known3 that the time-ordered-product expression forUn can be
turned into an energy-ordered products containing the nested commutators ofh(v i)’s. This will be
reviewed in Sec. III. The energy-ordered expressions are much more complicated than the o
time-ordered expressions, but they are useful in sorting out the leading and the subleadin
tributions in the infrared regime of QCD. This will be briefly discussed in Sec. VI.

Since nested commutators appear in the decomposition formula, and in the energy-o
expression, one might wonder whether the two formulas are essentially the same. In spite
superficial similarity, these two are actually quite different. The energy-ordered formula
time-ordering into energy-ordering, but the whole expression remainsordered, with ‘‘propaga-
tors’’ linking the whole amplitude. On the other hand, the decomposition formula seeks tofactor-
ize the integral of anyordered productinto disjoint irreducible factors. It can be applied
time-ordered expressions, and it can also be applied to energy-ordered formulas, as will
cussed in Sec. IV. There are irreducible factorsCn for the time-ordered amplitudes, and separat

irreducible factorsC̄N for energy-ordered amplitudes. The relations between the time-ord
quantities and the energy-ordered quantities will be discussed in Sec. V. At low orders
relations can be directly verified, as done in the Appendix, but at high orders the algebra
complicated that it is impractical to obtain these relations by brute force.

As mentioned above, the energy-ordering formula is useful in sorting out the leading fro
subleading terms in the infrared region of QCD.3 It will be shown in Sec. VI that the decompo
sition formula applieddirectly to time-ordered products can be used for that purpose as
Moreover, the factorization property inherent in the decomposition formula gives this approa
added advantage that will be discussed in Sec. VI.
44970022-2488/2000/41(7)/4497/11/$17.00 © 2000 American Institute of Physics
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II. DECOMPOSITION FORMULA

Let H(t) be an operator-valued function oft, and

Un~TT8!5
1

n! ET8

T

dt1dt2¯dtn~H~ t1!H~ t2!¯H~ tn!!1

5E
Rn(TT8)

dt1dt2¯dtnH~ t1!H~ t2!¯H~ tn! ~1!

be the integral of its time-ordered product, denoted by (¯)1 . The integration regionRn(TT8) is
the hypertriangular region defined by$T>t1>t2>¯>tn>T8%. The time-ordered exponential i
related to them by

U~TT8![S expF E
T8

T

H~ t !dtG D
1

511 (
n51

`

Un~TT8!. ~2!

EachUn can be decomposed into sums of products ofirreducible components Cm via the formula1

Un5(
$m%

j~m1m2¯mk!Cm1
Cm2

¯Cmk
, ~3!

j~m![j~m1m2¯mk!5)
i 51

k S (
j 5 i

k

mj D 21

, ~4!

where the sum in~3! is taken over all partitions (m)5(m1m2¯mk) of the numbern, so that
mi.0 and( i 51

k mi5n. The irreducible componentsCm are defined similar toUm , but with the
time-ordered product replaced by time-ordered nested commutators,

Cn~TT8!5
1

n! ET8

T

dt1dt2¯dtn~H@ t1t2¯tn# !15E
Rn(TT8)

dt1dt2¯dtnH@ t1t2¯tn#, ~5!

H@ t1t2¯tn#[@H~ t1!,@H~ t2!,@¯ ,@H~ tn21!,H~ tn!#¯###,

H@ t1#[H~ t1!. ~6!

Note that~3! is combinatorial in nature, so the decomposition is valid whether the parametet is
‘‘time,’’ or ‘‘energy,’’ or anything else.

As an illustration, I list below the explicit decomposition formula for the first threeUn’s,

U15C1 ,

U25 1
2 C1

21 1
2 C2 ,

U35 1
6 C1

31 1
3 C2C11 1

6 C1C21 1
3 C3 . ~7!

Then operators used in the time-ordered product in~1! are identical. If they are all different
a decomposition formula similar to~3! still exists. This will be discussed further in Sec. VI.

Of particular interest is the ‘‘high-energy off-shell tree amplitude’’Un(02`). It may be
expressed in terms of the Fourier transformh(v) of H(t),
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H~ t !5E
2`

`

h~v!e2 ivtdv, ~8!

to be

Un~02`!5
i n

n! E2`

`

h~v1!h~v2!¯h~vn!)
i 51

n
dv i

V i1 i e
, ~9!

V i5(
j 5 i

n

v j , ~10!

whereh(v i) are the vertices, and the propagators 1/(V i1 i e) are obtained from~1! and ~8! by
carrying out the time integrations explicitly. The corresponding off-shell irreducible amplitudCn

is

Cn~02`!5
i n

n! E2`

`

h@v1v2¯vn#)
i 51

n
dv i

V i1 i e
, ~11!

whereh@v1v2¯vn# is the nested commutator ofn h(v i), defined similar to~6!.

III. ENERGY-ORDERING FORMULA

The time-ordered exponentialU(02`) may be converted into an energy-ordered exponen
in the following way.3 First, replaceH(t) everywhere by

HE~ t !5E
2`

E

h~v!e2 ivtdv. ~12!

The corresponding time-ordered exponential~2! will be denoted byUE(02`). It satisfies the
following differential equation inE,

dUE~02`!

dE
5E

2`

0

dt UE~0t !h~E!e2 iEtUE~ t2`![D~E!UE~02`!, ~13!

where

D~E![E
2`

0

dt e2 iEtUE~0t !h~E!UE~0t !21[ (
n51

`

Dn~E!, ~14!

Dn~E!5E
2`

0

dt1E
2`

t1
dt2¯E

2`

tn21
dtn e2 iEtn@HE~ t1!,@HE~ t2!,@¯ ,@HE~ tn21!,h~E!#¯###.

~15!

Using ~12! and carrying out the time integrations, we get

Dn~vn!5 i nE
2`

vn
h@v1v2¯vn#S )

i 51

n21
dv i

V i1 i e D 1

Vn1 i e
. ~16!

Please note a deceiving similarity between*2`
` Dn(vn)dvn andCn(02`). The two would have

been the same if the upper limit of the (n21)-dimensional integrations in~16! were` instead of
vn . This turns out to be the important distinction between the two approaches.

Integrating the differential equation~13! and lettingE→`, we finally obtain an energy-
ordered expression forU(02`) to be3
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U~02`!5S expF E
2`

`

D~v!dvG D
1

[11 (
N51

`

ŪN , ~17!

ŪN~02`!5
1

N! E2`

`

dv1dv2¯dvN~D~v1!D~v2!¯D~vN!!1

5E
RN(`2`)

dv1dv2¯dvND~v1!D~v2!¯D~vN!, ~18!

whereRN(`2`) is the hyper-triangular integration regioǹ.v1>v2>¯>vN.2`.
Before proceeding further let us pause to compare the time-ordered and the energy-o

expressions forU(02`). The time-ordered expression, given in~2!, has an exponent linear in
H(t), or in h(v). The energy-ordered expression, given in~17!, has an exponent containing a
orders ofh(v) because of~14! and ~16!. Similarly, Un given in ~9! andCn given in ~11! are of
ordern, but ŪN in ~18! contains all orders fromN on. It would be convenient to be able to ref
to each order separately, so let us defineŪNn , with n>N, to be the order-n terms ofŪN . Hence

ŪN5 (
n5N

`

ŪNn . ~19!

IV. DECOMPOSITION OF THE ENERGY-ORDERING FORMULA

The energy-ordered formula in~18! for the amplitudeŪN can be decomposed into irreducib
components using the decomposition formula~3!,

ŪN5(
$M %

j~M1M2¯Mk!C̄M1
C̄M2

¯C̄MK
, ~20!

where the sum is taken over all partitions (M )5(M1M2¯MK) of the numberN. In particular, as
in ~7!, we have

Ū15C̄1 ,

Ū25 1
2 C̄1

21 1
2 C̄2 , ~21!

Ū35 1
6 C̄1

31 1
3 C̄2C̄11 1

6 C̄1C̄21 1
3 C̄3 .

The irreducible components are now given by

C̄N5
i N

N! E2`

`

dv1dv2¯dvN~D@v1v2¯vN# !1

5 i NE
RN(`2`)

dv1dv2¯dvND@v1v2¯vN#[ (
n5N

`

C̄Nn , ~22!

whereD@v1v2¯vN# is the nested commutator ofN D(v i)’s, defined similar to~6!, andC̄Nn is
the term inC̄N of ordern.

Unlike ~3! and~7!, where each decomposition contains quantities of a fixed order, the de
position ~20! and ~21! each contains quantities of all orders. By equating quantities of the s
order, we obtain from each equation an infinite number of identities. Up to order 3, these a
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Ū1n5C̄1n ,

Ū225
1
2 C̄11

2 1 1
2 C̄22,

Ū235
1
2 C̄12C̄111

1
2 C̄11C̄121

1
2 C̄23,

Ū335
1
6 C̄11

3 1 1
3 C̄22C̄111

1
6 C̄11C̄221

1
3 C̄33. ~23!

V. RELATIONS BETWEEN TIME-ORDERED AND ENERGY-ORDERED QUANTITIES

By equating the time-ordered and the energy-ordered expressions forU(02`) at a given
order, relations between the two kinds of quantities can be obtained. To start with,

Un5 (
N51

n

ŪNn . ~24!

For the first few orders, we have

U15Ū11,

U25Ū121Ū22,

U35Ū131Ū231Ū33. ~25!

By using ~3! and ~20!, we can also obtain from~24! a relation between the irreducibl
amplitudesCn and C̄Nn . The first few of these relations are

C15C̄11,

C252C̄121C̄22,

C35C̄331
3

2
C̄2313C̄131

1

2
@C̄11,C̄12#. ~26!

In the Appendix, we shall write down the low-order quantities in their explicit forms
integrals ofh(v) and the propagators. We shall then verify directly that these identities are v
The algebra encountered are fairly complicated, showing that these quantities are really
twined in a very complicated way.

VI. INFRARED BEHAVIOR

Imagineh(v) to be the vertex emitting (v.0) or absorbing (v,0) soft photons or gluons
of energyuvu. For now let us consider only emissions so that we may assumeh(v)50 for v
,0. As a result, the integration region of all thev-integrals may be restricted between 0 and`.
If h(v) approaches a nonzero operator asv→01, say of orderg, then an infrared divergenc
occurs in the scattering amplitudeUn in ~9!. If l is the infrared cutoff for thev-integrations, then
the leading infrared divergence ofUn is seen from~9! and~10! to be of ordergn logn l, and that
is produced in the strongly ordered region

v1@v2@¯@vn@l. ~27!
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The subleading contribution, of ordergn logml, comes from regions wherem v i ’s are strongly
ordered like~27!, with the rest of thev i ’s of the same general magnitude as one of those in
ordered region.

A. Energy ordering

The energy-ordering formula discussed in Sec. III offers a systematic way to extract froUn

terms with subleading contributions.3 The basic observation is thatDn(vn) of ~16! is of order
gn logl whatevern is. That behavior arises because the variablevn in the propagator 1/(Vn

1 i e)51/(vn1 i e) is the largest~rather than the smallest! variable in~16!. As a result, the mag-
nitude of a term is controlled by the number ofDn’s it contains. In particular,ŪNn would be of
ordergn lnN l.

This fact can be used to analyze the infrared behavior of QCD,3 but we will not go into the
details here. Instead, we would like to discuss an alternative method to extract subleading
directly from the time-ordered expression, with the help of the decomposition formula.

At first sight this seems to be impossible. As mentioned above, the reason whyDn;gn ln l
rather thangn lnn l, is becausevn in ~16! is larger than any other energy variables in the integ
As pointed out below~16!, this is precisely a property thatCn(02`)[Cn does not share, so it is
hard to imagine why decomposition intoCm’s using~3! can achieve the same end. The remedy
turns out, is to decompose theintegrandof Un rather than the integral itself.

B. Infrared decomposition from time-ordering

We will continue to assumeh(v)50 for v,0 so that the integration region in~9! becomes
the hypercubeWn5$`.v i>0, 1< i<n%. This integral can be rewritten as an integral over t
hypertriangular region,

Rn5$`.v1>v2¯>vn>0%, ~28!

provided we symmetrize the integrand,

Un5
i n

n! ERn

dnv un ,

un5 (
[s] PSn

u@s#,

u@s#5h~vs1
!h~vs2

!¯h~vsn
!)
i 51

n
1

V i
s1 i e

,

V i
s5(

j 5 i

n

vs j
. ~29!

In these formulas,@s#[@s1s2¯sn# is a permutation of@12̄ n#, and the sum is taken over th
symmetric groupSn of all such permutations.

The integrandun can be decomposed into irreducible amplitudesc@s8# in a way similar to
~3!,1,2

un5 (
[s] PSn

c@s#P , ~30!

wherec@s#P indicates a product of irreducible factorsc@s8# similar to the right-hand side of~3!.
Given a sequence@s#5@s1s2¯sn#, we partition it by inserting vertical bars as follows: a bar
inserted after a numbers i if and only if it is smaller than every number to its right. For examp
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if @s#5@12345#, then @s#P5@1u2u3u4u5#. If @s#5@52134#, then @s#P5@521u3u4#, and if @s#
5@14352#, then @s#P5@1u43u52#. Such partitions divide the original sequence@s# into subse-
quences, separated by the vertical bars. For the infrared behavior to be discussed late
important to note that the last~rightmost! number of every subsequence is the smallest numbe
that subsequence. Nowc@s#P is simply the product of the irreducible factorsc@s8#, one for each
subsequence. For example,c@12345#P5c@1#c@2#c@3#c@4#c@5#, c@52134#P5c@521#c@3#c@4#,
andc@14352#P5c@1#c@43#c@52#. The irreducible amplitude c@s8#5c@s18s28¯sm8 # is given by

c@s8#5c@s18s28¯sn8#5h@s8#)
i 51

m
1

V i
s81 i e

,

h@s8#[h@s18s28¯sm8 #[@h~s18!,@h~s28!,@¯ ,@h~sm218 !,h~sm8 !#¯###,

h~ j ![h~v j !. ~31!

The explicit decomposition formulas forn<3 are

u15u@1#5c@1#,

u25 1
2 $u@12#1u@21#%5 1

2 $c@1#c@2#1c@21#%,

u35 1
6 $u@123#1u@132#11u@213#u@312#1u@231#1u@321#%

5 1
6 $c@1u2u3#1c@1u32#1c@21u3#1c@31u2#1c@231#1c@321#%. ~32!

Incidentally, the decomposition formula~30! leads to the decomposition formula~3! in the
following way. Sinceun in ~29! is symmetrical in all its arguments, we may replace its integra
regionRn by the hypercubeWn , provided we compensate the repitition by dividing the integral
a factorn!. Subsituting the decomposition~30! into this hypercube integral, and noting from~11!
and ~31! that

Cm5
i m

m! EWm

dmv c@s8#, ~33!

whatever@s8# is, as long as its length ism, then we obtain~3! from ~30!, wherem! j(m1m2¯mk)
is the number of ways to partition the sequence@s8# of lengthm, into k subsequences, the first o
lengthm1 , the second of lengthm2 , etc. For example, on the right-hand side of the expressionu3

in ~32!, the first term has a partition whose lengths are~111!, the seond has a partition~12!, the
third and the fourth have a partition~21!, and the last two have a partition~3!. So the coefficients
3!j(m) for these partitions (m1m2¯mk) are, respectivey, 1, 1, 2, and 2, agreeing with wha
given in the last equation of~7!.

Returning to~29! and ~30!, let us define

C@s8#5
i m

m! ERm

dmv c@s8#, ~34!

whereRm is them-dimensional hypertriangular region of thevs
i8

variables. The normalization is

defined so thatCm is equal toC@s8# summed over all them! permutations of the numbers i
@s8#. The decomposition for the integralUn can now be obtained from~29! and ~30! to be

Un5 (
[s] PSn

1

n! S )i 51

k

mi ! D C@s#P , ~35!
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wheremi is the length of thei th subsequence of@s#P , and ( i 51
k mi5n. This is an alternative

decomposition ofUn . It is asymmetrical in the energies whereas the decomposition in~3! is
symmetrical. It is this asymmetry that will be exploited for infrared factorization.

Let us now examine the infrared property of anirreducible factor C@s8#. Since the last
element of@s8# is the smallest number of that subsequence, its correspondingv-variable will be
the largest in the regionRm , hence from~31! and~34! we conclude thatC@s8# is of ordergm ln l,
wherem is the length of@s8#. The termC@s#P in ~35! is therefore of ordergn lnk l, wherek is
the number of subsequences of@s#P .

In particular, the leading contribution comes fromk5n and the partitioned sequence@s#P

5@1u2u3u¯un#. The least dominant contribution comes from sequences@s# with sn51 and
hencek51.

The added advantage in analyzing infrared behavior by decomposition comes from its f
ization property. Since each irreducible factorC@s8# is of ordergm ln l, to order 1 it must be of
the formgma@s8# ln(l/l0@s8#). If the constantsa andl0 can be computed for every@s8#, then the
exactinfrared behavior ofUn , accurate to all powers of lnl, can be obtained from~35! just by
multiplication and summation. This property will be exploited in a future study of the infra
behavior of QCD.
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APPENDIX: EXPLICIT DECOMPOSITION FORMULAS

In this appendix we write down the integrals for the low-order quantities, and verify dire
from them the identities discussed in the text. Since the expressions are long, we need
shorthand notations. We will writev(123)5v11v21v31 i e, and similarly for other sums o
v i ’s and i e. A vertical bar will be used to denote multiplication, e.g.,v(123u4u56)
5v(123)v(4)v(56). We will also write the nested commutatorh@v1v2¯vn# simply as
h@12̄ n#. A vertical bar in the argument ofh@¯# will be used to indicate multiplication. Henc
h@12u3u674#5h@12#h(3)h@674#. We will redefine the integration variablesv i , if necessary, so
that all integrals*dnv appearing below are taken over the hypertriangular regionRn(02`),
wheren is the number of integration variables. Unless otherwise specified, all integrals belo
understood to be integrated over thisRn . With this notation, the explicit expressions can
obtained from~9!, ~11!, ~16!, ~18!, ~22!. The identities we want to verify are~7!, ~23!, ~25!, and
~26!.

The first-order expressions are

U15C15Ū115C̄115 i E dv
h~v!

v1 i e
. ~A1!

The second-order unbarred quantities are

U25 i 2E d2vH h@1u2#

v~12u2!
1

h@2u1#

v~21u1!J , ~A2!

1

2
C25

i 2

2 E d2vH h@12#

v~12u2!
1

h@21#

v~21u1!J , ~A3!

1

2
C1

25
1

2
C̄11

2 5
i 2

2 E d2v
h@1u2#1h@2u1#

v~1u2!
. ~A4!
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The reason for two terms to be present in each expression is because a square integratio
can be written as the sum of two triangular integration regions. The second equation in~7! for U2

can now be verified using the relationh@12#5h@1u2#2h@2u1# to express all commutators i
terms of products, and the trivial identity

1

A
1

1

B
5

A1B

AB
. ~A5!

The second-order barred quantities are as follows:

Ū125E
2`

`

dv2D2~v2!5 i 2E
2`

`

dv2E
2`

v2
dv1

h@12#

v~12u2!
5 i 2E d2v

h@21#

v~21u1!
5C̄12, ~A6!

Ū225E d2vD1~v1!D1~v2!5 i 2E d2v
h@1u2#

v~1u2!
, ~A7!

C̄225E d2v@D1~v1!,D1~v2!#5 i 2E d2v
h@12#

v~1u2!
. ~A8!

The second equation in~25! for U2 can now be verified directly from~A2!, ~A6!, and ~A7!.
Similarly the identity forŪ22 in ~23! and the identity forC2 in ~26! can both be verified.

Next, we write down the third-order unbarred quantities,

U35 i 3E d3vH h@1u2u3#

v~123u23u3!
1

h@2u1u3#

v~213u13u3!
1

h@1u3u2#

v~132u32u2!

h@3u1u2#

v~312u12u2!

1
h@2u3u1#

v~231u31u1!
1

h@3u2u1#

v~321u21u1!J , ~A9!

1

3
C35

i 3

3 E d3vH h@123#

v~123u23u3!
1

h@213#

v~213u13u3!
1

h@132#

v~132u32u2!

h@312#

v~312u12u2!

1
h@231#

v~231u31u1!
1

h@321#

v~321u21u1!J , ~A10!

1

6
C1C25

i 3

6 E d3vH h@1u23#

v~1u23u3!
1

h@2u13#

v~2u13u3!
1

h@3u12#

v~3u12u2!

h@1u32#

v~1u32u2!

1
h@2u31#

v~2u31u1!
1

h@3u21#

v~3u21u1!J , ~A11!

1

3
C2C15

i 3

3 E d3vH h@23u1#

v~1u23u3!
1

h@13u2#

v~2u13u3!
1

h@12u3#

v~3u12u2!

h@32u1#

v~1u32u2!

1
h@31u2#

v~2u31u1!
1

h@21u3#

v~3u21u1!J , ~A12!

1

6
C1

35
i 3

6 E d3vH h@1u2u3#

v~1u2u3!
1

h@2u1u3#

v~2u1u3!
1

h@1u3u2#

v~1u3u2!

h@3u1u2#

v~3u1u2!
1

h@2u3u1#

v~2u3u1!
1

h@3u2u1#

v~3u2u1!J .

~A13!
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Six terms each are present in each of these equations because a cube contains six hyper
We can now verify directly that the last equation in~7! is correct. For example, take the term
proportional toi 3h@1u2u3#. In order for~7! to be correct, we need to have

1

v~123u23u3!
5

1

3 H 1

v~123u23u3!
2

1

v~132u32u2!
2

1

v~312u12u2!
1

1

v~321u21u1!J
1

1

6 H 1

v~1u23u3!
2

1

v~1u32u2!J 1
1

3 H 1

v~3u12u2!
2

1

v~3u21u1!J 1
1

6

1

v~1u2u3!
.

~A14!

By using ~A5! repeatedly, this can be verified to be true.
The third-orderŪ ’s are

Ū135E
2`

`

dv3D3~v3!5 i 3E
2`

`

dv3E
2`

v3
dv1dv2

h@123#

v~123u23u3!

5 i 3E d3vH h@231#

v~231u31u1!
1

h@321#

v~321u21u1!J 5C̄13, ~A15!

Ū235E
2`

`

dv1E
2`

v1
dv2~D1~v1!D2~v2!1D2~v1!D1~v2!!

5 i 3E d3vH h@1u32#

v~1u32u2!
1

h@21u3#

v~21u1u3!
1

h@31u2#

v~31u1u2!J , ~A16!

Ū335E d3vD1~v1!D1~v2!D1~v3!5 i 3E d3v
h@1u2u3#

v~1u2u3!
. ~A17!

In order for the last equation of~25! to be true, we need to have~A9! to be the sum of the three
equations above. Taking, for example, those proportional toi 3h@1u2u3#. It requires

1

v~123u23u3!
5

1

v~321u21u1!
2

1

v~1u32u2!
2

1

v~21u1u3!
1

1

v~1u2u3!
, ~A18!

which is true. Other terms can be similarly verified.
The third-orderC̄’s are

C̄235E
2`

`

dv1E
2`

v1
dv2~@D1~v1!,D2~v2!#1@D2~v1!,D1~v2!# !

5 i 3E d3vH h@132#

v~1u32u2!
1

h@213#

v~31u1u2!
1

h@312#

v~21u1u3!J , ~A19!

C̄335E d3v@D1~v1!,@D1~v2!,D1~v3!##5 i 3E d3v
h@123#

v~1u2u3!
, ~A20!

@C̄11,C̄12#5 i 3E d3vH h@132#

v~1u32u2!
1

h@321#

v~3u21u1!
1

h@231#

v~2u31u1!J . ~A21!

We shall not verify explicitly the last two equations of~23!, but will attempt to check the las
equation of~26!, relatingC3 to the C̄’s. C3 is given in ~A10!, and theC̄’s above. All of them
contain the triple nested commutatorh@ i jk #, so it is more convenient to check the identity in~26!
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by comparing the coefficients ofh@ i jk # rather than the producth@ i u j uk#. There are 3!56 such
nested commutators but they are related by antisymmetry and the Jacobi identity, so there a
two independent ones, which we may take to beh@321# andh@231#. The others are given in term
of these two by

h@312#52h@321#, h@123#5h@321#2h@231#,

h@213#52h@231#, h@132#5h@231#2h@321#. ~A22!

To verify theC3 relation in~26!, let us compare the coefficients ofi 3h@321# of all the terms. If the
identity holds, the following relation must be true:

1

v~123u23u3!
2

1

v~132u32u2!
2

1

v~312u12u2!
1

1

v~321u21u1!

5
1

v~1u2u3!
2

3

2 H 1

v~1u32u2!
1

1

v~21u1u3!J 13
1

v~321u21u1!

1
1

2 H 2
1

v~1u32u2!
1

1

v~3u21u1!J . ~A23!

This is so as can be verified by using~A5!.
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Quantum grammars
V. A. Malysheva)

INRIA, Domaine de Voluceau, Rocquencourt, BP105, 78153, Le Chesnay Cedex, France

~Received 14 June 1999; accepted for publication 14 February 2000!

We consider quantum~unitary! continuous time evolution of spins on a lattice
together with quantum evolution of the lattice itself. In physics such evolution was
discussed in connection with quantum gravity. It is also related to what is called
quantum circuits, one of the incarnations of a quantum computer. We consider
simpler models for which one can obtain exact mathematical results. We prove
existence of the dynamics in both Schro¨dinger and Heisenberg pictures, construct
KMS states on appropriateC* -algebras. We show~for high temperatures! that for
each system where the lattice undergoes quantum evolution, there is a natural
scaling leading to a quantum spin system on a fixed latticeZ, defined by a renor-
malized Hamiltonian. ©2000 American Institute of Physics.
@S0022-2488~00!03107-8#

I. INTRODUCTION

Practical quantum computation has not yet started but many standard notions of the co
science have already been generalized, giving rise to the quantum computer science, se
reviews.1,2,3 Here we give a definition of a quantum grammar similar to the definition of a ran
grammar, given in Ref. 4.

A very particular case of quantum grammars are quantum spin systems, popular st
models in statistical physics and quantum field theory. Quantum grammar can be consider
quantum spin system on a quantum lattice, that is the lattice itself is a quantum object sub
a unitary evolution. It is quite in a spirit of some approaches to the quantum gravity, where
is quantized, but the time remains classical and one-dimensional.

Here we consider questions pertinent to physical systems rather than to the computer s
We show how standard quantum spin systems~spin represents the matter! on the latticeZ ~lattice
represents the space! can emerge from KMS states on theC* -algebras corresponding to quantu
grammars. The term grammar refers normally to one-dimensional systems. Higher dimen
objects are called graph grammars in computer science. Higher dimension means only that
one-dimensional. The terms spin graph, spin complex or spin network are used instead of ‘‘
dimensional grammars.’’

One of our goals is to show that already in one dimension these models have suffic
interesting structure. The evolution of the space is simple however. There is no topology
metrics is important: the space can expand and compress at any point, expanding and com
being a quantum process. However there are phenomena which have no analogs in the s
physics and quantum field theory living on a classical space.

The correspondence between grammars and quantum grammars are as between clas
quantum computation. We consider continuous time evolution which allows the grammars
from context free. Thus there are no ‘‘no-go’’ theorems as for the discrete time, see Ref.
prove self-adjointness of the Hamiltonian which gives the unitary evolution on a Hilbert spac
an automorphism group of some hyperfiniteC* -algebra. We show that there is a transition in t
parameters~the temperature and the cosmological constant! when the KMS state exists or not. I

a!Phone: 33 1 39635269; Fax: 33 1 39635372; Electronic mail: Vadim.Malyshev@inria.fr
45080022-2488/2000/41(7)/4508/13/$17.00 © 2000 American Institute of Physics
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the latter case we define renormalized KMS states, the scaling limit of such renormalized s
a standard quantum spin system.

II. SYMMETRIC GRAMMARS

A. Hilbert space and Hamiltonian

Let S5$1, . . . ,r % be a finite set~the alphabet!, L5L(S), the set of all finite words~including
the empty one! a5x1¯xn , xiPS, in this alphabet. Lengthn of the worda is denoted byuau.
Concatenation of two wordsa5x1¯xn andb5y1¯ym is defined by

ab5x1¯xny1¯ym .

The wordb is a subword ofa if there exist wordsd andg such thata5dbg. Grammar overS
is defined by a finite set Sub of substitutions~productions!, that is the pairsd i→g i , i 51, . . . ,k
5uSubu, d i , g iPL. Further on we assume that alld i , g i are not empty.

Let H5 l 2(L) be the Hilbert space with the orthonormal basisea , aPL:(ea ,eb)5dab where
the functionea(b)5dab . Each vectorf of H a function on the set of words and can be writt
as

f5( f~a!eaPH,ifi25( uf~a!u2.

States of the system are wave functions, that is vectorsf with the unit normifi251. We shall
define dynamics in the form

f~ t !5exp~ i tH !f~0!.

The HamiltonianH will be written in terms of operators, which resemble creation-annihila
operators in quantum field theory. For eachi 51, . . . ,k and each integerj >1 we define quantum
substitutions, that is linear bounded operatorsai( j ). If a5td ir for some wordst, r, utu5 j 21,
we put

ai~ j !ea5eb,

whereb5tg ir. Otherwise we putai( j )ea50. Adjoint operatorsai* ( j ) are defined by

ai* ~ j !eb5ea

for b5tg ir and 0 otherwise. Define the formal Hamiltonian by

H5 (
i 51

uSubu

(
j 51

`

~l iai~ j !1l̄ iai* ~ j !!

for some complexl i .
We could equally assume that together with the substitutiond i→g i also its ‘‘inverse’’ sub-

stitution g i→d i belongs to Sub. The Hamiltonian then can be written simply as

H5 (
i 51

uSubu

(
j 51

`

l iai~ j !.

We always assume thatH5H* , that isl i5l̄ j in cased j5g i , g j5d i . We shall use only this
representation further on.

H is well-defined and symmetric on the setD(L) of finite linear combinations ofea . These
vectors areC`-vectors forH, that isHeaPD(L).

Theorem 1: H is essentially self-adjoint on D(L).
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Proof: We shall prove that each vectorfPD(L) is an analytic vector ofH, that is

(
k50

` iHkfi
k!

tk,`

for somet.0. It is sufficient to takef5ea for somea. Then the number of pairs~i,j! such that
ai( j )eaÞ0 is not greater thannk, n5uau, k5uSubu.

Write the decomposition ofH as

H5(
a

Va ,

whereVa equals one ofl iai( j ). Then,

Hnea5 (
an , . . . ,a1

Van
¯Va1

ea5( Cbeb . ~1!

The maximal length of the wordsb in the expansion ofVan
¯Va1

ea does not exceeduau
1C1n, C15max(ugiu2udiu). Then, for givenea ,a1 , . . . ,an , the number of operatorsVan11

giving
a nonzero contribution toVan11

Van
. . . Va1

ea . It does not exceedk(uau1C1n), k5uSubu. Thus
the number of nonzero termsVan

¯Va1
ea does not exceed

kn)
j 51

n

~ uau1C1 j !5~kC1!n
S uau

C1
1nD !

n! S uau
C1

D !

<~kC1!nnuau/C‘ 1

and the norm of each term is bounded by (maxli)
n. This gives convergence of the series forutu

,t0 wheret0 does not depend ona.

B. C* -algebra

For eachN let HN,H be the finite dimensional subspace generated by allea with uau<N, let
PN be the orthogonal projection ontoHN . Let AN be theC* -algebra of all operators inHN . It is
the @(r N1121)/(r 21)#3@(r N1121)/(r 21)#-matrix algebra ifr .1. We can consider ‘‘cutoff’’
operators

ai ,N~ j !5PNai~ j !PN

as belonging toAN .
We have natural embeddingsHN,HN11 and we define the embeddingsfN :AN→AN11 by:

for BPAN we putfN(B)ea5Bea if uau<N andfN(B)ea50 if uau5N11. The inductive limit
øNAN5A0 of the C* -algebrasAN is called the local algebra, its norm closureA is called the
quasilocal algebra. It does not fall however under the general definition of quasilocal alge6

due to the absence of ‘‘space structure.’’ There is no identity element in this algebra~it can be
appended if necessary, the identity operator inH!, but there is an approximate identity, a sequen
1 (AN) of unit matrices inAN . A is a hyperfiniteC* -algebra.

Note that the formal HamiltonianH defines the differentiation of the local algebra. Denot

HN5 (
i 51

uSubu

(
j 51

N

l iai ,N~ j !.

Take some localA andN such thatAPAN . Define an automorphism group ofAN as follows:
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a t
~N!~A!5exp~ iH Nt !A exp~2 iH Nt !.

Theorem 2: There exists t0.0 such that for any local A and for each t, utu,t0 , there exists
the norm limit,

lim
N→`

a t
~N!~A!.

This defines a unique automorphism group of the quasilocal algebra.
Proof: Consider the Dyson–Schwinger series,

At
~N!5A1 (

n51

`
~ i t !n

n!
@HN , . . . ,@HN ,@HN ,A##¯#.

One can takeA5Aar , whereAareg5dager . Note that the commutator is the sum of commu
tors,

@ai n
~ j n!, . . . ,@ai 2

~ j 2!,@ai 1
~ j 1!,A##, . . . #

multiplied by l i 1
. . . l i n

. Nonzero commutators should have the property thatj k< l (A)1C1(k
21), l (A)5max(uau,uru). The convergence proof is quite similar to the previous converge
proof. If N→`, thenAt

(N) converge to

At5A1 (
n51

`
~ i t !n

n!
@H, . . . ,@H,@H,A##¯#.

Each term of the latter series is well defined and the series converges fort sufficiently small. The
existence of the automorphism group can be proved as in the Robinson theorem for quantu
systems, see Ref. 6.

Remark 1: Note that in the Robinson theorem for one-dimensional quantum spin system
finite interaction radius one can prove that the series converges for all t, because the length
cluster increases only at the boundary (that is at two end points). For quantum grammars
not the case.

C. KMS states

To define temperature states onA one could put for any localA and largeN,

^A&b5 lim
N→`

^A&b,N5 lim
N→`

ZN
21TrN@A exp~2bHN!#,ZN5TrN exp~2bHN!,

where TrN means the trace inAN . However, this does not always define a state. For example
gives zero forb50, whereZN5(r N1121)/(r 21)→`, r .1, ZN5N11→`, r 51, but TrN A is
bounded. We shall prove it now in the general case but only for smallb.

Lemma 3: There existsb0.0 such that for each local A the limit

lim
N→`

Tr@A exp~2bHN!#

exists and is analytic inb for b,b0 .
Proof: Take againA5Aar . Then,

TrN@exp~2bHN!A#5 (
k50

`
~2b!

k!
TrN~HkA!5 (

k50

`
~2b!k

k! (
I k ,Jk

TrN~ai k
~ j k!¯ai 1

~ j 1!A!,
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where the sum is over all arraysI k5( i 1 , . . . ,i k), Jk5( j 1 , . . . ,j k). The convergence proof is th
same as for the previous statements.

Lemma 4: Ifb is small thenlogZN;cN with c.1. It follows that the above limit̂A&b is zero
for all A.

Proof: One can write

ZN5 (
a:uau<N

z~a!,z~a!5~ea ,exp~2bHN!ea!

and

ZN(
k50

`

(
I k ,Jk

(
a:uau<N

~2b!k

k!
z~a,~ I k ,Jk!!,z~a,~ I k ,Jk!!5~ea ,ai k

~ j k!¯ai 1
~ j 1!ea!.

Consider some term of this expansion corresponding to some worda of length n and to some
(I k ,Jk). It is convenient to denoted(p)→g(p) the substitution on placep, corresponding to the
operatorb(p)5ai p

( j p). The symbolxi of the word a5x1¯xn is called untouched for given
(I k ,Jk) if no d(p) contains it. Similarly, a symbol of the wordb(s)¯b(1)ea is called untouched
if no d( l ) with s, l<k contains it.

We shall consider the lattices of partitions of words onto subwords. Let some the wob
5rgk is obtained from the worda5rdk by the substitutiond→g. Let also a partitionG of a
be given. We call a partitionG(b) of b the partition induced byG and the substitutiond→g if
following condition holds. If blockI of G belongs to eitherr or k then it is also a block ofG(b).
The symbols ofg form one block together with all symbols of the blocksI ~not belonging tod! of
G intersecting withd.

Now let a partitionG of b be given. We call a partitionG(a) of a the partition induced byG
and this substitution if following condition holds. If blockI of G belongs to eitherr or k then it
is also a block ofG(a). The symbols ofd form one block together with all symbols~not
belonging tog! of the blocksI of G intersecting withg.

We define now inductively the set of partitionsGs of partitions of the wordsas

5b(s)¯b(1)a, s50,1, . . . ,n, wherea5a0 , ak5a. G0 is the partition ofa0 onto n separate
symbols.Gs11 is the partition ofas11 induced by the substitutiond(s)→g(s). DenoteGs,0

5Gs . If the partition Gs11,p of as11 is defined thenGs,p11 is defined as the partition ofas

induced by the substitutiond(s)→g(s).
We need the partitionG0,k . Its blocks are at the same time the blocks of the partition of

interval @1,n#. We call them clusters with respect to (a,I k ,Jk).
We call nonzero term of the expansion connected~for fixed a and (I k ,Jk)! if the partitionG0,k

consists of only one cluster.
Consider the contributioncI of some clusterI. It depends only on its lengthm

cI5c~m!5 (
a:uau5m

(
k50

`

(
~ I k ,Jk!

~2b!k

k!
~ea ,ai k

~ j k!¯ai 1
~ j 1!ea!,

where the last sum is over all connected (a,I k ,Jk). We have the cluster expansion forz(N),

z~N!8 (
a:uau5N

z~a!5( cI 1
¯cI p

,

where the sum is over all partitions on consecutive intervals. To prove this formula tak
ordered arraymW 5(m1 , . . . ,mp) of positive integers such thatm11¯1mp5k and denoteS (I k,Jk)

mW

the sum over allI k ,Jk such that the numbers of substitutions touching the consecutive subw
a1 , . . . ,ap , are correspondinglym1 , . . . ,mp . Then,
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(
~ I k ,Jk!

mW

z~a,~ I k ,Jk!!5
k!

m1
!
¯mp

! (
~ I m1

,Jm1
!

z~a1 ,~ I m1
,Jm1

!!¯ (
~JImp

,Jmp
!

z~ap ,~ I mp
,Jmp

!!.

We have also the cluster estimate

k~ I !,c1~Cb! uI u .

It follows that logz(N);cN. Thus,

logZN; logFz~N!S 11
z~N21!

z~N!
1¯G;cN.

Remarks 2: Introduce the trivial substitutions s→s for each symbol sPS and denote a(s; j )
the corresponding quantum substitutions. Let P5N be the orthogonal projector onto the spac
H5N5HN*HN21 . The cosmological term is defined as

mH05m (
N50

`

NP5N5m(
sPS

(
j

as~ j !,m.0.

Note that for Hamiltonians with the cosmological term,

HN1mH0,

the limiting state exists form sufficiently large as the partition function is finite. It is natural
expect that there existsmcr5mcr(b) such that form,mcr the limiting state does not exist, bu
exists form.mcr . In most cases one can expect that eitherlogZN;cN or it is constant. It could
be interesting to know the cases when other possibilities occur. For example ifb50 and S
consists of one symbol only, thenlogZN;logN.

D. Classical space via renormalization

Assumeb to be small as earlier and let us look at the ‘‘support’’ of^&b,N . More exactly, let
C be the commutativeC* -algebra, generated by multiplication~on bounded functions! operators
in H5 l 2(L). By restricting the statê•&b,N on the C* -subalgebraCN5CùAN , one gets the
measuremb,N on the set of all words of length not exceedingN. One can show that asN→` the
support of the measuremb,N lies on the words of length of orderN.

Quantum spin systems:We introduce some notation for quantum spin systems. Classical
system onZ is a special probability measure on the set of configurationsSZ, that is functions on
the ‘‘space’’ Z with values inS. The spaceZ has an additive group structure and acts onSZ as a
group of translations. The set of all words does not have such ‘‘space structure’’ but we shal
how the space~here it is Z!, the quasilocal algebra on this space, and a KMS state on
quasilocal algebra, can emerge from a KMS-state onA.

Consider classical spin configurations in a finite volume~that is the setS@2n,n#,@2n,n#,Z! as
words of length 2n11. The Hilbert space for the corresponding quantum spin system is

K2n115 ^ i 52n
n K~ i !,

where K( i ) is the r-dimensional Hilbert space with basisea , a51, . . . ,r . Consider the
C* -algebra of linear operators inK2n11 :L2n115W2n^¯^ Wn , where W i are r 3r -matrix
algebras. The quasilocal quantum spin algebraL is the norm closure of the local algebraL0

5øL2n11 .
Consider the Hilbert spaceH5n5Hn*Hn21,H, generated by allea ,uau5n. ThenK2n11

can be naturally indentified withH52n11 by u2n11 :eaPH52n11→ea(1)^ . . . ^ ea(2n11)

PK2n11 if a5a(1)¯a(2n11).
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Remark 3: If ud i u5ug i u for all i then the subspacesH5n are invariant and thus we ge
quantum spin system Hamiltonians. In fact any quantum spin system Hamiltonians with
range interaction can be obtained as particular cases of the Hamiltonians on quantum gram
by adjustingl i appropriately.

Consider theC* -algebra Mn of linear operators inH5n . Consider the isomorphism
x2n11 :L2n11→M2n11 induced byu2n11 .

Consider the embeddingsfn :M2n11→A, given for MPM2n11 by

f~M !ea5Mea ,,uau52n11;f~M !ea50,uauÞ2n11.

Consider some positive linear functionalv on A. Thenv85v+f2n11+x2n11 is a positive linear
functional onL2n11 . By normalizing we get the statêL&2n115Z2n11

21 v8(L) on L2n11 , Z2n11

5v8(1(L2n11)), where 1(L2n11) is the unit matrix inL2n11 . Consider the limiting state on th
quasilocal algebraL ,

^.&b,z5 lim
n→`

^.&2n11

if the limit exists.
Theorem 5: If b is small enough then the state^.&b,Z exists and is a KMS state on th

quantum spin algebraL .
Proof: Existence of the limiting state can be proven by cluster expansions. We have

representations,

Z2n115v8~1~L2n11!!5( cI 1
¯cI p

and for someAPL2n11 with support in@r ,s#,@2n,n#,

v8~1~L r 1n! ^ A^ 1~Ln2s!!5 (
2n<m<r ,p<n2s

v8~1~Lm1n!!)cm,l~A!v~1~Ln2 l !!.

The first representation was proved earlier, the second can be proved similarly. From the
representations the convergence to the limiting state follows by standard techniques, see R
also follows from the cluster expansion that the limiting state is faithful, that is positive
positive elements. Thus in the GNS representation~M, p, V! the cyclic vectorV is separating.
Then Tomita–Takesaki theory defines a modular automorphism group of the von Neumann
bra and the limiting state is the KMS with respect to the modular group of automorphisms

Remark 4: From the cluster expansion one could get more. This KMS state is limit o
states in finite volumes. Thus one could ask about the effective Hamiltonian for the res
quantum spin system. The effective hamiltonian Heff of this quantum spin system has nonfin
multiparticle potential, that is,

Heff5(
i PZ

(
I

t i~F I !,

where t is the shift on 1 in the spin quasilocal algebra on Z and the second sum is ove
intervals I containing 0. Moreover, for all I we have

uF I u<Cb uI u

for some C.0.
We will not prove the statement of this remark.
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Remark 5: Note that the space structure can be obtained in different ways, using dif
embeddings. For example, one can get a quantum spin system on Z1 (and the space then will be
Z1!, using the isomorphism

Hn→ ^ i 50
n21K~ i !.

III. QUANTUM GRAPH GRAMMARS

A. Definitions

Labeled spin grapha5(G,s) is a graphG with given set of verticesV5V(G) and a function
s:V→S, whereS is the spin space. Further on we assume it to be finite. Two labeled graph
said to be equivalent~isomorphic! if they are isomorphic as graphs and the isomorphism res
spins. Equivalence classes are called~unlabeled! spin graphs. There are many other names for s
graphs; in physics spin graphs are referred as spin networks, in computer science they ar
also marked graphs, etc.

We remind definitions from Ref. 8.
Definition 1: The substitution (production)Sub5(G,G8,V0 ,w) is defined by two ‘‘small’’ spin

graphsG and G8, subset V0,V5V(G) and mappingw:V0→V85V(G8), either ofG and G8 can
be empty.

A transformation T5T~Sub! of a spin grapha, corresponding to a given substitution Sub,
defined in the following way. Fix an isomorphismc:G→G1 onto a spin subgraphG1 of a.
Consider nonconnected union ofa and G8, delete all links of G1 , delete all vertices of
c(V)\c(V0) together with all links incident to them, identify eachc(v)Pc(V0) with v8
5w(v)PG8. The function s on V(G)\V(G1) is inherited froma and on V(G8)—from G8. We
denote the resulting graph bya~Sub, c!.

The graph grammar is a finite set of substitutionsSubi , i 51, . . . ,m. We call a graph gram-
mar local if theG’s corresponding to allSubi are connected. The language L(a0 ,$Subi%) is the
set of all spin graphs which can be obtained from some initial spin grapha0 by applying trans-
formations, corresponding toSubi , i 51, . . . ,m, arbitrary number of times in arbitrary order.
More exactly, a0PL(a0 ,$Subi%) and if aPL(a0 ,$Subi%) then TaPL(a0 ,$Subi%) for arbitrary
T5T~Subi).

The definition of a quantum graph grammar is similar to that of the quantum grammar. LA
be a class of spin graphs, invariant with respect to the substitutions of the given gramm
exampleA5(a0 ,$Subi%). Let H5A be the Hilbert space with the orthonormal basisea numer-
ated by all spin graphs fromA:(ea ,eb)5dab . For each spin grapha and each substitution Subi ,
i 51, . . . ,m, we enumerate somehow all isomorphismsc:G→G1 asc1 , . . . ,ck(G) . Denoteai( j )
the operator inH by ai( j )ea5ea(Subi ,c j )

if c j exists, that is ifj <k(G), and 0 otherwise. Again
we assume that together with the substitutiond i→g i also its ‘‘inverse’’ substitutiong i→d i be-
longs to Sub and the Hamiltonian is

H5(
i 51

r

(
j

l iai~ j !

if l i5l̄ j in cased j5g i , g j5d i . Note that the enumeration inj has only notational purpose
because the Hamiltonian is symmetric with respect toj.

B. Examples

We give here only the two simplest examples.

1. Mean field evolution on graphs

There are no spins in this example. We consider four substitutions.
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~i! Sub1 is defined byG consisting of one vertex only,V05V(G), G8 consisting of two vertices
connected by a link. The mappingf just fixes one of these vertices. Then the correspond
transformation consists of choosing a vertexv of the graphG, appending a new vertexvnew

and connectingv andvnew by a link.
~ii ! Sub2 is the inverse substitution, that is, we take a link having at least one vertex of d

one and delete it.
~iii ! Sub3 consists of appending a link between two chosen vertices.
~iv! Sub4 consists of just deleting a link.

This graph grammar is obviously nonlocal. The graphs can be nonconnected and w
denote thema.

Self-adjointness:We shall see now that a reasonable choice of the constants is

B5(
j

S l1a1~ j !1
1

N
l2a3~ j ! D ,H5B1B* 5l1(

j
~a1~ j !1a2~ j !!1

1

N
l2(

j
~a3~ j !1a4~ j !!,

whereN is the number of vertices ina andl1 ,l2>0. Note that finite linear combinations ofea

areC`-vectors forL. Denote this set byD(L).
Lemma 6: H is essentially self-adjoint on D(L).
Proof: We shall prove that each vector fromD(L) is an analytic vector ofL, that is

(
k50

` iHkfi
k!

tk,`

for somet.0. Note that

iBiHN
5l1N1

l2N2

N
5~l11l2!N.

HereHN is generated byea ,V(a)<N. Note also that it is sufficient to takef5ea and

Hea5(
b

eb ,

whereV(b)<V(a)11. The proof then is quite similar to the one for the quantum grammar

2. Dual quantum evolution of two-dimensional complexes

Here we consider a more physical example corresponding to the pure quantum gravity,
the quantum space has dimension 2 and the time is classical and has dimension 1. Conside
T of equivalence classes of triangulationsT of closed oriented compact surfacesS5Sr of arbitrary
genusr5r(T), N5N(T) is the number of triangles inT. A triangulationT is defined by a pair
(G;f:G→S) whereG is a graph andf is its smooth embedding intoS. Two triangulationsT and
T8 are equivalent if there is a homeomorphismf:S→S such that vertices ofG go to the vertices
of G8, edges to edges, triangles to triangles.

It is more convenient to consider dual graphsG5G* , the vertices ofG correspond to the
triangles ofG. Two vertices of the dual graph are connected by a link iff the correspon
triangles have common edge. Thus each vertex ofG has degree 3. Then the numberN of vertices
of G is even. The setT of equivalence classes can be described equivalently in a purely co
natorial way in terms of dual graphs, see Ref. 9. Consider the setG of graphsG with an additional
structure. EachG hasN5N(G) vertices, each of degree 3,N is even. The additional structure o
this graph is defined as follows: for each vertex the cyclic order of its edge-ends~legs! is fixed. It
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is not difficult to see that there is one-to-one correspondence betweenG andT. In one direction it
is trivial: take an embeddingG→S and fix orientation ofS. Then choose say the clockwise ord
of the edge-ends in each vertex.

Let K be the set of edge-ends ofG, it has then 3N elements. There are two permutations onK:
the first oneP consists ofV5N cycles of length 3 and the second oneI consists ofE53N/2
cycles of length 2. Then vertices ofG can be identified with cycles of the permutationP, edges
~links! of G can be identified with cycles of the permutationI, faces ofG can be identified with
cycles of the permutationPI.

We introduce the Hilbert spaceH5 l 2(G) with the basiseG . The evolution is defined as
follows. For givenK5K(G) append 6 new elements, thus 2 cycles of length 3. Choose 3 e
j 1 , j 2 , j 3 ~that is the cycles of length 2! in K, cut them thus getting 6 other edge-ends, a
reconnect 12 edge-ends so that the resulting graph were connected. The reconnection is d
some rulep ~depending on the set of 12 edge-ends!. This will give the linear operator~quantum
substitution! ap( j 1 , j 2 , j 3).

The resulting Hamiltonian is defined on the subspaceHN generated by the graphsG with N
vertices as follows;

H5
l

N2 ~B1B* !,B5(
p

(
j 1 , j 2 , j 3

ap~ j 1 , j 2 , j 3!,

where j 1 , j 2 , j 3 is an arbitrary unordered array of 3 links. The adjoint termB*
5(p(v1 ,v2

bp* (v1 ,v2) describes the deletion of 2 vertices,v1 ,v2 is an unordered array of 2
vertices,p describes how the the remaining edge-ends are to be reconnected.

Note that the graphs here are not labeled. Thus one should be accurate with the au
phisms. Remind that almost all 3-regular graphs do not have nontrivial automorphisms.

It leaves invariant the symmetrical subspaceHsymm of the Hilbert space, that is the space
functions ofL depending only on the number of trianglesN5N(L) and on the genusr5r(L).
Note thatHsymmis isomorphic toZ1

2 . We shall study the spectral properties of this Hamiltonian
another paper.

IV. COMMENTS

A. Context free grammars

There are a lot of beautiful reviews on quantum computation now, see Refs. 2,3,1. Qu
analogs of the standard computer science objects are quantum Turing machines, quantum
quantum automata, quantum cellular automata, etc. Our definition of a quantum gramm
sembles partially each of them. That of a quantum cellular automaton, but where the lattic
quantum object changing in time. Each term of the series expansion constitutes a transfor
defined by a quantum circuit. For higher dimension we have a quantum analog of Kolmog
Uspenskij algorithms, or a quantum analog of the graph grammars.

The operatorsai( j ) in our definition are homogeneous~do not depend onj! but it is easy to
consider inhomogeneous analog, taking the set of substitutions dependent ofj. Then the time
evolution of a quantum grammars can also be looked at as a general quantum circuit.

In the computer science there are some peculiarities in the definition of grammar. The
bet S is the unionS5TøW of two nonintersecting alphabets: terminalsT and nonterminals
~variables! W. The substitutions~productions! a i→b i , i 51, . . . ,m, are such that eacha i con-
tains at least one symbol fromW. The quantum grammar is defined by the set of numbersl l

5l(a i→b i), which are assumed to be real. In other words by the linear operator

L5l i( ai~ j !.
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We prefer to use continuous time. IfL is not assumed to be symmetric then one can define con
free grammars, see Ref. 10~but there are no nontrivial symmetric context free grammars!. A
context free grammar is one where alla i have length 1, that is they are variables. Random con
free grammars were studied in Ref. 4 in a more general situation when there is no subdivis
the alphabet.

For discrete time, which is assumed in Ref. 10, there are several ways to define the evo
i.e., the derivation. Discrete time analog of our definition could be naturally given in a pa
form, that is all possible substitutions are done for the word at the moment. This is easy to
context free grammars but not in more general cases. This is one of the reasons to use con
time what we do here.

Let Hterm andHvar be the Hilbert subspaces ofH defined by the corresponding parts of th
alphabetS, andPterm, Pvar are the orthogonal projections on these subspaces. The derivation
mapping

lim
t→`

PtermeitL Pvar:Hvar→Hterm.

Otherwise speaking we start with some word fromW* ~the set of words overW!, even with the
symbol fromW, and stop each time when all symbols in the resulting word are terminal. Note
eitL is the identity onHterm.

Existence of the dynamics can be proved quite similarly even in the nonsymmetric cas

B. Spectrum

We saw already that the lattice models of statistical physics and quantum field theory c
tute a particular case of the models on quantum lattices. The most interesting question is th
of the spectrum of such models; whether it has particles, scattering, etc. We show below t
spectrum have some new features even for the simplest models.

We already mentioned that the derivation for the grammar is decribed by the ope
P expitH, only larget are interesting for us. If one knows thatH is unitary equivalent toH0 for
some simpleH0 , that isH5UH0U21, then the operatorP expitH reduces toPU expitH0, PU

5UPU21. If H describes something like interacting infinite particle system thenH theH0 can be
the corresponding free Hamiltonian describing free quasiparticles. That is why spectral pro
of H are related to the derivation in grammars.

Note thateu is a zero eigenvector ofH. One could expect that the rest of the spectrum of s
operators should be similar to the spectra of many particle systems. In particular one could
that H is unitary equivalent to a free Hamiltonian in a Fock space over some one-particle
spaces. One could expect also that among these particles some correspond to quanta of s
some—to quanta of matter fields. Could one find an exact formulation of this statement?

Detailed study of the spectrum ofH is necessary for this, and we shall do in another pap
here we only give simplest examples. In the rest of the paper we shall follow another idea:
some scaling we get a classical space~here the latticeZ! and quantum spin system on it. Th
scaling destroys thus the quantum character of space.

~1! ~Quantum spin systems!. We say that the HamiltonianH is space~or lattice! conserving if
ud i u5ug i u for all i. Space conserving operators can be reduced to quantum spin systems
shall see below. In this case there are only particles corresponding to matter.

~2! ~One-particle space!. Let r 51, that is the alphabet consists of one symbola. Consider two
substitutions 1:a→aa, 2:aa→a, l15l25l, and the Hamiltonian

H5l(
j51

`

~a1~ j!1a2~ j!!

with reall. Then the Hilbert spaceH is isomorphic tol 2(Z1), because the wordaa•••a can
be identified with its length minus 1. The Hamiltonian is unitary equivalent to Jacobi m
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~Hf!~n!5l~n21!f~n21!1lnf~n11!.

We shall call this operator a one-particle operator, this ‘‘particle’’ is natural to associate
a space quanta. Here the space evolution is the simplest one~due to one dimension!; expan-
sion and compression~in each point!. We shall find its spectrum in another paper.

~3! ConsiderS5$a,w% and the following substitutions:

a→aa,aa→a,aw→wa,wa→aw.

The subspaceH1 generated by words with exactly one symbolw is invariant. This Hamil-
tonian can be interpreted as a mixture of the previous pure space HamiltonianH1 and the
discrete LaplacianH2 , the free nonrelativistic one-dimensional Schro¨dinger operator inl 2 on
a finite set. Similarly, the subspaceH2 with exactly two symbolsw corresponds to two matte
particles.

~4! ~Noncommutative Fock space!. Let S5$a,b% and consider four substitutions,

1:a→aa,2:aa→a,3:b→bb,4:bb→b.

Here there are two invariant one-particle spacesHa , Hb . For example,Ha is generated by
wordsa, a25aa, . . . ,an, . . . . There are two invariant two-particle spacesHab5Ha^ Hb ,
Hba5Hb^ Ha . For example,Hab is generated by wordsakbl , k, l .0. In general for each
evenn there two invariant 2n-particle spacesH(ab)n

, generated by wordsak1bl 1•••aknbl n, and
H(ba)n

. Similarly for oddn there are two invariant (2n11)-particle spacesHb(ab)n, H(ab)na .
For arbitrary r .2 with substitutionsi→ i i , i i → i for each i 51,2, . . . ,r we have r (r
21)n21 n-particle spaces. Thus, the standard spectrum of tensor products has the corre
ing multiplicities. This example supports the name ‘‘one-particle’’ in the first example,
cause we get here a Fock space OVER these two one-particle spaces.

~5! This shows a rich structure of the introduced Hamiltonians.

C. Short overview of evolution types

We give here a very short overview of other papers where related dynamics of dis
structures were considered. Note that most papers have more geometric and algebraic asp
analytic one. In our paper we considered mainly analytic problems.

1. Deterministic evolution

Deterministic evolution of words is one of the main subjects of the computer scienc
computer science marked graphs and their deterministic evolution were known
Kolmogorov–Uspenskij paper.11 Now there is a large field in computer science, which stud
graph grammars—local dynamics of the marked graphs. In Ref. 12 deterministic evoluti
classical spin systems on graphs is defined. The basic graph is fixed or taken randomly via r
graph theory procedure, that is for fixed set of vertices each bond is drawn independentl
some probability 0,p,1.

2. Markov processes

Random grammars were considered earlier in computer science context, as Markov pro
But questions related to the thermodynamic limit appeared only in Refs. 4 and 8.

3. Unitary evolution and causal structure

Such evolution is the main object in quantum computing in the computer science conte
in quantum gravity in a physical context. The latter considers spin graph as a quantum objec
one deals with the wave function on the set of all possible spin graphs. The square of the
function defines a probability distribution on spin graphs.

Spin networks~graphs with spins, half-integers, living on the links, and some operators in
vertices! were introduced in physics by Penrose.13 In physics now there are many variants of t
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quantum evolution, discussed in Refs. 15–32 as well as in earlier papers, see Ref. 14.
generalization are discrete complexes with a causal structure which could model Lorentzian
ture on manifolds.

4. Completely positive semigroups
This case is interesting due to inevitable noise coming from the environment of the qua

system. See discussion of these problems in Ref. 1.

5. Nonlinear Markov processes
There can be transformations of probability measures on spin complexes, which can

reduced to a Markov process~that is they are not given by random point transformations! and they
are not of quantum mechanical nature. Examples of such dynamics one can find in
dimensional quantum gravity, see Ref. 33.

1D. Aharonov, ‘‘Quantum computation,’’ preprint, quant-ph/9812037~1998!.
2B. Tsirelson, ‘‘Quantum information processing,’’ Lecture Notes, Tel Aviv University, 1997.
3A. Steane, ‘‘Quantum computing,’’ preprint, quant-ph/9708022~1998!.
4V. A. Malyshev, ‘‘Random grammars,’’ Usp. Mat. Nauk. English Translation in Russian Math. Surveys53, 107–134
~1998!.

5D. Meyer, ‘‘Unitarity in one-dimensional nonlinear quantum cellular automata,’’ preprint, quant-ph/9605023~1996!.
6O. Brattelli and D. Robinson,Operator Algebras and Quantum Statistical Mechanics~Springer-Verlag, Berlin, 1979!.
7V. A. Malyshev and R. A. Minlos,Gibbs Random Fields~Kluwer, Dordrecht, 1991!.
8V. A. Malyshev, Discrete Math.8 ~3!, 247–262~1998!.
9T. Walsh and A. Lehman, ‘‘Counting rooted maps by genus,’’ J. Comb. Theory, Ser. B13, 192–218~1972!.

10Ch. Moore and J. Crutchfield, ‘‘Quantum automata and quantum grammars,’’ preprint, quant-ph/9707031~1997!.
11A. N. Kolmogorov and V. A. Uspensky, ‘‘On the notion of algorithm,’’ Usp. Mat. Nauk. English Translation in Rus

Math. Surveys13, 3–28~1958!.
12T. Nowotny and M. Requardt, ‘‘Pregeometric concepts on graphs and cellular networks,’’ preprint, hep-th/98

~1998!.
13R. Penrose, inQuantum Theory and Beyond, edited by T. Bastin~Cambridge University Press, Cambridge, 1971!; in

Magic Without Magic, John Archibald Wheeler, edited by J. R. Klauder~Freeman, San Francisco, 1972!; in Combina-
torial Mathematics and its Application, edited by D. Welsh~Academic, New York, 1971!; in Advances in Twistor
Theory, edited by L. Highston and R. Ward~1979!.

14I. Dadic and K. Pisk ‘‘Dynamics of discrete space structure,’’ Int. J. Theor. Phys.18, 345–358~1979!.
15L. Smolin, ‘‘The future of spin networks,’’ preprint, gr-qc/9702030~1997!.
16L. Smolin, ‘‘Strings as perturbations of evolving spin-networks,’’ preprint, gr-qc/9801022~1998!.
17C. Rovelli, ‘‘Quantum space-time: What do we know?,’’ preprint, gr-qc/9903045~1999!.
18C. Rovelli, ‘‘Loop quantum gravity,’’ preprint, gr-qc/9710008~1997!.
19C. Rovelli ‘‘String, loops, and others: A critical survey of approaches to quantum theory,’’ preprint, gr-qc/980

~1998!.
20C. Rovelli and L. Smolin, ‘‘Spin Networks and Quantum Gravity,’’ preprint, gr-qc/9505006~1995!.
21T. Thiemann, ‘‘Quantum spin dynamics,’’ Harvard Preprint, Part 1: gr-qc/9606089, Part 2: gr-qc/9606090~1996!.
22L. Bombelli, J. Lee, D. Meyer, and R. Sorkin, Phys. Rev. Lett.59, 521 ~1987!.
23A. P. Balachandran, G. Bimonte, E. Ercolesi, G. Landi, F. Lizzi, G. Sparano, and P. Teotonio-Sobrinho, ‘‘Finite qu

physics,’’ J. Geom. Phys.18, 163–194~1996!.
24F. Markopoulou and L. Smolin, ‘‘Causal evolution of spin networks,’’ Nucl. Phys. B508, 409–430~1997!.
25F. Markopoulou and L. Smolin, ‘‘Nonperturbative Dynamics for Abstract~p,q! String Networks,’’ preprint,

gr-qc/9712148~1997!.
26F. Markopoulou and L. Smolin, ‘‘Quantum Geometry with Intrinsic Local Causality,’’ preprint, gr-qc/9712067~1997!.
27F. Markopoulou, ‘‘Dual Formulation of Spin Network Evolution,’’ preprint, gr-qc/9704013~1997!.
28R. Borissov, ‘‘Graphical evolution of spin network states,’’ Phys. Rev. D55, 6099–6111~1997!.
29A. Dimakis and F. Mueller-Hoissen, ‘‘Discrete differential calculus,’’ J. Math. Phys.35, 6703–6735~1994!.
30S. Kauffman and L. Smolin, ‘‘Combinatorial Dynamics in Quantum Gravity,’’ preprint, hep-th/9809161~1998!.
31J. Baez, ‘‘Spin Foam Models,’’ preprint, gr-qc/9709052~1998!.
32J. Baez, ‘‘Higher-Dimensional Algebra and Planck-Scale Physics,’’ preprint, gr-qc/9902017~1999!.
33V. A. Malyshev, ‘‘Probability around the quantum gravity,’’ Usp. Mat. Nauk. English Translation in Russian M

Surveys54, 3–46~1999!.
                                                                                                                



cula-
n
ed out

ion,
hbor-

zeta
for
e

the
finite
t
he
ed by

zeta

g the
con-
pan-

.
with

r the

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 7 JULY 2000

                    
Spectral zeta functions for a cylinder and a circle
V. V. Nesterenkoa) and I. G. Pirozhenkob)

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
Dubna 141980, Russia
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Spectral zeta functionsz(s) for the massless scalar fields obeying the Dirichlet and
Neumann boundary conditions on a surface of an infinite cylinder are constructed.
These functions are defined explicitly in a finite domain of the complex planes
containing the closed interval of real axis21<Res<0. Proceeding from this the
spectral zeta functions for the boundary conditions given on a circle~boundary
value problem on a plane! are obtained without any additional calculations. The
Casimir energy for the relevant field configurations is deduced. ©2000 American
Institute of Physics.@S0022-2488~00!06405-7#

I. INTRODUCTION

The zeta function technique is widely used in quantum field theory, specifically, for cal
tion of the vacuum energy~the Casimir energy! of quantized fields in compactified configuratio
space.1–3 For the boundaries with spherical geometry this method has been essentially work
in papers.4 The Casimir energy is determined by the value of the corresponding zeta functionz(s)
at a certain point~usually ats521!. Therefore, when it regards the vacuum energy calculat
the zeta function is investigated only at a separate point or at least in its infinitesimal neig
hood.

However, in some problems it proves to be useful to construct explicitly the spectral
function for a finite range of its arguments. For example, proceeding from the zeta function
an infinite cylinderzcyl(s) defined in the domain21<Res<0 one can easily express both th
Casimir energy of a cylinder viazcyl(21) and the Casimir energy of a circle in terms ofzcyl(0).
Such an approach has obvious advantage not only for shortening the calculations~a unique zeta
function is applicable to two problems! but also when treating the divergences. For instance,
zeta function technique applied to the boundary conditions given on the surface of an in
cylinder at once gives the finite value of the vacuum energy5,6 ~the renormalization is carried ou
simultaneously with the regularization!. As for the boundary conditions defined on a circle, t
zeta function regularization is unable to remove all the divergences. The answers obtain
different authors for the finite part of the corresponding Casimir energy do not coincide.7 In view
of this it would be interesting to express the spectral zeta functionzcir(s) in terms ofzcyl(s) which
is already ‘‘normalized’’~being free of the divergences! at the points521. It is this that we are
going to do in the present note.

The layout of the paper is as follows. In Sec. II we derive the relation between the
functions for the boundary conditions given on the surface of an infinite cylinder,zcyl(s), and on
a circle,zcir(s). In Sec. III the spectral zeta functions for the massless scalar fields obeyin
Dirichlet and Neumann boundary conditions on the lateral area of an infinite cylinder are
structed explicitly. As in Ref. 5 the central part is played here by the uniform asymptotic ex
sion of the Bessel functions. Explicit formulas defining these zeta functions in a finite regionV of
the complex planes containing the closed interval of real axis21<Res<0 are derived. In Sec
IV using these formulas we obtain the spectral zeta functions for the relevant plane problem
the Dirichlet or Neumann boundary conditions given on a circle. The Casimir energies fo

a!Electronic mail: nestr@thsun1.jinr.ru
b!Electronic mail: pirozhen@thsun1.jinr.ru
45210022-2488/2000/41(7)/4521/11/$17.00 © 2000 American Institute of Physics
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field configurations in hand are calculated. In the Conclusion~Sec. V! the obtained results ar
shortly discussed and compared with those of other authors.

II. RELATION BETWEEN THE SPECTRAL ZETA FUNCTIONS FOR A CYLINDER AND A
CIRCLE

Let us remind briefly how to find out the relation between the zeta function for a th
dimensional problem with boundary conditions given on the lateral area of an infinite cylind
radiusa and the zeta function for a two-dimensional problem with boundary conditions give
a circle of the same radius. For simplicity in both cases the massless scalar field obeyi
Dirichlet or Neumann boundary conditions is considered.

In the case of an infinite cylinder the eigenfunctions are proportional to exp(2ivt1ikzz
1inu) where$r ,u,z% are cylindrical coordinates. The eigenfrequenciesv inside the cylinder for
the Dirichlet and Neumann boundary conditions are given, respectively, by the equations

Jn~lr !ur 5a50, Jn8~lr !ur 5a50. ~1!

For the outside region we have

Hn
(1)~lr !ur 5a50, Hn

(1)8~lr !ur 5a50, n50,61,62 . . . . ~2!

Here the notationl25v22kz
2 is introduced.

The eigenfrequency equations for the scalar field with boundary conditions defined on a
are obtained by puttingkz

250 in ~1! and ~2!.
In order to construct the spectral zeta function for an infinite cylinder or a circle one

employ the standard definition

z~s!5(
$p%

~vp
2s2v̄p

2s!. ~3!

Herevp are the eigenfrequencies of the scalar field under certain boundary conditions,v̄p are the
same frequencies when the boundaries are removed. The summation~or integration! should be
done over all the quantum numbers$p% specifying the spectrum. To make the sum convergent
parameters should belong to a region of the complex planes where Res is large enough.
However for the massless fields considered here there also exists a restriction for the m
values of Res in order to ensure the convergent integration at the origin~see below!.

For a cylinder and a circle the general formula~3! looks as follows:

zcyl~s!5E
2`

` dkz

2p (
n,m

@~lnm
2 ~a!1kz

2!2s/22~lnm
2 ~`!1kz

2!2s/2#, ~4!

zcir~s!5(
n,m

@lnm
s ~a!2lnm

s ~`!#, ~5!

with l ln being defined by~1! and~2! for the both zeta functions. Integration overkz in ~4! can be
accomplished by making use of the formula

E
2`

` dkz

2p
~kz

21b2!2s/25
b12s

2p
BS 1

2
,
s21

2 D , Res.1,

whereB(x,y) is the Euler beta function

B~x,y!5G~x!G~y!/G~x1y!.
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Comparing the result of the integration with~5! one arrives at the relation betweenzcyl(s) and
zcir(s)8

zcyl~s!5
1

2p
BS 1

2
,
s21

2 D zcir~s21!. ~6!

When calculating the Casimir energy by making use of the zeta function technique usual
puts9

EC5
1

2
z~s521!. ~7!

To use this formula, for example, in the case of a circle one should find the analytic continu
of zcir(s) into the points521. On the other hand, in accordance with~6! the zeta functionzcir(s)
at the points521 can be expressed throughzcyl(s50). Thus the analytic continuation of the ze
function zcyl(s) into the region21<Res<0 provides the opportunity to calculate the Casim
energy both for an infinite cylinder and for a circle.

III. SPECTRAL ZETA FUNCTIONS FOR A CYLINDER WITH THE DIRICHLET AND
NEUMANN BOUNDARY CONDITIONS

In Ref. LNB a consistent procedure has been developed for constructing the spectra
functions for the boundary conditions given on a sphere and on the lateral area of an i
cylinder. Here we follow the same approach and start with consideration of the spectra
function zcyl(s) for the massless scalar field obeying the Dirichlet boundary conditions o
infinite cylinder.

Taking into account the contributions of the field oscillations inside@Eq. ~1!# and outside@Eq.
~2!# the cylinder and representing the sum overl in ~4! in terms of contour integral one obtains

zcyl
D ~s!5

1

2pE2`

` dkz

2p i (
n52`

` R
C
~l21kz

2!2s/2dl ln
Jn~la!Hn

(1)~la!

Jn~`!Hn
(1)~`!

. ~8!

The contourC consists of the imaginary axis (2 i`,i`) and a semicircle of an infinite radius i
the right half plane of a complex variablel. Keeping in mind the behavior of the integrand at
the segments of the contourC and integrating overkz Eq. ~8! becomes5

zcyl
D ~s!5

as21

2ApGS s

2DGS 32s

2 D (
n52`

` E
0

`

dy y12s
d

dy
ln@2yIn~y!Kn~y!#. ~9!

Then, in order to accomplish the analytic continuation of~9! into the region21<Res,0 we
expresszcyl(s) in terms of the Riemann zeta function with the well-known analytic continuat
After changing the integration variabley→ny in ~9! we employ the uniform asymptotic expansio
~UAE! of the Bessel functions10 up to the ordern24

ln~2ynIn~ny!Kn~ny!!5 ln~yt!1
t2~126t215t4!

8n2

1
t4~132284t211062t421356t61565t8!

64n4 1O~n26!, ~10!

wheret51/A11y2. Substituting~10! in all the terms of the series~9!, wherenÞ0, we obtain

zcyl
D ~s!5C~s!~Z0~s!1Z1~s!1Z2~s!1Z3~s!!, ~11!
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Z0~s!5E
0

`

dy y12s
d

dy H ln~2yI0~y!K0~y!!2
t2

8
~126t215t4!J , ~12!

Z1~s!5 (
n51

`

n12sE
0

`

dy y12s
d

dy
lnS y2

11y2D , ~13!

Z2~s!5
1

4 S (
n51

`

n212s1
1

2D E
0

`

dy y12s
d

dy
@ t2~126t215t4!#, ~14!

Z3~s!5
1

32 (
n51

`

n232sE
0

`

dy y12s
d

dy
@ t4~132284t211062t421356t61565t8#, ~15!

where

C~s!5
as21

2ApGS s

2DGS 32s

2 D . ~16!

Here the notationZ0(s) is introduced for the difference between the term withn50 in ~9! and the
integral

A~s!5
1

8E0

`

dy y12s
d

dy
@ t2~126t215t4!#, 21,Res,3. ~17!

The functionZ1(s) corresponds to the first term in the UAE~10!, Z2(s) involves the contribution
of the 1/n2-order term of the latter together with the integralA(s), Z3(s) is generated by the term
of order 1/n4 in the expansion~10!.

Taking into account the asymptotics

2yI0~y!K0~y!522y ln y1~2 ln 222g!y1O~y3!, y→0,
~18!

2yI0~y!K0~y!511
1

8 y2 1
27

128y4 1O~y26!, y→`,

whereg is the Euler constant, one can ascertain the domain of variation of the complex va
s so that the integrals in~12!–~15! exist. The ultraviolet behavior (y→`) of the integrands in
~12!–~15! determines the lower bound for Res and the infrared one (y→0) is responsible for the
upper bound. Formula~12! definesZ0(s) as an analytic function ofs if 23,Res,1. When this
condition holds one can perform in~12! the integration by parts

Z0~s!52~12s!E
0

`

dyy2sF ln~2yI0~y!K0~y!!2
t2

8
~126t215t4!G . ~19!

The integral definingZ1(s) in ~13! exists if 21,Res,1. The sum overn in this formula is
finite for Res.2. As these two regions do not overlap, the introduction of the parameters in the
original formula~3! does not regularize completely the divergences inZ1(s) on this stage of our
consideration. An additional infrared regularization should be used here, for example, by
ducing the photon ‘‘mass’’m. As a result the integration in Eq.~13! will be restricted from below
by m, and the constraint Res,1 will be removed. The functionZ1(s), regularized in this way, can
be used for required analytic continuation~see below!.

The integral in Eq.~14! definingZ2(s) exists when21,Res,3. The sum overn in ~14! is
finite when Res.0. The integral in~15! converges if23,Res,3. The sum overn in this
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formula is finite for Res.22. Thus the regions, where the integrals and the sums exist, ov
and these formulas can be used for constructing the analytic continuation needed.

As it was stressed in the preceding section, we are interested in the evaluation ofzcyl
D (s) in the

regionV of the complex planes containing the closed interval of the real axis21<Res<0. For
the zeta functionzcyl

D (s) defined by the sum~11! we shall construct the analytic continuation in
this region in the following way.

It has been already noticed that the functionsZ0(s) in ~12! andZ3(s) in ~15! are analytic in
the region under consideration. In order to obtain the required analytic continuation of the fu
Z2(s) it as sufficient to express the sum overn in ~14! in terms of the Riemann zeta function

(
n51

`
1

nz 5z~z!, ~20!

and the integral in~14! in terms of the Euler gamma function using the equality

E
0

`

dy y12s
d

dy
t2(r21)5~12r!

GS 32s

2 DGS r2
32s

2 D
G~r!

, 322 Rer, Res,3. ~21!

It gives

Z2~s!5
1

4 Fz~s11!1
1

2GGS 32s

2 DGS 11s

2 D F2113~11s!2
5

8
~31s!~11s!G . ~22!

Making use of Eq.~21! for integrating in~15! we get

Z3~s!5
1

32
z~s13!GS 32s

2 D F213GS 31s

2 D1142GS 51s

2 D
2

1062

6
GS 71s

2 D1
1356

24
GS 91s

2 D2
565

120
GS 111s

2 D G . ~23!

Keeping in mind that we have introduced the photon massm into Eq. ~13! we can substitute
here the sum in terms of the Riemann zeta function according to Eq.~20!. After that the photon
mass can be put to zero. In order to obtain the required analytic continuation of the integral i~13!
we first expand the logarithm

ln
y2

11y2 5 lnS 12
1

11y2D52 (
m51

`
1

m~11y2!m . ~24!

After that one can carry out the integration in~13! with the result

Z1~s!5
12s

2
z~s21!GS 2

12s

2 D (
m51

`
1

m

GS m2
12s

2 D
G~m!

. ~25!

In order for the domain of the convergence of the series in~25! to be determined it is convenien
to use the formula 8.328.2 from Ref. 11

G~m1z!

G~m!
U

m→`

→ 1

m(12z)/2 . ~26!
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From Eq.~26! it follows that the series~25! converges when Rez,1. But it is not dangerous now
because we have replaced the sum in Eq.~13! in terms of the Riemann zeta functionz(s21)
which is defined everywhere except for the points52.

Finally Eqs.~11!, ~16!, ~19!, ~22!, ~23!, and~25! define the spectral zeta functionzcyl
D (s) as an

analytic function of the complex variables in the regionV. Here it is worth noting that the
analytic continuation does not ensure that in the regionV, we are interested in, the spectral ze
function zcyl(s) is free of singularities. Really Eqs.~20! and ~21! used for analytic continuation
contain the Riemann zeta functionz(s) and the Euler gamma functionG(s) having singularities
~poles! at certain isolated points. Therefore,zcyl

D (s) considered inV may also possess the sing
larities of the same type.12 As the analytic continuation is unique the removal of these divergen
is obviously impossible. This manifests the inability of the present approach to remove the
gences in all the cases. If the considered quantity is expressed via the value of the spect
function at its singularity point then the zeta function technique does not give a finite answ9

In order to obtain the Casimir energy of the massless scalar field obeying the Dir
boundary conditions on an infinite cylinder of radiusa let us calculate, according to~7!, the
spectral zeta functionzcyl

D (s) at the points521. Numerical integration in~19! yields

Z0~21!520.021 9262
3

4
1

5

16
520.459426 . ~27!

Now we turn to Eq.~25! with s tending to21

Z1~2s!5 lim
s→21

z~s21!FGS 11s

2 D1 (
m52

`
1

m~m21!G . ~28!

Keeping in mind the relations

G~x!5
1

x
2g1O~x!,

(
m52

`
1

m~m21!
51, z~22!50, ~29!

whereg is the Euler constant,g50.577 215..., onederives

Z1~21!52 lim
s→21

z~s21!

11s
1z~22!~12g!52z8~22!520.060 897. ~30!

Now we evaluate the value ofZ2(21) using Eq.~22! and taking into account thatG((1
1s)/2) has a pole at the points521 ~see Ref. LNB!

Z2~21!52
1

4
lim

s→21
Fz~s11!1

1

2GGS 11s

2 D
52

1

4
lim

s→21
Fz~0!1z8~0!~s11!1O~~s11!2!1

1

2G•F 2

11s
2g1OS 11s

2 D G
52

1

4
2z8~0!

51
1

4
ln~2p!. ~31!

Here we have used the values of the Riemann zeta function and its derivative at the origin
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z~0!52
1

2
, z8~0!52

1

2
ln~2p!. ~32!

The formula~23! gives the following value forZ3(21)

Z3~21!5
p2

192
50.05 1404. ~33!

One can make this result more precise. The point is that, from the very beginning, a com
expression

Z̄3~s!52(
n51

`

n12sE
0

`

dy y12s
d

dy F ln~2yn In~yn!Kn~ny!!2 ln
y

A11y2
2

t2~126t215t4!

8n2 G ,

~34!

can be considered instead of the functionZ3(s) defined by~15!. The formula~34! reduces to~15!
after substituting the logarithm by its uniform asymptotic expansion~10!. It is easy to show that
Z̄3(s) is an analytic function ofs when23,Res,1. It means thatZ̄3(s), as well asZ3(s), does
not need analytic continuation. In practice Eq.~34! is used for several first values ofn, n<n0 , and
for n.n0 one applies~15!. The reason is that the uniform asymptotic expansion does not pro
sufficient accuracy whenn,n056410. EvaluatingZ3(21) according to this algorithm with
n056 we obtain an improved value@compare with~33!#

Z3~21!50.045 611. ~35!

For the remaining coefficientC(s521) in ~11! one finds

C~21!52
1

4pa2 . ~36!

Finally, summing up Eqs.~27!, ~30!, ~31!, ~35!, and~36! we get forzcyl
D (21)

zcyl
D ~21!52

1

4pa2 F20.45942620.060 8971
1

4
ln~2p!10.045 611G5

0.001 213

a2 . ~37!

It gives the following value for the Casimir energy of massless scalar field obeying the Diri
boundary conditions on the lateral area of an infinite cylinder of radiusa

Ecyl
D 5

1

2
zcyl

D ~21!5
0.000 606

a2 . ~38!

It is not necessary to calculate the spectral zeta function for the Neumann boundary con
zcyl

N (s). The point is that in Ref. LNB the spectral zeta function for the electromagnetic field
boundary conditions defined on an infinitely thin perfectly conducting cylindrical shell was
structed. This zeta function is the sum of two spectral zeta functions for scalar fields obeyi
Dirichlet and Neumann boundary conditions on a cylinder. Therefore

zcyl
N ~s!5zcyl

shell~s!2zcyl
D ~s!. ~39!

We shall not quote here the expression forzcyl
shell(s) found in Ref. LNB ~see the next section!.

Taking into account Eq.~39! at s521 we obtain the Casimir energy of massless scalar field w
Neumann boundary conditions on an infinite cylinder

EN5Ecyl
EM2Ecyl

D 52
0.013 56

a2 2
0.000 61

a2 52
0.014 17

a2 . ~40!
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Here we have borrowed the value of the Casimir energyEcyl
shell from Ref. 6 where its consisten

derivation is presented. Recently8 the values of the zeta functionszcyl
D (21) andzcyl

N (21) were
evaluated with higher accuracy~see the Conclusion!.

IV. SPECTRAL ZETA FUNCTIONS FOR A CIRCLE

Having defined the zeta functions for an infinite cylinderzcyl
D (s) andzcyl

N (s) in the regionV of
the complex planes, containing the segment of the real axis21<Res<0, we can at once obtain
the zeta functions for a circle,zcir

D (s) andzcir
N (s), making use of Eq.~6!

zcir
D,N~s!52Ap

GS s11

2 D
GS s

2D zcyl
D,N~s11!. ~41!

It is important to note that here there is no need in additional calculations or analytic continu
because the values ofzcir

D,N(21), defining the relevant Casimir energies, are expressed, acco
to ~41!, in terms ofzcyl

D,N(0).
Let us first derivezcir

D (21) substituting Eqs.~11! and ~16! into ~41!

zcir
D ~21!52

1

p
lim
s→0

(
i 50

3

Zi~s!. ~42!

Numerical calculation and integration according to~21! in ~19! with s50 gives

Z0~0!52E
0

`

dyF ln~2yI0~y!K0~y!!2
t2

8
~126t215t4!G5pS 0.028 152

1

128D . ~43!

In Eq. ~13! definingZ1(s) we puts50 and integrate by parts

Z1~0!522z~21!E
0

`

dy ln
y

A11y2
522S 2

1

12
D S 2

p

2
D 52

p

12
. ~44!

Without pretending to high accuracy the value ofZ3(0) can be evaluated by making use of E
~23!

Z3~0!5
1

32
z~3!GS 3

2D F213GS 3

2D1142GS 5

2D2
1062

6
GS 7

2D1
1356

24
GS 9

2D2
565

720
GS 11

2 D G
5

p

64
~20.136 719!z~3!. ~45!

The functionZ2(s) determined in~22! has a pole at the points50 because

z~11s!.
1

s
1g1¯ , s→0. ~46!

Therefore, we can only extract the finite and divergent parts inZ2(0)

Z2~0!5
1

4
GS 3

2DGS 1

2D 1

8 S lim
s→0

z~11s!1
1

2D 5
p

64S 1

sU
s→0

1g D 1
p

128
. ~47!

Finally, substituting Eqs.~43!–~45! and ~47! into Eq. ~42! we get
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zcir
D ~21!52

1

p F0.028 156p12
1

12
p2

p

64
0.136 719z~3!1

p

64S 1

sU
s→0

1g D G
5

1

a S 0.047 1892
1

64

1

sU
s→0

D . ~48!

It gives the following result for the Casimir energy of the scalar massless field obeying
Dirichlet boundary conditions on a circle

Ecir
D 5

1

2
zcir

D ~21!5
1

a S 0.002 359 52
1

128

1

sU
s→0

D . ~49!

As in the case of an infinite cylinder, it is convenient first to construct the sum of two
functions for the Dirichlet and Neumann boundary conditionszcir

D1N(s) and then findzcir
N (s) as a

differencezcir
D1N(s)2zcir

D (s). The zeta functionzcir
D1N(s) is again expressed through the corr

sponding zeta function of a cylinder

zcir
D1N~s!52Ap

GS s11

2 D
GS s

2D zcyl
shell~s11!, ~50!

wherezcyl
shell(s) is the zeta function of electromagnetic field with boundary conditions defined

surface of a perfectly conducting cylindrical shell,zcyl
shell(s)5zcyl

D (s)1zcyl
N (s). The spectral zeta

function zcyl
shell(s) has been explicitly constructed in Ref. LNB. The relevant formulas read

zcyl
shell~s!5Z̃1~s!1Z̃2~s!1Z̃3~s!, ~51!

Z̃1~s!5
~s21!as21

2ApGS s

2DGS 32s

2 D E0

`

dy y2sH ln@12m0
2~y!#1

y4t6~y!

4 J , ~52!

Z̃2~s!5
~12s!~32s!as21

64Ap
@2z~s11!11#

GS 11s

2 D
GS s

2D , ~53!

Z̃3~s!5
~12s!~32s!~71s2252s2235!as21

61440Ap
z~s13!

GS 31s

2 D
GS s

2D , ~54!

wherem0(y)5y(I 0(y)K0(y))8.
We are again interested in the value ofzcir

D1N(s) at the points521 which is expressed
throughzcyl

shell(0) according to~50!. The functionsZ̃1(s) andZ̃3(s) give the finite contributions to
zcir

D1N(21)

2
1

a
0.531 627 and

1

a
0.006 896, ~55!
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respectively. However, as in the case of the Dirichlet boundary conditions,Z2(s) gives a pole-like
contribution to~50!

2
3

32a S 1

sU
s→0

1g1
1

2D . ~56!

Hence, for the Casimir energy in question one obtains

Ecir
D1N5

1

2
zD1N~21!52

3

64a

1

sU
s→0

2
1

a
0.2895. ~57!

Finding the difference between~57! and ~49! we arrive at the Casimir energy of scalar massl
field obeying the Neumann boundary conditions on a circle

Ecir
N 5

1

a S 20.31312
5

128

1

s U
s→0

D . ~58!

The zeta function technique does not lead to a finite answer for the Casimir energy
plane problem considered here~two space-like dimensions!, as well as in all the cases of arbitrar
even space dimensions.13 As usual the coefficients in front of the pole-like contributions, cal
lated by different methods coincide, but the finite parts of the answers differ.7,14 In this respect our
consideration has a certain advantage, because when calculating the Casimir energy of th
on a plane we employ Eq.~41!. Thereby we in fact make use of the spectral zeta functionzcyl(s)
for a cylinder which has already been normalized by a finite answer for the Casimir energy
infinite cylinder.

Of course the problem of the Casimir energy calculation in the even dimensional spaces
from being completely solved. To obtain an acceptable finite answer for this energy one s
invoke some additional physical arguments providing the removal of the pole-like contribu
from Eqs.~49!, ~57!, and ~58! or use new mathematical methods which will not result in su
divergent terms.

V. CONCLUSION

In the present paper the explicit expressions are derived which define the spectral zet
tions for an infinite cylinderzcyl(s) in a finite range of complex variables containing the segmen
of real axis21<Res<0. It enables one to find the spectral zeta function for a circle making
of the zeta function for an infinite cylinder according to the relation~6!. In Ref. 8 this relation was
applied directly, i.e., for constructingzcyl(s) from zcir(s). However, to obtain the value ofzcyl(s)
at the points521, the authors of this paper have to make additional analytic continuation o
function zcir(s) from the neighborhood of the points521 to the points522.

In our consideration, as well as in treatment of the analogous problems by other autho
central part was played by the uniform asymptotic expansion for the product of the Bessel
tions. The lack of such expansions for the eigenfunctions in problems with other geometry
boundaries~for example, with boundary conditions defined on the surface of a spheroid! does not
permit to expand directly this approach beyond the systems with spherical symmetry.
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Direct derivation of scaling relation of prepotential
in NÄ2 supersymmetric G 2 Yang–Mills theory

Yűji Ohtaa)

Research Institute for Mathematical Sciences, Kyoto University,
Sakyoku, Kyoto 606, Japan

~Received 17 November 1999; accepted for publication 27 December 1999!

In contrast to the classical gauge group cases, any method to exactly prove the
scaling relation which relates moduli and prepotential is not known in the case of
exceptional gauge groups. This paper provides a direct method to establish this
relation by using Picard–Fuchs equations. In particular, it is shown that the scaling
relation found by Ito inN52 supersymmetric G2 Yang–Mills theory actually holds
exactly. © 2000 American Institute of Physics.@S0022-2488~00!04104-9#

I. INTRODUCTION

It would be one of the greatest discoveries of the 1990s that the holomorphic structure
low energy effective prepotential ofN52 supersymmetric Yang–Mills theory in four dimensio
was actually related to the moduli space of a Riemann surface which possesses singularitie
charged particles become massless. According to this mechanism found by Seiberg and W1

the effective theory is parametrized by the vacuum expectation value of scalar componenf of
N51 chiral multiplet, which can be identified with periods of a certain meromorphic differe
on the Riemann surface, and accordingly the prepotential can be determined exactly also in
instanton corrections. For example, for classical gauge group cases, the prepotential is kn
be dictated by hyperelliptic curves,2–11 and instanton corrections to the prepotential obtained fr
these curves showed good agreement with the so-called instanton calculus,12–19 a pure field the-
oretical method.

These hyperelliptic curves were also derived from a very different viewpoint, relatio
integrable systems.20–22 In the language of integrable system, these hyperelliptic curves coin
with the spectral curves~the characteristic equation for the Lax matrix! and the periods can b
interpreted as the action integrals. This interpretation explains why the effective theory is sol
and from this fact, it may be natural to also expect that for exceptional gauge group cas
relevant curves are given by hyperelliptic curves. In fact, several hyperelliptic curves for
cases were constructed,10,23,24but, unfortunately, in general, the spectral curves from integra
systems for exceptional gauge group cases cannot be transformed into hyperelliptic form
instance, the curve for G2 gauge theory is related to the (G2

(1))V Toda system,21,25 and is given in
the form

3S z2
m

z D 2

2x812ux62Fu216S z1
m

z D Gx41Fv12uS z1
m

z D Gx250, ~1.1!

wherex is the eigenvalue of the Lax operator matrix,z is the spectral parameter,u andv are gauge
invariant Casimirs called moduli~of the effective theory!, andm is a parameter which leads to th
dynamical scale, but obviously this curve cannot be transformed into hyperelliptic form
course, for these two formulations, which one is better must be decided by a comparis
instanton corrections to prepotential with that from instanton calculus. According to the res26

there is a manifest difference between prepotentials from these two curves and only that from~1.1!

a!Electronic mail: ota@kurims.kyoto-u.ac.jp
45320022-2488/2000/41(7)/4532/9/$17.00 © 2000 American Institute of Physics
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can survive! Similar result follows also in E6 gauge theory,27 and therefore the substance
complex curves relevant to gauge theories is believed to be a spectral curve of the inte
system.

As a characteristic common problem concerning these gauge theories with exception
groups, we can mention that the exact establishment of the scaling relation28–32of prepotentialF
whose general form is typically represented in the form

(
i 5t

g

ai

]F
]ai

22F5b^Tr f2&, ~1.2!

whereg is the rank of the gauge group,ai are the periods, andb is the coefficient of one-loop bet
function, is very hard. Although formula~1.2! has been checked from the standpoint of instan
calculus in the SU~2! gauge theory,33,34as for a general proof of this formula for theories with a
classical gauge groups, we know the method30 based on Whitham hierarchy.35 In such cases, the
curves are hyperelliptic, and thus the verification of~1.2! can be done directly, but in contrast t
these cases, for theories with exceptional gauge groups, similar discussions do not exist bec
the too complicated singularity structure of the spectral curves. For instance, in the case of2

theory, we can explicitly see this from~1.1!, which is actually an eight cover ofz plane.
On one hand, of course, there is strong support for formula~1.2! in exceptional gauge group

cases and the validity of~1.2! was explicitly checked first by several instanton process levels w
the help of explicit solutions to Picard–Fuchs equations,26,27,36but this does not mean that~1.2!
holds exactly. Then, also in the theories with exceptional groups, does~1.2! hold exactly? To
answer this question is the subject of this paper.

In this paper, we give a method to verify~1.2! exactly for G2 gauge theory, although th
method itself is applicable for all theories with any classical and exceptional gauge groups w
without massive hypermultiplets. Our starting point is to consider the differentiated versio
~1.2!, defined by

W5(
i 51

2

~ai]uaDi
2aDi

]uai !, w5(
i 51

2

~ai]vaDi
2aDi

]vai !, ~1.3!

and seek differential equations for~1.3!. As a matter of fact, this can be proceeded by conside
Picard–Fuchs equations, but since the Picard–Fuchs equations with multiple moduli are u
realized as a set of partial differential equations,37,38 actually such equations do not have a
advantages for a study of scaling relation of prepotential~in higher rank gauge groups!, although
the derivation using a partial differential form of Picard–Fuchs equations was tried in the ca
SU~3!.39 However, if Picard–Fuchs equations represented by single kind of moduli derivative
be found, we can easily construct an ordinary differential equation for respective quantit
~1.3!. In addition, the basis of solutions to such as ordinary differential equation can be uni
fixed, so as a result, we can determine the right-hand side of~1.2! by taking an appropriate ‘‘initial
condition.’’

II. PICARD–FUCHS EQUATIONS IN G2 THEORY

A. G2 Picard–Fuchs equations

To begin with, let us recall the Seiberg–Witten meromorphic differential on the G2 curve~1.1!
given by

l5x
dz

z
~2.1!

and the definition of periods
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ai5 R
a i

l, aDi
5 R

b i

l, i 51,2, ~2.2!

wherea i andb i are the canonical cycles on~1.1!. Some of the properties of these period integr
were discussed by Masudaet al.40 The classical relation among periods and moduli is given b24

u5a2
21~a12a2!21~a122a2!2, v5a2

2~a12a2!2~a122a2!2. ~2.3!

These are invariant under the action of the Weyl group of G2,

~a1 ,a2!→~3a22a1 ,a2!, ~a1 ,a2!→~a1 ,a12a2!. ~2.4!

Then, the Picard–Fuchs equations can be given in the form26

F2~720u2m12u3v227v2!

2uv124m
]u

21
4~256u4m23u2v22720uvm113824m2!

2uv124m
]u]v

2
6~2256u3m196vm15uv2!

2uv124m
]v21Gl50,

~2.5!

F1

3
~8u3v2108v212880u2m!]v

21
1

3
~8u4272uv16912m!]u]v1~4u3224v !]v21Gl50.

The reader who wishes to know more details of Picard–Fuchs equations associated with
perelliptic curves may consult the work of Isidro.41

From these equations, we can construct differential equations satisfied by~1.3!, but such
differential equations are not helpful for a direct proof of scaling relation because they are p
differential equations. For this reason, we seek a more convenient form of Picard–Fuchs
tions. A candidate is an ordinary differential form because the right-hand sides of resp
quantities in~1.3! are written in terms of only single variable derivative. Therefore, if Pica
Fuchs equations can take ordinary differential forms, it would be easy to obtain ordinary d
ential equations forW andw. In addition to this, since they are ordinary differential equations,
can uniquely fix the basis of solution space and by this it becomes possible to verify~1.2!.

However, sadly, since the direct derivation of the Picard–Fuchs equations in terms of
variable derivatives from the original period integral requires much labor, let us try to derive
equations from~2.5!.

B. Ordinary differential form of the G 2 Picard–Fuchs equations

First, let us rewrite~2.5! in the form

@]u
22c1]u]v2c2]v2c3#l50, @]v

22d1]u]v2d2]v2d3#l50. ~2.6!

If there is any differential equation satisfied byl, it must be a linear combination of the tw
equations in~2.5! and their differentiations. We would like to make an ordinary differen
equation in terms of single moduli derivatives, e.g.,]ul,]u

2l, etc., but in order to obtain suc
equation from~2.6! by repeating differentiations, mixed derivatives and other moduli derivat
like ]u]vl or ]vl must be eliminated. These irrelevant derivatives can be dropped by repres
them in terms of]ul, ]u]vl and]vl.

For example, regarding]u
2]v5]v(]u

2), we get

]u
2]vl5@]vc1]u]v1]vc2]v1]vc31c1]u~]v

2!1c2]v
21c3]v#l ~2.7!

and further substituting]v
2l from ~2.6! into this expression, we can obtain
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D]u
2]vl5@c1d3]u1~c31c2d21]vc21c1]ud2!]v1~c2d11c1d21]vc11c1]ud1!]u]v

1~c2d31]vc31c1]ud3!#l, ~2.8!

where

D512c1d1 . ~2.9!

In a similar manner, we can arrive at

D]u]v
2l5@d3]u1~c3d11c2d1d21d1]vc21]ud2!]v1~c2d1

21d21]ud11d1]vc1!]u]v

1~c2d1d31]ud31d1]vc3!#l. ~2.10!

With these in mind, eliminating]u]vl, ]u
2]vl and]u]v

2l, we can obtain the fourth-order ordinar
differential equation satisfied byl

F]u
42

1

D
~ c̃3]u

31 c̃2]u
21 c̃1]u1 c̃0!Gl50, ~2.11!

where we have denoted only the equation associated withu derivatives and the coefficients ar
given by

D5~216u6v21216u3v32729v411024u8m214 976u5vm154 432u2v2m

1421 632u4m222 985 984uvm2147 775 744m3!~648u5v528505u2v6

286 016u7v3m11 145 664u4v4m2326 592uv5m12 097 152u9vm2

224 625 152u6v2m2269 672 960u3v3m2224 634 368v4m22163 577 856u8m3

12 601 123 840u5vm314 824 354 816u2v2m3272 704 065 536u4m4

288 098 471 936uvm411 091 580 198 912m5!,

2 c̃054~2648u7v7118 711u4v81120 192u9v5m23 530 304u6v6m11 191 186u3v7m

12 480 058v8m211 730 944u11v3m21291 824 640u8v4m22158 824 800u5v5m2

2356 682 204u2v6m21100 663 296u13vm322 121 007 104u10v2m3

242 455 384 064u7v3m3151 853 167 360u4v4m3153 651 973 888uv5m3

213 086 228 480u12m41348 024 471 552u9vm413 595 729 895 424u6v2m4

24 366 362 599 424u3v3m42665 208 557 568v4m4213 420 581 617 664u8m5

2115 104 252 690 432u5vm51106 830 134 820 864u2v2m511 876 392 727 805 952u4m6

22 191 620 144 365 568uvm6116 936 958 366 318 592m7!,

2 c̃154~21944u8v7144 469u5v81376 320u10v5m28 745 408u7v6m

13 796 632u4v7m22 480 058uv8m225 427 968u12v3m21563 576 832u9v4m2

2206 437 248u6v5m211 138 989 600u3v6m22192 735 936v7m21402 653 184u14vm3

27 795 113 984u11v2m3241 644 523 520u8v3m3230 988 541 952u5v4m3

116 587 887 616u2v5m3241 875 931 136u13m411 020 046 344 192u10vm4

12 862 297 907 200u7v2m423 324 905 127 936u4v3m4269 173 305 344uv4m4
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233 549 868 597 248u9m5238 241 489 125 376u6vm51138 188 377 423 872u3v2m5

1232 190 115 840v3m51838 333 592 764 416u5m623 213 346 090 254 336u2vm6

124 521 257 588 359 168um7!, ~2.12!

2 c̃252~247 952u9v711 093 014u6v821 594 323u3v916 200 145v1019 277 440u11v5m

2215 229 312u8v6m1411 156 000u5v7m21 285 614 828u2v8m2637 534 208u13v3m2

114 181 875 712u10v4m2223 978 446 848u7v5m2162 058 871 872u4v6m2

1115 596 211 968uv7m219 663 676 416u15vm32180 703 199 232u12v2m3

2949 095 235 584u9v3m311 489 634 758 656u6v4m32723 702 192 5376u3v5m3

24 614 778 552 320v6m32963 146 416 128u14m4123 697 146 511 360u11vm4

148 477 813 866 496u8v2m4275 294 381 441 024u5v3m41245 288 540 749 824u2v4m4

2763 297 561 313 280u10m52174 881 136 181 248u7vm524 532 971 954 765 824u4v2m5

22 597 743 016 017 920uv3m5114 032 107 516 985 344u6m6

1301 566 403 503 194 112u3vm6188 771 668 096 319 488v2m6

25 754 950 530 929 524 736u2m7!,

2 c̃352~236 288u10v71750 384u7v822 493 180u4v926 200 145uv1017 090 176u12v5m

2149 257 728u9v6m1548 581 248u6v7m11 031 074 272u3v8m2119 042 784v9m

2446 693 376u14v3m219 473 753 088u11v4m2234 651 597 824u8v5m2

259 910 223 104u5v6m22118 816 035 840u2v7m217 516 192 768u16vm3

2136 549 761 024u13v2m32140 014 780 416u10v3m314 532 540 571 648u7v4m3

19 634 653 609 984u4v5m311 729 090 768 896uv6m32670 014 898 176u15m4

116 657 158 242 304u12vm4228 809 835 315 200u9v2m42573 860 068 982 784u6v3m4

2146 014 044 291 072u3v4m4149 247 523 569 664v5m42446 693 778 653 184u11m5

12 318 736 493 117 440u8vm5127 114 473 757 081 600u5v2m5

21 492 703 816 712 192u2v3m5221 106 281 041 362 944u7m6

2739 515 240 667 938 816u4vm6119 876 959 932 645 376uv2m6

18 787 962 215 324 975 104u3m721 154 955 987 665 289 216vm7!.

Of course, a similar equation in terms of onlyv derivatives can be found to follow by
repeating the same algorithm~see the Appendix!. In the following we discuss only the case foru
derivatives.

III. DIFFERENTIAL EQUATION FOR SCALING RELATION

A. Ordinary differential equation for W

We can now construct an ordinary differential equation satisfied byW. To see this, let us
define
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Wi j 5 (
k51

2

~]u
i ak]u

j aDk
2]u

j ak]u
i aDk

!. ~3.1!

Similar quantities are often used for a calculation of Yukawa couplings in the context of m
symmetry. Notice thatW itself is given byW5W01. From ~3.1!, we can derive some relation
among variousWi j ,

W85W02, W95W121W03, W128 5W13, W-5C1W1C2W81C3W0312W13,

W038 2C3W035C1W1C2W81W13, W138 2C3W1352C0W1C2W121W23, ~3.2!

W238 2C3W2352C0W82C1W12, Ci5
c̃i

D
,

where85]/]u.
From ~3.2!, we can construct a sixth-order ordinary differential equation satisfied byW

@]u
51C̃4]u

41C̃3]u
31C̃2]u

21C̃1]u1C̃0#]uW50, ~3.3!

whereC̃i are very complicated and extremely lengthy rational functions in moduli and the sc
parameterm.

B. Basis of solutions

In order to obtain the basis of solutions to~3.3!, especially, to determine the indicial indice
by taking a Frobenius algorithm at the weak coupling region, it would be sufficient to con
~3.3! with m50. This is because the weak coupling solutions can be represented also in a se
m and the only the lowest order terms of this series are relevant in the determination of in
indices. Then~3.3! turns to

@u5~4u3227v !4~608u6132 694u3v2192 465v2!]u
519u4~4u3227v !3~7296u91463 280u6v

21 645 836u3v225 196 555v3!]u
412u3~4u3227v !2~1 162 496u12182 291 704u9v

2292 007 736u6v22238 968 387u3v322 806 139 700v4!]u
3112u2~4u3227v !

3~2 687 360u151205 589 136u12v21 225 216 692u9v211 404 464 913u6v3

16 080 288 652u3v4237 882 885 950v5!]u
218u~20 422 720u1811 666 413 804u15v

216 557 855 750u12v2133 777 521 721u9v311 420 502 427u6v41879 666 475 221u3v5

23 068 513 761 950v6!]u140~1 337 600u181125 474 352u15v2812 719 908u12v2

11 338 655 410u9v317 591 437 855u6v42162 446 987 646u3v5

1613 702 752 390v6!#]uW50, ~3.4!

and therefore we get the following set of indicial indices

n5~n1 ,n2 ,n3 ,n4 ,n5!5~1,2,3,5,8! ~3.5!

for

W5unW̃. ~3.6!
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According to Frobenius algorithm, in general, there are two types of solutions due t
difference of two indices, one of which is a regular series and the other is logarithmic. In fac
reader may be familiar with the following well-known fact.

Suppose thatn1 andn2 are the indicial indices to a second-order linear ordinary differen
equation~unknowny and variablex! with regular singularities, say, atx50. Then the genera
solution is given in the form

~1! y5c1xn1(
k50

`

Akx
k1c2xn2(

k50

`

Bkx
k ~n12n2Þ integer!,

~2! y5c1xn1(
k50

`

Akx
k1c2Fcxn1(

k50

`

Akx
k ln x1xn2(

k51

`

Bkx
kG ~n12n25 integer!,

whereci are integration constants,c is a constant to be determined according to the differenc
the indices~typically, c51 whenn15n2!, Ak andBk are independent ofx. In both cases, when
n1Þn2 , we can assumen2,n1 without loss of generality.

Summarizing this, we can say that in any case the solution can be factored byxn2 associated
with the smaller index. One similar to this fact also holds for a higher rank ordinary differe
equation~of course, in this case, the solution may involve power of logarithm due to the differ
of indicial indices!. Therefore, for~3.3!, W8 takes the form

W85un1(
i 51

5

r iu
n i2n1f i~u,v,m!, ~3.7!

wherer i are some constants andf i are functions whose lowest order in expansion is logarithm
function which is independent ofu. Integrating this gives the following function form:

W5c~v !1u f , ~3.8!

wherec(v) is a function which may depend onv, by using a functionf whose lowest order in
expansion is logarithm or function independent ofu.

In order to make contact with the weak coupling behavior, we must impose some ‘‘i
condition.’’ For this purpose, let us recall the definition ofW in ~1.3!. Substituting the solutions to
Picard–Fuchs equations into~1.3!, we will be able to compare it with the right-hand side of~3.8!.
Of course, as a matter of fact, since the function form ofW is now uniquely determined as in~3.8!,
it is not necessary to know the solutions to Picard–Fuchs equations at all order inm and it is
enough to know them only at the lowest order level. In fact, proceeding in this manner with th
of the weak coupling behavior of periods from~2.3! @or explicitly solving ~3.4! or using Ito’s
result26#, we can see that the second term of~3.8! is suppressed andc(v)5 i /(4p). This indicates
that

(
i 51

2

~ai]uaDi
2aDi

]uai !5
i

4p
~3.9!

holds exactly! Therefore, the scaling relation found by Ito26 in the G2 gauge theory based on th
spectral curve~1.1! is actually an exact expression.

We can conclude that the scaling relation

(
i 51

2

~ai]vaDi
2aDi

]vai !50 ~3.10!

holds exactly by repeating a similar discussion.
                                                                                                                



f the
ss
That is,

men-

tial

excep-
heories
pli-
these

the form

4539J. Math. Phys., Vol. 41, No. 7, July 2000 Derivation of scaling relation

                    
IV. SUMMARY

In this paper, we have proved the scaling relation of prepotential of G2 Yang–Mills theory by
using an ordinary differential form of Picard–Fuchs equations. The direct verification o
scaling relation~when multiple moduli are included! is very complicated, but it would be needle
to say that our direct method presented here can be applied for any gauge group cases.
when one wishes to establish scaling relations like~3.9! and ~3.10!:

~1! Represent the Picard–Fuchs equation in terms of single moduli derivatives.
~2! Consider the ordinary differential equation satisfied by scaling relation using the above

tioned Picard–Fuchs equations.
~3! Fix the basis of solutions to this equation.
~4! Compare the result with that from solutions to Picard–Fuchs equation.

Note that a direct derivation of~1.2! by Picard–Fuchs equations as a system of partial differen
equations is more involved than our presentation here.

In contrast with the classical gauge group cases, there are many problems concerning
tional gauge group cases and in order to get more insight into these exceptional gauge t
application of Whitham hierarchy42 is necessary. To do this is very hard because of the com
cated singularity structure of the spectral curves, but also the problem of scaling relation in
cases should be understood in this framework.

APPENDIX: ANOTHER SCALING RELATION

In this Appendix, we show the Picard–Fuchs equation in terms of onlyv derivatives and the
ordinary differential equation forw.

The Picard–Fuchs equation can be represented as the fourth-order equation and takes

@29~37u82126u5v181u2v2281 216u4m1171 072uvm136 578 304m2!

124~68u1121422u8v112 393u5v2237 179u2v3161 776u7m22 220 048u4vm

110 707 552uv2m1204 166 656u3m221 169 012 736vm2!]v224~24u14

21004u11v115 885u8v22108 540u5v31273 375u2v4145 648u10m

21 823 040u7vm119 801 584u4v2m270 123 968uv3m140 061 952u6m2

2724 847 616u3vm214 938 071 040v2m2232 356 122 624u2m3!]v
2232~u429uv1864m!

3~32u10v2792u7v216804u4v3219 683uv415760u9m281 216u6vm269 984u3v2m

12 519 424v3m112 130 560u5m2294 058 496u2vm212 149 908 480um3!]v
3

116~u429uv1864m!2~216u6v21216u3v32729v411024u8m214 976u5vm

154 432u2v2m1421 632u4m222 985 984uvm2147 775 744m3!]v
4#l50. ~A1!

Then the differential equation forw with m50 is given by

@26~68u2121458u18v1107 406u15v222 216 889u12v3121 611 934u9v42121 168 548u6v5

1382 637 520u3v62516 560 652v7!16~24u2425656u21v1298 890u18v2

27 376 508u15v31104 622 435u12v42906 638 346u9v514 757 459 832u6v6

213 937 571 666u3v7117 563 062 168v8!]v127~4u3227v !~u329v !v~32u18

22216u15v161 950u12v22883 845u9v316 896 583u6v4228 199 178u3v5

147 475 396v6!]v
21~4u3227v !2~u329v !2v2~392u12215 108u9v1226 503u6v2
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21 515 348u3v313 831 624v4!]v
315~4u3227v !3~u329v !3v3~8u62144u3v1729v2!]v

4

1~4u3227v !4~u329v !4v4]v
5#W50. ~A2!

The set of indicial indices for~A2! is found to be

n5~1,1/2,1/2,21/2,21/2!, w5vnw̃. ~A3!
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Instanton correction of prepotential in Ruijsenaars model
associated with NÄ2 SU„2… Seiberg–Witten theory

Yűji Ohta
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Sakyoku, Kyoto 606, Japan

~Received 11 October 1999; accepted for publication 11 January 2000!

Instanton correction of prepotential of the one-dimensional SL~2! Ruijsenaars
model is presented with the help of the Picard–Fuchs equation of Pakuliak–
Perelomov type. It is shown that the instanton-induced prepotential reduces to that
of the SU~2! gauge theory coupled with a massive adjoint hypermultiplet. ©2000
American Institute of Physics.@S0022-2488~00!04105-0#

I. INTRODUCTION

The low-energy effective action ofN52 supersymmetric Yang–Mills theory is described
a prepotential, and, if this is obtained, we can know~all! information concerning the effective
theory, namely, in this case the theory becomes ‘‘solvable.’’ Actually, instantons have
known to contribute to the prepotential,1 but there are not many discussions. However, Seib
and Witten2 pointed out several years ago that it was possible to determine the prepot
including instanton effects with the help of a Riemann surface and periods of a meromo
one-form on it. This approach using a Riemann surface is in general referred to Seiberg–
theory.

The effective action of gauge theory occasionally including massive hypermultiplets i
fundamental representation of the gauge group has been discussed in many view poin
accordingly, we are now well acquainted with various properties of the prepotential and its r
materials, such as Picard–Fuchs equations for periods,3–7 renormalization-group-like equations fo
prepotential,8–13 relation to integrable systems,14,15 the appearance of Witten–Dijkgraaf
Verlinde–Verlinde~WDVV ! equations,16–18 flat coordinates,19,20 and so on.

On the contrary, for a theory coupled with adjoint hypermultiplets,21 compared to the above
cases including fundamental hypermultiplets, not much is revealed, but there is strong ev
that the relevant Seiberg–Witten solutions must be related with the integrable Calogero dyn
systems,22 and, in fact, a few examples of prepotential associated with spectral curves exp
from Calogero systems showed a good prediction of the instanton correction.23

On the other hand, recently, Bradenet al.24 analyzed a more general integrable system, ca
the Ruijsenaars model, which can be thought as a ‘‘relativistic’’ version of the Calogero syst25

The Ruijsenaars model itself is considered as a candidate of integrable system related
dimensional gauge theory,26 and its specific limits are known to recover Seiberg–Witten soluti
in four and five dimensions. At the perturbative level, we can easily establish these corre
dences, but we cannot conclude that the Ruijsenaars model is, in fact, the integrable
relevant to these gauge theories unless the instanton contribution is correctly taken into a
Therefore, the only necessary item to be discussed is now an exact treatment of this
including instanton effects. For this reason we derive the instanton contribution to the prepo
of the Ruijsenaars model in this paper.

The paper is organized as follows. In Sec. II, we briefly review the correspondence amo
Seiberg–Witten solution to the SU~2! gauge theory and the Calogero and Ruijsenaars system
Sec. III, we consider the Picard–Fuchs equations for these integrable systems, but actua
are found to be available from Pakuliak–Perelomov equations.27 In Sec. IV, the period integrals
and the effective coupling constant of the Ruijsenaars model are evaluated in the weak co
45410022-2488/2000/41(7)/4541/10/$17.00 © 2000 American Institute of Physics
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regime. In Sec. V, a differential equation for the prepotential is constructed from the Paku
Perelomov-type Picard–Fuchs equation. One-instanton correction of the prepotential is pre
As a check, we consider a reduction to the prepotential of Calogero system and show th
instanton-induced prepotential is consistently determined. Section. VI is a brief summary.

II. CALOGERO AND RUIJSENAARS SYSTEMS
A. Calogero system

To begin with, notice that the Seiberg–Witten solution to the SU~2! Yang–Mills gauge theory
coupled with a massive adjoint matter hypermultiplet21–23 is related to the spectral curve

det„L~j!2t)50 ~2.1!

of the one-dimensional SL~2! elliptic Calogero system with the 232 Lax matrix with Calogero
coupling constantg0 ,

L~j!5S P g0

s~Q1j!

s~j!s~Q!

g0

s~Q1j!

s~j!s~Q!
2P

D , P5p152p2 , Q5q12q2 , ~2.2!

wherepi andqi are the canonical coordinate and momentum, respectively,s is the Weierstrass’s
s function ~see Appendix A!, andj is the spectral parameter associated with an elliptic curv

y25)
i 51

3

~x2ei !, (
i 51

3

ei50. ~2.3!

In ~2.3!, branching pointsei are functions in the modulust of ~2.3! and have the expansion

e15
2

3
~1124q2124q41¯ !,

e252
1

3
~1124q124q2196q31¯ !, ~2.4!

e352
1

3
~1224q124q2296q31¯ !,

whereq5eipt. Sincet is identified with the bare effective couplingt54p i /g21u/2p, whereg
is the gauge coupling constant andu is the vacuum angle, the factorq2n for nPN corresponds to
the instanton amplitude.

This spectral equation can be summarized into

g0
2`~j!5t22h, h5P21`~Q!, ~2.5!

where`(j) is the Weierstrass’s̀ function andh is the second Hamiltonian of this system.
Then the Seiberg–Witten differentialdSCal is given in the form of twice the product of th

eigenvaluet of the Lax matrix and a holomorphic one-formdv5dx/y on ~2.3!, namely,

dSCal52tdv5
2Ah1g0

2x

y
dx, ~2.6!

where we have identifiedx5`(j). In general, the Seiberg–Witten differential has the prope
such that it reduces to a holomorphic differential by a differentiation over moduli, and, in fac
the case at hand,]dSCal/]h}dx/y. Below, we setg051 for convenience.

For this differential, the Seiberg–Witten periods can be defined by
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a5 R
a
dSCal, aD5

]F̃
]a

5 R
b
dSCal, ~2.7!

wherea andb are the canonical basis of one-cycles andF̃ is the prepotential.
Itoyama and Morozov22 made a very interesting observation with respect to this Seibe

Witten solution, which states that the data can be viewed as if they were given on the hyper
curve

ŷ25~h1x!)
i 51

3

~x2ei ! ~2.8!

and the associated Seiberg–Witten differential

dSCal5
2~h1x!

ŷ
dx ~2.9!

on ~2.8!. This observation is very important throughout the paper.

B. Ruijsenaars model

Next, let us discuss the case of one-dimensional SL~2! Ruijsenaars model,22,25 whose Lax
operator matrix is given by

L~j!5A`~m!2`~Q!

`~m!2`~j! S eP eP
s~Q1j!s~m!

s~Q1m!s~j!

e2P
s~2Q1j!s~m!

s~2Q1m!s~j!
e2P

D . ~2.10!

The Calogero model is recovered for smallm.25 Then the spectral equation

det„L~j!2t…50 ~2.11!

determines the eigenvaluet, and by this we can construct its corresponding Seiberg–Wi
solution, but in contrast with the preceding Calogero model, the Seiberg–Witten differential i
case must take the form

dSRui5 ln tdv, t5
H6AH22`~m!1`~j!

A`~m!2`~j!
, H5A`~m!2`~Q! coshP, ~2.12!

whereH is the Hamiltonian of the system, because of the requirement such that]HdSRui must be
a holomorphic differential. Below, we take1 sign for the eigenvaluet in ~2.12!.

The Seiberg–Witten differential of the form~2.12! is very characteristic, and takes just th
same form with those arising in five-dimensional gauge theories. Accordingly, the Ruijse
model will be understood in the context of higher-dimensional gauge theory, although a
dimensional point of view, i.e.,dSRui52tdv, was discussed by Itoyama and Morozov.22 In fact,
as is obvious from~2.12!, we can see the relation between holomorphic differentials in ‘‘fou
and five dimensions

]dSRui

]H
5

]dŜCal

]ĥ
, ~2.13!

where
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dŜCal5
2Aĥ1x

y
dx, ĥ5H22`~m!. ~2.14!

Notice that the difference betweendŜCal anddSCal is simply ĥ↔h.
For thisdSRui , we define the periods

A5
1

2ipR R
a
dSRui5

1

ipR E
e3

e2
dSRui , AD5

]F
]A

5
1

2ipR R
b

dSRui5
1

ipR E
e2

e1
dSRui ,

~2.15!

where we have introduced the prepotentialF. Furthermore, we have normalized such that th
match with those used by Bradenet al.,24 therefore,R plays the role of the radius ofS1 when this
model is regarded as the Seiberg–Witten solution related to the five-dimensional gauge
compactified onS1. Then the effective coupling constant is given by

teff5
]AD

]A
. ~2.16!

III. PAKULIAK–PERELOMOV EQUATIONS AND PICARD–FUCHS EQUATIONS

To calculate the prepotential of the Ruijsenaars model, the periods~2.15! should be evaluated
but the periods of a Riemann surface are known to satisfy Picard–Fuchs equations. In the
hand, the Picard–Fuchs equation is available from that of the Calogero model by focusi
~2.13!. As a matter of fact, though the Seiberg–Witten Riemann surface~2.8! is a hyperelliptic
type represented by branching points, since the Seiberg–Witten differential~2.9! is a linear sum of
Abelian differentials on~2.8!, we can use a general technique to get Picard–Fuchs equation
periods of hyperelliptic Riemann surfaces.3–5

However, for the case at hand, since the curve~2.8! is given by using branching points, th
idea of derivation of Picard–Fuchs equations will naturally overlap to that of Pakuliak
Perelomov,27 provided the branching points also includingx52h are regarded as if they wer
independent variables. Namely, the Picard–Fuchs equations in the Calogero system, and t
of the Ruijsenaars model, are obtained from Pakuliak–Perelomov equations.

A. Pakuliak–Perelomov equations

In general, the hyperelliptic curve of genusr can be realized as a double cover of a polyn
mial in x,

y25 )
i 51

2r 12

~x2ei !5 (
i 50

2r 12

~21! is i~ej !x
2r 122 i , ~3.1!

whereek are the branching points on thex plane and we have expressed the coefficients of pow
in x by s i(ej ). Do not confuse them with the Weierstrass’s function.

We can define the periods of Abelian differentials on~3.1! by

K j5 R
g

xj

y
dx, j 50,1,...,2r , ~3.2!

whereg is an arbitrary noncontractible one-cycle on~3.1!. Pakuliak-Perelomov equations are th
equations of a system of first-order differential equations satisfied byK j and the reduction method
to get such equations can be done in the following way.

First, notice that the first-order derivatives are given by
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]K j

]ei
5

1

2 R
g

xjdx

y~x2ei !
. ~3.3!

Here, defining the integrand as

I j5
xj

y~x2ei !
, ~3.4!

we get the recursion relation

I j5K j 211eiI j 21 , ~3.5!

which indicates

I j5 (
n50

j 21

ei
j 2n21Kn1ei

j I 0 . ~3.6!

Thus, from~3.3!, we obtain

2
]K j

]ei
5 (

n50

j 21

ei
j 2n21Kn1ei

j I 0 . ~3.7!

Next, the relation

R
g

d

dx S y

x2ei
D dx50 ~3.8!

induces

1

2 (
k51

2r 12 R
g

P( i ,k)~x!

y
dx5 R

g

P( i )~x!

y~x2ei !
dx, ~3.9!

where

P( i ,k)~x!5 )
i ,kÞ j 51

2r 12

~x2ej !5(
j 50

2r

~21! j ŝ j
( i ,k)x2r 2 j ,

~3.10!

P( i )~x!5 )
iÞ j 51

2r 12

~x2ej !5 (
j 50

2r 11

~21! j ŝ j
( i )x2r 112 j .

In ~3.10!, we have expressed the coefficients byŝ j
( i ) and ŝ j

( i ,k) .
Again using~3.5!, we can obtain

R
g

P( i )~x!

y~x2ei !
dx5 (

j 50

2r 11

~21! j ŝ j
( i )F (

n50

2r 2 j

ei
2r 2 j 2nKn1ei

2r 112 j R
g

dx

y~x2ei !
G , ~3.11!

but from ~3.7!, the Pakuliak–Perelomov equations follow
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2
]K j

]ei
5 (

n50

j 21

ei
j 2n21Kn1

ei
j

P( i )~ei !

3F1

2 (
k51

2r 12

(
n50

2r

~21!2r 2nŝ2r 2n
( i ,k) Kn2 (

j 50

2r 11

(
n50

2r 2 j

~21! j ŝ j
( i )ei

2r 2 j 2nKnG . ~3.12!

The right-hand side of~3.12! is a linear sum of variousKn , but it would be easy to obtain th
equations satisfied by a singleKi by repeating differentiations, and accordingly, such equati
compose a Picard–Fuchs system.

B. Picard–Fuchs equation for the Calogero model

In the Calogero model, if we focus only onh-derivatives, the Picard–Fuchs equation of t
third-order

4]h~DCal]h
2dSCal!13h]hdSCal50, ~3.13!

where

DCal~h!5)
i 51

3

~h1ei !, ~3.14!

follows from ~3.12!.
Since the Seiberg–Witten solution involves another parameter, the bare coupling co

one more equation includingt-derivatives like that discussed by Itoyama and Morozov22 may be
expected. However, the derivation of prepotential from such an equation requires technica
lems, so we do not discuss it in this paper.

C. Picard–Fuchs equation for the Ruijsenaars model

It is now easy to find the Picard–Fuchs equation for the Ruijsenaars model, if we notic
relation ~2.13!. SincedŜCal satisfies the Picard–Fuchs equation~3.13! with h replaced byĥ, we
can obtain from~2.13! and ~3.13!

FD]H
3 1D]HS ln

D

H D ]H
2 13H2ĥ]HGdSRui50, ~3.15!

where

D5)
i 51

3

~ ĥ1ei !. ~3.16!

IV. PERIODS

To derive the instanton correction for the prepotential of the Ruijsenaars model, some
should be prepared appropriately. The first one is the calculation of periods, but in contras
usual cases, the evaluation of periods is very sensitive because the Seiberg–Witten differe
the Ruijsenaars model involves a normalization factor differential depending onq, i.e., the second
term of the right-hand side of

dSRui5 ln@H1Aĥ1x#
dx

y
2 ln@`~m!1x#

dx

y
. ~4.1!
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Since this term is independent ofH, the Picard–Fuchs equation cannot detect the contributio
instantons arising from this term. In fact, this is because`(m) can be expanded byq. Therefore,
it is necessary to calculate this in order to include instanton effects correctly. Otherwis
prepotential will not reduce to any physical prepotential by scaling limits.24

With this in remind, we can see that the periodA in the weak coupling region~i t→`, q
5eipt→0! behaves as

iRA5 ln@H sinm1AH2 sin2 m21#2
4H~H2 sin2 m2sin2 m21!sin3 m

~H2 sin2 m21!3/2 q21¯ , ~4.2!

and thus its inverse relation follows immediately:

H5
cosRA

sinm
1

2~22cos 2m2cos 2RA! sinmcosRA

sin2 RA
q21¯ . ~4.3!

On the other hand, as for the dual periodAD , it is enough to calculate it only at the pertu
bative level for a later convenience~see also Ref. 24!:

]AD

]H
U

q→0

52
1

pR
lim
e→0

E
e

` dx

xAx~ ĥ12/3!1ĥ21/3

52
1

pR

sinm

AH2 sin2 m21
F ln

H2 sin2 m21

H2 sin2 m2cos2 m
2 ln

e

4
GU

e→0

. ~4.4!

Accordingly, extracting the finite part of~4.4! and with the help of~4.3!, we get the pertur-
bative effective coupling constant

teffuq→05
1

ip
ln

sin2 RA

sin2 m2sin2 RA
. ~4.5!

This coincides with the perturbative calculus.26

V. INSTANTON CORRECTION FOR PREPOTENTIAL OF THE RUIJSENAARS MODEL

A. Differential equation for the prepotential

In the case of SU~2! gauge group, we can give a differential equation for the prepotentia
using a familiar method using inversion relations of periods.8,12

For our case, derivatives of periods are inverted by12

]HA5
1

H8
, ]H

2 A52
H9

H83 , ]H
3 A53

H92

H85 2
H-
H84 ,

~5.1!

]HAD5
F 9

H8
, ]H

2 AD5
F-
H82 2

F 9H9

H83 , ]H
3 AD5

F (4)

H83 23
H9F-
H84 1S 3

H92

H85 2
H-
H84DF 9,

where85]/]A.
Then, from~3.15!, we have

F (4)2S 3
H9

H8
2

]HD

D DF-50, ~5.2!

which is integrated to give
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F-5c
HH83

D
. ~5.3!

In ~5.3!, c is an integration constant to be fixed below. Versions of~5.3! can be found in severa
SU~2! gauge theories.12,28 Note that~5.3! agrees with the equation obtained from residue calcu
@cf. ~44! in Ref. 24# in the perturbative limit.

B. Instanton correction of the prepotential

Next, substituting~4.3! into ~5.3! and expanding it by smallq, we can obtain the third-orde
derivative of the prepotential

F-
cR3 52

2 cotRAsin2 m

cos 2RA2cos 2m
1

F2 cotRA

~cos 2RA2cos 2m!2 S sinm

sinRAD 4

q21¯ , ~5.4!

where

F252362107 cos 2RA214 cos 4RA1cos 6RA238 cos 4m1100 cos 2m

188 cos 2RAcos 2m120 cos 4RAcos 2m214 cos 2RAcos 4m. ~5.5!

The second term of the right-hand side in~5.4! is the one-instanton contribution. Note that th
prepotential is expanded by the invariant quantityq under the transformationt→t11.

To fix the constantc, look at the perturbative part of~5.4!. Furthermore, recallingF-
5]teff /]A, we get

c5 i
2

pR2 ~5.6!

from ~4.5!. In this way, we can arrive at the exact expression of the third-order derivative o
prepotential.

C. Reduction to the Calogero prepotential

As a check of our calculus, let us take a scaling limitm52ipg0R,R→0 for F-. Then it is
straightforward to see that

F-52
8ipg0

2

A~A214p2g0
2!

2
256ip3g0

4~2135A412520p2A2g0
219360p4g0

4!

45A5~A214p2g0
2!2 q21¯ . ~5.7!

The first term on the right-hand side of~5.7! can be identified with the perturbative part of th
Calogero model, but the second one does not seem to be that of the one-instanton contrib
the Calogero model. However, expanding it for a smallg0 , we get

F-52
8ipg0

2

A~A214p2g0
2!

1S 768ip3

A5 g0
42

20480ip5

A7 g0
61¯ Dq21¯ , ~5.8!

whose first term in the brackets is nothing but the one-instanton correction of the Calogero
~see Appendix B!, provided higher-order terms ing0 are ignored~this operation is necessar
because the original reduction to the Calogero model is supplied bym→0, and then this is
equivalent to the assumption of a small mass of the adjoint hypermultiplet!. Actually, though the
sign is different, this is due to the ambiguity of the Weyl reflection fora. Therefore, we can
conclude that~5.8! coincides with the third-order derivative of the prepotential of the Calog
model. Other scaling limits24 can be treated in a similar way.
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VI. SUMMARY

In this paper, we have shown the following:

~i! The Picard–Fuchs equation in the Ruijsenaars system is generated from the Pak
Perelomov equations.

~ii ! From the differential equation for prepotential, one-instanton prepotential of
Ruijsenaars model is obtained.

~iii ! Our prepotential is checked in the limit to the Calogero system, i.e., theN52 gauge theory
with a massive adjoint hypermultiplet.

APPENDIX A: WEIERSTRASS FUNCTIONS

Suppose thatf (z) is a complex single-valued function with the complex argumentz. Then if
f (z1v)5 f (z) holds for a complex numberv, f is called a periodic function with periodv. If f
has two independent periodsv and v̂, f is referred to as double periodic. In addition, iff is
rational, f is called an elliptic function. The Weierstrass functions are the elliptic functions
the following properties.

~i! Definition:

`~z!5
1

z21 (
2`,m5nÞ0,`

F 1

~z1mv1nv̂!2
2

1

~mv1nv̂!2G. ~A1!

~ii ! Relation betweeǹ ands:

`~z!5
]zs~z!

s~z!
, `~z!2`~j!52

s~z1j!s~z2j!

@s~z!s~j!#2 . ~A2!

~iii ! Parity:
`~z!5`~2z!, s~z!52s~z!. ~A3!

~iv! Differential equation:

@]z̀ ~z!#254)
i51

3

@`~z!2ei#. ~A4!

~v! Laurent expansion:

`~z!5
1

z21
g2

20
z21

g3

28
z41¯ , 2

g2

4
5e1e21e2e31e3e1 ,

g3

4
5e1e2e3 . ~A5!

~vi! q5eipt-expansion:

`~z!52
1

3
1

1

sin2 z
116q2 sin2 z1¯ . ~A6!

APPENDIX B: PREPOTENTIAL OF THE CALOGERO MODEL

In this appendix, we summarize some formulas and prepotential in the Calogero mod
the derivation of prepotential is parallel to that of the Ruijsenaars model, so only the nec
items are listed, andg0 is identified asg0

25 im2/p, wherem is the mass of the adjoint hypermu
tiplet. In this calculation, we present in the weak coupling region, and the one-cycles are ta
the same ones with the Ruijsenaars model. In addition, note that due to our normalization th
several distinctions to the known results.22,23

~i! Periods and inverse relation (h̃5h/g0
2):

a

g0p
5

2

3
A9h̃231

8)~3h̃24!

~3h̃21!3/2
q21¯ ,
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]aD

]h̃
52

ig0

Ah̃21/3
F 2 ln 21ln

3h̃21

3h̃12
G1¯ , ~B1!

h̃5
1

3
1

a2

4p2g0
21S281

32p2g0
2

a2 Dq21¯ .

~ii ! Effective coupling constant:

]2F̃
]a2U

q→0

5
i

p
ln S141

p2g0
2

a2 D. ~B2!

~iii ! Third-order derivative of prepotential:

]3F̃
]a3

52 ipg0
2 ~]ah̃!3

DCal~ h̃!
52

8ipg0
2

a~a214p2g0
2!

2
768ip3g0

4

a5
q21¯ . ~B3!
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On the energy levels of a finite square-well potential
Prabasaj Paula) and Daniel Nkemzib)

Department of Physics, University of Buea, P.O. Box 63 Buea, Republic of Cameroon

~Received 15 September 1998; accepted for publication 23 February 2000!

The theory of Cauchy integrals and the Riemann problem is used to derive an
explicit formula for the bound-state energy levels of the finite square-well potential
problem and is used to obtain a simple asymptotic expression for them. ©2000
American Institute of Physics.@S0022-2488~00!02007-7#

I. INTRODUCTION

The energy levelsE of a microscopic particle moving under a background potential of
form

V~x!5H V0 uxu.L/2

0 uxu,L/2
~V0 constant!, ~1!

are related to the eigenvalues of the boundary-value problem

2
\2

2m

d2C~x!

dx2 1V~x!C~x!5EC~x!, ~2!

with C(x) and its derivatives required to be continuous atx56L and *
2`

`

uCu2dx51. It can be

shown1 that solutions to the above problem exist if and only if the energyE is a real root of one
of the transcendental equations

u tanu5Ap22u2, ~3a!

u cotu52Ap22u2, ~3b!

where

u5
A2mE

\

L

2
, p5

A2mV0

\

L

2
.

The above facts are well known of course. What is, perhaps, not widely known is that E~3!
can be solved forE explicitly. Such a solution was previously attempted by Siewert2 who by
relating the roots of Eq.~3! to those of a certain auxiliary function succeeded in expressing t
roots in terms of certain integrals. In this paper we use a variant of the Burniston–Si
technique3 to show that a direct solution to the problem—one which does not involve the in
duction of some artificial auxiliary function—is possible. Moreover, we show that in this casall
the solution of equations~3!—both odd and even—can be expressed as a single formul
opposed to the sequence of formulas obtained by Siewert.2 A direct consequence of the expressi

a!Present address: Department of Physics, 115 S 1400 E, University of Utah, Salt Lake City, UT 84112. Electron
prabasaj@physics.utah.edu

b!Current address: Visiting Research Fellow, Department of Mathematics, University of Manchester, Oxford
Manchester M13 9PI, UK. Electronic mail: dnkemzi@maths.man.ac.uk
45510022-2488/2000/41(7)/4551/5/$17.00 © 2000 American Institute of Physics
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we obtain is a simple expansion of the solution in powers of 1/p. The method of solution, which
is based on the theory of Cauchy integrals and of the Riemann problem4 is outlined in the next
section.

II. METHOD OF SOLUTION

Let G:t5t(t), a<t<b be a simple smooth arc. The Riemann problem consists of findi
function f (z), analytic ~except possibly at infinity where it may have at most a pole!, in the
complexz plane cut alongG, and which is such that the limitsz→t along a nontangential pat
from the left ~1! and right~2! are different from zero and satisfy a relation of the form

G~ t !5
f 1~ t !

f 2~ t !
. ~4!

HereG(t), the coefficient of the Riemann problem, is a known function. According to the th
of the Riemann problem,4 a canonical solutionF0 of the Riemann problem with coefficientG(t)
is

F0~z!5expS 1

2p i E1

ln G~ t !dt

t2z D . ~5!

Any other solutionF is of the form

F5R~z!F0~z!, ~6!

whereR is a rational function which may have~at most! poles att(a), t(b), and`. The possible
singularities at the endpoints of the cut arise from the fact that the Cauchy integral appea
Eq. ~5! is defined in terms of a Cauchy principal value and the latter is only defined at int
points ofG. However, if lnG(t) is zero att(a) and t(b) then the singularities at these points a
removable.4 In this caseR(z) is a polynomial.

Now let F(z) be a given sectionally analytic function in thez-plane cut alongG. If F does not
vanish on the cut and the one-sided limitsF6(t) exist then clearlyF is also a solution of the
Riemann problem and we can write

F~z!5R~z!F0~z!. ~7!

SinceF0(z)Þ0 ~for anyz!, it follows that the zeroes ofF must be identical with those ofR. Thus
the method consists of identifying the rational functionR—for example, by comparing the Lauren
series of both sides of Eq.~7! at infinity.

III. FORMULAS FOR THE ENERGY LEVELS

By means of the substitutionu5p/A12z2, Eq. ~3a! can be written in the equivalent form

F~z!50, F~z!5p2
~21!kA12z2

2i
S LogS 11z

12z
D 12pki D , k50,61,62,... , ~8!

where Log denotes the principal branch of the logarithm in the plane cut along the realz axis from
21 to 1.

It follows thatF(z) is analytic in thez-plane cut alongG whereG is the line segment@21, 1#.
Also asz→t, tPG, we find that
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F1~ t !5p2
~21!kA12t2

2i S LogS 11t

12t D12pki D ,

~9!

F2~ t !5p2
~21!k21A12t2

2i S LogS 11t

12t D12p~k21!i D .

Also, at infinity

F~z!5
~21!kip~2k11!

2
1p~21!k1O~z21!. ~10!

In view of ~9! and ~10!, and the principle of the argument, it is readily seen that Eq.~8! has no
solution in the finitez plane ifk/p.p; and that it has a single root otherwise. In the former c
it can be shown that the functionsF6(t) are not Holder continuous for everytP(21,1) and so the
present technique does not apply.4

According to the construction of the last section we let

G~ t ![
F1~ t !

F2~ t !
5

p2
~21!kA12t2

2i
S LogS 11t

12t
D 12pki D

p2
~21!k21A12t2

2i
S LogS 11t

12t
D 12p~k21!i D

. ~11!

Then a canonical solution of the Riemann problem with coefficientG(t) is

F~z!5eg~z!, g~z!5E
21

1 Log~G~ t !!

t2z
dt. ~12!

In view of the fact that in the limit ast→71, Log(G(t))→0, we conclude that any othe
solution is a product ofF0(z) and a polynomial. SinceF(z) is also a solution of the Rieman
problem we can writeF(z)5P(z)F0(z) is a polynomial to be determined. That is,

P~z!5
F~z!

F0
5F~z!e2g~z! ~13!

sinceF0(z)Þ0.
To determineP(z) we expandF(z) ande2g(z) into Laurent series at infinity and then equa

coefficients in the identity~13!. We have

g~z!5
1

2p i E21

1 Log~G~ t !!

t2z
dt52

1

2zp i E21

1 Log~G~ t !!

12t/z
dt52 (

n50

`
I n~p,k!

zn11 , ~14!

where

I n~p,k!5
1

2p i E21

1

tn Log~G~ t !!dt. ~15!

Thuse2g(z) is of the form

e2g~z!511
a1

z
1Q~z22!. ~16!
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Substituting~10! and ~16! into ~13! and using the fact that the left-hand side is a polynomial
find that

P~z!5p1~21!k1
a1~21!kip~2k11!

2
1

~21!kip~2k11!

2
z. ~17!

To determine the coefficienta1 we follow Henrici5 and employ the identity

~2e2g~z!!85g8~z!e2g~z!. ~18!

On substituting~18! and ~17! into ~13! and comparing coefficients, it emerges thata15I 0(p,k).
Hence

P~z!5p1~21!k1
~21!kip~2k11!

2
I 0~p,k!1

~21!kip~2k11!

2
z, ~19!

implying that the sole root ofF(z)50 is given by

zp,k5
2i ~p1~21!k!

~21!kp~2k11!
2I 0~p,k!. ~20!

On observing the symmetryF6(2t)5F7* (t) ~where* denotes complex conjugate!, we find that

I 0~p,k!5
1

2p i
E

21

1

Log~G~ t !!dt

5
1

2p i
E

0

1

LogUF1~ t !

F2~ t !
Udt

5
1

2p i
E

0

1

LogS ~p2~21!kpkA12t2!21
12t2

4
S LogS 12t

11t
D D 2

~p1~21!kp~k11!A12t2!21
12t2

4
S LogS 12t

11t
D D 2D dt. ~21!

Thus, for realp andk, I 0(p,k) is imaginary and hence the roots of Eq.~3a! are real. Moreover, the
transformationt5tanh(u) leads to a rapidly convergent integral:

I 0~p,k!5
1

2p i E0

`

LogS p cosh~u!2~21!kpk21u2

p cosh~u!1~21!kp~k11!1u2D sech2~u!du. ~22!

A parallel treatment of Eq.~3b! yields

zp,k5
i ~~21!kp21!

pk
2J0~p,k!, ~23!

where

J0~p,k!5
1

2p i E0

`

LogS S p cosh~u!2~21!kpS k1
1

2D D 2

1u2

S p cosh~u!1~21!kpS k2
1

2D D 2

1u2
D sech2~u!du. ~24!
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The reader must have noticed that Eqs.~20! and ~23! give rise to extraneous roots that a
solutions tou tanu52Ap22u2 andu cotu5Ap22u2, rather than to Eqs.~3a! and~3b!. Retaining
only even values ofk in Eq. ~20!, and odd values, in Eq.~23! eliminates these extraneous solutio
and makes it possible, after an obvious redefinition ofk, to combine Eqs.~20!, ~22!, ~23!, and~24!
into the following:

zp,k5H0~p,k!2
2i ~p11!~21!k

pk
, k51,2,..., ~25!

where

H0~p,k!5
~21!k

2p i E
0

`

LogS ~2p cosh~u!2~k21!p!214u2

~2p cosh~u!1~k11!p!214u2D sech2~u!du. ~26!

Our treatment lends itself readily and directly to a rather useful asymptotic expansion f
expression for the eigenvaluesu ~and, hence, of the energy! in the limit of largep. One obtains, on
expanding the integrand in Eq.~26!,

H0~p,k!5p ik~21!kS 1

4p
2

1

3p2D1OS 1

p3D ~27!

which, on substitution into Eq.~25! and then into the expression foru yields, eventually, for the
energy

E5
~pk\!2

2mL2~11p211p22!
1O~p23!, ~28!

where theO(p23) term has a nontrivialk dependence. This expansion may, of course, be obta
by other means. It is remarkable that the bound-state energy eigenvalues one finally obtain
finite well of width L are identical, toO(p22), to the eigenvalues characteristic of an infinite w
of width

LA11p211p225LS 11
p21

2
1

3p22

8 D1O~p23!,

a result that, to the best of our knowledge, has not been noted anywhere else.

1A. P. French and E. F. Taylor,An Introduction to Quantum Mechanics~Van Nostrand, London, 1980!.
2C. E. Siewert, J. Math. Phys.19, 434 ~1978!.
3E. E. Burniston and C. E. Siewert, Proc. Cambridge Philos. Soc.73, 111 ~1973!.
4N. I. Muskhelishvili,Singular Integral Equations~Noordhoff, Groningen, 1953!.
5P. Henrici,Computational Complex Analysis~Wiley, New York, 1984!, Vol. II.
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Fractional supersymmetry and Fth-roots of representations
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Laboratoire de Physique Mathe´matique et The´orique, Universite´ de Montpellier 2,
Place Euge`ne Bataillon, Case 70, 34095 Montpellier Cedex 5, France

M. J. Slupinski
Institut de Recherches en Mathe´matique Avance´e, Universite´ Louis-Pasteur,
and CNRS, 7 rue R. Descartes, 67084 Strasbourg Cedex, France
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A generalization of super-Lie algebras is presented. It is then shown that all known
examples of fractional supersymmetry can be understood in this formulation. How-
ever, the incorporation of three-dimensional fractional supersymmetry in this
framework needs some care. The proposed solutions lead naturally to a formulation
of a fractional supersymmetry starting from any representationD of any Lie alge-
brag. This involves taking theFth-roots ofD in an appropriate sense. A fractional
supersymmetry in any space–time dimension is then possible. This formalism fi-
nally leads to an infinite dimensional extension ofg, reducing to the centerless
Virasoro algebra wheng5sl(2,R). © 2000 American Institute of Physics.
@S0022-2488~00!01907-1#

I. INTRODUCTION

Describing the laws of physics in terms of underlying symmetries has always been a po
tool. In this respect, it is interesting to study the kind of symmetries which are allowed in sp
time. Within the framework of Quantum Field Theory~unitarity of theS matrix, etc.! it is gen-
erally admitted that we cannot go beyond supersymmetry~SUSY!. However, the no-go theorem
stating that supersymmetry isthe only nontrivial extension beyond the Poincare´ algebra is valid
only if one considers Lie or super-Lie algebras. Indeed, if one considers Lie algebras, the Co
and Mandula theorem1 allows only trivial extensions of the Poincare´ symmetry, i.e., extra sym
metries must commute with the Poincare´ generators. In contrast, if we consider superalgebras,
theorem of Haag, Lopuszanski, and Sohnius2 shows that we can construct a unique~up to the
number of supercharges! superalgebra extending the Poincare´ Lie algebra nontrivially. It may
seem that these two theorems encompass all possible symmetries of space–time. But
examines the hypotheses of the above theorems, one sees that it is possible to imagine sym
which go beyond supersymmetry. Several possibilities have been considered in the literatu3–13

the intuitive idea being that the generators of the Poincare´ algebra are obtained as an appropria
product of more fundamental additional symmetries. These new generators are in a represe
of the Lorentz group which can be neither bosonic nor fermionic~bosonic charges close unde
commutators and generate a Lie algebra, whilst fermionic charges close under anticomm
and induce super-Lie algebras!. In this paper we propose an algebraic structure, called anF-Lie
algebra, which makes this idea precise in the context of fractional supersymmetry~FSUSY! of
orderF. Of course, whenF51 this is a Lie algebra, and whenF52 this is a super-Lie algebra
We show that all examples of FSUSY considered in the literature can be described withi
framework.

FSUSY (F.2) has been investigated in dimensions one, two, and three. In 1D the alge
structure is relatively simple6–8 ~one just adds a new superchargeQ such thatQF5] t!. In two
dimensions, one can add either two or an infinite number of additional generators.9–11 In three
dimensions the situation is more complicated. We showed12 that it is possible to inject equivari
antly the vector representation of so~1,2! in a quotient of theFth symmetric product of an appro
priate representationD1/F of so~1,2!. In other words, we were able to express the generator
45560022-2488/2000/41(7)/4556/16/$17.00 © 2000 American Institute of Physics
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space–time translations as symmetricF-order polynomials in more fundamental generators
with the new supercharges satisfying extra constraints. We also constructed explicitly in R
unitary representations of the corresponding algebraic structure which can be understood
tivistic anyons.14–17 However, it was not possible to consider translations asF-order symmetric
products of the new supercharges without imposing extra constraints. In contrast, this pr
exists neither in dimensions one and two,6–10 nor in any dimension whenF52 ~SUSY!. To
understand the results of our paper12 in terms ofF-Lie algebras, we propose two solutions;~i!
extending the vectorial representation or,~ii ! extending the Poincare´ algebraB5t % so(1,2) toB̂

5 t̂ % Vir, where so(1,2),Vir is the Virasoro~without central charge! algebra andt̂ a represen-
tation of Vir which extends the vectorial representation of so~1,2!. Correspondingly we also hav
to extend theD1/F representation of so~1,2! to D̂1/F .

The problem encountered in 3D FSUSY and especially the solution we propose to so
enables us to define a general method of associating a FSUSY to any representationD of any Lie
algebrag. This algebraic structure is in general associated to a non unitary infinite dimens
representation ofg. Furthermore, as for so~1,2!, one can define an infinite dimensional Lie algeb
V(g) havingg as a subalgebra and leading to anF-Lie algebra.

The content of this paper is as follows. In Sec. II, we give a precise mathematical definit
the algebraic structure which underlies FSUSY. Several simple examples are then given.
III, we show how one can incorporate 3D FSUSY into this general mathematical descriptio
extending the vectorial representation to an appropriate reducible~but indecomposable! represen-
tation. We then construct FSUSY starting from any semisimple Lie algebrag @playing the role of
so~1,2!# and any representationD ~playing the role of the vector representation!. This construction
involves taking theFth-root of D in some sense. In particular this means that one can cons
FSUSY in all space-time dimensions. In Sec. VI, we study anF-Lie algebra associated to a
infinite dimensional algebraV(g) havingg as a subalgebra. Forg5so(1,2),V(g) reduces to the
centerless Virasoro algebra.

II. ALGEBRAIC STRUCTURE OF FRACTIONAL SUPERSYMMETRY

In this section, we give the abstract mathematical structure which underlies this pape
which generalizes the theory of Lie superalgebras and their~unitary! representations. LetF be a
positive integer andq5exp(2ip/F). We consider a complex vector spaceS together with a linear
map« from S into itself satisfying«F51. We setAk5Sqk andB5S1 ~whereSl is the eigenspace
corresponding to the eigenvaluel of «! so thatS5B% k51

F21Ak . The map« is called the grading. If
S is endowed with the following structures we will say thatS is a fractional super-Lie algebr
~F-Lie algebra for short!:

~1! B is a Lie algebra andAk is a representation ofB. We write these structures as a brack
@b,X# with the understanding that@b,X#52@X,b# if XPAk , bPB. It is clear that
@«(X),«(Y)#5«(@X,Y#).

~2! There are multilinear, B-equivariant ~i.e., which respect the action ofB! maps
$ ,..., %:S F(Ak)→B from S F(Ak) into B. In other words, we assume that some of t
elements of the Lie algebraB can be expressed asFth order symmetric products of ‘‘more
fundamental generators.’’ HereS F(D) denotes theF-fold symmetric product ofD. It is then
easy to see that

$«~a1!,...,«~aF!%5«~$a1,...,aF%!, ;aiPAk . ~2.1!

~3! For biPB andajPAk the following ‘‘Jacobi identities’’ hold:

@@b1,b2#,b3#1@@b2,b3#,b1#1@@b3,b1#,b2#50,

@@b1 ,b2#,a3#1@@b2 ,a3#,b1#1@@a3 ,b1#,b2#50,

@b,$a1 , . . . ,aF%#5$@b,a1#, . . . ,aF%1•••1$a1 , . . . ,@b,aF#%
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(
i 51

F11

@ai ,$a1 , . . . ,ai 21 ,ai 11 , . . . ,aF11%#50. ~2.2!

The first identity is the usual Jacobi identity for Lie algebras, the second says that theAk are
representation spaces ofB and the third is just the Leibniz rule~or the equivariance of
$ ,..., %!. The fourth identity is the analog of the graded Leibniz rule of super-Lie alge
for F-Lie algebras
If we want to be able to talk about unitarity, we also require the following additional struc
and in this case,S is called anF-Lie algebra with adjoint.

~4! A conjugate linear map † fromS into itself such that

~a! ~s†!†5s, ;sPS,

~b! @a,b#†5@b†,a†#,

~c! «~s†!5«~s!†,

~d! $a1 ,...,aF%†5$~a1!†,...,~aF!†%, ;aPAk . ~2.3!

From ~a! and ~c! we see that forXPB we haveX†PB, and that forXPAk , we haveX†

PAF2k .

A unitary representation of anF-Lie algebra with adjointS is a linear mapr: S→End(H),
~whereH is a Hilbert space and End(H) the space of linear operators acting onH! and a unitary
endomorphism«̂ such that«̂F51 which satisfy

~a! r~@x,y# !5r~x!r~y!2r~y!r~x!,

~b! r$a1 , ...,aF%5
1

F! (
sPSF

r~as(1)!¯r~as(F)!,

~c! r~s!†5r~s†!,

~d! «̂r~s!«̂215r~«~s!! ~2.4!

~SF being the group of permutations ofF elements!. Note that with the normalization of~b!, when
F52, one hasr($a1 ,a2%)51/2(a1a21a2a1) instead of the usualr($a1 ,a2%)5(a1a21a2a1). As
a consequence of these properties, since the eigenvalues of«̂ areFth-roots of unity, we have the
following decomposition of the Hilbert space:

H5 %
k50

F21

Hk ,

whereHk5$uh&PH : «̂uh&5qkuh&%. The operatorNPEnd(H) ~the set of linear operators actin
on H! defined byNuh&5kuh& if uh&PHk is the ‘‘number operator’’~obviously qN5 «̂!. Since
«̂r(b)5r(b) «̂,;bPB eachHk provides a representation of the Lie algebraB. Furthermore, for
aPAl , «̂r(a)5qlr(a) «̂ and so we haver(a).Hk#Hk1 l (modF) .

Remark 1:For all k51,...,F21 it is clear that the subspaceB% Ak of S satisfies~2.1!–~2.2!
and the subspaceB% Ak% A2k satisfies~2.1!–~2.3! ~whenS has an adjoint!.

Remark 2:It is important to notice that bracket$¯% is a priori not defined for elements in
different gradings.

Remark 3:If we set

BR5$bPB:b†52b%,
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AR5$aPA:a†5a%, ~2.5!

thenSR5BR% AR is stable by« and satisfies~2.1!–~2.2!. Here we use the normalizations conve
tionally used in mathematical literature~no i factor in the structure constants of the algebra!. For
physicists, notice that ifb†52b then (ib) is Hermitian.

Example 1:Obviously, a 1-Lie algebra is just a Lie algebra. A 2-Lie algebra is just a
superalgebra;S5B% A1 , with even partB and odd partA1 . In supersymmetry, because of th
spin statistics theoremA1 is a fermionic representation ofB. Note that the Jacobi identities~2.2!
above reduce to the standard Jacobi identities of a super-Lie algebra. If we consider unita
SUSY, property~2.3!, ~2.4! above have also to be considered but for the super-Poincare´ algebra,
the nature of † depends very much on the dimension of the space–time and the signature
metric ~Majorana, Weyl, Majorana–Weyl, SU~2!-Majorana and SU~2!-Majorana–Weyl condi-
tions!.

Example 2:Let V be finite dimensional complex vector space and let«: V→V be a linear
operator satisfying«F51. Then,

V5 % k50
F21Vk ,

whereVk5$uv&PV:«uv&5qkuv&%. We define

Ak5$ f PEnd~V!:«s f s«215qkf %

andS5B% k51
F21Ak ~with B5A0!. SinceAkAl,Ak1 l (modF) one has

@A0 ,Ak#,Ak , ~2.6!

~2.7!

The bracket @ , # of S is defined by ~2.6! and $¯%:SF(Ak)→B by $a1¯aF%
51/F! (sPSF

as(1)¯as(F) . The first three Jacobi~2.2! identities are clearly satisfied, and calc
lation shows that the last Jacobi identity also holds. ThusS is anF-Lie algebra. IfV is endowed
with a Hermitian metric and« is a unitary operator then adjunction defines an adjoint on theF-Lie
algebraS.

Example 3: In 1D ~Refs. 6, 7, 8! the simplestF-Lie algebra is two-dimensional, and i
generated by the operators] t ,Q with the relationQF5] t . We takeB5^] t&, the translation in
time, andA15^Q&. We obviously have«(] t)5] t and«(Q)5qQ. An explicit representation in
terms of generalized Grassmann variables18–22can be constructed.6,7,8 It is possible to extend this
F-Lie algebra to aF-Lie algebra with adjoint by the addition of one more generator,Q†, such that
«(Q†)5q21Q†, (Q†)F5(] t)

†52] t . Let us recall once again that there are no algebraic relat
betweenQ andQ†.

Example 4:In 2D there are several possible algebras. The simplest one is obtained by
sidering the three generators]z ,] z̄ , andQz . We setB5^]z ,] z̄& andA15^Qz&, the relations are
(Qz)

F5]z and @]z ,Qz#5@] z̄ ,Qz#50. ThisF-Lie algebra can be extended to a four-dimensio
F-Lie algebra with adjoint by adding one more generatorQz̄PA21 such that (]z)

†5] z̄ , (Qz̄)
F

5] z̄ and (Qz)
†5Qz̄ .9,10 There is also a more complicated algebraic extension, involving

infinite number of generators which corresponds to an extension of the Virasoro algebra w
central charge. In addition to the Virasoro generatorsLn ,L̄nnPZ we add the generatorsGr ,r
PZ11/F, which correspond to the modes of a field of conformal weight 111/F and satisfy the
following relations:11

@Ln ,Lm#5~n2m!Lm1n ,
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@ L̄n ,L̄m#5~n2m!L̄m1n ,

@Ln ,L̄m#50,

@Ln ,Gr #5S n

F
2r DGn1r ,

@ L̄n ,Gr #50,

$Gr 1
,¯ ,Gr F

%5Lr 11¯1r F
. ~2.8!

Here we takeB5Vir % Vir and A15^Gr ,r PZ11/F&. In this extension, we haveL1[]z , L̄1

[] z̄ andG(1/F)[Qz . We can also include an adjoint by addingA215Ā1 . As in 1D, it is possible
to construct an explicit realization of the above algebras using generalized Grass
variables.9–11

In all the given examples, appropriate representations have been obtained in terms of a
superfields.6–10 To our knowledge, unitarity remains an unsolved problem.

In three dimensions, the situation is much more complicated and we will study this in the
section.

Example 5:Let g be a complex Lie algebra and letr ,r 8 be representations ofg such that there
is a g-equivariant mapm:SF(r )→r 8. We set

S5B% A15~g% r 8! % r .

B5g% r 8 is a Lie algebra as the semidirect product ofg andr 8 ~the latter with the trivial bracket!.
We can extend the action ofg on r to an action ofB on r by letting r 8 act trivially on r . This
defines the bracket@ , # on S. For the map$¯% we takem. The first three Jacobi identities~2.2! are
clearly satisfied, and the fourth is also satisfied as each term in the expression of the left-ha
vanishes.

For example, if

S F~r !5 % kr k ,

is a decomposition into irreducible summands, then for a givenk

Sk5~g% r k! % r ,

is anF-Lie algebra.
As an illustration, ifg5so(1,2) andr52% 1 ~the spin representation plus the trivial repr

sentation!, then S 3(2% 1)5S 3(2) % S 2(2) % 2% 154% 3% 2% 1 and it is possible to obtain the
spinorial or the vectorial representations of so~1,2! from a symmetric product of order 3. This ca
be compared with the result of Kerner,3 where a cubic root of the Dirac equation is obtained. Mo
generally, for anyF,

S F(2% 1)5S F(2) % S F21(2) %¯% 15(F11) % F%¯% 1.

III. FRACTIONAL SUPERSYMMETRY AND FINITE DIMENSIONAL LIE ALGEBRAS

A. Fractional supersymmetry in three dimensions

In Ref. 12 we considered FSUSY in three dimensions. In order to understand our res
term of F-Lie algebras let us introduce a realization of so~1,2! which is convenient for explicit
calculations. LetF be the vector space of functions onR1

2,* 5$(x,y)PR2:x,y.0%. Consider the
linear operators acting onF given by

J25x]y ,
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J05 1
2 ~y]y2x]x!, ~3.1!

J15y]x .

These operators satisfy the commutation relations

@J2 ,J1#522J0 ,

@J0 ,J1#5J1 , ~3.2!

@J0 ,J2#52J2 ,

and thus generate the Lie algebra so~1,2!. It is easy to check that the following subspaces ofF are
representations of so~1,2!:

D2n5^x2n,x2n21y,¯ ,xy2n21,y2n&, ~nPN/2!,

D 2l
1 5 K x2lS y

xD m

,mPNL , ~lPR\N/2!, ~3.3!

D 2l
2 5 K y2lS x

yD m

,mPNL , ~lPR\N/2!.

Of course other representations can also be obtained~for instance unbounded from below an
above! but they are not useful for our purpose.

The representationD2n is the (2n11)-dimensional irreducible representation and the rep
sentationsD 2l

6 are infinite dimensional representations, bounded from below or above, re
tively. It is important to emphasize that the representations given in~3.3! do not have the normal
izations conventionally used in the literature and the basis is not orthonormal, but
normalizations are convenient for further developments. For a general classification of the
sentations of three-parameter Lie algebras, see e.g., Ref. 23 where analogous monomials~of the
form xayb(x/y)m, with a,bPC,mPZ! are considered.

In the paper12 we introduced four representations,D 21/F,6
6 . These are related to the abov

representations by the following isomorphisms:

D21/F,1
1 >D21/F,2

1 >D21/F
1 ,

D21/F,1
2 >D21/F,2

2 >D21/F
2 .

In this article, for practical reasons we work only with the representations~3.3!.
The multiplication mapmn :F3¯3F→F given by

mn~ f 1 ,...,f n!5 f 1¯ f n ~3.4!

is multilinear and totally symmetric and hence induces a mapmF from S F(F) into F. Restricting
to S F(D21/F

6 ) one sees that

SF~D 21/F
1 !red5

def

mF~SF~D21/F
1 !!5 K x2S y

xD m

,mPNL .D21 ,

SF~D 21/F
2 !red5

def

mF~SF~D21/F
2 !!5 K y2S x

yD m

,mPNL .D21 . ~3.5!
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The simple observation of~3.5! together with example 5 in Sec. II naturally lead to theF-Lie
algebra

~so~1,2! % SF~D 21/F
6 !red! % D 21/F

6 . ~3.6!

In Ref. 12, by considering an adapted conjugations †:D 21/F
1 5(D 21/F

2 )† and from the Wigner
induced representation we proved that the representations of 3D-FSUSY are unitary and in
symmetry between relativistic anyons.

Looking at the representations defined in~3.5!, i.e.,SF(D 21/F
6 )red, one sees that, even thoug

D21 is a subspace stable under so~1,2! there is no complement stable under so~1,2!.12 Indeed,
these representations cannot be built from a primitive vector. This is due to the fact thatJ1

3 (x2)
50 and consequently we cannot reachx21y3 from x2 but converselyJ2

3 (x21y3)56x2 ~such
reducible but indecomposable representations also appear in Ref. 23!. This is the reson why there
is no F-Lie algebra structure on so(1,2)% D21 .

B. Extension to any Lie algebra

We consider nowg a complex semi-simple Lie algebra of rankr andD an arbitrary repre-
sentation. The purpose of this section, is to construct anF-Lie algebraS5B% A1 such that the Lie
algebraB contains the semidirect productg% D. If g5so(1,2) andD is the vector representation
this construction leads to theF-Lie algebra~3.6! above.

Let h be a Cartan subalgebra ofg, let F,h! ~the dual ofh! be the corresponding set of roo
and let f a be the one dimensional root space associated withaPF. We choose a basis$Hi ,i
51,...,r % of h and elementsEaP f a such that the commutation relations become

@Hi ,H j #50,

@Hi ,Ea#5a iEa, ~3.7!

@Ea,Eb#5H e$a,b%Ea1b if a1bPF

2a.H

a.a
if a1b50

0 otherwise.

Recall that the real Lie algebra spanned by theHi and theEa is the split real form ofg, and that
the real Lie algebra spanned byiH j , Ea2E2a, and i (Ea1E2a) is the compact real form ofg.

We now introduce$a (1) ,...,a (r )% ~the positive roots! a basis of simple roots. The weigh
latticeLW(g),h! is the set of vectorsm such that 2a.m/a.a PZ and, as is well known, there i
a basis of the weight lattice consisting of the fundamental weights$m (1) ,...,m (r )% defined by
@2m ( i ) .a ( j )#/@a ( j ) .a ( j )# 5d i j . A weight m5( i 51

r nim ( i ) is called dominant if all theni>0 and it
is well known that the set of dominant weights is in one to one correspondence with the
~equivalence classes of! irreducible finite dimensional representations ofg.

Recall briefly how one can associate a representation ofg to mPh!. In U(g), the universal
enveloping algebra ofg, let I m be the left-ideal generated by the elements$Ea(a.0),hi

2m(hi).I (hiPh)%, whereI is the identity ofU(g) andhi52@a ( i ) .Hi /a ( i )
2 #.

The Lie algebrag acts onU(g) by left multiplication, I m is stable under this action an
therefore the quotientVm5U(g)/I m is a representation space ofg: Vm is a highest weight repre
sentation and is called the Verma module associated tom.24 If m is dominant, thenVm has a unique
maximal proper subrepresentationMm and the quotientDm5Vm /Mm is an irreducible finite di-
mensional representation ofg.

To come back to our original problem, consider a finite dimensional irreducible represen
Dm of g. If Vm/F is the Verma module associated tom/F, there is ag-equivariant map,

i :Vm→S F~Vm/F!, ~3.8!
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becauseI ^¯^ IPS F(Vm/F) is a highest weight vector of weightm. Taking the quotient byMm

one obtains ag-equivariant inclusion,

Dm�S F~Vm/F!/ i ~Mm!, ~3.9!

sinceDm5Vm /Mm . DenotingS F(Vm/F)/ i (Mm) by S F(Dm/F)red then, as in Example 5,

S5~g% S F~Dm/F!red! % Vm/F ~3.10!

is naturally anF-Lie algebra.
We can reformulate this construction in less abstract terms. Ifum& is the primitive vector

associated to a dominant weightm ~i.e., ~Eaum&50,a.0 and hi um&5ni um&5m(hi)um&!!, the
representationDm is generated by the action of theEa, a,0 on um&. Because the representatio
is finite dimensional, corresponding to the highest weight stateum& we have a lowest stateum8&,
m85( i 51

r ni8m ( i ) ~Eaum8&50,a,0!. Of course the two representations built withm or m8 are the
same. But, if the weight is not dominant the situation is more involved. For our purposes,
representationDm we associate two infinite dimensional representations: one associated
weightm/F and one tom8/F, notedD m/F

6 , respectively~the first is bounded from below and th
second from above!. These two inequivalent representations are characterized by primitive
tors,

D m/F
1 :UmF L hiUmF L 5

ni

F UmF L , EaUmF L 50, a.0,

D m/F
2 :Um8

F L hiUm8

F L 5
ni8

F Um8

F L , EaUm8

F L 50, a,0. ~3.11!

D m/F
1 is the Verma moduleVm/F abstractly defined above: In these terms the projectionsmF from

S F(D m/F
6 )→S F(D m/F

6 )red is given bymF(S F(uh1&,...,uhF&))5uh11¯1¯hF&. We observe that
Dm,S F(D m/F

6 )red becausemF(S F(u m/F &,...,u m/F &))5um& ~or mF(S F(u m8/F &,...,u m8/F &))
5um8&) is the primitive vector ofDm .

IV. FRACTIONAL SUPERSYMMETRY AND INFINITE DIMENSIONAL ALGEBRAS

In the previous section we constructed a canonicalF-Lie algebra,

S5~g% S F~Dm/F!red! % Dm/F ~4.1!

associated with a finite dimensional Lie algebrag and an irreducible finite dimensional represe
tation Dm . In this section we will show that one can extend the representationg in Dm to a
representation of an infinite dimensional Lie algebraV(g) in D̂m , and construct anF-Lie algebra
containing~4.1! as a subalgebra.

A. so „1,2… and the Virasoro algebra

It is well know that the Virasoro algebra admits so~1,2! as a subalgebra. The action~3.1! of
so~1,2! on F extends to an action of the Virasoro algebra~without central extension! on F by
setting

Ln5
n11

2 S y

xD n

x]x1
n21

2 S y

xD n

y]y , nPZ. ~4.2!

One can verify the commutation relations,

@Ln ,Lm#5~n2m!Ln1m ~4.3!
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and thatJ252L21 , J052L0 , J15L1 .
In analogy with the representations~3.3! of so~1,2! we define representations of Vir as fo

lows:

D̂2n5 K f m2n
(2n)5x2nS y

xD m

,mPZL , ~nPN/2!,

D̂2l
1 5 K f m2l

(1,2l)5x2lS y

xD m

,mPZL , ~lPR\N/2!, ~4.4!

D̂2l
2 5 K f l2m

(2,2l)5y2lS x

yD m

,mPZL , ~lPR\N/2!.

Then, one can check explicitly that the action of Vir on~4.4! is given by

Lk~ f p
(2n)!5~kn2p! f k1p

(2n) ,

Lk~ f p
(1,2l)!5~kl2p! f k1p

(1,2l) , ~4.5!

Lk~ f p
(2,2l)!5~kl2p! f k1p

(1,2l) ,

where the indices in~4.4! are chosen in such a way that they correspond to the eigenvalu
2L0 , i.e., the helicity. In the language of conformal field theory,f p

(2n) , f p
(1,2l) , and f p

(2,2l)

correspond to the modes of conformal fields of conformal weightn11 andl11, respectively.
Finally, we observe that the the representations~3.3! are included in the corresponding re

resentations~4.4! and in each case that the action of Vir extends the action of so~1,2!. Let us
remark that these representations are all unbounded from below and above~i.e., they cannot be
obtained from primitive vectors or a highest/lowest weight state!.

The fundamental property of these representations is that there is a Vir-equivariant ma

SF(D̂21/F
1 ) and SF(D̂21/F

2 ) to D̂21 . This is just the multiplication mapmF :F→F ~see ~3.4!!
which is obviously Vir-equivariant. In fact, a direct calculation shows that

SF~D̂21/F
6 !red5

def

mF~SF~D̂21/F
6 !!>D̂21 , ~4.6!

and hence thatSF(D̂21/F
6 )red andD̂21 are isomorphic.

By the method explained in Example 5,

S5~Vir % D̂21! % D̂21/F
1

% D̂21/F
2 , ~4.7!

is anF-Lie algebra.

DenotingD̂215^Pm215 f m21
(21) ,mPZ&, D̂21/F

6 5^Q6(m21/F)
6 5 f 6(m21/F)

(6,21/F) ,mPZ&, the brackets
in S are given explicitly by the following formulas:

@Ln ,Lm#5~n2m!Ln1m ,

@Ln ,Pm#5~n2m!Pn1m ,

@Ln ,Qr
6#5S n

F
2r DQn1r

6 ,

@Pn ,Pm#50,
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@Pn ,Qr
6#50,

$Qr 1

6 ,...,Qr F

6 %5Pr 11¯r F
. ~4.8!

Remark:Any weightm of the Lie algebra so~1,2! can be considered as a weightm̂ of Vir if we
setm̂(L0)52m(J0).24 As in Sec. III A, we can construct the associated Verma module and d
the F-Lie algebra,

S5~Vir % S F~Vm/F!red! % Vm/F ~4.9!

with obvious notation@see~3.10!#. Of course this construction is different from the previous o
~4.7! sinceVm/F is a highest weight representation of Vir.

B. The construction of V„g …

In this section, we will construct an infinite dimensional Lie algebraV(g) which contains the
Lie algebrag in the same way as Vir contains sl~2!.

Let g be a semisimple complex Lie algebra, leth be a Cartan subalgebra, letF1 be the
positive roots and let (a (1) ,...,a (r )) be the positive simple roots.

We consider the vector spaceV generated by

V5^L0
a i , Ln

a : i 51,...,r , aPF1 , nPZ* & ~4.10!

satisfying the commutation relations.

~1! ~a! For positive simple rootsa (1) ,...,a (r ) ,

@L0
ai ,L0

aj#50. ~4.11!

~b! For n.0,

FL0
ai

2n
,
L6n

a

6n
G56

a(i) .a

a(i)
2

L6n
a

6n
, i51,...,r ,aPF1 ,

FLn
a

n
,
Ln

b

n G5H e$a,b%
Ln

a1b

n
if a1bPF1

0 otherwise,

FLn
a

n

,L2n
b

2n G55
e~a,2b!

Ln
a2b

n
if a2bPF1

e~a,2b!
L2n

2a1b

2n
if 2a1bPF1

2
L0

a

2n
if a5b,

~4.12!

FL2n
a

2n
,
L2n

b

2nG5He$2a,2b%
L2n

a1b

2n
if a1bPF1

0 otherwise.

Thusgn5^L0
a i ,L6n

a :aPF1 ,i 51,...,r & is a Lie algebra isomorphic tog, with Cartan subal-

gebra^L0
a i ,i 51,...,r &, roots F, simple positive rootsa (1) ,...,a (r ) and root spaceŝL6n

a &.
The isomorphism with~3.7! is

L0
ai

2n
⇔ a(i) .H

a(i)
2 ,
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Ln
a

n
⇔Ea,

L2n
a

2n
⇔E2a. ~4.13!

It is important to emphasize that the Cartan subalgebra of eachgn is independent ofn.
Consequently the relation@L1

a ,L21
a #52L0

a defines with no ambiguityL0
a when a is not a

simple root~it is just a linear combination of theL0
a i wherea ( i ) ,i 51,...,r are the simple

roots!.
~2! With the notationL0

a5(1/2n) @Ln
a ,L2n

a # ~this is independent ofn.0 by ~4.12!! for a
PF1 ,

@Ln
a ,Lm

a#5~n2m!Ln1m
a . ~4.14!

The relations~4.11!, ~4.12!, and ~4.14! do not specify all commutators@Ln
a ,Lm

b # ~e.g.,
@L1

a ,L2
b# if aÞb!. In order to obtain a Lie algebra from~4.11!, ~4.12!, and~4.14! we define

V~g!5T~V!/I, ~4.15!

whereT(V) is the tensorial algebra onV andI is the two-sided ideal generated by the relatio
~4.11!, ~4.12!, and~4.14!. V(g) is an associative algebra but we will consider it as a Lie alge
for the induced Lie bracket~i.e., commutator!. The universal property ofV(g) is the following:
any linear mapf :V→End(H) such that thef (Ln

a) satisfy the relations~4.11!, ~4.12!, and~4.14!
extends to a unique Lie algebra homomorphismf̃ :V(g)→End(H). The relations~4.11!, ~4.12!,
and ~4.14! can be arranged in Fig. 1~for g5su(3)!.

Of course similar diagrams can be constructed for higher rank Lie algebra, and the resu
be easily extended to all Lie algebrasg. This diagram has a concentric and radial structure. T
concentric symmetry is just the manifestation that to any positiven can be associated an algeb
isomorphic tog ~see~4.12!!. The radial symmetries extend the sl(2)a ~generated by (L0

a ,L61
a )!

algebra to Vira a Virasoro algebra~see~4.14!!. Finally, composing concentric and radial symm
tries through Jacobi identities generates extra symmetries, i.e., the secondary, ternary . . .
tors. The generatorsLn

a i with n.0 anda i a simple root are called the fundamental generators~or

FIG. 1. Diagram for the primitive generators for theV(su(3)) algebra.a,b are the primitive roots andg is the third
positive root.
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primary! of V(g) in the sense that all the others can be obtained from them by taking comm
tors. The primary generatorLn

a is associated to the rootna. Calculating secondary, ternary, . .
generators through Jacobi identities induces generators associated with a root(nia i . For instance
if a1bPF, the root associated with@Ln

a ,Lm
b # is na1mb. The Lie algebraV(g) is clearly not

a Kac–Moody algebra, but according to Kac classification of Lie algebras,25 V(g) is an infinite
dimensional Lie algebra with a nonpolynomial degeneracy of the roots. Let us stress again
such diagrams, the Cartan subalgebra is at the origin of the diagram, and the bracket betwe
generators is definedonly between generators on the same circle, or the same radius.

The decomposition

V5^L0
a i : i 51,...,r & % ^Ln

a :aPF1 ,n.0& % ^L2n
a :aPF1 ,n.0& ~4.16!

should be thought of as a decomposition ofV into a ‘‘Cartan’’ subalgebra and positive an
negative ‘‘root’’ spaces. From this point of view, one expects to be able to construct repre
tions of V(g) from ‘‘weights,’’ i.e., from linear forms on the Cartan subalgebra^L0

a i : i

51,...,r &. Indeed, ifmP^L0
a i : i 51,...,r &* ~the dual space of̂L0

a i : i 51,...,r &! is a weight then
U(V(g))/I m is a representation ofV(g) whereI is the two-sided ideal inU(V(g)) generated by
the L0

a i2m(L0
a i)1 ( i 51,...,r ) and theLn

a(n.0,aPF1) ~see Sec. III B!. As in Sec. III B,

S5~V~g! % S F~Vm/F!red! % Vm/F ~4.17!

is anF-Lie algebra~with the obvious notation!.

C. Examples for so „6…

The Verma module construction in the previous subsection gives many examples ofF-Lie
algebras. However, the representations ofV(g) obtained are all highest weight representations
this section, in the spirit of Sec. VI A, we will construct explicitly nonhighest weight represe
tions of V(so(6)) and thecorrespondingF-Lie algebras.

First of all, we introduceH1 , H2 , H3 the generators of the Cartan subalgebra. We denote6ei

the eigenvalues ofHi , and F5$a15e12e2,a25e22e3,a35e21e3,b15e11e2,b25e1

2e3,b35e11e3% the positive roots, wherea1 , a2 , and a3 are the simple roots. Then w
introduce the six sl(2):$E6f,f.H/f2 ,fPF%. The three sl~2! associated with the primitive root
are then generated by

sl~2!1 : $E6a1, 1
2 ~H12H2!%,

sl~2!1 : $E6a2, 1
2 ~H22H3!%, ~4.18!

sl~2!3 : $E6a3, 1
2 ~H21H3!%.

Secondly, we need to understand, using the results of Sec. VI A, how one can exte
representations~3.3! of so~1,2! to representations~4.4! of Vir. For that purpose, we introduc
commuting variables belonging to the so~1,2! representation.

~a! If the representation is a spin-s representation we define$x2s ,...,xs%5D2s ;
~b! for infinite dimensional representation bounded from below/above we considerD l

6

5$xp ,pP6(N2l)%.

Next, using the results of Sec. VI A, we can extend any representationsD of so~1,2! to a
representationD̂ of the Virasoro algebra. Explicitly,
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~1! For D̂2s , one can easily observe thatx2ns , for any positiven when s integer and for odd
positive n when s half-integer, is a primitive vector for the sl~2!-sub-algebra spanned b
$L6n /n,L0 /n% so D2s

n 5$x2ns ,x2(n21)s ,...,xns% is isomorphic to aD2s representation;
~2! In the case of infinite dimensional representations we have similar results ifl is a rational

number. In the case of interestl51/F, we have primitive vector only whenn56(pF
11).

To conclude with the construction of the representation of Vir, we just have to introducpl

the conjugate momentum ofxk ,@p2 l ,xk#5dkl).

~i! For D̂2s5$xn ,nPZ1s% the generators of the Virasoro algebra areLn5(kPZ(ns
2m)xn1mp2m ;

~ii ! and forD̂l
65$xp ,pPZ7l%: Ln5(kPZ7l(nl2k)xn1kp2k .

In conformal field theory these expressions for the generators of the Virasoro algeb
known.26 The Ln are the modes of the stress-energy tensor~for the conformal or superconforma
ghosts! associated with conjugate conformal fields of conformal weight 11l ~the x’s! and 2l
~thep’s!. But it is important to emphasize that in contrast with the case of conformal field the
here we do not have any normal ordering prescription and consequently no central charge

1. The spin representation of so(6)

The spinorial representation of chirality1 is obtained from the dominant weightm15m (3)

5 1
2 (e11e21e3) and the highest weight state isu 1

2 , 1
2 , 1

2 &. Then by the action ofE2a i we get the
whole representation,

Dm1
5H U12 ,

1

2
,
1

2L ,U12 ,2
1

2
,2

1

2L ,U2 1

2
,
1

2
,2

1

2L ,U2 1

2
,2

1

2
,
1

2L J .

~In ua1 ,a2 ,a3&, ai is the eigenvalue ofHi!.
Now, it is easy to see that with respect to the three sl~2! ~noted sl(2)i! we have three spinoria

representations~for each sl(2)i , we have (D21/2) i,Dm1
!,

sl~2!1 :~D21/2!15$x1/2
(1)[u 1

2 ,2 1
2 ,2 1

2&,x21/2
(1) [u2 1

2 , 1
2 ,2 1

2&%,

sl~2!2 :~D21/2!25$x1/2
(2)[u2 1

2 , 1
2 ,2 1

2&,x21/2
(2) [u2 1

2 ,2 1
2 , 1

2&%, ~4.19!

sl~2!3 :~D21/2!35$x1/2
(3)[u 1

2 , 1
2 , 1

2&,x21/2
(3) [u 1

2 ,2 1
2 ,2 1

2&%,

where inxm
( i ) , i indicates to which sl~2! the states belong andm is the eigenvalue of12 a i .H. Now,

having introduced these variables, we can straightforwardly write the generators associate
the three sl~2!. For sl(2)i , we have~at this point we already take the normalizations appropr
for the V(so(6)) generalization!,

E2a i5J2
( i )52x21/2

( i ) p21/2
( i ) ,

1
2 a i .H5J0

( i )5 1
2 ~x21/2

( i ) p1/2
( i ) 2x1/2

( i ) p21/2
( i ) !, ~4.20!

Ea i5J1
( i )5x1/2

( i ) p1/2
( i ) ,

with p the conjugate momentum ofx (@p2 l ,xk#5d lk).
Of course all thex variables are not independent and the following identifications have t

made:
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x21/2
(1) 5x1/2

(2) , p1/2
(1)5p21/2

(2) ,

x1/2
(1)5x21/2

(3) , p21/2
(1) 5p1/2

(3) , ~4.21!

leading to dependent sl~2!.
Now, the next point is to introduce new variables which allow us to define theD̂m1

repre-

sentation ofV(so(6)). Inother words, we need to extend theJ6
( i ) , J0

( i ) operators toLn
( i ) , nPZ.

This can be done, by considering the three sl(2)2p11 span byL6n
( i ) /n, L0

( i )/n with n52p11, p
PN. We extend the (D21/2) i rep. of sl(2)i into a rep. of Viri . For that we introduce a highes
weight stateump&5u(2p11)/2 , (2p11)/2 ,(2p11)/2& ~corresponding to a primitive vector of th
sl(2)2p11!, and construct explicitly the induced spinorial representation for so~6!,

D m1

p 5H U2p11

2
,
2p11

2
,
2p11

2 L ,U2p11

2
,2

2p11

2
,2

2p11

2 L ,

U2 2p11

2
,
2p11

2
,2

2p11

2 L ,U2 2p11

2
,2

2p11

2
,
2p11

2 L J . ~4.22!

As previously, we interpret the various states as spinorial multiplets of the three sl~2!, and we
define six variablesx6(2p11)

( i ) . Now arguing that thexr
( i ) , r PZ11/2 span a (D̂21/2) i representation

of the Virasoro algebra, we set

Ln
( i )5 (

r PZ11/2
S n

2
2r D xn1r

( i ) p2r
( i ) . ~4.23!

To conclude the construction of theD̂m1
5 % pDm,1

p representation, we make the same identific
tions as in~4.21!

x2(2p11)/2
(1) 5x(2p11)/2

(2) , p(2p11)/2
(1) 5p2(2p11)/2

(2) ,

x(2p11)/2
(1) 5x2(2p11)/2

(3) , p2(2p11)/2
(1) 5p(2p11)/2

(3) . ~4.24!

This specified theD̂m1
representation. The remaining commutators ofV(so(6)) canthen be

calculated explicitly.

2. The vector representation

For the vector representation the dominant weight ismv5m (1)5e1. To constructD̂mv
from

Dmv
, we proceed along the same lines as for the spin representation, so we will be less exp

our construction. ConstructingDmv
, we have for each sl(2)i the following decomposition

Dmv
.(D21/2) % (D 21/28 ). We define highest weights associated to the three sl~2! generated by

(L6
( i )/n,L0

( i ))/n) with n52p11. This induces a vector representationD mv

p ,

D mv

p 5$u6~2p11!,0,0&,u0,6~2p11!,0&,u0,06~2p11!&%. ~4.25!

We then identify six spinorial representations of the primitive sl~2!,

sl~2!1 :~D 21/2
p !15$x(2p11)/2

(1) [u2p11,0,0&,x2(2p11)/2
(1) [u0,2p11,0&%,

~D 21/28p !15$x(2p11)/28(1) [u0,2~2p11!,0&,x2(2p11)/28(1) [u2~2p11!,0,0&%,

sl~2!2 :~D 21/2
p !25$x(2p11)/2

(2) [u0,2p11,0&,x2(2p11)/2
(2) [u0,0,2p11&%,
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~D 21/28p !25$x(2p11)/28(2) [u0,0,2~2p11!&,x2(2p11)/28(2) [u0,2~2p11!,0&%,

sl~2!3 :~D 21/2
p !35$x(2p11)/2

(3) [u0,2p11,0&,x2(2p11)/2
(3) [u0,0,2~2p11!&%,

~D 21/28p !35$x(2p11)/28(3) [u0,0,~2p11!&,x2(2p11)/28(3) [u0,2~2p11!,0&%.
~4.26!

The appropriate identifications can be read off from~4.26!,

x2(2p11)/2
(1) 5x(2p11)/2

(2) 5x(2p11)/2
(3) , p(2p11)/2

(1) 5p2(2p11)/2
(2) 5p2(2p11)/2

(3) ,

x(2p11)/28(1) 5x2(2p11)/28(2) 5x2(2p11)/28(3) , p2(2p11)/28(1) 5p(2p11)/28(2) 5p(2p11)/28(3) ,
~4.27!

x2(2p11)/2
(2) 5x(2p11)/28(3) , p(2p11)/2

(2) 5p2(2p11)/28(3) ,

x(2p11)/28(2) 5x2(2p11)/2
(3) , p2(2p11)/28(2) 5p(2p11)/2

(3) .

So, finally we obtain the explicit expression for the primitive~associate to the simple roots o

so~6!! generators ofV(so(6)) for theD̂mv
5 % pDmv

p representation,

Ln
( i )5 (

r PZ11/2
S n2

r

2D ~xn1r
( i ) p2r

( i ) 1xn1r8( i ) p2r8( i )!. ~4.28!

3. The D m¿ ÕF
¿ representation of so(6)

In this example, we show how one can obtain an explicit realization of theD̂m1 /F
1 represen-

tation without giving any differential realization. Starting with the highest weight stateu m1 /F &
5u 1/2F , 1/2F , 1/2F & we construct theD m1 /F

1 representation.~D̂m1 /F
2 would have been obtaine

from u2 (1/2F) ,2 (1/2F) , (1/2F) &!. The interesting point with such a representation is that
states of the third sl~2! belong toD1/F

1 and of the first and second sl~2! to finite dimensional
representations. Now, to obtain the whole representationD̂m1 /F it is enough to find the primitive

vector associated with (L6(2Fp11)
( i ) /(2Fp11),L0

( i )/(2Fp11)) ~there are no other states annih
lated by someLn , see ~4.4! and ~4.5!!. This vector, u (112Fp)/2F , (112Fp)/2F , (1
12Fp)/2F & induces aD m1 /F

1 representation. With the analogous identifications as for the

torial and spinorial representations we getD̂m1 /F .

4. Application to F-Lie algebras with so(6)

Having constructed the representations ofV(so(6)), one caneasily prove thatD̂m1

1 is in-

cluded inS F(D̂m1 /F
1 )red (S F(D̂m1 /F

1 )red is defined as in Sec. III B!. We just have to notice that

m̂FS S FS Up11
1

2F
,p11

1

2F
,p11

1

2F L ,...,UpF1
1

2F
,pF1

1

2F
,pF1

1

2F L D D
with (pi5p is a primitive vector which induces the spinorial representations~4.22! obtained with
ump& in Dm1

. This leads to theF-Lie algebra (V(so(6))% (D m1 /F
1 )red) % D̂m1 /F

1 .

To conclude, the results of this subsection probably extend, along the same lines, to a
algebrag.
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V. CONCLUSION

Supersymmetry is a well established mathematical structure~Z2 graded algebras! and beyond
its purely formal aspects it has found a wide range of applications in field theories and pa
physics. In this article, we have defined a mathematical structure generalizing the conc
super-Lie algebras~F-Lie algebras!. These algebras seem to be appropriate if one wants to
eralize supersymmetry in the sense ofFth-roots of representations. Indeed, we have shown t
within the framework ofF-Lie algebras, it is possible to take theFth-root of any representation
of any (complex semisimple) Lie algebra. In addition,F-Lie algebras naturally lead to the infinit
dimensional Lie algebraV(g) containingg as a subalgebra. For the special caseg5sl(2,R), V(g)
is the centerless Virasoro algebra. As a consequence, one may wonder whether or not
extensions ofV(g) exist. Furthermore, one has a geometrical interpretation of the Virasoro
bra ~as vector fields on the circle! so is there a similar interpretation forV(g)?

Unitary representations of FSUSY, forg5so(1,2) have also been constructed. It has also b
checked that it is a symmetry acting on relativistic anyons.12 In the same way, since the Loren
group in higher dimensions is just SO(1,d21), what is the interpretation of FSUSY forg
5so(1,d21) when theF-Lie algebra induces theF-root of the spin or the vector representation
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We formulate a Dirac Hamiltonian for an electron in the field of a charged mag-
netic dipole, which can be solved exactly in a central field approximation. While
we find no scattering resonances, we do find three categories of bound-state solu-
tions for this Hamiltonian which may represent new electron/positron states or
possible new electromagnetic composites. One category of solution is a state with
very strong binding energy~greater than the electron rest mass! but with only a
small amount of kinetic energy. This state corresponds to a classical orbit picture in
which the electric and magnetic forces are opposed and are almost balanced. No
bound states are found if the central magnetic dipole is uncharged. ©2000
American Institute of Physics.@S0022-2488~00!03207-2#

I. INTRODUCTION

Although magnetic interactions between particles in atomic and molecular physics are
ally small, these forces can be comparable to the electrostatic forces at distances of the orde
Compton wavelength and much larger at distances of a few Fermis. Furthermore, to our k
edge, there are no analytic~and nonperturbative! solutions available for magnetic interactions in
Dirac formulation that specifically address this interesting scale size. This leads us to the qu
so far not satisfactorily answered: Can there be bound states or scattering resonances r
from the magnetic forces? Specifically, we are interested in the electron–positron, elec
electron, and the electron–proton systems.

A number of authors have been concerned with the problem of magnetic interactions be
fermions. The person who has perhaps written the most about it is Barut.1 He has studied it within
the framework of semiclassical theory, the Schro¨dinger method, Dirac theory, and couple
Maxwell–Dirac theory. Unfortunately, there is no practical way of rigorously studying
Fermi–Dirac particles interacting via the electromagnetic field in a nonperturbative way, s
one is left with either studying simplified models analytically or trying to solve a two-b
equation, such as the Bethe–Salpeter equation with classical or expectation-value potentia
perturbation method.

The latter approach has been used by Wong and Becker,2 Geigeret al.,3 Spence and Vary,4

and McNeil,5 as well as by Barut.1 A somewhat different approach, using other relativistic wa
functions derived by means of QED, has been carried out numerically by Spence and Var4 and
McNeil.5

Is there experimental evidence to support the idea of a bound or scattering state arisin
magnetic interactions between particles? The most suggestive evidence appeared to come
anomalous electron–positron spectral lines observed in superheavy-ion collision experimen
ried out at GSI in Darmstadt.6 The origin of these lines has not been explained satisfactorily,
is perhaps consistent with the production of a complex neutral particle~or resonance! which
decays intoe1e2. The abovementioned authors have all attempted to explain the experim
observations in terms of resonances between an electron and positron, and furthermor
claimed a certain degree of success. Yet, recent experimental work at Argonne Na
Laboratory7 failed to confirm the GSI data and it is now generally believed that the earlier
45720022-2488/2000/41(7)/4572/10/$17.00 © 2000 American Institute of Physics
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results are incorrect. Thus, the existence of some type ofe1e2 resonance does not seem to
supported experimentally.

II. SEMICLASSICAL CALCULATION OF AN ELECTRON IN THE FIELD OF A CHARGED
MAGNETIC DIPOLE

Before we proceed to the Dirac equation, it is instructive to look at the problem semic
cally. The classical Hamiltonian for the particle~an electron! in the central field of a charged
magnetic dipole is~we assume an attractive Coulomb force!

H5Ac2~p2eA/c!21m2c42e2/r . ~1!

We use spherical coordinates and shall assumepu50; in fact, we shall shortly restrict the
discussion to orbits in the equatorial plane. If there were no magnetic field and the situation
nonrelativistic,pf ~the angular momentum around the the axis of the central dipole! would be
mr2 sin2 u ḟ. For our casepf is given by

pf5gmr2 sin2 u ḟ1r sinu~e/c! Af . ~2!

The Hamiltonian~1! then becomes

H5Ac2 pr
21

c2

r 2 sin2 u
~pf2r sinu ~e/c! Af!21m2 c42

e2

r
~3!

with

Af5m0 sinu/r 2. ~4!

Consistent with our approximation thatpu is zero, we take sinu51.
Since]H/]f50, ṗf50, andpf5constant. We take

pf5k \, ~5!

wherek is the angular momentum quantum number. Solving~2! for bf[r sinuḟ/c, converting to
r in units of the Compton wavelength, and defining

m5m0/2mB , ~6!

wheremB is the Bohr magneton, we get

gbf5k/r 2am/r 2. ~7!

Herea is the fine structure constant. We can write the energy«5H/m c2 in the same dimension
less units,

«5Ag2b r
21g2bf

2 112a/r , ~8!

whereb r5 ṙ /c.
b r50 for circular orbits and at ther -limits of ellipical orbits, so we set this to zero here an

look for bound states for the problem defined by Eqs.~7! and~8!. The most strongly bound orbit
are the circular orbits with a very smallbf . From the centripetal force equation

gbf
2 5a/r 2abfm/r 2 ~9!
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and Eq.~7!, we find thatbf'a/k. Then solving Eq.~7! for r , we obtain two solutions; for the
more tightly-bound solution, approximately,

r 5am/k and «512k/m. ~10!

The second solution hasr'k2/a and has energy in the hydrogen atom range.
The interesting new solution here is the tighly-bound solution, Eq.~10!. It has the following

properties:

~1! The angular momentum of the bound state is supplied almost entirely by the magnetic a
momentum, allowing for very little angular velocity and thus very little kinetic energy. T
binding energy is thus almost all electrostatic. Note that the electron is held in its orb
opposed electric and magnetic forces which almost balance.

~2! It is easy to demonstrate that the circular orbit solution is stable. With an attractive cou
force and a repulsive magnetic force, the orbit is clearly stable in ther coordinate. The only
place where there might be a problem is with respect to the coordinateu. We start with the
Hamiltonian, Eq.~3!, add a term inpu

2 and keep all the theu dependence, but because t
velocities are very small we can use a nonrelativistic expansion forH. Now

]H/]u52ṗu ~11!

and noting thatpf is a constant, we obtain, in the same dimensionless units we used b

ṗu

cosu
5

a

r2 sinu F2am

r Sk2
a m sin2 u

r D1 ~k2 a m sin2 u/r!2

sin2 u G. ~12!

But r'a m/k. Therefore,

ṗu

cosu
5

a

r2 sinu F2k2~12sin2 u!1
k2~12sin2 u!2

sin2 u G ~13!

is positive, and the circular orbit atu5p/2 is stable.
~3! If we change the sign of the Coulomb term to produce a repulsive interaction, we do n

any bound states classically. We do however, get a positive-energy state~resonance! with a
negative binding of one or moremc2 where the electric and magnetic forces again alm
balance and the kinetic energy is very small. This state is separated from the asymtotic
by a large ‘‘potential barrier.’’

III. DIRAC ELECTRON IN A CHARGED-DIPOLE MAGNETIC FIELD

In this section we solve the Dirac equation for an electron moving in the field of a statio
charged magnetic dipole in a similar approximation to that which we used in the semicla
problem. The Dirac equation is,

@E2ew1a•~cp2eA!1bmc2#C50, ~14!

whereE is the energy. We assume that the magnetic potential is produced by a point dipom0

located at the origin so theA ~only Af in spherical coordinates! is given by Eq.~4!. w is the scalar
potential due to the electric charge,ew56 e2/r .

The full solution to the Dirac equation with this vector potential@Eq. ~4!# is a more compli-
cated problem than the corresponding hydrogen atom problem. We propose, however, to
in a ‘‘central field approximation.’’ That is, we assume thatAf is a function ofr only, with the
angular dependence replaced by a fixed value, namely,^sinu& which is of order 1. In other words
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we are restricting our analysis to solutions which tend to favor largeu-values, i.e., those with
orbital angular momentum. This approximation is consistent with our semiclassical model,
involves circular orbits.

Paralleling Schiff’s8 treatment of the Dirac equation in a central field, we write

a"p2~e/c!a"A5a rpr1 i\a rbk/r 2 i ~e/c!a rbm0^sinu&/r 2, ~15!

wherek5 j 1 1
2 is the angular momentum quantum number. We choose a representation in

both the Hamiltonian andk are diagonal,

b5S 1 0

0 21D and a r5S 0 2 i

i 0 D . ~16!

Then spinorC has two components which may be written

C5S F~r !/r
G~r !/r D ~17!

and since

pr52 i\ ~]/]r 11/r !, ~18!

we obtain the equations

~e112h/r ! F~r !2G8~r !2~k/r 2a m/r 2! G~r !50,
~19!

~e212h/r ! G~r !1F8~r !2~k/r 2a m/r 2! F~r !50,

where nowr is in units of the Compton wavelength (lc5\/mc), e is in units ofmc2, a is the fine
structure constant,h56 a ~1 for repulsive potential,2 for attractive!, andm is a dimensionless
magnetic moment~in units of the Bohr magneton,mB). Specifically,

m5m0^sinu&/2mB . ~20!

Barut9 had obtained one solution to Eqs.~19! for the case whereh50 ~i.e., no Coulomb
interaction!. His solution,

F~r !50, G~r !5~1/r k!exp@2am/r #, e51. ~21!

This result suggested that there might be other solutions in the vicinity ofe51 ~i.e., a small
amount of binding, or a positive energy resonance! when the Coulomb interaction is included
This turns out not to be the case, and it appears that Barut’s solution~with only one non-zero
component of the spinorC! is an artifact.

We now proceed to solutions of Eqs.~19!. We assume the spinor components can be re
sented in the form

F~r !5exp@2~a m1v r 2!/r # f ~r ! r 2k11,
~22!

G~r !5exp@2~a m1v r 2!/r # g~r !r 2k,

where f (r ) andg(r ) are found to be truncated power series inr . For each value ofk, we have
found several solutions corresponding to differing numbers of terms in the series. In all cas
find that

v5A12e2. ~23!
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These are bound-state solutions with energies between6 mc2. Because Eq.~23! can be written as

v5 iAe221 there could possibly be oscillatory solutions corresponding to energies greate
mc2, but we find no such solutions for realm. Furthermore, there are not solutions forv50
except for the one mentioned earlier@Eq. ~21!#.

Since all of our physically meaningful solutions correspond to energies between6mc2 it is
convenient to make a change of variable in Eq.~19!. We transform tor5(r /lc)A12e2 and

b5amA12e2. This produces a substantial simplification in the subsequent algebra. We o
for Eq. ~19!,

F8~r!1~2k/r1b/r2! F~r!2~1/x11h/r! G~r!50,
~24!

G8~r!1~k/r2b/r2! G~r!2~x12h/r! F~r!50,

wherex15(11e)/A12e2. Clearly,

e5~x1
221!/~11x1

2!. ~25!

We write the solution in terms ofr as

F~r!52r2k11 f ~r! exp@2~b1r2!/r#,
~26!

G~r!5r2k g~r! exp@2~b1r2!/r#,

wheref (r)511 f 1r1 f 2r21¯ andg(r)5g01g1 r1g2 r21¯ are truncated power series an
g(r) has one more term in its series than doesf (r).

We start with the simplest case,f (r)51,g(r)5g01g1r, where the solution can be writte
in simple terms,

hx15k216A~k21!21h2, 2b5h22hx1 , g0522 b/h, and g1522 b/h1h.

Note that there are two values ofb for eachx1 , one forh51a, and one forh52a. As we add
terms to the series, we generate new solutions. It can be shown that if thef (r) series hasn terms
then

hx15~k2n!6A~k2n!21h2. ~27!

However, the corresponding expressions forb become successively more complicated beyo
n51,2. Table I displays the coefficients in the first two truncated power series and Table I
values ofb and hx1 for the two series. Notice that there are five distinct roots for the sec
series, the first two of which are identical to those of the first series.

The above solutions are not the only analytic solutions to Eq.~24!. The central magnetic
dipole can be oriented in the opposite direction and this changes the sign ofb in Eq. ~24!. This
procedure generates another family of solutions with

hx152 ~k1n!6A~k1n!21h2. ~28!

TABLE I. Coefficients forf (r) andg(r) in Eq. ~26! for the two lowest order solutions.

f 0 f 1 f 2 g0 g1 g2

1 0 0 22b/h 22b/h1h 0

1 2~22b1h22hx1!

h~h22x1!
0 22b/h 22b/h1h 2x1~22b1h22hx1!

h~h22x1!
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There is a relationship between these solutions and the previous family of solutions; eac
solution is obtained from a previous one by simultaneously changingF→G, G→F,
k→2k, x1→1/x1 and attractive Coulomb potential↔ repulsive Coulomb potential.

From the numerical evaluations, we find that many of the ‘‘solutions’’ must be discar
Some correspond to complex or negativeb values. Others correspond to unphysically large val
of m. The physically acceptable solutions fall into three categories; a group ate50 with b ~or m
values! of the order of one Bohr magneton, and a group~mostly with attractive Coulomb inter
action! clustering neare51 ~i.e., mc2) with magnetic moments in the fractional Bohr magnet
range, and a group~mostly with repulsive Coulomb interaction! neare521, again in the frac-
tional Bohr magneton range.

A few representative evaluations for some physically acceptable solutions are presen
Table III for k values of 2, 1,21, 22. These were generated from Eqs.~27! and ~28! with
n51 and 2. Some additional values for energies between 0 and21 have been obtained b
numerical integration of the differential equations. We note that the range ofm values for which
a solution of the equations exists is quite limited for each value ofk.

IV. PROPERTIES OF THE WAVE FUNCTIONS

A few remarks about the wave function are in order. The exp(2b/r) factor only affects the
wave function at very smallr; the distant asymptotic region is governed primarily by t
exp(2r) factor. Furthermore, in the asymptotic regionG'2x1F.

TABLE II. Expressions forb andhx1 for the two lowest order solutions to
Eqs.~24!, rt 15Ah21(k21)2 and rt 25Ah21(k22)2.

b hx1
1
2(11h22k2rt 1) 211k1rt 1

1
2(11h22k1rt 1) 211k2rt 1

1
2(31h222k2rt 21A(k23)212h224rt 2) 221k1rt 2

1
2(31h222k1rt 22A(k23)212h224rt 2) 221k2rt 2

1
2(31h222k1rt 21A(k23)212h224rt 2) 221k2rt 2

TABLE III. Solution parameters of the Dirac Hamiltonian for an electron in
the field of a magnetic dipolem with charge6e.

Attractive Coulomb Potential
k x1 b e m

1 1 0.003676 0 0.502
1a 0.5407 0.002 20.5473 0.327
1a 0.2667 0.001 20.8673 0.275
2 1 0.0109 0 1.5
2a 0.5 0.0054 20.6 0.925
2 0.003649 0.0000399 20.99997 0.75

21 274 0.00003215 0.99997 0.604
1 548 0.00001997 0.999993 0.75
1 822 0.0000133 0.999997 0.75
2 822 0.0000222 0.999997 1.25

Repulsive Coulomb Potential
There are an equal number of repulsive Coulomb solutions with a one-

to-one correspondence to the analytic solutions found above. The
relationship between solutions isF→G, G→F, k→2k, x1→1/x1 , and
attractive Coulomb→ repulsive.

aIndicates solutions obtained by numerical integration.
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Consider the cases from Table III withe50; because of the exp(2r) factor these two solu-
tions extend out to the order of the Compton wavelength. A plot of the two spinor componeF
andG for the e50,k51, ~attractive! solution are shown in Fig. 1. Notice that the wave functi
is strongly confined to a distance of less than a Compton wavelength, and that the peak~in G, for
example! occurs even further in, atr5b.

The solutions fork52 with e50 and20.99997 show a similar behavior, both having pea
in G at r5b/2. In fact, other solutions corresponding to theattractiveCoulomb potential show
similar behavior, with a peak inG ~or a principal peak inG) at r5b/k. Because bothr andb
contain the factorA12e2 in their definitions, the peak inG occurs atr /lc5am/k, i.e., at a few
Fermis. Note that these are ther -values of the classical orbits found in Sec. I. All of the
solutions correspond to cases wherelÞ0, and thus correspond to solutions where the wa
function is concentrated at largeu.

Equations~24! were integrated numerically for a number ofe values between 0 and21, and
the results generated solutions for other values ofm ~see Table III!. These solutions were simila
in form to the analytic solutions discussed above and provided a range ofm values of about a
factor of 2 for each value ofk.

The second group of eigenstates, which are clustered neare51 and correspond in most case
to an attractive Coulomb potential is entirely different from the above. Becausr
5(r /lc) A12e2 these states extend out to or beyond the Bohr radius. Let us look now a
spinor components for the casek521, e510.99997, which we display in Fig. 2. The peaks
F andG occur nearr51 which in this case occurs atr 5137lc , i.e., at the Bohr radius. There i
evidence of a peak associated withb, but it is very small compared to the main peak atr51. And
except for the exp(2b/r) factor ~which does not play an important role! the wave function looks
like a hydrogen atom solution; in fact, the binding energy of the state is2(a2/2)mc2. It would
appear that in this group of states the magnetic interaction does not play a major role in bi
but instead acts as a perturbation on the Coulomb energy solutions. This category of solutio
also be extended by numerical integration to provide solutions for other values ofm; however, the
range of allowed energies is very small, thex1 values varying by less than 0.1% form values less
than 10. These solutions cannot be extended to join the category 1 solutions; note that they
a different differential equation~namely, one withb replaced by2b).

What about the solutions corresponding to arepulsiveCoulomb interaction? For these solu
tions the F-function dominates~i.e., is much larger thanG,) and most cases correspond
negativek and cluster in energy neare521. Consider the solution fork51, e520.99997, the
repulsiveanalog of the solution shown in Fig. 2. How is it that an eigenstate that is concent
in the Bohr-radius region with a modest magnetic dipole interaction can have such a

FIG. 1. The spinor components,F andG, for the Dirac Hamiltonian solution for the case withe50, k51 ~Table III, first
entry!. Note that the peak inG occurs at the position of the circular orbit of semiclassical theory, namely,r /lc

5a m/k.
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binding,E'2mc2 ? The answer, we believe, is that these repulsive Coulomb states corresp
something else—they are associated with the negative energy states of the Dirac equat
represent attractive Coulomb interaction for these states, with energies measured with res
2mc2. To help understand this we combine the two equations~19! into one equation forG and
get a Schrodinger-type equation; we find the dominant contributions to theE 2Veff(r) term are

e2212
k~k11!

r 2 1
2 a m ~k11!

r 3 2
a2 m2

r 4 6
2 a e

r
. ~29!

We note several things:~1! k andm must change sign together in order to maintain the sign of
magnetic term (1/r 3), ~2! if we replacee by 2e we get the same solution provided we change
sign of the Coulomb term.

Finally, it is instructive to calculate the average velocity for a typical solution to our D
Hamiltonian. The average velocity in thef direction is given bŷ vf&5c^af& and,af5 i a rb.
The calculated velocities are all 0.05c or less, and interestingly, not even close to relativistic.

V. SUMMARY OF RESULTS

Our solutions only partially support the results and speculations of Barut,1 who conjectured
that magnetic interactions should play a dominant role in the binding of Fermi–Dirac par
~electrons, protons, etc.! at small distances. In most case Barut worked with the second-o

FIG. 2. The spinor components for the Dirac Hamiltonian solution for the case withe50.99997,k521 at the Bohr scale
~a! and the Fermi scale~b!. Note that the wave function is peaked out at the Bohr radius. This wave function is
attractive analog of a solution usingk51 and line 3 of Table II.
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differential equation and an effective potential; here the ‘‘magnetic potential’’ (1/r 3) term is quite
large and negative at short range and the kinetic energy is also large. But Barut does not c
results through numerically for a specific particle system. Now, we do find bound states
electron in the field of a charged magnetic dipole, but the range of parameters is much
limited than one would expect from Barut’s publications. For example, we do not find solutio
our Dirac Hamiltonian for the case where the central dipole magnetic moment is very small~e.g.,
a few nuclear magnetons!. Therefore, these results do not appear to apply to the electron–p
system. We have not found any solutions either with the magnetic dipole having zero charg~i.e.,
no electric field!. In addition we do not find any scattering resonance states within the solutio
for this Hamiltonian~although, classically, we expect a scattering resonance when the Cou
term is repulsive!.

We do, however, find physically acceptable solutions when the central dipole magneti
ment is of the order of one Bohr magneton, so that these results could represent thee1 e2 system.
But there are some difficulties with this interpretation; the electron and positron are not trea
an equal footing, and there is no orbit-orbit interaction in our model. Interestingly, althoug
binding energy of these states is quite large, the kinetic energy is not large at all, i.e
relativistic. Therefore, the expected retardation effects in a more exact theory may not pla
an important role in these states.

The problem we have solved is that of an electron in the field of a heavy charged particle
a magnetic moment; however, the magnetic moment of the heavy particle is large—of the o
that of the electron. Furthermore, there is a simple classical picture for this Dirac problem
electron is held in its orbit by electric and magnetic forces, and in the strongly–bound cas
forces are opposed and almost balanced. This solution cannot be simply extended to th
mass, relativistic electron–positron system, but since the kinetic energy of this solution is
small the results are suggestive that there might be a tightly-bound state for the electro
positron where part of the forces are magnetic in origin.

In this paper, we have exhibited a number of analytic solutions to our postulated D
Hamiltonian. In addition, there are solutions corresponding to other values ofm for the energy
range 0 to2m c2 which are obtained by numerical integration of the differential equations so
we are not limited to the precisem values of the analytic solutions. The most interesting soluti
that we find are these strongly-bound states, but the second group of eigenstates clustering
e51 deserve to be studied more fully. Do they admit solutions~by numerical integration! for
much smaller magnetic moments, and do they go over to hydrogen-atom type solution
should also mention the analytic solutions we found for very large magnetic moments, and
we rejected as unphysical. It is possible that these solutions could be extended by num
integration of the differential equations to cases with smaller~but still large! magnetic moments
They might correspond to particles yet to be discovered.

More investigations are required, not only to determine if there are other solutions to
Dirac Hamiltonian, but also to establish the meaning of the solutions which we have foun
they represent bound states of the electron and positron or could they perhaps represent a
posite’’ model of some ‘‘fundamental’’ particle? With appropriate change of scale, the re
obtained can be applied to other Fermi–Dirac particles. The solutions can also be extended
case where the central dipole has a charge greater than the electron charge; but if its ch
increased, then the magnetic moment must increase also.
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APPENDIX

Our Dirac equation, Eq.~19! can be obtained from another situation, namely, from the in
action of the anomalous magnetic moment of the electron with the Coulomb field of a c
particle.10 The central particle does not have to have a magnetic moment.

We add the termimmBgmgn Fm n to the covariant form of Eq.~14!, wherem is now the
dimensionless magnetic moment correction. Keeping only thoseFm n components which relate to
the electric field, we find that Eq.~14! reduces to Eq.~19!.

1See, e.g., A. O. Barut,‘‘Lectures on magnetic interactions of stable particles and magnetic resonances’’ inGroup Theory
and Its Applications in Physics, edited by T. H. Seligman~AIP, New York, 1980!, pp. 73–108; A. O. Barut, Z. Phys. A
336, 317 ~1990!.

2C-Y Wong and R. L. Becker, Phys. Lett. B182, 251 ~1986!.
3K. Geigeret al., Z. Phys. A329, 77 ~1988!.
4J. R. Spence and J. P. Vary, Phys. Lett. B254, 1 ~1991!.
5J. A. McNeil and B. K. Wallin, Phys. Lett. B297, 223 ~1992!.
6J. Schweppeet al., Phys. Rev. Lett.51, 2261~1983!; T. Cowanet al., ibid. 54, 1761~1985!; 56, 444~1986!; P. Salabura,
et al., Phys. Lett. B245, 133 ~1990!.

7I. Ahmedet al., Phys. Rev. Lett.75, 2658~1995!; 78, 618 ~1997!.
8L. I. Schiff, Quantum Mechanics, 2nd ed.~McGraw–Hill, New York, 1955!, p. 334, Eqs.~44.9!–~44.17!.
9A. O. Barut, op cit, p. 92.

10A. O. Barut, op cit, p. 89.
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Scalar tensor theories and Hadamard state condition
H. Salehi,a) Y. Bisabr,b) and H. Ghafarnejad
Department of Physics, Shahid Beheshti University, Evin, Tehran 19839, Iran

~Received 20 September 1999; accepted for publication 10 January 2000!

The Hadamard state condition is used to analyze the local constraints on the two-
point function of a quantum field conformally coupled to a background geometry.
Using these constraints we develop a scalar tensor theory which controls the cou-
pling of the stress-tensor induced by the two-point function of the quantum field to
the conformal class of the background metric. It is then argued that the determina-
tion of the state-dependent part of the two-point function is connected with the
determination of a conformal frame. We comment on a particular way to relate the
theory to a specific conformal frame~different from the background frame! in
which the large-scale properties are brought into focus. ©2000 American Insti-
tute of Physics.@S0022-2488~00!01805-3#

I. INTRODUCTION

The essential feature of scalar tensor theories, such as Brans–Dicke theory, is to gen
general relativity and bring it into accord with Mach’s principle~the origin of physical properties
of space is in the matter contained therein1!. These theories are not completely geometrical si
the gravitational effects are described by a scalar field as well as a metric tensor. In fact, the
distribution of matter affects the local gravitational properties through the emergence of a
field. The implementation of this interrelation between global and local properties of matt
quantum field theory, as demanded by Mach’s principle, is a complicated problem. Some id
this direction can be found in Refs. 2 and 3.

In a simplified picture one can expect that the role of a scalar tensor theory may
importance for improving our knowledge on the local properties of a linear quantum field p
gating in a gravitational background, in particular the local properties of the quantum stress-
induced by the two-point function of the quantum field. The present paper deals with the c
eration of this issue. In specific terms, we study a model in which the local properties of a
quantum field conformally coupled to a gravitational background is affected both by the
geometry and a conformal invariant scalar field derived from the state~boundary!-dependent part
of the two-point function. To arrive at this model we basically take into account the local
straints imposed on the two-point function by the Hadamard state condition. In this context
is a problem concerning the specification of the state-dependent part of the two-point funct
our presentation we establish a connection between this problem and the problem of the d
nation of a conformal frame.

To avoid any confusion at the outset, we should note that the scalar tensor theory we w
consider is meant only to provide an analytical mean to determine the general propertie
quantum stress-tensor that can consistently be coupled to conformally related background m
and in this respect its interpretation differs from the standard interpretation of such theor
alternative theories of gravitation.

The organization of this paper is as follows: In Sec. II we present the Hadamard prescr
and review the derivation of the local constraints on the state-dependent part of two-point fu
of a linear scalar quantum field conformally coupled to gravity. In Sec. III, we present a w
use a conformally invariant scalar field for analyzing the state-dependent part of the two

a!Electronic mail: h-salehi@cc.sbu.ac.ir
b!Electronic mail: y-bisabr@cc.sbu.ac.ir
45820022-2488/2000/41(7)/4582/8/$17.00 © 2000 American Institute of Physics
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function. It is shown that the implications of the resulting scalar tensor theory for the stress-
are in accord with the standard predictions of the renormalization theory. In Sec. IV, we
some general remarks on the existence of an alternative frame in which the trace of the
tensor is determined by a cosmological constant rather than the usual anomalous trac
existence of this frame indicates that the state-dependent part of the two-point functions ma
some large-scale characteristics which are basically not present in the conformal frame dete
by the local characteristics. Similar arguments were discussed previously in a different con3

II. HADAMARD STATE CONDITION

We consider a free scalar quantum fieldf(x) propagating in a curved background space–ti
with the action functionalS@f#.4 ~We use the conventions of Hawking and Ellis5 for the signature
and the sign of curvature.! Here

S@f#52
1

2E d4xg1/2~gab¹af¹bf1jRf21m2f2!, ~1!

wherem andj are parameters, andR is the scalar curvature.~In the following the semicolon and
¹ indicate covariant differentiation.! This gives rise to the field equation

~h2m22jR!f~x!50. ~2!

The choice of the parametersm andj depends on the particular type of coupling. For example,
minimal coupling corresponds tom50 andj50, and the conformal coupling~in four dimensions!
corresponds tom50 and j5 1

6. A state off(x) is characterized by a hierarchy of Wightma
functions~n-point functions!

^f~x1!, . . . ,f~xn!&. ~3!

We are primarily interested in those states which reflect the intuitive notion of a ‘‘vacuum.’’
this aim, we may restrict ourselves basically to quasi-free states, i.e., states for which the tru
n-point functions vanish forn.2. ~In a linear theory this property is shared by the vacuum s
of Minkowski space.! Such states may be characterized by their two-point functions. In a li
theory the antisymmetric part of the two-point function is common to all states in the s
representation. It is just the universal commutator function. Thus, in our case all the re
information about the state-dependent part of the two-point function is encoded in its symm
part, denoted in the following byG1(x,x8), which satisfies Eq.~2! in each argument. The equiva
lence principle suggests that the leading singularity ofG1(x,x8) should have a close correspo
dence to the singularity structure of the two-point function of a free massless field in Minko
space. In general the entire singularity ofG1(x,x8) may have a more complicated structur
Usually one assumes thatG1(x,x8) has a singular structure represented by the Hadamard ex
sions. This means that in a normal neighborhood of a pointx the functionG1(x,x8) can be
written6–8 as

G1~x,x8!5
1

8p2 H D1/2~x,x8!

s~x,x8!
1V~x,x8! ln s~x,x8!1W~x,x8!J , ~4!

where 2s(x,x8) is the square of the distance along the geodesic joiningx andx8 andD(x,x8) is
the Van Vleck determinant

D~x,x8!52g21/2~x!Det$2s ;mn8%g
21/2~x8!,

g~x!5Detgab . ~5!
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The functionsV(x,x8) andW(x,x8) are regular and have the following representations as po
series,

V~x,x8!5 (
n50

1`

Vn~x,x8!sn, ~6!

W~x,x8!5 (
n50

1`

Wn~x,x8!sn, ~7!

in which the coefficients are determined by applying Eq.~2! to G1(x,x8), yielding the recursion
relations

~n11!~n12!Vn111~n11!Vn11;as ;a

2~n11!Vn11D21/2D ;a
1/2s ;a1 1

2 ~h2m22jR!Vn50, ~8!

~n11!~n12!Wn111~n11!Wn11;as ;a2~n11!Wn11D21/2D ;a
1/2s ;a

1 1
2 ~h2m22jR!Wn1~2n13!Vn111Vn11;as ;a2Vn11D21/2D ;a

1/2s ;a50, ~9!

together with the boundary condition

V01V0;as ;a2V0D21/2D ;a
1/2s ;a1 1

2 ~h2m22jR!D1/250. ~10!

From these relations one can determine the functionV(x,x8) uniquely in terms of local geometry
Therefore it takes the same universal form for all states. However, the biscalarW0(x,x8) remains
arbitrary. Its specification depends significantly on the choice of a state and may be regarded
imposition of a boundary condition. However, there is a general constraint onW0(x,x8) which can
be obtained from the symmetry condition ofG1(x,x8) together with the following dynamica
equation which can be obtained using~2!, ~4!, and~6!:9,10

~h2m22jR!W~x,x8!526v1~x!12v1;as ;a10~s!, ~11!

where

v1~x!5 lim
x8→x

V1~x,x8!5 1
720$hR2RabRab1RabdgRabdg%. ~12!

To get this constraint we first expand the symmetric functionW(x,x8) into a covariant power
series, namely,9–11

W~x,x8!5W~x!2 1
2 W;a~x!s ;a1 1

2 Wab~x!s ;as ;b

1 1
4 $ 1

6 W;abg~x!2Wab;g~x!%s ;as ;bs ;g10~s2!. ~13!

We may insert this into Eq.~11! and compare term by term up to the third order ins ;a to obtain

Wg
g~x!5~jR1m2!W~x!26v1~x!, ~14!

@Wab~x!2 1
2 gabWg

g~x!# ;a5 1
4 ~hW~x!! ;b2 1

2 m2W;b~x!12v1~x! ;b

1 1
2 RabW;a~x!2 1

2 jRW;b~x!. ~15!

Then using the covariant expansion of the symmetric functionW0(x,x8),
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W0~x,x8!5W0~x!2 1
2 W0;a~x!s ;a1 1

2 W0ab~x!s ;as ;b10~s3/2!, ~16!

together with Eqs.~7!, ~9!, and~13!, we obtain9,10

W~x!5W0~x!, ~17!

Wab~x!5~W0ab~x!2 1
4 gabW0g

g ~x!!1 1
4 @~m21jR!W0~x!26v1~x!#gab . ~18!

Substituting~17! and ~18! into ~15! leads to

@W0ab~x!2 1
4 gabW0g

g ~x!# ;a5 1
2 v1;b~x!1 1

4 „hW0~x!…;b2 1
4 m2W0;b~x!1 1

2 RabW0
;a~x!

1 1
4 j@R;bW0~x!2RW0;b~x!# . ~19!

This equation is a general constraint imposed on the state-dependent part of the two-poin
tion. The functionW0(x) may be considered as arbitrary, but once a specific assumption has
made on the form ofW0(x), the equation~19! acts as a constraint onW0ab(x).

We should note that the constraint~19! is, in principle, the first member of a hierarchy o
constraints, because we have used the covariant expansionW0(x,x8) only up to the second orde
in s ;a. Thus, in general, there are some additional constraints on the higher-order expansion
In our analysis we shall neglect these higher-order constraints. Such a limitation is sugges
dimensional arguments because the second-order expansion terms ofW0(x,x8) already have the
physical dimension of a stress-tensor.

III. THE CONFORMALLY INVARIANT SCALAR FIELD

In the case of conformal coupling a local Hilbert space would, in general, exhibit an ess
sensitivity to the preexisting local causal structure of space–time, which in the present c
determined by the conformal class of the background metric. By implication, this causal stru
should act as the basic input for the characterization of the local states. Since the con
transformations leave the causal structure unchanged, we expect, in particular, that an e
ambiguity, related to conformal transformations, should enter the dynamical specification
state-dependent part of the two-point function. Thus, in the case of the conformal coupling
suggestive to develop a dynamical model in which the conformal symmetry acts as a funda
symmetry in the specification of the two-point function, in particular the functionW0(x). In the
following we shall use the constraint~19! to develop a dynamical model along this line. We fir
start with the explicit form of the constraint~19! in the case of conformal coupling, namely,

@W0ab~x!2 1
4 gabW0g

g ~x!2 1
2 gabv1~x!2 1

4 gabhW0~x!# ;a

5 1
2 RabW0

;a~x!1 1
24 „R;bW0~x!2RW0;b~x!…. ~20!

One can use the Bianchi identity,

Rab
;a 5 1

2 R;b , ~21!

and the differential identity,

h„W0;b~x!…5„hW0~x!…;b1RabW0
;a~x!, ~22!

to show that~20! can be written as a total divergence

Sab
;a 50, ~23!

where
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Sab5„W0ab~x!2 1
4 gabW0g

g ~x!…2 1
6 ~Rab2 1

4 Rgab!W0~x!

2 1
3 „W0;ba~x!2 1

4 gabhW0~x!…2 1
2 gabv1~x!. ~24!

Now, the basic input in~23! is to subject the choice ofW0(x) to the condition

W0~x!5c2~x!, ~25!

wherec(x) is taken to be a conformally invariant scalar field coupled to the gravitational b
ground, so that its dynamical equation is

~h2 1
6 R!c50. ~26!

For a given Hadamard state the fieldc may be interpreted as measuring the one-point function
the quantum fieldf. The conformal invariance ofc ensures that there exists no pre-assign
dynamical configuration for the one-point function in a local Hilbert space. This is inde
desirable characteristic of a linear theory.

Technically, the merit of introducing the fieldc is that the tensorSab1 1
2gabv1(x), which is

traceless due to~24!, may now be related to the conformal stress-tensor ofc, namely,

Sab1 1
2 gabv1~x!5Tab@c#, ~27!

where the conformal stress-tensorTab@c# is given by12

Tab@c#5~ 2
3 ¹ac¹bc2 1

6 gab¹gc¹gc!2 1
3 ~c¹a¹bc2gabchc!1 1

6 c2Gab ~28!

in which Gab is the Einstein tensor. The tensorTab is traceless due to the dynamical equati
~26!. The meaning of the relation~27! is that it defines a formal prescription which allows us
relate the tensorW0ab(x) in ~24! to the functionW0(x) and the metric tensorgab , so it charac-
terizes a criterion to select the class of admissible Hadamard states. Taking into account~28! we
can write this criterion as

Gab23c22gabv1~x!56c22
„Sab1tab~c!…. ~29!

Here tab(c), is equal toTab@c# without theGab-term, so it coincides up to a sign with th
so-called modified energy-momentum~stress-! tensor.13 Now, the basic strategy is to consider th
tensorSab as the quantum stress-tensor induced by the two-point function. Our criterion can
be interpreted as a rule for relating the latter tensor to the local background geometry, as re
in ~29!. The essential point is that this rule is expressed in the form of a scalar tensor the
which the dynamics of the scalar fieldc makes substantially no distinction between differe
frames in the conformal class of the background metric. The implication is that, at the dyna
level, all conformal frames may be considered as equivalent.

This conformal invariance reflects a basic connection between the state-dependent par
two-point function and the preexisting causal structure determined by the background met
particular, it establishes a basic connection between the properties of a given physical sta
local Hilbert space and those of a corresponding conformal frame. To see this in explicit ter
us consider a conformal transformation

ḡab5V2~x!gab ,
~30!

c̄~x!5V21~x!c~x!.

Due to ~25!, W0(x) would then transform as
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W̄0~x!5V22~x!W0~x!. ~31!

It is now clear from~31! that a given conformal frame may be characterized by the partic
configuration ofW0(x) ~or alternativelyc) in that frame. Therefore, the problem of specificati
of W0(x) for a given physical state is basically connected with the problem of determination
conformal frame. In particular, different states characterized by conformally related configur
of W0(x) should principally be supported on different conformally related metrics. The s
conclusion holds for their stress-tensors.

At this point we make a general remark concerning the consistency of our results wit
standard prediction of the renormalization theory. Focusing ourselves to the two-point funct
the background metric we can take the trace of~27!, to obtain

Sa
a522v1~x!. ~32!

This together with~23! characterizes the general properties of the quantum stress-tensor o
background metric. These properties are consistent with the well-known results of the ren
ization theory14 andv1(x) is actually the function that determines what is commonly known as
trace anomaly. In our presentation this quantum anomaly requires a somewhat distinct beha
the scalar fieldc. In fact, according to~23! and~27! and due to the nonvanishing trace anoma
the tensorTab@c#, which may be considered as the stress-tensor of the fieldc, appears not to be
conserved on the background metric, requiring the dynamical properties ofc on the background
metric not to fit in with the properties of a diffeomorphism invariant action characterizin
C-number~classical! field. But it is necessary to stress that this behavior does not appear to
physical contradiction in the present case. Actually, the scalar fieldc which characterizes the loca
property of the two-point function may, in general, change its configuration if one varies
two-point function within a local Hilbert space. Therefore, in general, it may not act a
C-number field within a local Hilbert space. By implication, the standard results of a di
morphism invariant action may not be applied toc. We note that a similar process of assigni
nondiffeomorphism invariant properties to a local Hilbert space has been previously discus
the context of generally covariant quantum field theory.2

IV. L-FRAME

The conformal symmetry which was established in the local specification ofW0(x) would
imply that locally the stress-tensorSab can be related to different conformal frames. Thus
question arises as to which frame should be considered as a physical frame. To deal w
question it is necessary to emphasize the role of the superselection rules which characte
boundary conditions imposed on the physically realizable states and the corresponding
spaces. In general, the identification of a conformal frame as a physical frame depends
particular superselection rule one wishes to apply. Of direct physical significance, in the p
case, is a superselection rule that tells us how a local Hilbert space is linked to the large
boundary conditions imposed on physical states. If the latter conditions correspond to the pr
of large-scale distribution of matter whose energy density is measured by a cosmological co
one may subject the determination of a conformal frame~alternatively a local Hilbert space! to the
asymptotic correspondence between the anomalous trace and a nonvanishing cosmologi
stant at sufficiently large spacelike distances. In general, this condition may not be realized
underlying background frame, so in this case the physical frame is expected to be differen
the background frame.

This observation opens a way to study the transition from the local characteristics of ph
states in a local Hilbert space to the large-scale characteristics, which is expected to be
ticular importance for establishing the large-scale gravitational coupling of physical state
local Hilbert space. Since by such a transition the small distance properties are no more imp
we may take the overall correspondence between the anomalous trace and a nonvanishing
logical constant everywhere as the defining characteristic of a local conformal frame whic
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implication, acts as the physical frame if one focuses on large-scale characteristics of ph
states in the presence of large-scale distribution of matter. For the construction of this fram
needs only to apply a conformal transformation to the background frame which establish
correspondence between the trace anomaly and a nonvanishing cosmological constant. D
the cosmological constant byL, the corresponding conformal factor may be taken to satisfy
equation

23V2~x!c22v1~V2~x!gab!5L. ~33!

Under this conformal transformation the equation~27! transforms to

S̄ab2 1
6 Lḡabc̄25Tab@c̄# ~34!

or, equivalently,

Gab~ ḡab!1Lḡab56c̄22
„S̄ab1tab~c̄ !…. ~35!

Therefore, in the new frame, which we call theL-frame, a scalar tensor theory with a cosmolo
cal constant is obtained together with Eq.~33! which is a complicated constraint on the conform

factor. In theL-frame, contrary to the background frame, the stress-tensorS̄ab may not be
conserved. However, Eq.~34! implies that one can establish a conserved stress-tensor by repl
c̄ by a constant average valuec̄5const. In this case the usual features of general relativity ca
established in theL-frame. In particular, the tensorTab@c̄#, which was found to be nonconserve
in the background frame, becomes a multiple of the Einstein tensor, so a conserved tenso

For further investigation of the constraint~33!, we write its explicit form on the backgroun
metric. Using the conformal transformation of the functionv1(x) ~Ref. 10! we find

2e2vc22$3v1~gab!1 1
240†2Rhv12R;av ;a16h~hv!

18@~hv!22v ;abv ;ab2Rabv ;av ;b2v ;gv ;ghv22v ;abv ;av ;b#‡%5L, ~36!

where v52 ln V. As an illustration we shall now apply~36! to study an asymptotic relation
between theL-frame and a specific background metric which we take to be described
Schwarzschild black hole. In this case the functionv1(x), which determines the trace anomal
reduces to

v1~gab!5
1

720
RabdgRabdg5

1

15

M2

r 6
, ~37!

whereM is the mass of the black hole. Since the trace anomaly vanishes forr→`, one may
generally expect that for a sufficiently smallL there should be no distinction between the ba
ground and theL-frame in a region far from the black hole event horizon. That this behavio
dynamically allowed follows from the equation~36! as we briefly demonstrate: Let us restri
ourselves to the static case and assume thatv is only a function ofr. For r @2M the equation~36!
takes then the form

v-824v82v95240Lc2e22v28
M2

r 6
, r @2M , ~38!

where prime indicates differentiation with respect tor. This equation reveals thatv as a slowly
varying function would be a solution for a large value ofr and a sufficiently small cosmologica
constant. In particular, for large values ofr an almost constant conformal factor~close to one! can
be used to establish the correspondence between the background frame and theL-frame.
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V. SUMMARY AND OUTLOOK

For a quantum field conformally coupled to a gravitational background we have presen
model in which the role of a scalar tensor theory is emphasized for studying the local cons
imposed on physical states by the Hadamard state condition. The corresponding scalar
conformally invariant and controls the coupling of the stress-tensor to the conformal class
background metric. The predictions of this theory are in accord with the standard results
stress-tensor renormalization if one chooses a conformal frame corresponding to the back
metric. We have emphasized that the choice of a specific conformal frame as a physical
must, in general, be subjected to the superselection rules regulating the coupling of a local
space to the physical conditions at distant regions. In this context we have discussed the po
to consider the theory in a distinguished frame, namely theL-frame, which may act as the
physical frame for establishing the large-scale gravitational coupling of physical states
presence of large scale distribution of matter. It is suggestive to link this large-scale gravita
coupling of physical states, reflected in theL-frame, with their cutoff property in the shor
distance scaling. A dynamical cutoff theory of this type, if properly formulated, would reflect
of the characteristic implication of Mach’s principle in quantum field theory.
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Quaternionic symmetry groups and particle multiplets
Giuseppe Scolaricia) and Luigi Solombrinob)

Dipartimento di Fisica dell’ Universita’ and INFN, Sezione di Lecce, Lecce, I-73100 Italy

~Received 6 May 1999; accepted for publication 23 February 2000!

We consider the quaternionic complete symmetry group of a massive physical
system, obtained extending the connected Poincare´ group and the internal symme-
try group by means of the CPT and the generalized parity operators. We classify
the irreducibleQ-representations of this group crossing the generalized Wigner and
Frobenius–Schur classifications, and obtain 14 different cases. Some novelties arise
in this context, such as the failure of the statement that only irreducible represen-
tations must be associated with particle multiplets, and a suggestion on the possible
forms of a parity-violating Hamiltonian. ©2000 American Institute of Physics.
@S0022-2488~00!02707-9#

I. INTRODUCTION

According to an old idea of Michel,1 the group of geometrical symmetries of a quantu
mechanical system is not a subgroup of the complete symmetry group~i.e., the group of all the
transformations which leave invariant the Lagrangian!, but is the quotient group of the comple
group by an invariant subgroup. This idea led to the development of the concept of extens
a given group, which was afterwards applied to a number of physically relevant situations, s
the representations of the full Poincare´ group starting from the ones of the proper orthochrono
group, the relations between geometrical~space–time! symmetries and internal symmetries, a
more recently, the internal parity of antiparticles.2

In particular Lee and Wick3 in a remarkable paper applied this idea, classifying all
‘‘minimal extensions’’ of a symmetry groupG by the parity and the CPT operators.

Following the same scheme, Zumino and Zwanziger4 then built up the complete symmetr
group of a quantum mechanical system extending by means of the parity and CPT operat
Poincare´ group and the internal symmetry group, thus obtaining a classification of the ma
particles multiplets, i.e., of the irreducible ‘‘corepresentations’’ of the complete symmetry g
~The concept of corepresentation, due to Wigner,5 come out obviously in this context, because
the antilinearity of the time inversion operator, hence of the CPT operator.! The case of null mass
particles were obtained by Fabri and Picasso6 in the same period.

We remark here that one of the main tools used to obtain these classifications is the cl
Frobenius–Schur~FS! criterion5,7,8 which allows one to divide all the irreducible representatio
into three types, namely real, pseudoreal and complex, or of class11, 21 and 0, respectively
~note that a generalization of this criterion exists which applies also to irredu
corepresentations9!.

When one approaches the same problem in the realm of Quaternion Quantum Mec
~QQM!, various difficulties arise; nevertheless, a remarkable simplification appears, becau
quaternionic generalization of the Wigner theorem allows one to conclude that all symmetrie
be associated with linear operators only, when a quaternionic vector space is considered.10

In some previous papers11,12 we have studied systematically the theory of quaternionic lin
representations of a groupG, obtaining all the linear, irreducible quaternionic representati
~Q-irreps! of G and classifying them according to a suitable, simple generalization of
Frobenius–Schur criterion, and successively building up and classifying~in ten cases! the linear

a!Electronic mail: scolarici@le.infn.it
b!Electronic mail: solombrino@le.infn.it
45900022-2488/2000/41(7)/4590/14/$17.00 © 2000 American Institute of Physics
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representations of the extensions ofG by means of the time inversion operator.
Thus, we have at our disposal all one needs in order to extend to the quaternionic ca

research carried out in Ref. 4 on the particle multiplets, and this is just the purpose of the p
paper.

More specifically, we recall in Sec. II some notations and results on the quaternionic
representations and their classification.

Section III is devoted to the study of the complete symmetry group of a massive qua
mechanical system. This group includes the connected Poincare´ group and a finite or, at the mos
compact groupG of internal symmetries, as well as the CPT and the~generalized! parity opera-
tors, but we will show that one can suppress all the spin and momentum variables, simplifyi
notation.~By the way, we obtain also that the square of the CPT operatorQ has opposite sign with
respect to the complex case.!

In Sec. IV we extend the groupG of internal symmetries by the CPT operator, obtaining th
different forms of irreducible representations for the enlarged groupH ~according to the FS-clas
to which the representation ofG belongs! and in one of them a doubling of dimensions aris
~Note that the results in this section apply also to theories that do not admit a parity symm!

In Sec. V we study and classify the irreducible representations of the group obtain
further extendingH by means of a generalized parity operatorP. Fourteen different cases aris
whose explicit forms we write down, and in eight of them a doubling of dimensions occurs~which
in two cases must be added to those previously due toQ!.

All these results are summarized in the Tables I and II~according to whetherP commutes or
anticommutes withQ! and we briefly comment on them in Sec. VI. In particular, we stress th
that the very existence of an Hamiltonian operator~i.e., of an anti-Hermitian operator with th
proper commutation relations withP, Q and the elements ofG! requires in many cases to furthe
increase the dimensions of the representations describing a particle multiplet, and, above
resort to reducible representations. Moreover, we make a comparison between some case
suggests the possible forms of a parity-violating Hamiltonian.

Finally, in the Appendix a statement about unitary equivalence ofQ-representations is proven

TABLE I. Classification of the irreducible representationsD(K) obtained extendingD(G)(@Q0 ,P#50). @K5G1Q0G
1PG1Q0PG, whereQ0 is the CPT operator andP is the generalized parity operator, such thatQ0

2521,P2PG and

@Q0 ,G#5@Q0 ,P#50. Moreover, D̄(G)[D(P21GP). The symbols in the squares~C//R, C//C, etc.! exhibit the
Frobenius–Schur classification of the representationsD(K) ~on the left! andD(G) ~on the right! ~see Secs. II and V!; for
each case, the explicit form ofD(K) arising from the~double! extension of a givenD(G) is shown in Sec. V.#

D(G);R D(G);C D(G);Q

D(G)>D̄(G) C//R C//C C//2Q

D(G)>/ D̄(G) C//R1R C//C1C C//2Q12Q

TABLE II. Classification of the irreducible representationsD(K) obtained extendingD(G) ($Q0 ,P%50). @K5G
1Q0G1PG1Q0PG, whereQ0 is the CPT operator andP is the generalized parity operator, such thatQ0

2521, P2

PG and @Q0 ,G#5$Q0 ,P%50. Moreover,D̄(G)[D(P21GP) and S denotes a complex matrix. The symbols in th
squares~Q//R,Q//C, etc.! exhibit the Frobenius–Schur classification of the representationsD(K) ~on the left! andD(G)
~on the right! ~see Secs. II and V!; for each case, the explicit form ofD(K) arising from the~double! extension of a given
D(G) is shown in Sec. V.#

D(G);R D(G);C D(G);Q

D5SD̄* S21, D(P2)52SS* : Q//C

D>D̄ Q//R D5SD̄* S21, D(P2)51SS* : R//2C Q//2Q

D5SD̄S21: C//2C

D>/ D̄ C//R1R C//C1C C//2Q12Q
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II. QUATERNIONIC GROUP REPRESENTATIONS AND THEIR CLASSIFICATION

We recall here some basic notations and previous results.
A quaternion is usually expressed as

q5q01q1i 1q2 j 1q3k,

whereqiPR ( i 50,1,2,3), i 25 j 25k2521, i j 52 j i 5k.
The quaternion skew-fieldQ is an associative algebra of rank 4 overR, noncommutative and

endowed with an involutory antiautomorphism~conjugation! such that

q→qQ5q02q1i 2q2 j 2q3k.

In a ~right! n-dimensional vector spaceQn over Q, every linear operator is associated in
standard way to an3n matrix acting on the left.13

In analogy with the case of complex group representations, one can then define the He
conjugateA†5ATQ of a matrix A ~AT denotes, as usual, the transpose ofA!, and introduce the
concepts of unitarity, Hermiticity, and so on. Moreover, ifG is a finite ~or a compact! group,
reducibility implies complete reducibility even in the case of unitaryQ-representationsD(G), and
everyQ-representation is equivalent to a unitary one.14–16

We have shown elsewhere11 that all Q-irreps of a finite groupG fall into three classes
potentially real or of type R, potentially complex or of type C, (purely) quaternionic or of typ
(generalized Frobenius–Schur classification). Indeed, they canall be obtained from the irreduc
ible complex group representations~C-irreps!, in the sense that anyC-irrep of class11 or 0,
according to the FS classification, is itself aQ-irrep of typeR or C, respectively, while it reduces
to two equivalentQ-irreps of typeQ when it is of class21,15 and no furtherQ-irrep exists in
addition to the ones generated~in the above sense! by theC-irreps.

Moreover, twoQ-irreps are equivalent if theC-irreps from which they are generated a
equivalent, and the converse is also true, with the only remarkable exception of twoC-irreps of FS
class 0 which are a complex conjugate of each other. Indeed, in the last case, th
C-inequivalent by definition, while when they are considered asQ-representations they are triv
ally equivalent,

D5 j lD* ~ j l!21 ~lPC!.

The following irreducibility criterion holds for quaternionic representations:

(
g

x̂~m!2~g!5
@G#

c~m! , ~1!

where

c~m!5H 1

2 when the representationD ~m! is of type

4
H R

C
Q

,

x̂ (m) denotes the character, i.e., the real trace of the representation~which enjoys the cyclic
property and fully characterizes the representation!, and@G# is the order of the group.11

We recall also that the quaternionic generalization of the FS criterion holds12

(
g

x̂~m!~g2!5d~m!@G#, ~2!

where
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d~m!5H 11

0 if D ~m! is a Q-irrep of type

2 1
2

H R
C
Q

,

so that the couple of values of(gx̂ (m)2(g) and (gx̂ (m)(g2) uniquely identifies allQ-irreps and
their class.

As we have already anticipated in the Introduction, on the basis of some general theore
Q-irreps we were able to study the representationsD(H) of all the minimal extensionsH5G
1aG of a finite ~or a compact! group G by a linear operatora, which fall into three types
~generalized Wigner classification!.5,12

~i! The restrictionD(G) of D to the subgroupG is irreducible;
~ii ! D(G) is reducible and has the form

D~G!5SD~G! 0

0 D̄~G!
D , D~a!5S 0 D~a2!

1 0 D , ~3!

whereD̄(g)[D(a21ga) is aQ-irrep of G of the same FS class asD, but inequivalent to it;
~iii ! D(G) is reducible and has the above form, withD equivalent toD̄(D>D̄).

Crossing the generalized Wigner and Frobenius–Schur classifications, ten different
arise, according to the FS classes ofD(G) andD(H).

Finally, we recall that a generalized Schur’s Lemma10,12holds forQ-irreps, which asserts tha
any linear operator commuting with a givenQ-irrep D has the formT5q1, whereqPR,C,Q
whenD is of typeQ, C, R, respectively~in the last cases the form ofT refers to the basis in which
D has a complex or a real form, respectively!.

III. THE COMPLETE SYMMETRY GROUP

In the QQM, the complete symmetry group of a massive quantum mechanical particle s
includes

~1! Unitary operators which represents the elements of the quantum mechanical connecte
carégroupP1

↑ .
We stress the fact that theQ-irreps ofP1

↑ reduce to theC-irreps10 and can be obtained, in
standard way, from those of itslittle group SU(2,C). We denote as usual these elements
~a, A! wherea5(a0 ,aW ) is a real 4-vector andAPSL(2,C).

~2! The unitary operators of the groupG of all the internal symmetries~i.e., of the symmetries of
the Hamiltonian!, which we assume to be finite or, at the most, compact. All elementsG
commute with any~a, A!.

~3! The operatorQ associated with the CPT invariance, which can be assumed unitary and w
anticommutes with the~anti-Hermitian! HamiltonianH of the physical system and commute
with any gPG. Its multiplicative law with the elements ofP1

↑ is
Q~a,A!Q215~2a,A!.

~4! A generalizedparity operatorP defined as an element of the cosetP0G, i.e., is obtained
multiplying thespatial inversion operatorP0 times any element ofG.

Its commutation relation with~a, A! are

P~a,A!P215~a8,syA* sy!,

wherea85(a0 ,2aW ) andsy is the Pauli antisymmetric matrix.
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By a somewhat heuristic argument one can convince himself that the above assumpti
Q! allow us to attribute to it the usual interpretation as the CPT operator. LetI i be the~anti-
Hermitian! generators ofG; they commute withH so that in a suitable basis,17 and assuming for
the sake of simplicityEÞ0, the following eigenvalue equations hold:

Huum&5uum& iE, E.0,

I i uum&5uum& ih i
m , h i

mPR.

It follows

HQuum&52Quum& iE,

I iQuum&5Quum& ih i
m ,

so that the statesQuum& are negative-energy states with the same internal quantum numbers
uum& ’s. ~Alternatively, reraying the states, one has

HQuum& j 5Quum& j iE ,

I iQuum& j 5Quum& j i ~2h i
m!,

and the positive-energy statesQuum& j have really opposites internal quantum numbers with
spect to theuum& ’s.10!

Now, in order to classify the particle multiplets, it suffices to study the invariance group o
4-vector p05(m,0,0,0), i.e., the group of all operators~excepting the space–time translation!
which leave the particle at rest~little group!.4 To this group belong SU(2,C), G, P, Q and their
products. As we have already noted,G, P, Q commute with all the elements in SU(2,C), whose
even-dimensional representations are nevertheless reducible in aQn space. Thus, to obtain the
representativesD(g), D(P), D(Q) in the spin space we cannot resort to the quaternionic ge
alization of the Schur Lemma, and we must proceed more carefully.

Let us consider a basis inQn in which the elements of SU(2,C) are represented by comple
matricesD(u), and the HamiltonianH acts as a real multiple ofi1.12,17

Let T be an operator which commutes with anyD(u), and let us poseT5T11 jT2 , with T1

andT2 complex matrices. The relationTD(u)5D(u)T becomes now

~T11 jT2!D~u!5D~u!~T11 jT2!

so that

T1D~u!5D~u!T1 ,

jT2D~u!5D~u! jT25 jD * ~u!T2

and then, by using the Schur Lemma for complex representations, we obtainT15l1, lPC.
RegardingT2 , we observe that also the representative in the spin space of the operatore2 ipJy,

that we denote byD0 , induces the same similarity transformation betweenD(u) andD* (u) asT2

does; indeed

D0
21D~u!D05D~ei ~p/2!sy!D~u!D~e2 i ~p/2!sy!5D@~ isy!u~2 isy!#5D~u* !5D* ~u!,

and thenD0T2 commutes withD(u), hence by the above LemmaT25mD0
21, mPC and

T5l11 j mD0
21, l,mPC.
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Among these operators, those of the formT5l1(lPC) commute withH ~hence they can
describe the elements ofG andP!, while the anticommutation withH is obtained if and only if
l50.

For, in the spin space we can pose

Q5 j mD0
21 ~4!

and then

Q252~21!2s1. ~5!

Note that the sign ofQ2 is opposite in QQM with respect to the one in CQM; but this res
is not at all unforeseen, because the same situation occurs when one considers the time-in
operator.12

If we introduce a new operator

Q05Qe2 ipJy5e2 ipJyQ, ~6!

we have

Q05 j m1, mPC,umu51 ~7!

~i.e., it is diagonal in the spin space!, and

Q0
2521. ~8!

Moreover,Q0 commutes with all the elements inG, because they commute both withQ and
with the elements ofP1

↑ . In the following, for the sake of simplicity, we will refer toQ0 instead
of Q when we discuss the property of CPT invariance. Obviously, all the results in the follo
sections must be later translated in terms ofQ.

The elements ofG and the operatorP too are diagonal in the spin space, as we have s
above, and they are described by complex~unimodular! multiples of the identity.

In particular, ifP05l01 denotes the space inversion operator, it is Hermitian ifl0561 ~and
then it commutes withQ andQ0!, while it is anti-Hermitian ifl056 i ~and then it anticommutes
with Q0!.

For, whatever is the spin

P0
251⇔@P0 ,Q0#50

or

P0
2521⇔$P0 ,Q0%50,

and the same commutation or anticommutation relations hold betweenQ0 and P5P0g, ;g
PG.

We observe in conclusion that all the operatorsQ0 ,P andgPG assume a diagonal form in
the spin space~and leave the particles at rest!, so that in the following we can suppress, witho
ambiguity, all the spin and momentum variables.

IV. EXTENSIONS BY THE Q0 OPERATOR

We can now proceed to extend the groupG, limiting ourselves in this section to study th
extensionsH obtained by means of the CPT operator only,

H5G1Q0G. ~9!
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~Note that Q0
2 belongs toG by definition.! Applying the general techniques developed in

previous paper and briefly resumed in the Introduction, we can state that, due to the rema
properties ofQ0 ~namely, it is an anti-Hermitian operator, see Eq.~8!, which commutes with all
g’s! only three types of irreducible representations can really occur, that we denot
C/R,C/C,C/2Q, according to whether the irreducible representationD(G) is of typeR, Cor Q,
respectively. Here, the symbolsC/R andC/C shows that given a representationD(G);R ~i.e., of
type R!, or ;C one obtainsD(H);C, while in the third caseD(G);2Q ~i.e., it is the sum of
two equivalentQ-irreps of typeQ! and againD(H);C. ~Note that the notation we adopt here
somewhat modified with respect to the one introduced in Ref. 12.! The explicit forms ofD(H) are
given in a suitable basis by

D~G!5D~G!, D~Q0!5 i1, ~case C/R!, ~10!

D~G!5D~G!, D~Q0!56 i1, ~case C/C!, ~11!

D~G!5S D~G! 0

0 D~G!
D , D~Q0!5S 0 À1

1 0 D , ~case C/2Q!; ~12!

in particular, Eqs.~10! and ~11! refer to the basis in whichD(G) has a real or complex form
respectively.

The representations in casesC/R andC/C belong to the first type in the generalized Wign
classification~see Sec. II!, while in caseC/2Q they belong to the third type in the same class
cation.

It is easily seen thatD(Q0) in Eq. ~10! can be~equivalently! represented by any unit imag
nary quaternion, whileD(Q0) in Eqs. ~11! or ~12! represents the most general form of an an
hermitian operator which commutes with aQ-irrep D(G) of typeC or Q, respectively~in the last
case the quaternionic generalization of the Schur Lemma~see Sec. II! has been used!; moreover,
one can immediately verify that the6 sign in Eq.~11! corresponds to two inequivalentQ-irreps,
while a change of the sign ofD(Q0) in the other cases is not at all relevant.

Finally, it is noteworthy to observe that, if we carry out a change of basis on Eq.~12! by
means of the matrix

U5
1

&
S 1 i1

j 1 k1D ,

one obtains the following form ofD8(H)5UD(H)U21,

D8~G!5
1

2 S D2 iD i 2~D1 iD i ! j

j ~D1 iD i ! 2 j ~D2 iD i ! j D , D8~Q0!5 i S 1 0

0 1D , ~13!

i.e., D8(G) takes a complex form, which constitutes an irreducible~complex! representation ofG
belonging to the FS class21; in the following we often refer to Eq.~13! as to the general form o
caseC/2Q.

It must be stressed, however, that the previous forms of representations achieved by m
the above-mentioned techniques cannot admit a physical interpretation as the representa
our symmetry group, with the only exception of the caseC/R. Indeed, just by definition of
internal symmetry, the elements ofG must commute with the Hamiltonian operatorH, which in
turn must anticommute with the CPT operatorQ0 . But we have pointed out above that in th
casesC/C andC/2Q, in a suitable basis, all antihermitian operators commuting withD(G) are
real multiples ofi1, so that they all mutually commute, whereas in the caseC/R, any operator of
the formH5 j a1 (aPC) anticommutes withQ0 and then can be chosen to represent the Ham
tonian.
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Therefore, except for the caseD(G);R, reducible representations arise to describeH, and the
simplest ones are given, whenD(G);C, by a sum of two representations of the form~11!, which
must be chosen necessarilyinequivalent,

D̃~G!5S D~G! 0

0 D~G!
D , D̃~Q0!5 i S 1 0

0 21D , ~14!

in order to obtain the proper commutation relations with the anti-Hermitian operator

H5S 0 a1

2a* 1 0 D , aPC,

and by a sum of twoequivalentrepresentations of the previous form~13! whenD(G);Q,

D̃~G!5S D8~G! 0

0 D8~G!
D , D̃~Q0!5 i S 1 0

0 1D , ~15!

whereH assumes the following form:

H5h0 j S 0 0 0 À1

0 0 1 0

0 1 0 0

21 0 0 0
D , h0PR.

V. EXTENSIONS BY THE PARITY OPERATOR

We can now proceed to study and classify the~irreducible! representations of the groupK,
obtained extendingH by means of the~generalized! parity operatorP,

K5H1PH5G1Q0G1PG1PQ0G. ~16!

The fundamental relations betweenP, Q0 , and theg’s are

PQ056Q0P,

PgP21PG,

P2PG.

On the basis of the results of the previous section, theQ-irreps ofH are in any case of typeC.
Then, applying to each of them the general results on the representations of the minimal
sions of a given group,12 only four distinct cases can arise, that we denote by the symbolsC/C,
Q/C, C/C1C, andR/2C, respectively, where the letter on the left refers to the FS classifica
of theQ-irreps ofK, while the one on the right refers toH, and we denoted byC1C ~respectively,
2C! the sum of two inequivalent~respectively, equivalent! Q-irreps of typeC. We note that in the
first and in the second case no further doubling of dimensions arises, due to the extensionP,
while this doubling actually occurs in the last cases, where two irreducible representationsH
must be added.

A. D„H…ÄD„H…

Let us first examine the cases in which no doubling of dimensions arises and which
spond to type I in the generalized Wigner classification~see Sec. II!. TheQ-irrepsD(K) of K are

D~H !5D~H !, D~P!5S, ~17!
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whereD(H) is given by the Eqs.~10!, ~11!, and~13!.
As regardsS, one easily sees from the explicit form ofD(Q0) in all the three cases that th

condition @P,Q0#50 is verified by any matrixS with complex elements~and in this case the
representationD(K) is manifestly of typeC!; on the contrary, the condition$P,Q0%50 implies
S5 jS8 with S8 complex.

Let us observe that

D̄~h![D~P21hP!5S21D~h!S,

so thatD̄(H) is in any case equivalent toD(H). Its restriction toG is an irreducible~complex!
representationD(G) which is equivalent~as aC-irrep! to D̄(G) wheneverS is complex, whereas
it is equivalent toD̄* (G) ~in the same sense! wheneverS5 jS8.

Thus, in the case@P,Q0#50, any complex matrix which effects the equivalence betwe
D(H) andD̄(H) can be chosen to representP; however, given two of them, sayS1 andS2 , one
easily obtains by the Schur Lemma forC-irreps and the unitarity

S1S2
215eiu1, uPR.

Finally, imposingS1
25S2

25D(P2) one hasS156S2 , and only two distinct~inequivalent!
representationsD(K) are so obtained.

On the contrary, in the case$P,Q0%50, the above argument fails to be true. Indeed, given
complex matrices, sayS18 andS28 , which effect the equivalence betweenD(H) andD̄* (H), one
can conclude, as above, that they differ only by a phase factoreiu8, but it is easily seen that the
generate two equivalent representations of the form~17! ~being trivially N jS18N

215 jS28 and
ND(H)N215D(H) whereN5ei (u8/2)1!.

To sum up, starting from the representations in Eqs.~10!, ~11!, and~13! we obtain six distinct
cases, that we denote synthetically by the symbolsC//R, C//C, C//2Q, Q//R, Q//C, andQ//2Q,
omitting any reference to the representationsD(H) obtained in the intermediate step of th
extensions and exhibiting the FS classification of theD(K)’s arising from the double extension o
the D(G)’s.

According to the above results and the previous discussion on the6 sign in Eq.~11! ~see Sec.
IV !, each of the casesC//R andC//2Q splits into two subcases which differ by the sign inD(P),
the caseQ//C splits into two subcases which differ by the sign inD(Q0), and the caseC//C splits
into four subcases which differ by the sign both inD(Q0) as inD(P).

B. D„H…ÅD„H…

Let us now proceed to inquire into the cases in which a doubling of dimension occurs, d
the extension by the parity operator. The general form ofD(K) ~according to the results cited i
Sec. II! is given by

D~G!5S D~G! 0

0 D̄~G!
D , D~Q0!5S D~Q0! 0

0 D̄~Q0!
D , D~P!5S 0 D~P2!

1 0 D , ~18!

whereD(G) andD(Q0) assume one of the forms~10!, ~11! or ~13! andD̄(h)[D(P21hP) is a
representation ofH ~of the same FS class asD! which can be equivalent or not toD(H).

Note that in any caseD(Q0)5 i1 ~up to a sign!; thus, a simple and straightforward calculatio
shows that

D~P!D~Q0!52D~Q0!D~P!⇔D̄~Q0!52D~Q0!,
~19!

D~P!D~Q0!51D~Q0!D~P!⇔D̄~Q0!51D~Q0!.
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1. D„H… equivalent to D¯
„H…

Let us supposeD(H)>D̄(H) ~then,D(K) is of type III in the generalized Wigner classifi
cation! and letS be the unitary matrix which effects the equivalence between them~see Appen-
dix!. We poseS5S01 jS1 , with S0 ,S1 complex matrices, and obtain in particular

D~Q0!~S01 jS1!5~S01 jS1!D̄~Q0!,

hence, the two mutually exclusive cases can occur,

$Q0 ,P%50⇔D̄~Q0!52D~Q0!⇔S050,
~20!

@Q0 ,P#50⇔D̄~Q0!51D~Q0!⇔S150.

On the other hand,D̄(g)5D(P21gP)5S21D(g)S implies, wheng85P21gP,

D̄~g8!5D~P22gP2!5S22D~g!S2,

and finally ~beingP2PG!,

@D~P2!S22,D~G!#50.

SinceD(G) can be considered in any case a complex~or a real! irreducible representation
over aCn space~see Secs. II and IV!, andS2 as well asD(P2) are complex matrices, applying th
Schur Lemma forC-irreps, one hasD(P2)S225a1, whereaPC anduau51 by unitarity. Would
beScomplex~i.e., S150!, suitably choosing the arbitrary phase ofS, we could pose without loss
of generality,D(P2)5S2; but, in this case the representation in Eq.~18! would be reducible, as
one can easily see by carrying out a basis transformation by means of the matrix

V5
1

&
S 1 S

1 2SD ;

indeed,

1

2 S 1 S

1 2SD S D~H ! 0

0 S21D~H !S
D S 1 1

S21 2S21D 5S D~H ! 0

0 D~H !
D ,

1

2 S 1 S

1 2SD S 0 S2

1 0 D S 1 1

S21 2S21D 5S S 0

0 2SD .

If, on the contrary,S5 jS1 , we must havea561 ~sinceScommute withD(P2)5D̄(P2), hence
with a!, so thatD(P2)56S2. But using the same arguments as above, one can deduce th
caseD(P2)5S2 corresponds to a reducible representation.

Then, we can conclude that the representation in Eq.~18!, whenD(H)>D̄(H), is irreducible
if and only if S5 jS1 andD(P2)52S251S1* S1 .

Furthermore, we note that in this case one has

D̄* ~H !5S1*
21D~H !S1* , ~21!

i.e.,D(H) andD̄* (H), henceD(G) andD̄* (G), considered asC-irreps, are equivalent by mean
of the complex matrixS1 . But the relation in Eq.~21! can never occur ifD(G), henceD̄(G),
belong to the classesR or Q in the generalized FS classification; these representations, ind
correspond toC-irreps which are equivalent to their complex conjugate, and then, by transit
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one would haveD(G)>D̄(G) when considered as C-irreps, in contradiction with the above resu
that no complex matrix effects this equivalence~see Eq.~20!!. No logical contradiction, on the
contrary, arises ifD(G);C, so that we can finally conclude that in the Eq.~18!, whenD(H)
>D̄(H), only the caseD(G);C can occur.

The explicit form ofD(K) is the following:

D~G!5S D~G! 0

0 S1
21D* ~G!S1

D , D~Q0!5 i S 1 0

0 21D , D~P!5S 0 1S1* S1

1 0 D . ~22!

A basis transformation by the matrix

W5S 1 0

0 jS1
D

carriesD(K) in D8(K)5WD(K)W21, where

D8~G!5S D~G! 0

0 D~G!
D , D8~Q0!5 i S 1 0

0 1D , D8~P!5S 0 2 jS1

jS1 0 D ~23!

~case R//2C!. The representation in Eq.~23! is potentially real, according to the generalized F
classification; indeed a further transformation, carried out by the matrix

Ŵ5
1

&
S 1 j 1

i1 2k1D
allows one to obtain

D9~G!5
1

2 S D~G!1D* ~G! 2 i ~D~G!2D* ~G!!

i ~D~G!2D* ~G!! D~G!1D* ~G!
D ,

D9~Q0!5S 0 1

21 0D , D9~P!5
1

2 S 2~S11S1* ! i ~S12S1* !

i ~S12S1* ! S11S1*
D ,

which is manifestly real.

2. D„H… not equivalent to D¯
„H…

Let us consider finally the cases that can occur when Eq.~18! holds, and the representation
D(H) and D̄(H) are not equivalent. In these cases, recalling the list at the beginning of
section, it is necessarilyD(K);C.

Whenever@P,Q0#50, we note that, beingD(Q0)5D̄(Q0), we must haveD(G)>” D̄(G) in
order thatD(H)>” D̄(H); hence, we obtain three possible cases that we denote asC//R1R,
C//2Q12Q, andC//C1C.

Whenever$P,Q0%50, we obtain at once three possible cases, that we denote again b
same symbolsC//R1R, C//2Q12Q, andC//C1C ~note, however, that they differ in the form
of D(Q0), as we stressed at the beginning of Sec. V B!, but another case arises in additio
Indeed,D(G) and D̄(G) can be now equivalent or not.~Let us suppose for instance that th
equivalence between them be effected by a complex matrixS; thenS commutes withD(Q0), so
that we can have on the wholeD(H)>” D̄(H).! Actually, they can be equivalent when~and only
when! D(G);C, as one can see applying the irreducibility criterion in Sec. II~see Eq.~1!! to the
representationD(K) in Eq. ~18!.
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Indeed, the cosetsPG andPQ0G are represented inD(K) by off-diagonal matrices, so tha
one has

(
K

x̂2~k!5(
H

x̂2~h!.

On the other hand, whenD(G);R or D(G);2Q, since the traces ofD(G), hence ofD̄(G),
are real11 one easily sees from the forms ofD(Q0) in Eqs.~10! and~13! that the cosetQ0G does
not even contribute in the sum, and it follows in both cases

(
K

x̂2~k!5(
G

x̂2~g!5(
G

~ x̂D~g!1x̂ D̄~g!!25H 4@G#5@K# if D>D̄

@G#1@G#5
@K#

2
if D>” D̄

~see Sec. II!; then, the caseD(G)>D̄(G) must be excluded.
On the contrary, no contradiction arises applying the same criterion whenD(G);C. More-

over, the matrixSwhich effects the equivalence betweenD(G) andD̄(G) is necessarily complex
indeed, neither can beS5 jS1 , with S1 complex, ~otherwise, being alsoD̄(Q0)5D* (Q0)
5( jS1)21D(Q0)( jS1) for anyS1 , one would haveD(H)>D̄(H)!, nor can beS5S01 jS1 , with
both S0 , S1 complex matrices different from zero~otherwise, one would have simultaneous
S0D̄(G)5D(G)S0 andS1D̄(G)5D* (G)S1 , with bothS0 , S1 invertible mappings~by the Schur
Lemma!, contrary to our assumptionD(G);C!.

In conclusion, if$P,Q0%50 the possible cases areC//R1R, C//2Q12Q, C//C1C, and
C//2C.

VI. COMMENTS AND CONCLUSIONS

We summarize in the Tables I and II all the previous discussions on the various forms
can assume the representations of the double extensionK of the internal symmetry groupG.

Each square in the tables is suitably characterized according to a set of~mutually exclusive!
conditions about the FS-type of the representationsD(G), the possible equivalence betweenD and
D̄, and the form ofD(P2), so that one can at once single out~up to an equivalence! the repre-
sentationD(K) arising under the above conditions.

In particular in Table I the parity operatorP commutes withQ0 ; in all cases the representa
tions are potentially complex and only two types in the generalized Wigner classification~of the
extensions by means ofP! occur.

Table II on the contrary concerns the cases in whichP anticommutes withQ0 . One can
observe that the representation ofK can belong to all three cases of the generalized Froben
Schur classification; moreover a strong correlation exists between the FS class and the W
type ~of the extensions by means ofP! to which every representation belongs~indeedD(K)
;Q,C,R if and only if it is of the I or of the II or of the III Wigner type, respectively!.

We stress however, as we did already in Sec. IV, that the representations described
tables admit the proper~to our aim! physical interpretation only if there exists an anti-Hermiti
operator which commutes with all the elements ofG and withP, and anticommutes withQ0 .

A straightforward analysis, analogous to the one developed in Sec. IV, shows by usin
Schur Lemma that a nontrivial operator with the above properties exists only in the casesC//R,
C//R1R, Q//R ~i.e., whenD(G);R! andC//2C.

In all other cases~exceptC//C1C!, in order to assure the existence of such an operator,
needs resorting to reducible representations ofK, so that a further doubling of dimensions arise

The proof is direct but rather tedious: it suffices here to say that for the cases of the W
type I the arguments are exactly the same as in Sec. IV, whereas for the case of the Wign
III, although the representation ofG is already reducible (D(G);2C), one must add two in-
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equivalent representations, as we have outlined in Sec. IV, to achieve the goal; finally, in th
C//C1C, one can easily verify that such an anti-Hermitian operator cannot exist, not
resorting to a reducible representation~whatever its dimension may be!.

As a consequence of the above remark, we must conclude that in the realm of QQM
cannot any longer assert that the particle multiplets correspond to irreducible representation
extended symmetry group: they may correspond instead to reducible representations, a
statement holds whether we refer or not to a theory which admits~generalized! parity symmetry.
This obviously conflicts with the usual assumption one maintains in the realm of CQM
deserves a deeper investigation.

Further investigations, of a different kind, are suggested by an examination of the ex
forms of the representations in the Tables I and II. Let us consider for instance the caseQ//C in
Table II. If one performs a suitable change of basis, the above representation becomes no

D~G!5S D* ~G! 0

0 D~G!
D , D~Q0!5S 0 k1

k1 0 D , D~P!5S 0 2S1

S1* 0 D ~24!

and the Hamiltonian is

H5 ih01, h0PR. ~25!

On the other hand, if we consider a physical theory which is not invariant with respect t
~generalized! parity operator and then study the extension of the same representationD(G) of G
obtained by means only ofQ0 , the caseC/C described by Eq.~14! ~see Sec. IV! arises. Perform-
ing again a suitable change of basis, we obtain

D~G!5S D* ~G! 0

0 D~G!
D , D~Q0!5S 0 k1

k1 0 D , ~26!

and the Hamiltonian is

H85 ih011 jh1S 0 1

1 0D , h0 ,h1PR. ~27!

It follows at once that the representations ofG and Q0 are identical in both cases; but th
presence in the former case of a further symmetry, namelyP, forces to cancel in the form ofH the
genuinely quaternionic term inj, to which we can then ascribe the parity violation, in a perf
accordance with some arguments due to Adler18 in a very different context. This elementar
example can perhaps suggest a more formal method to inquire about on these topics.
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APPENDIX

Proposition 1: The equivalence between unitary Q-representations can always be effec
a unitary matrix.

Proof: Let D1 andD2 be two equivalent unitary irreducibleQ-representations, and letT be the
matrix that effects the equivalence between them,

D1T5TD2 . ~A1!

The conjugate of Eq.~A1! reads

T†D1
†5D2

†T†
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or, recalling the unitarity ofD1 andD2 ,

T†D15D2T†. ~A2!

Then,TT†D15TD2T†5D1TT†, i.e., the Hermitian matrixTT† commutes withD1 and by the
Schur Lemma,TT†5r1, r PR. Moreover,r>0 being trivially

;uf&PQn, ^fuT†Tuf&5r ^fuf&5iTuf&i2.

Hence,T85(1/Ar )T is a unitary matrix such that

D15T8D2T821. ~A3!

The proof for reducible representations follows at once, observing thatD1>D2 if and only if
the irreducible blocks in their decomposition are by twos equivalent.
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The U„1…-invariant field theories with normal field
operators
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In this paper we consider a very general U~1!-invariant field theory such that a field
operator commutes with its adjoint, that corresponds to a theory of a charged
bosonic particle. We show that from such an invariance follows the existence of
particles and antiparticles associated with the same physical state. The field opera-
tor always turns out to be the sum of a particle creation and an antiparticle anni-
hilation operator. We study in detail the case when creation and annihilation op-
erators factorize and show that such operators are closely related toq-deformed
commutation relations. ©2000 American Institute of Physics.
@S0022-2488~00!02405-1#

I. INTRODUCTION

In quantum field theory today there are many general theorems which give limitatio
possible field theories, e.g., the CPT theorem, the spin and statistics theorem.1

In this paper we investigate the implications of the U~1!-invariance of a field theory. Ou
assumptions will be very limited, namely, we consider a normal field operatorF ~an operator
which commutes with its adjoint! such that the vacuum state is U~1!-invariant on the algebra
generated byF and F* . Particularly we make no assumptions concerning the structure o
space–time.

We show that from such an invariance follows the existence of particles and antipar
associated with the same physical state. The field operator turns out to be the sum of a
creation and an antiparticle annihilation operator. We study in detail the case when creatio
annihilation operators factorize and show that such operators are closely related toq-deformed
commutation relations.

Our method is based on an analysis of orthogonal polynomials in two variables.2,3

II. U„1…-INVARIANT FIELD THEORIES

We consider a field theory with a Hilbert spaceH and a field operatorF:H→H. We assume
that there is a statef:A→C ~whereA is an algebra generated by operatorsF andF* ) which is
U~1!-invariant, i.e., if in any expression inA we replace operatorsF by eisF andF* by e2 isF* ,
the value of the state should not change for anysPR.

Usually the state is simply a vacuum expectation,f(S)5^VuSV&, where V denotes the
vacuum. In this case the U~1!-invariance of a state means that the vacuum is U~1!-invariant as
well, so the U~1!-symmetry of the theory remains unbroken.

Assume thatF is a normal operator, i.e.,FF* 5F* F. This assumption is usually fulfilled in
the theories of bosonic particles.4

a!Electronic mail: psnia@math.uni.wroc.pl
b!Electronic mail: zygmunt@impan.gov.pl
46040022-2488/2000/41(7)/4604/3/$17.00 © 2000 American Institute of Physics
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By standard methods of functional analysis we can assign toF a measurem with support on
the complex planeC such that

f~FkF* l !5E
C
zkz̄ldm~z!.

The U~1!-invariance of the statef implies that the measurem is rotation invariant.
Let us consider polynomials on the complex plane of two variables,z and z̄. The following

theorem proven by Zygmunt2 holds:
Theorem 1:Let polynomials Pk,l(z,z̄) form a system of orthonormal polynomials given by t

Gram–Schmidt procedure applied to the sequence

1,z,z̄,z2,zz̄,z̄2, . . . ,zn,zn21z̄, . . . ,z̄n, . . .

with respect to the rotation invariant measurem on C (the polynomial Pk,l has the leading term
proportional to zkz̄l ).

For all non-negative integers k,l they fulfill the following recurrence relations:

zPk,l5ak,l Pk11,l1a l 21,kPk,l 21 ,

z̄Pk,l5a l ,kPk,l 111ak21,l Pk21,l .

The coefficientsak,l are positive for k,l>0 and a21,l50. Furthermore for all non-negative
integers k,l they fulfill the following relations:

ak,la l ,k115a l ,kak,l 11 , ~1!

ak,l
2 1a l 21,k

2 5a l ,k
2 1ak21,l

2 . ~2!

Using the notation of this theorem let us denote

ck,l5Pk,l~F,F* !VPH.

We have

^ck,l ucm,n&5E
C

Pk,l Pm,ndm~z!5dk,md l ,n , ~3!

Fck,l5ak,lck11,l1a l 21,kck,l 21 , ~4!

F* ck,l5a l ,kck,l 111ak21,lck21,l . ~5!

We see thatck,l is a family of orthonormal vectors inH indexed by a pair non-negativ
numbers. We can think that the indexk represents the number of particles and the indexl the
number of antiparticles which are in the physical state corresponding to the operatorF.

Equations~4! and ~5! tell us that the operatorF5K* 1L is a sum of two operators:K* , a
creator of a particle; andL, an annihilator of an antiparticle, whileF* 5K1L* is the sum of an
annihilator of a particle and a creator of an antiparticle.

III. FACTORIZABLE CREATION AND ANNIHILATION OPERATORS

It is natural to restrict our considerations to the case in which each of the oper
K,K* ,L,L* is a product of two operators, each depending either on the number of particles
number of antiparticles.

This means that we are solving the equationak,l5 f kgl . From Eq.~1! it follows that
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glgk115gkgl 11 ,

so (gi) forms a geometric sequence. We may take it in the formgi5qi since the constant facto
can be moved to the (f i) sequence. From the assumptionak,l.0 follows thatq.0.

Now Eq. ~2! takes the form

@~ f k!
22~ f k21!2#q22k5@~ f l !

22~ f l 21!2#q22l ,

therefore there exists a constantc such that

@~ f k!
22~ f k21!2#q22k5c2

from which it follows that

ak,l5cA11q21¯1q2kql5H cA12q2k12

12q2 ql for qÞ1

cAk11 for q51

.

We see that the case ofq51 corresponds toF being equal~up to a constant! to a sum of a
classical bosonic particle creator and antiparticle annihilator.

In the general case we haveK5cAkq
Nl andL5cAlq

Nk, whereNk , Nl denote the number o
particles or number of antiparticle operators, respectively, andAk , Al denote the particle and
antiparticle annihilation operators,Ak* , Al* denote the particle and antiparticle creation operat

Operators concerning particles and antiparticles commute,

AkAl5AlAk ,

Ak* Al* 5Al* Ak* ,

Ak* Al5AlAk* .

Creation and annihilation operators fulfill theq2-deformed commutation relation,5

AkAk* 2q2Ak* Ak51,

AlAl* 2q2Al* Al51.

1R. F. Streater and A. S. Wightman,PCT, Spin, and Statistics and All That~Benjamin, New York, 1964!.
2M. J. Zygmunt, ‘‘Recurrence formula for polynomials of two variables, orthogonal with respect to rotation inva
measures,’’ Constr. Approx.15, 301–309~1999!.

3P. K. Suetin,Ortogonal’nyje Mnogochleny po Dvum Peremennym~Nauka, Moskva, 1988!.
4N. N. Boglyubov and D. V. Shirkov,Vvedenie v Teoriu Kvantovannych Polej~Nauka, Moskva, 1976!.
5U. Frisch and R. Bourret, ‘‘Parastochastics,’’ J. Math. Phys.11, 364–390~1970!.
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Classical and quantal Lorentz covariant models
of the electromagnetic radiation field

Terje Aabergea)

Department of Theoretical Physics, University of Geneva, CH-1211 Gene`ve 4, Switzerland

~Received 5 January 2000; accepted for publication 24 February 2000!

We present Lorentz covariant models of the radiation field, i.e., plane wave solu-
tions of the Maxwell equations satisfying the Coulomb gauge condition. The theory
is constructed along traditional lines. We apply the interpretation of the field as a
collection of photons and starts by constructing the state space of the photon. The
novelty of this formulation is the use of a new action of the Lorentz group on the
space of circular helicities of spin 1 which permits the construction of an action on
the state space of the photon. Moreover, the generators of the action provide objects
that can be used to construct the field observables both in the classical and quantum
case. The result is a theory with a tight structure. It is a generalization of the
standard theory, a covariant generalization, and it contains this as a special case.
© 2000 American Institute of Physics.@S0022-2488~00!05207-5#

I. INTRODUCTION

Solutions which are assumed to describe the vector potential of the electromagnetic ra
field are of the form1

A0~xm;c«!50,

A~xm;c«!5
1

~2p!3/2EAv

2
~c~k!«~k!eik•x1c* ~k!«* ~k!e2 ik•x!d3k/v,

wherec:R3→C, k•x52vt1k"x, «(k)5 (1/&) («1(k)1 i «2(k)) and

«1~k!5S 2
k1k3

vAk1
21k2

2
, 2

k2k3

vAk1
21k2

2
,

1

v
Ak1

21k2
2D ,

«2~k!5S k2

Ak1
21k2

2
, 2

k1

Ak1
21k2

2
, 0D .

The radiation solutions satisfy the Coulomb gauge, i.e., the transversality conditionk"«(k)50.
This transversality condition is not Lorentz invariant. It is however, invariant under the rotat
The solutions are thus not Lorentz covariant in any canonical way. The most obvious choi
making Lorentz covariant solutions are to relax the gauge conditions by assuming only the L
gauge. This however, amounts to assuming a size of the state space which is not suppo
experience.

The notions of covariance refers to the following:
Definition 1: LetM andS be two spaces, G a group that acts onM andS by the actionsG

and U and let f:M→S be a map. f is then said to be G-covariant iff the following diagram
commutes:

a!Permanent address: Vestlandsforsking, N-6851 Sogndal, Norway.
46070022-2488/2000/41(7)/4607/15/$17.00 © 2000 American Institute of Physics
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S →
Ug

S

↑ f ↑ f

M →
Gg

M
;gPG, in other words

f ~Gg~m!!5Ug~ f !~m!.

In this paper we are discussing Lorentz covariant plane-wave solutions of the Maxwell
tions. Consider the electromagnetic vector potentialAm(xm;) as a map from the state spaceM into
the plane-wave solution spaceS,

Am~xm; !:M→S; m°Am~xm;m!.

S is known once the state space is constructed; moreover, it is generally accepted thatU is given
by

U~L!:S→S; Am~xm; !°~U~L!Am!~xm; !5Lm
n An~Ln

21mxn; !,

whereL denotes the usual Lorentz transformations. The problem is then to defineM and the
actionG such that the covariance condition

Am~xm;GL~m!!5Lm
n An~Ln

21mxn;m!

is satisfied.
We have used the method outlined by Wigner2 to construct a covariant action of the radiatio

solutions of the Maxwell equations. The method consists in chosing a canonical frame of ref
and let the Lorentz transformations be represented by Wigner rotations based in this
However, in order to do the construction we need to define the state space and an action
Lorentz group on the state space.

The degrees of freedom of the radiation field is carried by ’’photons.’’ In the above form
the classical vector potential is given as a function ofc« which can be said to represent the sta
of the radiation field, but which also can be interpreted as describing the state of the ensem
photons constituting the field. The construction that we are proposing in the following is bas
this interpretation. We start by considering the state space for spin 1 and the subspace of
helicity which represent the spin degrees of freedom of a photon. We show, by construc
representation of the Lie algebra so~3, 2! on this space, that there exists an action of the Lore
group SO~3, 1! on the helicity states. This is then the basis for the construction of the state
of the photon. Both the vector potential and the field observables are functions on the ’’ph
state space. We give a manifestly covariant expression for the classical vector potenti
compute the expressions for the classical electromagnetic field observables. It is then sho
they are covariant under the given actions of the Lorentz group. We also show that the ener
momentum of the classical field is given by the standard definitions.

In the classical case, the states of the radiation field describes the ensemble of p
constituting the field. The densityr is an intensity of photons in thek-space. In the quantum cas
however, a state is the state of an individual photon,r(k)d3k is then a probability measure. Th
quantum state space can be constructed from the classical one modulo this interpretatio
mathematical construction. This construction involves three steps. First, we construct self-a
representations of so~3, 2! and so~3, 1!, and a class of vectors whose coefficients in a giv
canonical basis are harmonic functions of (z)eC2. We then outline the construction and rec
some basic properties of Fock space. To define the one-photon state space of the quantu
tion field, we apply a map defined by the harmonic vector, from the classical state space
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carrier spaceh0 of an irreducible representation of so~3, 2!; the set of one-photon states is then t
image of the ’’classical’’ space inh0 . The operators representing the quantum mechanical
observables are obtained by replacing some functions in the classical expressions by operat
prove a few relations to show that the definitions that have been chosen are reasonable.

II. SPIN 1 AND HELICITY

The quantum observables of spins are described by the generatorsS1 ,S2 ,S3 of the unitary
~projective! representation of the rotation group SO~3! of R3 in C2s11, the spin space. For spin
the state space is thusC3 and a representation of the spin observables is given by the self-ad
operators,

~Si !5S S 0 0 0

0 0 i

0 2 i 0
D , S 0 0 2 i

0 0 0

i 0 0
D , S 0 i 0

2 i 0 0

0 0 0
D D •

In this particular representation, the real and imaginary part of the state vector transform ind
dently, and as ’’vectors,’’ under the rotations. It is thus natural to use the notatiow
5 (1/&) (u1 iv). In terms of the real vectorsu andv, the spin density has the following form

s~ .!5w†Sw5
1

i
w* ∧w5u∧v.

Definition: The vectors such thatw250 are said to describe helicity states or states
circular polarization.

The most prominent structural property of the theory of spin is complex linearity. Acc
ingly, it possesses a~canonical! symplectic structure defined by the~real! two form3,4

V5 i(
j

dwj∧dwj* .

This symplectic form is associated with the Poisson bracket,

$a,b%5
1

i (
j

~]wj
a]w

j*
b2]wj

b]w
j*
a!

which can be used to define the structure of Lie algebra on the set of differentiable functio
C3. The Lie algebra of linear operators onC3 under commutation is injected into the Lie algeb
of functions onC3 under the Poisson bracket by the map defined by

A°w†Aw5 f ~A!~w!

in fact,

$ f ~A!, f ~B!%5w†
1

i
@A,B#w5 f S 1

i
@A,B# D .

Proposition 2: Consider the symplectic manifold

@C2, 2i ~dz1* ∧dz11dz2* ∧dz2!#.

Then the map

w:C2→C3; ~z!°~w~z!!
                                                                                                                



ty

4610 J. Math. Phys., Vol. 41, No. 7, July 2000 Terje Aaberge

                    
defined by

~w~z!!5
1

A2~ uz1u21uz2u2!
S 2z1

21z2
2 ,

1

i
~z1

21z2
2!,2z1z2D

is a symplectic embedding,

C2>w~C2!,C3 and i(
j

dwj* ∧dwj52idz1* ∧dz11dz2* ∧dz2 .

Proof: By inspection. j

Proposition 3: The spin density is easily computed,

s~z!5
1

i
w* ∧w5~z!†s~z!5S z1z2* 1z1* z2 ,

1

i
~z1z2* 2z1* z!,uz1u22uz2u2D .

Proof: By computation. j

We notice thatw(z)250; thus, f (C2) is the submanifold of the states of circular helici
states inC2.

Proposition 4: Letw be a given real number, and let

qj
(w)5

Ar

2
~wje

iw1wj* e2 iw!,

r j
(w)5

Ar

2i
~wje

iw2wj* e2 iw!,

then for any value ofw the set of ten functions$qi ,r i ,si ,ru i 51,2,3%, C2→R constitute a basis for
a representation of the Lie algebraso(3,2) in the Lie algebra of functions on@C2,2i (dz1* ∧dz1

1dz2* ∧dz2)# under the Poisson bracket,

$a,b%5
1

2i
~]z

1*
a]z1b1]z

2*
a]z2

b2]z
1* b]z1

a2]z
2*
b]z2

a!.

Proof: The proof consists in verifying the ’’commutation relations,’’

$si ,sj%5« i jksk , $si ,r j%5« i jk r k , $si ,qj%5« i jkqk ,

$si ,r%50, $r i ,qj%5d i j r, $r i ,r j%52« i jksk ,

$qi ,qj%52« i jksk , $qi ,r%5r i , $r i ,r%52qi

this is done by computation. j

Corollary 5: Let l denote the action ofSO(3,1)on C2 generated by

$r i ,si u i 51,2,3%.

L the Lorentz transformation onR4 leaving invariant the Minkowski metric, and let

~qm!5~r,q! and ~smn!5S 0 r 1 r 2 r 3

2r 1 0 s3 2s2

2r 2 2s3 0 s1

2r 3 s2 2s1 0

D •
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Then,

qm~lL~z!!5Ln
mqn~z! and smn~lL~z!!5La

mLb
n sab~z!,

i.e., qm and smn are manifestly covariant with respect to the Lorentz transformations.
From this corollary follows that the expressions

smnsmn5r22s2~[0!,

«abgdsabsgd5r "s~[0!,

qmqm5r22q2~[0!

are invariant under the Lorentz transformations. Indices are raised and lowered by the Mink
metric. Moreover, for this particular representation,

sn
mqn5~2q"r ,s∧q2rr ![~0,0!.

Thus, the relations

s∧q2rr50 and q"r50

are also invariant under the Lorentz transformations, and it follows that the orthogonality o
‘‘vectors’’ q, r , and s is invariant. One can also show by direct computation that the Lor
transformeds8 of s satisfied

s825r82

accordingly,

s825q825r 825r82 and s8•r 85s8•q85r 8•q850,

i.e., the orthonormal frame (q/r,r /r,s/r) is transformed into an orthonormal fram
(q8/r8,r 8/r8,s8/r8) by the Lorentz transformations.

III. THE STATE SPACE OF THE RADIATION FIELD

There exists a nonlinear action of the Lorentz group SO~3, 1! on R3. Formally it corresponds
to the Lorentz action

km°Ln
mkn,

where (km)5(uku,k), and L is the usual linear representation of SO~3, 1! on R4. The measure
d3x/v, v(k)5uku is a Lorentz invariant measure onR3.

Let B(C2) denote a Banach manifold of measurable maps

R3→C2; ~k!°~c~k!!

such that* uc(k)u2d3x/v,`. We denote byM the Banach submanifold of circular polarizatio
which consists of the points satisfying the transversality condition,

M5$cPB~C2!us~c~k!!∧k50%.

An action of SO~3, 1! on cPB(C2) is defined by

~GL~c!!~k!5lL~c!~L21k!.
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Since the transversality condition is invariant under the rotations, the orbit inB(C2) of a point in
M is parametrized by

SO~3,1!/SO~3!.$pPR4upo
22p251,po.0%5H.

Definition: Let Lp5L(p)5L(p/po), whereL(p/po) denote a pure Lorentz transformatio
‘‘for the velocity p/po ; ’’ the subspaceMs,B(C2) such that

Ms5$GLp
~c!ucPM and pPH%

provide a representation of the state space of the electromagnetic radiation field.
From the construction ofMs we see that it is diffeomorphic toM3H. The diffeomorphism

is given by

G̃:M3H→Ms ;~c,p!~k!°~GLp
~c!~k!5lLp

~c!~Lp
21k!!.

Accordingly, the induced actionl̃5G̃21+l+G̃ of the Lorentz group onM3H, is

l̃Lp
~c,p!~k!5~lR~c!~R21k!,L21p!,

whereR(p,L)5L21(Lp)LL(p) is a rotation~Wigner rotation!.2

IV. THE FIELD VARIABLES OF THE CLASSICAL RADIATION FIELD

Let the functionsãm :M→R be defined by

ãm5«mabgkasbg/Akaqa

and let

am5ãm+G̃:M3H3R3→R3;

~c~k!,p,k!°am~c~k!,p,k!5L~p!m
n «nabgkasbg~c~k!!/Akaqa,

wherew in the definition ofq and r is (Lpk)•x5Lpn
m kmxn. Notice thatkaqa5vr on M3H.

Definition: The vector potential of the radiation field is assumed to be represented b
functionsR43M3H→R defined by

Am~xm;c,p!5
1

~2p!3/2E am~c~k!,p,k!d3k.

This definition is justified by the following proposition:
Proposition 6: Forp50, the vector potential is

A0~xm;c,~1,0!!5
1

~2p!3/2E s"k/Avrd3k/v,

A~xm;c,~1,0!!5
1

~2p!3/2E SAv

2
~w~k!eik•x1w~k!* e2 ik•x!

1Avs/Ar
D d3k/v.

Proof: By inspection. The amplitudes are

a05~2p•~k∧r !1p0s•k1vp•s!/Avr,
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a5S 2k∧r2
1

p011
p•~k∧r !p1vs2vp•sp1s•kpD /Avr.

Moreover, according to the definition~Proposition 3!,

qj5
Ar

&
~wje

i (Lpk)•x1wj* e2 i (Lpk)•x!,

r j5
Ar

& i
~wje

i (Lpk)•x2wj* e2 i (Lpk)•x!,

thus, the amplitudes can be given as

a05Av

2
p•~wei (Lpk)•x1w* e2 i (Lpk)•x!1~p0s•k1vp"s!/Avr,

a5Av

2S ~wei (Lpk)•x1w* e2 i (Lpk)•x!

1
1

p011
p•~wei (Lpk)•x1w* e2 i (Lpk)•x!pD 1~vs2vp•sp1s•kp!/Avr,

because of the transversality condition. Forp50,

a05s"k/Avr,

a5Av

2
~weik•x1w* e2 ik•x!1Avs/Ar.

j

We notice that except for the notation, this form of the vector potential differs from the
given in the Introduction only by a constant term.

Proposition 7: The electromagnetic field observables are given by

Fmn~xm;c,p!5E f mn~c~k!,p,k!d3k/v,

where

f mn5Lpm
a Lpn

b ~sagkgkb2sbgkgka!/Avr.

Proof: The electromagnetic field observables are defined by

Fmn5]xmAn2]xnAm .

With the notationei5 f 0i andbi5« i jk f jk, we find that,

e5vS vS 2p0r1
1

p011
r•ppD2p∧~k∧r ! D /Avr,

b5vS 2p0k∧r1
1

p011
~k∧r !•pp1vp∧r D /Avr.

One can then show that
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e52]xa01] ta,

b5]x∧a.

For this one uses the relations

2k∧r ~c~k!!5vq~c~k!! and ]xiqj52r jLpi
n kn.

j

Proposition 8: Am satisfies the covariance condition

Am~xm;l̃L~c,p!!5Lm
n An~Ln

21mxm;c,p!.

Proof: By computation,

Am~xm;l̃L~c,p!!5E ~LLp«!mabgkasbg~c~R21k!,~LLpk!•x!~vr~R21k!!2 ~1/2!d3k/v

5E ~LLpR«!mabg~R21k!asbg~c~R21k!,~LLpk!•x!~vr~R21k!!2 ~1/2!d3k/v

5E ~LLp«!mabgkasbg~c~k!,~Lpk!•~L21x!!~vr~R21k!!2 ~1/2!d3k/v

5Lm
n An~Ln

21mxm;c,p!,

where we have used the substitutionkm°Rn
mkn. j

Proposition 9: The energy momentum vector of the field(P0,P) defined by

P0~c,p!5E 1

2
@B~xm;c,p!21E~xm;c,p!2#d3x,

P~c,p!5E B~xm;c,p!∧E~xm;c,p!d3x,

is

Pm~c,p!5E L~p!n
mknr~k!d3k.

Proof: The field amplitudes can be given as

e~c~k!,p!5 ivAv

2
~W~c~k!,p!ei (Lpk)•x2W~c~k!,p!* e2 i (Lpk)•x!,

b~c~k!,p!5vAv

2
~W~c~k!,p!ei (Lpk)•x1W~c~k!,p!* e2 i (Lpk)•x!,

where

W~c,p!5p0w~c!2
1

p011
w~c!•pp1 ip∧w~c!.

Using the relationuWu25r(p0v1k"p)25rv82 and applying the substitutionk8°k5Lp
21k8, we

get
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P0~c,p!5E v~Lp
21k8!r~c~Lp

21k8!!d3k85E Lpm
0 kmr~c~k!!.

Similarly, since (1/i ) (W(c(k),p)∧W(c(k),p)* ) j5Lpn
j knLpm

0 km, we get

Pj~c,p!5E k8 j~Lp
21k8!~r~c~Lp

21k8!!/v8~Lp
21k8!!d3k8

5E Lpm
j kmr~c~k!!.

j

V. SELF-ADJOINT REPRESENTATIONS OF so „3,2… AND so „3,1…

Consider the Hilbert spaceH of sequences

$clmu l 50,1
2,1,32 , . . . and m52 l ,2 l 11,2 l 12, . . . ,l %.

We denote by (,) the Hermitian scalar product onH,

~c1 ,c2!5(
lm

c1lm* c2lm .

Let $glm% be the basis in which the operators a1 anda2 are defined by

~a1g! lm5Al 1mgl 2 1/2m2 1/2,

~a2g! lm5Al 2mgl 2 1/2m1 1/2.

As is easily verified, the adjoints a1
† anda2

† are then defined by

~a1
†g! lm5Al 1m11gl 1 1/2m1 1/2,

~a2
†g! lm5Al 2m11gl 1 1/2m2 1/2.

The operators a and a† satisfy the commutation relations

@ai ,aj
†#5d i j and @ai ,aj #50.

Proposition 10: A basis for a self-adjoint representation of so(3,2) and so(3,1) is obtaine
the replacements zi→ (1/&) ai and the operatorsr, q, r , s defined by

r5 1
2 ~a1

†a11a2
†a2!,

r1 iq5S 2a1
21a2

2 ,
1

i
~a1

21a2
2!,2a1a2D ,

s5
1

2
~a!†s~a!5S a1a2

†1a1
†a2 ,

1

i
~a1a2

†2a1
†a2!,a1

†a12a2
†a2D ,

satisfies the commutation relations,

@si ,sj #5 i« i jksk , @si ,r j #5 i« i jk r k , @si ,qj #5 i« i jkqk ,
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@si ,r#50, @r i ,qj #5 id i j r, @r i ,r j #52 i« i jksk ,

@qi ,qj #52 i« i jksk , @qi ,r#5 ir i , @r i ,r#52 iqi .

Proof: Direct computation. j

The spectrum ofr is $ l 1 1
2u l 50,1

2,1,32,2, . . .%, (rg) lm5( l 1 1
2)glm . We denote byhl the spec-

tral subspaces ofr. They are of the dimension 2l 11.
Proposition 11:The projectionsP0 andP1/2 defined by

P0 :H→H05 (
l 50,1,...

hl ,

P1/2:H→H1/25 (
l 5 1/2 , 3/2 ,..

hl

commute with the given representation of so~3, 2! (and so~3, 1!) on H.
Proof: It is sufficient to notice that

aiaj u hl
:hl→hl 21 ,

ai
†aj

† u hl
:hl→hl 11 ,

aiaj
† u hl

:hl→hl .

j

Corollary 12: The given representation of SO(3,2) (and SO(3,1)) on H decomposes to
of representations on h0 and h1/2.

Proposition 13: The representation of so(3,1) in h0 is the irreducible self-adjoint representa
tion ( l 050,l 15 1

2) in the supplementary series, and the representation in h1/2 is the irreducible
representation( l 05 1

2,l 150) in the principal series.
Proof: See page 200 in Ref. 5. j

We will denote byD the representation of SO~3, 1! on h0 .
Consider the vectors

Cl~z!5(
m

Clm~z!glm ,

where

zPC2 and Clm~z!5uzu2 l S 2l
l 2mD 1/2

z1
l 1mz2

l 2m .

Proposition 14: The vectors Cl has the following properties:

~ i! ~Cl 8~z8!,Cl~z!!5
~z8,z!2l

uz8u l 8uzu l
d l 8 l ,

~ ii ! rCl~z!5S l 1
1

2DCl~z!,

~ iii ! ~q1 i r !Cl~z!5Al S l 2
1

2D ~q~z!1 i r ~z!!Cl 21~z!,
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~ iv! ~Cl~z!,sCl~z!!5uzu22ls~z!.

Proof: ~i! Follows from the binomial formula,

~Cl~z!,Cl~z8!!5
1

uz8u l uzu l (
m

S 2l
l 2mD ~z1* •z18! l 1m~z2* •z28! l 2m

~z,z8!2l

uz8u l uzu l

~ii ! Repeats the definition.~iii ! Is a consequence of the following lemma:
Lemma 15: The following relations hold( i , j 51,2):

aiajC
l~z!5Al S l 2

1

2D2zizjC
l~z!.

Proof of the lemma: Applying the definitions we get (considering the case i5 j 51),

a1
2Cl~z!5(

m
S 2l
l 2mD 1/2

A~ l 1m!~ l 1m21!z1
l 1mz2

l 2mgl 21m .

Since the terms for m52 l and m52 l 11 are zero, we can shift the summation and restrict to
interval (2( l 21),l 11). Thus,

a1
2Cl~z!5(

m
S 2l
l 2m21D 1/2

A~ l 1m11!~ l 1m!z1
l 1m11z2

l 2m21gl 21m

5(
m

S 2~ l 21!

l 2m21D 1/2Al S l 2
1

2D z1
l 211m12z2

l 212mgl 21m

5Al S l 2
1

2D2z1
2Cl~z!,

where we have used the relation,

S 2l
l 2m21D5S 2~ l 21!

l 2m21D ~2l 21!2l

~ l 1m11!~ l 1m!
.

The other expressions follow from analogous computations. )

~iv! The proof consists in computing the mean values of the operatorsa1a2
† ,a1

†a2 , . . . . For
example, we get
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~Cl~z!,a1a2
†Cl~z!!

5
1

uzu2 (m F S 2l
l 2mD S 2l

l 2m21D ~ l 2m!~ l 1m11!G1/2

uz1u2(l 1m)uz2u2(l 2m)
z1

z2

5
1

uzu2 (m S 2l
l 2mD ~ l 2m!uz1u2(l 1m)uz2u2(l 2m)

z1

z2

5
1

uzu2
l2z1z2 .

In fact, according to the binomial formula,

(
m

S 2l
l 2mD uz1u2(l 1m)uz2u2(l 2m)5~ uz1u1uz2u!2l .

Operating on both sides of the equation with the differential operatorz2* ]z
2*

we get the summation

formula,

(
m

S 2l
l 2mD ~ l 2m!uz1u2(l 1m)uz2u2(l 2m)52l uz2u2~ uz1u21uz2u2!.

j

Corollary 16: The operatorw defined by

w5
1

A2r
~q1 i r !e2 iw

satisfies

wCl~z!5Alw~z!Cl 21~z!,

accordingly,

~Cl 21~z!,wCl~z!!5Alw~z!,

~Cl 11~z!,w†Cl~z!!5Al 11w~z!.

Proposition 17: Consider the vectors,

Z~z!5e2 1/2 uzu2( l
1

Al !
Cl~z!

in H0 . Then we have the following relations:

~Z~z!,Z~z!!51,

wZ~z!5w~z!Z~z!,

~Z~z!,rZ~z!!5r~z!1 1
2 ,

~Z~z!,w†Z~z!!5w* ~z!,
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~Z~z!,sZ~z!!5s~z!.

Proof: By computation. j

Z can be considered as a map,

Z:C2→h0 ; ~z!°Z~z!.

Proposition 18: The action of the rotations on C2 and H0 commutes with the map Z,

h0 →
D~L!

h0

↑ Z ↑ Z

C2 →
GL

C2

for all LPS(3),SO(3,2).
Proof: The criteria for the commutativity can be expressed by the local conditions

$sj (z) ,Z~z!%5 iSjZ~z!.

This relation can be shown to hold by computation. j

VI. THE SECOND QUANTIZATION

Let H be a Hilbert space with scalar product(,). We denote byHn the tensor product ofn
copies ofH, by uw1w2¯wn& a general tensor product element ofHn,

uw1w2¯wn&5w1^ w2^¯^ wn

and by unw& the special elementsuw¯w&. The scalar product ofHn is defined by
^c1¯cnuw1¯wn&5(c1 ,w1)¯ ,(cn ,wn).

The number and symmetrization operators onHn are defined by

Nuw1w2¯wn&5nuw1w2¯wn&,

Suw1w2¯wn&5 (
perm

1

n!
uw i 1

w i 2
¯w i n

&,

and the symmetrized spaceSHn by HS
n . For each vector inH we can define operators

P~w! : Hn→Hn11; uw1¯wn&°uww1¯wn&,

P†~w! : Hn→Hn21; uw1¯wn&°~w,w1!uw2¯wn&.

The operators

a†~w! : HS
n→HS

n11,

a~w! : HS
n→HS

n21,

defined by

a†~w!5ANSP~w!S,

a~w!5SP* ~w!SAN,
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are the creation and annihilation operators. The operators are defined on the Fock space,

FS~H !5 (
n50,1,...

%

HS
n

by canonical extension.

VII. THE STATE SPACE OF THE QUANTUM RADIATION FIELD

Consider the map

Z̃1:M3H→h03H; ~c,p!°~Z~c!,p!.

Definition: Z̃1(M3H),H03H is the set of quantum states of a photon system.
The mapZ̃1 can be extended to a map

Z̃n:M3M3¯M3H→h0S
n 3H; ~c1 , . . .cn ,p!°~SZc1^¯^ Zc2 ,p!.

We will use the notation

~SZc1^¯^ Zc2 ,p!5uZn~c1 , . . .cn ,p!&

or whenc15¯5cn5c, simply write

~SZc ^¯^ Zc,p!5uZn~c,p!&.

Definition: Z̃n(M3M3¯M3H),h0 is the set of quantum states of an-photon system.
A particular class of states are the coherent states. Consider the map

Z̃5 (
n50,1,...

%
1

An!
e2 ~1/2!Z̃n:M3H→FS~h0!3H; ~c,p!° (

n50,1,...

%
1

An!
e2 ~1/2!uZn~c,p!&.

Definition: The imageZ̃(M3H),FS(h0)3H are the coherent states.

VIII. THE FIELD VARIABLES OF THE QUANTUM RADIATION FIELD

The field variables of the quantum radiation field can be given essentially the same gra
representation as the classical one. One obtains the operators representing the field observ
replacingw (c) in the classical expressions bya(ŵZ1(c,p)) andw†(c) by a†(ŵZ1(c,p)). To
distinguish the quantum mechanical operators from the classical functions we use the sign∧; thus,
the electric field components are represented by the operatorÊ(xm;c,p). There are a number o
properties of these objects that are easy to prove by means of the relations derived in the p
sections. We give a few of these below.

Proposition 19: For the coherent states the following relations are true:

^Z̃~c,p!uÂm~~xm;c,p!!uZ̃~c,p!&5Am~~xm;c,p!!,

^Z̃~c,p!uF̂my~~xm;c,p!!uZ̃~c,p!&5Fmy~~xm;c,p!!.

Proof: The result follows directly by applying the relation,

a~ŵZ1~c,p!!uZ̃n~c,p!&5w~c!AnuZ̃n21~c,p!&

and the corresponding adjoint relation. j

Proposition 20: The energy and momentum of the field is
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P̂m~c,p!uZ̃n~c,p!&5S n1
1

2D E L~p!n
mknr~k!d3kuZ̃n~c,p!&.

Proof: Apply the above relation and redo the computation for the classical case. j

IX. CONCLUSION

The theory presented above is a generalization of the standard theory. It contains this
as a special case. In the case of radiations from atoms in the laboratory frame of referep
50) the predictions are identical with those of the standard theory. This theory however, i
capable of describing radiation from moving atoms. The details of this will be considered
where.

From a mathematical point of view the theory is extremely rigid. There is not much lat
for choosing definitions. The pieces fit like those of a clockwork. We would also like to poin
that the theory is nonlinear. The state space of the classical field as well as that of the qu
field are nonlinear. The action of the Lorentz group of these spaces are thus also nonlinea

1J. J. Sakurai,Advanced Quantum Mechanics~Addison–Wesley, Reading, 1967!.
2E. P. Wigner, Ann. Math.40, 149 ~1939!.
3R. Abraham and J. E. Marsden,Foundations of Mechanics~Benjamin-Cummings, Reading, 1978!.
4T. Aaberge, Helv. Phys. Acta67, 127 ~1994!.
5I. M. Gelfand, R. A. Minlos, and Z. Ya. Shapiro,Representations of the Rotation and Lorentz Groups and T
Applications~Pergamon, Oxford, 1963!.
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Classical four-vector fields in the relativistic
longitudinal gauge

Dale A. Woodsidea)

Department of Physics, Macquarie University–Sydney, New South Wales 2109, Australia

~Received 21 September 1999; accepted for publication 24 March 2000!

Minkowski four-space uniqueness theorems are used to develop further the author’s
‘‘ relativistic longitudinal gauge’’ @J. Math. Phys.40, 4911 ~1999!# for four-
irrotational classical four-vector fields. A theorem is developed which distin-
guishes between two and only two ‘‘physical’’ classes of classical four-vector
fields. One must satisfy the ‘‘relativistic transverse gauge,’’ i.e., the Lorentz con-
dition, while the other must satisfy this new relativistic longitudinal gauge where its
four-curl, the Maxwell field tensor itself, is set to zero. The Lagrangian density of
the new four-irrotational four-vector field is distinguished from the usual Lorentz
constrained Lagrangian density by the incorporation of an additional overall minus
sign. Application of the relativistic longitudinal gauge, in the four-irrotational four-
vector field case, eliminates the badly behaved terms associated with the spatial
degrees of freedom from a most general, fully quadratic, Lagrangian density. The
resulting constrained Lagrangian density is bounded from below and therefore a
relativistic longitudinal classical four-vector field has the possibility of a physical
interpretation. ©2000 American Institute of Physics.@S0022-2488~00!04907-0#

I. INTRODUCTION

In a previous article by the author,1 a Minkowski four-space ‘‘Helmholtz’’ identity was
proved using a Minkowski space retarded Green’s function. This identity was then used to
uniqueness theorems for sufficiently smooth four-vector fields in the Minkowski spaceR311. It
was found that the specification of thefour-curl and four-divergenceof the four-vector field
throughout the four-volumeV4 , as well as thefour-tangentialandfour-normalprojections of the
four-vector field everywhere on the bounding three-surfaceS, are sufficient to obtain a uniqu
four-vector field. A further result was that a four-vector field is uniquely specified by the su
a four-irrotational and a four-solenoidalpart. This latter theorem corresponds to a four-sp
generalization of Helmholtz’s uniqueness theorem.

These results are now applied to two general classes of four-vector fields. These two
of four-vector fields are distinguished by their different gauge related properties. It is found t
addition to the usual~pure real! four-vector field in a ‘‘relativistic transverse gauge,’’ i.e., a
electromagnetic-type field in the Lorentz gauge, there is also the possibility of a physical
pretation for a new four-vector field whose Lagrangian differs from the former by an ov
minus sign. In order for this new four-vector field to be classically bounded from below, it t
out that the field must be constrained by a new relativistically covariant gauge that the auth
previously referred to as the ‘‘relativistic longitudinal gauge,’’ 1 where the Maxwell field tensor is
set to zero while the four-divergence is in general non-zero. This results in a four-vector
which is ‘‘four-irrotational.’’

New uniqueness statements for these two classes of four-vector fields are then develo
Secs. III C and III D for sufficiently smooth massless fields in unbounded Minkowski space
the author’s Minkowski four-space Helmholtz identity.1 In the standard~pure real! four-vector
field case, the Lorentz condition is applied to the identity and leads to what is called a ‘‘restricted

a!Electronic mail: dalew@physics.mq.edu.au
46220022-2488/2000/41(7)/4622/32/$17.00 © 2000 American Institute of Physics
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relativistic transverse gauge.’’ In the new four-vector field case, the relativistic longitudinal gau
condition is applied to the identity and leads to what is called a ‘‘restricted relativistic longitudinal
gauge.’’ These restricted relativistic gauges have the notable property that the usual gauge
formation of the second kind reduces to an identity transformation.

A covariant canonical formulation of the classical four-vector field is presented in Sec
The approach is sufficiently general so as to include both the usual~Lorentz constrained! four-
solenoidal fields and the new four-irrotational fields in one comprehensive formalism. Both
vector and pseudo-four-vector current coupling is explored. Theorem III of Sec. IV A prop
that there are two and only two classes of classical four-vector fields, associated with a
general, fully quadratic, Lagrangian density, which are bounded from below under cov
constraint and are therefore potentially ‘‘physical.’’ One class is comprised of four-vector fiel
the Lorentz gauge and the other is comprised of these new four-vector fields in the au
relativistic longitudinal gauge.

II. MATHEMATICAL BACKGROUND

Before proceeding, a few preliminary definitions are made. The nonzero components
flat space Minkowski metric tensorhmn are taken as2h005h115h225h33521. So, the ordinary
four-vector derivatives are taken as]m5((1/c)]/]t,¹) and]m5((1/c)]/]t,2¹). Similarly, the
position four-vectorxn5(ct,x,y,z), and soxn5(ct,2x,2y,2z) in this (1222) signature
metric.

Next, it is assumed that the most general form of Lagrangian density for a four-vector
which is no more than quadratic in its variables and their derivatives, is given by the so-
Stueckelburg Lagrangian density2,3 ~in SI units wheree0 is the free space permittivity andc is the
speed of light!,

L52
e0c2

4
FmnFmn2

le0c2

2
~]mAm!21

e0c2m2

2
~AmAm!2 j mAm, ~1!

wherej n5(rc,j ) is the usual four-vector current, where the positive real constantl is a Lagrange
multiplier for the Lorentz constraint term, and wherem52p/lC52pmc/h is the Compton wave
number for photons of massm. A choice ofl50 andm50 yields what many physicists believ
to be the electromagnetic theory, with its massless photons, i.e., when an appropriate cons
externally imposed. However, the choice ofl50 has the distinct disadvantage of implying
vanishing momentum canonically conjugate to the zeroth component of the four-vector po
An5(f/c,A). The incorporation of the Lorentz constraint term, with its]f/]t functionality,
eliminates this deficiency, and yields an added bonus in terms of the ease of renormalization
theory. A particularly simple choice ofl51 (and m50), then yields a Lagrangian densit
which is equivalent~i.e., differs by no more than a four-divergence!, to the so-called Ferm
Lagrangian density.4 The Fermi Lagrangian density is the most straightforward take off point
field quantization in terms of harmonic oscillators which correspond to massless photons~cf. Ref.
4!. The Stueckelburg Lagrangian density~1! also has the advantage of explicitly including th
four-divergence and four-curl ofAn, which are in turn sufficient for the unique specification o
four-vector field as is reviewed in Sec. III C. The inclusion of the four-divergence in particul
what makes~1! the only suitable choice for the analysis of four-vector fields in the author’s
relativistic longitudinal gauge.

III. APPLICATION OF THE MINKOWSKI SPACE UNIQUENESS THEOREMS OF REF. 1
TO TWO CLASSES OF FOUR-VECTOR FIELDS

A. Introduction of a new class of four-vector fields

In this chapter the Minkowski space uniqueness Theorem V of Ref. 1 will be applied to
general classes of classical four-vector fields. One class is comprised of fields of the same
form as a~massive! electromagnetic field. In the classical domain this class is characterize
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~ostensibly pure real valued! fields constrained by a relativistic transverse gauge, i.e., by
Lorentz condition. The second class is comprised of fields whose Lagrangian density differs
overall minus sign from the former. It turns out that the Minkowski space uniqueness Theor
of Ref. 1 sheds new light on the distinction between these two classes of four-vector field
theorem leads to a unique selection of covariant constraints which not only render the electr
netic field classically bounded from below in the usual way, but in addition render this new
of classical four-vector fields bounded from below as well.

Consider~1!, the classical free space Lagrangian density of the electromagnetic field~with a
small mass!, now written as~2! in terms of the electric fieldE and the magnetic fieldB, and with
its Lorentz constraint term now withl51, as follows:

Lem5
e0c2

2 FE2

c2 2B2G2
e0c2

2 S 1

c2

]f

]t
1“ "AD 2

1
e0c2m2

2 S f2

c2 2A2D2rf1 j "A. ~2!

Although the photon Compton wave numberm is certainly very tiny, if not actually zero, for the
sake of generality, let us suppose that it is nonzero.

Now, introducing the four-vector potentialAm5(f/c,A) in the usual way,

E52¹f2
]A

]t
, B5“3A, ~3!

allows one to rewrite~2! entirely in terms of the potentials as

Lem5
e0c2

2 F 1

c2 S 2¹f2
]A

]t D 2

2~¹3A!2G2
e0c2

2 S 1

c2

]f

]t
1¹•AD 2

1
e0c2m2

2 S f2

c2 2A2D2rf1 j "A. ~4!

It is interesting to note that due to the inclusion of the Lorentz constraint term,every possible
derivative in four-spaceof f and A appear in~4! as meaningful squared quantities, i.e.,
quadratic order.

It is important to note that the time derivative ofA appears in the Lagrangian density~4! with
a plus sign, since it is in a squared term. This is required for the classical action~i.e., the
four-space integral of the Lagrangian density!, to be bounded from below~i.e., have a finite
minimum!. What is not usually remarked about is the initially surprising fact that the time de
tive term involving the scalar potentialf does not enter the Lagrangian density with a plus si
Therefore, for a sufficiently rapid change in time, over a given time interval, one can mak
action negative, thus preventing it from having a finite minimum under variation of its param
and thus violating the principle of least action. The Lorentz constraint addition to the Lagra
density is therefore not bounded from below! Another consequence of this violation is that
tive energy terms appear in the reciprocal space Hamiltonian~cf. Ref. 5, p. 378, Eq.~A64!!.

In the quantized version of~4!, this leads to a commutation relation between creation
annihilation operators of the scalar photons associated with the scalar potentialf as follows:

@as~k!,as
1~k8!#52d~k2k8! ~5!

@cf. Ref. 5, p. 381, Eq.~B4b!#. The minus sign on the right-hand side~rhs! of ~5! leads to an
indefinite metric Fock space.@It is easily shown that an anti-Hermitian massive scalar field~i.e.
adding an overall minus sign to the usual massive scalar field Lagrangian!, leads to the same
result, Eq.~5!. Therefore, one might interpret a massive electromagnetic-type four-vector fie
containing within it an anti-Hermitian scalar field as its zeroth component.#

However, ~for m50) it is well known2,6–8 that through the introduction of a subsidia
condition, the positive energy terms of the third component of the vector potential~i.e., the
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longitudinal photons!, compensate for these negative energy scalar photons in the Hamilto
This allows a positive square norm Fock space to be developed after all. Indeed, this pro
valuable in that it preserves the Lorentz covariance of the theory.

It is appropriate at this point to mention some historical aspects of the indefinite m
quantization procedure to drive home the point. A key issue for this procedure is the space
coordinate parameterization itself. Two essentially different parameterizations of space–tim
ordinates exist which therefore lead to two different ways of approaching this procedure.

The current, fairly universal definition is to parameterize space-time with a contrava
four-vectorxm in a Riemannian space, here assumed to be without gravitational fields~i.e., a flat
space!,

xm5~x0,x1,x2,x3!5~ct,x,y,z!. ~6a!

The covariant four-vectorxm is then obtained by contraction with the flat space Minkowski me
tensorhmn as

xm5hmnxn5~x0 ,x1 ,x2 ,x3!5~ct,2x,2y,2z!. ~6b!

~Herehmn is the diagonal form, as defined in Sec. I, of the more general metric tensorgmn for the
case of vanishing gravitational fields.!

Minkowski on the other hand, in 1908, had already introduced the concept of an imag
valued fourth coordinate for time.9 Thus, an intriguing complex space–time parameterization
frequently been used instead of Eqs.~6a! and ~6b! as follows:

xm5~x1 ,x2 ,x3 ,x4!5~x,y,z,ict !, ~7!

with a pure imaginary valued fourth coordinatex45 ict, and where only lowered indices are us
in tensor equations. The basic difference between the two parameterizations is that no allo
for a possible geometric description of gravitation was included in the space–time parame
tion of ~7!. Therefore, due to the success of Einstein’s General Theory of Relativity, the use o
space–time definition has for the most part been abandoned.

In the middle of the century, however, authors still frequently used or at least referred
complex space–time definition. Indeed, it would appear that Gupta7 and Bleuler,6 the developers
of the indefinite metric quantization procedure for the electromagnetic field, were greatly
enced by it. Gupta usedAm5(A0 ,A1 ,A2 ,A3) with A45 iA0 for his four-vector potential, while
Bleuler usedAm5(A,iV)5(A1 ,A2 ,A3 ,A4) for his four-vector potential, and they both used
lowered indices indicative of a flat space-time. So the vector potential componentsA1 , A2 , and
A3 , as well as the scalar potentialA05V are Hermitian operators for Gupta and Bleuler, but t
key point is thatA45 iA05 iV is thereby an anti-Hermitian operator! This fact is obvious with
space–time parameterization of~7!, but is unfortunately submerged in the signature of~6!. Thus,
for Gupta and Bleuler the problems associated with the fourth component of the four-v
potential of electromagnetism stemmed from consideringAm to be a Hermitian operator, despit
the fact that the fourth component was giving a negative energy. Their solution was essent
do a unitary transformation using an indefinite Dirac metric10 in order to force the anti-Hermitian
A4 to give pure imaginary expectation values. Insightful discussions of the method usin
complex space–time definition~7! are given in Mandl8 and Källén.11

Returning to the current investigation, it becomes interesting to turn the whole pro
around and introduce an overall minus sign into a most general, fully quadratic Lagrangian
form ~2!. Underscored variables are all taken as pure real valued.@In a purely formal way one
could however incorporate the overall minus sign in the Lagrangian into the quadratic fiel
defining a pure imaginary valued four-vector potentialKm5 iKI m5 i (kI /c,KO ), whereKI m is a pure
real valued four-vector potential, sincei 2521. Similarly, for the source terms one could defi
pure imaginary valued sources, i.e.,j g

m5 i jIg
m5 i (crI g ,jOg), wherejIg

m is a real four-current. Although
purely formal, this does not in principle present a problem for a classical four-vector field w
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the force, Hamiltonian, etc., always contain products of pairs of these variables and are t
real number fields.# With the different constants,eo→g0 and m→mg , one has the hypothetica
free space Lagrangian density,

Lgi52
g0c2

2 FGO 2

c2 2IO2G1
g0c2

2 S 1

c2

]kI

]t
1¹"KO D 2

2
g0c2mg

2

2 S kI 2

c2 2KO 2D1rI gkI 2 jOg"KO . ~8!

In analogy with the subscripts ‘‘em’’ in~2! which refer to the electromagnetic field, the subscri
‘‘gi’’ in ~8!, and throughout this article, label the theory of the fieldsGO and IO ~or the pure
imaginary valuedG and I !.

The real four-vector potentialKI m of ~8! is related to the real vector fieldsGO and IO as

GO 52¹kI 2
]KO

]t
, IO5¹3KO , ~9!

so that upon substitution one obtains

Lgi52
g0c2

2 F 1

c2 S 2¹kI 2
]KO

]t D 2

2~¹3KO !2G1
g0c2

2 S 1

c2

]kI

]t
1¹"KO D 2

2
g0c2mg

2

2 S kI 2

c2 2KO 2D1rI gkI 2 jOg"KO . ~10!

One can then takeKO 50 andrI g50 to yield

Lgi~KO 50,rI g50!52
g0c2

2 F 1

c2 ~2¹kI !2G1
g0c2

2 S 1

c2

]kI

]t D
2

2
g0c2mg

2

2 S kI 2

c2D
52

g0

2 F ~¹kI !22S 1

c

]kI

]t D
2

1mg
2kI 2G . ~11!

That is, whenKO 50 andrI g50, the theory reduces to the equivalent of a pure real~i.e., Hermitian!,
scalar field theory! Note that the time derivative terms in the Lagrangian density~11! are positive
and so this reduced Lagrangian is classically bounded from below. Of course, the vector po
componentsKO ~i.e., theeffectivelyanti-HermitianK !, still have negative time derivative terms i
the Lagrangian~10! and are therefore not bounded from below. However, the bottom line is
if one can eliminate the vector potentialKO in a satisfactory and nontrivial way, while preservin
the effectivelypure real degree of freedom~i.e., the scalar potentialkI ), then one will have
available a new class of classical field theories.

B. Gauge considerations in classical field theory

A first method for eliminating the effectively anti-Hermitian degrees of freedom from~10!
follows from an examination of the parallels between the electromagnetic theory and this
theory. In the case of electromagnetism, a noncovariant method for eliminating what is effec
an anti-Hermitian scalar potentialif exists in the form of the Coulomb or transverse radiat
gauge. A covariant method entails instead the use of a Lorentz gauge or the inclusion of L
constraint terms in the Lagrangian density as in~2!.

The transverse and longitudinal aspects of vector fields in general and the electroma
field in particular yield important insights for the present investigation, so a short review o
topic is warranted~cf. Refs. 5, 12, and 13!. It is possible to decompose a vector field over all
a Euclidean three-space into the components

A~r ![AL~r !1AT~r !, ~12!
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which are longitudinal, i.e., irrotational,

¹3AL~r !50, ~13a!

or transverse, i.e., solenoidal,

¹•AT~r !50, ~13b!

for all r . The decomposition into~13a! and ~13b! is unique over allR3 by Helmholtz’s theorem.
A discussion of the use of Helmholtz’s theorem with fields which fall off only as fast as 1/r ~e.g.,
potentials!, is given in connection with the modified three-space Helmholtz identity~11b! in Ref.
1. The Fourier spatial transform pairA(r )↔A(k) is now defined as follows:

A~k,t !5
1

~2p!3/2E A~r ,t !e2 ik"rd3r , ~14a!

A~r ,t !5
1

~2p!3/2E A~k,t !eik"rd3k. ~14b!

The time dependence is shown here for reference, but will be subsequently suppressed. A
ally, one has the Fourier spatial transform pair¹↔ ik which thereby yields for the longitudina
component,

ik3AL~k!50, ~15a!

and for the transverse component

ik•AT~k!50, ~15b!

for all k. Thus, the longitudinal vector field,AL(k), is parallel to the wave numberk, while the
transverse vector field,AT(k), is perpendicular tok. This decomposition of a vector field i
however not generally Lorentz covariant~since, e.g., a vector field which is transverse in o
inertial reference frame is not necessarily transverse in another!.

Next consider thegauge transformation of the second kindas defined by

A~r ,t !→A8~r ,t !5A~r ,t !1¹F~r ,t !, ~16a!

f~r ,t !→f8~r ,t !5f~r ,t !2
]F~r ,t !

]t
, ~16b!

or in covariant notation as

A8m~xn!5Am~xn!2]mF~xn!. ~17!

The gauge transformation~16! leavesE(r ,t) andB(r ,t) unchanged. In definingA via the Max-
well’s equation“"B5¹•¹3A[0, a certain arbitrariness is left inA due to the vector identity
¹3¹F[0, whereF5F(r ,t) is the arbitrary sufficiently smooth scalar function appearing
~16a!. So, in order to leave the electric fieldE(r ,t) as defined by~3! unchanged, the transforma
tion equation~16b! must be introduced as well. Note however that by a suitable extensio
Theorem U of Ref. 1 to vector potential fieldsA which typically fall off only as fast as 1/r ~see
Ref. 1!, one can uniquely specify the vector potential fieldA over all of a Euclidean three-spac
by specifying both its divergence and its curl. Consequentially, once the¹3A is specified~in R3),
one must also specify the“"A in order to specifyA uniquely.

One way to specify the“"A is with theLorentz conditiondefined by
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¹•A~r ,t !1
1

c2

]f~r ,t !

]t
50. ~18!

Equation~18! has the advantage that it is a relativistically invariant relation as can be see
writing it in covariant notation as

]mAm~xn!50. ~19!

Indeed,~19! is a four-divergence which coincidentally specifies the scalar potentialf as well. On
the other hand, theColoumb gaugedefined as

¹•A~r ,t !50 ~20!

has the disadvantage of being a noncovariant condition and consequently is not suita
covariant uniqueness statements in Minkowski space. It is nevertheless interesting in th
always possible to choose a gauge such that~20! is true in some particular inertial frame o
reference~cf. Ref. 14!. Indeed“"A(r ,t)50 and“"A8(r ,t)50 whenA85A1¹F implies thatF
is harmonic. And if the harmonic functionF vanishes at infinity one therefore hasF vanishing for
all xm as well. The condition~20! has therefore traditionally been considered to determine
gauge transformation uniquely.2

Now, using the gauge transformation comprised of~16a! and~16b!, potentialsA8 andf8 can
always be found to satisfy the Lorentz condition~18! with

05¹•A8~r ,t !1
1

c2

]f8~r ,t !

]t
5¹•A~r ,t !1

1

c2

]f~r ,t !

]t
1¹2F~r ,t !2

1

c2

]2F~r ,t !

]t2 ~21!

leading to the associated requirement that

¹•A~r ,t !1
1

c2

]f~r ,t !

]t
5hF~r ,t !, ~22!

assuming of course that such a gauge functionF(r ,t) can be found. If one takes the furthe
restriction

hF~r ,t !50, ~23!

then the Lorentz condition would be invariant~provided]mAm(xn)50 initially! under a restricted
gauge transformation defined by Eqs.~16! and ~23! and typically referred to as theLorentz
gauge.13

The gauge transformation of the second kind~16! is transformed to reciprocal space as

A~k!→A8~k!5AL8~k!1AT8~k!5AL~k!1AT~k!1 ikF~k!

⇒AL8~k!5AL~k!1 ikF~k!, AT8~k!5AT~k!, ~24a!

w~k!→w8~k!5w~k!2
]F~k!

]t
, ~24b!

where the Fourier spatial transform pairf(r )↔w(k) is defined analogously to~14!, and where the
transform pairF(r ,t)↔F(k,t) represents the arbitrary scalar gauge function. It is importan
note the last result of~24a! which shows that the transverse vector potentialAT↔AT is gauge
invariant, i.e.,AT85AT or AT85AT . Only the longitudinal and scalar potentials are theref
changed by a gauge transformation of the second kind. Indeed, the Lorentz condition~18! simi-
larly only relates the longitudinal and scalar potentials since with~15b!, the reciprocal space
version reduces to
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ik•AL~k!1
1

c2

]w~k!

]t
50. ~25!

For the Coulomb gauge, its reciprocal space version is

ik•AL~k!50⇒AL~k!50 ;k;kÞ0. ~26!

Here, the longitudinal vector potential is actually discarded, being set to zero. The vector po
in the Coulomb gauge is therefore entirely transverse.

Consider now the requirements for the present theoretical investigation of the Lagra
density ~10!. In this case, one wants to keep the degree of freedom associated with the
potentialkI of ~9! since it is the only component of the four-vector field which is well behave
the classical domain, and also acts like a Hermitian field in the quantum domain. Therefor
certainly can not use the Coulomb or transverse gauge as this would eliminate the desired
potentialkI . The Coulomb gauge is associated with a solenoidal or transverse vector poten
implied by ~13b!. However, by a suitable extension of Helmholtz’s theorem~i.e., Theorem H1 of
Ref. 1!, to vector potential fieldsA which typically fall off only as fast as 1/r ~see Ref. 1!, one is
free to specify the longitudinal vector potential as nonzero instead via a relation like~13a!.
Therefore, taking the vector potentialKO as irrotational, i.e.,

¹3KO ~r ,t !50, ~27!

for all r , yields what will be referred to as the ‘‘longitudinal gauge.’’ @P. W. Anderson already in
1958 referred to the¹3A50 as the defining relation in his longitudinal gauge in an investiga
of the Meissner effect.15# In reciprocal space, with the spatial Fourier transform pair of the
field KO (r ,t) asKO (r ,t)↔KO (k,t), one has

05 ik3KO ~k!5 ik3KO L~k!1 ik3KO T~k!5 ik3KO L~k!⇒KO T~k!50;k; kÞ0, ~28!

which following an inverse Fourier spatial transform implies that the vector potential is pu
longitudinal, that isKO T50 impliesKO 5KO L , hence the name longitudinal gauge. In passing n
that under a gauge transformation of the second kind that the transverse vector potentiaKO T is
gauge invariant~by a relation analogous to~24a!!. So, for the longitudinal gauge, the implicatio
that the transverse vector potential equals zero is therefore a gauge invariant statement,KO T8
5KO T50. It is therefore possible to completely remove the transverse vector potential from
Lagrangian, Hamiltonian, and equations of motion in a gauge invariant fashion as wou
required for consistency in this new longitudinal gauge. Naturally, as in the Coulomb gauge
still has the noncovariant limitation of the approach so that one must choose a particular i
reference frame for the sake of calculations. Nevertheless, the longitudinal gauge appears
logical first step because it removes the two badly behaved transverse degrees of freedo
Km. Now, only the badly behaved longitudinal degree of freedom remains to be removed
will be accomplished with a relativistically invariant constraint in Sec. III D which is a nat
extension of the longitudinal gauge~27! to Minkowski space.

C. Uniqueness of the massless classical four-vector field in the relativistic transverse
gauge

The Minkowski space generalization of the Helmholtz identity, Theorem II of Ref. 1~but in
the (1222) signature metric of this paper!, as well as the Minkowski space uniqueness Th
rem V of Ref. 1, will now be applied to the case of a massless classical four-vector field i
relativistic transverse gauge~i.e., the electromagnetic field in the Lorentz gauge!. This is the first
of the two main Lagrangians as described at the beginning of Sec. III A, but now specialized
massless case. The second case, the classical four-vector field of Lagrangian~10! in the relativistic
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longitudinal gauge~with mg50), will be addressed in section III D. Examination of the elect
magnetic case will provide a basic framework from which this new classical four-vector field
be subsequently approached.

The present analysis will be limited to the case of an unbounded region in Minkowski s
A theorem will therefore be stated as follows:

Theorem I: Given a suitable covariant scalar two-point retarded Green’s function G(x,x8),
the following identity holds for sufficiently smooth~massless! four-vector fields Am(xs) which
vanish sufficiently rapidly at infinity in the unbounded Minkowski spaceR311:

Am~x!5]mE
V48

~]n8A
n~x8!!G~x,x8!d4x81]aE

V48
~]8aAm~x8!2]8mAa~x8!!G~x,x8!d4x8.

~29!

Proof: Theorem I follows from Theorem II of Ref. 1 for four-vector fields which vani
sufficiently rapidly at infinity in unbounded Minkowski space~i.e., the three-surface integral term
of the previous identity vanish in the limit!. @Note, the unprimed derivatives have been facto
out of the integrands of~29! for convenience and there is a sign change due to the metric sign
used in the present paper.# '

Theorem I is an unbounded Minkowski space generalization of the Helmholtz identity.
One can now proceed in a manner that parallels the use of the Helmholtz identity inR3 by

stating a Helmholtz uniqueness theorem for four-vector fields in unbounded Minkowski spa
follows:

Theorem II: A sufficiently smooth four-vector field Am(xs) which vanishes sufficiently rapidl
at infinity in the unbounded Minkowski spaceR311 and which satisfies identity (29) (i.e., Theore
I) is uniquely specified by giving its four divergence and its four-curl. That is one must speci
following:

]nAn~xs![s, ~30a!

i.e., a rank zero source density and

]aAm~xs!2]mAa~xs![cam, ~30b!

i.e., a rank two circulation density, for all xs.
Proof: Theorem II is based on Theorem I and follows in a similar fashion as did Theore

of Ref. 1. '
Condition ~30b! coincidentally also implies thatcam52cma, i.e., thatcam is antisymmetric.

Substitution of~30a! and ~30b! into ~29! now yields

Am~x!5]mE
V48

s~x8!G~x,x8!d4x81]aE
V48

cam~x8!G~x,x8!d4x8, ~31!

for all xs. So far the statements made are applicable to either of the two cases of four-vecto
previously defined.

If one now defines the four-vector fieldAm specifically to be the electromagnetic four-vect
potential, it is at once obvious that the rank two circulation densitycam defined in~30b! is just the
electromagnetic field tensorFam. Similarly the condition~30a! bears a striking resemblance to th
Lorentz condition, but with a nonzero rhs. Now, drawing from the comments made in the pre
two sections, if one is to eliminate the effectively anti-Hermitian scalar potentialf from the
Lagrangian density~4! in a relativistically invariant way and thus obtain a result that is classic
bounded from below, one is lead to the specification of the relativistically invariant Lor
condition ~19!. The Lorentz condition~19! and the Maxwell field tensorFam are both invariant
under the restricted gauge transformation defined by Eqs.~19! and ~23! and which is usually
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referred to as the Lorentz gauge. Therefore, substituting the electromagnetic field tenso
cam5Fam, while choosing the Lorentz condition~19! with s5]nAn50, reduces~31! to the
following:

Am~x!5]aE
V48

Fam~x8!G~x,x8!d4x8{]nAn~xs!50;xsPR311. ~32!

The uniqueness statement~32! satisfies the requirement that the Lagrangian density is boun
from below as desired, through the Lorentz condition, and in addition places an additional r
tion on allowable gauge transformations as is shown below.

Performing a gauge transformation of the second kind as defined in~17! on the integral in~32!
then gives

A8m~x!5Am~x!2]mF~x!5]aE
V48

F8am~x9!G~x,x9!d4x9, ~33!

where, to avoid confusion, single primed variables indicate the gauge transformation and
primed variables are used to denote source point space–time variables. It is easy to dem
that the electromagnetic field tensor is gauge invariant under the gauge transformation
second kind~17! as follows:

F8am5]aA8m2]mA8a5]aAm1]a]mF2]mAa2]m]aF5Fam, ~34!

and so~33! with ~34! substituted reduces to

A8m~x!5Am~x!2]mF~x!5]aE
V48

Fam~x9!G~x,x9!d4x9. ~35!

Comparison of the integral in the uniqueness statement~32! and the gauge transformed stateme
~35! then leads one to the surprising conclusion that

]mF~xs!50 ;xsPR311. ~36!

In other words, instead of the arbitrary scalar gauge functionF(xs) being interpreted as a fre
field which satisfies the wave equation~23!, and thereby forms part of the Lorentz gauge, one
instead by~36! that the gauge functionF(xs) is constant or zero throughout Minkowski spac
Therefore, the gauge transformation itself, under the restriction~36!, is reduced to

A8m~xs!5Am~xs!, ~37!

which is no more than an identity transformation. This result is related to the fact tha
transverse vector potential is always gauge invariant as shown in~24a!, while the longitudinal
vector potential and the scalar potential are changed by a gauge transformation of the seco
and are therefore nonunique. Although these later two degrees of freedom are effectively ca
by the Lorentz condition, they are not uniquely specified until an additional gauge restrictio
~36! is applied to restrict the arbitrary gauge functionF(xs).

Definition: This combination of~32!, ~17!, and~36! will be referred to as arestricted relativ-
istic transverse gauge.

One concludes therefore that specifyingAm via the four-curl ofAm ~i.e., the Maxwell field
tensorFam) in the uniqueness statement~32!, while simultaneously specifying the four-divergen
of Am via the Lorentz condition~18!, indeed leads to a unique four-vector potentialAm in that it
reduces the gauge transformation of the second kind~17! to the identity transformation~37! via
the gauge restriction~36!. One is tempted to say that the uniqueness statement~32! is an over-
specification of the vector potentialAm since it eliminates the gauge freedom evident in the ga
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transformation~17!. Of course, the above uniqueness statement~32! is predicated on four-vecto
fields Am which are sufficiently smooth, i.e., which areC2(V̄4). However, these twice continu
ously differentiable functions would appear to be the appropriate ones for Lagrange equat
motion which in the present context are second order differential equations, e.g., the four-
potential wave equation.

In the quantum field theory context, the gauge transformation~17! when combined with a
local phase transformation,

c~x!→c8~x!5exp~2 iqF~x!!c~x!, ~38!

whereq is the charge, allows one to minimally couple the electromagnetic field to the elect
Dirac field c(x) ~cf. Ref. 16!. However, the integral equation in the uniqueness statement~32! is
in fact a vector identity when the Lorentz condition is assumed, as is the case in~32!. The
implication is that as soon as one imposes the Lorentz condition, the classical electroma
vector potential is unique via~32!! Before the reader becomes too alarmed, one should note
one is not actually allowed to impose the Lorentz condition in a strong fashion as an op
identity in the quantum domain since it would conflict with a certain canonical commuta
relation~cf. Ref. 16!. The most one can do is to impose the Lorentz condition in a weaker fas
as a restriction on the allowable states of the electromagnetic field as for example with

]nAn(1)~x!u0&50, ~39!

which restricts the positive frequency parts of]nAn ~cf. Ref. 16!. Therefore, the uniquenes
statement~32! simply provides more evidence in support of the conclusion that the Lor
condition is too strong a constraint in some situations. However, as remarked before, if on
not impose the Lorentz condition in the classical domain for Lagrangian densities like~4!, which
contain a Lorentz constraint term, the classical electromagnetic field is not bounded from b

D. Uniqueness of the massless classical four-vector field in the relativistic
longitudinal gauge

In Sec. III A, a new class of classical four-vector fields was introduced which was chara
ized by the Lagrangian~10! which differed from the usual electromagnetic-type Lagrangian by
introduction of an overall minus sign. In this section, Theorems I and II will now be applied to
new class of classical four-vector fields in the relativistic longitudinal gauge~again limited to the
massless case!.

The analysis parallels the electromagnetic case in Sec. III C. It will be convenient for
paring subsequent results to their electromagnetic counterparts to substitute~in a purely formal
way! the pure imaginary valued version of the four-vector field, namelyKm5 iKI m as previously
defined in Sec. III A in connection with the Lagrangian density~8!. This notation will suppress the
overall minus sign in the results. Therefore, one obtains for the four-divergence condition, in
of ~30a!, the following:

]nKn~xs![sgi , ~40a!

i.e., a rank zero source density, and for the four-curl condition, instead of~30b!, the following:

]aKm~xs!2]mKa~xs![cgi
am , ~40b!

i.e., a rank two circulation density, for allxs. Similarly, instead of~31!, one has the following:

Km~x!5]mE
V48

sgi~x8!G~x,x8!d4x81]aE
V48

cgi
am~x8!G~x,x8!d4x8, ~41!

for all xs.
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Now, ~40b! is analogous to the electromagnetic field tensor and so one can define th
field tensor

Gam[]aKm~xs!2]mKa~xs!. ~42!

For consistency with the definition~9!, the components ofGam in SI units can be defined as

Gam5S 0 2Gx /c 2Gy /c 2Gz /c

Gx /c 0 2I z I y

Gy /c Iz 0 2I x

Gz /c 2I y I x 0

D . ~43!

Next, one can define a Lagrangian density~as in~8! but retaining the pure imaginary variables! for
the Km field analogous to the relativistically invariant Stueckelburg Lagrangian density~1!, but
with the Lagrange multiplierl51 and with the mass parametermg50, as follows:

Lgi52
g0c2

4
GmnGmn2

g0c2

2
~]mKm!22 j gmKm, ~44!

where j gm is the lowered index~pure imaginary valued! four-current density. As in the previou
section for the electromagnetic field, one now seeks to eliminate anyeffectivelyanti-Hermitian
degrees of freedom from~44!, so as to obtain a Lagrangian density that is classically boun
from below. However, one can not specify a Lorentz condition in this case by specifyingsgi50 in
~40a! since this would eliminate the only effectively Hermitian degree of freedom, i.e., assoc
with the positive sign in thekI time derivative term in~8!. In addition, specification of the
longitudinal gauge~27!, while eliminating the two transverse degrees of freedomKO T in a gauge
invariant fashion, still leaves the longitudinal degree of freedomKO L intact. Therefore, one of the
three effectively anti-Hermitian degrees of freedom, i.e., associated with the negative sign inKO
time derivative term in~8!, would still remain. In addition, the longitudinal gauge~27! is not a
relativistically covariant constraint.

The longitudinal gauge~i.e., ¹3K50) will therefore be generalized to a relativistical
invariant condition. A condition betweenKL andk, analogous but quite different than the Loren
condition, will be shown to follow from this relativistic generalization of the longitudinal gau
This condition will enable one to eliminate the longitudinal degree of freedom in a relativisti
invariant way. In addition, this condition will still eliminate the transverse degrees of freedom
as in the longitudinal gauge. This generalization will also shed new light on the theory o
relativistic transverse four-vector field.

Consider the relativistic generalization of the Coulomb or transverse gauge of~20! to the
Lorentz condition or ‘‘relativistic transverse gauge’’ of ~18!, as follows:

¹•A50→¹•A1
1

c2

]f

]t
50, ~45a!

or in tensor notation as

]kA
k50→]mAm50. ~45b!

The important thing to note about Eqs.~45a! and ~45b! is that the three-divergence ofA is
generalized into a relativistic four-divergence ofAm. Thus, a solenoidal vector fieldA ~i.e., the
transverse vector field of~13b!!, is generalized into afour-solenoidalfour-vector fieldAm.

In analogy with~45!, one therefore surmises that the longitudinal gauge of~27!, which in-
cludes~13a!, has the relativistic generalization

¹3K50, i.e., ] iK j2] jKi5Gi j 50→]mKn2]nKm5Gmn50, ~46!
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where the association ofI5¹3K via ~9! with the space part of the field tensorGmn of ~43! has
been used.

Definition: The name ‘‘relativistic longitudinal gauge’’ 1 will therefore be chosen for gauge
which use this new covariant gauge constraint

Gmn5]mKn2]nKm50. ~47!

@Kalb and Ramond already in 1974 used a condition like~47! in their often quoted investi-
gation of string interactions.17#

The important thing to note about~46! is that the three-curl ofK is generalized into a
relativistic four-curl ofKm. Thus, an irrotational vector fieldK ~i.e., the longitudinal vector field
of ~13a!!, is generalized into a four-irrotational four-vector fieldKm. Now, it already follows from
I5¹3K50 via ~27! and ~28! that KT50. Setting the remaining components ofGmn to zero
yields the additional condition

G52¹k2
]K

]t
50, ~48!

with its reciprocal space version,

G~k,t !52 ik¸~k,t !2
]KL~k,t !

]t
2

]KT~k,t !

]t
50, ~49!

wherek(r ,t)↔¸(k,t). Since2 ik¸ is a longitudinal component,~49! implies that the longitudi-
nal and transverse components ofG(k,t) are each separately equal to zero, giving as a resul

GL~k,t !52 ik¸~k,t !2
]KL~k,t !

]t
50, ~50a!

GT~k,t !52
]KT~k,t !

]t
50. ~50b!

Now, taking the inverse Fourier spatial transforms of Eqs.~50a! and ~50b! yields

2¹k5
]KL

]t
, ~51a!

]KT

]t
50. ~51b!

Equation~51a! is the sought after condition relating the longitudinal vector potential and the s
potential analogous to the Lorentz condition~18! but with the space and time derivatives switch
with respect toKL and k! Also, Eq. ~51b! is consistent with the previous requirement thatKT

50 in the nonrelativistic longitudinal gauge. Now, all three of the effectively anti-Hermi
degrees of freedom, i.e., associated with the negative sign in theKO time derivative term in~8!, are
successfully eliminated from the Lagrangian density~44! by the relativistic longitudinal gauge
~47!. Substituting~47! using ~42! and ~40b!, while also substituting~40a!, into ~41! then yields

Km~x!5]mE
V48

~]n8K
n~x8!!G~x,x8!d4x8{Gmn5]mKn2]nKm50;xPR311. ~52!
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The result~52! is a preliminary uniqueness statement for the four-vector fieldKm. Although
satisfying the requirement that the Lagrangian density~44! is bounded from below through th
relativistic longitudinal gauge, an additional restriction on allowable gauge transformatio
required in order to yield a unique four-vector field as is shown below.

Performing a gauge transformation of the second kind, defined in analogy to the electr
netic field case~17!, as

K8m~x!5Km~x!2]mFg~x!, ~53!

on the integral in~52! then gives

K8m~x!5Km~x!2]mFg~x!5]mE
V48

~]n9~Kn~x9!1]9nFg~x9!!!G~x,x9!d4x9, ~54!

where, to avoid confusion, single primed variables indicate the gauge transformation and
primed variables are used to denote source point space-time variables. In order for~54! to be
identical in form to~52!, and thus gauge invariant, it is sufficient to take as a gauge restrictio
following:

]n]nFg~xs!50. ~55!

Interestingly,~55! yields a gauge functionFg(xs) which satisfies the same requirement, i.e., t
it be a free field, as for the case of the Lorentz gauge in electromagnetism~cf. ~23!!. In the
electromagnetic case the restriction on the gauge functionF(xs) in ~23! followed from a require-
ment that the Lorentz condition~18! be gauge invariant in some particular gauge~since it is not
gauge invariant in all gauges!. In the present case, however, the rank zero scalar]nKn(xs)Þ0
initially, or in general. Therefore, the gauge restriction~55! only implies that the four-divergenc
of Km is gauge invariant in this special gauge as the following demonstrates:

]mK8m~x!5]mKm~x!2]m]mFg~x!5]mKm~x!. ~56!

The trivial gauge restriction

]mFg~xs!50, ~57!

which makes the gauge transformation~53! an identity transformation, also leads to the result~56!.
Recall that the transverse vector potential is always gauge invariant and that in the present c
constraint~47! requires that it is always zero. On the other hand, the longitudinal vector pote
and the scalar potential are changed by a gauge transformation of the second kind wh
arbitrary gauge functionFg(xs) remains unrestricted or even partially restricted as in~55!. These
later two degrees of freedom are therefore nonunique until an additional gauge restriction lik~57!
is applied. Therefore, a complete uniqueness statement for the four-vector fieldKm is comprised of
the preliminary uniqueness statement~52!, the gauge transformation~53!, and the trivial gauge
restriction~57!.

Definition: This combination of~52!, ~53!, and~57! will be referred to as arestricted relativ-
istic longitudinal gauge.

It should also be noted that the relativistic longitudinal gauge condition~47! is of course
gauge invariant in any gauge defined by~53! as a calculation analogous to the electromagnetic
~34! would clearly show. The relativistic longitudinal gauge condition~47! is therefore both
relativistically invariant and gauge invariant as desired. However, judging from the qua
electrodynamic case as discussed in relation to~38! and~39!, it is likely that the gauge condition
~47! is too strong a constraint to impose quantum mechanically. One would then impos
relativistic longitudinal gauge constraint~47! in a weaker fashion as a restriction on the allowa
states of the~formally anti-Hermitian! field Km as for example with
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~]mKn(1)~x!2]nKm(1)~x!!u0&50, ~58!

which restricts the positive frequency parts ofGmn. The restriction~58! amounts to several con
straint equations. These constraint equations are needed to eliminate the three effective
Hermitian degrees of freedom associated with the three-vector potentialK , thereby leaving only
the effectively Hermitian degree of freedom associated with the scalar potentialkI , as desired.

IV. CANONICAL FORMULATION OF THE RELATIVISTIC LONGITUDINAL CLASSICAL
FOUR-VECTOR FIELD

A. The case of four-vector current coupling

Based on the gauge considerations in Sec. III, a classical free space Lagrangian densi
massive four-vector field in the relativistic longitudinal gauge would most likely be of the type~8!,
having a built in Lorentz constraint term~now multiplied by the arbitrary parameterlg) and a
small g-photon mass term with a Compton wave numbermg . Also, the constantg0 is the ‘‘per-
mittivity’’ of free space in SI units for this four-vector field. Therefore, one has a so-ca
Stueckelberg Lagrangian2,3

Lgi5
g0c2

2 FG2

c2 2I2G2lg

g0c2

2 S 1

c2

]k

]t
1¹•K D 2

1
g0c2mg

2

2 S k2

c2 2K2D2rgk1 jg•K , ~59!

which is no longer multiplied by an overall minus sign as in~8!, since all the fields and sources a
now taken for notational convenience as pure imaginary valued. Consequentially, relativist
gitudinal and transverse fields are covered here in one comprehensive formalism with
change of variables required to switch between the cases. The case of pseudo-four-vector
coupling is discussed in Sec. IV C.

Now, the four-vector potentialKm is related to the vector fieldsG andI in the same way as in
~9!, i.e.,

G52¹k2
]K

]t
, I5¹3K . ~60!

Also, the field tensorGmn is defined in~42! and ~43!, and so the Lagrangian density~59! in
covariant notation is

Lgi52
g0c2

4
GmnGmn2lg

g0c2

2
~]mKm!21

g0c2mg
2

2
~KmKm!2 j gmKm. ~61!

The Euler–Lagrange equations of motion as defined by

]mS ]Lgi

]~]mKn! D2
]Lgi

]Kn
50, ~62!

follow from the Lagrangian density~61! as

~]a]a1mg
2!Km2~12lg!]m~]sKs!5 j g

m/g0c2. ~63!

Taking the four-divergence of~63! yields

~]a]a1mg
2!]mKm2~12lg!]m]m~]sKs!5~]m j g

m!/g0c2. ~64!

Simplifying ~64! and assuming a conserved~four-vector! current]m j g
m50 yields

~lg]a]a1mg
2!]mKm5~]m j g

m!/g0c250. ~65!
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Thus, forlgÞ0 and a conserved current the four-divergence]mKm forms a free scalar field which
satisfies the Klein-Gordon equation with a ‘‘mass’’~i.e., wave number!,

ms5mg /Alg, lg.0, ~66!

wherelg.0 has been assumed to ensure thatms
2.0.

One can now define, by analogy with what has been referred to for a massive electroma
type theory as a ‘‘transverse’’ field,2 the following:

Km
T5Km1

lg

mg
2 ]m~]sKs!. ~67!

Taking the four-divergence of~67! gives

]mKm
T5]mKm1

lg

mg
2 ]m]m~]sKs!50, ~68!

which is zero by~65!. Therefore, one finds that the fieldKm
T is as a result divergenceless. Rea

ranging~67! slightly into

Km5Km
T2

lg

mg
2 ]m~]sKs!, ~69!

implies thatKm can be split into so-called ‘‘transverse’’ and ‘‘scalar’’ parts. After canoni
quantization, the usual analysis of the massive electromagnetic-type theory leads to an in
metric with different masses for the vector and scalar components of its creation and annih
operators.2 In the present case, however, one should expect, in light of this paper, that the
spatial vector components will be the ones leading to an indefinite metric, as opposed to the
or scalar component in the usual analysis.

The classical canonical formalism now proceeds with a calculation of the covariant can
momentum, defined in terms of the Lagrangian density~61!, as follows:

Pgi
n ~xm![

]Lgi~Km,]bKm,t !

]~]0Kn!
, ~70!

which yields@cf. ~73! for index m50, or ~3–100! in Ref. 2#,

Pgi
n ~xm!52g0c2~]0Kn2]nK0!2lgg0c2g0n]sKs. ~71!

Clearly, the covariant canonical momentumPgi
n is a function of both]sKs and the time compo-

nents of Gmn. This can be brought into sharper focus by defining asecond rank canonica
momentum tensor densityas follows:18

Pgi
mn~xa![

]Lgi~Ka,]bKa,t !

]~]mKn!
52

g0c2

4

]~GlrGlr!

]~]mKn!
2lg

g0c2

2

]~~]sKs!2!

]~]mKn!
. ~72!

Only terms withl5m andr5n or with l5n andr5m survive the contraction onl andr, which
sinceGmn52Gnm yields

Pgi
mn~xa!52g0c2Gmn2lgg0c2~]sKs!gmn ~73!

as the second rank canonical momentum tensor density. From this point of view, the rela
transverse gauge~i.e., the Lorentz condition! causes the symmetric part ofPgi

mn , here the diagona
elements, to vanish. On the other hand, the relativistic longitudinal gauge~47! ~i.e., Gmn50)
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causes the antisymmetric part ofPgi
mn to vanish. In passing, it is interesting to note that~72! and

~73! can be used to express the Lagrange equation of motion~63! via ~62! in the more compresse
notation

]mPgi
mn5]mS ]Lgi

]~]mKn! D5
]Lgi

]Kn
52 j g

n1g0c2mg
2Kn. ~74!

Thus, ~73! can be thought of as a generalization of the Maxwell field tensorGmn to include a
symmetric part, i.e., including diagonal elements associated with the momentum canonicall
jugate to the scalar componentK05k/c.

A further insight into the distinction between the ‘‘gauges’’ can be obtained from a calcula
of the stress energy-momentum tensor of the four-vector fieldKm. One first calculates the canon
cal stress tensor,

Q̃mn5
]Lgi

]~]mKl!
]nKl2gmnLgi5Pgi

ml]nKl2gmnLgi . ~75!

With the result~73! and the Lagrangian density~61! of the field coupled to an external current, o
obtains

Q̃mn52g0c2Gml~]nKl!2lgg0c2~]sKs!gml~]nKl!1gmn
g0c2

4
GlrGlr

1gmn~ j gsKs!1lg

g0c2

2
gmn~]sKs!22

g0c2mg
2

2
gmn~KsKs!. ~76!

The first term of~76! is nonsymmetrical and nongauge invariant and so in the usual analysis o
electromagnetic field, one carries out a symmetrization process where, due to the nonuniq
of the Lagrangian, a four-divergence is added which is equal to a vanishing surface term
four-dimensional form of Gauss’ divergence theorem. In the present case, the second term a
the appearance of a nonsymmetrical term. But, in light of the relativistic longitudinal gauge~47!,
this term in the stress tensor is nonzero and is actually symmetrical, i.e.,]nKm5]mKn, for the
relativistic longitudinal field case. In the relativistic transverse field case, one of course im
the Lorentz condition and this term vanishes. Nevertheless, in order to show the consistency
entire extended Lagrangian formulation~61! under either relativistically transverse or longitudin
gauge constraints, the usual symmetrization procedure will be carried out by adding a four
gence to~76! as follows:

Qmn5Q̃mn1g0c2]r~GmrKn!5Q̃mn1g0c2Gmr~]rKn!1g0c2~]rGmr!Kn. ~77!

Substitution of the canonical stress tensor~76! into ~77! then yields

Qmn52g0c2Gml~]nKl2]lKn!1gmn~ j gsKs!2lgg0c2~]sKs!~]nKm!1gmn
g0c2

4
GlrGlr

1lg

g0c2

2
gmn~]sKs!22

g0c2mg
2

2
gmn~KsKs!1g0c2~]rGmr!Kn. ~78!

Substitution of~42! into ~78! with 2GmlGl
n52Gl

mGnl5Gl
mGln5GmlGl

n then yields
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Qmn5g0c2S GmlGl
n1

gmn

4
GlrGlrD2lgg0c2~]sKs!~]nKm!1gmn~ j gsKs!

1lg

g0c2

2
gmn~]sKs!22

g0c2mg
2

2
gmn~KsKs!1g0c2~]rGmr!Kn ~79!

as the new ‘‘symmetrized’’ energy-momentum tensor density. One now breaks upQmn using the
usual definition of the pure electromagnetic-type energy-momentum tensorQT

mn , which could be
regarded as representing a ‘‘massless’’ transverse part of the field, along with the definitio
new QL

mn , which could be regarded as representing a ‘‘massive’’ longitudinal part of the fi
External current terms in general and certain terms associated with the transverse field’s m
particular are left separate, along with one other term yielding

Qmn5QT
mn1gmn~ j gsKs!1QL

mn1g0c2S lg]m~]sKs!1mg
2Km2

j g
m

g0c2DKn, ~80!

where the equation of motion~63!, rewritten using~42! as

]rGmr5lg]m~]sKs!1mg
2Km2

j g
m

g0c2 , ~81!

has been substituted in the last term of~79!, and where the following definitions are used:

QT
mn[g0c2S GmlGl

n1
gmn

4
GlrGlrD , ~82!

QL
mn[2lgg0c2~]sKs!~]nKm!1lg

g0c2

2
gmn~]sKs!22

g0c2mg
2

2
gmn~KsKs!. ~83!

In the relativistic transverse gauge, the Lorentz condition reduces~80!, yielding the total
transverse energy-momentum tensor density

QT,total
mn [QT

mn1gmn~ j gsKs!2
g0c2mg

2

2
gmn~KsKs!1g0c2S mg

2Km2
j g
m

g0c2DKn, ~84!

where the third term of~84! is an additional mass term that comes fromQL
mn . For mg50, ~84! is

the usual electromagnetic-type energy-momentum tensor in the presence of an external
~cf. pp. 22–25 of Ref. 2!. Taking a four divergence of the pure electromagnetic-type ‘‘massle
transverse energy-momentum tensor~82! yields the force densityf T

n as

2 f T
n[]mQT

mn5g0c2]mS GmlGl
n1

gmn

4
GlrGlrD

5g0c2~]mGml!Gl
n1g0c2Gml~]mGl

n !12
g0c2

4
Glr~]nGlr!, ~85!

where the minus sign on the left-hand side~lhs! of ~85! is chosen in the (1222) signature so
as to produce the right sign in the Lorentz-type force law for the transverse field. Usin
equation of motion~81! and the anti-symmetry ofGml, Eq. ~85! becomes

2 f T
n5g0c2S j g

l

g0c2 2lg]l~]sKs!2mg
2KlDGl

n1g0c2Gml~]mGl
n !1

g0c2

2
Glr~]nGlr!. ~86!
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But, the last two terms of~86! can be rewritten as

g0c2Gml~]mGl
n !1

g0c2

2
Glr~]nGlr!

5
g0c2

2
~Gml~]mGl

n !1Gml~]mGl
n !1Gml~]nGml!!

5
g0c2

2
~Gml~]mGl

n2]lGm
n !!5

g0c2

2
~Gml~]mGl

n1]lGm
n !!50, ~87!

where the last equality is zero since it is a contraction of an anti-symmetric and a symmetric
in m andl, and where the second line of~87! has been transformed into the third line using t
source free Maxwell-type equations written in covariant form and contracted bygmr andgls as
follows:

05gmrgls~]nGrs1]rGsn1]sGnr!5]nGml1]mGl
n1]lGm

n . ~88!

Therefore, with the result~87!, Eq. ~86! reduces to

f T
n52 j glGln1g0c2~lg]l~]sKs!1mg

2Kl!Gl
n . ~89!

The first term of~89! is a Lorentz-type force densityf Lorentz
n 52 j glGln. Naturally, when in the

Lorentz gauge and whenmg50, this is the only surviving term. A slightly more involved fou
divergence of the total transverse energy-momentum stress tensor~84!, that is including the other
terms associated with the external currents and field mass, yields

2 f T,total
n []mQT,total

mn 5 j glGln1]n~ j glKl!2 j gl~]lKn!5~]n j gm!Km, ~90!

which is of the same form as the result for the electromagnetic case,~cf. Eq. ~1–118! on p. 25 in
Ref. 2!, except for an implicit factor of21 due to the quadratic appearance of the pure imagin
variables~in this notation!.

In the relativistic longitudinal gauge, whereGmn50, ~80! simplifies to

Qmn5QL
mn1gmn~ j gsKs!, ~91!

where the last term of~80! vanishes due to the vanishing of the lhs of the equation of motion~81!
in the relativistic longitudinal gauge.@It should be noted in passing that~91! can be obtained
directly without using the symmetrization procedure~77! since all the terms containingGmn

vanish in the relativistic longitudinal gauge.# Taking a four-divergence of the pure field part of th
energy-momentum tensor~91!, i.e., of ~83!, gives

2 f L
n[]mQL

mn52lgg0c2~]m]sKs!~]nKm!2lgg0c2~]sKs!~]m]nKm!

1lg

g0c2

2
2~]sKs!gmn]m~]sKs!2

g0c2mg
2

2
2Ksgmn]mKs. ~92!

Upon commuting some of the four-vector derivatives, the second and third terms of~92! cancel~in
flat space–time! yielding

2 f L
n[]mQL

mn52lgg0c2~]s]mKs!~]nKm!2g0c2mg
2Km]nKm

52g0c2~~lg]s]s1mg
2!Km!~]nKm!, ~93!
                                                                                                                



one

tic

esult

of the
re

-
the

e

ally

4641J. Math. Phys., Vol. 41, No. 7, July 2000 Classical four-vector fields in the . . .

                    
where gmnGns50 has been used on the first term. The result can be simplified more if
rewrites~81! as

05]nGmn5lg]m~]sKs!1mg
2Km2

j g
m

g0c2 5lg]s]mKs1mg
2Km2

j g
m

g0c2 , ~94!

where commuted derivatives and~47! are used, so that with the application of the relativis
longitudinal gauge in the form]mKs5]sKm one has

~lg]s]s1mg
2!Km5

j g
m

g0c2 ~95!

as the new field equation of motion in the relativistic longitudinal gauge. Therefore, using~95!,
Eq. ~93! reduces finally to

2 f L
n[]mQL

mn52 j gm~]nKm!52 j gm~]mKn!, ~96!

as the force density of the pure field energy-momentum tensor~83! in the relativistic longitudinal
gauge, where either of the expressions in~96! are equivalent sinceGmn50. Taking the four-
divergence of~91! instead, which includes the effect of the external current while using the r
~96! for the longitudinal pure field part gives

2 f n[]mQmn5]mQL
mn1gmn]m~ j gsKs!5~]n j gm!Km1 j gm~]nKm!2 j gm~]nKm!, ~97!

which yields the same result as for the transverse field~90!, namely,

2 f n[]mQmn5~]n j gm!Km. ~98!

It is clear, however, that the relativistic longitudinal gauge has radically changed the nature
force law associated with the pure field case to~96!. Compare with the relativistic transverse pu
field case~89! with its first term as the familiar Lorentz-type force law.

It is instructive to write out the components of the second version of~96! as

f L
n5 j gm~]mKn!5rc

1

c

]Kn

]t
2 jg•~2¹Kn!

5rS ]

]t
1u•¹ DKn5r

dKn

dt
, ~99!

where j g
m5(rc,jg)5(rc,ru), with u as the ordinary velocity of the charge densityr, and where

use has been made of the convective derivative,

d

dt
5

]

]t
1u"“. ~100!

Although one can express the four-current asj g
m5r(c,u)5rvm using a noninvariant four com

ponent velocityvm[(c,u), it is more convenient to express the four-current in terms of
invariant four-velocityum[(gc,gu), whereg[1/A12uuu2/c2, as

j g
m5r0~gc,gu!5r0um. ~101!

Use has been made of the formular5gr0 in ~101!, which reflects a Lorentz contraction in th
direction of motion of the volume which contains the invariant proper rest charge densityr0 of the
g-charges. The form~99!, with r5gr0 substituted for the charge density, is then especi
convenient for expressing the power density or zeroth component of the four-force law as
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f L
05gr0

dK0

dt
5

gr0

c

dk

dt
5

d

dt S E
cD5

g

c

dE
dt

, ~102!

wheret is the proper time and whered/dt5gd/dt. The energy density then follows easily from
~102! asE5r0k1constant. Next consider the first of the two equivalent versions of~96! written
out in components as

f L
n5 j gm~]nKm!5rc]nK01 j g j]

nK j5r]nk1 j g j]
nK j . ~103!

One can then express the four-forcef n in terms of the proper rest mass densityz0 as

f n5z0

dun

dt
5z0g

dun

dt
. ~104!

Equation ~104! follows from the canonical formalism if the term2 1
2 z0umum is added to the

Lagrangian density. Combining~104! and ~103!, while using the formular5gr0 and Eq.~101!,
then yields

z0g
dun

dt
5 f L

n5gr0]nk1r0uj]
nK j . ~105!

This form of the pure field four-force in the relativistic longitudinal gauge is especially conven
for expressing the three-force density or space components off L

n as follows:

z0g
duk

dt
5 f L

k5gr0]kk1r0uj]
kK j . ~106!

@Although~106! looks different than the space components of~99!, i.e., the second version of~96!,
they are really the same in the relativistic longitudinal gauge where the second terms are eq
the three-vector version of~46!, and the first terms are equal by~51a!.# Using the three-vector
version of~46! on the second term of~106! and writing the result in three-vector notation yield

z0

d

dt
~gu!52r0¹k1r0~2u•~2¹!!K52r0¹k1r0~u•¹!K , ~107!

where a factor ofg has been canceled in writing~107!. Multiplying ~107! by the rest volumeV0

which contains all of theg-charges and masses, while simultaneously assuming only one pa
is present inV0 , allows one to obtain the single particle force equation using the formulag
5r0V0 andm05z0V0 as follows:

m0

d

dt
~gu!52g¹k1g~u•¹!K . ~108!

It is desirable, however, to eliminate the effectively anti-Hermitian vector potentialK from ~108!
so as to express the force law entirely in terms of the effectively Hermitian componek
5cK0. In this regard, it is convenient to set the Lorentz constraint parameter in the Lagra
density~61! to lg51, so that the Lagrange equation of motion~63! becomes

~]a]a1mg
2!Km5 j g

m/g0c2, ~109!

where it is entirely analogous to the case of a massive electromagnetic-type field in the L
gauge. If one takes the case where the mass parametermg50 in the wave equation~109!, one can
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obtain the usual retarded potential solutions. In the case of a point charge, it is well known th
retarded potential solutions reduce to the Lie´nard–Wiechert potentials, which in theg-charge case
are written as follows:

K ~r ,t !5
g

4pg0c2

u

r 2~u"r !/c
, ~110a!

k~r ,t !5
g

4pg0

1

r 2~u"r !/c
, ~110b!

where u is the ordinary velocity of the chargeg at the source point.@Note however that the
Liénard–Wiechert potentials themselves are known to satisfy the Lorentz condition, i.e
relativistic transverse gauge. Additionally the Lie´nard–Wiechert potentials lead in general to
nonzero field tensorGmn. Therefore the Lie´nard–Wiechert potentials do not appear to be app
priate for the case of a relativistic longitudinal field whereGmn50 and one wants]sKsÞ0.
Nevertheless, it is interesting to explore their use in the present situation to see if it leads to
kind of useful ansatz. In Sec. IV B a four-vector potential example which does satisfy the re
istic longitudinal gauge will be explored.# Rewriting ~110a! as

K ~r ,t !5
g

4pg0c2

u

r 2~u"r !/c
5

uk~r ,t !

c2 ~111!

demonstrates that, at least for the case of a point charge and a massless field, the vector p
K can be eliminated in favor of the scalar potentialk in a straightforward manner. However, it wa
shown in ~27!, ~28!, and ~46! that in the relativistic longitudinal gauge the transverse vec
potential KT50, and soK is purely longitudinal, i.e.,K5KL and must satisfy~27!. Equation
~111! therefore reduces to

K5KL5~ k̂"K !k̂5~ k̂"u!k̂
k

c2 5
uLk

c2 , ~112!

where the longitudinal velocityuL[( k̂"u) k̂ is the projection of the ordinary velocityu in the
direction of the wave number unit vectork̂. Substitution of~112! into ~108! yields

m01

d

dt
~g1u1!52g1¹k21g1u1•¹

~ k̂2•u2!k̂2k2

c2 ~113!

as the force equation as following from the ansatz~111! for a point particle with rest massm0

5m01 and chargeg5g1 in the presence of a massless four-vector field~and presumably still in
the relativistic longitudinal gauge!, but written entirely in terms of~110b!, the retarded scalar field
k2 of a second point chargeg5g2 . Note that since eachg-charge is pure imaginary valued in th
notation, the force law~113! includes a factor ofi 2521, indicating that the force is predom
nantly attractive between likeg-charges.

It is interesting at this point to compare the preceding results with a force law derived dir
from an interaction Lagrangian formulation. Consider the single particle Lagrangian

Lsp52m01A12u1
2/c21L I . ~114!

The interaction Lagrangian density of a four-vector field (k2 /c,K2) of a second particle interact
ing with a particle of chargeg1 and rest massm01 is presumably of the form

L I52g1k21g1u1•K2 ~115!
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~i.e., LI52 j gmKm). The single particle Lagrangian~114! with ~115! substituted yields as its
Euler–Lagrange equations of motion a Lorentz-type force law,

d~g1m01u1!

dt
5g1S 2¹k22

]K2

]t D1g1u13~¹3K2!. ~116!

In the relativistic longitudinal gauge this Lorentz-type force vanishes since the two brac
terms on the rhs of~116! vanish via~46! and~51!, ~or by ~47! substituted into a Lorentz-type forc
density f Lorentz

n 52 j glGln). Therefore the force law~116! is not consistent with the force dens
ties ~108! or ~113! which followed from the manifestly covariant stress tensor formulation in
special case of a massless field. One could regard this inconsistency as ruling out an intera
a relativistic longitudinal field with a conservedg-charge four-currentj g

m , arguing that the ca-
nonical momentum density associated with theK05k/c component of the field Lagrangian den
sity ~59!, namely,

Pgi
0

c
5

]Lgi

]~]k/]t !
52lgg0]mKm, ~117!

is a free field due to~65!. This is in contradistinction to a relativistic transverse field where
canonical momentum density

Pgi
k 5

]Lgi

]~]Kk/]t !
52g0Gk, ~118!

associated with theKk components is not a free field since

~]a]a1mg
2!Gmn5~]a]a1mg

2!~]mKn2]nKm!5~]m j g
n2]n j g

m!/g0c2, ~119!

which follows from ~63! in a Lorentz gauge. TheG0i components~defined in~43!! are propor-
tional to the momenta canonically conjugate to theKi components and so by~119! they are not
associated with a free field. Also, the Stueckelburg Lagrangian density~59!, despite being the
most general quadratic Lagrangian for a four-vector field, is not gauge invariant due to the
mass term and the Lorentz constraint term. As a result the force density~96! in the relativistic
longitudinal gauge is not gauge invariant either, and is dependent on the gauge functionFg of the
gauge transformation~53!, even in a relativistic longitudinal gauge defined by~52!, ~53!, and~55!,
as the following demonstrates:

f L8
n5 j gm~]nK8m!5 j gm~]nKm1]n]mFg!, ~120a!

f L8
n5 j gm~]mK8n!5 j gm~]mKn1]m]nFg!, ~120b!

where both of the equivalent forms of~96! have been gauge transformed in~120!. This depen-
dence on the gauge functionFg ~whenFg is nonconstant!, can only be removed by removing th
interaction term2 j gmKm from the Lagrangian density~61!, thereby precluding an interaction wit
a conservedfour-vector currentj g

m . The inconsistency of the force laws is then also removed
well.

It appears then that an interaction with a conserved four-vector current ofg-chargesj g
m would

be ruled out and consequently a relativistic longitudinal four-vector field would appear to be
described as a free field. A study of a theory including a fourth-order self-interaction term,

L I
(4)51

g0c2

4!
l I

(4)~KmKm!2, ~121!
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analogous to af4 scalar field theory, is therefore warranted~but is not done here!. @The sign of the
L I

(4) term is chosen so that the zeroth or scalar components agree with thef4 scalar field theory.#
Now, consider againQmn, the new ‘‘symmetrized’’ energy-momentum tensor density~80!

composed of~82!, the pure electromagnetic-type energy-momentum tensorQT
mn representing a

massless transverse part of the field, along with~83!, the tensorQL
mn representing the longitudina

part of the field.@Note, however, that the relativistic longitudinal stress tensorQL
mn defined in~83!

also suffers from the problem outlined in~120!, i.e., that it is dependent on the gauge functionFg

of the gauge transformation~53!, even in a relativistic longitudinal gauge defined by~52!, ~53!,
and ~55!. Despite this problem, a few calculations will be made for the sake of completen#
When terms associated with the external current are set to zero, the momentum density~in energy
units! of ~80! in the relativistic transverse gauge is

P T
j 5Q0 j5g0c2G0lGl

j 1g0c2mg
2K0K j

5g0c2~]0Ki2] iK0!~] iK
j2] jK

i !1g0c2mg
2K0K j ,

~122!

sinceG0050. The ‘‘transverse’’ field momentum~in momentum units! reduces to

PT5E d3x g0~~GT3I !1mg
2kK !, ~123!

which is the usual result plus an added mass term. On the other hand, the tensorQmn of ~80!
reduces in the relativistic longitudinal gauge to~91! due to the equation of motion~81!. Then
when terms associated with the external current are set to zero, the momentum density~in energy
units! follows from ~83! as

P L
j 5QL

0 j52lgg0c2~]sKs!~] jK0!. ~124!

The space integral of~124! times 1/c is the longitudinal field momentum

PL5E d3x S lgg0c2

c
~]sKs! D¹K05E d3x ~lgg0!S 1

c2

]k

]t
1¹•KLD¹k, ~125!

since] j→2¹. Interestingly, in the longitudinal case since the mass term in~83! is diagonal, there
is no mass contribution to the field momentum density~124!, while in the previous case of th
transverse field there is a nondiagonal mass term which therefore shows up in~122!. A similar
calculation for a massive pure real scalar field would yield only the partial time derivative te
~125!, as well as an overall minus sign~cf. p. 45 of Ref. 4!. The analogous minus sign is howev
implied in ~125! sincek is pure imaginary valued and so the first term in~125! is consistent with
a scalar field with coupling constantlgg0 . The second term of~125! is then basically a relativistic
extension of a massive scalar field.

Next, one can calculate the angular momentum of theKm field in the relativistic longitudinal
gauge. In an isolated region, free of currents~assuming that they could be consistently coupled
the field in the first place!, the longitudinal energy-momentum stress tensorQL

mn is conserved, i.e.,

2 f L
n[]mQL

mn52 j gm~]nKm!52 j gm~]mKn!50, ~126!

by ~96! when j gm50. It is also symmetric by its definition~83!, i.e., QL
nm5QL

mn sinceGmn50
implies ]mKn5]nKm. These two properties allow one to define a covariant third-rank te
~anti-symmetric inm andn!,

Mlmn[xmQL
nl2xnQL

ml , ~127!
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which is conserved~as]l acting on~127! while using the symmetry ofQL
mn clearly shows!. The

conservation of the symmetric longitudinal energy-momentum stress tensor~83! and of the anti-
symmetric third rank tensor~127! ~which together comprise the ten generators of the Lore
group! implies that the classical theory of the four-vector fieldKm in the relativistic longitudinal
gauge is invariant under the inhomogeneous Lorentz group. Next, the total angular momentuJL

mn

is then the volume integral of thel50 component of~127!, that is,

JL
mn5E d3x M0mn52JL

nm ,
]JL

mn

]t
50. ~128!

The i , j components of this antisymmetric tensorJL
mn , with ~83! substituted, gives

JL
i j 5E d3x~xiQL

j 02xjQL
i0!52lgg0c2E d3x~]mKm!~~xi] j2xj] i !K0!. ~129!

In the center of mass frame of the particle this is also the intrinsic spin angular momentum,18

SL
15JL

23, SL
25JL

31, SL
35JL

12, SL
050, ~130!

so that in three-vector notation one has finally

SL5lgg0cE d3xS 1

c2

]k

]t
1¹•KLD ~x3¹!k. ~131!

Note, it is possible to eliminateKL from ~131! in favor of k using~112! as an ansatz. However,
has not yet been proved whether or not~112!, which was derived only for the special case of
point particle interacting with a massless field using Lie´nard–Wiechert potentials, holds in ge
eral. As in the earlier calculation of the field momentum~125!, a similar calculation for a massiv
pure real scalar field would yield only the partial time derivative term in~131!, as well as an
overall minus sign. The analogous minus sign is implied in~131! again sincek is formally pure
imaginary valued and so the first term in~131! is consistent with a scalar field with couplin
constantlgg0 . The second term of~131! can then be interpreted as a relativistic extension o
massive scalar field.

Next, the Hamiltonian density of the four-vector fieldKm is furnished by a calculation of the
zero-zero component of the energy-momentum tensorQmn in the relativistic longitudinal gauge
starting with~91! as follows:

H gi[Q005g00~ j gsKs!1QL
00

52lgg0c2~]mKm!~]0K0!1
lgg0c2

2
g00~]mKm!22g00

g0c2mg
2

2
~KmKm!1 j gmKm,

~132!

or in component form withK5KL in the relativistic longitudinal gauge,

Hgi52lgg0c2S 1

c

]K0

]t D 2

2lgg0c2~¹•KL!S 1

c

]K0

]t D2
g0c2mg

2

2
~~K0!22KL•KL!

1
lgg0c2

2 S 1

c

]K0

]t D 2

1lgg0c2~¹•KL!S 1

c

]K0

]t D1
lgg0c2

2
~¹•KL!21rgcK02 jg•KL .

~133!

Canceling and combining terms yields the energy density,
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Hgi52
lgg0

2 S ]K0

]t D 2

2
g0c2mg

2

2
~~K0!22KL•KL!1

lgg0c2

2
~¹•KL!21rgcK02 jg•KL ,

~134!

which is bounded from belowsince an implicit factor of minus one due to the pure imagin
valued field~i.e., (K0)25 i 2(KI 0)252(KI 0)2, whereKI 0 is pure real! cancels the minus sign on th
time partial derivative term. A time derivative term involvingKL , the badly behaved part of th
four-vector field in this case, is not present in the relativistic longitudinal gauge! In passing
that if one applies the ansatz~112! to Eq. ~134!, while substitutingjg15rg1u1 and k25cK2

0 to
distinguish the field from the current density as in~113!, one would then obtain

Hgi52
lgg0

2c2 S ]k2

]t D 2

2
g0mg

2

2
~k2!2S 12

u2L
2

c2 D 1
lgg0

2 S ¹•

u2Lk2

c2 D 2

1rg1k2S 12
u1•u2L

c2 D ,

~135!

which is expressed entirely in terms of the well behaved degree of freedomk.
In an entirely similar fashion one could apply the relativistic longitudinal gauge~47! to the

Lagrangian density~61! thus obtaining

Lgi52lg

g0c2

2
~]mKm!21

g0c2mg
2

2
~KmKm!2 j gmKm. ~136!

Since the individual terms in~136! are of the same functional form as in~132!, then by the same
arguments that lead to~134! ~or by setting the first bracketed term in~59! to zero! it is clear that
the relativistic longitudinal gauge Lagrangian density~136! is also bounded from below, and so is
its associated action integral. And since the above Hamiltonian and Lagrangian densities
relativistic longitudinal gauge are bounded from below, the~pure imaginary valued! classical
four-vector fieldKm satisfies the principle requirement for a physical field in the classical dom

A theorem can therefore be stated as follows:
Theorem III „Physical classes of classical four-vector fields…: There are two and only two

nontrivial classes of sufficiently smooth classical four-vector fields in unbounded Minkowski
which under covariant constraint are potentially physical, i.e., with a Lagrangian density th
bounded from below. The Lagrangian density itself is assumed to be sufficiently general
sense that it is fully quadratic in its variables and its derivatives as for example with the St
elberg Lagrangians (1) and (61). These two classes are characterized as follows:

~1! Four-Vector Fields Am: An ostensibly pure real valued four-vector field Am(xn) which is
defined by the Lagrangian density (1), must be constrained by the relativistic transverse
]sAs(xn)50, i.e., by the Lorentz condition, in order for it to be potentially physical. In oth
words a pure real valued four-vector field must be four-solenoidal in order for it to
classically bounded from below.

~2! Four-Vector Fields Km: A formally pure imaginary valued four-vector field Km(xn) which is
defined by the Lagrangian density (61), must be constrained by the relativistic longitu
gauge Gmn(xs)5]mKn(xs)2]nKm(xs)50 in order for it to be potentially physical. In othe
words, the four-vector field Km(xn) must be four-irrotational in order for it to be classicall
bounded from below.

Proof: Consider that the Stueckelberg Lagrangians~1! and ~61! are quadratic in quantities
which in turn are linear in the partial derivative]m , namely,Fmn or Gmn and ]mAm or ]mKm,
respectively. Also, the specification of these two types of linear combinations of]m and the
four-vector field, i.e., the four-curl and the four-divergence, over the entire~unbounded! four-
space volume ofR311 uniquely specifies a sufficiently smooth four-vector field by Theorem I
Sec. III C.@And there is a corollary requiring only the additional specification of the~real! nonzero
mass parametersm andmg which follows from Theorem XII of Ref. 1.# Specifically, there are two
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and only two linearly independent constraints which are linear in the four-curl or the
divergence and which remove time derivative terms from a Stueckelberg Lagrangian. The
are the relativistic longitudinal gauge where one sets the four-curl to zero, and the relat
transverse gauge, i.e., the Lorentz condition, where one sets the four-divergence to zer@The
cases where the four-curl or the four-divergence are set to a constant will be considered triv~or
linearly dependent!.# Now, only the following cases of the application of these two constraints
occur.

The four-vector fieldKm in the relativistic longitudinal gauge has already been proven to
classically bounded from below~see the discussions accompanying the Hamiltonian density~134!
and the Lagrangian density~136!!. Also, the field momentum~125! demonstrates that this case c
be looked at as a relativistic extension of a scalar field and so this is indeed a new four-vecto
case~and not just the usual theory of a scalar field!. For the ostensibly pure real valued four-vect
field Am in the relativistic transverse gauge, the Lorentz condition]mAm50 reduces the Lagrang
ian density~1! to

L52
e0c2

4
FmnFmn1

e0c2m2

2
~AmAm!2 j mAm. ~137!

All the badly behaved time derivative terms, i.e., those involving the scalar potentialA05f/c
with their leading minus signs, are now eliminated from the Lagrangian density as can be s
applying the Lorentz condition to~4!. The pure real four-vector field in the relativistic transver
gauge is therefore classically bounded from below, as is well known. Applying both the relati
longitudinal gauge and the Lorentz gauge simultaneously eliminates all four of the degre
freedom from a Stueckelberg Lagrangian and therefore leads to a trivial case. Applyin
relativistic longitudinal gauge to a pure real valued four-vector field, or applying the Lor
gauge to a formally pure imaginary valued four-vector field, leads to Lagrangian densities th
not bounded from below because the badly behaved degrees of freedom from a Stuec
Lagrangian would be retained. This covers all the possible cases of the application of th
covariant constraints. Therefore, only the covariantly constrained four-vector fields in the tw
only two classes specified in Theorem III are bounded from below, thus proving Theorem'

A few additional comments are in order. It should be apparent that a simultaneous appli
of the ~nonrelativistic! longitudinal gauge~with I5“ÃK50 eliminating all but the mass term i
~123!!, and the Lorentz gauge~with ]sKs50 causing the longitudinal field momentum~125! to
vanish!, leads to a trivial case since for a~massless field! there would be no field momentum
transport at all. Similarly, a simultaneous application of the~nonrelativistic! longitudinal gauge
~which impliesKT50), and the Coulomb gauge~with “"K50 implying KL50 andf50), leads
to a trivial case. On the other hand, a massless real valued four-vector field in the Coulomb
leads to a two degree of freedom theory which is classically bounded from below. Bu
Coulomb gauge is nonmanifestly covariant and leads to essentially the same result in the m
field case as the covariant Lorentz gauge and this type of four-vector field~e.g., electromagnetism!
is already covered~covariantly! in Theorem III. It is reasonable therefore to conclude that Th
rem III covers all of the potentially physically interesting cases of classical four-vector field

B. Pure gauge and ghost fields

A four-vector field which does not need to involve the Lie´nard–Wiechert potentials will be
briefly considered. In fact this four-vector field actually satisfies a relativistic longitudinal g
condition Fmn50. Consider the ‘‘pure gauge’’ field@i.e., a field which can be removed by th
gauge transformation~17!#

Am[]mL ~138!
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as discussed in connection with the Meissner effect deep in a superconductor, where the m
field is required to vanish~cf. Ref. 19!. This can be seen in the present context as following fr
the vanishing of the field tensor,

Fmn5]mAn2]nAm5]m]nL2]n]mL50, ~139!

so that both the magnetic and electric fields vanish. Substituting the pure gauge fieldKm[]mL
into a massless wave equation gives

]a]aKm5~]a]a!]mL5 j g
m/g0c2. ~140!

An inhomogeneous solution of~140! can be obtained from a Green’s function technique
follows:

~]a]a!]mGm~x,x8!5d (4)~x2x8!5
1

~2p!4 E d4ke2 ikn(xn2x8n). ~141!

The four-vector Green’s functionGm then follows from the calculation

Gm~x,x8!5~~]a]a!]m!21
1

~2p!4 E d4ke2 ikn(xn2x8n)5
1

~2p!4 E d4k
km

2 i 3k4 e2 ikn(xn2x8n),

~142!

yielding the integral form of the Green’s function as

Gm~x,x8!5
1

~2p!4 E d4k
2 ikm

k4 e2 ikn(xn2x8n). ~143!

This integral can be performed as an integration in the complex plane in a manner similar
used to obtain the electromagnetic retarded potentials. The result is not required here. It is
to say that the resulting Green’s function yields the inhomogeneous solution forL via the integral

L~x!5E
V48

Gm~x,x8!
j g
m~x8!

g0c2 d4x8. ~144!

However, as is well known, the pure gauge field does not couple to a conserved current.
rate, the Green’s function approach has yielded the momentum space Green’s function fol
from ~143! as

G̃m~k!5
2 ikm

k4 , ~145!

which is purely longitudinal in the direction ofkm.
‘‘Ghost’’ fields in nonabelian gauge theory also appear to be of this ‘‘pure gauge’’ form~cf.

Sec. 15.6 in Ref. 19!. Ghost fields are useful in studying the renormalization properties of n
belian gauge theories. Currently in QCD these pure gauge ghost fields are enigmatically lab
fermions due to the sign of the contributions to their Lagrangian. This amounts to a violati
the spin-statistics theorem which is however ignored since the ghost fields are not considere
physical degrees of freedom. A reclassification of these states as relativistic longitudinal
~formally anti-Hermitian! four-vector fields in SU~3! might restore the boson nature of pure gau
fields to these particles, eliminating a current paradox. In passing note that the relativistic
tudinal gauge condition in SU(n) would be defined as follows:

05Fmna~x!ta5Fmn~x![]mAn2]nAm2@Am ,An#, ~146!
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where theta are elements of the Lie algebra. The condition~146! is routinely taken as implying a
pure gauge field.2 The use of pure gauge fields in nonabelian gauge theory is discussed in
12-1 in Ref. 2.

C. The case of pseudo-four-vector current coupling

The results of Sec. IV A suggest that a coupling of the four-vector fieldKm to a conserved
four-vector current appears to be problematic. Indeed,K0, the only effectively Hermitian compo
nent of the potentialKm, acts like a free field. However, there are examples of four-currents w
are not conserved. The four-current coupling of a nucleon iso-spinor to a pseudo-scalarp meson
isotopic~three! vector exhibits what is referred to as ‘‘differential current conservation’’~cf. Ref.
20!. In this case the proton andp1 meson currents are not separately conserved, but their c
bination is conserved. It is interesting, therefore, to consider the case of pseudo-four-vector
coupling to theKm field in its own right.

While one could just takeKm and j g
m in the Lagrangian~61! as pseudo-four-vectors, th

essential features of the coupling to a fermion current would not be illustrated. Therefore, alt
the analysis of the present article is ostensibly limited to classical field theory, it is necess
present a few quantum mechanical calculations so as to obtain a preliminary force law fo
case. The pseudo-four-vector current will be taken as

j g
m[g c†g0gmg5c5gc̄gmg5c, ~147!

whereg0, gm, andg5 are the Dirac matrices, wherec is a Dirac spinor, and where the adjoin
spinor is defined asc̄[c†g0. Note that a factor ofi is implicit in ~147! via the formally pure
imaginary valued classical chargeg5 igI , wheregI is a real number. As a result~147! is anti-
Hermitian. Also, the pseudo-four-vector nature of~147! follows from the inclusion of the factor o
g5 . A suitable Lagrangian density~of the Stueckelberg type! will be chosen~droppingg0 in favor
of rationalized Heaviside units and with\5c51) using~147! as follows:

Lgi5
1

4
Gmn

† Gmn1
lg

2
~]mKm†!~]mKm!2

mg
2

2
~Km

† Km!1c̄~ igm]m2m!c2gc̄K” g5c, ~148!

where the Feynman slash notationK” [gmKm has been used. Note that an explicit minus sign
been inserted in the first three terms of~148! since the field is being taken as anti-Hermitian f
convenience with the relationKm†(x)52Km(x), and so, e.g.,KmKm52Km

† Km @compare with
~61!#. The last term of~148! is the interaction Lagrangian density

LI52gc̄K” g5c52g c̄gmg5cKm52 j g
mKm , ~149!

whereKm commutes withc and g5 . @Equation~149! could also be written as the symmetrize
sum

LI5
j g
m†Km1 j g

mKm
†

2
, ~150!

in which case the explicit minus sign for an anti-Hermitian field is factored into these terms,#
The Euler–Lagrange equation of motion forKm which follows from the Lagrangian density~148!
is

~]a]a1mg
2!Km2~12lg!]m~]sKs!5gc̄gmg5c5 j g

m , ~151!

where the minus sign in the first three terms of~148! @and in the symmetrized interaction La
grangian density~150!# gets reabsorbed in obtaining~151!, which in turn is similar in form to~63!.
The Euler–Lagrange equation of motion for the spinorc is
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~ igm]m2m!c5gK” g5c. ~152!

Dividing ~152! by i while settingKm50 gives

05~gm]m1 im!c5g0]0c1g j] jc1 imc. ~153!

The Hermitian conjugate of~153! is

05~gm]mc1 imc!†5~]0c†!g0†1~] jc
†!g j †2 imc†5~]0c†!g02~] jc

†!g j2 imc†,
~154!

sinceg0†5g0 andg j †52g j . Now, taking the four-divergence of~147! ~times 1/g) using ~153!
and ~154! gives

~1/g!]m j g
m5]m~c†g0gmg5c!

5~]0c†!g0g0g5c1~] jc
†!g0g jg5c1c†g0g0g5~]0c!1c†g0g jg5~] jc!

5~]0c†!g0g0g5c2~] jc
†!g jg0g5c2c†g0g5g0~]0c!2c†g0g5g j~] jc!

5~ imc†!g0g5c2c†g0g5~2 imc!52imc†g0g5c52imc̄g5c, ~155!

since $gm,g5%[gmg51g5gm50 and $g0,g j%[g0g j1g jg050, and so the pseudo-four-vecto
current ~147! is not conserved as expected. This is significant in the present case sinc
four-divergence of the wave equation~151!, after cancellation of terms, is

~lg]a]a1mg
2!]mKm5]m j g

m52mg~ c̄ ig5c!, ~156!

and so the four-divergence]mKm is no longer a free scalar field.@Contrast with~65! where it is
easy to show in a similar fashion using~153! and~154! that the four-divergence of a four-vecto
current j g

m5gc̄gmc is zero.#
The covariant canonical momentum~71! follows as before~in the units of this section! as

Pgi
n ~xm!52~]0Kn2]nK0!2lgg0n]sKs. ~157!

Now, in order to simplify calculations it is desirable to use the relativistic longitudinal ga
constraint~47!, Gmn50. However, in Sec. III D it was suggested that this constraint would m
likely be imposed as a restriction on the positive frequency parts ofGmn as per~58!. But, the
restriction~58! still implies that

^cuGmnuc&50, ~158!

and since the expectation value of an operator is the relevant quantity in the classical mec
limit, the author will cavalierly setGmn50 in the calculations which follow. Therefore, the on
surviving component of~157! in the relativistic longitudinal gauge is the momentum canonica
conjugate to the scalar field componentK0, namely,

Pgi
0 52lgg00]sKs52lg]sKs, ~159!

and so by~156!, the ~potentially observable! canonical momentumPgi
0 has a pseudo-scalar wav

equation,

S ]a]a1
mg

2

lg
DPgi

0 522mg~ c̄ ig5c!, ~160!
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with a ‘‘mass’’ as defined previously in~66!, namely,ms5mg /Alg, wherelg.0. Equation~160!
is of a similar functional form as the wave equation for ap0 meson~pure real pseudo-scalar field!
coupled to a proton via an attractive Yukawa potential~cf. Eq. ~10.10! in Ref. 20!. However, in
~160! g is taken as a pure imaginary valued coupling constant andPgi

0 is an anti-Hermitian
operator~i.e., ~160! is a wave equation for an anti-Hermitian pseudo-scalar field which ca
rewritten to look like it is for a Hermitian pseudo-scalar field!. Also, there is that curious appea
ance of the fermion massm ~as well as a factor of 2! on the rhs of~160!.

The energy-momentum tensor formulation follows as before from~75!. However, in the
present case when one calculates the four-force densities one must use the pseudo-fou
current~147!. The four-force density in the relativistic longitudinal gauge~96! becomes

f L
n[2]mQL

mn5 j gm~]nKm!5g c̄gmg5c~]nKm!5 j gm~]mKn!5gc̄gmg5c~]mKn!, ~161!

where either of the two general forms in~161! are equivalent if one assumesGmn50 in antici-
pation of the calculation of an expectation value for the force law. There will be higher o
interaction force terms of quantum mechanical origin as well. Also, it should be emphasize
the Lorentz-type force law~116!, which vanishes in the relativistic longitudinal gauge, does
follow from a single particle Lagrangian approach for this pseudo-four-vector current case d
the factor ofg5 in the interaction Lagrangian~149!. Therefore, the inconsistency present in t
four-vector current case of Sec. IV A with respect to obtaining a force law does not arise h

V. CONCLUSION

The author is currently studying the interactions of relativistic longitudinal gauge fields
electromagnetic-type fields. For example, consider the enigmatic 1/2 quantum infinite zero
vacuum contribution to the spin one electromagnetic field, which is currently ignored using n
ordering of quantum operators. Upon first inspection it appears likely that this vacuum con
tion can be canceled via a coupling with an appropriate relativistic longitudinal gauge four-v
field, which has an analogous zero-point contribution but of opposite sign. This type of can
tion was discussed by Pauli in 1943 for a system of two harmonic oscillators~one Hermitian with
positive energy and one anti-Hermitian with negative energy! @see Eq.~34! of Sec. 4 in Ref. 21#.
He found that the ground state of the system was not uniquely determined when an ind
metric Hilbert space was used~which is not surprising since his system was not bounded fr
below!. On the other hand, theconstrainedsystem of one Hermitian four-vector field in th
Lorentz gauge and one formally anti-Hermitian four-vector field with one effectively Herm
component surviving in the relativistic longitudinal gauge, would be bounded from below an
this would be the first plausible use of the technique.
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The super-separability of the three-body inverse-square
Calogero system

S. Benenti,a) C. Chanu, and G. Rastelli
Department of Mathematics, University of Turin, Italy

~Received 14 December 1999; accepted for publication 14 March 2000!

The geometrical theory of the variable separation for the Hamilton–Jacobi equation
is applied to the classical three-body inverse-square Calogero system. It is proved
that this system is separable in infinitely many inequivalent ways, related to five
different kinds of separable webs in the Euclidean three-space, and the correspond-
ing systems of independent first integrals in involution are computed. ©2000
American Institute of Physics.@S0022-2488~00!05707-8#

I. INTRODUCTION

The three-body Calogero system consists of three identical particles moving on a line
coordinates~x, y, z!, respectively, under interactive forces with potential energy

V5
g

~x2z!2 1
g

~y2x!2 1
g

~z2y!2 , gPR. ~1.1!

It is known that this dynamical system is super-integrable~see Refs. 1–4 and papers cited therei!.
It is also known that it is separable in the cylindrical coordinates associated with the reduct
a two-dimensional system.5,6 In the present paper we show that the three-body Calogero syste
in fact separable in infinitely many inequivalent ways thus, that it is super-separable.~A Hamil-
tonian system is ‘‘super-separable’’ if it is separable in at least two inequivalent ways; ‘‘inequiva-
lent’’ means that the separation is related to distinctseparable webs, i.e., to distinct algebras o
first integrals in involution.! For this purpose, the three particles on the line will be interprete
a single one moving in the Euclidean three-spaceE3.R3, with rectangular Cartesian coordinate
~x, y, z!. Then, we shall apply to the Hamiltonian

H5 1
2~px

21py
21pz

2!1V, ~1.2!

the geometrical theory of the orthogonal separation based on the following theorem:7,8

Theorem 1.1:A natural Hamiltonian H5G1V on the cotangent bundle T*Q of a Riemannian
manifold Qn is separable in orthogonal coordinates iff on Q there exists a Killing two-tensoK
with simple eigenvalues and normal eigenvectors, such that

d~KdV!50. ~1.3!

Here,G is the geodesic Hamiltonian andV is a function onQ, canonically lifted toT* Q;
KdV denotes the one-form image ofdV by K , interpreted as a linear endomorphism over o
forms, whose components aregihKh j] jV. Let G5(gi j )5(gi j )

21 be the contravariant metric
tensor. We recall that on a Riemannian manifoldQ ~with coordinates (qi)! a contravariant sym-
metric tensor of any order,K5(Ki¯ j ), is a Killing tensor „K-tensor… if the functions onT* Q
~with canonical coordinates (qi ,pi)!

PK5Ki¯ j pi¯pj , PG5gi j pipj , ~1.4!

a!Electronic mail: benenti@dm.unito.it
46540022-2488/2000/41(7)/4654/25/$17.00 © 2000 American Institute of Physics
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are in involution in the canonical Lie–Poisson brackets

$PK ,PG%50.

This means thatPK is a first integral of the geodesic flow~G5 1
2PG is the geodesic Hamiltonian!.

Two symmetric tensors of any orderA andB are said to bein involution if $PA ,PB%50.
In Theorem 1.1, ‘‘normal’’ means orthogonally integrable or surface forming: the eigen

tors ofK are orthogonal to foliations of regular hypersurfaces. These foliations of submanifo
codimension 1 form anorthogonal web and any coordinate systemqI 5(qi) adapted to this web
~i.e., whose coordinate surfaces belong to the web! is orthogonal andseparable, i.e., in these
coordinates the metric tensor is diagonal and the corresponding Hamilton–Jacobi equation

1
2g

i j ~] iW!21V5h,

admits a complete solution of the form

W~qI ,cI !5(
i 51

n

Wi~qi ,cI !,

~cI 5(ci) is a complete set of integration constants!. For this reason, an orthogonal web is call
separableif it is made of hypersurfaces orthogonal to the eigenvectors of a Killing two-tensK
with simple eigenvalues. The tensorK is said to be acharacteristic tensorof the web~notice that
it is not uniquely determined; for instance,K1aG is still a characteristic tensor,;aPR!. The
existence of such a tensor characterizes the orthogonal separation of the pure geodesic Ha
Jacobi equation~caseV50!, while Eq.~1.3!, which we callthe characteristic equation, charac-
terizes the separability of a potentialV ~i.e., of the HamiltonianH5G1V! in the web determined
by K . A separable orthogonal web is the geometrical object representing an equivalence c
separable orthogonal coordinates: Two separable coordinate systems are equivalent if the
dinate hypersurfaces belong to the same web.

The meaning of the characteristic equation@Eq. ~1.3!# is given by the following genera
property:7,8 Let K be a contravariant symmetric two-tensor,PK be defined as in~1.4! andVK be
a smooth function onQ ~canonically extended toT* Q!. Then the function

HK5 1
2PK1VK ~1.5!

is in involution with the natural Hamiltonian

H5HG5 1
2PG1VG5G1V,

if and only if K is a Killing two-tensor and

dVK5KdV. ~1.6!

Thus, the characteristic equation@Eq. ~1.3!# is locally equivalent to the existence of a quadra
first integral of the kind~1.5!.

It can be shown7 that the existence of a characteristicK-tensor~i.e., of aK-tensor with simple
eigenvalues and normal eigenvectors! K implies the existence of an-dimensional linear spaceK
of Killing two-tensors, includingK and the metric tensorG, all in involution and with common
eigenvectors. We shall call this space theKilling –Stäckel involutive algebra ~briefly, KS-
algebra! generated by~or associated with! the characteristic tensorK . It can be proved that if the
characteristic equation@Eq. ~1.3!# is satisfied byK , then it is satisfied by all elements of th
KS-algebraK generated byK , and that the corresponding functions~1.5! form a n-dimensional
spaceH of first integrals in involution. Actually, the orthogonal separation can be characterize
a system ofn independentK-tensors in involution and commuting as linear operators, accordin
the celebrated Eisenhart theorem,9 see also Kalnins and Miller10 for a deeper discussion. Howeve
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in our approach to the separation of the Calogero system it turns out to be more conven
relate the separation to a single characteristicK-tensor. In any separable coordinate system ada
to the web, all these tensors are diagonalized and for any basis (K j ) of K, the diagonal compo-
nents

K j
ii 5w~ j !

i

form a regularn3n matrix @w ( j )
i # whose inverse@w i

( j )# is aStäckel matrix: Each elementw i
( j ) is

a function of the coordinateqi corresponding to the lower index only. The functionsVj , such that

dVj5K jdV,

have the form

Vj5w~ j !
i f i5K j

ii f i , ~1.7!

wheref i is a function of the corresponding coordinateqi only. If G is an element of the basis, sa
G5Kn , then

gii 5w~n!
i , V5Vn5gii f i . ~1.8!

It follows that the quadratic first integrals in involution (H j ) generated by the basis have the for

H j5
1
2w~ j !

i ~pi
212f i !. ~1.9!

Furthermore, by settingcj52H j and reversing the system of equations~1.9!, we can see that the
Lagrangian foliation ofT* Q generated by equations

pi5] iW

is locally represented by equations of the kind

pi
25F i~qi ,cI !5w i

~ j !cj22f i . ~1.10!

This means that eachpi is a function of the corresponding coordinateqi only, but in general of all
the integration constantscI . It follows that a separated solutionW of theH –J equation is the sum
of the integrals:

Wi56E AF idqi ,

for any suitable choice of the signs. Moreover, the inequalities

F i>0, ~1.11!

following from ~1.10! define regions of the space, depending on the constants of motioncI , where
the orbits are confined. By the Jacobi theorem, the orbits are locally determined by then21
equations

ak5
]W

]ck
, k51,...,n21, ~1.12!

if we choose~as it is customary! cn5h ~the energy constant!, while the time-dependence is give
by the last equation
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t2t05
]W

]h
, ~1.13!

representing a moving hypersurface.
In the present paper, we shall solve the characteristic equation~1.3! for the Calogero potentia

~1.1! and find all possible characteristic tensorsK . They form a five-dimensional space an
generates five different kinds of separable orthogonal webs. Furthermore, by solving Eqs~1.6!,
we shall compute all the quadratic first integrals associated with the corresponding five
algebras, leaving to a further work the analysis of their expressions in separable coordina
the discussion of the related equations~1.10!–~1.13!.

II. KILLING VECTORS AND TENSORS IN THE EUCLIDEAN THREE-SPACE

It is known that in the Euclidean spaceE3 , as in all manifolds of constant curvature, an
K-tensor isreducible, i.e., a linear combination with constant coefficients of symmetric ten
products ofK-vectors.11 The symmetric tensor product ( of two vectors is defined by

A(B5 1
2~A^ B1B^ A!. ~2.1!

With the rectangular Cartesian coordinates (xi)5(x1 ,x2 ,x3)5(x,y,z) we associate the basi
translational unitK-vectors (X i)5(X1 ,X2 ,X3)5(X,Y,Z )

X5F 1
0
0
G , Y5F 0

1
0
G , Z5F 0

0
1
G ,

and the basic rotationalK-vectors (Ri)5(R1 ,R2 ,R3)5(Rx ,Ry ,Rz), defined by

Rx5X3r5F 0
2z
y
G , Ry5Y3r5F z

0
2x

G , Rz5Z3r5F2y
x
0

G , ~2.2!

where

r5F x
y
z
G

is the position vectorr5OP of the generic pointPPE3 with respect to the originO. Here, we
denote byu3v the skew-symmetric cross product of two vectors, whose Cartesian compo
aree i jkujvk, wheree i jk is the Levi-Civita symbol. We denote byu•v the symmetric scalar produc
of two vectors. The following identities hold

S iX i(X i5G, S iX i(Ri50, S iRi(Ri5r 2G2r ^ r , ~2.3!

where

G5F 1 0 0

0 1 0

0 0 1
G .

Let K2(E3) be the space of Killing two-tensors onE3 . Any element ofK2(E3) is represented
as a linear combination of symmetric products of the basicK-vectors

K5A1B1C5ai j X i(X j1bi j X i(Rj1ci j Ri(Rj . ~2.4!
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The components of theK-tensors

A5@Ai j #, B5@Bi j #, C5@Ci j #

are constant, linear-homogeneous in the Cartesian coordinates and quadratic-homogene
spectively, and the constant coefficients appearing in~2.4! form matrices of the kind

@ai j #5@Ai j #5F a1 a3 a2

a3 a2 a1

a2 a1 a3

G , @bi j #5F b11 b12 b13

b21 b22 b23

b31 b32 b33
G , @ci j #5F c1 g3 g2

g3 c2 g1

g2 g1 c3

G
~2.5!

~the first and the third one are symmetric!, for a total amount of 21 constant coefficients. Howev
the dimension ofK2(E3) is 20, since only the differences of the diagonal coefficients (b11,b22,b33)
are involved~see below!

b15b222b33, b25b332b11, b35b112b22,

and these three parametersb are constrained by the equation

b11b21b350.

We can compute the components of the matricesB andC starting from the relations

Ri•X j5e ik jxk52e i jkxk

Bi j 5blmX i•~X l(Rm!X j5
1
2~bihe jhk1bjhe ihk!xk

Ci j 5clmX i•~Rl(Rm!X j5clme l ihem jkxhxk.

We obtain

B115b12x32b13x25b12z2b13y
B225b23x12b21x35b23x2b21z
B335b31x22b32x15b31y2b32x

B125 1
2~b222b11!x31 1

2b
13x12 1

2b
23x25 1

2~b13x2b23y2b3z!

B235 1
2~b332b22!x11 1

2b
21x22 1

2b
31x35 1

2~b21y2b31z2b1x!

B315 1
2~b112b33!x21 1

2b
32x32 1

2b
12x15 1

2~b32z2b12x2b2y!

C115c22x3
21c33x2

222c23x2x35c2z21c3y222g1yz

C225c33x1
21c11x3

222c31x3x15c3x21c1z222g2zx

C335c11x2
21c22x1

222c12x1x25c1y21c2x222g3xy
C125~c13x21c23x12c12x3!x32c33x1x25~g2y1g1x2g3z!z2c3xy
C235~c21x31c31x22c23x1!x12c11x2x35~g3z1g2y2g1x!x2c1yz
C315~c32x11c12x32c31x2!x22c22x3x15~g1x1g3z2g2y!y2c2zx .

~2.6!

III. THE FIRST SEPARABILITY CONDITION

According to Theorem 1.1, a first condition for the separability is the existence of aK-tensor
K solution of the characteristic equation~1.3! for the Calogero potentialV ~1.1! ~there is no loss
of generality in assumingg51!. By inserting into this equation the expression~2.4! of a general
K-tensor ofE3 , we get a system of algebraic equations in the variables~x,y,z!, to be identically
satisfied. This provides a system of linear equations on the constant coefficients. With the h
a computer algebra system~we used Maple V®—an alternative method which avoids this calc
lation is illustrated in Ref. 12! it can be shown that these linear equations are
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a15a25a35a
a15a25a35a

b135b215b3252b2352b3152b125b
b15b25b350
c15c25c35c

g15g25g35g.

It follows from ~2.5! that

@ai j #5F a a a

a a a

a a a
G , @bi j #5F t 2b b

b t 2b

2b b t
G , @ci j #5F c g g

g c g

g g c
G , ~3.1!

for any arbitrarytPR. However, the value oft is irrelevant, due to the second identity~2.3!. We
can chooset50, so that the matrix@bi j # becomes skew-symmetric

@bi j #5F 0 2b b

b 0 2b

2b b 0
G . ~3.2!

The conclusion is
Proposition 3.1: The solutions of the characteristic equation d~KdV!50 for the Calogero

potential ~1.1! form a five-dimensional linear spaceC of K-tensors of the kindK5A1B1C,
where

A5@ai j #5F a a a

9 a a

9 9 a
G , ~3.3!

B5bF 2~y1z! 1
2~x1y! 1

2~x1z!

9 2~x1z! 1
2~y1z!

9 9 2~x1y!

G , ~3.4!

C5F c~y21z2!22gyz 2cxy1gz~x1y2z! 2czx1gy~z1x2y!

9 c~z21x2!22gzx 2cyz1gx~y1z2x!

9 9 c~x21y2!22gxy
G . ~3.5!

The elements ofC are determined by the values of the five parameters (a,a,b,c,g). An
equivalent decomposition ofKPC is

K5~a2a!G1aT1bS1cI1gJ, ~3.6!

where

T5F 1 1 1

1 1 1

1 1 1
G , ~3.7!
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S5
1

b
B5F 2~y1z! 1

2~x1y! 1
2~x1z!

9 2~x1z! 1
2~y1z!

9 9 2~x1y!

G , ~3.8!

I5F y21z2 2xy 2zx

9 z21x2 2yz

9 9 x21y2
G , J5F 22yz z~x1y2z! y~z1x2y!

9 22zx x~y1z2x!

9 9 22xy
G . ~3.9!

However, as far as the separation is concerned, the first componentG in the expression~3.6! is
irrelevant, so that we can consider onlyK-tensors of the kind

K5aT1bS1cI1gJ. ~3.10!

Furthermore, as it will be shown in the next section, it is convenient to introduce theK-tensor

Q5I1J5F ~z2y!2 ~z2y!~x2z! ~z2y!~y2x!

9 ~x2z!2 ~x2z!~y2x!

9 9 ~y2x!2
G , ~3.11!

so that~3.10! becomes equivalent to

K5aT1bS1~c2g!I1gQ. ~3.12!

IV. THE SECOND SEPARABILITY CONDITION

According to Theorem 1.1, we have to look for elements ofC with normal eigenvectors and
simple eigenvalues. In our analysis, the following objects will play a basic role~see Fig. 1!: the
constant vector

v5X1Y1Z5F 1
1
1
G , ~4.1!

and its unit vector~the director !

FIG. 1. The basic geometrical objects.
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d5
v

uvu
5

1

)
v, ~4.2!

the linev passing through the originO of the coordinates and parallel tov ~called thepolar axis!;
the rotationalK-vector aroundv

R5v3r5Rx1Ry1Rz5F z2y
x2z
y2x

G ; ~4.3!

the planeV throughO and orthogonal tov ~the equatorial plane!, and the half-planes issue
from v ~the meridian half-planes!.

Remark 4.1:The Calogero potential~1.1! is not defined on the meridian planes containing
axes, whose equations arez5y, x5z andx5y. d

Remark 4.2:With any smooth real functionf (u) we associate a potential energy

Vf5 f ~x2z!1 f ~y2x!1 f ~z2y!. ~4.4!

For f (u)5gu22 we find the Calogero potential~1.1!. For all f, the functionVf is v-invariant,
v•¹Vf50. This means that the function

pv5v•p5px1py1pz ~4.5!

is a ~linear! first integral of the HamiltonianH5G1Vf ; for the three-body system on a line, th
is precisely the mass-center first integral~or the linear momentum integral!. Indeed, from

]xVf5 f 8~x2z!2 f 8~y2x!

]yVf5 f 8~y2x!2 f 8~z2y!

]zVf5 f 8~z2y!2 f 8~x2z!,
~4.6!

it follows that:

v•¹Vf5~]x1]y1]z!Vf50. d

Proposition 4.3: The K-vectorR is an eigenvector of all elements ofC.
Proof: We observe that the following intrinsic expressions hold for thebasic K-tensorsof C

defined in~3.7!–~3.9! and ~3.11!:

Q5R^ R
T5v^ v

I5r 2G2r ^ r
S5v(r2sG,

~4.7!

where

r 25r•r5x21y21z2, s5v•r5x1y1z. ~4.8!

Moreover,

R25R•R53r 22s253rv
2 , R•v5R•r50, ~4.9!

wherer v is the distance from the axisv. From these expressions it follows that
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QR5R2R
TR50

IR5r 2R
SB52sR.

~4.10!

j

Remark 4.4:We recall that a Lie algebra structure is defined on the contravariant symm
tensor fields of a manifold, by equation@see~1.4!#

$PA ,PB%5P@A,B# , ~4.11!

where$•,•% are the Poisson–Lie brackets on functions overT* Q

PA5P~A!5Ai¯ j pi¯pj ,

and for a function~symmetric tensor of rank 0! f over Q,

Pf5 f ,

where we denote by the same symbolf its natural extension toT* Q ~constant on the fibers!. The
corresponding Lie-brackets@•,•# are known as Schouten–Nijenhuis brackets~for symmetric ten-
sors!, 13,14 whose expression in any local coordinate system is

@A,B# i 1••• i p1q215pAi ~ i 1¯ i p21] iB
i p¯ i p1q21)2qBi ~ i 1¯ i q21] iA

i q¯ i q1p21, ~4.12!

where~p,q! are the ranks ofA andB, respectively, and round brackets~ ! around indices denote
symmetrization over those indices. We remark that the rank of@A, B# is p1q21. In particular, for
vector fieldsX andY, @X, Y# are the ordinary Lie-brackets

@X, f #5^X,d f&,

is the derivative of the functionf with respect to the vectorX, and

dXA5@X,A#,

is the Lie-derivative of the tensorA with respect to the vectorX. Thus, the tensorA is invariant
with respect to~the flow generated by! the vector fieldX iff @X,A#50. In particular,X is a Killing
vector iff @X,G#50. The Leibniz rule holds

@A,B(C#5@A,B#(C1@A,C#(B, ~4.13!

where the symmetric tensor product( is defined by

PA(B5PAPB .

For two vectors we find~2.1!. d

Proposition 4.5:C is invariant with respect toR: @R,K #50, ;KPC.
Proof: By the Leibniz rule

@R,T#5@R,v(v#52@R,v#(v50,

@R,Q#5@R,R(R#52@R,R#(R50,

@R,I #5@R,r 2#G1r 2@R,G#22@R,r #(r50,

@R,S#5@R,v#(r1@R,r #(v2@R,s#G2s@R,G#50,
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sinceR is aK-vector andv andr are invariant with respect toR ~i.e., under any rotation aroun
v!:

@R,G#50, @R,v#5@R,r #50, @R,r 2#5@R,s#50. j

From this invariance it follows that:
Proposition 4.6: All elements ofC have normal eigenvectors.
Proof: The common eigenvectorR is normal: The orthogonal surfaces are the merid

half-planes. Let (E1 ,E2) be other two orthogonal eigenvectors of an elementKPC. These vectors
are tangent to the half-planes. SinceK is R-invariant, we can choose these vectors to
R-invariant. Let us consider the integral curves ofE1 on a half-plane. They are orthogonal toE2 .
By rotating the half-plane we get surfaces of revolution orthogonal toE2 . ThusE2 is normal. The
same forE1 . j

It remains to look for the elements ofC with simple eigenvalues: these elements will
characteristicK-tensors of separable orthogonal webs. SinceR is a common eigenvector ofC, all
these webs will be of revolution aroundv and include the foliation of the meridian half-plane
We know five possible separable webs of this kind:

Wcyl5circular cylindrical web,

Wpar5circular parabolic web,

Wsph5spherical web,

Wpro5prolate spheroidal web,

Wobl5oblate spheroidal web.

We shall show that in fact there exists inC a characteristicK-tensorK* for any webW* of this
kind. For a graphical and coordinate representation of these webs see Ref. 15.

Remark 4.7:For each webW* , a basis of the corresponding KS-algebraK* is given by the
triple (K* ,Q,G), whereK* is a characteristic tensor. Indeed, the tensorQ is a common elemen
of all these subalgebras, since any vector orthogonal toR is an eigenvector ofQ ~with zero
eigenvalues! and, moreover,Q is in involution with all elements ofC, due to theR-invariance

@K ,Q#5@K ,R(R#52@K ,R#(R50. d

Remark 4.8:The axially symmetric orthogonal webs listed above, with the exception of
first one, are centered: They refer to a distinguished point on the polar axisv, which in our case
is the originO of the coordinates. However, due to the invariance with respect tov, any arbitrary
translation along the linev ~which produces a translation of the center! leads to webs which are
still separable for the Calogero system. d

In the following discussion, among the eigevectors we shall find the vector fields

r3R5F y21z22x~y1z!

z21x22y~z1x!

x21y22z~x1y!
G5r 2v2sr , v3R5F y1z22x

z1x22y
x1y22z

G5sv23r . ~4.14!

Besides~4.10!, we shall use the following formulas, derived from~4.7!:

Qr50
Tr 5sv

Ir 50

Sr5 1
2r

2v2 1
2sr ,

~4.15!
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Qv50
Tv53v

Iv5r 2v2sr

Sv5 3
2r2 1

2sv,

~4.16!

Q~r3R!50
T~r3R!5R2v

I ~r3R!5r 2r3R

S~r3R!5 1
2R

2r2sr3R,

~4.17!

Q~v3R!50
T~v3R!50

I ~v3R!5r 2v3R1R2r

S~v3R!52 1
2R

2v2sv3R.

~4.18!

V. THE CIRCULAR CYLINDRICAL WEB Wcyl

This web is determined by a single geometrical element: A linev ~the polar axis!. It is made
of the half-planes issued fromv ~the meridian half-planes!, the planes orthogonal tov, and the
circular cylinders with axisv. The singular set~where the web is not defined! is v. These surfaces
are, respectively, orthogonal to the vector fields

~R,v,v3R!, ~5.1!

where:v is a ~constant! vector parallel tov, R5v3r , andr5OP is the position vector of the
generic pointPPE3 with respect a pointOPv.

We can see from~4.10!, ~4.16!, and~4.18! that the vectors~5.1!, wherev andR are just the
vectors defined in~4.1! and ~4.3!, are eigenvectors of theK-tensorQ2TPC, with eigenvalues

~R2,23,0!. ~5.2!

These eigeivalues are simple onE3\v, sinceR250 on v. Thus, we have proved
Proposition 5.1: The Calogero system is separable in the circular cylindrical webWcyl with

axis v and characteristic tensor

K cyl5Q2T5R^ R2v^ v. ~5.3!

We observe that alsoQ1T is a characteristic tensor everywhere, with the exclusion of
polar axis and of the circular cylinderR253. Indeed, the eigenvalues of this tensor are (R2,3,0).

VI. THE PARABOLIC WEB Wpar

This web is determined by two geometrical elements (v,O): A line v ~the axis! and a point
OPv ~the focus or center!. It is made of the meridian half-planes and of the two families
paraboloids of revolution aroundv with focus O. The singular set isv. It can be shown that a
triple of vector fields orthogonal to these surfaces is

~R,u1d,u2d!, ~6.1!

whered is a director of the axisv, u is the unit vector determined by the radius vectorr referred
to the centerO

u5
r

r
, ~6.2!
                                                                                                                



s

4665J. Math. Phys., Vol. 41, No. 7, July 2000 The super-separability of the three-body . . .

                    
andR is any rotation vector aroundv. From ~4.7!, ~4.10!, ~4.15!, and~4.16! we can see that the
vectors~6.1!, whered andR are defined in~4.2! and ~4.3!, are eigenvectors of

KO5S5v(r2v•rGPC, ~6.3!

with eigenvalues

~2s, 1
2~)r 2s!,2 1

2~)r 1s!!. ~6.4!

These eigenvalues are simple onE3\v. Indeed, onv they assume the values (2s,0,2s), since
r5rd ands5v•r5)d•r5)r .

Let us consider the position vectorrC with respect to a pointCPv

rC5r2td5r2
1

)
tv, ~6.5!

where

uOCu25t2. ~6.6!

Then

KC5v(rC2v•rCG ~6.7!

is a characteristic tensor of the parabolic web centered atCPv. By inserting~6.5! in ~6.7!, we can
see that also this tensor is an element ofC, in agreement with Remark 4.8

KC5S2
1

)
tT1)tG. ~6.8!

Hence, we have proved@the last term in~6.8! can be disregarded#
Proposition 6.1: The Calogero system is separable in any parabolic web with axisv and

focus CPv, and with characteristic tensor

Kpar5S2
1

)
tT5v(r2v•rG2

1

)
tv^ v ~ t25uOCu2!. ~6.9!

VII. THE SPHERICAL WEB Wsph

This web is determined by two geometrical elements~v, O!: A line v ~the polar axis! and a
point OPv ~the center!. It is made of the half-planes issued fromv ~the meridian half-planes!, the
spheres centered atO and the circular cones with axisv and vertexO. The singular set is the axi
v. A triple of vectors orthogonal to these surfaces is

~R,r ,r3R!. ~7.1!

From ~4.7!, ~4.15!, and~4.17! we can see that these vectors are eigenvectors of theK-tensor

KO5I1Q5r 2G2r ^ r1R^ RPC, ~7.2!

with eigenvalues

~R21r 2,0,r 2!. ~7.3!
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These eigenvalues are simple onE3\v, sinceR250 on v. By applying again the transformatio
~6.5!, we can see that also the tensor

KC5r C
2 G2rC^ rC1R^ R5I1Q1

2

)
tS2

1

3
t2T1t2G ~7.4!

is an element ofC ~Remark 4.8!. Thus we have proved
Proposition 7.1: The Calogero system is separable in any spherical web with polar axisv and

center CPv, and with characteristic tensor

K sph5I1Q1
2

)
tS2

1

3
t2T5r 2G2r ^ r1R^ R1

2

)
tv(r2v•rG2

1

3
t2v^ v ~ t25uOCu2!.

~7.5!

VIII. THE PROLATE SPHEROIDAL WEB Wpro

This web is determined by three elements~v,O,c!: A line v ~the polar axis!, a pointOPv ~the
center! and a positive constantc ~the parameter!. The parameterc defines onv two points~foci!
(F1 ,F2), whose distance fromO is c and whose position vectors are

r15r2cd, r25r1cd, ~8.1!

whered is a unit vector parallel tov ~the director!. This web is made of the meridian half-plane
and of the quadrics of revolution, ellipsoids and two-folded hyperboloids, obtained by rot
aroundv the confocal conics~ellipses and hyperbolae! with foci (F1 ,F2) over the meridian
planes. The singular set isv. It can be shown~see for details Ref. 12! that the vectors

~Rd,u11u2 ,u12u2!, ~8.2!

where

Rd5d3r , u15r1/r 1 , u25r2 /r 2 ~8.3!

are orthogonal to these three families of surfaces, and that they are eigenvectors of the te

KO5r 2G2r ^ r1c2d^ d, ~8.4!

with eigenvalues

~r 2, 1
4~r 12r 2!2, 1

4~r 11r 2!2!. ~8.5!

These eigevalues are simple onE3\v. We recognize the tensorKO as an element ofC

KO5I1
c2

3
T5r 2G2r ^ r1

c2

3
v^ v. ~8.6!

By applying the transformation~6.5!, we can see that

KC5r C
2 G2rC^ rC1c2d^ d5I 1

2

)
tS1

1

3
~c22t2!T1t2G. ~8.7!

Thus,
Proposition 8.1: The Calogero system is separable in any prolate spheroidal web with

axis v and center CPv, with any value of the parameter c, and with characteristic tensor
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Kpro5I1
2

)
tS1

1

3
~c22t2!T

5r 2G2r ^ r1
2

)
t~v(r2v•rG !1

1

3
~c22t2!v^ v ~ t25uOCu2!. ~8.8!

IX. THE OBLATE SPHEROIDAL WEB Wobl

This web is again determined by three elements~v,O,c!. The positive constantc defines on the
equatorial planeV a circleG of radiusc and centerO. On each meridian plane we consider t
confocal conics with foci (F1 ,F2) belonging toG. The web is made by the ellipsoids and on
folded hyperboloids of revolution generated by these confocal conics, and by the meridian
planes. The singular set of this web isGøv. With each position vectorr ~for points ¹v! we
associate its projectionc onto the equatorial plane, renormalized in such a way thatc•c5c2. This
vector is defined by

c5
c

r v
~r2r•dd!.

Then we define the position vectors with respect to the fociF1 andF2

r15r2c, r25r1c,

and the corresponding unit vectors

u15r1 /r 1 , u25r2 /r 2 .

It can be shown12 that the vectors

~Rd,u11u2 ,u12u2!

are orthogonal to the surfaces of the web, and that they are eigevectors of the tensor

KO5r 2G2r ^ r2c2d^ d, ~9.1!

with eigenvalues

~r 2, 1
2~a21!r 1r 2 , 1

2~a11!r 1r 2!, a5u1•u2 . ~9.2!

These eigenvalues are simple onE3\(Gøv), so that the tensor~9.1! is a characteristic tensor o
the oblate spheroidal web with axisv and centerO, determined by the triple (O,d,c). We
recognize the tensorK as an element ofC

KO5I2
c2

3
T5r 2G2r ^ r2

c2

3
v^ v. ~9.3!

By the transformation~6.5! we can see that

KC5r C
2 G2rC^ rC2c2d^ d5I1

2

)
tS2

1

3
~c21t2!T1t2G. ~9.4!

Hence, we have proved
Proposition 9.1:The Calogero system is separable in any oblate spheroidal web with

axis v and centerCPv, with any value of the parameterc, and with characteristic tensor
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Kobl5I1
2

)
tS2

1

3
~c21t2!T

5r 2G2r ^ r1
2

)
t~v(r2v"rG !2

1

3
~c21t2!v^ v ~ t25uOCu2!. ~9.5!

X. THE FIRST INTEGRALS ASSOCIATED WITH THE SEPARATION

As it was mentioned in in the Introduction and in Sec. IV, each separable webW* generates
a three-dimensional KS-algebraK* ,C, including the characteristic tensorK* , the tensorQ and
the metric tensorG. This subalgebra is also commutative, interpreting theK-tensors as linear
operators. Indeed, all tensors ofK* have common eigenvectors and at least one of them~the
characteristic tensor! has simple eigenvalues. Furthermore,K* generates a three-dimension
involutive algebraH* of first integrals defined by Eq.~1.5! and~1.6!. For computing all these firs
integrals, one should integrate Eq.~1.6! ~i.e., the closed one-formKdV! for each one of the basic
elements~4.7! of C. However, this cumbersome process of integration can be avoided, due
remarkable property of the inverse-square Calogero potential. To show this, we recall a g
property of the orthogonal separable systems, expressed by formula~1.8! in the Introduction:

Proposition 10.1: Let(qi) be orthogonal separable coordinates and let

V5gii f i , gii 5G~dqi ,dqi !, ] jf i50 ~ iÞ j ! ~10.1!

be the expression of a separable potential in these coordinates (eachf i is a function of the
corresponding coordinate qi only). Then, for each elementK of the KS-algebraK corresponding
to these coordinates, a solution VK of Eq. (1.6) is

VK5l ig
ii f i5Kii f i , ~10.2!

wherel i are the eigenvalues ofK corresponding to the eigenforms dqi .
Proof: Equation~1.6! is equivalent to

] jVk5l j] jV, ~10.3!

while the Killing equation@K,G#50 is equivalent to

K j j ] jg
ii 5gj j ] jK

ii

~no sum over the repeated indices! that is to

l j] jg
ii 5] jK

ii .

It follows that:

] j~Kii f i !5] jK
ii f i1Kii ] jf i5l j] jg

ii f i1l jg
ii ] jf i5l j] j~gii f i !5l j] jV.

This shows that~10.2! is a solution of Eq.~10.3!. j

For the Calogero system, all separable webs are of revolution aroundv and the rotation angle
c, mesured from a fixed meridian half-plane, can be chosen as a coordinate~sayq35c! in any
separable coordinate system (qi) ~see Fig. 1!. Its gradient¹c is proportional to the rotationa
vectorR, and the orientation ofc can be chosen in such a way that

¹c5
d3r

r v
2 5

R

)r v
2

. ~10.4!

Moreover,
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g335¹c•¹c5
1

r v
2 , ~10.5!

wherer v is the distance from the axisv.
Proposition 10.2: In any separable coordinate system(qi) with q35c, the Calogero potential

has the form

V5g33f35
1

r v
2 f~c!, ~10.6!

wheref35f(c) is a function of the rotation angle only.
This means that in the expression~10.1! of the Calogero potential,f15f250.
Proof: Let us consider the function

f5r v
2 V.

This function is obviously invariant with respect tov, i.e.,v•¹f50, since both functionsr v and
V are invariant. The functionf is also invariant with respect tor . To show this we introduce the
vector

rv5r2 1
3v•rv, ~10.7!

representing the component ofr orthogonal to the axisv, and such thatrv•rv5r v
2 . Because of the

meaning ofr v ~the distance from the axisv!, ¹r v5(r v)21rv , so that

r•¹r v
2 52r vr•¹r v52r v

2 .

For the Calogero potential~see Remark 10.3 below!

r•¹V522V, ~10.8!

so thatr•¹f5r•¹(r v
2 V)5r•¹r v

2 V1r•¹Vrv
2 50. A function which is invariant with respect t

v and r is invariant with respect tov and rv , thus it is a function of the anglec only. j

Remark 10.3:For a potentialVf ~4.4!,

r•¹Vf5~x]x1y]y1z]z!Vf5~x2z! f 8~x2z!1~y2x! f 8~y2x!1~z2y! f 8~z2y!.

If f (u)5up, thenr•¹Vf5pVf . Therefore, the crucial condition~10.8! holds only for the inverse
square potential (p522). d

From Propositions 10.1 and 10.2 it follows that:
Proposition 10.4:For all KPC, a solution of Eq.~1.6! is

VK5lKV5lK

f

r v
2 , ~10.9!

wherelK is the eigenvalue ofK associated with the eigenvectorR.
For the basic elements ofC, Eqs.~4.10! show that

lQ5R253r v
2 5~x2z!21~y2x!21~z2y!2

lT50
l I5r 25x21y21z2

lS52s52~x1y1z!,

~10.10!

hence, by~10.9!
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VQ53f
VT50

VI5r 2V5
r 2

r v
2 f

VS52sV52
s

r v
2 f.

~10.11!

Using ~10.9! and ~10.10! we could write the expressions of these functions in Cartesian coo
nates. Furthermore, if we introduce the momentum vector

p5F px

py

pz

G , ~10.12!

and the associated quantities

pv5Pv5v•p5px1py1pz

pr5r•p5xpx1ypy1zpz

pc5M•d5r3p•d5
1

)
~~y2x!pz1~z2y!px1~x2z!py!,

~10.13!

M5r3p5F ypz2zpy

zpx2xpz

xpy2ypx

G , ~10.14!

themass-center momentum, theradial momentum, theaxial angular momentum ~with respect
to the polar axisv!, and theangular momentum vector, respectively, then we derive from~4.7!

PQ53pc
2

PT5pv
2

PI5r 2p22pr
25M2

PS5pvpr2sp2.

~10.15!

The resultingbasic first integrals ~1.5! are

HQ53( 1
2pc

21f)

HT5 1
2pv

2

H I5
1

2
M21

r 2

r v
2 f

HS5
1

2
~pvpr2sp2!2

s

r v
2 f.

~10.16!

Using ~10.9!, ~10.10!, ~10.13!, and ~10.14!, we could express these first integrals in Cartes
coordinates and see that they are rational in~x,y,z! ~and, of course, quadratic in the momenta!.
From ~10.9! it follows that all these first integrals~exceptpv! are not defined on the meridia
planes passing through the Cartesian axes~see Remark 4.1!.

Remark 10.5:The existence of rational first integrals for then-body Calogero system has bee
proved in Ref. 16. Actually,HT is equivalent to the linear first integralpv , which appears in the
KS-algebra of the cylindrical web~see below!. The existence of four independent first integra
besides the Hamiltonian itself, shows that the Calogero system is ‘‘maximally super-integrable,’’
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in the sense that it has the maximal number of first integrals allowed by its dimension.~The
maximal number of independent first integrals of aN-dimensional dynamical system isN21; for
a Hamiltonian systemN52n, and in our caseN56. About the definition of super-integrability
see, for instance, Refs. 3, 4, and 17.! However, if one deserves the term ‘‘Arnold–Liouville
super-integrable’’ to those Hamiltonian systems which admit at least two inequivalent system
n independent first integrals in involution, generating two distict Lagrangian foliations in
cotangent bundleT* Q, then the above discussion shows that the Calogero system is in fact, a
super-separable system, also AL-super-integrable. d

As a conclusion of the above discussion, in Table I we list for each separable webW* of the
Calogero system~we consider only the webs centered at the originO of the coordinates! the basic
elements of the KS-algebraK* and of the involutive function algebraH* .

Remark 10.6:The first integralHQ is in involution with all the basic first integrals~10.16!.
Therefore, it belongs to every involutive function algebraH* associated with the separation. Sin

pc5r v
2 ċ, ~10.17!

it yields the constant of motion6

1
2r v

4 ċ21f5constant. ~10.18!

The explicit expression of the functionf~c! can be found in Ref. 5

f~c!5
9g

2 sin2~3c!
. ~10.19!

The following proof of this formula exhibits some interesting properties of the inverse-sq
potential. Let us consider the equatorial planeV and the projection operator which associates w
any vectorv the orthogonal projectionvv over V

vv5v2 1
3v•vv, ~10.20!

so thatvv•v50 @see~10.7! and Fig. 1 for the case of the position vectorr #. Let us consider the
projections of the basic coordinate vectors~X, Y, Z !

Xv5X2 1
3v•Xv

Yv5Y2 1
3v•Yv

Zv5Z2 1
3v•Zv.

~10.21!

For these vectors

Xv•Xv5 2
3,..., Xv•Yv52 1

3,... . ~10.22!

For any position vectorr , we consider the angles (cx ,cy ,cz) formed byrv and (Xv ,Yv ,Zv),
respectively~see Fig. 2!, and oriented in such a way that

TABLE I. Basic elements of the separable webs for the calogero system.

Web W* Basis ofK* Basis ofH*

Wcyl G, Q, T H,HQ ,HT

Wpar G, Q, S H,HQ ,HS

Wsph G, Q, I H,HQ ,H I

Wpro G,Q,I1(c2/3)T H,HQ ,H I1(c2/3)HT

Wobl G,Q,I2(c2/3)T H,HQ ,H I2(c2/3)HT
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Xv3rv5uXvuurvusincxd5A2
3 r v sincxd, ... ~v5)d!. ~10.23!

We choosec5cx as the fundamental angle. Thus,

cy5c1 2
3p, cz5c1 4

3p.c2 2
3p

and

sin~3cy!5sin~3c!, sin~3cz!5sin~3c!. ~10.24!

From the definitions~10.21! it follows that:

rv3Xv5r3X2 1
3sv3X2 1

3r3v5F 0
z

2y
G2

s

3 F 0
1

21
G1

1

3 F z2y
x2z
y2x

G5
1

3
~z2y!v5

1

3
R•Xv.

~10.25!

Similar results hold forYv andZv . The comparison with~10.23! shows that

~z2y!252r v
2 sin2 cx5 2

3 R2 sin2 cx . ~10.26!

Thus,

f5r v
2 V5

g

2 S 1

sin2 cx
1

1

sin2 cy
1

1

sin2 cz
D . ~10.27!

This proves once more thatf is a function of the anglec alone. We can transform this expressio
by using the identity

sin 3c5sinc~324 sin2 c!,

so that, due to~10.24!

FIG. 2. Orthogonal projection onto the equatorial planeV.
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f5
g

2 sin2~3c!
@~324 sin2 cx!

21~324 sin2 cy!21~324 sin2 cz!
2#

5
g

2 sin2~3c!
@27116~sin4 cx1sin4 cy1sin4 cz!224~sin2 cx1sin2 cy1sin2 cz!#.

~10.28!

From ~10.23!

sin2 cx5
3

2

~z2y!2

R2 , ... .

Thus

sin2 cx1sin2 cy1sin2 cz5
3
2 . ~10.29!

Actually, this last formula is a general identity which holds for any triple (fx ,cy ,cz) of angles
differing by 2

3p ~modulo 2p!. It is remarkable that a similar formula holds for the fourth powe

sin4 cx1sin4 cy1sin4 cz5
9
8. ~10.30!

Indeed,

sin4 cx5sin2 cx2 1
4 sin2~2cx!, ... .

Summing these three expressions, we can apply formula~10.28! to the angles (2cx,2cy,2cz) and
get ~10.30!. Thus,~10.28! leads to~10.19!. d

Remark 10.7:For the basicK-tensors~4.7!, Eqs.~1.3! are, respectively, equivalent to

d~R•¹VRb!50
d~v•¹Vvb!50

d~r•¹Vrb2r 2dV!50
d~v•¹Vrb1r•¹Vvb22v•rdV!50,

~10.31!

where

Rb5~z2y!dx1~x2z!dy1~y2x!dz5)r v
2 dc

rb5xdx1ydy1zdz5rdr
vb5dx1dy1dz5ds,

~10.32!

while Eqs.~1.6! are equivalent to

R•¹VRb5dVQ ,
v•¹Vvb50,

r•¹Vrb2r 2dV5dVI ,
v•¹Vrb1r•¹Vvb22v•rdV52dVS.

~10.33!

d

XI. COMMUTATION RELATIONS

For functions onT* Q of the kind ~1.5!

HA5 1
2PA1VA , ~11.1!
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with VA satisfying~1.6!, dVA5AdV, the following general commutation relation holds@see also
~4.11!, we replace here, when convenient, notationPA by P(A)#

$HA ,HB%5 1
4$PA ,PB%1P~@A,B#a¹V!5 1

4P~@A,B# !1P~@A,B#a¹V!, ~11.2!

where

@A,B#a5AB2BA ~11.3!

denotes thealgebraic commutatorof the linear operatorsA andB. The termP(@A,B#) in ~11.2!
is cubic in (pi), while P(@A,B#a¹V) is linear. Notice that@A,B#a¹V is the vector field image of
the gradient¹V by the linear~skew-symmetric! operator@A,B#a .

In order to express the commutation relations for all the basic first integrals~10.16!, it is
convenient to introduce the adjoint skew-symmetric two-tensor of the vector fieldR

V5* R5F 0 y2x z2x

x2y 0 z2y

x2z y2z 0
G , ~11.4!

such that, for any vectorv

Vv5R3v. ~11.5!

Indeed, since the basicK-tensors~4.7! have the common eigenvectorR, their algebraic commu-
tators are all of the kindf V, wheref is a function onE3 . This follows from the general identity

@A,B#aR5* @A,B#a3R,

and from the condition

@A,B#aR50,

which imply

* @A,B#a5 f R,

i.e.,

@A,B#a5 f V.

We find

@T,S#a5 3
2V5 1

2~3lG2lT!V

@T,I #a52~x1y1z!V5lSV

~11.6!
@S,I #a52 1

2~x21y21z2!V52 1
2l IV

@Q,I #a5@Q,T#a5@Q,S#a50.

Moreover, a straightforward calculation shows that the Poisson brackets of the five functioPK
for theseK-tensors have a similar behavior
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$PT ,PS%522pv~3PG2PT!

$PT ,PI%524pvPS

~11.7!
$PS,PI%52pvPI

$PQ ,PI%5$PQ ,PT%5$PQ ,PS%50,

as well as the Poisson brackets of the five first integrals, derived from~11.2!

$HT ,HS%52pv~3H2HT!

$HT ,H I%522pvHS

~11.8!
$HS,H I%5pvH I

$HQ ,H I%5$HQ ,HT%5$HQ ,HS%50.

Remark 11.1:The commutation relations~11.8! show that the nonvanishing Poisson brack
yield cubic first integrals which factorize in the product ofpv5p•v ~10.13! ~which is linear! and
the basic quadratic first integrals themselves@or a linear combination of them, as in(11.8)1#.
Sincepv5AHT, it follows that no new independent first integrals are generated by the Po
brackets~see Remark 10.5! and that the algebra of first integrals generated in this way is quad
cally closed. d

Remark 11.2:About the independence of the basic elements (Hi) of each involutive function
algebraH* ~see Table I!, we observe that they are in particularvertically independent, i.e.,

detF]Hi

]pj
GÞ0,

for all p not tangent to a hypersurface of the web. This is in fact a general property o
orthogonal separation. Indeed, from~1.9! it follows that:

detF]Hi

]pj
G5det@w~ i !

j pj #5p1¯pn det@w~ i !
j #.

Since det@w(i)
j #Þ0, the result is zero iff at least onepi vanishes. On the other hand,pi50 means

that p is tangent to the foliationqi5constant. d

XII. FINAL REMARKS

This paper leaves open interesting questions concerning, for example,~i! the casen.3 and,
~ii ! the case of a ‘‘multiparametrized’’ Calogero system~in the sense explained below! at least for
n53. These cases are currently under investigation, and we have at the moment only
results. About case~i! we mention for instance Ref. 18 where separability is stated for
n-particle elliptic Calogero–Moser system up to general~complex! canonical transformations.

If we want to extend the geometrical intrinsic method presented here to these more g
cases~as well as to any dynamical system in a Euclidean space! what we need is a complete ‘‘list’’
or ‘‘dictionary’’ relating all possible separable orthogonal webs in a Euclidean space with
intrinsic expressions~in terms of products of vectors with a clear geometrical meaning! of all
possible characteristicK-tensors and of a basis of the associated KS-algebras. This dictio
besides that one which assigns separable systems of coordinates to symmetry operators
give a further help in the application of the separability theory to the Hamilton–Jacobi equa
as well as to the Schro¨dinger or Helmholtz equations. Indeed, for testing if a potentialV is
separable we should simply check if the characteristic equation~1.3! d(K dV)50 is satisfied for
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at least one of the characteristics tensorsK of the list, and this can be done in any coordina
system we like~not necessarily separable! since the characteristic equation~1.3! has an intrinsic
meaning. When a characteristicK-tensor satisfying~1.3! is found then, as a second step, w
proceed to integrate equations~1.6! for a basis of the associated KS-algebra; this will producn
first integrals in involution~1.5! HK .

Actually, in the present paper we did not follow precisely this procedure, since we solve
characteristic equation~1.3! with respect toK , and not with respect to the potentialV. The reason
is that, even in the casen53, the kind of list we are looking for is at the moment incomplete~a
paper is in preparation, Ref. 12!. Indeed, our analysis of the characteristic equation of the Calo
potential leads to consider only rotational KS-algebras, around the particular axisv determined by
the ‘‘diagonal vector’’v5(1,1,1). All the remaining separable webs in the Euclidean three-s
are not involved. The necessity and the effectiveness of such a list becomes evident in inve
ing case~ii !. We give here only an outline, leaving a complete discussion to a next paper. L
consider the following two generalized versions of the Calogero potential:

V15
1

~ax2gz!2 1
1

~by2ax!2 1
1

~gz2by!2

V25
a

~x2z!2 1
b

~y2x!2 1
g

~z2y!2 ,

~12.1!

wherea,b,gPR, and Þ0 in V1 . Up to a rescaling of the coordinates and fora,b,g.0, the
potentialV1 represents the case of three particles with different masses. Let us consider th
rotationsl characteristicK-tensors introduced in this paper, but referred to an arbitrary axv
~through the originO of the Cartesian coordinates! and to an arbitrary pointCPv. In this general
situation, expressions~5.3!, ~6.7!, ~7.4!, ~8.7!, and~9.4! become

K cyl5R^ R2d^ d
Kpar5d(rC2d•rCG

K sph5r C
2 G2rC^ rC1R^ R

Kpro5r C
2 G2rC^ rC1c2d^ d

Kobl5r C
2 G2rC^ rC2c2d^ d ,

~12.2!

whered is a unit vector parallel to the axisv, R5d3rC ,rC is the radius vector referred to th
point CPv, andcPR. Now, it is easy to see that the characteristic equation~1.3! for V5V1 is
satisfied by allK-tensors in the list~12.2!, provided both vectorsd andOC be parallel to the vector
(1/a,1/b,1/g), while for V5V2 , d andOC must be parallel to~1,1,1!, as for the original Calogero
potential~1.1!. Thus, alsoV1 andV2 are super-separable. Furthermore, for a quadratic pote
Vk5k(x21y21z2)(kPR) the characteristic equation~1.3! can be satisfied for all tensors~12.2!,
with the exception ofK5Kpar, for C5O and for any arbitrary unit vectord. Thus, alsoVk is
super-separable.

As we said in the Introduction, the aim of this paper is to prove the super-separability o
Calogero three-system, and to construct the corresponding first integrals in involution. The f
work of writing and discussing Eqs.~1.10!–~1.13! for all possible choice of separable coordinat
is in progress.

Other questions arise about the separability of the Schro¨dinger or Helmholtz equation and th
associated symmetries. A general remark concerning this topic is the following. On a Riema
manifold~Qn , G!, with a functionHA of the kind~11.1! we associate the second-order different
operator~on functionsc over Q!

ĤAc52
\

2
DAc1VAc, ~12.3!

where~¹ i is the covariant derivative with respect to the Levi-Civita connection!
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DAc5d~Adc!5¹ i~Ai j ] jc! ~12.4!

is thepseudo-Laplacianassociated with the symmetric two-tensorA5(Ai j ). Note thatDG5D is
the ordinary Laplace–Beltrami operator andĤ5ĤG . It can be shown19 that the commutation
relation

ĤAĤB2ĤBĤA50

holds for allA andB belonging to a KS-algebraK, provided the commutation condition

ARic2RicA50 ~12.5!

holds for allAPK, or at least for a characteristic tensor ofK, whereRic is the Ricci tensor~here
interpreted as linear operator on one-forms or vectors!. Equation~12.5! is an intrinsic version of
the well-knownRobertson condition.9,20 On manifolds of constant curvature~for instance on
Euclidean spaces! it is obviously satisfied. All this shows that on these manifolds an involu
function algebraH associated with the orthogonal additive separation of the Hamilton–Ja
equation corresponds to a system of second-order symmetry operators of the Schro¨dinger equation
Ĥc5lc, which are related to its multiplicative separation.21 For this reason, the analysis of th
separability in terms of symmetry operators of the Schro¨dinger equations in Euclidean or o
constant curvature spaces, as done in Refs. 17, 22, 23 forn52,3, is equivalent to the analysis o
the separability of the corresponding Hamilton–Jacobi equations in terms of first integral
Killing tensors.
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Calogero–Moser systems can be generalized for any root system~including the
noncrystallographic cases!. The algebraic linearization of the generalized
Calogero–Moser systems and of their quadratic~respectively quartic! perturbations
are discussed. ©2000 American Institute of Physics.@S0022-2488~00!05807-2#

I. INTRODUCTION

The Calogero–Moser systems1–6 were extended to any semi-simple Lie algebras by Ols
netsky and Perelomov7 at the classical level. It was later generalized by Bordner, Corrigan
Sasaki8 to any root system~including the noncrystallographic case!. The rational Calogero–Mose
system displays a perturbation of special interest whose solutions are all periodic of the
period. Such a type of perturbation was considered for any root system by Bordner, Corriga
Sasaki and they proved the existence of a Lax pair which generalizes the one introduc
Olshanetsky–Perelomov7 for the Am21 case. In this paper, we follow the method introduced
Caseiro–Franc¸oise9 to prove an explicit algebraic linearization of several systems of Caloge
Moser or Ruijsenaars–Schneider type. This techniques together with the general Lax ma
troduced by Bordner–Corrigan–Sasaki allows to show the full periodicity of all the orbits o
rational system perturbed by a confining quadratic potential. A proof of the involution o
eigenvalues of the Lax matrix is given by generalizing the original proof by Franc¸oise10 for the
Am21 case. We show next that the flow associated to each eigenvalue has all orbits periodic
same period.

In the third part of this paper, we consider perturbations of quartic type which are
integrable as shown~in theAm21 case! by Françoise–Ragnisco11 and we show the existence of
Lax pair for all Coxeter groups. In the fourth part, we extend the algebraic linearization o
trigonometric or hyperbolic systems~Sutherland systems!2 to any root system having the minima
representation.

We postpone to further studies the semi-classical analysis of the associated quantum s

II. SUPERINTEGRABILITY OF THE RATIONAL CALOGERO–MOSER SYSTEM FOR ANY
COXETER GROUP

The rational Calogero–Moser system for any Coxeter group was first considered by Bo
Corrigan, and Sasaki.8 They proved the classical integrability by constructing a universal Lax
~see also Refs. 12–16!. The quantum case was discussed by Dunkl.17 In this paper, we use the
techniques of algebraic linearization discussed in Ref. 9 for theAm21 case. This yields the
superintegrability of the rational Calogero–Moser system for any Coxeter group.

Let us denote byD a root system of rankr. The dynamical variables are~as before! the
coordinatesqi , i 51, . . . ,r and their canonically conjugate momentapi , i 51, . . . ,r . The Hamil-
tonian for the classical Calogero–Moser model is
46790022-2488/2000/41(7)/4679/8/$17.00 © 2000 American Institute of Physics
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H5
1

2
p21

1

2 (
rPD1

guru
2 uru2

~r•q!2
, ~2.1!

in which the coupling constantsguru are defined on orbits of the corresponding Coxeter gro
That is, for the simple Lie algebra casesguru5g for all roots in simply laced models andguru
5gL for long roots andguru5gS for short roots in nonsimply laced models. Choose a represe
tion D of dimensionD of the Coxeter group~see the appendix!, then defineD3D matrices:

p•Ĥ: ~p•Ĥ !ab5~p•a!dab , ~2.2a!

ŝr : ~ ŝr!ab5da,sr(b) , ~2.2b!

wherea andb are vectors belonging to the representation andsr is a reflection in the hyperplan
orthogonal to the rootr, see~A1!.

Introduce next theD3D matricesX, L, andM:

X5 i (
rPD1

guru~r•Ĥ !
1

~r•q!
ŝr , ~2.3!

L5p•Ĥ1X, ~2.4!

M5
i

2 (
rPD1

guru
uru2

~r•q!2
ŝr , ~2.5!

and a diagonal matrix:

Q5q•Ĥ: ~Q!ab5~q•a!dab . ~2.6!

The time evolution of the matrixL along the flow of the Hamiltonian displays the followin
equations:

L̇5@L,M #, ~2.7a!

Q̇5@Q,M #1L. ~2.7b!

Introduce now the functions

Fk5Tr~Lk!, k51, . . . ,D, ~2.8!

Gk5Tr~QLk!, k50, . . . ,D21, ~2.9!

whose time-evolution displays

Ḟk50, ~2.10!

Ġk5Fk11 . ~2.11!

This provides the algebraic linearization.
Proposition II.1: The generalized Calogero–Moser system~2.1! is superintegrable for any

Coxeter group.
Proof: Introduce together with theD first integralsFk the D(D21)/2 extra first integrals

Hk,k85FkGk82Fk811Gk21 . Independent conserved quantitiesFk to be obtained from the Lax
equation~2.7a! occur at suchk511exponent of the corresponding crystallographic root syste
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For the noncrystallographic root systems, they arise at (k52,m) for the dihedral groupI 2(m)
(k52,6,10) forH3 and (k52,12,20,30) forH4 . These are the degrees at which Coxeter invar
polynomials exist.18

III. FULL PERIODICITY OF THE CONFINING POTENTIAL CASE

Integrable systems related to any Coxeter group first considered by Bordner, Corriga
Sasaki8 are obtained by adding to generalized rational Calogero–Moser systems a confinin
tential. We recall here the notations and results of this article concerned with the con
potential.

The Hamiltonian is now

Hv5
1

2
p21

1

2
v2q21

1

2 (
aPD1

guau
2 uau2

~a•q!2
. ~3.1!

With the same matrices introduced above in the first paragraph, the time evolution display

L̇5@L,M #2v2Q, ~3.2a!

Q̇5@Q,M #1L. ~3.2b!

Introduce the matrices

L65L6 ivQ. ~3.3!

These matrices undergo the time evolution

L̇656 ivL61@L6,M #. ~3.4!

It was then observed that the matrixL5L1L2 defines Lax matrix for the system:

L̇5@L,M #. ~3.5!

Consider then the functions:

Fk5Tr~L1L k!, ~3.6a!

Gk5Tr~L2L k!. ~3.6b!

The time evolution yields

Ḟk5 ivFk , ~3.7a!

Ġk52 ivGk . ~3.7b!

Thus these functions provide the algebraic linearization of the system. The existence
algebraic linearization relies on the fact that the Lax equation is supplemented by an extra
tion which provides the full dynamics. Another consequence of this extra equation is the in
tion of the first integrals displayed by the Lax pair.

Indeed, the formal structure of the equations@~3.2! and ~3.5!# is the same for any Coxete
group. So the same line of arguments developed in Ref. 10 for the special caseAm21 shows the
following ~which is also of interest in the rational case!.

Theorem III.1: The Hamiltonian flows generated by the functions

Hk5Tr~L k!, k51, . . . ,D
                                                                                                                



imply

e
yields:

l-
onian

ix

4682 J. Math. Phys., Vol. 41, No. 7, July 2000 Caseiro, Francoise, and Sasaki

                    
Poisson commute.
Proof: Consider the symplectic form

V5Tr~dQ`dL!5CD(
j 51

r

dqj`dpj , ~3.8!

defined on the product of two copies of the representation. The constantCD depends actually on
the representation. We can in the following forget about this factorizing constant and s
consider the Hamiltonian system defined by

V5Tr~dQ`dL!, ~3.9a!

and the Hamiltonian

Hv5~1/2CD!Tr~L!. ~3.9b!

Let L be an eigenvalue of the matrixL and letT be the matrix of the projection onto th
eigenspace corresponding to this eigenvalue. Classical result of linear perturbation theory

dL5Tr~dL T!. ~3.10!

The Hamiltonian flow generated by the functionL and the symplectic formV displays:

Tr~Q̇ dL2L̇dQ!5Tr~dL T!. ~3.11!

This yields

Q̇5@Q,M #1 iv@T,Q#1~LT1TL!, ~3.12a!

L̇5@L,M #1 iv@T,L#2v2~QT1TQ!, ~3.12b!

and thus

L̇5@L,M #12iv@T,L#5@L,M #. ~3.13!

This shows that the eigenvalues of the Lax matrixL are constants of motion for the Hami
tonian flow generated by any of its eigenvalues. In particular this proves that the Hamilt
flows generated by the eigenvalues of the Lax matrixL Poisson commute.

Proposition III.2: The Hamiltonian flows generated by any eigenvalues of the Lax matrL
have all orbits periodic of the same periodp/v.

Proof: The time evolution along the Hamiltonian flow displays

L̇15@L1,M #12ivTL1, ~3.14a!

L̇25@L2,M #22ivL2T. ~3.14b!

IntroduceU the ~time dependent! matrix solution of the Cauchy problem:

U̇5UM , U~0!51. ~3.15!

The conjugated matrixULU21 is then a constant of motion. DenoteV a time-independent matrix
which diagonalizes this matrix. Conjugate all the matricesUL6U21 UTU21 by the matrixV
yields

L̇8152ivtL81, ~3.16a!
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L̇82522ivL82t, ~3.16b!

whereL865VUL6U21V21 andt is the constant diagonal matrix whose entries are equal to
except the diagonal term equals to 1 in the position corresponding to the eigenvalue. Equ
~3.16! can be easily integrated and they yield the periodicity of the eigenvalues of the matQ
5(1/2iv)(L12L2) ~the conservation of the Hamiltonian prevents collisions!. This clearly im-
plies that the positionsq are periodic in time of periodp/v.

IV. THE GENERALIZED RATIONAL CALOGERO–MOSER SYSTEM WITH AN
EXTERNAL QUARTIC POTENTIAL

The rational Calogero–Moser can be deformed into an integrable system by adding a q
potential~cf. Ref. 11!. We include now a proof of the existence of a Lax matrix for the generali
rational Calogero–Moser system with an external quartic potential. Define again the same
cesL, Q, X, andM. Let h(Q)5aQ1bQ2 be a matrix quadratic inQ; (a,b) are just two new
independent parameters. The perturbed Hamiltonian is now~up to the normalization constan
2CD):

Hh}Tr~L21h~Q!2!, ~4.1!

Theorem IV.1: The time evolution of the quartic type Hamiltonian system~4.1! can be cast
into a Lax pair.

Proof: Define the matrices:

L65L6 ih~Q! ~4.2!

and

L5L1L2. ~4.3!

The time evolution equations~3.4! of the matricesL6 get modified as follows:

L̇15@L1,M2 ih8~Q!/2#1 iL 1h8~Q!, ~4.4a!

L̇25@L2,M2 ih8~Q!/2#2 ih8~Q!L2. ~4.4b!

This yields the Lax pair equation:

L̇5@L,M2 ih8~Q!/2#. ~4.5!

In the special limitb50, a5v, the quartic system reduces to the confining quadratic pote
considered in Sec. III.

V. THE TRIGONOMETRIC „HYPERBOLIC … CALOGERO–SUTHERLAND SYSTEM

The Hamiltonian of the trigonometric Calogero–Sutherland model writes

H5
1

2
p21

1

2 (
aPD1

guau
2 uau2

sin2~a•q!
. ~5.1!

In order to get the hyperbolic case it suffices to change sin into sinh. In the following, we
demonstrate the algebraic linearization of the trigonometric case. The hyperbolic case
deduced easily by the above replacement. We consider the matrices

L5p•Ĥ1X, ~5.2a!
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X5 i (
rPD1

guru~r•Ĥ !
1

sin~r•q!
ŝr , ~5.2b!

M52
i

2 (
rPD1

guru
uru2 cos~r•q!

sin2~r•q!
ŝr , ~5.2c!

and diagonal matrices:

Q5q•Ĥ: ~Q!ab5~q•a!dab , ~5.2d!

R5e2iQ. ~5.2e!

Theorem V.1: In the case when the root system admits a minimal representation, the
evolution along the flow of the Hamiltonian~5.1! displays:

L̇5@L,M #, ~5.3a!

Ṙ5@R,M #1 i ~RL1LR!. ~5.3b!

The algebraic linearization of the system~5.1! follows with the functions:

ak5Tr~Lk!, k51, . . . ,D, ~5.4a!

and

bk5Tr~RLk!, k51, . . . ,D, ~5.4b!

whose time evolution reads

ȧk50, ~5.5a!

ḃk52ibk11 . ~5.5b!

Proof: It can be easily checked that

Ṙ52ip•ĤR5 i ~p•ĤR1Rp•Ĥ !, ~5.6!

Ṙ5 i @~L2X!R1R~L2X!#5 i ~LR1RL!2 i ~XR1RX!. ~5.7!

We only need to show that

@R,M #52 i ~XR1RX!. ~5.8!

Let us first evaluate the bracket@R,M #:

@R,M #52
i

2 (
rPD1

guru
uru2 cos~r•q!

sin2~r•q!
@e2iq•Ĥ,ŝr#. ~5.9!

The commutation relations

@Ĥ j ,ŝa#5a j~a~
•Ĥ !ŝa ~5.10!

yield
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@R,M #52
i

2 (
rPD1

guru
uru2 cos~r•q!

sin2~r•q!
e2iq•Ĥ~12e22ir•qr~

•Ĥ!ŝr . ~5.11!

The minimal representation~cf. Ref. 8! is such that for all rootsr:

r~
•Ĥ50,61. ~5.12!

For each fixed positive rootr, three different cases have to be considered.
~i! In caser~

•Ĥ50, then the right-hand side of Eq.~5.11! is zero. In this case, the contr
bution fromXR1RX is zero as well becauseX itself is zero.

~ii ! In caser~
•Ĥ51, the contribution ofr to the sum in~5.11! reads:

2
1

2
guru

uru2

sin~r•q!
~e2iq•Ĥ1e2iq•Ĥ22ir•qr~

•Ĥ!ŝr . ~5.13!

Sincer~
•Ĥ51, we have

~1/2!uru25r•Ĥ. ~5.14!

Then the above expression~5.13! reads

gurur•Ĥ
1

sin~r•q!
~e2iq•Ĥŝr1 ŝre2iq•Ĥ! ~5.15!

which is exactly the same as the contribution ofr to the expression of2 i (XR1RX).
~iii ! The third caser~

•Ĥ521 can be treated analogously.

ACKNOWLEDGMENTS

The authors warmly thank the organizers of NEEDS conference where this research p
started. R. S. thanks the Universite´ P.-M. Curie, Paris VI for hospitality. J.-P.F. is partiall
supported by a grant from the French Ministry of Education and Research to the Labo
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APPENDIX: ROOT SYSTEMS AND FINITE REFLECTION GROUPS

We now review some facts about root systems and their reflection groups in order to intr
notation~cf. Ref. 8!. We consider only reflections in Euclidean space. A root systemD of rank r
is a set of vectors inRr which is invariant under reflections in the hyperplane perpendicula
each vector inD:

D{sa~b!5b2~a~
•b!a, a~5

2a

uau2
, a,bPD. ~A1!

Once chosen a representationD, the reflection is represented by the operatorŝa , ~2.2b!.
The set of positive rootsD1 may be defined in terms of a vectorVPRr , with V•aÞ0,;a

PD, as those rootsaPD such thata•V.0.
The set of reflections$sa , aPD% generates a group, known as a Coxeter group.
The root systems for finite reflection groups may be divided into two types: crystallogra

and noncrystallographic root systems. Crystallographic root systems satisfy the additional
tion
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a~
•bPZ, ;a,bPD. ~A2!

These root systems are associated with simple Lie algebras: (Ar ,r>1), (Br ,r>2), (Cr ,r
>2), (Dr ,r>4), E6 , E7 , E8 , F4 , andG2 and (BCr , r>2). The Coxeter groups for these ro
systems are called Weyl groups. The remaining noncrystallographic root systems areH3 , H4 , and
the dihedral group of order 2m, (I 2(m),m>4).
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This paper gives the Darboux transformations for differential–difference integrable
systems and their applications to differential–difference principal chiral equation.
We also give some exact solutions of principal chiral equation corresponding to the
harmonic mapR111→SU(n) by using two kinds of limits. ©2000 American
Institute of Physics.@S0022-2488~00!06805-5#

I. INTRODUCTION

The principal chiral equation is an important equation in physics and it was fully studie
many authors in Ref. 1–5. Ward constructed many Lax pairs for integrable lattice systems s
Toda lattice, nonlinear Schro¨dinger equation and so on.6 Based on an article,6 this paper considers
integrable lattice systems for differential–difference principal chiral equation~abbreviated as
DDPCE! and constructs the Darboux transformations for GL(n) and U(n) cases. We also conside
two kinds of limits of the Lax pairs when the size of the lattice tends to be zero. These two
give different solutions of the continuous principal chiral equation. Thus we setup mixed Da
transformations for differential–difference principal chiral equation. The method extends the
boux transformations for Lax pairs of principal chiral equation and many exact solution
principal chiral equation can be constructed by using our method.

II. MIXED DARBOUX TRANSFORMATIONS

In this paper we use the symbols similar as in Ref. 6. In Ref. 6 the author proposed a La
for integrable lattice system of DDPCE as follows:

c15~l1P!c,

dc

dt
5

V(1)

l
c, ~1!

where P5I 1R1R21, V(1)52@(d/dt) R#R21, c1 denotesc(n11,t), P,c, and V(1) denote
P(n,t),c(n,t), andV(1)(n,t), respectively,Dc denotesc12c. The associated DDPCE is de
scribed as follows:

d

dt
~R1R21!1DF S d

dt
RDR21G50, ~2!

which is the integrability of~1!.
By substitutinghl21 for l in ~1!, we have

c15~hl211P!c,

a!Electronic mail: gjn07@freemail.263.net
46870022-2488/2000/41(7)/4687/8/$17.00 © 2000 American Institute of Physics
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dc

dt
5

V(1)

hl21
c. ~3!

According to the methods of Ref. 6, we derive that linear system~3! is also the Lax pair for
integrable lattice system of Eq.~2! (h denotes the size of the lattice!. We can easily conclude tha
if c(l) is a vector solution of~3!, thenc@(l11)/h# is a vector solution of~1!. On the basis of
the above result, we will establish mixed Darboux transformations by combining Lax pair~1! with
Lax pair ~3!. We first setup some theorems on Darboux transformations for Lax pairs of int
lattice systems. The systems we will consider are more general than~1!.

Theorem 1: Let L5lJ1P, V(l)5(a51
N V(a)(l2la)211V(0). Here P,Va(a

51,...,N),V(0) are matrixes of functions of n and t, l (a)(a51,...,N) are complex constants. J
denotes diagonal matrixes with constant values if G5lI 2S is a Darboux transformation of th
following Lax pair:

c15Lc,
~4!

dc

dt
5Vc.

Then S satisfies following equations:

@JS1P,S#150, ~4a!

St5F (
a51

N

V(a)~S2la!211V0 ,SG . ~4b!

~Symbol@ , #1 denotes@A,B#15AB2B1A.)
Proof: We first derive part~4a!:
Let L̃5lJ1 P̃ and we noticeL̃5G1LG21, then

~lJ1 P̃!~lI 2S!5~lI 2S1!~lJ1P!.

We expand both sides of above equation and compare coefficients of termslk(k50,1,2) on the
both sides, we have

l2:J5J, l: P̃2JS5P2S1J, l0: P̃S5S1P. ~5!

Then imply P̃5P1JS2S1J5P1@J,S#1. According to~5!, we get (P1@J,S#1)S5S1P, be-
cause@J,S#1S5@JS,S#1, thus obtain@JS1P,S#150.

Next we show part~4b!. Let

Ṽ~l!5 (
a51

N

Ṽ(a)~l2la!211Ṽ(0). ~6!

We substitute~6! in equationṼG5GV1(d/dt)G. We get

F (
a51

N

Ṽ(a)~l2la!211Ṽ(0)G ~lI 2S!5~lI 2S!F (
a51

N

V(a)~l2la!211V(0)G2St ,

namely
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(
a51

N

~laṼ(a)2Ṽ(a)S!
1

l2la
1S (

a51

N

Ṽ(a)2V(0)SD 1lṼ(0)

5 (
a51

N

~laV(a)2SV(a)!
1

l2la
1S (

a51

N

V(a)2SV(0)2StD 1lV(0).

By comparing coefficients of the terms 1/(l2la)(a51,2,...,N), we get

laṼ(a)2Ṽ(a)S5lV(a)2SV(a), ~6a!

(
a51

N

Ṽ(a)2Ṽ(0)S5 (
a51

N

V(a)2SV(0)2St , ~6b!

Ṽ(0)5V(0). ~6c!

We substitute~6a! and ~6c! in ~6b!, then we have

St5 (
a51

N

V(a)2 (
a51

N

~la2S!V(a)~la2S!211@V0 ,S#

5 (
a51

N

@V(a)~S2la!21,S2la#1@V0 ,S#5 (
a51

N

@V(a)~S2la!21,S#1@V0 ,S#

5F (
a51

N

V(a)~S2la!211V0 ,SG .

h

The following theorem gives explict construction for Darboux matrixlI 2S.
Theorem 2: Suppose u1 ,u2 ,...,un are complex numbers which are not completely equal.

L5diag(u1 ,u2 ,...,un), h5hi be a vector solution of the Lax pair (4) withl5ui , and H
5(h1 ,h2 ,...,hn). If det HÞ0, we can set S5HLH21, thenlI 2S is a Darboux matrix.

Proof: According to the conditions of the theorem, we have

hi ,15uiJhi1Phi ,
~7!

dhi

dt
5 (

a51

N

V(a)~ui2la!21hi1V(0)hi .

Written in terms ofH, ~7! becomes

H15JHL1PH.
~7a!

dH

dt
5 (

a51

N

V(a)HS 1

u12la

•

•

•

1

uN2la

D 1V(0)H,

and ~7a! becomesHt5(a51
N V(a)(S2la)21H1V(0)H.
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Hence

H1H215JHLH211P5JS1P,

dH

dt
H215 (

a51

N

V(a)~S2la!211V(0), ~8!

then ~8! implies

@JS1P,S#15@H1H21,HLH21#1

5~H1H21!~HLH21!2~HLH21!1~H1H21!

5H1LH212H1LH1
21H1H2150,

andSt5(HLH21) t5HtLH212HLH21HtH
215@HtH

21,S#. h

The following theorem gives construction of Darboux matrix S with restriction for the
pair of Eq.~2!.

Theorem 3: Let U5@(R12R)/h#R21Pu(N), V(1)Pu(N) and P5I 1R1R21PŨ(n)
~where Ũ(n)5U(n) ^ C* 5$AuAPGL(C,n), A* •A5cI,c is a nonzero complex number%!, then

there exists Darboux matrixlI 2S such that P˜ PŨ(n), Ṽ(1)Pu(N) and ŨPU(N) after Darboux
transformation.

Proof: First we construct S. Letl0 be a nonreal complex number and choosela such that
la5l0 or l0 (a51,2,...,n) and also choose vectorl a such thatl a* • l b50 with x5nh ~if la

Þlb , where* is conjugate transpose operator!.
We will show l a,1* • l b,150 for Lax pair ~1!. Since l a,15(laI 1P) l a , then l a,1* 5 l a* (laI

1P* ) and l b,15(lbI 1P) l b , then

l a,1* • l b,15 l a* ~laI 1P* !~lbI 1P!l b5 l a* @~lalb!I 1laP1lbP* 1P* P# l b .

Moreover laÞlb , so la5lb , laP1lbP* 5lb(2I 1hU)1lb(2I 1hU* )54lbI . Noticing
P* P5cI, we havel a,1* • l b,15(lalb14lb1c) l a* • l b50. Similarly, we have the same result fo
~3!.

Thus, if we choose a point of lattice such thatl a* • l b50, then it will follow for all points.
By using the methods of Ref. 8~page 262!, we can prove thatS* 1S5(1/l0 1 1/l0)I ,

S* S5ul0u2I . Since P̃5P1@J,S#15P1S2S1 , namely, Ũ5U1S2S1 thus Ũ* 1Ũ5U*
1U1(S* 1S)2(S* 1S)150. Hence we getŨPu(N) and P̃5S1PS21PŨ(N). h

Similarly, we can also prove the above theorem for SU(N) restriction. By now, we have setu
the theory of Darboux transformation of Lax pairs for~1! and~3! with U(N) or SU(N) restriction.

Next, we will construct mixed Darboux transformations.
First we introduce some symbols to describe Darboux transformations of Lax pairs~1! and~3!

as follows:
D I andD II denote Darboux transformations of Lax pairs~1! and~3!, respectively. (P0 ,c0) are

solutions of the Lax pair~1!, we can obtain (P1 ,c1) by performing Darboux transformationD I

from (P0 ,c0). Let c̃1(l)5c1(hl21) and (P1 ,c̃1) are obviously solutions of the Lax pair~3!,
then we obtain (P2 ,c2) by performing Darboux transformationD II , andD II •D I denotes above
combining process.

Similarly, we performn times Darboux transformationsD I from (P0 ,c0) as follows:

~P0 ,c0!→
D I

~P1 ,c1!→
D I

¯→
D I

~Pn ,cn!,

then let c̃n(l)5cn(hl21) and performm times Darboux transformationsD II from (Pn ,c̃n),
namely
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~Pn ,c̃n!→
D II

¯→
D II

~Pn1m ,c̃n1m!.

symbolD II
m
•D I

n denotes above high-order mixed Darboux transformation and let

T5D i
mk
•D j

nk
•D i

mk21
•D j

nk21
¯D i

m1
•D j

n1 , ~9!

which generally denotes mixed Darboux transformations (iÞ j , i , j 5I or II ).

III. APPLICATIONS

In this section, we will attentively discuss the relations between Darboux transformatio
Lax pairs for integrable lattice system and those of Lax pairs for integral continuous systems
h converges to zero.

We know the principal chiral equation (RxR
21) t1(RtR

21)x50 has the following Lax pair:

fx5lAf,
~10!

f t5
l

2l21
Bf,

whereA5RxR
21, B5RtR

21.
Although the Lax pair~10! is different from the Lax pair~1! on form, the following theorem

shows Lax pairs~1! converge to Lax pair~10! whenh→0.
Theorem 4: For fixedl, the limit of the Lax pair (1) is the Lax pair (10) as h→0.
Proof: In ~1! let U5 @(R12R)/h# R21 and f5(l12)2nc. Thenf15(l12)2n21(l12

1hU)c5(l12)2n(I 1(h/(l12))U)c5(I 1(h/(l12))U)f.
Hence~1! becomes

f15S I 1
h

l12
U Df,

~11!
df

dt
5

V(1)

l
f,

namely

f12f

h
5

U

l12
f,

~12!
df

dt
5

V(1)

l
f.

Let h→0, ~12! becomes

fx5
U

l12
f,

~13!

f t5
V(1)

l
f,

whereU5RxR
21, V(1)52(dR/dt)R21.

We substitute 1/l 22 for l in ~13!, then~13! becomes~10!. h
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Here, the usage of transformationc→f is to remove divergent factor (l12)n from c. In
fact, we can see that the need of getting rid of divergent factor will be satisfied automatically
process of Darboux transformations for the Lax pair~1!.

We will show this as follows: Let Darboux transformationG5l2HLH21, where H

5(h1 ,...,hN) and h̃i5(l i12)2nhi ( i 51,2,...,N), H̃5(h̃1 ,...,h̃N). We notice

~ h̃1 ,...,h̃N!5~h1 ,...,hN!S ~l112!2n

•

•

•

~lN12!2n

D ,

so HLH215H̃LH̃21 andG5l2H̃LH̃21.
Now, let us have a look at the limit of the Lax pair~3! whenh→0.
The Lax pair~3! can be written as follows:

c12c

h
5~l1U !c,

~14!
dc

dt
5

V(1)

hl21
c,

whenl is fixed, leth→0, then~14! becomes

cx5~l1U !c,
~15!

c t52V(1)c.

Comparing~15! with ~13!, we show that the limit of the Lax pairs~1! is different from that of the
Lax pair ~3! essentially. We can get solutions of differential-difference equation from g
solutions of those equation by Darboux transformation of Lax pairs for integrable lattice sy
We expect that if the given solutions converge to exact solutions of principal chiral equation
h→0, then the new solutions of lattice system will also converge to exact solutions of prin
chiral equation.

We first make some preparations as follows:
Lemma 5: Let U5 @(R12R)/h# R21, V5(Rt•R21) be solutions of Eq. (2) and U˜ 5 @(R̃1

2R̃)/h#R̃21, Ṽ5(R̃t•R̃21) are solutions of Eq. (3) gotten by Darboux transformationD I or D II

and if the following conditions are satisfied:

~1! when h→0, Darboux matrix S has a limit,
~2! the limit of S is derivative denoted as Sx ,
~3! l imh→0 DS/h 5Sx ,
~4! l imh→0(DS/h) t5Sxt ,
~5! l imh→0 DV/h 5Vx ,

then Ũ, Ṽ have limits which are solutions of principal chiral equation.
Proof: SinceŨ and Ṽ satisfy integrability of~1!, we have

Ũt1
Ṽ12Ṽ

h
50,
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Ṽ12Ṽ

h
5UV2V1U,

andṼ5V1St , so according to the conditions of the lemma, whenh→0, (Ũ,Ṽ) are solutions of
principal chiral equation. h

Lemma 5 implies that if we continue to perform Darboux transformations from (Ũ,Ṽ) @where

(Ũ,Ṽ) are solutions of lattice systems~1! or ~3!#, then the solutions (Ũ̃,Ṽ̃) will also converge to
exact solutions of principal chiral equation.

In Sec. II, we set up mixed Darboux transformationT5D i
mk
•D j

nk
¯D i

m1
•D j

n1 . Now we study
the caseT5D II •(D I)

n21 especially (n>1).
We will consider principal chiral equation corresponding to harmonic map:R111→SU(2).

Choose trivial solutionsU5U0 , V5V0 with

U05S ip 0

0 2 ip D , V05S iq 0

0 2 iq D , ~16!

wherep,q are constants.
Substituting~16! into Lax pair ~1! and solve it, we get

c0~l!5S a0~l121 ihp!ne2 iqt/l 0

0 2a0~l122 ihp!neiqt/lD .

By performing (n21) times transformationsD I on (U0 ,V0 ,c0), we get cn(l)5(l
2Sn21)¯(l2S0)c0(l) and moreover, take transformationcn(l)→c̃n(l)5cn(hl21), then
c̃n is a solution of Lax pair~3! obviously.

Now we consider convergence ofSn21 ,...,S0 . Let f05(l12)2nc0(l), we only need to test
the convergence off0 andDf0 /h as follows:

lim
h→0

f05 lim
h→0S a0S 11

ihp

l12D n

e2 iqt/l 0

0 2a0S 12
ihp

l12D n

eiqt/l
D

5S a0eipx/l12
•e2 iqt/l12 0

0 2a0e2 ipx/l12
•eiqt/l12D

and

lim
h→0

Df0

h
5 lim

h→0

f0~l,n11!2f0~l,n!

h

5 lim
h→0S ipa0

l12 S 11
ihp

l12D n

e2 iqt/l 0

0
ipa0

l12 S 12
ihp

l12D n

eiqt/l
D

5S ipa0

l12
eipx/l12e2 iqt/l 0

0
ipa0

l12
e2 ipx/l12eiqt/l

D 5
]f0~l!

]x
.
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So according to lemma 5, whenh→0, S0 , S1 ,...,Sn21 all converge to Darboux transforma
tions of ~13!. Similarly, limh→0f0(hl21) and Df0(hl21)/h exist. So (U0 ,V0),
(U1 ,V1),...,(Un ,Vn) converge to exact solutions of principal chiral equation.

Especially by takingn51, we get solutions of principal chiral equation corresponding to
harmonic mapR111→SU(2) as follows:

U5S ip pc0e2i (px1qt)

2pc0e22i (px1qt) 2 ip D , V5S iq 2qc0e2i (px1qt)

qc0e22i (px1qt) 2 iq D .
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The paper gives a quick account of the simplest cases of the Hitchin integrable
systems and of the Knizhnik–Zamolodchikov–Bernard connection at genus 0, 1,
and 2. In particular, we construct the action-angle variables of the genus 2 Hitchin
system with groupSL2 by exploiting its relation to the classical Neumann inte-
grable systems. ©2000 American Institute of Physics.@S0022-2488~00!00605-8#

I. HITCHIN SYSTEMS

As was realized by Hitchin in Ref. 1, a large family of integrable systems may be obtaine
a symplectic reduction of a chiral two-dimensional gauge theory. LetS denote a closed Rieman
surface of genusg and letG be a complex Lie group which we shall assume simple, connected
simply connected. We shall denote byA the space of Lie(G)-valued 0, 1-gauge fields~one may
work in a fixed smoothness class and use the Sobolev norms to define topology inA! A5Az̄ dz̄ on
S. Hitchin’s construction1 associates withS andG an integrable system obtained by a symplec
reduction of the infinite-dimensional complex symplectic manifoldT* A of pairs (A,F), where
F5Fzdz is a Lie(G)-valued 1,0-Higgs field. The holomorphic symplectic form onT* A is

E
S
tr dFdA, ~1!

where tr stands for the Killing form on Lie(G) normalized so that trf252 for the long rootsf.
The local gauge transformationshPG[Map(S,G) act onT* A by

A°hA[hAh211h]̄h21, F°hF[hFh21 ~2!

preserving the symplectic form. The corresponding moment mapm: T* A→Lie(G)* >`2(S)
^ Lie(G) takes the form,

m~A,F!5 ]̄F1AF1FA. ~3!

The symplectic reduction gives the reduced phase space,

P5m21~$0%!/G ~4!

with the symplectic structure induced from that ofT* A. P may be identified with the complex
cotangent bundleT* N to the orbit spaceN5A/G and N, in turn, with the moduli space o
holomorphicG-bundles onS. More precisely, care should be taken to avoid non-generic
orbits in order to obtain tractable orbit spaces. This may be done by considering only gauge
A leading to stableG-bundles forming smooth moduli spaceNs or those leading to semistabl
bundles giving rise to a, generally singular, compactificationNss of Ns . In what follows we shall
be somewhat cavalier about such details.

The Hitchin system hasP as its phase space. Its Hamiltonians are obtained by the follow
way. Letp be a homogeneous Ad-invariant polynomial on the Lie(G) of degreedp . Then,
46950022-2488/2000/41(7)/4695/18/$17.00 © 2000 American Institute of Physics
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hp~A,F!5p~F!5p~Fz!~dz!dp ~5!

defines adp-differential onS which is holomorphic ifm(A,F)50. Sincehp is constant on the
orbits of G, it descends to the reduced phase space,

hp :P→H0~Kdp!. ~6!

Here K stands for the canonical bundle~of convectors} dz) and H0(Kdp) is the ~finite-
dimensional! vector space of the holomorphicdp-differentials onS. The ~components of! hp

Poisson-commute~they Poisson-commute already as functions onT* A since they depend only on
the ‘‘momenta’’ F!. The point of Hitchin’s construction is that, by taking a complete system
polynomialsp, one obtains onP a complete system of Hamiltonians in involution. For the mat
groups, the values of Hamiltonianshp at a point ofP may be encoded in the spectral curveC
obtained by solving the characteristic equation

det~F2j!50 ~7!

for jPK. The spectral curve of the eigenvaluesj is a ramified cover ofS. The corresponding
eigenspaces ofF form then a holomorphic line bundle overC belonging to a subspace of th
Jacobian ofC on which the Hamiltonianshp induce linear flows.

For the quadratic polynomialp25 1
2 tr, the maphp2

takes values in the space of holomorph
quadratic differentialsH0(K2). This is the space cotangent to the moduli space of complex cu
S. Variations of the complex structure ofS are described by Beltrami differentialsdm

5dm z̄
z]zdz̄ such thatz85z1dz with ] z̄dz5dm z̄

z gives new complex coordinates. The Beltra
differentialsdm may be paired with quadratic differentialsb by

~b,dm!°E
S
bdm. ~8!

The differentialsdm5 ]̄(dj), wheredj is a vector field onS, describe variations of the comple
structure due to diffeomorphisms ofS and they pair to zero withb. The quotient spaceH1(K21)
of differentialsdm modulo]̄(dj) is the tangent space to the moduli space of curvesS andH0(K2)
is its dual. The pairing~8! defines then for each@dm#PH1(K21) a Hamiltonian

hdm[E
S
hp2

dm. ~9!

The Hamiltonianshdm Poisson-commute for differentdm.
Hitchin’s construction possesses a natural generalization.2–5 Let xnPS be a finite family of

distinct points inS andOn a family of ~co! adjoint orbits in Lie(G)* >Lie(G),

O5H(
n

lndxn
ulxPOnJ , ~10!

wheredx stands for the Dirac delta measure atx, forms a coadjoint orbit of the groupG of local
gauge transformations. In the symplectic reduction we may replace definition~4! with

PO5m21~$O%!/G>m21S ( lndxn
D /GlI ,xI , ~11!

whereGlI ,xI is the subgroup ofG fixing Slndxn
. Upon restriction to properly defined stable pa

(A,F), PO gives a smooth space with a semistable compactification.2 Its second representation i
~11! allows us to equipPO with the symplectic structure inherited fromT* A. The reduced
Hamiltonianshp take now values inH0(Kdp(dpSxn)), i.e., define meromorphicdp-differentials
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with possible poles atxn of order <dp and they still define an integrable system onPO. In
particular,hp2

takes values inH0(K2(2Sxn)) which is dual toH1(K21(22Sxn)), the tangent
space to the moduli space of curvesS with fixed puncturesxn and first jets atxn of holomorphic
local parameterszn , zn(xn)50. The corresponding Beltrami differentialsdm behave likeO(zn

2)
aroundxn and they are taken modulo]̄(dj) where the vector fieldsj are alsoO(zn

2) aroundxn

~such vector fields do not change the first jets atxn of the local parameterszn). dm may still be
coupled to quadratic differentialsbPH0(K2(2Sxn)) by ~8! and Eq. ~9! defines for @dm#
PH1(K21(22Sxn)) Hamiltonians onPO that are in involution.

II. KNIZHNIK–ZAMOLODCHIKOV–BERNARD CONNECTION

The phase spaceP>T* N may be~geometrically! quantized by considering the spaceH0(Lk)
of holomorphic sections of thekth power of the determinant line bundleL overN ~more exactly,
over its semistable versionNss) as the space of quantum states. Such sections are give
holomorphic functionsc on A satisfying the Ward identity

c~A!5e2kS~h,A!c~h21
A! ~12!

for hPG and withS(h,A) standing for the action of the gauged Wess–Zumino–Novikov–Wi
~WZNW! model. The identity~12! expresses the gauge invariance on the quantum level.
vector spacesH0(Lk) arise naturally in the context of the WZNW model and of the Cher
Simons theory.6 They are finite-dimensional and their dimension is given by the Verli
formula.7 Put together for different complex structures ofS, they form a holomorphic vecto
bundleW over the moduli space of complex curves. In the language of functionsc, the ]̄-operator
of this bundle is given by

]̄dmc5S ddm1
k

4p i ES
tr~Adm!ADc, ~13!

where ddm differentiates c viewed as a function of the unitary gauge fieldB52A* 1A

52Az̄
* dz1Az̄dz̄ ~functions ofB are naturally identified for different complex structures onS!.

The bundleW may be equipped with a projectively flat connection¹KZB ~Refs. 6 and 8! which
may be traced back to the works of Knizhnik–Zamolodchikov9 and Bernard.10,11 In the present
description ofW, the KZB connection takes the form,12

¹dm
KZBc5S ddm2E

S
tr A* S d

dA
dm D2

p i

k E
S
tr:

d

dA S d

dA
dm D :Dc, ~14!

¹dm
KZBc5 ]̄dmc, ~15!

wherek5k1g∨ with g∨ denoting the dual Coxeter number ofG. The symbol� indicates that
one should remove the singularity at the coinciding points of@d/dA(x)#@d/dA(y)#c before set-
ting x5y. How this is precisely done depends on some choices~e.g., of a projective connection o
a metric on eachS! but the choices lead to connections differing by addition of a scalar form

The second order operator on the right-hand side of Eq.~14! has the principal symbol~ob-
tained by replacement of (d/dA) by (k/2p i )F) proportional to the Hitchin Hamiltonianhdm . The
KZB connection¹dm

KZB may be considered a quantization of (k/2p i )hdm which, instead of acting
in a fixed spaceH0(Lk) relates two such spaces for the complex structures differing bydm.8 Note
that if we rescaledm°kdm, we should obtain from the KZB connection in the limitk→0
operators acting in the spaceH0(L2g∨

) corresponding to a fixed complex structure. This spa
becomes nontrivial if we admit singular sections ofL or work with higher cohomologies ofL2g∨

.
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It also admits a quantization of the nonquadratic Hitchin Hamiltonians.13,14 For kÞ2g∨ we may
also obtain from Eq.~14! operators in a single space if we chose a local trivialization of the bu
W ~or of a bundleW8.W).

The above quantization extends to the case of the phase spacePO if the coadjoint orbitsOn

associated with pointsxnPS correspond to irreducible holomorphic representations ofG in vector
spacesVn ~i.e., to irreducible unitary representations of the compact form ofG!. The quantum
states are now represented by holomorphic maps onA with values inV5 ^

n
Vn satisfying the Ward

identities,

c~A!5e2kS~h,A!
^

n
h~xn!c~h21

A! ~16!

for hPG generalizing Eq.~12!. The spaces of solutions are still finite-dimensional and form
holomorphic vector bundle over the moduli space of punctured curves with first jets of
parameters at the punctures. The complex structure and the KZB connection are given by th
formulas with Beltrami differentialsdm restricted to behave likeO(zn

2) at the punctures. Since
@d/dA(x)#c5O(zn

21) and tr:@d/dA(x)#/@d/dA(x)#:c5O(zn
22) aroundxn , there is no problem

of convergence of the integrals overS. Again, ¹dm
KZB may be viewed as the quantization of th

Hitchin Hamiltonian (k/2p i )hdm and all the above remarks apply.

III. GENUS ZERO

Up to diffeomorphisms, there is only one Riemann surface of genus zero; the Riemann
P15Cø$`%. On P1, the gauge orbit of the zero gauge field is open and dense inA, i.e., the
generic gauge field takes the form

A5h21]̄h, ~17!

wherehPG is determined up to left multiplication by a constantgPG. The equationm(A,F)
5(nlndzn

, with ln belonging to the~co!adjoint orbit On associated with the puncturezn , be-
comes

]̄~hF!5(
n

nndzn
, ~18!

wherenn5h(zn)lnh(zn)21POn . This equation has a~unique! solution

hF~z!5(
n

nn

z2zn

dz

2p i
~19!

if and only if the sum of residues is zero, i.e., if(nnn50. We obtain then forPO defined by Eq.
~11!,

PO>H nI P3
n
OnU(

n
nn50J Y G. ~20!

The ~co!adjoint orbits carry a natural symplectic structure leading to the Poisson bra
$na,nb%5 i f abcnb for na5tr tan, where ta are the generators of Lie(G) s.t. trtatb5dab and
@ ta,tb#5 i f abctc. It is easy to check that the complex symplectic structure onPO coincides with the
one obtained by the symplectic reduction of3nOn with respect to the diagonal action ofG.

The Hamiltonianshp are
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hp~z!5pS (
n

nn

z2zn
D S dz

2p i D
dp

. ~21!

In the special casep25 1
2 tr,

hp2
5

1

2 (
n,m

nn
anm

a

~z2zn!~z2zm! S dz

2p i D
2

5(
n

S 1

~z2zn!2 dn1
1

z2zn
hnD S dz

2p i D
2

, ~22!

where

dn5
1

2
nn

ann
a , hn5 (

mÞn

nn
anm

a

zn2zm
. ~23!

Let dm be a Beltrami differential regular at infinity and behaving likeO((z2zn)2) around the
insertions. Necessarily,dm5 ]̄(dj) for a regular vector fielddj5djz]z on P1. dj is determined
up to infinitesimal Mo¨bius transformations (a1bz1cz2)]z . We may takez85z1djz as the new
complex coordinate onP1 with the modified complex structure. The modification is then equi
lent to the shiftdzn5djz(zn) of the insertion points and the shiftdxn5xn]z(djn

z)(zn) of the first
jet of the local parameter at the punctures parametrized by the]z-derivativexn of the parameter a
zn . An easy calculation involving cutting out small balls around the insertions and integratio
parts shows that

hdm5(
n
E

S
S 1

~z2zn!2 dn1
1

z2zn
hnD S dz

2p i D
2

]̄~dj!5
1

2p i (n
~dnxn

21dxn1hndzn!. ~24!

The quantum statesc at genus zero may be labeled by their valuesc(0) at A50 which
belong to the subspaceVG of theG-invariant tensors inV[ ^ nVn . Indeed,c is determined by its
values on the denseG-orbit of A50. Hence the bundleW is a sub-bundle of the trivial bundle with
the fiberVG. The KZ~B! connection reduces in this case9 to the formula,

¹dm
KZc~0!5(

n
S dxn~]xn

2xn
21Dn!1dznS ]zn

2
1

k
HnD Dc~0!, ~25!

¹dm
KZc~0!5(

n
~dxn]x̄n

1dzn] z̄n
!c~0!, ~26!

where

Dn5
1

2k
tn
atn

a , Hn5 (
mÞn

tn
atm

a

zn2zm
~27!

with tn
a denoting the action of the generatorta in the factorVn of V. Dn is a number, theconformal

weight assigned in the WZNW theory to the irreducible representation ofG in Vn .9 Note that,
modulo the shiftk°k5k1g∨, Dn and (1/k)Hn may be obtained from@k/(2p i )2#dn and
@1/(2p i )2#hn , respectively, by the~geometric! quantization of the coadjoint orbits which replac
the functionsnn

a by the operators (2p/ki)tn
a so that the Poisson bracket turns intoki/2p times the

commutator (2p/k plays the role of the Planck constant!. The flatness of the connection¹KZ,
(¹KZ)250, follows from the equation@Hn ,Hm#50, equivalent to the classical Yang–Baxt
equation~CYBE! for t1

at2
a /z,

F tn
atm

a

zn2zm
,

tm
a tp

a

zm2zp
G1cyclic permutations50. ~28!
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IV. GENUS ONE

At genus one, every Riemann surface is isomorphic to an elliptic curveEt[C/(Z1tZ) where
t is a complex number of positive imaginary partt2 . Denote byD(D1) the set of~positive! roots
of Lie(G), by ea the step generators attached to the rootsa and let (h j ) be an orthonormal basi
of the Cartan algebra Lie(T). We setua5tr ua and uj5tr uh j for uPLie(T). We shall need
some elliptic functions, the Jacobi theta function,

q1~z!52 i (
l 52`

`

~21! lep i t~ l 1~1/2!!21p iz~2l 11!, ~29!

the Green functionPx of the twisted]̄-operator,

Px~z!5
q18~0!q1~x1z!

q1~x!q1~z!
, ~30!

with the propertiesPx(z11)5Px(z), Px(z1t)5e22p ixPx(z) and Px(z)5(1/z)1O(1) around
z50, the function

r5q18 /q1 ~31!

s.t.r(z11)5r(z), r(z1t)5r(z)22p i , r(z)5(1/z)1O(1) around z50 and, finally, the
Weyl–Kac denominator,

P~u!5e2p i td/24 )
aPD1

~ep iua2e2p iua!)
l 51

` F ~12e2p i l t!r )
aPD

~12e2p i l te2p iua!G , ~32!

whered denotes the dimension andr the rank ofG.
On Et a generic gauge field is in the orbit ofAu5pudz̄/t2 , for uPLie(T), i.e.,

A5h21
Au

015~huh!21]̄~huh!, ~33!

wherehu5ep(uz̄2ūz)/t2. Consequently, the gauge fields may be parametrized byu andh. To avoid
ambiguities, we have to identify the pairs as follows;

~u,h!;~wuw21,wh!;~u1q∨,hq∨
21h!;~u1tq∨,htq∨

21 h!, ~34!

for q∨ in the coroot latticeQ∨ andw in the normalizerN of Lie(T) in G. Similarly to the genus
zero case, we have to solve the equation

]̄~huhF!5(
n

nndzn
, ~35!

wherenn5(huh)(zn)ln(huh)(zn)21. Decomposingnn5(ann
2aea1nn

0 with nn
05nn

j h jPLie(T),
we can solve the above equation if and only if(nnn

050. In that case,

huhF~z!5S w01(
n

S (
a

Pua
~z2zn!nn

2aea1r~z2zn!nn
0D D dz

2p i
~36!

for an arbitrary constantw05w0
j h j . Performing the symplectic reduction, we find

PO.H ~u,w0 ,nI !PT* Lie~T!3~3
n
On!U(

n
nn

050J Y N’~Q∨1tQ∨!, ~37!
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where the action ofN’(Q∨1tQ∨) implements the identifications

~u,w0 ,nI !;~wuw21,ww0w21,wnI w21!;~u1q∨,w0 ,~hq∨
21

~zn!nnhq∨~zn!!!

;~u1tq∨,w0 ,~htq∨
21

~zn!nnhtq∨~zn!!!.

The symplectic structure ofPO is that of the reduction ofT* Lie(T)3(3
n
On) by the group

N’(Q∨1tQ∨). Now it is easy to write down the Hitchin Hamiltonians. Let us us do it forp2

5 1
2 tr. A straightforward computation identifying the pole terms leads to

hp2
5H 2(

n
r8~z2zn!dn1(

n
r~z2zn!hn1h0J S dz

2p i D
2

, ~38!

where, as before,dn5 1
2 nn

ann
a and

h05
1

2 (
j 51

r

w0
j w0

j 1
1

2 (
m,n

H(
a

]xPua
~zn2zm!nn

anm
2a1

1

2 (
j 51

r
q91

q1
~zn2zm!nn

j nm
j J , ~39!

hn5(
j 51

r

nn
j w0

j 1 (
mÞn

S (
a

Pua
~zn2zm!nn

anm
2a1(

j 51

r

r~zn2zm!nn
j nm

j D . ~40!

Note the similarity to the genus 0 case~22!.
Let dm5dm z̄

z]zdz̄ be a Beltrami differential onEt behaving likeO((z2zn)2) around the
insertions. The modified complex structure corresponds to the complex coordinatez85z

1@(z2 z̄)/2i t2#dt1djz s.t.] z̄z85dm z̄
z . We require thatdjz(z11)5djz(z1t)5djz(z). dt is

determined from the condition that the integral ofdm z̄
z over Et is equal to that of (i /2t2)dt. djz

is unique up to an additive constant. Note thatz8(z11)5z8(z)11, whereasz8(z1t)5z81t8,
wheret85t1dt. Hence the deformed curve is isomorphic toEt8 with the punctures moved to
zn85zn1dzn and the first jets of local parameters changed toxn85xn1dxn with

dzn5
zn2 z̄n

2i t2
dt1djz~zn!, xn

21dxn5
dt

2i t2
1]zdjz~zn!. ~41!

Again by a straightforward calculation substitutingdm z̄
z5] z̄z8, cutting out small balls around

pointszn and integrating by parts, we obtain

hdm5E
Et

hp2
dm5

1

2p i (n
S dnxn

21dxn1hndzn1
1

2p i
h0dt D . ~42!

The quantum statesc at genus one may be characterized by giving holomorphic funct
c̃(u) on Lie(T) with values inVT, the subspace ofT-invariant tensors in the productV of the
representation spaces,

c̃~u!5P~u!e2pk tr u2/~2t2!
^

n
~e2p~zn2 z̄n!u/t2!nc~Au!. ~43!

The KZB connection takes the form,5,15–18

¹dm
KZBc̃5(

n
S dxn~]xn

2xn
21Dn!1dznS ]zn

2
1

k
HnD1dtS ]t2

1

2p ik
H0D D c̃, ~44!
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¹dm
KZBc̃5(

n
~dxn]x̄n

1dzn] z̄n
1dt]t̄!c̃, ~45!

whereDn is as before and the operators (1/k)H0 and (1/k)Hn are obtained from the Hamiltonian
@k/(2p i )2#h0 and @k/(2p i )2#hn by the replacement

w0
j °

2p

ki
]uj , mn

a°
2p

ki
ean , mn

j °
2p

ki
hn

j , ~46!

i.e., by the geometric quantization. The resulting HamiltoniansH0 andHn act on general mero
morphic functions on Lie(T) with values inVT. The flatness of the KZB connection is ensured
their commutation,@Hn ,Hm#50, for n,m50,1,..., following from the so-called dynamica
CYBE.18

V. GENUS TWO

A. Curve and its Jacobian

Let S be a curve of genus 2. Choosing a marking, i.e., a symplectic homology basis (Aa,Ba),
a51,2, onS, we may fix the corresponding basis (va) of the holomorphic 1,0-forms~Abelian
differentials! s.t.*Aavb5dab. TheBa-periods of the Abelian differentials give rise to the symm
ric period matrixt,tab5*Bavb, with a positive imaginary part. The map

S{x°z~x!5
v2~x!

v1~x!
~47!

realizesS as a double covering ofP1 ramified over six Weierstrass pointsxn or as a hyperelliptic
curve given by the equation

y25 )
n51

6

~z2zn!. ~48!

The coordinateszn5z(xn) are assumed to be finite. This may be always achieved by an ap
priate choice of the marking. CurveS may be viewed as composed of the points~y,z! and of two
points at infinity. The covering ofP1 is (y,z)°z. In this representation, the holomorphic 1,
forms and the holomorphic quadratic differentials onS have the form

v5~a1bz!dz/y, b5~a1bz1cz2!~dz!2/y2, ~49!

respectively. In particular,

v1}dz/y, v2}zdz/y ~50!

with the same proportionality constant.
The JacobianJ1 of the degree 1 holomorphic line bundles may be represented asC2/(Z2

1tZ2). In particular, the spin structuresL,L25K, correspond to pointse1te8 with e
P 1

2 Z2/Z2. There are 6 odd spin structuresen1ten8 labeled by the Weierstrass pointszn , the zeros
of the holomorphic sections they admit, and 10 even spin structures without holomorphic se

B. Theta functions

The degree 1 bundles with holomorphic sections form the theta-divisor inJ1. The holomor-
phic sections of thekth-power of the corresponding theta bundle overJ1 may be represented b
the holomorphic theta functions of degreek on C2 defined by the relations,

ep ikn•tn12p ikn•uu~u1m1tn!5u~u! ~51!
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for m,nPZ2. They form the spaceUk of dimensionk2. For k51 there is a single~up to normal-
ization! theta function,

q~u!5 (
nPZ2

ep in•tn12p in•u, ~52!

the Riemann theta function. Fork52 there are four independentu-functions. One can take them
as

ue~u!5 (
nPZ2

e2p i ~n1e!•t~n1e!14p i ~n1e!•u ~53!

for eP 1
2 Z2/Z2.

q~u1v !q~u2v !5(
e

ue~u!ue~v ! ~54!

is a second order theta function in bothu and v. The mapv°q(•1v)q(•2v) determines an
embedding of the Kummer surfaceJ1/Z2>C2/(Z21tZ2)/Z2 onto a quartic surfaceK in the three-
dimensional projective spacePU2 (Z2 maps the degree 1 line bundlesL into L21K or vPC2 into
2v).

The double theta function~54! determines a nondegenerate symmetric quadratic form on
spaceU2* dual toU2 . It permits to identifyU2* with U2 by sendingfPU2* to i(f)PU2 defined
by

i~f!~u!5^q~u1• !q~u2• !,f&. ~55!

The identification exchanges the basis (ue) of U2 with the dual basis (ue* ) and the Kummer
quarticK with its dual versionK* ,PU2* . K* is composed of linear forms proportional to th
evaluation formsfu defined by

^u,fu&5u~u!. ~56!

The group (12 Z/Z)4 of spin structures acts onUk for evenk by endomorphismsUe,e8 defined
by

~Ue,e8u!~u!5ep ike8•te812p ike8•uu~u1e1te8!. ~57!

For k not divisible by 4 this action is only projective;Ue,e8U f , f 85(21)4e• f 8Ue1 f ,e81 f 8 and it lifts
to a Heisenberg group. Fork52,

Ue,e8ue95~21!4e•e9ue81e9 . ~58!

The action ofUe,e8 preserves the Kummer quarticK,PU2 and the action of the transpose
endomorphismsUe,e8

t preservesK* .

C. Moduli space of SL 2-bundles

In the fundamental paper,19 Narasimhan and Ramanan proved that the moduli spaceNs of the
stableSL2 holomorphic bundles is canonically isomorphic toPU2\K. The isomorphism associate
to anSL2-bundleE the second order theta functionu vanishing at the pointsuPC2 corresponding
to the duals of the line-subbundles of the rank 2 bundle associated toE. In other words, ifA is the
gauge field whoseG-orbit corresponds toE and if Lu denotes the degree 1 line bundle correspo
                                                                                                                



-

the

ic

ing

rate
r any

4704 J. Math. Phys., Vol. 41, No. 7, July 2000 K. Gawȩdzki and P. Tran-Ngoc-Bich

                    
ing to uPC2/(Z21tZ2) then the theta functionu associated toE vanishes atu if and only if there
exists a pairs5(s1 ,s2) composed of sections ofLu s.t.(]̄1A)s50. The semistable compactifica
tion of the moduli spaceNs is

Nss>PU2 ~59!

and, exceptionally, it is smooth. The points of the Kummer quarticK represent~classes of! the
semistable but not stable bundles. Hence forG5SL2 the phase space of the Hitchin system on
genus 2 curve with no insertions is

T* Nss>T* PU2>$~u,f!PU23U2* uuÞ0,̂ u,f&50%/C2 ~60!

with the action oftPC2 given by (u,f)→(tu,t21f). As a symplectic space, it is the symplect
reduction ofT* (U2\$0%) by the action ofC3. Using the bases (ue) and (ue* ) to decompose

u5( qeue , f5( peue* , ~61!

we may representT* Nss as the space of pairs (q,p)PC43C4, qÞ0, q•p50, with the identifi-
cation (q,p);(tq,t21p) and the symplectic form induced fromdp•dq.

D. Hitchin map for GÄSL 2

The Hitchin maphp2
:T* PU2→H0(K2) appears to take a particularly simple form resembl

the genus 0 formula~22!,

hp2
5

1

2 (
n,m51
nÞm

6
r nm

~z2zn!~z2zm! S dz

2p i D
2

5 (
n51

6
hn

z2zn
S dz

2p i D
2

, ~62!

where

r nm~u,f!5 1
16 ^Uen ,e

n8
u,Uem ,e

m8
t

f&^Uem ,e
m8
u,Uen ,e

n8
t

f& ~63!

~the last two factors on the right-hand side coincide modulo sign! and

hn5 (
mÞn

6
r nm

zn2zm
. ~64!

With the help of Eq.~58!, r nm’s may be rewritten in the language ofq’s and p’s as explicit
homogeneous polynomials of order 2 inqe and inpe , see below. The identity

(
mÞn

r nm50 ~65!

holding for eachn guarantees thatP
n51

6

(z2zn) S
n,m51
nÞm

6

r nm /@(z2zn)(z2zm)# is a quadratic polyno-

mial in z. It follows that the right-hand side of Eq.~62! determines a quadratic differential onS of
the general form given by Eq.~49!.

The equality~62! is not immediate. It was established in four steps. We shall only enume
them here. The two first crucial steps were performed in Ref. 20. It was shown there that fo
uÞ0 anduPC2 s.t. u(u)50,
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hp2
~u,fu!52

1

16p2 ~]uau~u!va!2. ~66!

The above equation describes the quadratic polynomialhp2
(u,•) ~with values inH0(K2)! on the

quartic Ku* 5K* øPu' in the projectivized subspace ofU2* perpendicular tou. In principal, it
determineshp2

completely. It was observed then that the above formula implies that for
Weierstrass pointzn the conic

Cn5$C3fPPu'uhp2
~u,f!uzn

50% ~67!

is in fact the union of two bitangents toKu* . The explicit equations for the bitangents to th
Kummer quartics known since about a century permitted then to establish Eq.~62! up to multi-
plication by au-dependent factor.20 The other steps in the proof of formula~62! were taken in Ref.
21 where it was established that the Hitchin maphp2

possesses the important self-duality proper

hp2
~ ı~f!,ı21~u!!5hp2

~u,f! ~68!

or thathp2
(q,p)5hp2

(p,q) in the language of~61!. This property, far from obvious in the origina
formulation of the Hitchin system, restricted the ambiguity on the right-hand side of Eq.~62! to a
~possibly curve-dependent! constant factor. The latter was fixed in Ref. 21 by a tedious calcula
of hp2

at special points ofK3K* .

E. Deformations of complex structure

For the hyperelliptic curve, the variations of the complex structure described by the Be
differentialsdm on S change the imageszn of the ramification points of the covering ofP1. Let us
find these changes. Let

v8a5va1dva1 d̄va ~69!

denote a deformed basis (v8a) of the Abelian differentials withdva of 1,0-type andd̄va of
0,1-type in the original complex structure.dva and d̄va have to satisfy the relations

d̄va5vadm, ]̄~dva!52]~vadm! ~70!

stating, respectively, thatv8a is of the 1,0-type in the deformed structure and that it is a clo
form. The equation fordva always has solutions. They are defined modulo abelian differen
and the ambiguity may be fixed by demanding that*Aav8b5dab. The deformed covering map
onto P1 is then

z8~x!5
v82~x!

v81~x!
5z~x!1

dv2

v1 ~x!2z~x!
dv1

v1 ~x!. ~71!

The ramification pointsxn8 of the mapz8 are determined by solving the equation

]8z8~xn8!50 ~72!

which, upon rewritingxn85xn1dxn becomes

~]!2z~xn!dxn1]S dv2

v1 D ~xn!2]S z
dv1

v1 D ~xn!50. ~73!
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Since]̄z(xn)50, the quadratic differential (])2z(xn) is well defined. Besides, since the ramific
tion points are isolated, it does not vanish so that one may solve the above equations fordxn . The
ramification pointsxn8 are mapped to

zn85z8~xn1dxn!5zn1
dv2

v1 ~xn!2zn

dv1

v1 ~xn!. ~74!

We infer that

dzn[zn82zn5
dv2

v1 ~xn!2zn

dv1

v1 ~xn! ~75!

are the variations ofzn corresponding to the Beltrami differentialdm.
We may now find the values of the Hitchin Hamiltonianshdm5*Shp2

dm related to the
Beltrami differentials. Note that, by virtue of Eqs.~71! and ~70!,

]̄~dz![]̄~z82z!5 ]̄~dv2!/v12z]̄~dv1!/v152]~v2dm!/v11z]~v1dm!/v1

52]~zv1dm!/v11z]~v1dm!/v15~dz!dm. ~76!

A straightforward integration by parts over the region inS without small balls around the Weier
strass pointsxn and around 2 points at infinity gives now

hdm5E
S

(
n51

6
hn

z2zn
S dz

2p i D
2

dm5S 1

2p i D
2E

S
(
n51

6
hn

z2zn
dz]̄~dz!5

1

p i (
n51

6

hndzn . ~77!

The comparison with Eq.~24! shows an additional factor 2 which comes from the double cov
ing.

F. Relation to Neumann systems

The Poisson-commutation of the Hamiltonianshn ~of which any 3 give independent actio
variables of our integrable system! is equivalent to the CYB-type equations

H r nm

zn2zm
,

r mp

zm2zp
J 1cycl.50, H r nm

zn2zm
,

r pq

zp2zq
J 50 ~78!

for $n,m%ù$p,q%5B. The above relations may be directly checked, as noticed in Ref. 20.
more recent observations of the paper22 on the Knizhnik–Zamolodchikov–Bernard connection
the same setup~see below! permit us to identify the integrable system with the Hamiltonianshn of
Eq. ~64!; it is a modified version of the classical genus 2 Neumann systems23–25 whose original
version is also rooted in the modular geometry of hyperelliptic curves. This goes as follow

The phase spaceT* P3 ~without the zero section! may be identified with the coadjoint orbitO1

of the complex groupSL4 composed of the traceless rank 1 matricesuq&^pu. The action ofSL4 in
∧2C4 preserves the quadratic form induced by the exterior product on∧2C4 and the identification
∧4C4>C1. It leads to the double coveringSL4→SO6 if we choose in∧2C4 the Plücker basis
turning the quadratic form into the sum of squares. The inverse relation is the complexified v
of the twistor calculus. Upon the identification ofsl4 with so6 , the coadjoint orbitO1 becomes the
one composed of~complex! rank 2 antisymmetric matricesJ5(Jnm) of square zero,J250. Such
matrices are of the formJnm5QnPm2PnQm with vectorsP,QPC6 spanning an isotropic sub
space, i.e., withQ25Q•P5P250. Given~q,p! with q•p50, in order to find the correspondin
pair ~Q, P!, it is enough to complete vectorq to a basis (q, f 1 , f 2 , f 3) of C4 s.t. f 1•p5 f 2•p50 and
f 3•p51 and to set

Q5q∧ f 1 , R5 f 2∧ f 3 , P5q∧ f 2 /Q•R ~79!
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in the language of∧2C4>C6. In the Plücker coordinates, we may take

Q152~q1p31q4p2!, Q25 i ~q1p32q4p2!, Q352 i ~q1p21q4p3!,

Q45q1p22q4p3 , Q55q2p21q3p3 , Q65 i ~q2p21q3p3!,

P152
1

2

q2p41q3p1

q2p21q3p3
, P25

i

2

q2p41q3p1

q2p21q3p3
, P35

i

2

q3p41q2p1

q2p21q3p3
,

P452
1

2

q3p42q2p1

q2p21q3p3
, P55

1

2
, P652

i

2
,

whereq1[q(0,0) , q2[q(1/2,0), q3[q(0,1/2), q4[q(1/2,1/2) and similarly forp’s. In terms of(Q,P),
the symplectic form isdP•dQ. The functionsJnm on O1 have the Poisson bracket

$Jnm ,Jmp%52Jnp for n,m,p different, ~80!

$Jnm ,Jpq%50 for n,m,p,q different. ~81!

A straightforward check shows now that

J125
i

2
~q1p11q2p22q3p32q4p4!, J1352

i

2
~q1p42q2p32q3p22q4p1!,

J145
1

2
~q1p41q2p32q3p22q4p1!, J1552

1

2
~q1p32q2p42q3p11q4p2!,

J165
i

2
~q1p31q2p41q3p11q4p2!, J2352

1

2
~q1p42q2p31q3p22q4p1!,

J2452
i

2
~q1p41q2p31q3p21q4p1!, J255

i

2
~q1p32q2p41q3p12q4p2!, ~82!

J265
1

2
~q1p31q2p42q3p12q4p2!, J3452

i

2
~q1p12q2p21q3p32q4p4!,

J3552
i

2
~q1p21q2p11q3p41q4p3!, J3652

1

2
~q1p22q2p12q3p41q4p3!,

J455
1

2
~q1p22q2p11q3p42q4p3!, J4652

i

2
~q1p21q2p12q3p42q4p3!,

J565
i

2
~q1p12q2p22q3p31q4p4!,

and that

r nm52 1
4 ~Jnm!2. ~83!

Equations~78!, assuring that the Hamiltonianshn52 1
4 S

mÞn
Jnm

2 /(zn2zm) Poisson-commute fol-

low directly from theso6 algebra~80! and ~81!. The original Neumann systems are very simi
but involve the coadjoint orbits ofSON composed from rank 2 antisymmetric matrices of squ
Þ 0.25 Such orbits, contrary to the one we consider, have nontrivial standard real forms.
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G. Lax matrix approach

Although the change of the orbit modifies dimensional counts and many details, the me
used in the analysis of the Neumann systems, in particular the Lax method developed in R
generalize with minor variations to our system and permit to find explicitly the angle variabl
the genus 2 Hitchin system. The Lax matrix may be taken asL(z)5(Lnm(z)) with

Lnm~z!5zJnm1zndnm . ~84!

As in Ref. 25, the Poisson brackets~80!, ~81! may be rewritten in the matrix form as

$L~z! ^ 1,1^ L~z8!%5@L~z! ^ 1,r 2~z,z8!#2@1^ L~z8!,r 1~z,z8!#, ~85!

where ther-matrices

r 6~z,z8!5
zz8

z1z8
C6

zz8

z2z8
T ~86!

with Cmn,qp5dmqdnp and Tmn,qp5dmpdnq satisfy the CYBE. The above form of the Poisso
bracket implies immediately that

$tr L~z! l ,tr L~z8! l8%50 ~87!

for all z, z8. Since

d2

d2z
tr L~0! l52l (

n,m51
nÞm

6

zn
l 21

Jnm
2

zn2zm
, ~88!

the Hamiltonianshn52 1
4 S

mÞn
Jnm

2 /(zn2zm) may be expressed as combinations of the quanti

trL(z) l . It is not difficult to see that the converse is also true.
More generally, Eq.~86! implies that

$tr L~z! l ,L~z8!%5@Ml~z,z8!,L~z8!# ~89!

with

Ml~z,z8!5 l
zz8

z2z8
L~z! l 211 l

zz8

z1z8
L~2z! l 21. ~90!

It follows that the commuting time evolutions of the Lax matrixL(z) generated by the Hamilto
nianshn ,

dnL~z!5$hn ,L~z!%dtn , ~91!

are isospectral. In other words, the spectral curveS given by the characteristic equation

det~L~z!2z!50 ~92!

is left invariant by the dynamics generated by any of the Hamiltonianshn . An easy calculation
using the fact that the matrixJ has rank 2 gives

det~L~z!2z!5 )
n51

6

~z2zn!S 11
1

2
z2 (

n,m51
nÞm

6 Jnm
2

~z2zn!~z2zm!D . ~93!

Upon the substitutions5(1/i z)Pn(z2zn), the characteristic Eq.~92! becomes
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s25
1

2 )
n51

6

~z2zn!2 (
n,m51
nÞm

6 Jnm
2

~z2zn!~z2zm!
[P~z!. ~94!

SinceP(z) is a polynomial inz of order 8~see the remark after Eq.~65!!, this is the equation of
a hyperelliptic curveS of genus 3 composed of pairs (s,z) and 2 pointsp`

6 corresponding toz
5`. We shall consider only such points of the phase space thatS is smooth. The 1,0-forms

Vb5zbdz/s ~95!

with b50,1,2 form a basis of the Abelian differentials onS.
We shall search for the eigenvectorsX5(Xn) of the Lax matrix. This will allow to adapt the

arguments described in great detail in Sec. IV of Ref. 24 to the present case. The eigen
equations

zJnmXm5zQn~P•X!2zPn~Q•X!5~z2zn!Xn ~96!

imply that

~z2zn!Xn5aQn1bPn . ~97!

Upon multiplication bys5(1/i )z21Pn(z2zn), Eq. ~96! becomes a system of two linear equ
tions for a andb,

~s1V!a1 iWb50,
~98!

2 iUa1~s2V!b50,

where

U~z!5 )
n51

6

~z2zn! (
n51

6 Qn
2

z2zn
,

V~z!5 i )
n51

6

~z2zn! (
n51

6
QnPn

z2zn
, ~99!

W~z!5 )
n51

6

~z2zn! (
n51

6 Pn
2

z2zn

are 4th-order polynomials inz. The nontrivial solution exists if

s25U~z!W~z!1V~z!25P~z!, ~100!

where the last equality follows by a straightforward check. The system~98! of linear equations
defines a holomorphic line subbundleL of the rank 2 bundleW5C2

^ O(4p`
114p`

2) over the
hyperelliptic curveS ~the coefficients behave asz4 at infinity!. As solutions of~98! we may take,
for example,

a5s2V~z!, b5 iU ~z! or a52 iW~z!, b5s1V~z!. ~101!

Sincea andb are proportional toz4 at infinity, they define holomorphic sections ofL,W regular
at p`

6 . They vanish at four points

pa85~V~za8 !,za8 ! or pa95~2V~za9 !,za9 !, ~102!
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respectively, whereza8 are the roots ofU and za9 are those ofW. Hence the degree of the lin
bundleL is equal to 4.H0(L) has dimension 2 and is spanned by the two solutions~101!.

H. Angle variables

The knowledge of the bundleL may be encoded in the imagew of L in the JacobianJ4(S)
under the Abel map,

w5 (
a51

4 E
p0

pa8 V5 (
a51

4 E
p0

pa9 V, ~103!

whereV5(Vb) is the vector of the Abelian differentials~95! on S andp0 is a fixed point ofS.
Under the infinitesimal time evolution~91! inducing the changesdnU,dnV,dnW, of the polyno-
mials U, V, W, the image of the Abel map changes by

dnwb5 (
a51

4 za8
bdnza8

V~za8 !
52 (

a51

4 za9
bdnza9

V~za9 !
. ~104!

The variations of the zeros ofU are

dnza852
dnU~za8 !

U8~za8 !
~105!

and similarly fordnza9 . A direct calculation gives

dnU~z!5$hn ,U~z!%dtn54i )
mÞn

~zn2zm!21
V~zn!U~z!2U~zn!V~z!

z2zn
dtn , ~106!

see Ref. 24, p. 3.69. Hence

dnwb54i )
mÞn

~zn2zm!21U~zn!dtn (
a51

4 za8
b

~za82zn!U8~za8 !
. ~107!

The vanishing of the sum of residues of the meromorphic formzbdz/(z2zn)U(z) implies that the
last sum is equal to2zn

bU(zn)21 so that

dwb5$wb,hn%dtn5
4

i )
mÞn

~zn2zm!21zn
bdtn ~108!

which does not depend on the phase-space variables. We infer that the Hamiltonianshn generate
constant flows on the complex torusJ4(S)>C3/∧ where∧ is the lattice of periods ofV. Modulo
a constant linear transformation, the coordinateswb, b50,1,2, provide together with three of th
Hamiltonianshn a Darboux coordinate system forT* P3. We have thus found the angle variabl
of the Hitchin system~as the angles ofJ4(S)).

It should be stressed that the above approach based on the Lax matrix is simpler then
obtained by following the general procedure for the Hitchin systems. In particular, Eq.~7! giving
the spectral curveC in the general approach is, as shown in Ref. 21,

j2524)
n51

6

~z2zn! (
n,m51
nÞm

6 Jnm
2

~z2zn!~z2zm!
~109!

to which one has to add Eq.~48! of the original curveS of genus 2.C is of genus 5 and it is a
ramified cover of bothS ~by forgettingj! andS ~by settings5( i /2&)jy). While the general
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construction would give the angle variables as those of a three-dimensional Prym variety
five-dimensional Jacobian of degree22 line bundles onC, the Lax approach gave them as th
angles of the degree 4 Jacobian ofS.

I. KZB connection

The determinant bundleL over the moduli spaceNss>PU2 of the holomorphicSL2-bundles
over the genus 2 curve coincides with the dual of the tautological bundle onPU2 so thatH0(Lk)
is the space of homogeneous polynomialsC of degreek on the spaceU2 . The Lie algebraso6

acts in the spaceU2 by the first order differential operators, still denoted byJnm , satisfying the
commutation relations~80!, ~81! with the Poisson bracket replaced by the commutator. In
~p,q!-language they are obtained by replacingpn’s in the expressions~82! for Jnm by 2]xn

. The
KZB connection for the case in question has been work out in Ref. 22. It takes the form~up to a
scalar 1-form!,

¹dm
KZBC5 (

n51

6

dznS ]zn
2

1

k
HnDC, ~110!

¹dm
KZBC5(

n
dzn] z̄n

C, ~111!

where

Hn52
1

2 (
mÞn

6 Jnm
2

zn2zm
, ~112!

so that (1/k)Hn is a quantization of @2k/(2p i )2#hn obtained by the replacemen
Jnm°(2p/ki)Jnm in the classical expression forhn . The quantum HamiltoniansHn , n51,...,6,
are commuting second order differential operators onU2>C4.

VI. CONCLUSIONS

We have described above in explicit terms the Hitchin integrable systems and the Kniz
Zamolodchikov–Bernard connection in the genus 0, 1, and 2 geometries, the last case o
G5SL2 and with no punctures. The main original contribution of the paper is the constructio
the angle variables of the genus 2 system. It is a modification of a similar construction, bas
the use of a Lax matrix, for the classical Neumann system. The diagonalization of the qua
HamiltoniansHn entering the genus 2 KZB connection forG5SL2 as well as the identification o
the genus 2 Hitchin systems with punctures and for different groups remain open problem
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Symmetries, exact solutions, and nonlinear superposition
formulas for two integrable partial differential equations

Pilar R. Gordoaa)

Area de Fisica Teo´rica, Facultad de Ciencias, Edificio de Fisica,
Universidad de Salamanca, 37008 Salamanca, Spain

~Received 1 December 1999; accepted for publication 14 March 2000!

We recently introduced two new sixth-order partial differential equations~PDEs!
associated with third-order scattering problems. Here we extend our study of these
PDEs by considering the construction of exact solutions both by using the method
of symmetry reduction due to Lie, and by using their Darboux transformations
~DTs!. Amongst the ordinary differential equations~ODEs! obtained by symmetry
reduction is an ODE due to Cosgrove that is believed to define a new Painleve´
transcendent. This ODE provides soliton solutions for our integrable PDEs that
include arbitrary functions of time. The DTs for our PDEs allow the recovery of
these solutions and in addition provide other solutions which are not associated
with Lie symmetries~either classical or nonclassical!. We also consider the itera-
tion of the corresponding Ba¨cklund transformations~BTs! for these PDEs. The
theorem of permutability allows us to reduce this process of iterating the DT from
one of solving a third-order linear equation~the spatial part of the Lax pair! to that
of solving either asecond-orderlinear equation~for one PDE!, or quite remarkably
to that of solving afirst-order linear equation~for the other PDE!. These linear
differential equations have coefficients involving three previous solutions of the
PDE, and are a natural extension of the linear algebraic equation found by applying
the theorem of permutability to the Korteweg–de Vries equation. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!04407-8#

I. INTRODUCTION

We consider in this paper the problem of the construction of exact solutions for the
sixth-order 111-dimensional partial differential equations~PDEs!,

05uxxxxxt110uxxxtux12uxxxxut115uxxtuxx19uxxxuxt116uxtux
2116uxxuxut2q ~1!

and

05uxxxxxt1uxxxtux1 1
2uxxxxut1

3
2~uxxtuxx1uxxxuxt!1 1

4 ~uxtux
21uxxuxut!2q, ~2!

where q5q(t) is an arbitrary function of time which can be set to be a constant by sim
redefinition of the time variablet. These two new completely integrable partial differential eq
tions ~PDEs! were presented for the first time in Ref. 1, together with their Lax pairs, Darb
transformations~DTs!, and Bäcklund transformations~BTs!. As new equations exhibiting soliton
solutions, these two PDEs are of course of interest in their own right. However, they are a
interest for a variety of other reasons.

First of all, they are intimately related to several well-known soliton systems, including
Kaup–Kupershmidt equation2,3 and the Sawada–Kotera equation,4,5 as well as to such physically
interesting integrable systems as the Boussinesq equation and the Hirota–Satsuma eq6

Equation~1! arises as a subequation of the (211)-dimensional extension of the seventh-ord

a!Electronic mail: prg@sonia.usal.es
47130022-2488/2000/41(7)/4713/19/$17.00 © 2000 American Institute of Physics
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Kaup–Kupershmidt equation presented in Ref. 7; Eq.~2! arises as a subequation of the analogo
extension of the seventh-order Sawada–Kotera equation, also presented in Ref. 7. These
(211)-dimensions can be thought of as characterizing the entire Kaup–Kupershmid
Sawada–Kotera hierarchies. The equations of these hierarchies are of course of interest t
authors. The PDEs~1! and ~2! also arise as reductions of the (211)-dimensional higher orde
Boussinesq equations given in Ref. 8, i.e., these two PDEs govern a class of solutions of
order variants of Boussinesq’s water wave equation. The PDE~2! is also related to anothe
physically interesting system, namely the shallow water wave equation of Hirota and Sat
since whenq50 any solution of the latter is also a solution of~2!.

Second, each of the above-mentioned PDEs has amongst its reductions a new fourt
ordinary differential equation~ODE! due to Cosgrove,9 which is believed to define a new Painlev´
transcendent. The Lax pairs for the above-mentioned PDEs then lead to third-order linear
lems for this ODE. The interest of soliton systems having this fourth-order ODE as a redu
which would then place it within an infrastructure familiar to other transcendents and so
equations, has been noted in Ref. 9; interest in the corresponding underlying linear proble
been noted in Ref. 10. Similar remarks hold for the hierarchies of PDEs in (111)-dimensions
given in Ref. 7, of which~1! and ~2! are the first members.

A third reason for our interest in the above-mentioned two PDEs is that forqÞ0 their
underlying linear problems arenonisospectral. Such linear problems have long been of intere
both in (111) dimensions and (211) dimensions~see, e.g., Refs. 11–19!. Much of this work
has, however, concentrated on PDEs associated with second-order nonisospectral scatteri
lems; our interest in~1! and ~2! is that these two new integrable PDEs are amongst the sim
examples of soliton equations having third-order nonisospectral scattering problems.

The aim of the present paper is the construction of exact solutions for Eqs.~1! and ~2! from
two different points of view: on one hand using the Lie symmetry group method of the infin
mal transformations originally introduced by Sophus Lie~for a description see, e.g., Refs. 20–22!;
and on the other hand analyzing the problem of iteration between solutions once the Lax
DTs, and BTs are known. The structure of the paper is as follows. In Sec. II we give a
description of the Lie method for finding symmetries and derive the corresponding ODE
arise as similarity reductions of the PDEs under consideration. We then obtain exact solutio
Eqs. ~1! and ~2! from the ODEs obtained through symmetry reductions, including in the caq
50 soliton solutions, which depend upon arbitrary functions of time. In Sec. III we use the
together with the Lax pairs as an alternative approach to obtaining these soliton solution
derivation is of use when we consider further iterations of the DTs. As a further intere
illustration of the use of the DTs and Lax pairs, we also use them to obtain solutions of~1! and~2!
in the nonisospectral caseqÞ0. In this way we are able to obtain solutions of the abo
mentioned PDEs that are not associated with~classical or nonclassical! Lie symmetries.

The iteration of Darboux transformations is of course well-known as a method of gene
N-soliton solutions. This iterative process can, however, be simplified by applying Bian
theorem of permutability to the corresponding BTs. Thus, for example, for the Korteweg–de
equation this iteration is reduced to the much simpler problem of solving a linear alge
equation~see, e.g., Ref. 23!. In Sec. IV we show that this problem of iterating the DTs of Eqs.~1!
and ~2!—which, since these PDEs have third-order Lax pairs, would involve solving third-o
linear equations—can be reduced for Eq.~1! to that of solving a second-order linear ODE, and f
~2! to that of solving a first-order linear ODE. The nonlinear superposition formulas thus obt
provide a natural extension of the well-known results for the Korteweg–de Vries equation.
application we derive the two-soliton solution of each of the above-mentioned PDEs in the
q50. A summary of the solutions obtained for Eqs.~1! and~2! is provided in Tables I and II, Sec
V is devoted to conclusions.

II. LIE SYMMETRY REDUCTIONS AND EXACT SOLUTIONS

The application of the classical Lie group method requires considering a one-paramet
group of infinitesimal transformations in the variables~x,t,u! given by
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x→x1ej~x,t,u!1O~e2!, ~3!

t→t1et~x,t,u!1O~e2!, ~4!

TABLE I. Summary of solutions obtained for Eq.~1!.

Lie
symmetries
~Sec. II!

Translation
symmetry

q50

Elliptic function solutions
u5c3F(t)1*p(z)dz, z5x2F(t),
with ~23!, and p̃ a solution of~24!
with parameters~25! or ~26!

Hyperbolic solutions~nonzero
boundary conditions forux!
u5c3F(t)1*p(z)dz, z5x2F(t),
with ~23!, and p̃ given by
~27!, ~28!, ~29! or ~30!

One soliton@given by ~32!#

qÞ0 Cosgrove transcendent
PainlevéI

Scaling
symmetry

q50 Solutions~36!–~41!
qÞ0 Solutions~48!–~50!

Darboux
transformations

One
iteration
~Sec. III!

q50 One soliton@given by ~63!#

qÞ0 Solution~58!, with ~65!–~68!
andu52(3/2)xt2

Nonlinear
superposition
~Sec. IV!

q50

Two-soliton ~101! with
~102!, ~99!, ~100!
@equivalently~106! with
~107!–~109!#

TABLE II. Summary of solutions obtained for Eq.~2!.

Lie
symmetries
~Sec. II!

Translation
symmetry

q50

Elliptic function solutions
u5 c̃3F(t)1* p̃(z)dz, z5x2F(t),
and p̃ a solution of~24!
with parameters~25! or ~26!

Hyperbolic solutions~nonzero
boundary conditions forux!
u5 c̃3F(t)1* p̃(z)dz, z5x2F(t),
and p̃ given by
~27!, ~28!, ~29!, or ~30!
One soliton@given by ~33!#

qÞ0 Cosgrove transcendent
PainlevéI

Scaling
symmetry

q50 Solutions~42!–~47!
PainlevéIII and V @from ~35!#

qÞ0 Solutions~51!–~53!

Darboux
transformations

One
iteration
~Sec. III!

q50 One soliton@given by ~64!#

qÞ0 Solution~59!, with ~65!, ~69!–~71!
andu526xt2

Nonlinear
superposition
~Sec. IV!

q50
Two-soliton ~84! with ~83!
@equivalently~88! with ~89!#
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u→u1ef~x,t,u!1O~e2!, ~5!

wheree is the group parameter. The condition that the above-mentioned transformation
invariant the PDE under consideration yields an overdetermined system of linear equations
infinitesimals j(x,t,u), t(x,t,u), and f(x,t,u). The associated Lie algebra consists then
vector fields of the form

v5j~x,t,u!
]

]x
1t~x,t,u!

]

]t
1f~x,t,u!

]

]u
. ~6!

Once the infinitesimal generators have been determined, the symmetry variables for the ass
reduction can be found by solving the characteristic equations

dx

j~x,t,u!
5

dt

t~x,t,u!
5

du

f~x,t,u!
. ~7!

We have calculated the determining equations for the infinitesimal generators using theMACSYMA

packagesymmgrp.max,24 and then we have performed their simplification with the aid of
MAPLE packagediffgrob2.25 Here we have takenq to be a constant in Eqs.~1! and~2! without
loss of generality, as mentioned in Sec. I. The result is identical for both equations and can b
into two cases depending on whetherq is zero or different from zero,

Case qÞ0 Caseq50

j5c0x1c1 , j5c0x1c1 , ~8!

t526c0t1c2 , t5 f ~ t !, ~9!

f52c0u1c3 , f52c0u1c3 , ~10!

where f (t) is an arbitrary function oft and c0 , c1 , c2 , and c3 are arbitrary constants. Th
above-mentioned infinitesimal generators provide for each of Eqs.~1! and ~2! four different
symmetry reductions~two for the case withqÞ0 and two for the case withq50!, that we list in
the following.

A. Case qÅ0

1. c 0Ä0

Here we takec251 without loss of generality and obtain the symmetry reduction

u~x,t !5c3t1v~z!, z5x2c1t, ~11!

which corresponds to a traveling wave reduction. Settingp(z)5vz in the resulting ODEs and
integrating gives

c1~pzzzz112ppzz16pz
21 32

3 p2!22c3~pzz14p2!1qz2a50, ~12!

c1S pzzzz1
3

2
ppzz1

3

4
pz

21
1

6
p3D2

c3

2 S pzz1
1

4
p2D1qz2a50, ~13!

~12! and ~13! being associated with Eqs.~1! and ~2!, respectively;a is a constant of integration
that~for qÞ0! can be set to be zero by shifting the independent variablez. Equations~12! and~13!
are equivalent under a change of independent and dependent variables, together with a red
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of the constantsc3 , q, anda. They are also equivalent~see Ref. 7! to an ODE found recently by
Cosgrove which defines a new transcendent.9 Note that for the special casec150, Eqs.~12! and
~13! are equivalent to the first Painleve´ equation (PI).

2. c 0Å0

We setc051 andc15c25c350 without loss of generality and obtain the symmetry red
tion

u~x,t !5
v~z!

x
, z5 log~x6t !, ~14!

wherev(z) now satisfies the ODEs

vzzzzzz2
5
2vzzzzz1

85
36vzzzz2

25
24vzzz1

137
648vzz2

5
324vz12vzvzzzz2

5
18vvzzzz14vzzvzzz2

67
18vzvzzz

1 5
12vvzzz1

8
9vz

2vzz1
83
36vzvzz2

2
9vvzvzz2

11
4 vzz

2 1 1
81v

2vzz2
127
648vvzz2

8
27vz

32 349
1296vz

2

1 7
81vvz

22 1
162v

2vz1
37

1296vvz2
1

7776qez50 ~15!

and

vzzzzzz2
5
2vzzzzz1

85
36vzzzz2

25
24vzzz1

137
648vzz2

5
324vz1

1
4vzvzzzz2

1
36vvzzzz1

1
2vzzvzzz2

17
36vzvzzz

1 1
24vvzzz1

1
72vz

2vzz1
47

144vzvzz2
1

288vvzvzz2
3
8vzz

2 1 1
5184v

2vzz2
29

1296vvzz2
1

216vz
32 113

2592vz
2

1 7
5184vvz

22 1
10 368v2vz1

11
2592vvz2

1
7776qez50 ~16!

associated with Eqs.~1! and ~2!, respectively. The above reduced variables~14! correspond to a
scaling symmetry of Eqs.~1! and ~2!.

B. Case qÄ0

1. c 0Ä0 and f(t) Å0

We takec151 and obtain the following similarity variables for the reduction

u~x,t !5c3F~ t !1v~z!, z5x2F~ t !, ~17!

wheref (t)51/F8(t), andp(z)5vz satisfies Eqs.~12! and~13! with c151 andq50, correspond-
ing, respectively, to reductions of Eqs.~1! and ~2!. The reduction~17! is associated with the
time-dependent translation invariance of Eqs.~1! and ~2!.

2. c 0Å0 and f(t) Å0

In this case we takec051 andc15c350 without loss of generality and obtain the reduc
variables

u~x,t !5
v~z!

x
, z5 log~xG~ t !!, ~18!

where we have introduced the auxiliary functionG(t) satisfying f (t)5G(t)/G8(t). The ODEs
associated with Eqs.~1! and ~2! for this particular symmetry reduction are

vzzzzzz215vzzzzz185vzzzz2225vzzz1274vzz2120vz112vzvzzzz210vvzzzz124vzzvzzz

2134vzvzzz190vvzzz132vz
2vzz1498vzvzz248vvzvzz299vzz

2 116v2vzz2254vvzz

264vz
32349vz

21112vvz
2248v2vz1222vvz50 ~19!
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and

vzzzzzz215vzzzzz185vzzzz2225vzzz1274vzz2120vz1
3
2vzvzzzz2vvzzzz13vzzvzzz

217vzvzzz19vvzzz1
1
2vz

2vzz1
141

2 vzvzz2
3
4vvzvzz2

27
2 vzz

2 1 1
4v

2vzz229vvzz2vz
3

2 113
2 vz

21 7
4vvz

22 3
4v

2vz133vvz50, ~20!

respectively. These ODEs correspond to time-dependent scaling symmetries of Eqs.~1! and ~2!.
All the symmetry reductions considered in this section correspond to classical Lie symm

The generalization of the Lie classical symmetry method proposed in Ref. 26, the so-
nonclassical method, provides for some equations additional symmetry reductions. Howev
have evaluated the infinitesimal generators for the nonclassical symmetries whentÞ0 associated
with Eqs. ~1! and ~2! and we have found that no additional symmetries are provided. For
special case whent50 the equations to determine the infinitesimal generatorf are considerably
more complicated than the PDEs themselves, and so we do not pursue this case further h

The next step will be the construction of exact solutions for the PDEs~1! and~2! by looking
for solutions of the ODEs obtained previously through symmetry analysis.

Let us consider first the ODEs~12! and ~13!. As mentioned before, these two equations
equivalent under a change of variables to an ODE found recently by Cosgrove.9 WhenqÞ0, this
equation defines a new fourth-order Painleve´ transcendent and no exact solutions in terms
classical transcendents are known for it. For the special case whenq50 ~associated with the
symmetry reductions in Sec. II B 1!, the general solution can be written in terms of hyperellip
functions.9 A matrix linear problem for Eqs.~12! and ~13! can be found in Ref. 1.

Our purpose here is to construct solutions for~12! @and equivalently for~13!# with q50 in
terms of elliptic functions, and in particular in terms of hyperbolic functions. These equation
be written~settingc151 without loss of generality! in the form

~pzzzz112ppzz16pz
21 32

3 p3!22c3~pzz14p2!2a50, ~21!

S p̃zzzz1
3

2
p̃p̃zz1

3

4
p̃z

21
1

6
p̃3D2

c̃3

2 S p̃zz1
1

4
p̃2D2ã50, ~22!

where we have renamed with tildes the constants and variables in the second equation~22!. The
above-mentioned equations are equivalent under the change of variables~and redefinition of
constants!

p5 1
8~ p̃2 1

2c̃3!, c352 1
8c̃3 , a5 1

8ã1 1
3 ~ 1

4!
4c̃3

3. ~23!

We will be restricting ourselves to the construction of solutions for Eq.~22! and use the transfor
mation above to obtain solutions of Eq.~21!. In order to look for solutions in terms of elliptic
functions for Eq.~22!, we look for those solutions satisfying

p̃z
25mp̃41ap̃31bp̃21cp̃1d, ~24!

wherem, a, b, c, dare constants. It is straightforward to check that there are two different c
according to the following choice of the constants:

m50, a52
1

3
, b5

c̃3

2
, c arbitrary, d524ã, ~25!

m50, a52
1

15
, b5

3c̃3

70
, c5

4

245
c̃3

2, d5
20

11
ã1

28

18 865
c̃3

3, ~26!
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which together with~24! give solutions in terms of the Weierstrass elliptic function`(z). Fur-
thermore, by requiring that the cubic in the right-hand side of Eq.~24! ~with m50! has repeated
roots, we obtain, under certain constraints on the parameters, the solutions

p̃5
1

2
c̃324k2112

k2

cosh2~kz!
, ~27!

p̃5232k2160
k2

cosh2~kz!
, ~28!

p̃528k2160
k2

cosh2~kz!
, ~29!

wherek is an arbitrary constant. Moreover, the further real solution~for e2.k2! of ~22! in terms
of hyperbolic functions can be obtained, for example, following the approach in Ref. 19~see also
references therein!

p̃52
k2

e2

@m2~5e226k2!1e2~4m2cosh~kz!!cosh~kz!#

~cosh~kz!1m!2 , ~30!

wherem25e2/(e22k2). For the special choicee254k2/3, Eq. ~30! becomes

p̃522k2112
k2~112 cosh~kz!!

~cosh~kz!12!2 . ~31!

Now it is a trivial matter to construct solutions for Eq.~21! in tems of elliptic and hyperbolic
functions by using the change of variables~23!.

The next step will consist of using the above solutions for the ODEs, together with
corresponding symmetry reduction given by~17!, to construct solutions for the PDEs~1! and~2!
~with q50!. These then provide traveling wave solutions of Eqs.~1! and ~2!, having variable
velocity depending on the form of the arbitrary functionF(t). It is easy to check that only the
solutions~31! and ~27! from above~the last withc̃358k2! give zero-boundary conditions forux

in ~1! and ~2!, respectively. These are given by

u~x,t !5
1

2
k2F~ t !1

3

2
k

sinh~k~x2F~ t !!!

cosh~k~x-F~ t !!!12
~32!

and

u~x,t !58k2F~ t !112k tanh~k~x2F~ t !!!, ~33!

where we have setc̃358k2 in Eq. ~27!. The solutions given by~32! and~33! are the one-soliton
solutions for Eqs.~1! and~2!, respectively, whenq50. Note that the solution~33! is analogous to
the one-soliton solution of the Hirota–Satsuma equation6

2uxxxt1~uxut!x50, ~34!

which appears as a subequation of~2! whenq50.
Let us consider now the construction of solutions for~1! and ~2! for the caseq50 via the

reduction given by~18!. This involves obtaining solutions for the ODEs~19! and~20!. In fact Eq.
~20! can be solved in terms of Painleve´ equations. It has as a subequation

vzzzz26vzzz1vzvzz2
1
2vvzz111vzz22vz

21 3
2vvz26vz50, ~35!
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obtained by applying the same reduction~18! to Eq. ~34!. The above ODE is equivalent, under
change of variables, to Eq.~A1! in Ref. 27~with b51/2!, and can therefore be solved in tems
the third Painleve´ equation (PIII ) and the fifth Painleve´ equation (PV).

Following again the approach in Ref. 19 we can obtain solutions of Eqs.~19! and ~20! in
terms of hyperbolic functions. These solutions of the ODEs obtained by time-dependent s
symmetry reduction~18! then lead to the following exact solutions of the PDEs~1! and~2! ~with
q50!;

u~x,t !5
1

8

514k~k23!1~4k2112k15!~xG!2k

x@11~xG!2k#
, ~36!

u~x,t !5
3

2

G

11xG
, ~37!

u~x,t !5
15

2

G

11xG
, ~38!

u~x,t !5
3

2

G@e211xGAe221#

Ae221@11~xG!2#12exG
, ~39!

u~x,t !5
15

2

G@e211xGAe221#

Ae221@11~xG!2#12exG
, ~40!

u~x,t !5
1

8

e~k226k15!12m@k2~e26!15e#~xG!k1e~k216k15!~xG!2k

xe@112m~xG!k1~xG!2k#
, ~41!

and

u~x,t !54
11k~2k23!1~2k213k11!~xG!2k

x@11~xG!2k#
, ~42!

u~x,t !5
3

2

1121~xG!5/2

x@11~xG!5/2#
, ~43!

u~x,t !560
G

11xG
, ~44!

u~x,t !5
3

2

4~11e225!~xG!5/21@1121~xG!5#A4e2225

x$A4e2225@11~xG!5#14e~xG!5/2%
, ~45!

u~x,t !560
G@e211xGAe221#

Ae221@11~xG!2#12exG
, ~46!

u~x,t !52
e~k223k12!12m@k2~e23!12e#~xG!k1e~k213k12!~xG!2k

xe@112m~xG!k1~xG!2k#
, ~47!

wherem25e2/(e22k2). Equations~36!–~41! and~42!–~47! correspond, respectively, to solution
of Eqs.~1! and~2! for the case withq50, whereG is an arbitrary function of time. As mentione
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before the well-known Hirota–Satsuma equation is a subequation of Eq.~2!. However, some of
the solutions found before, namely~44!–~46!, are specific solutions of Eq.~2! ~with q50! in the
sense that they do not satisfy Eq.~34!.

Finally we consider the construction of solutions for Eqs.~1! and ~2! with qÞ0 associated
with the scaling similarity reduction given by~14!. With this aim we look for solutions of the
ODEs ~15! and ~16! and then use the similarity variables given by~14!. We obtain the solutions

u~x,t !52 3
2gt1/6~gxt1/614!, ~48!

u~x,t !52 3
2gt1/6~gxt1/622!, ~49!

u~x,t !52
3

2

gt1/6~36g3x3t1/22120g2x2t1/3149gxt1/622!

36g2x2t1/3248gxt1/6125
~50!

for Eq. ~1!, while for Eq. ~2! we get the set of solutions

u~x,t !526gt1/6~gxt1/614!, ~51!

u~x,t !526gt1/6~gxt1/622!, ~52!

u~x,t !526
gt1/6~3g2x2t1/328gxt1/622!

3gxt1/622
, ~53!

where the constantg is defined in terms ofq by g5(2q/18)1/6. Clearly, since we have assume
qÞ0, expressions~51!–~53! are not solutions of the Hirota–Satsuma equation~34!.

III. LAX PAIRS, DARBOUX TRANSFORMATIONS, AND EXACT SOLUTIONS

Equations~1! and~2! arise, respectively, as the compatibility condition of the third-order L
pairs

cxxx522uxcx2~uxx2l!c, ~54!

9lc t526utcxx13uxtcx2@uxxt18uxut#c, ~55!

and

cxxx52 1
2uxcx1lc, ~56!

27l2c t52 3
4@6lut2uxuxt2uxxut22uxxxt#cxx1

3
4@6lut2uxuxt2uxxut22uxxxt#xcx

2 3
2l@2uxxt1uxut#c, ~57!

where in each case the spectral parameterl5l(t) is a function of t and satisfiesl8
52q(t)/(9l). This means that Eqs.~1! and ~2! have isospectral or nonisospectral scatter
problems according to whetherq is zero or different from zero. Equation~1! admits the DT

ũ5u1 3
2@ log~ccxx2

1
2cx

21uxc
2!#x , ~58!

while the DT for Eq.~2! is given by

ũ5u112~ logc!x , ~59!

whereu and ũ are solutions of the same equation@~1! or ~2!, respectively#. Here we make use o
the Lax pairs and the above-mentioned DTs to construct exact solutions for Eqs.~1! and ~2!.
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Let us consider first the caseq50, for which we can easily obtain the one-soliton solutio
Use is made of these in Sec. IV, where we obtain the two-soliton solutions as an application
nonlinear superposition formulas derived therein.

The derivation of the one-soliton solution can be done for both equations by starting wi
simple solutionu5u0(t) and settingl5 8

9i)k3m3 @with m51/2 andm51 for Eqs.~54! and~56!,
respectively#. We take as the solution for the eigenfunction of the Lax pairs

c5bel2~x2H~ t !!1gel3~x2~l2 /l3!2H~ t !!, ~60!

where we have set the coefficient of the third possible exponential to be zero. Hereb andg are
arbitrary constants,l2 andl3 are the following two roots of the polynomiall32 8

9i)k3m350,

l25kmS 1

)
i 11D , ~61!

l35kmS 1

)
i 21D ~62!

and u056l2
2m2H(t). Now it is easy to check that using the corresponding DT for each of

equations we get the one-soliton solutions

u~x,t !5u01
1

2
) ik1

3

2
k

sinhFkS x2F~ t !1
i

2)
~d2e!1

1

2
~d1e!D 1 i

p

3 G
21coshFkS x2F~ t !1

i

2)
~d2e!1

1

2
~d1e!D 1 i

p

3 G , ~63!

u~x,t !5u014) ik112k tanhFkS x2F~ t !1
i

2)
~d2e!1

1

2
~d1e!D G , ~64!

where we have redefined the constants asb5el2d andg5el3e and the functionF(t) is given by
F(t)5 1

2(11 i))H(t) @this means thatu05 1
2k

2F(t) in Eq. ~63! and u058k2F(t) in Eq. ~64!#.
These solutions, corresponding, respectively, to Eqs.~1! and~2!, coincide with solutions~32! and
~33! found through symmetry reductions up to additive constants and phases~irrelevant since only
derivatives ofu appear in the equations!.

Let us consider now the construction of solutions for Eqs.~1! and ~2! in the nonisospectra
case qÞ0. Here we takeq(t)52108t5, the initial solutionsu0(t)52(3/2)xt2 and u0(t)
526xt2 for Eqs.~1! and ~2!, respectively, andl(t)522t3 @where we have set the constant
integration to be zero when integrating the condition for the spectral parametel8
52q(t)/(9l)#. Note that this choice of the functionq(t) has been made without loss of gene
ality since it can be set to be a constant by appropriate redefinition of the time variab@ t
→218(t6/q)#. The general solution for the eigenfunction of the Lax pairs~54! and ~56! can be
written as

c5A~ t !etx1B~ t !xetx1C~ t !e22tx. ~65!

The functionsA(t), B(t), andC(t) can be determined using the temporal part of the Lax p
@~55! and ~57!# and are of the form

A~ t !5 1
6 t25/2~6k0t32k1!, ~66!

B~ t !5k1t23/2, ~67!
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C~ t !5
k2

t
, ~68!

for Eq. ~1! and

A~ t !5 1
3 t23/2~3k0t322k1!, ~69!

B~ t !5k1t21/2, ~70!

C~ t !5k2 , ~71!

for Eq. ~2!; k0 , k1 , andk2 are arbitrary constants of integration. Using now the DT~58! and~59!
we can obtain solutions for Eqs.~1! and~2!. Taking any pair of the constantsk0 ,k1 ,k2 to be zero
we recover the solutions~48!–~50! and~51!–~53! determined in Sec. II through symmetry anal
sis. In doing so, we have to remember that when we takeq52108t5 the corresponding scaling
similarity variable isz̃5xt ~or a function thereof!, and that we have to use the above-mention
redefinition of the time variable in order to recover the reduced variable corresponding
choiceq constant, i.e., as given by~14!.

However, it is possible to obtain additional solutions for other choices of these constant
example, fork150 andk05k2 we get the solutions

u~x,t !526tF1

4
xt1

~11t ~3/2!e3xt!2

118t ~3/2!e3xt22t3e6xtG ~72!

and

u~x,t !526tFxt221
6

11t ~3/2!e3xtG ~73!

for Eqs.~1! and~2! with q(t)52108t5, respectively~the associated solutions forq constant can
be obtained by simple redefinition of the time variable as mentioned before!. More general solu-
tions can of course be obtained by taking arbitraryk0 , k1 , andk2 . These additional solutions ar
not associated with Lie symmetries sincexu is not a function ofz̃5xt only.

IV. NONLINEAR SUPERPOSITION FORMULAS

The Darboux transformations~58! and~59! can be used to iterate between solutions, solv
for the eigenfunction of the Lax pairs~54!, ~55! and~56!, ~57! at each step. This is a standard w
of generatingN-soliton solutions. However, this process can be simplified by applying Bianc
theorem of permutability to the corresponding BTs. Of course, since the BTs correspond
iteration of the DTs, no solutions can be obtained from the resulting nonlinear superpo
formulas that cannot be obtained from direct iteration of the DT; the emphasis is on reduct
the difficulty of the ODEs to be solved.

In order to apply this procedure here we make use of the spatial parts of the BTs for Eq~1!
and ~2! obtained in Ref. 1, which are of the form

ppxx2
3
4 px

21p2px1 1
9 p412uxp

323lp50, ~74!

and

pxx1
1
4 ppx1 1

144 p31 1
2 uxp212l50, ~75!

respectively, and where in each casep5ũ2u is the difference of two solutionsu and ũ of the
same equation. We will see that in this way, the process of iterating the DT is reduced for E~1!
to the problem of solving a second-order linear ODE, and for Eq.~2! to that of solving a first-order
                                                                                                                



ese
n, for
tial—
d to

ion

t

ond-

or

ing at

ter

4724 J. Math. Phys., Vol. 41, No. 7, July 2000 Pilar R. Gordoa

                    
linear ODE; direct iteration of the DTs would require solving third-order linear ODEs. Th
results provide, therefore, a natural extension of those for the Korteweg–de Vries equatio
which it is possible to reduce the iteration process to a linear algebraic—rather than differen
equation~see, e.g., Ref. 23!. As an application of our results, we show how they can be use
obtain the two-soliton solution for each of the equations~1! and ~2!.

Let us consider first Eq.~2! and the corresponding spatial part of the BT for this equat
given by~75!. Let us suppose that we generate two solutionsuj ,1 ,uj ,2 for Eq. ~2! beginning with
the same solutionuj 21 but different spectral parametersl1 andl2 , that is, we have two differen
copies of Eq.~75!, one with p5uj ,12uj 21 and l5l1 and the other withp5uj ,22uj 21 and l
5l2 @u in Eq. ~75! is uj 21 for both copies#. Now we construct another solutionuj 11,12 starting
from uj ,1 andl2 and similarly a solutionuj 11,21 from uj ,2 andl1 . Then we again can write two
copies of Eq.~75!, one with p5uj 11,122uj ,1 and l5l2 and the other one withp5uj 11,21

2uj ,2 and l5l1 . If we now use the theorem of permutability, which states thatuj 11,21

5uj 11,12 ~in what follows we will denoteuj 11,215uj 11,125uj 11 for simplicity!, we can easily
eliminate all second derivatives of the solutions between the four copies of Eq.~75!. The result is
the following Riccati equation foruj 11 :

~uj 11!x1 1
12 ~uj 11!22 1

12 $uj 11C2@uj 21~C2uj 21!212~uj 21!x#%50, ~76!

whereC5C(x,t)5C(uj ,1 ,uj ,2) is of the form

C~uj ,1 ,uj ,2!512
~uj ,2!x2~uj ,1!x

uj ,22uj ,1
1uj ,11uj ,2 . ~77!

The obvious linearization of the above-mentioned Riccati equation will convert it into a sec
order linear equation. However, instead we make the transformation

uj 115uj 21112
Px

P
~78!

into the equation

Pxx5
1

12 C~v j ,1 ,v j ,2!Px , ~79!

wherev j ,15uj ,12uj 21 andv j ,25uj ,22uj 21 .
We conclude then that given three solutionsuj 21 , uj ,1 , anduj ,2 of Eq. ~2! we can reduce the

problem of finding a fourth solutionuj 11 to that of solving a simple first-order linear equation f
Q5Px ,

Qx5 1
12 C~v j ,1 ,v j ,2!Q ~80!

and then the general solution forP will be

P~x,t !5 f 2~ t !1 f 1~ t !E expH F 1

12E C~v j ,1 ,v j ,2!dxG J dx. ~81!

That is, we have reduced the problem of iteration between solutions, which involves solv
each step a third-order linear equation~56!, to that of performing the integrals in~81!, which,
because of the form ofC(x,t), is always easy to do.

As an application of the above, we now derive the two-soliton solution of Eq.~2! in the case
q50. We takej 51, and consider the special case in whichu1,1 andu1,2 correspond to two copies
of the one-soliton solution~64!, i.e., constructed beginning with the same solutionu05u0(t) but
with different values ofk ~k1 andk2! ~corresponding to different values of the spectral parame!,
and also of course different values of the arbitrary constantsd ande ~d1 , d2 ande1 , e2!. We can
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easily find the expression for the two-soliton solution for Eq.~2! ~with q50! by computing
explicity P(x,t) in ~81! for this special case. The general solution forP(x,t) is

P~x,t !5 f 2~ t !1 f 1~ t !e$~~ i /) !21!~k11k2!x%@11ae2u11āe2u21e2~u11u2!#, ~82!

where an overall multiplicative constant in the second term has been absorbed in the fu
f 1(t). Here the constanta is given in terms ofk1 andk2 by

a5
~k11k2!~2k11k22 i)k2!

~k12k2!~2k12k21 i)k2!
. ~83!

u l5kl(x2u0/8kl
21 i /2)(d l2e l)1 1

2(d l1e l)) for l 51, 2, andā denote the complex conjugate o
a ~we assumek1 andk2 are both real!.

Substitution of~78! with j 51 andP given by~82! into Eq. ~2! ~with q50! gives the condi-
tion f 2(t)50. ~This condition can also be obtained by substitution into the temporal part of th
given in Ref. 1.! The solutionu2 then corresponds to the two-soliton solution, which we can w
as

u25u014~ i)23!~k11k2!112~ log@11ae2u11āe2u21e2~u11u2!# !x . ~84!

The form of the derivative (u2)x is analogous to that of the two-soliton solution for the Sawad
Kotera equation presented in Ref. 28. The expression for (u2)x can be made real by setting th
constants (d i2e i) in the exponentials to be

tanS 1

)
~d12e1!k1D 52tanS 1

)
~d22e2!k2D 5)

k1k2

k1
22k2

2 . ~85!

If we make the further redefinitions of the constants

ed11e15
k12k2

k11k2
Ak1

22k1k21k2
2

k1
21k1k21k2

2 e2m1, ~86!

ed21e25
k12k2

k11k2
Ak1

22k1k21k2
2

k1
21k1k21k2

2 e2m2, ~87!

we can write the two-soliton solution in the form

u25u014~ i)23!~k11k2!112~ log@11e2h11e2h21a12e
2~h11h2!# !x , ~88!

whereh i5ki(x2u0/8ki
2)1m i for i 51,2, anda12 is given by

a125
~k12k2!2~k1

22k1k21k2
2!

~k11k2!2~k1
21k1k21k2

2!
. ~89!

Expression~88! ~or its derivative! is the two-soliton solution for Eq.~2! ~with q50!. It is analo-
gous to the two-soliton solution for Eq.~34! ~see Ref. 6! but here with an arbitrary function of time
u0(t). The general form of this two-soliton solution cannot be obtained using Lie symmetri

Figures 1 and 2 represent, respectively, the derivatives of the solutions~64! and ~88! for the
given choices of the functionu0(t), and they correspond to one-soliton and two-soliton soluti
for Eq. ~2! with q50. The solution plotted in Fig. 1 is a one-soliton solution which travels fr
x52` to x51` with variable speed and direction~the speed is actually a periodic function
t!. Figure 2 represents a double interaction of two solitons both of which decelerate, c
                                                                                                                



litons
rms for

tion for

4726 J. Math. Phys., Vol. 41, No. 7, July 2000 Pilar R. Gordoa

                    
direction, and accelerate again, with the smaller soliton traveling faster: Note that both so
emerge from the interactions unchanged except for a phase shift. Consideration of other fo
the functionu0(t) will lead to a rich variety of qualitative behaviors.

The same procedure applies for Eq.~1! using the corresponding BT given by~74!. In this
case, elimination of all second-order derivatives provides a first-order second degree equa
uj 11 relating the four solutionsuj 21 , uj ,1 , uj ,2 , anduj 11 ,

@~uj 11!x1 2
3 ~uj 11!21uj 11C11C2#2~uj ,22uj 21!~uj ,12uj 21!2@~uj 21!x

1 2
3~uj 21!21uj 21C11C2#2~uj 112uj ,1!~uj 112uj ,2!50, ~90!

FIG. 1. Thex derivative of solution~64! with u0(t)5t/214 sin(t/1.7)e25sin2(t/2), k50.4, andd5e50.

FIG. 2. Thex derivative of solution~88! with u0(t)5t2216, k1520.19,k251/3, andm15m250.
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whereC15C1(x,t)5C1(uj ,1 ,uj ,2) andC25C2(x,t)5C2(uj ,1 ,uj ,2) are given in terms ofuj ,1 and
uj ,2 by

C1~uj ,1 ,uj ,2!52
~uj ,2!x2~uj ,1!x

uj ,22uj ,1
2

2

3
~uj ,11uj ,2!, ~91!

C2~uj ,1 ,uj ,2!5
uj ,1~uj ,2!x2uj ,2~uj ,1!x

uj ,22uj ,1
1

2

3
uj ,1uj ,2 . ~92!

Under the transformationuj 115 3
2Px /P Eq. ~90! can be transformed into a second-order seco

degree equation forP that can be linearized into a third-order linear equation. However, follow
the transformation made when considering this process for Eq.~2!, we instead make the transfo
mation

uj 115uj 211
3

2

Px

P
~93!

and redefine as beforeuj ,15v j ,11uj 21 anduj ,25v j ,21uj 21 . Equation~90! is then simplified to

Pxx
2 12C1PxPxx1

4

3
C2PPxx1S C1

22
C2

2

v j ,1 ,v j ,2
D Px

21
2

3
C2F2C11C2S 1

v j ,1
1

1

v j ,2
D GPPx50,

~94!

where nowC15C1(v j ,1 ,v j ,2) andC25C2(v j ,1 ,v j ,2). The linear equation corresponding to~94! is
then found to be

Qxx1FC12
C2,x

C2
2

C2

2 S 1

v j ,1
1

1

v j ,2
D GQx1FC1,x1

2

3
C22

C2
2

v j ,1v j ,2
2C1S C2,x

C2
1

C2

2 S 1

v j ,1
1

1

v j ,2
D D GQ

50, ~95!

whereQ5Px , which is of course second order. The general solution of~94! ~see Ref. 29! is then
given by

P~x,t !5 f 1~ t !21 f 1~ t ! f 2~ t !P2~x,t !1 f 2~ t !2P3~x,t !, ~96!

whereP2 and P3 are defined by the relationsQ25P2,x and Q35P3,x , andQ2 and Q3 are two
linearly independent solutions of Eq.~95!.

We have reduced the problem of solving the third-order linear equation of the spatial p
the Lax pair~when iterating the DT! to the simpler problem of solving the second-order line
equation~95!. This is then of course easier to solve than the standard linearization of~90!, which
in any case is of the same order as the spatial part of the Lax pair.

In the same way as we did for Eq.~2! we can apply the above result to obtain the two-solit
solution for Eq.~1! with q50. With this aim, we takej 51, u05u0(t), and u1,1 and u1,2 two
copies of the one-soliton solution~63! obtained using different values of the spectral parame
i.e., with different values ofk ~k1 andk2! and also of the arbitrary constantsd ande ~d1 ,d2 and
e1 ,e2!. In this case, the general solution forP(x,t) is given by Eq.~96! with P2 andP3 given by

P35e$~~ i /) !21!~k11k2!x%@11a1
2e2u114a1eu11ā1

2e2u214ā1eu21a2eu11u214a1e2u11u2

14ā1eu112u21e2u112u2#, ~97!

P25E P3,xH E F 1

~P3,x!
2 expH 2E FC12

C2,z

C2
2

C2

2 S 1

v j ,1
1

1

v j ,2
D GdxJ GdxJ dx. ~98!
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The coefficientsa1 anda2 in ~97! are given by

a15
~k11k2!~2k11k22 i)k2!

~k12k2!~2k12k21 i)k2!
, ~99!

a258
~2k1

42k1
2k2

212k2
2!

~k12k2!2~k1
22k1k21k2

2!
. ~100!

u l5kl(x22u0 /kl
21 i /2)(d l2e l)11/2(d l1e l))1 ip/3 for l 51,2, andā1 , ā2 denote the com-

plex conjugates ofa1 ,a2 ~we assumek1 andk2 both real!. The general expression for the two
soliton solution of Eq.~1! with q50 corresponds to Eq.~93! with j 51 andP given by~96! when
f 1(t)50, i.e.,

u25u01 1
2~ i)23!~k11k2!1 3

2@ log~F~x,t !!#x , ~101!

whereF(x,t) is given by

F~x,t !511a1
2e2u114a1eu11ā1

2e2u214ā1eu21a2eu11u214a1e2u11u214ā1eu112u21e2u112u2.
~102!

As for the case of Eq.~2! we can redefine the constantsd i ande2 by

tanS 1

2)
~d12e1!k11

p

3 D 52tanS 1

2)
~d22e2!k21

p

3 D 5)
k1k2

k1
22k2

2 ~103!

and

e1/2~d11e1!5
k12k2

k11k2
Ak1

22k1k21k2
2

k1
21k1k21k2

2 em1, ~104!

e1/2~d21e2!5
k12k2

k11k2
Ak1

22k1k21k2
2

k1
21k1k21k2

2 em2 ~105!

and we can then write the two-soliton solution in the form

u25u01 1
2~ i)23!~k11k2!1 3

2@ log~G~x,t !!#x . ~106!

The functionG(x,t) is given by

G~x,t !511e2h114eh11e2h214eh21b1eh11h214b2~e2h11h21eh112h2!1b2
2e2h112h2,

~107!

whereb1 andb2 are given by

b158
2k1

42k1
2k2

212k2
2

~k11k2!2~k1
21k1k21k2

2!
, ~108!

b25
~k12k2!2~k1

22k1k21k2
2!

~k12k2!2~k1
21k1k21k2

2!
, ~109!

and h i5ki(x22u0 /ki
2)1m i for i 51,2. The derivative of~106! is analogous to the form of the

two-soliton solution found in Ref. 30 for the fifth order Kaup–Kupershmidt equation by u
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symbolic computation. We note that here, however, our two-soliton solution@~106! or its deriva-
tive# containsu0 , an arbitrary function oft. The general form of this two-soliton solution cann
be obtained using Lie symmetries.

The derivative of solutions~63! and~106!, representing, respectively, the one- and two-soli
solutions for Eq.~1! ~with q50!, have been plotted in Figs. 3 and 4 for certain choices of
functionu0(t). Again, as for Eq.~2!, a rich variety of exotic behaviors can be obtained by mak
different choices of the arbitrary functionu0(t). Figure 3 represents a one-soliton solution wh
travels fromx52`, slows down, changes direction, then changes direction again and accel
away to x51`. Figure 4~a! represents the repeated interactions of two solitons. The sm
soliton travels faster, and again we can see that both solitons emerge from the interactio
changed except for a change of phase; there are in fact infinitely many such interactions. F
Fig. 4~b! represents two solitons which appear to be stationary before they begin to mov
interact, again with the smaller one traveling faster.

V. CONCLUSIONS

We have considered the construction of exact solutions for the integrable PDEs~1! and ~2!
from two different points of view. The first consists of using the Lie symmetry method to
similarity reductions, and then looking for solutions of the resulting ODEs. One of the ODE
obtain is of particular importance because it is believed to define a new transcendent.9 For the
special case whenq50 this ODE allows us to find the one-soliton solutions of the original PD
The second approach is that of taking an initial solution of the PDE, solving for the eigenfun
of the Lax pair, and then using the corresponding DT to obtain a new solution. We have use
to give an alternative derivation of the aforementioned one-soliton solutions. We have also
to derive further exact solutions that are not associated with Lie symmetries.

In addition, we have considered the successive iteration of the DTs of Eqs.~1! and ~2!. The
application of Bianchi’s theorem of permutability to the corresponding BTs allows us to d
nonlinear superposition formulas which, while they cannot lead to any solutions different
those obtained by direct iteration of the DTs greatly simplify this process. Thus we have see
in order to obtain a fourth solution from three previous solutions~two of which are obtained from

FIG. 3. Thex derivative of solution~63! with u0(t)5
1
9t(t226.5), k50.4, andd52e52p/0.4).
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the third!, instead of solving at each step for the eigenfunction of the Lax pairs~third-order linear
equations!, it is enough to solve a second-order linear ODE for Eq.~1!, and a first-order linear
ODE for Eq. ~2!. This again allows us to obtain solutions that cannot be obtained from
symmetries. This is the case, for example, with the general form of the two-soliton solutions
we derive in Sec. IV as an application of the construction of solutions using our nonl
superposition formulas.

FIG. 4. Thex derivative of solution~106! with ~a! u0(t)53 sin(t/2)10.3, k1520.8, k250.42, andm15m250. ~b!
u0(t)5exp(t/100)tanh(t/10), k1520.8, k250.5, andm15m250.
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Asymptotics of scaling parameters for period-doubling
in unimodal maps with asymmetric critical points
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The universal period-doubling scaling of a unimodal map with an asymmetric
critical point is governed by a period-2 point of a renormalization operator. The
period-2 point is parametrized by the degree of the critical point and the asymmetry
modulus. In this paper we study the asymptotics of period-2 points and their asso-
ciated scaling parameters in the singular limit of degree tending to 1. ©2000
American Institute of Physics.@S0022-2488~00!06505-1#

I. INTRODUCTION

In this paper we study the asymptotics of the solutions of the following functional equat

f̃ L~x!52l21f Rf R~2lx!,

f̃ R~x!52l21f Rf L~2lx!,

f L~x!52l̃21 f̃ Rf̃ R~2l̃x!,

f R~x!52l̃21 f̃ Rf̃ L~2l̃x!, ~1.1!

with the normalizationsf L(0)5 f R(0)5 f̃ L(0)5 f̃ R(0)51 so that l52 f R(1).0 and l̃5

2 f̃ R(1).0.
These equations arise in the theory of period-doubling cascades for families of unimoda

f of an interval with a single critical point of degreed and at which the left and rightdth
derivative at 0 differ.

In Ref. 1 it was shown that the critical behavior of such families of maps was governed
period-two point of a generalized Feigenbaum renormalization operator. The period-two p
given by the solution of the functional equations~1.1!. ~Note that these equations were writte
with a52l and ã52l̃ in Ref. 1.!

Here f L and f R correspond to the left and the right parts of the unimodal mapf , i.e.,

f ~x!5H f L~x! if x<0

f R~x! if x>0
. ~1.2!

The solutions of~1.1! depend on two parameters, viz., the degreed of the critical point and the
asymmetry ‘‘modulus’’m, which ~for the case whend is an even integer! is the ratio

a!Electron mail: b.d.mestel@exeter.ac.uk
b!Electronic mail: a.h.osbaldestin@lboro.ac.uk
47320022-2488/2000/41(7)/4732/15/$17.00 © 2000 American Institute of Physics
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m5
f L

(d)~02 !

f R
(d)~01 !

. ~1.3!

Whenm51, Eq. ~1.1! correspond to the standard Feigenbaum equation

f ~x!52l21f f ~2lx!, f ~0!51. ~1.4!

In Ref. 2 the Herglotz function techniques of H Epstein3–5 were adapted to prove the existen
of a solution of the equations~1.1! for all real m.0 andd.1.

It should be noted that the fixed-point theorem used in Ref. 2 to prove existence of a so
of ~1.1! does not guarantee uniqueness. It is, however, believed that analytic solutions of~1.1! are
unique up to normalization.

In this paper we study the asymptotics of the solutions of the equations~1.1! in the limit
d→11. We are particularly interested in the scaling parametersl, l̃. This work follows on from
previous studies of the asymptotics of the solutions of the Feigenbaum equation~1.4! in the limit
d→11.6

Our results may be summarized as follows:
Theorem: For fixed m.1, there exists a family of solutions to~1.1! parametrized byd.1

satisfying in the limitd→11

l;Cm21/(2(d21)), ~1.5!

l̃;Am21, ~1.6!

where

C5
m (112Am)/(4(Am21))

e3~Am21!1/2
. ~1.7!

The theorem will be proved in Secs. III and IV. A corresponding result form,1 may be
obtained by switchingl and l̃, and replacingm by 1/m in the above theorem.

This result differs substantially from the symmetric casem51. In Ref. 6 it is shown that for
m51 there exist solutions with

l5l̃;2~d21!log~d21!, ~1.8!

asd→11.

II. THE HERGLOTZ FUNCTION APPROACH

The Herglotz function approach as pioneered by Epstein3 has been an extremely fruitfu
technique in the analysis of the accumulation of period-doubling. For the problem in hand,
used in Ref. 2 to prove the existence of a solution of Eq.~1.1! for all real m.0 andd.1. We
recall here how Eq.~1.1! may be recast as an anti-Herglotz function problem.

Firstly we build the singularity into our functions by defining

f R~x!5FR~ uxud!, f̃ R~x!5F̃R~ uxud!. ~2.1!

The left-hand functions are given in terms of the right-hand ones by

f L~x!5FL~ uxud!5FR~muxud!, f̃ L~x!5F̃L~ uxud!5F̃R~m21uxud!. ~2.2!

We then consider the inverses of these functions by defining
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FR~x!5U21~x!, F̃R~x!5Ũ21~x!. ~2.3!

The functionsU and Ũ satisfy

U~1!50, U~2l!51, ~2.4a!

Ũ~1!50, Ũ~2l̃ !51. ~2.4b!

To finish the transformation we normalize by setting

U~x!5kc~x!, Ũ~x!5 k̃c̃~x!, ~2.5!

where

k5U~0!, k̃5Ũ~0!, ~2.6!

so that the functionsc and c̃ satisfy

c~1!50, c~0!51, ~2.7a!

c̃~1!50, c̃~0!51. ~2.7b!

These normalization constants will be of great use to us in what follows, and we may writ
last step as

U~x!5z1
dc~x!, Ũ~x!5 z̃1

dc̃~x!, ~2.8!

where

z15c~2l!21/d, z̃15c̃~2l̃ !21/d. ~2.9!

In this new setting our equations are

c~x!5
m z̃1

d

l̃dz1
d

c̃~ z̃1c̃~2l̃x!1/d!, c̃~x!5
z1

d

mldz̃1
d
c~z1c~2lx!1/d!. ~2.10!

These may be written in the form

c~x!5 t̃21c̃~ f̃~x!!, c̃~x!5t21c~f~x!!, ~2.11!

where

f~x!5z1c~2lx!1/d5
c~2lx!1/d

c~2l!1/d
, f̃~x!5 z̃1c̃~2l̃x!1/d5

c̃~2l̃x!1/d

c̃~2l̃ !1/d
~2.12!

and

t5c~z1!5c~c~2l!21/d!, t̃5c̃~ z̃1!5c̃~ c̃~2l̃ !21/d! ~2.13!

satisfy

ld5
tz1

d

m z̃1
d , l̃d5

mt̃ z̃1
d

z1
d . ~2.14!
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The method of the existence proof is now to show that~2.10! has a solution in a suitably chose
space of pairs of functions.

Definition: Let C1 , C2 denote the upper and lower half planes inC. A complex analytic
function onC1øC2 is said to be Herglotz~resp. anti-Herglotz! if f (C1)#C̄1 and f (C2)#C̄2

~resp. f (C1)#C̄2 and f (C2)#C̄1!.
Let A, BPR satisfy A,0,1,B and letV(A,B) denoteC1øC2ø(A,B). We denote by

H(A,B) and AH(A,B), respectively, the space of Herglotz and anti-Herglotz functions, res
tively, analytic on the interval (A,B). Furthermore, let E(A,B) denote the space of anti-Herglo
functionscPAH(A,B) which satisfy the normalizations

c~0!51, c~1!50. ~2.15!

As is normal, we equip H(A,B), AH(A,B), and E(A,B) with the topology of uniform conver-
gence on compact subsets ofV(A,B).

Herglotz and anti-Herglotz functions have a number of important properties which w
here~see Ref. 3 and references therein!:

~1! E(A,B) is compact;
~2! Any nonconstant functionf PH(A,B) ~resp. AH(A,B)! is strictly increasing~resp. decreas-

ing! on any open interval ofR on which it is analytic; moreover, on such an interval, t
Schwarzian derivativeS( f )5 f-/ f 82(3/2)(f 9/ f 8)2>0;

~3! Functionsc PE(A,B) satisfy so-calleda priori bounds:

For x,0 andx.1:

B~12x!

B2x
<c~x!<

A~12x!

A2x
, ~2.16!

and for 0,x,1

A~12x!

A2x
<c~x!<

B~12x!

B2x
. ~2.17!

In Ref. 2 we prove the following:
Theorem: For eachm.0 and for eachd.1, there exists a solution pair (c,c̃) for ~2.10! with

cPE(2l̃21,(ll̃)21) and c̃PE(2l21,(ll̃)21).
From this it is straightforward to reverse the transformation above to show that~1.1! has a

solution. See Ref. 2.
For the solution pair (c,c̃) the a priori bounds~2.16!, ~2.17! are, forx,0 andx.1

12x

12ll̃x
<c~x!<

12x

11l̃x
, ~2.18a!

12x

12ll̃x
<c̃~x!<

12x

11lx
, ~2.18b!

and for 0,x,1

12x

11l̃x
<c~x!<

12x

12ll̃x
, ~2.19a!
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12x

11lx
<c̃~x!<

12x

12ll̃x
. ~2.19b!

The following results are either explicitly stated in Ref. 2 or are simple consequences o
arguments therein.

Proposition 1: For a solution pair given by the theorem above we have

~1! m1/dl<z1 , andm21/dl̃< z̃1 ;
~2! lP@0,m21/d# and l̃P@0,m1/d#;
~3! z1 ,z̃1 ,t,t̃P(0,1);
~4! 0,ll̃,1;
~5! tt̃5(ll̃)d<1/(11ll̃);
~6! c and c̃ may be extended continuously to2l̃21 and 2l21, respectively, and satisfy

c(2l̃21)5 t̃21 and c̃(2l21)5t21.

We shall use these results in the proofs that follow.

III. THE LIMIT d\1, FIXED mÅ1

Without loss of generality we shall confine attention to the casem.1. The casem,1 merely
corresponds to an interchange ofl with l̃, replacingm by 1/m. As in Ref. 2, it will be convenient
to use the notation

n5m1/d. ~3.1!

It will also be convenient to introduce the perturbation parameter« by writing

d511«. ~3.2!

Henceforth when we write the limitd→1 it is to be understood that the right-hand lim
d→11 is intended.

In this section we shall prove the following theorem, from which the theorem in Se
follows.

Theorem: Let m.1 be fixed. Then, for any family~not necessarily continuous! of solutions
of Eq. ~2.10! parametrized byd.1, we have that asd→11

l5Cm21/(2(d21))~11o~1!!, ~3.3a!

l̃5~Am21!~11o~1!!, ~3.3b!

where

C5
m (112Am)/(4(Am21))

e3~Am21!1/2
. ~3.4!

For the remainder of this paper we assume that we have a family of solutions of~2.10! as in
the statement of the theorem.

We shall build up our results as a sequence of lemmas.
Lemma 1:For cPE(2l̃21,(ll̃)21), c̃PE(2l21,(ll̃)21), and withc andc̃ having con-

tinuous extensions tol̃21 and 2l21, respectively, and satisfyingc(2l̃21)5 t̃21, c̃(2l21)
5t21, we have
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c~x!<
12x

~ t̃1l̃ t̃2l̃ !~12x!1~12 t̃ !~11l̃ !
for xP~2l̃21,0!, ~3.5a!

c̃~x!<
12x

~t1lt2l!~12x!1~12t!~11l!
for xP~2l21,0!. ~3.5b!

Proof: Let u(x) be the unique fractional linear transformation preserving 0 and 1, and w
maps 11l̃21 to t̃21:

u~x!5
x

~ t̃1l̃ t̃2l̃ !x1~12 t̃ !~11l̃ !
. ~3.6!

Thenu21+c has positive Schwarzian derivative, intersects the line 12x at the points2l̃21, 0,
and 1, and moreover

~u21+c!8~x!→2` as x→2l̃21. ~3.7!

~This can be seen by differentiating the functional equations~2.11! and lettingx→2l̃21, noting
thatu21 is an increasing fractional linear transformation, and, hence, has positive derivative! We
conclude that (u21+c)(x),12x for x slightly above2l̃21 so that we have

~u21+c!~x!<12x for xP~2l̃21,0!. ~3.8!

Sinceu is increasing we deduce that

c~x!<u~12x!, ~3.9!

and hence the result.
The proof forc̃ is similar. h

Lemma 2:ll̃→0 asd→1.
Proof: Suppose to the contrary thatll̃y0 as d→1. Then there exists a sequence (di)

convergent to 1 such that the corresponding sequence (ll̃) is bounded away from 0. We note
taking the limit d→1 of property 5 of Proposition 1, that (ll̃) is also bounded away from 1
SincelP@0,n21# and l̃P@0,n# it follows that ly0 andl̃y0 for this sequence. Now conside
a subsequence for which bothl andl̃ converge, with limitsl1.0 andl̃1.0 say. Then, for this
subsequence,cPE(2l̃21,(ll̃)21) and c̃PE(2l21,(ll̃)21) will be contained in a compac
space of anti-Herglotz functions.@In fact cPE(2b̃21,c21) and c̃PE(2b21,c21) where b

5supl, b̃5supl̃ and c5supll̃.# We may, therefore, restrict further to obtain a converg
subsequence (c,c̃)→(c1 ,c̃1), and, sincel→l1 andl̃→l̃1 , we may extract a subsequence su
that (c,c̃)→(c1 ,c̃1), wherec1PE(2l̃1

21 ,(l1l̃1)21) and c̃1PE(2l1
21 ,(l1l̃1)21).

Furthermore we have that

c1~x!5 t̃1
21c̃1~f̃1~x!! , c̃1~x!5t1

21c1~f1~x!!, ~3.10!

where

f1~x!5
c1~2l1x!

c1~2l1!
, f̃1~x!5

c̃1~2l̃1x!

c̃1~2l̃1!
~3.11!

and
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t15c1~c1~2l1!21!, t̃15c̃1~ c̃1~2l̃1!21!. ~3.12!

For clarity we now drop the subscript 1. We note that Proposition 1 holds in the limitd→1.
Now, we havez15c(2l)21, and, by Lemma 1,

c~2l!<
11l

~t̃1l̃ t̃2l̃ !~11l!1~12 t̃ !~11l̃ !
, ~3.13!

and so

z1>
11lt̃1ll̃~ t̃21!

11l
. ~3.14!

Thus thea priori bounds show thatt5c(z1) satisfies

t<
12z1

12ll̃z1

<
12~11lt̃1ll̃~ t̃21!!/~11l!

12ll̃~11lt̃1ll̃~ t̃21!!/~11l!
~3.15!

5
l~12 t̃ !~11l̃ !

~11l!~12ll̃~11lt̃1ll̃~ t̃21!!/~11l!!
~3.16!

<
l~12 t̃ !~11l̃ !

~11l!~12ll̃!
, ~3.17!

where in the last step we have used the fact that

0<
11lt̃1ll̃~ t̃21!

11l
<1. ~3.18!

A similar argument shows that

t̃<
l̃~12t!~11l!

~11l̃ !~12ll̃!
, ~3.19!

and thus~remembering we are at the limitd51!

ll̃5~ll̃ !d5tt̃<
ll̃~12t!~12 t̃ !

~12ll̃!2
, ~3.20!

which gives the contradiction

1<
~12t!~12 t̃ !

~12tt̃ !2 ,1, ~3.21!

where, for the final inequality, we have used 0,t,t̃,1 ~property 3 of Proposition 1!. h

Lemma 3:l→0 asd→1.
Proof: The a priori bounds give
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11l

11l2l̃
<c~2l!<

11l

12ll̃
. ~3.22!

Supposel→” 0 asd→1 ~and thusl̃→0 by Lemma 2!. Then~as earlier! there is a sequence (di)
convergent to 1 such that the corresponding sequence (l) converges with limitr P(h,1# where
h.0. Thea priori bounds act as a sandwich and we deduce from Lemma 2~for this sequence!
that c(2l)→11r . Hencez15c(2l)21/d→(11r )21.

Using thea priori bounds we have

12z1

11l̃z1

<c~z1!<
12z1

12ll̃z1

, ~3.23!

which givest5c(z1)→12(11r )215r /(11r ).
Now from ~2.14! we have

ld5
z1

dt

m z̃1
d , ~3.24!

and so we have

z̃15c̃~2l̃ !21/d→ 1

m~11r !2,1. ~3.25!

But l̃→0, so from thea priori boundsc̃(2l̃)21/d→1 which is a contradiction. Hencel→0 as
d→1. h

Lemma 4:l̃→Am21 asd→1.
Proof: The a priori bounds give

1

11ll̃2
<

c̃~2l̃ !

11l̃
<

1

12ll̃
. ~3.26!

Sincel̃ is bounded, by Lemma 2 we have

lim
d→1

c̃~2l̃ !

11l̃
51, ~3.27!

i.e., c̃(2l̃);11l̃ asd→1. Hence

z̃15c̃~2l̃ !21/d;
1

11l̃
as d→1. ~3.28!

Thus, using thea priori bounds,t̃5c̃( z̃1) satisfies

12 z̃1

11l z̃1

<t̃<
12 z̃1

12ll̃ z̃1

, ~3.29!

and so
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t̃;
l̃

11l̃
. ~3.30!

Now, using thea priori bounds again,c(2l) satisfies

11l

11l2l̃
<c~2l!<

11l

12ll̃
, ~3.31!

and so sincel→0 ~by Lemma 3! we havec(2l)→1 andz15c(2l)21/d→1 asd→1. Now in
~2.14!

l̃d5
mt̃c~2l!

c̃~2l̃ !
, ~3.32!

we take the limitd→1 to get

l̃;
ml̃

~11l̃ !~11l̃ !
, ~3.33!

which givesl̃→Am21 asd→1 as desired. h

We write

l̃05 lim
d→1

l̃5Am21. ~3.34!

Lemma 5: Let h̃.l̃0 and h.0. Then, for d sufficiently close to 1, we have
c̃PE(2h21,(hh̃)21) and cPE(2h̃21,(hh̃)21). On V(2h21,(hh̃)21), respectively
V(2h̃21,(hh̃)21), we havec̃(x)→12x, respectively,c(x)→12x, uniformly on compact
subsets asd→1.

Proof: By Lemmas 3 and 4, we know thatl→0 and l̃→l̃0 as d→1, so that clearly, for
d sufficiently close to 1, we will havec̃PE(2l21,(ll̃)21)#E(2h21,(hh̃)21), and
cPE(2l̃21,(ll̃)21)#E(2h̃21,(hh̃)21). Furthermore, thea priori bounds clearly show tha
for xP(2h21,(hh̃)21)#(2l21,(ll̃)21) we havec̃(x)→12x asd→1. Now by Vitali’s theo-
rem we have, sinceE(2h21,(hh̃)21) is a compact family of functions, thatc̃(x)→12x for any
xPV(2h21,(hh̃)21) uniformly on compact subsets ofV(2h21,(hh̃)21).

The behavior ofc is not so immediate. LetxP(2h̃21,(hh̃)21). Then we have~2.11!

c~x!5 t̃21c̃~ f̃~x!!. ~3.35!

Now asd→1 the behavior ofz̃1 ~3.28! and c̃ show

f̃~x!5 z̃1c̃~2l̃x!1/d5
11l̃x

11l̃
1o~1!. ~3.36!

Also ~using ~3.30! and Lemma 4!

t̃5
Am21

Am
1o~1!, ~3.37!
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hence

c~x!5S 11l̃

l̃
1o~1!D S 12S 11l̃x

11l̃
1o~1!D 1o~1!D ~3.38!

5
11l̃

l̃
S 11l̃2~11l̃x!

11l̃
D 1o~1! ~3.39!

512x1o~1!. ~3.40!

Thusc(x)→12x as required.
Now again, by Vitali’s theorem, we have thatc(x)→12x for any xPV(2h̃21,(hh̃)21)

uniformly on compact subsets. h

Lemma 6:t;l asd→1.
Proof: Recall thatt5c(z1)5c(c(2l)21/d), and leth̃.l̃0 andh.0. Consider the function

f (y)5c(c(2y)21/d), which is clearly Herglotz being the composition of an even numbe
anti-Herglotz functions. Nowc(2y)21/d is analytic for yP(21,l̃21) ~sincec is analytic on
(2l̃21,(ll̃)21) andc(1)50!, and this function maps (21,l̃21) to (t̃1/d,`) ~using property 6
of Proposition 1!, and the functionf (y) is analytic foryP(2k,l̃21) wherekP(0,1) is such that
c(k)21/d5(ll̃)21, i.e., c(k)5(ll̃)d5tt̃. Sincec(x)→12x uniformly on (2h̃21,(hh̃)21)
and (ll̃)d→0 asd→1 ~from the previous lemmas! we have thatk→1 asd→1.

Now let 0,r,1. Sincel̃→l̃0 andk→1 we conclude that ford sufficiently close to 1, we
have f (y) is analytic onV(2r,h̃21){0, and using the fact thatc(x)→12x uniformly on
compact subsets ofV(2h̃21,(hh̃)21) we have thatf (y)→y/(11y)5g(y), say, uniformly on
compact subsets ofV(2r,h̃21).

Now for all d, f (0)5c(c(0)21/d)50, so thatf (y)/y has a removable singularity aty50.
Now asd→1 we havel→0 and is eventually in some compact subset ofV(2r,h̃21). Since the
convergence off to g is uniform on this compact subset, we havef (l)/l→g8(0)51 asd→1,
and sot;l asd→1. h

Lemma 7:We havel«→1/Am asd→1.
Proof: From previous lemmas we havel→0, t5l1o(l), z15c(2l)21/d511o(1), and

z̃151/Am1o(1). Hence~2.14!

ld5
tz1

d

m z̃1
d 5

~l1o~l!!~11o~1!!

m~1/Am1o~1!!
~3.41!

and so

l«5ld215
1

Am
1o~1!. ~3.42!

h

Corollary 1: l5o(«a) for everya.0.
Corollary 2: For fixedxP(2l21,(ll̃)21), c̃(x)512x1o(«a) for everya.0.
Proof: This follows immediately from Corollary 1 and thea priori bounds. h
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IV. CALCULATIONS TO O„«… AS d\1

In this section we explore further the limiting behaviors of the previous section. Forl̃ we
shall calculate the first-order correction to Lemma 4. Lemma 7 give an indication of the beh
of l. We shall make a more precise statement here.

Firstly we shall deal withl̃. We expand the terms in the functional equation forc ~2.10!

c~x!5
mc~2l!

l̃dc̃~2l̃ !
c̃~ z̃1c̃~2l̃x!1/d!. ~4.1!

as series in«. ~Recall our notation thatd511«.! Firstly

c̃~2l̃x!511l̃x1O~l!, ~4.2!

c̃~2l̃ !511l̃1O~l! ~4.3!

so

f̃~x!5
c̃~2l̃x!1/d

c̃~2l̃ !1/d
5S 11l̃x

11l̃
D 1/d

1O~l!. ~4.4!

Now, sinceX1/(11«)5X2«X logX1O(«2), this is

f̃~x!5S 11l̃x

11l̃
D S 12« logS 11l̃x

11l̃
D 1O~«2!D 1O~l!. ~4.5!

Hence

c̃~ f̃~x!!512f̃~x!1O~l! ~4.6!

512S 11l̃x

11l̃
D S 12« logS 11l̃x

11l̃
D 1O~«2!D 1O~l! ~4.7!

5
l̃~12x!

11l̃
1«S 11l̃x

11l̃
D logS 11l̃x

11l̃
D 1O~«2!. ~4.8!

~We can absorb the termO(l) into the termO(«2) sincel5o(«a) for all a.0.! Thus, using
~4.1!,

c~x!5
mc~2l!

l̃d~11l̃1O~l!!
S l̃~12x!

11l̃
1«S 11l̃x

11l̃
D logS 11l̃x

11l̃
D 1O~«2!D . ~4.9!

Now thea priori bounds forc give

11l

11l2l̃
<c~2l!<

11l

12ll̃
, ~4.10!

from which we see that

c~2l!511O~l!, ~4.11!
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and so

c~x!5
m

l̃d~11l̃ !
S l̃~12x!

11l̃
1«S 11l̃x

11l̃
D logS 11l̃x

11l̃
D 1O~«2!D . ~4.12!

Evaluating atx50 we obtain

15
m

l̃d21~11l̃ !2
1

«m

l̃d~11l̃ !2
log

1

~11l̃ !
1O~«2!, ~4.13!

which is an equation forl̃ to order «. The solution of this regular perturbation problem isl̃

5Am211O(«). Writing l̃5Am211«l̃11O(«2) we have

l̃d5Am211«~l̃11~Am21!log~Am21!!1O~«2!, ~4.14!

~11l̃ !25m12«Aml̃11O~«2!, ~4.15!

log
1

~11l̃ !
52 logAm2«

l̃1

Am
1O~«2!52 logAm1O~«!. ~4.16!

Thus our equation~4.13!

l̃d~11l̃ !25ml̃1«m log
1

~11l̃ !
1O~«2!, ~4.17!

becomes

~Am211«~l̃11~Am21!log~Am21!!1O~«2!!~m12«Aml̃11O~«2!!

5m~Am211«l̃11O~«2!1«~2 logAm1O~«!!! , ~4.18!

which can readily be solved to give

l̃15
2Am

2~Am21!
log~Am~Am21!Am21!. ~4.19!

From now on we assume thatl̃1 is given by this expression and

l̃5Am211«l̃11O~«2!. ~4.20!

We now considerl. We have~2.14!

ld5
tc̃~2l̃ !

mc~2l!
. ~4.21!

For the termc̃(2l̃) we use~4.3! and ~4.20! to write

c̃~2l̃ !5Am1«l̃11O~«2!. ~4.22!

For the termc(2l) in the denominator it will suffice to write~4.11!
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c~2l!511O~l!511O~«2!, ~4.23!

but we must be more careful witht5c(z1);l.
By ~4.9!, we can write

c~x!512x1«c1~x!1o~«!c2~x!, ~4.24!

wherec1 and c2 are analytic on (2l̃21,(ll̃)21) and wherec1(0)50, c1(1)50, andc2(0)
50, c2(1)50.

From ~4.12!, using~4.20!, we may obtain an explicit expression forc1 . Indeed a straightfor-
ward, but lengthy calculation shows

c1~x!5~x21!S log~Am21!1
2l̃1

Am
D 1S 1

Am21
1xD logS 11~Am21!x

Am
D . ~4.25!

Now

c~2l!511l1«c1~2l!1o~«l!, ~4.26!

with

c1~2l!5c18~0!~2l!1O~l2!, ~4.27!

and hence

c~2l!511l2«lc18~0!1o~«l!. ~4.28!

Next z15c(2l)21/d and so

logz15
21

11«
logc~2l! ~4.29!

5
21

11«
log~11l2«lc18~0!1o~«l!! ~4.30!

52l1«lc18~0!1«l1o~«l!, ~4.31!

hence

z1512l1«l~11c18~0!!1o~«l!, ~4.32!

and thus

t5c~z1!512z11«c1~z1!1o~«!c2~z1! ~4.33!

512~12l1«l~11c18~0!!1o~«l!!

1«c1~12l1«l~11c18~0!!1o~«l!!1o~«l! ~4.34!

5l1«l~212c18~0!2c18~1!!1o~«l!. ~4.35!

Thus ~4.21! becomes

ld5~Am1«l̃11O~«2!!~l1«l~212c18~0!2c18~1!!1o~«l!!)/~m~11O~«2!!!,
~4.36!
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and thus

l«5
1

m
~Am1«l̃11O~«2!!~11«~212c18~0!2c18~1!!1o~«!! ~4.37!

5
1

Am
S 11«S 212c18~0!2c18~1!1

l̃1

Am
D D 1o~«!, ~4.38!

and so

l5~l«!1/«;S 1

Am
D 1/«

expS 212c18~0!2c18~1!1
l̃1

Am
D . ~4.39!

Differentiating ~4.25! and evaluating at 0 and 1 gives

c18~0!511
2l̃1

Am
1 log~Am21!2 logAm, ~4.40!

c18~1!511
2l̃1

Am
1 log~Am21!, ~4.41!

so that~4.39! becomes

l;S 1

Am
D 1/«

expS 232
3l̃1

Am
22 log~Am21!1 logAm D ~4.42!

5S 1

Am
D 1/«

m (112Am)/(4(Am21))

e3~Am21!1/2
. ~4.43!

This completes the proof.

V. DISCUSSION

In this paper we have successfully applied Herglotz function techniques to explore the a
totics of period doubling in asymmetric unimodal maps in the limit degreed→1. Our results show
that the symmetric (m51) and asymmetric cases have very different asymptotics.

It would certainly be of interest to explore other limits in the (m,d)-parameter space, fo
example thed→` limit, for fixed m.

In the symmetric case, the asymptotics asd→` are somewhat intriguing. Althoughl→1 as
d→`, the approach is nontrivial. Using a variety of techniques, various numerical calcula
have been performed,7–9 the most accurate being those recently obtained by Briggset al.,10 who
find a solution of thed5` equations witht`50.033 381 059 8(65), wheretd5ld.

Using computer-assisted techniques, Eckmann and Wittwer11 show there exists a solutio
with

t`P@0.033 380 8, 0.033 381 3#. ~5.1!

This ~and other bounds obtained in Ref. 11! has been used by Eckmann and Epstein12 to obtain
bounds on the unstable eigenvalue,d` , for period doubling atd5`. They prove that

d`P@29.5128, 29.957 112#. ~5.2!
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~In Ref. 10, Briggset al. estimate this as 29.576 303(61).! In Ref. 3 Epstein shows analyticall
that a solution of thed5` equation exists with

t`P@1/128, 1/5#. ~5.3!

For the asymmetric case we expect a scenario somewhat similar to that of Eckmann–Wit11

We hope to study to this limit using Herglotz function techniques in the near future.
It would also be interesting to consider a different asymptotic regime, namely that for larm.

This may give us some insight into the situation of asymmetric maps withdifferent left and right
degrees at the critical point. In this case numerical results13,14 indicate a loss of geometric scaling
Maps of this type were also used in the analysis of experiments on forced nonlinear oscilla15

A similar scenario is expected in the case of quasiperiodic orbits in circle maps. Indee
asymmetric case has already been considered in Refs. 16 and 17. See also Refs. 18 and 1
is needed, however, is a proof of the existence~and knowledge of properties of! a universal
period-two point, from which we expect asymptotic behavior may be calculated. It seems
that the Herglotz function approach will be fruitful here.

Asymptotics for the limitd→1 ~always in the symmetric case! have been previously studie
by several groups: Jonker and Rand,20 Ostlund et al.,21 Shraiman,22 Dixon and Kenny.23 The
d→` limit has also been considered: Delbourgo and Kenny,24 Hu et al.,25 Briggs et al.,10 Dixon
et al.26

The asymptotics of scaling on the boundary of golden mean Siegel discs has been s
numerically by Osbaldestin.27 Although the phenomenology seems identical to that in circle m
there is no sight yet of a means of tackling this problem analytically.
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The investigation into the Schwarz–Korteweg–de Vries
equation and the Schwarz derivative in „2¿1…
dimensions
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In this note, we shall introduce a new integrable equation and the Schwarz deriva-
tive in ~211! dimensions. First we show the existence of the Lax pair for an
equation which has the relation to the Schwarz–Korteweg–de Vries~SKdV! equa-
tion. Next we derive a new equation in~211! dimensions by using a well-known
higher-dimensional manner to the Lax pair for the SKdV equation. The~211!
dimensional Schwarz derivative is defined here. Finally we briefly discuss various
results which we have obtained about the new equation. ©2000 American Insti-
tute of Physics.@S0022-2488~00!03907-4#

It is well known that the Lax representation1 describes~111!-dimensional integrable equa
tions as follows. Consider two operatorsL andT which are called the Lax pair and given by

L5L02l, ~1!

T5]xL01T01] t , ~2!

with ]x[]/]x andl being a spectral parameter independent upont. Then the commutator

@L,T#50, ~3!

contains a nonlinear evolution equation for suitable chosenL andT. Equation~3! is called the Lax
equation. For example if we take

L05]x
22u, ~4!

T05 1
2 u]x2 1

4 ux , ~5!

then L0 and T0 satisfy the Lax Eq.~3! provided thatu satisfies the Korteweg–de Vries~KdV!
equation

ut1
3
2 uux1 1

4 uxxx50. ~6!

One can construct new~211!-dimensional equations by using the Calogero manner. That is,
can modify theT operator~2! for ~111!-dimensional basic equation to include another spa
dimension~z! as follows,2–7

T5]zL01T01] t , ~7!

whereL0 is associated with the basic equation. In the case of the KdV equation, we obta
Calogero–Bogoyavlenskii–Schiff~CBS! equation

a!Electronic mail: sph20063@se.ritsumei.ac.jp
b!Electronic mail: fpc30017@se.ritsumei.ac.jp
47470022-2488/2000/41(7)/4747/5/$17.00 © 2000 American Institute of Physics
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ut1uuz1
1
2 ux]x

21uz1
1
4 uxxz50, ~8!

from the Lax Eq.~3! by taking

L05]x
22u, ~9!

T05 1
2 ~]x

21uz!]z2
1
4 uz , ~10!

where]x
21f [* f dx.

In this note, we take

L05]x
21s

1

w
]x2

1

4

1

w22
1

2
s

wx

w2 , ~11!

T05
1

2
s

1

w
]x

22
1

2

1

w2 ]x2
1

8
s

1

w3 1
1

4

wx

w32
1

16
s

wx
2

w3 1
1

8
s

wxx

w2 , ~12!

with s[6 i , as a different Lax pair. The Lax Eq.~3! gives the following~111!-dimensional
equation

wt1
1

4
wxxx2

3

4

wxwxx

w
1

3

8

wx
3

w2 50. ~13!

By an integration with respect tox after the change of

w5fx , ~14!

Eq. ~13! is reduced to the Schwarz–Korteweg–de Vries~SKdV! equation

f t

fx
1S@f;x#50, ~15!

where

S@f;x#[S fxx

fx
D

x

2
1

2 S fxx

fx
D 2

~16!

is the Schwarz derivative off.8–13 Equation~15! is invariant under the Mo¨bius transformation

f°
a1bf

c1df
, ad2bcÞ0. ~17!

Now let us construct a new~211!-dimensional equation by using the above manner~7!. And
then we obtain a new equation in~211!-dimensions

wt1
1

4
wxxz2

1

2

wxwxz

w
2

1

4

wxxwz

w
1

1

2

wx
2wz

w2 2
1

8
wx]x

21S wx
2

w2D
z

50, ~18!

from the Lax Eq.~3! by taking

L05]x
21s

1

w
]x2

1

4

1

w22
1

2
s

wx

w2 , ~19!
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T05
1

2
s]x

21S 1

wD
z

]x
22

1

2

1

w
]x

21S 1

wD
z

]x1
1

8
s

wxz

w2 2
1

8
s

wxwz

w3

2
1

8
s

1

w2 ]x
21S 1

wD
z

1
1

4

wx

w2 ]x
21S 1

wD
z

1
1

16
s

1

w
]x

21S wx
2

w2D
z

. ~20!

It is easy to see that, for a similar computation in~111!-dimensions, Eq.~18! is readily expressed
as

f t

fx
1S211@f;x#50, ~21!

wheref denotes relation~14! and

S211@f;x#[S fxx

fx
D

z

2
1

2
]x

21S fxx

fx
D

z

2

. ~22!

The aboveS211@f;x# satisfies the following relation:

~S211@f;x# !x5~S@f;x# !z . ~23!

The invariance of Eq.~21! in the Möbius transformation~17! is immediate from the relation~23!.
And settingz5x reduces Eq.~18! or ~21! to the Schwarz–Korteweg–de Vries~SKdV! Eq. ~13! or
~15!, and S211@f;x# to S@f;x#, respectively. Therefore we shall call Eq.~21! the ~211!-
dimensional SKdV equation, andS211@f;x# the ~211!-dimensional Schwarz derivative off.

Now we check whether the~211!-dimensional SKdV Eq.~21! passes the Painleve´ test in the
sense of the Weiss–Tabor–Carnevale~WTC! method8,14,15 or not. In order to use the WTC
method, we rewrite Eq.~21! as follows

U2Vx2UUxV1 1
4 U2Uxxz2

1
4 UUxxUz2

3
4 UUxUxz1

3
4 Ux

2Uz2
1
4 U4Uz50, ~24!

Ut5Vx , ~25!

by the change of

f5exp~F!, ~26!

and using further transformations

Fx5U, F t5V. ~27!

The solutions to Eqs.~24! and ~25! have the form

U;U0ga, V;V0gb. ~28!

Hereg is single valued about an arbitrary movable singular manifold. By using the leading
analysis, we obtain

a5b521, ~29!

as leading orders with

U0
25gx

2, U0g t5V0gx . ~30!

And thus on substituting
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U5(
j 50

U jg
j 21, V5(

j 50
Vjg

j 21, ~31!

into Eqs.~24! and ~25!, we get the resonance

j 521,1,1,2. ~32!

The resonancej 521 in ~32! corresponds to the arbitrary singularity manifoldg. We used
MATHEMATICA to handle the calculation for the existence of arbitrary functions correspondin
the resonances exceptj 521. We find thatU1 , V1 , andU2 are arbitrary for Eqs.~24! and~25!.
Thus the general solutionsU andV to Eqs.~24! and~25! admit the sufficient number of arbitrar
functions. Therefore the~211!-dimensional SKdV equation passes the Painleve´ test.

In conclusion, we have proposed the SKdV equation in~211!-dimensions by exhibiting the
corresponding Lax pair. The Schwarz derivative in~211!-dimensions has also been define
Furthermore the~211!-dimensional SKdV equation has checked the invariance in the Mo¨bius
transformation and the Painleve´ test. Finally let us note two following results. First it is wide
known that the KdV Eq.~6! and the SKdV Eq.~15! are related by the form10,13

u5
1

2
S@f;x#5

1

2 S fxx

fx
D

x

2
1

4 S fxx

fx
D 2

. ~33!

As in ~111!-dimensions, the CBS Eq.~8! and the~211!-dimensional SKdV Eq.~21! are related
by the form~33!. Figure 1 means the relations above. There is one point that we must not ig
It is well-known that one can get the Lax pair for the modified KdV~mKdV! equation, changing
wave functionc in the linear problem for the KdV equation

LKdVc5~]x
22u!c5lc. ~34!

Namely, setting

c°esc, ~35!

s52 1
2 ]x

21n, ~36!

gives theL operator for the mKdV equation

LmKdVc5~]x
22n]x!c5lc, ~37!

and the Miura transformation

u5 1
4 n22 1

2 nx , ~38!

from ~34! ~see, e.g., p. 280 in Ref. 16!. However we have not found out the variables from theL
operator~4! for the KdV equation into~11! for the SKdV equation, even though there exists

FIG. 1. Full arrows mean the relation~33!. Broken arrows mean the modification~7! of T operators for the search of th
~211!-dimensional case.
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transformation~33! between equations themselves. On the other hand, we have constru
~211!-dimensional equation in another higher-dimensional extension17,18

Lc5S ]x
21s

1

w
]x2

1

4

1

w22
1

2
s

wx

w22]yDc50. ~39!

The equation obtained is transformed the Kadomtsev–Petviashvili~KP! equation by using

w52
s

2

1

]y
21ux

, ~40!

in place of~33!. And then, differently from~11!, we have found out the variable

s5
s

2

1

w
, ~41!

such that theL operator for the KP equation,

LKPc5~]x
22u2]y!c50, ~42!

is transformed into~39! by changing wave functionc in the linear problem. The reason against t
difference above remains still open.

The second is that by applying Lou’s sense,13 we can extend Eq.~21! to the form

f t

fx
1S211@f;x#1CS fx

f t
1S211@f;t# D50, ~43!

with C being a constant. Equation~43! is obviously invariant under the Mo¨bius transformation
~17! and passes the Painleve´ test similarly.
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Anisotropic charged fluid spheres in D space–time
dimensions
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The equations describing the hydrostatic equilibrium~mass continuity and
Tolman–Oppenheimer–Volkoff! of a static anisotropic general relativistic fluid
sphere are obtained inD (D>4) space–time dimensions in the presence of a
cosmological constant. The formalism thus developed is used to study homoge-
neous anisotropic constant density charged fluid spheres and homogeneous aniso-
tropic charged spheres with a neutral isotropic core in higher dimensions. For these
configurations and with a particular choice of the proper charge density a complete
solution of the coupled Einstein–Maxwell equations is obtained. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!04807-6#

I. INTRODUCTION

The study of the static anisotropic fluid spheres is important for relativistic astrophysics
theoretical investigations of Ruderman1 about more realistic stellar models show that the ste
matter may be anisotropic at least in certain very high density ranges (r.1015g/cm3), where the
nuclear interactions must be treated relativistically. According to these views in such ma
stellar objects the radial pressure may not be equal to the tangential one. No celestial b
composed of purely perfect fluid. Anisotropy in fluid pressure could be introduced by the
tence of a solid core, by the presence of type 3A superfluid or by other physical phenomen
starting point in the study of fluid spheres is represented by the interior Schwarzschild so
from which all problems involving spherical symmetry can be modelled. Bowers and Liang2 have
investigated the possible importance of locally anisotropic equations of state for relativistic
spheres by generalizing the equations of hydrostatic equilibrium to include the effects of
anisotropy. Their study shows that anisotropy may have non-negligible effects on such para
as maximum equilibrium mass and surface red-shift. Consenza, Herrera, Esculpi, and W3

Bayin,4 Krori, Bargohain and Devi,5 Maharaj and Maartens6 have obtained different exact solu
tions of the Einstein field equations describing the interior gravitational field of anisotropic
spheres. Bohra and Mehra7 and Omote and Sato8 have studied charged spheres in the presenc
matter with mass-charge and radius charge relations emerging from the static solution. S
other anisotropic fluid sphere configurations have been analyzed using various ansatz.9–12 Ana-
lytical solutions of the Einstein–Maxwell equations for various charged static spherically
metric configurations~both isotropic and anisotropic! have been obtained in the papers.13–19

Lately there has been an increasing interest in the study of compact astrophysical objecD
space–time dimensions, prior to any compactification. Hence Krori, Borgohain, and Das20 have
extended the interior Schwarzschild solution with vanishing normal pressure of Florides21 to D
space–time dimensions in the presence of a cosmological constant. Wolf has analyze
spheres22 and charged fluid spheres23 in D space–time dimensions with the condition of vanishi
normal pressure. The Tolman–Oppenheimer–Volkoff~TOV! equation has been generalized toD

a!Electronic mail: tcharko@hkusua.hku.hk
b!Also at: Department of Physics, The Hong Kong Univeristy of Science and Technology, Clear Water Bay, Hong

People’s Republic of China; Electronic mail: mkmak@vtc.edu.hk
47520022-2488/2000/41(7)/4752/13/$17.00 © 2000 American Institute of Physics
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(D>4) space–time dimensions with isotropic fluid pressures and the model of the homoge
star has been solved in the paper24 while charged isotropic fluidD-dimensional spheres in th
presence of a cosmological constant have been considered in the paper.25

The purpose of the present paper is to obtain the equations which describe the hydr
equilibrium of an anisotropic, spherically symmetric, static fluid configuration inD space–time
dimensions,D>4 and in the presence of a cosmological constant~generalized mass-continuit
and TOV equations!. The formalism thus developed is used to study the homogeneous ch
fluid sphere inD (D>4) space–time dimensions with a particular choice of the proper ch
density and with anisotropy factor proportional to the electric field. A generalization of the m
in the case of a homogeneous anisotropic chargedD-dimensional sphere with neutral core is al
developed. Exact solutions of the TOV and gravitational field equations are obtained and
charge and radius-charge relations are deduced in both cases.

The present paper is organized as follows: In Sec. II, using the Einstein gravitationa
equations inD space–time dimensions we deduce the generalized mass-continuity and
equations for a static anisotropic fluid sphere. A nondimensional form of these equations
obtained. The hydrostatic equilibrium equations for an anisotropic charged fluid sphere
constant mass density and with a particular choice of the proper charge are formulated in S
and their exact solutions are found in Sec. IV. The case of a homogeneousD-dimensional homo-
geneous charged sphere with neutral core is considered in Sec. V. The results are summa
Sec. VI.

II. GENERALIZED TOLMAN–OPPENHEIMER–VOLKOFF EQUATION IN D SPACE–TIME
DIMENSIONS

In D (D>4) space–time dimensions the spherically symmetric line element takes the fo23

ds25en(r )~dx0!22el(r )dr22r 2du1
22r 2 sin2 u1du2

22r 2 sin2 u1 sin2 u2du3
2

2¯2r 2 sin2 u1¯sin2 uD23dw2. ~1!

Here,

x05ct, x15r , x25u1 , x35u2 ,..., xD225uD23 , xD215w

~r is the radial coordinate inD space–time dimensions! with domain 0<r ,`, 0<u i<p( i
51, . . . ,D23), 0<w<2p. The Einstein gravitational field equations in the presence of a
mological constant are

Ri
k2

1

2
Rd i

k5
8pG

c4 Ti
k1

8pG

c4 Ld i
k . ~2!

For a spherically symmetric anisotropic matter distribution the components of the en
momentum tensor are given by

Ti
k5~rc21p'!uiu

k2p'd i
k1~pr2p'!x ix

k, ~3!

whereui is theD-dimensional velocity,ui5d0
i e2 (n/2), x i is the unit spacelike vector in the radia

direction,x i5d1
i e2 (l/2), r is the energy density,pr is the pressure in the direction ofx i ~normal

pressure!, andp' is the pressure on the (D22) space orthogonal tox i ~transversal pressure!. In
the present paper we supposeprÞp' . The casepr5p' corresponds to the isotropic fluid spher
D5p'2pr is a measure of the anisotropy and is called the anisotropy factor.15

For the metric~1!, the gravitational field equations~2! become

~D22!l8e2l

2r
2

~D22!~D23!~e2l21!

2r 2 5
8pG

c2 r1
8pG

c4 L, ~4!
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~D22!n8e2l

2r
1

~D22!~D23!~e2l21!

2r 2 5
8pG

c4 pr2
8pG

c4 L, ~5!

e2lS n9

2
1

n82

4
2

n8l8

4
1

~D22!~n82l8!

4r D1
~D23!~D24!~e2l21!

2r 2 5
8pG

c4 p'2
8pG

c4 L,

~6!

where we have denoted85 d/dr. From the Bianchi identitiesTi ;k
k 50 it follows

n852
2pr8

rc21pr
1

2~D22!~p'2pr !

~rc21pr !r
. ~7!

From Eq.~4! we immediately obtain

d~r D23e2l!

dr
5~D23!r D242

8pG

c2

2

D22
rr D222

16pGL

~D22!c4 r D22 ~8!

or

e2l512
8pG

c2

2

D22

1

r D23 E
0

r

r~r !r D22dr2
16pGL

~D21!~D22!c4 r 2 ~9!

and

e2l512
2GF~D !M ~r !

r D23 2
16pGL

~D21!~D22!c4 r 2, ~10!

where we have denoted

F~D !5
1

~D22!2D25 and M ~r !5
1

c2 E
0

r

p2D22r~r !r D22dr. ~11!

Using Eqs.~7!, ~9!, and~11! in the gravitational field equation~5! we obtain the generalized
TOV equation in arbitraryD space–time dimensions, describing the equilibrium of an anisotr
spherically symmetric configuration in the presence of a cosmological constant,

dpr

dr
52

G~rc21pr !F 8p

~D22!c4 S pr2
2L

D21D r D211~D23!F~D !M ~r !G
r D22S 12

2GF~D !M ~r !

r D23 2
16pGL

~D21!~D22!c4 r 2D 1
~D22!~p'2pr !

r
.

~12!

A dimensionless form of the generalized TOV equation~12! and of the mass continuity
equation,

dM

dr
5

1

c2 2D22pr~r !r D22 ~13!

can be obtained if we introduce a dimensionless independent variableh and the dimensionles
functions«(h), Pr(h), P'(h) by means of the transformations,

r 5ah, r5rc«, pr5rcc
2Pr , p'5rcc

2P' , M5M* m. ~14!
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Herea is a scale factor~a characteristic length!, rc andM* being a characteristic density an
mass, respectively.

With the use of~14! in Eqs.~12! and~13! we obtain the following dimensionless forms of th
mass continuity and TOV equations:

dm

dh
5hD22«, ~15!

dPr

dh
52

~«1Pr !@~Pr2m!hD211~D23!m#

hD22S 12
2m

hD23 2mh2D 1
~D22!~P'2Pr !

h
, ~16!

where we have taken

M* 5
1

c2 p2D22rca
D21, a25

~D22!c2

8pGrc
, m5

2L

~D21!rcc
2 . ~17!

If the normal and tangential pressuresPr and P' are independent variables then the TO
equation~16! is, from mathematical point of view, a Riccati-type equation of the form26

dPr

dh
5A~h!Pr

21B~h!Pr1C~h! ~18!

with

A~h!52
h

12
2m

hD23 2mh2

, B~h!52
~D23!m1~«2m!hD21

hD22S 12
2m

hD23 2mh2D 2
D22

h

and

C~h!52
@~D23!m2mhD21#«

hD22S 12
2m

hD23 2mh2D 1
~D22!P'

h
.

Equations~15!–~16! form a system of two coupled differential equations in four variablesm,
«, Pr , and P' . To obtain a general solution of the system we have to specify two physi
reasonable functional relations among the four variables. Usually suitable forms of« and Pr are
chosen.

The system~12!–~13! or ~15!–~16! must be integrated with some boundary conditions. Th
conditions depend on the explicit physical meaning of the energy densityr, normal and tangentia
pressurespr andp' and they have to be specified in every given physical situation.

III. HOMOGENEOUS ANISOTROPIC STATIC CHARGED FLUID SPHERES IN D
SPACE–TIME DIMENSIONS

The Lagrangian of the electromagnetic field inD space–time dimensions is given by23,27

L52
1

K
FikFik2

1

c
j iAi , ~19!

where j i , i 50, . . . ,D21 is the D dimensional current density that for nonconducting flu
becomesj i5reu

i ~with re the proper charge density!, Ai is theD-dimensional potential, andK is
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a constant. The electromagnetic field tensorFik is defined in terms of the potentialAi through
Fik5(]Ak /]xi) 2 (]Ai /]xk). The field tensorFik satisfies the Maxwell equations

Fik; l1Fkl; i1Fli ;k50. ~20!

In the rest frame of reference we adopt the gaugeAi(F(r ),0, . . . ,0). Varying ~19! with
respect toAi gives theD-dimensional Maxwell equations23

1

A2g

]

]xk ~A2gFik!52
K

4c
j i . ~21!

In D (D>4) space-time dimensions the energy-momentum tensor of the electromagneti
from ~19! can be represented in the form,

Ti
k52

4

K
Fil F

lk1
1

K
FlmFlmd i

k . ~22!

For a static charged fluid sphere the current densityj i has, forr ,R ~R is the radius of the
sphere!, only one component,

j 05re

dx0

ds
5ree

2 ~n/2!. ~23!

In the following we shall consider static charged spherically symmetric configurations
acterized by a particular form of the proper charge density obtained by setting

re5r0e2 ~l/2!, ~24!

and we shall suppose thatr0 is a constant.
The electromagnetic field has only one nonzero componentF01 and the Maxwell equation

~21! gives

F0152
e2 @~n1l!/2#

r D22 Q~r !, ~25!

where we have denoted

Q~r !5
K

4 E
0

r

r0r D22dr5
Kr0

4~D21!
r D21. ~26!

The electric field intensityE is defined as usual byE252F01F
015Q2(r )/r 2(D22)

5 K2r0
2/16(D21)2 r 2.

In order thatQ represents the charge within the (D21) dimensional sphere we have23

K5
4~D21!p~D21!/2

S D21

2 D !

~27!

~K516p for D54!.
For the components of the energy momentum tensor of theD dimensional massive charge

anisotropic fluid sphere with proper charge density given by Eq.~24! we find, by using Eqs.~26!
and ~22!,
                                                                                                                



es-

fluid

lectric
otropy

ic field.

n
,

4757J. Math. Phys., Vol. 41, No. 7, July 2000 Higher dimensional anisotropic charged fluid stars

                    
T0
05rc25rmc21

2

K

Q2~r !

r 2(D22) , T1
152pr52pmr1

2

K

Q2~r !

r 2(D22) , ~28!

T2
25 ¯ 5TD21

D2152p'52pm'2
2

K

Q2~r !

r 2(D22) , ~29!

whererm is the mass density andpmr and pm' are the normal and transversal hydrostatic pr
sures of the matter fluid, respectively.

In the following, we shall restrict our analysis only to the case of the homogeneous
sphere, that is we shall suppose that the energy densityrm of the matter is constant.

We shall introduce now the transformations~14! ~with rc5rm5constant! in the form,

r 5ah, r5rm«, pmr5rmc2Pmr , pm'5rmc2Pm' , pr5rmc2Pr , p'5rmc2P' ,
~30!

which give

«511
a

2~D21!
h2, Pr5Pmr2

a

2~D21!
h2, P'5Pm'1

a

2~D21!
h2, ~31!

where we have denoted

a5
~D22!

~D21!

Kr0
2

32pGrm
2 .

By supposing that the dynamical anisotropy in the fluid is due to the presence of the e
field, it is reasonable to prescribe the energy-momentum tensor of the matter and the anis
factor such that the tangential and radial matter pressures are linearly related with the electr
Therefore we assume that

D5pm'2pmr5a8E2, ~32!

with a8 a constant. Hence in the dimensionless variables introduced above by Eqs.~30! we have

Pm'2Pmr5
aa8

4~D21!
h2. ~33!

By using Eqs.~33! and~31!, Eqs.~15!–~16! which describe the hydrostatic equilibrium of a
anisotropic homogeneous static charged fluid sphere inD space–time dimensions take the form

dm

dh
5hD22F11

a

2~D21!
h2G , ~34!

dPmr

dh
52

~11Pmr!FPmr2m1
D23

D21
2

2a

D221
h2Gh

12S 2

D21
1m Dh22

a

D221
h4

1bh, ~35!

where we have denoted

b5
a

D21 F11~D22!S 11
a8

4 D G . ~36!

For r .R from the Maxwell equations we obtain
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F0152
Q

r D22 , ~37!

and, consequently,

T0
05T1

15
Q2

r 2(D22) , ~38!

whereQ5constant is the charge included within radiusR.
In this case the Einstein equations~4!–~6! give (n1l50),

en5e2l512
2GMtF~D !

c2

1

r D23 1
32pGQ2

~D22!~D23!c4

1

r 2(D23) 2
16pGL

~D21!~D22!c4 r 2, ~39!

whereMt is the total mass of the charged fluid sphere. Equation~39! represents theD-dimensional
generalization of the Reissner–Nordstrom–de Sitter solution for a central chargeQ.

In order to represent a physically acceptable anisotropic fluid sphere the TOV equ
~34!–~35! must be integrated with the boundary conditions,

m~0!50, ~40!

Pmr~0!5Pc . ~41!

Equation~41! assumes that the radial matter pressurePmr remains finite at the center of th
sphere. We shall also require vanishing of the radial pressure at the boundary

Pmr~hS!50, ~42!

wherehs5R/a is the value of the variableh at the surface of the sphere. In the absence of sur
concentration of charge atr 5R, we require the continuity of the field tensorFik . From the
continuity of the radial electric field we obtain the condition,

E~R!5
Q

R2 . ~43!

Finally, we have to match the interior line element~1! with the D-dimensional Reissner–
Nordstrom–de Sitter metric across the boundary, requiring the continuity of the gravita
potentialsen andel at r 5R.

IV. GENERAL SOLUTION OF THE GRAVITATIONAL FIELD EQUATIONS FOR A
HOMOGENEOUS ANISOTROPIC CHARGED FLUID SPHERE

With the use of the boundary condition~40! the mass-continuity Eq.~34! can be immediately
integrated to give

m~h!5
hD21

D21 F11
a

2~D11!
h2G . ~44!

In order to solve the TOV equation~35! we shall introduce a new variable,

y5
h2

2
1

~D221!g

4a
5

h2

2
1yc , yP@yc ,yS#, ~45!

where we have denoted
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g5
2

D21
1m

and the values of the new variabley at the center of theD-dimensional sphere and at the surfa
are

yc5
~D221!g

4a

and

yS5
hS

2

2
1

~D221!g

4a
,

respectively. We also denote

d25

S g1
1

yc
D yc

2

g
, P0511Pmr . ~46!

Hence Eq.~35! becomes

dP0

dy
52

P0S P02
g

yc
yD

g

yc
~d22y2!

1b, ~47!

and must be integrated with the boundary condition,

P0~yc!511Pc . ~48!

Equation~47! is a Riccati-type equation. After trying many forms ofP0 , we have obtained
two particular solutions of the form,

P01,25
g

yc
~y6b~d22y2!1/2!, ~49!

whereb5A(byc2g)/g. By means of the standard transformation,

w5
P02P01

P02P02
, ~50!

the Riccati equation~47! is transformed into a first order linear differential equation of the fo

dw

dy
1

2b

~d22y2!1/2w50 ~51!

with the general solution given by

w~y!5C expF22b sin21S y

d D G , ~52!
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with C.0 a constant of integration. The constant of integration is determined from the bou
condition Pmr(yc)511P0(yc), thus leading to the following expression of the normal mat
pressurePmr :

Pmr~y!5
g

yc
Fy2b~d22y2!1/2cotanhS F2b sin21S y

d D D G21, ~53!

where we have introduced a new constant denoted by

F5
1

2
lnU S 211g1Abyc2g

yc
2PcD expF2Abyc2g

yc
sin21SA gyc

gyc11D G
211g2Abyc2g

yc
2Pc

U .

The transversal matter pressure of the chargedD-dimensional fluid sphere follows from Eq.~33!
and is given by

Pm'~y!5
g

yc
Fy2b~d22y2!1/2cotanhS F2b sin21S y

d D D G211
aa8

2~D21!
~y2yc!. ~54!

Equations~44!, ~53!, ~54! represent the exact general solution of the equations which des
the hydrostatic equilibrium of a charged, homogeneous fluid sphere inD space–time dimensions

From Eq.~7! a straightforward integration yields

en(y)5
C0F~y!

~11Pmr~y!!2 , ~55!

where we have denoted

F~y!5expF 2a

D21 F11~D22!S a8

4
11D G E dy

11Pmr~y!G
andC0 is a non-negative constant of integration.

In the variabley we can represent the variation of the metric tensor componentel in the
interior of the sphere in the simple form,

el(y)5
yc

g

1

d22y2 . ~56!

The radiusR of the static anisotropic chargedD-dimensional fluid configuration is determine
from the conditionPmr(R)50 and can be represented as

R5A~gyc11!yc

g
sinS gvS

Abyc2g
D , ~57!

wherevs is a solution of the algebraic equation,

gd

yc
sin~vS!5

gbd

yc
cos~vS!cotanh~F2vS!11. ~58!

In order to match the above metric smoothly on the boundary surfacer 5R with the Reissner–
Nordstrom–de Sitter metric we have to require the continuity of the gravitational potential a
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that surface. Matching Eq.~56! with the exterior Reissner–Nordstrom–de Sitter gravitatio
metric tensor component~39! at the boundaryy5yS5(hS

2/2) 1yc gives the value of the integra
tion constantC0 in the form

C05
g~d22yS

2!

ycF~yS!
. ~59!

From Eq.~26! we obtain the total charge of the charged fluid configuration as

Q5
Kr0RD21

4~D21!
, ~60!

while the total massMt of the sphere is given by

Mt5
1

D21 S R

a D DS a

R
1

a

2~D11!

R

a D . ~61!

Equation~61! leads to the following relation relating the total mass of a homogeneous a
tropic fluid sphere with anisotropy factor proportional to the electric field to its total charge

Mt5
Q

aD F4~D21!a

Kr0
1

a

2a~D221! S 4~D21!

Kr0
D ~D11!/~D21!

Q2/~D21!G . ~62!

For the present solution the electric field is also continuous at the boundary of the sph

V. HOMOGENEOUS ANISOTROPIC CHARGED FLUID SPHERES WITH NEUTRAL CORE

In the previous section we have analyzed a homogeneous anisotropicD-dimensional charged
fluid sphere with the electric charge distributed continuously throughout the sphere. Fo
configuration and for a particular choice of the proper electric charge density the general so
of the Einstein–Maxwell equations has been obtained. In the present section we shall gen
the previous model by considering a spherical distribution of an anisotropic cha
D-dimensional fluid, with proper electric charge density given again by Eq.~24!, which surrounds
a neutral core of isotropic homogeneous fluid. The energy density of the matter is suppose
a constant in the whole sphere,rm5constant and for simplicity we suppose that it has the sa
value in both neutral and charged regions. The radius of the core and of the outer surface
sphere arer I and r S , respectively.

For the homogeneous neutral core~region I! the massmI , isotropic matter pressurePmI

(Pr5P'5Pm), metric functionseI
2l andeI

n can be obtained by integrating the mass-continu
TOV and gravitational field equations for a homogeneous isotropic sphere in the presenc
cosmological constant and are given in the dimensionless variables~14! by

mI~h!5
hD21

D21
, ~63!

PmI~h!5
~12g!~11Pc!2@~12g!1Pc#A12gh2

@~12g!1Pc#A12gh22~11Pc!
, ~64!

eI
2l(h)512

2mI

hD23 2mh2, ~65!

eI
n(h)5CI@~11Pc2g!A12gh22~11Pc!#

2. ~66!
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CI is a constant of integration and the boundary conditionsmI(0)50 andPmI(0)5Pc have been
used.

In the second region~II !, which contains an anisotropic chargedD-dimensional homogeneou
fluid distribution restricted in the domainh I<h<hs of the dimensionless space variable t
general solution of the mass continuity, TOV and gravitational field equations are

mII~h!5
hD21

D21 F11
a

2~D11!
h2G2

h I
D21

D21 F11
a

2~D11!
h I

2G . ~67!

PmrII~y!5
g

yc
FCIIe

22b sin21(y/d)~y2bAd22y2!2~y1bAd22y2!

CIIe
22b sin21(y/d)21

G21, ~68!

eII
2l512h2F 2

D21 S 11
a

2~D11!
h2D1mG1

2h I
2

D21 S 11
a

2~D11!
h I

2D , ~69!

eII
n(y)5

C0IIF~y!

~11PmrII~y!!2 . ~70!

The total charge contained in the second region is given by

Q5
Kr0

4~D21!
~RD212r I

D21!, ~71!

whereR is the total radius of the sphere.
In the third region~III !, r .R, the geometry of theD-dimensional spherically symmetric stat

space–time is described by the Reissner–Nordstrom–de Sitter solution of the gravitationa
equations,

eIII
n 5eIII

2l512
2ms

hD23 1
a~hS

D212h I
D21!2

~D22!~D23!h2(D23) 2mh2. ~72!

Matching the radial pressure with the matter pressure of the neutral core atr 5h I , PmI(h I)
5PmrII(h I) leads to the expressions of the constantCII and of the complete form of the radia
pressure given by

PmrII~y!5
g

yc
Fy2b~d22y2!1/2cotanhS F II2b sin21S y

d D D G21, ~73!

where we denoted the newly introduced constants byyI5h I
2/21yc and

F II5b sin21S yI

d D1
1

2
lnU g

yc
~yI1bAd22yI

2!212
~12g!~11Pc!2~11Pc2g!A12gh I

2

~11Pc2g!A12gh I
22~11Pc!

g

yc
~yI2bAd22yI

2!212
~12g!~11Pc!2~11Pc2g!A12gh I

2

~11Pc2g!A12gh I
22~11Pc!

U .

The radius of the stellar configuration is obtained from the condition of the vanishing r
pressure at the outer surface of the sphere, that is, by solving the algebraic equationPmrII(yS)
50, and can again be represented in the following parametrical form:

R5A~gyc11!yc

g
sinS gvS

Abyc2g
D , ~74!
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wherevS is a solution of the algebraic equation,

gd

yc
sin~vS!5

gbd

yc
cos~vS!cotanh~F2vS!11. ~75!

By applying the condition of continuity of the metric functionen at the boundariesr 5h and
r 5R, eI

n(h I)5eII
n (h I) and eII

n (hS)5eIII
n (hS) we obtain the expressions of the constantsCI and

C0II ,

CI5
g

yc

~d22yS
2!F~yS!

@~11Pc2g!A12gh I
22~11Pc!#

2~11PmrII~yI!!
, ~76!

C0II5
g~d22yS

2!F~yS!

yc
. ~77!

The continuity of the metric tensor componentel and of the radial electric fieldE across the
two boundaries separating the neutral core and the charged region and the outer surface
sphere from the vacuum is also satisfied by the present solutions.

VI. DISCUSSIONS AND FINAL REMARKS

In the present paper we have obtained inD space–time dimensions a complete solution fo
homogeneous anisotropic charged fluid sphere, whose proper charge density is represe
re5r0e2 (l/2), wherer0 is a constant and for an anisotropic charged fluid sphere with a ne
core. The obtained solutions, corresponding to this particular functional form of the charge d
are nonsingular throughout the sphere. We have not discussed the stability of such sphere
would most likely be unstable since the electrostatic repulsion would tend to destabilize it.

From Eqs.~54! and~68! it follows that the variabley must satisfy the conditiony,d, for all
y. Particularly, fory5yS , with yS the value ofy at the surface of the sphere, we obtain

hS,~2yc!
1/2F S 11

1

gyc
D 1/2

21G1/2

5hmax. ~78!

Hence,hmax gives an upper limit of the radius of the charged fluid sphere with proper ch
density given by Eq.~24! as a function of the values of the cosmological constant and of
electrical charge. Similarly, from Eq.~44! we obtain for the total mass of the charged sphere

ms<
hmax

D21

~D21! F11
a

2~D11!
hmax

2 G5mmax. ~79!

Thereforemmax is the upper limit of the total mass of the charged fluid sphere correspon
to the particular charge density~24!.

The results obtained in the present paper essentially depend on the functional form
proper charge density given by Eq.~24!. This form has been chosen mainly for mathemati
convenience, in order to provide an exact closed form solution of the gravitational field equa
Other, physically better motivated charge density profiles, could lead to different mass and
distributions inside the higher dimensional charged fluid sphere and, consequently, to di
results on the maximum allowable mass and radius of this type of general relativistic objec

An interesting question is the possibility of observing such higher dimensional charged
tivistic objects in an astrophysical setting. The observation ofg-ray bursts prompted investigator
to suggest that there might be a relation between the strong-coupling phase of QED a
detectedg-ray bursts. The presence of certain anomalies in the spectrum ofg-ray bursts led some
scientists to speculate that these very violent cosmic events are emissions from charged ob
more than four space–time dimensions.28 On the other hand compact stellar objects formed fr
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a mixture of quarks and gluons are also supposed to form at the final stages of stellar evo
The quark-gluon plasma could exist at sufficiently high densities as a result of the gravita
collapse. In the case of neutron stars a phase transition of neutron matter to quark matter
temperature or temperatures small compared to degeneracy temperature allows the exis
hybrid stars, i.e., stars having a quark core and a crust of neutron matter with appropriate p
balancing at the interface. In fact, quark matter with nonzero electrically charged consti
rather than neutron matter could hold the large magnetic field of the pulsars29 and hence it is
possible that for strange-matter made stars the effects of the nonzero electrical charge be
tant.
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A kinematic method to obtain conformal factors
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Radial conformal motions are considered in conformally flat space–times and their
properties are used to obtain conformal factors. The geodesic case leads directly to
the conformal factor of Robertson–Walker universes. General cases admitting ho-
mogeneous expansion or orthogonal hypersurfaces of constant curvature are ana-
lyzed separately. When the two conditions above are considered together a subfam-
ily of the Stephani perfect fluid solutions, with acceleration Fermi–Walker
propagated along the flow of the fluid, follows. The corresponding conformal fac-
tors are calculated and contrasted with those associated with Robertson–Walker
space–times. ©2000 American Institute of Physics.@S0022-2488~00!03007-3#

I. INTRODUCTION

Many topics in classical and quantum gravity are set up considering conformally re
metrics. The specification of a spacelike geometry in the initial-value formulation of Ein
equations, the problem of quantization in curved space–times, the Weyl unified theory of g
and electromagnetism, the analysis of Robertson–Walker metrics in conformally flat coordi
the avoidance of singularities in relativistic and quantum cosmology are a sample of exa
where conformally equivalent geometries could play an essential role, both from kinemati
dynamic points of view.

Understanding the form of the conformal factor for particular conformally flat space–t
may help us to classify them and to know how they deviate from the flat metric. An incip
attempt to classify conformally flat spaces was made by Levine;1 he started off by considering
some subalgebras of the conformal algebra in order to determine the conformal factor of a
admitting the associated group of isometries.

Another possible way to obtain conformal factors is to impose the existence of certain v
fields with particular kinematic properties, which restrict the form of the conformal factor
particular, we can consider a timelike conformal Killing vector field, which is characterized b
kinematic properties of its unit vectoru; it is shear-free and its acceleration is the projection~on
the three-spaces orthogonal tou! of the gradient of a function whose derivative alongu is a third
of its expansion.2 In fact, this characterization is conformal invariant, that is, it is the same
conformal class of metrics. However, metrics within this class differ in the values correspo
to other kinematic properties ofu ~acceleration, expansion, etc.! and we can use this fact t
determine conformal factors.

For example, it is known that Robertson–Walker space–times are conformally flat, so
metricg can be locally expressed as proportional to the Minkowski metrich. In fact, there always
exist coordinate systems (t,r ,u,w) so thath5diag(21,1,r 2,r 2 sin2 u) and, depending on the cur
vature indexk of the universe, one hasg5 f (t)h if k50, g5 f (u)h if k521 andg5t22f (t/1
1u)h if k51 with u5r 22t2 and f as an arbitrary~positive! function of its respective argumen
This result was obtained by Infeld and Schild3 in their work on kinematic cosmology and was lat
considered by Tauber4 to analyze expanding universes in these~conformally flat! coordinates.

a!Electronic mail: alicia.herrero@uv.es
b!Electronic mail: antonio.morales@uv.es
47650022-2488/2000/41(7)/4765/12/$17.00 © 2000 American Institute of Physics
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Could these metric expressions be deduced from the existence of a timelike congruenc
particular kinematic properties?

The cosmological observer is associated with a geodesic conformal Killing field adm
orthogonal hypersurfaces. The above (t,r ,u,w) spherical coordinates could be used to express
conformal motion, whose integral curves remain on the$t,r %-surfaces, and their components a
independent of the angular coordinates (u,w). Then, the cosmological observer defines a geod
conformal motion which isradial. Therefore, it is natural to wonder whether the existence o
radial conformal motion with certain kinematic properties can characterize the Robertson–W
metrics as well as other generalized nonhomogeneous conformally flat cosmological mod
fact, Robertson–Walker universes are those conformally flat space–times which admit a ge
timelike radial conformal motion, as we show in this work. Other kinematic properties over
radial conformal motions~nongeodesic with homogeneous expansion or admitting homogen
orthogonal three-spaces! lead to a characterization of generalized conformally flat cosmologi

In Sec. II, we obtain the general form of a radial conformal Killing vector field~RCKF! and
study the first order kinematic properties for the timelike ones. The geodesic case is consid
Sec. III obtaining the aforementioned characterization of Robertson–Walker metrics. In Se
we generalize this kinematic procedure to a RCKF having homogeneous expansion; the
vanishing expansion~that corresponds to Killing vectors! is also considered, which leads to th
conformal factor of the corresponding static space–times. Finally, RCKF with orthogonal su
of constant curvature are considered in Sec. V and the special case of adding homog
expansion is analyzed confronting the emerging conformal factor to the Robertson–Walke
Some of these results have been communicated, without proof, in the E.R.E., annual S
relativity meeting.5

II. RADIAL CONFORMAL MOTIONS IN CONFORMALLY FLAT SPACE–TIMES

A conformally flat space–time admits coordinates for which the metric has the local fog
5F2h, with F as a function of the coordinates (F2 is calledconformal factor! and h the flat
metric. In spherical coordinates it results in

g5F2~ t,r ,u,w!@2dt^ dt1dr ^ dr1r 2~du ^ du1sin2 u dw ^ dw!#.

Let us consider a field of radial directions in a conformally flat space–time,

j5a~ t,r ,u,w!
]

]t
1b~ t,r ,u,w!

]

]r
.

The equationLjg}g expresses thatj is a conformal Killing field~or conformal motion! of g,
whereLj represents the Lie derivative with respect toj. This condition leads to the fact that th
functionsa andb are independent of the angular coordinatesu andw with the result

a~ t,r !5a~ t21r 2!1bt1c, b~ t,r !5r ~2at1b!, ~1!

wherea, b, andc are arbitrary constants. Then we have the following result:
Proposition 1: In a conformally flat space–time the general form of a radial conformal Killing

field is

j5~a~ t21r 2!1bt1c!
]

]t
1r ~2at1b!

]

]r
, ~2!

with a, b, and c as arbitrary constants.
In a recent work6 we have studied RCKF in Minkowski space–time. Some of their prope

such as causal character~in the different domains!, integral curves, vanishing shear and vorticit
are maintained invariant by conformal transformations. For instance, the functionv,
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v~ t,r !5
a~ t22r 2!1bt1c

r
, ~3!

is associated with the integral curves of a general RCKF, that is,v5constant represents a hype
bolic or straight line depending on the value of the constantsa, b, andc of the field. But, there
also exist other kinematic properties that change from Minkowski to other conformally flat sp
times.

Next, we consider timelike RCKF, their kinematic properties are those corresponding
unit vector associated with them,u5j/uju 5 (1/FAP) j, where

P52h~j,j!5@a~ t22r 2!1bt1c#22r 2D.0 ~4!

with D[b224ac. So,u is shear-free and vorticity-free and its expansionQ and accelerationa
will depend on the conformal factor of the space–time in the following way:

Q5
3

F2AP
FaḞ1bF81

b

r
F G , ~5!

a5
A

FP
@2bdt1adr#1

1

F
F ,u du1

1

F
F ,w dw, ~6!

with

A5aF81bḞ12arF, ~7!

and where the dot and the prime represent the partial derivatives with respect tot andr , respec-
tively, F ,u5]F/]u andF ,w5]F/]w.

Note that the accelerationa of a RCKF is the orthogonal projection~to u! of the gradient of
a function becaused(a2 (Q/3) u)50 owing toj is a conformal Killing vector field. Hence,u is
conformally geodesic; a conformally flat space–time exists wherej is geodesic.7 The space–time
defined thus corresponds to the Robertson–Walker space–time, as we will prove in Sec.

The 1-formj* associated by the metric with the fieldj,

j* 5F2@2adt1bdr#,

is integrable, that is,j* }ds, with s(t,r ) as a potential function given by

s~ t,r !5H b~ t22r 2!12ct if a50

a~ t22r 2!2c

2at1b
if aÞ0

• ~8!

Moreover, taking in account~3! and~8!, one hasg(ds,dv)50; as well as the expression~4! of P
can be written as

P5r 2~v22D!5H bs1c2 if a50

~2at1b!2~as21bs1c!/a if aÞ0
• ~9!

From these kinematic properties ofu and imposing different conditions over them, we c
obtain different conformal factors solving the corresponding equations, as we will see i
following sections.
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III. GEODESIC CASE: CONFORMAL FACTOR OF THE ROBERTSON–WALKER
UNIVERSES

First, we are going to find the conformal factor of the conformally flat space–times w
admit a geodesic timelike RCKF. From~6! and~7! the conditiona50 means thatF only depends
on the coordinatest and r and verifies the equation,

aF81bḞ12arF50, ~10!

whose general solution is

F~ t,r !5H f ~s! if a50

f ~s!

2at1b
if aÞ0

, ~11!

where f is an arbitrary function of its arguments(t,r ) given by ~8!.
In order to identify these conformally flat space–times, we can compare expressions~10! and

~11! with Infeld–Schild’s results on kinematic cosmology in Ref. 3. These authors found
conformal factor of the spherically symmetric conformally flat space–times which satisfy
postulate of spatial homogeneity. So, they obtained the local expression of the Robertson–
metrics in conformally flat coordinates. Our Eq.~10! is equivalent to the differential Eq.~A3!
analyzed by Infeld and Schild in the Appendix of their paper.3 The expression for the conforma
factor given by~11! unifies the four cases analyzed in the mentioned Appendix, and it ca
simplified taking in account the expression~9!. Therefore, we can conclude the following prop
sition:

Proposition 2: Robertson–Walker space–times are the conformally flat space–times that
admit a geodesic timelike radial conformal Killing vector field. Its metric is written as

g5
h2~s!

P
h ~12!

with P given by (4), h an arbitrary function of the potential s given by (8) andh the flat metric.
Note that the norm ofj, uju5A2g(j,j)5h(s), is constant on each homogeneous 3-sp

(s5constant) orthogonal toj, whose sectional curvature,C(s), is given by

C~s!52
D

h2~s!
with D5b224ac. ~13!

The usual form of the Robertson–Walker metric in comoving coordinates,

g52dt ^ dt1
R2~t!

~11 ~k/4! r2!2 @dr ^ dr1r2~du ^ du1sin2 u dw ^ dw!# ~14!

with k511,0,21, is recovered when the following transformation from the conformally
coordinates$t,r % to the coordinates$t,r% is carried out. The proper timet will be obtained from:

t~ t,r !5
1

2 E h~s!

S~s!
ds ~15!

considering the functionS(s) given by

S~s!5H bs1c2 if a50

as21bs1c if aÞ0
• ~16!
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From ~13!, the curvature indexk is related to the sign ofD, k52sgn(D), which leads to different
expressions of ther-coordinate,

r~ t,r !55
1

v
if D50

2

AuDu
~v1Av22D! if DÞ0

, ~17!

wherev is given by~3!. This coordinate is independent of the functionh(s) and hence, its form
is the same for any cosmological model that we may consider. Instead, the cosmological timt is
determined when a particular, and then model-depending, specification ofh(s) is taken. This can
be done, for instance, after analytical integration of the Einstein equations in conformall
coordinates when a~constant! relation of proportionality between pressure and energy densi
imposed.4

Moreover, the scale factorR(t) of Robertson–Walker metrics is related with its only degr
of freedom, that is, the conformal factor. This relationship is obtained using the coordi
transformation~15! and ~17! and it results in

R~t!5H h~s! if D50

h~s!

AuDu
if DÞ0

, ~18!

wheres is considered as a function oft, s(t), from the inverse relation of~15!. Clearly, the
expansion ofu is a function ofs,

Q~s!5
6S

h2

dh

ds
~19!

as it results from~12! and ~5! or, alternatively, from~18! and ~15!.
It is interesting to note that it is possible to characterize Robertson–Walker geometri

saying that they arethe conformally flat space–times that admit an integrable and geodes
timelike conformal Killing field. Actually, a geodesic and vorticity-free timelike conformal moti
has homogeneous expansion and then, the contracted Ricci identities in a conformally flat
time imply that this motion is associated with the 4-velocity of a perfect fluid~see, for instance
Ref. 8!. Hence, the metric is necessarily the Robertson–Walker one. Therefore, inProposition 2,
the radial property of the field can be substituted by a more general one; that the field a
orthogonal surfaces. Consequently, we infer that the geodesic and vorticity-free timelike c
mal motion in the Robertson–Walker space–time is necessarilyradial, that is, it can be written in
the form given by expression~2! if an appropriate spherical coordinate system is chosen.

As we have seen in Sec. II, the functions is a potential ofj, and in particular for Robertson–
Walker space–times, the 1-formj* is closed, because the function

s̄~s!52
1

2 E h2~s!

S~s!
ds

with S(s) given by ~16!, allows one to writej* 5ds̄52h(s)dt.
A particular case results whenh(s) is considered as a constant function~that we can take

equal to 1 without loss in generality!, which corresponds to a geodesic Killing field due to t
expansion vanishes according to Eq.~19!. Then we arrive to the following result:
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Proposition 3: The conformally flat space–times which admit a geodesic timelike radi
Killing field j are the Minkowski space–time if D50, the Einstein static universe ifD,0, and the
Einstein open universe ifD.0. The corresponding metric is given by g5 h/P, with P given by
(4) and beingD5b224ac.

Note that the metricg5(a(t22r 2)1bt1c)22h, with b254ac is locally a flat metric; this
corresponds to the caseD50. According toPropositions 2 and 3, Robertson–Walker space–time
are conformal to the static Einstein universes with conformal factorh2(s).

It is worth noting the differences between Infeld–Schild’s analysis in Ref. 3 and the
presented in this section. The procedure of Infeld and Schild is based on the isometries ad
by a conformally flat space–time when spherical symmetry and spatial homogeneity are re
Instead, our approach is only based on kinematic requirements on a RCKF, without imposin
additional symmetry. In fact, in this case the spherical symmetry and the spatial homog
follow as a consequence of the geodesic character of the conformal field. Moreover,Proposition
2 is a characterization of the Robertson–Walker space–times and would suggest that our
dure affords certain advantages when used to obtain conformal factors and to classify an
acterizekinematicallyconformally flat space–times. This is shown in the following sections.

IV. RCKF WITH HOMOGENEOUS EXPANSION

The geodesic conformal motion of Robertson–Walker universes has homogeneous exp
that is, the expansion only varies along the direction of the field (u`dQ50). We can generalize
the results of the preceding section, considering conformally flat space–times which ad
RCKF with homogeneous expansion, non-necessarily geodesic. This condition over the exp
will be interpreted in different~but equivalent! ways involving the Fermi–Walker derivative of th
acceleration along the field or the Ricci tensor of the metric, Ric(g). In order to achieve this
purpose, we consider a previous general property. Without any possible confusion, we will d
in the same way a field and its metrically associated 1-form.

Lemma 1: For a unitary timelike fieldu, considering its accelerationa, expansionQ, shears,
and vorticityV, the following identity is verified:

dS a2
Q

3
uD5~ i ~a!~s1V!1Fua2 1

3 dQ!`u2 2
3 QV1~da!'

with d the exterior derivative, i ( ) the interior product, Fu the Fermi–Walker derivative alongu,
and' denoting the projection on the 3-space orthogonal tou.

Proof: First, we consider the kinematic decomposition~relative tou! of the covariant deriva-
tive of u anda, “u, and“a, respectively,

“u52u^ a1s1V1 1
3 Q~g1u^ u!,

“a52g~a,a!u^ u1q^ u1u^ p1~“a!',

p andq being orthogonal vectors tou. The antisymmetric part of these tensors is, respective

du5a`u12V, da5~q2p!`u1~da!' .

Then we have

dS a2
Q

3
uD5S q2p2

1

3
dQ2

Q

3
aD`u2

2

3
QV1~da!',

and taking into account thatg(u,a)50 and denoting byt¹a the transposed 2-tensor of“a, we can
write

p[2~ i ~u!¹a!'52Fua,
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q[2~ i ~u! t
“a!'5 i ~a!~s1V!1

Q

3
a

obtaining the required expression.
Now, we come back to the case of a timelike conformal Killing field, which is character

by s50 and d(a2(Q/3) u)50 ~see Ref. 2!. Moreover, if this field is integrable (V50) it
follows thatu`da50. Hence, relatively tou, the 2-formda has a vanishing magnetic part an
(da)'50. SoLemma 1reduces to

~Fua2 1
3 dQ!`u50,

and due tog(u,a)50, the condition of Fermi–Walker propagated acceleration alongu is equiva-
lent to homogeneous expansion.

On the other hand, if we consider the contracted Ricci identities for a field with vanis
shear and vorticity~see, for instance, Ref. 8!,

i ~u!Ric~g!52
2

3
dQ1FQ2

3
1 i ~u!dQ1daGu,

whered denotes the exterior codifferential (da52¹nan), it results that homogeneous expansi
is equivalent to thatu is an eigenvector of the Ricci tensor. We summarize these comments i
following proposition:

Proposition 4: For an integrable timelike conformal Killing field the following properties a
equivalent:

~1! The field has homogeneous expansion.
~2! Its acceleration is Fermi–Walker propagated along the field.
~3! The field is an eigenvector of the Ricci tensor.

Next, we are going to find the conformal factor of the conformally flat space–times that a
a RCKF with homogeneous expansion, following a kinematic procedure as in the previous s
From Eq.~5! the conditionu`dQ50 leads us to the following system of differential equatio
for the conformal factor:

FbG81aĠ2
b

r
GG , j50 j 5u,w, ~20!

ab@G̈1G9#1~a21b2!Ġ850, ~21!

whereG5 1/F, anda andb are given by~1!. The solution of this system can be written as

G5AP@m~s!1n~v,u,w!#,

wherem andn are arbitrary functions, andv, s, andP are given, respectively, by~3!, ~8!, and~9!.
So, denotingh(s)5 1/m(s), we can conclude with the following result:

Proposition 5: The metric, g̃, of the conformally flat space–times that admit a timelike RCKF
with homogeneous expansion is given by

g̃5
g

~11hn!2 , ~22!

where g5 h2(s)/Ph is the Robertson–Walker metric given in Proposition 2 andn is an arbitrary
function independent of the potential s.
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The above class of metrics admits alternative interpretations according toProposition 4; as a
consequence, the energy tensor of these space–times can be expressed in diagonal form9 Note
that the conformal factor of Robertson–Walker metrics is recovered when we consider the
tion n of expression~22! as a constant.

As a result of replacing~22! in ~5!, the expansion ofu only depends ons and it is exactly the
same as the expansion of the geodesic RCKF of Robertson–Walker space–times, whose
sion is~19!. As a consequence, whenh is a constant function, the expansion vanishes and, ta
in account expression~9! andProposition 5, we have the following result:

Proposition 6: The metric of the conformally flat space–times that admit a timelike radia
Killing vector field can be written as

g5
1

r 2 f 2~v,u,w!h,

f being an arbitrary function andv(t,r ) given by (3).
In particular, if we consider that the conformal factor is independent from the angular

dinatesu andw, we have static spherically symmetric conformally flat space–times whose
formal factor isf 2/r 2 with f as an arbitrary function that only depends onv. An interesting case
results when the functionf is a constant, that we take equal to 1, then the metric is writteng
5 h/r 2, which corresponds to the Bertotti–Robinson solution of the Einstein–Maxwell equa
for a regular electromagnetic field.8

V. RCKF WITH ORTHOGONAL 3-SPACES OF CONSTANT CURVATURE

Another interesting property over RCKF that allows us to obtain other generalized confo
factors is to consider the geometry of its orthogonal surfaces. In Ref. 6 we have studied RC
Minkowski space–time and obtained the induced metricg on their orthogonal surfaces,

g5r 2~s,v!F 1

v22D
dv ^ dv1du ^ du1sin2 u dw ^ dwG ~23!

with the coordinatess and v given by ~8! and ~3!, respectively. This metricg has constant
sectional curvature, that is, its double 2-form of curvature isR(g)5 F(s)/2g`g, where `
denotes the exterior product of double 1-forms10 andF(s) has the expression,

F~s!5H 2b2

bs1c2 if a50

2a

as21bs1c
if aÞ0

• ~24!

In a conformally flat space–time, the orthogonal sections to a timelike RCKF are the su
s5constant. The induced metric on these 3-spaces will beg̃5F2g whose curvature form can b
written as

R~ g̃ !5F2@R~g!1S`g#,

where

S5F¹d
1

F
2

1

2
g̃ ~d lnuFu,d lnuFu!g̃, ~25!

with ¹ expressing the covariant derivative with respect to the metricg and where we have
considered the expressions relating the Riemann tensors in a class of conformal metrics.11 So, the
curvature of the metricg̃ can be written as
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R~ g̃ !5S F~s!

2
g1S D`g̃.

The condition of constant sectional curvature for these 3-spaces will be thatS is proportional
to g̃ which, taking into account the expression~25!, is equivalent to the following system o
equations:

FbĠ1aG82
a

r
GG , j50 j 5u,w,

G,uw5cotu G,w ,

G,ww5sin2 u G,uu2sinu cosu G,u ,

P~G,uu1rG8!5r 2~b2G̈1a2G912abĠ8!,

whereG5 1/F , a andb are given by~1!, the dot and the prime represent the partial derivat
with respect tot and r , respectively, and subindexes denoting partial derivatives with respe
them. This system can be solved having that the solution is

G~ t,r ,u,w!5s"r1H~ t,r !,

where we have denoted

s"r5s1~s!r cosw sinu1s2~s!r sinw sinu1s3~s!r cosu,

with s i(s) ( i 51,2,3) as arbitrary functions ofs(t,r ) given by ~8!. The functionH(t,r ) is

H~ t,r !5H m~s!r 21n~s! if a5b50

m~s!t1n~s! in other cases
~26!

beingm(s) andn(s) arbitrary functions of their arguments. So, we have the following result:
Proposition 7: The metric of the conformally flat space–times that admit a timelike RCKF

with orthogonal surfaces of constant curvature can be written as

g5
1

~s"r1H~ t,r !!2 h, ~27!

where the function H(t,r ) is given by (26).
The Riemann curvature of the homogeneous synchronization associated with this con

motion isR(g̃)5F̃(s)/2g̃`g̃, where the sectional curvatureF̃ is written as

F̃5
2P

r 4 H,v
2 2

2a

r 3 HH,v2
b2

Pr2 H22s2,

with s25s1
21s2

21s3
2. Note that actually the sectional curvature is a constant on each su

s5constant because its partial derivatives with respect tov, u, andw are zero. In fact, we can
write F̃ as a function ofs in each case in the following way:
                                                                                                                



pic

rojec-
es.

KF
ion,

r

g

lutions

called
ter

4774 J. Math. Phys., Vol. 41, No. 7, July 2000 A. Herrero and J. A. Morales

                    
F̃~s!55
4mn2s2 if a5b50

b

bs1c2 @sm22bn212cmn#2s2 if a50, bÞ0

a

as21bs1c Fbs1c

a
m22n222smnG2s2 if aÞ0.

~28!

The study of the energy tensorT for these space–times leads to the nullity of the anisotro
pressure tensor~trace-free part of the orthogonal projection ofT relatively tou!. Effectively, since
u is shear-free and vorticity-free, it defines anumbilical synchronization~foliation of 3-spaces
whose extrinsic curvature is proportional to their induced metric!, which is of constant curvature
if, and only if, the Ricci tensor ofg̃ has vanishing trace-free part~that is, Ric(g̃)}g̃). Then, the
Gauss–Codazzi relations for these conformally flat space-times imply that the orthogonal p
tion ~to u! of Ric(g) is also proportional tog̃, that is, the anisotropic pressure tensor vanish
Furthermore, fromLemma 1of Sec. IV, the Fermi derivative of the acceleration of the RC
along its direction is proportional to the orthogonal projection of the gradient of the expans

Fua52 1
3 ~dQ!' . ~29!

In order to analyze how the metrics given inProposition 7generalize the Robertson–Walke
cosmologies, we write expression~26! as

H~ t,r !5H f̃ ~s!1l~s!r 2 if a5b50

f̃ ~s!1l~s!t if a50, bÞ0

~2at1b! f̃ ~s!1l~s! if aÞ0

with f̃ (s) andl(s) as arbitrary functions. So, the metric~27! can be expressed in the followin
way;

g5F F0

11~s"r1l~s!d~ t,r !!F0
G2

h, ~30!

whereF0
2 is the conformal factor of the Robertson–Walker metrics given by~11! and the function

d(t,r ) is

d~ t,r !5H r 2 if a5b50

t if a50, bÞ0

1 if aÞ0

.

The special case of homogeneous expansion corresponds to a family of perfect fluid so
whose acceleration is Fermi–Walker propagated along the fluid flow, according to~29!; and, from
~20! and~21!, the metric has the expression~30! with s andl as~four! arbitrary constants. When
the expansion is nonzero, these metrics belong to the conformally flat class of perfect fluids
Stephani universes.8,12 In particular, whens50, the metric~30! is expressed as a one-parame
deformation of the Robertson–Walker metricg05F0

2 h, that is

gl5
g0

@11ld~ t,r !F0#2 . ~31!

The acceleration of the fluid results from~6!,
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al5
lF0

P~11ldF0!
~ad81b

.
d22ard!~2bdt1adr !

which is different from zero, but forl50, as it can be seen for each value of the functiond(t,r ).
And, from Eq.~5!, the homogeneous expansion is

Ql5Q02
3l

AP
S a

.
d2

b

r
d D

being Q0 the expansion~19! of the field on the Robertson–Walker space–time with metricg0

5 @h2(s)/P# h. The energy densityrl and the pressurepl of the fluid are

rl5r01Al21B~s! l, ~32!

pl5p01C~r !l21D~ t,r !l, ~33!

wherer0 andp0 are, respectively, the energy density and the pressure of the Robertson–W
universe,

r05
3

h2 F2D1S 2Sh8

h D 2G ,
p052

r0

3
2

8S

h2 S Sh8

h D 8
,

with S as in ~16!; and with the coefficientsA, B(s), C(r ), andD(t,r ) listed in Table I. As it is
known, the energy density~32! is homogeneous; and the form of the functionsC(r ) andD(t,r )
give the inhomogeneities of the pressure~33!.

VI. DISCUSSION AND COMMENTS

The main subject of this paper has been to consider conformal flatness over spac
metrics and connect it with several types of radial conformal motions. The form of the confo
factor is obtained considering different kinematical properties for these motions. In this sens
conformal factor of Robertson–Walker geometries has been interpreted from a kinematica
of view; it follows from the existence of a geodesic radial conformal motion. As a generaliza
Proposition 5provides the general metric form when the conformal field has homogeneou
pansion, andProposition 7gives the metric when the field has orthogonal 3-spaces of con
curvature. Essentially, both of these propositions would develop the original Infeld–S
program3 of using conformally flat coordinates in relativistic cosmology.

TABLE I. CoefficientsA, B, C, andD that appear in the expressions~32!
and ~33! of the energy density and the pressure, respectively; we denote
m(s)5 1/h(s) and the symbols~* ! and ~** ! represent the following func-
tions: (* ) (2/AS) $b(5bt13c)m12S@3(2bt1c)m812t(Sm8)8#%;
(** ) (4a/AaS) $@3as1b1 @a(bt12c)/(2at1b)##m1S@3m81 @2/(2at
1b)# (Sm8)8#%.

a5b50 a50 andbÞ0 aÞ0

d(t,r ) r 2 t 1
A 0 3 0
B(s) 12cm(s) 12c(ASm)8 212(AaSm)8
C(r ) 4r 2 23 0
D(t,r ) 8c(c2r 2m92m) ~* ! ~** !
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The results we have obtained could be helpful when dealing with physical and geome
interpretations of generalized conformally flat cosmologies. In this way, some general com
about the energy tensor of these space–times have been done. For instance,Proposition 4allows
us alternative interpretations of the homogeneous expansion case.

However, an accurate study of the energetic contents needs to be done in order to a
some realistic cosmological models. We have not considered any usual energy conditio
restricts the algebraic type of the matter tensor. Such a study would involve an additional alg
treatment on the results presented in this paper. For example, for a perfect fluid family of m
like ~31!, the inequalities2rl<pl<rl will impose new restrictions over the coefficients given
Table I, as it can be easily analyzed.

An interpretation of the energy content of a conformally flat metric as two perfect
components with noncollinear velocities could be also interesting in cosmology. This w
require that the corresponding algebraic conditions13 have to be satisfied. In fact, the energy tens
of a conformally flat space–time can always be decomposed, relatively to a radial conf
Killing observer, in a mixture of two components, being one of them a perfect fluid wh
4-velocity is collinear with this conformal field. Most of these comments are being develop
the present.
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Belinskii–Zakharov formulation for Bianchi models
and Painlevé III equation
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Área Departmental de Matema´tica, UCEH, Universidade do Algarve,
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We show thata,0, b.0, g5d50 Painleve´ III equation arises as a zero-curvature
condition in the Belinskii–Zakharov inverse scattering formulation for Bianchi
cosmological models. For special values of the parameters this Painleve´ III equa-
tion becomes the dynamical equation for Bianchi I, II, VI0, and VII0 models.
© 2000 American Institute of Physics.@S0022-2488~00!04207-9#

I. INTRODUCTION

Belinskii and Francaviglia showed in Ref. 1 that the Einstein equations for Bianchi I, II,0,
and VII0 space times admit a zero-curvature representation, i.e., they found a linear system
integrability condition is the dynamical equation for the Bianchi model. This was done by us
more general framework of Belinskii–Zakharov~BZ! inverse scattering method for the spa
times admitting two commuting space-like Killing vectors.2 The results of Ref. 1 demonstrate
that the Bianchi models which admit two commuting space-like Killing vector are solvable
namical systems. However, not much work has been done on the issue of what kind of inte
nonlinear dynamical equations can be obtained from this approach.

In Ref. 3 it has been shown that in the case of the Bianchi VII0 model one obtains a specia
PainlevéIII ~PIII! equation, which isa522, b52, g5d50 case of the standard PIII form4

d2u

dt2
5

1

u S du

dt D
2

2
1

t S du

dt D1
1

t
~au21b!1gu31du21. ~1.1!

In this article we consider the Belinksii–Zakharov formulation for all Bianchi models which ad
two commuting Killing vectors, i.e., types I, II, VI0, and VII0. We only consider the equations o
motion for local degrees of freedom, and we do not discuss the problems related with non
topology of the spatial manifold.3 By considering a larger class of Bianchi models, we obtai
more general PIII equation as the dynamical equation, namelya,0, b.0, g5d50. Although the
relevant Bianchi models correspond to special values of the parameters, we show that th
curvature representation is valid for all other values of the parameters. Consequently we o
zero-curvature representation ofa,0, b.0, g5d50 Painleve´ III equation in the Belinskii–
Zakharov inverse scattering formulation.

II. ZERO-CURVATURE FORMULATION FOR BIANCHI MODELS

Belinskii–Francaviglia approach to solving the dynamics of Bianchi models1 is derived from
the Belinskii–Zakharov method for solving the Einstein equations for space times with two
muting space-like Killing vectors.2 Such space times have the following form of the metric,

ds25 f ~ t,z!~2dt21dz2!1gab~ t,z!dxa dxb, ~2.1!

a!Electronic mail: nmanoj@ualg.pt
b!On leave of absence from Institute of Physics, Belgrade, Yugoslavia. Electronic mail: amikovic@ualg.pt
47770022-2488/2000/41(7)/4777/6/$17.00 © 2000 American Institute of Physics
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wherea,b51,2, $x0,x1,x2,x3%5$t,x,y,z%, f is a positive function andgab is a symmetric two-

by-two matrix. It is convenient to introduce the null coordinates (j,h)5( 1
2(z1t),1

2(z2t)), since
the form of the metric~2.1! is preserved by the conformal coordinate transformations (j,h)
→( j̃(j),h̃(h)). The positivity of the functionf is preserved if]jj̃ ]hh̃.0.

The complete set of vacuum Einstein equations for the metric~2.1! decomposes into two
groups of equations.2 The first group determines the matrixgab and can be written as a singl
matrix equation, called the Ernst equation,

]h~s ]jg g21!1]j~s ]hg g21!50, ~2.2!

wheres25detg. The second group of equations determines the functionf (j,h) in terms of a
given solution of the Ernst equation

]j~ ln f !5
]j

2~ ln s!

]j~ ln s!
1

1

4ssj
tr A2, ~2.3!

]h~ ln f !5
]h

2~ ln s!

]h~ ln s!
1

1

4s sh
tr B2, ~2.4!

wheresj5]js, sh5]hs, and the matricesA andB are defined by

A52s ]jg g21, B5s ]hg g21. ~2.5!

Thus the dynamics of the system is determined by the Ernst Eq.~2.2!. An important consequenc
of the Ernst equation is thatsjh50 so thats5c(j)1d(h). By using the conformal transforma
tions, one can bring the functionsc(j) andd(h) to a prescribed form.

The crucial step in the inverse scattering method is to define the linearized system
integrability conditions are the equations of interest, in our case Eq.~2.2!. Following Ref. 2, we
define two differential operators,

D15]j2
2sjl

l2s
]l , D25]h1

2shl

l1s
]l , ~2.6!

wherel is a complex parameter independent of the coordinates$j,h%. The differential operators
D1 andD2 commute sinces satisfies the wave equation, and hence one can consider the follo
linear system:

D1c5
A

l2s
c, D2c5

B

l1s
c, ~2.7!

wherec(l,j,h) is a complex matrix function. The integrability condition for the system~2.7! is
given by the Ernst Eq.~2.2!. Furthermore, a solutionc(l,j,h) yields a matrixg(j,h) that
satisfies the Ernst Eq.~2.2!. Namely, the matrixg(j,h) is given by

g~j,h!5c~l,j,h!ul50 . ~2.8!

In order to take into account thatg(j,h) is real and symmetric we have to impose two additio
conditions, see Ref. 2. Also, it is easy to see that the Eqs.~2.7! for l50 imply Eqs.~2.5!.

Bianchi space times~see Ref. 5 for a review and references! have finitely many degrees o
freedom, and only the Bianchi types I, II, VI0, and VII0 admit two commuting space-like Killing
vectors. The metric for these Bianchi space times has the form~2.1!, and this can be shown b
considering the general Bianchi spacetime metric

ds252dT21gi j ~T,xk!dxi dxj , ~2.9!
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wheregi j 5gIJ(T)x i
I(xk)x j

J(xk) andx I(xk) are the one-forms associated with the spatial manifo
These one-forms satisfy the Maurer–Cartan equations

dx I1 1
2 CJK

I xJ∧xK50,

where the structure constantsCJK
I correspond to the Lie algebra of the symmetry group of

Bianchi model. for the relevant models the structure constants satisfy

CJK
I 5eJKLSLI , ~2.10!

whereeJKL is a totally antisymmetric tensor density andS is a symmetric matrix. In this case th
one-formsx I take the following form:

x15 l 1
1~z!dx1 l 2

1~z!dy, x25 l 1
2~z!dx1 l 2

2~z!dy, x35dz. ~2.11!

An important consequence of the Maurer–Cartan equations for the one-formsx I is that the matrix
l 5i l b

ai satisfies the following linear differential equation:

dl

dz
5CTe l , ~2.12!

where the matrixC is the upper two-by-two block on the principal diagonal of the matrixSIJ and
e is the antisymmetric matrix withe1251.

After a time redefinitiont5t(T), the metric~2.9! can be written in the form~2.1!,

ds25 f ~ t !~2dt21dz2!1gab~ t,z!dxa dxb, ~2.13!

where

g~ t,z!5 l T~z!ĝ~ t !l ~z!, ~2.14!

andĝ is a two-by-two symmetric matrix. Notice that nows25(detl)2 detĝ, and since detl51 we
get

s2~ t !5detĝ~ t !. ~2.15!

In addition,s has to satisfy the wave equation, so thats̈(t)50, and hences can only be a linear
function of time.

The linearized system~2.7! can be simplified for the models described by the metric~2.13!.
The first step is to define a two-by-two matrix functionw by

c~ t,z,l!5 l T~z!w~ t,z,l!l ~z!, ~2.16!

and a constant two-by-two matrixR5eC. The second step is to substitute~2.14! into ~2.5! and use
the definition of the coordinatesj andh. Then the results of these calculations, together with
definition ~2.16!, can be used to simplify Eqs.~2.7!. The crucial step in which a simplification
occurs is to perform a conformal coordinate transformation$t,z,l%→$t,w,l%, wherew is given
by w5 1

2(s
2/l12b1l). The linear system after this coordinate transformation involves o

derivatives int and l since all the terms involving derivatives inw are canceled. Finally, it is
useful to make some simple linear combinations of the two equations and to use the fact ths is
a linear function of time. In this way one obtains a new linear system
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] tw5
t

l
~ĝRTĝ21w2wRT!,

~2.17!

]l5
1

2 S 2Rw2wRT1
t

l
ġ̂ĝ21w1

t2

l2 wRT2
t2

l2 ĝRTĝ21w D ,

where we have sets5t.
Although the matrix functionw(t,l,w) depends on all three variables, the right-hand side

the system~2.17! does not have anyw dependence. The integrability condition for the syst
~2.17! is

1

t

d

dt
~ t ġ̂ ĝ21!5RĝRTĝ212ĝRTĝ21R. ~2.18!

Equivalently, one can derive Eq.~2.18! by a direct substitution of the formula~2.14! into Eq.
~2.2!. Thus the dynamics of these Bianchi models is determined by Eq.~2.18!.

III. ZERO-CURVATURE REPRESENTATION FOR PAINLEVÉ III

The linear system~2.17! and the corresponding nonlinear Eq.~2.18! were derived for specia
matricesR, which correspond toC matrices of the relevant Bianchi models. Note that theC matrix
is symmetric, and the only relevant information about the Bianchi model is contained
signature, so that there are four distinct possibilities:

~1! C5diag(1,1) for Bianchi VII0,
~2! C5diag(1,21) for Bianchi VI0,
~3! C5diag(1,0) for Bianchi II,
~4! C5diag(0,0) for Bianchi I.

However, if we consider the linear system~2.17! independently of Bianchi models, then we ca
takeC to be an arbitrary symmetric two-by-two matrix. In this case we have

C5S c d

d kD , ~3.1!

with R5eC, ĝ5diag(a,b), andab5t2. Then the consistency condition~2.18! gives

t21
d

dt
~ ta21ȧ!5k2a21b2c2ab21,

~3.2!
05d~k1cab21!.

The second equation implies eitherd50 or a252(k/c)t2. The second possibility gives a linea
in time solution, and the first possibility is more interesting.d50 case gives

t21
d

dt
~ ta21ȧ!5k2a22t22c2a2t22. ~3.3!

By making a change of variablesu5a2/t2, t5t2/4, Eq.~3.3! takes the standard Painleve´ III form
~1.1!,

d2u

dt2 5
1

u S du

dt D 2

2
1

t S du

dt D1
2

t
~2c2u21k2!, ~3.4!

so thata522c2, b52k2, andg5d50.
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Let us now consider the Bianchi models. In the case of Bianchi VII, model the sp
hyper-surface is a three torusT3. The matrixC is diag~1,1! and the matrixl is given by

l ~z!5S cosz sinz

2sinz coszD . ~3.5!

The matrixR is given by

R5S 0 1

21 0D , ~3.6!

so that the local dynamics is given by~3.3! for c5k51. By making a change of variablesu
5eq, this PIII equation takes a more symmetric form,

d

dt S t
dq

dt D524 sinhq. ~3.7!

Bianchi VI0 model corresponds toC5diag(1,21), so that Eq.~2.12! gives

l ~z!5S coshz sinhz

sinhz coshzD . ~3.8!

This model has a noncompact spatial manifold, which is locally compact, and the local dyn
is the same as in the Bianchi VII0 case, becausec25k251.

In the Bianchi II caseC5diag(1,0), and the dynamics is given by~3.3! with c51 andk
50. The l matrix is given by

l ~z!5S 1 z

0 1D , ~3.9!

and this model allows compact spatial sections.6 In the Bianchi I caseC50, so thatc5k50 and
l 5diag(1,1).

IV. CONCLUSIONS

We have shown that a class of PIII equations~a.0, b,0, g5d50! arises as a zero
curvature condition in the Belinskii–Zakharov inverse scattering method applied to Bianchi
time metrics. For the particular values of the parameters these PIII equations become the d
cal equations for Bianchi I, II, VI, and VII0 models. Note that the linear system~2.17! can be
transformed into the standard form

]C

]l
5ÂC,

]C

]t
5B̂C, ~4.1!

whereÂ and B̂ are four-by-four matrices given by

Â5
t

l
~ĝRTĝ21

^ I 21I 2^ RT!,

~4.2!

B̂5
1

2 S 2R1
t

l
ġ̂ĝ212

t2

l2 ĝRTĝ21D ^ I 21
1

2 S t2

l221D I 2^ R,

whereI 2 is the identity matrix andC is a column formed from the columns of the matrixw.
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This linear system is different from the linear system which is used for the study of Pai´
III equation within the isomonodromic deformation~IMD ! method.7–9 Although it is not obvious
what are the advantages of the new linear system in comparison with the IMD linear system
are some interesting features of the new system which can be investigated.

In the Belinskii–Zakharov inverse scattering approach, it is natural to consider path-or
exponentials of matrices~holonomies! associated to the linear system~2.7! in order to find the
integrals of motion.10,11 In the special case of Bianchi metrics, the holonomy construction wo
simplify, and one could try to see what kind of expressions one would obtain for the PIII equ

Note that the new linear system can be interpreted as a Lax pair for a dynamical system
a time-dependent Hamiltonian,

H5
1

2t
p212~k2e2q1c2eq!. ~4.3!

This is analogous and complementary to the results of Harnad and Routhier,12 where a Lax pair
for PIII equation withabgdÞ0 was constructed. It is interesting that in that case the Lax
contains*dt u, which does not happen in our case of PIII equation.

In the context of Bianchi models, it is more natural to work with a dynamically equiva
Hamiltonian to~4.3!,

H̃5 1
2 p̃212et̃~k2e2q1c2eq!, ~4.4!

where t5et̃ . One can now examine the physical properties of the solutions, like small-
large-time asymptotic, as well as the singularities, since these properties of the Painleve´ III solu-
tions have been thoroughly studied.9
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Thermodynamics of toroidal black holes
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The thermodynamical properties of toroidal black holes in the grand canonical
ensemble are investigated using York’s formalism. The black hole is enclosed in a
cavity with finite radius where the temperature and electrostatic potential are fixed.
The boundary conditions allow one to compute the relevant thermodynamical
quantities, e.g., thermal energy, entropy, and specific heat. This black hole is ther-
modynamically stable and dominates the grand partition function. This means that
there is no phase transition, such as the one encountered for spherical black holes.
© 2000 American Institute of Physics.@S0022-2488~00!05805-9#

I. INTRODUCTION

In recent years there has been an increasing interest in the study of black holes with no
topologies. Black holes whose event horizon have toroidal topology have been found, see
and 2. It has been shown that they can be formed from gravitational collapse.3 There is also a
generalization of these black holes to other topologies.4,5 These black holes are solutions of th
Einstein equations with negative cosmological constant. It is the presence of a negative c
logical constant that allows the violation of the theorems of general relativity forbidding
spherical black hole topologies.

It is interesting to study the thermodynamical properties of these black holes and co
them to their spherically symmetric counterparts. In this paper we consider a static and c
black hole with toroidal event horizon found in Ref. 2 and analyze its thermodynamical beh
see also Refs. 5 and 6. We use York’s formalism to study its thermodynamics in the
canonical ensemble following the same procedure as in Ref. 7 for its spherical counterpa
Reissner–Nordstro¨m–anti-de Sitter black hole.

In Sec. II we compute the reduced action of the toroidal black hole in York’s formal
Using this action we evaluate the main thermodynamical quantities: energy, mean value
charge, and entropy of the toroidal black hole. In Sec. III we evaluate the black hole solution
the event horizon radius and charge of the black hole formed for the temperature and the e
static potential fixed by the boundary conditions. We then study the local and global stabi
the black hole solutions in Sec. IV. Finally, in Sec. V we consider the limit where the bounda
taken to infinity. The results obtained are compared to the ones found in Ref. 7 for the Reis
Nordström–anti-de Sitter black hole. Conclusions are drawn in Sec. VI.

II. THERMODYNAMICS IN THE GRAND CANONICAL ENSEMBLE

In this section we will compute the reduced action of the black hole. We will follow Re
We consider a general static metric with toroidal symmetry of the form

a!Present address: Department of Physics; University of California; Santa Barbara, CA 93106-9530; electroni
claudia@physics.ucsb.edu

b!Electronic mail: lemos@on.br
47830022-2488/2000/41(7)/4783/7/$17.00 © 2000 American Institute of Physics
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ds25b2 dt21a2 dy21r 21r 2~du21dw2!, ~1!

wherea, b, and r are only functions of the radial coordinatey. The Euclidean timet and the
angular coordinatesu and w have period 2p. For convenience we chooseyP@0,1# so that the
event horizon is given byy50 and has radiusr 15r (0) and areaA154p2r 1

2 . The boundary is
given by y51 and at this boundary the thermodynamical variables defining the ensemb
fixed. The boundary is a two-torus with areaAB54p2r B

2, wherer B5r (1).
In order to obtain the reduced action from~1! we use the usual regularity conditions and w

impose the proper constraints,8,9 i.e., the Hamiltonian constraint

Gt
t1Lgt

t58pTt
t , ~2!

which corresponds to the first of Einstein equations, and the Gaussian constraint

F ;n
mn50, ~3!

which corresponds to the Maxwell equations.
The reduced action is given by

I * 52br BAp2a2r B
22p2a2

r 1
3

r B
2

e2

r 1r B
1

e2

r B
2 2p2r 1

2 2ebf2I subtr, ~4!

whereb is the inverse temperature at the boundary,f is the difference in electrostatic potenti
between the boundary and the horizon,e is the charge of the black hole,a252L/3, L is the
cosmological constant, andI subtr is an arbitrary term that can be used to define the zero of
energy.

Using the same procedure as in Refs. 8 and 7, we can computeI subtr. We choose for conve-
nience the thermal energy of anti-de Sitter space–timeEADS5E(r 150, e50)50 to define the
zero of the energy. Therefore we obtain

I subtr5br BAp2a2r B
2. ~5!

Now substituting~5! in ~4! we obtain the reduced action in the form

I * 5br BS Ap2a2r B
22Ap2a2r B

22p2a2
r 1

3

r B
2

e2

r 1r B
1

e2

r B
2 D 2p2r 1

2 2ebf. ~6!

We can use the reduced action given in~6! to compute all the thermodynamical quantities
interest~like the energy, entropy, and the mean value of charge of the black hole!. This is done
using the relation between the reduced action and the grand canonical potent
thermodynamics,8

I 5bF. ~7!

From the grand canonical potentialF, we can compute the thermodynamical quantities using
common laws of thermodynamics, see, e.g., Ref. 10.

The thermal energy is given by

E5F1bS ]F

]b D
f,r B

2S ]F

]f D
b,r B

f5S ]I

]b D
f,r B

2
f

b S ]I

]f D
b,r B

5r BS Ap2a2r B
22Ap2a2r B

22p2a2
r 1

3

r B
2

e2

r 1r B
1

e2

r B
2 D . ~8!
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The mean value of the charge is given by

Q52S ]F

]f D
b,r B

52
1

b S ]I

]f D
b,r B

5e. ~9!

The entropy is

S5b2S ]F

]b D
f,r B

5bS ]I

]b D
f,r B

2I 5p2r 1
2 . ~10!

Sincep2r 1
2 5A1/4, whereA1 is the area of the event horizon, we haveS5A1/4. This is the usual

Hawking–Bekenstein entropy,11 which means this law is still valid for black holes with toroid
symmetry.

III. THE BLACK HOLE SOLUTIONS

The black hole solutions are determined by computing the extrema of the reduced acti
the variablesb, f, r B , anda are fixed by the boundary conditions, the reduced action~6! is a
function of only two parameters:r 1—the event horizon radius ande—the electric charge. Invert
ing the equation¹I * (r 1 ,e)50, we obtain the black hole solutions as a function of the bound
conditions, i.e.,r 15r 1(b,f,r B ,a) ande5e(b,f,r B ,a). Equation¹I * 50 yields

]I *

]r 1
52

1

2
bS 23p2a2r 1

2 1
e2

r 1
2 D S p2a2r B

22p2a2
r 1

3

r B
2

e2

r 1r B
1

e2

r B
2 D 21/2

22p2r 150, ~11!

and

]I *

]r 1
52bS 2

e

r 1
1

e

r B
D S p2a2r B

22p2a2
r 1

3

r B
2

e2

r 1r B
1

e2

r B
2 D 21/2

2bf50. ~12!

We can invert Eq.~11! to obtain the inverse temperature of the black hole,

b5
4p2r 1

3

3p2a2r 1
4 2e2Ap2a2r B

22p2a2
r 1

3

r B
2

e2

r 1r B
1

e2

r B
2. ~13!

This is the Hawking temperature times the redshift factor due to the Tolman effect.12

Inverting Eq.~12!, one obtains the electrostatic potential as

f5S e

r 1
2

e

r B
D S p2a2r B

22p2a2
r 1

3

r B
2

e2

r 1r B
1

e2

r B
2 D 21/2

. ~14!

This is the difference in electrostatic potential between the horizon and the boundary ‘‘redsh
to the boundary.

In order to invert Eqs.~13! and ~14!, we are going to define the new variables

ā5par B , x5
r 1

r B
, q5

e

r B
, b̄5

b

4p2r B
. ~15!

Using these new variables and inverting Eq.~14! we obtain

q25
ā2f2~11x1x2!x2

12x1f2x
. ~16!
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Inverting Eq.~13! and using Eq.~16!, we obtain

s2f414s2f4x1~10s2f426s2f221!x21f2~12s2f2212s221!x3

1~9s2f4218s2f229s22f2!x41~12f2!x550, ~17!

where we have used a new variable

s5āb̄5
ab

4p
. ~18!

Notice that from Eq.~17! the event horizon radius does not depend onb anda, but on their
products. This is something that does not happen for the Reissner–Nordstro¨m–antide Sitter black
hole,7 the spherical counterpart of this black hole.

Solving Eq. ~17!, we obtainr 1 as a function of the boundary conditions and placing t
solution into Eq.~16!, we obtain the respective chargee. However not every solution of Eq.~17!
is a physical solution corresponding to a black hole. Effectively, the black hole is inside the c
so r 1,r B , therefore the solutions must obeyx,1. Moreover the charged black hole has tw
horizons but we are only interested in the event horizon, which verifies the condition

3p2a2r 1
4 2e2.0. ~19!

This condition implies that the inverse temperature~13! is real and positive, that the electrostat
potential~14! is also real and positive, and furthermore verifies

f2,
3x2

112x13x2 . ~20!

Therefore only the solutions of Eq.~17! that obey condition~20! are physical solutions. In Figs.
and 2 the solutions of~17! that verify this condition are presented.

In Fig. 1, the curves have fixed values of the variables and the values ofx are presented a
a function of the electrostatic potential. Notice that, due to condition~20!, the electrostatic poten
tial is alwaysf,A0.5.0.7.

In order to present in graphics all possible values ofs, we define the new variable

s5
2

p
arctans. ~21!

It is this new variable that is used in Fig. 2, where the black hole solutions are again presen
functions ofs andf.

FIG. 1. Solutions of Eq.~17! which obey condition~20!, for fixed values ofs50.1, 0.5, 1, 5, 10.
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IV. STABILITY

To study the stability of the solutions found in Sec. III we compute the local minima of
reduced action~6!. We will follow the same procedure as Ref. 8. The conditions of local stab
are, see Ref. 7,

bS ]f

]e D
S,r B

>0, ~22!

Cf,r B
5bS ]S

]b D
f,r B

>0, ~23!

whereCf,r B
is the heat capacity at constantf and r B . Computing these functions we obtain

bS ]f

]e D
S,r B

5
4p4a2~r B

32r 1
3 !r 1

3

~3p2a2r 1
4 2e2!~p2a2r 1r B~r B

21r 1r B1r 1
2 !2e2!

>0 ~24!

and

Cf,r B
5

4p4a2r 1
3 ~r B

32r 1
3 !~3p2a2r 1

4 2e2!

e412p2a2e2r 1r B~r B
222r 1r B22r 1

2 !13p4a4r 1
5 ~2r B

31r 1
3 !

>0. ~25!

These conditions are satisfied for every value ofr 1 ande that verify conditionsr 1,r B and~19!.
Therefore all physical black hole solutions are locally stable. This means that the toroidal
holes are more stable than the spherical ones, since the Reissner–Nordstro¨m–anti-de Sitter black
hole is unstable for a wide regions of values ofb, f, anda.7

However these solutions are not necessarily global minima of the reduced action. In thi
they do not dominate the grand partition function and the zero-loop approximation being use
does not hold.13

The reduced action given in~6! goes to infinity in the noncompact directions wherer 1 or e go
to infinity. Therefore the global minimum of the reduced action is either at the local minimu
at r 15e50. At this latter point the reduced action is null. Therefore the condition for glo
stability of the solutions computed in Sec. III is that the classical action, i.e., the reduced
evaluated at the local minimum, is negative. This is indeed the case for all physical solutio
Eq. ~17!. We conclude that the solutions presented in Figs. 1 and 2 are globally stabl
dominate the grand partition function. Again, we can say that the toroidal black hole is more
than its spherical counterpart, the Reissner–Nordstro¨m–anti-de Sitter black hole, which is no
dominant in a certain region of values ofb, f, anda.7

FIG. 2. Solutions of Eq.~17! which obey condition~20!. The variables is defined in~21!.
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V. TAKING THE BOUNDARY TO INFINITY

As for the spherical counterpart of this black hole,7 there are two ways of taking the limi
r B→`; ~i! fixing the black hole solutions, i.e., fixing the values ofr 1 and e and ~ii ! fixing the
boundary conditions, i.e., fixing the values ofb andf.

Fixing the black hole solutions and taking the limitr B→`, the temperatureT5b21 and the
electrostatic potential go to zero asr B

21, see Eqs.~13! and~14!. In this case the classical action,
given by, see Eq.~6!,

I 5
p2r 1

2 ~e21p2a2r 1
4 !

e223p2a2r 1
4 . ~26!

This is always negative as long as ther 1 obeys the necessary condition to represent the e
horizon, i.e., condition~19!. Therefore the locally stable solutions are also globally stable
dominate the grand partition function. This means that for this black hole there is no
transition such as the one found for spherical black holes.14,7 The thermal energy goes to zero
m/par B , wherem is the mass of the black hole given by

m5
p

2 S e2

p2r 1
1a2r 1

3 D . ~27!

The heat capacity is given by, see Eq.~25!,

Cf52p2r 1
2 S 12

2e2

e213p2a2r 1
4 D . ~28!

The heat capacity is positive as long asr 1 obeys condition~19!, which means these solutions a
all stable.

Fixing the boundary conditions and taking the limitr B→`, we obtain solutions that diverge
This can be seen using Eq.~17! and taking this limit, the event horizon radiusr 1 goes to infinity
asxrB . All other thermodynamical quantities—mean value of the charge, entropy, action, en
and heat capacity@see Eqs.~16!, ~10!, ~6!, ~8!, and ~25!, respectively#, diverge asr B

2. Therefore
this way of taking the limit seems to be of less physical interest than the previous.

VI. CONCLUSIONS

We have studied the thermodynamics of the charged, static, and toroidal black hole~studied in
Ref. 2! closed in a box with finite radius. We conclude that the Hawking–Bekenstein law
entropy is still valid for black holes with this symmetry. Furthermore we find that in the g
canonical ensemble, with temperature and electrostatic potential fixed at the boundary, the
black hole solution that is globally stable, which means it dominates the grand partition fun
These results are generally different from the results obtained for the spherical counterpart
black hole, the Reissner–Nordstro¨m–anti-de Sitter black hole, for which there were found one
two solutions, which can be stable or unstable, and do not necessarily dominate the grand p
function.7,15 This means that, contrary to the Reissner–Nordstro¨m–anti de Sitter black hole, fo
the toroidal black hole no phase transition was found.
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Dynamical system analysis for the Einstein–Yang–Mills
equations

M. Yu. Zotova)

D. V. Skobeltsyn Institute of Nuclear Physics of Moscow State University, Moscow 119899,
Russia
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Local solutions of the static, spherically symmetric Einstein–Yang–Mills~EYM!
equations with SU~2! gauge group are studied using dynamical systems methods.
This approach enables us to classify EYM solutions in a neighborhood of the
origin, to prove the existence of solutions with an oscillating metric as well as the
existence of local solutions for all known formal power series expansions, to study
the extendibility of solutions, and to find some new local singular solutions.
© 2000 American Institute of Physics.@S0022-2488~00!03407-1#

I. INTRODUCTION

The discovery of a discrete family of asymptotically flat particlelike solutions for the st
spherically symmetric Einstein–Yang–Mills~EYM! equations with SU~2! gauge group, made by
Bartnik and McKinnon in 1988,1 evoked considerable interest in these equations and their va
generalizations. The intensity of investigations performed in this field is shown by the
review,2 which summarizes a decade’s work and contains more than 300 references to p
tions on the subject. However, there are still some problems which remain unsolved. One
most interesting is probably the task to prove the existence of metric oscillations in the vicin
the origin,r 50, which were found numerically during the study of the EYM black holes inte
structure.3 The initial purpose of the present work was to solve this problem. Some other
questions can be found in Ref. 4.

Let us note that there are at least two approaches to the analysis of local solutions of no
ordinary differential equations. One of them, namely, the asymptotic theory of differential e
tions, in some cases makes it possible to obtain a complete classification of solutions in a
borhood of a singular point. However, the right-hand side of the studied equation must, as
satisfy some rather specific conditions~see, e.g., Ref. 5!. Another way, known as the theory o
dynamical systems, or the qualitative theory of differential equations, is less restrictive in
sense, though it also does not always lead to a comprehensive description of the solutions b
~see, e.g., Ref. 6!. Nevertheless, there are a number of problems in astrophysics and cosm
which were solved based on this approach~see Refs. 7 and 8 and references therein!.

In this paper, dynamical systems methods are used for the analysis of the EYM sol
asymptotic behavior. This enables us to prove the existence of the above-mentioned solutio
the oscillating metric, as well as the existence of local solutions for all known formal power s
expansions, and to find some new local solutions. Moreover, a classification of local soluti
the vicinity of the origin is obtained. In particular, it is shown that there exists a neighborho
r 50 such that the metric function has a fixed sign in it. Specifically, if the limiting value of
gauge function equals61, then all real solutions belong to the Schwarzschild and Bartn
McKinnon types. In other cases, the solutions behavior depends on the metric function
Namely, if the metric function is positive, then all solutions possess the behavior of the Reis
Nordström type. If, on the contrary, the metric function is negative, then almost all solutions
such that the metric function oscillates with its amplitude growing unboundedly asr→0, but the

a!Electronic mail: zotov@eas.npi.msu.su
47900022-2488/2000/41(7)/4790/18/$17.00 © 2000 American Institute of Physics
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gauge function is monotone~though its derivative also oscillates with unboundedly growing a
plitude!. Only particular solutions in this case exhibit asymptotic behavior of the ‘‘anti-Reissn
Nordström’’ type. This result also gives the negative answer to the question stated in R
whetherr 50 is a limit point for zeros of the metric function.

We have also considered the asymptotic behavior of solutions in the far field,r @1, and in the
vicinity of the points where the metric function tends to zero. This analysis leads to a discov
some new local singular solutions and allows us to obtain certain conclusions concernin
extendibility of solutions and their limiting behavior as the number of the gauge function n
tends to infinity.

A detailed discussion of the physical interpretation of the EYM equations solutions ca
found in Ref. 2.

II. THE EQUATIONS

Recall that the space–time metric for the static, spherically symmetric EYM equations c
written as

ds25s2Ndt22N21dr22r 2~dq21sin2 q dw2!,

whereN ands depend onr , and the Yang–Mills gauge field reads as

A5~T2dq2T1 sinqdw!w1T3 cosqdw,

whereTi5
1
2 t i are the SU~2! group generators andt i are the Pauli matrices,i 51,2,3 ~see, e.g.,

Ref. 2!.
The EYM equations in this framework take the form of two ordinary differential equations

the metric functionN and the gauge functionw:

r 3N81~112w82!r 2N1~12w2!22r 250,
~1!

r 3Nw92@~12w2!22r 21r 2N#w81~12w2!rw50,

and a decoupled equation fors:

s8

s
5

2w82

r
.

Since~1! do not involves, one can use these to obtainN andw, and then solve the equation fo
s. Thus we restrict our considerations to Eqs.~1!. We also remark that~1! are invariant under the
transformationr→2r ; thus, in what follows we discuss only the regionr>0.

For the purposes of studying the EYM solutions at finiter , it is convenient to rewrite~1! in
terms ofw andu5r 2N. They become

ru82~122w82!u1~12w2!22r 250,
~2!

ruw92@u1~12w2!22r 2#w81~12w2!rw50.

Recall that the only known explicit solutions of~2! are the Schwarzschild solution

w[61, u5ar1r 2, ~3!

and the Reissner–Nordstro¨m solution

w[0, u511br1r 2, ~4!

wherea andb are arbitrary constants.
                                                                                                                



s
. Thus

at

-

et

sets

4792 J. Math. Phys., Vol. 41, No. 7, July 2000 M. Yu. Zotov

                    
In order to apply the theory of dynamical systems to the analysis of the EYM equation~2!,
it is necessary to write them as an autonomous system of first-order differential equations
we introduce the functionv5w8 and an independent variablet defined bydr5rudt. After
making these changes, we obtain the dynamical system

ṙ 5ru,

u̇5@~122v2!u2~12w2!21r 2#u,
~5!

v̇5@u1~12w2!22r 2#v2~12w2!rw,

ẇ5ruv.

Notice that this system has solutions forr[0 andu[0, which do not take place for~2!.
The first step to start analyzing~5! is to determine the critical points. It is easy to verify th

the dynamical system~5! has the following critical sets:

ARN6: „0,2~12w2!2,61,w…,

RN: „0,~12w2!2,0,w…,

SBM6: ~0,0,v,61!,

W: ~0,0,0,w!,

RH: „r ,0,~12w2!rw/@~12w2!22r 2#,w…,

DH6: ~61,0,v,0!.

All the critical sets belong to the hyperplanesr 50 and/oru50, in which the conditions of the
existence–uniqueness theorem do not hold for~2!.

In what follows we shall not give a global phase portrait for~5!, but we shall mainly concen
trate on the results that have direct consequence for the EYM equations~2!.

III. PRELIMINARY INVESTIGATION OF THE ORIGIN NEIGHBORHOOD

Let us consider the projection of~5! into the hyperplaner 50. This immediately leads tow
[w05const. Thus the dynamical system~5! reduces to

u̇52a2u1~122v2!u2,
~6!

v̇5a2v1uv,

wherea512w0
2. Notice that~6! is invariant under the transformationv→2v. Hence, the phase

portrait will be symmetric with respect to theu axis.
Since~6! contains a free parametera, it is convenient to split the analysis into two steps. L

us begin witha50. In this case,~6! reads as

u̇5~122v2!u2,
~7!

v̇5uv.

One can easily solve this system. First, the critical points, which are the projection of the
SBM6 andW, give u[0, v[const. Next,
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C22C1t5
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v
ev2

1 iAp erf~ iv !, and u5C1ve2v2
,

whereC1 andC2 are arbitrary constants, andvÞ0. Finally, forv[0 one hasu5(C2t)21, where
C is an arbitrary constant,tÞC. We remark that ifu,0, then the nontrivial solutions tend to zer
as t→`. In the opposite case, they tend to zero ast→2`.

The phase portrait of~7! is shown in Fig. 1.
Now let us study~6! for aÞ0 ~i.e., for w0Þ61). In this case, the system~6! has the

following critical points:Z: ~0,0!, A6: (2a2,61), andR: (a2,0).
The point Z is the projection of the lineW. The eigenvalues ofZ are lu52a2 and lv

5a2. Thus,Z is a saddle. It has four separatrices, which can be easily obtained explicitly
repelling separatrices, denote them byS6 in accordance with the sign ofv, are tangent to the
eigenvectorzv5(0,1). They can be written as

u[0, v5Cvea2t. ~8!

Here and forth the letterC, with an alphabetical subscript (Cu , Cv , etc.!, denotes a nonzero
constant.

The attracting separatrices are tangent to the eigenvectorzu5(1,0). They take the form

u5
a2

11Cuea2t
, v[0. ~9!

One of these separatrices, denote it byS1 , belongs to the half-planeu,0. For S1 , Cu,0 and
t.2a22 ln uCuu. Another separatrix,S2 , lies in the half-planeu.0. It hasCu.0 and joinsZ to
R ~see Fig. 2!.

The pointR is the projection of the critical curveRN. The eigenvalues ofR arelu5a2 and
lv52a2. Thus, it is an unstable node. Almost all trajectories that approachR as t→2` are
tangent to the eigenvectorzu5(1,0). The corresponding separatrices have the form~9!. One of
them, namely,S2 , joins R to Z. Another one,S3 , is defined forCu,0 andt,2a22 ln uCuu.

There are also two separatrices, denote them byT6, which are tangent to the eigenvect
zv5(0,1). Let us show that they have the form

u5a2~12 2
3 v2!1o~v2! ~10!

FIG. 1. Phase portrait of the dynamical system~7!.
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asv→0. To see this, defineuv5(u2a2)/v. Now the dynamical system~6! reads as

u̇v52a2~uv12a2v !22~2a21uvv !uvv2,

v̇52a2v1uvv2.

For v50, this system has a saddle (0,0) with the eigenvaluesluv
52a2, lv52a2 and the

eigenvectorszuv
5(1,0), zv5(2 2

3 a2,1). The separatrices that are tangent to the eigenvectozuv

belong to the linev50. Hence, there are no corresponding trajectories of~6!. Conversely, the
eigenvectorzv determines the outgoing separatrices, which take the formuv52 2

3 a2v1o(v) as
v→0. This yields~10!.

Note that the same technique can be used to find the higher-order terms in~10!. This is also
valid for the asymptotic solutions presented below.

Finally, the pointsA6 represent projections of the critical curvesARN6. The eigenvalues of
A6 arelu,v5 1

2 a2(16 iA15). Thus, these critical points are repelling foci. It is important to n
here that for all the trajectories that spiral away fromA6, the metric functionu is strictly negative
because of the separatricesS6, andv preserves its sign due to the separatrixS1 @or, the same,
because of the above mentioned invariance of~6! under the transformationv→2v#. Since there
are no other finite critical points in the half-planeu,0, the trajectories that spiral away from th
pointsA6 do not have limit cycles. We remark that this can also be easily proved using the D
criterion. Namely, letP(u,v) and Q(u,v) denote the right-hand sides of Eqs.~6!, respectively,
and letB(u,v)5(u2v)21. Then

]BP

]u
1

]BQ

]v
5

a2

u2v

preserves its sign and does not turn to zero in the domainsv.0 andv,0. Hence, neither of thes
half-planes contains limit cycles for the trajectories of~6! ~see, e.g., Ref. 6!. Thus,u andv exhibit
oscillations with the amplitude growing infinitely ast→`.

Figure 2 shows the phase portrait of~6! near the pointsA6, Z, and R. Notice that this
portrait is drastically different from that one shown in Fig. 1. Thus,a is a bifurcation parameter fo
the dynamical system~6!.

FIG. 2. Phase portrait of the dynamical system~6! in the vicinity of the finite critical points foraÞ0. Dashed lines
represent the curvesu8(v)50.
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In order to obtain the global phase portrait of~6!, one has to study the behavior of i
trajectories at infinity. Using the standard transform to projective coordinates, one can find o
the system~6! has four critical points at the (u,v) phase plane boundary, namely,U6: (u
56`,v50) andV6: (u50,v56`). The pointsU6 are saddles, andV6 are saddle-nodes. Th
separatricesS3 and S1 are the only trajectories, which approach the pointsU6 from the finite
region of the phase plane. The pointsV6, besides the separatricesS6, have ingoing trajectories
which emanate fromR. These trajectories have the formu5 1

2 a2v221o(v22) as v→`. The
boundary of the phase plane contains two separatrices that joinU1 to V6 and two separatrices tha
go from V6 to U2.

IV. THE ORIGIN NEIGHBORHOOD

A. The critical curves ARNÁ

Let us turn to the analysis of the dynamical system~5! near the critical curvesARN6: „0,
2(12w2)2,61,w… for wÞ61. The excluded points also belong to the linesSBM6 and will be
studied below. Notice that the curvesARN6 ~with the pointsw561 excluded! lie in the region
u,0. Hence, in a neighborhood of these curves,t growing to infinity corresponds to decreasingr
in the EYM equations~2!.

The eigenvalues ofARN6 arel r52(12w2)2, lu,v5 1
2 (12w2)2(16 iA15), andlw50. It

should be recalled at this point that ann-dimensional critical set necessarily hasn zero eigenval-
ues ~see, e.g., Ref. 7!. Thus, the zero eigenvaluelw corresponds to the fact thatARN6 are
one-dimensional sets of critical points. Since other eigenvalues have nonzero real part,ARN6 are
hyperbolic sets.

The eigenvalueslu,v determine three-dimensional unstable manifoldsM 6 of the curves
ARN6, respectively. Sincelu,v are complex, the trajectories that lie onM 6 describe oscillatory
behavior ofu and v. The found above trajectories that spiral away from the pointsA6 are the
projection of the trajectories that lie onM 6, in the plane (r 50,w5w0Þ61). The separatrices
S6 andS1 also have the obvious counterparts for~5! @see~8! and ~9!#:

r[0, u[0, v5Cvea2t, w[w0 , ~11!

and

r[0, u5
a2

11Cuea2t
, v[0, w[w0 , ~12!

respectively, wherew05constÞ61, andCu,0. These two-dimensional separatrices preserve
signs ofu andv for the trajectories onM 6.

Recall that the trajectories that spiral away fromA6 do not have limit cycles. Evidently, the
same is valid for the trajectories onM 6.

Next, due to the negative eigenvaluel r , each of the curvesARN6 has two-dimensiona
stable separatrices, which are tangent to the eigenvectors

z r
65S 1,64~12w2!w,

w

12w2 ,61D ,

where the upper sign applies forARN1 and the lower one forARN2. It is easy to see that thes
separatrices correspond to a one-parameter family of the EYM solutions that exist in a nei
hood of the origin. Thus, we conclude with the following.

Proposition 1: LetU 2 be the set of solutions for the EYM equations (2) that are define
some neighborhood of r50, u(r ),0 in this neighborhood, andlimr→0w(r )5w0,`,w0Þ61.
ThenU 2 is nonempty. Moreover, almost all solutions of (2) that belong toU 2 are monotone for
the gauge function w and oscillating for the metric function u. These solutions have the followin
properties:
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~1! The amplitude of the metric function oscillations grows unboundedly as r→0.
~2! The values of the metric function at the points of maximum form a sequence, which

tonically converges to zero as r→0.
~3! The derivative of the gauge function also oscillates with the amplitude growing unboun

as r→0, and gets closer to zero on each cycle of the oscillations, but its sign rem
unchanged.

Besides these solutions, U 2 also contains a one-parameter family of local solutions of the ‘‘an–
Reissner–Nordström’’ type:

u52~12w0
2!264~12w0

2!w0r 1o~r !,
~13!

w5w06r 1
w0

2~12w0
2!

r 21o~r 2!

as r→0, where w0Þ61.
Formal expansions of the form~13! and some corresponding numerical solutions were fo

in Ref. 3. This paper was also the first to present the oscillating solutions. Some of their prop
were analyzed in Ref. 9.

B. The critical curve RN

Now let us study~5! in the vicinity of the curveRN: „0,(12w2)2,0,w… for wÞ61. Similar to
the above, the excluded points also belong to the critical setsSBM6 ~andW) and will be studied
below. Notice thatRN ~with the pointsw561 excluded! lies in the regionu.0. Hence, in a
neighborhood ofRN, t growing to infinity corresponds to increasingr in the EYM equations~2!.

The eigenvalues ofRN are l r5lu5(12w2)2, lv52(12w2)2, andlw50. Therefore, all
trajectories of~5! in the vicinity of RN belong to an unstable four-dimensional manifold; th
correspond to a three-parameter family of EYM solutions.

The eigenvaluelv determines two-dimensional separatrices, which are tangent to the e
vectorzv5(0,0,1,0) and take the form

r[0, w[constÞ61, u5a2~12 2
3 v2!1o~v2! as v→0.

The separatricesT6 found above represent their projection in the plane (r 50,w5w0Þ61). The
EYM equations~2! do not have any corresponding solution. Conversely, the eigenvectoz r

5„1,0,w/(12w2),0… and zu5(0,1,0,0) determine trajectories, which correspond to the E
solutions

u5~12w0
2!21u1r 1o~r !,

~14!

w5w01
w0

2~12w0
2!

r 21o~r 2!

as r→0, wherew0Þ61 andu1 are arbitrary constants, and the higher-order terms contain
more parameter.

Let us show how one can choose the third parameter in~14!. The procedure will be similar to
that one used for obtaining~10!. Namely, consider~5! in the local coordinates

r , ur5
u2~12w2!2

r
, v r5

v
r

, w.

Then the corresponding dynamical system, which we omit for brevity, has the critical su
„0,ur ,w/(12w2),w…. ~The other critical sets either havew561 or do not belong to the hyper
planer 50.) The eigenvalues of this surface arel r5lvr

5(12w2)2 andlur
5lw50. It follows
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that all trajectories in a neighborhood of this surface belong to an unstable four-dimen
manifold. The nonzero eigenvalues have the eigenvectorsz r5(1,112w2,0,0) and zvr

5(0,0,1,0). Thus, all the trajectories assume the form

ur5u11~112w0
2!r 1o~r !, v r5

w0

12w0
2 1v1r 1o~r !, w5w01o~r !

asr→0, wherew0Þ61, u1 , andv1 are arbitrary constants. Changing back to the initial variab
and taking into account the above discussion, one has the following.

Proposition 2: LetU 1 be the set of solutions for the EYM equations (2) that are define
some neighborhood of r50, u(r ).0 in this neighborhood, andlimr→0 w(r )5w0,`,w0Þ61.
ThenU 1 is nonempty. Moreover, all solutions of (2) that belong toU 1 form a three-parameter
family of local solutions of the Reissner–Nordström type:

u5~12w0
2!21u1r 1r 21o~r 2!,

~15!

w5w01
w0

2~12w0
2!

r 21w3r 31o~r 3!

as r→0, where w0 , u1 , and w3 are arbitrary constants, w0Þ61.
A formal power series expansion~15! was presented in Ref. 10. Some black hole solutio

with this asymptotic were first found numerically in Ref. 3. The local existence proof for t
solutions was given in Ref. 11. We remark that here we follow the terminology, introduced in
3, which is slightly different from that one used in Refs. 11 and 4.

C. The critical lines SBMÁ

The linesSBM6: (0,0,v,61) are degenerate critical sets, since the eigenvaluesl r , lu , and
lw are equal to zero. In order to study the behavior of trajectories of~5! in a neighborhood of these
lines, we use the standard technique.7

First, definew̄ by w5w̄61, where the upper sign applies forSBM1 and the lower one for
SBM2. Now the linesSBM6 are transformed to thev axis. Next, introduce the local coordinate

r u5
r

u
, u, v, wu5

w̄

u
, ~16!

in which the dynamical system~5! is

ṙ u5~2v21K !r u ,

u̇5~122v22K !u,
~17!

v̇5~11K !v1~16uwu!~26uwu!r uuwu ,

ẇu52~122v22K !wu1r uv,

whereK5@(26uwu)2wu
22r u

2#u, and an overdot stands for derivatives with respect tot defined
by dt5udt ~thus,t5 ln r1const).

The system~17! has one critical set in the hyperplaneu50, namely, ther u axis, which is an
unstable hyperbolic line. The corresponding eigenvalues arel r u

50, lu5lv51, andlwu
521.

The two-dimensional ingoing separatrices

r u[const, u[0, v[0, wu5Cwe2t,
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which are tangent to the eigenvectorzwu
5(0,0,0,1), belong to the hyperplaneu50. Hence, they

do not correspond to any trajectories of~5!. In their turn, the eigenvalueslu andlv , which have
the eigenvectorszu5(2r u

3,1,0,0) andzv5(0,0,2,r u), determine the outgoing three-dimension
separatrices

r u5r 02r 0
3u1o~u!, v52v1u1o~u!, wu5r 0v1u1o~u!

asu→0, wherer 0 andv1 are arbitrary constants. This implies the following.
Proposition 3: All solutions of the EYM equations (2) such thatlimr→0w(r )561 belong to a

two-parameter family of local solutions of the Schwarzschild type:

u5u1r 1r 21o~r 2!,
~18!

w5611w2r 21o~r 2!

as r→0, where u1 and w2 are arbitrary constants.
In particular, the family~18! describes the behavior of the Bartnik–McKinnon particleli

solutions1 ~for u150) and the black hole solutions of the Schwarzschild type3 in the vicinity of the
origin.

It is interesting to note that the separatrices that are tangent to the eigenvectorzu can be
written as

u5
11u1r u

r u
2 , v[0, wu[0,

where u1 is an arbitrary constant andr uÞ0. Obviously, these separatrices correspond to
Schwarzschild solution~3!.

We also remark that the coordinates~16! enable us to resolve the degeneracy of thev axis
along theu direction. Analysis of ther andw directions leads to the same conclusion for the EY
equations as stated in Proposition 3.

It is necessary to emphasize here that we discuss only real EYM solutions, though the
equations also possess complex solutions. For example, a study of~5! in the local coordinates
(r ,u/r 2,v,w̄/r ) leads to a discovery of complex EYM solutions of the form

u52~114w1
2!~r 21w0w1r 3!1o~r 3!,

w5w01w1r 2 1
8 w0r 21o~r 2!

as r→0, wherew0561 andw156()6 iA5)/4. These solutions do not have free paramete

D. The critical line W

The eigenvalues of the critical lineW: (0,0,0,w) are l r50, lu52(12w2)2, lv5(1
2w2)2, andlw50. Hence,W is degenerate for anyw. The eigenvalueslu andlv are nonzero
and have different signs wheneverwÞ61. In this case,W is an unstable critical set with th
outgoing two-dimensional separatrices~11! and the ingoing two-dimensional separatrices~12!.
Investigation of~5! in the vicinity of W gives the same result for the EYM equations as alre
stated in Proposition 3. For this reason we omit the discussion.

Thus, we have obtained a description of the EYM solutions in a neighborhood of the o
r 50. Now the results of our considerations can be summarized in the following classificat

Theorem: All real solutions of the EYM equations (2), defined in a neighborhood of r50,
havelimr→0w(r )5w0,` and belong to one of the following disjoint classes:

~1! w0561. In this case, all solutions belong to the two-parameter family of the Schwarzsc
and Bartnik–McKinnon-type (18).
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~2! w0Þ61, and the metric function u is negative in some neighborhood of r50. In this case,
almost all solutions are such that the metric function u oscillates with unboundedly gro
amplitude as r→0, but the gauge function is monotone (though its derivative also oscill
with the amplitude growing infinitely). Only particular solutions in this case exh
asymptotic behavior, described by the one-parameter family of the ‘‘anti–Reissner–
Nordström’’-type (13).

~3! w0Þ61, and the metric function u is positive in some neighborhood of r50. In this case, all
solutions belong to the three-parameter family of the Reissner–Nordström-type (15).

We remark that this classification scheme explains why almost all interior black hole
tions, found numerically in Ref. 3, exhibit oscillatory behavior of the metric.

V. CRITICAL SETS FOR rÅ0

A. The critical surface RH

Now let us discuss the remaining critical sets of~5!. The surfaceRH: „r ,0,(12w2)rw/@(1
2w2)22r 2#,w… is an unstable hyperbolic set. The eigenvalues ofRH are l r50, lu52@(1
2w2)22r 2#, lv5(12w2)22r 2, andlw50. The three-dimensional separatrices that are tan
to the eigenvectorzv5(0,0,1,0) read as

r[r 05const, u[0, v5
g

b
1Cvebt, w[w05const,

where b5(12w0
2)22r 0

2Þ0 and g5(12w0
2)r 0w0 . Obviously, they do not correspond to an

EYM solution. In their turn, the three-dimensional separatrices that are tangent to the eigen

zu5S 1,2
G

r
,
$2F42@F31~123w2!r 2#r 2%Fw

2G3 ,
Frw

G D ,

whereF512w2 andG5F22r 2, correspond to a two-parameter family of local EYM solution
It is convenient to fix one of these parameters and to write down these solutions as follow

Proposition 4: For any fixed rh.0, the EYM equations (2) possess a one-parameter famil
local solutions of the form

u52
~12wh

2!22r h
2

r h
s1o~s!,

~19!

w5wh1
~12wh

2!r hwh

~12wh
2!22r h

2 s1
~12wh

2!$2~12wh
2!42@~12wh

2!31~123wh
2!r h

2#r h
2%wh

4@~12wh
2!22r h

2#3 s21o~s2!

as s5r 2r h→0, where wh is a constant, satisfyingu12wh
2uÞr h .

The local solutions~19! represent the EYM solutions in the vicinity of a regular horizon. F
the black hole solutions, this is either an event horizon~if r h.u12wh

2u) or an interior Cauchy
horizon~if r h,u12wh

2u). The first existence proof for these local solutions was given in Ref.
Some black hole solutions with an interior horizon were found numerically in Ref. 3.

Note thatRH transforms to the lineW for r 50.

B. The critical lines DHÁ

The linesDH6: (61,0,v,0) are degenerate. All their eigenvalues are equal to zero. Sinc
EYM equations~2! are invariant under the transformationr→2r , we shall study~5! only in the
vicinity of the line DH1.

It is convenient to use the local coordinates
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r̄ 5r 21, ur5
u

r̄ 2 , v, wr5
w

r̄
,

in which the dynamical system~5! reads as

r̄̇ 5~11 r̄ ! r̄ ur ,

u̇r5@22~21 r̄ 12r̄v2!ur1~112wr
2! r̄ 2 r̄ 3wr

4#ur ,
~20!

v̇522v2wr2~v1wr2urv12vwr
2! r̄ 1 r̄ 2wr

31~11vwr ! r̄
3wr

3 ,

ẇr5~11 r̄ !~v2wr !ur ,

where an overdot stands for derivatives with respect tot defined bydt5 r̄ dt.
There are two critical sets of~20! in the hyperplaner̄ 50, namely, the pointD: (0,1,0,0) and

the line L: (0,0,2 1
2 wr ,wr). The eigenvalues ofD are l r̄51, lur

522, and lv,wr
52 1

2 (3
6 i)). Thus,D is an unstable hyperbolic point. The outgoing one-dimensional separatrice

r̄ 52
1

11Cre
2t , ur[1, v[0, wr[0,

which are tangent to the eigenvectorz r̄5(1,0,0,0), correspond to the extreme Reissne
Nordström solutionw[0, u5(12r )2.

Besides this, in the vicinity ofD there exists a stable three-dimensional manifold. In orde
figure out whether this manifold belongs to the hyperplaner̄ 50, one may study a projection o
~20! into r̄ 5const. It occurs that the critical point (1,0,0) exists for anyr̄ and has the eigenvalue
lur

5222 r̄ andlv,wr
52 1

2 (31 r̄ 6 iA(31 r̄ )(113r̄ )). Hence, for anyr̄ .2 1
3 all the eigenval-

ues have negative real part, andlv and lwr
are complex conjugate. Thus, the stable thr

dimensional manifold does not belong to the hyperplaner̄ 50, and the trajectories on this manifol
correspond to a two-parameter family of local EYM solutions.

It is interesting to note that the projection of~20! into the plane (r̄ 50,ur51) gives a system
of two linear differential equations

v̇522v2wr ,
~21!

ẇr5v2wr ,

which can be easily solved:

v5FC1 cosS)2 t D2
)

3
~C112C2!sinS)2 t D G expS 2

3

2
t D ,

wr5FC2 cosS)2 t D1
)

3
~2C11C2!sinS)2 t D G expS 2

3

2
t D ,

where C1 and C2 are the constants of integration. Thus, the projection of~20! into (r̄ 50,ur

51) represents linear oscillations ofv andwr with infinitely many zeros. Now we can conclud
with the following proposition.

Proposition 5: The EYM equations (2) possess a two-parameter family of local solu
defined in the vicinity of r51 and such that the gauge function w oscillates with infinitely ma
zeros as r→1. For the solutions of this family both the metric function u and the gauge func
tend to zero as r→1.
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It is easy to see that these solutions tend to the extreme Reissner–Nordstro¨m solution asr
→0.

The solutions given in Proposition 5 can be treated as a description of the limiting behav
the EYM solutions in the vicinity ofr 51 as the number of the gauge function nodes tend
infinity. The limiting behavior of the EYM solutions has already been studied in different asp
in Refs. 13–17. Solutions that exhibit oscillations ofw were first discussed in Ref. 15. But, i
addition to the results of Ref. 15, we see that the gauge function may have infinitely many
not only to the left ofr 51, but also to the right.

Finally, the lineL has the eigenvaluesl r̄50, lur
52, lv522, andlwr

50. Thus,L is a

degenerate set. The eigenvectorszur
5(0,1, 3

16 wr ,2 3
4 wr) and zv5(0,0,1,0) determine two-

dimensional separatrices, which lie in the hyperplaner̄ 50. Thus, they do not correspond to an
EYM solution. Further investigation of the lineL did not reveal any trajectories of~5! that have
corresponding EYM solutions different from those discussed above.

VI. SOLUTIONS WITH A SINGULAR HORIZON

As we have seen in Proposition 4, the EYM solutions that have a regular horizon belong
one-parameter family. Hence, these solutions form a set of measure zero in the space of a
solutions. Thus, there naturally appears a question about the generic behavior of the EYM
tions while the metric function tends to zero. One may expect that this behavior differs from
one given by~19!, since the conditions of the existence-uniqueness theorem do not hold for~2! in
the vicinity of a point whereu50.

Really, investigation of the behavior of the EYM solutions asr tends to infinity reveals that a
typical solution cannot be continued to the far field, since it has a singular horizon, i.e., a po
which the metric function tends to zero, the gauge function stays finite, but its deriv
diverges.12,18 This fact was first noticed in Ref. 13, and a power series expansion describin
behavior of the EYM solutions in the vicinity of a singular horizon was given. Let us show u
dynamical systems methods that the formal expansion, found in Ref. 13, corresponds to a
singular EYM solution. Our analysis will also lead us to a discovery of two new local sing
solutions.

Let us rewrite the dynamical system~5! as

ṙ 5ruz2,

u̇52@~22z2!u1~12w2!2z22r 2z2#u,
~22!

ż52@u1~12w2!22r 22~12w2!rzw#z3,

ẇ5ruz,

wherez51/v, and an overdot stands for derivatives with respect tot defined bydt5z2dt.
For z50, the critical points of~22! form a degenerate plane (r ,0,0,w). In order to study~22!

in the vicinity of this plane, we introduce the local coordinates (r ,uz5u/z2,z,w), in which ~22!
can be written as

ṙ 5ruzz
2,

u̇z52@~223z2!uz2~12w2!21r 212~12w2!rzw#uz ,
~23!

ż52@uzz
21~12w2!22r 22~12w2!rzw#z,

ẇ5ruzz,

where an overdot stands for derivatives with respect tot.
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The system~23! has two critical sets in the hyperplanez50, namely, the planeRW: (r ,0,0,w)
and the surfaceSH: (r ,@(12w2)22r 2#/2,0,w), which are nondegenerate whenever

rÞu12w2u. ~24!

The eigenvalues ofRW arel r50, luz
5(12w2)22r 2, lz52luz

, andlw50. Thus,RW is
an unstable hyperbolic set. One can easily see that if~24! holds, then the eigenvectorszuz

5(0,1,0,0) andzz5(0,0,1,0) determine the three-dimensional separatrices

r[r 05const, uz5
b

21Cue2bt , z[0, w[w05const,

and

r[r 0 , uz[0, z5
b

g1Cze
bt , w[w0 ,

respectively, whereb5(12w0
2)22r 0

2Þ0 and g5(12w0
2)r 0w0 . Clearly, these separatrices d

not correspond to any EYM solution.
Next, the eigenvalues ofSH are l r50, luz

5lz52@(12w2)22r 2#, andlw50. Hence, if
~24! holds, then all trajectories of~23! in the vicinity of SH belong to a four-dimensional man
fold. The eigenvaluesluz

andlz have the eigenvectorszuz
5(0,1,0,0) andzz5(0,0,1,2 1

2r ). Thus,
all trajectories in the vicinity ofSH take the form

r 5r 01o~z!, uz5
b

2
1u1z1o~z!, w5w02

r 0

2
z1o~z!

asz→0, wherebÞ0, andu1 is an arbitrary constant. This leads to the following.
Proposition 6: Let r0.0 be a point such that

lim
r↗r 0

u~r !50, lim
r↗r 0

w~r !5w0,`, lim
r↗r 0

w8~r !5`,

and b5(12w0
2)22r 0

2Þ0. Then all solutions of the EYM equations (2) in the left vicinity of0

have the form

u5
2b

r 0
s21u1s31o~s3!, w5w06Ar 0s1o~s! ~25!

as s5Ar 02r→0, where u1 is an arbitrary constant. These solutions do not have other par
eters besides w0 and u1 .

Thus, local solutions~25! exist in the left vicinity of any pointr 0.0 such thatr 0Þu1
2w0

2u.
As we have already mentioned, regular solutions~19! form a one-parameter family. Unlike

them, singular solutions~25! form a two-parameter family. It follows immediately that in the le
vicinity of an arbitrary pointr 0.0 such that limr↗r 0

u(r )50, limr↗r 0
w(r )5w0 , and r 0Þu1

2w0
2u, almost all solutions of the EYM equations~2! exhibit asymptotic behavior~25! and,

therefore, cannot be continued towardr 5`.
Let us also mention that it follows from~25! and the above analysis of the critical setsRH and

DH6 that almost all EYM solutions, defined at an arbitrary finite pointr 0.0, can be continued to
the left for all r ,r 0 . A more detailed investigation of extendibility of solutions of the EY
equations can be found in Ref. 4.

Now let us study~22! in the vicinity of the curver 5u12w2u. We start withuwu<1. In the
local coordinates
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r z5
1

z
~r 211w2!, uz5

u

z3 , z, w,

the dynamical system~22! reads as

ṙ z5~12w2!~z12w!uz1@2~z1w!uzz2~12w2!2w#r z2~12w2!~21zw!r z
22r z

3z,

u̇z52@2~122z2!uz13~12w2!2w1~12w2!~413zw!r z12r z
2z#uz ,

~26!
ż5@~12w2!2w2uzz

21~12w2!~21zw!r z1r z
2z#z,

ẇ5~12w21r zz!uzz,

where an overdot stands for derivatives with respect tot defined bydt5zdt.
The system~26! has six critical sets in the hyperplanez50, namely,LW: (0,0,0,w), LR6:

(r z ,0,0,61), CR: „2 1
2(12w2)w,0,0,w…, RU1 : „2(12w2)w, 1

2(12w2)2w,0,w…, and RU2 :

„2 3
2 (12w2)w, 3

2 (12w2)2w,0,w…. Analysis of the first four critical sets did not reveal any tr
jectories of~26! that have corresponding EYM solutions. Thus we discuss only the curvesRU1

andRU2 .
The eigenvalues ofRU1 are l r z

5luz
5(12w2)2w, lz52(12w2)2w, and lw50. Thus,

RU1 is an unstable hyperbolic critical set whenever

wÞ0,61. ~27!

In this case, all trajectories on a three-dimensional manifold, determined byl r z
and luz

, are
tangent to the eigenvectorz r z ,uz

5„1,2(12w2),0,0…, which defines the two-dimensional separ
trices

uz52 1
2 a2w02ar z , z[0, w[w0Þ0,61.

One of these separatrices joinsRU1 to CR. However, the hole manifold belongs to the hyperpla
z50. Thus, the trajectories on it do not correspond to any EYM solution.

Unlike this, the two-dimensional separatrices that are tangent to the eigenvector

zz5„

1
8 ~12w2!~325w2!,2 1

4 ~12w2!2~223w2!,1,2 1
2 ~12w2!…,

take the form

r z52aw01 1
8 a~325w0

2!z1o~z!,

uz5
1
2 a2w02 1

4 a2~223w0
2!z1o~z!, ~28!

w5w02 1
2 az1o~z!

asz→0, wherew0Þ0,61, and thus have corresponding EYM solutions.
Next, the eigenvalues ofRU2 are l r z

52(12w2)2w, luz
53(12w2)2w, lz522(1

2w2)2w, andlw50. Hence,RU2 is also an unstable hyperbolic critical set whenever~27! holds.
The eigenvectorzuz

5„1,2(12w2),0,0… defines the two-dimensional separatrices

uz52ar z , z[0, w[w0Þ0,61.

One of them joinsRU2 to LW. Besides these separatrices, there is also a three-dimens
manifold, defined by the eigenvaluesl r z

and lz . Almost all trajectories on this manifold ar
tangent to the eigenvectorz r z

5„1,23(12w2),0,0…, which determines the separatrices
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uz5
3
2 a2w023as1o~s! as s5r z1

3
2 aw0→0, z[0, w[w0 ,

wherew0Þ0,61. In addition, there exist two-dimensional separatrices, which are tangent t
eigenvector

zz5„

3
40 ~12w2!~13212w2!,2 9

40 ~12w2!2~1129w2!,1,2 3
4 ~12w2!…

and take the form

r z52 3
2 aw01 3

40 a~13212w0
2!z1o~z!,

uz5
3
2 a2w02 9

40 a2~1129w0
2!z1o~z!, ~29!

w5w02 3
4 az1o~z!

as z→0, wherew0Þ0,61. These separatrices, together with~28!, have corresponding singula
EYM solutions. Conversely, all trajectories, defined by the eigenvaluesluz

andl r z
, belong to the

hyperplanez50 and do not have counterparts neither for the dynamical system~22! nor for the
EYM equations.

Analysis of~22! in the vicinity of the curver 52(12w2) for uwu>1 is completely analogous
to the previous case. The dynamical system~22!, written in the local coordinates

r z5
1

z
~r 112w2!, uz , z, w,

has the same critical sets in the hyperplanez50, as~26!, to the exclusion of the curvesRU1 and
RU2 , which in this case have the opposite sign ofuz . Asymptotic formulas~28! and~29! convert
to

r z52aw02 1
8 a~325w0

2!z1o~z!,

uz52 1
2 a2w02 1

4 a2~223w0
2!z1o~z!,

w5w01 1
2 az1o~z!,

and

r z52 3
2 aw02 3

40 a~13212w0
2!z1o~z!,

uz52 3
2 a2w02 9

40 a2~1129w0
2!z1o~z!,

w5w01 3
4 az1o~z!

as z→0, respectively. Recall thata512w0
252r 0Þ0,1 here. Combining these solutions wi

~28! and ~29!, we get the following proposition.
Proposition 7: In the left vicinity of any point r0.0, r 0Þ1, the EYM equations (2) hav

solutions of the form

u564jAr 0w0s31o~s3!, w5w06Ar 0s1o~s!,

and

u56 16
3 jw0w12s

31o~s3!, w5w06w12s1o~s!,
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as s5Ar 02r→0, where r05u12w0
2u, j52sgn(12w0

2), and w125A3r 0/2. These solutions do
not have free parameters.

To the best of the author’s knowledge, the presented local solutions are new. Notice tha
solutions, as well as~25!, are singular and cannot be continued to the far field.

We remark that Proposition 7 excludes the casesr 051 andr 050, which correspond tow0

50,61. Analysis of the first one reveals complex solutions of the EYM equations. We do
discuss them here, since their physical interpretation is unclear. The latter case has alrea
discussed in Sec. IV.

VII. SOLUTIONS IN THE FAR FIELD

The behavior of the EYM solutions in the far field,r @1, was studied in great details~see
Refs. 2 and 19 and references therein!. In this section, we briefly give another existence proof
the asymptotically flat solutions and obtain a description of the limiting behavior of the E
solutions as the number of the gauge function nodes tends to infinity. To implement this ta
return to the EYM equations~1!, but we changer to z51/r . Next, we rewrite~1! as a dynamical
system of the form

ż5z2N,

Ṅ5@211~112z4v2!N1~12w2!2z2#zN,
~30!

v̇5@123N2~12w2!2z2#zv2~12w2!w,

ẇ5z2vN,

wherev5w8(z), and an overdot stands for derivatives with respect tot defined bydz5z2Ndt.
The dynamical system~30! has two critical sets in the hyperplanez50, namely, the planes

AF6: (0,N,v,61) and OS: (0,N,v,0). Both of them are degenerate. Thus we perform
standard procedure of their investigation for finiteN andv.

A. The critical planes AF Á

In this case, we introduce the local coordinates (z,N,v,wz5w̄/z), wherew5w̄61; here the
upper sign applies forAF1 and the lower one forAF2. Now ~30! can be written as

ż5zN,

Ṅ5@211~112z4v2!N1~26zwz!
2z4wz

2#N,
~31!

v̇5@123N2~26zwz!
2z4wz

2#v1~16zwz!~26zwz!wz ,

ẇz5~v2wz!N,

where an overdot stands for derivatives with respect tot defined bydt5zdt.
The dynamical system~31! has two critical lines in the hyperplanez50, namely, Z1 :

(0,1,wz ,wz) andZ2 : (0,0,22wz ,wz). The eigenvalues ofZ1 arelz5lN51, lv523, andlwz

50. The eigenvectorzv5(0,0,22,1) defines the ingoing two-dimensional separatrices

z[0, N[1, wz5w02 1
2 v,

wherew0 is an arbitrary constant. Since these separatrices belong to the hyperplanez50, they do
not correspond to any trajectories of~30!.

The eigenvalueslz and lN have the eigenvectorszz5(1,0,6 3
2 wz

2 ,6 3
4 wz

2) and zN5(0,1,
2 3

2 wz ,2 3
4 wz), where the signs inzz correspond to the signs on the right-hand sides of~31!.

Thus, the three-dimensional outgoing separatrices take the form
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N511n1z1o~z!,

v5w11 3
2 ~6w12n1!w1z1o~z!,

wz5w11 3
4 ~6w12n1!w1z1o~z!

as z→0, wheren1 and w1 are arbitrary constants. Clearly, these separatrices correspond
two-parameter family of the asymptotically flat solutions of~1!.

Proposition 8: The EYM equations (1) possess a two-parameter family of solutions suc
limr→` w(r )5w`561. All solutions of this family have the form

N511n21r 211o~r 21!,

w5w`1w21r 211 3
4 ~w`w212n21!w21r 221o~r 22!

as r→`, where n21 and w21 are arbitrary constants.
Finally, the eigenvalues ofZ2 are lz50, lN521, lv51, and lwz

50. Hence,Z2 is an
unstable degenerate set. The eigenvalueszN5(0,1,26wz ,3wz) andzv5(0,0,1,0) determine two-
dimensional separatrices, which belong to the hyperplanez50. Thus, they have no correspondin
trajectories of~30!. Closer analysis ofZ2 did not reveal any trajectories of~31! that correspond to
EYM solutions.

B. The critical plane OS

In this case, we study~30! in the local coordinates (z,N,v,wz5w/z), in which ~30! may be
written as

ż5zN,

Ṅ5@211~112z4v2!N1~12z2wz
2!2z2#N,

~32!
v̇5@123N2~12z2wz

2!2z2#v2~12z2wz
2!wz ,

ẇz5~v2wz!N,

where an overdot stands for derivatives with respect tot defined as in~31!.
The system~32! has two critical sets in the hyperplanez50, namely, the pointP: (0,1,0,0),

and the lineZ3 : (0,0,wz ,wz). The eigenvalues ofP are lz5lN51 andlv,wz
52 1

2 (36 i)).
Thus,P is an unstable hyperbolic point. The eigenvectorszz5(1,0,0,0) andzN5(0,1,0,0) deter-
mine the outgoing two-dimensional separatrices

N511n1z1z2, v[0, wz[0,

where n1 is an arbitrary constant. Obviously, these separatrices correspond to the Reis
Nordström solution~4!.

Next, trajectories that belong to a stable two-dimensional manifold, defined by the eigenv
lv andlwz

, spiral towardP ast→`. These solutions may be written down explicitly, since f
z[0 andN[1 the system~32! reads exactly as~21! with wr replaced bywz . However, the whole
manifold belongs to the hyperplanez50, so that the trajectories on it do not correspond to a
EYM solution. One may treat these trajectories as a description of the limiting behavior o
EYM solutions as the number of the gauge function nodes tends to infinity.

Finally, the lineZ3 is an unstable degenerate critical set. The eigenvalues ofZ3 are lz50,

lN521, lv51, andlwz
50. One can easily see that the eigenvectorszN5(0,1,32 wz ,0) andzv
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5(0,0,1,0) define two-dimensional separatrices, which belong to the hyperplanez50. Thus, they
do not have corresponding trajectories of~30!. Additional study ofZ3 did not reveal any trajec-
tories of ~32! that correspond to EYM solutions.

We remark that this is still an open question whether there are EYM solutions such
N(r ),0 in a neighborhood ofr 5` ~cf. Refs. 4 and 11!.

Let us mention in conclusion that though our investigation was restricted to local solutio
the EYM equations, dynamical systems methods can also be used for the analysis of the so
global behavior. This will be the subject of a forthcoming publication.
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E6 unification model building. I. Clebsch–Gordan
coefficients of 27 ‹27

Gregory W. Andersona) and Tomáš Blažekb)
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In an effort to develop tools for grand unified model building for the Lie groupE6 ,
in this paper we present the computation of the Clebsch–Gordan coefficients for
the product (100000)̂ (000010), where ~100000! is the fundamental 27-
dimensional representation ofE6 and~000010! is its charged conjugate. The results
are presented in terms of the dominant weight states of the irreducible representa-
tions in this product. These results are necessary for the group analysis ofE6

operators also involving higher representations, which is the next step in this
project. In this paper we apply the results to the construction of the operator273.
© 2000 American Institute of Physics.@S0022-2488~00!05407-4#

I. INTRODUCTION

Within the last 30 years it has become clear that the fundamental properties of elem
particles may be explained by considering symmetries larger than the explicit symmetry
particle interactions. The concept of~spontaneously! broken symmetry thus became a cornersto
in our understanding of the basic properties of matter. The logical extension of this princip
in turn generated interest in the investigation of symmetry groups larger than those found
standard model~SM! of elementary particles. In particular, it is possible that the SM gauge gr
SU~3!3SU~2!3U~1!, is the broken relic of an enlarged symmetry group which only beco
manifest at higher energies. Examples of simple groups which are candidates for such a
theory include SU~5!,1 SO~10!,2 SU~6!,3 or E6.4 Due to the enlarged symmetry, unification mode
based on these groups are potentially very predictive. In addition to unifying the three sta
model gauge interactions, the most ambitious models based on these symmetry groups
explain the observed quantum numbers of the low energy spectrum, understand the pa
charged fermion and neutrino masses and mixing angles, and predict the strength of a va
suppressed rare processes—and do all that with just a few terms in the Lagrangian~or superpo-
tential!.

The group E6 has long belonged to the most prominent candidates along this pa
research.4,5 It contains the previously mentioned groups SU~5!, SO~10!, and SU~6! as its sub-
groups. It allows chiral representations and its27-dimensional fundamental representation can
the 15 known fermions comprising one generation along with the right-handed neutrino@these
states form the16 of SO~10!#, the two~required by supersymmetry! Higgs doublets together with
their colored counterparts@the10 of SO~10!#, and an SO~10! singlet.@For convenience we list the
states in terms of the representations of the familiar SO~10! subgroup.# Thus theE6 symmetry may
impose constraints linking together charged fermion, neutrino, and Higgs sectors of the
feature quite distinctive from theories based on lesser symmetry groups. In addition, like S~10!,
the gauge anomalies are automatically canceled unlike the SU(N) models.

While very attractive, theE6 model building has not been extensively developed due to
mathematical complexities associated with a rank 6 exceptional group. In particular, the

a!Electronic mail: ganderson@nwu.edu
b!On leave of absence from the Dept. of Theor. Physics, Comenius Univ., Bratislava, Slovakia. Electronic mail:

blazek@heppc19.phys.nwu.edu
48080022-2488/2000/41(7)/4808/9/$17.00 © 2000 American Institute of Physics
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Clebsch–Gordan coefficients which have been computed are those for products of two27s, or two
27s.6 The purpose of this series of papers is to continue the work along the line envisioned in
6 and 7 and present the results of the computation of the Clebsch–Gordan coefficients of v
products of irreducible representations~irreps!, necessary for a construction of completeE6 mod-
els. Our approach has been pragmatic: Since these results provide basic tools for unification
building we adopt a straightforward procedure and calculate the complete set of states s
from the highest weight state of each irrep.

In this paper, we start with the decomposition of the product27^ 27, and as a direct appli-
cation we relate our results to the operator273, which is the only tenable dimension four operat
contributing to charged fermion masses. In the follow-up papers,8 we will address the product
involving 78 and351 irreps ofE6 and apply them to other simple operators, which one needs
understanding the symmetry breaking sector and/or the origin of fermion mass hierarchies.
II, we present a basic theoretical background for the calculation. Section III contains the Cle
Gordan coefficients for the dominant weight states in the product27^ 27. These results are the
used in Sec. IV where a one-to-one correspondence between the states labeled by wei~in
terms of Dynkin labels! and the SM gauge group states~in terms of fields carrying specific
quantum numbers! is established and a273 operator is decomposed into the sum of the SM ga
group interaction terms.

II. MATHEMATICAL PRELIMINARIES

In Secs. II and III we primarily focus on theE6 tensor product

27^ 275650% 78% 1, ~1!

or, equivalently,

~100000! ^ ~000010!5~100010! % ~000001! % ~000000! ~2!

in terms of the highest weights of each irrep. We note in passing that the numbering of the
roots in E6 as well as other conventions we choose closely follow Refs. 9 and 6. Also, n
conceptual difference between aweight (w)andweight stateuw&. The former is a set of six intege
labels~Dynkin coordinates, throughout this paper! while the latter is a vector in the representati
space. This distinction is important when we have degenerate weights, i.e., when there ar
tiple states with the same weight.

Next, we discuss our formalism in detail, since we will refer to it in the analyses of prod
of larger irreps.8 The construction of the complete set of states in product~1! starts with650 and
the decomposition of its highest weight state into the highest weight states of27 and27,

u100010&5u100000&u000010&. ~3!

This state is a level 0 state of650.
In order to obtain the Clebsch–Gordan decomposition of the states at the next level, one

lowering operators is applied to this equation. Lowering operators belong to the group gene
outside the Cartan subalgebra, and their action on a state of weightw5(w1 ,w2 ,w3 ,w4 ,w5 ,w6)
from the weight system of27 or 27 is given explicitly by

E2a1
uw&5N2a,wuw122,w211,w3 ,w4 ,w5 ,w6& if w1.0,

E2a2
uw&5N2a,wuw111,w222,w311,w4 ,w5 ,w6& if w2.0,

E2a3
uw&5N2a,wuw1 ,w211,w322,w411,w5 ,w611& if w3.0, ~4!

E2a4
uw&5N2a,wuw1 ,w2 ,w311,w422,w511,w6& if w4.0,
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E2a5
uw&5N2a,wuw1 ,w2 ,w3 ,w411,w522,w6& if w5.0,

E2a6
uw&5N2a,wuw1 ,w2 ,w311,w4 ,w5 ,w622& if w6.0,

and

E2a i
uw&50 if wi<0 for any i 51,...,6. ~5!

In our convention, the overall normalization factor

N2a,w511, ~6!

for anyE2a i
, or anyuw& provided the new state exists. Note that if the result is nonzero, the

weight is obtained from~w! by subtraction of the corresponding simple roota i , which follows
directly from the algebra of the group~see, e.g., Ref. 9 or 10!

@Hn ,E2a i
#52~a i !nE2a i

. ~7!

Hn’s are the diagonal generators of the Cartan subalgebra.
When lowering states of higher irreps, the newly obtained weight is again (w2a i). However,

when degeneracies are encountered, the change in the normalization can be nontrivial. We
the practice that the lowering of a higher irrep state is derived from lowering the irrep state
built from. In simpler cases@for nondegenerate weights, or for successive lowerings throug
entire multiplet of a particular SU~2! subgroup# the normalization factor can be expressed as

N2a i ,w51@wi1N2a i ,w1a i

2 #1/2, ~8!

where it is assumed thatN2a i ,w1a i
50 if weight ~w! could not be obtained from (w1a i) at the

previous level. Relation~8! generalizes~4! and~5!. It implies that states of the650and78 ~unlike
the states of the27 and27! can be lowered byE2a i

even if the corresponding weight coordina
wi<0.

As an example, two level 1 states are obtained from~3! by lowering withE2a1
andE2a5

:

E2a1
u100010&5@E2a1

u100000&] u000010&1u100000&@E2a1
u000010&]

5u1̄10000&u000010&105u1̄10000&u000010&,

E2a5
u100010&5@E2a5

u100000&] u000010&1u100000&@E2a5
u000010&]

501u100000&u00011̄0&5u100000&u00011̄0&,

where we usex̄[2x.
A second example may be a sequence of two lowerings byE2a1

of level 4 stateu21̄0001&

5u100000&u11̄0001&. At level 5 we getE2a1
u21̄0001&5&u0000011& when lowering the state on

the left-hand side.& follows from w152, see Eq.~8!, and is consistent with obtaining a sum
two terms on the right-hand side. Proceeding to level 6 we again find the normalization from~8!,
E2a1

u0000011&5&u2̄10001&, but this time the& results fromN
2a1 ,(21̄0001)

2
52. At this level,

factors of 2 cancel out leading to the simple relationu2̄10001)5u1̄10000&u1̄00001&.
In general, relation~8! is insufficient when degenerate weights are involved. The650, for

example, contains five degenerate, linearly independent states of~000001! weight. As in the
second example above, we label them with a subscript corresponding to the last lowering u
derive the state. At issue is how to lower the weight stateu000001i& with E2a j

, iÞ j . Clearly, this
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can be decided once we know the decomposition into the states of the27 and27. In particular,
E2a2

u0000011&511/&u12̄1001&, while E2a j
u0000011&50, for j 53,4,5.

In this way, one can obtain all 650 linearly independent states from the highest weight
Eq. ~3!. At level 5, however, one finds that the five~000001! states span over a six-dimension
space. The extra linearly independent state of the same weight, orthogonal to the subspac
pied by the previous five, is the highest weight state of the78. Lowering this state one recovers th
complete weight system of the78 irrep. The existence of an orthogonal weight subspace wh
provides for the highest weight state of another irrep is a general property ofdominantweights;
the weights with all Dynkin coordinates non-negative.

III. CLEBSCH–GORDAN COEFFICIENTS FOR 27‹27

As we have just discussed, complete weight systems can be obtained from the highest
state of the highest irrep in the product. However, many states are going to be decompos
terms with the same coefficients and as a result the full table listing all Clebsch–Gordan c
cients~CGCs! would contain just a few distinct values. For that reason it is not necessary t
the decomposition of all linearly independent states in the weight system. Instead, it is suffic
provide CGCs just for the dominant weight states.

There are three dominant weights in the product27^ 27,corresponding to the highest weigh
of 650, 78and the singlet, Eq.~2!. In Table I we show the lowering paths to the~000001! and
~000000! dominant weight states of the650 and 78. For instance, a path 12345 is a shortha
notation for the sequence of five lowering operatorsE2a1

E2a2
E2a3

E2a4
E2a5

applied ~from
right to left! to the highest weight state. Lowering paths in Table I are, in general, not un
Other paths may lead to the same weight states, e.g., in the650 we get the same stateu0000012&
following paths 23451, 21345, 23145, and 23415. 12345, the path tou0000011&, is an example of
a unique path. However, note that we cannot obtain a nontrivial linear combination of the sta
Table I by following a different lowering path: the weight spaces of the~000001! and ~000000!

TABLE I. Lowering paths to dominant weights in (100000)^ (000010).

~100010! irrep ~000001! irrep

Weight
state

Lowering
path

Weight
state

Lowering
path

Weight
state

Lowering
path

u0000011& 12345 u0000001& 1234563421362345 u0000001& 12364534236
u0000012& 23451 u0000002& 1436522336445321 u0000002& 23645341236
u0000013& 34521 u0000003& 2345163421362345 u0000003& 36452341236
u0000014& 45321 u0000004& 2345123466334521 u0000004& 43652341236
u0000015& 54321 u0000005& 2451334266334521 u0000005& 54362341236

u0000006& 3643542236112345 u0000006& 63452341236
u0000007& 3645234512364321
u0000008& 3645236123445321
u0000009& 3164522336445321
u00000010& 4354231266334521
u00000011& 4352163452364321
u00000012& 5123644336223451
u00000013& 5236144336223451
u00000014& 5362144336223451
u00000015& 5432163452364321
u00000016& 6453342236112345
u00000017& 6532144336223451
u00000018& 6345236123445321
u00000019& 6134522336445321
u00000020& 6213324436554321
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weights in 650 contain exactly 5 and 20 different states, respectively, and that matches
dimensionality. The same is true for the six~000000! weight states in78. This is in sharp contras
to the higher irreps ofE6 , as will be discussed in Ref. 8.

Tables II and III contain the Clebsch–Gordan coefficients for the dominant weight sta
27^ 27, together with the decomposition of the singlet state, markedS for brevity. The numbering
of the degenerate weights is consistent with Table I, 0i being equivalent tou000000i&. The last row
in Tables II and III shows the overall normalization of the state in the respective column.

To obtain the CGCs for the weights not listed in the tables, one can apply the charge
gation operators, introduced by Moody and Patera,11 to the dominant weight states. Charge co
jugation operatorsRa i

, i 51,...,6 are elements ofE6 and have multiple uses. The name is deriv
from their property to reverse weight coordinate~‘‘charge’’! wi to 2wi . In fact, their action is up
to a sign a Weyl reflection of weightw into w2wia i in the weight space. The important proper
for this study is that they relate CGCs of any other weight state with those already listed f
dominant weights. They act according to the rule

Ra i
uw&5exp~E2a i

!exp~2Ea i
!exp~E2a i

!uw&. ~9!

It is simple to check that if stateuw& of the 27 or 27 can be lowered byE2a i
@see Eq.~4!#,

Ra i
uw&5E2a i

uw&. A less trivial example for a state of the650 is

Ra1
u21̄0001&5exp~E2a1

!exp~2Ea1
!@11E2a1

1~E2a1
!2/2#u21̄0001&

5exp~E2a1
!@12Ea1

1~Ea1
!2/2#@ u21̄0001&1&u0000101&1u2̄10001&]

5@11E2a1
1~E2a1

!2/2#u2̄10001&5u2̄10001&, ~10!

which, indeed, coincides with the reflection (210̄001)22a1 in the weight space. The CGC de
composition of the new state is then obtained~using the second example in Sec. II! as

Ra1
@ u100000&u11̄0001&] 5@Ra1

u100000&] @Ra1
u11̄0001&] 5u1̄10000&u1̄00001&. ~11!

In short, the CGCs for the650 states are equal11 if the weight does not coincide with an
weight of the78. On the other hand, the CGCs are equal to11/& if the weight is other than
~000000!. @These weights~nonzero roots! can be found in Ref. 8, and also in Table 20 in Ref.#
Orthogonality of the representation spaces then implies that CGCs of the78 are equal to61/&.
Finally, CGCs for the~000000! weights are equal to11/2 for the650, 61/A12 for the78, and

TABLE II. CG coefficients for~000001! dominant weight in (100000)̂ (000010). The numbers in the last row indica
the overall denominator for the entries in the respective column.

~100010! ~000001!

u0000011& u0000012& u0000013& u0000014& u0000015& u000001&

u100000& u1̄00001& 1 1

u1̄10000& u11̄0001& 1 1 21

u01̄1000& u011̄001& 1 1 1

u001̄101& u0011̄00& 1 1 21

u0001̄11& u00011̄0& 1 1 1

u00001̄1& u000010& 1 21

& & & & & A6
                                                                                                                



TABLE III. C the respective column.

~000001! S

01 02 03 04 05 06 0

u100000& u1̄00 1 1

u1̄10000& u11̄0 1 1 21

u01̄1000& u011̄ 1 1 1

u001̄101& u001 1 1 1 21

u0001̄11& u000 1 1 21 1

u000101̄& u000 21 1 1

u00001̄1& u000 1 1 21

u0011̄11̄& u00̄ 21 21 21 21 21

u00101̄1̄& u001̄ 1 21 1 1

u011̄010& u01̄1 21 21 1 1

u011̄11̄0& u01̄ 1 1 1 1 21

u11̄0010& u1̄10 21 21 21 21

u0101̄00& u01̄0 21 1 1

u11̄011̄0& u1̄1 1 1 21 21 1

u1̄00010& u100 21 1 1

u11̄11̄00& u1̄1 21 21 21 21 21

u1̄0011̄0& u10 1 1 1 21

u101̄001& u1̄01 1 21 21 1

u1̄011̄00& u101̄ 21 1 1 1

u100001̄& u1̄00 21 21 21

u1̄11̄001& u11̄ 1 1 1 1 21

u1̄10001̄& u11̄0 21 21 1 1

u01̄0001& u010 1 21 1

u01̄1001̄& u01̄ 21 21 21 21

u001̄100& u001 21 21 1

u0001̄10& u000 21 21 21

u00001̄0& u000 21 1

A12 A12 A12 A12 A12 A12 A27
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G coefficients for~000000! dominant weight in (100000)̂ (000010). The numbers in the last row indicate the overall denominator for the entries in

~100010!

01 02 03 04 05 06 07 08 09 010 011 012 013 014 015 016 017 018 019 020

000& 1

000& 1 1

000& 1 1

1̄01̄& 1 1

11̄1̄& 1 1

1̄01& 1 1

011̄& 1 1

111̄1& 1 1 1 1 1

011& 1 1 1 1

01̄0& 1 1 1 1

11̄10& 1 1 1 1 1

01̄0& 1 1 1 1

100& 1 1 1

01̄10& 1 1 1 1

01̄0& 1 1 1

1̄100& 1 1 1 1 1

01̄10& 1 1 1 1

001̄& 1 1 1 1

100& 1 1 1 1

001& 1 1

1001̄& 1 1 1 1 1

001& 1 1

001̄& 1 1

1001& 1 1

1̄00& 1 1

11̄0& 1 1

010& 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
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61/A27 for the singlet. Note that the signs in the decomposition of the singlet are plus~1! for
even levels of the27 and minus~2! for the odd levels.~The levels of the27 are listed in the last
column of Table IV.!

IV. APPLICATION TO MODEL BUILDING: OPERATOR 27 3

Let us summarize the properties of the27 in E6 with respect to the SM gauge group and
branching into SU~3!c^ U~1!em.9 If we ignore the embedding where the27 contains a color octet
there is a unique embedding of color with three3’s three3̄’s and nine singlets of SU~3!c . At the
level of the SM gauge group, the3’s are theU andD quark states contained in an SU~2!L doublet
Q, and a Higgs tripletT. The three3̄’s Uc, Dc, andTc are all singlets under SU~2!L . The colorless
states include an SU~2!L doubletL, consisting of the left-handed neutrino and electron, two Hig
fields: Hu , a doublet, andHd , an antidoublet~two being consistent with the minimal supersym
metric extension of the SM!, and singletsEc, Nc, and S. For phenomenological reasons, th
colored Higgs tripletT and anti-tripletTc cannot enter the spectrum of the SM particles at
electroweak scale, and, in general, are assumed to have masses close to the unificatio
Similarly, the SM singlet statesNc andS have not been observed.

TABLE IV. Embeddings of the SM states into the27 in E6 .

Superfield SU~3!c^ SU~2!L SU~5! SO~10!
E6

~100000! irrep

Standard
embedding

Flipped
~SU!~5!

Flipped
~SO!~10! Weight Irrep Weight Irrep Weight Irrep Weight Leve

Q Q Q ~10!~1! ~10!~1! ~0100! ~0100! ~00001! ~00001! ~100000! 0

(1̄1)(1) (1̄010) (1̄0010) (11̄0010) 7

(01̄)(1) (1̄101̄) (01̄001) (100001̄) 11

(10)(1̄) (101̄1) (0101̄0) (00001̄1) 5

(1̄1)(1̄) (01̄01) (1̄1001̄) (01̄0001) 12

(01̄)(1̄) (001̄0) (0001̄0) (00001̄0) 16

Uc Dc Tc ~01!~0! ~01!~0! (11̄10) (011̄10) (001̄101) 3

(11̄)(0) (1001̄) (101̄01) (011̄11̄0) 7

(1̄0)(0) (01̄11̄) (001̄10) (001̄100) 14

Ec Nc S ~00!~0! ~00!~0! (1̄11̄1) (1̄011̄0) (11̄11̄00) 9

Dc Uc Dc ~01!~0! ~01!~0! ~0001! ~0001! (00101̄) (01̄1000) 2

(11̄)(0) (011̄0) (11̄11̄0) (00101̄1̄) 6

(1̄0)(0) (1̄000) (01̄101̄) (01̄1001̄) 13

L L Hu ~00!~1! ~00!~1! (0011̄) (11̄010) (000101̄) 4

(00)(1̄) (11̄00) (10001̄) (1̄0011̄0) 9

Nc Ec Nc ~00!~0! ~00!~0! ~0000! ~0000! (1̄11̄01) (101̄001) 10

T T T ~10!~0! ~10!~0! ~1000! ~1000! ~10000! ~10000! (1̄10000) 1

(1̄1)(0) (01̄10) (00011̄) (1̄00010) 8

(01̄)(0) (0001̄) (11̄000) (1̄10001̄) 12

Hu Hd L ~00!~1! ~00!~1! (1̄100) (01̄100) (0011̄11̄) 5

(00)(1̄) (001̄1) (0011̄1̄) (1̄011̄00) 10

Tc Tc Uc ~01!~0! ~01!~0! ~0001! ~0001! (1̄1000) (0001̄11) 4

(11̄)(0) (011̄0) (0001̄1) (0101̄00) 8

(1̄0)(0) (1̄000) (1̄0000) (0001̄10) 12

Hd Hu Hd ~00!~1! ~00!~1! (0011̄) (001̄11) (011̄010) 6

(00)(1̄) (11̄00) (011̄00) (1̄11̄001) 11

S S Ec ~00!~0! ~00!~0! ~0000! ~0000! ~00000! ~00000! (11̄011̄0) 8
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Three different embeddings of these states into the27 in E6 are given in Tables IV and V.
They can be referred to asstandard embedding, flippedSU~5!, andflipped SO~10!.12 Table IV
shows weights of the physical particle states along a subgroup chain

E6.SO~10! ^ U~1! t.SU~5! ^ U~1!r ^ U~1! t.SU~3!c^ SU~2!L ^ U~1!z^ U~1!r ^ U~1! t .
~12!

The weights of SO~10!, SU~5!, and SU~3!c^ SU~2!L are obtained following the projections

~w!uSO~10!5~w21w31w4 ,w6 ,w3 ,w41w5 ,w11w2!uE6
,

~w!uSU~5!5~w11w2 ,w31w5 ,w4 ,w21w3!uSO~10! ,
~13!

~w!uSU~3!c
5~w11w2 ,w31w4!uSU~5! ,

~w!uSU~2!L
5~w21w3!uSU~5! ,

Table V shows the corresponding U~1! charges. These are calculated from9

Q5q̄iwi , ~14!

where q̄i ’s are dual coordinates of the respective charges. In our case, we haveq̄t5(1,21,0,1,
21,0), q̄r5(21,1,4,3,1,0), andq̄z5(1,21,1,23,21,0). The hypercharge, which is the U~1!
factor in the SM gauge group, is defined as

Y}Qem2I 3 ~15!

@I 3 is the eigenvalue of the diagonal generator in SU~2!L#, and must be contained among the thr
U~1! charges in~12!. In fact, for the first type of embedding it is equal~up to an overall factor! to
chargeQz. That makes U~1!z equivalent to the U~1!Y of the SM in this case, and explains th
embedding’s name. For the flipped SU~5! we have

q̄Y}6q̄r1q̄z}~1,21,25,23,21,0! ~16!

and for the flipped SO~10!

q̄Y}15q̄t13q̄r22q̄z}~1,21,1,3,21,0!. ~17!

TABLE V. Charges for U~1! subgroups ofE6 for the three embeddings of
U~1!Y .

Superfield

Standard
embedding

Flipped
SU~5!

Flipped
SO~10! U~1!t U~1!r U~1!z

Q Q Q 1 21 1
Uc Dc Tc 1 21 24
Ec Nc S 1 21 6
Dc Uc Dc 1 3 2
L L Hu 1 3 23
Nc Ec Nc 1 25 0
T T T 22 2 22

Hu Hd L 22 2 3
Tc Tc Uc 22 22 2
Hd Hu Hd 22 22 23
S S Ec 4 0 0
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The three embeddings in Tables IV and V thus correspond to three different embeddings
hypercharge for the branching ofE6 given in ~12!. Note that other embeddings of the partic
states are possible@we can, e.g., exchange (Tc,Hd) and (Dc,L)# but these correspond to the sam
hypercharge embedding.

Finally, we construct the273 operator. For27^ 27 we verified the results of Ref. 6. There
a 27 in this product which adds up with the third27 providing for the singlet state according to th
last column of our Table III. Next, we show how this operator decomposes into the SM sta

Note that there is freedom to assign a phase to each particle state in Table IV. In order t
the projections onto the SU~3! and SU~2! states consistent for the whole weight system of the27
and to maintain the standard SU~3! and SU~2! contractions we redefine the phases of

T~01!
c ,T

~ 1̄0!

c
,D ~01!

c D
~ 1̄0!

c
,U

~11̄!

c
,T~ 1̄̄1!,T~01̄̄! ,Q~ 1̄1!~1!,Q~01̄! ,L ~1!,Hu~1!, and Nc ~18!

With these redefinitions we obtain

27352STTc2SHuHd1NcLHu1NcTDc1EcLHd2EcTUc

2LQTc1UcQHu1DcQHd1DcUcTc2QQT/2. ~19!

This equation assumes that a cyclic permutation is applied to the right-hand side. For ins
STTc[S1T2T3

c1S2T3T1
c1S3T1T2

c1S1T3T2
c1S3T2T1

c1S2T1T3
c .

V. SUMMARY

In this paper we showed the decomposition of the27^ 27 and as a simple application w
derived the form of the273 operator in terms of the particle states relevant for the SM ga
group. Since the application of ladder operators to higher irreps is derived from their action
lower irrep states this study represents an important first step in the analysis designed to p
more complete tools forE6 model building.
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We develop a systematic method to construct induced representations of quantum
algebras. The procedure makes use of two Hopf algebras with a nondegenerate
pairing and a pair of dual bases for them. We apply the method on three different
quantum deformations of the Galilei algebra in (111) dimensions. We obtain
several families of induced representations including some results already known.
© 2000 American Institute of Physics.@S0022-2488~00!02607-4#

I. INTRODUCTION

One of the main avenues in physical applications of quantum groups tries to relate qu
groups and quantum algebras to fundamental symmetries of the physical space–time. The
tured relationship between space–time and quantum groups is based on two facts: class~or
nondeformed! Lie groups provide models of space–time manifolds as homogeneous space
many quantum groups can be regarded as smooth deformations of~the algebra of functions on!
Lie groups. Quantum algebras are noncommutative and, therefore, the models obtained in t
can be studied from the perspective of the noncommutative geometry.1 From this point of view,
since quantum algebras play a dual role to quantum groups and are interpreted as deforma
enveloping algebras, they give a sort of ‘‘deformed infinitesimal’’ symmetries for physical
tems.

In classical Lie group theory the way to relate homogeneous spaces and symmetrie
means of the induced representations. So, it looks quite natural that quantum homogeneous
and quantum symmetries are also related by induced representations of quantum groups.
other hand, it is out of doubt the importance of group representation theory in order to bu
new physical models or systems with a given symmetry.

The aim of this paper is to construct a theory of induced representations of quantum
algebras, in particular for those associated to non-semisimple Lie algebras. Most of the
devoted to representations of quantum algebras correspond to deformations of enveloping a
of simple Lie algebras~see Ref. 2 and references therein!. The results known about representatio
of quantum algebras related with nonsemisimple Lie algebras are only partial and are dev
particular cases, for instance, Ref. 3 to the one-dimensional quantum Galilei group, Ref
slq(2) andeq(2), andRef. 5 to the quantum Heisenberg algebra. On the other hand, for qua
groups the concept of representation in not the relevant one but the concept of coreprese
because of the dual nature of quantum groups with respect to quantum algebras. The in
procedure for corepresentations has been studied in a general manner in Refs. 6 and 7. C
sentations for some deformations of the Galilei group can be found in Refs. 8, 9, and 10.

We shall use in our approach the ‘‘language’’ of modules and comodules, which is, from
point of view, the appropriate one in order to study the representations of Hopf algebras, s
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allows to stress the algebraic character of the structures involved. Another fundamental to
be the concept of duality implemented to Hopf algebras by means of the idea of pairing
dualization of the induction theory allows to see the equivalence of fundamental object
modules and comodules. In this way we have regular, induced, coregular and coinduced
sentations. The main result of this work is that we are able to construct coregular and coin
representations of a Hopf algebraUq(g) when we know dual bases of it and its dual Funq(G),
beingg the Lie algebra of a Lie groupG. In particular, we obtain as an application, the rep
sentations of some quantum deformations of the Galilei algebra in (111) dimensions.

The paper is organized as follows. In Sec. II we present the main facts about duality of
algebras using the concept of pairing, and show the relation between modules and represen
We introduce a useful notation that will allow us to compute adjoint operators when a pair o
bases of a Hopf algebra and its dual is available. Sec. III is devoted to present the conc
regular and coregular representations, induced and coinduced representations of Hopf a
We show the relation between these representations and the modules and comodules asso
a natural way to a Hopf algebra and its dual by means of a nondegenerate paring. A discus
practical computation of coregular representations for~deformed! Hopf algebras as well as th
particular case when a pair of dual bases is known are included. In Sec. IV we constru
representations of different quantum deformations of the Galilei algebra in (111) dimensions.
So, we compute explicitly the coregular representations and obtain two families of coind
representations. One of them is interpreted as a family of ‘‘local’’ representations since in the
of the deformation parameter going to zero we recover the locally operating representation11 A
similar program is carried out for a deformation of the extended Galilean algebra in (111)
dimensions. We conclude the paper with a section devoted to present some remarks and
sions.

II. ALGEBRAIC PRELIMINARIES

Let H5(V;mh;De;S) be a Hopf algebra with underlying linear spaceV over the fieldK (C
or R), multiplicationm:H ^ H→H, coproductD:H→H ^ H, unit h:K→H, counite:H→K and
antipodeS:H→H.

As is well known a Hopf algebra can also be considered as a bialgebra such that adm
antilinear mapS. A bialgebra can be seen as composed by two ‘‘substructures’’ or ‘‘sectors’’
fit together adequately. These substructures are the algebra sector (V,m,h) and the coalgebra
sector (V,D,e) ~for more details see, for instance, Ref. 2!. In order to simplify the notation we
shall often denote the linear space underlying the Hopf algebra and the whole structure
same symbol.

A. Pairing of Hopf algebras

In this work duality plays an important role. In the category of linear vector spaces overK the
dual object toV is defined as the vector space of its linear forms, i.e.,V* 5L(V,K).

If ( V,m,h) is a finite algebra it is natural to define the dual object as (V* ,m* ,h* ), obtaining
a coalgebra. Reciprocally, if we start with a coalgebra the resulting dual object is an algeb
the other hand, the category of bialgebras and Hopf algebras is self-dual in the sense th
closed under dualization.

In the infinite dimensional case the spaces (V^ V)* andV* ^ V* are not isomorphic@in fact
there is only a natural inclusion ofV* ^ V* into (V^ V)* #. Hence, the dual to a multiplication
mapm:V^ V→V does not give rise to a coproduct in a natural way. A suitable manner to s
this task is provided by the concept of pairing.

A pairing between two Hopf algebras,2 H andH8, is a bilinear mappinĝ• ,•&:H3H8→K
that verifies the following properties:

^h,m8~h8^ k8!&5^D~h!,h8^ k8&, ^h,1H8&5e~h!,

^h^ k,D8~h8!&5^m~h^ k!,h8&, e8~h8!5^1H ,h8&, ~2.1!
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^h,S8~h8!&5^S~h!,h8&.

In order to interpret appropriately the expressions~2.1! it is necessary to consider an extension
the pairing according to the formulâh^ k,h8^ k8&5^h,h8&^k,k8&.

The pairing is said to be nondegenerate to the left~right! if @^h,h8&50,;h8PH8#⇒h50
(@^h,h8&50,;hPH#⇒h850). When we say that a pairing is nondegenerate we mean that
nondegenerate simultaneously on both sides. Roughly speaking, a nondegenerate pairing a
restrict~in the infinite dimensional case! the dualH* to a more ‘‘manageable’’ subspace isomo
phic to H8 via h̃8(h)5^h,h8&.

Let (H,H8,^• ,•&) be a triplet composed by two Hopf algebras and a nondegenerate pa
we obtain the mapf †:H8→H8 implicitly defined by

^h, f †~h8!&5^ f ~h!,h8&, ~2.2!

which is the analog of the dual map tof : H→H. We shall refer tof † as the adjoint map tof with
respect tô • ,•&.

Given a triplet (H,H8,^• ,•&), the bases (hm) of H and (hn8) of H8 are said to be dual with
respect to the pairing if

^hm ,hn8&5cndm,n , cnPK2$0%. ~2.3!

A canonical example illustrating such structure is provided by an–dimensional Lie groupG
and its corresponding Lie algebrag. Let $Xi% i 51

n be a basis ofg, we can construct the triple
(U(g),F(G),^• ,•&), composed by the universal enveloping algebra ofg, the algebra of smooth
R–valued functions onG and the nondegenerate pairing defined by

^X1
l 1
¯Xn

l n , f &5
] l 11¯1 l n

] l 1t1¯] l ntn
U

t15¯5tn50

f ~et1X1
¯etnXn!. ~2.4!

Since locally, around the identity, the elements ofG can be uniquely expressed as

g5ea1X1ea2X2
¯eanXn, ~2.5!

it is possible to define local functions at the identity by means of

xi~g!5ai , i 51,...,n, ~2.6!

which determine a local chart and are often referred to as ‘‘coordinates of second kind.’’ We

^X1
l 1
¯Xn

l n ,~x1!k1
¯~xn!kn&5 l 1!¯ l n!d l 1

k1
¯d l n

kn ~2.7!

and, therefore, the systems (X1
l 1
¯Xn

l n) l iPN and ((x1)k1
¯(xn)kn)kiPN form a pair of dual bases.

The following multi-index notation is very useful to handle with expressions like~2.7!. Thus,
if l 5( l 1 ,...,l n) andm5(m1 ,...,mn) are two elements in the multi-index spaceNn we rewrite

Xl5X1
l 1
¯Xn

l n , xm5~x1!m1
¯~xn!mn. ~2.8!

Obviously, for 05(0,...,0)PNn we takeX051U(g) andx051F(G) . Multifactorials and multideltas
are defined using products:

l ! 5)
i 51

n

l i !, d l
m5)

i 51

n

d l i

mi . ~2.9!

Now expression~2.7! can be reduced to
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^Xl ,xm&5 l !d l
m , l ,mPNn. ~2.10!

B. Modules and representations

Whenever we have a setS endowed with an associative composition law it is possible
‘‘represent’’ this set by means of transformations on other setX. Thus, a representation ofS is
defined as a morphism fromS to the set of bijective mappings fromX to itself equipped with the
usual composition of maps. An alternative point of view, that describes the same situation
consider the left action ofS on X, i.e., an external composition law

S3X→X,

~s,x!°sxx, ~2.11!

compatible with the inner composition law inS in the sense that

s8x~sxx!5~s8s!xx. ~2.12!

In this way we obtain the left module (X,x,S). Right modules overS can be defined analogously
The connection between representation and action on the module is given by

r~s!~x!5sxx. ~2.13!

In this work we mainly use the concept of module because it allows a simpler formulatio
interpretation of many concepts and results. For instance, left modules overS are the objects of a
category whose morphisms are mappings between their spaces that are ‘‘equivariant’’ un
actions. More explicitly, a morphism between (X,x,S) and (X8,x8,S) is a mapf : X→X8 that
verifies

f ~sxx!5sx8 f ~x!, ;sPS, ;xPX. ~2.14!

If S or X have additional algebraic structures it is usual to impose compatibility condition
the action. For instance, ifS has a unit elemente it is natural to requireexx5x, ;xPX, on the
composition law.

III. INDUCED REPRESENTATIONS OF HOPF ALGEBRAS

A more extended version of this section can be found in Ref. 12. In the followingS will be a
~deformed! Hopf algebra andX a linear vector space.

A. Regular modules and representations of Hopf algebras

The composition law to be considered on a Hopf algebra to obtain modules is related w
multiplication, and the actions will be compatible with the linear structures in both spacesS and
X. For this particular situation the definition of module can be adapted as follows.

Let H be a Hopf algebra andV a linear vector space. A left action ofH on V is a linear map

a: H ^ V→V,

a: ~h^ v !°a~h^ v ![hxv, ~3.1!

verifying the following conditions:

h1x~h2xv !5~h1h2!xv, 1Hxv5v, ;h1 ,h2PH, ;vPV, ~3.2!

whereh1h2 and 1H are shorthand notations form(h1^ h2) andh(1K), respectively. The triplet
(V,a,H) or (V,x,H) will be called a leftH-module. RightH-modules can be defined in a simila
way.
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In the finite dimensional case it is possible to dualize the action, obtaining the conce
‘‘coaction’’ and ‘‘comodules.’’ When the objects are infinite dimensional a similar construc
can be carried out by using nondegenerate pairings. We do not present topics related with
ules because they are not used in this work~see Ref. 13 for more information!.

From the point of view of the theory of representations a Hopf algebra is an interesting o
since it leads to a category with nice properties. For instance, the coproduct allows a n
definition of tensor product of modules, the counit defines the unit element for that operatio
by means of the antipode it is possible to define dual modules.2,13

In order to investigate the category of representations of a given Hopf algebraH it is funda-
mental to describe the objects of the category itself. There are two kinds of canonical mo
associated to any triplet (H,H8,^• ,•&) composed by two Hopf algebras and a nondegene
pairing:

~i! The left regular module denoted by (H,s,H) and whose action is defined by

h1sh25h1h2 , h1 ,h2PH. ~3.3!

~ii ! The right coregular module denoted by (H8,a,H) and action implicitly defined by

^h2 ,h8ah1&5^h1sh2 ,h8&, ;h1 ,h2PH, ;h8PH8. ~3.4!

Using the Hopf algebra structures and the properties of the nondegenerate pairing it is e
arrive to the following explicit description of the coregular action in terms of the coproduct inH8
(D(h8)5h(1)8 ^ h(2)8 ):

h8ah5^h,h(1)8 &h(2)8 . ~3.5!

In some cases the study of the regular representation suffices to describe the module th
an algebra. This is the case, for instance, of the group algebraC @G# when the group is finite.

The induction algorithm is also a useful tool to obtain modules. Let us consider an algeA
and a subalgebraB of A which acts on the left on a vector spaceV. SinceA can be regarded a
a right B-module taking the multiplication as the action, it is possible to construct the te
productA^ BV where there is a natural action ofA on the left. This procedure is also known
‘‘extending scalars’’ and the module so obtained is called ‘‘the module induced byV. ’’

The following construction provides a dual counterpart of the induction algorithm. Now
can seeA as a leftB–module and, hence, it makes sense to consider the set ofB–morphisms
HomB(A,V) whereA acts on the left as follows:

~a8x f !~a!5 f ~aa8!, a8,aPA, f PHomB~A,V!. ~3.6!

The associated module is known as ‘‘the coinduced module byV. ’’
The algorithms of induction and coinduction have also an immediate application if we re

A by a Hopf algebraH. In order to prevent troubles caused by HomB(H,V) whenH is infinite
dimensional, we adapt the coinduction algorithm to the triplet (H,H8,^• ,•&) composed by two
Hopf algebras and a nondegenerate pairing. So, letK be a subalgebra ofH ~not necessarily a Hop
subalgebra!, and let (V,x,K) be a leftK –module. The support space for the coinduced repre
tation, denoted byV↑, is defined as the subspace ofH8^ V whose elementsf verify

^ f ,kh&5kx^ f ,h&, ;kPK, ;hPH. ~3.7!

In this expression the pairing isV-valued and is defined, using the nondegenerate pairing of
triplet, by

^h8^ v,h&5^h8,h&v, hPH, h8PH8, vPV. ~3.8!

Finally, the actionhx f in the coinduced module is implicitly determined by
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^h1x f ,h2&5^ f ,h2h1&, ;h2PH. ~3.9!

There is a deep relationship between coinduced modules and the coregular represe
which becomes particularly simple when the coinducing module (K,x,K) is one dimensional. In
this caseH8^ K.H8 and the carrier space,K↑, of the coinduced representation can be identifi
with the subspace ofH8 composed by elementsw verifying the equivariance condition

wak5~1¢k!w, ;kPK. ~3.10!

The action ofH on K↑ induced by the action ofK on K is given by

^h2xw,h1&5^w,h1h2&, ;h1 ,h2PH, ;wPK↑. ~3.11!

We get from~3.11! that

hxw[hsw5^h,w (2)&w (1) , ;hPH, ;wPK↑. ~3.12!

Note that to describe the induced module it is necessary to use the right coregular module i
to determine the carrier space and the left coregular module to obtain the induced action.

B. Regular and coinduced representations of deformed Hopf algebras

Now we are interested in the study of the action on the coregular module (H8,s,H) @the
following discussion can be applied without substantial modifications to the other coregular
ule (H8,a,H)# such that the triplet (H,H8,^• ,•&) is constituted by the~deformed! enveloping
algebra of a Lie algebrag, its corresponding~deformed! algebra of functions on the Lie groupG
and a nondegenerate pairing. Let us also suppose that there exist two sets of gen
$h1 ,...,hn% and$w1,...,wn%, such that the multi-indexed families$hi% i PNn and$w j% j PNn are bases
of H andH8, respectively.

Our purpose is to write explicitly the action on the coregular module (H8,s,H). For that it is
sufficient in a first step to know the action of the generators by obtaining the structure con
a ik

j that appear in the rhs of

hi sw j5 (
kPNn

a ik
j wk, i , j P$1,2,...,n%. ~3.13!

Next, the action is extended to the ordered polynomialw j5(w1) j 1
¯(wn) j n taking into ac-

count that the coregular module (H8,s,H) is in fact a ‘‘module-algebra,’’ i.e., there is a com
patibility relation between the action and the algebra structure inH8:

hs~wc!5~h(1)sw!~h(2)sc!, hs1H85e~h!1H8 . ~3.14!

The first expression of~3.14! allows us to compute the action on arbitrary products once
knows the action on each factor.

Obviously, the main problem is to write the explicit expression of the action on a ge
ordered polynomial. We have solved this by observing the following

~1! Associated to the right regular module (H,a,H) there is a natural representationr of the
algebraH given by

@r~h2!#~h1!5h1ah2 . ~3.15!

~2! The action on the left coregular module (H8,s,H) can be easily written in terms of th
representationr by using the adjoint with respect tô• ,•& defined by

hsw5@r~h!#†~w!. ~3.16!
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Therefore, in order to compute the left coregular action ofH on H8 it is only necessary to
calculate the adjoints of the operators associated to the action on the right regular mod~a
similar relation happens between the right coregular action and the left regular module!.

When a pair of dual bases is available the following notation is very useful since it allow
compute adjoint operators. Let us start showing a simple case: letH5K@h# andH85K@w# be a
pair of commutative and cocommutative Hopf algebras, generated byh and w respectively,
equipped with the pairing given by

^hi ,w j&5 i ! d j
i , ; i , j PN. ~3.17!

Let us consider the corresponding endomorphisms of ‘‘multiplication,’’ denoted again byh andw,
and formal derivations,]/]h and]/]w. It is straightforward to check the following identities:

h†5
]

]w
, w†5

]

]h
. ~3.18!

The situation is similar whenH andH8 are finitely generated by the systems$h1 ,...,hn% and
$w1,...,wn% ~now the positive integers are indexes, not exponents! such that the multi-indexed
systems$hl% l PNn and$wm%mPNn are dual bases verifying

^hl ,wm&5 l !d l
m , ; l ,mPNn. ~3.19!

We shall say that an arbitrary product inH ~respectively,H8) is written in ‘‘normal ordering’’
when we know its expression in terms of the ordered monomials that constitute the basis$hl% l PNn

~respectively,$wm%mPNn).
The definition of the formal derivatives]/]hi and]/]w j is as follows:

]

]hi
~h1

l 1
¯hi

l i
¯hn

l n!5 l ih1
l 1
¯hi

l i21
¯hn

l n ,

]

]w i ~~w1!m1
¯~w i !mi

¯~wn!mn!5mi~w1!m1
¯~w i !mi21

¯~wn!mn. ~3.20!

The generalization of the ‘‘multiplication’’ operators is not straightforward if the algebras
noncommutative. In order to avoid any confusion the formal operators corresponding t
generatorshi and w j ~where i , j P$1,...,n%) will be denoted using a bar over the correspond
symbol. The action of these operators on the bases of ordered polynomials is given by

h̄i~h1
l 1
¯hi

l i
¯hn

l n!5h1
l 1
¯hi

l i11
¯hn

l n ,

w̄ i~~w1!m1
¯~w i !mi

¯~wn!mn!5~w1!m1
¯~w i !mi11

¯~wn!mn. ~3.21!

Note that ifH ~respectively,H8) is commutative thenh̄i ~respectively,w̄ i) acts as a ‘‘multiplica-
tion’’ operator, but this is not longer true when the algebra is noncommutative. In this cas
better to refer them as ‘‘rising’’ operators.

The adjoint operation acts in the following way:

h̄i
†5

]

]w i , w̄ i†5
]

]hi
. ~3.22!

The commutation relations forh̄i and]/]hi are

F ]

]hi
,h̄ j G5d i j , @ h̄i ,h̄ j #50, F ]

]hi
,

]

]hj
G50. ~3.23!
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For w̄ i and]/]w i the expressions are similar.

IV. INDUCED REPRESENTATIONS OF QUANTUM GALILEI ALGEBRAS

In this section we are going to construct the induced representations of some non equ
deformations of the (111) Galilei algebra,12 denoted by Uz(g(1,1)), Uv(g(1,1)), and
Uq(g(1,1)).

The quantum algebraUz(g(1,1)) is isomorphic to the quantum Heisenberg algebraHq(1)14,15

and to the deformed Heisenberg–Weyl algebraUr(HW).16 It can be obtained by contraction16 of
a nonstandard deformation of the Poincare´ algebra.17

A contraction of the quantum algebraUq(su(2)) gives the deformationUv(g(1,1)) of the
enveloping Galilei algebra in (111) dimensions.18 The deformed (311) case appears in Ref. 19

The quantum algebraUq(g(1,1)) is known as the quantum~extended! Galilei algebra and was
first introduced in Refs. 20 and 21 in connection with spin chains.

A. Induced representations of Uz„g„1,1……

The deformed Hopf algebraUz(g(1,1)) is described by

@H,K#52
12e24zP

4z
, @P,K#50, @H,P#50,

DP5P^ 111^ P, DX5X^ 11e22zP
^ X, XP$H,K%,

~4.1!
e~X!50, XP$H,P,K%,

S~P!52P, S~X!52e2zPX, XP$H,K%.

The dual algebra,Fz(G(1,1)), is generated byx,t, and v. Its Hopf algebra structure is
determined by

@ t,v#50, @x,v#522zv, @ t,x#52zt,

Dt5t ^ 111^ t, Dx5x^ 111^ x2t ^ v, Dv5v ^ 111^ v,
~4.2!

e~ f !50, f P$t,x,v%,

S~v !52v, S~x!52x2tv, S~ t !52t.

The nondegenerate pairing betweenUz(g(1,1)) andFz(G(1,1)) is given by

^KmHnPp,vqtrxs&5m!n! p!dq
md r

nds
p . ~4.3!

Next theorem describes the left and right coregular modules associated toUz(g(1,1)).
Theorem 4.1: (1) The action of the generators of Uz(g(1,1)) in the left coregular module

(Fz(G(1,1)),s,Uz(g(1,1))) is

Ks f 5F ]

]v
2

1

4z
t̄~12e24z ~]/]x!! G f , Hs f 5

]

]t
f , Ps f 5

]

]x
f , ~4.4!

where f is an arbitrary ‘‘function’’ in Fz(G(1,1)).
(2) The action on the right coregular module(Fz(G(1,1)),a,Uz(g(1,1))) is given by

f aK5
]

]v
f , f aH5F ]

]t
2

1

4z
v̄~12e24z ~]/]x!! G f , f aP5

]

]x
f . ~4.5!
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Proof: Both actions~4.4! and~4.5! can be calculated following a similar pattern. In this pro
we present in detail how to obtain~4.4!. To describe the left coregular module we need to comp
the action on the right regular module@Uz(g(1,1)),a,Uz(g(1,1))#. To do this, it is useful to use
the following lemma.

Lemma 4.1: The product HnK, where nPN, can be written in normal ordering as follows:

HnK5KHn2n
1

4z
Hn21~12e24zP!. ~4.6!

To prove this lemma it suffices to have in mind thatK acts as a derivation on the commutati
subalgebra generated byH.

According with the lemma and the commutation relations inUz(g(1,1)) we can write

~KmHnPp!aK5Km11HnPp2n
1

4z
KmHn21~12e24zP!Pp,

~KmHnPp!aH5KmHn11Pp, ~4.7!

~KmHnPp!aP5KmHNPp11.

From these expressions we deduce the associated operators:

r~K !5K̄2
1

4z

]

]H
~12e24zP̄!, r~H !5H̄, r~P!5 P̄, ~4.8!

whose adjoints are

r~K !†5
]

]v
2

1

4z
t̄~12e24z ~]/]x!! , r~H !†5

]

]t
, r~P!†5

]

]x
. ~4.9!

Using these operators we find the action~4.4!.
From Theorem 4.1 we get two corollaries which describe two families of coinduced mod
Corollary 4.1: Let us consider the commutative subalgebra of Uz(g(1,1)) generated by H and

P. For any pair of complex numbers(a,b) there is a (right) character of this subalgebra define
by

1¢~HnPp!5bnap, n,pPN. ~4.10!

The representation of Uz(g(1,1)) coinduced by~4.10! has as carrier space the subspac
C↑,Fz(G(1,1)) whose elements are of the form

f~v !ebteax. ~4.11!

This space is isomorphic toC @@v## and on this latter the action of the generators is given by

f~v !¢K5f8~v !,

f~v !¢P5f~v !a, ~4.12!

f~v !¢H5f~v !Fb2
1

4z
~12e24az!vG .

Proof: The equivariance condition, that fixes the carrier space of the coinduced modu
equivalent to the following pair of equations
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Hs f 5b f , Ps f 5a f . ~4.13!

According to~4.4! the above expressions reduce to

]

]t
f 5b f ,

]

]x
f 5a f . ~4.14!

Note that expressions~4.14! are not differential equations although they look like them. If
expandf in the form

f 5 (
q,r ,sPN

f q,r ,sv
qtrxs, ~4.15!

Eqs.~4.14! yield

~r 11! f q,r 11,s5b fq,r ,s , ~s11! f q,r ,s115a fq,r ,s , ~4.16!

whose solution is

f q,r ,s5
br

r !

as

s!
f q,0,0. ~4.17!

Hence, the elements that form the carrier spaceC↑ of the coinduced representation are

f 5f~v !ebteax. ~4.18!

Finally, the action of the generators ofUz(g(1,1)) onC↑ is obtained by considering the regula
action on the right~4.5!

@f~v !ebteax#aK5f8~v !ebteax,

@f~v !ebteax#aH5f~v !Fb2
1

4z
~12e24za!vGebteax, ~4.19!

@f~v !ebteax#aP5f~v !ebteaxa.

Corollary 4.2: Let us consider the commutative subalgebra of Uz(g(1,1)) generated by K
together with the one-dimensional representation

Km£15cm, mPN. ~4.20!

The corresponding coinduced representation of Uz(g(1,1)) has as carrier space the subspace
Fz(G(1,1)) constituted by the elements of the form

ecvf~ t,x!. ~4.21!

The coinduced action can be naturally translated to the subalgebra of Fz(G(1,1)) generated by t
and x:

K£f~ t,x!5Fc2
1

4z
t̄~12e24z ~]/]x!! Gf~ t,x!,

H£f~ t,x!5
]

]t
f~ t,x!, ~4.22!
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P£f~ t,x!5
]

]x
f~ t,x!.

This last class of modules can be called ‘‘local representations’’ since when the deform
dissapears we get the denominated locally operating representations, which are induced re
tations from finite representations of the isotopy group of the space–time acting on wave fu
living in the space–time manifold~see Ref. 11 and references therein!.

B. Induced representations of Uv„g„1,1……

This quantum algebra is characterized by the following commutation relations and stru
mappings:

@H,K#52P, @P,K#5vP2, @H,P#50,

DH5H ^ 111^ H, DX5X^ 11e22vH
^ X, XP$P,K%,

~4.23!
e~X!50, XP$H,P,K%,

S~H !52H, S~X!52e2vHX, XP$P,K%.

The dual algebraFv(G(1,1)), again generated byx,t, andv, is characterized by

@ t,x#522vx, @x,v#5vv2, @ t,v#522vv,

Dt5t ^ 111^ t, Dx5x^ 111^ x2t ^ v, Dv5v ^ 111^ v,
~4.24!

e~ f !50, f P$v,t,x%,

S~v !52v, S~x!52x2tv, S~ t !52t.

The pairing betweenUv(g(1,1)) andFv(G(1,1)) is now given by

^KmPnHp,vqxr ts&5m!n! p!dq
md r

nds
p . ~4.25!

Note the different order of the generatorsH,P and t,v with respect to the former case.
Theorem 4.2: (1) The action of the generators of Uv(g(1,1)) in the left coregular module

(Fv(G(1,1)),s,Uv(g(1,1))) is

Ks f 5F ]

]v
1v x̄

]2

]x2 2 t̄
]

]xG f , Ps f 5
]

]x
f , Hs f 5

]

]t
f , ~4.26!

where f is an arbitrary ‘‘function’’ in the right coregular module Fv(G(1,1)).
(2) The action in(Fv(G(1,1)),a,Uv(g(1,1))) is given by

f aK5
]

]v
f , f aP5

]

]x

12v v̄
]

]x

f , f aH5F ]

]t
2

1

v
lnS 12v v̄

]

]xD G f . ~4.27!

Following a similar pattern to the previous case we obtain two families of coinduced r
sentations described by the following two corollaries.

Corollary 4.3: The representation of Uv(g(1,1)) coinduced by the character

1¢PnHp5anbp, n,pPN, ~4.28!
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of the abelian subalgebra of Uv(g(1,1)) generated by H and P, has as support the subspac
C↑,Fv(G(1,1)) whose elements are of the form

f~v !eaxebt. ~4.29!

The action can be carried to the space of formal power seriesC @@v##. On this space the action o
the generators of Uv(g(1,1)) is

f~v !¢K5f8~v !,

f~v !¢P5f~v !
a

12vav
, ~4.30!

f~v !¢H5f~v !Fb1
1

v
ln~12vav !G .

Corollary 4.4: The representation of Uv(g(1,1)) coinduced by the character

Km£15cm, mPN ~4.31!

of the abelian subalgebra of Uv(g(1,1)) generated by K, has as support the subspac
C↑,Fv(G(1,1)) whose elements are of the form

ecvf~x,t !. ~4.32!

The action can be transferred to the subalgebraC @@v## of Fv(G(1,1)) generated by x and t. On
this carrier space the action of the generators of Uv(g(1,1)) is

K£f~x,t !5S c2 t̄
]

]x
1v x̄

]2

]x2Df~x,t !,

P£f~x,t !5
]

]x
f~x,t !, ~4.33!

H£f~x,t !5
]

]t
f~x,t !.

These last representations are also ‘‘local representations.’’

C. Induced representations of Uq„g„1,1……

The quantum extended Galilei group can be obtained by deforming a Lie–Poisson str
defined by a nontrivial 1-cocycle on the extended Galilei groupG(1,1) with values onL2g(1,1).3

The final result is the Hopf algebraFq(G(1,1)), generated bym,x,t, andv. The nonvanishing
commutation relations are

@m,x#522am, @m,v#5av2, @x,v#52av. ~4.34!

The coproduct, counit, and antipode are

Dm5m ^ 111^ m1v ^ x1 1
2 v2

^ t,

Dx5x^ 111^ x1v ^ t,

Dt5t ^ 111^ t,

~4.35!
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Dv5v ^ 111^ v,

e~m!5e~x!5e~ t !5e~v !50,

S~m!52m1x2 1
2 v2t, S~x!52x1tv, S~ t !52t, S~v !52v.

The dual~enveloping! algebraUq(g(1,1))20,21 is generated byI ,P,H, andN, in such a way
that its pairing withFq(G(1,1)) is given by

^I pPqHrNs,mp8xq8t r 8vs8&5p!q! r !s!dp8
p dq8

q d r 8
r ds8

s . ~4.36!

The duality relations fix the Hopf algebra structure inUq(g(1,1)). ReplacingI andN by

M5e2aPI , K5eaPN ~4.37!

we get only two nonvanishing commutation relations

@P,K#52M , @H,K#52
sinh~aP!

a
. ~4.38!

The following coproduct, counit and antipode complete the Hopf algebra structure ofUq(g(1,1))

DM5M ^ e2aP1eaP
^ M , DP5P^ 111^ P,

DH5H ^ 111^ H, DK5K ^ e2aP1eaP
^ K,

~4.39!
e~M !5e~P!5e~H !5e~K !,

S~M !52M , S~P!52P, S~H !52H, S~K !52K2aM.

In terms of the system (I ,P,H,N) the nonvanishing commuting relations become slightly m
complicated than~4.38!

@ I ,N#52ae22aPI 2, @P,N#52e22aPI , @H,N#52
12e22aP

2a
, ~4.40!

but the pairing is simpler in terms of (I ,P,H,N) than instead of (M ,P,H,K). This fact is essentia
in order to describe properly the coregular modules.

Theorem 4.3: (1) The action of the generators of Uq(g(1,1)) in the left coregular module
(Fq(G(1,1)),s,Uq(g(1,1))) is

I s f 5S 11av̄
]

]m
e22a ~]/]x!D ]

]m
f ,

Ps f 5F ]

]x
1

1

a
lnS 11av̄

]

]m
e22a ~]/]x!D G f ,

~4.41!

Hs f 5F ]

]t
1

1

2a
v̄S 12

e22a ~]/]x!

11av̄
]

]m
e22a ~]/]x!D G f ,

Ns f 5
]

]v
f ,
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where f is an arbitrary function in Fq(G(1,1)).
(2) The action on the right coregular module(Fq(G(1,1)),s,Uq(g(1,1))) is given by

f aI 5
]

]m
f ,

f aP5
]

]x
f ,

~4.42!

f aH5
]

]t
f ,

f aN5F ]

]v
1am̄e22a ~]/]x!

]2

]m2 1 x̄e22a ~]/]x!
]

]m
1 t̄

12e22a ~]/]x!

2a G f .

Proof: To obtain, for example, the right coregular action~4.42! let us start by noting that the
productNImPnHp, for anym,n,pPN, can be written in normal ordering as

NImPnHp5I mPnHpN1maIm11e22aPPnHp1nIm11e22aPPn21Hp1pIm
12e22aP

2a
PnHp21.

~4.43!

This result follows immediately from the fact thatN acts as a derivation on the abelian subalge
generated byI ,P, andH.

Using ~3.3! and ~4.43! it is trivial to write down the left regular action onUq(g(1,1)):

I s~ I mPnHpNq!5I m11PnHpNq,

Ps~ I mPnHpNq!5I mPn11HpNq,
~4.44!

Hs~ I mPnHpNq!5I mPNHp11Nq,

Ns(I mPnHpNq)5I mPNHpNq111maIm11e22aPPNHpNq

1nIm11e22aPPn21HpNq1pIm
12e22aP

2a
PNHp21Nq.

The endomorphisms associated to the generators are given by

l~ I !5 Ī ,

l~P!5 P̄,
~4.45!

l~H !5H̄,

l~N!5N̄1a Ī2e22aP̄
]

]I
1 Ī e22aP̄

]

]P
1

12e22aP̄

2a

]

]H
,

and the adjoint operators with respect to the pairing are
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l~ I !†5
]

]m
,

l~P!†5
]

]x
,

~4.46!

l~H !†5
]

]t
,

l~N!†5
]

]v
1am̄e22a ~]/]x!

]2

]m2 1 x̄e22a ~]/]x!
]

]m
1 t̄

12e22a ~]/]x!

2a
.

From ~4.46! we deduce the action~4.42! associated to (Fq(G(1,1)),a,Uq(g(1,1))).
To end the proof let us note thatM andK act in thisUq(g(1,1))-module according to

f aM5e2a ~]/]x!
]

]m
f ,

~4.47!

f aP5e2a ~]/]x!F ]

]v
1am̄e22a ~]/]x!

]2

]m2 1 x̄e22a ~]/]x!
]

]m
1 t̄

12e22a ~]/]x!

2a G f .

By means of the results obtained in the previous theorem we construct a family of rep
tations characterized in the following corollary.

Corollary 4.5: The representation of Uq(g(1,1)) coinduced by the character

~ I pPqHr !£15apbqg r ~4.48!

of the abelian subalgebra generated by I,P, and H has as support the subspaceC↑,Fq(G(1,1))
whose elements are of the form

eamebxegtf~v !. ~4.49!

The action can be transferred to the space of formal power seriesC @@v##. On this space the
action of the generators of Uq(g(1,1)) is

I £f~v !5a~11aae22abv !f~v !,

P£f~v !5Fb1
1

a
ln~11aae22abv !Gf~v !,

~4.50!

H£f~v !5Fg1
1

2a S 12
e22ab

11aae22abv D vGf~v !,

N£f~v !5f8~v !.

V. CONCLUDING REMARKS

We have presented an ‘‘algebraic’’ method for constructing~co!induced representations o
Hopf algebras. This procedure makes a systematic use of coregular representations, and i
based on the existence of a triplet composed by two Hopf algebras and a nondegenerate
between them such that there exists a paring of dual bases. This last requirement makes
to apply the procedure when the number of algebra generators increases.
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Note that the right coregular module (H8,a,H) corresponds to the generalization of th
concept ofG-space,X, on group theory. So, we substitute the geometric objectX by the algebra
of C ` C-functions onX, and the Lie groupG by the enveloping algebraU(g) of its Lie algebrag.
If X is a homogeneous space, i.e.,X.G/K (K Lie subgroup ofG), we consider the algebra ofC `

C-functions onG, F(G) with the equivariance condition. The setsU(g) and F(G) have the
structure of Hopf algebras (H and H8, respectively! and are dual as well as their deforme
versions. On the other hand, by means of the action on the left coregular module (H8,s,H) we
get the induced representations.

As it is well known, the unitarization of induced representations is deeply linked to the ch
of a star (* ) structure on the Hopf algebra and to the definition of a quasi-invariant measu
this paper we have not studied the problem of the unitarity of the induced representations, ho
we are working in a procedure valid when the Hopf algebra has a bicrossproduct structure13 that
will be introduced in a forthcoming paper.

It is worthy to point out that Hopf algebrasUz(g(1,1)) and Uv(g(1,1)) exhibit a bi-
crossproduct structure. It is possible to profit this fact in order to describe the coregular mo
by means of a geometric construction. We shall explain this in a forthcoming paper.

On the other hand, the induced representations ofUq(g(1,1)) were constructed by Bonech
et al. in Ref. 3. We have computed the coregular representations of this Hopf algebra and de
from them a family of coinduced representations that includes the ones previously obtained
3. The advantage of our approach is that neither use of the corepresentations nor of Kirillov
is made.

Notice that the smooth dependence on the deformation parameter of the Galilei alg
considered by us, together with the algebraic nature of the induction procedure allows to obt
induced modules in the nondeformed case using a simple limit of the deformation parame

Finally, the construction of induced representations of ‘‘local type’’ forUq(g(1,1)) presents
two problems: the generatorx andt do not appear isolated on a side of the monomial basis cho
and the linear space spanned by the elementsI mNn does not close a subalgebra ofUq(g(1,1)).
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We give a definition of square-integrability for imprimitivity systems and we prove
that the square-integrable ones share most of the properties of square-integrable
representations of groups. ©2000 American Institute of Physics.
@S0022-2488~00!00807-0#

I. INTRODUCTION

In the first part of their seminal paper,1 Duflo and Moore show the main properties of squa
integrable representations for nonunimodular locally compact topological groups. By mea
these general results, most of the properties shared bycontinuous wavelet transforms, generaliz
Fourier operators and generalized coherent statescan be easily proved.2,3

However, there are cases that require extensions of the above theory. For example, fo
sical coherent states associated with the quantum harmonic oscillator, one has to con
representation of the Weyl–Heisenberg group that is square-integrable modulo a subgroup.
best of our knowledge, this notion was introduced by Borel in the case of unimodular group
central subgroups,4 and it includes the definition of square-integrability for projecti
representations.5 In recent years, Ali extended this notion to arbitrary subgroups, considering
finite dimensional representations of such subgroups.6

Another example is the case of the Euclidean, Poincare´, and Galilei groups, which do not hav
square-integrable representations at all. To treat these groups, a definition of square-integ
on homogeneous spaces was proposed by the use of sections, for a review, see Ref. 7; H
in this case, due to the dependence on the section, one loses the covariance propertie
corresponding wavelet transform as well as the existence oforthogonality relations.

Finally, the Gabor analysis,8,9 is a generalization to an arbitrary locally compact Abeli
group G of the short time Fourier transformon the real line~this transform gives rise to the
classical coherent states for a suitable choice of the window function!. This theory is based on th
properties of thetime-frequency shift operatorsthat define a projective square-integrable rep
sentation of the direct productG3G.

In this paper we consider imprimitivity systems for a locally compact second coun
topological group based on a locally compact second countable topological space with a co
ous action of the group. For these systems we propose a definition of square-integrability
three main features.

First of all, given a square-integrable imprimitivity system, there exists an isometry inter
ing this system with acanonical one, playing the role of the left regular representation. Moreov
the existence of such an isometry is a sufficient condition for square-integrability. Finally, u
some weak assumptions, thediscrete partof the canonical imprimitivity system decomposes in
its irreducible components by means of the existence oforthogonality relations. We will prove
48330022-2488/2000/41(7)/4833/27/$17.00 © 2000 American Institute of Physics
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these results without the use of any theorem on the structure of imprimitivity systems.
The second feature is that, in the case of transitive imprimitivity systems, the Mackey in

ing functor preserves the notion of square-integrability. Indeed, the square-integrability of su
imprimitivity system is equivalent to the square-integrability of the inducing representation o
stability subgroup.

Finally, recalling that, for groups that are semidirect products with normal Abelian fa
there is a correspondence among representations and imprimitivity systems, a represent
such groups is square-integrable if and only if the corresponding imprimitivity system is sq
integrable.

At the end of the paper we apply our theory to some examples. In particular, we show th
short time Fourier transform~as well as its generalization in the framework of Gabor analysis! is
the isometry associated with the imprimitivity system canonically defined by position and
mentum operators for the one-dimensional quantum particle~or, in the context of signal analysis
by the time-frequency shift operators!. This is an indication that our results provide the natu
abstract framework for the extension of Gabor analysis to an arbitrary Abelian group. The ne
this general setup is witnessed, for instance, in Ref. 9.

In this paper we focus the attention on the abstract harmonic analysis viewpoint. Neverth
we believe that our results can be useful in the discretisation problems and their asso
numerical algorithms arising in signal process and pattern recognition, see, as a source o
ences, the book containing papers in Refs. 8 and 9. Moreover, they can be used, for exam
the context of quantum mechanics on phase-space,10 and in quantum tomography.11

The notion of imprimitivity system is a central one in the theory of group representation
was introduced by Frobenius and developed later on by Mackey in his seminal work o
classification of unitary representations for groups with normal factors. From the physical po
view, it played an important role in quantum mechanics in connection with the proble
localizability of particles, see the fundamental papers.12,13

II. MATHEMATICAL NOTATIONS

In this section we introduce the mathematical notations we will use in the paper.
If X is a locally compact second countable~lcsc! topological space~in the following all the

topological spaces are assumed to be Hausdorff!, we let Cc(X) be the vector space of the com
pactly supported continuous functions onX and C0(X) be the Banach space of the continuo
functions vanishing at infinity with the sup normi•isup. We considerC0(X) as a commutative
C* -algebra with respect to the pointwise multiplication (f 1 , f 2)° f 1• f 2 and the complex conju-
gation f ° f̄ . We denote byB(X) thes-algebra of the Borel subsets ofX. A (positive) measureis
a positive linear form onCc(X) and a(complex) bounded measureis a continuous linear form on
C0(X). As usual, we use the same symbol for the extensions of the above linear forms toL1(X).

Given a lcsc topological groupG with identity e, we denote bydg a left invariant Haar
measure and byDG its modular function. ByG-space, we mean a lcsc topological space endow
with a continuous action ofG. If X is such a space, we denote byg@x# the action ofgPG on the
point xPX, and byG@x# the orbit atx. Given a mapf defined onX, we let, for allgPG,

f g~x!5 f ~g21@x# ! xPX,

and, fixedgPG, we define the operatorl g acting in C0(X) as l gf 5 f g. Obviously, l g is a
well-defined isometric* -homomorphism ofC0(X) and

l g1g2
5 l g1

l g2
l g215 l g

21, g1 ,g2 ,gPG.

Moreover, given a measuren on X, we denote byng the measure onX,

E
X

f ~x!dng~x!5E
X

f g~x!dn~x! f PCc~X!.
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A positive nonzero measuren on X is said to bequasi-invariantif, for all gPG, ng is equivalent
to n, relatively invariantif ng is proportional ton, and invariant if ng5n.

By Hilbert spacewe mean a complex separable Hilbert space with scalar product^•,•& linear
in the first argument. We denote byi•i the corresponding norm. We use the wordrepresentation
~of a lcsc groupG acting in a Hilbert space! to mean a unitary representation ofG that is
continuous with respect to the strong operator topology.

Let G be a lcsc group andX a G-space. We consider the topological productG3X as a
G-space with respect to the following action ofG:

g@~h,x!#ª~gh,g@x# ! gPG,~h,x!PG3X.

We introduce the following notation. Iff1 andf2 are two complex functions such that, for a
(g,x)PG3X, the function

G{h°f1~h,x!f2~h21@~g,x!# !PC

is integrable with respect todg, then we definef1.f2 as the function onG3X given by

~f1.f2!~g,x!5E
G

f1~h,x!f2~h21@~g,x!# !dh.

Moreover, a couple~M, U! is said to be animprimitivity system~for G based onX! acting in a
Hilbert spaceH if

~1! M is a nondegenerate* -representation of theC* -algebraC0(X) in H;
~2! U is a representation ofG in H;
~3! for all f PC0(X) andgPG

UgM ~ f !Ug
215M ~ l gf !.

We denote byPM the unique projection valued measure inH such that

M ~ f !5E
X

f ~x!dPM~x! f PC0~X!,

where the integral is in the weak operator topology. Given an imprimitivity system~M, U! acting
in a Hilbert spaceH, according to Ref. 14, we define, for allfPCc(G3X), the operator onH,

U~f!5E
G

M ~f~g,• !!Ugdg, ~1!

where the integral is in the strong operator topology.
Lemma 1:The operatorU(f) defined by Eq.~1! is well defined, bounded andiU(f)i

<*Gif(g,•)isupdg.
Proof: Let uPH. Clearly, the mapg°f(g,•)5:F(g) is continuous fromG to C0(X) and it

has compact support. Sincef °M ( f ) is continuous fromC0(X) to L(H) ~with the operator
norm!, theng°M (F(g)) is continuous fromG to L(H). Moreover, the mapg°Ugu is con-
tinuous fromG to H, henceg°M (F(g))Ugu is continuous fromG to H and

iM ~F~g!!Ugui<iuiiF~g!isup.

Then, the mapg°M (F(g))Ugu is dg-integrable, the operatorU(f) is well defined and

iU~f!ui<iui E
G

iF~g!isupdg.

From the above equation it follows thatU(f) is bounded andiU(f)i<*Gif(g,•)isupdg.
h
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Remark 1:Denote byL the spaceCc(G3X) with the norm

ifi5E
G

if~g,• !isupdg.

If f1 ,f2PL, then one can easily check thatf1.f2 is well defined and belongs toL. Moreover,
given fPL, the function

f* ~g,x!5DG~g21!f~g21,g21@x# ! ~g,x!PG3X,

is in L. One can show, see, for example, Chap. 6 of Ref. 14, that, with respect to the
operations,L is an involutive normed algebra and the mapf°U(f) is a* -representation ofL in
H. This representation characterises completely the imprimitivity system~M, U!. The completion
L1(G,dg,C0(X)) of L, with respect to the above norm, is an involutive Banach algebra and
the analogous of the group algebraL1(G) for groups.

The following result is a version of Schur lemma for imprimitivity systems:
Lemma 2:Let ~M, U! and ~N, V) be two imprimitivity systems acting inH andK, respec-

tively. Let T be a closed operator fromH to K with a dense domain such that, for allf
PC0(X) andgPG,

N~ f !VgT,TM~ f !Ug .

Suppose that~M, U! is irreducible, thenT is a multiple of an isometry.
Proof: The proof is standard. Consider the selfadjoint operatorT* T. Fix f PC0(X) and g

PG, then

M ~ f !UgT* T5~M ~ l g21 f̄ !Ug21!* T* T,T* ~N~ l g21 f̄ !Vg21!* T5T* N~ f !VgT,T* TM~ f !Ug .

Moreover, letE°Q(E) be the spectral measure ofT* T, then, see, for example, Theorem 4.11
Ch. X of Ref. 15, for allEPB(R),

M ~ f !UgQ~E!,Q~E!M ~ f !Ug .

SinceQ(E) is bounded the above relation is an equality. Since~M, U! is irreducible, it follows
that Q(E) is proportional to the identity. HenceuTu is a scalar and one concludes using the po
decomposition ofT.

III. SQUARE INTEGRABLE IMPRIMITIVITY SYSTEMS

In the following we give the definition of square-integrability for imprimitivity systems a
we prove the main properties of this class of systems.

In this section,G is a lcsc topological group with a fixed left Haar measuredg and X is a
G-space with a fixed quasi-invariant measuredx. We observe that quasi-invariant measures alw
exist, but, in general, they are notcanonical, since two of them need not be proportional
equivalent.

First of all, we define acanonicalmeasure onG3X in terms of the measuresdg anddx. We
denote bydgdx the product measure onG3X and we letm be the measure onG3X given by

E
G3X

f~g,x!dm~g,x!5E
G3X

f~g,g@x# !dgdx fPCc~G3X!. ~2!

Lemma 3:With the above notations, the measurem is well-defined, invariant and equivalen
to dgdx.

Moreover, there is a measurable functionl:G3X→]0,`@ , called thecocycleof dx, such that
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~1! for dg-almost allgPG,

E
X

f ~g21@x# !dx5E
X

f ~x!l~g,x!dx fPCc~X!;

~2! for ~dgdgdx!-almost all (g,h,x)PG3G3X

l~gh, x!5l~g,h@x# !l~h, x!; ~3!

~3! the function (g,x)°l(g21,x) is the density ofm with respect todgdx.

Finally, if dx8 is another quasi-invariant measure onX having densitya with respect todx, then,
for all fPCc(G3X),

E
G3X

f~g,x!dm8~g,x!5E
G3X

f~g,x!a~g21@x# !dm~g,x!,

wherem8 is given by Eq.~2!, replacingdx with dx8.
Proof: Define V as the map fromG3X into itself given byV(g,x)5(g,g@x#), thenV is

clearly a homeomorphism andm is the image measure of the measuredgdxwith respect toV, so
m is well defined. We prove that it is invariant.

Let fPCc(G3X) andgPG, then

E
G3X

fg~h,x!dm~h,x!5E
G3X

f~g21h,g21h@x# !dhdx

5E
X
E

G
f~h,h@x# !dhdx5E

G3X
f~h,x!dm~h,x!.

We prove thatm is equivalent todgdx. To this aim, it is sufficient to prove that, givenEPB(G
3X), thenE is dgdx-negligible if and only ifV(E) is dgdx-negligible. The setE is negligible if
and only if, fordg-almost allgPG, the sectionEg is dx-negligible. Sincedx is equivalent todxg,
this last condition is equivalent to the fact that, fordg-almost allgPG, g@Eg#5V(E)g is dx-
negligible and, hence, to the fact thatV(E) is dgdx-negligible.

We now prove the second claim. By a standard result onG-spaces, see, for example, Theore
5.10 of Ref. 16, there is a positive and measurable functionl such that conditions in items 1.-2
above are satisfied. Let nowj be the density ofm with respect todgdx, which is adgdx-locally
integrable positive function, and choosefPCc(G3X) positive, then

E
G
E

X
l~g21,x!f~g,x!dxdg5E

G
E

X
f~g,g@x# !dxdg

5E
G3X

f~g,g@x# !dgdx

5E
G3X

f~g,x!dm~g,x!

5E
G3X

f~g,x!j~g,x!dgdx,`.

From Fubini theorem, it follows that (g,x)°l(g21,x) is dgdx-locally integrable and, fordgdx-
almost all (g,x)PG3X,

l~g21,x!5j~g,x!,
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so condition in item~3! holds.
Let now dx8 be a measure onX having densitya with respect todx, then, for allfPCc(G

3X),

E
G3X

f~g,x!dm8~g,x!5E
G3X

f~g,g@x# !dgdx8

5E
G3X

f~g,g@x# !a~x!dgdx

5E
G3X

f~g,g@x# !a~g21@x# !dm~g,x!.

So the last claim follows. h

The following definition of square-integrability for imprimitivity systems is the cornerstone
the paper.

Definition: Let ~M, U! be an irreducible imprimitivity system acting in a Hilbert spaceH. The
system~M, U! is said to besquare-integrablewith respect todx if there areu,vPH, u,vÞ0 and
a functioncu,v in L2(G3X,m) such that, for allfPCc(G3X),

^u,U~f̄ !v&5E
G3X

cu,v~g,x!f~g,x!dm~g,x!. ~4!

For all u,vPH we denote bycu,v the linear form onCc(G3X),

f°^u,U~f̄ !v&.

If there exists a locallym-integrable function onG3X such that Eq.~4! holds we say thatcu,v is
a locally m-integrable functionand we use the same symbolcu,v to denote this function. We sa
that a vectorvPH is admissibleif there is a nonzero vectoruPH such thatcu,v is a function
square-integrable with respect tom. Clearly, ~M, U! is square-integrable if and only if there is
nonzero admissible vector.

We will explain and motivate our definition after the next lemma that characterizes
square-integrability in terms of properties ofM andU.

Lemma 4:Let ~M, U! be an imprimitivity system acting inH. Givenu,vPH, the following
conditions are equivalent:

~1! the linear formcu,v is a locallym-integrable function;
~2! for dg-almost allgPG, the bounded measure onX,

f°^u,M~ f̄!Ugv&

has a~complex! densityhu,v,g with respect todx.

If any of the above conditions is satisfied, then, fordg-almost all gPG, there is adx-
negligible setAg such that

hu,v,g~x!5l~g21,x!cu,v~g,x! xPX,x¹Ag , ~5!

andcu,v belongs toL2(G3X,m) if and only if

E
G
E

X
l~g21,x!21uhu,v,g~x!u2dxdg,`.
                                                                                                                



e
y

m,

4839J. Math. Phys., Vol. 41, No. 7, July 2000 Square-integrable imprimitivity systems

                    
Proof: We prove that the first condition implies the second one. Sincecu,v is locally
m-integrable andG second countable, then, for almost allgPG, the functionx°cu,v(g,g@x#) is
locally dx-integrable and, for allf PCc(X), the functiong°*X f (g@x#)cu,v(g,g@x#)dx is locally
dg-integrable.

Then, fixedf PCc(X), for all wPCc(G), by Fubini theorem,

E
G

w~g!E
X

f ~g@x# !cu,v~g,g@x# !dxdg5E
G3X

w~g! f ~x!cu,v~g,x!dm~g,x!

5^u,U~ f ^ w!v&

5E
G

w~g!^u,M ~ f̄ !Ugv&dg.

Hence, there is adg-negligible setAf,G, such that for allg¹Af ,

^u,M ~ f̄ !Ugv&5E
X

f ~g@x# !cu,v~g,g@x# !dx.

Since X is second countable, it follows that, fordg-almost all gPG, the bounded measur
f °^u,M ( f̄ )Ugv& has densitycu,v(g,•) with respect todxg21

and, taking into account that, b
Lemma 3, fordg-almost allgPG,l(g21,•) is the density ofdxg21

with respect todx, the above
bounded measure has density

hu,v,gªl~g21,• !cu,v~g,• !

with respect todx. The claim is proven and, in particular, Eq.~5! holds.
Conversely, assume condition 2. By definition, for allfPCc(G3X),

^u,U~f̄ !v&5E
G
E

X
f~g,x!hu,v,g~x!dxdg. ~6!

We claim that there is am-locally integrable functioncu,v defined onG3X such that,

^u,U~f̄ !v&5E
G3X

f~g,x!cu,v~g,x!dm~g,x!.

Clearly, we can assume thathu,v,g is positive, so thatf°^u,U(f̄)v& is a positive measure on
G3X. We will prove that this measure has density with respect tom. Let (fn) be a decreasing
sequence of positive functions inCc(G3X) such that limn *G3Xfndm50, then, by monotone
convergence theorem and sincefn>0, we have limn fn50, m-almost everywhere. Sincem is
equivalent todgdx, for dg-almost allgPG,

lim
n

fn~g,• !50 dx-a.e.,

and, hence,

lim
n

~hu,v,gfn~g,• !!50 dx-a.e.

Moreover, hu,v,g is in L1(X,dx), being the density of a bounded measure; then (hu,v,gfn

3(g,•))n is a positive decreasing sequence inL1(X,dx), so, by monotone convergence theore
for dg-almost allgPG,
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lim
n
E

X
hu,v,g~x!fn~g,x!dx50

and, by the same arguments,

lim
n
E

G
E

X
hu,v,g~x!fn~g,x!dxdg50,

where, for allnPN, the functiong°*Xhu,v,g(x)fn(g,x)dx is dg-measurable, since it is equa
dg-almost everywhere to the continuous function

g°^u,M ~fn~g,• !!Ugv&.

Hence, by Eq.~6!, limn^u,U(fn)v&50. This shows that the measuref°^u,U(f̄)v& has density
with respect tom, see, for example, Theorem 6.5.3 of Ref. 17.

Let cu,v be such a density, which is am-locally integrable function, then, by definition, for a
fPCc(G3X),

^u,U~f̄ !v&5E
G3X

f~g,x!cu,v~g,x!dm~g,x!.

Finally, assume that one of the two conditions holds, then, by Eq.~5! and Fubini theorem,

E
G
E

X
l~g21,x!21uhu,v,g~x!u2dxdg5E

G3X
ucu,v~g,x!u2dm~g,x!,

and the last claim is clear. h

The above definition of square-integrability depends only on the equivalence class of~M, U!
and is motivated by the following observations.

Remark 2:Let us show that the definition given by Eq.~4! is the natural generalization of th
notion of square-integrable representation to an imprimitivity system. Consider the case ofX being
a discrete denumerable setX5$xk% and choose the measuredx to be the atomic measuredx
5(kdxk

, where dxk
is the Dirac delta at pointxk. This measure isG-invariant, so thatm

5dgdx, and one has, for allu,vPH,

^M ~ f !u,v&5(
k

f ~xk!^PM~$xk%!u,v& f PC0~X!,

^U~f!u,v&5(
k
E

G
f~g,xk!^PM~$xk%!Ugu,v&dg fPCc~G3X!.

Moreover, givenu,vPH, define the mapĉu,v from G3X to C,

ĉu,v~g,x!5^u,PM~$x%!Ugv&.

The fact that~M, U! is square-integrable with respect todx is clearly equivalent to the fact tha
there exist two non zero vectorsu,vPH such that the mapĉu,v is square-integrable with respe
to dgdx. On the other hand, ifX not discrete, one has to take care of the fact that the measurdx
andPM are in general diffuse. The definition we give solves this technical problem.

Remark 3:With the notation of Remark 1, sincef°U(f) is a * -representation of the
involutive normed algebraL, givenuPH, the linear formVu on L,

f°^U~f!u,u&
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is of positive type, i.e., it satisfieŝVu ,f* !f&>0. It is well known, see, for example, Theore
6.28 of Ref. 14, that there is a one-to-one correspondence between cyclic imprimitivity sy
and linear forms of positive type. It is natural to express the square-integrability in terms of
linear forms.

Remark 4:If X reduces to a single point, so that the imprimitivity system collapses in
representation of the groupG, our definition is precisely the one given for groups. The m
difference between the two notions is that, in the case of groups, the Haar measure iscanonical
since it is the unique, up to a constant, invariant measure onG; whereas, in the case of imprimi
tivity systems, the notion of square-integrability depends on the choice of the measuredx and, in
the following, we will discuss carefully this point. In particular, given an imprimitivity system~M,
U! square-integrable with respect todx, Corollary 1 will prove that~M, U! is square-integrable
with respect to any measure equivalent todx. Moreover, Corollary 2 will show that there exists
minimal ~with respect to the natural partial order among measures! quasi-invariant measure clas
where the measuredx can be chosen to test the square-integrability of~M, U!. However, this
measure class depends on the imprimitivity system, so that it is notcanonicalfor X. Finally, there
are many cases where there exists onX a canonicalquasi-invariant measure or, at least, acanoni-
cal quasi-invariant measure class. For example,

~1! If X is transitive, there is only one quasi-invariant measure class, see, for example Re
~2! If G is a Lie group,X a manifold and the action onX smooth, all the Lebesgue measures

X are quasi-invariant and equivalent among them, see, for example Ref. 18.
~3! If X has, by itself, a group structure compatible with its topology~so thatX is a lcsc topo-

logical group! and the action ofG preserves this group structure, then any left invariant H
measuredx ~unique up to a constant! of X is relatively invariant with respect to the action o
G. Indeed, givengPG, sincex°g@x# is a topological group isomorphism, for allyPX and
f PCc(X),

E
X

fy~x!dxg5E
X

f~g21@g@y21#x#!dx

5E
X
f~g21@x#!dx,

thendxg is a Haar measure ofX and, hence, there is a strictly positive constantl(g) such that
dxg5l(g)dx, i.e., dx is relatively invariant.

Remark 5:Suppose thatX is the dual group of an Abelian groupA such that the action ofG
preserves the composition law ofX. It is well known that there is a one-to-one corresponde
between the imprimitivity systems~M, U! for G based onX and the representationsV of the
semidirect productA38G, whereA is a G-space with respect to the dual action. Moreover, su
correspondence preserves the irreducibility. By the third observation in Remark 4, any
measuredx of X is relatively invariant. With this choice, the square integrability of~M, U! is
equivalent to the square-integrability of the corresponding representationV of A38G.

Indeed, sincedx is relatively invariant, there is a positive characterr of G such thatl(g,x)
5r(g) for all gPG ~andxPX). A simple calculation shows that a left invariant Haar measure
A38G is r(g)dadg, whereda is a Haar measure ofA. Moreover, fixedu,vPH, for all gPG,
we denote byng the bounded measure onX,

f °^u,M ~ f̄ !Ugv&.

Then, since, for allaPA,Va5*X^x,a&dPM(x) and, for allgPG,Vg5Ug , we have that

^u,Vagv&5E
X
^x,a&dng~x!5F~ng!~a! aPA,gPG,
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whereF is the Fourier transform defined on the space of bounded measures onX.
Let u,v be nonzero vectors inH. By Fubini theorem, the continuous functio

(a,g)°^u,Vagv& is square-integrable with respect tor(g)dadg if and only if

E
G

r~g!E
A
u^u,Vagv&u2dadg5E

G
r~g!E

A
uF~ng!~a!u2dadg,`.

By a standard result of Fourier analysis~and Fubini theorem!, this condition is equivalent to the
fact that, fordg-almost allgPG, the measureng has a densityhg with respect todx and

E
G

r~g!E
X
uhg~x!u2dxdg,`.

The equivalence of the above conditions and the square-integrability of~M, U! is given by Lemma
4.

The properties of square-integrable representations can be extended to square-integra
primitivity systems. First of all, we define a canonical imprimitivity system playing the role of
left regular representation for groups.

Let (ML,L) be the imprimitivity system acting inL2(G3X,m) defined by

~ML~ f !c!~g,x!5 f ~x!c~g,x! f PC0~X!,

~Lhc!~g,x!5c~h21g,h21@x# ! hPG,

wherecPL2(G3X,m) and the equalities hold form-almost all (g,x)PG3X. It is clear that
(ML,L) is an imprimitivity system.

The following theorem shows that a square-integrable imprimitivity system~M, U! acting in
H defines an isometry fromH to L2(G3X,m) intertwining ~M, U! with (ML,L).

Theorem 1: Let ~M, U! be an imprimitivity system acting inH and square-integrable with
respect todx. Given an admissible vectorvPH, vÞ0, then

~1! for all uPH the linear formcu,v is a function inL2(G3X,m);
~2! the mapWv from H to L2(G3X,m)

Wvu5cu,v

is a ~nonzero! multiple of an isometry that intertwines~M, U! with (ML,L);

~3! for all fPCc(G3X),L2(G3X,m), Wv* f5U(f)v.

Proof: We follow the proof of Duflo and Moore for representations.1 By definition of square-
integrability and of admissible vector, there is a nonzero vectoru0PH such thatcv0,vPL2(G
3X,m). We claim thatcu0,vÞ0. Suppose the opposite, by definition ofU, it follows that, for

dg-almost allgPG and all f PC0(X), ^u,M ( f̄ )Ugv&50. By continuity, this relation holds for al
gPG and, by irreducibility and sincevÞ0, it follows that u050. This is a contradiction and
hence,cu0,vÞ0.

DefineWv as the operator inL2(G3X,m) with domain

$uPH:cu,vPL2~G3X,m!%

andWvu5cu,v . The domain ofWv is not the null space sincecu0,v is square-integrable. We claim
thatWv is a closed operator. Indeed, let (un) be a sequence inH converging tou such that (Wvun)
tends toc. Then, for allfPCc(G3X),
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^u,U~f̄ !v&5 lim^un ,U~f̄ !v&

5 lim E
G3X

~Wvun!~g,x!f~g,x!dm~g,x!

5E
G3X

c~g,x!f~g,x!dm~g,x!.

So thatuPdomWv andWvu5c.
Moreover, we show thatWv intertwines~M, U! and (ML,L). Indeed, letf PC0(X) and h

PG, we have to prove that, givenuPdomWv , then M ( f )UhuPdomWv and WvM ( f )Uhu
5ML( f )LhWvu. Let fPCc(G3X),

^M ~ f !Uhu,U~f̄ !v&5E
G

^u,Uh21M ~ f f~g,• !!Ugv&dg

5E
G

^u,M ~ l h21~ f f~g,• !!!Uh21gv&dg

5E
G

^u,M ~ l h21~ f f~hg,• !!!Ugv&dg

5E
G3X

f ~h@x# !f~hg,h@x# !cu,v~g,x!dm~g,x!

5E
G3X

f ~x!f~g,x!cu,v~h21g,h21@x# !dm~g,x!

5E
G3X

f~g,x!~ML~ f !Lhcu,v!~g,x!dm~g,x!.

Since (ML( f )Lhcu,v)PL2(G3X,m), the claim follows.
Moreover, since the domain ofWv is invariant with respect to the action of~M, U! and it is not

the null space, domWv is dense inH. Hence, by Lemma 2, since~M, U! is irreducible, dom
Wv5H andWv is a nonzero multiple of an isometry.

The claim in item~3! easily follows from the definition ofWv . h

The above theorem shows that a square-integrable imprimitivity system is equivalent
restriction of the canonical imprimitivity system (ML,L) to an irreducible invariant closed sub
space ofL2(G3X,m). The converse implication is showed by the following result.

Theorem 2: Let H be a closed~non-null! subspace ofL2(G3X,m) that is invariant and
irreducible with respect to the action of (ML,L). Then, the restriction toH of (ML,L) is square-
integrable with respect todx.

Proof: Let Q be the orthogonal projection onH. SinceH is not the null space andCc(G
3X) is dense inL2(G3X,dgdx), then there isC2PCc(G3X) such thatQc2Þ0, wherec2

PL2(G3X,m) is defined as

c2~g,x!ªl~g21,x!2
1
2C2~g,x! ~g,x!PG3X.

We claim thatQc2 is an admissible vector for the restriction toH of (ML,L). Indeed, given
c1PH, we have to prove that the linear formcc1 ,Qc2

is in L2(G3X,m). Let gPG and f

PC0(X), then
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^c1 ,ML~ f̄ !LgQc2&5^c1 ,QML~ f̄ !Lgc2&5^Qc1 ,ML~ f̄ !Lgc2&5^c1 ,ML~ f̄ !Lgc2&

5E
G3X

l~h21,x!c1~h,x! f ~x!c2~g21h,g21@x# !dhdx5E
X

f ~x!hg~x!dx,

wherehg is defined fordx-almost allxPX as

hg~x!ªE
G

l~h21,x!c1~h,x!c2~g21h,g21@x# !dh

5E
G

l~h21g21,x!c1~gh,x!c2~h,g21@x# !dh

5..l~g21,x!E
G

v~g,x,h!dh.

According to Lemma 4, the linear formcc1 ,Qc2
5cc1 ,c2

is a locallym-integrable functionV and
for dg-almost allgPG,

V~g,x!5l~g21,x!21hg~x!5E
G

v~g,x,h!dh,

where, fixedgPG, the equalities hold fordx-almost allxPX. From Eq.~3!, if follows that, for
dg-almost allhPG,

l~g21,x!5l~h21,hg21@x# !l~hg21,x! m-a.e.~g,x!PG3X. ~7!

Fixed hPG such that Eq.~7! holds, then

iv~•,•,h!iL2~G3X,m!
2

5E
G3X

uv~g,x,h!u2l~g21,x!dgdx

5DG~h!21E
G3X

$uc1~g,x!c2~h,hg21@x# !u2l2~g21,x!l~hg21,x!21%dgdx

5DG~h!21E
G3X

$uc1~g,x!c2~h,hg21@x# !u2l~h21,hg21@x# !%dm~g,x!

5DG~h!21E
G3X

uc1~g,x!C2~h,hg21@x# !u2dm~g,x!,

where, by definition,C2PCc(G3X). Then, by Minkowski inequality for integrals,

iViL2~G3X,m!<E
G

iv~•,•,h!iL2~G3X,m!dh

5E
G

DG~h!2~1/2!ic1~g,x!C2~h,hg21@x# !iL2~G3X,m!dh

<ic1iL2~G3X,m!E
G

DG~h!2~1/2!ic2~h,• !isupdh.

SinceC2PCc(G3X), thenVPL2(G3X,m). So the thesis is proven. h
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The following corollaries study how the square-integrability depends on the choice o
measuredx.

Corollary 1: Let ~M, U! be an imprimitivity system anddx8 be a quasi-invariant measure o
X having density with respect todx. If ~M, U! is square-integrable with respect todx8, then~M, U!
is square integrable with respect todx, too. In particular the square-integrability of~M, U! depends
only on the equivalence class ofdx.

Proof: Denote with a prime all the objects defined replacingdx with dx8 and leta be the
density ofdx8 with respect todx. Then, by Lemma 3,m8 has densityb(g,x)5a(g21@x#) with
respect tom and the map

c°b1/2c

is an isometry fromL2(G3X,m8) into L2(G3X,m).
Due to the particular form of the density, this isometry intertwines (ML8,L8) and (ML,L).

Since~M, U! is square-integrable with respect todx8, by Theorem 1, it is equivalent to a sub
system of (ML8,L8) and, so, to a subsystem of (ML,L). Theorem 2 proves the claim. h

Nevertheless, by direct check, one can show that, in passing from the measuredx8 to dx, the
set of admissible vectors can change.

Consider an imprimitivity system~M, U! acting in H. The above result suggests that the
could be aminimal quasi-invariant measure class such that~M, U! is square-integrable with
respect to a measure belonging to this class. To this aim, we recall that, as a consequenc
spectral multiplicity theorem applied toM, there is a positive measurenM on X such that
nM(E)50 if and only if PM(E)50; this measure is uniquely defined byM, up to an equivalence
and is quasi-invariant.

Corollary 2: With the previous notation, let~M, U! be an imprimitivity system square
integrable with respect todx, thennM has density with respect todx.

Moreover, if a is such a density andY5$xPX:a(x).0%, then, for all admissible vector
vPH and alluPH,

~Wvu!~g,x!5xY~x!~Wv!~g,x! m2d.e.

Finally, the system~M, U! is square-integrable with respect tonM.
Proof: By means of Theorem 1, there is an admissible vectorvPH such that the operatorWv

is an isometry intertwiningPM with PL. Let EPB(X) bedx-negligible, then, taking into accoun
that PL(E) is the multiplicative operator by the characteristic function of the setG3E, then
PL(E)50 and, hence, 05PL(E)Wv5WvPM(E). Then,PM(E)50 and, hence,nM(E)50. This
implies thatnM has density with respect todx.

Fix now an admissible vectorvPH. With the same arguments,PL(Y)Wv5WvPM(Y)5Wv
since the complement ofY is nM-negligible and the second claim follows.

Finally, we prove the square-integrability of~M, U! with respect tonM. Let vPH be an
admissible nonzero vector anduPH nonzero. By means of Corollary 1, we can always supp
that a is the characteristic function ofY so that, taking into account the previous result

~Wvu!~g,x!5a~x!~Wvu!~g,x! m-a.e.

We claim that form-almost all (g,x)PG3X, a(g21@x#)5a(x). Indeed, taking into account tha
m85l8(g21,x)dgnM(x), m5l(g21,x)dgdx and m85a(g21@x#)m, it follows that, for
m-almost all (g,x)PG3X,

l8~g21,x!a~x!5l~g21,x!a~g21@x# !.

The claim follows sincel and l8 are strictly positive anda takes values 0 and 1. Fix nowf
PCc(G3X), then
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E
G3X

~Wvu!~g,x!f~g,x!dm8~g,x!5E
G3X

~Wvu!~g,x!f~g,x!a~g21@x# !dm~g,x!

5E
G3X

a~x!~Wvu!~g,x!f~g,x!dm~g,x!

5E
G3X

~Wvu!~g,x!f~g,x!dm~g,x!5^u,U~f̄ !v&.

The thesis is now clear. h

From the above two corollaries it follows that~M, U! is square-integrable with respect todx
if and only if nM!dx and~M, U! is square-integrable with respect tonM. Since the equivalence
class ofnM is uniquely defined byM, the square-integrability of~M, U! with respect tonM is a
property intrinsic to the imprimitivity system. However, in some cases, there is onX a natural
quasi-invariant measure, which is independent of the imprimitivity system, and it is useful to
the square-integrability with respect to such a measure.

Remark 6:With the above notations, let~M, U! be square-integrable with respect todx.
Taking into account that~M, U! is irreducible, one can obtain an explicit form of the operatorWv .
Indeed, by irreducibility there is a Hilbert spaceK such that, up to a unitary equivalence,

H5L2~X,nM,K!

M ~ f !u5 f u,

where f PC0(X) anduPH. Moreover, denoted bylnM the cocycle ofnM, there is a measurabl
function P from G3X to the unitary group ofK such that, fordg-almost allgPG,

~Ugu!~x!5lnM~g21,x!1/2P~g,g21@x# !u~g21@x# !,

for uPH and for dx-almost allxPX, see, for example, Theorem 6.10 of Ref. 16. Then, giv
u,vPH with v admissible, it easily follows from Lemma 4 that

~Wvu!~g,x!5
a~x!lnM~g21,x!1/2

l~g21,x!
^u~x!,P~g,g21@x# !v~g21@x# !&K m-a.e.

The next goal is to prove the existence oforthogonality relations. To this aim, given an
imprimitivity system~M, U! acting inH and square-integrable with respect todx, we let

E~M ,U !ªspan$Wvu:u,vPH, such thatv is admissible%.

The following properties are immediate:
Lemma 5:Let ~M, U! be an imprimitivity system square-integrable with respect todx. With

the above notations,E(M ,U) is a closed subspace ofL2(G3X,m) invariant with respect to the
action of (ML,L).

Moreover, let (M 8,U8) be another imprimitivity system square-integrable with respect todx.
If ~M, U! and (M 8,U8) are equivalent, thenE(M ,U)5E(M8,U8) , whereas, if they are not equivalen
E(M ,U)'E(M8,U8) .

Proof: The first statement is consequence of Theorem 1. Assume now that~M, U! and
(M 8,U8) are equivalent and letJ be the unitary operator intertwining them. IfH andH8 are the
Hilbert spaces where the two imprimitivity systems act, then, givenu8,v8PH8,v8 admissible, for
all fPCc(G3X),
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E
G3X

f~g,x!~Wv8
8 u8!~g,x!dm~g,x!5E

G
^u8,M 8~f~g,• !!Ug8v8&dg

5E
G

^J21u8,M ~f~g,• !!UgJ21v8&dg.

Thenv5J21v8 is admissible andWv8
8 u85Wvu, whereu5J21u8.

If ~M, U! and (M 8,U8) are not equivalent, givenu,vPH with v admissible andu8,v8
PH8 with v8 admissible, then

^Wv8
8 u8,Wvu&5^Wv* Wv8

8 u8,u&50,

since, from Theorem 1,Wv* Wv8
8 intertwines (M 8,U8) with ~M, U!, so it is the null operator and

the claim follows. h

The second step is to decompose eachE(M ,U) into its irreducible components. We are able
obtain this result only with a weak assumption on the measuredx.

Theorem 3: Assume that, for allgPG, l(g,•) is locally dx-essentially bounded onX. Let
~M, U! be an imprimitivity system acting inH and square-integrable with respect todx, then there
exists a unique positive self-adjoint operatorC, called thenormalizing operatorof ~M, U!, such
that

~1! the vectorvPH is admissible for~M, U! if and only if vPdomC;
~2! for all u1 ,u2PH, v1 ,v2PdomC,

^Wv1
u1 ,Wv2

u2&L2~G3X,m!5^u1 ,u2&H^Cv2 ,Cv1&H .

To prove the above theorem we need some preliminary results. We defineT to be the operator
acting onL2(G3X,m) as

~Tc!~g,x!5A 1

DG~g!l~g21,x!
c~g21,g21@x# !,

wherecPL2(G3X,m) and form-almost all (g,x)PG3X.
Lemma 6:The operatorT is well-defined, unitary andT25I .
Proof: Let cPL2(G3X,m). Then,Tc is clearlym-measurable and

E
G3X

u~Tc!~g,x!u2dm~g,x!5E
G3X

uc~g21,g21@x# !u2

DG~g!l~g21,x!
l~g21,x!dgdx

5E
G3X

uc~g,x!u2l~g21,x!dgdx

5E
G3X

uc~g,x!u2dm~g,x!.

Moreover, form-almost all (g,x)PG3X,

~T2c!~g,x!5A 1

DG~g!l~g21,x!
~Tc!~g21,g21@x# !

5A 1

DG~g!l~g21,x!
A 1

DG~g21!l~g,g21@x# !
c~g,x!5c~g,x!,

where we used Eq.~3!. h

We let (MR,R) be the imprimitivity system acting inL2(G3X,m) defined by
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RgªTLgT gPG,

MR~ f !ªTML~ f !T fPC0~X!.

Explicitly, if gPG and f PC0(X),

~Rgc!~h,x!5ADG~g!l~g21,h21@x# !c~hg,x!,

~MR~ f !c!~h,x!5 f ~h21@x# !c~h,x!,

for all cPL2(G3X,m) and form-almost all (h,x)PG3X. The above imprimitivity system plays
the role of the right regular representation.

We are now ready to prove the theorem.
Proof of Theorem 3:We follow the proof of Ref. 1. LetB,H be the subspace of admissib

vectors and, for alluPH, uÞ0, defineBu as the operator fromB to L2(G3X,m) given by

Buv5cu,v.

By Theorem 1, the domain ofBu is the set ofvPH such thatcu,v is square-integrable and it is no
the null space by definition of square integrability.

Sincel(g,•) is defined up to adx-negligible set, due to the hypothesis onl, we can always
assumel(g,•) to be locally bounded. Hence, for allgPG and f PCc(X), let Sg( f ) be the
function onX given by

~Sg~ f !!~x!5ADG~g21!l~g21,x! f ~x!.

It is clear thatSg( f ) is a measurable bounded function and

MR~Sg~ f !!ªE
X
Sg~ f !~x!dPR~x!

is a well defined bounded operator onL2(G3X,m). We claim that, givenf PCc(X) andgPG,

MR~Sg~ f !!RgBu,BuM ~ f !Ug . ~8!

Indeed, letvPdomBu . By Lemma 4, there is adg-negligible setA, such that for allh
PG,h¹A, the measure

f 1°^u,M ~ f̄ 1!Uhv&

has a densityl(h21,•)cu,v(h,•) with respect todx.
Let now f PCc(X) andgPG, then for allh¹Ag21,

^u,M ~ f̄ 1!UhM ~ f !Ugv&5^u,M ~ f̄ 1l hf !Uhgv&

5E
X

f 1~x! f̄ ~h21@x# !cu,v~hg,x!l~g21h21,x!dx

5E
X
$ f 1~x! f̄ ~h21@x# !cu,v~hg,x!l~g21,h21@x# !l~h21,x!%dx5E

X
f 1~x!

3~MR~Sg~ f̄ !!Rgcu,v!~h,x!l~h21,x!dx

5E
X

f 1~x!~MR~Sg~ f !!Rgcu,v!~h,x!l~h21,x!dx.
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Using Lemma 4 with the fact thatAg21 is dg-negligible, it follows thatM ( f )UgvPdomBu and
BuM ( f )Ugv5MR(Sg( f ))RgBuv, so the claim is proven.

Hence, since~M, U! is irreducible,B is dense inH and, as in the proof of Theorem 1, we ca
prove thatBu is a closed operator andBuÞ0.

Fix u0PH such thatiu0i51 and defineC5ABu0
* Bu0

, so that domC5B and, for allv1 ,v2

PB,

^Bu0
v2 ,Bu0

v1&5^Cv2 ,Cv1&.

Let now u1 ,u2PH andv1 ,v2PB. Then, by Theorem 1, we have that

^cu1 ,v1
,cu2 ,v2

&5^Wv1
u1 ,Wv2

u2&5^Wv2
* Wv1

u1 ,u2&5ev2v1
^u1 ,u2&,

whereev2 ,v1
PC sinceWv2

* Wv1
is in the commuting ring of~M, U! so that it is a multiple of a

scalar.
With the choiceu15u25u0 in the above equation, one obtains that

ev2 ,v1
5^cu0 ,v1

,cu0 ,v2
&5^Bu0

v2 ,Bu0
v1&5^Cv2 ,Cv1&.

The unicity ofC is evident and this ends the proof. h

The condition on the cocyclel given in the previous proposition clearly holds ifdx is
relatively invariant or, more generally, if the cocyclel is continuous onG3X ~in this casedx is
said to bestrongly quasi-invariant!. This happens, for instance, whenX is transitive, see, for
example Ref. 14. Moreover, we use the above condition only in order to prove that the dom
C, which coincides with the set of admissible vectors, is a dense subspace ofH.

Comparing the orthogonality relations for representations with the ones for imprimit
systems, we see thatC22 plays the role of the formal degree operator. The main difference is
the formal degree operator is semi-invariant with respect to the action of the representatio
Theorem 3 of Ref. 1, whereas our Theorem 3 does not give any information about the cova
properties of the normalizing operatorC with respect to the action of the imprimitivity system.

However, whendx is relatively invariant~so thatl(g,x)5l(g)) we have the following result.
We denote byx the character ofG given by

x~g!5ADG~g!l~g!.

Corollary 3: Assume the measuredx is relatively invariant. Let~M, U! be an imprimitivity
system acting inH and square-integrable with respect todx and let C be the corresponding
normalizing operator, then

M ~ f !C,CM~ f ! f PC0~X!,

UgCUg
215x~g!C gPG.

Moreover, there is a unique isometrys from the Hilbert spaceL2(H) of Hilbert-Schmidt opera-
tors in H into L2(G3X,m) such that for alluPH andvPdomC21,

s^v* ^ u&5WC21vu.

Finally,

~1! the range ofs is E(M ,U) ;
~2! for all f 1 , f 2PC0(X), g1 ,g2PG andAPL2(H),

s~M~f1!Ug1
AUg2

21M~f2!!5ML~f1!M
R~f2!Lg1

Rg2
s~A!; ~9!
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~3! for all fPCc(G3X) andvPdomC21,

s* ~f!v5U~f!C21v.

Remark 7:With respect to Eq.~9!, notice that, sincel does not depend onx, the imprimitivity
system (ML,L) commutes with (MR,R). Hence, an imprimitivity system forG3G based onX
3X is canonically defined onL2(G3X,m).

Proof of Corollary 3: We use the same notation of the proof of Theorem 3. Fixedu0PH,
iu0i51, one has thatBu0

* Bu0
5C2. Taking into account Eq.~8! and the fact thatSg( f )

5x(g21) f , one has, for allf PCc(X) andgPG,

x~g21!2M ~ f !UgC2,C2M ~ f !Ug .

In the above relation, letg5e and f PCc(X), then, as a consequence of the spectral theorem
all f PCc(X),

M ~ f !C,CM~ f !.

Clearly, the above equation holds for allf PC0(X). Fix now gPG, let (f n) be a bounded
sequence inCc(X) converging to 1 pointwise then, for allu,vPdomC2, taking into account that
limn M ( f n)u5u,

^C2u,Ugv&5 lim
n

^C2u,M ~ f n!Ugv&5x~g21!2 lim
n

^u,M ~ f n!UgC2v&5x~g21!2^u,UgC2v&.

Hence,Ug leaves domC2 invariant andC2Ug5x(g21)2UgC2. Finally, the spectral theorem
proves thatC5x(g21)UgCUg21.

SinceiWC21vuiL2(G3X,m)5iuiivi , thens is a well-defined isometry onL2(H). The fact that
it is ontoE(M ,U) follows by the definition ofE(M ,U) . The other properties are consequences of
orthogonality relations and of the covariance relation ofC, as in the case of square-integrab
representations, see Lemma 4 of Ref. 1. h

As in the case of square-integrable representations, a reproducing formula follows fro
orthogonality relations.

Corollary 4: Assume that, for allgPG,l(g,•) is locally,dx-essentially bounded onX and let
~M, U! be an imprimitivity system square-integrable with respect todx. Let C be the normalizing
operator. Letv,v1 ,v2PdomC anduPH, then

^Cv2 ,Cv1&Wvu5Wv1
u!Wvv2 .

Proof: First of all, we claim that, fixedu,vPdomC and gPG, for m-almost all (h,x)PG
3X,

Wvu~g21@~h,x!# !l~h21,x!5Wuv~h21@~g,x!# !l~g21,x!.

Indeed, letf PC0(X). SincevPdomC, by Lemma 4, there is adg-negligible setV, depending on
u,v, but not onf, such that, for allg21h¹V,

^u,M ~ l g21f !Ug21hv&5E
X

f ~g@x# !~Wvu!~g21h,x!l~h21g,x!dx

5E
X

f ~x!~Wvu!~g21@~h,x!# !l~h21g,g21@x# !l~g21,x!dx

5E
X

f ~x!~Wvu!~g21@~h,x!# !l~h21,x!dx,
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due to Eq.~3!. Interchanging the role ofg↔h and u↔v, sinceuPdomC, for all h21g¹V8,
whereV8 is dg-negligible, then

^v,M ~ l h21 f̄ !Uh21gu&5E
X

f ~x!~Wuv !~h21@~g,x!# !l~g21,x!dx.

On the other hand, for allg,hPG,

^v,M ~ l h21 f̄ !Uh21gu&5^Uhv,M ~ f̄ !Ugu&5^M ~ f̄ !Ugu,Uhv&5^u,M ~ l g21f !Ug21hv&.

So, fixedgPG, for almost allh¹gVøgV821, one has that

E
X

f ~x!~Wvu!~g21@~h,x!# !l~h21,x!dx5E
X

f ~x!~Wuv !~h21@~g,x!# !l~g21,x!dx.

This relation holds for allf PC0(X), hence, for allh¹gVøgV821 and for allx¹Yh , whereYh

is a dx-negligible set, one has that

~Wvu!~g21@~h,x!# !l~h21,x!5~Wuv !~h21@~g,x!# !l~g21,x!.

Since the two sides arem-measurable functions andgVøgV821 is dg-negligible, the claim
follows.

Let now uPH, v,v1 ,v2PdomC. Fixed gPG, for all f PC0(X), one has that, by the or
thogonality relations,

^u,M ~ f̄ !Ugv&^Cv2 ,Cv1&5^Wv1
u,Wv2

M ~ f̄ !Ugv&

5^Wv1
u,ML~ f̄ !LgWv2

v&

5E
G3X

$~Wv1
u!~h,x! f ~x!~Wv2

v !~g21@~h,x!# !l~h21,x!%dhdx

5E
G3X

$ f ~x!l~g21,x!~Wv1
u!~h,x!~Wvv2!~h21@~g,x!# !%dhdx

5E
X
H f ~x!l~g21,x!E

G
~Wv1

u!~h,x!~Wvv2!~h21@~g,x!# !dhJ dx,

5E
X

f ~x!l~g21,x!~Wv1
u!Wvv2!~g,x!dx,

where we used the claim stated at the beginning of the proof. Moreover, Fubini theorem a
that Wv1

u!Wuv2 is well defined. By Lemma 4 and the above relation, it follows that, for alm
all gPG,

^Cv2 ,Cv1&~Wvu!~g,• !5~Wv1
u!Wvv2!~g,• !.

The thesis is now clear. h

IV. TRANSITIVE IMPRIMITIVITY SYSTEMS

In this section we study the square-integrability of imprimitivity systems in the case thatX is
transitive. With this assumption, onX there is only one quasi-invariant measure class, so tha
square-integrability does not depend on the measure and we can always choose~and we do! the
measuredx to be strongly quasi-invariant and the corresponding cocyclel to be a continuous
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function onG3X, see, for example Ref. 14. The importance of transitive imprimitivity system
twofold. First of all, their square-integrability can be characterized in terms of square-integra
of a representation of the stability subgroup; this latter representation is uniquely defined
imprimitivity system by means of the inducing functor of Mackey. On the other hand, ifX is not
transitive, but its orbits with respect to the action ofG are locally closed, any irreducible imprimi
tivity system based onX is completely defined in terms of an imprimitivity system based on
orbit of X and, hence, the study of square-integrability can be done by the use of the results
the transitive case.

Hence, we assume now thatX is a transitive space and we fixx0PX, so thatX5G@x0#. We
let H be the stability subgroup ofG at x0 . If ~M, U! is an imprimitivity system, by the Mackey
theorem there is, up to unitary equivalence, a unique representationm of H such that~M, U! is
equivalent to the imprimitivity system (Mm,Um) induced bym. We denote such representationm
by ResH

G(U).
Remark 8:A realization of (Mm,Um) is the following one. Letc be a regular section,16 from

X to G such thatc(x0)5e, andK the Hilbert space wherem acts. Then (Mm,Um) is given by

H5L2~X,dx,K!,

~Mm~ f !u!~x!5 f ~x!u~x!,

~Ug
mu!~x!5l1/2~g21,x!m~c~x!21gc~g21@x# !!u~g21@x# !,

whereuPH, f PC0(X), gPG and the equalities hold fordx-almost allxPX.
The next theorem characterizes the square-integrability of transitive imprimitivity syste
Theorem 4: Assume that there isx0PX such thatX5G@x0#. Let dx be strongly-quasi-

invariant and let~M, U! be an irreducible imprimitivity system. The following conditions a
equivalent:

~1! ~M, U! is a square-integrable imprimitivity system with respect todx;
~2! ResH

G(U) is a square-integrable representation of the stability subgroupH of G at x0 .

Moreover, if m is a square-integrable representation ofH and (Mm,Um) is the imprimitivity
system given in Remark 8, then the corresponding normalizing operatorC is given by

domC5H vPH : v~x!PdomKm
21/2, E

X
g~x!iKm

21/2v~x!i2dx,`J ,

~Cv !~x!5g~x!1/2Km
21/2v~x!,

whereg(x)51/DG(c(x))l(c(x),x0) andKm is the formal degree ofm for a suitable choice of the
Haar measure ofH.

Proof: Since the square integrability depends only on the equivalence class of~M, U!, we can
always assume that~M, U! is of the form (Mm,Um), wherem5ResH

G(U) is an irreducible repre-
sentation ofH. Moreover, we recall that the cocyclel satisfies

l~h,x0!5
DH~h!

DG~h!
hPH,

whereDH is the modular function ofH, see, for example Ref. 14.
First of all, we prove the equivalence between the two conditions in the statement o

theorem.
Let f PC0(X), gPG andu,vPH, then
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^u,M ~ f̄ !Ugv&5E
X

f ~x!l1/2~g21,x!^u~x!,m~c~x!21gc~g21@x# !!v~g21@x# !&dx,

so that, for allgPG, the measuref °^u,M ( f̄ )Ugv& has density

l1/2~g21,x!^u~x!,m~c~x!21gc~g21@x# !!v~g21@x# !&.

Moreover, letI u,vª*G*Xu^u(x),m(c(x)21gc(g21@x#))v(g21@x#)&u2dx dg, whereI P@0,̀ #.
By Lemma 4, the system~M, U! is square integrable, i.e., condition~1! of the theorem holds,

if and only if there existu,vPH, such that 0,I u,v,`.
Assume the existence of such vectorsu andv. Since

~g,x!°u^u~x!,m~c~x!21gc~g21@x# !!v~g21@x# !&u2

is dgdx-measurable and positive, due to the Fubini theorem,

I u,v5E
X
E

G
u^u~x!,m~c~x!21gc~g21@x# !!v~g21@x# !&u2dgdx

5E
X
E

G
u^u~x!,m~gc~g21@x0# !!v~g21@x0# !&u2dgdx

5E
X
E

G
u^u~x!,m~g21c~g@x0# !!v~g@x0# !&u2DG~g!21dg dx.

The Mackey–Bruhat formula implies that, if we identifyG with X3H by means ofg5c(y)h,
whereyPX, hPH, then

dg5
DG~h!

DH~h!l~c~y!,x0!
dxdh,

wheredh is a suitable Haar measure onH. Hence,

I u,v5E
X
E

X
E

H
u^u~x!,m~h21!v~y!&u2

1

DG~c~y!!l~c~y!,x0!DH~h!
dhdydx

5E
X
E

X
g~y!E

H
u^u~x!,m~h!v~y!&u2dhdydx,

whereg(x)51/DG(c(y))l(c(y),x0) and the mapg is bounded on the compact sets, due to
regularity ofc.

Obviously, 0,I u,v,` if and only if

~a! for dx-almost allxPX and, fixedxPX, for dx-almost allyPX,

0,E
H

u^u~x!,m~h!v~y!&u2dh,`.

This condition is equivalent to the fact thatm is square-integrable and, due to the orthog
nality relations for representations, we have that

v~y!PdomKm
21/2 E

H
u^u~x!,m~h!v~y!&u2dh5iu~x!i2iKm

21/2v~y!i2,

whereKm is the formal degree ofm;
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~b! for dx-almost allxPX,

0,iu~x!i2E
X
g~y!iKm

21/2v~y!i2dy,`.

This is equivalent to

0,E
X
g~y!iKm

21/2v~y!i2dy,`,

anduÞ0;
~c!

0,E
X
iu~x!i2dx,`.

Hence, the fact that 0,I u,v,` implies thatm is square-integrable.
Conversely, assume thatm is square-integrable. Choose anyuPH, uÞ0, and define

v~x!5xKv0 ,

whereK is a compact non-negligible subset ofX andv0PdomKm
21/2, v0Þ0. Then, conditions~a!,

~b!, and~c! hold, so that 0,I u,v,`. This prove the equivalence between the two condition.
The form of the normalizing operatorC follows from condition~b! above whenv15v25v

and by polarization identity in the arbitrary case. h

Finally, we consider the case whenX is not transitive, but, nevertheless, its orbits are loca
closed. With this assumption, every orbitY is a lcsc transitiveG-space and we say thatM liveson
Y if PM(Y)5I . From a theorem of Glimm, see, for example, Proposition 6.6 of Ref. 14, give
irreducible imprimitivity system~M, U!, there exist an orbitY5G@x0# and an irreducible repre
sentationm of H, the stability subgroup atx0 , such thatM lives onY andU is equivalent to the
induced representation IndH

G(m) by m from H to G. Moreover, we define the measuredxY as the
restriction ofdx to Y and (MY,UY) as the imprimitivity system forG based onY given by

MY~ f !5E
Y

f ~x!dPM~x!,

Ug
Y5Ug ,

where f PC0(Y) andgPG. Notice that (MY,UY) acts in the same Hilbert space of~M, U! and,
since PM(Y)5I , (MY,UY) is irreducible. The following corollary characterizes the squa
integrability of ~M, U! in terms of the square-integrability of (MY,UY), which is an imprimitivity
system based on a transitive space.

Corollary 5: Assume that the orbits ofX are locally closed and let~M, U! be an irreducible
imprimitivity system acting inH. Denote byY the orbit whereM lives and bym the representation
of H, the stability subgroup atx0PY, such thatU is equivalent to IndH

G(m).
With this notations, the following conditions are equivalent:

~1! ~M, U! is square-integrable with respect todx;
~2! Y is not negligible with respect todx andm is a square-integrable representation ofH;
~3! Y is not negligible and (MY,UY) is square-integrable with respect todxY.

If any of the above equivalent conditions is satisfied anddxY is strongly quasi-invariant, thenv
PH is an admissible vector for~M, U! if and only if vPdomC, whereC is the normalizing
operator of (MY,UY). Moreover, ifu1 , u2PH andv1 , v2PdomC,

^Wv1
u1 ,Wv2

u2&5^u1 ,u2&^Cv2 ,Cv1&.
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Proof: We prove the equivalence between the first and third condition. If~M, U! is square-
integrable, with the notation of Corollary 2, the measurenM has density with respect todx and,
sincePM(Y)5I , nM(Y).0, thenY is notdx-negligible. Hence, from now on, we assume that t
condition is satisfied.

Let u,vPH and, givengPG, let vg be the bounded measure onX,

f °^u,M ~ f̄ !Ugv&

andvg
Y the measure onY

f̂ °^u,MY~ f̄̂ !Ug
Yv&.

By definition of (MY,UY), vg
Y is the restriction toY of the measurevg . On the other hand, taking

into account thatvg has density with respect tonM, the complement ofY is vg-negligible, so that
vg is thenatural extension ofvg

Y .
By Lemma 4, the linear formcu,v on Cc(G3X) is a locallym-integrable function if and only

if, for dg-almost allgPG, vg has densityhg with respect todx. This last condition, taking into
account that, fordx-almost allx¹Y, hg(x)50, is equivalent to the fact thatvY has density (hg) uY
with respect todxY. Moreover, if one of the above equivalent conditions is satisfied, then
m-almost all (g,x)PG3X, x¹Y,

cu,v~g,x!50,

and, form-almost all (g,x)PG3Y,

cu,v~g,x!5cu,v
Y ~g,x!,

where the apexY refers to the quantities defined in terms of (MY,UY).
Taking into account the above relations and Lemma 4, if follows thatcu,vPL2(G3X,m) if

and only if cu,v
Y PL2(G3Y,mY). Hence, the vectorv is admissible for~M, U! if and only if it is

so for (MY,UY) and, in this case, form-almost all (g,x)PG3Y,

~Wvu!~g,x!5~Wv
Yu!~g,x!

and, form-almost all (g,x)PG3X, x¹Y,

~Wvu!~g,x!50.

The equivalence of the first and third condition is clear as well as, by means of Theorem
Theorem 4, the last statement of the theorem.

The equivalence of the second and third condition is a restatement of the second p
Theorem 4, taking into account thatm5ResH

G(UY). h

V. IMPRIMITIVITY SYSTEMS BASED ON AN ABELIAN GROUP

In the case of square-integrable representations of a locally compact groupG, the Hilbert
space carrying the representation is canonically embedded inL2(G,dg) as a subspace of continu
ous functions. This is no longer true in the case of square-integrable imprimitivity sys
However, whenX is an Abelian group, we can regularize the image of the operatorWv by means
of Fourier transform.

In the following, we assume theG-spaceX to be an abelian lcsc group, the measuredx to be
a Haar measure ofX ~consideringX as an Abelian group!, anddx to be relatively invariant with
respect to the action ofG. We denote byX̂ the dual group ofX, by dx̂ a Haar measure ofX̂ and
by F the Fourier-Plancherel operator fromL2(X,dx) onto L2(X̂,dx̂) ~we normalizedx̂ in such a
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way thatF be unitary!. Sincedx is relatively invariant, the corresponding cocyclel depends only
on g, so we regardl as a function onG. Moreover, we letm̂ be the measure onG3X̂ given by

E
G3X̂

f~g,x̂!dm̂~g,x̂!5E
G3X̂

f~g,x̂!l~g21!dgdx̂ fPCc~G3X̂!.

Hence, we defineJ as the unitary operator fromL2(G3X,m) onto L2(G3X̂,m̂) given by

~Jc!~g,x̂!5~Fc~g,• !!~ x̂! gPG, x̂PX̂, cPL2~G3X,m!.

Finally, let ~M, U! be an imprimitivity system square-integrable with respect todx. For all x̂

PX̂, let Vx̂5*X^x,x̂&dPM(x), where the integral is in the weak operator topology. Moreover,
denote byC the corresponding normalizing operator. Hence, givenvPdomC, we defineŴv
5JWv .

Theorem 5: Assume thatX is an Abelian lcsc group and its Haar measuredx is relatively
invariant. Let~M, U! be an imprimitivity system acting inH. If ~M, U! is square-integrable with
respect todx, then

~1! given vPdomC, for all uPH,

~Ŵvu!~g,x̂!5l~g!^u,Vx̂Ugv& m̂-a.e.,

in particular,Ŵvu has a continuous representative inL2(G3X̂,m̂);
~2! for all u1 ,u2PH andv1 ,v2PdomC,

^Ŵv1
u1 ,Ŵv2

u2&L2~G3X̂,m̂ !5^u1 ,u2&^Cv2 ,Cv1&.

Proof: We prove the first item. Fordg-almost allgPG,

^u,Vx̂Ugv&5E
X
^x,x̂&^u,dPM~x!Ugv&

5E
X
^x,x̂&l~g21!~Wvu!~g,x!dx5l~g21!~F~Wvu!~g,• !!~ x̂!

5l~g21!~Ŵvu!~g,x̂!,

where we used the fact that (Wvu)(g,•)PL1(X,dx)ùL2(X,dx). The claim now easily follows.
The second item is consequence of the orthogonality relations and the fact thatJ is unitary.h
Remark 9:In the previous theorem, we do not assume that the action ofG preserves the group

law of X. Compare with item 3 of Remark 4. In Ref. 19, there is a partial overlap with the re
contained in the above theorem.

VI. EXAMPLES

In this section we give some examples of square integrable imprimitivity systems. The
one clarifies the contacts between our construction and the Gabor analysis on Abelian g
whereas the other two examples are simple toy-models. Some more examples, in a sligh
ferent framework, can be found in Ref. 19, where we discuss the relation between s
integrability of imprimitivity systems and square-integrability of representations on quo
spaces.

A. Short time Fourier transform.

Consider a lcsc Abelian groupG acting on itself by translation, so thatX5G and the action
is transitive and free. Letdg be a Haar measure ofG. With the choicedxªdg, the measurem on
G3G of Lemma 3 is the product measuredgdg.
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Let now ~M, U! be theWeyl–Heisenberg imprimitivity systemfor G based onG explicitly
given by

H5L2~G,dg!,

M ~ f !u5 f u,

Uau5ua,

where f PC0(G), aPG and uPL2(G,dg). In Gabor analysis,U is the time-shift operator and
PM is the projection valued measure associated with the frequency-shift operator.9

Taking into account that the action is transitive and free, one has that~M, U! is irreducible
and, as a consequence of Theorem 4, it is square-integrable with respect todg. Moreover, the
normalizing operatorC is the identity, so that any vector is admissible. Explicitly, fixedvPH, Wv
is an operator fromL2(G,dg) into L2(G3G,dgdg) given by

~Wvu!~a,x!5u~x!v~x2a! dgdg-a.e.

Let Ĝ be the dual group ofG and dĝ the Haar measure ofĜ such that the Fourier–Plancher
transform is unitary. Using Theorem 5,Ŵv is an operator from L2(G,dg) into
L2(G3Ĝ,dgdĝ) given by

~Ŵvu!~a,v!5E
X
u~x!v~x2a!v~x!dx ;~a,v!PG3Ĝ

and Ŵu is nothing but the short time Fourier transform, see Ref. 9 and, in the caseG5R, for
example, Chap. 2.7 of Ref. 20, where it is calledwindowed Fourier transform.

Notice that, since~M, U! is the unique, up to an equivalence, cyclic imprimitivity system
G based onG, then E(M ,U) is equal toL2(G3G,dgdg) and any orthonormal basis (en) of
L2(G,dg) gives rise to a decomposition into irreducible subspaces ofL2(G3Ĝ,dgdĝ) as

L2~G3Ĝ,dgdĝ!5 %

n
Ŵen

H.

B. Vector valued Euclidean transforms

GivennPN, let G be the Euclidean groupRn38SO(n) acting onX5Rn in a natural way, so
that the action onX is transitive. The Haar measure ofG is dg5dnxdR, where dnx is the
Lebesgue measure onRn and dR is the normalized Haar measure of SO(n). The Lebesgue
measurednx is invariant with respect to the action ofG and, with the choicedx5dnx, the
measurem on G3X is dnxdRdnx.

Given an irreducible representationt of SO(n) acting in a finite dimensional vector spaceK,
let ~M, U! be the imprimitivity system forG based onX given by

H5L2~Rn,dnx,K!,

M ~ f !u5 f u,

~U ~a,R!u!~x!5t~R!u~R21~x2a!! dnx-a.e.,

where f PC0(Rn), (a,R)PG anduPL2(Rn,dxn,K). Sincet is irreducible~M, U! is irreducible.
Applying Theorem 4, since SO(n) is compact,~M, U! is square integrable with respect todnx and
the normalizing operator is the identity. Explicitly, fixedvPH,
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~Wvu!~a,R,x!5^u~x!,t~R!v~R21~x2a!!&K ,

~Ŵvu!~a,R,p!5E ^u~x!,t~R!v~R21~x2a!!&K e2 ix"pdnx,

where (a,R)PRn38SO(n), x,pPRn anduPH.
Notice that, since SO(n) admits many inequivalent irreducible representations,E(M ,U) is a

proper closed subspace ofL2(G3X,m).

C. Spin transforms

Consider the compact group SU~2! with the normalized Haar measuredh. The group SU~2!
acts on the three-dimensional sphereS2,R3 by means of the covering homomorphismd from
SU~2! onto SO~3!. The action onS2 is transitive and an invariant measure on it is the area elem
dV. With this choice,m5dhdV.

Given j such that 2j is in N, let D j be the unique, up to an equivalence, irreducible repres
tation of SU~2! acting onC2 j 11. We define (M j ,U j ) to be the imprimitivity system for SU~2!
based onS2 and acting inL2(S2,dV,C2 j 11) as

~M j~ f !u!~x!5 f ~x!u~x! f PC0~S2!

~Uh
j u!~x!5D j~h!u~d~h!21x! hPSU~2!,

for uPL2(S2,dV,C2 j 11) and fordV-almost allxPS2.
The system (M j ,U j ) is not irreducible and, by the Mackey theorem, its irreducible com

nents are

L2~S2,dV,C2 j 11!5 %

m52 j

j

L2~S2,dV!m ,

where the indexm refers to the fact that the subspaceL2(S2,dV)m is unitarily equivalent to
L2(S2,dV) carrying the representation of SU~2! induced by the character of the torusz°z2m.

Clearly, the restriction toL2(S2,dV)m of (M j ,U j ) is square-integrable with respect todV
and the corresponding normalizing operatorCm is proportional to the identity. Fix an admissib
vector vmPL2(S2,dV)m such that iCmvmi51, then the corresponding isometryWvm

m from

L2(S2,dV)m in L2(SU(2)3S2,dhdV) is given by

~Wvm

m u!~h,x!5^u~x!,D j~h!vm~d~h!21x!&C2 j 11,

for uPL2(S2,dV)m and fordhdV-almost all (h,x)PSU(2)3S2.
Moreover, we can define an isometry fromL2(S2,dV,C2 j 11) into L2(SU(2)3S2,dhdV) as

Wj5 % m52 j
j Wvm

m Pm , wherePm is the projection ontoL2(S2,dV)m . Clearly we have that, for al

uPL2(S2,dV,C2 j 11),

~Wju!~h,x!5 (
m52 j

j

^u~x!,D j~h!vm~d~h!21x!&C2 j 11,

for dhdV-almost all (h,x)PSU(2)3S2.
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We construct SL(3,C) basis states reduced according to its finite subgroup`3 .
Matrix elements of sl(3,C) generators are calculated between`3 basis states.
© 2000 American Institute of Physics.@S0022-2488~00!01207-X#

I. INTRODUCTION

The theory of finite-dimensional representations of semisimple Lie algebras over the co
number field is one of the major achievements of mathematics of the 20th century. Its
applications lead to its use outside mathematics proper. To a mathematician, the theory i
complete, i.e., all the main problems have been solved. What remains is on the fringes
theory. The situation is very different when it comes to actually applying the theory.

Many applications to physics more or less impose on the user a particular basis of gen
for a Lie algebraL; this basis forL is not always the easiest choice from a mathematics poin
view. Finding matrix elements of generators in this basis is often the main problem without w
applications cannot proceed. Typically one requires ‘‘good’’ transformation properties o
generators with respect to a Lie subalgebraL 8,L or a subgroupG 8,G of the corresponding Lie
group. In particular, the subgroup may be discrete or finite.~We say that a basis is ‘‘good,’’ if its
elements can be split to subsets generating subspaces ofL that are irreducible with respect toL 8
or G 8.!

It is standard in the general theory to work with the root~or Cartan! decomposition of the Lie
algebra and the corresponding weight decomposition of the representation spaces. More pr
a Cartan subalgebraH is first chosen among the equivalent Cartan subalgebras and one de
poses the Lie algebra and its representation spaces into eigenspaces ofH. The appealing aspect o
this prescription is its uniformity. Indeed, it applies to all semisimple Lie algebras of overC. In
applications, an eigenspace decomposition of this kind is far from satisfactory: the eigen
are, more often than not, of dimension greater than 1, and the theory does not provide a ca
way of constructing a basis inside each eigenspace.

In this paper, we consider the cases whereG 8 is the finite subgroup̀ 2,SL(2,C) or
`3,SL(3,C). The matrices of̀ 2 are closely related to the familiar Pauli matrices, and
matrices of̀ 3 are closely related to a 333 generalization1 of the Pauli matrices.

The`3 matrices induce aZ33Z3 grading1 of sl(3,C), which is one of four gradings2 providing
sets of additive quantum numbers for SL(3,C) representations. Of the other three cases, one is
standard Cartan grading by weights, and two are related to the continuous subgroups SL(2C) and
O(3) of GL(3,C) ~combined with a nontrivial outer automorphism of SL~3,C!!, and have been
investigated in Ref. 3. These subgroups of SL(3,C) are well known and have been extensive
studied in physics and mathematics: the famous Gel’fand–Tsetlin states4 reduce the
SL(3,C).SL(2,C) subgroup chain, while the SL(3,C).O(3) chain was~originally, at least!
studied in relation to nuclear physics problems.5

a!Electronic mail: deguise@CRM.UMontreal.ca
48600022-2488/2000/41(7)/4860/21/$17.00 © 2000 American Institute of Physics
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By contrast, the subgroup̀3 is a finite subgroup of SL(3,C). The associated grading proper
is closely related to the fact that there exists in the defining 333 representation, a basis for sl~3,C!
defined by eight linearly independent traceless matrices of`3 with determinant one, so that thes
basis elements are simultaneously elements of sl~3,C! algebra and of the group SL~3,C!. @This
holds in general for SL~n,C), where there exists, in the definingn3n representation, a basis o
sl~n,C) defined in terms ofn-1 linearly independent matrices of determinant in`n.] As a subgroup
of SL(3,C), `3 has received little attention, although̀n matrices were found to be useful in th
study ofZn symmetric one-dimensional quantum chains,6 but without any reference to the sl(n,C)
algebra associated with them. They also appear in relation to two-dimensional hydrodyn
problems,7 where the fullZn^ Zn structure is exploited, but again without reference to the as
ciated sl(n,C) algebra. AZ3-graded generalization of supersymmetry has been proposed in R
and aZn-graded exterior calculus has also been developed in Ref. 9.

Our objective is to construct basis states that reduce the SL(2,C).`2 and SL(3,C).`3

subgroup chains, and compute matrix elements of sl(2,C) and sl(3,C) generators in their respectiv
Pauli subgroup bases.

For `2,SL(2,C), the task is straightforward, and the results are included to illustrate how
intend to proceed with the more difficult problem of`3,SL(3,C).

To construct a basis, we choose elements of`3 that can be simultaneously diagonalized, a
consider any representation space of sl(3,C) as decomposed into their eigenspaces. Since ge
alized Pauli matrices have a dual interpretation as elements of the`3 subgroup or as generators o
the sl(3,C) Lie algebra, the ‘‘diagonal’’ elements of̀3 can also be interpreted as generators o
Cartan subalgebra of sl(3,C), so that the decomposition into eigenspaces turns out to be
familiar weight decomposition in disguise.

The action of`3 elements on weight subspaces is to ‘‘permute,’’ in a cyclic fashion, s
spaces labeled by weights belonging to the same Weyl group orbit. Thus, we can regroup
subspaces into orbits of a representative sl~3,C! state under the action of̀3. It will be shown that
these orbits generically comprise alternate weights in the Weyl orbits of the weight diagra
SL(3,C), thereby naturally dividing a weight diagram into three sectors. Once a complete ba
one sector has been constructed, it remains to transfer, by the action of`3 , that basis to other
subspaces of the orbit. This is usually the most difficult task associated with the constructio
subgroup basis but, in the case of`3 , the actual expressions remain relatively easy to ob
because of the simple orbit structure. Finally, it will be shown that the computation of gene
matrix elements can almost always be done within a single sector; the only times wher
explicitly needs to compute the action of`3 elements is when states lie near or on the borde
two or three sectors. This means that we can almost always dispense with the actual comp
of the action of̀ 3 on basis states.

II. THE SUBGROUPS `2£SL„2,C… AND `3£SL„3,C…

A. `2 and its related sl „2,C… basis

The `2 subgroup of SL(2,C) is constructed by first considering the three Pauli matrices,

sx5S 0 1

1 0D , sy5S 0 2 i

i 0D , sz5S i 0

0 2 i D , ~1!

plus the unit matrixs051. One can verify that the set of eight matrices$6 isx ,6 isy ,6sz ,
6s0% is a subgroup of SL(2,C). This subgroup is̀ 2 . It turns out that̀ 2 is isomorphic to the
double dihedral subgroup(2)D2,SL(2,C). The subgroup is generated by the elements

A05 isy5S 0 1

21 0D , D05 isz5S i 0

0 2 i D , ~2!

and21. The character table for̀2 is shown in Table I.
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Elements iǹ 2 areZ23Z2 graded; if we make the explicit identifications i→s (n,m) , where

sx°s (1,1) , sy°s (0,1) , sz°s (1,0) , s0°s (0,0) , ~3!

then the product of any twò 2 elements is, up to a sign, given by

s (n i ,m i )
•s (nk ,mk)}s (n i1nk ,m i1mk) , ~4!

where all indices are read modulo 2.
Clearly, the 232 Pauli matrices form a basis for the Lie algebra sl(2,C). The generating

elements of the sl(2,C) algebra are any two Pauli matrices, for instance

Â5S 0 1

21 0D , D̂5S i 0

0 2 i D . ~5!

~The overcarets denote elements of the algebra.! The third element of the basis can be obtained
commuting the previous two.

B. `3 and its related sl „3,C… basis

Let v5e2p i /3. The finite subgroup̀ 3 of SL(3,C) is the subgroup comprising the 27 elemen

Ak5vkS 0 1 0

0 0 1

1 0 0
D , Ak

25v2kS 0 0 1

1 0 0

0 1 0
D ,

Bk5vkS 0 v 0

0 0 v2

1 0 0
D , Bk

25v2kS 0 0 v

1 0 0

0 v2 0
D ,

Ck5vkS 0 v2 0

0 0 v

1 0 0
D , Ck

25v2kS 0 0 v2

1 0 0

0 v 0
D , ~6!

TABLE I. `2 character table. The first row gives the conjugacy class in
SL(2,C) as elements of finite order~EFO! in the notation of Ref. 10. The
second row is the number of elements in the class. The third row shows a
representative element; for the last three classes, the second element is ob-
tained by multiplying by the duality operatorA0

2. The subscript on the class
symbol in the fourth row is the order of a class element.

IR

@10# @01# @11# @11# @11#

1 1 2 2 2
1 A0

25D0
2 A0 D0 A0D0

C1 C2 C4 C48 C49

G1 1 1 1 1 1
G2 1 1 21 1 21
G3 1 1 1 21 21
G4 1 1 21 21 1
G5 2 22 0 0 0
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Dk5vkS 1 0 0

0 v 0

0 0 v2
D , Dk

25v2kS v 0 0

0 v2 0

0 0 v
D ,

I k5vkS 1 0 0

0 1 0

0 0 1
D , k50,1,2.

The group`3 is generated by the elementsA0 , D0 , andI 1 . The character table for̀3 is shown
in Table II. Elements of̀ 3 areZ33Z3 graded, meaning that, if we make the assignment

Â°V̂ (1,0) , D̂°V̂ (0,1) , ~7!

the product of two general elementsV̂ (k,m) ,V̂ ( i , j )P`3 is proportional to

V̂ (k,m)•V̂ ( i , j )}V̂ ( i 1k, j 1m) , ~8!

where all indices are read modulo 3.
Much like `2,SL(2,C), the`3,SL(3,C) subgroup is distinguished in that any maximal s

of linearly independent combination of its matrices can serve as a basis for the Lie algebra sC).
Thus, we choose the basis$Â,Â2,B̂,B̂2,Ĉ,Ĉ2,D̂,D̂2% for sl(3,C) by selecting thè 3 elements
$A0 ,A0

2 ,B0 ,B0
2 ,C0 ,C0

2 ,D0 ,D0
2%.

Among the other interesting properties of this sl(3,C) basis, one notes that it is possible
choose two elements, sayÂ and D̂, given explicitly by

Â5S 0 1 0

0 0 1

1 0 0
D , D̂5S 1 0 0

0 v 0

0 0 v2
D , ~9!

and express any other element as a multiple commutator ofÂ and D̂.

TABLE II. Character table for̀ 3 . The first row gives the SL(3,C) conjugacy class for each̀3 class as elements of finite
order in the notation of Ref. 10. The second row is the number of elements in each class. The third row s
representative element of each class; for the last eight classes, the other two elements are obtained by multiplyingT and
T2. The subscript on a class symbol is the order of its elements.

IR

@100# @111# @111# @111# @111# @111# @111# @111# @111# @111# @111#

1 1 1 3 3 3 3 3 3 3 3
1 T T2 A0 D0 A0

2 D0
2 A0D0 A0D0

2 A0
2D0 A0

2D0
2

C1 C3 C38 C39 C3- C3
iv C3

v C3
vi C3

vii C3
viii C3

ix

G1 1 1 1 1 1 1 1 1 1 1 1
G2 1 1 1 v 1 v2 1 v v v2 v2

G3 1 1 1 v2 1 v 1 v2 v2 v v
G4 1 1 1 1 v 1 v2 v v2 v v2

G5 1 1 1 v v v2 v2 v2 1 1 v
G6 1 1 1 v2 v v v2 1 v v2 1
G7 1 1 1 1 v2 1 v v2 v v2 v
G8 1 1 1 v v2 v2 v 1 v2 v 1
G9 1 1 1 v2 v2 v v v 1 1 v2

G10 3 3v 3v2 0 0 0 0 0 0 0 0
G11 3 3v2 3v 0 0 0 0 0 0 0 0
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III. SL„2,C… IN A `2 BASIS

We start by presenting two solutions to the problem of constructing SL(2,C) states in à 2

basis. Our~later! results on SL(3,C) will be modeled after the SL(2,C) solutions.

A. A U „1… basis

We will use a realization of the sl(2,C) Lie algebra in terms of creation and destructi
operators with

L15a1
†a2 , L25a2

†a1 , L05 1
2 ~a1

†a12a2
†a2!, ~10!

where, as usual,@ai ,aj
†#5d i j .

Basis states for the representation of angular momentumj and dimension 2j 11 are given by
the familiar oscillator states:

un1n2&5
~a1

†!n1~a2
†!n2

An1!n2!
u0&, j 5

1

2
~n11n2!, ~11!

whereu0& is the harmonic oscillator vacuum withai u0&50, and where the sl(2,C) weight labelm
is given bym5 1

2 (n12n2).

B. Branching rules

The next step is to determine the SL(2,C)↓`2 branching rules~see Table III!. Let

a1
1u0&5u10&5S 1

0D , a2
1u0&5u01&5S 0

1D .

One observes that the generating elementsA0 , D0 , and21 on basis states of the fundament
two-dimensional representation must be, by definition,

A0u10&5u01&, A0u01&52u10&,

D0u10&5 i u10&, D0u01&52 i u01&. ~12!

From this we deduce that

A0a1
†A0

215a2
† , A0a2

†A0
2152a1

† ,

D0a1
†D0

215 ia1
† , D0a2

†D0
2152 ia2

† , ~13!

and that

TABLE III. SL(2,C).`2 branching rules for orbit@ jm#.

2 j 2m IR

Odd Odd G5

0 G1

0 mod 4 4, 8, 12, etc. G1% G2

2, 6, 10, etc. G3% G4

0 G2

2 mod 4 4, 8, 12, etc. G1% G2

2, 6, 10, etc. G3% G4
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A0un1n2&5~21!n2un2n1&, D0un1n2&5~2 i !n22n1un1n2&. ~14!

Thus, the generating elements of`2 simply permute, up to a phase, the SL~2,C! basis statesun1n2&
and un2n1&. The stateun2n1& lies in the samè 3 orbit as un1n2&, and the decomposition of a
SL(2,C) module can be done orbit by orbit.

Consider a generic representation of SL~2,C! of dimension 2j 11, with basis states labeled a
un1n2&. The action ofA0 transformsun1n2& as per Eq.~14!. Let @n1n2#, n1.n2 denote the orbit
of a generic stateun1n2&, n1.n2, under the action of̀ 3. In this subspace, the trace ofA0

vanishes whereas the trace ofA0
2 is 62 according to whethern12n2 is even or odd. Thus, thè3

orbit @n1n2# with n1.n2 containsG5 whenn12n2 is odd, and a sum of irreps,

x1G11x2G21x3G31x4G4 , ~15!

when n12n2 is even;G5 occurs in even-dimensional representations, and the one-dimens
reps occur in the odd-dimensional representations.

The coefficientsxi can be determined from the action of the`2 elementD0 . Since we have
D0un1n2&5ei (n12n2)p/2un1n2&, the trace ofD0 is 2 for n12n250 mod 4, 22 for n12n2

52 mod 4, and vanishes forn12n2 odd. From Table I, it follows that a generic orbit containsG5

when n12n2 is odd, containsG1% G2 when n12n250 mod 4, and containsG3% G4 when n1

2n252 mod 4.
When n15n2, Tr A0561 according to whethern11n250 mod 4 or 2 mod 4, TrD051,

Tr A0
251. It follows that, in that case, we haveG1 whenn11n250 mod 4 andG2 whenn11n2

52 mod 4.

C. `2 basis states

We will use un1n2& with n1>n2 as a`3 orbit representative of@n1n2#.
We can obtain SL(2,C).`2 states by projection from the orbit representative. We will den

by un1n2 ;Gs ;k&,n1>n2 , the kth basis state of the representationGs of `2 containing the state
un1n2&.

Let Gs be an irrep of̀ 2 . The ~character! projection operator for this representation is giv
by

Ps5
dims

8 (
G

xs~G!* G, ~16!

where the sum is over the group elements, dims is the dimension of the representationGs , and
xs(G) is the character of the elementG in the irrepGs .

Using this in conjuction with the character Table I, we find that, for the two-dimensi
representationG5 , the basis states are just

un1n2 ;G5 ;1&5un1n2&, un1n2 ;G5 ;2&5A0un1n2&5~21!n2un2n1&, n1.n2 . ~17!

For the one-dimensional representations, we find, using the branching rules and the explicit
of D0 on our states,D0un1n2&5(21)(1/2)(n12n2)un1n2&, that the states have the generic form

un1n2 ;Gs&5
1

&
„11~21!s11A0…un1n2&5

1

&
„un1n2&1~21!s11

•~21!n2un2n1&…. ~18!

Since all weights of an SL(2,C) irrep have multiplicity one, we find, for the case wheren1

5n2, that a basis state for this case is simply given by the state itself. This and the generi
can be handled together by defining
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un1n2 ;Gs&5
1

A2~11dn1n2
!
~ un1n2&1~21!s111n2un2n1&). ~19!

D. `2 generator matrix elements

It is clearly sufficient to compute matrix elements ofÂ andD̂ of Eq. ~5!, as the other elemen
of the Lie algebra can be obtained by commuting these two. These operators can be expre
terms of the usual sl(2,C) operators as

Â5L12L25a1
†a22a2

†a1 , D̂5 iL 05
i

2
~a1

†a12a2
†a2!. ~20!

Acting on states of a two-dimensional representation of`2, we find the nonzero matrix
elements ofÂ and D̂ as

^n111,n221;G5 ;1uÂun1n2 ;G5 ;1&5A~n11!n2,

^n121,n211;G5 ;1uÂun1n2 ;G5 ;1&52A~n111!n2, n2Þn121,
~21!

^n1 ,n121;G5 ;2uÂun1 ,n121;G5 ;1&5~21!n2n1 , n25n121,

^n1 ,n2 ;G5 ;kuD̂un1 ,n2 ;G5 ;k&5~21!k11
i

2
~n12n2!.

The remaining matrix elements ofÂ are found from the observation that

Âun1n2 ;G5 ;2&5ÂA0un1n2 ;G5 ;1&5A0Âun1n2&, ~22!

sinceÂ andA0 commute. Thus, we find

^n18n28 ;G5 ;1uÂun1n2 ;G5 ;2&5~21!n28^n18n28 ;G5 ;2uÂun1n2 ;G5 ;1&,

^n18n28 ;G5 ;2uÂun1n2 ;G5 ;2&5^n18n28 ;G5 ;1uÂun1n2 ;G5 ;1&. ~23!

The matrix elements ofÂ between states of one-dimensional representations of`2 are
straightforward:

^n18n28 ;Gs8uÂun1n2 ;Gs&52A n1~n211!

~11dn121,n211!~11dn1n2
!

@dn
18 ,n121dn

28 ,n211

1~21!s1n2dn
28 ,n121dn

18 ,n211#ds8,s12

1A~n111!n2

~11dn1n2
!

ds8,s12dn
18 ,n111dn

28 ,n221 , n1>n2 , ~24!

where, inds8,s12 , the sums12 is taken modulo 2.

IV. SL„3,C… IN A `3 BASIS

For SL(3,C), we will choose a representative states of an orbit to be an SL(2,C)3U(1) basis
state.
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A. An SL „2,C…ÃU„1… basis

It will be convenient to introduce basis states that reduce the subgroup chain,

SL~3,C!.SL~2,C!3U~1!, ~25!

where SL(2,C) is the subgroup whose Lie algebra sl(2,C) is spanned by the I-spin operators,

Î 25Ĉ23, Î 15Ĉ32, Î 05 1
2 ~Ĉ332Ĉ22!, ~26!

U(1) the subgroup with Lie algebra spanned byX̂52Ĉ112Ĉ222Ĉ33, and where$Ĉi j ,i , j
51,2,3% are the familiar element of the gl(3,C) Lie algebra:

Ĉi j , i , j , lowering operators,

Ĉi j , i . j , raising operators, ~27!

ĥ15Ĉ332Ĉ22, ĥ25Ĉ222Ĉ11, Cartan subalgebra operators,

with commutation relations

@Ĉi j ,Ĉkl#5d jkĈil 2d i l Ĉk j . ~28!

An explicit realization is given in terms of creation and destruction operators for two parti

Ĉi j 5ai1
† aj 11ai2

† aj 2 , ~29!

where@ais ,ajt
† #5d i j dst , as usual.

Basis states that reduce this subgroup chain are obtained, following Ref. 11, b
SU(2)-coupled product of harmonic oscillator states,

un1n2n3 ;I &5 (
m1m2m3(N)

K 1
2 n2

1
2 n3 I

m2 m3 N
L K 1

2 n1 I 1
2 p

m1 N 1
2 p
L

3
~a11

† !n1/21m1

A~ 1
2 n11m1!!

~a12
† !n1/22m1

A~ 1
2 n12m1!!

~a21
† !n2/21m2

A~ 1
2 n21m2!!

~a22
† !n2/22m2

A~ 1
2 n22m2!!

3
~a31

† !n3/21m3

A~ 1
2 n31m3!!

~a32
† !n3/22m3

A~ 1
2 n32m3!!

u0, ~30!

wheren i>0 andn11n21n35p12q. The angular momentumI can take either integer or half
odd integer values in the range

max@ 1
2 un32n2u, 1

2 up2n1u#<I<Min@ 1
2 ~p1n1!, 1

2 ~p12q2n1!#. ~31!

The states$un1n2n3 ;I &% are the familiar Gel’fand–Tsetlin basis

H Up1q q 0

w v

r
L ; p1q>w>q>v>0 w>r>vJ , ~32!

once we make the identification
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n15p12q2w2v, n25w1v2r , n35r , I 5 1
2 ~w2v !. ~33!

B. The action of A 0 and D0

The matrix representation ofA0 andD0 must give the matrices of Eq.~6! on basis states of the
~1,0! representation. The position of these basis states in weight space is presented in Fig. 1
this, we conclude that

A0a11
† A0

215a21
† , A0a21

† A0
215a31

† , A0a31
† A0

215a11
† . ~34!

We then define

A0a12
† A0

215a22
† , A0a22

† A0
215a32

† , A0a32
† A0

215a12
† , ~35!

thereby fixing the phases in the~0,1! representation. From this, we find

D0a1i
† D0

215a1i
† , D0a2i

† D0
215v2a2i

† , D0a3i
† D0

215va3i
† , ~36!

where we have used the constraint that the triality operatorT5A0D0A2D05v1 in the ~1,0!
representation andT5v21 in ~0,1!.

The action ofA0 on any harmonic oscillator stateun1n2n3 ;I & is then easy to compute:

A0un1n2n3 ;I &5 (
m1m2m3(b)

K 1
2 n2

1
2 n3 I

m2 m3 b
L K 1

2 n1 I 1
2 p

m1 b 1
2 p
L

3
~a21

† !n1/21m1

A~ 1
2 n11m1!!

~a22
† !n1/22m1

A~ 1
2 n12m1!!

~a31
† !n2/21m2

A~ 1
2 n21m2!!

~a32
† !n2/22m2

A~ 1
2 n22m2!!

3
~a11

† !n3/21m3

A~ 1
2 n31m3!!

~a12
† !n3/22m3

A~ 1
2 n32m3!!

u0&, ~37!

with the final result

FIG. 1. The representations~1,0! and ~0,1! of sl(3,C).
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A0un1n2n3 ;I &5(
I 8

un3n1n2 ;I 8&^n3n1n2 ;I 8uA0un1n2n3 ;I &,

^n3n1n2 ;I 8uA0un1n2n3 ;I &5~21!(p12q1n312I 8)/2A~2I 811!~2I 11! H 1
2 n1

1
2 n2 I 8

1
2 n3

1
2 p I

J , ~38!

where

H a b c

d e fJ
is an su(2) 6-j symbol. It is important to note that (A0)3un1n2n3 ;I &5un1n2n3 ;I &.

The action ofD0 is easily found to be

D0un1n2n3 ;I &5vn32n2un1n2n3 ;I &. ~39!

C. SL„3,C…``3 branching rules

Denote by@n#[@n1 ,n2 ,n3# a weight (n22n3 ,n22n1) in the representation (p,q). A state
with weight @n# is an eigenstate ofD0 with eigenvaluevn32n2 and an eigenstate of the trialit
operatorT5A0D0A0

2D0
2 with eigenvaluevp12q. These operators are always diagonal.

Let un1n2n3 ;I & be a state in the weight subspace@n# of (p,q). The action ofA0 reflects
un1n2n3 ;I & according to Eq.~38!. SinceA0

351, a generic orbit of̀ 3 is therefore three dimen
sional if @n#Þ0 and one dimensional if@n#50. Thus, we can decompose an SL(3,C) module
triangle by triangle, regarding a zero-weight point orbit as a degenerate triangle.

Assume that@n#Þ0 so thatun1n2n3 ;I &, A0un1n2n3 ;I & andA0
2un1n2n3 ;I & are distinct. On this

three-dimensional subspace, the trace ofA0 vanishes. The trace ofT is 3vp12q, which implies
that, whenp12q51 or 2 mod 3, the orbit contains eitherG10 or G11, whereas it contains a sum
of three one-dimensional irreps whenp12q50 mod 3.

This sum can be determined from the action ofD0 , whose trace is, in general given, b
vn32n2(11vq12p1v2(q12p)). Whenq12p50 mod 3, the trace ofD0 is therefore 3vn32n2, and
we see from the character table that the orbit containsG113(n32n2) % G213(n32n2) % G313(n32n2) ,
where the representation label is calculated modulo 9.

TABLE IV. SL(3,C).`3 branching rules for the triangular orbit containing
the weight@n#Þ0 in the SL(3,C) irrep (p,q).

p12q IR

0 mod 3 G113(n32n2) % G213(n32n2) % G313(n32n2)

1 mod 3 G10

2 mod 3 G11

TABLE V. SL(3,C).`3 branching rules for point orbit, having@n#50, in
the SL(3,C) irrep (p,q). The labeln is p,11, wherep, is the lesser ofp
andq.

p12q p IR

0 mod 3 1
3 (n12)G11

1
3 (n21)(G2% G3)

0 mod 3 1 mod 3 1
3 (n22)G11

1
3 (n11)(G2% G3)

2 mod 3 1
3 n(G1% G2% G3)
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Finally, consider the degenerate triangles with weight@n#50 in the SL(3,C) IR (p,q) whose
triality is necessarily 0. The traces ofD0 andT are bothn, the multiplicity of the point orbit; the
value ofn is p,11, wherep, is the lesser ofp,q. One can use the representations~3,0!, ~1,1!,
and~2,2! as prototypes to verify that the trace ofA0 is 1,21, or 0 according to whether the trialit
of p ~and ofq! is 0, 1 or 2, respectively@the trace ofA0 for the zero weights is the same as for t
whole SL(3,C) IR#. It follows that the point orbits decompose into

1
3 ~n12!G1%

1
3 ~n21!~G2% G3!, for p50 mod 3,

1
3 ~n22!G1%

1
3 ~n11!~G2% G3!, for p51 mod 3, ~40!

1
3 n~G1% G2% G3!, for p52 mod 3.

We summarize the SL(3,C)↓`3 branching rules in Tables IV and V.

D. `3 basis states

The first step in constructing basis states is to identify one state from each occurrence o
`3 orbit in (p,q). For triangular orbits, this state~henceforth called orbit representative! is taken
to be the stateun1n2n3 ;I & with n3>n2 andn3.n1 . The location of orbit representatives in weig
space is shown in Fig. 2, along with the location of the reflections of the representatives.

We will denote byun1n2n3 ;I ;Gs ,m& the mth basis state of the representationGs containing
the orbit representativeun1n2n3 ;I &.

We will repeatedly use the character projection operator,

Ps5
dims

27 (
G

xs~G!* G, ~41!

where the sum is over the group elements of`3 , dims is the dimension of the irrepGs , andxs

is the character of the elementG in irrep Gs .
We have been unable to obtain closed form expressions for`3 states in a triangular orbit: the

projection method fails since it generates states that are not orthogonal. We will come back
later.

FIG. 2. The location of the orbit representatives, and of the reflection of these states.
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1. The representations G10 and G11

The representationsG10 andG11 are three-dimensional. They occur in representations wh
p2q51 or 2 mod 3. From the character table, we see that the appropriate projection opera
a sum of diagonal elements, so that we can choose orthonormal`3 basis states as

un1n2n3 ;I ;Gs,1&5un1n2n3 ;I &,

un1n2n3 ;I ;Gs,2&5A0un1n2n3 ;I &5(
L

un3n1n2 ;L&^n3n1n2 ;LuA0un1n2n3 ;I &,

un1n2n3 ;I ;Gs,3&5A0
2un1n2n3 ;I &5(

L
un2n3n1 ;L&^n2n3n1 ;LuA0

2un1n2n3 ;I &, ~42!

wheres510 if p2q51 mod 3 ors511 if p2q52 mod 3, and

^n2n3n1 ;LuA0
2un1n2n3 ;I &5^n2n3n1 ;LuA0

21un1n2n3 ;I &5^n1n2n3 ;I uA0un2n3n1 ;L&, ~43!

and where we have used the fact thatA0
351.

2. The representations G7 ,G8 , and G9

For n32n252 mod 3 forp2q50, we find thatT51 andD05v21, with the result that

Ps5 1
3 ~11v2s11A01vs21A0

2!, s57,8,9, ~44!

from which we obtain the orthonormal basis states for triangles as

un1n2n3 ;I ;G7&5
1

)
~ un1n2n3 ;I &1A0un1n2n3 ;I &1A0

21un1n2n3 ;I &),

un1n2n3 ;I ;G8&5
1

)
~ un1n2n3 ;I &1v2A0un1n2n3 ;I &1vA0

21un1n2n3 ;I &), ~45!

un1n2n3 ;I ;G9&5
1

)
~ un1n2n3 ;I &1vA0un1n2n3 ;I &1v2A0

21un1n2n3 ;I &).

The m has been omitted since it is not necessary.

3. The representations G4 ,G5 , and G6

These representations decompose orbits withn32n251 mod 3 in SL(3,C) irreps with p2q
50 mod 3, so thatT51, D05v1, and

Ps5 1
3 ~11v2s11A01vs21A0

2!, s54,5,6. ~46!

The resulting orthonormalized basis states are therefore given by

un1n2n3 ;I ;G4&5
1

)
~ un1n2n3 ;I &1A0un1n2n3 ;I &1A0

21un1n2n3 ;I &),

un1n2n3 ;I ;G5&5
1

)
~ un1n2n3 ;I &1v2A0un1n2n3 ;I &1vA0

21un1n2n3 ;I &), ~47!
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un1n2n3 ;I ;G6&5
1

)
~ un1n2n3 ;I &1vA0un1n2n3 ;I &1v2A0

21un1n2n3 ;I &).

Again, m is unnecessary.

4. The representations G1 ,G2 , and G3 in triangular orbits

These representations are contained in orbits withn35n2 mod 3, andp2q50 mod 3, so that
D5T51. Furthermore, using 05p2q5p12q5n11n21n3 mod 3 andn32n250 mod 3, we
find that the projection operator is again given by

Ps5 1
3 ~11v2s11A01vs21A0

2!, s51,2,3, ~48!

so that we find

un1n2n3 ;I ;G1&5
1

)
~ un1n2n3 ;I &1A0un1n2n3 ;I &1A0

21un1n2n3 ;I &),

un1n2n3 ;I ;G2&5
1

)
~ un1n2n3 ;I &1v2A0un1n2n3 ;I &1vA0

21un1n2n3 ;I &), ~49!

un1n2n3 ;I ;G3&5
1

)
~ un1n2n3 ;I &1vA0un1n2n3 ;I &1v2A0

21un1n2n3 ;I &).

We do not need the indexm since the representations are one-dimensional. These state
orthonormal when the orbit is triangular.

5. The representations G1 ,G2 , and G3 in point orbits

When the weight@n#50 occurs more than thrice, at least one`3 will occur more than once,

and the projection procedure fails: the resulting states are not orthogonal. Explicilty, ifk5 1
3 (p

12q), then the inner product of two states based on different angular momentumI andI 8 is given
by

^kkk;I 8uPs8
21Psukkk;I &5dss8S d II 81A~2I 11!~2I 811! H 1

2 k 1
2 k I

1
2 k 1

2 q I 8
J

3„~21! Iv2s111~21! I 8vs21
…D . ~50!

One way to construct basis states for point orbits is to diagonalizeA0 , which acts diagonally
on these states. Lett label multiple occurrences of the eigenvaluevs21 of A0 in the weight
subspace@n#50, and letuGs ,t& be an eigenstate ofA0 with eigenvaluevs21. If

uGs ,t&5(
I

cI
s,tukkk,I & ~51!

is the expansion of this eigenvector in terms of our harmonic oscillator states, then the eige
equation forA0 implies
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vs21cI 8
s,t

5(
I

~21! IA~2I 11!~2I 811! H 1
2 k 1

2 k I 8

1
2 k 1

2 p I
J cI

s,t , ~52!

while the eigenvalue equation forA0
2 implies

v2s11cI 8
s,t

5(
I

~21! I 8A~2I 11!~2I 811! H 1
2 k 1

2 k I 8

1
2 k 1

2 p I
J cI

s,t . ~53!

Taking the sum of these two equations shows that the system of linear equations for the
cients cI

s,t can be separated in two systems containing, respectively, only even and onl
values of I.

We have been unable to solve this system in closed form, so that, for the purpose of
lating matrix elements, we will use as a basis for the 0-weight subspace the SU(2)3U(1) states
ukkk,I &.

V. `3 GENERATOR MATRIX ELEMENTS

We are interested in the matrix elements of the two generatorsÂ andD̂ of Eq. ~9!. They are
given by

Â5Ĉ211Ĉ321Ĉ13, ~54!

5Ĉ321A0
21Ĉ32A01A0Ĉ32A0

21, ~55!

D̂5Ĉ111v2Ĉ221vĈ33. ~56!

The matrix elements ofÂ and D̂ will be expressed in terms of the matrix elements of theĈi j ,
which are given explicilty in Appendix A.

A. Geometrical considerations

We will repeatedly have to evaluate expressions of the kind

^n18n28n38 ;I 8uA0
kĈi 11,i un1n2n3 ;I &, ~57!

wherek50,1,2, i 50,1,2 mod 3 and wherên18n28n38 ;I 8u and un1n2n3 ;I & are orbit representative
with n3>n2 ,n3.n1 andn38>n28 ,n38.n18.

FIG. 3. The action ofĈ13 and Ĉ21 , respectively, on orbit representatives can sometimes produce states that need
reflected back into representatives, as illustrated in~a! and ~b!.
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As illustrated in Fig. 3, it follows from the location of such states in weight space that

^n18n28n38 ;I 8uA0
21Ĉ32un1n2n3 ;I &50,

^n18n28n38 ;I 8uA0Ĉ32un1n2n3 ;I &50,

^n18n28n38 ;I 8uA0
21Ĉ21un1n2n3 ;I &50, ~58!

^n18n28n38 ;I 8uA0Ĉ21un1n2n3 ;I &Þ0, only whenn25n3 ,

^n18n28n38 ;I 8uA0
21Ĉ13un1n2n3 ;I &Þ0, only whenn35n111 or n112,

^n18n28n38 ;I 8uA0Ĉ13un1n2n3 ;I &Þ0, only when n35n2 .

B. Three-dimensional representations

Since basis states are of the typeun1n2n3 ;I ;Gs ,m&5A0
m21un1n2n3 ;I &, we have, in general

expressions of the type

^n18n28n38 ;I 8uA0
2m811ÂA0

m21un1n2n3 ;I &5^n18n28n38 ;I 8uA0
2m81mÂun1n2n3 ;I &, ~59!

sinceÂ transforms into itself under conjugation byA0 . Using Eq.~58!, we therefore have three
cases.

1. 2m8¿mÄ0 mod 3

This simply yields

^n18n28n38 ;I 8uÂun1n2n3 ;I &5^n18n28n38 ;I 8uĈ32un1n2n3 ;I &

1^n18n28n38 ;I 8uĈ21un1n2n3 ;I &~12dn2n3
!

1^n18n28n38 ;I 8uĈ13un1n2n3 ;I &

3~12dn2n3
2dn3 ,n1112dn3 ,n12!. ~60!

2. 2m8¿mÄ1 mod 3

This is nonzero only ifn25n3 . We then have

^n18n28n38 ;I 8uA0~Ĉ211Ĉ13!un1n2n3 ;I &

5(
L8

^n18n28n38 ;I 8uA0un28n38n18 ;L8&3@^n28n38n18 ;L8uĈ21un1n2n3 ;I &

1^n28n38n18 ;L8uĈ13un1n2n3 ;I &#dn3n2
. ~61!

3. 2m8¿mÄ2 mod 3

Here, we must haven35n111 or n35n112, with the result
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^n18n28n38 ;I 8uA0
21Ĉ13un1n2n3 ;I &5(

L8
^n18n28n38 ;I 8uA0

21un38n18n28 ;L8&

3^n28n38n18 ;L8uĈ13un1n2n3 ;I &

3~dn3 ,n1111dn3 ,n112!. ~62!

C. One-dimensional representations with no point orbits

Consider now the case of a three-dimensional orbit which decomposes into a sum o
one-dimensional representations of`3. To obtain the matrix elements ofÂ as a sum of matrix
elements ofĈi j , we write

un1n2n3 ;I ;Gs&5
1

)
~11v2s11A01vs21A0

21!un1n2n3 ;I &, ~63!

Â5Ĉ321A0Ĉ32A0
211A0

21Ĉ32A0 , ~64!

with the usual conditionn3>n2 ,n3.n1 , and note that

A0~11v2s11A01vs21A0
21!5vs21~11v2s11A01vs21A0

21!,

A0
21~11v2s11A01vs21A0

21!5v2s11~11v2s11A01vs21A0
21!. ~65!

From this, we obtain

^n18n28n38 ;I 8;Gs8uÂun1n2n3 ;I ;Gs&5 1
3 ^n18n28n38 ;I u~11v2s811A01vs821A0

21!

3~11v2s11A01vs21A0
21!

3Ĉ32~11v2s11A01vs21A0
21!un1n2n3 ;I &. ~66!

Now,

~11v2s811A01vs821A0
21!~11v2s11A01vs21A0

21!

53~11v2s11A01vs21A0
21!ds82s,0, ~67!

where the sums82s is taken modulo 3, so that

^n18n28n38 ;I 8;Gs8uÂun1n2n3 ;I ;Gs&

5^n18n28n38 ;I 8u~11v2s11A01vs21A0
21!Ĉ13un1n2n3 ;I &

1^n18n28n38 ;I 8u~11v2s11A01vs21A0
21!Ĉ21un1n2n3 ;I &

1^n18n28n38 ;I 8u~11v2s11A01vs21A0
21!Ĉ32un1n2n3 ;I &, ~68!

where we have assumed thes82s50 modulo 3, and where we have used equalities such
A0Ĉ21A0

215Ĉ32 to eliminate as many factors ofA0 as possible.
Assuming that no points orbits are involved, we can therefore simplify the matrix elemen

its final form:

^n18n28n38 ;I 8;Gs8uÂun1n2n3 ;I ;Gs&

5^n18n28n38 ;I 8uĈ13un1n2n3 ;I &~12dn2n3
2dn3 ,n1112dn3 ,n211!ds2s8,0

1vs21^n18n28n38 ;I 8uA0
21Ĉ13un1n2n3 ;I &~dn3 ,n1111dn3 ,n112!ds2s8,0
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1v2s11^n18n28n38 ;I 8uA0Ĉ13un1 ,n2 ,n3 ;I &dn2n3
ds2s8,0

1^n18n28n38 ;I 8uĈ21un1 ,n2 ,n3 ;I &~12dn2n3
!ds2s8,0

1v2s11^n18n28n38 ;I 8uA0Ĉ21un1 ,n1 ,n3 ;I &dn2n3
ds2s8,0

1^n18n28n38 ;I 8uĈ32un1 ,n2 ,n3 ;I &d II 8ds2s8,0 ~69!

where the sums2s8 is taken modulo 3.

D. One-dimensional representations with point orbits

When there are point orbits, we must be satisfied with the computation of^kkk,I 8uÂuk
21,k,k11;I ;Gs& and ^k,k21,k11;I 8;GsuÂukkk,I &, wherek5 1

3 (p12q), as we have no ex-
plicit expressions for̀ 3 basis states in these cases.

To computê kkk,I 8uÂuk21,k,k11;I ;Gs&, note that

^kkk,I 8uÂuk21,k,k11;I ;Gs&

5
1

)
^kkk,I 8u~Ĉ131Ĉ21v

2s11A01Ĉ32v
s21A0

2!uk21,k,k11;I &,

5
1

)
^kkk,I 8u~Ĉ131v2s11A0Ĉ131vs21A0

2Ĉ13!uk21,k,k11;I &,

5
1

)
^kkk,I 8uĈ13uk21,k,k11;I &1

1

)
(
L

@v2s11~21!L1vs21~21! I 8#

3A~2L11!~2I 811! H 1
2 k 1

2 k L

1
2 k 1

2 p I 8
J ^kkk,LuĈ13uk21,k,k11;I &. ~70!

From the selection rules onĈ13, we note that we must haveL5I 6 1
2.

In particular, fors51 mod 3, this shows that the sum extends over those values ofL that
have the same parity asI 8. However, from the selection rules on the matrix elements ofĈ13, the
possible values ofL are I 6 1

2, and the only value ofL that is of the same parity asI 8 in I 6 1
2 is

L5I 8, further simplifying the final expression.

VI. CONCLUSION

In this paper we have presented an explicit construction of SL(3,C) states in à 3 subgroup
basis. This̀ 3 subgroup has several interesting properties.

The group̀ 3 is generated by three elements, and induces aZ3^ Z3 grading of SL~3,C!. In the
~1,0! representation of sl~3,C!, linearly independent combinations of`3 elements can be chosen a
a basis for the sl(3,C) algebra. The choseǹ3 matrices of this representation play a dual role
either subgroup elements or as elements of the sl(3,C) algebra. Any basis element of sl(3,C) can
be obtained from the~possibly multiple! commutator of two generators for instanceA0 and D0

corresponding to two generating elements of`3 .
The orbits of̀ 3 in the representation space of SL~3,C! are simple, and make the constructio

of SL(3,C).`3 basis states devoid of many of the difficulties usually associated with the
struction of a finite subgroup basis. This makes the action of a`3 element on a basis state
relatively easy to compute. One needs to know only the matrix elements ofA0 andD0. Moreover,
only one of them acts in a nontrivial way on basis states.

The computation of sl(3,C) generators can almost always be related to the computatio
sl(3,C) generators between states in a single sector covering one-third of the weight space

Finally, it is quite clear that the method presented here can be generalized to the su
`n,SL(n,C) described in Ref. 1.
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APPENDIX A: SU „2…ÃU„1… GENERATOR MATRIX ELEMENTS IN THE OSCILLATOR
BASIS

It is simplest to compute the matrix elements ofĈ31 and to extract from it those ofĈ13 and
Ĉ21.

In the harmonic oscillator basis:

^n18n28n38 ;I 8uĈ31un1n2n3 ;I &

5 (
m1m2m3(N)

(
m18m38(N8)

K 1
2 n3

1
2 n2 I

m3 m2 N
L K I 1

2 n1
1
2 p

N m1
1
2 p
L K 1

2 n38
1
2 n2 I 8

m38 m2 N8
L

3K I 8 1
2 n18

1
2 p

N8 m18
1
2 p
L 1

A~ 1
2 n11m1!! ~ 1

2 n12m1!! ~ 1
2 n31m3!! ~ 1

2 n32m3!!

3
1

A~ 1
2 n181m18!! ~ 1

2 n182m18!! ~ 1
2 n381m38!! ~ 1

2 n382m38!!
3@~ 1

2 n11m1!! ~ 1
2 n12m1!!

3~ 1
2 n31m311!! ~ 1

2 n32m3!!d~1/2! n11m121,~1/2! n
181m

18
d~1/2! n12m1 , ~1/2! n

182m
18

3d~1/2! n31m311,~1/2! n
381m

38
d~1/2! n32m3 , ~1/2! n

382m
38
1~ 1

2 n11m1!! ~ 1
2 n12m1!!

3~ 1
2 n31m3!! ~ 1

2 n32m311!!d~1/2! n11m1 , ~1/2! n
181m

18
d~1/2! n12m121,~1/2! n

182m
18

3d~1/2! n31m3 ,~1/2! n
381m

38
d~1/2! n32m311,~1/2! n

382m
38
#, ~A1!

which, after simplification, yields

^n121,n2 ,n311;I 8uĈ31un1n2n3 ;I &

5 (
m1m2m3(N)

K 1
2 n3

1
2 n2

m3 m2
U I

NL K I 1
2 n1

N m1
U 1

2 p

1
2 p
L F K 1

2 n31 1
2

1
2 n2

m31 1
2 m2

U I 8

N1 1
2
L

3K I 8 1
2 n2 1

2

N1 1
2 m12 1

2

U 1
2 p

1
2 p
L A~ 1

2 n11m1!~ 1
2 n31m311!1K 1

2 n31 1
2

1
2 n2

m32 1
2 m2

U I 8

N2 1
2
L

3K I 8 1
2 n2 1

2

N2 1
2 m11 1

2

U 1
2 p

1
2 p
L A~ 1

2 n12m1!~ 1
2 n32m311!G . ~A2!

Using now the two equalities between CG with arguments differing by1
2,
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K 1
2 n31 1

2
1
2 n2

m31 1
2 m2

U I 8

N8
L

5A~ I 81N8!~ 1
2 n32 1

2 n21 1
21I 8!~ 1

2 n21 1
2 n31I 81 3

2!

2I 8~2I 811!~ 1
2 n31m311!

K 1
2 n3

1
2 n2

m3 m2
U I 82 1

2

N82 1
2

L
1A~ I 82N811!~ 1

2 n22 1
2 n31 1

21I 8!~ 1
2 n21 1

2 n31 1
22I 8!

2~ I 811!~2I 811!~ 1
2 n31m311!

3K 1
2 n3

1
2 n2

m3 m22
U I 81 1

2

N82 1
2

L ,

K 1
2 n31 1

2
1
2 n2 I 8

m32 1
2 m2 N8

L
5A~ I 82N8!~ 1

2 n32 1
2 n21 1

21I 8!~ 1
2 n21 1

2 n31I 81 3
2!

2I 8~2I 811!~ 1
2 n32m311!

K 1
2 n3

1
2 n2

m3 m2
U I 82 1

2

N81 1
2

L
2A~ I 81N811!~ 1

2 n22 1
2 n31 1

21I 8!~ 1
2 n21 1

2 n31 1
22I 8!

2~ I 811!~2I 811!~ 1
2 n32m311!

K 1
2 n3

1
2 n2

m3 m2
U I 81 1

2

N81 1
2

L ,

~A3!

for N85N6 1
2, respectively, one can eliminate the sums overm2 andm3 to find

^n121,n2 ,n311;I 8uĈ31un1n2n3 ;I &

5 (
m1N

K I 1
2 n1

N m1
U 1

2 p

1
2 p
LA~ I 2 1

2 n21 1
2 n311!~ 1

2 n21 1
2 n31I 12!

2~ I 11!~2I 11!

3F K I 1 1
2

1
2 n12 1

2

N1 1
2 m12 1

2

U 1
2 p

1
2 p
L A~ 1

2 n11m1!~ I 1N11!

1K I 1 1
2

1
2 n12 1

2

N2 1
2 m11 1

2

U 1
2 p

1
2 p
L A~ 1

2 n12m1!~ I 2N11!Gd I 8,I 1
1
2
1 (

m1N
K I 1

2 n1

N m1
U 1

2 p

1
2 p
L

3A~ I 1 1
2 n22 1

2 n3!~ 1
2 n21 1

2 n32I 11!

2I ~2I 11! F K I 2 1
2

1
2 n12 1

2

N1 1
2 m12 1

2

U 1
2 p

1
2 p
L A~ 1

2 n11m1!~ I 2N!

2K I 2 1
2

1
2 n12 1

2

N2 1
2 m11 1

2

U 1
2 p

1
2 p
L A~ 1

2 n12m1!~ I 1N!Gd I 8,I 2
1
2
. ~A4!

Finally, using the explicit expression for CG of the type

K J1 J2

M1 M2
UJ
JL ,
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we find

K I 1 1
2

1
2 n12 1

2

N1 1
2 m12 1

2

U 1
2 p

1
2 p
L 5A ~ I 1N11!~2I 1 1

2 n11 1
2p!

~ 1
2 n11m1!~ I 2 1

2 n1111 1
2p!

K I 1
2 n1

N m1
U 1

2 p

1
2 p
L , ~A5!

K I 1 1
2

1
2 n12 1

2

N2 1
2 m11 1

2

U 1
2 p

1
2 p
L 52A ~ 1

2 n12m1!

~ I 2 1
2 n1111 1

2p!~ I 2N11!
K I 1

2 n1

N m1
U 1

2 p

1
2 p
L ~A6!

K I 2 1
2

1
2 n12 1

2

N1 1
2 m12 1

2

U 1
2 p

1
2 p
L 52A~ I 2N!~ I 1 1

2 n1111 1
2p!

~ 1
2 n11m1!~ I 1 1

2 n12 1
2p!

K I 1
2 n1

N m1
U 1

2 p

1
2 p
L , ~A7!

K I 2 1
2

1
2 n12 1

2

N2 1
2 m11 1

2

U 1
2 p

1
2 p
L 5A~ 1

2 n12m1!~ I 1 1
2 n11 1

2p11!

~ I 1 1
2 n12 1

2p!~ I 1N!
K I 1

2 n1

N m1
U 1

2 p

1
2 p
L , ~A8!

and we can eliminate the remaining sums~remembering thatN1m15 1
2p! to obtain the final

result,

^n121,n2 ,n311;I 8uĈ31un1n2n3 ;I &

5A~ I 2 1
2 n21 1

2 n311!~ 1
2 n21 1

2 n31I 12!~ I 2 1
2 n11 1

2p11!~2I 1 1
2 n11 1

2p!

2~ I 11!~2I 11!
d I 8,I 11/2

2A~ I 1 1
2 n22 1

2 n3!~ 1
2 n21 1

2 n32I 11!~ I 1 1
2 n11 1

2p11!~ I 1 1
2 n12 1

2p!

2I ~2I 11!
d I 8,I 21/2.

~A9!

Taking the adjoint of Eq.~A9!, we find

^n111,n2 ,n321;I 8uĈ13un1n2n3 ;I &

5A~ I 2 1
2 n21 1

2 n3!~ I 1 1
2 n21 1

2 n311!~ I 2 1
2 n11 1

2p!~2I 1 1
2 n11 1

2p11!

2I ~2I 11!
d I 8,I 21/2

2A~ I 1 1
2 n22 1

2 n311!~2I 1 1
2 n21 1

2 n3!~ I 1 1
2 n11 1

2p12!~ I 1 1
2 n12 1

2p11!

2~ I 11!~2I 11!
d I 8,I 11/2.

~A10!

The operatorĈ21 is the 1
2 component of af̂ 1/2 tensor operator, whose2 1

2 component isĈ21,
so that, using the Wigner–Eckart theorem, we find

^n121,n211,n3 ;I 8uĈ21un1n2n3 ;I &

5A~ I 1 1
2 n22 1

2 n311!~ 1
2 n21 1

2 n31I 12!~ I 2 1
2 n11 1

2p11!~2I 1 1
2 n11 1

2p!

2~ I 11!~2I 11!
d I 8,I 11/2

1A~ I 2 1
2 n21 1

2 n3!~ 1
2 n21 1

2 n32I 11!~ I 1 1
2 n11 1

2p11!~ I 1 1
2 n12 1

2p!

2I ~2I 11!
d I 8,I 21/2.

~A11!
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Finally, the matrix element ofĈ32 is simply given by

^n1 ,n221,n311,I 8uĈ32un1n2n3 ;I &5A~ I 2 1
2 n31 1

2 n2!~ I 1 1
2 n32 1

2 n211! d II 8 . ~A12!
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Exact constructions of square-root Helmholtz operator
symbols: The focusing quadratic profile

Louis Fishmana)
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Operator symbols play a pivotal role in both the exact, well-posed, one-way refor-
mulation of solving the~elliptic! Helmholtz equation and the construction of the
generalized Bremmer coupling series. The inverse square-root and square-root
Helmholtz operator symbols are the initial quantities of interest in both formula-
tions, in addition to providing the theoretical framework for the development and
implementation of the ‘‘parabolic equation’’~PE! method in wave propagation
modeling. Exact, standard~left! and Weyl symbol constructions are presented for
both the inverse square-root and square-root Helmholtz operators in the case of the
focusing quadratic profile in one transverse spatial dimension, extending~and, ul-
timately, unifying! the previously published corresponding results for the defocus-
ing quadratic case@J. Math. Phys.33, 1887–1914~1992!#. Both ~i! spectral~modal!
summation representations and~ii ! contour-integral representations, exploiting the
underlying periodicity of the associated, quantum mechanical, harmonic oscillator
problem, are derived, and, ultimately, related through the propagating and non-
propagating contributions to the operator symbol. High- and low-frequency,
asymptotic operator symbol expansions are given along with the exact symbol
representations for the corresponding operator rational approximations which pro-
vide the basis for the practical computational realization of the PE method. More-
over, while the focusing quadratic profile is, in some respects, nonphysical, the
corresponding Helmholtz operator symbols, nevertheless, establish canonical sym-
bol features for more general profiles containing locally-quadratic wells. ©2000
American Institute of Physics.@S0022-2488~00!06007-2#

I. INTRODUCTION

The global nature of wave propagation problems, as modeled by the elliptic scalar Helm
equation, renders the computational solution quite difficult in extended inhomogen
environments.1,2 The development and application of the ‘‘parabolic equation’’~PE! method3–7

has successfully addressed this issue for appropriately, weakly range-dependent enviro
where, for the most part, one-way~forward! wave fields are computed and backscattered energ
neglected. In recent years, the PE method has been extended to fully-coupled, two-way,
wave propagation through two complementary approaches:~i! the exact, well-posed, one-wa
reformulation of elliptic wave propagation problems1,2,8 and ~ii ! the construction and applicatio
of the generalized Bremmer coupling series.9–11Both methods of extension are based on ideas
constructions from wave field decomposition, invariant imbedding~reflection and transmission
operators!, and the closely related Dirichlet-to-Neumann~DtN! operators, and make use of m

a!Address all correspondence to the following address: Code 7181, Naval Research Laboratory, Stennis Spac
Mississippi 39529.
48810022-2488/2000/41(7)/4881/58/$17.00 © 2000 American Institute of Physics
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crolocal analysis~pseudodifferential and Fourier integral operators and path integrals!. While the
current focus in the direct and inverse analysis of the above two approaches is primarily
properties and singularity structure of the scattering~reflection and transmission! and DtN operator
symbols,1,12,13the inverse square-root and square-root Helmholtz operator symbols are the
quantities of interest in both formulations. In many respects, however, despite the detailed
ment of the fully-coupled, two-way, elliptic formulations in the above-referenced literature
original PE method provides the most straightforward introduction to the Helmholtz ope
symbols.

Starting from the two-dimensional, space-frequency domain, scalar Helmholtz equatio
formally exact wave equation for propagation in a transversely inhomogeneous half-space s
mented with appropriate right-traveling-wave radiation and initial-value conditions is given1,2

~ i/ k̄!]xw
11Bw150, ~I.1!

wherew1 is the one-way wave function,k̄ is a reference or average wave number~proportional to
frequency!, and

B5B~z,]z!5@K2~z!1~1/k̄!2]z
2#1/2 ~I.2!

is the square-root Helmholtz operator, whereK(z) is the refractive index field. The range coo
dinate, x, is associated with the ‘‘one-way’’ direction;z is the transverse coordinate. In th
subsequent formal analysis, the transverse coordinates will also be freely denoted byq.

For a point source of the volume injection type, located atx50 andz5zs , the appropriate
initial-value condition or~source! decomposition is given by1

w1~0,z!5~ i/2k̄!B21d~z2zs!, ~I.3!

whereB21 denotes the inverse or parametrix ofB ~i.e., the inverse square-root Helmholtz oper
tor!.

The Helmholtz operator symbols are defined in a pseudodifferential operator~operator-
ordering! calculus.14–17 Let B5B(z,z8) denote thekernelassociated with operatorB, i.e.,

~Bw1!~x,z!5E
R
dz8 B~z,z8!w1~x,z8!, ~I.4!

andB 215B 21(z,z8) denote the kernel associated with the inverseB21. Then thesymbol, for the
inverse square-root Helmholtz operator, is defined as

hB21
s

~p,q!5E
R
du exp~ ik̄pu!B 21~q,q1u! ~I.5!

in the standard~left! pseudodifferential operator calculus, and as

VB21~p,q!5E
R
du exp~ ik̄pu!B 21~q2 1

2 u,q1 1
2 u! ~I.6!

in the Weyl pseudodifferential operator calculus.14–17Likewise, definitions ofhB
s andVB hold for

the square-root Helmholtz operator itself.
In terms of the square-root Helmholtz operator symbols, the one-way wave equation~I.1! can

be written as18

~ i/ k̄!]xw
11E

R
~ k̄/2p!dphB

s ~p,z!exp~ ik̄pz!w1̃~x,p!50, ~I.7!
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or

~ i/ k̄!]xw
11E

R
dz8 E

R
~ k̄/2p!dpVB~p, 1

2 ~z1z8!!exp@ ik̄p~z2z8!#w1~x,z8!50, ~I.8!

in the standard and Weyl calculi,14–17respectively. Here,w1̃(x,p) is the Fourier transform of the
one-way wave functionw1(x,z) with respect to the transverse coordinate,

w1̃~x,p!5E
R
dz8 exp~2 ik̄pz8!w1~x,z8!. ~I.9!

For a fixed range point,x5xb say, Eqs.~I.7! and ~I.8! provide the basis for the nonreflectin
boundary conditions ubiquitous in numerical wave field computations.1,4,10

The fundamental solution~propagator!, G 1, associated with Eq.~I.1! can be expressed as
lattice multivariate integral, with Hamiltonian equal to the square-root Helmholtz ope
symbol,1,2,11,19–22

G 1~x,z;x8,z8!5H~x2x8! lim
M→`

E
R2M21 )

i 51

M

~ k̄/2p!dp( i ) )
j 51

M21

dz( j )

3expF ik̄(
k51

M

$p(k)~z(k)2z(k21)!1hB
s ~p(k),z(k)!M 21Dx%G , ~I.10!

with z(0)5z8, z(M )5z, Dx5x2x8, and whereH(•) is the Heaviside function. All the integration
are taken over the interval (2`,`), M 21Dx is the step size in the parameterj along the range
direction, and (z(k),p(k)) are the coordinates of a path~in transverse phase space! at the discrete
valuesjk of j as k51,...,M . A similar phase-space path-integral representation is found in
Weyl calculus.1,2,19–22The structure of the path-integral representation in Eq.~I.10! straightfor-
wardly results in the phase space, marching algorithm, which generalizes the Tappert/Ha6,7

split-step FFT algorithm for the standard parabolic approximation to the one-way Helm
equation~I.1! and has been discussed and illustrated in detail in the literature.20–22

Moreover, in the context of the inverse scattering problem, the composition equation
pseudodifferential operator calculus connects the square-root Helmholtz operator symbol w
square of the refractive index field through1,14–17

K2~q!2p25VB2~p,q!

5~ k̄/p!2E
R4

dsdudtdvVB~s1p,u1q!VB~ t1p,v1q!exp@2ik̄~ut2sv !#

~I.11!

in the Weyl calculus, with a similar expression in the standard calculus14–16 ~see also Appendix
C!. The composition equation~I.11! also serves as the starting point for the exact, approxim
and numerical constructions of the square-root Helmholtz operator symbols.1,17,23,24

Finally, the operator symbols in the Weyl and standard pseudodifferential operator calcu
related to one another,14–17,20viz.,

hB
s ~p,q!5~ k̄/p!E

R2
dsduVB~s,u!exp@22ik̄~q2u!~p2s!#, ~I.12!

while
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VB~p,q!5~ k̄/p!E
R2

dsduhB
s ~s,u!exp@2ik̄~q2u!~p2s!#. ~I.13!

Recasting the formal operator equations~I.1! and~I.3!, in a chosen pseudodifferential operat
calculus, in terms of the appropriate operator symbols provides the explicit means to e
Fourier analysis of wave propagation in~transversely! homogeneous media to inhomogeneo
environments; the analysis is carried out in the transverse Fourier (p) domain without leaving the
transverse space (q) domain. The transverse space-wave number domain constitutes the tran
phase space. The transverse variablep together with the principal part ofhB

s form the components
of the cotangent vector attached to the wave front.

Rather than focusing on the individual operator eigenvalues and eigenfunctions as is d
the traditional spectral analysis, the focus here is on the operator symbols; they conta
complete spectral information in just the appropriate manner to lead immediately to the infin
mal propagator and initial wave field.

Operator symbols are a natural quantity to consider. For example, they provide the ‘‘g
alized slowness surface’’ in geophysics,11 the natural multidimensional extension of the scatter
~reflection and transmission! coefficients in the one-dimensional formulation,2,13 and the frame-
work to quantize~semi-!classical theories in quantum physics.25 While either the Weyl or the
standard pseudodifferential operator calculus provides a complete description of the propa
problem, they are, in many respects, complementary, and can be used in conjunction to adv
For example, the symmetry inherent in the Weyl calculus can often be exploited in op
symbol constructions and analysis~particularly that involving integrated energy-flux conservati
calculations and that separating the effects due to anisotropy from those due to heterog!,
while the standard calculus naturally results in more computationally efficient algorithms.20,21

The brief outline presented from Eq.~I.5! to Eq. ~I.13! indicates the pivotal role that both th
inverse square-root and square-root Helmholtz operator symbols play in the PE method fo
propagation. The explicit construction of the one-way wave equation and initial wave field,
integral solution representation and subsequent numerical algorithm, computational bounda
ditions, and fundamental inverse relationship all depend crucially upon the analysis and
quent properties of the relevant Helmholtz operator symbols. The extension to the scatteri
DtN operator symbols in the fully-coupled, two-way, elliptic formulations only reinforces
importance of their role.1,2,8–11From this perspective, the construction of exact square-root He
holtz operator symbols is of great value in illuminating the general mathematical propag
theory, in addition to providing benchmark solutions for both asymptotic and numerical ope
symbol constructions.1,23,24 Furthermore, the explicit construction of these nontrivial symbo
corresponding to a fractional power of the indefinite, transverse Helmholtz operator, is of
ematical interest in its own right. Since the relevant~frequency-domain! operators lie outside o
the well-developed theory of elliptic pseudodifferential operators,1,15 a new asymptotic, operato
symbol characterization is required.1,9,12 The construction is accomplished by incorporating co
plex and spectral analyses in the calculus of pseudodifferential operators~see also Shubin26!.

In view of the potentially illuminating role of exact operator symbol constructions, this p
presents the exact symbol constructions for both the inverse square-root and square-roo
holtz operators in the case of the focusing quadratic profile in one transverse spatial dime
extending~and, ultimately, unifying! the previously published corresponding results for the de
cusing quadratic case.24 The focusing case is particularly interesting in the context of the for
tion of caustics. The results are given for both the Weyl and standard~left! operator symbols.
While the focusing quadratic profile is, in some respects, nonphysical, the corresponding
holtz operator symbols, nevertheless, establish canonical features for more general profil
taining locally-quadratic wells. Section II derives Helmholtz operator symbol representatio
the form of spectral~modal! summations following from Eqs.~I.5! and ~I.6! and the standard
spectral theory of the corresponding operator kernels. In Sec. III, contour-integral represent
exploiting the underlying periodicity of the associated, quantum mechanical, harmonic osc
problem, are derived for the Helmholtz operator symbols. These contour-integral represen
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unify the focusing and defocusing quadratic profile cases, providing the appropriate an
continuation results and a convenient form for the subsequent asymptotic analysis. The a
continuation results are combined with the contour-integral representations constructed
time-Fourier domain to derive the square-root ‘‘Helmholtz’’ operator symbols in the time-Lap
domain in Sec. IV. The application of standard asymptotic methods to these contour-in
representations then results in both the high- and low-frequency expansions of the Helm
operator symbols in Sec. V. The high-frequency asymptotic results are of particular inter
view of the fractional, transverse Helmholtz operators falling outside the scope of elliptic pse
ifferential operator theory. In Sec. VI, the spectral~modal! summation and contour-integral rep
resentations are related through an explicit consideration of the propagating and nonprop
contributions to the Helmholtz operator symbols, and the multiresolution and generalized
properties of the one-way propagation process are revealed through the structure of the W
standard operator symbols, respectively. The exact symbol representations for the well-k
operator rational approximations of the square-root Helmholtz operator,1,3–6,10,24which provide
the basis for the practical computational realization of the PE method, are presented in Sec
both the spectral~modal! summation and contour-integral forms for the focusing quadratic pro
These constructions extend~and, ultimately, unify! the previously published corresponding resu
for the defocusing quadratic case.24 Numerical realizations of the exact and approximate He
holtz operator symbols are presented in Sec. VIII, while the results derived in the prec
sections are applied to illustrate several points pertinent to direct and inverse wave propa
modeling in multidimensional, extended inhomogeneous environments in the concluding d
sion presented in Sec. IX. Appendices A–C provide the necessary mathematical detail.

II. SPECTRAL „MODAL … SUMMATION OPERATOR SYMBOL REPRESENTATIONS

A spectral~modal! summation symbol representation for the inverse square-root Helm
operator follows, in principle, from Eqs.~I.5! and ~I.6! and the standard spectral theory for t
corresponding operator kernelB 21(z,z8). In the usual manner,4,11 B 21(z,z8) is represented by a
convergent, complex Dunford integral in terms of the associatedB2 operator resolvent—which is
simply proportional to the Green’s function for the corresponding, effective one-dimens
~range-transformed! Helmholtz equation. The Green’s function is constructed in terms of the u
bilinear product and corresponding Wronskian of the appropriate solutions of the homoge
equation. Whenever—for a specific profile—the effective one-dimensional Helmholtz equ
can be solved in closed form, the associated operator resolvent can be explicitly construct
operator spectrum identified, and the Dunford integral representation subsequently evalu
yield a modal summation representation for the kernelB 21(z,z8). Application of Eq.~I.5! and/or
Eq. ~I.6! then results in the spectral~modal! summation representation for the inverse square-r
Helmholtz operator symbol. The corresponding symbol representation for the square-root
holtz operator then follows from composition with the symbol for theB2 operator.4,11,24

The focusing quadratic profile in one transverse spatial dimension is defined through

K2~z!5K0
22v2z2, ~II.1!

with K0 ,vPR1 . The profile in Eq.~II.1! is ~i! a model for waveguiding structures in classic
physics applications,27 ~ii ! the well-known harmonic oscillator model in quantum mechanic28

and ~iii ! a much-studied, exactly soluble problem in operator spectral theory.29

A. The Schwartz kernel

The above-outlined, general, spectral~modal! summation representation construction for t
inverse square-root Helmholtz operator kernel has been presented before. For a concise re
the general spectral theory and the detailed calculations for the focusing quadratic profile ca
Van Stralen;4 the final result30 is given by
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B 21~z,z8!5
k̄

p1/2 (
n50

`
1

n!

1

@2~2n112Y!#1/222nQn~z,z8!,

which expression, for later convenience, is rewritten in the form

B 21~z,z8!52exp~ 3
4p i!

k̄

p1/2 (
n50

`
1

n!

1

@ i~2n112Y!#1/222nQn~z,z8!, ~II.2!

with

Qn~z,z8!5fn~~v k̄!1/2z!fn~~v k̄!1/2z8!, ~II.3!

fn~z!5exp~2 1
2 z2!Hn~z!, ~II.4!

whereHn is the Hermite polynomial,31 while

Y5K0
2/«, ~II.5!

«5v/ k̄. ~II.6!

With the effective refractive indexassociated with moden given by @2«(2n112Y)#1/2, the
number ofpropagatingmodes,L, is obtained from the estimate

2L21,Y,2L11.

In Eq. ~II.2!, the principal valueof the square-root function is taken, consistent with the rig
traveling wave condition, enforcing the radiation condition at infinity to be satisfied in the u
manner.1,4,25 The series representation is understood in the distributional sense.4,32

B. The standard „left … symbol

For the spectral~modal! summation representations, it is technically easier to first const
the standard Helmholtz operator symbols and subsequently deduce the corresponding Wey
using Eq.~I.13!. Thus, substituting Eq.~II.2! into Eq. ~I.5!, interchanging the order of integratio
and summation, and applying the Hermite, Fourier transform,31

E
R
dz exp~ iz% !fn~z!5~2p!1/2infn~% !, ~II.7!

yield the desired expression for the standard, inverse square-root Helmholtz operator sym

hB21
s

~p,q!52exp~ 3
4!p iS 2

« D 1/2

(
n50

`
1

n!

1

@ i~2n112Y!#1/2 S i

2D n

Cn~p,q!, ~II.8!

where

Cn~p,q!5exp~2 ik̄pq!fn~~v k̄!1/2q!fn~~ k̄/v!1/2p!, ~II.9!

see also Van Stralen4 ~4.118!. In the transformation from the kernel to the standard symbol, n
the occurrence of the Gabor wavelet,p21/4exp(iz%)f0(z), for n50. Application of the ‘‘largen’’
asymptotic expansions for both the Hermite polynomials and the gamma function,31 n!, estab-
lishes the conditional convergence of the series in Eq.~II.8!.
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The standard symbol for the square-root Helmholtz operator follows, in principle, on
posinghB2

s (p,q) with hB21
s (p,q) with the aid of the standard integral composition equation,14–16

i.e.,

hB
s ~p,q!5

k̄

2p E
R2

duds hB21
s

~p2s,q!hB2
s

~p,q2u!exp~2 ik̄su!. ~II.10!

Applying this composition equation in its differential counterpart form, withhB2
s

5K0
22v2q2

2p2 ~cf. Eq. ~II.1!!, yields

hB
s ~p,q!5~K0

22v2q22p2!hB21
s

~p,q!1«2@2ik̄q~]phB21
s

!~p,q!1~]p
2hB21

s
!~p,q!#.

~II.11!

Substituting Eq.~II.8! into Eq. ~II.11! then results in theformal series,

hB
s ~p,q!5~2«!1/2(

n50

`
1

n!
@2~2n112Y!#1/2S i

2D n

Cn~p,q!,

which, by the same above-referenced asymptotic expansions, is divergent, reflecting the no
ity of the interchange of the summation and differentiation operations in the compos
calculation.4,33

A proper expression forhB
s , essentially maintaining the modal decomposition form in E

~II.8!, can, however, be derived in the following manner. Partitioning the series in Eq.~II.8! gives

hB21
s

~p,q!52exp~ 3
4p i!S 2

« D 1/2H (
n50

N21
1

n!

1

@ i~2n112Y!#1/2 S i

2D n

Cn~p,q!

1 (
n5N

`
1

n!

1

@ i~2n112Y!#1/2 S i

2D n

Cn~p,q!J , ~II.12!

whereN is a positive integer with

N.L11.

The infinite series in Eq.~II.12! contains only nonpropagating modes. In the second term
~II.12!, for n>N, application of the identity~Magnuset al.,31 p. 6!,

p1/2

~2n112Y!1/25E
0

`

dt t21/2exp@2~2n112Y!t# ~II.13!

followed by the interchange of the order of integration and summation, result in the contrib
from the infinite sum,

2 iS 2

p« D 1/2E
0

`

dt t21/2exp@~Y21!t#F (
n5N

`
1

n! S i

2D n

Cn~p,q!exp~22nt!G .

The interchange of the operations is justified in Appendix A through the uniform convergen
power series33 and the Riesz/Young theorem.34 Writing the infinite series in the above term in th
form
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(
n5N

`
1

n! S i

2D n

Cn~p,q!exp~22nt!

5 (
n50

`
1

n! S i

2D n

Cn~p,q!exp~22nt!2 (
n50

N21
1

n! S i

2D n

Cn~p,q!exp~22nt! ~II.14!

and application of the Mehler formula35 then yield the replacement of Eq.~II.12!,

hB21
s

~p,q!52exp~ 3
4p i!S 2

« D 1/2

(
n50

N21
1

n!

1

@ i~2n112Y!#1/2 S i

2D n

Cn~p,q!

2 iS 1

p« D 1/2E
0

`

dt t21/2exp~Yt!@F~ t !2G~ tuN!#, ~II.15!

where

F~ t !5exp@2 1
2 x tanh~2t !1 iZ~sech~2t !21!#~sech~2t !!1/2, ~II.16!

G~ tuN!521/2exp~2t ! (
n50

N21
1

n! S i

2D n

Cn~p,q!exp~22nt!, ~II.17!

and

x5«21~v2q21p2!, ~II.18!

Z5«21vqp. ~II.19!

The construction ofhB
s (p,q) via the standard composition equation follows again from Eq.~II.11!.

Substituting the representation forhB21
s (p,q) given in Eq.~II.15! into Eq. ~II.11! allows for the

interchange of the differentiation operations with the summation and integration operations
follows from the fact that~i! the series appearing in the expression are finite and~ii ! the integrand
is an integrable function with exponential decay for larget and admits uniform bounds for th
function and its subsequent derivatives.33 Indeed, the point of the construction procedure was
replace the infinite series in Eq.~II.12! with an appropriately differentiable~equivalent! integral
representation. The result of the calculation can be written in the form

hB
s ~p,q!5~2«!1/2(

n50

N21
1

n!
@2~2n112Y!#1/2S i

2D n

Cn~p,q!

2 iS «

p D 1/2E
0

`

dt t21/2exp~Yt!@F~ t !2G~ tuN!#, ~II.20!

which is the counterpart of Eq.~II.15!, where

F~ t !5exp@2 1
2 x tanh~2t !1 iZ~sech~2t !21!#~sech~2t !!1/2

3@Y2x~sech~2t !!222iZ sech~2t !tanh~2t !2tanh~2t !#, ~II.21!

G~ tuN!521/2exp~2t ! (
n50

N21
1

n!
@2~2n112Y!#S i

2D n

Cn~p,q!exp~22nt!, ~II.22!

and the principal value of the square-root function appearing in Eq.~II.20! is taken.
                                                                                                                



-
n.

t
the

a-
d of

iven in

4889J. Math. Phys., Vol. 41, No. 7, July 2000 Exact square-root operator symbols

                    
The result in Eq.~II.20!, in essence, supplements the approximate,truncatedseries represen
tation forhB

s (p,q) derived by Van Stralen,4 with an integral which results in the exact expressio
As such, the expression in Eq.~II.20! is well-defined in the limitN→`, the nonconvergen
behavior of the~first! series being exactly cancelled by the appropriate contribution from
integral term in the neighborhood oft50. The details of this cancellation will result in comput
tionally convenient operator symbol representations, thus, focusing on the neighborhoot
50, partitioning the integral on@0,̀ ) in Eq. ~II.20! into the contiguous sets@0,a# and@a,`) with
a.0, and noting that

E
0

a

dt t21/2exp~Yt!G~ tuN!523/2a1/2F (
n50

N21
1

n!
@2~2n112Y!#S i

2D n

Cn~p,q!G
31F1~1/2;3/2;2a~2n112Y!!, ~II.23!

allow for hB
s (p,q) to be written in the form

hB
s ~p,q!5~2«!1/2(

n50

L21
1

n!
@2~2n112Y!#1/2S i

2D n

Cn~p,q!

3F112iS a

p D 1/2

@2~2n112Y!#1/2
1F1~1/2;3/2;2a~2n112Y!!G

1 i ~2«!1/2(
n5L

N21
1

n!
~2n112Y!1/2S i

2D n

Cn~p,q!

3F122S a

p D 1/2

~2n112Y!1/2
1F1~1/2;3/2;2a~2n112Y!!G

2 iS «

p D 1/2E
0

a

dt t21/2exp~Yt!F~ t !2 iS «

p D 1/2E
a

`

dt t21/2exp~Yt!@F~ t !2G~ tuN!#,

~II.24!

where

1F1~1/2;3/2;2a~2n112Y!!5 1
2 a21/2E

0

a

dt t21/2exp@2~2n112Y!t# ~II.25!

is the incomplete gamma function expressed as a confluent hypergeometric function as g
Magnuset al.,31 p. 337.

With the following estimates, it will be established that the limitN→` in Eq. ~II.24!, term-
wise, exists. Thefirst and third terms in Eq.~II.24! are independent ofN and hence well-defined
in the limit N→`. The series in thesecondterm of Eq.~II.24! can be bounded by

U (
n5L

N21
1

n!
~2n112Y!1/2S i

2D n

Cn~p,q!

3F122S a

p D 1/2

~2n112Y!1/2
1F1~1/2;3/2;2a~2n112Y!!GU

< (
n5L

N21
1

n!
~2n112Y!1/2S 1

2D n

uCn~p,q!u

3U122S a

p D 1/2

~2n112Y!1/2
1F1~1/2;3/2;2a~2n112Y!!U. ~II.26!
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The oscillator function product admits the bound stated in Abramowitz and Stegun,37 p. 787,

uCn~p,q!u,2nn!K 2, ~II.27!

with K.1.086435 forp,qPR. Equations~II.13! and ~II.25! establish the equality

p1/2

~2n112Y!1/2F12
~2n112Y!1/2

p1/2 2a1/2
1F1~1/2;3/2;2a~2n112Y!!G

5E
a

`

dt t21/2exp@2~2n112Y!t#, ~II.28!

which, upon applying standard bounding techniques,38 yield the estimate

U122S a

p D 1/2

~2n112Y!1/2
1F1~1/2;3/2;2a~2n112Y!!U

<S 1

ap D 1/2 1

~2n112Y!1/2exp@2a~2n112Y!#. ~II.29!

Combining Eqs.~II.27! and ~II.29! with Eq. ~II.26! then gives

U (
n5L

N21
1

n!
~2n112Y!1/2S i

2D n

Cn~p,q!

3F122S a

p D 1/2

~2n112Y!1/2
1F1~1/2;3/2;2a~2n112Y!!GU

,K 2S 1

ap D 1/2

exp@2a ~12Y!# (
n5L

N21

exp~22na!. ~II.30!

The absolute values of the terms in the series are bounded by the terms in a convergent ge
series forp,qPR, thus establishing absolute and uniform convergence in the limitN→` and the
bound

U(
n5L

`
1

n!
~2n112Y!1/2S i

2D n

Cn~p,q!

3F122S a

p D 1/2

~2n112Y!1/2
1F1~1/2;3/2;2a ~2n112Y!!GU

,K 2S 1

ap D 1/2

exp@2a~2L112Y!#
1

12exp~22a!
. ~II.31!

The integral in thefourth and final term in Eq.~II.24!, noting thattP@a,`), can be written in the
form ~cf. Eqs.~II.21!–~II.22! and the implicit use of the Mehler formula!,
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E
a

`

dt t21/2exp~Yt!@F~ t !2G~ tuN!#

5E
a

`

dt t21/2exp~Yt!

3F21/2exp~2t ! (
n5N

`
1

n!
@2~2n112Y!#S i

2D n

Cn~p,q! exp~22nt!G , ~II.32!

and—bringing the integration inside the summation—bounded by

U E
a

`

dt t21/2exp~Yt!@F~ t !2G~ tuN!#U,K 2S 2

a D 1/2

exp@2a~2N112Y!#
1

12exp~22a!
,

~II.33!

applying the previous results in Eqs.~II.27! and ~II.28!–~II.29!. Taking the limit N→` in Eq.
~II.33! then establishes that the fourth term gives a zero contribution.

Combining the previous results, and actually taking the limitN→` in Eq. ~II.24!, the expres-
sion forhB

s (p,q) can now be written as an absolutely and uniformly convergent infinite series
a well-defined integral,

hB
s ~p,q!5~2«!1/2(

n50

`
1

n! S i

2D n

Cn~p,q!H @2~2n112Y!#1/212iS a

p D 1/2

3@2~2n112Y!#1F1~1/2;3/2;2a ~2n112Y!!J
2 iS «

p D 1/2E
0

a

dt t21/2exp~Yt! F~ t !. ~II.34!

Backsubstituting Eq.~II.23! for N5L in Eq. ~II.34!, the result in Eq.~II.34! can be expressed in
the alternate form

hB
s ~p,q!5~2«!1/2(

n50

L21
1

n!
@2~2n112Y!#1/2S i

2D n

Cn~p,q!1 i~2«!1/2

3 (
n5L

`
1

n!
~2n112Y!1/2S i

2D n

Cn~p,q!

3F122S a

p D 1/2

~2n112Y!1/2
1F1~1/2;3/2;2a~2n112Y!!G

2 iS «

p D 1/2E
0

a

dt t21/2exp~Yt!@F~ t !2G~ tuL !#, ~II.35!

which, in conjunction with the~arbitrary! choice ofa.0, can be used to balance and control t
magnitude of the terms in a numerical calculation of the operator symbol. Asa↓0, butaÞ0, the
first two terms in Eq.~II.35! represent an increasingly better approximate modal decompositio
the operator symbol for an appropriately defined, finite region of the phase space.4

Applying the analysis used to transform Eq.~II.20! into Eq.~II.35! to Eq.~II.15! converts the
conditionally convergent infinite series representation forhB21

s given in Eq.~II.8! into an abso-
lutely and uniformly convergent infinite series and a well-defined integral.
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C. The Weyl symbol

Exact expressions, in the desired modal form, for both the inverse square-root and squa
Helmholtz operator symbols in the Weyl calculus can be deduced from the preceding sta
calculus results in a direct fashion requiring relatively little calculation. From the expressio
hB21

s (p,q) given in Eq. ~II.15!, it is evident that the transformation mappinghB21
s (p,q)

→VB21(p,q) expressed in Eq.~I.13! acts only on the functionsCn(p,q) andF(t). Further, by
construction,F(t) in Eq. ~II.16! is the N→` limit of G(tuN) in Eq. ~II.17!, making F(t) a
generator of the set$Cn(p,q)%. Consequently, the analogous functionF̃(t) in the Weyl calculus
will generate the appropriate transformation of the set$Cn(p,q)%. Thus, it is only necessary to
identify F̃(t) to ultimately write all of the exact expressions in the Weyl representation.

It is apparent by the construction in Eq.~II.15! that, for the caseY,1 ~where there are no
propagating modes!,

2 iS 1

p« D 1/2E
0

`

dt t21/2exp~Yt!F~ t !

is hB21
s (p,q). Since F̃(t) must play the analogous role forVB21(p,q) for Y,1, carrying out

transformation Eq.~I.13! with Eq. ~II.16!, it follows that

F̃~ t !5exp@2x tanh~ t !#sech~ t ! ~II.36!

~note that the (p,q) dependence is contained solely in the variablex!. Application of the gener-
ating function~Rainville,36 p. 213!,

expF2
xv

12vG
12v

5 (
n50

`

Ln
(0)~x!vn, uvu,1, ~II.37!

immediately identifies the transformed orthogonal polynomial set through the expansion

exp@2x tanh~ t !#sech~ t !52 exp~2t ! (
n50

`

Fn~x!exp~22nt! ~II.38!

as

Fn~x!5exp~2x!~2 !nLn
(0)~2x!, ~II.39!

or

Fn~x!5exp~2x!
1

n!
~2x!n

2F0~2n,2n;2;2~1/2x!!, ~II.40!

whereLn
(0)(•) is the simple Laguerre polynomial,36

2F0(2n,2n;2;2(1/2•)) is a generalized
hypergeometric function as given in Rainville,36 Chap. 5, and the equivalence expressed in
~II.39! and Eq.~II.40! follows directly from the definitions of the respective functions.36

It is now conjectured with Eq.~II.36! and Eqs.~II.38!–~II.40! that the effect of the transfor
mation from the standard to the Weyl calculus for the inverse square-root Helmholtz op
symbol is summarized by the correspondences

F~ t !→F̃~ t ! ~II.41!

and
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Cn~p,q!→21/2n! ~22i!nFn~x!. ~II.42!

Application of Eqs.~II.41! and~II.42! to expressions~II.8! and~II.15! in the standard calculus the
provides the results

VB21~p,q!52exp~ 3
4p i!

2

«1/2 (
n50

`
1

@ i~2n112Y!#1/2Fn~x! ~II.43!

and

VB21~p,q!52expS 3
4p i

2

«1/2 (
n50

N21
1

@ i~2n112Y!#1/2Fn~x!

2 iS 1

p« D 1/2E
0

`

dt t21/2exp~Yt!@ F̃~ t !2G̃~ tuN!#, ~II.44!

where, with Eqs.~II.17! and ~II.42!,

G̃~ tuN!52 exp~2t ! (
n50

N21

Fn~x!exp~22nt!. ~II.45!

For the case of the square-root Helmholtz operator symbol, Eq.~II.42! is supplemented with the
correspondence

F~ t !→F̃~ t !, ~II.46!

whereF(t) is given by Eq.~II.21! and

F̃~ t !5exp@2x tanh~ t !#sech~ t !@Y2x~sech~ t !!22tanh~ t !#, ~II.47!

following from Eqs.~I.13! and ~II.21!. Application of Eqs.~II.42! and ~II.46! to the expression
~II.20! in the standard calculus then gives the result

VB~p,q!52«1/2(
n50

N21

@2~2n112Y!#1/2Fn~x!

2 iS «

p D 1/2E
0

`

dt t21/2exp~Yt!@ F̃~ t !2G̃~ tuN!#, ~II.48!

where

G̃~ tuN!52 exp~2t ! (
n50

N21

@2~2n112Y!#Fn~x!exp~22nt! ~II.49!

~cf. Eq.~II.22!!. The deduced constructions given in Eqs.~II.43!–~II.45! and~II.48!–~II.49! can be
confirmed through the direct verification thatCn(p,q) and 21/2n!( 22i)nFn(x) form a standard-
Weyl ‘‘transform pair’’ with respect to Eqs.~I.12!–~I.13!.

The analysis leading to the expressions given in Eqs.~II.34! and ~II.35! for hB
s (p,q) as the

sum of an absolutely and uniformly convergent infinite series and a well-defined integra
follows in essentially the same fashion for the Weyl symbolVB(p,q); the final results, following
directly from the application of the correspondences given in Eqs.~II.42! and ~II.46! to the
standard calculus expressions, are given by
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VB~p,q!52«1/2(
n50

`

Fn~x!

3H @2~2n112Y!#1/212iS a

p D 1/2

@2~2n112Y!#1F1~1/2;3/2;2a~2n112Y!!J
2 iS «

p D 1/2E
0

a

dt t21/2exp~Yt!F̃~ t ! ~II.50!

and

VB~p,q!52«1/2(
n50

L21

@2~2n112Y!#1/2Fn~x!1 i2«1/2(
n5L

`

~2n112Y!1/2Fn~x!

3F122S a

p D 1/2

~2n112Y!1/2
1F1~1/2;3/2;2a~2n112Y!!G

2 iS «

p D 1/2E
0

a

dt t21/2exp~Yt!@ F̃~ t !2G̃~ tuL !#. ~II.51!

The principal results of Sec. II are the Helmholtz operator symbol representations giv
Eqs.~II.8!, ~II.34!, ~II.35!, ~II.43!, ~II.50!, and~II.51!.

III. CONTOUR-INTEGRAL OPERATOR SYMBOL REPRESENTATIONS

It follows from the construction in Eq.~II.44! that the inverse square-root Helmholtz opera
symbol can be written in the form

VB21
foc

~p,q!52 iS 1

p« D 1/2E
0

`

dt t21/2exp@Yt2x tanh~ t !#sech~ t !, Y,1, ~III.1!

where there are no propagating modes. For the corresponding defocusing quadratic profile~com-
pare Eq.~II.1!! defined by

K2~z!5K0
21v2z2,

with K0 ,vPR1 , the operator symbol integral representation24

VB21
def

~p,q!52exp~ 3
4p i!S 1

p« D 1/2E
0

`

dt t21/2exp@ i~Yt1X tanh~ t !!#sech~ t !, ~III.2!

where

X5«21~v2q22p2! ~III.3!

~compare Eq.~II.18!!, in conjunction with Eq.~III.1!, lead to the relation

VB21
foc

~p,q!5 lim
v→ iv

VB21
def

~p,q!, Y,1, ~III.4!

adopting an obvious superscript notation in this section for clarity. The analytic continuation
in Eq. ~III.4! can be extended to the square-root Helmholtz operator symbol following the
struction in Eq.~II.48! and noting the corresponding integral representation for the defocu
quadratic profile given in Fishman.24
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The principal goal in this section is to extend the integral representation in Eq.~III.1! and the
subsequent analytic continuation result in Eq.~III.4! connecting the focusing and defocusin
quadratic profiles~and the analogous results at the level of the square-root Helmholtz ope
symbol! from Y,1 to YP@0,̀ ), thereby explicitly accounting for the presence of the propaga
modes. The basic idea is to modify anv-rotation/contour-integration construction, which underl
the Eq.~III.4! analytic continuation result forY,1, by explicitly incorporating the periodicity o
the associated, parabolic~Schrödinger! equation fundamental solution~propagator! into the Helm-
holtz operator symbol construction procedure inherent in Eq.~III.2!.

A. The complex v-rotation and contour integration: Analytic continuation for YË1

First, thev-rotation/contour-integration construction for theY,1 case will be outlined, fol-
lowed by the explicit incorporation of the underlying periodicity to produce the modified c
struction leading to the desired integral representations for the Helmholtz operator symbo
YP@0,̀ ). The extended analytic continuation results, following directly from the integral re
sentations, will then be established.

For thev-rotation/contour-integration construction procedure, the starting point is the e
closed-form expression for the Weyl symbol for the inverse square-root Helmholtz operator
~III.2!, with the aid of Eqs.~II.5!–~II.6!, written as~note the change of integration variable,t
→t/v!

VB21
def

~p,q!52exp~ 3
4p i!S k̄

p
D 1/2E

0

`

dt t21/2exp@ i~ k̄K0
2t1X tanh~vt !!#sech~vt !. ~III.5!

In Eq. ~III.5!, let v→v* 5v exp(iw), 0<w,p/2, with the corresponding transformationX
→X* 5«21 exp(2iw)@exp(2iw)v2q22p2#, so that in the limitw↑p/2, X* → ix. Consider the
contour integral

V[2exp~ 3
4p i!S k̄

p
D 1/2 R

C
dtt21/2exp@ i~ k̄K0

2t1X* tanh~v* t!!#sech~v* t!, ~III.6!

whereC5G11G21G31G4 as illustrated in Fig. 1.
For the integrand in Eq.~III.6!, in the complext-plane, the branch point~associated with

t21/2! is at the origin with the branch line chosen to lie along the negative real-axis, an
isolated singularities~associated with the zeros of cosh! are located at the points

t5
1

v
expF iS p

2
2w D G~2n11!

p

2
, n5...,22,21,0,1,2,... . ~III.7!

The v-rotation and subsequent contour integration have been specifically constructed so t
contributions fromG1 andG3 will ultimately result in the operator symbol for the focusing ca
and the analytic continuation of the operator symbol for the defocusing case, respectively.
cation of the Cauchy integral theorem39 followed by standard arguments39 to establish that the
contributions fromG2 and G4 vanish, respectively, in theR→` and r→0 limits for 0<w
,p/2 ~Fig. 1! andY,1 result in the equality
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2exp~ 3
4p i!S k̄

p
D 1/2E

0

`

dt t21/2exp@ i~ k̄K0
2t1X* tanh~v* t !!#sech~v* t !

52exp~ 3
4p i!S 1

p« D 1/2

exp~2 1
2 iw!

3E
0

`

dt t21/2exp@ i~exp~2 iw!Yt1X* tanh~ t !!#sech~ t !, ~III.8!

0<w, 1
2 p,Y,1.

While the lhs of Eq.~III.8! is not well defined in the limitw↑p/2, the rhs of Eq.~III.8! is
continuous atw5p/2, suggesting that

VB21
foc

~p,q!52 iS 1

p« D 1/2E
0

`

dt t21/2exp@Yt2x tanh~ t !# sech~ t !, Y,1,

which can be verified by establishing the equivalence of this equality and the correspo
spectral~modal! summation representation in Eq.~II.43! by proceeding from the identity in Eq
~II.38!. The v-rotation/contour-integration construction procedure results in the desired ope
symbol integral representation, while explicitly illustrating the analytic continuation relation
between the focusing and defocusing quadratic profile cases, at least forY,1, i.e., in the absence
of propagating modes.

B. Periodicity

The Weyl symbol construction procedure for the inverse square-root Helmholtz ope
presented in Refs. 4, 24 is based on Eq.~I.6! in conjunction with~De Hoop and Gautesen9 ~7.1!!

B 21~z,z8!522ik̄G~0,z;0,z8!, ~III.9!

which is just a restatement of Eq.~I.3!, whereG is the Helmholtz Green’s function, satisfying

FIG. 1. The contour of integrationC5G11G21G31G4 and the integrand singularity structure in the complext-plane for
the Helmholtz operator symbol construction in Eq.~III.6!.
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@]x
21]z

21 k̄2K2~z!#G~x,z;x8,z8!52d~x2x8!d~z2z8!, ~III.10!

supplemented with an outgoing-wave radiation condition.1,24 Theparabolicequation fundamenta
solution,g(t,z;0,z8) say, is related to G(x,z;x8,z8) through24

G~x,z;0,z8!5223/2S i

k̄p
D 1/2E

0

`

dt t21/2exp@ 1
2 ik̄~ t1x2t21!# g~ t,z;0,z8!, ~III.11!

and satisfies

@~ i/ k̄!] t1~1/2k̄2!]z
21 1

2 ~K2~z!21!#g~ t,z;0,z8!50 ~III.12!

supplemented by

g~0,z;0,z8!5d~z2z8!. ~III.13!

For the focusing quadratic profile, the parabolic equation fundamental solution takes the
implied in Fishman24 ~A1! and given in Schulman,40 p. 38,

g~ t,z;0,z8!5S v k̄

2p i sin~vt !
D 1/2

expH 1
2 ik̄F ~K0

221!t1
v

sin~vt !
~@z21~z8!2#cos~vt !22zz8!G J ,

~III.14!

in accordance with the corresponding quantum mechanical harmonic oscillator formulatio28,40

This function is, to within an exponential phase factor, periodic int with period (2p/v). Substi-
tuting Eq.~III.14! into Eq. ~III.11!, the subsequent result into Eq.~III.9!, and applying the trans
form ~I.6! lead to the lhs of Eq.~III.8! ‘‘evaluated’’ at w5p/2,

VB21
foc

~p,q!;2exp~ 3
4p i!S k̄

p
D 1/2E

0

`

dt t21/2exp~2at! f ~vt !, ~III.15!

where

a52 ik̄K0
252 ivY and f ~vt !5exp@2 ix tan~vt !#sec~vt !.

The key to the extension of Eqs.~III.1! and~III.4! is the reduction of this semi-infinite integral t
an integral over a single period through the application of the following theorem.

Theorem: Let f (vt) be a (2p/v)-periodic function fortP(2`,`) and vP(0,̀ ), and,
further, let the following integral,

E
0

`

dt t21/2exp~2at! f ~vt !, Re$a%.0, ~III.16!

exist. Then the semi-infinite integral in Eq.~III.16! can be reduced to an integral over one per
in the form,

E
0

`

dt t21/2exp~2at! f ~vt !5S v

2p D 1/2E
0

2p/v

dtz~1/2,~vt/2p!,exp~22pa/v!!exp~2at! f ~vt !,

~III.17!

wherez(s,D,j) is the Lerch transcendental function defined by31,41
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z~s,D,j!5 (
n50

`

~n1D!2sjn, DÞ0,21,22,..., uju,1. ~III.18!

The Lerch transcendental function can be analytically continued into the cut complexj-plane via
the integral representation~Erdélyi et al.,41 p. 27!,

z~s,D,j!5
1

G~s!
E

0

`

dt ts21
exp~2Dt !

12j exp~2t !
, Re$D%.0, Re$s%.0, ~III.19!

j not on the real axis between 1 and`, and whereG(•) is the gamma function.31,41 It is continued
in D via the relationship given in Erde´lyi et al.,41 p. 27,

z~s,D,j!5jmz~s,m1D,j!1 (
n50

m21

~n1D!2sjn, m50,1,2,... . ~III.20!

~A more detailed treatment of the Lerch transcendental function can be found in Refs. 31 an!
Proof: Starting with the integral on the rhs in Eq.~III.17! and applying Eq.~III.20! yield

S v

2p D 1/2E
0

2p/v

dtz~1/2,~vt/2p!,exp~22pa/v!!exp~2at! f ~vt !

5S v

2p D 1/2E
m 2p/v

(m11) 2p/v

dtz~1/2,~vt/2p!,exp~22pa/v!!exp~2at! f ~vt !

1E
0

m 2p/v

dt t21/2exp~2at! f ~vt !, m>1, ~III.21!

exploiting the periodicity off . The second integral on the rhs of Eq.~III.21! can be written as

E
0

m 2p/v

dtt21/2exp~2at! f ~vt !5E
0

`

dtt21/2exp~2at! f ~vt !2E
m 2p/v

`

dtt21/2exp~2at! f ~vt !.

~III.22!

On the other hand, consider the first integral on the rhs of Eq.~III.21!. Substituting Eq.~III.18!
into this integral, interchanging the order of integration and summation, and exploiting the
odicity of f result in

S v

2p D 1/2E
m 2p/v

(m11)2p/v

dtz~1/2,~vt/2p!,exp~22pa/v!!exp~2at! f ~vt !

5 (
n50

` E
(m1n)2p/v

(m1n11)2p/v

dtt21/2exp~2at! f ~vt !5E
m 2p/v

`

dtt21/2exp~2at! f ~vt !.

~III.23!

Combining Eqs.~III.23!, ~III.22!, and~III.21! results in the lhs of Eq.~III.17!.

C. Symbol contour-integral representations for the focusing case

While the semi-infinite integral in the operator symbol construction for the focusing quad
profile is not well defined at present, the above theorem and the previousv-rotation/contour-
integration construction for the caseY,1 motivate the following construction procedure f
VB21

foc (p,q). Consider the contour integral~compare Eq.~III.6!!,
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V8[2exp~ 3
4 p i!S k̄

p
D 1/2S v

2p D 1/2

3 R
C8

dtz~1/2,~vt/2p!,exp~2p iY!!exp@ i~ k̄K0
2t1X* tanh~v* t!!#sech~v* t!

~III.24!

for YÞ0,1,2,..., where the contourC85G181G281G381G48 is defined in Fig. 2. For the integrand i
Eq. ~III.24!, in the complext-plane, the branch points associated withz(1/2,(vt/2p),exp(2piY))
are located at the points

t52
2p

v
n, n50,1,2,..., ~III.25!

with the associated branch lines chosen to lie along the negative realt-axis, and the isolated
singularities are located as in the previous construction for the caseY,1. The series representa
tion in Eq. ~III.18! for z(1/2,(vt/2p),exp(2piY)) is uniformly and absolutely convergent fo
uju,1, conditionally convergent foruju51 and jÞ1, and divergent forj51, where j
5exp(2piY). Thus, for the focusing quadratic profile, the Lerch transcendental function in
~III.24! is defined by the series in Eq.~III.18!, residing on the circle of convergence, away fro
j51, i.e.,YÞ0,1,2,... .

Application of the Cauchy integral theorem39 to Eq. ~III.24! followed by an evaluation of the
contribution alongG48 in the r→0 limit result in

FIG. 2. The contour of integrationC85G181G281G381G48 and the integrand singularity structure in the complext-plane for
the Helmholtz operator symbol construction in Eq.~III.24!.
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2exp~ 3
4 p i!S v k̄

2
D 1/2

1

p

3E
0

2p/v

dtz~1/2,~vt/2p!,exp~2p iY!!exp@ i~ k̄K0
2t1X* tanh~v* t !!#sech~v* t !

52exp~ 3
4 p i!

1

~2«!1/2p
exp~2 iw!

3E
0

2p

dtz~1/2,~ t/2p!exp~2 iw!,exp~2p iY!!exp@ i~exp~2 iw!Yt1X* tanh~ t !!#sech~ t !

1exp~ 1
4 p i!S 2

« D 1/2E
0

w

du exp~2 iu!z~1/2,exp~2 iu!,exp~2p iY!!

3exp@ i~2pY exp~2 iu!1X* tanh~2p exp@ i~w2u!#!!#sech~2p exp@ i~w2u!#!,

~III.26!

0<w,p/2, YÞ0,1,2,... . While the lhs in Eq.~III.26! is not well defined, at present, in the lim
w↑p/2, the rhs in Eq.~III.26! is continuous atw5p/2, suggesting thatVB21

foc (p,q) is given by the
rhs of Eq.~III.26! evaluated atw5p/2, i.e.,

VB21
foc

~p,q!52exp~ 1
4 p i!

1

~2«!1/2p

3E
L8

dtz~1/2,~2 i/2p!t,exp~2p iY!!exp@Yt2x tanh~t!#sech~t!,

YÞ0,1,2,..., ~III.27!

where the contourL8 in the complext-plane consists of the Re$t%-axis fromt50 to t52p and
the circular arc,utu52p, from t52p to t5 i2p, as illustrated in Fig. 3. Application of the
Cauchy integral theorem39 to Eq. ~III.27! then yields the final integral representation

FIG. 3. The contour of integrationL8 in the complext-plane for the Helmholtz operator symbol representation in E
~III.27!.
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VB21
foc

~p,q!52exp~ 1
4 p i!

1

~2«!1/2p E
L
dtz~1/2,~2 i/2p!t,exp~2p iY!!

3exp@Yt2x tanh~t!#sech~t!, YÞ0,1,2,..., ~III.28!

where the contourL in Eq. ~III.28! starts att50 and ends att5 i2p, keeping the integrand
singularities, which include branch points at~cf. Eq. ~III.25!!

t52 i2pn, n50,1,2,..., ~III.29!

with the associated branch lines chosen to lie on the negative imaginaryt-axis, and isolated
singularities at~cf. Eq. ~III.7!!

t5 i~2n11!
p

2
, n5...,22,21,0,1,2,..., ~III.30!

‘‘outside’’ the contour with respect to the half-plane Re$t%.0, as illustrated in Fig. 4. In Eq
~III.28!, the occurrence ofF̃ defined in Eq.~II.36! is recognized. Now, the specific choice,It , for
the contourL, shown in Fig. 5, provides the appropriate definition for the lhs integral in
~III.26! in the limit w↑p/2, viz.,

2exp~ 3
4 p i!S v k̄

2
D 1/2

1

p

3E
0

2p/v

dtz~1/2,~vt/2p!,exp~2p iY!!exp@ i~ k̄K0
2t1X* tanh~v* t !!#sech~v* t !

→2exp~ 3
4 p i!

1

~2«!1/2p

FIG. 4. The contour of integrationL and the integrand singularity structure in the complext-plane for the Helmholtz
operator symbol representation in Eq.~III.28!.
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3E
0

2p

dtz~1/2,~ t/2p!,exp~2p iY!!exp@ i~Yt2x tan~ t !!#sec~ t !,

where the path of integration along@0,2p# is understood to pass ‘‘below’’ the integrand singula
ties att5p/2 and 3p/2 ~cf. Eq. ~III.15!!.

1. Verification of Eq. (III.28)

The operator symbol representation given in Eq.~III.28! can be verified in the following
manner. Choosing the contourL to lie entirely in the half-plane Re$t%.0 and avoid the integrand
singularities, and applying Eq.~III.20! for m51 to Eq.~III.28! result in

2exp~ 1
4 p i!

1

~2«!1/2p E
L
dtz~1/2,~2 i/2p!t,exp~2p iY!!exp@Yt2x tanh~t!#sech~t!

52 iS 1

p« D 1/2E
L
dtt21/2exp@Yt2x tanh~t!#sech~t!2exp~ 1

4 p i!
exp~2p iY!

~2«!1/2p

3E
L
dtz~1/2,12~ i/2p!t,exp~2p iY!!exp@Yt2x tanh~t!#sech~t!, YÞ0,1,2,... .

~III.31!

Examining thefirst term on the rhs in Eq.~III.31! and applying the generating function result
Eqs.~II.38! and~II.39!, interchanging the order of integration and summation, which is justified
the uniform convergence of power series within their radius of convergence and the applica
the Riesz/Young theorem,33,34 and carrying out the remainingt-integration result in

FIG. 5. The contours of integrationIt andIt8 in the complext-plane used for the proper definition of the left-hand si
integral in Eq.~III.26! and the high-frequency asymptotic constructions in Eqs.~V.5! and ~V.23!; 0,d,p/2 in general
and 0,d!1 for the specific asymptotic evaluations.
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2 iS 1

p« D 1/2E
L
dtt21/2exp@Yt2x tanh~t!#sech~t!

52exp~ 3
4 p i!

25/2

«1/2 (
n50

`

Fn~x!1F1~1/2;3/2;2 i2p~2n112Y!!, ~III.32!

utilizing the complex form of the integral representation of the incomplete gamma functio
pressed as a confluent hypergeometric function31 given in Eq.~II.25!. Applying standard confluen
hypergeometric function identities31,41 then yields the expression

2exp~ 3
4 p i!

2

«1/2 (
n50

`
1

@ i~2n112Y!#1/2Fn~x!

1exp~ 3
4 p i!2

exp~2p iY!

~p«!1/2 (
n50

`
1

@ i~2n112Y!#1/2Fn~x!U~1/2;1/2;i2p~2n112Y!!

~III.33!

for the first term on the rhs in Eq.~III.31!, whereU(.;.;.) is thesecond solution of the confluen
hypergeometric differential equation as given in Magnuset al.,31 Chap. vi and Erde´lyi et al.,41

Chap. vi. The largen asymptotic expansions31,41 for both Ln
(0)(2x) and U(1/2;1/2;i2p(2n11

2Y)) establish the convergence of the two series in Eq.~III.33!. Following from the spectral
~modal! summation representation of the inverse square-root Helmholtz operator symbol gi
Eq. ~II.43!, the first term in Eq.~III.33! is seen to be exactlyVB21

foc (p,q).
Examining thesecondterm on the rhs in Eq.~III.31! and applying the generating functio

result in Eqs.~II.38! and~II.39!, the integral representation in Eq.~III.19!, interchanging the orde
of integration and summation, and carrying out an elementary exponential integration ov
contourL in the complext-plane result in the expression

2exp~ 3
4 p i!23/2

exp~2p iY!

~p«!1/2 (
n50

`

Fn~x!E
0

`

dtt21/2@ t1 i 2p~2n112Y!#21 exp~2t !.

~III.34!

Utilizing the integral representation~Magnuset al.,31 p. 277!,

E
0

`

dtt21/2@ t1 i2p~2n112Y!#21 exp~2t !

5
1

@2i~2n112Y!#1/2U~1/2;1/2;i2p~2n112Y!! ~III.35!

in Eq. ~III.34! then results in the expression

2exp~ 3
4 p i!2

exp~2p iY!

~p«!1/2

3 (
n50

`
1

@ i~2n112Y!#1/2Fn~x!U~1/2;1/2;i2p~2n112Y!! ~III.36!

for the second term on the rhs in Eq.~III.31!, which exactly cancels the second term of express
~III.33!. Hence, adding the terms in expressions~III.33! and ~III.36!, in view of Eq. ~II.43!, then
establishes the contour-integral representation forVB21

foc (p,q) given by Eq.~III.28!.
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The expression forVB
foc(p,q) follows from the equation composingVB21

foc with VB2
foc

5K0
2

2v2q22p2 ~cf. Eq. ~I.11!! in accordance with the Weyl calculus24 ~compare Eq.~II.11!!, i.e.,

VB
foc~p,q!5@~K0

22v2q22p2!1~1/2k̄!2]q
21~v/2k̄!2]p

2

1~ ip/ k̄!]q2~ iqv2/ k̄!]p#VB21
foc

~p,q!. ~III.37!

Substitution of Eq.~III.28! into Eq. ~III.37! allows for the subsequent interchange of the diff
entiation and integration operations following from the uniform convergence properties o
appropriate integrals involved.33 The resulting calculation takes the final form

VB
foc~p,q!52exp~ 1

4 p i!S «

2D 1/2 1

p E
L
dtz~1/2,~2 i/2p!t,exp~2p iY!!

3exp@Yt2x tanh~t!#sech~t!@Y2x~sech~t!!22tanh~t!#,

YÞ0,1,2,..., ~III.38!

in which the occurrence ofF̃(t) defined in Eq.~II.47! is recognized.

2. Standard symbols

The corresponding results for the standard operator symbols follow directly from the rela
ship in Eq.~I.12! and take the form

hB21
s;foc

~p,q!52exp~ 1
4 p i!

1

~2«!1/2p E
L
dtz~1/2,~2 i/2p!t,exp~2p iY!!

3exp@Yt2 1
2 x tanh~2t!1 iZ~sech~2t!21!#~sech~2t!!1/2,

YÞ0,1,2,..., ~III.39!

~equivalent to replacing in Eq.~III.28! F̃ by F, cf. Eq. ~II.16!!, and

hB
s;foc~p,q!52exp~ 1

4 p i!S «

2D 1/2 1

p E
L
dtz~1/2,~2 i/2p!t,exp~2p iY!!

3exp@Yt2 1
2 x tanh~2t!1 iZ ~sech~2t!21!#~sech~2t!!1/2

3@Y2x~sech~2t!!222iZ sech~2t! tanh~2t!2tanh~2t!#,

YÞ0,1,2,..., ~III.40!

~equivalent to replacing in Eq.~III.38! F̃ by F, cf. Eq. ~II.21!!. In Eqs.~III.39! and ~III.40!, the
contourL is now confined to the half-plane Re$t%>0, avoiding the integrand singularities, and t
function (sech(2t))1/2 is analytic in the neighborhood of the contour and is given by the po
series which results from the reduction of the generatorF whenp5q50.

D. Symbol contour-integral representations for the defocusing case

The corresponding Helmholtz operator symbols for the defocusing quadratic profile c
expressed by contour-integral representations analogous to those given in Eq.~III.28! and Eqs.
~III.38!–~III.40! for the focusing case. The Weyl symbol for the inverse square-root Helmh
operator is given by
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VB21
def

~p,q!52 i
1

~2«!1/2p

3E
L
dtz~1/2,~2 i/2p!t,exp~22pY!!exp@ i~Yt1X tanh~t!!#sech~t!,

YÞ0. ~III.41!

1. Verification of Eq. (III.41)

Following from the Cauchy integral theorem,39 the contourL in the complext-plane can be
specifically chosen asC95G191G291G39 , as illustrated in Fig. 6, to be evaluated in the limitR
→`. Applying Eq. ~III.20! for m51 to the contribution to Eq.~III.41! alongG19 gives

2 i
1

~2«!1/2p E
0

`

dtz~1/2,~2 i/2p!t,exp~22pY!!exp@ i~Yt1X tanh~ t !!#sech~ t !

52exp~ 3
4 p i!S 1

p« D 1/2E
0

`

dtt21/2exp@ i~Yt1X tanh~ t !!#sech~ t !2 i
exp~22pY!

~2«!1/2p

3E
0

`

dtz~1/2,12~ i/2p!t,exp~22pY!!exp@ i~Yt1X tanh~ t !!#sech~ t !,

YÞ0, ~III.42!

when the limitR→` is taken. Following from the exact operator symbol representations fo
defocusing case established by Fishman24 and given in Eq.~III.2!, the first term on the rhs in Eq
~III.42! is seen to be exactlyVB21

def (p,q). It is readily established that the contribution to E
~III.41! alongG29 vanishes in the limitR→`. Utilizing the periodicity of the hyperbolic functions

tanh~z1 i2p!5tanh~z! and sech~z1 i2p!5sech~z!, ~III.43!

in the evaluation of the contribution to Eq.~III.41! alongG39 then results in the term

i
exp~22pY!

~2«!1/2p E
0

`

dtz~1/2,12~ i/2p!t,exp~22pY!!exp@ i~Yt1X tanh~ t !!#sech~ t !,

FIG. 6. The contour of integrationL5C95G191G291G39 in the complext-plane chosen for the evaluation of the Helmho
operator symbol representation in Eq.~III.41!.
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YÞ0, ~III.44!

in the limit R→`. Adding the terms in Eqs.~III.42! and ~III.44!, in view of the integral repre-
sentation in Eq.~III.2!, then establishes the inverse square-root Helmholtz operator symbo
resentation given in Eq.~III.41!. ~Note that specifying the contourL5C9 in Eq. ~III.28! for the
focusing case recovers the contour-integral representation in Eq.~III.1! for Y,1.!

The construction ofVB
def(p,q) via the Weyl composition equation,24 in a manner analogous t

Eqs.~III.37!–~III.38!, then provides the representation

VB
def~p,q!52S «

2D 1/2 1

p E
L
dtz~1/2,~2 i/2p!t,exp~22pY!!

3exp@ i~Yt1X tanh~t!!#sech~t!@ iY1 iX~sech~t!!22tanh~t!#,

YÞ0. ~III.45!

2. Standard symbols

The corresponding integral representations for the standard operator symbols again
from Eq. ~I.12! in the form,

hB21
s;def

~p,q!52 i
1

~2«!1/2p E
L
dtz~1/2,~2 i/2p!t,exp~22pY!!

3exp@ i~Yt1 1
2 X tanh~2t!1Z~sech~2t!21!!#~sech~2t!!1/2,

YÞ0, ~III.46!

and

hB
s;def~p,q!52S «

2D 1/2 1

p E
L
dtz~1/2,~2 i/2p!t,exp~22pY!!

3exp@ i~Yt1 1
2 X tanh~2t!1Z~sech~2t!21!!#~sech~2t!!1/2

3@ iY1 iX~sech~2t!!222iZ sech~2t!tanh~2t!2tanh~2t!#,

YÞ0. ~III.47!

E. Analytic continuation for Y«†0,`…

The contour-integral representations for the Helmholtz operator symbols given in Eq.~III.41!
and Eqs.~III.45!–~III.47! for the defocusing quadratic profile and Eq.~III.28! and Eqs.~III.38!–
~III.40! for the focusing case, in conjunction with the appropriate analytic structure in the com
variable v associated with the contour integrals, immediately establish the extended an
continuation results

VB21
foc

~p,q!5 lim
v→ iv

VB21
def

~p,q!, YP@0,̀ !, YÞ1,3,5,..., ~III.48!

VB
foc~p,q!5 lim

v→ iv
VB

def~p,q!, YP@0,̀ !, ~III.49!

while

hB21
s;foc

~p,q!5 lim
v→ iv

hB21
s;def

~p,q!, YP@0,̀ !, YÞ1,3,5,..., ~III.50!
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hB
s;foc~p,q!5 lim

v→ iv
hB

s;def~p,q!, YP@0,̀ !. ~III.51!

The equalities in Eqs.~III.48!–~III.51! extend the applicability of the previous analytic continu
tion results summarized in Eq.~III.4! from Y,1 to YP@0,̀ ), with the extension to the previousl
omitted, integerY values following from the spectral~modal! summation representations42 and
several additional contour-integral representations briefly discussed in Appendix B.

The principal results of Sec. III are the Helmholtz operator symbol representations i
~III.28! and Eqs.~III.38!–~III.40! for the focusing case, Eq.~III.41! and Eqs.~III.45!–~III.47! for
the defocusing case, and the analytic continuation formulas in Eqs.~III.48!–~III.51! connecting
them.

IV. TIME-FOURIER VS TIME-LAPLACE DOMAIN

In the analysis of two-way wave scattering, the generalized Bremmer series that coup
one-way waves plays a fundamental role. The convergence properties of this series are und
in the time-Laplace domain~de Hoop11! and require Sobolev order estimates of the square-
‘‘Helmholtz’’ operator uniform in the Laplace parameter. However, most algorithms that com
terms in the generalized Bremmer series are carried out in the time-Fourier domain. The qu
profile provides a canonical medium in which the transformation of the square-root ‘‘Helmho
operator from the time-Fourier to the time-Laplace domain, and vice versa, can be carrie
explicitly and understood.

In the space-Laplace domain, the formally exact wave equation for~one-way! propagation in
a transversely inhomogeneous half-space supplemented with appropriate right-traveling-w
diation and initial-value conditions is given by11

~1/k̄!]xw
11Bsw

150, ~IV.1!

~compare Eq.~I.1!!, where

Bs5Bs~z,]z!5@K2~z!2~1/k̄!2]z
2#1/2 ~IV.2!

is now the strictly elliptic square-root ‘‘Helmholtz’’ operator~compare Eq.~I.2!!. Note that, here,

w1~x,z;s!5E
0

`

dt exp~2st!w1~x,z;t !.

The phase space analysis remains largely the same, and can be summarized by the lattic
variate~path! integral, with Hamiltonian equal to the square-root ‘‘Helmholtz’’ operator symbo11

G s
1~x,z;x8,z8!5H~x2x8! lim

M→`
E

R2M21)i 51

M

~ k̄/2p!dp( i ) )
j 51

M21

dz( j )

3expF2 k̄(
k51

M

$2 ip(k)~z(k)2z(k21)!1hBs

s ~p(k),z(k)!M 21Dx%G ~IV.3!

~cf. Eq. ~I.10!!.
The mappings between the square-root ‘‘Helmholtz’’ operator symbols constructed i

time-Fourier domain in Secs. II and III and the corresponding symbols associated with the
Laplace domain operator in Eq.~IV.2! follow from the specific form of the quadratic profil
representation and the analytic continuation results in Eqs.~III.49! and~III.51!. Treating only the
Weyl representation here, first, for the defocusing case, it follows from Eqs.~I.2! and~III.49! that
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VBs

def~p,q!52 i lim
v→ iv,K0→ iK0

VB
def~p,q!52 i lim

K0→ iK0

VB
foc~p,q!. ~IV.4!

Substituting representation~III.45! into Eq. ~IV.4! yields

VBs

def~p,q!5exp~2 1
4 p i!S «

2D 1/2 1

p E
L
dtz~1/2,~2 i/2p!t,exp~22p iY!!

3exp@2~Yt1x tanh~t!!#sech~t!@Y1x~sech~t!!21tanh~t!#,

YÞ0,1,2,..., ~IV.5!

while the subsequent choice of contourL5C9 in Fig. 6 yields the equivalent form~see Fishman24

~32!–~34!!

VBs

def~p,q!5S «

p D 1/2E
0

`

dtt21/2exp@2~Yt1x tanh~ t !!#sech~ t !

3@Y1x~sech~ t !!21tanh~ t !# ~IV.6!

~compare Eq.~V.1!!. For the focusing quadratic profile, it likewise follows that

VBs

foc~p,q!5 lim
v→ iv

VBs

def~p,q!52 i lim
v→ iv,K0→ iK0

VB
foc~p,q!52 i lim

v→2v,K0→ iK0

VB
def~p,q!.

~IV.7!

Substituting representations~IV.5! and ~IV.6! into Eq. ~IV.7!, then results in the equivalent ex
pressions

VBs

foc~p,q!5S «

2D 1/2 1

p E
L
dtz~1/2,~2 i/2p!t,exp~22pY!!

3exp@ i~Yt2X tanh~t!!#sech~t!@2 iY1 iX~sech~t!!21tanh~t!#,

YÞ0, ~IV.8!

and

VBs

foc~p,q!5exp~ 1
4 p i!S «

p D 1/2E
0

`

dtt21/2exp@ i~Yt2X tanh~ t !!#sech~ t !

3@2 iY1 iX~sech~ t !!21tanh~ t !#. ~IV.9!

The operator symbol representations in Eqs.~IV.5! and~IV.8! will prove useful in the construction
and analysis of the square-root ‘‘Helmholtz’’ operator in the right-half of the complex Lap
plane, which will be presented elsewhere.

V. ASYMPTOTIC OPERATOR SYMBOL EXPANSIONS

The contour-integral representations for the Helmholtz operator symbols developed in S
enable the high- and low-frequency, asymptotic operator symbol expansions to be derive
straightforward fashion. Only the expressions forVB

foc(p,q) will be presented; the other cases c
be derived in a similar manner.~The superscript notation introduced in Sec. III will now b
suppressed since all subsequent results will apply to the focusing case.!
                                                                                                                



es, the

ion
uced

e

nd

s.

gral

d

4909J. Math. Phys., Vol. 41, No. 7, July 2000 Exact square-root operator symbols

                    
A. Low-frequency asymptotic operator symbol expansion

In the low-frequency limit,«→` andY→0, enablingY to be restricted toY,1, correspond-
ing to L50, where there are no propagating modes. In the absence of propagating mod
expression for the square-root Helmholtz operator symbol in the Weyl calculus reduces to~cf. Eq.
~II.48! with Eq. ~II.47!!,

VB~p,q!52 iS «

p D 1/2E
0

`

dtt21/2exp@Yt2x tanh~ t !#sech~ t !@Y2x~sech~ t !!22tanh~ t !#, Y,1.

~V.1!

Expanding the exponential in the integrand and ordering the resulting terms in powers of« yield
a sum of integrals, each of which can be expressed in terms of the generalized zeta functz* .
On the one hand,z* is defined as a special case of the Lerch transcendental function introd
in Eq. ~III.18!, viz.,

z* ~s,D!5 (
n50

`

~2 !n~n1D!2s, DÞ0,21,22,..., ~V.2!

and its appropriate analytic continuations.31,41 On the other hand,z* is represented through th
integral

E
0

`

dtts21 sech~ t !tanh~ t !5222sG~s!z* ~s21,1/2!, Re$s%.0, ~V.3!

following from the result in Magnuset al.,31 p 34. Employing this integral representation, a
integrating by parts the various terms in the above mentioned expansion then yield43

VB~p,q! ;
«→`

i21/2$2z* ~21/2,1/2!«1/2

2@221z* ~1/2,1/2!K0
2122z* ~23/2,1/2!~v2q21p2!#«21/2

2@224z* ~3/2,1/2!K0
42z* ~21/2,1/2!K0

2~v2q21p2!

2~221z* ~21/2,1/2!12z* ~25/2,1/2!!~v2q21p2!2#«23/21¯%. ~V.4!

The low-frequency asymptotic expansion given in Fishman24 ~29! for the defocusing quadratic
profile in conjunction with the analytic continuation property given in Eq.~III.49! lead to the same
result. As expected,VB(p,q) is purely imaginary forY,1, in the absence of propagating mode

B. High-frequency asymptotic operator symbol expansion

The high-frequency,«→0, asymptotic evaluation ofVB(p,q) starts with a delicate choiceIt

of the contourL in the integral representation~III.38!. Essentially, the contourIt follows the
imaginary t-axis, circling around the isolated singularities—leading to an oscillatory inte
representation for the Weyl operator symbol.

Changing the variables of integration,t5 it along the ‘‘linear segments’’ of the contour, an
t5 i@p/21d exp(iq)# andt5 i@3p/21d exp(iq)# with qP@2p,0# along the ‘‘semicircular seg-
ments,’’ then results in the explicit representation
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VB~p,q!5 iF E
0

p/22d
dtR~ t !1E

p/21d

3p/22d
dtR~ t !1E

3p/21d

2p

dtR~ t !G
1exp~ 1

4 p i!exp~ 1
2 p iY!S «

2D 1/2 1

p
dE

0

p

dq exp~2 iq!

3@exp~p iY!z~1/2,3/41~d/2p!exp~2 iq!,exp~2p iY!!

2z~1/2,1/41~d/2p!exp~2 iq!,exp~2p iY!!#

3exp@ i~Yd exp~2 iq!1x cot~d exp~2 iq!!!#csc~d exp~2 iq!!

3@Y2x~csc~d exp~2 iq!!!21 i cot~d exp~2 iq!!#,

YÞ0,1,2,..., ~V.5!

where

R~ t ![2exp~ 1
4 p i!S «

2D 1/2 1

p
z~1/2,~ t/2p!,exp~2p iY!!

3exp@ i~Yt2x tan~ t !!#sec~ t !@Y2x~sec~ t !!22 i tan~ t !#, ~V.6!

and 0,d,p/2. An asymptotic evaluation ofVB(p,q) in the «→0 limit can then, for the most
part, be reduced to astationary phaseevaluation44,45of the first three integrals in Eqs.~V.5!–~V.6!
in conjunction with a Laplace method evaluation44,45 of the semicircular~q-! integral contribu-
tions in Eq.~V.5!.

The principal part ofVB(p,q) is found to be

@«~Y2x!#1/25@K0
22v2q22p2#1/2;

hence, the analysis naturally divides into two cases:~1! Y.x.0 ~locally-propagating regime! and
~2! x.Y.0 ~locally-evanescent regime!.

Case 1: Y.x.0. Applying the stationary phase and the Laplace methods to the ope
symbol integral representations given in Eqs.~V.5! and ~V.6!, the dominant contributions ar
found to result from exterior and interior end points, interior critical points, and the singular p
of the integrand. Since the Cauchy integral theorem39 implies that the representation is indepe
dent of the particular choice ofd for 0,d,p/2, this can be exploited in the detailed calculatio
The principal idea is to choosed so that~i! the dominant contributions can be divided into thr
disjoint groups which can be calculated independently and added in the end to produce th
result, and~ii ! the contribution from the singular points of the integrand can be evaluated
expeditious manner.

The first group comprises the contributions from the exterior end points att50 and 2p. The
second group comprises the contributions from the interior critical points. The series and in
representations of the Lerch transcendental function, given, respectively, in Eq.~III.18! and Eq.
~III.19!, readily establish that, in the context of the high-frequency asymptotic analysis, i
function R,

z(1/2,(t/2p),exp(2piY)) is solely an amplitude function, while

;tP@0,2p#: z~1/2,~ t/2p!,exp~2p iY!!Þ0, ~V.7!

andz(1/2,(t/2p),exp(2piY)) is finite except att50.
Thus, the oscillatory part ofR is the exponential,

exp@ i~Yt2x tan~ t !!#,
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which implicitly contains the ‘‘large’’ parameter«21. The ~‘‘interior’’ ! critical points,t05 it0

say, associated with its phase, follow from the equalityY2x(sec(t))250, and are given byt0 ,
p2t0 , p1t0 , and 2p2t0 , where

t05arctan~@~Y/x!21#1/2! ~V.8!

5 1
2 i logS i1@~Y/x!21#1/2

i2@~Y/x!21#1/2D , ~V.9!

with the principal branches understood.~Observe, that as (Y/x)→`, thent0↑p/2 and the critical
points tend to the isolated singularities, while as (Y/x)→1, t0↓0 and the critical points tend to th
exterior end points, 0 and 2p, and top.!

The third group comprises the contributions from the four interior end points att5p/26d
and t53p/26d in conjunction with the two semicircular~q-!integrals deriving from the
d-neighborhoods of the isolated singular points att5p/2 andt53p/2.

With the exception of the two previously mentioned limits of coalescing critical points,
contributions to the high-frequency asymptotic operator symbol evaluation from the three g
are disjoint if there are no critical points on the intervals on the imaginaryt-axis, @p/22d,p/2
1d# and@3p/22d,3p/21d#. Thus, for fixed«Y and«x, to ensure thatt0,p/22d, requires the
condition,

Y/x,~csc~d!!2. ~V.10!

On the other hand, the radiusd of the semicircles must be sufficiently large to avoid a resid
contribution from the isolated singularities whent0↑p/2.

The further refinement of the contourIt in relation to the calculation of the contributions fro
the d-neighborhoods of the two isolated singularities requires some attention. The expon
occurring in the integrand of the semicircular contributions to Eq.~V.5! can be written in the form

exp@ i~Yd exp~2 iq!1x cot~d exp~2 iq!!!#5exp@hR~q!1 ihI~q!#,

where

hR~q!5Yd sin~q!1 1
2 ix@cot~d exp~2 iq!!2cot~d exp~ iq!!# ~V.11!

and

hI~q!5Yd cos~q!1 1
2 x@cot~d exp~2 iq!!1cot~d exp~ iq!!# ~V.12!

with qP@0,p#. The estimation of the contributions from the two semicircular~q-!integrals in Eq.
~V.5! is governed byhR(q) in Eq. ~V.11!. The functionhR ~cf. Eq.~V.11!! can be written in the
form

hR~q!5Yd sin~q!1x
sinh~2d sin~q!!

cos~2d cos~q!!2cosh~2d sin~q!!
.

It follows that hR(q) is a symmetric function ofq with respect top/2 for qP@0,p#. Also, note
that hR(0)5hR(p)50. For sufficiently smalld, it is straightforward to establish thathR(q) is
monotonically decreasing forqP@0,p/2) and monotonically increasing forqP(p/2,p# with a
global minimum atp/2, transitioning for increasingd to a ‘‘double-well-like’’ structure with a
local or global maximum atp/2 and two, symmetrically located global minima. Condition~V.10!,
while ensuring thathR8 (0)52hR8 (p),0, is not sufficient to imply thathR(q),0 ;qP(0,p).
Requiring thathR(p/2),0 using Eq.~V.11!, resulting in the additional condition,

Y/x,d21 coth~d!, ~V.13!
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ensures the latter condition. Ensuring thathR(q),0 ;qP(0,p) implies that the exponentia
function in the semicircular contributions to Eq.~V.5! is dominated by the exponential decay
the high-frequency limit. Condition~V.13!, however, is not sufficient to ensure thathR(q) has a
single, global minimum atp/2. Requiring thathR9 (p/2).0 ensures the latter condition, resultin
in the additional and final condition ond,

Y/x,~csch~d!!2~2d coth~d!21!. ~V.14!

Ensuring thathR(q) has a single, global minimum atp/2 not only ensures that the integran
corresponding to the contributions from the two isolated singular points are exponentially
for qP(0,p), but that, in addition, the dominant contributions in the Laplace method44,45 calcu-
lation come entirely from the neighborhoods of the maxima at the end pointsq50 andp.

In summary, the contourIt is specifically constructed such that for fixed«Y and «x, a
sufficiently smalld is chosen so as to satisfy the infimum of inequalities~V.10!, ~V.13!, and
~V.14!, which simply yields~the subsequent inequalities hold for sufficiently smalld!

Y/x,~csch~d!!2~2d coth~d!21!,d21 coth~d!,~csc~d!!2. ~V.15!

The choice ofd in Eq. ~V.15! ensures that~i! the dominant contributions to the operator symb
integral representation given in Eqs.~V.5! and ~V.6!, with the general method of stationar
phase,44,45 can be divided into the following three disjoint groups:

~a! the exterior end points att50 and 2p,
~b! the four interior critical points att0 , p2t0 , p1t0 , and 2p2t0 , and
~c! the four interior end points att5p/26d and 3p/26d in conjunction with the two semicir-

cular ~q-!integrals deriving from thed-neighborhoods of the singular points att5p/2 and
3p/2,

and~ii ! the contribution from the two isolated singular points can be reduced to a Laplace m
end point calculation.

~a! Application of Eq.~III.20! and exploitation of the periodicity of the trigonometric fun
tions,

tan~ t12p!5tan~ t ! and sec~ t12p!5sec~ t !, ~V.16!

reduce the exterior end point contributions fromt50 and 2p in Eqs.~V.5! and ~V.6! to a single
end point contribution fromt50 ~of the semi-infinite integral representation, employing E
~III.17!!,

VB
alg~p,q!;2exp~ 3

4 p i!S «

p D 1/2E
0
dtt21/2exp@ i~Yt2x tan~ t !!#sec~ t !

3@Y2x~sec~ t !!22 i tan~ t !# ~V.17!

~compare Eq.~III.15!!. The standard evaluation of the end point contribution in Erde´lyi,44 pp.
52–5646 applied to Eq.~V.17! then yields the algebraic branch of the asymptotic operator sym
expansion,

VB
alg~p,q! ;

«→0
@«~Y2x!#1/21 1

8 «2~«Y!@«~Y2x!#25/21 l.o.t. ~V.18!

The first two ~nonvanishing! terms in the algebraic branch of the asymptotic operator sym
expansion areO(1) andO(«2), respectively, in contrast to the standard operator symbol ex
sion which contains anO(«) term.21 This difference is a reflection of the symmetry inherent in t
Weyl construction.16,17
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Equation~V.18! can also directly be derived from the analytic continuation of the corresp
ing asymptotic result for the defocusing quadratic profile presented in Fishman24 ~27! through the
relationship given in Eq.~III.49!. The algebraic branch coincides with the outcome of thepoly-
homogeneouscalculus of operator symbols.1,15,16

~b! The stationary phase evaluation of the contributions from the four interior critical po
accounting for Eq.~V.7!, is accomplished in the standard manner as in Erde´lyi,44 pp. 52–56.46 The
contributions fromt0 andp1t0 are combined as well as the ones fromp2t0 and 2p2t0 . While
carrying out these combinations, the following identity:

223/2z~3/2,2D,2j!5jz~3/2,D11/2,j2!2z~3/2,D,j2!, ~V.19!

is invoked; it follows readily from Eq.~III.18! or Eq. ~III.19!. The result yields the oscillatory
branch of the asymptotic operator symbol expansion,

VB
osc~p,q! ;

«→0
1
2 «p23/2~«x!21/2@~Y/x!21#21/4

3$ i exp~p iY!z~3/2,12~ t0 /p!,2exp~p iY!!exp@2 i~Yt02x@~Y/x!21#1/2!#

2z~3/2,~ t0 /p!,2exp~p iY!!exp@ i~Yt02x@~Y/x!21#1/2!#%1 l.o.t. ~V.20!

The leading term in the oscillatory branch of the asymptotic operator symbol expansion isO(«),
with the contributions ofO(«1/2), which are proportional to the singular amplitudes

z~1/2,~ t0 /2p!,exp~2p iY!!, z~1/2,12~ t0 /2p!,exp~2p iY!!,

and

z~1/2,~1/2!6~ t0 /2p!,exp~2p iY!!,

having vanished.
~c! The interior end point contributions are calculated in the standard manner as in Erd´lyi,44

pp. 52–56 as before. The specific choice ofd in Eq. ~V.15! reduces theq-integral contributions to
a standard Laplace method end point calculation as in Erde´lyi,44 pp. 36–39; as expected, thes
contributions exactly cancel the corresponding interior end point contributions. The result is
group ~c! contribution of 0 to within exponentially small terms. Thus,

VB
sng~p,q! ;

«→0
O~exponentially small terms!. ~V.21!

(a)1(b)1(c) The asymptotic contributions from groups~a!–~c! represented in Eqs.~V.18!,
~V.20!, and~V.21! can be added together to produce the desired final result,

VB~p,q! ;
«→0

@«~Y2x!#1/21 1
8 «2~«Y!@«~Y2x!#25/2

1 1
2 «p23/2~«x!21/2@~Y/x!21#21/4

3$ i exp~p iY!z~3/2,12~ t0 /p!,2exp~p iY!!exp@2 i~Yt02x@~Y/x!21#1/2!#

2z~3/2,~ t0 /p!,2exp~p iY!!exp@ i~Yt02x@~Y/x!21#1/2!#%1 l.o.t. ~V.22!

The convergence of the Lerch transcendental functions in Eq.~V.22!, following from Eq.~III.18!,
removes the restrictions onY, originating from the contour-integral representation in Eq.~III.38!.
Most importantly, while the asymptotic expression in Eq.~V.22! was ultimately derived for a
particularly convenient choice ofd, it follows from the Cauchy integral theorem,39 that this
expression holds for all, fixed,dP(0,p/2), providing the desirednonuniform asymptotic expan-
sion.
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x50 ~normal propagation atq50!. While the limit Y/x→` ~implying, in the construction,
the limit d→0! cannot be taken in Eq.~V.22! due to the coalescing pairs of interior critical poin
~t0 andp2t0 at p/2 andp1t0 and 2p2t0 at 3p/2!, necessitating a uniform asymptotic expa
sion analysis,45 the high-frequency asymptotic expansion ofVB(0,0) can be determined in th
following fashion. ChoosingL5It8 , as illustrated in Fig. 5, in Eq.~III.38! yields the operator
symbol representation

VB~p,q!5E
It8

dtR~2 it!12p i@Rest5 ip/2R~2 i• !1Rest5 i3p/2R~2 i• !#,

YÞ0,1,2,..., ~V.23!

following from the Cauchy integral theorem.39 In this case, for fixed«Y and «x, a sufficiently
small d.0 can be chosen such that

~csch~d!!2~2d coth~d!21!,d21 coth~d!,~csc~d!!2,Y/x. ~V.24!

With d satisfying this inequality, it follows that~i! the interior critical points now reside on th
intervals (p/22d,p/21d) and (3p/22d,3p/21d) and ~ii ! the correspondingq-integral inte-
grands following from Eqs.~V.23! and ~V.6! are exponentially small onqP(0,p), with the
dominant contributions resulting from the neighborhoods of the maxima at the end pointsq50
and p. The first point establishes the absence of any contributions from group~b!, while the
second point, in conjunction with the interior end point contribution calculation, again esta
that the group~c! contribution is exponentially small. Thus, in this case,

VB~p,q! ;
«→0

VB
alg~p,q!1 lim

«→0
2p i@Rest5 ip/2R~2 i• !1Rest5 i3p/2R~2 i• !#,

YÞ0,1,2,... . ~V.25!

For the casep5q50 (x50), the residues in Eq.~V.25! can be evaluated in a straightforwa
fashion.39 Both, poles of first order, associated with the factorY sec(t), and poles of second orde
associated with the factor2 i sec(t)tan(t), occur. Adding the contributions yields,

VB~0,0! ;
«→0

~«Y!1/21exp~ 3
4 p i!

«1/2

p z~3/2,1/2,2exp~p iY!!exp~p iY/2!

1 1
8 «2~«Y!23/21 l.o.t., ~V.26!

using, again, Eq.~V.19!; here, the residues of the poles of first order have cancelled. Again
restrictions onY are removed by the convergence of the Lerch transcendental function in
~V.26!.

The connection between the contour-integral representation in Eq.~III.38! and the subsequen
asymptotic expansions, and the spectral~modal! summation becomes more apparent upon expr
ing the operator symbol asymptotic expansions in Eqs.~V.22! and ~V.26! in alternative forms,
viz., through the application of the Lerch functional equation as given in Magnuset al.,31 p. 34,

z~s,D,j!5 ij2D~2p!s21G~12s!

3$exp@2p i~s/2!#z~12s,~2p i!21 log~j!,exp~22p iD!!

2exp@p i~~s/2!12D!#z~12s,12~2p i!21 log~j!,exp~2p iD!!%, ~V.27!
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where the principal branch of the log(•) function is understood. Introducingh according toY
52L211h, hP@0,2# ~cf. the estimate below Eq.~II.6!!, and applying Eq.~V.27! to Eq. ~V.26!
yield

VB~0,0! ;
«→0

~«Y!1/2223/2«1/2~2 !Lm@z* ~21/2,d/2!2 iz* ~21/2,12~d/2!!#

1 1
8 «2~«Y!23/21 l.o.t., ~V.28!

where the generalized zeta function is defined by the appropriate analytic continuations
~V.2!,31,41 with

d5d~h!5H h if hP@0,1#,

h22 if hP~1,2#,
~V.29!

m5m~h!5H 1 if hP@0,1#,

21 if hP~1,2#.
~V.30!

Rather than being asymptotic, both of the expressions for Im$VB(0,0)% in Eqs.~V.26! and~V.28!,
resulting from the evaluation of the residues in Eq.~V.25!, are exact. This follows on starting wit
Im$VB(0,0)% in Eq. ~V.28! and using Eq.~III.20! with m51 to show that

2@z* ~21/2,~h/2!21!2 iz* ~21/2,22~h/2!!#

5z* ~21/2,h/2!2 iz* ~21/2,12~h/2!!, forhP~1,2#, ~V.31!

establishing that Eq.~V.28! is valid for hP@0,2# with d5h andm51. Then, use of the identity

~j]j1D!z~s,D,j!5z~s21,D,j!, ~V.32!

which follows directly from Eq. ~III.18!, application of Eq.~III.19!, and comparison with
Im$VB(0,0)% in Eq. ~II.48! for N5L complete the proof. The Lerch functional equation~V.27!
makes explicit the number of propagating modesL in the operator symbol, contour-integra
representation in Eq.~III.38!.

Case 2: x.Y.0. For the high-frequency asymptotic evaluation of the operator sym
integral representation in Eqs.~V.5! and~V.6! in this case, there are~i! exterior end point contri-
butions fromt50 and 2p, ~ii ! no interior critical points on the imaginaryt-axis, following from
Eq. ~V.8!, and~iii ! contributions of exponentially small order from group~c!, following from Eq.
~V.15! and the discussion preceding Eq.~V.21!. Returning to Eq.~III.38! and the original contour
L, a critical point is encountered on the realt-axis: it follows from the equalityY2x(sech(t))2

50, and is given by

t05arctanh~@12~Y/x!#1/2! ~V.33!

5 1
2 logS 11@12~Y/x!#1/2

12@12~Y/x!#1/2D , ~V.34!

with the principal branches taken. The contribution from this critical point is a term of expo
tially small order, supplementing the algebraic branch deriving from group~a!. The most direct
way to derive the resulting expansion is to exploit the analytic continuation result in Eq.~III.49! in
conjunction with the corresponding asymptotic result for the defocusing quadratic profile, de
by a stationary phase evaluation, in Fishman,24 ~27!,~28!. The final expression is
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VB~p,q! ;
«→0

@«~Y2x!#1/21 1
8 «2~«Y!@«~Y2x!#25/2

1 1
2 «t0

23/2~«x!21/2@12~Y/x!#21/4exp@Yt02x@12~Y/x!#1/2#1 l.o.t. ~V.35!

The principal results of Sec. V are the low-frequency asymptotic expansion in Eq.~V.4! and
the high-frequency asymptotic expansions in Eqs.~V.22!, ~V.26!, ~V.28!, and ~V.35!. Taken
together, Eqs.~V.22! and ~V.35! provide the nonuniform, high-frequency asymptotic, opera
symbol expansion for the full range of the phase space variablesp andq. As previously discussed
the high-frequency results are not valid in theY/x→` limit due to the coalescing pairs of interio
critical points. The high-frequency results will also fail in the limit ofY/x→1 due to the coalesc
ing of ~i! the interior critical point att0 and the exterior end point att50, ~ii ! the interior critical
point at 2p2t0 and the exterior end point att52p, and ~iii ! the two interior critical points at
p2t0 and p1t0 at t5p. To address these two limiting cases, uniform methods mus
applied.45 The nonuniform expansions, however, do establish and illustrate the fundament
cillatory character of the square-root Helmholtz operator symbol in the high-frequency limit.1,24 In
the elliptic pseudodifferential operator calculus, only the nonuniform algebraic branch given
~V.18! is obtained in the asymptotic analysis.1,14–17

VI. ONE-WAY PROPAGATION

A. Propagating and nonpropagating operator symbol constituents

It is clear from the derivation of the spectral~modal! summation representations presented
Sec. II that the Helmholtz operator symbols naturally divide into their propagating and nonp
gating modal contributions. In the Weyl calculus, in both Eq.~II.48! with N5L and Eq.~II.51!,
the first, finite sum ofL terms represents the propagating modal contribution to the square
Helmholtz operator symbol, while the remaining terms comprise the nonpropagating moda
tribution, with a corresponding decomposition in both Eq.~II.20! with N5L and Eq.~II.35! in the
standard calculus. From the propagating and nonpropagating modal decomposition, adop
obvious superscript notation, it then follows thatVB5VB

P1VB
NP with

VB
P~p,q!5Re$VB~p,q!%, ~VI.1!

VB
NP~p,q!5 i Im$VB~p,q!%. ~VI.2!

Correspondingly, decomposing the previously mentioned propagating and nonpropagating
contributions into their real and imaginary parts, and further noting the even/odd symmetry
respect top ~or q! establish thathB

s 5hB
s; P1hB

s;NP for the standard symbol, with

hB
s; P5exp~2 ik̄pq!$EP@Re$exp~ ik̄pq!hB

s ~p,q!%#1 iOP@ Im$exp~ ik̄pq!hB
s ~p,q!%#%, ~VI.3!

and

hB
s;NP5exp~2 ik̄pq!$OP@Re$exp~ ik̄pq!hB

s ~p,q!%#1 iEP@ Im$exp~ ik̄pq!hB
s ~p,q!%#%,

~VI.4!

where the even and odd parts of a functionf (x) are defined by

EP@ f ~x!#5 1
2 @ f ~x!1 f ~2x!#, ~VI.5!

and

OP@ f ~x!#5 1
2 @ f ~x!2 f ~2x!#, ~VI.6!

respectively, and are taken with respect to eitherp or q in Eqs.~VI.3! and ~VI.4!.
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Equations~VI.1!–~VI.4! can be applied to any exact representation of the square-root H
holtz operator symbol. In particular, equating the Weyl operator symbol constructions~II.48! and
~III.38! in Secs. II and III, respectively, yields

VB
P~p,q!52«1/2(

n50

L21

@2~2n112Y!#1/2Fn~x! ~VI.7!

or

VB
P~p,q!5ReH 2exp~ 1

4 p i!S «

2D 1/2 1

p E
L
dtz~1/2,~2 i/2p!t,exp~2p iY!!

3exp@Yt2x tanh~t!#sech~t!@Y2x~sech~t!!22tanh~t!#J ,

YÞ0,1,2,..., ~VI.8!

and

VB
NP~p,q!52 iS «

p D 1/2E
0

`

dt t21/2exp~Yt!@ F̃~ t !2G̃~ tuL !# ~VI.9!

or

VB
NP~p,q!5 i ImH 2exp~ 3

4p i! S «

2D 1/2 1

p E
L
dt z~1/2,~2 i/2p!t,exp~2p i Y!!

3exp@Yt2x tanh~t!#sech~t!@Y2x ~sech~t!!22tanh~t!#J ,

YÞ0,1,2,..., ~VI.10!

with analogous results following from the application of Eq.~II.51!.
Following from Eqs.~VI.7!–~VI.10! and the constructions presented in Sec. V, the high-

low-frequency, asymptotic expansions for the propagating and nonpropagating constituents
square-root Helmholtz operator symbol can be obtained. In the high-frequency,«→0, limit, for
example, utilizing Eqs.~V.22! and ~V.35! result in

VB
P~p,q! ;

«→0HRe$rhs of Eq. ~V.22!%, Y.x.0,

Re$rhs of Eq. ~V.35!%, x.Y.0, ~VI.11!

with a corresponding set of expressions for the nonpropagating operator symbol constitue
decomposition into the propagating and nonpropagating constituents in conjunction with the
frequency asymptotic expansions relate the number of propagating modesL to specific structural
features of the square-root Helmholtz operator symbol. The oscillatory asymptotic branch i
~V.20! and ~V.22! is governed by the exponential phase functions,6(Yt02x@(Y/x)21#1/2).
TakingY/x@1 andp2@v2q2 in Eqs.~V.8! and~V.20! then yield the dominant exponential pha
function ~to within a sign!,

~Yt02x@~Y/x!21#1/2! ;
Y/x@1

~Y~p/2!22 Y1/2x1/2! ;
p2@v2q2

~Y~p/2!22 Y1/2«21/2p!.

Taking the amplitude functions in the oscillatory asymptotic branch to be independent ofp then
yields the lowest-order result,
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Y.«~p/Tp!2, ~VI.12!

whereTp is the period of oscillation ofVB
P as a function ofp. An estimate of the number o

propagating modesL follows immediately from the estimate following Eq.~II.6!, with more
sophisticated expressions following in a natural manner.

Moreover, the addition of one propagating mode through the increase inK0
2 and/or decrease in

«, mathematically represented by takingL→L11 (Y→Y12), corresponds to a change in th
sign of the scaled, nonpropagating, square-root Helmholtz operator symbol cons
(i Im$VB(0,0)%«21/2) in Eq. ~V.28! in the high-frequency limit.

B. The one-way propagator

The infinitesimal, one-way propagator, in conjunction with the special structure of the W
and standard symbols for the square-root Helmholtz operator, reveal both the multiresolutio
generalized screen nature of the propagation process. The fundamental solution of the o
wave equation can be written in the formG 1(x,z;x8,z8)5H(x2x8)g1(x,z;x8,z8) with
g1(x,z;x8,z8) denoting theone-way propagator. Following from Eq.~I.10! with M51, the in-
finitesimal, one-way propagator follows as

g1~x,z;x8,z8!5E
R
~ k̄/2p!dp exp@ ik̄ $p~z2z8!1VB~p, 1

2 ~z1z8!!~x2x8!%#. ~VI.13!

In the limit x↓x8, the propagator can be asymptotically expanded to the lowest order in the

g1~x,z;x8,z8!;d~z2z8!1 ik̄~x2x8!E
R
~ k̄/2p!dp exp@ ik̄p~z2z8!#VB~p, 1

2 ~z1z8!!,

~VI.14!

where the integral term is recognized as the Schwartz kernelB(z,z8) ~cf. Eqs.~I.6! and~I.8!! and
is understood in the distributional sense.4,32

Recognizing from Eq.~II.50! that the Weyl operator symbolVB(p,q) can be written as the
sum of an absolutely and uniformly convergent infinite series and a well-defined integr
follows that in the limitupu→`, the series contribution tends to 0 while the integral contribut
reproduces the pseudodifferential operator limit,VB(p,q); i upu. In the limit a↓0, but aÞ0,
discarding the integral contribution and approximatingVB(p,q) by the infinite series alone resu
in a convergent integral in Eq.~VI.14!, corresponding to an essentially correct treatment of al
the modal contributions except the ‘‘largen’’ values in the~generally! deep evanescent regime
Denoting this approximation byg1(x,z;x8,z8);ga

1(x,z;x8,z8), the expansion in Eq.~VI.14!
takes the form

ga
1~x,z;x8,z8!;d~z2z8!12ik̄~x2x8!

3 (
n50

` H @2«~2n112Y!#1/212iS a

p D 1/2

«1/2@2~2n112Y!# 1F1~1/2;3/2;2a ~2n112Y!!J
3E

R
~ k̄/2p!dp ~2 !nLn

(0)~2x! exp~2x!exp@ ik̄ p~z2z8!#, ~VI.15!

wherexª«21( 1
4 v2(z1z8)21p2). The last line of this equation can be written in the form
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E
R
~ k̄/2p!dp ~2 !nLn

(0)~2x!exp~2x!exp@ ik̄p~z2z8!#

5E
R
~ k̄/2p!dp exp~2«21p2!exp~2ik̄pz!

3~2 !nLn
(0)~2x!exp@2 1

4 «21v2~z1z8!2#exp@ ik̄p~z1z8!#. ~VI.16!

In Eqs. ~VI.14!–~VI.16!, a forward constituent transform is identified as the windowed Fou
transform,

1

&
E

R
dz8 expF2

V

2

~z1z8!2

2 GexpF2 ik̄p&
~z1z8!

&
G ,

where V5v k̄ is a dilation parameter, with a corresponding constituent ‘‘inverse’’ transfo
&*R( k̄/2p)dp, revealing the multiresolution47 nature of the propagation process.

The standard calculus analog of the~modal! expansion in Eq.~VI.15! is given by

ga
1~x,z;x8,z8!;d~z2z8!1 ik̄~x2x8!21/2(

n50

`
1

n! S i

2D n

fn~~v k̄!1/2z!

3H @2«~2n112Y!#1/212iS a

p D 1/2

«1/2

3@2~2n112Y!# 1F1~1/2;3/2;2a~2n112Y!!J
3E

R
~ k̄/2p!dpfn~~ k̄/v!1/2p!exp~2 ik̄pz8!. ~VI.17!

Equation~VI.17! reveals the structure of a ‘‘generalized screen’’ expansion representation48 a
Fourier transform (z8→p), followed by a multiplication~Hermite polynomials! in the p-domain,
followed by a~Gaussian weighted! inverse transform (p→z), followed by a multiplication in the
z-domain.

The sequence of operations in the infinitesimal propagation process, outlined in the mul
lution and generalized screen analyses above, is inherent in the path-integral structure
fundamental solution1,2,11,19–22,40in Eq. ~I.10!. Moreover, the path-integral representation redu
to the spectral~modal! representation for the fundamental solution, which, for the~range-
independent! focusing quadratic profile, takes the form

G 1~x,z;x8,z8!5H~x2x8! (
n50

`

exp$ ik̄@2«~2n112Y!#1/2~x2x8!%

3expH 22k̄S a

p D 1/2

«1/2@2~2n112Y!# 1F1~1/2;3/2;2a~2n112Y!!~x2x8!J
3

«1/2k̄

p1/2

1

n! 2n Qn~z,z8!. ~VI.18!

~For a↓0, but aÞ0, Eq. ~VI.18! corresponds to the approximation associated withga
1 outlined

above, while fora50, it represents the exact fundamental solution.! In Eq. ~VI.18!, a transform
pair can be identified through the identity
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(
n50

`
«1/2k̄

p1/2

1

n! 2n Qn~z,z8!5 (
n50

`
~v k̄!1/2

p1/2

1

n! 2n fn~~v k̄!1/2z!fn~~v k̄!1/2z8!5d~z2z8!.

Thus, thefn , subjected to the appropriate normalization, form an orthonormal basis. With
~VI.18!, in the action of the propagator, the integration overz8 constitutes a ‘‘forward’’ transform,
whereas the summation overn constitutes the associated ‘‘inverse’’ transform; the propagato
‘‘diagonal’’ in the transform domain. Unlike the global operator diagonalization in the spe
~modal! propagator representation, the infinitesimal propagator representations can be view
‘‘diagonalization’’ in the phase space strip about a localized coordinate point.25

VII. EXACT SYMBOLS FOR OPERATOR RATIONAL APPROXIMATIONS TO B

The square-root Helmholtz operator can be approximated by operator rational approxim
in general, and additive, operator rational approximations in particular.1,3–6,10,24These operator
approximations implicitly correspond to uniform operator symbol constructions over approp
regions of phase space, and immediately result in approximate, partial differential, one-way
equations.1,3–6,10,24With a continued-fraction approach, the square-root Helmholtz operatorB is
approximated toNth-order by

B5@ I1L #1/2.I1(
j 51

N

@ I1bj ,NL #21aj ,NL , ~VII.1!

where

L5B22I5@~K2~z!21!I1~1/k̄!2]z
2#, ~VII.2!

the operator sum in Eq.~VII.1! is supplemented with a right-traveling-~outgoing-!wave radiation
condition, and the approximation coefficients$aj ,N ,bj ,N% are determined in the homogeneo
medium limit by a variety of approximation-theoretic criteria.1,3–6,10,24,49For every case where a
exact square-root Helmholtz operator symbol can be constructed, the operator symbols
sponding exactly to the operator sum in Eq.~VI.1! can be written in closed form.1,24 Let the Weyl
symbol V [bI1gL ] 21(p,q) correspond with the operator@bI1gL #21, then Eq.~VII.1! can be
simplified as

B.BARA5I1(
j 51

N

cj ,N@ I2@ I1bj ,NL #21#,

so that the exact, additive, rational approximation operator symbol in the Weyl calculus is
by1,24

VB
ARA~p,q!511(

j 51

N

cj ,N@12V [ I1bj ,NL ] 21~p,q!#, ~VII.3!

where

cj ,N5
aj ,N

bj ,N
. ~VII.4!

The operator symbolV [bI1gL ] 21(p,q) is the fundamental function in the construction.
follows from ~i! the relevant results in Fishman24 for the defocusing quadratic profile in conjun
tion with the analytic continuation result in Eq.~III.48! and ~ii ! the previous construction o
VB21(p,q) for the focusing quadratic profile in Eq.~II.43! that
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V [bI1gL ] 21~p,q!5
2

«g
(
n50

`
1

@2~2n112Ŷ!#
Fn~x! ~VII.5!

for the spectral~modal! summation representation, and from~iii ! the observation that the appro
priate Lerch transcendental functionz(s,D,j) involved in the construction ofV [bI1gL ] 21(p,q)
appears in the analog of Eq.~III.28! with s50, that

V [bI1gL ] 21~p,q!52
1

«g S 1

12exp~2p i Ŷ!
D EL

dt exp@Ŷt2x tanh~t!# sech~t!, ŶÞ0,1,2,...,

~VII.6!

for the contour-integral representation. In Eqs.~VII.5! and ~VII.6!,

Ŷ5Y1«21@~b/g!21#. ~VII.7!

Appendix B contains an additional representation forV [bI1gL ] 21(p,q). Combining Eqs.~VII.5!
and~VII.6! with Eq. ~VII.3! results in the exact, closed-form representations of the Weyl sym
for the additive, rational operator approximations of the square-root Helmholtz operator.

Finally, expressions analogous to Eqs.~VII.5!, ~VII.6!, and ~B3!, in conjunction with Eqs.
~VII.3!–~VII.4!, can be written for the operator symbols in the standard calculus in a straigh
ward manner.

VIII. NUMERICAL RESULTS

The square-root Helmholtz operator symbol for the focusing quadratic profile can be nu
cally computed, in both the Weyl and standard calculi, from the spectral~modal! summation and
contour-integral formulas. For the spectral~modal! summation representations, for the standa
operator symbol, for example, Eq.~II.35! is computed. The finite and infinite sums are rewritt
and evaluated in the manner outlined in detail by Van Stralen,4 while the remaining finite integra
is computed by an adaptive recursive Newton–Cotes 8 panel rule,4,50 with a chosen relative to the
magnitude of the integrand in a manner which balances the location of the second, infinite
within its circle of convergence against the magnitude of the integrand and the range of integ
in that final term. In this scheme, it immediately follows from the estimates in Eq.~II.29! and Eq.
~II.31! that the limita→0 corresponds to the infinite sum approaching its radius of converge
requiring an ever increasing number of terms for an accurate numerical computation,
relatively simple numerical integration, while the limita→` corresponds to the sum approachi
the center of its circle of convergence, requiring an ever decreasing number of terms
accurate numerical computation, and a more involved numerical integration.51 The expression in
Eq. ~II.35! is independent of the particular choice ofa, which was verified in the numerica
computations. The corresponding computation in the Weyl calculus of Eq.~II.51! is treated in a
similar fashion. For the contour-integral representations, the Weyl and standard operator s
are computed from Eq.~III.38! and Eq.~III.40!, respectively. In both cases, the contourL in the
complext-plane is chosen asC9 in Fig. 6 with R taken to be finite. Applying Eq.~III.20! and
exploiting the periodicity of the hyperbolic functions in Eq.~III.43! in the same manner used i
proceeding from Eq.~III.42! to Eq. ~III.44! reduce the contour integral to a single integral alo
G19 and two integrals alongG29 . The Lerch transcendental function is computed from Eq.~III.19!
by the Romberg numerical integration method52 applied to the three resulting integrals.R is
chosen to makeR Y anO(1) quantity, thereby balancing the numerical effects of the singular
at t5 i p/2 and i 3p/2 for the limit R→0 with the attempt to construct anO(1) quantity from the
integration of extremely large magnitude integrands in the limitR→`. In both the Weyl and
standard cases, the computations are, in principle, independent of the choice ofR, which was
verified numerically for a reasonable range of the parameter. In the subsequent numerica
putations, the spectral~modal! summation and contour-integral methods resulted in ident
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curves. Further, for the caseY,1, these two computational methods were found to be in comp
agreement with the results obtained from numerically integrating Eq.~V.1! and its standard cal
culus analog, Eq.~II.20!, with N50. The exact operator symbol curves presented in this sec
were computed from the contour-integral representations.

It follows from Eqs. ~II.35! and ~III.40! that the standard, square-root Helmholtz opera
symbolhB

s (p,q) is ~i! invariant under the interchangep↔vq, ~ii ! a symmetric function ofp (q)
for q (p)50, ~iii ! an asymmetric function ofp (q) for q (p)Þ0, and ~iv! a ~an! symmetric
~antisymmetric! function of p andq for the imaginary~real! part of the symbol forY,1 in the
absence of propagating modes. The third and fourth points are illustrated in Figs. 7–10 by p
hB

s (p,0.5) for the specific quadratic caseK2(q)512q2 and k̄550.5, 10.5, 3.5, and 0.5, respe
tively. Figure 10 fork̄50.5 illustrates the fourth point. The sequence of figures also illustrate
transition from the high- to the low-frequency regime for a choice ofq within the well, with the
square-root function plus superimposed oscillatory behavior, characteristic of the lo
homogeneous, high-frequency limit,1,4,24 gradually transforming to the absorption-dominat
curves, corresponding to the absence of propagating modes, in the low-frequency limit. Fig

FIG. 7. hB
s (p,0.5) vs p for the focusing quadratic profile. The exact standard operator symbol is computed from

~III.40!.

FIG. 8. hB
s (p,0.5) vs p for the focusing quadratic profile. The exact standard operator symbol is computed

Eq. ~III.40!.
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displayshB
s (p,1.5) for the same profile andk̄510.5, illustrating the dominant absorptive behav

for a choice ofq outside the well. Figure 12 illustrateshB
s (0,q) for the same profile andk̄

510.5, and will be applied in demonstrating the waveguiding properties of the focusing qua
profile in the final Sec. IX. All of Figs. 7–12 are consistent with the appropriate analytic con
ation of the corresponding results for the defocusing quadratic profile presented by Fishma24

It follows from Eqs.~II.51! and~III.38! that the Weyl, square-root Helmholtz operator symb
VB(p,q) is ~i! solely a function of the variablex, following from the symplectic structure in th
Weyl composition Eq.~I.11! and the quadratic dependence ofK2(q),16,24 ~ii ! invariant under the
interchangep↔vq, ~iii ! a symmetric function ofp andq, and~iv! purely imaginary forY,1 in
the absence of propagating modes. Figures 13–17 illustrateVB(p,0) for the specific quadratic
caseK2(q)512q2 and k̄550.5, 10.5, 3.5, 0.95, and 0.1, respectively. As in the case for
standard operator symbol, the sequence of figures again illustrates the characteristic beha
transition from the high- to the low-frequency regime for a choice ofq within the well. Analogous
behavior to that displayed for the standard operator symbol in Fig. 11, for a choice ofq outside the
well, follows immediately from Fig. 14 and the variable dependence onx. Once again, all of Figs.

FIG. 9. hB
s (p,0.5) vs p for the focusing quadratic profile. The exact standard operator symbol is computed

Eq. ~III.40!.

FIG. 10. hB
s (p,0.5) vs p for the focusing quadratic profile. The exact standard operator symbol is computed

Eq. ~III.40!.
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13–17 are consistent with the appropriate analytic continuation of the corresponding results
defocusing quadratic profile presented by Fishman.24 The differences in the symmetry propertie
between the standard and the Weyl, Helmholtz operator symbols, exhibited in the formula
illustrated in the preceding figures, are a reflection of the different operator-ordering sch
underlying the two pseudodifferential operator calculi.17

The effectiveness of both the low- and high-frequency asymptotic, Helmholtz operator sy
expansions derived in Sec. V is readily demonstrated. Figures 16 and 17 compare the exac
in Eq. ~III.38! and the low-frequency asymptotic result in Eq.~V.4! for «51.0526 and 10, respec
tively, suggesting the increasing accuracy as«→` and the manner of breakdown of Eq.~V.4!.
The same results are obtained using Eq.~V.1! for the exact operator symbol calculation forY
,1. In Figs. 13–15, the exact result in Eq.~III.38! and the high-frequency asymptotic results
Eq. ~V.22! and Eq.~V.35! are compared for«50.0198, 0.0952, and 0.2857, respectively. T
sequence of figures demonstrates the accuracy of the nonuniform, asymptotic expansions
the Y/x→1 andY/x→` regimes as«→0. In particular, the nonuniformity associated with th
Y/x→` regime is seen to be confined to a very narrow region aboutp50. The lowest-order
estimate of the number of propagating modesL, following from Eq.~VI.12!, yields 25, 4, and 1,
respectively, for the previously mentioned« sequence. Comparison with the exact number

FIG. 11. hB
s (p,1.5) vs p for the focusing quadratic profile. The exact standard operator symbol is computed

Eq. ~III.40!.

FIG. 12. hB
s (0,q) vs q for the focusing quadratic profile. The exact standard operator symbol is computed from Eq.~III.40!.
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modes, 25, 5, and 2, respectively, again illustrates the increasing accuracy of the asym
analysis as«→0. In Fig. 18, the exact result in Eq.~III.38! for VB(0,0) is compared with the
corresponding, high-frequency asymptotic expression in Eq.~V.26! for the specific quadratic cas
K2(q)512q2 and k̄P@0,2# («P(`,0.5#), illustrating the increasing accuracy of Eq.~V.26! as
«→0. Figure 18 further illustrates the exact, rather than the asymptotic, nature of the expr
for Im$VB(0,0)% in Eq. ~V.26!.

In the high-frequency,«→0, limit, the Weyl composition Eq.~I.11! can be approximated by

VB2~p,q!5K2~q!2p2.@VB~p,q!#2, ~VIII.1 !

which can serve as the basis for an approximate, high-frequency reconstruction.24 This is illus-
trated in Fig. 19, whereVB

2(0,q) ~computed from Eq.~III.38!! is compared withK2(q)512q2

for k̄550.5, 10.5, and 3.5~«50.0198, 0.0952, and 0.2857!. The accuracy of the reconstructio
increases as«→0, with the deviation from zero imaginary part serving, in some sense,
measure of the accuracy of the profile reconstruction for real profiles.24

FIG. 13. VB(p,0) vsp for the focusing quadratic profile. The exact Weyl operator symbol~Eq. ~III.38!! is compared with
the Weyl, high-frequency~HF! approximate, operator symbol~Eqs.~V.22! and ~V.35!!.

FIG. 14. VB(p,0) vsp for the focusing quadratic profile. The exact Weyl operator symbol~Eq. ~III.38!! is compared with
the Weyl, high-frequency~HF! approximate, operator symbol~Eqs.~V.22! and ~V.35!!.
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IX. DISCUSSION

The Helmholtz operator symbols for the focusing quadratic profile have been exactly
structed by two complementary methods:~i! a spectral~modal! summation approach in Sec.
deriving from standard representations and constructions in spectral analysis and~ii ! a contour-
integral approach in Sec. III based on extracting the operator symbols from the appro
Green’s function, or corresponding parabolic~Schrödinger! propagator, data. As the name implie
the former method is natural for partitioning the operator symbol into its propagating and
propagating components, as well as for examining the individual modal contributions, whi
latter method is natural for examining the total operator symbol, in particular, for deriving bot
high- and low-frequency asymptotic expansions. The two approaches can be combined, as
VI, to derive both integral representations and asymptotic expansions for the individual pro
ing and nonpropagating modal sums, as indicated in Eqs.~VI.7!–~VI.11!. In particular, for the
propagating contribution to the square-root Helmholtz operator symbol, in the high-frequ
limit, a sum of a finite, but ever-increasing, number of terms~cf. Eq. ~VI.7!! is asymptotically
analyzed in a straightforward manner through the contour-integral equivalence as indicated
~VI.11!. Furthermore, even though the periodicity of the associated parabolic~Schrödinger! propa-

FIG. 15. VB(p,0) vsp for the focusing quadratic profile. The exact Weyl operator symbol~Eq. ~III.38!! is compared with
the Weyl, high-frequency~HF! approximate, operator symbol~Eqs.~V.22! and ~V.35!!.

FIG. 16. VB(p,0) vsp for the focusing quadratic profile. The exact Weyl operator symbol~Eq. ~III.38!! is compared with
the Weyl, low-frequency~LF! approximate, operator symbol~Eq. ~V.4!!.
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gator is explicitly exploited in the contour-integral construction and the discrete nature o
spectrum is, likewise, exploited in the spectral~modal! summation construction for the focusin
quadratic case, the two complementary operator symbol construction procedures and the
bined usage are quite general, and applicable to other profiles. Indeed, for the Helmholtz o
symbols in the defocusing quadratic case, which were constructed by the same procedures4,24 the
associated spectrum has no discrete contributions and the associated parabolic~Schrödinger!
propagator is not periodic.

The fractional, Helmholtz operator symbols constructed in Secs. II and III represen
appropriate Helmholtz operator roots associated with the physical, right-traveling wave fie
the spectral~modal! summation construction, this condition is enforced through the approp
infinitesimal shifting of the resolvent singularities in the integral representation,1,4,24while, in the
contour-integral construction, the correspondence to the physical roots follows immediately
the extraction of the operator symbols from the physical, outgoing-wave Green’s function
corresponding parabolic~Schrödinger! propagator.24 As such, the Helmholtz operator symbo
must satisfy the appropriate composition equations and be consistent with the physical,
traveling- ~outgoing-!wave radiation condition,1,4,24 as was demonstrated for the defocusing q
dratic profile case by Fishman.24 This is briefly outlined for the focusing quadratic profile case

FIG. 17. VB(p,0) vsp for the focusing quadratic profile. The exact Weyl operator symbol~Eq. ~III.38!! is compared with
the Weyl, low-frequency~LF! approximate, operator symbol~Eq. ~V.4!!.

FIG. 18. VB(0,0) vsk̄ for the focusing quadratic profile. The exact Weyl operator symbol~Eq. ~III.38!! is compared with
the Weyl, high-frequency~HF! approximate, operator symbol~Eq. ~V.26!!.
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Appendix C. Satisfying the appropraite composition equations alone is not sufficient to ensu
construction of the physical, Helmholtz operator symbols; the correspondence with the rad
condition is essential. For example, if thev→2 iv limit is taken in the analytic continuation
formulas ~III.48!–~III.51!, the resulting symbols will still satisfy the appropriate compositi
equations~at least in a formal, asymptotic sense15,17!, however, they will no longer be consiste
with the physical radiation condition, and, thus, will not correspond to the physical operator
The construction of the physical, Helmholtz operator symbols has been briefly discuss
Fishman.24

The exact, square-root Helmholtz operator symbol constructions given in Eqs.~III.38! and
~III.40! in conjunction with the numerical results presented in Sec. VIII illustrate the wavegu
properties of the focusing quadratic profile. At the level of the marching range step, which fo
immediately from Eq.~I.10!, the infinitesimal, down-range wave field is given by20–22,24

w1~x1Dx,z!.E
R
~ k̄/2p!dp exp~ ik̄ pz!exp@ ik̄ hB

s ~p,z!Dx# w1̃~x,p!. ~IX.1!

Taking the initial wave field atx to be represented by a very broad Gaussian function, whic
essentially constant over the nonabsorptive range of the profile (K2(z).0), results in a very

narrow Gaussian function, sharply peaked aboutp50, for the correspondingw1̃(x,p), leading to
the approximation

w1~x1Dx,z!.exp@ ik̄ hB
s ~0,z!Dx#. ~IX.2!

For the cases corresponding to propagating modes, it follows from Fig. 12~and thep↔vq
invariance ofhB

s (p,q) in the quadratic case! that the energy within the effective waveguide will b
redistributed, with the wave field in the absorptive regions being suppressed. In particula
oscillatory character of the operator symbol ensures the strict conservation of the integrated
flux,1,20 while the phase space regions with Im$hB

s (p,q)%,0 ultimately allow for the down-range
focusing correctly corresponding to the modal energy distribution.

While the focusing quadratic profile is, in some respects, nonphysical, the correspo
Helmholtz operator symbols, nevertheless, establish canonical symbol features for more g
profiles containing locally-quadratic wells. This should not be surprising. In the context of a m
analysis, the low-lying eigenfunctions and corresponding eigenvalues in such wells will exh
quadratic character. This is the same phenomenon expressed at the level of the operator
This will be illustrated in detail elsewhere.

FIG. 19. VB
2(0,q) vs q for the focusing quadratic profile. The exact focusing quadratic profile,K2(q)512q2, is compared

with the square of the exact Weyl operator symbol computed from Eq.~III.38!.
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The Helmholtz operator symbol results presented in Secs. II–VII can be immediatel
tended to the generalized, focusing quadratic profile defined by

K2~z!5K0
212lz2v2z2,

with K0 ,vPR1 andlPR. Since the effect of the linear term is to shift the equilibrium posit
and the overall phase in the corresponding harmonic oscillator problem, it immediately fo
from Fishman24 and the analytic continuation results in Sec. III that all of the Helmholtz oper
symbol representations derived for the focusing quadratic profile (l50) hold for the generalized
profile with the following identifications,

x→«21@v2~q2l/v2!21p2#, ~IX.3!

Y→«21@K0
21l2/v2#, ~IX.4!

Z→«21@v ~q2l/v2! p#, ~IX.5!

while

q→q2l/v2. ~IX.6!

The linear term is seen to increase the effectiveY parameter in Eq.~IX.4!, tending, in general, to
increase the number of propagating modal components, consistent with the increased ability
positive ~nonabsorptive! part of the generalized focusing quadratic profile to support ‘‘bou
states.’’ Exact symbol constructions for the Helmholtz operators can also be extended
higher-dimensional, separable and coupled, focusing quadratic cases following from the res
Fishman24 and the appropriate incorporation of the periodicity in the associated parabolic~Schrö-
dinger! propagator.

The general, spectral and contour-integral, Helmholtz operator symbol construction p
dures presented here and in Fishman24 can be applied, as previously suggested, to other case
interest. The hyperbolic function profile,K2(z)5K0

21D tanh(nz)1Esech2(nz),24,53 is appropriate
for physical modeling, encompasses a range of perturbation limits, illustrates the operator s
transition from high to low frequency, and accommodates the effects associated with both
metrical and asymmetrical wells in addition to large gradients, for example. Particularly inte
ing limiting cases include the delta profile,K2(z)5K0

212Ld(z),54,55 the discontinuity profile,
K2(z)5K1

21DK2H(z), whereH(•) is, again, the Heaviside function andDK25K2
22K1

2,28,56and
the reflectionless profiles withL prescribed bound states.56,57 In addition, rectangular wells4,28

along with a combination of the delta and quadratic profiles55 can be considered. These detail
constructions will be presented elsewhere, and are of particular interest owing to their abi
illuminate the differences in the high-frequency asymptotic, operator symbol structure be
smooth and nonsmooth profiles. Moreover, the very recent, extensive listing of exact solutio
the Schro¨dinger~time-dependent! and corresponding Helmholtz~time-independent! quantum me-
chanical equations58 in conjunction with the operator symbol construction procedures prese
here and in Fishman24 allow, in principle, for the consideration of additional cases.

The Helmholtz operator symbols~in the frequency domain! lie outside of the well-establishe
theory and corresponding calculus of elliptic pseudodifferential operators.1,15 As a result, that
well-developed calculus cannot provide the uniform characterization of these operator sy
over phase space which is crucial for many applications.1 In the high-frequency asymptotic ap
proximations, in addition to the algebraic terms associated with the elliptic calculus, the c
butions of exponential order, corresponding to the infinitely smooth part of the kernel, mu
properly included. This has been discussed in detail by Fishmanet al.,1 where uniform, high- and
low-frequency approximations were derived for the square-root Helmholtz operator symbol~The
corresponding analysis, at the level of the operator kernel, is presented in de Hoop and Gau9!
Exact operator symbol constructions and their corresponding asymptotic expansions furth
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minate this new asymptotic structure. Specifically, for the focusing quadratic profile, the
operator symbol plots for the high-frequency regime given in Figs. 7–9 and 11–15 an
high-frequency asymptotic, operator symbol expansions given in Eq.~V.22! and Eq.~V.35! and
illustrated in Figs. 13–15 together demonstrate the oscillatory character associated with the
holtz operator symbols.1,24 The results presented here and in Fishman24 further illustrate that, for
the quadratic case, the location of the oscillatory branch of the Weyl operator symbol is co
to ~i! the locally-propagating regime in the focusing case and, correspondingly,~ii ! the locally-
evanescent regime in the defocusing case. Furthermore, the discussion surrounding Eq.~VI.12!
establishes the detailed connection between these oscillations and the underlying profile
generally, the analysis underlying the results presented in Fishmanet al.1 establishes that for
bounded profiles,Kmin

2 ,K2(z),Kmax
2 , the oscillatory branch of the Weyl, Helmholtz operat

symbol is of finite extent with respect top, essentially lying within the intervalpP@Kmin ,Kmax#
for pP@0,̀ ). The oscillatory branch location correspondences between the locally-propag
regime and focusing profiles and the locally-evanescent regime and defocusing profiles, illu
above for the quadratic case, are found to hold in the more general cases.

The exact construction of the Helmholtz operator symbols for the focusing quadratic p
impacts several areas of direct and inverse wave propagation modeling in extended inho
neous environments. Substituting the exact results in Eqs.~III.38! and ~III.40! into the one-way
wave Eqs.~I.8! and ~I.7!, respectively, and fixing the range point atx5xb provide an exact
realization of the computational~nonreflecting! boundary condition for the transversely inhom
geneous Helmholtz equation for the focusing quadratic case.1 Combining Eq.~III.40! and Eq.
~I.10! results in a formally exact, explicit, path-integral representation for the fundamental so
of the one-way Helmholtz Eq.~I.7! for the focusing quadratic profile.1,2,19–22Furthermore, Eq.
~III.38! provides an explicit example of the function which effects the formally exactt-
integration’’ in the Feynman/Fradkin path-integral representation.59,60Moreover, the formal, phase
space path-integral representation, in terms of the square-root Helmholtz operator symbol,
compared to the mathematically rigorous constructions recently presented by LaChapelle,61 based
on an extension of the Cartier/DeWitt-Morette functional integration scheme,62 and Dynin,63 mo-
tivated by a backward Euler approximation of the corresponding, first-order, pseudodiffer
~phase space! evolution equation and product integral constructions. The Dynin analysis, in
ticular, may ultimately provide the means to establish a rigorous mathematical basis fo
formal, phase space path-integral constructions. The exact symbol representations for th
known, operator rational approximations of the square-root Helmholtz operator, which provid
basis for the practical computational realization of the ‘‘parabolic equation’’ method,1,3–6,10,24are
constructed in Sec. VII for the focusing quadratic profile. Previously, the corresponding op
symbols for the defocusing quadratic profile were numerically compared with the exact con
tions for several, recent, rational approximation schemes.1,10,24 The Helmholtz operator symbol
can be connected to Galerkin~basis set expansion! methods64–66 for the Helmholtz equation
through Eq.~I.7!, Eq. ~II.34!, and expansion in the oscillator basis setfn .

The path-integral representation for the fundamental solution~one-way propagator! inherently
contains both the asymptotic ray and modal representations of the wave field, and, in this se
a particularly useful representation. Concerning the numerical evaluation of the one-way
gator, although, for the quadratic profile, the propagator path-integral representation can be
evaluated through a spectral summation~the square-root Helmholtz operator is then compact!, for
more general profiles, the infinitesimal propagator controls any wave field continuation algo
The infinitesimal propagator is expressed in terms of the square-root Helmholtz operator s
From the quadratic profile case, it is seen that~i! using the Weyl calculus~and associated Wey
transform!, the infinitesimal propagator follows a multiresolution analysis, and~ii ! using the stan-
dard calculus, a screen representation for the propagator is obtained. Thus, the microlocal a
associated with the operator symbols is tied to a multiresolution analysis for wave propaga

Returning to the fully-coupled, two-way, elliptic wave propagation problem, the genera
Bremmer series9–11 provides a means to incorporate the one-way constructions directly into
two-way scattering process. The generalized Bremmer series couples the one-way wave c
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ents, and generates all multiply-scattered waves. The convergence properties of this se
understood in the time-Laplace domain, and require Sobolev order estimates of the squa
‘‘Helmholtz’’ operator uniform in the Laplace parameter. However, most algorithms that~ap-
proximately! compute terms in the generalized Bremmer series are accomplished in the
Fourier domain.10 The closed-form expressions, derived for the square-root Helmholtz ope
for the quadratic profile, should prove to be useful in obtaining these Sobolev order estima
the time-Fourier domain. It is anticipated that such an estimate would hold for more ge
profiles. Furthermore, the generalized Bremmer series representation for waves can be inte
as a method of ‘‘tracing waves,’’ the wave-theoretical analogue of the geometrical~asymptotic!
method of ‘‘tracing rays’’ ~Weinberg and Burridge67!. Such methods play a key role in th
‘‘bootstrapping’’ approach to inverse scattering~see, for example, Claerbout68!.

Equation~VI.12! can be viewed from both a ‘‘direct’’ and ‘‘inverse’’ perspective. From t
‘‘direct’’ perspective, viewed as a characterization of the operator symbol, given«, the dimen-
sionless parameter characterizing the medium variability on the wavelength scale, and me
T, the number of propagating modesL follows immediately from Eq.~VI.12!. The accuracy of
this lowest-order estimate was illustrated in Sec. VIII in connection with Figs. 13–15.

From the ‘‘inverse’’ perspective, viewed as a reconstruction from data with knownk̄, com-
bining Eq.~V.26! with Eq. ~VI.12! and treatingT andVB(0,0) as the data result in estimates f
both the focusing quadratic profile parameters and the number of propagating modesL. While the
relationship between the profile and the asymptotic, Helmholtz operator symbol structure ha
illustrated here for the specific case of the focusing quadratic profile, it can be extended to g
profiles through both the uniform, high- and low-frequency asymptotic expansions presen
Fishmanet al.1 Of course,K2(q) can, in principle, be reconstructed from the composition E
~I.11!, which was illustrated in Sec. VIII and by Fishman24 for the focusing and defocusin
quadratic cases, respectively, in the high-frequency limit. These ideas have a natural exten
the scattering and DtN operator symbols in the inverse analysis of the general, range-dep
Helmholtz equation.1,2,12,13

In summary, the inverse square-root and square-root Helmholtz operators~and, subsequently
the scattering and Dirichlet-to-Neumann operators! play a fundamental role in many direct an
inverse scattering/propagation problems. These operators do not belong to the class of
elliptic pseudodifferential operators and their calculus. Even though the operator symbol con
tions and subsequent characterizations presented in this paper are restricted to the speci
dratic profile, many of the results are believed to be~at least, qualitatively! canonical, and should
apply to a wide class of, even singular, medium profiles. In this regard, this paper provides
on the extension of this polyhomogeneous calculus for symbols of elliptic pseudodiffer
operators to a calculus for nonstrictly elliptic operators, such as the ones listed above. This
impact the continuing development of uniform asymptotic symbol expansions1,9 for these propa-
gation and scattering operators.
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APPENDIX A: OPERATION INTERCHANGE AND THE RIESZ ÕYOUNG THEOREM

This appendix proves the identity
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E
0

`

dt t21/2exp@~Y21!t#F (
n5N

`
1

n! S i

2D n

Cn~p,q!exp~22nt!G
5p1/2(

n5N

`
1

n!

1

~2n112Y!1/2 S i

2D n

Cn~p,q!, ~A1!

which was applied in establishing Eq.~II.15!. The result in Eq.~A1! follows on establishing the
validity of the interchange of integration and summation, which is a direct consequence of
lishing that the power series

S~z!5 (
n50

`
1

n! S i

2D n

Cn~p,q! zn, ~A2!

with zPC is uniformly convergent forzP(0,1#.
The power series in Eq.~A2! has a radius of convergenceRc equal to one, which follows

directly from the derivation of the Mehler formula36 or from the definition33 of Rc and the
previously referenced asymptotic estimates of the Hermite polynomials and the gamma fu
Hence, the power seriesS(z) is uniformly convergent33 for zP(0,1). Extension of uniform
convergence toz51 (t50), and the consequent completion of the proof, follow on establish
the convergence33 of S(1).

The convergence ofS(1) is an immediate consequence of the following theorem assoc
with Riesz and Young.34

Theorem: If

f ~z!5 (
n50

`

anzn, zPC,

is a power series with a finite radius of convergence~taken for convenience to be unity! and

lim
n→`

an50,

then the series is convergent at every point of the unit circle where the functionf (z) is regular.
For the series under consideration, the radius of convergence is one, and, further, the

ously referenced asymptotic estimates of the Hermite polynomials and the gamma function
lish that

an5
1

n! S i

2D n

Cn~p,q!5O~n21/2! as n→`. ~A3!

Applying the Riesz/Young theorem, the convergence ofS(1) is determined by the behavior of th
function

f ~exp~22t !!5221/2exp~ t ! F~ t !

evaluated att50, whereF is defined in Eq.~II.16! ~and is the generator in accordance with t
Mehler formula36!. Since t50 is a regular point of the functionF(•), it follows that S(1) is
convergent.
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APPENDIX B: ALTERNATIVE HELMHOLTZ OPERATOR SYMBOL INTEGRAL
REPRESENTATIONS

Following from Sec. III, a number of alternative, equivalent integral representations ca
derived for the Helmholtz operator symbols for the focusing quadratic profile case. Only
examples will be noted here. The first one, a counterpart of Eq.~III.28!, is

VB21
foc

~p,q!5
1

~2«!1/2p
exp~2x!E

Lp

ds s21 exp~2s x!$z~1/2,~12Y!/2,~12s!/s!

22 @~12s!/s#Lz~1/2,L1~12Y!/2,~12s!/s!%, YÞ1,3,5,..., ~B1!

whereLp is the contour in the complexs-plane associated with the inverse Laplace transform39

This representation derives from the spectral~modal! summation representation in Eq.~II.43! and
the inverse Laplace transform of the Laguerre polynomials37 in combination with the appropriate
representation of the Lerch transcendental function.41

The second example is the representation,

VB21
foc

~p,q!52exp~ 3
4p i!

2

«1/2p
E

0

`

dj
1

~1/2!2~Ỹ/2!

3 (
n50

`
~2x!n

~~3/2!2~Ỹ/2!!n

2F1~n11,~1/2!2~Ỹ/2!;n1~3/2!2~Ỹ/2!;21!,

YÞ1,3,5,..., ~B2!

where Ỹ5Y1 i j2 and 2F1(.,.;.;.) is theGauss hypergeometric function discussed in Erde´lyi
et al.,41 Chap. ii~note the occurrence of Pochhammer’s symbol!. Equation~B2! follows from Eqs.
~B17!–~B19! in Fishman24 and utilizing properties of the gamma function. Representations s
as Eq.~B2! provide another means to establish the extended analytic continuation results gi
Eqs.~III.48!–~III.51!. In addition, Eq.~B2!, while expressed in a form which masks the underlyi
periodicity ~so conveniently expressed by the Lerch transcendental function and the integ
end points in Eq.~III.28!! in Gauss hypergeometric function integrals, is, nevertheless, a na
form for the exact operator symbol constructions in the hyperbolic profile case and the subs
illustration of the canonical nature of the focusing quadratic profile.

In a similar manner, alternative integral representations, analogous to the ones constru
Eqs.~B1! and~B2!, can be derived for the exact, Helmholtz operator symbols corresponding t
additive, rational operator approximations presented in Sec. VII. For example, in conjunction
Eqs.~VII.3!–~VII.7!,

V [bI1gL ] 21~p,q!52
1

«g

1

~1/2!2~Ŷ/2!

3 (
n50

`
~2x!n

~~3/2!2~Ŷ/2!!n

2F1~n11,~1/2!2~Ŷ/2!;n1~3/2!2~Ŷ/2!;21!,

ŶÞ1,3,5,... . ~B3!
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APPENDIX C: VERIFICATION OF HELMHOLTZ OPERATOR SYMBOL COMPOSITION
EQUATIONS

Both the inverse square-root and square-root Helmholtz operator symbols, for the foc
quadratic profile in one transverse dimension, must satisfy the usual composition equations
consistent with the appropriate, right-traveling-~outgoing-!wave radiation condition.1,4,24 The
composition equations~cf. Eq. ~II.10!! to be verified are

k̄

2p E
R2

duds hB21
s

~p2s,q!hB21
s

~p,q2u! exp~2 ik̄ su!5hB22
s

~p,q!, ~C1!

and

k̄

2p E
R2

duds hB21
s

~p2s,q!hB
s ~p,q2u! exp~2 ik̄ su!5hI

s~p,q!51, ~C2!

and

k̄

2p E
R2

duds hB
s ~p2s,q!hB

s ~p,q2u! exp~2 ik̄ su!5hB2
s

~p,q!5K0
22v2q22p2. ~C3!

The calculations are briefly outlined in the standard~left! calculus where they are technically le
cumbersome, however, the analogous results hold in the Weyl calculus. The verification o
are illustrated for both the spectral~modal! summation and contour-integral operator symb
representations, given, respectively, by Eq.~II.8! and Eq. ~III.39! for the inverse square-roo
Helmholtz operator symbol and, for the purposes of this appendix, extended to the squa
Helmholtz operator symbol through the composition relationship in Eq.~II.11!.

For the verification of Eq.~C1! for the spectral~modal! summation operator symbol repre
sentation~II.8!, substituting Eq.~II.8! into Eq.~C1!, interchanging the order of the integrations a
summations, applying the Hermite, Fourier transform result given in Eq.~II.7!, and exploiting the
Hermite orthogonality relationship,31

E
2`

`

dz exp~2z2!Hn~z! Hm~z!5p1/22nn! dnm , ~C4!

lead to the final result~compare Eq.~II.8!!

hB22
s

~p,q!52
21/2

« (
n50

`
1

n!

1

~2n112Y! S i

2D n

Cn~p,q!. ~C5!

Expression~C5! is in agreement with the operator symbol calculations done in conjunction
the rational approximation operator symbol constructions in Sec. VII.

To establish Eq.~C1! for the contour-integral operator symbol representation Eq.~III.39!, it is
convenient to first consider the caseY,1. Choosing the contourL5C95G191G291G39 , as illus-
trated in Fig. 6 for the defocusing quadratic profile analysis, then allows for Eq.~III.39! to be
expressed as~compare Eq.~III.1!!,

hB21
s

~p,q!52 iS 1

p« D 1/2E
0

`

dt t21/2

3exp@Yt2 1
2 x tanh~2t !1 iZ ~sech~2t !21!#~sech~2t !!1/2,

Y,1. ~C6!
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Substituting Eq.~C6! into Eq. ~C1!, interchanging the order of the integrations, evaluating t
successive Gaussian integrals~in u ands), and applying standard hyperbolic function identiti
yield the result

hB22
s

~p,q!52S 1

p« D E
0

`

dt E
0

`

dt8 ~ t t8!21/2

3exp@Y~ t1t8!2 1
2 x tanh~2~ t1t8!!1 iZ ~sech~2~ t1t8!!21!#~sech~2~ t1t8!!!1/2,

Y,1. ~C7!

Exploiting the t t8-symmetry of the integrand in Eq.~C7! through the introduction of the new
variablesu5t1t8 andv5t2t8 reduces the double integral to a single integral of the form

hB22
s

~p,q!52
1

« E0

`

du exp@Yu2 1
2 x tanh~2u!1 iZ ~sech~2u!21!#~sech~2u!!1/2, Y,1,

~C8!

or

hB22
s

~p,q!52
1

«

1

12exp~2p i Y!
E

L
dt

3exp@Yt2 1
2 x tanh~2t!1 iZ ~sech~2t!21!#~sech~2t!!1/2,

YÞ0,1,2,... . ~C9!

The final equality in Eq.~C9!, establishing the full range ofY values, follows from analytic
continuation arguments. The expression in Eq.~C9! is in agreement with the operator symb
calculations done in conjunction with the rational approximation operator symbol constructio
Sec. VII. The equivalence of the expressions in Eq.~C5! and Eq.~C9! follows from the Mehler
formula,36 uniform convergence arguments33 and the Riesz/Young theorem,34 and elementary
integration.

Examining the composition Eqs.~C2! and~C3!, it is seen that the Fourier integrals involvin
the square-root Helmholtz operator symbolhB

s (p,q) do not exist in the usual sense, but, rath
must be understood in the context of generalized functions.24,32 This essentially means that th
composition integral is given meaning through the analytic continuation in the parameters of the
Lerch transcendental function appearing in Eqs.~III.39! and ~II.11!, for example.24,32 Operation-
ally, the implication is that the basic procedure used in going from Eq.~C6! to Eq. ~C9! in the
verification of composition equation~C1! can again formally be applied in evaluating compositi
Eqs.~C2! and~C3! to derive the correct results. This was the method employed in establishin
corresponding composition equation results for the defocusing quadratic profile in Fishm24

Substituting Eqs.~III.39! and~II.11! into Eq.~C2! and following the previously outlined procedur
lead to the result

hI
s~p,q!52E

0

`

du
d

du
$exp@Yu2 1

2 x tanh~2u!1 iZ ~sech~2u!21!#~sech~2u!!1/2%51,

Y,1. ~C10!

The analogous treatment of Eq.~C3! yields
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hB2
s

~p,q!52« E
0

`

du
d

du
$exp@Yu2 1

2 x tanh~2u!1 iZ ~sech~2u!21!#~sech~2u!!1/2

3@Y2x~sech~2u!!222iZ sech~2u! tanh~2u!2tanh~2u!#%

5K0
22v2q22p2, Y,1. ~C11!

Analytic continuation arguments extend the results in Eqs.~C10! and~C11! to the full range ofY
values.

In addition to formally satisfying the composition equations~C1!–~C3!, the Helmholtz opera-
tor symbols hB21

s (p,q) and hB
s (p,q) are consistent with the appropriate, right-travelin

~outgoing!-wave radiation condition by construction,1,4,24 with the correct evanescent behavi
being apparent in Figs. 7–12 forhB

s (p,q).
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I. INTRODUCTION

The notion of Lie bialgebra was introduced by V. G. Drinfel’d in Ref. 1. These are infinit
mal versions of the well-known ‘‘quantum groups,’’2 or quantized universal enveloping algebra
that now play a very important role both in mathematics and physics. At about the same
~1982!, the classification of the so-called factorizabler-matrices for semi-simple Lie algebras wa
achieved by A. Belavin and V. G. Drinfel’d,3 and many examples~possibly the most interesting
ones! of finite- and infinite-dimensional Lie bialgebras were found. However, there is still l
known ~and little to be known?! in the non-semi-simple case. The present article is an attemp
a better understanding of their structure, at least in low dimension.

A classification of the complex three-dimensional Lie bialgebras was previously obtaine
J.-M. Figueroa O’Farrill;4 his work was related to conformal field theory and theN52 Sugawara
construction over solvable Lie algebras~for the connection between Manin triples and theN52
Sugawara construction, see, e.g., Refs. 5 and 6!. In Ref. 4 the point of view is to classify, for eac
pair of isomorphism classes of three-dimensional complex Lie algebras (g1 ,g2), the bilinear
pairingsg1^ g2→C that give rise to a Manin triple (g,g1 ,g2). Already in dimension 3 the calcu
lations seem to be heavy and the determination of the nonequivalent solutions is rather in

The point of view adopted in the present paper is different: we follow the original defin
of a Lie bialgebra and classify, for each isomorphism class of Lie algebrag, the nonequivalent
one-cocyclesd:g→∧2g that satisfy the co-Jacobi identity Alt+(d ^ id)+d50 ~this is equivalent to
asking thatd* :∧2g* →g* is a Lie bracket ong* ). The classification uses extensively the notion
twisting, due to V. G. Drinfel’d.2 This method is more secure, and automatically gives a pa
description of the moduli space of Lie coproducts on a given Lie algebra. It also allows us to
the complex and real cases on the same footing.

As a result, we of course obtain the well-known~coboundary! Lie bialgebra structures onsl2
andso3 , as well as those on the Euclidean Lie algebrae(2) of R2, but there are many others. He
are the main observations:

~a! Any three-dimensional Lie algebra has at least one nontrivial Lie bialgebra structure. In
apart fromso3 , they all have several. This is due essentially to the abundance of trian
r-matrices, but also to the fact that the cohomology groupH1(g,∧2g) can be quite large for
solvable Lie algebras.

~b! There exist some Lie bialgebras (g,g* ) such thatg* .g as Lie algebras~these are naturally
called self-dualLie bialgebras!; this is, for instance, the case wheng is quasi-Frobenius.
More generally, one has a natural notion of continuous families of Lie algebras, which
can write, for instance,g(x), x belonging to some parameter spaceM. It turns out that there
exist some families of Lie bialgebras„g(x),g(x* )… for some functionxPM°x* PM ~the

a!Electronic mail: gomez@cpt.univ-mrs.fr
49390022-2488/2000/41(7)/4939/18/$17.00 © 2000 American Institute of Physics
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most interesting of these are the families 7 and 16 in Table III, Sec. IV!. This might be of
interest in the context of Poisson–Lie T-duality in string theory~see Refs. 7 and 8, an
references cited therein!.

~c! There has been several attempts to incorporate Lie bialgebras to physical models~seeop. cit.
Refs. 5–8! as ‘‘infinitesimal quantum symmetries.’’ However, if at the Hopf algebra le
the coproduct has a well-understood interpretation, it is not quite clear what a Lie copr
d:g→∧2g would mean. It is, in fact, the notion ofManin triple which is used; it is equiva-
lent to that of a Lie bialgebra, but with another point of view. The Manin triple canonic
associated to a Lie bialgebra (g,d) is called itsDrinfel’d double d(g,d), which is a Lie
algebra built on the vector spaceg% g* . In this spirit, we felt it was of interest to provide th
description of the Drinfel’d doubles of all three-dimensional Lie bialgebras.

~d! It is known from the work of Etingof and Kazhdan9 ~see also Refs. 10 and 11! that any
finite-dimensional Lie bialgebra (g,d) can be quantized to a ‘‘quantum group’’~for more
precise definition, see Ref. 2 or 9!. For the Lie bialgebras presented in our classification,
quantization is known in some cases@again forg5sl2 ,so3 , and for some Lie bialgebra
implying e(2) ~Ref. 12!#, but far from all. We did not investigate this and the quantizat
of all three-dimensional Lie bialgebras remains to be done.

The paper is organized as follows:
Section II contains the basic definitions and results on finite-dimensional Lie bialgebras

emphasis on twistings, and presents the method used for the classification. In Sec. III the
fication in dimension 3 is worked out. The classification itself is presented in Sec. IV. The t
present the result in the real case, but the discussions of Sec. III indicate clearly how to g
classification overC.

II. LIE BIALGEBRAS

~i! Notations:In the sequel,k is a field of characteristic 0~it will be specified to beR or C!,
andk35k2$0%.

Gothic letters denote finite-dimensional Lie algebras overk. For ag-moduleV,Vg denotes its
g-invariant part, andg acts onV^ i in the standard way, by means of the classical coproductD on
U(g).

Let Alt5(1/n!) (sPSn
«(s)s be the antisymmetrizer ofV^ n @where the symmetric groupSn

acts inV^ n by permutations of then copies ofV, and«(s) is the parity ofsPSn#. As usual, one
denotes̀ nV8Alt( V^ n) ~it is a g-submodule sinceD is cocommutative!. We shall use the fol-
lowing convention: forx1 ,..., xnPV, x1`x2`¯`xn5n!Alt( x1^¯^ xn). For instance,x
`y5x^ y2y^ x, and x`y`z5(c.p.„(x`y) ^ z… ((c.p. means the sum over cyclic permut
tions!. WhenV1 andV2 are submodules of the sameg-moduleV,V1`V2 is a short notation for
$v1^ v22v2^ v1uv1PV1 ,v2PV2%, which is ag-submodule of̀ 2V. ~If V1ùV250, then V1

`V2.V1^ V2.) Also, for X1 ,...,XnPEndk(V), we set

X1`¯`Xn8Alt +~X1^¯^ Xn!+AltPEndk~`nV!. ~1!

~ii ! For future use:Let V be a g-module andC•5C•(g,V) be the Chevalley–Eilenberg
complex overg associated to it:C•5 % i>0Ci , C05V, Ci5Homk(` ig,V), with ~Chevalley–
Eilenberg! differential denoted byd. To any xPg one can associate a linear mapix :C•→C•

defined by (ixf )(x1 ,...,xi)5 f (x,x1 ,...,xi); it satisfies ixC
i,Ci 21, ixiy1iyix50 and @dix

1ixd,iy#5i@x,y# .
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It follows that x°Lx8dix1ixd defines an action ofg in C• ~the natural action ofg in
`g* ^ V). Sinced250, d is a g-module map. One usually writesZ•5kerd, B•5 im d, andH•

5Z•/B•; and for f PZ•, @ f # stands for its image inH•. By construction,Lx is homotopic to 0~the
homotype beingix), andg acts trivially in H•.

Proposition 1: In the above setting, for i>1, let fPZi(g,V) (d f50). For any xPg, one has

exp~Lx!~ f !5 f 1dw, ~2!

with w5w( f ,x)5(k>1(1/k!)wkPCi 21(g,V), andwk5(Lx)
k21(ixf ).

Proof: For n>1, one has (Lx)
n5(dix1ixd)n5(dix)

n1(ixd)n. Since d f50, this gives
(Lx)

nf 5(dix)
nf 5d(ixd)n21(ixf )5d(Lx)

n21(ixf ) and~2! follows. Note that~2! can be written
formally w5$@exp(Lx)21#/Lx%(ixf ), and that if f 5dg for somegPCi 21(g,V), then exp(Lx)(dg)
5d„exp(Lx)(g)…. h

~i! We shall be interested in the casei 51 and V5`2g, that is f PZ1(g,`2g). Then ixf
5 f (x)PV and

w~ f ,x!5 (
n>1

1

n!
xn21

•„f ~x!…PV. ~3!

~ii ! A Lie coproduct on a~finite-dimensional! Lie algebrag is a 1-cocycled:g→`2g such that
the dual mapd* :g* ^ g* →g* is a Lie bracket ong* ; that is, for anyx,yPg,d satisfies

dd~x,y!5x•d~y!2y•d~x!2d~@x,y# !50, ~4!

Jacd8(
c.p.

~d ^ id!+d50. ~5!

The Lie bialgebra defined in this way will be denoted by~g, @,#, d! or simply (g,d). The notation
(g,g* ) is also possible but is less precise since there might be several nonequivalent one-c
on g giving isomorphic Lie algebra structures tog* .

Lemma 1: Letg be a Lie algebra.

~a! If dPZ1(g,`2g) @resp. B1(g,`2g)#, thenJacdPZ1(g,`3g) @resp. B1(g,`3g)#.
~b! Let $x1 ,...,xn% be a system of Lie algebra generators of the Lie algebrag, and let d

PZ1(g,`2g). ThenJacd50 if and only if Jacd(xi)50 for all i .

Proof: ~a! is a direct calculation and~b! follows from ~a!. h

~i! The fact that Jacd is exact ifd is exact is very well known: Ifd5dr for somer Pg^ g, the
skew symmetry ofd is fulfilled if r 121r 21P(S2g)g and one has

Jacdr5d~2vr , r b!, ~6!

where for r ,sPg^ g, vr , sb8@r 12, s23#1@r 12, s23#11@r 12, s23#. If r 5s1t, sP`2g, t
P(S2g)g, then vr , r b5vs, sb1v t, t b and both terms belong tò 3g.13 The co-Jacobi condition
Jacdr50 is then equivalent tovr , r bP(`3g)g.

~ii ! For the convenience of the reader, we give the following identities. Forr 5a`b, s5c
`d (a,b,c,dPg), one has with our conventions for the wedge product

vr , sb1vs, r b5a`~b•s!2b`~a•s!

5a`@b, c#`d1a`c`@b, d#2b`@a, c#`d2b`c`@a, d#.

In particular,va`b, a`bb5a`b`@a, b#.
~iii ! The group Autg acts naturally inC1(g,`2g) by fxd5(f ^ f)+d+f21; this gives an

equivalence relation inC1(g,`2g):
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d8;d⇔'fPAut g, d85fxd. ~7!

By definition, two Lie bialgebras~g, d! and~g, d8! are isomorphic ifd8;d in the sense of~7!. By
~3!, the group Int(g,d) of inner Lie bialgebra automorphisms of a finite-dimensional Lie bialge
~g, d! is G05exp(g0) where g0 is the stationary subalgebra ofd @whose elements satisfydx
P(`2g)g#.

Remark 1:In the finite-dimensional situation, the notion of Lie bialgebral is symmetric: if~g,
@,#, d! is a Lie bialgebra, then so is~g* , d* , @,#* !, but the notion of exactness is not. For instan
if ~g, @,#, d! is coboundary,~g* , d* , @,#* ! is not in general. Likewise, the group Aut~g, @,#, d! and
Aut ~g* , d* , @,#* ! are of course isomorphic, but the subgroups of inner ones are not in gener
an example, take (g,d)5„sl2(k),dr… with a basis$e0 ,e1 ,e2% such that@e0 , e1#5e1 , @e0 , e2#
52e2 , @e1 , e2#5e0 , andr 5e1`e2 . Then Int(g,dr).k3 is generated by Ade0 . On the dual
point of view, one has@e0, ei #5ei ( i 51,2), @e1, e2#50, andde05e1`e2, de15e0`e1, and
de252e0`e2. This Lie bialgebra is not coboundary, and has a trivial group of inner autom
phisms.

A. Quasi-Frobenius Lie bialgebras

We recall the standard terminology:2,13,14 r Pg^ g is called quasi-triangular ifr 121r 21

P(S2g)g and if r satisfies the classical Yang–Baxter equation~CYBE! vr , r b50. It is called
triangular if, moreover,r 121r 2150, and factorizable if as a linear mapg* →g, r 121r 21 is sur-
jective ~i.e., bijective in the finite-dimensional situation!.

A Lie algebraf together with a 2-cocyclevPZ2(f,k) is called quasi-Frobenius15,16 if v is
nondegenerate, and Frobenius if, moreover,v is exact. It is known3 that in this case the elemen
r 5v21P`2f is a triangularr-matrix for f and it is natural to call the corresponding Lie bialgeb
„f,d(v21)… a quasi-Frobenius Lie bialgebra. More generally, an elementr P`2g defines a map
~denoted by the same letter! r :g* →g by j°ijr 5^j ^ id,r &. One can define supp(r )5r (g* ) as
the support ofr. Then,14,13 the CYBE for r is equivalent tor being a homomorphism of Lie
algebras, and it also implies thatf5supp(r ) is a quasi-Frobenius Lie subalgebra ofg. In particular,
if supp(r )5g, theng* .g as Lie algebras. Conversely, if (f,v) is a quasi-Frobenius subalgebra
g, thenr 5v21P`2f�`2g is a triangularr-matrix for g. Thus, triangular Lie bialgebras exist i
abundance; their classification wheng5sl3(C) is due toA. Stolin.17

B. Twistings

Let dPZ1(g,`2g) andxP`2g. One easily checks that

Jacd1dx5Jacd1dL, ~8!

whereL5L(d,x)P`3g is given by

L~d,x!82@x, x#1(
c.p.

~d ^ id!~x!. ~9!

Lemma 2 (Ref. 14, Th. 8.1.7.): Ifd is a Lie coproduct ong, then dx5d1dx is also a Lie
coproduct ong iff dL50, i.e., L(d,x)P(`3g)g.

Heredx is called the twist ofd by x. From ~2! and~3!, a nonzero twist might be trivial, i.e.
gauge equivalent to 0~see also Remark 2!.

Formula~8! implies the weaker one inH1(g,`3g):

@Jacd1dx#5@Jacd#, ~10!

which makes sense by Lemma 1~a!. It suggests the following algorithm to classify the isomo
phism classes of Lie bialgebras in a given dimension: For each isomorphism classg of Lie
algebra,
                                                                                                                



lgebra

use a
her

where

m-

ome-

ie

n

4943J. Math. Phys., Vol. 41, No. 7, July 2000 Classification of three-dimensional Lie bialgebras

                    
~i! find H1(g,`2g) and the orbits of Autg in this space. Then,
~ii ! for each orbit@ f #PH1(g,`2g),

~a! choose~if any! a suitable lifed̃PZ1(g,`2g) such thatd̃5@ f # and Jacd̃50,
~b! find all the possible twists ofd̃ and identify the nonequivalent ones@the equivalence being

given by ~7!#. In particular, one can use Proposition 1 to calculate the action of Intg on a
given one-cocycle.

~c! For each equivalence class of Lie coproduct ong, identify g* .

The classification obtained this way is systematic and well structured; however, a Lie bia
which is not self-dual will be derived twice$one in the sense~g, @,#, d!, one in the sense~g* , d* ,
@,#* !%. This is not needed for a classification, but does not seem to be avoidable, unless we
completely different method. In practice, we will not follow closely this algorithm, but rat
adapt it to the situation.

Remark 2:Proposition 1 and Lemma 2 have the following corollary: Let~g, d! be a Lie
bialgebra, letyPg be nilpotent and such that Ad(expy) is not a Lie bialgebra automorphism of~g,
d!, i.e.,dy¹(`2g)g. Let N,` be the greatest integer such thatwN8yN

•dy¹(`2g)g. Finally, let
ĝ5g^k k@ t, t21# and (ĝ,d̂) be the corresponding Lie bialgebra overk@ t, t21#. By ~3!, the inner
Lie algebra automorphismf t5Ad„exp(ty)… acts ond̂ by f tx d̂5 d̂1dw t , where

w t5 (
n50

N S 1

~n11!!
yn
• d̂yD tn.

Sincef t is a ĝ-automorphism,f tx d̂5 d̂1dw t is a Lie coproduct onĝ, i.e.,w t is twist of d̂ ~trivial
by construction!. In particular, by Lemma 2,

L~d̂,w t!52vw t , w tb1(
c.p.

~ d̂ ^ id!~w t!P~`3ĝ! ĝ.

This is a polynomial int whose term of maximal degree is2(1/(N11)!)2vwN ,wNb t2N, where
wN5yN

•dyP`3g. It follows that vwN , wNbP(`3g)g. If we specializet to a numbertPk, then
for larget,ftxd;dwN behaves as a coboundary. For instance, the Jordanianr-matrix of sl2 can
be obtained from the Drinfel’d–Jimbo one by such a procedure.

This remark generalizes Proposition 5.1 in Ref. 18 where the authors consider the case
d5dr is a coboundary. In this case, they prove that not onlyvwN , wNbP(`3g)g, but in factwN

satisfies the CYBEvwN , wNb50.

C. Drinfel’d doubles

Throughout we callsymmetrica Lie algebraG that admits an invariant nondegenerate sy
metric bilinear form^,&:G^ G→k. We should each time specify the pair~G, ^,&!, but we shall not
for clarity, and the scalar product is understood to be fixed. The terminology self-dual is s
times also used, but we shall use it in the following sense: A Liebialgebra~g, d! is calledself-dual
if g* andg are isomorphic as Lie algebras.

Examples:A semi-simple Lie algebrag is always symmetric, but there cannot be any L
coproduct ong such that~g, d! is self-dual. A Frobenius Lie algebrag with a closed two-form
v5dj is canonically a self-dual Lie bialgebra (g,d5d(v21)), but it cannot be endowed with a
invariant scalar product~these are in fact statements, but they are easily checked!.

A Manin triple (G,g1 ,g2) is a triple of Lie algebras whereG is symmetric, andg1 andg2 are
isotropic Lie subalgebras ofG such thatG5g1 % g2 as vector spaces. Clearly,G is even dimen-
sional, and the invariant scalar product onG allows us to identifyg2 with g1* . @This implies in
particular that, ifk5R, the signature of the invariant scalar product onG is ~n, n!, where n
5dimg1.#
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One can show2,13 that there exists a 1–1 correspondence between Manin triples (G,g1 ,g2)
and Lie bialgebras~g, d! such thatg1.g. The Manin triple corresponding to~g, d! is written ~d,
g, g* ! andd is called the Drinfel’d double of~g, d!.

If $xi% denotes a basis ofg, mi j
k andm i

jk denote the Lie algebra and Lie coalgebra struct
constants of~g, d! in this basis, and$xi% the dual basis, then the Manin triple structure ofd is

@xi , xj #5mi j
k xk , ^xi , xj&50,

@xi , xj #5mk
i j xk, ^xi , xj&50, ~11!

@xi , xj #52mik
j xk1m i

jkxk , ^xi , xj&5^xj , xi&5d i
j .

~Here and throughout, there is a sum over repeated indices.! We also recall thatd has a canonica
factorizable structurer d5xi ^ xiPg^ g*�d^ d.

There is a canonical imbedding of Lie bialgebras13 (g,d)�(d,drd). In the following,
` ig ( i>1) is seen as a subspace of` id by this imbedding.

Proposition 2: Let~g, d! be a Lie bialgebra with Drinfel’d doubled5d(g,d). Let rd be the
canonical factorizable r-matrix ond. For xP`2g one has

vr d1x, r d1x b52L~d,x! P`3g. ~12!

In particular, if x is a twist of~g, d!, it is also a twist of(d,drd).
Proof: By ~6!, one has Jacd(r b1x)5d(2vr d1x, r d1x b). On the other hand, Jacd(r b1x)

5Jacdrd
1dL(drd ,x)501dL(d,x). Therefore vr d1x, r d1x b1L(d,x)P(`3d)d. Since this

has no constant term~independent ofx!, and holds for anyg, d, x, ~12! follows. h

The following shows that, as a symmetric Lie algebra, the isomorphism class ofd(g,dx)
depends on the twistx only if L(d,x)Þ0.

Proposition 3: Let~g, d! be a Lie bialgebra, andxP`2g be a twist ofd.

~i! If L(d,x)50, thend(g,dx).d(g,d).
~ii ! In particular, if (g,dx) is triangular, thend(g,dx).d(g,0)5g›g* .

~Here and elsewhereg›g* is the semidirect sum ofg with an Abelian ideal isomorphic tog*
as ag-module. For the scalar product,g andg* are understood to be isotropic.!

Proposition 4: Letg be a symmetric Lie algebra over k5R, with t the canonical element o
(S2g)g. Let xP`2g satisfyvx, x b1«v t, t b50 (for some«PR3 ).

~i! If «.0, d(g,dx).g% g.
~ii ! If «,0, d(d,dx).(gC)R .

Proof: We first prove the following lemma.
Lemma 3: Let~g, d! be a Lie bialgebra with basis and structure constants as in (11). Lex

5x i j xi ^ xjP`2g be a twist ofd and consider the new basis$xi ,x̃i5xi2x iaxa% of d(g,dx). In
this basis, the structure ofd(g,dx) is

@xi , xj #5mi j
k xk , ^xi , xj&50,

@ x̃i , x̃ j #5mk
i j x̃k1^x̃i

^ x̃ j
^ id, L~d,x!&, ^ x̃i , x̃ j&50, ~13!

@xi , x̃ j #52mik
j x̃k1m i

jkxk, ^xi , x̃ j&5^x̃ j , xi&5d i
j .

Proof: The structure ofd(g,dx) in the basis$xi ,xi% is given by ~11! with mk
i j replaced by

(mx)k
i j 5mk

i j 1mka
i xa j2mka

j xai. To obtain ~13! in the new basis$xi ,x̃i% is a rather long but
straightforward calculation. h
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It follows immediately that ifL(d,x)50, thend(g,dx).d(g,d) and Proposition 3 is proved
In the situation of Proposition 4, one obtains~replacingd by 0!

@xi , xj #5mi j
k xk ,@xi , x̃ j #2mik

j x̃k, @ x̃i , x̃ j #5^x̃i
^ x̃ j

^ id,2vx, x b&.

SincetP(S2g)g, one has

2vx, x b5«v t, t b5«v t12, t13b5«t iat jbmab
k xi ^ xj ^ xk .

Definex̃i5t iax̃a. Using the invariance oft i j :2tkama j
b t ib5mi j

k , one obtains in the basis$xi ,x̃i% of
d(g,dx)

@xi , xj #5mi j
k xk , @xi , x̃ j #5mi j

k x̃k , @ x̃i , x̃ j #5«mi j
k xk ,

which is easily recognized to beg% g if «.0 and (gC)R if «,0. Proposition 4(i ) is well known;
it corresponds to the factorizable situation. h

D. Bicross sums

The following is a canonical way to produce Lie bialgebras, due to Majid~Ref. 14, Proposi-
tion 8.3.4!. It cannot be used for a classification, but it is interesting to know that some of th
bialgebras found are of this kind.

Let B be a Lie algebra with subalgebrasg andm such thatB5g% m as a vector space.B is
called abicross sumLie algebra in Ref. 14, and writtenB5gqm. These data define in particula

in action ofg on m, a:g^ m→
@ ,#B

g% m�m, and an action ofm on g, b:m^ g→
@ ,#B

g% m�g. For x
Pg andmPm, we writeax :m→m, ax(m)5a(x^ m), and likewisebm(x)5b(x^ m).

Let G5g›m* be the semi-direct sum ofg with an Abelian idealm* , whereg acts onm* via
the dual of the actiona:^ax* ( f ),m&52^ f ,ax(m)&, for xPg, mPm, f Pm* , and ^,& is the
natural pairing.

There is a canonical Lie bialgebra structure onG such that, if$ja% and$ja% are dual basis of
m andm* , respectively, the coproduct is given by

dGx5bja
* ~x!`ja, dGf 5^ f ,@ja , jb#B&ja

^ jb

where xPg�g›m* , and f Pm*�g›m* . This Lie bialgebra is called abicross sumLie
biagebra,14 and is writtengYm* . Clearly, if we write (gYm* ,d) as ~G, G* !, we have

G.g›m* , G* .g*’m.

Its structure is better seen in coordinates. Let$xi% be a basis ofg, andmi j
k , mab

c , a ia
b , and

b ia
j be the tensors such that the Lie algebra structure ofB5gqm is given by

@xi , xj #B5mi j
k xk , @ja , jb#B5mab

c jc , @xi , ja#B5a ia
c jc2bai

k xk .

ThengYm* is the Lie bialgebra with underlying vector spaceg% m* and structure maps

@xi , xj #G5mi j
k xk , @xi , ja#G52a ic

a jc, @ja, jb#G50,

dGxi52bai
k xk`ja, dGjc5mab

c ja
^ jb.

Example:The most interesting example we can expect in dimension 3 should arise froB
5sl2(k), which is the least Abelian we can find (so3 is not a bicross sum!. Let $F,H,E% be the
standard basis ofsl2 , andg, m be subalgebras suchB5g% m. Let us choose dimg52. Up to
isomorphism,g is a Borel subalgebra; we chooseg5span$H,E%. Thenm is an arbitrary~one-
dimensional! complement ofg. Let $x05H,x15E% be a basis ofg and$j25F1aH1bE% be a
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basis ofm (a,bPk, and the labeling is for convenience!. Finally, lete05x0 , e15x1 , e25j2 be
a basis ofG5g›m* . One finds that the bicross sum Lie bialgebra structure onG is given by

@e0 , e1#G52e1 , @e0 , e2#G52e2 , @e1 , e2#G50,

dGe05~2ae014be1!`e2 , dGe15~e022ae1!`e2 , dGe250.

Let us takek5R. If we use the notations of Table I~Sec. IV!, thenG.r3(1) ~the Lie algebra of
dilatations and translations of the Euclidean plane!. The dual Lie algebraG* has a two-
dimensional Abelian ideal~spanned by the dual vectorse0 ande1), and the remaining generato
(e2) acts on it via the 232 traceless matrix

S 2a 4b

1 22a D
whose eigenvalues satisfyl254(a21b). Therefore,~i! if a21b50,G* .n3 ~the Heisenberg
algebra!. ~ii ! If a21b.0,G* .r(21) ~the pseudo-Euclidian Lie algebra!. ~iii ! If a21b,0,G*
.s3(0)5e(2) ~the Euclidian Lie algebra!. These Lie bialgebras, in fact, do not carry any essen
parameters. After a suitable redefinition of the generators, they correspond to the Lie bial
10, 11, and 118 of Table III, respectively. Their Drinfel’d double issl2›ad*R3. It happens,
however, that the most interesting examples of three-dimensional Lie bialgebras~g, g* ! such that
both g andg* are solvable are not of this kind@they are probably the families 7 and 16 in Tab
III, whose double is~semi!-simple#.

III. THREE-DIMENSIONAL LIE BIALGEBRAS OVER R AND C

In this section we classify the three-dimensional Lie bialgebras~g, d! over k ~which still
denotes a field which can be eitherR or C!. We first try to give their general structure, forgettin
about the fact that they are coboundary or not, or thatg is simple or solvable, but have to trea
separately the Heisenberg Lie algebran3(k) which is nilpotent. We do not consider Abelian Li
algebras or trivial coproducts. The notations are that of Sec. IV.

Three-dimensional Lie algebras:Their ~well-known! classification overk5R,C is presented
in Sec. IV~Table I!. To give a feeling of it, we recall the main lines of this classification~for more
details, see, e.g., Refs. 19 and 4!.

One starts to show that any three-dimensional Lie algebrag over k has a basis$e0 ,e1 ,e2%
such that@by convention, the indexi in the remaining of this section isalways1 or 2 ~not 0!#

@e0 ,ei #5Xei , XPM2~k!, i 51,2,
~14!

@e1 ,e2#5ae0 , aPk,

wherea andX have to satisfy

a tr~X!50. ~15!

In particular,g is simple iff tr(X)50 anda det(X)Þ0; it is solvable otherwise.
Moreover, considering the transformationse0°e085le0 , ei°ei85L i

kek@lPkx,L
PGL2(k)#, one getsX°lL21XL and a°al21 detL. Thus X can be assumed to have
projective Jordan form overk.

It is then easy to see~by a relabeling of the basis elements! that if g is solvable and non-
nilpotent, one can always assume~we shall! thata50 and thatX is a non-nilpotent matrix, while
if g is nilpotent, one can always assume thatX50.

Three-dimensional Lie bialgebras:The results of this section can be summarized as follo
@the notationX`Y is defined in~1!#:

Proposition 5:
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~i! Let g1 ,g2 be non-nilpotent3-D Lie algebras over k, defined as in~14! by a1 ,X1 and
a2 ,X2 , respectively. Ifa1a250, @X1 , X2#50 and X1`X250, then there exists a Manin
triple (d,g1 ,g2).

~ii ! Let s be simple. There exists a Manin triple~d, s, g! iff g.r3(1,k).
~iii ! There exists a Manin triple(d,n3 ,g) iff g is solvable.

The only exceptions to the converse of statement~i! are the Manin triples„d,r38(1),r3(21)…
and„d,r38(1),s3(0)… ~for variousd!, which satisfya1a250, X1`X250 but @X1 ,X2#Þ0. See the
Lie bialgebras 8, 14, and 148 in Table III of Sec. IV.
Note some very particular aspects of the3-D case:Let us call

V5
def

k^e1 ,e2&.

One has dim̀ 2V51, and ifAPEndk(V)5M2(k), then for allv,v8PV,

Av`v81v`Av85tr~A!v`v8,
~16!

Av`Av85det~A!v`v8.

For A,BPEndk(V), A`B can be identified with a number. For instance,A`A5det(A), and if A
is invertible, then

A`B5 1
2 det~A!tr~A21B!. ~17!

Finally, for g defined as in~14!, `3g5ke0`e1`e2 is g-invariant iff tr(X)50.
Most of the ingredients for the classification of 3-D Lie bialgebras overk are contained in the

following:
Lemma 4: Letg be a non-nilpotent three-dimensional Lie algebra defined as in (14).
(a) The most general mapdPZ1(g,`2g) admits the decompositiond5d01d11d2 where

d0e050, d2e05be1`e2 , bPk,

d0ei5e0`Yei , d2ei50, YPM2~k!,
~18!

and d1 is inner, i.e., d15dx, x5e0`v for somevPV. The parameters$a,X;b,Y% have to
satisfy

@X, Y#50, X`Y50, ab50. ~19!

(b) Let gPk be defined byv`@e0 , v#5ge1`e2 . Then, d as above is Lie iff

b tr~Y!2g tr~X!50. ~20!

Proof: ~a! The most general linear mapd:g→`2g can be written

de05e0`w1be1`e2 , wPV,bPk,

dei5e0`Yei1j ie1`e2 , YPM2~k!,j iPk.

The cocycle condition splits into two conditions forb andY:

@X, Y#5ab id,

Xei`Yej5Xej`Yei ,
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which exactly mean~19!, and one condition betweenw andj. Let us callf the 1-cocycle defined
by f (e0)5e0`w, f (ei)5j ie1`e2 . The claim is that ifg is not nilpotent,f is inner, i.e., of the
form f 5dx (x5e0`vP`2g). Wheng is simple, it is clear by the first Whitehead’s Lemm
Wheng is solvable and not nilpotent~we then assume thata50 andX is not nilpotent!, assume
first that det(X)Þ0. One can writef 5 f 81dx where x5e0`(X21w) and f 8 is defined by
f 8(e0)50, f 8(ei)5j i8e1`e2 . The cocycle condition forf 8 is thenjk8Xi

k5tr(X)j i8 , which leads
to j i850, i.e., f 850. If det(X)50 andX is non-nilpotent, thenX;diag(1,0) and one can check th
claim by a direct computation.~The caseg nilpotent is discarded in the proposition precisely f
the reason that the cocyclef can be outer in this case and this makes the discussion more
plicated.!

~b! Set d̃5d01d2 , x5e0`v @~18!# such thatd5 d̃1dx. One easily obtains

Jacd̃~e0!5btr~Y!e0`e1e2 ,

Jacd̃~ei !50,

vx, x b5e0`v`@e0 , v#5
def

ge0`e1`e2 ,

(
c.p.

~ d̃ ^ id!~x!50.

For anyxPg, one has@~8!# Jacd(x)5Jacd̃(x)1x•$2vx, x b1(c.p.( d̃ ^ id)(x)%. Hence, Jacd(ei)
50 and the co-Jacobic identity is fulfilled iff Jacd(e0)5btr(Y)e0`e1`e21e0•$2ge0`e1

`e2%5„btr(Y)2gtr(X)…e0`e1`e250, which proves~20!. h

Remarks:

~i! The decompositiond5d01d11d2 is relevant wheng is solvable: in this case,g5g(X) is
Z-graded byg05ke0 , g15V, andd i is a map of degreei, i.e., d(gk),(`2g)k1 i .

~ii ! When tr (X)Þ0 ~thena50 andg is solvable!, d2 is exact, and a more appropriate deco
position ofd is d5d01dx8 wherex85e0`v1@1/tr(X)#be1`e2 . By Proposition 3, since
(`3g)g50, one has an isomorphismd(g,d).d(g,d0) and the isomorphism class ofd~g, d!
depends only on the matricesX andY. The description of these doubles is given in Lemm
5. Moreover, it is easy to see that if bothX andY are non-nilpotent matrices, which is th
most interesting case, then~g, d! is not a bicross sum Lie bialgebra.

~iii ! Wheng is solvable, not nilpotent, the cohomology groupH1(g,`2g) is parametrized by
the space of matricesY satisfying~19! if tr( X)Þ0, and byY andb if tr( X)50.

~iv! g50 if and only if v is an eigenvector ofX.
~v! Let g be solvable (a50) and let cPV. According to ~7! and ~3!, one has d

;Ad exp (c)x d5d1dw, where w5dc1 1
2c•dc. One easily computesw5e0

`Yc mod `2V. Therefore the nilpotent inner automorphism Ad exp(c)(cPV) induces on
the parameters involved ind the transformations

Y°Y, v°v1Yc, ~21!

and one can always assume thatvPV2Im(Y). The transformation ofb is more complicated and
will be treated case by case.

Solutions of~19!: Let V be a vector space overk with basis^e1 ,...,en&, andX andY be two
endomorphisms ofV satisfying

@X, Y#50, ~22!

X`Y50. ~23!
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Call S the set of solutions$X,Y%X,YPgl(v) of ~22! and ~23!. APGL(V) acts in S by
$X,Y%°$AXA21,AYA21%. Note that if$X,Y%PS, then,;l, mPk, $Y,X% and$lX,mY% belong
to S. Moreover,$X,0% and$0,Y% are trivial solutions.

Out of a solution$X,Y%PS one can build a (n11)-dimensional Lie bialgebra~g, d! with
basis^e0 ,e1 ,...,en& such that

@e0 , ei #5Xi
kek , dei5le0`Yi

kek , lPk3, ~24!

together with@ei ,ej #50 (i , j >1), de050. @In ~24!, X andY are thought of as normalized; th
scalinge0°e085(1/a)e0 , aPk3, induces only$X,Y%°$1/aX,aY%, and the two matrices can
not be rescaled independently in general.#

Lemma 5: For V5R2, any nontrivial solution$X,Y% of (22) and (23) is equivalent (up to
symmetry, multiplication by scalars, and change of basis) to one of the following. The Drin
doubled of the corresponding Lie bialgebra (24) is also indicated.

~1! X5S 1

r
D , Y5S 1

2r
D , H d.sl2% sl2 ~ for rÞ0!,

d.sl2% R3 ~ for r50!.

~18! X5S m 21

1 m D , Y5S 1 m

2m 1 D , d.so~1,3!.

~2! X5S 1

« 1D
e50,1

, Y5S 0

1 0D , d.sl2›ad*R3.

~3! X5S 0

1 0D , Y5S 0

1 0D , d.n5% R.

If V is the 2-D dimensional complex vector spaceC2, the nonequivalent solutions are1 ~with r
PC), 2, and 3.

For the pair 2 the scalar product onsl2›ad*R3 is given by the natural pairing onsl2^ R3,
and its restriction tosl2^ sl2 is equal to(e2/l2)ksl2

whereksl2
is the Killing form onsl2 . The

nilpotent symmetric Lie algebran5 is described in the proof (28).
Proof: ~a! Nonequivalent pairs: since dim̀2V51, one can identifyX`Y with a number.

Assume first that det(X)Þ0. Then using the identity~17! X`Y5 1
2 det(X)tr(X21 Y), the conditions

@X,Y#50 andX`Y50 are equivalent to@X,Y#50 and tr(X21Y)50. It happens that this fixesY
uniquely~up to a scalar multiple!, except whenX5 id for which Y is any traceless matrix. In this
case, the transformations$X,Y%°$AXA21,AYA21% „APGL2(k)… preserveX(5 id) and allow
us to giveY a Jordan form of traceless matrix overk. In the remaining cases@det(X)5det(Y)
50#, the solutions are easily found.

~b! Let $e0,e1,e2% be the dual basis ofg. The Lie algebra structure ofd is given by

@e0 , ei #5Xi
kek , @e0 , ei #52Xk

i ek,
~25!

@e0, ei #52lYi
kek , @eo, ei #5lYk

i ek, and @ei , ej #52lYi
je01Xi

je0.

One deduces the Killing formk on d:

1
2k~e0 , e0!5tr~X2!, 1

2k~e0 , e0!52l tr~XY!,

~26!
1
2k~e0, e0!5l2 tr~Y2!, 1

2k~ei , ej !522l~XY! i
j , i , j P$1,2%,

and
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det~ 1
2k!54l6$tr~X2!tr~Y2!2„tr~XY!…2%• det~XY!2. ~27!

Assume first that det(X)Þ0. From Lemma 5,$X,Y% is either the pair1(rÞ0), 18, or 2, and it
happens thatX andY are not proportional. By~25!, one then gets@d, d#5d, andd is not solvable.
Using arguments in Ref. 20 on symmetric Lie algebras, one deduces that eitherd is semi-simple,
or d5s›s* for somes simple.

~i! In case1(rÞ0) and 18, det(k)Þ0, therefored is semi-simple, and can be one ofsl2
% sl2 , so3% so3 , sl2% so3 or so~1, 3!. However, the casesl2% so3 is discarded becaus
there is no invariant scalar product of signature~3, 3! on this Lie algebra. The answer the
follows by counting the dimension of the space of diagonalizable elements ind.

~ii ! In case18, det(k)50 impliesd5s›s* , ands.sl2 sinceh8e01(«/l)e0 is diagonalizable
in d. Moreover, k(h,h)54 while ^h,h&52«2/l2. Therefore, ^,& usl2

5(«2/2l2)k
5(«2/l2)ksl2

.

In the remaining cases, one can assume detX5detY50. The first possibility is the pair1 with r
50:X5Y5diag(1,0). It corresponds to a direct sum of Lie bialgebrasg5b2% R where b2 is
given a non-coboundary Lie coproduct. The double is well known to begl2% R2. In the last case
~pair 3!, setY65e07e0 , Y15e1 , Y15e1, Y25e2, Y25e2 . Then$Y1 ,Y2 ,Y1,Y2,Y1% span a
five-dimensional symmetric nilpotent subalgebra ofd denoted byn5 with relations

@Y1 , Y2#5Y1, @Y1 , Y1#5lY2, @Y2 , Y1#52lY1,
~28!

^Yi ,Yj&5d i
j , ^Y1, Y1&522l.

HereY2 is central and orthogonal ton5 in d, therefored.n5% k. Note:l can be rescaled to an
real value of the same sign and is therefore a discrete parameter~the symmetric Lie algebran5

should therefore be writtenn5,v wherev is the sign of̂ Y1,Y1&). h

The remainder of this section consists of the identification of all pairwise nonisomo
three-dimensional Lie bialgebras.

A. g is simple

That is, if k5C, g5sl2(C), and if k5R, g5sl2(R), or g5so3 . The classification is very
well known in the simple case, but we recall it for completeness.

Sinceg is simple,H1(g,`2g)50 according to the first Whitehead’s Lemma, and any
coproduct is a coboundaryd5dr, r P`2g, which has to satisfyvr , r bP(`3g)g. But `3g is a
one-dimensionalg-submodule ofg^ 3, hence trivial becauseg is simple, and there is in fact no
condition onr. To classify the nonequivalent solutions, it suffices to notice that`2g is isomorphic
to g as ag-module: the isomorphism is given by the multiplication mapm:`2g→g, m(a`b)
5@a, b#, and it gives a 1–1 correspondence between the orbits of Autg in these two spaces. Th
forms of these orbits depend on the fieldk.

For g5sl2(R), they are~in the notations of Sec. IV, Table I!

m~r !5
1

2
lS 1

21D 5le0 , i.e., r 5le1`e2 ~ vr , r b51l2e0`e1`e2!.

m~r !5lS 1

21 D 5l~e12e2!, i.e., r 5le0`~e11e2! ~ vr , r b522l2e0`e1`e2!.

m~r !5S 0 1

0 0D 5e1 , i.e., r 5e0`e1 ~ it is triangular!,

wherelPR3 is a parameter.
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The Drinfel’d doubled(sl2 ,dr) corresponding to the first twor-matrices can be obtained b
Proposition 4: Lett5e0^ e01e1^ e21e2^ e1P(S2g)g; it satisfiesv t, t b52e0`e1`e2 , there-
fore d.sl2% sl2 for the first r-matrix, while for the secondd.(sl2(C))R.so(1,3). Finally d
.sl2›ad*R3 in the triangular case by Proposition 3~ii !.

For g5so3 , the orbits of Autg in g are all of the formm(r )5le0 , which corresponds to
r 5le1`e2 . It satisfiesvr , r b51l2e0`e1`e2 . Sett5e0^ e01e1^ e11e2^ e2P(S2g)g; it sat-
isfies v t, t b51e0`e1`e2 . Therefored.so(1,3) by Proposition 4~ii !.

For sl2(C), the nonequivalent solutions are given, e.g., in Ref. 13. In all cases,g* is of course
given the structure of a solvable Lie algebra; it happens to be isomorphic tor3(1,k) for all
solutions.

B. g is solvable, non-nilpotent

We still assume thata50 andX is a non-nilpotent projective Jordan matrix overk. We recall
that the group of automorphisms ofg5g(X) consists of the transformations$e0 ,ei%°$e0

2c,Aei%, whereAPGL2(k) commutes withX, and cPV ~in particular,e0 is defined ‘‘up to
V’’ !, and when tr(X)50, there is the additional involution$e0 ,e1 ,e2%°$2e0 ,e2 ,e1%.

All possible cases are covered by the following hypothesis, which do not intersect~the nota-
tions are those of Lemma 4!:

Hypothesis 1:det (Y)Þ0.
From the list in Lemma 5 and the notation~31!, the pair $X,Y% is $A(r) ,lA(2r)%(rÞ0),

$B(m) ,lB(21/m)%, or $A(1) ,lB(0)%, wherelPk3 cannot be rescaled~the last pair is a limit of the
second whenm→`).

Then, by~21!, there exists a gauge in whichx5e0`v50. In this gauge,g50, andd5d0 is
Lie iff b tr(Y)50 by ~20!. Hence, we have the following.

~i! tr(Y)Þ0: b50 is forced. This givesde050, dei5e0`Yei . The matrixY contains an
overall essential parameterlPk3 ~it cannot be rescaled!. g* is solvable and defined by th
transpose matrix ofY. The pair ~g, g* ) is then „r3(r),r3(2r)…, „s3(m),s3(11/m)…, or
„r3(1),s3(0)….

~ii ! tr(Y)50:b is free. This can happen only whenX5A(1)5 id andY5lA(21) or lB(0) . If
bÞ0 ~then it can be rescaled to any nonzero value!, g* is simple.

Hypothesis 2:det(Y)50 andY is not nilpotent.
This happens whenX5diag(1,0)5A(0) @g is the direct sumg5b2(k) % k#, and thenY5lX.

One can check that it can be included in the previous case: Assumingv5v2e2PV2Im(Y), one
gets @e0 ,v#5v. Thereforeg50, and ~19! forces b50. This givesde05de250, de15(le0

1v2e2)`e1 . The ~outer! redefinitione0→e01(v2 /l)e2 shows thatx can be absorbed andd is
equivalent tod0 . ~g, d! is, in fact, a direct sum of Lie bialgebras.

Hypothesis 3: Yis nilpotent,YÞ0.
This happens when

X5S 1

« 1D and Y5lS 0

1 0D ,

wherelÞ0, and«50 for g5r3(1,k) and«51 for g5r38(1,k).
Here tr(Y)50, and the remaining condition~19! b tr(Y)2g tr(X)50 implies thatg50, i.e.,

v is an eigenvector ofX. One can assume thatvPV2Im(Y), and that isv5je1(jPk); it is an
eigenvector ofX iff «j50. The parameterb is free.

The nonequivalent Lie coproducts are then as follows.
~i! Independently of«,

de05be1`e2 , de15le0`e2 , de250.
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Hereg* is solvable and is defined by the matrix (l
0

0
b). Hence, we have the following.

~a! Whenb50, g* .n3(k).
~b! When bÞ0 andk5R, theng* is isomorphic tor3(21) @resp.s3(0)# if lb.0 ~resp. if

lb,0). WhenbÞ0 andk5C, g* .r3(21)C .

Parameters: Under the rescalingei°ei85s iei ~where s15s2 if «51), one hasb°b8
5b/s1s2 andl°l85ls1 /s2 . Therefore, if«50, bothl andb can be rescaled to any nonze
valuesl8 and b8 such that sign(l8b8)5sign(l/b). If «51, l is a parameter andb can be
rescaled to any value of the same sign.~Whenk5C, the sign considerations disappear.!
~ii ! When«50 @g5r3(1) only#, j is free, and we assumejÞ0. The whole coboundary part ofd
is r 5je0`e11be1`e2 , which is equivalent~by a redefinition ofe0) to r 5je0`e1 . Here d
5d01dr is given explicitly by

de05je1`e0 ,

de15le0`e2 : g* .sl2~k! ~Jordanianr -matrix!,

de251je1`e2 .

Herej andl can be rescaled arbitrarily since on the dual point of view there is no parame
Hypothesis 4: Y50.
b is free and the only condition isg tr(X)50. Moreover, under the redefinitione0°e0

2c(cPV), one hasv°v and

be1`e2°be1`e21tr~X!v`c. ~29!

Hence, we have the following.
~i! tr(X)Þ0: d5dr is a coboundary withr 5e0`v1@b/tr(X)#e1`e2 . The only condition is

g50, i.e.,v is an eigenvector ofX, and one can assume by~29! that eitherv50 or b50.

~a! v50: de05be1`e2 , dei50 and g* .n3(k). Under the automorphismei°Aei @A
PGL2(k) commutes withX# one hasb°b85det (A)21 b. Therefore,b can be rescaled to
any nonzero value ifX5A(r) , and any nonzero value of the same sign ifX5A(1)8 or X
5B(m) .

~b! vÞ0: ThenX must be triangularizable. WritingX5(«
l1

l2
) ~where«[0 if l1Þl2), one gets

r 5e0`ei ~wherei 51 or 2 if «50, the two possibilities being equivalent iffl256l1 , and
i 52 if «Þ0). Explicitly,

de05l ie0`ei ,

dei50, g* .r3S 2
l i

l j
D ,

dej52l jej`ei ~ iÞ j !.

~ii ! tr(X)50: SinceX is not nilpotent,X is similar either to (1 21) and theng5r3„21,k…, or,
for k5R, to (1

0
0
21) and theng5s3(0).

d is coboundary iffb50. It is invariant under the automorphisms of the forme0→e02c.
Under the remaining automorphisms$e0 ,ei%°$e0 ,Aei% one hasb°(detA)b,v°Av. The non-
equivalent solutions are listed in Table III, Sec. IV.

Note that forg5r3(21), r 15e0`e1 is triangular whiler 25e0`(e11e2) satisfiesvr 2 ,r 2b
Þ0. Therefore, these twor-matrices are not equivalent. The solution corresponding to the se
one was missing in Ref. 4.
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Doubles: When tr(X)Þ0, (`3g)g is trivial, and d(g,dr).s›g* by Proposition 3. When
tr(X)50, one can deduced by dualization when the corresponding Manin triple has already b
found in the opposite sens. The only case which cannot be deduced in this way is forg5s3(0) and
de05be1`e2 , dei50 (bÞ0 can be rescaled to any value of the same sign!. A direct compu-
tation shows thatd is isomorphic to the double extension20,4 of R4 by R via the derivation~in the
basis$e1 ,e1,e2 ,e2%)

d5S 0 2A

A 0 D where A5S 1 b

0 1D . ~30!

Hered is a real form ofr38(1)C›ad*C3 and is calledr6 in the list.

C. g is nilpotent

Then, up to isomorphism,g5n3(k) has a basis$e1 ,e2 ,e0% such that@e1 ,e2#5e0 ,e0 is cen-
tral. Since$e1 ,e2% generateg as a Lie algebra,dPZ1(g,`g

2) is uniquely defined by its values o
e1 ande2 . Writing

dei5e0`Zei1j ie1`e2 , ZPM2~k!, j iPk,

one getsde05(j2e12j1e2)`e0 , and d is automatically a one-cocycle$i.e., d(@ei ,@e1 ,e2##)
50%.

All possible solutions can be classified as in the preceding paragraph. However, the onl
that cannot be obtained by dualizing the solutions already found are those for whichg.g*
.n3 , and we will only check whether this can happen. In this case, one must havej15j250
~otherwise the relationsdei5j ie1`e2 are not nilpotent ing* !, andZ must be nilpotent. Under the
~outer! automorphisms ofn3(k) of the form $ei→Aei ,e0→(detA)e0; APGL2(k)%, one has
Z°(detA)A21ZA, therefore one can assume thatZ5l(1

0
0), which gives the unique solution. I

corresponds, with a suitable renaming of the generators, to the Lie bialgebra of Lemma 5
$X,Y% is the pair 3.

Note finally that the unique nontrivialr-matrix of n3(k) is r 5e1`e2 , which satisfies the
mCYBE vr , r b5e1`e2`e0 , and theng* .r3(1,k).

IV. TABLES

A. Three-dimensional Lie algebras over R

Let A(r) , A(1)8 and B(m) be the projective 232 ~non-nilpotent! Jordan matrices overR de-
fined by

A~r!5S 1

r
D

21<r<1

, A~1!8 5S 1

1 1D , B~m!5S m 21

1 m D
m>0

. ~31!

Note that in the limitm→`, B(`);A(1) .

The isomorphism classes of real Lie algebras in dimension 2 and 3 are listed in Ta
~including direct sums but not the Abelian ones!. In this table, the indexi can take the values 1 o
2, andn is the ~unique! maximal nilpotent ideal ofg.

B. Two- and three-dimensional Lie bialgebras

The ~isomorphism classes of! real Lie bialgebras~g, d! in dimensions 2 and 3 are listed i
Tables II and III, respectively. For each isomorphism class of real Lie algebrag, the nonequivalent
coproductsd are presented under the formd5 d̃1dx @i.e., d(x)5 d̃(x)1@x^ 111^ x,x##, where
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d̃ is such thatd̃Þ0 implies@ d̃#Þ0. Therefore, the coboundary Lie bialgebras are precisely th
for which d̃50 @there is, however, an exception, see the note~iv! below#. d̃ andx are givenin a
fixed gaugewhere they have a simple form. The set of Lie coproducts ong equivalent to a given
d is Autgxd5$(f ^ f)+d+f21ufPAutg%.

A Lie bialgebra~g, d! such thatg* does not belong to the same family of Lie algebras ag
appears twice in the list: once in the sense~g, g* ! ~→ labeled byn!, and once in the sense~g* , g!
@→ labeled by~n!#.

Except otherwise stated, the scalar product ong›ad*Rdimg is the natural pairingg^ g* →R,
i.e., bothg and the Abelian ideal~isomorphic tog* as ag-module! are understood to be isotropic

C. Notes for Table III

~i! By convention~and except otherwise stated! a, b, l, v are nonzero real numbers;a, b can
be rescaled~by an appropriateg-automorphism! to arbitrary nonzero value,v can be
rescaled to any nonzero valueof the same sign, andl is an essential parameter.

~ii ! The symmetric solvable Lie algebrasn5 andr6 which appear in the list are defined in~28!
and ~30!, respectively.

~iii ! In the last row,Z is any 232 ~Jordan! matrix overR.
~iv! Although it is not stressed in the list, the Lie bialgebra 5 forr51 „r3(1),n3… is cobound-

ary in both directions; in the sense„n3 ,r3(1)…, one hasd5dr with r 5e1`e2 which is not
quasi-triangular (vr , r b5e0`e1`e2Þ0). It corresponds to the matrixZ5 id. For obvious
reasons of clarity, we did not separate this case from the others in the table.

~v! For the Lie bialgebras 13, 14, and 14, the scalar product ond.sl2›ad*R3 is given by the
natural pairing onsl2^ R3, and its restriction tosl2 is equal to (1/l2)k, wherek is the
Killing form on sl2 .

D. Other remarks

~i! The self-dual 3-D Lie bialgebras are almost trivial~they are direct sumsg5b2% k), but
there are nice families like 7,„r3(r),r3(2r)…, and 16,„s3(m),s3(1/m)…, whose com-
plexification are isomorphic ifr615(m2 i )/(m1 i ).

TABLE I. Two- and three-dimensional real Lie algebras.

dim g dim n Lie bracket Name

2 1 @e0 , e1#5e1 b2

3 3 @e1 , e2#5e0 , @e0 , ei #50 n3

X5A(r) :r3(r)
3 2 @e0 , ei #5Xei , @e1 , e2#50 X5A(1)8 :r38(1)

X5B(m) :s3(m)

3 0 @e0 , ei #5Xei , @e1 , e2#5e0 X5A(21) :sl2(R)
X5B(0) :so3

TABLE II. Two-dimensional real Lie bialgebras.

g5b2 : @e0 , e1#5e1 Twist ~x! d̃ g* Double

e0`e1 0 g* .g b2›ad*R2

¯ d̃e050, g* .g gl2

d̃e15le0`e1
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~ii ! The only factorizable 3-D Lie bialgebra issl2 with its Drinfel’d–Jimbor-matrix. All other
coboundary 3-D Lie bialgebras are either triangular, or even not quasi-triangular@in the
case of note~iv! above#.

~iii ! About quantization: The quantization of the Borel subalgebra ofsl2 was achieved by O.
Ogievetsky.21 For sl2 itself and so3 it is well known, and most of the quantizations o

TABLE III. Three-dimensional real Lie bialgebras.

g Twist ~x! d̃ g* Double No.

sl2 le1`e2 ¯ r3(1) sl2% sl2 1
le0`(e11e2) ¯ 9 so~1,3! 2
e0`e1 ¯ 9 sl2›ad*R3 3

so3 le1`e2 ¯ r3(1) so~1,3! 4

r3(r) e1`e2 (r11Þ0) ¯ n3 r3(r)›ad*R3 5
e0`ei ( i 51,2) ¯ r3(2r) 9 6
¯ d̃ei5le0

`A(2r)ei

r3(2r) H rÞ0:sl2% sl2
r50:sl2% R3

7

(r521) ¯ d̃e05e1`e2
n3 r38(1)›ad*R3 58

ae0`e1 9 r38(1) 9 8
ae0`(e11le2) 9 r38(1) sl2›ad*R3 ~14!
ae0`(e11be2) ¯ r3(1) 9 ~11!

(r511) ae1`e2 d̃ei5le0

`A(21)ei

sl2 sl2% sl2 ~1!

ce1`e2 d̃ei5le0

`B(0)ei
Hvl.0:sl2

vl,0:so3

so~1,3! ~2!

9 ~4!

¯ 9 s3(0) 9 9
¯ d̃e15e0`e2

n3 sl2›ad*R3 10

ve1`e2 9 Hv.0:r3~21!
v,0:s3~0!

9 H11
1189

ae0`e1 9 sl2 9 ~3!

r38(1) ve1`e2 ¯ n3 r38(1)›ad*R3 12
e0`e2 ¯ r3(21) 9 ~8!
¯ d̃e15le0`e2

n3 sl2›ad*R3 13

ve1`e2 9 Hvl.0:r3~21!
vl,0:s~0!

9 H14
148

s3(m) ve1`e2 (mÞ0) ¯ n3 s3(m)›ad*R3 15
¯ d̃ei5le0

`B(21/m)ei

s3S 1

m D so~1,3! 16

(m50) ¯ d̃ei5le0

`A(1)ei

r3(1) so~1,3! ~9!

¯ d̃e05ve1`e2
n3 r6 158

e0`e1 ¯ r3(1) sl2›ad*R3 (118)
ae0`e1 d̃e05le1`e2

r38(1) 9 (148)

n3 ¯

d̃e15e0`Zei

( i 51,2) Hr3~r!

r38~1!

s3~m!
n3

(5 – 58)

~12!

~15!

n5% R 17

Hd̃e25e1`~e21le0 !

d̃ e05e1`e0

lÞ0:r38~1!

l50:r3~1!

~13!
~10!
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e(2)5r(21) are presented in Ref. 12~some—11 and 14—are missing, however!. For the
Heisenberg algebran3 , a standard quantization is known~Ref. 14, §3.1!, which corre-
sponds to the Lie bialgebra 5 in the list forr51. To the best of our knowledge, all othe
Lie bialgebras do not yet have a quantization~existence is guaranteed by Ref. 9!.

E. Note on the complex case

The non-nilpotent 232 Jordan matrices overC areA(r) , with rPD whereD is the unit disc
with the upper and lower boundaries identified, andA(1)8 . Indeed, one has the similarity overC:

B~m!;A~~m2 i !/~m1 i !! . ~32!

Thus, to get the classification overC, one has to allow all parameters to be complex numbers~a,
b, v can be rescaled to 1,lPC3 and rPD), forget about the sign prescriptions, and take in
account ~32!, i.e., isomorphisms (so3)C.sl2(C), s3(m)C.r3„(m2 i )/(m1 i )…C , where gC8g
^ RC. Note finally that whenr is neither real nor on the unit circle, the complex solvable
algebrar3(r) is not the complexification of some real Lie algebra.
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On the dimension of the global attractor for a damped
semilinear wave equation with critical exponent
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We obtain in this paper a precise estimate of upper bound of the Hausdorff dimen-
sion of the global attractor for a damped semilinear wave equation with critical
exponent. The obtained Hausdorff dimension decreases as the damping grows and
is uniformly bounded for large damping, which conforms to physical intuition. The
obtained results generalize and correct the corresponding results obtained by Zhou
recently. © 2000 American Institute of Physics.@S0022-2488~00!04705-8#

I. INTRODUCTION

For a bounded regular domainV,R3, we consider the problem

utt1aut2Du1 f ~u!50, xPV, tPR1,

u50 on ]V3R1, ~1!

u~•,0!5u0, ut~•,0!5u1.

Hereu5u(x,t), a.0, and the functionf PC2(R) satisfies the following dissipation and grow
conditions,

~F1! lim
uzu→`

inf
f ~z!

z
.2l1 ,

wherel1 is the optimal constant in the Poincare inequality

uDuu2
2>l1uuu2

2 for all uPH0
1~V!.

Here we denote byu•uq the standard norm on the spaceLq(V).
Let H(s)5*0

s f (r ) dr. There is a positive constantc1 andc2 such that

~F2! lim
usu→`

inf
s f~s!2c1H~s!

s2 >0,

~F3! u f 9~s!u<c2~11usum!, 0,m<1.

For the system~1! with conditions (F1) – (F3) where 0,m,1, Temam1 showed that the
continuous semigroup onE5H0

1(V)3L2(V) associated by~1! possesses a global attractor inE
and gave an upper bound of the Hausdorff dimension of the attractor. Arrieta, Carvalho, and2

generalized Temam’s results on the existence of a global attractor to the critical case (m51) ~also
see Ref. 3!. Then Huang4 gave an upper bound of the Hausdorff dimension of the global attra
in the critical case.

a!Electronic mail: stshyu@zsu.edu.cn
49570022-2488/2000/41(7)/4957/10/$17.00 © 2000 American Institute of Physics
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But the upper bound of the dimension of the attractor obtained by Temam and Huan
proportional to the damping coefficienta for a>A2l1 and tend to infinity asa→1`. This is
obviously not precise in the physical sense. Recently, Zhou5 obtained a more strict upper bound
the Hausdorff dimension of the global attractor for system~1! with 0,m,1. The obtained bound
decreases as the damping coefficienta grows and is uniformly bounded for largea, which
conforms to physical intuition. But the proof of the main results of Thorem 1 in Zhou, which g
an upper bound of the global attractor, is not true. He made a mistake in the inequality~35! in p.
1438. So, up to now we are not sure whether his results on the upper bound for the global a
hold or not.

In this paper, we shall consider system~1! with (F1) – (F3) which includes the critical case
and covers the system discussed by Zhou. An upper bound of the Hausdorff dimension
global attractor will be given. The obtained Hausdorff dimension conforms to physical intu
That is, it decreases as the damping coefficienta grows and is uniformly bound for largea. The
results also correct the main results in Zhou.

For the noncritical case, the global attractor is in fact a uniformly bounded set inE1

5H2(V)ùH0
1(V)3H0

1(V). This provides us a relatively easy way to estimate the upper bo
of the attractor. However, for the critical case, we only know that the corresponding g
attractor is bounded inE. So we have to deal with it in a completely different way. The idea h
is to decompose the system as a compact pertubation of a contraction semigroup.

Lemma 1: Under the assumption(F1) and (F3), the nonlinearity f can be decomposed
f 5 f 01 f 1 with f0PC2(R1), f 1PC1(R1) and

z f0~z!>0 for all z, ~2!

u f 09~z!u<c~11uzu! for all z, ~3!

u f 18~z!u<c~11uzu22m! with m.0 and for all z, ~4!

lim
uzu→`

inf
f 1~z!

z
.2l1 . ~5!

Proof: See lemma 1.2 in Ref. 2.
The main result in this paper is the following.
Theorem 1: If the function f(u) satisfies conditions (2)–(5) with f08(0)50, then for anya

>a0.0, the Hausdorff dimensiondimH(A) of the global attractorA of system (1) satisfies

dimH~A!<minH lU l PN,
1

l (
j 51

l

l j
s21<

2l1a2

k1
2Aa214l1~a1Aa214l1!

J
<minH lU l PN,

1

l (
j 51

l

l j
s21<

2l1a0
2

k1
2Aa0

214l1~a01Aa0
214l1!

J .

where$l j% j PN :0,l1<l2<¯<lm<¯ , are the eigenvalues of operator2D with the Dirichlet
boundary condition onV, 0,s,1 is a constant only depending onm, and k15k1(a0) is a
positive constant.

From Theorem 1, the upper bound of dimH(A) is a decreasing function ofa and remains
small for large dampinga because

h~a!5
2l1a2

k1
2Aa214l1~a1Aa214l1!

increases asa grows and
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lim
l→1`

1

l (
j 51

l

l j
s2150, lim

a→1`

h~a!5
l1

k1
2 .

II. PRELIMINARIES

Throughout this paper,u•up and i•iq will denote the usual norms inLp(V) and H0
q(V),

respectively.
It is well known that the solution of system~1! generates a continuous semigroupT(t), t

>0, onE5H0
1(V)3L2(V), andT(t) possesses a global attractor. See Ref. 2 for details.

It is also known that the operatorA52D, D(A)5E15H2(V)3H0
1(V), is a self-adjoint

positive linear operator and its eigenvalues$l j% j PN satisfy

0,l1<l2<¯<ln<¯ , ln→`.

We make use of the spacesV2d5D(Ad) (d.0). The inner product inV2d is defined by

~u,v !5~Adu,Adv !.

Here (•,•) denotes the usual inner product inL2(V). We have included the relation

H0
d~V!,Vd,Hd~V!.

In particular,V15H0
1(V). See Ref. 6.

We reduce~1! to an evolution equation of the first order in time. Letw5(u,v)T, v5u̇
1«u, where« is chosen as

«5
l1a

a214l1

. ~6!

Then ~1! can be rewritten as

ẇ1Lw5G~w!, w~0!5~u0,u11«u0!T, ~7!

where

G~w!5S 0
2 f ~u! D , L5S «I 2I

A2«~a2«!I ~a2«!I
D . ~8!

It is easy to see that the semigroupT«(t) defined by~7! has the following relation withT(t):

T«~ t !5R«T~ t !R2« .

HereR« is an isomorphism ofR,

R« :$a,b%→$a,b1«a%.

So, a setA in E is the global attractor if and only ifR«A is the global attractor ofT«(t) and they
have the same dimension. Therefore, we consider the equivalent system~7! instead of system~1!.

Lemma 2: For anyw5(u,v)TPE,

~Lw,w!>suwuE
21

a

2
uvu2

2 ,

where
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s5
l1a

Aa214l1~a1Aa214l1!
.

Proof: See Lemma 1 in Ref. 5.
Lemma 3: Let fPC2(R) be a functon satisfying(F1) and (F3). For a fixed d.0 small,

denote

L~d,G!52 inf
zPR1

H l12d

2
z21G~z!J ,

where G(z)5*0
z f (s) ds. Observe that L(d,G) is finite for d sufficiently small in view of(F1).

Proof: See Lemma 1 in Ref. 7.
We now supposea>a0.0. By Lemma 3, similar to the arguments in Ref. 5, we can obt

that the bound of the global attractor of system~7! depends only on the constanta0 . That is, we
have the following.

Lemma 4: Under the assumptions(F1) – (F3), let the damping coefficienta satisfya>a0

.0. The global attractorA« is included in a ball B0 in E, centered at 0, and the radius of B0

depends only ona0 , not on« anda.
By Lemma 4 and a simple calculation, we can deduce the following.
Lemma 5: Under the assumptions(F1) – (F3), for any initial dataw0PE with uw0uE<r , there

is a constant c(r ), not depending ona, such that

aE
0

1`

uu~ t !u2
2 dt<c~r !.

For uPH0
1(V), we define

f e~u!~x!5 f „u~x!….

Proposition 1: Let f satisfy(F1) and (F3). We have
(1) fe : H0

1(V)→L2(V) is locally Lischitz and Frechet differentiable. Its differenti
f e8 : H0

1(V)→L„H0
1(V),L2(V)… is given by

~fe8~u!v!~x!5f8„u~x!…v~x!, for u, vPH0
1~V!.

(2) For u5u11u2 , u1PH0
1(V)5V1 , u2PV11d , 0,d, 1

2, and vPV1 , we have

ufe8~u!vu2
2<c~iu1i1

4ivi1
21~iu2i11d

4 11!ivis
2!. ~9!

Herec.0 ands5122d.
Proof: The conclusion 1 follows directly from the Holder inequality and the inclusion rela

H0
1(V),L6(V).

For 2, we observe from (F3) and the Holder inequality that

u f e8~u!vu2
25E

V
u f 8~u~x!!v~x!u2 dx

<cE
V

~„u1~x!1u2~x!…211!2v~x!2 dx

<cE
V
„u1

4~x!1u2
4~x!11…v~x!2 dx

<c„uu1u6
4uvu6

21~ uu2um
4 11!uvum8

2
…,

where m5 6/(122d) , m85 6/(114d). Thus conclusion 2 follows from the inclusio
Vl,Hl(V),Lq(V), with 1/q5 1

22 l /3, 0, l , 3
2.
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System~7! can be decomposed asw5w11w2 , w5(u, v)T, w i5(ui , v i)
T, i 51,2, with v i

5ui1«ui andw1 andw2 satifying the following two systems, respectively:

d

dt
w11Lw15F0~w1!, w1~0!5w~0!, ~10!

d

dt
w21Lw25F1~w!, w2~0!5~0, 0!T, ~11!

whereL is given by~8! and

F0~w1!5S 0
2 f 0~u1! D , F1~w!5S 0

f 0~u1!2 f 0~u11u2!2 f 1~u! D .

Here f 5 f 01 f 1 is the decomposition off given by Lemma 1.
The semigroupT«(t) generated by~7! can be decomposed asT«(t)5S«(t)1K«(t) with S«(t)

and K«(t) the corresponding solution mappings of~10! and ~11!, respectively. We remark tha
S«(t) is a strongly continuous semigroup andK«(t) in general is not.

Lemma 6: If f0 satisfies (2) and (3), then for anya.0 there are two continuous functions M
and b: R1→R1 which are independent ofa>a0.0 such that ifuw1(0)uE,r ,

uS«~ t !w1~0!uE<M ~r ! exp„2b~r !st…, ;t>0. ~12!

Here s is given by Lemma 2.
This lemma is a version of Proposition 4.1 in Ref. 2.
Proposition 2: If (2)–(5) hold and f08(0)50, then the solution mapping K«(t): E→Ed is

uniformly bounded on t anda>a0.0, where Ed5V11d3Vd , for somed.0.
Remark:Proposition 2 generalizes the results in Lemma 2 in Chap. 2 in Ref. 3.
Proof: The second equation in~11! is

u291au281Au25 f 0~u1!2 f 0~u11u2!2 f 1~u!, ~13!

whereu285] tu2 andu5u11u2 is the solution of~1!.
Taking the inner product of~13! in L2(V) by A2d(u281«u2)5A2dv2 , « is given by~6!. We

obtain

1

2

d

dt H uAd1 1/2u2u2
21uAdv2u2

212E
V
„f ~u!2 f 0~u1!…A2du2 dxJ 1«uAd1 1/2u2u2

21~a2«!uAdv2u2
2

2«~a2«!~Adu2 , Adv2!1«E
V
„f ~u!2 f 0~u1!…A2du21dxE

V
$„f 08~u11u2!2 f 08~u1!…u8

1 f 08~u1!u281 f 18~u!u8%Ad2 1/2Ad1 1/2u2 dx. ~14!

If wPE with uwu<r , we have

uT«~ t !wuE1uS«~ t !wuE1uK«~ t !wuE<c~r !

by Lemmas 4 and 6. Here and in the following, we denote byc(r ) a constant, which is only
dependent onr . It may change from time to time.

Let s be given by Lemma 2. That is,

s5
l1a

Aa214l1~a1Aa214l1!
5

Aa214l1

a1Aa214l1

«,
1

2
«,s,«.
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So,

«uAd1 1/2u2u2
21~a2«!uAdv2u2

22«~a2«!~Adu2 , Adv2!>suAd1 1/2u2u2
21S s1

a

2 D uAdv2u2
2.

~15!

If 0 ,d, 1
4, we have

E
V

u~ f ~u!2 f 0~u1!!A2du2u dx<k0~r !. ~16!

Now we estimate each term on the right-hand side in~14!. First, choosing two positive
numbersq andn such that

q

6
1

q

6
1

1

n
51,

1

qn
5

1

2
2

2d

3
,

that is,

1

q
5

1

3
1S 1

2
2

2d

3 D .

By assumption~3! and Sobolev embedding theorem, we obtain

u f 08~u1!u28uq<cu„uu1u~11uu1u!uu28u…uq

<cuu1u6u~11uu1u!u6uu28uqn

<c~r !iu1i1uAdu28u2

<c~r !iu1i1~ uAdv2u21«!,

since f 08(0)50.
Likewise, for the sameq, we also have

u„f 08~u11u2!2 f 08~u1!…u8uq<c~r !uu8u2uAd1 1/2u2u2 .

Next, for anys with 6
5,s,6/(52m) , m is given by~4!, and we have

u f 18~u!u8us<c~r !uu8u2 .

Choosingd.0 sufficiently small such that 1/q 5 5
622d/3.1/s, we find

u f 18~u!u8uq<u f 18~u!u8us<c~r !uu8u2 . ~17!

Finally, taking 1/r 5 1
22 (122d)3 512 1/q, we observe

uAd2 1/2Ad1 1/2u2ur<uAd1 1/2u2u2 .

Summarizing the above estimation inequalities, if we denote

y5
1

2
uAd1 1/2u2u2

21
1

2
uAdv2u2

21E
V
„f ~u!2 f 0~u1!…A2du2 dx1k0 ,

then
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d

dt
y~ t !1«y~ t !1auAdv2u2

2<c~r !$uu8u2uAd1 1/2u2u2
2

1iu1i1uAdv2u2uAd1 1/2u2u2uu8u2uAd1 1/2u2u21«%13«k0 ,

and

d

dt
y~ t !1

«

2
y~ t !<c~r !F uu8u21

1

a
iu1i1

2G uAd1 1/2u2u2
21c~r !uu8u21«c1~r !

<c~r !F uu8u21
1

a
iu1i1

2Gy~ t !1c~r !uu8u21«c1~r !,

for t>0.
By Gronwall inequality, we have

y~ t !<y~s!e2*s
t m(t)dt1c~r !E

s

t

uu8~j!u2e2*j
t m(t)dt dj1«c~r !E

s

t

e2*j
t m(t)dt dj, ~18!

where

m~t!5
«

2
2c~r !F uu8~t!u21

1

a
iu1i1

2G .
On the other hand, from Lemmas 5 and 6, we know

aE
0

1`

uu8~ t !u2
2 dt<c~r !,

and

iu1~ t !i1
2<M2~r !e22b(r )st<c~r !e2b(r )«t,

since 1
2«,s,«. Thus, for anyt>s>0,

E
s

t

m~t! dt5E
s

tS «

2
2c~r !F uu8~t!u21

1

a
iu1i1

2G D dt

>
«

2
~ t2s!2c~r !At2s

1

Aa
2

c~r !

a E
s

t

e2b(r )«t dt

>
«

2
~ t2s!2c~r !At2s

1

Aa
2

c~r !

ba«
.

So,

E
0

t

e2*j
t m(t)dt dj<ec(r )/ba«E

s

t

e2(~«/2!(t2j)2 „c(r )/Aa…At2j) dj

5ec(r )/ba«E
0

t

e2 ~1/2!(A«(t2j)2c(r )/A«a)21 c2(r )/2a« dj

<
4

«
ec1(r )/a«F11

c~r !

Aa«
A2pG .
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Likewise, we can estimate

E
0

t

e22*j
t m(t) dt dj<

4

«
ec1(r )/a«F11

c~r !

Aa«
A2pG .

From ~18! and the last two inequalities, we obtain, fort>0,

y~ t !<y~0!e2(~«/2! t2@c(r )/Aa#At)1 c(r )/b(r )a«1c~r !S E
0

t

uu8~t!u2
2 dt D 1/2S E

0

t

e22*j
t m(t)dtdj D 1/2

1«c~r !E
0

t

e2*j
t m(t)dt dj

<y~0!e2(~«/2! t2@c(r )/Aa#At)1 c(r )/ba«1ec1(r )/a«F11
c~r !

Aa«
A2pG 1/2

14c~r !ec1(r )/a«F11
c~r !

Aa«
A2pG .

Therefore,

lim sup
t→`

uw2~ t !uEd
< lim sup

t→`

y~ t !

<
c~r !

Aa«
ec1 /a«F11

c~r !

Aa«
A2pG 1/2

14c~r !ec1 /a«F11
c~r !

Aa«
A2pG

[M ~a!.

SinceM (a) decreases asa increases, we obtain

lim sup
t→`

uw2~ t !uEd
<M ~a0!, ;a>a0.0.

This completes the proof of Propositon~2!.

III. PROOF OF THEOREM 1

To estimate the Hausdorff dimension of the global attractorA of ~7!, we consider the first
variation equation of~7!:

C852LC1G8~c!C[F8~c!C, C~0!5~j, h!T, ~19!

whereC5(U, V)TPE, andc5(u, v)T is a solution of~2! and

G8~c!5S 0 0

2 f 8~u! 0D .

Lemma 7: The system (19) is a well-posed problem in E. The mapping T«(t) defined by (7) is
Fréchet differentiable on E, its differential at c5(u0, u11«u0)T is a linear operator on
E: (j, h)T→„U(t), V(t)…T, where(U(t), V(t))T is the solution of (19).

Proof: See Ref. 4.
Let l PN be fixed. Considerl solutonsC1 ,...,C l of ~19!. At a given timet, let Ql(t) denote

the orthogonal projecton inE onto the space spanned byC1(t),...,C l(t), and F1(t)
5(j j , h j )

TPE, j 51,...,l , be a standard orthonormal basis of the spaceQl(t)E0 . So
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Trace~F8„c~t!…+Ql~t!!5(
j 51

l

~F8„c~t!…Ql~t!F j~t!, F j~t!!5(
j 51

l

~F8„c~t!…F j~t!, F j~t!!

since

~F8„c~t!…F j~t!, F j~t!!52„LF j~t!, F j~t!…1~ f 8„u~t!…j j~t!, h j~t!!,

and

„LF j~t!, F j~t!…>s1
a

2
uh j~t!u2

2 .

On the other hand, by Lemma 6, there are a constantM.0 and a functionb:@0,1`)
→@0,1`) such that

iS«~ t !ciE0
<Me2bst, ;cPA, t>0, ~20!

and by Proposition~2!, there exists a constantk such that

iK«~ t, c!iEd
<k, ;cPA, t>0. ~21!

Here S«(t) and K«(t, •) denote the solution mappings of~10! and ~11!, respectively. Thus, by
Proposition~2!, we have

~ f 8~u!j j , h j !E0
<u f 8~u!j j u2uh j u2

<$ciS«~t!ciE0

4 ij j i2
21~ iK«~t, c!iEd

4 11!ij j is
2%1/2uh j u2

<k1$e
24bstij j i2

21ij j is
2%1/2ih j i2

<
k1

2a
$e24btij j i2

21ij j is
2%1

a

2
ih j i2

2 ,

for some constantk1.0, wheres5122d.
Finally, by lemma VI 6.3. in Ref. 1,

(
j 51

l

ij j is
2<(

j 51

l

l j
s21 .

Summing up all the above estimates, we find

TraceF8„c~t!+Ql~t!…<2 ls1
k1

2

2a H le24bt1(
j 51

l

l j
s21J ,

ql~ t ![ sup
cPA

1

t E0

t

Trace~F8„S~t!…c+Ql~t!! dt<2 ls1
k1

2l

8abt
~12e24bt!1

k1
2

2a (
j 51

l

l j
s21 .

Therefore,

ql[ lim sup
t→1`

ql~ t !<2 ls1
k1

2

2a (
j 51

l

l j
s2152

lk1
2

2a S 2as

k1
2 2

1

l (
j 51

l

l j
s21D .

If
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(
j 51

l

l j
s21<

2as

k1
2 ,

then

ql<0.

By p. 291 in Ref. 1, the Hausdorff dimension dimH(A) of A is less than or equal tol . That is, for
a>a0.0,

dimH~A!<minH lU l PN,
1

l (
j 51

l

l j
s21<

2l1a2

k1
2Aa214l1~a1Aa214l1!

J
<min H lU l PN,

1

l (
j 51

l

l j
s21<

2l1a0
2

k1
2Aa0

214l1~a01Aa0
214l1!

J .

The proof of Theorem 1 is completed.
Remark:After this paper was submitted, we found from Ref. 8 that Zhou has also discu

the same problem as this paper under slightly little different conditions and obtained s
results. However, the proof of the main results seems to be incorrect.
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Motivated by the search for solutions of the quantum Yang–Baxter equation, an
algebraic theory of quantum stochastic product integrals is developed. The product
integrators are formal power series in an indeterminateh whose coefficients are
elements of the Lie algebraL labelling the usual integrators of a many-dimensional
quantum stochastic calculus. The product integrals are also formal power series in
h, whose coefficients are finite iterated additive stochastic integrals which act on
the exponential domain in the Fock space of the calculus and which represent
elements of the universal enveloping algebraU of L. They obey a multiplication
rule suggested by the quantum Itoˆ product formula, and are characterized among all
such formal power series by a grouplike property. ©2000 American Institute of
Physics.@S0022-2488~00!02107-1#

I. INTRODUCTION

Matrix valued product integrals with respect to a single real variable as integrator, suc

X~ t !5 )
0,s,t

→
~11F~s!ds! ~1.1!

have a long history originating in the work of Volterra,1 for whom they were related to solution
of linear differential or integral equations such as that for the matrix-valued unknownX

dX

dt
5XF,X~0!51, X~ t !511E

0

t

X~s!F~s!ds, ~1.2!

and Pe´ano,2 who defined them as series of iterated integrals of the form

X~ t !511 (
n51

` E
0,s1,s2,¯,sn,t

F~s1!F~s2!¯F~sn!ds1ds2¯dsn . ~1.3!

The equivalence of the two definitions is seen at a formal level by solving the integral equ
~1.2! iteratively, which produces the Pe´ano series~1.3!. Note that, in both definitions, ifF(s1) fails
to commute withF(s2) for s1Þs2 , the ‘‘right’’ product integralX must be distinguished from th
corresponding left integral

Y~ t !5 )
0,s,t

←
~11F~s!ds!,

defined either by
49670022-2488/2000/41(7)/4967/14/$17.00 © 2000 American Institute of Physics

                                                                                                                



er
s for
l

, the

t of

e,

ns.
ver a

as-

4968 J. Math. Phys., Vol. 41, No. 7, July 2000 R. L. Hudson and S. Pulmannová

                    
dY

dt
5FY,Y~0!51, Y~ t !511E

0

t

F~s!Y~s!ds,

or

Y~ t !511 (
n51

` E
0,s1,s2,¯,sn,t

F~sn!F~sn21!¯F~s1!ds1 ds2¯ dsn .

Recently there has been some interest,3,4 in extending the notion of product integral to cov
various kinds of stochastic integrator in classical probability. Moreover one of the motivation
the creation of a rigorous theory of quantum stochastic calculus5 was a wish to understand forma
quantum stochastic product integrals such as

)
0,s,t

→
exp~s~a dA†2a† dA!!, )

0,s,t

→
~11s~a dA†2a†dA!1 1

2s
2a† dT!, ~1.4!

where (a†,a) is a normalized creation–annihilation pair acting in an initial space. In particular
realization that a formal expansion of the exponential in the former, using the quantum Itoˆ mul-
tiplication table, led to the latter form, which could be expressed, following in the spiri
Volterra, in terms of the stochastic differential equation

dU5U~11s~a dA†2a† dA!1 1
2s

2a†a dT!, U~0!51,

was seminal.6–8 Since then the literature on quantum stochastic product integrals9–11 has been
concerned with the equivalence of the two forms generalizing those in~1.4!, and of definitions of
Volterra and Pe´ano type, and also with definitions as limits of discrete products; for exampl6,7

)
0,s,t

→
exp~s~a dA†2a† dA!!°)

j 51

nW

exp~s j~aaj
†2a†aj !!, ~1.5!

where for a partition 05t0,t1,¯,tn5t and j 51,2,...,n,(aj
† ,aj ) is the normalized creation–

annihilation pair

aj
†5~ t j2t j 21!21/2~A†~ t j !2A†~ t j 21!!, aj5~ t j2t j 21!21/2~A~ t j !2A~ t j 21!!,

and

s j5sAt j2t j 21

so that the right-hand side of~1.5! is well defined as a finite product of second-quantized rotatio
Our purpose in the present work is to study quantum stochastic product integrals, o

general finite open subinterval#a,b@ of R1 , of the form

Za
b~h!5)

a

b

~11dML~h!! ~1.6!

in which the integratorML(h) is a formal power series of form

ML~h!5M (
n51
` hnL~n!5 (

n51

`

hnML~n!

in an indeterminateh whose coefficientsML(n) are basic integrator processes of quantum stoch
tic calculus. Correspondingly the product integral, defined formally either by a Pe´ano-type expan-
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sion, or as the solution of a stochastic differential equation and rigorously by an equivalent s
of differential equations for the coefficients, will also be a formal power series, whose coeffic
arefinite linear combinations of iterated integrals of form

E
a,s1,s2,¯sn,b

dML1
~s1!dML2

~s2!¯dMLn
~sn!n50,1,2,... .

Thus convergence questions are avoided; this is a purely algebraic theory. These linear co
tions of iterated integrals form symmetric tensors over the Lie algebraL of labelsL. A conse-
quence of this12 is that the coefficient processes are representatives, in the representationJa

b which
extends the Lie algebra representation

L{L°ML~b!2ML~a!

determined by quantum stochastic calculus corresponding to the interval@a,b@, of elementsUn of
the universal enveloping algebraU of the Lie algebra.L. We may thus define anindefinite product
integral P(11dML(h)) which is a formal power series with coefficients inU. These indefinite
product integrals are shown in Theorem 5.1 to satisfy a multiplication formula

) ~11dML1~h!!) ~11dML2~h!!5) ~11dML1~h!1dML2~h!1dML1~h!dML2~h!!

formally suggested by the quantum Itoˆ product rule. Moreover they are characterized, among
formal power series with coefficients inU, in Theorem 6.1, by a ‘‘grouplike’’ property with
respect to the co-product and co-unit of the bialgebraU.

Our motivation for beginning this study may now be explained. An elementg of L2L satisfies
the classical Yang–Baxter equation13 if the identity

@g1,2,g1,3#1@g1,2,g2,3#1@g1,3,g2,3#50

holds inL^ L^ L. Here, forg5( j ,kg
j ,kL j ^ Lk ,

@g1,2,g1,3#5 (
j 1 , j 2 ,k,l

gj 1 ,kgj 2 ,l@L j 1
,L j 2

# ^ Lk^ Ll ,

and the remaining terms in the classical Yang–Baxter equation are defined similarly. A f
power seriesG(h) with coefficients inU^ U satisfies thequantum Yang–Baxter equationif the
identity

G1,2~h!G1,3~h!G2,3~h!5G2,3~h!G1,3~h!G1,2~h!

holds between formal power series with coefficients inU^ U^ U. HereGj ,k(h) denotes the forma
power series with coefficients inU^ U^ U got by ampliating those ofG(h) to the j th andkth
copies ofL; for example,G1,2(h)5G(h) ^ 1. If G(h) is of the form

G~h!511hg1o~h2! ~1.7!

with gPL2L then it is easy to see that ifG(h) satisfies the quantum Yang–Baxter equation th
g must satisfy the classical equation. It is known conversely,14 that for a given solutiong of the
classical Yang–Baxter equation there is always a solutionG(h) of the quantum equation of th
form ~1.7!, but in general no explicit form for the coefficientsGn for n.1 is known in the
literature. In a sequel to this paper we develop an algebraic theory ofdoublestochastic integrals
of the formPP(11dg@h#) whereg@h# is a formal power series with zero constant term who
coefficients are elements ofL^ L. In their indefinite form these product integrals are form
power series with coefficients inU^ U. It is conjectured that, given a solutiong of the classical
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Yang–Baxter equation, for some suchg@h#5hg1o(h2), G@h#5PP(11dg@h#) is a solution of
the quantum Yang–Baxter equation satisfying~1.7!. In this connection, the single product inte
grals discussed in this paper are related to non-uniqueness of the solution of the quantum
Baxter equation corresponding to a given solution of the classical.

We shall use the following notations and conventions.N denotes the set of natural numbe
and fornPN, Nn denotes the subset$1,2,...,n%. R1 denotes the set of non-negative real numbe
All products indexed by well-ordered sets such as finite subintervals ofR1 or subsets ofNn which
run from left to right with increasing index will be denoted byPW ; those which run from right to
left will be denoted byPQ . The unadorned symbolP will be reserved for the commutative cas
All vector spaces are over the complex field; inner products are linear on the right. IfA is an
associative algebra,ALie denotes the Lie algebra got by equippingA with the commutator Lie
bracket.A@@h## denotes the algebra of formal power series

a~h!5 (
n50

`

hna~n!

with coefficients inA, in which the multiplication is defined by

S (
n50

`

hna~n!D S (
n50

`

hnb~n!D 5 (
n50

`

hnS (
j 50

n

a~ j !b~n2 j !D .

II. QUANTUM STOCHASTIC CALCULUS

We use Belavkin’s notation15 to label the integrator processesML of many dimensional
quantum stochastic calculus. Thus, letK be a finite dimensional Hilbert space, fixed once and
all. ThenL is a linear transformation in the Hilbert spaceK̃5C% K% C of the form

L5S 0 ū z

0 S v

0 0 0
D , ~2.1!

whereu andv are vectors inK, S is a linear transformation onK andz is a complex number.ML

is the process of operators (ML(t),tPR1) defined on the exponential domainE in the Fock space
H5F(L2(R1) ^ K), whose matrix elements between exponential 0 vectors are given by

^e~ f !,ML~ t !e~g!&5^e~ f !,e~g!&E
0

t

^ f 1~s!,Lg2~s!&ds, f ,gPL2~R1! ^ K,

where we identifyL2(R1) ^ K with the Hilbert spaceL2(R1 ;K) of K-valued function onR1 and
define f 1(s),g2(s) in C% K% C by

f 1~s!5~1,f ~s!,0!.g2~s!5~0,g~s!,1!.

Then the restrictionML(t)† to the exponential domain of the adjointML(t)* of ML(t) is given by

ML~ t !†5ML†~ t !,

whereL† is the Belavkin adjoint

L†5S 0 v̄ z̄

0 S* u

0 0 0
D .
                                                                                                                



ke the

s is

he

ion
.

e
ie

rs is

4971J. Math. Phys., Vol. 41, No. 7, July 2000 Product integrals in quantum stochastic calculus

                    
In this notation the first and second fundamental formulas of quantum stochastic calculus ta
form

K e~ f !,E
0

t

E~s!dML~s!e~g!L 5E
0

t

^e~ f !,E~s!e~g!&^ f 1~s!,Lg2~s!&ds,

K E
0

t

E1~s!dML1
~s!e~ f !,E

0

t

E2~s!dML2
~s!e~g!L 5E

0

t H K E
0

s

E1~r !dML1
~r !e~ f !,E2~s!e~g!L

3^ f 1~s!,L2g2~s!&

1K E1~s!e~ f !,E
0

s

E2~r !dML2
~r !e~g!L

3^ f 1~s!,L1
†g2~s!&

1^E1~s!e~ f !,E2~s!dML2
~s!e~g!&

3^ f 1~s!,L1
†L2g2~s!&J ds

for arbitrary integrable processesE, E1 , E2 and integrator processesML , ML1
, ML2

. Thus the
quantum Itoˆ formula takes the simple form

dML1
dML2

5dML1L2
, ~2.2!

where the productL1L2 is a composition of linear transformations onK̃.
The more familiar ‘‘Evans notation’’ for multidimensional quantum stochastic calculu

obtained from the Belavkin form by choosing an orthonormal basis («1 ,«2 ,...,«d) of K and
defining the processesLb

a ,a,b50,1,2,...,d as follows.L0
0 is the time process corresponding to t

Belavkin transformation~2.1! with z51 and other entries 0. Forj ,k51,2,...,d the annihilation and
creation processesL0

j andLk
0 corresponding to Belavkin transformations~2.1! with u5« j and all

other entries 0, and withv5«k and all other entries 0. Finally the multidimensional conservat
processLk

j is obtained by takingS to be the Dirac dyadu« j&^«ku in ~2.1! and all other entries 0
Then the simple Itoˆ formula ~2.2! takes the Evans form

dLb
adLt

s5~12d0
a!dt

adLb
s .

On the other hand, the adjunction rule is simpler in Evans notation:

~Lb
a!†5La

b .

We denote byL the space of Belavkin linear transformations.L is thus a nonunital associativ
algebra when regarded as a subalgebra ofB(K̃), but we shall usually want to regard it as a L
algebra under the commutator Lie bracket. For each finite interval ]a,b@#R1 the map j a

b :
L{L °ML(b)2ML(a) has the property that for arbitraryf ,gPL2(R1) ^ K andL1 ,L2PL,

^ j a
b~L1!†e~ f !, j a

b~L2!e~g!&2^ j a
b~L2!†e~ f !, j a

b~L1!e~g!&5^e~ f !, j a
b~L1L22L2L1!e~g!&.

In other wordsj a
b gives a representation in the weak sense in which multiplication of operato

avoided of the Lie algebraL. For two disjoint intervals#a,b@ and#c,d@, the representationsj a
b and

j c
d commute in the same weak sense, in that, again for arbitraryf ,gPL2(R1) ^ K and L1 ,L2

PL,

^ j a
b~L1!†e~ f !, j c

d~L2!e~g!&2^ j c
d~L2!†e~ f !, j a

b~L1!e~g!&50.

We denote byU the universal enveloping algebra ofL, by S the vector space
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S5C% % n51
`

^ sym
n L

of symmetric tensors over the vector spaceL and byS0 the subspace ofS consisting of tensors o
finite maximal rank. Thus an element ofS is a sequencej5(j0 ,j1 ,j2 ,...) such thatj0PC and for
j .0, j jP ^ sym

n L, the space of symmentric tensors of rankj. Such an elementj belongs toS0 if
and only if j j50 for all sufficiently largej. For jPS0 and a,bPR1 , the iterated stochastic
integral Ia

b(j) is defined to be the finite sum

I a
b~j!5 (

n50

`

I n~jn!,

whereI 0(j0)5j01, where 1 denotes the identity operator, and forn>1, I n is the linear extension
to ^

nL of the multilinear map defined on3nL by

~L1 ,L2 ,...,Ln!°E
a,s1,s2,¯,sn<b

dL1~s1!dL2~s2!...dLn~sn!.

Then,12 for j,hPS0 , arbitrary f ,gPL2(R1) ^ K, we have

^I a
b~j!†e~ f !,I a

b~h!e~g!&5^e~ f !,I a
b~j * h!e~g!&, ~2.3!

where the generalized convolution* is the associative multiplication defined inS by

~j* h!n5 (
AøB5Nn

j uAu
A h uBu

B . ~2.4!

Here the sum is over the 3n ordered pairs of subsetsA andB whose union isNn5$1,2,...,n% and
the notationj uAu

A h uBu
B indicates that the componentsj uAu andh uBu of j andh are placed in the copie

of L corresponding to the elements ofA andB, respectively, and in copies labeled by elements
AùB the associative multiplication inL is used.S0 is an associative algebra under* and there is
a unique unital associative algebra morphism isomorphismx from U onto S0 extending the Lie
algebra morphismL{L°(0,L,0,...)PS0 , where12 the latter is equipped with the commutator L
bracket corresponding to* . Composing the mapx with the stochastic integration mapI a

b , we
obtain the mapJa

b5I a
b+x which is a weak representation ofU extending the weak Lie algebr

representationj a
b(a), in the sense that for arbitrary elementsU1 andU2 of U, L1 andL2 of L and

f ,gPL2(R1) ^ K we have

^Ja
b~U1!†e~ f !,Ja

b~U2!e~g!&5^e~ f !,Ja
b~U1U2!e~g!&.

Similarly, given two disjoint intervals#a,b@ and #c,d@ we may form the weak representation

Ja
b

^ Jc
d5~ I a

b
^ I c

d!+~x ^ x!

of the tensor product algebraU^ U which is obtained by splitting the Fock space at a tim
belonging to the interval@a,b#, and identifying operators of the formI a

b(j) and I c
d(h) with am-

pliations to the full Fock space of operators in the past and future Fock spaces at this
respectively.

III. ANALYTIC PRODUCT INTEGRALS

Let LPL and let a finite subinterval#a,b@ of R1 be given. By analogy with the expansion

)
j

~11xj !511(
j

xj1(
j ,k

xjxk1¯ ~3.1!
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for a discrete product, in which we may think of thexj as the mutually commuting increments
the processML corresponding to a partitiona5s0,s1,s2,¯,sn5b, it is natural to define a
stochastic productPa

b(11dML) as a Pe´ano series

)
a

b

~11dML!511E
a,s<b

dML~s!1E
a,s1,s2<b

dML~s1!dML~s2!1¯ .

Thus formally

)
a

b

~11dML!5I a
b~1,L,L ^ L,L ^ L ^ L,...! ~3.2!

but sinceI a
b is applied to an element ofS rather thanS0 the question of convergence of th

right-hand side arises. In fact it is easy to see, using the fundamental estimate of quantu
chastic calculus in the form

I E
a,s,b

E~s!dML~s!e~ f !I 2

<cLE
a,s,b

iE~s!e~ f !i2ds

that, for every choice ofL, the Pe´ano series converges strongly on the exponential dom
Moreover there are explicit formulas for the exponential matrix elements,

K e~ f !,)
a

b

~11dML!e~g!L 5^e~ f !,e~g!&expE
a

b

^ f 1~s!,Lg2~s!&ds, ~3.3!

as is seen from the first fundamental formula, and for the action on an exponential vector,

)
a

b

~11dML!e~ f !5expE
a

b

~z1^u, f ~s!&!ds e~ f 1x ]a,b] ^ ~~S21! f 1v !!, ~3.4!

whereL has Belavkin form~2.1!, as may be seen using~3.3!. As a process on the time interva
@a,`@ , X(t)5)a

t (11dML) satisfies the stochastic differential equation

dX5X dML , X~a!51 ~3.5!

as may be verified using~3.3! and the first fundamental formula. Note that by~3.4!, )a
b(1

1dML) leaves the exponential domain invariant, thus it is legitimate to multiply such prod
From ~3.4! one may verify the product rule

)
a

b

~11dML1
!)

a

b

~11dML2
!5)

a

b

$~11dML1
!~11dML2

!%, ~3.6!

where we use the quantum Itoˆ multiplication rule~2.2! and the linearity ofML in L to express the
right-hand side of~3.6! in the form )a

b(11dML) with L5L11L21L1L2 . Note also that the
product)a

b(11dML) is properly regarded as directionless. The iterated integrals appearing
Péano series would normally be thought of as left-adapted integrals with an arrow from le
right. But they could equally well be defined as right-adapted integrals from right to left. Likew
the differentialdML in ~3.5! commutes with the adapted processX and could equally well be
placed to the left of it. Finally we note the evolution property that, fora,b,c,

)
a

b

~11dML!)
b

c

~11dML!5)
a

c

~11dML!; ~3.7!
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this may again be verified from~3.4!.

IV. ALGEBRAIC PRODUCT INTEGRALS

Let us replace the integratorML of the last section by a formal power series in the indet
minate h with zero constant term,M (h)5ML(h)5M (

n51hnL(n)
` 5(n51

` hnML(n), each of whose

coefficients is an integrator processML(n) labeled by an elementL (n) of L. ReplacingdML by
dM(h) in the Péano series, it is evident that this can be rearranged formally as a power ser
h:

)
a

b

~11dM~h!!

511E
a,s<b

(
n51

`

hndML~n!~s!1E
a,s1,s2<b

(
n51

`

hndML~n!~s1! (
n51

`

hndML~n!~s2!1¯

511hE
a,s<b

dML~1!~s!1h2H E
a,s<b

dML~2!~s!1E
a,s1,s2<b

dML~1!~s1!dML~2!~s2!J 1¯

whose coefficients are well-definedfinite sums of iterated integrals. To arrive at a formal definiti
we first generalize the stochastic differential equation~3.5! to

dXt~h!5Xt~h!dM~h!, Xa~h!51,

where)a
t (11dM(h))5Xt(h)5(n50

` hnXt
(n) . We may then convert this into a system of stoch

tic differential equations for the coefficient processesX(n), n50,1,2,... by equating coefficients o
powers ofh on both sides:

dX~0!50, Xa
~0!51,

dX~n!5 (
j 50

n21

X~ j ! dML~n2 j !, Xa
~n!50, n51,2,... .

From this we see thatXt
(n)5I a

t (j (n)) wherej (0)5(1,0,0,...) and forn>1, j (n) is defined induc-
tively by

j~n!5 (
j 50

n21

j~ j !
^ L ~n2 j !,

where the tensor multiplication is performed componentwise. Thus

j~n!5 (
j 50

n21

j~ j !
^ L ~n21!

5~0,L ~n!,0,0,...!1 (
j 51

n21

j~ j !
^ L ~n2 j !

5~0,L ~n!,0,0,...!1 (
j 151

n21 H ~0,L ~ j 1!,0,0,...!1 (
j 251

j 121

j~ j 2!
^ L ~ j 12 j 2!J ^ L ~n2 j 1!

5¯
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5~0,L ~n!,0,0,...!1 (
0, j 1,n

~0,0,L ~ j 1!
^ L ~n2 j 1!,0,0,...!

1 (
0, j 2, j 1,n

~0,0,0,L ~ j 2!
^ L ~ j 12 j 2!

^ L ~n2 j 1!,0,0,...!1¯1~0,0,...,L ~1!
^ L ~1!

^¯^ L ~1!,...!

5~0,L ~n!,0,0,...!1 (
k51

n21

(
0, j k, j k21 ..., j 1,n

~0,0,...,L ~ j k!
^ L ~ j k212 j k!

^¯^ L ~ j 12 j 2!,...!.

Settingr 15 j k , r 25 j k212 j k ,..., r k5 j 12 j 2 , we thus have

j~n!(
k51

n

(
r 11r 21¯r k5n

~0,0,...,L ~r 1!
^ L ~r 2!

^¯^ L ~r k!,...!, ~4.1!

where the inner sum is over orderedk-tuples of natural numbers whose sum isn.
Thus wedefine)a

b(11dM(h)) to be 11(n51
` I a

b(j (n)) wherej (n) is defined by~4.1!. Then
eachj (n) is evidently a symmetric tensor. Thus12 j (n)5x(U (n)) for a uniqueU (n)PU, and we can
write

)
a

b

~11dM~h!!511 (
n51

`

hnJa
b~U ~n!!,

and define theindefinite product integralP(11dM(h)) to be the formal power series wit
coefficients inU given by

) ~11dM~h!!511 (
n51

`

hnU ~n!.

V. MULTIPLICATION FORMULA

The analog of~3.6! for algebraic product integrals is most easily stated in terms of indefi
integrals.

Theorem 5.1:

) ~11dM1~h!!) ~11dM2~h!!5) ~11dM1~h!1dM2~h!1dM1~h!dM2~h!!,

where the indefinite integral on the right-hand side is formed by using addition and multiplic
of formal power series and the Itoˆ multiplication rule (2.2).

Proof: We set

) ~11dM1~h!!5 (
n50

`

hnU ~n!, ) ~11dM2~h!!5 (
n50

`

hnV~n!,

) ~11dM1~h!1dM2~h!1dM1~h!dM2~h!!5 (
n50

`

hnW~n!,

where eachU (n), V(n), andW(n)PU, and

x~U ~n!!5j~n!, x~V~n!!5h~n!, xW~n!)5z~n!,

where in view of~4.1!,
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j~0!5h~0!5z~0!5~1,0,0,...!

and forn>1,

j~n!5 (
k51

n

(
r 11r 21¯r k5n

~0,0,...,L1
~r 1!

^ L1
~r 2!

^¯^ L1
~r k! ,...!,

h~n!5 (
k51

n

(
r 11r 21¯r k5n

~0,0,...,L2
~r 1!

^ L2
~r 2!

^¯^ L2
~r k! ,...!,

z~n!(
k51

n

(
r 11r 21¯r k5n

~0,0,...,L ~r 1!
^ L ~r 2!

^¯^ L ~r k!,...!,

and

L ~n!5L1
~n!1L2

~n!1 (
j 51

n21

L1
~ j !L2

~n2 j !.

We must prove that

z~n!5(
j 50

n

j~ j !* h~n2 j !.

It is evident thatz (0)5(1,0,0,...)5j (0)* h (0). For n>1 we have, using~2.4!,

S (
j 50

n

j~ j !* h~n2 j !D
0

5(
j 50

n

(
AøB5B

~j~ j !! uAu
A ~hn2 j !) uBu

B 5(
j 50

n

~j~ j !!0~hn2 j !)0505~z~n!!0

while for m.0,

S (
j 50

n

j~ j !* h~n2 j !D
m

5(
j 50

n

(
AøB5Nm

~j~ j !! uAu
A ~h~n2 j !! uBu

B

5(
j 50

n

(
AøB5Nm

S (
r 11r 21¯1r uAu5 j

L1
~r 1!

^¯^ L1
~r uAu!D A

3S (
r 11r 21¯1r uBu5n2 j

L2
~r 1!

^¯^ L2
~r uBu!D B

. ~5.1!

On the other hand, again by~4.1!,

~z~n!!m5 (
r 11r 21¯1r m5n

~L1
~r 1!

1L2
~r 1!

1L1
~r 1!L2

~r 1!
! ^ ~L1

~r 2!
1L2

~r 2!

1L1
~r 2!L2

~r 2!
! ^¯^ ~L1

~r m!
1L2

~r m!
1L1

~r m!L2
~r m!

!

5 (
r 11r 21¯1r m5n

(
j 1 , j 2 ,...j m51

3

dj 1

~r 1!
^ dj 2

~r 2!
^¯^ dj m

~r m! ,

wheredj
(r ) is defined by

d1
~r !5L1

~r ! , d2
~r ! 5L2

~r !, d3
~r !5L1

~r !L2
~r ! .
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This sum may be equated with~5.1! by making the identifications

A5$sPNn :r sP$1,3%%, B5$sPNn :r sP$2,3%%

completing the proof. h

Corollary 5.2: The setP of indefinite product integrals)(11dM(h)) is a group under
multiplication in U@@h##.

Proof: Only the existence of inverses has to be proved. By the theorem, the condition
elementsL(h) and L̃(h) of the associative algebraL@@h## satisfy

L~h!1L̃~h!1L~h!L̃~h!50, L̃~h!1L~h!1L~h!̃L~h!50, ~5.2!

are necessary and sufficient for the corresponding product integrals)(11dM(h)) and )(1
1dM̃(h)) to satisfy)(11dM(h)))(11dM̃(h))51 and)(11dM̃(h)))(11dM(h))51, re-
spectively. For givenL(h)5(n51

` hnL (n), L̃(h)5(n51
` hnL̃ (n) satisfying the first equation of~5.2!

is found from the system of equations got by equating coefficients of powers ofh, namely,

L ~1!1L̃ ~1!50,

L ~n!1 (
j 51

n21

L ~ j !L̃ ~n2 j !1L̃ ~n!50, n52,3,... .

This system clearly has a unique solution; it is given by

L̃ ~n!52L ~n!1 (
k51

n

~21!k11 (
1< j k, j k21,¯, j 1,n

L ~ j k!L ~ j k212 j k1!.

Writing the summand in the symmetrical form (21)k11( r 11r 21¯r k5nL1
(r 1)L1

(r 2)
¯L1

(r k) , we see

that the same elementL̃(h)5(n51
` hnL̃ (n) is also the unique solution of the system of equatio

L̃ ~1!1L ~1!50,

L̃ ~n!1 (
j 51

n21

L̃ ~ j !L ~n2 j !1L ~n!50,n52,3,...

obtained from the second equation of~5.2!. h

VI. CHARACTERIZATION OF ALGEBRAIC PRODUCT INTEGRALS

To express in a succinct way the generalization of the evolution property~3.7! we introduce
theco-productg and theco-unith of the universal enveloping algebraU. These are, respectively
the extensions toU of the Lie algebra homomorphismsL{L→L ^ 111^ LP(U^ U)Lie and L
{L→0PCLie . An elementX(h) of U is said to begrouplike if

g~X~h!!5X~h! ^ X~h!, h~X~h!!51;

here g and h acts on the formal power series by acting on its coefficients and, ifX(h)
5(n50

` hnX(n) thenX(h) ^ X(h)5(n50
` hn( j 50

n X( j )
^ X(n2 j ).

Theorem 6.1:P(11dM(h)) is grouplike. Conversely suppose that X(h) is grouplike. Then
there exists L(h)PL(h) such that X(h)5P(11dM(h)) where M(h)5ML(h) .

Proof: Given M (h)5(n51
` hnML(n), let a,b,cPR1 with a,b,c. For n>1,1<k<n and

natural numbersr 1 ,r 2 ,...,r k it follows from the decomposition
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$~s1 ,s2 ,...,sk!PRk:a,s1,s2,¯,sk,c%

5$~s1 ,s2 ,...,sk!PRk:a,s1,s2,¯,sk,b%

øø
j 51

n21

@$~s1 ,s2 ,...,sj !PRj :a,s1,s2,¯,sj,b%

3$~sj 11 ,sj 12 ,...,sk!PRk2 j :b,sj 11,sj 12,¯,sk,c%#

ø$~s1 ,s2 ,...,sk!PRk:b,s1,s2,¯,sk,c%

that

E
a,s1,s2,¯,sk,c

dML~r 1!~s1!dML~r 2!~s2!...dML~r k!~sk!

5E
a,s1,s2,¯,sk,b

dML~r 1!~s1!dML~r 2!~s2!...dML~r k!~sk!

1 (
j 51

k21 H E
a,s1,s2,¯,sj ,b

dML~r 1!~s1!dML~r 2!~s2!...dML~r j !~sj !

3E
b,sj 11,sj 12,¯,sk,c

dML~r j 11!~sj 11!dML~r j 12!~sj 12!...dML~r k!~sk!J
1E

b,s1,s2,¯,sk,c
dML~r 1!~s1!dML~r 2!~s2!...dML~r k!~sk!.

Summing this relation overr 1 ,r 2 ,...,r k with r 11r 21¯1r k5n and using the fact that, modul
splitting atb,

Ja
c5~Ja

b
^ Jb

c!+g

which in turn follows from the additivity property

j a
c~L !5 j a

b~L !1 j b
c~L !5 j a

b~L ! ^ 111^ j b
c~L !,LPL

modulo the same splitting, we deduce that

g+x21S 0,0,..., (
r 11r r1¯r k5n

L ~r 1!
^ L ~r 2!

^¯^ L ~r k!,0,0,...D
5x21

^ x21S (
j 50

n

(
r 11r r1¯r k5n

~0,0,...,L ~r 1!
^ L ~r 2!

^¯^ L ~r j !,0,0,...!

^ ~0,0,...,L ~r j 11!
^ L ~r 2!

^¯^ L ~r k!,0,0,...!D ,

where as usual an empty tensor product is defined to be the element (1,0,0,...). Hence, by~3.7!, if
P(11dM(h))511(n51

` hnU (n)511(n51
` hnI (j (n)),
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g+x21~j~n!!5 (
k51

n

g+x21S 0,0,..., (
r 11r r1¯r k5n

L ~r 1!
^ L ~r 2!

^¯^ L ~r k!,0,0,...D
5 (

k51

n

x21
^ x21H (

j 50

n

(
r 11r r1¯1r k5n

~0,0,...,L ~r 1!
^ L ~r 2!

^¯L ~r j !,0,0,...!

^ ~0,0,...,L ~r j 11!
^ L ~r 2!

^¯^ L ~r k!,0,0,...!J
5(

j 50

n

x21
^ x21~j~ j !

^ j~n2 j !!.

Henceg(U (n))5( j 50
n g(U ( j )) ^ g(U (n2 j )), that is

gS) ~11dM~h!! D5) ~11dM~h!! ^) ~11dM~h!!

as formal power series. Since it is evident thath(P(11dM(h)))51 we conclude thatP(1
1dM(h)) is grouplike as required.

Conversely letX(h) be grouplike. Sinceh(X(h))51 we can setX(h)511(n51
` hnU (n)

511(n51
` hnx21(j (n)) where eachh(U (n))50 and eachj (n) is of form j (n)5(0,L (n), ...) for

some L (n)PL. We will show that X(h)5P(11dM(h)) where M (h)5(n51
` hnL (n). Since

g(X(h))5X(h) ^ X(h)

g~U ~n!!51^ U ~n!1 (
j 51

n21

U ~ j !
^ U ~n2 j !1U ~n!

^ 1

and hence

~x ^ x!+g+x21~j~n!!5S ~1,0,0,...! ^ j~n!1 (
j 51

n21

j~ j !
^ j~n2 j !1j~n!

^ ~1,0,0,...!D .

In particular settingn51 and settingj (1)5(0,L (1),0,0,...)1h whereh is of form (0,0,h2 ,...) we
get

~1,0,0,...! ^ ~0,L ~1!,0,0,...!1~0,L ~1!,0,0,...! ^ ~1,0,0,...!1~x ^ x!+g+x21~h!

5~1,0,0,...! ^ j~1!11j~1!
^ ~1,0,0,...!.

If hÞ0 the left-hand side of this identity contains terms of the formh (1)
^ h (2) where theh ( j ) are

nonzero but have vanishing zero order components. These cannot be matched on the rig
side. Henceh50 andj (1)5(0,L (1),0,0,...). Let us now prove inductively that

j~n!5~0,j1
~n! ,j2

~n! ,...jn
~n!,0,0,...!,

where fork<n

jk
~n!5 (

r 11r 21¯r k5n
L ~r 1!

^ L ~r 2!
^¯^ L ~r k!.

The casen51 has been established. We make the inductive assumption that, forj 51,...,n21,
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jk
~ j !5H (

r 11r 21¯r k5 j

0 otherwise
L ~r 1!

^ L ~r 2!
^¯^ L ~r k! if k< j .

Let us set

j~n!5S 0,L ~1!,..., (
r 11r 21¯r k5n

L ~r 1!
^ L ~r 2!

^¯^ L ~r k!D 1h,

whereh is of form (0,0,h2 ,...). Then from~6.1! we have

~x ^ x!+g+x21~h!5~1,0,0,...! ^ h1h ^ ~1,0,0,...!

since the remaining terms cancel by the inductive assumption and the first part of the proof
again, ifhÞ0 the left-hand side of this identity contains terms of the formh (1)

^ h (2) where the
h ( j ) are nonzero, which cannot be matched on the right-hand side. Henceh50 and soj (n) has the
form claimed. It follows from~4.1! that X(h)5P(11dM(h)). h

The fact that the grouplike elements ofU@@h##, which area priori dependent only on the Lie
algebra structure ofL, and independent of the associative algebra structure ofL as an Itoˆ algebra,
can nevertheless be characterized as stochastic product integrals, indicates that higher ord
tures, such as solutions of the quantum Yang–Baxter equation via quantum stochastic c
will admit similar characterizations.
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Construction of Kac–Moody superalgebras as minimal
graded Lie superalgebras and weight multiplicities
for Kac–Moody superalgebras

Jeong-Ah Kim and Dong-Uy Shin
Seoul National University, Department of Mathematics, College of Natural Sciences,
Shinrimdong Kwanaku, Seoul 151-742, Korea

~Received 7 December 1999; accepted for publication 31 January 2000!

We construct a Kac–Moody superalgebraL as the minimal graded Lie superalge-
bra with local partV* % ge

% V, whereg is a ‘‘smaller’’ Lie superalgebra insideL,
V is an irreducible highest weightg-module, andV* is the contragredient ofV. We
show that the weight multiplicities of irreducible highest weight modules over
Kac–Moody superalgebras of finite type and affine type@more precisely, Kac–
Moody superalgebras of typeB(0,r ), B(1)(0,r ), A(4)(2r ,0), A(2)(2r 21,0), and
C(2)(r 11)# are given by polynomials in the rankr. The degree of these weight
multiplicity polynomials are less than or equal to the depth of weights. ©2000
American Institute of Physics.@S0022-2488~00!00207-3#

I. INTRODUCTION

The theory of Kac–Moody Lie algebras has been developed since 1960s, and these a
have significant applications in theoretical physics. However, the most of developments a
stricted to affine algebras. In an attempt to understand the structure of nonaffine Kac–M
algebras, Benkart, Kang, and Misra investigated graded Lie algebras of the Kac–Moody t
Ref. 1 ~in particular, they were interested in hyperbolic Kac–Moody algebras!. They constructed
graded Lie algebras of the Kac–Moody-type as the minimal graded Lie algebras, and the
struction played an important role in understanding the structures of Kac–Moody algebra
their representations. For instance, as an application of their construction, they determined s
the root multiplicities in rank 2 hyperbolic Kac–Moody algebras.

In 1987, Benkart and Kass~see Ref. 2! conjectured certain polynomial behavior of the weig
multiplicities for untwisted classical affine Kac–Moody algebras and introduced the notio
‘‘rank-zero string function.’’ This conjectures was confirmed in Ref. 3 for arbitrary irreduc
highest weight representation of the affine Kac–Moody algebrasAr

(1) for the weights having depth
<2. Their method was based on the root multiplicity formula derived in Ref. 4 and the multip
ties of such weights were given by explicit polynomials whose coefficients involve Kostka n
bers. But it is difficult to extend the same method to the weights having arbitrary depth.

In Refs. 5 and 6, a different approach, which is based on Freudenthal-type recursive fo
due to Peterson, was taken to show that the multiplicity of an arbitrary dominant integral w
for an irreducible highest weight representation of classical simple Lie algebras and cla
affine Kac–Moody algebras is a polynomial inr of degree<dl(m), the ‘‘depth’’ of m with
respect tol, for the rankr sufficiently large. In this paper, we generalize the results of Refs.
and 6 to Kac–Moody superalgebras of typeB(0,r ), B(1)(0,r ), A(4)(2r ,0), A(2)(2r 21,0), and
C(2)(r 11). That is, we first construct a minimal graded Lie superalgebraL from a given Kac–
Moody superalgebra and show that it is isomorphic to a ‘‘larger’’ Kac–Moody superalgebĝ.
Then, using the Peterson’s recursive root multiplicity formula derived in Refs. 7 and 8, we
the polynomial behavior of weight multiplicities for these Kac–Moody superalgebras.

Our paper is organized as follows: In Sec. II, we summarize some definitions and resu
Kac–Moody superalgebras and their highest weight representations. In Sec. III, we constr
minimal graded Lie superalgebraL with local partL(l) % ge

% L* (l), wherege is an extension of
49810022-2488/2000/41(7)/4981/21/$17.00 © 2000 American Institute of Physics
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a Kac–Moody superalgebrag associated with the Cartan matrixA, L(l) is the irreducible highes
weight representation ofg andL* (l) is the finite dual ofL(l), and we show thatL is isomorphic
to the Kac–Moody superalgebraĝ associated with the Cartan matrixÂ ~see~3.13!!. Now, any
weight m of L(l) can be viewed as a root inĝ, and its multiplicity as a root ofĝ is the same as
its multiplicity as a weight ofL(l). In Secs. IV and V, using Peterson’s recursive root multiplic
formula ~super version!, we establish the polynomial behavior of the dominant integral weight
L(l). Since the procedure is almost the same in each case, we discuss only the irreducible
weight representation over affine Kac–Moody superalgebra of typeA(4)(2r ,0) and the results and
all the necessary data in other cases are given Sec. VI.

II. KAC–MOODY SUPERALGEBRAS AND THEIR REPRESENTATIONS

In this section, we recall some basic facts about Lie superalgebras and their representat
particular, we consider Kac–Moody superalgebras and their highest weight representations
are the generalization of Kac–Moody algebras and their representations~cf. Ref. 9!.

Definition 2.1: A Lie superalgebra is aZ2-graded vector spaceL5L0̄% L1̄ with a bilinear
operation@,#: L3L→L satisfying

@La ,Lb#,,La1b ,

@x,y#52~21!degx•degy@y,x#, ~2.1!

@x,@y,z##5@@x,y#,z#1~21!degx•degy@y,@x,z##

for all xPLa , yPLb , zPL and a,bPZ2 .
Example 2.2:Let V5V0̄% V1̄ be aZ2-graded vector space with dimV0̄5m, dimV1̄5n. Then

the associative algebra EndV is equipped with the inducedZ2-grading EndV5 % aPZ2
Enda V,

where Enda V5$xPEndVuxVs#Vs1a%. If we define@x,y#5xy2(21)degx•degyyx, then EndV
is a Lie superalgebra, called thegeneral linear Lie superalgebraand it is denoted bygl(m,n).

Let U(L) be an associative superalgebra andi :L→U(L) be a linear mapping satisfying

i ~@x,y# !5 i ~x!i ~y!2~21!degx•degyi ~y!i ~x! ~2.2!

such that for any associative superalgebraU5U 0̄% U 1̄ and a linear mappingj :L→U satisfying

j ~@x,y# !5 j ~x! j ~y!2~21!degx•degy j ~y! j ~x!, ~2.3!

there exists a unique homomorphismc:U(L)→U of superalgebras satisfyingc+ i 5 j . Then the
pair (U(L),i ) is called theuniversal enveloping algebraof the Lie superalgebraL5L0̄% L1̄ .

For the structure of the universal enveloping algebraU(L) of L, the following version of the
Poincare´–Birkhoff–Witt theorem is well-known.

Theorem 2.3: ~cf. Refs. 10–12! Let L5L0̄% L1̄ be a Lie superalgebra,X5$xauaPL% be a
homogeneous basis ofL0̄ , andY5$ybubPV% be a homogeneous basis ofL1̄ . Then the elements
of the form

xa1
¯xak

yb1
¯yb1

with a1<¯<ak , b1,¯,b l ~2.4!

together with 1 form a basis of the universal enveloping algebraU(L) of L.
Let V5V0̄% V1̄ be aZ2-graded linear space. Alinear representationr of a Lie superalgebra

L5L0̄% L1̄ in V is a homomorphismr:L→gl(V). For brevity, we often say thatV is an
L-module, and it satisfies

@x,y#•v5x•y•v2~21!degx•degyy•x•v for x,yPL, vPV. ~2.5!
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Note that the map ad:L→gl(L) for which (adx)(a)5@x,a# is also a linear representation ofL.
It is called theadjoint representation. A submodule of anL-moduleV is assumed to beZ2-graded.
An L-moduleV is said to beirreducible if it has no nontrivial submodules. A linear mapping
L-modulesf:V→W is called a homomorphism if it preserves theZ2-grading in the sense tha
f(Vi)5Wi . Now, we consider the dual module and the tensor product of modules over
superalgebra. The dual vector spaceV* of V becomes anL-module if we define theL-action by

~x• f !~v !52~21!degx•deg f f ~x•v ! for xPL, f PV* , vPV. ~2.6!

Let V, W be L-modules, we define theL-moduleV% W by

x•~v ^ w!5x•v ^ w1~21!degx•degvv ^ x•w for xPL, vPV, wPW. ~2.7!

From now on, we recall the notion of Kac–Moody superalgebras and their highest w
representations. LetI be a finite index set and letI odd be a subset ofI. An integral matrixA
5(ai j ) i , j PI is called a~generalized! Cartan matrix if it satisfies ~i! aii 52 for all i PI , ~ii ! ai j

<0 for iÞ j , and ~iii ! ai j 50 imply aji 50. Furthermore, we say thatA is colored by I odd if it
satisfies

ai j P2Z for all i PI odd, j PI . ~2.8!

Let (h,P5$a i u i PI %, P∨5$hi u i PI %) be a realization ofA in the sense of Ref. 13, Chap. 1. The
the Kac–Moody superalgebra is defined as follows:

Definition 2.4: The Kac–Moody superalgebrag5g(A,I odd) with the ~generalized! Cartan
matrix A colored byI odd is the Lie superalgebra generated by the elementsei , f i ( i PI ) andh with
the following defining relations:

@h,h8#50 for h,h8Ph,

@h,ei #5a i~h!ei , @h, f i #52a i~h! f i for i PI ,hPh,

@ei , f i #5d i j hi for i , j PI ,
~2.9!

~adei !
12ai j ~ej !5~adf i !

12ai j ~ f j !50 for iÞ j ,

degh50̄, deg ei5degf i50̄ if i ¹I odd,

degei5degf i51̄ if i PI odd.

Let Q5 % i PI Za i , Q15( i PI Z>0a i , and Q252Q1 . Then we have a group homomo
phismp:Q→Z2 defined by

p~a i !5H 0̄ if i ¹I odd,

1̄ if i PI odd.
~2.10!

The homomorphismp is called theparity function. The Kac–Moody superalgebrag5g(A,I odd)
has the root space decompositiong5 % aPQga , wherega5$xPgu@h,x#5a(h)x for all hPh%. If
we let g0̄5 % p(a)50̄ga and g1̄5 % p(a)51̄ga , then g5g0̄% g1̄ and homogeneous elements ofg0̄

~resp.g1̄) are called even~resp. odd!. An elementaPQ is called aroot if aÞ0 and gaÞ0.
Moreover, if p(a)50 ~resp.p(a)51), then the roota is called even~resp. odd!. The number
mult(a)ªdimga is called theroot multiplicity of the roota. A root aPQ1 ~resp.aPQ2) is
calledpositive~resp.negative!. All roots are either positive or negative, and we have the triang
decomposition,
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g5 S %
aPQ1

ga D % h% S %
bPQ2

gb D . ~2.11!

Furthermore,ka is a root if and only ifk561 ~resp.k561,62) for an even~resp. odd! root a.
In this paper, we assume that the matrixA is symmetrizable, i.e., there is a diagonal mat

D5diag(si u i PI ) with si.0 such that DA is symmetric. We can define a nondegenerate bili
form on h by

~hi uh!5sia i~h!, ~2.12!

for all hPh, i PI . Since the bilinear form~ u ! is nondegenerate onh, we have an isomorphism
n:h→h* defined byn(h)(h1)5(huh1) for h, h1Ph, and (lum)5(n21(l)un21(m)) for l, m
Ph* . The symmetric bilinear form~ u ! on h can be extended to a nondegenerate,supersymmetric,
and invariant bilinear form on the Kac–Moody superalgebrag.

Proposition 2.5:~Refs. 9, 14! Let g5g(A,I odd) be a Kac–Moody superalgebra. Then the
exists a nondegenerate bilinear form~ u ! on g such that
~a! ~ u ! is supersymmetric, i.e.,

~xuy!5~21!degx•degy~yux! for all x,y,Pg.
~b! ~ u ! is invariant, i.e.,

~@x,y#uz!5~xu@y,z# ! for all x,y,zPg.
~c! ( u )uh is nondegenerate.
~d! (gaugb)50 if a1bÞ0.
~e! ( u )uga1g2a

is nondegenerate foraÞ0, and hencega andg2a are nondegenerately paired b
~ u !.

~f! @x,y#5(21)degx•degy(xuy)n21(a) for xPga , yPg2a .

A g-moduleV is called ahighest weight modulewith highest weightlPh* if there exists a
nonzero vectorvlPV, which is called ahighest weight vector, such that

ei•vl50 for all i PI ; h•vl5l~h!vl for hPh; V5U~g!vl . ~2.13!

Note that for a highest weight moduleV with highest weightl, we have

V5U~n2!•vl ; V5 %
m<l

Vm , Vl5Cvl ; dimVm,` for all m<l. ~2.14!

A g-module M (l) with highest weightl is called theVerma moduleif every g-module with
highest weightl is a quotient ofM (l). Every highest weightg-module with highest weightl is
a homomorphic image ofM (l) and the Verma moduleM (l) contains a unique maximal sub
moduleJ(l). Hence the quotientL(l)5M (l)/J(l) is irreducible. We define the setP(V) to be
$mPh* uVmÞ0%. The element ofP(V) is called aweight, and the number dimVm is called the
weight multiplicityof the weightm. An elementlPh* is said to be adominant integral weightif

l~hi !PZ>0 for all i PI ; l~hi !P2Z for all i PI odd. ~2.15!

We denote byP1 the set of all dominant integral weights.
Example 2.6:

~a! For i PI , define the linear functionalsL iPh* by

L i~hj !5d i j ~B~0,r ! type!,
~2.16!

L i~hj !5d i j , L i~d!50 ~affine type!.
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In the affine case, the Cartan subalgebrah has a basis$hi u i PI %ø$d% andd is thegrading element.
ThenL i( i PI ) is a dominant integral weight, and it is called thefundamental weight.
~b! In the affine case, we define theimaginary rootdPh* by

d~hj !50, d~d!51 for j PI . ~2.17!

Thend is also a dominant integral weight.

III. THE MINIMAL GRADED LIE SUPERALGEBRA L

Let A5(ai j ) i , j PI be a~generalized! Cartan matrix colored byI odd, and letg5g(A,I odd) be the
Kac–Moody superalgebra associated withA. Let l be a dominant integral weight forg, and let
L(l) be the irreducible highest weightg-module with highest weightl. The finite dual space
L* (l) is the irreducible lowest weightg-module with lowest weight2l, where theg-module
action is given by

~g•v* !~w!52~21!degg•degv* v* ~g•w!, ~3.1!

for gPg, v* PL* (l), wPL(l) ~see Sec. II!. Let

ge5H g if g is of affine type,

g% CK otherwise,
~3.2!

be an extension ofg, where the elementK acts centrally inge. We extend the action ofg on L(l)
to ge by letting K acts trivially. Now, recall that there exists a nondegenerate symmetric bili
form on h* , which is defined by (mun)5(tmutn) for all m, nPh* , where tmPh* is such that
m(h)5(hutm) for all hPh* . Choose a pair of dual bases$xi u i PV% and $yi u i PV% of g, i.e.,
(xi uyj )5(21)degxi•degyj (yj uxi )5d i j . We assume that (lul)Þ0. Define a linear mapc:L* (l)
^ L(l)→ge by

c~v* ^ w!55
2

~lul! (
i PV

~xi•v* !~w!ui if g is of affine type,

2

~lul! (
i 5V

~xi•v* !~w!yi1v* ~w!K otherwise.

~3.3!

Sincexi•w50 for all but finitely manyxiPn1 andxj•v* 50 for all but finitely manyxjPn2 ,
this map is well defined. Furthermore, we have the following property.

Proposition 3.1:~cf. Refs. 1, 15, 16! The linear mapc is a g-module, hence age-module,
homomorphism, i.e.,

@x,c~v* ^ w!#5c~x•~v* ^ w!!5c~x•v* ^ w!1~21!degx•degv* c~v* ^ x•w! ~3.4!

for xPg, v* PL* (l), andwPL(l).
Proof: For anyxj ( j PV), we have

@xj ,c~v* ^ w!#52
2

~lul! (
i PV

~21!degxi•degv* v* ~xi•w!@xj ,yi !]. ~3.5!

On the other hand,
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c~xj•v* ^ w!1~21!degxj •degv* c~v* ^ xj•w!

52
2

~lul! (
i PV

~21!degxi•deg~xj •v* !xj•v* ~xi•w!yi1~xj•v* !~w!K

2~21!degxj •degv* S 2

~lul! (
i PV

~21!degxi•degv* v* ~xi•xj•w!yi2v* ~xj•w!K D
52~21!degxj •degv* 2

~lul! (
i PV

~21!degxi•degv* v* ~@xi ,xj #•w!yi . ~3.6!

Write @xi ,xj #5(kAi j
k xk and@xi ,yj #5(kBi j

k yk . From the invariance of the bilinear form, w
get (@xi ,xj #uyk)5(xi u@xj ,yk#), so we obtainAi j

k 5Bjk
i .

Thus we see that

xj•c~v* ^ w!52
2

~lul! (
i PV

~21!degxi•degv* v* ~xi•w!(
k

Bji
k yk

52
2

~lul! (i ,k ~21!degxk•degv* v* ~xk•w!Bjk
i yi , ~3.7!

and

c~xj•v* ^ w!1~21!degxj •degv* c~v* ^ xj•w!

52~21!degxj •degv* 2

~lul! (i ,k ~21!degxi•degv* v* ~xk•w!Ai j
k yi

52
2

~lul! (i ,k ~21!M~21!degxk•degv* v* ~xk•w!Ai j
k yi , ~3.8!

where M5degxj•degv* 1degxi•degv* 1degxk•degv* . Since @xi ,xj #5(kAi j
k xk , we have

degxi1degxj5degxk and

~21!degxj •degv* 1degxi•degv* 1degxk•degv* 5~21!~degxj 1degxi1degxk!degv* 51. ~3.9!

Therefore, by~3.7!–~3.9!, we have

c~xj•v* ^ w!1~21!degxj •degv* c~v* ^ xj•w!

52
2

~lul! (i ,k ~21!degxk•degv* v* ~xk•w!Ai j
k yi

52
2

~lul! (i ,k ~21!degxk•degv* v* ~xk•w!Bjk
i yi5xj•c~v* ^ w!. ~3.10!

h

By Proposition 3.1, the spaceL(l) % ge
% L* (l) has the structure of a local Lie superalgeb

with the bracket defined by

@g,w#5g•w, @g,v* #5g•v* ,
~3.11!

@v* ,w#5c~v* ^ w!

for gPge, v* PL* (l), wPL(l) ~cf. Refs. 1, 5, 6, 15, 16!.
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Let F1 ~resp.F2) be the free Lie superalgebra generated byL* (l) ~resp.L(l)), and for
k>1, let Fk ~resp.F2k) be the subspace ofF1 ~resp.F2) spanned by the vectors of the form
@u1@u2@¯@uk21 ,uk#¯### with ujPL* (l) ~resp. L(l)). In particular, F15L* (l) and F21

5L(l). Let F05ge and define

F5F2 % F0% F15 %
kPZ

Fk . ~3.12!

ThenF is the maximal graded Lie superalgebra with local partL(l) % ge
% L* (l).

For k>2, define the subspacesJ6k of F6k by

J6k5$vPF6ku@u1@u2@¯@uk21 ,v#¯###50 for all uiPF71%, ~3.13!

and letJ65 % k>2J6k . Then we have the following generalization of Proposition 1.7 of Ref. 1
the case of superalgebra.

Proposition 3.2:~cf. Ref. 1, 15–17! The subspaceJ6 is a graded ideal ofF6 , andJ5J2

% J1 is the largest graded ideal ofF which intersects the local partL(l) % ge
% L* (l) trivially.

Proof: The proof is similar to that of Proposition 1.7 in Ref. 1. h

By Proposition 3.2, the Lie superalgebraL5F/J5 % kPZLk is the minimal graded Lie supe
ralgebra with local partL(l) % ge

% L* (l), where Lk5Fk /Jk for kPZ. In particular, L21

5F215L(l), L05ge, andL15F15L* (l).
Alternately, leta2152l and consider the Cartan matrixÂ5(ai j ) i , j P$21%øI given by

ai j 5
2~a i ua j !

~a i ua i !
for i , j P$21%øI . ~3.14!

Deleting the first row and the first column ofÂ gives the Cartan matrix ofg. Let F̃(Â) be the free
Lie superalgebra on generatorsEi , Fi , Hi , i P$21%øI , and consider the idealR generated by
the homogeneous elements

@Hi ,H j #,

@Hi ,Ej #2ai j Ej ,
~3.15!

@Hi ,F j #1ai j F j ,

@Ei ,F j #2d i j Hi .

Now, we letF(Â) be the corresponding factor algebra, i.e.,

F~Â!5F̃~Â!/R. ~3.16!

We know thatL is generated byei , f i , hi , i P$21%øI , wheree215v0* , f 215v0 and

h215H 2
2tl

~lul!
if g is affine type,

2
2tl

~lul!
1K otherwise

~3.17!

~compare with Proposition 2.12 of Ref. 1!. Therefore, there is a subjective Lie superalge
homomorphismf:F(Â)→L such that

Ei°ei , Fi° f i , Hi°hi for i PI ø$21%. ~3.18!
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Let I(Â) be the largest graded ideal ofF(Â) trivially intersecting the span ofHi , i P$21%øI .
Theorem 3.3: ~cf. Refs. 1, 5, 6, 15, 16! The homomorphismf:F(Â)→L has ker f

5I(Â). Therefore, the induced mapf: ĝ5F(Â)/J(Â)→L is an isomorphism.
Proof: It is similar to that of Theorem 2.13 in Ref. 1. h

IV. THE WEIGHT MULTIPLICITY POLYNOMIALS FOR KAC–MOODY SUPERALGEBRAS

Let g5g(A,I odd) be the Kac–Moody superalgebra associated withA5(ai j ) i , j PI , and letl be
a dominant integral weight. Then the dominant integral weightlPP1 can be uniquely expresse
in the form

l5(
i PI

aiL i5a1L11¯1arL r ~B~0,r ! type!,

~4.1!

l5(
i PI

aiL i2md5a0L01¯1arL r2md ~affine type!,

where aiPZ>0( i PI ), mPZ, L i( i PI ) and d are the fundamental weights and imaginary ro
defined in~2.16! and ~2.17!. Let L(l) be the irreducible highest weight module over the Ka
Moody superalgebrag. Our objective is to study the behavior of weight multiplicities of t
dominant integral weightm of irreducible highest weight modulesL(l) over Kac–Moody super-
algebras of typeB(0,r ), B(1)(0,r ), A(4)(2r ,0), A(2)(2r 21,0), or C(2)(r 11) asr grows. For a
dominant integral weightlPP1 as in ~4.1!, we associate withl the determining data,

a5~a1 ,...,as!, a85~ar 2t11 ,...,ar ! ~B~0,r ! type!,
~4.2!

a5~a0 ,...,as21!, a85~ar 2t11 ,...,ar !, mPZ ~affine type!,

where inB(0,r ) type ~resp. affine type! asÞ0, ar 2t11Þ0 ~resp.as21Þ0, ar 2t11Þ0). For in-
stance, considerl5L213L414L5 in B(0,r )-type. If we assumes55 andt50, then the deter-
mining data forl is a5(0,1,0,3,4),a85B, and the weight determined by this data arel5L2

13L414L5 for all r>5. Alternatively, we might suppose thats52 and t52. Then the deter-
mining data forl is a5(0,1), a85(3,4), and the weight corresponding to this data isl5L2

13L r 2114L r for all r>5.
In this paper, in all the cases, one of the tuplesa anda8 is taken to be empty, and we wil

discuss only theA(4)(2r ,0) case in detail. All the other cases are similar to theA(4)(2r ,0) case,
and the results and all the necessary data in other cases are summarized in Sec. VI.

Let l5( i 50
r aiL i2md be a dominant integral weight oflevel l.0, i.e.,l(c)5 l , wherec is

thecanonical central elementof g. Sincec5h012h11¯12hr 211hr in the Kac–Moody super-
algebrag of type A(4)(2r ,0), we havel(c)5a012a11¯12ar 211ar5 l . Let m5( i 50

r biL i

2nd be a dominant integral weight ofL(l). Then we can writem5l2( i 50
r kia i for someki

PZ>0 ( i 50,1,...,r ), so m is related tol ~we say thatm is related to l if l2mPQ, whereQ
5 % i PIZa i). Sincea i(c)50 for all i, we havem(c)5 l , which implies

d012d11¯12dr 211dr50, ~4.3!

wheredi5ai2bi . From now on, we focus on the case thatl and m have determining dataa
5(a0 ,a1 ,...,as21), a85B, mPZ, and b5(b0 ,b1 ,...,bs821), b85B, and nPZ such thats
<r ands8<r , respectively. Setp5max(s,s8), thendp5dp115¯5dr50, and solving the linear
system
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m~hj !5aj2(
i 50

r

kiaji 5bj for j 50,1,...,r ,

m~d!52m2k052n, ~4.4!

we obtain

ki5H n2m for i 50,
n2m1d112d21¯1~ i 21!di 211 i ~di1¯1dp21!

for i 51,...,p22,
n2m1d112d21¯1~p21!dp21 for i 5p21,...,r .

~4.5!

We define thedepth ofm with respect tol to be the value

dl~m!5n2m1d112d21¯1~p21!dp21 . ~4.6!

The depth can be used to express theki ’s as follows:

ki5H dl~m!2di 1122di 122¯2~p2 i 21!dp21

for i 50,1...,p22,
dl~m! for i 5p21,...,r .

~4.7!

For i 50,1,...,r , let mi5ki2dl(m), and definem05l2( i 50
r mia i . Then m5m02dl(m)d

anddl(m0)50, andmi ’s are given as follows:

mi5H 2di 1122di 122¯2~p2 i 21!dp21

for i 50,1,...,p22,
0 for i 5p21,...,r .

~4.8!

Note that the valuesmi ’s are independent ofr.
Proposition 4.2:Let g be an affine Kac–Moody superalgebra of typeA(4)(2r ,0). Let l,m

PP1 be dominant integral weights of levell .0 for g with determining data a
5(a0 ,a1 ,...,as21), a85B, mPZ, andb5(b0 ,b1 ,...,bs821), b85B, nPZ, respectively. As-
sume thatr>max(s,s8). If m is related tol for infinitely many such values ofr, thenm can be
uniquely written asm5m02dl(m)d, wherem05l2( i 50

r mia i anddl(m0)50.
Now, we can obtain the similar facts in other types through the same process.
Proposition 4.3:~a! Let g be a finite dimensional simple Lie superalgebra of typeB(0,r ). Let

l,mPP1 be dominant integral weights forg with determining dataa5(a1 ,...,as), a85B, and
b5(b1 ,...,bs8), b85B, respectively. Assume thatr>max(s,s8)11. If m is related tol for infi-
nitely many such values ofr, thenm has a unique expression,m5m02dl(m)u, whereu is the
maximal root and

dl~m!5 b 1
2~d112d21¯1pdp!c ~ bxc is the largest integer<x!.

~b! Let g be an affine Kac–Moody superalgebra of typeg5B(1)(0,r ), A(4)(2r ,0), A(2)(2r
21,0), or C(2)(r 11). Let l,mPP1 be dominant integral weights of levell .0 for g with
determining data

a5~a0 ,a1 ,...,as21!, a85B, mPZ ~ for l!

~resp. a5B, a85~ar 2t11 ,ar 2t12 ,...,ar !, mPZ!

b5~b0 ,b1 ,...,bs821!, b85B, nPZ ~ for m!
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~resp. b5B, b85~br 2t811 ,br 2t812 ,...,br !, nPZ!.

Assume thatr>max(s,s8) ~resp.r>max(t,t8)). If m is related tol for infinitely many such values
of r, thenm has a unique expression,m5m02dl(m)d, where

dl~m!5n2m1 b 1
2~d112d21¯1~p21!dp21!c,

for g5B(1)(0,r ), A(2)(2r 21,0), and forg5A(4)(2r ,0), C(2)(r 11),

dl~m!5n2m1d112d21¯1~p21!dp21

~resp.dl(m)5n2m for all types!.
The following lemma plays an important role in the proof of our main result~Theorem 4.5!,

for they enable us to use an inductive argument.
Lemma 4.4:~cf. Refs. 5 and 6! ~a! Let g be a finite dimensional simple Lie superalgebra

type B(0,r ). Let l, m, tPP1 be dominant integral weights ofg with determining dataa
5(a1 ,a2 ,...,as), a85B, b5(b1 ,b2 ,...,bs8) b85B, and c5(c1 ,c2 ,...,cs9), c85B, respec-
tively. Assume thatr>max(s,s8,s9)11. If m andt are dominant weights ofL(l) andm<t<l,
thendl(t)<dl(m).
~b! Let g be an affine Kac–Moody superalgebra of typeB(1)(0,r ), A(4)(2r ,0), A(2)(2r 21,0), or
C(2)(r 11), and letl, m, tPP1 be dominant integral weights of levell .0 with determining data

a5~a0 ,a1 ,...,as21!, a85B, mPZ ~ for l!

~resp. a5B, a85~ar 2t11 ,ar 2t12 ,...,ar !, mPZ!

b5~b0 ,b1 ,...,bs821!, b85B, nPZ ~ for m!

~resp. b5B, b85~br 2t811 ,br 2t812 ,...,br !, nPZ!

c5~c0 ,c1 ,...,cs921!, c85B, n8PZ ~ for t!

~resp. c5B, c85~cr 2t911 ,cr 2t912 ,...,cr !, n8PZ!.

Assume thatr>max(s,s8,s9) (resp. r>max(t,t8,t9)). If m andt are dominant weights ofL(l) and
m<t<l, thendl(t)<dl(m).

Proof: It is similar to that of Refs. 5 and 6. h

We now state the main result of the paper, and the proof of this result will be given in Se
Theorem 4.5: ~a! Let g be a finite dimensional simple Lie superalgebra of typeB(0,r ). Let

l,mPP1 be dominant integral weights forg with determining dataa5(a1 ,a2 ,...,as), a85B
andb5(b1 ,b2 ,...,bs8), b85B, respectively, such thatr>max(s,s8)12. Suppose thatm is related
to l for infinitely many of r>max(s,s8)12. If m is a weight ofL(l) for somer 0>max(s,s8)
12, then it is a weight ofL(l) for all r>r 0 , and the multiplicity ofm in L(l) is given by a
polynomial in r of degree<dl(m).
~b! Let g be an affine Kac–Moody superalgebra of typeB(1)(0,r ), A(4)(2r ,0), A(2)(2r 21,0), or
C(2)(r 11). Letl, mPP1 be dominant integral weights forg of level l .0 with determining data
a5(a0 ,a1 ,...,as21), a85B, mPZ, andb5(b0 ,b1 ,...,bs821), b85B, nPZ, respectively, such
that r>max(s,s8)11 ~or a5B, a85(ar 2t11 ,ar 2t12 ,...,ar), mPZ, and b5B, b8
5(br 2t811 ,br 2t812 ,...,br), nPZ, respectively, such thatr>max(t,t8)11). Suppose thatm is
related tol for infinitely many of r>max(s,s8)11. If m is a weight of L(l) for some r 0

>max(s,s8)11 ~resp.r 0>max(t,t8)11), then it is a weight ofL(l) for all r>r 0 , and the multi-
plicity of m in L(l) is given by a polynomial inr of degree<dl(m).

For the proof of Theorem 4.5, we need some more facts about the root and weight mult
ties for Kac–Moody superalgebras and their representations. Now, letL> ĝ be the minimal graded
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Lie superalgebra with local partL(l) % ge
% L* (l) constructed in Sec. III. Let Q̂

5 % i P$21%øI Za i denote the root lattice ofĝ with respect to the Cartan subalgebrah. The roots of
ĝ belong to Q̂1øQ̂2 , where Q̂15S i P$21%øIZ>0a i52Q̂2 . Furthermore,m5l2S i PIkia i

52a212S i PIkia iPQ̂2 . The weight multiplicity ofm in L(l) is the same as the root mult
plicity of m in L. Thus to compute the weight multiplicity ofl2S i PIkia i , in L(l), it suffices to
compute the root multiplicity of2a212S i PIkia i in the Kac–Moody superalgebraL> ĝ, and in
oder to do this we will use the following version of Peterson’s recursive formula.

Proposition 4.6:~Refs. 7, 8, cf. Refs. 18 and 10, Exercise 11.12! Let Q̂5 % i P$21%øI Za i

denote the root lattice ofĝ. SetQ̂15S i P$21%øIZ>0a i , andQ̂252Q̂1 . For bPQ̂2 , define

Cb5 (
n>1

1

n
smultS b

n D ,

where smult(t)5(21)p(t)mult(t) andp is the parity function in Sec. II. Then we have

~bub12r!Cb5 (
b8,b9PQ̂2

b5b81b9

~b8ub9!Cb8Cb9 , ~4.9!

whererPh* is such thatr(hi)51 for i P$21%øI .
We write m5m02dl(m)u in the B(0,r ) case, orm5m02dl(m)d in the affine case. Since

the coefficient ofa21 in m is 21, any decomposition ofm is of the formm5b81b9, where

b852a212(
i PI

sia i , and b952(
i PI

t ia i ~4.10!

with si ,t iPZ>0 or the roles ofb8 and b9 can be changed. Note thatCm5smult(m) and Cb8
5smult(b8), which, form andb8, is the same as the supermultiplicity inL(l). Thus, in order to
have a nontrivial contribution toCb8 andCb9 , b8 must be a weight ofL(l) andb952ka for
somek>1, wherea is a positive root ofg. Fortunately, for the types ofB(0,r ), B(1)(0,r ),
A(4)(2r ,0), A(2)(2r 21,0), or C(2)(r 11), the forms of all the roots and their multiplicities a
known.19,9 Furthermore, by the same method as that of Refs. 5 and 6, we can prove thatmum
12r) is a polynomial inr of degree 1 ifdl(m).0. We have done our preparation for the pro
of Theorem 4.5.

V. THE PROOF OF MAIN THEOREM

In this section, we show our main theorem~Theorem 4.5!. The proof of Theorem 4.5 is a
follows:

The Proof of Theorem 4.5:The proof of~a! is similar to that of~b!. We will verify ~b! only
wheng is of type A(4)(2r ,0), and the determining data isa5(a0 ,a1 ,...,as21), a85B, mPZ,
andb5(b0 ,b1 ,...,bs821), b85B, nPZ. Moreover, we setp5max(s,s8).

We proceed by induction ondl(m) and on the partial ordering on the affine weight lattic
Write

m52a212(
i 50

r

mia i2dl~m!d52a212 (
i 50

p22

mia i2dl~m!d, ~5.1!

wheredl(m) and themi ’s are as in~4.6! and ~4.8!.
If dl(m),0, then fori 5p21,p,...,r , the coefficients ofa i in m are positive. Hencem cannot

be a weight ofL(l), and therefore its multiplicity inL(l) is zero.
If dl(m)50, thenm5l2( i 50

p22mia i . The multiplicity of m in L(l) is the number of linearly
independent vectors of the formf i 1

f i 2
¯ f i k

•vl , wherevl is the highest weight vector ofL(l)
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and f j appearsmj times in the expression for eachj P$0,1,...,p22%. This number is independen
of r. Therefore, ifm is a weight ofL(l) for somer 0>max(s,s8)11, then it is a weight ofL(l) for
all r>r 0 , and the multiplicity ofm is a constant.

Suppose now thatdl(m)>1. Consider a dominant integral weightt of level l with determin-
ing datac5(c0 ,c1 ,...,cs921), c85B, and n8PZ, such thatr>s9 which is related tol for
infinitely many values ofr>max(s,s9)11, and writet5t02dl(t)d, wheredl(t0)50. Assume
that if dl(t),dl(m) or if dl(t)5dl(m) andt0.m0 , that our assertion holds fort.

Consider a decompositionm5b81b9, whereb8P2a212Q15l2Q1 and b9 is a mul-
tiple of a negative root ofg. The roots ofg5A(4)(2r ,0) and their multiplicities are well-known,19

and they are as follows:

~i! 4k8d, ~ii ! ~4k811!d, ~iii ! ~4k812!d, ~iv! ~4k813!d,

~v! 4k8d6~a01¯1a j !,

~vi! ~4k812!d6~a01¯1a j !,

~vii ! 4k8d6~au1¯1av!,

~viii ! ~4k812!d6~au1¯1av!,

~ix! 4k8d6~2a01¯12au81au8111¯1av8!,

~x! ~4k812!d6~2a01¯12au81au8111¯1av8!,

~xi! ~4k811!d6~a01¯1a j !,

~xii ! ~4k813!d6~a01¯1a j !,

~xiii ! ~4k812!d6~2a01¯12a j !, ~5.2!

wherek8PZ, j 50,...,r 21, 1<u<v<r 21 and 1<u8,v8<r 21. Furthermore, the roots of~ii !,
~iv!, ~xi!, and~xii ! are odd, and the multiplicities of all roots without the roots in~i! and~ii ! whose
multiplicities arer and r 11, respectively, are 1.

Now, in the Peterson’s formula, we may wonder that every term in right-hand side of~4.9! has
the same sign. However, inb5b81b9, we have

~21!p~b!5~21!p~b8!~21!p~b9!. ~5.3!

So if b is even~resp. odd!, both b8 and b9 are even or odd~resp. the sign ofb8 and b9 are
different!, and we have the following fact.

Claim: For a multiple of a root ofg, b9 is even~resp. odd! implies Cb9.0 ~resp.Cb9,0).
Remark:By this claim, we can see that every term in the right-hand side of~4.9! has the same

sign. Therefore, in the summation of right-hand side we can calculate without consideration
sign.

Proof: We will prove this fact case by case. From now on, we assume thatk,k8PZ.
~i! b952kd: If 2kd is an even root, thenk is an even integer. But

C2kd5 (
m>1

smult~2kd/m!

m
5(

m/k

smult~2~k/m!d!

m
, ~5.4!

and we know that the multiplicities of24k8d, 2(4k812)d are r ,r 11, respectively, and the
multiplicities of 2(4k811)d, 2(4k813)d are 1. Since the number of even integers amo
divisors ofk is larger than the number of odd integers,C2kd is clearly positive. Moreover we know
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thatC2kd is a polynomial ofr of degree 1. On the other hand, if2kd is an odd root, thenk is an
odd integer. So all divisors ofk are odd integers, which implies thatC2kd,0 and it is constant.
~ii ! b952kg, whereg5((4k811)d6(a01¯1a j )) or ((4k813)d6(a01¯1a j )); g is an
odd root and 2g is an even root. Ifk is even,C2kg5(21/k)1@1/(k/2)#5(1/k).0, and ifk is odd,
C2kg5(21/k),0. Furthermore, note thatC2kg is independent ofr.

For other cases, by the similar argument, we can show thatb9 is even~resp. odd! implies
Cb9.0 ~resp.Cb9,0). Furthermore, we know thatCb9 dose not depend onr. h

We have to treat all the cases in~5.2! individually. But since every case follows by exactly th
same arguments, our strategy here is to demonstrate the proof for some cases o
A(4)(2r ,0).

Case (i)–(iv): Suppose first thatb952kd for k>1. Then

b852a212 (
i 50

p22

mia i2~dl~m!2k!dPQ̂2 , ~5.5!

whered5a01a11¯1a r ~for typeA(4)(2r ,0)). So we must havedl(m)2k>0 in order forb8

to belong toQ̂2 , which implies thatk runs from 1 todl(m). Now

~b8ub9!5k~a21ud!52kl, ~5.6!

wherel denotes the level. As we have seen before, ifb8 is not a weight ofL(l), thenCb850, and
there is no contribution to the right-hand side of~4.9!. So we may assume thatb8 is a weight of
L(l) for somer 0>max(s,s8)11. Observe thatb8 is dominant sinceb8(hj )5m(hj )>0 for all j
PI . Sinceb8 is related tol for infinitely many values ofr>max(s,s8)11 and sincedl(m)2k
,dl(m), it follows from the induction hypothesis thatb8 is a weight ofL(l) for all r>r 0 and
mult(b8) is a polynomial inr of degree<dl(m)2k<dl(m)21. We have seen in~5.4! thatCb9
is a polynomial inr of degree 1 or constant, which depends onk. Therefore, the total contribution
of the various decompositions of this kind to the right-hand side of~4.9! is a polynomial inr of
degree<dl(m).

Case (v):Suppose thatb952k(4k8d1a01¯1a j ) for k>1, k8>0, and j 50,...,r 21. Set
a01¯1a j5g, then we have

b852a212 (
i 50

p22

mia i1kg2~dl~m!24kk8!dPQ̂2 . ~5.7!

Since the coefficient ofa0 in b8 must be< 0,

2m01k2dl~m!14kk8<0. ~5.8!

Thusk(4k811)<m01dl(m), and hencek,(4k811) range from 1 tom01dl(m). We also have

~b8ub9!5k~a21ug!1k(
i 50

p22

mi~a i ug!2k2~gug!24kk8l . ~5.9!

Now (lua i)50 for i 5p,p11,...,r , which implies (a21ug) is a constant, and( i 50
p22mi(a i ug) is a

constant. Thus (b8ub9) is also a constant.
Let wr denote the Weyl group element ofg such thatwrb8 is a dominant integral weight. We

can verify thatwrb8 has the form

wrb85(
i 50

r

ci~r !L i2n8~r !d, ~5.10!
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whereci(r )50 for i 5p,...,r , and the determining data ofwrb8 is given byc5(c0 ,c1 ,...,cx),
c85B andn8PZ, wherex<p21, andci5ci(r ), n85n8(r ) ~for all r>r 0). Rather than writing
wrb8 in what follows, we denote byt the dominant weight determined by the data.

Now t also has levell, and if we letdi85ai2ci for i 50,1,...,r , then ai5ci5di850 for i
5p,p11,...,r . Hence we may write

t52a22 (
i 50

p21

mi8a i2dl~t!d, ~5.11!

where2a212( i 50
r mi8a i has depth 0 with respect tol. In addition, the inequalitym,b8<t

must hold. Hence

t2m5 (
i 50

p21

~mi2mi8!a i1~dl~m!2dl~t!!dPQ̂1 , ~5.12!

and

t2b85 (
i 50

p21

~mi2mi8!a i2kg1~dl~m!2dl~t!24kk8!dPQ̂1 . ~5.13!

By the same argument as in Lemma 1.27 of Ref. 6, we can show thatmi8>0 for all i 5p
21,p,...,r , and hencedl(m)2dl(t)24kk8>0. So we have

dl~t!<dl~m!24kk8<dl~m!. ~5.14!

Suppose thatdl(t)5dl(m). Then by~5.12! and~5.13!, k850 andmi8<0. Hencemi850 for
i 5p21,p,...,r , which allows us to rewrite~5.13! as

t2b85 (
i 50

p22

~mi2mi8!a i2kgPQ̂1 . ~5.15!

Thus, in order fort2b8 to be an element ofQ̂1 , in g5a01¯1a j , j must be smaller than
p21. The number of suchg’s is a constant. Sincet.m and dl(t)5dl(m), we havet0.m0 .
Hence ifwr 0

b8 is a weight ofL(l) for somer 0>max(s,s8)11, then by the induction hypothesis
t5wrb8 is a weight ofL(l) for all r>r 0 , and mult(b8)5mult(t) is a polynomial inr of degree
<dl(m). Note thatCb951/k for all k51,...,m01dl(m). Therefore, the contribution of thes
partitions to the right-hand side of~4.9! is a polynomial inr of degree<dl(m).

Suppose thatdl(t),dl(m). If wr 0
b8 is a weight ofL(l) for somer 0>max(s,s8)11, then by

the induction hypothesis,t5wrb8 is a weight ofL(l) for all r>r 0 , and mult(b8)5mult(t) is a
polynomial of degree<dl(t)<dl(m)21. Since the number of rootg is r 11, which is a poly-
nomial in r of degree 1, and sinceCb951/k for all k51,...,m01dl(m), the contribution of these
decompositions to the right-hand side of~4.9! is a polynomial inr of degree<dl(m).

Therefore, the total contribution of these partitions in Case~v! to the right-hand side of~4.9!
is a polynomial inr of degree<dl(m).

Case (ix): Suppose thatb952k(4k8d1g8), wherek>1, k8>0 and g852a01¯12au

1au111¯1av (0<u,v<r 21). Then,

b852a212 (
i 50

p22

mia i1kg82~dl~m!24kk8!dPQ̂2 . ~5.16!

Observe that the coefficient ofa0 in b8 is 2m012k2dl(m)14kk8, which must be<0. Thus
2k(2k811)<m01dl(m), and hence 2k,2k811 range from 1 tom01dl(m). We have
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~b8ub9!524kk8l 1k~a21ug8!1k(
i 50

p22

mi~a i ug8!2k2~g8ug8!, ~5.17!

which can be seen to be a constant as in Case~v!.
By the same reasoning as in Case~v!, we may suppose thatb8 is Weyl group conjugate to a

dominant integral weightt5( i 50
r ciL i2n8d52a212( i 50

r mi8a i2dl(t)d, where ci50 for i
5p,...,r , and2a212( i 50

r mi8a i has depth 0 with respect tol. Moreover,

t2m5 (
i 50

p21

~mi2mi8!a i1~dl~m!2dl~t!!dPQ̂1 ,

~5.18!

t2b85 (
i 50

p21

~mi2mi8!a i2kg81~dl~m!2dl~t!24kk8!dPQ̂1 ,

as in~5.12! and~5.13!. The same argument as in Lemma 1.27 of Ref. 6 shows thatmi8>0 for all
i 5p21,p,...,r . Therefore,dl(m)2dl(t)24kk8>0, which implies

dl~t!<dl~m!24kk8<dl~m!. ~5.19!

Suppose thatdl(t)5dl(m). Thenk850 andv,p21, which implies the number of rootg8
is independent ofr. Sincet.m anddl(t)5dl(m), we havet0.m0 . Hence ifwr 0

b8 is a weight
of L(l) for somer 0>max(s,s8)11, then by the induction hypothesis,t5wrb8 is a weight of
L(l) for all r>r 0 , and mult(b8)5mult(t) is a polynomial inr of degree<dl(m). Note that
Cb951/k for all k51,...,m01dl(m). Therefore, the contribution of these partitions to the rig
hand side of~4.9! is a polynomial inr of degree<dl(m).

Suppose thatdl(t),dl(m). If wr 0
b8 is a weight ofL(l) for somer 0>max(s,s8)11, then by

the induction hypothesis,t5wrb8 is a weight ofL(l) for all r>r 0 , and mult(b8)5mult(t) is a
polynomial inr of degree<dl(t)<dl(m)21. Since the number of rootsg8 is a polynomial inr
of degree 2, and sinceCb951/k for all k51,...,m01dl(m), the contribution of the partitions in
this case to the right-hand side of~4.9! is a polynomial inr of degree<dl(m)11.

Therefore, the total contribution of the partitions in Case~ix! to the right-hand side of~4.9! is
a polynomial inr of degree<dl(m)11.

As a result, the sum of all the contributions, which is the right-hand side of~4.9! for all cases,
is a polynomial inr of degree<dl(m)11. Since (mum12r) is a polynomial inr of degree 1, we
have mult(m)5 f /g, wheref is a polynomial inr of degree<dl(m)11 andg is a polynomial in
r of degree 1. Since mult(m) takes positive integral values for infinitely many values ofr
>max(s,s8)11, mult(m) must be a polynomial inr ~see Ref. 20, p. 130!, and

deg~mult~m!!<~dl~m!11!215dl~m!.

This argument gives the desired result. h
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APPENDIX: ALL THE NECESSARY DATA

In this section, we display the data as in Secs. III and IV for typesB(0,r ), B(1)(0,r ),
A(4)(2r ,0), A(2)(2r 21,0), andC(2)(r 11).21–30
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1. Roots in each type

a. B „0,r …:

~ i! 6~a i1a i 111¯1a r !,

~ ii ! 62~a i1a i 111¯1a r !, ~A1!

~ iii ! 6~a i1¯1a j 2112~a j1¯1a r !!,

wherei , j 51,...,r ( i , j ), and the roots of~i! are odd.

b. B „1…
„0,r …:

~ i! g1k8d, ~ ii ! k8d, ~A2!

wherek8PZ, g is the root of theB(0,r ) andd5a012a11¯12a r . The rootsg1k8d are real
roots, and the rootsk8d are imaginary roots.

c. A „2…
„2rÀ1,0…:

~ i! 4k8d, ~ ii ! ~4k812!d,

~ iii ! 4k8d6~au1¯1av!,

~ iv! ~4k812!d6~au1¯1av!,

~v-1! 4k8d6~a01a112~a21¯1au8!1au8111¯1av8!,

~v-2! 4k8d6~a01a11a21¯1a j !,

~v-3! 4k8d6~a01a21¯1a j !,

~v-4! 4k8d6a0 ,

~vi-1! ~4k812!d6~a01a112~a21¯1au8!1au8111¯1av8!,

~vi-2! ~4k812!d6~a01a11a21¯1a j !, ~A3!

~vi-3! ~4k812!d6~a01a21¯1a j !,

~vi-4! ~4k812!d6a0 ,

~vii-1! ~4k811!d6~ 1
2a01 1

2a11a21¯1a j !,

~vii-2! ~4k811!d6~ 1
2a06 1

2a1!,

~viii-1 ! ~4k813!d6~ 1
2a01 1

2a11a21¯1a j !,

~viii-2 ! ~4k813!d6~ 1
2a06 1

2a1!,

~ ix-1! ~4k812!d6~a01a112a21¯12a j !,

~ ix-2! ~4k812!d6~a06a1!,
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where k8PZ, j 52,...,r 21 and 1<u<v<r 21, 2<u8<v8<r 21 and d5 1
2a01 1

2a11a21¯

1a r . Furthermore, the roots of~vii-1!–~viii-3 ! are odd, and the roots of~i! are imaginary roots
with multiplicity r, and others are real roots with multiplicity 1.

d. C „2…
„r¿1…:

~ i! 2k8d, ~ ii !~2k811!d,

~ iii ! 2k8d6~au1¯1av!,

~ iv! 2k8d6~au1¯1av2112~av1¯a r !!, ~A4!

~v! 2k8d6~a j1¯1a r !,

~vi! ~2k811!d6~a j1¯1a r !,

wherek8PZ, j 51,...,r , 1<u<v<r 21, 1<u8<v8<r and d5a01¯1a r . Furthermore, the
roots of ~v! and ~vi! are odd, and the multiplicities of all roots without the roots in~i! whose
multiplicities arer, are 1.

2. Other data in the B „0,r … case

l5a1L11a2L21¯1apLp ,

m5b1L11b2L21¯1bpLp5l2(
i 51

r

kia i5l2(
i 51

r

mia i2dl~m!u,

di5ai2bi , u is the maximal root ofg.

dl~m!5 b 1
2~d112d21¯1pdp!c,

~i! if d112d21¯1pdp is even,

ki5H dl~m!1 1
2~d12d322d42¯2~p22!dp! for i 51,

2dl~m!2di 1122di 122¯2~p2 i !dp

for i 52,...,p21,
2dl~m! for i 5p,...,r ,

mi5H 1
2~d12d322d42¯2~p22!dp! for i 51,

2di 1122di 122¯2~p2 i !dp for i 52,...,p21,
0 for i 5p,...,r ,

~ii ! if d112d21¯1pdp is odd,

ki5H dl~m!1 1
2~11d12d322d42¯2~p22!dp! for i 51,

2dl~m!112di 1122di 122¯2~p2 i !dp

for i 52,...,p21,
2dl~m!11 for i 5p,...,r ,

mi5H 1
2~11d12d322d42¯2~p22!dp! for i 51,

12di 1122di 122¯2~p2 i !dp for i 52,...,p21,
1 for i 5p,...,r .
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3. Other data in the affine type

Case 1:

l5a0L01a1L11¯1ap21Lp212md,

m5b0L01b1L11¯1bp21Lp212nd

5l2S i 50
r kia i5l2S i 50

r mia i2dl~m!d,

di5ai2bi .

a. gÄB „1…
„0,r …:

dl~m!5n2m1 b 1
2~d112d21¯1~p21!dp21!c,

~i! if d112d21¯1(p21)dp21 is even,

ki5H dl~m!2 1
2~d112d21¯1~p21!dp21! for i 50,

2dl~m!2di 1122di 122¯2~p212 i !dp21

for i 51,...,p22,
2dl~m! for i>p21,

mi5H 2 1
2~d112d21¯1~p21!dp21 for i 50,

2di 1122di 122¯2~p212 i !dp21

for i 5 i ,...,p22,
0 for i>p21,

~ii ! if d112d21¯1(p21)dp21 is odd,

ki5H dl~m!1 1
22 1

2~d112d21¯1~p21!dp21! for i 50,

2dl~m!112di 1122di 122¯2~p212 i !dp21

for i 51,...,p22,
2dl~m!11 for i>p21,

mi5H 1
22 1

2~d112d21¯1~p21!dp21! for i 50,

12di 1122di 122¯2~p212 i !dp21 for i 51,...,p22,
1 for i>p21.

b. gÄA „4…
„2r ,0…:

dl~m!5n2m1~d112d21¯1~p21!dp21!,

ki5H dl~m!2~di 1112di 121¯1~p212 i !dp21!

for i 50,...,p22,
dl~m! for i>p21,

mi5H 2~di 1112di 121¯1~p212 i !dp212 i !

for i 50,...,p22,
0 for i>p21.
                                                                                                                



4999J. Math. Phys., Vol. 41, No. 7, July 2000 Construction of Kac–Moody superalgebras as . . .

                    
c. gÄA „2…
„2rÀ1,0…:

dl~m!5n2m1 b 1
2~d112d21¯1~p21!dp21!c,

~i! if d112d21¯1(p21)dp21 is even,

ki55
dl~m!2 1

2~d112d21¯1~p21!dp21! for i 50,

dl~m!1 1
2~d12d322d42¯2~p23!dp21! for i 51,

2dl~m!2di 1122di 122¯2~p212 i !dp21

for i 52,...,p22,
2dl~m! for i>p21,

mi5H 2 1
2~d112d21¯1~p21!dp21! for i 50,

1
2~d12d322d42¯1~p23!dp21! for i 51,

2di 1122di 122¯2~p212 i !dp21 for i 52,...,p22,
0 for i>p21,

~ii ! if d112d21¯1(p21)dp21 is odd,

ki55
dl~m!1 1

22 1
2~d112d21¯1~p21!dp21! for i 50,

dl~m!1 1
21 1

2~d12d322d42¯2~p23!dp21 for i 51,

2dl~m!112di 1122di 122¯2~p212 i !dp21

for i 52,...,p22,
2dl~m!11 for i>p21,

mi5H 1
22 1

2~d112d21¯1~p21!dp21! for i 50,
1
21 1

2~d12d322d42¯1~p23!dp21! for i 51,

12di 1122di 122¯2~p212 i !dp21 for i 52,...,p22,
1 for i>p21.

d. gÄC „2…
„r¿1…:

dl~m!5n2m1~d112d21¯1~p21!dp21!,

ki5H dl~m!2di 1122di 122¯2~p212 i !dp21

for i 50,...,p22,
dl~m! for i>p21,

mi5H 2di 1122di 122¯2~p212 i !dp21

for i 50,...,p22,
0 for i>p21.

Case 2:

l5ar 2q11L r 2q111ar 2q12L r 2q121¯1arL r2md,

m5br 2q11L r 2q111br 2q12L r 2q121¯1brL r2nd

5l2( i 50
r kia i5l2( i 50

r mia i2dl~m!d,

di5ai2bi .
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e. gÄB „1…
„0,r …:

dl~m!5n2m,

ki5H dl~m! for i 50,
2dl~m! for i 51,...,r 2q11,
2dl~m!2~ i 2~r 2q11!!dr 2q112¯22di 222di 21

for i>r 2q12,

mi5H 0 for i 50,...,r 2q11,
2~ i 2~r 2q11!!dr 2q112¯22di 222di 21

for i>r 2q12.

f. gÄA „4…
„2r ,0…:

dl~m!5n2m,

ki5H dl~m! for i 50,...,r 2q11,
dl~m!2~ i 2~r 2q11!!dr 2q112¯22di 222di 21

for i>r 2q12,

mi5H 0 for i 50,1,...,r 2q11,
2~ i 2~r 2q11!!dr 2q112¯22di 222di 21

for i>r 2q12.

g. gÄA „2…
„2rÀ1,0…:

dl~m!5n2m,

ki5H dl~m! for i 50,1,
2dl~m! for i 52,...,r 2q11,
dl~m!2~ i 2~r 2q11!!dr 2q112¯22di 222di 21

for i>r 2q12,

mi5H 0 for i 50,1,...,r 2q11,
2~ i 2~r 2q11!!dr 2q112¯22di 222di 21

for i>r 2q12.

h. gÄC „2…
„r¿1…:

dl~m!5n2m,

ki5H 2dl~m! for i 50,...,r 2q11,
dl~m!2~~ i 2~r 2q21!!dr 2q112¯22di 222di 21!

for i>r 2q12,

mi5H 0 for i 50,...,r 2q11,
2~ i 2~r 2q21!!dr 2q112¯22di 222di 21

for i>r 2q12.
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Analogies between finite-dimensional irreducible
representations of SO „2n … and infinite-dimensional
irreducible representations of Sp „2n ,R….
I. Characters and products
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The analogy between the finite-dimensional spin representationD of SO(2n) and
the infinite-dimensional representationD̃ of Sp(2n,R) is made precise. It is then
shown that this analogy can be extended so as to provide a precise link between
each finite dimensional unitary irreducible representation of SO(2n) and a corre-
sponding infinite-dimensional unitary irreducible representation of Sp(2n,R). The
analogy shows itself at the level of the corresponding characters and difference
characters, and involves the use of Schur function methods to express both char-
acters and difference characters of SO(2n) and Sp(2n,R) in terms of characters of
irreducible representations of their common subgroup U(n). The analogy is ex-
tended still further to cover the explicit decomposition of not only tensor products
of D and D̃ with other unitary irreducible representations of SO(2n) and
Sp(2n,R), respectively, but also arbitrary tensor powers ofD and D̃. © 2000
American Institute of Physics.@S0022-2488~00!00307-8#

I. INTRODUCTION

The symplectic group Sp(6,R) is well known as the dynamical group of the isotropic thre
dimensional harmonic oscillator.1 For a single particle the even-parity states span a single infin

dimensional irreducible representation commonly denoted2,3 as ^ 1
2 (0)& ~or D̃1! while the odd-

parity states span the irreducible representation^ 1
2 (1)& ~or D̃2!. Collectively they span a single

irreducible representationD̃ of the metaplectic group Mp(6), thecovering group of Sp(6,R). In
general the group Sp(2n,R) is of relevance to symplectic models of nuclei4 and certain mesos
copic systems such as quantum dots.5,6 A central problem in making applications is the resoluti
of tensor powers of the irreducible representationD̃. The tensor powers of the basic irreducib
representationD̃ of Sp(2n,R) have some properties closely analogous to those of the basic
representations of the special orthogonal group SO(2n). The objective of this paper is to demon
strate and exploit a variety of close analogies between irreducible representations of SO(2n) and
Sp(2n,R).

The study of spin representations of the orthogonal groups in a space of arbitrary dime
was initiated by Brauer and Weyl. In their seminal paper7 on this topic they showed that in th
case of the orthogonal group O(2n) the spin representation of dimension 2n with characterD
decomposes on restriction to the proper orthogonal group SO(2n) into a direct sum of two

a!Electronic mail: rck@maths.soton.ac.uk
b!Electronic mail: bgw@phys.uni.torun.pl
50020022-2488/2000/41(7)/5002/18/$17.00 © 2000 American Institute of Physics
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irreducible representations each of dimension 2n21 with charactersD1 and D2 . Murnaghan8

introduced the notion of a difference spin characterD9. The characters of the spin representatio
D and D6 , together with that ofD9, were given by Littlewood.9 The relevant formulas for
SO(2n) take the form:

D5D11D25)
i 51

n

~xi
1/21xi

21/2!, ~1.1a!

D95D12D25)
i 51

n

~xi
1/22xi

21/2!, ~1.1b!

wherexi andxi
21 for i 51,2,...,n are the eigenvalues of an arbitrary group element of SO(2n). At

the identity elementI we havexi51 for i 51,2,...,n so that dimD52n while dimD950.
Just as the spin representations of SO(2n) are double-valued and are true representation

the covering group Spin(2n), so the symplectic group Sp(2n,R) possesses certain metaplec
representations which are double-valued and are true representations of the covering
Mp(2n). These metaplectic representations are encountered in the study of the one-dime
harmonic oscillator and its generalizations and are variously known as harmonic representa3

oscillator representations,10 and Segal–Shale–Weil representations.11 They are the infinite-
dimensional lowest weight representations associated with even and odd parity states of t
monic oscillator. Their characters are denoted here byD̃1 and D̃2 , respectively, and in wha
follows it will be shown that formal expressions for the sum and difference of these charact
infinite-dimensional irreducible representations of Sp(2n,R) are given by

D̃5D̃11D̃25)
i 51

n

~xi
21/22xi

1/2!21, ~1.2a!

D̃95D̃12D̃25)
i 51

n

~xi
21/21xi

1/2!21, ~1.2b!

where nowxi and xi
21 for i 51,2,...,n are the eigenvalues of an arbitrary group element

Sp(2n,R).
Some progress has been made on the calculation of various plethysms, that is to say s

trized powers, of not onlyD, D6 , andD9, but alsoD̃, D̃6 , andD̃9. In particular the symmetric
and antisymmetric squares ofD andD9 are given by12,13

D ^ $2%5@1n#11@1n#21 (
x50

`

~@1n2124x#1@1n2324x#12@1n2424x# !, ~1.3a!

D ^ $12%5 (
x50

`

~@1n2124x#12@1n2224x#1@1n2324x# !, ~1.3b!

D9^ $2%5@1n#11 (
x50

`

~21!11x@1n212x#, ~1.3c!

D9^ $12%5@1n#21 (
x50

`

~21!11x@1n212x#, ~1.3d!
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where@1k# are the characters of thekth fold antisymmetrized power of the defining irreducib
representation@1# of SO(2n). These representations are irreducible fork51,2...,n21, while for
k5n we have@1n#5@1n#11@1n#2 .

Similarly, the symmetric squares ofD̃ and D̃9 are given by14–16

D̃ ^ $2%5^1~0!&1 (
x50

`

^1~11x!&, ~1.4a!

D̃ ^ $12%5^1~0!&* 1 (
x50

`

^1~11x!&, ~1.4b!

D̃9^ $2%5^1~0!&1^1~0!&* 1 (
x50

`

~2^1~114x!&2^1~314x!&12^1~414x!&!, ~1.4c!

D̃9^ $12%5 (
x50

`

~2^1~114x!&12^1~214x!&2^1~314x!&!, ~1.4d!

where^1(m)& are characters of certain harmonic series infinite-dimensional irreducible repr
tations of Sp(2n,R) and an asterisk (* ) signifies the associate16 of an irreducible representation o
Sp(2n,R).

Comparison of~1.1! and~1.2! gives a formal connection between the charactersD andD9 of
SO(2n) and the charactersD̃ andD̃9 of Sp(2n,R). The formal connection is brought home rath
forcibly in ~1.3! and~1.4! through an analogy between the symmetrized squares ofD andD9, and
those ofD̃ andD̃9. To be more precise, the analogies are betweenD andD̃9 and betweenD9 and
D̃. Furthermore the right-hand sides of~1.3! and~1.4! signify additional analogies between@1n#1

and ^1(0)&, between@1n#2 and ^1(0)&* , and, finally, between@1n2t# and ^1(t)& for t.0.
These are but the tip of an iceberg. The full set of analogies between the finite-dimen

irreducible representations of SO(2n) and the infinite-dimensional irreducible representations
Sp(2n,R) which we wish to expose here take the form

@mn/l8# ↔ ^m~l!& if l185m, ~1.5a!

@mn/l8#1(2)n ↔ ^m~l!& if l18,m, ~1.5b!

@mn/l8#2(2)n ↔ ^m~l!&* if l18,m, ~1.5c!

@D;mn/l8#1(2)n ↔ ^D̃;m~l!& if l18<m, ~1.5d!

@D;mn/l8#2(2)n ↔ ^D̃;m~l!&* if l18<m, ~1.5e!

where the notation used here to specify the characters of the various irreducible representa
SO(2n) and Sp(2n,R) will be explained fully in later sections.

The analogies~1.5! are made precise by evaluating the relevant characters of both SOn)
and Sp(2n,R) at the level of their maximal compact subgroup U(n). The characters of irreducible
representations of U(n) are themselvesS-functions$l%, and in the context of~1.5! a crucial role
is played by various infinite series ofS-functions.13,17–19

The first step in this direction is made in Sec. II by expressing each of the charactersD, D9,
D̃, andD̃9 in terms ofS-function series. The second step is that of generalizing these results
case of all the characters appearing on both sides of~1.5!. As a means to this end, releva
notational devices, both algebraic and diagrammatic, are introduced in Sec. III. These ar
used in Sec. IV in reformulating the known branching rules for the decomposition of irredu
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representations of both SO(2n) and Sp(2n,R) on restriction to U(n). By virtue of some quite
subtle S-function identities19 and modification rules20 precise analogies of the form~1.5! are
arrived at.

It then comes as no surprise that the analogy at the level of characters between the
dimensional irreducible representations of SO(2n) and the infinite-dimensional irreducible repr
sentations of Sp(2n,R) can be built upon to establish analogies between the decomposition
each of these groups of tensor products, tensor powers, and symmetrized tensor powers, k
plethysms. This development is initiated in Sec. V where we content ourselves with establ
results for certain tensor products and powers involvingD, D9, D̃, andD̃9. The extension to the
case of plethysms, generalizing~1.3! and ~1.4!, is to be the subject of a separate paper.

II. BASIC SPIN DIFFERENCE CHARACTERS AND HARMONIC CHARACTERS

In the case of both SO(2n) and Sp(2n,R) the characters of their irreducible representatio
may conveniently be obtained by expressing them in terms of characters of irreducible rep
tations of their maximal reductive subgroup U(n). The covariant tensor irreducible representatio
of U(n) are specified by partitionsl5(l1 ,l2 ,...,ln) into no more thann nonvanishing parts.
Their characters$l%, are just the Schur functionssl(x1 ,x2 ,...,xn) of the eigenvaluesxi of the
relevant group elementA of U(n). The contravariant tensor irreducible representations of Un)
are just the contragredients of the covariant irreducible representations. They have charact$l̄%
given bysl(x1

21 ,x2
21 ,...,xn

21). The particular one-dimensional irreducible representation of Un)
in which each group elementA is mapped to (detA)r for some fixed rational numberr has
charactere r wheree5$1n%5s1n(x1 ,x2 ,...xn)5x1x2¯xn .

With this notation, the characters of the two basic spin irreducible representations of SOn)
are given by

D15e21/2~$1n%1$1n22%1$1n24%1¯ !, ~2.1a!

D25e21/2~$1n21%1$1n22%1$1n24%1¯ !. ~2.1b!

Similarly, the characters of the two basic harmonic irreducible representations of Sp(2n,R) are
given by

D̃15e1/2~$0%1$2%1$4%1¯ !, ~2.2a!

D̃25e1/2~$1%1$3%1$5%1¯ !. ~2.2b!

SettingD5D11D2 andD95D12D2 we have

D5e21/2~$0%1$1%1$12%1¯1$1n%!, ~2.3a!

D95~21!ne21/2~$0%2$1%1$12%1¯1~21!n$1n%!. ~2.3b!

In the same way, settingD̃5D̃11D̃2 and D̃95D̃12D̃2 we have

D̃5e1/2~$0%1$1%1$2%1¯ !, ~2.4a!

D̃95e1/2~$0%2$1%1$2%2¯ !. ~2.4b!

The use of the generating functions9

Q5 (
m50

n

$1m%5)
x51

n

~11xi !, ~2.5a!
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L5 (
m50

n

~21!m$1m%5)
x51

n

~12xi !, ~2.5b!

M5 (
m50

`

$m%5)
x51

n

~12xi !
21, ~2.5c!

P5 (
m50

`

~21!m$m%5)
x51

n

~11xi !
21, ~2.5d!

in ~2.3! and ~2.4!, together with the fact thate61/25) i 51
n xi

61/2, then leads to the characte
formulas

D5e21/2Q5)
i 51

n

~xi
1/21xi

21/2!, ~2.6a!

D95~21!ne21/2L5)
i 51

n

~xi
1/22xi

21/2!, ~2.6b!

and

D̃5e1/2M5)
i 51

n

~xi
21/22xi

1/2!21, ~2.7a!

D̃95e1/2P5)
i 51

n

~xi
21/21xi

1/2!21, ~2.7b!

where in each case the final expressions are the ones quoted in~1.1! and ~1.2!. Formally, the
passage from~2.4! to ~1.2! as in ~2.7! depends on the convergence ofM and P. This requires
uxi u,1 for all i 51,2,...,n. Thus~1.2a! and ~1.2b! are to be viewed as formal expressions whi
when expanded in positive powers ofxi for all i 51,2,...,n define the sum and difference of th
basic harmonic characters of Sp(2n,R).

It should perhaps be pointed out thatD1 andD2 are the characters of the irreducible repr
sentations of SO(2n) corresponding to fundamental finite-dimensional highest weight irreduc
representations of the underlying simple Lie algebraDn . Their highest weights in the fundament
weight basis, thev-basis, and the Euclidean orthonormal basis, the«-basis, are given by21

D1 : vn215@ 1
2 , 1

2 ,..., 1
2 , 1

2#, ~2.8a!

D2 : vn5@ 1
2 , 1

2 ,..., 1
2 ,2 1

2#. ~2.8b!

On the other hand,D̃1 andD̃2 are the characters of irreducible representations of Sp(2n,R)
corresponding to nonfundamental lowest weight irreducible representations of the unde
simple Lie algebraCn . Their lowest weights are given in thev and« bases by10

D̃1 : 1
2 vn5^ 1

2 , 1
2 ,..., 1

2 , 1
2&, ~2.9a!

D̃2 : 2vn211 3
2 vn5^ 1

2 , 1
2 ,..., 1

2 , 3
2&. ~2.9b!
                                                                                                                



n

acters

itions to
onding

n

5007J. Math. Phys., Vol. 41, No. 7, July 2000 Analogies between irreps of SO(2n) and Sp(2n,R)

                    
The fact that the components of the lowest weights in thev-basis are not integers is an indicatio
of the fact that the corresponding irreducible representations are infinite-dimensional.

Of course there also exist highest weight irreducible representations with charactersD̃̄1 and

D̃̄2 that are contragredient to those irreducible representations having charactersD̃1 andD̃2 . The
highest weights of these contragredient irreducible representations are given by

D̃̄1 : 2 1
2 vn5^2 1

2 ,2 1
2 ,...,2 1

2 ,2 1
2&, ~2.10a!

D̃̄2 : vn212 3
2 vn5^2 1

2 ,2 1
2 ,...,2 1

2,2
3
2&, ~2.10b!

and their characters take the following form:

D̃̄15e21/2~$0̄%1$2̄%1$4̄%1¯ !, ~2.11a!

D̃̄25e21/2~$1̄%1$3̄%1$5̄%1¯ !. ~2.11b!

As usual, settingD̃̄5 D̃̄11 D̃̄2 and D̃̄95 D̃̄12 D̃̄2 we then have

D̃̄5e21/2~$0̄%1$1̄%1$2̄%1¯ !, ~2.12a!

D̃̄95e21/2~$0̄%2$1̄%1$2̄%1¯ !. ~2.12b!

Replacingxi by xi
21 in the generating functions~2.5c! and~2.5d! to give M̄ and P̄, respectively,

and using these in~2.12! then yields formulas almost identical to those of~1.2!, namely

D̃̄5e21/2M̄5)
i 51

n

~xi
1/22xi

21/2!21, ~2.13a!

D̃̄95e21/2P̄5)
i 51

n

~xi
1/21xi

21/2!21. ~2.13b!

Formally, once again, the passage from~2.12! to ~2.13! depends on the convergence ofM̄ andP̄.
This requiresuxi

21u,1 for all i 51,2,...,n. Thus the final formulas of~2.13a! and~2.13b! are to be
viewed as formal expressions which when expanded in negative powers ofxi for all i
51,2,...,n define the sum and difference of the contragredients of the basic harmonic char
of Sp(2n,R).

III. PARTITIONS, YOUNG DIAGRAMS, AND S-FUNCTIONS

Before attempting to establish the existence of analogies of the type analogies~1.5! it is
necessary to develop a number of notational niceties. These are based on the use of part
specify a variety of Young diagrams, both standard and nonstandard, as well as corresp
S-functions and series ofS-functions.9

Each partitionl5(l1 ,l2 ,...,lp) of weight ulu specifies a Young diagramFl consisting of
ulu boxes arranged inp5 l (l) left-adjusted rows of lengthsl i for i 51,2,...,p. The lengthsl j8 for
j 51,2,...,q of the q5b(l) top-adjusted columns ofFl serve to define the conjugate partitio
l85(l18 ,l28 ,...,lq8). The number of boxesr 5r (l) on the principal diagonal ofFl is known as
the Frobenius rank of the partitionl. In Frobenius notation

l5S a1 a2 ¯ ar

b1 b2 ¯ br
D ,
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whereai andbi for i 51,2,...,r are the arm and leg lengths, respectively, ofFl with respect to its
main diagonal of lengthr . Typically, for l5(5443)5(5423), with p5l (l)54 andq5b(l)
55, we havel85(44431)5(4331) and in Frobenius notation

l5S 4 2 1

3 2 1D
with r 5r (l)53 andulu516. This is illustrated diagrammatically by

~3.1!

As has already been seen in Sec. II partitions,l, have a useful role to play in specifying th
characters,$l%, of corresponding irreducible representations of U(n), where these characters a
S-functions. In what follows, in addition to theS-function seriesQ, L, M , andP, defined in~2.5!,
we encounter several others:9,13,17–19

A5 (
aPA

~21! uau/2$a%, B5 (
bPB

$b%, C5 (
gPC

~21! ugu/2$g%, D5 (
dPD

$d%, ~3.2a!

E5 (
«PE

~21!(u«u1r («))/2$«%, G5 (
«PE

~21!(u«u2r («))/2$«%, ~3.2b!

V5 (
jPX

~21!j28$j%, X5 (
jPX

$j%, ~3.2c!

where, in the notation exemplified in~3.1!, a, b, g, d, «, andj are characterized by the condition
bk5ak11 for k51,2,...,r (a), b j8 even for j 51,2,...,b(b), ak5bk11 for k51,2,...,r (g), d i

even fori 51,2,...,l (d), ak5bk for k51,2,...,r («), anduju even, withb(j)<2.
The S-function series satisfy the following conjugacy conditions:

A85C, B85D, E85E, G85G, M 85Q, L85P, ~3.3!

and the identities:

AB5CD5EG5LM5PQ51, AX5Cr , AV5C, AQ5G, AL5E5Gr , ~3.4!

where the superscriptr on any S-function seriesS indicates thatSr is obtained fromS by
mutiplying each term$s% in S by (21)r (s), wherer (s) is the Frobenius rank of ofs.

Now let m be a partition into no more thanp parts with its largest part no greater thanq, and
let n be any other partition. Then defineFm,pn to be the diagram formed by placingFn immedi-
ately below thepth row of Fm, and defineFmuqn to be the diagram formed by placingFn

immediately to the right of theqth column ofFm. In the first case all the rows are left-adjusted
the same vertical line, and in the second case the columns are top-adjusted to the same ho
line. The correspondingS-functions are denoted by$m,pn% and $m;qn%. However the diagrams
Fm,pn andFmuqn may not be standard and in such cases it will be necessary to reorder their
and columns, respectively, in accordance with the repeated use of the following modific
rules:9,22

$l1 ,...,l i ,l i 11 ,...%52$l1 ,...,l i 1121,l i11,...% for i 51,2,..., ~3.5a!

$l18 ,...,l j8 ,l j 118 ,...%852$l18 ,...,l j 118 21,l j811,...%8 for j 51,2,... . ~3.5b!
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These modification rules owe their existence to the following determinantal expansions:

$l%5$l8%85u$l i2 i 1 j %u5u$1l j82 j 1 i%u, ~3.6!

where as many trailing zeros as one may wish may be added to the parts ofl andl8.
In the present context, the repeated use of~3.5a! is illustrated in the casem5(41), p53, and

n5(5312) by

~3.7!

where the labeling of boxes has been used to emphasize the fact that the modification rules
realized by wrapping the various rows ofFn aroundFm in the form of continuous strips. Each stri
contributes a sign factor (21)x, wherex is the increase in the number of rows the strip occup
as a result of the wrapping process. If the wrapping process leads to a nonstandard diagra
the result is null, that is$m,pn%50.

Similarly if m5(221), q53, andn5(43221) then the use of~3.5b! leads to

~3.8!

where now it is the columns ofFn that are wrapped aroundFm in the form of continuous strips
Each strip contributes a sign factor (21)y, wherey is the increase in the number of columns t
strip occupies as a result of the wrapping process. As a second example of this type it is inst
to consider as beforem5(221) but nowq52 andn5(5421):

~3.9!

The significance of this example is that it is possible to view the passage in~3.8! from
$221;243221% to 2$764% as one from$221;243221% first to $221;25421% and then, as in~3.9!,
from $221;25421% to 2$764%. The first step just involves sliding the portion ofFn below the main
diagonal one step in a northwesterly direction:

~3.10!

The identity $221;343221%5$221;25421% illustrated in ~3.10! involves the partition (43221)
PA, and its conjugate (5421)PC, where the setsA andC are those associated with theS-function
seriesA andC, respectively, defined in~3.2a!. The result~3.10! can be generalized immediate
to the case of allaPA, or equivalently allgPC, giving the identity
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$m;qg%5~21!r (a)$m;q11a% with a5g8PA, ~3.11!

which will be used in Sec. IV.
It is also necessary to recall that each pair of partitionsm andn specifies a composite Youn

diagramF m̄;n which may be variously drawn as shown:

~3.12!

where the last form involves a total of preciselyn rows within the context, as here, of characte
of U(n). In fact for anyq>m1 , the corresponding character$m̄;n% of U(n) is given bye2q$l%,
whereFl is formed fromF m̄;n by taking the complement of the portionF m̄ in an n3q rectangle
and placing it the left ofFn to give F (qn/m);qn. Typically, in U(8) and choosingq56, we have

~3.13!

More generally, our notation for characters of U(n) is such that for anyq>m1 we have

$m̄;n%5e2q$~qn/m!;qn%, ~3.14!

where it may be necessary to invoke a modification of the type illustrated in~3.8! in order to
standardize the final result.

IV. BRANCHING RULES FOR SO „2n …\U„n … AND SP„2N,R…\U„N…

The branching rules for the restrictions from SO(2n) to U(n) and from Sp(2n,R) to U(n)
appear at first sight to have little in common. For example, in the case of the restr
SO(2n)→U(n) it is known that ifl is a partition into fewer thann parts, then17

@l#→(
z

$z̄;l/Bz%, ~4.1!

where the summation is over all partitionsz for which l/z is nonzero, where the slash~/! signifies
a quotient of Schur functions, and quite generally$m̄;n% signifies the character of an irreducib
mixed tensor irreducible representation of U(n). On the other hand, for the restriction from
Sp(2n,R)→U(n) we have3

^ 1
2 k~l!&→ek/2

•$ls%
k
•D, ~4.2!

where$ls%
k is a signed sequence of Schur functions6$m% such that@m# is equivalent to6@l#

under the modification rules of O(k). Here each Schur function$m% is the character of an irre
ducible covariant tensor irreducible representation of U(n).

The complete set of inequivalent unitary finite-dimensional irreducible representatio
SO(2n) have characters which may conveniently be specified by
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@l# for l18,n, @l#6 for l185n, @D;l#6 for l18<n. ~4.3!

The relevant branching rules for the restriction from SO(2n) to U(n) which serve to define thes
characters take the form18

@l#5(
j

$j̄;l/jB% for l18,n, ~4.4a!

@h;m#5(
j

e21$j̄;~m/jB!•X% for m18<n, ~4.4b!

@h;m#95~21!n(
j

e21$j̄;~m/jB!•V% for m18<n, ~4.4c!

@D;l#5(
j

e21/2$j̄;~l/jB!•Q% for l18<n, ~4.4d!

@D;l#95~21!n(
j

e21/2$j̄;~l/jB!•L% for l18<n, ~4.4e!

where

@l#65@h;m#65 1
2 ~@h;m#6@h;m#9! for l185n, ~4.5a!

@D;l#65 1
2 ~@D;l#6@D;l#9! for l18<n, ~4.5b!

and in the casel185n it has been convenient to write@l#5@1n;1m#5@h;m# with m18<n.
In order to rewrite the formulas~4.4! in a form more suited to the exposure of the analog

we are seeking it is necessary to invoke the following:
Lemma 4.1: Letl be an arbitrary partition and S an arbitrary S-function series, then with B

as in ~3.2a!,

(
j

$j̄;~l/jB!S%5$l̄;AS%•B, ~4.6!

where A5B21.
Proof: The crucial observation is that, as shown elsewhere,19 for all partitions z we have

D/z5(z/D)D. Either the use of an entirely analogous argument withD replaced byB, or by the
simpler expedient of taking conjugates, one deduces thatB/z5(z/B)B. Using this together with
the fact thatBA51 allows us to derive~4.6! as follows:

(
j

$j̄;~l/jB!S%5(
z

$l/z;~z/B!BAS%5(
z

$l/z;~B/z!AS%5(
z

$l̄;AS%•B, ~4.7!

where the last step depends on the linear extension froms to B of the product rule

$m̄;n%•$s%5(
z

$m/z;n•~s/z!%. ~4.8!

Applying Lemma 4.1 to~4.4!, and using the identities~3.4!, gives

@l#5$l̄;A%•B for l18,n, ~4.9a!
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@h;m#5e21$m̄;Cr%•B for m18<n, ~4.9b!

@h;m#95~21!ne21$m̄;C%•B for m18<n, ~4.9c!

@D;l#5e21/2$l̄;G%•B for l18<n, ~4.9d!

@D;l#95~21!ne21/2$l̄;Gr%•B for l18<n. ~4.9e!

Introducingm with m>l1 , we can then use the notation of~3.14! to arrive at the formulas:

@l#5e2m$~mn/l!;mA%•B for l18,n, ~4.10a!

@l#5e2m$~mn/l!;mA%•B for l185n, ~4.10b!

@l#95~21!ne2m$~mn/l!;mAr%•B for l185n, ~4.10c!

@D;l#5e2m21/2$~mn/l!;mG%•B for l18<n, ~4.10d!

@D;l#95~21!ne2m21/2$~mn/l!;mGr%•B for l18<n. ~4.10e!

In the case of the passage from~4.9b! and ~4.9c! to ~4.10b! and ~4.10c!, respectively, it has also
been necessary to note that, as a consequence of~3.11!, for all gPC we have

$m̄;g%5e2m11 $~~m21!n/m!;m21g%5~21!r (a)e2m11$~~m21!n/m!;ma%

5~21!r (a)e2m11 $~mn/~1n
•m!;ma%5~21!r (a)e2m11 $~mn/l;ma%, ~4.11!

with aPA.
It follows from ~4.10! and ~4.5! that

@l#5e2m$~mn/l!;mA%•B for l18,n, ~4.12a!

@l#15e2m$~mn/l!;mAeo(n)%•B for l185n, ~4.12b!

@l#25e2m$~mn/l!;mAoe(n)%•B for l185n, ~4.12c!

@D;l#15e2m21/2$~mn/l!;mGeo(n)%•B for l18<n, ~4.12d!

@D;l#25e2m21/2$~mn/l!;mGoe(n)%•B for l18<n, ~4.12e!

or equivalently

@mn/l8#5e2m$l8;mA%•B for l185m, ~4.13a!

@mn/l8#15e2m$l8;mAeo(n)%•B for l18,m, ~4.13b!

@mn/l8#25e2m$l8;mAoe(n)%•B for l18,m, ~4.13c!

@D;mn/l8#15e2m21/2$l8;mGeo(n)%•B for l18<m, ~4.13d!

@D;mn/l8#25e2m21/2$l8;mGoe(n)%•B for l18<m, ~4.13e!

where l has been replaced bymn/l8 and use has been made of the fact that (mn/(mn/l8))
5l8. For all Schur function seriesS we have introducedSeo(n) andSoe(n) such that
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Seo(n)5H Se if n is even

So if n is odd;

and

Soe(n)5H So if n is even

Se if n is odd,
~4.14!

whereSe andSo are the terms of even and odd Frobenius rank, respectively, in the Schur fun
seriesS.

The remarkable analogy beween these character formulas for SO(2n) and those of Sp(2n,R)
is exposed by recalling that the signed sequences$ls%

k in ~4.2! can be expressed rather succinc
in terms of our series of Schur functions. This has its origin in Newell’s formulation20,23 of the
modification rules of O(k). One has to distinguish both between even and odd values ofk, and for
even k between those partitionsl having fewer thank/2 or preciselyk/2 parts. The relevan
expressions have been given by Roweet al.2 When used in~4.2! they imply

^m~l!&5em $l,mC%•D for l185m, ~4.15a!

^m~l!&5em $l,mCe%•D for l18,m, ~4.15b!

^m~l!&* 5em $l,mCo%•D for l18,m, ~4.15c!

^D̃;m~l!&5em11/2 $l,mGe%•D for l18<m, ~4.15d!

^D̃;m~l!&* 5em11/2 $l,mGo%•D for l18<m, ~4.15e!

where as beforeCe andCo are the even and odd Frobenius rank terms inC, while Ge andGo are
the even and odd Frobenius rank terms inG. In ~4.15d! and~4.15e! it has also been convenient i
the casek52m11 to denotê k/2 (l)& by ^D̃;m(l)& in order to emphasize the analogies wi
~4.13d! and ~4.13e!.

The analogy~1.5! that we were seeking between the finite-dimensional irreducible repre
tations of SO(2n) and the infinite-dimensional irreducible representations of Sp(2n,R) has thus
been made explicit through the analogous expressions~4.13! and ~4.15! for the corresponding
characters. To summarize, the analogy involves replacing the partitionl by the complement of its
conjugate with respect to (mn) on the left-hand sides, replacingep by e2p and taking conjugates
on the right-hand sides, noting the conjugacy relationsA85C, B85D and (m;mn)8
5(m8,mn8), and taking care to distinguish between the cases for whichn is even and odd.

V. TENSOR PRODUCTS

An earlier study13 of the decomposition of tensor or Kronecker products of irreducible re
sentations of SO(2n) has revealed that

D3@l#5@D;l/Q#11@D;l/Q#2 for l18,n, ~5.1a!

D3@l#15@D;l/Q#1 for l185n, ~5.1b!

D3@l#25@D;l/Q#2 for l185n, ~5.1c!

D3@D;l#15@~h;l!/Q# (1) for l18<n, ~5.1d!

D3@D;l#25@~h;l!/Q# (2) for l18<n, ~5.1e!
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D93@l#5@D;l/L#12@D;l/L#2 for l18,n, ~5.1f!

D93@l#15@D;l/L#1 for l185n, ~5.1g!

D93@l#252@D;l/L#2 for l185n, ~5.1h!

D93@D;l#15@~h;l!/L# (1) for l18<n, ~5.1i!

D93@D;l#252@~h;l!/L# (2) for l18<n, ~5.1j!

where

@m# (6)5H @m# if m18,n

@m#6 if m185n.
~5.2!

In the case of Sp(2n,R) the analogous formulas take the form

D̃3^m~l!&5^D̃;m~l•M !m&1^D̃;m~l•M !m&* for l185m, ~5.3a!

D̃3^m~l!&5^D̃;m~l•M !m& for l18,m, ~5.3b!

D̃3^m~l!&* 5^D̃;m~l•M !m&* for l18,m, ~5.3c!

D̃3^D̃;m~l!&5^m11~l•M !m11& for l18<m, ~5.3d!

D̃3^D̃;m~l!&* 5^m11~l•M !m11&
(* ) for l18<m, ~5.3e!

D̃93^m~l!&5^D̃;m~l•P!m&2^D̃;m~l•P!m&* for l185m, ~5.3f!

D̃93^m~l!&5^D̃;m~l•P!m& for l18,m, ~5.3g!

D̃93^m~l!&* 52^D̃;m~l•P!m&* for l18,m, ~5.3h!

D̃93^D̃;m~l!&5^m11~l•P!m11& for l18<m, ~5.3i!

D̃93^D̃;m~l!&* 52^m11~l•P!m11&
(* ) for l18<m, ~5.3j!

where (l•S)p signifies that the productl•S is to be evaluated in U(p) so that quite generally any
term (m)p50 if m18.p. In addition,

^p~m!& (* )5H ^p~m!&* if m18,p

^p~m!& if m185p.
~5.4!

In the case of~5.1! all the characters on the left-hand side are well defined and stan
provided thatn>l18 . Moreover, on the right every expression involves merely a quotient witQ
or L leading to a finite number of terms, all of which are necessarily standard in SO(2n). The
same cannot be said of~5.2!. First of all, even ifn>l18 the associate characters signified

^m(l)&* and ^D̃;m(l)&* may not be standard. In fact they will be null ifn,k2l18 wherek
52m or 2m11, as appropriate. Moreover, all the expressions on the right involve an in
number of terms by virtue of their dependence on products withM or P. In addition the associate
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characters on the right may be null for certain values ofn for which the left-hand side is wel
defined. This is the case, in particular, forn5m5l18 for which all termŝ ¯&* on the right-hand
side of ~5.3a! and ~5.3f! are null, and may be omitted.

In order to derive the results~5.3! it should be recalled3 that

^ 1
2 k~l!&3^ 1

2 j ~m!&5(
n

Rn
lm^ 1

2 ~k1 j !~n!&, ~5.5!

where the coefficientsRn
lm are the branching rule coefficients for the restriction from O(k1 j ) to

O(k)3O( j ):

O~k1 j !→O~k!3O~ j !: @n#→(
lm

Rn
lm@l#3@m#. ~5.6!

In the special case of interest here we requirej 51 with m equal to~0! or ~1! for which @m# is @0#
or @1#5@0#* , respectively. The corresponding branching rule takes the form:

O~k11!→O~k!3O~1!: @n#→ (
m50

`

@n/m#3@0# (* )m
, ~5.7!

where@0# (* )m
5@0# or @0#* according to whetherm is even or odd, respectively. It then follow

from ~5.5! and ~5.6! that

^ 1
2 k~l!&3^ 1

2 ~0!&5 (
m:even

^ 1
2 ~k11!~l•m!&, ~5.8a!

^ 1
2 k~l!&3^ 1

2 ~0!&* 5 (
m:odd

^ 1
2 ~k11!~l•m!&. ~5.8b!

Recalling thatD̃5^ 1
2 (0)&1^ 1

2 (0)&* andD̃95^ 1
2 (0)&2^ 1

2 (0)&* , and taking care over the length
of the various partitions appearing inl•M andl•P and the distinction between a character a
its associate, one arrives at~5.3a!–~5.3j! for k52m and 2m11 as appropriate.

If further evidence is needed of the close parallel between finite-dimensional irredu
representations of SO(2n) and infinite-dimensional irreducible representations of Sp(2n,R) it is
provided by the following rather striking branching rule formulas.

First, it has been shown by Morris24,25 thatD andD9 decompose as follows under the appr
priate restriction:

SO~4mn!→SO~2n!3O~2m!:

D→ (
l: l ~l!,m

~@mn/l8#13@l#1@mn/l8#23@l#* !1 (
l: l ~l!5m

@mn/l8#3@l#,

~5.9a!

SO~4mn!→SO~2n!3O~2m!:

D9→ (
l: l ~l!,m

~21! ulu~@mn/l8#13@l#1@mn/l8#23@l#* !

1 (
l: l ~l!5m

~21! ulu@mn/l8#3@l#, ~5.9b!
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SO~4mn12n!→SO~2n!3O~2m11!:

D→ (
l: l<m

~@D;mn/l8#13@l#1@D;mn/l8#23@l#* !, ~5.9c!

SO~4mn12n!→SO~2n!3O~2m11!:

D9→ (
l: l ~l!<m

~21! ulu~@D;mn/l8#13@l#2@D;mn/l8#23@l#* !. ~5.9d!

Second, the defining property ofD̃ which encapsulates the fact that Sp(2n,R) and O(k) are a
complementary pair of mutually centralizing subgroups of Sp(2nk,R) takes the form3

Sp~2nk,R!→Sp~2n,R!3O~k!: D̃→(
l

^ 1
2 k~l!&3@l#. ~5.10!

Settingk52m and 2m11 in turn, and consideration ofD̃9, then yields, in direct analogy to~5.1!,
the following results:

Sp~4mn,R!→Sp~2n,R!3O~2m!:

D̃→(
l

^m~l!&3@l#

5 (
l: l ~l!,m

~^m~l!&3@l#1^m~l!&* 3@l#* !1 (
l: l ~l!5m

^m~l!&3@l#, ~5.11a!

Sp~4mn,R!→Sp~2n,R!3O~2m!:

D̄9→(
l

~21! ulu^m~l!&3@l#

5 (
l: l ~l!,m

~21! ulu~^m~l!&3@l#1^m~l!&* 3@l#* !

1 (
l: l ~l!5m

~21! ulu^m~l!&3@l#, ~5.11b!

Sp~4mn12n,R!→Sp~2n,R!3O~2m11!:

D̄→(
l

^D̃;m~l!&3@l#

5 (
l: l ~l!<m

~^D̄;m~l!&3@l#1^D̃;m~l!&* 3@l#* !, ~5.11c!

Sp~4mn12n,R!→Sp~2n,R!3O~2m11!:

D̄9→(
l

~21! ulu^D̃;m~l!&3@l#

5 (
l: l ~l!<m

~21! ulu~^D̃;m~l!&3@l#2^D̄;m~l!&* 3@l#* !. ~5.11d!
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These results offer us the opportunity of decomposing arbitrary,kth-fold, tensor powers ofD,
D9, D̃, and D̃9. This is exemplified in the case ofD andk52m through a consideration of th
group–subgroup chains:

SO~4mn!↘
↗SO~2n!3SO~2n!3¯3SO~2n!

SO~2n!3O~2m! ↗
↘SO~2n! ~5.12!

for which we have the branching rules

D↘
↗

D3D3¯3D

(
l

@mn/l8#3@l#↗
↘~D!32m5(

l
dim2m@l#@mn/l8#. ~5.13!

To derive the identity on the right-hand side one merely proceeds from the SO(4mn) characterD
to its SO(2n) content by both upper and lower routes. From the definition~1.1a! of D one can
introduce a set of 2mn parametersxia for i 51,2,...,n anda51,2,...,2m to give

D5)
i 51

n

)
a51

2m

~xia
1/21xia

2 1/2!. ~5.14!

The upper route involves settingxia5xi for all i anda to give

D→)
a51

2m S )
i 51

n

~xia
1/21xia

2 1/2!D→S )
i 51

n

~xi
1/21xi

2 1/2!D 2m

5~D!2m, ~5.15!

while the lower route depends first on the use of the branching rule~5.9a! in which context it is
convenient to setxia5xiya for all i anda, wherexi andya denote eigenvalues of groups elemen
of SO(2n) and O(2m), respectively, and then allowing allya to take the value 1. This corre
sponds to restricting O(2m) to its identity element. Using this in~5.9a! then gives the factor
dim2m@l# appearing in~5.13!.

Proceeding in an exactly similar way, but this time from the definition~1.2a! of D̃, we obtain
by consideration of the group–subgroup chains

Sp~2nk!↘
↗Sp~2n!3Sp~2n!3¯3Sp~2n!

Sp~2n!3O~2m! ↗
↘Sp~2n!, ~5.16!

the branching rule identity

D̃↘
↗

D̃3D̃3¯3D̃

(
l

^m~l!&3@l#↗
↘~D̃ !32m5(

l
dim2m@l#^m~l!&. ~5.17!

Generalizing to the casek52m11, and extending these results to bothD9 andD̃9 we obtain
the following complete set of formulas for the decomposition of tensor powers ofD, D9, D̃, and
D̃9:

~D!32m5(
l

dim2m@l#@mn/l8#, ~5.18a!

~D9!32m5(
l

~21! uludim2m@l#@mn/l8#8, ~5.18b!
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~D!3(2m11)5(
l

dim2m11@l#@D;mn/l8#, ~5.18c!

~D9!3(2m11)5(
l

~21! uludim2m11@l#@D;mn/l8#, ~5.18d!

and

~D̃ !32m5(
l

dim2m@l#^m~l!&, ~5.19a!

~D̃9!32m5(
l

~21! uludim2m@l#^m~l!&9, ~5.19b!

~D̃ !3(2m11)5(
l

dim2m11@l#^D̃;m~l!&, ~5.19c!

~D̃9!3(2m11)5(
l

~21! uludim2m11@l#^D̃;m~l!&9. ~5.19d!

Of these results,~5.18a! and ~5.18c! were first given by Bauer,26 and ~5.19a! and ~5.19b! were
given by Kashiwara and Vergne,11 but the others are new. The results themselves and their m
of derivation all serve to confirm the depth and significance of the analogies spelled out in~1.5!.

One can go still further and decompose ourkth-fold powers into their various symmetrize
powers known as plethysms whose symmetry is specified by partitionsk of k. This task is
deferred to part II of the present work.
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Twisting invariance of link polynomials derived
from ribbon quasi-Hopf algebras

J. R. Links,a) M. D. Gould, and Y.-Z. Zhang
Department of Mathematics, The University of Queensland,
Brisbane, Queensland 4072, Australia
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The construction of link polynomials associated with finite dimensional represen-
tations of ribbon quasi-Hopf algebras is discussed in terms of the formulation of an
appropriate Markov trace. We then show that this Markov trace is invariant under
twisting of the quasi-Hopf structure, which in turn implies twisting invariance of
the associated link polynomials. ©2000 American Institute of Physics.
@S0022-2488~00!00407-2#

I. INTRODUCTION

The introduction of quantum algebras by Jimbo1 and Drinfeld2 lead to many remarkable
developments in diverse areas of mathematical physics. One such was in the field of knot
whereby a connection between the Yang–Baxter equation and the braid group was quickly
lished. The quantum algebras, being examples of quasi-triangular Hopf algebras, provid
systematic means to find solutions of the Yang–Baxter equation which in turn gives ri
representations of the braid group. Through a Markov trace formulation defined on each
group representation, an invariant polynomial can then be computed for the knot or link asso
with the closure of the braid.3–6 Extensions to accomodate the case of quantum superalgebra
be found in Refs. 7 and 8.

Around the same time as the appearance of quantum algebras was Jones’s discovery o
polynomial invariant,9 an evaluation of which may be undertaken through the simplest quan
algebraUq(sl(2)) in its minimal ~two-dimensional! representation. After this breakthrough r
searchers proceeded to obtain generalizations with the notable examples being the HOM10

and Kauffman11 invariant polynomials. What soon became apparent was that the series o
polynomials associated with the fundamental representations of the~nonexceptional! quantum
algebras and superalgebras coincided with the two-variable invariants developed in the w
the discovery of Jones. More precisely, the invariants associated with the fundamental rep
tations of theUq(gl(mun)) @which includesUq(gl(n))# series belong to the class of HOMFLY
invariants while those of theUq(osp(mu2n)) @including bothUq(o(m)) andUq(sp(2n))# series
are of the Kauffman invariant type.4,8 It is important to emphasize, however, that by going
higher representations new results are obtainable. In particular, the type I quantum supera
consisting ofUq(gl(mun)) andUq(osp(2u2n)) admit one-parameter families of typical represe
tations which give rise to two-variable link invariants in a natural way.12–14 The work of Resh-
etikhin and Turaev15 introduced further the notion of a ribbon Hopf algebra as a particular typ
quasi-triangular Hopf algebra. All the quantum algebras fall into the class of ribbon Hopf alge
The algebraic properties of ribbon Hopf algebras is such that an extension to produce invari
oriented tangles is permissible. A tangle diagram is analogous to a link diagram with the pos
of having free ends. An associated invariant takes the form of a tensor operator acting on a p
of vector spaces.

As a generalization of Hopf algebras Drinfeld proposed the concept of quasi-Hopf alge16

whereby co-associativity of the co-algebra structure is not assumed. Any quasi-Hopf a

a!Electronic mail: jrl@maths.uq.edu.au, yzz@maths.uq.edu.au
50200022-2488/2000/41(7)/5020/13/$17.00 © 2000 American Institute of Physics
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generally belongs to an equivalence class where each member is related to the others by tw16

The potential for applications of these structures in the study of integrable systems is vast
underly elliptic quantum algebras17–22 which play an important role in obtaining solutions to th
dynamical Yang–Baxter equations23,24 and also twisting lies at the core of the construction
multiparametric quantum spin chains.25

In the context of knot theory, Altschuler and Coste26 have identified the corresponding ribbo
quasi-Hopf algebras as the necessary underlying algebraic structure to study tangle inv
~including closed link invariants!. Here we wish to make two important observations to this fi
of study. First, we will show that the class of ribbon quasi-Hopf algebras is closed under twi
i.e., a twisted ribbon quasi-Hopf algebra is again a ribbon quasi-Hopf algebra. Second, we
that the link polynomials computed from any finite dimensional representation of a quasi-
algebra are invariant with respect to twisting. Importantly, this implies that link polynom
obtained from twisting the usual quantum algebras give us nothing new. In this respect, one
find twist generalizations of the HOMFLY and Kauffman invariants. For a very special clas
twists this result has already been noted by Reshetikhin,27 in which case the twisted quantum
algebra is again a ribbon Hopf algebra. Here we will prove the twisting invariance in full ge
ality.

The paper is structured as follows. We begin by presenting the definition of a quasi
algebra. Next we show how representations of the braid group are obtained from a represe
of any quasi-Hopf algebra. The third section deals with defining an appropriate Markov tra
each braid group element which then affords a means to obtain a link invariant. Finally
demonstrate that the Markov trace is invariant under any twisting.

II. QUASI-HOPF ALGEBRAS

Let us briefly recall the defining relations for quasi-Hopf algebras.16

Definition 1: A quasi-Hopf algebra is a unital associative algebra A over a field K whic
equipped with algebra homomorphismse: A→K (co-unit), D: A→A^ A (co-product), an invert-
ible elementFPA^ A^ A (co-associator), an algebra antihomomorphism S: A→A (antipode)
and canonical elementsa, bPA, satisfying

~ I ^ D!D~a!5F21~D ^ I !D~a!F, ;aPA, ~1!

~D ^ I ^ I !F•~ I ^ I ^ D!F5~F ^ 1!•~ I ^ D ^ I !F•~1^ F!, ~2!

~e ^ I !D5I 5~ I ^ e!D, ~3!

~ I ^ e ^ I !F51, ~4!

m•~1^ a!~S^ I !D~a!5e~a!a, ;aPA, ~5!

m•~1^ b!~ I ^ S!D~a!5e~a!b, ;aPA, ~6!

m•~m^ I !•~1^ b ^ a!~ I ^ S^ I !F2151, ~7!

m•~m^ I !•~S^ I ^ I !~1^ a ^ b!~ I ^ I ^ S!F51. ~8!

Here m denotes the usual product map onA: m•(a^ b)5ab, ;a,bPA. Note that sinceA is
associative we havem•(m^ I )5m•(I ^ m). Above, 1 is used to denote the unit element andI for
the identity mapping. For all elementsa,bPA, the antipode satisfies

S~ab!5S~b!S~a!. ~9!

Equations~2!, ~3!, and~4! imply that F also obeys
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~e ^ I ^ I !F515~ I ^ I ^ e!F. ~10!

Applying e to definition~7! and~8! we obtain, in view of~4!, e(a)e(b)51. By applyinge to ~5!,
we havee(S(a))5e(a), ;aPA.

A distinguishing feature of quasi-Hopf algebras is that they are in general not co-assoc
i.e.,

~ I ^ D!•DÞ~D ^ I !•D.

Thus for a given co-product the action extended to then-fold tensor product space is not unique
determined. Throughout we will adopt the convention to define a left co-productDL which acts on
the tensor algebraA^ n according to

DL~a^ b^ ¯^ c!5D~a! ^ b^ ¯^ c.

We then recursively define the action

D (n)5DL .D (n21) ~11!

with D (1)5D, D (0)5I .
The category of quasi-Hopf algebras is invariant under a kind of gauge transformation k

as twisting. Let (A,D,e,F) be a quasi-Hopf algebra, witha,b,S satisfying ~5!–~8!, and letF
PA^ A be an invertible element satisfying the co-unit properties

~e ^ I !F515~ I ^ e!F. ~12!

Throughout we set

DF~a!5FD~a!F21, ;aPA, ~13!

FF5F12~D ^ I !F•F•~ I ^ D!F21F23
21, ~14!

where the subscripts above refer to the embedding of the elements in the triple tensor p
space. Then

Theorem 1: (A,DF ,e,FF) defined by (13) and (14) together withaF ,bF ,SF given by

SF5S, aF5m•~1^ a!~S^ I !F21, bF5m•~1^ b!~ I ^ S!F, ~15!

is also a quasi-Hopf algebra. Throughout, the element F is referred to as a twistor.
Definition 2: A quasi-Hopf algebra(A,D,e,F) is called quasi-triangular if there exists a

invertible elementRPA^ A such that

DT~a!R5RD~a!, ;aPA, ~16!

~D ^ I !R5F231
21R13F132R 23F123

21 , ~17!

~ I ^ D!R5F312R 13F213
21R12F123. ~18!

We refer toR as the universal R-matrix.
Throughout,DT5T•D with T being the twist map which is defined by

T~a^ b!5b^ a; ~19!

andF132, etc., are derived fromF[F123 with the help ofT

F1325~ I ^ T!F123,
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F3125~T^ I !F1325~T^ I !~ I ^ T!F123,

F231
215~ I ^ T!F213

215~ I ^ T!~T^ I !F123
21 ,

and so on. We make special mention that ourdefinitionsfor F132, etc., differ from some adopted
in the literature; e.g., Ref. 26, but this simply a matter of notation.

It is easily shown that the properties~16!–~18! imply the Yang–Baxter-type equation,

R 12F231
21R13F132R 23F123

215F321
21R23F312R 13F213

21R12, ~20!

which is referred to as the quasi-Yang–Baxter equation.
Theorem 2: Denoting by the set(A,D,e,F,R) a quasi-triangular quasi-Hopf algebra, the

(A,DF ,e,FF ,RF) is also a quasi-triangular quasi-Hopf algebra, with the choice of RF given by

RF5FTRF21, ~21!

where FT5T•F[F21. Here DF and FF are given by (13) and (14), respectively.
Let us specify some notations, where we adopt a summation convention over all rep

indices. Throughtout the paper,

F5Xi ^ Yi ^ Zi , F215X̄i ^ Ȳi ^ Z̄i ,

F5 f i ^ f i , F215 f̄ i ^ f̄ i ,

R5an ^ bn , R 215cn ^ dn ,

~ I ^ D!D~a!5( a(1)^ D~a(2)!5( a(1)
R

^ a(2)
R

^ a(3)
R , ~22!

~D ^ I !D~a!5( D~a(1)! ^ ~a(2)!5( a(1)
L

^ a(2)
L

^ a(3)
L ,

~F21
^ I !•~D ^ I ^ I !F5Ai ^ Bi ^ Ci ^ Di ,

~D ^ I ^ I !F21
•~F ^ I !5Ki ^ Li ^ Mi ^ Ni .

A important type of twistor is that due to Drinfeld.16 For any quasi-Hopf algebraA observe
that the actions

~S^ S!•DT, DT
•S21

both determine algebra antihomomorphisms. It follows that

D8[~S^ S!•DT
•S21

gives rise to an algebra homomorphism and thus a co-product action onA. Drinfeld showed that
the actionsD andD8 are related by a twistor; i.e.,

D~a!5F 21~~S^ S!DT~S21~a!!!F, ;aPA,

where

F5~S^ S!DT~Xi !•g•D~YibS~Zi !!

and
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g5S~Bi !aCi ^ S~Ai !aDi . ~23!

It is also useful to define

d5KibS~Ni ! ^ LibS~Mi !. ~24!

Then the following relations can be shown to hold:

D~a!5F 21g, D~b!5dF.

A quasi-Hopf algebra is said to be of trace type if there exists an invertible elementuPA such
that

S2~a!5uau21, ;aPA. ~25!

In the caseA is quasitriangular withR-matrix as in~22! we have the following theorem.26

Theorem 3: The operator defined by

u5S~YibS~Zi !!S~bn!aanXi ~26!

satisfies (25). Moreover the inverse is given by

u215S21~Xi !S
21~adn!cnYibS~Zi !. ~27!

An important relation satisfied byu is

S~a!u5S~bn!aan ~28!

which we will need later.
The significance of trace type quasi-Hopf algebras is that they afford a systematic me

construct Casimir invariants. We have the following result from Ref. 28.
Theorem 4: Let p be the representation afforded by the finite-dimensional A-module V.

Supposeh5m i ^ n i ^ r iPA^ End V^ A obeys

~ I ^ p ^ I !~ I ^ D!D~a!•h5h•~ I ^ p ^ I !~ I ^ D!D~a!, ;aPA, ~29!

then

tr~n ip~bS~r i !S~a!u!!m i ~30!

is a central element. Similarly ifh̄5m̄ i ^ n̄ i ^ r̄ iPA^ End V^ A satisfies

h̄•~ I ^ p ^ I !~D ^ I !D~a!5~ I ^ p ^ I !~D ^ I !D~a!•h̄, ;aPA ~31!

then

( tr~ n̄ ip~u21S~b!S~m̄ i !an̄ i !!r̄ i ~32!

is a central element.
As a consequence of the above we have
Corollary 1: Supposev5Sv i ^ V iPA^ End V satisfies

~ I ^ p!D~a!•v5v•~ I ^ p!D~a!, ;aPA. ~33!

Then (29) implies that
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t~v!5tr~V ip~YkbS~ Z̄jZk!S~a!uȲj !!X̄jv iXk ~34!

is a central element.
For an (n11)-fold tensor product space andv5Sv i ^ V iPA^ n

^ EndV we define

tn~v!5tr~V ip~YkbS~ Z̄jZk!S~a!uȲj !!D (n21)~X̄j !v iD
(n21)~Xk!. ~35!

III. REPRESENTATIONS OF THE BRAID GROUP

Given any representationp of a quasi-Hopf algebraA we set

Ř5P•~p ^ p!R ~36!

and

F i5~D ( i 22)
^ I ^ I !F.

In terms ofŘ the quasi-Yang–Baxter equation may be written

FŘ23F
21Ř12FŘ23F

215Ř12FŘ23F
21Ř12, ~37!

where throughout we use the same symbolsF and F i for both the algebraic objects and the
matrix representatives.

Theorem 5: Define n operators on the(n11)-fold tensor product space by

s i5F i Ři ( i 11)F i
21 , i 51,2,. . . ,n. ~38!

These give rise to a representation of the braid group Bn by satisfying the defining relations

s is j5s js i , j Þ i 61, ~39!

s is i 11s i5s i 11s is i 11 . ~40!

The above result was given in Ref. 26. Here we want to present a detailed proof.
First we establish that the braid generators~38! are invariant with respect to the co-produ

actionD (n) of A; i.e.,

@s i ,D (n)~a!#50, ;aPA. ~41!

It is clear from definition~36! that

@Ř,D~a!#50, ;aPA

which immediately implies that

@s1 ,D (n)~a!#50, ;aPA.

Next consider

s2D ( j )~a!5FŘ23F
21~D ^ I ^ ( j 21)!D ( j 21)~a!

5FŘ23~ I ^ D ^ I ( j 22)!D ( j 21)~a!F21

5F~ I ^ D ^ I ( j 22)!D ( j 21)~a!Ř23F
21

5~D ^ I ^ ( j 21)!D ( j 21)~a!FŘ23F
21
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5D ( j )~a!s2 . ~42!

Observing that the action~11! enjoys the property

D ( i )
•D ( j )5D ( i 1 j )

and applyingD (k)
^ I ^ j to ~42! now yields~41! by choosingk5 i 22, j 5n2 i 22.

SinceŘ commutes with the co-product action we immediately deduce fori .1

s1s i5Ř12F i Ři ( i 11)F i
21

5F i Ř12Ři ( i 11)F i
21

5F i Ři ( i 11)Ř12F i
21

5F i Ři ( i 11)F i
21Ř12

5s is1 .

Consider now forl .3

s2s l5s2~D ( l 22)
^ I ^ I !F•Řl ( l 11)~D ( l 22)

^ I ^ I !F21

5~D ( l 22)
^ I ^ I !F•s2Řl ( l 11)~D ( l 22)F21

^ I ^ I !

5~D ( l 22)
^ I ^ I !F•F123Ř23F123

21Řl ( l 11)~D ( l 22)
^ I ^ I !F21

5~D ( l 22)
^ I ^ I !F•Řl ( l 11)F123Ř23F123

21~D ( l 22)
^ I ^ I !F21

5~D ( l 22)
^ I ^ I !F•Řl ( l 11)s2~D ( l 22)

^ I ^ I !F21

5~D ( l 22)
^ I ^ I !F•Řl ( l 11)~D ( l 22)

^ I ^ I !F21
•s2

5s2s l . ~43!

Applying D (k)
^ I ^ I to ~43! yields ~39! for i>2 by choosingk5 i 22, l 5 j 2 i 12.

In order to show that~40! is satisfied we see from~37! that

s1s2s15s2s1s2

is certainly true. Now through~37!, the invariance ofŘ and repeated use of the pentagonal relat
~2! we find

s2s3s25F2Ř23F2
21F3Ř34F3

21F2Ř23F2
21

5F2Ř23F2
21F3~ I ^ I ^ D!F•Ř34~ I ^ I ^ D!F21

•F3
21F2Ř23F2

21

5F2Ř23~ I ^ D ^ I !F•~ I ^ F!Ř34~ I ^ F21!~ I ^ D ^ I !F21
•Ř23F2

21

5F2~ I ^ D ^ I !F•@Ř23~ I ^ F!Ř34~ I ^ F21!Ř23#~ I ^ D ^ I !F21
•F2

21

5F2~ I ^ D ^ I !F•@~ I ^ F!Ř34~ I ^ F21!Ř23~ I ^ F!Ř34~ I ^ F21!#~ I ^ D ^ I !F21
•F2

21

5F3~ I ^ I ^ D!F•Ř34~ I ^ F21!Ř23~ I ^ F!Ř34~ I ^ I ^ D!F21
•F3

21

5F3Ř34~ I ^ I ^ D!F•~ I ^ F21!Ř23~ I ^ F!~ I ^ I ^ D!F21
•Ř34F3

21
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5F3Ř34F3
21F2~ I ^ D ^ I !F•Ř23~ I ^ D ^ I !F21

•F2
21F3Ř23F3

21

5F3Ř34F3
21F2Ř23F2

21F3Ř34F3
21

5s3s2s3 . ~44!

Finally, actingD ( i 22)
^ I ^ 3 on ~44! above yields

s is i 11s i5s i 11s is i 11 .

IV. LINK POLYNOMIALS FROM RIBBON QUASI-HOPF ALGEBRAS

In Ref. 26 the following definition was proposed for the ribbon quasi-Hopf algebras.
Definition 3: Let A be a quasi-triangular quasi-Hopf algebra. We say that A is a rib

quasi-Hopf algebra if there exists a central elementvPA such that

~1! v25uS(u),
~2! S(v)5v,
~3! e(v)51,
~4! D(uv21)5F 21(S^ S)F21•uv21

^ uv21,

whereF is the Drinfeld twist discussed earlier.
Given a ribbon quasi-Hopf algebra, a prescription was also provided in Ref. 26 to de

Markov trace on the braid group representation which in turn may be used to comput
polynomials in the usual way. From here on we will omit the symbolp denoting the representa
tion for ease of notation.

Theorem 6: Let C be a word in the braid generators~38! for a fixed finite dimensional
irreducible representation of a ribbon Hopf-algebraA. Then a Markov traceun on the(n11)-fold
tensor product space may be defined by

un~C!5tr~CD (n)~bS~a!uv21!!

which satisfies the Markov properties

~1! un(C1C2)5un(C2C1), ;C1 , C2PBn ,
~2! un(Cs61)5z6un21(C), ;CPBn21,Bn ,

where z6 are the eigenvalues of the central operatorsv71 in the representationp.

The importance of the Markov trace is that from it one can define a link polynomialL(Ĉ)
through

L~Ĉ!5~z1z2!n/2S z2

z1D e(C)/2

u~C!, CPBn , ~45!

wheree(C) is the sum of the exponents of thes i ’s appearing inC. The functionalL(Ĉ) enjoys
the following properties:

~1! L(Cĥ)5L(hĈ), ;C,hPBM ,

~2! L(Csn21
61̂ )5L(Ĉ), ;CPBn21,Bn ,

and is an invariant of ambient isotopy.
The first Markov property follows easily from the invariance of the braid generatorss61 and

the cyclic rule of traces. To establish the second Markov property requires some work an
stated in Ref. 26 without proof. Here we provide the details.
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Before proceeding, we need to determine the co-product action of the elementS(a)uv21.
Using the Drinfeld twistor we find

D~S~a!!5F 21~~S^ S!DT~a!!F
5F 21~~S^ S!~F 21

21g21!!F
5F 21~S^ S!g21•~S^ S!F 21

21
•F.

Now through using~23! and definition~3! we find that

D~S~a!uv21!5F 21~S~Di !S~a!uv21Ai ^ S~Ci !S~a!uv21Bi !. ~46!

We will also need the following result.
Lemma 1: LetCPEnd(V^ V) be any invariant operator; i.e.,

@C,D~a!#50, ;aPA.

Then

~Ai ^ Bi !C~K jbS~DiNj ! ^ L jbS~CiM j !!5~X̄j ^ Ȳj !C~Xib ^ YibS~ Z̄jZi !!.

The above result follows directly from the definitions~22!. We may now see that

un~C!5tr~CD (n)~bS~a!uv21!!

5tr~C•~D (n21)
^ I !d•D (n21)~S~Di !S~a!uv21Ai ! ^ S~Ci !S~a!uv21Bi !

5tr~C•D (n21)~K jbS~Nj !S~Di !S~a!uv21Ai ! ^ L jbS~M j !S~Ci !S~a!uv21Bi !

5tr~C•D (n21)~XibS~a!uv21X̄j ! ^ YibS~Zi !S~ Z̄j !S~a!uv21Ȳj !

5tr~tn~C!D (n21)~bS~a!uv21!!

5un21~tn~C!!, ~47!

where the elementu in the definition~35! has now been replaced byuv21. It is apparent also from
~35! that for CPBn21 then

tn~Csn
61!5Ctn~sn

61!.

To evaluatetn(sn
61) we can appeal to the pentagonal relation~2! to find that

Fn11
21 sn

61Fn115Fn11
21 FnŘn(n11)

61 Fn
21Fn11

5I (n22)
^ ~~ I ^ I ^ D!F•~ I ^ F21!~ I ^ D ^ I !F21

•~ I ^ Ř61
^ I !•~ I ^ D ^ I !F•~ I ^ F!~ I ^ I ^ D!F21!

5I (n22)
^ ~~ I ^ I ^ D!F•~ I ^ F21!~ I ^ Ř61

^ I !~ I ^ F!~ I ^ I ^ D!F21!

which, upon using~5!, ~6!, and~10!, leads us to conclude that

tn~sn
61!5I ^ (n21)

^ t~Ř61!.

An algebraic exercise shows that

t~Ř!5X̄jbnYlbS~Zl !S~ Z̄j !S~a!uv21ȲjanXl ,
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t~Ř21!5XjcnYkbS~Zk!S~ Z̄j !S~a!uv21ȲjdnXk

and hence we can conclude thatz6 are given by the eigenvalues of the central operatorsv71 if we
can show that the following relations hold.

Lemma 2:

X̄jbnYlbS~Zl !S~ Z̄j !S~a!uȲjanXl51,

X̄jcnYkbS~Zk!S~ Z̄j !S~a!uȲjdnXk5v2.

Through use of~7! and ~28! we obtain

15X̄ibS~Ȳi !aZ̄i

5X̄jbS~Ȳi !S~dn!S~bm!aamcnZ̄i

5X̄jbS~Ȳi !S~dn!S~a!ucnZ̄i

5X̄ibS~Ȳi !S~dn!S~a!S2~cn!S2~ Z̄i !u. ~48!

From Eq.~18! we see that

R 13
21F312

21~ I ^ D!R5F213
21R12F123

which expressed in terms of the tensor components reads

cnZ̄jal ^ X̄jbl
(1)

^ dnȲjbl
(2)5ȲjanXl ^ X̄jbnYl ^ Z̄jZl .

We can now write

X̄jbnYlbS~Zl !S~ Z̄j !S~a!uȲjanXl5X̄jbl
(1)bS~bl

(2)!S~Ȳj !S~dn!S~a!ucnZ̄jal

5e~bl !X̄jbS~Ȳj !S~dn!S~a!ucnZ̄jal

5X̄ibS~Ȳi !S~dn!S~a!S2~cn!S2~ Z̄i !u

51. ~49!

Next we see that

u5S~X̄ibS~Ȳi !aZ̄i !u

5S~ Z̄i !S~a!S2~Ȳi !S~b!S~X̄i !u

5S~ Z̄i !S~a!uȲiS
21~b!S21~X̄i !

5S~ Z̄i !S~bn!aanȲiS
21~b!S21~X̄i !, ~50!

where in the last step we have used Eq.~28!. Consequently,

S~u!5X̄ibS~Ȳi !S~an!S~a!S2~bn!S2~ Z̄i !.

From Eq.~17! we have

R 23F123
21~D ^ I !R 215F132

21R 13
21F231

which we may express as
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X̄jcn
(1)

^ amȲjcn
(2)

^ bmZ̄jdn5X̄jcnYk^ Z̄jZk^ ȲjdnXk .

This relation leads us to deduce that

X̄jcnYkbS~Zk!S~ Z̄j !S~a!uȲjdnXk5X̄jcn
(1)bS~cn

(2)!S~Ȳj !S~am!S~a!ubmZ̄jdn

5X̄jbS~Ȳj !S~am!S~a!S2~bm!S2~ Z̄j !u

5S~u!u

5v2 ~51!

which proves lemma 2 and completes the proof of theorem 6.

V. TWISTING INVARIANCE OF THE MARKOV TRACE

Now we are in a position to show twisting invariance of the link polynomials. Let us b
with the following result.

Proposition 1: Every twisted ribbon quasi-Hopf algebra is again a ribbon quasi-Hopf a
bra.

Recall from definition~3! that the first three conditions of a ribbon quasi-Hopf algebra
properties of the algebra structure rather than the co-algebra. Thus, to this end we need on
that if

D~uv21!5F 21~S^ S!F21.uv21
^ uv21

then

DF~uv21!5F F
21~S^ S!~FF!21.uv21

^ uv21,

where FF denotes the Drinfeld twistor for the twisted quasi-Hopf algebra. Recalling that
Drinfeld twist F is determined by

FD~a!F 215~S^ S!~DT~S21~a!!!, ;aPA

shows that

FD~a!F215DF~a!

5F F
21~~S^ S!DF

T~S21~a!!!FF

5F F
21~~S^ S!~F21D

T~S21~a!!F21
21!!FF

5F F
21~~S^ S!F21

21
•~S^ S!DT~S21~a!!.~S^ S!F21!FF

5F F
21~S^ S!F21

21
•FD~a!F 21

•~S^ S!F21FF

which leads us to

FF5~S^ S!F21
21

•FF21.

Now we observe that

F F
21~S^ S!~FF!21•uv21

^ uv21

5FF 21~S^ S!F21•~S^ S!~~S^ S!F21
•~FF21!21!uv21

^ uv21

5FF 21~S^ S!F21•~S2
^ S2!F21

•uv21
^ uv21
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5FF 21~S^ S!F21•uv21
^ uv21

•F21

5FD~uv21!F21

5DF~uv21!

thus establishing that the twisted ribbon quasi-Hopf algebra is also of ribbon type.
By induction the co-product action on the (n11)-fold space assumes the form

DF
(n)~a!5xnD (n)~a!xn

21,

where

xn5F12•~D ^ I !F12•~D2
^ I !F12¯~D (n21)

^ I !F.

Consider next

xns ixn
215F12~D ^ I !F12.~D2

^ I !F12¯~D (n21)
^ I !Fs i3~D (n21)

^ I !F21
¯~D ^ I !F12

21
•F12

1

5F12~D ^ I !F12.~D2
^ I !F12¯~D ( i 21)

^ I !Fs i3~D ( i 21)
^ I !F21

¯~D ^ I !F12
21

•F12
1

5x is ix i
21 .

We now determine the representations of the braid generators under twisting; i.e.,

s i
F5~DF

( i 22)
^ I ^ I !FF•Ři ( i 11)

F
•~DF

( i 22)
^ I ^ I !FF

21

5x i 22~D ( i 22)
^ I ^ I !~F12~D ^ I !F•F•~ I ^ D!F21

•F23
21!x i 22

21 Fi ( i 11)Ři ( i 11)Fi .i 11
21

3x i 22D ( i 22)~F23~ I ^ D!F•F21~D ^ I !F21
•F12

21!x i 22
21

5x iDF•~D ( i 22)
^ D!F21

•Fi ( i 11)
21 x i 22

21 Fi ( i 11)Ři ( i 11)Fi ( i 11)
21 x i 22Fi ( i 11)

3~D ( i 22)
^ D!F•D ( i 22)F21

•x i
21

5x iD
( i 22)F•Ři ( i 11)D

( i 22)F21
•x i

21

5x is ix i
21

5xns ixn
21

which shows that the representation of the braid generators under twisting are related to th
the untwisted case by a basis transformation. Thus for any word in the generators of the
group we can write

CF5xnCxn
21

in an obvious notation.
Using the relations~15! we may write

aF5S~ f̄ i !a f̄ i , bF5 f ibS~ f i !

and proceed to calculate

un
F~C!5tr~CFDF

(n)~bFS~aF!uv21!!

5tr~xnCD (n)~bFS~aF!uv21!xn
21!

5tr~CD (n)~ f ibS~ f i !S~ f̄ j !S~a!S2~ f̄ j !uv21!!
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5tr~CD (n)~ f ibS~ f̄ j f i !S~a!uv21 f̄ j !!

5tr~D (n)~ f̄ j !CD (n)~ f ibS~ f̄ j f i !S~a!uv21!!

5tr~CD (n)~ f̄ j f ibS~ f̄ j f i !S~a!uv21!!

5tr~CD (n)~bS~a!uv21!!

5un~C!

which proves twisting invariance of the Markov trace and consequently the associated link
nomials.
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In this paper we are concerned with singularly perturbed variational problems in-
volving the curl functional, which arise in the mathematical theory of liquid crys-
tals. The asymptotic behavior of the minimizers in the singular limiting process is
discussed, which is closely related to the variational problems for curl functional
under various constraints. ©2000 American Institute of Physics.
@S0022-2488~00!00607-1#

I. INTRODUCTION

In this paper we study variational problems which arise naturally in the mathematical th
of liquid crystals. The main focus is to study the asymptotic behavior of minimizers of
variational problems where the curl functional is dominant. Before stating our problems and
results in this paper, we shall explain our motivation first.

The phase transition phenomenon is an important topic in the mathematical theory of
crystals. Several mathematical models for phase transitions from nematic to smecticA based on
order parameter theory were proposed by de Gennes,1,2 also see McMillan.3 In recent years
various simplified mathematical models have been posed based on singular perturbation th
calculus of variation, see for instance Refs. 4, 5, 6.

In the classical Oseen–Frank theory, nematic phase of liquid crystals can be describe
director fieldn:V→S2, which is a minimizer of the following Oseen–Frank energy functiona7

WOF~n!5E
V

WOF~n,¹n!dx,

whereV,R3 is a smooth bounded domain occupied by the liquid crystal sample, and

WOF~n,¹n!5
k1

2
udiv nu21

k2

2
un.curlnu21

k3

2
un`curlnu21

k21k4

2
@ tr~¹n!22~div n!2#.

Here theki are material constants,k1 ,k2 ,k3.0. In this paper we shall only consider the Dirichl
boundary conditions. The last term@ tr(¹n)22(div n)2# will be dropped, since it is a divergenc
term and can be reduced to a surface integral. So, in the following we shall assume

WOF~n,¹n!5
k1

2
udiv nu21

k2

2
un•curlnu21

k3

2
un`curlnu2.

It is well-known that Oseen–Frank model has been used successfully to describe the
defects of nematic liquid crystals. But, to describe line defects one may need to use Eric
model,8
50330022-2488/2000/41(7)/5033/31/$17.00 © 2000 American Institute of Physics
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WE~s,n!5E
V

WE~s,n!dx,

where

WE~s,n!5
s2

2
WOF~n,¹n!1

k5

2
u¹su21

k6

2
u¹s•nu21c~s!.

Heres is a scale function called thedegree of orientation.
It is believed that, the Ericksen’s model and its varieties may be useful to describ

transitions of liquid crystals from the nematic phase to smecticA phase. By dropping various no
very important terms in the Ericksen’s functional, one is led to the following simplified en
functional

W~u!5E
V
H k1

2
u¹uu21

k2

2
ucurluu21c~ uuu!J dx, ~1.1!

whereu5sn andk2 is large.6 The functionc satisfies the following condition:

c is a positive C1 function and lim
s→`

c~s!51`. ~1.2!

It is expected that, ask2→`, the asymptotic behavior of minimizers of~1.1! under suitable
boundary conditions will provide a mathematical representation of the phase transition proc
liquid crystals from nematic phase to smecticA phase. For this purpose, one may also us
slightly different model5

I~u!5E
V
H k1

2
udiv uu21

k2

2
ucurluu21c~ uuu!J dx. ~1.3!

The limiting behavior of minimizers ofW(u) or I(u) as k2→` is not at all clear. Severa
basic mathematical questions are open.

Let us first consider functional~1.1!. We assume thatV is a smooth bounded domain i
Rn, n52,3. Givenu0PH1/2(]V)ùL`(]V), denote

H~V,u0!5$uPH1~V,Rn!:u5u0 on ]V%.

Fix k1.0 and denote byu(k2) a minimizer ofW in H(V,u0). Our general problem is
~Q1!. As k2→1`, how to derive sharp estimates of the minimal energyW(u(k2)), and to study
the asymptotic behavior of minimizers?

Inspecting the functionalW, one may guess that, curlu(k2) should be approximately zer
sincek2 is very large. So it is natural to ask
~Q1.1!. As k2→1`, will the total energyW(u(k2)) remain bounded?

If the answer to~Q1.1! is yes, then one further asks the following:
~Q1.2!. As k2→1`, does the corresponding minimizeru(k2) converge (in some sense) to a lim
which is a minimizer or stationary point of the following functional:

J0~u!5E
V
H k1

2
u¹uu21c~ uuu!J dx, ~1.4!

with curlu50?
These two questions, posed in Ref. 6, are closely related to the minimization problem

curl functional,
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F~u!5E
V

ucurluu2dx.

Denote

R~u0!5 inf
uPH~V,u0!

F~u!. ~1.5!

It is surprising to us thatR(u0) is achieved for everyu0 given, as stated in the following:
Theorem 1: AssumeV is a bounded, smooth, simply connected domain inRn, n52,3. For

any u0PH1/2(]V)ùL`(]V),R(u0) is achieved in H(V,u0). Moreover, the minimizers are
unique modulo gradient fields. More precisely, fix a minimizerūPH(V,u0), then the setS(u0) of
all the minimizers of the curl functional can be represented by

S~u0!5$ū1¹w:wPH2~V!,¹w50 on ]V%. ~1.6!

Remark 1.1:We note that every minimizer ofR(u0) satisfies the following Euler equation

curl2 u50 in V, u5u0 on ]V.

Using Theorem 1 we can prove that, ask2→`, there is a sequence of minimizersu(k2) which
converges to a minimizerū of the curl functionalF. Furthermore,ū minimizesJ0 , as defined in
~1.4!, among all the minimizers of the curl functional.

Theorem 2: AssumeV is a smooth, bounded, simply connected domain inRn,n52,3.Assume
c satisfies the condition (1.2) andu0PH1/2(]V)ùL`(]V). Let u(k2) be a minimizer ofW in
H(V,u0). Then, for any sequence k2→1`, there exists a subsequence such that the correspo
ing minimizersu(k2)→ū strongly in H2(V,R3), whereū satisfies

F~ ū!5R~u0!, J0~ ū!5 inf
uPS~u0!

J0~u!.

Remark 1.2:It can be seen from the proof of Theorems 1 and 2 in Sec. II that the cond
that V is simply connected is only used to guarantee thatR(u0) is achieved.

As a consequence we find that, ifR(u0)50, then we have positive answers to~Q1.1! and
~Q1.2!. Hence it is interesting to know the conditions under whichR(u0)50 holds. Several
results are given in Sec. II.

Similar results for the functionalI(u) which is defined in~1.3! are also true, and can b
proved by using Theorem 1.

In the following, we letc(s)5l(12s2)2 in ~1.1! @or in ~1.3!, see Ref. 5#,

W~u,k1 ,k2 ,l!5E
V
H k1

2
u¹uu21

k2

2
ucurluu21l~12uuu2!2J dx.

When we fixk1 andl, and letk2 go to1`, the asymptotic behavior of minimizers has been giv
by Theorem 2. Now we ask
~Q2!. What is the limiting behavior of the minimizers ofW(•,k1 ,k2 ,l) as we send bothl and k2

to 1`, with l growing faster than k2?
For convenience we choose a proper scaling and consider the following functional:

E«~u!5E
V
H «u¹uu21ucurluu21

1

2«
~12uuu2!2J dx, ~1.7!

where«!1. Assumeuu0u51 a.e. on]V and denote
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C«~u0!5 inf
uPH~V,u0!

E«~u!.

The Euler equation for minimizers ofE« in H(V,u0) is

H 2«Du1curl2 u5
1

«
~12uuu2!u in V,

u5u0 on ]V.

~1.8!

We are interested in the asymptotic behavior of minimizers$u«% of E« as«→0. Intuitively,
there is a close relation between the asymptotic behavior ofu« , and the existence of minimizer
of the curl functional among all the unit vector fields. To make this observation clear, we intro
several notations. AssumeV is a bounded smooth domain inRn, n52,3. Assumeuu0(x)u[1.
Denote

H~V,Sn21,u0!5$uPW1,2~V,Sn21!,uu]V5u0%.

If H(V,Sn21,u0)ÞB, we define

Rh~u0!5 inf
uPH~V,Sn21,u0!

F~u!.

If a unit vector fieldv is a minimizer ofRh(u0) thenv satisfies

H curl2 v5~v•curl2 v!v in V,
v5u0 on ]V. ~1.9!

Note that Eq.~1.9! implies that curl2 v is parallel tov everywhere.
If Rh(u0) is achieved inH(V,Sn21,u0), we denote bySh(u0) the set of all such minimizers

of Rh(u0), that is,

Sh~u0!5H uPH~V,Sn21,u0!:E
V

ucurluu2dx5Rh~u0!J .

Then we define

ah~u0!5 inf
uPSh~u0!

E
V

u¹uu2dx. ~1.10!

Our next theorem indicates that, ifRh(u0) is achieved inH(V,u0), then the asymptotic behavio
of $u«% is simple. In fact,u« converges toũ as «→0, and ũ is a minimizer ofRh(u0). If the
minimizers ofRh(u0) are not unique, then the limitũ has the least energy*Vu¹ũu2dx among all
the minimizers ofRh(u0).

Theorem 3: Assumeu0 is a unit vector field, and assumeRh(u0) is achieved in
H(V,Sn21,u0). Let u« be a minimizer ofE« . Then for any sequence«n→0, there exists a
subsequence, which we still write as$«n%, such that the corresponding u«n

converges toũ strongly

in W1,2(V,Rn) and ũ is a minimizer ofRh(u0). Moreover, ũ minimizes the functional*Vu¹uu2dx
among all the minimizers ofRh(u0), that is,

E
V

u¹ũu2dx5ah~u0!.
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As an application of Theorem 3, we consider the variational problem ofE« on the unit ballB
in R3. Let u056x on ]B. We will show thatRh(6x)50 and the only minimizer inH(B,S2,
6x) is 6x/uxu. As «→0, the minimizeru« of E« will converge to6x/uxu strongly inW1,2(B,R3).
For more details, see Theorem 3.2.

Note that the vector fields6x/uxu are spherically symmetric. It is interesting that theonly
spherically symmetric minimizers of the curl functional~under suitable boundary conditions! in
W1,2(B,S2) are6x/uxu, see Theorem 3.1.

From Theorem 3 we see that, whenRh(u0) is achieved, then the situation is simple, and t
limiting behavior of the minimizers ofE« is clear. However, as we shall see later, in ma
practical cases,H(V,Sn21,u0) is empty, orRh(u0) is not achieved inH(V,Sn21,u0). We believe
that a natural class for the variational problem of the curl functionalF is

L~V,curl,u0!5$uPL`~V!:curluPL2~V! and uuu51 a.e. in V%.

Set

Rl~u0!5 inf
uPL~V,curl,u0!

F~u!.

Note that

max$R~u0!,Rl~u0!%<Rh~u0!

if H(V,Sn21,u0)ÞB. We expect thatRl(u0) is achieved inL(V,curl,u0), and in caseRh(u0) is
not achieved, the minimizer ofE« converges to a minimizer ofRl(u0).

Due to the complexity of these problems, in this paper we only discuss the special case
the domain is the unit disk in the plane. We assume thatu0 makes a constant anglef0 with the
normal vector of]D, i.e.,

u05ei @u1f0# on ]D. ~1.11!

Without loss of generality we assume 0<f0<p/2. Note that whenf050, u05x/uxu on ]D,
which is in the outer normal direction; and whenf05p/2, u05(2x2 ,x1) on ]D, which is in the
tangential direction. We shall prove thatRh(u0) is not achieved butRl(u0) is achieved, and the
minimizer u« of the functionalE« converges weakly to the minimizer ofRl(u0).

Theorem 4: Assume D is the unit disc in the plane andu0 is given in (1.11). Then we have th
following results:

~1! Rl(u0)54p sin2 f0, and the unique minimizer ofRl(u0) is

v5ei @u1arcsin~r sin f0!#. ~1.12!
~2! Let u« be the minimizer ofE« . Whenu0 is not tangential to the boundary]D, then u«→v

weakly in Hloc
1 (D̄\$0%) as «→0.

Remark 1.3: For the unit disk case, under the conditions of Theorem 4,

Rh~u0!5Rl~u0!5R~u0!.

Both R(u0) andRl(u0) are achieved, butRh(u0) is not achieved.
Two special cases are particularly interesting.
Whenf05p/2, u0 is a tangential field on]D. We will see that for any planar domainV and

any tangential fieldu0 ,

Rl~u0!>4p,

and the equality holds if and only ifV is a disk, see Corollary 3.4 for more details.
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Whenf050, v(x)5x/uxu. For anyf0Þ0,v has a unique singular point at the origin with th
same singularity asx/uxu.

Also note that, whenf050, Rl(u0)50 andv(x)5x/uxu is a central field. More precisely, if
we write v5eic, thenc satisfies

cosc]1c1sinc]2c50 ~1.13!

for xÞ0, and the characteristic lines of Eq.~1.13! intersect with each other only at the originx
50.

In general, given a vector fieldu0 defined on]V, we say thatu0 can be extended to becom
a central field, if there exists a~single-valued or multiple-valued! functionc which satisfies~1.13!
on V\$P%, such thateic5u0 on ]V, whereP is a point inV. Therefore the characteristic lines o
~1.13! starting from (]V,cu]V) intersect with each other at one point only. It is easy to show t
if u0 can be extended to become a central field inV, thenRl(u0)50. In Sec. III we will discuss
the characterization of curl-free unit planar vector fields from the view point of diffeomorph

The other interesting case where the variational problems for functionalsF and E« can be
thoroughly discussed is whenV is a cylindrical domain. Since a related problem has been tre
in Ref. 9, so we shall not present the results here. We mention that the variational proble
circular cylinders of various related functionals have been studied by Cladis and Kle´man,10

Mayer,11 Bethuel, Brezis, Coleman, and He´lein,12 Mizel, Poccato, and Virga.13

We should also mention that, the mathematical theory of liquid crystals has been stud
many authors, see for instance, Ambrosio,14,15 Aviles and Giga,4,16 Ambrosio and Virga,17

Brezis,18 Chou,19 Hardt and Kinderlehrer,5 Hardt, Kinderlehrer, and Lin,20 Hardt and Lin,21

Lin,6,22,23Calderer and Palffy-Muhoray,24 Calderer, Liu, and Voss27, and the references therein
This paper is organized as follows: In Sec. II we discuss the variational problem fo

functionalW(u). Theorems 1 and 2 will be proven there. In Sec. III we discuss the variati
problem forE« andF in general domains, and prove Theorem 3. We also study the charact
tion of curl-free unit planar vector fields. In Sec. IV we discuss the variational problems forE« and
F in a disk inR2, and our special interest is on the case whenRh(u0) is not achieved butRl(u0)
is achieved.

II. VARIATIONAL PROBLEMS FOR FUNCTIONAL W IN GENERAL DOMAINS

In this section we discuss the asymptotic behavior, ask2→1`, of the minimizers of the
functionalW given in ~1.1!. In particular, we shall prove Theorems 1 and 2. For convenience
assumeV is a smooth bounded domain inR3. Our arguments also work for two dimension
domains. Denote 1/k25«2 and rewriteW as

W«~u!5E
V
H k1

2
u¹uu21

1

2«2 ucurluu21c~ uuu!J dx, ~2.1!

wherek1 and « are positive constants with« being very small, andc(s) is a smooth function
satisfying ~1.2!, see, Ref. 6, p. 808. Givenu0PH1/2(]V)ùL`(]V), we denoteH(V,u0)5$u
PH1(V,R3):u5u0 on]V%, and set

A«~u0!5 inf
uPH~V,u0!

W«~u!.

We denote a minimizer ofW« in H(V,u0) by u« . As mentioned in the Introduction, we sha
prove that, for a sequence«n goes to 0, there is a subsequence, which we still write as$«n%, such
that the correspondingu«n

converges to a minimizer of the curl functional. Therefore we be
with discussions of the curl functional.

Denote byn the unit outer normal to]V. Define

Hn~V;div!5$uPH1~V,R3!:div u50 in V,u•n50 on ]V%.
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The norm inHn(V;div) is

iui5~ icurluiL2~V!
2

1iuiL2~V!
2

!1/2,

which is equivalent to the usualH1 norm in this space.
Lemma 2.1: For allwPHn(V;div), it holds that

E
V

ucurlwu2dx5E
V

u¹wu2dx2E
]V

Pn~w,w!dS, ~2.2!

wherePn is the second fundamental form of]V.
Proof: In the following we denote bŷ•,•& the inner product inR3.
Step 1. First we assume thatwPC2(V̄)ùHn(V;div).
Since,

ucurlwu25div~w`curlw!2wDw1w¹~div w!

and divw50 in V, we have

E
V

ucurlwu2dx5E
V

u¹wu2dx1E
]V

H ~w`curlw!•n2w•

]w

]n J dS. ~2.3!

Now we prove that on the boundary]V,

~w`curlw!•n2w•

]w

]n
52Pn~w,w!. ~2.4!

Fix a point PP]V. Without loss of generality we may assumeP5O, the origin. After
rotating the coordinates we may assume that, at the pointP, n5(0,0,1). Sincew•n50 on]V we
see thatw(P)5(w1(P),w2(P),0). So atP we have

~w`curlw!•n5w•

]w

]n
2w1]1w32w2]2w3 .

Whenx is nearP and on the boundary]V, the unit outer normaln can be represented by

x35f~x8!52
1

2 (
i 51

2

a ixi
21O~ ux8u3!,

n5
1

A11u¹fu2
~2]1f,2]2f,1!,

wherex85(x1 ,x2), anda1 ,a2 are the principal curvatures of]V at P. Sincew•n50 on ]V we
have

w35w1]1f1w2]2f on ]V. ~2.5!

Sincen5(0,0,1) at the pointP, we have¹f(P)50. It follows from ~2.5! that, at the pointP,

w1]1w31w2]2w35w1
2]11f~P!12w1w2]12f~P!1w2

2]22f~P!

5^@D2f~P!#w,w&52Pn~w,w!.

This verifies~2.4!. Now ~2.2! follows from ~2.3! and ~2.4!.
Step 2. Next we assumewPHn(V;div).
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We can writew5w1t11w2t2 , where (t1 ,t2) is the orthogonal tangent field of]V, and
Pn(t i ,t j )5ai j . Then,

Pn~w,w!5ai j wiwj5ai j ^w,t i&^w,t j&.

Thus uPn(w,w)u<Cuwu2 on ]V. It follows that the functional

E
]V

Pn~w,w!dS

is continuous inHn(V;div) with respect to theH1 norm. SinceC2(V̄) is a dense subset in
Hn(V;div), we easily see that~2.2! is valid for all wPHn(V;div). h

Corollary 2.2: AssumeV is a smooth, bounded, convex domain inR3. Then there exists a
constant C(V).0 such that

E
V

u¹wu2dx<E
V

ucurlwu2dx<C~V!H E
V

u¹wu2dx1E
V

uwu2dxJ ~2.6!

for all wPHn(V;div).
Proof: WhenV is convex,Pn(w,w)<0 for all wPHn(V;div). Hence~2.2! implies

E
V

u¹wu2dx<E
V

ucurlwu2dx.

On the other hand, by the Sobolev embedding theorem,

E
]V

Pn~w,w!dS<C1~V!E
]V

uwu2dS<C~V!iwiH1~V!
2 .

Thus ~2.6! follows from ~2.2!. h

Now we are ready to prove Theorem 1.
Proof of Theorem 1:
Step 1. For anyuPH1(V,R3), we can decomposeu such that u5v1¹w, where v

PHn
1(V;div) andwPH2(V) is a solution of the following Neumann problem:

Dw5div u in V,
]w

]n
5u•n on ]V. ~2.7!

Note thatw is unique modulo an additive constant. We may assume

E
V

wdx50.

It is easily seen that

E
V

u¹w2uu2dx<E
V

u¹ f 2uu2dx ~2.8!

for all f PH1(V). By the choice ofw, it is obvious thatv5u2¹wPHn(V;div).
Step 2. Recall the definitionR(u0) in ~1.5!. Let $un%,H(V,u0) be a minimizing sequence o

R(u0). As in Step 1, we decomposeun as

un5vn1¹wn ,
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wherevnPHn(V;div) andwn is the solution of~2.7! with u replaced byun . Then we have

E
V

ucurlvnu2dx5E
V

ucurlunu2dx→R~u0! as n→`.

Claim 1: i¹vniL2(V) is bounded, i.e.,

E
V

u¹vnu2dx<C, n51,2,... . ~2.9!

Proof of Claim 1: Suppose (2.9) were false. Then we may assume

Cn5i¹vniL2~V!→` as n→`.

Setwn5vn /Cn . We have two cases to consider.
Case 1:*Vuwnu2dx>a0 for a0.0 and alln>1.
In this case, we denote

wO n5
1

uVu EV
wndx, w̃n5wn2wO n .

Then

E
V

u¹w̃nu2dx51 and E
V

ucurl w̃nu2dx→0 as n→`.

By Poincare´ inequality we have

E
V

uw̃nu2dx<C~V!E
V

u¹w̃nu2dx5C~V!.

Passing to a subsequence we may assumew̃n→w̃ weakly in H1(V,R3). Therefore curlw̃n

→curl w̃ weakly in L2(V,R3). On the other hand, curlw̃n→0 strongly in L2(V,R3). Thus
curl w̃50. SinceV is simply connected, there exists a functionf̃ PH2(V) such thatw̃5¹ f̃ . Now
we see that

wn5w̃n1wO n5¹ f̃ 1¹hn1gn ,

wherehn5wO n•x, andgn→0 weakly inH1(V,R3). Hence

un5¹wn1vn5¹wn1¹~Cnf̃ 1Cnhn!1Cngn .

It follows from ~2.8! that

E
V

uvnu2dx5E
V

uun2¹wnu2dx<E
V

uun2¹~wn1Cnf̃ 1Cnhn!u2dx5CnE
V

ugnu2dx.

Therefore,

0,a0<E
V

uwnu2dx<E
V

ugnu2dx→0 as n→`,

which is a contradiction.
Case 2:*Vuwnu2dx→0 asn→`.
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In this case we havewn→0 weakly in H1(V,R3) and strongly in L2(]V). Thus
*]VPn(wn ,wn)dS→0. From~2.2! we have

15E
V

u¹wnu2dx5E
V

ucurlwnu2dx1E
]V

Pn~w,w!dS→0,

again a contradiction.
Thus Claim 1 is true.
Step 3. Now we show thatR(u0) is achieved.
Denote

vOn5
1

uVu EV
vndx, ṽn5vn2vOn .

From ~2.9! and Poincare´ inequality we have

E
V

uṽnu2dx<C1 .

Therefore we have, after passing to a subsequence,ṽn→ ṽ weakly in H1(V,R3) and weakly in
H1/2(]V). Denote

f n5wn1vOn•x, f̃ n5 f n2
1

u]Vu E]V
f ndS.

Then

¹ f̃ n5un2 ṽn→u02 ṽu]V weakly in H1/2~]V!.

Now we consider the following minimization problem:

ln5 infH E
V

uD2fu2dx:¹f5¹ f̃ n on ]V, E
V

fdx50J .

By choosingf5 f̃ n as a test function, we see thatln,`. Since the functional involved is convex
we see that a minimizer exists, which is denoted byfn . Then¹fn5¹ f̃ n on ]V and

E
V

fn50.

Since

¹ f̃ nu]V5u02 ṽnu]V→u02 ṽu]V ,

we have¹fnu]V→u02 ṽu]V weakly in H1/2(]V). Thus$ln% is bounded and$fn% is bounded in
H2(V).

Therefore, we may assume thatfn→f weakly in H2,¹fu]V5u02 ṽu]V . Set ũ5 ṽ1¹f.
Then ũu]V5u0 , curl ũ5curl ṽ, and
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R~u0!<E
V

ucurl ũu2dx5E
V

ucurl ṽu2dx

< lim inf
n→`

E
V

ucurl ṽnu2dx

5 lim inf
n→`

E
V

ucurlvnu2dx5R~u0!.

That is,ũPH(V,u0) is a minimizer ofR(u0).
Step 4. Assumeu, vPH(V,u0) are minimizers ofR(u0). Then curl(u2v)50 a.e. inV.
In fact, for 0,a,1,b512a, setw5au1bv. ThenwPH(V,u0), and we have

R~u0!<E
V

ucurlwu2dx5a2E
V

ucurluu2dx12abE
V

curlu•curlv dx1b2E
V

ucurlvu2dx

<~a21b2!R~u0!12abE
V

ucurluu•ucurlvudx

<~a21b2!R~u0!1abH E
V

ucurluu2dx1E
V

ucurlvu2dxJ
5~a1b!2R~u0!5R~u0!.

Thus curlu5C curlv a.e. inV for some constantC.0. Then

R~u0!5E
V

ucurluu2dx5C2E
V

ucurlvu2dx5C2R~u0!.

ThereforeC51 and curlu5curlv a.e. inV.
Step 5. Recall thatV is simply connected. Now we show that the setS(u0) of all the

minimizers ofR(u0) is given by~1.6!.
If u andv are both minimizers ofR(u0), then from Step 4, there iswPH2(V) such thatv

5u1¹w, andDw50 on ]V.
Fix a minimizerū of R(u0). Then we see~1.6! is true.
The proof of Theorem 1 is now complete. h

In the following we show that, among all the minimizers of the curl functional, there exis
vector fieldu which has the least value ofJ0(u), whereJ0 is defined in~1.4!.

Set

a~u0!5 inf
uPH~V,u0!

J0~u!,

~2.10!
b~u0!5 inf

uPS~u0!

J0~u!.

Obviouslya(u0)<b(u0).
Proposition 2.3: Assumec satisfies the condition (1.2), andu0PH1/2(]V)ùL`(]V). Then

b(u0) is achieved, that is, there exists awPH2(V), with ¹w50 on ]V, such thatJ0(ū1¹w)
5b(u0).

Proof: For u5ū1¹wPS(u0),

J0~u!5J0~ ū1¹w!5E
V
H k1

2
u¹ū1D2wu21c~ uū1¹wu!J dx.
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Assumeū1¹wnPS(u0) is a minimizing sequence ofJ0 on S(u0). Thenū1¹wn is bounded in
H1(V). Passing to a subsequence we have¹wn→¹w̄ weakly in H1 and strongly inL2(]V).
Thus¹w̄50 on ]V.

Denoteun5ū1¹wn , and ũ5ū1¹w̄. Then un→ũ weakly in H1(V,R3) and strongly in
Lp(V,R3) for all 1,p,6, and

E
V

u¹ũu2dx5E
V

u¹ū1D2w̄u2dx< lim inf
n→`

E
V

u¹unu2dx.

Since the functionc satisfies the condition~1.2!, we have

E
V

c~ uũu!dx< lim inf
n→`

E
V

c~ uunu!dx.

ThereforeJ0(ũ)5 infuPS(u0)J0(u). h

Replacingū by ũ if necessary, we always assume that the vector fieldū in ~1.6! satisfies

E
V

ucurl ūu2dx5R~u0!, J0~ ū!5b~u0!. ~2.11!

In the following we show the existence of minimizers of the functionalW« given in ~2.1!
before we prove Theorem 2. Recall the definition of the minimum valueA«(u0) given at the
beginning of this section.

Theorem 2.4: Givenu0PH1/2(]V)ùL`(]V), there existsu«PH(V,u0) such thatW«(u«)
5A«(u0).

Proof: Assume$un%,H(V,u0) such thatW«(un)→A«(u0) as n→`. After passing to a
subsequence we may assumeun→u« weakly in H1(V,R3) and u«PH(V,u0). Hence curlun

→curlu« weakly in L2(V,R3). By condition ~1.2! we find W«(u«)< lim infn→` W«(un). Thus
W«(u«)5A«(u0). h

Remark 2.1:It is easy to see that, a minimizeru« of the functionalW« satisfies the following
equation in the weak sense:

H 2k1Du1
1

«2 curl2 u1j~ uuu!u50 in V,

u5u0 on ]V,

wherej(s)5c8(s)/s.
Proof of Theorem 2:In the following we always denote byu« a minimizer ofW« in H(V,u0).

First, we recall the definitions ofa(u0) andb(u0) given in ~2.10!, andR(u0) given in ~1.5!.
For everyuPH(V,u0) we have

J0~u!>a~u0! and E
V

ucurluu2dx>R~u0!.

Hence,

W«~u!5J0~u!1
1

2«2 E
V

ucurluu2dx>a~u0!1
R~u0!

2«2 .

Let ū be a minimizer of the curl functional that satisfies~2.11!. Then

W«~ ū!5J0~ ū!1
R~u0!

2«2 5b~u0!1
R~u0!

2«2 .
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Thus,

a~u0!1
R~u0!

2«2 <A«~u0!5W«~u«!<b~u0!1
R~u0!

2«2 .

So,

a~u0!<J0~u«!5W«~u«!2
1

2«2 E
V

ucurlu«u2dx

<b~u0!2
1

2«2 H E
V

ucurlu«u2dx2R~u0!J <b~u0!5J0~ ū!.

Hence,

a~u0!<J0~u«!<b~u0!.

We also have

E
V

ucurlu«u2dx52«@W«~u«!2J0~u«!#<R~u0!12«@b~u0!2J0~u«!#

<R~u0!12«@b~u0!2a~u0!#.

Sending« to 0 we find

lim sup
«→0

E
V

ucurlu«u2dx<R~u0!. ~2.12!

Sincec>0, we find that$u«% is bounded inH1(V,R3). Passing to a subsequence we ha
u«→u* weakly inH1(V,R3). So curlu«→curlu* weakly inL2(V,R3) as«→0. Using~2.12! we
have*Vucurlu* u2dx<R(u0). On the other hand, sinceu* PH(V,u0), we also have

E
V

ucurlu* u2dx>R~u0!.

Hence,

E
V

ucurlu* u2dx5R~u0!, and u* PS~u0!,

whereS(u0) was defined in~1.6!.
By the condition~1.2! we have

E
V

c~ uu* u!dx< lim inf
«→0

E
V

c~ uu«u!dx.

Therefore,

b~u0!<J0~u* !< lim inf
«→0

J0~u«!<b~u0!.

Now we see thatu* also satisfies~2.11!. We may assumeu* 5ū. So,

u«→ū weakly in H1~V,R3!, and J0~u«!→b~u0!5J0~ ū!.
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Next we compute

k1

2 E
V

u¹ūu2dx5J0~ ū!2E
V

c~ uūu!dx>J0~ ū!2 lim inf
«→0

E
V

c~ uu«u!dx

5J0~ ū!2 lim inf
«→0

HJ0~u«!2E
V

k1

2
u¹u«u2dxJ

5J0~ ū!2 lim
«→0

J0~u«!1 lim sup
«→0

k1

2 E
V

u¹u«u2dx

5 lim sup
«→0

k1

2 E
V

u¹u«u2dx.

Thusu«→ū strongly inH1(V,R3). This completes the proof of Theorem 2. h

An immediate consequence of Theorem 2 is the following:
Corollary 2.5: AssumeV is a bounded, smooth, simply connected domain inRn,n52,3.

Assumec satisfies (1.2), andu0PH1/2(]V)ùL`(]V). Let u« be a minimizer of the functiona
W« . Then the following conclusions are true:

~1! As «→0, the total energyW«(u«) remains bounded if and only ifR(u0)50.
~2! If R(u0)50, then for any convergent sequence of$u«% with «→0, there is a functionw̄

PH2(V) with ¹w̄5u0 on ]V, such thatu« converges to¹w̄ strongly in H1(V,Rn) as «
→0, and

J0~¹w̄!5 inf$J0~¹f!:fPH2~V!,¹fu]V5u0%.

Remark 2.2:Corollary 2.5 implies that the answer to the questions~Q1! and~Q2! is ‘‘yes’’ if
and only if R(u0)50.

Corollary 2.5 also indicates that, it is interesting to find the exact conditions under w
R(u0)50. The rest of this section is devoted to this problem. We will give a necessary
sufficient condition forR(u0)50 in the two-dimensional case. We shall see that in the th
dimensional case more geometric and topology conditions will be involved.

First we consider planar domains.
Proposition 2.6: Assume V is a smooth bounded domain inR2 and u0

PH1/2(]V)ùL`(]V). ThenR(u0)50 if and only if the following condition holds:

E
]V

u0•tds50, ~2.13!

wheret is the unit tangential vector field of]V.
As a direct consequence of Proposition 2.6, we have the following:
Corollary 2.7: AssumeV is a smooth bounded domain inR2 andu0PH1/2(]V)ùL`(]V). If

u0 is parallel to the normal direction of]V everywhere, thenR(u0)50.
Proposition 2.6 follows from the following Lemma 2.8 and an approximation process

details will be omitted.
AssumeV is a Ck domain in Rn and gPCk(]V,Rn). We say thatg has aCk curl-free

extension if there exists a functionfPCk11(V̄) such that¹f5g on ]V.
Lemma 2.8: AssumeV is a smooth (say Ck11 ) bounded domain inR2, and gPCk(]V,R2)

for some integer k.0. Theng has a Ck curl-free extension if and only if (2.13) holds.
Proof: Denote byn the unit outer normal of]V and t the unit tangential vector. Denoten

52n. Assume]V consists a finite number of smooth simple close curvesG j ,1< j <m. Each
curve can be represented asz5zj (s),0<s<L j , wheres is the arc-length parameter, andzj (L j )
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5zj(0). We choose the positive direction ofG j such that the orientation of~t,n! is the same as tha
of x1x2-plane, ands is increasing along the positive direction ofG j . Then]/]t5]/]s on ]V.

Let d(x)5dist(x,]V) be the distance function fromx to ]V, and for m.0 we setV(m)
5$xPV̄:d(x),m%. Then there is a constantm0.0 such thatdPCk(V(m0)), and for everyx
PV(m0) there exists a unique pointz5z(x)P]V such that

x5z2d~x!n~z!, ¹d~x!52n~z!.

Fix a positive constantm,m0 . Then

V~m!5ø
j 51

m

D j , where D j5$z~s!2tn~s!:0<s<L j ,0<t,m%.

First we assume that there existsfPCk11(V̄) such that¹f5g. Then

E
G j

g•tds5E
G j

¹f•tds5E
0

L j
¹f~zj~s!!•zj8~s!ds5f~zj~L j !!2f~zj~0!!50.

Hence~2.13! holds true.
In the following we assume~2.13! holds. We shall construct a functionfPCk11(V̄) such

that ¹f5g on ]V.
Let g1 be anyCk extension ofg, that is,g1PCk(V̄,R2) andg15g on ]V.
Let f1 be the solution of the following equation:

Df15div g1 in V,
]f1

]n
5g1•n on ]V,

and*Vf1dx50. Thenf1PCk11(V̄).
Setg25g12¹f1 . Then

g2PCk~V̄,R2!, div g250 in V, g2•n50 on ]V.

Henceg25(g2•t)t on ]V.
On each curveG j :z5zj (s),0<s<L j , we define a functionj jPCk11@0,L j # satisfying follow-

ing conditions:

H j j8~ t !5g2•t5g2~zj~s!!•zj8~s! for 0,s,L j ,
j j~0!50.

Note thatj j is unique, and

dij j

dsi ~L j !5
dij

dsi ~0! for 1< i<k11.

Sinceg25g2¹f1 on ]V, using the condition~2.13! we find j j (L j )5j j (0)50.
Now we define a functionj on ]V by

j~z!5j j~s! if z5zj~s!PG j .

ThenjPCk11(]V), and]j/]t5g2•t on ]V.
Fix a constantm,0,m,m0 . Choose a functionhPCk11@0,m# such that

h~0!51, h8~0!50, h~m!5h8~m!50, 0,h~ t !,1 for 0,t,m.
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Define a functionf2 on V(m) in the following way. ForxPD j , we can writex5z2tn(z),
wherez5zj (s)PG j ,0<s<L j and 0<t,m. We set

f~x!5h~ t !j~z!5h~ t !j j~s!.

We easily see thatf2PCk11(V(m)). Computation shows that, onG j we have

]f2

]t
5g2•t,

]f2

]n
52j j~s!h8~0!50.

Now we define a functionf by f5f11f2 . ThenfPCk11(V(m)). On ]V we have

]f

]t
5

]f1

]t
1g2•t5g•t,

]f

]n
5

]f1

]n
5g•n.

So ¹f5g on ]V. h

Whenn53 the situation is more complicated. AssumeV is a bounded smooth~say,Ck11)
domain inR3 and gPCk(]V,R3). Denote bygt the tangential component ofg, i.e., gt5g2(g
•n)n. Denote by¹tc the tangential component of¹c.

Lemma 2.9: AssumeV is a bounded Ck domain inR3 and gPCk(]V,R3). Theng has a Ck

curl-free extension if and only if

gt5¹tc on ]V ~2.14!

for somecPCk11(]V).
Proof: Obviously condition~2.14! is necessary.
Now assumegt5¹tc for somecPCk11(]V). We extendc to aCk11 function onV̄. Then

on ]V we have

g2¹c5S g•n2
]c

]n D n.

Choose a functionzPCk11(V̄) such thatz50 on ]V and

]z

]n
5g•n2

]c

]n
.

For example we may choosez to be the unique solution of the following equation:

H D2z50 in V,

z50 and
]z

]n
5g•n2

]c

]n
on ]V.

Then¹(c1z)5g on ]V. h

Remark 2.3:Let (y1 ,y2) be the isothermal coordinates on the surface]V. Then the tangentia
field gt can the represented asgt5g1(]/]y1)1g2(]/]y2). Denote

curlt~gt!5
]g2

]y1
2

]g1

]y2
.

It is easy to see that, ifg has aCk curl-free extension, then

curlt~gt!50. ~2.15!

Define a 1-form on the]V by
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g* 5g1dy11g2dy2 .

Obviously curlt(gt)50 if and only if dg* 50, i.e., if and only ifg* is a closed 1-form. On the
other hand,~2.14! means thatg* 5dc for some functionc, i.e.,g* is an exact 1-form. Recall tha
if the first cohomology groupH1(]V) is zero, then every close form is exact. Hence we get
following:

Proposition 2.10: AssumeV is a bounded Ck domain inR3 and gPCk(]V,R3). Theng has
a Ck curl-free extension if and only ifg* is an exact 1-form. Especially if the first cohomolo
group H1(]V)50, theng has a Ck curl-free extension if and only if (2.15) holds.

It is well known that if]V is diffeomorphic to the sphereS2 thenH1(]V)50. So we get the
following conclusion:

Proposition 2.11: AssumeV̄ is Ck diffeomorphic to a ball inR3 andgPC11a(]V,R3). Then
R(g)50 if and only if (2.15) holds.

Proof: SinceV̄ is Ck diffeomorphic to a ball, soV is simply connected andH1(]V)50.
From Proposition 2.10 we see that,~2.15! implies g has aCk curl-free extension. Hence

R(g)50.
Now assumeR~g!50. From Theorem 1 we know thatR(g) is achieved by a vector fieldu

PW1,2(V,R3). SinceR(g)50, there exists a functioncPW2,2(V) such that curlu50 a.e. and
u5g on ]V. SinceV is simply connected, there is a functioncPW1,2(V) such that¹c5u in V
and¹c5g on ]V. So¹tc5gt on ]V. Hence

Dtc5divt gt on ]V,

where Dt and divt are the Laplacian and divergence operators on]V. Note that g
PC11a(]V,R3). Hence divt gtPCa(]V). Using the elliptic estimates on]V we find thatc
PC21a(]V). Therefore,

curlt~gt!5curlt~¹tc!50 on ]V.

This verifies~2.15!. h

III. VARIATIONAL PROBLEMS FOR FUNCTIONAL E« AND F IN GENERAL DOMAINS

In this section we discuss the variational problem for the functionalE« defined in~1.7!. We
begin this section with the proof of Theorem 3 stated in Sec. I.

Proof of Theorem 3:Denote byu« a minimizer ofE« . Obviously

E«~u«!>E
V
H «u¹u«u21

1

2«
~12uu«u2!2J dx1Rh~u0!. ~3.1!

By the assumptionRh(u0) is achieved. SoSh(u0), the set of minimizers ofRh(u0), is not
empty. Without loss of generality we assumeu0 is not a constant vector. Thenah(u0).0, where
ah(u0) is defined in~1.10!. So we can choosev«PSh(u0) such that

E
V

u¹v«u2dx5@11o~1!#ah~u0! as «→0.

Note thatuv«u51. Then

E«~u«!<E
V

$«u¹v«u21ucurlv«u2%dx5«@11o~1!#ah~u0!1Rh~u0!. ~3.2!

Combining~3.1! and ~3.2! we get
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E
V
H u¹u«u21

1

2«2 ~12uu«u2!2J dx<@11o~1!#ah~u0!.

So

E
V

u¹u«u2dx5@11o~1!#ah~u0!,

~3.3!

E
V

~12uu«u2!2dx5O~«2!.

Passing to a subsequence we may assumeu«→ũ weakly inW1,2(V,Rn), uũ(x)u51 a.e. inV.
HenceũPH(V,Sn21,u0) and

E
V

u¹ũu2dx< lim inf
«→0

E
V

u¹u«u2dx<ah~u0!. ~3.4!

Using ~3.2!, ~3.3! we compute

E
V

ucurlu«u2dx5E«~u«!2E
V
H «u¹u«u21

1

2«
~12uu«u2!2J dx<$Rh~u0!1«@11o~1!#ah~u0!%

2H E
V
F«uu«u21

1

2«
~12uu«u2!2GdxJ 5Rh~u0!1O~«!,

so

E
V

ucurl ũu2dx< lim inf
«→0

E
V

ucurlu«u2dx<Rh~u0!.

Hence

E
V

ucurl ũu2dx5Rh~u0!,

i.e., ũPSh(u0).
Using ~3.4! we find

E
V

u¹ũu2dx5ah~u0!.

This and~3.3! together imply that

lim
«→0

E
V

u¹u«u2dx5E
V

u¹ũu2dx.

Henceu«→ũ strongly inW1,2(V,Rn). h

As an application of Theorem 3, we consider the variational problems forE« on the unit ball
B in R3 under a spherically symmetric boundary condition on]B.

In the spherical coordinates~r,u,w!, a unit vector fieldv defined onB can be written as

v5cosj coscer1cosj sinceu1sinjew . ~3.5!
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If v is in the form of~3.5! with j andc depending only onr, then we callv a unit vector field with
spherical symmetry. For such vector fields we assumej and c satisfy the following boundary
conditions on the sphere,

j~1!5j0 , c~1!5c0 .

Denote

u05cosj0 cosc0er1cosj0 sinc0eu1sinj0ew . ~3.6!

Then we can show the following:
Theorem 3.1:Let B be the unit ball inR3 andu0 be given in~3.6!. ThenRh(u0) is achieved

by a spherical minimizerv in the form of ~3.5! if and only if u056x. In this case the only
minimizers arev56x/uxu.

Proof: Obviously, if u056x on ]B, thenRh(u0)50 andv56x/uxu is a minimizer.
In the following we assumeRh(u0) is achieved byv, which is a unit vector field with

spherical symmetry. In the spherical coordinates~r, u, w!, v can be written in the form of~3.5!,
wherej5j(r) andc5c(r). In the proof of Theorem we denote85d/dr. We compute

curlv52
cotw

r
cosj sincer2

~r sinj!8

r
eu1

~r cosj sinc!8

r
ew .

So

E
B
ucurlvu2dx52pE

0

1

cos2 j sin2 cdrE
0

p cos2 w

sinw
dw

14pE
0

1

$u~r sinc!8u21u~r cosj sinc!8u2%dr.

Hence,ucurlvuPL2(B) if and only if

cosj sinc[0. ~3.7!

Denote byLsym(B,curl,u0) the subset ofL(B,curl,u0) consisting of spherically symmetric vecto
fields in the form of~3.5!. Then each vector field in this set satisfies the condition~3.7!. The curl
functional inLsym(B,curl,u0) is reduced to

F~v!54pE
0

1

u~r sinj!8u2dr.

AssumevPLsym(B,curl,u0) is a minimizer. Then it satisfies the following Euler equation

cosj~r sinj!950. ~3.8!

Solving ~3.8! we find

v5cosj0er1sinj0ew .

For this vector fieldv we have divv5(2 cosj01sinj0 cotw)/r. HencevPW1,2(B,S2) if and only
if sin j050. Therefore, ifRh(u0) is achieved by a spherically symmetric unit vector fieldv, we
must haveu056er56x on ]B, soRh(u0)50, andv56x/uxu. h

Using Theorem 3 and Theorem 3.1 we can prove the following:
Theorem 3.2:Let B be the unit ball inR3 andu056x on]B. Let u« be the minimizer ofE«

in H(B,6x). Then as«→0,u« converges to6x/uxu strongly in W1,2(B,R3).
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Proof: For simplicity we only consider the case whereu05x.
Denote v5x/uxu. Obviously vPH(B,S2,x) and curlv50 away from the origin. Hence

Rh(x)50 andv is a minimizer.
Now we show thatv5x/uxu is the unique minimizer ofRh(x). Suppose there is a unit vecto

field wPH(B,S2,x) such that curlw50 in B. Then there is a functionfPW2,2(B) such thatw
5¹f. Hence

u¹fu51 in B, ¹f5x on ]B. ~3.9!

The solution of~3.9! is determined by the characteristic equations,

ẋ5p, ḟ51, ṗ50.

Using the boundary condition in~3.9! we find that each characteristic line is a ray from the cen
and along each ray¹f5u0(x/uxu)5x/uxu. Sow5v5x/uxu.

Using Theorem 3 we see thatu«→x/uxu strongly inW1,2(B,R3,x) as«→0. h

Remark 3.1:Under the conditions of Theorem 3.2 one can show thatu«→6x/uxu uniformly
in any compact subdomain away from 0.

From Theorem 3 we see that, ifH(V,Sn21,u0)ÞB and if Rh(u0) is achieved, then the
limiting behavior of the minimizers$u«% of E« is clear. However, as mentioned in Sec. I, in ma
practical cases,H(V,Sn21,u0)5B. For example, ifV is a bounded smooth domain in the pla
and if the degree deg(u0) of u0 is not zero, thenH(V,S1,u0)5B. Note that ifu0[n or if u0

[t, where n is the unit outer normal of]V and t is the unit tangential field of]V, then
deg(u0)51. Therefore it is reasonable to consider the variational problem on a large
L(V,curl,u0) and discuss the achievability ofRl(u0) on L(V,curl,u0). For the definitions of
L(V,curl,u0) andRl(u0) see Sec. I.

First we give a lower bound ofRl(u0). Denote byuEu the measure of a setE.
Lemma 3.3: AssumeV is a bounded smooth domain inR2. For anyu0PH1/2(]V,S1) we have

Rl~u0!>
1

uVu H E]V
u0•tdsJ 2

.

Especially ifu0 is a unit tangential field on]V, then

Rl~u0!>
u]Vu2

uVu
.

Proof: Since

E
V

curludx5E
]V

u•tds,

using Hölder inequality we obtain the lower bound. h

Lemma 3.3 has an interesting consequence.
Corollary 3.4: For any bounded smooth domainV in R2 and for any smooth unit tangentia

field u0 on ]V, it holds that

Rl~u0!>
u]Vu2

uVu
>4p.

The equality holds if and only ifV is a disk.
Proof: The first statement is the consequence of Lemma 3.3 and the isoperimetric ineq

In the proof of Theorem 4 we shall show that, whenV is a disk andu0 is a unit tangential field,
Rl(u0)54p and is achieved, see Sec. IV. Therefore, the second conclusion is true. h
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Even though Lemma 3.3 gives a lower bound ofR(u0) for any tangential vector fieldu0 , we
cannot prove whetherRl(u0) is achievable in general case at moment. We cannot even show
achievable whenRl(u0)50. On the other hand, we can show that, ifu0 is parallel to the normal
vector field on]V, or more general, ifu0 can be extended to become a central field~for the
definition see Sec. I!, thenRl(u0)50 and is achieved. See Corollary 2.7 for the related statem
for R(u0).

In the following we shall discuss this issue further from the diffeomorphism point of view.
simplicity we only consider the two-dimensional case. We begin our discussion with a sp
case. Assumeu is a unit vector field which can be written asu5eif for some functionf. For such
u, if u is a minimizer ofRl(u0) then it satisfies the Euler equation~1.9!, henceeif`curl2 eif

50 in V. Especially if Rl(u0)50 and is achieved by such a vector fieldu, then curleif50.
Computation shows that both these two conditions can be formulated with a differential op
Df , which is defined as follows:

Df5cosf]11sinf]2 .

In fact

curleif5Dff, eif`curl2 eif5Df
2 f.

Let x be the original coordinates. Giveneif(x), we look for a diffeomorphismx5F(y), where
F:G→V is a map such that

]F

]y1
5eif.

If such a mapF exists, then in the new coordinatesy we have

]x1

]y1
5cosf,

]x2

]y1
5sinf,

]

]y1
5Df ,

]2

]y1
2 5Df

2 .

Hence

curleif5
]f

]y1
, eif`curl2 eif5

]2f

]y1
2 .

Therefore,

~i! curleif50 in V⇔Dff50 in V⇔]f/]y150 in G;
~ii ! eif`curl2 eif50 in V⇔Df

2 f50 in V⇔]2f/]y1
250 in G.

In order to get curleif50, we need]F/]y15eif and]f/]y150. It suggests the condition
for curlu50: There are functionsz(y2), and V(y2) such that

u5ei z~y2!, F~y!5y1ei z~y2!1V~y2!.

Herez(y2) andV(y2) are determined by the boundary condition ofu. Essentially,u depends only
on one variable.

In order to geteif`curl2 eif50, we need]F/]y15eif and ]2f/]y1
250. It suggests the

condition foreif`curl2 eif50: There are functionsz(y2), j(y2), and V(y2) such that

u5exp$ i @2y1z~y2!1j~y2!#%, curlu52z~y2!,
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and

F~y!5H z~y2!21 sin~y1z~y2!!exp$ i @y1z~y2!1j~y2!#%1V~y2! if z~y2!Þ0,

y1 exp@ i j~y2!#1V~y2! if z~y2!50.

Herej(y2) andV(y2) are determined by the boundary condition ofu. Hence, curlu only depends
on one variable.

Locally we can always write a unit vector fieldu asu5eif, but this may not hold in the entire
domainV. Nevertheless, the above intuitive discussion is still helpful, which yields the con
sions for general case. The conditions for curlu50 for the general case will be presented
Proposition 3.5, and the conditions for curl2 u to be parallel tou will be given in Proposition 3.6.
In the following, for a smooth mapF, we denote by DF the Frechet differential ofF, and by det
~DF! the determinant of DF.

Proposition 3.5: LetV be a bounded smooth domains inR2.

~1! Assume there is a diffeomorphism F:G→V in the following form:

F~y!5y1U~y2!1V~y2!, ~3.10!

where U(y2) is a unit vector field. Set

u~x!5U~F21~x!!, xPV.

Then curlu50.
~2! On the other hand, assumeu is a unit vector field and curlu50 in V. Assume there is a

smooth change of variables x5F(y) such that

]F~y!

]y1
5u~F~y!! and det~DF!Þ0, xPV. ~3.11!

Then in the new variables y we have]u/]y150.

Proof: Step 1. Assume there is a diffeomorphism in the form of~3.10!.
Denotex5F(y) andU5(U1 ,U2). From ~3.10! we have

]x1

]y1
5U1 ,

]x2

]y1
5U2 .

So,

]y2

]x1
52

U2

det~DF!
,

]y2

]x2
5

U1

det~DF!
. ~3.12!

SinceU is a unit vector field,U•]2U50. Hence

curlu~x!5
]u2

]x1
2

]u1

]x2
5U28

]y2

]x1
2U18

]y2

]x2
52

1

det~DF!
~U1U181U2U28!50.

Step 2. Now assume curlu50 in V, and assume there is a change of variablesx5F(y) satisfying

]F~y!

]y1
5u~x!, and det~DF!Þ0 in V.

Then~3.12! holds withU1 andU2 being replaced byu1 andu2 . Sinceu is a unit vector field, so
u•]1u5u•]2u50. Hence,
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05curlu5
]u2

]x1
2

]u1

]x2
5

]u2

]y1

]y1

]x1
2

u2

det~DF!

]u2

]y2
2

]u1

]y1

]y1

]x2
2

u1

det~DF!

]u1

]y2

5
]u2

]y1

]y1

]x1
2

]u1

]y1

]y1

]x2
. ~3.13!

Now we show]u1 /]y15]u2 /]y150. Otherwise, we may assume]u2 /]y1Þ0. Then from~3.12!
~with U1 andU2 replaced byu1 andu2) and ~3.13! we have,

det~~DF!21!5
]y1

]x1

]y2

]x2
2

]y1

]x2

]y2

]x1
5

1

det~DF! Fu1

]y1

]x1
1u2

]y1

]x2
G

5
1

det~DF!

]y1

]x2
S ]u2

]y1
D 21Fu1

]u1

]y1
1u2

]u2

]y1
G50,

a contradiction. h

Remark 3.2:Proposition 3.5 implies that a curl-free unit vector field in a planar dom
depends on one variable only. We shall call a map in the form of~3.10! a central map.

Note that a map in the form of~3.10! is not a conformal map in general. In fact, a mapF in
the form of ~3.10! is a conformal map if and only ifF is an orthogonal linear transform, that is

F~y!5y1~cosf0 ,sinf0!1y2~2sinf0 ,cosf0!1v0 ,

wheref0 is a constant number andv0 is a constant vector.
Proposition 3.6: LetV be a smooth bounded domain inR2 andu be a unit vector field inV.

Assume that there is a smooth change of variables x5F(y), where the map F:G→V satisfies
(3.11) inV. Thenu satisfies the equation in (1.9) if and only if curlu depends only on y2 .

Proof: DenoteH5curlu. Then curl2 u5(]2H,2]1H) andu`curl2 u5u•¹xH.
Sinceu is a unit vector field, as in~3.13! we have

H5
]u2

]y1

]y1

]x1
2

]u1

]y1

]y1

]x2
.

Since]x1 /]y15u1 and ]x2 /]y15u2 , we have]y2 /]x152lu2 and ]y2 /]x25lu1 , wherel
51/det~DF!. So we find

u•¹xH5u1F]u2

]y1

]2y1

]x1
2 2

]u1

]y1

]2y1

]x1]x2
G1u2F]u2

]y1

]2y1

]x1]x2
2

]u1

]y1

]2y1

]x2
2 G1u1F]2u2

]y1
2 S ]y1

]x1
D 2

2
]2u1

]y1
2

]y1

]x1

]y1

]x2
G1u2F]2u2

]y1
2

]y1

]x1

]y1

]x2
2

]2u1

]y1
2 S ]y1

]x2
D 2G .

Sinceu1]y1 /]x11u2]y1 /]x251, the sum of the last two terms in the right is

]2u2

]y1
2

]y1

]x1
2

]2u1

]y1
2

]y1

]x2
.

Hence,
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u•¹xH5
]2u2

]y1
2

]y1

]x1
1

]u2

]y1
Fu1

]2y1

]x1
2 1u2

]2y1

]x1]x2
G2

]2u1

]y1
2

]y1

]x2
2

]u1

]y1
Fu1

]2y1

]x1]x2
1u2

]2y1

]x2
2 G

5
]2u2

]y1
2

]y1

]x1
1

]u2

]y1

]

]y1
S ]y1

]x1
D2

]2u1

]y1
2

]y2y1

]x2
2

]u1

]y1

]

]y1
S ]y1

]x2
D

5
]

]y1
F]u2

]y1

]y1

]x1
2

]u1

]y1

]y1

]x2
G5

]H

]y1
.

Consequently,

u`curl2 u50⇔u•¹xH50⇔]H/]y150.

The lemma is proved. h

IV. VARIATIONAL PROBLEMS FOR E« and F IN A DISK

In this section we discuss the variational problems for the functionalE« on a diskD in the
plane, and prove Theorem 4. In this section we denote

er5
x

r
5eiu, eu5

1

r
~2x2 ,x1!5ei ~u1p/2!.

Throughout this section we assume thatu0 is a unit vector field on]D which makes a constan
anglef0 with the outer normal. Without loss of generality we assume 0<f0<p/2. In the polar
coordinates we can writeu05ei @u1f0#, see~1.11!.

Lemma 4.1: Foru0 given above we have

Rl~u0!54p sin2 f0 ,

and the only minimizer of the curl functionalF in L(V,curl,u0) is the vector fieldv given in
(1.12).

Proof: Step 1. We first look for a minimizer of the curl functionalF among all unit vector
fields in the formv5ei @u1f(r )#.

For suchv we compute

F~v!5E
D

ucurlvu2dx52pE
0

1Fsinf

r
1f8 cosfG2

rdr

and the Euler equation is

cosfH ~rf91f8!cosf2S rf821
1

r D sinfJ 50.

Note that the solution of this Euler equation must satisfy cosfÓ0. In fact, if cosf[0, then
f56p/2 andv56eu . This solution must be dropped because it does not lie inL(D,curl,S2).
Now since cosfÓ0, cosf can have only isolated zero points. Hence the second factor in
above equation must be zero, which can also be written as

r
d

dr S r
d

dr
sinf D5sinf.

The solutions of this equation which satisfyf(1)5f0 are

sinf~r !5~sinf0!cosh~2 log r !1C sinh~2 log r !.
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The only solution which remains bounded asr→0 is

sinf~r !5r sinf0 .

Hencev can be written as~1.12!, or,

v5ei @u1f~r !#5A12r 2 sin2 f0er1r sinf0eu . ~4.1!

Next we claim that the vector fieldv given in ~4.1! achievesRl(u0). In other words,v is a
minimizer of the curl functionalF among all vector fields inL(D,curl,u0). In fact, from~4.1! we
see that curlv52 sinf0 andF(v)54p sin2 f0. From Lemma~3.3! we see thatF(v)5Rl(u0).
Step 2. Now we show that, the vector fieldv given in ~4.1! is the only minimizer ofF in the class
L(D,curl,u0).

To prove this conclusion, supposewPL(V,curl,u0) is a minimizer ofF, and we shall show
w5v. Sincew is a minimizer,

E
D

ucurlwu2dx54p sin2 f0 .

Hence,

E
D

ucurlw2curlvu2dx5E
D

ucurlwu2dx1E
D

ucurlvu2dx22E
D

~curlv!~curlw!dx

58p sin2 f024 sinf0E
D

curlwdx

58p sin2 f024 sinf0E
]D

w•tds50.

So

curlw52 sinf0 a.e. in D. ~4.2!

Note thatuwu51 a.e. inD. Locally ~at least near each point on]D) we can write

w5eiv, with v5u1f0 on ]D.

Using ~4.2! we find thatv is a solution of Cauchy problem of the following partial differenti
equation of first order, with]D as the initial curve:

cosv]1v1sinv]2v52 sinf0. ~4.3!

When f0Þp/2, ]D is noncharacteristic for~4.3! and the solution is unique near]D. By
continuous extension we find that the solution is actually unique onD. Hencew5v.

So we only need to provew5v whenf05p/2. However, the proof presented below wor
for all f0 .

For an arbitrary pointeiu0P]D, we denote the characteristic line of~4.3! starting from this
point by C(u0). To showw5v, we prove the following:

Claim 1: For every pointxPD, there is a characteristic lineC(u0) passing throughx; and
w5v along each characteristic curveC(u0).

Proof of Claim 1:Note that, whenf050, f[0. In this case every characteristic line is th
radial ray. So it is obvious thatw5x/uxu5v. Thus, in the following we assume 0,f0<p/2. The
equations for the characteristic lines of~4.3! are

ẋ5eiv, v̇52 sinf0 .
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Solving this differential system we find that

v5u01f012t sinf0 ,

and the characteristic lineC(u0) can be represented by

x5
sin~f01t sinf0!

sinf0
exp@ i ~u01t sinf0!#.

Therefore, in the polar coordinates, the characteristic lineC(u0) is represented as

r 5
sin~f01t sinf0!

sinf0
, u5u01t sinf0 . ~4.4!

Hence the characteristic line lies inD for 2f0 /sinf0,t,0, and reaches the center of the di
when t52f0 /sinf0.

Now we see thatD is covered by the family of characteristic lines. In fact, for eachx
5reiuPD, we can find a characteristic lineC(u0) passing throughx. To see if this is true, for each
x5reiuPD, we solveu0 and t from ~4.4!,

u05f01u2arcsin~r sinf0!, t5
arcsin~r sinf0!2f0

sinf0
,

Note that (u0 ,t) satisfy the condition2f0 /sinf0<t,0.
Next we show that along each characteristic line it holds thatw5v. Write v5u1c. Then

alongC(u0) we have, from~4.4!,

u1c5v5u01f012t sinf05u1f01t sinf0 .

Using ~4.1! again

c5f01t sinf05arcsin~r sinf0!5f~r !.

So w5ei (u1c)5ei @u1f(r )#5v. Claim 1 is proved. h

Therefore we have shown thatv is the only minimizer. Step 2 is complete. h

Lemma 4.2: Foru0 given above, letu« be a minimizer ofE« among all the vector fields in
H(D,u0). For all «.0 small we have the following energy estimates:

~1! When0<f0,p/2,

E«~u«!54p sin2 f012p« log
1

«
1O~«!.

~2! Whenf05p/2,

4p12p« log
1

«
1O~«!<E«~u«!<4p13p« log

1

«
1O~«!.

Proof: Step 1. We first derive a lower bound,

E«~u«!>4p sin2 f012p« log
1

«
1O~«!.

Using Hölder inequality we have

E
D

ucurlu«u2dx>
1

uDu H E]D
u0•tdsJ 2

54p sin2 f0 . ~4.5!
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Also note that deg(u«)5deg(u0)51, it is true that

E
D
H «u¹u«u21

1

2«
~12uu«u2!2J dx>2p« log

1

«
1O~«!, ~4.6!

see Ref. 25, p. 82, Lemma 4. Hence the energy lower bound is true.
Step 2. We derive a energy upper bound forf05p/2.

Let

0,d!1, 0,r!1, u05
p

2~11r!
.

We choose a test fieldu in the form

u5 f ~r !ei @u1f~r !#, ~4.7!

where

f ~r !5H r

d
if 0 ,r<d,

1 if d,r<1,

f~r !5H p

2u0
arcsinr if 0<r<sinu0 ,

p

2
if sin u0,r<1.

Note thatf(r )5(11r)arcsinr for 0<r<sinu0. For u in the form of ~4.7!,

u¹uu25 f 821 f 2f821
f 2

r 2 ,

curlu5
~r f sinf!8

r
.

We compute

E«~u!5E
D
H «u¹uu21ucurluu21

1

2«
~12uuu2!2J dx

52pE
0

1H «F r f 821r f 2f821
f 2

r G1
1

r
u~r f sinf!8u21

r

2«
~12 f 2!2J dr

54p12p«F log
1

d
1 log

1

rG12p«S 12 log
p

2 D14p«r log
1

r
1

d2

12«
1O~«r1r21d2!.

Choosed5A12p«, r5«1/2 we get

E«~u«!<E«~u!54p13p« log
1

«
1O~«! .

Step 3. We derive a energy upper bound for 0<f0,p/2.
Chooseu in the form of ~4.7!, wheref is the same as above, and
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f5arcsin~r sinf0!.

We have

E«~u!54p sin2 f012p« log
1

d
12p«~122 log cosf0!1

d2

12«
1O~d2!.

Choosed5A12p« we get

E«~u«!<E«~u!54p sin2 f012p« log
1

«
1O~«!.

Now the lemma is proved. h

Corollary 4.3: For u0 given above, letu«PH(D,u0) be a minimizer ofE« . Then we have the
following results:

~1!

E
D
ucurlu«u2dx54p sin2 f01OS« log

1

«D.
~2! When0<f0,p/2 we have

E
D
Hu¹u«u21

1

2«2 ~12uu«u2!2J dx52p log
1

«
1O~1!,

and whenf05p/2 we have

E
D
Hu¹u«u21

1

2«2 ~12uu«u2!2J dx<3p log
1

«
1O~1!.

Proof: Denote

K~f0!5H 2p if 0<f0,
p

2
,

3p if f05
p

2
.

Since

4p sin2 f0<E
D

ucurluu2dx<E«~u«!<4p sin2 f01K~f0!« log
1

«
1O~«!,

we obtain the first estimate.
Since

E
D
H u¹u«u21

1

2«2 ~12uu«u2!2J dx5
1

« H E«~u«!2E
D

ucurlu«u2dxJ 5
1

«
$E«~u«!24p sin2 f0%

2
1

« H E
D

ucurlu«u2dx24p sin2 f0J ,

when 0<f0,p/2, using ~4.5!, ~4.6! and Lemma 4.2 we obtain the second estimate. Whe
f05p/2 we use~4.5! and Lemma 4.2 to get the third estimate. h

Proof of Theorem 4:Assume 0<f0,p/2.
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Before starting the proof of Theorem 4, we recall the definitionS(c0 ,K,«,u0 ,V) given in
Ref. 25, p. 83, whereu0 :]V→S1 and deg(u0)5d.0. A mapu:V→R2 is said to belong to the
classS(c0 ,K,«,u0 ,V), if uPH(V,u0), and

~i! *D$u¹u«u211/(2«2)(12uu«u2)2%dx<2pd log (1/«)1K;
~ii ! For x0PV with uu(x0)u<1/2, thenuu(x)u<3/4 wheneverxPV and ux2x0u<c0«.

Recall that deg(u0)51. We first prove that, when 0<f0,p/2, the minimizer u«

PS(c0 ,K,«,u0 ,D) for some constantsc0 andK. In fact, from Corollary 4.3~2! we see that~i! is
true. Using the elliptic estimates for the Euler equation~1.8! we see that

u¹u«~x!u<
C

«
on V,

whereC.0 is independent of«. ~ii ! follows from this result.
Having provedu«PS(c0 ,K,«,u0 ,D), using the Compactness Theorem in Ref. 25, p. 85,

any sequence«n→0, there is a subsequence«nj
and a pointbPD such that, foruj5u«nj

,

uj→u weakly in H loc
1 ~D̄\$b%! as j→`,

u5
x2b

ux2bu
eih, hPH loc

1 ~D\$b%!,

dist~b,]D !>d* ~c0 ,K,u0 ,D !.0.

Since $curluj% is uniformly bounded inL2(D), there is a functionHPL2(D) such that
curluj→H weakly inL2(D) as j→`. On the other hand, sinceuj→u weakly inH loc

1 (D\$b%) we
have curluj→curlu weakly in L loc

2 (D\$b%). ThereforeH5curlu and

curluj→curlu weakly in L2~D ! as j→`.

So

E
D

ucurluu2dx< lim inf
j→`

E
D

ucurluj u2dx54p sin2 f0 ,

which implieduPL(D,curl,u0), and hence

E
D

ucurluu2dx> inf
vPL~D,curl,u0!

F~v!54p sin2 f0 .

Thusu is the minimizer of the curl functionalF. By the uniqueness of the minimizers we get

u5ei @u1f~r !#, f~r !5arcsin~r sinf0!.

Henceb50 andh5f(r )5arcsin(r sinf0).
The above argument implies that, for any sequence«n→0, there is a subsequence«nj

such
that

u«n j
→ei @u1arcsin~r sin f0!# weakly in H loc

1 ~D̄\$0%!.

Therefore the entire sequence$u«% must converge, i.e.,

u«→ei @u1arcsin~r sin f0!# weakly in H loc
1 ~D̄\$0%!.
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Now the proof of Theorem 4 is complete. h

Remark 4.1:Under the conditions of Theorem 4, we can prove that, when 0<f0,p/2, i.e.,
whenu0 is not tangential to the boundary]D, then

u«→ei @u1arcsin~r sin f0!# in Cloc
k ~D̄\$0%!. ~4.8!

In fact, from the Structure Theorem in Ref. 25, p. 83, there is a diskBj centered at the poin
b and with radius («nj

)a, a is independent of«, such that

degS uj

uuj u
,]Bj D51,

and uuj (x)u.1/2 for xPD̄\Bj . Fix a constantd0 such that 0,d0,d* . Then the ballB(b,d0)
with centerb and radiusd0 is contained inD, and

degS uj

uuj u
,]B~b,d0! D51.

So

degS uj

uuj u
,]@D\B~b,d0!# D50.

Using Lemma 4 in Ref. 25, p. 82, we also have

E
B~b,d0!

H u¹uj u21
1

2«nj

2 ~12uuj u2!2J dx>2p log
1

«nj

1O~1!.

From this and Corollary 4.3 we get

E
D\B~b,d0!

H u¹uj u21
1

2«nj

2 ~12uuj u2!2J dx<C ~4.9!

for someC.0 independent of«. From ~4.9!, we can use the methods in Ref. 26 to prove~4.8!.
Remark 4.2:In Theorem 4 we get the convergence ofu« when u0 is not tangential to the

boundary]D. We believe that the same conclusion remains true whenu0 is tangential to]D.
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In a study of finite-dimensional modules of simple Lie superalgebras, Kac intro-
duced certain indecomposable modules, now known as Kac-modulesV̄(L), which
are simple if and only ifL is typical. ForL atypical, Hugheset al. presented an
algorithm to determine all the composition factors of the Kac-module; they conjec-
tured that there exists a bijection between the composition factors of a Kac-module
and so-called permissible codes. The aim in this paper is to contribute to the proof
of this conjecture. By constructing explicitly the primitive vector, we prove that for
any unlinked code there corresponds a composition factor of the Kac-module. It
will be proved in another paper that to any linked code there also corresponds a
composition factor of the Kac-module. Thus the proof of the Hugheset al. conjec-
ture will be reduced to the problem whether or not each composition factor corre-
sponds to a linked or unlinked code. ©2000 American Institute of Physics.
@S0022-2488~00!02807-3#

I. INTRODUCTION

Following the classification of simple Lie superalgebras,1–3 Kac studied finite-dimensiona
modules of the basic classical Lie superalgebras,4,5 distinguishing between typical and atypic
modules. He also introduced what is now called the Kac-moduleV̄(L), which was shown to be
simple if and only ifL is typical. ForL atypical, the structure ofV̄(L), or equivalently, the
character of the simple moduleV(L), has been the subject of intensive study.6–14More generally,
the problem of classifying indecomposable modules has received much attention i
literature.15–18

While Kac obtained a character formula for typical modules,5 the problem for atypical mod-
ules has been found to be much more difficult.6–8 Only recently Serganova13 derived a formula for
the characters of simplegl(m/n)-modulesV(L). This was expressed in terms of characters
Kac modulesV̄(S), with coefficientsbLS equal to the value of Kazhdan–Lusztig polynomia
KLS(q) at q521. She also derived an algorithm for determining the multiplicitiesaLS of com-
position factorsV(S) of Kac-modulesV̄(L). However, the implementation of Serganova’s alg
rithm turns out to be rather complicated, and even with recent insights14 into the multiplicitiesaLS

the structure of a Kac-moduleV̄(L) is still not as clear as one would wish.
Hughes et al.8 described an algorithm to determine all the composition factors

sl(m/n)-Kac-modulesV̄(L). They conjectured that there exists a bijection between the com
sition factors ofV̄(L) and certain permissible codes~Definition 3.9!. This conjecture describe
clearly the structure ofV̄(L). The aim in the present paper and a forthcoming paper19 is to prove
this conjecture. In this paper, we prove that to any unlinked code there corresponds a comp
factor of the Kac-module. This is done by constructing explicitly a primitive vector correspon
50640022-2488/2000/41(7)/5064/24/$17.00 © 2000 American Institute of Physics

                                                                                                                



d
tor of
g the
her a

se

5065J. Math. Phys., Vol. 41, No. 7, July 2000 Primitive vectors of Kac-modules

                    
to the unlinked code~Theorems 6.6 and 6.12!. Then in Ref. 19, it will be proved that to any linke
code there corresponds a weakly primitive vector and a corresponding composition fac
V̄(L). Therefore, the present paper together with Ref. 19 will reduce the problem of provin
Hugheset al. conjecture to that of showing that each composition factor corresponds to eit
linked or an unlinked code.

II. THE LIE SUPERALGEBRA sl „m¿1Õn¿1…

Denote G5sl(m11/n11) the set of (m1n12)3(m1n12) matricesx5(C
A

D
B) of zero

supertrace str(x)5tr(A)2tr(D)50, whereA,B,C,Dare (m11)3(m11), (m11)3(n11), (n
11)3(m11), (n11)3(n11) matrices, respectively. LetG0̄5$(0

A
D
0 )%, G1̄5$(C

0
0
B)%, then G

5G0̄% G1̄ as a Z25Z/2Z graded space, is a Lie superalgebra with bracket:@x,y#5xy
2(21)jhyx for xPGj , yPGh , j, hPZ2 such thatG0̄>sl(m11)% C” % sl(n11) is a Lie alge-
bra. Let G115$(0

0
0
B)%, G215$(C

0
0
0)%. Then G has a Z2-consistentZ grading G5G21% G0

% G11 , G0̄5G0 , G1̄5G21% G11 .
The Cartan subalgebraH consisting of diagonal (m1n12)3(m1n12) matrices of the zero

supertrace has dimensionm1n11. The weight spaceH* is the dual ofH, spanned by the forms
ea(a51,...,m11), db(b51,...,n11), where ea : x→Aaa , db : x→Dbb for x5(C

A
D
B), with

Sa51
m11ea2Sb51

n11db50; it has an inner product, derived from the Killing form, such that^eaueb&
5dab , ^eaudb&50, ^daudb&52dab , wheredab is the Kronecker symbol. LetD,D0 ,D1 be the sets
of all roots, even roots and odd roots, respectively, and lete(a) be the root.G has a root space
decompositionG5H % % aPDC” e(a) with the roots and root vectors given by

ea2eb↔Eab ~1<a,b<m11,aÞb! ~even!,

da2db↔Em1a11,m1b11 ~1<a,b<n11,aÞb! ~even!,

ea2db↔Ea,m1b11 ~1<a<m11,1<b<n11! ~odd!,

da2eb↔Em1a11,b ~1<a<n11,1<b<m11! ~odd!,

whereEab is the matrix with entry 1 at~a,b! and 0 otherwise. We shall find it convenient to u
a notation for roots somewhat different to that in previous papers.6,9,10 Define sets

I 15$m̄,...,1̄%, I 25$1,...,n%, I 5I 1ø$0%øI 2 , where ī 52 i ,i PZ1 . ~2.1!

Choose a basis forH: hi5Em1 i 11,m1 i 112Em1 i 12,m1 i 12 , i PI 1øI 2 , h05Em11,m11

1Em12,m12 . The simple roots inH* are a i5em1 i 112em1 i 12 , i PI 1 , a05em112d1 , a i5d i

2d i 11 , i PI 2 . Thusa0 is the only odd simple root. The corresponding Dynkin diagram is

o—o—¯¯—o— ^ —o—¯—o—o
am̄am21 a 1̄a0a1 an21an

~2.2!

with I 1 ,I 2 corresponding tosl(m11), sl(n11). The symmetric inner product satisfies

^a i ua i&52,i PI 1 , ^a0ua0&50, ^a i ua i&522,i PI 2 ,
~2.3!

^a i 21ua i&521,i PI 1 , ^a0ua61&561, ^a i ua i 11&51,i PI 2 ,

and ^a i ua j&50, j Þ i , i 61 andhi(a j )5a j (hi)5^a i ua j&, i<0 or 2^a i ua j&, i .0. Define

l,mPH* :l>m⇔l2m5(
i PI

kia i with all ki>0, ~2.4!

a partially order onH* . Let D6(D0
6 ,D1

6) be sets of positive/negative roots~even, odd roots!.
Elements ofD1 are sums of simple roots corresponding to connected subdiagrams of~2.2!. Let
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a i j 5(k5 i
j ak , then D0

65$6a i j u i< j ,i , j PI 1 or i , j PI 2%, D1
65$6a i j u i PI 1ø$0%, j P$0%øI 2%.

The root vectorsei j 5e(a i j ), f i j 5 f (a i j )5e(2a i j ) and the elementshi j of H are

ei j 5Em1 i 11,m1 j 12 , f i j 5Em1 j 12,m1 i 11 ,hi j 5Em1 i 11,m1 i 112~21!s i j Em1 j 12,m1 j 12 ,

wheres i j 50 or 1⇔a i j is even or odd. Setei5eii , f i5 f i i . The above implieshi5hii and

hi j 5(
k5 i

j

hk ,i , j PI 1 or i , j PI 2 , and hi j 5(
k5 i

0

hk2 (
k51

j

hk ,i<0,j >0.

The set$ei j , f i j ,hi u i , j PI ,i< j % yields a basis forG, with the following nontrivial relations,

@ei j ,ej 11,l #5eil , @ f i j , f j 11,l #52 f i l , @ei j , f i j #5hi j ,

@ei j , f ik#5 H 2~21!s i j s ik f j 11,k if j ,k,
2~21!s i j s ikek11,j if j .k, @eik , f jk#5 Hei , j 21 if i , j ,

f j ,i 21 if i . j , ~2.5!

@hi j ,ekl#5mekl ,@hi j , f kl#52m f kl ,m5d i ,k2d i ,l 112~21!s i j d j ,k211~21!s i j d j ,l .

Set G0
65span$e(a)uaPD0

6%, G615span$e(b)ubPD1
6%, G65G0

6
% G1

6 . Note that G1
6

5G61 , G0̄5G0
2

% H % G0
1 , G5G2

% H % G1. Let U(G) be the universal enveloping algebra
G, U(G8) that of its subalgebrasG8 which is H-diagonalizable. Denote byU(G8)h the subspace
of weight h. The Poincare´–Birkhoff–Witt theorem can be extended to Lie superalgebras.5,20

Theorem 2.1:Let y1 ,...,yM be a basis ofG0̄ andz1 ,...,zN be that ofG1̄ . The elements of the
form (y1)k1

¯(yM)kMzi 1
¯zi s

, whereki>0 and 1< i 1,¯, i s<N, form a basis ofU(G). j

For lPH* , define its Dynkin labels to beai5l(hi),i PI . These uniquely determinel, which
can then be represented asl5@am̄ ,...,a1̄ ,a0 ;a1 ,...,an#. l is called dominant ifai>0 for all i
Þ0, integral ifaiPZ for all iÞ0. The following convention will be useful later.

Convention 2.2:If G denotes any quantity relating toG5sl(m11/n11), thenG (m8/n8) de-
notes the same quantity relating tosl(m811/n811). ThusG (m/n)5G. j

III. THE KAC-MODULES

Let V0(L) be the simpleG0̄-module with integral dominant highest weightL and vectorvL .
ExtendV0(L) to be aG0̄% G11 module by settingG11V0(L)50. The Kac-module4 is

V̄~L!5IndG0% G11

G V0~L!5U~G! ^ G0% G11
V0~L!.

By Theorem 2.1,U(G)5U(G21) ^ U(G0) ^ U(G11). It implies V̄(L)>U(G21) ^ V0(L). We
summarize some well known properties ofV̄(L); more details can be found in Refs. 4 and 6. B
definition, it is a 2(m11)(n11)dimV0(L) dimensional highest weight module generated by
highest weight vectorvL , indecomposable andH-diagonalizable and it contains a maximal su
moduleM5$vPV̄(L)uvL¹U(G)v%, such thatV(L)5V̄(L)/M is a finite-dimensional simple
module with highest weightL. Definer5r02r1 , r05 1

2(aPD
0
1a, r15 1

2(bPD
1
1b.

Definition 3.2:L, V̄(L),V(L) are called typical if̂ L1rub&Þ0 for all bPD1
1 . If bPD1

1

such that̂ L1rub&50, thenL,V̄(L),V(L) are called atypical andb is an atypical root forL. If
there exist preciselyr distinct atypical roots forL, we callL,V̄(L),V(L) r-fold atypical. j

Theorem 3.3 „Kac4
…: Every finite-dimensional simpleG-module is isomorphic to aV(L),

characterized by its integral dominant highest weightL. V̄(L) is simple⇔ L is typical. j

A composition series ofV̄(L) is a sequenceV̄(L)5V0.V1.¯ with eachVi /Vi 11 isomor-
phic to some simple moduleV(S), called a composition factor ofV̄(L). A conjecture was made
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in Ref. 6, giving all the composition factors ofV̄(L). We aim to prove the existence of some
these composition factors; for this, important concepts are those defined as follows.

Definition 3.4: A vector v in a G-moduleV is called weaklyG-primitive if there exists a
G-submoduleU of V such thatv¹U andG1v,U. If U50, v is calledG-primitive. j

We are only concerned with finite-dimensional modules. Thus, weaklyG0̄-primitive vectors
are in factG0̄-primitive and integral dominant. A cyclic module is an indecomposable mo
generated by a weakly primitive vector. A weakly primitive vectorv will determine a cyclic
submoduleU(G)v and a composition factor. An important construct in classifying composi
factors is the atypicality matrixA(L).6,9,10 First, introduce the shorthand notation,

bbc5eb2dc5am2b11,c21 , 1<b<m11, 1<c<n11.

Definition 3.5:The atypicality matrixA(L) is the (m11)3(n11) matrix with ~b,c!-entry
A(L)bc5^L1rubbc&5(k5m2b11

0 ak2(k51
c21ak1m2b2c12. For example, forG5sl(4/5), L

5@100;0;1000#,

A~L!5S 4 2 1 0 1̄

2 0 1̄ 2̄ 3̄

1 1̄ 2̄ 3̄ 4̄

0 2̄ 3̄ 4̄ 5̄

D .
j

Inspection ofA(L) tells immediately whether or notL is atypical and which are the atypical roo
since they correspond to zero entries ofA(L). In above,L is three fold atypical with atypica
rootsb41,b22,b14. The properties ofA(L) have been studied in detail in Ref. 6. We summar
some here.

Lemma 3.6:~i! Let L5@am̄ ,...,a1̄ ;a0 ;a1 ,...,an#; then

A~L!bc2A~L!b11,c5am2b1111,1<b<m,1<c<n11,

A~L!m11,15a0 , ~3.1a!

A~L!bc2A~L!b,c115ac11,1<b<m11,1<c<n.

~ii ! An atypicality matrixA(L) satisfiesA(L)bc1A(L)de5A(L)be1A(L)dc . Vice versa,
any (m11)3(n11) matrix satisfying this condition for all pairs (b,c),(d,e) with 1<b, d<m
11 and 1<c, e<n11 is the atypicality matrix of a unique elementLPH* .

~iii ! L is dominant⇔

A~L!bc2A~L!b11,c21>0, 1<b<m,1<c<n11,
~3.1b!

A~L!bc2A~L!b,c1121>0, 1<b<m11,1<c<n.

Moreover,L is integral if the expressions on the left-hand side of~3.1b! are all integers. j

For atypical modules, the highest weightL must be integral dominant anda0 is an integer
since at least one of the entries ofA(L) is zero. Lemma 3.6 implies that the zeros ofA(L) lie in
distinct rows and columns, and that one zero lies to the right of another⇔ it lies above it. Thus
the atypical roots are commensurate with respect to ordering~2.4!. If L is r-fold atypical, we label
the atypical rootsg1,¯,g r . It follows that if 1<s, t<r andxst is the entry inA(L) at the
intersection of the column containing thegs zero with the row containing theg t zero, thenxst

PZ1\$0% for s,t andxts52xst . ThereforeA(L) has the form,
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A~L!5S ] ] ] ]

¯x1r¯x2r¯x3r¯0¯
] ] ] ]

¯x13¯x23¯0¯x3r¯

] ] ] ]

¯x12¯0¯x23¯x2r¯

] ] ] ]

¯0¯x12¯x13¯x1r¯

D . ~3.2!

Denotehst the hook length between the zeros corresponding togs ,g t , i.e., the number of steps t
go from thegs zero viaxst to the g t zero with the zeros themselves included in the count.
important concept in the classification of composition factors is the following.6

Definition 3.7:Let L be r-fold atypical with atypical roots$g1 ,...,g r%. For 1<s,t<r ,
~i! gs ,g t are normally related~n! ⇔xst.hst21;
~ii ! gs ,g t are quasi-critically related~q! ⇔xst5hst21;
~iii ! gs ,g t are critically related~c! ⇔xst,hst21. j

It is straightforward to show that theq-relation is transitive, i.e., ifgs ,g t areq-related andg t ,gu

areq-related, thengs ,gu areq-related.
Definition 3.8:The nqc-type ~atypicality type! of an r-fold atypicalL is a triangular array

where the zeros correspond to$g1 ,...,g r% andsst5n,q,c⇔gs ,g t aren-, q-, c-related. j

It was conjectured6 that the number and nature of composition factors ofV̄(L) depends only
on thenqc-type ofL; if a weightL of sl(m11/n11) and a weightL8 of sl(m811/n811) have
the samenqc-type, then there is a 1–1 correspondence between the composition factors ofV̄(L)
and V̄(L8). More precisely it was conjectured that the composition factors ofV̄(L) are in 1–1
correspondence with certain codesSc which are determined fromnqc(L), and which in turn
determine the highest weightsS of the corresponding composition factorsV(S).

Definition 3.9:A codeSc for L is an array of lengthr, each element of the array consistin
of a nonempty column of increasing labels taken from$0,...,r %. The 1st element of a column i
called the top label.Sc must satisfy the rules.

~i! The top label of columns can be 0,s or a with s,a; the 1st case can occur only if colum
s is zero, while the last case can occur only ifnqc(L)st5q with a the top label of column
t.

~ii ! Let s,t, nqc(L)st5¯5nqc(L) t21,t5c. If the top label of columnt is a:t<a, thena
must appear somewhere below the top entry of columns.

~iii ! If s appears in any column then the only labels which can appear belows in the same
column are thoset:s,t, for which t is the top label of columnt andnqc(L)st5c.

~iv! If the labels appears in more than one column andt appears immediately belows in one
such column, then it must do so in all columns containings.

~v! Let s,t,u, nqc(L)st5q, nqc(L) tu5q ~so,nqc(L)su5q!. If the top label of columns
is the same as that of columnu and it is nonzero then the top label of columnt is not 0.
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~vi! Let s,t,u,v with top labelsa,b,a,brespectively,aÞ0Þb. If a,b then columnss and
u must containb; if a.b then columnst andv must containa. j

As an example, considerL5@00020;0;0210# for sl(6/5). A straightforward computation gives

A~L!5S 7 6 3 1 0

6 5 2 0 1̄

5 4 1 1̄ 2̄

4 3 0 2̄ 3̄

1 0 3̄ 5̄ 6̄

0 1̄ 4̄ 6̄ 7̄

D , nqc~L!5

c c c c 0

c q c 0

q n 0

c 0

0

. ~3.3!

L is fivefold atypical with atypical rootsg15b61, g25b52, g35b43, g45b24, g55b15. Using
the rules in Definition 3.9, we find the following 15 codesSc:

0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 0 3 0 0 1 0 3 0 0 1 2 3 0 0 3 0 3 0 0 0 0 3 4 0

2 2 4

1 0 3 4 0 1 2 3 4 0 1 4 3 4 0 3 4 3 4 0 1 2 3 4 5 1 4 3 4 5 3 4 3 4 5

4 2 4 4 4 4 4 2 5 4 5 4 5 4 5 4 5 4 5

5 5 5 5 5 5

.

~3.4!

For 1<s<r , thesth column of a code corresponds to thesth atypical rootgs . From definition,
we see that ifgs ,g t areq-related and the top entrya of columns is nonzero, thena may also be
the top entry of columnt. In such a case, we say thatgs ,g t are linked. In the example,g1 ,g3 are
q-related, and they are linked in code~30300!, whereas in code~10300!, they are not. Thus, where
gs ,g t areq-related, there will be codes in which they are linked, and codes in which they are
This leads the following definition.

Definition 3.10:A codeSc is a linked code if there existgs ,g t which are linked, i.e., columns
s and t have the same nonzero top entry. Otherwise, it is called an unlinked code. j

It follows from rule~i! that if nqc(L) contains noq, then all codes are unlinked. Next, we s
from rule ~ii ! that if, for s,t, gs ,..., g t21 arec-related tog t and if the top labela of columnt of
a code is non-zero, thena must appear somewhere below the top entry of thesth column, and so
also of the (s11)th,..., (t21)th column, of that code; we sayg t wrapsgs . Unlike links, wraps
must be made. In the example,g1 ,g2 arec-related, and each code in which the second colum
nonzero, e.g.,2

12000,4
14

4
340, the top label of the second column occurs below the top entry in the

column; i.e.,g2 wrapsg1 . Similarly, g1 ,...,g4 arec-related tog5 , and in each code with nonzer
top label in the fifth column, that label occurs below the top entry in each of the first four colu
as in

3 4 3 4 5

4 5 4 5

5 5

.

It may happen, on the other hand, that fors,t,gs ,g t arec-related butgu ,g t are notc-related for
someu, s,u,t, as in ~3.3! g1 , g4 are c-related butg2 , g4 are q-related. Correspondingly, in
code 2

12
4
340,g4 does not wrapg1 . However, in code4

14
4
340,g4 does appear to wrapg1 . This is

because in this code, as opposed to the previous one,g4 is linked tog2 , so the top label of the
second column is the same~i.e., 4! as that of the fourth column, and therefore, sinceg2 must wrap
g1 in all codes in which the second column is nonzero, this entry must appear below the top
in the first column. Thusg4 wrapsg1 only because of the presence of an intermediate link;
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shall use the term link wrap rather than wrap to describe this. From the discussion we see
general, the presence of aq rather than ann in nqc(L) increases, whereas the presence ofc
rather than ann decreases, the number of codes forL. Thus, for r 52, L has 3, 4, 5
codes⇔nqc(L)50

c 0, 0
n 0, 0

q 0.
Definition 3.11:In a codeSc for L, we say thatgs is connected tog t and writegs;

S
g t if the

sth andtth columns ofSc contain a common nonzero entry. j

Thus for the codeSc53
1

3
2 3, g1;

S
g2;

S
g3 , whereas for the codeSc51 2 0,g1;”

S
g2 . Clearly,

;
S

is an equivalence relation on$gsu the sth column ofS is nonzero%.

Definition 3.12:A codeSc is called indecomposable if$gsu thesth column ofSc is nonzero%
is an equivalence class for the relation;

S
; otherwiseSc is calleddecomposable. j

For example,3
1

3
2 3 0 is indecomposable, whereas2

1 2
4
3 4 is decomposable. IfSc is decomposable

then we can writeSc5S1
cS2

c
¯Ss

c
¯ , where each 0̄ 0Ss

c0¯0 ~with 0’s in the appropriate
positions! is indecomposable. For instance,Sc52

1 2
4
3 4 can be written asSc5S1

cS2
c where S1

c

52
1 2, S2

c54
3 4, with 2

1 2 0 0 and 4
0 0 3 4 being themselves indecomposable unlinked codes forL.

Without confusion we will simply denote 0̄ 0Ss
c0¯0 by Ss

c .

IV. SOUTHWEST CHAINS OF A „L…

To obtain the highest weights of those composition factors ofV̄(L) corresponding to unlinked
codes, we need to construct southwest chains.6 Denote by

D5$~b,c!u1<b<m11,1<c<n11%, GL5$~b,c!uA~L!bc50%, ~4.1!

the sets of positions and positions of zeros, respectively, ofA(L) and defineK̂5$bbcu(b,c)
PK% for any subsetK of D. In particular,D̂5D1

1 and ĜL5$g1 ,...,g r%.
Definition 4.1: ~i! For 1<s<r , let (bs ,cs)PGL be the position corresponding togs . The

extended west chainWL
e (s) emanating from (bs ,cs) is a sequence of positions inD starting at

(bs ,cs) and extending in a westerly or southwesterly direction until it reaches the first colum
it cannot extend further without leavingA(L) by passing below its bottom row. For allt with
1<t<cs , WL

e (s) has exactly one element in thetth column provided that the row of this eleme
lies within A(L). For 1<t<cs21, the row of the position in thetth column isat rows below the
row of the position in the (t11)th column, whereat is a Dynkin label ofL; if this is not possible,
i.e., if this row would be theM th row whereM.m11, thenWL

e (s) ends in thetth column, i.e.,
has no position to the left of thetth column. ThusWL

e (s) is the set

WL
e ~s!5DùH ~b,c!U1<c<cs ,b5bs1 (

t5c

cs21

atJ . ~4.2a!

~ii ! Similarly, the extended south chainSL
e (s) emanating from (bs ,cs) is the set

SL
e ~s!5DùH ~b,c!Ubs<b<m11,c5cs2v (

t5bs

b21

am2t11J . ~4.2b!

~iii ! The extended south west chain emanating from (bs ,cs) is SWL
e (s)5WL

e (s)øSL
e (s). j

Definition 4.2: ~i! For 1<s<r , the south west chain SWL(s) emanating from (bs ,cs) con-
sists of all positions ofSWL

e (s) which are above and to the right ofall points of intersection of the
chainsWL

e (s) and SL
e (s) of A(L), with the additional requirement that ifSL

e (s) starts off at
(bs ,cs) by immediately going aboveWL

e (s), then SWL(s) consists solely of (bs ,cs). The west,
south subchain of SWL(s) are, respectively,WL(s)5WL

e (s)ùSWL(s), SL(s)5SL
e ùSWL(s).

~ii ! SWL5øs51
r SWL(s) is called the set of all south west chains. j
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The construction of chains is facilitated by placing the Dynkin labelsam̄ ,...,a1̄ to the left of
the first column, and in between the rows, ofA(L), likewise, a1 ,...,an are placed below the
bottom row, and in between the columns, ofA(L). We illustrate chains with three examples
doubly atypicalL for sl(5/6). In each case we first give SWL

e (s), denotingWL
e (s) by broken

lines,SL
e (s) by unbroken lines, and then give SWL(s), denoting the chains by arrows.

Example 4.3:L5@1 1 1 1;1̄;1 0 0 1 0#,

SWL
e (1)5SWL(1)5$(3,2),(3,3),(4,1),(4,2),(5,1)%; SWL

e (2)5SWL(2)5$(1,5),(1,6),(2,2),
(2,3),(2,4),(2,5),(3,1),(3,4),(4,3),(5,2)%. Hereg1 , g2 arec-related. j

Example 4.4:L5@2 3 0 2;1̄;0 1 1 2 1#,

SWL
e (1)5SWL(1)5$(3,3),(4,1),(4,2),(4,3),(5,1)%. However, SWL

e (2)5$(1,6),(2,4),(2,5),
(3,1),(4,1),(4,4),(5,3)%, while SWL(2)5$(1,6)%. In this caseg1 ,g2 aren-related. j

Example 4.5:L5@1 2 1 1;1̄;1 0 0 0 2#.

SWL
e (1)5SWL(1)5$(3,2),(3,3),(4,1),(4,2),(5,1)%. However, SWL

e (2)
5$(1,6),(2,5),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(5,1)%, while SWL(2)5$(1,6)%. Because
SL

e (2),WL
e (2) meet at the zero corresponding tog1 , SWL

e (1),SWL
e (2), and g1 , g2 are

q-related. j

Although we shall not give details here, it is easy to check that for doubly atypicaL

5@4020;2̄;00120#, g1 , g2 are n-related andWL
e (2) starts off aboveSL

e (2) but crosses it at a

point which is above the zero corresponding tog1 . Also, L5@1220;2̄;00110# is doubly atypical
with g1 ,g2 beingq-related; in this case,WL

e (2) starts off aboveSL
e (2) but meets it at the position
                                                                                                                



ft

5072 J. Math. Phys., Vol. 41, No. 7, July 2000 Su, Hughes, and King

                    
of the zero corresponding tog1 ; the position of this zero is therefore not an element of SWL(2).

These examples illustrate some properties of chains we are now going to state.
Lemma 4.6:Let s,t. Thengs ,g t areq-related⇔WL

e (t), SL
e (t) both contain (bs ,cs).

Proof: SinceA(L)bs ,cs
5A(L)bt ,ct

50, we havexst5A(L)bt ,cs
5ct2cs1( i 5cs

ct21ai . Also hst

5bs2bt1ct2cs11. Therefore,gs , g t areq-related⇔xst5hst21⇔bs5bt1( i 5cs

ct21ai⇔(bs ,cs)

PWL
e (t). Similarly, if gs , g t areq-related, (bs ,cs)PSL

e (t). j

Lemma 4.7:If s,t,gs , g t are n-related, thenWL
e (t) meets columncs below (bs ,cs), and

SL
e (t) meets rowbs to the left of (bs ,cs).

Proof: Sincegs ,g t are n-related,xst.hst21, hencebs,bt1( i 5cs

ct21ai . HenceWL
e (t) meets

columncs below (bs ,cs). The proof of the other result is analogous. j

Lemma 4.8:If s,t,gs , g t areq- or n-related, then SWL(t) does not extend as far to the le
or downwards as (bs ,cs), i.e., WL(t) ends to the right of columncs ,SL(t) ends above rowbs .

Proof: If gs , g t are q-related, by Lemma 4.6WL
e (t),SL

e (t) meet at (bs ,cs). Otherwise, by
Lemma 4.7WL

e (t),SL
e (t) must cross to the right of columncs and above rowbs . In either case,

by Definition 4.2 SWL(t) does not extend as far to the left or downwards as (bs ,cs). j

Lemma 4.9:Let 1<t<r and bt<d<m11, 1<e<ct and i 5A(L)dePZ. If ( d,e)PWL
e (t)

then (d,e1 i )PSL
e (t). If ( d,e)PSL

e (t) then (d1 i ,e)PWL
e (t).

Proof: If ( d,e)PWL
e (t), then d5bt1( j 5e

ct21aj . We have 05A(L)bt ,ct
5A(L)de

1(
j 5m2d12

m2bt11
aj2( j 5e

ct21aj1d2bt2ct1e. So e1 i 5e1A(L)de5ct2(
j 5m2d12

m2bt11
aj , by ~4.2b!,

(d,e1 i )PSL
e (t). Similarly, if (d,e)PSL

e (t) then (d1 i ,e)PWL
e (t). j

Lemma 4.10:In Lemma 4.9, if (d,e)PWL(t), then i>0 and (d,e1 i )PSL(t). If ( d,e)
PSL(t), then i 52 j <0 and (d2 j ,e)PWL(t).

Proof: Let us say (d,e)PWL(t). By Lemma 4.9 (d,e1 i )PSL
e (t). Since (d,e)PWL(t), by

Definition 4.2,SL
e (t),WL

e (t) must have not crossed each other above or to the right of~d,e! and so
(d,e1 i ) must be to the right of~d,e!. Hencei>0 and (d,e1 i )PSL(t). j

In Example 4.3, (2,2)PWL(2), A(L)2253; one has (5,2)PSL(2). Also, (5,1)PSL(1),
A(L)51521; one has (4,1)PWL(1). Finally, (3,3)PWL(1)ùSL(1), A(L)3350. Obviously
WL(1) is zero rows above~3, 3! andSL(1) is zero rows to the right of~3, 3!.

Lemma 4.11:~i! Let (d,e)PWL(t), 0<k<m112d. If A(L)d1k,e5 j , j 1k>0, thenSL(t)
meets the (d1k)-th row (j 1k) columns to the right of (d1k,e).

~ii ! Let (d,e)PSL(t), 0<k<e21. If A(L)d,e2k52 j , j 1k>0, thenWL(t) meets the (e
2k)-th column (j 1k) rows above (d,e2k).

Proof: Let us prove~i! as ~ii ! is similar. Let 0<k8<k, A(L)d1k8,e5 j 8, then j 8> j 1k2k8
and so j 81k8> j 1k>0. The condition of the lemma is satisfied fork8. Let A(L)de5 i ; by

Lemma 4.10, i>0, (d,e1 i )PSL(t). By ~4.2b!, (d1k8,e1 i 2( l 5m2d11
m2d2k812al)PSL

e (t). Now

A(L)d1k8,e5A(L)d,e2k82( l 5m2d11
m2d2k812al , so j 85 i 2k82( l 5m2d11

m2d2k812al and (d1k8,e1 j 8
1k8)PSL

e (t). Hence, sincej 81k8>0 for all k8,(d1k8,e1 j 81k8) is to the right of columne,
whereasWL

e (t) is to the left of columne after having passed at~d,e!. Thus (d1k8,e1 j 81k8)
PSL(t). So (d1k,e1 j 1k)PSL(t) and the result follows. j

Definition 4.12: SupposeWL(t),SL(t) end at (dt ,et),(dt8 ,et8), respectively,dt8>dt , et8
>et . DefineD(t) to be the region ofD within or on the boundary consisting of SWL(t), the
vertical line joining (dt8 ,et) to (dt ,et) and the horizontal line joining (dt8 ,et) to (et8 ,et8). j

We will prove that every element ofD(t) lies in some SWL(s) such thats<t, gs , g t are
c-related.

Lemma 4.13:~i! If A(L)bc.0 and A(L)b2ac,c11<0 then A(L)bc51 and A(L)b2a,c11

50.
~ii ! If A(L)bc,0 andA(L)b21,c1a

m2b12
>0 thenA(L)bc521 andA(L)b21,c1a

m2b12
50.

Proof: The proof of~ii ! is analogous to that of~i!. For ~i!, using~3.1a!,
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A~L!b2ac ,c115A~L!bc2~ac11!1 (
l 5m2b12

m2b111ac

al1ac5A~L!bc211 (
l 5m2b12

m2b111ac

al<0.

The only solution isam2b125¯5am2b111ac
50, A(L)bc51, A(L)b2ac,c1150. j

Lemma 4.14:Let (d,e)PD(t).

~i! If A(L)de>0, then there existss, 1<s<t such that (bs ,cs)PD(t), (d,e)PWL(s);
~ii ! If A(L)de<0, then there existss, 1<s<t such that (bs ,cs)PD(t), (d,e)PSL(s);
~iii ! In both of these cases,gs , g t arec-related.

Proof: ~i! SupposeA(L)de>0 and letk be such that (d2k,e)PWL(t), where clearly 0<k
<d21. If k50, then (d,e)PWL(t). Supposek.0. Define the ordered setW of elements ofD by
W5$(d,e),(d2ae ,e11),...,(d2( i 5e

ct21ai ,ct)%. Each element ofW is k rows below an elemen
of WL(t), soW must meet or crossSL(t), by which time the corresponding entries ofA(L) have
become negative. By Lemma 4.13 there must be an element ofW for which the corresponding
entry of A(L) is zero, this element must lie to the left ofSL(t), hence inD(t), i.e., there isgs ,
1<s<t, such that (bs ,cs)PWùD(t) and so (d,e)PWL(s). The proof of~ii ! is analogous to~i!.
For ~iii !, in both cases, (bs ,cs)PD(t); suppose (bs ,cs) is k rows below WL(t), i.e., (bs

2k,cs)PWL(t),k>1. We then havebs2k5bt1( i 5cs

ct21ai . Now, sinceA(L)bt ,ct
50, we have

xst5( i 5cs

ct21ai1ct2cs5bs2bt1ct2cs2k5hst212k,hst21. Hencegs ,g t arec-related. j

Lemma 4.15:If 1<s,t<r andgs ,gs11 ,...,g t21 are allc-related tog t , thenD(s),D(t).
Proof: Let b5bt1( i 5cs

ct21ai , by ~4.2a!, (b,cs)PWL
e (t). Since hst5ct2cs1bs2bt11, xst

5ct2cs1( i 5cs

ct21ai , so b5bt1xst2ct1cs,bt1hst212ct1cs5bs , i.e., (b,cs) is above

(bs ,cs) and sinceA(L)bs ,cs
50, so the entryA(L)b,ct

.0. Similarly, let c5cs2( i 5bt

bs21am2 i 11 ,

then (bs ,c)PSL
e (t) is to the right of (bs ,cs) and the entryA(L)bs ,c,0. Elements (b,cs),(bs ,c)

will be in fact in WL(t),SL(t), respectively, providedWL
e (t),SL

e (t) do not cross above and to th
right of these elements. Suppose they do cross; then the entries corresponding to elem
WL

e (t),SL
e (t) must change from, respectively, positive to negative, negative to positive abov

to the right of these elements. By Lemma 4.13, this means thatWL
e (t),SL

e (t) contain a common
element~d,e! with A(L)de50, i.e., there isgp ,s,p,t such that (d,e)5(bp ,cp). By Lemma 4.6,
gp ,g t must beq-related, contradiction with the assumption of the lemma. This proves
(b,cs)PWL(t),(bs ,c)PSL(t). It follows that (bs ,cs)PD(t). From this, it follows that
WL

e (s),SL
e (s) must cross beforeWL

e (t),SL
e (t) cross, so SWL(s),D(t). Hence also

D(s),D(t). j

Lemmas 4.14–4.15 are illustrated by Example 4.3, wherer 52,g1 ,g2 arec-related. Clearly,
D(1),D(2) and every position ofD(2) are in SWL(2) or SWL(1). Now thedefinition below
tells how to determine the composition factors ofV̄(L) corresponding to the unlinked codes.

Definition 4.16:Let Sc be an unlinked code forL with nonzero columnsCs1
,...,Csp

where

1<s1,¯,sp<r . Define the subsetDS of D to bef if p50 or ø l 51
p SWL(sl) otherwise. The

weight corresponding to the codeSc is then defined byS5L2SbPD̂S
b.

DS , S are uniquely determined bySc. If Sc50¯0, thenDS5f, S5L. Note that not all
unions of chains correspond to codes. Recall that if, for allu,s<u,t,gu is c-related tog t then in
all codesSc with nonzero columnt its sth column must containt, i.e.,gs must be wrapped byg t .
Hence if SWL(t),dS , then also SWL(u),DS for all u,s<u,t. Now if s is the smallest numbe
such that for allu,s<u,t,gu is c-related tog t , then Lemmas 4.14–4.15 show thatD(t)
5øu5s

t SWL(u). Thus the requirement on codesSc with nonzero columnt thatg t must wrap all
gu ,s<u,t is equivalent to the requirement thatD(t),DS . A union of south west chains no
satisfying this condition cannot correspond to a code. IfSc is an indecomposable unlinked cod
then each nonzero column of the code contains a common number,t say. This means that colum
t is the rightmost nonzero column ofSc and g t wraps all theg’s corresponding to the othe
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nonzero columns, so thatDS5D(t). Conversely, ifDS5D(t) for somet, we may reverse the
above argument to showSc is indecomposable. We therefore have

Theorem 4.17: Sc is an indecomposable unlinked code⇔ there exists at such asDS

5D(t). j

Example 4.18:In the casesl(6/5) letL5@00020;0;0210# with A(L) andnqc(L) as given in
~3.3!. The south west chains ofA(L) are as follows:

~4.3!

All codes were given in~3.4!. One decomposable unlinked code isSc5 4
1 0 3 4 0, in which g4

wraps g3 . The nonzero columns are the first, third, fourth, andDS

5SWL(1)øSWL(3)øSWL(4)5D(1)øD(4), S5L2b612b432(b331b241b341b44). One
indecomposable unlinked code is

1 2 3 4 5

2 5 4 5

5 5

,

in which g2 wrapsg1 ,g4 wrapsg3 and g5 wraps allg1 ,...,g4 and DS5øs51
5 SWL(s)5D(5)

and S5L2b612(b511b521b62)2b432(b331b241b341b44)2(b411b421b231b141b15

1b251b351b451b531b63). On the other hand, SWL(2) and SWL(1)øSWL(3)øSWL(5) do
not correspond to codes since they violate the necessary conditions thatg2 must wrapg1 andg5

must wrap all ofg1 ,...,g4 . j

It was part of the conjecture6 that for all unlinked codesSc of L, S defined in Definition 4.16
is the highest weight of a composition factorV(S) of V̄(L) ~note that in Ref. 6,S was defined by
means of boundary strip removals; for unlinked codes it is easy to see that this is equivalen
definition here!. Note that this implies thatS is a dominant weight, which was in fact proved usi
the corresponding strip removals in the Young diagram. ForSc50¯0, S5L, we see that this
code corresponds to the top composition factorV(L). We shall prove that, for any unlinked cod
Sc for L, there exists a primitive vectorvS and correspondingly a composition factorV(S) of
V̄(L). To make connection with codes explicitly, we use notationvSc,U(Sc),V(Sc) to denote,
respectively,vS ,U(G)vS ,V(S). Thus, if Sc50¯0, thenv (0¯0)[vL , U(0¯0)[V̄(L) and
V(0¯0)[V(L). Finally, it is worth mentioning that the linked codes forL, if any occur, appear
to correspond to south west chains inA(P1), where P15P12r1 and P is the lowest
G0̄-highest weight of the simple moduleV(S) corresponding to the code; more details of this a
given in Ref. 6.

V. MORE NOTATION AND PRELIMINARY RESULTS

Define a total order onD, a i j ,akl⇔ j 2 i , l 2k or j 2 i 5 l 2k, i .k. It implies that bbc

,bde⇔c2b,d2e or c2b5d2e, b.d. This total order onD1 corresponds to the sequence
positions signified by 1, 2,... in the following (m11)3(n11) matrix, wherebbc is the root
associated with the (b,c)th entry,
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S • • • ¯

6 • • ¯

3 5 • ¯

1 2 4 ¯

D . ~5.1!

By Theorem 2.1, choose a basisB of U(G21):B5$b5)bPSf (b)uS,D1
1%, where f (b) is a

negative root vector corresponding tob and the product)bPSf (b)5 f (b1)¯ f (bs) is written in
the proper order,b1,¯,bs ands5uSu ~the depth ofb!. Define a total order onB,

b.b85 f ~b18!¯ f ~bs8
8 !⇔s.s8 or s5s8,bk.bk8 ,b i5b i8~1< i<k21!,

whereb,b8 are in proper order. Recall that an elementvPV̄(L) can be uniquely written as

v5b1y1vL1b2y2vL1¯5(
i 51

t

biyivL , biPB,b1.b2.¯ , 0ÞyiPU~G0
2!. ~5.2!

Clearly v50⇔t50. If vÞ0, we callb1y1vL the leading term. A termbiyivL is called a prime
term if yiPC” . Note that a vectorv may have zero or more than one prime terms. One immedia
has

Lemma 5.1:Let v5gu, uPV̄(L), gPU(G2). ~i! If u has no prime term thenv has no prime
term. ~ii ! Let v85gu8,u8PV̄(L). If u,u8 have the same prime terms thenv,v8 have the same
prime terms. j

Lemma 5.2:~i! Let vSPV̄(L) be aG0̄-primitive vector with weightS. ThenL2S is a sum
of distinct positive odd roots, furthermore the leading termb1y1vL of vS must be a prime term

~ii ! SupposevS8 5( i 51
t8 (bi8yi8)vL is anotherG0̄-primitive vector with weightS. If all prime

terms ofvS are the same as those ofvS8 , thenvS5vS8 .
Proof: ~i! Let vS be as in~5.2!. If y1¹C” , then there existsekPG0

1 , (eky1)vLÞ0. We have

ekvS5b1~eky1!vL1@ek ,b1#y1vL1b2~eky2!vL1@ek ,b2#y2vL1¯ ,

and @ek ,b#5(p51
s f (b1)¯@ek , f (bp)#¯ f (bs) if b5 f (b1)¯ f (bs) and ~2.5! gives @ek , f (bp)#

50 or 6 f (bq) with bq,bp . The leading term ofbi(ekyi)vL1@ek ,bi #yivL is bi(ekyi)vL if
ekyiÞ0. It follows thatb1(eky1)vL is the leading term ofekvS , i.e., ekvSÞ0, contradicting that
vS is G0̄-primitive. So,y1PC” andL2S is the weight ofb1 , a sum of distinct positive odd roots

~ii ! Let v5vS2vS8 . If vÞ0 ~then it must beG0̄-primitive!, since its prime terms are a
cancelled,v has no prime term, therefore by~i!, it is not G0̄-primitive, a contradiction. j

Lemma 5.3:Let S be a~weakly! primitive weight of V̄(L). Then^L1ruL1r&5^S1ruS
1r&.

Proof: Using the Casimir operatorV52v21(r)1( iu
iui12(aPD1 f (a)e(a), where$ui% is

a basis ofH,$ui% is its deal basis,v is the isomorphism:H* →H derived from^•u•&, cf. that of Lie
algebras,16 we see thatVuV̄(L)5^L12ruL&I uV̄(L) . Hence, sinceS is the weight of a weakly
primitive vector, we havêL12ruL&5^S12ruS&.

Define the following zero weight elements ofU(G0̄): j

v i5H m111 i 1hm̄i , i PI 1

n112 i 1hin , i PI 2
, V i55 12 (

m̄< k̄< i

f k̄iek̄i , i PI 1,

12 (
i<k<n

f ikeik , i PI 2,

Xi5v i1V i . ~5.3!

Lemma 5.4:@v i ,v j #5@v i ,V j #5@V i ,V j #5@Xi ,Xj #50 for all i , j PI 1øI 2 .
Proof: v iPC” % H andV i with weight 0 imply the vanishing of the first 2 commutators. T

third vanishes trivially ifi PI 1 , j PI 2 or vice versa. Say,i , j PI 1 , i , j . For each summand ofV i
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we have @ f kieki ,V j #52@ f kieki , f k jek j1 f i 11,jei 11,j1¯#50 for m̄<k< i< j <1̄, where, by
~2.5!, the omitted terms commute withf kieki and 2 nonvanishing terms are canceled. Thus
third vanishes. The vanishing of the first three implies the vanishing of the fourth. j

Now, from the definition ofU(G) and theZ-grading ofG, we can define a projection,

w:U~G!→U~G2
% H ! derived from U~G!5U~G2

% H ! % U~G!G1, ~5.4!

where U(G)G1 is a left ideal of U(G). For i PI 1øI 2 ,cPC” and gPU(G2
% H) define

x i ,c ,x i :U(G2
% H)→U(G2

% H) by ~where[ means equal under modU(G)G1!,

x i ,cg5w~~c1V i !g!5cg1w~V ig![cg1V ig, x ig5w~Xig!5w~~v i1V i !g![Xig.
~5.5!

Lemma 5.5:The operatorsx i ,c andx j ,c8 commute, so dox i andx j .
Proof: For gPU(G2

% H), x i ,cx j ,c8g5x i ,c(c8g1w(V jg))5c(c8g1w(V jg))1w(V i(c8g
1w(V jg)))5cc8g1cw(V jg)1c8w(V ig)1w(V iw(V jg)) and w(V iw(V jg))[V iw(V jg)
[V iV jg modU(G)G1 ~the first formula follows from~5.4!, the second from the fact tha
U(G)G1 is a left ideal ofU(G)!. This gives the 1st part of the lemma by virtue of the comm
tativity of V i ,V j . Similarly, x ix jg5x iw(Xjg)5w(Xiw(Xjg))[Xiw(Xjg)
[XiXjg modU(G)G1 and the commutativity ofXi ,Xj implies the second part of the lemma.j

This Lemma allows us to make the following definitions. For anyJ5$ j 1 , j 2 ,...%#I 1øI 2 ,
C5(cj 1

,cj 2
,...)PC” ^ #J, gPU(G2

% H), let

xJ,Cg5)
j PJ

x j ,cj
g5¯x j 2 ,cj 2

x j 1 ,cj 1
g, xJg5)

j PJ
x jg5¯x j 2

x j 1
g. ~5.6!

Now we are in a position to establish some important results for the successive applicationx i ,ci

to f r̄ ,s for variousi PI 1øI 2 . From ~5.3! and ~5.5! and ~2.5!, for m̄< r̄<0<s<n, we have

x ī ,cī
f r̄ s5cī f r̄ s1 f i 21,sf r̄ ī , r̄< ī ,0 and x i ,ci

f r̄ s5ci f r̄ s2 f r̄ ,i 21f is,0, i<s. ~5.7!

Further application of the commutation relations gives

x j̄ ,c j̄
x ī ,cī

f r̄ s5cj̄cī f r̄ s1cj̄ f i 21,sf r̄ ī 1cī f j 21,sf r̄ j̄ 1 f i 21,sf j 21, ī f r̄ j̄ , r̄< j̄ , ī ,0,

x j̄ ,c j̄
x i ,ci

f r̄ s5cj̄ci f r̄ s2cj̄ f r̄ ,i 21f is1ci f j 21,sf r̄ j̄ 2 f j 21,i 21f r̄ j̄ f is , r̄< j̄ ,0,, i<s,

x j ,cj
x i ,ci

f r̄ s5cjci f r̄ s2cj f r̄ ,i 21f is2ci f r̄ , j 21f js1 f r̄ ,i 21f i j 21f js , 0, j , i<s.

The pattern of terms is becoming clear. The following result may be proved inductively:
Lemma 5.6:Let J5 P̄øQ with P̄#$ r̄ ,...,1̄%, Q#$1,...,s%, 1<r<m, 1<s<n. Then, with

the definition~5.6!,

xJ,Cf r̄ s5 (
k50

#P̄

(
l 50

#Q

~21! l (
K̄5$ j k,...,j 1%# P̄

j k,¯, j 1

(
L5$ i 1 ,...,i l %#Q

i 1,¯, i l

)
j̄ P P̄\K̄

c j̄ )
i PQ\L

ci

• f j 0i 0
• f j 221,j 1

f j 321,j 2
¯ f r̄ j k

• f i 1 ,i 221f i 2 ,i 321¯ f i l s
, ~5.8!

where j 05 r̄ or j 121 if k50 or not; i 05s or i 121 if l 50 or not. Similarly, successive applica
tion of x i to f r̄ s gives results exactly analogous to those of~5.7!–~5.8! with ci replaced byv i .j

In ~5.8! negative root vectorsf i j correspond toa i j PD1 and the products of root vectors hav
been ordered in such a way that the leftmost factorf j 0i 0

is an odd vector, while the remainin
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factors f i j are even. Moreover, in every summand the elementscj̄ ,ci or v j̄ ,v i , which lie in C”
% H, precede an element~a product off i j ! of U(G2) which in every case have weight2a r̄ s .
From this follows the crucial relationship linkingxJ andxJ,C . For any weightl, define

ci~l!55 (
k5m̄

i

l~hk!1m1 i for i PI 1 ,

(
k5 i

n

l~hk!1n2 i for i PI 2.

~5.9!

With this notation and Lemma 5.5 in the special case for whichr 5m ands5n, we have
Corollary 5.7: Let vl have weightl. ThenxJf m̄nvl5xJ,Cf m̄nvl with ci5ci(l), i PJ.
Proof: It follows from the above remarks about the order and nature of the factors in~5.8! that

for eachi PJ the factorv i , defined by~5.3!, gives rise to a factorci in ~5.8! with

ci5H m111 i 1l~hm̄i !2am̄n~hm̄i ! for i P P̄#I 2,

n112 i 1l~hin!2am̄n~hin! for i PQ#I 1.

But am̄n(hj )51 if j 5m̄ or n;50 otherwise andhm̄i5(k5m̄
i hk , i PI 1 andhin5(k5 i

n hk , i PI 2 . It
follows thatam̄n(hm̄i)5am̄n(hin)51 so thatci5ci(l) as required. j

It is also worth observing that the explicit expansion~5.8! implies:
Corollary 5.8: With the notation of Lemma 5.6,xJ,Cf r̄ s5xJ,C

(r /s) f r̄ s . j

We shall need commutators ofei with xJ,Cf r̄ s . More precisely, we shall need the action
such commutators on certain vectorsvlPV̄(L). In this case we have

Lemma 5.9:Let J5$ p̄,...,1̄;1,...,q%, C5(cp̄ ,...,c1̄ ;c1 ,...,cq) with p<r<m, q<s<n. Let

vlPV̄(L) with weight l satisfying

cr̄5l~hr̄ ! if p̄5 r̄ , c12c1̄5l~h0!, cs5l~hs! if q5s,
~5.10!

cī 2ci 11215l~hī ! if p̄, ī ,0, ci2ci 11215l~hi ! if 0 , i ,q,

and

f r̄ ,p11vl50 if p,r , f q11,svl50 if q,s. ~5.11!

Then for all i PI ,

@ei ,xJ,Cf r̄ s#vl5H xJ,Cf r 21,svl if i 5 r̄ , p̄,

xJ,Cf r̄ ,s21vl if i 5s.q,

0 otherwise.

~5.12!

Proof: The first thing to note is that the only nonvanishing commutators ofei with negative
root vectors appearing in~5.8! are the following:

@eī , f ā ī #5 f ā,i 11 , @eī , f i i #5hī , @eī , f ib#52 f i 21,b̄ , for ā, i ,b; ~5.13a!

@e0 , f ā0#5 f ā1̄ , @e0 , f 00#5h0 , @e0 , f 0b#5 f 1b , for ā,0,b; ~5.13b!

@ei , f ai#5 f a,i 21 , @ei , f i i #5hi , @ei , f ib#52 f i 11,b , for a, i ,b. ~5.13c!

Consider first 0, i ,q. The only nonvanishing contributions to~5.12! arise from terms in~5.8!
that do not containcici 21 . These can be grouped together in sets of three so that for any
a, i ,b the sum of each such set contains the common factorci f ai f i 11,b2 f a,i 21f i i f i 11,b
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1ci 11f a,i 21f ib . Taking the commutator withei and using ~5.13c! gives ci f a,i 21f i 11,b

2 f a,i 21hi f i 11,b2ci 11f a,i 21f i 11,b5 f a,i 21f i 11,b(ci2hi212ci 11), which acts to the right on a
sequence off i x ,i x1121’s andvl . However,@hi , f i x ,i x1121#50 sincei ,b, i x, i x11 andhi acts
finally on vl to givel(hi). Thus all terms contain the common factorci2l(hi)212ci 11 , which
vanishes by virtue of our hypothesis~5.10!. The result forp̄, i ,0 is obtained in the same way
Similarly, e0 commutes with all terms in~5.8! containing the productc1̄c1 . The nonvanishing
contributions to~5.12! can again be grouped into sets of three terms such that for any fixā
,0,b the sum of each such set contains the common factorc1̄f ā0f 1b1 f 00f ā1̄f 1b2c1f ā1̄f 0b .
Taking the commutator withe0 and using ~5.13b! gives c1̄f ā1̄f 1,b1h0f ā1̄f 1,b2c1f ā1̄f 1b

5 f ā1̄f 1,b(c1̄1h02c1). Moreoverh0 commutes with everything else to its right to finally act o
vl giving l(h0). Thus all terms contain the common factorc1̄1l(h0)2c1 , again vanishes by
~5.10!.

If i 5q5s,es commutes with all terms in~5.8! other than those which can be paired so as
give the common factor2csf as1 f a,s21f ss acting directly onvl . Commutation withes gives
2csf a,s211 f a,s21hss leading to the common factor2cs1l(hs), which vanishes. The result fo
i 5 p̄5 r̄ follows in the same way. Ifi 5q,s,eq commutes with every term in~5.8! other than
those for whichi l5q, but then@eq , f i l s

#5@eq , f qs#5 f q11,s . Thus every nonvanishing term con
tains the factorf q11,svl which vanishes by~5.11!. The story is the same fori 5 p̄. r̄ .

For m̄< i , r̄ or r̄ , i , p̄ or q, i ,s or s, i<n all commutators withei vanish sincei appears
nowhere as a subscript on anyf ab appearing in~5.8!. This leaves as nonvanishing only two spec
casesi 5s.q and i 5 r̄ , p̄. In the first of these the only nonvanishing commutator ofes with
terms in ~5.8! is @es , f i l ,s#5 f i l ,s21 . This gives the second case of~5.12!. Similarly the only
non-vanishing commutator ofer̄ with the terms in~5.8! is @er̄ , f r̄ i k

#5 f r 21,i k
, giving the first case

of ~5.12!. j

Finally we give a rather technical lemma which plays a crucial role in proving results in
VI.

Lemma 5.10: Given r̄ ,s,t with m̄< r̄<1̄,1<s<t<n. Let J#$ r̄ ,...,1̄,1,...,s%, C
5(cj 1 ,cj 2 ,...)PC” ^ #J, C(1)5(cj 111,cj 211,...). Then,

XJ[xJ,Cf r̄ s•xJ,C~1! f r̄ t1xJ,Cf r̄ t•xJ,C~1! f r̄ s50, ~5.14!

where the second term is obtained from the first by interchangings and t. Taking t5s, we have

xJ,Cf r̄ s•xJ,C~1! f r̄ s50. ~5.15!

Proof: We prove this by induction on #J. If #J50, we immediately haveXJ50 sincef r̄ s , f r̄ t

anticommute. Suppose now~5.14! holds forJ8 with #J8,#J. ForJ, supposeJùI 2Þf ~the proof
is similar if JùI 1Þf!. Choosej PJ to be the largest and letJ85J\$ j %. Let C8 andC8(1) be,
respectively, the elementC andC(1) corresponding toJ8. Using ~5.7! we have

the first summand of
XJ5xJ8,C8~cj f r̄ s2 f r̄ j 21f js!•xJ8,C8~1!~~cj11! f r̄ t2 f r̄ , j 21f j t !. ~5.16!

Now one may check the validity of the following identities for allr̄< i , j <s,

x i ,ci11~ f r̄ , j 21f js!5x i ,ci11f r̄ , j 21• f js ,

f jsx i ,ci11f r̄ t5x i ,ci 11
~ f jsf r̄ t!5x i ,ci11f r̄ t• f js ,

f jsx i ,ci11~ f r̄ , j 21f j t !5x i ,ci11f r̄ s• f j t1x i ,ci11f r̄ j 21• f jsf j t .

Using these,~5.16! becomes
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cj~cj11!xJ8,C8 f r̄ s•xJ8,C8~1! f r̄ t2cjxJ8,c8 f r̄ s•xJ8,c8~1! f r̄ , j 21• f j t

2~cj11!xJ8,c8 f r̄ , j 21•xJ8,c8~1! f r̄ t• f js1xJ8,c8 f r̄ j 21•xJ8,c8~1! f r̄ s• f j t

1xJ8,c8 f r̄ , j 21•xJ8,c8~1! f r̄ , j 21• f jsf j t .

Denote these terms byw1 ,...,w5 , and denote the corresponding terms for the second summa
XJ by w6 ,...,w10. ThenXJ5(k51

10 wk . By the inductive hypothesis, we havew11w65w21w4

1w85w31w71w95w55w1050. HenceXJ50. j

The importance of this lemma lies in the consequences which flow from the special
~5.15!.

VI. PRIMITIVE VECTORS OF THE KAC-MODULE V̄„L…

Let L be a dominantr-fold atypical weight ofG with atypical roots$g1 ,...,g r%. In this
section we first prove that to every indecomposable unlinked code(c for L there corresponds a
primitive vectorv( of V̄(L) having weight(. Then we generalize the result to arbitrary unlink
codes.

As a precursor to the proof we first restrict attention to thoseL for which g r5am̄n5b1,n11

and those codes(c for which D(5SWL(r ). It follows that the topmost and rightmost positio
TRD of D( is (1,n11). Thus from~3.2!,

A~L!1,n115 (
k5m̄

0

ak2 (
k51

n

ak1m2n50. ~6.1!

It is convenient to introduce special labels for some particular roots inD̂( . Let x5#$ j u(1,j )
PD(%, y5#$ i u( i ,n11)PD(% be respectively the number of elements in the topmost row
rightmost column ofD( . Denote the roots associated with the positions in the topmost ro
D( , taken from right to left, byh1 ,...,hx and the roots in the rightmost column ofD( , from top
to bottom, byh18 ,...,hy8 . Thus, h15am̄,n ,..., hx5am̄,n2x11 , h185am̄,n ,..., hy85am2y11,n ,
with h15h185b1,n11 . It should be noted the definitions ofx andy are such that

an2x11.0,an2 i 1150,i 51,...,x21 and am2y11.0,am2 i 1150,i 51,...,y21. ~6.2!

All this may be illustrated as follows in oursl(6/5) Example 4.18 withL5@00020;0;0210#
encountered in Secs. III and IV.A(L) was displayed in~3.3! with codes enumerated in~3.4! and
chains in~4.3!. (c is the indecomposable unlinked code

1 2 3 4 5

2 5 4 5

5 5

.

Below we have setD( alongsideA(L), specifying all positions on the chain SWL( l ) by an entry
l for l 51,...,5. Herex52, y54 and in the final array we identify the positions inD( associated
with rootsh i ,h i8 ,
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A~L!5S 7 6 3 1 0

6 5 2 0 1̄

5 4 1 1̄ 2̄

4 3 0 2̄ 3̄

1 0 3̄ 5̄ 6̄

0 1̄ 4̄ 6̄ 7̄

D , D(5S • • • 5 5

• • 5 4 5

• • 4 4 5

5 5 3 4 5

2 2 5 • •

1 2 5 • •

D 5S • • • h2 h1

• • * * h28

• • * * h38

* * * * h48

* * * • •

* * * • •

D .

~6.3!

In this exampleh15a 5̄4 , h25a 5̄3 and h185a 5̄4 , h285a 4̄4 , h385a 3̄4 , h485a 2̄4 . Keeping this
example in mind will help understand the proof below.

We shall always suppose 1<x<y as the arguments for 1<y<x are entirely analogous. Se

L05L, Lk5L2( j 51
k h j ,k51,...,x,

~6.4!
v0~L!5vL , vk~L!5xJ

~m/n2k11! f ~hk!vk21~L!,k51,...,x,

with J5$m2y11,...,1̄;1,...,n2x11%. Recall from Convention 2.2 thatxJ
(m/n2k11) is the opera-

tor xJ defined forsl(m11,n2k12) rather than forG5sl(m11/n11).
Lemma 6.1:Let 1<k<x<y, then with notation~5.6!,

vk~L!5dk~L!vk21~L!,dk~L!5xJ,Cf m̄,n2k11 , ~6.5a!

cj5cj~L!2k11,j PJ,cj~L!55 (
l 5m2y11

j

al1m1 j , j P$m2y11,...,1%,

(
l 5 j

n2x11

al1n2 j , j P$1,...,n2x11%.

~6.5b!

Proof: Sincevk21(L) has weightLk21 , it follows from definition ~6.4! and Corollary 5.7
that

vk~L!5xJ,C
~m/n2k11! f m̄,n2k11vk21~L!, cj5cj

~m/n2k11!~Lk21!, j PJ. ~6.6!

However, as can be seen from Corollary 5.8 withr 5m, s5n2k11, we have
xJ,C

(m/n2k11)f m̄,n2k115xJ,Cf m̄,n2k11 , giving as required~6.5a!. Furthermore, note thatL(hi)
5ai , i PI , the use of~6.2! in ~5.9! immediately gives the second equation of~6.5b!, so it remains
to prove the first of~6.5b!. However, it follows from definitions~6.4! and ~5.9! with (m/n)
replaced by (m/n2k11) that

cj
~m/n2k11!~Lk21!55 (

l 5m2y11

j

al1m2k111 j , j P$m2y11,...,1̄%,

(
l 5 j

n2x11

al1n2k112 j , j P$1,...,n2x11%.

~6.7!

An inspection of the second of~6.5b! and ~6.7! reveals thatcj
(m/n2k11)(Lk21)5cj (L)2k

11, j PJ. When used in~6.6! this completes the proof of the first of~6.5b!. j

Corollary 6.2: Let 1<k<x, thenvk(L)Þ0.
Proof: Since am2y11.0,an2x11.0, ~6.5b! implies cj (L).m1 j >y21>x21,j

P$m2y11,...,1̄%;cj (L).n2 j >x21,j P$1,...,n2x11%. It follows that cj (L)2k11.0,j
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PJ,1<k<x. However, vk(L)5P1< i<k, j PJ(cj (L)2 i 11) f (hk)¯ f (h1)vL1¯ , where the
leading term is written in proper order with the ordering~5.1!. Thusvk(L)Þ0. j

Returning tosl(6/5) Example 4.18 withL5@0002;0;0210#, x52, y54, J5$1̄;1,2,3%. L1

5@ 1̄002;0;0211̄#, L25Lx5@ 2̄002;0;0200#. The coefficientscj (L), j PJ are ~5; 6, 5, 2! andcj

associated withv1(L), v2(L)5vx(L) are ~5; 6, 5, 2!, ~4; 5, 4, 1!, respectively. These are a
nonzero, in accordance with Corollary 6.2. A simpler example is Example 4.5L

5@1211;1̄;10002#, x5y51, J5$4̄,3̄,2̄,1̄;1,2,3,4,5%, L15Lx5@0211;1̄;10001# and cj (L) as-
sociated withv1(L)5vx(L) are ~1, 4, 6, 8; 7, 5, 4, 3, 2!, again all nonzero. To discuss th
G-primitivity of vx(L), it should be noted that in the first of these two examples the weightLx is
notG-dominant, although the restriction of this weight toG(m21/n)5sl(5/5) isG(m21/n)-dominant.
In contrast to this, in the second exampleLx is G-dominant. Guided by this distinction betwee
our two examples, it is convenient to deal first with a special case,

Lemma 6.3:v1(L) is a G-primitive vector if x5y51.
Proof: In this case,J5$m̄,...,1̄;1,...,n% and from~6.5! we have

d1~L!5xJ,Cf m̄n , cj5cj~L!55 (
k5m̄

j

ak1m1 j , j P$m̄,...,1%,

(
k5 j

n

ak1n2 j , j P$1,...,n%.

It then follows that

cm̄5am̄ , cn5an ,

ci2ci 21215ai if m̄, i ,0, ci2ci 11215ai if 0 , i ,n,

c12c1̄5 (
k51

n

ak1n212 (
k5m̄

1̄

ak2m115a0 ,

where, the recovery ofa0 in the last case is a consequence of~6.1!. It is only here that the
atypicality condition makes itself felt. SinceL(hi)5ai , i PI , it follows thatvLPV̄(L) satisfies
all hypotheses~5.10! of Lemma 5.9 forp5r 5m, q5s5n. The hypotheses~5.11! are redundant,
as are the first two cases of~5.12!. Therefore, we conclude from~5.12! that @ei ,d1(L)#vL50,
i PI . SincevL is itself G-primitive, sod1(L)vL is alsoG-primitive. j

Prior to tackling other cases it is convenient to introduce one further preliminary result
Lemma 6.4: fm̄,m2y12vL50 if 1,y and f n2x12,n2k11vL50 if 1<k,x.
Proof: Let I ȳ,x5I ȳøI x , I ȳ5$m̄,...,m2y12%, I x5$n2x12,...,n%. SinceeivL50 and~6.2!

gives hivL50, i PI ȳ,x , consideration of algebra Span$ei , f i ,hi% implies that f ivL50. By ~2.5!,
f i j ,i , j PI ȳ , f kl ,k,l PI x can, respectively, be expressed in terms off i ,i PI ȳ , f j , j PI x . The result
then follows. j

Lemma 6.5:If 1 ,x<y, thenvx(L) is a G(m21/n)5sl(m/n11) primitive vector.
Proof: In this case, by~6.5b!, we have

cm2y115am2y111y2k, cn2x115an2x111x2k,

ci2ci 215ai ,m2y11, i ,0, ci2ci 11215ai ,0, i ,n2x11, ~6.8!

c12c1̄5 (
k51

n

ak1n212 (
k5m̄

1̄

ak2m115a0 .
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We are going to exploit Lemma 5.9 forp5m2y11, q5n2x11, r 5m, s5n2k11 with 1
,x<y,1<k<x, vl5vk21(L). It is necessary to check that all hypotheses~5.10!–~5.11! are
satisfied. Noted thatl(hi)5Lk21(hi)5ai ,m21< i<n2k11 implies l(hi)5Lk21(hi)5ai ,
m2y11< i<n2x11. It follows from ~6.8! that the hypotheses~5.10! are all satisfied unless
either i 5 p̄5m2y115 r̄ 5m̄ with yÞk, or i 5q5n2x115s5n2k11 with xÞk. Neither
case can occur. Hence~5.10! is satisfied. It remains to consider~5.11!. From ~2.5!
@ f m̄,m2y12 , f ab#50 unlessa5m2y11 or b5m11; @ f n2x12,n2k11 , f ab#50 unlessa5n2k
11 or b5n2x11. However, the expansion ofdi(L) by means of~5.8! involves only thosef ab

for which aP$m̄%ø$m2y,...,n2x11% and bP$m2y11,...,n2x%ø$n2 i 11%. This implies
for i 51,...,k21 we have @ f m̄,m2y12 ,di(L)#50, 1,y, @ f n2x12,n2k11 ,di(L)#50, 1<k,x.
Since vk21(L)5dk21(L)¯d1(L)vL it follows from Lemma 6.4 thatf m̄,m2y12vk21(L)50,
f n2x12,n2k11vk21(L)50, confirming that ~5.11! is satisfied. Lemma 5.9 then implies th
@ei ,dk(L)#vk21(L)50 for i PI ,1<k<x unless eitheri 5m̄ or i 5n2k11, 1<k,x. The 1st
case does not concern us withinG(m21/n). The other cases imply that sincevx(L)5gxvL , gx

5dx(L)¯d1(L), we haveeivx(L)5gxeivL50 unlessi 5n2k11, 1<k,x. If i 5n2k11,
1<k,x we have

en2k11vx~L!5dx~L!¯dk11~L!en2k11dk~L!vk21~L!

5dx~L!¯dk11~L!@en2k11 ,dk~L!#vk21~L!1dx~L!¯d1~L!en2k11vA .

However,en2k11vL50. Furthermore, the second case of~5.12! and definitions~5.6! and ~6.6!
give

dk11~L!@en2k11 ,dk~L!#vk21~L!5)
j PJ

x j ,cj ~L!2kf m̄,n2k)
j PJ

x j ,cj ~L!2k11f m̄,n2kvk21~L!50,

where the final equality is a consequence of~5.15! in Lemma 5.10. We conclude tha
en2k11vx(L)50 for 1<k,x, thereby completing the proof thatvx(L) is G(m21/n)-primitive.j

Theorem 6.6:To any indecomposable unlinked code(c for L, there corresponds a primitiv
vectorv(5g(vL of V̄(L) with weight ( for someg(PU(G2).

Proof: Suppose that the topmost and rightmost position TRD of D( is (m112m( ,n(11).
By Theorem 4.17 there existst with 1<t<r such thatg t5am(,n(

, 1<m(<m, 1<n(<n. First
we suppose thatm(5m, n(5n so thatt5r , g t5am̄,n , TRD5(1,n11). We shall see later, by
restriction fromG(m/n) to G(m( /n(), we can prove the theorem in general. Under this assump
we are going to prove it by induction on the depthd5#D̂( . For d51 for which D( necessarily
consists of the single position (1,n11) andx5y51. Thus,(5L2am̄,n is precisely the weight
of the vectorv1(L)5d1(L)vL which was shown to beG-primitive in Lemma 6.3 and our
Theorem 6.6 is satisfied byv(5v1(L).

Let d.1. With notation~6.4!, by Lemma 6.5,vx(L) is G(m21/n)-primitive with weightLx .
The atypicality matrixA(Lx) is obtained fromA(L) by subtractingx from all entries in the
topmost row and adding 1 from each of the lastx columns. By removing the topmost row o
A(Lx) we obtain the atypicality matrixA(m21/n)(Lx) of Lx restricted toG(m21/n). It is easy to
check that the (2,n11)th entry inA(Lx) is always zero, so thatb2,n115am21,n is an atypical
root for Lx restricted toG(m21/n). Moreover,Lx is r x-fold atypical with respect toG(m21/n) where
r x5r if x,y or r 21 if x5y. Using results in Sec. IV, one can then see that there is
indecomposable unlinked code(x

c for the restriction ofLx to G(m21/n) for which

D̂(x
5D̂(

~m21/n!5D̂(\$h1 ,...,hx%5D̂~r x!
~m21/n!, ~6.9!

with the topmost and rightmost position ofD(
(m21/n) being (1,n11) in A(Lx)

(m21/n) ~but which is
position (2,n11) in A(Lx)!. This may again be illustrated bysl(6/5) example withL
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5@00020;0;0210#, x52, Lx5@ 1̄0020;0;0200#. On restriction this yieldssl(5/5)-dominant
weight Lx5@0020;0;0200# for which there exists an indecomposable unlinked code(x

c again
given by

1 2 3 4 5

2 5 4 5

5 5

.

The corresponding atypicality matrixA(Lx) andD(x
take the form~cf. ~6.3!!,

A~Lx!5S 5 4 1 0 1̄

6 5 2 1 0

5 4 1 0 1̄

4 3 0 1̄ 2̄

1 0 3̄ 4̄ 5̄

0 1̄ 4̄ 5̄ 6̄

D , D(x
5S • • • • •

• • 5 5 5

• • 4 4 5

5 5 3 4 5

2 2 5 • •

1 2 5 • •

D 5S • • • • •

• • * * h28

• • * * h38

* * * * h48

* * * • •

* * * • •

D .

The positions of the entries* serve to specify the rootsbPD̂(
(4/4) . The result conforms precisel

with ~6.9! as can be seen by comparison with the diagrams specifying the rootsbPD( in ~6.3!.
Now let U(Lx) be the cyclicG(m21/n)-submoduleU(G(m21/n))vx(L), which turns out to be
isomorphic to the Kac-moduleV̄(Lx)

(m21/n) of G(m21/n). Now the depth of( relative toLx is
given by dx5#D̂(

(m21/n)5#D̂(2x5d2x,d, by induction hypothesis we see that there m
exist some g(

(m21/n)PU((G2)(m21/n)) such that 0Þv(5g(
(m21/n)vx(L)5g(vL is

G(m21/n)-primitive, with g(5g(
(m21/n)gxPU(G2), gx5dx(L)¯d1(L).

Lemma 6.7:v( defined above isG-primitive if x,y.
Proof: It remains to proveem̄v(50. First, in constructingA(() from A(L) with (5L

2(bPD̂(
b, A(L)1,n1150, we have A(()1,n115y2x.0. Since ( is dominant we have

A(()1,i 11.A(()1,i 12 for i 50,...,n21. Hence, from~3.1a! we have

A~(!1,i 115^(1ruam̄i&.0 for i 50,...,n. ~6.10!

Second, we can write(5L2(bPD̂(
b5L2( i 51

d b j in the way thatb i is an atypical root of

( i 215L2( j 51
i 21b j ~which is not necessarilyG-dominant! in the sense that̂( i 211rub i&50.

Induction on i gives ^( i1ru( i1r&5^L1ruL1r&. When i 5d we obtain^(1ru(1r&5^L
1ruL1r&. Now suppose thatem̄v(Þ0. Let g be an element inU(G1) with the largest possible
weightm such thatu5gv(Þ0. By this definition,u is G-primitive with weight(85(1m. Using
that vS is G(m21/n)-primitive, g can be chosen to be a sum of the form

g5em̄,i 1
¯em̄,i k

, with m5 (
j 5 i 1

i k

am̄j , ~6.11!

where i 1<¯< i k and i j,¯, i k if i j>0. Sinceu has weight(1m, Lemma 5.3 giveŝ (1m
1ru(1m1r&5^L1ruL1r&, combined witĥ (1ru(1r&5^L1ruL1r&, we obtain

2^(1rum&1^mum&50. ~6.12!

Since m has the form~6.11!, denote it bymk . Induction onk gives ^mkumk&5^mk21umk21&
1^2mk211am̄,i k

uam̄,i k
&>0, where for the last inner product, we have made use of^am̄i uam̄j&

>0 for i , j PI ~this can easily be proved by~2.3!!. Also we may prove as follows that̂(
1ruam̄i&.0 for all i PI : if i ,0, thenam̄i is a positive even root, sô(uam̄i&>0,̂ ruam̄i&.0; if
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i>0, thenam̄i is a positive odd root and̂(1ruam̄i&.0 by ~6.10!. This proves that the left-hand
side of ~6.12! is .0; this contradiction proves thatem̄vS must be zero. Hence the lemma fo
lows. j

Lemma 6.8:Let x5y. If vS is not G-primitive thenem̄nvS is primitive andem̄ivSÞ0,i<n.
Proof: The proof is very similar to that of Lemma 6.7. IfvS is not primitive, we want to prove

that g in ~6.11! must beem̄n . The only difference is that nowA(()1,n115y2x50. Thus~6.10!
must be replaced by the statement^(1ruam̄i&.0,i 50,...,n21,̂ (1ruam̄n&50. Hence, by the
same argument as before, for our hypothesizedG-primitive vectoru5gvS ,g must have weight
m5am̄n , since this is the only possible solution of~6.12!. It follows thatg5em̄n . By our choice
of g,em̄nvSÞ0 and soem̄ivSÞ0 sinceem̄nvS52einem̄ivS for i ,n. j

By Lemma 6.7, ifx,y, the proof of the theorem is then completed. So, letx5y. If vS is
G-primitive, the proof is also completed. Suppose nowvS is not G-primitive. First note that

D̂S5D̂S
~m21/n!ø$h1 ,...,hx%

5D̂S
~m/n21!ø$h18 ,...,hx8%

5D̂S
~m21/n21!ø$am̄n%ø$h2 ,...,hx%ø$h28 ,...,hx8%. ~6.13!

Then we see thatvS defined above can be written in the form

vS5gSvL5gS
~m21/n!vx~L!5gS

~m21/n!gxvL5gS
~m21/n21!gx218 gxvL , ~6.14!

where, quite generally the weight wt(gS
(r /s))52(aPD̂

S
(r /s)a and wt(gx)52( i 51

x h i , wt(gx218 )

52( i 52
x h i8 . Furthermore, by induction on #DS , ~6.13!–~6.14! tells that we can decompose

DS5ø i 50
i S D ~ i !, D ~1!5$h28 ,...,hx8%, D ~0!5$h1 ,...,hx%, ~6.15a!

gS5g~ i S!
¯g~1!g~0!, gS

~m21/n21!5g~ i S!
¯g~2!, g~1!5gx218 , g~0!5gx , ~6.15b!

for somei S such that wt(g( i ))52(aPD̂( i )a, whereD ( i ) consists all positions of either the top
most row or the rightmost column inDS\ø j 50

i 21D ( j ). Now suppose the positionPx5(x,n11
2x), which is clearly inDS , belongs toDS

( j S) for somej S :2< j S< i S , then we can write

gS5gS
~2!gS

~1! , gS
~2!5g~ i S!

¯g~ j S11!, gS
~1!5g~ j S!

¯g~0!, ~6.15c!

DS5DS
~2!øDS

~1! , DS
~2!5ø i 5 j S11

i S D ~ i !, DS
~1!5ø i 50

j S D ~ i !, ~6.15d!

with wt(gS
( i ))5(aPD

S
( i )a,i 51,2. As an example, considersl(5/6) with L5@0011;1;00200#,

Sc5

1 2 3 4

3 3 4

4 4

.

Below we have setDS alongsideA(L), specifying all positions inD ( i ) by an entry i for i
50,...,8. Herex5y53,i S58,j S54. In the final array we identify the positions inDS

(1) by 1,
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A~L!5S 7 6 5 2 1 0

6 5 4 1 0 1̄

5 4 3 0 1̄ 2̄

3 2 1 2̄ 3̄ 4̄

1 0 1̄ 4̄ 5̄ 6̄

D , DS5S . . . 0 0 0

. . . 2 2 1

4 4 4 4 3 1

7 7 6 5 3 .

8 8 6 5 . .

D 5S . . . 1 1 1

. . . 1 1 1

1 1 1 1 1 1

* * * * 1 .

* * * * . .

D .

~6.16!

From this example, it it easy to obtain the following result.
Lemma 6.9:~i! All positions above and to the right ofPx are inDS

(1) , i.e., (i , j )PDS
(1),1< i

<x,n112x< j <n11; none position below and to the left ofPx is in DS
(1) , i.e., (i , j )¹DS

(1) ,i
.x, j ,n112x;

~ii ! ~a! If ( i , j )PDS
(1) ,i<x then (i , j 8)PDS

(1) for all j 8: j < j 8<n11. ~b! If ( i , j )PDS
(1) ,n

112x< j , then (i 8, j )PDS
(1) for all i 8:1< i 8< i . j

Now remember thatx5y, we can construct another vectorṽx(L) if we start from the last
column of DS instead of the 1st row, such thatṽx(L)5g̃xvL , which has similar properties to
those ofvx(L) but where wt(g̃x)52( i 51

x h i8 . Then fromṽx(L), we can construct a vector

ṽS5g̃SvL5g̃S
~m/n21!ṽx~L!5g̃S

~m/n21!g̃xvL5g̃S
~m21/n21!g̃x218 g̃xvL , ~6.17!

which isG(m/n21)-primitive and wt(g̃x218 )52( i 52
x h i . Note that bothgS

(m21/n21) ,g̃S
(m21/n21) are

the elementgS
1
(m21/n21) defined for the weight(15L2( i 51

x h i2( i 52
x h i8 restricted toG(m21/n21),

so, by induction onm, n, we can supposegS
(m21/n21)5g̃S

(m21/n21) and so by~6.13!–~6.15!, we
have

vS5gS
~2!gS

~1!vL , and ṽS5gS
~2!g̃S

~1!vL , g̃S
~1!5g~ i S!

¯g~2!g̃x218 g̃x . ~6.18!

Now if ṽS is G-primitive, then the proof is again completed, or by analogy with Lemma
em̄nṽS is G-primitive. Thus, we can suppose

em̄vSÞ0ÞenṽS , but both em̄nvS and em̄nṽS are G-primitive. ~6.19!

Lemma 6.10:Let vS and ṽS be as in~6.19!. Thenem̄nvS5em̄nṽS ~up to a nonzero scalar!.
Proof: By ~6.18!, we have

em̄nvS5gS
~2!v2 , v25u2vL and em̄nṽS5gS

~2!ṽ2 , ṽ25ũ2vL , ~6.20!

such that u25@em̄n ,gS
(1)#,ũ25@em̄n ,g̃S

(1)# have the weight2(bPD̂
S
0 b,DS

0 5DS
(1)\$am̄n%. By

Lemma 6.11 below, we see that the only possible prime term ofv2 is b1y1vL ,y1PC” . If y150
then v2 has no prime term, and by Lemma 5.1~i!, em̄nvS has no prime term, which contradict
with Lemma 5.2~i!. Thereforey1Þ0. Similarly ṽ2 has one prime termb1ỹ1vL . By rescaling, we
can supposey15 ỹ1 and then by Lemma 5.1~ii ! and Lemma 5.2~ii !, we obtainem̄nvS5em̄nṽS .j

Lemma 6.11:There is a uniqueb15PbPD̂
S
0 f (b)PB with weight 2(bPD̂

S
0 b.

Proof: Using ~6.16! as an example will help us to understand the proof. Suppose there e
anotherb25PbPD̂1

f (b)PB,D1,D with the same weight2g so thatg5(bPD̂1
b5(bPD̂

S
0 b.

Let g5( i 5m̄
n aia i with the coefficientsai , then we have

#$ i u~ i , j !PD1%5#$ i u~ i , j !PDS
0 %5aj 212aj , 1< j <n11, ~6.21a!

#$ j u~ i , j !PD1%5#$ j u~ i , j !PDS
0 %5am112 i2am122 i , 1< i<m11, ~6.21b!
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where, if j 5n11 or i 51 we supposean115am1150. It suffices to prove that the solution i
~6.21! is D15DS

0 . If not, suppose (i 0 , j 0)PD1\DS
0 with j 0 being the smallest. First, suppos

( i 0 , j 0)5(1,n11). Then ~6.21a! in the case j 5n11 tells us that there exists (i 1 ,n11)
PDS

0 \D1 with i 1Þ i 0 and~6.21b! in the casei 5 i 1 tells us that there exists (i 1 , j 1)PD1\DS
0 with

j 1Þn11 and so,j 1,n115 j 0 , which contradicts with the choice ofj 0 being the smallest.
Second, suppose (i 0 , j 0)Þ(1,n11). Then by Lemma 6.9~i!, we have i 0.x or j 0,n2x11.
Supposej 0,n2x11 ~the other case is similar!. Then using~6.21a! in the casej 5 j 0 , there exists
some (i 1 , j 0)PDS

0 \D1 . By Lemma 6.9~i! we havei 1<x. Also i 1Þ1 sinceD, and so,DS
0 , does

not contain position (1,j 0). Now consider~6.21b! for i 5 i 1 , from (i 1 , j 0)PDS
0 \D1 , there exists

some j 1 such that (i 1 , j 1)PD1\DS
0 ; however, if j 0< j 1 , by Lemma 6.9~ii ! ~a! we would have

( i 1 , j 1)PDS
0 , thus, j 1, j 0 , again contradicting with the choice ofj 0 being the smallest. j

Now we can complete the proof of Theorem 6.6 as follows. By Lemma 6.10, we can su
em̄n(vS2 ṽS)50. Sinceem̄(vS2 ṽS)5em̄vSÞ0, let k be the largest such thatvl[em̄k(vS2 ṽS)
Þ0 with k,n. As ṽS is G(m/n21)-primitive, we havevl5em̄kvS with weight l5am̄k1(.
Applying ei to vl and~2.5! giveseivl50,i .m̄. We also haveem̄vl50: if not, again similar to
the arguments after~6.11!, let g1PU(G1) with largest possible weightm1 such thatu5g1vl

5gvSÞ0, where nowg5g1em̄k with weight m5m11am̄k , then aŝ (1ruam̄k&.0, we could
find no solution form ~or m1! in ~6.12!. Thus we have in fact proved thatvl is G-primitive, which
is not possible sinceeknvl5em̄nvSÞ0. The contradiction shows that the assumption~6.19! is
wrong, so, eithervS or ṽS must beG-primitive, proving Theorem 6.6 in the case TRD5(1,n
11).

For TRD5(m112mS ,nS11), let G85G(mS /nS) and letU (mS /nS) be theG8-submodule of
V̄(L) generated byvL isomorphic toV̄(L)(mS /nS). Let ( (mS /nS) correspond to an indecompos
able unlinked code(c(mS /nS) of L restricted toG8. By construction the topmost and rightmo
position ofDS

(mS /nS) in A(L)(mS /nS) is (1,nS11). As just proved, there is aG8-primitive vector
vS5gSvL corresponding to the code(c(mS /nS) with gSPU(G82), which commutes withei ,i
P$m̄,m21,...,mS11,nS11,...,n%. HencevS is alsoG-primitive corresponding to the code(c.
This completes the proof of Theorem 6.6 in general. j

Theorem 6.12: To any unlinked code(c for L, there corresponds a primitive vectorvS

5gSvL of V̄(L) with weight ( for somegSPU(G2).
Proof: SupposeSc5S1

c
¯Sk

c with all S i
c indecomposable unlinked codes. The proof is co

ered by Theorem 6.6 ifk51. Let k.1. By Definition 3.12, we see thatSk
c is an indecomposable

code of L, thus corresponding to a primitive vectorvSk
5gSk

vL . We also see thatS0
c

5S1
c
¯Sk21

c is an unlinked code for the highest weight vectorvSk
* of V̄(Sk) with weightSk . By

induction on k, there exists a primitive vectorvS0
* 5gS0

vSk
* in V̄(Sk). Let vS5gS0

gSk
vL

PV̄(L) be the image ofvS0
* under the homomorphismV̄(Sk)→V̄(L): vSk

* →vSk
, gvSk

*

→gvSk
,gPU(G). One can check thatvS is nonzero as its leading term up to a nonzero scala

PbPD̂S
f (2b)vL , hence it is a primitive vector corresponding toS. j
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Aperiodic Virasoro algebra
R. Twarocka)

Arnold Sommerfeld Institut fu¨r Mathematische Physik, Technische Universita¨t Clausthal,
Leibnizstr. 10, 38678 Clausthal-Zellerfeld, Germany
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An aperiodic analog to the Virasoro algebra is introduced and its representation
theory is investigated. In particular, highest and lowest weight representations are
constructed. An analog to the Kac determinant formula is derived and the implica-
tions for unitarity are discussed. ©2000 American Institute of Physics.
@S0022-2488~00!00907-5#

I. INTRODUCTION

The aperiodic Virasoro algebra is a new type of infinite dimensional Lie algebra with ge
tors in a one-to-one correspondance with points from an aperiodic point set. The structur
stants and the central term are similar to the Virasoro algebra, so that it may be viewed
aperiodic analog to the latter, but its structural properties and representation theory differ cr
from it due to the aperiodicity of the index set.

The point set, which serves as index set for the generators, is modeled via techniques
from the field of cut-and-project quasicrystals. These are aperiodic point sets with long
order, which are obtained via a projection from a higher dimensional periodic lattice. In
example implemented here, this periodic lattice will be two-dimensional, and the projection
malism depends on the choice of a real intervalV; the resulting aperiodic point sets depend onV
and will be denoted asS(V). SinceV controls which points constituteS(V), it will be called
‘‘acceptance window.’’ The dependence of the index set onV translates to the Lie algebra leve
so that for different choices ofV, different Lie algebras with essentially different properties
obtained.

A related but different concept had been used1–3 to obtain an aperiodic analog to the Wi
algebra. However, a central extension for these objects does not exist, so that an analog
Virasoro algebra as is presented in this paper is not at hand.

The basic idea in the construction of the aperiodic Virasoro algebra consists of replacin
index setZ of the usual Virasoro algebra byS~V! and by a corresponding modification of th
structure constants such that again a Lie algebra is obtained. In this way, one obtains an an
the Witt algebra, called aperiodic Witt algebra, which allows for a central extension of Viras
type and hence leads to an aperiodic analog also of the Virasoro algebra: theAPERIODICVIRASORO

ALGEBRA.
Since the reader is not assumed to be familiar with the concept of aperiodic point sets r

to cut-and-project quasicrystals, the necessary concepts are provided in a first step. In a ne
the aperiodic Witt algebra is defined and its properties are discussed. For a particular acce
window V, a central extension of Virasoro-type is shown to exist and the aperiodic Vira
algebra is introduced. Its representation theory~highest weight representations! are discussed, an
analog to the Kac determinant formula is given and the implications for unitarity are outl
Finally, realizations similar to the oscillator realizations for the usual Virasoro algebra are
cated.

a!Electronic mail: reidun.twarock@tu-clausthal.de
50880022-2488/2000/41(7)/5088/19/$17.00 © 2000 American Institute of Physics
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II. APERIODIC POINT SETS VIA ONE-DIMENSIONAL CUT-AND-PROJECT
QUASICRYSTALS

For the convenience of the reader, we review the construction of aperiodic point se
projection from higher dimensional periodic lattices.

Given an irrationality which is a Pisot number, i.e., a real solution of an algebraic equati
modulus bigger than one such that all other solutions are of modulus smaller than one, we c
the ring of integers in the algebraic extensions of the rational numbers with respect to thi
tionality to model an aperiodic point set. Since we will use this construction here only fo
irrationality t5 1

2(11A5), known as the golden mean, we will indicate the construction only
this particular irrationality in the following. The case of a cubic irrationality has been discu
elsewhere.3

Together witht85 1
2(12A5), t is a solution of the equation,

x25x11. ~1!

The ring of integers in the algebraic extension of the rational numbers byA5 is given by the set
Z@t#5$a1tbua,bPZ%. It is a dense set inR and in order to specify a discrete subset, a bound
condition is needed. The latter can be obtained via the Galois automorphism which links th
solutions of~1!,

8:a1tb→a1t8b. ~2!

In particular, we ‘‘accept’’ only those pointsx5x11tx2 in the aperiodic point set, which fal
into the so-called ‘‘acceptance window’’V in R after the8-mapping, i.e., ifx85x11t8x2PV.

This leads to the following definition of an aperiodic point set or cut-and-project quasicry4

Definition II.1: In dependence onVPR we define the one-dimensional cut-and-project qu
sicrystalS~V! related to the irrationalityt as

S~V!ª$xPZ@t#ux8PV%. ~3!

SinceS~V! is used as a mathematical model for diffraction patterns of quasicrystals5 in solid
state physics, it is called quasicrystal. The name cut-and-project stems from the fact that t
a two-dimensional periodic lattice underlyingS(V), which leads to~3! via a projection formal-
ism: Sincett8521, S~V! may be viewed as a point set modeled on a line with slopet in a
two-dimensional integer lattice. In this picture,V is given on the line with slopet8, perpendicular
to the line modelingS(V), and ~3! says that all those points belong to the aperiodic point
which are contained in the strip parallel to the model space and bounded byV.

It is apparent from the definition that for different choices of acceptance windowsV, different
point sets are obtained. For instance, the largerV, the more points are ‘‘accepted’’ as quasicrys
points. The behavior of the point set under variation ofV is well understood;6 in particular, there
are always either 2 or 3 distinct tiles, i.e., next nearest neighbor distances, in the quasicry

Two of the aperiodic point sets will play a key role for the definition of the aperiodic Viras
algebra: these areS((0,1#) andS(@0,1#), which is obtained from the former under removal of t
point 0. S(@0,1#) will be used in the following because, after removal of the point 0, it has
property that the second component of the quasicrystal points is isomorphic toZ.

With the notation@z# for the integer part ofzPZ, it is possible to write down an explici
expression for the quasicrystal points, which nicely displays the long-range-order,

S~~0,1# !ªH F11
n

t G1ntunPZJ , ~4!

andS(@0,1#)5S((0,1#)ø$0%. For example, one gets forS((0,1#),

...,2t,1,11t,212t,213t,314t,415t,416t,517t,518t,... . ~5!
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From ~4!, one can infer the following properties:

~1! There is ax↔12x-symmetry in the quasicrystal; negative points are obtained from
positivexPS(@0,1#) as 12x. For S((0,1#), the corresponding statement holds for all poin
except 1.

~2! Between adjacent points, only distancest andt2 exist in the case ofS((0,1#); in S(@0,1#) an
exceptional tile of length 1 occurs in addition to these between the points 0 and 1.

III. THE APERIODIC WITT ALGEBRA AND ITS CENTRAL EXTENSION

In a first step we look for an aperiodic analog to the Witt algebra, i.e., the Virasoro alg
without central term. The idea is to useS~V! as index set and modify the structure constants s
that a Lie algebra is obtained. Since we are aiming at an analog to the Virasoro algebr
procedure is not always sufficient as can be seen from the deficiencies of quasicryst
algebras;1 however, the algebras introduced here will have the desired property.

A. The aperiodic Witt algebra

For cut-and-project quasicrystals with connected acceptance windows not containing 0
inner point we define:

Definition III.1: Let F be any number field and let a,b be real numbers such that0<ab
,`. Let V be one of the intervals@a, b#, ~a, b#, @a, b!, or ~a, b!. The quasicrystal Lie algebra
AW(V) over F is theF-span of its basis B(AW(V)),

B~AW~V!!5$Lnun5n11tn2PS~V!%,

with the commutation relations of the basis elements given by

@Ln ,Lm#5H ~m22n2!Ln1m if n1mPS~V!

0 if n1m¹S~V!.
~6!

In terms of the characteristic function ofV, this corresponds to

@Ln ,Lm#5~m22n2!xV~n81m8!Ln1m . ~7!

With the notationnªn11tn2 and m5:m11tm2 for quasicrystal pointsn,mPS(V), the
aperiodic Witt algebraAW(V) may also be expressed in components via the commutation
tions (Ln5Ln11tn2

5Ln1

n2),

@Ln1

n2,Lm1

m2#5~m22n2!xVS n11m12
1

t
~n21m2! DLn11m1

n21m2. ~8!

Lemma III.2: As long as the acceptance intervalV is connected and does not contain 0 as
inner point, (6) defines a Lie algebra.

Proof: Antisymmetry is obvious. The Jacobi identity follows from the fact thatxV(n81m8
1k8)51 implies xV(n81m8)5xV(n81k8)5xV(k81m8)51 if 0 is not an inner point in the
acceptance window. h

Note that due to the fact that the index setS~V! is aperiodic,m,nPS(V) does not imply that
m1nPS(V) and thus the condition formulated in terms of the acceptance window is nece
It leads to the fact that many commutators in~6! are equal to zero and thus the structure of
aperiodic Witt algebra differs crucially from the structure of the usual Witt algebra.

Furthermore, the aperiodic Witt algebrasAW(V) differ from quasicrystal Lie algebras1 by the
fact that only the second component of the quasicrystal points enters the structure constan
difference is crucial in order to obtain a central extension of Virasoro type as will be discu
below.
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TheAW(V) constitute a family of Lie algebras depending onV. Their properties vary withV
as can be seen from the following list of properties:

~a! Any AW(@a,b#) with 2a>b is an Abelian Lie algebra. AnyAW(@a,b#) with 2a,b is
non-Abelian.
For the non-Abelian algebras we have furthermore:

~b! The Lie algebraAW(@a,b#) has a nontrivial center precisely ifa.0. Its center is the Lie
algebraAW((b2a,b#).

~c! The Lie algebrasAW(@a,b#) and AW(@c,d#) are isomorphic ifa5t2kc and b5t2kd for
kPZ.

~d! The algebraAW(@c,b#) is an ideal ofAW(@a,b#) provided 0<a,c,b. Consequently
there are no semisimple quasicrystal Lie algebras.

~e! The derived algebra ofAW(@a,b#) is AW((2a,b#). Hence, only the algebrasAW((0,b#)
andAW((0,b)) are perfect, i.e.,@AW(V),AW(V)#5AW(V) for V5(0,b#,(0,b).

~f! The algebrasAW(@a,b#) are nilpotent ifa.0.
~g! In contrast to the usual Witt algebra, where indecomposable subalgebras are form

triples, theAW(@a,b#) allow for indecomposable finite dimensional subalgebras of
dimension: The closure of any finite set of generators under the commutation relation
finite dimensional subalgebra ofAW(@a,b#). In particular, the closure of two generatorsLc

and Ld with a<c8,d8<b leads to a subalgebra of dimension 21g, wheregª]$(l,m)
PN3Nulc81md8<b%.

B. The aperiodic Virasoro algebra

The structure and existence of a central extension forAW(V) depends crucially on the choic
of V. In view of potential applications in physical models, we are interested in a type of alg
which—although being aperiodic—resembles as much as possible the original Virasoro a
Since the second component of the point setS((0,1#) is isomorphic toZ, i.e., the index set of the
usual Virasoro algebra, it is a canonical choice for the construction of an aperiodic Vir
algebra. SinceS(@0,1#) differs from S((0,1#) only by the point 0 and thus on the algebra lev
AV(@0,1#) differs from AV((0,1#) only by the generatorL0 , we will focus onV5@0,1# in the
following and comment on the corresponding results for~0,1#. When results apply to both alge
bras, they will be stated simultaneously. For this purpose, for the reminder of this paper, w
use the notationsV1ª@0,1# andV2ª(0,1#.

Definition III.3: The Lie algebra AV(V i), defined for n5n11tn2 and m5m11tm2

PS(V i) ( i 51,2), via the commutation relations,

@Ln ,Lm#5~m22n2!xV i
~n81m8!Ln1m1

ĉ

12
n2~n2

221!dn2 ,2m2
,

@Ln ,ĉ#50 for all LnPAV~V i ! ~9!

is called aperiodic Virasoro algebra.
In components (Ln5Ln11tn2

5Ln1

n2),

@Ln1

n2,Lm1

m2#5~m22n2!xV iS n11m12
1

t
~n21m2! DLn11m1

n21m21
ĉ

12
n2~n2

221!dn2 ,2m2
. ~10!

Theorem III.4: The aperiodic Virasoro algebra AV(@0,1#) is the unique central extension o
the algebra AW(@0,1#).

Proof: In order to find a cocyclec(n,m) with

@Ln ,Lm#5~m22n2!x@0,1#~n81m8!Ln1m1c~n,m!, ~11!
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notice that apart from antisymmetry we have the following condition implied by the Ja
identity,

~m22n2!x@0,1#~m81n8!c~n1m,k!1cyclic permutations50, ~12!

wheren1m is short hand notation forn11m11t(n21m2). For the choicem50 one obtains

~k21n2!c~k,n!1~n22k2!x@0,1#~k81n8!c~n1k,0!50. ~13!

Suppose first thatn1kÞ1. Since we have@L0 ,Lr #5r 2Lr1c(0,r ) we may choose a gaug
wherec(0,r )50, i.e.,L̂ r5Lr1(1/r 2)c(0,r ) and rename it again asLr by an abuse of notation. I
thus follows from~13!, sincen21k2Þ0, that in this case we havec(k,n)50.

Suppose now thatn1k51. We haven21k250 and since (n22k2)x@0,1#(k81n8)5(n2

2k2)Þ0 it follows, again from~13!, that c(1,0)50. Furthermore, we deducec(k,n);dk2 ,2n2

5dk,12n .
As a next step, choosen,mPS(@0,1#) such thatn1mPS(@0,1#) and let k512(m1n),

which is possible since this is inS(@0,1#). With this we obtain from~12! that

~m22n2!c~n1m,12~n1m!!2~2m21n2!c~12n,n!1~2n21m2!c~12m,m!50. ~14!

Now we choose a gauge forL1 . Because of@L11t ,L2t#522L11c(11t,2t) we can impose

c~11t,2t!50 ~15!

via L̂15L12 1
2c(11t,2t).

Now, a case study based on~14! is needed.
Suppose first thatmPS is such thatm2tPS. One gets

~m211!c~m2t,12~m2t!!2~2m221!c~11t,2t!1~m222!c~12m,m!50, ~16!

and thus with~15!,

~m211!c~m2t,12~m2t!!1~m222!c~12m,m!50. ~17!

Suppose next thatmPS is such thatm1t25m1t11PS. One gets

~m221!c~11t1m,2~t1m!!2~2m211!c~2t,11t!1~m212!c~12m,m!50, ~18!

and thus with~15!

~m221!c~m1t11,2~m1t!!1~m212!c~12m,m!50. ~19!

Suppose furthermPS is such thatm2t25m2(t11)PS. One gets

~m222!c~m,12m!)2~2m213!c~12t2,t2!1~m211!c~12~m2t2!,m2t2!50, ~20!

and thus due toc(12t2,t2)5c(2t,11t) with ~15!

~m222!c~m,12m!1~m211!c~12~m2t2!,m2t2!50. ~21!

We have thus covered all pointsmPS(@0,1#), since any of them fulfills at least one of th
conditions,m1t2PS(@0,1#), m2tPS(@0,1#) or m2t2PS(@0,1#).

Now it remains to show that there is a unique solutionc(n,m) which fulfills simultaneously
~17!, ~19!, and ~21!. Define c̃(n1 ,n2)ªc(n,12n) in order to display the dependence of th
cocycle on the two distinct components. Then the above conditions give~renaming againc̃ by c by
an abuse of notation!,
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~m211!c~m1 ,m221!2~m222!c~m1 ,m2!50, ~22!

~m221!c~m111,m211!2~m212!c~m1 ,m2!50, ~23!

~m222!c~m1 ,m2!2~m211!c~m121,m221!50. ~24!

For each fixedm1-component, the unique solution is

d~m1!m2~m2
221!, ~25!

like in the case of the Virasoro algebra, but now with a functiond(m1). Suppose nowd(m1) is
not constant and insert~25! into ~23! and ~24!. It follows d(m111)5d(m1). Since any point
mPS(@0,1#) fulfills either m1t2PS(@0,1#) or m2t2PS(@0,1#) and thus either~23! or ~24!, the
claim of the theorem is proven. h

Remarks:

~1! SinceL0 is not contained in the commutator algebra, butL1 is, L1 plays the role ofL0 in the
case of the usual Virasoro algebra. In particular, we are here interested in the casen1kÞ1
instead ofn1kÞ0.

~2! The argument does not apply forV5(0,1# becauseL0¹AV((0,1#). Since ~14! does not
involve L0 , it is clear that the cocycle found above is also a solution here, but it is not
if this solution is unique, because the uniqueness argument involvesL0 ~L0 being in the
algebra, but not in the derived algebra!. There are presently only partial answers to t
question of uniqueness of the central extension forAV((0,1#) and for the case of generalV.
The corresponding results are stated in Appendix A.

~3! Finally we remark that the aperiodic Virasoro algebra is a member of the following m
general class of algebras parametrized bylPR,

@Ln ,Lm#5l~m22n2!xVi
~n81m8!Ln1m1

ĉ

12
~~ln2!32~ln2!!dn2 ,2m2

,

@Ln ,ĉ#50 for all LnPAV~V i !. ~26!

We consider the casel51 because we want to be as close as possible to the usual Vira
algebra.

IV. STRUCTURAL PECULIARITIES OF AV „†0,1‡… AND AV „„0,1‡…

As a first step towards a representation theory forAV(@0,1#) andAV((0,1#), we investigate
their structure in more detail. WhereasAV((0,1#) is perfect as the usual Virasoro algebr
AV(@0,1#) is not. Both are not semisimple. The maximal nontrivial Abelian ideal is given

AV(@ 1
2,1#) % Cĉ and contains all other Abelian ideals. This maximal Abelian ideal is a spe

feature of the aperiodic Virasoro algebra.

Recall that by definitionAV(@ 1
2,1#) % Cĉ contains those generatorsLn , wherenPS(@ 1

2,1#). In
particular, this corresponds to thoseLn , wheren5n11tn2 fulfills 1

2<n12(1/t)n2<1.
We need the following definitions, where as beforeV1ª@0,1# andV2ª(0,1#:

Definition IV.1: LetV̂ i#V i . Then,

AV~V̂ i !5$LnPAV~V i !unPS~V̂ i !%, ~27!

and the set ofLOWERING, respectively, RAISING generators in AV(V̂ i), i 51,2, is denoted by

AV~V̂ i !
25$LnPAV~V̂ i !un,0%,

~28!
AV~V̂ i !

15$LnPAV~V̂ i !un.1%.
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Definition IV.2: TheDEGREEof a generator Ln is given by the second component of n,

deg~Ln!5n2 . ~29!

Furthermore, the degree of a product of generators is given by the sum of the degrees
individual generators,

deg~LnLk!5deg~Ln!1deg~Lk!. ~30!

Notice that the elementsL0 and L1 are the only generators of degree 0. Thus, the s

AV(V̂ i)
2 andAV(V̂ i)

1 consist of all elements of strictly negative, respectively, strictly posit

degree inAV(V̂ i).
The algebrasAV(@0,1#) andAV((0,1#) may be split into a direct sum of the maximal Abelia

ideal and its complement,

AV~@0,1# !5$AV~@ 1
2,1# ! % Cĉ% % AV~@0,1

2# !,

~31!

AV~~0,1# !5$AV~@ 1
2,1# ! % Cĉ% % AV~~0,1

2# !.

Both contain parts from the rising as well as lowering generators and we have the follo
Lemma IV.3: For AV(@0,1#), to each lowering generator of a particular degree

AV(@ 1
2,1#)2 corresponds exactly one raising generator of opposite degree in AV(@0,1

2#)
1, and to

each rising generator of a particular degree in AV(@ 1
2,1#)1 corresponds exactly one lowerin

generator in AV(@0,1
2#)

2 of opposite degree.

Proof: SupposeLnPAV(@ 1
2,1#)2 with deg(Ln)5n2 . Then n8P@ 1

2,1#, whence (12n)851

2n8P@0,1
2#. This impliesL12nPAV(@0,1

2#)
2 and deg(L12n)52n2 . h

We remark that a similar statement holds also forAV((0,1#).
For convenience of the reader who is not familiar with cut-and-project quasicrystals

indicate the beginning of the one-sided infinite sequences corresponding toAV(@ 1
2,1#)2 and

AV(@ 1
2,1#)1 as well asAV(@0,1

2#)
2 andAV(@0,1

2#)
1 explicitly. The corresponding sequences f

AV((0,1
2#)

2 andAV((0,1
2#)

1 differ from those with closed intervals only by the generatorL0 .

AV(@ 1
2,1#)2,

L2t ,L2123t ,L2326t ,L2428t ,L2529t ,..., ~32!

AV(@ 1
2,1#)1,

L212t ,L314t ,L415t ,L517t ,..., ~33!

AV(@0,1
2#)

2,

L2122t ,L2224t ,L2325t ,L2427t ,..., ~34!

AV(@0,1
2#)

1,

L11t ,L213t ,L416t ,L518t ,L619t ,... . ~35!

Further, we indicate the commutation relations between generators fromAV(@ 1
2,1#) and from

AV(@0,1
2#), as well as between generators inAV(@0,1

2#). We obtain

For LnPAV(@ 1
2,1#) andLmPAV(@0,1

2#) we have
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@Ln ,Lm#5~m22n2!Ln1mx@1/2,1#~m81n8!1
c

12
~n2

32n2!dn2 ,2m2
.

Here,Ln1mPAV(@ 1
2,1#), i.e.,Ln1m is contained in the maximal Abelian ideal if the comm

tator is nonvanishing. Ifn1m51, the central term appears.

For Ln ,LmPAV(@0,1
2#),

@Ln ,Lm#5~m22n2!Ln1m ,

whereLn1m may be either inAV(@0,1
2#) or in AV(@ 1

2,1#), but the cental term cannot appear.
trivial commutator cannot occur, because the addition of such points is always in the ape
point set sincen81m8,1.

Finally, notice that the central terms are contained in the maximal Abelian idealAV(@ 1
2,1#)

% Cĉ. Thus, factoring out this set would lead to the loss of the central terms, i.e., both ofL1 and
of the central term of Virasoro typeĉ.

V. REPRESENTATION THEORY FOR AV „†0,1‡… AND AV „„0,1‡…

Before constructing highest weight representations, we need a triangular decomposition
AV(@0,1#)6 andAV((0,1#)6 as defined above we obtain

Lemma V.1:

AV~@0,1# !5AV~@0,1# !2
% C$L0 ,L1 ,ĉ% % AV~@0,1# !1,

AV~~0,1# !5AV~~0,1# !2
% C$L1 ,ĉ% % AV~~0,1# !1, ~36!

is a triangular decomposition of AV(@0,1#) and AV((0,1#), respectively.
Proof: Observe that

@L1 ,Lr #50 for all LrPAV~~0,1# ! and AV~@0,1# !. ~37!

It follows from the fact that the tiles~distances between adjacent points! are eithert or t2 in
S((0,1#). The same holds forS(@0,1#) with exception of the tile of length 1 between the poin
0 and 1. But in the latter case, the structure constants of the aperiodic Virasoro algebra
@L1 ,L0#50, because the second component of these two points is zero.

All Cartan elements are of degree 0. Furthermore, the grading~29! is such that if X
PAV(@0,1#)2 with deg(X)5 i andYPAV(@0,1#)1 with deg(Y)5 j then deg(@X,Y#)5 i 1 j . h

It is important to notice that forAV((0,1#) the Cartan elements are central. Notice, th

AV(@0,1#)65AV(@0,1
2#)

6
% AV(@ 1

2,1#)6, so that the corresponding generators may be obta
from ~32!–~35!.

A. Highest weight representation

In order to determine a highest weight representation ofAV(@0,1#) we need a highest weigh
vector ~or vacuum! v0 which is an eigenvector of the Cartan elements and is annihilated by
raising generators, i.e.,

L1v05hv0 ,ĉv05cv0 , L0v05gv0

Lnv050 for LnPAV~@0,1# !1. ~38!

For AV((0,1#) we use the same definition only dropping the condition withL0 .
As a basis for the universal enveloping algebraU(AV(V i)

2) of AV(V i)
2 we use the mono-

mials built with the following ordering:
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Ln1
¯Lnk

, deg~Ln1
!<¯<deg~Lnk

!. ~39!

It is easy to check~using the commutation relations! that indeed any monomial ofU(AV(V i)
2)

can be transformed into a linear combination of monomials of the form~39!.
We shall use induced highest weight representations~or Verma modules! for which the rep-

resentation space is formed by such basis monomials applied to the vacuumv0 , i.e.,

Ln1
¯Lnk

v0 , deg~Ln1
!<¯<deg~Lnk

!. ~40!

~Here we do not adhere to strict mathematical exposition, e.g., we omit a tensor sign over a
subalgebra.!

The action of anyLnPAV(@0,1#)1 on a vectorvªLn1
¯Lnk

v0 can be calculated by means o
the commutation relations of the aperiodic Virasoro algebra, whereLn is commuted to the right
until it hits and annihilates the vacuum. The action ofLnPAV(@0,1#)2 on v leads to a linear
combination of vectors in the representation space. Further, forL0 we obtain

L0v5~deg~Ln1
¯Lnk

!1g!v. ~41!

~Notice that by construction deg(Ln1
¯Lnk

),0.) Hence,L0 acts as a grading operator. It splits th
vectorsvªLn1

¯Lnk
v0 of the representation space into subsets of the same degree and due~41!

we say thatv is of degree deg(Ln1
¯Lnk

). Finally,

L1v5hv, ĉv5cv. ~42!

Definition V.2: We say that theC-linear combinations of the vectorsv5Ln1
¯Lnk

v0 with l

ª2deg(Ln1
¯Lnk

) constitute the level l.
SinceL0 is not contained in the commutator algebra ofAV(@0,1#), its only function is to

assign a grading or level to the vectors. Thus, even ifL0 is not contained in the algebra as in th
case ofAV((0,1#), one may define the level of a vectorv independently ofL0 according to the
degree of the basis monomials by which it is formed, i.e., we can define

deg~v !ªdeg~Ln1
¯Lnk

!52 l , deg~v0!50. ~43!

Hence, the casesAV((0,1#) and AV(@0,1#) may be treated in parallel. Actually, we see th
representations ofAV((0,1#) may be obtained from those ofAV(@0,1#) by settingg50.

Remark V.3: The situation with the generator L0 is similar to the situation with the grading
generator d in affine Kac–Moody algebras. In many applications, d is dropped or replaced b
grading operator~incidentally denoted by2L0! obtained via the Sugawara construction.7

This representation of the algebra is not irreducible if the representation space cont
singular vectorvs , i.e., if there is a level which contains a vectorvs¹Cv0

with

Lnvs50 for LnPAV~@0,1# !1,

L0vs5~g2 l !vs , ~44!

L1vs5hvs ,ĉvs5cvs .

For AV((0,1#) the definition is similar replacing the condition withL0 by

deg~vs!52 lvs . ~45!

It is sufficient to test the first condition in~44! on a minimal set of generating elements
AV(V i)

1. In contrast to the usual Virasoro algebra, where the corresponding set is formed
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by the two generatorsL1 andL2 , the minimal set of generating elements ofAV(V i)
1 is infinite

because of the aperiodicity of the index set. We give the generating elements of smallest
explicitly up to degree 21,

L11t ,L212t ,L213t ,L416t ,L518t ,L10116t ,L13121t , . . . . ~46!

We give the singular vectors for the first eight levels explicitly in Appendix B. From th
results, we obtain the followingCONSTRUCTION PATTERN:

Proposition V.4: On the first eight levels, a singular vector for h5c(n221)/24 appears for
the first time on level n and a power of it reappears on level kn with kPN for the same value o
h.

The fact that powers of all previous singular vectors reappear for a givenh is due to the fact
that L1 acts as a central charge. The latter accounts also for the rather simple form
determinant formula~see below!.

Furthermore, we have the following:
Lemma V.5: The representation with h50 appears on any level. The corresponding singu

vector on level n is given by L2t
n .

Proof: The only elements in the linear combination of basis elements describing a ge
vector of leveln in the enveloping algebra, which may result inL2t

n21, areL2t
n andL2122tL2t

n22

under the action ofL11t . The condition implied byL11t(aL2t
n 1bL2122tL2t

n22)50 is 2anh
13b50. As a consequenceh50 impliesb50, so thatL2t

n is singular forh50. h

B. The determinant formula

We start by defining an operation which replaces conjugation. Since an↔2n-symmetry does
not exist for cut-and-project quasicrystals where 0 is not an inner point,~i.e., those which are
relevant for the aperiodic Witt and Virasoro algebra!, the conjugation known for the usual Vira
soro algebra cannot be used here.

Recall, however, that there is an↔12n-symmetry forS(@0,1#), which corresponds to a
n2↔2n2-symmetry for the second component. ForS((0,1#), this symmetry holds for all points
except 1.

We define
Definition V.6: TheCONJUGATION v of the generators Ln is given as

v~Ln!5L12n . ~47!

Notice however thatv(@Ln ,Lm#)Þ@v(Ln),v(Lm)#.
Implementing this definition of conjugation we can derive an analog to the Kac determ

formula. An explicit calculation for the first eight levels shows that the determinant formu
given as a product of the diagonal elements of the corresponding matrix~see~48!!. It is a conjec-
ture that also for higher levels, this statement is valid. We formulate it as

Conjecture V.7: The analog to theKac determinant formula for the aperiodic Virasoro
algebra is given as

detk~h,c!5a~k!)
n51

k

~h~n,c!2h!r n~k! ~48!

with

h~n,c!ª
c~n221!

24
, ~49!

a(k)PR for each kPN and rn(k)5](nPN appearing in p(k)).
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Notice thatr n(k) is, in words, the number of occurrence ofnPN in all possible partitions into
natural numbers ofkPN.

A comparison with the results for singular vectors shows thath(n,c) corresponds to those
values ofh where singular vectors have been found on the first eight levels.

In order to make the formula more transparent for the reader, we indicate details ab
derivation for the first levels in Appendix C and point out the construction pattern, from whic
conclude the conjecture for higher levels.

C. Some remarks about lowest weight representations

It is possible to define lowest weight representations in a similar way via

L0v05gv0 , L1v05hv0 , ĉv05cv0 ,

Lnv050 for LnPAV~@0,1# !2, ~50!

where again forAV((0,1#) the condition withL0 drops out, or is replaced by deg(v0)50.
A calculation of the first levels shows that singular vectors occur for the same values oh as

described in Proposition V.4 for highest weight representations. However, the singular vecto
of a different structure. For instance, it happens that for some values ofh the singular vector
corresponding to the highest weight representation is given in terms of a single basis elem
the universal enveloping algebra, e.g., forh5c/3 on level 3 byL2123t , whereas the singula
vector corresponding to the lowest weight representation at that level and for this value oh is
given as a linear combination of basis vectors, e.g.,hL213t22L212tL11t for h5c/3 on level 3.
Similarly, one may find a singular vector in a highest weight representation, e.g., on level
h5c/8 ~see Appendix B!, which is given as a linear combination of basis vectors, whereas
corresponding singular vector for the lowest weight representations on the same level and
sameh is just a single element, e.g.,L212t on level 2 forh5c/8.

D. Implications for unitarity

The vanishing curves in the determinant formula~48! ~see Fig. 1! allow to determine the
regions of unitarity, which are the regions where the determinant is positive semidefinite. Fro
condition^huL12n ,Lnuh&5iLnuh&i2>0 it is clear that a necessary condition for unitarity ish<0
andc>0.

Notice, that this deviates from the standard exposition of results about the Virasoro al
where the corresponding necessary condition leads to a region of unitarity given by the p
quadranth,c>0. The reason for this difference stems from the fact that usually@Ln ,Lm#5(n
2m)Ln1m is used, whereas here we consider@Ln ,Lm#5(m22n2)x@0,1#Ln1m , i.e. the structure
constants in reverse order. Changing our structure constants from@Ln ,Lm#5(m22n2)xV i

Ln1m

into @Ln ,Lm#5(n22m2)xV i
Ln1m would not change the qualitative picture: we would just obt

Fig. 1 reflected at thec-axis.
The vanishing curves of the determinant formula impose further restrictions on unitari

the case of the usual Virasoro algebra, they form parabola in the first quadrant the inters
points of which determine the discrete series corresponding to minimal models.

In the case ofAV(V i), the vanishing curves of~48! are given by straight lines which do no
impose any further conditions on unitarity, because they do not cross the quadrant of unita
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VI. OSCILLATOR REPRESENTATIONS

It is possible to find representations forAV(V i), i 51,2, with V15@0,1# and V25(0,1# as
before, which are of a similar type as the oscillator representations known for the usual Vir
algebra. In order to define them, we need the following operators:

with

j l~k1 ,...,kl !5H 1 if k11¯1klPS~V!

0 otherwise
~51!

together with a conjunction* ,

j l 1~k!* j l 2~m!5j l 11 l 2~k,m!. ~52!

The operatorsj l will play the role of a ‘‘bookkeeping device’’ for the dependencies of t
points of the aperiodic index set on each other.

With

@am2
,an2

#ªm2dm2 ,2n2
~53!

for m2 , n2PZ, we have
Proposition VI.1: The generators,

Lkª
1

2 (
j 2PZ

:a2 j 2
aj 21k2

:j1~k!5..Lk2
j1~k! ~54!

FIG. 1. Region of unitarity and vanishing curves of the determinant formula.
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with LkLmª(Lk2
Lm2

)j1(k)* j1(m)5(Lk2
Lm2

)j2(k,m) and where the dots denote normal orde

ing, fulfill the commutation relations

@Ln ,Lm#5~m22n2!xV i
~n81m8!Ln1m1 1

12n2~n2
221!dn2 ,2m2

~55!

which corresponds to the aperiodic Virasoro algebra with c51.
The proof follows the standard proof.8 For convenience of the reader, we outline the ma

steps.
Proof: We use the standard cutoff procedure in order to replace infinite sums by finite

For this, we use a functionc:R→$0,1% with

c~x!5H 1 if ixi<1

0 otherwise

and considerLk(e)ª 1
2S j 2PZ :a2 j 2

aj 21k2
:j1(k)c(e j 2), whereLn(e)→Ln ase→0.

One obtains

@ak2
,Ln~e!#5

1

2 (
j 2PZ

@ak2
,a2 j 2

aj 21n2
#j1~n!c~e j 2!5

1

2
k2an21k2

~c~ek2!1c~e~k21n2!!!j1~n!.

~56!

Then,

@Lm~e!,Ln#5
1

2 (
j 2PZ

@a2 j 2
aj 21m2

,Ln#j1~m!c~e j 2!

5
1

2 (
j 2PZ

~2 j 2!:an22 j 2
aj 21m2

:c~e j 2!j2~m,n!

1
1

2 (
j 2PZ

~ j 21m2!:a2 j 2
aj 21m21n2

:c~e j 2!j2~m,n!

2
1

2
dm2 ,2n2 (

j 2521

2m2

j 2~m21 j 2!c~e j 2!j2~m,n!. ~57!

With the transformationj 2→ j 21n2 and2 1
2S j 2521

2m2 j 2(m21 j 2)5(m2
32m2)/12 the claim follows

in the limit e→0, becausedm2 ,2n2
implies j2(m,n)5j2(12n,n)51. h

Similarly, for cÞ1 one obtains via the Fairlie construction,8,9 a corresponding result for th
aperiodic Virasoro algebra for generalc. Since the proof follows the usual one if the operatorj
are implemented as above, the corresponding proof is omitted here.

VII. CONCLUSION

An aperiodic analog to the Virasoro algebra has been presented, which links Lie algebra
aperiodic point sets and cut-and-project quasicrystals, respectively. The latter serve as an in
for the generators of the algebra. The structure constants of the aperiodic Virasoro algebra
the aperiodicity of the index set and take into account—via the appearence of the charac
function of the acceptance window—that the aperiodic point set is not invariant under add
This modification of the structure constants with respect to the usual Virasoro algebra le
crucial differences in structure and representation theory.

The representation theory and in particular the determinant formula derived in the frame
of highest weight representations suggest that minimal models corresponding to a discrete
do not occur in the scope of the aperiodic Virasoro algebra; the setting rather corresponds
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h>0 andc.1-case of the usual Virasoro algebra. It is interesting to investigate the applicati
the aperiodic Virasoro algebra in physical models where the Virasoro algebra correspond
this parameter range is relevant.

It would also be interesting to find invariant differential operators using the constru
singular vectors in combination with the oscillator representation above or with some analog
Feigin–Fuks approach.10
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APPENDIX A: CENTRAL EXTENSION FOR GENERAL ACCEPTANCE WINDOWS

For the acceptance window@0, 1# it has been shown that a unique central term of Viras
type exists. Concerning the central extension of the aperiodic Witt algebra for generalV, only
partial answers exist, which are summarized in this appendix.

If L0¹AW(V) then it is not possible to find a gauge such thatc(r ,0)50 for a cocycle
c(n,m) leading to a central extension ofAW(V). However, if we assume thatc(n,m) depends
only on the second components as in the case of@0, 1#, i.e., if we assumec(r ,k)5c(r 2 ,k2) also
here, then we can prove the following:

Lemma I.1: The cocyle corresponding to a central extension of AW(V) for generalV fulfills
c(r 2,0)50 for all r 5r 11tr 2PS.

Proof: The Jacobi identity implies the condition,

~m22n2!xV~m81n8!c~m21n2 ,k2!1~k22m2!xV~m81k8!c~m21k2 ,n2!

1~n22k2!xV~k81n8!c~k21n2 ,m2!50. ~A1!

With m51, i.e.,m250, we obtain

~n22k2!xV~k81n8!c~k21n2,0!50, ~A2!

and thus conclude thatc(r 2,0)Þ0 is only possible ifr 252n2 , i.e.,r 52n and 2nPS. Since there
are pointsnPS with 2nPS, we have to rule out this option explicitly.

To do this, use the fact that bothn and 2n are quasicrystal points, so that we may setm
512n andk52n in ~12!. We obtain

2n2c~0,2n2!1n2xV~3n8!c~3n2 ,2n2!50 ~A3!

and thus find thatc(0,2n2)Þ0 iff 3nPS and c(3n2 ,2n2)Þ0. The idea is to show that th
conditionc(3n2 ,2n2)Þ0 would imply 4nPS and so forth. For this, we proceed by inductio

SupposelnPS for l51,...,N. Then we can choosek5ln andm512(l21)n in ~12! to
obtain

2ln2c~~22l!n2 ,ln2!1~12l!n2xV~~l11!n8!c~~l11!n2 ,~2l11!n2!50. ~A4!

In particular, it follows that (l11)nPS, otherwise the entire bulk would be zero. Howev
this contradicts the aperiodicity of the set and hence proves the claim. h

Furthermore, one has for the special caseV5(0,1#,
Lemma I.2: Let m,n,kPS((0,1#). Then we have

c~k22m2 ,m2!50 for 0,12m8,k8<m8<1 ~A5!
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and

c~k21n2 ,m2!50 for 0,12m8,k8,12n8,m8<1. ~A6!

In particular, the restriction on the parameter range impliesmPS(@ 1
2,1#). Notice that with

sª12m similar conditions can be formulated for points inS~~0, 1
2#!.

Proof: Let n512m in ~A1! and use the previous Lemma to obtain

~k22m2!xV~m81k8!c~m21k2 ,2m2!2~m21k2!xV~12m81k8!c~k22m2 ,m2!50.
~A7!

Suppose first thatxV(m81k8)50 andxV(12m81k8)51 ; it follows that c(k22m2 ,m2)
50 for 12m8,k8<m8, which corresponds to the first claim.

Note that forxV(m81k8)51 and xV(12m81k8)50 one deduces thatc(m21k2 ,2m2)
50 for 12m8>k8.m8, which can be seen to be equivalent to the above statement by ta

instead ofmPAV((0,1
2#)12mPAV(@ 1

2,1#).
The other claim is a direct consequence of the cocycle condition together with the assum

that k81n8<1 andk81m8.1 as well asn81m8.1. h

As a direct consequence of Lemma 2.2 we formulate the following:

Theorem I.3: Let mPS(( 1
2,1#) and lPS((2(12m8),1#). Then c( l 2 ,m2)50.

It is interesting to notice that forLl andLm with l andm as given in the Theorem, we alway
have@Ll ,Lm#50, becausel 81m8.2(12m8)1m8522m8>1, so thatl 1m¹S.

Furthermore, note that if we restrict ourselves toAV((0,1
2#) and commute two such generato

Ln andLm , then we obtain (m22n2)Ln1m1c(n2 ,m2) where~A7! does not imply any restriction
In particular, suppose that in~A1! we choose the coefficients such that the sum of any two of

three elements is inAV((0,1
2#), so that we have

~m22n2!c~m21n2 ,k2!1~k22m2!c~m21k2 ,n2!1~n22k2!c~k21n2 ,m2!50. ~A8!

Then this is solved byc(s2 ,r 2)5s22r 2 ~can be gauged away! as well ass2
22r 2

2 and s2
32r 2

3

1s2
2r 22r 2

2s2 . Hence, ifL0 is absent, there may be other central extensions different from
central term of Virasoro type derived forV5@0,1#.

APPENDIX B: SINGULAR VECTORS

Explicit results for the singular vectors on the first eight levels in the highest weight mo
Level 1:

h50: L2t ;

Level 2:

h5c/8: v2ª4h/3L2122t2L2t
2 ,

h50: L2t
2 ;

Level 3:

h5c/3: v3¯L2123t ,

h50: L2t
3 ;

Level 4:

h5c/8: v ~4,1!ª8h/3L2123tL2t116h2/9L2122t
2 1L2t

4 28h/3L2122tL2t
2 5v2

2,
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h5
5c

8
: v ~4,2!ª2hL2224t25L2123tL2t ,

h50: L2t
4 ;

Level 5:

h5c: v5ª4h2L2325t212hL2224tL2t28hL2123tL2122t121L2123tL2t
2 ,

h50:L2t
5 for cÞ0; L2123tL2t

2 for c50.

Level 6:

h5
35

2
c: v ~6,1!ª2

206

9
cL2326t1L2123t

2 ,

h5
c

3
: v ~6,2!ªL2123t

2 5v3
2,

h5
c

8
: v~6,1!ª

4h2

9
L2123t

2 2
4h2

3
L2123tL2122tL2t1hL2123tL2t

3 2
8h3

27
L2122t

3 ,

1
2h2

3
L2122t

2 L2t
2 2

h

2
L2122tL2t

4 1
1

8
L2t

6 52
1

8
v2

3,

h50: L2t
6 for cÞ0; L2123t

2 and L2123tL2t
3 for c50.

Level 7:

h52c: v7ªh2L2427t24hL2326tL2t22hL2224t L2123t15L2123t
2 L2t ,

h50: L2t
7 for cÞ0; L2123t

2 L2t and L2123tL2t
4 for c50.

Level 8:

h5
c

8
: v ~8;1!ªv2

45v ~4,1!
2 ,

h5
5

8
c: v ~8,2!ª4h2L2224t

2 220hL2224tL2123tL2t125L2123t
2 L2t

2 5v ~4,2!
2 ,

h5
21

8
c: v ~8,3!ªL2428t ,

h50: L2t
8 for cÞ0,

L2428t ,L2326tL2122t ,L2326tL2t
2 2 9

7L2224tL2123tL2t1 15
7 L2123t

2 L2122t ,

L2123t
2 L2t

2 ,L2123tL2t
5 ,L2122t

4 ,L2122t
3 L2t

2 ,L2122t
2 L2t

4 ,L2122tL2t
6 for c50.
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APPENDIX C: DETAILS ABOUT THE DETERMINANT FORMULA

In this appendix, we use the notationLn1
¯Lnk

uv0& for the vector Ln1
¯Lnk

v0 and

^v0uL12n1
¯L12nk

for its conjugate.

~1! On level 1, one obtainŝv0uL11tL2tuv0&522h.
~2! On level 2, one gets

^v0uL212tL2122tuv0&524h1
c

2
, ^v0uL212tL2t

2 uv0&50,

^v0uL11t
2 L2122tuv0&56h, ^v0uL11t

2 L2t
2 uv0&54h2. ~C1!

Thus, det25216h2(h2(c/8)).

~3! Since the determinant formula relies on the observation that the determinant is given
product of the diagonal elements, it is sufficient to indicate where nontrivial entries
situated. The exact knowledge of the entries is not necessary. Thus, we will indicate non
entries only by a* in the following.

On level 3, the determinant formula is based on the following matrix, where column
labeled bŷ v0uL213t , ^v0uL11tL212t , and^v0uL11t

3 , and rows byL2123tuv0&, L2122tL2tuv0&,
andL2t

3 uv0&, respectively, to give

S* 0 0

* * *
0 0 *

D• ~C2!

The determinant is thus the product of the entries on the diagonal, i.e., the produ
^v0uL213tL2123tuv0&, ^v0uL11tL212tL2122tL2tuv0&, and ^v0uL11t

3 L2t
3 uv0&. One obtains det3

5(26h12c)(24h1(c/2))(22h))45384(h2(c/3))(h2(c/8))h4.

The principle is similar for higher levels. Also here, we only indicate the nontrivial entries
show that the determinant is indeed the product of the diagonal elements. Then the cl
immediate.

~4! For level 4, columns are labeled bŷv0uL314t , ^v0uL11tL213t , ^v0uL212tL212t ,
^v0uL11t

2 L212t , and ^v0uL11t
4 , and rows by L2224tuv0&, L2123tL2tuv0&,

L2122tL2122tuv0&, L2122tL2t
2 uv0&, andL2t

4 uv0&, respectively, and we obtain

M4ªS*1 *2 0 0 0

0 *3 0 0 0

* * * * *
0 * 0 * *
0 0 0 0 *

D• ~C3!

When calculating the determinant, we encounter the following phenomenon: whenever the
two nontrivial entries in one principal row or column according to which the general determ
is developed, then the subdeterminant corresponding to the nondiagonal element vanishes
a general pattern appearing also on higher levels, so we indicate it here once explicitly,

det~M4!5*1 detS*3 0 0 0

* * * *

* 0 * *
0 0 0 *

D1*2 detS0 0 0 0

* * * *
0 0 * *
0 0 0 *

D5*1*3 detS* * *
0 * *
0 0 *

D. ~C4!
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~5! On level 5 we order columns and rows such that the dependence on level 4 is disp
This type of order will be used also on higher levels. The entries of the submatrix, w
can be infered directly from the previous level are denoted by ‘‘4.’’
With the order,

^v0uL415t ,^v0uL212tL213t ,^v0uL11tL314t ,^v0uL11t
2 L213t ,^v0uL11tL212t

2 ,^v0uL11t
3 L212t ,^v0uL11t

5

for columns, and L2325tuv0&, L2123tL2122tuv0&,L2224tL2tuv0&, L2123tL2t
2 uv0&,

L2122t
2 L2tuv0&, L2122tL2t

3 uv0&, L2t
5 uv0&

for rows, we find

M5ªS* * * * 0 0 0

0 * 0 * 0 0 0

0 0 4 4 4 4 4

0 0 4 4 4 4 4

0 * 4 4 4 4 4

0 0 4 4 4 4 4

0 0 4 4 4 4 4

D• ~C5!

~6! Columns in consecutive order for level 6,

^v0uL416t ,^v0uL212tL314t ,^v0uL213t
2 ,^v0uL212t

3 ,^v0uL11tL415t ,^v0uL11tL212tL213t ,

^v0uL11t
2 L314t ,^v0uL11t

3 L213t ,^v0uL11t
2 L212t

2 ,^v0uL11t
4 L212t , and ^v0uL11t

6 .

Rows in consecutive order,

L2326tuv0&,L2224tL2122tuv0&,L2123t
2 uv0&,L2122t

3 uv0&,L2123tL2122tL2tuv0&,

L2224tL2t
2 uv0&,L2123tL2t

3 uv0&,L2122t
2 L2t

2 uv0&,L2122tL2t
4 uv0&, and L2t

6 uv0&.

Again the order of the elements is chosen such that the dependence on the previous
displayed. The entries of the submatrix, which can be infered directly from the previous lev
denoted by ‘‘5,’’

M6ª1
* 0 * 0 0 0 0 0 0 0 0

* * * 0 0 * * * 0 0 0

0 0 * 0 0 0 0 0 0 0 0

* * * * 0 * * * * * *

* 0 * 0 5 5 5 5 5 5 5

0 0 * 0 5 5 5 5 5 5 5

0 0 0 0 5 5 5 5 5 5 5

0 0 0 0 5 5 5 5 5 5 5

0 0 * 0 5 5 5 5 5 5 5

0 0 0 0 5 5 5 5 5 5 5

0 0 0 0 5 5 5 5 5 5 5

2• ~C6!

~7! The calculations for level 7 and level 8 have been carried out and display an analo
construction pattern which again shows that the determinant is the product of the e
on the diagonal.

Under the sum, the calculation of the first eight levels suggests that the determinant fo
is always given as the product of the diagonal entries. This leads to the conjecture form
above.
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We prove that anm-dimensional unit ballDm in the Euclidean spaceRm cannot be
isometrically embedded into a higher-dimensional Euclidean ballBr

d,Rd of radius
r ,1/2 unless one of two conditions is met:~1! the embedding manifold has di-
mensiond>2m; ~2! the embedding is not smooth. The proof uses differential
geometry to show that ifd,2m and the embedding is smooth and isometric, we
can construct a line from the center ofDm to the boundary that is geodesic in both
Dm and in the embedding manifoldRd. Since such a line has length 1, the diameter
of the embedding ball must exceed 1. ©2000 American Institute of Physics.
@S0022-2488~00!00707-6#

I. INTRODUCTION

Mechanical deformation of objects is a part of our everyday experience. Objects like
springs, wrapping films or blood cells are designed to be deformed in specified ways. Clea
shape of an object influences how it may be deformed. We will be interested in looking at ho
intrinsic geometry of an object restricts the ways in which the object can be deformed.

The mathematical notion of a Riemannian manifold gives a way of describing the shape
object and its deformation. A Riemannian manifold is a set that has the topological structure
Euclidean spaceRn locally and is equipped with a local measure of distance, called the metric
interesting question about two-dimensional or one-dimensional objects~manifolds! in three-
dimensional space is whether they can be deformed ‘‘isometrically’’— that is, without chan
lengths of lines in the object. Since an isometric deformation of a material causes no stretch
is of practical importance to know what kinds of deformation can be made isometrically.

A classical problem in differential geometry is the study of isometric embeddings of a
two-dimensional sheet inR3. This is the study ofdevelopable surfaces.1,2 This problem has seen
a recent resurgence of interest3–7 because of its connections with the nature of the singularitie
a crumpled sheet.8–13

Differential geometers are interested in the much more general question of whether a
manifold can be embedded in another manifold isometrically. A sphere and a Mo¨bius strip are
examples of two-dimensional manifolds that cannot be isometrically embedded inR2 but can be
isometrically embedded inR3. There is a fundamental theorem, due to Nash14 showing that every
manifold can be embedded in an Euclidean spaceRd of a sufficiently large dimension. Howeve
the smallest dimension which allows this embedding depends on the additional structure im
on the manifold and the embedding, and is the subject of current research. A more co
discussion of this question and improvements of Nash’s results can be found in Refs. 15 a
51070022-2488/2000/41(7)/5107/22/$17.00 © 2000 American Institute of Physics
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In this paper we study theconfinability of an embedded manifold. We will say that am
dimensional object isconfinablein d dimensions if it is possible to smoothly deform the obje
without inducing any stretching so that it lies inside an arbitrarily smalld-dimensional sphere. O
course, for this to make sense, we needd.m. Note thatd.m does not imply that such defor
mations are always possible. A two-dimensional sheet confined in a shrinking sphere de
singularities—a phenomenon described informally ascrumpling.Thus there is a lower bound o
the size of the enclosing sphere which can contain the sheet smoothly and isometrically,
without any stretching. We show below that this bound exists whenever the embedding spa
fewer than twice the dimensions of the embedded manifold: the greatest distance betwe
embedded points, or the ‘‘span’’ of the embedded sheet, must be at least half the intrinsic di
of the sheet. The converse of our theorem states that anm-dimensional manifold may be confine
into an arbitrarily small sphere inR2m. This converse may be readily shown by an expli
construction.17

The paper is organized as follows—We begin by discussing the problem in Sec. II. In
section, we also illustrate the ideas behind our proof using the case of a two-sheet embe
three dimensions. Section III A reviews the theorems of differential geometry on which our
rem is based, and Sec. III B contains the proof of the theorem, together with the proofs of
lemmas used in the proof of the theorem. Section IV discusses implications of the theorem,
ideas, and possible generalizations.

In the body of the paper, we use many standard definitions and results from differ
geometry. For completeness, we include an appendix, where we discuss some of these de
and results. In this appendix, we have appended brief remarks to the standard definitions
various mathematical objects to give some physical intuition about some of these notio
complete discussion of these and related topics can be found in Refs. 18 and 19.

II. CONSTRAINED ISOMETRIC IMMERSIONS

Our study concerns the distortions of an object in space. Accordingly, we must charac
mappings of a manifoldM representing the object into another manifoldM̃ representing the space
Let f: M→M̃ be a smooth mapping and letf* : TpM→Tf(p)M̃ be the induced map between th
tangent space ofM at p and the tangent space ofM̃ at f(p).

Definition 1: f is an immersion iff* : TpM→Tf(p)M̃ is one-to-one for every pPM .
If M and M̃ are Riemannian manifolds andf is an immersion, we will say thatf is an

isometric immersionif

^X,Y&p5^f* X,f* Y&f~p! ,

for all pPM , all X,YPTpM .
We are now in a position to state our problem precisely.
Let Dm5$pPRmuipi<1% be the closed unit disk inRm and B̄r5$qPRduiqi<r % be the

closed ball with radiusr in Rd. Given anr .0, does there exist an isometric immersionf: Dm

→B̄r? By analogy with the case of a 2-sheet, we will call the isometric immersionf: Dm

→B̄r , if it exists, a smoothconfinementof an m-sheet. Such a smooth confinement is alwa
possible whend>2m.17 An explicit realization is given in Sec. III B.

In theorem 2, we show that, ifd,2m, we can chooser sufficiently small so that there is n
such immersion. We will prove this theorem in Sec. III B. In the rest of this section, we discus
idea behind our proof of the theorem using the example of a two-dimensional surface in
dimensions.

The isometric embedding of two-dimensional ‘‘flat’’ sheets inR3 is a problem that has bee
explored by classical geometers for more than a century. This is the study ofdevelopable surfaces
in three dimensional space.2 A surface is developable if it has zero intrinsic curvature everywh
~with the exception of possible singular points and lines!. Developable surfaces are remarkab
because, as proved by theTheorema Egregium,2 they may be constructed by deforming a porti
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of the plane without stretching it. A thin sheet of paper is essentially unstretchable, an
allowed deformations of the sheet provide the archetypal model of a developable surface. A
may be smoothly bent into a portion of the surface of a cone or cylinder, but not into a porti
the surface of a sphere. The former are developable while the latter is not.

Consider a flat sheet smoothly bent into a portion of a cone or a cylinder without stretch
in Fig. 1. Through each point on the surface, there exists at least one line, thegenerator, that is a
geodesic~straight line! both in the sheet when it is flattened out inR2 and in the sheet as it is
embedded inR3. These generators can be characterized by the fact thatp andq are two points on
a generator if and only ifd(p,q), the distance betweenp andq on the sheet is the same asr (p,q),
the distance between the imagesf(p) and o(q) in the embedding spaceR3. Thus, in these
examples, given a pointp in the sheet, one can find a straight line that extends fromp to some
point q on the boundary. The length of this line inR3 is equal to the distance betweenp andq in
the sheet. Consequently, no sphere whose diameter is smaller than half the diameter of th
can contain the sheet.

We now consider a general isometric embedding of a 2-disk inR3. We can choose globa
Cartesian coordinates on the disk and also onR3. In these coordinates, the embedding is given
three real-valued functionr a(xa), a51,2,3, wherexa, a51,2 are Cartesian coordinates on t
disk. If we let r (xa) denote a vector valued function with componentsr a(xa), thestrain is given
by20

uab5
]r

]xa •
]r

]xa2dab ~1!

and the curvature is given by

Cab5
]2r

]xa]xb •n , ~2!

wheren is the unit normal to the surface. Theprincipal curvaturesare the eigenvalues of th
symmetric matrixCab. TheGaussian curvatureis defined as the product of the principal curv
tures.

FIG. 1. A cone and a cylinder that are made by smooth deformations of a portion of a sheet without stretching. B
cone and the cylinder are developable surfaces and the straight lines shown are generators for the surfaces. No
cone has a singularity at its apex, where it has an infinite curvature.
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To show the existence of generators for all isometric immersions of a flat sheet inR3, we need
Gauss’Theorema Egregium.2 This theorem asserts that the isometric immersion yields a de
opable surface, so that the Gaussian curvature is zero everywhere. Consequently, at leas
the principal curvatures is zero at every point on the surface.

Let p denote the center of the 2-disk that is embedded inR3. We first consider the case wher
only one principal curvature is zero atp. Since only one principal curvature is zero, there is
unique generator throughp. It can be shown that this generator can be extended until it runs
the boundary of the disk atq. Since the image of the generatorpq in R3 is also a straight line.
d(p,q)51 implies thatr (p,q)51. Consequently, the sheet cannot be embedded inside a
with a diameter less than 1.

We now consider the remaining case: thatboth principal curvatures vanish atp. In this case,
there isn’t a unique generator throughp. Further, not every local generator throughp need be
extendible as a straight line in the embedding space (R3) all the way to the boundary as is evide
from Fig. 2. In this case, we pick a local generator and extend it as far as possible while ke
it a straight line inR3. Let the maximal straight line beps.Both principal curvatures are zero a
the points, but, given ane.0, we can find a pointp1 close tos such that one principal curvatur
is nonzero atp1 and d(s,p1),e ~see Fig. 3!. Since the pointp1 has one nonzero principa
curvature, from the argument in the previous paragraph, it follows that there exists a points1 on
the boundary such that the image of the geodesicp1s1 in the sheet is a straight line inR3. If the
curvature is everywhere bounded, by makingd(s,sn) sufficiently small, we can make the angle
between the segmentsp1s1 and ps virtually the same in both the sheet and in the space so
d(p,s1)2r (p,s1) is as small as we please.

We will now show this rigorously. The difference betweend(p,s1) andr (p,s1) is due to two
factors. One contributing factor is that the small segmentsp1 is flat in the sheet but curved in th
embedding space, so thatr (s,p1)Þd(s,p1). However, both these lengths are small, since they
bounded bye, and the contribution of this segment tod(p,s1)2r (p,s1) is bounded by 2e.

Another contributing factor is that, since the curvature is not zero on the segmentsp1 , the
angles between the straight segmentspsandp1s1 in the embedding space and in the sheet are
equal. Letu denote the angle between the segmentsps and p1s1 in the sheet and letu8 be the
angle between the images of these segments in the embedding space. Since the curva
measure of the rate of change of the angle that a tangent vector makes with respect to a fix
it is easily seen that

FIG. 2. A disk with both principal curvatures zero at the center. The inner triangle is the region where both the pr
curvatures are zero. The three curved regions have one nonzero principal curvature. The straight line are the gen
this surface. The thick line is a generator through the center that cannot be extended until the boundary. The inne
is the setA15B1 and the three curved regions together are the setB0 . The generators in the the curved regions are
leavesof the relative nullity distributionD in B0 and the inner triangle is a leaf ofD in B1 . ~See Sec. III B for the
definitions ofA1 ,B1 ,B0 ,D and ‘‘the leaves of a distribution.’’!
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uu2u8u<Kd~s,p1!,

whereK is a bound on the components of the curvature tensorKab
a . Since the segmentsps and

p1s1 are straight both in the sheet and in the embedding space,r (p,s)5d(p,s) and r (p1 ,s1)
5d(p1 ,s1). Also, r (s,p1)<d(s,p1)<e. Combining the estimates

ud~p,s1!2Ad~p,s!21d~p1 ,s1!222d~p,s!d~p1 ,s1!cos~u!u<d~s,p1!<e,

ur ~p,s1!2Ar ~p,s!21r ~p1 ,s1!222r ~p,s!r ~p1 ,s1!cos~u8!u<r ~s,p1!<e.

ucos~u!2cos~u8!u<uu2u8u

with the results from above and usingd(p,s)<R, d(p1 ,s1)<R, whereR is the radius of the disk,
we obtain

ud~p,s1!2r ~p,s1!u<C1~21KR!e,

whereC1.1 is a constant. Note that the bound on the right-hand side reflects the contributio
both the factors—the term 2e is the contribution from the length of the segmentsp1 , and the term
KRe is the contribution from the difference between the anglesu andu8.

Now, we choose a sequencedn→0 and repeat this construction withe5dn , for eachn. This
will yield a point s1(n)5qn on the boundary withr (p,qn)2d(p,qn)<C1(21KR)dn so that
r (p,qn)2d(p,qn)→0 asn→`. Since the boundary of the unit disk is compact, the sequencqn

has an accumulation pointq on the boundary and there exists a subsequenceqnk
that converges to

q. From the above estimate, it follows thatr (p,q)5d(p,q) andd(p,q)51 implies that the disk
cannot be isometrically embedded inside a spherical shell with a diameter less than 1.

Our generalization to anm-disk in ad-shell, presented in Sec. III, is along the same lines
the argument above for developable surfaces inR3. Now the local curvature is a vector-value
tensor rather than a scalar-valued tensor, so that there are no obvious ‘‘principal curvature
no obvious generalization of the Gaussian curvature. Nevertheless, we will show that the
analogs of the local generators. In the situationd,2m, lemma 1 along with corollary 1.1 asser
that there exists at least one line through the pointp in the m-sheet that has zero curvature in th
embedding space atp. The direction of this line is a local ‘‘flat direction’’ atp.

FIG. 3. This figure is a two-dimensional representation of the embedding in Fig. 2. The inner triangle is the region
both the principal curvatures are zero and the three sets bounded by a circular arc and an edge of the triangle are th
with one nonzero principal curvature. The dashed lines represent the generators in these regions. The pointp is the center
of the disk andps is a straight line through the center that cannot be extended keeping it straight in the embedding
The pointp1 is in the curved region withine of s. The points1 is the intersection of the generator throughp1 with the
boundary of the disk.
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Lemmas 2, 3, and 4 show that there exists a ‘‘large’’ set of pointsU such that

~1! almost every point in the sheet is inU,
~2! if pPU, it is possible to extend the line that has zero curvature locally to get a straight li

finite length that is also a geodesic in the embedding space.

Given a pointp0PU, there exists a maximal extension of a zero curvature line throughp0 , and we
will denote the other endpoint of this segment bys0 . Therefore,s0 has the property that it is no
possible to extendp0s0 any further while keeping it a geodesic in the embedding space. Lem
4 also tells us that the number of flat directions is a constant along a geodesic so that it is th
at s0 andp0 .

Given anye.0, lemma 5 asserts the existence of a pointp1 in U such thatd(s0 ,p1),e and
the number of local flat directions atp1 is less than the number of flat directions ats0 . Since
p1PU, we can now start fromp1 and proceed along a maximally extended geodesic unti
termination points1 . Repeating this process, we get sequences of pointsp2 ,p3 ,...,pk and
s1 ,s2 ,...,sk such that

~1! the image of the straight linepjsj is a geodesic in the embedding space,
~2! pj 11 has fewer local flat directions thanpj , and
~3! d(sj ,pj 11),e.

Since the number of flat directions is between 1 andm everywhere on the sheet, it follows that th
sequencespj and sj are finite. Consequently, for some finitek, the point sk5q lies on the
boundary of the disk.

Lemma 6 shows that for the image of a straight linepq in the sheet to be a geodesic in th
embedding space, it is necessary and sufficient thatr (p,q)5d(p,q). It follows that r (pj ,sj )
5d(pj ,sj ) for all j. Lemma 7 shows that ifr (p,p1)5d(p,p1) and r (p1 ,p2)5d(p1 ,p2), then
r (p,p2)5d(p,p2). That is, if two pointsp andq can be connected by a curve that is a piecew
geodesic in the embedding space, the image of the straight line connectingp andq in the sheet is
also a geodesic in the embedding space.

By taking a sequencedn→0, we can repeat the above construction for eachn with e5dn .
This will yield a sequence of pointsqn on the boundary such thatp can be connected toqn by a
discontinuous, piecewise straight curve, with a finite number of straight line segmentspjsj . The
discontinuities go to zero asn goes to infinity sinced(sj ,pj 11),dn . The compactness of th
boundary of the disk, gives an accumulation pointq for the sequenceqn . The above construction
along with lemmas 6 and 7 show that, given any pointp in the disk, there exists a pointq on the
boundary of the disk such thatr (p,q)5d(p,q). Sinced(p,q)51 whenp is the center of the disk
it follows that the disk cannot be embedded in a ball with diameter less than 1.

III. THE GEOMETRY OF A CONFINED m-SHEET

We will consider the problem of the existence of an isometryf: Dm→B̄r . In Sec. III A, we
will set up the notation we use and review the differential geometry of isometric immersion
Sec. III B, we prove the results stated in Sec. II.

A. Review of differential geometry

In this section, we will review the differential geometry of the isometric immersion
m-manifolds in d-manifolds. We will use the coordinate~index! free language and follow the
presentation in Ref. 21, but we will restate our results in the indexed notation where appro

We will consider the case of a smoothm-manifoldM, typically the unit disk inm-dimensional
Euclidean space, immersed in a smoothd-manifold M̃ , typically Rd. Since bothM and M̃ are
subsets of Euclidean spaces, we can find global Cartesian coordinates~a coordinate patch tha
covers the entire manifold! for both M and M̃ . We will denote these coordinates onM by xa

~greek superscripts! and onM̃ by r a ~italic superscripts!.
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We will require that the immersionf: M→M̃ be smooth. Here,f is the coordinate free
representation of the immersion given by thed functionsr a(xa), a51,2,...,d. Let TM and TM̃

denote the tangent bundles ofM andM̃ , respectively. We will use (v)a with an italic superscript
to denote the indexed representation of a quantityc that takes values inM̃ or TM̃ and (U)a with
a greek superscript to denote the indexed representations of a quantityU that take values inM or
TM. Using this notation, the statement thatf(x) is the index free representation ofr a(xa) is
written as (f)a((x)a)5r a(xa).

The immersion induces a mapf* (x):TxM→Tf(x)M̃ between the tangent space ofM at x and
the tangent space ofM̃ at f(p) that is injective~one to one! for eachxPM . Since the immersion
f is isometric,

^f* X,f* Y&M̃5^X,Y&M ,

for everyxPM andX,YPTxM , ^.,.&M denotes the Riemannian metric onM and similarly forM̃ .
For the casef: Dm→Rd that we are considering, since thexa are global Cartesian coordinates, th
metric onDm is given by^X,Y&M5dab(X)a(Y)b, and the immersion is given by a vector value
function r (xa) with Cartesian componentsr a(xa). The above equation is then equivalent to t
statement

]ar•]br5dab .

We are therefore asserting that the strainuab is identically zero.
Locally identifyingM with its image underf, we can consider the tangent space ofM at x as

a subspace of the tangent space ofM̃ . Because of this identification, we will henceforth denote
vector f* XPTM̃ by X for all XPTM. For each pointxPM , we will denote the subspace o
vectors inTf(x)M̃ that are orthogonal to the vectorX5f* XPTM̃ for all XPTM by TxM

'. This
gives the decomposition

Tf~x!M̃5TxM % TxM
',

whereTxM
' is the orthogonal complement ofTxM in Tf(x)M̃ . The vector bundle

TM'5 ø
xPM

TxM
',

is called the normal bundle toM. Therefore, the union of the tangent spacesTyM̃ over all the
points inyPM̃ that are in the imagef(M ), is the vector bundle given by

TM̃uf~M !5 ø
xPM

~TxM % TxM
'!.

This will motivate defining the tangential projection

~ !T:TM̃uf~M !→TM,

and the normal projection

~ !':TM̃uf~M !→TM'.

As explained in the appendix, there exists a differential operator on a Riemannian man
called theLevi-Civita connection.19 The connections onM̃ and M are related by theGauss
formula:
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¹̃XY5~¹̃XY!T1~¹̃XY!'5¹XY1a~X,Y!, ~3!

whereX,YPTM are arbitrary~smooth! vector fields anda: TM3TM→TM' is a symmetric
bilinear map.a is called thesecond fundamental formof f. A calculation using the representatio
r a(xa) for the immersionf shows that

~a~X,Y!!a5Kab
a ~X!a~Y!b.

a is therefore the coordinate free representation of the extrinsic curvatureKab @see Eq.~2!#.
Given vector fieldsXPTM andjPTM', the shape operatorAj : TM→TM is defined by

AjX52~¹̃Xj!T.

Using ^j,Y&50 for every vector fieldYPTM and computing¹̃X^j,Y& yields

^AjX,Y&5^a~X,Y!,j&.

We denote the normal component of¹̃Xj by ¹X
'j and this defines a compatible connection on

normal bundle. The above equation yields theWeingarten formula

¹̃Xj52AjX1¹X
'j. ~4!

A characterization of the intrinsic geometry of a manifold is given by the Riem
curvature.18,19

Definition 2: For a Riemannian manifold M with a Levi-Civita connection¹, the Riemann (or
intrinsic) curvature tensor R is given by

R~X,Y!Z5¹X¹YZ2¹Y¹XZ2¹@X,Y#Z,

where X,Y,ZPTM are arbitrary (smooth) vector fields and the Lie-Product@¯# is defined by

@X,Y#5¹XY2¹YX.

Remark 1: The Riemann curvature is zero for the Euclidean spaceRm. It can be shown that
the Riemann curvature is also zero for all manifolds that are isometric embeddings ofRm in a
larger space. The converse is also true, so that the Riemann curvature of an m-manifold M
zero implies that given qPM there is an open set UPM containing q such that there exists a
isometryf: V→U, where V is an open neighborhood of the origin inRm.

Computing the curvature tensor ofM̃ and taking the tangential projection ofR̃(X,Y)Z yields
the Gauss equation

^R~X,Y!Z,W&5^R̃~X,Y!Z,W&1^a~X,W!,a~Y,Z!&2^a~X,Z!,a~Y,W!&, ~5!

whereR andR̃ are the curvature tensors ofM andM̃ , respectively. Taking the normal projectio
gives theCodazzi equation

~R̃~X,Y!Z!'5~¹X
'a!~Y,Z!2~¹Y

'a!~X,Z!, ~6!

where

~¹X
'a!~Y,Z!5¹X

'~a~Y,Z!!2a~¹XY,Z!2a~Y,¹XZ!.

Definition 3: A subspace valued function, that is a function defined on a manifold M, w
value at a point xPM is a subspace of TxM is called a distribution.
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Given an isometric immersionf: M→M̃ , the second fundamental forma: TM3TM
→TM' determines a distribution as follows. For each xPM , a subsapceD(x) is defined by

D~x!5$pPTxM :a~Y,p!50 for all YPTxM %.

D(x) is called the subspace of relative nullity and its dimensionality is the index of rela
nullity n(x). The relative nullity distributionD is the function x°D(x), the subspace of relative
nullity at x.

Definition 4: A distribution D is smooth on a set U#M if there exist smooth vector fields Xi :
U→TU, i 51,2,...,p such that at each xPU, the vectors Xi(x)PTU, i 51,2,...,p form a basis for
the subspace D(x).

B. Immersion theorems

We will now restrict our attention to smooth isometric mappingsf: Dm→Rd, whereDm

5$xPRm:ixi<1% is the closed unit disk inRm, and bothDm and Rd are equipped with the
standard Euclidean metric. In this case, bothDm andRd have zero Riemann curvature, so that, f
the isometric immersionf, the Gauss equation~5! yields

^a~X,W!,a~Y,Z!&2^a~X,Z!,a~Y,W!&50 ~7!

and the Codazzi equation~6! yields

;~¹X
'a!~Y,Z!2~¹Y

'a!~X,Z!50, ~8!

for arbitraryX,Y,Z,WPTDm.
We will definer(f), the span or the diameter of the immersionf as

r~f!5 sup
x,yPDm

r ~x,y!,

where

r ~x,y!5if~x!,f~y!iRd,

is the Euclidean distance between the images of the pointsx and y in Rd. We will denote the
Euclidean distance inDm,Rm between the pointsx andy by d(x,y).

Using this definition of the span of an embedding, we can reformulate the question abo
existence of an isometryf: Dm→B̄r for arbitraryr .0 ~see Sec. II! as follows—given any Rs with
0,Rs,1, is there a smooth isometric immersionf: Dm→Rd, with r(f)<Rs?

We first recall the earlier result17 on the existence of such an isometry for allRs.0 if d
>2m.

Theorem 1: If d>2m, there exists a smooth isometryf with r(f)<Rs , for any given Rs ,
0,Rs,1.

Proof: This proof is from Ref. 17. Define

f: ~x1 ,x2 ,...,xm!→~y1 ,y2 ,...,y2m ,...yn!,

by

y2i 215
Rs

A2m
cosSA2mxi

Rs
D , y2i5

Rs

A2m
sinSA2mxi

Rs
D ,

for i 51,2,...,m, and

yk50,
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for k.2m. Clearlyr(f)<Rs . Computing the strainuab by Eq.~1! givesuab50 showing thatf
is a smooth isometry withr(f)<Rs . h

The following theorem is the main result of this paper.
Theorem 2: If d,2m, and f: Dm→Rd is a smooth isometric immersion, r(f)>1.
This theorem implies the nonexistence of a smooth isometric immersionf with r(f),Rs for

arbitrarily small but positiveRs . Before we prove this theorem, we will prove a few results t
are useful in the proof of the theorem.

Definition 5: Let V and U be finite-dimensional vector spaces andb: V3V→U be a bilinear
map. We denote by N(b) the subspace

N~b!5$nPV:b~Y,n!50, for all YPV%

called the (right) kernel ofb. We may define, similarly the left kernel. Ifb is symmetric, the left
and the right kernels agree and the subspace N(b) is called the kernel ofb.

Definition 6: Let V and U be finite-dimensional vector spaces. A bilinear mapb: V3V→U is
flat with respect to a nondegenerate inner product^...&:U3U→R if

^b~X,W!,b~Y,Z!&2^b~X,Z!,b~Y,W!&50

for all X,Y,Z,WPV.
Lemma 1: Letb: V3V→U be a symmetric flat bilinear form with respect to the positiv–

definite inner product̂ .,.&:U3U→R. Then

dimN~b!>dimV2dimU.

This result and the corollary that follows~corollary 1.1! are due to Cartan.22

Proof: SettingW5X andZ5Y in the definition of a flat bilinear form and using the symme
of b gives

^b~X,X!,b~Y,Y!&5^b~X,Y!,b~X,Y!& ~* !

for everyX,YPV. We will use this result repeatedly in the proof of the lemma.
Let dimV5m and dimU5k. We need to demonstrate the existence of at leastm2k linearly

independent vectorsn1 ,n2 ,...,nm2k such thatb(ni ,Y)50 for all YPV and i 51,2,...,m2k.
We only need to consider the casem.k as there is nothing to prove form<k. It suffices to

demonstrate the existence of a singlepÞ0 satisfyingb(Y,p)50 for all YPV. To see this, note
that, having found one suchp. b naturally induces a mapb1 :V/V13V/V1→U whereV1 is the
subspace spanned byp so thatV/V1 is a vector space of dimensionm21 and then repeat the
demonstration of the existence of a vectorp1PV/V1 . Continue in this way, reducing the dimen
sion of the quotient by one at each step, until that dimension has been reduced tok. In fact, it
suffices to find a nonzerop satisfyingb(p,p)50, for this automatically impliesb(Y,p)50 for all
YPV by ~* ! and the positive–definiteness of^Z, Z&.

To exhibit a suitablep, we first construct a maximal set of nonzero vectorsp1 ,p2 ,...,pl such
that b(pi ,pj )50 for iÞ j . We will construct this set inductively. Letp1 ,...,ps be a set ofs
elements ofV, such thatb(pi ,pj )50 for i , j 51,...,s; iÞ j . Such a set always exists since we c
chooses51 and setp1 to be any nonzero vector inV. This set can be enlarged since we can sh
the existence of an (s11)th vector,ps11 , such that the above holds fori , j 51,...,(s11); iÞ j . To
this end, setv5p11...1ps . Choose anyqÞ0 in V with b(q,v)50. This is always possible
since dimV.dimU, and to find such aq, we need to solvek linear equations inm.k unknowns.
Then ~* !, with X5q, Y5v, yields

05^b~q,q!,b~v,v !&5 K b~q,q!, S ( b~pi ,pi ! D L ,

where we have used the bilinearity ofb^.,.& and ^.,.&. But for eachi, we have
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^b~q,q!,b~pi ,pi !&5ib~q,pi !i2>0,

by ~* ! and the positive–definiteness of^...&. It follows that b(q,pi)50 for all i 51,...,s. So,
ps115q is the desired vector.

Using (m11) times the result of the paragraph above, construct nonzero ve
p1 ,...,pm11 , with b(pi ,pj )50, for i , j 51,...,(m11); iÞ j . These must be dependent, i.e., w
must haveSr ipi50, with at least oner i , say r n , nonzero. But now we have 05b(pn ,Sr ipi)
5r nb(pn ,pn). We conclude thatb(pn ,pn)50. Settingp5pn gives the existence of ap such that
b(p,p)50 and as remarked above, this suffices to prove the lemma. h

Let f: Dm→Rd be a smooth isometric immersion. The second fundamental forma of the
immersionf at is a symmetric bilinear mapa: TM3TM→TM'. Equation~7! implies thata is
a flat bilinear form. At each pointxPDm, whereTMx is a vector space with dimensionm and
TMx

' is a vector space with dimensiond2m. Also, the kernelN(ax), is the subspace of relativ
nullity D(x). Therefore, lemma 1 yields the following corollary.

Corollary 1.1: Letf: Dm→Rd be a smooth, isometric immersion. Then, for allxPDm, the
index of relative nullityn(x)>2m2d.

We denote byn0 the index of minimum relative nullityof f given by

n05 min
xPDm

n~x!.

By corollary 1.1, we have thatn0>2m2d. We are considering the cased,2m so thatn0>1.
Definition 7: The indices of relative nullity at various points in Dm can be arranged in an

increasing sequencen0,n1,¯,nk . Clearly, this is a finite sequence sincenk<m. We define
the sets Dm5A0$A1$¯$Ak , by

Aj5$xPDm:n~x!>n j%

for j 50,1,...,k. We also define the setsB0 ,B1 ,...,Bk by

Bj5$xPDm:n~x!5n j%5Aj2Aj 11

for j 50,1,...,k with the conventionAk11 is the empty setB.
Recall that a distribution is a subspace valued function onM. We will now prove some results

about the relative nullity distributionD that is given byx°D(x).
Lemma 2: For an isometric immersionf: M→M̄ , we have

~1! the relative nullity distributionD is smooth on any open set U wheren is a constant,
~2! the setBj is open inAj , so that, ifxPBj , there is an open neighborhoodN of x such thatn

is a constant onNùAj .

A closely related result is proved in Dajczer21 ~proposition 5.2!. The proof presented below i
essentially the same as the proof in Ref. 21.

Proof: ~1! Set m5dim M . Let dimD(x)5n(x)5p for all points in the open subsetU. Let
D'(x) be the orthogonal complement ofD(x) in TxM . Evidently the dimension ofD' is m
2p. On the other hand, we may expressD' via

D'~x!5span$AjX:for all XPTxM ,jPTx
'M %,

given x0PU, there existX1 ,X2 ,...,Xm2pPTMx0
andj1 ,...,jm2pPTMx0

' , such that

D'~x!5span$Aj j
Xj%.

Take smooth local extensionsX1 ,...,Xm2pPTM andj1 ,...,jm2pPTM'. Clearly,
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span$Aj j
Xj%#D'.

By continuity, the vector fieldsAj j
Xj are linearly independent in a neighborhood ofx0 . U is open

so that we can choose this neighborhood in such a way that dimD'5m2n(x)5m2p. Therefore,
in this neighborhood

D'5span$Aj j
Xj%.

This implies thatD' is a smooth distribution onU and consequently, so isD.
~2! Following immediately from the above argument by noting that the setAj is the set of all

x with n(x)>n j . h

Corollary 2.1: The setsAj for j 51,...,k are all closed in Dm by lemma 2.
Remark 2: To clarify the relationships between these closed and open sets we consid

three-cornered shape of Fig. 2. In this example, k51, n051 and n15nk52. The setA0 is the
whole disk, andA1 is the flat triangular region in the middle. The setB0 consists of the three
curved side regions, whileB1 is the same asA1 . EvidentlyB1 is open inA1 , since the two sets
are the same. Any neighborhood of a point inB1 that fails to be inB1 clearly fails to be inA1 as
well. On the other hand, A1 is not open in the whole disk and this implies thatB1 is not open in
the disk either.

Thus, e.g., following any straight line from the flat region into the curved region, there i
identifiable last flat point withn52. Turning toB0 , it is open inA0 , which is the whole disk. This
means that if we traverse our line from the curved region into the flat region, there is no last
with n51. These statements give the essential content of lemma 2 and corollary 2.1 fo
example.

As we saw above, thoughBj is open inAj , it is not necessarily open inRm. As evident from
lemma 2, it will be useful to look at open sets inRm that have a constant index of relative nullit
For later purposes, it will also be important that the union of these open sets be ‘‘large,’’ i
sense that given any pointp in Dm, we can find a sequence of points from these sets
converges top. The following lemma gives the existence of such sets.

Lemma 3:f: Dm→Rd is an isometric immersion, and d,2m. Then, we have an open~in Rm!
setU that is dense in Dm such that

U5ø
j 50

k

Oj

whereOj for j 50,1,2,...,k is possibly empty, is open inRm, and is a subset ofBj .
Proof: Given a setGPRm, let ]G denote the boundary ofG, Ḡ denote the closure ofG and

G0 denote the interior ofG.
First, we note thatA#Dm is closed inRm implies that]A is nowhere dense. This can b

shown as follows.
Since A is closed,]A#A. Therefore, (]A)0#A0. However,]A5Ā2A05A2A0. Conse-

quently, it follows that (]A)05B.
DefineU as

U5~Dm!02ø
j 50

k

]Aj5Dm2]Dm2ø
j 50

k

]Aj .

Clearly, U is open.Dm is a closed subset ofRm with a nonempty interior, so that it is a secon
category set. Corollary 2.1 implies that eachAj is closed inRm. Therefore, the preceding argu
ment along with the Baire category theorem implies thatU is dense inDm.

Now, we setOj5UùBj . Clearly,Oj#Bj . Also,
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ø
j 50

k

Bj5Dm,

implies that

ø
j 50

k

Oj5U.

Assume thatOp is nonempty and letqPOp be an arbitrary point. Then,qPBp . Therefore,
qPAp2Ap115ApùAp11

C , whereAp11
C is the complement ofAp11 and is open inRm. From the

definition of U, it is clear thatq¹]Ap . SinceAp is closed,Ap
05Ap2]Ap . Therefore, we have

qPAp
0ùAp11

C ùU#BpùU5Op .

This implies thatq is an interior point sinceAp
0ùAp11

C ùU is an intersection of open sets
which gives an open neighborhood ofq contained inOp . Sinceq was an arbitrary point inOp , it
follows that every point inOp is an interior point so thatOp is open. h

Observation 1: Note that, in the above proof, we are not guaranteed the existence a po
Oj for a given j, so thatOj could be empty for some j. It cannot be empty for all j becauseU,
which is the union of the setsOj over j51,2,...,k is dense inDm.

By definition, A05Dm and B0ÞB. By lemma 2, B05BùDm for some B open inRm. Let
qPBùDm. Since B is open, it follows that there is an open neighborhoodN of q in B. It is also
clear that, for any qPDm, N is an open neighborhood of q implies thatNù(Dm)0ÞB. Clearly,
Nù(Dm)0#O0 , which is consequently non-empty.

Recall that a distributionD of index p defined on an open subsetU,M is smooth if we can
find a basisX1(x),X2(x),...,Xp(x) for R(x) at each pointxPU such that the basis vector
X1 ,X2 ,...,Xp vary smoothly withx.

Definition 8: A smooth distribution D defined on a set U,Rm with index p is said to posses
integral submanifolds~be completely integrable! if there exists a m2p parameter family of
p-dimensional embedded submanifolds of U such that every pointxPU is contained in exactly one
of these submanifolds and the tangent space of this submanifold coincides with R(x).

The integral submanifolds for a distribution D are called the leaves of D.
Remark 3: For the embedding represented in Fig. 2, the generators inB0 ~the regions with

one nonzero curvature! restricted to the interior of the disk are leaves of the relative nul
distributionD. Similarly, the interior of the entire inner triangle is a leaf ofD in O1 . ~See Fig. 3.!

Definition 9: Let U#M be an open set and let X1 ,X2 ,...,Xp be a set of smooth vector field
on U. The distribution D given by

x°Span~X1~x!,X2~x!,...,Xp~x!!

is said to be involutive, if at everyxPU, the Lie-Product@Xi ,Xj #(x)PR(x) for all 1< i , j <p.
A necessary and sufficient condition for a smooth distribution to be completely integra

given by Frobenius’ theorem19 which states that a smooth distribution is integrable if and onl
it is involutive.

Definition 10: Let M be a Riemannian manifold. A geodesicg : @a,b#→M is a differentiable
curve that is a stationary point for the functional

L@g#5E
a

b
A^g8~ t !,g8~ t !&g~ t !dt,

where the endpointsg(a) and g(b) are fixed and̂ .,,&x :TxM3TxM→R is the metric on M.
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Definition 11: Let Ñ,N be an embedded submanifold of the Riemannian manifold N.

metric on N then induces a metric on N˜ . Ñ is totally geodesic in N if every geodesic on N˜ in the
induced metric is also a geodesic in N.

Let M be a Riemannian manifold with a smooth distributionD defined on an open subse
U,M . To eachXPD, we can associate a mapCX :D'→D' defined by

CXY52P~¹YX!,

whereP:TU→D' is the orthogonal projection.
Lemma 4: Letf:Dm→Rd be an isometric immersion, and letOj,Dm be an open set where

the index of relative nullityn is equal to some constantn j . Then, onOj , we havethe following.

~1! The relative nullity distributionD is smooth and integrable, and the leaves are totally geo
sic in Dm and Rd,

~2! If g:@0,b#→Dm is a geodesic such thatg(@0,b#) is contained in a leaf ofD, thenn(g(b))
5n j .

This result has been proved by several authors~see, e.g., Ref. 23!. We present an outline of the
proof in Dajczer21 below. The interested reader will find all the details in Ref. 21~Theorem 5.3!.

Proof: ~1! Let X,YPD and ZPTM. Then a(X,Y)50 so that ¹Z
'(a(X,Y))50, and

a(X,W)5a(Y,W)50 for any arbitrary vectorWPTM. Therefore,

~¹Z
'a!~X,Y!5¹Z

'~a~X,Y!!2a~¹ZX,Y!2a~X,¹ZY!50.

Using Eq.~8!, we obtain

~¹X
'a!~Z,Y!52a~Z,¹XY!50.

This implies that¹XYPD. Also,

¹̃XY5¹XY1a~X,Y!5¹XYPD.

A similar argument shows that¹̃YX5¹YXPD. Therefore,@X,Y#5¹XY2¹YXPD. By the
Frobenius’ theorem cited above,D is an integrable distribution inDm. By a similar argument,D
is also integrable inRd. SinceD is the subspace of relative nullity, it follows thatD is totally
geodesic in bothDm andRd.

~2! It can be shown that, given anyWPTg(0)D
m, there exists a unique vector fieldY defined

on g(@0,b)) defined by

Y~0!5W;
d

dt
Y1Cg8Y50 for tP@0,b!,

andY extends smoothly tot5b. Let Z be a vector that is parallel transported alongg. A calcu-
lation shows thatia(Y,Z)i is a constant alongg. Therefore, ifZPD(g(b)),a(Z,Y)50 for all
YPTg(b)D

m. Therefore, ifW is any vector inTg(0)D
m, it follows that a(Z,W)50, so thatZ

PD(g(0)). Consequently,n(g(b))<n j . Since Aj is closed by corollary 2.1,n(g(b))>n j .
Combining these results, we haven(g(b))5n j . h

Definition 12: Let M be a Riemannian manifold with a metric given by^.&:TM3TM→R. A
unit speed curveb:@0,b)→M is a differentiable curve satisfying

^b8~ t !,b8~ t !&b~ t !51,

where
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b8~ t0!5
d

dt
b~ t !U

t5t0

PTMb~ t0! .

By appropriately reparametrizing any differentiable curved:@0,d)→M , we can obtain a unit
speed curveb:@0,b)→M , with b(t)5g(s(t)), wheres(t) is a differentiable reparametrizatio
satisfyings(0)50. Henceforth, without loss of generality, we will assume that all the curves
consider, and in particular the geodesics are unit speed.

Observation 2: For everyxPU, whereU is as defined in lemma3, lemma4 guarantees the
existence of at-least one unit speed geodesicg:@0,b)→Dm with g(0)5x and b.0, that is con-
tained in a leaf ofD. We will denote this geodesic by~g, b!. We can partially order the set of al
such geodesics by(g1 ,b1)<(g2 ,b2) if an only if b1<b2 andg1(t)5g2(t) for all t P@0,b1). It is
straightforward to verify the existence of at-least one maximal geodesicg* :@0,b* )→Dm. Since
g* is unit speed, it follows that the limitlimb→b* g* (b)5z* exists. Also, z* PDm sinceDm is
closed.

By the maximality of the geodesic(g* ,b* ), either

~1! z* P(Dm)0 and no extension of this geodesic is contained in a leaf ofD, or
~2! z* P]Dm.

Observation 3:Let xPU and letg* :@0,b* )→Dm be a maximal geodesic withg* (0)5x as in
observation 2. Letz* 5 limb→b* g* (b). Since every leaf ofD is totally geodesic in both Dm and
Rd and g* :@0,b* )→Dm is in a leaf of D, it follows that r(x,g* (b))5d(x,g* (b)) for all b
P@0,b* ). Taking limits, we obtain r(x,z* )5d(x,z* ).

Lemma 5: GivenxPU, let g* :@0,b* )→Dm be a maximal geodesic contained in a leaf ofD
and let

lim
b→b*

g* ~b!5z* PDm.

Then, we have that,

~1! if z* P(Dm)0, givene.0, there exists awPU such that d(z* ,w),e and n(w),n(x).
~2! If xPO0 ,z* P]Dm.

Proof: ~1! Let n(x)5nk . By lemma 4,n(z* )5nk . We see thatz* PAk11
C which is open by

corollary 2.1, where, as before,Ak11
C denotes the complement ofAk11 . Let C

5B(z* ,e/2)ùAk11
C , whereB(z,e/2)5$yPDm:d(y,z),e/2% is the open ball with radiuse/2.

ThenC is a nonempty open set withn(y)<nk for all yPC. If n(y)5nk for all yPC, by lemma
4 D is smooth and integrable onC so that we can extend the geodesic beyondz* remaining in a
leaf of D, thereby contradicting the maximality of the geodesic (g* ,b* ). Therefore, there exists
y* PC such thaty* PAk

C which is open~corollary 2.1!. Therefore,D5B(y* ,e/2)ùAk
C is a

nonempty open set. Now,U is dense, so thatUùD is nonempty. Choose anywPUùD. By the
triangle inequality for the metric onDm, we have

d~z* ,w!,d~z* ,y* !1d~y* ,w!,e/21e/25e.

wPAk
C implies thatn(w),n(x)5nk .

~2! This follows immediately from the preceding result by observation 2 and the definitio
n0 . h

Lemma 6: Letx,yPDm with d(x,y)5r 0 and let g:@0,r 0#→Dm be the unit speed geodes
betweenx and y. Then,

g~ t !5
r 02t

r 0
x1

t

r 0
y.
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r (x,y)5r 0 if and only if the unit speed curveb:@0,r 0#→Rd given by

b~ t !5
r 02t

r 0
f~x!1

t

r 0
f~y!,

is such thatb5f+g.
Proof: We begin with the following observations which are easily verified using the fact

geodesics are extremal curves for the arc length.

~1! If u,vPRk, the unit speed geodesic throughu andv is unique~except for reparametrization!
and is given by

d~t!5
iv2ui2t

iv2ui u1
t

iv2ui v.

~2! Every unit speed curveh:@0,b#→Rk with h(0)5u andh(b)5v hasb>iv2ui with equality
if and only if the curveh is identical to the curved above.

Assume thatr (x,y)5r 0 . In this case we haveh5f+g is a unit speed curve withh(0)
5f(x) andh(r 0)5f(y) so that by item~2! above, we have thath is a unit speed geodesic inRd.
By the uniqueness of the geodesic, it follows thatb5h, so thatb5f+g.

We will now show the converse. Using the standard identification betweenRk and TuR
k,

whereuPRk is an arbitrary point, we have

g8~0!5
x2y

r 0

and

b8~0!5
f~x!2f~y!

r 0
.

Sincef is an isometry,b5f+g implies that

^b8~0!,b8~0!&Tf~x!R
d5^g8~0!,g8~0!&TxDm51,

so that

r ~x,y!5d~x,y!5r 0 . h

Lemma 7: Letx,z,yPDm with r(x,z)5d(x,z) and r(y,z)5d(y,z). Then, r (x,y)5d(x,y).
Proof: We will identify the tangent spacesTzD

m andTf(z)R
d with Rm andRd, respectively,

by the standard exponential map. Sincer (x,z)5d(x,z), lemma 6 implies thatb15f+g1 where

g1~ t !5
iz2xi2t

iz2xi x1
t

iz2xi z

and

b1~ t !5
if~z!2f~x!i2t

if~z!2f~x!i f~x!1
t

if~z!2f~x!i f~z!.

Similarly, b25f+g2 where

g2~ t !5
iz2yi2t

iz2yi y1
t

iz2yi z
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and

b2~ t !5
if~z!2f~y!i2t

if~z!2f~y!i f~y!1
t

if~z!2f~y!i f~z!.

Sincef is an isometric immersion,

^b18 ,b28&Tf~z!R
d5^g18 ,g28&TzD

m.

This along withiz2xi5if(z)2f(x)i and iz2yi5if(z)2f(y)i , and using the identification
of the tangent spaces withRm andRd yields

^f~x!2f~z!,f~y!2f~z!&n5^x2z,y2z&m .

Therefore,

d2~x,y!5^f~x!2f~y!,f~x!2f~y!&n

5d2~x,z!1d2~y,z!22^f~x!2f~z!,f~y!2f~z!&n

5r 2~x,z!1r 2~y,z!22^x2z,y2z&m5r 2~x,y!.
h

We now have all the results we need to prove theorem 2. The proof is as follows.
Proof: We will first show that for everyxPU, whereU is as defined in lemma 3. there exis

a yP]Dm such thatr (x,y)5d(x,y). We will prove this proposition by induction.
Lemma 5 implies that this statement is true ifxPO0 . Note that the statement is trivially tru

for all xPOp if Op5B. We will assume that this statement is true forxPOj for j 50,1,2,...,l 21.
Let xPOl . Observation 2 implies that either

~1! the maximal geodesic starting atx ends on the boundary in which case lemma 6 proves
proposition, or

~2! there exists az* 5g(b* ), such that the geodesic cannot be extended in a leaf ofD beyondz* .
In this case, observation 3 implies thatr (x,z* )5d(x,z* ). Let en :n51,2,... be a decreasin
sequence with limn en50. By lemma 5, there exists a sequenceznPU, n51,2,... with
d(zn ,z* ),en andznPOj for j 51,2,...,l 21. By the hypothesis, there exists aynP]Dm such
thatr (zn ,yn)5d(zn ,yn). This procedure defines a sequenceynP]Dm. Since]Dm is compact,
there exists an accumulation pointy and a subsequenceynq

with nq→` asq→` such that

lim
q→`

d~y,ynq
!50.

It follows from the continuity of the functionsd(x,y) and r (x,y) with respect to both the
arguments and the fact

lim
q→`

d~z* ,znq
!< lim

q→`

enq
50,

that d(z* ,y)5r (z* ,y). We saw above thatd(x,z* )5r (x,z* ). Lemma 7 now implies that
d(x,y)5r (x,y).

This proves the proposition.
The proof of the theorem follows from noting that sinceU is dense inDm, there is a sequenc

xnPU such that

lim
n→`

xn5x* ,
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where x* 50PDm,Rm. By the proposition, there exists a sequenceynP]Dm with d(xn ,yn)
5r (xn ,yn). Using the compactness of]Dm to extract a subsequence that converges and using
continuity of r (.,.) and d(.,.), if follows that there exists ay* P]Dm such thatr (x* ,y* )
5d(x* ,y* )51. Therefore,

r~f!5 sup
x,yPDm

r ~x,y!>1. h

IV. DISCUSSION

The theorem proved above sheds light on the global consequences of requiring that
bedding be isometric. Though the isometry condition is a local one, it leads to a global con
on the minimal span of the embedding. The interest of this theorem is in identifying more ge
constraints of this nature. In this section we discuss possible generalizations and limitations
theorem.

The mere existence of global geometric constraints arising from local ones is not surp
For example if ourm-dimensional manifold is replaced by ad-dimensional solid, all the isometric
embeddings are related by rigid motions. In particular, every geodesic in the manifold is t
geodesic in the embedding space. The interest of the embeddings studied above is that a
constraint exists despite substantial allowed deformations of the manifold. Each point has
possibilities for bending deformation. A given straight line in the manifold may bend and twi
many directions. Yet the constraints among these bending modes due to the isometry condi
sufficient to force the existence of at least one line through any given point in the manifold t
also a geodesic in the embedding space and which runs all the way to the boundary. This
certain ‘‘rigidity’’ to the sheet in the sense that it cannot be deformed isometrically into
arbitrarily small sphere.

Note that this ‘‘rigidity’’ of an m-sheet inRd for m11<d<2m21 is a global phenomenon
in the following sense. For the confinement of anm-sheet, we can always find a smooth ‘‘local
isometry, that is, given any small ballBr

d,Rd, and a pointp in the m-sheet, we can find an ope
neighborhoodU of p such that there exists a smooth isometryc:U→Br

d provided d.m. A
consequence of the fact that there exist such ‘‘local’’ isometries is that this ‘‘global rigidity’’ m
be easily compromised. Though a smooth two-dimensional sheet may not be embedded in
sphere, a sheet with creases or folds may be readily embedded. To remove the rigidity, it s
to violate the smoothness requirement on a set of measure zero. For a 2-sheet in 3-space, v
of smoothness at isolated points is not sufficient: though violation on a union of one-dimen
manifolds ~the folds! is sufficient. An interesting question is the nature of the minimal set
which we will have to violate the smoothness requirement in order to embed anm-sheet in an
arbitrarily smalld-sphere whered,2m.

One natural way to weaken the isometry constraint is to treat the manifold as an elastic
with a local energy quadratic in the strain that measures the departure from isometry. If su
object is forced into a small sphere, what shape minimizes this energy? Simple examples s
that, in the limit that the thickness of the sheet goes to zero, the least costly form of deform
is to concentrate all the strain in a small subset of the entire sheet—thesingular set, rather than
deforming smoothly in which case the strain is distributed over the entire sheet. The energy
smooth deformation is typically much larger than the energy of the singular deformatio
embeddings withd,2m. In a real elastic 2-sheet embedded in three dimensions, this sin
deformation is limited by the finite thickness of the sheet. However, the width of the sin
region scales as a fractional power of the thickness,13,24 leading to an intriguing boundary-laye
behavior. The properties of these boundaries or ridges of elastic 2-sheets confined in three
sions have been recently explored by energy-balance arguments, numerical calculations a
sical boundary-layer analysis.17,24,25

The singular regions anticipated in the confinement of elastic manifolds resemble the
logical defects seen in various condensed matter systems.26 A classical example of a topologica
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singularity is the whorl singularity that arises if one attempts to put a smooth nonzero vecto
on a sphere. A well-known result from topology, analogous to our result in theorem 2, is that
is no smooth everywhere nonzero vector field on a sphere.27 Note however, that there does exi
smooth, everywhere nonzero, vector fields on any proper subset of the sphere. Consequent
exist everywhere nonzero vector fields on a sphere that are smooth everywhere except at
point, which is the singular set in this case. This is very similar to the singularities in a crum
sheet, where, as discussed above, one has to violate the smoothness requirement only on
subset of the entire sheet. These topological singularities are explored in homotopy theory,
one studies the mappings of a group into another group. The topological singularities aris
the group structure of the groups in consideration in contrast to our case where we map a m
into a manifold, and the singularities arise from the presumed metric properties of the man

One may ask what useful knowledge emerges from our high-dimensional analysis. Th
cialization of our theorem to three-dimensional embedding leads only to the well-known pr
ties of developable surfaces, as noted in the introduction. Embedding in spaces of more tha
dimensions has no obvious realization. Yet physical phenomena often find natural express
terms of high-dimensional spaces. Quasicrystals may be elegantly described as three-dime
slices in a six-dimensional crystal.28 String theory and its recent generalizations29 describe elemen-
tary particles and relativistic interfaces as manifolds embedded in high-dimensional spac
nally, the dynamics of a material object is conventionally described by embedding the
dimensional array of particle labels into the six-dimensional space of coordinates and mo
The constraints explored here may have implications for these cases.

In conclusion, we will point out some of the avenues for future work. One class of intere
questions is about extending our result. Figure 2 strongly suggests that the following result
for the case of a 2-sheet embedded in three dimensions—ifk is the index of relative nullity at a
point p in the sheet, there is ak simplexSwith its k11 vertices on the boundary of the sheet, su
that S containsp andS is totally geodesic in the sheet as well as in the embedding space. T
true for almost every point in the sheet. The only points where this does not hold for the em
ding in Fig. 2 is at three isolated points on the boundary of the sheet, which havek51, but have
no straight lines of finite length containing them that are flat in the embedding. Every other
in one of the regions with one curved direction lies on a generator, which is a straight segm
finite length with endpoints on the boundary. Also, every point in the region with two flat d
tions, lies in the inner triangle which is a 2-simplex with three vertices on the boundary. T
certainly more general than our result, which only says that there is a line segment contaip
and a point on the boundary, that is totally geodesic in the sheet and the embedding spa
believe such a general result will hold, for this case of a 2-sheet in three dimensions and a
the general case of embedding anm-sheet ind dimensions and we will investigate this questio
further in the future.

Another interesting question is generalizing our results to the situation where the shee
the embedding space are not intrinsically flat. Our theorem is restricted to flat manifolds m
into flat embedding spaces. But the notion of isometric embedding readily generalizes to c
manifolds and curved embedding spaces. There must be restrictions on how close toget
manifold points can be brought, analogous to those of our theorem. To formulate the p
generalization of our theorem is a challenging task. Hopefully the ideas above will prov
helpful framework for this task.

Finally, one might investigate what other kinds of local constraints will lead to global
straints analogous to those found here. By analogy with crumpling, we would expect tha
local constraints will give the system a global rigidity which can be destroyed by violating
local constraints on small regions in the system. This may prove useful in the understand
various phenomena in continuum physics where large scale forcing of a system can lead to
nonuniformities or nearly singular behavior in small localized regions.
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APPENDIX: DIFFERENTIAL MANIFOLDS

We will use ixi to denote the Euclidean length of the vectorxPRn. A setUPRn is open, if
every pointpPU is an interior point, that is there exists anr .0 such thatBr(p)5$qPRnuip
2qi,r %#U. In what follows, by the neighborhood of a pointpPRn, we will mean an open se
U containingp.

A ~smooth! n-dimensional manifold is a setM with a collection of setsOa ,aPS whereS is
an index set such that

~1! the collection$Oa%.aPS coversM, that is

M#ø
aPS

Oa .

~2! For everyaPS, there is a one-to-one, onto mapca : Oa→Ua whereUa is an open subset o
Rn.

~3! If OaùObÞB, the map

cb+ca
21: U→Rn

is smooth (C`) whereU5ca(OaùOb).
In the rest of this appendix, we will assume thatM is an-dimensional manifold. The definition

above can be paraphrased as follows: Every point inM has a neighborhood that looks like~is in
a one-to-one correspondence! with an open subset ofRn. This correspondence gives a system
coordinates on this neighborhood. If there is more than one way to put coordinates on a
borhood of a point, the transformations between the various sets of coordinates are smoo

The setOa is called a coordinate patch and the functionca is a coordinate system. Th
coordinates enable us to go back and forth between Euclidean spaces and general manifo
this allows one to extend notions like continuity and smoothness which are defined for fun
between Euclidean spaces to the case of functions between manifolds. For instance, g
function f: M→Rm and a pointpPM , we can choose a coordinate patchOa containingp and use
the associated coordinate systemca to define a functionf +ca

21: Ua→Rm, whereUa is an open
subset ofRn as defined above. This procedure enables us to extend notions of differentiabilit
smoothness to functionf: M→Rm. We will say thatf: M→Rm is differentiable~smooth! at a point
p if f +ca

21: Ua→Rm is differentiable~smooth! at ca(p). Likewise, a functiong: Rm→M is
differentiable~smooth! at a pointqPRm, if ca+ f : Rm→Rn is smooth atq, whereca is a coor-
dinate system on a patchOa containingf (q).

A derivationv: C`(M )→R is a map from the set of all smooth real function onM, to R that
is linear v(a f 1bg)5av( f )5bv(g) and satisfies the Leibniz rulev( f g)5v( f )g1v(g) f , for
all a,bPR and all smooth functionsf,g. The set of all the derivations at a pointpPM is a
n-dimensional vector space called the tangent space atp, and is denoted byTpM . The elements of
this vector space are called~tangent! vectors at thebase point p.

The union of all the tangent spaces as the base pointp ranges over all the points in th
manifold is called thetangent bundleand is denoted byTM, that is

TM5 ø
pPM

TpM .
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The tangent bundle is equipped with a natural projection operatorp : TM→M , wherep(X)5p if
XPTpM , that is,p gives the base point corresponding to a given tangent vector. We will
upper case lettersW, X, Y, Z,... to denote vectors~at a given base pointp! and vector fields, that
is functionsX: M→TM such thatX(p)PTp(M ).

A differentiable functiong : @a,b#→M where @a,b##R is called a~parametrized! curve.
Given a curveg : @a,b#→M , if pPM is such thatg(c)5p for somecP(a,b), we can define a
derivation atp by v( f )5( f +g)8(c). We will call the vectorv defined by this procedure th
tangent vector to the curve atp and denote it byg8(t) or dg/dt.

If p is any point inM andOa is a coordinate patch containingp, we can define a basis for th
tangent spaceTpM using the derivations given by the curvesg i , 1< i<n with g i(t)
5ca

21(c(p)1tei), wheree1 ,e2 ,...,en is the standard basis ofRn. ~The curvesg i are obtained by
first choosing a co-ordinate system atp, starting atp, keepingn21 coordinates fixed and varyin
just one coordinate.! We will say that a vector fieldX is smooth atp if its components in this basis
are smooth functions in the coordinate systemca in a neighborhood ofca(p). Different sets of
coordinates will give different bases and differing values for the components, but they giv
same notion of smooth vector fields since the coordinates are related by smooth transform
However, we cannot define a derivative operator on vector fields because there does not
preferred set of coordinates and in general the relation between the basis ofTpM andTqM for two
distinct pointsp and q is not an intrinsic property of the manifoldM, but it depends on the
coordinates chosen nearp andq. A derivative operator or a connection¹ is an additional structure
that is imposed on the manifold~more properly, the tangent bundleTM! that enables one to
compare vectors~or generally tensors! at two distinct base points in the manifold. Ifg : @a,b#
→M is a curve andY is a smooth vector field, then the derivative ofY along the curveg at a point
p is denoted by¹XY, whereX is the tangent tog at p. A connection¹ should be compatible with
the derivations discussed above in the sense thatX( f )5¹Xf for all vector fieldsX and all smooth
functionsf: M→R. The connection should also satisfy the Leibniz rule for all products of ten
on M and should be torsion-free.19

If a manifold has a local measure of distance, there exists a functionu.up : TpM→R, such that
ug8(c)up is the speed of a curveg(t) at p5g(c). A Riemannian manifoldM is one where this
function is given by the norm corresponding to a nondegenerate, positive–definite inner p
^...&p : TpM3TpM→R, i.e., uXup5A^X,X&p for all XPTpM . The inner product̂ ...&p : TpM
3TpM→R is called the metric.

On a Riemannian manifold, there is a unique connection¹ such that ¹X(^Y,Z&p)
5^Y,¹X ,Z&p1^¹X ,Y,Z&p for all vector fieldX,Y,Zdefined in a neighborhood ofp. This is called
the Levi-Civita connection and unless otherwise noted, this is the connection that we will u

We will now consider mappings of a manifoldM into another manifoldM̃ . Such a mapping
f: M→M̃ is smoothif its representation in terms of coordinates onM and M̃ is smooth. Iff:
M→M̃ is a smooth mapping, any smooth functionf̃ : M̃→R can be pulled back to yield a smoot
function f: M→R by f (p)5 f̃ (f(p)). If v is a derivation atp, it is easily verified thatṽ defined
by ṽ( f̃ )5v( f̃ +f) is a derivation onC`(M̃ ). The mapf therefore induces a map between t
tangent spacesTp(M ) and Tf(p)M̃ given by v° ṽ, and this map is conventionally denoted b
f* .

A smooth mappingf: M→M̃ is an immersionif f* : TpM→Tf(p)M̃ is one-to-one. This
definition can be paraphrased as follows —f is an immersion only if it is locally one-to-one, tha
is given any pointp in M, there is an open setO containingp such that the imagef(O) does not
intersect itself inM̃ or fold back on itself so that it comes arbitrarily close to self-intersection

For a complete and mathematically rigorous discussion of differential geometry of man
see Ref. 18.
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Geometrical evaluation of star products
Cosmas Zachosa)

High Energy Physics Division, Argonne National Laboratory,
Argonne, Illinois 60439-4815

~Received 10 January 2000; accepted for publication 24 February 2000!

The geometric picture of the star product based on its Fourier representation kernel
is utilized in the evaluation of chains of star products and the intuitive appreciation
of their associativity and symmetries. Such constructions appear even simpler for a
variant asymmetric product, and carry through for the standard star-product super-
symmetrization. ©2000 American Institute of Physics.@S0022-2488~00!01407-9#

Groenewold’s noncommutative star (!) product1 of phase-space functionsf (x,p) andg(x,p)
is the unique associative pseudodifferential deformation2 of ordinary products:

![ei\(]Qx]W p2]Q p]Wx)/2. ~1!

It is the linchpin of deformation~phase-space! quantization,3,2 as well as applications of matrix
models and noncommutative geometry ideas in M-physics.4 In practice, since it involves expo
nentials of derivative operators, it may be evaluated through translation of function argume

f ~x,p!!g~x,p!5 f S x1
i\

2
]W p ,p2

i\

2
]W xDg~x,p!. ~2!

However, explicit evaluations of long strings of star products in this language frequently a
intractable, unless the phase-space functions consist of exponentials or simple polynomial5

Baker6 has utilized the more practical Fourier representation of this product as an int
kernel:

f !g5
1

\2p2 E dp8 dp9 dx8 dx9 f ~x8,p8!g~x9,p9!

3expS 22i

\
~p~x82x9!1p8~x92x!1p9~x2x8!! D . ~3!

The cyclic determinantal expression multiplying22i /\ in the exponent is twice the area of th
phase-space triangle (r 9,r 8,r ), wherer[(x,p), namely,

2A~r 9,r 8,r !5~r 82r !∧~r2r 9!5r 9∧r 81r 8∧r1r∧r 9. ~4!

a!Electronic mail: zachos@hep.anl.gov
51290022-2488/2000/41(7)/5129/6/$17.00 © 2000 American Institute of Physics
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In this representation, multiple star-products turn out to be simpler to evaluate, and the
metrical constructions they motivate exhibit conspicuously the symmetries and the associati
these products. The representation thus rises to the level of a ‘‘picture,’’ in Dirac’s sense
‘‘way of looking at the fundamental laws which makes their self-consistency obvious.’’7 Such
evaluations are illustrated in the following, with some practical hints for the standard star pr
as well as for some common variants and extensions.

In the Fourier representation, a triple star product can be expressed relatively simply

f !g!h5
1

\4p4 E dp̄ dp8 dp9 dp-dx̄ dx8 dx9 dx- f ~x8,p8!g~x9,p9!h~x-,p-!

3exp
24i

\
~A~r 9,r 8, r̄ !1A~r-, r̄ ,r !!, ~5!

while the intermediarydx̄ dp̄ integrations collapse tod functions:

f !g!h5
1

\2p2 E dp8 dp9 dp- dx8 dx9 dx- f ~x8,p8!g~x9,p9!h~x-,p-!

3d~x2x81x92x-!d~p2p81p92p-!expS 24i

\
A~r-,r 9,r 8! D . ~6!

The product thus amounts to a triangle and a point for the effective phase-space argur
5(x,p), which lies on the new vertex of the parallelogram resulting from doubling up the tria
(r-,r 9,r 8), such thatr 82r- is one diagonal. The effective argumentr lies at the end of theother
diagonal, starting fromr 9,

It is then straightforward to note how this expression bears no memory of the grouping~order
of association! in which the two star multiplications were performed, since the vertexr of the
parallelogram is reached fromr- by translating throughr 82r 9, or, equivalently, fromr 8 by
translating throughr-2r 9. As a result, this may well realize the briefest graphic proof of
distinctive associativity property of the star product,

~ f !g!!h5 f !~g!h!. ~7!

The symmetries of the triple star product,~1-3 complex conjugacy, effective cyclicity, etc!
are now evident by inspection. Moreover, integration of this triple product with respect to
effective argument (x,p) ~tracing!, e.g., to yield a Lagrangian interaction term, trivially eliminat
the d function to result in a compact cyclic expression of the above triangle construction fo
three functions star multiplied,

E dx dp f!g!h5
1

\2p2 E dp1 dp2 dp3 dx1 dx2 dx3 f ~x1 ,p1!g~x2 ,p2!h~x3 ,p3!

3expS 24i

\
A~r 3 ,r 2 ,r 1! D . ~8!
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A four function star product~with three stars! involves the sum of the areas of two triangle
(r3 ,r2 ,r1) and (r ,r4 ,r12r21r3). A five function star product involves the exponential of the su
of areas of two triangles, (r3 ,r2 ,r1) and (r5 ,r4 ,r12r21r3), with the effective argument re
stricted byd(r2r11r22r31r42r5)[d(r2s5). Recursively, so on for even numbers of sta
multiplied functions, the phase involving the sumsA(r3 ,r2 ,r1)1A(r5 ,r4 ,s3)1 • • •

1A(r ,r2n ,s2n21). Respectively, for odd numbers of functions, the phase involving s
A(r3 ,r2 ,r1)1A(r5 ,r4 ,s3)1 • • • 1A(r2n11 ,r2n ,s2n21), with effective phase-space argument r
strictions tor5s2n11[Sm51

2n11(2)m11rm .
As an illustration, consider phase-space pointsr i arrayed in a regular zigzag pattern,~i.e., for

the star-multiplied functions getting support only on those points on the zigzag!. The arguments of
the d-functions,s2n11 , then lie on a line, while the areas of the triangles demarcated by t
points increase in regular arithmetic progression (A,2A,3A,4A, . . . ):

This result is independent of the pitch of the zigzag, i.e., the angle atr2—which, in this
diagram, is chosen to bep/2, since this is a local maximum of the areasA of the triangles for
variable pitch but fixed lengthsr i2r i 11 . One might well wonder if the configuration picture
could be used to define a ‘‘classical path:’’ Its contribution to the phase of the exponential th
the sum of all triangle areas, (11213141 . . . )A, is stationary with respect to variations such
this angle variation discussed. The question suggests itself, then, whether configurations sta
underall variations can be constructed, leading to a stationary phase evaluation of large/i
star products, e.g., useful in evaluating star exponentials~which yield time-evolution operators in
phase space2!; but, so far, no cogent general answers appear at hand.

A variant of the star product~cohomologically equivalent to it! is the lopsided associativ
product of Voros,8

q[ei\]Qx]W p. ~9!

It is sometimes convenient to rotate phase-space variables canonically~i.e. preserving their
Poisson Brackets!,

~x,p!°S x1 ip

A22i
,

x2 ip

A22i
D , ~10!

to represent this product as
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q[e\(]Qx2 i ]Q p)(]Wx1 i ]W p)/2

5ei\(]Qx]W p2]Q p]Wx)/2ei\(]Qx]Wx1]Q p]W p)/2

5!e2\(]Qx
2
1]Q p

2)/4e2\(]Wx
2
1]W p

2)/4e\((]Qx1]Wx)21(]Q p1]W p)2)/4. ~11!

This turns out to be the covariant transform of the! product which controls the dynamics whe
Wigner distributions are transformed into Husimi distributions,9 a smoothed representation pop
lar in applications. It is plain that the Gaussian-Laplacian factorsT21(]x ,]p)[exp(2\(]x

2

1]p
2)/4) merely dress the standard star product into Voros’ product,8

T~ f !g!5T~ f !qT~g!. ~12!

Consequently, the Lie algebra of brackets ofq is isomorphic to the Moyal algebra3 ~the algebra
of brackets of!, i.e.,$$ f ,g%%[ f !g2g! f !, in comportance with the general result on the essen
uniqueness of the Moyal algebra as the one-parameter deformation of the Poisson b
algebra.10

Actually, in Fourier space, this product in its original representation~9! appears simpler than
the ! product,

fqg5
1

2p\ E dr 8 dr 9 f ~x8,p8!g~x9,p9!d~x92x!d~p82p!expS i

\
~x92x8!~p82p9! D .

~13!

The phase-space integral is then effectively a two-dimensional*dx8 dp9, not a four-dimensional
one, as the kernel has vanishing support everywhere but on the linesx95x, p85p. The triangle
whose doubled area multiplies2 i /\ in the exponent is now a phase-spaceright triangle (r 9,r 8,r ),
with its sider2r 8 horizontal, and its sider2r 9 vertical:

The triple product is then seen to be actuating shifts on a rectangular lattice,

~ fqg!qh5
1

~2p\!2 E dr 8 dr 9 dr- f ~x8,p8!g~x9,p9!h~x-,p-!

3d~x-2x!d~p82p!expS i

\
~x8~p92p8!1x9~p-2p9!1x-~p82p-!! D . ~14!

The phase is a cyclic expression with no memory of the order of association, which thus p
associativity for this product, (fqg)qh5 fq(gqh). Pictorially, the phase is the area of th
entire encompassing rectangle with diagonalr-2s, minus the area of the rectangle with diagon
r 82r 9; which is also equal to thesumof the areas of the rectangles with diagonalss82r 8, and
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r-2r 9, respectively.@In general, it is not twice the area of the triangle (r 8,r 9,r-).#

The construction for ann-tupleq-product follows simply,

1

~2p\!n E dr1 . . . drn f 1~r 1!¯ f n~r n!d~xn2x!d~p12p!expS i

\ (
m51

n

xm~pm112pm!D ,

~15!

wherepn11 is defined asp1 . One may note the effective nearest-neighbor interaction in the c
suggested.

A superspace generalization of the star product was introduced in Ref. 11~to codify the
graded extension of Moyal’s algebra introduced in Ref. 12!,

~11\]Q u]W u!![L!. ~16!

Here, u is the superspace Grassmann variable~nilpotent, and commuting with the phase-spa
variables!: The extended star product is then a direct product of the conventional piece w
superspace factor 11\]Q u]W u . Thus, the above extended product could have been alternat
written as

e\]Qu]Wu!. ~17!

Hence, it can also be rewritten13 as the evocative form,

expF i\

2
(]Q x]W p2]Q p]W x)1\]Q u]W uG . ~18!

Nevertheless, the original form displays associativity more readily, since the factor acti
the Grassmann structure is patently associative,

~ALB!LC5AL~BLC!, ~19!

acting on 1d bosonic superfieldsA(u)5a1ua, B(u)5b1ub, so that

ALB5ab1\ab1u~ab1ab!. ~20!

Note the loose analogy to complex multiplicationz̄1z2 . Even though this analogy cannot rise to
isomorphism, as evident from its noncommutativity and longer products such as the above,
turns out to be useful for actual evaluation of products in collecting the Grassmann even an
terms in the answer. The symmetry of this product is further displayed by setting\51 and
considering standard Grassmann Fourier transforms from bosonic to fermionic superfieldsÃ(u)
5*df(11fu)A(f)5a1ua:

ALB5ÃLB̃. ~21!
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mechanics’’ †J. Math. Phys. 39, 1887 „1998…‡
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and Naval Research Laboratory, Washington, D.C. 20375

~Received 18 April 1999; accepted for publication 5 May 1999!

@S0022-2488~00!06005-9#

~1! The second line after Eq.~2.3b! should read

PL~H! for which Â50 ~resp.,Ã50). Roughly speaking, . . . .

~2! In the displayed equation forKmn
(2) , p. 1892,

(
rlrÞlm

should read

(
r ,lrÞlm

.

~3! In the fifth line after the displayed equation forc3(t,e), p. 1893,lmÞln should read
lm5ln .

~4! In the displayed equation in property~II !, p. 1894,m should readm r .
~5! In the second line of Definition 5~a!, p. 1896,Wi 11

( j ) 5((Wi 11
( j ) )mn) should readWi 11

( j )

5((Wi 11
( j ) )mn).

~6! In Eq. ~3.8c!, (0> j > i 21,i>1) should read (0< j < i 21,i>1).
~7! In the second line of the proof of Lemma 6, p. 1902,Ki should readK( i ).

~8! The second line of p. 1906 should read

. . . . This follows fromFmPC1(R) and the respective estimates . . .
51350022-2488/2000/41(7)/5135/1/$17.00 © 2000 American Institute of Physics
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Bispectrality for the quantum Ruijsenaars model
and its integrable deformation

Oleg A. Chalykha)

Advance Education and Science Centre, Moscow State University, Moscow 119899, Russia

~Received 20 March 2000; accepted for publication 6 April 2000!

An elementary construction of the eigenfunctions for the quantum rational
Ruijsenaars model with integer coupling parameter is presented. As a by-product,
we establish the bispectral duality between this model and the trigonometric
Calogero–Moser model. In particular, this gives a new way for calculating Jack
polynomials. We propose also a certain one-parameter deformation of the
Ruijsenaars model, proving its integrability and bispectrality. The generalizations
related to other root systems and difference operators by Macdonald are considered.
© 2000 American Institute of Physics.@S0022-2488~00!03908-6#

I. INTRODUCTION

One of the purposes of the present article is to reveal, at the quantum level, a certain
between the trigonometric Calogero–Moser model and the rational Ruijsenaars model. Rec
the quantum trigonometric Calogero–Moser model is a one-dimensionaln-body problem with the
following Hamiltonian:1,2

H52D1(
i , j

n
m~m11!v2

2 sinh2~v ~xi2xj !/2!
, ~1!

whereD5]1
21•••1]n

2 (] i5]/]xi) is the Laplace operator inRn, m is the coupling paramete
andv is a scaling parameter.

It is well known ~see, e.g., Ref. 3! that the model~1! is completely integrable, i.e., there exi
n commuting operatorsH15]11•••1]n , H252H, H3 , . . . ,Hn of the form

Hi5~]1! i1•••1~]n! i1 lower terms . ~2!

A relativistic version of the quantum Calogero–Moser model has been propose
Ruijsenaars.4 In our article we will deal mainly with the rational limit of this model. The corr
sponding Hamiltonian is a difference operatorD which looks as follows:

D5(
i 51

n

)
j Þ i

S 12
mv

zi2zj
DTi

v , ~3!

whereTi
v denotes thev-shift in zi ,

~Ti
v f !~z1 , . . . ,zn!5 f ~z1 , . . . ,zi1v, . . . ,zn!.

@Originally, the operatorD appeared in Ref. 4 in a different form which, however, is gau
equivalent to~3!.#

Its relation to the Calogero–Moser model is clear from the expansion inv→0:

a!Present address: Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, U
tronic mail: chalykh@mech.math.msu.su, o.chalykh@lboro.ac.uk
51390022-2488/2000/41(8)/5139/29/$17.00 © 2000 American Institute of Physics
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D5n1v~]11•••1]n!1
v2

2 S Dz2(
i , j

n
2m

zi2zj
~] i2] j !D 1o~v2!.

The second-order term here coincides~up to a certain gauge transformation! with the rational limit
v→0 of the operator~1!.

The Ruijsenaars model~3! is also known to be completely integrable, the correspond
commuting difference operatorsD15D,D2 , . . . ,Dn are the following:

Dr5 (
I ,$1, . . . ,n%

uI u5r

aITI , aI5)
i PI
j ¹I

S 12
mv

zi2zj
D , ~4!

whereTI for I 5$ i 1 , . . . ,i r% denotes the shiftTIªTi 1
v •••Ti r

v .

One of our main results is the following.
Theorem 1: There exists a functionc(x,z) which is, as a function of x, a common eigen-

function for the quantum integrals (2) of the Calogero–Moser model, and, at the same time, as
function of z,c is a common eigenfunction for the Ruijsenaars operators (4):

Hic5l i~z!c, i 51, . . . ,n,
~5!

Drc5m r~x!c, r 51, . . . ,n.

Here l i5(z1) i1•••1(zn) i , and m r is the rth elementary symmetric function of evx1, . . . ,evxn.
Following Ref. 5, we use in such a situation the termbispectrality. Originally, Duistermaat

and Grünbaum considered the one-dimensional case when one has a functionc of two scalar
variablesx,z and a pair of lineardifferential operatorsL(x, ]/]x),M (z, ]/]z) such that

Lc5l~z!c ,

Mc5m~x!c .

From this viewpoint, the system~5! can be regarded as adifferential-differencebispectral duality
in many dimensions. Such duality was conjectured by Ruijsenaars;6 it also can be regarded as
limiting case of the so-calledself-duality~or symmetry! for the Macdonald polynomials which wa
conjectured by Macdonald and was proved first by Koornwinder7 ~see Chap. VI of Ref. 8!.
Different proofs were suggested also in Refs. 9 and 10, but in the most complete form, f
Macdonald polynomials related to an arbitrary~reduced! root system, it was done by Cherednik11

with the help of his theory of the double affine Hecke algebras.12

Our approach is much more elementary. Its advantage in comparison with the meth
Refs. 9 and 10 is that it works equally well for all root systems. The corresponding generaliz
of the Ruijsenaars model are delivered by the difference operators by Macdonald.13 We establish
the bispectral duality between these operators and the corresponding versions3 of the Calogero–
Moser model. Notice that in the caseR5BCn our analysis involves a proper generalization
Macdonald operators proposed by Koornwinder;14 this is in agreement with the results by Sahi15

As an application, we obtain a new way for calculating Jack polynomials and their ver
for other root systems~multivariable Jacobi polynomials!. The bispectral duality in this contex
may be interpreted as a higher analog of the three-term relation for the classical Jacobi p
mials.

Our interest in this duality was motivated by the fact that in this picture the difference ve
of the Calogero–Moser model appears naturally as its bispectrally dual. So one could hope
in this way a difference counterpart for the deformed quantum Calogero–Moser model intro
by Veselov, Feigin and the author in Ref. 16. This model is a one-parameter deformation
standard Calogero–Moser model, and the corresponding Hamiltonian is the following opera
Rn11:
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H̃52Dn111(
i , j

n
m~m11!v2

2 sinh2 ~v~xi2xj !/2!
1(

i 51

n
~m11!v2

2 sinh2~v ~xi2Amxn11!/2!
, ~6!

whereDn115]1
21•••1]n11

2 andm is a deformation parameter. Form51 the operatorH̃ coin-
cides with a special case of the operator~1!.

In Ref. 17 it was shown that the model~6! is completely integrable. It turns out that it
quantum integralsH̃15]11•••1]n1 (1/Am) ]n11 , H̃252H̃, H̃3 , . . . ,H̃n11 have the form

H̃ i5~]1! i1•••1~]n! i1
1

m
~Am]n11! i1 lower terms . ~7!

Remarkably enough, the bispectral duality~5! admits a deformation related to the model~6!. The
corresponding ‘‘dual’’ difference operatorD̃ is a one-parameter deformation of the Ruijsena
operator~3! and it looks as follows:18

D̃5(
i 51

n S 12
v

zi2Amzn111g
D)

j Þ i

n S 12
mv

zi2zj
DTi

v1
1

m)
i 51

n S 11
mv

zi2Amzn111g
D Tn11

Amv ,

~8!

whereg5 (12m)v/2. Again, form51 it is a special case of the Ruijsenaars operator. Its rela
to the deformed Calogero–Moser operator~6! is similar to the nondeformed case:

D̃5n1
1

m
1vS ]11 . . . 1]n1

1

Am
]n11D 1

v2

2
L1o~v2!

asv→0, where the second order term

L5Dn112(
i , j

n
2m

zi2zj
~] i2] j !2(

i 51

n
2

zi2Amzn11

~] i2Am]n11!

coincides~up to a certain gauge transformation! with the rational limit of the operator~6!.
One of our results is the following.
Theorem 2: The deformed Ruijsenaars operator (8) is completely integrable, i.e., D˜ can be

included into a commuting family of independent difference operators D˜
15D̃,D̃2 , . . . ,D̃n11

defined on the latticev(Zn
% AmZ),Rn11. For m51 this family coincides with the Ruijsenaar

operators (4).
We construct also a functionc(x,z) which is a common eigenfunction of the operators~7!

and of the operatorsD̃1 , . . . ,D̃n11 as a function ofx andz, respectively.
At this point we should stress that the previously known methods7,9–11 cannot be applied

straightforwardly to the models~6! and~8!, so we had to choose a different method. Namely,
bispectrality and integrability of the~deformed! Ruijsenaars model will result from our speci
investigation of the case when the coupling parameterm is integer. The idea that the quantu
Calogero–Moser model~1! is ‘‘much more integrable’’ formPZ rather than for generalm goes
back to the papers by A. Veselov and the author.19,20 Their results were generalized in Ref. 2
where it has been demonstrated with the help of Heckman–Opdam results22–24that the Calogero–
Moser operator~1! for mPZ is algebraically integrable, i.e., its quantum integralsH1 , . . . ,Hn

are a part of some bigger commutative ring of differential operators~see Ref. 21 for precise
formulations and results!.

As we will see, a similar situation takes place for the Ruijsenaars model~as well as for its
deformation!. We should mention here Ref. 10, where the algebraic integrability has been e
lished for the trigonometric Ruijsenaars model withmPZ. However, our approach seems to
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more effective~see, for instance, our formula for the shift operator in Sec. II!. The main novelty
is a fairly elementary construction of the eigenfunctions for the~deformed! Sutherland operator fo
mPZ. The problem of finding the solutions for the quantum Calogero–Moser model wa
dressed in a large number of papers, apart from the papers cited above we would like to m
here the paper by Felder and Varchenko,25 who suggested three ways to write down the formu
for the eigenfunctions. Our formula is different; it is a discrete analog of the remarkable for
by Berest,26 who has found an elegant universal expression for eigenfunctions of the gener
rational Calogero–Moser model. In fact, the present article resulted from our attempts to e
what is behind the Berest formula.

The structure of the article is as follows. In Sec. II we construct eigenfunctions for the rat
Ruijsenaars model withmPZ1 . In Sec. III we recall briefly the results of Ref. 21 to conclude th
the constructed in Sec. IIC-function is actually themultidimensional Baker–Akhiezer functionfor
the quantum Calogero–Moser model. As an application we obtain an explicit construction
shift operatorfor the rational Ruijsenaars model. Another corollary is a new formula for the
polynomials.

In Sec. IV we establish the bispectral duality between the trigonometric Calogero–Mose
rational Ruijsenaars models, and then we use it to prove that the Ruijsenaars operator isalgebra-
ically integrable for mPZ. Section V is devoted to the deformed Calogero–Moser
Ruijsenaars models, and it is parallel to our considerations in Secs. II–IV. Finally, in Sec. V
describe the state of affairs for other root systems and the rational operators by Macdonal

II. EIGENFUNCTIONS FOR THE RUIJSENAARS MODEL

Let us consider the rational Ruijsenaars operator~6!, puttingv51 for convenience:

D5(
i 51

n

aiTi , ai~z!5)
j Þ i

n S 12
m

zi2zj
D , ~9!

whereTi stands for a unit shift inzi ,

~Ti f !~z1 , . . . ,zn!5 f ~z1 , . . . ,zi11, . . . ,zn! .

In what follows we will use also the notationTi
s for the sth iteration ofTi .

Suppose that the coupling parameterm is integer,mPZ1 . Let us introduce the ringR which
consists of all analytic functionsf (z) with the following properties:

for all i , j and s51, . . . ,m,
~10!

~Ti
s2Tj

s! f [0 on the hyperplane zi5zj .

The following observation plays the central role in this article.
Proposition 2.1: For any mPZ1 the Ruijsenaars operator (9) preserves the ringR:

D(R)#R.
Proof: We need to prove first thatD f is analytic for anyf PR and then to check forD f the

conditions~10!.
To prove thatD f is nonsingular we notice that it might have a simple pole atzi2zj50

coming from the termsaiTi( f )1ajTj ( f ) in the notations of~9!. We can rewrite it in the form
(ai1aj )Ti f 1aj (Tj2Ti) f . Notice that the expressionai1aj is invariant under transposition
zi↔zj . Therefore,ai1aj and the first term (ai1aj )Ti f have no singularity atzi5zj . The re-
maining term is nonsingular since (Tj2Ti) f vanishes atzi5zj due to~10! at s51. Thus,D f has
no singularities.

Let us check now thatD f satisfies~10! for s51, . . . ,m:

~Ti
s2Tj

s!D f [0 for zi5zj . ~11!
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A simple calculation gives

~Ti
s2Tj

s!D f 5Ti
s~ai !Ti

s11~ f !2Tj
s~ai !TiTj

s~ f !

1Ti
s~aj !Ti

sTj~ f !2Tj
s~aj !Tj

s11~ f !

1 (
lÞ i , j

@Ti
s~al !Ti

sTl~ f !2Tj
s~al !Tj

sTl~ f !#

5@Ti
s~ai !2Tj

s~aj !#Ti
s11~ f !1Tj

s~aj !~Ti
s112Tj

s11!~ f !

1@Ti
s~aj !2Tj

s~ai !#Ti
sTj~ f !1Tj

s~ai !~Ti
sTj2TiTj

s!~ f !

1 (
lÞ i , j

~Ti
s2Tj

s!~al !Ti
sTl~ f !1 (

lÞ i , j
Tj

s~al !~TlTl
s2TlTj

s!~ f ! .

First, notice that all the terms in the final expression have no singularity atzi5zj . Next, the
combinationsTi

s(ai)2Tj
s(aj ), Ti

s(aj )2Tj
s(ai) andTi

s(al)2Tj
s(al) are antisymmetric with respec

to transpositionzi↔zj , hence they vanish atzi5zj . Further, the term

~Ti
sTj2TiTj

s!~ f !5TiTj~Ti
s212Tj

s21!~ f !

vanishes atzi5zj due to~10!, as well as does the termTl(Ti
s2Tj

s)( f ).
Finally, the second termTj

s(aj )(Ti
s112Tj

s11)( f ) for s,m vanishes atzi5zj due to~10! and
for s5m it is zero sinceTj

m(aj )[0 at zi5zj .
This proves~11! and, therefore, the proposition.
Remark:In a similar way one can check that all the operators~4! with mPZ1 preserve the

ring R: Di(R)#R ~see Sec. VI, Proposition 6.1!. Of course, in casevÞ1 the conditions~10!
should be modified: (Ti

sv2Tj
sv) f uzi5zj

50.
Now we can prove the main result of this section. Let us introduce the following func

F(x,z):

F~x,z!5~D2m!M@Q~z!exp~x1z11•••1xnzn!#, ~12!

whereD is the Ruijsenaars operator~9! with mPZ1 ,

m5ex11•••1exn, M5mn~n21!/2 , ~13!

andQ(z) is the following polynomial:

Q~z!5)
i , j

)
s51

m

@~zi2zj !
22s2#. ~14!

Theorem 2.2: For any mPZ1 the functionF(x,z) in (12) is an eigenfunction of the
Ruijsenaars operator (9): DF5m(x)F with the eigenvaluem given by (13).F is quasipolyno-
mial in z and it has the form

F~x,z!5@C~x!A~z!1•••#exp~x,z!,

where the dots denote lower terms in z, A(z)5) i , j (zi2zj )
m and C(x) is as follows:

C~x!5M !)
i , j

~exi2exj !m . ~15!

Proof: Let us consider the functions
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w05Q~z!exp~x,z!

and

w l5~D2m! lw0 ,l>1 ,

defined in accordance with the formulas~13! and~14!. Since the quasipolynomialw0 satisfies the
conditions~10! for obvious reasons, we see from Proposition 2.1 thatw l also will be quasipoly-
nomial in z:

w l5Pl~x,z!e(x,z) ,

and it will satisfy the conditions~10!.
Let us calculate now the highest term in the polynomialPl , denoting it asP̂l . From the

relationw l 115(D2m)w l with the help of the explicit formula~9! one deduces easily the follow
ing recurrence:

P̂l 115(
i 51

n

exi
]

]zi
P̂l2m(

i , j

exi2exj

zi2zj
P̂l . ~16!

Notice that forw0 the highest term is as follows:

P̂05)
i , j

~zi2zj !
2m.

Further, if P̂l has a factorized form

P̂l5)
i , j

~zi2zj !
m1ni j

for some integersni j then from~16! one gets:

P̂l 115(
i , j

ni j

exi2exj

zi2zj
P̂l .

Now an elementary combinatorial argument gives that forl 5M5 mn(n21)/2

P̂M5M !)
i , j

~exi2exj !m~zi2zj !
m.

So, the functionF5wM has the form claimed in the theorem. It remains to prove thatwM11

5(D2m)wM50. But from~16! it is clear thatwM115PM11(x,z)e(x,z) has a smaller degree inz:

degPM11,degPM5M .

So, the following technical lemma from Ref. 21 completes the proof of the theorem:
Lemma 2.3: Ifw5P(x,z)e(x,z) is quasipolynomial in z and it satisfies the conditions (10), th

the highest term in P must be divisible by) i , j (zi2zj )
m.

We will give the proof in Sec. III~see Lemma 3.2!. This lemma plays the key role in th
construction21 of algebraically integrableSchrödinger operators. In the next section we recall t
construction to see how the functionF(x,z) is related to the so-calledBaker–Akhiezer function
for the quantum Calogero–Moser model.
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Now we would like to present an explicit construction for the so-calledshift operatorfor the
rational Ruijsenaars model. LetDm denote the Ruijsenaars operator~9! with the subindex indi-
cating its dependence on the coupling parameterm which stands now for an arbitrary comple
number.

Theorem 2.4:Define the difference operator Sm as

Sm5(
i 50

N

~21! i S N
i D ~Dm21!N2 i~Dm! i ,

where Dm ,Dm21 are the operators (9) inRn and N5n(n21)/2. Then Sm intertwines Dm and
Dm21 (‘‘shift’’ from m to m21):

Dm21+Sm5Sm+Dm .

Proof: Let first m be integer,mPZ1 . Consider the function

Cm~x,z!5C21~x!F~x,z!,

whereF is given by~12! andC(x) is the same as in Theorem 2.2:

C~x!5M !)
i , j

~exi2exj !m .

As we know,Cm is an eigenfunction forDm :

DmCm5m~x!Cm , m5ex11•••1exn.

We know also thatCm is quasipolynomial inz:

Cm5F)
i , j

~zi2zj !
m1 . . . Gexp~x,z! ,

and it satisfies the conditions~10!. Consider now the function

C̃5~Dm212m!NCm , N5n~n21!/2 . ~17!

First, notice thatCm satisfies automatically the conditions~10! for s51, . . . ,m21. Hence, using
Proposition 2.1, we see thatC̃ is quasipolynomial with the same properties~10! for s
51, . . . ,m21. We can calculate its highest term in the same manner as it was done in Th
2.2. The result is

C̃5S N!)
i , j

~exi2exj !~zi2zj !
m211 . . . Dexp~x,z! .

Comparing it with the properties ofCm21, we see that these two functions are proportional:C̃
5N! ) i , j (e

xi2exj)Cm21.
Now let us rewrite~17! using thatmCm5DmCm :

C̃5(
i 51

N

~21! i S N
i DDm21

N2 i m i@Cm#5(
i 51

N

~21! i S N
i D ~Dm21!N2 i~Dm! i@Cm#.

Thus, the operatorSm5((21)i( i
N)(Dm21)N2 i(Dm) i has the property
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Sm@Cm#5C̃5F~x!Cm21 with F~x!5N!)
i , j

~exi2exj !.

Now we obtain

~Dm21+Sm2Sm+Dm!@Cm#5Dm21~F~x!Cm21!2Sm@mCm#50.

This implies thatDm21+Sm2Sm+Dm[0. So, formPZ1 we have proved that

Dm21+Sm5Sm+Dm .

Now it is clear that this identity must be valid for allm automatically, since it is valid for
mPZ1 and its both sides are clearly algebraic inm. Theorem is proven.

Example:In the simplest one–dimensional case we have

Dm5S 12
mv

z DTv1S 11
mv

z DT2v,

andSm5Dm212Dm5(v/z) (Tv2T2v) will be a shift operator:

Dm21+Sm5Sm+Dm .

Remark:The shift operators were introduced first by Opdam for the differential case,24,27their
explicit construction was proposed later by Heckman.28 In the difference case the shift operato
were constructed by Cherednik.12

III. GENERALIZED SUTHERLAND OPERATOR AND MULTIDIMENSIONAL
BAKER–AKHIEZER FUNCTION

We start from recalling the main construction from Ref. 21. LetA5$a% be a finite set of
noncollinear vectors in Euclidean spaceRn with the scalar product denoted by (•,•). Let us
prescribe some integersmaPZ1 to eachaPA and consider the following Schro¨dinger operator
in Rn:

H52D1 (
aPA

ma~ma11!~a,a!

4 sinh2 1
2 ~a,x!

, ~18!

where D5 ]2/]x1
2 1•••1 ]2/]xn

2 is the Laplacian. We will callH the generalized Sutherlan
operator since forA5$v(ei2ej )u i , j % with ma[m it coincides with the operator~1!. For the
caseA5R1 being a positive part of an arbitrary root systemR the operator~18! has been
proposed by Olshanetsky and Perelomov.3 At this point, however, we do not assume thatH is
related to a root system.

Now consider a functionC(x,z) which is quasipolynomial inz of the form

C5P~x,z!exp~x,z!, P5A~z!1 . . . , ~19!

with the highest term inP of the form

A~z!5 )
aPA

~a,z!ma. ~20!

Definition: A functionC(x,z) of the form (19) and (20) is called the multidimension
Baker–Akhiezer function for the generalized Sutherland operator (18) ifC has the following
properties: for eachaPA and s51, . . . ,ma
                                                                                                                



ion

in
r

ors,

e

strate

e

me

5147J. Math. Phys., Vol. 41, No. 8, August 2000 Bispectrality for the quantum Ruijsenaars model

                    
C~x,z2 1
2 sa![C~x,z1 1

2 sa! ~21!

identically along the hyperplane(a,z)50.
Our terminology comes from the finite-gap theory,29,30since in dimensionn51 ourH reduces

to the trigonometric limit of the Lame´ operator andC will be its Baker–Akhiezer function in
Krichever’s sense.30 The following result explains the importance of this notion for the integrat
of the generalized Sutherland operator~18!.

Let us introduce the ringR of polynomials f (z) with the following properties: for eacha
PA ands51, . . . ,ma

f ~z2 1
2 sa![ f ~z1 1

2 sa! for ~a,z!50. ~22!

Theorem 3.1:21 Let C(x,z) be the Baker–Akhiezer function associated to the operator H
(18). Then for each element fPR of the ring in (22) there exists a partial differential operato
L f(x, ]/]x) such that Lfc5 f (z)c. For f 52z2 the operator L2z2 has the form (18).

In other words,C is a common eigenfunction of a commutative ring of differential operat
containingH and isomorphic to the ringR ~22!.

This theorem follows in a standard way~see Ref. 21! from the following technical lemma
~Lemma 2.3 is its special case!:

Lemma 3.2:21 Suppose that a functionw5P(x,z)e(x,z) is quasipolynomial in z satisfying th
conditions (21). Then the highest term in P is divisible by A(z)5)aPA(a,z)ma.

To make the paper self-contained we will prove this lemma below but first let us demon
how the theorem works forf 52z2. Consider the functionf52z2C1DxC. It is clear that it still
satisfies the conditions~21! and has the same degree inz asC. Thus, their highest terms must b
proportional in accordance with the lemma. Hence,f has the formf5u(x)C where the potential
u(x) can be expressed through the first two terms inC. Namely, if C has the form

C5~A~z!1A1~x,z!1 . . . !exp~x,z!

where degzA15degA21, then we must have

(
i 51

n

2zi]A1 /]xi5u~x!A~z! .

Thus, we deduced the equation (2D1u)C52z2C. To conclude thatu coincides with the
potential of the Sutherland operator~18! it suffices to check that

A1 /A5 (
aPA

ma~ma11!

4
~a,a!coth

~a,x!

2
~a,z!21 . ~23!

This formula will result below from the proof of Lemma 3.2.
Proof of Lemma 3.2:Let w5P(x,z)e(x,z). Then we can present it as a result of applying so

partial differential operator,P(x, ]/]x), to e(x,z). The conditions~21! take the form

cS x,z1
1

2
sa D2cS x,z2

1

2
sa D5PS x,

]

]xD F2 sinh
s~a,x!

2
e(a,z)G[0

for (a,z)50. This is equivalent to the conditions that the operatorP(x,]/]x)+sinhs(a,x)/2 is
right-divisible by]a5(a,]/]x) for eachaPA ands51, . . . ,ma .

Now we need the following one-dimensional fact.
Lemma 3.3: Suppose that the ordinary differential operator D(x, d/dx) is such that for every

s51,2, . . . ,m, the operator D+sinhsx is right-divisible by d/dx. Then D is right-divisible by
D05(d/dx +sinh21 x)m.
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This can be proved by a simple induction inm. Applying this lemma for all vectorsaPA we
see that the highest symbol inP(x,]/]x) must be divisible byA(]/]x)5)aPR1

]a
ma . This proves

Lemma 3.2. Moreover, since

D05S d

dx
+sinh21 xD m

5sinh2m xS dm

dxm
2

m~m11!

2
cothx

dm21

dxm21
1 . . . D ,

we easily derive the formula~23! for the second term of the Baker–Akhiezer function.
Notice that the crucial assumption in Theorem 3.1 is theexistenceof the Baker–Akhiezer

function C(x,z). Unfortunately, in contrast with the one-dimensional case, the conditions~19!
give rise to a highly overdetermined system on the parameters$a,ma% which is compatible in very
exceptional cases. In Ref. 21 it has been proved thatC does exist whenA5R1 is a positive part
of any root systemR andmaPZ1 are invariant with respect to the Weyl group ofR. Proof in Ref.
21 was based on some quite nontrivial results by Heckman and Opdam.22–24 Now we can easily
recover this result for the caseR5An21 using the results of Sec. II.

So, letH be the Sutherland operator

H52Dx1(
i , j

n
m~m11!

2 sinh2 ~xi2xj !/2
, mPZ1 . ~24!

In this case the conditions~21! take the form

CS x,z1
s

2
~ei2ej ! D[CS x,z2

s

2
~ei2ej ! D

for zi5zj ands51, . . . ,m, which are equivalent to the conditions

C~x,z1sei ![C~x,z1sej !,

or, in other notations,

~Ti
s2Tj

s!C[0 for zi5zj .

Comparing it with~10! and Theorem 2.2 we obtain the following.
Theorem 3.4: The functionC(x,z)5C21(x)(D2m)M@Q(z)exp(x,z)# defined in accor-

dance with the formulas (12), (14), and (15) is the Baker–Akhiezer function for the Sutherlan
operator H in (24). In particular, C is its eigenfunction: HC52z2C.

Remark:In the rational limit this formula forC turns into Berest’s formula26 for eigenfunc-
tions of the rational Calogero–Moser model. Notice that Berest derives his formula under as
tion thatC does exist.

Now taking (z1) i1•••1(zn) i( i 51, . . . ,n) as f (z)PR in Theorem 3.1 we obtain the differ
ential operators~2!:

Hi5~]1! i1•••1~]n! i1 lower terms,

andC will be their common eigenfunction,

HiC5~z1
i 1•••1zn

i !C.

Moreover, the ringR in that case contains also some nonsymmetric polynomials, for instance
polynomial divisible byQ(z) in ~14!. This gives extra quantum integrals for the operator~24!
which corresponds to itsalgebraic integrabilityin terms of Ref. 21.
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We will generalize Theorem 3.4 to all root systems in Sec. VI. Now we conclude this se
by a formula expressing the Jack polynomialsJm,k for integer parameterk via the functionF(x,z)
constructed in Sec. II~for the definition and properties of Jack polynomials see Ref. 8!. Introduce
the notationsc(z), d(x) for

c~z!5)
i , j

)
s51

m

~zi2zj2s! and d~x!5)
i , j

2 sinh
xi2xj

2
. ~25!

Theorem 3.5:Let mPZ1 and F(x,z) be the function (12). Define J6(x,z) as

J15c21~z!d22m21e2@ m(n21)/2#(x11•••1xn) (
sPSn

~21!sF~sx,z!,

J25c21~z!e2 @m(n21)/2#(x11•••1xn) (
sPSn

F~sx,z!,

in accordance with (25).
Then the substitution of z5(m11)r1l into J1 where

r5 1
2 ~n21,n23, . . . ,2n11!

and l5(l1 , . . . ,ln)PZn with l1> . . . >ln will give the Jack polynomials Jl,m11. Similarly,
the substitution z52mr1l with l i2l i 11.2m ( i 51, . . . ,n21) into J2 will give the Jack
polynomials Jl,2m .

See Sec. VI for the proof of this result in a more general context of multivariable Ja
polynomials. Notice that thoughJ2 gives the Jack polynomialsJl,k for ‘‘nonphysical’’ k,0, it
contains more explicit information about their coefficients~which are rational functions ofk).

Example:In the simplest casen52 andm51 the operatorD reduces to

D5S 12
1

zDT1S 11
1

zDT21

and calculatingF(x,z)5(D2m)@(z221)exz# with m5ex1e2x one obtains

F~x,z!5~z21!ex(z11)2~z11!ex(z21) .

Now J25@1/z21# (F(x,z)1F(2x,z)) with z5211l leads to the formula

Jl,2152Fcoshlx2
l

l22
cosh~l22!xG ,

while

J15
1

~z21!~ex2e2x!3
@F~x,z!2F~2x,z!#

after substitutingz521l leads to the following result:

Jl,25
sinh~l13!x2 ~~l13!/~l11!!sinh~l11!x

4 sinh3 x
.
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IV. BISPECTRAL DUALITY

Combining together Theorems 2.2 and 3.3 we conclude that the functionC(x,z) constructed
in Theorem 3.4 satisfies the following bispectral system:

HC52z2C,
~26!

DC5~ex11•••1exn!C,

with H andD being the Sutherland and Ruijsenaars operators~24! and ~9!.
Moreover, as it was explained in Theorem 3.1,C will be a common eigenfunction of a

commutative ring of differential operators inx which is isomorphic to the ringR of the polyno-
mials f (z) having the properties

~Ti
s2Tj

s! f [0 for zi5zj ~s51, . . . ,m!. ~27!

In fact, we have a similar situation inz-variable which corresponds to thealgebraic integrability
of the Ruijsenaars operator~9! for integerm.

Theorem 4.1: For each polynomial fPR from the ring in (27) there exists a differentia
operator Lf in x and a difference operator Df in z such that

L fC5 f ~z!C, D fC5 f 0~ex!C,

where f0 denotes the highest homogeneous term of f and f0(ex) is the result of substitution exi

instead of zi into f0(z). Moreover, the operator Df can be expressed by the following explic
formula:

D f5
1

r !
~adD!r@ f̂ #, r 5degf ,

where fˆ denotes the operator of multiplication by f(z), D is the Ruijsenaars operator (9) an
(ad)r is the rth iteration of the standardad-procedure,adAB5AB2BA.

Proof: The existence ofL f was established in Theorem 3.1. To constructD f we will use an
idea from Ref. 26 which is based on the following general property of bispectral systems obs
by Duistermaat and Gru¨nbaum.

Let C(x,z) satisfy a bispectral system

LC5l~z!C,

MC5m~z!C

for some linear differential or difference operatorsL andM acting inx andz, respectively.
Lemma 4.2 (see Ref. 5, p. 181): Operators(adM) rl and (2adm) rL give the same result bein

applied toC:

adM
r l@C#5~21!radm

r L@C# for r .0. ~28!

Now putL5L f , M5D, l5 f (z), m5ex11•••1exn andr 5degf . In that case in the right-hand
side of ~28! we will have the operator of zeroth order:

~21!radm
r L f5r ! f 0~ex!,

sinceL f5 f 0(]/]x)1 lower terms. Thus, from~28! one has

~adD
r f !@C#5r ! f 0~evx!C,
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which proves the second part of the theorem.
Corollary 4.3: The functionC(x,z) is a common eigenfunction of the operators (2) and (

LiC5~z1
i 1•••1zn

i !C, i 51, . . . ,n ,
~29!

DrC5m rC, r 51, . . . ,n ,

wherem r is the rth elementary symmetric function of ex1, . . . ,exn.
Indeed, we obtain the corresponding operators by taking symmetric polynomials asf (z) in

Theorem 4.1. In particular, for

m r~z!5 (
I 5$ i 1, . . . , i r %

zi 1
. . . zi r

the corresponding difference operatorDr is determined from the formula

Dr5
1

r !
adD

r ~m r~z!!. ~30!

Remark 1:Probably, some words are necessary to explain why do the operators~30! coincide
with the Ruijsenaars operators~4!. The simplest way is to prove independently thatC is a
common eigenfunction of the operators~4!. Indeed, the remark after Proposition 2.1 implies th
the quasipolynomial (Dr2m r)C has a smaller degree but still satisfies the conditions~10!, hence
it is zero. Now the operator~30! must coincide with the corresponding operator~4! since they both
haveC as an eigenfunction with the same eigenvalue.

Remark 2:In Sec. VI we will explain how to extend the bispectral duality~29! to noninteger
values of the coupling parameterm. The corresponding ‘‘analytic continuation’’ of ourC(x,z) in
parameterm is delivered by the theory of multidimensional hypergeometric functions du
Heckman–Opdam.22–24

V. DEFORMED CALOGERO–MOSER AND RUIJSENAARS MODELS

We keep the notations of Sec. III. Let us consider the setA5$a% consisting of the following
vectorsa in Rn11 with the multiplicitiesma :

a5ei2ej , i , j <n , with ma5m ,

a5ei2Amen11 , i<n , with ma51 .
~31!

This set form51 coincides with a positive part of the root systemAn , so it may be regarded a
a deformation ofAn , depending on the parameterm. The corresponding Schro¨dinger operator~18!
in that case looks as follows:

H52Dn111(
i , j

n
m~m11!

2 sinh2 1
2 ~xi2xj !

1(
i 51

n
m11

2 sinh2 1
2 ~xi2Amxn11!

. ~32!

It is the deformed Calogero–Moser operator~6! with v51.
In accordance with the definitions from Sec. III the Baker–Akhiezer functionC(x,z) for the

operator~32! must be of the form

C5~A~z!1 . . . !exp~x1z11•••1xn11zn11!

with
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A~z!5)
i , j

n

~zi2zj !
m)

i 51

n

~zi2Amzn11!.

The properties~21! for the deformedAn-system~31! are equivalent to the following:

for each 1< i , j <n and s51, . . . ,m,

C~x,z1sei ![C~x,z1sej ! for zi5zj , ~33a!

for each i 51, . . . ,n,

C~x,z1ei ![C~x,z1Amen11! for zi2Amzn111g50 , ~33b!

where we putg5(12m)/2.
To constructC we will use the deformation~8! of the Ruijsenaars operator:

D5(
i 51

n

aiTi1an11Tn11
Am ,

ai5S 12
1

zi2Amzn111g
D)

j Þ i

n S 12
m

zi2zj
D , ~34!

an115
1

m)
i 51

n S 11
m

zi2Amzn111g
D .

Introduce the ringR as a ring of analytic functionsf (z) with the properties~33!:

for each 1< i , j <n and 1<s<m,

~Ti
s2Tj

s! f [0 for zi5zj , ~35a!

for each i 51, . . . ,n,

~Ti2Tn11
Am ! f [0 for zi2Amzn111g50 . ~35b!

As in Sec. II, the key observation is the following.
Proposition 5.1: The deformed Ruijsenaars operator (34) with mPZ1 preserves the ringR

(35): D(R)#R.
Proof: It is close to the proof of Proposition 2.1; a little difference appears for the condit

~35b! since the symmetry arguments do not work in this case. Nevertheless, one can check d
that still ai1an11 is nonsingular along the hyperplanezi2Amzn111g50 while the expressions
Ti(an11)2Tn11

Am (ai), Ti(ai), Tn11
Am (an11) andTi(aj )2Tn11

Am (aj ) ( j Þ i ,1< j <n) all vanish along
this hyperplane. This saves the arguments used in Sec. II and proves the proposition.

Now we can construct the Baker–Akhiezer functionC(x,z) in the same manner as in Sec.
Introduce the polynomialQ(z) as follows:

Q~z!5 )
aPA )

s51

ma S a,z1
1

2
sa D S a,z2

1

2
sa D ~36!

or, more explicitly,
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Q~z!5)
i , j

n

)
s51

m

@~zi2zj !
22s2#)

j 51

n F ~zi2Amzn11!22S m11

2 D 2G .
Then, defineC(x,z) as

C~x,z!5C21~x!~D2m!M@Q~z!exp~x,z!#, ~37!

where

M5 (
aPA

ma5
mn~n21!

2
1n, m5ex11•••1exn1

1

m
eAmxn11, ~38!

D is the deformed Ruijsenaars operator~34! and

C~x!5M !)
i , j

n

~exi2exj !m)
i 51

n

~exi2eAmxn11!.

Theorem 5.2:LetA be the deformed An-system (31) with mPZ1 andC(x,z) be the function
(37). Then

(1) C is an eigenfunction for the deformed Ruijsenaars operator (34): DC5m(x)C with m
given by (38);

(2) C is the Baker–Akhiezer function for the deformed Sutherland operator (32), in particu
HC52z2C.

As a corollary, we obtain the algebraic integrability for the deformed Sutherland
Ruijsenaars operators withmPZ1 .

Theorem 5.3:For any polynomial f(z) from the ringR (35) there are differential operator
L f(x, ]/]x) and a difference operator Df (in z) such that

L fC5 f ~z!C and DfC5m f~x!C ,

wherem f(x) is obtained from the highest homogeneous terms of f by substituting exi instead of zi
( i<n) and (1/Am) eAmxn11 instead of zn11. The difference operator Df can be expressed by th
formula

D f5
1

r !
adD

r @ f ~z!#, r 5degf ,

in the notations of Theorem 4.1.
From this theorem we can derive the~Liouville! integrability of the models~32! and~34! for

any m. But first we need some special elements of the ringR ~the ‘‘deformed’’ Newton basis!.
Lemma 5.4: For any s51,2, . . . there exists a polynomial fs in the ring (35) with the highest

term z1
s1•••1zn

s1 (1/m) (Amzn11)s.
Proof: Let us look for a polynomialf sPR in the form

f s5z1
s1•••1zn

s1ps~zn11!.

Then~35a! holds automatically while~35b! leads to the following equation for the polynomialps :

ps~ t1Am!2ps~ t ![SAmt1
m11

2 D s

2SAmt1
m21

2 D s

identically in t. This equation determinesps completely up to an additive constant. It is easy
write downps(t) in terms of the Bernoulli polynomials:
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ps~ t !5(
i 50

s21 S s
i D mi

i 11 S Bi 11S t

Am
2

g

mD 2Bi 11D , g5
12m

2
,

whereBi(x) denotes the Bernoulli polynomials,Bi5Bi(0) are the Bernoulli numbers. From th
it is clear that the highest term ofps is ms/221ts. This proves the lemma.

Now taking thesef s(z) (s51, . . . ,n11) as f (z) in Theorem 5.3 we arrive at the following
Theorem 5.5: (1) For any mÞ0 the operators (32) and (34) can be included into commu

tive rings generated by independent operators H1 , . . . ,Hn11 and D1 , . . . ,Dn11 , respectively.
The differential operator Hi has the highest symbol(]1) i1•••1(]n) i1(1/m) (Am]n11) i . The
difference operators Ds are given by the formula Ds5(1/s!)adD

s @ f s# where D is the operator (34)
and fs are the polynomials described in Lemma 5.4.

(2) For mPZ1 the functionC in (37) is their common eigenfunction:

HiC5 f i~z!C , f i~z!5~z1! i1•••1~zn! i1
1

m
~Amzn11! i1 . . . ,

DsC5ms~x!C, ms5esx11•••1esxn1
1

m
esAmxn11.

Proof: For mPZ1 everything is done in Theorem 5.3. Then one can prove that the oper
Hi , Di which correspond tof iPR will be, in fact, algebraic inm ~this is especially clear forDi

due to the formulaDi5(1/i !)adD
i @ f i #). Thus, their commutativity holds not formPZ1 only, but

for all m.
Remark:In Sec. VI we will show that the bispectral duality between the deformed Caloge

Moser and Ruijsenaars models still holds fornonintegervalues ofm.

VI. ROOT SYSTEMS AND DIFFERENCE OPERATORS BY MACDONALD

In this section we extend our approach to all root systems. The corresponding generaliz
of the Ruijsenaars model are given by the difference operators by Macdonald.13 We start from
their definition and will use standard material about root systems; the reader is referred to R
for the details. We will also skip those of the proofs which simply repeat the arguments from
previous sections.

A. Rational Macdonald operators and their eigenfunctions

Let R5$a% be an arbitrary root system in Euclidean spaceV with the scalar product denote
as (•,•), R~5$a~% be its dual,a~52a/(a,a). We suppose thatR is a reduced system, the cas
R5BCn will be considered separately in the end of the section. We fix some basisa1 , . . . ,an of
simple roots inR and denote byR1 the corresponding positive half ofR, R5R1ø(2R1). The
~finite! groupW generated by all orthogonal reflectionssa~:x°x2(a~,x)a is called the Weyl
group of root systemR. As usual, introduce root~coroot! latticesQ(Q~) as

Q5 % Za i , Q~5 % Za i
~ ,

and their positive partsQ1 , Q1
~ as

Q15 % Z>0a i , Q1
~5 % Z>0a i

~ .

Further, letP(P~) denote weight~coweight! lattices:

P5$pPVu~p,a~!PZ ;a~PR~%,

P~5$pPVu~p,a!PZ ;aPR%.
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Then one has inclusionsQ,P, Q~,P~. Taking Z>0 instead ofZ in the last two definitions
leads to dominant weights~coweights! P1 andP1

~ .
To introduce the Macdonald operators we choose a setm5(ma)aPR of ‘‘multiplicities’’ in a

W-invariant way:mwa5ma for any wPW. Now let pPP~ be aminuscule coweight, by defini-
tion it is such a coweightp that 21<(p,a)<1 for all aPR. Then the~rational! Macdonald
operator Dp associated toR and p is the following difference operator13 acting in variablez
PV:

Dp5 (
t5wp
wPW

at~z!Tt , at~z!5 )
aPR

(a,t)51

S 12
ma

~a,z! D , ~39!

whereTt acts on a functionf (z) as a shift: (Tt f )(z)5 f (z1t). Using the tables from Ref. 31 on
can check that all root systems exceptE8 , F4 , G2 have at least one nonzero minuscule coweig
For example, in the caseR5An215$6v21(ei2ej )u i , j %,Rn11 all the fundamental coweight
p r5v(e11•••1er) (r 51, . . . ,n) are minuscule, and the corresponding operatorsD1 , . . . ,Dn

given by ~39! coincide with the Ruijsenaars operators~4!.
To cover the casesR5E8 ,F4 ,G2 we should consider a generalization of~39! for the so-called

quasiminusculecoweights which are such elementspPR~ that 21<(p,a)<1 for all a
Þ6p~. It is known ~see Ref. 31, Chap. VI, §1! that if uPR is themaximal rootof R, thenp
5u~ will be quasiminuscule. In that case the generalization of~39! looks as follows:13

Dp5uWu1 (
t5wp
wPW

at~z!~Tt21! ,

~40!

at~z!5 )
aPR

(a,t)51

S 12
ma

~a,z! D )
aPR

(a,t)52

S 12
ma

~a,z! D S 12
ma

~a,z!11D ,

whereuWu denotes the order of the Weyl groupW.
Notice that if p is quasiminuscule, then the onlyaPR with (a,p)52 is a5p~, so the

second product inat will contain two factors only. Another remark is that we may apply t
formula~40! formally for minuscule coweights, too. In this case it will coincide with~39! since the
constant termuWu2(t5wpat will be zero.

Let now allma be integers:maPZ1 . Introduce the ringR of analytic functionsf (z) with the
following properties: for eachaPR ands51, . . . ,ma

f ~z2 1
2 sa~![ f ~z1 1

2 sa~! for ~a,z!50 . ~41!

Proposition 6.1: The Macdonald operators (39) and (40) with maPZ1 preserve the corre-
sponding ringR of the polynomials with the properties (41): Dp(R)#R.

The proof for the case~39! is essentially the same as in Sec. II. The general case~40! is not
much more difficult and we leave it to the reader.

Now we can construct eigenfunctions for the Macdonald operators similarly to the caR
5An21 considered in Sec. II. Namely, let us defineC(x,z) by the formula

C~x,z!5C21~x!~Dp2m!M@Q~z!exp~x,z!# , ~42!

whereDp is the Macdonald operator~40!,

m5 (
wPW

e(wp,x), M5 (
aPR1

ma , ~43!

Q(z) is the following polynomial,
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Q~z!5 )
aPR1

)
s51

ma

@~a,z!22s2#,

and the factorC(x) is defined by the formula:

C~x!5M ! )
aPR1

S (
wPW

~a,wp!e(wp,x)D ma

,

or, equivalently, C(x)5M ! )aPR1
(]am)ma, where ]a is the derivative in directiona in

x-variable.
Theorem 6.2: Let R be a reduced root system and Dp be a corresponding Macdonald

operator (39) or (40). LetC(x,z) be the function (42). Then
(1) C is an eigenfunction of the Macdonald operator Dp : DpC5m(x)C with m given by

(43) and
(2) C is the Baker–Akhiezer function for the Sutherland operator H related to R~,

H52Dx1 (
aPR1

ma~ma11!~a~,a~!

4 sinh2 1
2 ~a~,x!

, ~44!

in particular, HC52z2C.
As a corollary, we obtain the algebraic integrability of the operatorsH andDp :
Theorem 6.3: (1) For each polynomial f(z) from the ringR in (41) there exists a partial

differential operator Lf(x, ]/]x) such that LfC5 f (z)C. All such operators commute with H an
with each other.

(2) The difference operators Df5adDp

r f ( f PR, r 5degf ) commute with Dp and with each

other.

The second part of this theorem can be improved in the following way. LetR̂ denote the ring
of trigonometric polynomialsf̂ of the form

f̂ ~x!5 (
tPP~

cte
(t,x)

which satisfy for eachaPR1 ands51, . . . ,ma the conditions

~]a!2s21 f̂ [0 for sinh
~a~,x!

2
50, ~45!

where]a denotes the derivative in directiona in x.
Theorem 6.4:For any trigonometric polynomial fˆPR̂ there exists a difference operator Df̂

defined on the lattice P~ such that Df̂C5 f̂ (x)C.
We will skip the proof of this result. Notice only that it follows from a ‘‘dual’’ characteriz

tion of C in terms of its analytical properties inx-variable. For our purposes we need the follo
ing information aboutC:

Proposition 6.5: The functionC in (42) can be presented in a form

C~x,z!5d21~x,m!exp~x,z! (
nPP

cn~z!e(n,x), ~46!

whered(x,m)5)aPR1
@2 sinh (a~,x)/2#ma and the summation domainP in (46) consists of alln

of the formn52r1(aPR1
l aa, wherer5r(m)5 1

2 (aPR1
maa~ and all la are integers from

the interval0< l a<ma .
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Proof: From Theorem 6.2 we know thatC satisfies the equation

HC52z2C, H52Dx1 (
aPR1

ma~ma11!~a~,a~!

4 sinh2 1
2 ~a~,x!

. ~47!

The form of the operatorH implies that its eigenfunction must have either a pole of orderma or

a zero of order 11ma along the hyperplanes sinh1
2(a

~,x)50, a~PR~. Further, from the same
Eq. ~47! we see thatC cannot have other singularities. On the other hand,C is given by the
explicit formula ~42!:

C5C21~x!F~x,z!,

where

F~x,z!5~Dp2m!M@Q~z!exp~x,z!# ~48!

in the notations of~42!. Now the formulas forDp and m make it clear thatF(x,z) can be
presented in a form

F5e(x,z) (
nPP~

an~z!e(n,x). ~49!

Moreover, in the expressionm5(wPWe(wp,x) any two terms are ‘‘congruent’’ modulo the coroo
lattice Q~: p2wpPQ~ for any wPW. The same is true for the shiftsTwp appearing in the
operatorDp . The outcome is that in the trigonometric polynomial~49! all the terms are congruen
moduloQ~: n2n8PQ~ if an , an8Þ0.

Combining this with the remark above about the singularities ofC, we conclude thatC must
have a form~46!:

C5d21~x!exp~x,z! (
nPP~

cne(n,x). ~50!

Substitution of~50! into the equation~47! gives that the ‘‘dominant’’ exponentse(n,x) in ~50! must
be the same as ind(x)5)aPR1

@2 sinh (a~,x)/2#ma, i.e., of the forme(wr,x)(wPW). This proves
the proposition.

We will use also the following properties ofC.
Proposition 6.6: (1) For any wPW, C(wx,wz)5«m(w)C(x,z), where «m is the one-

dimensional character of the Weyl group W determined by«m(sa)5(21)ma for aPR.
(2) The coefficients cn in ~46! for n5wr(wPW) are given by the formula

cwr~z!5 )
aPR1

)
s51

ma

@~wa,z!2s# .

Proof: ~1! Since (wx,wz)5(x,z) we see thatC̃(x,z)ªC(wx,wz) will be of the form

C̃5S )
aPR1

~wa,z!ma1 . . . Dexp~x,z!

and will satisfy the same conditions~41!. Hence,C andC̃ are proportional due to the uniquene

of the Baker–Akhiezer function. So,C̃56C. Since the reflectionsi with respect to a simple roo
a i leaves the setR1\$a i% invariant, we conclude that forw5si
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C̃/C5 )
aPR1

~sia,z!maY )
aPR1

~a,z!ma5~21!mi, mi5ma i
.

Hence, for generalwPW one hasC̃5«m(w)C.
~2! As we know from its construction, theC-function ~46! satisfies the conditions~41!. This

gives

(
nPP

cnS z1
1

2
sa~De(n1 ~1/2! sa~,x)[ (

nPP
cnS z2

1

2
sa~De(n2 ~1/2! sa~,x)

along the hyperplane (a,z)50. Sincea~PQ1
~ , we see that the terme(r1 (1/2) sa~,x) does not

appear on the right-hand side of this identity. Hence, it should cancel on the left-hand side a

cr~z1 1
2 sa~![0 for ~a,z!50 , aPR1 .

This implies thatcr(z) is divisible by

)
aPR1

)
s51

ma S a,z2
1

2
sa~D .

On the other hand, we know thatC is quasipolynomial inz with the highest term)aPR1
(a,z)ma.

Thus,cr must be exactly

cr~z!5 )
aPR1

)
s51

ma

@~a,z!2s# .

Now we can combine the first part of the proposition and the formula~46! to conclude that
cwn(wz)5cn(z), in particular,cwr(wz)5cr(z). This proves the second part of the proposition

B. Multivariable Jacobi polynomials

We start from the definition of multivariable Jacobi polynomials associated to root sys
following Ref. 23~see also Refs. 27 and 28!. Let R, as before, denote a reduced root system
H be a Sutherland operator associated to the dual systemR~:

H52D1 (
aPR1

ka~ka21!~a~,a~!

4 sinh2 1
2 ~a~,x!

, ~51!

whereka>0 areW-invariant parameters. Introduce the functiond(k,x), k5(ka), as follows:

d~k,x!5 )
aPR1

S 2 sinh
1

2
~a~,x! D ka

, ~52!

and the vectorr(k) as

r~k!5
1

2 (
aPR1

kaa~. ~53!

For coweightslPP of the systemR introduce theinvariant exponents ml as

ml~x!5 (
wPW

e(wl,x) .
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It suffices to considerml for the dominant weights only:

lPP1
~5$pPP~u~a,p!>0 ;aPR1% .

Introduce also a partial ordering onP1
~ in the following way: form,lPP1 we say thatm<l if

l2mPQ1
~ .

Theorem-definition:23 Jacobi polynomials Jl,k(x) associated to a root system R~ and k
5(ka) are uniquely determined by the following two properties:

(1) Jl,k for lPP1
~ has a form Jl,k5ml1(m,lclmmm for some constants clm .

(2) The functionwl(x)5d(k,x)Jl,k with d given by (52) satisfies the equation

Hwl52~l1r~k!!2wl ,

where H is the Sutherland operator (51).
Formally, this definition works not only forka>0, since the coefficientsclm are, in fact,

rational functions ofk. They may have poles, however, so for somek5(ka) andlPP1 Jl,k is not
well defined.

Now we are ready to explain how ourC-function ~42! is related to Jacobi polynomials
Introduce the following polynomialc(z),

c~z!5 )
aPR1

)
s51

ma

@~a,z!2s#, ~54!

and the notationk6 for the following sets of the parametersk5(ka), aPR:

~k1!a511ma , ~k2!a52ma . ~55!

Theorem 6.7: Let C(z) be the function (42) related to a reduced root system R with p
scribed W-invariant m5(ma), maPZ1 . Define J6(x,z) as

J15c21~z!d21~x,k1! (
wPW

~21!wC~x,wz! ,

J25c21~z!d21~x,k2! (
wPW

C~x,wz!

in accordance with the formulas (52)–(55).
Then J6 coincide with the Jacobi polynomials Jl,k related to the dual system R~:

J6~x,z!5Jz2r(k6),k6
~x!,

where k6 ,r(k6) are given by (53) and (55), and z should be taken in the form z5r(k1)1l,
lPP1

~ .
Proof: First, notice that each of the functionsC(x,wz), wPW, satisfies the same equatio

~47!. Hence, the functionsw6(x,z)5J6(x,z)d(x,k6) also satisfy the equation~47!:

Hw652z2w6 , H52Dx1 (
aPR1

ma~ma11!~a~,a~!

4 sinh2 1
2 ~a~,x!

~56!

@notice that thisH is the Sutherland operator~51! associated toR~ andk5k6]. Thus, the func-
tions J6 satisfy the second part of the definition forJ6(x,z)5Jz2r(k6),k6

(x).
Second, from the definition ofJ6 and the first part of Proposition 6.6 one easily derives t

J6 are symmetric functions ofx: J6(wx,z)5J6(x,z) for wPW.
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Now let us check thatJ6 will be, in fact, trigonometric polynomials over the coweight latti
P~. This is clear forJ2 since, due to~46!,

C~x,z!5d~x,k2! (
nPP

cn~z!e(n1z,x),

so, for zPP~ the functionF2(x,z)5c21(z)d21(x,k2)C(x,z) together withJ2(x,z) will be
trigonometric polynomials inx.

Now let us turn toJ1 . The arguments below are very close to those from Ref. 25. We sh
prove that the trigonometric polynomial

w5 (
wPW

~21!wC~x,wz!

is divisible by d(x,k1). But we know already thatw is an eigenfunction for the Sutherlan
operator~56!. This implies that it must have a pole of orderma or a zero of orderma11 along the
hyperplane (a~,x)50. But w(sax,z)5(w85saw(21)w8«m(sa)C(x,w8z)5(21)ma11w(x,z)
~here we used Proposition 6.6!. This implies thatw has zeros of orderma11 along the hyper-
planes (a~,x)50, a~PR~, hence it is divisible byd(x,k1).

Finally, using the second part of Proposition 6.6, we conclude that the normalization co
c21(z) provides the unit leading coefficient in theW-invariant trigonometric polynomialsJ6 .
Thus, we have checked the second part of the definition for the Jacobi polynomials. Theo
proven.

Example:Let R5An21,Rn consist of the vectorsa56(ei2ej ), i , j , with ma5mPZ1 .
Then

r~m!5
m

2 (
i , j

~ei2ej !5
m

2
~n21,n23, . . . ,2n11!

and

)
i , j

~exi2exj !2m5e2 @m(n21)/2#(x11•••1xn))
i , j

S 2 sinh
xi2xj

2 D m

,

so in this case we arrive at the statement of the Theorem 3.5.

C. Bispectrality of the rational Macdonald operators

In the first part of this section we have constructed a functionC(x,z) which is a common
eigenfunction for the Sutherland and the rational Macdonald operators associated to a reduc
systemR with integermultiplicities m5(ma):

HC52z2C ,

DpC5S (
wPW

e(wp,x)DC ,

hereH andDp are given by the formulas~44! and~40!. Now we are going to extend this result t
nonintegervalues ofma . A proper analog ofC in this case is delivered by Heckman–Opdam
multivariable hypergeometric functions related to root systems. We start from recalling
elements of that theory~see Refs. 22–24 for the details!.

So, let R5$a%,Rn be a reduced root system with prescribedW-invariant parametersk
5(ka), aPR. Following Ref. 22, introduce the differential operatorL(x,]/]x) as
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L5D2 (
aPR1

ka

11e(a~,x)

12e(a~,x)
]a~ , ~57!

where]v5( i 51
n (v,ei)]/]xi denotes the differentiation in the directionvPRn. The operatorL is

closely related to the Sutherland operator~51!, namely,

L1r252d21~x,k!+H+d~x,k! , ~58!

wherer5r(k) andd(x,k) are given by~52! and ~53!.
Let w5w(x,z) be a solution of the equation

Lw5~z22r2!w ~59!

of the form

w5e(z1r,x) (
nPQ1

~
Gn~z!e(n,x) ~60!

with G0(z)51.
Then the substitution of~60! into ~59! gives the recurrence equations for unknown coefficie

Gn(z):

~n,n12z!Gn~z!52 (
aPR1

ka(
j 51

`

~a~,z1r1n2 j a~!Gn2 j a~~z! ~61!

with G051 and the convention thatGn2 j a~50 if n2 j a~¹Q1
~ .

For genericz formula ~61! definesGn uniquely and one can show~see Ref. 22! that the
resulting series~60! will converge absolutely in the negative Weyl chamber

A25$xu~a~,x!,0 for all aPR1% .

It is important for us thatGn(z) are all rational functions ofz andk5(ka).
To compare thisw with our C we should consider the caseka52ma with maPZ1 . In this

case the formula~46! combined with the equationHC52z2C and the relation~58! gives that the
function

w̃~x,z!5d21~x,2m!c5 (
nPP

cn~z!e(n1z,x) ~62!

will satisfy the equation~59!. Hence, it is proportional to the function~60!. The difference is
coming from the coefficient ate(z1r,x). Therefore,

w̃5cr~z!w .

Calculatingcr with the help of Proposition 6.6~keeping in mind that ourr differs by sign from
the one appeared there! we obtain

w̃5 )
aPR1

)
s51

ma

~2~a,z!2s!w .

This motivates the introduction of the following functionC(x,z) for generalka :

C~x,z!5c~z,k!d~x,k!w~x,z!, ~63!
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c~z,k!5 )
aPR1

G~2~a,z!!

G~2~a,z!1ka!
, d~x,k!5 )

aPR1

S 2 sinh
1

2
~a~,x! D ka

,

wherew is the function~60!, c(z,k) is ~up to a nonessential factor! the so-called Harish–Chandr
c-function ~see Ref. 27!, andG(x) is the classical gamma-function.

We arrive at the following important proposition.
Proposition 6.8: The functionC(x,z) defined in the Weyl chamber A2 by the formulas (60),

(61) and (63) in case ka52maPZ2 coincides with the function (42).
Remark: Notice that ~62! implies that for kaPZ2 the series~60! terminates which is a

nontrivial property of the recurrence~61!. Another important feature ofkaPZ2 is that in that case
the solution~60! extends fromA2 to a meromorphic function on the wholeCn, while for generic
ka it will be multivalued.

Now it is easy to prove the following result.
Theorem 6.9:For any W-invariant parameters k5(ka) the functionC(x,z) defined by (60),

(61) and (63) satisfies the bispectral system

HC52z2C,

DpC5S (
wPW

e(wp,x)DC,

where H is the Sutherland operator (51) and Dp is the Macdonald operator (40) associated to
(quasi)minuscule coweight of the system R with ma52ka .

Proof: For kaPZ2 this follows from Proposition 6.9 and Theorem 6.2. Further, the equa
HC52z2C for generalka follows directly from the formulas~58!, ~59!, and~63!. So, the only
problem is to prove thatDpC5m(x)C for all ka . This is equivalent to the following differenc
equation for the functionw(x,z) ~59!:

D̃w5m~x!w, D̃5c21~z,k!+Dp+c~z,k!, ~64!

wherec(z,k) is the Harish–Chandrac-function ~63!. The key point is that the coefficients of th
operatorD̃ are rational functions ofz and k. This is simply because for anytPP~ the ratio
c(z1t,k)c21(z,k) is rational inz andk.

Now the equation~64!, after substituting the series~59! into it, reduces to an infinite numbe
of identities, each involving afinite number of the coefficientsGn(z). These identities involve
rational functions ofka , and we know that they hold forkaPZ2 @since we know that~64! is true
in this case#. Hence, they hold for arbitraryka . Theorem is proven.

Remark:The functionC ~63! is, in fact, a common eigenfunction for all quantum integr
L1 , . . . ,Ln of the Calogero–Moser model related to the root systemR~ ~for proof see Ref. 22!.
These operatorsL1 , . . . ,Ln are algebraic inka and forkaPZ2 they coincide with thoseL f from
Theorem 6.3 which correspond toW-invariant polynomialsf 5 f i . The ‘‘dual’’ difference opera-
tors Di5D f i

constructed in Theorem 6.3 will be, obviously, algebraic inka . So, the arguments
above can be used to show that the function~63! will be their common eigenfunction forarbitrary
W-invariantka .

The bispectrality for the deformed Ruijsenaars operator~35! also can be extended to nonin
tegerm similarly to Theorem 6.10. We will formulate the result only since the proof is absolu
the same.

So, let us consider the deformed Sutherland operatorH:

H52Dn111 (
aPR1

ma~ma11!~a,a!

4 sinh2 1
2 ~a,x!

, ~65!
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where R1 is the deformedAn-system ~31!. Introduce the ‘‘root lattice’’ Q generated byR
5R1ø(2R1) and denote byQ1 its ‘‘positive part:’’

Q15$~n1 , . . . ,nn ,Amnn11!un iPZ ,n1> . . . >nn11 ,n11•••1nn1150% .

By A2 we denote the negative ‘‘Weyl chamber:’’

A25$xPRn11u~a,x!,0 for all aPR1% .

Since the operator~65! in the chamberA2 can be expanded as

H52Dn111 (
aPR1

ma~ma11!~a,a!(
j 51

`

jej (a,x),

we can construct the solution of the equation

Hw52z2w ~66!

in the form

w~x,z!5e(x,z) (
nPQ1

Gn~z!e(n,x), G051 . ~67!

After substituting~67! in ~66! we arrive at the recursion:

~n,n1z!Gn~z!5 (
aPR1

ma~ma11!~a,a!(
j 51

`

j Gn2 j a(z) . ~68!

This determinesGn for genericz, andGn will be rational inz and inm. Similar to Ref. 22, one can
show that the series~67! will converge absolutely onA2 .

Now let us definec-function as follows:

c~z,m!5 )
aPR1

G~2~a~,z!!

G~2~a~,z!2ma!
, a~5

2a

~a,a!
. ~69!

Theorem 6.10:For any mÞ0 the functionC5c(z,m)w(x,z) defined by the formulas (67)–
(69) satisfies the bispectral system

HC52z2C ,

DC5S ex11•••1exn1
1

m
eAmxn11DC ,

where H and D are the deformations of the Sutherland and Ruijsenaars operators (32) and
respectively.

Remark:One can show thatC is actually a common eigenfunction for the quantum integr
L1 , . . . ,Ln11 and D1 , . . . ,Dn11 of the deformed Sutherland and Ruijsenaars models, c
structed in Theorem 5.5.

D. Bispectrality and multivariable Jacobi polynomials

Theorem 6.9 gives us a recurrence relation for the multivariable Jacobi polynomials a
ated with a root systemR~. To see this let us use Theorem 6.7:
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Jz2r(k),k~x!5c21~z!d21~x,k! (
wPW

~21!wC~x,wz!,

whereka511maPZ1 andC is the Baker–Akhiezer function for the Sutherland operator~51!.
As we know from the construction ofC, it satisfies the difference equation inz:

DpC5m~x!C , m5 (
wPW

e(wp,x) , ~70!

whereDp is the Macdonald operator~40! for a ~quasi!minuscule coweightp and ma5ka21.
SinceC(x,wz)56C(w21x,z) ~see Proposition 6.7! we conclude that the function

c~z!Jz2r(k),k5d21~x,k! (
wPW

6C~x,wz!

will satisfy the same equation~70!:

Dp~c~z!J!5m~x!c~z!J, c~z!5 )
aPR1

)
s51

ma

@~a,z!2s# . ~71!

It is convenient to renormalize the Jacobi polynomials in the following way:

Ĵl,k5Jl,k )
aPR1

G~~a,l1r~k!!!

G~~a,l1r~k!1ka!!
, ~72!

where, as before,r(k)5 1
2(aPR1

kaa andka511maPZ1 .

Comparing~71! and ~72! we derive the following difference equation inz for Ĵ5 Ĵz2r(k),k :

@D21+Dp+D# Ĵ5m~x!Ĵ,

where

D5 )
aPR1

)
s52ma

ma

@~a,z!1s# .

Now a simple calculation shows that the conjugation byD produces from the Macdonal
operator~40! the same operator but with the ‘‘conjugate’’m̂a5212ma :

D21+Dp
(ka21)

+D5Dp
(2ka) .

So, Ĵ5 Ĵz2r(k),k being considered as a function ofzPr1P1
~ will satisfy the recurrence relation

expressed by the rational Macdonald operator~39! or ~40! with 2ka substituted instead ofma :

Dp
(2ka)Ĵ5m~x!Ĵ .

This result extends easily to nonintegerka similar to Theorem 6.9, and it can be regarded a
higher analog of the three-term relation for the classical Jacobi polynomials.

E. Root system BC n and Koornwinder operators

Now let us describe briefly the situation for the nonreduced systemR5BCn . In this case
there is a generalization of Macdonald operators proposed by Koornwinder.7 The Koornwinder
operator in the rational limit has the following form,
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D5(
j 51

n

aj
1~z!~Tj21!1(

j 51

n

aj
2~z!~Tj

2121! , ~73!

where the coefficientsaj
6 look as follows:

aj
65S 17

m

zj
D S 17

l

zj7
1
2
D)

kÞ j
S 17

m8

zj1zk
D S 17

m8

zj2zk
D .

Here l ,m andm8 are the parameters andTj denotes the unit shift inzj .
We start from the casel ,m,m8PZ1 . In that case we have the following analog of Proposit

2.1:
Proposition 6.11: The Koornwinder operator (73) for l,m,m8PZ1 preserves the ring of

analytic functions f(z) with the properties

~Tj
s2Tj

2s! f [0 for zj50 and s51, . . . ,m ,

~Tj
s2 1/22Tj

2s1 1/2! f [0 for zj50 and s51, . . . ,l ,

~Ti
s2Tj

6s! f [0 for zi56zj and s51, . . . ,m8 .

The dual differential operator inx in that case coincides with the generalized Sutherla
operator forR5BCn :3

H52Dx1(
i , j

m8~m811!

2 sinh2 1
2 ~xi6xj !

1(
j 51

n S ~m1 l !~m1 l 11!

4 sinh2 1
2 xj

2
~m2 l !~m2 l 11!

4 cosh2 1
2 xj

D . ~74!

Their common eigenfunctionC(x,z) can be constructed in the same way as for reduced
systems:

C~x,z!5C21~x!~D2m!M@Q~z!exp~x,z!# , ~75!

where

Q~z!5 )
i , j

s51 . . .m8

~~zi6zj !
22s2! )

j 51 . . .n
s51 . . .m

~zj
22s2! )

j 51 . . .n
s51 . . . l

~zj
22~s21/2!2!

and

m5(
j 51

n S 2 sinh
xj

2 D 2

, M5n~n21!m81n~m1 l ! ,

C~x!5M !)
i , j

@~] i6] j !m#m8)
j 51

n

~] jm!m1 l , ] i5]/]xi .

This functionC has the form

C~x,z!5F)
i , j

~zi
22zj

2!m8)
j 51

n

~zj !
m1 l1 . . . Gexp~x,z! ,
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and it is uniquely determined by the properties formulated in Proposition 6.11.
The duality betweenD andH admits an analytic continuation to alll ,m,m8. More precisely,

one should consider the Heckman–Opdam solutionw(x,z) of the equation

Hw52z2w ~76!

in the form

w5e(x,z)( Gn~z!e(n,x), G051 , ~77!

where the summation is taken overnPZn having positive partial sums:

n11•••1n r>0 for r 51 . . .n .

The c-function for R5BCn has the form27

c~z!5)
i , j

G~2~zi6zj !!

G~2~zi6zj !2m8!
)
j 51

n
G~2zj !

G~2zj2m! )j 51

n
G~2zj11/2!

G~2zj2 l 11/2!
. ~78!

Theorem 6.12:The functionC5c(z)w, wherew is determined by the formulas (76)–(77)
and c(z) is the function (78), satisfies the bispectral system

HC52z2C ,

DC5S (
j 51

n

4 sinh2
1

2
xj DC ,

where H and D are the operator (74) and Koornwinder operator (73), respectively.
The analogs of the statements about the~algebraic! integrability of the operatorsH, D and the

relation ofC-function ~75! to the Jacobi polynomials forR5BCn are straightforward.
Remark 1:The difference operators by Macdonald and Koornwinder remain to be alge

ically integrable forall integer values of the parametersmaPZ ~not for positivemaPZ1 only!.
This is simply because there exist certain gauge transformations changing the signs of the
eters.

Remark 2:The main constructions of the present article have their analogs for the trig
metric version of Macdonald operators. We intend to discuss them in a separate paper. H
only mention that the trigonometric version of the deformed Ruijsenaars model~8! has the fol-
lowing form:

D5(
i 51

n

ai~z!Ti
v1an11~z!Tn11

Amv ,

ai~z!5
sinh~zi2Amzn111g2v!

sinh~zi2Amzn111g!
)
j Þ i

n
sinh~zi2zj2mv!

sinh~zi2zj !
,

an11~z!5
sinhv

sinhmv )
i 51

n
sinh~zi2Amzn111g1mv!

sinh~zi2Amzn111g!
, g5

~12m!v

2
.
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State vector reduction as a shadow of a noncommutative
dynamics
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A model, based on a noncommutative geometry, unifying general relativity and
quantum mechanics, is developed. It is shown that the dynamics in this model can
be described in terms of one-parameter groups of random operators, and that the
noncommutative counterparts of the concept of state and that of probability mea-
sure coincide. We also demonstrate that the equation describing noncommutative
dynamics in the quantum mechanical approximation gives the standard unitary
evolution of observables, and in the ‘‘space–time limit’’ it leads to the state vector
reduction. The cases of the spin and position operators are discussed. ©2000
American Institute of Physics.@S0022-2488~00!02508-1#

I. INTRODUCTION

There are many attempts to create a quantum theory of gravity, or at least a gene
version of the theory of general relativity, based on noncommutative geometry.1 The starting idea
of all these works consists in transforming a space–time manifold into a noncommutative
In a series of works2 we have proposed another strategy. It turns out that if one replaces sp
time M with a groupoidG ‘‘over’’ M , one can construct a consistent model unifying gene
relativity and quantum mechanics. The idea is to define a noncommutative algebraA of complex
valued functions on the groupoidG ~with convolution as multiplication! such that the algebraA,
if narrowed to~a subset of! its centerZ(A), is isomorphic with the algebraC`(M ) of smooth
functions on a space–timeM ~with the usual pointwise multiplication!. Then a noncommutative
~derivation based! differential geometry is developed in terms of the algebraA, and a noncom-
mutative generalization of general relativity is constructed. It turns out that, after this constru
is done, the algebraA can be completed to theC* -algebra~it is calledEinstein C* -algebra!. The
next step is to quantize the system in close analogy with the standardC* -algebraic method.
Details of this approach are summarized in Sec. II.

Noncommutative geometry, which in this approach is supposed to model the pre-P
epoch, is strongly nonlocal with no local concepts~such as that of space point or time instan!
having any meanings. In Secs. III and IV it is shown that, in spite of this, in the noncommut
regime, the true albeit generalized dynamics is available. It is only during the ‘‘phase trans
from the noncommutative geometry to the usual~commutative! geometry that space, time, an
other local structures emerge. It can be demonstrated that some nonlocal phenomena, know
quantum mechanics and cosmology, such as the Einstein–Podolsky–Rosen experiment3 or the
horizon problem,4 can be explained as ‘‘shadows’’ or remnants of the primordial totally glo
regime. It also turns out that in the noncommutative regime the singularity concept los
meaning~the algebraA does not distinguish between singular and nonsingular states!, and clas-
sical singularities are but products of the transition to standard physics of the commutative5

The main goal of the present paper is to show that the probabilistic character of qua
mechanics is a direct consequence of our model, and that the generalized noncommuta
namics unifies in itself both the unitary evolution of quantum observables and the ‘‘reducti
51680022-2488/2000/41(8)/5168/12/$17.00 © 2000 American Institute of Physics

                                                                                                                



ure.
which

nd that
es the

rators
that

do not
mporal
l need
was
ns.

ented

ction

ndle

t

-
e

ay:

f
the

ime

5169J. Math. Phys., Vol. 41, No. 8, August 2000 State vector reduction in noncommutative dynamics

                    
the state vector.’’ The key point is that the von Neumann algebraM, generated by the algebraA,
is both a ‘‘dynamical object’’ and a noncommutative generalization of the probability meas6

On the strength of the Tomita–Takesaki theorem one can introduce one-parameter groups
serve to define the generalized evolution of von Neumann operators~i.e., elements ofM!. We
demonstrate that these operators correspond to random operators on a Hilbert space a
generalized dynamics of these operators, in the quantum mechanical approximation, giv
unitary evolution of observables known from quantum mechanics~Sec. IV!, and in the ‘‘space–
time limit’’ it leads to the reduction of the state vector; the cases of the spin and position ope
are analyzed in detail~Sec. VI!. This result can be regarded as corroborating Penrose’s idea
the reduction of the state vector is essentially a quantum gravity effect.7 It looks as if the source
of the ‘‘measurement problem’’ in quantum mechanics was the fact that quantum processes
occur in space–time, whereas the act of measurement is, out of its very nature, a spatiote
event. As a by-product of this analysis we show that the generalized dynamics of our mode
not be assumeda priori ~by postulating an additional equation describing this evolution, as
done in our previous works!, but it can be deduced from the model under rather mild conditio
In Sec. VII we collect our main results.

II. A NONCOMMUTATIVE UNIFICATION OF GENERAL RELATIVITY AND QUANTUM
MECHANICS

In this section we briefly summarize our model in a quasiaxiomatic way; the model pres
earlier2 could be considered as a special instant of this more general scheme.

~1! Let E be the total space of a principal fiber bundle, i.e., a smooth manifold with the a
of a Lie groupG on E ~to the right! such that the orbits of this action form a smooth manifoldM
interpreted as space–time.~More generally, we can consider a generalized principal fiber bu
such thatE, its total space, is a differential space of constant dimension.8! Typically, E could be
thought of as the total space of the frame bundle over space–timeM . We consider the produc
G5E3G and regard it as a smooth groupoid.9 We additionally assume that there is a subsetZ̃ of
the centerZ(A) of the algebraA such thatZ̃ is isomorphic withC`(M ) where M is the
space–time manifold~or its differential space generalization!.

~2! We define the involutive algebraA5(Cc
`(G,C),1,* ,* ) of compactly supported, com

plex valued functions on the groupoidG where the plus sign (1) is the usual addition, and th
multiplication is defined to be the convolution

~a* b!~g!5E
Gq

a~g1!b~g2!,

whereg5(q,qg)PG, g5g1+g2 , andGq is the fiber ofG over qPE; the integral is taken with
respect to the~left! invariant Haar measure. The involution is defined in the following w
a* (g)5a(g21). Let us notice that instead ofg5(q,qg) we can simply writeg5(q,g).

~3! Let DerA be the set of all derivations of the algebraA; it has the structure of a
Z(A)-module. We define the differential algebra (A,V), whereV is aZ(A)-submodule of DerA
of the formV5VE% VG with VE being the set of all derivations ‘‘parallel’’ toE andVG the set of
all derivations ‘‘parallel’’ toG.

~4! A metric onV is defined to be aZ(A)-bilinear nondegenerate symmetric mappingg:V
3V→A. For our model we choose the metric

g5prE* gE1prG* gG , ~1!

where gE and gG are metrics onVE and VG , respectively, and prE and prG are the obvious
projections. It has been demonstrated by Madore and Mourad10 that for a broad class o
derivation-based differential algebras the metric is essentially unique. This is the case forG
part of metric~1!, but theE part of this metric is determined by the Lorentz metric on space–t
M .
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~5! Now, we develop the noncommutative differential geometry as in Ref. 11: We defin
linear connection~with the help of the Koszul formula!, the curvature and the Ricci operato
R:V→V, and we write thenoncommutative Einstein equation

G50, ~2!

whereG5R12LI with R being the Ricci operator,L a constant related to the usual cosmologi
constant, andI the identity operator; kerG denotes the solution of this equation. Because of
form of metric ~1!, Eq. ~2! can be written as

GE1GG50,

whereGE is the part parallel toE andGG is the part parallel toG. Since in theG direction there
is essentially one metric, the equationGG50 should be solved for derivationsvPker GG,VG .
The equationGE50 is a ‘‘lifting’’ of the usual Einstein equation in the space–timeM ~therefore,
it should be solved for the metric!; all derivationsvPVE satisfy it, and all derivationsvPVG

satisfy it trivially. It can be easily seen that kerG5kerGE% kerGG is a Z(A)-submodule ofV
~see Ref. 11!.

~6! Let pq :A→B(H) be a representation of the algebraA in the Hilbert spaceH
5L2(Gq), whereB(H) denotes the algebra of bounded operators onH, given by

~pq~a!c!~g!5~aq* c!~g!. ~3!

Here,aq is a restriction ofaPA to the fiberGq ,qPE, andgPG,cPH. The completion ofA
with respect to the normiai5supqPEipq(a)i is a C* -algebra.12 This algebra will be called
Einstein C* -algebra.

~7! We quantize the considered system with the help of the algebraic method.13 Let S denote
the set of states on the EinsteinC* -algebraA. We assume that elements ofS represent states o
the system and pure states ofS represent pure states of the system. LetaPZ(A) be a Hermitian
element ofA and letwPS. In such a case,w(a) is the expectation value of the observablea if the
system is in the statew.

In the present paper we, for simplicity, assume thatG is a compact group. Two fibersGp and
Gq of G, p,qPE, are said to beequivalentif there is gPG such thatq5pg. The set of all
functions ofA which are constant on the equivalence classes of fibers of this equivalence re
are calledprojectible functions; they form a subalgebra ofA denoted byAproj . It can be easily
seen thatAproj,Z(A), and consequentlyAproj is a commutative algebra. In fact, it is isomorph
with the algebraC`(M ) of smooth functions on the space–timeM . In this way, we recover the
usual general relativity~in Geroch’s formulation15!. In subsequent sections we shall show that
standard quantum mechanics is also incorporated into our model.

We have computed the above-presented model for the case in whichG5E3D4 , whereE is
the total space of the frame bundle over the Minkowski space–time andD4 a group of four
rotations and four reflections@it is a noncommutative subgroup of SU~2!#14 and, more generally
for the case whenG is a finite group.16 These cases should be regarded as ‘‘toy models’’ dem
strating the consistency of our approach.

III. RANDOM OPERATORS

Let A5Cc
`(G,C) ~in fact, in what follows we can assume thatA is the Einstein algebra!. For

eachaPA there is a functionra on E with values in the space of operators given by

ra~p!5pp~a!

for pPE. The functionra is said to beG-invariant if, for everygPG,ra(pg)5ra(p).
Lemma 3.1: The functionra is G-invariant if and only if aPAproj .
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Proof: Let us notice thatra(pg)5ra(p) is equivalent toapg* jpg5ap* jp , which gives
apg5ap . h

Lemma 3.2: Ifra5rb then a5b (almost everywhere).
Therefore, we have two equivalent descriptions of our noncommutative geometry: o

terms of the algebra of smooth, compactly supported, complex valued functions~with convolution
as multiplication! on the groupoidG; another in terms of the algebra of operator valued functi
on E. The first description is, in many cases, easier to work with, and gives us the direct c
with better known commutative functional algebras@such as the algebraC`(M ) on a manifold
M #; the second description is more in the spirit of noncommutative geometry.

Let us notice that the groupoidG5E3G has the natural structure of foliation; this foliatio
will be denoted byF. The fibersGp ,pPE, are leaves of the foliationF ~for simplicity, we
assume thatG is a smooth manifold!. Let the space of leaves be denoted byY. We should notice
that Y is in the bijective correspondence withE. Let l:G→Y be the natural projection of the
elementgPG onto the leaf containingg, i.e., l(g)5Gp whereg5(p,g); we shall also write
p5begg.

Let us consider a ‘‘bundle’’ of Hilbert spaces (L2(Gl(g)))gPG . Sections of this bundle form
one-parameter families (jg)gPG such that, for everyjg , jgPL2(l(g)).

Definition 3.1: Therandom operatoris a one-parameter family r5(r p)pPE of operators rp
PEnd(L2(Gp)),pPE, satisfying the following measurability condition: For any sections(jg)gPG

and (hg)gPG of (L2(Gl(g)))gPG the function G→C, given byg°(pbeg(g)(a)jg ,hg), is mea-
surable (in the usual sense).

This definition is an application of the general concept of random operator~see Ref. 12, p. 51!
to our case.

The norm of the random operatorr is defined asir i5suppPEir pi . The equivalence classes o
random operators, modulo almost everywhere, equipped with the obvious algebraic oper
form the von Neumann algebra~Ref. 12, p. 52!, which will be denoted byN. It is also called the
von Neumann algebra of the foliationF.

Let us notice that any functionaPA determines the random operatorra given by ra

5pp(a) for pPE ~but not every random operator must be determined by a functionaPA); ra is
in fact a one-parameter family of operators parametrized by the elements of the setE, and it is
easy to check that it satisfies the condition of Definition 3.1.

Proposition 3.1:% pPEpp(A) is a subalgebra of the von Neumann algebraN of the foliation
F, and ( % pPEpp(A))9 is a von Neumann subalgebra ofN.

IV. STATE-DEPENDENT EVOLUTION OF RANDOM OPERATORS

First, let us recall some well-known concepts. LetA be a*-subalgebra of the algebraB(H) of
bounded operators on a Hilbert space. A vectorjPB(H) is said to beseparatingfor the algebra
A acting onH if, for every TPA, Tj50 impliesT50. A vectorjPB(H) is said to becyclic for
A acting onH if Aj is dense inH. The fact thatj is cyclic for A acting onH implies thatj is
separating forA8. If A is a von Neumann algebra the reverse is also true.17 Now we go back to our
case.

Lemma 4.1: IfA is an algebra with unit then the vectorj51PL2(Gq) is cyclic for the von
Neumann algebra(pq(A))9 acting on L2(Gq).

Proof: We have the obvious equality:Aq5pq(A)1 whereAq5$aq :aPA%. The functional
spaceAq contains polynomial functions, thereforeAq is dense inL2(Gq), and consequentlyj is
cyclic in L2(Gq).

Let T5pq(a), aPA, be an operator such thatTj50. In such a case,aq* 150, which implies
aq•150, andT50. h

Corollary 4.1: If A is the algebra with unit then the vectorj5(1q)qPE , where1qPL2(Gq)
and1q is the constant function equal to one, is cyclic and separating for the von Neumann al
M5( % qPEpq(A))9 acting on% qPEL2(Gq).

This allows us to formulate the following theorem.
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Theorem 4.1:LetA be the algebra with unit. With every statew on the von Neumann algebr
M5( % qPEpq(A))9 there is associated the one-parameter group(a t

w) tPR of automorphisms of
M given by

a t
w~b!5D2 i tbD i t , ~4!

for every bPM, whereD5S* S, and the operator S:M→M is defined by S(b)(jw)5b* (jw)
wherejw5(jwq

)qPE is cyclic in L2(Gq)qPE .
Proof: On the strength of Theorem 1 of Ref. 18 there exists the unique statew5(wq)qPE ,

wherewq5(pq(a)jq ,jq) with jq cyclic in L2(Gq), such that

pwq
~a!@b#5@pq~a!~b!#, ~5!

bPpqA, is a GNS representation of the algebraA. Here @ . . . # represents the element of th
quotient space with respect to the idealNwq

5$aPA:wq(aa* )%. Now, the Tomita–Takesak

theorem19 asserts that the mappinga t
w :M→M,tPR, is a one-parameter group of automo

phisms of the von Neumann algebraM with the desired properties. h

The one-parameter groupa t
w, tPR, is called themodular groupof the statew on the von

Neumann algebraM which, by Proposition 3.1, is obviously a von Neumann subalgebra of
van Neumann algebraN of the foliationF.

With any elementaPA there is associated the random operatorra5(pq)qPE . If ra belongs
to the von Neumann algebraM we can consider the function of the formt°a t

w(ra), which
defines a one-parameter group of random operators representing the ‘‘evolution’’ of these
tors starting from the ‘‘initial’’ random operatorra5a0

w(ra). Let us take a closer look at thi
evolution.

If we assume thatraPM, we have

a t
w~ra!5e2 i tDraeitD.

After differentiating and multiplying byi\ this equation assumes the form

i\
d

dt U
t50

a t
w~ra!5@ra ,2\ ln D#. ~6!

The ‘‘Hamiltonian’’ 2\ ln D depends on the statew through the dependence on the endom
phismS. This equation should be regarded as describing a noncommutative dynamics of ra
operators.

For any random operatorr 5(r q)qPE we define itseigenfunctionk(q),qPE by

r qj5k~q!j ~7!

for any jPL2(Gq) ~for simplicity, we consider a nondegenerate case!. We also define theeigen-
functionk:E3R→C for the ‘‘evolution’’ of a random operatorr by

~at
w~r !!qPEj5k~q,t !j, ~8!

for any jPL2(Gq) whereat
w(r ) is a random operator at the instantt5t.

In the noncommutative regime there is no time, and consequently there cannot be a
namical equations~in the usual sense!. However, as we have seen, a noncommutative counte
of dynamics is encoded in~state-dependent! modular groups of random operators. It is importa
to see how these modular groups project to the standard dynamics in the quantum mec
case.

First, let us notice that if a random operator is of the formr 5(pq(a))qPE , where a
PAproj , then the functionk:E→C is G-invariant, i.e.,k(qg)5k(q) for everygPG.
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Lemma 4.2: If aPAproj then the operatorra can be identified with the functionra :M→C.
For any xPM , k(x) is the eigenvalue of the operatorra(p) wherepM(p)5x.

Proof: We have

ra~p!j5ap* j.

Since aPAproj , ap5const on the setpM
21(x). For xPM , such thatpM(p)5x, one hasap

5k(x) wherek:M→C is a function onM such thata5k+pM . Therefore,

ra~p!j5k~x!•j. ~9!

Consequently,k(x) is the eigenvalue of the operatorra and we can identifyra(p) with k. h

Corollary: For aPAproj the operatorpp(a)5ra(p),pPE, is a homothety with the constan
k(x), and consequently its eigenspace is the whole space L2(Gp).

The functionra is, in fact, the spectrum of the operatora. If ra is a random operator, the
function ra :M→C is measurable in the usual sense~because of the measurability condition
Definition 3.1! The functionk @or ra(p) understood as a function onM # is an eigenfunction ofa.
Of course, ifa is Hermitian, the eigenvaluesk(x) are real.

Lemma 4.2 is expressed in terms of operator valued functions onE. However, it can be
equivalently expressed in terms of the algebraA5C`(G,C). It then says that with everya
PAproj there is the canonically associated function~measurable in the usual sense! ã:M→C such
that ã+pM5a. For anyxPM , a(x) is an eigenvalue of the operatorra(q) wherepM(q)5x.

Let M5( % qPEpq(A))9 be the von Neumann subalgebra of the von Neumann algebraN of
the foliationF. It is easy to check that the mappingr:A→M given byr(a)5ra , for aPA, is
a homomorphism of algebras, and consequently we haver(Z(A)),Z(M),Z(N). It follows
that if aPAproj,Z(A) then the one-parameter groupa t

w(a) is constant. Therefore, if we go to th
space–time approximation~if we restrict toAproj) the noncommutative dynamics is switched o
Let us notice, however, that this is valid only for a given statew. It is not unlike in the Schro¨dinger
picture of quantum mechanics in which operators are constant and all time dependence goe
state vectors. We should expect that the dynamics reappears in the quantum mechanical a
mation.

Such an approximation is obtained if we narrow the algebraA to its subalgebra

AGª$ f +prG : f PCc
`~G,C!%,

where prG :G→G is the obvious projection. For anyaPAG , the random operatorra

5(pq(a))qPE is a family of operators which can be identified with each other~because of the
natural isomorphism of leaves of the foliationF!. In this sense any random operatorra , with a
PAG , is a constant family projectible to the ‘‘typical leaf’’G. In such a case, the operator,
which the random operatorra projects, will be denoted byaG ; it belongs to End(L2(G)). Let us
notice thataG is not a random operator since random operators are defined on the foliated
and not on the ‘‘typical leaf.’’ Now, Eq.~6! assumes the form

i\
d

dt U
t50

a t
w~aG!5@aG ,2\ ln D f #. ~10!

The modular groupa t
w(aG) is here defined with respect to the von Neumann algebra (pq(AG))9,

whereq is any element ofE. Equation~10! describes the evolution depending on the statew; we
shall return to this problem in Sec. V.

It is interesting to notice that the modular groupa t
w ,tPR, determines the derivationv

PDerM of the von Neumann algebraM. We define

v~pwq
~a!!ª

d

dt
~a t

w~pwq
~a!!!,
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whereaPM, and the representationpwq
is defined by Eq.~5!. After simple calculations~see Ref.

18!, from Eq. ~4! we obtain

v~pwq
~a!!5 i @pwq

~a!, ln D#5 iadln D~pwq
~a!!.

The one-parameter groupsa t
w ,tPR, for which there exists a derivationvPkerG such that

v~pwq
~a!!5

d

dt
~a t

w~pwq
~a!!

deserve to be calledintegral curvesof the noncommutative Einstein equation.

V. UNITARY EVOLUTION OF RANDOM OPERATORS

In this section we show that Eq.~6!, in the quantum mechanical approximation, gives
usual unitary evolution of quantum observables.

Let us first notice that the~above-defined! homomorphism of algebrasr:A→M is a mono-
morphism. Indeed, ifr(a)50 then (pq(a))qPE50, which implies thataq50 for eachqPE, and
this means thata50. Therefore, we have proved the following lemma.

Lemma 5.1:r:A→r(A) is an isomorphism of algebras.
Let U5$uPA:uu* 5u* u51% be the unitary group of the algebraA. Then r(U) is the

unitary group of the algebrar(A). Let us notice that for the subalgebraAG,A we have
r(AG),r(A) and the unitary group of this subalgebra is of the form

UG5$uPAG :uu* 5u* u51%.

Evidently UG,U, and correspondinglyr(UG),r(U).
Let R5(r(AG))9 be the von Neumann algebra generated by the algebra of random ope

r(AG). In agreement with the general construction,20 the automorphismsa8:R→R, anda9:R
→R are said to beinner equivalentif there is an elementuPr(UG) such that

ua9~b!5a8~b!u

for every bPR. The set of equivalence classes of this relation is called thegroup of outer
automorphismsand is denoted by OutR. As is well known, the one-parameter groupa t

w ,tPR,
canonically projects onto the~nontrivial! one-parameter groupã t ,tPR, in OutR which is inde-
pendent of the statew.

From Eq.~6! it follows that ã t satisfies the following equation in OutR:

d

dt U
t50

@a t~a!#5 i @@a#,@ ln D##,

where the square brackets denotes the equivalence class of inner equivalence. This equa
also be written in the form

i\
d

dt U
t50

ã t~ ã!5@ ã,H#,

whereH52\@ ln D#. This equation, after being projected to the ‘‘typical leaf’’G, assumes the
form

i\
d

dt U
t50

ã t~ ãG!5@ ãG ,H#, ~11!
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which is the same as Eq.~10! but now independent of the statew. This is, in fact, the Schro¨dinger
equation in the Heisenberg picture of quantum mechanics in which operators evolve bu
vectors are time independent. In this way, by projecting to the ‘‘typical leaf’’G, we recover from
our model the unitary evolution of ordinary quantum operators.

VI. REDUCTION OF THE STATE VECTOR

The product structure of the groupoidG5E3G plays the essential role in our model. Th
‘‘ E component’’ of the model is, in principle, responsible for its gravitational effects, wherea
‘‘ G component’’ is responsible for quantum mechanical effects. In the quantum mechanic
proximation we simply forget about theE-component effects. In this section we show that p
cisely this fact leads to the effect which is described as a reduction of the state vector.
however, we must do some preparatory work.

Let us consider a functionf :G→C on the groupoidG5E3G. With fixedgPG we obtain the
function f g :E→C given by

f g~p!5 f ~p,g!

for pPE. This function determines the one-parameter family of functions (f g)gPG . For a fixed
gPG we obtain the sequence of the values (f g(p))pPE of the functionf on the fiberE3$p% for
eachpPE. In particular, for any Hermitian elementaPAproj we obtain the sequence of re
values ag(p),pPE. In this case, the sequence (ag(p))pPE does not depend ofgPG ~since
elements ofAproj are constant on fibersGp for everypPE). On the strength of Lemma 4.2 and th
subsequent corollary, ifaPAproj is Hermitian then the random operatorra5(pp(a))pPE is a
one-parameter family of homotheties with constantsa(p,g) whereg is any fixed element of the
groupG, and the operatorr p5pp(a), for a fixedpPE, satisfies the eigenvalue equation

r pj5k~p!j ~12!

for j5L2(Gq). The operatorr p is a homothety and its eigenspace is the whole Hilbert sp
SinceaPAproj the eigenfunctionk(p)5a(p,g) assumes constant values on the fibersp21(x),x
PM . Consequently, there is the real valued functionk̃:M→R such thatk̃+pM5k, and the
random operatorra5(r p)pPE has the following set of eigenvalues:

$k~p!:pPE%5$k̃~x!:xPM %.

Let us notice that in every act of measurement the measuring apparatus is always loca
given point in space–timexPM . This automatically causes the functionk̃ to ‘‘collapse’’ to its
valuek̃(x) ~in the following examples we shall see that this indeed is connected with the redu
of the state vector!. Such a procedure is meaningful only with respect to operators which com
with the position operator since measuring the eigenvaluek̃(x), for a given x, presupposes
knowledge ofxPM .

The above-mentioned analysis is carried out from the perspective of theE component of our
model; to go back to the standard measurement interpretation in quantum mechanics we m
how the process looks from the perspective of itsG component. Let us choose an orthonorm
basis$cn(g)% in the Hilbert spaceL2(G). We are looking for the operatorrG acting in this space
the eigenvalues of which would bek(p). This does not necessarily mean that the spectrum of
operator is continuous. For instance, if the functionk(p) is constant there is only one eigenvalu
Let us first assume that the spectrumk(p) is discrete. In this case, the looked for operator is

rG5(
n

knPcn
,

wherePcn
is the projector onto the direction determined bycn ~for simplicity, we consider the

nondegenerate case!. In the case of a continuous spectrum, we proceed analogously and u
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corresponding spectral theorem~see example 2 in the following!. In this way, we recover the
standard formalism of quantum mechanics. If this formalism is taken separately, without p
attention to what happens in theE direction, all interpretative problems of quantum mechan
immediately arise. The following examples show that these problems are naturally solved
model is regarded in its totality.

Example 1. Spin measurement.In Ref. 3 it has been shown that to the usualz-component spin
operatorŜz there correspond two elementss1 ands2 of the noncommutative algebraA such that

pp~s1!c51
\

2
c if cPC1

and

pp~s2!c52
\

2
c if cPC2,

whereC15C1$0% andC25$0%1C. Sinces1 ands2 are observables we assume that they
Hermitian and elements ofAproj ; consequently, they can be regarded as real valued function
M defined by:s151 \/2 ands252 \/2. Sinces1 ands2 are constant functions they also belon
to the subalgebraAG . Both s1 ands2 are homotheties, and consequently the entire Hilbert sp
L2(Gp) is the eigenspace of these operators. This means that the results of the spin measu
are strictly predetermined~i.e., they are obtained with certainty!, although at present we do no
know the mechanism of this predetermination. However, for the sake of concreteness,
naively assume that it is given by the following random operator:

r p5H pp~s1! if p3~p!>0

pp~s2! if p3~p!,0,
~13!

wherep3(p)5x3 is the projection onto the third space coordinate (z coordinate!. It is indeed the
random operator since the mappingsg°(1 (\/2) jg ,hg) andg°(2 (\/2) jg ,hg) are measur-
able.

To see what happens in the perspective of the observer performing the measurement w
situate the observer in space–timeM ~the E component of our model!. Let us suppose that th
measuring apparatus is at a space–time pointx5pM(p),pPE. The result of the measuremen
will be 1 \/2 or 2 \/2 ~with probability 1! depending on whetherp3(p)>0 or p3(p),0 with
pM(p)5x. These two conditions are not known to the observer, therefore, in computing
probability of the result the observer uses theG perspective~i.e., the standard machinery o
quantum mechanics!, and the outcome of the measurement looks to the observer as the ‘‘co
of the wave function.’’ We can see this by choosing two orthonormal vectorsc1 ,c2PL2(G)
which span the subspacêc1 ,c2&C ,L2(G); then with the help of the spectral theorem w
recover the usual spin operator

Ŝz51
\

2
Pc1

2
\

2
Pc2

,

wherePc1
andPc2

are projecting operators onto the directions determined byc1 andc2 , respec-

tively. In this way, the operatorŜz is determined by the random operatorr p . As usual, if the
system is in the statew, the probability that the result of a measurement will give1 \/2 is
u^w,c1&u2, and analogously for2 \/2. Of course, in the act of measurement the state vectow
collapses either to the eigenvalue1 \/2 or to the eigenvalue2 \/2, in agreement with the stan
dard procedure of quantum mechanics.

The conditions ‘‘eitherp3(p)>0 or p3(p),0’’ in formula ~13! were put there by hand an
we could easily imagine some other conditions which would do the job. However, it cou
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hoped that if the theory is more developed~i.e., if the concrete algebraA and the concrete group
G are chosen based on physical grounds!, the correct mechanism selecting eitherpp(s1) or pp(s2)
will be determined by the theory itself. By now, we could only guess that this mechanis
connected with the random character of the operatorr p @formula ~13!#. The essential point is tha
sincepp(s1) is a homothety the eigenspace of the eigenvalue1 \/2 is the entire Hilbert space
and the result of the measurement must be strictly predetermined. The same is true
eigenvalue2 \/2.

Example 2. Position measurement.Let, for simplicity, M be R4, and let pr˜k :R4→R, k
50,1,2,3, be the projection function defined by pr˜k(x

0,x1,x2,x3)5xk. One can see that prk5pr̃
+pM+pE , (pE :G→E being the obvious projection! is a Hermitian element ofAproj . It can be
easily guessed that prk is an observable corresponding to the position operator. Its eigenv
equation is

pp~prk!j5prk~x!j ~14!

for jPL2(Gq), wherex5pM(p), pPE. Hence we obtain

pp~prk!j5xkj, ~15!

as it should be~the position operator acts by multiplication!. The spectrum of the position operato
pp(prk) is evidentlyR. The operatorpp(prk) is a homothety, and consequently the entire Hilb
spaceL2(Gp) is the eigenspace corresponding to the eigenvalue prk(x). In other words, the resul
of the position measurement of a quantum object is always predetermined, although at the
stage of development of the model the mechanism of this predetermination is not known.
fore, the only thing we could do is to change to theG perspective. We simply look for the operato
acting on the Hilbert spaceL2(G), the spectrum of which is equal toR. By using the spectra
theorem we find~in the one-dimensional case!

X̂5E
2`

1`

x dE~x!,

whereE is a suitable spectral measure.21 Then we can write down the standard eigenvalue eq
tion @which is essentially the same as Eq.~15!# and compute the probabilities of the expect
results. After completing the measurement we would say that the ‘‘wave function has collap
However, if the entire model is taken into account there is no real collapse; the measuremen
is strictly predetermined by the fact thatpp(prk) is a homothety.

VII. CONCLUSIONS

The overview picture that emerges from the above-given analysis is the following. In ge
the noncommutative regime is atemporal. The only meaning which we can ascribe to the
‘‘dynamics’’ is through the fact that certain geometric quantities are expressed in terms of
vations of the algebraA defining the considered noncommutative geometry. Derivations
counterparts of vector fields, and as such they can be regarded as modeling certain type of
change.’’ The concept of dynamics improves if the algebraA has properties admitting the exis
tence of one-parameter modular groups. Then the von Neumann algebra, generated by the
A, becomes a dynamical object, and modular groups describe the ‘‘evolution’’ of the corres
ing operators. In what follows, we shall assume that the algebraA admits the existence of modula
groups.

In our model this means that the dynamics of the system is described by Eq.~6!. This
dynamics~or ‘‘evolution’’ ! depends on the statew in which the system finds itself. It is especial
interesting to consider the evolution of random operators. This is not a limitation since, by Le
5.1, there is an isomorphism between the algebraA and the von Neumann algebra of rando
operators. This fact has further important consequences. Random operators, as elements o
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Neumann algebra, are probabilistic objects, albeit in a generalized sense. Let us recall t
noncommutative counterpart of the probability space is a pair (M,w), whereM is a von Neu-
mann algebra andw a ~faithful and normal! state onM. By the definition of state,w is positive
@i.e. w(aa* )>0 for everyaPM#, and normalized@i.e., w(1)51#, in close analogy to the stan
dard probability measure. It is striking that in the noncommutative regime the concept of sta
that of probability measure coincide. If we go to the quantum mechanics approximation
concepts split but remain strictly interconnected. We are entitled to say that the probab
character of quantum mechanics is a consequence of the fact that the quantum mechanical
ables are but ‘‘shadows’’~projections! of random operators.

We have demonstrated that in the dynamical equation~6! there are encoded both the unita
evolution of observables of the standard quantum mechanics and the reduction of the state
~‘‘collapse of the wave function’’! occurring in the act of measurement of a given observable
obtain the unitary evolution of observables of the usual quantum mechanics two steps m
taken. The first step is to project dynamical equation~6! to the ‘‘typical leaf’’ G. This leads to Eq.
~10!. As a consequence of this procedure the random operatorra changes into the ordinary
operatoraG , but its evolution is still state dependent. In the second step, we form the gro
outer automorphisms~see Sec. V! and obtain one-parameter groupsã t ,tPR, which are now state
independent. With this modification, dynamical equation~10! changes into Eq.~11!—the usual
Schrödinger equation~in the Heisenberg picture! of quantum mechanics describing the unita
evolution of observables. If, on the other hand, we ‘‘project’’ the noncommutative dynamic@as
described by Eq.~10!# to the subalgebraAproj , and perform the measurement of a given obse
able, we obtain the effect of the vector state reduction. We could briefly summarize the sit
by saying that the unitary evolution of quantum observables and the reduction of the state
in the act of their measurements are but two different ‘‘projections’’ of the same process, na
of the generalized dynamics in the noncommutative regime.
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Exact evolution operator on noncompact group manifolds
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Free quantum motion on group manifolds is considered. The Hamiltonian is given
by the Laplace–Beltrami operator on the group manifold, and the purpose is to get
the ~Feynman’s! evolution kernelKt . The spectral expansion, which produced a
series of the representation characters forKt in the compact case, does not exist for
noncompact group, where the spectrum is not bounded. In this work real analytical
groups are investigated, some of which are of interest for physics. An integral
representation forKt is obtained in terms of the Green’s function, i.e., the solution
to the Helmholz equation on the group manifold. The alternative series expressions
for the evolution operator are reconstructed from the same integral representation,
the spectral expansion~when exists! and the sum over classical paths. For noncom-
pact groups, the latter can be interpreted as the~exact! semiclassical approximation,
like in the compact case. The explicit form ofKt is obtained for a number of
noncompact groups. ©2000 American Institute of Physics.
@S0022-2488~00!03708-7#

I. INTRODUCTION

Normal physical systems have energy spectra bounded from below, so a stable groun
exists and may be considered as a zero-temperature limit of the Gibbs thermal state.
Hamiltonian operatorĤ is positive semi-definite~we shall use the notationĤ>0!, the Gibbs
density operator exp(2bĤ) exists and its kernel is the fundamental solution of the Bloch equa
]C/]b52ĤC, for b.0. This equation, however, has no stable solution if the spectrum ofĤ is
extended to2`.

On the other hand, the Schro¨dinger equation and the corresponding evolution operatorÛt

[exp(2itĤ),

i ]C/]t5ĤC, C t5ÛtC0 , ~1!

may be meaningful for a regular self-adjoint operatorĤ even if its spectrum is not bounded at a
The evolution operator may be defined for any realt ~in a properly defined Hilbert space of th
wave functionsC!, even if it cannot be continued analytically to the complex~lower-half! t-plane,
as in the usual case, where points on the negative imaginary axis correspond to inverse te
tures. Note that~1! is a wave equation for realt ~even being first order int!, and not a parabolic
heat-transport~or Bloch! equation, where the positive definiteness ofĤ is essential. Actually, it
may be extended to the real form]2C/]t21Ĥ2C50, which is of the hyperbolic type, sinceĤ2

>0 ~like 2D in the standard wave equation!, so the Cauchy~initial-value! problem has a prope
solution.1

It is remarkable that equations of the type~1! with nondefiniteĤ were considered extensivel
for functions on the pseudo-Euclidean~Minkowski! space. In that case,Ĥ5h, i.e., the

a!Present address: Department of Mathematics, University of Texas, Austin, Texas 78712. Electronic mail:
math.utexas.edu

b!Deceased.
51800022-2488/2000/41(8)/5180/29/$17.00 © 2000 American Institute of Physics

                                                                                                                



in the
ifolds,
or
real

is a

Laplace

of
is

ation,

e
f

le real
ries in
lved

trics.
econd-

5181J. Math. Phys., Vol. 41, No. 8, August 2000 Exact evolution operator on noncompact groups

                    
d’Alembertian~or a more complicated operator in presence of an external field!, andt played the
role of theproper time~the classical references are Refs. 2–5!.

Analysis of the Schro¨dinger-type equation~1! for a ~nondefinite! operatorĤ enables one to
get an insight into the properties of its spectrum and the eigenfunctions, as was the case
so-called proper-time formalism. We shall consider the free quantum motion on group man
which is described by Eq.~1! whereĤ52D is the second-order Laplace–Beltrami operator. F
compact groups,2D>0, and the complete solution has been known for decades. As for
noncompact groups,D is well defined but indefinite, likeh in the Minkowski space. This is an
interesting class of problems which can be also solved completely, as shown in this work.

If Ĥ>0, the evolution operator can be represented by its spectral expansion, which
convergent series fort.0 ~and Û05 Î –the unit operator!,

Ût5 (
n>0

e2 i«ntcn^ cn* , Ĥcn5«ncn . ~2!

In the situation considered here, the series would not be convergent, yet one can use the
representation ofÛt in terms of the resolventĜl ,

Ût5
1

2p i EC
Ĝle2 ilt dl, Ĝl[~Ĥ2l!21. ~3!

The contourC in the complexl-plane should be defined properly, with account of singularities
Ĝl which take place on the real axis, sinceĤ5Ĥ† ~see Fig. 1!. It is assumed that the contour
in the upper half-plane, according to the principle of causality, so thatÛt50 for t,0.

Now the resolvent generates the solution to the inhomogeneous Helmholz-type equ6

within the properly defined class of functions,

~Ĥ2l!c5 f , cl5Ĝl f . ~4!

@Note that forĤ5h and l52(m22 i e), e.0, the integral kernel ofĜl is just the standard
causal propagator of a massive scalar particle.# For Ĥ>0, the singularities ofĜl are all on the
half-axis Rel>0. In that case, fort.0, the contourC may be deformed to the lower half-plan
and closed there at̀ ~Fig. 1!, so the residues of the poles atl5«n ~and the imaginary part o
Green’s function for the continuous part of the spectrum, respectively! would reproduce the
spectral expansion~2!. In the case considered here, however, singularities appear on the who
axis, and Eq.~3! provides a more general representation which cannot be reduced to the se
~2!. Now Eq.~4! is of the hyperbolic type, like the Klein–Gordon equation, yet it should be so
for all ~complex! values ofl which appear in the Laplace integral~3!.

The Lie groups have the natural Riemannian structure given by the Cartan–Killing me7

For semi-simple Lie groups, the Riemannian metric is nondegenerate, and the invariant s
order Laplace–Beltrami operator~called here LaplaceanD! is defined, as usual.~A general theory

FIG. 1. The integration contourC in the complexl plane.
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of invariant differential operators on the group manifolds was given by Berezin.8,9! Free motion on
the group manifold is introduced naturally by means of the Schro¨dinger-type wave equation,

i ]C~g!/]t52DC~g!, E
G

uC~g!u2 dm~g!51, ~5!

whereC(g) is a ~square-integrable! function on the group,gPG, and dm(g) is the invariant
measure onG, given by the Riemannian structure. The solution of the wave equation~5!, for any
initial condition C0(g), is given by the evolution kernelKt ,

C t~gt!5E
G
Kt~gt ,g0!C0~g0! dm~g0!, Kt~gt ,g0![^gtuÛtug0&. ~6!

Because of the invariance of Eq.~5! under the shifts on the group,g→g1gg2 for all g1 ,g2PG,
the evolution kernel is reduced to an invariant function on the group manifold,

Kt~gt ,g0![K~gtg0
21!; Kt~g!5Kt~g1gg1

21!, ;g1PG. ~7!

Moreover, because of the latter property, the evolution kernelKt(g) is acentral function. Namely,
it depends, in fact, only on the element of the Cartan subgroup, i.e., the maximal torusT, h
PT,G, whereg5vhv21. The elementv is a representative of the coset spaceV5G/T, and
Kt(g)[Kt(h) is independent ofv.

The wave equation on the group SU~2! was considered by Bopp and Haag10 and Schulman.11

Schulman presented the explicit solution for SU~2! as well as for SO~3!5SU(2)/Z2 and showed
that the semi-classical approximation is exact in that case. The heat transport equation, whi
be considered as the analytical continuation of Eq.~5! to negative imaginary values oft, was
solved by Eskin12 for all compact Lie groups. The solutions of the wave equation forcompact
groups were considered in a number of works;13–15,7see also Ref. 16 for a review.

For compact Lie groups, the evolution kernel has thespectral expansion, which is the sum
over all unitary irreducible representations,

Kt~h!5
1

VG
(
lPL

dlx l~h!exp~2 il lt !. ~8!

Here l are the representation highest weights,L is the weight lattice in ther -dimensional root
space@r 5rank(G)#, dl is the representation dimensionality,x l(h) is the representation characte
l l is the eigen-value of the second-order Casimir operator, corresponding to the Laplacea2D,
and

VG[E
G

dm~g! ~9!

is the invariant volume of the group manifold.
On the other hand, employing the Poisson transformation foru-functions,17 the evolution

kernel can be represented as a sum over all theclassical trajectories~geodesics! on the group
manifold, connectingg0 andgt . The geodesics are described by means of ar -dimensional vector
w in the Euclidean space tangent toT. The result is

Kt~g!5
1

~4p i t !n/2 (
mPG

Fm~w!expF i
Sm

2 ~w!

4t
1 i t

n

24G . ~10!

Heren is the group dimensionality,m is the winding-number vector on the latticeG, dual toL,
Sm(w) is the distance from the origin to the pointhPT, as measured along a line wound a numb
of times around the torus, andFm(w) is a known function which appears as the van Vle
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determinant of the semi-classical approximation and may be considered as the first qu
correction. The first term in the exponent is the classical action, and the second term
constant~and the last! quantum correction. It was shown that for any compact Lie group
semi-classical approximation is exact~a discussion is given in Ref. 16!. In other words, the sum
of contributions from solutions of the classical equations of motion satisfies the wave equati~5!
with the initial condition

lim
t→0

Kt~g!5d~g!. ~11!

Here thed-function onG is defined as usual with the integration measure which is employe
Eq. ~5!. Note that every separate term in Eq.~10! is a function onT* , the space tangent toT, and
does not satisfy the desired boundary conditions onT, but the series as a whole is indeed
function on the group.

For compact groups the spectrum of2D is positive semi-definite, i.e.,l l>0, and the series in
~4! is convergent in the complext-plane below the real axis. Because of the same reason, the
transport equation has a stable solution. For noncompact Lie groups, however, the spectrum
positive, so evidently the spectral expansion does not exist. On one hand, the series ca
convergent even for complext. On the other hand, the unitary representations are all infin
dimensional, sodl would be infinite, as well as the volume of Eq.~9!, while the characters are
singular. The heat transport equation would have no stable solutions, but one may still consi
wave equation, determine the appropriate class of the wave functions and look for a valid
sentation of the evolution kernel. This is done in the present work.

The problem is solved in the following way. The Helmholz equation on the group manifo
considered, and the integral kernel of the resolvent operator is constructed explicitly. The re
the integral representation~3! for the evolution kernel, to be subjected to a further analy
Remarkably, the integral for the evolution kernel can be represented as a series of terms
coincide with contributions from ‘‘classical paths’’~geodesics! connecting the points of the grou
manifold to its origin~the group unity!. Thus for noncompact groups, like in the compact case,
semi-classical approach~including the pre-exponential factor! leads to theexactresult, provided
thatall classical paths are taken into account. For compact groups the series are infinite andr -fold
~r is the group rank!. In contrast, each noncompact group is split in a number of classes~like the
Minkowski space, containing ‘‘space-like’’ and ‘‘time-like’’ vectors!. Each class has its specifi
set of paths and the corresponding series for the evolution kernel.

In Sec. II the general approach is described. The known results are reproduced for co
groups, and then the evolution operator is constructed for noncompact groups. The express
is obtained depends on the maximal torus topology, which is different in different domains o
noncompact group manifold, and corresponds to the different ‘‘classes’’ of the classical path
mathematical tools that are needed in order to analyze noncompact groups, and in particu
different domains and the corresponding maximal tori are given in Sec. III. Some part
examples of real noncompact groups are presented in Secs. IV and V, and the conclusion
Sec. VI.

II. FREE MOTION ON A GROUP MANIFOLD

A. Green’s function

The operator equation~3! is equivalent to the Laplace transform for the corresponding inte
kernels,

Kt~h!5
1

2p i EC
Gl~h!e2 ilt dl, Gl~g1g0

21![^g1uĜlug0&. ~12!
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Like Kt(g), Gl(g) is a central function on the group and depends only onhPT. It is Green’s
function for the~inhomogeneous! Helmholtz equation, which means that it solves the followi
problem,

~D1l!c~g!52 f ~g!, c~g1!5E
G

Gl~g1g0
21! f ~g0! dm~g0!, ~13!

where the proper boundary conditions are taken into account.
The coordinates on the group manifold are introduced by the decompositiong5vhv21, ;g

PG, wherehPT andvPG/T. The measure is factorized, and the Laplacean is split respecti

D5DT1w22~h!DV , ~14!

whereDT is theradial part andDV is theangularpart of the Laplacean;w(h) is the Weyl function
on T,

w~h![ )
a.0

sin~a•w/2!, h~w!5exp~ iw jH j !PT. ~15!

Herea are the roots,H j , j 51, . . . ,r , are the basis elements of the Cartan subalgebra, andw j are
the radial group parameters, which reside in ther -dimensional space tangent toT, i.e., the root
space.

As was shown by Berezin,8 the radial Laplacean may be reduced to the Euclidean form
follows,

DT[
1

L

1

w2

]

]w
w2

]

]w
5

1

L F 1

w

]2

]w2 w1r2G . ~16!

The constantsL andr2 depend on normalization

r5
1

2 (
a.0

a, L52r 21 (
a.0

a2; ~17!

The sums are over all positive roots. In our convention,r2/L5 n/24, wheren is the group
dimensionality.

Thus the desired Green’s function can be reduced to that for the~pseudo!-Euclidean problem

]2y

]w2 1ey52F, ~18!

where

y5wc, F5Lw f , e5r21Ll. ~19!

The geometry is flat, yet the group structure manifests itself in the boundary conditions. In th
following subsections, the boundary conditions are analyzed for compact and noncompact g
and the Green’s functions are constructed explicitly and inserted in the integral representatio@Eq.
~12!# to produce the exact evolution operators.

B. Evolution operator on compact groups

The boundary conditions are determined by requiring the vanishing ofy @Eq. ~19!# on the
hyper-surfaces of vanishingw @Eq. ~15!#. The smallest domain enclosed by these hyper-surface
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the r -dimensional root space is called the Weyl alcove18 ~a definition of the Weyl alcove appear
in Appendix A 2, the Weyl alcove of SU~3! is shown in Fig. 2!. The Green’s function is found
using the image method6

Gy~w,w0!5(
s

esGr~sw,w0!. ~20!

HereGr is the known Green’s function for Helmholtz equation inr -dimensional flat infinite space
Rr . The superscripty is used to remind us that this is the Green’s function for Eq.~18!. The
summation is over all reflections of the pointw inside the Weyl alcove,es51(21) if the
reflection is even~odd!.

Since we are interested in the Green’s function itself, the boundary conditions can be im
on it directly. The boundary conditions, for which the Green’s function on the group man
should account, are periodicity in the radial parameters, and symmetry under Weyl refle
~central functions are invariant under Weyl reflections, which permute the eigenvalues
group element!. The multiplication by the Weyl function@Eq. ~19!#, which is antisymmetric unde
Weyl reflections, imposes antisymmetry on the Green’s function in the flat space,Gy,

Gy~w,w0!5(
m

(
sPW

esGr@s~w12pm!,w0#, ~21!

whereW is the Weyl group,sPW is a Weyl reflection,es511(21) for s even~odd!, andm is
the winding numbers vector

m5(
i 51

r

mi

2gi

g i
2 , mi50,61,62, ... . ~22!

Hereg i , (i 51, . . . ,r ) are the simple roots. The lattice of images that is created by reflection
a point inside the Weyl alcove of SU~3! is shown in Fig. 3. It is important to note~for future
calculations! that there are two equivalent ways to perform the summation:

(
m

(
sPW

es f @s~w12pm!#5(
m

(
sPW

es f @sw12pm#. ~23!

Here Gy(w,w0) is the Green’s function for the Helmholtz equation in flat space with nontri
boundary conditions, and not the resolvent that appears in the integral representation@Eq. ~12!#.
The resolventGl(w), wherew are the radial parameters that correspond to the group ele
g1g0

21, is obtained by taking into account the substitutions performed in Eq.~19!, the different

FIG. 2. Root diagram and the Weyl alcove of SU~3!.
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integration measures on the group manifold and the flat root space, and the fact that the
parameters already represent the ‘‘distance’’ between two points on the manifold so the pow0

should be set to zero~the procedure is explained in more details in Appendix B!. On the other
hand, it may be more convenient to continue the computation withGy, insertGy into the integral
representation@Eq. ~12!# and get the evolution operator in flatr -dimensional space. The evolutio
operator on the group manifold is then obtained by the same procedure:

Gl~w!5
L

VG/Tw~w! F Gy~w,w0!

L r /22n2rw~w0!
U

w050

, Kt~w!5
L

VG/Tw~w! F Ky~w,w0!

L r /22n2rw~w0!
U

w050

.

~24!

HereVG/T is the volume of the quotient spaceG/T @Eq. ~A3!# in the compact case, and a norma
ization constant in the noncompact case.

The integration in Eq.~12! can be performed in two alternative ways leading to the kno
expressions~8! and~10! for the evolution operator. Using the residue method, the spectral ex
sion is reconstructed. Integrating the infinite sum@Eq. ~21!# term by term we get an exact expre
sion for the evolution operator which is interpreted as the sum over classical paths. Until no
sum over classical paths was built using the semi-classical approximation, and its exact e
lence to the spectral expansion was proven by using multidimensional theta function theore7,17

The fact that this expression can be computed directly using no approximations is a new res
is useful in the noncompact case.

1. Sum over classical paths

We shall use the following integral representation for the Green’s function for the Helm
equation in flatr -dimensional infinite space:

Gk
r ~w,w0!5

1

~2p!r E
Rr

drp
1

p22k2 exp@ ip•~w2w0!#, ~25!

k25r21Ll in our case, andp is anr -dimensional vector. Inserting one term of the infinite su
@Eq. ~21!# into the integral representation for the evolution operator and changing the ord
integration yields

Kr~w,w0!5
1

2p i

1

~2p!rE
Rr

drp exp@ ip•~w2w0!#E
C
e2 ilt

1

p22r22Ll
dl. ~26!

FIG. 3. Images that are created by reflections of a point in the Weyl alcove of SU~3!. Full ~empty! circles correspond to
odd ~even! reflections.
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To account for the singularities of the resolvent which lie on the real axis in the complexl plane,
the integration contourC passes infinitesimally above the real axis, and it closes undernea
infinity where the integrand vanishes~for t.0!. Performing the integration inl by the residue
method we get

Kr~w,w0!5
1

~2p!rE
Rr

drp expF ip•~w2w0!2 i ~p22r2!
t

LG
5S L

4p i t D
r /2 1

L
ei ~r2/L! t expF iL

4t
~w2w0!2G . ~27!

Thus, the infinite sum@Eq. ~21!# becomes

Ky~w,w0!5S L

4p i t D
r /2 1

L
ei ~r2/L! t(

m
H (

sPW
es expF iL

4t
~s~w12pm!2w0!2G J . ~28!

To get the exact evolution operator on the group manifold,Ky is inserted into Eq.~24!. However,
both the numerator and denominator vanish whenw050. The distance from the origin of all th
Weyl reflections of the pointw12pm is equal, and due to the factores the term in curled
brackets in Eq.~28! vanishes. The Weyl function in the denominator is a product ofp ~the number
of positive roots! sines which result in a pole of orderp whenw050. There are two ways~which
are actually the same! to resolve the problem. The first way is to setw05tz, where z is an
arbitrary vector in the root space, and lett→0. Then the usual L’Hopital rule can be used:

lim
w→0

FKy~w,w0!

w~w0! G5 lim
t→0

~]p/]tp! Ky~w,tz!

~]p/]tp! w~ tz!
. ~29!

This method is used in obtaining the celebrated Weyl dimension formula~see, e.g., Ref. 19!. The
actual choice ofz does not change the result, and a convenient choice is to takez5r.

An alternative method is to to act directly on the functions in the numerator and the den
nator by anypth-order differential operator on the torus. Again, the actual choice of the ope
is not important. We can differentiatep times along a specific direction, which is the same as
previous method, or we can take an arbitrary combination ofp directional derivatives and obtai
the same result. We chose to work with thepth-order operatorD ~see Appendix A 3! that has
some special features

D~w!5 )
a.0

F2aj

a j
2 •(

i 51

r

wi

]

]w i
G , ~30!

wherewi are the fundamental weights, andw i are the components of the vectorw in the natural
basis

w5(
i 51

r

w igi , ~31!

andgi are the simple roots. WhenD operates on a function with a definite symmetry under W
reflections~i.e., a function which is either symmetric or antisymmetric under Weyl reflections!, it
changes the symmetry. Both the Weyl function andKy(w,w0) are antisymmetric under Wey
reflections, and therefore they vanish on the hyper-surfaces of the Weyl reflections, and
ticular whenw0→0. Acting on them withD turns them into symmetric functions, and therefo
different from zero asw0→0. Acting with D(w0) on the Weyl function and taking the limitw0

50 we get
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D~w0!w~w0!uw0505
1

2p N~W! )
a.0

~a•r!, ~32!

whereN(W) is the order of the Weyl group. Acting onKy with D and settingw050 we get

D~w0!Ky~w,w0!uw0505S L

4p i t D
r /2 1

L
ei ~r2/L! t(

m
N~W!S 2 iL

2t D p

3 )
a.0

@a•~w12pm!#expF iL

4t
~w12pm!2G . ~33!

Inserting all the factors in the final expression for the evolution operator@Eq. ~24!# together with
the volume of the quotient spaceVG/T @Eq. ~A3!#, we get

Kt~w!5S 1

4p i t D
n/2

(
m

H )
a.0

a•~w12pm!

2 sina•w/2 J expF i
L

4t
~w12pm!21 i

r2

L
t G . ~34!

This is an exact expression for the evolution operator since it is calculated directly usin
approximations, yet it can be interpreted as the sum over classical paths@Eq. ~10!#. The first term
in the exponent is the classical action, the preexponential factor~in curled brackets! is ‘‘the first
quantum correction’’~van Vleck determinant!, and the second term in the exponent is ‘‘the seco
quantum correction’’ which is proportional to the scalar curvatureR on the manifold (r2/L
5n/245R/6).

2. Spectral expansion

We shall use again the integral representation for the Green’s function in flatr -dimensional
infinite space@Eq. ~25!#. However, in this case choosing the appropriate basis for the dum
vectorp becomes important. To simplify the computation, it is beneficial to use a basis whi
dual to the natural basis ofw @Eq. ~31!#, i.e., to use the fundamental weightswj , defined by the
relation

giwj5g i
2/2d i j ~35!

as the basis vectors forp5( j 51
r pjwj . Thus, the scalar product in the exponential

i ( j pj (w jg j
2/212pmj ). The integration measure isdrp5@det(wiwj )#1/2) idpi . The evolution op-

erator is

Ky~w,w0!5
@det~wiwj !#

1/2

i ~2p!r 11 E
2`

`

dle2 ilt(
m

(
sPW

esE
2`

`

)
i

dpi

exp@ ip•~sw12pm2w0!#

p22r22Ll
.

~36!

Changing the order of integration and performing the integral inl by the residue method one ge

Ky~w,w0!5
@det~wiwj !#

1/2

L~2p!r (
sPW

esE
2`

`

)
i

dpi exp@ i ~p22r2!t/L1 ip•~sw2w0!#

3)
i 51

r F (
mi52`

`

exp~2p imipi !G . ~37!

The integration inpi can be easily performed by using the following identity,

E
2`

`

dpi (
mi52`

`

exp~2p imipi ! f ~pi !5 (
ni52`

`

f ~pi5ni !, ~38!
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where f is Gaussian andni are integers. Thus, the evolution operator becomes

Ky~w,w0!5
@det~wiwj !#

1/2

L~2p!r (
n

(
sPW

es exp@2 i ~n22r2!t/L#exp@ in•~sw2w0!#. ~39!

The vectorn is defined on the weights latticen5( iniwi . The Weyl reflections permute th
weights as well as the roots, so it is possible to sum on the vectorsn in the Weyl chamber where
the componentsni are positive integers, and act on each vector with the Weyl group to repro
the rest of the weight lattice

Ky~w,w0!5
@det~wiwj !#

1/2

L~2p!r (
n.0

e2 i (n22r2)t/LH (
s1PW

es1 (
s2PW

es2
eis1n•(s2w2w0)J . ~40!

To obtain the evolution operator on the group manifoldKy should be inserted into Eq.~24!. When
w050 the term in curled brackets vanishes. Thus, we have to act on it with the operatorD @Eq.
~30!# before taking the limit

DKy~w,w0!uw0505
N~W!~2 i !p

L~2p!r @det~wiwj !#
1/2(

n.0
e2 i (n22r2)t/L )

a.0
~a•n! (

sPW
esei (n•sw).

~41!

The final result is

Kt~w!5
@det~wiwj !#

1/2

VG/T~2p!rL r /2 (
n.0

F )
a.0

~a•n!

~a•r! GF 1

~2i !pw~w! (
sPW

es exp@ i ~n•sw!#Ge2 i (n22r2)t/L.

~42!

The factor in the exponent coincides with the known spectrum of the Casimir operator (2D).
Identifying n5 l1r where l is the highest weight of the representation, the eigenvalues of
Casimir operator are

l l5
1

L
~n22r2!.

The two factors in square brackets are the dimensionalitydl and the characterx l of each repre-
sentation

dl5 )
a.0

a•n

a•r
, x l~w!5

1

~2i !pw~w! (
sPW

es exp@ i ~sn,w!#, ~43!

where the summation is over Weyl reflections, andes511(21) for even~odd! reflection. Since
n is defined over the weight lattice, and the summation is limited to vectors with positive c
cientsni , the summation is easily translated to a summation over the highest weightsl i5ni21.
The numerical factor in front of the first summation is the inverse of the group volume@see Eqs.
~A3! and ~A2!#.

This expression coincides with the known expression for the spectral expansion@Eq. ~8!#.
Thus, the Weyl formulas for the characters and dimensionalities of the unitary irreducible
sentations are obtained here by direct computation of the evolution operator.

C. Evolution operator on noncompact group manifolds

The method for obtaining the evolution operator using an integral representation, descri
Sec. II B for compact groups, works equally well for noncompact groups. The difference be
a compact group and its noncompact partners~a method for obtaining all the noncompact grou
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having the same complex extension from a compact group is given in Sec. III A! is that for the
compact group, the killing metric is positive definite, while for the noncompact groups it is n
is natural to expect that the indefinite metric on the group manifold, and in the correspo
algebra space, induces indefinite metric in the tangent spaceT* where the radial parameter
reside. Therefore, the flatr -dimensional space of the radial parameters is no longer Euclidea
pseudo-EuclideanRr→Ra,b, where there area ‘‘space-like’’ radial parameters andb ‘‘time-like’’
radial parameters, anda1b5r . The radial parameters vectorw can be rearranged in two subve
tors

w5~f,i u!5~f1 , . . . ,fa ,iu1 , . . . ,iub!.

It should be noted that the two subspaces are orthogonal, so the natural coordinate system
radial parameters@Eq. ~31!#, where the radial parameters are defined along the simple roots, i
appropriate in this case. The maximal torus ceases to be compact and becomes a ‘‘cylindTr

→Ta,b5Ta3Rb. The periodicity of the group element in the radial parameters is altered du
the fact thatb of the radial parameters are no longer real:

h~w!5expF i (
j 51

r

~w jH j !G5expF i (
j 51

a

~f jH j !2 (
k51

b

~ukHk!G . ~44!

HereH j are the basis elements of the Cartan subalgebra. Thus, the winding number vector
noncompact case is altered with respect to the compact case@Eq. ~22!# m→m̃. Herem̃ is obtained
from m by requiring that it vanishes in the subspaceRb, and therefore it is ana-dimensional
vector instead of ther -dimensional vector in the compact case:

w12pm̃5~f12pm̃,u!.

Now we can proceed along the lines of the previous section. The first step is to find the G
function for the Helmholtz equation inr -dimensional flat~pseudo-Euclidean! space@Eq. ~18!#
with nontrivial boundary conditions. The boundary conditions, which are imposed on the e
tion operator, are that it should be symmetric under Weyl reflections, that it should account f
periodicity in the periodic radial parameters, and that it should decrease properly in the op
domains. Thus, we can use the appropriate Green’s function for the Helmholtz equation in t
infinite spaceRa,b, and sum over the equivalent points, as we did in the compact case:

Gy~w,w0!5 (
sPW

es(
m̃

Ga,b@s~w12pm̃!,w0#. ~45!

This expression is inserted into the integral representation@Eq. ~12!#. Because of the incomplete
ness of the winding number vector, the integration method that reconstructs the spectral exp
in the compact case is not applicable, which is to be expected since we know that the s
expansion does not exist in the noncompact case. Yet, we can integrate term by term and
struct the ‘‘sum over classical paths.’’

The Green’s function for the Helmholtz equation in infinite pseudo-Euclidean space
appears in Eq.~45! has the general form

Ge
a,b~w,w0!5

1

~2p!(a1b) E
Ra,b

drp
1

p22e
exp@ ip•~w2w0!#, e5r21Ll, ~46!

where the ‘‘momentum’’ vectorp hasa ‘‘space-like’’ coordinates andb ‘‘time-like’’ coordinates,

p5~q,ik!5~q1 , . . . ,qa ,ik1 , . . . ,ikb!.
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Inserting one term in the sum@Eq. ~45!# into the integral representation for the evolution opera
and changing the order of integration we get

Ka,b~w,w0!5
1

2p i

1

~2p!r E
Ra,b

drp exp@ ip•~w2w0!#E
C
e2 ilt

1

p22r22Ll
dl. ~47!

Unlike the compact case,p2 is not positive definite, but the single pole atl5(p22r2)/L is
located on the real axis of the complexl plane, and the integral inl is solved by the residue
method~the integration contourC is defined as in the compact case!. Thus, we are left with the
integral overRa,b which can be divided into two separate integrals over the subspacesRa, Rb:

Ka,b~w,w0!5
1

~2p!r

1

L
eir2 t/LE

Ra,b
drp exp@ ip•~w2w0!2 i tp2/L#

5
1

L
eir2 t/LF S L

4p i t D
a/2

expF iL

4t
~f2f0!2G GF S L

4p i t D
b/2

expF2
iL

4t
~u2u0!2G G

5S L

4p i t D
r /2 1

L
ei ~r2/L! t expF iL

4t
~w2w0!2G . ~48!

Integrating over Eq.~45! term by term, the evolution operator in the flat space is obtained:

Ky~w,w0!5S L

4p i t D
r /2 1

L
ei ~r2/L! t(

m̃
H (

sPW
es expF iL

4t
~s~f12pm̃,i u!2~f0 ,i u0!!2G J .

~49!

To get the evolution operator on the group manifold it should be inserted into Eq.~24!. Due to the
antisymmetry under Weyl reflections of both the numerator and denominator, we have to r
the symmetry when taking the limitw050 with the help of the operatorD @Eq. ~30!#. The operator
is unchanged except for the fact that the parametersw i are not real in general, and it should b
reexpressed in terms of the real parametersf i , u i . To produce the correct normalization of th
evolution operator, the factorVG/T should remain as in the compact case. The final expressio

Kt~w!5S 1

4p i t D
n/2

(
m̃

H )
a.0

a•~w12pm̃!

2 sina•w/2 J expF i
L

4t
~w12pm̃!21 i

r2

L
t G

5S 1

4p i t D
n/2

(
m̃

H )
a.0

a•~f12pm̃,i u!

2 sina•~f,i u!/2 J expF i
L

4t
~~f12pm̃!22u2!1 i

r2

L
t G . ~50!

Once more we emphasize that although this expression has a semi-classical interpretation
exact expression that is obtained using no approximations.

Up to this point, the discussion was limited to a specific configuration of the radial param
However, when considering the evolution operator on noncompact groups, a complication
The manifold of a noncompact group is split, in most cases, into several domains, and in
domain the maximal torus topology is different. Therefore, a global spherical coordinate s
on the manifold of noncompact groups does not exist in these cases. There are several co
patches on the manifold, and they differ by the number of radial parameters in which the
element is periodic, i.e., the number of the real radial parameters. Thus, the first step in find
evolution operator on a noncompact group manifold is to determine the different coord
patches~we shall call themevolution domains! which differ by the decomposition of the radia
parameters vectorw into the subvectorsf, i u. In Figs. 4 and 5 we can see, for example, t
lattices of equivalent points@that have to be summed upon, see Eq.~20!# for SU~2,1! and SL(3,R),
respectively. Each of these noncompact groups has two evolution domains, which differ from
other by the winding numbers vectorm̃ ~see the results in Sec. V A!. The different topology of the
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torus in each domain affects the winding numbers vector, i.e., the periodicity in the radial
parameters, hence the lattices are different. A full analysis of the different coordinate patc
certain ‘‘families’’ ~e.g., SU(p,q), SO(p,q), etc.! of noncompact real groups is given in Sec.
B.

The different periodicity in the radial group parameters affects the boundary condition
are imposed on the evolution operator. Thus, the evolution operator should be determined
rately in each domain. The evolution of a stateC(g) on the manifold, given an initial state
C(g)u t505c(g), is predicted by the following integral

C~gt!5(
a
E

Da

Ka~gtg0
21!c~g0! dg0 . ~51!

HereDa represent the domain to which the group elementg5gtg0
21 belongs, and the indexa is

the number of real radial parameters in which the group element is periodic. The elementhPT,
which corresponds tog5vhv21PDa , has the general form that is given in Eq.~44!.

FIG. 4. SU~2,1! has two evolution domains. The equivalent points for each domain are shown. Full~empty! circles
correspond to odd~even! reflections.

FIG. 5. SL(3,R) has two evolution domains. The equivalent points for each domain are shown. Full~empty! circles
correspond to odd~even! reflections.
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III. NONCOMPACT REAL GROUPS AND EVOLUTION DOMAIN ANALYSIS

Two subjects, which are required to better understand the structure of noncompac
groups, are discussed in this section. The first subject is a short summary of the general me
finding all the noncompact groups having the same complex extension from a compact grou
second subject concerns the coordinate patches on the noncompact group manifold when a
cal coordinate system is used~evolution domains!.

A. Classification of noncompact real groups

The method of finding all the real groups associated with a compact group and havin
same complex extension~and the same dimensionality! is equivalent to finding all the involutive
automorphisms of the compact form. An involutive automorphismS is a linear one-to-one trans
formation of the compact group on itself conserving the Lie multiplication and whose square
identity

S@x,y#5@Sx,Sy# ~x,yPG! and S251.

Choosing a basis in the algebra space, which is composed of eigenvectors of the maS,
multiplying the eigenvectors that correspond to eigenvalue21 by i and leaving the rest of the
eigenvectors unchanged, a noncompact real group is obtained.20–22 @Note that in the case of the
Cartan subalgebra discussed in the previous section we do not change generators, but attai
to the corresponding radial parameters, see Eq.~44!.# An equivalent way of finding the rea
noncompact forms associated with a compact Lie algebra is to look for the direct-sum dec
sitions of the compact Lie algebra.23 HereG has a direct sum decomposition of the formG5K
% P if the following commutation relations hold:

@K,K#,K, @K,P#,P, @P,P#,K. ~52!

A noncompact real form is obtained by multiplying the generators that constituteP by an i : P
→ iP. The form of the commutation relations@Eq. ~52!# ensures that the structure constan
remain real. This method may be easier to grasp than the more general method given
however, it is basis dependent and thus may not give the full list of possible direct-sum d
positions and the corresponding noncompact real forms.

An important distinction should be made between inner and outer automorphisms o
compact group.~An inner automorphism is an isomorphic mapping of the groupG into itself by
a fixed elementx of the group:z85xzx21, for all zPG. It induces an inner automorphism of th
corresponding Lie algebra. All other automorphisms are outer automorphisms.! Inner automor-
phisms lead to real Lie groups with similar structures, while the outer automorphisms le
general to different real Lie groups. The existence of outer automorphisms is related to inva
of the corresponding Dynkin diagrams under transformations other than the identity
formation.22,24 As we shall see in Sec. V, in the case of noncompact groups that correspo
inner automorphisms, some of the evolution operators in the different domains coincide,
particular there is always one evolution domain where the operator is identical to that i
compact case. Yet, such coincidences do not exist in noncompact groups that correspond
automorphisms, although they may occur when comparing groups that both correspond to
automorphisms. A noncompact group corresponds to an inner~outer! automorphism if the deter
minant ofS is equal to11(21), or if the number of generators that belong to the subsetP is
even ~odd!. The algebras that have outer as well as inner automorphisms areAn , Dn and
E6 .21,22,24

B. Characteristic evolution domains

As was mentioned in the previous section, a global spherical coordinate system does n
in general for noncompact groups. Thus, the group manifold is divided into several domain
the evolution operator is found separately in each domain. Analyzing the eigenvalue system
                                                                                                                



of the
different
es of

act

l
ins

n in

uld

e

(

ne.
s

nt must

re pure
mplex

5194 J. Math. Phys., Vol. 41, No. 8, August 2000 N. Krausz and M. S. Marinov

                    
group element, which depends only on the radial parameters, shows the allowed values
radial parameters in the noncompact case, and each range of values corresponds to a
evolution domain. In this section, an analysis of the evolution domains of several famili
groups is given.

1. Quasi-unitary groups SU„p ,q …

The real group SU(p,q) (p1q5n) corresponds to an inner automorphism of the comp
group SU(n). It is obtained by leaving the generators of the subgroup SU(p) ^ SU(q) ^ U~1!
invariant@these generators constitute the maximal compact subalgebra of SU(p,q) denoted byK#
and multiplying the rest of the generators by ani .

A quasi-unitary group elementg ~in the fundamental representation! satisfies the relation
ghg†5h whereh is a constantn3n matrix ~in the compact caseh5I ! with p eigenvalues equa
to 11 andq eigenvalues equal to21. An understanding of the structure of the evolution doma
is achieved by contemplating the eigenvalue system of the group elementg, which depends on the
n21 radial parameters. The characteristic polynomial of a unitary group element isPl(g)
5det(lI2g)5)i(l2li). The complex conjugate of the characteristic polynomial can be writte
two alternative forms

Pl* ~g!5det~lI 2g†!5det~lI 2h21g21h!5det~lI 2g21!5)
j

~l2l j
21!, ~53!

which leads to the following relation,

l i* 5l j
21 , ~54!

i.e., for any eigenvaluel i there must be another eigenvaluel j that satisfies relation~54!. In the
compact case, where all the radial parameters are real, this relation is satisfied fori 5 j . For
noncompact real groups, there are several possibilities. In general, there are min(p,q)11 evolution
domains corresponding to 0,1, ... ,min(p,q) imaginary radial parameters. The eigenvalues sho
be written in the following way:

exp@ i ~w11w2!#,exp@ i ~w12w2!#,exp@ i ~2w11w3!#,exp@ i ~2w12w3!#, ... ,

wherew1 , w2 , w3 , ... are the radial parameters. It is clear thatw1 must remain real, whilew2 , w3

can be either pure real or imaginary in the above example~for an odd number of eigenvalues th
last one must have a real radial parameter, i.e., a pure imaginary argument!. This choice of radial
parameters corresponds to an orthogonal coordinate system inT* .

2. Real unimodular groups SL„n ,R…

The real group SL(n,R) corresponds to an outer automorphism of the compact group SUn).
The compact subgroup is SO(n), and the generators that remain unchanged~i.e., belong toK! are
the generators of SO(n) in the vector representation@the spinor representation of SU(n) is of the
same dimension of the vector representation of SO(n) and among its generators there aren
generators which are pure imaginary#, and the rest of the generators are multiplied by ani . The
fundamental group element is ann-dimensional real matrix whose determinant is equal to o
The invariants of this group element@e.g., Tr(g), Tr(g2), etc.# must be real, and this fact impose
conditions on the radial parameters of the group. Thus, the eigenvalues of the group eleme
be either complex conjugate to each other, or real:

l i5l j* . ~55!

The first domain is the domain in which all eigenvalues are real so the radial parameters a
imaginary. The rest of the domains correspond to taking pairs of eigenvalues to be co
conjugate. The maximal number of allowed domains is@n/2#11. It is important to note that since
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SL(n,R) ~for n.2! correspond to an outer automorphism of SU(n),22 while the different
SU(p,q) correspond to inner ones, none of the domains of the radial parameters in SLn,R)
coincides with the domains of SU(p,q).

3. Quasi-orthogonal groups SO„p ,q …, p¿qÄ2n¿1

The real group SO(p,q) corresponds to an inner automorphism of the compact gr
SO(2n11). The maximal compact subgroup is SO(p) ^ SO(q), and the rest of the generators a
multiplied by ani to form the group SO(p,q) ~all these groups correspond to the complex alge
Bn which has no outer automorphisms!. Thus, the number of noncompact groups that can
formed out of SO(2n11) equal the number of possible divisions of 2n11 into p andq.

A pseudo-orthogonal group element~in the vector representation which isp1q-dimensional!
satisfies the relationghgT5h, whereh is a constant matrix. In the compact caseh is simply the
unit matrix, sogT5g21, and the eigenvalues ofg are the same as those ofg21. This means that
for every eigenvaluel i of g, there exists another eigenvalue ofg, l j , that satisfies the relation

l i5l j
21 . ~56!

However, this is also true in the pseudo-orthogonal case, sincegT and g21 are connected by a
similarity transformation. Since there aren radial parameters, the eigenvalues~in the compact as
well as noncompact case! are divided into pairs ofeiw i, e2 iw i so the conditionl i5l j

21 is satisfied
by each pair. Since the number of eigenvalues is odd (p1q52n11), the last eigenvalue is
simply l2n1151. The radial parameters have a simple physical interpretation in this
SO(p,q) is the rotation group inp1q Minkowski space. Each pair of eigenvalues correspond
an independent rotation plane~in the 2n11-dimensional space there aren independent rotation
planes!. Therefore a pure rotation can be performed in a plane that is consisted of two ‘‘s
like’’ or two ‘‘time-like’’ axes, or an hyperbolic rotation can be performed in a plane which
consisted of one ‘‘time-like’’ axis and one ‘‘space-like’’ axis. Therefore, a radial parameter
appears in the exponentiall i5exp(iwi) can be either real or pure imaginary, depending on the t
of the rotation. It is important to note that condition~56! holds for complex parameters als
however, a complex parameter can be treated as two real parameters, so the next pair o
values will also depend on the same two real parameters~the total number of real radial param
eters is fixed!. A rotation of the coordinate system of the radial parameters in the root s
transforms the eigenvalue system to the desired form.

There can be a maximum ofd5min(p,q) independent hyperbolic rotations, and therefo
there will bed11 domains on the group manifold; the first corresponds to pure rotations only
second corresponds to a hyperbolic rotation in one plane and pure rotations in the rest
independent planes, etc., while the last domain corresponds to the maximal number of hyp
rotations withd imaginary radial parameters. It should be noted that it does not matter in this
which of the radial parameters is imaginary and which is real, since the action of the Weyl
permutes the radial parameters. Since the evolution operator is symmetric under the action
Weyl group, the information that is needed to determine the evolution domain is the total nu
of imaginary parameters.

4. Quasi-orthogonal groups SO„p ,q …, p¿qÄ2n

The real groups SO(p,q) correspond to inner as well as outer automorphisms of the com
group, and this fact complicates the determination of the evolution domains. Evenp and q
correspond to an inner automorphism, while oddp andq correspond to an outer automorphism
Condition~56! holds in this case, and we can relate each pair of eigenvalues in the 2n-dimensional
vector representation to a rotation in an independent plane~there aren independent rotation plane
and n radial parameters!; however, this case is more complicated then the previous one
intuitive understanding of the profound difference between the groups that correspond to inn
outer automorphisms of the compact group is gained when considering the types of po
rotations inp1q Minkowski space. Whenp andq are even, we can divide separately the tim
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like part and the space-like part into independent rotation planes, so that all then radial parameters
correspond to pure rotations. All the group elements of this kind belong to a domain where
radial parameters are real. In this domain the evolution operator coincides with the evo
operator in the compact case, and this kind of noncompact group corresponds to an inne
morphism of the compact group. On the other hand, whenp andq are odd, the maximal numbe
of pure rotation planes isn21, and at least one radial parameter in each domain must corres
to a hyperbolic rotation. None of the domains is similar to the compact case, and the
corresponds to an outer automorphism.

Another subtlety concerns the general subspace with metrics1122 in the p1q flat vector
space where the group acts. There are three possible evolution domains; the first corresp
two pure rotations in the11 and 22 planes~with, e.g.,eif1, e2 if1, eif2, e2 if2!, the second
corresponds to two hyperbolic rotations in the12 planes~with, e.g.,ef1, e2f1, ef2, e2f2!, but
there is also the possibility of one real parameter and one imaginary parameters in the
coordinate system~with, e.g.,eif11f2, e2 if12f2, e2 if11f2, eif12f2!. As a general rule, none o
the evolution domains of groups that correspond to outer automorphisms coincide with th
groups that correspond to inner automorphisms.

5. Quasi-unitary symplectic groups USp„2p ,2q …

In order to leave the two bilinear forms invariant, the group element of USp(2p,2q), where
2p12q52n, has to satisfy the following conditions:

g†hg5h, gTzg5z, with h5diag~ I p ,2I q ,I p ,2I q!, z5S 0 I n

2I n 0 D . ~57!

The two conditions should be satisfied simultaneously, and, in particular, the eigenvalues
group element in the 2n-dimensional fundamental representation should satisfy the conditio

g†5hg21h21: l i* 5l j
21, ~58!

gT5zg21z21: l i5lk
21 . ~59!

In the compact case, the first condition is satisfied automatically,l i* 5l i
21 . To satisfy the second

condition, the eigenvalues are divided into pairs of the formeia, e2 ia ~wherea is real!.
In the noncompact cases, the radial parameters may assume complex values. The eige

are divided into quartets of the form

ei (a1b), ei (a2b), ei (2a1b), ei (2a2b),

where eithera or b may assume pure imaginary values, but not both. For each quartet th
conditions are satisfied when one of the parameters is real and the other is imaginary.
manifold of USp(2p,2q) there areup2qu11 domains; in the first domain all the radial paramet
are real and divided into pairs as in the compact case, in the second domain there is one
which includes one real parameter and one imaginary parameter, and the rest of the parame
real, etc.

6. Real symplectic groups Sp„2n ,R…

The group element of Sp(2n,R) in the fundamental representation is a real matrix that sa
fies the relation

gTzg5z.

The eigenvalues satisfy the conditions

l i5l j* , l i5lk
21 .
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Dividing the eigenvalues into pairsl i5eia, l j5e2 ia, we see that the two conditions are satisfi
by each pair when the radial parameter is either pure real or pure imaginary. Therefore, th
n11 domains on the manifold of Sp(2n,R) that correspond to 0,1,. . . ,n imaginary parameters

IV. EVOLUTION OPERATOR ON SU „2… AND SU„1,1…

The fundamental group element of SU~2! in the spherical coordinate system is

g5cos
w

2
I 21 i sin

w

2
~sW •n̂!5vh~w!v21,

where n̂ is a unit vector in three-dimensional Euclidean space, andsW 5(s1 ,s2 ,s3) is a vector
composed of the three Pauli matrices. This group element corresponds to a rotation at anw
around the unit vectorn̂ in a three-dimensional space. The eigenvalues of the group ele
depend only on the radial parameter,w,

l15eiw/2, l25e2 iw/2.

SU~1,1! is obtained from the generators of SU~2! by substitutings1 , s2→ is1 , is2 . The
maximal compact subgroup is U~1!, and it is generated bys3 . Since the group is noncompact, th
radial parameterw may assume nonreal values. However, condition~54! implies that eitherl1

21

5l1* , l2
215l2* , or l1

215l2* . In the first case,w is real as in the compact case, and in the sec
casew is pure imaginary. Thus, two evolution domains are obtained;D1 wherew5f is real, and
D0 wherew5 iu andu is real. The group elements that belong toD1 are periodic inw, while the
group elements that belong toD0 are not. The evolution operator has to be computed separate
each domain, since the boundary conditions that should be satisfied are different. The evolu
a state on SU~1,1! is given by the following integral:

C t~gt!5E
gtg0

21PD1

K1~f!c~g0! dm~g0!1E
gtg0

21PD0

K0~u!c~g0! dm~g0!. ~60!

In the above expression,f andu are given explicitly by

f5cos21@ 1
2 Tr~gtg0

21!#, u5cosh21@ 1
2 Tr~gtg0

21!#.

A. Evolution operator on SU „2…

The root space of SU~2! is one-dimensional. Normalizing the root length touau51, the
constantsL, r2 that appear in the general expression for the radial Laplacean@Eq. ~16!# are L
52, r25 1

4, and the Weyl function isw(w)5sin(w/2). We are interested in finding the Green
function for the inhomogeneous equation

~DT1l!c~w!5
1

2 F 1

sinw/2

]2

]w2 sin
w

2
1

1

4
12l Gc~w!52 f ~w! ~61!

with appropriate boundary conditions. Substitutingy(w)5w(w)c(w) we arrive at the one-
dimensional Helmholtz equation

F ]2

]w2 1k2Gy~w!52F~w!, k25
1

4
12l, F52 sin

w

2
f ~62!

with boundary conditionsy(w50)5y(w52p)50. The Green’s function can be found by th
image method; two ‘‘conducting walls’’ are placed atw50, w52p, and a unit charge, which is
placed atw0 inside the domain@0,2p#, is reflected with respect to the walls, and an infinite ser
of images is created.

The appropriate Green’s function is
                                                                                                                



undary
ity of

ints
the

b-

d by

ssions
ssical

an be
lt by

5198 J. Math. Phys., Vol. 41, No. 8, August 2000 N. Krausz and M. S. Marinov

                    
Gy~w,w0!5 (
n52`

`

@G1~w,w014pn!2G1~w,2w014pn!#, ~63!

whereG1(w,w0) is the Green’s function for Helmholtz equation inR1:

G1~w,w0!5
i

2k
eikuw2w0u. ~64!

The same expression for the Green’s function is obtained if we impose the more general bo
conditions discussed in Sec. II B, that the Green’s function should account for the periodic
the group elements in the radial parameterw and that it should be antisymmetric~so the evolution
operator would be symmetric! under Weyl reflections. Thus, we should sum over all the po
that differ from each other by a period of 4p, and subtract all the points that are created by
action of the Weyl group~i.e., reflection through the pointw50! on the infinite series of periodic
points.

InsertingG1 into the infinite sum@Eq. ~63!# and summing, the following expression is o
tained:

Gy~w,w0!5
sin~kw,!sin@k~2p2w.!#

k sin~2kp!
, w,5min~w,w0!, w.5max~w,w0!. ~65!

The desired Green’s function for the Helmholtz equation on the group manifold is obtaine
insertingGy into Eq.~24!, substitutingw.5w, w,5w0 and taking the limitw050. The invariant
volume of the angular parametersVG/T58p @see Eq.~A3!#. The final expression is

Gl~w!5
sink~2p2w!

8&p sin 2kp sinw/2
. ~66!

This expression is inserted into the integral representation for the evolution operator@Eq. ~12!#.
The integration contourC can be contracted around the poles of the integrand atl5 1

8 (n221),
where n is an integer. Changing the integration variable froml to k, the integration contour
‘‘opens’’ and we obtain the following integral representation for the evolution operator:

Kt~w!5
1

2p i E2`1 id

`1 id
e2 ~ i /2!(k22 1/4)t

sink~2p2w!

8&p sin 2kp sinw2
k dk. ~67!

The integral can be performed using two alternative methods, which lead to the two expre
found by Schulman11 for the evolution operator, the spectral expansion and the sum over cla
paths.

To obtain the known expression for the spectral expansion, the integration contour c
closed by going from infinity to minus infinity below the real axis, and then dividing the resu
a factor of 2. The integral is solved by the residue method, and the spectral expansion is

Kt~w!5
1

32&p2 (
n51

`

n
sin~nw!

sinw
e2 ~ i /8!(n221)t. ~68!

Returning to the integral~67!, expanding the denominator

sink~2p2w!

sin~2kp!
5~eik(4p2w)2eikw!e24ikp (

m50

`

e24ikpm,

and integrating term by term, an alternative expression is obtained,
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Kt~w!5
1

~4p i t !3/2 (
m52`

`
w14pm

2 sinw/2
expF i

2t
~w14pm!21

i t

8 G , ~69!

and this expression coincides with the sum over classical paths. Note that this expression
was formerly obtained only by using the semi-classical approximation~and was proved to be exac
usingQ-function theorems!, is obtained here by a direct computation, and in fact it stems from
same integral representation that produces the spectral expansion.

B. Evolution operator for SU „1,1…

1. The evolution operator on D 1

The radial Laplacean in the first coordinate patch, where the radial parameterw5f is real, is
identical to that of SU~2! since the constants that depend on the root system do not change, a
Weyl functionw(f)5sinf/2 is the same:

D15DSU(2) . ~70!

The boundary conditions are also unchanged since the Green’s functionGl has to account for the
unchanged periodicity of the group elements inf, and to be symmetric under Weyl reflection
Thus, the evolution operator onD1 is identical to that of SU~2!:

K1~f!5KSU(2)~f!5
1

~4p i t !3/2 (
m52`

`
f14pm

2 sinf/2
expF i

2t
~f14pm!21

i t

8 G . ~71!

The ‘‘sum over classical paths’’ form was chosen here out of the two equivalent expressions
this expression can be ‘‘analytically continued’’ to the expression that is obtained in the se
evolution domain.

2. The evolution operator on D 0

In this domainw is pure imaginary. Settingw5 iu, the Weyl function becomesw(w5 iu)
5sinhu/2. The inhomogeneous equation for which we have to find the Green’s function is

~D01l!c5
1

2 F2
1

sinhu/2

]2

]u2 sinh
u

2
1

1

4
12l Gc~u!52 f ~u!. ~72!

Substitutingy(u)5w(u)c(u), we get the inhomogeneous Helmholtz equation inR1:

F ]2

]w2 2S 1

4
12l D Gy~u!5F~u!. ~73!

Since the periodicity of the group element inw5 iu is ruined, we are left only with the boundar
condition that the Green’s functionGy is antisymmetric under Weyl reflections. The Green
function in the infinite space should be chosen with great care due to the minus sign befo
factor 1

412l to avoid singularities when performing the integration in the complexl plane@in the
integral representation Eq.~12!#. Therefore, we must distinguish between the two cases w

k252( 1
412l).0 andk2,0:
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Gk
1~u,u0!uk252(1/412l),05

i

2A1

4
12l

e2A1/412luu2u0u,

~74!

Gk
1~u,u0!uk252(1/412l).05

i

2A1

4
12l

eA1/412luu2u0u.

Summing over the two Weyl reflections

Gy~u,u0!5G1~u,u0!2G1~u,2u0! ~75!

and insertingGy into Eq.~24! we get the final expression for the resolventGl(w) in this domain:

Gl~u!u1/412l.05
1

8&p sinhu/2
e2A1/412lu, Gl~u!u1/412l,05

1

8&p sinhu/2
eA1/412lu.

~76!

Inserting the resolvent into the integral representation Eq.~12! we get

K0~u!5
1

2p i

1

8&p sinhu/2
E

C
Fe2 ilteA1/412luQS 2

1

4
22l D1e2 ilte2A1/412luQS 1

4
12l D G dl.

~77!

Here Q is the usual step function,Q(x,0)50,Q(x.0)51. The second term contains neith
cuts nor poles, so it does not contribute to the integral. There is a cut in the first term
contracting the integration contour around the cut the final result is obtained.

The exact evolution operator in the domainD0 is

K0~w5 iu!5
1

~4p i t !3/2

u

2 sinhu/2
expF2

i

2t
u21

i t

8 G . ~78!

Together withK1(w) @Eq. 71# in the evolution domainD1 wherew is real, the evolution operato
on the entire group manifold is found.

V. RESULTS

Finding the evolution operator on a noncompact group according to Sec. II C involve
following steps. First, the evolution domains have to be established according to Sec. III B.
the appropriate coordinate system for the radial parameters, where the parameters are eithe
imaginary, is determined in each domain. The next step is to determine the winding number
m̃, which is inserted in the expression for the evolution operator in each domain@Eq. 50#. In this
section the method is demonstrated on the real groups associated with the four simple al
A2 ,B2 , A3 andC3 .

We shall use the following notations:G is the noncompact group under consideration,K is its
maximal compact subgroup,K j are the generators ofK, iP j are the generators of the coset spa
G/K, and Da is the evolution domain that corresponds to a real radial parameters andr 2a
imaginary parameters. When the radial parametersf j are imaginary they are given in terms of re
parametersu j , f j5 iu j . The details of the calculations appear in Ref. 25.
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A. Groups associated with A 2

Compact group: SU~3!
Generators: Gell-Mann matrices26 l1 , . . . ,l8 in three-dimensional spinor representation
Simple roots „in R2

…:

g15 x̂, g252
1

2
x̂1
)

2
ŷ

($x̂,ŷ% is an orthonormal basis inR2.!
Radial parameters vector:

w5w1g11w2g25f1x̂1f2ŷ, f15w12
w2

2
, f25

)

2
w2

Winding number vector:

m52m1g112m2g25~2m12m2!x̂1)m2ŷ

Eigenvalues of the group element in the spinor representation:

e~ i /2!(f11f2 /)), e~ i /2!(2f11f2 /)), e2 ~ i /) ! f2

Noncompact groups:

G SU~2,1! SL~3,R!
K SU~2!^U~1! SO~3!

K j l1 ,l2 ,l3 ,l8 l2 ,l5 ,l7

iP j il4 ,il5 ,il6 ,il7 il1 ,il3 ,il4 ,il6 ,il8

Da D2 : w5f1x̂1f2ŷ D1 : w5f1x̂1 iu2ŷ
m̃5(2m12m2) x̂1)m2ŷ m̃52m1x̂
D1 : w5 iu1x̂1f2ŷ D0 : w5 iu1x̂1 iu2ŷ
m̃52)mŷ m̃50

B. Groups associated with B 2

Compact group: SO~5!
Generators: Ten rotation matricesLab , a,b51, . . . ,5,that satisfy the commutation relations

@Lab ,Lcd#5dacLbd2dadLbc2dbcLad1dbdLac .

dab is the metric tensor in thep1q flat space.
Simple roots „in R2

…:

g15 x̂2 ŷ, g25 ŷ

Radial parameters vector:

w5w1g11w2g25f1x̂1f2ŷ, w15f1 , w25f11f2

Winding number vector:

m5m1g112m2g25m1x̂1~2m22m1!ŷ

Eigenvalues of the group element in the four-dimensional spinor representation:
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e~ i /2!(f11f2), e~ i /2!(2f11f2), e~ i /2!(f12f2), e~ i /2!(2f12f2)

Eigenvalues of the group element in the five-dimensional vector representation:

eif1, e2 if1, eif2, e2 if2,1
Noncompact groups:

G SO~4,1! SO~3,2!

K SO~4! SO~3!^SO~2!
K j Lab , a,b51, . . . ,4 Lab ,L45

iP j iL a5 , a51, . . . ,4 iL a4 , iL a5 , a,b51,2,3
Da D2 : w5f1x̂1f2ŷ D2 : w5f1x̂1f2ŷ

m̃5m1x̂1(2m22m1) ŷ m̃5m1x̂1(2m22m1) ŷ
D1 : w5f1x̂1 iu2ŷ D1 : w5f1x̂1 iu2ŷ
m̃52mx̂ m̃52mx̂

D0 : w5 iu1x̂1 iu2ŷ
m̃50

C. Groups associated with A 3ÈD3

Compact group: SU~4!
Generators: Two alternative bases in the four-dimensional spinor representation:

~i! Gell-Mann type26 434 matricesl1 , . . . ,l15

~ii ! 15 rotation matricesLab , a,b51, . . . ,6, inspinor four-dimensional representation.~The
general method of building the rotation matrices in spinor representation for any rot
group is explained in a paper by Brauer.27!

Simple roots „in R3
…:

g15 x̂, g252
1

2
x̂1

1

&
ŷ2

1

2
ẑ, g35 ẑ

Radial parameters vector:

w5w1g11w2g21w2g25f1x̂1f2ŷ1f3ẑ,

w15f11
f2

&
, f25&f2 , w35f31

f2

&

Winding number vector:

m52m1g112m2g212m3g35~2m12m2!x̂1&m2ŷ1~2m32m2!ẑ

Eigenvalues of the group element in the spinor representation:

e~ i /2!(f11f2 /&),e~ i /2!(2f11f2 /&),e~ i /2!(f32f2 /&),e~ i /2!(2f32f2 /&)

Eigenvalues of the group element in the six-dimensional vector representation:

e~ i /& !(f11f3),e2 ~ i /& !(f11f3),e~ i /& !(f12f3),e2 ~ i /& !(f12f3),eif2,e2 if2

Noncompact groups:
The noncompact groups that correspond to inner automorphisms of SU~4! are SU~3,1! and
SU~2,2!.
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G SU~3,1!;SO* (6) SU~2,2!;SO~4,2!
K SU~3!^U~1! SU~2!^SU~2!^U~1!
K j l1 , . . . ,l8 , l15 la , a51,2,3,8,13,14,15
iP j il9 , . . . ,il14 ilb , b54,5,6,7,9,10,11,12
Da D3 : w5f1x̂1f2ŷ1f3ẑ D3 : w5f1x̂1f2ŷ1f3ẑ

m̃5(2m12m2) x̂1&m2ŷ1(2m32m2) ẑ m̃5(2m12m2) x̂1&m2ŷ1(2m32m2) ẑ
D2 : w5 iu1x̂1f2ŷ1f3ẑ D2 : w5 iu1x̂1f2ŷ1f3ẑ
m̃52&m1ŷ1(2m322m1) ẑ m̃52&m1ŷ1(2m322m1) ẑ

D1 : w5 iu1x̂1f2ŷ1 iu3ẑ
m̃52&mŷ

The noncompact groups that correspond to outer automorphisms of SU~4! are SL(4,R) and
Q~2!;SO~5,1!. Q~2! is a group that acts in two-dimensional quaternionic space.22,28

G SO~3,3!;SL(4,R) SO~5,1!;Q~2!
K SO~3!^SO~3! SO~5!
K j L12,L23,L13,L45,L46,L56 Lab , a,b51, . . . ,5
iP j iL a4 ,iL a5 ,iL a6 , a51,2,3 iL a6 , a51, . . . ,5
Da D2 : w5f1x̂1 iu2ŷ1f3ẑ D2 : w5f1x̂1 iu2ŷ1f3ẑ

m̃52m1x̂12m3ẑ m̃52m1x̂12m3ẑ
D1 : w5 iu1x̂1 iu2ŷ1f3ẑ
m̃52m3ẑ
D0 : w5 iu1x̂1 iu2ŷ1 iu3ẑ
m̃50

D. Groups associated with C3

Compact group: USp~6!
Generators: X1 , . . . ,X21. An explicit basis can be found in standard textbooks.19,29 The general
algebra element in this basis is

x5jaXa5S j1 j41 i j5 j61 i j7 j101 i j11 j121 i j13 j141 i j15

j42 i j5 j2 j81 i j9 j121 i j13 j161 i j17 j181 i j19

j62 i j7 j82 i j9 j3 j141 i j15 j181 i j19 j201 i j21

j102 i j11 j122 i j13 j142 i j15 2j1 2j41 i j5 2j61 i j7

j122 i j13 j162 i j17 j182 i j19 2j42 i j5 2j2 2j81 i j9

j142 i j15 j182 i j19 j202 i j21 2j62 i j7 2j82 i j9 2j3

D .

Simple roots „in R3
…:

g15 x̂, g252
1

2
x̂1

1

2
ŷ2

1

&
ẑ, g35& ẑ

Radial parameters vector:

w5w1g11w2g21w3g35f1x̂1f2ŷ1f3ẑ

Winding number vector:
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m52m1g112m2g21m3g35~2m12m2!x̂1m2ŷ1&~m32m2!ẑ

Eigenvalues of the group element in the fundamental representation:

e~ i /2!(f11f2), e~ i /2!(2f11f2), e~ i /2!(f12f2), e~ i /2!(2f12f2), e~ i /& ! f3, e2 ~ i /& ! f3

Noncompact groups:

G USp~4,2! Sp(6,R)
K USp~4!^ USp~2! SU~3!^ U~1!
K j X1 ,X2 ,X3 ,X4 ,X5 ,X10,X11,X12,X13, X2n11 , n52,3,. . . ,10

X16,X17,X20,X21

iP j iX6 ,iX7 ,iX8 ,iX9 ,iX14,iX15,iX18,iX19 iX1 ,iX3 ,iX2n n51, . . . ,10
Da D3 : w5f1x̂1f2ŷ1f3ẑ D3 : w5f1x̂1f2ŷ1f3ẑ

m̃5(2m12m2) x̂1m2ŷ m̃5(2m12m2) x̂1m2ŷ
1&(m32m2) ẑ 1&(m32m2) ẑ

D2 : w5 iu1x̂1f2ŷ1f3ẑ D2 : w5f1x̂1f2ŷ1 iu3ẑ
m̃52m1ŷ1&(m322m1) ẑ m̃5(2m12m2) x̂1m2ŷ

D1 : w5 iu1x̂1 iu2ŷ1f3ẑ
m̃5&m3ẑ
D0 : w5 iu1x̂1 iu2ŷ1 iu3ẑ
m̃50

VI. CONCLUSIONS

We have shown that using the integral representation@Eq. ~12!# for the evolution operator is
a powerful method that produces exact evolution operators of free motion on the manifolds o
compact and noncompact~simple and simply-connected! groups.

For compact groups, the two complementary representations for the evolution operat
spectral expansion and the sum over classical paths, are reproduced from the same integ
resentation by using two different integration methods.

For noncompact groups, this method enables us to find the exact evolution operator. A g
expression for the evolution operator is given in Eq.~50!. This expression depends on the ro
system of the specific group, on the radial parameters vector and on the winding numbers
of the radial parameters around the maximal torus.

A complication that arises in the noncompact case is that the maximal torus topology
unique on the entire group manifold. This is very different from the compact case, wher
Cartan subgroup is compact, and the winding number vector is determined only by the s
roots @Eq. ~22!#. In the noncompact case the manifold is split into several domains which d
from each other by the maximal torus topology. The radial parameters, which reside in a
tangent to the torus, are no longer real; however, a coordinate system where the radial par
are either pure real or pure imaginary can always be found. Thus, the general expression
evolution operator is different in each domain, and using it requires the knowledge of the wi
numbers vector in the domain.

The various domains that correspond to each noncompact group are derived from the
type ~quasi-unitary, quasi-orthogonal, etc.!. In particular, the maximal torus depends only on t
eigenvalue system of the group element~since we are dealing with matrix groups, the notion
eigenvalues usually corresponds to the fundamental representation!. The allowed values of the
radial parameters are derived from the conditions that are imposed on the eigenvalues acco
the group type. This analysis was carried out is Sec. III B for most of the simple groups th
generated from the classical algebrasAn , Bn , Cn andDn .

The method was demonstrated on SU~2! and SU~1,1! by a straightforward computation of th
evolution operators. For the larger groups, which are generated by the algebrasA2 , B2 , A3 and
C3 , only the final results are given~the details can be found in Ref. 25!. For each group, an
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appropriate coordinate system for the radial parameters was chosen, and the different d
were found. The radial parameters vector and winding number vector were written explicit
each domain. These vectors can be inserted into Eq.~50! to produce the exact expression for th
evolution operator in the specific domain.

The expression for the evolution operator on noncompact groups can be interpreted as
over classical paths. The different evolution domains correspond to different classes of geo
The group manifold is open in some dimensions, and compact in the others, and the w
number vector depends on the ‘‘direction’’ of the classical trajectory. Thus, our main concl
is that the semi-classical approximation for the evolution operator that corresponds to free m
on the manifolds of noncompact groups is exact.
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APPENDIX A: LIE GROUPS: SUMMARY OF RELEVANT FACTS

1. Invariant volumes of compact groups

The invariant volume of a compact group is30

VG5E
G

dm~g!5
Ln/2~2p!p1r@det~M jk!#1/2

)g~g2/2!1/2)a.0~a•r!
. ~A1!

HereM jk52gj•gk /g j
2 are the elements of the Cartan matrix, andgj are the simple roots~which

provide a basis in the root space!. The constantsL and r are given in Eq.~17!. The invariant
volume is a product of the volume of the maximal torusT and the volume of the coset spaceG/T,
VG5VTVG/T , and each factor can be computed separately:

VT5L r /2E
T
2n2r@w~w!#2 dw5L r /2

~2p!r@det~M jk!#1/2

)~g2/2!1/2 5
L r /2~2p!r

@det~wiwj !#
1/2, ~A2!

wheredw5)dw is the integration measure in the flat space, and

VG/T5
~2p!pLp

)a.0~a•r!
. ~A3!

Note that all these volumes are invariant under a change of the root normalization.

2. Weyl group, Weyl chamber, and Weyl alcove

The Weyl groupW is the group of permutations of the root system. The elements of the W
group are called Weyl reflections. Its action also permutes the diagonal elements ofw jH j , where
H j are the basis elements of the Cartan subalgebra andw j are the radial parameters.. To avoid th
sort of ambiguity, the values of the radial parameters are restricted to the Weyl chamber
conditiong•w>0. The root space in whichw reside is divided by the hyper-planesa•w50 into
N(W) regions congruent to the Weyl chamber@N(W) is the order of the Weyl group#. The Weyl
transformations permute these regions.

Any function on a compact group is periodical in the radial coordinates

f ~w12pm!5 f ~w!, m5(
j 51

r

mj ĝj , ĝj52gj /g j
2, ~A4!

wheremj are integers, so the maximal torus for the group reside inside a larger torus defin
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w5(
j 51

r

w j ĝj , 2p,w j<p. ~A5!

The Weyl reflection hyper-surfacesa•w50 divide the torus intoN(W) regions. The region
enclosed by the hyper-surfacesg•w>0, a1

•w<2p, wherea1 is the highest root, is called th
Weyl alcove. The Weyl alcove coincides with the maximal torus.

3. Invariant operators and the symmetry operator D
An invariant operator is built according to the following theorem8

Let P(w1 , . . . ,w r) be any polynomial on the Cartan subalgebra H, invariant with respect to
the Weyl group W. Consider the differential operator P(]/]w1, . . . ,]/]w r) which is obtained by
formal substitution of the operators]/]w i in place of the coordinatesw i in the polynomial
P(w1 , . . . ,w r). The operator

D̃~P!5
1

w~w! FPS ]

]w1 , . . . ,
]

]w r D Gw~w! ~A6!

is the radial part of some Laplace operator on the group.
The converse of this theorem is also true. The coordinatesw i and w i are dual coordinate

systems~if w5w ig i , they are connected by the Cartan matrixw i5Mi j w j !.
We shall use the operator

D~w!5 )
a.0

F2aj

a j
2 (

i 51

r

wi

]

]w i
G , ~A7!

which consists of a product of directional derivatives along the positive roots. This opera
called an intertwining operator since it intertwines the radiald-function on the group manifold
with the d-function on the torusT ~see Ref. 16!. Substituting the square of the operator,D 2, for
the polynomialP in Eq. ~A6!, an invariant operator on the group is obtained. When acting on
character of an UIR withD 2, its eigenvalue is proportional to the square of the representati
dimensionality

1

w~w!
D 2w~w!x l~w!5

1

~2i !pw~w!
D 2 (

sPW
es exp@ i ~sn•w!#

5F )
a.0

i ~n•a!G2

x l~w!5F )
a.0

i ~r•a!G2

dl
2x l~w!. ~A8!

The operatorD is not an invariant operator on the group manifold, but it corresponds to
one-dimensional antisymmetric representation of the Weyl group. Therefore it is used to c
the symmetry of radial functions under Weyl reflections. In particular,

1

w~w!
Dw~w!x l~w!5

1

~2i !pw~w!
D (

sPW
es exp@ i ~sn•w!#

5 )
a.0

i ~n•a! (
sPW

exp@ i ~sn•w!#5 )
a.0

i ~r•a!dl (
sPW

exp@ i ~sn•w!#.

~A9!

Taking the limitw50 reproduces the Weyl dimensions formula~up to known factors!. Another
interesting feature is that when working on the Weyl function itself, the operator can be us
determine the order of the Weyl group
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2p

~a•r!
Dw~w0!uw0505N~W!. ~A10!

APPENDIX B: THE CONNECTION BETWEEN GREEN’S FUNCTION ON T AND ON G

The resolvent for the Helmholtz equation in flatr -dimensional spaceGy(w,w0) is used to find
the statey(w) that is described by Eq.~18!:

y~w!5E Gl
y~w,w0!F~w0! dw0 . ~B1!

dw5)dw is the integration measure in the flat space. Since our original equation for the
c(w) is

1

L F 1

w

]2

]w2 w1r21LlGc~w!52 f ~w!, ~B2!

the Green’s function forc can be obtained fromGy by inserting the expressions fory andF @Eq.
~19!# into Eq. ~B1! and dividing byw(w)

c~w!5
1

w~w!
E Gl

c~w,w0! f ~w0! dw05
1

w~w!
E Gl

y~w,w0!Lw~w0! f ~w0! dw0 . ~B3!

Collecting all the factors, the resolvent forc(w) becomes

Gl
c~w,w0!5L

w~w0!

w~w!
Gl

y~w,w0!. ~B4!

To get the resolventGl(g1g0
21) that is used to obtain the statec(g1) on the group manifold

c~g1!5E
G

Gl~g1g0
21! f ~g0! dm~g0! ~B5!

two additional steps are necessary. First, we must take into account the different integ
measures in the flatr -dimensional space~the torus! and on the group manifold. The integratio
measure on the group manifold is30

VG5E
G

dm~g!5VG/TE
T
2n2r@w~w!#2 dw. ~B6!

Thus, we have to divide the Green’s functionGc by VG/T2n2r@w(w0)#2. Second, the evolution
depends on the radial coordinatesw of the group elementg5g1g0

21 that appears in Eq.~13!, i.e.,
on the ‘‘distance’’ from the origin to the pointhPT. Thereforew0 does not have any meaning an
should be put to zero, whilew5w(g1g0

21). The final expression for the resolvent is

Gl~w~g1g0
21!!5

L

VG/T2n2r@w~w0!#2 Gc~w,w0!U
w050

5
L

VG/Tw~w! F Gy~w,w0!

2n2rw~w0!
U

w050

. ~B7!

1J. Hadamard,Lectures on Cauchy’s Problem in Linear Partial Differential Equations~Dover, New York, 1952!.
2V. A. Fock, Phys. Z. Sowjetunion12, 404 ~1937!.
3Y. Nambu, Prog. Theor. Phys.5, 82 ~1950!.
4J. Schwinger, Phys. Rev.82, 664 ~1951!.
5E. C. G. Stueckelberg, Helv. Phys. Acta14, 322 ~1941!.
6P. M. Morse and H. Feshbach,Methods of Theoretical Physics~McGraw–Hill, New York, 1978!.
7M. S. Marinov and M. V. Terentiev, Fortschr. Phys.27, 511 ~1979!.
                                                                                                                



Tech-

5208 J. Math. Phys., Vol. 41, No. 8, August 2000 N. Krausz and M. S. Marinov

                    
8F. A. Berezin, Math. USSR-Doklady107, 9 ~1956!.
9F. A. Berezin, Am. Math. Soc. Trans.~2! 21, 239 ~1962!.

10F. Bopp and R. Haag, Z. Naturforsch. A5A, 644 ~1950!.
11L. Schulman, Phys. Rev.176, 1558~1968!.
12L. D. Eskin, ‘‘Heat transport equation on lie groups,’’ inCollection of Papers to the Memory of N. G. Chebotarev~Kazan

State Univ., Kazan, 1963!, p. 113.
13J. S. Dowker, J. Phys. A3, 451 ~1970!.
14J. S. Dowker, Ann. Phys.~N.Y.! 62, 361 ~1971!.
15M. S. Marinov and M. V. Terentyev, Sov. J. Nucl. Phys.28, 729 ~1978!.
16R. Camporesi, Phys. Rep.196, 1 ~1990!.
17R. Bellman,A Brief Introduction to Theta Functions~Holt, Rinehart & Wilson, New York, 1961!.
18N. Bourbaki, inGroupes et algebres de Lie~Hermann, Paris, 1960!, Chaps. 5–7.
19R. N. Cahn,Semi-simple Lie Algebras and their Representations~The Benjamin/Cummings, New York, 1984!.
20F. Gantmacher, Mat. Sb.5, 101 ~1939!.
21F. Gantmacher, Mat. Sb.5, 218 ~1939!.
22A. O. Barut and R. Raczka, Proc. R. Soc. London, Ser. A287, 519 ~1965!.
23R. Hermann,Lie groups for physicists~Benjamin, New York, 1966!.
24J. Tits,Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen~Springer-Verlag, Berlin, 1967!.
25N. Krausz, ‘‘Quantum dynamics on non-compact group manifolds,’’ Ph.D. thesis, Technion—Israel Institute of

nology, 1998.
26W. Greiner and B. Muller,Quantum Mechanics—Symmetries~Springer-Verlag, Berlin, 1989!.
27R. Brauer and H. Weyl, Am. J. Math.57, 425 ~1935!.
28C. Chevalley,Theory of Lie Groups~Princeton U.P., Princeton, 1946!.
29R. Gilmore,Lie Groups, Lie Algebras, and Some of their Applications~Wiley, New York, 1974!.
30M. S. Marinov, J. Phys. A13, 3357~1980!.
                                                                                                                



t

the
om
d by
logy.
ed by

re over
ria-
r

rd,

sis
under-
er
hat the
s simple
s to be
a

rd one.

over all
y

path is
ss

ed

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 8 AUGUST 2000

                    
Path space measure for the 3 ¿1-dimensional Dirac
equation in momentum space
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Tokyo 101-8313, Japan
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Nonstandard analysis is used to construct a measure over paths for the path integral
solution to the Dirac equation in 311 dimension. Paths are considered in momen-
tum space, because the Green function in the configuration space contains a deriva-
tive of d function which keeps us from assigning a measure over paths. The solu-
tion is obtained not only as the standard part of a nonstandard path sum with
respect to a nonstandard measure, but also as a standard path integral with respec
to a standard measure extracted from the nonstandard one. The result is an exten-
sion of Gaveau’s work@B. Gaveau, J. Funct. Anal.58, 310–319~1984!#. © 2000
American Institute of Physics.@S0022-2488~00!01008-2#

I. INTRODUCTION

In 1948, Feynman1 proposed the so-called path integral formula for the Green function for
Cauchy problem of the Schro¨dinger equation. However, it cannot be called an integral fr
mathematical point of view. It is merely a limit of repeated integrals which would be justifie
Trotter’s product formula2 with the convergence being considered in the strong operator topo
Fujiwara3 showed that the convergence in the uniform operator topology can be achiev
redefining the action in terms of classical paths for each time slice.

If one wishes to give it a meaning as a genuine integral over paths, one needs a measu
a path space. Unfortunately for the Schoro¨dinger equation, there is no measure of bounded va
tion which is appropriate for the path integral as Cameron4 showed in 1960, though the Wiene
measure serves the purpose if the time were imaginary.5

In contrast, there exists a measure for the Dirac equation in 111-dimensional(111D)
space–time as was proved by Ichinose6 in 1982. The measure was constructed by Blancha
Combe, Sirugue, and Collin7 in 1985 in terms of the Poisson process, and by Zastawniak8 in 1989
as a power series in the mass. In 1991, the present author9 showed that the nonstandard analy
permits one to carry out an explicit construction of the path-space measure exposing the
lying Poisson process of theZitterbewegungwith helicity flip due to the mass term. The numb
of the paths to be summed up turns out to be finite in nonstandard analytical sense, so t
nonstandard measure is defined for each path separately, making the proofs of the theorem
and transparent. The standard part of the path sum with the nonstandard measure prove
differentiable, solving the initial value problem of 111D Dirac equation. One can also extract
standard path-space measure appropriate for the standard path integral from the nonstanda10

We are thus led to try to apply the nonstandard analysis to the 311D case. In the 111D case,
since we take the mass term as a perturbation, the Green function is expressed as a sum
the paths which run straight at the light velocityc, and reverse their directions only when the
happen to be disturbed by the mass term from time to time. Each straight segment of a
represented by ad functiond(x2y6cDt) which comes from the Green function of the massle
free Dirac particle, so that the consecutive product ofd functions determines a path to be summ
over.

a!Electronic mail: tnakamur@tsuda.ac.jp
52090022-2488/2000/41(8)/5209/14/$17.00 © 2000 American Institute of Physics
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In 311D case, on the contrary, the Green function contains derivative ofd function in
addition to thed function itself of 111D case@see~4! below#. Since we have an arbitrary numbe
of repeated convolution of the Green functions, we are confronted with the derivative ofd
function of unlimited order. It is not clear how it should be interpreted in terms of the path s
picture. This is probably behind Zastawniak’s negative result,11 in which he gave a counte
example showing that there is no measure for the 311D Dirac equation.

In this paper, we propose to work in the momentum space, where we do not encounte
difficulty. In fact, the Green function in the momentum space containsd functions of momentum
conservation, but not their derivatives. The Green function is made up of contributions from
of changing momentum, a stochastic process with transition probability depending upon th
tentials. Thus, nonstandard measure is attributed to each path and their sum gives a solution
after as its standard part.

In Sec. IV, a standard measure is extracted from the nonstandard one, and the corresp
standard path integral is found to be equal to the standard part of the nonstandard path sum
particular cases where the potentials do not depend on time, our measure reduces
Gaveau’s.12 The path integral was discussed in momentum space by Albeverio
Ho”egh-Krohn13 in 1976 for the case of Schro¨dinger equation, and by Watanabe14 in 1986 for the
case of the Dirac equation.

We use the following notations from nonstandard analysis:

* A is the nonstandard extension ofA.

* N and * R are the sets of* -natural numbers and*-real numbers, respectively.

* R1 is the set of positive* -real numbers.

st~a! is the standard part ofa.

a.b if ua2bu is infinitesimal.

A5O~B! if A/B is finite, and

A5o~B! if A/B is infinitesimal, whereA,B are both infinite or both infinitesimal

II. HEURISTIC ARGUMENTS FOR 3¿1-DIMENSIONAL DIRAC EQUATION

Let us briefly review the heuristic calculation of the Green function for the Dirac equati

i\
]

]t
c~ t,xW !5$~2 ic\¹W 2eAW ~ t,xW !!•aW 1mc2b1eA0~ t,xW !%c~ t,xW !,

where c(t,xW ) is a spinor with four components,AW (t,xW ) is a three-dimensional vector-value
function representing together with a scalar functionA0(t,xW ) the electromagnetic potentials. Th
constantse andm are the electric charge and the mass of the particle,c the light velocity, and\
the Planck constant divided by 2p. ak (k51,2,3) andb are 434-Hermitian matrices satisfying

aka l1a lak52dkl , akb1bak50, b25I .

When the space dimension is one, the Green function for short timeDt is given by

^xk11uU~Dt !uxk&.~d~xk112xk2cDt !P11d~xk112xk1cDt !P21!

3S 12 i
mc2Dt

\
b DexpF i

Dt

\
Ã~kDt,xk!G , ~1!
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whereP61 are the projections to the eigenspaces of the eigenvalues61 of a. Here,a andb are
232 Dirac matrices, andÃ(t,x)52eA0(t,x)1eA1(t,x)a. Then, the Green function for th
initial value problem is given by

G~ t,x;0,y!5E ¯E )
k51

n

8 ^xkuU~Dt !uxk21&)
k51

n21

dxk ~2!

with x05y andxn5x. Here,)8 is the time-ordered product. Expanding the product of the sum
d functions, we get the Green function as a sum of the products of consecutived functions each of
which is taken to represent a back-and-forth path. The time-ordered product of the proj
matrix P61 and the mass term in~1! along a path is taken to be a matrix-valued nonstand
measure for the path. The product of the exponential is factorized to become an exponentia
action along the path, guaranteeing the gauge invariance. In this way in the 111D case, thed
functions cause a particle to run straight as a massless free particle, which is perturbed fro
to time by the mass term.9,10

When the space-dimension is three, it takes on a new aspect. Namely,

^xW kuU~Dt !uxW k21&5E ^xW kuU~Dt !upW k&^pW kuxW k21&d
3pk ~3!

can be calculated ifm50 andAW 50, and the result contains not only thed function but also its
derivative

^xW kuU~Dt !uxW k21&52
uxW k2xW k21u1aW •~xW k2xW k21!

4puxW k2xW k21u2
d8~ uxW k2xW k21u2cDt !

1
aW •~xW k2xW k21!

4puxW k2xW k21u3
d~ uxW k2xW k21u2cDt !. ~4!

The derivative of thed function in ~4! keeps us from finding out suitable paths and meas
as mentioned in Sec. I. For this reason, we choose to carry out thexW k integration rather than thepW k

integration in~3!, considering the Green function in momentum space

G~ t,pW ;0,pW 8!5E ¯E )
j 51

n

8 ^pW j uU~Dt !upW j 21&)
j 51

n21

d3pj

.E ¯E )
j 51

n

8 S H d~pW j2pW j 21!1 i
Dt

\
B~ j Dt,pW j2pW j 21!J

3expF2 i
cDt

\
~pW j 21•aW 1mcb!G D )

j 51

n21

d3pj ~5!

with pW 05pW 8, pW n5pW and

B~ t,kW !5
1

~2p\!3 E expF2
i

\
kW •xW G~2eA0~ t,xW !1eAW ~ t,xW !•aW !d3x. ~6!

In order to expand the time-ordered product in~5!, let us introduce a choice functionl defined
on the set$1,...,n% with value

d~pW j2pW j 21! or i
Dt

\
B~ j Dt,pW j2pW j 21!
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for eachj P$1, . . . ,n%. Then, the Green function is expressed as a sum overl:

G~ t,pW ;0,pW 8!.(
l
E ¯E )

j 51

n

8 S l~ j !expF2 i
cDt

\
~pW j 21•aW 1mcb!G D )

j 51

n21

d3pj . ~7!

Let n1 ,...,n r be the values ofj for which l( j )5( iDt/\)B( j Dt,pW j2pW j 21). For j satisfying
n i, j ,n i 11 , pW j integrations can be carried out with the help of the consecutive productd
functions with the resultpW n i

5pW n i115pW n i125¯5pW n i 1121 . For j 5n i 11 , on the other hand, we

do not carry out the integration overpW n i 11
. To simplify the notation, let us rewritepW n i

askW i . Then,
the sum overl together with the integrals left over in~7! reduces to the sum overv
5^r ;n1 ,...,n r ;kW0 ,kW1 ,...,kW r& (kW05pW 8,kW r5pW ). In this way, the Green function is rewritten as
sum overv:

G~ t,pW ;0,pW 8!.(
v

u0~r !uI~r !u0~r 21!uI~r 21!¯uI~1!u0~0!, ~8!

where

uk~ j !5H expF2 i
c~n j 112n j !Dt

\
~kW j•aW 1mcb!G ~k50!

i
Dt

\
B~n jDt,kW j2kW j 21!D3kj ~k5I !

with n050 andn r 11Dt5t. The factorD3kj is the volume elementd3pn i
of the integrals left over

in ~7!. The sequencev is identified with a pathXv(s)5kW i (n iDt<s,n i 11Dt) in the momentum
space~see Fig. 1!.

III. NONSTANDARD PATH INTEGRAL FOR 3 ¿1-DIMENSIONAL DIRAC EQUATION

Our arguments so far have been of heuristic nature. In order to make them rigoro
nonstandard analysis, we discretize the time with infinitesimal spacing« and the momentum spac
into cells of infinitesimal volumer5d3 as follows:

Definition 1: Fix positive infinitesimals«, d and an infinite* -natural number N0 such that
N0d5o(«21/2).

For fixed standard number tPR1, defineT and M by

T5$k«u k50,...,N%,

M5$~n1d,n2d,n3d!unj50,61,...,6N0%

with N being the* -natural number satisfying N«<t,(N11)«.

FIG. 1. PathXv in momentum space.
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In our time latticeT, N« stands for the standard timetPR1 and is denoted byt. As for the
momentum spaceM, pW defined below stands for the standard momentumpW 5(p1 ,p2 ,p3)PR3:

pW 5~n1d,n2d,n3d!PM such that njd<pj,~nj11!d ~ j 51,2,3!.

Definition 2: Let

v5^r ;n1 ,...,n r ;kW0 ,...,kW r& ~9!

be internal, where r is a* -natural number less than or equal to N, n j«PT and kW jPM. The

sequencev determines a* -path, say Xv , which jumps r-times from kW j 21 to kW j at the discretized

time n j« ( j 51, . . . ,r ). When r50, n j ’ s are absent so thatv5^0;kW0&.
For given pW PR3 and tPR1, define* -path space by

P~ t,pW !5$XvukW r5pW %,

that is, the set of all internal functions fromT to M with fixed end point(t,pW ).
Let l j denote the segment of the pathXv for the time interval (n j«,n j 11«). Assign the 4

34 matrix

U0~ j !5expF2 i
c~n j 112n j !«

\
~kW j•aW 1mcb!G ~10!

to l j , and

UI~ j !5 i
«r

\
* B~n j«,kW j2kW j 21!, r5d3 ~11!

to the discretized timen j«. The definition ofB was given in~6!. SinceP(t,pW ) is a* -finite set, we
define a*-measure and a*-path sum as follows.

Definition 3: For XvPP(t,pW ),

m~Xv!5U0~r !UI~r !U0~r 21!UI~r 21!¯UI~1!U0~0!, ~12!

C~ t,pW !5 (
XvPP(t,pW )

m~Xv!* f ~Xv~0!!, ~13!

where Xv(0) is kW0 in ~9! and f is the initial function.
We assume the following conditions forB and f and prove Theorems 1 and 2 below. The

conditions will be weakened in Theorem 3 though the proof becomes a little more complic
~H1! B(s,pW ) is continuous in (s,pW ). Further, there exist constantsb.0 andc.0 such that

uBmn~s,pW !u<cupW u2(41b) ~sP@0,t# !, ~14!

and there exista.0, b8.0 andc8.0 such that

uBmn~s1 ,pW !2Bmn~s2 ,pW !u<c8us12s2uupW u2(31b8) ~15!

if us12s2u,a ands1 ,s2P@0,t#.
~H2! f is a bounded continuous function.
Let iC(t,kW )i denote the norm ((m51

4 uCm(t,kW )u2)1/2 of the spinorC5(C1 ,...,C4). We have
the first theorem.

Theorem 1: Suppose that B and f satisfy the conditions~H1! and ~H2!. Then, iC(t,kW )i is

bounded by some finite number uniformly in kWPM.
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Proof: Define a normiM i of 434 matrix M5(Mmn(s,kW )) by

iM i5 sup
iCi51

iMCi

which may depend ons or kW . Then, it is clear that

iM i<43 max
m,n51, . . . ,4

uMmn~s,kW !u, ~16!

where uMmn(s,kW )u is the absolute value of the matrix elementMmn(s,kW ). Let uuu.uuu denote the
right-hand side of~16!. It is obvious from the definition ofm that

im~Xv!i<
~«r!r

\ r )
j 51

r

uuu* B~n j«,kW j2kW j 21!uuu, ~17!

wherev5^r ;n1 ,...,n r ;kW0 ,...,kW r&.
In order to evaluateiC(t,kW )i , we have to take the sum of~17! with respect tov. To begin

with, let us fix r ,n1 ,...,n r and take the sum with respect tokW0 ,...,kW r 21 . The condition~H1!

assures that* Bmn(s,kW ) is an S-integrable lifting of Bmn(s,kW ) ~see Loeb15 and Stroyan and
Bayod16!. Then, the*-finite sum

(
kW0PM

r

\
uuu* B~n1«,kW12kW0!uuu

is bounded by some positive numberK1PR. Repeating the same procedurer -times, we have

I (
kW0 ,...,kW r 21

m~Xv!* f ~kW0!I<K2~«K1!r

whereK25supkWi f (kW )i . Summing up with respect tor ,n1 ,...,n r , we obtain

I(
v

m~Xv!* f ~Xv~0!!I<K2(
r 50

N S N
r D ~«K1!r<K2 exp@ tK1#

which proves the theorem.
By Theorem 1, we can define a standard wave function as the standard part of the nons

one.
Definition 4: For positive tPR and pW PR3, definec(t,pW ) by

c~ t,pW !5st~C~ t,pW !!. ~18!

Then, the following theorem holds.
Theorem 2: If the conditions~H1! and~H2! are satisfied, thenc(t,pW ) is the classical solution

to the311-dimensional Dirac equation in the momentum space

i\
]

]t
c~ t,pW !5~cpW •aW 1mc2b!c~ t,pW !2~B* c!~ t,pW ! ~19!

for a given initial function f. Here, u* v denotes the convolution of u andv.
A function is called aclassical solutionif it is differentiable with respect tot in the ordinary

sense and satisfies the given differential equation. For the proof of the theorem, we prove
lemmas needed later. Define a difference quotientD« by
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D«C~ t,pW !5
1

«
~C~ t1«,pW !2C~ t,pW !!.

Lemma 1: If pW PR3, then

i\D«C~ t,pW !5~cpW •aW 1mc2b!C~ t,pW !2 (
kWPM

r* B~ t,pW 2kW !C~ t,kW !1O~«!. ~20!

Proof: It is clear, becauseC(t1«,pW ) is the sum of

expF2 i
c«

\
~pW •aW 1mcb!GC~ t,pW !5C~ t,pW !1«S 2 i

c

\
~pW •aW 1mcb! DC~ t,pW !1O~«2!

and

i
«r

\
expF2 i

c«

\
~pW •aW 1mcb!G (

kWPM

* B~ t,pW 2kW !C~ t,kW !5 i
«r

\ (
kWPM

* B~ t,pW 2kW !C~ t,kW !1O~«2!.

Since the condition~14! assures that* B(t,pW 2kW )C(t,kW ) is an S-integrable lifting ofB(t,pW
2kW )c(t,kW ), Lemma 1 leads to the following corollary.

Corollary 1: If pW PR3, then

i\D«C~ t,pW !.~cpW •aW 1mc2b!c~ t,pW !2~B* c!~ t,pW !.

For the proof of Theorem 2, it is necessary to evaluate the difference quotient not on
single step« as in Lemma 1, but also for multi-steps

Dk«C~ t,pW !5
1

k«
~C~ t1k«,pW !2C~ t,pW !!,

wherek is a * -natural number such thatk«.0.
Lemma 2: If pW PR3 and k«.0 with kP* N, then

Dk«C~ t,pW !.D«C~ t,pW !.

Proof: If

iD«C~ t1«,pW !2D«C~ t,pW !i5O~«! ~21!

is shown, then the conclusion follows as

iDk«C~ t,pW !2D«C~ t,pW !i<
1

k (
j 51

k21

iD«C~ t1 j «,pW !2D«C~ t,pW !i

<
1

k
~~k21!a«1~k22!a«1¯1a«!.0

with some standard numbera. Let us show~21!. Since

D«C~ t,pW !5S 2 i
c

\
~pW •aW 1mcb! DC~ t,pW !1 i

r

\ (
kWPM

* B~ t,pW 2kW !C~ t,kW !1O~«!,

we have
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D«C~ t1«,pW !2D«C~ t,pW !

5 i
r

\ (
kWPM

~* B~ t1«,pW 2kW !2* B~ t,pW 2kW !!C~ t,kW !

1 i
r

\ (
kWPM

* B~ t1«,pW 2kW !~C~ t1«,kW !2C~ t,kW !!1O~«!. ~22!

The first term on the right-hand side isO(«) by the condition~15!, and the second is shown to b
bounded by

«

\ I (
kWPM

r* B~ t1«,pW 2kW !S 2 i
c

\
kW •aW DC~ t,kW !I1O~«!. ~23!

To obtain the bound~23!, let C(t1«,kW )2C(t,kW )5P1Q, where we have

P5S expF2 i
c«

\
~kW•aW 1mcb!G21DC~ t,kW !5S 2 i

c«

\
kW •aW DC~ t,kW !1O~«!

sinceukW u<N0d,«21/2 ~Definition 1!, and

Q5 i
«r

\
expF2 i

c«

\
~kW•aW 1mcb!G (

kW8PM

* B~ t,kW2kW8!C~ t,kW8!5O~«!

since* B is an integrable lifting ofB. Thus, the bound~23! is obtained. Since the condition~14!

implies thatikWB(s,pW 2kW )i is bounded bycukW u2(31b), ~23! is O(«). Thus, we have shown that~22!
is O(«), and hence~21! holds, which proves Lemma 2.

We are now ready to prove Theorem 2.
Proof of Theorem 2: Since Corollary 1 holds, it only remains to prove thatc(t,pW ) is differ-

entiable with respect tot and its derivative is the standard part ofD«C(t,pW ).
For positive standard numbera, define a setMa by

Ma5$uP* Ru iDk«C~ t,pW !2D«C~ t,pW !i,a for all kP* Z satisfying uk«u,u%.
~24!

Since the internal setMa contains all positive infinitesimals by Lemma 2, it contains some posi
standard numberd.

Let kP* Z be such thatt1h5t1k« for hPR, then

1

h
~c~ t1h,pW !2c~ t,pW !!5

1

h
st~C~ t1k«,pW !2C~ t,pW !!.Dk«C~ t,pW !.

This formula together with the inequality in~24! implies that if uhu,d then

I1

h
~c~ t1h,pW !2c~ t,pW !!2st~D«C~ t,pW !!I,2a

holds, showing thatc(t,pW ) is differentiable with respect tot and

]

]t
c~ t,pW !5st~D«C~ t,pW !!.

It is clear thatc(0,pW )5 f (pW ), and we have completed the proof of Theorem 2.
Let us replace the condition~14! in ~H1! by a weaker one:
                                                                                                                



.

d

5217J. Math. Phys., Vol. 41, No. 8, August 2000 Path space measure for the Dirac equation

                    
uBmn~s,pW !u<cupW u2(31b) ~sP@0,t# ! ~148!

and call the new set by (H18). Then, we have to replace~H2! by a slightly stronger condition
(H28) f (pW ) is a continuous function satisfyingu f (pW )u<cupW u21 for some standard constantc.0.

Theorem 3: Assume that B(s,pW ) and f satisfy(H18) and(H28). Then, c(t,pW ) is the classical
solution to the Dirac equation~19! for a given initial function f.

Proof: Notice that~14! was used only to establish the second term of~22! is O(«). It can be
done in another way by transferring the difference ofC at t to that at time 0. LetXv

1 denote the
time-translate by« of Xv . Then

iC~ t1«,kW !2C~ t,kW !i<(
v

im~Xv
1!$C~«,uW !2* f ~uW !%i1(

v
im~Xv

1!2m~Xv!ii* f ~uW !i ,

~25!

whereuW 5Xv(0). Since the momentum latticeM is truncated atO(«21/2), there exists a standar
numbera.0 such that

IexpF2 i
c«

\
~uW •aW 1mcb!G21I<«auuW u

holds. Then, the assumption (H28) assures thatC(«,uW )2* f (uW )5O(«), so that the first term of
~25! is O(«).

In order to show that the second term is alsoO(«), let us expandm(Xv
1)2m(Xv) in powers

of « as illustrated by a simple example below wherev5^2;n1 ,n2 ;kW1 ,kW2&. Omitting some con-
stant factors for simplicity,

m~Xv
1!2m~Xv!5~«r!2U0~2!~C22D2!U0~1!C1U0~0!

1~«r!2U0~2!D2U0~1!~C12D1!U0~0!,

whereCj5* B(n j«1«,kW j2kW j 21) and D j5* B(n j«,kW j2kW j 21). Applying the condition (148) to
Ci andDi , and~15! to Ci2Di , we have

im~Xv
1!2m~Xv!i<2«~«r!2G2~kW22kW1!G1~kW12kW0!,

whereGi areS-integrable functions.
For the general case ofr 5r (v), we have

im~Xv
1!2m~Xv!i<r«~«r!r)

j 51

r

Gj~kW j2kW j 21!.

Taking *-sum overkW j for fixed r ,n1 ,...,n r , we have

(
kW0 ,...,kW r 21

im~Xv
1!2m~Xv!i<r«~«K !r

with a finite numberK. Then, taking sum overr ,n1 ,...,n r , we have

(
v

im~Xv
1!2m~Xv!i<«(

r
S N

r D r ~«K !r5O~«!.

Thus, ~25! is O(«) and hence the same holds for the second term of~22!, which concludes the
proof of Theorem 3.
                                                                                                                



tandard
measure

1
he

tan-
.

ace,

5218 J. Math. Phys., Vol. 41, No. 8, August 2000 Toru Nakamura

                    
IV. THE STANDARD MEASURE FROM THE NONSTANDARD

We have so far constructed a standard wave function as the standard part of a nons
path sum. In this section, we reconstruct it as a standard path integral based on a standard
which is extracted from the nonstandardm.

Defintion 5: The* -measure space(P(t,pW ),B,m) is defined by

B5$AuA is an internal subset ofP~ t,pW !%,

m~A!5 (
XvPA

m~Xv! for APB.

Define*-total variation ofm by

umu~A!5* -sup
P

(
i 51

l

im~Ai !i ~APB!. ~26!

Here,P5$A1 ,A2 ,...,Al% is an internal sequence such that

AiùAj5B~ iÞ j !, ø i 51
l Ai5A, AiPB, l P* N.

Then, we can showumu(A)<exp@tK# (APB) in a way similar to the proof of Theorem 1.
We propose to extend the*-finitely additive matrix measure space (P(t,pW ),B,m) to a com-

pletely additive one by the method of Zˇ ivaljević.17 We have made the same construction for
11D Dirac case.10 We note thatumu is * -real valued and positive, which permits us to apply t
Loeb theory to construct a completely additive measure space (P(t,pW ), L(B), L(umu)). We can
associate to everyEPL(B) an APB such thatL(umu)(EnA)50 wheren means symmetric
difference. This allows us to definemL(E)5st(m(A)). In fact, if A1 , A2PB are two sets which
approximateE in this sense, then

st~ im~A1!2m~A2!i !<L~ umu!~EnA1!1L~ umu!~EnA2!50,

and hencem(A1).m(A2). Thus, we have constructed a matrix-valued completely additive s
dard measure space (P(t,pW ),L(B),mL) in which, however,P(t,pW ) is a nonstandard path space

We now proceed to extract a standard path-space. Define a standard path stXv by

~stXv!~s!5st~Xv~s!!,

which may go through the point at infinity ofṘ3, Alexandroff’s one-point compactification ofR3.
Definition 6: Let

P~ t,pW !5$x~s!ux~s! is a function from@0,t# to Ṙ3 with x~ t !5pW %

and

st21~F !5$XvPP~ t,pW !u~stXv!~s!PF%

for F#P(t,pW ). DefineB and mL by

B5$F#P~ t,pW !ust21~F !PL~B!%,

mL~F !5mL~st21~F !! f or FPB.

Then, the following two theorems hold.
Theorem 4: (P(t,pW ),B,mL) is a matrix-valued completely additive standard measure sp

and B contains all cylinder sets ofP(t,pW ).
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Proof. See Nakamura.10

Because the*-path spaceP(t,pW ) is the set of all internal functions with domainT, its standard
partP(t,pW ) contains all measurable standard functions from@0,t# to R3. Moreover, it contains the
functions whose ranges include the point at infinity ofṘ3. However, the support of the measu
mL is quite small because of the Poisson process property ofm.

Theorem 5: If B(s,pW ) satisfies the condition(H18), then the support of mL is

S5$x~s!PP~ t,pW !u x~s! is a step function from@0,t# to R3%.

Proof: Let

S̃5$XvPP~ t,pW !u r ~v! is finite and all kW j in v are of finite magnitude%.

Then

umLu~P~ t,pW !\S̃!< lim
n→`

umLu~$Xvur ~v!>n%!1 lim
n→`

umLu~$Xvu ukW j u>n for some j %!. ~27!

The first term is 0 because

lim
n→`

umLu~$Xvur ~v!>n%!< lim
n→`

st(
k5n

N

~«K !kS N
k D< lim

n→`
(
k5n

`
1

k!
~ tK !k50

for some finiteK.
The second term of~27! is also 0. In fact, from the above result and (H18) there existn1 and

n2 for given a.0 such that

umLu~$Xvu r ~v!>n1%!,a, E
ukW u>n2

uuuB~s,kW !uuud3k,
a

n1
.

If we taken so thatn>upW u1n1n2 , then

umLu~$Xvu ukW j u>n for some j %!<umLu~$Xvur ~v!>n1%!1umLu~T!, ~28!

where

T5$Xvur ~v!<n1 , ukW j2kW j 21u>n2 for some j %.

The first term of the right-hand side of~28! is less thana. In order to evaluate the second term, fi
r ,n1 , . . . ,n r first. Let T(r ,n1 ,...,n r) denote the set of the pathsXvPT with the fixed
r ,n1 , . . . ,n r . Then,

T~r ,n1 ,...,n r !5ø i 51
r Ti~r ,n1 , . . . ,n r !,

where

Ti~r ,n1 , . . . ,n r !5$XvPT~r ,n1 , . . . ,n r !uuuW i u>n2%.

Here, we have changed the variableskW j into uW j5kW j2kW j -1 . Taking the sum overuW 1 ,...,uW r , we
have

umLu~Ti~r ,n1 , . . . ,n r !!<
« r

\ r S (
uW i

ruuu* B~n i«,uW i !uuu D)
j Þ i

S (
uW j

ruuu* B~n j«,uW j !uuu D<
« r

\ r

a

n1
K1

r 21,

with some standard numberK1 . Sincer<n1 ,
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umLu~T~r ,n1 ,...,n r !!<(
i 51

r

umLu~Ti~r ,n1 ,...,n r !!<
« r

\ r

a

n1
rK 1

r 21<a« rKr

holds for some standard numberK. Then, taking sum overr ,n1 , . . . ,n r , we have

umLu~T!<(
r 51

N S N
r Da~«K !r<a exp@ tK#.

Applying this inequality to~28!, we have

umLu~$Xvu ukW j u>n for some j %!<a~11exp@ tK# !

for any a.0, meaning that the second term of~27! is 0. Therefore,

umLu~P~ t,pW !\S̃!50 ~29!

holds.
Let P5$F1 , . . . ,Fn% be any sequence of sets such that

FiùF j5B ~ iÞ j !, ø i 51
l Fi5P~ t,pW !\S, FiPB.

Then

st21~F j !#$XvustXv¹S%#P~ t,pW !\S̃,

and hence

imL~F1!i1¯1imL~Fl !i<umLu~st21~F1!!1¯1umLu~st21~Fl !!<umLu~P~ t,pW !\S̃!50,

which completes the proof of Theorem 5.
We have another theorem below. We skip the proof because it is the same as that of Th

5 in the preceding paper10 of the present author.
Theorem 6:

stS (
XvPP(t,pW )

m~Xv!* f ~Xv~0!! D 5E
P(t,pW )

f ~x~0!!dmL .

Since the left-hand side is the solution to~19! as was shown in Theorem 2 and the right-ha
side is an ordinary path integral, Theorem 6 asserts that the path integral

c~ t,pW !5E
P(t,pW )

f ~x~0!!dmL

with respect to the standard measure space (P(t,pW ), B, mL) gives the solution to the Dirac
equation with the initial dataf (pW ). mL is a matrix-valued measure of an additive process~time-
dependent Poisson process! with intensity B(t,pW -pW 8) of the flip from pW 8 to pW at time t. In the
ordinary path integral formula in the configuration space, the effects of the potentials are
grated with respect to a measure constructed from the free Green function. In contrast, in th
integral in the momentum space, the effects of the potentials are put into the measure to de
the intensity of the path-flip.

A remark is in order about our set of conditions~H1!, ~H2!, or (H18), (H28) for our theo-
rems. They appear not to be gauge-invariant. After a gauge transformation,
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A0~ t,xW !→A08~ t,xW !5A0~ t,xW !1
]L~ t,xW !

c]t
, AW ~ t,xW !→AW 8~ t,xW !5AW ~ t,xW !2gradL~ t,xW !,

however, we can still construct the measure by using the old potentials since the measure~12! is
clearly gauge invariant up to a known phase factor exp@-ieL/\c#, or more precisely a convolution
in momentum space with its Fourier transform, as it should. We can rephrase the condition
gauge-invariant way: For a given potential (A0 ,AW ) there exists a gauge functionL such that the
gauge transform satisfies our set of conditions.

As to the nonrelativistic theory, it is known that there is no appropriate measure for the
integral in the configuration space.4 However, once we go into the momentum space, we
construct in the same way as that in the present paper a path-space and a measure appro
the Schro¨dinger equation in momentum space

i\
]

]t
c~ t,pW !5

p2

2m
c~ t,pW !1

1

~2p\!
3
2

V̂~ t,pW !* c~ t,pW !

for V̂(t,pW ) satisfying the same conditions forB(t,pW ). We have only to change the definitions
U0( j ) andUI( j ) in ~10! and ~11!, respectively, by

U0~ j !5expF2 i
~n j 112n j !«

2m\
kW j

2G , UI~ j !5 i
«r

\
* V̂~n j«,kW j2kW j 21!

and N0d in Definition 1 to be an infinite number less than« -1/4 in the order of magnitude o
infinity. With the above modification, the same theorems from Theorem 1 to Theorem 6 i
present paper hold also for the Schro¨dinger equation.
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17R. T. Živaljević, ‘‘Loeb completion of internal vector-valued measures,’’ Math. Scand.56, 276–286~1985!.
                                                                                                                



lectro-
nov
im-
s,
.

studied

eld
nside
etic
not be

rder to

ct.

the
e

and
proach
ill
of test

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 8 AUGUST 2000

                    
An inverse scattering problem with the Aharonov–Bohm
effect

François Nicoleaua)

Département de Mathe´matiques, U.M.R 6629–Universitéde Nantes,
2, rue de la Houssinie`re BP 92208, F-44322 Nantes cedex 03, France
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A direct and an inverse scattering method is developed for Schro¨dinger operators
with electromagnetic fields in the case of obstacles in order to study the well-
known Aharonov–Bohm effect. In dimension greater or equal to three, we show
that the electric potential and the magnetic field are uniquely determined by the
S-operator. In the two-dimensional case, some obstruction appears based on a
quantification of the magnetic flux. ©2000 American Institute of Physics.
@S0022-2488~00!03507-6#

I. INTRODUCTION

In classical mechanics, the electromagnetic field strength describes completely the e
magnetic effects~Lorentz force!. In quantum mechanics, this is not the case. In 1959, Aharo
and Bohm,1 using the Schro¨dinger equation, considered the scattering of an electron off an
penetrable solenoid and found an effect~interferences!. This showed that in quantum mechanic
the electromagnetic field acts on charged particles even in a region where this field is zero

The Aharonov–Bohm phenomenon has attracted a great deal of interest: it has been
from a spectral viewpoint,2 and in a quantum scattering process3 ~radial magnetic interaction in the
two-dimensional case!.

In this article, we study Schro¨dinger operators with an electric potential and a magnetic fi
in the presence of obstacles. In Sec. III, we will hide the singularity of a magnetic potential i
the obstacle, a singularity which accounts for the ‘‘Aharonov–Bohm effect:’’ when magn
potentials have singularities, Hamiltonians associated with the same magnetic fields need
gauge equivalent.

The goals of this paper are the following:

~a! We show existence and asymptotic completeness of the Moeller wave operators in o
define the scattering operator.

~b! We study the inverse scattering problem in the presence of the Aharonov–Bohm effe

In the case of two-body Schro¨dinger HamiltoniansH52D1V on L2(Rn), n>2, V short range,
such a problem has been studied with high-frequency asymptotic methods.4 Recently, for short or
long-range potentials, Enss and Weder5 have used a geometrical method. They show that
potential is uniquely determined by the high-velocity limit of theS-operator. This method can b
used to study Hamiltonians with electric and magnetic potentials6 on L2(Rn), the Dirac equation,7

and theN-body case5 ~see also Refs. 8–10 for similar problems with different approaches!.
In Ref. 11, we used a stationary method to study Hamiltonians with smooth electric

magnetic potentials, based on the construction of suitable modified wave operators. This ap
gives the complete asymptotic expansion of theS-operator at high energies. In this paper, we w
see that the problem with obstacles can be treated in the same way by determining a class
functions which have negligible interaction with the obstacle~see Lemma 10!. To our knowledge,
the Enss–Weder method has not yet been used for such a problem.

a!Electronic mail: nicoleau@math.univ-nantes.fr
52230022-2488/2000/41(8)/5223/15/$17.00 © 2000 American Institute of Physics
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First, let us begin with some notation:

H052 1
2 D is the free Schro¨dinger operator onL2(Rn), n>2, with domainH2(Rn).

We consider a compact obstacleK in Rn, 0PK, with smooth boundary and we denoteV
5Rn\K.

We define the HamiltonianH as the following differential operator onV:

H5H~A,V!5 1
2 ~D2A~x!!21V~x!, D52 i¹. ~1.1!

We suppose that the electrostatic potentialVPC`(V̄), with the short-range condition

u]x
aV~x!u<Ca^x&2d2uau, d.1, ~H1!

where^x&5(11x2)1/2.
Let B be the two-form magnetic field,BPC`(Rn) @identified with an antisymmetric matrix

(bjk)#, with the decay condition

u]x
aB~x!u<Ca^x&2m2uau, m. 3

2 . ~H2!

We consider the magnetic potential,~transversality gauge!, APC`(Rn), B5dA, given by

A~x!52E
0

1

sB~sx!.xds. ~1.2!

It is easy to see thatA satisfies the following estimations:

u]x
aA~x!u<Ca^x&2r2uau, r5min~1,m21!. 1

2 , ~1.3!

and the geometrical condition,

;xPRn, A~x!.x50. ~1.4!

We denote also byH the Dirichlet realization, with domainD(H)5H2(V)ùH0
1(V), and with

essential spectrumsess(H)5@0,1`@ .
Finally, let I be the restriction operator,I:L2(Rn)→L2(V) defined byIF5F uV .

II. EXISTENCE AND COMPLETENESS OF THE WAVE OPERATORS

A. Existence of the wave operators

In order to define the wave operatorsW6, we use the two-Hilbert spaces setting.12–14

Lemma 1: The wave operators W6:L2(Rn)→L2(V), defined by

W65s2 lim
t→6`

eitHIe2 i tH 0, ~2.1!

exist and are isometric.
Proof: Let xPC`(Rn) such thatx50 in a neighborhood ofK, x51 in a neighborhood of

infinity. For F such thatF̂PC0
`(Rn), we have

eitHIe2 i tH 0F5eitHIxe2 i tH 0F1o~1!, t→6`.

Using Cook’s argument, it is easy to show15,16 that the right-hand side admits a limit whe
t→6`.

To see that the wave operators are isometric, it suffices to show

lim
t→6`

iIe2 i tH 0FiL2(V)5iFiL2(Rn) .
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We have

iIe2 i tH 0FiL2(V)
2

5^Ie2 i tH 0F,Ie2 i tH 0F&L2(V)

5^~I* I21!e2 i tH 0F,e2 i tH 0F&L2(Rn)1iFiL2(Rn)
2 .

SinceI* I215multiplication by1K , andK is compact, (I* I21)e2 i tH 0F→0 whent→6`.h

B. Completeness of the wave operators

First, let us recall the notion of completeness for the wave operatorsW65W6(H,H0 ,I) in a
two-Hilbert spaces setting.12–14 The wave operatorsW6(H,H0 ,I) are complete if ImW6

5H (ac)(H) ~subspace of absolute continuity ofH!.
Remarks:By the intertwining principle, ImW6,H (ac)(H). To show the inverse inclusion, w

follow a method close to White’s,13 which uses the stationary approach of Isozaki and Kitad17

This approach is also used in Sec. III to study the inverse scattering problem. We only gi
main steps.

First, we write the wave operatorW6 differently, using a Fourier integral operator,~FIO!, in
the definition~2.1!. As in Ref. 16, we introduce the Fourier integral operatorJ6 with phasew6

defined onG6 by

w6~x,j!5x.j1cA
6~x,j!, ~2.2!

where

cA
6~x,j!52E

0

6`

A~x1tj!.jdt ~2.3!

and

G65$~x,j!PR2n:uxu>R,uju>u,6x.j>6suxiju%, sP] 21,1@ .

HereG2 ~resp.G1! is called an incoming~resp. outgoing! zone. The amplitude of the FIO is give
by x0(x) where x0(x)50 is in a neighborhood ofK and x0(x)51 is in a neighborhood of
infinity.

We have16

W6x~H0!5s2 lim
t→6`

eitHIJ6e2 i tH 0x~H0!, ;xPC0
`~@2u2,`@!. ~2.4!

Now, we are going to prove thatIJ6 is a suitable approximation ofW6, when we localize in
incoming ~resp. outgoing! zones. We follow the Derezinski–Ge´rard’s presentation.18 We denote
by p6 a cutoff function with support inG6 andp6(x,D) is the usual pseudo-differential operat
with symbolp6 ~left-quantification!.

Lemma 2:

W6x~H0!p6~x,D !5IJ6x~H0!p6~x,D !1R6, ~2.5!

where R6:L2(Rn)→L2(V) is a compact operator.
Proof: We only sketch the proof. For more details, see Ref. 18, Theorem 4.17.2, and Re

We treate the case (1). By ~2.4!,

W1x~H0!p1~x,D !5IJ1x~H0!p1~x,D !1E
0

`

R1~ t !dt,

where
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R1~ t !5 ieitH~HIJ12IJ1H0!e2 i tH 0x~H0!p1~x,D !.

We easily see that

iR1~ t !iL(L2(Rn),L2(V))<iIS1~ t !iL(L2(Rn),L2(V)) ,

with

i^t&n2e^D&N^x&eS1~ t !iL(L2(Rn))<CN,e ,

wheree.0 andn5min(d,2r,r11).1. We conclude by Rellich’s theorem. h

Assuming the following technical lemma~the proof is given in Appendix!, we can formulate
the main theorem of this section.

Lemma 3: LetFPH ac(H) such thatx(H)F5F. Then

lim
t→6`

~W6x~H0!p6~x,D !J6* I* 21!e2 i tHF50. ~2.6!

Theorem 4: The wave operators W6 are complete.
Proof: We have to prove thatH ac(H),ImW6. It suffices to show that
;FPHac(H) such thatx(H)F5F, with xPC0

`(@2u2,`@), we haveFPImW6.

Using ~2.6!, we have@for the case (1)#

W1x~H0!p1~x,D !J1* I* e2 i tHF2e2 i tHF→0, t→1`,

and sinceeitH is unitary,

eitHW1x~H0!p1~x,D !J1* I* e2 i tHF2F→0, t→1`.

Using the intertwining principle,

F5 lim
t→1`

W1@eitH 0x~H0!p1~x,D !J1* I* e2 i tHF#.

Since ImW1 is closed, Theorem 4 is proved. h

By Theorem 4, we can define the scattering operator,S5W1* W2:L2(Rn)→L2(Rn).

III. THE INVERSE SCATTERING PROBLEM

In the previous section, we have defined the scattering operatorS5S(A,V). The goal of this
section is to answer the natural question: can one determine the electromagnetic field inV from
the S-operator?

In order to solve this problem, we have to make some technical assumptions. We supp
this section thatK is a convex set and, moreover,

BPC0
`~Rn! ~H28!

In this section, we prefer to work with the one-form magnetic potentialA5(A1 , . . . ,An) with the
Coulomb gauge (divA50) given by

Aj~x!5
1

sn21
(
k51

n E
Rn

xk2yk

ux2yun
bjk~y!dy, ;xPRn, ~3.1!

wheresn21 is the area of the unit sphere inRn.
In order to give some properties of these potentials, we define
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E~x!5E
1

1`

sB~sx!.xds, ~3.2!

and in the two-dimensional case letb be the normalized magnetic flux given by

b5
1

2p E
R2

b~x!dx where b5b1252b21. ~3.3!

We have the following lemma.19

Lemma 5: The magnetic potential A is smooth and satisfies inV

for n>3, A~x!5E~x!1¹w~x!, ~i!

and

for n52, A~x!5
b

uxu2 ~2x2 ,x1!1E~x!1¹w~x!, ~ii !

where]x
aw(x)5O(^x&212uau).

Remark: In dimensionn>3, A(x) is a classical short-range perturbation, and in the tw
dimensional case,A(x) is a short-range perturbation of the transversality gauge given by (1.2
everything done in Sec. II works and we can define the scattering operatorS5S(A,V).

A. Results

Let V1 ,V2 be potentials satisfying (H1). Let B1 ,B2 be magnetic fields satisfying (H28) and let
Aj , j 51,2, be the associated magnetic potentials with the Coulomb gauge.

For elementary topological reasons, we will see that we obtain different results in
n-dimensional case,n>3, and in the two-dimensional case.

Theorem 6 „the n-dimensional case,nÐ3…: Under the hypotheses(H1) and (H28), we have

S~A1 ,V1!5S~A2 ,V2!⇔B15B2 and V15V2 in V.

In the two-dimensional case, the result is more complicated; a quantification condition o
magnetic flux appears. Moreover, in order to use a support theorem for the Radon transform20 we
have to assume that

V satisfies ~H1!, and ;m>0, ^x&mV is bounded. ~H18!

Finally, let us denote byu(x)5tan21(x2 /x1)P@0,2p@ the azimuthal angle from the positivex1

axis, letb j be the flux over 2p of Bj , andBj5bjdx1`dx2 .
Theorem 7 „the two-dimensional case…: Under the hypotheses(H18) and (H28), we assume

that S(A1 ,V1)5S(A2 ,V2).
Then, b15b2ªb in V, b15b2 mod2, and (b12b2)b1V12V250 in V.
Proposition 8 (the Aharonov–Bohm effect): Under the hypotheses(H18) and (H28) with

suppBj,K,

~i! S(A1 ,V1)5S(A2 ,V2)⇒b15b2 mod2, V15V2 in V.
~ii ! b15b2 mod2, V15V2 in V⇒S(A1 ,V1)5e2 i (b12b2)u(D)S(A2 ,V2)ei (b12b2)u(D).

Comments:Ruijsenaars3 obtained similar results inR2: when the electric potentialV[0, K
5D(0,R), B is radial with support inK andA(x1 ,x2)5 (b/uxu2)(2x2 ,x1) in V, we can calculate
explicitly the scattering amplitude.
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Actually, Ruijsenaars obtains two different formulas for the scattering amplitude. This d
ence comes from the interpretation of the operatori ]u ~different boundary conditions for the ra
u5p!, whereu is the azimuthal angle from the positivex1 axis.

In the first interpretation,i ]u acts on

D15$w s.t. lim
u→2p

w~u!5 lim
u→p

w~u!%.

In this case, the scattering amplitude is given by

Tb
1~l,u,u8!5~2ipk!2 1/2 (

m52`

1` S 2e2idm(b)
H um1bu

(2) ~kR!

H um1bu
(1) ~kR!

21D eim(u2u8), ~3.4!

wherek5Al, dm(b)5 (p/2) (umu2um1bu) andHn
(1) andHn

(2) are the Hankel functions.
In the second interpretation,i ]u acts on

D25$w s.t. lim
u→2p

w~u!5ei2bp lim
u→p

w~u!%,

allowing a singular gauge transformation. Then, the scattering amplitude is

Tb
2~l,u,u8!5e2 ib(u2u8)e2 ibpe(u8)T0

1~l,u,u8!, ~3.5!

whereT0
1 is given by~3.4! with b50, e(u8)51 if u8.0, ande(u8)521 if u8,0. In these two

cases, one has forn integer,uÞu8, j 51,2,

Tb1n
j ~l,u,u8!5~21!nTb

j ~l,u,u8!e2 in(u2u8),

and the cross sections~scattering measurable quantities!, given by

S ds

du D
b, j

5uTb
j ~l,u,u8!u2,

are periodic inb with period 1.
In Theorem 7 and Proposition 8~i !, we consider an equality between the scattering opera

this is stronger than an equality between the cross sections. So, our problem is not well pose
a physical point of view; we make the conjecture thatb15b2 , but Proposition 8~i i !, which is
certainly known, shows that with our approach~one studies the high-energy asymptotics of t
scattering operator! we cannot prove uniqueness of the magnetic flux. Indeed, letB be a magnetic
field with compact support inK and withbP2Z, and letA be the magnetic potential satisfying th
Coulomb gauge. By Lemma 5~i i ! and Proposition 8~i i !, we have off the 0-energy

S~A,0!5e2 ibu(D)S~0,0!eibu(D).

Using Theorem 9~see below for the notation!, one cannot obtain more precise information abo
b. Indeed,

^eiAlx.vF,~S~A,0!21!eiAlx.vC&5^eiAlx.veibu(D/Al 1v)F,~S~0,0!21!eiAlx.veibu(D/Al 1v)C&

and,;N>1,

eibu(D/Al 1v)F5eibu(v) (
uau<N21

aal2 uau/2DaF1O~l2 N/2!,

for suitable constantsaa . Since SuppDaF,Xv , we obtain
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^eiAlx.vF,~S~A,0!21!eiAlx.vC&5O~l2`!.

The proof of these theorems is based on the study of the high-energy asymptotics of the sc
operator off the obstacle. This is the subject of the next subsection.

B. High-energy asympotics of the S-operator

The method is very close to the approach in Ref. 11. Before giving the main propositi
this section, we need some notation.

Notation: Let vPSn21 fixed, Sn21 is the unit sphere ofRn. Let Xv be the following set:

Xv5$xPRn: ;tPR,x1tvPV%.

We define

cA~x,j!5cA
2~x,j!2cA

1~x,j!5E
2`

1`

A~x1tj!.jdt,

R6~x,j!52E
0

6`

B~x1tj!.jdt,

and

f 6~x,j!5 1
2 ~ uR6~x,j!u22 i div R6~x,j!!.

We have the following result, wherê,& is the usual scalar product inL2(Rn).
Theorem 9: Under the hypotheses(H1) and(H2), ;F,CPC0

`(Xv), we have the asymptoti
expansion forl→1`:

^eiAlx.vF, SeiAlx.vC&;(
j 50

1`

l2 j /2^F,aj ,v~x,D !C&,

where aj ,v(x,D) are differential operators. In particular,

a0,v~x,D !5eicA(x,v),

a1,v~x,D !52 ieicA(x,v)S E
2`

1`

V~x1tv!dt1aA,v~x,D ! D ,

where aA,v(x,D) is a differential operator depending only on A given by

aA,v~x,j!5E
0

1`

f̄ 1~x1tv,v!dt1E
2`

0

f 2~x1tv,v!dt

2 i (
k51

n

]xkjk

2 cA
1~x,v!1]jcA

1~x,v!.]xcA~x,v!2]jcA~x,v!.j.

Proof: We only sketch the proof~see Ref. 11 for details!.

Step 1:In Ref. 11, we work with functionsF,C s.t.F̂,Ĉ have compact support. So, at hig
energies, translation of wave packets dominates over spreading.

In this paper, since we localizeF,C in Xv , we have to introduce an energy cutoff functio
~depending onl!. We considerx0PC0

`(Rn) such thatx0(j)51 if uju<1, andx0(j)50 if uju
>2. It is clear that;FPC0

`(Rn),;e.0, ;N>1,
                                                                                                                



e

5230 J. Math. Phys., Vol. 41, No. 8, August 2000 François Nicoleau

                    
I Fx0S D

leD21GF I
L2(Rn)

5O~l2N!. ~3.6!

Step 2:Using ~3.6!, it suffices to calculate the asymptotic expansion of

V6~l,v!x0S D

leDF5e2 iAlx.vW6eiAlx.vx0S D

leDF,

5 lim
t→6`

eitH (l,v)Ie2 i tH 0(l,v)x0S D

leDF,

since

^eiAlx.vF, SeiAlx.vC&5 K V1~l,v!x0S D

leDF,V2~l,v!x0S D

leDC L 1O~l2N!,

where

H~l,v!5e2 iAlx.vHeiAlx.v on L2~V!,

H0~l,v!5e2 iAlx.vH0eiAlx.v on L2~Rn!.

Step 3: In Ref. 11, in order to calculate the asymptotic expansion ofV6(l,v), we have
constructed an energy modifier~FIO! JN

6(l,v) for N>1. We follow the same strategy, but sinc
we work with an obstacle, we have to introduce a cutoff functionx6 which localizes in the
classical propagation zone.

First, let us begin with some notation: forVv neighborhood ofv in Sn21, let

O65$x1tv8;xPSuppF,tPR6,v8PVv%.

If Vv is rather small,O6,V. We define a cutoff functionx6PC`(V), x6[1, in a conical
neighborhood ofO6.

Now, we can define the energy modifierJN
6(l,v), N>1.

The amplitude of the FIOJN
6(l,v) is given by

eN
6~x,j,l,v!5x6~x! (

m50

N21

l2 m/2 dm
6~x,j,v!,

whered0
651 and the functionsdm

6 satisfy form>0 the transport equations

v.¹dm11
6 52 iV~x!dm

62 i (
uau1 j 5m

1

a!
ja]j

a f 6~x,v!dj
6

2 (
uau1 j 5m

1

a!
ja]j

aR6~x,v!•¹dj
61

i

2
Ddm

62j.¹dm
6 ,

wheredm
6 is written fordm

6(x,j,v). We can easily solve these equations forxPSuppx6 remark-
ing thatxPSuppx6 implies x1tvPSuppx6, tPR6.

The phase of the FIOJN
6(l,v) is given for (x,j1Alv)PG6 by

wN
6~x,j,l,v!5x.j1cA

6~x,j1Alv!.

We define
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J~l!5~x621!e2 i tH 0(l,v)x0S D

leDF,

and we have the following lemma.
Lemma 10: Forl@1, e,1/2 , tPR6, we have, ;N>1,

iJ~l!iL2(Rn)5O~^t&2Nl2N!.

Proof: We have

J~l!5~x621!lneE S E eiw(j)x0~j!dj DF~y!dy,

wherew(j)5le(x2y).j2 (t/2)(lej1Alv)2.
So, ]jw(j)5le@x2(y1l1/2t(v1l2 1/21ej))#. Sinceuju5O(1), e,1/2 , andyPSuppF,

we easily obtain forxPSupp(x621), l@1,

u]jw~j!u>cle~11utul1/2!>cle^t&,

for a suitable constantc.0. We conclude by a standard nonstationary phase argument. h

Lemma 11:For l@1,

V6~l,v!x0S D

leDF5 lim
t→6`

eitH (l,v)IJN
6~l,v!e2 i tH 0(l,v)x0S D

leDF.

Proof: Let KN
6(l,v)5FIO with phasewN

6(x,j,l,v) and with amplitude 1. We have11

lim
t→6`

~KN
6~l,v!21!e2 i tH 0(l,v)x0S D

leDF50. ~3.7!

SinceeN
6(x,j,l,v)5x61O(^x&2n11), n.1, it suffices to prove

lim
t→6`

~x6KN
6~l,v!21!e2 i tH 0(l,v)x0S D

leDF50.

Remarking that

x6KN
6~l,v!215x6~KN

6~l,v!21!1~x621!,

we conclude by using Lemma 10. h

Step 4:We have

I ~V6~l,v!2IJN
6~l,v!!x0S D

leDF I5O~l2 N/2!. ~3.8!

Indeed, everything done in Ref. 11, Proposition 10, works forV6(l,v)x0(D/le)F. It suffices to
remark that all the contributions coming from the cutoff functionx6 are negligible using the sam
arguments as in Lemma 10.

Step 5:Using Steps 1–4,
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^eiAlx.vF, SeiAlx.vC&5 K IJN
1~l,v!x0S D

leDF,IJN
2~l,v!x0S D

leDC L
L2(V)

1O~l2 N/2!

5 K JN
1~l,v!x0S D

leDF,JN
2~l,v!x0S D

leDC L
L2(Rn)

1O~l2 N/2!

5 K x0S D

leDF,JN
1* ~l,v!JN

2~l,v!x0S D

leDC L
L2(Rn)

1O~l2 N/2!

5^F,JN
1* ~l,v!JN

2~l,v!C&L2(Rn)1O~l2 N/2!,

and we conclude as in Ref. 11. h

C. Proof of the n -dimensional case, nÐ3

We suppose thatS(A1 ,V1)5S(A2 ,V2). We setA5A12A2 andV5V12V2 . The goal of this
section is to prove thatB5dA50, andV50 in V.

Using the first term in the asymptotic expansion in Theorem 9, we obtain

;vPSn21, ;xPXv , E
2`

1`

A~x1tv!.vdt52k~x,v!p, ~3.9!

wherek(x,v)PZ. We have the following lemma.
Lemma 12: Let BPC0

`(Rn). We suppose that~3.9! is satisfied. Then, B[0 in V.
Proof:
Step 1:Without loss of generality, working with]x

aA(x) instead ofA(x), we can always
assume thatAPL1(Rn) and k(x,v)50. Indeed, differentiating~3.9!, since k(x,v) is locally
constant, we have

;aPNn, ;xPXv , E
2`

1`

]x
aA~x1tv!.vdt50, ~3.10!

and by Lemma 5, foruau>n, it is clear that]x
aA(x)PL1(Rn).

Step 2:SinceK is a convex set, it suffices to show thatB[0 on every

Pa,v0
5$xPRn:x.v0.a%,V, where a.0, v0PSn21.

Without loss of generality, we can suppose thatv05e1 where (e1 ,...,en) is the canonical basis o
Rn. We denote byP0 the hyperplane generated by (e2 ,...,en). We write x5(x1 ,x8)PRn, x8
PP0 . Finally Pv is the orthogonal hyperplane tov.

For x1.a, vPSn21ùP0 , j8PPvùP0 , we have

Â~x1 ,j8!.v5E
P0

e2 ix8.j8A~x1 ,x8!.vdx8, ~3.11!

where Â is the Fourier transform in thex8-variable. Writingx85y1tv with yPPvùP0 , we
obtain

Â~x1 ,j8!.v5E
PvùP0

e2 iy .j8S E
2`

1`

A~x1 ,y1tv!.vdtD dy50, ~3.12!

by hypothesis. So, we have showed

;vPSn21ùP0 , ;j8PPvùP0 , Â~x1 ,j8!.v50, ~3.13!
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or, equivalently,

;jPP0\0, ;vPPjùP0 , Â~x1 ,j!.v50. ~3.14!

Thus, there existc1(j),c1(j)PC such that

Â~x1 ,j!5c1~j!e11c2~j!j. ~3.15!

Since bjk(x)5] jA(k)(x)2]kA( j )(x), where A5(A(1) , . . . ,A(n)), we have by~3.15! for j ,k
>2,;jPP0\0,

bjk̂~x1 ,j!5 i ~j jA(k)̂~x1 ,j!2jkA( j )̂~x1 ,j!!50.

By the injectivity of the Fourier transform onL1(Rn), one has

; j ,k>2, bjk50 in Pa,e1
. ~3.16!

Step 3: Now, we prove thatbj 1(x)50 in Pa,e1
. To do this, we prove thatbj 1(x)50 in

Pa1e,e1
,;e.0, using a support theorem for the Radon transform.

Let Ve1
be a neighborood inSn21 of e1 such that;ePVe1

,

Pa1e,eùSuppB,Pa,e1
.

We claim that forxPPa1e,e andvPSn21ùPe ,

E
2`

1`

bj 1~x1tv!dt50. ~3.17!

Using the support theorem for the Radon transform~Ref. 20, Lemma 2.11!, we obtainbj 1(x)
50 in Pa1e,e1

. Now, we prove~3.17!. By a standard continuity argument, it suffices to pro
~3.17! for ePVe1

and v5(v1 ,...,vn)PSn21ùPe ,v1Þ0. First, let us remark that;x

PPa1e,e ,vPSn21ùPe :

]xS E
2`

1`

A~x1tv!.vdtD 5E
2`

1`

B~x1tv!.vdt50. ~3.18!

The j th component,j >2, gives, using~3.16!,

(
k51

n E
2`

1`

bjk~x1tv!vkdt5E
2`

1`

bj 1~x1tv!v1dt50.

h

Proof of Theorem 6:(⇒) SinceB15B2 in V, we have, by Lemma 5,A15A21¹w. So,
S(A1 ,V1)5S(A21¹w,V1)5S(A2 ,V1)5S(A2 ,V2), by gauge invariance.

Studying the second term in the asymptotic expansion in Theorem 9 forS(A2 ,V1)
2S(A2 ,V2), we obtain

;vPSn21, ;xPXv , E
2`

1`

V~x1tv!dt50. ~3.19!

Working on hyperplanesP which do not intersectK, and since dimP>2, we obtain as in~Ref.
11, Lemma 5!, thatV50 in V.

(⇐) Obvious by gauge invariance. h
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D. Proof of theorem 7

First, we prove thatB5d(A12A2)[0 in V. We could use Lemma 12 but we prefer to giv
an elementary proof. As in~3.18!, we have

;vPS1, ;xPXv , E
2`

1`

B~x1tv!.vdt50. ~3.20!

Thus, sinceb1252b21, we obtain

; j 51,2, ;vPS1, ;xPXv , E
2`

1`

b12~x1tv!.v jdt50.

So, sinceuvu51, we have

;vPS1, ;xPXv , E
2`

1`

b12~x1tv!dt50. ~3.21!

By the support theorem for the Radon transform,20 we obtainB50 in V. Thus, inV, by Lemma
5, A15A21Ab1¹w where

Ab~x!5
b

uxu2 ~2x2 ,x1!, b5b12b2 . ~3.22!

So, S(A1 ,V1)5S(A21Ab1¹w,V1)5S(A21Ab ,V1)5S(A2 ,V2). Using Theorem 9 again, we
obtain cAb

(x,v)P2pZ and an easy calculation shows us thatcAb
(x,v)56bp if 6x.v8.0

where (v,v8) is a direct orthogonal basis ofR2. So, b50 mod 2. Finally, the last equality
follows from studying the second term in the asymptotic expansion in Theorem 9; usin
relations forj 51,2,

]xcAj
~x,v!5E

2`

1`

bj~x1tv!dt~2v2 ,v1!,

and]jcAj

6 (x,v)5b j (2v2 ,v1), we have

;vPS1, ;xPXv , E
2`

1`

~bb1V12V2!~x1tv!dt50,

whereb5b15b2 . We conclude by using the support theorem for the Radon transform.20

Proof of Proposition 8:

~i! Obvious using Theorem 7.
~ii ! Conversely, this result is certainly well known. If we suppose thatb15b2mod2, andV1

5V2 in V, then we easily see19 that

H~A1 ,V1!5e2 ibu(x)H~A21¹w,V2!eibu(x) on L2~V!, ~3.23!

whereu(x)5tan21(x2 /x1)P@0,2p@ is the azimuthal angle from the positivex1 axis. Let us remark
that sinceb is an integer,

e2 ibu(x)PC`~R2\0!. ~3.24!

Moreover,u(x) is 0-homogeneous. So, it follows that far from the 0-energy,

S~A1 ,V!5e2 ibu(D)S~A2 ,V!eibu(2D). ~3.25!
                                                                                                                



Ping

5235J. Math. Phys., Vol. 41, No. 8, August 2000 An inverse scattering problem with the Aharonov . . .

                    
Sinceu(2D)5u(D)1p andbP2Z, we obtain the result. h
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APPENDIX: PROOF OF LEMMA 3

In this section, we give the proof of Lemma 3. We denote byg`(H) @resp.g1(H)# the set of
compact~resp. class-trace! operators onH.

1. A preliminary lemma

Lemma 13: LetxPC0
`(R1). Then

x~H0!2I* x~H !IPg`~L2~Rn!!, ~i!

x~H0!I* 2I* x~H !, Ix~H0!I* 2x~H !Pg`~L2~V!!. ~ii !

Proof: SinceII* 5 idL2(V) , it suffices to show (i ). Let us denote byH0
D the self-adjoint Dirichlet

realization of2 1
2 D on L2(V). SinceH is a H0

D-compact perturbation ofH0
D , it is well known

that x(H)2x(H0
D)Pg`(L2(V)). So, we have only to prove the following assertion:

x~H0!2I* x~H0
D!IPg`~L2~Rn!!.

On the other hand, we have21

;t.0, e2tH02I* e2tH0
DIPg1~L2~Rn!!.

Let zPC such that Rez,0. SinceH0 and H0
D are positive, we can defineR0(z)5(H02z)21,

@resp.R0
D(z)5(H0

D2z)21#. We deduce that

R0~z!2I* R0
D~z!I5E

0

`

~e2tH02I* e2tH0
DI!etzdtPg1~L2~Rn!!.

By the Stone–Weierstrass theorem, we obtain the result. h

2. Proof of Lemma 3

We consider the case (1). By Lemma 2,

@W1x~H0!p1~x,D !J1* I* 21#e2 i tHF5@~IJ1x~H0!p1~x,D !1R1!J1* I* 21#e2 i tHF

5@IJ1x~H0!p1~x,D !J1* I* 21#e2 i tHF1o~1!,

sincee2 i tHF→0 weakly andR1J1* I* is a compact operator. Thus,

~ lhs!5@IJ1x~H0!J1* I* 21#e2 i tHF1IJ1x~H0!~p1~x,D !21!J1* I* e2 i tHF1o~1!,

denoted by (1)1(2)1o(1).
Step 1:We easily verify thatJ1x(H0)J1* 2x(H0) is a compact operator onL2(Rn). Thus,

~1!5@Ix~H0!I* 21#e2 i tHF1o~1!5@Ix~H0!I* 2x~H !#e2 i tHF1o~1!.

By Lemma 13, we have (1)5o(1).
Step 2:
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~2!52IJ1x~H0!~p1~x,D !21!J1* ~J2J2* 21!I* e2 i tHF

1IJ1x~H0!~p1~x,D !21!J1* J2J2* I* e2 i tHF.

By Lemma 13,

~J2J2* 21!I* e2 i tHF5~J2J2* 21!I* x~H !e2 i tHF

5~J2J2* 21!x~H0!I* e2 i tHF1o~1!

5o~1!,

since (J2J2* 21)x(H0) is a compact operator. Thus,

~2!5IJ1x~H0!~p1~x,D !21!J1* J2J2* I* e2 i tHF1o~1!

52IJ1x~H0!~p1~x,D !21!J1* J2~p2~x,D !21!J2* I* e2 i tHF

1IJ1x~H0!~p1~x,D !21!J1* J2p2~x,D !J2* I* e2 i tHF1o~1!.

Let us verify that the last term of this expression is5o(1). Wehave

p2~x,D !J2* I* e2 i tHF5p2~x,D !J2* I* x~H !e2 i tHF

5p2~x,D !J2* x~H0!I* e2 i tHF1o~1!

5p2* ~x,D !x~H0!J2* I* e2 i tHF1o~1!,

since@J2* ,x(H0)# and (p2(x,D)2p2* (x,D))x(H0) are compact. Then, by Lemma 2,

p2~x,D !J2* I* e2 i tHF5p2* ~x,D !x~H0!W2* e2 i tHF1o~1!

5p2* ~x,D !x~H0!e2 i tH 0~W2* F!1o~1!

5o~1!

~well-known propagation estimates for the free group!. Thus,

~2!52IJ1x~H0!~p1~x,D !21!J1* J2~p2~x,D !21!J2* I* e2 i tHF1o~1!.

We easily conclude that (2)5o(1) sincex(H0)(p1(x,D)21)J1* J2(p2(x,D)21) is a compact
operator.@This is a pseudo-differential operator with symbol5O(^x&21^j&2N).# h
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Generalized Chern–Simons form and descent equation
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We present the general method to introduce the generalized Chern–Simons form
and the descent equation which contain the scalar field in addition to the gauge
fields. It is based on the technique in a noncommutative differential geometry
~NCG! which extends the four-dimensional Minkowski spaceM4 to the discrete
space such asM43Z2 with two point spaceZ2 . However, the resultant equations
are not only dependent on NCG, but also are justified by the algebraic rules in the
ordinary differential geometry. ©2000 American Institute of Physics.
@S0022-2488~00!03408-3#

I. INTRODUCTION

The Chern–Simons theory1 has been extensively studied so far with great interests both
their theoretical interests as the topological quantum field theories2 and their practical application
for certain planar condensed matter phenomena such as the fractional quantum Hall effe
high temperature super conductivity.3,4 Especially, three dimensional Chern–Simons theory
pending on three dimensional Chern–Simons form5 provides a field theoretic framework fo
studying knots and links in three dimension. Furthermore, three dimensional gravity with a
tive cosmological constant is described by two Chern–Simons theories.6 This approach7 makes it
possible to exactly calculate the black hole entropy beyond the semi-classical calculations

The occurrences of Yang–Mills anomalies and other topological terms such as axial ano
Schwinger terms and Chern characters are the important aspect of quantized gauge theorie
the descent equations8 are very important because a series of these equations prescribe the
tions between Yang–Mills anomalies.

Connes proposed the noncommutative geometry on the product space of the four-dime
Minkowski space9 and two point spaceZ2 . The Higgs boson field is regarded as a kind of gau
field on the discrete spaceZ2 in this formulation. In fact, the Higgs boson has several similarit
with the ordinary gauge fields such as the same type couplings with fermions and the triline
quartic self-couplings. The Higgs mechanism naturally works without assuming the Higgs p
tial leading to the spontaneous breakdown of gauge symmetry.

After the original formulation of NCG by Connes,9 many versions of NCG10 have appeared
and succeeded to reconstruct the spontaneously broken gauge theories. Morita and the
author11 proposed the generalized differential geometry~GDG! on the discrete spaceM43Z2 and
reconstructed the Weinberg-Salam model. In this formulation onM43Z2 the extra differential
one-form x is introduced in addition to the usual one-formdxm and so our formalism is the
generalization of the ordinary differential geometry on the continuous manifold. This formul
was generalized to GDG on the discrete spaceM43ZN ~Refs. 12 and 13! by introducing the extra
one-formsxk(k51,2 . . . ,N), which generalization enabled us to reconstruct the left–right s
metric gauge theory, SU~5! GUT and SO~10! GUT.

From the standpoint of NCG, the Higgs boson is a gauge field of the principal bundle o
discrete space. Thus, it is expected that the Chern–Simons forms and descent equations in
the scalar boson field in addition to the ordinary gauge field exist. In this paper, we addre
problem and present the general method to introduce these generalized Chern–Simons fo

a!Present address: Chubu University, Kasugai, 487-8501, Japan. Electronic mail: okum@isc.chubu.ac.jp
52380022-2488/2000/41(8)/5238/7/$17.00 © 2000 American Institute of Physics
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descent equations by use of the technique in NCG. It should be noted that we use NCG
resultant formulas are free from NCG and are justified by the direct calculations in the ord
differential geometry.

II. DIFFERENTIAL GEOMETRY ON THE PRODUCT SPACE MNÃZ2

The generalized gauge field is defined on the product spaceMN3Z2 with N-dimensional
Minkowski spaceMN and the two points spaceZ2 as

A~x!5S A1~x! H12~x!x2

H21~x!x1 A2~x!
D , ~2.1!

whereA1(x)(52A1
†(x)) andA2(x)(52A2

†(x)) are gauge fields belonging to the adjoint rep
sentations of unitary gauge groupsG1 and G2 , respectively andH12(x)(5H21(x)†) is a scalar
field belonging to the covariant representation ofG1 andG2 . We do not callH12 the Higgs boson
field because its vacuum expectation value is irrelevant to our formulation. In addition,A1(x)
5A1

m(x)dxm , A2(x)5A2
m(x)dxm , and x1 and x2 are one-form based on the discrete spaceZ2

which satisfy the following algebraic rules:

dxm`dxn52dxn`dxm , dxm`xk52xk`dxm , xk`x l52x l`xk , ~2.2!

with k,l 51,2. We abbreviate the argumentx in the field hereafter except for the case necessar
write. Let us first address the gauge transformation ofA with the gauge function

g5S g1 0

0 g2D , ~2.3!

whereg1PG1 andg2PG2 . It is expressed as

A g5g21dg1g21Ag, ~2.4!

where the operatord5]mdxm is the exterior derivative on the spaceMN . Equation~2.3! brings the
gauge transformations of gauge and scalar fields

Ai
g5gi

21dgi1gi
21Aigi ,

~2.5!
H12

g 5g1
21H12g2 .

The generalized field strengthF is defined as usual and expressed as

F5dA1A`A, ~2.6!

which is written in components as

F5S F11H12H21x2`x1 DH12x2

DH21x1 F21H21H12x1`x2
D , ~2.7!

whereF1 and F2 are the field strength of gauge fieldsA1 and A2 , respectively, andDH12 and
DH21 are the covariant derivatives of the scalar field. Equations of those quantities are writ

Fi5dAi1Ai`Ai ,

DH125dH121A1H122H12A2 , ~2.8!

DH215dH211A2H212H21A1 .
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According to Eq.~2.4!, we can easily find the generalized field strength transformed covaria
under the gauge transformation

F g5g21Fg, ~2.9!

which is written in components as

Fi
g5gi

21Figi , DH12
g 5g1

21 DH12g2 , DH21
g 5g2

21 DH21g1 . ~2.10!

The generalized field strength defined in Eq.~2.6! satisfies the Bianchi identity

DF5dF1A`F2F`A50, ~2.11!

which is easily proved by use of the algebraic rule in the differential geometry and very impo
frequently used hereafter. It should be noted that the Bianchi identity in Eq.~2.11! does not yield
any restriction between gauge fieldAi and scalar fieldH12.

III. GENERALIZED CHERN–SIMONS FORM

In order to introduce the generalized Chern–Simons form, we use the Cartan’s hom
formula

P~A,F!5~kd1dk!P~A,F!, ~3.1!

whereP(A,F) is an arbitrary function ofA andF. The operatork is defined through the equatio

kP~A,F!5E
0

1

dt ktP~At ,Ft!, ~3.2!

whereAt5tA andFt5t dA1t2A`A. The operatorkt in Eq. ~3.2! is an antidifferential operato
and is defined as

ktAt50, ktFt5A, ~3.3!

through which the identity

]

]t
5ktd1dkt ~3.4!

follows. Equation~3.4! justifies the Cartan’s homotopy formula together with Eq.~3.2!.
It is easily seen that the quantity TrF n is invariant under the gauge transformation a

satisfies the equation

d Tr F n5Tr~dF n1AF n2F nA!50, ~3.5!

which is proved from the Bianchi identity Eq.~2.11!. PuttingP(A,F)5Tr F n11 in Eq. ~3.1!, we
find the transgression formula5

Tr F n115dv2n11~A,F!, ~3.6!

wherev2n11(A,F) is the generalized Chern–Simons form and written as

v2n11~A,F!5k Tr F n115~n11!Tr E
0

1

dt AF t
n . ~3.7!

Paying attention onFt5tF1(t22t)A 2, we obtain, after calculations of integral overt for n
51 andn52,
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v3~A,F!5Tr~AF2 1
3A 3!, ~3.8!

v5~A,F!5Tr~AF 22 1
2A 3F1 1

10A 5!. ~3.9!

Equations~3.8! and~3.9! have the same forms as the ordinary Chern–Simons forms forn52 and
n53, respectively, but it should be noted that the generalized gauge fieldA and field strengthF
are expressed in matrix forms and contain the scalar field as in Eqs.~2.1! and ~2.7!.

Let us investigate in more detail the generalized Chern–Simons formv2n11 for n51 and
n52. InsertingA andF in Eqs.~2.1! and ~2.7! into Eq. ~3.8!, we find

v35v3
11v3

21v38 x2`x1 , ~3.10!

where

v3
i 5Tr~AiFi2

1
3 Ai

3!,

~3.11!
v385Tr~DH12•H212H12•DH21!.

v3
i ( i 51,2) is the Chern–Simons form for the ordinary gauge field.v38 is the new type Chern–

Simons form containing the scalar fieldH12. The transgression formula for this Chern–Simo
form v38 is written as

d v3852 Tr~F1H12H212H12F2H212DH12•DH21!. ~3.12!

Since we easily seed Tr(DH12•H21)52d Tr(H12•DH21), the more compact equation

d Tr~DH12•H21!5Tr ~F1H12H212H12F2H212DH12•DH21! ~3.13!

follows. WhenA250, Eq. ~3.13! leads to

d Tr~DH12•H21!5Tr~F1H12H212DH12•DH21!, ~3.14!

whereDH125dH121A1H12 and DH215dH212H21A1 . In this case,H12 belongs to the funda-
mental representation of the groupG1 .

InsertingA andF in Eqs.~2.1! and ~2.7! into Eq. ~3.9!, we find

v55v5
11v5

21v58 x2`x1 , ~3.15!

where

v5
i 5Tr~A1Fi

22 1
2 AiFi1

1
10 Ai

5!,

~3.16!
v5853 Tr~F1DH12•H21!23 Tr ~F2DH21•H12!2 3

2 d Tr~F1H12H21!

1 3
2 d Tr~F2H21H12!2 1

2 d Tr~A1H12A2H21!2 1
2 d Tr $A1~DH12•H212H12•DH21!%

1 1
2 d Tr$A2~DH21•H122H21•DH12!%.

v5
i ( i 51,2) is the Chern–Simons form for the ordinary gauge field.v58 is the new type Chern–

Simons form containing the scalar fieldH12. The transgression formula for this Chern–Simo
form v58 is written as

d v5853 Tr~F1
2H12H212F1 DH12•DH21!23 Tr ~F2

2H21H122F2 DH21•DH12!, ~3.17!

which is equal to the equation
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d Tr~F1 DH12•H212H12F2DH21!

5Tr ~F1
2H12H212F1 DH12•DH212H12F2

2H211DH12F2 DH21!. ~3.18!

We can find from this equation much more compact equation that

d Tr~F1DH12•H21!5Tr~F1
2H12H212F1H12F2H212F1 DH12•DH21!, ~3.19!

and the same equation replacing 1 by 2 and 2 by 1 also follows. WhenA250, Eq.~3.17! leads to

d Tr~F1 DH12•H21!5Tr~F1
2H12H212F1 DH12•DH21!. ~3.20!

These transgression formulas are easily justified by the direct calculations according to alg
rules in the differential geometry.

IV. GENERALIZED DESCENT EQUATION

In order to introduce the generalized descent equation,8 we incorporate the ghost field14 in the
generalized gauge fieldA:

A C~x,u!5A~x,u!1C~x,u!5S A1~x,u!1C1~x,u!du H12~x,u!x2

H21~x,u!x1 A2~x,u!1C2~x,u!du D , ~4.1!

where C1(x,u) and C2(x,u) are ghost fields belonging to the adjoint representation of
groupsG1 and G2 , respectively, andu is an argument of Grassmann number in ghost sp
Ci(x,u)( i 51,2) is anti-Hermitian. The generalized field strength forA C is given as

F C5dA C1A C`A C, ~4.2!

where

d5d1du , d5]mdxm , du5]u du,

dxm`du52du`dxm , x i`du52du`x i , ~4.3!

du`duÞ0, ]u
250.

Therefore, it is easy to see that the exterior derivatived satisfies the nilpotencyd250. According
to the nilpotency ofd and Eq.~4.3!, the Bianchi identity forF C

dF C1@A C,F C#50 ~4.4!

follows. By applying the horizontality condition15 to F C,

F C~x,u!uu505F~x! ~4.5!

we find the BRST transformations for fields involved:

duAi5dCi1AiCi2CiAi5DCi ,

duH125H12C22C1H12, ~4.6!

duCi52Ci
2 ,

where the operatord stands for the BRST transformation.
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According to the nilpotency ofd and the Bianchi identity forF C in Eq. ~4.4!, we obtain the
transgression formula forA C andF C same as in Eq.~3.6!:

Tr F Cn11
5dv2n11~A C,F C!. ~4.7!

If we consider the horizontarity condition15in Eq. ~4.5!, the equation

dv2n11~A C,F C!uu505d v2n11~A,F! ~4.8!

follows. Here,

v2n11~A C,F C!5~n11!E
0

1

dt A CF t
Cn

, ~4.9!

where

F t
C5t dA C1t2A C`A C. ~4.10!

By use of Eq.~4.1!, we expandv2n11(A C,F C) in power of the ghost fieldC as

v2n11~A C,F C!5v2n11
0 1v2n

1 1v2n21
2 1¯1v0

2n11 , ~4.11!

where the superscript ofv in the right-hand side stands for the power of the ghost fieldC and the
subscript stands for the degree of the formdxm . Here,v2n11

0 is the Chern–Simons form. From
Eq. ~4.8!, we find the generalized descent equation

du v2n11
0 1d v2n

1 50,

du v2n
1 1d v2n21

2 50,

du v2n21
2 1d v2n22

3 50,
~4.12!

A

du v1
2n1d v0

2n1150,

du v0
2n1150.

v2n
1 is a solution of the Wess–Zumino consistency condition16

D5E V, duV5dB, ~4.13!

whereD is anomaly term,V is a 4-form with ghost number 1 andB is a 3-form.v2n
1 is written as

v2n
1 5n~n11!E

0

1

dt~12t !STr~Cd~AF t
n21!!, ~4.14!

where STr stands for the symmetrized trace. We obtain forn51,2,3

v2
15Tr ~CdA!,

v4
15Tr $Cd ~A d A1 1

2A 3!%, ~4.15!

v6
15Tr $Cd ~A d A•d A1 3

5A d A•A 21 3
5A 3d A•A 21 2

5A 5!%,
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where the notation of the wedge product is abbreviated. It should be noted that these equat
same in form as in the ordinary case without the scalar field. However, the gauge fieldA written
in Eq. ~2.1! includes the scalar fieldH12. We extract the term containing the scalar field from E
~4.15!. v2

1 does not include the scalar field

v4
185Tr C1 d $2H12d H211

1
2 ~A1H12H212H12A2H211H12H21A1!%

~4.16!
2Tr C2 d $2H21d H121

1
2~A2H21H122H21A1H121H21H12A2!%.

v6
1 has the complicated terms containing the scalar field and thus, we write it in the caseA2

5C250:

v6
185Tr C1 d $2A1d H12•d H212H12•d H21d A1

1 3
5 ~A1 d A1•H12H211A1 d H12•H21A11H12d H21A1

2!

1 3
5 ~A1H12H21d A11H12•H21A1 d A12A1

2H12d H21!

1 2
5 ~A1

3H12H211A1
2H12H21A11H12H21A1

31A1H12H21A1
2!%. ~4.17!

V. CONCLUDING REMARKS

From the standpoint of NCG that the Higgs field is a kind of gauge field on the discrete s
we incorporated the scalar fieldH12 into the generalized gauge field so as to generalize
Chern–Simons form and descent equations. We obtained the generalized Chern–Simons fo
its transgression formula which include the scalar fieldH12, for example, as in Eqs.~3.16! and
~3.17!. The more compact transgression formula follows in Eq.~3.19!. We also introduced the
generalized descent equations in Eq.~4.12!. The physical implications of these formulas will b
explored in future work.
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Classical and quantum mechanics with time-dependent
parameters
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~Received 24 February 2000; accepted for publication 17 April 2000!

We show that composite bundlesQ→S→R, whereS→R is the parameter bundle,
provide the adequate mathematical description of mechanical systems with time-
dependent parameters both in classical and quantum mechanics. In particular, the
Berry phase phenomenon is described in terms of connections on composite Hilbert
space bundles. ©2000 American Institute of Physics.@S0022-2488~00!03808-1#

I. INTRODUCTION

Smooth fiber bundlesQ→R over a time axisR provide the adequate formulation of classic
time-dependent mechanics treated as a particular field theory.1–9 Let us consider a mechanica
system depending on time-dependent parameters. These parameters can be seen as se
some smooth fiber bundleS→R. Then the configuration space of a mechanical system w
time-dependent parameters is the composite fiber bundle

Q→S→R. ~1!

In classical mechanicsQ→S is a smooth finite-dimensional fiber bundle. In quantum mecha
Q→S is a C* -algebra fiber bundle or a Hilbert space fiber bundle.10

The following two facts make the composite fiber bundle~1! useful for our purpose.

~i! Given a sectionh of a parameter bundleS→R, the pull-back bundleh* Q over R de-
scribes a mechanical system under the fixed parameter functionsh(t).

~ii ! Given a connectionAS on the fiber bundleQ→S, the pull-back connectionh* AS on the
pull-back bundleh* Q→R depends in a certain way on the parameter functionsh(t), and
characterizes the dynamics of a mechanical system with time-dependent parameter

In Sec. IV, we present two examples of classical mechanics with time-dependent param
formulated in terms of composite fiber bundles. Section V is devoted to quantum mechanic
classical parameters where connections on composite Hilbert space bundles play the role o
connections.

Note that, in quantum theory, one follows the notion of a connection phrased in alge
terms as a connection on modules in comparison with the pure geometric one in classical th10

II. GEOMETRIC PRELIMINARY

Let us recall some basics of composite bundle technique.10–14 Unless otherwise stated, a
manifolds are assumed to be smooth and paracompact.

Let us consider the composition of fiber bundles

Y→S→X, ~2!

a!Electronic mail: sard@grav.phys.msu.su
52450022-2488/2000/41(8)/5245/11/$17.00 © 2000 American Institute of Physics
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where pYS :Y→S and pSX :S→X are smooth fiber bundles. This is called a composite fi
bundle. It is provided with an atlas of fibered coordinates (xl,sm,yi), where (xm,sm) are fibered
coordinates on the fiber bundleS→X and the transition functionssm→s8m(xl,sk) are indepen-
dent of the fiber coordinatesyi .

Proposition 1:Given a composite fiber bundle~2!, let h be a global section of the fiber bund
S→X. Then the restriction

Yh5h* Y ~3!

of the fiber bundleY→S to h(X),S is a subbundlei h :Yh�Y of the fiber bundleY→X.
Let us consider the first order jet manifoldsJ1S, JS

1 Y, andJ1Y of the fiber bundlesS→X,
Y→S, andY→X, respectively. They are parametrized by the coordinates

~xl,sm,sl
m!, ~xl,sm,yi ,ỹl

i ,ym
i !, ~xl,sm,yi ,sl

m ,yl
i !.

There is the canonical map

%:J1S3
S

JS
1 Y→

Y
J1Y,

yl
i +%5ym

i sl
m1 ỹl

i .

Let

AS5dxl
^ ~]l1Al

i ] i !1dsm
^ ~]m1Am

i ] i !:Y→JS
1 Y ~4!

be a connection on the fiber bundleY→S. Given a sectionh of the fiber bundleS→X; the
connectionAS in ~4! induces the pull-back connection

Ah5 i h* AS5dxl
^ @]l1~~Am

i +h!]lhm1~A+h!l
i !] i # ~5!

on the pull-back bundleYh in ~3!.
Given a composite fiber bundleY in ~2!, there is the following exact sequence of vertic

tangent bundles:

0→VSY�VY→Y3
S

VS→0, ~6!

whereVSY is vertical tangent bundle of the fiber bundleY→S. Every connectionA in ~4! on the
fiber bundleY→S provides the splitting

VY5VSY%

Y
AS~Y3

S

VS!,

ẏi] i1ṡm]m5~ ẏi2Am
i ṡm!] i1ṡm~]m1Am

i ] i !

of the exact sequence~6!. Using this splitting, one can construct the first order differential ope
tor, called the vertical covariant differential,

D̃5dxl
^ ~yl

i 2Al
i 2Am

i sl
m!] i :J1Y→T* X^

Y
VSY ~7!

on the composite fiber bundleY→X. The vertical covariant differential~7! possesses the follow
ing important property. Leth be a section of the fiber bundleS→X andYh the subbundle~3! of
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the composite fiber bundleY→X. Then the restriction of the vertical covariant differentialD̃ in
~7! to J1i h(J1Yh),J1Y coincides with the familiar covariant differential on the fiber bundleYh

→X relative to the pull-back connectionAh in ~5!.
Now let us say a few words on connections on modules that one meets in quantum t

Here, we restrict our consideration to connections on modules over the ringC`(X) of smooth real
functions on a manifoldX.10,15

Definition 2:A connection on aC`(X)-moduleS assigns to each vector fieldt on a manifold
X anS-valued first order differential operator¹tPDiff 1(S,S) on S which obeys the Leibniz rule

¹t~ f s!5~t cd f !s1 f ¹ts, f PC`~X!, sPS. ~8!

If S is a module of global sections of a smooth vector bundleY→X over a manifoldX,
Definition 2 is equivalent to the familiar geometric definition of a connection onY→X.

III. GEOMETRY OF TIME-DEPENDENT MECHANICS

A configuration space of nonrelativistic time-dependent mechanics is a fiber bundleQ→R
whose typical fiberM is an m-dimensional manifold, while its baseR is parametrized by the
Cartesian coordinatest possessing the transition functionst85t1const. A fiber bundleQ→R is
endowed with bundle coordinates (t,qi).

Let us point out the some peculiarities of fiber bundles overR.
Their baseR is provided with the standard vector field] t and the standard one-formdt which

are invariant under the coordinate transformationst85t1const.
SinceR is contractible, any fiber bundle overR is trivial, but does not possess a canonic

trivialization in general. Its different trivializations

c:Q>R3M ~9!

correspond to different nonrelativistic reference frames.5,6,8

Let J1Q be the first order jet manifold of a fiber bundleQ→R. It is provided with the adapted
coordinates (t,qi ,qt

i). We have the canonical imbedding

l1 :J1Q�TQ,
~10!

l1 :~ t,qi ,qt
i !°~ t,qi , ṫ51,q̇i5qt

i !.

Its image is an affine subbundle of the tangent bundleTQ, modeled over the vertical tangen
bundleVQ of the fiber bundleQ→R.

In view of the morphisml1 in ~10!, any connection

G5dt^ ~] t1G i] i ! ~11!

on a fiber bundleQ→R can be identified with a nowhere vanishing horizontal vector field

G5] t1G i] i ~12!

on Q which is the horizontal liftG] t of the standard vector field] t on R by means of the
connection~11!. Conversely, any vector fieldG on Q such thatdtcG51 defines a connection o
Q→R. Accordingly, the covariant differential associated with a connectionG on Q→R takes its
values into the vertical tangent bundleVQ:

DG :J1Q→
Q

VQ, q̇i+DG5qt
i2G i . ~13!

A connectionG on a fiber bundleQ→R is said to be complete if the horizontal vector field~12!
is complete.
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Proposition 3:Every trivialization of a fiber bundleQ→R yields a complete connection o
this fiber bundle. Conversely, every complete connectionG on Q→R defines its trivialization~9!
such that the vector field~12! equals] t relative to the bundle coordinates associated with t
trivialization.6,10

It follows that any complete connection on a configuration bundleQ→R defines a reference
frame, andvice versa.2,6,8

Given a configuration spaceQ→R, the jet manifoldJ1Q plays the role of a velocity phas
space of time-dependent mechanics, where its Lagrangian

L5L~ t,qi ,qt
i !dt, L:J1Q→R. ~14!

is defined.
As in field theory, by gauge transformations in time-dependent mechanics are meant au

phisms of the configuration bundleQ→R, but only over translations of the baseR. Therefore, we
restrict our consideration to projectable vector fields

u5ut] t1ui] i , ucdt5ut5const ~15!

on Q→R, which are generators of local one-parameter groups of the above mentioned
transformations. The jet prolongation of the vector fieldu in ~15! onto J1Q is

J1u5ut] t1ui] i1dtu
i] i

t ,

wheredt5] t1qt
i] i1qtt

i ] i
t is the total derivative. Given a LagrangianL in ~14!, its Lie derivative

alongu reads

L J1uL5~J1ucdL!dt5~ut] t1ui] i1dtu
i] i

t!Ldt. ~16!

Then we obtain the first variational formula

J1ucdL5~ui2utqt
i !Ei1dt~ucHL!, ~17!

where

HL5p idqi2~p iqt
i2L!dt, p i5] i

tL,

is the Poincare´–Cartan form and

Ei5~] i2dt] i
t!L

are the variational derivatives. The corresponding Euler–Lagrange equations read

~] i2dt] i
t!L50. ~18!

IV. CLASSICAL MECHANICS WITH PARAMETERS

Let us consider a configuration space which is a composite fiber bundle

Q→S→R, ~19!

coordinated by (t,sm,qi), where (t,sm) are coordinates of the fiber bundleS→R. We treat
sectionsh of the fiber bundleS→R as time-dependent parameters, and say that the configur
space~19! describes a mechanical system with time-dependent parameters. Note that th
bundleQ→S is not necessarily trivial.

By virtue of Proposition 1, every sectionh of the parameter bundleS→R defines the
restriction
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Qh5h* Q

of the fiber bundleQ→S to h(R),S, which is a subbundlei h :Qh�Q of the composite fiber
bundle Q→R. One can think of the fiber bundleQh→R as being a configuration space of
mechanical system with fixed parameter functionssm(t).

The velocity phase space of a mechanical system with parameters is the jet manifoldJ1Q of
the composite fiber bundle~19! which is equipped with the adapted coordinates (t,sm,qi ,s t

m ,qt
i).

Let the fiber bundleQ→S be provided with a connection

AS5dt^ ~] t1At
i] i !1dsm

^ ~]m1Am
i ] i !.

Then the corresponding vertical covariant differential

D̃5~qt
i2At

i2Am
i s t

m!] i :J1Q→VSQ ~20!

in ~7! is defined on the configuration spaceQ. Given a sectionh of the parameter bundleS
→R, its restriction toJ1i h(J1Qh),J1Q is precisely the familiar covariant differential onQh

corresponding to the restriction

Ah5] t1~~Am
i +h!] th

m1~A+h! t
i !] i ~21!

of the connectionAS to h(R),S. Therefore, one may use the vertical covariant differentialD̃ in
order to construct a Lagrangian for a mechanical system with parameters on the configu
spaceQ in ~19!.

We will suppose that such a LagrangianL depends on derivativess t
m of parameterssm only

through the vertical covariant differentialD̃ in ~20!, i.e.,

L5L~ t,sm ,qi ,qt
i2Ai2Am

i s t
m!dt. ~22!

This Lagrangian is obviously degenerate because of the constraint condition

pm1Am
i p i50.

As a consequence, the total system of the Euler–Lagrange equations~18!,

~] i2dt] i
t!L50, ~23!

~]m2dt]m
t !L50, ~24!

admits a solution only if the very particular relation

~]m1Am
i ] i !L1p idtAm

i 50 ~25!

holds. However, we believe that parameter functions are background, i.e., independent of
tion. In this case, only the Lagrange equations~23! should be considered. One can think of the
equations as being the Euler–Lagrange equations for the LagrangianLh5J1h* L on the velocity
phase spaceJ1Qh .

In particular, let us apply the first variational formula~17! in order to obtain conservation law
for a mechanical system with time-dependent parameters. Let

u5ut] t1um~ t,sk!]m1ui~ t,sk,qj !] i , ut5const, ~26!

be a vector field which is projectable with respect to fibrationsQ→R and Q→S. If the Lie
derivativeL J1uL vanishes, then, on the shell~23!, we obtain the conservation law
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0'~um2s t
mut!]mL1pmdt~um2s t

mut!2dt@p i~utqt
i2ui !2utL# ~27!

for a system with time-dependent parameters.
The following examples illustrate the above construction.
Example 1:Let us consider one-dimensional motion of a particle in the presence of a

field whose center moves. The configuration space of this system is the composite fiber b

R3→R2→R,

coordinated by (t,s,q), wheres is a coordinate of the field center with respect to some iner
frame andq is a coordinate of the particle with respect to the field center. There is the na
inclusion

Q3
S

TS{~ t,s,q, ṫ ,ṡ !°~ t,s,q, ṫ ,ṡ,ẏ52ṡ !PTQ

which defines the connection

AS5dt^ ] t1ds ^ ~]s2]q!

on the fiber bundleQ→S. The corresponding vertical covariant differential~20! reads

D̃5~qt1s t!]q .

This is precisely the velocity of the particle with respect to the inertial frame. Then the Lagra
of this particle takes the form

L5@ 1
2 ~qt1s t!

22V~q!#dt. ~28!

In particular, we can obtain the energy conservation law for this system. Let us consider the
field u5] t . The Lie derivative of the Lagrangian~28! along this vector field vanishes. Using th
formula ~27!, we obtain

0'2pqs tt2dt@pqqt2L#

or

0']qLs t2dt@pq~qt1s t!2L#,

wherepq(qt1s t)2L is the energy function of the particle with respect to the inertial refere
frame.

Example 2:Let us consider a system ofn distinguishable particles with masses (m1 ,...,mn)
in a three-dimensional Euclidean spaceR3. Their positions (r1 ,...,rn) span the configuration
spaceR3n. The total kinetic energy is

Ttot5
1

2 (
A51

n

mAu ṙAu2.

To separate the translation degrees of freedom, one performs a linear coordinate transform

~r1 ,...,rn!°~rW 1 ,...,rW n21 ,RW !,

whereRW is the center of mass, while then21 vectors (rW 1 ,...,rW n21) are mass-weighted Jacob
vectors.16,17 The Jacobi vectorsrW A are chosen so that the kinetic energy about the center of m
has the form
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T5
1

2 (
A51

n21

urẆ Au2. ~29!

Note that the usual procedure for defining Jacobi vectors involves organizing the particles
hierarchy of clusters, in which every cluster consists of one or more particles, and where
Jacobi vector joins the centers of mass of two clusters, thereby creating a larger cluster. A
vector, weighted by the square root of the reduced mass of the two clusters it joins,
above-mentioned mass-weighted Jacobi vector. Different clusterings lead to different colle
of Jacobi vectors, which are related by linear transformations. Since these transformations
tain the Euclidean form~29! of the kinetic energy, they are elements of the groupO(n21), called
the ‘‘democracy group.’’

Let R3n23 be the translation-reduced configuration space of the mass-weight Jacobi v
$rW A%. Two configurations$rW A% and $rW A8 % are said to define the same shape of then-body if rW A8
5RrW A for some rotationRPSO(3). This introduces the equivalence relation between configu
tions, and the shape spaceS of the n-body is defined as the quotient

S5R3n23/SO~3!.

Then we have the composite fiber bundle

R3R3n23→R3S→R, ~30!

where the fiber bundle

R3n23→S ~31!

has the structure group SO~3!. The composite fiber bundle~30! is provided with the bundle
coordinates (t,sm,qi), whereqi , i 51,2,3, are some angle coordinates, e.g., the Eulerian an
while sm, m51,...,3n26, are said to be the shape coordinates onS. A section%W A(sm) of the
fiber bundle~31!, called a gauge convention, determines an orientation of then-body in a space.
Given such a section, any point of the translation-reduced configuration spaceR3n23 is written as

rW A5R~qi !%W A~sm!.

This relation yields the splitting

rẆ A5] iRq̇i%W A1]m%W Aṡm

of the tangent bundleTR3n23, which determines a connectionAS on the fiber bundle~31!. This
is also a connection on the fiber bundle

R3R3n23→R3S,

with the componentsAt50. Then the corresponding vertical covariant differential~20! reads

D̃5~qt
i2Am

i s t
m!] i .

With this vertical covariant differential, the total angular velocity of then-body takes the form

VW 5ai D̃
i5vW 1Ams t

m , ~32!

whereai are certain kinematic coefficients andvW is the angular velocity of then-body as a rigid
one. In particular, we obtain the phenomenon of a ‘‘falling cat’’ ifVW 50 so that

vW 52Ams t
m .
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V. BERRY CONNECTIONS

Let us consider a quantum mechanical system depending on a finite number of real cl
parameters given by sections of a smooth parameter bundleS→R. For the sake of simplicity, we
fix a trivialization S5R3Z, coordinated by (t,sm), although it may happen that the parame
bundleS→R has no preferable trivialization, e.g., if one of parameters is a velocity of a refer
frame.

Recall that, in the framework of algebraic quantum theory, a quantum system is charact
by a C* -algebraA and a positive~hence, continuous! form f on A which defines the represen
tation pf of A in a Hilbert spaceEf with a cyclic vectorjf such that

f~a!5^pf~a!jfujf&, ;aPA.

One says thatf(a) is a mean value of the operatora in the statejf .
It should be emphasized that, in quantum mechanics, time also plays the role of a cla

parameter. Indeed, all relations between operators in quantum mechanics are simultaneou
a computation of a mean value of an operator in a quantum state does not imply an integ
over a time. It follows that, at each moment, we have a quantum system, but these qu
systems are different at different instants, though they may be isomorphic to each other
characteristic is extended to other classical parameters. Namely, we assign aC* -algebraAs to
each pointsPS of the parameter bundleS, and treatAs as a quantum system under fixed valu
(t,sm) of the parameters.

Remark 3:Let us emphasize that one should distinguish classical parameters from coord
that a wave function can depend on. Let$Aq% be a set ofC* -algebras parametrized by points
a locally compact topological spaceQ. Let all C* -algebrasAq be isomorphic to each other and
some*-algebraA. We consider a locally trivial topological fiber bundleP→Q whose typical fiber
is the C* -algebraA, i.e., transition functions of this fiber bundle provide automorphisms ofA.
The setP(Q) of continuous sections of this fiber bundle is a*-algebra with respect to fiberwis
operations. Let us consider a subalgebraA(Q),P(Q) which consists of sectionsa of P→Q such
that the real functionia(q)i vanishes at infinity ofQ. For aPA(Q), put

iai5 sup
qPQ

ia~q!i,`.

With this norm,A(Q) is aC* -algebra.18 One can consider a quantum system characterized by
C* -algebra. In this case, elements of the setQ are not classical parameters as follows. Given
elementqPQ, the assignment

A~Q!{a°a~q!PA ~33!

is a C* -algebra epimorphism. Letp be a representation ofA. Then the assignment~33! yields a
representationr(p,q) of the C* -algebraA(Q). If p is an irreducible representation of th
C* -algebraA, thenr(p,q) is an irreducible representation ofA(Q). Moreover, the irreducible
representationsr(p,q) andr(p,q8) of A(Q) are not equivalent.18 Therefore there is one-to-on
correspondence~but not a homeomorphism! between the spectrumA(Q)̂ of theC* -algebraA(Q)
and the productQ3Â of Q and the spectrumÂ of theC* -algebraA. It follows that one can find
representations of theC* -algebraA(Q) among direct integrals of representations ofA with
respect to some measure onQ. Let m be a positive measure of total mass 1 on the locally comp
spaceQ, and letf be a positive form onA. Then the functionq°f(a(q)), ;aPA(Q), is a
m-measurable, while the integral

f~a!5E f~a~q!!dm~q!
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provides a positive form on theC* -algebraA(Q). Roughly speaking, a computation of a me
value of an operatoraPA(Q) implies an integration with respect to some measure onQ in
general. This is not the case of quantum systems depending on classical parametersqPQ.

We simplify our consideration in order to single out the manifested Berry’s phase phe
enon. Let us assume that allC* -algebrasAs , sPS, are isomorphic to the von Neumann algeb
B(E) of bounded operators in some Hilbert spaceE, and consider a locally trivial Hilbert spac
bundleP→S with the typical fiberE and smooth transition functions.19 Smooth sections ofP
→S constitute a moduleP(S) over the ringC`(S) of real smooth functions onS. In accordance

with Definition 2, a connection¹̃ on P(S) assigns to each vector fieldt on S a first order
differential operator

¹̃tPDiff 1~P~S!,P~S!! ~34!

which obeys the Leibniz rule

¹̃t~ f s!5~t cd f !s1 f ¹̃ts, sPP~S!, f PC`~S!.

Let t be a vector field onS such thatdtct51. Given a trivialization chart of the Hilbert spac

bundleP→S, the operator¹̃t in ~34! reads

¹̃t~s!5~] t2 iH~ t,s i !!s1tm~]m2 iÂm~ t,s i !!s, ~35!

whereH(t,s i) and Âm(t,s i) for eachsPS are bounded self-adjoint operators in the Hilbe
spaceE.

Let us consider the composite fiber bundleP→S→R. Similarly to the case of smooth
composite fiber bundles~see Proposition 1!, every sectionh(t) of the parameter bundleS→R
defines the subbundlePh5h* P→R of the composite fiber bundleP→R whose typical fiber is

the Hilbert spaceE. Accordingly, the connection¹̃ in ~35! on theC`(S)-moduleP(S) defines
the pull-back connection

¹h~c!5@] t2 i ~Âm~ t,hi~ t !!] th
m1H~ t,hi~ t !!#c ~36!

on theC`(R)-modulePh(R) of sectionsc of the Hilbert space bundlePh→R.
As in the case of smooth fiber bundles, we say that a sectionc of the fiber bundlePh→R is

an integral section of the connection~36! if

¹h~c!5@] t2 i ~Âm~ t,hi~ t !!] th
m1H~ t,hi~ t !!#c50. ~37!

One can think of the equation~37! as being the Schro¨dinger equation for a quantum syste
depending on the parameter functionh(t). Its solutions take the form

Gt5T expF i E
0

t

~Âm] t8h
m1H! dt8G , ~38!

whereGt is the time-ordered exponent. The termiÂm(t,hi(t))] th
m in the Schro¨dinger equation

~37! is responsible for the Berry phase phenomenon, whileH is treated as an ordinary Hami
tonian of a quantum system.

To show the Berry phase phenomenon clearly, we simplify again the system under con
ation. Given a trivialization of the fiber bundleP→R and the above-mentioned trivializationS
5R3Z of the parameter bundleS, let us suppose that the componentsÂm of the connection¹̃ in
~35! are independent oft and that the operatorsH(s) commute with the operatorsÂm(s) at all
points of the curveh(t),S. Then the operatorGt in ~38! takes the form
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Gt5T expF i E
h([0,t])

Âm~s i ! dsmG•T expF i E
0

t

H~ t8! dt8G . ~39!

One can think of the first factor in the right-hand side of the expression~39! as being the operato
of a parallel transport along the curveh(@0,t#),Z with respect to the pull-back connection

¹5 i * ¹̃5]m2 iÂm~ t,s i ! ~40!

on the fiber bundleP→Z, defined by the imbedding

i :Z�$0%3Z,S.

Note that, since operatorsÂm are independent of time, one can utilize any imbedding ofZ to
$t%3Z.

Moreover, the connection¹ in ~40!, called the Berry connection, can be seen as a connec
on some principal fiber bundleP→Z for the groupU(E) of unitary operators in the Hilbert spac
E. Let the curveh(@0,t#) be closed, while the holonomy group of the connection¹ at the point
h(t)5h(0) is not trivial. Then the unitary operator

T expF i E
h([0,t])

Âm~s i ! dsmG ~41!

is not the identity. For example, if

iÂm~s i !5 iAm~s i !IdE ~42!

is aU(1)-principal connection onZ, then the operator~41! is the well-known Berry phase facto

expF i E
h([0,t])

Am~s i ! dsmG .
If ~42! is a curvature-free connection, Berry’s phase is exactly the Aharonov–Bohm effect o
parameter spaceZ.

The following variant of the Berry’s phase phenomenon leads us to a principal bund
familiar finite-dimensional Lie groups. LetE be a separable Hilbert space which is the Hilbert s
of n-dimensional eigenspaces of the HamiltonianH(s), i.e.,

E5 %

k51

`

Ek , Ek5Pk~E!,

wherePk are the projection operators, i.e.,

H~s!+Pk5lk~s!Pk

~in the spirit of the adiabatic hypothesis!. Let the operatorsÂm(z) be time-independent an
preserve the eigenspacesEk of the HamiltonianH, i.e.,

Âm~z!5(
k

Âm
k ~z!+Pk , ~43!

whereÂm
k (z), zPZ, are self-adjoint operators inEk . It follows that Âm(s) commute withH(s)

at all points of the parameter bundleS→R. Then, restricted to each subspaceEk , the parallel
transport operator~41! is a unitary operator inEk . In this case, the Berry connection~40! on the
U(E)-principal bundleP→Z can be seen as a composite connection on the composite bun
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P→P/U~n!→Z,

which is defined by some principal connection on theU(n)-principal bundleP→P/U(n) and the
trivial connection on the fiber bundleP/U(n)→Z. The typical fiber ofP/U(n)→Z is exactly the
classifying spaceB(U(n)) for U(n)-principal bundles. Moreover, one can consider the para
transport along a curve in the bundleP/U(n). In this case, a state vectorc(t) acquires a geo-
metric phase factor in addition to the dynamic phase factor. In particular, ifS5R ~i.e., classical
parameters are absent and Berry’s phase has only the geometric origin! we come to the case of
Berry connection on theU(n)-principal bundle on the classifying spaceB(U(n)).20 If n51, this
is the variant of Berry’s geometric phase of Ref. 21.
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Schrö dinger’s equation and general relativity
Chris Vuillea)

Department of Physical Science, Embry-Riddle University, Daytona Beach, Florida 32114

~Received 25 October 1999; accepted for publication 3 April 2000!

Schrödinger’s equation is generalized to a space–time four-manifold, using stan-
dard concepts from differential geometry and operator replacement. This fourth-
order equation, which reduces and specializes to the Klein–Gordon equation in the
flat space limit, can also be obtained from a variational principle, and must be
solved in tandem with the Einstein field equations with suitable stress energy. The
propagator, for large momenta, varies like 1/p4. A further attractive feature is that
no external currents or stress energies need be imposed: these arise naturally. A
generalization to fields with arbitrary spin is proposed. Solving the equation would
lead to a determination of the mass, just as energies are found in solving Schro¨d-
inger’s equation. Flat-space plane wave solutions consist of the superposition of
two independent waves, which can be interpreted as propagating strings. ©2000
American Institute of Physics.@S0022-2488~00!00308-X#

I. INTRODUCTION

In the early part of the twentieth century, Schro¨dinger proposed his equation purporting
describe the spectra of radiation emitted by particles passing between different states of exc
He considered and rejected the Klein–Gordon equation, which was later independently d
ered. Dirac, seeking a first-order relativistic equation, found his famous 4-spinor equation in

Since that time, no other fundamental derived equations have been established, though
to the end of his life, took a dim view of renormalization and maintained that new equations
essential to the further development of theoretical physics. Heisenberg also worked to find
mental alternatives, but his nonlinear wave equation never took hold.

The theoretical revolution of the last quarter century, string theory, has led to impo
advances. Though difficult to test experimentally, there are theoretical indications that the
mental particles of nature may be stringlike, rather than pointlike. With the divergences inher
theories of pointlike particles, this perhaps should not have been so surprising. One mild we
of string theory, however, lies in the fact that it did not arise naturally from previously kn
equations, but rather as an ansatz, put in by hand as a fundamental new assumption ab
nature of matter.

In this paper, it will be shown that stringlike objects can arise naturally from a generaliz
of Schrödinger’s equation to spacetime manifolds.

The motivation for this equation begins with a thought experiment, one that this a
conceived in 1984 as a way of guiding the development of a fully covariant generalizati
Schrödinger’s equation. A comoving observer rides on the back of a particle traveling at re
istic velocity relative to a laboratory frame. In this circumstance, the observer can describ
particle with Schro¨dinger’s nonrelativistic equation.

Suppose now the observer is stopped suddenly by an obstruction, reverting to the lab
frame, while the particle proceeds unhindered. Relative to the observer, the particle is now
tivistic. If, before encountering this obstruction, it were possible to mathematically trans
Schrödinger’s equation to one that would be true and covariant in the observer’s comoving f
then it would be valid in all frames, and the generalization would be achieved.

a!Electronic mail: cvuille@yahoo.com
52560022-2488/2000/41(8)/5256/6/$17.00 © 2000 American Institute of Physics
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Using techniques from differential geometry, it is possible to transform Schro¨dinger’s equa-
tion to this new frame of reference. This is done by adapting the coordinates to the obse
four-velocity, and then replacing the differential operators in Schro¨dinger’s equation with the
analogous general relativistic operators. In this way, a covariant equation can be obtained w
valid regardless of the relative velocity of the particle and the observer. Standard operator re
ment then completes the derivation.

As will be seen, the resulting fourth order equation appears to describe stringlike ob
These natural strings, coming as they do from a melding of two of the great theories of twe
century physics, lend support and credence to the string theory program. Strings may be ta
a prediction of the general relativistic Schro¨dinger’s equation.

II. DERIVATION OF THE FIELD EQUATION

The free-space Schro¨dinger equation reads

i\
]c

]t
52

\2

2m
¹2c. ~1!

This equation should also be expected to hold in a frame which is comoving or nearly com
with the particle. The idea, then, is to transform this equation into coordinates that are adap
the particle’s worldline.

The first step in the derivation is to reinsert the mass energy,m, which has essentially bee
scaled out of the traditional equation:

i\
]c

]t
52

\2

2m
¹2c1mc2c. ~2!

Now let pa be the relativistic four-momentum of the particle. Then the proper time derivativ
given by

d

dt
5

pa

m
¹a . ~3!

The metric of the space–time~taken here to have diagonal1c2,21,21,21! can then be written
as

gab5
papb

m2c22
hahb

c2 2Qab , ~4!

whereha is a spacelike covector orthogonal to the four-velocity of the particle andQab is the
metric of the spacelike two-dimensional surface perpendicular to the direction of motion.
always possible to rewrite the metric in this fashion: furthermore, rearranging the above e
sion, a projection operator can be created that projects four-vectors into the three-space orth
to the particle momentum. With these tools in hand, the following generalizations of the S¨-
dinger differential operators can be made:

]

]t
→ d

dt
5

pa

m
¹a , ~5a!

¹2→S hahb

c2 1QabD¹a¹b5S papb

m2c22gabD¹a¹b . ~5b!

In addition, it is possible to put

mc25~1/m!gabp
apb. ~5c!
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Equation~5c! leads to an alternative to the usual interpretation of the mass energy as a mu
cative operator; however, it will result in a highly aesthetic form for the wave equation.
differential operators in Eqs.~5a! and ~5b!, together with the substitution of equation~5c!, shall
replace the operators in Schro¨dinger’s equation, resulting in a direct generalization of that equa
to a four manifold:

i\
pa

m
¹ac5

\2

2m S gab2
papb

m2c2D¹a¹bc1S 1

mDgabp
apbc. ~6!

Equation~6! is now covariant, but the momenta have reappeared, and must be replaced
appropriate quantum operator:

pa5 i\¹a. ~7!

Inserting Eq.~7! into Eq. ~6! results in

2
\2

2m
¹a¹ac5

\4

2m3c2 ¹a¹b¹a¹bc. ~8!

Some rearrangement of this equation is desirable in order to better understand its propertie
that the definition of the curvature tensor~conventions are as in Carmeli1! gives

¹b¹a¹bc5¹a¹b¹bc1Ra
c¹cc. ~9!

Here,Ra
c is the Ricci curvature. Substituting this expression into Eq.~8! and rearranging the term

results in

¹a¹ab¹b¹bc1
m2c2

\2 c c52¹a~Ra
c¹cc!. ~10!

This, then, is a fully covariant equation for a scalar quantum wave in general relativity w
reduces to the D’Alembertian of the Klein–Gordon equation when the space–time is flat
equation can be trivially integrated to produce a third order equation

¹ab¹b¹bc1
m2c2

\2 c c52Ra
c¹cc1Ba , ~11!

whereBa is an arbitrary divergence-free covector field. The gradient of the Klein–Gordon, e
tion, therefore, is equal to the negative gradient of the wave function, weighted by the
curvature, plus an arbitrary divergence-free covector field.

Equation ~11! is remarkable in that it explicitly couples the wave function to Einstei
equations, and demonstrates that in appropriate limits returns the Klein–Gordon field. A
equivalent equations which are first and second order can be obtained by returning to equa~8!
and integrating twice:

¹a¹bc1
m2c2

\2 gabc5Aab1Bab , ~12a!

where the arbitrary tensors of integrationAab ,Bab satisfy the equations

¹a¹bAab50, ~12b!

¹bBab50. ~12c!
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It may be these tensors of integration have some particular interpretation in terms of cu
stress energies, or Maxwell fields. In the latter case, it is of interest that such equatio
naturally embedded in the general relativistic Schrodinger equation. Choices made for the s
of these equations will evidently impact the solution for the wave function. The existence o
space plane waves, for example, depends on these fields.

III. LAGRANGIAN FORMULATIONS

The Lagrangian, if it exists, will involve terms with the second derivative of the wave fu
tion. In view of this, a higher-order variational principle is needed. Following Lovelock
Rund,2 this principle can be written as

2¹a¹b

]L
]¹a¹bc

1¹a

]L
]¹ac

2
]L
]c

50. ~13!

By inspection, it can be seen that the proper Langrangian for this theory is given by

Lc52
1

2

m2c2

\2 gab~¹ac!~¹bc!1
1

2
gacgbd~¹a¹bc!~¹c¹dc!. ~14!

With Eq. ~14!, a stress-energy tensor could be written down, and hence Einstein’s equ
for the gravity field. A new expression for the stress energy should be derived, however, sin
usual formulation involves fields and their first derivatives, only. Let a coordinate transform
be given,xa85xa1sa , wheresa is an infinitesimal coordinate-independent displacement, and lL
be a Lagrangian which depends also on the second derivatives of the field. Then

dL5L~x8!2L~x!5sa]aL5
]L
]c

dc1
]L

]~]ac!
d~]ac!1

]L
]~]a]bc!

d~]a]bc!. ~15!

In addition, evidently, the following relationships hold:

dc5c~x8!2c~x!5sa]ac, ~16a!

d~]ac!5]ac~x8!2]ac~x!5sb]b~]ac!, ~16b!

d~]a]bc!5]a]bc~x8!2]a]bc~x!5sc]c~]a]bc!. ~16c!

The expression for]L/]c can be eliminated from Eq.~15! by using Eq.~13!. Furthermore, the las
term in Eq.~15! must be replaced, using the following:

]a]bS ]L
]~]a]bc!

sc]cc D5S ]a]b

]L
]~]a]bc! D sc]cc12S ]a

]L
]~]a]bc! D sc]c]bc

1
]L

]~]a]b!c
sc]c]a]bc . ~17!

Using Eqs.~13!, ~16!, and~17!, and remembering that repeated upstairs and downstairs indice
dummy indices, Eq.~15! can be rearranged in such a way as to produce an expression
explicitly zero divergence. This, then, is the desired expression for the canonical stress en

Tab5
]L

]~]ac!
]bc2gabL2S ]c

]L
]~]a]cc! D ]bc1

]L
]~]a]cc!

]c]
bc. ~18!

Equation~18! may be taken as correct in a locally defined frame. In general, the appropriate p
derivatives may subsequently be replaced by covariant derivative operators, as in equatio~13!.
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An alternate stress energy, obtained by varying the Lagrangian density with respect to the
may be preferable for use in Einstein’s equations, which are evidently coupled to the gene
Schrodinger equation. This stress energy differs from Eq.~18! in the third term.

IV. FLAT-SPACE PROPAGATOR AND PLANE WAVE SOLUTIONS

It’s interesting and basic to calculate the propagator for this theory. It is easy to verify~for the
technique, see, for example, Martin and Halzen3! that this is given by

S~p!5
\4

~p22m2c2!p2 . ~19!

By contrast, the Dirac equation propagator varies as 1/p for large momenta, and the Klein–
Gordon as 1/p2. The propagator in Eq.~19! may lead to a finite field theory.

Finding solutions of Eq.~10! is straightforward in flat space. For plane waves, the first t
integrals yield

¹a¹ac1
m2c2

\2 c5F~ct2k"r !1G~ct1k"r !, ~20!

whereF andG are arbitrary functions. Equation~20! is, of course, the Klein–Gordon equation, b
with a source term representing massless waves moving at the speed of light. Specializ
angular wave numberk so as to obtain waves strictly in thex direction gives plane-wave solution
that look like the sum of a massive and massless scalar field:

c~x,t !5eivt~a1ei ~v/c!x1a2e2 i ~v/c!x1a3ei ~v/c!xA12m2c4/\2v2
1a4e2 i ~v/c!xA12m2c4/\2v2

!.
~21!

Another interpretation is that of a superposition of one wave on another, as would happen
fundamental object were a vibrating string translating through space. Just as in string theory
are additional degrees of freedom with which to describe the fundamental interactions of n
This solution does not follow from Eq.~12! when the tensors of integration are set to zero.

Also of interest would be the recalculation of several basic problems in quantum theory
as the harmonic oscillator or rigid rotator. If the space is flat and the fieldsF andG in Eq. ~20! are
taken to be zero, it is evident that the equation is either Klein–Gordon or Dirac, dependi
whetherC is taken to be a scalar or spinor. Introduction of vector potentials might be im
mented by lettingpa→pa2Aa during the process of operator replacement. Alternatives exist,
the best method of handling these problems can only be found by experimentation in a var
physical contexts.

The higher order derivatives, on the other hand, introduce the Ricci curvature, couplin
wave equation to general relativity. This suggests the equation might best be used to d
gravity fields at the quantum level. Introducing the stress energy as a source of the fieldC may
constrain the mass. The resulting coupled nonlinear equations represent a significant challe
some progress might be made in considering approximate solutions. The problem can be
up into three zones. In the Planck zone, characterized by the Planck length, the full equ
would have to be solved with suitable stress energies. In the intermediate zone, a couple or
magnitude larger than the Planck length up to about a femtometer, the color and electr
interactions would contribute to the stress energy, but gravity would be sufficiently weak to
use of the linearized equations. In the far field, roughly atomic size and larger, the space co
considered flat, and the only stress energy of significance would be due to electromagnetic

The principal motive for studying far field solutions is to gain the necessary insights for
exact work. Both the static and stationary flat space solutions can be found, for example
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classical electrostatic stress energy with spherical symmetry. To obtain good predictive p
however, would likely require calculations at least in the intermediate zone, involving the h
nonlinear quantum stress energy. This work is in progress.

V. FINAL REMARKS

Schrödinger’s equation has been generalized to the equivalent equation on a four-manif
using standard differential geometry and operator replacements.

As developed, the equations describe a scalar field on a curved spacetime. The deriva
Eq. ~8!, however, made no demands on the mathematical nature of the wave functionC. This
being the case, the general spinor equation might be written as

¹AA8¹BB8¹AA8¹BB8c
D1¯Dn1

m2c2

\2 ¹AA8¹AA8c
D1¯Dn50. ~22!

The analog of Eq.~10! could then be obtained by applying the Ricci spinorial identity.
Solving the full field equations coupled to Einstein’s equations, and obtaining solutio

various approximations, is currently in progress. There are, however, several interesting fe
that have risen in the course of this preliminary work. First, the energy is constrained by the
curvature, just as the energy is constrained by the potentials in the nonrelativistic Schro¨dinger
equation. This raises the possibility of calculating fundamental particle masses in the cou
solving the equations, rather than inserting them by hand as free parameters. Second, the
equations are fourth order may result in finite second quantization~though possibly introducing
other difficulties, such as ghosts, in the process!. Finally, from an inspection of the flat spac
solutions, it is likely that at least some of these solutions will describe stringlike systems. T
could be designated natural strings, since they arise as a consequence of unifying existing
tested theories rather than by being imposed as a new ansatz.

Finding more solutions to the single-particle theory would be of interest, as would se
quantization.
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Time-optimal control of finite quantum systems
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We investigate time-optimal control of finite quantum systems in the Born approxi-
mation. A bang–bang principle is found to follow from a result in@C. A. Akemann
and J. Anderson, Mem. Amer. Math. Soc.458 ~1991!#. We also prove existence of
time-optimal controls, characterize when they are unique, and assuming unique-
ness, explicitly describe them. ©2000 American Institute of Physics.
@S0022-2488~00!00908-7#

I. INTRODUCTION

Many authors have considered the problem of controlling the evolution of a quantum sy
see, e.g., Refs. 1–12 and the references therein. The typical formulation postulates a system
evolves under a Hamiltonian of the formH11H2 whereH1 is the time-independent Hamiltonia
of the system when isolated andH25H2(t) describes the interaction of the system with a~gen-
erally classical! control. Usually one is interested in guiding the system between specified i
and final states~other control problems are discussed in Ref. 1!, and most of the cited work treat
the question of existence, and, as far as possible, explicit construction, of a control which ac
this. We take the possibility of exact control as given and consider the question of achievin
desired final state in minimal time.

Let H be the Hilbert space of the system and letv5v(t)PH be its normalized state vecto
with v(0)5v0 . It will be easier to work in the interaction representation, i.e., with the ve
u(t)5U2tv(t) whereUt5exp@2 (i/\) H1t# is the time evolution of the unperturbed system.

In the Born approximation one replaces the usual Schro¨dinger equationi\ v̇5H1v1H2(t)v
with

i\ v̇5H1v1H2~ t !Utv0 ,

which in terms ofu(t) simplifies to

i\u̇5U2tH2~ t !Utv0 .

The approximate solution is therefore given by

u~ t !5v02
i

\ E
0

t

U2tH2~t!Utv0dt.

This approximation has also been used in Refs. 7 and 13. It is valid when the product
interaction energy and the time over which the interaction takes place is small.

We work exclusively in the Born approximation. Moreover, we only consider finite syste
meaning thatH is finite dimensional. This obviously restricts the practical validity of our resu
although they should apply for instance to some situations involving laser-driven process11,12

and nuclear magnetic resonance~NMR!.3 Both conditions seem to be crucial; essentially n
techniques will be needed to deal with infinite systems or finite systems which are suffic
nonlinear to invalidate the Born approximation.

We remark also that in the setting of finite systems in the Born approximation, one can
standard classical methods in the control of linear vector differential equations.14 The difference
52620022-2488/2000/41(8)/5262/8/$17.00 © 2000 American Institute of Physics
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between this approach and ours amounts to a different notion of what constitutes an adm
control. Of course this completely changes the analysis of time optimality, but still, in outline
results are comparable to those of Ref. 14.

This point should perhaps be emphasized, since the difference between our notion o
optimality and that of the standard controls literature is one of the novel features of our app
Which notion is more suitable depends on the system under consideration. In Example
illustrate the kind of situation in which our approach is natural.

We ignore the question of feedback. This issue is more delicate in quantum systems t
classical systems. It has been approached in various ways in Refs. 3, 6, 9, 10, and 12. Of
a classical feedback mechanism can always be implemented by making a discrete series o
vations of the system in transit. For us there is no loss in doing this as our results are only
over short times.

II. THE REACHABLE SET

Every interaction HamiltonianH2 should be a Hermitian operator onH. But in general there
is no reason to expect that every Hermitian matrix is available as a control. LetM denote the set
of Hermitian matrices which are possible controls. We will require thatM be the self-adjoint part
of a * -algebra of matrices, which means the following must hold:

~i! I PM;
~ii ! A,BPM anda,bPR implies aA1bBPM; and
~iii ! A,BPM implies AB1BAPM and i (AB2BA)PM.

The first requirement is a technical condition that has no physical meaning, since a co
Hamiltonian can only change the overall phase of the system. The linearity property~ii ! is unre-
markable, and the conditioni (AB2BA)PM can also be justified in general on the grounds t
a rapid alteration ofA and B will approximate this effect.@This is a restatement of Trotter’
product formula

ei (AB2BA)5 lim
n→`

~e2 iB/Ane2 iA/AneiB/AneiA/An!n.]

However, there is no obvious physical reason whyAB1BA should be an available control Hami
tonian wheneverA and B are. Still, in simple examples this often seems to be the case
examples where it fails literally it may still be true in a broader form which is sufficient for
purposes. Namely, one may be able to model the control Hamiltonians as the self-adjoint
a * -algebra of matrices on a Hilbert space which is not the state space of the system. This
in Example 3 below and the general technique is made precise in Sec. V.

Fix t.0 andE.0. A control function on@0,t# is a HamiltonianH25H2(t) defined for 0
<t<t and satisfyingH2(t)PM for all t. A control function isadmissibleif for every t the
eigenvalues ofH2(t) lie between1E and2E, or equivalently,iH2(t)i<E for all t. We denote
the set of admissible controls on@0,t# by V@0,t#. Formally, V@0,t# is the set of measurabl
functions from@0,t# into theE-ball of M.

The requirement thatiH2(t)i<E is natural. If every control function were admissible th
we could achieve target states in arbitrarily short times by applying controls with very
energies, and there would be no issue of time optimization. Admissibility is simply the req
ment that the applied control HamiltonianH2 not exceed a specified maximum energyE.

Given an admissible control functionH2(t)PV@0,t#, the target reached at time tis the
corresponding value ofu(t)PH. We writeT(H2)5u(t) and callT the target map. Explicitly, as
noted in the introduction, we have

T~H2!5v02
i

\ E
0

t

U2tH2~t!Utv0 dt.
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The reachable set at time tis the setR(t) of all targetsu(t) which can be reached in timet by
admissible controls. That is,R(t)5$T(H2):H2PV@0,t#%5T(V@0,t#).

We have the following basic facts aboutR(t).
Theorem 1: For any t>0 the reachable setR(t) is compact and convex. If t1<t2 then

R(t1),R(t2).
Proof: Supposeu1(t)5T(H2

1) andu2(t)5T(H2
2) both belong toR(t), whereH2

1 andH2
2 are

admissible controls. Then for any 0,l,1 we also have (12l)H2
11lH2

2PV@0,t# because

i~12l!H2
11lH2

2i<~12l!iH2
1i1liH2

2i<E;

so

~12l!u1~ t !1lu2~ t !5T~~12l!H2
11lH2

2!PR~ t !.

ThusR(t) is convex.
The Banach spaceL`(@0,t#;M) of bounded measurable functions from@0,t# into M is the

dual of the spaceL1(@0,t#;M) of L1 integrable functions, and the setV@0,t# is its E-ball. So
V@0,t# is weak* compact by the Banach–Alaoglu theorem.15 The target mapT is weak* continu-
ous ~this can be verified componentwise!, so it follows thatT(V@0,t#)5R(t) is compact.

Finally, supposet1<t2 . For anyH2PV@0,t1# define a controlH̄2PV@0,t2# by

H̄2~t!5H H2~t! if 0<t<t1

0 if t1,t<t2 .

Then clearlyT(H2)5T(H̄2), so we haveR(t1),R(t2). This completes the proof.

III. A BANG–BANG PRINCIPLE

The foundation of the theory of time-optimal controls is a ‘‘bang–bang’’ principle wh
asserts that any state reachable at timet via an admissible control is reachable at the same time
a bang–bang control. Classically, a bang–bang control is one each component of which u
power available to it, at every intermediate timet. The analogous notion for quantum systems
this: an admissible control functionH2PV@0,t# is bang–bang if, for every 0<t<t, the matrix
H2(t) has no eigenvalues besides1E and2E.

In this definition, the eigenvalues ofH2(t) correspond to the components of a classical vec
control. The nonclassical aspect of the situation arises from the fact thatH2 may diagonalize with
respect to different bases at different times. Still, one intuitively expects that, as in the cla
case, one should always be able to reach a given target as fast as possible by using ‘‘all the
available’’ at each timet; and this condition is formally expressed by the assertion thatH2 has no
eigenvalues strictly less thanE in absolute value.

Let V0@0,t# denote the set of bang–bang controls on@0,t#. Equivalently,V0@0,t# is the set of
extreme points ofV@0,t#.16 This is another, purely formal way in which the quantum notion
bang–bang control resembles the classical notion, as the analogous statement is also tru
classical case.14

The following theorem is an immediate consequence of Theorem 2.5~2! of Ref. 17.
Theorem 2: ~bang-bang principle! T(V@0,t#)5T(V0@0,t#). Every target reachable at time

by an admissible control is reachable at time t by a bang–bang control.
The techniques of Ref. 17 are highly abstract, so it may be worth noting that there is a s

proof of Theorem 2 which holds in most cases. Namely, ifH2 is an admissible control and fo
everyt the matrixH2(t) has no repeated eigenvalues, then one can give an elementary pro
there exists a bang–bang control which reaches the same target at the same time. We sk
argument. For each timet order the eigenvaluesl1 ,...,ln of H2(t) by magnitude and let
v1 ,...,vn be the corresponding eigenvectors. Given anyn-tuple of real numberss1 ,...,sn let
B(s1 ,...,sn) be the matrix for whichvk is an eigenvector with eigenvaluesk (1<k<n). This
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matrix also belongs toM,16 so B(s1 ,...,sn) is a valid control function for anys1 ,...sn

PL`@0,t#. If in addition 2E<sk<E at all times (1<k<n), thenB(s1 ,...,sn) is an admissible
control function; in particular this applies to the choicesk5lk . We can now treatB(s1 ,...,sn) as
a classical control with control vector@s1 ,...,sn#, and the classical bang–bang principle14 states
that there is a classical bang–bang control—one for which at every timet eachsk is either1E or
2E—which reaches the same target asH25B(l1 ,...,ln). Then thisB(s1 ,...,sn) is a bang–bang
control in the quantum sense and we have proven the theorem.

This should give a sense of how the quantum bang–bang principle is related to the cla
one: by diagonalizing the control Hamiltonian at each timet, we effectively reduce it to a classica
system ofn scalar controls, one for each eigenvector ofH2(t). The general case whereH2(t)
may have repeated eigenvalues involves measurability issues which are best handled us
abstract methods of Ref. 17. Reference 17 contains many other results which may be us
time-optimal quantum control theory.

We also comment that a rather different kind of bang–bang principle is given in Refs. 1
19. There it is shown that ifA and B are Hermitian matrices which generate every Hermit
matrix through commutation—that is, every Hermitian matrix belongs to the linear span o
matrices

A,B,i @A,B#,@A,@A,B##,...

—then every unitary matrix can be expressed as a finite product of the form

eiAt1eiBt2eiAt3eiBt4
¯

with eachtk positive. Thus, a finite number of alternations ofA and B is sufficient not only to
drive any initial state to any desired final state, but in fact to exactly implement any desired u
matrix. However, time optimality is not addressed here. For rigorous proofs of these resu
Refs. 20 and 21.

Example 3:As an example of a typical system to which the bang–bang principle app
consider an array ofn spin-12 particles exhibiting, say, an Ising interaction. The Hilbert space
this system isC2

^¯^ C2 ~n factors!, and if an external fieldB5(Bx ,By ,Bz) is applied the
interaction Hamiltonian takes the form

H25 (
k51

n

mk~Bxsx
k1Bysy

k1Bzsz
k!5 (

k51

n

mkB•sk,

wheremk is the moment of thekth particle andsx ,sy ,sz are the Pauli spin matrices.
For n.1 the set of interaction Hamiltonians obtainable in this way is not the self-adjoint

of a* -algebra as required in Sec. II, even if one also includes the identity matrix. However, th
is a linear image of the set of all Hermitian 232 matrices via the mapaI1mB•s°aI1H2 ,
wherem5m11¯1mn . In other words, it is a linear image of a setM with the desired proper-
ties, and this is enough. We will return to this point in Sec. V.

It may not be possible to drive the system to every final state; for instance, if themk are equal
and the particle interactions are symmetric then any initial correlation in the particle state
persist irrespective of the control. But for any state which can be reached at a given time, t
a bang–bang control which achieves this result. In the present exampleH2 is bang–bang if at
every time the 232 matrix mB•s has no eigenvalues other than6E. The case of equal eigen
values is physically equivalent toH250, and otherwiseH2 must have one1E eigenvalue and one
2E eigenvalue. This means that at all times a bang–bang controlH2 describes either a field o
zero strength or one of full strength applied in some spatial direction. That is the significan
the bang–bang condition in this example.

Example 4:The preceding example can be complicated by allowing the applied field to
spatially, so that the interaction Hamiltonian is of the form
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H25 (
k51

n

mkB
k
•sk.

In this case the control will be specified by ann-tuple of Hermitian 232 matricesBk, or equiva-
lently a single block diagonal Hermitian 2n32n matrix. This shows the desirability of allowing
M to be at least as general as the self-adjoint part of a* -algebra of matrices.

Example 5:We also indicate an example with infinite dimensionalH which falsifies the
bang–bang principle. Control of the one-dimensional harmonic oscillator was studied in R
The control considered there consisted of a potential of the formV(x,t)5p(t)h(x), so that the
control parameter is the functionp(t), which determines the overall strength of the potential.
the Born approximation the result at timet, starting with a system initially in the energy12 \v
eigenstatec0 , is a system in the statec01(k50

` Ck(t)ck , where

Ck~ t !5akE
0

t

eikvtp~t!dt.

Hereck is the energy (k1 1
2)\v eigenstate andak is a constant which depends onh(x).

Fix t,2p/v. Then there is no possible sense in which a bang–bang principle can hold f
reachable setR(t), because, we claim, every control functionp(t) reaches a different final state
To show this suppose thatp1(t) andp2(t) reach the same state at timet and letp5p12p2 . Then

akE
0

t

eikvtp~t!dt50

for all k>0, so thatp(t) belongs to a Hardy space on the interval@0,2p/v# provided we set it
equal to 0 on (t,2p/v#. But a function in Hardy space which vanishes on a set of positive mea
must be identically zero,22 so p15p2 as claimed.

IV. EXISTENCE AND UNIQUENESS OF TIME-OPTIMAL CONTROLS

We now turn to the question of existence and uniqueness of control functions which driv
system to a given statev f in minimal time. That is, we want to achievev(t)5v f , and so the
condition onu(t) is u(t)5U2tv f . Existence is straightforward.

Theorem 6: If there is any control function which reaches the target u(t)5U2tv f then there
is one which does so in minimal time.

Proof: Let t* 5 inf$t:U2tv fPR(t)%. Then there is a sequence (tn) which decreases tot* ,
such thatU2tn

v fPR(tn) for all n. For eachn let H2
n be a control function which reachesU2tn

v f

in time tn , setH2
n(t)50 for t.tn , and letH2 be a weak* cluster point of the sequence (H2

n) in
V@0,t1#. ThenH2(t)50 for t.t andT(H2)5U2t* v f by weak* continuity ofT. SoH2 reaches
the target in minimal time.

Uniqueness of the optimal control is slightly more subtle. Since the target reached b
control is given by integrating the vectorU2tH2(t)Utv0 , it follows that only the value of the
matrix H2(t) on the vectorUtv0 is relevant. Thus we say that two control functionsH2

1 andH2
2

areessentially equalif H2
1(t)Utv05H2

2(t)Utv0 for almost everyt. Similarly, the control func-
tion which reaches the target in minimal time isessentially uniqueif it is essentially equal to any
other control function which reaches the target in minimal time.

Proposition 7: Two control functions are essentially equal if and only if they drive the s
vector u(t) along the same trajectory. There is an essentially unique optimal control if and
if there is a unique trajectory which reaches the desired target in minimal time.

Proof: The second statement follows from the first. The forward direction of the first s
ment follows immediately from the definition of essential equality and the formula forT(H2). For
the reverse direction, if two control functions are not essentially equal then the integ
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U2tH2
k(t)Utv0 (k51,2) are not equal almost everywhere, henceu1(t0)Þu2(t0) for some 0

,t0,t,16 and thus the trajectories along whichH2
1 andH2

2 drive the system are different.
In light of the above, we will only consider the issue of essential uniqueness of controls

property is characterized by the following theorem. Recall that an elementxPR(t) is extremeif
it cannot be written as the averagex5 (x11x2)/2 of two other points inR(t).

Theorem 8: A point xPR(t) is reached by a unique trajectory at time t if and only if x is
extreme point ofR(t).

Proof: Supposex is reached by two distinct trajectories. LetH2
1 andH2

2 be admissible con-
trols, not essentially equal, both of which reachx at time t. Find t0,t such thatu1(t0)
Þu2(t0). Define two new control functionsH2

3 andH2
4 by

H2
3~t!5H H2

1~t! if t<t0

H2
2~t! if t.t0

and H2
4~t!5H H2

2~t! if t<t0

H2
1~t! if t.t0

.

Then neither of the targetsx15u1(t0)1(x2u2(t0)) andx25u2(t0)1(x2u1(t0)) reached byH2
3

and H2
4 at time t equalsx. But H2

31H2
45H2

11H2
2, and applyingT to both sides shows thatx1

1x252x. Sox is not extreme.
Conversely, supposex is not an extreme point ofR(t). Let x1 and x2 be distinct points in

R(t) with x5 (x11x2)/2 and letH2
1 andH2

2 be admissible controls which reachx1 andx2 at time
t. Now for any functionsPL`@0,t# let xs be the target reached by the controlH2

s5(12s)H2
1

1sH2
2. If 0<s(t)<1 for all t thenH2

s is admissible, and takings(t) to be constantly 1/2 lead
to xs5x. Therefore, by the classical bang–bang principle,14 there is a functions* (t)PL`@0,t#

which is everywhere equal to 0 or 1, such thatxs* 5x. ThenH2
s* andH2

12s* are not essentially
equal, but both reachx at time t—the first does by definition, and the second does because

T~H2
s* !1T~H2

12s* !5T~H2
1!1T~H2

2!52x

—so there are distinct trajectories which reachx at time t.
We say that a control function isessentially bang–bang if it is essentially equal to a bang–

bang control. Since any target reachable at timet by an admissible control is also reachable by
bang–bang control, if the control which reaches a given target is unique then it must be esse
bang–bang. Essentially bang–bang controls are characterized as follows.

Proposition 9: Suppose H2 is essentially bang–bang. Then for almost everyt we can write
Utv05w11w2 where w1 and w2 are eigenvectors of H2(t) respectively belonging to the eigen
values1E and2E. ~One of w1 and w2 may be zero.!

Proof: Let H2* be a bang–bang control which is essentially equal toH2 . Fix t and write
Utv05w11w2 wherew1 andw2 are eigenvectors ofH2* (t) respectively belonging to the eigen
values1E and2E. One ofw1 andw2 may be zero ifHtv0 is an eigenvector ofH2 . SinceH2

essentially equalsH2* we have

H2~t!~w11w2!5H2~t!Utv05H2* ~t!Utv05Ew12Ew2

for almost everyt. Also,

^H2~t!~w12w2!,~w11w2!&5^~w12w2!,H2~t!~w11w2!&5Eiw12w2i25Eiw11w2i2

becausew1 andw2 are orthogonal. SinceiH2(t)i<E, it follows that iH2(t)(w12w2)i,Eiw1

1w2i , which is impossible, unlessH2(t)(w12w2)5E(w11w2). From this and the first com
putation we conclude thatH2(t)w15Ew1 andH2(t)w252Ew2 .

V. CHARACTERIZATION OF TIME-OPTIMAL CONTROLS

In Example 3 we found it necessary to distinguish between the setM, which has the
*-algebra properties described in Sec. II, from the set of possible interaction Hamiltonians,
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is a linear image ofM but does not share those properties. We have ignored this issue othe
because it is irrelevant to the results of the previous sections~except Proposition 9, which is fals
in the broader setting!. However, it must be taken into account in what follows.

The self-adjoint part of a* -algebra of matrices always takes the form of a direct s
% Mni

(C)sa whereMni
(C)sa is the set of all Hermitianni3ni matrices.16 Equivalently,M can be

regarded as a set ofn3n block diagonal matrices wheren5(ni . We will assume given a linea
mapF takingM into the set of Hermitian operators onH, such that the possible control Hami
tonians are precisely the operators in the image ofF. Thus, we writeH25F(A) whereAPM.
This accomodates Example 3 in both its simple and elaborate versions~where the field is allowed
to vary spatially!.

The next lemma determines the form of the Hermitian matricesA of norm at mostE for which
Re(Tr(AB)) is maximized, for some fixed matrixB. To state the result we need the followin
notation. First, Re(B) is the Hermitian part ofB, Re(B)5(B1B* )/2. Say Re(B) has eigenvectorsv i

with corresponding eigenvaluesl i . Then sgn(Re(B)) is the matrix with the same eigenvectors a
with corresponding eigenvalues sgn(li), where sgn(l) is 1 if l.0, 21 if l,0, and 0 ifl50.
Also, we writeiRe(B)i15(uliu. Finally, we writeA'Re(B) if A Re(B)5Re(B)•A50.

Lemma 10: Let B be an n3n matrix. Then every Hermitian matrix of the form
5E sgn(Re(B))1A0, where A0'Re(B) and iA0i<E, satisfies iAi<E and Re(Tr(AB))
5EiRe(B)i1. All other Hermitian matrices A withiAi<E satisfyRe(Tr(AB)),EiRe(B)i1.

Proof: Observe that Re(Tr(AB))5Tr(A•Re(B)). With this fact, after diagonalizing Re(B) the
first statement becomes an easy computation. Now letA be any Hermitian matrix withiAi<E
and Re(Tr(AB))5E; we will show thatA must have the desired form. As before, letv i andl i be
the eigenvectors and eigenvalues of Re(B). Then^Av i ,v i&<E for all i sinceiAi<E, and so

Tr~A Re~B!!5( l i^Av i ,v i&<EiRe~B!i1 ,

with equality only if ^Av i ,v i&5E sgn(li) for all i such thatl iÞ0. Then sinceiAi<E, and
thereforeiAv i i<E, it follows that^Av i ,v j&50 for all j Þ i , wheneverl iÞ0. This implies thatA
is of the desired form.

Letting M5 % Mni
(C)sa and fixingwPH, the map that takesAPMni

(C)sa to

2
i

\
^U2tF~A!Utv0 ,w&

is a linear map fromMni
(C)sa into C. Therefore it can be written

2
i

\
^U2tF~A!Utv0 ,w&5Tr~ABi~t!!

for someni3ni matrix Bi(t).
We can now characterize the controls which reach a targetxPR(t), providedx is an exposed

point of R(t). This means that there existaPR and wPH such that Rêx,w&5a and Rêy,w&
,a for all other pointsyPR(t). Every exposed point is an extreme point as in Theorem 8.

Theorem 11:Let x be a point on the boundary ofR(t) and let wPH and aPR be such that
Rê x,w&5a andRê y,w&<a for all y in R(t). Define ni3ni matrices Bi(t) for 0<t<t as above.
Then any admissible control function which reaches x at time t must be at almost all tim0
<t<t of the form A(t)5 % Ai(t) with Ai(t) a Hermitian ni3ni matrix of the form Ai(t)
5E sgn(Re(Bi(t)))1Ai

0(t), whereiAi
0(t)i<E and Ai

0(t)'Re(Bi(t)).
If Rê y,w&,a for all yÞx in R(t), i.e., x is an exposed point, then every control function

the above form reaches x, and they are all essentially equal.
Proof: In the notation of this section,u(t) satisfies
                                                                                                                



h

es the

o

ntil
umber

5269J. Math. Phys., Vol. 41, No. 8, August 2000 Time-optimal control of finite quantum systems

                    
i\u̇5U2tF~A~t!!Utv05( U2tF~Ai~ t !!Utv0 .

Therefore, by Lemma 10 and the choice ofBi(t), Rê u̇,w& is maximized precisely when eac
Ai(t) is of the formE sgn(Re(Bi(t)))1Ai

0(t). Let f (t)5Rê u(t),w&; then we conclude thatf (t)
5*0

t Rê u̇(t),w&dt is maximized if and only if Rêu̇(t),w& is maximized for almost everyt, that is,
precisely for controlsA of the stated form. But by the choice ofw, if the control reachesx at time
t then f (t) is in fact maximized. So any such control must be of this form.

If x is exposed then any control of the stated form must reachx because it maximizesf (t).
All such controls must be essentially equal by Proposition 7 and Theorem 8. This complet
proof.

We have not yet identified the controls which reach a targetx in minimal time whenx is not
an exposed point ofR(t). This can be done as follows. Fixingw, we can use Theorem 11 t
determine which controls maximizef (t). Any control which reachesx at time t must be among
these, but there may also be controls which reach other pointsy with Rê y,w&5Rê x,w&. Thus, we
have determined the solution up to choice of the matricesA0

i . Let A be the control of the stated
form for which eachA0

i 50, and letM8 be the set of Hermitian matrices of the form% A0
i . We

introduce a new control problem by takingv085T(A) ~the target reached byA at time t! and
replacingM with M8. This leads to a smaller reachable set, which contains only pointsy which
satisfy Rêy,w&5Rê x,w&. We can now apply Theorem 11 again, and continue the process ux
becomes an exposed point of the reachable set at minimal time. In this way, after a finite n
of steps we can always explicitly find at least one control function which reachesx at time t.
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A representation space for minimal coupling
Bruno Wichnoskia)

Department of Mathematics, University of North Carolina–Charlotte,
Charlotte, North Carolina 28223
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Sternberg’s construction of the phase space for minimal coupling combines the
phase space of a classical mechanical system with a principal fibre bundle with
connection~gauge potential! and a HamiltonianG-space. Using geometrical quan-
tization data for a classical system and a HamiltonianG-space we construct a
representation space for the minimal coupling space. ©2000 American Institute
of Physics.@S0022-2488~00!02108-3#

I. INTRODUCTION

The state space of a classical mechanical system is a symplectic manifoldM ,vM whereM is
a differentiable manifold andvM is a closed, nondegenerate two-form. All manifold theore
objects, manifolds, functions, vector fields, forms, etc. will be taken to be smooth, i.e.,C`. The
classical observables are real-valued functions onM. The set of classical observables is denoted
F(M ). F(M ) has a Lie algebra structure given by the Poisson bracket. The state spac
quantum mechanical system is a Hilbert spaceH, ^,&. The quantum observables are self-adjo
operators onH. The set of quantum observables is denoted bySA(H). SA(H) has a Lie algebra
structure given by the commutator of operators. Quantization, in general, has to do with p
from M, vM , F(M ) to H, ^,&, SA(H). More particularly, we would like to constructH, ^,& from
M, vM and to quantize each classical observable, i.e., to assign to eachf PF(M ) an operator
OfPSA(H). This is not possible if we adhere to the Dirac postulates.1 We have to be content with
quantizing a subalgebra ofF(M ). The Dirac postulates state that the assignmentf °Of should be
a Lie algebra homomorphism, 1M°I H (1MPF(M ) is the constant function whose value is 1 a
I H is the identity onH) and a completeness condition on the subalgebra. The complet
condition usually takes the form of the irreducibility of the representation.2 Geometric Quantiza-
tion attempts these constructions using~extra! geometric data defined onM, vM .

II. CLASSICAL MECHANICS

A classical mechanical system is defined by its state spaceM, vM , and a particular observabl
hPF(M ). h is usually the energy of the system and contains the physics. The dynamics gen
by an observable is given by a vector fieldXf where f PF(M ) and Xf cvM5d f . Xf cvM

5vM(Xf ,•) is contraction andd f is the exterior differential off. The Poisson bracket is define
by $ f ,g%[v(Xf ,Xg). The mapf °$ f ,•% is a derivation onF(M ) with its pointwise commutative
algebra structure. Derivations onF(M ) and vectorfields onM are equivalent. The integral curve
of Xh , the Hamiltonian vectorfield, then give the time evolution of the classical states o
physical system.3

Symmetries of a classical mechanical system are given in mathematics as a Lie groupG acting
on M by symplectomorphisms. A symplectomorphism is a diffeomorphism that preservesvM .
The action is a mapF:G3M→M such thatF(g1g2 ,m)5F(g1 ,F(g2 ,m)) and F(e,m)5m,
ePG is the identity of the group. The Lie algebra ofG is denoted byG andG* is the dual ofG.
jPG can be thought of as a left-invariant vectorfield onG. etj is its flow. etj acts onM and
jM(m)[ d/dt @etj

•m#u t50 is the infinitesimal generator of this action. IfjM is Hamiltonian – i.e.,

a!Electronic mail: bjwichno@uncc.edu
52700022-2488/2000/41(8)/5270/7/$17.00 © 2000 American Institute of Physics
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jM cvM5dĴj for some ĴjPF(M ), for all jPG we get a mapJ:M→G* defined byJ(m)•j

5 Ĵj(m). J is called the moment map for the symmetryG. G acts on itself by inner automor
phisms. The tangent to this action for eachgPG gives a representation ofG on G called the
adjoint representation and is denoted byAdg : G→G. The dual,Adg* : G* →G* is called the
coadjoint representation. The moment map is equivariant if it intertwines the action ofG on M and
the coadjoint representation onG* – i.e.,J+F(g,m)5Adg* +J(m). Of course, the main reason t
considerJ is that if h is invariant underG, thenJ is a G* -valued constant of the motion. Som
sources of symplectic manifolds are cotangent bundlesT* X, coadjoint orbits inG* and Kähler
manifolds. A HamiltonianG-space is a symplectic manifold acted on byG with an equivariant
moment map.

III. MINIMAL COUPLING

Sternberg in Ref. 4 gave a construction for a classical phase space~state space! for a
‘‘charged’’ particle interacting with a~classical! gauge field~Yang–Mills field! which generalizes
the notion of minimal coupling in physics. This was done in the context of differential geom
See Kobayashi and Nomizu in Ref. 5 for the relevant differential geometry and fibre b
concepts. LetX be a configuration space—i.e.,T* X is the phase space of a classical syste
t:T* X→X is the standard projection. Letp:P→X be a principal bundle with structure group
Lie groupG. The group action onP will be on the right. Letu be a connection onP—i.e., u is a
Lie algebra-valued one-form onP such thatu(pg)5Adg21u(m). u is the gauge potential.

From the projectionp we can construct the pullback bundleP#. It is also a principalG-bundle
but with base spaceT* X. We have the following commutative diagram definingp# andt#:

P# →
t#

P

p# ↓ ↓ p

T* X →
t

X

.

P#[$(r ,p)PT* X3Put(r )5p(p)%. Let M be a HamiltonianG-space. The action ofG on M will
be on the left.G acts~on the left! on P#3M by g•(u,m)5(ug21,gm). The orbit space is denote
by P#3GM and is an associated bundle toP#– i.e., P#3GM is a fibre bundle overT* X associ-
ated toP# via the action ofG on M. The fibres ofP#3GM are all isomorphic toM. There is a
closed two-formv defined onP#3M by v5p#* v01d^u#,J&1vM . We have omitted the pro
jections and pullbacks forP#3M . ^u#,J& is the dual pairing of the values ofJ and u# at each
point of M and tangent vector toP#. v0 is the natural symplectic form onT* X—i.e., v05du0

where locallyu05pdq. vM is the symplectic form onM. u# is the connection onP# induced from
u on P andJ is the moment map for the action ofG on M. v is constant on orbits ofG in P#

3M and so gives a closed two-formvG on P#3GM which is nondegenerate.vG is given by
v5r* vG wherer:P#3M→P#3GM is the quotient map.vG is a symplectic structure onP#

3GM . If h is a Hamiltonian onT* X, h can be pulled back viaP#3GM→T* X to give a
Hamiltonian onP#3GM . The Hamiltonian vectorfield for this pulled back Hamiltonian incorp
rates the interaction of the classical system onT* X with the gauge potential given byu in a way
that is consistent with the principle of minimal coupling in physics.P#3GM is the phase space fo
which we construct a quantum representation space.

IV. QUANTUM MECHANICS

The dynamics in quantum mechanics is generated in a conceptually similar way to cla
mechanics – i.e. observables generate dynamics. In this case,APSA(H) generates a motion inH
given by exp(itA):H→H. If HPSA(H) is the Hamiltonian of a quantum mechanical system, th
exp(itH) gives the time evolution of the quantum states of the system. See Ref. 6. If symm
                                                                                                                



his
ght on

l
c
a
l-

of a

re
—i.e.,

o

ntum,
iple.
n, we

ons

he

n
trary

-

f

.

tion

5272 J. Math. Phys., Vol. 41, No. 8, August 2000 Bruno Wichnoski

                    
are present—e.g., a Lie group which leavesH invariant, then much can be said of the nature of t
system. In particular, the general formalism of geometric quantization sheds considerable li
the construction of irreducible group representations ofG. See Ref. 7.

V. GEOMETRIC QUANTIZATION

We give here a brief review of geometric quantization in order to establish notation~as above!
and to explain how the representation space forP#3GM is put together after all the individua
structures are constructed. See Refs. 8–10 for details.M, vM is a symplectic manifold. Geometri
quantization consists of three structures onM: A prequantum line bundle, a polarization and
metaplectic structure. The symplectic manifoldM, vM is prequantizable if the DeRham cohomo
ogy class@vM# of vM is integer-valued—i.e.,@vM#P i * H2(m,Z) where i :Z→R is the natural
inclusion of the integers into the reals. This, as is well-known, allows for the construction
Hermitian line bundleLM with connection¹M over M whose curvature form isvM . The Her-
mitian structure is denoted by^,&M . We refer toLM , ¹M , ^,&M as the prequantum data onM. The
connection one-form is denoted byaM . The fibre of LM is C ~the complex numbers!. The
structure group forL is C* the multiplicative group of nonzero complex numbers.aM is then a
C-valued one-form onB(L) ~the frame bundle, which is a principal fibre bundle with structu
groupC* ). We also assume that the Hermitian structure and the connection are compatible
X^s1 ,s2&5^¹Xs1 ,s2&1^s1 ,¹Xs2&. ¹X is the covariant derivative given byaM , X is a vectorfield
on M and s1 , s2 are sections ofLM . Let G(LM) denote the sections ofLM and G0(LM) the
sections ofLM with compact support. The prequantum Hilbert spaceH0 constructed fromL is
defined as the completion of the spaceG0(L) with respect to the inner product̂̂ s1 ,s2&&
5*M^s1 ,s2&MvM

n . H0 is ‘‘too big’’ to be the correct Hilbert space for at least the following tw
reasons.9 First, the Hilbert space for the phase spaceR2n in the usual formulation of quantum
mechanics isL2(Rn). The above prescription would giveL2(R2n). Second, inL2(R2n), the space
of square integrable functions would have functions of both variables, position, and mome
with arbitrarily small support. This, of course, would violate the Heisenberg Uncertainty Princ

Looking at the usual formulations of quantum mechanics in the coordinate representatio
view R2n asT* Rn>Rn3Rn* . We see thatL2(Rn) can be thought of as square integrable secti
of the trivial line bundleL5T* Rn3C which are~covariant! constant along the fibresRn* of
T* Rn—i.e., square integrable functions of theq’s. A similar statement can be made about t
momentum representation for which the square integrable sections ofT* Rn3C are ~covariant!
constant alongRn—i.e., square integrable functions of thep’s. This cutting down can also be see
in Sommerfeld’s ‘‘royal road to quantization.’’ The generalization of these ideas to arbi
symplectic manifolds involves the extra structure of a polarization onM. The above examples
haveRn* ,Tp,q* Rn, Rn,Tp,q* Rn and ‘‘invariant tori’’ in Sommerfeld’s quantization as polariza
tions. These are ‘‘real’’ polarizations.

Some symplectic manifolds of interest do not have any real polarizations—e.g.,S2 with any
volume form as symplectic form. A~complex! polarization is an involutive distributionF on M
such thatFx,TxM ^ C, dimFx5n, where dim(M )52n, andvMC , the complex extension ofvM

to TXM ^ C, satisfiesvMCuFM3FM
50. In other words,F is an involutive complex Lagrangian

distribution onM. If a Lie groupG acts onM, thenF is G-invariant if g* (Fm)5Fgm . F̄ ~the
complex conjugate ofF) is also a polarization. IfF5F̄, then the polarization is totally real. I
FùF̄5$0%, the polarization is totally complex. In the latter caseF % F̄5TM ^ C. Totally real
polarizations give rise to foliations of the manifoldM, e.g., the above three examples.

In general, we letD5FùF̄ùTM andE5(F1F̄)ùTM. D andE are both real distributions
D is involutive. F is a strongly admissible polarization ifE is involutive, M /D and M /E are
manifolds whose projections fromM are surjections andM /D→M /E is a surjection.

In view of the above, the representation space forM ought to be the sections ofLM covariant
constant alongF—i.e., ¹Xs50 whereX is a vectorfield onM which is in F̄ ands is a section of
LM . This does not work in general. There are at least three problems with this. First, ifF is a real
polarization the leaves ofF might not be simply connected. So the parallel translation of a sec
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around a closed curve inM might not give the same value after having been around the c
once—i.e., there may be nontrivial holonomy in the fibres ofLM . Generalized sections could b
used to help alleviate this problem.9 Second, when quantizing a functionf PF(M ), the corre-
sponding quantum operatorOf might not mapH into H—i.e., the flow ofXf might not preserve
the polarization. This is partly dealt with using the Blattner–Kostant–Sternberg kernel.10 Third,
sinceX^s,s&5^¹Xs,s&1^s,¹Xs&, the sectionss that are covariant constant alongD are constant
on the leaves of the foliation given byD. If the leaves ofD are not compact, then the integral o
^s,s& overM diverges. If we pass to the quotientM /D there is no natural measure with which
define the integration. We elaborate on this last problem.

Manifolds, in general, do not come equipped with natural measures needed to define in
tion. We could consider 1/2 densities11 on M. The product of two 1/2 densities is a one-densi
These can be integrated overM since their local transformation properties are the same as
change of variables formula. But these cause some difficulties related to the Maslov quant
condition.12 The objects we use are called 1/2 forms. These require a metalinear structure oF. If
this metalinear structure comes from a metaplectic structure onM the problem related to the
Maslov quantization condition mentioned above is also taken care of automatically. We g
rough overview of 1/2 forms. The details can be found in Guillemin and Sternberg.12

Let M ,v be a symplectic manifold with a polarizationF. We assume thatM has a metaplectic
structure as follows.Bp(M ) denotes the symplectic frame bundle ofM. It is a principal fibre
bundle with structure groupSp(2n). Sp(2n) is the symplectic group onR2n. The metaplectic
groupMp(2n) is the unique double covering ofSp(2n). This exists becausep1(Sp(2n))5Z. A
metaplectic structure onM is a double covering ofBp(M ) that is a principle fibre bundle with
structure groupMp(2n) such that the following diagram is commutative.

Mp~M !3Mp~2n! → Mp~M !

↓ ↓
Bp~M !3Sp~2n! → Bp~M !

.

The vertical arrows are the covering maps and the horizontal arrows are the group actions
F is a n-dimensional subbundle ofTM it is a vector bundle with structure groupGL(n).
p1(GL(n))5Z so there is a double coveringML(n) of GL(n) called the metalinear group. Le
B(F) be the frame bundle ofF. It is a principal fibre bundle with structure groupGL(n). A
metalinear structure onM is a double covering ofB(F) by a principal fibre bundleMB(F) with
structure groupML(n) such that the following diagram is commutative:

MB~F !3ML~n! → MB~F !

↓ ↓
B~F !3GL~n! → B~F !

.

The vertical arrows are covering maps and the horizontal arrows are the group actions. W
the following commutative diagrams:

ML~n! → Mp~2n!

↓ ↓
GL~n! → Sp~2n!

Mp~M ! → MB~F !

↓ ↓
Bp~M ! → B~F !

.

GL(n) is embedded inSp(2n) via

A°S A 0

0 A* 21D .
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Bp(M ) is mapped ontoB(F) via (e1 ,•••,en , f 1 ,•••, f n)°(e1 ,•••,en). These maps are the
lifted to the covering spaces. A metaplectic structure is independent ofF. So a metaplectic
structure gives a metalinear structure for every polarizationF of M. This is used to deal with the
problem of quantizing observables whose flows do not preserve the polarization. We will n
concerned with this aspect here. Our main concern is the definition of objects that can b
grated over a fairly general class of manifolds.

The double covering ofGL(n) allows for a well-defined square root of determinants. L
r :ML(n)→GL(n) be the covering map. Although (detA)1/2 for APGL(n) is not well-defined,
(det r (B))1/2 is well-defined forBPML(n)—i.e., there exists a functionx:ML(n)→C such that
x2(B)5det r (B). We define 1/2 forms to be complex-valued functionss:MB(F)→C that trans-
form as s( f •B)5x(B)s( f ) where f PMB(F) and BPML(n). These functions can also b
considered as sections of the complex line bundle associated toMB(F) by the representation o
ML(n) given by x. This line bundle is denoted by (̀nF)1/2 and is called the bundle of 1/2
forms.12 For two sectionss1 ands2 we can form the products•s̄2 ~as a product of functions on
MB(F)! wheres̄2 is the complex conjugate ofs2. For f PMB(F) andBPML(n) we haves1

•s̄2( f B)5s1( f B)•s̄2( f B)5x(B)•x̄(B)s1( f )•s̄2( f )5ux(B)u2s1( f )•s̄2( f )5udet r (B)us1( f )
•s̄2( f ). Sos1•s̄2 is a one-density onM and hence can be integrated overM.

Let LM be the prequantum line bundle overM. LM ^ (`nF)1/2 is then a complex line bundle
over M. The sections ofLM ^ (`nF)1/2 with compact support form a pre-Hilbert space. In t
completion of this space we take our Hilbert spaceHM , a representation space forM, to be the
space of sections covariant constant alongF. The inner product is (s1^ s1 ,s2^ s2)
5*M^s1 ,s2&Ms•s̄2. Our goal in the next section is to construct a representation space fo
minimal coupling phase spaceP#3GM from the prequantum line bundles, the polarizations a
metaplectic structures given onT* X andM.

VI. A REPRESENTATION SPACE FOR P #ÃGM

We first fix the notation. We takeT* X with the natural~exact! symplectic structurev0. The
deRham cohomology class ofv0 is zero—i.e.,@v0#50. So the prequantum line bundle overT* X
is trivial. LT* X5T* X3C. ¹T* X is the flat connection and̂,&T* X is the usual Hermitian inne
product on fibres ofLT* X . (M ,vM ,G,J) will be a HamiltonianG-space andJ is the moment map.
P→X is a principal fibre bundle with structure group the Lie groupG. u will denote a connection
on P. P#3GM is constructed as in Sec. III. LetvM , the symplectic form onM, be integer-valued.
Denote byLM , ¹M , ^,&M the prequantum line bundle, the connection and the Hermitian struc
on M as in Sec. V. We assume that^,&M is G-invariant and that the prequantum data onM is
G-invariant12—i.e., G acts onLM . Let LT* X

# be the pullback bundle defined by the followin
commutative diagram.

LT* X
# →

p##

LT* X

tT* X
# ↓ ↓ tT* X

P# →
p# T* X

.

LT* X
#

5$(u,z)PP#3LT* Xup#(u)5tT* X(z)%. ¹T* X and^,&T* X pullback toLT* X
# to get a connec-

tion ¹P# and a Hermitian structurê,&P#. G acts onLT* X
# by (u,z)g5(ug,z). This is well-defined

since p#(ug)5p#(u)5tT* X(z). So G acts on sections ofLT* X
# . ^,&P# is invariant under this

action ofG.
The product bundleLT* X

#
3LM is a ~two-dimensional! vector bundle overP#3M . The pro-

jection onto the tensor product of the fibres gives the line bundleLT* X
#

^ LM over P#3M . The
Hermitian structure for this bundle,^,&P#3M is ^,&P#•^,&M . This is G-invariant. We take as ou
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line bundleLP#3GM over P#3GM the line bundle constructed from the sheaf ofG-invariant

sections ofLT* X
#

^ LM . The invariance of̂ ,&P#3M then gives a Hermitian structure^,&P#3GM to

LP#3GM . The covariant derivative¹P#3M on LT* X
#

^ LM is defined by¹P#3M(s1^ s2)5¹P#s1

^ s21s1^ ¹Ms2 wheres1 is a section ofLT* X ands2 is a section ofLM . ¹P# is G-invariant by
construction and¹M is G-invariant by assumption.¹P#3M is thenG-invariant and so defines
covariant derivative on sections ofLP#3GM . Our prequantum data onP#3GM are thenLP#3GM ,

¹P#3GM and ^,&P#3GM .

Let FT* X be a polarization onT* X andFM a G-invariant polarization onM. P#→T* X is a
principal fibre bundle with connectionu#. u# defines a horizontal subspace at each point ofP# and
hence a lift of tangent vectors ofT* X to horizontal tangent vectors ofTP#. We do this at each

point of T* X to get a horizontal distribution onP# denoted byF̃T* X . F̃T* X is G-invariant. We

will assume thatF̃T* X is an involutive distribution onP#. F̃T* X3FM is the product distribution on
P#3M . It is G-invariant and so defines a distribution onP#3GM . It is also involutive. We denote
this distribution by FP#3GM . We show thatFP#3GM is Lagrangian. Let (v1 ,w1), (v2 ,w2)

PF̃T* X3FM at eachuPP#, mPM . I.e., (v i ,wi) is a vectorfield onP#3M and (v i(u),

wi(m))P(F̃T* X3FM)(u,m) . We leave off the projectionspr1 :P#3M→P# and pr2 :P#3M
→M . v5p#* v01d^u,J&1vM andv5r* vG wherer:P#3M→P#3GM is the quotient map
as in Sec. III.v((v1 ,w1)(v2 ,w2))5v0(v1 ,v2)1d^u#,J&((v1 ,v2),m)1vM(w1 ,w2)5d^u#,J&
3((v1 ,v2),m) since FT* X and FM are Lagrangian.d^u#,J&((v1 ,v2),m)5Lv1

^u#(v2),J(m)&
2Lv2

^u#(v1),J(m)&2^u#(@v1 ,v2#),J(m)&50 sincev1 ,v2 and @v1 ,v2# are horizontal vector-

fields. The dimension of each subspace ofT(P#3GM ) in the distributionFP#3GM is the sum of

the dimensions of the subspaces ofFT* X andFM . So this dimension is12 (dim T* X1dim M ).
FP#3GM is then a polarization onP#3GM .

The metaplectic structure forP#3GM can be constructed from that ofT* X and M in the
following way. First we construct the symplectic frame bundleBp(P#3GM ) from that of
Bp(T* X) and Bp(M ). Then we lift this construction to construct a double covering ofBp(P#

3GM ) from Mp(T* X) andMp(M ). The tangent vectors in the symplectic frames toT* X can be
lifted to an independent set of horizontal tangent vectors toP# sinceP#→T* X is a principal fibre

bundle andu# is a connection onP#. This set isG-invariant. We denote this set byB̃p(T* X) and
it is a subbundle of the frame bundle ofP#. For eachgPG, g:M→M , m°gm denotes the given

Hamiltonian action ofG on M, g* the tangent map andg̃* :Bp(M )→Bp(M ) the extension ofg*
to Bp(M ). g̃* is well-defined sinceg acts onM by symplectomorphisms and hence takes sy

plectic frames to symplectic frames.G then acts onB̃p(T* X)3Bp(M ) and we can construc

(B̃p(T* X)3Bp(M ))/G. We show that (B̃p(T* X)3Bp(M ))/G>Bp(P#3GM ).

Let f P#PB̃p(T* X)u , uPP# and f MPBp(M )m , mPM . f P# is a symplectic frame toT* X at
p#(u) and f M is a symplectic frame toM at m. We write (eT* X

i , f T* X
j ) for (eT* X

i , f T* X
j ,0,0) when

considered as an element ofB̃p(T* X)3Bp(M ) and similarly for (eM
k , f M

l ). Thed^u#,J& term in

v vanishes on tangent vectors inB̃p(T* X) since they are horizontal. (f P#, f M) is then a symplec-
tic frame on P#3GM since v is constant onG orbits in P#3M . On the other hand, if
(ug21,gm, f ) is a symplectic frame onP#3GM at (ug21,gm) then f 5( f T* M , f M) wheref T* M is
a symplectic frame onT* X and f M is a symplectic frame onM. f T* X can be lifted to an elemen

of B̃p(T* X) as horizontal vectors. This is independent ofg and so givesf P(B̃p(T* X)
3Bp(M ))/G. Applying these constructions toMp(T* X) andMp(M ) then gives a double cov
ering of Bp(P#3GM ). This is then our metaplectic structure onP#3GM . We denote it by
Mp(P#3GM ).

We now can apply the general construction in Sec. V toLP#3GM , ¹P#3GM , ^,&P#3GM the

prequantum data forP#3GM , FP#3GM the polarization onP#3GM andMp(P#3GM ) a meta-

plectic structure onP#3GM .
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Uq†sl „2 ẑ1…‡ vertex operators, screen currents,
and correlation functions at an arbitrary level

Yao-Zhong Zhanga) and Mark D. Gould
Department of Mathematics, University of Queensland,
Brisbane, Queensland 4072, Australia

~Received 23 November 1999; accepted for publication 23 February 2000!

Bosonizedq-vertex operators related to the four-dimensional evaluation modules of
the quantum affine superalgebraUq@sl(2û1)] are constructed for arbitrary levelk
5a, whereaÞ0,21 is a complex parameter appearing in the four-dimensional
evaluation representations. They are intertwiners among the level-a highest weight
Fock–Wakimoto modules. Screen currents which commute with the action of
Uq@sl(2û1)] up to total differences are presented. Integral formulas forN-point
functions of type I and type IIq-vertex operators are proposed. ©2000 American
Institute of Physics.@S0022-2488~00!00608-3#

I. INTRODUCTION

The notion ofq-vertex operators as certain intertwiners of highest weight modules of qua
affine algebras was introduced by Frenkel and Reshetikhin1 in their work on theq-deformation of
the Wess–Zumino–Novikov–Witten model. Theseq-vertex operators give rise toq-analogs of the
primary fields in conformal field theory.

Similar to the classical case,q-vertex operators are characterized by the intertwining prop
defined from the relevant quantum affine algebras. However it is nontrivial to obtain ex
expressions of them. A powerful tool for constructing such explicit formulas is the bosoniz
technique,2–4 initiated by Wakimoto5 in the theory of affine Lie algebras. This method enables
in principle to determineq-vertex operators in terms of certain free bosonic fields. So far, le
one bosonizedq-vertex operators have been constructed for most quantum affine algebras6–8 and
the type I quantum affine superalgebrasUq@sl(M ûN)#,MÞN ~Ref. 9! andUq@gl(NûN)#.10,11 In
the case of arbitrary level, bosonized formulas have been known only for the type Iq-vertex
operators ofUq@sl(2̂)] ~Refs. 12–15! andUq@sl(N̂)]. 4

One of the central issues in conformal field theory and massive integrable models
computation of correlation functions, which are matrix elements of certain products of v
operators. The explicit bosonized expressions of vertex operators play an essential role
enable one to compute correlators exactly in the form of integral representations. This was
onstrated by the Kyoto group and collaborators in their groundbreaking work on the diagon
tion of theXXZ spin chain.16,17 In Refs. 6, 18, 19, certain correlation functions of other quant
affine~super!algebras at level one were computed via the bosonization procedure, generalizi
work of the Kyoto group and collaborators.

The case of the arbitrary level is more complicated. Due to the existence of nontrivial
ground charges, the naive solutions to the intertwining relations in terms of free bosonic fie
not give rise to proper bosonizations of theq-vertex operators, which ensure the nonvanishing
correlation functions. As in conformal field theory,q-screen currents which balance the bac
ground charges are generally needed. Suchq-screen currents are dimension 1 operators wh
~anti-!commute with the relevant quantum algebra generators up to total differences. Bos
q-screen currents have been obtained forUq@sl(N̂)] ~Refs. 12–15, 4!, and been applied to com

a!Electronic mail: yzz@maths.uq.edu.au
52770022-2488/2000/41(8)/5277/15/$17.00 © 2000 American Institute of Physics
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pute the correlation functions of the type IUq@sl(2̂)] vertex operators.12–15

In this paper, by using the free field realization ofUq@sl(2û1)] at an arbitrary levelkÞ0,
21 ~Ref. 20! we investigate the bosonization ofq-vertex operators related to the four-dimension
evaluation modules ofUq@sl(2û1)]. It is worth mentioning that our four-dimensional represen
tion contains an extra complex parameteraÞ0,21. For arbitrary levelk5a, theq-vertex opera-
tors are mappings of certain highest weight Fock–Wakimoto modules in a bosonic Fock
Screen currents which~anti-!commute with the action ofUq@sl(2û1)] are obtained and bosonize
q-vertex operators dressed with the screen charges are proposed. This provides a natura
write down an integral representation for correlation functions of the bosonizedq-vertex operators.

The results obtained in this paper will be useful in analyzing the supersymmetric integ
model introduced in Ref. 21. This is a quantum spin chain model arising from theR-matrix for the
four-dimensionalUq@sl(2û1)] evaluation representation and can be interpreted as a mode
scribing strongly correlated electrons.

II. PRELIMINARIES

A. Quantum affine superalgebra Uq†sl „2 ẑ1…‡

The simple roots of the affine superalgebrasl(2û1 ~Ref. 22! are

a05d2«11d1 , a12«12«2 , a25«22d1 ,

whered is the null root and$«1 ,«2 ,d1% are orthonormal basis satisfying

~d,d!5~d,« i !5~d,d1!5~d1 ,« i !50, i 51,2,

~« i ,« j !5d i j , ~d1 ,d1!521.

The fundamental weights are

L0 , L15L02«21d1 , L25L02«12«212d1 ,

whereL0 is the affine weight obeying (L0 ,L0)5(L0 ,« i)50, i 51,2 and (L0 ,d)51. The sym-
metric Cartan matrix (ai j ) of the affine Lie superalgebrasl(2û1) has elementsai j 5(a i ,a j ),i , j
50,1,2. Explicitly,

~ai j !5S 0 21 1

21 2 21

1 21 0
D .

Quantum affine superalgebraUq@sl(2û1)] is aq-analog of the universal enveloping algebra
sl(2û1) generated by the Chevalley generators$ei , f i ,qhi,du i 50,1,2%, whered is the usual deri-
vation operator. TheZ2-grading of the generators are@e0#5@ f 0#5@e2#5@ f 2#51 and zero other-
wise. The defining relations are23

hihj5hjhi , hid5dhi , @d,ei #5d i ,0ei , @d, f i #52d i ,0f i ,

qhiejq
2hi5qai j ej , qhi f jq

2hi5q2ai j f j , @ei , f j #5d i j

qhi2q2hi

q2q21 ,

@ei ,ej #5@ f i , f j #50, for ai j 50,
~II.1!

@e1 ,@e1 ,el #q21#q50, @ f 1 ,@ f 1 , f l #q21#q50, l 50,2,
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@e0 ,@e2 ,@e0 ,@e2 ,e1#q###q5@e2 ,@e0 ,@e2 ,@e0 ,e1#q###q ,

@ f 0 ,@ f 2 ,@ f 0 ,@ f 2 , f 1#q###q5@ f 2 ,@ f 0 ,@ f 2 ,@ f 0 , f 1#q###q .

Here and throughout,@X,Y#j5XY2(21)@X#@Y#jYX and @X,Y#5@X,Y#1 .
Uq@sl(2û1)] is a quasitriangular Hopf superalgebra endowed with theZ2-graded Hopf algebra

structure,

D~hi !5hi ^ 111^ hi , D~d!5d^ 111^ d,

D~ei !5ei ^ 11qhi ^ ei , D~ f i !5 f i ^ q2hi11^ f i ,
~II.2!

e~hi !5e~d!5e~ei !5e~ f i !50,

S~ei !52q2hiei , S~ f i !52 f iq
hi, S~hi !52hi , S~d!52d.

Note the antipodeS is aZ2-graded algebra anti-automorphism. Namely for homogeneous elem
a,bPUq@sl(2û1)],S(ab)5(21)@a#@b#S(b)S(a). The multiplication rule for the tensor product
Z2 graded and is defined for homogeneous elementsa,b,a8,b8PUq@sl(2û1)] by (a^ b)(a8

^ b8)5(21)@b#@a8#(aa8^ bb8), which extends to inhomogeneous elements through linearity

Uq@sl(2û1)] can also be realized by the Drinfeld generators24 $Xm
6,i ,hn

i ,qh0
i
,c,du i 51,2,m

PZ,nPZÞ0%. The Z2-grading of the Drinfeld generators are@Xm
6,2#51(mPZ) and zero other-

wise. The relations read23,25

c: central element,

@h0
i ,hm

j #50, @d,h0
i #50, @d,hm

j #5mhm
j ,

@hm
i ,hn

j #5dm1n,0

@ai j m#q@nc#q

m
,

qh0
i
Xm

6, jq2h0
i
5q6ai j Xm

6, j , @d,Xm
6, j #5mXm

6, j ,

@hm
i ,Xn

6, j #56
@ai j m#q

m
q6umuc/2Xn1m

6, j ,

~II.3!

@Xm
6,i ,Xn

2, j #5
d i , j

q2q21 ~q~m2n!c/2cm1n
1, j 2q2~m2n!c/2cm1n

2, j !,

@Xm
6,2 ,Xn

6,2#50,

@Xm11
6,i ,Xn

6, j #q6ai j 1@Xn11
6, j ,Xm

6,i #q6ai j 50, for ai j Þ0,

@Xn1

6,1 ,@Xn2

6,1 ,Xm
6,2#q21#q1~n1↔n2!50,

where@m#q5(qm2q2m)/(q2q21) andcn
6,i are defined by

(
nPZ

cn
6,iz2n5q6h0

i
expS 6~q2q21! (

n.0
h6n

i z7nD .

The Chevalley generators are related to the Drinfeld generators by the formulas,
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hi5h0
i , ei5X0

1,i , h05c2h0
12h0

2, f i5X0
2,i , i 51,2,

~II.4!

e052@X0
2,2 ,X1

2,1#q21q2h0
1
2h0

2
, f 05qh0

1
1h0

2
@X21

1,1 ,X0
1,2#q .

B. Bosonization of Uq†sl „2 ẑ1…‡ at an arbitrary level k

In this subsection we briefly recall the free boson realization ofUq@sl(2û1)] at an arbitrary
level k.20 Let us introduce the bosonicq-oscillators$an

1,an
2,bn

i j ,cn ,Qa1,Qa2,Qbi j ,QcunPZ,1< i
, j <3% which satisfy the commutation relations

@am
i ,an

j #5dm1n,0

@ai j m#q@~k11!m#q

m
, @a0

i ,Qaj #5~k11!ai , j ,

@bm
i j ,bn

i 8 j 8#5~21!d j 2d i i 8d j j 8dm1n,0

@m#q
2

m
, @b0

i j ,Qbi 8 j 8#5~21!d j 2d i i 8d j j 8, ~II.5!

@cm ,cn#5dm1n,0

@m#q
2

m
, @c0 ,Qc#51.

The remaining commutators vanish. Here and throughoutkÞ0,21 is a complex parameter. Fo
any pair (an ,Qa), we define

a~z;k!52 (
nÞ0

an

@n#q
q2kunuz2n1Qa1a0 ln z,

~II.6!

a6~z!56~q2q21! (
n.0

a6nz7n6a0 ln q.

We have
Theorem 1 „Ref. 20…: Define the fields X6,i(z) by

X6,i~z!5 (
nPZ

Xn
6,iz2n21.

Then at arbitrary levelkÞ0,21,Uq@sl(2û1)] is realized by the free boson fields as follows:

c5k, h0
15a0

112b0
121b0

132b0
23, h0

25a0
22b0

122b0
13,

hm
1 5am

1 q2~ umu/2!1bm
12q2~~k/2!11!umu~qumu1q2umu!2bm

13q2~~k/2!12!umu2bm
23q2~~k/2!11!umu,

hm
2 5am

2 q2~ umu/2!2bm
12q2~~k/2!11!umu2bm

13q2~~k/2!11!umu,

X1,1~z!52
1

~q2q21!z
:e2b12~z;21!~e2c~qz;0!2e2c~q21z;0!!:eA21p~c01b0

12
!,

X1,2~z!52:e2b1
12

~qz!2b1
13

~qz!1b23~qz;0!:eA21p~c01b0
12

1b0
13

1b0
23

!1:eb12~z;0!1b13~z;0!1c~z;0!:,
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X2,1~z!5
1

~q2q21!z
: ~ea1

1
~q@~k11!/2#z!1b12~qk12z;1!1b1

13
~qk12z!2b1

23
~qk11z!1c~qk11z;0!

2ea2
1

~q@~k11!/2#z!1b12~q2k22z;1!1b2
13

~q2k22z!2b2
23

~q2k21z!1c~q2k21z;0!!:

e2A21p~c01b0
12

!1qk11:ea1
1

~@~k11!/2#z!2b13~qk11z;0!1b23~qk11z;21!:eA21p~b0
13

1b0
23

!,

X2,2~z!5
1

~q2q21!z
~q:~ea1

2
~q@~k11!/2#z!2b23~qk11z;0!2ea2

2
~q2@~k11!/2#z!2b23~q2k21z;0!!:

e2A21p~c01b0
12

1b0
13

1b0
23

!2:ea2
2

~q2@~k11!/2#z!2b12~q2k21z;1!2b13~q2k21z;1!

3~e2c~q2kz;0!2e2c~q2k22z;0!!: !. ~II.7!

III. LEVEL-ZERO REPRESENTATIONS

We discuss level-zero representations ofUq@sl(2û1)], which are needed in next section fo
the investigation ofq-vertex operators.

Let Va is the one parameter family of the four-dimensional typical irreducible represent
of Uq@sl(2û1)]. Here and throughout,aÞ0,21 is a complex parameter. We choose the ba
vectors$v1 ,v2 ,v3 ,v4% of Va and assign them theZ2 gradings@v1#5@v4#50, @v2#5@v3#51. Let
ei j be the 434 matrices satisfying (ei j )kl5d ikd j l . In the homogeneous gradation, the evaluat
representationVa,z of Uq@sl(2û1)] is given by

e15e23, f 15e32, h15e222e33,

e25A@a#qe121A@a11#qe34,

f 25A@a#qe211A@a11#qe43,

h25a~e111e2!1~a11!~e331e44!, ~III.1!

e052z~2A@a#qe311A@a11#qe42!,

f 05z21~2A@a#qe131A@a11#qe24!,

h052a~e111e33!2~a11!~e221e44!.

We define the dual moduleVa,z* S of Va,z by pV
a,z* S(a)5pVa,z

(S(a))st, ;aPUq@sl(2û1)],

where st is the supertransposition operation. OnVa,z* S , the Chevalley generators are represented

e152q21e32, f 152qe23, h152e221e33,

e25q2aA@a#qe212q2a21A@a11#qe43,

f 252qaA@a#qe121qa11A@a11#qe34,

h252a~e111e22!2~a11!~e331e44!, ~III.2!

e052z~qaA@a#qe131qa11A@a11#qe24!,

f 052z21~q2aA@a#qe311q2a21A@a11#qe42!,

h05a~e111e33!1~a11!~e221e44!.
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We state
Proposition 1: The Drinfeld generators are represented on Va,z by

h0
15e222e33, h0

25a~e111e22!1~a11!~e331e44!,

Xm
1,15~zqa11!me23, Xm

2,15~zqa11!me32,

Xm
1,25~zqa11!m~q2mA@a#qe121qmA@a11#e34!,

Xm
2,25~zqa11!m~q2mA@a#qe211qmA@a11#qe43!,

~III.3!

hm
1 5~zqa11!m

@m#q

m
~q2me222qme33!,

hm
2 5

zm

m
~@am#q~e111e22!1qm@~a11!m#q~e331e44!!,

and on Va,z* S by

h0
152e221e33, h0

252a~e111e22!2~a11!~e331e44!,

Xm
1,152zmq2ma2m21e32, Xm

2,152zmq2ma2m11e23,

Xm
1,25zmq2~11m!a~A@a#qe212q22m21A@a11#qe43!,

~III.4!
Xm

2,25zmq~12m!a~2A@a#qe121q22m11A@a11#qe34!,

hm
1 52~zq2a21!m

@m#q

m
~qme222q2me33!,

hm
2 52

zm

m
~@am#q~e111e22!1q2m@~a11!m#q~e331e44!!.

IV. VERTEX OPERATORS AT AN ARBITRARY LEVEL kÄa

Let V(l) be a level-k highest weightUq@sl(2û1)]-module with highest weightl and highest
weight vectorul&. Consider the following intertwiners ofUq@sl(2û1)]-modules,

Fl
mV~z! : V~l!→V~m! ^ Va,z , Fl

mV* ~z!:V~l!→V~m! ^ Va,z* S ,
~IV.1!

Cl
Vm~z! : V~l!→Va,z^ V~m!, Cl

V* m~z!:V~l!→Va,z* S
^ V~m!.

They are intertwiners in the sense that for anyxPUq@sl(2û1)],

Q~z!•x5D~x!•Q~z!, Q~z!5F~z!,F* ~z!,C~z!,C* ~z!. ~IV.2!

The intertwiners are even operators, that is their grading is@Q(z)#50. F(z)(F* (z)) is called
type I ~dual! vertex operator andC(z)(C* (z)) type II ~dual! vertex operator.

Expand these vertex operators in terms of their components,

F~z!5(
r 51

4

F r~z! ^ v r , F* ~z!5(
r 51

4

F r* ~z! ^ v r* , ~IV.3!
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C~z!5(
r 51

4

v r ^ C r~z!, C* ~z!5(
r 51

4

v r* ^ C r* ~z!, ~IV.4!

wherev rPVa andv r* PVa*
S . Then we have

Proposition 2: The operatorsF(z) and C(z) with respect to Va,z are determined by the
componentsF4(z) and C1(z), respectively. More explicitly,

F3~z!52
1

Aa11
@F4~z!, f 2#q2a21,

F2~z!5@F3~z!, f 1#q , F1~z!52
1

Aa
@F2~z!, f 2#q2a,

~IV.5!

C2~z!5
1

Aa
@C1~z!,e2#qa, C3~z!5@C2~z!,e1#q ,

C4~z!5
1

Aa11
@C3~z!,e2#qa11.

With respect to Va,z* S , the operatorsF* (z) and C* (z) are determined byF1* (z) and C4* (z),
respectively,

F2* ~z!5
q2a

Aa
@F1* ~z!, f 2#qa, F3* ~z!52q21@F2* ~z!, f 1#q ,

F4* ~z!52
q2a21

Aa11
@F3* ~z!, f 2#qa11,

~IV.6!

C3* ~z!52
qa11

Aa11
@C4* ~z!,e2#q2a21,

C2* ~z!52q@C3* ~z!,e1#q , C1* ~z!5
qa

Aa
@C2* ~z!,e2#q2a.

Next we determine the relations between the componentsF4(z),F1* (z),C1(z),C4* (z) and
the Drinfeld generators. We have

Proposition 3: ForF(z) associated with Va,z ,

@F4~z!,X1,i~w!#50, i 51,2,

qh0
i
F4~z!q2h0

i
5q2~a11!d i2F4~z!,

~IV.7!

@hn
i ,F4~z!#52d i2q~113/2 k!n

@~a11!n#q

n
znF4~z!,

@h2n
i ,F4~z!#52d i2q2~111/2 k!n

@~a11!n#q

n
z2nF4~z!;

for F* (z) associated with Va,z* S ,
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@F1* ~z!,X1,i~w!#50, i 51,2,

qh0
i
F1* ~z!q2h0

i
5qad i2F1* ~z!,

~IV.8!

@hn
i ,F1* ~z!#5d i2q~3/2!kn

@an#q

n
znF1* ~z!,

@h2n
i ,F1* ~z!#5d i2q21/2 kn

@an#q

n
z2nF1* ~z!;

for C(z) associated with Va,z ,

@C1~z!,X2,i~w!#50, i 51,2,

qh0
i
C1~z!q2h0

i
5q2ad i2C1~z!,

~IV.9!

@hn
i ,C1~z!#52d i2q1/2 kn

@an#q

n
znC1~z!,

@h2n
i ,C1~z!#52d i2q23/2 kn

@an#q

n
z2nC1~z!;

and for C* (z) associated with Va,z* S ,

@C4* ~z!,X2,i~w!#50, i 51,2,

qh0
i
C4* ~z!q2h0

i
5q~a11!d i2C4* ~z!,

~IV.10!

@hn
i ,C4* ~z!#5d i2q~1/2 k21!n

@~a11!n#q

n
znC4* ~z!,

@h2n
i ,C4* ~z!#5d i2q~23/2 k11!n

@~a11!n#q

n
z2nC4* ~z!;

To obtain bosonized expressions of the intertwining operators, we introduce the combin
of bosonic oscillators formPZ,

Am* 52S am
1 1

@2m#q

@m#q
am

2 Dqumu/2,

Bm* 52
@am#q

@~a11!m#q
S am

1 1
@2m#q

@m#q
am

2 Dqumu/2,

B̃m* 52S am
1 1

@2m#q

@m#q
am

2 Dq2umu/21~bm
131q2umubm

23!q2~a/2!umu,

Ãm* 52
@am#q

@~a11!m#q
S am

1 1
@2m#q

@m#q
am

2 Dq2umu/22~qumubm
131bm

23!q~3a/2!umu, ~IV.11!

QA* 52Qa122Qa2, QB* 52
a

a11
~Qa112Qa2!,
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QB̃* 52Qa122Qa21Qb131Qb23,

QÃ* 52
a

a11
~Qa112Qa2!2Qb132Qb23.

For k5a, these operators obey the commutation relations, among others,

@Am* ,hn
i #5d i2dm1n,0

@m#q@~a11!m#q

m
5@Ãm* ,hn

i #,

~IV.12!

@Bm* ,hn
i #5d i2dm1n,0

@m#q@am#q

m
5@B̃m* ,hn

i #.

Then
Theorem 2: For k5a, the bosonized formsf4(z), f1* (z), c1(z), and c4* (z) of the vertex

operator componentsF4(z), F1* (z), C1(z), and C4* (z) are given by

f4~z!5:e2A* ~qa11z;2~a/2!!:,

f1* ~z!5:eB* ~qaz;2~a/2!!:,
~IV.13!

c1~z!5:e2B̃* ~qaz;~a/2!!:,

c4* ~z!5:eÃ* ~qa21z;~a/2!!:eA21p~b0
13

1b0
23

!.

The other componentsf r(z), f r* (z), c r(z), and c r* (z) are represented by multiple contou
integrals of the Drinfeld currents (cf. Proposition 2).

Vertex operators~IV.13! are referred to as ‘‘elementaryq-vertex operators’’ and are dete
mined solely from their commutation relations with the bosonizedUq@sl(2û1)] generators. The
construction is completely independent of which infinite dimensional modules the vertex ope
intertwine. In next section, we shall clarify on which space these bosonized vertex operato

V. FOCK SPACE AND FOCK–WAKIMOTO MODULES

In this section we study bosonic Fock space on which theUq@sl(2û1)] generators and the
bosonized vertex operators act. As we will see, all highest weight modules ofUq@sl(2û1)] can be
embedded in the bosonic Fock space. Note thatk5aÞ0,21.

Let u0& be the vacuum vector, which is defined byan
i u0 &5bn

12u0 &5bn
13u0 &5bn

23u0 &5cnu0 &
50 for n>0. Introduce the vector

ula1,la2,lb12,lb13,lb23,lc&5e@1/~a11!#la1Qa11@2/~a11!#la2Qa21lb12Qb121lb13Qb131lb23Qb231lcQcu0&,

~V.1!

which carries the weight (la1 /(a11),2la2 /(a11),lb12,lb13,lb23,lc)PC6. Denote by

F @1/~a11!#la1,@2/~a11!#la2,lb12,lb13,lb23,lc

the module generated by the creation operatorsan
1, an

2, bn
12, bn

13, bn
23, and cn(n,0) over the

vector ula1,la2,lb12,lb13,lb23,lc&. Introduce the bosonic Fock space

F ~la1,la2,lb12,lb13,lb23,lc!5 %
i , j ,l PZ

F @1/~a11!#la1,@2/~a11!#la2,lb121 i 1 j ,lb131 j ,lb231 l ,lc1 i
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It can be shown that the action ofUq@sl(2û1)] on this space is closed, i.e.,Uq@sl(2û1)]F*
5F* for * 5(la1,la2,lb12,lb13,lb23,lc). Hence the Fock spaceF* constitutes a
Uq@sl(2û1)]-module. The elementaryq-vertex operators are maps of the following Fock spac

f r~z!,c r~z! : F ~la1,la2,lb12,lb13,lb23,lc!→F ~la11a11 ,la21a11 ,lb12,lb13,lb23,lc
,

~V.3!
f r* ~z!,c r* ~z! : F ~la1,la2,lb12,lb13,lb23,lc!→F ~la12a ,la22a ,lb12,lb13,lb23,lc! ,

for all r 51,2,3,4.
Let us now discuss the emdedding of the highest weight moduleV(l) in the bosonic Fock

spaceF* . We impose the highest weight conditions on the vectorula1,la2,lb12,lb13,lb23,lc&,

ei ula1,la2,lb12,lb13,lb23,lc&50,
~V.4!

hi ula1,la2,lb12,lb13,lb23,lc&5l i ula1,la2,lb12,lb13,lb23,lc&

for all i 50,1,2. Solving these conditions, we obtain the highest weight vectorub,g,0,0,0,0&, where
b and g are arbitrary complex parameters. The corresponding highest weight islb,g5(a2b
12g)L012(b2g)L12bL2 . Thus we have the identification

ulb,g &5ub,g,0,0,0,0&. ~V.5!

Denote by

F ~b,g!5 %
i , j ,l PZ

F @1/~a11!#b,@2/~a11!#g,i 1 j , j ,l ,i 1 j ~V.6!

the Fock space associated to this highest weight vector. It is easy to see that theUq@sl(2û1)]
action on the subspaceF (b,g) is still closed and thereforeF (b,g) is a Uq@sl(2û1)]-module. Using
the highest weight vectorulb,g&, we construct the level-a highest weight module ofUq@sl(2û1)],

V~lb,g!5Uq@sl~2û1!] ulb,g&. ~V.7!

This module is not irreducible in general, but contains a maximal proper submoduleM (lb,g) such
that V(lb,g)/M (lb,g) yields an irreducibleUq@sl(2û1)] module. It is clear that the modul
V(lb,g) can be embedded in the bosonic Fock spaceF (b,g) . Moreover, from~V.3! the elementary
q-vertex operators are mappings of the Fock spaces,

f r~z!, c r~z! : F ~b,g!→F ~b1a11,g1a11! ,
~V.8!

f r* ~z!, c r* ~z! : F ~b,g!→F ~b2a,g2a! .

However, the Fock spaceF (b,g) contains some redundancies arising from the free bos
field c(z;0). To seethis, we define the fermionic ghost system~h,j! of dimension~1, 0!,

h~z!5 (
nPZ

hnz2n215..ec~z;0!:, j~z!5 (
nPZ

jnz2n5..e2c~z;0!: ~V.9!

The mode expansion ofh(z) and j(z) is well defined onF (b,g) , and the modes satisfy th
relations

jmjn1jnjm505hmhn1hnhm , jmhn1hnjm5dm1n,0 . ~V.10!

Obviously,h0j0 andj0h0 qualify as projectors and so we use them to decomposeF (b,g) into a
direct sum of subspaces
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F ~b,g!5h0j0F ~b,g! % j0h0F ~b,g! . ~V.11!

h0j0F (b,g) is referred to as Kerh0
andj0h0F (b,g)5F (b,g) /h0j0F (b,g) as Cokerh0

.

Proposition 4:h0 commutes (or anticommutes) with the action of Uq@sl(2û1)]. ThusKerh0

and Cokerh0
are both Uq@sl(2û1)]-modules.

We are now in a position to consider a restriction of the Fock spaceF (b,g) to a smaller space
F(b,g) , referred to as the Fock–Wakimoto space.

Proposition 5: The restricted Fock space

F~b,g![Kerh0
F ~b,g!5h0j0F ~b,g! ~V.12!

constitutes a Fock–Wakimoto module of Uq@sl(2û1)].
One can check thath0ulb,g&50 for any b, gPC. Thus ulb,g& is a Uq@sl(2û1)] highest

weight vector belonging to the smaller space Kerh0
F (b,g) . It follows that

Proposition 6: The Fock–Wakimoto moduleF(b,g) is a highest weight Uq@sl(2û1)]-module
with highest weight vectorulb,g& and highest weightlb,g .

Using the projection operatorh0j0 , we define the ‘‘projectedq-vertex operators’’f̃ r(z),
f̃ r* (z), c̃ r(z), andc̃ r* (z) as follows:

Q̃~z!5h0j0Q~z!h0j0 , Q~z!5f r~z!, f r* ~z!, c r~z! or c r* ~z!. ~V.13!

Sinceh0 commutes with the elementaryq-vertex operators, we can deduce from~V.8! that the
projectedq-vertex operators are mappings of the highest weight Fock–Wakimoto modules:

f̃ r~z! : F~b,g!→F~b1a11,g1a11! ,

c̃ r~z! : F~b,g!→F~b1a11,g1a11! ,
~V.14!

f̃ r* ~z! : F~b,g!→F~b2a,g2a! ,

c̃ r* ~z! : F~b,g!→F~b2a,g2a! .

VI. SCREEN CURRENTS AND CORRELATION FUNCTIONS

Due to the existence of backgound charges, the projectedq-vertex operators are not yet th
proper bosonizations of theq-vertex operators~IV.1!. In this section we constructq-screen cur-
rents which balance the background charges and thus ensure the nonvanishing of cor
functions of the bosonizedq-vertex operators.

Let us introduce the oscillators

am*
,i5

@m#q

@~k11!m#q
am

i , Qa* ,i5
1

k11
Qai, i 51,2 ~VI.1!

and define the corresponding currentsSi(z) by

Si~z!5: e2a* ,i ~z;~k11!/2!:S̃i~z!, ~VI.2!
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S̃1~z!5: e2b12~z;0!2b2
12

~q21z!2b2
13

~q21z!1b2
23

~z!
1]ze

2c~q21z;0!: eA21p~c01b0
12

!

1q: eb13~z;0!2b23~qz;0!1b1
23

~z!: e2A21p~b0
13

1b0
23

!, ~VI.3!

S̃2~z!52q21: eb23~z;0!: e2A21p~c01b0
12

1b0
13

1b0
23

!. ~VI.4!

Here we have used the notation

k]zf ~z!5
f ~qkz!2 f ~q2kz!

~q2q21!z
. ~VI.5!

Then we can verify
Theorem 3: The currents Si(z) satisfy the following commutation relations with th

Uq@sl(2û1)] generators,

@hn
i ,Sj~w!#50, nPZ,

@X1,i~z!,Sj~w!#50, ~VI.6!

@X2,i~z!,Sj~w!#5d i j
k11]wS 2z21

•dS w

z D : e2a* ,i ~w;2~k11!/2!: D .

That is, the currents Si(z) (anti-)commute with the action of Uq@sl(2û1)] up to total differences.

The currents Si(z) are referred to as the q-screen currents of Uq@sl(2û1)].
For pPC, upu,1 andsPC2$0%, one defines the Jackson integral

E
0

s`

f ~z!dpz5s~12p! (
mPZ

f ~spm!pm. ~VI.7!

The Jackson integral enjoys the following property, among others,

E
0

s`

f ~z!dpz5E
0

s`

p f~pz!dpz, ~VI.8!

which implies that forp5q2k,

E
0

s`

k]zf ~z!dpz50. ~VI.9!

Note that the right-hand side of~VI.6! is a totalp5q2(k11) difference. We have
Corollary 1: The screen charges

Qi5E
0

s`

Si~z!dpz, p5q2~k11!, ~VI.10!

assuming that the Jackson integrals are convergent, (anti-)commute with all the generat

Uq@sl(2û1)].
Sinceh0 commutes withSi(z),i 51,2, the screen charges withk5a give rise to the following

mappings of the Fock–Wakimoto modules,

Q1 : F~b,g!→F~b21,g! , ~VI.11!

Q2 : F~b,g!→F~b,g21/2! . ~VI.12!
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Introduce the screenedq-vertex operators,

f̃ r
~x1 ,x̃1!

~z!5~Q1!x1~Q2! x̃1f̃ r~z!,

f̃ r
* ~y1 ,ỹ1!

~z!5~Q1!y1~Q2! ỹ1f̃ r* ~z!,

~VI.13!

c̃
r
~x18 ,x̃18!

~z!5~Q1!x18~Q2! x̃18c̃ r~z!,

c̃
r
* ~y18 ,ỹ18!

~z!5~Q1!y18~Q2! ỹ18c̃ r* ~z!.

We are now in a position to state
Theorem 4: The q-vertex operators (IV.1) are bosonized as

F̃
lb,g

lb
1
1 ~x!,g

1
1 ~ x̃!V~z!5(

r 51

4

f̃ r
~x1 ,x̃1!

~z! ^ v r ,

F̃
lb,g

lb
2
1 ~y!,g

2
1 ~ ỹ!V*

~z!5(
r 51

4

f̃ r
* ~y1 ,ỹ1!

~z! ^ v r* ,

~VI.14!

C̃
lb,g

Vlb
1
1 ~x8!,g

1
1 ~ x̃8!~z!5(

r 51

4

v r ^ c̃
r
~x18 ,x̃18!

~z!,

C̃
lb,g

V* lb
2
1 ~y8!,g

2
1 ~ ỹ8!~z!5(

r 51

4

v r* ^ c̃
r
* ~y18 ,ỹ18!

~z!,

where

b1
1 ~x!5b1a112x1 , g1

1 ~ x̃!5g1a112 1
2 x̃1 ,

~VI.15!
b2

1 ~y!5b2a2y1 , g2
1 ~ ỹ!5g2a2 1

2 ỹ1

for certain choices of non-negative integers x1 , x̃1 , y1 , and ỹ1 . These operators are intertwiner

of the highest weight Uq@sl(2û1)]-modules,

F̃
lb,g

lb
1
1 ~x!,g

1
1 ~ x̃!V~z! : F~b,g!→F~b

1
1 ~x!,g

1
1 ~ x̃!! ^ Va,z ,

F̃
lb,g

lb
2
1 ~y!,g

2
1 ~ ỹ!V*

~z! : F~b,g!→F~b
2
1 ~y!,g

2
1 ~ ỹ!! ^ Va,z* S ,

C̃
lb,g

Vlb
1
1 ~x8!,g

1
1 ~ x̃8!~z! : F~b,g!→Va,z^ F~b

1
1 ~x8!,g

1
1 ~ x̃8!! ,

~VI.16!

C̃
lb,g

V* lb
2
1 ~y8!,g

2
1 ~ ỹ8!~z! : F~b,g!→Va,z* S

^ F~b
2
1 ~y8!,g

2
1 ~ ỹ8!! .

In the following we computeN-point correlation function which is defined to be the trace
the bosonizedq-vertex operators over theUq@sl(2û1)]-moduleF(b,g) , that is

TrF~b,g!
~qL0Q r N

~zN!¯Q r 1
~z1!!. ~VI.17!
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Here Q r l
(zl) stands for the type Iq-vertex operatorsf̃ r l

(xl ,x̃l )(zl),f̃ r l
* (yl ,ỹl )(zl) or the type II

q-vertex operatorsc̃
r l

(xl8 ,x̃l8)
(zl), c̃

r l

* (yl8 ,ỹl8)
(zl); L0[2d is the q-Virasoro operator which is

bosonized as~for k5aÞ0,21!,

2L05 (
n.0

S n2

@n#q@~a11!n#q
~a2n

1 an
21a2n

2 an
11~qn1q2n!a2n

2 an
2!

1
n2

@n#q
2 ~b2n

12 bn
122b2n

13 bn
132b2n

23 bn
232c2ncn! D 1

1

a11
~a0

1a0
21~a0

2!21a0
113a0

2!

1 1
2 ~~b0

12!22b0
13~b0

1311!2b0
23~b0

2311!2~c0!2!. ~VI.18!

The zero mode part of thean
1,an

2 oscillators is added to theL0 operator so that its eigenvalue o
ulb,g& is 1/2(a11)(lb,g ,lb,g12p), wherer5L01L11L2 .

Let us define the Fock spaces forsPZ,

F ~b,g!
~s! 5 %

i , j ,l PZ

F @1/~a11!#b,@2/~a11!#g,i 1 j , j ,l ,i 1 j 1s . ~VI.19!

We haveF (b,g)
(0) 5F (b,g) . It can be shown thath0 ,j0 intertwine various Fock spaces

h0 : F ~b,g!
~s! →F ~b,g!

~s11! , j0 : F ~b,g!
~s! →F ~b,g!

~s21! .

Sinceh0
250, we obtain the following BRST complex:

¯ ——→
Qs215h0

F ~b,g!
~s! ——→

Qs5h0

F ~b,g!
~s11! ——→

Qs115h0

¯ . ~VI.20!

It follows from h0j01j0h051, that KerQs
5ImQs21

for any sPZ. We have
Proposition 7: The N-point correlation function of the type I vertex operators,

TrF~b,g!
~qL0f̃ r N

~xN ,x̃N!
~zN!¯f̃ r 1

~x1 ,x̃1!
~z1!!Þ0

iff aPN and ( i 51
N xi5

1
2 ( i 51

N x̃i5N(a11). For sucha and xi , x̃i , the above trace is given by

(
s51

`

~21!s11TrF
~b,g!
~2s! ~qL0~Q1!xN~Q2! x̃Nf r N

~zN!¯~Q1!x1~Q2! x̃1f r 1
~z1!!. ~VI.21!

Similarly, the N-point correlator of the type II vertex operators,

TrF~b,g!
~qL0c̃

r N

~xN8 ,x̃N8 !
~zN!¯c̃

r 1

~x18 ,x̃18!
~z1!!

5(
s51

`

~21!s11TrF
~b,g!
~2s! ~qL0~Q1!xN8 ~Q2! x̃N8 c r N

~zN!¯~Q1!x18~Q2! x̃18c r 1
~z1!!

~VI.22!

is nonvanishing iffaPN and( i 51
N xi851/2( i 51

N x̃i85N(a11).
We now consider theN-point correlation function involving also dual vertex operators,

TrF~b,g!
~qL0f̃ r N

* ~yN ,ỹN!
~zN!¯f̃ r l 11

* ~yl 11 ,ỹl 11!
~zl 11!f̃ r l

~xl ,x̃l !~zl !¯f̃ r 1

~x1 ,x̃1!
~z1!!. ~VI.23!

Then we have
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Proposition 8: ForaPN, (VI.23) is nonzero iff( i 51
l xi1( i 5 l 11

N yi5
1
2 (( i 5 l

l x̃i1( i 5 l 11
N ỹi)

5(2l 2N)a1 l . And for a¹N it is nonvanishing iff N is even, i.e., N52L, and l5L5( i 51
L xi

1( i 5L11
N yi5

1
2 (( i 51

L x̃i1( i 5L11
N ỹi). In both cases, the trace (VI.23) can be written as the f

lowing unified formula:

~VI.23!5(
s51

`

~21!s11TrF
~b,g!
~2s! ~qL0~Q1!yN~Q2! ỹNf r N

* ~zN!¯~Q1!yl 11~Q2! ỹl 11f r l 11
* ~zl 11!

3~Q1!xl~Q2! x̃lf r l
~zl !¯~Q1!x1~Q2! x̃1f r 1

~z1!!. ~VI.24!

An integral formula for the N-point functions of type II (dual) vertex operators can be wri
down in a similar way, which we omit.
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Given an Ehresmann connectiong on a fibered manifoldp:E→M , a covariant
Hamiltonian densityHg is then associated to each Lagrangian densityL on J1E.
AssumeE is the bundle of connections of a principal bundle and thatL is gauge
invariant. Our goal in this paper is to determine conditions ong under whichHg is
also gauge invariant. The general conclusion is that there is no gauge-invariant
Ehresmann connection but there is plenty of such connections providing gauge-
invariant covariant Hamiltonians. The relevant cases ofU(1) bundles andSU(2)
bundles are discussed in detail. ©2000 American Institute of Physics.
@S0022-2488~00!00808-2#

I. INTRODUCTION

In the last five years the theory of covariant Hamiltonians has intensively been studied a
role in the multisymplectic structure attached to a variational problem, has specially been
lyzed; e.g., see Refs. 1–4 and the references therein.

In the present work, we investigate explicit conditions that allow us to ensure that the
riant Hamiltonian corresponding to a gauge-invariant Lagrangian density is also gauge inv

We follow the geometric approach to field theory so that fields are described by the se
of a fibered manifoldp:E→M , and the results are formulated in terms of jet bundlesJrE ~Refs.
5–9!. Specifically, we are concerned with Lagrangian densities defined on the first jet manif
the bundle of connectionsp:C→M of a principalG bundlep:P→M , which are invariant under
the natural action of the gauge algebra ofP on C, the so-called gauge-invariant Lagrangians~Refs.
10–12! introduced by Utiyama in his classical work.13 If L is such a Lagrangian, then it is know
that its Poincare´–Cartan formQL is also gauge invariant due to the natural character of
assignmentL°QL . Hence, a basic question in the reduction problem is how to choos
Ehresmann connectiong on C, i.e., a splittingTC5VC% kerg, in such a way that the corre
sponding covariant Hamiltonian densityHg should also be gauge invariant. This is specia
interesting for regular Lagrangians, as in this caseHg produces a canonical Hamiltonian structu
on the primary constraint manifoldPL ~see Ref. 2, Sec. 3!, which is expected to be gauge invaria
if L is.

Throughout this paper, capital indices run from 1 tom5dimG, and small indices run from 1
to n5dim M .

A system of coordinates (xj ) on M and a basis (BI) of the Lie algebrag of G, induce a system
of coordinates (xj ,Aj

I ) on C so thatAj
I parametrize gauge potentials@see the formulas~18!, ~19! in

Sec. V#, andg is written as

g5~dAj
I1g jk

I dxk! ^
]

]Aj
I ,

a!Electronic mail: plgarcia@gugu.usal.es
52920022-2488/2000/41(8)/5292/12/$17.00 © 2000 American Institute of Physics
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for certain differentiable functionsg jk
I on C. An important consequence of our results is that

gauge-invariance condition onHg only affects the skew-symmetric part1
2(g jk

I 2gk j
I ), whereas the

symmetric part12(g jk
I 1gk j

I ) remains unaffected. For example ifG is Abelian, the conditions in
order for Hg to be gauge invariant simply state that the functions1

2(g jk
I 2gk j

I ) ~which are, in
principle, defined onC! are p projectable ontoM. For the caseG5U(2), if we consider the
standard basis (B1 ,B2 ,B3) of su~2! ~Pauli matrices! and we denote, as above, the components
the Ehresmann connectiong by g jk

I ,I 51,2,3, then the conditions state that, for everyj ,k, the
vector in R3 whose components areg jk

I 2gk j
I is opposite to the cross product of the vecto

(Aj
1,Aj

2,Aj
3) and (Ak

1,Ak
2,Ak

3) ~see Proposition 5 of Sec. X!. We also develop general conditions
Theorem 1 of Sec. VIII.

Moreover, if the Lie algebra of the structure groupG has a trivial center, then the invarianc
condition completely determines the skew-symmetric part, which is a quadratic function o
gauge potential coordinates. On the other hand, Abelian groups do admit Ehresmann conn
depending linearly onAj

I and furnishing gauge-invariant covariant Hamiltonians.

II. LEGENDRE AND POINCARÉ –CARTAN FORMS

Given a fibered manifoldp:E→M ~i.e., p is a surjective submersion! with dim M5n,
dimE5m1n, a coordinate system (xj ,yI) on an open domain inE, is said to be a system o
fibered coordinates forp if xjPp* C`(M ). Such a system induces coordinates (xj ,yI ,yj

I ) on J1E
by setting

yj
I~ j x

1s!5
]~yI+s!

]xj ~x!, ~1!

for every local sections of p defined on an open neighborhood ofxPM .
We denote byV(E) the vector subbundle ofp-vertical tangent vectors inT(E); i.e., V(E)

5kerp* . With the notations above,V(E) is generated locally by]/]yI .
The structure form onJ1E is theV(E)-valued differential 1-formu locally given by

u5u I
^

]

]yI , ~2!

where

u I5dyI2yj
I dxj , ~3!

are the standard contact 1-forms onJ1E.
The Poincare´–Cartan form of a Lagrangian densityL on J1E can globally be written as

QL5u`vL1L, ~4!

where vL is the Legendre~or momentum! form associated withL. This is a V* (E)-valued
p1-horizontal (n21)-form vL on J1E, wherep1 :J1E→M is the canonical projection, whos
local expression is

vL5~21! j 21
]L

]yj
I dx1`¯`dx̂j`¯`dxn

^ dyI , ~5!

with

L5L dx1`¯`dxn. ~6!

Remark 1: In a recent paper,2 the covariant Legendre transformation is introduce
FL:J1(E)→J1(E)* , where the fiber atePE of the dual jet bundle is defined to be the set of
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affine maps fromJe
1(E) to `nTx* (M ), x5p(e). The relationship between both notions is simp

for every j x
1sPJ1(E), (vL) j

x
1s can be identified to the linear part of the affine ma

FL( j x
1s):Js(x)

1 (E)→`nTx* (M ).

III. HAMILTONIAN ATTACHED TO A CONNECTION

An Ehresmann connection onE is a V(E)-valued differential 1-formg on E, such that

g~X!5X, ;XPV~E!. ~7!

On a fibered coordinate system (xj ,yI), its local expression is

g5~dyI1g j
I dxj ! ^

]

]yI , g j
IPC`~E!. ~8!

Once an Eheresmann connectiong has been chosen, the differencep10* g2u is p1 horizontal by
virtue of the formulas~2!, ~3!, ~8!, and we define the covariant Hamiltonian corresponding t
Lagrangian densityL, by the formula

Hg5H~g,L!5~p10* g2u1!∧vL2L. ~9!

Expanding on the right-hand side and taking, into account the formula~4!, we quickly obtain the
decomposition of the Poincare´–Cartan form that generalizes the classical formula in Mechan
i.e.,

QL5p10* g`vL2Hg. ~10!

If L5L dx1`¯`dxn, LPC`(J1E), then Hg5Hgdx1`¯`dxn, where the functionHg

PC`(J1E) is locally given by

Hg5~g j
I1yj

I !
]L

]yj
I2L. ~11!

IV. GAUGE FIELDS

From now on, let us fix a principalG-bundlep:P→M . A gauge transformation~or vertical
automorphism! of a principalG-bundlep:P→M is an equivariant diffeomorphismF:P→P such
thatp+F5p. The set of all gauge transformations ofP is a group that is denoted by GauP, and
it is called the gauge group of the given bundle.

If F t is the flow of ap-vertical vector fieldXPX(P), thenX is G invariant if and only if
F tPGauP, ;tPR. Because of this we think ofG-invariantp-vertical vector fields as being th
‘‘Lie algebra’’ of the gauge group GauP ~cf. Refs. 10–12 and 14!.

The set of allG-invariant p-vertical vector fields ofP is a Lie subalgebra ofX(P) that is
denoted by gauP, and it is called the gauge algebra ofP. Passing to the quotient moduloG in the
sequence of vector bundles overP,

0→V~P!→T~P! ——→
p

*
p* T~M !→0, ~12!

we obtain an exact sequence of vector bundles overM @the so-called Atiyah sequence,~Refs. 15,
11, 12, and 16!#,

0→adP5V~P!/G→T~P!/G ——→
p

*
T~M !→0, ~13!
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wherepg :adP→M is the adjoint bundle, i.e., the bundle associated withP and the the adjoint
representation ofG on its Lie algebrag.

The sections of the quotient bundleT(P)/G can be identified with theG-invariant vector
fields onP, and the sections of the adjoint bundle can be identified with the gauge algebra~e.g.,
see Ref. 14!, that is,G(M ,adP)5gauP.

Let U#M be an open subset trivialyzingP; i.e.,

p21~U !.U3G. ~14!

For everyBPg we define a one-parameter group of gauge transformations by setting

w t
B :U3G→U3G,

~15!
w t

B~x,g!5„x,exp~ tB!•g).

The infinitesimal generator ofw t
B is denoted byB̄, which is aG-invariantp-vertical vector

field on p21(U). Let B̃ be the orbit ofB̄ in adP5V(P)/G. If B1 ,...,Bm is a basis ofg, with
m5dimG, thenB̃1 ,...,B̃m is a basis ofG(U,adP). Accordingly, every gauge fieldXPgauP can
be written as

X5gIB̃I , gIPC`~U !. ~16!

V. THE BUNDLE OF CONNECTIONS

Principal connections onP ~we speak of ‘‘principal connections’’ in order to distinguish the
from Ehresmann connections! correspond in a natural and bijective way with the splittings of
Atiyah sequence~13!. The correspondence is stated as follows. The horizontal liftXhGPX(P) of
a vector fieldXPX(M ) with respect to a connectionG on P @Ref. 17, Sec. II.1# is G invariant and
projects ontoX ~Ref. 17, Sec. II, Proposition 1.2!. Hence we have a splitting:

TM→T~P!/G,
~17!

X°XhG ~modG!,

of the Atiyah sequence. Conversely, any splittings:TM→T(P)/G of ~13! comes from a unique
connection onP.

Hence, there exists a bundlep:C5C(P)→M whose global sections can be identified with t
principal connections onP ~e.g., see Refs. 15, 11, 12, and 16!. This bundle is affine and modele
over T* (M ) ^ adP.

We denote bysG :M→C the section of the bundle of connections induced tautologically
G.

Let us introduce coordinates onp:C→M . If U#M is an open subset as in~14! and we
further assume thatU is the domain of a coordinate system (xj ), then for every connectionG on
P there exist unique functionsG j

IPC`(U), such that

S ]

]xj D hG

5
]

]xj2G j
I B̃I ~modG!, ~18!

and we can define functions

Aj
I :p21~U !→R, ~19!

by settingAj
I (Gx)5G j

I (x). The functions (xj ,Aj
I ) constitute a coordinate system on the bundle

connections. We denote by (xj ,Aj
I ;Aj ,k

I ) the induced coordinate system onJ1C @cf. formula ~1!#;
i.e.,
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Aj ,k
I ~ j x

1sG!5
]~Aj

I +sG!

]xk ~x!. ~20!

VI. Gau P ACTING ON C„P…

Each gauge transformationF:P→P acts on connections by pulling back connection for
@see Ref. 17, Sec. II, Proposition 6.2-~b!#:

G85F•G, vG85~F21!* vG . ~21!

HenceF induces a unique diffeomorphismFC :C(P)→C(P) such that

FC+sG5sF•G , ~22!

for every connectionG on P.
If F t is the flow of a gauge fieldXPgauP, then (F t)C is a one-parameter group inC(P) and

the corresponding infinitesimal generator is denoted byXC . In this way we obtain a Lie algebra
homomorphism,

gauP→X„C~P!…,
~23!

X°XC ,

which is the natural action of gauge fields ofP on the bundle of connections. If~16! is the local
expression ofXPgauP in the basisB̃1 ,...,B̃m , then the local expression forXC is given by~see
Ref. 18!

XC5S cHJ
I gHAj

J2
]gI

]xj D ]

]Aj
I , ~24!

wherecHJ
I are the structural constants ofg in the basisB1 ,...,Bm .

VII. GAUGE-INVARIANT LAGRANGIANS

A Lagrangian densityL on the bundle of connectionsp:C→M of a principal bundlep:P
→M is said to be gauge invariant if

LX
C
~1!~L!50, ;XPgauP. ~25!

By using the standard formulas for vector field jet prolongation~e.g., see Refs. 19 and 20! and
the previous formula forXC , we obtain

XC
~1!5S cHJ

I gHAj
J2

]gI

]xj D ]

]Aj
I 1S cHJ

I S gHAj ,k
J 1

]gH

]xk Aj
JD2

]2gI

]xj ]xkD ]

]Aj ,k
I . ~26!

The classification of gauge-invariant Lagrangian densities is given by the geometric for
tion of Utiyama’s theorem~Refs. 10, 12, and 13!, which tells us that a Lagrangian densityL
5L dx1`¯`dxn is gauge invariant if and only if there exists a differentiable function,

L̄:`2T* ~M ! ^ adP→R, ~27!

which must also be invariant under the natural action of the adjoint representatio
`2T* (M ) ^ adP, such that

L5L̄+V, ~28!
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whereV:J1(C)→`2T* (M ) ^ adP is the curvature mappingV( j x
1sG)5(VG)x .

Let Rjk
I , j ,k, be the coordinate system induced by (xj ) and (BI) on ∧2T* (M ) ^ adP; i.e.,

h5(
j ,k

Rjk
I ~h!~dxj !x`~dxk!x^ ~B̃I !x , ;hP`2Tx* ~M ! ^ ~adP!x . ~29!

The equations of the curvature mapping are~e.g., see Ref. 18!

V jk
I 5Rjk

I +V5Aj ,k
I 2Ak, j

I 2cHJ
I Aj

HAk
J . ~30!

VIII. GAUGE-INVARIANT HAMILTONIANS

Theorem 1:Letp:P→M be a principal G bundle, let B1 ,...,Bm be a basis of the Lie algebra
g of G with structural constants,

@BH ,BI #5cHI
J BJ , ~31!

let L be a gauge-invariant Lagrangian density on the bundle of connections p:C→M of P, and let
Hg5H(g,L) be the covariant Hamiltonian induced by an Ehresmann connection on C,

g5~dAj
I1g jk

I dxk! ^
]

]Aj
I , g jk

I PC`~C!. ~32!

Set

D jk
I 5g jk

I 2gk j
I , j ,k. ~33!

We have the following.
~1! The following two conditions are sufficient forHg to be gauge invariant:

cHK
J Au

K
]D jk

I

]Au
J 2cHK

I D jk
K 50, ~34!

]D jk
I

]Al
H 2cHK

I ~Aj
Kdkl2Ak

Kd j l !50, ~35!

where H,I , j ,k,l , j ,k, are fixed indices.
~2! If g has trivial center, the only solution to the equations (1), (2) is

D jk
I 52cHJ

I Aj
HAk

J . ~36!

Hence, in this case, the skew-symmetric part ofg is completely determined.
~3! If the function L̄in Utiyama’s theorem [formulas (27) and (28)] satisfies

detS ]2L̄

]Ri j
J ]Rkl

H DÞ0,

with i, j ,k, l , then the conditions (34), (35) are also necessary forHg to be gauge invariant.
Proof: As L is gauge invariant from the formula~11!, it follows thatHg is gauge invariant if

and only if for everyX5gIB̃IPgauP @cf. formula ~16!# the following equation holds true:

~XCg jk
I 1XC

~1!Aj ,k
I !

]L

]Aj ,k
I 1~g jk

I 1Aj ,k
I !XC

~1!S ]L

]Aj ,k
I D 50. ~37!
                                                                                                                



ulas

us

ve

5298 J. Math. Phys., Vol. 41, No. 8, August 2000 Fernandez, Garcia, and Masque

                    
By using the formula~26! we obtain

]

]Aj ,k
I +XC

~1!2XC
~1!+

]

]Aj ,k
I 5F ]

]Aj ,k
I ,XC

~1!G5cHI
K gH

]

]Aj ,k
I ,

and taking into account thatXC
(1)L50 @hence (]/]Aj ,k

I +XC
(1))L50# we can substitute

2cHI
K gH(]L/]Aj ,k

I ) for XC
(1)(]L/]Aj ,k

I ) in ~37!, thus yielding

05H S 2
]gJ

]xl 1cHK
J gHAl

KD ]g jk
I

]Al
J 2

]2gI

]xj ]xk 1cHK
I S gHAj ,k

K 1
]gH

]xk Aj
KD2cHK

I gH~g jk
K 1Aj ,k

K !J ]L

]Aj ,k
I .

~38!

Next, we use the geometric formulation of Utiyama’s theorem. According to the form
~27!–~29!, we have

]L

]Aj ,k
I 5 (

u,v
S ]L̄

]Ruv
K +V D ]Vuv

K

]Aj ,k
I ,

and taking into account the equations~30!, we obtain

]Vu,v
K

]Aj ,k
I 5H d IKd judkv , if j <k,

2d IKd judkv , if j >k.

Therefore the equation~38! transforms into the following:

05(
j ,k

H gHS cHK
J Au

K
]D jk

I

]Au
J 2cHK

I D jk
K D 2

]gH

]xl S ]D jk
I

]Al
H 2cHK

I ~Aj
Kdkl2Ak

Kd j l ! D J S ]L̄

]Rjk
I +V D .

~39!

Accordingly, the equation~37! holds~and henceHg is gauge invariant! if the equations~34!, ~35!
hold true. Moreover, substituting the expression obtained in~35! for ]D jk

I /]Au
J into ~34!, we obtain

cHK
J cKL

I Au
K~Aj

Ldk
u2Ak

Ld j
u!2cHK

I D jk
K 50,

and taking into account the Jacobi identity, the previous equation becomes

cHK
I ~D jk

K 1cJL
K Aj

JAk
L!50,

which means that the vector (D jk
K 1cJL

K Aj
JAk

L)BK belongs to the center of the Lie algebra, th
proving the part~1!. As for ~2!, the result follows by simply checking that~36! satisfies the
equations~34!, ~35!. Finally, by taking partial derivatives with respect toAu,v

J ,u,v, in ~39! we
obtain

05(
j ,k

H gHS cHK
J Au

K
]D jk

I

]Au
J 2cHK

I D jk
K D 2

]gH

]xl S ]D jk
I

]Al
H 2cHK

I ~Aj
Kdkl2Ak

Kd j l ! D J S ]2L̄

]Ruv
J ]Rjk

I +V D .

If L̄ satisfies the regularity condition in the part~3! of the statement, then from the equation abo
we obtain

05gHS cHK
J Au

K
]D jk

I

]Au
J 2cHK

I D jk
K D 2

]gH

]xl S ]D jk
I

]Al
H 2cHK

I ~Aj
Kdkl2Ak

Kd j l ! D .

As the valuesgH(x),(]gH/]xl)(x) can be taken arbitrarily, we conclude that~34!, ~35! hold
true. j
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IX. AFFINE EHRESMANN CONNECTIONS

As Theorem 1 shows, the Ehresmann connections that provide gauge-invariant co
Hamiltonians are typically quadratic in the field variablesAj

I . We prove below that Ehresman
connections whose components are linear functions of the variablesAj

I also exist but, unfortu-
nately, they do not provide gauge-invariant covariant Hamiltonians in general.

Proposition 2: Letp:P→M be a principal G bundle. A connectionG0 on P and a linear
connection¹ on M induce a first-order Ehresmann connectiong on the bundle of connection
p:C5C(P)→M of the given principal bundle.

Proof: We only need to define a sections:C→J1C of the canonical projectionp10:J1C
→C as g5s* u1 is an Ehresmann connection. The adjoint bundlepg :adP→M is the bundle
associated toP under the adjoint representation ofG on its Lie algebra. HenceG0 induces a
covariant derivative on the sections of adP ~e.g., see@Ref. 17, Sec. III.1#!, which we denote by
¹0 . Given a connectionG on P, let vG be its connection form. The differencevG2vG0

can be
viewed as a section of the bundleT* (M ) ^ adP, since p:C5C(P)→M is an affine bundle
modeled overT* (M ) ^ adP ~e.g., see Refs. 15, 12!. Hence, we can consider its covariant diffe
ential with respect to the covariant derivative¹ ^ ¹0 , induced by¹0 and the given linear con
nection¹, on T* (M ) ^ adP. We claim that for every pointGxPC there exists a unique 1-jet o
connectionj x

1sGPJ1C, such that~i! sG(x)5Gx , ~ii ! „(¹ ^ ¹0)(vG2vG0
)…x50.

If it is the case, then we can define the sections by simply settings(Gx)5 j x
1sG , wherej x

1sG

is the 1-jet determined by the conditions~i! and ~ii ! above.
In order to prove~ii ! we first remark that, with the notations of the formula~18!, we have

vG2vG0
5(G j

I2G0 j
I )dxj

^ B̃I , where we setG0 j
I 5(G0) j

I . Moreover, as a computation shows,¹0

is given by

~¹0!]/]xj~gIB̃I !5S ]gI

]xj 2cHK
I gHG0 j

k D B̃I , gIPC`~U !, ~40!

where@BH ,BK#5cHK
I BI . Hence, ifG i j

l are the local symbols of¹ in (xj ), i.e.,

¹]/]xi~]/]xj !5G i j
l ~]/]xl !,

then we have

~¹ ^ ¹0!~vG2vG0
!S ]

]xh ,
]

]xI D5F]~Gk
I 2G0k

I !

]xh 2cHJ
J (Gk

H2G0k
H G0h

J 2Ghk
j ~G j

I2G0 j
I !G B̃I .

Accordingly, the condition~ii ! holds true if and only if

]Gk
I

]xh ~x!5
]G0k

I

]xh ~x!1cHJ
I
„Gk

H~x!2G0k
H ~x!…G0h

J ~x!1Ghk
j ~x!„G j

I~x!2G0 j
I ~x!…. ~41!

This shows that~i! and ~ii ! completely determine the 1-jet prolongation ofG at xPM , thus
finishing the proof. j

Remark 2:From the formula~41! it follows that the equations of the sections:C→J1C
induced byG0 and¹ are, according to Theorem 1,

s* Aj ,k
I 5

]G0 j
I

]xk 1cHJ
I ~Aj

H2G0 j
H !G0k

J 1Gk j
l ~Al

I2G0l
I !. ~42!

Hence, the associated connection form is given by
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g5s* u15~dAj
I1g jk

I dxk! ^
]

]Aj
I , g jk

I 52s* Aj ,k
I . ~43!

As the formulas~42! show, the sections:C→J1C is an affine map with respect to the affin
structures ofC andJ1C overM, whose associated linear maps̄:T* M ^ adP→J1(T* M ^ adP) is
the section associated to the retractr¹ ^ ¹0:J1(T* M ^ adP)→T* M ^ (T* M ^ adP) correspond-
ing to ¹ ^ ¹0 ; that is,r¹ ^ ¹0( j x

1j)5„(¹ ^ ¹0)j…x , for everyjPG(M ,T* M ^ adP).

X. TWO RELEVANT CASES

In this section we analyze the cases in which the groupG is either Abelian orSU(2). In
particular, in both cases we shall prove that if the covariant Hamiltonian ofeverygauge-invariant
Lagrangian is also assumed to be gauge invariant, then the equations~34! and ~35! hold neces-
sarily ~Corollary 3 and Proposition 5 below!. Hence, forU(1) bundles andSU(2) bundles these
equations characterize the Ehresmann connections providing gauge-invariant covariant H
nians for all gauge-invariant Lagrangian densities.

Corollary 3: With the same notations and hypotheses as in Theorem 1, assume that the
G is commutative. The covariant HamiltonianHg of every gauge-invariant densityL is gauge
invariant if and only ifg jk

I 2gk j
I PC`(U); in other words, the functions12(g jk

I 2gk j
I ), which are, in

principle, defined on C, must be p projectable onto M.
Proof: The condition for the functionL̄ above to be invariant under the action of the gau

algebra on the curvature bundle is~see Ref. 18!

cHJ
I gHRjk

J ]L̄

]Rjk
I 50, ;gHPC`~U !. ~44!

Hence, in the Abelian case the action of the gauge algebra on the curvature bundle is
Accordingly, the functionL̄ is arbitrary and the equation~35!, which now reads as]D jk

I /]Al
H

50, is not only sufficient but also necessary forHg to be gauge invariant as follows from th
formula ~39!, and we can conclude by remarking that, in this case, the equation~34! is identically
satisfied. j

Corollary 4: Let g be the Ehresmann connection on p:C(P)→M induced by a linear con-
nection¹ on M and a connectionG0 on p:P→M , as stated in Proposition 2. Then we have t
following.

~1! If ¹ is torsion free, g jk
I 2gk, j

I does not depend on¹.
~2! The connectiong satisfies the conditions (34), (35) of Theorem 1 if and only if¹ is torsion

free andg is Abelian.
Proof: From the formulas~42!, ~43! we obtain

D jk
I 5g jk

I 2gk j
I 5

]G0k
I

]xj 2
]G0 j

I

]xk 12cHJ
I G0 j

H G0k
J 1cHJ

I ~G0 j
J Ak

H2G0k
J Aj

H!1~G jk
l 2Gk j

l !~Al
I2G0l

I !.

If G jk
l 5Gk j

l , then the previous formula proves~1! in the statement. As for~2!, let us impose that
the condition~35! hold. From the formula above we have

]D jk
I

]Al
H 52cHJ

I ~G0 j
J dkl2G0k

J d j l !1~G jk
l 2Gk j

l !dhi . ~45!

Hence,~35! holds if and only if

cHJ
I ~G0 j

J dkl2G0k
J d j l !1~G jk

l 2Gk j
l !dHI5cHJ

I ~Aj
Jdkl2Ak

Jd j l !.
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Taking the partial derivative with respect toAj
J on this equation, we conclude that the structu

constants must vanish. Conversely, ifg is Abelian then the equation~45! tells us that the condition
~35! holds if and only if¹ is torsion free.

Remark 3:If ¹ is torsion free andg is Abelian, then from the first formula of the proof abov
we obtain

g jk
I 2gk j

I 5
]G0k

I

]xj 2
]G0 j

I

]xk ,

or, equivalently,

d~G0k
I dxk!5(

j ,k
~g jk

I 2gk j
I !dxj∧dxk.

Hence, the differencesg jk
I 2gk j

I measure the nonflatness of the connectionG0 .
Proposition 5: Let B1 ,B2 ,B3 be the basis ofsu(2) given by

B15
1

2 S i 0

0 2 i D , B25
1

2 S 0 1

21 0D , B35
1

2 S 0 i

i 0D ,

so that2iBa,1<a<3, are the Pauli matrices and letp:P→M be a principal SU(2) bundle. If
the covariant HamiltonianHg of every gauge-invariant Lagrangian densityL on the bundle of
connections of P, is also gauge invariant, then the conditions (34), (35) of Theorem 1 with re
to the basis above hold true. Furthermore, we have

~D jk
1 ,D jk

2 ,D jk
3 !52~Aj

1,Aj
2,Aj

3!3~Ak
1,Ak

2,Ak
3!, ~46!

where3 stands for the cross product.
Proof: In this casem5dimG53. We have@B1 ,B2#5B3 ; @B2 ,B3#5B1 ; @B3 ,B1#5B2 .

Hence the conditions~41! expressing thatL̄ is gauge invariant are the following:

Rjk
2 ]L̄

]Rjk
3 2Rjk

3 ]L̄

]Rjk
2 5Rjk

1 ]L̄

]Rjk
2 2Rjk

2 ]L̄

]Rjk
1 5Rjk

1 ]L̄

]Rjk
3 2Rjk

3 ]L̄

]Rjk
1 50.

Accordingly, every gauge-invariant functionL̄:`2T* (M ) ^ adP→R can be written in the form
L̄5F(...,L̄ jk ,...), where

L̄ jk5~Rjk
1 !21~Rjk

2 !21~Rjk
3 !2, j ,k,

andF is an arbitrary differentiable function on the affinen(n21)/2 space. Therefore, we have

]L̄

]Rjk
I

52Rjk
I ]F

]L̄ jk

.

Substituting the formula above into the equation~39!, which expresses thatLg is gauge invariant
with L5L̄+V, we obtain

05(
j ,k

H gHS cHJ
K Au

J
]D jk

I

]Au
K

2cHJ
I D jk

J D 2
]gH

]xl S ]D jk
I

]Al
H

2cHJ
I ~Aj

Jdkl2Ak
Jd j l !D J

3V jk
I ]F

]L̄ jk

~ ...,L̄vw+V,...!,
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and since the values of the functionsgH,]gH/]xl ,]F/]L̄ jk at any point can be taken arbitrarily, fo
evey j ,k we have

(
I

S cHJ
K Au

J
]D jk

I

]Au
K 2cHJ

I D jk
J DV jk

I 50,

(
I

S ]D jk
I

]Al
H 2cHJ

I ~Aj
Jdkl2Ak

Jd j l ! DV jk
I 50.

Taking the partial derivative on these equations with respect to the variableAj ,k
I , j ,k, by virtue of

the equations~30! of the curvature mapping, we conclude that the conditions~34!, ~35! hold. As
su(2) has a trivial center, the formula~46! follows from the formula~36! taking into account the
values of the structural constants. h

XI. THE MEANING OF THE EQUATIONS „34…, „35…

Let p:E→M be an arbitrary fibered manifold. IfX is a p-projectable vector field onE andg
is an Ehresmann connection onE, then we define aV(E)-valued differential form onE by the
formula

LXg~Y!5@X,g~Y!#2g~@X,Y# !,

for every vector fieldY on E. We first remark that the definition ofLXg makes sense asX is
p-projectable and hence@X,g(Y)# is p vertical. Also, if Y is p vertical then (LXg)(Y)50; ac-
cordingly,LXg is p horizontal and hence it defines a section of the bundleT* (M ) ^ EV(E).

If E5C is the bundle of connections ofp:P→M , then V(C)5T* (M ) ^ C adP, as p:C
→M is an affine bundle modeled overT* (M ) ^ adP. Therefore, in this case,LXg can be viewed
as a section of the bundlep* „^

2T* (M ) ^ adP….
Proposition 6: The equations (34), (35) hold if and only if for every XPgauP, the skew-

symmetric part of theadP-valued degree-2 covariant tensor field LXC
g vanishes.

Proof: With the same notations as above, we set

g5~dAj
I1g jk

I dxk! ^
]

]Aj
I .

By using the local expression ofXC @see the formula~24!#, we obtain

LXC
g5H gHS cHJ

K Au
J

]g jk
I

]Au
K 2cHJ

I g jk
J D 1

]gH

]xl S dklcHK
I Aj

K2
]g jk

I

]Al
H D 2

]2gI

]xj ]xkJ dxk
^

]

]Aj
I ,

and we can conclude by taking the skew-symmetric part and recalling thatdxj
^ B̃I52]/]Aj

I ,
with the natural identificationT* (M ) ^ C adP>V(C). h
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Higher-order mechanical systems with constraints
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A general mathematical theory covering higher-order mechanical systems subject
to constraints of arbitrary order~i.e., depending on time, positions, velocities, ac-
cellerations, and higher derivatives! is presented, including higher-order holonomic
systems as a particular case. Within differential geometric setting on higher-order
jet bundles, the concept of a mechanical system~not necessarily regular, or La-
grangian! is introduced to be a class of 2-forms equivalent with a dynamical form.
Dynamics are then represented by means of corresponding exterior differential
systems. Higher-order constraint structure on a fibered manifold is defined to be a
submanifold endowed with a distribution~canonical distribution, higher-order Che-
taev bundle!. With help of a constraint structure a constraint force is naturally
introduced. Higher-order mechanical systems subject to different kinds of higher-
order constraints are then geometrically characterized and their dynamics are stud-
ied from a geometrical point of view. Regular and Lagrangian systems appear as
important particular cases within the general scheme. ©2000 American Institute
of Physics.@S0022-2488~00!03608-2#

I. INTRODUCTION

Classical mechanics of systems subject to holonomic~zero-order! and non-holonomic~first-
order! constraints has been studied by many authors. Recently, namely differential geomet
used to develop and enrich the theory~cf., e.g. Refs. 1–17 and references therein!.

On the contrary, there are only a few pioneer works generalizing the subject to higher
In particular, some results onfirst-ordermechanical systems withsecond-order, andhigher-order
constraintswere obtained by classical methods in Refs. 18–25 and 26, respectively. Some
on Euler–Lagrange equations of variational problems with higher-order constraints withi
algebro–geometric setting ofC-spectral sequenceare due to Ref. 27. A geometric setting forrth
order Lagrangian systemswith constraints of order 2r 21 on tangent bundleshas been propose
in Ref. 28; other cases, e.g., time-dependent higher-order constrained Lagrangian an
Lagrangian systems, constraints of orderÞ2r 21, etc., have not yet been systematically studi

The aim of this paper is to fill in this gap and to develop a geometric theory of higher-o
mechanical systems subject to constraints of higher order, i.e., depending on time, pos
velocities, accellerations, etc. We shall consider mechanical systems in general, without res
to Lagrangian systems, or regular systems. Consequently, as particular cases, we obtain
geometric characterization of first-order mechanical systems subject to higher-order cons
higher-order systems subject to holonomic constraints, higher-order Lagrangian systems su
constraints of an arbitrary order, etc. The basis for the present approach are our papers12,16 where
a geometric setting for the first-order case was developed, which is suitable for generaliza
an arbitrary order. The key point is the geometric understanding of a constraint asa manifold,
endowed with an appropriate distribution,12 called thecanonical distribution~cf. the Chetaev
bundlein Ref. 14!.

The theory is modeled on a fibered manifoldp: Y→X, where the baseX is one-dimensional
~i.e., if connected,X5R or X5S1), and its finite jet prolongationsJrY, r>1. In particular, one

a!Electronic mail: Olga.Krupkova@math.slu.cz
53040022-2488/2000/41(8)/5304/21/$17.00 © 2000 American Institute of Physics
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can takeX5R and Y5R3M , whereM is a manifold. Then, as it is well known,Jr(R3M )
identifies with R3TrM . Throughout the paper, manifolds and mappings are smooth, and
summation convention is used. Standard notations are used, namelyd for the exterior derivative of
differential forms,i j for contraction by a vector fieldj, domf for the domain of definition of a
mappingf, etc.

The paper is organized as follows. In Sec. II basics on higher-order jet prolongatio
fibered manifolds and the corresponding calculus of horizontal and contact forms are b
recalled.

In Sec. III we introduce the concept of amechanical system of order ras anequivalence class
of local 2-forms defined onJrY, and calledLepage class. This rather abstract and general unde
standing of a mechanical system naturally covers such important particular cases as, eLa-
grangian systems~usually described by means of Lagrange functions, Cartan forms, or Eu
Lagrange forms, etc.! and regular mechanical systems~often studied as second and higher-ord
semisprays, sometimes also called ‘‘second’’ and ‘‘higher-order differential equations v
fields,’’ respectively!. From the point of view of differential geometry and the calculus of va
tions, the presented approach incorporates the familiar symplectic form description of r
first-order time-independent Lagrangian systems, or its generalization to arbitrary higher
time-dependent Lagrangian systems, represented by closed Lepagean 2-forms,29 and fits with the
scheme of the Krupka variational sequence.30,31It helps us to study mechanical systems in gene
without anya priori restrictions to regular, Lagrangian, etc., systems. This is important for our
to deal with constrained systems, since it is known~cf. elementary classical examples! that neither
regularity, nor variationality in its usual sense, is conserved in presence of constraints.

The aim of Sec. IV is to define and investigate the concept ofhigher-order constraint struc-
ture. By a non-holonomic constraint of order r, r>1, we mean a fibered submanifoldQ of the
fibered manifoldp r ,r 21 : JrY→Jr 21Y. We show that every such constraint naturally gives rise
a unique distribution on the manifoldQ. We call this distribution thecanonical distribution, or
higher-order Chetaev bundle. From the point of view of physics, the canonical distribution~re-
spectively, its vertical subdistribution! determines possible~respectively, virtual! higher-order dis-
placements. From the point of view of geometry, the canonical distribution is a sub-bundle
tangent bundle to the constraint manifold, and has the sense of a ‘‘universal covering distrib
for dynamical distributions of constrained mechanical systems. Thus, in this paper, a con
structure inJrY is a non-holonomic constraint manifold of orderr together with its canonical
distribution.

In Sec. V, mechanical systems subject to constraints are intrinsically characterized. We
three related but different cases:~1! constraints are given on the same space where the un
strained dynamics proceeds,~2! constraints involve higher derivatives than those correspondin
the dynamical space, and~3! constraints depend upon derivatives of lower order than th
corresponding to the dynamical space. In each of these three cases we get a geometric m
the constrained system on the constraint submanifold via aclass of (local)2-forms along the
canonical distribution. We obtain equations of motion in intrinsic form, and a description
constrained dynamics by means of exterior differential systems on the constraint submanifo
present setting applies not only tohigher-order non-holonomicsystems, but also to mechanic
systems withsemiholonomic constraints of any order and degree, which appear as a particula
case of non-holonomic systems.

Higher-orderholonomicsystems are considered in Sec. VI. Within our scheme, holono
systems are studied as a particular case of general non-holonomic systems. We obtain a
mental property of holonomic systems, namely, that the canonical distribution induced
higher-order holonomic constraintcoincideswith the tangent distribution. Consequently, hol
nomic constrained systems are nothing but pull-backs of the unconstrained systems to th~pro-
longed! constraint, and can be~and really are! treated asunconstrainedsystems on fibered sub
manifolds of the original fibered manifold. Thus, geometry gives us a new look at the theo
constraints, discovering the main difference between unconstrained and constrained syste
plicitly: the role of the tangent space to the dynamical space is for constrained systems pla
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a ‘‘smaller’’ bundle—the canonical distribution. Notably, in this sense,holonomic constraints are
not ‘‘true’’ constraints, since they induce no constraints in the tangent bundle to the cons
submanifold.

In Sec. VII we study in more detail dynamical distributions determining the dynamic
constrained systems.Regularityis defined in a geometric way to be a property of the dynam
distributions, and regular constrained systems are shown to be representable byconstraint semi-
sprayson the constraint submanifold.

Finally, in Sec. VIII we discuss the concept ofhigher-order constraint force. We provide a
geometric definition, geometric arguments for a generalization of the well-known Chetae
mula, and show the geometric meaning and the role of Lagrange multipliers in the theor
study constrained systems asdeformationsof unconstrained systems by means of a constr
force, and demonstrate that this approach to constrained systems~which is close to the classica
approach applied in physics! is equivalent with the approach proposed in Sec. V.

It should be noted that the proposed theory develops Chetaev’s approach to cons
systems,32 different from the so-called vakonomic mechanics~cf. Ref. 33!.

II. BASIC STRUCTURES

As mentioned above, we consider higher-order mechanics on finite jet prolongations
bered manifolds over one-dimensional bases, and use the corresponding calculus of horizo
contact forms~see, e.g., Refs. 29, 34 or 35 for review!. In this section we recall basic concepts a
fix notations.

Let p: Y→X be a fibered manifold, dimX51, dimY5m11. Throughout the paper, fibe
coordinates will be denoted by (t,qs), where 1<s<m. We also use the notationY5J0Y and
qs5q0

s . A mappingg: X→Y defined on an open subsetU,X is called asectionof the fibered
manifold p if the composite mappingp+g is the identity mapping ofU. For r>1 we denote by
p r : JrY→X, the r-jet prolongationof the fibered manifoldp, and byp r ,k : JrY→JkY, k>0, k
,r , the corresponding canonical projections. Ther-jet prolongationof a sectiong: U→Y of p is
denoted byJrg; it is a section ofp r . Clearly, not every section ofp r is of the form of ther-jet
prolongation of a section ofp. We say that a sectiond of p r is holonomicif there exists a section
g of p such thatd5Jrg. If ( t,qs) are fiber coordinates onV,Y, we have theassociated
coordinates (t,qs,q1

s ,...,qr
s) on Vr5p r ,0

21V defined by qk
s(Jx

r g)5(dkgs/dtk)x , 1<k<r . If
(V,c), c5(t,qs), and (V̄,c̄), c̄5( t̄,q̄s) are two fiber charts such thatVùV̄ÞB, then on
VrùV̄r , t̄5 t̄(t), q̄s5q̄s(t,qn), and

q̄1
s5

dt

dt̄ S ]q̄s

]t
1

]q̄s

]qn q1
nD ,

¯ , ~2.1!

q̄r
s5

dt

dt̄ S ]q̄r 21
s

]t
1(

l 50

r 21 ]q̄r 21
s

]ql
n ql 11

n D .

A vector field j on Y is calledp-projectableif there exists a vector fieldj0 on X such that
Tp.j5j0+p. If, in particular,j050 thenj is calledp-vertical. For ap-projectable~respectively,
p-vertical! vector fieldj on Y one has in fiber coordinates

j5j0
]

]t
1js

]

]qs , ~2.2!

wherejs are functions of (t,qn), and thej0 depend only ont ~respectively,j050). The r-jet
prolongationof a p-projectable vector fieldj ~2.2! on Y is a vector fieldJrj on JrY,
                                                                                                                



tact

s a

ind
r
-

5307J. Math. Phys., Vol. 41, No. 8, August 2000 Higher-order mechanical systems with constraints

                    
Jrj5j0
]

]t
1(

i 50

r

j i
s

]

]qi
s ,

where the componentsj i
s , i 51,...,r , are defined by the recurrent formula

j i
s5

dj i 21
s

dt
2

dj0

dt
qi

s .

Let h be ap-form on JrY. We say thath is p r-horizontal if i jh50 for everyp r-vertical
vector fieldj on JrY. Similarly, h is said to bep r ,k-horizontal, 0<k,r , if i jh50 for every
p r ,k-vertical vector field onJrY. By these definitions, a 1-formh is p r-horizontal iff its repre-
sentation in every fiber chart readsh5 f (t,qs,...,qr

s)dt, and a 2-formh is p r ,0-horizontal iff its
representation in every fiber chart contains only the wedge products ofdt and dqs’s with the
components possibly dependent ont,qs,...,qr

s .
We denote byh the horizontalization,34 assigning to every 1-formh on JrY, r>0, a

p r-horizontal 1-formhr on Jr 11Y. h is anR-linear mapping, defined by

h f5 f +p r 11,r , hdt5dt, hdqi
s5qi 11

s dt, 0< i<r . ~2.3!

Apparently, ifh is a 1-form onJrY thenJrg* h5Jr 11g* hh for every sectiong of p.
A form h on JrY is calledcontact if Jrg* h50 for every sectiong of p. Notice that every

q-form for q.dimX is contact. In particular, a 2-formh is called 1-contact if for every
p r-vertical vector fieldj the 1-formi jh is horizontal, and it is called 2-contactif i jh is contact.

Put

v j
s5dqj

s2qj 11
s dt, 1<s<m, 0< j <r . ~2.4!

The 1-forms~2.4! are obviously contact, and they form a basis of contact 1-forms onJr 11Y.
Notice that the formsdt, vs,...,v r 21

s , dqr
s form abasisof 1-formson JrY. We shall frequently

make use of this basis.
Every 1-formh on JrY admits a unique decomposition into a sum of a horizontal and con

form. In fibered coordinates, whereh5 f dt1 f s
0dqs1¯1 f s

r dqr
s this decomposition reads

p r 11,r* h5~ f 1 f s
0q1

s1¯1 f s
r qr 11

s !dt1 f s
0vs1¯1 f s

r v r
s .

We denote byph the contact part ofh, i.e.,ph5 f s
0vs1¯1 f s

r v r
s . Similarly, every 2-formh on

JrY admits a unique decomposition into a sum of a 1-contact and 2-contact form.
A 2-form E on JrY is called adynamical formif it is 1-contact andp r ,0-horizontal. This

means thatE is a dynamical form iff in every fiber chart

E5Es~ t,qn,q1
n ,...,qr

n!dqs∧dt. ~2.5!

A sectiong of p is called apathof E if E+Jrg50. In fiber coordinates this equation represent
system ofm ordinary differential equations of orderr,

EsS t,gn,
dgn

dt
,...,

drgn

dtr D50 ~2.6!

for the componentsgn(t), 1<n<m, of g. Since in higher-order mechanics equations of this k
represent motion equations of mechanical systems, dynamical forms~2.5! are suitable objects fo
studying dynamics of mechanical systems on manifolds. Notice that Eq.~2.6! need not be repre
sentable in a form ‘‘solved with respect to the highest derivatives,’’
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drgs

dtr
1GsS t,gn,

dgn

dt
,...,

dr 21gn

dtr 21 D50, ~2.7!

i.e., ~2.6! are more general than equations for paths of asemispray connection~sometimes also
called ‘‘higher-order equation vector field’’!.

In this paper we shall consider dynamical forms onJrY which areaffine in the derivatives o
order r. In this case, in every fiber chart onJrY, the componentsEs of E are of the form

Es5As~ t,qr,...,qr 21
r !1Bsn~ t,qr,...,qr 21

r !qr
n . ~2.8!

We shall denote the set of such forms byLa f
2 (JrY). Notice that considering dynamical form

affine in the highest derivatives means no loss of generality. Indeed, if a dynamical formE on JrY
does not belong toLa f

2 (JrY) then it belongs toLa f
2 (Jr 11Y), i.e., it is ‘‘affine in the highest

derivatives’’ if considered as a form onJr 11Y.
By a distributionon JrY we shall mean a mappingD assigning to every pointzPJrY a vector

subspaceD(z) of the vector spaceTzJ
rY. A distribution is said to be ofconstant rankif the

mappingz→dimD(z) is constant. A distribution can be defined by a system of vector field
each point spanning the vector spaceD(z), or by a system of annihilating 1-forms. A sectiond of
p r is called anintegral sectionof D if d*h50 for every 1-formh belonging to the annihilatorD0

of D.

III. HIGHER-ORDER MECHANICAL SYSTEMS

Let W,JrY be open. We say that a 2-forma on W is a ~generalized! Lepage2-form of order
r if its 1-contact partp1a is a dynamical form. Two Lepage 2-formsa8 and a with the same
domain of definitionW will be calledequivalentif p1a85p1a ~note that forms equivalent in thi
sense are equivalent also in the sense of the Krupka variational sequence30,31!. For a Lepage
2-form a on W,JrY put

Da
05span$ i jauj runs over the set of allp r-vertical vector fields onW%. ~3.1!

Da
0 is a codistribution onW, it will be called thedynamical codistributionof a. The corresponding

distributionDa will be then called thedynamical distributionof a.
Now, let s>2, and let us consider a dynamical formEPLa f

2 (JsY). We can easily see thatE
can be represented by local equivalence classes of Lepage 2-formsof order s21. The family@a#
of Lepage 2-forms defined on open sets ofJs21Y such that for everyaP@a#, p1a5E on the
domain of definition ofa, will be called theLepage classof E of orders21. In fiber coordinates,
the Lepage class ofE is represented as follows. LetV,Y be a fiber chart andE be expressed by

E5~As1Bsnqs
n!vs`dt ~3.2!

on Vs,JsY. Then there is a family of 2-contact 2-formsF on Vs such that E1F is
ps,s21-projectable. Namely, putting

F5 (
i , j 50

s21

Fsn
i j v i

s`v j
n ,

where theFsn
i j are antisymmetric in (s,i ) and (n, j ), and

2Fsn
0,s215Bsn , Fsn

p,s2150, 1<p<s21,
]Fsn

i j

]qs
r 50, 0< i , j <s21,

we obtain the Lepage class ofE on Vs21,Js21Y in the form
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a5vs`~Asdt1Bsndqs21
n !1h ~3.3!

where

h5 (
i , j 50

s22

Fsn
i j v i

s∧v j
n

is an arbitrary 2-contact 2-form onVs21 . Considering the corresponding dynamical codistrib
tions we can see that theDa

0 ’s are locally spanned by the following 1-forms:

As dt1(
j 50

s22

2Fsn
0 j v j

n1Bsndqs21
n , Bsnvn, (

j 51

s22

Fsn
i j v j

n , 0< i<s22. ~3.4!

Notice thatDa
0 need not be of a constant rank, but rankDa>1 at each point ofVs21 .

We can immediately see thatfor equivalent Lepage 2-forms the holonomic integral section
their dynamical distributions coincide. Moreover, if @a# is the Lepage class ofE then the set of
holonomic integral sections of any dynamical distributionDa locally coincides with the set o
paths of E. Summarizing, we get the following intrinsic equations for paths of a dynamical fo

Proposition 3.1. Let E be a dynamical form on JsY, @a# its Lepage class on Js21Y. Let g:
I→Y be a section ofp. g is a path of E if and only if for everyps21-vertical vector fieldj on
Js21Y, and every element of@a# such that Js21g(I )ùdomaÞB,

Js21g* i ja50. ~3.5!

Throughout the paper, the Lepage class of orders21 associated with a dynamiccal formE
PLa f

2 (JsY) will be called amechanical system of order s21. It will be denoted by@a#, and the
class of the corresponding dynamical distributions by@Da#. The manifoldJs21Y ~where the
dynamics proceeds! will then be called thedynamical spacefor @a#.

A mechanical system@a# will be called regular if there exists a dynamical distributionDa

P@Da# such that rankDa51. Taking into account the generators~3.4! one can see thatregular
mechanical systems are representable by semisprays. More precisely, they are characterized
follows:

Theorem 3.1: Let @a# be the mechanical system related to a dynamical form
PLa f

2 (JsY), and let@Da# be the corresponding class of dynamical distributions. In a fiber ch
(V,c) on Y, c5(t,qs), denote E5(As1Bsnqs

n)vs∧dt. The following conditions are equivalen

~1! The mechanical system [a] is regular.
~2! The matrix(Bsn) is everywhere regular.
~3! There is a unique dynamical distribution of rank1 on Vs21 belonging to@Da#, and it is of the

form

Da
15spanH ]

]t
1(

i 50

s22

qi 11
s

]

]qi
s2BsrAr

]

]qs21
s J ,

~Da
1 !05span$As dt1Bsn dqs21

n ,vs,...,vs22
s ,1<s<m%,

where(Bsn) is the inverse matrix to(Bsn).
~4! The equations for paths of E have an equivalent form

qs
s52BsrAr , 1<s<m.

Notice thatDa
1 coincides with thecharacteristic distributionof any of the 2-forms of maxima

rank in the class@a#. This means that forGPDa
1 and everyaP@a# such that ranka5max,
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i Ga50. ~3.6!

In the sequel of this section we shall discuss the case of mechanical systems define
dynamical formE which is the Euler–Lagrange form of a Lagrangian. Recall that a dynam
form EPL2(JsY) is called(globally) variationalif there exists an integerr>1 and a Lagrangian
l on JrY such thatE coincides~possibly up to a projection! with the Euler–Lagrange form ofl.
E is calledlocally variational if JsY can be covered by open setsU i in such a way that, for every
i, EuUi

is variational. Note that a locally variational form need not be globally variational.
Lepage class~of orders21) associated to a locally variational form will be called aLagrangian
system(o f order s21). By the following theorem,29 every Lagrangian system can beuniquely
represented by aglobal closedtwo-form.

Theorem 3.2: Let EPLa f
2 (JsY) be locally variational. Then the Lepage class@a# of E

contains a unique closed 2-form, defined on Js21Y.
Conversely, if the Lepage class of E contains a closed 2-forma thena is defined on Js21Y,

it is unique, and the form E is locally variational.

IV. HIGHER-ORDER NON-HOLONOMIC CONSTRAINTS

Let r>0, and 1<k<m21. By aconstraintin JrY we shall mean a fibered submanifold of th
fibered manifoldp if r 50 ~respectively, ofp r ,r 21 if r>1). A constraint inY ~respectively,JrY,
r>1) will be also called aholonomic constraint~respectively, anon-holonomic constraint o
order r!. If Q is a constraint inJrY, codimQ5k, locally given by the equations

f i50, 1< i<k, ~4.1!

then by definition

rankS ] f i

]qr
sD 5k. ~4.2!

Notice that~4.2! means that Eqs.~4.1! can be ‘‘locally solved’’ with respect tok of the functions
qr

s . Without loss of generality one may consider theqr
m2k11,...,qr

m as functions of the
(t,qs,...,qr 21

s ,qr
1,...,qr

m2k). Thus, from the definition one immediately gets that every constr
of codimension k can be covered by a family ofadapted fiber charts (U,x), x
5(t,qs,...,qr 21

s ,qr
1,...,qr

m2k , f 1,...,f k), where (t,qs) are fiber coordinates onp r(U). In particu-
lar one hasnormal chartswhereQ is described by the equations

f i[qr
m2k1 i2gi~ t,qs,...,qr

1,...,qr
m2k!50. ~4.3!

Let 1<p<r . A non-holonomic constraint inJrY will be calledsemiholonomic of degree pif

f i5
dpui

dtp ~4.4!

for some functionsui , 1< i<k.
From now on, we shall deal with non-holonomic constraints, i.e., we supposer>1.
A section g of p defined on an open setI ,X will be called aholonomic path inQ if

Jrg(x)PQ for everyxPI .
Consider a fiber atlasA on Js21Y such that for everyUPA, Q is defined by~4.1!. Put

CU,w
0 5span$w i ,d fi ,1< i<k%, ~4.5!

wherew i are linearly independent 1-forms such that

hw i5 f i dt, 1< i<k. ~4.6!
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ThenCU,w is a distribution of rankrm1m1122k on U, in general not completely integrable. A
each pointxPQùU it is a subdistribution of the tangent distribution toQùU ~generated by
means of the 1-formsd fi , 1< i<k). Therefore,CU,w along the submanifoldQùU is a distribu-
tion of corankk on QùU; its annihilator is spanned by a system ofk linearly independent contac
1-forms i* w i on QùU, wherei is the canonical embedding ofQ into JrY. Holonomic integral
sections of the distributionCU,w , i.e., solutions of the constraint equationsf i+Jrg50 and their
prolongations (d fi /dt)+Jr 11g50, coincide with the holonomic paths inQùU.

The above construction provides us, for a fixed chartU, with a family of distributionsCU,w

with the same holonomic integral sections. However, there is auniqueand natural choice for the
w i ’s, giving a geometric sense to the physical concept of ‘‘possible’’ and ‘‘virtual higher-o
displacements,’’ generalizing ‘‘possible’’ and ‘‘virtual displacements’’ from holonomic first-or
mechanics. To see this, note that there is a canonical morphismF of the moduleVU(p) of
p-vertical vector fields onp r ,0(U) over the ring of functions onp r ,0(U) to the module
VU(p r ,r 21) of p r ,r 21-vertical vector fields over the ring ofp r ,0-projectable functions onU,
defined by

F~]/]qs!5]/]qr
s , F~gj!5~g+p r ,0!F~j!.

Now, we can state the following definition. 1-formsw i , 1< i<k, on U are calledconstraint
1-forms if for 1< i<k, ~1! hw i5 f i dt, ~2! pw i are p r ,0-horizontal, and~3! for every p-vertical
vector fieldj on p r ,0(U),

i Jrjw
i5 i F~j! d fi . ~4.7!

The condition~4.7! gives forpw i5ws
i vs the unique solution

ws
i 5

] f i

]qr
s , 1< i<k, ~4.8!

which we shall call thegeneralized Chetaev expressions. Consequently, by~4.2!, the obtained
1-forms are linearly independent. The corresponding distributionCU,w on U will be called the
constraint distribution, and denoted byCU . The constraint distribution has the meaning of ‘‘po
sible higher-order displacements,’’ while itsp r-vertical subdistribution represents ‘‘virtual highe
order displacements.’’

Remark 4.1:We shall write down explicitly generators of a constraint distribution. Supp
that the square matrix (] f i /]qr

j ) where 1< i<k andm2k11< j <m, is regular onU, and denote
by (aj

i ) the inverse matrix. To simplify notations, put

ws
j 5

] f j

]qr
s , w0

j 5 f j2q1
sws

j . ~4.9!

Taking generators ofCU
0 in normal form, i.e.,

w̄ i5aj
i w j5aj

i w0
j dt1 (

l 51

m2k

aj
i w l

j dql1dqm2k1 i ,

~4.10!

c i5aj
i d f j5aj

i ] f j

]t
dt1aj

i (
p50

r 21
] f j

]qp
s dqp

s1 (
l 51

m2k

aj
i w l

j dqr
l 1dqr

m2k1 i ,

we getCU spanned by the following 11m(r 11)22k vector fields:

z~0!5
]

]t
2(

i 51

k

aj
i w0

j ]

]qm2k1 i 1(
i 51

k S ap
i aj

sw0
j ] f p

]qm2k1s2aj
i ] f j

]t D ]

]qr
m2k1 i ,
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z~ l !5
]

]ql2(
i 51

k

aj
i w l

j ]

]qm2k1 i 1(
i 51

k S ap
i aj

sw l
j ] f p

]qm2k1s2aj
i ] f j

]ql D ]

]qr
m2k1 i , 1< l<m2k,

z~np!5
]

]qp
n2(

i 51

k

aj
i ] f j

]qp
n

]

]qr
m2k1 i , 1<n<m, 1<p<r 21,

z̃ ~ l !5
]

]qr
l 2(

i 51

k

aj
i w l

j ]

]qr
m2k1 i , 1< l<m2k.

Let us express them in the adapted fiber coordinates (t,qs,q1
s ,...,qr 21

s ,qr
l , f 1,...,f k), 1<s

<m, 1< l<m2k. Since by the transformation

]

]t
→ ]

]t
1

] f i

]t

]

] f i ,
]

]qp
s → ]

]qp
s 1

] f i

]qp
s

]

] f i ,

]

]qr
l → ]

]qr
l 1

] f i

]qr
l

]

] f i ,
]

]qr
j →

] f i

]qr
j

]

] f i ,

where 0<p<r 21, 1< l<m2k, m2k11< j <m, we get

z~0!5
]

]t
2(

i 51

k

aj
i w0

j ]

]qm2k1 i , z~np!5
]

]qp
n ,

~4.11!

z~ l !5
]

]ql2(
i 51

k

aj
i w l

j ]

]qm2k1 i , z̃ ~ l !5
]

]qr
l .

Let us summarize the above results. Given on a constraintQ an atlas of adapted fiber chart
one can construct in a neighborhood ofQ a canonical, unique family of local constraint distr
butions, subordinate to the cover. Along the constraintQ, each of the corresponding local con
straint distributions istangent toQ. Holonomic paths inQ piecewise coincide with holonomic
integral sections of the constraint distributions. Obviously, taking another cover ofQ by adapted
fiber charts one gets in a neighborhood of the constraint adifferent family of local constraint
distributions, however, withthe sameholonomic integral sections.

We shall show now that a family of local constraint distributions defined in a neighborhoo
the constraint gives rise to aunique global distribution on the constraint~independent of the
choice of an atlas of adapted fiber charts!.

Theorem 4.1:Consider a constraintQ,JrY. Let CUi
and CUk

be local constraint distribu-

tions on Ui and Uk , respectively, U iùUkÞB. Then

CUi
5CUk

on UiùUkùQ.

Proof: One has to show that ifi: Q→JrY is the canonical embedding, and$hi
p% and $hk

p%,
1<p<2k, are linearly independent annihilators ofCUi

andCUk
, respectively, thenhi

p5(sbs
phk

s

for some regular matrix (bs
p) on U iùUkùQ. Suppose thatQ is defined byf i50 andf̄ i50 onU i

and Uk , respectively. Then onU iùUk , CUi

0 is spanned by the 1-formsd fi and the constraint

1-forms

w i5 f i dt1
] f i

]qr
s vs,

andCUk

0 is spanned byd f̄ i and
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w̄ i5 f̄ i d t̄1
] f̄ i

]q̄r
s v̄s,

1< i<k. Since at each pointxPQ belonging toU iùUk both the d fi ’s and d f̄ i ’s span the
annihilator of the tangent distributionTxQ, we must have

d f̄ i~x!5aj
i ~x!d f j~x!,

where (aj
i ) is a regular matrix. Consequently, using the transformation formulas~2.1! we get

v̄s5(]q̄s/]qn)vn, and

S ] f̄ i

]q̄r
sD

x

S ]q̄s

]qn D
x

5c~x!aj
i ~x!S ] f j

]qr
nD

x

,

wherec(x)Þ0. Hence, on the constraint submanifold,

i* w̄ i5S ] f̄ i

]q̄r
s

]q̄s

]qn D +i~i* vn!5S caj
i ] f j

]qr
nD +i~i* vn!5~caj

i !i* w j .

j

The distribution on the constraintQ, arising by the above theorem as a ‘‘restriction’’ toQ of
any family of local constraint distributions defined in a neighborhood of the constraint, is a
ently unique and does not depend upon a choice of a cover ofQ by adapted fiber charts. We sha
call it the canonical distributionof the constraint, orhigher-order Chetaev bundleover Q. Note
that corankC with respect toQ is k.

The pair ~Q,C! where Q is a constraint inJrY and C is the canonical distribution of the
constraintQ will be called aconstraint structure of order r. The ideal onQ generated by the
1-forms annihilating the canonical distribution will be called theconstraint idealand will be
denoted byI(C0). Everyp-form onQ, p>1, belonging to the constraint ideal will then be calle
a constraint p-form.

Remark 4.2:For the annihilator of the canonical distribution we have by definition

C05span$i* w i ,1< i<k%.

In fiber coordinates,

i* w i5S ] f i

]qr
n +i D i* vn.

Taking equations of the constraint in normal form~4.3! one gets

i* w i52 (
l 51

m2k
]gi

]qr
l v l1vm2k1 i for r>2 ~4.12!

and

i* w i52 (
l 51

m2k
]gi

]q̇l v l1i* vm2k1 i52 (
l 51

m2k
]gi

]q̇l v l1dqm2k1 i2gi dt ~4.13!

in the case of first-order constraint.
Computing vector fields onQ spanning the canonical distribution in normal coordinates

arrive by ~4.11! at
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]

]t
1q1

s
]

]qs ,
]

]qp
n , 1<p<r 21,

~4.14!
]

]ql 1(
i 51

k
]gi

]qr
l

]

]qm2k1 i ,
]

]qr
l , 1< l<m2k.

In keeping with the first-order case, horizontal rank 1 subdistributions ofC will be called
constraint connections. They are locally spanned bysemisprays

G5
]

]t
1 (

p50

r 22

qp11
s

]

]qp
s 1 (

l 51

m2k

qr
l ]

]qr 21
l 1(

i 51

k

gi
]

]qr 21
m2k1 i 1 (

l 51

m2k

G l
]

]qr
l , ~4.15!

whereG l are local functions onQ. Their integral sections are holonomic paths inQ.

V. MECHANICAL SYSTEMS WITH HIGHER-ORDER NON-HOLONOMIC CONSTRAINTS

With help of the canonical distribution, mechanical systems subject to constraints c
intrinsically characterized asmechanical systems on constraint submanifolds. This will be our task
now.

Similarly as in Sec. III, lets>2, and let@a# be a mechanical system onJs21Y, corresponding
to a dynamical formE of orders. We can see that, in principle, one can consider constraint
order r with r>0, possiblydifferent from s21. In this section we shall consider non-holonom
constraints (r .0), and for the sake of clarity, higher-order non-holonomic systems will be
vided into the following three families:r 5s21, r>s, and 1<r ,s21.

V.1. Constraints on the dynamical space(r 5s21). The most simple situation arises whe
constraints are given on thedynamical space Js21Y where the unconstrained dynamics procee
This case obviously represents a direct higher-order generalization of non-holonomic syst
classical mechanics. In fact, this is the only case of higher-order constrained systems studie
~cf. Ref. 28 for constrained Lagrangian systems on higher-order tangent bundles!. Let us turn now
to this case, i.e., consider a constraint structure~Q,C! on Js21Y. Denote byi the embedding ofQ
into Js21Y, and byI(C0) the constraint ideal onQ. For everyaP@a# put

aQ5i* a modI~C0!, ~5.1!

and denote by@aQ# the family generated in this way by the class@a#. Hence, by definition, every
element of@aQ# is a ~possibly local! 2-form onQ equal to

i* a1constraint 2-form12-contact 2-form.

We shall call@aQ# theconstrained system, related to the mechanical system@a# and the constraint
structure~Q,C!.

There is an equivalent definition of the constrained system which demonstrates its geo
meaning as a class of~local! 2-forms onQ along the canonical distributionC.12

Proposition 5.1: The formula (5.1) is equivalent with the following relation: For ever
PQ and every two vectorsz1 , z2PC(x),

aQ~x!~z1 ,z2!5a~i~x!!~z1 ,z2!. ~5.2!

Proof: Let aQ be defined by~5.2!. We have to show that the formaQ2i* a belongs toI(C0).
Denote b5aQ2i* a, and suppose thatb¹I(C0). Consider in a neighborhood ofxPQ an
adapted fiber chart, and the following basis of linear forms

~dt,v1,...,vm2k,i* w1,...,i* wk,v1
s ,...,vs22

s ,dqs21
1 ,...,dqs21

m2k!,
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where (i* w i), 1< i<k, span the canonical codistribution. Expressingb in this basis we can se
that, by assumption,b is a linear combination of wedge products of basic 1-forms such tha
least one of the terms containing noi* w i is nonzero. Taking into account the generators of
canonical distribution in the form~4.8! we can see immediately thatb(x)(z1 ,z2)Þ0, contradict-
ing the assumption~5.2!.

The converse statement is obvious. j

The following proposition brings an intrinsic form of theequations of motionof a constrained
system.

Proposition 5.2: Let@a# be a mechanical system on Js21Y, ~Q,C! a constraint structure on
Js21Y, and @aQ# the corresponding constrained system. A sectiong: I→Y of p is a path of the
constrained system@aQ# if and only if Js21g(I ),Q, and for everyps21-vertical vector fieldjPC
and everyaQP@aQ# such that Js21g(I )ùdomaQÞB, it satisfies the equation

Js21g* i jaQ50. ~5.3!

Remark 5.1:We shall computefiber coordinate expressionfor the constrained system@aQ#.
Let xPQ be a point and consider fiber coordinates (t,qs,q1

s ,...,qs21
s ) in a neighborhoodU of x.

For simplicity, suppose that the constraintQ is on U given by equations in normal form,

f i[qs21
m2k1 i2gi~ t,qs,...,qs21

1 ,...,qs21
m2k!50, 1< i<k.

First of all, notice that onU we have the following basis of 1-forms:

~dt,v1,...,vm2k,w1,...,wk,v1
s ,...,vs22

s ,dqs21
1 ,...,dqs21

m2k ,d f1,...d fk!, ~5.4!

where (w i ,d fi), 1< i<k, are generators of the constraint codistributionCU
0 on U,

w i5~qs21
m2k1 i2gi !dt2 (

l 51

m2k
]gi

]qs21
l v l1vm2k1 i . ~5.5!

Let us express a representativea of the class@a# in the basis~5.4!. Since we have for 1< i<k,

vm2k1 i5w i2~qs21
m2k1 i2gi !dt1 (

l 51

m2k
]gi

]qs21
l v l , dqs21

m2k1 i5d fi1dgi , ~5.6!

we get

a5Asvs`dt1Bsnvs`dqs21
n

5 (
l 51

m2k

Alv
l`dt1(

i 51

k

Am2k1 iS w i1 (
l 51

m2k
]gi

]qs21
l v l D `dt

1 (
l ,p51

m2k

Blpv l`dqs21
p 1 (

l 51

m2k

(
i 51

k

Bl ,m2k1 iv
l`~d fi1dgi !

1(
i 51

k

(
l 51

m2k

Bm2k1 i ,lS w i2~qs21
m2k1 i2gi !dt1 (

p51

m2k
]gi

]qs21
p vpD `dqs21

l

1 (
i , j 51

k

Bm2k1 i ,m2k1 j S w i2~qs21
m2k1 i2gi !dt1 (

l 51

m2k
]gi

]qs21
l v l D `~d f j1dgj !.

Computingi*a and omitting constraint forms and 2-contact forms we get a representative o
constrained system@aQ# in the form
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aQ5 (
l 51

m2k

~Al+i !v l`dt1(
i 51

k

(
l 51

m2k

~Am2k1 i+i !
]gi

]qs21
l v l`dt1 (

l ,p51

m2k

~Blp+i !v l`dqs21
p

1 (
l 51

m2k

(
i 51

k

~Bl ,m2k1 i+i !v l`S d̂gi

dt
dt1 (

p51

m2k
]gi

]qs21
p dqs21

p D
1(

i 51

k

(
l 51

m2k

~Bm2k1 i ,p+i ! (
p51

m2k
]gi

]qs21
l v l`dqs21

p

1 (
i , j 51

k

~Bm2k1 i ,m2k1 j +i ! (
l 51

m2k
]gi

]qs21
l v l`S d̂gj

dt
dt1 (

p51

m2k
]gj

]qs21
p dqs21

p D ,

where we have denoted

d̂gi

dt
5

]gi

]t
1(

r 50

s22
]gi

]qr
s qr 11

s 5
dgi

dt
2 (

p51

m2k

qs
p ]gi

]qs21
p .

Hence, the constrained system@aQ# can be represented by the following 2-form:

aQ5 (
l 51

m2k

Al8v
l`dt1 (

l ,p51

m2k

Blp8 v l`dqs21
p , ~5.7!

where

Al85~Al+i !1(
i 51

k

~Am2k1 i+i !
]gi

]qs21
l 1(

j 51

k

~Bl ,m2k1 j +i !
d̂gj

dt

1 (
i , j 51

k

~Bm2k1 i ,m2k1 j +i !
]gi

]qs21
l

d̂gj

dt
,

~5.8!

Blp8 5~Blp+i !1(
j 51

k

~Bl ,m2k1 j +i !
]gj

]qs21
p 1(

i 51

k

~Bm2k1 i ,p+i !
]gi

]qs21
l

1 (
i , j 51

k

~Bm2k1 i ,m2k1 j +i !
]gi

]qs21
l

]gj

]qs21
p .

Now, theequations of motion of the constrained system@aQ# have the following form of a
mixed system ofm2k ODE of orders

Al81 (
j 51

m2k

Bl j8 qs
j 50 along Jsg, ~5.9a!

andk ODE of orders21,

f i+Js21g50 ~5.9b!

for the componentsg1,...,gm of sectionsg of p.
V.2. The case r>s. Another family of non-holonomic systems is characterized by the prop

that the constraints depend on higher derivatives than those corresponding to the dynamica
In particular, a problem of this kind has been originally studied within classical mechanics
52) when constraints on accelerations have been considered (r 52).18–25
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Consider a dynamical formEPLa f
2 (JsY), Es5As1Bsnqs

n . The Lepage class@a# of E rep-
resenting the unconstrained mechanical system is of orders21 ~i.e., the dynamical space for@a#
is Js21Y).

Let Q,JrY, r>s, be a non-holonomic constraint. The corresponding constrained mecha
system can be found quite analogously to the preceding case: one only needs to pull ba
unconstrained mechanical system@a# to JrY.

For everyaP@a# we put

aQ5i* p r ,s21* a modI~C0!,

and we call the arising class@aQ# theconstrained system@related to the mechanical system@a# on
Js21Y and the constraint structure~Q,C! on JrY].

In fiber coordinates@aQ# is represented by the following 2-form~the computations are quit
analogous to the caser 5s21):

aQ5 (
l 51

m2k

Al8v
l`dt1 (

l ,p51

m2k

Blp8 v l`dqs21
p , ~5.10!

where

Al85FAl1Blnqs
n1 (

p51

k

~Am2k1p1Bm2k1p,nqs
n!

]gp

]qr
l G +i, Blp8 50. ~5.11!

Hence a general element in the class@aQ# is of the form

aQ5 (
l 51

m2k

Al8v
l`dt1F1h,

whereF is 2-contact andhPI(C0).
An analog of Proposition 5.2 now reads
Proposition 5.3: Let@a# be a mechanical system on Js21Y,(Q,C) a constraint structure on

JrY, r>s. A sectiong : I→Y of p is a path of the constrained system@aQ# if and only if
Jrg(I ),Q, and for every p r-vertical vector field jPC and every aQP@aQ# such that
Jrg(I )ùdomaQÞB, it satisfies the equation

Jrg* i jaQ50. ~5.12!

In fiber coordinates we get the following equations of motion of the constrained system

Al8+Jrg50, f i+Jrg50. ~5.13!

To illustrate the above results explicitly, let us consider an easy example.
Example: Free particle with third-order constraints. Consider a ‘‘free particle’’ onR3, i.e.,

the first-order mechanical system@a# on the fibered manifoldR3R3→R, related with a dynamica
form E which in the canonical coordinates (t,qi) is expressed by

E5(
i 51

3

mq̈i dqi`dt5md i j q̈
j dqi`dt.

Hence, in accordance with the notations above,s52, and we have the class@a# represented by the
following 2-form:

a5md i j ~dqi2q̇idt!`dq̇j .
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Let Q,J3(R3R3) be a constraint, given by the equation

f ~ t,qi ,q̇i ,q̈i ,q̂i ![~ q̂1!21~ q̂2!21~ q̂3!22150.

In a neighborhood of the submanifoldQ

rankS ] f

]q̂i D5rank 2~ q̂1,q̂2,q̂3!51,

i.e., the condition~4.2! is satisfied.
Let U be the set of all points whereq̂3.0. We have onU, q̂35g, where

g5~12~ q̂1!22~ q̂2!2!1/2.

Now, a direct use of the formulas~5.10! and~5.11! gives us the constrained system@aQ# on
QùU as the equivalence class of the 2-form

aQ5 (
i 51,2

mS q̈i2
q̈3q̂i

g Ddqi∧dt.

The equations of motion of the constrained system onQùU are

@ q̂32g#+J3g50

and

Fmq̈i2m
q̈3q̂i

g G +J3g50, i 51,2.

The same result can be easily obtained also by a direct computation: The constraint di
tion CU on U is spanned by the 1-formsw anddq̂32dg where

w5~ q̂32g!dt1
q̂1

g
~dq12q̇1 dt!1

q̂2

g
~dq22q̇2 dt!1dq32q̇3 dt.

Expressing the formp3,1* a in the basis of 1-forms

~dt,v1,v2,w,v̇1,v̇2,v̇3,v̈1,v̈2,v̈3,dq̂1,dq̂2,dq̂32dg!,

wherevp5dqp2q̇p dt, v̇p5dq̇p2q̈p dt, andv̈p5dq̈p2q̂p dt, computing the pull-backi* p3,1* a
to Q, and omitting constraint forms and 2-contact forms, we obtain the same formaQ and the
corresponding motion equations as above.

V.3. The case 1<r,s21. Consider a non-holonomic constraintQr,JrY, and suppose tha
locally it is given by the equationsur

i (t,qs,...,qr
s)50. The constraintQr naturally prolongs to a

submanifoldP of Js21Y, given by the equations

ur
i 50, ur 11

i [
dur

i

dt
50, ..., us21

i [
ds212rur

i

dts212r 50. ~5.14!

Notice that since

]up
i

]qp
s 5

]ur
i

]qr
s , r 11<p<s21,
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and the rank of the matrix (]ur
i /]qr

s) is equal tok by assumption, we have in a neighborhood
P adapted fiber charts of the form

~ t,qs,...,qr 21
s ,ur

i ,qr
m2k1 i ,ur 11

i ,qr 11
m2k1 i ,...us21

i ,qs21
m2k1 i !. ~5.15!

Put f i5us21
i . The submanifoldQ of Js21Y given by the equationsf i50 is a non-holonomic

constraint of orders21, andP,Q. Denote byiP and i the canonical embeddingP→Q andQ
→Js21Y, respectively. The canonical distributionC on Q is spanned by the 1-forms

i* w i5S ]ur
i

]qr
s +i Dvs5i* ps21,r* w r

i , 1< i<k, ~5.16!

where w r
i are the constraint 1-forms referring toQr . Denote byCP the subdistribution of the

canonical distributionC, restricted toP, which is tangent toP. In other words, for everyxPP, put

CP~x!5C~x!ùTxP. ~5.17!

CP will be called theinduced canonical distribution.
Proposition 5.4:For everyxPP,

CP
0~x!5iP* C05span$iP* i* w i%. ~5.18!

Proof: Let jxPCP(x). Then i jx
iP* i* w i(x)50, sincejxPC. Conversely, letjxPTxP annihi-

late CP
0 at x. Then i jx

i* w i(x)5i* w i(x)(jx)5iP* i* w i(x)(jx)50, i.e., jxPC(x). Consequently,
jxPC(x)ùTxP. j

Let @a# be a mechanical system onJs21Y. If aQ is a representative of the constrained syst
@aQ# on Q related to@a# and the constraint structure~Q,C!, put

aP5iP* aQ modI~CP
0 !. ~5.19!

Due to Proposition 5.4, the class@aQ# is pulled back to the class@aP#, hence, this procedure give
us a constrained system onP, related to the mechanical system@a# on Js21Y and the non-
holonomic constraintQr,JrY. The equations of motion are now easily obtained in the follow
form.

Proposition 5.5: Let@a# be a mechanical system on Js21Y, Qr a non-holonomic constraint in
JrY, 1<r ,s21. Let as above, (P,CP) be the induced constraint structure on Js21Y. A sectiong:
I→Y of p is a path of the constrained system@aP# if and only if Js21g(I ),P, and for every
ps21-vertical vector fieldjPCP and everyaPP@aP# such that Js21g(I )ùdomaPÞB, it satis-
fies the equation

Js21g* i jaP50. ~5.20!

Remark 5.2:The above results apply, in particular, tohigher-ordersystems withfirst-order
non-holonomic constraints. This fact, together with a recent result that a relativistic particle can
naturally considered as a non-holonomic constrained system36 opens new interesting possibilitie
to develophigher-order relativistic mechanics.

Remark 5.3:Sincesemiholonomic constraintsrepresent a particular case of non-holonom
constraints, the geometric setting for mechanical systems subject to semiholonomic constra~of
any order and degree! is quite obvious and means no difficulties at all.

VI. HIGHER-ORDER MECHANICAL SYSTEMS WITH HOLONOMIC CONSTRAINTS

As an instructive example, we shall show that within the presented setting, higher-
holonomic systems can be easily treated as a particular case of non-holonomic systems.
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Recall that aholonomic constraint [or a system of k~k,m! independent holonomic con
straints] is a fibered submanifold of codimensionk in the fibered manifoldp: Y→X.

Let i0 : Q0→Y be a a holonomic constraint of codimensionk. Then at each pointxPY there
is a chart (U,x), x5(t,q1,...,qm2k,u1,...,uk) such thatQ0 is on U defined by the equations

ui50, 1< i<k,

and the functionsui satisfy the condition

rankS ]ui

]qsD5k. ~6.1!

The submanifoldQ0 of Y prolongs to a submanifoldP[Js21Q0,Js21Y of the codimensionsk.
Js21Q0 is locally defined by the equations

ui50,
dui

dt
50, ....,

ds21ui

dts21 50, 1< i<k,

i.e., it can be covered by adapted fiber coordinates (t,qj ,u0
i ,q1

j ,u1
i ,...,qs21

j , f i), where 1< j
<m2k, 1< i<k, and

u0
i 5ui , u1

i 5
dui

dt
, ..., f i[us21

i 5
ds21ui

dts21 .

In this way,Js21Q0 is a submanifold of the non-holonomic constraintQ,Js21Y of codimension
k, locally defined by the equations

f i50, 1< i<k.

Using similar notations as in Sec. V.3, we havei:Q→Js21Y, iP :Js21Q0→Q, and Js21i05i
+iP .

Theorem 6.1:

CP5TJs21Q0 .

Proof: If Q0 is a holonomic constraint, we get for the constraint 1-forms on the assoc
non-holonomic constraintQPJs21Y,

i* w i5
]ui

]qs vs.

Hence, for the canonical distributionC on Q we have

C05span$i* ps21,0* p dui%.

Now, the induced canonical distributionCP on P5Js21Q0 is annihilated by the 1-forms

Js21i0* w i5Js21i0* p dui5Js21i0* dui2Js21i0* h dui50,

since alongJs21i0 the equationsui50 anddui /dt50 hold. Thus

CP
05$0%

and we are done. j

The above theorem means that holonomic constraints are not ‘‘true’’ constraints, since
induceno constraints in the tangent bundle to the constraint submanifold. As a consequence w
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get the well-known result saying that holonomic constrained systems are nothing butpull-backs of
unconstrained systemsto the constraint submanifolds. More precisely, for a holonomic c
strained system onJs21Q0 we have

aP5Js21i0* a,

wherea represents the unconstrained system onJs21Y.
Now it is easy to see that if the unconstrained mechanical system is Lagrangian w

Lagrangianl of orderr ~i.e., if the class@a# has a unique closed representativedul), we have the
following corollary.

Corollary 6.1:

aP5Js21i0* dul5dJs21 i0* ul5duJr i
0* l .

VII. REGULARITY OF CONSTRAINED SYSTEMS

Propositions 5.2, 5.3, and 5.5 mean that dynamics of constrained systems can be repr
by means ofdistributionson the constraints.

Let @aQ# be a constrained system,aQ its representative. By aconstraint dynamical distribu-
tion DaQ we shall understand a subdistribution of the canonical distributionC, annihilated by
means of the 1-formsi jaQ , wherej runs over all vertical vector fields onQ belonging toC.

In analogy with the unconstrained case, the constrained system is calledregular if the equiva-
lence class@DaQ# contains a representative of rank 1. By Propositions 5.2, 5.3, and 5.5 we g
this case~cf. Theorem 3.1!.

Theorem 7.1:Consider 1<r<s21. Let @aQ# be the constrained system related to a mecha
cal system@a# on Js21Y and a constraintQ,JrY, and let @DaQ# be the corresponding class o

constraint dynamical distributions. The following conditions are equivalent:

~1! The constrained system@aQ# is regular.
~2! The matrix(Bsl8 ) is everywhere regular.
~3! The class@DaQ# contains a unique element of rank one—a constraint semispray distribu

which is of the form

GQ5spanH ]

]t
1 (

p50

s23

qp11
s

]

]qp
s 1 (

l 51

m2k

qs21
l ]

]qs22
l 1(

i 51

k

gi
]

]qs22
m2k1 i 1 (

l 51

m2k

B8 lpAp8
]

]qs21
l J ,

GQ
0 5spanH Al8dt1 (

p51

m2k

Blp8 dqs21
p ,vs,...,vs23

s ,vs22
l ,gidt2dqs22

m2k1 iJ ,

where1<s<m, 1<l<m2k, 1<i<k, and(B8pl) is the inverse matrix to(Bpl8 ).
~4! The equations for paths of the constrained system@aQ# have an equivalent form

qs
l 52B8 lpAp8 , 1< l<m2k.

Corollary 7.1: Let@aQ# be regular. Then for every representativeaQ of @aQ# such that rank
aQ is maximal,

i GQaQPC0.

Apparently, a constrained system of a regular mechanical system need not be regular
Remark 7.1:Notice that forr .s21 constraint dynamical distributions are spanned by

1-forms
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i* w i , Al8 dt12Flp8 vp1Fln8
0 jv j

n , Fln8
0 jv l1Fsn8 i j v i

s ,

where 1< l<m2k, i.e., for all DaQP@DaQ#,

rankDaQ>m11.

This means that all constrained systems which arise from mechanical systems of orders21 and
subject to constraints of orderr greater thans21 aresingular ~as mechanical systems onJrY).

VIII. HIGHER-ORDER CONSTRAINT FORCE

In keeping with Ref. 29, by aforce ~of order r! on an open setU,JrY we shall mean a
dynamical form onU. In what follows we denote byI(w i) the ideal generated by constrai
1-formsw i , 1< i<k, on U.

Let Q be a non-holonomic constraint of orderr, let f i50, 1< i<k, be equations ofQ on
U,JrY, and letw i , 1< i<k, be the corresponding constraint 1-forms onU. By a (local) con-
straint force, or Chetaev force of order rwe shall mean a dynamical formF on U belonging to
I(w i). Hence,

F5(
i

w i`m i , ~8.1!

wherem i , 1< i<k, are horizontal 1-forms onU. In analogy with the classical mechanics they w
be calledLagrange multipliers. Since in fiber coordinatesm i5m0

i dt, 1< i<k, we have

F5(
i

m0
i ws

i dqs`dt. ~8.2!

From a family of local constraint forces on open subsets ofJrY one can construct a global forc
on JrY in an obvious manner by a partition of unity.

Notice that the definition of a local constraint force does not depend upon the choi
constraint 1-forms belonging toI(w i). Indeed, ifw̄ i5w̄0

i dt1w̄s
i dqs, 1< i<k, are other indepen-

dent 1-forms belonging toI(w i), we havew i5( ja
i j w̄ j where (ai j ) is an everywhere regula

matrix. Hence,F5( iw
i∧m i5( i , ja

i j w̄ j∧m i5( j w̄
j∧m̄ j .

On the other hand, the definition of a local constraint force depends uponI(w i). Namely,
choosing different ideals of constraint 1-forms onU one gets different local constraint forces onU.
However, since if restricted to the points of the constraint, all the local constraint distribu
span the~unique! canonical distributionC on Q, we can see that the above construction provi
us with aunique up to Lagrange multipliersconstraint force onUùQ, and, consequently, with a
unique up to Lagrange multipliers global constraint force onQ. Thus, obviously, global constrain
forces onQ coincide with dynamical forms onQ belonging to the idealI(C0).

Remark 8.1:Let E be a dynamical form of orders, @a# its Lepage class onJs21Y. Consider
a non-holonomic constraintQ,JrY. Since in generalr ands may be different, we adopt, just fo
the sake of simplicity of notations, in the following formulas the convention identifying a f
with its projection~i.e., we writer instead ofpk,l* r).

If F on JrY is a constraint force related toQ, set

EF5E2F.

In this way we get a mechanical system represented by the Lepage class@aF# where

aF5a2F.

The dynamical formEF ~respectively, the dynamical system@aF#) will be called adeforma-
tion of the dynamical formE ~respectively, of@a#! by the constraint forceF.
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In fiber coordinates wheref i50 are local equations of the constraintQ we have

EF5S As1Bsnqs
n2(

i 51

k

m0
i ] f i

]qr
sD dqs∧dt,

and

aF5S As2(
i 51

k

m0
i ] f i

]qr
sDvs∧dt1Bsnvs∧dqs21

n 1 (
i , j 50

s22

Fsn
i j v i

s∧v j
n .

The deformed dynamics are described by the sectionsg of p satisfying theconstraint equations
f i50, 1< i<k, together with one of the following~equivalent! deformed equations of motion:

Jpg* i ja
F50 for every pp-vertical vector fieldj on JpY,

EF+Jp11g50,

As1Bsnqs
n5(

i 51

k

m0
i ] f i

]qr
s , 1<s<m

~wherep denotes the order of the deformed dynamical system@aF#). Thus, locally, we have a
system ofm1k ODE for m1k unknownsgs(t), m0

i (t) from which both a local constraint forc
and the constrained dynamics can be determined.

Now, consider the constrained system@aQ# related to the~unconstrained! mechanical system
@a#, and for every constraint forceF the constrained systems@aQ

F# related to the correspondin
deformed mechanical system@aF#. We can see immediately, that the following proposition hol

Proposition 8.1: The constrained system@aQ# does not depend upon the deformation, i.e.,
every constraint forceF,

@aQ
F#5@aQ#.
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12O. Krupková, ‘‘Mechanical systems with nonholonomic constraints,’’ J. Math. Phys.38, 5098–5126~1997!.
13M. de León, J. C. Marrero, and D. M. de Diego, ‘‘Non-holonomic Lagrangian systems in jet manifolds,’’ J. Phys. A30,

1167–1190~1997!.
14E. Massa and E. Pagani, ‘‘A new look at classical mechanics of constrained systems,’’ Ann. Inst. Henri Poinc´ 66,

1–36 ~1997!.
15M. de León, J. C. Marrero, and D. M. de Diego, Time-dependent mechanical systems with non-linear cons

Proceedings of the Conference on Differential Geometry, Budapest, 1996, edited by J. Szenthe~Kluwer, Berlin, 1999!,
pp. 221–234.
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The inverse scattering problem concerning the determination of the joint time-delay
Doppler-scale reflectivity density characterizing continuous target environments is
addressed by recourse to thegeneralized frame theory. A reconstruction formula,
involving the echoes of aframe of outgoing signalsand its corresponding recipro-
cal frame, is developed. A ‘‘realistic’’ situation with respect to the transmission of
a finite numberof signals is further considered. In such a case, our reconstruction
formula is shown to yield the orthogonal projection of the reflectivity density onto
a subspace generated by the transmitted signals. ©2000 American Institute of
Physics.@S0022-2488~00!04707-1#

I. INTRODUCTION

The aim of remote sensing techniques, such as radar and sonar, is to obtain information
location and velocity of targets by analyzing signals reflected from those objects. The refl
signal is called an echo and the location of a single scatter can be obtained by measuring ttime
delaybetween the outgoing signal and its echo. Furthermore, due to the motion of the obje
echo is affected by a Doppler effect amounting to atime scaling. Assuming that the object bein
tracked can be represented by a point moving at a constant velocityv toward or away from the
source that generates the transmitted signalh(t), thewide-band modelfor the received echo,f (t),
is given by1–3

f ~ t !5ah@s~ t2t!#, ~1!

where the scale factors ~known as the Doppler scale factor! is obtained from the signal propaga
tion velocity,c, and the object velocity,v, as

s5
c2v
c1v

.

The delayt is determined by recourse to the rangeR between the object and the source ast
52R/(c2v). Further, fromt and s we can obtainv5@(12s)/(11s)#c and R5cst/(s11),

a!Electronic mail: laura@gps.tsc.upc.es
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whereby there is a one-to-one correspondence between thetime-scaleecho parameters~t, s! and
the range velocity(R, v) of the object. The constanta in ~1! depends on the reflectivity of th
object. Nevertheless, if one wishes to have an energy preserving model,a must be chosen equa
to Ausu. Such ana value guarantees that the norm of the transmitted signal is equal to the no
its echo and, therefore, that the energy is conserved.

The echo model given in~1! is called wide-band modelso as to differentiate it from the
narrow-band approximation,4,5 valid when the signal propagates at the speed of light and
bandwidth is narrow in comparison to its main frequency component.5 When thenarrow-band
condition is satisfied, the echo happens to be a delayed and modulated version of the tran
signal,5 whereas from~1! we see that in thewide-band regimethe echo is a delayed and scale
version of such a signal. The latter is a more general model and includes thenarrow-band
approximationas a particular case. However, since~1! is derived by assuming that the object
essentially a point, it may fail for several reasons, among which the following ones are pointe
in Ref. 2.~i! The object may not be rigid with different parts having different radial velocities~a
cloud, for instance!. ~ii ! Although rigid, the object may be changing orientation with respect to
source/sensor site.~iii ! There may be many reflecting objects, each with its own range and vel
and closely spaced. All such situations are modeled by assuming that there is a distribu
reflectors in thedelay-scaleplane~see Refs. 6 and 7 for a number of interesting examples!.

If we give the nameF(t,s) to such a distribution, the model for the received echo beco
not ~1!, but

f ~ t !5 lim
T→`
S→`

E
2T

T E
2S

S

F~t,s!Ausuh@s~ t2t!#dt ds. ~2!

After the change of variabless→1/s, the above equation is recast as

f ~ t !5 lim
T→`
S→`

E
2T

T E
2S

S

D~t,s!
1

Ausu
hS t2t

s D dtds

s2 , ~3!

whereD(t,s)5F(t,1/s). The functionD(t,s) is referred to as thereflectivity density. Its deter-
mination entails the inversion of Eq.~3! but, unfortunately, this equation has no unique inverse
infinitely many functionsD(t,s) exist that are able to reproduce an identical echof (t).

The reader may associate Eq.~3! with the reconstruction of a signal from itswavelet trans-
form WTf ,h(t,s) with respect to a mother waveleth(t), which is defined as2,8,9

WTf ,h~t,s!5
1

Ausu
E

2`

`

hS t2t

s D f ~ t !dt, ~4!

whereh(t) indicates the complex conjugate ofh(t). Indeed, if the transmitted signalh(t) satisfies
the admissibility condition of being a mother wavelet, i.e.,

ch5E
2`

` uH~v!u2

uvu
dv,`, ~5!

whereH(v) denotes the Fourier transform ofh(t), one of the infinitely many distribution satis
fying Eq. ~3! is given by D(t,s)5WTf ,h(t,s)/ch .2,10 For a fixedh(t) this solution has been
shown to be optimal in both minimum norm2 and maximum entropy11,12 senses. Nevertheles
since the transmitted signal is here anarbitrary signal, none of these optimization criteria is o
significance for handling the concomitant inversion problem and one should conclude th
suitable representation of the reflectivity density can, normally, be achieved by transmitting
one signal and recording its echo. The question that immediately arises from this rema
whether one could determine the reflectivity density by transmitting not justone signal but a
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family of signals. This question was positively answer by H. Naparst.6,7 Assuming that the reflec
tivity density remains invariant during the observation time andthe samereflectivity density
produces all echoes, Naparst has shown that, indeed, it can be obtained by transmitting
signalsh1 ,h2 ,..., andrecording the corresponding echoesf 1 , f 2 ,... . In fact, by transmitting a
family of signals and measuring the corresponding echoes one obtains aset of equations~one
equation for each transmitted signal! so that the original problem is transformed into one
devising an appropriate set of equations that allows for the reconstruction of a unique refle
density. Naparst proposed to transmit an orthogonal set of signals. The method for perform
inversion of the corresponding equations is nicely derived in Refs. 6 and 7 through the
formula of group theoryby using the fact that the transformationst1t defines a group, the
so-calledaffine group.13–15,5

Here we shall tackle the reflectivity density reconstruction problem by recourse to a diff
tool. We will not make explicit use of group theory tools but useframe theoryinstead. We will
show that such a frameworkhas the advantage of liberating one from the orthogonality requ
ment for the transmitted signals. For the sake of generality our approach is developed within
recently proposedgeneralized frame structure.2,16–19Due to its practical importance, the discre
case is given special attention. We discuss the approximation we obtain by transmitting afinite
number of signals. Such an approximation plays a crucial role in practice, when only a few s
can be used. We get around this practical limitation by means of a relationship yielding insig
to just how to select afinite numberof signals by taking into account, when facing a particu
situation, some desirable properties one maya priori require of the reflectivity density one i
looking for.

This paper is organized as follows: We introduce our notation in Sec. II and give a
summary onframesin Sec. III. Section IV is devoted to developing an appropriate reconstruc
formula for the reflectivity density. The formula is based on thegeneralized frame theory. The
discrete finite-dimensional case is discussed in this section as well. Finally, some conclusio
drawn in Sec. V.

II. NOTATION

Adopting Dirac’s vector notation,20 we represent an elementf of a Hilbert spaceH as a vector
u f & and its dual aŝ f u. Given a set ofd-normalized continuous orthogonal vectors$ut&;2`,t
,`;^tut8&5d(t2t8)%, the unity operator inH is expressed in the fashion

Î H5 lim
T→`

E
2T

T

ut&^tudt. ~6!

Thus, for all u f & and ug&PH, by insertingÎ H in ^ f ug&, i.e.,

^ f u Î Hug&5 lim
T→`

E
2T

T

^ f ut&^tug&dt, ~7!

one is led to a representation ofH in terms of the space of square integrable functions, w
^tug&5g(t) and ^gut&5^tug&5g(t).

Using the set ofd-normalized continuum vectors$uev&;2`,v,`;^evuev8&5d(v2v8)
5^vuv8&%, whose functional representation is^tuev&5(1/A2p)eıvt, we introduce the unitary
operator,

F̂5 lim
V→`

E
2V

V

uv&^evudv, ~8!

whose adjoint is
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F̂†5 lim
V→`

E
2V

V

uev&^vudv. ~9!

The unitarity ofF̂ follows from the fact thatF̂F̂†5 Î , which impliesF̂†5F̂21.
OperatorF̂ defines the Fourier transform of a vectoru f & as

uF&5F̂u f &5 lim
V→`

E
2V

V

uv&^evu f &dv5
1

A2p
lim

V→`
E

2V

V

uv& lim
T→`

E
2T

T

e2ıvt f ~ t !dt dv, ~10!

while F̂†5F̂21 provides one with the inverse mapping,

u f &5F̂†uF&5 lim
V→`

E
2V

V

uev&^vuF&dv. ~11!

Since foru f &PH at almost allv(a.a.v)F(v)5^vuF&5^evu f &,21 unless otherwise specified w
shall denote the functional representation of the Fourier transform ofu f & as ^evu f &. Thus, given
F(v)5^evu f &, for a.a.t one goes back to thef (t)5^tu f & representation ofu f & by means of~11!,
i.e.,

^tu f &5^tuF̂†uF&5
1

A2p
lim

V→`
E

2V

V

eıvt^evu f &dv ~a.a.t !. ~12!

By recourse to the operatorsP̂F
1 and P̂F

2 , given by

P̂F
15 lim

V→`
E

0

V

uev&^evudv, ~13!

P̂F
25 lim

V→`
E

2V

0

uev&^evudv, ~14!

we introduce the upper and lower analytic vectorsu f 1&,u f 2& of a vectoru f & as the mappings

u f 1&5 P̂F
1u f &5 lim

V→`
E

0

V

uev&^evu f &dv, ~15!

and

u f 2&5 P̂F
2u f &5 lim

V→`
E

2V

0

uev&^evu&dv, ~16!

respectively. Note that̂f 1u f 2&50 and^ f 6ug&5^ f ug6&. Moreover, sinceP̂F
1u f &1 P̂F

2u f &5u f 1&
1u f 2&5u f &, it follows that P̂F

11 P̂F
2 is a representation of the identity inH.

Finally, let HH be the Hilbert spaceH^ H ~^ indicating the direct product!. The unity
operator inHH is expressed as

Î HH5 lim
X→`
Y→`

E
2X

X E
2Y

Y

ux,y&^x,yudx dy, ~17!

and, for all uD& and uP&PHH, it introduces the inner product inHH as
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^DuP&HH5 lim
X→`
Y→`

E
2X

X E
2Y

Y

^Dux,y&^x,yuP&dx dy, ~18!

with ^x,yux8,y8&5d(x2x8)d(y2y8), ^x,yuP&5P(x,y), and^Dux,y&5D(x,y).

III. A BRIEF REVIEW ON FRAMES

Let M be a set of labelsM5$mPM %, m a measure onM andL2(m) that Hilbert space in
which the identity operator reads as

Î L2~m!5E
M

um&^mudm~m!, ~19!

so that, foru f̃ & and ug̃& in L2(m) we have

^ f̃ ug̃&5E
M

^ f̃ um&^mug̃&dm~m!5E
M

f̃ ~m!g̃~m!dm~m!, ~20!

with

E
M

^m8um& f̃ ~m!dm~m!5 f̃ ~m8!. ~21!

A family of vectorsuhm&PH;mPM is called ageneralized frame2,19 ~henceforth to be referred to
simply as aframe! if, for every u f &PH, ~a! The functionf̃ (m)5^mu f̃ &5^hmu f & is measurable;~b!
There exists a pair of constants 0,A<B,`, such that

A^ f u f &H<^ f̃ u f̃ &L2~m!<B^ f u f &H . ~22!

The constantsA andB are called theframe boundsand~22! the frame condition. The latter implies
that u f̃ &PL2(m) wheneveru f &PH. Thus, the mappingT̂:H°L2(m) defines an operator, calle
the frame operator,

T̂5E
M

um&^hmudm~m!, ~23!

and we have

u f̃ &5T̂u f &5E
M

um&^hmu f &dm)~m!, ~24!

^m8u f̃ &5^m8uT̂u f &5^hm8u f &. ~25!

The adjoint operatorT̂†:L2(m)°H is

T̂†5E
M

uhm&^mudm~m!, ~26!

so that theframe conditioncan be expressed, in terms of the operatorĜ5T̂†T̂:H°H, as

AÎH<Ĝ<BÎH . ~27!

From ~23! and ~26! we see thatĜ is explicitly given by
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Ĝ5E
M

uhm&^hmudm~m!. ~28!

The inequality~27! entails thatĜ has a bounded inverseĜ21. In fact, Ĝ21 satisfies2,8,16,18,22

B21Î H<Ĝ21<A21Î H . ~29!

Assuming thatĜ21 is explicitly known, thereciprocal frame$uhm&;mPM % is computed as
uhm&5Ĝ21uhm&;mPM . Thus, sinceĜ21Ĝ5ĜĜ215 Î , by using~28! we obtain the following
expression for the unity operator inH:

Î 5E
M

uhm&^hmudm~m!5E
M

uhm&^hmudm~m!. ~30!

The family $uhm&;mPM % turns out to be aframe as well, with frame bounds B21 and
A21.2,8,16,18,22The associatedframe operator Sˆ :H°L2(m) is here,

Ŝ5E
M

um&^hmudm~m!5T̂Ĝ21, ~31!

while its adjointŜ†:L2(m)°H reads as

Ŝ†5E
M

uhm&^mudm~m!5Ĝ21T̂†, ~32!

so that~30! can be expressed asÎ 5Ŝ†T̂5T̂†Ŝ.
Thereciprocal frameof $uhm&;mPM % happens to be, again, the originalframe.2,8,22When the

frame boundsare equal, theframe is called atight one, and thereciprocal framesatisfiesuhm&
5uhm&/A. For the caseA51 the frame is self-reciprocal.

Let T be the range of the operatorT̂:H°L2(m), i.e., the subspace

T5Range~ T̂!5$u f̃ &;T̂u f &5u f̃ &;u f &PH%. ~33!

One also has Range(Ŝ)5Range(T̂). The operatorŜ†5Ĝ21T̂†:L2(m)°H yields the reconstruc-
tion of u f &PH from u f̃ &PT as u f &5Ŝ†u f̃ &. In fact, for u f̃ &PT, u f̃ &5T̂u f &, and we have

Ŝ†u f̃ &5E
M

uhm&^muT̂u f &dm~m!5E
M

uhm&^hmu f &dm~m!5 Î u f &5u f &. ~34!

T is just a closedsubspace, not all of L2(m) @not everyug̃&PL2(m) can be expressed asug̃&
5T̂u f &#. Therefore, in addition to the reciprocal frame$uhm&5Ĝ21uhm&5Ŝ†um&;mPM %, many
other sets of reciprocal vectors$uvm&PH;mPM % giving rise to a resolution of the unity exis
Indeed, since the operatorT̂Ŝ†5T̂Ĝ21T̂† is the orthogonal projector operator onto the rangeT of
T̂ in L2(m),2,8 the operatorÎ 2T̂Ŝ† is the orthogonal projector toT' @the orthogonal complemen
of T in L2(m)#. Consequently, if given an arbitrary bounded operatorV̂:H°L2(m), we define

ŜV
†5Ŝ†1V̂†~ Î 2T̂Ŝ†!, ~35!

one has
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ŜV
† T̂5Ŝ†T̂1V̂†~ T̂2T̂Ŝ†T̂!, ~36!

5 Î 1V̂†~ T̂2T̂!5 Î . ~37!

SinceŜV
† T̂5 Î , we also haveT̂†ŜV5 Î .

The operatorV̂ is built up as

V̂5E
M

um&^vmudm~m!, ~38!

using any set of vectorsuvm&PH;mPM such that*Mu^vmu f &u2dm(m),`;u f &PH. The recip-
rocal vectorsuvm&;mPM , which are explicitly computed as

uvm&5ŜV
† um&5~Ŝ†1V̂†2V̂†T̂Ŝ†!um&5uhm&1uvm&2E

M
uvm8&^hm8uh

m&dm~m8!, ~39!

amount to an explicit representation of unity, as given by

Î 5ŜV
† T̂5E

M
ŜV

† um&^hmudm~m!5E
M

uvm&^hmudm~m!5T̂†ŜV

5E
M

uhm&^muŜVdm~m!5E
M

uhm&^vmudm~m!. ~40!

IV. RECONSTRUCTION OF THE REFLECTIVITY DENSITY FUNCTION

A. A frame theory based approach

We shall derive here a reconstruction formula for the reflectivity density functionD(t,s) and
begin by introducing the following definition: letCH

1 be the space of continuous functions ofH
whose first derivative is also a continuous function ofH. A frame of signalsuhm&PH;mPM ,
each of which~i! satisfies condition~5! and ~ii ! is of such a nature that the upper and low
analytic vectorsuhm1&,uhm2& of the dual frameuhm&5Ĝ21uhm&;mPM belong toCH

1 , will be
referred to in what follows asa frame of outgoing signals.

Theorem 1: Let uhm&PH;mPM be a frame of outgoing signalsand u f m& the corresponding
echoes produced bythe samereflectivity densityD(t,s) @cf. ~3!#,

f m~ t !5^tu f m&5 lim
T→`
S→`

E
2T

T E
2S

S

D~t,s!
1

Ausu
hmS t2t

s D dt ds

s2 ; mPM . ~41!

Provided that bothD(t,s)/s andD(t,s)/usu3/2 belong toHH, the reflectivity densityD(t,s) can
be recovered from the echoesu f m& by recourse to the equation

D~t8,s8!52
us8u

ı E
M

d

dt8
^hm2uP̂t8,s8

† u f m&dm~m!

1
us8u

ı E
M

d

dt8
^hm1uP̂t8,s8

† u f m&dm~m! ~a.a.t8!, ~42!

uhm2& anduhm1& being, respectively, the upper and lower analytical vectors ofuhm& @cf. Eqs.~15!

and ~16!#, andP̂t8,s8
† a unitary operator given by
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P̂t,s5
1

Ausu
lim

T→`
E

2T

T

ut&K t2t

s Udt. ~43!

Proof: With the aid of the above defined operatorP̂t,s , each equation~41! can be expressed
in the vector form

u f m&5 lim
T→`
S→`

E
2T

T E
2S

S

D~t,s!P̂t,suhm&
dt ds

s2 ; mPM . ~44!

Since for eachmPM the outgoing signalsuhm& satisfy ~5!, the requirement thatD(t,s)/sPHH
ensures that vectorsu f m&;mPM are inH. Hence, ata.a.v their pertinent Fourier representatio

is obtained by applyinĝevu to both sides of~44!. Since^evuP̂t,suhm&5Ausu^evut&^evsuhm& ~see
Appendix B!, we have

^evu f m&5 lim
T→`
S→`

E
2T

T E
2S

S

D~t,s!Ausu^evut&^evsuhm&
dt ds

s2 ; mPM ~a.a.v!. ~45!

According to Fubini’s theorem,D(t,s)/sPHH implies that *2`
` uD(t,s)u2 dt,`. Hence, at

a.a.v,

lim
T→`

E
2T

T

D~t,s!^evut&dt5
1

A2p
lim

T→`
E

2T

T

D~t,s!e2ıvt dt, ~46!

is the Fourier transform ofD(t,s) with respect to the variablet. Using the above notation for th
Fourier transform, we write

lim
T→`

E
2T

T

D~t,s!^evut&dt[^evuĤsuD& ~a.a.v!, ~47!

where, for everys, the operatorĤs :HH°H is defined as

Ĥs5 lim
T→`

E
2T

T

ut&^t,sudt. ~48!

By recourse to~47!, the set of equations~45! is recast as

^evu f m&5 lim
S→`

E
2S

S

^evuĤsuD&^evsuhm&Ausu
ds

s2 ; mPM ~a.a.v!. ~49!

After first multiplying both sides of each equation by^hmuevs8& and then integrating overm, one
is led to the single equation

E
M

^evu f m&^hmuevs8&dm~m!5E
M

lim
S→`

E
2S

S

^evuĤsuD&^evsuhm&

3^hmuevs8&Ausu
ds

s2 dm~m! ~a.a.v!, ~50!

which can be written in the form
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E
M

^evu f m&^hmuevs8&dm~m!5E
M

^gvuhm&^hmuevs8&dm~m! ~a.a.v!, ~51!

where fora.a.v vector ^gvu is given by

^gvu5 lim
S→`

E
2S

S

^evuĤsuD&^evsuAusu
ds

s2 . ~52!

Now, since*Muhm&^hmudm(m) is a decomposition of the unity inH, *M^gvuhm&^hmudm(m)
5^gvu for all ugv&PH. Hence,~51! happens to be

E
M

^evu f m&^hmuevs8&dm~m!5^gvuevs8& ~a.a.v!, ~53!

and, sincê evsuevs8&5d@v(s2s8)#5d(s2s8)/uvu, we finally arrive at

uvu
s82

Aus8u
E

M
^evu f m&^hmuevs8&dm~m!5^evuĤs8uD& ~a.a.v!. ~54!

It should be stressed that forugv& to belong toH for a.a.v, we must require that

^gvugv&5 lim
S→`
S8→`

E
2S

S E
2S8

S8
^evuĤsuD&^DuĤs8uev&^evsuevs8&

Ausuds

s2

Aus8uds8

s82

5
1

uvu
lim

S→`
E

2S

S u^evuĤsuD&u2

usu3 ds,`. ~55!

From Plancherel’s and Fubini’s theorems we gather that forD(t,s)/usu3/2PHH the above condi-
tion is fulfilled.

The fact thatuhm&PCH
1 ;mPM implies thatv^evuhm&PH. Thus, ata.a.t8 the D(t8,s8)

picture of uD& is obtained by first multiplying both sides of~54! by ^t8uev& and then integrating
over v, i.e.,

s82

Aus8u
lim

V→`
E

2V

V E
M

uvu^t8uev&^evu f m&^hmuevs8&dm~m!dv

5 lim
V→`

E
2V

V

^t8uev&^evuĤs8uD&dv

5^t8uĤs8uD&5D~t8,s8! ~a.a.t8!. ~56!

Equivalently, by discriminating between the positive and negative values ofv, we can write

D~t8,s8!5
s82

Aus8u
lim

V→`
E

2V

0 E
M

2v^t8uev&^evu f m&^hmuevs8&dm~m!dv

1
s82

Aus8u
lim

V→`
E

0

VE
M

v^t8uev&^evu f m&^hmuevs8&dm~m!dv ~a.a.t8!. ~57!

Notice thatv^t8uev&5(1/ı)(d/dt8)^t8uev&. Hence~see Appendix A!,
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v^t8uev&^hmuevs8&5
1

ı

d

dt8
^t8uev&^hmuevs8&5

1

ı

d

dt8
^hmuP̂t8,s8

† uev&
1

Aus8u
. ~58!

Since uhm&PCH
1 , after replacing~58! into ~57!, we can use~14! and ~13! to write ~57! in the

fashion

D~t8,s8!52
us8u

ı E
M

d

dt8
^hmuP̂t8,s8

† P̂F
2u f m&dm~m!

1
us8u

ı E
M

d

dt8
^hmuP̂t8,s8

† P̂F
1u f m&dm~m! ~a.a.t8!. ~59!

Furthermore, bothP̂F
2 and P̂F

1 commute withP̂t8s8
† ~see Appendix B!. This fact allows one to

write

D~t8,s8!52
us8u

ı E
M

d

dt8
^hm2uP̂t8,s8

† u f m&dm~m!

1
us8u

ı E
M

d

dt8
^hm1uP̂t8,s8

† u f m&dm~m! ~a.a.t8!, ~60!

which completes the proof.
As an illustrative example of the above reconstruction formula in the continuous case,

consider the situation in which the outgoing signals themselves are wavelet functions dep
on continuous parameters. If we considerM5R2, m5(a,b), dm(m)5da db/a2, and ^tuha,b&
5(1/Auau)h„(t2b)/a…; a,bPR2, the frame is known to beself-reciprocal,2 i.e., uha,b&5uha,b&,
and ~42! turns out to be

D~t8,s8!52
us8u

ı E
R2

d

dt8
^ha,b

2 uP̂t8,s8
† u f a,b&

da db

a2

1
us8u

ı E
R2

d

dt8
^ha,b

1 uP̂t8,s8
† u f a,b&

da db

a2 ~a.a.t8!. ~61!

The practical implementation of the above reconstruction formula is achieved by using ade
quadratures for numerically computing the corresponding integrals.

B. Remarks on uniqueness

This section is devoted to stress that the reconstruction formula~42! actually provides us with
a unique solution. With this aim in mind we shall show that~a! D(t,s) as given by~42! is
independent of the frame, i.e., every frame inH yields an identical solution; and~b! the solution
is independent of the reciprocal frame, in the sense that if one uses any other set of rec
vectors@cf. Eq. ~39!# rather thanuhm&5Ĝ21uhm&; mPM , an identical solution is obtained.

To prove~a! let uhm
1 &;mPM be a givenframe of outgoing signalsyielding the corresponding

echoes,

u f m
1 &5L̂Duhm

1 &; mPM , ~62!

where, for the sake of a simpler notation we useL̂D to denote the integral operator,
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L̂D5 lim
T→`
S→`

E
2T

T E
2S

S

D~t,s!
dtds

s2 P̂t,s , ~63!

and letuh1m&;mPM be the correspondingreciprocal frame.
If uhm

2 &;mPM is a differentframe of outgoing signalswith associated echoes:

u f m
2 &5L̂Duhm

2 &; mPM , ~64!

and an associatedreciprocal frameuh2m&;mPM , it is straightforward to show that

D~t,s!52
usu
ı E

M

d

dt
^h1m2uP̂t,s

† u f m
1 &dm~m!1

usu
ı E

M

d

dt
^h1m1uP̂t,s

† u f m
1 &dm~m!

52
usu
ı E

M

d

dt
^h2m2uP̂t,s

† u f m
2 &dm~m!1

usu
ı E

M

d

dt
^h2m1uP̂t,s

† u f m
2 &dm~m!. ~65!

Indeed, since*Muhm
2 &^h2mudm(m) is a decomposition of the identity inH, andu f m

1 &5L̂Duhm
1 &, it

follows that

E
M

d

dt
^h1m6uP̂t,s

† u f m
1 &dm~m!5E

M

d

dt EM
^h1m6uhm8

2 &^h2m8uP̂t,s
† L̂Duhm

1 &dm~m8!dm~m!

5E
M

d

dt EM
^h2m8uP̂t,s

† L̂Duhm
1 &^h1muhm8

26&dm~m8!dm~m!

5E
M

d

dt
^h2m8uP̂t,s

† L̂DÎ uhm8
26&dm~m8!

5E
M

d

dt
^h2m8uP̂t,s

† u f m8
26&dm~m8!

5E
M

d

dt
^h2m86uP̂t,s

† u f m8
2 &dm~m8!, ~66!

so that, as a consequence,~65! holds.
We now prove~b! by showing that, for any set of reciprocal vectorsuvm&;mPM @cf. Eq.~39!#

yielding a decomposition of the identityl̂ 5*Muhm&^vmudm(m), the following relationship is true:

E
M

d

dt
^hm6uP̂t,s

† u f m&dm~m!5E
M

d

dt
^vm6uP̂t,s

† u f m&dm~m!. ~67!

Indeed,

E
M

d

dt
^vm6uP̂t,s

† u f m&dm~m!5
1

Ausu
E

M

d

dt
lim

T→`
E

2T

T K vmuP̂F
6u

t2t

s L ^tu f m&dt dm~m!

5
1

Ausu
E

M

d

dt
lim

T→`
E

2T

T

^tuL̂Duhm&K vmuP̂F
6u

t2t

s L dt dm~m!,

~68!
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and, since*Muhm&^vmudm(m)5*Muhm&^hmudm(m), we have

E
M

d

dt
^vm6uP̂t,s

† u f m&dm~m!5
1

Ausu
E

M

d

dt
lim

T→`
E

2T

T K hmuP̂F
6u

t2t

s L ^tuL̂Duhm&dm~m!

5E
M

d

dt
^hm6uP̂t,s

† u f m&dm~m!. ~69!

C. The discrete case and the orthogonal projection approximation

We shall confront here the discrete case for whichM5Z, m is the counting measure onZ, and
L2(m)5 l 2(Z) ~the space of all convergent square sequences!. Consequently, considering that th
outgoing signals constitute a frame inl 2(Z), the reconstruction formula~42! adopts the form

D~t8,s8!52
us8u

ı (
mPZ

d

dt8
^hm2uP̂t8,s8

† u f m&1
us8u

ı (
mPZ

d

dt8
^hm1uP̂t8,s8

† u f m& ~a.a.t8!.

~70!

As discussed in the previous section, the value of~70! is independent of just which particula
frame is being used. In practice, however, one is forced to work with afinite set of signals. This
endows the selection of such a reduced set with a rather crucial significance. We fee
motivated to carefully analyze the finite-dimensional approximation. We shall show that it
rise to an orthogonal projection of the reflectivity density. The following proposition is in or

Proposition 1:Let T̂N andĜN be the operators

T̂N5 (
mPZN

um&^hmu, ~71!

and

ĜN5T̂N
† T̂N5 (

mPZN

uhm&^hmu, ~72!

respectively, where$uhm&;mPZN,Z% is a set ofN vectors inH. The restrictionĜ̃N of ĜN to G̃
5Range(ĜN),H has an inverse and the reciprocal vectors$uh̃m&5 Ĝ̃N

21uhm&; mPZN,Z% yield a
representation ofP̂G̃ , the orthogonal projection operator ontoG̃, as given by

P̂G̃5 (
mPZN

uh̃m&^hmu5 (
mPZN

uhm&^h̃mu . ~73!

The proof, to be found in Appendix C, is given in such a way that an explicit manner to com
the vectors$uh̃m&;mPZN,Z% is thereby provided.

Corollary 1: For ^tu f &5 f (t)PH, the mapping,

(
mPZN

lim
T→`

E
2T

T

hm~ t !h̃m~ t8! f ~ t8!dt8[ (
mPZN

lim
T→`

E
2T

T

h̃m~ t !hm~ t8! f ~ t8!dt8,

gives rise to the orthogonal projection off (t) onto G̃.
The proof is of an obvious character, since the above integral can be rewritten as

(
mPZN

lim
T→`

E
2T

T

^tuhm&^h̃mut8&^t8u f &dt85 lim
T→`

E
2T

T

^tuP̂G̃ut8&^t8u f &dt85^tuP̂G̃u f &. ~74!
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Corollary 2: For F(v)5^evu f &PH, the mapping

(
mPZN

lim
V→`

E
2V

V

^evuhm&^h̃muev8&F~v8!dv8[ (
mPZN

lim
V→`

E
2V

V

^evuh̃m&^hmuev8&F~v8!dv8

is, for a.a.v, the Fourier representation of the orthogonal projection ofu f & onto G̃.
The proof is straightforward, since the above integral can be recast as

lim
V→`

E
2V

V

^evuP̂G̃uev8&^ev8u f &dv85^evuP̂G̃u f &. ~75!

Corollary 3: The following reproducing kernel equation holds fora.a.v if and only if at
a.a.v F(v)5^evuP̂G̃u f & for u f &PH,

F~v!5 (
mPZN

lim
V→`

E
2V

V

^evuhm&^h̃muev8&F~v8!dv8

5 (
mPZN

lim
V→`

E
2V

V

^evuh̃m&^hmuev8&F~v8!dv8. ~76!

This corollary is an immediate consequence of the previous one because, ifF(v)5^evuP̂G̃u f &,
then ~76! obviously holds. Further, if~76! holds, by the same tokenF(v)5^evuP̂G̃u f &.

We pass now to the derivation of the approximation we obtain by recourse to a reduce

$uhm&;mPZN,Z%,

of outgoing signals. Let$uh̃m&;mPZN,Z% be the corresponding reciprocal set inG̃ ~see Appendix
C for an explicit prescription on how to compute them!. Equivalent steps to those we hav
described above in order to arrive to Eq.~50! lead here to the relation

(
mPZN

^evu f m&^h̃muevs8&5 (
mPZN

lim
S→`

E
2S

S

^evuĤsuD&^evsuhm&^h̃muevs8&Ausu
ds

s2 ~a.a.v!.

~77!

Effecting the change of variablesvs→u, the right-hand side of~77! becomes

(
mPZN

lim
S→`

E
2S

S

^evuĤu/vuD&^euuhm&^h̃muevs8&AUu

vUS v

u D 2 du

uvu
. ~78!

From Corollary 3@taking the complex conjugate of~76!#, we gather that the above expression
equal to

^evuĤs8uD&
Aus8u
s82uvu

,

if and only if, for a.a.v, it is true that

^evuĤu/vuD&AUu

vU S v

u D 2 1

uvu
5^ f uP̂G̃ueu&, for some u f &PH. ~79!

Otherwise, according to Corollary 2 we have
                                                                                                                



ct,
, this

effi-

as
ivity

:

y that

hoes of
od

n
rough

5338 J. Math. Phys., Vol. 41, No. 8, August 2000 Rebollo-Neira, Plastino, and Fernandez-Rubio

                    
(
mPZN

lim
S→`

E
2S

S

^evuĤu/vuD&^euuhm&^h̃muevs8&AUu

vUS v

u D 2 du

uvu
5^evuĤs8uD̃&

Aus8u
s82uvu ~a.a.v!,

~80!

where, for a.a.v,^evuĤs8uD̃&(Aus8u/s82uvu) is the orthogonal projection of̂ evuĤs8uD&

3(Aus8u/s82uvu) onto a scaled representation ofḠ̃ in the Fourier domain@see Eq.~82! below#.
Relation ~79! provides us with a criterion to choose the setuhm&;mPZN while paying due

attention to thea priori required properties of the reflectivity density we are looking for. In fa
for the orthogonal projection approximation to be an exact solution of the problem at hand
desired reflectivity density must be of such nature that fora.a.v,

^evuĤu/vuD&AUu

vUS v

u D 2 1

uvu
5^ f uP̂G̃ueu&5 (

mPZN

bm~v!^hmueu&, ~81!

where we have used the notationbm(v) so as to put in evidence the dependence of the co
cientsbm on the value ofv. Under the change of variablesu/v→n, Eq. ~81! is written in the
equivalent fashion

^evuĤnuD&
Aunu
n2

1

uvu
5 (

mPZN

bm~v!^hmuenv&. ~82!

Let us now return to Eq.~77!. By using first~78! and~80!, and then performing identical steps
those in Sec. IV A, the reconstruction formula for the orthogonal projection of the reflect
density turns out to be

D̃~t8,s8!52
us8u

ı (
mPZN

d

dt8
^h̃m2uP̂t8,s8

† u f m&1
us8u

ı (
mPZN

d

dt8
^h̃m1uP̂t8,s8

† u f m& ~a.a.t8!,

~83!

which is an exact representation of the ‘‘true’’ reflectivity density if and only ifour function
D(t,s) is such that, ata.a.v, Eq. ~81! @or equivalently~82!# holds.

The reconstruction formula~83! @as well as the concomitant equations~42! and ~70!# can be
written in terms of the so-calledwide-band ambiguity function3,5 of the radar literature as follows

D̃~t8,s8!5
us8u
ıs8 (

mPZN

@WAf m,gm2~t8,s8!2WAf m ,gm1~t8,s8!# ~a.a.t8!, ~84!

wheregm6(t)5(d/dt)h̃m6(t) and thewide-band ambiguity function WAf ,g(t8,s8) has an iden-
tical definition to that of the wavelet transform, i.e.,

WAf ,g~t8,s8!5
1

Aus8u
lim

T→`
E

2T

T

gS t2t8

s8 D f ~ t !dt[^guP̂t8,s8
† u f &. ~85!

V. CONCLUSIONS

The inverse scattering problem with regard to the determination of the reflectivity densit
characterizes continuous targets environments has been addressed by recourse to thegeneralized
frame theory, working under the assumption that all echoes are produced bythe samereflectivity
density. It has been shown that such a function can be uniquely reconstructed from the ec
a frame of outgoing signals. Thus, well-known frames of wavelets, in particular those with go
decay properties in both the time and frequency domains,8,23 are appropriate to such an end.

The realistic situation concerning the transmission of afinite numberof signals has also bee
analyzed. It was found that, if the corresponding reflectivity density can be represented th
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linear combinations of scaled replicas of the transmitted signals@cf. Eq. ~82!#, then the received
echoes allow for an exact reconstruction of such a reflectivity density. Otherwise, our recon
tion formula gives rise to the orthogonal projection of the reflectivity density onto a subs
generated by the outgoing signals. We believe relation~82! to be a useful guide for selecting th
transmitted signals in such a way that, when confronting a particular situation, somea priori
required properties of the desired reflectivity density be satisfied.
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APPENDIX A

The proof of the relation

^evuP̂t,suhm&5Ausu^evut&^evsuhm& ~A1!

is straightforward. Notice that, sincêevuat1bt&5e2iv(at1bt)/A2p, the following equalities
hold: ^evuat1bt&5^evuat&^evubt&5^evaut&^evbut&. Hence,

^evuP̂t,suhm&5 lim
T→`

E
2T

T 1

Ausu
^evut&K t2t

s UhmL dt5 lim
T→`

E
2T

T
Ausu^evut8s1t&^t8uhm&dt8

5^evut& lim
T→`

E
2T

T
Ausu^evsut8&^t8uhm&dt85Ausu^evut&^evsuhm&. ~A2!

Considering the complex conjugate of the above equality one also has

^hmuP̂t,s
† uev&5Ausu^tuev&^hmuevs&, ~A3!

P̂t,s
† being the adjoint of operatorP̂t,s , i.e.,

P̂t,s
† 5

1

Ausu
lim

T→`
E

2T

T Ut2t

s L ^tudt. ~A4!

APPENDIX B

We perform here the necessary manipulations that allow one to show thatP̂F
1 commutes with

P̂t,s
† ~the proof thatP̂F

2 also commutes withP̂t,s
† follows identical steps!:

P̂F
1P̂t,s

† 5 Î HP̂F
1P̂t,s

† 5 lim
T8→`
V→`
T→`

1

Ausu
E

2T8

T8 E
0

VE
2T

T

ut8&^t8uev&K evUt2t

s L ^tudt8 dv dt

5 lim
T8→`
V→`
T→`

1

Ausu
E

2T8

T8 E
0

VE
2T

T

ut8&^t8uev&^ev/sut&^ev/su2t&^tudt8 dv dt. ~B1!

Effecting the change of variablesv/s→v, and using the propertŷevu2t&5^evut&5^tuev&, we
obtain
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P̂F
1P̂t,s

† 5 lim
T8→`
V→`
T→`

usu

Ausu
E

2T8

T8 E
0

VE
2T

T

ut8&^t8uevs&^evut&^tuev&^tudt8 dv dt

5 lim
T8→`
V→`
T→`

usu

Ausu
E

2T8

T8 E
0

VE
2T

T

ut8&^t8s1tuev&^evut&^tudt8 dv dt

5 lim
T8→`
V→`

1

Ausu
E

2T8

T8 E
0

VE
2T

T Ut92t

s L ^t9uev&^evu Î H dt9 dv5P̂t,s
† P̂F

1 . ~B2!

APPENDIX C

As already stated, the proof of Proposition 1 that we discuss here aims also to provide,
same time, a recipe for computing the reciprocal vectorsuh̃m&;mPZN,Z.

Let us start by considering the eigenvalue equation for the thesemipositive self-adjointop-
eratorT̂NT̂N

† ,

T̂NT̂N
† uck&5lkuck&; k51,...,N, ~C1!

wherelk>0 are the corresponding eigenvalues and^ckuc l&5d l ,k . The above equation can b
easily solved because the representation ofT̂NT̂N

† in l 2(ZN) is given by theN by N matrix

^muT̂NT̂N
† un&5^hmuhn&; m51,...,N; n51,...,N. Of course, many optimized routines for solvin

~C1! are available.
It readily follows that the orthogonal vectorsufk&5T̂N

† uck&; k51,...,N are the eigenvectors o
the operator ĜN5T̂N

† T̂N , with associated eigenvalueslk . Furthermore, since^f l ufk&
5^c l uT̂NT̂N

† uck&5lkd l ,k , it is clear that the zero eigenvalues correspond to eigenvectors of
norm. Thus, forlkÞ0, the normalized eigenvectorsuf̃k&5T̂N

† uck&/Alk spanG̃5Range(ĜN). Af-
ter first ordering the eigenvalues in decreasing order, i.e.,l1>l2¯>lN , and then assuming tha

there existr nonzero eigenvalues, the spectral decomposition of the restrictionĜ̃N of ĜN to G̃
5Range(ĜN),H is

Ĝ̃N5 (
k51

r

uf̃k&lk^f̃ku . ~C2!

As a consequence, the spectral decomposition of its inverseĜ̃N
21 is

Ĝ̃N
215 (

k51

r

uf̃k&
1

lk
^f̃ku. ~C3!

Using now the vectorsuf̃k&; k51,...,r we can compute the reciprocal vectorsuh̃m&;mPZN,Z in
the fashion

uh̃m&5 Ĝ̃N
21uhm&5 (

k51

r

uf̃k&
1

lk
^f̃kuhm&; mPZN,Z. ~C4!

We shall prove that these reciprocal vectors provide a representation of the orthogonal pr
onto G̃, as given by Eq.~73!. To do so we first show that such a projector can be expressed
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P̂G̃5 (
k51

r

uf̃k&^f̃ku . ~C5!

Every vectorug&PH can be decomposed into the sumug&5ugG̃&1ugG̃'&, where ugG̃&PG̃ and
ugG̃'

&PG̃' ~the orthogonal complement ofG̃ in H!. The statement thatP̂G̃ is the orthogonal

projector ontoG̃ entails thatP̂G̃ug&5ugG̃&. To show this notice that, sinceugG̃&PG̃, it can be
written as ugG̃&5ĜNu f & for some u f &PH. Hence, P̂G̃ugG̃&5 P̂G̃ĜNu f &5Sk51

r uf̃k&^f̃kuĜNu f &
5Sk51

r uf̃k&lk^f̃ku f &5ĜNu f &5ugG̃&. On the other hand,ugG̃'&PG̃' implies that^ f ugG̃'&50 for
every u f &PG̃. Hence, ^f̃kugG̃'&50 for k51,...,r and, as a consequence,P̂G̃ug&5 P̂G̃ugG̃&
1 P̂G̃ugG̃'&5 P̂G̃ugG̃&5ugG̃&.

The proof that(mPZN
uh̃m&^hmu5 P̂G̃ is now straightforward if we use~C.4! i.e.,

(
mPZN

uh̃m&^hmu5 (
mPZN

(
k51

r

uf̃k&
1

lk
^f̃kuhm&^hmu

5 (
k51

r

uf̃k&
1

lk
^f̃kuĜN5 (

k51

r

uf̃k&^f̃ku5 P̂G̃ . ~C6!
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Dynamics of axial channeling in quasicrystals:
An averaging-theory approach

A. W. Sáenza)

Department of Physics, Catholic University, Washinton, DC 20064,
and Naval Research Laboratory, Washington, DC 20375
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A mathematically rigorous Hamiltonian theory of nonrelativistic axial channeling
of positively charged particles in simply decorated icosahedral quasicrystals~IQCs!
is developed in this paper on the basis of first-order averaging theory. The main
result is an error estimate for the approximation of replacing the relevant Hamil-
tonian by that of the corresponding axial-continuum model to calculate suitable
phase-space orbits. The derivation of this result makes essential use of a rigorous
version of a theorem of Besjes on single-phase first-order averaging theory and of
an asymptotic formula for the distribution of quasilattice points along arbitrary
quasilattice axes of the considered IQC model. A deep number-theoretic result of
Niederreiter is used to obtain this formula. ©2000 American Institute of Physics.
@S0022-2488~00!03805-6#

I. INTRODUCTION

Motions of positively charged particles~the case of interest here! in crystals or quasicrystals
~QCs! that remain confined near lines or between planes of atoms over distances that ar
compared to the average atomic spacings are called channeling motions, or simply channe1,2

In this paper, we will be concerned with axial channeling in QCs.3 Analogously to what occurs in
crystals, such channeling takes place in a QC when an energetic beam of such particles is
upon it in a direction almost parallel to a major QC axis. When the particles enter a QC
random~nonaligned! direction, their motion may be viewed as multiple scattering off individ
QC atoms, but in the case of axial channeling the QC may be regarded as a collection of
rows parallel to the axis and the particle motion as multiple scattering off these rows. The
action with each row leads to a gentle steering process involving many correlated small
scatterings between the particles and individual atoms in the row. If a beam is aligned with a
QC plane, away from a major QC axis, particles can be trapped in an oscillatory motion be
adjacent planes. This phenomenon is called planar channeling. More careful and detailed p
arguments, first stated by Lindhard,2 suggest that channeling of positively charged particles
crystals and QCs can be described classically to a good approximation on the basis of con
Hamiltonian models, in which the potentials of the relevant atomic rows~resp., planes! acting on
the channeled particle are replaced by an average along the rows~resp., planes! in question.

A significant difference in the axial channeling occurring in crystals and QCs stems from
fact that in the latter structures there are rows with arbitrarily small atomic densities. This a
a relatively low-energy particle to penetrate them, but higher-density rows can steer the p
away, analogously to what happens in crystals.

Our main goal in this present paper is to justify in a mathematically rigorous way the app
mation of replacing a nonrelativistic Hamiltonian model describing the motion of a fast pos
particle~ion! in a simplified icosahedral quasicrystal~IQC! by a corresponding continuum mode
The IQC considered has a quasilatticeK that can be generated by projecting the simple cu
hyperlatticeZ6 onto a suitable three-dimensional spaceE ~‘‘physical’’ space!, which is identified

a!Electronic mail: saenz@dave.nrl.navy.mil
53420022-2488/2000/41(8)/5342/27/$17.00 © 2000 American Institute of Physics
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with R3, and then selecting an appropriate subset of the projected points.4–6 Each point in the
icosahedral quasilattice~IQL! K is an atomic site decorated with an atom of the same specie
more detail, we assume that the motion of the nonrelativistic particle traversing the IQC is
erned by the Hamiltonian functionH:R33R3→(0,̀ ), defined by

H~X,P!5~1/2! (
i 51,2,3

Pi
21V~X!, ~1.1!

in suitable units. HereX5(X1 ,X2 ,X3)PR3 andP5(P1 ,P2 ,P3)PR3 denote the position vecto
and conjugate momentum vector of the particle, respectively, and

V~X!5 (
kPK

v~X2k! ~1.2!

denotes the repulsive interaction of the particle with the atoms of the IQC. The effect o
thermal vibrations of the atoms on the particle motion is taken into account in the usual phe
enological manner7 by thermally averaged two-body potentialsv that are strictly positive, smooth
and bounded, and that decay faster than an exponential.8 TheX3 axis is chosen parallel to a fixed
but arbitrary, QL line~axis!.

Physically, one expects that when the initial momentum of the particle is almost paral
this line and its energy is sufficiently large, it undergoes axial channeling. That is, under
conditions its motion is governed to a good approximation by the axial-continuum Hamilton

H̄~X,P!5~1/2! (
i 51,2,3

Pi
21V̄~X1 ,X2!, ~1.3!

for relatively long times. Here

V̄~X1 ,X2!5 lim
X3→`

X3
21E

0

X3
V~X1 ,X2 ,s!ds. ~1.4!

A rigorous version of this expectation is proved in this paper. LetXi(t,e),Pi(t,e) ( i 51,2,3) be
the unique solution of the equations of motion~EOM! of H(X,P) satisfying the initial conditions
Xi(0,e)5j i , Pi(0,e)5h i and X̄i(t,ē),P̄i(t,ē)( i 51,2,3) be that of the EOM ofH̄(X,P) satisfy-
ing the same initial conditions. Heree5(2H(j,h)21/2 and ē5(2H̄(j,h))21/2. For convenience
and without loss of essential generality, we assume thatj350 andh3.0. We also fixj i ,h i( i
51,2), and hencee'ē'1/h3 for large momentumh3 along theX3 axis. Under these circum
stances, we show that for sufficiently largeh3 the uniform error estimate,

iZ~ t,e!2Z̄~ t,ē !i<constAeu logeu, ~1.5!

holds in arbitraryR6-norm for 0<t<T, whereT is an arbitrary positive constant. HereZ(t,e)
5„X(t,e),P(t,e)…, with X(t,e)5„Xi(t,e)…, P(t,e)5„Pi(t,e)… ( i 51,2,3), andZ̄(t,e) is defined
similarly in terms of overlined quantities.

The proof of this result at the level of first-order averaging theory given in this paper is m
more involved than that of an analogous result proved previously for a third-order aver
model of axial channeling in crystals.9 Indeed, the nonperiodic nature ofV introduces number
theory and convergence complications not encountered in the case of crystals. To establ
~1.5! holds under the assumed conditions, stated in precise form in Theorem 3~Sec. III!, we use
isoenergetic reduction10 to transform the sixth-order system of EOM pertaining toH(X,P) to a
nonautonomous fourth-order ODE system, by replacing the timet by a new ‘‘time’’ u5X3(t,e) as
the independent variable. The point of this reduction procedure is that the transformed syste
the standard form for applying the method of first-order single-phase averaging. Using a rig
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version of a theorem of Besjes11 on such averaging in aperiodic ODE systems and an asymp
formula for the distribution of QL points along an arbitrary QL line of the IQL of interest, sta
in Theorem 1, one arrives at Theorem 2, which furnishes an estimate of the error incurr
approximating suitable solutions of this system by solutions of the corresponding average
tem. Theorem 3 follows easily from this estimate by expressing it in terms of the original
pendent variablet. The above asymptotic formula provides an estimate of the deviation o
mentioned distribution from uniformity that is needed in order to apply Besjes’ theorem to p
Theorem 2. A version~Theorem C. 1 of Appendix C! of a deep theorem of Niederreiter12 on the
discrepancy of uniformly distributed sequences mod 1 is used to prove this formula.The impor-
tance of this theorem in the present paper can be appreciated by the fact that if no estimate
discrepancy were known, but if otherwise one proceeded along the lines of the present pap
could only prove a version of the estimate (1.5) in which the rhs was replaced by o(1) in the limit
e↓0. Such a weak error estimate would be virtually useless.

The organization of the paper is as follows. In Sec. II, devoted to auxiliary quasicrys
graphic topics, we recall the construction of the IQLK of interest by the projection method, an
prove Lemmas 1 and 2. The second lemma, entailed by the first and elementary nu
theoretical considerations, yields an explicit characterization of the QL points lying on an arb
QL line of K. This characterization is invoked throughout the paper. Theorem 1 is also prov
this section. Besides being based on Niederreiter’s theorem, its proof uses the propertie
certain subsetDm of QL points, whose existence follows from Lemma A.1 of Appendix A~see
Definition 3!. In Sec. III, we prove Lemmas 3–5 and Theorems 2 and 3. Lemma 3 guarantee
under physically reasonable hypothesis on the potentialv, the series~1.2! has appropriate con
vergence and differentiability properties; Lemma 4 states simple inequalities which are esse
various dynamical discussions in Sec. II; and Lemma 5 asserts that the averaged potentiV̄ in
~1.4! exists as a uniform limit on compacts inR2 and has suitable differentiability propertie
Lemma 3 and various results of summability theory, including Lemmas B.1 and B.2 of Appe
B, play basic roles in the proof of Lemma 5. In turn, Lemmas 3 and 5 are crucial in justifying
application of Besjes’ theorem to establish Theorem 2. Section III concludes with a pro
Theorem 3, based in large part on Theorem 2. In a first reading of this paper, one could p
directly to the dynamical discussions in Sec. III after having perused the relevant definition
the statement of Theorem 1 in Sec. II, and could bypass the rather lengthy proof of Lemm
Sec. III.

II. AUXILIARY RESULTS ON QUASICRYSTALLOGRAPHY

A. Construction of the IQL K by the projection method

To make this paper as self-contained as possible, we construct the icosahedral qua
~IQL! of interest by applying the projection method4–6 to Z6. Experts will find nothing new here
In this method, one first mapsR6 by a projection operatorp into a three-dimensional subspac
E5p(R6), which is invariant under the icosahedral group and is identified with ordinary phy
space.13 We denote byE8 the orthogonal complement ofE in R6:E85p8(R6), wherep85I
2p, I denoting the identity operator inR6. In terms of the standard basis (e i) i 51

6 of R6,p,p8
have the respective matrix representations,

@p i j #5~1/2A5!@r i j # ~ i , j 51,...,6!, ~2.1a!

@p i j8 #5@d i j 2p i j # ~ i , j 51,...,6!, ~2.1b!

where
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@r i j #53
A5 1 21 21 1 1

1 A5 1 21 21 1

21 1 A5 1 21 1

21 21 1 A5 1 1

1 21 21 1 A5 1

1 1 1 1 1 A5

4 . ~2.2!

It can be shown that the subspacesE andE8 are totally irrational,14 and hence that the projection
L5p(Z6), L85p8(Z6) are dense inE,E8, respectively.15

Define

ei5p~e i !, ei85p8~e i ! ~ i 51,...,6!, ~2.3!

and letf be a mapping defined on theei by

f~ei !5ei8 , ~2.4!

which is extended toL by linearity. The total irrationality ofE andE8 entails thatf mapsL onto
L8 bijectively.15

Definition 1: The IQL K is defined as the set of points~vectors! p(m)(mPZ6) in E whose
corresponding pointsp8(m) lie in the imageC5p8(g6),E8 of the six-dimensional unit hyper
cube,

g65$zPR6:z5S i 51
6 a ie i ,a iP~1/2,21/2!,i 51,...,6%. ~2.5!

The points inK are calledquasilattice (QL) pointsor allowed projected points~or simplyallowed
points!.

Remarks:~1! K is a denumerably infinite, discrete,16 nonperiodic subset ofE. The discreteness
of K is physically essential, since it guarantees that distinct points inK, i.e., distinct atomic sites
cannot be arbitrarily close.

~2! C is an open rhombic triacontahedron.17

B. Characterization of the QL lines of K
The natural generalizations of the crystal lattice lines and planes of classical crystallog

are the QL lines and QL planes. We will be mainly concerned with QL lines, since our main
is the study of axial channeling in a simply decorated IQC.

Definition 2: For 0Þm5( imie iPZ6 andn5( inie iPZ6, we define the straight lines18

Lmn5R.p~m!1p~n!5R"S imiei1S iniei , ~2.6a!

Lmn8 5R.p8~m!1p8~n!5R"S imiei81S iniei8 , ~2.6b!

in E,E8, respectively. We say thatLmn is a quasilattice (QL) lineif it intersectsK.
Remarks:~1! Sincep(m)Þ0 andp8(m)Þ0 for 0ÞmPZ6, becausef mapsL bijectively

onto L8, this definition makes sense.
~2! Note thatLmn is a QL line iff Lmn8 intersectsC ~recall Definition 1!. ThusLm0 is a QL

line, sinceC contains the origin inE8. Note also that each QL line contains an infinite discrete
of QL points. See Remark 2 to Lemma 2.19

~3! By ~2.6a!, n,n8PZ6 give rise to the same lineLmn iff p(n)2p(n8)PLm0 (0Þm
PZ6). According to Lemma 2, for eachnPZ6 this actually occurs for denumerably manyn8
PZ6.
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~4! The QL lines are the only lines~2.6a! of physical interest. They model the atomic rows
the IQC, which is the union of all QL lines parallel to a given direction together with their ato
decoration.

Henceforth, we fixm5S imie i as a nonzero vector inZ6.
SinceLmn5Lm01p(n), an explicit characterization of the QL points in an arbitrary QL li

Lmn is trivially obtainable once such a characterization of the QL points ofLm0 is available. The
remainder of this section is devoted to carrying out the latter task.

Lemma 1:The lineLm0 contains those, and only those, projected pointsp(m8)PL8 such that

p~m8!5
~ t11A5t2!

q
p~m!, ~2.7a!

or, equivalently, the lineLm08 contains precisely those projected pointsp8(m8)PL8 such that

p8~m8!5
~ t12A5t2!

q
p8~m!. ~2.7b!

Here t1 ,t2 denote any integers such that

t1m1t2m5qm8, ~2.8!

for someqPN ~N5the positive integers!, wherem5m(m)5S im ie iPZ6, with

m i5S j Þ ir i j mj , ~2.9!

and ther i j are defined by~2.2!.
Proof: Suppose thatp(m8)PR.p(m) for somem8PR6, i.e., thatp(m8)5l(m,m8)p(m)

for somel(m,m8)PR. Then

l~m,m8!5
^p~m!,p~m8!&

^p~m!,p~m!&
, ~2.10!

where ^.,.& is the euclidean inner product inR6, and where we have used the fact th
^p(m),p(m)&Þ0. Sincep(n)5S i , jp i j nie j (nPR6), we have, by~2.10!, ~2.1a!, ~2.2! and the
orthonormality of the« i that l(m,m8)5(g1A5d)/(a1A5b), wherea,...,dPQ ~Q5the ratio-
nals! and a1A5bÞ0. Hence~2.7a! holds for somet1 ,t2PZ,qPN. Conversely, reversing the
arguments,~2.7a! ⇒p(m8)PR.p(m). The assertion aboutLm08 in the lemma follows similarly.

Finally, expressingp(m),p(m8) in ~2.7a! in terms of thep i j , mj , and mj8 , and using
orthogonality and the fact thatp25p, a standard calculation yields~2.9!. h

In order to arrive at the promised explicit characterization of the points inZ6 that are projected
into the respective linesLm0 ,Lm08 , we fix qPN and recast~2.8! as a homogeneous congruen
system:

t1m̃1t2m̃50~modq!̃ , ~2.88!

where m̃5col(m1,...,m6),m̃5col(m1,...,m6), and where 0(modq!̃ denotes a 631 ~column
vector whose entries are of the form 0(modq)PZ. ~Tildes will only be used in these respectiv
senses in this paragraph.! It is easily shown that the rank of the 632 matrix @m̃,m̃# over Z is 2.
Hence by a well-known theorem of linear algebra,20 there exist matricesPPGL(6,Z) and Q
PGL(2,Z) that ‘‘diagonalize’’ @m̃,m̃#:
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P@m̃,m̃#Q53
d1 0

0 d2

0 0

0 0

0 0

0 0

4 , ~2.11!

whered1 ,d2 are unique positive integers~invariant factors of@m̃,m̃#! such thatd1ud2 .21 It follows
that one can transform~2.88! to a system of two uncoupled linear homogeneous congruen
whose general solution is known from elementary number theory. Transforming back t
original system~2.88!, we find that its general solutiont1 ,t2PZ is given by

t i5qS j 51,2

Qi j

D~d j ,q!
l j ~ i 51,2!, ~2.12!

where eachl jPZ, D(a,b)5g.c.d. (a,b), and theQi j are entries of the 232 matrix Q.22

Lemma 2:The lineLm0 contains those, and only those, pointsm8PZ6, such that

p~m8!5~t11A5t2!p~m!, ~2.13a!

or, equivalently,Lm08 contains precisely the pointsm8PZ6 such that

p8~m8!5~t12A5t2!p8~m!, ~2.13b!

where thet i are rationals of the form

t i5S j 51,2

Qi j

d j
l j ~ i 51,2!, ~2.14a!

with l jPZ ( j 51,2) and with theQi j andd j as defined above. More explicitly,Lm0 ~resp.,Lm08 !
contains precisely those pointsp(m8) @resp.,p8(m8)# with m85S imi8e iPZ6, such that

mi85t1mi1t2m i . ~2.14b!

Remarks:~1! Equations~2.14a! define an injective mapping (l1 ,l2)→(t1 ,t2) from Z2 into
a subset ofQ2, and~2.14b! defines an injective mapping (t1 ,t2)→m8 from this subset intoZ6.
The injectivity of the first mapping follows fromQPGL(2,Z) and the inequalitiesd jÞ0 ( j
51,2), and that of the second from the fact that@mm# has rank 2.
These injectivity properties play an important role in the proof of the asymptotic Theorem
Sec. II C.

~2! SinceLm08 is a straight line inE8 through the origin which is an interior point ofC, and
sinceLm08 ùL8 is everywhere dense and the closureC̄ of C is compact and convex, it follows tha
Lm08 ùL8 intersectsC at a set of points that are dense inLm08 , and thus thatLm0 is a QL line with
an infinite number of QL points that constitute a discrete set~sinceK is discrete!. For similar
reasons each QL lineLmn has the last two properties.

Proof: By Lemma 1 and the discussion in the paragraph preceding the statement of the p
lemma,p(m8)PL is in Lm0 iff for some qPN ~2.7a! holds for some rationalst i( i 51,2) of the
type ~2.12!. We consider the following mutually exclusive and exhaustive cases:~i! d1uq and
d2uq; ~ii ! d1uq andd2u”q; ~iii ! d1u”q andd2uq; ~iv! d1u”q andd2u”q.

Write D j (q)5D j (q,d j ) and note thatD j (q)5d j if d j uq and D j (q)<d j if d j u”q for qPN.
Define the set
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Fq5H ~ t1 /q,t2 /q!PQ2:
t i

q
5S j 51,2

Qi j

D j~q!
l j ~ i 51,2!, l jPZ ~ j 51,2!J . ~2.15!

We claim thatFq1
.Fqr

(r 52,3,4), whereq1 ,...,q4PN are such that the respective cases~i!–~iv!

hold. We will only prove this forr 52, since the proofs for the remaining cases are similar. By
above properties of theD j (q),

t i

q1
5 (

i 51,2

Qi j

d j
l j ~ i 51,2!, ~2.16a!

t i

q2
5

Qi1

d1
l11

Qi2

d2
l28 ~ i 51,2!, ~2.16b!

if ( t1 /qr ,t2 /qr)PFqr
(r 51,2), wherel285„d2 /D2(q2)…PZ is > 1. HenceFq1

.Fq2
by ~2.15!

and ~2.16!.
The present lemma is entailed by the relationsFq1

.Fqr
(r 52,3,4), the equivalence o

p(m8)PLm0 andp8(m8)PLm08 ~by Lemma 1!, and the relevant definitions. h

C. Asymptotic formula for the distribution of QL points on QL lines of the IQL

Our main goal in this section is to prove Theorem 1 on the number of QL points in a seg
@0,l ) of a QL lineLmn for l→`. Before doing this, some preliminary definitions and remarks
in order.

For eachnPZ6 consider the set of alln8PZ6 such thatLmn85Lmn . This defines a partition
$Cm,a%a51

` of Z6 into equivalence classesCm,a , such that ifnPZ6 is in someCm,a , thenn8 is in
this class iffp(n)2p(n8)PLm0 . By Lemma 2, each such class is denumerably infinite.

Definition 3: Choosen0(a)PCm,a arbitrarily for eachaPN, whereN denotes the set o
positive integers. Then Lemma A.1 of Appendix A implies that for each sucha there exists
k(a)PZ6 @constructed in terms ofm,n0(a) ask(n) was in terms ofm,n in the proof of Lemma
A.1#, with p„k(a)…PLm,0 and such that the quantitiesn(a)ªn0(a)2k(a)(aPN) have the
properties

sup
bPN

u^d̂,p„n~b!…&u,`, sup
bPN

u^d̂8,p8„n~b!…&u,`. ~2.17!

Here d̂,d̂8 are the unit vectors

d̂5
p~m!

ip~m!i , d̂85
p8~m!

ip8~m!i ~2.18!

in E and E8, respectively, wherei .i is the euclidean norm inR6. We defineDm5$n(a):a
PN%.

Remark:Henceforth, elements ofDm will be denoted byn, instead ofn(a), for brevity. This
set plays an important role in the proof of Theorem 1.

To facilitate the proof of this theorem, we will formulate a convenient practical criterion f
QL point to lie in an interval@0,l ) of an arbitrary QL lineLmn W.l.g., we will only consider lines
Lmn with nPDm , since every lineLmn85Lmn for somenPDm . Some further definitions and
remarks are needed to pave the way for the statement of this criterion in Proposition 1,

Fix nPDm until further notice. By Remark~2! to Definition 2, Lmn is a QL line iff
Lmn8 ùCÞB. A necessary and sufficient condition forLmn8 to intersectC is that there exist points
m8PZ6 such thatp(m8)PLm0 andp8(m8)1p8(n)PC. By the compactness and convexity ofC̄
~the closure ofC! this condition is equivalent to saying that the straight lineLmn8 intersects the
surface]C̄ of C at exactly two distinct points. In turn, this is equivalent to saying thatm8
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PLmn8 ùC iff „p8(m8)1p8(n)…•d̂8P„a0(n),b0(n)…, where a0(n)5^d̂8,p(n)&, b0(n)

5^d̂8,p8(n)& @a0(n),b0(n), by definition#. Here p(n),p8(n) are nonzero vectors from th
origin in E8 to the respective intersection points on]C̄. In other words, the pointsm8PLmn8
intersectingC are those such that

a~n!,~t12A5t2!ip8~m!i,b~n!, ~2.19a!

as follows from Lemma 2 and definition~2.18!. Here

a~n!5a0~n!2^d̂8,p8~n!&, b~n!5b0~n!2^d̂8,p8~n!&, ~2.20!

and (t1 ,t2)PQ2 is the unique preimage ofm8 via ~2.14b! ~recall Remark 1 to Lemma 2!.
A projected pointp(m8) lies in an interval@0,l )(0, l PR) in the line Lmn iff ^d̂,p(m8

1n)&P@0,l ). This relation is satisfied iff the above preimage (t1 ,t2) of m8 is such that

2^d̂,p~n!&<~t11A5t2!ip~m!i, l 2^d̂,p~n!&. ~2.19b!

The discussions in the last two paragraphs, together with the injectivity of the map
(l1 ,l2)→(t1 ,t2),(t1 ,t2)→m8, respectively, and the fact that the number of QL pointsp(m8)
lying in a bounded interval inLmn is finite, yield the following criterion.

The number of QL pointsp(m8) of the QL lineLmn in the interval@0,l ) is the same as the
number of pairs (l1 ,l2)PZ2 mapping into pairs (t1 ,t2) that satisfy conditions~2.19a! and
~2.19b!.

We proceed to reformulate this criterion in a way that will make the proof of Theorem 1 m
intuitive geometrically. In terms of the preimage (l1 ,l2) of (t1 ,t2), ~2.19b! and ~2.19a! are
equivalent to the respective inequalities

2L0~n!<cosu1•l11sinu1•l2,L~ l !2L0~n!, ~2.21a!

a8~n!,cosu2•l11sinu2•l2,b8~n!, ~2.21b!

where

L0~n!5^d̂,p~n!&/ip~m!iAc21d2, L~ l !5 l /ip~m!iAc21d2, ~2.22a!

a8~n!5a~n!/Ac821d82, b8~n!5b~n!/Ac821d82, ~2.22b!

and

cosu15c/Ac21d2, sinu15d/Ac21d2,
~2.22c!

cosu25c8/Ac821d82, sinu25d8/Ac821d82,

with

c5~Q111A5Q21!/d1 , d5~Q121A5Q22!/d2 ,
~2.22d!

c85~Q112A5Q21!/d1 , d85~Q122A5Q22!/d2 .

By the irrationality ofA5, and sinceQPGL(2,Z) andd jPN ( j 51,2), it follows thatc,d,c8,d8
are nonzero reals, and therefore definitions~2.22c! make sense.

Let (xk ,yk)(k51,2) be two cartesian coordinate systems obtained by rotating byuk(k
51,2) acartesian system~x,y! whose relevance to this paper will be clear in a moment:
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xk5cosuk•x1sinuk•y, ~2.23a!

yk52sinuk•x1cosuk•y. ~2.23b!

Inequalities~2.21a! and ~2.21b! are discretized versions of the respective inequalities,

2L0~n!<x1,L~ l !)2L0~n!, ~2.24a!

a8~n!,x2,b8~n!. ~2.24b!

These versions are obtained by replacingx1 and x2 in ~2.24a! and ~2.24b! by their respective
expressions in~2.23a!, with x,y replaced byl1 ,l2 , respectively. The open strip~2.24b! bounded
by the parallel linesx25a8(n), x25b8(n) in the x,y plane will be calledSn . More explicitly,

Sn5$~x,y!PR2:a8~n!,cosu2•x1sinu2•y,b8~n!%. ~2.25!

Definition 4: If nPDm ,(l1 ,l2) is said to bean allowed pair in Sn iff ( l1 ,l2)PZ2ùSn ,

In view of the equivalence of~2.19b! @resp, ~2.19a!# and ~2.21a! @resp., ~2.21b!#, we can
reformulate the criterion stated in the second paragraph after~2.19b! as follows.

Proposition 1:The number of QL pointsp(m8) in an interval@0,l )(0, l ,`) of a QL line
Lmn is the same as the number of pairs (l1 ,l2) having the following properties:~i! each (l1 ,l2)
is an allowed pair inSn ; ~ii ! each such (l1 ,l2) projects into the interval@2L0(n),L( l )
2L0(n)… in the x1 axis Sn

Theorem 1: Let Nn(@0,l )) denote the number of points inK lying in the interval@0,l ) of the
QL line Lmn . Then

Nn„@0,l !…5nnl 1O~ log l ! ~ l→`!, ~2.26!

holds uniformly w.r.t.n for all nPDm , wherenn is a positive constant depending solely onm,n.
Proof: For nPDm , denote byÑn„@L1 ,L2)… the number of allowed pairs inSn projecting into

the interval@L1 ,L2) in the x1 axis. By Proposition 1, we know that for each suchn and eachl
.0, Nn„@0,l )…5Ñn„@2L0(n),L( l )2L0(n)…). On the other hand,~2.22a!, ~2.17!, and then inde-
pendence ofc,d imply that supnPDm

uL0(n)u,`. This fact, the discreteness ofK, and the assertion
made in the previous sentence entail that~2.26! holds iff

Ñn„@0,L~ l !!…5nnl 1O~ log l ! ~ l→`!, ~2.268!

uniformly wrt nPDm .
We divide the proof of the theorem into two parts. Some elementary properties of the

allowed pairs are proved in part~1!, and in part~2! we use these properties and Niederreite
theorem to show that~2.268! holds in the mentioned sense.

~1! In this part of the proof,L denotes a positive number that will be identified withL( l ) in
part ~2!. We define the parameters

r5sinu1~cotu12cotu2!, s5sinu1 /sinu2 . ~2.27!

For reasons similar to those stated after~2.22d!, it follows thatr, s ~which depend solely onm!
are finite and nonvanishing. W.l.g. we assume thatr.0. For if r,0, its sign can be reversed b
replacing the matricesP,Qby 2P,2Q, which is legitimate, since if~2.11! holds for the first pair,
it also holds for the second.

Figure 1 is intended to make the definitions of certain key points and lines given below
transparent geometrically. It corresponds to a special case in whichr.0, s,0, but is not intended
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to be an accurate representation of the points and lines involved. LetA be the point in a linex2

5a perpendicular to they2 axis that projects into a point on thex1 axis withx15L @recall ~2.23a!
and ~2.23b!#. Then

M ~L,a!5~L2sa!/r ~2.28a!

is the value of thex coordinate of the projection ofA into thex axis. LetB denote the point on the
line x25a that projects into thex1 axis at the origin. Then, of course,

m~a!52sa/r ~2.28b!

is the value of thex coordinate of the projection ofB into thex axis. Define

m1ª inf
n

inf
b

m~b!52sup
n

sup
b

~sb!/r, ~2.29a!

m2ªsup
n

sup
b

m~b!52 inf
n

inf
b

~sb!/r, ~2.29b!

M1~L !ª inf
n

inf
b

M ~L,b!5L/r1m1 , ~2.29c!

M2~L !ªsup
n

sup
b

M ~L,b!5L/r1m2 , ~2.29d!

where sup
b

5 sup
a8(n),b,b8(n)

, sup
n

5 sup
nPDm

, and similarly for infb, infn. Note that

2`,m1<m2,M1~L !,M2~L !,`, ~2.30!

FIG. 1. For a givennPVm, this figure shows key points and lines relevant to the projection of the allowed pairs (l1,l2)
~located at the centers of the circles! lying in the open stripSn, bounded by the linesx25a8(n),x25b8(n), into the
interval [0,L) in thex1 axis. PointsA,...,F are defined as follows:~1! A is a point in a linex25a perpendicular to they2

axis; ~2! point B is the projection ofA into thex1 axis lying atx15L; ~3! C is the projection of a ‘‘typical’’ allowed pair
(l1,l2) into [0,L) in the x1 axis; ~4! D is the projection ofA into the x axis lying atx5M (L,a); ~5! E lies at the
intersection of the linex25a with the y1 axis; ~6! F is the projection ofE into the x axis lying atx52m(a); and ~7!
A1,A2,E1,E2 are the vertices of the parallelipiped containing the allowed pairs which project into the above interval [L).
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for L.r(m22m1) by the positivity ofr andL, together with~2.29!, ~2.28b!, ~2.20!, and~2.22b!,
the n independence ofc8,d8, and Definition 3.

The relevance of them i and Mi(L) to the proof of the present theorem stems from
following proposition.

Proposition 2:For all L.r(m22m1) and allnPDm one has the following.
~i! For eachl1PZ such thatm2<l1,M1(L), all allowed pairs (l1 ,l2) in Sn project into the

interval @0,L) in the x1 axis.
~ii ! No allowed pairs (l1 ,l2) in Sn such thatl1,m1 or l1>M2(L) project into the latter

interval.
Proof: This proposition is easily proved by using~2.29! and other pertinent definitions, an

~2.30! and other elementary inequalities. h

~2! We now return to our main concern, the proof of~2.268!. We first fix nPDm and write
~2.21b! in a more convenient form,

r ~n!1ˆgl1‰,k,s~n!1ˆgl1‰, ~2.31!

where g52cotu2, r (n)5ˆa(n)‰, s(n)5b(n)2†a(n)‡, k5l22†gl1‡2†a(n)‡. Here a(n)
5a8(n)/sinu2, b(n)5b8(n)/sinu2 if sin u2.0, anda(n)5a8(n)/sinu2 b(n)5a8(n)/sinu2 if
sinu2,0. ~Note that sinu2 and cosu2 are nonzero.! Here †x‡ is the largest integer contained inx
PR and ˆx‰5x2†x‡ for each suchx.

From the inequalities 0<r (n),1 and r (n),s(n), and tedious elementary arguments o
arrives at the results that we now state. There exist finitely many disjoint, nonempty, open
vals Ji(n)5„r i(n),r i 11(n)…,@0,1# @ i 51,...,N(n)<3#, with r1(n)50 andrN(n)11(n)51, such
that the following two properties hold. First,

~0,1!5ø
i 51

N~n!

Ji~n!ø
j 52

N~n!

$r j~n!%, ~2.32!

where the union over singletons is omitted, of course, whenN(n)51. Second, the number o
integer solutionsk of ~2.31! is the same@saysi(n)# for all integersl1 for which ˆgl1‰ lies in the
sameinterval Ji(n), and, moreover,si(n)<s(n)11. In view of the relation betweenk l1 , and
l2 , it follows that the number of allowed pairs (l1 ,l2) in Sn @recall ~2.25!# such thatˆgl1‰

PJi(n) is si(n).
In order to complete the proof, we expressÑn(@0,L( l )) in a form that facilitates the applica

tion of Niederreiter’s theorem in the form stated in Theorem C.1 in Appendix C. We first as
that m2 in ~2.30! is <1, in which case

m1,m2<1,M1„L~ l !…,M2„L~ l !…, ~2.33!

for sufficiently largel. More precisely, under this assumption there exists ann-independent posi-
tive constantl 05 l 0(m) such thatM ( l )ª†M1„L( l )…‡>1 for l> l 0 , and hence~2.33! holds when
l> l 0 . Henceforth, we assume that this inequality holds.

We claim that

Ñn(@0,L~ l !…!5 (
i 51

N~n!

si~n!AM ~ l !„Ji~n!…1B~n,l !, ~2.34!

in the casem2<1 being considered. HereAM ( l )„Ji(n)… is the number of integersl1P@1,M ( l )#
such that̂ l1g‰PJi(n); andB(n,l ) the number of integersl1P(m1,1)ø(M ( l ),M2„L( l )…) plus
the number of those such thatˆl1g‰ coincides with one of ther j (n) having j 52,..., orN(n).
Note that~trivially ! the respective numbers of these three types of integersl1 are equal to the
numbers of allowed pairs (l1 ,l2) in Sn for which ˆl1g‰ has the respective stated properties~see
Fig. 1!. To derive~2.34! we use~2.32!, ~2.33!, and Proposition 2. Note also that supl> l 0

B(n,1)
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,`, ;nPDm , in particular, by Definition 3. Arguments similar to those adduced to prove~2.34!
for the casem2<1 show that it also holds whenm2.1, with B(n,l ) different than in the former
case, but having the last mentioned boundedness property.

For l> l 0 ~with l 0 larger than before if necessary, w.l.g.!,

M ~ l !UAM ~ l !~ J̃i~n!!

M ~ l !
2uJ̃i~n!uU<M ~ l !UAM ~ l !~Ji~n!!

M ~ l !
2uJi~n!uU11

<41G~g!logM ~ l !<G0~g!1G~g!log l , ~2.35!

for i 51,...,N(n), whereJi(n)5(r i ,r i 11), J̃i(n)5@r i ,r i 11), uJi(n)u5uJ̃i(n)u5r i 112r i , and
G~g!, G0(g) are constants dependent solely ong. The first inequality in~2.35! is obvious. The
second follows immediately by applying Theorem C.1 to the special caseb5g, N5M ( l ),

@a,b)5 J̃i(n), v5( j g) j 51
` . This application is legitimate sinceg is a quadratic irrational and is

therefore of a constant type.23,24The third inequality follows by~2.22a!. In particular, from~2.34!,
~2.35!, ~2.29c!, ~2.22a!, ~2.27!, and the boundedness properties of the functionsB(n,l ) corre-
sponding to the respective casesm2<1 andm2.1, it finally follows that~2.268! holds in the stated
uniform sense, with

nn5
1

ip~m!irAc21d2 (
i 51

N~n!

si~n!uJi~n!u. ~2.36!

h

III. UNIFORM APPROXIMATION OF CHANNELING MOTIONS OF A NONRELATIVISTIC
PARTICLE IN AN IDEAL IQC VIA FIRST-ORDER AVERAGING

Our main goal in this section is to prove the most important result of the present pape
existence, uniqueness, and approximation result that is stated in essentially equivalent fo
Theorems 2 and 3. In order to do this, we need to specify the HamiltonianH in ~1.1! more
precisely than in Sec. I. The definitions in the next paragraph and the hypotheses in Defin
below fulfill this aim.

Let $ci% i 51
3 , $ci% i 54

6 denote orthonormal bases inE,E8, respectively, under the sole conditio
that c35d̂, the unit vector parallel to the QL lineLm05R•p(m). We equipR6 with the usual
Euclidean normi•i, which therefore acts byizi5(( i 51,...,6uzi u2)1/2 on eachz5( i 51,...,6zici

PR6, and acts in a similar way on vectors inE or E8. As usual, we identify the subspaceE,R6

with R3 by identifying eacha5( i 51,2,3aiciPE with (a1 ,a2 ,a3). Thus, for example, a real
valued functionF on E will be viewed as one fromR3 into R, and to say that such anF is in
Ck(R3) for somek>1 is the same as saying that it is a continuously differentiable mappin
order k from E into R in the sense of Fre´chet, i.e., thatFPCk(E). In terms of the notation
F(a)5F(a1 ,a2 ,a3), we define Dr5D1

r 1D2
r 2D3

r 3, where r 5(r 1 ,r 2 ,r 3)PZ1
3 ~Z15the non-

negative integers! and Di is partial diferentiation wrt thei th entry in F(•,•,•). We set ur u
5( i 51,2,3r i .

Henceforth we will assume that the repulsive interaction potentialV in ~1.2! has the properties
stated in the next definition.

Definition 5: We defineV on E by25

V~X!5 (
j PZ6

v~X2 j i!x~ j'!, ~3.1!

wherex is the characteristic function of the triacontahedronC,E8 and where for eachj PZ6 we
set j i5p( j ), j'5p8( j ). The functionv:E→(0,̀ ) has the following properties.

~I! vPC2(E).
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~II ! For all XPE and all 0<ur u<2, uDrv(X)u<br exp(2aiXi), wherea and thebr are
positive constants.

Remark:Note that the summands in~3.1! vanish unless the correspondingj i is a QL point.
Thus the series~3.1! is equivalent, formally speaking, to the series~1.2!. This equivalence can be
made rigorous by rewriting the rhs of~3.1! as a sum over the relevant summable family~as in the
proof of Lemma 5!.

Lemma 3:~1! The series~3.1! and each of the series obtained from it by termwise differ
tiation with Dr(1<ur u<2) converge absolutely onE and uniformly on compacts inE. HenceDrV
can be obtained fromV by termwise differentiation for each suchr.

~2! DrV is bounded onE for 0<ur u<2.
Proof: ~1! Let K,E be compact. By property~II !, an elementary inequality, and the com

pactness ofC̄, we have forXPK and 0<ur u<2:

uDrv~X2 j i!ux~ j'!<br exp~2aiX2 j ii !x~ j'!

<br exp~aiXi !exp~2ai j ii !x~ j'!

<br exp~aiXi !exp~ai j'i !exp~2ai j i !x~ j'!

<br8 exp~aiXi !exp~2ai j i !, ~3.2!

wherebr85br supzPC expiazi,`, C being the triacontahedron defined in Sec. II C. Claim~1! of
the lemma now follows from~3.2! and the fact that( j PZ6 exp(2ai ji),`.

~2! Claim ~2! follows becauseDrV(0<ur u<2) is the restriction toE% $0%,E% E8 of the
real-valued, bounded, periodic function onE% E8, defined by

Vr~z!5 (
j PZ6

Drv~X2 j i!x~Y2 j'!, ~3.18!

for each suchr, where we writez5X% YPE% E8. To prove these properties ofV, we fix r such
that 0<ur u<2 and fixXPE. ThatDrV(X)5Vr(X% $0%) is obvious sinceDrV(X) is given by the
rhs of ~3.18! because of assertion~1! of the lemma and the fact thatx is an even function.
Moreover, the series~3.18! converges absolutely onR6 by arguments analogous to those used
part ~1! of the proof. In particular, we use the fact that there existsbP(0,a) such that
exp(bizi)>x(z) if zPE8. Changing the summation index in the series~3.18! to j 85 j 2k for
arbitrary kPZ6, as is allowed by its absolute convergence, we see thatVr(z1k)5Vr(z) for z
PR6, kPZ6. h

SinceVPC2(E)5C2(R3) @Lemma 3~1!#, the EOM

dXi

dt
5Pi ~ i 51,2,3!,

~3.3a!
dPi

dt
52DiV~X1 ,X2 ,X3! ~ i 51,2,3!,

corresponding toH(X,P) in ~1.1! have a unique maximal solution in an open interval about
50 satisfying given initial conditions. We denote each such solution byZ(t,«)
5„X(t,«),P(t,«)…, whereX(t,«)5„Xi(t,«)…, P(t,«)5„Pi(t,«)…( i 51,2,3), anddenote the cor-
responding initial conditions by

Xi~0,«!5j i , Pi~0,«!5h i ~ i 51,2,3!, ~3.3b!

where«5A1/2H(j,h), with j5(j1,j2,j3)PR3, h5(h1,h2,h3)PR3. Since
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H~j,h!5
1

2 (
i 51

3

h i
21V~j! ~3.4!

and sinceV is a positive real onR3 @by Definition 5 and Lemma 3~1!#, H is positive onR3

3R3. In this paper, we fixj, h1,h2, and supposing thath3Þ0 we fix its sign. Therefore, the
labeling of the solutions of the initial-value problem~IVP! ~3.3! by « alone is justified. Note tha
~3.4!, the positivity ofV, and the assumption thath3Þ0 imply that« lies in the interval (0,«* ),
where«* 51/AV(j). Each solutionZ(t,«) lies on the corresponding energy surface

H~X,P!5H~j,h!. ~3.5!

This fact, the positivity ofH(j,h), VPC2(R3), and a standard continuation argument, entail t
eachZ(t,«) exists for alltPR. To simplify the exposition, we assume henceforth that

j350, h3.0, ~3.6!

without incurring any essential l.o.g.
It is convenient to isoenergetically reduce the autonomous sixth-order ODE system~3.3a! to

a fourth-order nonautonomous system. This is affected by changing the timet to a new ‘‘time,’’

u5X3~ t,«!5E
0

t

P3~r ,«!dr5«21E
0

t

$122«2@V„X~r ,«!…1~1/2!@P1
2~r ,«!1P2

2~r ,«!##%1/2dr.

~3.7!

These relations incorporate the simplifying assumptions~3.6!.
Writing xi(u,«)5Xi(t,«),xi 12(u,«)5Pi(t,«)( i 51,2) andproceeding in a standard way

one sees thatx(u,«)5(xi(u,«))( i 51,...,4) is aformal solution of the isoenergetically reduce
system corresponding to~3.3a!, namely,

dx

du
5« f ~x,u!1«3r ~x,u,«!, ~3.8a!

where we setx5(x1 ,x2 ,x3 ,x4)PR4 now and henceforth. Moreover,

f ~x,u!5„x3 ,x4 ,2D1V~x1 ,x2 ,u!,2D2V~x1 ,x2 ,u!… ~3.9a!

r ~x,u,«!5«22$@k~x,u,«!#2121% f ~x,u!, ~3.9b!

k~x,u,«!5$122«2@V~x1 ,x2 ,u!1 1
2~x3

21x4
2!#%1/2. ~3.9c!

By ~3.9a! and Lemma 3~1!,19 f (•,•) is obviously defined as aC1 mapping fromR4ÃR into R4.
By ~3.9b!, ~3.9c!, and Lemmas 3~1! and 4, r (•,•,•) is defined as aC2 mapping fromUÃR
3(0,« (0)) into R4, where« (0) is a positive constant andU,R4 a nonempty open set with th
important property that inf(x,u,«)PUÃR3(0,«(0)) k(x1 ,x2 ,u).0 ~Lemma 4!. It follows from this that
~3.9b! definesr (•,•,•) as a boundedC2 mapping fromU3RÃ(0,« (0)) into R4. The definition of
U will be stated later~Definition 7!, in order not to unduly interrupt the present exposition.

Consider the IVP defined by~3.8a! and the initial condition

x~0,«!5z5~j1 ,j2 ,h1 ,h2!PR4, ~3.8b!

wherez is chosen to lie inU and where the functionsf, k, r are as defined above. By Theorem
and elementary local existence and uniqueness theorems of ODEs, for each«P(0,« (1)# there
exists an open intervalJ(«).@0,T/«# in R such that the IVP~3.8! has a uniquex(u,«) solution
that remains inU for all uPJ(«) at each such«. Here « (1) is a positive constant sufficiently
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smaller than« (0) andT is an arbitrary positive constant. Standard theorems ensure that at
such« the functionu→t, which mapsJ(«) onto an open intervalJ8(«),R containingt50, and
is defined by

t5«E
0

u

$122«2@V„x1~s,«!,x2~s,«!,s…1~1/2!@x3
2~s,«!1x4

2~s,«!##%21/2ds, ~3.78!

is aC1 diffeomorphism. In particular, the quantity inside the curly brackets in~3.78! is positive for
0<r<uPJ(«),0,«<« (1) , reflecting the positivity of the momentumP3(t,«) of the particle
along thec3 axis at each of theseu, « values. The diffeomorphismu→t just defined is the inverse
of the diffeomorphismt→u from J8(«) onto J(«) defined by~3.7! at each sucht, «. In view of
this and of standard existence and uniqueness considerations, one sees that the following r
hold between the solutions of the IVPs~3.3! and ~3.8! for uPJ(«),0,«<« (1) :

xi~u,«!5Xi~ t,«!, xi 12~u,«!5Pi~ t,«! ~ i 51,2!, ~3.10!

where, of course,t denotes the image ofu under the diffeomorphism~3.78!.
To specify the ‘‘averaged’’ IVP whose solutions approximate those of the IVP~3.8! in U, we

need the next definition.
Definition 6: Let M denote an open subset ofRk(k>1). A function g(•,•):MÃR→Rl( l

>1) is said to be KBM~for Krylov, Bogolubov, and Mitropolski! if g(z,•) is locally integrable26

for eachzPM and

ḡ~z!5 lim
u→`

1

u E
0

u

g~z,s!ds, ~3.11!

exists as a uniform limit on compacts inM. For such ag, we set

g̃~z,u!5g~z,u!2ḡ~z!, ~3.12a!

Ig̃~z,u!5E
0

u

g̃~z,s!ds, ~3.12b!

for (z,u)PMÃR.
Henceforth, we will viewV andDiV( i 51,2) as real-valued functions onR2ÃR. According

to Lemma 5~1!, these functions are KBM, withVPC2(R2) and

DiV~x1 ,x2!5DiV~x1 ,x2!@~x1 ,x2!PR2, i 51,2#. ~3.13!

Consequently, we can define the IVP,

dy

du
5« f̄ ~y!, ~3.14a!

y~0,«!5z, ~3.14b!

for yPR4,«P(0,«* ). For all x5(x1 ,x2 ,x3 ,x4)PR4,

f̄ ~x!5„x3 ,x4 ,2D1V̄~x1 ,x2!,2D2V̄~x1 ,x2!…, ~3.15!

where we have used~3.9a! and~3.13!. Since hereafterz will be fixed unless an explicit statemen
to the contrary is made, thez dependence of the unique solutiony(t,«) will generally be omitted
without risk of confusion.

Obviously, the IVP~3.14! is related to the IVP,
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dy0

dt
5 f̄ ~y0!, ~3.16a!

y0~0!5z, ~3.16b!

by t5«u. Since f̄ PC1(R4,R4), this IVP has a unique solutiony0(t) on some maximal open
interval aboutt50, whosez dependence is not shown. Moreover, the system~3.16a! is Hamil-
tonian, with Hamiltonian function

H'~x!5 1
2~x3

21x4
2!1V̄~x1 ,x2! ~3.17!

and ‘‘time’’t, and thusy0(t) lies on the energy surface,

H'~x!5H'~z!5 1
2~h1

21h2
2!1V̄~j1 ,j2!, ~3.18!

for t in this maximal interval, where the positive numberH'(z) is commonly called the ‘‘trans-
verse energy.’’ Since, in addition,V̄ is strictly positive onR2 @see Lemma 5~1!#, a standard
continuation argument shows thaty0(t) exists for alltPR. It is thus clear that the IVP~3.14! has
the unique solutiony(u,«)5y0(«u) for all uPR,«.0. We call it theguiding solution.

Next, we define the open subsetU of R4 to which repeated allusion has been made, and
which the guiding solution is located for all suchu and«. The exact solutionx(u,«) of the IVP
~3.8! will be shown to remain inU and to stay close to the guiding solution if 0<u<T/«,0,«
<« (2) , where« (2) is sufficiently smaller than« (1) .

Definition 7: Define

U5U~V0!5$~x1 ,x2 ,x3 ,x4!PR4: 1
2~x3

21x4
2!1V~x1 ,x2!,V0%, ~3.19a!

V15 sup
~~x1 ,x2!,u!PUpÃR

V~x1 ,x2 ,u!, ~3.19b!

V25 inf
~x1 ,x2!PR2

V̄~x1 ,x2!, ~3.19c!

where V0.V2 and Up5Up(V0) is the projection of U defined by Up5$(x1 ,x2)PR2:
(x1 ,x2 ,x3 ,x4)PU(V0)%.

Remarks:Note that V2P[0,`), and henceU(V0)ÞB since V0.V2. Note also thatV1

>V2 from ~3.19b! and ~3.19c!.
Our requirementzPU(V0) is equivalent toH'(z),V0 @recall ~3.17! and~3.18!#. Mathemati-

cally, V0 can be any positive number greater thanV2 , but in order to model axial channeling, on
should chooseV0 , and thereforeW' , small enough so that the guiding solution~and thus the
corresponding exact solution for 0<u<T/« and sufficiently small«.0! keeps away from atomic
rows parallel toLm0 which have large average atomic densitiesnn , i.e., from those in whose
vicinity V̄(x1 ,x2) is large. Thus, hard collisions with these rows are avoided at suchu, « values.
Therefore, channeling motions can occur in the cylindrical subsetUpÃR of configuration space
i.e., in the complement of the subset ofR3 from which the guiding solution is excluded by ou
choice ofH'(z) . In contrast with the case of crystals, thenn can be as small as desired, th
smallest ones occurring in rows whosef-images intersect the triacontahedronC near its boundary.
Since V̄(x1 ,x2) is expected to be very small near such rows, the penetration of suffici
low-density rows by guiding solutions can occur for practically all choices ofW' . This over-the-
barrier motion is the crude way in which our theory describes complex phenomena of pene
of thermally vibrating rows by the channeled particle.27

Returning to the mathematical development of the theory, we henceforth fixV0 in accordance
with Definition 7 and fixzPU(V0). Consequently, we will omit theV0 dependence ofU and
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continue to omit thez dependence of the relevant objects. In the next lemma, we state an im
tant property ofU that will be needed to prove Theorem 2. The proof of this lemma is left to
reader.

Lemma 4:The inequalities

122«2@ 1
2~x3

21x4
2!1V~x1 ,x2 ,u!#.12«2/«0

2.0, ~3.20!

hold if

~x,u!PUÃR, 0,«, «̃ , ~3.21!

where«̃ is a positive constant defined by

«̃5A1/2~V01V12V2!. ~3.22!

~Recall Definition 7 and the Remarks thereto.! Therefore,

inf
~x,u,«!PUÃRÃ~0,«~0!!

k~x,u,«!.0, ~3.23!

where« (0) is an arbitrary positive constant less than«̃ and«* .

In view of y0(0)5zPU and because the transverse energyH'(z) is conserved by the solu
tion y0(t) for all tPR, it follows thaty0(t)PU at each sucht. Let S be the orbit ‘‘swept out’’
by the solutiony0(t) in the interval 0<t<T for fixed, but arbitraryTP(0,̀ ). @Note thatS is
swept out byy(u,«) in the interval 0<u<T/« for each«.0.# Since SPU, and sinceS is
compact andU open, it follows that dist(]U,S).0. Let D denote a positive number smaller tha
this distance.

Definition 8: The order functiond1 :(0,̀ )→@0,̀ ) is defined by

d~«!5« sup
xPU1,0<u<T/«

i I f̃ ~x,u!i , ~3.24!

in terms of the compact neighborhoodU15$zPU:z5z11z2 ,z1PS,iz2i<D% of S in U. Herei•i
is the usual Euclidean norm inR4 ~see Ref. 28!.

To establish Theorem 2, we will use an estimate ofd(«) in whose derivation Lemma 5 play
a basic role. Since the proof of this lemma is rather involved, it could be omitted in a first rea
and one could proceed immediately to peruse the statement and proof of Theorem 2 after
the statement of this lemma.29

Lemma 5:For r ,s>0,r 1s<2, one has the following.

~1! D1
r D2

sV is KBM, with V̄PC2(R2), and at all (x1 ,x2)PR2, one has

D1
rD2

sV~x1,x2!5D1
rD2

sV̄~x1,x2! ~3.25a!

and V̄(x1 ,x2).0.
~2! The relation

I~D1
rD2

sV!;~x1,x2,u!5O~logu!, ~3.25b!

holds foru→` uniformly wrt (x1 ,x2) on compacts inR2.

Proof: It consists of two parts. In part~a! we show thatD1
r D2

sV is KBM and satisfies~3.25b!
onR2 for the statedr,s and thatV̄ is strictly positive. In part~b!, we show thatV̄PC2(R2) and that
~3.25a! holds in the mentioned sense.

Until further notice, we fixi , j 51,2 and also fixr ,s50,1,2 such thatr 1s<2. We define
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W5Di
rDi

sV, w5Di
rDi

sv. ~3.26!

Hence

W~y,u!5 (
j PZ6

w„~y,u!2 j i…x~ j'!, ~3.27!

for y5(x1 ,x2)PR2, uPR, by ~3.1! and Lemma 3~1!.30

In the proof, we will freely use elementary results of the theory of summable families31,32

Before doing this, a few definitions are in order.~A simple graph drawn by the reader will mak
these definitions clearer geometrically.! Let P be a plane through the origin inE that is perpen-
dicular to the QL lineLmo . If j i5p( j )( j PZ6) is in the quasilatticeK ~Definition 1!, we will
write j i5(k,i), wherek is the projection ofj i into P andi its projection intoLmo . Let L be the
set of all distinct QL linesLmn , labeled arbitrarily by vectorsnPDm ~Definition 3!. ~Of course,
distinct linesLmn are labeled by distinct vectorsnPDm .! Let c be a bijective mappingn→k,
which associates every suchn with the pointk in P intersected by the lineLmnPL, which is
labeled byn. Let J be the set of all these intersection pointsk. If kPJ, we defineLk as the set
of all points ofK lying in the unique QL lineLmn associated withk. Clearly,K is the set of all
~k, i! such thatkPJ and iPLk .

~a! Since the series~3.27! converges absolutely for (y,u)PR2ÃR and uniformly for~y, u! on
compacts inR2ÃR ~by Lemma 3!, and sincewPC0(R3), it follows that

V~y,u!ªE
0

u

W~y,s!ds5 (
j PZ6

E
0

u

w„~y,s!2 j i…ds•x~ j'!, ~3.28!

for all (y,u)PR2ÃR, and that the last series converges on this product set with (w„(y,s)…2 j i)
replaced by its absolute value. In order to prove that

IW̃~y,u!5O~ logu! ~u→`! ~3.29!

in the uniform sense of assertion~2! of the lemma, it is convenient to write

V~y,u!5 (
k51

4

Vk~y,u!, ~3.30!

where

Vk~y,u!5 (
j PZ6

E
0

u

w„~y,s!2 j i…ds•xu
~k!~ i !x~ j'! ~k51,...,4!. ~3.31!

Here xu
(1) , xu

(2) , xu
(3) , xu

(4) are the characteristic functions of the respective intervals~2`, 0!,
@0,u2 logu), @u2 logu,u1logu), @u1 logu,`)(u.1). We claim that the following estimates ob
tain:

uV1~y,u!u<const exp~aiyi !, ~3.32a!

uV2~y,u!2u (
kPJ

n̂kŵ~y2k!u,const exp~aiyi !logu ~u.u0!, ~3.32b!

uV3~y,u!u<const exp~aiyi !logu ~u.u0!, ~3.32c!

uV4~y,u!u<const exp~aiyi !u2a ~u.u0!, ~3.32d!
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for yPR2, u.u0 , whereu0.1 is a large enough positive constant independent ofy.33 Herea is
the positive constant in assumption~II !; the sum in ~3.33b! makes sense, since the fami
„n̂kŵ(y2k)…kPJ is summable~see below!, n̂k denoting the constantnn in ~2.26! @with k
5c(n)# and ŵ:R2→R being defined by the absolutely convergent integralŵ(y)
5*2`

` w(y,s)ds. Indeed, one has by~II !,

uŵ~y!u<const exp~aiyi !. ~3.33!

We will only prove ~3.32b! in detail, since the other estimates can be derived by analo
considerations.

Postponing momentarily the proof of~3.32b!, we note that~3.11!, ~3.28!, and ~3.30!–~3.32!
entail

W̄~y!5 lim
u→`

1

u E
0

u

V~y,s!ds5 (
kPJ

n̂kŵ~y2k!, ~3.34!

where the limit is approached uniformly wrt compacts inR2, i.e., W is KBM. Since IW̃(y,u)
5V(y,u)2W(y), they also entail that~3.29! holds in the stated uniform sense. We also note t
~3.34!, ~3.26!, the strict positivity of then̂k @recall ~2.36!# and of the real-valued functionv̂:R2

→R defined similarly toŵ above, entail the positivity property ofV̄(x1 ,x2) claimed in part~1! of
the lemma.

Proof of (3.32b):By the absolute convergence of the integralŵ(y), we may split the second
integral in ~3.28! as follows:

E
0

u

w„~y,s!2 j i…ds5ŵ~y2k!2E
u2i

`

w~y2k,s!ds2E
2`

2i

w~y2k,s!ds, ~3.35!

which induces the splitting
V2~y,u!5V21~y,u!1V22~y,u!. ~3.36!

Here

V21~y,u!5 (
j PZ6

ŵ~y2k!xu
~2!~ i !x~ j'!, ~3.37a!

V22~y,u!52 (
j PZ6

F E
u2i

`

w~y2k,s!ds1E
2`

i

w~y2k,s!dsGxu
~2!~ i !x~ j'!. ~3.37b!

We claim that

uV21~y,u!2u (
kPJ

v̂kŵ~y2k!u,const exp~aiyi!logu ~u.u0!, ~3.38a!

uV22~y,u!u,const exp~aiyi!~11u12a!, ~3.38b!

whence~3.32a! emerges from~3.31! and ~3.35!–~3.37!.
We will only prove ~3.38a! in detail. Estimate~3.38b! can be proved similarly. To derive

~3.38a!, we first show that the sum in~3.37a! converges absolutely, and thus that the definition
V21 makes sense. This is established by the following calculation:

(
jPZ6

uŵ(y2k)uxu
~2!~ i !x~ j'!<const exp~aiyi! (

jPZ6
exp~2aiki!xu

~2!~i!x~ j'!

<const exp~aiyi! (
jPZ6

exp~2ai j ii!exp~aiii!xu
~2!~i!x~ j'!

<const exp~aiyi! (
jPZ6

exp~2ai ji!exp~ai j'i!
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3exp„a~u2 logu!…x~ j'!

<const (
jPZ6

exp~2ai ji!.exp~aiyi!exp„a~u2 logu!…,`,

where we have used~3.33! and an approach similar to that employed to obtain~3.2!.
The absolute convergence of the series~3.37a! allows us to apply Eq.~B2! of Appendix B.

Using, in addition, associativity~Dixmier,32 Theorem 9.2.2! and Theorem 1, we conclude that

V21~y,u!5 (
~k,i !PK

ŵ~y2k!xu
~2!~ i !

5 (
kPJ

ŵ~y2k! (
iPLk

xu
~2!~ i !

5 (
kPJ

ŵ~y2k!Nk„@0,u2 logu!…

5 (
kPJ

ŵ~y2k!@n̂k~u2 logu!1Fk~u!# ~u.u0!, ~3.39!

whereFk(u) is contributed by the second term on the rhs of~2.26!, with l 5u2 logu. To complete
the proof of ~3.38a!, we first remark that„n̂kŵ(y2k)…kPJ and „ŵ(y2k)Fk(u)…kPJ are abso-
lutely summable, and therefore summable, families@Ref. 31~2!#. Since n̂k<1/D, where D
ª inf j ,kPK, j Þki j 2ki.0, and sinceuFk(u)u<const logu(u>u0) by Theorem 1, where ‘‘const’’ is
independent ofk, the absolute summability of these two families follows from~3.33! and the
summability of„exp(2auku)kPJ… ~see Lemma B.1!. From these results, together with~3.39! and a
well-known theorem~Dixmier,32 Theorem 9.1.2!, ~3.38a! follows. Therefore, part~a! of the proof
is complete.

~b! To complete the proof of the lemma, we proceed to show thatV̄PC2(R2) and that~3.25a!
holds for r, s>0; r 1s<2; yPR2. Henceforth, we fixr, s, y in these respective ranges.

By ~3.26!, ~3.27!, and the summability of

W̄~y!5 lim
R→`

W̄R~y!, ~3.40!

where

W̄R~y!5 (
kPJ~R!

n̂kŵ~y2k!. ~3.41!

Here J(R)5J ùB2(R), with B2(R)5$zPR2:izi,R%. If R8.R.0, we infer from ~3.41!,
~3.33!, and n̂k<1/D that

uW̄R8~y!2W̄R~y!u<const exp~aiyi ! (
kPJ~R,R8!

exp~2aiki !, ~3.42!

where J(R8,R)5Jù@B2(R8)2B2(R)# @resp., J(R,R8)5Jù@B2(R)2B2(R8)## if R8.R
~resp.,R8<R!. Since„exp(2aiki)kPJ… is a summable family, the sum on the rhs of~3.42! tends
to zero asR,R8→` independently. Therefore, the limit~3.40! is approached uniformly wrty on
compacts inR2.

On the other hand, properties~I! and~II ! of v entail thatv̂ is in C2(R2) and has the property

D1
r D2

sv̂~y!5~D1
r D2

sv !∧~y!, ~3.43!
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where we have used the notationĥ(y)5*2`
` h(y,s)ds. By ~3.26!, ~3.40!, ~3.41!, v̂PC2(R2),

~3.43!, and the uniformity of the limit (D1
r D2

sV)R(y)→(D1
r D2

sV)(y) for R→`, it follows that
V̄PC2(R2) and that

~D1
r D2

sV!~y!5 lim
R→`

(
kPJ~R!

n̂k~D1
r D2

sv !∧~y2k!

5 lim
R→`

(
kPJ~R!

n̄kD1
r D2

sv̂~y2k!

5D1
r D2

s lim
R→`

(
kPJ~R!

n̂kv̂~y2k!

5D1
r D2

sV̄~y!. ~3.44!

This completes the proof. h

We are now in a position to prove the following theorem.
Theorem 2: For all uP@0,T/e# and all eP(0,« (1)#, where« (1) is a positive constant suffi

ciently smaller thane (0) , the solutionx(u,e) of the IVP ~3.8! exists uniquely inU ~Definition 7!.
Moreover, at each suchu, e, this solution is uniformly approximated byy(u,e) in accordance with
the inequality

ix~u,e!2y~u,e!i<constAeu logeu. ~3.45!

Remark:As is typically the case for error estimates obtained for first-averaged solution
aperiodic ODE systems such as~3.8a!, that given by~3.45! tends to zero fore↓0 more slowly than
e, in contrast with the uniformO(e) error estimates holding for first-averaged solutions of a w
class of periodic ODE systems.34

Proof: Under the hypotheses in Definition 5, the functionsf (•,•), f̄ (•), andr (•,•,•) areC1

on R4ÃR,R4, andUÃR3(0,« (0)), respectively, as follows from our discussion in the paragra
after that containing Eqs.~3.9!, together with~3.15! and the fact thatV̄PC2(R2). Moreover,
r (•,•,•) is bounded on the last product set by~3.9b!, ~3.9a!, and Lemmas 3~1! and 4. Under these
conditions, the version of Besjes theorem in Ref. 11 applies to the respective solutionsx(u,e) and
y(u,e) of the IVPs~3.8! and ~3.14!, thus entailing that

ix~u,e!2y~u,e!i<constAd~e!, ~3.46!

at theu, e values stated in Theorem 2. Therefore, in order to establish this theorem it suffic
show that

d~e!5O~Aeu logeu! ~e↓0!. ~3.47!

To prove~3.47!, we first note that~3.9a!, Lemma 5~1!, ~3.11!, and~3.12a! entail that

f̃ ~x,u!5„0,02~D1V!;~x1 ,x2 ,u!,2~D2V!;~x1 ,x2 ,u!…,

for xPR4, uPR. WhenceI f̃ (•,•):R4ÃR→R4 is continuous by Lemmas 3~1! and 5~1!, and
~3.12b!. Therefore,

M ~K0 ,K1!ª sup
~x,u!PK03K1

i I f̃ ~x,u!i,`, ~3.48!

for arbitrary compact setsK0,R4, K1,R. Second, sinceU1,R4 is compact, there exist@by
Lemma 5~2!# positive constantsc andu1.u0.1 such that
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i I f̃ ~x,u!i<c logu@x,U1 ,uP@u1 ,`!#. ~3.49!

W.l.g. we assume thatc logu1>M(U1,@0,u1#). By this assumption, together with~3.48! and
~3.49!, we see that

sup
~x,u!PU13@0,u2#

i I f̃ ~x,u!i<c logu2 ~u1<u2,`!. ~3.50!

The desired result~3.47! follows immediately from~3.24! and ~3.50!. h

Some definitions and remarks are in order before stating Theorem 3. LetZ(t,e)
5„X(t,e),P(t,e)…, where X(t,e)5„Xi(t,e)…, P(t,e)5„Pi(t,e)… ( i 51,2,3). Recall that the

Xi(t,e) andPi(t,e) exist and satisfy the IVP~3.3! for tPR, e.0. Defineē51/A2H̄(j,h), with

W̄5 1
2(
i 51

3

h i
21V̄~j1 ,j2!.0, ~3.51!

and letZ̄(t,ē)5„X̄(t,ē),P̄(t,ē)…, with X(t,ē)5„Xi(t,ē)…, P̄(t,ē)5„P̄i(t,ē)…( i 51,2,3), where

„X̄1~ t,ē !,X̄2~ t,ē !,P̄1~ t,ē !,P̄2~ t,ē !…5y0~ t !, ~3.52a!

X̄3~ t,ē !5h3t, P̄3~ t,ē !5h3 , ~3.52b!

y0(t) being the unique solution of the IVP~3.16! at tPR. Hence, theX̄i(t,ē) and P̄i(t,ē) satisfy
the EOM pertaining to the averaged Hamiltonian~1.3! and the same initial conditions

X̄i~0,ē !5j i , P̄i~0,ē !5h i ~ i 51,2,3!, ~3.52c!

satisfied by theXi(t,e) andPi(t,e). Analogously to the case ofZ(t,«) the solutionZ̄(t,ē) exists
uniquely for tPR, ēP(0,«** ) and lies on the energy surfaceH̄(X,P)5H̄(j,h), where«**
51/AV̄(j1j2). Sincez is fixed andj350, e and ē will be regarded as functions ofh3 , the only
free parameter at our disposal. Henceforth,e and ē should be understood to correspond to t
same value ofh3 .

Theorem 3: For all tP@0,T# and alleP(0,« (2)#, where« (2) is a positive constant sufficiently
smaller than« (1),« (0) , the solutionZ(t,e) of the IVP ~3.3! is approximated uniformly byZ̄(t,ē)
in arbitraryR6-norm, in accordance with the inequality

iZ~ t,e!2Z̄~ t,ē !i<constAeu logeu. ~3.53!

Proof: ~1! Two simple facts are needed. First,

ut2«uu<const«2 ~3.54a!

for uP@0,t0 /«#,«P(0,« (2)#, whereu is the image oft under the bijectiont→u defined by~3.7!
for «P(0,« (1)#. Second,

tmax~«!5T1h~«!, ~3.54b!

if «P(0,« (2)#, where@0,tmax(«)# denotes the image of@0,T/«# under the inverse bijectionu→t
and 0,h(«),const«2 at all such«. Relations~3.54a! and~3.54b! follow easily in the respective
stated senses by using~3.78! and Lemma 4.

~2! We proved the theorem by showing that~3.53! held at the indicatedt,« with iZ(t,«)
2Z̄(t,«)i replaced by each of the six quantitiesuXi(t,«)2X̄i(t,«̄)u, uPi(t,«)2 P̄i(t,«̄)u( i
51,2,3). We illustrate the procedure foruXi(t,«)2X̄i(t,«̄)u( i 51,2).
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Let t,u be related as above and sett5«u. Fix uP@0,T/«#, «P(0,« (2)#, i 51,2. Using~3.10!,
~3.16!, ~3.52a!, y0(t)5y(u,«), and Theorem 2, we obtain

uXi~ t,«!2X̄i~ t,«̄ !u5uxi~u,«!2yi
0~ t !u

<uxi~u,«!2yi~u,«!u1uyi
0~ t !2yi

0~t!u

< constA«u log«u1uyi
0~ t !2yi

0~t!u . ~3.55!

By ~3.16!, ~3.15!, ~3.54!, and the stated properties ofh(«),

uyi
0~ t !2yi

0~t!u<uh i u•ut2tu1U E
0

tS E
0

s

DiV̄„y1
0~r !,y2

0~r !…dr D dsU
<uh i u•ut2tu1~c1/2!ut22t2u<c2«2, ~3.56!

where c15supr P@0,2T#DiV̄„y1
0(r ),y2

0(r )…,` and c2 is a constant, and where we have assum
w.l.g. that « (2) is so small that tmax(«),2T for «P(0,« (2)# @recall ~3.54b!#. Since
@0,tmax(«)#.@0,T# at each such« for sufficiently small«2 , it follows immediately from~3.55! and
~3.56! that ~3.53! holds with its lhs replaced byuXi(t,«)2X̄i(t,«̄)u. h
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APPENDIX A: PROOF OF A TECHNICAL LEMMA

The following lemma is needed to show that the setDm in Definition 3 exists. This result is
used in the proof of Theorem 1.

Lemma A.1:For eachnPZ6 there existsk5k(n)PZ6 such thatp(k)PLm0 and

u^d̂,p~n!2p~k!&u,K~m!, ~A1a!

u^d̂8,p8~n!2p8~k!&u,K~m!, ~A1b!

where^•,•& is the euclidean inner product inR6, d̂,d̂8 are as in~2.18!, andK(m) is a finite positive
constant independent ofn.

Proof: We will only show that~A1a! holds in the stated sense, since the proof that~A1b! does
is virtually the same.

We fix nPZ6 for the moment and assume thatp(k)PLm0 . Hence by Lemma 2,

p~k!5~t181A5t28!p~m!, ~A2!

where

t i85 (
j 51,2

Qi j

d j
l j ~ i 51,2!, ~A3!

for some (l 1 ,l 2)PZ2. The idea of the proof is to choosel 1 ,l 2 such that~A1a! holds. A straight-
forward computation using~A2!, ~A3!, and~2.1a! yields:

^d̂,p~n!2p~k!&52~1/2A5ip~m!i !$@at1815bt282^m,n!&#1A5@bt181at282^m,n&#%,
~A4!
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wherea5^m,m&, b5^m,m&, andi•i is the euclidean norm inR6. HeremPR6 is as in Lemma 1.
By ~A3!,

Fat1815bt282^m,n&
bt181at282^m,n& G5AQd21F l 1

l 2
G2F ^m,n&

^m,n&G , ~A5!

where

A5Fa 5b

b a G
and where we have abused the notation by writingd215col(d j

21)( j 51,2). SinceA is nonsingular
becausebÞ0, we may defineB5dQ21A21, where naturallyd5col(d j ) ( j 51,2). We choose

F l 1

l 2
GªF †B11̂ m,n&1B12̂ m,n&‡

†B21̂ m,n&1B22̂ m,n&‡G5BF ^m,n&
^m,n&G1Fj1

j2
G , ~A6!

where†x‡ denotes the greatest integer contained inxPR andj iP@0,1) (i 51,2). By ~A5!, ~A6!,
and the definition ofB,

Fat1815bt282^m,n&
bt181at282^m,n& G5B21Fj1

j2
G , ~A7!

SinceA,Q,d depend solely onm, the same is true ofB, a fact that when combined withuj i u,1
5( i 51,2) and~A7! entails that

max$uat1815bt282^m,n&u,ubt181at282^m,n&u%<constant independent ofn, ~A8!

for all nPZ6. Inequality~A1a! follows from ~A4! and ~A8!. h

APPENDIX B: SUMMABILITY LEMMAS

In this appendix we establish two summability lemmas that are used in the proof of Lem
Lemma B.1:Let F( j i)PR be defined at eachj iPL5p(Z6). Then

(
j PZ6

uF~ j i!ux~ j'!5 sup
JPL

(
j iPJ

uF~ j i!u, ~B1!

whereL is the set of all finite subsets ofK. If the series on the rhs converges, then„F( j i)…j iPK is
a summable family and

(
j PZ6

F~ j i!x~ j'!5 (
j iPK

F~ j i!. ~B2!

Proof: As to ~B1!, note that its lhs can be expressed as

lim
R→`

(
j PZ6ùB6~R!

uF~ j i!ux~ j'!5 lim
R→`

(
j iPK~R!

uF~ j i!u, ~B3!

since the pertinent summands are all non-negative. HereB6(R)5$xPR6:ixi,R% and K(R)
5KùB3(R), with B3(R)5p„B6(R)… an open ball inE of radiusR centered at the origin. But the
rhs of~B3! equals the rhs of~B1!. As to ~B2!, the assumption that the series on its lhs is absolu
convergent entails that
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(
j PZ6

F~ j i!x~ j'!5 lim
R→`

(
j PZ6ùB6~R!

F~ j i!x~ j'!5 lim
R→`

(
j iPK~R!

F~ j i!. ~B4!

By this assumption and~B1!, supJPLS j iPJuF( j i)u,`, which entails that the family„F( j i)…j PK is
summable~Dixmier,32 Theorem 9.4.1!, and thus that the last limit in~B4! equals the rhs of~B2!.h

Lemma B.2:Let a be an arbitrary positive constant,A an infinite discrete subset ofR2., and
i.i any R2-norm. Then the family„exp(2aiki)…kPA is summable:

Sª (
kPA

exp~2aiki !,`. ~B5!

Proof: W.l.g. we will assume thati•i is the taxicab norm inR2. Consider the square lattic
with lattice points (bm ,bn)„(m,n)PZ2

…, wherebm5(d/&)m(mPZ). Hered.0 is the inf of the
distanceuk2k8u between distinct pointsk,k8PA. Note that the set of half-open squaresSmn

5@bm ,bm11)3@bn ,bn11) covers R2. Note also that eachSmn containsat most one point k
PA. In addition,S5 limR→`SkPA(R)exp(2auku), and hence we may viewS as a double series,

S5 (
~m,n!PZ2

smn , ~B6!

of non-negative terms, wheresmn5exp(2aiki) if Smn contains a pointkPA and smn50 if it
does not.

Defining kmn5 inf
xPSmn

ixi , it follows that

kmn55
ubmu1ubnu, m>0, n>0,

ubmu1ubn11u, m>0, n,0,

ubm11u1ubnu, m,0, n>0,

ubm11u1ubn11u, m,0, n,0.

~B7!

The double series,

(
~m,n!PZ6

exp~2akmn!, ~B8!

of positive terms converges. This follows from the easily provable fact that in each of the
cases in~B7!, the series composed of the corresponding terms exp(2akmn) converges. Since
exp(2akmn)>smn„(m,n)PZ2

… by construction, the convergence of the series~B8! entails that of
the series~B6!, and thus that~B5! holds. h

APPENDIX C: NIEDERREITER’S THEOREM

The version of Niederreiter’s theorem12 stated in Theorem C.1 below is used in the proof
Theorem 1. As before,̂x‰5x2†x‡, where†x‡ is the largest integer contained inxPR.

Theorem C.1: Let 0<a,b<1 and consider the sequencev5( j b) j 51
` of real numbers,

whereb is an irrational of constant type.24 Let AN(@a,b);v) be the number of termŝj b‰ (1< j
<N) in the interval@a,b!. Then

sup
0<a,b<1

NUAN~@a,b!;v!

N
2~b2a!U<31G~b!logN, ~C1!

for NPN, whereG(b) is a positive constant dependent solely onb.
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1Usually, positively charged particles~ions! will be called simply ‘‘particles’’ for short.
2The physics of channeling in crystals was first discussed in a classic paper of J. Lindhard, K. Dan. Vidensk. Sels
Fys. Medd.34, 14 ~1965!. See also D. S. Gemell, Rev. Mod. Phys.46, 129 ~1974!.

3For general surveys of quasicrystals, seeThe Physics of Quasicrystals, edited by P. J. Steinhardt and S. Ostlund~World
Scientific, Singapore, 1987!; Aperiodicity and Order, edited by M. V. Jaric´ ~Academic, Boston, 1989!, Vols. 1, 2; and
Aperiodicity and Order, edited by M. V. Jaric´ and D. Gratias~Academic, Boston, 1989!, Vol. 3.

4P. Kramer, Z. Naturforsch.40a, 775~1985!.
5V. Elser, Acta Crystallogr., Sect. A: Found. Crystallogr.42, 36 ~1986!.
6A. Katz and M. Duneau, J. Phys.~France! 47, 181 ~1986!.
7See, e.g., D. S. Gemell, in Ref. 2, p. 139.
8For simplicity, we do not consider the effects of phason disorder on axial channeling in our IQC.@Phasons are discussed
e.g., by J. E. S. Socolar, T. C. Lubensky, and P. J. Steinhardt, Phys. Rev. B34, 3345~1986!#. There are indications tha
highly perfect IQCs, with negligible phason disorder, exist in nature. Axial and planar channeling have been obse
an IQC believed to be of this type. See E. H. du Marchie van Voorthuysen, P. J. M. Smulders, R. D. Werkmanet al.,
Phys. Rev. B45, 9667 ~1992! ~experiment! and E. H. du Marchie van Voorthuysen, P. J. M. Smulders, and S.
Smaalen, Phys Rev. B48, 9374~1993! ~Monte Carlo calculations!.

9H. S. Dumas, J. A. Ellison, and A. W. Sa´enz, Ann. Phys.~N.Y.! 209, 97 ~1991!.
10See, e.g., E. T. Whittaker,A Treatise on the Analytical Dynamics of Particles and Rigid Bodies~Dover, New York,

1944!, Chap. XII, Sec. 141; or A. Wintner,The Analytical Foundations of Celestial Mechanics~Princeton University
Press, Princeton, NJ, 1941!, especially Secs. 180–182.

11See A. W. Sa´enz, J. Math. Phys.32, 2679~1991!, where this theorem is stated in Remark~3! to Theorem 1. In the third
line of that remark, ‘‘~A.1!’’ should read ‘‘A.’’

12See L. Kuipers and H. Niederreiter,Uniform Distribution of Sequences~Wiley, New York, 1974!, Theorem 3.4, p. 125.
13All projections considered in this paper are orthogonal.
14A proper subspaceS,Rn is said to be totally irrational ifSùZn5$0%, where 0 is the zero vector inRn. See M.

Senechal,Quasicrystals and Geometry~Cambridge University Press, Cambridge, 1995!, especially Sec. 2.6.1.
15See Proposition 2.15, p. 36, of Senechal.14 See also A. Katz and M. Duneau, in Ref. 6, p. 184.
16Recall that a discrete set is one without points of accumulation. Thus, the inf of the distance between any two

points ofK is positive. The discreteness ofK is proved in A. Katz and M. Duneau, in Ref. 6, p. 185.
17See H. S. M. Coxeter,Regular Polytopes, 2nd ed.~Macmillan, New York, 1963!, especially Sec. 2.7, pp. 25, 26.
18Henceforth, in the absence of a statement to the contrary, the summation signsS i ,S j , etc., will denoteS i 51

6 ,S j 51
6 , etc.,

and equations involving unsummed indicesi,j should be understood to hold fori , j 51,...,6.
19The references to lemmas and theorems made in the text are to those of the present paper, unless otherwise s

terms ‘‘Lemma 4~1!,’’ ‘‘Lemma 6~2!,’’ etc., signify ‘‘part 1 of Lemma 4,’’ ‘‘part 2 of Lemma 6,’’ etc. ‘‘Reference
30~2!’’ has a similar significance.

20See, e.g., S. MacLane and G. Birkhoff,Algebra~Macmillan, New York, 1967!, Theorem 18, p. 366. See also Theore
15, p. 361.

21Recall that ifaÞ0 andb are integers, thenaub ~resp.,au”b! means ‘‘a dividesb’’ ~resp., ‘‘a does not divideb’’ !.
22A method for obtaining the general solutions of finite systems of homogeneous linear congruences, and also

mogeneous linear ones when such solutions exist, is discussed by E. Cahen,Théorie des Nombres~Librairie Scientifique,
Hermann, Paris, 1914!, Tome Premier, especially Chap XVII. This is the only reference we know that discusse
method in a completely general way, but it does not furnish explicit formulas for the solutions. The procedure for s
~2.88! sketched in the text yields an explicit formula for the general solution of any finite system of homogeneous
congruences.

23See L. Kuipers and H. Niederreiter, in Ref. 12, p. 122.
24See L. Kuipers and H. Niederreiter, in Ref. 12, Definition 3.3, p. 121.
25Sums overZ6 will always be understood as multiple series, in the usual sense.
26In this paper, a vector-valued function is said to be locally integrable when each of its components has this pro

the sense of Riemann.
27J. H. Barrett, Phys. Rev. B3, 1527~1971!, has investigated these phenomena in crystals by Monte Carlo methods

especially Sec. IV of his paper.
28Henceforth ifzPRk (k>2), izi will denote its Euclidean norm inRk, unless otherwise stated.
29The proof of Lemma 5 is greatly simplified if, in addition to the hypotheses onv in Definition 5, one assumes thatv has

compact support. The details are left to the reader.
30Henceforth in this proof, statements involvingy ~resp.,u! are meant to apply foryPR2 ~resp.,u.1! in the absence of

an explicit contrary statement.
31For convenience, we recall basic definitions and properties of summable families, at a level of generality mo

sufficient for our purposes. Detailed information on this topic, in very readable form, is provided in Dixmier.32 ~1! Let
(xi) i PI be a finite family of elementsxi in a normed space with normu•u andL be the set of all subsets of an arbitrar
index setI. We orderL by inclusion, so that it becomes an increasingly filtering ordered set. Define the partial
sJ5( i PJxi (JPL). The family (xi) i PI is said to be summable with sums if the family (sJ)JPL tends tos alongL, i.e.,
if for every «.0 there existsJ0PL, such thatus2sJu,e for eachJPL containingJ0 . We then writes5( i PIxi . ~2!

The family (xi) i PI in ~1! is said to be absolutely summable if (uxi u) i PI is summable. Note that (xi) i PI is summable iff it
is absolutely summable. Thus, the present concept of summability is different from that of convergence in a
space.
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32J. Dixmier,General Topology~Springer-Verlag, New York, 1984!, Chap. IX.
33To avoid a proliferation of constants, we may~and will! assume thatu0.1 is large enough so that the finite number

estimates involvingu that occur in this proof hold foru.u0 .
34See, e.g., J. A. Ellison, A. W. Sa´enz, and H. S. Dumas, J. Diff. Eqns.84, 383~1990! ~periodic ODE systems! and A. W.

Sáenz in Ref. 11~nonperiodic ODE systems!.
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Bering’s proposal for boundary contribution
to the Poisson bracket

Vladimir O. Solovieva)

Institute for High Energy Physics, 142284, Protvino, Moscow Region,
Russian Federation and The Abdus Salam International Center for Theoretical Physics,
P.O. Box 586, 34100 Trieste, Italy

~Received 4 October 1999; accepted for publication 5 April 2000!

It is shown that the Poisson bracket with boundary terms proposed by Bering can
be deduced from the Poisson bracket proposed by the present author if one omits
terms free of Euler–Lagrange derivatives~‘‘annihilation principle’’!. This corre-
sponds to another definition of the formal product of distributions~or, saying it in
other words, to another definition of the pairing between 1-forms and 1-vectors in
the formal variational calculus!. We extend the formula~initially suggested by
Bering for the ultralocal case with constant coefficients only! onto the general
nonultralocal brackets with coefficients depending on fields and their spatial de-
rivatives. The lack of invariance under changes of dependent variables~field re-
definitions! seems to be a drawback of this proposal. ©2000 American Institute
of Physics.@S0022-2488~00!00208-5#

I. INTRODUCTION

Recently Bering1 proposed a formula for the field theory Poisson bracket with boundary te
which are different from those proposed earlier by the present author.2 In general the motivation
for new brackets arises from the fact that the well-known standard field theory Poisson bra
not applicable to nontrivial boundary problems. In particular it does not satisfy the Jacobi ide
The terms violating the Jacobi identity are, of course, of purely boundary~or divergence! nature
and so can be killed by some boundary conditions which are called trivial here. The pro
addressed in this paper as well as in publications1–4 consists in searching for the Poisson brac
formula which exactly fulfils the Jacobi identity even before any boundary conditions are
into account.

According to our knowledge the first observation of this problem and the first succe
attempt to solve it was made by Lewis, Marsden, Montgomery, and Ratiu~LMMR ! in their
treatment of Hamiltonian dynamics of the ideal fluid with a free boundary.5 Both formulas pro-
posed in Refs. 1 and 2 are in fact only two different extrapolations of the same formula sug
in Ref. 5. So, it would be better to remind first the pioneering approach.

In contrast to the popular view6 that in the Hamiltonian approach all functionals should
‘‘differentiable’’ the variations of functionals studied by LMMR are not free of boundary ter

DqF~q,p!•dq5E
V

d`F

dq
•dqdV1 R

]V

d~F

dq
•dqu]VdS, ~1!

DqF~q,p!•dp5E
V

d`F

dp
•dpdV1 R

]V

d~F

dp
•dpu]VdS. ~2!

The idea is to generalize the definition of the variational derivative by incorporating the bou
contribution,

a!Electronic mail: soloviev@th1.ihep.su; Fax: 7-095-230-23-37
53690022-2488/2000/41(8)/5369/12/$17.00 © 2000 American Institute of Physics
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dF

dq
5

d`F

dq
1d~S!•

d~F

dq
, ~3!

dF

dp
5

d`F

dp
1d~S!•

d~F

dp
. ~4!

Then LMMR in fact proposed to use for the new Poisson bracket the old formula,

$F,G%5E
V
F dF

dq~x!

dG

dp~x!
2

dG

dq~x!

dF

dp~x!GdV

but with new variational derivatives~3!, ~4! in it,

$F,G%5E
V
F d`F

dq~x!

d`G

dp~x!
2

d`G

dq~x!

d`F

dp~x!GdV

1 R
]V

F d`F

dq~x!
U

]V

d~G

dp~x!
1

d~F

dq~x!

d`G

dp~x!
U

]V
GdS

2 R
]V

F d`G

dq~x!
U

]V

d~F

dp~x!
1

d~G

dq~x!

d`F

dp~x!
U

]V
GdS.

One immediately sees that the most dangerous term with the product ofd-functions is absent
above. In fact, to kill this term LMMR put a special boundary condition

d~F

dq

d~G

dp
2

d~G

dq

d~F

dp
50, ~5!

which enforces the zero value for the coefficient standing before this dangerous product.~It seems
interesting to mention that in recent calculations of the central charges arising in boundary
metry algebras in Chern–Simons theory7 the similar term is cancelled automatically due to t
Poisson structure itself.! Unfortunately it is not quite clear whether the Poisson bracket$F,G%
preserves this property in general case even if the initial functionalsF andG satisfy ~5!.

Here we see the bifurcation point for the following generalizations of LMMR result. The
of Ref. 1 is that these dangerous terms with products ofd-functions must be omitted independent
of any boundary conditions~‘‘annihilation principle’’!. Another idea advocated earlier in Ref. 2
to find a reasonable formula for these terms.

To explain this in more detail we need first to introduce a relevant formalism for trea
general variations of functionals depending on arbitrary~but finite!! number of spatial derivatives
In Ref. 2 the adequate mathematical machinery was found to be the so-called higher E
operators.8–10 We shall follow notations of Refs. 2–4. Einstein rule is used, i.e., we omit the
of summation over repeated indices and multi-indices.

The first variation of a general local (maxuJu,`) functional,

F5E
V

f ~fA~x!,fA
(J)~x!!dnx

can be written in a form

dF5E
V

] f

]fA
(J) DJdfAdnx[E

V
f A8 ~dfA!dnx[E

V
DJ~EA

J ~ f !dfA!dnx, ~6!

where in generalJ denotes multi-indexJ5( j 1 , . . . ,j n) and
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fA
(J)5

] uJufA

] j 1x1
¯] j nxn [DJfA , uJu5 j 11¯1 j n ,

but in the simplest case of one-dimensional space it is just the order of spatial derivative. W
introduced also the Fre´chet derivative which is a differential operator,

f A85
] f

]fA
(J) DJ . ~7!

The higher Eulerian operatorsEA
J are uniquely defined by the following formula:

EA
J ~ f !5S K

J D ~2D !K2J

] f

]fA
(K) .

Here binomial coefficients for multi-indices are

S J
K D5S j 1

k1
D¯S j n

kn
D ,

S j
kD5H j !/ ~k! ~ j 2k!! ! if 0<k< j ;

0 otherwise,

and

~2D !K5~21! uKuDK .

Both Refs. 1 and 2 use the full variation~6! for the construction of the new Poisson brackets
in different ways. In Refs. 2 it was proposed to start from the formula,

$F,G%5dGF[E
V

DJ~EA
J ~ f !dGfA!dnx[E

V
f A8 ~dGfA!dnx,

and to look fordGfA of such a form which fulfills the equation

dGF52dFG.

The following formula was derived in Ref. 2 after some calculations

$F,G%5E
V

DJ1K~EA
J ~ f ! Î ABEB

K~g!!dnx[E
V

Tr~ f A8 Î ABgB8 !dnx. ~8!

We can for the ease of comparison with Ref. 1, first consider only the so-called ultralocal bra
then

$fA~x!,fB~y!%5I ABd~x,y!, I AB52I BA .

In contrast, the proposal of Ref. 1 is to start with the already antisymmetric expression

$F,G%5DGF2DFG2$F,G%old ,

where

$F,G%old5E
V

EA
0~ f !I ABEB

0~g!dnx,
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DGF5E
V

DJ~EA
J ~ f !DGfA!dnx[E

V
f A8 ~DGfA!dnx.

Then it is possible to use the standard expression for the field variation

DGfA5I ABEB
0~g!

and the resulting formula will be

$F,G%5E
V

DJ~EA
J ~ f !I ABEB

0~g!2EA
J ~g!I ABEB

0~ f !!dnx2$F,G%old .

So, it is easy to see that the last formula contains only one summation over multi-indJ
whereas formula~8! contains a double sum overJ andK. If we omit all the terms without at leas
one ofE0 operators in this double sum we immediately get the last formula.

Maybe it will be of some interest to add that in ultralocal case for the local functio
depending on the spatial derivatives of the fields of order up toN, Bering’s bracket involves
spatial derivatives of order 3N, whereas the bracket proposed in Ref. 2 involves 2N, as also the
standard bracket does.

The point of difficulty with Bering’s formula seems to be the lack of invariance under
changes of dependent variables~differential substitutions of fields!.

II. DIFFERENTIAL SUBSTITUTIONS

Let us consider the invariance properties of the field theory Poisson brackets unde
redefinitions of the type,

fA→f̄ B̄5j B̄~fA ,DJfA!, ~9!

~differential substitutions!.
If we initially have some local Poisson brackets for fieldsfA(x), i.e.,

$fA~x!,fB~y!%5 Î AB~x!d~x,y!, ~10!

where Î AB5I AB
K DK is a differential operator of a finite order with field-dependent coefficients

I AB
K 5I AB

K ~fC ,DJfC!, ~11!

then as a result of the differential substitution~9! we get a result

$f̄ C̄~x!,f̄ D̄~y!%5~j C̄!A8 ~x!~j D̄!B8 ~y! Î AB~x!d~x,y!.

To transform this expression to the form similar to~10! we need a definition of the ‘‘adjoint’’
operator

ĴAB~x!d~x,y!5 ĴAB
‘‘adjoint’’ ~y!d~x,y!,

then we will have

~j C̄!A8 ~x!~j D̄!B8 ~y! Î AB~x!d~x,y!5~j C̄!A8 ~x! Î AB~x!@~j D̄!B8 # ‘‘adjoint’’ ~x!d~x,y!,

and

Î C̄D̄~x!5~j C̄!A8 ~x! Î AB~x!@~j D̄!B8 # ‘‘adjoint’’ ~x!.
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The approach which we consider here is different from the standard one by the treatm
boundary~or divergence! terms. All of them should be preserved in the calculations. This me
that we require the exact equality

E
V

jAĴABhBdnx5E
V

hAĴ†
ABjBdnx,

without discarding any boundary~divergence! terms. In contrast the standard approach requ
only equality up to boundary terms

jAĴABhB'hAĴ* ABjB ~mod divergences!,

or, in notations of Appendix C,

^juĴuh&5^huĴ* uj&.

From the last definition we get a usual relation

ĴAB* 5~2D !K+JBA
K . ~12!

But the former one gives a different result

Ĵ†
AB5~2D !K+uVJBA

K . ~13!

Here we use the characteristic function of the domain of integration~physical domain!

uV~x!5H 1 if xPV,

0 otherwise,

to codify the divergences. There is an apparent relation

E
Rn

~2D !KuV f ~x!dnx5E
Rn

uVDKf ~x!dnx[E
V

DKf ~x!dnx.

So, withuV we are able to write all the spatial integrals not as integrals over the physical do
but as integrals over the whole infinite coordinate spaceRn.

III. THE STANDARD BRACKET

Let us first consider transformations of the standard Poisson bracket,

$F,G%old5
1

2 EV
~EA

0~ f ! Î ABEB
0~g!2EA

0~g! Î ABEB
0~ f !!dnx, ~14!

under field redefinitions of the type~9!. We will use a formula

EA
0~ f !5@~j C̄!A8 #* E

C̄

0
~ f !

[~EA
0~j C̄!2EA

1~j C̄!D1EA
2~j C̄!D22¯ !E

C̄

0
~ f !

[~21! uKuEA
K~j C̄!DKE

C̄

0
~ f !, ~15!

derived in Appendix C. Then in the integrand of~14! we will have the following expressions:
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EA
0~ f ! Î ABEB

0~g!5@~j C̄!A8 #* E
C̄

0
~ f ! Î AB@~j D̄!B8 #* E

D̄

0
~g!

5E
C̄

0
~ f !@@~j C̄!A8 #* #†Î AB@~j D̄!B8 #* E

D̄

0
~g!. ~16!

But, as we discussed above, the two definitions of the ‘‘adjoint’’ differential operator are
equivalent

@@~j C̄!A8 #* #†5~j C̄!A8 +uVÞ~j C̄!A8 ,

and so

@@~j C̄!A8 #* #†Î AB@~j D̄!B8 #* Þ Î C̄D̄ .

Of course, the difference has a form of divergences. Therefore we see that the standard field
Poisson bracket is invariant under field redefinitions of the form~9! ~i.e., differential substitutions!
only up to boundary terms. Surely, this is enough because all the other requirements~Jacobi
identity, antisymmetry, Leibnitz rule! are also fulfilled only up to boundary terms and this brac
does not pretend to be adequate for nontrivial boundary problems.

IV. THE GENERAL APPROACH TO BOTH PROPOSALS

Dealing with local functionals and local Poisson brackets in field theory we always g
general bracket of two functionals in the following form:

$F,G%5E
V

dnxE
V

dny fA8 ~x!gB8 ~y!$fA~x!,fB~y!%,

where Frec´het derivativesf A8 (x), gB8 (y) are differential operators~7!. If we represent each integra
not as the integral over finite domain but as an integral over all the infiniteRn with a characteristic
function of the domainV,

$F,G%5E
Rn

uV~x!dnxE
Rn

uV~y!dny fA8 ~x!gB8 ~y!$fA~x!,fB~y!%,

then it easy to integrate by parts formally and get

$F,G%5E
Rn

dnxE
Rn

dny
dF

dfA~x!

dG

dfB~y!
$fA~x!,fB~y!%,

where

dF

dfA~x!
5~ f A8 ~x!!†uV5~2D !KS uV

] f

]fA
(K)D[EA

J ~ f !~2D !JuV ,

with the the analogous formula valid for the variational derivative ofG. Let us restrict the
consideration to ultralocal case for simplicity, then

$F,G%5E
Rn

dnxE
Rn

dny
dF

dfA~x!
I AB

dG

dfB~y!
d~x,y!,

and in both approaches it is believed that

$F,G%5E
Rn

dnx
dF

dfA~x!
I AB

dG

dfB~x!
.
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But, of course, this expression includes products of distributions of the formDJuV3DKuV and
here these two proposals are different.

~1! In Bering’s approach,1

DJuV3DKuV5dJ0DKuV1dK0DJuV2dJ0dK0uV ;
~2! In the approach of Ref. 2,

DJuV3DKuV5DJ1KuV .

Apparently it is possible to avoid these distributions completely as they serve only to c
divergences. This is demonstrated in publications.4 Then the key transformation from the doub
spatial integral to the single spatial integral with the help ofd-function can be interpreted simpl
as a pairing between 1-forms and 1-vectors of the formal variational calculus.8,11,12 The pairing
defined in Refs. 2 and 4 is compatible with the grading related to divergences.

Now if we use the above formula for Bering’s pairing it is possible to derive the Pois
brackets in the most general~not treated in Ref. 1! nonultralocal case whereÎ AB is a differential
operator of a finite order with field dependent coefficients. Really, this is the same formula
hats added~It is possible to derive a more general formula if we do not suggest that the ope
Î AB should be antisymmetric with respect to the standard definition of the adjoint. But this for
does not fulfil the Jacobi identity even for nonultralocal brackets with constant coefficients.!

$ f ,g%5 f A8 ~ Î ABEB
0~g!!2gA8 ~ Î ABEB

0~ f !!2 1
2 ~EA

0~ f ! Î ABEB
0~g!2EA

0~g! Î ABEB
0~ f !!.

Moreover, it is possible to demonstrate that the Jacobi identity is fulfilled for this bracket fo
local operatorÎ AB with constant coefficients. In the case of ultralocal Poisson brackets with
field dependent coefficients~but the dependence on field derivatives is excluded! in Appendix B
we derive the following condition of the fulfillment of the Jacobi identity for the bracket c
structed according to the Bering proposal

I AB,CI CD1I DA,CI CB1I BD,CI CA50.

In Appendix B we also give the condition for the most general case of nonultralocal brackets
coefficients depending on the spatial derivatives of fields also.

V. DIFFERENTIAL SUBSTITUTIONS AND BERING’S PROPOSAL

Now let us consider the formula derived in the previous section as a further developm
the initial proposal by Bering,1

$F,G%B5E
V

f A8 Î ABEB
0~g!dnx2E

V
gA8 Î ABEB

0~ f !dnx2$F,G%old , ~17!

where$F,G%old is the standard Poisson bracket treated before.
The Fréchet derivative transforms under differential substitutions~9! as follows~see Appen-

dix C!:

f A85 f
C̄
8 ~j C̄!A8 ,

so we obtain

f A8 Î ABEB
05 f

C̄
8 ~j C̄!A8 Î AB@~j D̄!B8 #* E

D̄

0
~g!.

It means that the first and second terms of the bracket will be invariant if we suppose

Î C̄D̄5~j C̄!A8 Î AB@~j D̄!B8 #* ,
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so, the old definition of the adjoint operator~12! should be used here in accordance with t
treatment given by Bering@see Sec.~5.5! of Ref. 1#.

Unfortunately, this bracket contains also a term$F,G%old ~the standard Poisson bracket! with
another transformation properties. As we have demonstrated in Sec. III this term is invariant
field redefinitions only up to divergences. So, taken as a whole, Bering’s formula is not inva

VI. DIFFERENTIAL SUBSTITUTIONS AND THE BRACKET PROPOSED IN THE
AUTHOR’S WORK

Let us show that in contrast the formula

$F,G%5E
V

Tr~ f A8 Î ABgB8 !dnx

is precisely invariant under field redefinitions of the form~9!. We are reminded that the trace
used here to denote the rules of composition of the differential operatorsf A8 , Î AB , andgB8 ,

f A85
] f

]fA
(J) DJ ,

Î AB5I AB
K DK ,

gB85
]g

]fB
(J) DJ .

Operatorf A8 acts on everything to the right of it, so does operatorÎ AB , and operatorgB8 acts on
everything to the left of it, i.e., acts on everything besides its own coefficients,

Tr~ f A8 Î ABgB8 ![S J
L D S K

M DDM

] f

]fA
(J) DJ1K2L2MÎ ABDL

]g

]fB
(K) .

After the field redefinition we get

$F,G%5E
V

Tr~ f
C̄
8 ~j C̄!A8 Î ABg

D̄
8 ~j D̄!B8 !dnx.

So, if we use here the adjoint operator to (j D̄)B8 defined by~13! then it will act only ontog
D̄
8 ,

$F,G%5E
V

Tr~ f
C̄
8 ~j C̄!A8 Î AB@~j D̄!B8 #†g

D̄
8 !dnx.

But according to our definitions given in Sec. II,

Î C̄D̄5~j C̄!A8 Î AB@~j D̄!B8 #†.

As a result we see that this definition of the field theory Poisson bracket with boundary ter
exactly invariant under differential substitutions.

In Ref. 13 this invariance was demonstrated for the concrete example—the Ash
transformation14 of the gravitational variables.

VII. CONCLUSION

We considered above an interesting proposal made by Bering on the boundary terms
field theory Poisson bracket. We generalize this proposal to the most general local Poisson
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ets and find the conditions necessary to fulfil the Jacobi identity. According to our treatment
in more detail in previous publications2,4 there are three separate ingredients of the Poisson bra
construction which should be revised; the differential of the local functional, the Poisson biv
and the pairing operation. Bering uses the same definition for the differential, but chang
pairing and the bivector. It occurs so that to change the pairing alone means to get into t
with the Jacobi identity in the nonultralocal case.

Really, the paper1 suggest a lot of new ideas which deserve more discussion. Here we
concentrated on the drawback that it seemingly had. Probably, further investigation will
whether these drawback could be overcome in Bering’s approach. But anyhow it is absen
use another formula suggested in Ref. 2.
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APPENDIX A: USEFUL RELATIONS

Let us suppose thatÎ AB5I AB
M DM , whereI AB

M 5I AB
M (f (J)), and

Î AB* 5~2D !M+I BA
M .

Then the following useful relations can be proved by using the technique of higher Eu
operators8,10 compiled in Lemmas 2.5–2.12 of Ref. 2:

~EB
0~g!!C8 ~ Î CDED

0 ~h!!5~2D !LF ]2g

]fB
(L)]fC

(J) DJ~ Î CDED
0 ~h!!G ,

EB
0~gC8 ~ Î CDED

0 ~h!!!5~2D !LF ]2g

]fB
(L)]fC

(J) DJ~ Î CDED
0 ~h!!

1
]2h

]fB
(L)]fC

(J) DJ~ Î CD* ED
0 ~g!!1EC

0 ~g!
]I CD

M

]fB
(L) DMED

0 ~h!G ,
EB

0~EC
0 ~g! Î CDED

0 ~h!!5~2D !LF ]2g

]fB
(L)]fC

(J) DJ~ Î CDED
0 ~h!!

1
]2h

]fB
(L)]fC

(J) DJ~ Î CD* ED
0 ~g!!1EC

0 ~g!
]I CD

M

]fB
(L) DMED

0 ~h!G .
Let also Î AB* 52 Î AB , then from the above it follows

EB
0~gC8 ~ Î CDED

0 ~h!!!52EB
0~hC8 ~ Î CDED

0 ~g!!!5EB
0~EC

0 ~g! Î CDED
0 ~h!!

5~2D !LFEC
0 ~g!

]I CD
M

]fB
(L) DMED

0 ~h!G
1~EB

0~g!!C8 ~ I CDED
0 ~h!!2~EB

0~h!!C8 ~ I CDED
0 ~g!!.

We will use these relations in checking the Jacobi identity in Appendix B.
Let us illustrate our results by the less general case of ultralocal Poisson brackets,

Î AB5I AB52I BA ,
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and suppose for the simpllicity that functionsI AB depend only on fields and do not depend on th
derivatives,

I AB5I AB~fC!.

Then,

]I CD
M

]fB
(L) 5dM0dL0I CD,B ,

and so,

~2D !LFEC
0 ~g!

]I CD
M

]fB
(L) DMED

0 ~g!G5I CD,BEC
0 ~g!ED

0 ~h!.

APPENDIX B: THE JACOBI IDENTITY

By using Bering’s formula for the Poisson bracket we get

$F,G%5E
Rn

$ f ,g%dnx,

$ f ,g%5 f A8 ~ Î ABEB
0~g!!2gA8 ~ Î ABEB

0~ f !!2 1
2 EA

0~ f ! Î ABEB
0~g!1 1

2 EA
0~g! Î ABEB

0~ f !,

$$ f ,g%,h%5$ f ,g%C8 ~ Î CDED
0 ~h!!2hC8 ~ Î CDED

0 ~$ f ,g%!!

2 1
2 EC

0 ~$ f ,g%! Î CDED
0 ~h!1 1

2 EC
0 ~h! Î CDED

0 ~$ f ,g%!

5 f AC9 ~ Î ABEB
0~g!, Î CDED

0 ~h!!2gAC9 ~ Î ABEB
0~ f !, Î CDED

0 ~h!!

1 f A8 ~~ Î AB!C8 ~ Î CDED
0 ~h!!EB

0~g!1 Î AB~EB
0~g!!C8 ~ Î CDED

0 ~h!!!

2gA8 ~~ Î AB!C8 ~ Î CDED
0 ~h!!EB

0~ f !1 Î AB~EB
0~ f !!C8 ~ Î CDED

0 ~h!!!

2 1
2 ~EA

0~ f !!C8 ~ Î CDED
0 ~h!! Î ABEB

0~g!2 1
2 EA

0~ f !~ Î AB!C8 ~ Î CDED
0 ~h!!EB

0~g!

2 1
2 EA

0~ f ! Î AB~EB
0~g!!C8 ~ Î CDED

0 ~h!!1 1
2 ~EA

0~g!!C8 ~ Î CDED
0 ~h!! Î ABEB

0~ f !

1 1
2 EA

0~g!~ Î AB!C8 ~ Î CDED
0 ~h!!EB

0~ f !1 1
2 EA

0~g! Î AB~EB
0~ f !!C8 ~ Î CDED

0 ~h!!

1hC8 ~ Î CDED
0 ~gA8 ~ Î ABEB

0~ f !!2 f A8 ~ Î ABEB
0~g!!1EA

0~ f ! Î ABEB
0~g!!!)

2 1
2 EC

0 ~ f A8 ~ Î ABEB
0~g!!2gA8 ~ Î ABEB

0~ f !!2 1
2 EA

0~ f ! Î ABEB
0~g!

1 1
2 EA

0~g! Î ABEB
0~ f !! Î CDED

0 ~h!1 1
2 EC

0 ~h! Î CDED
0 ~ f A8 ~ Î ABEB

0~g!!2gA8 ~ Î ABEB
0~ f !!

2 1
2 EA

0~ f ! Î ABEB
0~g!1 1

2 EA
0~g! Î ABEB

0~ f !!.

Here we use the notation

f AB9 ~jA ,hB!5
]2f

]fA
(J)]fB

(K) DJjADKhB .

Then by making cyclic permutations and applying formulas from Appendix A we get a resu
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$$ f ,g%,h%1$$h, f %,g%1$$g,h%, f %

5 f A8 S ]I AB
M

]fC
(L) DL~ Î CDED

0 ~h!DMEB
0~g!! D 2gA8 S ]I AB

M

]fC
(L) DL~ Î CDED

0 ~h!DMEB
0~ f !! D

2hC8 S Î CD~2D !LF1

2
EA

0~ f !
]I AB

M

]fD
(L) DMEB

0~g!2
1

2
EA

0~g!
]I AB

M

]fD
(L) DMEB

0~ f !G D
2

1

2
EA

0~ f !
]I AB

M

]fC
(L) DL~ Î CDED

0 ~h!!DMEB
0~g!1

1

2
EA

0~g!
]I AB

M

]fC
(L) DL~ Î CDED

0 ~h!!DMEB
0~ f !

2
1

2
~2D !LF1

2
EA

0~ f !
]I AB

M

]fC
(L) DMEB

0~g!2
1

2
EA

0~g!
]I AB

M

]fC
(L) DMEB

0~ f !G Î CDED
0 ~h!

1
1

2
EC

0 ~h! Î CD~2D !LF1

2
EA

0~ f !
]I AB

M

]fD
(L) DMEB

0~g!2
1

2
EA

0~g!
]I AB

M

]fD
(L) DMEB

0~ f !G
1cyclic permutation of~ f ,g,h!.

From the above expression it is apparent that in the case of constant coefficientsI AB
M the Jacobi

identity is satisfied. It is straightforward to check that in the case of ultralocal Poisson bra
with the coefficients depending on the fields~but not on their spatial derivatives! we get a well-
known condition for the fulfilment of the Jacobi identity,

I AB,CI CD1cyclic permutation of~A,B,D !50.

APPENDIX C: THE TRANSFORMATION RULES

Here we derive the transformation rules for Euler–Lagrange and Fre´chet derivatives unde
differential substitutions of fields~9!.

First, let us consider the variation of an arbitrary function of the fields

d f 5 f A8dfA[
] f

]fA
(J) DJdfA .

If we use the transformed fields

f̄ B̄5j B̄~fA ,DJfA!,

then we get

d f 5 f B̄
8df̄ B̄[

] f

]f̄ B̄
(K)

DKdf̄ B̄ ,

where

df̄ B̄5~j B̄!A8dfA .

Therefore,

f A85 f B̄
8 +~j B̄!A8 .

Second, let us consider an expression,
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^1u f A8 udfA&5^dfAu~ f A8 !* u1&[EA
0~ f !dfA ,

where the angle brackets denote the standard integrand, defined up to divergences, and
change of variables,

fA→f̄ B̄5j B̄~fA ,DJfA!,

then

EA
0~ f !dfA5^1u f B̄

8 +~j B̄!A8 udfAu&5^1u f B̄
8 u~j B̄!A8dfA&5^~j B̄!A8dfAu~ f B̄

8 !* u1&5EB̄
0
~ f !~j B̄!A8dfA

5^EB̄
0
~ f !u~j B̄!A8 udfA&5^dfAu~~j B̄!A8 !* uEB̄

0
~ f !&,

or,

EA
0~ f !5~~j B̄!A8 !* EB̄

0
~ f !.

This result can be checked by more tedious but straightforward calculations by using formu
Eulerian operators given in article Ref. 10.
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The Markovian limit in a nonlinear quantum kinetic theory
Justino R. Madureiraa)
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Within the framework of a nonlinear quantum kinetic theory for dissipative far-
from-equilibrium systems, based on a nonequilibrium ensemble formalism, a rig-
orous derivation of the Markovian limit is given. This is done in the framework of
the nonequilibrium statistical operator method, and resorting to Zubarev’s ap-
proach. © 2000 American Institute of Physics.@S0022-2488~00!00507-7#

I. INTRODUCTION

Nonlinear transport phenomena in nonequilibrium systems constitutes a very importan
ject in several areas besides physics, like chemistry, biology, engineering, and others, and
quently is nowadays receiving a great deal of attention.

Dynamical processes in many-body systems at the macroscopic level have been a
mately described by several types ofkinetic equations. Many examples exist of such approach
to the theory, say, Boltzmann equation for a dilute gas, Vlasov–Landau equation for a pl
Navier–Stokes equation for a compressible fluid, Fokker–Planck equation for the Brownia
tion, Fick and Fourier diffusion equations, etc. In many cases one or other type of kinetic
tions provides foundations for a whole subfield of physics. Since all of them are related
underlying microscopic mechanical description, a quite interesting question is how to unde
their justification—in the circumstances that validate them—starting from the microscopic dy
ics.

For arbitrarily away-from-equilibrium systems several methods have been devised to
nonlinear quantum transport equations.1 Presently, a seemingly powerful, practical, and physica
sound kinetic theory has been derived in the framework of a nonequilibrium ensemble form
in statistical mechanics, the so-called nonequilibrium statistical operator method~NESOM! in
Zubarev’s approach, which has been sucessfully applied to numerous problems in the a
study of the irreversible evolution of open systems arbitrarily away-from-equilibrium.2–8

We reconsider this theory performing an extensive analysis of a particular limiting
namely, the so-calledMarkovian limit. This means the case of a memoryless approach, whic
shown to correspond to keep the effect of the particle collisions only up to second order
strengths of the interactions present in the energy operator in the system’s Hamiltonian. Th
Markovian limit in the NESOM-based kinetic theory follows in conditions of a weak coup
limit, as it is also the case—as rigorously proved by Davies9—of the quantum-mechanical mast
equation.

II. NESOM AND KINETIC THEORY FOR DISSIPATIVE PROCESSES

In the area of the statistical thermodynamics of dissipative systems NESOM constitu
theory that largely generalizes Boltzmann and Gibbs seminal and fundamental ideas. Accor
the method, four steps are the basis for choosing the basic set of microdynamical variables,
average over the nonequilibrium ensemble provides the set of macrovariables, for which ev
equations are derived.The firststep is the separation of the Hamiltonian of the system into
contributions, namely,

a!Electronic mail: justino@darss.mpg.uni-rostock.de
53810022-2488/2000/41(8)/5381/10/$17.00 © 2000 American Institute of Physics
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Ĥ5Ĥ01Ĥ85Ĥ01lV̂, ~1!

whereĤ0 contains the Hamiltonian for the free subsystems that compose the whole system
part of the interactions, namely, those strong enough to lead to correlation which have ass
very short relaxation times, meaning those much smaller than the characteristic time scale
experiment~or resolution time!. The other term,Ĥ85lV̂ ~with l being an adimensional paramet
which is introduced to follow the order of the collision processes in the theory! contains the
interactions between subsystems related to long-time relaxation mechanisms.The secondstep is
provided by aselection rulefor the choice of the basic set of microdynamical variables, wh
introduces the quantities$P̂j% in such way that they should satisfy the relation

1

i\
@ P̂j ,Ĥ0#5(

k
a

jk
P̂k , ~2!

where the left-hand side is the commutator ofP̂j andĤ0 , anda jk are, in an appropriate quantum
representation, real numbers. It should be noticed that quantitiesP̂j can be dependent on the spa
variable, but then we introduce a change of representation going over the reciprocal space i
for a jk to be real numbers.Third, the NESOM inZubarev’s approachprovides a statistica
operatorre(t), in terms of which we define the macrovariablesQj (t), j 51,2,. . . , performing, as
noticed, the averaging over the ensemble characterized byre(t), of the basic set of microdynami
cal variablesP̂j , namely,

Qj~ t !5Tr$P̂jre~ t !%, ~3!

and the limit of e going to zero is taken after the calculation of the trace operation has
performed. Zubarev’s statistical operator satisfies the Liouville equation2,3

]

]t
re~ t !1

1

i\
@re~ t !,Ĥ#52e~re~ t !2 r̄~ t !!, ~4!

wherer̄ is an auxiliary operator given by the Gibbsian-type generalized nonequilibrium cano
distribution ~sometimes referred to as the quasiequilibrium or ‘‘frozen’’ equilibrium statist
operator!

r̄~ t !5expH 2f~ t !2(
j
E d3r F j~r ,t !P̂j~r !J . ~5!

In Eq. ~5!, f(t) ensures the normalization ofr̄(t,0), theF j (t) @as well asf(t)# are the Lagrange
multipliers that the method introduces, and are to be calculated from the self-consistency
tions

Tr$P̂jre~ t !%5Tr$P̂j r̄~ t !%. ~6!

Fourth, the method allows for the construction of a quantum nonlinear, nonlocal-in-space
memory-dependent kinetic theory providing information on the dissipative evolution of the
roscopic nonequilibrium state of the system via the equations of evolution for the basic
macrovariables. They are given, as it should, by the average over the nonequilibrium ensem
the quantum-mechanical Heisenberg equations of motion, that is

d

dt
Qj~ t !5TrH 1

i\
@ P̂j~r !,Ĥ#re~ t !J , ~7!
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which consists, in general, of a set of coupled integro-differential equations which has in
cases a formidable structure of unmanageable proportions. However, using the separation
Hamiltonian as given by Eq.~1!, the selection rule of Eq.~2!, and the solution of Eq.~4! up to
second order in interaction,3,7 Eq. ~7! can be written in the form

d

dt
Q~ t !5V(0)~ t !1V(1)~ t !1V(2)~ t !1O~l3!, ~8!

where boldface denote a vector@Q(t) is a column vector with componentsQj (t), j 51,2, . . .#. The
components of the vectorV(0)(t) of zero order in the interactionĤ8(l), that is, independent o
Ĥ8 and determined only byĤ0 , are given by

V j
(0)~ t !5

1

i\
Tr$@ P̂j ,Ĥ0#re~ t !%

5(
k

a jk Tr$P̂kre~ t !%5(
k

a jkQk~ t !5~AQ~ t !! j , ~9!

where we have introduced the matrixA with elementsAjk5a jk and Eq.~2! has been used. Hence
in vectorial form we can write

V(0)~ t !5AQ~ t !. ~10!

The components of the vectorV(1)(t) are

V j
(1)~ t !5

l

i\
Tr$@ P̂j ,V̂#r̄~ t !%, ~11!

and the components ofV(2)(t) are given by

V j
(2)~ t !52

l2

\2 E
2`

t

dt8 ee(t82t)@Kj 1~ t8,t !1Kj 2~ t8,t !#, ~12!

where

Kj 1~ t8,t !5Tr$@V̂~ t82t !0 , @V̂,P̂j ##r̄~ t8,t82t !0%, ~13a!

and

Kj 2~ t8,t !5(
k

Tr$@ P̂k ,V̂#r̄~ t8,0!%
d

dQk~ t8!
Tr$@V̂,P̂j #r̄~ t8,t82t !0%, ~13b!

with d in d/dQk(t8) denoting functional derivative, and inr̄(t8,t82t)0 and V̂(t82t)0 index
nought indicates the evolution ofr̄(t8) and V̂ in the interaction picture respectively, that is,

r̄~ t8,t82t !05expH 2
1

i\
~ t82t !Ĥ0J r̄~ t8!expH 1

i\
~ t82t !Ĥ0J , ~13c!

and similarly forV̂.
The collision integralV j

(2)(t) contains effects of memory, as it is explicit in Eq.~11!, while
V j

(0)(t) and V j
(1)(t) depend only on the timet when a measurement is performed. Next w

proceed to derive the Markovian limit of Eq.~8!, which corresponds to retain inV j
(2)(t) only the

contributions of order up to two inl, and neglecting those of order higher than two. Noticing t
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V (2) is already proportional tol2, we need to obtain an expression for the kernelsK in the limit
in which they are independent ofl, what we describe in the next section.

III. THE MARKOVIAN LIMIT

Let us consider only the termsV j
(0)(t), V j

(1)(t), andV j
(2)(t) on the right-hand side of Eq.~8!.

In V (2), which is composed of the two contributions of Eqs.~13a! and~13b!, we use the fact tha
~see Appendix A!

r̄~ t8,t82t !05e2(t82t)L0(t8)r̄~ t8!, ~14!

where the operatorL0(t) is defined by

L0~ t !5(
l

V l
(0)~ t !

d

dQl~ t !
, ~15!

and we obtain that

Kj 1~ t8,t !5e2(t82t)L0(t8) Tr$@V̂~ t82t !0 , @V̂,P̂j ##r̄~ t8!% ~16a!

and

Kj 2~ t8,t !5(
k

Tr$@ P̂k ,V̂#r̄~ t8!%
d

dQk~ t8!
e2(t82t)L0(t8) Tr$@V̂,P̂j #r̄~ t8!%. ~16b!

The trace on the right-hand side of Eq.~16a! and the second one in Eq.~16b! is—through
r̄(t8)—a functional of the Lagrange multipliers, and taking into account that the latter are
tionals of the set of macrovariables, then both traces are functionals of the macrovariables.
expand them in a series of the macrovariables, that is,

Tr$@V̂~ t82t !0 , @V̂,P̂j ##r̄~ t8!%5 f j
(0)~ t82t !

1 (
N51

`

(
s1 , . . . ,sN

f j ,s1 , . . . ,sN

(N) ~ t82t !Qs1
~ t8!Qs2

~ t8!¯QsN
~ t8!

~17a!

and

Tr$@ P̂j ,V̂#r̄~ t8!%5gj
(0)~ t82t !1 (

N51

`

(
s1 , . . . ,sN

gj ,s1 , . . . ,sN

(N) ~ t82t !Qs1
~ t8!Qs2

~ t8!¯QsN
~ t8!.

~17b!

For a system ofN spins in interaction with a lattice and in presence of a magnetic field,10 the trace
of Eq. ~16a!, after a straightforward calculation, is given by a monomial, and the trace of Eq.~16b!
is zero.

Making use of these Eqs.~17a! and~17b! in Eqs.~16a! and~16b!, respectively, it follows that

Kj 1~ t8,t !5 f j
(0)~ t82t !1 (

N51

`

(
s1 , . . . ,sN

f j ,s1 , . . . ,sN

(N) ~ t82t !e2(t82t)L0(t8)@Qs1
~ t8!Qs2

~ t8!¯QsN
~ t8!#

~18a!

and
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Kj 2~ t8,t !5(
k

Tr$@ P̂k ,V̂#r̄~ t8!%
d

dQk~ t8! H gj
(0)~0!

1 (
N51

`

(
s1 , . . . ,sN

gj ,s1 , . . . ,sN

(N) ~0!e2(t82t)L0(t8)@Qs1
~ t8!Qs2

~ t8!¯QsN
~ t8!#J .

~18b!

According to the results of Appendix B, we have that

e2tL0(t8)@Qs1
~ t8!Qs2

~ t8!¯QsN
~ t8!#5~e2tAQ~ t8!!s1

~e2tAQ~ t8!!s2
¯~e2tAQ~ t8!!sN

, ~19!

wheret5t82t. Using Eq.~19! in Eqs.~18a! and ~18b!, we obtain that

Kj 1~ t8,t !5 f j
(0)~ t82t !1 (

N51

`

(
s1 , . . . ,sN

f j ,s1 , . . . ,sN

(N) ~ t82t !

3~e2tAQ~ t8!!s1
~e2tAQ~ t8!!s2

¯~e2tAQ~ t8!!sN
~20!

and

Kj 2~ t8,t !5(
k

Tr$@ P̂k ,V̂#r̄~ t8!% (
N51

`

(
s1 , . . . ,sN

gj ,s1 . . . sN

(N) ~0!H (
i 51

N

~e2tA!sik

3~e2tAQ~ t8!!s1
¯~e2tAQ~ t8!!si 21

~e2tAQ~ t8!!si 11
¯~e2tAQ~ t8!!sNJ

5 (
N51

`

(
s1 , . . . ,sN

(
i 51

N

TrH F(
k

~e2tA!sik
P̂k ,V̂G r̄~ t8!J gj ,s1 , . . ., sN

(N) ~0!

3~e2tAQ~ t8!!s1
¯~e2tAQ~ t8!!si 21

~e2tAQ~ t8!!si 11
¯~e2tAQ~ t8!!sN

, ~21!

where, we notice, the factor (e2tAQ(t8))si
is absent. Using in Eq.~21! the fact that

(
k

~e2tA!sik
Pk5Psi

~2t!0 , ~22!

and taking into account the invariance of the trace under cyclic permutations, i.e., Tr$ABC%
5Tr$BCA%, Eq. ~21! takes the form

Kj 2~ t8,t !5 (
N51

`

(
s1 , . . . ,sN

(
i 51

N

Tr$@ P̂si
,V̂~ t82t !0#r̄~ t8,t82t !0%gj ,s1 , . . . ,sN

(N) ~0!

3~e2tAQ~ t8!!s1
¯~e2tAQ~ t8!!si 21

~e2tAQ~ t8!!si 11
¯~e2tAQ~ t8!!sN

. ~23!

Moreover, it can be noticed that on account of Eqs.~14!, ~17b!, and~19! the trace in Eq.~23! can
be written as
                                                                                                                



, the

in

5386 J. Math. Phys., Vol. 41, No. 8, August 2000 Justino R. Madureira

                    
Tr$@ P̂si
,V̂~ t82t !0#r̄~ t8,t82t !0%5e2tL0(t8) Tr$@ P̂si

,V̂~ t82t !0#r̄~ t8!%

5gsi

(0)~ t82t !1 (
N51

`

(
r 1 , . . . ,r N

gsi ,r 1 , . . . ,r N

(N) ~ t82t !

3~e2tAQ~ t8!!r 1
~e2tAQ~ t8!!r 2

¯~e2tAQ~ t8!!r N
. ~24!

Next, differentiatinge2tAQ(t8) respect tot8, we find that

d

dt8
e2(t82t)AQ~ t8!52e2tAAQ~ t8!1e2tA

d

dt8
Q~ t8!

52e2tAAQ~ t8!1e2tAV(0)~ t8!1O~l!, ~25!

where we have used Eq.~10!, and since the first two terms in the last expression cancel out
derivative is of orderl and its powers, implying that

e2tAQ~ t8!5Q~ t !1O~l!. ~26!

Using Eq.~26! in Eqs.~20! and ~24! we obtain that

Kj 1~ t8,t !5 f j
(0)~ t82t !1 (

N51

`

(
s1 , . . . ,sN

f j ,s1 , . . . ,sN

(N) ~ t82t !Qs1
~ t !Qs2

~ t !¯QsN
~ t !1O~l!

5Tr$@V̂~ t82t !0 ,@V̂,P̂j ##r̄~ t !%1O~l! ~27!

and

Tr$@ P̂si
,V̂~ t82t !0#r̄~ t8,t82t !0%5gsi

(0)~ t82t !1 (
N51

`

(
r 1 , . . . ,r N

gsi ,r 1 , . . . ,r N

(N)

3~ t82t !Qr 1
~ t !Qr 2

~ t !¯Qr N
~ t !1O~l!

5Tr$@ P̂si
,V̂~ t82t !0#r̄~ t !%1O~l!. ~28!

Similarly, using Eqs.~26! and ~28! in Eq. ~23! there follows that

Kj 2~ t8,t !5 (
N51

`

(
s1 , . . . ,sN

(
i 51

N

(
k

Tr$@ P̂k ,V̂~ t82t !0#r̄~ t !%

3gj ,s1 , . . . ,sN

(N) ~0!Qs1
~ t !¯Qsi 21

~ t !Qsi 11
~ t !¯QsN

~ t !dsi ,k1O~l!

5(
k

Tr$@ P̂k ,V̂~ t82t !0#r̄~ t !%
d

dQk~ t ! H gj
(0)~0!

1 (
N51

`

(
s1 , . . . ,sN

gj ,s1 , . . . ,sN

(N) ~0!Qs1
~ t !Qs2

~ t !¯QsN
~ t !J 1O~l!

5(
k

Tr$@ P̂k ,V̂~ t82t !0#r̄~ t !%
d

dQk~ t !
Tr$@ P̂j ,V̂#r̄~ t !%1O~l!. ~29!

Since we are pursuing a contribution keeping only terms up to second order,l in Eq. ~8!, and
noticing that the kernelsKj 1(t8,t) andKj 2(t8,t) are present in a term already of second order
l, namelyV j

(2)(t) of Eq. ~12!, we take only terms of order zero inl ~to be consistent! on the
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right-hand side of Eqs.~27! and~29!. Hence, using Eqs.~27! and~29! up to zero order inl in Eq.
~12!, we obtain the Markovian limit of the equation of evolution, Eq.~8!, namely, the collision
operatorV j

(2)(t) in this limit, which we callJj
(2)(t) is given by

Jj
(2)~ t !5S 1

i\ D 2E
2`

t

dt8 ee(t82t) Tr$@Ĥ8~ t82t !0 ,@Ĥ8,P̂j ##r̄~ t !%

1
1

i\ (
k
E

2`

t

dt8 ee(t82t) Tr$@Ĥ8~ t82t !0 ,P̂k#r̄~ t !%
d

dQk~ t !
V j

(1)~ t !. ~30!

We stress that this result fully coincides with the one derived by Zubarev using intuitive
ments. The scheme of derivation can also be used for systems under influence of a time de
external source, i.e.,H85H8(t). The Markovian limit in this case is given by

Jj
(2)~ t !5S 1

i\ D 2E
2`

t

dt8 ee(t82t) Tr$@Ĥ8~ t8,t82t !0 ,@Ĥ8~ t,0!,P̂j ##r̄~ t !%

1
1

i\ (
k
E

2`

t

dt8 ee(t82t) Tr$@Ĥ8~ t8,t82t !0 ,P̂k#r̄~ t !%
d

dQk~ t !
V j

(1)~ t !. ~31!

The Markovian limit, or memoryless character of the equation, is clearly evidenced by th
that the two-particle collision integral depends, throughr̄(t), on the thermodynamic state of th
system at the given timet when the collision is occurring.

IV. CONCLUDING REMARKS

We have presented a detailed derivation of theMarkovian limitof the kinetic equations which
follow within the framework of NESOM in Zubarev’s approach, which has been rigoro
proved that consists into retaining the effect of the interactions onlystrictly up to second order. In
a simple descriptive way we may say that it consists into retaining only two-particle collis
occurring at timet, with all correlations in time being neglected. Hence, since, as proved
Markovian limit corresponds to keep only the lowest order in the interaction strengths respo
for producing the relaxation processes, such limit can be considered a satisfactory approxi
in the weak coupling limit.
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APPENDIX A: DERIVATION OF EQ. „14…

First, using the Baker–Campbell–Hausdorf expansion, i.e,

eGBe2G5B1@G, B#1
1

2!
@G, @G, B##1

1

3!
@G, @G, @G, B###1¯ , ~A1!

there follows that
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r̄~ t,2t!05e~t/ i\! HSr̄~ t !e2 ~t/ i\! HS

5 r̄~ t !1
t

i\
@H0 , r̄~ t !#1

1

2! S t

i\ D 2

@H0 , @H0 , r̄~ t !##

1
1

3! S t

i\ D 3

@H0 , @H0 , @H0 , r̄~ t !###1¯ . ~A2!

Next, using Kubo’s identity2 and writing the auxiliary operator of Eq.~5!, as r̄(t)5e2Ŝ(t) with
Ŝ(t) given by

Ŝ~ t !5f~ t !1(
j

F j~ t !P̂j , ~A3!

which is the so-called the informational-entropy operator,11 we obtain

@Ĥ0 , r̄~ t !#52@e2Ŝ(t), Ĥ0#5E
0

1

du e2uŜ(t)@Ŝ~ t !, Ĥ0#euŜ(t)e2Ŝ(t) ~A4!

and taking into account the selection rule of Eq.~2!, we find that

@Ŝ~ t !, Ĥ0#5(
jm

F j~ t !a jmP̂m2(
jm

F j~ t !a jmQm . ~A5!

Using Eq.~A5! and the fact that

d

da
e2A(a)52E

0

1

du e2uA(a)S dA~a!

da DeuA(a)e2A(a), ~A6!

valid for any operatorA, with A5Ŝ anda5F(t), we obtain that

@Ĥ0 , r̄~ t !#52(
jm

F j~ t !a jm

dr̄~ t !

dFm~ t !

5(
jk

a jkQk~ t !
dr̄~ t !

dQj~ t !

[ i\L0~ t !r̄~ t !, ~A7!

where the operatorL0(t) is defined in Eq.~15!. Using Eq.~A7! in Eq. ~A2! it results that

r̄~ t,2t!5 r̄~ t !1tL0~ t !r̄~ t !1
t2

2!
L0

3~ t !r̄~ t !1
t3

3!
L0

3~ t !r̄~ t !1¯

5S (
n50

`
~21!ntn

n!
L0

n~ t !D r̄~ t !

5etL0(t)r̄~ t !. ~A8!

APPENDIX B: DERIVATION OF EQ. „19…

Before considering the application of the operatore2tL0(t8) on the product of an arbitrary
numberN of macrovariables, let us proceed first with an application when only two macro
ables are involved, that is,
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e2tL0(t8)@Qs1
~ t8!Qs2

~ t8!#5Qs1
~ t8!Qs2

~ t8!1 (
m51

`
~21!mtm

m!
L0

m~ t8!Qs1
~ t8!Qs2

~ t8!, ~B1!

where

L0~ t8!Qs1
~ t8!Qs2

~ t8!5(
l

V l
(0)~ t8!

d

dQl~ t8!
Qs1

~ t8!Qs2
~ t8!

5~L0~ t8!Qs1
~ t8!!Qs2

~ t8!1Qs1
~ t8!~L0~ t8!Qs2

~ t8!!, ~B2!

and for anym50,1, . . .

L0
m~ t8!Qs1

~ t8!Qs2
~ t8!5 (

k50

m S m
k D ~L0

k~ t8!Qs1
~ t8!!~L0

m2k~ t8!Qs2
~ t8!!. ~B3!

Using Eq.~B3! in Eq. ~B1! we obtain that

e2tL0(t8)@Qs1
~ t8!Qs2

~ t8!#5 (
m50

`

(
k50

m
~21!mtm

k! ~m2k!!
~L0

k~ t8!Qs1
~ t8!!~L0

m2k~ t8!Qs2
~ t8!!. ~B4!

Rearranging the terms on the right-hand side of Eq.~B4! in such way that we can bring into
evidence the expression (L0

k(t8)Qs1
(t8)) for k50 as a first term,k51 as second term, and s

forth it follows that

e2tL0(t8)@Qs1
~ t8!Qs2

~ t8!#5Qs1
~ t8! (

m50

`
~21!mtm

m!
~L0

m~ t8!Qs2
~ t8!!

2t~L0~ t8!Qs1
~ t8!! (

m51

`
~21!m21tm21

~m21!!
~L0

m21~ t8!Qs2
~ t8!!1¯

1
~21!ptp

p!
~L0

p~ t8!Qs1
~ t8!! (

m5p

`
~21!m2ptm2p

~m2p!!
~L0

m2p~ t8!Qs2
~ t8!!

1¯ , ~B5!

which can be compactly rewritten as

e2tL0(t8)@Qs1
~ t8!Qs2

~ t8!#5~e2tL0(t8)Qs1
~ t8!!~e2tL0(t8)Qs2

~ t8!!. ~B6!

By repeated application of this result, in general, whene2tL0(t8) acts on a product ofN macro-
variables, we obtain that

e2tL0(t8)@Qs1
~ t8!Qs2

~ t8!¯QsN
~ t8!#5~e2tL0(t8)Qs1

~ t8!!~e2tL0(t8)Qs2
~ t8!!3¯

3~e2tL0(t8)QsN
~ t8!!. ~B7!

Each term of the product on the right-hand side of Eq.~B7! can be written in term of the matrix
A. In fact, first we notice that

e2tL0(t8)Qs1
~ t8!5 (

k50

`
~21!ktk

k!
L0

k~ t8!Qs1
~ t8!, ~B8!

but
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L0~ t8!Qs1
~ t8!5(

m
Vm

(0)~ t8!
dQs1

~ t8!

dQm~ t8!
5Vs1

(0)~ t8!5(
k

As1kQk~ t8!5~AQ!s1
, ~B9!

L0
2~ t8!Qs1

~ t8!5L0~ t8!(
k

As1kQk~ t8!5(
k

As1kL~ t8!Qk~ t8!5~A2Q!s1
, ~B10!

and for anyk50,1,. . . ,

L0
k~ t8!Qs1

~ t8!5~AkQ~ t8!!s1
. ~B11!

Hence, using Eq.~B11! in Eq. ~B8! we find that

e2tL0(t8)Qs1
~ t8!5 (

k50

`
~21!ktk

k!
~AkQ~ t8!!s1

5~e2tAQ~ t8!!s1
, ~B12!

and after substituting it in Eq.~B7! we obtain Eq.~19! given in the main text.
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On the Miura Map between the dispersionless KP
and dispersionless modified KP hierarchies
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The Miura map between the dispersionless KP and dispersionless modified KP
hierarchies is investigated. It is shown that the Miura map is canonical with respect
to their bi-Hamiltonian structures. Moreover, inspired by the works of Takasaki and
Takebe, the twistor construction of solution structure for the dispersionless modi-
fied KP hierarchy is given. ©2000 American Institute of Physics.
@S0022-2488~00!02708-0#

I. INTRODUCTION

The dispersionless Kadomtsev-Petviashvili~dKP! hierarchy1–6 can be thought of as the sem
classical limit of the KP hierarchy.7 During the past few years, there have been many mathem
cal and physical problems associated with the dKP hierarchy and its various reductions, s
Whitham hierarchy, topological field theory and its connections to string theory and
dimensional~2D! gravity.1,8–12Similarly, the dispersionless modified KP~dmKP! hierarchy13 can
be regarded as the semiclassical limit of the modified KP~mKP! hierarchy.14,15 However, in
contrast to the dKP hierarchy, the integrable structures associated with the dmKP hierarc
less investigated. The purpose of this paper is to study the relationships between dKP and
to gain an insight of dmKP from dKP via the Miura map between them.

The Miura map16 has been playing an important role in the development of soliton theory
a transformation between two nonlinear evolution equations, which in general cannot be
easily. However, knowing the solutions of one of the nonlinear systems, one may obta
solutions of the other one via an appropriate Miura map. Motivated by the Miura maps be
the KP equation and the mKP equation,17–22 we will construct the Miura map between the dK
and the dmKP hierarchies, which preserves the Lax formulation of these dispersionless sy
~In Ref. 23, a different construction for the Miura map is given.! Furthermore, since almost all th
known integrable systems are Hamiltonian, it is quite interesting to explore the Hamiltonian n
of the Miura map.

Recently, the canonical property of the Miura maps between the mKP and the KP hiera
has been investigated.19,22It turns out that the Miura maps are canonical maps in the sense tha
first and second Hamiltonian structures of the mKP hierarchy24,25 are mapped to those of the K
hierarchy. Since the bi-Hamiltonian structures of mKP and KP have their own corresponden
dmKP and dKP, thus we expect that the bi-Hamiltonian structures of dKP and dmKP ar
preserved under the Miura map between them. We will show, in Sec. IV, that it is indeed the

On the other hand, the solution structure of dKP is also an interesting subject. To exte
tau-function theory of the KP hierarchy to the semiclassical one, Takasaki and Takebe5 proposed
the twistor construction of the dKP hierarchy using the Orlov function, which can be regard
the semiclassical limit of the Orlov operator in KP theory.26,27 Inspired by their work, we will
show that the Miura map between dKP and dmKP can be used to construct the associate

a!Electronic mail: changjen@math.sinica.edu.tw
b!Electronic mail: phymhtu@ccunix.ccu.edu.tw
53910022-2488/2000/41(8)/5391/16/$17.00 © 2000 American Institute of Physics
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function of the dmKP hierarchy, which helps us to establish the twistor theory for the d
hierarchy.

Our paper is organized as follows: Sec. II is background material for dKP and dmKP; Se
is the Miura map between dKP and dmKP; Sec. IV proves the canonical property of the
map; Sec. V shows the twistor construction of the dmKP hierarchy; and Sec. VI lists
unsolved problems.

II. BACKGROUND MATERIALS

A. dKP hierarchy

Let’s start with the KP hierarchy. The Lax operator of the KP hierarchy is (]5]x)

L5]1 (
n51

`

un11]2n,

and the KP hierarchy is determined by the Lax equations (]n5]/]tn ,t15x)

]nL5@Bn ,L#, ~2.1!

where Bn5(Ln)1 is the differential part ofLn. The Lax equation~2.1! is equivalent to the
existence of the wave functionCKP such that

LCKP5lCKP,

]nCKP5BnCKP.

Now for the dKP hierarchy, one can think of fast and slow variables or averaging procedur
simply takingtn→etn5Tn(t15x,ex5X) in the KP equation,

ut5
1
4 uxxx13uux1 3

4 ]x
21uyy , ~y5t2 ,t5t3!, ~2.2!

with ]n→e ]/]Tn andu(tn)→U(Tn) to obtain

]TU53UUX1 3
4 ]X

21UYY, ~2.3!

whene→0 and thus the dispersionless termuxxx is removed. In terms of hierarchies we write

Le5e]1 (
n51

`

un11~T/e!~e]!2n,

and think ofun(T/e)5Un(T)1O(e), etc. One then takes a Wentzel–Kramers–Brillouin~WKB!
form for the wave functionCKP with the actionSKP

CKP5expF1

e
SKP~T,l!G .

Now, we replace]n by e ]/]Tn and defineP5]XSKP. Thene i] iCKP→PiCKP ase→0 and the
equationLCKP5lCKP implies

l5P1 (
n51

`

Un11~T!P2n.

We also note from]nCKP5BnCKP that one obtains]SKP/]Tn 5Bn(P)5(ln)1 , where the sub-
script (1) now refers to powers ofP. The KP hierarchy goes to
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]P

]Tn
5

]Bn~P!

]X
. ~2.4!

Also, the Lax equation~2.1! goes to

]nl5$Bn~P!,l%, ~2.5!

where the Poisson bracket$,% is defined by

$ f ~X,P!,g~X,P!%5
] f

]P

]g

]X
2

] f

]X

]g

]P
. ~2.6!

Notice that both the equations~2.4! and ~2.5! are compatible, respectively, i.e,]2l/]Tn]Tm

5]2l/]Tm]Tn , ]2P/]Tn]Tm5]2P/]Tm]Tn , and they both imply the dKP hierarchy

]Bn~P!

]Tm
2

]Bm~P!

]Tn
1$Bn~P!,Bm~P!%50. ~2.7!

In particular,

B2~P!5P212U2 ,

B3~P!5P313U2P13U3 .

Then (T25Y,T35T),

]B2~P!

]T
2

]B3~P!

]Y
1$B2~P!,B3~P!%50

becomes

U3X5 1
2 U2Y ,

U3Y5 2
3 U2T22U2U2X ,

and thus

1
2 U2YY5 2

3 ~U2T23U2U2X!X .

This is the dKP equation~2.3! (U25U).
In summary, we define the dKP hierarchy by

l5P1
U2

P
1

U3

P2
1•••, ~2.8!

]nl5$Bn~P!,l%. ~2.9!

Let us define the HamiltoniansHk51/k*res(lk),where res means the coefficient ofP21, then the
bi-Hamiltonian structure of dKP~2.9! is given by28,13

]l

]Tk
5$Hk ,l%5Q (2)~dHk!5Q (1)~dHk11!, k51,2,•••,

where the Hamiltonian one-formdHk and the Hamiltonian mapsQ ( i ) are defined by
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dHk5
dHk

dU2
1

dHk

dU3
P1

dHk

dU4
P21

dHk

dU5
P31•••,

Q (2)~dHk!5l$l,dHk%12$l,~ldHk!1%1 Hl,EX

res$l,dHk%J , ~2.10!

Q (1)~dHk11!5$l,dHk11%12$l,~dHk11!1%,

the third term of~2.10! being Dirac reduction forU150.

B. dmKP

The Lax operator of the mKP hierarchy is defined18 by

K5]1v01v1]211v2]221•••,

which satisfies the Lax equations

]nK5@Qn ,K#, ~2.11!

whereQn5(Kn)>1 means the part of order>1 of Kn. Also, the Lax equation~2.11! is equivalent
to the existence of wave functionCmKP such that

KCmKP5mCmKP,

]nCmKP5QnCmKP.

To obtain the dmKP hierarchy, similarly, one takestn→etn5Tn(t15x→et15X) in the mKP
equation,

v t5
1
4 vxxx2

3
2 v2vx1 3

2 vx]x
21vy1 3

4 ]x
21vyy , ~2.12!

with ]n→e]/]Tn andv(tn)→V(Tn) to get

VT52 3
2 V2VX1 3

2 VX]X
21VY1 3

4 ]X
21VYY, ~2.13!

whene→0 . Thus, the dispersionless termvxxx is removed, too. In terms of hierarchies, we wri

Ke5e]1v1~T/e!~e]!211v2~T/e!~e]!221•••,

and think ofvn(T/e)5Vn(T)10(e). One then takes a WKB form for the wave functionCmKP

with the actionSmKP,

CmKP5expS 1

e
SmKP~T,m! D .

Now we replace]n by e]/]Tn and defineP5]XSmKP. Thene i]X
i CmKP→PiCmKP ase→0 and

the equationKCmKP5mCmKP yields

m5P1 (
n5o

`

Vn~T!P2n.

From ]nCmKP5QnCmKP, one obtains]SmKP/]Tn5Qn(P)5(mn)>1 , where the subscrip
>1 refers to powers>1 of P. The dmKP hierarchy goes to
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]P

]Tn
5

]Qn~P!

]X
.

It also can be written as the following zero-curvature form:

]Qn~P!

]Tm
2

]Qm~P!

]Tn
1$Qn~P!,Qm~P!%50,

where the Poisson bracket is defined by~2.6!. In particular,

Q2~P!5P212PV0 ,

Q3~P!5P313P2V01P~V113V0
2!.

Then the equation(T25Y,T35T),

]Q2~P!

]T
2

]Q3~P!

]Y
1$Q2~P!,Q3~P!%50,

becomes

V1X5 3
2 V0Y2 3

2 ~V0
2!X ,

~2.14!
V1Y52V0T23V0V0Y22V1V0X ,

which implies the dmKP~2.13! (V05V).
In summary, we write the dmKP equation as

m5P1V01
V1

P
1

V2

P2
1•••,

~2.15!
]nm5$Qn~P!,m%.

If we define the Hamiltonians asHk5
1
k

*res(mk), then the bi-Hamiltonian structure of~2.15! is

described by13

]m

]Tk
5$Hk ,m%5J(2)~dHk!5J(1)~dHk11!,

where

dHk5
dHk

dV0
P211

dHk

dV1
1

dHk

dV2
P1

dHk

dV3
P21•••,

J(2)~dHk!5m$m,dHk%>212$m,~mdHk!>1%, ~2.16!

J(1)~dHk11!5$m,dHk11%>212$m,~dHk11!>1%. ~2.17!

III. DISPERSIONLESS MIURA MAP

It has been shown17–22 that there exists a gauge transformation~Miura map! between the Lax
operatorL of KP and the Lax operatorK of mKP, namely,

K5F21~ t !LF~ t !, ~3.1!
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whereF(t) is an eigenfunction of L, i.e.,

]nF5~Ln!1F. ~3.2!

One generalizes this result to the dispersionless limit case.
Let

L5Pm1am21Pm211am22Pm221•••1a01
a21

P
1

a22

P2
1•••,

wheream21 ,am22 ,•••,a0 ,a21 ,a22 ,••• are functions ofT5(T15X,T2 ,T3 ,•••). Also, we sup-
posef(T)~independent ofP) is any function ofT. We define

L̃5e2adf(T)L5L2$f,L%1
1

2
$f,$f,L%%2

1

3!
$f,$f,$f,L%%%1•••,

where the Poisson bracket is defined by~2.6!. Sincef is independent ofP, a simple calculation
gets

L̃5 (
n50

`
1

n!
~fX!n]P

nL. ~3.3!

Lemma 1: LetL̃ be defined as above. Then,

L̃>15e2adf~L>0!2L>0uP5fX
,

where

L>0uP5fX
5fX

m1am21fX
m211•••1a1fX1a0 .

Proof: From ~3.3!, one knows thatL̃>0 comes from the polynomial part ofL. Hence

L̃>15L̃>02L̃05e2adf~L>0!2e2adf~L>0!uP50 .

Using ~3.3!, one knows

e2adf~L>0!uP505 (
n50

`
1

n!
fX

n(]P
nL>0uP50),

5 (
n50

`
1

n!
fX

n~ann! !,

5fX
m1am21fX

m211am22fX
m221•••1a1fX1a05L>0uP5fX

.

This completes the lemma. h

Theorem 2: Let L̃ be defined as above. Then

L̃Tq
2$~L̃q!>1 ,L̃%5e2adf~LTq

2$~L q!1 ,L%!2$fTq
2~L q!1uP5fX

,L̃%,

where the subscript Tq means]/]Tq .
Proof: Using ~3.3!, we have
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]L̃
]Tq

5e2adf
]L
]Tq

1 (
n50

`
1

n! F ]

]Tq
~fX!nG]P

nL,

5e2adf
]L
]Tq

1S ]2f

]Tq]XD (
n50

`
1

n!
fX

n]P
n11L,

5e2adf
]L
]Tq

2$fTq
,e2adfL%.

Then, by Lemma 1, we have

L̃Tq
2$~L̃q!>1 ,L̃%5e2adf~LTq

2$fTq
,L%!2$e2adf~L q!12~L q!1uP5fX

,e2adfL%,

5e2adf~LTq
2$~L q!1 ,L%!1$~L q!1uP5fX

2fTq
,L̃%.

This completes the theorem. h

Corollary 3: Let

L5P1
U2

P
1

U3

P2
1

U4

P3
1•••

and suppose that Ui(T) satisfy the dKP hierarchy~2.5! (l5L) and f(T) satisfies the equation

]f

]Tn
5~L n!1uP5fX

. ~3.4!

ThenL̃5e2adfL will satisfy the dmKP hierarchy~2.15! (m5L̃).
Proof: Obvious. h

From the Corollary, one calls the map

L→e2adfL ~3.5!

the dispersionless Miura map between dKP and dmKP. It is because one can think of th
~3.5! as the dispersionless limit of Eq.~3.1! and, moreover, the Eq.~3.4! can be regarded as th
dispersionless limit of Eq.~3.2!. As in the case of KP and mKP, the dispersionless Miura m
gives rise to a transformation between dKP and dmKP in terms of ‘‘dispersionless’’ eigenfun
f(T). If one assumes that

L̃5P1V01
V1

P
1

V2

P2
1

V3

P3
1•••,

then, after some calculations, one gets

V05fX ,

V15U2 ,

V25U31fXU2 ,

V35U412fXU31fX
2U2 , ~3.6!

V45U513fXU413fX
2U31fX

3U2 ,
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A

Vn5 (
i 50

n21 S n21

i DfX
i Un112 i , n>1.

Finally, it is well known that Miura-type transformations between~2.2! and ~2.12! are

u15 3
2 ~2v22vx1]x

21vy!,

u25 3
2 ~2v21vx1]x

21vy!.

In the dispersionless limit, the termvx is removed and we obtain the only transformation

U5 3
2 ~2V21]X

21VY!. ~3.7!

Notice that we can also obtain the equation~3.7! from ~2.14! and ~3.6!. Furthermore, since the
term corresponding tovx is removed, this would explain why we cannot find the auto-Ba¨cklund
transformation of the dKP hierarchy as one did in the ordinary case.21

IV. CANONICAL PROPERTY OF THE MIURA MAP

Having constructed the dispersionless Miura map between the dKP hierarchy and the
hierarchy in the Lax formulation, which provides a connection of solutions associated with
and dmKP, we next would like to investigate the canonical property of the Miura map. As we
seen that both dKP and dmKP hierarchies equip a compatible bi-Hamiltonian structure, thu
quite natural to ask whether their bi-Hamiltonian structures are still preserved under the
map.

It is convenient to rewrite the dispersionless Miura map as

G:m~T,P!→l~T,P!5eadf(T)m~T,P!, ~4.1!

wherel andm are Lax operators of the dKP and dmKP hierarchies, respectively, and the fun
f(T)5*XV0 is independent ofP. To investigate the canonical property of the Miura map~4.1! we
shall first construct the tangential map between the tangent spaces~to which dl anddm belong!
of the corresponding phase space manifolds. In the following, the symbolsA andB will stand for
arbitrary Laurent series without further mention.

Theorem 4: For the Miura map G, the linearized map G8 and its transposed map G8† are
given by

G8:B→eadf(T)B1 H EX

b0 ,lJ , ~4.2!

G8†:A→e2adf(T)A1P21EX

res$A,l%, ~4.3!

where b0[(B)0 and † is the transposed operation defined by*res(AG8B)5*res((G8†A)B).
Proof: Let B5dm be an infinitesimal deformation of the Lax operatorm, then under the

Miura mapG we have

m1B→ead(f1*Xb0)~m1B!5eadfm1eadfB1 H EX

b0 ,lJ 1O~B2!,

which implies the linearized map~4.2!. On the other hand, using the fact res(eadfA)5res(A) we
have
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E res~AG8B!5E res~A~eadfB!!1E resS AH EX

b0 ,lJ D ,

5E res~~e2adfA!B!1E b0EX

res$A,l%,

5E res~~e2adfA!B!1E resS S P21EX

res$A,l% DBD ,

where we have used integration by part andb05res(BP21) to reach the last line. Comparing th
last line with*res((G8†A)B) we obtain~4.3!. h

Now we are in a position to investigate the canonical property of the Miura map.
Theorem 5: The Miura map G maps the bi-Hamiltonian structure of the dmKP hierar

given by J(1) and J(2) to the bi-Hamiltonian structure of the dKP hierarchy given byQ (1) and
Q (2), respectively, i.e., they are related by

Q (1)5G8J(1)G8†, ~4.4!

Q (2)5G8J(2)G8†, ~4.5!

where G8 and G8† are transformations defined in Theorem 4.
Proof: To prove the first structure, let us act the right-hand side of~4.4! on an arbitrary

Laurent seriesA, thenG8J(1)(G8†A)5G8B where

B[J(1)~G8†A!5$m,G8†A%>212$m,~G8†A!>1%5e2adf~$l,A%12$l,A1%1$l,~e2adfA!0%!,
~4.6!

and thus

EX

b05EX

~B!05~e2adfA!0 . ~4.7!

Substituting~4.6! and ~4.7! into ~4.2! we have

G8J(1)~G8†A!5eadfB1$~e2adfA!0 ,l%5$l,A%12$l,A1%5Q (1)~A!.

This completes the first part of the proof. For the second Hamiltonian structure, using~2.16! and
~4.3!, we have

B[J(2)~G8†A!5$m,G8†A%1m2$m,~mG8†A!1%1$m,~mG8†A!0%1mP21 res$m,G8†A%,
~4.8!

where each term in~4.8! can be calculated as follows:

~1!5e2adf~$l,A%1l!,

~2!52e2adfS $l,~Al!1%1 Hl,EX

res$A,l%J D ,

~3!5e2adfS $l,~e2adf~Al!!0%1 Hl,EX

res$A,l%J D ,

~4!50.

Then,

B5~1!1~2!1~3!1~4!5e2adf~$l,A%1l2$l,~Al!1%1$l,@e2adf~Al!#0%!, ~4.9!
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and

EX

b05~e2adf~lA!!01EX

res$A,l%. ~4.10!

Substituting~4.9! and ~4.10! into ~4.2! we get

G8J(2)~G8†A!5l$l,A%12$l,~lA!1%1$l,EX

res$l,A%%5Q (2)~A!.

This completes the theorem. h

V. SOLUTION STRUCTURE OF DISPERSIONLESS MKP

In Refs. 5 and 6, it is shown that the twistor construction exists for the solution structu
dKP hierarchy. Based on the dispersionless Miura map described in Sec. III, we can also
similar twistor construction for solution structure of dmKP. This is the purpose of this secti

First of all, let us recall the twistor construction of dKP in Refs. 5 and 6. Here we ch
slightly the symbols used in those papers. Let us consider the dKP~2.9!. It can be shown that there
exists a Laurent seriesc(T,P) ~dressing function! such that

l5eadc~P!,

wherec(T,P) has the form

c~T,P!5 (
n51

`

cn~T!P2n.

Such a Laurent seriesc(T,P) is not unique up to a constant Laurent series( i 50
` ci P

2 i . The Orlov
function of dKP is by definition a formal Laurent series,5,6

M5eadcS (
n51

`

nTnPn21D .

It is convenient to expandM into a Laurent series ofl as

M5 (
n51

`

nTnln211(
i 51

`

hi~T!l2 i . ~5.1!

It can be also shown that the seriesM satisfies the Lax equation

]M
]Tn

5$Bn ,M% ~5.2!

and the canonical Poisson relation

$l,M%51. ~5.3!

To get the solution structure of dKP hierarchy, let us consider a pair of two func
@ f (P,X),g(P,X)# such that they are arbitrary holomorphic functions defined in a neighborhoo
P5` except atP5` itself. Then we have the following fact~twistor construction of dKP
hierarchy!.

Fact: ~K.Takasaki and T. Takebe5! Suppose
~i! l andM has the form~2.8! and ~5.1!.
~ii ! f (P,X) andg(P,X) described as above satisfy the canonical relation
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$ f ~P,X!,g~P,X!%51. ~5.4!

Then the following functional equations~in P):

f ~l,M!<2150 g~l,M!<2150 ~5.5!

will imply Eqs. ~2.9!, ~5.2! and~5.3!, i.e, the pair (l,M) gives a solution of dKP hierarchy. W
call @ f (P,X),g(P,X)# the twistor data of this solution. i

Conversely, each solution of dKP hierarchy possesses twistor data corresponding to th
tion, i.e, if (l,M) is a solution of~2.9!, ~5.2! and~5.3!, then there exists a pair@ f (P,X),g(P,X)#
which satisfies~5.4! and ~5.5!. In fact, if we leteadc(T,P) be the dressing operator correspondi
to (l,M), then the twistor data (f ,g) of this solution will be

f ~P,X!5e2adc0(X,P)P,
~5.6!

g~P,X!5e2adc0(X,P)X,

wherec0(X,P)5c(T15X,T25T35T45•••50,P).
Next, we consider the dispersionless Miura map~3.5! from dKP to dmKP. Let us define

m5e2adf(T)l,
~5.7!

M̃5e2adf(T)M.

Thenm satisfies dmKP hierarchy~Theorem 2! and

$m,M̃%51. ~5.8!

Moreover, a similar argument of Theorem 2 can also show that

]M̃
]Tn

5$Qn~P!,M̃%. ~5.9!

Now, we want to construct a pair of twistor data (f̃ (P,X),g̃(P,X)) corresponding tom and
M̃ defined in~5.7!.

Theorem 6: Let (l,M) be a solution of~2.9!, ~5.2! and ~5.3! and m,M̃ is defined by the
Miura map ~5.7!. If we define

f̃ ~P,X!5e2adc0(X,P)eadf0(X)P,

g̃~P,X!5e2adc0(X,P)eadf0(X)X5g~P,X!,

wherec0(X,P) is defined in~5.6! and f0(x)5f(T15X,T25T35•••50) (obviously, we have

$ f̃ ,g̃%51), then

f̃ ~m,M̃!<050,

g̃~m,M̃!<2150.

Proof: For convenience, we letT50 meanT25T35T45•••50. Since

l~T50!5eadc0P,

M~T50!5eadc0X,
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then we have

m~T50!5e2adf0l~T50!5e2adf0eadc0P,

M̃~T50!5e2adf0M~T50!5e2adf0eadc0X.

Therefore, by the assumptions, we have

f̃ ~m~T50!,M̃~T50!!5e2adf0eadc0 f̃ ~P,X!5e2adf0eadc0~e2adc0eadf0P!5P,
~5.10!

g̃~m~T50!,M̃~T50!!5e2adf0eadc0g̃~P,X!5e2adf0eadc0~e2adc0eadf0X!5X.

Now, we prove thatf̃ (m,M̃)<050. Sincem and M̃ satisfy Eqs.~2.15! and ~5.9!, respec-
tively, we have

] f̃ ~m,M̃!

]Tn
5$Qn~P!, f̃ ~m,M̃!%.

Using ~5.10!, we see that] f̃ (m,M̃)/]TnuT50 will only contain powers>1 of P. In this way, we
can prove, by induction, that (]/]T)a f̃ (m,M̃)uT50 , i.e, coefficients of Taylor expansion atT
50, will only contain powers>1 of P for any multi-index a. Thus, we have proved tha
f̃ (m,M̃)<050. As for g̃(m,M̃)<2150, we notice that the powers ofP of $Qn(P),X% are>0.
Then it can be proved in the same way. h

This theorem shows the possibility of twistor construction for the solution structure of dm
without using dispersionless Miura map. Indeed, we have the following main theorem o
section.

Theorem 7: Let

m5P1V01
V1

P
1

V2

P2
1•••,

Mdmkp5 (
n51

`

nTnmn211(
i 51

`

Si~T!m2 i

(Mdmkp can be defined as the Orlov function of dmKP). Suppose that

$ f ~P,X!,g~P,X!%51. ~5.11!

Then the functional equations

f ~m,Mdmkp!<050,
~5.12!

g~m,Mdmkp!<2150,

can get a solution of

]Tn
m5$Qn~P!,m%,

]Tn
Mdmkp5$Qn~P!,Mdmkp%,

$m,Mdmkp%51.

Proof: For convenience, we let
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m̃5 f ~m,Mdmkp!,
~5.13!

M̃dmkp5g~m,Mdmkp!.

We first derive the canonical Poisson relation. By differentiating the last equations
respect toP andX, we have

S ] f ~m,Mdmkp!

]m

] f ~m,Mdmkp!

]Mdmkp

]g~m,Mdmkp!

]m

]g~m,Mdmkp!

]Mdmkp

D S ]m

]P

]m

]X

]Mdmkp

]P

]Mdmkp

]X

D 5S ]m̃

]P

]m̃

]X

]M̃dmkp

]P

]M̃dmkp

]X

D .

~5.14!

Since the determinant of the first matrix on the left-hand side is 1 because of~5.11!, the
determinants of both-hand sides give

$m,Mdmkp%5$m̃,M̃dmkp%.

One can calculate the left-hand side as

$m,Mdmkp%5
]m

]P

]Mdmkp

]X
2

]Mdmkp

]P

]m

]X
,

5
]m

]P F S ]Mdmkp

]m D
Si (T) fixed

]m

]X
111(

i 51

`
]Si~T!

]X
m2 iG2

]m

]X S ]Mdmkp

]m D
Si (T)fixed

]m

]P
,

511~negative powers ofP!,

where we have used the fact that the terms containing (]Mdmkp /]m)Si (T)fixed in the last line

cancel. Moreover, the Laurent expansions ofm̃ andM̃dmkp contain only non-negative powers o
P because of the functional equations~5.12!. Therefore strictly negative powers ofP in the last
line should be absent, thus

$m,Mdmkp%5$m̃,M̃dmkp%51. ~5.15!

This gives the desired canonical Poisson relation. We now show that the Lax equationm
andMdmkp are indeed satisfied. Differentiating equations~5.13! with respect toTn gives

S ] f ~m,Mdmkp!

]m

] f ~m,Mdmkp!

]Mdmkp

]g~m,Mdmkp!

]m

]g~m,Mdmkp!

]Mdmkp

D S ]m

]Tn

]Mdmkp

]Tn

D 5S ]m̃

]Tn

]M̃dmkp

]Tn

D . ~5.16!

Combining equations~5.14! and ~5.16!, one can eliminate the derivative matrix of (f ,g) by
(m,Mdmkp) and obtain the matrix relation

S ]m

]P

]m

]X

]Mdmkp

]P

]Mdmkp

]X

D21S ]m

]Tn

]Mdmkp

]Tn

D 5S ]m̃

]P

]m̃

]X

]M̃dmkp

]P

]M̃dmkp

]X

D21S ]m̃

]Tn

]M̃dmkp

]Tn

D .
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Since the determinants of the 232 matrices on both sides are 1 because of~5.15!, the inverse
can also be written explicitly. In components, thus, the above matrix relation gives

]Mdmkp

]X

]m

]Tn
2

]m

]X

]Mdmkp

]Tn
5

]M̃dmkp

]X

]m̃

]Tn
2

]m̃

]X

]M̃dmkp

]Tn
,

]Mdmkp

]P

]m

]Tn
2

]m

]P

]Mdmkp

]Tn
5

]M̃dmkp

]P

]m̃

]Tn
2

]m̃

]P

]M̃dmkp

]Tn
. ~5.17!

The left-hand side of Eq.~5.17! can be calculated just as we have done above for derivat
in (P,X). For the first equation of~5.17!,

]Mdmkp

]X

]m

]Tn
2

]m

]X

]Mdmkp

]Tn
5F S ]Mdmkp

]m D
Si (T)fixed

]m

]X
111(

i 51

`
]Si~T!

]X
m2 iG ]m

]Tn

2
]m

]X F S ]Mdmkp

]m D
Si (T)fixed

]m

]Tn
1nmn211(

i 51

`
]Si~T!

]X
m2 iG ,

and terms containing (]Mdmkp /]m)Si (T)fixed cancel. Thus,

]Mdmkp

]X

]m

]Tn
2

]m

]X

]Mdmkp

]Tn
52

]~mn!>1

]X
1~powers ofP<0!.

By the functional equations~5.12!, we know that the right-hand side of the first equation of~5.17!
has Laurent expansion with only powers of>1. Therefore only powers ofP>1 should survive.
Hence

]Mdmkp

]X

]m

]Tn
2

]m

]X

]Mdmkp

]Tn
52

]~mn!>1

]X
52

]Qn

]X
. ~5.18!

For the second equation of~5.17!, we have similarly

]Mdmkp

]P

]m

]Tn
2

]m

]P

]Mdmkp

]Tn
52

]~mn!1

]P
1~negative powers ofP!,

52
]~mn!>1

]P
1~negative powers ofP!.

By the functional equations~5.12!, noticing the partial derivative]/]P, we see that the right-han
side of the second equation of~5.17! has Laurent expansion with only non-negative powers oP.
Hence only non-negative powers ofP should survive.

Thus

]Mdmkp

]P

]m

]Tn
2

]m

]P

]Mdmkp

]Tn
52

]~mn!>1

]P
52

]Qn

]P
. ~5.19!

Using ~5.15!, Eqs.~5.18! and ~5.19! can be readily solved,
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]m

]Tn
52

]m

]P

]Qn

]X
1

]m

]X

]Qn

]P
5$Qn ,m%,

]Mdmkp

]Tn
52

]Mdmkp

]P

]Qn

]X
1

]Mdmkp

]X

]Qn

]P
5$Qn ,Mdmkp%.

This completes the theorem. h

VI. CONCLUDING REMARKS

We have studied the Miura map between the dKP and dmKP hierarchies. We show th
Miura map not only preserves the Lax formulation of these two hierarchies but also is a can
map in the sense that the bi-Hamiltonian structure of the dmKP hierarchy is mapped
bi-Hamiltonian structure of the dKP hierarchy. We further use the twistor construction deve
by Takasaki and Takebe to investigate the solution structure of the dmKP hierarchy.

In spite of the results obtained in the paper, there are some related problems that d
further investigation. We list some of them in the following.

~1! In Refs. 28 and 29, it is shown that the second Hamiltonian structureQ (2) of dKP has free
field realizations. Since the Miura map is canonical, this suggests the possibility of free
realizations of second Hamiltonian structureJ(2) of dmKP.30

~2! In Ref. 31, we know that the bi-Hamiltonian structure of Dubrovin-Novikov~DN! type32 has
the geometric structure of Frobenius manifold.10 A natural question is: what is the geometr
meaning of the Miura map between bi-Hamiltonian structures of DN type?

~3! The dmKP theory should be investigated without using the Miura map. The quasicla
t-function for dKP has been established in Refs. 5, 11, and 12. The basic question for
theory is: Does the quasiclassicalt-function theory exist? We notice that the Hirota biline
equations for KP and mKP are essentially different.14 Also, in Ref. 2, the dispersionless Hirot
equation for dKP is obtained. Is there an analog for dmKP?
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Lie superalgebras and the multiplet structure
of the genetic code. I. Codon representations

Michael Forgera) and Sebastian Sachseb)
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It has been proposed by Hornos and Hornos@Phys. Rev. Lett.71, 4401–4404
~1993!# that the degeneracy of the genetic code, i.e., the phenomenon that different
codons~base triplets! of DNA are transcribed into the same amino acid, may be
interpreted as the result of a symmetry breaking process. In their work, this picture
was developed in the framework of simple Lie algebras. Here, we explore the
possibility of explaining the degeneracy of the genetic code using basic classical
Lie superalgebras, whose representation theory is sufficiently well understood, at
least as far as typical representations are concerned. In the present paper, we give
the complete list of all typical codon representations~typical 64-dimensional irre-
ducible representations!, whereas in the second part, we shall present the corre-
sponding branching rules and discuss which of them reproduce the multiplet struc-
ture of the genetic code. ©2000 American Institute of Physics.
@S0022-2488~00!06205-8#

I. INTRODUCTION

The discovery of the molecular structure of DNA by Watson and Crick in 1953 was the
important step towards an understanding of the physiological basis for the storage and tran
genetic information. DNA is a macromolecule in the form of a double helix which encodes
information in a language with 64 three-letter words built from an alphabet with a set of
different letters~the four nucleic bases attached to the backbone of a DNA molecule!. These words
are called codons and form sentences called genes. Each codon can be translated into
twenty amino acids or a termination signal. This leads to a degeneracy of the code in the sen
different codons represent the same amino acid, that is, different words have the same mea
fact, the codons which code for the same amino acids form multiplets as follows:

• 3 sextets Arg, Leu, Ser
• 5 quadruplets Ala, Gly, Pro, Thr, Val
• 2 triplets Ile, Term
• 9 doublets Asn, Asp, Cys, Gln, Glu, His, Lys, Phe, Tyr
• 2 singlets Met, Trp

When a protein is synthesized, an appropriate segment of one of the two strings in the
molecule~or more precisely, the mRNA molecule built from it! is read and the correspondin
amino acids are assembled sequentially. The linear chain thus obtained will then fold to th
configuration of the protein.

These well-known facts, however, provide no explanation as to why just this special lan
has been chosen by nature. Since its discovery, the genetic code has essentially remaine
connecting codons~base triplets! with the amino acids they represent, but a complete underst
ing of its structure is still missing.

A new approach to the question was suggested in 1993 by Hornos and Hornos1 who proposed
to explain the degeneracy of the genetic code as the result of a symmetry breaking proce

a!Departamento de Matema´tica Aplicada.
b!Departamento de Matema´tica.
54070022-2488/2000/41(8)/5407/16/$17.00 © 2000 American Institute of Physics
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demand of this approach can be compared to explaining the arrangement of the chemical e
in the periodic table as the result of an underlying dynamical symmetry which is reflected
electronic shell structure of atoms. Another comparable example is the explanation of the mu
structure of hadrons as a result of a ‘‘flavor’’ SU~3! symmetry, which led to the quark model an
to the prediction of new particles. An interesting and important feature of this ‘‘flavor’’ symm
is its internal or dynamical nature, that is, it is an internal property of the dynamical equatio
the system, rather than being related to the structure of space–time.

In the same spirit, the idea of the above-mentioned authors was to explain the mu
structure of the genetic code through the multiplets found in the codon representation~5 irreduc-
ible 64-dimensional representation! of an appropriate simple Lie algebra and its branching ru
into irreducible representations of its semisimple subalgebras. They checked the tables of b
ing rules of McKay and Patera2 for semisimple subalgebras of simple Lie algebras of rank<8. The
most suitable multiplet structure found is derived from the codon representation of the symp
algebrasp(6) by the following sequence of symmetry breakings:

sp~6! . sp~4! % su~2! I

. su~2! % su~2! % su~2! II

. su~2! % u~1! % u~1! III/IV/V

The sequence of steps I–V is interpreted as the evolution of the genetic code in the early t
organic life. For a recent and detailed exposition, see Ref. 3.

This work, which had a strong resonance in the scientific community,4,5 raised a lot of new
interesting problems. One of these is that the last step in the symmetry breaking is incomple
lifting of degeneracy by breaking the last twosu(2) subalgebras tou(1) is not followed by all
codon multiplets. Only if some of them continue to represent a single amino acid can the
multiplet structure of the genetic code be obtained. This ‘‘freezing’’ had already been propos
biologists6 who claimed that a completely accomplished evolution of the genetic code should
resulted in 28 amino acids7 ~for a more recent review including an extensive bibliography,
Ref. 8!—in perfect agreement with the mathematical model under consideration. Howeve
phenomenon that some of the multiplets preserve a symmetry while it is broken in others
though it does not contradict a purely biological theory~in fact, biologists wonder why there
should be a mathematical theory at all!, is quite awkward from a mathematical point of view.

The basic idea behind the present project, already proposed in Ref. 1, is to investiga
‘‘vicinity’’ of ordinary Lie algebras, namely, quantum groups and Lie superalgebras. As it t
out, the main new problem which appears in this context, both for quantum groups and f
superalgebras, is the existence of indecomposable representations, i.e., representations w
reducible but not fully reducible: they contain irreducible subrepresentations but cannot b
composed into the direct sum of irreducible subrepresentations. As a result, the represe
theory of quantum groups and of Lie superalgebras is not developed to the same extent as
ordinary~reductive! Lie algebras. Therefore, the task of performing an exhaustive search is
ently not feasible: one may at best hope for partial results. Some steps in this direction
recently been taken by various authors.9–11

II. BASIC CLASSICAL LIE SUPERALGEBRAS

We begin by recalling that aLie superalgebra~LSA! is a Z2-graded vector space

g 5 g0̄% g1̄ ~1!

equipped with a bilinear map@ .,.#:g3g→g called thesupercommutatorwhich ishomogeneousof
degree 0~i.e., satisfies deg(@X,Y#)5deg(X)1deg(Y) for homogeneousX,YPg!, is graded anti-
symmetric,
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@Y,X# 5 2~21!deg~X!deg~Y!@X,Y# for homogeneousX,YPg,

and satisfies thegraded Jacobi identity,

~21!deg~X!deg~Z!@X,@Y,Z##1~21!deg~X!deg~Y!@Y,@Z,X##1~21!deg~Y!deg~Z!@Z,@X,Y## 5 0

for homogeneousX,Y,ZPg.

In particular, the even partg0̄ of g is an ordinary Lie algebra and the odd partg1̄ of g carries a
representation ofg0̄ , i.e., is ag0̄ module. In the following, we shall be dealing exclusively wi
finite-dimensional complex Lie superalgebras which aresimple, i.e., admit no nontrivial ideals
Such a Lie superalgebra is calledclassicalif its even partg0̄ is reductive, that is, if it decompose
into the direct sum of its center and a semisimple subalgebra, or equivalently, if all represen
of g0̄ ~in particular that ong0̄ itself, which is the adjoint representation, and that ong1̄! are
completely reducible.12–15 Note that this property is not guaranteed automatically, as it would
for ordinary semisimple Lie algebras, according to Weyl’s theorem.~However, the term ‘‘classi-
cal’’ in this context is unfortunate because it suggests that ‘‘classical’’ for simple Lie super
bras bears some relation to the standard term ‘‘classical,’’ in the sense of ‘‘nonexceptional
simple Lie algebras, which is not the case.! A standard argument then shows14,15 that a classical
Lie superalgebra necessarily belongs to one of the following two types:

Type I:
The representation ofg0̄ on g1̄ is the direct sum of two mutually conjugate irreducible rep
sentations,

g1̄ 5 g1% g21 . ~2!

We distinguish two subcases:
Type I0 :
The centerz0̄ of g0̄ is trivial, i.e., g0̄ is semisimple.
Type I1 :
The centerz0̄ of g0̄ is nontrivial. In this case,z0̄ is one-dimensional and is generated by
elementc which, when appropriately normalized, acts as the identity ong1 and as minus the
identity ong21 .
Type II :
The representation ofg0̄ ong1̄ is irreducible. In this case, the center ofg0̄ is necessarily trivial,
or in other words,g0̄ is semisimple.

Another important concept for the analysis and classification of simple Lie superalgebras
question whether they admit nondegenerate invariant forms. Recall that a bilinear
B:g3g→C is calledevenif it is homogeneous of degree 0~i.e., satisfiesB(X,Y)50 if XPg0̄

andYPg1̄ or XPg1̄ andYPg0̄!, is calledgraded symmetricif

B~Y,X! 5 ~21!deg~X!deg~Y!B~X,Y! for homogeneousX,YPg,

and is calledinvariant if

B~@X,Y#,Z! 5 B~X,@Y,Z# ! for homogeneousX,Y,ZPg.

A simple Lie superalgebra is calledbasicif it admits an even, graded symmetric, invariant biline
form which is nondegenerate. Note, again, that this property is not guaranteed automaticall
would be for ordinary semisimple Lie algebras, according to Cartan’s criterion for semisimpl
In fact, it turns out that an even, graded symmetric, invariant bilinear form on a simple
superalgebra is either nondegenerate or identically zero14,15and that, in particular, the Killing form
of a simple Lie superalgebra defined by the supertrace operation in the adjoint representati
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vanish identically. Moreover, there are simple Lie superalgebras whose Killing form van
identically but which are still basic because they admit some other nondegenerate, even,
symmetric, invariant bilinear form.

The structure theory of basic classical Lie superalgebras is to some extent analogous to
ordinary semisimple Lie algebras. The first step is to choose a Cartan subalgebrah of g, which is
by definition just a Cartan subalgebra of its even partg0̄ : its dimension is called therank of g. ~If
g0̄ has a nontrivial centerz0 and a semisimple partg

0̄

ss
, so thatg0̄5z0̄% g

0̄

ss
, then h5z0̄% hss,

wherehss is a Cartan subalgebra ofg
0̄

ss
.! As in the case of ordinary semisimple Lie algebras,

specific choice of Cartan subalgebra is irrelevant, since they are all conjugate.14,15 This gives rise
to theroot systemD5D0øD1 of g, where the setD0 of even rootsis just the root system ofg0̄ ,
as an ordinary reductive Lie algebra, and the setD1 of odd rootsis just the weight system ofg1̄ ,
as ag0̄ module. Again as in the case of ordinary semisimple Lie algebras, one associates t
root aPD a unique generatorHaPh, defined by

B~Ha ,H ! 5 a~H ! for all HPh,

puts

~a,b! 5 B~Ha ,Hb! for a,bPD,

and considers the real subspacehR of h formed by linear combinations of theHa with real
coefficients. However, the restriction of the invariant formB to hR , which in the case of ordinary
semisimple Lie algebras is positive definite whenB is chosen to be the Killing form, may now b
indefinite since even in those cases where the Killing form ofg is nondegenerate, its restriction t
the simple ideals ing0̄ ~in most cases, there are precisely two such simple ideals! will on one of
these simple ideals be a positive multiple of its Killing form but on the other one be a neg
multiple of its Killing form, so that even rootsa will satisfy either (a,a).0 or (a,a),0
whereas odd rootsa will in many cases be isotropic: (a,a)50. Even worse: when the Killing
form of g vanishes identically, it may happen thatB cannot be chosen to take only real values
hR3hR .

This unusual kind of geometry is responsible for various complications that arise in the
steps, which are the choice of an ordering inD, corresponding to the choice of a system ofsimple
roots a i (1< i<r ), the definition of theCartan matrix a and the classification of the bas
classical Lie superalgebras in terms ofKac–Dynkin diagrams. To begin with, not all orderings are
equivalent: different choices may lead to different diagrams. To remove this kind of ambigu
is convenient to restrict the allowed orderings to a specific class, corresponding to adistinguished
choiceof simple roots, characterized by the fact that there is only one simple root which is
whereas the remaining ones are even. As an example, consider the class of basic class
superalgebrasg of type I1 ~see above!: here, the simple even roots are the simple roots ofg0̄ ,
extended to take the value 0 onc, whereas the simple odd root is minus the highest weight og1

as an irreducibleg0̄ module, which takes the value 1 onc. In general, any such ordering gives ris
to a Cartan–Weyl decomposition

g 5 n1
% h% n2, ~3!

wheren1 andn2 are the nilpotent subalgebras spanned by the generators corresponding to
tive and negative roots, respectively. Combining this with the direct decomposition~1!, one arrives
at the distinguishedZ gradation ofg,

g 5 g1% g0% g21 for type I,
~4!

g 5 g2% g1% g0% g21% g22 for type II,

where
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g1 5 g1̄ùn1 and g21 5 g1̄ùn2 ~5!

are spanned by generators corresponding to positive and negative odd roots, respectively,

g2 5 @g1 ,g1# and g22 5 @g21 ,g21# ~6!

are spanned by generators that can be written as anticommutators of these.~Nonvanishing anti-
commutators of this kind exist only for basic classical Lie superalgebras of type II.! The simple
roots are linearly independent, and their numberr is equal to the rank ofg, except for the basic
classical Lie superalgebrasg of type I0, where the simple roots are subject to one linear relat
so their numberr exceeds the rank ofg by 1. The definition of the Cartan matrixa must also be
modified, due to the possible occurrence of simple odd roots of length 0. When (a i ,a i)Þ0, one
puts

ai j 5
2~a i ,a j !

~a i ,a i !
,

as usual, whereas if (a i ,a i)50, one defines

ai j 5
~a i ,a j !

~a i ,a i 8!
,

wherei 8 is an appropriately chosen index such that (a i ,a i 8)Þ0, whose precise definition is partl
a matter of convention. With a distinguished choice of simple roots, this can only happen f
unique simple odd root, i.e., wheni 5s, and the numbering of simple roots is then arranged
such a way that eitheri 85s11 or i 85s21. In this way,g is, up to isomorphism, determined b
its Cartan matrix, being generated byr positive generatorseiPn1 and r negative generators
f iPn2 satisfying the supercommutation relations

@ei , f j # 5 d i j hi , @hi ,hj # 5 0 , @hi ,ej # 5 ai j ej , @hi , f j # 5 2ai j f j

~plus Serre relations that we do not write down!. Finally, the Kac–Dynkin diagram associated wi
g is drawn according to the following rules:

• Simple even rootsa i are denoted by white blobss, while the unique simple odd rootas is
denoted by a crossed blob̂ if it has zero length and by a black blobd if it has nonzero
length.

• The j th andkth simple root are connected by max$uajk u,uakju% lines, except for the Lie supe
ralgebrasD(2u1;a), where the simple odd root is connected to each of the two simple
roots by a single line.

• When thej th andkth simple root are connected by more than a single line, an arrow is dr
pointing from the longer one to the shorter one.

The Kac–Dynkin diagrams of all basic classical Lie superalgebras are listed in Table I.
Observe that the Cartan matrix cannot always be reconstructed uniquely from the corre

ing Kac–Dynkin diagram; in particular this happens for the Lie superalgebrasD(2u1;a).
The basic classical Lie superalgebras of type I0 are in many respects pathological, but almo

all the general results about basic classical Lie superalgebras~including the main ones from
representation theory! remain true if one replacesA(nun)5sl(n11un11)/^1& by its natural cen-
tral extensionsl(n11un11). ~This leads, for example, to an enrichment of the representa
theory, since the irreducible representations of the former form a subclass of the irred
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representations of the latter: namely, those in which the central element is represented by t
operator.! We shall therefore, throughout the rest of this paper, adopt the following termino

• Type I Lie superalgebras:
sl(puq) with p>q>1 and (p,q)Þ(1,1)
~the casep5q51 is excluded sinceA(0,0) is not simple!,
osp(2u2n) with n>1 andnÞ1
~the casen51 is excluded sinceosp(2u2)>sl(3u2)!.
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• Type II Lie superalgebras:
osp(pu2n) with p51 or p>3 andnÞ1,
osp(4u2;a), F(4), G(3).

It is also interesting to compare the Kac–Dynkin diagram ofg with the Dynkin diagram of its even
partg0̄ and the Dynkin diagram of the subalgebrag0 that appears in the direct decomposition~3!.
For type I Lie superalgebras, whereg0̄5g0 , the latter is obtained from the former by simp
removing the simple odd rootas , which may therefore be thought of as representing the o
dimensional center of the even part, whereas for type II Lie superalgebras, the Dynkin diag
g0 is obtained from the Kac–Dynkin diagram ofg by removing the simple odd rootas and from
the Dynkin diagram ofg0̄ by removing one of its simple roots: this simple root, which we sh
denote byas

0, is usually referred to as the ‘‘hidden’’ simple root ofg0̄ because in the Kac–Dynkin
diagram ofg, it can be thought of as being ‘‘hidden behind’’ the simple odd rootas .

III. REPRESENTATION THEORY

The representation theory of basic classical Lie superalgebrasg ~with A(nun)
5sl(n11un11)/^1& replaced bysl(n11un11); see above! has been developed by Kac.12,13

Using the Poincare´–Birkhoff–Witt theorem, the finite-dimensional irreducible representationsg
are constructed by the method of induced representations, that is, as quotient spaces of
modules by their maximal invariant subspaces. This implies that all finite-dimensional irredu
representations ofg are highest weight representations, that is, representations of the
pL :g→End(VL) associated to a highest weightLPh* and characterized by the presence o
nonzero cyclic vectorvLPVL satisfying

n1~vL! 5 0 and H~vL! 5 L~H !vL for all HPh.

A necessary condition for such a representation to be finite-dimensional is thatL is dominant
integral, which means that the Dynkin labels

l i 5
2~L,a i !

~a i ,a i !
~7!

of L associated with the simple even rootsa i ( i 51,...,r ,iÞs) of g must be nonnegative integer
For type I Lie superalgebras, this is the only condition to be imposed. In particular, the va
the Dynkin label

l s 5
~L,as!

~as ,as8!
~8!

of L associated with the simple odd rootas of g may in this case be an arbitrary complex numb
whereas for type II Lie superalgebras, it is subject to additional restrictions: some of these s
express the requirement that the Dynkin label

l s
0 5

2~L,as
0!

~as
0,as

0!
~9!

of L associated with the hidden simple rootas
0 of g0̄ must also be a nonnegative integer, while t

others are supplementary conditions to guarantee thatL is the highest weight of a finite
dimensional irreducible representation not only ofg0̄ but also ofg. For detailed formulas see Ref
15, 12, 13, and 16.

An explicit construction of the representationpL :g→End(VL) of g starts out from the rep-
resentationpL,0 :g0→End(VL,0) of g0 with highest weightL, or more precisely, with highes
                                                                                                                



d-

is
y
ial role

direct
ons ap-
e
typical

t

Weyl

5414 J. Math. Phys., Vol. 41, No. 8, August 2000 M. Forger and S. Sachse

                    
weight given by the restriction ofL to the intersection ofg0 with the Cartan subalgebrah of g.
This representation is first extended to a representation of the subalgebrak5g0% g1% g2 by letting
g1% g2 act trivially on VL,0 . Then define

V̄L 5 Indk
gVL,0 for type I Lie superalgebras,

V̄L 5 Indk
gVL,0 /M for type II Lie superalgebras,

~10!

where the invariant submoduleM is obtained by applying arbitrary linear combinations of pro
ucts of elements ofg ~i.e., the enveloping algebraU(g)! to the vector obtained by (l s

011)-fold
application of the even generatorE2a

s
0Pg22 to the highest weight vectorvL :

M 5 ^U~g!E
2a

s
0

l s
0
11

vL&.

The Kac moduleV̄L is finite-dimensional and contains a unique maximal submoduleĪ L . Then

VL 5 V̄L / Ī L . ~11!

Any finite-dimensional irreducible representation ofg can be obtained in this way. However, it
in general difficult to gain control over the submoduleĪ L , so explicit calculations are usually onl
possible when this submodule vanishes—which is one of the main reasons for the spec
played by the so-calledtypical representations:

Ī L 5 $0%, VL 5 V̄L for typical representations.

Typical representations are, by definition, irreducible representations that may appear as
summands in completely reducible representations only, whereas irreducible representati
pearing as subrepresentations of indecomposable~that is, reducible but not completely reducibl!
representations are called atypical. A useful criterion for an irreducible representation to be
is that (L1r,a)Þ0 for all odd rootsa for which 2a is not an even root, where

r 5 r02r1 , r0 5 1
2 (

aPD0
1

a, r1 5 1
2 (

aPD1
1

a.

Denoting the number of positive odd roots, i.e., the cardinality ofD1
1 , by N1 ~and similarly, the

number of positive even roots, i.e., the cardinality ofD0
1 , by N0!, one can write down an explici

formula for the total dimension of any typical representation:

dimVL 5 2N1 )
aPD0

1

~L1r,a!

~r0 ,a!
. ~12!

This formula can be simplified by expressing the product on the rhs in terms of the standard
dimension formula for an irreducible representationpL̄,0̄ :g0̄→End(VL̄,0̄) of the even partg0̄ of g

with highest weightL̃:

dimVL̄,0̄ 5 )
aPD0

1

~L̃1r0 ,a!

~r0 ,a!
. ~13!

To establish the desired relation, observe that (r1 ,a i)50 for all simple even rootsa i of g because
the corresponding positive and negative root generatorsEa i

and E2a i
belong tog0 and hence
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preserve the subspaces in the direct decomposition~4!, implying that the number (2r1 ,a i), which
is precisely the trace of the operator ong1 representingHa i

5@Ea i
,E2a i

#, must vanish. Therefore

for type I Lie superalgebras, we may simply putL̃5L, so

dimVL 5 2N1 dimVL,0̄ . ~14!

An alternative argument for deriving this formula is to use the construction of the Kac mo
because, in this case,g0̄5g0 , VL,0̄5VL,0 and @Ea ,Eb#50 for all positive odd roots
a, bPD1

1 , so that

VL 5 V̄L 5 Indk
gVL,0 > Lg21 ^ VL,0 ,

whereLg21 denotes the exterior or Grassmann algebra overg21 , which has dimension 2N1. For
type II Lie superalgebras, we let$l1 ,...,ls21 ,ls

0,ls11 ,...,l r% denote the basis of fundament
weights dual to the basis$a1 ,...,as21 ,as

0,as11 ,...,a r% of simple roots forg0̄ and introduce the
shifted highest weight

L̃ 5 L2
2~r1 ,as

0!

~as
0,as

0!
ls

0, ~15!

which in terms of Dynkin labels means

l̃ i 5 l i for i Þ s, l̃ s
0 5 l s

02
2~r1 ,as

0!

~as
0,as

0!
. ~16!

It should be noted that although the original highest weightL is dominant integral, the shifted
highest weightL̃ need not be, since 2(r1 ,as

0)/(as
0,as

0) may assume half-integer values~see
Table II!, so l̃ s

0 may become half-integer and/or negative. In this case, Eq.~13! is only formal, in
the sense that the expression ‘‘dimVL̄,0̄’’ does not necessarily stand for the dimension of
irreducible representation ofg0̄ . Therefore, we introduce for every ordinary semisimple Lie al
bra a of rank p the abbreviationda to denote the dimension function for its irreducible repres
tations, which is a polynomial inp variables given by the standard Weyl dimension formula, a
we simply writed0̄ instead ofdg0̄

, so Eq.~13! is replaced by

d0̄~L̃ ! 5 )
aPD0

1

~L̃1r0 ,a!

~r0 ,a!
. ~17!

TABLE II. Shift of highest weight for type II Lie superalgebras.

LSA
2~r1,as

0!

~as
0,as

0!
b

B(mun)5osp(2m11u2n) m1
1
2 m

(m,n>1)
B(0un)5osp(1u2n)

1
2 0

(n>1)
D(mun)5osp(2mu2n) m m
(m>2,n>1)

D(2u1;a)5osp(4u2;a) 2 2
(aÞ0,21,̀ )

F(4) 4 4

G(3) 7
2

3
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Then Eq.~12! becomes

dimVL 5 2N1 d0̄~L̃ !. ~18!

In order to proceed further, we need more information on the behavior of the functiond0̄ . First of
all, we observe that as long as

l s
0 > b, i.e., l̃ s

0 > 2 1
2, ~19!

whereb is the integer part of 2(r1 ,as
0)/(as

0,as
0) ~see Table II!, all factors in the product on the rh

of Eq. ~17! remain positive. Hence in this region,d0̄ is positive and monotonically increasing i
the following sense: Suppose thatL̃ andM̃ are two highest weights forg0̄ , with Dynkin labelsl i ,
l̃ s

0 andmi , m̃s
0, respectively, wherei 51,...,r , iÞs and l̃ s

0,m̃s
0>2 1

2. Then, defining

L̃ > M̃ ⇔ l i > mi~1 < i < r ,i Þ s! and l̃ s
0 > m̃s

0, ~20!

and L̃.M̃ iff L̃>M̃ and L̃ÞM̃ , we have

L̃ > M̃ ⇒ d0̄~L̃ ! > d0̄~M̃ !,

L̃ . M̃ ⇒ d0̄~L̃ ! . d0̄~M̃ !. ~21!

Another important observation is that when the inequality~19! does not hold, then the Dynkin
labelsl 1 ,...,l r of L must satisfy certain supplementary conditions which can be shown to im
that the representation ofg characterized by the highest weightL is atypical; see below. As we ar
only interested in typical representations, this means that we may impose the inequality~19! and
make use of the monotonicity property~21! to provide lower bounds for the expression in E
~18!. There is also an abstract argument to show that the functiond0̄ continues to take intege
values as long as 2(r1 ,as

0)/(as
0,as

0) is an integer, due to the following.

Proposition:Let P be a polynomial of degreer in one real variable which takes integer values
all integers greater than some fixed integer. ThenP takes integer values on all integers.

Proof: The basic trick for the proof is to expand the polynomialP not in the standard basis o
polynomialsxl( l 50,1,...,r ) but in a different basis of polynomials defined by the binom
coefficients, that is, to write

P~x! 5 (
l 50

r

al S x
l D 5 (

l 50

r
al

l !
x~x21!...~x2 l 11!. ~22!

Observing that

S x11
l D2S x

l D 5 S x
l 21D

and therefore

P~x11!2P~x! 5 (
k50

r 21

ak11S x
kD ,

we may conclude by induction onr that the property ofP(n) being an integer for allnPZ and
the apparently weaker property ofP(n) being an integer for allnPZ satisfyingn>n0 for
somen0PZ are both equivalent to the fact that the coefficientsal of P in the expansion~22!
are all integers; in fact, they can be computed recursively from the formula
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(
i 50

p

~21!p2 i S p
i D P~x1 i ! 5 (

k50

r 2p

ak1pS x
kD , ~23!

which in turn can be inferred from the previous one by induction onp.

According to Table II, this implies that the only type II Lie superalgebras for whichd0̄ may take
noninteger values and hence dimVL need no longer be a multiple of 2N1 are those belonging to
the series B(mun)5osp(2m11u2n)(m,n>1), those belonging to the seriesB(0un)
5osp(1u2n) (n>1) and, finally, the exceptional Lie superalgebraG(3).

With these generalities out of the way, we can proceed to determine the typical codon
sentations, that is, the 64-dimensional irreducible representations, of basic classical Lie s
gebras. For type I Lie superalgebras, this is easily done by exploiting the dimension formula~14!,
which implies that the numberN1 of positive odd roots must not exceed 6 and thatL must be the
highest weight of an irreducible representation ofg0̄ of dimension 262N1:

• The seriessl(m11un11) with m.n>0:
Here,N1 equals (m11)(n11), so we must havem<2,n<1, which leaves the following
possibilities:
eithern50 andm50,1,2,3,4,5,
or n51 andm52.

• The seriessl(n11un11) with n>1:
Here,N1 equals (n11)2, so we must haven51.

• The seriesosp(2u2n) with n>2:
Here,N1 equals 2n, so we must haven<3.

This leads to the list of typical codon representations of type I Lie superalgebras presen
Table III. Note that the coefficientl s of L along the simple odd rootas remains unspecified: it can
take any complex value except 0 and a few other integers that must be excluded in or
guarantee that the representation is indeed typical; its choice has no influence on the dimen
the representation.

For type II Lie superalgebras, the analysis can be carried out along similar lines. To
with, we exclude the seriesB(0un)5osp(1u2n) (n>1), since it does not provide any 64
dimensional irreducible representations. This can be derived from the remarkable fact17,18 that the
irreducible representations of the type II Lie superalgebraB(0un)5osp(1u2n) ~which by the way
is the only one for which all irreducible representations are typical! are in one-to-one correspon
dence with those irreducible representations of the ordinary simple Lie algebraBn5so(2n11) for

TABLE III. Typical codon representations of type I Lie superalgebras.

Lie
superalgebra N1

Highest weight
of g

Highest weight
of g0̄

Typicality
condition

sl(2u1) 2 (15,l 2) 15 2 l 2Þ0,16
sl(3u1) 3 (1,1,l 3) ~1,1! 2 l 3Þ0,2,4

sl(4u1) 4
(1,0,0,l 4) ~1,0,0! 2 l 4Þ0,1,2,4
(0,0,1,l 4) ~0,0,1! 2 l 4Þ0,2,3,4

sl(6u1) 6 (0,0,0,0,0,l 6) ~0,0,0,0,0! 2 l 6Þ0,1,2,3,4,5

sl(2u2) 4
(3,l 2,0) ~3!–~0! l 2Þ24,23,0,1
(1,l 2,1) ~1!–~1! l 2Þ22,0,2
(0,l 2,3) ~0!–~3! l 2Þ21,0,3,4

sl(3u2) 6 (0,0,l 3,0) ~0,0!–~0! l 3Þ22,21,0,1
osp(2u4) 4 (l 1,1,0) ~1,0! l 1Þ0,2,4,6
osp(2u6) 6 (l 1,0,0,0) ~0,0,0! l 1Þ0,1,2,4,5,6
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which the last Dynkin label, i.e., the coefficientl n associated with the short simple root, is even—
correspondence that can be represented graphically in the form

~24!

Note that there is no change in the Dynkin labels, so that according to the integrality conditi
the Dynkin label~9!, l n must be even, since for theB(0un) series,s5n, an

052an and l n
05 1

2 l n .
But it is known from evaluation of the standard Weyl dimension formula that the only
dimensional irreducible representations of theBn series occur forB15so(3), with highest weight
63, for B25so(5), with highest weight~1, 3!, and for B65so(13), with highest weight
~0, 0, 0, 0, 0, 1!. For the remaining type II Lie superalgebras, we argue case by case, usin
supplementary conditions stated, e.g., in Ref. 15, pp. 251/252.

• The seriesB(mun)5osp(2m11u2n) with m,n>1:
For g5osp(2m11u2n), we have g0̄5so(2m11)% sp(2n), r 5m1n,s5n and
N15(2m11)n, so Eq.~18! takes the form

dimVL 5 2~2m11!n dsp~2n!~ l 1 ,...,l n21 , l̃ n
0! dso~2m11!~ l n11 ,...,l n1m21 ,l n1m!, ~25!

where

ln
0 5 ln2~ln111...1ln1m211

1
2 ln1m! ~26!

and

l̃ n
0 5 ln

02m21
2. ~27!

If l n
0,m, write l n

05k21 where 1<k<m; then the supplementary conditions require tha

ln1k 5¯5 ln1m 5 0,

and this forcesL1r to be orthogonal to the odd rooten
12ek

2. Similarly, if l n
05m and we

require in addition thatl n1m50, thenL1r will be orthogonal to the odd rooten
11em

2 . ~See
Ref. 15, pp. 513–521!. In both cases, this implies that the representation ofg characterized
by the highest weightL is atypical. Thus we may assume thatl n

0>m and use the monoto
nicity property~21!, distinguishing two cases:
l n
0.m: In this case,

dimVL > 2~2m11!n dsp~2n!~0,...,0,12! dso~2m11!~0,...,0,0! 5 22mnS 2n11
n D .

l n
05m: In this case,

dimVL > 2~2m11!n dsp~2n!~0,...,0,2 1
2! dso~2m11!~0,...,0,1! 5 2m~2n11!.

In both cases, we conclude that dimVL will exceed 64 except whenm51 andn<2 or when
m<2 andn51.

• The seriesD(mun)5osp(2mu2n) with m>2 andn>1:
For g5osp(2mu2n), we haveg0̄5so(2m) % sp(2n), r 5m1n, s5n and N152mn, so
Eq. ~18! takes the form

dimVL 5 22mn dsp~2n!~ l 1 ,...,l n21 , l̃ n
0! dso~2m!~ l n11 ,...,l n1m22 ,l n1m21 ,l n1m!, ~28!

where

ln
0 5 ln2~ln111...1ln1m221

1
2 ~ln1m211ln1m!! ~29!

and

l̃ n
0 5 ln

02m. ~30!

If l n
0,m, write l n

05k21 where 1<k<m, then the supplementary conditions require tha
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ln1k 5 ¯ 5 ln1m 5 0, if l n
0 , m21,

l n1m21 5 l n1m, if l n
0 5 m21,

and this forcesL1r to be orthogonal to the odd rooten
12ek

2. Similarly, if l n
05m and we

require in addition thatl n1m2150 and l n1m50, thenL1r will be orthogonal to the odd
root en

11em21
2 . ~See Ref. 15, pp. 525–532!. In both cases, this implies that the representat

of g characterized by the highest weightL is atypical. Thus we may assume thatl n
0>m and

use the monotonicity property~21!, distinguishing two cases:
l n
0.m: In this case,

dimVL > 22mn dsp~2n!~0,...,0,1! dso~2m!~0,...,0,0,0! 5 22mn11
1

n S 2n11
n21 D .

l n
05m: In this case,l n1m21.0 and

dimVL > 22mn dsp~2n!~0,...,0,0! dso~2m!~0,...,0,1,0! 5 2m~2n11!21,
or l n1m.0 and

dimVL > 22mn dsp~2n!~0,...,0,0! dso~2m!~0,...,0,0,1! 5 2m~2n11!21.
In both cases, we conclude that dimVL will exceed 64 except whenm52 andn51.

• The family D(2u1;a)5osp(4u2;a) with aÞ0,21,̀ :
For g5osp(4u2;a), we haveg0̄5su(2) % su(2) % su(2), r 53, s51 and N154, so Eq.
~18! takes the form

dimVL 5 16 dsu~2!~ l̃ 1
0! dsu~2!~ l 2! dsu~2!~ l 3!

516 ~11 l̃ 1
0!~11 l 2!~11 l 3!, ~31!

where

l1
0 5 l12

1
2 ~l21l3!, ~32!

and

l̃1
0 5 l1

022. ~33!

If l 1
0,2, the supplementary conditions require that

l2 5 l3 5 0 if l 1
0 5 0,

a~ l 311! 5 l 211 if l 1
0 5 1,

and this forcesL1r to be orthogonal to the simple odd roota1 in the first case and to the
odd root a11a2 in the second case~see Ref. 15, pp. 532–537!, which implies that the
representation ofg characterized by the highest weightL is atypical. Thus we may assum
that l 1

0>2.

• The algebraF(4):
For g5F(4), wehaveg0̄5su(2)% so(7), r 54, s51 andN158, so Eq.~18! takes the form

dimVL 5 256 dsu~2!~ l̃ 1
0! dso~7!~ l 4 ,l 3 ,l 2!

5 256 ~11 l̃ 1
0! dso~7!~ l 4 ,l 3 ,l 2!, ~34!

where

l1
0 5 1

3 ~2l123l224l322l4!, ~35!

and

l̃1
0 5 l1

024. ~36!

If l 1
0,4, the supplementary conditions require thatl 1

0Þ1 and

l2 5 l3 5 l4 5 0 if l 1
0 5 0,

l 2 5 l 4 5 0 if l 1
0 5 2,

l 2 5 2l 411 if l 1
0 5 3,

and this forcesL1r to be orthogonal to the simple odd roota1 in the first case, to the odd
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root a11a21a3 in the second case and to the odd roota11a21a31a4 in the third case
~see Ref. 15, pp. 537–541!, which implies that the representation ofg characterized by the
highest weightL is atypical. Thus, we may assume thatl 1

0>4 and deduce that the dimensio
of any typical representation ofF(4) is a multiple of 256.

• The algebraG(3):
For g5G(3), wehaveg0̄5su(2) % G2 , r 53, s51 andN157, so Eq.~18! takes the form

dimVL 5 128 dsu~2!~ l̃ 1
0! dG2

~ l 3 ,l 2!

5 128 ~11 l̃ 1
0! dG2

~ l 3 ,l 2!, ~37!

where

l1
0 5 1

2 ~l122l223l3!, ~38!

and

l̃1
0 5 l1

027
2. ~39!

If l 1
0,3, the supplementary conditions require thatl 1

0 Þ 1 and

l2 5 l3 5 0 if l 1
0 5 0,

l 2 5 0 if l 1
0 5 3,

and this forcesL1r to be orthogonal to the simple odd roota1 in the first case and to the
odd roota11a21a3 in the second case. Similarly, ifl 1

053 and we require in addition tha
l 250 andl 350, thenL1r will be orthogonal to the odd roota113a21a3 . ~See Ref. 15,
pp. 542–545!. In both cases, this implies that the representation ofg characterized by the
highest weightL is atypical. Thus we may assume thatl 1

0>3 and deduce that the dimensio
of any typical representation ofG(3) is a multiple of 64; moreover, the only candidate
dimension equal to 64~l 156, l 250, l 350! is excluded, because it is atypical.

With these restrictions, it is now an easy exercise to write down the highest weights
irreducible representations ofg0̄ of the correct dimension and to eliminate all candidates that
to satisfy the typicality conditions; the result is presented in Table IV. Note that in the fa
D(2u1;a)5osp(4u2;a), the parametera remains unspecified and can take any complex va
except 0,21, ` and a few other rational numbers that must be excluded in order to guarante
the representation is indeed typical; when this is done, the choice ofa has no influence on the
dimension of the representation.

IV. CONCLUSIONS AND OUTLOOK

The main result of the present paper, the first in a sequence of two, is the complete list
typical codon representations~typical 64-dimensional irreducible representations! of basic classi-

TABLE IV. Typical condon representations of type II Lie superalgebras.

Lie
superalgebra

Highest weight
of g

Highest weight
of g0̄

Typicality
condition

osp(3u2) (
17
2 ,15) ~1!–~15!

osp(5u2) (
5
2,0,1) ~2!–~0,1!

osp(3u4) (0,
5
2,3) ~0, 1!–~3!

osp(4u2;a) (
1
2 (5a15),0,0) ~5!–~0!–~0! aÞ2

5
3,2

3
5

(
1
2 (3a14),1,0) ~3!–~1!–~0! aÞ24,2

4
3

(
1
2 (4a13),0,1) ~3!–~0!–~1! aÞ2

1
4,2

3
4

(
1
2 (3a13),1,1) ~2!–~1!–~1! aÞ3,2

1
3

(
1
2 (2a15),3,0) ~2!–~3!–~0! aÞ2

5
2,

3
2

(
1
2 (5a12),0,3) ~2!–~0!–~3! aÞ2

2
5,

2
3
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cal Lie superalgebras, presented in Table III and Table IV: we find 12 basic classical Lie s
algebras with a total of 18 codon representations that are essentially different~conjugate repre-
sentations are not regarded as essentially different!. The analysis is based on the classification
basic classical Lie superalgebras and on their representation theory, which are briefly revie
Secs. II and III, respectively, in particular on the Weyl–Kac dimension formula for typical
resentations. The basic idea is the same as in the case of ordinary simple Lie algebras
according to the standard Weyl dimension formula, the dimension of an irreducible represen
grows with its highest weight, so that no algebra belonging to any of the classical series will,
a certain rank upwards, admit codon representations~or, more generally, nontrivial representatio
of dimension< 64! at all. The main difficulty to be overcome was to extend this monotoni
argument to the superalgebra case and to derive lower bounds on dimensions that are suf
sharp to exclude the appearance of algebras of higher rank. As it turns out, this can be do
the resulting bounds on the rank are even more stringent for basic classical Lie superalgebr
they are for ordinary simple Lie algebras.

On the other hand, our search for codon representations in the context of simple Lie su
gebras is somewhat less comprehensive than the corresponding search in the context of o
simple Lie algebras1,3 because it is restricted to a subclass of the class of all simple Lie sup
gebras, namely the basic classical ones, and to a subclass of the class of all irreducible
dimensional representations, namely, the typical ones. We would like to emphasize that we
see anya priori argument~mathematical or biological! to regard other simple Lie superalgebra
such as the strange superalgebrasP(n) andQ(n) or the Cartan type superalgebrasW(n), S(n),
S̃(n) andH(n) as being less relevant than the basic classical ones or to regard atypical rep
tations as being less relevant than the typical ones; see Ref. 15, pp. 258/259 for comments
matter. Rather, our main motivation for these restrictions has been to identify a class of simp
superalgebras and a class of irreducible representations within which we are able to pro
completeclassification of all codon representations. In particular, this has led us to exclude
cal representations since although dimension formulas for some classes of atypical represe
have been known for some time,17 a completely general dimension formula does not appear t
available; at present, the best result in this direction seems to be the character formula for so
generic representations derived in Ref. 19. It would be interesting to see whether our monot
argument, which is crucial in order to exclude the appearance of Lie superalgebras of arb
high rank, can be maintained in this context.

Despite these limitations, our investigation does provide a framework for the subse
investigation of branching schemes, the main goal being to identify the ones that reprodu
standard genetic code. This analysis will be performed in the forthcoming second paper
series.

ACKNOWLEDGMENTS

The authors would like to thank Professor J. E. M. Hornos for his incentive and support
present project, Professor A. Sciarrino and Professor P. Jarvis for clarifying correspondence
representation theory of Lie superalgebras and Professor A. Grishkov for fruitful discussions
work was supported by FAPESP~Fundac¸ão de Amparo a` Pesquisa do Estado de Sa˜o Paulo! and
CNPq ~Conselho Nacional de Desenvolvimento Cientı´fico e Tecnolo´gico!, Brazil.

1J. E. M. Hornos and Y. M. M. Hornos, ‘‘Algebraic Model for the Evolution of the Genetic Code,’’ Phys. Rev. Lett71,
4401–4404~1993!.

2W. G. McKay and J. Patera,Tables of Dimensions, Indices and Branching Rules for Representations of Simp
Algebras, Lecture Notes in Pure and Applied Mathematics~Marcel Dekker, New York, 1981!, Vol. 69.

3J. E. M. Hornos, Y. M. M. Hornos, and M. Forger, ‘‘Symmetry and Symmetry Breaking: An Algebraic Approach t
Genetic Code,’’ Int. J. Mod. Phys. B13, 2795–2885~1999!.

4J. Maddox, ‘‘The Genetic Code by Numbers,’’ Nature~London! 367, 111 ~1994!.
5I. Stewart, ‘‘Broken Symmetry in the Genetic Code?,’’ New Sci.141, 16 ~1994!.
6F. H. C. Crick, ‘‘The Origin of the Genetic Code,’’ J. Mol. Biol.38, 367–379~1968!.
                                                                                                                



obiol.

l of the
,’’

n

T-30/

lgebras

Int. J.

5422 J. Math. Phys., Vol. 41, No. 8, August 2000 M. Forger and S. Sachse

                    
7T. H. Jukes, ‘‘Evolution of the Amino Acid Code: Inferences from Mitochondrial Codes,’’ J. Mol. Evol.19, 219–225
~1983!.

8S. Osawa, T. H. Jukes, K. Watanabe, and A. Muto, ‘‘Recent Evidence for Evolution of the Genetic Code,’’ Micr
Rev.56, 229–264~1992!.

9F. F. Ferreira, ‘‘Construc¸ão das Representac¸ões Irredutı´veis das A´ lgebrasq-DeformadasUq(sl(2)) eUq(sl(3)) em
Raı́zes da Unidade,’’ Master Thesis, Institute of Physics, University of Sa˜o Paulo, Sa˜o Carlos, 1997.

10J. D. Bashford, I. Tsohantjis, and P. D. Jarvis, ‘‘Codon and Nucleotide Assignments in a Supersymmetric Mode
Genetic Code,’’ Phys. Lett. A233, 481–488~1997!; ‘‘A Supersymmetric Model for the Evolution of the Genetic Code
Proc. Natl. Acad. Sci. USA95, 987–992~1998!.

11L. Frappat, P. Sorba, and A. Sciarrino, ‘‘A Crystal Base for the Genetic Code,’’ Phys. Lett. A250, 214–221~1998!.
12V. G. Kac, ‘‘Lie Superalgebras,’’ Adv. Math.26, 8–96~1977!.
13V. G. Kac, ‘‘Representations of Classical Lie Superalgebras,’’ inProceedings of the VIth International Conference o

Differential Geometric Methods in Theoretical Physics, Bonn, Germany, 1977, Lecture Notes in Mathematics~Springer,
Berlin, 1978!, Vol. 676, pp. 597–626.

14M. Scheunert,The Theory of Lie Superalgebras, Lecture Notes in Mathematics~Springer, Berlin, 1979!, Vol. 716.
15J. F. Cornwell,Group Theory in Physics~Academic, New York, 1989!, Vol. III.
16L. Frappat, P. Sorba, and A. Sciarrino, ‘‘Dictionary on Lie Superalgebras,’’ Preprint ENSLAPP-AL-600/96, DSF-

96, hep-th/9607161, July 1996.
17A. B. Balantekin and I. Bars, ‘‘Dimension and Character Formulas for Lie Supergroups,’’ J. Math. Phys.22, 1149–1162

~1981!; ‘‘Representations of Supergroups,’’ibid. 22, 1810–1818~1981!.
18V. Rittenberg and M. Scheunert, ‘‘A Remarkable Connection Between the Representations of the Lie Supera

osp(1u2N) and the Lie Algebraso(2N11),’’ Commun. Math. Phys.83, 1–9 ~1982!.
19I. Penkov and V. Serganova, ‘‘Generic Irreducible Representations of Finite-Dimensional Lie Superalgebras,’’

Math. 5, 389–419~1994!.
                                                                                                                



f

ried out
odon
l-

e using
are re-

atical
h a
all
8 such
is to

ns with
rategy
metry

code
presen-
t at the
t does
of the
plete
ere

t step,

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 8 AUGUST 2000

                    
Lie superalgebras and the multiplet structure
of the genetic code. II. Branching schemes

Michael Forgera) and Sebastian Sachseb)
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Continuing our attempt to explain the degeneracy of the genetic code using basic
classical Lie superalgebras, we present the branching schemes for the typical codon
representations~typical 64-dimensional irreducible representations! of basic classi-
cal Lie superalgebras and find three schemes that do reproduce the degeneracies o
the standard code, based on the orthosymplectic algebraosp~5u2! and differing only
in details of the symmetry breaking pattern during the last step. ©2000 American
Institute of Physics.@S0022-2488~00!06305-2#

I. INTRODUCTION

In the context of the project proposed by Hornos and Hornos1 which aims at explaining the
degeneracy of the genetic code as the result of a symmetry breaking process, we have car
a systematic analysis of the possibility to implement this idea by starting out from a typical c
representation~typical 64-dimensional irreducible representation! of a basic classical Lie supera
gebra, rather than a codon representation~64-dimensional irreducible representation! of an ordi-
nary simple Lie algebra. The investigation of such an algebraic approach to the genetic cod
alternative concepts of symmetry such as supersymmetry, where ordinary Lie algebras
placed by Lie superalgebras, has already been suggested in the original paper,1 except for the
restriction to basic classical Lie superalgebras~a particular class of simple Lie superalgebras! and
to typical representations~a particular class of irreducible representations!: only under this restric-
tion, which is of a technical nature, does there exist a sufficiently well developed mathem
theory, due to Kac,2,3 to allow for the kind of analysis that is necessary to carry out suc
program. As a first step, we have in a previous paper4 presented a complete classification of
typical codon representations of basic classical Lie superalgebras: there are altogether 1
representations involving 12 different Lie superalgebras. Our goal in the present paper
analyze all possible branching schemes that can be obtained from these representatio
regard to their capability of reproducing the degeneracy of the genetic code, following the st
used in Ref. 1 and explained in detail in Ref. 5, but with one essential restriction: supersym
will be broken right away, in the very first step.

To motivate this assumption, note that the distribution of multiplets found in the genetic
today does not appear to correspond to the kind of scheme one would expect from the re
tation theory of Lie superalgebras. Thus, if some kind of supersymmetry has been presen
very beginning of the evolution of the genetic code, it must have been broken. Moreover, i
not seem plausible to us that this breaking should have occurred only in the last step
process, where the phenomenon of ‘‘freezing’’ would have been able to prevent a com
breakdown~see Ref. 5 for more details!. But if supersymmetry has been broken before, then th
is mathematically no loss of generality in assuming that it has been broken in the very firs

a!Departamento de Matema´tica Aplicada.
b!Departamento de Matema´tica.
54230022-2488/2000/41(8)/5423/22/$17.00 © 2000 American Institute of Physics
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because as soon as we may exclude freezing, symmetry breaking through chains of suba
that differ only in the order in which the successive steps are performed~such asg.g1.g1ùg2
andg.g2.g1ùg2) will lead to the same end result.

II. THE FIRST STEP: BREAKING THE SUPERSYMMETRY

With the above picture in mind and using the fact that among the semisimple ordinar
algebras which are subalgebras of a given basic classical Lie superalgebrag, there is a unique
maximal one, namely the semisimple partg

0̄

ss
of its even partg0̄ , our task for the first step of the

symmetry breaking process is to compute, for each of the 18 codon representations of the 1
classical Lie superalgebras found in Ref. 4, its branching into irreducible representations
restriction fromg to g

0̄

ss
. There are two different methods for doing this. One consists in com

ing all weight vectors that result from the action of products of generators associated wi
negative odd roots on the highest weight vector, where every negative odd root appears
once in such a product: these are the candidates for highest weight vectors of irreducible
sentations ofg

0̄

ss
that appear in the direct decomposition of the original codon representationg.

The problem is to decide which of these representations really appear, and with what multip
Although there is an explicit formula for calculating such multiplicities, due to Kac and Kos
the procedure involves a summation over the Weyl group and is cumbersome to apply in pr
Therefore, we shall, following common usage, adopt the other method, which is based on t
of Young superdiagrams—a generalization of the usual Young diagrams from ordinary Lie
bras to Lie superalgebras.

In order to understand how this technique works, it is useful to recall how Young diag
arise in the representation theory of ordinary simple Lie algebras. Given a simple Lie algebg0,
consider the first fundamental representation ofg0, i.e., the irreducible representation ofg0 with
highest weight equal to the first fundamental weight, denoted in what follows byD. Alternatively,
we may characterizeD as the lowest-dimensional~nontrivial! irreducible representation ofg0: for
the matrix Lie algebrassl(n), so(n), andsp(n), it is simply then-dimensional defining repre
sentation. The basic idea is now to look at all tensor powersD ^ p of D and reduce them into thei
irreducible constituents. This reduction is achieved by considering symmetric tensors, an
metric tensors and, more generally, tensors of mixed symmetry type. In fact, permutation
factors induces a representation of the symmetric groupSp on the representation space ofD ^ p and
this action ofSp commutes with that ofg0, so that both actions can be simultaneously decompo
into irreducible constituents. More precisely, this is achieved by combining them into a ‘‘
action’’ and then performing a decomposition into irreducible constituents in the usual sense
of these has the property that its multiplicity as a representation ofSp equals its dimension as
representation ofg0 and its multiplicity as a representation ofg0 equals its dimension as a repr
sentation ofSp . ~The concept of ‘‘joint action’’ used here can be formulated in mathematic
rigorous terms by introducing the connected, simply connected, simple Lie groupG0 correspond-
ing to g0 and consideringD andD ^ p as representations ofG0 ; then the joint action ofSp andg0
corresponds to a representation of the direct productSp3G0 .) The usefulness of this approac
stems from an important theorem of Weyl which states that any irreducible representation
classical Lie algebrassl(n) andsp(n), as well as any tensorial irreducible representation of
classical Lie algebrasso(n), can be obtained in this way.~An irreducible representation ofso(n)
of highest weight (l 1 ,...,l r 21 ,l r) is tensorial, or nonspinorial, ifl r is even forn52r 11 odd ~B
series! and if l r 211 l r is even forn52r even~D series!.! Therefore, a Young diagram ofp boxes,
which originally stands for an irreducible representation of the symmetric groupSp , also deter-
mines an irreducible representation ofg0 contained inD ^ p. In the case ofsl(n), the latter is
simply obtained by considering tensors of a specific symmetry type, given by the proje
operator of symmetrizing along the rows and antisymmetrizing along the columns of the
sponding standard Young tableau,6,7 whereas in the case ofsp(n) and so(n), the existence of
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invariant bilinear forms forD ~antisymmetric forsp(n) and symmetric forso(n)) implies that this
operation alone is not sufficient to produce an irreducible representation: here, a given
diagram stands for tensors of the corresponding symmetry type which in addition are t
traceless with respect to the pertinent bilinear form, that is, traceless in all indices in which
are antisymmetric in the case ofsp(n) and traceless in all indices in which they are symmetric
the case ofso(n).

The rules for constructing Young tableaux and diagrams can be extended in such a wa
also cover spinorial representations ofso(n). To this end, one must include the spinor repres
tation~s!, i.e., the standard spinor representationSof highest weight~0,..., 0, 1! if n is odd and the
two chiral spinor representationsS1 andS2, of highest weight~0,..., 0, 1, 0! and ~0,..., 0, 0, 1!,
respectively, ifn is even: this turns out to be sufficient because according to a modified for
Weyl’s theorem, an arbitrary irreducible representation ofso(n) can be obtained as a subrepr
sentation of the representationD ^ p

^ S if n is odd and of one of the two representatio
D ^ p

^ S1 or D ^ p
^ S2 if n is even, for adequatep. Therefore, it is convenient to introduc

generalized Young tableaux and diagrams containing ‘‘spinor’’ or ‘‘half’’ boxes, one at the
ginning of each row, and characterized by inserting the letter ‘‘s’’ into each of them, as well as a
possible ‘‘negative’’ last row instead of the usual ‘‘positive’’ one whenn is even, thus allowing to
distinguish between the two chiralities for the spinors.~The property of having only one spino
box per row reflects the fact that the spinor representation~s! appear only once in the tenso
product, so that in particular, there is no problem with symmetrization or antisymmetrizati
spinor indices.! For a summary of the conventions that we shall follow, the reader is referred t
Appendix of Ref. 8.

An important point to be noticed is that although different~generalized! Young diagrams
correspond to different irreducible representations of the permutation groupSp , they may very
well describe the same irreducible representation ofg0: thus the characterization of irreducib
representations ofg0 by ~generalized! Young diagrams is ambiguous. In order to remove t
ambiguity, one introducesmodification ruleswhich allow to reduce every~generalized! Young
diagram to itsstandardform, as explained, for instance, in Ref. 9: this is done in such a way
every irreducible representation corresponds to precisely one standard~generalized! Young dia-
gram.

The technique of~generalized! Young tableaux and Young diagrams for characterizing ir
ducible representations has been extended from the classical simple Lie algebras to the
linear and orthosymplectic Lie superalgebras, giving rise toYoung supertableauxand Young
superdiagrams, which we shall distinguish from their nonsupersymmetric counterparts by
insertion of a diagonal line across each box. They describe typical representations as w
atypical ones. As in the nonsupersymmetric case, several different Young superdiagram
provide the same irreducible representation, and modification rules are needed to remo
ambiguity: they serve to reduce a Young superdiagram to itsstandard form. For an atypical
representation, this procedure is still not unambiguous, leading to different standard Young
diagrams describing the same representation, whereas for a typical representation, the corr
ing Young superdiagram can be constructed directly from its highest weight, and converse
Kac-Dynkin labels of the highest weight may be read off from the Young superdiagram. Not
fixing the highest weight includes fixing the Kac–Dynkin labell s of the simple odd root, which
for type I Lie superalgebras can take continuous values: the corresponding irreducible rep
tation will in that case carry an additional continuous parameter. Its dimension and its bran
rules under reduction fromg0 to g

0̄

ss
will however not depend on the value ofl s which in Ref. 4 had

remained unspecified, except for the constraints imposed by requiring typicality of the rep
tation. Here, we shall make a choice forl s that leads to the simplest possible Young superdiag
which is consistent with these constraints; this value, together with the resulting Young sup
gram, is specified in Tables I–III.

For the special linear Lie superalgebrassl(mun), the procedure of constructing irreducib
representations from Young superdiagrams is straightforward. The main difference from th
of the special linear Lie algebrassl(n) is that the process of symmetrization and antisymmetr
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tion involved in the definition of the Young idempotents that project onto a tensor of a sp
symmetry type must now be understood in the appropriate supersymmetric or graded
symmetrization or antisymmetrization of two fermionic indices involves an extra minus sig
take into account the anticommuting character of these variables. This implies that there no
exists an invariant totally antisymmetric tensor of top degree~invariant volume ore-tensor!, so the

irreducible representationsD and D̄ become independent; therefore Young superdiagrams
sl(mun) are in general composed of ‘‘undotted’’ and ‘‘dotted’’ boxes, as happens in the ca
Young diagrams forgl(n). For the applications needed in this paper, however, we shall fin
sufficient to use the conventional type of Young superdiagram containing only ‘‘undotted’’ bo

TABLE I. Branching of codon representations of type I Lie superalgebras in the first stepg.g
0̄

ss
: Part 1.
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TABLE II. Branching of codon representations of type I Lie superalgebras in the first stepg.g
0̄

ss
: Part 2.
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TABLE III. Branching of codon representations of type II Lie superalgebras in the first stepg.g0̄ .
                                                                                                                



e rep-
ung

g
ences

per-
ching

a
that

nd col-
iagram

y
rams

that
g
e

5429J. Math. Phys., Vol. 41, No. 8, August 2000 Branching schemes

                    
The relation between such Young superdiagrams and Kac–Dynkin labels of irreducibl
resentations forsl(mun) can be summarized as follows. First, recall that an ordinary Yo
diagram, characterized by a nonincreasing sequenceb1>...>br of positive integers giving the
lengths of itsr rows, will be an allowed Young diagram forsl(n) if and only if r<n; in this case
it will describe an irreducible representation ofsl(n) with Dynkin labelsl 1 ,...,l n21 given by

l i 5 bi2bi 11 for i 5 1,...,n21. ~1!

~It is to be understood thatbr.0 but bi50 if i .r ). Similarly, according to Ref. 10, a Youn
superdiagram containing only ‘‘undotted’’ boxes, characterized by nonincreasing sequ
b1>•••>br andc1>•••>cs of positive integers giving the lengths of itsr rows ands columns,
respectively, will be an allowed Young superdiagram forsl(mun) if and only if bm11<n; in this
case, it will describe an irreducible representation ofsl(mun) whose Kac–Dynkin labels
l 1 ,...,l m1n21 can be found as follows. Define the reduced column lengths by

cj8 5 ~cj2m!u~cj2m!, ~2!

whereu is the step function; then

l i 5 bi2bi 11 for i 5 1,...,m21,

l m 5 bm1c18 , ~3!

l m1 j 5 cj82cj 118 for j 5 1,...,n21.

~Again, it is to be understood thatbr.0 andcs.0 but bi50 if i .r andcj50 if j .s.)
On the other hand, the branching rules under reduction from the Lie superalgebrasl(mun) to

the semisimple partsl(m) % sl(n) of its even subalgebra in terms of Young diagrams and su
diagrams can, according to Ref. 11, be derived immediately from the corresponding bran
rules under reduction from the ordinary Lie algebrasl(m1n) to the same subalgebr
sl(m) % sl(n), which in turn are given in Ref. 12, for a large class of examples. In fact, all
needs to be done is to replace the Young diagram for the second summandsl(n), which represents
the odd sector of the representation space, by its transposed diagram, exchanging rows a
umns. As an example, we show on the next page the decomposition of the Young superd
given by r 52, s52 with b1535c1 , b2525c2 , andb3515c3 which, according to Eqs.~2!
and~3!, corresponds to the typical codon representation ofsl(3u1), of highest weight (1,1,l 3) with
l 351, as well as to the typical codon representation ofsl(2u2), of highest weight (1,l 2,1) with
l 253. The highest weights with respect tosl(3) and tosl(2)% sl(2) corresponding to the ordinar
Young diagrams resulting from this decomposition are also exhibited and the ‘‘illegal’’ diag
are identified: they are the ones that must be eliminated to comply with the prescription
Young diagrams forsl(k) must not have more thank rows. In this way, we arrive at the branchin
schemes for the typical codon representations ofsl(mun) given in Table I and Table II, since th
remaining cases can be checked directly from the rules given in Table 1 of Ref. 11.
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For the orthosymplectic Lie superalgebrasosp(M uN), where M52m11 or M52m and
N52n, the procedure is somewhat more complicated; it is described in Ref. 8. First of all, it
be noted that the construction and interpretation of Young superdiagrams forosp(M uN), as
compared to that forsl(mun), is subject to the same adjustments as that of ordinary Yo
diagrams forsp(N) and so(M ), as compared to that forsl(n): in particular, they may contain
‘‘spinor’’ or ‘‘half’’ boxes ~referring, of course, only to theso(M ) part of the even subalgebra!
which by convention will be located in the (n11)st row. We shall follow the notation of Ref. 8
except that we shall continue to distinguish Young superdiagrams from their nonsupersym
counterparts by the insertion of a diagonal line across each box, including the ‘‘spinor’’ or ‘‘h
boxes. The relation between the lengthsb1>...>bn of the firstn rows andc1>...>cm of the first
m columns on one hand and the Kac–Dynkin labelsl 1 ,...,l n21 ,l n ,l n11 ,...,l n1m on the other
hand is summarized in Eqs.~3.1!, ~3.4!, and~3.5! of Ref. 8. The prescription for determining th
branching rules under reduction from the Lie superalgebraosp(M uN) to its even part
sp(N) % so(M ) has also been determined and is formally summarized in Eqs.~3.2!, ~3.3!, and~3.6!
of Ref. 8. The starting point is to dissect the given Young superdiagram into two ordinary Y
diagrams: one for thesp(N) part formed by the firstn rows and one for theso(M ) part formed by
the remaining rows, but reflected along the main diagonal. Together, they stand for the irred
subrepresentation of the even subalgebrasp(N) % so(M ) generated from the original highes
weight vector by application of all even generators. It forms the ground floor of a buildin
which all the other irreducible subrepresentations of the even subalgebra are arranged in
floors, each counted according to the minimum number of odd generators required to reach
the ground floor. The procedure for determining which Young diagrams describe the irred
subrepresentations that do appear in the higher floors is complicated, requiring the use of
alized Young diagrams forsp(N) with negative boxes, as introduced in Ref. 13, that must
multiplied to standard Young diagrams forso(M ),14 plus rules for eliminating Young diagram
resulting from this process that represent nontracefree parts. A discussion of the general fo
presented in Ref. 8 is not very instructive, so we prefer to just illustrate them by presentin
important examples: the branching schemes for the typical codon representations ofosp(4u2) with

highest weight (72,0,1) and ofosp~5u2! with highest weight~ 5
2, 0, 1!.

We begin by calculating thesp(2)% so(4) content of the typical codon representation
osp(4u2) with highest weight~ 7

2, 0, 1!. According to Eq.~3.4! of Ref. 8, the labelsb1>...>bn and
c1>...>cm of the corresponding Young superdiagram are given by

b1 5 l 1
0 5 l 12 1

2~ l 21 l 3! 5 3,

c1 5 n1 1
2~ l 31 l 2! 5 3

2, ~4!

c2 5 n1 1
2~ l 32 l 2! 5 3

2,

so the Young superdiagram has the form indicated in Table III:

Therefore, the Young diagram for the even subalgebrasp(2)% so(4) is
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It describes the irreducible representation of highest weight~3!–~0, 1! which forms the ground
floor. The irreducible representations on the following floors are computed graphically as fo

corresponding to the highest weights~2!–~1, 2! and ~2!–~1, 0!,

corresponding to the highest weights~1!–~0, 3!, ~1!–~2, 1!, and~1!–~0, 1!,

corresponding to the highest weights~0!–~1, 2! and ~0!–~1, 0!. These are precisely the highe
weights listed in Table III for this case.

We proceed to calculate thesp(2)% so(5) content of the typical codon representation
osp~5u2! with highest weight~5

2, 0, 1!. According to Eq.~3.1! of Ref. 8, the labelsb1>...>bn and
c1>...>cm of the corresponding Young superdiagram are given by

b1 5 l 1
0 5 l 12 l 22 1

2l 3 5 2,

c1 5 n1 l 21 1
2l 3 5 3

2, ~5!

c2 5 n1 1
2l 3 5 3

2,

so the Young superdiagram has the form indicated in Table III:

Therefore, the Young diagram for the even subalgebrasp(2)% so(5) is

It describes the irreducible representation of highest weight~2!–~0, 1! which forms the ground
floor. The irreducible representations on the following floors are computed graphically as fo

corresponding to the highest weight~1!–~1, 1!,
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corresponding to the highest weight~0!–~0, 3!. Again, these are precisely the highest weig
listed in Table III for this case.

Finally, it should be mentioned that we have omitted from Tables I–III some of the typ
codon representations determined in Ref. 4 because their branching schemes are obvio
those that are listed. Examples are the typical codon representations ofsl~4u1! with highest weight
(0,0,1,l 4) and ofsl~2u2! with highest weight (0,l 2,3), which are complex conjugate to those wi
highest weight (1,0,0,l 4) and (3,l 2,0), respectively, and which therefore exhibit the same bran
ing schemes, in all phases, except for complex conjugation which however does not affect d
sions. Similarly, it is known that the branching rules of typical representations of the Lie s
algebraosp~4u2, a! upon reduction to its even part do not depend ona,15 so that we may without
loss of generality puta51. Moreover, our calculations have shown that the three typical re
sentations with highest weight~5, 0, 0!, ~7

2, 3, 0!, and ~7
2, 0, 3!, as well as the three typica

representations with highest weight~3, 1, 1!, ~ 7
2, 1, 0!, and~7

2, 0, 1!, although inequivalent, have th
same branching rules under this reduction, so we have listed only one of each.

III. THE SEARCH FOR SURVIVING CHAINS

In the preceding section, we have described in some detail the arguments that are ne
analyze the first step of the symmetry breaking process through chains of subalgebras,
which the original supersymmetry is removed. All further steps involve only ordinary Lie alge
and are carried out according to the strategy already used in Ref. 1 and explained in de
Ref. 5. Briefly, the main criterion for excluding a given chain without having to analyze all o
ramifications is the occurence of one of the following situations:

• Total pairing: all multiplets come in pairs of equal or complex conjugate representation
further breaking is able to remove this feature, excluding the possibility to produce mult
with odd multiplicity, that is, the 3 sextets, 5 quartets, and 9 doublets found in the ge
code.

• More than 2 singlets. No further breaking is able to reduce the number of singlets, excl
the possibility to produce no more than the 2 singlets found in the genetic code.

• More than 4 odd-dimensional multiplets. No further breaking is able to reduce the numb
odd-dimensional multiplets, excluding the possibility to produce no more than the 2 tr
and 2 singlets found in the genetic code.

In what follows, we list the chains that can be excluded by one of these arguments, togethe
the relevant information on the distribution of multiplets obtained after the last step.

• A(2u0)5sl(3u1):
Total pairing.

• A(3u0)5sl(4u1):
Continuing the symmetry breaking process, we obtain the following chains, all of which
be excluded:
– A(3u0).A3.A2 : 10 triplets and 6 singlets.
– A(3u0).A3.C2.A1% A1 : 4 triplets and 4 singlets.
– A(3u0).A3.C2.A1 : 2 septets, 2 quintets, 2 triplets and 2 singlets.
– A(3u0).A3.A1% A1 : 2 nonets, 4 triplets and 2 singlets.
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• A(5u0)5sl(6u1):
Continuing the symmetry breaking process, we obtain the following chains, all of which
be excluded:
– A(5u0).A5.A4 : 4 quintets and 4 singlets, as well as total pairing.
– A(5u0).A5.A3 : Total pairing.
– A(5u0).A5.C3 : 4 singlets.
– A(5u0).A5.A2 : Total pairing.
– A(5u0).A5.A1% A3 : 4 singlets.
– A(5u0).A5.A2% A2 : 4 nonets, 8 triplets and 4 singlets.
– A(5u0).A5.A1% A2.A1% A1

(1) , where A2.A1
(1) corresponds to su(3).su(2):

4 triplets and 4 singlets.
– A(5u0).A5.A1% A2.A1% A1

(2) , where A2.A1
(2) corresponds to su(3).so(3):

2 nonets, 2 quintets, and 4 singlets.

• A(1u1)c5sl(2u2), the central extension ofA~1u1!, highest weight (1,l 2,1):
Too many odd-dimensional multiplets.

• A(2u1)5sl(3u2):
Continuing the symmetry breaking process, we obtain the following chains, all of which
be excluded:
– A(2u1).A2% A1.A1% A1

(1) , whereA2.A1
(1) corresponds tosu(3).su(2): 4 triplets and

4 singlets.
– A(2u1).A2% A1.A1% A1

(2) , where A2.A1
(2) corresponds tosu(3).so(3): 2 nonets,

2 quintets and 4 singlets.

• C(3)5osp(2u4):
Continuing the symmetry breaking process, we obtain the following chains, all of which
be excluded:
– C(3).C2.A1% A1 : 4 triplets and 4 singlets.
– C(3).C2.A1 : 2 septets, 2 quintets, 2 triplets and 2 singlets.

• C(4)5osp(2u6):
Too many singlets.

In the terminology of Ref. 5, we are thus left with six basic classical Lie superalgebras w
codon representations, up to the end of the first phase of the symmetry breaking process, p
surviving chains: their remaining symmetry is described by a direct sum ofsl~2! algebras.

Finally, we must pass to the second phase of the symmetry breaking process, during
some of thesl~2! algebras are broken. There are two ways of doing this, depending on wh
one uses the operatorLz or the operatorLz

2 as the symmetry breaking term in the model Ham
tonian; we shall in what follows refer to these two possibilities as ‘‘strong’’ breaking and ‘‘so
breaking, respectively. However, only the first of them corresponds to a genuine symmetry
ing at the level of Lie algebras, namely from the Lie algebrasl~2! to its Cartan subalgebra. A
natural interpretation of both possibilities as a legitimate symmetry breaking requires passin
the complex Lie algebrasl~2! to its compact real formsu~2! and from there to the correspondin
connected, simply connected Lie group SU~2!, which all have the same representation theory: th
as has been observed in Ref. 16, we may break the symmetry under the~connected! group SU~2!
in two different ways:~a! down to its maximal connected subgroup U~1!>SO~2! ~strong breaking!
or ~b! down to its maximal~nonconnected! subgroupZ23U~1!>O(2) ~soft breaking!. The effect
on a multiplet of dimension 2s11, corresponding to an irreducible representation of SU~2! ~or
su~2! or sl~2!! of spin s and highest weight 2s, is to break it~a! strongly into 2s11 singlets,
corresponding to the different eigenvalues of the operatorLz , or ~b! softly into

• s doublets and one singlet ifs is integer, or

• s doublets ifs is half-integer,
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corresponding to the different eigenvalues of the operatorLz
2.

The main complication in this second phase of the symmetry breaking process arises fr
necessity to take into account the possibility of~partially! ‘‘freezing’’ the symmetry breakdown in
the last step; for more details, see the discussion in Ref. 5.

As an immediate consequence of the previous discussion, we see that the chain resultin
the codon representation ofsl~2u1! can be excluded: all multiplets are of dimension.6 so that
further symmetry breaking is needed~i.e, no freezing is allowed!, but the remaining symmetry
algebra being a single copy ofsl~2!, any further breaking will produce only singlets or double

The most stringent criterion for a chain to be surviving during the second phase o
symmetry breaking process comes from the requirement of producing the correct num
sextets~3! and triplets~2!: it demands, among other things, that the number

d3 5
sum of the dimensions of all multiplets

whose dimension is a multiple of 3

which during this phase cannot decrease, must always remain>24. As an example, note that th
condition immediately eliminates the codon representation ofosp~3u2!, for which d3518, accord-
ing to Table III. The remaining cases must be handled case by case, as follows.

• A(1u1)c5sl(2u2), the central extension ofA(1u1), highest weight (3,l 2,0):

Up to the end of the first phase, we have a unique chain:

sl~2u2!.sl~2! % sl~2!.

The corresponding distribution of multiplets can be read off from Table II; there are
gether 10 multiplets, withd3530. However, among the four multiplets whose dimension
a multiple of 3, we have one multiplet of dimension 6, namely~5!–~0!, which cannot break
into triplets, one multiplet of dimension 12, namely~3!–~2!, which can either break into fou
triplets or else will produce no triplets at all, and finally two identical multiplets of dimens
6, namely~2!–~1!, which together can also either break into four triplets or else produc
triplets at all. Thus, there is no possibility to generate the two triplets found in the ge
code, so this chain may be discarded.

• B(1u2)5osp(3u4), highest weight~0, 5
2, 3!.

Up to the end of the first phase, we have the following chains:

1. osp(3u4).sp(4)% so(3).sl(2)% sl(2)% sl(2).
The corresponding distribution of multiplets can be read off from Table IV; there
altogether8 multiplets, withd3524. However, the two multiplets whose dimension is
multiple of 3, namely~1!–~0!–~5! and ~0!–~1!–~5!, both of dimension 12, cannot brea
into triplets, so this chain may be discarded.

TABLE IV. Branching of the codon representation ofosp(3u4) ~first phase!.

sp(4)% so(3) sl(2)% sl(2)% sl(2) sl(2)12% sl(2)

Highest Weight d Highest Weight d Highest Weight d

~1,0!–~5! 24 ~1!–~0!–~5! 12 ~1!–~5! 12
~0!–~1!–~5! 12 ~1!–~5! 12

~0,1!–~3! 20 ~1!–~1!–~3! 16 ~2!–~3! 12
~0!–~3! 4

~0!–~0!–~3! 4 ~0!–~3! 4
~1,0!–~1! 8 ~1!–~0!–~1! 4 ~1!–~1! 4

~0!–~1!–~1! 4 ~1!–~1! 4
~0,0!–~7! 8 ~0!–~0!–~7! 8 ~0!–~7! 8
~0,0!–~3! 4 ~0!–~0!–~3! 4 ~0!–~3! 4

5 subspaces 8 subspaces 9 subspaces
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2. osp(3u4).sp(4)% so(3).sl(2)% sl(2).
The corresponding distribution of multiplets is identical with that shown in Table III, si
no further branching occurs in the second reduction; there are altogether 5 multiplets
d3524. However, the unique multiplet whose dimension is a multiple of 3, namely~3!–
~5!, of dimension 24, cannot break into triplets, so this chain may be discarded.

Continuing the first chain by diagonal breaking from three copies ofsl~2! to two gives rise to
the following additional chain.

3. osp(3u4).sp(4)% so(3).sl(2)% sl(2)% sl(2).sl(2)12% sl(2).
The corresponding distribution of multiplets can be read off from Table 4; there
altogether 9 multiplets, withd3536. However, among the three multiplets whose dim
sion is a multiple of 3, we have two identical multiplets of dimension 12, namely~1!–~5!,
which cannot break into triplets, and one other multiplet of dimension 12, namely~2!–~3!,
which can either break into four triplets or else will produce no triplets at all. Thus t
is no possibility to generate the two triplets found in the genetic code, so this chain m
discarded.

The other possibilities of diagonal breaking by contracting the first or secondsl~2! with the
third can be ruled out because they lead to a total of 11 multiplets where the numberd3 has
already dropped to 21, so there is no chance of producing the correct number of sexte
triplets.

• B(2u1)5osp(5u2), highest weight~5
2, 0, 1!.

Up to the end of the first phase, we have the following chains:

1. osp(5u2).sp(2)% so(5).sl(2)% sl(2)% sl(2).
The corresponding distribution of multiplets can be read off from Table V; there
altogether 10 multiplets, withd3548. Note also the symmetry of the distribution
multiplets under exchange of the second with the thirdsl~2!.
In the first step, we must consider the following four options:
1. Breaking the firstsl~2! softly generates 12 multiplets withd3536.
2. Breaking the firstsl~2! strongly generates 18 multiplets withd3536.
3. Breaking the secondsl~2! softly generates 13 multiplets withd3530.
4. Breaking the secondsl~2! strongly generates precisely 21 multiplets withd3530.

TABLE V. Branching of the codon representation ofosp(5u2) ~first phase!.

sp(2)% so(5) sl(2)% sl(2)% s(2) sl(2)12% sl(2)

Highest Weight d Highest Weight d Highest Weight d

~1!–~1,1! 32 ~1!–~2!–~1! 12 ~3!–~1! 8
~1!–~1! 4

~1!–~1!–~2! 12 ~2!–~2! 9
~0!–~2! 3

~1!–~1!–~0! 4 ~2!–~0! 3
~0!–~0! 1

~1!–~0!–~1! 4 ~1!–~1! 4
~0!–~0,3! 20 ~0!–~2!–~1! 6 ~2!–~1! 6

~0!–~1!–~2! 6 ~1!–~2! 6
~0!–~3!–~0! 4 ~3!–~0! 4
~0!–~0!–~3! 4 ~0!–~3! 4

~2!–~0,1! 12 ~2!–~1!–~0! 6 ~3!–~0! 4
~1!–~0! 2

~2!–~0!–~1! 6 ~2!–~1! 6

3 subspaces 10 subspaces 14 subspaces
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Note that the last option leads to an interesting scheme that comes close to the g
code but is slightly different, with 3 sextets, 5 quartets, 4 triplets, 5 doublets, a
singlets. In the other three cases, the symmetry breaking process must proceed to t
stage, leading to the following options:
1.1 Breaking the firstsl~2! down strongly generates 18 multiplets withd3536, so the

symmetry breaking must continue and there can be no freezing at this stage, lead
the same situation as option 2 above.

1.2 Breaking the secondsl~2! softly generates 15 multiplets withd3518.
1.3 Breaking the secondsl~2! strongly generates 25 multiplets withd3518.
2.1 Breaking the secondsl~2! softly generates 22 multiplets withd3518.
2.2 Breaking the secondsl~2! strongly generates 35 multiplets withd3518.
3.1 Breaking the firstsl~2! softly generates 15 multiplets withd3518.
3.2 Breaking the firstsl~2! strongly generates 22 multiplets withd3518.
3.3 Breaking the secondsl~2! strongly generates precisely 21 multiplets withd3530,

leading to the same situation as option 4 above.
3.4 Breaking the thirdsl~2! softly generates 16 multiplets withd3512.
3.5 Breaking the thirdsl~2! strongly generates 26 multiplets withd3512.
As before, options 1.2, 3.1, and 3.4 are excluded, whereas in the cases of options 1
2.2, 3.2, and 3.5, the symmetry breaking process must terminate, and we must tak
account the possibility of freezing. However, the multiplets of dimension.6 must not be
frozen. As it turns out, it is impossible to generate the correct number of sextets~3!,
triplets ~2!, and singlets~2!. In the cases of options 1.3 and 3.5, we must break
multiplet of dimension 12 coming from the~1–1–2! and can therefore generate at mos
sextets or 2 sextets and 2 triplets. In the cases of options 2.1 and 3.2~which without
freezing would produce the same distribution of multiplets!, there is no possibility of
generating triplets. Finally, in the case of option 2.2, breaking or freezing any combin
of the two doublets coming from the~1–1–0!, the two doublets coming from the~0–3–0!
and the three doublets coming from the~2–1–0! will generate 14, 12, 10, 8, 6, 4, or n
singlets, but not 2 singlets.

2. osp(5u2).sp(2)% so(5).sl(2)% sl(2).
The corresponding distribution of multiplets is easily obtained; there are altogeth
multiplets, withd3530. However, among the three multiplets whose dimension is a m
tiple of 3, we have one multiplet of dimension 12, namely~1!–~5!, and one multiplet of
dimension 6, namely~0!–~5!, both of which cannot break into triplets, and one oth
multiplet of dimension 12, namely~2!–~3!, which can either break into four triplets or els
will produce no triplets at all. Thus there is no possibility to generate the two triplets fo
in the genetic code, so this chain may be discarded.

Continuing the first chain by diagonal breaking from three copies ofs@~2! to two gives rise to
the following additional chain:

3. osp(5u2).sp(2)% so(5).sl(2)% sl(2)% sl(2).sl(2)12% sl(2).
The corresponding distribution of multiplets can be read off from Table V; there
altogether 14 multiplets, withd3533.
In the first step, we must consider the following four options:
1. Breaking the firstsl~2! softly generates precisely 21 multiplets withd3518.
2. Breaking the firstsl~2! strongly generates 35 multiplets withd3518.
3. Breaking the seconds~2! softly generates 18 multiplets withd3524.
4. Breaking the seconds~2! strongly generates 28 multiplets withd3524.
Note that the first option leads to an an interesting scheme that comes close to the g
code but is slightly different, with 2 sextets, 7 quartets, 2 triplets, 8 doublets, a
singlets. In the cases of options 2 and 4, the symmetry breaking process must term
and we must take into account the possibility of freezing. However, the multiple
dimension 9 must not be frozen, so we get at least 3 triplets and at least 6 odd-dimen
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multiplets. Therefore, the only possibility of continuing the symmetry breaking proce
case 3, leading to the following options:
3.1 Breaking the firstsl~2! softly generates 26 multiplets withd350.
3.2 Breaking the firstsl~2! strongly generates 42 multiplets withd350.
3.3 Breaking the secondsl~2! down strongly generates 28 multiplets withd3524.
In all three cases, the symmetry breaking process must terminate, and we must ta
account the possibility of freezing. However, the multiplet of dimension 8 must no
frozen and will break either into 2 quartets or into 4 doublets. In all three cases, w
able to reproduce the genetic code, provided the freezing is chosen appropriate
indicated in Tables VI–VIII by vertical bars.

The remaining possibility of diagonal breaking by contracting the secondsl~2! with the third
can be ruled out because it leads to a total of 14 multiplets where the numberd3 has already
dropped to 12, so there is no chance of producing the correct number of sextets and t

• D(2u1)5osp(4u2), highest weight~5, 0, 0!.

Up to the end of the first phase, we have a unique chain:

TABLE VI. Branching of the codon representation ofosp(5u2) ~second phase!: First option.

sl(2)% sl(2)% sl(2) sl(2)12% sl(2) L3,z
2 (L12,z

2 ,L3,z
2 )

2s1– 2s2– 2s3 d 2s12– 2s3 d 2s12– 2m3 d 2m12– 2m3 d

1–2–1 12 3–1 8 3–~61! 8 ~63!–~61! 4
~61!–~61! 4

1–1 4 1–~61! 4 ~61!–~61! 4

1–1–2 12 2–2 9 2–~62! 6 ~62!–~62! 4
0–~62! 2

2–0 3 ~62!–0 2
0–0 1

0–2 3 0–~62! 2 0–~62! 2
0–0 1 0–0 1

1–1–0 4 2–0 3 2–0 3 ~62!–0 2
0–0 1

0–0 1 0–0 1 0–0 1

1–0–1 4 1–1 4 1–~61! 4 ~61!–~61! 4

0–2–1 6 2–1 6 2–~61! 6 ~62!–~61! 4
0–~61! 2

0–1–2 6 1–2 6 1–~62! 4 ~61!–~62! 4
1–0 2 ~61!–0 2

0–3–0 4 3–0 4 3–0 4 ~63!–2 2
~61!–0 2

0–0–3 4 0–3 4 0–~63! 2 0–~63! 2
0–~61! 2 0–~61! 2

2–1–0 6 3–0 4 3–0 4 ~63!–0 2
~61!–0 2

1–0 2 1–0 2 ~61!–0 2

2–0–1 6 2–1 6 2–~61! 6 ~62!–~61! 4
0–~61! 2

10 subspaces 14 subspaces 18 subspaces 26 subspaces
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TABLE VII. Branching of the codon representation ofosp(5u2) ~second phase!: Second option.

sl(2)% sl(2)% sl(2) sl(2)12% sl(2) L3,z
2 (L12,z ,L3,z

2 )

2s1– 2s2– 2s3 d 2s12– 2s3 d 2s12– 2m3 d 2m12– 2m3 d

1–2–1 12 3–1 8 3–~61! 8 ~13!–~61! 2
~23!–~61! 2
~11!–~61! 2
~21!–~61! 2

1–1 4 1–~61! 4 ~11!–~61! 2
~21!–~61! 2

1–1–2 12 2–2 9 2–~62! 6 ~12!–~62! 2
~22!–~62! 2

0–~62! 2
2–0 3 ~12!–0 1

~22!–0 1
0–0 1

0–2 3 0–~62! 2 0–~62! 2
0–0 1 0–0 1

1–1–0 4 2–0 3 2–0 3 ~12!–0 1
~22!–0 1

0–0 1

0–0 1 0–0 1 0–0 1

1–0–1 4 1–1 4 1–~61! 4 ~11!–~61!
~21!2~61!

2
2

0–2–1 6 2–1 6 2–~61! 6 ~12!–~61! 2
~22!–~61! 2

0–~61! 2

0–1–2 6 1–2 6 1–~62! 4 ~11!–~62! 2
~21!–~62! 2

1–0 2 ~11!–0 1
~21!–0 1

0–3–0 4 3–0 4 3–0 4 ~13!–0 1
~23!–0 1
~11!–0 1
~21!–0 1

0–0–3 4 0–3 4 0–~63! 2 0–~63! 2
0–~61! 2 0–~61! 2

2–1–0 6 3–0 4 3–0 4 ~13!–0 1
~23!–0 1
~11!–0 1
~21!–0 1

1–0 2 1–0 2 ~11!–0 1
~21!–0 1

2–0–1 6 2–1 6 2–~61! 6 ~12!–~61! 2
~22!–~61! 2

0–~61! 2

10 subspaces 14 subspaces 18 subspaces 42 subspaces
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1. osp(4u2).sl(2)% sl(2)% sl(2).

The corresponding distribution of multiplets can be read off from Table III; there
altogether 6 multiplets, withd3542. Note also the symmetry of the distribution of mu
tiplets under exchange of the second with the thirdsl~2!. However, among the fou
multiplets whose dimension is a multiple of 3, we have one multiplet of dimensio
namely~5! – ~0! – ~0!, which cannot break into triplets, and three multiplets of dimens
12, namely~3! – ~2! – ~0!, ~3! – ~0! – ~2!, and~2! – ~1! –~1!, each of which can eithe
break into four triplets or else will produce no triplets at all. Thus there is no possibili
generate the two triplets found in the genetic code, so this chain may be discarded

Continuing this chain by diagonal breaking from three copies ofsl~2! to two gives rise to the
following additional chains.

2. osp(4u2).sl(2)% sl(2)% sl(2).sl(2)12% sl(2).

The corresponding distribution of multiplets is easily obtained; there are altogethe
multiplets, withd3536. However, among the four multiplets whose dimension is a m
tiple of 3, we have one multiplet of dimension 12, namely~5! – ~1!, and two identical

TABLE VIII. Branching of the codon representation ofosp(5u2) ~second phase!: Third option.

sl(2)% sl(2)% sl(2) sl(2)12% sl(2) L3,z
2 L3,z

2s1– 2s2– 2s3 d 2s12– 2s3 d 2s12– 2m3 d 2s12– 2m3 d

1–2–1 12 3–1 8 3–~61! 8 3–~11! 4
3–~21! 4

1–1 4 1–~61! 4 1–~11! 2
1–~21! 2

1–1–2 12 2–2 9 2–~62! 6 2–~12! 3
2–~22! 3

2–0 3 2–0 3

0–2 3 0–~62! 2 0–~12! 1
0–~22! 1

0–0 1 0–0 1

1–1–0 4 2–0 3 2–0 3 2–0 3
0–0 1 0–0 1 0–0 1

1–0–1 4 1–1 4 1–~61! 4 1–~11! 2
1–~21! 2

0–2–1 6 2–1 6 2–~61! 6 2–~11! 3
2–~21! 3

0–1–2 6 1–2 6 1–~62! 4 1–~12! 2
1–~22! 2

1–0 2 1–0 2

0–3–0 4 3–0 4 3–0 4 3–0 4

0–0–3 4 0–3 4 0–~63! 2 0–~13! 1
0–~23! 1

0–~61! 2 0–~11! 1
0–~21! 1

2–1–0 6 3–0 4 3–0 4 3–0 4
1–0 2 1–0 2 1–0 2

2–0–1 6 2–1 6 2–~61! 6 2–~11! 3
2–~21! 3

10 subspaces 14 subspaces 18 subspaces 28 subspaces
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multiplets of dimension 6, namely~5! – ~0!, all of which cannot break into triplets, an
one other multiplet of dimension 12, namely~3! – ~2!, which can either break into fou
triplets or else will produce no triplets at all. Thus there is no possibility to generate
two triplets found in the genetic code, so this chain may be discarded.

3. osp(4u2).sl(2)% sl(2)% sl(2).sl(2)% sl(2)23.

The corresponding distribution of multiplets can be read off from Table IX; there
altogether 8 multiplets, withd3557.
In the first step, we must consider the following four options:
1. Breaking the firstsl~2! softly generates 18 multiplets withd3548.
2. Breaking the firstsl~2! strongly generates 32 multiplets withd3548.
3. Breaking the secondsl~2! softly generates 12 multiplets withd3518.
4. Breaking the secondsl~2! strongly generates 16 multiplets withd3518.
As before, options 3 and 4 are excluded, whereas in the case of option 2, the sym
breaking process must terminate, and we must take into account the possibility of fre
However, the multiplets of dimension. 6 and of dimension 5 must not be frozen, so w
get at least 16 triplets and 5 singlets. Therefore, the only possibility of continuing
symmetry breaking process is case 1, leading to the following options:
1.1 Breaking the firstsl~2! strongly generates 32 multiplets withd3548.
1.2 Breaking the secondsl~2! softly generates 27 multiplets withd350.
1.3 Breaking the secondsl~2! strongly generates 35 multiplets withd350.
In all three cases, the symmetry breaking process must terminate, and we must ta
account the possibility of freezing. However, we already have 2 triplets and 2 single
the previous stage, and the requirement that no new triplets or singlets may be gen
forces the large majority of the multiplets to be frozen. As it turns out, it is possibl
generate the correct number of sextets~3!, triplets~2!, and singlets~2!, but not of quartets
~5! and doublets~9!; we get at most 4 quartets and at least 11 doublets.

• D(2u1)5osp(4u2), highest weight~7
2, 0, 1!.

Up to the end of the first phase, we have a unique chain:

1. osp(4u2).sl(2)% sl(2)% sl(2).
The corresponding distribution of multiplets can be read off from Table III; there
altogether 8 multiplets, withd3542. Note also the symmetry of the distribution of mu
tiplets under exchange of the first with the thirdsl~2!.
In the first step, we must consider the following four options:
1. Breaking the firstsl~2! softly generates 11 multiplets withd3536.
2. Breaking the firstsl~2! strongly generates 18 multiplets withd3536.
3. Breaking the secondsl~2! softly generates 9 multiplets withd3530.

TABLE IX. Branching of the codon representation ofosp(4u2) with highest weight~5,0,0! ~first phase!.

sl(2)% sl(2)% sl(2) sl(2)% sl(2)23

Highest Weight d Highest Weight d

~4!–~1!–~1! 20 ~4!–~2! 15
~4!–~0! 5

~3!–~2!–~0! 12 ~3!–~2! 12
~3!–~0!–~2! 12 ~3!–~2! 12
~2!–~1!–~1! 12 ~2!–~2! 9

~2!–~0! 3
~5!–~0!–~0! 6 ~5!–~0! 6
~1!–~0!–~0! 2 ~1!–~0! 2

6 subspaces 8 subspaces
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4. Breaking the secondsl~2! strongly generates 14 multiplets withd3530, but among
them are 2 nonets, 4 triplets and 2 singlets.

In the first three cases, the symmetry breaking process must proceed to the next
leading to the following options:
1.1 Breaking the firstsl~2! strongly generates 18 multiplets withd3536, so the symmetry

breaking must continue and there can be no freezing at this stage, leading to the
situation as option 2 above.

1.2 Breaking the secondsl~2! softly generates 12 multiplets withd3524.
1.3 Breaking the secondsl~2! strongly generates 19 multiplets withd3524, but among

them are 4 triplets and 4 singlets.
1.4 Breaking the thirdsl~2! softly generates 15 multiplets withd3512.
1.5 Breaking the thirdsl~2! strongly generates 24 multiplets withd3512.
2.1 Breaking the secondsl~2! softly generates 20 multiplets withd3524.
2.2 Breaking the secondsl~2! strongly generates 30 multiplets withd3524.
2.3 Breaking the thirdsl~2! softly generates 24 multiplets withd3512.
2.4 Breaking the thirdsl~2! strongly generates 40 multiplets withd3512.
3.1 Breaking the firstsl~2! softly generates 12 multiplets withd3524, leading to the same

situation as option 1.2.
3.2 Breaking the firstsl~2! strongly generates 20 multiplets withd3524, leading to the

same situation as option 2.1.
3.3 Breaking the secondsl~2! strongly generates 14 multiplets withd3530, leading to the

same situation as option 4 above.
As before, option 1.4 is excluded, whereas in the case of options 1.5, 2.2, 2.3, and 2
symmetry breaking process must terminate, and we must take into account the pos
of freezing. However, the multiplets of dimension.6 must not be frozen. In the cases
options 1.5 and 2.3, we do not get any triplets or singlets at all. In the case of optio
we either do not get any triplets or singlets at all or else we get too many~at least 4!. In
the case of option 2.2, we are able to produce the correct number of sextets~3!, triplets~2!
and singlets~2!, but there is no possibility to generate the correct number of quartet~5!
and doublets~9!: we can only get 2 quartets and 15 doublets. In the case of option 2.1
already have 20 multiplets but no triplets and no singlets: their generation would re
breaking at least two multiplets in the next step~one sextet and one doublet, for exampl!,
leading to at least 22 multiplets. We are thus left with a single surviving option
continuing the symmetry breaking process, namely 1.253.1, which consists in breaking
both the first and the secondsl~2! softly, generating 12 multiplets withd3524, giving rise
to the following options:
~a! Breaking the firstsl~2! strongly generates 20 multiplets withd3524, leading to the

same situation as option 2.1 above.
~b! Breaking the secondsl~2! strongly generates 19 multiplets withd3524, leading to the

same situation as option 1.3 above.
~c! breaking the thirdsl~2! softly generates 16 multiplets withd350.
~d! breaking the thirdsl~2! strongly generates 26 multiplets withd350.

As before, option~c! is excluded, whereas in the case of option~d!, we do not get any
triplets or singlets at all.

Continuing this chain by diagonal breaking from three copies ofsl~2! to two gives rise to the
following additional chain.

2. osp(4u2).sl(2)% sl(2)% sl(2).sl(2)12% sl(2).
The corresponding distribution of multiplets is easily obtained; there are altogethe
multiplets, withd3524. However, among the three multiplets whose dimension is a m
tiple of 3, we have one multiplet of dimension 12, namely~3!–~2!, which can either break
into four triplets or else will produce no triplets at all, and two identical multiplets
dimension 6, namely~1!–~2!, which together can also either break into four triplets or e
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produce no triplets at all. Thus, there is no possibility to generate the two triplets fou
the genetic code, so this chain may be discarded.

The remaining possibility of diagonal breaking by contracting the firstsl(2) with the third can be
ruled out because it leads to a total of 14 multiplets among which there are 1 nonet, 2 quin
triplets, and 1 singlet.

IV. CONCLUSIONS

The main results of the analysis presented in Ref. 4 and in the present paper, wh
preliminary form were announced in Refs. 17 and 18, can be summarized as follows.

The idea of describing the degeneracies of the genetic code as the result of a sym
breaking process through chains of subalgebras can be investigated systematically wit
context of typical codon representations of basic classical Lie superalgebras, instead of o
codon representations of ordinary simple Lie algebras. The first result is negative: as before
is no symmetry breaking pattern through chains of subalgebras capable of reproducing exa
degeneracies of the genetic code. In other words, the phenomenon of ‘‘freezing’’ remai
essential part of the approach. The second result is positive and, as far as the uniquenes
concerned, more stringent than its nonsupersymmetric counterpart: admitting the possib
‘‘freezing’’ during the last step of the procedure, we find three schemes that do reproduc
degeneracies of the standard code, all based on the orthosymplectic algebraosp~5u2! and differing
only in the detailed form of the symmetry breaking pattern during the last step. The most n
scheme, shown in Tables V and VI, is the one that allows for a simple choice of Hamiltonia
the sense used in Ref. 1 and explained in more detail in Ref. 5, namely, the following:

H 5 H01lC2~so~5!!1a1L1
21a2L2

21a3L3
21a12~L11L2!21b3L3,z

2

1g12~~L11L2!222!~L1,z1L2,z!
2. ~6!

The investigation of the resultingosp~5u2! model for the genetic code is presently under way.
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In this paper we aim to prove that, except for the three known cases, the unipara-
metric family of Hamiltonian systems defined by the generalized van der Waals
potential is nonintegrable in the Liouville–Arnold sense. The proof is based on the
theorem of Morales and Ramis about nonintegrability by differential Galois theory.
© 2000 American Institute of Physics.@S0022-2488~00!01308-6#

I. INTRODUCTION

A. On classic and new criteria of nonintegrability

We say that an-DOF Hamiltonian system is completely integrable in the extended Liouvi
Arnold sense if there existn meromorphic first integrals independent and in involution in an o
dense subset of the complexified phase space. We will show that the Hamiltonian system
by ~1! is not completely integrable in the previous sense. The criterion we use relies i
behavior of the solutions in the complex domain. This kind of procedures began in the last c
when Poincare´ gave a nonintegrability result based on the properties of the monodromy mat
the variational equation along a periodic integral curve.1 Later, at the beginning of this century
Painlevé~see Ref. 2, and references therein! settled the basic lines of the so-called Painle´
analysis. This method has successfully been used in the search for integrable cases.3,4 However, a
Hamiltonian system may not satisfy the Painleve´ property and, at the same time, it may b
completely integrable.2

An important progress was made by Ziglin in 1982.5,6 Ziglin proved a nonintegrability resul
for complex analytic Hamiltonian systems based on some properties of the monodromy gr
a normal variational equation along a complex integral curve. About 10 years later, in se
researches carried out by Morales and Simo´ in Ref. 7 and by Churchill and Rod,8 they showed in
the context of the differential Galois theory sufficient conditions in order to verify the hypoth
of Ziglin’s theorem.

Recently, Morales and Ramis have reach the core of the problem still within differe
Galois theory.9,10 Under the hypothesis of complete integrability they have obtained that
identity component of the differential Galois group of the normal variational equation alo
complex integral curve must be Abelian. In particular, for 2-DOF Ziglin’s theory appears
corollary of Morales and Ramis theory. In the case of 2-DOF, another advantage in usin
theory lies in the fact that we only need to check~e.g., by Kovacic’s algorithm11! that the identity
component of the differential Galois group is not Abelian, in contrast with further computa
needed in the differential Galois approach of Ziglin’s theory.8 For recent applications of Morales
Ramis theory, see Ref. 12.

B. The van der Waals family and its integrable cases

Proposed by Alhassidet al.,13 the generalized van der Waals Hamiltonian~GVDW! in cylin-
drical coordinates is given by
54450022-2488/2000/41(8)/5445/8/$17.00 © 2000 American Institute of Physics
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Hb5
1

2 S P21
L2

r2 1Z2D2
1

r
1

g

2
~r21b2z2!, ~1!

in which r 5Ar21z2, andP, L, andZ are the canonical momenta conjugate to the coordinater,
l, andz respectively,g is fixed value, andb is a parameter. Thus,l is a cyclic variable; in other
words, apart from the Hamiltonian itself, the system has a second integralL.

The Hamiltonian~1! is a 2-DOF system of great interest in solid-state physics and phy
chemistry.14 Particular cases are the standard hydrogen atom wheng50; the caseb5& corre-
sponds to the instantaneous van der Waals potential; the integrable spherical quadratic Z
effect whenb51; the classical quadratic Zeeman effect in magnetic fields given byb50 and
g52v2/2, wherev is the electron cyclotron frequency. This last problem has been thorou
studied~see, for instance, Gay15 and Hasegawaet al.16!.

Since the pioneering work of Alhassidet al. two research approaches have been taken up
understanding of the dynamics and the search for integrals. With respect to the global dyn
some papers have been published~see Ganesan and Lakshmanan17 and Howard and Farrelly,18

and the references therein!. Elipe and Ferrer in Ref. 19, have studied the global dynamics of
averaged system. They have shown that lines of local pitchfork and global oyster bifurc
emerge from the known integrable cases~see below!. These changes in topological behavior fro
the integrable cases allowed them to conjecture that the three known integrable cases are
ones. In the same way, Farrelly and Uzer20 considered higher order normalized systems of
generalized van der Waals potential, trying to see the possible relation of the equilibria
averaged system with the integrable cases. They showed that the separable integrableb
51,2 exhibit different patterns from the nonseparable caseb5 1

2.
The problem of the integrability of~1! has been considered in different ways. One su

approach is the Painleve´ analysis. Ganesan and Lakshmanan21 showed that the Hamiltonian vecto
field derived from~1!, whenL50, has the Painleve´ property whenb5 1

2,1,2, and they obtained
these integrals. The next advance was due to Howard and Farrelly18 who, following the approach
of Blümel et al.22 for the Paul trap system, obtained the third integral in three dimensions fo

valuesb5 1
2,2 valid except for thez-axis. The third integralI b for b51,2,12 is

I 15~rZ2zP!21
L2z2

r2 ,

I 252P~rZ2zP!2
z

r
2r2z1

L2z

r2 ,

I 1/2
2 5I r

2I l
2L2r 2,

where

I r5Z~rZ2zP!1
r

r
2

1

4
rz21

L2

r
,

I l52
L

r
~rP1zZ!.

Apart from these integrable cases, the possible existence of more has remained an open q
To our knowledge, no satisfactory Painleve´ analysis has been carried out outside the manif

L50. Moreover, the Painleve´ analysis is not a good criterion to show nonintegrability as
mentioned above. Thus, rigorous proof of nonintegrability in the Liouville–Arnold sense o
generalized van der Waals potential has its own interest. More precisely, we prove that, exc
the three known cases, the GVDW Hamiltonian is nonintegrable in the Liouville–Arnold se
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II. THE NONINTEGRABILITY OF THE GVDW HAMILTONIAN FAMILY

A. First trials

In order to prove the nonintegrability of the Hamiltonian system defined by~1! we first tried
the approach followed by Kummer and Saenz23 for proving the nonintegrability of the Zeema
Hamiltonian (b50). They computed the normal variational equation~NVE!, of Fuchsian type in
this case, over the abstract Reimann surface defined by a particular solution. They showed
differential Galois group of the NVE is SL(2,C) using the Kovacic’s algorithm.11 So, using the
differential Galois approach due to Churchill and Rod,24 the monodromy group is not Ziglin. This
last fact allowed them to prove the non integrability of the Zeeman Hamiltonian by Zig
theorem.5,6 The main difficulty of this approach is to compute the differential Galois group of
second order linear differential equation corresponding to the previous NVE over the fie
meromorphic functions over the projective complex planeP1. In our problem, this computation
becomes a very cumbersome task due to the presence ofh, L, andb. In other words, only partial
results can be obtained. Even assumingh50 for instance, not much simplification is obtaine
Concretely, we have shown25 that if parameterb does not belong to this set,

H p

8
:p integerJ øH p

10
:p integerJ øH p

12
:p integerJ ,

the Hamiltonian~1! is not completely integrable in the Liouville–Arnold sense. Thus, there
still infinitely many other values of the parameterb, apart from the three known integrable cas
where the integrability has to be checked.

B. On a theorem of Morales and Ramis

To avoid the difficulties encountered, we have taken a different approach. We will fix
value of the energy so that, in suitable coordinates, the resulting Hamiltonian function is a n
Hamiltonian with a homogeneous potential. In this way, we have taken into account a r
extension of a known criterion of nonintegrability by Yoshida.26 This extended criterion has bee
obtained by Morales and Ramis~see Refs. 10 and 27!, and it is based on a generalization of th
Ziglin’s theorem by the same authors.9,10 Let us note that the theory of Morales and Ramis
coordinates free. Moreover the change of coordinates are allowed on condition that they ha
same kind of regularity as the type of integrability we are studying; this is the case in the c
we will make use.

We outline below the criterion of nonintegrability for natural Hamiltonian systems conta
in Refs. 10 and 27.

We consider a natural Hamiltonian function with homogeneous potential, i.e., of the ty

H~x,y!5 1
2~y1

21¯1yn
2!1V~x1 ,...,xn!, ~2!

whereV is a homogeneous function of integer degreek. Let us supposen>2, andkÞ0. First, we
select a solutionc5(c1 ,...,cn) of the equation

¹V~c!5c, ~3!

where¹ denotes the gradient operator. Then, we compute the eigenvalues of the Hessian m
V at c. We denote them byl i for i 51,...,n. Then, we have the following theorem:10,27

Theorem 2.1: If the Hamiltonian system with Hamiltonian (2) is completely integrable w
holomorphic (or meromorphic) first integrals, then each pair(k,l i) belongs to one of the follow
ing lists:
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1. ~22,a!, aPC, 2. ~2,a!, aPC,

3. ~23,25
242

1
6~113p!2!, 4. ~3,2 1

241
1
6~113p!2!,

5. ~23,25
242

3
8~

1
212p!2!, 6. ~3,2 1

241
3
8~

1
212p!2!,

7. ~23,25
242

3
2~

2
51p!2!, 8. ~3,2 1

241
3
2~

2
51p!2!,

9. ~23,25
242

3
2~

1
51p!2!, 10. ~3,2 1

241
3
2~

2
51p!2!,

11. ~24,9
822~ 1

31p!2!, 12. ~4,2 1
812~ 1

31p!2!,

13. ~25,49
402

5
2~

1
31p!2!, 14. ~5,2 9

401
5
2~

1
31p!2!,

15. ~25,49
402

1
10~215p!2!, 16. ~5,2 9

401
1

10~215p!2!,

17. ~k,p1p~p21!k/2!, 18. S k,
1

2 S k21

k
1p~p11!kD D ,

where p is an arbitrary integer.
As we have mentioned in Sec. II A, Theorem 2.1 generalizes a known criterion by Yosh26

that has been used in the last years.28–31

C. GVDW system as a natural Hamiltonian system

In this section we apply the criterion sketched in Sec. II in order to study the integrabili
the Hamiltonian system defined by the Hamiltonian function~7!.

In order to apply the criterion sketched above~Theorem 2.1! we convert the Hamiltonian~1!
into a natural Hamiltonian with homogeneous potential. We begin by writing the Hamiltonia~1!
in Cartesian coordinates. Then, by rescaling we obtain

Hb5
1

2
~X21Y21Z2!2

1

r
1

1

2
~x21y21b2z2!. ~4!

Using the Kustaanheimo–Stiefel transformation of coordinates,

x52~u1u31u2u4!,

y52~u1u22u3u4!,

z5u1
22u2

22u3
21u4

2,

and their conjugate momentaP,32 where

r 5u25(
i 51

4

ui
2, P25(

i 51

4

Pi
2

that verify the constraint

u4P12u1P42u3P21u2P350,

the Hamiltonian~4! takes the form,

Hb5
1

8u2 P22
1

u2 1
1

2
~4~u1u31u2u4!214~u1u22u3u4!21b2~u1

22u2
22u3

21u4
2!2!. ~5!

As we have mentioned above, this change does not introduce essential singularities. Furth
we see trivially that a meromorphic integral of~4! is transformed to a meromorphic integral of~5!
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by the Kustaanheimo–Stiefel transformation. Now, we convert the Hamiltonian~5! into a system
of four coupled anharmonic oscillators making a transformationt→t of the independent variable
~regularization33!

dt

dt
54r 54u2.

Multiplying ~5! by 4r leads to a four anharmonic oscillators system, defined by

45 1
2~P21v2u2!12u2~4~u1u31u2u4!214~u1u22u3u4!21b2~u1

22u2
22u3

21u4
2!2!, ~6!

wherev2528h, h being the energy of the Hamiltonian~5!.
In order to prove the nonintegrability of the Hamiltonian system defined by~6! it is sufficient

to show that for a specific value of the energy, the Hamiltonian is not completely integrable.
we fix the energy to be zero. By denoting

Vb~u!52u2~4~u1u31u2u4!214~u1u22u3u4!21b2~u1
22u2

22u3
21u4

2!2!,

we obtain the following natural HamiltonianH with homogeneous potentialV of degree 6,

45H5 1
2P

21Vb~u!. ~7!

Thus, we can apply the indicated procedure of Morales and Ramis to show nonintegrability
system defined by~7!. Because the exponent of the parameterb in the Hamiltonian is even we will
analyze the caseb.0. The caseb50 is considered later.

D. Application of the Morales–Ramis theorem

In our problem, the system of Eq.~3! reads

~2114~4~u1u31u2u4!214~u1u22u3u4!21b2~u1
22u2

22u3
21u4

2!212~u1
21u2

21u3
21u4

2!

3~2u2
212u3

21b2~u1
22u2

22u3
21u4

2!!!!u150, ~8!

~2114~4~u1u31u2u4!214~u1u22u3u4!21b2~u1
22u2

22u3
21u4

2!212~u1
21u2

21u3
21u4

2!

3~2u1
212u4

21b2~u2
22u1

22u4
21u3

2!!!!u250, ~9!

~2114~4~u1u31u2u4!214~u1u22u3u4!21b2~u1
22u2

22u3
21u4

2!212~u1
21u2

21u3
21u4

2!

3~2u1
212u4

21b2~u2
22u1

22u4
21u3

2!!!!u350, ~10!

~2114~4~u1u31u2u4!214~u1u22u3u4!21b2~u1
22u2

22u3
21u4

2!212~u1
21u2

21u3
21u4

2!

3~2u2
212u3

21b2~u1
22u2

22u3
21u4

2!!!!u450. ~11!

We do not plan to resolve this system here. In order to apply Theorem 2.1 we have identified
of the solutions which are sufficient for our purposes. More precisely, we are looking for solu
verifying u15u250 ~similar results can be obtained takingu35u450!. Then, the resulting sys
tem reads

~2118~u3
21u4

2!~2u4
21b2~u3

22u4
2!!14~4u3

2u4
21b2~u4

22u3
2!2!!u350,

~2118~u3
21u4

2!~2u4
22b2~u3

22u4
2!!14~4u3

2u4
21b2~u4

22u3
2!2!!u450.

The solutions of the above subsystem are
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$u3 ,u4%5H V

2 S 1

3D 1/4

,
2V

2 S 1

3D 1/4J , ~12!

$u3 ,u4%5H x
V

&
S 1

3b2D 1/4

,~12x!
V

&
S 1

3b2D 1/4J , ~13!

$u3 ,u4%5$6 i ~4~42b2!!21/4,6 i ~4~42b2!!21/4%, ~14!

wherex50,1, andV belongs to the set of the four complex roots of unity. In what follows,
order to prove the nonintegrability, we will only need to make use of the first two sets of solu

Indeed, in the second step of the procedure we compute the eigenvalues of the Hessian
of the potentialV valued in the above sets of particular solutions. Concretely, any famil
solutions in set~12! leads to the following eigenvalues:

H 2114b2

3
,1,1,5J ,

and any family of solutions in the set~13! leads to the following eigenvalues:

H 42b2

3b2 ,
42b2

3b2 ,1,5J . ~15!

We will consider first the eigenvalue (2114b2)/3. Taking into account Theorem 2.1, th
necessary condition for the Hamiltonian~7! to be integrable is that the (6,(2114b2)/3) pair
belongs to either the first set or to the last set in the list of Theorem 2.1. Thus, two cases
considered.

~a! The (6,(2114b2)/3) pair belongs to the first set in the Theorem 2.1. Then, parametb
must be in setA5A1øA2 , where

A15H3p21

2
:p>1, integerJ ,

A25H 123p

2
:p<0, integerJ .

~b! The (6,(2114b2)/3) pair belongs to the last set in the Theorem 2.1. Then, parameb
must be in setB5B1øB2 , where

B15H 6p13

4
:p>0, integerJ ,

B25H 2
6p13

4
:p<21, integerJ .

In the case of eigenvalues 1 and 5 it is easy to check that the pairs~6, 1! and~6, 5! belong to the
first list in Theorem 2.1.

From the above analysis we conclude that ifb does not belong toAøB the Hamiltonian
system defined by~7! is not completely integrable in the Liouville–Arnold sense by the Theor
2.1. Now, in order to finish the proof we will consider the second set of eigenvalues~15! and
proceed as with the previous set. However, we only need to consider those values ofbPAøB.

Let us suppose first thatb52. Then, the set of eigenvalues is$0,0,1,5%. Immediately we find
that the ~6, 0! pair belongs to the list in Theorem 2.1. Now, supposebÞ2, and that (4
2b2)/3b2 belongs to the first set of conditions in Theorem 2.1. Then, there must exist an in
p solution to the equation
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p13p~p21!5
42b2

3b2 .

By solving the equation we obtain thatL15(b12)/3b or L25(b22)/3b must be an integer
Thus, it is easy to show that ifbPA,B, only b51 makesL1 integer andb5 1

2 makesL2 integer.
Finally, let us suppose that (42b2)/3b2 belongs to the last list of Theorem 2.1. Then, it mu

exist an integerp solution to the equation,

5

12
13p~p11!5

42b2

3b2 .

By solving this equation we obtain thatL35(23b14)/6b or L45@(3b14)/6b# must be an
integer. Now, takingbPAøB it is immediate to show thatL3 andL4 are not integers.

The valueb50 remains to be considered. In this case, by imposingu15u250 we easily
obtain a solution to the system of Eqs.~8!–~11!,

$u3 ,u4%5$122~1/4!,122~1/4!%.

The eigenvalues of the Hessian matrix ofV0 valued in the above solution are

$2 1
3,1,1,5%.

It is straightforward to check that the eigenvalue21
3 does not belong to the list in Theorem 2.

Then, the Hamiltonian system defined by~7! is not completely integrable ifb50.
Thus, we have proved the following theorem.

Theorem 2.2: The generalized van der Waals Hamiltonian system forb¹$ 1
2,1,2% is not

integrable by independent, in involution and real integrals that have meromorphic extensi

C6. For bP$ 1
2,1,2%, the system is integrable.

Finally, we note that we have obtained the result of Kummer and Sa´enz about the
nonintegrability of the Zeeman effect by a shorter way.
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Integration of the soliton hierarchy with self-consistent
sources

Yunbo Zenga)

Department of Mathematical Sciences, Tsinghua University,
Beijing 100084, People’s Republic of China

Wen-Xiu Ma
Department of Mathematics, City University of Hong Kong Kowloon,
Hong Kong, People’s Republic of China

Runliang Lin
Department of Mathematical Sciences, Tsinghua University,
Beijing 100084, People’s Republic of China

~Received 29 March 2000; accepted for publication 12 May 2000!

In contrast with the soliton equations, the evolution of the eigenfunctions in the Lax
representation of soliton equation with self-consistent sources~SESCS! possesses
singularity. We present a general method to treat the singularity to determine the
evolution of scattering data. The AKNS hierarchy with self-consistent sources, the
MKdV hierarchy with self-consistent sources, the nonlinear Schro¨dinger equation
hierarchy with self-consistent sources, the Kaup–Newell hierarchy with self-
consistent sources and the derivative nonlinear Schro¨dinger equation hierarchy with
self-consistent sources are integrated directly by using the inverse scattering
method. TheN soliton solutions for some SESCS are presented. It is shown that the
insertion of a source may cause the variation of the velocity of soliton. This ap-
proach can be applied to all other (111)-dimensional soliton hierarchies. ©2000
American Institute of Physics.@S0022-2488~00!05008-8#

I. INTRODUCTION

In recent years the nonlinear evolution equations with self-consistent sources have bee
ied through some different ways and have important physical applications,1–11 for example, the
nonlinear Schro¨dinger equation with self-consistent sources is relevant to some problem
plasma physics and solid state physics. Some of this kind of nonlinear integrable system
constructed by adding a new operator to the original Lax representation in Ref. 10, by repres
the source as the Fourier integral over the eigenfunctions of the so-called generating ope
Ref. 11, or by relating the sources to the singular part of the dispersion law in Refs. 3 an
Recently the soliton equations with self-consistent sources~SESCS! were studied based on th
high-order constrained flows of soliton equations, namely the high-order constrained flo
soliton equations are consider as the stationary equations of the SESCS.13–16The ‘‘self-consistent
sources’’ considered in Refs. 13–16 and in present paper are similar to those conside
Mel’nikov in Refs. 11 and 17 and differ fundamentally from the ones of Refs. 3 and 12 whic
constructed with the scattering states~realk! instead of the the discrete eigenvalues. These SE
do not have x-type Hamiltonian formulation, however possesst-type Hamiltonian or bi-
Hamiltonian formulation.18 They can be used to deduce sinh-Gordon type of equations.19

A few nonlinear evolution equations with self-consistent sources were solved. The integ
of KdV equation with self-consistent sources, nonlinear Schro¨dinger equation hierarchy with
self-consistent sources and some (211)-dimensional SESCS was proposed by means of inv
scattering method without use of explicit evolution equations of eigenfunctions in Refs. 11 a

a!Electronic mail: yzeng@mail.tsinghua.edu.cn
54530022-2488/2000/41(8)/5453/37/$17.00 © 2000 American Institute of Physics
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and by means of matrix theory in Ref. 1. The modified NLS~nonlinear Schro¨dinger! equation with
a source and the modified Manakov system with a self-consistent sources was solved
]̄-method and gauge transformation in Refs. 8 and 9. The Darboux transformation for the
Newell hierarchy with self-consistent sources and AKNS hierarchy with self-consistent so
were presented in Refs. 15 and 16.

Since the evolution of the eigenfunction in the Lax representation for the KdV equation
sources and NLSE with source was not obtained explicitly in Refs. 11 and 17, the determi
of the evolution of the scattering data was quite complicated and required special skill in Re
and 17. In contrast with the soliton equations, the evolution of eigenfunctions for the SE
possesses singularity in spectral parameter. In present paper we systematically study the S
the framework of the high-order constrained flows of soliton equations, since this approac
vides a simple and natural way to derive both the SESCS and their Lax representation whi
always be deduced from the adjoint representation of the eigenvalue problem for s
equations.14–16By directly using explicit expression for evolution of eigenfunction, we propos
general way to treat the singularity in the evolution of eigenfunction to determine the evoluti
the scattering data so that we could simply and naturally integrate the SESCS through the
scattering method and obtain the explicit soliton solution for some SESCS. The main poin
transform the singular part of the evolution of the eigenfunctions in the Lax representatio
nonlocal form and introduce some arbitrary functions denoted byb j (t) related to the definition of
the normalization constant so that we could obtain evolution of the normalization constan
method for determining the evolution of scattering data is quite different from that in Refs. 1
17. This approach seems more systematic and simple and enables us to solve whole
hierarchy with self-consistent sources directly and systematically by inverse scattering meth
particular we show how to integrate the AKNS hierarchy with self-consistent sources, the M
hierarchy with self-consistent sources, the nonlinear Schro¨dinger equation~NLSE! hierarchy with
self-consistent sources, the Kaup–Newell~KN! hierarchy with self-consistent sources and t
derivative nonlinear Schro¨dinger equation~DNLSE! hierarchy with self-consistent sources d
rectly by using the inverse scattering method. The result shows that the evolution of the refl
coefficient is the same as that for the soliton equations without source, however, the evolu
each normalization constant has an extra term related to theb j (t). It is found that the insertion of
a source into the soliton equation may cause the variation of the velocity of soliton.11,17 The
choices ofb j (t) may result a great variety of dynamics of soliton solutions. Finally we would
to point out that the methods in Refs. 11 and 17 and in present paper can not solve the initia
problem of the SESCS in general, but only in the class of potential possessing the given
discrete eigenvalues.

In Sec. II, we first recall the SESCS based on the high-order constrained flows and con
tion of their Lax representation, and illustrate the approach for solving SESCS through in
scattering transformation by using AKNS hierarchy with self-consistent sources as a model
in the following sections we present the integration of the MKdV hierarchy with self-consis
sources, the NLSE hierarchy with self-consistent sources, the KN hierarchy with self-cons
sources and DNLSE hierarchy with self-consistent sources in a little different way, respec
Also we presentN soliton solution for some SESCS. In fact, this approach can be used to sol
other (111)-dimensional soliton hierarchy with self-consistent sources by inverse scatt
method.

II. INTEGRATION OF THE AKNS HIERARCHY WITH SELF-CONSISTENT SOURCES

A. The AKNS hierarchy with self-consistent sources

To make the paper self-contained, we first recall the high-order constrained flows of A
hierarchy and briefly describe how to derive the Lax representation for the AKNS hierarchy
self-consistent sources.

Consider the AKNS spectral problem20
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S f1

f2
D

x

5US f1

f2
D , U5S 2l q

r l
D , u5S q

r D . ~2.1!

The adjoint representation of~2.1! reads21

Vx5@U,V#[UV2VU. ~2.2!

Set

V5(
i 50

` S ai bi

ci 2ai
D l2 i . ~2.3!

Equation~2.2! yields

a0521, b05c05a150, b15q, c15r

a25 1
2 qr, b252 1

2 qx , c25 1
2 r x , . . . ,

and in general

S cm11

bm11
D5LS cm

bm
D5LmS r

qD , am,x5qcm2rbm , ~2.4!

where

L5
1

2 S D22rD 21q 2rD 21r

22qD21q 2D12qD21r D , D5
]

]x
, DD215D21D51.

Set

V(n)5(
i 50

n S ai bi

ci 2ai
D ln2 i , ~2.5!

and take

S f1

f2
D

tn

5V(n)~u,l!S f1

f2
D . ~2.6!

Then the compatibility condition of Eqs.~2.1! and ~2.6! gives rise to the AKNS hierarchy20

utn
5S q

r D
tn

5JS cn11

bn11
D5J

dHn11

du
, n50,1, . . . , ~2.7!

where

Hn5
2an11

n
, J5S 0 22

2 0 D .

We have

dl

dq
5f2

2 ,
dl

dr
52f1

2 , LS f2
2

2f1
2D 5lS f2

2

2f1
2D . ~2.8!
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The high-order constrained flows of the AKNS hierarchy consist of the equations obt
from the spectral problem~2.1! for N distinct l j and the restriction of the variational derivative
for conserved quantitiesHn andl j

22

dHn11

du
2

1

2 (
j 51

N
dl j

du
5S cn11

bn11
D2

1

2 S ^F2 ,F2&
2^F1 ,F1&

D50, ~2.9a!

f1 j ,x52l jf1 j1qf2 j , f2 j ,x5rf1 j1l jf2 j , j 51, . . . ,N, ~2.9b!

where n50,1, . . . ,F i5(f i1 , . . . ,f iN)T, i 51,2,̂ .,.& denotes the inner product. According
Eqs.~2.4!, ~2.8!, and~2.9!, we define

ãi5ai , b̃i5bi , c̃i5ci , i 50,1, . . . ,n,

b̃n111 i52 1
2 ^L iF1 ,F1&, c̃n111 i5

1
2 ^L iF2 ,F2&,

ãn111 i5D21~qc̃n111 i2rb̃n111 i !5 1
2 ^L iF1 ,F2&, i 50,1, . . . ,

whereL5diag(l1, . . . ,lN). Then

N(n)5S A(n) B(n)

C(n) D (n)D
[ln(

k50

` S ãk b̃k

c̃k 2ãk
D l2k1S h 0

0 h D
5 (

k50

n S ak bk

ck 2ak
D ln2k1S h 0

0 h D 1
1

2 (
j 51

N
1

l2l j
S f1 jf2 j 2f1 j

2

f2 j
2 2f1 jf2 j

D ,

whereh is some constant, also satisfies the adjoint representation~2.2!, i.e.

Nx
(n)5@U,N(n)#, ~2.10!

which, in fact, gives rise to the Lax representation of the constrained flow~2.9!.
The AKNS hierarchy with self-consistent sources is defined by Refs. 15 and 16.

S q
r D

tn

5JFdHn11

du
2

1

2 (
j 51

N
dl j

du G5JF S cn11

bn11
D2

1

2 S ^F2 ,F2&
2^F1 ,F1&

D G , ~2.11a!

f1 j ,x52l jf1 j1qf2 j , f2 j ,x5rf1 j1l jf2 j , j 51, . . . ,N, ~2.11b!

for N distinct l j and assume that

l j5 i z j , Im z j.0, or Rel j,0, j 51, . . . ,N1 ,

l j5 i z̄ j , Im z̄ j,0, or Rel j.0, j 5N111, . . . ,N. ~2.11c!

Since the high-order constrained flows~2.9! are just the stationary equations of the AKN
hierarchy with self-consistent sources~2.11!, it is obvious that the zero-curvature representat
for the AKNS hierarchy with self-consistent sources~2.11! is given by

Utn
2Nx

(n)1@U,N(n)#50, ~2.12!
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with the auxiliary linear problems

S c1

c2
D

x

5S 2l q

r l
D S c1

c2
D5S 2 i z q

r i z D S c1

c2
D , ~2.13a!

wherel5 i z and

c1,tn
5A(n)c11B(n)c2

5 (
k50

n

~akc11bkc2!ln2k1hc11
1

2 (
j 51

N
1

l2l j
f1 j~f2 jc12f1 jc2!,

c2,tn
5C(n)c11D (n)c2

5 (
k50

n

~ckc12akc2!ln2k1hc21
1

2 (
j 51

N
1

l2l j
f2 j~f2 jc12f1 jc2!. ~2.13b!

Whenn51, Eq. ~2.11! gives the AKNS equation with self-consistent sources

qt2
52 1

2 qxx1q2r 2^F1 ,F1&, r t2
5 1

2 r xx2qr22^F2 ,F2&, ~2.14a!

f1 j ,x52l jf1 j1qf2 j , f2 j ,x5rf1 j1l jf2 j , j 51, . . . ,N, ~2.14b!

and the auxiliary linear problem~2.13b! reads

c1,t2
5S 2l21

1

2
qr1h Dc11S ql2

1

2
qxDc21

1

2 (
j 51

N
1

l2l j
f1 j~f2 jc12f1 jc2!,

c2,t2
5S rl1

1

2
r xDc11S l22

1

2
qr1h Dc21

1

2 (
j 51

N
1

l2l j
f2 j~f2 jc12f1 jc2!. ~2.15!

B. Integration of the AKNS hierarchy with self-consistent sources

We will use the inverse scattering method to solve the initial-value problem for the AK
hierarchy with self-consistent sources ~2.11! under assumption tha
q(x,t),r (x,t),f1 j (x,t),f2 j (x,t), j 51, . . . ,N, vanish rapidly asuxu→`. Let q0(x),r 0(x) be arbi-
trary functions with the following properties:

~a! q0(x) and r 0(x) vanish rapidly asuxu→`, for convenience, we assume20 that

E
2`

`

uxu l uq0~x!udx,`, E
2`

`

uxu l ur 0~x!udx,`, ~2.16a!

for all l ;
~b! the AKNS spectral equation

S c1

c2
D

x

5S 2l q0~x!

r 0~x! l
D S c1

c2
D5S 2 i z q0~x!

r 0~x! i z D S c1

c2
D , ~2.16b!

has exactlyN discrete eigenvalues as that given by~2.11c!. Let b j (t), j 51, . . . ,N, be arbitrary
continuous functions oft. Using the inverse scattering method, we shall point out the wa
constructing the solutionq5q(x,t), r 5r (x,t), f1 j5f1 j (x,t), f2 j5f2 j (x,t), j 51, . . . ,N, of
the system~2.11!, such that
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q~x,0!5q0~x!, r ~x,0!5r 0~x!,

b j~ t !5E
2`

`

f1 j~x,t !f2 j~x,t !dx, j 51, . . . ,N1 ,

b j~ t !52E
2`

`

f1 j~x,t !f2 j~x,t !dx, j 5N111, . . . ,N. ~2.16c!

The procedure of finding the above solution of the system~2.11! is very similar to that given
in Ref. 20 for obtaining a solution rapidly decreasing withx of the AKNS hierarchy except the
way for determining the evolution of scattering data. Denotel5 i z, Im z5j. In the same way as
in Ref. 20, we define the eigenfunctionc2(x,t,z),c̄2(x,t,z),c1(x,t,z),c̄1(x,t,z) for AKNS
spectral equation~2.13a! and evolution of eigenfunctions~2.13b! with the following boundary
condition onz5j:

c2~x,t,z!;S 1
0De2 i zx, c̄2~x,t,z!;S 0

21Dei zx, x→2`, ~2.17a!

c1~x,t,z!;S 0
1Dei zx, c̄1~x,t,z!;S 1

0De2 i zx, x→`. ~2.17b!

Under the assumption forq,r ,f1 j ,f2 j , we have

a0521, b05c050, limuxu→`aj5 limuxu→`bj5 limuxu→`cj50, j 51,2, . . . .

On z5j, sincezÞz j , we have

limuxu→`N(n)5S 2ln1h 0

0 ln1h D 5S 2~ i z!n1h 0

0 ~ i z!n1h D . ~2.18!

Let h2,h̄2 be the parameterh in the Eq.~2.13b! corresponding toc2(x,t,z) andc̄2(x,t,z). By
inserting Eq.~2.17a! into Eq. ~2.13b!, using~2.18! and letx→2`, we get

h25~ i z!n, h̄252~ i z!n.

On z5j, c1(x,t,z) and c̄1(x,t,z) are linearly independent, we may write

c2~x,t,z!5a~z,t !c̄1~x,t,z!1b~z,t !c1~x,t,z!, ~2.19a!

c̄2~x,t,z!52ā~z,t !c1~x,t,z!1b̄~z,t !c̄1~x,t,z!. ~2.19b!

Then by substitutingc2(x,t,z) andh2(c̄2(x,t,z),h̄2) into Eq.~2.13b!, using~2.17!, ~2.18!
and ~2.19!, let x→`, it can be shown that onz5j

]a

]t
50,

]b

]t
52~ i z!nb,

]r

]t
52~ i z!nr, ~2.20a!

]ā

]t
50,

]b̄

]t
522~ i z!nb̄,

]r̄

]t
522~ i z!nr̄, ~2.20b!

wherer5 a/b ,r̄5 ā/b̄ . That is, for the AKNS hierarchy with self-consistent sources, the ev
tion of quantitiesa(k,t),b(k,t),ā(k,t),b̄(k,t) is the same as that of the AKNS hierarchy witho
source.
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It can be shown as in Ref. 20 that functiona(z,t)(ā(z,t)) admits an analytical continuatio
in z into the upper half~lower half! plane. The AKNS spectral equation~2.13a! can possess
discrete eigenvalues which occur whenevera(z,t) has zeros in the upper halfz plane and when-
ever ā(z,t) has zeros in the lower halfh plane. Equation~2.20! indicate that the discrete eigen
values do not depend ont. According to the assumption forq,r ,f1 j ,f2 j , and~2.16b!, the zeros
of a(z,t) arel j5 i z j , j 51, . . . ,N1 and the zeros ofā(z,t) arel j5 i z̄ j , j 5N111, . . . ,N, and at
z j and z̄ j the following equalities for the discrete eigenfunctions hold

c2~x,t,zm!5Cm~ t !c1~x,t,zm!, m51, . . . ,N1 , ~2.21a!

c̄2~x,t,z̄m!5C̄m~ t !c̄1~x,t,z̄m!, m5N111, . . . ,N, ~2.21b!

S f1 j~x,t !
f2 j~x,t ! D5a j~ t !c2~x,t,z j !, j 51, . . . ,N1 , ~2.21c!

S f1 j~x,t !
f2 j~x,t ! D5ā j~ t !c̄2~x,t,z̄ j !, j 5N111, . . . ,N. ~2.21d!

It is found from Eqs.~2.11b! and ~2.13a! that

f2 j~x,t !c1~x,t,z!2f1 j~x,t !c2~x,t,z!

5~l j2 i z!E
2`

x

@f1 j~z,t !c2~z,t,z!1f2 j~z,t !c1~z,t,z!#dz, ~2.22!

which gives rise to

E
2`

`

@f1 j~z,t !c2
2~z,t,zm!1f2 j~z,t !c1

2~z,t,zm!#dz50, j Þm, m51, . . . ,N1 ,

~2.23a!

E
2`

`

@f1 j~z,t !c̄2
2~z,t,z̄m!1f2 j~z,t !c̄1

2~z,t,z̄m!#dz50, j Þm, m5N111, . . . ,N,

~2.23b!

and

limz→zm(j 51

N
1

i z2l j
f2 j@f2 jc1

2~x,t,z!2f1 jc2
2~x,t,z!#

;2am~ t !Cm~ t !c2
1~x,t,zm!E

2`

`

@f1m~z,t !c2
2~z,t,zm!1f2m~z,t !c1

2~z,t,zm!#

522Cm~ t !c2
1~x,t,zm!E

2`

`

f1m~z,t !f2m~z,t !dz, x→`, m51, . . . ,N1 ,

~2.24a!

limz→ z̄m(j 51

N
1

i z2l j
f1 j@f2 j c̄1

2~x,t,z!2f1 j c̄2
2~x,t,z!#

;22C̄m~ t !c̄1
1~x,t,z̄m!E

2`

`

f1m~z,t !f2m~z,t !dz, x→`, m5N111, . . . ,N.

~2.24b!
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Equation~2.23! are the orthogonal property of the discrete eigenfunctions. Denote the pa
eterh in Eq. ~2.13b! corresponding to the eigenfunctionc2(x,t,zm) by hm

2 , m51, . . . ,N1 , and
c̄2(x,t,zm) by h̄m

2 ,m5N111, . . . ,N, respectively. Substituting them into Eq.~2.13b! and let
x→2`, it can be seen that

hm
25~ i zm!n5lm

n , m51, . . . ,N1 , h̄m
252~ i z̄m!n52lm

n , m5N111, . . . ,N.
~2.25!

Inserting the representation ofc2(x,t,zm)(c̄2(x,t,zm)) ~2.21! into Eq. ~2.13b!, let x→1`
and using Eq.~2.24!, we obtain

dCm

dt
5F2~ i zm!n22E

2`

`

f1m~z,t !f2m~z,t !dzGCm52@~ i zm!n2bm~ t !#Cm , m51, . . . ,N1 ,

~2.26a!

dC̄m

dt
52@2~ i z̄m!n1bm~ t !#C̄m , m5N111, . . . ,N. ~2.26b!

Since the normalization constantscm ,c̄m @the notationcm here is not that given in~2.3!# are
defined by

cm~ t ![F2E
2`

`

c1
1~x,t,zm!c2

1~x,t,zm!dxG21

5 i
Cm~ t !

a8~zm!
, m51, . . . ,N1 , ~2.27a!

c̄m~ t ![F2E
2`

`

c̄1
1~x,t,z̄m!c̄2

1~x,t,z̄m!dxG21

5 i
C̄m~ t !

ā8~ z̄m!
, m5N111, . . . ,N, ~2.27b!

it is found that

dcm

dt
52@lm

n 2bm~ t !#cm , m51, . . . ,N1 , ~2.28a!

dc̄m

dt
52@2lm

n 1bm~ t !# c̄m , m5N111, . . . ,N, ~2.28b!

or

cm~ t !5cm~0!expF2lm
n t22E

0

t

bm~z!dzG , m51, . . . ,N1 , ~2.29a!

c̄m~ t !5 c̄m~0!expF22lm
n t12E

0

t

bm~z!dzG , m5N111, . . . ,N. ~2.29b!

This means that the evolution ofcm(t) and c̄m(t) has an extra term2bm(t)cm(t) and
bm(t) c̄m(t) comparing with that of the AKNS hierarchy without source.

It is found from ~2.21! and ~2.27! that
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b j~ t !5E
2`

`

f1 j~x,t !f2 j~x,t !dx

5a j
2~ t !Cj

2~ t !E
2`

`

c1
1~x,t,z j !c2

1~x,t,z j !dx,

5
1

2
a j

2~ t !Cj
2~ t !~cj~ t !!21, j 51, . . . ,N1 , ~2.30!

which lead to

S f1 j~x,t !
f2 j~x,t ! D5A2b j~ t !cj~ t !c1~x,t,z j !, j 51, . . . ,N1 , ~2.31a!

and similarly

S f1 j~x,t !
f2 j~x,t ! D5A22b j~ t !c̄ j~ t !c̄1~x,t,z̄ j !, j 5N111, . . . ,N. ~2.31b!

The Eqs.~2.31! are consistent with~2.16c! according to~2.27!.
According to Ref. 20, using Eqs.~2.20! and ~2.28! and solving the Gel’fand–Levitan–

Marchenko equation, we can get the solution of thenth AKNS equation with self-consisten
sources~2.11! under the assumptions and the conditions~2.16! in the following way:

q~x,t !522K1~x,x!, r ~x,t !522K̄2~x,x!, ~2.32a!

f1 j~x,t !5A2b j~ t !cj~ t !E
x

`

K1~x,s!el j sds, ~2.32b!

f2 j~x,t !5A2b j~ t !cj~ t !S el j x1E
x

`

K2~x,s!el j sdsD , j 51, . . . ,N1 , ~2.32c!

f1 j~x,t !5A22b j~ t !c̄ j~ t !S e2l j x1E
x

`

K̄1~x,s!e2l j sdsD , ~2.32d!

f2 j~x,t !5A22b j~ t !c̄ j~ t !E
x

`

K̄2~x,s!e2l j sds, j 5N111, . . . ,N, ~2.32e!

whereK(x,y)5(K1(x,y), K2(x,y))T,K̄(x,y)5(K̄1(x,y),K̄2(x,y))T satisfy

K̄~x,y!1F~x1y!S 0
1D1E

x

`

K~x,s!F~s1y!ds50, y.x, ~2.33a!

K~x,y!2F̄~x1y!S 1
0D2E

x

`

K̄~x,s!F̄~s1y!ds50, y.x, ~2.33b!

and

F~x!5
1

2p E
2`

`

r~z!ei zxdz2(
j 51

N1

cj~ t !el j x,
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F̄~x!5
1

2p E
2`

`

r̄~z!e2 i zxdz1 (
j 5N111

N

c̄j~ t !e2l j x.

We now present the exploding solitons for system~2.11! with N151,N52. Assume that
r(z)5 r̄(z)50 and there is one discrete eigenvaluez in the upper half plane and one discre
eigenvaluez̄ in the lower half plane. We have

F~x!52c~ t !ei zx, F̄~x!5 c̄~ t !e2 i z̄x,

wherec(t),c̄(t) are found from~2.29!

c~ t !5c~0!expF2~ i z!nt22E
0

t

b1~z!dzG , c̄~ t !5 c̄~0!expF22~ i z̄ !nt12E
0

t

b2~z!dzG .
~2.34!

Solving Eq.~2.33! leads to

K1~x,y!5
1

D
c̄~ t !e2 i z̄(x1y), K2~x,y!52

1

~ z̄2z!D
ic~ t !c̄~ t !e2i zx2 i z̄(x1y), ~2.35a!

K̄1~x,y!52
1

~ z̄2z!D
ic~ t !c̄~ t !e22i z̄x1 i z(x1y), K̄2~x,y!5

1

D
c~ t !ei z(x1y), ~2.35b!

D511
1

~ z̄2z!2
c~ t !c̄~ t !e2i (z2 z̄)x. ~2.35c!

Then we obtain the solution by means of Eq.~2.32!

q~x,t !52
2

D
c̄~ t !e22i z̄x, r ~x,t !52

2

D
c~ t !e2i zx, ~2.36a!

f11~x,t !5 iA2b1~ t !c~ t !
1

~z2 z̄ !D
c̄~ t !ei (z22z̄)x, ~2.36b!

f21~x,t !5A2b1~ t !c~ t !S ei zx2
1

~ z̄2z!2D
c~ t !c̄~ t !ei (3z22z̄)xD , ~2.36c!

f12~x,t !5A22b2~ t !c̄~ t !S e2 i z̄x2
1

~ z̄2z!2D
c~ t !c̄~ t !ei (2z23z̄)xD , ~2.36d!

f22~x,t !5 iA22b2~ t !c̄~ t !
1

~z2 z̄ !D
c~ t !ei (2z2 z̄)x, ~2.36e!

where c(t),c̄(t) are given by~2.34!. Equation ~2.36! show that the velocity of the solution
depends on Re@(iz)n212 @b1(t)/iz## or Re@2(iz̄)n212 @b2(t)/iz̄##. Therefore the insertion of source
may cause the variation of velocity of the soliton solution. This phenomenon is completel
ferent from that of solitons of the AKNS hierarchy without sources. The choices ofb i(t) can give
a great variety of dynamics of soliton solutions.
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III. INTEGRATION OF THE MKDV HIERARCHY WITH SELF-CONSISTENT SOURCES

A. The MKdV hierarchy with self-consistent sources

Consider the reduced case of the AKNS spectral problem forr 52q20

S f1

f2
D

x

5US f1

f2
D , U5S 2l q

2q l
D . ~3.1!

The adjoint representation of~3.1!, i.e., ~2.2!, and~2.3! yield

a0521, b05c05a150, b152c15q,

a252 1
2 q2, b25c252 1

2 qx , . . . ,

and in general

b2m1152c2m115Lb2m21 , L5 1
4 D21qD21qD,

b2m5c2m52 1
2 Db2m21 , a2m1150, a2m52D21qb2m . ~3.2!

The MKdV hierarchy reads20

qt2n11
522b2n125Db2n115D

dH2n11

dq
, n50,1, . . . , ~3.3!

where

H2n115
2a2n12

2n11
.

We have

dl

dq
5f1

21f2
2 , L~f1

21f2
2!5l2~f1

21f2
2!. ~3.4!

The MKdV hierarchy with self-consistent sources is given by

qt2n11
5DFdH2n11

dq
1(

j 51

N
dl j

dq G5D@b2n111^F1 ,F1&1^F2 ,F2&#, ~3.5a!

f1 j ,x52l jf1 j1qf2 j , f2 j ,x52qf1 j1l jf2 j , j 51, . . . ,N, ~3.5b!

for N distinct l j and assume that

l j,0, j 51, . . . ,N1 , l j.0, j 5N111, . . . ,N. ~3.5c!

The zero-curvature representation for the MKdV hierarchy with self-consistent sources~3.5!
is presented by~2.12! with the auxiliary linear problems

S c1

c2
D

x

5S 2l q

2q l
D S c1

c2
D5S 2 i z q

2q iz D S c1

c2
D , ~3.6a!

wherel5 i z and
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c1,t2n11
5A(2n11)c11B(2n11)c2[(

k50

2n

~akc11bkc2!l2n112k1hc1

1l(
j 51

N
1

l22l j
2 @2l jf1 jf2 jc12~l1l j !f1 j

2 c22~l2l j !f2 j
2 c2#,

c2,t2n11
5C(2n11)c11D (2n11)c2[(

k50

2n

~ckc12akc2!l2n112k1hc21l(
j 51

N
1

l22l j
2 @~l

1l j !f2 j
2 c11~l2l j !f1 j

2 c122l jf1 jf2 jc2#. ~3.6b!

Whenn51, the system~3.5! gives the MKdV equation with self-consistent sources

qt3
5D@ 1

4 ~2q31qxx!1^F1 ,F1&1^F2 ,F2&#, ~3.7a!

f1 j ,x52l jf1 j1qf2 j , f2 j ,x52qf1 j1l jf2 j , j 51, . . . ,N, ~3.7b!

and the auxiliary linear problem~3.6b! for n51 reads

c1,t3
5S 2l32

1

2
q2l1h Dc11S ql22

1

2
qxl Dc2

1l(
j 51

N
1

l22l j
2 @2l jf1 jf2 jc12~l1l j !f1 j

2 c22~l2l j !f2 j
2 c2#,

c2,t3
52S ql21

1

2
qxl Dc11S l31

1

2
q2l1h Dc2

1l(
j 51

N
1

l22l j
2 @~l1l j !f2 j

2 c11~l2l j !f1 j
2 c122l jf1 jf2 jc2#. ~3.8!

B. Integration of the MKdV hierarchy with self-consistent sources

Based on the results of Sec. II, we now use the inverse scattering method to solv
initial-value problem for the MKdV hierarchy with self-consistent sources~3.5! under the assump
tions described in Sec. II B and the assumption that the spectral equation

S c1

c2
D

x

5S 2 i z q0~x!

2q0~x! i z D S c1

c2
D , ~3.9a!

has exactly 2N discrete eigenvaluesz j ,z̄ j , j 51, . . . ,N, related tol j in ~3.5c! in the following
way:

z j52 il j , j 51, . . . ,N1 , z j5 il j , j 5N111, . . . ,N,

z̄ j5 il j , j 51, . . . ,N1 , z̄ j52 il j , j 5N111, . . . ,N, ~3.9b!

namely,z̄ j52z j . Similarly we get

h25~ i z!2n11, h̄252~ i z!2n11.

For real functionr 52q, it is known20 that the eigenfunctionc2(x,t,z), c̄2(x,t,z), c1(x,t,z),
c̄1(x,t,z) defined by~2.17! for ~3.6! have symmetry relations
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c̄2~x,t,z!5S c2
2~x,t,2z!

2c1
2~x,t,2z! D , c̄1~x,t,z!5S c2

1~x,t,2z!

2c1
1~x,t,2z! D , ~3.10a!

which imply that thea,ā,b,b̄ defined by~2.19! satisfy

ā~z,t !5a~2z,t !, b̄~z,t !5b~2z,t !. ~3.10b!

In the same way as in the previous section, one can show that

]a

]t
50,

]b

]t
52~ i z!2n11b,

]r

]t
52~ i z!2n11r. ~3.11!

So for the MKdV hierarchy with self-consistent sources, the evolution of quantitiesa(k,t) and
b(k,t) is the same as that of the MKdV hierarchy without source. The discrete eigenvalu
spectral problem~3.6a! are given by the zeros ofa(z,t) andā(z,t) and independent oft according
to ~3.11!. So the zeros ofa(z,t) and ā(z,t) are justz j and z̄ j 52z j , j 51, . . . ,N, given by
~3.9b!. At z j and z̄ j the following equalities for the discrete eigenfunctions hold:

c2~x,t,zm!5Cm~ t !c1~x,t,zm!, c̄2~x,t,z̄m!5C̄m~ t !c̄1~x,t,z̄m!, m51, . . . ,N,
~3.12!

which together with~3.10a! yield

Cm5C̄m , m51, . . . ,N. ~3.13!

Also we have

S f1 j~x,t !
f2 j~x,t ! D5a j~ t !c2~x,t,z j !, j 51, . . . ,N1 , ~3.14a!

S f1 j~x,t !
f2 j~x,t ! D5a j~ t !c̄2~x,t,z̄ j !, j 5N111, . . . ,N. ~3.14b!

As in the previous section, the main point for deriving the evolution ofCm is to treat the
singularity in the evolution of eigenfunctions~3.6b!. It is found from Eqs.~3.5b! and ~3.6a! that

~ i z1l j !f2 j~x,t !c1
2~x,t,z!22l jf1 j~x,t !c2

2~x,t,z!

5~ i z2l j !F1

2
~f1 j~x,t !c2

2~x,t,z!1f2 j~x,t !c1
2~x,t,z!!

2S 1

2
i z1

3

2
l j D E

2`

x

~f1 j~z,t !c2
2~z,t,z!1f2 j~z,t !c1

2~z,t,z!!dzG , ~3.15a!

~ i z2l j !f1 j~x,t !c1
2~x,t,z!22l jf2 j~x,t !c2

2~x,t,z!

5~ i z1l j !F1

2
~f1 j~x,t !c1

2~x,t,z!2f2 j~x,t !c2
2~x,t,z!!

1S 1

2
i z2

3

2
l j D E

2`

x

~f2 j~z,t !c2
2~z,t,z!2f1 j~z,t !c1

2~z,t,z!!dzG ,
j 51, . . . ,N, ~3.15b!

which together with~3.10a! and ~2.17! gives rise to
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E
2`

`

@f1 j~z,t !c2
2~z,t,zm!1f2 j~z,t !c1

2~z,t,zm!#dz50, j Þm, m51, . . . ,N, ~3.16a!

E
2`

`

@f1 j~z,t !c̄2
2~z,t,z̄m!1f2 j~z,t !c̄1

2~z,t,z̄m!#dz50, j Þm, m51, . . . ,N, ~3.16b!

and

limz→zm(j 51

N
1

~ i z!22l j
2 f2 j@~ i z1l j !f2 j~x,t !c1

2~x,t,z!22l jf1 j~x,t !c2
2~x,t,z!#

;2am~ t !Cm~ t !c2
1~x,t,zm!E

2`

`

@f1m~z,t !c2
2~z,t,zm!1f2m~z,t !c1

2~z,t,zm!#dz

522Cm~ t !c2
1~x,t,zm!E

2`

`

f1m~z,t !f2m~z,t !dz, for x→`,

m51, . . . ,N1 , ~3.17a!

limz→zm(j 51

N
1

~ i z!22l j
2 f1 j@~ i z2l j !f1 j~x,t !c1

2~x,t,z!22l jf2 j~x,t !c2
2~x,t,z!#

;am~ t !c̄1
2~x,t,z̄m!E

2`

`

@f1m~z,t !c̄2
2~z,t,z̄m!1f2m~z,t !c̄1

2~z,t,z̄m!#dz

522Cm~ t !c2
1~x,t,zm!E

2`

`

f1m~z,t !f2m~z,t !dz, for x→`,

m5N111, . . . ,N. ~3.17b!

Equations~3.16! are the orthogonal property of the discrete eigenfunctions. Also we hav

hm
25~ i zm!2n115lm

2n11 , m51, . . . ,N1 , hm
25~ i zm!2n1152lm

2n11 , m5N111, . . . ,N.
~3.18!

Take the representation ofc2(x,t,zm) ~3.12! into Eq. ~3.6b!, then letx→1` and using Eq.
~3.17!, we have

dCm

dt
5F2~ i zm!2n1122i zmE

2`

`

f1m~z,t !f2m~z,t !dzGCm

52lm@lm
2n2bm~ t !#Cm ,

m51, . . . ,N1 , ~3.19a!

dCm

dt
522lm@lm

2n2bm~ t !#Cm , m5N111, . . . ,N, ~3.19b!

with the arbitrary real functionsbm(t). According to the definition of the normalization constan
cm ,c̄m given by ~2.27!, one obtains

c̄m~ t !52cm~ t !, m51, . . . ,N, ~3.20!
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and

dcm

dt
52lm@lm

2n2bm~ t !#cm , m51, . . . ,N1 , ~3.21a!

dcm

dt
522lm@lm

2n2bm~ t !#cm , m5N111, . . . ,N, ~3.21b!

which gives rise to

cm~ t !5cm~0!expF2lmS lm
2nt2E

0

t

bm~z!dzD G , m51, . . . ,N1 , ~3.22a!

cm~ t !5cm~0!expF22lmS lm
2nt2E

0

t

bm~z!dzD G , m5N111, . . . ,N. ~3.22b!

Thus, the evolution ofcm(t)52 c̄m(t) has an extra term22lmbm(t)cm(t) comparing with
that of the MKdV hierarchy without source.

Equations~2.30! and ~3.14! lead to

S f1 j~x,t !
f2 j~x,t ! D5A2b j~ t !cj~ t !c1~x,t,z j !, j 51, . . . ,N1 , ~3.23a!

S f1 j~x,t !
f2 j~x,t ! D5A22b j~ t !c̄ j~ t !c̄1~x,t,z̄ j !, j 5N111, . . . ,N, ~3.23b!

which are consistent with~2.16c! according to~2.27!. It is known20 that for r 52q, one has

F̄~x!5F~x!, K̄~x,y!5S K2~x,y!

2K1~x,y! D . ~3.24!

Then using Eqs.~3.11! and ~3.22!, we can get the solution of thenth MKdV equation with
self-consistent sources~3.5! under the assumption in the following way:20

q~x,t !522K1~x,x!, ~3.25a!

f1 j~x,t !5A2b j~ t !cj~ t !E
x

`

K1~x,s!el j sds, j 51, . . . ,N1 , ~3.25b!

f2 j~x,t !5A2b j~ t !cj~ t !S el j x1E
x

`

K2~x,s!el j sdsD , j 51, . . . ,N1 , ~3.25c!

f1 j~x,t !5A22b j~ t !c̄ j~ t !S e2l j x1E
x

`

K2~x,s!e2l j sdsD , j 5N111, . . . ,N, ~3.25d!

f2 j~x,t !52A22b j~ t !c̄ j~ t !E
x

`

K1~x,s!e2l j sds, j 5N111, . . . ,N, ~3.25e!

whereK(x,y)5(K1(x,y),K2(x,y))T, satisfy

K2~x,y!1E
x

`

K1~x,s!F~s1y!ds50, y.x, ~3.26a!
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K1~x,y!2F~x1y!2E
x

`

K2~x,s!F~s1y!ds50, y.x, ~3.26b!

and

F~x!5
1

2p E
2`

`

r~z!ei zxdz2(
j 51

N1

cj~ t !el j x2 (
j 5N111

N

cj~ t !e2l j x. ~3.27!

C. The N soliton solution of the MKdV hierarchy with self-consistent sources

For thenth MKdV equation with self-consistent sources~3.5!, assumer(z)50 and there are
2N distinct eigenvaluesz j5 i l̃ j52 il j , j 51, . . . ,N1 , z j5 i l̃ j5 il j , j 5N111, . . . ,N,
z̄ j52z j , j 51, . . . ,N. Denote

E~x,t !5~c1~ t !e2l̃1x c2~ t !e2l̃2x
¯cN~ t !e2l̃Nx!,

M ~x,t !5~M jl !N3N5S cl~ t !

l̃ j1l̃ l

e2(l̃ j 1l̃ l )xD
N3N

,

B~y!5~e2l̃1ye2l̃2y
¯e2l̃Ny!T,

Aj~x!5S 1

l̃11l̃ j

e2(l̃11l̃ j )x
¯

1

l̃N1l̃ j

e2(l̃N1l̃ j )xD T

,

D~x,t !5I 1M ~x,t !M ~x,t !.

Then theK1(x,y),K2(x,y) in Eq. ~3.26! can be obtained as

K1~x,y,t !52E~x,t !D21~x,t !B~y!, K2~x,y,t !52E~x,t !M ~x,t !D21~x,t !B~y!.
~3.28!

After some reduction, the solution of the MKdV hierarchy with self-consistent sources~3.5!
under our assumption can be written in the form

q~x,t !52
d

dx
tg21

Im det~ I 2 iM ~x,t !!

Re det~ I 2 iM ~x,t !!
, ~3.29a!

f1 j~x,t !52A2b j~ t !cj~ t !E~x,t !D21~x,t !Aj~x!, j 51, . . . ,N1 , ~3.29b!

f2 j~x,t !5A2b j~ t !cj~ t !@e2l̃ j x2E~x,t !M ~x,t !D21~x,t !Aj~x!#, j 51, . . . ,N1 ,
~3.29c!

f1 j~x,t !5A22b j~ t !c̄ j~ t !@e2l̃ j x2E~x,t !M ~x,t !D21~x,t !Aj~x!#, j 5N111, . . . ,N,
~3.29d!

f2 j~x,t !5A22b j~ t !c̄ j~ t !E~x,t !D21~x,t !Aj~x!, j 5N111, . . . ,N. ~3.29e!

In particular, if l̃ jÞl̃m when j Þm and properly chooseb j in such way that

e jm5~ l̃ j
2n2l̃m

2n!t2E
0

t

~b j~z!2bm~z!!dz, j ,m51, . . . ,N,
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satisfy

e jm→2`, or e jm→`, when j Þm, and t→6`, ~3.30!

then Eq.~3.29! present theN-soliton solution of thenth MKdV equation with self-consisten
sources~3.5!. The velocity of each soliton for propagating depends on

v j52l̃ j
2n22b j~ t !, j 51, . . . ,N. ~3.31!

For instance, if takeb j (t) to be constant and letl̃ j andb j to satisfy

0,l̃1
2n2b1,l̃2

2n2b2,¯,l̃N
2n2bN ,

then Eq.~3.29! present theN-soliton solution of thenth MKdV equation with self-consisten
sources~3.5!.

We see that the insertion of a source may cause the variation of the velocity of a soliton.
there are many choices ofb j , the dynamics of soliton solutions is variety.

IV. INTEGRATION OF THE NLSE HIERARCHY WITH SELF-CONSISTENT SOURCES

A. The NLSE hierarchy with self-consistent sources

Consider the reduced case of the AKNS spectral problem forr 52q* 23

S f1

f2
D

x

5US f1

f2
D , U5S 2l q

2q* l
D 5S 2 i z q

2q* i z D , ~4.1!

where the* denotes complex conjugation. Equations~2.2! and ~2.3! yields

a0522i , b05c05a150, b152iq, c1522iq*

a252 iqq* , b252 iqx , c252 iqx* , . . . ,

and in general

S cm11

bm11
D5LS cm

bm
D , am,x5qcm1q* bm , ~4.2!

where

L5
1

2 S D12q* D21q 2q* D21q*

22qD21q 2D22qD21q* D .

We have

c2m115b2m11* , c2m52b2m* , a2m115a2m11* , a2m52a2m* . ~4.3!

The hierarchy of the nonlinear Schro¨dinger equations~NLSE! reads23

qt2n
522b2n11522

dH2n11

dq
, H2n115

2a2n12

2n11
, n50,1, . . . . ~4.4!

It is easy to verify that

LmS 2f1*
21f2

2

2f1
21f2*

2D 5S 2~2l* !mf1*
21lmf2

2

2lmf1
21~2l* !mf2*

2D , m51,2, . . . . ~4.5!
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The NLSE hierarchy with self-consistent sources is given by

qt2n
522@b2n111^F1 ,F1&2^F2* ,F2* &#, ~4.6a!

f1 j ,x52l jf1 j1qf2 j , f2 j ,x52q* f1 j1l jf2 j , j 51, . . . ,N, ~4.6b!

for N distinct l j and assume that

l j5 i z j , Im z j.0 or Rel j,0, j 51, . . . ,N1 ,

l j5 i z̄ j , Im z̄ j,0 or Rel j.0, j 5N111, . . . ,N. ~4.6c!

According to Eqs.~4.2!, ~4.5!, and~4.6!, we define

ãi5ai , b̃i5bi , c̃i5ci , i 50,1, . . . ,2n,

b̃2n111m52^LmF1 ,F1&1^~2L* !mF2* ,F2* &,

c̃2n111m52^~2L* !mF1* ,F1* &1^LmF2 ,F2&,

ã2n111m5D21~qc̃2n111m1q* b̃2n111m!5^LmF1 ,F2&1^~2L* !mF1* ,F2* &, m50,1, . . . ,

which are consistent with~4.3!. Then in the same way as in the Sec. II, it is found that
zero-curvature representation for the NLSE hierarchy with self-consistent sources~4.6! is given by
~2.12! with the auxiliary linear problems

S c1

c2
D

x

5S 2l q

2q* l
D S c1

c2
D5S 2 i z q

2q* i z D S c1

c2
D , ~4.7a!

and

c1,t2n
5A(2n)c11B(2n)c2[(

k50

2n

~akc11bkc2!l2n2k1hc11(
j 51

N
1

l2l j
f1 j~f2 jc12f1 jc2!,

1(
j 51

N
1

l1l j*
f2 j* ~f1 j* c11f2 j* c2!

c2,t2n
5C(2n)c11D (2n)c2[(

k50

2n

~ckc12akc2!l2n2k1hc21(
j 51

N
1

l2l j
f2 j~f2 jc12f1 jc2!

2(
j 51

N
1

l1l j*
f1 j* ~f1 j* c11f2 j* c2!. ~4.7b!

Whenn51, Eq. ~4.6! gives the NLSE equation with self-consistent sources

iqt2
5qxx12q2q* 22i ^F1 ,F1&12i ^F2* ,F2* &, ~4.8a!

f1 j ,x52l jf1 j1qf2 j , f2 j ,x52q* f1 j1l jf2 j , j 51, . . . ,N, ~4.8b!

and the auxiliary linear problem~4.7b! reads
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c1,t3
5~22il22 iqq* 1h!c11~2iql2 iqx!c21(

j 51

N
1

l2l j
f1 j~f2 jc12f1 jc2!,

1(
j 51

N
1

l1l j*
f2 j* ~f1 j* c11f2 j* c2!,

c2,t3
5~22iq* l2 iqx* !c11~2il21 iqq* 1h!c21(

j 51

N
1

l2l j
f2 j~f2 jc12f1 jc2!

2(
j 51

N
1

l1l j*
f1 j* ~f1 j* c11f2 j* c2!. ~4.9!

B. Integration of the NLSE hierarchy with self-consistent sources

We will use the inverse scattering method to solve the initial-value problem for the N
hierarchy with self-consistent sources~4.6! under the same assumptions as in Sec. II B as we
the assumption that the spectral equation

S c1

c2
D

x

5S 2l q0~x!

2q0* ~x! l
D S c1

c2
D5S 2 i z q0~x!

2q0* ~x! i z D S c1

c2
D , ~4.10a!

has exactly 2N discrete eigenvalues given by~4.6c!

z j52 il j , j 51, . . . ,N1 , z j5 il j* , j 5N111, . . . ,N,

z̄ j5 il j* 5z j* , j 51, . . . ,N1 , z̄ j52 il j5z j* , j 5N111, . . . ,N. ~4.10b!

We have

h252i ~ i z!2n, h̄2522i ~ i z!2n.

For r 52q* , it is known20 that

c̄2~x,t,z!5S c2
2* ~x,t,z* !

2c1
2* ~x,t,z* ! D , c̄1~x,t,z!5S c2

1* ~x,t,z* !

2c1
1* ~x,t,z* ! D , ~4.11a!

which imply that thea,ā,b,b̄ defined by~2.19! satisfy

ā~z,t !5a* ~z* ,t !, b̄~z,t !5b* ~z* ,t !. ~4.11b!

In the same way as in the previous section, one can show that

]a

]t
50,

]b

]t
54i ~21!nz2nb,

]r

]t
54i ~21!nz2nr. ~4.12!

So for the NLSE hierarchy with self-consistent sources, the evolution of quantitiesa(k,t) and
b(k,t) is the same as that of the NLSE hierarchy without source. The discrete eigenvalu
spectral problem~4.7a! are given by the zeros ofa(z,t) andā(z,t) and independent oft according
to ~4.12!. So the zeros ofa(z,t) andā(z,t) are justz j andz̄ j 5z j* , j 51, . . . ,N, given by~4.10b!.
At z j and z̄ j , the following equalities for the discrete eigenfunctions hold

c2~x,t,zm!5Cm~ t !c1~x,t,zm!, ~4.13a!
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c̄2~x,t,z̄m!5C̄m~ t !c̄1~x,t,z̄m!, m51, . . . ,N, ~4.13b!

which together with~4.11a! yield

Cm5C̄m* , m51, . . . ,N. ~4.14!

Also we have

S f1 j~x,t !
f2 j~x,t ! D5a j~ t !c2~x,t,z j !, j 51, . . . ,N1 , ~4.15a!

S f1 j~x,t !
f2 j~x,t ! D5a j~ t !c̄2~x,t,z̄ j !, j 5N111, . . . ,N. ~4.15b!

It is found from Eqs.~4.6b! and ~4.7a! that

f2 j~x,t !c1
2~x,t,z!2f1 j~x,t !c2

2~x,t,z!

5~2 i z1l j !E
2`

x

~f1 j~z,t !c2
2~z,t,z!1f2 j~z,t !c1

2~z,t,z!!dz, ~4.16a!

f1 j* ~x,t !c1
2~x,t,z!1f2 j* ~x,t !c2

2~x,t,z!

5~ i z1l j* !E
2`

x

~f2 j* ~z,t !c2
2~z,t,z!2f1 j* ~z,t !c1

2~z,t,z!!dz], j 51, . . . ,N,

~4.16b!

which together with~4.11a! and ~2.17! gives rise to

E
2`

`

@f1 j~z,t !c2
2~z,t,zm!1f2 j~z,t !c1

2~z,t,zm!#dz50, j Þm, 1, . . . ,N, ~4.17a!

E
2`

`

@f2 j* ~z,t !c2
2~z,t,zm!2f1 j* ~z,t !c1

2~z,t,zm!#dz50, j Þm, m51, . . . ,N,

~4.17b!

and

limz→zm(j 51

N
1

i z2l j
f2 j@f2 j~x,t !c1

2~x,t,z!2f1 j~x,t !c2
2~x,t,z!#

;2am~ t !Cm~ t !c2
1~x,t,zm!E

2`

`

@f1m~z,t !c2
2~z,t,zm!1f2m~z,t !c1

2~z,t,zm!#dz

522Cm~ t !c2
1~x,t,zm!E

2`

`

f1m~z,t !f2m~z,t !dz, for x→`,

m51, . . . ,N1 , ~4.18a!
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limz→zm(j 51

N
1

i z1l j*
f1 j* @f1 j* ~x,t !c1

2~x,t,z!1f2 j* ~x,t !c2
2~x,t,z!#;am* ~ t !Cm~ t !

3~ c̄1
1~x,t,z̄m!!* E

2`

`

@f1m* ~z,t !~ c̄2
2~z,t,z̄m!!* 1f2m* ~z,t !~ c̄1

2~z,t,z̄m!!* #dz

52Cm~ t !c2
1~x,t,zm!E

2`

`

f1m* ~z,t !f2m* ~z,t !dz, for x→`,

m5N111, . . . ,N. ~4.18b!

Equation~4.17! are the orthogonal property of the discrete eigenfunctions. Also one gets

hm
252i ~ i zm!2n52ilm

2n , m51, . . . ,N1 , hm
2522ilm

2n , m5N111, . . . ,N. ~4.19!

Then we have

dCm

dt
5F4i ~ i zm!2n22E

2`

`

f1m~z,t !f2m~z,t !dzGCm5@4ilm
2n22bm~ t !#Cm , m51, . . . ,N1 ,

~4.20a!

dCm

dt
5@24ilm

2n12bm* ~ t !#Cm , m5N111, . . . ,N, ~4.20b!

which leads to

dcm

dt
5@4ilm

2n22bm~ t !#cm , m51, . . . ,N1 , ~4.21a!

dcm

dt
5@24ilm

2n12bm* ~ t !#cm , m5N111, . . .N, ~4.21b!

or

cm~ t !5cm~0!expF4ilm
2nt22E

0

t

bm~z!dzD , m51, . . . ,N1 , ~4.22a!

cm~ t !5cm~0!expF24ilm
2nt12E

0

t

bm* ~z!dzD , m5N111, . . . ,N. ~4.22b!

Thus, the evolution ofcm(t)52 c̄m* (t) has an extra term22bm(t)cm(t) or 2bm* (t)cm(t)
comparing with that of the NLSE hierarchy without source.

Equations~2.30! and ~4.15! lead to

S f1 j~x,t !
f2 j~x,t ! D5A2b j~ t !cj~ t !c1~x,t,z j !, j 51, . . . ,N1 , ~4.23a!

S f1 j~x,t !
f2 j~x,t ! D5A22b j~ t !c̄ j~ t !c̄1~x,t,z̄ j !, j 5N111, . . . ,N, ~4.23b!

which are consistent with~2.16c!. It is known20 that for r 52q* , one has

F̄~x!5F* ~x!, K̄~x,y!5S K2* ~x,y!

2K1* ~x,y! D . ~4.24!
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Then according to Eqs.~4.12! and~4.22!, we can get the solution of thenth NLSE equation with
self-consistent sources~4.6! in the following way:20

q~x,t !522K1~x,x!, ~4.25a!

f1 j~x,t !5A2b j~ t !cj~ t !E
x

`

K1~x,s!el j sds, j 51, . . . ,N1 , ~4.25b!

f2 j~x,t !5A2b j~ t !cj~ t !S el j x1E
x

`

K2~x,s!el j sdsD , j 51, . . . ,N1 , ~4.25c!

f1 j~x,t !5A22b j~ t !c̄ j~ t !S e2l j x1E
x

`

K2* ~x,s!e2l j sdsD , j 5N111, . . . ,N, ~4.25d!

f2 j~x,t !52A22b j~ t !c̄ j~ t !E
x

`

K1* ~x,s!e2l j sds, j 5N111, . . . ,N, ~4.25e!

whereK(x,y)5(K1(x,y),K2(x,y))T, satisfy

K2* ~x,y!1E
x

`

K1~x,s!F~s1y!ds50, y.x, ~4.26a!

K1~x,y!2F* ~x1y!2E
x

`

K2* ~x,s!F* ~s1y!ds50, y.x, ~4.26b!

and

F~x!5
1

2p E
2`

`

r~z!ei zxdz2(
j 51

N1

cj~ t !el j x2 (
j 5N111

N

cj~ t !e2l j* x. ~4.27!

C. The N soliton solution of the NLSE hierarchy with self-consistent sources

For thenth NLSE equation with self-consistent sources~4.5!, assumer(z)50 and there are
2N distinct eigenvaluesl̃ j52l j , j 51, . . . ,N1 , l̃ j5l j , j 5N111, . . . ,N, l̃ j5(l̃ j )* , j
51, . . . ,N. Denote

E~x,t !5~c1~ t !e2l̃1xc2~ t !e2l̃2x
¯cN~ t !e2l̃Nx!,

M ~x,t !5~M jl !N3N5S cl~ t !

l̃ j* 1l̃ l

e2(l̃ j* 1l̃ l )xD
N3N

,

B~y!5~e2l̃1ye2l̃2y
¯e2l̃Ny!T,

Aj~x!5S 1

l̃1* 1l̃ j

e2(l̃1* 1l̃ j )x
¯

1

l̃N* 1l̃ j

e2(l̃N* 1l̃ j )xD T

,

D~x,t !5I 1M ~x,t !M* ~x,t !.

Then theK1(x,y),K2(x,y) in Eq. ~4.26! can be obtained as
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K1~x,y,t !52E* ~x,t !D21~x,t !B* ~y!, K2~x,y,t !52E~x,t !~D21!* ~x,t !M* ~x,t !B* ~y!.

~4.28!

After some reduction, the solution of the NLSE hierarchy with self-consistent sources~3.5!
under our assumption can be written in the form20

q~x,t !522K1~x,x,t !52E* ~x,t !D21~x,t !B* ~x!, ~4.29a!

f1 j~x,t !52A2b j~ t !cj~ t !E* ~x,t !D21~x,t !Aj~x!, j 51, . . . ,N1 , ~4.29b!

f2 j~x,t !5A2b j~ t !cj~ t !@e2l̃ j x2E~x,t !~D21~x,t !!* M* ~x,t !Aj~x!#, j 51, . . . ,N1 ,

~4.29c!

f1 j~x,t !5A22b j~ t !c̄ j~ t !@e2l̃ j* x2E* ~x,t !D21~x,t !M ~x,t !Aj* ~x!#, j 5N111, . . . ,N,
~4.29d!

f2 j~x,t !5A22b j~ t !c̄ j~ t !E* ~x,t !D21~x,t !Aj* ~x!, j 5N111, . . . ,N. ~4.29e!

In particular, if l̃ jÞl̃m when j Þm and properly chooseb j in such way that

e jm5ReF2i ~ l̃ j
2n212l̃m

2n21!t2E
0

tS b j~z!

l̃ j

2
bm~z!

l̃m
D dzG , j ,m51, . . . ,N,

satisfy

e jm→2`, or e jm→`, when j Þm, and t→6`, ~4.30!

then Eq. ~4.29! present theN-soliton solution of thenth NLSE equation with self-consisten
sources~4.5!. The velocity of each soliton for propagating depends on

v j5ReF2i l̃ j
2n212

b j~ t !

l̃ j
G , j 51, . . . ,N. ~4.31!

For instance, if takeb j (t) to be constant and letl̃ j andb j to satisfy

0,ReF2i l̃1
2n212

b1

l̃1
G,ReF2i l̃2

2n212
b2

l̃2
G,¯,ReF2i l̃N

2n212
bN

l̃N
G ,

then Eq. ~4.29! present theN-soliton solution of thenth NLSE equation with self-consisten
sources~4.5!.

Therefore we see that the insertion of a source may cause the variation of the velocit
soliton.

V. INTEGRATION OF THE KAUP-NEWELL HIERARCHY WITH SELF-CONSISTENT
SOURCES

A. The Kaup–Newell hierarchy with self-consistent sources

Consider the Kaup–Newell~KN! spectral problem24

S f1

f2
D

x

5US f1

f2
D , U5S 2 i z2 zq

zr i z2D , u5S q
r D . ~5.1!

Equations~2.2! and ~2.3! yields
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a052 i , b05c05a150, b15q, c15r , a252 1
2 iqr , b250, c250, . . . ,

a2k115b2k5c2k50, k50,1, . . . ,

and in general

S c2k11

b2k11
D5LS c2k21

b2k21
D5LmS r

qD , a2m,x5qc2m112rb2m11 , ~5.2!

where

L5
1

2 S 2 iD 1rD 21qD rD21rD

qD21qD iD1qD21rD D .

The KN hierarchy is given by

utn
5S q

r D
tn

5JS c2n21

b2n21
D5J

dH2n22

du
, n51,2, . . . , ~5.3!

where

H05qr, H2k5
1

2k
~4ia2k122rb2k112qc2k11!, J5S 0 D

D 0 D .

We have

dz

dq
5zf2

2 ,
dz

dr
52zf1

2 , LS f2
2

2f1
2D 5z2S f2

2

2f1
2D . ~5.4!

For N distinct z j , the KN hierarchy with self-consistent sources is given by15

S q
r D

tn

5JFdH2n22

du
2

1

2 (
j 51

N
dz j

du G5JF S c2n21

b2n21
D2

1

2 S ^QF2 ,F2&
2^QF1 ,F1&

D G , ~5.5a!

f1 j ,x52 i z j
2f1 j1z jqf2 j , f2 j ,x5z j rf1 j1 i z j

2f2 j , j 51, . . . ,N, ~5.5b!

whereQ5diag(z1, . . . zN), and assume that

l j5z j
2 , Im l j5Im z j

2.0, j 51, . . . ,N1 ,

l̄ j5z j
2 , Im l̄ j5Im z j

2,0, j 5N111, . . . ,N,

z j
2Þzm

2 , j Þm, j ,m51, . . . ,N. ~5.5c!

The zero-curvature representation for the KN hierarchy with self-consistent sources~5.5! is
given by ~2.12! with the auxiliary linear problems

S c1

c2
D

x

5S 2 i z2 zq

zr i z2D S c1

c2
D , ~5.6a!

and
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c1,tn
5A(n)c1 j1B(n)c2 j[ (

k50

n21

~a2kz
2n22kc11b2k11z2n22k21c2!1hc1

1
1

2 (
j 51

N
1

z22z j
2 f1 j~z2z j

2f2 jc12zz j
3f1 jc2!,

c2,tn
5C(n)c1 j1D (n)c2 j[ (

k50

n21

~c2k11z2n22k21c12a2kz
2n22kc2!1hc2

1
1

2 (
j 51

N
1

z22z j
2 f2 j~zz j

3f2 jc12z2z j
2f1 jc2!. ~5.6b!

B. Integration of the Kaup–Newell hierarchy with self-consistent sources

We now use the inverse scattering method to solve the initial-value problem for the
hierarchy with self-consistent sources~5.5! in the sense described in Sec. II B. We assume that
KN spectral equation

S c1

c2
D

x

5S 2 i z2 zq0~x!

zr 0~x! i z2 D S c1

c2
D , ~5.7a!

has exactlyN discrete eigenvalues which are same as that given by~5.5c!. Let b j (t), j
51, . . . ,N, be arbitrary continuous functions oft. Using the inverse scattering method, w
construct the solutionq(x,t),r (x,t),f1 j (x,t),f2 j (x,t), j 51, . . . ,N, of the system~5.5! in such
way that

q~x,0!5q0~x!, r ~x,0!5r 0~x!,

b j~ t !5E
2`

`

@ if1 j ,x~x,t !f2 j~x,t !1z j
2f1 j~x,t !f2 j~x,t !#dx, j 51, . . . ,N1 ,

b j~ t !52E
2`

`

@ if1 j ,x~x,t !f2 j~x,t !1z j
2f1 j~x,t !f2 j~x,t !#dx, j 5N111, . . . ,N. ~5.7b!

We define the eigenfunctionc2(x,t,z), c̄2(x,t,z), c1(x,t,z), c̄1(x,t,z) for KN spectral
equations~5.6a! and ~5.6b! with the following boundary condition on Imz25024

c2~x,t,z!;S 1
0De2 i z2x, c̄2~x,t,z!;S 0

21Dei z2x, x→2`, ~5.8a!

c1~x,t,z!;S 0
1Dei z2x, c̄1~x,t,z!;S 1

0De2 i z2x, x→`. ~5.8b!

Under the assumption forq,r ,f1 j ,f2 j , for Im z250, sincez2Þz j
2 , we have

lim
uxu→`

N(n)5S 2 i z2n1h 0

0 i z2n1h D . ~5.9!

Then we get

h25 i z2n, h̄252 i z2n.
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Denotel5z2, it was shown in Refs. 24 and 25 thata(z) and ā(z) are even functions ofz and
may be denoted bya(l) and ā(l), b(z) and b̄(z) are odd functions ofz. We definer(l)
5 b(z)/za(z) ,r̄(l)5 b̄(z)/zā(z) . Then by substitutingc2(x,t,z),h2(c̄2(x,t,z),h̄2) into Eq.
~5.6b!, using~5.9! and ~2.19a!, let x→`, it can be shown that on Iml5Im z250,

]a

]t
50,

]b

]t
52i z2nb,

]r

]t
52ilnr, ~5.10a!

]ā

]t
50,

]b̄

]t
522i z2nb̄,

]r̄

]t
522ilnr̄. ~5.10b!

That is, for KN hierarchy with self-consistent sources, the evolution of quantitiesa(z,t),
b(z,t), ā(z,t), b̄(z,t) is the same as that of the KN hierarchy without source.

It is known24,25 that functiona(l,t)(ā(l,t)) admits an analytical continuation into the upp
half ~lower half! plane ofl. The KN spectral equation~5.6a! can possess discrete eigenvalu
which occur whenevera(l,t) has zeros in the upper half plane and wheneverā(l,t) has zeros in
the lower half plane. Equation~5.10! indicate that the discrete eigenvalues don’t depend ot.
According to the assumption forq,r ,f1 j ,f2 j , and ~5.7a!, the zeros ofa(l,t) are l j5z j

2 , j

51, . . . ,N1 and the zeros ofā(l,t) are l̄ j5z j
2 , j 5N111, . . . ,N. At l j and l̄ j the following

equalities for the discrete eigenfunctions hold:

c2~x,t,zm!5Cm~ t !c1~x,t,zm!, m51, . . . ,N1 , ~5.11a!

c̄2~x,t,zm!5C̄m~ t !c̄1~x,t,zm!, m5N111, . . . ,N. ~5.11b!

S f1 j~x,t !
f2 j~x,t ! D5a j~ t !c2~x,t,z j !, j 51, . . . ,N1 . ~5.11c!

S f1 j~x,t !
f2 j~x,t ! D5a j~ t !c̄2~x,t,z j !, j 5N111, . . . ,N. ~5.11d!

It is found from Eqs.~5.5b! and ~5.6a! that

zz j
3f2 j~x,t !c1

2~x,t,z!2z2z j
2f1 j~x,t !c2

2~x,t,z!

5~z22z j
2!z j

2E
2`

x

@2c2,x
2 ~z,t,z!f1 j~z,t !2 i zz jc1

2~z,t,z!f2 j~z,t !#dz, ~5.12a!

z2z j
2f2 j~x,t !c̄1

2~x,t,z!2zz j
3f1 j~x,t !c̄2

2~x,t,z!

5~z22z j
2!z j

2E
2`

x

@c̄1,x
2 ~z,t,z!f2 j~z,t !2 i zz j c̄2

2~z,t,z!f1 j~z,t !#dz, ~5.12b!

which give rise to

E
2`

`

@f1 j~x,t !c2,x
2 ~x,t,zm!1 i z jzmf2 j~x,t !c1

2~x,t,zm!#dx50, j Þm, m51, . . . ,N1 ,

~5.13a!

E
2`

`

@f2 j~x,t !c̄1,x
2 ~x,t,zm!2 i z jzmf1 j~x,t !c̄2

2~x,t,zm!#dx50, j Þm, m5N111, . . . ,N.

~5.13b!
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It is found that

05
1

z j
E

2`

`

@c1~x,t,z j !c2~x,t,z j !#xdx5E
2`

`

@qc2
2~x,t,z j !1rc1

2~x,t,z j !#dx,

z@qc2
2~x,t,z!2rc1

2~x,t,z!#

5c1,x~x,t,z!c2~x,t,z!2c1~x,t,z!c2,x~x,t,z!12i z2c1~x,t,z!c2~x,t,z!,

and

da~l j !

dz
5

2Cj

z j
E

2`

`

@c1x
1 ~x,t,z j !c2

1~x,t,z j !2 i z j
2c1

1~x,t,z j !c2
1~x,t,z j !#dx,

j 51, . . . ,N1 ,

dā~ l̄ j !

dz
5

2C̄j

z j
E

2`

`

@c̄1x
1 ~x,t,z j !c̄2

1~x,t,z j !2 i z j
2c̄1

1~x,t,z j !c̄2
1~x,t,z j !#dx,

j 5N111, . . . ,N.

One obtains from~5.12!

lim
z→zm

(
j 51

N
1

z22z j
2 f2 j~x,t !@zz j

3f2 j~x,t !c1
2~x,t,z!2z2z j

2f1 j~x,t !c2
2~x,t,z!#

;zm
2 am~ t !Cm~ t !c2

1~x,t,zm!E
2`

`

@c2
2~z,t,zm!f1m,z~z,t !2 i zm

2 c1
2~z,t,zm!f2m~z,t !#dz

5zm
2 Cm~ t !c2

1~x,t,zm!H E
2`

`

@f1m,z~z,t !f2m~z,t !2 i zm
2 f1m~z,t !f2m~z,t !#dzJ

52 i zm
2 bm~ t !Cm~ t !c2

1~x,t,zm!, x→`, m51, . . . ,N1 , ~5.14a!

lim
z→zm

(
j 51

N
1

z22z j
2 f1 j@z2z j

2f2 j~x,t !c̄1
2~x,t,z!2zz j

3f1 j~x,t !c̄2
2~x,t,z!#

; i zm
2 bm~ t !C̄m~ t !c̄1

1~x,t,zm!, x→`, m5N111, . . . ,N. ~5.14b!

Also we have

hm
25 i zm

2n , m51, . . . ,N1 , h̄m
252 i zm

2n , m5N111, . . . ,N. ~5.15!

Then one gets

dCm

dt
5F2i zm

2n2
1

2
i zm

2 bm~ t !GCm~ t !, m51, . . . ,N1 , ~5.16a!

dC̄m

dt
52F2i zm

2n2
1

2
i zm

2 bm~ t !GC̄m~ t !, m5N111, . . . ,N. ~5.16b!

The normalization constantscm , c̄m are defined by
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cm~ t ![F2E
2`

`

@ ic1,x
1 ~x,t,zm!c2

1~x,t,zm!1z j
2c1

1~x,t,zm!c2
1~x,t,zm!#dxG21

52 iCm~ t !S zm

da~lm!

dz D 21

, m51, . . . ,N1 , ~5.17a!

c̄m~ t ![F2E
2`

`

@ i c̄1,x
1 ~x,t,zm!c̄2

1~x,t,zm!1z j
2c̄1

1~x,t,zm!c̄2
1~x,t,zm!#dxG21

52 iC̄m~ t !S zm

dā~ l̄m!

dz
D 21

, m5N111, . . . ,N, ~5.17b!

one obtains

dcm

dt
5F2i zm

2n2
1

2
i zm

2 bm~ t !Gcm , m51, . . . ,N1 , ~5.18a!

dc̄m

dt
5F22i zm

2n1
1

2
i zm

2 bm~ t !G c̄m , m5N111, . . . ,N. ~5.18b!

Thus, the evolution ofcm(t) and c̄m(t) has an extra term2 i zm
2 bm(t)cm(t) and

i zm
2 bm(t) c̄m(t) comparing with that of the KN hierarchy without source.

It is found from,~5.7b!, ~5.11!, and~5.17! that

S f1 j~x,t !
f2 j~x,t ! D5A2b j~ t !cj~ t !c1~x,t,z j !, j 51, . . . ,N1 , ~5.19a!

S f1 j~x,t !
f2 j~x,t ! D5A22b j~ t !c̄ j~ t !c̄1~x,t,z j !, j 5N111, . . . ,N, ~5.19b!

which is consistent with~5.7b!.
According to Refs. 24 and 25, using Eqs.~5.10! and ~5.18! and solving the Gel’fand–

Levitan–Marchenko equation, we can get the solution of thenth KN equation with self-consisten
sources~5.5! in the following way:

q~x,t !e2im1(x)522K1~x,x!, r ~x,t !e22im1(x)522K̄2~x,x!, ~5.20a!

f1 j~x,t !5A2b j~ t !cj~ t !E
x

`

ei z j
2sK1~x,s!z je

2 im1(x)ds, ~5.20b!

f2 j~x,t !5A2b j~ t !cj~ t !S ei [ z j
2x1m1(x)]1E

x

`

ei z j
2sK2~x,s!eim1(x)dsD , j 51, . . . ,N1 ,

~5.20c!

f1 j~x,t !5A22b j~ t !c̄ j~ t !S ei [ 2z j
2x2m1(x)]1E

x

`

e2 i z j
2sK̄1~x,s!e2 im1(x)dsD , ~5.20d!

f2 j~x,t !5A22b j~ t !c̄ j~ t !E
x

`

e2 i z j
2sK̄2~x,s!z je

im1(x)ds, j 5N111, . . . ,N, ~5.20e!

where m1(x)5 1
2 *x

`r (s)q(s)ds52*x
`K1(s,s)K̄2(s,s)ds, K1(x,y), K2(x,y), and K̄1(x,y),

K̄2(x,y) satisfy (y.x)
                                                                                                                



te

5481J. Math. Phys., Vol. 41, No. 8, August 2000 Integration of soliton hierarchy with sources

                    
K̄1~x,y!2 i E
x

`

K1~x,s!F8~s1y!ds50, ~5.21a!

K̄2~x,y!1F~x1y!1E
x

`

K2~x,s!F~s1y!ds50, ~5.21b!

2K1~x,y!1F̄~x1y!1E
x

`

K̄1~x,s!F̄~s1y!ds50, ~5.21c!

2K2~x,y!1 i E
x

`

K̄2~x,s!F̄8~s1y!ds50, ~5.21d!

and

F~z!5
1

2p E
2`

`

r~l!eilzdl1(
j 51

N1

cj~ t !eil j z,

F̄~z!5
1

2p E
2`

`

r̄~l!e2 ilzdl1 (
j 5N111

N

c̄j~ t !e2 i l̄ j z.

We now present the exploding soliton for system~5.5!. Assume thatr(l)5 r̄(l)50,N1

51,N52, namely there is one discrete eigenvaluel5z1
2 in the upper half plane and one discre

eigenvaluel̄5z2
2 in the lower half plane. We have

F~z!5c~ t !eilx, F̄~z!5 c̄~ t !e2 i l̄x,

wherec(t),c̄(t) are found from~5.18!

c~ t !5c~0!expF2i z1
2n2

1

2
i z1

2E
0

t

b1~z!dzG , c̄~ t !5 c̄~0!expF22i z2
2n1

1

2
i z2

2E
0

t

b2~z!dzG .
~5.22!

Solving Eq.~5.21! leads to

K1~x,y!5
1

D1

c̄~ t !e2 i l̄(x1y), K2~x,y!52
1

i ~l2l̄ !D2

c~ t !c̄~ t !l̄e2ilx2 i (l̄x2ly), ~5.23a!

K̄1~x,y!5
1

i ~l2l̄ !D1

c~ t !c̄~ t !le22i l̄x1 i (lx2l̄y), K̄2~x,y!5
1

D2

c~ t !eil(x1y), ~5.23b!

D1512
1

~l2l̄ !2
c~ t !c̄~ t !le2i (l2l̄)x, D25211

1

~l2l̄ !2
c~ t !c̄~ t !l̄e2i (l2l̄)x. ~5.23c!

Then we obtain the solution by means of Eq.~5.20!

q~x,t !e2im1(x)52
2

D1
c̄~ t !e22i l̄x, r ~x,t !e22im1(x)52

2

D2
c~ t !e2ilx, ~5.24a!
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f11~x,t !5 iA2b1~ t !c~ t !
1

~l2l̄ !D1

z c̄~ t !ei (l22l̄)x2 im1(x), ~5.24b!

f21~x,t !5A2b1~ t !c~ t !S ei [ z2x1m1(x)]2
1

2l~l2l̄ !D2

c~ t !c̄~ t !l̄ei (4l2l̄)x1 im1(x)D ,

~5.24c!

f12~x,t !5A22b2~ t !c̄~ t !S ei [ 2 z̄2x2m1(x)]2
1

2l̄~l2l̄ !D1

c~ t !c̄~ t !lei (l24l̄)x2 im1(x)D ,

~5.24d!

f22~x,t !5 iA22b2~ t !c̄~ t !
1

~l2l̄ !D2

z̄c~ t !ei (2l2l̄)x1 im1(x), ~5.24e!

wherec(t),c̄(t) are given by~5.22! and

m1~x!5 i ln
D1

2D2
.

VI. INTEGRATION OF THE DNLSE HIERARCHY WITH SELF-CONSISTENT SOURCES

A. The DNLSE hierarchy with self-consistent sources

Consider the reduced case of the Kaup–Newell spectral problem forr 52q* 24

S f1

f2
D

x

5US f1

f2
D5S 2 i z2 zq

2zq* i z2D S f1

f2
D . ~6.1!

Solving the adjoint representation of the above problem yields

a052 i , b05c05a150, b15q, c152q* ,

a25 1
2 iqq* , b25c25a350, . . .

and in general

a2m115b2m5c2m50, c2m1152b2m11* , . . . ,

S c2m11

b2m11
D5LS c2m21

b2m21
D , a2m,x5qc2m111q* b2m11 , ~6.2!

where

L5
1

2 S 2 iD 2q* D21qD q* D21q* D

qD21qD iD2qD21q* D D .

The hierarchy of the derivative nonlinear Schro¨dinger hierarchy~DNLSE! reads

qtn
5Db2n2152DS dH2n22

dq D *
, ~6.3!

where
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H052qq* , H2n5
1

2n
~4ia2n121q* b2n112qc2n11!, n51, . . . .

It is easy to verify that

LmS zf2
21z* f1*

2

2zf1
22z* f2*

2D 5S z2m11f2
21z* 2m11f1*

2

2z2m11f1
22z* 2m11f2*

2D , m51,2, . . . . ~6.4!

The DNLSE hierarchy with self-consistent sources is defined by

qtn
5D@b2n211 1

2 ~^QF1 ,F1&1^Q* F2* ,F2* &!#, ~6.5a!

f1 j ,x52 i z j
2f1 j1z jqf2 j , f2 j ,x52z jq* f1 j1 i z j

2f2 j , j 51, . . . ,N, ~6.5b!

and assume that

l j5z j
2 , Im l j5Im z j

2.0, j 51, . . . ,N1 ,

l̄ j5z j
2 , Im l̄ j5Im z j

2,0, j 5N111, . . . ,N. ~6.5c!

The zero-curvature representation for the DNLSE hierarchy with self-consistent sources~6.5!
is given by~2.11! with the auxiliary linear problems

S c1

c2
D

x

5S 2 i z2 zq

2zq* i z2D S c1

c2
D ~6.6a!

and

c1,tn
5A(n)c11B(n)c2[ (

k50

n21

~a2kz
2n22kc11b2k11z2n22k21c2!1hc1

1
1

2 (
j 51

N
1

z22z j
2 f1 j~z2z j

2f2 jc12zz j
3f1 jc2!

1
1

2 (
j 51

N
1

z22z j*
2 f2 j* ~2z2z j*

2f1 j* c12zz j*
3f2 j* c2!,

c2,tn
5C(n)c11D (n)c2[ (

k50

n21

~c2k11z2n22k21c12a2kz
2n22mc2!1hc2

1
1

2 (
j 51

N
1

z22z j
2 f2 j~zz j

3f2 jc12z2z j
2f1 jc2!

1
1

2 (
j 51

N
1

z22z j*
2 f1 j* ~zz j*

3f1 j* c11z2z j*
2f2 j* c2!. ~6.6b!

Whenn52, Eq. ~6.5! gives the DNLSE equation with self-consistent sources

qt2
5 1

2 iqxx2
1
2 ~q* q2!x1 1

2 D~^QF1 ,F1&1^Q* F2* ,F2* &!, ~6.7a!

f1 j ,x52 i z j
2f1 j1z jqf2 j , f2 j ,x52z jq* f1 j1 i z j

2f2 j , j 51, . . . ,N, ~6.7b!
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and the auxiliary linear problem~6.6b! reads

c1,t2
5S 2 i z41

1

2
i z2qq* 1h Dc11S qz32

1

2
zq* q21

1

2
i zqxDc21

1

2 (
j 51

N
1

z22z j
2 f1 j~z2z j

2f2 jc1

2zz j
3f1 jc2!1

1

2 (
j 51

N
1

z22z j*
2 f2 j* ~2z2z j*

2f1 j* c12zz j*
3f2 j* c2!,

c2,t2
5S 2q* z31

1

2
zqq* 21

1

2
i zqx* Dc11S i z42

1

2
i z2qq* 1h Dc21

1

2 (
j 51

N
1

z22z j
2 f2 j~zz j

3f2 jc1

2z2z j
2f1 jc2!1

1

2 (
j 51

N
1

z22z j*
2 f1 j* ~zz j*

3f1 j* c11z2z j*
2f2 j* c2!. ~6.8!

B. Integration of the DNLSE hierarchy with self-consistent sources

We now integrate the initial-value problem for the DNLSE hierarchy with self-consis
sources~6.5! by the inverse scattering method under the assumptions in the last section a
assumption that the spectral equation

S c1

c2
D

x

5S 2 i z2 zq0~x!

2zq0* ~x! i z2 D S c1

c2
D , ~6.9a!

have 2N discrete eigenvalues given by~6.5c! in the following way

l j5j j
2 , l̄ j5 j̄ j

2 , j 51, . . . ,N, ~6.9b!

where

j j5z j , j 51, . . . ,N1 , j j5z j* , j 5N111, . . . ,N,

j̄ j5z j* , j 51, . . . ,N1 , j̄ j5z j , j 5N111, . . . ,N.

We have

h25 i ~z!2n, h̄252 i ~z!2n.

For r 52q* , it is known24 that

c̄2~x,t,z!5S c2
2* ~x,t,z* !

2c1
2* ~x,t,z* ! D , c̄1~x,t,z!5S c2

1* ~x,t,z* !

2c1
1* ~x,t,z* ! D , ~6.10a!

which imply that thea, ā, b, b̄ satisfy

ā~z,t !5a* ~z* ,t !, b̄~z,t !5b* ~z* ,t !. ~6.10b!

In the same way as in the previous section, one can show that

]a

]t
50,

]b

]t
52i z2nb,

]r

]t
52i z2nr. ~6.11!

So for the DNLSE hierarchy with self-consistent sources, the evolution of quantitiesa(z,t) and
b(z,t) is the same as that of the DNLSE hierarchy without source. The discrete eigenvalu
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spectral problem~6.6a! are given by the zeros ofa(z,t) andā(z,t) and independent oft according
to ~6.11!. So the zeros ofa(z,t) and ā(z,t) are justj j and j̄ j , respectively. Atj j and j̄ j the
following equalities for the discrete eigenfunctions hold

c2~x,t,jm!5Cm~ t !c1~x,t,jm!, c̄2~x,t,j̄m!5C̄m~ t !c̄1~x,t,j̄m!, m51, . . . ,N,
~6.12!

which together with~6.10a! yield

Cm5C̄m* , m51, . . . ,N. ~6.13!

Also we have

S f1 j~x,t !
f2 j~x,t ! D5a j~ t !c2~x,t,z j !, j 51, . . . ,N1 , ~6.14a!

S f1 j~x,t !
f2 j~x,t ! D5a j~ t !c̄2~x,t,z j !, j 5N111, . . . ,N. ~6.14b!

It is found from Eqs.~6.5b! and ~6.6a! that

zz j
3f2 j~x,t !c1

2~x,t,z!2z2z j
2f1 j~x,t !c2

2~x,t,z!

5~z22z j
2!z j

2E
2`

x

@f1 j ,z~z,t !c2
2~z,t,z!2 i zz jf2 j~z,t !c1

2~z,t,z!#dz, ~6.15a!

zz j*
3f1 j* ~x,t !c1

2~x,t,z!1z2z j*
2f2 j* ~x,t !c2

2~x,t,z!

52~z22z j*
2!zz j* E

2`

x

@f1 j ,x* ~z,t !c1
2~z,t,z!2 i zz j* f2 j* ~z,t !c2

2~z,t,z!#dz,

j 51, . . . ,N, ~6.15b!

which together with~6.10a! gives rise to

E
2`

`

@f1 j ,z~z,t !c2
2~z,t,jm!2 i zmj jf2 j~z,t !c1

2~z,t,jm!#dz50, j Þm, m51, . . . ,N,

~6.16a!

E
2`

`

@f1 j ,z* ~z,t !c1
2~z,t,jm!2 i zmj j* f2 j* ~z,t !c2

2~z,t,jm!#dz50, j Þm,m51, . . . ,N,

~6.16b!

and

limz→zm (
j 51

N
1

z22z j
2 f2 j@zz j

3f2 j~x,t !c1
2~x,t,z!2z2z j

2f1 j~x,t !c2
2~x,t,z!#

;am~ t !Cm~ t !zm
2 c2

1~x,t,zm!E
2`

`

@f1m,z~z,t !c2
2~z,t,zm!2 i zm

2 f2m~z,t !c1
2~z,t,zm!#dz

5zm
2 Cm~ t !c2

1~x,t,zm!E
2`

`

@f1m,z~z,t !f2m~z,t !2 i zm
2 f2m~z,t !f1m~z,t !#dz

for x→`, m51, . . . ,N1 , ~6.17a!
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limz→z
m* (j 51

N
1

z22zm*
2 f1 j* @zz j*

3f1m* ~x,t !c1
2~x,t,z!1z2zm*

2f2m* ~x,t !c2
2~x,t,z!#

;2zm*
2am* ~ t !~ c̄1

1~x,t,zm* !!* E
2`

`

@c1,z
2 ~z,t,zm* !f1m* ~z,t !2 i zm*

2c2
2~z,t,zm* !f2m* ~z,t !#dz

5zm*
2Cm~ t !c2

1~x,t,zm* !E
2`

`

@f1m,z* ~z,t !f2m* ~z,t !1 i zm*
2f1m* ~z,t !f2m* ~z,t !#dz,

for x→`, m5N111, . . . ,N, ~6.17b!

Eq. ~6.16! are the orthogonal property of the discrete eigenfunctions. Also one gets

hm
25 i zm

2n , m51, . . . ,N1 , h̄m
25 i ~zm* !2n, m5N111, . . . ,N. ~6.18!

Using theb j (t) defined by~5.7b!, then we have

dCm

dt
5F2i zm

2n2
1

2
i zm

2 bm~ t !GCm , m51, . . . ,N1 , ~6.19a!

dCm

dt
5F22i zm*

2n2
1

2
i zm*

2bm* ~ t !GCm , m5N111, . . . ,N, ~6.19b!

which leads to

dcm

dt
5F2i zm

2n2
1

2
i zm

2 bm~ t !Gcm , m51, . . . ,N1 , ~6.20a!

dcm

dt
5F22i zm*

2n2
1

2
i zm*

2bm* ~ t !Gcm , m5N111, . . . ,N, ~6.20b!

or

cm~ t !5cm~0!expF2i zm
2n2 1

2 i zm
2 E

0

t

bm~z!dzG , m51, . . . ,N1 , ~6.21a!

cm~ t !5cm~0!expF22i zm*
2n2

1

2
i zm*

2E
0

t

bm* ~z!dzG , m5N111, . . . ,N, ~6.21b!

where cm(t)52 c̄m* (t) are defined by~5.17!. Thus, the evolution ofcm(t) has an extra term
2 i zm

2 bm(t)cm or 2 i zm*
2bm* (t)cm comparing with that of the DNLSE hierarchy without source

According to the definition ofb j (t) and ~6.14! lead to

S f1 j~x,t !
f2 j~x,t ! D5A2b j~ t !cj~ t !c1~x,t,z j !, j 51, . . . ,N1 , ~6.22a!

S f1 j~x,t !
f2 j~x,t ! D5A22b j~ t !c̄ j~ t !c̄1~x,t,z j !, j 5N111, . . . ,N, ~6.22b!

which are consistent with the definition ofb j (t). It is known24 that for r 52q* , one has

F̄~x!5F* ~x!, K̄~x,y!5S K2* ~x,y!

2K1* ~x,y! D . ~6.23!
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Then according to Eqs.~6.11! and~6.21!, we can get the solution of thenth DNLSE equation with
self-consistent sources~6.5! in the following way:

q~x,t !e2im1(x)522K1~x,x!, m1~x!52
1

2 Ex

`

uqu2dx522E
x

`

K1~x,x!K1* ~x,x!dx,

~6.24a!

f1 j~x,t !5A2b j~ t !cj~ t !E
x

`

ei z j
2sz jK1~x,s!e2 im1(x)ds, j 51, . . . ,N1 , ~6.24b!

f2 j~x,t !5A2b j~ t !cj~ t !S ei [ z j
2x1m1(x)]1E

x

`

ei z j
2sK2~x,s!eim1(x)dsD , j 51, . . . ,N1 ,

~6.24c!

f1 j~x,t !5A22b j~ t !c̄ j~ t !S ei [ 2z j
2x2m1(x)]1E

x

`

e2 i z j
2sK2* ~x,s!e2 im1(x)dsD , j 5N111, . . . ,N,

~6.24d!

f2 j~x,t !52A22b j~ t !c̄ j~ t ! E
x

`

e2 i z j
2sz jK1* ~x,s!eim1(x)ds, j 5N111, . . . ,N, ~6.24e!

whereK(x,y)5(K1(x,y), K2(x,y))T, satisfy

K2* ~x,y!2 i E
x

`

K1~x,s!F8~s1y!ds50, y.x, ~6.25a!

2K1~x,y!1F* ~x1y!1E
x

`

K2* ~x,s!F* ~s1y!ds50, y.x, ~6.25b!

and

F~z!5
1

2p E
2`

`

r~l!eilzdl2(
j 51

N

cj~ t !eil j z. ~6.26!

C. The N soliton solution of the DNLSE hierarchy with self-consistent sources

For the nth DNLSE with self-consistent sources~6.4!, assumer(z)50 and there are 2N
distinct eigenvaluesl j and l̄ j , j 51, . . . ,N, given by~6.9b!. Denote

E~x,t !5~2c1~ t !eil1x 2c2~ t !eil2x
¯ 2cN~ t !eilNx!,

M ~x,t !5~M jl !N3N5S cl~ t !

i ~2l j* 1l l !
ei (2l j* 1l l )xD

N3N

,

B~y!5~eil1x eil2x
¯ eilNx!T,

Aj~x!5S i

l j2l1*
ei (l j 2l1* )x

¯

i

l j2lN*
ei (l j 2lN* )xD T

, j 51, . . . ,N,

D~x,t !5I 1M ~x,t !LM* ~x,t !.

Then theK1(x,y), K2(x,y) in Eq. ~6.25! can be obtained as
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K1~x,y,t !5E* ~x,t !D21~x,t !B* ~y!, K2~x,y,t !52E~x,t !D21* ~x,t !M* ~x,t !L* B* ~y!.
~6.27!

After some reduction, the solution of thenth DNLSE with self-consistent sources~6.4! under
our assumption can be written in the form

q~x,t !e2im1(x)522E* ~x,t !D21~x,t !B* ~x!, ~6.28a!

f1 j~x,t !5z jA2b j~ t !cj~ t !E* ~x,t !D~x,t !21Aj~x!e2 im1(x), j 51, . . . ,N1 , ~6.28b!

f2 j~x,t !5A2b j~ t !cj~ t !~ei [ z j
2x1m1(x)]2E~x,t !D21* ~x,t !M* ~x,t !L* Aj~x!eim1(x)!,

j 51, . . . ,N1 , ~6.28c!

f1 j~x,t !5A22b j~ t !c̄ j~ t !~ei [ 2z j
2x2m1(x)]2E* ~x,t !D21~x,t !M ~x,t !LAj* ~x,t !e2 im1(x)!,

j 5N111, . . . ,N, ~6.28d!

f2 j~x,t !52z jA22b j~ t !c̄ j~ t !E~x,t !D21* ~x,t !Aj* ~x,t !eim1(x), j 5N111, . . . ,N,
~6.28e!

and

m1~x!522E
x

`

E* ~x,t !D21~x,t !B* ~x!E~x,t !~D21!* ~x,t !B~x!dx.

Similarly, by properly choosingb j , the formula~6.28! present theN-soliton solution for thenth
DNLSE with self-consistent sources~6.4!.

VII. CONCLUSION

We systematically study the soliton equation with self-consistent sources~SESCS! based on
the high-order constrained flows of soliton equations. The Lax representation of the SESC
always be deduced from the adjoint representation of the auxiliary linear problems for s
equations. In contrast with the soliton equations, the evolution of eigenfunctions for the S
possess singularity. We propose a general method to treat the singularity to determine the
tion of scattering data. The evolution of each normalization constant has an extra term rela
the eigenfunction. We directly integrate the AKNS hierarchy with self-consistent sources
MKdV hierarchy with self-consistent sources, the NLSE hierarchy with self-consistent sou
the KN hierarchy with self-consistent sources and the DNLSE hierarchy with self-cons
sources by inverse scattering method and obtain the soliton solutions. The self-consistent
may cause the variation of the velocity of soliton solutions. Compared with the method in Re
and 17, our approach seems more natural and simple. This approach can be used to solve
(111)-dimensional soliton hierarchies with self-consistent sources.
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Physically relevant gauge and gravitational theories can be seen as special members
of hierarchies of more elaborate systems. The Yang–Mills~YM ! system is the first
member of a hierarchy of Lagrangians which we will index byp1 , and the
Einstein–Hilbert~EH! system of general relativity is the first member of another
hierarchy which we index byp2 . In this paper, we study the classical equations of
the p151,2 YM hierarchy considered in the background of special geometries
~Schwarzschild, deSitter, anti-deSitter! of the p251,2,3 EH hierarchy. Solutions
are obtained in various dimensions and lead to several examples of nonself-dual
YM fields. Whenp15p2 self-dual solutions exist in addition. Their action is equal
to the Chern–Pontryagin charge and can be compared with that of the nonself-dual
solutions. © 2000 American Institute of Physics.@S0022-2488~00!04008-1#

I. INTRODUCTION

The main aim of this work is the study of nonself-dual Yang–Mills~YM ! fields in d>4
dimensions on fixed gravitational backgrounds ind-dimensions, extending the work of Refs. 1–
in four-dimensions. As in Refs. 1–3, we restrict to Schwarzschild and deSitter metrics. By
fields here we mean the solutions to the hierarchy ofp-YM systems,4 whosep51 member is the
usual YM system, and the genericpth member involves the curvature 2p-form in lieu of the usual
YM two-form curvature.

Here we present nonself-dual solutions in curved backgrounds. Such solutions in flat
would be particularly interesting. Even the complex one in dimension 4, which was obtain2,3

exploiting the conformal flatness of the deSitter metric in this case, is worthwhile.~See the
remarks and the references in Ref. 2 concerning the relevance of complex saddle points.!

We have a definite reason for considering the hierarchy of YM systems rather than rest
to the usual (p51) member only, other than the fact that it is quite natural to do so in dimens
d.4. As highlighted in the work of Refs. 1–3, ind5four dimensions and with Euclidean sign
ture, the self-dual (p51) YM field can be constructed from the double-self-dual gravitational fi
by constructing the SU(2) YM connection from the corresponding gravitational spin-connec5

In this case, it is known that the gravitational field equations are automatically satisfied, and
the YM equations by virtue of the self-duality@Note that both Schwarzschild and deSitter R
mann curvatures are known to be double-self-dual in four-dimensions and hence there exi
dual YM solutions~Ref. 5!.# Clearly then, the YM action will be equal to the Chern–Pontrya

a!Also at: School of Theoretical Physics—DIAS, 10 Burlington Road, Dublin 4, Ireland. Electronic m
chakra@cpht.polytechnique.fr
54900022-2488/2000/41(8)/5490/20/$17.00 © 2000 American Institute of Physics
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~CP! charge. Thus, if one finds nonself-dual solutions to the YM equations in the said do
self-dual gravitational background, the value of the action will differ from that of the self-dual
fields, and it is interesting to compare it with the value of the CP charge originating from
double-self-dual metric of the previous case.1,5 For the usual (p51) case a self-dual YM field can
thus be related to a double-self-dual gravitational metric only ford54, and it is our desire to carry
it out in d.4, as a subsidiary motive of our investigations, that leads us to consider the hier
of YM systems.

The main interest of the present work remains the investigation of non-self-dual YM field
flat four-dimensional Euclidean space no explicit real nonself-dual solutions are known@there
exist explicit complex nonself-dual solutions~Ref. 3!# for gauge group SU~2!. @Implementing
instantons and anti-instantons in commuting subgroups of SU(N) for N sufficiently large one can
evidently obtain nonself-dual solutions,6,7 but here we consider specifically SU~2!.# For SU~2!
only selfdual solutions are known, the value of the YM action pertaining to these being eq
the Chern–Pontryagin~CP! charge. It was found in Ref. 1, however, that on fixed Schwarzsc
and deSitter backgrounds, there were nonself-dual solutions, the values of whose actions d
from that of the CP charge. In particular, in the case of Schwarzschild background, the value
nonself-dual action, which turned out to be real, was slightly smaller than that of the se
action. Thus, the study of YM fields on fixed backgrounds is of general interest in the cont
nonself-dual fields, and in the special case~s! where self-dual solutions on the same backgrou
also exist, then it is of particular interest to compare the value of the nonself-dual action wit
of the self-dual one. The reason for considering the hierarchy of YM models is precisely be
thepth member of these, on 4p dimensions, does support self-dual solutions. Indeed, the situa
in four dimensions, where the YM field constructed from the double-self-dual spin-connect
automatically~single! self-dual, occurs in all 4p dimensions for thepth member of the YM
hierarchy on a background whose 2p-form Riemann tensor is double-self-dual. We shall re
these 4p-dimensional gravitational systems as the hierarchy of Einstein–Hilbert~EH! systems, or,
generalized EH systems.

The hierarchy of~gravitational! EH systems in all even dimensions was previously studie
Refs. 8 and 9, and more recently in Ref. 10. In Ref. 8 it was shown that in 4p dimensions, the
2p-form Riemann tensors of the deSitter and Fubini–Study metrics were double-self-dual,
Ref. 10 this was done for Schwarzschild like metrics. In Ref. 9 it was shown that the
connections constructed from the corresponding spin-connections5 in all even dimensions yielded
2N-form YM curvatures which satisfied the~single-! self-duality conditions of the YM hierarchy.4

This construction is possible in all even dimensions only when the curved space is a co
co-set space, but in general can also be carried out if we restrict the dimensions to 4p. In the
present work, where YM fields~both self-dual and nonself-dual! on Schwarzschild background
are considered, we restrict to 4p dimensions, and we label the EH systems also with the labep.

Since we will consider thepth members of both YM and EH hierarchies in alld dimensions,
with dÞ4p for the nonself-dual cases, we will henceforth label the members of the YM hiera
with p1 and the members of the EH hierarchy withp2 . For a discussion of the YM and EH
hierarchies, we refer to Refs. 4 and 9, but here we simply give the definitions for the Lagran
of these systems for the particuar examples that will be employed in the present work.

Thus, concerning the YM systems, thep151 and thep152 systems read, respectively

S(1)5Tr FmnFmn , ~1!

S(2)5Tr FmnrsFmnrs , ~2!

with the following definitions for the field strengths~the potentials are anti-Hermitian, the gau
group will be specified later!

Fmn5]mAn2]nAm1@Am ,An#, ~3!

Fmnrs5$Fm[n ,Frs]%, ~4!
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and the square bracket on the indices@nrs# implies cyclic symmetry. The final normalizations o
both ~1! and ~2! will be fixed such that the value of the action pertaining to the spheric
symmetric self-dual solutions on Schwarzschild background~with Euclidean signature!, is set
equal to one.

Concerning the EH systems, these are thep251, p252, and thep253 systems

L(1)5«m1m2n1¯nd22en1

n1
¯end22

nd22«m1m2n1¯nd22Rm1m2

m1m2, ~5!

L(2)5«m1¯m4n1¯nd24en1

n1
¯end24

nd24«m1¯m4n1¯nd24Rm1m2

m1m2Rm3m3

m3m4, ~6!

L(3)5«m1m2¯m6n1¯nd26en1

n1
¯end26

nd26«m1¯m6n1¯nd26Rm1m2

m1m2Rm3m3

m3m4Rm5m6

m5m6, ~7!

in d dimensions. The corresponding~generalized! Einstein equations are given in Refs. 8–10.
In the self-dual cases, withp15p25d/4, the stress tensor due to the YM fields vanish

identically so that the~generalized! Ricci scalars~5!–~7! vanish for these field configurations
Thus the action of the YM fields equals the Chern–Pontryagin charge. To calculate the
integral in~static! Schwarzschild backgrounds in such cases, one has to integrate the time va
over one period. This is the period associated with the desingularization of the Schwarz
metric by introducing Kruskal-type coordinates in the case of Euclidean signature. For the
trary dimensional case, and for the dynamics determined by thep2 EH system, this period was
calculated10 to be

P(p2)5
4pKp2

d22p221
, ~8!

whereK is a parameter~Anticipating the notation to be adopted below in Refs.~16!, ~39!, and
~19!, K can be read offN512(K/r )(d22p221) /p2.) in the ~hierarchy of! Schwarzschild metric~s!
given in Ref. 10. In our calculations of the actions below we will suppress the factor~8! contrib-
uted by the~Euclidean! time integration, since we are only interested in the relative values o
self-dual and nonself-dual actions for any given EH–YM system.

In Ref. 1, very simple nonself-dual solutions for thed54 ~usual! p151 YM fields in
Schwarzschild and deSitter backgrounds~both of thep251 member of the EH hierarchy! in four
dimensions were presented. They were further discussed in Refs. 2 and 3. Here they are g
ized to all dimensionsd>4, with Lorentz or Euclidean signature and (d21) spatial dimensions
for both p151 andp152 members of the YM hierarchy, on the backgrounds of thep251,2,3
members of the EH hierarchy. The corresponding constructions for members of thep1>3 on
variousp2 backgrounds can be given systematically. As in the four-dimensionalp151 YM case1

on p251 Schwarzschild and deSitter backgrounds, where these solutions are found in
form, it turns out that in thed-dimensional (d.4) p151 YM case on thesep251 backgrounds,
nonself-dual solutions can also be constructed analytically in closed form using the same
dure. Onp2>2 backgrounds, however, nonself-dual solutions of thep151 YM system could only
be evaluated by numerical construction. In thep152 ~as well as allp1.2! YM case~s! likewise,
the nonself-dual solutions onp2 EH background could be constructed only using numer
integrations irrespective ofp2 . These are the main results of the present work and are presen
Sec. II. The corresponding constructions for members of thep>3 can be given systematically.

For thep151 andp152 systems ind54 andd58 dimensions, respectively,~with Euclidean
signature!, the self-dual solutions are considered in detail forp251 and p252 Schwarzschild
metrics, respectively. These results are needed for the comparison of the Euclidean action
self-dual and nonself-dual solutions, which we carry out for these cases. The corresponding
sis with deSitter backgrounds is not carried out in detail since in that case there are no~real!
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nonself-dual solutions. Again, extension to the generic (p15p2)-th self-dual cases can be carrie
out systematically. These results are presented in Sec. III. In Sec. IV, we give a short summa
discussion.

Solutions on the anti-deSitter backgrounds ofp25p EH, to thep15p YM in d54p dimen-
sions, are studied in the Appendix.

II. NONSELF-DUAL SOLUTIONS ON FIXED BACKGROUNDS

This Section is subdivided in three Subsections. In the first one, we state our Ansatz f
YM fields on fixed Schwarzschild and deSitter curved backgrounds using the Kerr–Schild p
etrization of these metrics and give the Euler–Lagrange equations whose nonself-dual so
we seek. In the second and third Subsections, we present the nonself-dual solutions on Sc
child and deSitter backgrounds, respectively.

Since all the actual calculations involved in this, and the next Section, involve only Eu
Lagrange equations and self-duality conditions of members of the YM hierarchy, we will n
engaged in a description of the hierarchy of Einstein–Hilbert~EH! systems. The only information
we need here in this respect are the actual functions parametrizing the Schwarzschild and
metrics pertaining to these hierarchies, which we have stated when needed below in~16! and~17!.
For details of their derivations, we refer to Ref. 10. Similarly for the hierarchy of YM system
simply state their field equations~32! and~33! and, refer to Ref. 4 for their general details and
Ref. 9 for their properties relative to the EH hierarchy.

A. Ansä tze and YM equations

There are several ingredients needed for making the spherically symmetric Ansatz. One
definition of spin matrices, or the gamma matrix representations of the generators of SO(d) ~the
choice of this gauge group is dictated by our requirement of spherical symmetry ind andd21
dimensions!. Another ingredient is the parametrization of the components of the metric fo
~fixed! curved space on which the YM fields are defined. The ansatz for the gauge potentia
then to be specified and finally the equations derived. We deal with these items in that
below.

1. Gauge group and representation

Even though our dominant motivation here is the study of nonself-dual solutions, let us
with the case of self-dual solutions which we shall consider in the next Section for compa
with the results of this Section. This puts a restriction on the 2d/232d/2-dimensional representa
tions of the SO(d) matrices in space–time withd-dimension. The representations of the gau
groups of the YM fields pertaining to thepth member of the YM hierarchy are chosen such t
in 4p dimensions, there exist self-dual solutions onR4p,4 namely that the gauge group is repr
sented by 2(d22)/232(d22)/2522p21322p21 ~left or right! chiral SO(4p) matrices, denoted by
SO6(4p1). This choice of gauge group representation also makes it possible to construct s
self-dualp15p2YM fields on p25p2EH backgrounds.9 Examples of the latter are known,8–10

and of these the deSitter8 and Schwarzschild10 will concern us in this work.
The representations of the algebra of SO6(4p) employed in our Ansa¨tze are denoted by

Sab52 1
4 S [aS̃b]52 1

8 ~16G4p11!@Ga ,Gb#, ~a,b51,2,..,d!, ~9!

where the square brackets on the 4p component indices@ab# imply antisymmetrization,Ga denote
the d54p -dimensional Gamma matrices andG4p11 is the corresponding chiral matrix.

As we shall be concerned withp522YM systems in detail in this and the next Section, it
convenient to define the totally antisymmetric 2p-form tensor–spinor matrix

Sabcd5$Sa[b ,Scd]%, ~10!

using the same notation as in~4!. In addition, we state an identity which will be useful in the ne
Section
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$Sab ,Scd%5 1
3 Sabcd2

1
2 ~dacdbd2daddbc!1. ~11!

Let us now relax the constraints necessitated by the requirement of YM systems to s
self-dual fields, thus allowingd dimensional SO(d) systems, without requiring thatd54p. For
evend this could allow the assignment of chirally symmetric 2d/232d/2 representations for the
spin matrices. These are not the representations we assign to the evend dimensional gauge
algebras, but restrict to the chirally asymmetric~left–right! 2(d22)/232(d22)/2 spin matrices de-
fined by~9!. The reason is that these are the relevant representations for the self-dual cases
we wish to compare eventually against the nonself-dual cases under consideration. For th
field configurations~deSitter or Schwarzschild! we will be concerned with, the spherical symmet
will be imposed in the odd,d21, dimensions, when there there exits no chiral matrix. T
representations of the spin matrices in this case are defined by the 2(d22)/232(d22)/2-dimensional
SO(d21) matricesS i j , with (i , j 51,2,..,d21) given by~9!, or equivalently by

S i j 52 1
4 @G i ,G j #, ~12!

in terms of the (d22) Gamma matricesG1 ,G2 ,..,Gd22 ~with dimension 2(d22)/232(d22)/2!,
supplemented by their chiral matrixGd21 . In what follows, the precise dimensionality of th
representations ofS i j will not matter except in the~canonical! dimensions where self-dual YM
fields are supported, insofar as the value of the action densities depend on these. Otherw
only important feature will be the fact that they satisfy the algebra of SO(d) or SO(d21),
respectively.

2. The metric

Next, we give the Kerr–Schild parametrization of the background metric, which wil
employed in the Ansatz. We consider spherically symmetric, static metrics for dimensionsd>4

gmn5hmn1 l ml n , gmn5hmn2 l ml n, ~13!

where

h005h00521 , h i j 5h i j 5d i j

and

l ml nhmn5 l ml ngmn50. ~14!

For static spherical symmetryl 0 is a function ofr only, where

r 25 (
i 51

d21

xi
2

and

l i5 l 0

xi

r
5 l 0x̂i , ~ i 51,2,. . . ,d21!,

satisfying

2 l 0
21(

i
l i
250. ~15!
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The Schwarzschild metric ind dimensions pertaining to the usual (p251) EH system, was
given by Myers and Perry.11 The correspoding result ind dimensions pertaining to the genericp
EH system was given recently in Ref. 10. For the generic case we have

l 0
25Cr2(d22p21/p), ~C.0!, ~16!

and for deSitter metric, for alld pertaining to allp EH systems,

l 0
25Lr 2, ~L.0!. ~17!

The standard form in spherical coordinates is given by

ds252Ndt21N21dr21r 2dV (d22) , ~18!

wheredV (d22) is the line element on the unit (d22)-sphere and

N5~12 l 0
2!. ~19!

The coordinate transformation relating~13! and ~18!, namely

x05t1E dr

N
2r , ~20!

does not affect our particularly simple ansatz for the gauge potentials to follow~with At5Ar

50!.
After constructing the solutions using~13! the passage to Euclidean signature is best con

ered~rather than introducing imaginaryl 0! by directly starting from~18!, leading to

ds25Ndt21N21dr21r 2dV (d22) . ~21!

3. The gauge potentials

The ansatz for the gauge potentials is

A050, ~22!

Ai5r 21~K~r !21!S i j x̂ j ~ i 51,2,. . . ,d21!, ~23!

with S i j defined according to~9!, or equivalently~12!, to be the spinor representations of SOd
21). The corresponding YM curvature~3! has then the following components:

F0i50, ~24!

Fi j 5V1S i j 1V2x̂[ iS j ]kx̂k , ~25!

where as before, the square brackets on the subscripts@ i j # imply antisymmetry, and,

V152r 22~K221!, ~26!

V252r 22@rK 82~K221!#. ~27!

Now using~13! we have

F0i5g0mginFmn5 l 0
2K8S ikx̂k , ~28!

Fi j 5gimgj nFmn5W1S i j 1W2x̂[ iS j ]kx̂k , ~29!
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with

W152r 22~K221!, ~30!

W252r 22@rNK82~K221!#. ~31!

4. The equations

The Euler–Lagrange equations of motion are expressed very simply sinceugu51 for the KS
metric. For thep51 andp52 YM systems they are, respectively

DmFmn50, ~32!

$Frs ,DmFmnrs%50 ~33!

with the definitions~3! and ~4!.
After some straightforward but laborious calculations, substituting~22!, ~23!, and~28!, ~29!,

into ~32! and ~33!, we find first that the Gauss law equations

DmFm050 and $Frs ,DmFm0rs%50,

are identically satisfied, and the remaining components of~32! and ~33! yield simply

DmFm j5r 2(d23)~@Nrd24K8#82~d23!r d26K~K221!!3S jkx̂k , ~34!

$Frs ,DmFm j rs%5r 2(d25)V1~@Nrd28~K221!K8#8

2~d25!r d210K~K221!2!3~d23!~d24!S jkx̂k . ~35!

The Euler–Lagrange equations of the one-dimensional subsystems of thed dimensionalp
51 andp52 YM systems in the static spherically symmetric background specified by~13! can
readily be read off~34! and~35!, as single equations for the functionsK(r ). Indeed, it is easy to
read off the equations for the arbitraryp YM systems

@Nrd24p~K221!p21K8#85@d2~2p11!#r d22(2p11)K~K221!p. ~36!

We discussed in the Introduction, the Einstein–Hilbert~EH! hierarchy in parallel with the YM
hierarchy. The former determines the metric on whose background the YM fields are stud
the context of~36!, it is the functionN(r ) that is determined by the dynamics of the relevant E
system. Since in this Section we are interested in solutions on fixed backgrounds, there
reason to privilege any particular member of the EH systems for characterizing the functN
given by~16!, ~17! and~19!. Using the notation introduced in Sec. I, we label this function by
indexp2 pertaining to the EH hierarchy, namely asN(p2) , and simultaneously rename the indexp

in ~36! p1 . Equations~36! now are expressed more specifically as

@N(p2)r
d24p1~K221!p121K8#85@d2~2p111!#r d22(2p111)K~K221!p1. ~37!

For use in comparing the actions of nonself-dual and self-dualp51 andp52 YM systems in
d54 andd58, respectively, in the next Section, we present the action densities of thes
systems for the fields~24!, ~25!, ~28!, and~29!, for which we will give the nonself-dual solution
in the following two Subsections. Because of the vanishing ofF0i , ~24!, these action densitie
coincide with the~Euclidean! energy densities. They are, for thep51 YM system
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S(1)5TrFmnFmn5Tr Fi j Fi j

52d26/2~d22!@~d23!W1V112~W12W2!~V12V2!# ~38!

52d26/2
~d22!

r 4 @2r 2NK821~d23!~K221!2#, ~39!

and for thep52 YM system

S(2)5Tr FmnrsFmnrs5TrFli jk Fli jk , ~40!

52d210/2~d22!~d23!~d24!W1V1@~d25!W1V114~W12W2!~V12V2!#

52d210/2~d22!~d23!~d24!
~K221!2

r 8 @4r 2NK821~d25!~K221!2#. ~41!

In ~39! and ~41!, the numerical factors resulting from the traces of theS matrices are accounte
for. We note here that varying the densitiesr d22 Tr Fi j Fi j and r d22 Tr Fli jk Fli jk , given by ~39!
and ~41!, respectively, with respect toK(r ), we obtain the Eq.~37! with p151 and p152,
respectively. This is not surprising.

Before proceeding to integrate~36! for p51 andp52, we make some general remarks. Fir
Eq. ~36! does not satisfy the Painleve´ criterion,12 nonetheless, we find some special solutio
Perhaps the most remarkable feature of Eq.~36! is the fact that on flat background, withN51,
there are no solutions so that the only nonself-dual solutions are on curved background
interesting to make some general observations at this point. We note that in the generic c
dimensionsd52p11, the right-hand-side of~36! vanishes. In particular, for thep51 this coin-
cides withd53 corresponding to the Abelian case with onlyS12. In what follows, we will restrict
our attention tod>4p for each casep. Special features arising ford54p11 will be discussed
also.

B. p 2 Schwarzschild backgrounds

We now present the solutions of Eq.~37! for the Schwarzschild case, i.e., for

N(p2)512S C̄

r
D ~d22p221! /p2

, C[C̄~d22p221! /p2 ~42!

@where we redefined the parameterC of ~16!#. We will limit ourselves to those values ofp2 for
which the metric~21! is asymptotically flat, i.e., top2,(d21)/2. Equation~37! has to be solved
on the interval@C̄,`# with the boundary conditions

d22p221

p2
C̄K8~C̄!2~d22p221!K~C̄!~K2~C̄!21!50, K~`!51, ~43!

which arise by demanding the regularity of the solution atr 5C̄ and the finitenes of the action.

1. p 1Ä1, p 2Ä1 case

Solutions to~37! with one-node can be constructed by using the ansatz

K5
r (d23)1aC̄(d23)

r (d23)1bC̄(d23)
. ~44!

This leads to simple algebraic constraints on the parametersa,b
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3a1b~2d27!1~d21!50, ~45!

a~a1b!2~d25!b50, ~46!

which involves essentially solving only a quadratic equation. Ford54 the old results1 are repro-
duced. Of the two real solutions only the one with

a522.366, b54.098 ~47!

@the exact values follow from~45! and ~46!# gives finite energy~action! for Lorentz ~Euclidean!
signature.

For d55 one has a very special case, as is evident from~46!. The solution

a50, b52~ 4
3!, ~48!

leads to a divergent action since the domain of (r /C̄) is @1,̀ # and this includes a zero of th
denominator ofK. But now one can also consider the flat limit as follows.

Setting, for (d55)

a5â/C̄2, b5b̂/C̄2 ~49!

~45! and ~46! reduce to

3~ â1b̂!14C̄250, ~50!

â~ â1b̂!50. ~51!

Hence asC̄→0, setting~d being an arbitrary real number!

2â5b̂5d2, ~52!

one obtains

~K21!52
2d2

r 21d2 . ~53!

Substituting~53! in ~24!, ~25!, ~28!, and~29! it is seen that for the convention, say

e123451, S1252S34 ~cyclic!,

for the chirally projected 232 SO(4) generators one obtains the famous BPST self-dual solut13

in d54 as the static limit ind55 via our limiting process. Another convention gives the antis
dual form.

Fromd56 onwards the solutions become complex. The corresponding finite complex a
or energy, will be obtained in the following section. The exact values can be obtained, for ad,
immediately from~45! and~46!. Some numerical values, giving a direct idea of variation withd,
are given below. Both upper or both lower signs are to be taken. For

d56: a50.5006 i1.500, b521.3007 i0.900,

d57: a506 i1.732, b50.8577 i0.742,

d58: a520.1676 i1.863, b520.7227 i0.621,

d59: a520.2506 i1.984, b520.6597 i0.541,
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d510: a520.3006 i2.100, b520.6237 i0.485.

We now come back to the cased54 for which we were able to further construct numerica
a solution with two-node. It has in particular

K~1!'0.045, K~2.35!'0.0, K~54.0!'0.0, ~54!

and the two profiles ofK are plotted on Fig. 1. In this figure, it is seen that the two solutions
K(r ) cross the valueK50 at nearly the same valuer'2.36 ~although numerically different! and
that the two-node solution reaches its asymptotic valueK51 very slowly.

The occurence of such a couple of solutions suggests that the action functional@see Eq.~55!
below# admits an infinite series of extrema indexed by the number of nodes of the functionK(r ).
This is reminiscent to the series of Bartnik–McKinnon14 solutions in Einstein–Yang–Mills
theory. Similar series of particlelike solutions have also been discovered to the Einstein–Y
Mills–Higgs equations.15 For a review, see Ref. 16.

The construction of the~eventual! additional solutions in our case would demand more
merical analysis and lies outside the scope of the present work.

The different solutions can be characterized by their action. Up to trivial factors th
determined by the following radial integral:

I d~p51!5E
1

`

dxxd26@2r 2N(1)~K8!21~d23!~K221!2#. ~55!

For the two solutions of the cased54, we find

I 4
(1)'0.959, I 4

(2)'0.992, ~56!

respectively, or the one-node and two-node solutions.
No other solutions could be constructed numerically for Eq.~37! with p51 andd.4. This is

probably because, if any, they are not real.

FIG. 1. The profiles of two solutions of Eq.~37! ~one with one node and one with two nodes! for the casep151, p2

51.
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2. p 1Ä2, p 2Ä2,3,4 case

In the casep152, we could not find a self consistent ansatz like~44!; however, we manage to
construct a few real solutions numerically. In analogy with the casep151 above, where the only
real solution was ind54p154 dimensions, here we expect to find real solutions ind54p158
dimensions. This indeed turns out to be the case. In addition, it is possible to employ the
members labeled byp251,2,3 of the EH hierarchy to specify the fixed background.

The nontrivial factor of the action integral reads in this case

I d~p152!5E
1

`

dxxd210@4x2N(p2)~K8!2~K221!21~d25!~K221!4#. ~57!

We were able to construct numerically a solution whereK(r ) develops one node and anoth
one whereK(r ) develops two nodes. For the three casesp251,2,3, the numerical evaluation o
the action–energy integrals~57! leads to

p251, I 8
(1)'2.61, I 8

(2)'2.95, ~58!

p252, I 8
(1)'2.38, I 8

(2)'2.90, ~59!

p253, I 8
(1)'2.17, I 8

(2)'2.81. ~60!

Again, the existence of two-node solutions suggests that the functional~57! admits an infinite
series of extrema indexed by the number of nodes of the functionK(r ).

Inspection of~58!–~60! reveals that the action–energy integralI (8) of thep1th member of the
YM hierarchy on the fixed background of thep2th member of the EH hierarchy, decreases w
increasingp2 . This is true for both one-node and two-node solutions, and we expect it is a ge
feature for such sytems.

The profiles of the solutions are presented in Fig. 2. Again in the casep251 we remark that

FIG. 2. The profiles of two solutions of Eq.~37! ~one with one node and one with two nodes! for p152 and forp251
~solid!, p252 ~dashed!, p253 ~dotted!.
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the two solutions crossK50 for nearly the same value (r'2.13) of the radial variable. This
phenomenon is less and less true for increasingp2 .

Our numerical analysis of the equations ford.8 has lead to no other solution.
Superpositions~by means of linear combinations! of the Lagrangians with different values o

p1 and/or ofp2 could be considered as well, leading to a many-parameter differential equatio
we have not considered such possibilities.

C. deSitter backgrounds

In this case, there is one single background functionN(r ) for all membersp2 of the EH
hierarchy, in all dimensionsd. The relevant equation to solve~37! with

N5~12Lr 2! ~61!

@see~17! and~19!#. We, therefore, consider only the different members of the YM hierarchy
label them withp15p throughout this section.

The equation has to be solved on the intervalr P@0,L21/2# with the boundary conditions

K~0!51 , 2L̄K8~L̄ !1~d22p21!K~L̄ !~K2~L̄ !21!50, ~62!

where for brevity we have usedL̄[L21/2.
Again, in practice there is a marked difference between thep51 case and all others. It turn

out that forp51, very simple solutions can be found in closed form, while for all other cases
solutions can be constructed only numerically.

1. pÄ1 case

In this case, solution can be constructed algebraically by using the ansatz

K5
11aLr 2

11bLr 2 . ~63!

Substitution of this form into the equation leads to the following conditions fora,b:

~d23!a~a1b!12~d25!b50, ~64!

3~d23!a2~d211!b12~d21!50. ~65!

Exact solutions can then be obtained by solving a quadratic conditions ina or b. Approximate
numerical values are presented below. Ford54 the old results1,2 are reproduced with

a56 i1.732, b520.8577 i0.742. ~66!

Unlike in the Schwarzschild case, thed5four-dimensional solution of~36! is complex.
For the special cased55 the equations reduce to

a~a1b!50, ~67!

3~a1b!1450, ~68!

whose only consistent solution,

a50, b52~ 4
3!, ~69!

leads to divergence inK since one considers the domain 0<Lr 2<1.
From d56 onwards~exhibiting a behavior complemetary to the Schwarzschild case! the

solutions become real. The solutions read, withe561
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ae5
2~d23!~d24!1eA~d23!~5d223!

~d23!~d25!
, ~70!

be5
2~d229d126!13eA~d23!~5d223!

~d211!~d25!
. ~71!

Only the solution corresponding toe521 leads to a regular solution onr P@0,L̄# and for
5,d,11. The single zero of the functionK(r ) reads immediately from the ansatz and the f
that a2 is negative.

When solving numerically the equations for floating values ofd for d→5 andd→11, we got
evidences that the solution is running into problems.

The parametersa,b of the regular solutions together with the value of the action@in fact of
integral I (d) ~55! now taken onr P@0,L2 1/2## for the differentd are summarized in Table I.

Again unlike in the Schwarzschild case, we did not find any solutions with two or more no
despite our~numerical! efforts to do so. While this may signal the fact such solutions on deS
backgrounds do not exist, this is not necessarily case. In the latter case, it would be a challe
find the multinode solutions.

2. pÄ2 case

In analogy with thep51 case above, we would expect that there exist no real solution
~36! in d54p58. Similarly, we would expect that the solution ind54p1159 would have
divergent action–energy integralI (9) . Accordingly, we would expect to find~real! solutions for
d.4p12510. This turns out to be the case. Surprisingly, the solution ford511 turns out to be
of the closed form~63!, with

K~r !5
122Lr 2

112Lr 2 . ~72!

This is in contrast to thep52 Schwarzschild cases where all solutions were constructed num
cally. All the other solutions can be constructed only numerically.

We found numerical solutions with one node of the functionK(r ) for 10<d<16, recovering
the solution~62! numerically. The numerical approximation of their energy and of the positior 0

of the node ofK(r ) are given in Table II. We do not exhibit the profiles of the functionsK in these
cases because they are very close to the profile for the~analytically known! p151 solution.

To summarize, we found one-node solutions on deSitter background in 4p12<d<8p12 for
the p51 YM systems, and 4p12<d<8p for the p52 YM systems.

III. SELF-DUAL YM ON DOUBLE-SELF-DUAL EH

In Ref. 9, the result of Ref. 5 for thep51 case has been extended to the arbitraryp case. This
states that in 4p dimensions, the (p15)pth member of the YM hierarchy on the double-self-du
background of the (p25)pth member of the EH hierarchy is self-dual. Unlike the nonself-d
solutions studied in the previous Section which satisfied the YM equations~37! on a fixed back-

TABLE I. The valuesa,b, and the action for the solutions in the casep51.

d a b I

6 23.527 4.349 2.506
7 22.366 4.098 1.917
8 21.948 5.073 1.649
9 21.729 7.558 1.496
10 21.593 15.448 1.400
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ground, these solutions satisfy the full gravitational-gauge field system taking into accou
backreaction of the gravitational system on the YM field~As it happens in this case, this backr
action is nil since the stress energy-momentum tensor vanishes by virtue of the YM self-du!

Our aim in this Section is to calculate the action densities of thep51 andp52 YM systems
in d54 andd58, respectively, for the purpose of comparing their actions with those of non
dual solutions of these systems found in the previous Section.

The double-self-dual 2p-form Riemann curvature ind54p, whose metric automatically sat
isfies the variational equations of thepth EH system,8–10yields the 2p-form ~single! self-dual YM
curvature in the chiral representation so6(4p) of SO(4p) that satisfies the variational equations
thepth YM system. Following Refs. 5 and 9 this YM curvature is given by the Riemann tens
follows:

Fmn52 1
2Rmn

abSab , ~73!

where the Greek lettersm,n are the coordinate indices and the early Latin lettersa,b the frame
indices, both running over (1,2,3,. . . ,4p). Renaming 4p as 0, the coordinate indexm runs over
( i ,0) and the frame indexa over (m,0), where the Latin~coordinate! indices i , j ,k and ~frame!
indicesm,n run over 1,2,..,4p21. Sab in ~73! is defined by~9!.

While both Schwarzschild and deSitter metrics result in double-self-dual 2p-form Riemann
tensors, it is only in the background of Schwarzschild that the YM fields have real nonsel
solutions, which were found in the previous Section. Since self-dual YM fields on double-self
backgrounds are real, it follows that for the purpose of comparing the latter with the former
the Schwarzschild case is relevant to the work of this Section. The EH systems supporting d
self-dual solutions in 4p dimensions has been studied in Ref. 10, which we exploit here.

Using the the Kerr–Schild parametrization of the last Section, but now following the con
tion of Ref. 10 withC replaced by 2C andL5 l 0

2, the components of the Riemann tensor can
readily calculated

Ri j
mn5

2CL

r 2 d [ i
md j ]

n 2
C

r F S L82
2L

r D1CLL8G x̂[ id j ]
[mx̂n] , ~74!

Ri0
m05~12CL!

CL8

r
d i

m1CF S L92
L8

r D1
CLL8

r G x̂i x̂
m, ~75!

Ri j
m05

C2LL8

r
x̂[ id j ]

m , ~76!

Ri0
mn5

C2LL8

r
x̂[nd i

m] . ~77!

TABLE II. The values of the node of the solutions and the action for the
solutions in the casep52

d ALr 0 I

10 0.61 3.56
11 1/& 2.67
12 0.76 2.23
13 0.79 1.96
14 0.82 1.79
15 0.84 1.66
16 0.85 1.57
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Substituting~74!–~77! into ~73! we find the components ofFmn . Further using the metric~13!
we findFmn. We list here only those components of the~covariant and contravariant! curvature~s!
that we will need below

Fi j 52
2CL

r 2 S i j 1
C

r F ~12CL!L82
2L

r G x̂[ iS j ]kx̂k2
C2LL8

r
x̂[ iS j ]0 , ~78!

Fi j 52
2CL

r 2 S i j 1
C

r F ~11CL!L82
2L

r G x̂[ iS j ]kx̂k2
C2LL8

r
x̂[ iS j ]0 , ~79!

Fk052
C2LL8

r
Sklx̂l2

C

r
~12CL!L8Sk02CFL92~12CL!

L8

r G x̂kx̂lS l0 . ~80!

In addition to~78!–~80!, we will need the componentsFli jk , Fli jk andFmnr0 of the four-form YM
curvatures for thep52 case, which can readily be calculated using~4!. These are needed for th
calculation of the action density.

Before giving the required action densities, we briefly verify that the fields given in~78!–~80!
actually lead to self-dual YM 2p-forms. The two self-duality equations can be stated4 as

Fi j 5« i jkFk0 , ~81!

Fli jk 5
1

3!
« l i jkmnrFmnr0 . ~82!

Using the tensor–spinor identities

S i j 5« i jkSk0 , ~83!

S l i jk 5
1

3!
« l i jkmnrSmnr0 , ~84!

in each case, respectively, and~78!–~80!, we find the following two simple differential equation
and their solutions:

L95
2L

r 2 , i.e., L5
1

r
, ~85!

~L2!95
12~L2!

r 2 , i.e., L5
1

r 3/2, ~86!

for p51 andp52, respectively. These agree, throughL5 l 0
2, with ~16! as expected.

It follows from the self-duality equations~81! and~82! that the action densities defined in~38!
and ~40! for the p51 andp52 cases simplify to

S̃(1)523Tr Fi j Fi j , ~87!

S̃(2)523Tr Fli jk Fli jk , ~88!

in which the contributions of the terms 2 TrFk0Fk0 and 2 TrFmnr0Fmnr0 are absorbed in the
factors 2 on the right-hand-sides of~87! and ~88!. Thus for this purpose, we need only calcula
the componentsFi j , Fi j , Fi jkl and Fi jkl of the YM curvature, and notFi jk0 and Fi jk0 . In the
definitions~87! and ~88! we have omitted factors which would cancel with the angular volum
and the periods of the~Euclidean! time ~8!, which are necessary to render the CP charges of
static spherically symmetric self-dual solutions equal to one.
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A direct calculation then yields

S̃(1)5232d26/2~d22!
C2

r 2 F2L8214~d23!
L2

r 2 G , ~89!

S̃(2)5232d210/2~d22!~d23!~d24!
42C4

r 6 L2FL821~d25!
L2

r 2 G , ~90!

where it is understood thatd54 in ~89! andd58 in ~90!, and we have leftd in these expression
by way of highlighting their relations to~39! and ~41!.

Substituting the solutions~85! and~86! into ~89! and~90!, performing the angular integration
and the~Euclidean! time integrations over one period~8!, there remains only to perform the radi
integrations we to evaluate the action integrals

S̃(p)5
P~p2!V~d22!

c(p)
E

1

`

S̃(p)r
4p22dr. ~91!

In ~91!, c(p) is a normalization constant. The angular integration over thed2two-dimensional
angular volume gives

V (d22)5
2p (d21)/2

G~~d21!/2!
. ~92!

The factorP(p2) , namely the period~8!, is contributed by the~Euclidean! time integration.c(p) is
to be chosen such that the Chern–Pontryagin~CP! charge of the self-dual spherically symmetr
field configurations be normalized to unity. We calculate this normalization factor for thp1

5p251 andp15p252 cases ind54 andd58 dimensions respectively. The scale factorC in
~89! and~90! is fixed toC51/2, as was done in the evaluation of the components of the Riem
tensor in~74!–~77!.

Substituting~85! for L(r ) into ~89!, with d54, and performing the radial integral, we find

c(1)5P(1)V (2) . ~93!

Similarly performing the radial integral of~90! with L(r ) given by ~86! andd58, we find

c(2)590P(2)V (6) . ~94!

We now compare the values of the actions of the nonself-dual solutions by performin
four- and eight-dimensional integrals of~39! and ~41! using the normalizations~93! and ~94!,
respectively. The results of the actual integrations, for both one-node and two-node sol
respectively, are listed in~56! and ~59! for the p151 and p2152 cases in that order. Th
resulting action integrals, analogous to~91!

S(p)5
P~p2!V~d22!

c(p)
E

1

`

S(p)r
4p22dr, ~95!

with S(p) given by ~39!, ~41!, ~55!, ~57!, ~56!, and~59! take the values and~93! and ~94!

S(1)
(1)50.959, S(1)

(2)50.992, ~96!

S(2)
(1)51.587, S(2)

(2)51.933. ~97!

The superscripts in~96! and ~97! pertain to the number of nodes, as in~56! and ~59!.
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The magnitudes of these actions are to be compared relative to the unit valued actions
self-dual partners. In the latter case, these are simply equal to the unit CP charges, while
nonself-dual cases the CP charges equal 0 by virtue of the vanishing ofFi0 , ~24!. The only
quantitative conclusion that can be made is, that it appears the actions grow with incr
number of nodes, which is not surprising.

IV. SUMMARY AND DISCUSSION

Since the known real solutions to the 4p-dimensionalp-YM hierarchy are self-dual, it is of
some interest to construct nonself-dual solutions, and this is what we have done by cons
these systems on fixed curved backgrounds. YM fields on fixed curved backgrounds c
regarded as approximations to the fully interacting YM-gravitational fields, but in this pape
have restricted to the fixed gravitational backgrounds. Nonetheless we have discovered pro
that are akin to those of the usual four-dimensional Einstein–YM fields studied by Bartnik
McKinnon.14 Specifically, we have found that there exist solutions for which the radial func
parametrizing the YM field has one- and two-nodes. It is quite likely that there should
sequence of solutions, like in Ref. 14, with increasing number of nodes, but we did not sear
these.

We have presented nonself-dual solutions to thep1-hierarchy of Yang–Mills~YM ! systems
on the fixed backgrounds of Schwarzschild and deSitter spaces. The specific constructio
made for thep151 and thep152 systems in various dimensions, but the qualitative conclus
arrived at are expected to remain valid for arbitraryp1 .

The fixed Schwarzschild and deSitter metrics employed are the solutions of the va
gravitational equations of thep2-hierarchy of Einstein–Hilbert~EH! systems. Thus, for each of th
two casesp151,2, we have employedp251,2,3 fixed backgrounds consistent with the requi
ment of asymptotic flatness of the metric. Since the deSitter metrics for allp2-EH systems are
identical, this multiple choice of curved background is relevant only for the Schwarzschild m
~16!, given in Ref. 10. But in that case~i.e., Schwarzschild! the nonself-dual solutions to th
p1-YM systems we construct are real only in dimensionsd54p1 whence it follows that for the
p151 case in four-dimensions, only thep251 background can be used consistently with t
asymptotic flatness condition. For thep152 Schwarzschild case, we use all possible backgrou
p251,2,3. An interesting observation that can be made is, that for a givenp1-YM system on a
p2-EH background, the energy decreases with increasingp2 of the background. This was found t
be true for both one-node and two-node solutions, cf.~58!–~60!.

In the p151 Schwarzschild case, the one-node solutions are constructed both in closed
and numerically, while the two-node solutions of this system, as well as all~one- and two-node!
solutions in thep52 case were possible to construct only numerically. The profiles of the f
tions K(r ) are exhibited in Figs. 1 and 2.

In the p151 deSitter case, the one-node solutions are constructed both in closed form
numerically, while the solutions in thep152 deSitter case these are constructed only numeric
No solutions with more than one mode were found in these cases numerically, but we do no
if this indicates the nonexistence of such solutions. If they exist, then it would be a challen
find these, but it is possible that they do not since the two backgrounds, Schwarzschild on
two-node solutions exist and deSitter, are qualitatively quite different from each other. Notab
intervals on which they are defined are, respectively, noncompact and compact. In the d
cases we did not exhibit the profiles of the functionsK(r ) for these solutions as these all ha
one-node only, and, they are very close to the closed form solution of thep151 case. Instead we
have listed their properties, namely the position of the~single! node and the energy integral, i
Tables I and II, for thep151 andp152 cases, respectively.

That the solutions discussed above are nonself-dual is not a matter of note until one co
that in the specific dimensions 4p154p the p15p-YM fields on double-self-dual (2p-form Rie-
mann tensor! p25p-EH background, are~single! self-dual. In these cases wherep15p25p, the
action of the gravitational system vanishes due to the vanishing of the stress tensor of the se
YM fields, so that the total action equals the Chern–Pontryagin~CP! charge. In the spherically
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symmetric Schwarzschild cases considered, this is the unit CP charge. The comparison
action with the action pertaining to the corresponding nonself-dual solution reveals an inter
feature.~Note that the nonself-dual solutions have zero CP charge.! It was found that for the
four-dimensional (p151) YM system onp251 Schwarzschild background, the actions of t
nonself-dual solutions with one and two nodes, respectively, were equal to 0.959 and 0.992,
are slightly less than the unit self-dual action.~Of these the exact value of the one-node action w
found in Ref. 1.! We have found that for thep152 YM system onp252 Schwarzschild back-
ground in eight dimensions, the actions of the one node and two node solutions, respective
equal to 1.587 and 1.933, which are appreciably larger than the unit magnitudes of the corre
ing self-dual actions.

In addition, we have exhibited anti-deSitter solutions of thep-YM systems in 4p dimensions
which can be related with meron-type solutions in flat space–time through conformal transf
tions. Very recently, soliton-types of solutions have been obtained for the Einstein–Yang–
equations with asymptotically anti-de Sitter space.17

There remain two obvious directions in which the study of the present work can be deve
to complete and enhance the conclusions drawn here. The most obvious extension is to fi
~nonself-dual! solutions of the full YM–EH systems taking into account fully the backreaction
gravity on the gauge fields, rather than studying the gauge fields on a fixed background
actions of the solutions in that case would differ from what we have found, but maybe not
much. What is important is that the topological~CP! charges of these solutions will still be equ
to zero so that like those on the fixed backgrounds, these solutions will also describe~unstable!
saddle points. Another direction, is to study the solutions of combinedp2 EH systems in dimen-
sionsd.4p2 . @Note that ind54p2 the p2-EH systems~5!–~7! reduces to the Euler–Hirzebruc
topological density which has no dynamics.# It would be interesting to find out how the inclusio
of a higherp2-EH term~presumably with a small coupling constant! would modify the metric and
other properties of the leadingp2 system. In addition, one can contemplate the addition to th
types of systems, members of thep1-YM hierarchy.
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APPENDIX: A NONSELF-DUAL SOLUTION FOR AdS 4 BACKGROUND

For d54 a divergent solution in deSitter background was shown1,3 to be related through
conformal transformations to meron-type solutions in flat space–time. This, particularly si
solution corresponds~with L.0! to

N5~12Lr 2!, K5N2 1/25~12Lr 2!2 1/2. ~A1!

Here we note that changing the sign beforeL one obtains the anti-deSitter case (AdS4) and

N5~11Lr 2!, K5N2 1/25~11Lr 2!2 1/2. ~A2!

This provides a solution of~36! with p51 andd54, namely of

~NK8!85r 22K~K221!, ~A3!

where nowK is no longer singular.
Remarkably, we note that~A2! is a solution to thep-YM system in 4p dimensions, satisfying

the equation

@N~K221!p21K8#85~2p21!r 22K~K221!p, ~A4!
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that results from~36! settingd54p in it. This is not surprising since it is known that thep-YM
system onR4p supports meron solutions.18

One can now evaluate the total actions for these 4p-dimensional solutions~A2! and study
their different properties. We will restrict this to the (p51) four-dimensional case, settingL
51 henceforth in this Appendix for simplicity.

The radial integral of~39!, in the absence of the horizon, should now be replaced by

Ĩ (4)5E
0

`

dxx22S 2NS x
dK

dx D 2

1~K221!2D , ~A5!

where

N5~11x2!, K5~11x2!2 1/2.

One obtains

Ĩ (4)53E
0

` x2

~11x2!2 dx5
3p

4
. ~A6!

Thus, corresponding to~39!, one obtains a finite spatial integral

3p2

2
. ~A7!

The factor from the time integration depends on the chosen context. Now there is no horizon
desingularized and the discussion of Sec. I is not directly relevant. But one can start by c
ering the hypersurface

2t1
22t2

21x1
21x2

21x3
2521. ~A8!

In terms of the spherical coordinates

~x1 ,x2 ,x3!→~r ,u,f!,

~ t1 ,t2!→~T,c!, ~A9!

the metric on the hypersurface

r 22T2521,

is

ds252~11r 2!dc21~11r 2!21dr21r 2dV2 . ~A10!

In this context thec-integration gives a factor 2p and one obtains a total action

3p3. ~A11!

But often it is preferable to consider the covering space (CAdS) replacingcPS1 by tPR. Then
the action is evidently divergent.
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Existence of Majorana fermions for M-branes wrapped
in space and time

Andrew Chamblin
DAMTP, Silver Street, Cambridge, CB3 9EW, England

~Received 19 February 1999; accepted for publication 7 July 1999!

We show that it is possible to define Majorana~s!pinor fields onM-branes which
have been identified under the action of the antipodal map on the adS factor of the
throat geometry, or which have been wrapped on two-cycles of arbitrary genus.
This is an important consistency check, since it means that one may still take the
generators of supertranslations in superspace to transform as Majorana fermions
under the adjoint action of Spin~10,1! even though the antipodally identifiedM2-
brane isnot space-orientable. We point out that similar conclusions hold for any
p-branes which have the generic~adS!3~Sphere! throat geometry. ©2000
American Institute of Physics.@S0022-2488~99!02611-0#

I. INTRODUCTION

Recently, there has been an enormous amount of interest in the information which m
contained in the near-horizon geometries of thep-branes which are a staple feature of the sup
gravity and string theory diet. In particular, it has recently been conjectured1 that information
about the dynamics of superconformal field theories~in the largeN limit ! may be obtained by
studying the region near the horizon of certainD(p)-branes. Thus, the conjecture implies a cor
spondence between gauge theories in the largeN limit and compactifications of supergravit
theories. The correspondence is often called ‘‘holographic’’2 because the superconformal fie
theory ~SCFT! lives on the causal boundary of adS. This boundary is the ‘‘horosphere
infinity3—it is a timelike hypersurface with the topologyS13Sp, where the circleS1 is the
timelike factor.

Given this correspondence, one may search for new and interesting properties of S
simply by investigatingp-branes with unusual asymptotics. That is, one may considerp-branes
where the throat geometry has been modified in some way. One obvious way to modify a
solution, is to identify the solution under the action of some freely acting discrete transform
group. Recently, Gibbons3 has argued that such identifications may in fact be necessary in ord
avoid fixed point singularities, in situations where one is ‘‘wrapping’’ ap-brane on a toroidal
cycle. In particular, he argues that one must compose any wrapping identifications wit
antipodal map on the adS factor of the near-horizon geometry. Since the antipodal map is
acting, the composition will be freely acting and the resulting identified brane will be fre
fixed-point singularities.

Of course, whenever one identifies a manifold under the action of some freely acting in
tion, the resulting manifold may or may not be orientable. When the identified manifold isnon-
orientable, one has to be careful to check for the existence of fermions. That is, one needs t
sure that there exists a pin bundle with the right properties, so that any required fermionic
can exist as sections of the bundle.

In this paper, we check that Majorana pin structure always exists forM-branes which are
identified under the action of the antipodal map on the adS factor of the near-horizon geo
Thus, wrappingM-branes in this way is not obstructed by the requirement of Majorana
structure. We point out that similar considerations will hold forp-branes in any dimension, as lon
as the choice of representation for the parity inversion operator satisfies certain constrain
nally, we conclude with some general remarks about the uniqueness of 11-dimensional SU
55100022-2488/2000/41(8)/5510/7/$17.00 © 2000 American Institute of Physics
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and howM-theory may solve the old problem of the classification of fermions.

II. MAJORANA PINORS AND WRAPPING BRANES

We are working in eleven dimensions with the convention that the space–time has the
ture (21111111111). D511, N51 supergravity is a theory which describes the int
action of gravity with a Majorana gravitinoCA and a three-index gauge fieldALM P . The theory
has several continuous symmetries: LocalN51 SUSY,D511 general covariance, Abelian gaug
invariance for the three-formALM P , and of course SO(10,1) Lorentz invariance. It also ha
discrete symmetry associated with the effect of spacetime reflections on the gauge field
symmetry tells us4 that the action and equations of motion in eleven dimensions are inva
under an odd number of spatial~or temporal! reflections, together with the reversal of the sign
the gauge field,

ALM P→2ALM P .

In fact, this discrete symmetry isessentialwhenever we consider nonorientable space–ti
manifolds in M-theory. This is because we typically think of the four-formFLMNP as being
proportional to some volume form, or antisymmetric tensoreLMNP . It follows that on a nonori-
entable manifold,FLMNP will not have a definite sign—the sign will change when we propag
around a nonorientable loop. However, propagation around an orientation reversing loo
reflects everything through an odd number of space–time dimensions, i.e., the equations of
are still invariant even though the four-form is reduced to the status of a ‘‘pseudo-tensor.’’
means that it still makes sense to talk about the eleven-dimensional supergravity equat
motion on nonorientable spacetimes. For a further discussion of nonorientable configurati
M-theory, the reader should consult Ref. 5.

Now, a key thing to notice is that it really isnot possibleto consistently modify this structure
in any way. In particular, the Majorana condition for the gravitino is precisely what one nee
order to match the number of bosonic and fermionic degrees of freedom. One cannot ju
pantly introduce other representations for the fermions.

A pleasant feature of life in eleven dimensions is the fact that the real Clifford algebra m
written as

Cliff ~10,1;R!5R~32!.

R(32) denotes the space of real 32332 matrices and Cliff(10,1;R) denotes the set of objectsgn

which satisfy the relation

gmgn1gngm512gmn , ~2.1!

wheregmn is the metric on 11-dimensional Minkowski space with the signature prescribed a
In the usual way, these gamma matrices act on a 32-dimensional space of Majorana spinors
are real with respect to the relevant charge conjugation operatorCi j 52Cji . Explicitly, such a
spinor is just a 32 component columnck , k51,2,3,. . . ,32.

It is essentialfor the contruction of 11-dimensional supergravity that we are able to de
globally and consistently, these Majorana fermions in any 11-dimensional space–time we w
consider. Without such spinors, we can have no gravitino field with the right number of degr
freedom and similarly we cannot define generators of supertranslations in superspace whi
transform in the right way. If there is some topological anomaly or obstruction which preven
from defining a globally well-defined spin bundle which has Majorana sections, then the
structure will collapse.

Of course, up to now the space–times considered in most approaches toD511 SUGRA have
had fairly trivial topological characteristics. As an example, consider the two objects which c
naturally to the three-form gauge field. The~electric! M2-brane and the~magnetic! M5-brane. The
global causal structure of theseM-branes is very familiar. The 2-brane interpolates betw
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~adS!43S7 ~which is a supersymmetric compactification of the 11-dimensional theory! and flat
Minkowski space–timeM11. In a similar way, the 5-brane interpolates between~adS!73S4 and
M11.6 In each case, as one falls down the throat of the brane one moves into the region wh
vacuum is a standard compactification of the form (adS)p123S112p22.

Given this picture, that p-branes are just solutions which describe vacuum interpolation,
led to several obvious and natural questions. For instance, is it possible to findp-branes which
interpolate between vacua which are exotic, or nonstandard, compactifications of the super
theory? What happens if we identify the known solutions, such as theM2 andM5 branes, under
the action of some discrete transformations? Do the resulting ‘‘orbifold’’ branes still make se

One potential problem with identifying a given solution under the action of some freely a
involution is the fact that the resulting orbifold brane may be nonorientable. In particular
existence of fermions on nonorientable space–times is a subtle problem. In order to unde
this problem, we need to first recall some elementary facts about the ‘‘pin’’ groups.

Any proposal to quantize gravity via a path integral prescription, which includes a sum
manifold topologies, will obviously force us to consider the effects of nonorientable manifold
nonorientable manifold has the property that there exists closed loops in the manifold, suc
parallel propagation around a given loop results in a reversal of some orientation. Thus, g
nonorientable manifold of signature (p,q), it follows that the tangent bundle of the manifold ca
at mostbe reduced to an O(p,q) bundle. When we introduce fermions on the manifold, we ‘‘lift
the tangent bundle to a bundle with fibers given as the group which is the double-cover
tangent bundle group. Thus, we need to know what groups are the double-covers of O(p,q) in
order to understand how to introduce fermions on a nonoriented space.

The groups which are double-covers of the group O(p,q) are called thepin groups. The
notation is meant to be humorous: Just as Spin(p,q) double-covers SO(p,q), so does Pin(p,q)
double-cover O(p,q). For an excellent review of the history of these things, the interested re
should see Ref. 7.

In general, there are in fact eight distinct groups which double-cover O(p,q). These different
groups correspond to how one may choose to represent the discrete transformations o
inversion~P!, time reversal~T!, and the combination of the two~PT!. More precisely, since any o
these discrete transformations squares to the identity in the tangent bundle~i.e., P2511 in the
tangent bundle!, it follows that there is a sign ambiguity in the double-cover~i.e., P2561 in the
pin bundle!. It follows that there are 23 groups. Here, we shall use the notation of Dabrowski8 and
write these double-covers as shown,

ha,b,c:Pina,b,c~p,q!→O~p,q!

with a,b,cP$1,2%. The signs ofa,b, andc are defined to be the signs ofP2, T2, and (PT)2,
respectively. This is all we will need to know about pin groups.

Now, if we are given a manifold which admits a globally well-defined pin-bundle, with fib
Pina,b,c(p,q), then we shall say that the manifold admits a Pina,b,c(p,q)-structure. On a given
nonorientable manifold, Majorana fermions will be sections of a bundle corresponding to
Pina,b,c(p,q)-structure. Thus, the existence of Majorana fermions is equivalent to the existen
the relevant Pina,b,c(p,q)-structure. We therefore need to understand how topology can obs
the existence of a given pin structure.

III. OBSTRUCTIONS TO MAJORANA PIN STRUCTURES ON WRAPPED M-BRANES

The obstructions to Cliffordian pin structures were worked out in Ref. 9; this work
extended to include the obstructions to all pin structures in any dimension and any signa
Ref. 10. In this short note, we will not go into the details of obstruction theory, or how
obstructions are derived. However, we do need to recall a small set of topological invaria
order to even write the obstructions down.

In order to do this, we first need some minimal notation. LetM denote the 11-dimensiona
space–time manifold, andgL the Lorentzian metric~with signature as above! on M. The obstruc-
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tions which we will describe depend on these two basic objects. Calculating one of these o
tions amounts to calculating a number which is an element of theadditive cyclic group Z2

5(0,1). A given pin structure will exist if and only if the relevant obstruction vanishes.
An important invariant here is thesecond Stiefel-Whitney class, denotedw2(M ). This invari-

ant, which is the obstruction to the existence of spin structure onM, is an element of the secon
cohomology groupH2(M ;Z2). That is to say,w2 may be regarded as a form, which can
evaluated on two-dimensional cycles inM ~the elements ofH2(M )). If w2 is nonvanishing on a
given two-cycle, it follows that there does not exist spin structure onM. Explicitly, if w2 did not
vanish on some two-cycle, one would find that there was an anomaly in a given spinor field,
spinor field was parallel propagated around on the two-cycle.

Next, we need thefirst Steifel–Whitney class, denotedw1(M ). This invariant is the obstruc
tion to the orientability ofM, i.e.,w1 vanishes if and only ifM is orientable. As the name sugges
this invariant is an element of the first cohomology group,H1(M ;Z2). w151 on loops, or
one-cycles, inM which are orientation reversing.

On a Lorentzian manifold, the first Steifel–Whitney class decomposes into two ‘‘su
classes, which may be regarded as the obstructions to space and time orientability separa
particular, there is the ‘‘spacelike’’ Stiefel–Whitney class, denotedw1

S(M ;gL), which is the ob-
struction to the orientability of the spacelike subbundle of the tangent bundle, and likewise
is a timelike class, denotedw1

T(M ;gL), which is the obstruction to time orientability. Obviousl

w1~M ;gL!5w1
S~M ;gL!1w1

T~M ;gL!,

i.e., if you go around a loop and simultaneously reverse both the space and time orientation
the overall orientation of the spacetime manifold is not reversed. Throughout this paper w
assume that spacetime is at least time orientable; it follows thatM is nonorientable if and only if
it is not space orientable. This is all of the topological information which we shall need.

Now, we need to decide which pin structure corresponds to the Majorana fermions des
above. Since all of the orbifold branes which we will consider here will be time orientable bu
space orientable, this means that we need to make a choice about how we are going to re
the parity inversion operator. Our choice, which is the simplest ansatz that will give a un
representation of O~10,1!, is the Cliffordian representation,

P5g1g2g3g4g5g6g7g8g9g10. ~3.1!

This is the Cliffordian choice in the sense that this is how you would represent, in the Cli
algebra itself, inversion through all of the spacelike coordinates simultaneously.~Note: We could
just as easily takeP5g0, as discussed in Refs. 11 and 7. It should be obvious—from what we
below— that this would not affect the obstruction theory.! On the surface this may seem innoc
ous, but there are some real subtleties here. First, the choice~3.1! for P forces us to make the
corresponding Cliffordian choice for time reversal,

T5g0 . ~3.2!

This is fine; however, we have todecidewhether we want to represent time reversal using
unitary operator or an anti-unitary operator. Explicitly, we have to ask ourselves: Do we wa
just multiply byg0 and reverse the sign oft when we applyT to a pinor field~this would give us
a unitary operator!, or do we also take the charge conjugate of the field~this would give us an
antiunitary operator!? Wigner12 argued that we should use anantiunitary operator to represen
time reversal, since then time reversal would map positive energy states to positive energy
in the quantum mechanical Hilbert space. Thus, in the Wignerian approach one no longer
with strictly unitary representationsof O(10,1); instead, one works with what Wigner calle
corepresentations, which are basically just like unitary representations only some of the oper
are allowed to be antiunitary. Here, we are not worrying about these subtleties because we
trying to do quantum mechanics—we are just looking for some choices ofP and T which will
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move us around in the fiber of the pin bundle in the appropriate way. In any event, takingT to be
antiunitary will not affect the obstruction theory. All that matters for our purposes is thatP 25
21.

Given all of this, we can now work out the pin structure we are working with for th
Majorana fermions. Given the signature of space–time, one calculates

P 2521, T 2521, ~PT!2521

which means that these Majorana pinors require the existence of a Pin2,2,2(10,1)-structure.
Actually, there is one final subtlety here, namely, we could reverse the signs of all of the g
matrices simultaneously. This would change the sign of (G11). This choice would not affect the
obstruction theory, or anything else, and need not concern us here.

The topological obstruction to the existence of this pin structure was worked out in Re
One refers to the relevant theorem, and finds that there exists Pin2,2,2(10,1)-structure on a time
orientable space–time (M ,gL) if and only if the below obstruction vanishes,

w2~M !1w1
S~M ;gL!^w1

S~M ;gL!5O~M !, ~3.3!

where^ denotes the cup-product~see, e.g., Ref. 13!. Thus, we see that as long asw2(M )50 and
w1

S(M ;gL)50, O(M )50 and the Majorana structure will exist. Of course, ifw2(M )50, thenM
is a spin manifold anyway and, as we have already pointed out, many of the orbifold brane
not be space orientable and hencew1

S(M ;gL)Þ0 in general. This obstruction is therefore no
trivial, and has to be checked for each orbifold brane.

Here, we are primarily concerned withM-branes which have been identified under the act
of the antipodal map on the adS factor of the near-horizon geometry. Such antipodally ide
branes are said to be ‘‘wrapped in space and time,’’3 because the antipodal map on adS involv
an identification of the timelike coordinate. Explicitly, if we write the metric on~adS!p12 in static
coordinates,

ds252cosh2 xdt21dx21sinh xdVp
2, ~3.4!

wheredVp
2 is the round metric on the sphereSp and 0<t<2p, then the antipodal map~denoted

J! may be written

J:~ t,x,n!→~ t1p,x,2n!.

Recently, Gibbons3 has introduced this involution and argued that it may be an esse
ingredient in any scenario where one is wrapping a p-brane around a toroidal cycle. Explici
shows that it is not possible to findany finite freely generated Abelian group~acting as spatial
translations on the coordinates ‘‘tangent’’ to the brane! which acts freely. Thus, any naive attem
to wrap ap-brane on a torus would result in fixed-point singularities. However, the antipodal
J always acts freely, and so one possible way to obtain a nonsingular wrapped brane is to co
the action of the lattice of spatial translations with the involutionJ.

Of course, in situations involving severalp-branes one often requires the universal cover
space of adS, denoted CadS, because several distinct adS patches may be required.
obtained by ‘‘unwrapping’’ the time coordinate for adS; that is to say, on CadS the variablt in
~3.4! is allowed to run over the whole real line. One may then extend the action ofJ on ~adS!p12

to a Z-graded action on~CadS!p12 as shown,3

Jn:~ t,x,n!→~ t1np,x,~21!nn!.

With all of this in mind, let us now turn to the question of the existence of Majorana pi
on theM-branes. As we remarked above, it would appear3 that whenever we wrap anM2- or
M5-brane on a toroidal cycle, we will have to simultaneously identify the adS factor of the t
geometry of the brane if we want to avoid singularities. Thus, before we do anything we s
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check for the existence of Majorana fermions on the orbifold M-branes. Let us begin wit
M5-brane. As was pointed out in Ref. 3, the action ofJ on an odd-dimensional~adS!p12 is not
only orientation preserving, butJ actually lies in the identity component of the conformal gro
for (p11)-dimensional Minkowski space. It follows thatw1

S(M ;gL)50 andw2(M )50 for the
antipodally identifiedM5-brane, i.e., these branes in fact admit spin structure so all of this con
about pin structure does not really apply here.

The real issue is whether or not one can put Majorana structure on the antipodally ide
M2-brane. Indeed, if we antipodally identify the (adS)4 factor of theM2-brane, we obtain a
non-space orientable manifold.~Of course, if we require the existence of singletons then we
only identify the covering space under the action ofJ4, which is orientation preserving.3 Thus, the
existence of singletons will imply the existence of a spin structure. Nevertheless, the disc
presented here is relevant because it will apply in any scenario where theM2-brane world volume
is nonorientable, regardless of whether or not there exists singletons or doubletons.! In fact, the
S2-factor in the adS geometry is converted, under the action of J, into a two-cycle with
topology ofRP2 ~the ‘‘cross-cap’’!. w251 on this two-cycle, and so this orbifoldM2-brane does
not admit a spin structure. On the other hand, one also calculates thatw1

S^w1
S51 on this two-

cycle. It follows that the total obstructionO(M ) actually vanishes, i.e., the antipodally identifie
M2-brane does admit Majorana pinors.

This is reassuring, because it means we can wrapM-branes in space and time without wo
rying about whether we might be selecting out the fermions which are essential for the con
tion of the 11-dimensional theory. We can perform a similar analysis for membranes wrapp
a surface of arbitrary genus;14 there, one checks that cycles of arbitrary genera admit the Majo
pin structure, i.e.,O(M ) vanishes on any spacelike two-cycle, regardless of the genus and o
tation.

In general, the arguments presented here will go through for antipodally identifiedp-branes in
any dimension, as long as one is careful to choose a representation for whichP 2521. This sign
ensures that the obstruction has the form~3.3!, and hence that the right sort of cancellation w
occur for the nonorientable branes.

This does not mean, however, that Majorana pinors are always allowed. One can ce
imagine scenarios where one performs an exotic orbifold projection on the transverse direct
a p-brane, or wraps ap-brane around a cycle with an exotic topology, so that the resul
spacetimes will not admit Majorana structure.

Furthermore, it is worth pointing out that more stringent topological conditions arise when
considers Type II string compactifications. In particular, it has recently been shown15 that in order
for a D-brane to consistently wrap a given cycle, the normal bundle of the cycle must ad
Spinc structure. The obstruction theory for Spinc structures has been discussed recently in Ref.
where it has been shown~among other things!, that the normal bundle for a SUSY cycle
generically Spinc.

IV. CONCLUSIONS

We have shown that it is possible to put Majorana pinors onM-branes which are wrapped i
space and in time. If one chooses a natural, Cliffordian choice for the representation of
inversion then it would seem that Majorana fermions select a unique pin structure. In fact,
any choice of representation ofP, the Majorana condition selects a unique pin group. This
because, once we have made a choice for the representations ofP andT, we are not allowed to
introduce any complex numbers~this would violate the Majorana condition! and we are not
allowed to do any parity doubling~then the fermions would have the wrong number of degree
freedom for SUSY!. But these are the only two mechanisms which we can use to generate
representations forP andT! In other words, there is always only one choice ofP andT consistent
with the Majorana/SUSY conditions in 11 dimensions. Does this uniqueness perhaps imp
M-theory can solve the old problem of ‘‘the classification of fermions?’’

The problem of how one classifies fermions is simply this: Does it make sense, or
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meaningful, to classify fermions according to their behavior under the action of the full inho
geneous Lorentz group? What would be the experimental consequences~if any! of such a classi-
fication scheme? Ever since Wigner12 introduced the different corepresentations of O~3,1! for the
Dirac equation, people have wondered about these things~see Ref. 7 for a modern viewpoint!.

Suppose that we do classify fermions according to their behavior under the action ofP andT.
Then there are in principle eight distinct particle ‘types’, where the type is determined by th
group which acts on the fermion at a point of space–time. It is not hard to see that most
observed elementary particles can only come in one type. For example, suppose that there
two types of electron, a ‘‘plus’’ type and a ‘‘minus’’ type. The Pauli exclusion principle wo
allow you to place a plus electron and a minus electron in the same state. Obviously, this
seriously mess up most of known chemistry unless the electromagnetic interaction coupled
one type, and the other type was decoupled from known matter! Thus, it would seem that
has selected a particular pin structure for the description of elementary particles. From a
dimensional point of view, it is unclear why or how nature makes such a selection.

From the point of view of M-theory, however, the choice is obvious—Majorana selec
unique pin bundle. Four-dimensional multiplets, the descendants of the unique 11-dimen
structure, then inherit this choice. This elegant solution of the classification problem is just an
example of the power ofM-theory.
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The null surface formulation of general relativity is developed for 211 dimen-
sional gravity. The geometrical meaning of the metricity condition is analyzed and
two approaches to the derivation of the field equations are presented. One method
makes explicit use of the conformal factor while the other only uses conformal
information. The resulting set of equations contains the same geometrical meaning
as the four-dimensional formulation without the technical complexities of the
higher dimensional analog. A canonical family of null surfaces in this formulation,
the light cone cuts of null infinity, are constructed on asymptotically flat space–
times and some of their kinematical aspects are discussed. A particular example,
which nevertheless contains most of the generic features, is explicitly constructed
and analyzed, revealing the behavior predicted in the full theory. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!01607-8#

I. INTRODUCTION

The null surfaces formulation~NSF! developed by Frittelli, Kozameh, and Newman1–3 gives
an alternative treatment of Einstein’s general relativity~GR!, which emphasizes the dynamic
role played in the theory by the null hypersurfaces of the space–time metric. The construc
set upab initio in terms of generic space–time foliations. These are represented by the
surfaces of a two-parametric functionZ(xa;z,z̄) of the xa coordinates, on which is imposed th
condition that the foliations become null for some space–time metricgab(x

a) to be obtained as a
functional of Z(xa;z,z̄). Then, an auxiliary functionV(xa;z,z̄) fixes the resulting conforma
freedom in such a way that Einstein’s field equations are satisfied forgab(x

a). Such equations are
expressed entirely in terms of the nonlocal variablesZ(xa;z,z̄) andV(xa;z,z̄), with no mention
at all of the metric and its associated tensors, which are merely functions of them.

One important issue in the NSF is how to restrict the freedom of~infinitely many! different
families of null hypersurfaces corresponding to the same metric. For asymptotically flat sp
times a canonical family of null foliations can be selected by considering past null cones
points at future null infinity,J 1. In this case the functionZ has a second meaning. For fixe
values ofxa the functionu5Z(xa;z,z̄) parametrically describes the intersection of the future li
cone fromx a with J1. This intersection is called a light cone cut of null infinity and it plays
central role in reformulating general relativity in terms of the free data~representing outgoing
gravitational radiation! at J 1.

It is worth mentioning that the final equations of NSF become a system of partial differe

a!Electronic mail: forni@fis.uncor.edu
b!Electronic mail: mirta@fis.uncor.edu
c!Electronic mail: kozameh@fis.uncor.edu
55170022-2488/2000/41(8)/5517/18/$17.00 © 2000 American Institute of Physics
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equations for the main variables that, in spite of the clear physical and geometric contents
equations, are technically very involved and difficult to analyze. This is best exemplified
alternative formulation of NSF that decouples the original set of equations and produces
formally invariant equation solely forZ, a desirable feature sinceZ only contains information of
the conformal structure.4 Although the resulting equation is equivalent to the vanishing of
Bach tensor, it cannot be explicitly written in terms ofZ and its derivatives on a reasonab
number of lines.

Thus, from a purely technical point of view, it is desirable to derive an analogous
formalism in a lower dimensional space. The obvious choice is three-dimensional~3D! gravity
since its almost trivial character should simplify the formalism and make it easier to investiga
the desired features that the formulation in four dimensions is required to possess in orde
consistent with standard GR. Examples of these are caustics and other singularities of nu
gruences predicted by general theorems, which are at present searched for only in a pertu
approach to the NSF field equations.4

Moreover, three-dimensional GR can be used to study many examples of four-dimen
~4D! vacuum space–times with a space translation symmetry. By going to the ‘‘manifold
orbits’’ of the associated Killing field, the problem is reduced to 3D gravity coupled to a s
field acting as the matter source of the 3D Einstein’s equation. Assuming suitable falloff c
tions on the scalar field, the concept of asymptotic flatness can be stated as close as possib
analogous four-dimensional treatment.5 Consequently, for asymptotically flat 3D space–times, o
can introduce our canonical family of null surfaces, i.e., the light cone cuts of null infinity. In
way, we extend our formalism to 4D space–times which are not asymptotically flat in the
sense since they include cylindrical or axisymmetric waves.

Finally, from the quantum theory point of view, there is some evidence, at least at a
level in 4D6 and at a nonperturbative level for some midisuperspaces in 3D,7 that in contrast to the
quantization in terms of local fields like the metric, the quantization of the nonlocal variabZ
andV of NSF results in operators with nondiverging expectation values for semiclassical s
Concrete results have been obtained in 3D since some midisuperspaces can be exactly so
large quantum gravity effects appear for local fields such as the metric.8 Recently, it has been
shown that the quantum light cone cut admits a semiclassical approximation which is
against small perturbations at trans-Planckian frequencies.7 Thus, it appears that this nonloca
variable is best suited for semiclassical approximations. To develop a more thorough discus
these issues one should have available the full classical theory.

This work is organized as follows. In Sec. II we introduce one-parameter families of hy
surfaces in 3D and discuss which conditions should be imposed on these surfaces so th
become null. The main results of this section, the metric components and metricity cond
were originally obtained by Cartan and Chern many years ago9,10 and were recently rederived b
Tanimoto,11 but we follow an approach which is closely related to our work done in four dim
sions. In Sec. III we derive the field equations for these surfaces, including matter sources. A
previous results one can decouple those equations and obtain a conformally invariant equa
the null hypersurfaces. In Sec. IV we review the notion of asymptotic flatness in 3D and defin
light cone cuts. Several kinematical issues that differ from the four-dimensional case are p
out and discussed. A particular example of a light cone cut is constructed and analyzed. In
we outline an approach to handle caustics and singularities that come together with null su

II. NSF FORMALISM IN THREE DIMENSIONS

In this section the NSF formalism, as developed in Ref. 2, is adapted to dimension 211 and
the corresponding kinematical structures are constructed. Although the basic framework w
lined in detail in 4D,2 it is worth repeating the construction in 3D since it is conceptually equ
lent to the higher dimensional case, though technically less involved and therefore easier to

We begin with a three-dimensional manifoldM, and assume we are given one-parame
functionsZ(xa,z) of the space–time coordinatesxa; and parameterz on S1 running between 0 and
2p. We also assume that for a fixed value of the parameterz, the level surfaces ofZ,
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Z~xa,z!5const, ~1!

locally foliate the manifoldM.
The statement that the level surfaces ofZ are indeed the characteristic or null surfaces of so

metric gab(x
a) for M is that for fixed values ofxa and arbitrary values ofz they satisfy

gab~xa!¹aZ~xa,z!¹bZ~xa,z!50. ~2!

An equivalent geometrical statement is that as the families of foliations intersect at a sing
arbitrary pointxa, we demand that the enveloping surface forms the light cone from the poinxa.
Thus, the parameterz spans the circle of null directions.

The idea now is to solve Eq.~2! for the five components of the conformal metric in terms
¹aZ(xa,z). Given an arbitrary functionZ, the problem has no solution since we have an infin
number of algebraic equations~one for each value ofz! for five unknowns. Therefore we mus
impose conditions onZ(xa,z) so that a solution exists. The solution and conditions are
expressed when written in a canonical coordinate system constructed from knowledge ofZ.

To see this, we introduce three functions defined as

~u0,u1,u2![~u,v,r ![~Z~xa,z!,]Z~xa,z!,]2Z~xa,z!!, ~3!

where][]/]z denotes the derivative ofz holding xa fixed. For each value ofz these functions
form a coordinate system intrinsically adapted to the surfaces. Its associated gradientu i

a and
vector dual basisu i

a are given by

u i
a[~du i !a , u i

a[S ]

]u i D a

. ~4!

We now demand thatu5const is a null surface. Then on that surface,v5const singles out a
null geodesic whereasr 5const identifies a point on that geodesic. The next available sc
]3Z(xa,z), determines the conformal metric and is constrained to satisfy the metricity condi
Using Eq. ~3! and assuming theu i coordinate system is well behaved, one can obtainxa

5xa(u i ,z) and defineL(u,v,r ,z)[]3Z(xa(u i ,z),z).
A technical point worth mentioning is that the action of the operator], the parameter deriva

tive holdingxa fixed, acting on a functionF(u,v,r ,z) is given by

]5]z1v]u1r ]v1L] r . ~5!

Thus, the action of the] operator onL is given by~5!.
Likewise,] does not commute with the directional derivatives] i[]/]u i . The explicit form of

the commutation relations, needed later, are

@]u ,]#5]uL] r , ~6!

@]v ,]#5]u1]vL] r , ~7!

@] r ,]#5]v1] rL] r . ~8!

The metric components and metricity conditions are obtained by repeatedly operating] on ~2!.
Taking ] on ~2! yields

]~gab¹aZ¹bZ!52gab¹aZ¹b]Z52g0150, ~9!

where we have used that]gab50. If we take again] on Eq.~9! we obtain

gab~¹aZ¹b]2Z1¹a]Z¹b]Z!5g021g1150. ~10!
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Repeating this procedure gives

gab~¹aZ¹b]3Z13¹a]Z¹b]2Z!5g02] rL13g1250, ~11!

gab~¹aZ¹b]4Z14¹a]Z¹b]3Z13¹a]2Z¹b]2Z!50,
~12!

g02] r]L14~g11]vL1g12] rL!13g2250.

Using the commutator~8!, together with the already obtained metric components, we can rew
this last expression as

g02~]] rL23]vL2 1
3~] rL!2!13g2250. ~13!

Note that the four nontrivial metric components are proportional tog02. It is therefore natural
to take g02 as az-dependent conformal factorV2 and write the metric tensor asgab5V2hab

5V2hi j u i
au j

b with

hi j 5S 0 0 1

0 21 2 1
3 ] rL

1 2 1
3 ] rL 2 1

3 ]~] rL!1 1
9 ~] rL!21]vL

D . ~14!

The conformal factorV cannot be an arbitrary function ofz since it is defined as

V25gab¹aZ¹b]2Z.

Therefore,

]V25gab~¹a]Z¹b]2Z1¹aZ¹b]3Z!.

Thus,V andL must satisfy

3]V5V] rL. ~15!

Equation ~15! is invariant underV(x,z)→V8(x,z)5 f (x)V(x,z) for an arbitrary f (x). This
freedom is a consequence of the conformal invariance of the formulation.

Note also that nothing prevents us from taking further] derivatives on~12!. Since the right-
hand side of this equation vanishes and all the components of the conformal metric hav
explicitly constructed from] iL, the next] on ~12! must impose a condition onL so that a
conformal metric exists. This equation can be written as

gab~5¹a]Z¹b]4Z1¹aZ¹b]5Z110¹a]2Z¹b]3Z!50,
~16!

5g11]v]L15g12] r]L1g02] r]
2L110~g02]uL1g12]vL1g22] rL!50.

Using the explicit form of the metric components and the commutation relations and div
out by the conformal factor gives

M @L#[2~]~] rL!2]vL2 2
9~] rL!2!] rL2]2~] rL!13]~]vL!26]uL50. ~17!

Conversely, if~17! is satisfied, then further] derivatives on~13! are identically satisfied.
We summarize this section as follows: Given a functionZ(xa,z) such that L(u i ,z)

[]3Z(xa,z) satisfiesM @L#50, thenZ5const is a null hypersurface ofgab.
Remark 1:Equation ~17! is the main metricity condition,~15! is only used to fix thez

dependence of the conformal factor. In fact, given a functionZ(xa,z) such that]3Z(xa,z) satisfies
M @L#50, thenZ(xa,z)5const is a null hypersurface ofhab(xa,z8) for an arbitrary value ofz8.
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To see this we first show thathab(xa,z8) satisfies

]hab52 2
3] rLhab, ~18!

which follows from the definition ofhab. Equation~18! can be integrated immediately to give

hab~xa,z8!5expS 2
2

3 Ez

z8
] rL~xa,h!dh D hab~xa,z!.

Thus, if Z(xa,z) yields null surfaces forhab(xa,z) it also gives null surfaces for anyhab(xa,z8)
that satisfies~18!. Sincehab(xa,z) is an explicit functional ofL we conclude that~17! is the only
condition to be imposed onZ so that a conformal geometry can be constructed on the th
dimensional manifold.

Remark 2:In fact, it is not necessary to assume thatgab5gab(x) to obtain the explicit form
of the conformal metric and metricity condition~17!. If the metricgab is such that

]gab5m~x,z!gab

for an arbitrary functionm(x,z), we can repeat the steps shown previously to obtain the s
conformal metrichab(xa,z) and metricity condition~17!.

Remark 3:Starting from a completely different perspective, Cartan9 and Chern10 studied the
geometry of the ordinary differential equation

]3Z5L~z,Z,]Z,]2Z!.

They found that the condition~17! has a simple geometrical meaning, namely, that the Ca
normal conformal connection defined in the solution space is torsion free.10 It is therefore natural
in our case to obtain~17! as a metricity condition.

Remark 4:A very interesting~and open! problem in 4D is to understand the geometric
meaning of the metricity conditions.1 It is natural to conjecture that the complex PDE derived
that case is also the torsion free condition for the conformal connection defined in the so
space of the starting second-order PDE forZ on the sphere of null directions.

III. THE FIELD EQUATIONS

In this section we derive the field equations for the basic variables of this formalism
contrast to the 4D case, the vanishing of the trace free part of the Ricci tensor does not c
interesting solutions. Since the Weyl tensor vanishes in three dimensions, the solutions of

Rab2 1
3Rgab50

yield spaces with constant curvature. Thus, we must add a stress energy tensor as a source
the right hand side of the above-mentioned equation. For simplicity we will assume thatTab is a
given trace free tensor. If the matter source contains a trace part, then the trace equa
automatically satisfied by virtue of the vanishing of the divergence ofTab . This can be easily see
by writing

Gab5GI ab1 1
3gabG,

whereG andGI ab are the trace and the trace free part of the Einstein tensor, respectively.
trace free equations

GI ab5TI ab ,

are satisfied, then using the vanishing of the divergence of the stress energy tensor and the
tensor one obtains
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¹a~G2T!524¹b~GI ab2TI ab!50.

We thus start with the Einstein equations and contract the indicesa,b with the null vectors
u2

au2
b. Note that this operation automatically removes the trace part of the equation. Rew

the resulting equation in terms of our variables yields

] r
2V5Trr V. ~19!

At a first glance it appears that this single equation cannot be equivalent to the five compon
the Einstein equations. Note, however, that~19! is true for any value ofz. Thus, if we add to~19!
the metricity conditions which give the change ofV and L under variations ofz, we obtain a
consistent set of equations equivalent to the standard Einstein equations. The final equatio

~E! ] r
2V5Trr V,

~mI! ]V5 1
3] rLV, ~20!

~mII ! 6]uL52 4
9~] rL!312] rL]~] rL!22]vL] rL2]2~] rL!13]~]vL!.

Equations~20! constitute a coupled set of equations forV and L. These two functions,
however, have completely different meanings; whereasL determines the entire conformal stru
ture,V only fixes the scale. It is thus desirable to decouple the above set of equations and
equations that only involveL. By construction, the resulting equations would be conforma
invariant.

The approach followed to decouple the field equations is to study the integrability cond
for (mI) and~E! since both equations must be satisfied by a single functionV. Therefore, condi-
tions are imposed onL so that a solution exists.

To illustrate the procedure and to discuss the freedom left in the solutions we first consid
case whenTrr 50. Using~6!–~8!, we calculate

@] r
2,]#V52]v] rV12] rL] r

2V1] r
2L] rV. ~21!

On the other hand, using (mI) and ~E!, we have

@] r
2,]#V5] r

2~ 1
3] rLV!, ~22!

the right-hand side of Eqs.~21! and ~22! gives

2]v] rV5 1
3] r

3LV2 1
3] r

2L] rV.

Applying ] r to the above equation, commuting the partial derivatives, and using Eq. 20~E! yields

] r
4L50. ~23!

Thus, for space with constant curvature the field equations forL are

] r
4L50, ~24!

6]uL52 4
9~] rL!312] rL]~] rL!22]vL] rL2]2~] rL!13]~]vL!. ~25!

By construction, Eq.~24! is conformally invariant. It is thus interesting to ask what tenso
quantity is represented by] r

4L. It can be easily shown that

1
6] r

4L5BabZ
aZb,
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with

Bab52ea
mn¹ [mSnb] ,

Sab5Rab2 1
4Rgab .

2¹ [mSn]b , known as the Bach tensor in the literature, was first defined and used by Co12

in 1899 to show that its vanishing determines the conformal structure of spaces with co
curvature~see Appendix A!.

The solutions to Eqs.~24! and ~25! should contain functional degrees of freedom, since
null surface compatible with a given Einstein metric should be a solution of those equations
feature is shown in the following, where we discuss the simplest set of equations correspon
flat space and obtain the collection of all null hypersurfaces in Minkowski space. For thi
consider the special class of solutions to the previous equations given byL’s that satisfy

] rL50, ]vL521,

since this restriction yields a Minkowski metric@see Eq.~14!#. We immediately see that Eq.~24!
is identically satisfied whereas the other equation gives

]uL50.

Thus, the solution can be written as

L1v5g~z!,

whereg is an arbitrary function onS1. Using the relationship betweenL, v, andZ we rewrite the
previous equation as

]3Z1]Z5g~z!,

whose solution contains three arbitrary constants. Denoting those constants as~t,x,y! we write the
solution as

Z5t1x cos~z!1y sin~z!1a~z!,

with ]3a5g(z). The above solution is the generating function for an arbitrary null hypersur
in flat 3D space.13 Its freedom is given by an arbitrary function on the circle of null directions
Sec. IV we will cut down this freedom by finding a canonical family of surfaces.

Following a similar approach, we obtain the field equations forL when matter source is
included. Then Eq.~24! is replaced by~see Appendix!

] r
4L56]vTrr 26] rTrv1] r

2L16V21~Trr ]vV2Trv] rV!. ~26!

Note thatV appears explicitly in Eq.~26!. Thus, it would appear that we are unable to get
of the conformal factor. This is not so. Applying several times the] operator on~26! gives five
independent equations involving the three components of¹aV. We can algebraically solve fo
these three components and leave two extra equations forL and the energy–momentum tenso
An explicit illustration of this procedure written in tensorial language is given in Appendix B

IV. LIGHT CONE CUTS OF J ¿

The main results obtained in previous sections, the metricity conditions and the field
tions, are valid for any family of null hypersurfaces. In this section we introduce a cano
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family with a well-defined geometrical meaning. They represent past null cones from future
infinity. As a necessary step before introducing this family of null hypersurfaces, we first re
the notion of asymptotic structure available in 3D.5

A space–time is considered to be asymptotically flat at null infinity if one can atta
boundaryJ 1 with topologyS13R to the original manifold, a smooth metric fieldgab8 and scalar
field v on MøJ 1, such that:

~1! on M ,vÞ0, gab8 5v2gab ,
~2! on J 1,v50, va5¹avÞ0, andg8abvavb50,
~3! if v is chosen such that¹8ava50 on J 1, then the vector fieldna5g8abvb is complete on

J 1.

As in 4D, the smooth unphysical metric onMøJ 1 is used to discuss the falloff behavior o
matter fields nearJ 1. By bringing null infinity at a finite distance, one can use the technique
differential geometry nearJ 1 instead of taking limits along null directions. Moreover, the spa
of null geodesics is the same for both the physical and unphysical metric, the only difference
in the corresponding affine parametrization of the geodesics.

There are, however, several differences with 4D asymptotia. In 3D the Weyl tensor van
and the metric is flat outside sources. Thus, the dynamical degrees of freedom are coded
behavior of matter fields nearJ 1.

We now turn our attention to the description of light cone cuts ofJ 1 for 3D asymptotically
flat space–times. A straightforward method to obtain these cuts is to start with the future
cone from an arbitrary pointxa of the space–time and definea light cone cut of null infinityas the
intersection of this cone with the null boundary. Using Bondi coordinates (u,z) at J 1 one can
locally describe this intersection as

u5Z~xa,z!. ~27!

The functionZ is called the light cone cut function. It is easy to show thatZ has a second meaning
For fixed values ofu andz, the pointsxa that satisfy~27! lie on the past null cone from the poin
(u,z) at J 1. Thus, the level surfaces ofZ(xa,z) form a canonical one-parameter family of nu
surfaces on the space–time.

In the above construction one makes explicit use of the background metric to first obta
null cone fromxa and then intersect this cone withJ 1. Since our goal is to regard the cuts as t
main variables, we search for a construction that does not involve explicit use of the metric
idea is to define the cuts as the solutions to a third-order ordinary differential equation~ODE!
where the source term,L, is obtained from field equations that satisfy the desired asymp
conditions.

As was mentioned in Sec. III one has available two sets of field equations forL and it is worth
reviewing both approaches since they involve different variables. The first set of equa
namely Eq.~20!, are PDEs forV and L with the matter fieldTrr as a source term. Imposin
regularity and asympotic conditions on the stress–energy tensor as discussed in Ref. 5 t
with appropriate initial conditions onV andL one should be able to find solutions that prese
the asymptotic structure. For example,V and]vL should tend to 1 and21, respectively, as we
approach toJ 1. Assuming one has solutions to~20! and denoting those solutions as

V~u,v,r ,z!5V@Trr #,L~u,v,r ,z!5L@Trr #,

where the term in brackets denotes functional dependence, one should then use the obtainL to
define the light cone cuts as the solutions to

]3Z5L~Z,]Z,]2Z,z!5L@Trr #, ~28!

where the coordinates (u,v,r ,z) have been replaced by (Z,]Z,]2Z,z). The resulting equation is
a third-order ODE with a 3-dim solution space. Note that the metricity condition is automati
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satisfied since it is part of the field equations forL. Thus, one can algebraically obtain a metric
the solution space such that the level surfacesZ5const are null surfaces of that metric.

If we follow the second approach we should start with Eqs.~25! and~26! and follow a similar
construction to end up with~28!. The implicit assumption here is that one is able to eliminateV
in ~26! and obtain a set of field equations forL. Although this second approach offers th
advantage of having just one variable, the first set of equations forV and L appears to be
technically more tractable and easier to handle.

At this point we mention a third possible approach that yields a different equation for the
cone cuts. We first derive an analog of Sachs’ theorem in four dimensions~which gives a rela-
tionship between the cuts and the shears associated with the Bondi and light cone cuts14!. Since
the shear vanishes in three dimensions we use the only available structure that is left, the
gence of null congruences. To be more precise, we start with the divergencer of a null cone with
apex atxa. This optical scalar satisfies the following ODE:

]r

]s
5r21F00, ~29!

wheres is an affine length andF005Rabl
al b. The null cone congruence condition is imposed

assuming that near the apexs5s0 , r51/(s2s0). Following a similar calculation outlined in Ref
4 one can show that at points of intersection between the light cone fromxa andJ 1, the Bondi
and light cone divergences are related through

]2Z5rB2rZ , ~30!

whererB is the divergence of the Bondi cuts~usually taken to be zero! andrZ the solution of~29!
evaluated atJ 1. Note thatrZ is a functional of the Ricci tensorF00. Thus, we can regard~29!
and~30! as the field equations forZ. Note also that the resulting equation is a second-order O
which in principle is equivalent to the third-order ODE previously obtained. However, the sol
space of this last equation is 2-dim and it is not clear at this point how to generate the re
extra dimension. A through discussion of these issues will be presented in the future.

A very interesting and difficult problem is to analyze the behavior of the solutions to the
equations. Since these solutions represent characteristic surfaces, they will have caust
self-intersections. It can be shown that bothr 5]2Z and L5]3Z diverge at conjugate points
Thus, the field equations as written previously are not suited to analyze the behavior
solutions in the neighborhood of conjugate points. Possible alternative formulations are dis
in Sec. II.

Light cone cuts—An example:In the following we find the light cone cuts associated w
particular simple models of space–times. These cuts of null infinity exhibit the typical beh
that one has to deal with in NSF, namely, the presence of caustics and self-intersections.

As we show in the following, the simplest axisymmetric and static line element,

ds252dt21r28M~dr21r2df2!, ~31!

with a constantM and polar coordinates (t,r,f) does not give interesting cuts ofJ 1. Neverthe-
less it is useful to follow the construction since it gives us a hint of how to modify the backgr
space–time to obtain nontrivial cuts.

The metric~31! is interpreted as the space–time of a particle at the origin since its Ein
tensorGab is given byMd(r)¹at¹bt.15

After the coordinate changer 5ra/a with a51 – 4M ~no relationship with the canonica
coordinater defined in previous sections! it can be put in the form

ds252dt21dr21a2r 2 df2, ~32!
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which is a locally flat metric with a global deficit angle of 2p(12a). Since the solution is no
regular at the world line of the particler50, this line must be removed from the otherwise fl
space–time. Thus, the integration of the geodesic equation is trivial except for the following
any apexxa there will be one null geodesic that will point to the origin and will not reachJ 1.
Therefore, the light-cone cuts at null infinity will be open curves without caustics.

In order to obtain closed cuts of null infinity, we must then search for a matter source w
nonsingular metric. The simplest choice is a ring of mass whose metric can be thought of a
interior matched to a vacuum external solution of the form~32!:16

ds25H 2dt21dr21r 2 df2, 0<r<R

2dt21dr21S R

R1aD 2

~r 1a!2 df2, R<r ,
~33!

where the parameterR is the radius of the ring anda is related to the mass. A calculation of i
energy momentum gives16

Tab5
a

8pR~R1a!
d~r 2R!¹at¹bt. ~34!

Integration on a spacelike surface givesM5a/@4(R1a)# so thatM>0 implies that we must take
a>0. The Minkowski space corresponds toa50. There is another range of negativea’s that also
gives a positive mass but these parameters are not continuously connected toa50.

To solve the null geodesics equation and obtain the null cones we introduce the retarde
coordinateu5t2r , and rewrite~33! as

ds252du222du dr1x~r !2df2, ~35!

with

x~r !5H r , 0<r<R

R
~r 1a!

~R1a!
, R<r .

~36!

A first integral of the geodesic equations can be obtained by observing thatkaka50 and that
the scalar product between the null vectorka and the Killing fieldsxu

a andjf
a are constant along

the null geodesic

kaxu
a52u̇2 ṙ 52E, ~37!

kajf
a 5x~r !2ḟ5L, ~38!

kaka52u̇222u̇ṙ 1x~r !2ḟ250. ~39!

Then, inserting Eqs.~37! and ~38! in ~39! gives

ṙ 56EA12S b

x~r ! D
2

, ~40!

with b[L/E, and from~37!, ~38!, and~40!, we get
                                                                                                                



re
the
.

cs.

n, and

n

this
cs will
in
a

,

5527J. Math. Phys., Vol. 41, No. 8, August 2000 Null surfaces formulation in three dimensions

                    
du

dr
56

17A12S b

x~r !
D 2

A12S b

x~r !
D 2

, ~41!

df

dr
56

b

x~r !2A12S b

x~r !
D 2

. ~42!

Integrating~41! and~42! betweenr 5r 0 andr 5` gives the desired light cone cut. The mo
interesting case occurs whenr 0.R so we will restrict ourselves to this case. We now consider
circle of null directions from the point (u0 , r 0 , f050) and divide this circle in four quadrants
Since the solution has axial symmetry with respect to the line that joinsr 0 with the origin we will
only consider the upper quadrants which are distinguished by the initial value ofṙ (r 0). The
integration on the quadrant whereṙ (r 0)>0 is straightforward and does not give any causti
@Along those lines one takes the positive sign in~41! and ~42!.# The value ofb determines the
starting null direction. This parameter ranges between 0, when it points away from the origi
bm5x(r 0), when ṙ (r 0)50. It is appropriate to introduce a null angle 0<u<p/2 defined by
sinu5b/bm.

Care must be taken in the quadrant whereṙ (r 0)<0. Hereb also ranges betweenbm and 0,
when it points to the origin. Then, the range ofu in this quadrant is given byp/2<u<p.
However, there exists a critical value ofb, called bc ~and a correspondinguc) such that forb
<bc the geodesics enter the ring. This value ofbc5R is obtained from the condition thatṙ (R)
50.

We start the integration withṙ ,0 until the turning pointṙ (r t)50 is reached. At this point
x(r t)5b from which the value ofr t is obtained. Then, forr t<r ,` we choose the positive sig
in ~41! and ~42! to finish the integration.

The light cone cut ofJ 1 from a point with coordinates (u0 , r 0 , f050) will be given by the
following u-parameterized relations betweenu andf:

u2u05~r 01a!~12cosu!, ~43!

f5uS 11
a

RD , 0<u<uc , ~44!

u2u05~r 01a!~12cosu!22aA12S r 01a

R1a
sinu D 2

, ~45!

f5uS 11
a

RD22
a

R
arccosS r 01a

R1a
sinu D , uc<u<p. ~46!

We now give a brief analysis of the singularity structure of the light cone cuts for
particular case. Without involving heavy use of singularity theorems we can see that causti
occur whenf is not an injective function ofu. @If otherwise, we could invert the relation to obta
u5u(f), insert this back intou5U(u(f)), and trivially show that the cut is the graph of
function without self-intersections.#

The graphsf vs u for fixed values ofR53 anda51 and two values ofr 055,10 given in the
following serve as illustrations of the most general situation.

In Fig. 1~a! we observe that aroundu5uc the function fails to be injective. This case
however, is not analyzed in the theory of caustics since atuc the function is not differentiable. We
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thus adopt the criteria that whenever the functionf(u) is continuous but not differentiable, w
define a caustic point to be such that there is a change of sign of the left and right derivat
this point. It is worth mentioning that the nondifferentiability around this caustic point follo
from the fact that the Christoffel symbols, the coefficients of the geodesic equation, have a
at r 5R. By smoothing out the shell with a mass density function we can recover differentia
in the solution of the geodesic equation.

For the other value,r 055 @see Fig. 1~b!#, we note the presence of a second caustic poinu0

where (df/du)(u0)50.
In general, we will always have a caustic pointuc for any value ofR, a, andr 0 and a second

caustic point wheneverr 0(.R) satisfies the condition

2a~r 01a!,~R1a!2.

We can also plot the corresponding light cone cuts~see Fig. 2!.
As we can see both graphically and analytically,du/df is well defined and finite at the

caustic points. These caustics are called ‘‘cusps.’’ It is rather surprising that, to first orde
singularity structure arounduc andu0 is similar. The behaviors ofd2u/df2 andd3u/df3, how-
ever, are completely different. Whereas atu0 the second and third derivatives blow up, atuc they
are distributional.

FIG. 1. f vs u for ~a! r 0510 and~b! r 055.
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V. CONCLUSIONS

We close this work with several comments.
~1! The cut functionZ only gives a local description of a light cone cut. Using the availa

formalism to describe characteristic surfaces17 one can show that a light cone cut will hav
self-intersections~thusZ will not be unique! and singular points where]2Z and]3Z diverge. It is
thus desirable to find alternative frameworks to describe the cut near singular points and/
bally onJ 1. One of these alternative approaches is given by the method of generating fami
Legendre submanifolds,17 which might lead to a global description of the light cone cuts.

~2! Likewise, the null hypersurfaceZ5const starts as a smooth surface nearJ 1 but later
develops conjugate points and caustics after the surface enters a region withTabÞ0. A similar
approach using generating families might give a global description of these null surfac

FIG. 2. Light cone cut for~a! r 0510 and~b! r 055.
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particular, there is a need to find a version of the metricity condition that will remain sm
around caustic points.

~3! We mention again that an interesting and open problem is to study the geome
meaning of the metricity conditions in four dimensions. We conjecture that they are a torsio
condition on the Cartan connection.

~4! The most general singularity of a light cone cut in 3D can be found on the explicit exa
presented above. In addition, we find another singular behavior that is not considered
literature since the Legendre submanifold is assumed to be at leastC2. It appears that by relaxing
differentiability conditions on the Legendre submanifold one should be able to prove ge
results for this new type of singularity.
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APPENDIX A: CONFORMAL EINSTEIN METRICS AND THE BACH EQUATION

In this Appendix we derive the field equations for metrics conformally related to Eins
space–times. This derivation will be restricted to three and four dimensions. LetM̂ be an
n-dimensional manifold (n53 or 4! andĝab a metric with arbitrary signature. Note that we are n
following the same conventions as in the main body of the paper where the physical metric i
not have a caret. This is done to simplify the notation for the conformal metrics and their re
tensors.

Assume that the metricĝab satisfies Einstein’s equation, i.e.,

R̂ab2
R̂

2
ĝab5Tab ,

whereTab is the stress–energy tensor, andR̂ab ,R̂, the Ricci tensor and the Ricci scalar ofĝab ,
respectively. Introducing

Ŝab5
1

n22
S R̂ab2

R̂

2~n21!
ĝabD ,

we can rewrite the equations as

Ŝab2Ŝĝab5
1

~n22!
Tab .

We shall express this equation in terms of a conformal metricgab , which is obtained fromĝab

by rescaling with the conformal factorV ~note that this conformal factor is not the conform
factor for an asymptotically flat space–time as given in Sec. IV!,

gab5V2ĝab

or equivalently

ĝab5V2gab. ~A1!

We now write the transformation law of various tensor fields under this conformal resca
Let us first decompose the Riemann curvature tensor ofgab according to

Rabcd5Cabcd12~ga[cSd]b2gb[cSd]a!;
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here we assume thatn>3. In terms ofSab the Bianchi identities can be put as

¹aSab5¹bS ~A2!

and

¹dCabcd522~n23!¹ [aSb]c . ~A3!

Considering the conformal transformation given by~A1!, the tensorŜab transforms to

ŜabV5SabV1¹a¹bV2
V21

2
gab¹cV¹cV. ~A4!

Then the conformal Einstein equation becomes

ŜabV5SabV1¹a¹bV2
V21

2
gab¹cV¹cV, ~A5!

where

Ŝab5
1

n22 S Tab2
T

n21
gabD

with T5Tabg
ab. Since the stress–energy tensor satisfies¹̂aTab50, for later use, we calculate

V¹aTab5~n22!¹aVTab2¹bVT. ~A6!

We now ask what conditions should be imposed ongab so that a solution of~A5! exists. If we
consider Eq.~A5! as a second-order differential equation forV, it is then clear that, for a nontrivia
solution to exist, integrability conditions must be imposed on the metricgab . Applying ¹c to
~A5!, and antisymmetrizing, we get

¹ [cŜa]bV1¹ [cVŜa]b5¹ [cSa]bV1¹ [cVSa]b1¹ [c¹a]¹bV2
gb[a¹c]

2
~V21¹dV¹dV!.

~A7!

Contracting Eq.~A5! with ¹aV we find

¹aVŜab2¹aVSab5
¹b

2
~V21¹dV¹dV!,

and replacing the last term of~A7! by this result yields

¹ [cŜa]bV1¹ [cVŜa]b2gb[c¹
dVŜa]d5¹ [cSa]bV1¹ [cVSa]b1¹ [c¹a]¹bV2gb[c¹

dVSa]d .
~A8!

Finally, using the definition of the Riemann tensor, we calculate

¹ [c¹a]¹bV5 1
2Ccabd¹

dV1gb[cSa]d¹dV2¹ [cVSa]b ,

and Eq.~A8! becomes

2~¹ [aŜb]cV1¹ [aVŜb]c2gc[a¹dVŜb]d!52V¹ [aSb]c1Cabcd¹
dV. ~A9!

Now we consider the case where the stress–energy tensor is pure trace, i.e.,
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Tab52Lĝab ,

whereL is the cosmological constant. This gives, in terms ofgab ,

Ŝab5
LV22

~n22!~n21!
gab .

Inserting this into the left-hand side of~A9!, we have

¹ [aŜb]cV1¹ [aVŜb]c2gc[a¹dVŜb]d5
LV22

~n22!~n21!
~22¹ [aVgb]c1¹ [aVgb]c2gc[a¹b]V!50.

In dimensionn53, using the fact thatCabcd50, Eq. ~A9! becomes

2¹ [aSb]c50. ~A10!

It is easy to prove that the tensor¹ [aSb]c is conformally invariant since

V¹ [aSb]c5¹ [aŜb]cV1¹ [aVŜb]c2gc[a¹dVŜb]d

5V~¹̂ [aŜb]c2Cl
c[aSb] l !1¹ [aVŜb]c2gc[a¹dVŜb]d5V¹̂ [aŜb]c , ~A11!

where

Cac
l 5V21~2d (a

l ¹c)V2gac¹2
l V!.

In order to obtain the integrability condition forn.3, we use Bianchi identity~A3! and Eq.
~A9! becomes

Cabcd¹
dv2

1

n23
¹dCabcd50, ~A12!

where for simplicity in the calculations we have definedw5 logV. Applying ¹a to ~A12! we find

¹a¹dvCabcd1¹aCabcd¹
dv2

1

n23
¹a¹dCabcd50

and using~A5! and ~A12! we get

1

n22
RadCabcd1

1

n23
¹a¹dCabcd2

n24

n23
¹dv¹aCabcd50. ~A13!

Clearly if n54 we have the corresponding Bach equation

Bbcª
Rad

2
Cabcd1¹a¹dCabcd50. ~A14!

APPENDIX B: THE BACH EQUATION WITH STRESS–ENERGY TENSOR

In order to handle a more general stress–energy tensor than the pure trace, we may s
that the stress–energy tensor is given and that it does not depend onV.

We rewrite equation~A9! in terms of the stress–energy tensor and after using~A6! we get

2¹ [aSb]c1Cabcd¹
dv5tabc , ~B1!

where
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tabc5
2

n22 S ¹ [aTb]c2
gc[a¹dTb]d

n22
2

¹ [aTgb]c

n21
1¹ [avTb]c2

~n23!T

~n22!~n21!
¹ [avgb]cD .

We shall concentrate our attention on two cases, when the dimensions aren53 andn54. In the
first case, Eq.~B1! becomes

Bcab52S ¹ [aTb]c2gc[a¹dTb]d2
¹ [aTgb]c

2
1¹ [avTb]cD . ~B2!

Contracting this equation withTbc and using twice~A6!, we get

~TbcT
bc2T2!¹av5TbcBcab22TbcS ¹ [aTb]c2gc[a¹dTb]d2

¹ [aTgb]c

2 D1¹bTbcTa
c1T¹cTca .

~B3!

Demanding thatTbcT
bc2T2Þ0 and inserting~B3! in ~B2!, we obtain

~TdeT
de2T2!Bcab52~TdeT

de2T2!S ¹ [aTb]c2gc[a¹dTb]d2
¹ [aTgb]c

2 D1TbcT
deBead

2TacT
deBebd22TdeTbcS ¹ [aTd]e2ge[a¹ lTd] l2

¹ [aTgd]e

2 D
12TdeTacS ¹ [bTd]e2ge[b¹ lTd] l2

¹ [bTgd]e

2 D1Tbc~¹dTdeTa
e1T¹eTea!

2Tac~¹dTdeTb
e2T¹eTeb!. ~B4!

Whenn54, Eq. ~B1! becomes

Cabcd¹
dv2¹dCabcd5tabc , ~B5!

where

tabc5¹ [aTb]c2
gc[a¹dTb]d

2
2

¹ [aTgb]c

3
1¹ [avTb]c2

T

6
¹ [avgb]c . ~B6!

As before, applying¹a and using Einstein’s equations we can write

2Bab5TadCabcd22~ tacb¹
av1¹atabc!. ~B7!

A simple calculation gives18

2~ tacb¹
av1¹atabc!52¹aS ¹ [aTb]c2

gc[a¹dTb]d

2
2

¹ [aTgb]c

3 D2
1

2
TacS Ta

b2
T

6
ga

bD1
1

2
TacR

a
b

2T¹cv¹bv1
3

2
¹av¹avS Tbc2

T

6
gbcD12¹av¹aTbc2

1

2
¹av¹aTgbc

1
1

2
¹bv¹cT2¹av¹cTab1

1

2
gbc¹

av¹dTad2
1

2
¹cv¹aTab

2¹aTac¹bv.

Contracting~B5! with Cl
abc and using twice~A6!, we get
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~3CabcdC
abcd26TbcT

bc12T2!¹av512¹d~Cden
aTen!13¹a~TdeTde!26¹d~TaeT

de!

23¹dTdeT
e
a15T¹dTda2¹aT212Te

a¹eT

112¹ lCdenlC
den

a . ~B8!

Demanding that 3CabcdC
abcd26TbcT

bc12T2Þ0 and inserting~B8! in ~B7!, we obtain a similar
result to dimension three.
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It is shown that the formulation of the Einstein equations widely in use in numerical
relativity, namely, the standard ADM form, as well as some of its variations~in-
cluding the most recent conformally-decomposed version!, suffers from a certain
but standard type of ill-posedness. Specifically, the norm of the solution is not
bounded by the norm of the initial data irrespective of the data. A long-running
numerical experiment is performed as well, showing that the type of ill-posedness
observed may not be serious in specific practical applications, as is known from
many numerical simulations. ©2000 American Institute of Physics.
@S0022-2488~00!00108-0#

I. INTRODUCTION

Taken at face value, the Einstein equations in their original form are second-order equ
for the metric components. However, rarely are they used in their original form for nume
applications beyond the harmonic gauge. It is much more common to use the 311 splitting,
introducing the intrinsic and extrinsic curvatures of a spacelike slice as the fundamental var
in terms of which the Einstein equations become a system of equations that are first-order
and second-order in space.1 Some variations are taken, such as decomposing the variables
trace-free densities and the traces,2,3 and, additionally, partially converting the second-spa
derivatives to derivatives of first-order variables.4

Although much has been learned in recent years about turning the 311 forms further down
into a completely first-order system,5–12 little if anything has been said about these mixed fir
in-time, second-in-space forms so widely used.

We investigate here the question of stability of some of these forms under small chan
the initial data, namely, the question of well-posedness. We take a particular approach
question, based on quite standard norms for periodic solutions. The sense in which the pr
that we touch upon are said to be well-posed or stable is the following. A system of equatio
m variablesu(xi ,t), i 51,2,3, would be stable if the norm of the solution is bounded by the n
of the initial data in terms of constants independent of the initial data, namely,

uuu~•,t !uu<aebtuu f ~• !uu, ~1!

wherea,b are the same constants for all initial dataf (xi)5u(xi ,0). In the case of linear periodi
problems, for instance, this means thata,b must be independent of the spectral frequency of
initial data. This definition is quite standard.13 Well-posedness in this or equivalent sense
normally expected of physical systems, as well as of successful approximation schemes, in
numerical simulations.

A problem for which the estimate~1! does not hold is referred to as ill posed. While showi
that the estimate holds for all the solutions of a well-posed problem can be accomplish
standard algebraic criteria, showing that the estimate does not hold for a certain ill-posed p

a!simo@mayu.physics.duq.edu
55350022-2488/2000/41(8)/5535/15/$17.00 © 2000 American Institute of Physics
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may require no more than finding a counterexample. A suitable counterexample would con
a particular subfamily of solutions for which the estimate does not hold.

By systematically finding ‘‘counterexamples,’’ we are able to observe in Sec. II that
standard ADM form1 in the two most widely used gauges~geodesic and harmonic slicings! is ill
posed in the sense defined above, and that its most recent conformally-decomposed versio4 is ill
posed as well. We may consider this as a contribution to the direct analytic investigation
standard ADM form, which some authors10 have termed an outstanding problem.

This observation might cause a sudden loss of charm to these forms of the Einstein equ
In this respect, it is definitely not our intention to question the relevance of ill-posed problem
physics. We refer the reader to p. 230 of Ref. 14, where the increasing importance o
problems is rightfully appreciated. After all, the main drawback of having to deal with an ill-po
system is surely the current unavailability of relevant results from mathematical physics.

Far from questioning the use of the ADM forms in numerical simulations, in Sec. III
include a numerical simulation of the standard ADM equations with geodesic slicing and pe
boundaries. We show that in spite of the ill-posed character, the simulation can be carried
long times with no signs of instability apparent as yet. Furthermore, we refer the reader to
where numerical simulations with another equally ill-posed version of the equations is integ
for long times with no apparent instabilities. We suggest that the ADM forms may retain
charm, originating probably from the relatively small number of fundamental variables an
parent compactness of the equations, compared to fully first-order forms. Nevertheless, it is
that numerical simulations of these equations might be subject to their inherent instabilities,
appropriate discretization for long-time evolution may not suggest itself in an obvious man

We conclude in Sec. IV with some remarks about the reach and relevance of the resu

II. ILL-POSED ADM FORMS

Because the reductions of the Einstein equations that we are interested in are rathe
systems, we first illustrate the procedure that we intend to use in the much simpler case of th11
wave equation. Our procedure is, essentially, a rather systematic way of finding counterex
to ~1!. We take it after an example in p. 229 of Ref. 14, credited to Hadamard.15 ~It is hardly
contestable that any counterexample will suffice, irrespective of how particularly wicked!!

A. The ill-posed form of the wave equation

Let us consider the case of the 111 wave equation,

c̈5cxx , ~2!

where ˙ []/]t and the sublabelx stands for]/]x. Let’s reduce the wave equation to first-orde
in-time, second-order-in-space form by defining a second variableh[ċ. We obtain thus a system

ḣ5cxx , ~3a!

ċ5h, ~3b!

for a variableu5$h,c% with initial values f 5$h(xj ,0),c(xj ,0)%. Let’s consider, for simplicity,
the case of solutions of periodicityL. A solution is

c5cos~vt !sin~vx!, ~4!

h52v sin~vt !sin~vx!, ~5!

wherev52pn/L andn is an integer. Different initial data are here labeled by different value
v, and so are the solutions arising from them, so we can think that at any given time and po
the value of the solution is a function of the initial data throughv. Let us calculate the norms,
                                                                                                                



r
entire

ations
t it is

ersion
tail.

It is a
f.

s

5537J. Math. Phys., Vol. 41, No. 8, August 2000 Ill-posedness in the Einstein equations

                    
uu f ~• !uu5
1

LE0

L

c~x,0!21h~x,0!2dx5
1

LE0

L

sin2~vx!dx5
1

2
for all v

and

uuu~•,t !uu5
1

LE0

L

c~x,t !21h~x,t !2dx

5
1

L
~cos2~vt !1v2 sin2~vt !!E

0

L

sin2~vx!dx

5 1
2 ~cos2~vt !1v2 sin2~vt !! ~6!

so we have

uuu~•,t !uu5~cos2~vt !1v2 sin2~vt !!uu f ~• !uu.

Becausev2 has no upper bound in the full spectrum ofv, there are no constantsa andb such that
(cos2(vt)1v2 sin2(vt))<aebt for all initial data ~all v). So we have a subset of initial data fo
which no estimate holds, which is sufficient to assert that there is no estimate good for the
set of data. This form of the wave equation is ill posed.

This is sometimes interpreted as implying that a finite difference scheme for these equ
would not progress forward in time without instabilities even at short times, on the basis tha
virtually impossible to filter out the high frequenciesv.13

In the following, we examine two of the most commonly used versions of the 311 splitting of
the Einstein equations, namely, the standard ADM form, and the conformally-decomposed v
that appeared in Ref. 4. Because the latter is more involved, we develop it first in some de

B. Ill-posedness of the conformally-decomposed version of the ADM form

The system of interest has appeared in Ref. 4, and is based on earlier work in Ref. 3.
system of 15 equations for 15 variables (f,K,g̃ i j ,Ãi j ,G̃ i), and is referred to as System II in Re
4, to distinguish it from the standard 311 Einstein equations,1 which we display in the next
subsection, Eqs.~27!. These variables are related to the intrinsic metricg i j and extrinsic curvature
Ki j as follows

e4f5det~g i j !
1/3, ~7a!

g̃ i j 5e24fg i j , ~7b!

K5g i j Ki j , ~7c!

Ãi j 5e24f~Ki j 2
1
3 g i j K !, ~7d!

G̃ i52g̃ i j , j , ~7e!

whereg̃ i j is the inverse ofg̃ i j . The Einstein evolution equations~27! in terms of these variable
are equivalent4 to the following:

d

dt
f52

1

6
aK, ~8a!
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d

dt
g̃ i j 522aÃi j , ~8b!

d

dt
K52g i j DiD ja1aS Ãi j Ã

i j 1
1

3
K2D1

1

2
a~r1S!, ~8c!

d

dt
Ãi j 5e24f~2~DiD ja!TF1a~Ri j

TF2Si j
TF!!1a~KÃi j 22Ãil Ã

l
j !, ~8d!

]

]t
G̃ i522Ãi j a, j12aS G̃ jk

i Ãk j2
2

3
g̃ i j K, j2g̃ i j Sj16Ãi j f, j D

2
]

]xj S b l g̃ i j , l22g̃m( jb i ),m1
2

3
g̃ i j b l , l D . ~8e!

Herea is the lapse function,b i is the shift vector, andG̃ jk
i are the connection coefficients ofg̃ i j .

The superscript TF denotes trace-free part, e.g.,Ri j
TF5Ri j 2g i j R/3. Indices are raised and lowere

with g̃ i j and its inverse. We use the shorthand notation

d

dt
[

]

]t
2£b , ~9!

where £b is the Lie derivative alongb i . Although for the solution to~8! to be a solution to the full
set of Einstein equations it is necessary that the initial data satisfy the set of four add
constraints, in the following, we do not need to consider the four constraint equations exp
since they do not affect the well-posedness of the evolution system. We assume that th
straints are imposed on the initial data, thus selecting, from the set of solutions to~8!, the subset
that satisfies the ten Einstein equations.

The system~8! is first-order in time and second-order in space, being generically repres
in the form

u̇5Ai j ~xk,t,u!u, i j 1Bi~xk,t,u,u,k!u, i1C~xk,t,u![P~xk,t,u,u,k ,]/]xj !u. ~10!

Any time that an evolution system can be represented in this form, we interpret the right-han
as an evolution operator acting on a solution. In this case, the evolution operator isP, and contains
all the terms in the right-hand side of~8!. It is essential to point out that the properties of stabil
of a system like~10! are encoded in the principal terms of the operatorP, namely, inAi j (xi ,t,u).
This means that we can restrict our attention to a system of the form

u̇5Ai j ~xi ,t,u!u, i j . ~11!

The lower-order terms that differentiateAi j (xi ,t,u) from P do not affect the existence of a
estimate of the form~1! ~see, for instance, p. 139 of Ref. 13!. If there is such an estimate for~11!,
then there is one for~10! as well, and for any other system with a right-hand-side that differs f
P only in first and zeroth order terms. If there is no estimate for~11!, then there is no estimate fo
~10! either, nor for any system that differs from~8! in first-derivatives or undifferentiated terms

In the following, we focus on the principal terms of the evolution operator of~8!, namely, the
exact terms that contain the highest derivatives of the dynamical fields in the right-hand-s
this case, the principal terms are

ḟ50, ~12a!
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ġ̃ i j 50, ~12b!

K̇50, ~12c!

Ȧ̃i j 5e24fa~2 1
2g̃

lmg̃ i j ,lm22~f, i j 2
1
3g̃ i j g̃

lmf, lm!!, ~12d!

Ġ̃ i5b l g̃ i j , j l , ~12e!

where˙ []/]t. Second-derivatives of the lapse and shift do not contribute to the principal pa
the evolution operator of~8! if they are assumed to be arbitrarily given as source functions. If t
were given dynamically, in terms of the metric or extrinsic curvature, then their second-deriv
would contribute to the principal part of the evolution operator and should be included~as an
example, see the case of the harmonic slicing below!.

For our purposes, it is much simpler to work with system~12! than with~8! without affecting
our conclusions. The system~12! differs from ~8!, but only in terms that are of first and zero
order. Clearly the solutions will be different, but not their stability properties. It may no
obvious that the terms that are essential to make~12d! trace-free are of first-order~not second!,
and therefore do not need to be included in our discussion. The reader may as well conside
as included, since their inclusion does not affect our argument in any way.

We can show that~12! is ill posed by finding one family of solutions for which no estimate
the form ~1! holds. Essentially the same procedure that gave us the result for the wave eq
gives the analogous result for~12!, and consequently, for~8!. However, because the procedu
consists of finding explicit solutions, the results are necessarily restricted by the gauge. W
determine ill-posedness in two cases: geodesic and harmonic slicing. For geodesic slicing,
a51 andb i50. Consider the periodic solution,

f5 1
4 log~11 1

2 cos~k•x!!, ~13a!

g̃ i j 5d i j , ~13b!

K50, ~13c!

Ãi j 5
~ 1

2 1cos~k•x!!

4~11 1
2 cos~k•x!!3

~kikj2
1
3 k•k d i j !t, ~13d!

G̃ i50, ~13e!

wherek•x[kixjd i j , andki52pni /L with integerni . The initial data for this solution are

f~x,0!5 1
4 log~11 1

2 cos~k•x!!, ~14a!

g̃ i j ~x,0!5d i j , ~14b!

K~x,0!50, ~14c!

Ãi j ~x,0!50, ~14d!

G̃ i~x,0!50. ~14e!

The norm is defined as
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uuu~•,t !uu[
1

L3Ecube
d3x S f21(

i j
~ g̃ i j !

21(
i

~ G̃ i !21K21(
i j

~Ãi j !
2D . ~15!

Let us calculate the norms at the initial time and at timet. We have

uuu~•,0!uu[uu f ~• !uu531
1

L3Ecube
S 1

4
logS 11

1

2
cos~k•x! D D 2

d3x, ~16!

and

uuu~•,t !uu531
1

L3Ecube
S 1

4
logS 11

1

2
cos~k•x! D D 2

d3x

1
1

L3Ecube

2

3
~k•k!2t2S cos~k•x!1 1

2

4~11 1
2 cos~k•x!!3D 2

d3x. ~17!

It is our purpose to demonstrate that the normuuu(•,t)uu can not be bounded independently
v[Ak•k. For this purpose, we start by factoring outuu f (•)uu, namely

uuu~•,t !uu5uu f ~• !uuS 11
2

3

~k•k!2t2

16uu f ~• !uu
1

L3Ecube
S cos~k•x!1 1

2

~11 1
2 cos~k•x!!3D 2

d3xD . ~18!

Because 11 1
2 cos(k•x)<3/2, we have that

S cos~k•x!1 1
2

~11 1
2cos~k•x!!3D 2

>~~ 2
3!

3~ cos~k•x!1 1
2!!2, ~19!

and because*cube(cos(k•x)11
2)

2d3x53L3/4 then

1

L3Ecube
S cos~k•x!1 1

2

11 1
2 cos~k•x!

D 2

d3x> 3
4 ~ 2

3!
6. ~20!

Using this inequality into~18! we obtain

uuu~•,t !uu>uu f ~• !uuS 11
2

3

~k•k!2t2

16uu f ~• !uu
3

4 S 2

3D 6D . ~21!

Also because 11 1
2 cos(k•x)<3/2, we have that

1

uu f ~• !uu
>

1

31S log~3/2!

4 D 2 ~22!

which, if plugged into~21!, yields
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uuu~•,t !uu>uu f ~• !uuS 11
2

3

~k•k!2t2

16

1

31S log~3/2!

4 D 2

3

4 S 2

3D 6D . ~23!

Because (k•k)2 is unbounded, thenuuu(•,t)uu increases out of bound at large frequenciesv. This
shows that an estimate of the type~1! does not exist. Therefore the system~12! is ill posed. The
addition of first-derivatives or of undifferentiated terms will not turn~12! into a well-posed
system, from which it follows that~8! is ill posed as well. The argument may be impossible
generalize to the case of arbitrary lapse and shift, but presently it suffices to make our poi

Consider now the harmonic slicinga5Adetg i j with b i50. In this case, the principal terms o
the evolution operator of the system~8! are not~12!, because the second-order derivatives of
lapse are now dynamical and must be considered. We actually havea5e6f and a, i j

56e6f(f, i j 16f, if, j ). Thus the principal terms of the evolution of~8! in the harmonic gauge ar

ḟ50, ~24a!

ġ̃ i j 50, ~24b!

K̇526e2fg̃klf,kl , ~24c!

Ȧ̃i j 5e2f~2 1
2g̃

lmg̃ i j ,lm28~f, i j 2
1
3g̃ i j g̃

lmf, lm!!, ~24d!

Ġ̃ i5b l g̃ i j , j l , ~24e!

where˙[]/]t. A periodic solution is

f5 1
2 log~11 1

2 cos~k•x!!, ~25a!

g̃ i j 5d i j , ~25b!

K56t
~ 1

2 1cos~k•x!!

~11 1
2 cos~k•x!!

k•k, ~25c!

Ãi j 58t
~ 1

2 1cos~k•x!!

~11 1
2 cos~k•x!!

~kikj2
1
3 k•k d i j !, ~25d!

G̃ i50. ~25e!

With the norm~15! and by following very similar calculations as in the case of geodesic slic
one can readily see that the following inequality holds:

uuu~•,t !uu>uu f ~• !uuS 11~k•k!2t2S 2

3D 2 59

31S log~3/2!

2 D 2D . ~26!

As in the previous cases, we can see that the norm is not bounded because of the presencv4.
This shows that the harmonic slicing does not ‘‘turn’’ system~8! into a well-posed form. This
appears to contradict standard theorems on the well-posedness of the Einstein equation
harmonic gauge. However, it does not. The difference between the use of the harmonic ga
standard proofs of well-posedness and the treatment in the present paper is that the standar
                                                                                                                



ond-
d-order

re of

,
m
cond-

itial

5542 J. Math. Phys., Vol. 41, No. 8, August 2000 S. Frittelli and R. Gomez

                    
are carried out with the Einstein equations either in full first-order form or in the original sec
order form, whereas here we are considering the mixed case of first-order in time and secon
in space.

C. Ill-posedness of the standard ADM form

We now consider the standard ADM equations in the form proposed in Ref. 1, which a
wide use in numerical applications. The equations are

ġ i j 522aKi j 12D ( ib j ) ~27a!

K̇ i j 5aRi j 22aKikK j
k1aKKi j 2DiD ja1bkDkKi j 22Kk( iD

kb j ) , ~27b!

whereg i j is the intrinsic metric of the slice at constantt, Ki j is the extrinsic curvature of the slice
defined by~27a!, a is the lapse function, andb i is the shift vector. Here we also benefit fro
restricting attention to the principal terms in the right-hand-side, namely the exact se
derivative terms. Assuming nondynamical choices of lapse and shift~ruling out the harmonic
slicing, in particular!, the principal terms of the evolution operator of the system are

ġ i j 50, ~28a!

K̇ i j 5
a

2
~2gklg l ( i , j )k2gklg i j ,kl2gklgkl,i j !. ~28b!

Consider the following periodic solution to~28! with a51 ~geodesic slicing!,

g i j 5~11 1
2 cos~k•x!!d i j , ~29a!

Ki j 5t
cos~k•x!

~11 1
2 cos~k•x!!

~kikj1d i j k•k!. ~29b!

With the norm,

uuu~•,t !uu[
1

L3Ecube
d3x S (

i j
~g i j !

21(
i j

~Ki j !
2D , ~30!

we have

uuu~•,t !uu5uu f ~• !uu16~k•k!2t2
1

L3Ecube
d3x

cos2~k•x!

~11 1
2 cos~k•x!!2

, ~31!

and

uu f ~• !uu5S 3

2D 3

. ~32!

It is very simple to see that the following inequality holds:

uuu~•,t !uu>uu f ~• !uuS 11
25

34
~k•k!2t2D . ~33!

Because of the presence ofv4, we conclude that the norm is not bounded in terms of the in
data and the standard ADM equations are ill-posed fora51, in the same sense as system~8! is.
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For completeness, we end this section by showing that even the harmonic gauge suffe
the same type of ill-posedness. For the harmonic gauge we havea5Adetg i j , thus DiD ja
5(a/2)gklgkl,i j 1•••, so that the principal terms of~27! are

ġ i j 50, ~34a!

K̇ i j 5
a

2
~2gklg l ( i , j )k2gklg i j ,kl22gklgkl,i j !. ~34b!

Consider the following periodic solution to~34!:

g i j 5~11 1
2 cos~k•x!!d i j , ~35a!

Ki j 5
t

4
~11 1

2 cos~k•x!!1/2cos~k•x!~4kikj1d i j k•k!. ~35b!

With the norm~30! it is straightforward to see that the following inequality holds:

uuu~•,t !uu5uu f ~• !uuS 11
5

18
~k•k!2t2D . ~36!

It is impossible to bound the terms in parenthesis in the right-hand-side by a factor of the
aebt with a andb independent ofv5Ak•k. Thus an estimate of the form~1! does not hold, and
the standard ADM equations in the harmonic gauge are ill posed.

III. NUMERICAL EXPERIMENTS

We have seen in previous sections that the standard ADM form of the Einstein equati
ill-posed in a certain definite sense, and that so are the conformally-decomposed version~8! and
even the 111 wave equation in flat space, against maybe widespread intuition. Although this
create a difficulty in the stability analysis of these systems, we do not think that this neces
implies an obstruction to numerical integration of any of them, in general. For particular ap
tions, it is possible that the bad behavior at high frequencies may be disregarded. On the
hand, there may be discretizations suitable for numerical evolution for long enough time
necessarily arbitrarily long.

In this section we present two numerical experiments with these ill-posed systems. In th
place, we show that in the case of the ill-posed form of the 111 wave equation there exists a stab
discretization. This in principle implies that the numerical integration is not hampered in any
The fact that a stable discretization exists in this case in spite of the ill-posedness is very un
it is possible that the 111 wave equation be an exception to the rule.

Secondly, we present a discretization of the standard ADM equations in the geodesic
which runs for impressively long times without any signs of instabilities.

A. Stable discretization for the ill-posed wave equation

In this subsection we discretize the ill-posed form of the wave equation, namely~3!. This is a
standard exercise, but a very illuminating one. Our intention is to emphasize that the discret
is stable, which means that the discretized equations have no modes that are amplified
evolution. This is in spite of the ill-posed character of the continuous equations that the dis
zation is modeling.

We use theleapfrogdiscretization, which is explicitly given by

h j
n115

2 Dt

h2
~c j 11

n 22c j
n1c j 21

n !1h j
n21, ~37a!
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c j
n1152 Dth j

n1c j
n21, ~37b!

whereDt represents the time step, andh represents the spacing between the grid points, nam
h5Dx. The grid points are equally spaced in the interval21<x<1, xi5211( i 21)h for i
51, . . . ,N andh52/(N21).

In order to carry out a stability analysis,16 we use the ansatz

h j
n5jnei jkhh0 , ~38!

c j
n5jnei jkhc0 , ~39!

wherei[A21. Substituting this ansatz into~37a!, we obtain

S ~j221! 24
Dt

h2
~cos~kh!21!j

22 Dtj ~j221!
D S h0

c0
D 50. ~40!

For a nontrivial solution we need the determinant of the system to be zero, namely,

~j221!212a2~12cos~kh!!j250, ~41!

wherea[ 2 Dt/h. The solution is

j252~c21!6A~c21!221 ~42!

with c[a2(12cos(kh)). The discretization is stable ifuju<1. A sufficient condition for this to
happen in our case is thatc<2, where we havejj̄51, i.e., the discretization is not only stable b
unimodular. The requirement forc<2 is thata<1. This means that for our discretization to b
stable and unimodular we only need to take the time step smaller than one-half the grid sh.

We implemented a straightforward Fortran code based upon the discretization~37a!, with
periodic boundary conditions in the domain21<x<1. As expected, the code reproduces ve
well the evolution of a pulse of compact support of the form

c5H A

w8
~~ t2vx!22w2! for ut2vxu<w,

0 otherwise,

~43!

where the evaluation of the condition is to be understood modulo 2~the periodicity of the grid!.
The pulse shown in Fig. 1 has an amplitudeA51 and widthw51, and it is propagating to the
right with speedv51. We can see no sign of damping or amplitude growth, and very l
distortion, even after 100 crossing times. Shown in the figure are the initial time,t50.0 ~solid line!
and the final pulse,t5200.0, at a resolution ofN5200 points~dotted line! and N5400 points
~dashed line!, respectively. Note how the distortion of the pulse decreases with increasing
lution as expected from the second-order discretization~37a!.

B. Numerical stability of the ADM equations

The ADM equations in the form introduced by York,1 and variations of the same, have be
used extensively in numerical work,2–4,17–20to cite a few. For completeness, however, we pres
here an alternate straightforward numerical implementation of the ADM equations, which
trates that one can indeed integrate the nonlinear system~not just its linearized counterpart, an
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not just its principal part!. Starting from~27!, we restrict our attention to the case of geode
slicing, wherea51, b i50. The calculation of the Ricci tensor in~27b! is the most involved and
error-prone task, but from the standard definition,21

Ri j 52G i j ,k
k 1G ik, j

k 2G im
n G jn

m 1Gni
n Gm j

m , ~44a!

G i j
k 5 1

2 gkl~2g i j ,l1g j l ,i1g l i , j !, ~44b!

it follows that its computation can be organized by collecting terms which contain second d
tives, terms with first derivatives of the metric and its inverse, and terms with only conne
components,

Ri j 5
1
2 gkl~2g l ( i , j )k2g i j ,kl2gkl,i j !1 1

2 gkl
,k~2g i j ,l1g j l ,i1g l i , j !

2 1
2 gkl

,i ~2gk j ,l1g j l ,k1g lk, j !2G im
n G jn

m 1Gni
n Gm j

m . ~45!

We first compute the inverse metric and the second spatial derivatives of the metric, from
we obtain the first term, then calculate the first derivatives of the metric~and of the inverse
metric!, which yields the second and third term. The final step is to calculate the conne
coefficients~44b! and the last two terms in~45!. The terms involvingKi j in the right hand side of
~27! are expressed in terms of the~downstairs! extrinsic curvature and the inverse metric,

KKi j 22KikK j
k5g lm~KlmKi j 22Kli Km j!. ~46!

We discretize~27! using~44b!–~45!, taking the variablesg i j andKi j as given on a rectangu
lar, equally spaced grid of sizeN3, with resolutionh52p/N and covering the domain 0<x
<2 p, 0<y<2 p and 0<z<2 p. We label the grid points byxk5k h, yl5 l h, zm5m h, with
k,l ,m51, . . . ,N, and the time levels ast5t01nDt, for n51, . . . ,Nt . To distinguish tensor
indices from grid indices, we use the notationg i j @k,l ,m

n #5g i j (xk ,yl ,zm ,tn). We use symmetry
where appropriate, storing only the relevant components ofg i j , Ki j , g i j , g i j ,k , g i j

,k , g i j ,kl , and
Ri j . For instance, in the calculation of the second and third terms of~45!, theg i j

,k are stored on
the space allocated later to theG i j

k .

FIG. 1. Evolution of a pulse traveling to the right at speedv51. Shown in this figure are the initial (t50.0) and the final
pulse (t5200.0). The later time is seen at the two grid resolutions,N5200 ~dotted line! andN5400 ~dashed line!.
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We compute first spatial derivativesg i j ,k andg i j
,k , and second spatial derivativesg i j ,kl with

centered, second-order accurate finite differences on grid points, e.g.,

c ,x@ i , j ,k
n #5

1

2h
~c@ i 11,j ,k

n #2c@ i 21,j ,k
n # !, ~47a!

c ,xx@ i , j ,k
n #5

1

h2
~c@ i 11,j ,k

n #22 c@ i , j ,k
n #1c@ i 21,j ,k

n # !, ~47b!

c ,xy@ i , j ,k
n #5

1

4h2
~c@ i 11,j 11,k

n #2c@ i 21,j 11,k
n #2c@ i 11,j 21,k

n #1c@ i 21,j 21,k
n # !. ~47c!

We perform the grid indices operations identifying the pointsx0[xN and xN11[x1, which en-
forces periodic boundary conditions in all coordinates.

The time integration scheme we use is the so-called iterative Crank–Nicholson~ICN!
method,17,18,4with three iterations~i.e., one predictor step ‘‘forward in time,’’ plus two correctio
steps!. Considering~27! as equations of the formu̇5Pu, whereP is an operator acting onu
5(g i j ,Ki j ), the time integration algorithm is given by

u1
n115un1Dt Pun, ~48a!

u2
n1~1/2!5 1

2 ~u1
n111un!, ~48b!

u2
n115un1Dt Pu2

n1~1/2! , ~48c!

u3
n1 ~1/2!5 1

2 ~u2
n111un!, ~48d!

un115un1Dt Pu3
n1~1/2! , ~48e!

where quantities with subindices are intermediate values which do not require additional st
To test the algorithm, we give as initial data the following, evaluated att50:

g i j 5@A~mimj2ninj !1B~minj1nimj !#sin~k•x2vt !1d i j , ~49a!

Ki j 5@A~mimj2ninj !1B~minj1nimj !#cos~k•x2vt !
v

2
, ~49b!

where mi and ni are unit vectors orthogonal to the propagation vectorki , i.e., m•m51, n•n
51, m•n50, m•k50, andn•k50. Fork5(m1, m2, m3) with m1, m2, m3 integers, Eq.~49! is
a periodic solution of the linear system obtained by settingg i j 5d i j in ~27!. During the integration,
we monitor the Hamiltonian constraint, given by

H5R1K22Ki j K
i j , ~50!

and, as a measure of the stability of the algorithm, the norm given in Eq.~30!. We have followed
the evolution of a pulse withA5B51026, k5(1,2,1), v5A6, taking m5(27,4,1)/A66 and
n5(21,21,3)A6/11. The solution is periodic in time as well, with periodT52p/A6, which
determines the natural time scale for the test problem. The equations can be integrated on
of (48)3 points for hundreds of crossing times, without any signs of instability, as evident
Fig. 2, which showsuuu(•,t)uu/uu f (•)uu, the norm of the numerical solution as a function of tim
relative to the initial norm. The relative change in the norm, with respect to the initial norm
shown as well, and is below 1% at 100 crossing times and'19 000 iterations.
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We have plotted in Fig. 3 the maximum absolute value over the grid of the Hamilto
constraint, Eq.~50! as a function of time, and this quantity remains bounded throughout
evolution, for upwards of 19 000 time steps.

We have not carried out the Von Neumann stability analysis for the principal part of the A
equations, as we did for the simpler case of the wave equation in Sec. III A, since it wou
rather involved and well beyond the scope of this work. To our knowledge, this type of ana
has not been made for the other systems mentioned here, either.

IV. REMARKS

In the first place, it is essential to emphasize that we have kept ourselves within the con
problems with periodic boundaries, for considerations of analytical and numerical stability

FIG. 2. Evolution of a linearized, periodic ADM pulse traveling in the directionk5(1,2,1). Shown in this figure are the
scaled normN/N0[uuu(•,t)uu/uu f (•)uu ~solid line!, and its relative changeN/N021[uuu(•,t)uu/uu f (•)uu21 ~dotted line!.
Note that the relative change in the norm is below 1% att5200p, that is 100 crossing times and'19 000 iterations.

FIG. 3. The maximum absolute value over the grid of the Hamiltonian constraint as a function of time for initia
corresponding to a linearized, periodic pulse.
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In the case of the Einstein equations, more often than not instabilities develop in the cours
numerical simulation, but the origin of the instabilities is not known, being attributed inter
tently to either the equations themselves or the particular boundary conditions being used.
line of a number of authors~most recently, Refs. 17–20! who have used the standard ADM
equations in exact~nonlinear! form and their conformally-decomposed versions in numer
relativity, including evolution in the strong-field regime for blackhole mergers, we have pres
a long-running stable code for the exact standard ADM equations up to~un!stable boundaries
With such a code, which runs for sufficiently long times with periodic boundaries even i
equations themselves are ill posed, the origin of instabilities, if they occur, can be shifted
boundaries. A discretization such as that used in Sec. III B might be used to identify s
boundary conditions other than periodic, or it might be used for matching to a stable ex
characteristic code,21–24 in which case the boundary values are provided by the exterior code
are, in principle, consistent with the interior solution.

We have not been involved with constraint propagation in this work, but in this respec
worth emphasizing that not only does the code run for long times for the standard ADM equa
but it does so preserving the hamiltonian constraint as well, in spite of the ill-posedness
evolution equations.

Secondly, we have shown here that, from the analytical point of view, there is no adva
to the conformally-decomposed equations4 with respect to the standard ADM form.1 Although a
striking difference between the numerical integration of the two systems has been reporte4 the
origin of the difference in numerical behavior must lie in some factor other than well-posed
~see Ref. 11 for a discussion of other factors!. It might be thought that both systems may ha
different properties when turned to full first-order form, and that this might explain the differ
in numerical behavior. So far this is an open question. In this respect, it has been show
reducing the conformally-decomposed system~8! down to full first-order form by defining the
spatial derivatives of the metric as new first-order variables does not automatically make it
posed, unless the lapse function is densitized and the constraints are combined in specifi
with the evolution equations.11 Nevertheless, in reducing to first-order form, there is plenty
freedom in the choice of first-order variables. It is not clear at this time whether or not there
a choice of first-order variables for the reduction of~8! which will turn the system into a well-
posed one without densitizing the lapse or combining with the constraints. The same might b
about the standard ADM form, Eqs.~27!.
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Equivalence of the spinor and tensor methods
in the positive energy problem

Volodymyr Pelykh
Pidstryhach Institute Applied Problems in Mechanics and Mathematics,
Ukrainian National Academy of Sciences, 3B Naukova Str., Lviv, 79601, Ukraine

~Received 7 March 2000; accepted for publication 15 March 2000!

We prove that nontrivial solutions of the Sen-Witten equation with asymptotically
flat data set on maximal hypersurface does not equal zero at any point of this
hypersurface. On this basis we ascertain the equivalence of Witten’s spinor method
and Nester’s tensor method in the positive energy problem in general relativity.
© 2000 American Institute of Physics.@S0022-2488~00!04208-0#

I. INTRODUCTION

It is known that the positive energy theorem~PET!1,2 in general relativity, possessing inde
pendent principal significance, also creates the basis for solving other problems. From the m
of the first proof of this theorem there were presented many simplified and compleme
proofs3–6 within the limits of the Witten’s spinor method, as well as alternatives to the Witte
proof.7–9 Among these alternative tensor methods the most developed is Nester’s method,
basis of which there is a set of gauge conditions for the choice of orthonormal frame
three-dimensional Riemannian manifold. These conditions are purely geometrical because t
expressed in terms of teleparallel geometry. Dimakis and Mu¨ller-Hoissen have shown10 that Nest-
er’s gauge conditions are equivalent to the linear elliptic three-dimensional Dirac equation.
the solutions of the latter equation can have zeros, as Ashteckar and Horowitz5 have noticed for
the first time~see also Ref. 10, where the additional arguments for support of this stateme
presented together with corresponding references to works in which zeros of elliptic equatio
investigated!, the special orthonormal Nester’s frame~SOF, triad! as well as Dimakis and Mu¨ller-
Hoissen SOF~tetrad! are determined only almost everywhere on the space-like hypersurface
asymptotically Minkowskian manifold. The possible existence of the zeros of the spinor field
on the set of zero measure is the barrier for the equivalence of spinor and tensor methods
as for the distinguishing of SOF, since the latter in some physically nonsingular points doe
exist. The connections between triads and the Sen–Witten~SWE! equation were investigated b
Frauendiener.11 He obtained the necessary and sufficient conditions that have to be satisfied
triad in order to correspond to the spinor that satisfies the Sen–Witten equation. These con
as it was marked by Frauendiener, are closely connected with Nester’s conditions, becau
also include some cyclic conditions. However, in the process obtaining these condition
possibility of the situation where the spinor equals zero in one or even in the account set of
is not taken into account. Therefore, Frauendiener’s theorem is correct only under the s
additional assumption.

The purpose of this article is to show that on defined by some conditions hypersurfac
nontrivial solutions of the SWE will not have zeros, and to prove on this basis the equivalen
the SWE and Nester’s gauge and therefore the equivalence of spinor and tensor method
investigations of the positive definition of the gravitational energy.

In Sec. II we briefly review the properties ascertained by Skorobohat’ko12,13of knot manifolds
of self-adjoint second-order elliptic equations.

In Sec. III, on the basis of these results and using the methods introduced by Reula4 and
Ashteckar and Horowitz,5 we prove that nontrivial solutions of the SWE with an asymptotica
flat initial data set does not equal zero at any point of the finite or infinite domain on max
hypersurface.
55500022-2488/2000/41(8)/5550/7/$17.00 © 2000 American Institute of Physics
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This allows us to prove in Sec. IV the equivalence of the SWE and Nester’s gauge, an
to complement Nester’s investigations, showing that the local rotation to Nester’s SOF exis
only for geometries in a neighborhood of Euclidean space, but everywhere on maximal hyp
face with good topological properties. The latter circumstance allows us to take down full
negation of Dimakis and Mu¨ller-Hoissen against Nester’s method,10 which was taken down partly
by Nester earlier.14

We use Witten’s method in the interpretation, given by Reula.4 In the basis of this interpre
tation lies the reduction of SL(2,C) spinors of space–time to SU~2! spinors on spacelike hyper
surface; this reduction was introduced by Sommers15 and Sen.16

Let (M ,g) be M5S3R with spacelikeS t3$t% and metricg of signature~1,2,2,2!.17 We
assume the initial data set (S t ,hmn ,Kpr) to be asymptotically flat in the sense introduced
Reula4 andhmn , Kpr to be ofC` class onC` hypersurfaceS t .

The constraint equations of general relativity on the spacelike hypersurfaceS t are

2R2KmnK mn1K 252m, ~1!

Dm~K mn2Khmn!5J n, ~2!

whereR is scalar curvature ofS t , h5g2n^ n is the induced metric onS t . Dm is induced by
connection¹m on M connection onS t , Kmn is extrinsic curvature ofS t , andK5K n

n . m andJ n

are the energy density and momentum density, respectively, of the matter in the frame of ref
of an observer, whose one-form of four-velocity isj5dt. m andJ n satisfy the dominant energ
condition

m>uJ nJ nu1/2. ~3!

As was shown by Witten,2 if on S t there exists the solutionbC of the Sen–Witten equation

D B
CbC50 ~4!

with bC going asymptotically to a constant spinorb0
C, then the total mass is non-negative. A

action of the operatorDAB on spinor field is

DABlC5DABlC1
&

2
K ABC

DlD . ~5!

For solving the problem of the zeros existence forbC solutions of the equation~4!, whenbC

is going asymptotically to the constant spinorl0
CÞ0, we briefly review the results o

Skorobohat’ko.

II. KNOT SURFACES OF SELF-ADJOINT ELLIPTIC SECOND-ORDER EQUATIONS

The unique solvability of the Dirichlet problem for elliptic equations was studied in the R
18–21. The results of these works were generalized in Refs. 22 and 23, where similar resul
obtained independently. In particular, from the Aronszain22 and Cordes23 theorem we see that th
nontrivial solutions of the equation

amnS x,u,
]u

]xD ]2u

]xm]xn 5 f S x,u,
]u

]xD , u~x!,amn~x!PC2,

in Rn, which is elliptic for all x1, . . . ,xn and u, in any pointj0 cannot have a zero of infinite
order. Therefore, this allows us to exclude the existence of the solutions with zeros of in
order only.
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In the works of Skorobohat’ko12,13 the known theorems about the distribution of zeros
linearly independent solutions of the ordinary differential second-order equationy91c(x)y50
are generalized for self-adjoint elliptic-type equations

]

]xm Famn~xp!
]u

]xnG1a~xp!u50, ~6!

whereamn(xp)PC2(V) anda(xp)PC1(V). The pointx0
p , in which the solutionu equals zero,

is said to be a knot point of this solution. The important property of the equation~6! is given in the
following theorem.

Theorem Skorobohat’ko: The knot points of any solution u of the equation (6) are
isolated in domainV, but create the surfaces, which divide the domainV.

From the theorem we can see that knot surfaces are closed, or their ends lie on the bo
of domainV.

III. THE SOLUTIONS OF THE SEN-WITTEN EQUATION HAVE NO ZEROS

Theorem 1: The asymptotically constant nontrivial solution of the equation (5), with
asymptotically flat initial data set that satisfies the dominant energy condition (3), everywhe
the maximal hypersurfaceS t does not have zeros.

Proof: From Lemma 2~Ref. 5! we obtain that all solutionslC of the equation

D A
BD BClC50 ~7!

with the formlC5l0
C1bC, where spinor fieldl0

C is asymptotically constant andbC is element
of Hilbert spaceH, satisfy also the first-order equation~4!. Here the spaceH is the Cauchy
completion ofC0

` spinor fields under the norm

ibEiH
2 5E

S t

~DA
BbB!1~DACbC!dV.

The equations~8! are an elliptic system of equations. Indeed,

D A
BD BClC52DABDB

ClC2
&

2
DABlB2

&

4
lBDABK2

1

8
K 2lA .

Taking into account that

2DABDB
ClC52 1

2 DBFDBFlA2 1
8 R(3)lA ,

and using the equation~1!, we obtain

D A
BD BClC5

1

2
DBCDBClA2

&

2
KDABlB2

&

4
lBDABK2

1

4
K 2lA1

1

8
KmnK mnlA1

1

4
mlA .

Let introduce on an open neighborhood ofS t the Gauß normal coordinates (t,xa). Then

D A
BD BClC5

1

2A2h

]

]xa SA2hhab
]

]xb lAD2
&

2
KDABlB2

&

4
lBDABK

1
1

4
K 2lA1

1

8
KabK ablA1

1

4
mlA50, ~8!
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and ellipticity ~7!, as well as~4!, follows from the negative definition ofihabi matrix.
Let us chooseS t to be maximal hypersurface~Asymptotically flat space-times that satisfy th

uniform interior conditions and admit maximal slices;24 however, these conditions are not nece
sary. Therefore we suppose only thatM admits maximal slices and keeps weak the form of
asymptotically flat initial data set!.

Since the operatorDAB[Da acts in an internal way onS t , then alsoDABKuS t
50. Therefore

the system of equations~8! on the maximal hypersurfaceS t comes to two independent self-adjoi
equations

1

A2h

]

]xa SA2hhab
]

]xb lAD1
1

4
KabK ablA1

1

2
mlA50. ~9!

Then, applying Skorobohat’ko’s theorem, for every equation from~9! we obtain that knot surface
of every solution are not isolated in the arbitrary bounded domainV and divide this domain.
According to the dominant energy condition~3!,

KabK ab12m>0. ~10!

Then, for ~9!, the maximum principle is fulfilled, and the solution of the Dirichlet problem
every equation is unique; that is why the knot surfaces set of equation~9! does not include the
closed surface. SincelC asymptotically tends tol0

CÞ0, then for the solution onS t the knot
surfaces, which tend to infinity, are also absent.

Therefore, the solutionlC of Eq. ~4! does not have a zero on maximal surfaceS t .
From Lemmas 1 and 2~Ref. 5! we can deduce that the solution of the equation~4!, which

vanishes at a point onS t , vanishes everywhere onS t . However, during the process of Lemma 1
proof the Conjecture is used, which is based on the observation of the properties of the so
for the equation~4! in Minkowski space and atKab50; these assumptions are too strong.

Further, since for us only the case whenS t is maximal hypersurface is interesting, then, f
the general caseKÞ0, let us restrict by the notice that the solutions of the Sen–Witten equa
does not have zero also everywhere on hypersurfaces in some neighborhood of the m
hypersurface. The proof can be obtained on the basis of the Lopatynsky theorem,25 according to
which the solutions of the Dirichlet problem for the elliptic system of second-order equa
continuously depend on its right parts, coefficients,V-domain and values of the functions on]V.

IV. SEN-WITTEN EQUATIONS AND NESTER’S GAUGE CONDITIONS

Definition 1: A set of N(0,N<10) equations for the components of orthonormal vector ba
em

m (tetrad, vierbein),

FN~em8
m8,]n8em8

n8,]n8r8
2 ep8

p8!50, ~11!

which are not covariant relatively to the local Lorentz transformations and (or) coordinate b
transformations, is said to be auxiliary conditions.

Definition 2: The auxiliary conditions (11) are said to be gauge fixing conditions in s

domainV, if in this domain there exists the solution xm8(xn), Ln
m8(x) of the system of equation

FNS en
n
]xm8

]xn Ln
m8 , . . . , . . .D 50 ~12!

with arbitrary coefficients en
n.

The sets of additional and gauge fixing conditions are not identical.26,27This is caused first by
the fact that the coefficients of the system~12! are considered in general as the functions ofC`

class, but notCa, and the solutions of nonanalytical equations can exist not always; seco
even the conditions of integrability for Eqs.~12! cannot be satisfied.
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Nester14 introduced the additional conditions for the choice of special orthonormal fram
the three-dimensional Riemannian manifold. Letua denotes the corresponding orthonormal c
frame field. Nester’s conditions, written in terms of the differential forms

q̃5 i adua, q5ua∧dua, ~13!

are given by

dq̃50, d* q50. ~14!

The system of equations~12!, corresponding with these additional conditions, is a nonlin
second-order elliptic system for the rotationRa8

b . Nester proved the existence and uniquenes
the solution of the linearization of this system for geometries within a neighborhood of Eucl
space and therefore the additional conditions~14! are gauge-fixing only asymptotically.

Analogously to Nester, under investigations and application of the conditions~14! we would
restrict ourselves to consideration of the spaces with ‘‘good’’ topology, where the formsq̃ and* q
are exact~vanishing of the first de Rahm cohomology class of the three-manifolds is sufficien
not necessary!. Taking into account that initial data set (S t ,hmn ,Kpr) is asymptotically flat, the
conditions~14! are replaced by their first integrals:

q̃524d ln r, * q50. ~15!

Functionr everywhere onS t is positive.
Theorem 2: Let an initial data set(hmn ,Kpr) on maximal hypersurfaceS t be asymptotically

flat and satisfy the dominant energy condition. Then everywhere onS t the Sen–Witten equations
(4) and Nester’s conditions (14) are equivalent.

Proof: Let us assume first that onS t is given Eq.~4! for SU~2! spinor lC . Then a spatial
one-formL with componentsLn52lAlB satisfies ‘‘squared’’ SWE

^L̃,D ^ L&2KL13! i * ~n∧D∧L !50, ~16!

wheren is a one-form of unit normal toS t , ^L̃,D ^ L& is a one-form with componentsL̃nDmLn,
andL̃5uLu21* (L∧L̄) is a nonzero spatial one-form. BecauseS t as a three-dimensional orientab
manifold is parallelizable, it admits a globally defined orthonormal three-coframeua and together
with time-like unit one-formn of the normal toS t it forms four-coframeum.

Let introduce four-coframeum with the help of the correlations

L5
l

&
~u11 iu2!, u35L̃, u0[n5Ndt, ~17!

where l5l1AlA , and let us introduce metrichmn5(1,21,21,21) in which this frame is
orthonormal. Let us substitute the expression forL from ~17! into ~16! and take into account tha
in agreement with Theorem 1 the spinorlA everywhere onS t does not equal zero. This allows u
to write instead of~16!

2^u1,D ^ u3&2Ku113! i * @n∧~D1F !∧u2#50, ~18!

^u2,D ^ u3&1Ku313! i * @n∧~D1F !∧u1#50, ~19!

where we denotedF5D ln l. Contracting the left parts of~18! and ~19! with vector fieldeb and
taking into account that« (0)abc5«abc , we obtain

2v13
b2Khb

11«bcav
a2c1«c2

bFc50, ~20!
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v23
b1Khb

21«bcav
a1c1«c1

bFc50. ~21!

The connection one-form coefficientsvk
mn in ~20! and ~21! are defined as usual:vk

mn

5^uk,¹em
en&. The system of equations~20! and ~21! includes only four independent equation

«abcvabc[* q50, va
1a[2q̃15F1 , va

2a52q̃25F2 , va
3a52q̃35K1F3 . ~22!

Let us choose the hypersurfaceS t maximal and adjust the parametrization inV3 and onS t

identifying r with l(xm)uS t
. After this its direct conjecture of the theorem becomes evident.

The converse is obvious. From the theorem it is implied that Nester’s auxilary condition
gauge fixing everywhere on hypersurfaceS t , on which conditions of Theorem 2 are fulfilled.

V. CONCLUSION

The possibility of the proof of Theorem 1 is provided by our reduction of SWE to indepen
self-adjoint elliptic second-order equations on maximal hypersurface.

Evidently Theorem 1, which plays an auxiliary role in the proof of Theorem 2, pose
independent importance for spinor fields in Riemannian space–time. In particular, it is conn
with the fact that SWE generalizes the equation for neutrino ‘‘zero mode’’ for the case of cu
space. Jackiw and Rebbi28 introduced this equation for investigations of vacuum state structur
quantum gravity.

The main result of present work—Theorem 2—solves~under the defined conditions! the
problem of relation between spinor and tensor formalism, ascertaining that Witten’s spino
malism and Nester’s tensor formalisms are isomorphic; this isomorphism is a result of
absence for Witten’s spinor~Theorem 1! and of isomorphism between complexificated vec
spaceR3 and three-dimensional complex vector space of symmetric second-rank SU~2! spinors.

We can also say that there exist globally defined~nowhere degenerate! special orthonormal
frames on maximal hypersurface and in their neighborhood—Witten’s orthonormal frames
this SOF is also Nester’s SOF.
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We discuss the relation between space–time diffeomorphisms and gauge transfor-
mations in theories of the Yang–Mills type coupled with Einstein’s general rela-
tivity. We show that local symmetries of the Hamiltonian and Lagrangian formal-
isms of these generally covariant gauge systems are equivalent when gauge
transformations are required to induce transformations which are projectable under
the Legendre map. Although pure Yang–Mills gauge transformations are project-
able by themselves, diffeomorphisms are not. Instead, the projectable symmetry
group arises from infinitesimal diffeomorphism-inducing transformations which
must depend on the lapse function and shift vector of the space–time metric plus
associated gauge transformations. Our results are generalizations of earlier results
by ourselves and by Salisbury and Sundermeyer. ©2000 American Institute of
Physics.@S0022-2488~00!02308-2#

I. INTRODUCTION

In a recent paper1 we discussed the relation between diffeomorphisms and gauge transfo
tions in general relativity. Specifically, gauge transformations are required to be projectable
the Legendre map, and therefore they must depend on the lapse function and shift vector
metric in a given coordinate neighborhood. Therefore, it is not the diffeomorphism group, w
acts on the underlying manifold, which is the gauge group. The gauge group acts on the dyn
variables in the space of field configurations~including the metric!; its structure is fixed by the
dynamical model; but each element may also be interpreted as a family of space–time diffe
phisms. More precisely, each pair consisting of an element of the gauge group and a me
which it acts determines a space–time diffeomorphism~which affects tensors in the usual way!.

Here we extend the discussion to include space–times having a Yang–Mills type field co
to general relativity. Our work is an extension of a more formal treatment by Pons and She2

Some of these results were obtained earlier by Salisbury and Sundermeyer,3,4 Lee and Wald5 ~and
others!, but we have given them a broader foundation, namely one based on projectability
the Legendre map while retaining all the gauge variables. Our resulting expressions for the
generators are entirely new. The idea that coordinate transformation should be accompa
gauge transformations dates back a rather long way. The articles by Jackiw6 and Jackiw and
Manton,7 summarized by Jackiw,8 discuss this idea but not from the point of view we espou
here, namely as a result of relating Lagrangian and Hamiltonian formulations of the theo
passing, we should note that besides eliminating gauge variables through a quotienting pro

a!Electronic mail: pons@ecm.ub.es
b!Electronic mail: dsalisbury@austinc.edu
c!Electronic mail: larry@helmholtz.ph.utexas.edu
55570022-2488/2000/41(8)/5557/15/$17.00 © 2000 American Institute of Physics
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the Lee and Wald5 approach is incomplete in that it does not take into account that Lagran
energies might not be projectable to the quotient space. We recently extended and complet
program by introducing an algorithmic procedure, which under most circumstances is equi
to the Dirac–Bergmann algorithm.9 Furthermore, our procedure is accomplished without qu
enting out gauge variables. The Dirac–Bergmann constraint algorithm requires that evo
remain within the final constraint surface in phase space.

We find that pure Yang–Mills gauge transformations meet our requirement of projecta
Gauge transformations which act like diffeomorphisms not only have to be coupled to the m
as in the vacuum case but also require associated Yang–Mills gauge transformations.

In Sec. II we briefly recount the general treatment of diffeomorphism-invariant theories
discuss Einstein–Yang–Mills field theory and describe~infinitesimal! gauge transformations
therein. We show explicitly how these transformations must depend on the lapse function an
vector of the space–time metric and what associated Yang–Mills gauge transformations the
have if they are to be projectable under the Legendre map. In Sec. III, we calculate the
structure functions and the canonical group generators. Section IV concludes with a g
discussion of our results and future extensions. These will include the application of our p
dures to the real triad formulation10,11 and to the Ashtekar formulation12 of general relativity.

II. YANG–MILLS THEORIES AND GENERAL RELATIVITY

As in our previous paper,1 following the work of Batlleet al.,13 we begin with a Lagrangian
L(q,q̇) which does does not depend explicitly ont. An infinitesimal transformationdqi(q,q̇,t) is
a Noether Lagrangian symmetry if

dL5dF/dt,

which results in an equation for

Gª

]L

]q̇i dqi2F, ~1!

namely

@L# idqi1
dG

dt
50,

@L# i being the Euler–Lagrange functional derivative ofL:

@L# i5a i2Wisq̈
s,

where

Wi jª
]2L

]q̇i]q̇ j , a iª2
]2L

]q̇i]qs q̇s1
]L

]qi .

When the mass matrix or Legendre matrixW5(Wi j ) is singular, there exists a kernel for th
pullbackFL* of the Legendre mapFL from configuration-velocity spaceTQ ~the tangent bundle
TQ of the configuration spaceQ! to phase spaceT* Q ~the cotangent bundle!. This kernel is
spanned by vector fields whose componentsgA

i ~A ranges over the number of these vectors! are a
basis for the null vectors ofWi j . The Hamiltonian technique eases the calculation of thegA

i :

gA
i 5FL* S ]fA

]pi
D , ~2!
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where thefA are the Hamiltonian primary first class constraints. Note that these constrain
here assumed to be effective~if not, they can be made effective; however, problems can a
when ineffective, secondary constraints, occur9,14!.

The equation satisfied byG implies

gA
i ]G

]q̇i 50, ~3!

showing thatG is projectable to a functionGH in T* Q; that is, it is the pullback of a function~not
necessarily unique! in T* Q:

G5FL* ~GH! ~4!

~first pointed out by Kamimura15!. The functionGH is determined up to the addition of linea
combinations of the primary constraints. Whendqi is projectable toT* Q, it is possible to select
GH satisfying~4! and such that

dqi5FL* S ]GH

]pi
D . ~5!

We will apply this result to diffeomorphisms and to Yang–Mills gauge transformations in
following.

A. Yang–Mills gauge transformations

The Yang–Mills Lagrangian densityLYM is a functional of the vector potential fieldsAm
i ,

where the internal indexi ranges over$1,...,n%, wheren is the dimension of the gauge group, an
m is a space–time index (m50,...,3).~We will be using lower-case indices from the beginning
the alphabet,a,b,..., as spatial indices,a,b51,2,3.) The field tensor derived from these potent
fields is

Fab
i 5Ab,a

i 2Aa,b
i 2Cjk

i Aa
j Ab

k , ~6!

where the comma denotes partial differentiation and whereCjk
i are the structure constants of th

gauge group. The Yang–Mills Lagrangian density is given by

LYM52 1
4Au4guFmn

i Fab
j gmagnbCi j , ~7!

whereCi j is a nonsingular, symmetric group metric~its inverse isCi j ) and4g is the determinant
of the space–time metric tensor.~In a semi-simple group,Ci j is usually taken to beCit

s Cjs
t ; in an

Abelian group, one usually takesCi j 5d i j .)
The derivatives ofLYM with respect to the velocities of the configuration space variablesȦa

i

~here the dot is]/]t), give the tangent space functionsP̂i
a corresponding to the phase spa

conjugate momenta:

P̂i
a
ª

]LYM

]Ȧa
i

5Au4guFmn
j gamg0nCi j . ~8!

The Legendre mapFL is defined by settingP̂i
a equal toPi

a in phase space. Because of th
antisymmetry of the field tensor, the primary constraints are

05 P̂iª P̂i
05

]LYM

]Ȧ0
i

5Au4guFmn
j g0mg0nCi j . ~9!
                                                                                                                



ptors

r

g–

up

etric

the

5560 J. Math. Phys., Vol. 41, No. 8, August 2000 Pons, Salisbury, and Shepley

                    
A generator of a projectable gauge transformation thus must be independent ofȦ0
i .

An infinitesimal Yang–Mills gauge transformation is defined by an array of gauge descri
L i and transforms the potential by

dR@L#Am
i 52L ,m

i 2Cjk
i L jAm

k ~10!

~we use the notationdR@L# for this Yang–Mills rotation variation to distinguish it from othe
variations defined later, and we writedR if the @L# may be understood in context!. We denote this
transformation by

dRAm
i
ª2~DmL! j , ~11!

whereDm is the Yang–Mills covariant derivative~in its action on space–time scalars and Yan
Mills vectors!. Under this transformation, the field transforms as

dRFmn
i 52Cjk

i L jFmn
k , ~12!

where we work to first order inL i and use the Jacobi identity

Cjk
i Cmn

k 1Cmk
i Cn j

k 1Cnk
i Cjm

k 50.

The Yang–Mills LagrangianLYM is invariant under this transformation provided that the gro
metric obeys

Cmi
k Ck j52Cm j

k Cki

~which it will if Ci j 5Cit
s Cjs

t ).
The variationdR is clearly independent ofȦ0

i and so is projectable.

B. Diffeomorphisms

The configuration space variables for general relativity are the components of the m
tensor

ds25gmndxm dxn52N2 dt21gab~dxa1Na dt!~dxb1Nb dt!, ~13!

whereN is the lapse function,Na the components of the shift vector, andgab is our notation for
the spatial metric. The inverse ofgab is eab:

eacgbc5db
a .

We will use g for the determinant of the spatial metric; the relationship between it and
determinant of the space–time metric is

4g52N2g.

In matrix form the metric and its inverse are

~gmn!5S 2N21NcNdgcd gacN
c

gbdN
d gab

D ,

~gmn!5S 21/N2 Na/N2

Nb/N2 eab2NaNbN2D .

The general relativity Lagrangian density is16
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LGR5NAg~3R1KabK
ab2~Ka

a!2!, ~14!

where3R is the scalar curvature computed from the three-metric (3R53Rabe
ab, where3Rab is the

three-metric Ricci tensor! and Kab is the second fundamental form~extrinsic curvature; indices
raised byeab or lowered bygab) for the constant-time three-surfaces:

Kab5
1

2N
~ ġab2Naub2Nbua!, ~15!

with the vertical bar meaning covariant differentiation with respect to the three-metric conne
Thus the total Lagrangian density is

L5LYM1LGR. ~16!

Notice that the lapseN and shiftNa of the four-metric all appear, but their time derivativ
~that is, their velocities! do not. This is required of any diffeomorphism invariant theory. To
projectable, therefore, a variation must be independent of these velocities as well as bein
pendent ofȦ0

i in coupled Einstein–Yang–Mills theory.
Consider now an infinitesimal diffeomorphism, which changes the coordinates by

dD@e#xm52em ~17!

~we writedD if the @e# may be understood in context!. Under this diffeomorphism, the space–tim
metric transforms as

dDgmn5gmn,ses1gsne ,m
s 1gmse ,n

s . ~18!

This is the Lie derivative equation.
We will show from this equation thatdD is not a projectable transformation of the form of E

~5! unless it is made to depend on the lapse and shift variables. We will also show thatdD is not
allowed to depend on the Yang–Mills potentialA0

i . Finally, we will look at the variation of the
Yang–Mills potential itself and show that if a new variation is defined to include a gauge t
formation along with each diffeomorphism, the new variation will be projectable. We now
ceed with these demonstrations.

Equation~18! implies that the variations of the lapse and shift due to a diffeomorphism

dDN5Ṅe01N,aea1Nė02NNae ,a
0 , ~19a!

dDNa5Ṅae01N,b
a eb1Naė02~N2eab1NaNb!e ,b

0 1 ėa2Nbe ,b
a . ~19b!

In order to eliminate the dependence ofṄ,Ṅa from these variations, it is necessary that theem

depend on the lapse and shift:1

e05
j0

N
, ea5ja2

Na

N
j0, ~20!

wherej0,ja are independent ofN, Na. Note that

em5da
mja1nmj0, ~21!

wherenm is the unit normal to thet5const spacelike hypersurfaces:

n05
1

N
, na52

Na

N
.
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A diffeomorphism with only the descriptorj0 not zero is called a perpendicular diffeomorphis
Furthermore, Eq.~19! shows thatem cannot depend onA0

i : Equation~19a! has a termNė0

which would involveȦ0
i otherwise; and similarly, Eq.~19b! has a termėa which would involveȦ0

i

unless such a dependence is outlawed.
Under a diffeomorphism, the Yang–Mills potential transforms as a covariant vector

under Lie differentiation:

dDAm
i 5Am,s

i es1As
i e ,m

s . ~22!

The variation ofAa
i is clearly independent ofṄ,Ṅa,Ȧ0

i and so is projectable. However, thedD

variation ofA0
i is

dDA0
i 5Ȧ0

i e01A0
i ė01Aa

i ėa1A0,a
i ea. ~23!

It clearly is not projectable, nor does the dependence ofem on the lapse and shift, Eq.~20!, and the
nondependence ofem on A0

i help. What is needed is a combined diffeomorphism and ga
transformation.

Therefore, todD we add a gauge transformationdR@M # defined by a gauge descriptorMi :

~dD1dR@M # !A0
i 5Ȧ0

i e01A0
i ėa1Aa

i ėa1A0,a
i ea2Ṁ i2Cjk

i M jA0
k . ~24!

The most direct way of making this variation projectable, that is, to cancel the first three term
the right-hand side, clearly is to chooseMi to be As

i es ~since the resulting addition of a term
involving Aa

i is harmless!. To this expression may be added an arbitrary additional gauge t
formation, of course, provided it will not result in terms involvingṄ,Ṅa,A0

i in Eq. ~24!. The
subtraction fromAs

i es of the expressionAa
i ja represents just such a transformation; what rema

will be a term proportional tonm, according to Eq.~21!. For what comes later, therefore, we fin
it convenient to definedD1dR@M # by using

Mi
ªAs

i nsj0. ~25!

To this variation may be added an arbitrary pure Yang–Mills gauge transformation, and
general projectable variation will depend on the descriptors

jA
ª~j0,ja,L i !,

there being 41n functions in all. In summary, a general projectable variationd acts as a combined
infinitesimal diffeomorphism and gauge transformation of the form:

dN5 j̇01jaN,a2Naj ,a
0 , ~26a!

dNa5 j̇a2Neabj ,b
0 1N,beabj01N,b

a jb2Nbj ,b
a , ~26b!

dgab5ġab

j0

N
1gab,cS jc2

Ncj0

N D1gcbS j ,a
c 2

N,a
c j0

N D 1gacS j ,b
c 2

N,b
c j0

N D , ~26c!

dA0
i 5Aa

i j̇01A0,a
i ja1F0a

i Naj0

N
2L̇ i2Cjk

i L jA0
k , ~26d!

dAa
i 5F0a

i j0

N
1Fab

i Nbj0

N
1Ab

i j ,a
b 1Aa,b

i jb2L ,a2Cjk
i L jAa

k . ~26e!
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C. Hamiltonian dynamics

To discuss the group structure functions and the canonical group generators, we work
Hamiltonian formulation. First, consider the Lagrangian energy for the Yang–Mills part o
action:

ĤYMªȦa
i P̂i

a2LYM5
N

2Ag
Ci j gabP̂i

aP̂j
b1NaP̂i

bFab
i 1

NAg

4
Ci j e

acebdFab
i Fcd

i 2A0
i DaP̂i

a ,

~27!

whereCi j is the matrix inverse of the group metricCi j , and we performed an integration by par
to obtain the last term.

Similarly, we can define the Lagrangian momentum functions for the Hilbert action:

p̂ab
ª

]LGR

ġab
5Ag~Kab2Kc

ceab!, ~28!

and then compute the Lagrangian energy:

ĤGRª p̂abġab2LGR5
H

Ag
~ p̂abp̂

ab2~ p̂a
a!2!2NAg3R22Nap̂aub

b , ~29!

where the last term results from an integration by parts.
Thus the canonical Hamiltonian~whose pullback under the Legendre transformations is

Lagrangian energy! is of the form

Hc5E d3xNAHA , ~30!

whereNA are the 31n variablesN, Na,2A0
i whose conjugate momenta give the primary co

straintsPA5$p,pa ,2Pi%50, andHA5$H0 ,Ha ,Hi%. The time derivatives of the primary con
straints are secondary constraints:

ṖA5$PA ,Hc%52HA .

There are no more constraints. Explicitly,

H05
1

2Ag
Ci j gabPi

aPj
b1

Ag

4
Ci j e

acebdFab
i Fcd

j 1
1

Ag
~pabp

ab2~pc
c!2!2Ag3R, ~31a!

Ha5Pi
bFab

i 22paub
b , ~31b!

Hi5DaPi
a . ~31c!

We summarize our notation in the following list:

Configuration variables gab Aa
i N Na A0

i

Momentum variables pab Pi
a p pa Pi

Primary constraints p 5 pa 5 Pi 5 0
Secondary constraints H0 5 Ha 5 Hi 5 0

The equations of motion which follow from the Hamiltonian equations~30! are ~these equa-
tions agree with those in Refs. 16 and 4!:
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ġab5$gab ,Hc%5
2N

Ag
S pab2

1

2
pc

cgabD1Naub1Nbua , ~32a!

Ȧa
i 5$Aa

i ,Hc%5
N

Ag
Ci j gabPj

b2NbFab
i 1DaA0

i , ~32b!

ṗab5$pab,Hc%52
N

Ag
S 3Rab2

1

2
3ReabD1

N

2Ag
eabS pcdpcd2

1

2
~pc

c!2D2
2N

Ag
S pacpc

b2
1

2
pc

cpabD
1Ag~Nuab2eabN c

uc !1~Ncpab! uc22pc~aNb)
uc

1
N

2Ag
Ci j S 1

2
eabgcdPi

cPj
d2Pi

aPj
bD

1
N

4
Ci jAgS 2Fcd

i Fe f
j ecaeebed f2

1

2
Fcd

i Fe f
j eabeceed f D , ~32c!

Ṗi
a5$Pi

a ,Hc%52Db~N@bPi
a] !1Db~NAgCi j e

c@bea]dFcd
j !1A0

mCm jCl i
j Cl kPk

a . ~32d!

Of course, Eqs.~32a! and ~32b! are restatements of the definition of momenta.
We now derive the most general projectable variations of configuration and Lagrangia

mentum variables. In Sec. III we construct the corresponding phase space generators o
variations.

First, we write down the most general projectable variation of the configuration varia
dependent on the descriptorsj0,ja,L i @these are the same as Eq.~26! but in our present notation
we have also used the notation of covariant differentiation with respect to the three-metric
nection#:

dN5 j̇01jaN,a2Naj ,a
0 , ~33a!

dNa5 j̇a2Neabj ,b
0 1N,beabj01Nub

a jb2Nbj ub
a , ~33b!

dgab5
2j0

Ag
S pab2

1

2
pc

cgabD1jaub1jbua , ~33c!

dA0
i 5Aa

i j̇a1A0,a
i ja1

Naj0

Ag
Ci j gabPj

b2L̇ i2Cjk
i L jA0

k , ~33d!

dAa
i 5

j0

Ag
Ci j gabPj

b1Ab
i j ua

b 1Aaub
i jb2L ,a

i 2Cjk
i L iAa

k . ~33e!

Note also for future reference that the variations ofAm
i which result from an infinitesimal spatia

diffeomorphismx8m5xm2da
mja plus a gauge rotation with descriptorL i5Ab

i jb are

dA0
i 52jaF0a

i 52
ja

Ag
NPa

i 2jaNbFba
i , ~34a!

dAa
i 52jbFab

i . ~34b!
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We turn now to variations of the conjugate momenta. Observe that under infinitesimal g
coordinate transformations for whichdx0Þ0, the variation~Lie derivative! will involve the time
derivative. The projectable gauge transformations of the momentum variables from configu
velocity space to phase space are limited to solutions of the equations of motion, since we
equations of motion in computing the variations. Since the time derivatives of momenta a
appear in their variations under general coordinate transformations which alter the evolution
we note that this is a general feature of generally covariant systems: The full projectable d
morphism group is a transformation group on solution trajectories.

To find the variations ofpab, we use the fact thatpab appear in the four-dimensional conne
tion coefficientsGbg

a . Thuspab can be calculated from the four-dimensional connection by

pab5
1

N
GabcdGcd

0 , ~35!

where

Gabcd
ªAg~eacebd2eabecd!. ~36!

The inverse of this object is

Gabcd5
1

Ag
S gacgbd2

1

2
gabgcdD ~37!

in the sense that

GabcdGcde f5da
edb

f . ~38!

The general variation of the connection coefficients~under an infinitesimal diffeomorphism de
fined byx8m5xm2em) is

dGbg
a 52Gbg

s e ,s
a 1Gsg

a e ,b
s 1Gbs

a e ,g
s 1e ,bg

a 1Gbg,s
a es, ~39!

and thus

dGcd
0 52Gcd

s e ,c
0 1Gsc

0 e ,b
s 1ebs

0 e ,c
s 1e ,bc

0 1Gbc,s
0 es. ~40!

We therefore need the following relationships:

Gcd
0 5

1

N
Gcde fp

e f, ~41a!

G0d
0 5g0mGm0d5

1

N
N,d1N21NeGedghp

gh, ~41b!

Gcd
e 52

1

N
NeGcd f gp

f g13Gcd
e . ~41c!

The calculation is far from trivial, but the most difficult part is made somewhat easier by defi
for any functionf,

d8 fª f 8~x8!2 f ~x!⇒d f 5d8 f 1 f ,ses. ~42!

By concentrating on thed8 variation fores5nsj0, using the equation of motion for the derivativ
term, and then adding the rather straightforward calculation forja ~treating pab as a tensor
density!, we find
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dpab52j0AgS 3Rab2
1

2
3 ReabD1

1

2
j0AgeabS pcdpcd2

1

2
~pc

c!2D2
2

Ag
j0S pacpc

b2
1

2
~pc

c!2D
1Ag~eacebdj ucd

0 2eabj c
0uc !1

1

2Ag
j0Ci j S 1

2
eabgcdPi

cPj
d2Pi

aPj
bD

1
1

4
j0Ci jAgS 2Fcd

i Fe f
j ecaeebed f2

1

2
Fcd

i Fe f
j eabeceed f D1pabj ,c

c 2j ,c
a pcb2j ,c

b pac1p,c
abjc.

~43!

Thej0 part of the variation can be obtained from the equation of motion~32c! by replacingN by
j0 and settingNa50.

To compute variations of thePi
a , in principle uses the same method, namely by using the

that Pi
a comes from a four-dimensional object, from Eq.~9!. The result is

dPi
a5Db~j0AgCi j e

beeadFcd
j !1Pi

aj ,b
b 2j ,b

a Pi
b1Pi ,b

a jb. ~44!

This is actually the variationdD1dR@Amnmj0#. These results come directly from the definitions
momenta in configuration-velocity space; we will construct the generators of these equati
phase space in the following.

III. SYMMETRY GENERATORS

We now turn to the generators of the projectable variations. Generating functionsG will be of
the form1

G~ t !5E d3x~jAGA
~0!1 j̇AGA

~1!!5:jAGA
~0!1 j̇AGA

~1! , ~45!

where we shall use a repeated index to include an integration over space as well as a su
descriptorsjA are arbitrary functions.

The functions in Eq.~45! are found using an extension of the techniques of Ref. 1:
simplest choice for theGA

(1) are the primary constraintsPA . The functionsGA
(0) obey

GA
~0!52$GA

~1! ,HA%1pc, ~46!

where pc represents a sum of primary constraints. The simplest solution forGA
(0) results in

G@j#5PAj̇A1~HA1PCNBCAB
C !jA, ~47!

where the structure functions are defined by

$HA ,HB%5:CAB
C HC . ~48!

We shall determine the structure functions by first examining the variations generated
secondary constraints, Eq.~31!. The emphasis throughout will be on the underlying transforma
symmetry group. For this purpose we first introduce generators associated with our sec
constraints. Let

R@j#ªE d3xj iHi , ~49a!

V@jW #ªE d3xjaHa , ~49b!
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S@j0#ªE d3xj0H0 . ~49c!

We find thatR@j# generates a Yang–Mills rotation, so we have, for example,

$Aa,
i R@j#%5dR@j#Aa

i . ~50!

V@jW # generates the spatial diffeomorphism plus the gauge rotation we employed in~34!:

dV@jW #Aa
i 5$Aa

i ,V@jW #%5LjWAa
i 1dR@jbAb#Aa

i 52jbFab
i , ~51!

whereLjW denotes the Lie derivative. It is convenient to define a related generatorD@jW # which
generates a pure spatial diffeomorphism:

D@jW #ªE d3xjaGa , ~52!

where

GaªHa2Aa
i Hi . ~53!

S@j0# generates a space–time diffeomorphism plus a gauge rotation~neither of which by itself
is projectable!. So, for example,

dS@j0#Aa
i 5dD@j0#Aa

i 1dR@j0Amnm#Aa
i 5

j0

Ag
Ci j gabPj

b . ~54!

It is straightforward to calculate the complete Lie algebra from the calculable action o
infinitesimal group elements on the generators.~The only Poisson bracket we will not calculate
this manner is the bracket ofS@j0# with S@h0#. In principle, the entire Poisson bracket algebra c
be derived from the transformation group, but this particular calculation is somewhat ted
invoking time derivatives of the three-curvature and the extrinsic curvature. The result o
direct calculation of this bracket is given in the following.!

First, a gauge rotation ofHi yields

$R@j#,R@h#%52R@@j,h##. ~55a!

The remaining brackets are

$R@j#,D@hW #%5E d3xj iLhW Hi52E d3x~LhW j i !Hi52R@LhW j#, ~55b!

$D@jW #,D@hW #%5E d3xjaLhW Ga52E d3x~LhW ja!Ga52D@LhW jW #5D@@jW ,hW ##, ~55c!

$S@j0#,D@hW #%5E d3xj0LhW H052E d3x~LhW j0!H052S@LhW j0#, ~55d!

$S@j0#,R@h#%50, ~55e!

$V@jW #,R@h#%50. ~55f!

The last two brackets result from the fact thatH0 and Ga are gauge scalars. Finally, a dire
calculation yields
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$S@j0#,S@h0#%5V@zW #, ~55g!

where

za
ª~j0]bh02h0]bj0!eab. ~56!

Using these brackets we next determine the brackets among theR, V, andSgenerators alone
We find

$V@jW #,V@hW #%5$D@jW #1R@jaAa#,D@hW #1R@hbAb#%

5V@@jW ,hW ##2R@jahbFab#. ~57a!

The remaining bracket is

$S@j0#,V@hW #%5$S@j0#,D@hW #1R@jaAa#%

52S@LhW j0#2R@hadS@j0#Aa#52S@LhW j0#2RFha
j0

Ag
Ci j gabPj

bG . ~57b!

We read off the following nonvanishing structure functions from the above brackets:

C0809
a

5eab~2d3~x2x8!]b9d
3~x2x9!1d3~x2x9!]b8d

3~x2x8!!, ~58a!

Cb8c9
a

52d3~x2x8!]b9d
3~x2x9!dc

a1d3~x2x9!]c8d
3~x2x8!db

a , ~58b!

C08a9
0

5d3~x2x9!]a8d
3~x2x8!, ~58c!

Cj 8k9
i

52Cjk
i d3~x2x8!d3~x2x9!, ~58d!

C08a9
i

52
1

Ag
Ci j gabPj

bd3~x2x8!d3~x2x9!, ~58e!

Ca8b9
i

52Fab
i d3~x2x8!d3~x2x9!. ~58f!

Referring to the above-derived structure functions, we obtain the following generators, w
GR@j#, GV@hW #, andGS@z0# are, respectively, the gauge, spatial diffeomorphism plus assoc
gauge, and perpendicular diffeomorphism plus associated gauge generators:

GR@j#5E d3x~2Pi j̇
i1Hij

i2Ci j
k j iA0

j Pk!, ~59a!

GV@hW #5E d3xS Paḣa2NbFba
i Pih

a2
1

Ag
Ci j gabPj

bNhaPi1N,aP0ha

1N,b
a Pahb2Nbh ,b

a Pa1haHaD , ~59b!
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GS@z0#5E d3xS P0ż01N,bPaz0eab2NPaz ,b
0 eab2NaP0z ,a

0 1z0Na
1

Ag
Ci j gabPj

bPi1z0H0D .

~59c!

These generators do indeed generate the variations of all variables.
We close this section by noting that we should recover the canonical Hamiltonian a

generator of a global time translation. Let us check to confirm that this is the case. First we
the descriptorsjm which correspond toem5d0

m ,

e0515n0j05N21j0, ~60a!

ea505ja1naj05ja2N21Naj0. ~60b!

We deduce that

j05N, ja5Na. ~61!

We must bear in mind thatS@j0#1D@jW # with jm given by ~61! is not yet the generator of a
global time translation becauseS@N# generates a gauge transformation with descriptor

~Am
i nm!j05~A0

i N212Aa
i N21Na!N5A0

i 2Aa
i Na.

Thus the generatorR@A0
i 2Aa

i Na# must be subtracted to obtain the Hamiltonian:

S@N#1D@Na#2R@A0
i 2Aa

i Na#5E d3x(NH01NaGa2~A0
i 2NaAa

i !Hi

5E d3x~NH01NaHa2A0
i Hi !. ~62!

This is precisely the canonical Hamiltonian, Eq.~30!!
It is important to point out that in this final expression the gauge variablesN,Na,A0

i are to be
thought of as arbitrarily chosen but explicit functions of space and time. This object will
generate a global time translation only on those members of equivalence classes of soluti
which N,Na,A0

i happen to have the same explicit functional forms. On all other solutions
corresponding variations correspond to more general diffeomorphism and gauge transform

In fact, every generatorG@j# in ~47! with j0.0 may be considered to be a Hamiltonian in t
following sense:G@jA#5GR@j#1GV@jW #1GS@j0# generates a global time translation on tho
solutions which have

N5j0, ~63a!

Na5ja, ~63b!

2A0
i 1Aa

i Na5j i . ~63c!

We have already demonstrated this fact for the nongauge variables, and it is instructive to
the claim for the gauge variablesN, Na, andA0

i . Substituting~63! into ~33!, we have

dN5Ṅ1NaN,a2NaN,a5Ṅ, ~64a!

dNa5Ṅa2NeabN,b1NeabN,b1N,b
a Nb2N,b

a Nb5Ṅa, ~64b!
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dA0
i 5Aa

i Ṅa1A0,a
i Na1

NaN

Ag
Pa

i 2~2Ȧ0
i 1Ȧa

i Na1Aa
i Ṅa!2Cjk

i ~2A0
j 1Aa

j Na!A0
k5Ȧ0

i .

~64c!

IV. CONCLUSION

We have been guided by the idea that a Lagrangian formulation of symmetries in a com
Yang–Mills theory and general relativity should be equivalent to the Hamiltonian formulation
in a previous paper1 we find that these formulations are indeed equivalent, as shown by the
that a basis of the variations arising from gauge transformations is projectable under the Le
map from configuration-velocity space~the tangent bundle! to phase space~the cotangent bundle!.
Finding these projectable variations is a major part of this paper.

We found that the most general projectable transformation coming from a diffeomorp
must depend on the lapse functionN and shift vectorNa of the metric and must be accompanie
by a Yang–Mills gauge transformation which also depends on these quantities and on th
component of the Yang–Mills field,A0

i . These results had been obtained by Salisbury
Sundermeyer3,4 ~and others! but from other points of view. For example, Salisbury and Sund
meyer found them by a requirement on the commutator of various variations. We feel th
approach has several advantages: It is more direct, and it expressly indicates the equivalenc
Lagrangian and Hamiltonian approaches. Note that the gauge group acts on the dynamic
ables, so that the diffeomorphism group, which one would naı¨vely think would be included, is no
itself part of the gauge group. However, the diffeomorphism group provides the basis fo
gauge group, and in this case, we can further say that the group acts specifically on solution
equations of motion~the Einstein–Yang–Mills field equations!.

Since the Einstein–Yang–Mills Lagrangian does not depend on the gauge variable vel
Ṅ, Ṅa, andȦ0

i , under the Legendre map from configuration-velocity to phase space the sub
fold coordinatized by these variables is mapped to a single point in phase space. Thus funct
configuration-velocity space can be the pull-back of functions on phase space only if the
constant on this submanifold. In particular, symmetry variation functions on the tangent spa
projectable if and only if they do not depend on these velocities. In this manner we have
mined the diffeomorphism and gauge variations which are projectable under the Legendre

Spatial diffeomorphisms are projectable, but four-dimensional diffeomorphisms which
the time foliation are not. As in the case of pure conventional gravity the full four-dimens
gauge group must be reinterpreted as a transformation group on the space of metric solutio
the group elements contain a compulsory dependence on the lapse and shift. We have fou
in Einstein–Yang–Mills theories even this alteration is not sufficient. A Yang–Mills gauge tr
formation which is itself dependent on the full four-dimensional Yang–Mills connection mus
added to the diffeomorphism. The resulting transformation group must therefore be interpre
a transformation group on the space of metric and connection solutions.

It is natural to ask how one is to interpret variations of nonsolution trajectories in phase
which result from the generators we have constructed in this paper. The answer is that off-sh
nonsolution trajectories, the pullback of the phase space variations to configuration-velocity
yields variationsdq̇i which are not equal to (d/dt)dqi . Consequently, if these variations are us
in determining the variation of the Lagrangian, the resulting Lagrangian variation is not a
time derivative. In other words, the original phase space variations do not correspond to N
symmetries when applied off-shell. On the other hand, one could simply use the pullback odqi ,
and use (d/dt)dqi in the Lagrangian variation, thus ignoring the pullback ofdpi . Thisdqi and its
time derivative do yield a Noether Lagrangian symmetry. These issues will be discussed in
in a forthcoming paper.17

It would seem straightforward to apply our ideas in other contexts, for example, in
formulations of general relativity. For example, the Ashtekar formulation12 has many similarities
to a Yang–Mills theory. However, it uses a complex Lagrangian and complex Hamiltonian, a
reality conditions must be imposed. The stability of these conditions under the evolution gov
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by a complex Hamiltonian makes the study of gauge transformations more difficult and
interesting. Other approaches to general relativity also rely on structures, such as a tetrad
11 decomposition using triads for the spatial metric, which are added to the metric vari
They, too, present added difficulties—and interest—for the transformation law for the triads
diffeomorphisms must take into account the decomposition.

We anticipate that the resulting recovery, and significant enlargement, of the gauge sym
group in Einstein–Yang–Mills theories will provide insights to efforts to quantize these mo
Future work will deal with somewhat more complicated vacuum models in which auxiliary g
tational variables exhibit additional gauge symmetry. The first is a real tetrad formulatio
Einstein’s general relativity.18 Then we shall explore the symmetry structure of Ashtekar’s co
plex formulation of general relativity.12,19 The former is actually a special case of the latter, a
both are featured in recent attempts to construct a quantum theory of gravity. Since fo
altering diffeomorphisms and time evolution are in a sense identical, as we have explained
paper, we may acquire insights into strategies for imposing the scalar constraint in qu
gravity.
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Einstein–Weyl spaces and third-order differential
equations

K. P. Tod
Mathematical Institute, St. Giles, Oxford OX1 3LB, Untied Kingdom

~Received 6 December 1999; accepted for publication 24 January 2000!

The three-dimensional null-surface formalism of Tanimoto@M. Tanimoto, ‘‘On the
null surface formalism,’’ Report No. gr-qc/9703003~1997!# and Forniet al. @Forni
et al., ‘‘Null surfaces formation in 3D,’’ J. Math Phys.~submitted!# are extended to
describe Einstein–Weyl spaces, following Cartan@E. Cartan, ‘‘Les espaces ge´néra-
lisées et l’integration de certaines classes d’equations diffe´rentielles,’’ C. R. Acad.
Sci. 206, 1425–1429~1938!; ‘‘La geometria de las ecuaciones diferenciales de
tercer order,’’ Rev. Mat. Hispano-Am.4, 1–31~1941!#. In the resulting formalism,
Einstein–Weyl spaces are obtained from a particular class of third-order differen-
tial equations. Some examples of the construction which include some new
Einstein–Weyl spaces are given. ©2000 American Institute of Physics.
@S0022-2488~00!02908-X#

I. INTRODUCTION

The null-surface formalism of Newman and co-workers1–3 is a program to rewrite Einstein’s
vacuum field equations on a~real or complex! four-dimensional space-timeM in terms of a
function Z on M3S2. The level sets ofZ in M, for each fixed choice of a point onS2, are null
hypersurfaces with respect to the metric ofM. As different points are chosen onS2 at a fixed point
p in M, the normals to the null hypersurfaces sweep out the null-cone atp. Thus theS2 is in fact
projective spin-space, aCP1.

From the opposite point of view, it is possible to regard the conformal metric ofM as
determined in terms ofZ and its derivatives by the condition that the space-time differentialdZ be
null. In a precursor of the theory, the case whenM is a self-dual vacuum space-time,4,5 the
function Z is thegood-cut function. Here the two-surfaces defined by the simultaneous const
of Z and the holomorphic derivativeZZ of Z on CP1 are the totally null two-surfaces whos
existence characterizes a self-dual space-time. The functionZ satisfies a~second-order! differential
equation in the holomorphic coordinate onCP1, the good-cut equation, in order that the metric
obtained fromZ be genuinely a metric onM, in other words be independent of the coordinate
CP1.

More recently, the three-dimensional version of the null-surface formalism has been w
out.6,7 Given the success of the four-dimensional version in describing solutions of the sel
Einstein equations, it is natural to expect the three-dimensional version to be adapted
Einstein–Weyl equations in three dimensions, since these are in a real sense the symmetry
tion of the self-dual Einstein equations;8,9 see also Ref. 10 for a general reference to Einste
Weyl spaces. Pursuing this expectation, one discovers that it was by something equivalen
null-surface formalism that Cartan was led to discover~or invent! Einstein–Weyl geometry in the
first place.11–13

The idea this time is thatZ is a function onM3S1 whereM is now a three-manifold with a
Lorentzian metric, andS1 is the corresponding real spin-space, up to scale. The level surfac
Z in M, with a fixed choice of point inS1, are again null hypersurfaces with respect to the giv
metric. To connect with Einstein–Weyl geometry one requires these null hypersurfaces
totally geodesic with respect to a torsion-free connection which preserves only the conforma
of the metric.~The Einstein–Weyl equations on a pair consisting of a conformal metric a
55720022-2488/2000/41(8)/5572/10/$17.00 © 2000 American Institute of Physics
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compatible torsion-free connection are equivalent in three dimensions to the existence of
parameter family of totally geodesic null hypersurfaces.8,13!

Again, from the opposite point of view, one can regard the conformal metric and the
connection as determined in terms ofZ and its derivatives. ThusZ is the fundamental variable
However, much as before,Z satisfies a differential equation of a particular form, this time thi
order, in order that the conformal metric and compatible connection be genuinely definedM
and independent of the coordinate onS1. ~The relation, if any, of this third-order equation to th
good-cut equation, and indeed an effective method of obtaining the third-order equation s
from the Einstein–Weyl space, have yet to be found.!

From the literature, it appears that Cartan was first interested in the equivalence probl
third-order equations. From a particular class of these, already identified by Wu¨nschmann,14 he
was led to a ‘‘special’’ class of Weyl spaces, and only after that did he realize that these
spaces both admitted a two-parameter family of totally geodesic null hypersurfaces an
trace-free, symmetrized Ricci tensor~the ‘‘Einstein–Weyl’’ condition!.

In this paper, I begin by reviewing the three-dimensional version of the null-surface form
as it so far exists, and then extend it, following Cartan, to define Einstein–Weyl spaces. This
to the identification and study of a particular class of third-order differential equations. Up to
point, most of what I do is a recasting of Cartan, with some correction of typographical e
However, I am also able to give a variety of examples of the construction, which include
new Einstein–Weyl spaces.

II. THE NULL-SURFACE FORMALISM

The starting point for Cartan11,12 is a consideration of a relation of the form

F~x,y,X,Y,Z!50 ~1!

holding between variablesX,Y,Z in a manifoldM which will be the Einstein–Weyl space, an
x,y in a manifoldG which will be the mini-twistor space~in the terminology of Refs. 8 and 9!.
The variables are all real for Cartan, but we could quite well take them to be complex.

For each fixed choice of (X,Y,Z), ~1! defines a curve inG. We may regardy as a function of
x along this curve, withX,Y,Z as parameters. Thus by eliminating these parameters betweeny and
its first three derivatives with respect tox we arrive at a third-order equation fory in terms ofx.
Then~1! defines the general solution of this equation. Clearly we shall obtain a relation equiv
to ~1! if we replacex and y by any two independent functions of them. In this sense, we
interested in the third-order equation only up to transformations of the dependent and indep
variable among themselves.~In the minitwistor theory,G is a complex surface and the curves
G are compact holomorphic curves with a particular normal bundle; it is the character o
normal bundle which gives both the Einstein–Weyl structure and the appropriate dimens
M .)

For each fixed choice of (x,y), ~1! defines a hypersurface inM. In the null-surface formalism
these are to be null. We shall want them to be thetotally geodesicnull hypersurfaces of the
Einstein–Weyl structure onM. Then the Einstein–Weyl structure will be determined by t
third-order equation, up to the equivalence described in the previous paragraph. Howev
third-order equation is strongly restricted in form by the requirement that the Weyl stru
obtained, that is the conformal metric and compatible torsion-free connection, is independ
the coordinates (x,y) on G. The field equation on the Weyl structure, that is to say the Einste
Weyl condition, is actually automatic. It is ensuring that the Weyl structure is well-defined, w
is intricate.

To make contact with Ref. 7, we introduce new coordinates (xa,u,z) according to

xa5~X,Y,Z!; z5x; u5y

and solve~1! for y, equivalentlyu, as a function ofx, equivalentlyz,
                                                                                                                



he

f. 7.

s

can

n

,

5574 J. Math. Phys., Vol. 41, No. 8, August 2000 K. P. Tod

                    
u5Z~xa,z!. ~2!

Now we want~2!, as a surface inM for fixed u andz, to define a null surface. Thus we require t
~contravariant! metric gab(xc) of M to satisfy

gabZ,aZ,b50 ~3!

for each choice ofz. Equation~3! only constrains the conformal metric ofM, and in fact suffices
to determine the conformal metric. To write out the conformal metric explicitly, we follow Re
At a fixed choice ofz we introduce coordinatesu,v,r on M according to

u5Z~xa,z!; v5
]Z

]z
; r 5

]2Z

]z2
. ~4!

Now the third derivative ofZ with respect toz is a function onM and so can be expressed in term
of the new coordinates onM. In other words,

]3Z

]z3
5L~u,v,r ,z! ~5!

for some functionL. This is the expected third-order equation. Following Ref. 7, we find we
now write the metric as

gabdxadxb5V22~2du~dr2Pdu2Qdv!2dv2!, ~6!

where

P5
1

2 S ]L

]v
1

2

9 S ]L

]r D 2

2
1

3

d

dz S ]L

]r D D ,

Q5
1

3

]L

]r
,

and at this stage,V is arbitrary~the choice of exponent onV is made to follow conventions as i
this reference!.

The expression forP involves the operatord/dz. When acting on a functionF(u,v,r ,z) this
is

d

dz
5

]

]z
1v

]

]u
1r

]

]v
1L

]

]r
. ~7!

For convenience, we calculate and collect the commutators ofd/dz with the coordinate partials
following,7,12

F d

dz
,

]

]uG52
]L

]u

]

]r
,

F d

dz
,

]

]vG52
]

]u
2

]L

]v

]

]r
, ~8!

F d

dz
,

]

]r G52
]

]v
2

]L

]r

]

]r
.
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We want the metric as given by Eq.~6! to be independent ofz. For this, and calculations in Sec
III, we introduce a convenient basis of 1-forms as follows:

La5¹au; Xa5¹av; Ya5¹ar . ~9!

Note the following inner products of these vectors, which come from~3! and itsz-derivatives, and
underlie~6!:

LaLa5LaXa50; LaYa52XaXa52V2.

From ~9! and ~4! we obtain thez-derivatives of the basis as

d

dz
La5Xa ,

d

dz
Xa5Ya , ~10!

d

dz
Ya5

]L

]u
La1

]L

]v
Xa1

]L

]r
Ya .

It is now a straightforward matter to impose the condition that the conformal metric be inde
dent ofz ~i.e., that thez-derivative ofgab be proportional togab). Remarkably, this turns out to
be the vanishing of a single functionI where

I[2
dP

dz
2

4

3

]L

]r
P22

]L

]u

[
d

dz S ]L

]v
1

2

9 S ]L

]r D 2

2
1

3

d

dz S ]L

]r D D
2

2

3

]L

]r S ]L

]v
1

2

9 S ]L

]r D 2

2
1

3

d

dz S ]L

]r D D22
]L

]u
50, ~11!

with P as in~6!. Equation~11! corresponds to the vanishing ofM @L# in Ref. 7, and the vanishing
of A in Eq. ~35! of Ref. 12. Cartan records this condition as due originally to Wu¨nschmann.14 It
can also be found in Chern’s analysis of third-order differential equations.15

Equation~11! makes the conformal metric, that is the metric up to a~possiblyz-dependent!
scale, independent ofz. We make the actual metricgab , as given by~6!, independent ofz by now
choosingV to satisfy

3
d logV

dz
5

]L

]r
. ~12!

Equation~12! does not determineV uniquely: given one choice ofV satisfying ~12!, one can
multiply it by a function independent ofz to obtain another. This will rescale the metric given
~6! by a function independent ofz but dependent on position. Thus it is really the conform
metric onM which one obtains by this construction.

To summarize, given aL which satisfies~11!, there is a conformal metric~6! naturally
defined on the manifoldM of solutions of the differential Eq.~5!. This conformal metric is
characterized by the fact that the surfaces defined by constantu are null. The next step is to defin
a torsion-free connection onM which preserves the conformal metric and in which these n
hypersurfaces are totally geodesic.
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III. EINSTEIN–WEYL GEOMETRY

A Weyl geometry~in any dimension! is a pair consisting of a conformal metric and a co
patible torsion-free connection~see, e.g., Ref. 10!. We may write the torsion-free connection
terms of a covariant derivativeDa . If we make a choice of representativegab of the conformal
metric then the compatibility is expressed by the equation

Dagbc52nagbc ~13!

for some 1-formna . A change of choice of representative metric corresponds to a confo
rescaling. Under such a change,Da does not change butna does, according to

gab→ĝab5exp~2U !gab ; na→ n̂a5na1U ,a , ~14!

for a functionU. This can be thought of as the gauge-freedom of the Weyl structure. We
express the derivativeDa in terms of the Levi-Civita derivative¹a associated with the choicegab

of representative metric as follows:

DaVb5¹aVb1naVb1nbVa2gabg
cdncVd , ~15!

where the left-hand side does not change under~14! but all terms on the right-hand side do. No
we may think of a Weyl geometry as a pair (gab ,na) subject to~14!.

The connection determined byDa has a Riemann tensor and also a Ricci tensor which do
change under~14!. The Ricci tensor is not necessarily symmetric but one can impose an Ein
like condition by requiring that the symmetrized Ricci tensor be proportional to the confo
metric.8 In this way one arrives at a conformally invariant generalization of the usual Ein
equations. From now on, we restrict ourselves to the case of three dimensions. In this ca
Einstein condition on a Weyl space is precisely equivalent to the existence of a two-para
family of hypersurfaces which are null with respect to the conformal metric and totally geo
with respect to the Weyl connection.

From Sec. II, we have a conformal metric and a family of null hypersurfaces which we
to make totally geodesic. IfS is such a one, and we writeLa for its null normal as in~9!, then the
totally geodesic condition is thatD (aLb) must annihilate all vectors orthogonal toS. To impose
this condition, we take the basis of vectors as in~9!. Then from Sec. II the space orthogonal toLa

is spanned byLa andXa ~we raise indices withgab, inverse to the choicegab of representative
metric, but the resulting condition will be conformally invariant!. Now from ~15! applied toLa , it
is clear that the only nontrivial part of the totally geodesic condition is the equation

XaXbDaLb[XaXb~¹aLb2gabncL
c!50. ~16!

With the vectors as in~9!, and using other results of the previous section and of Ref. 7, a s
calculation leads to the result

ncL
c52V

]V

]r
. ~17!

Taking account of~17!, we may expandna in the basis (La ,Xa ,Ya) as

na5aLa1bXa2
1

V

]V

]r
Ya ~18!

for some functionsa,b to be determined. Since we wantna to be independent ofz, we can use
~10! again to constrain these functions. We obtain three equations from this condition, on
each component. Two are satisfied if we impose
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a52
1

3

d

dz S ]2L

]r 2 D 1
1

3

]2L

]v]r
2

1

V

]V

]u
,

~19!

b5
1

3

]2L

]r 2
2

1

V

]V

]v
,

while the third gives another equation onL, namely

J[
d2

dz2 S ]2L

]r 2 D 2
d

dz S ]2L

]v]r D1
]2L

]u]r
50. ~20!

This is Cartan’s equation~44! ~in Ref. 12!, while na is essentially~minus! Cartan’s Ã, his
equation~33!. The difference is that it is convenient for us to conformally rescale withV. By
doing this, we shall obtain ana which depends explicitly onz; however, a change inz will
produce an equivalentna in the sense of one transformed as in~14!. Note then, that by~14! and
~6!, the expression forna is simplified if we rescale withV since this will eliminateV from the
expressions forgab andna .

We can summarize the story so far, and write the simplified version in terms of a new ba
1-forms defined by

v15du; v25dv; v35dr2Pdu2Qdv, ~21!

with P,Q as in~6!. To summarize: given the third-order equation~5!, there is a conformal metric
on the manifoldM of solutions defined by

@g#5v1v31v3v12v2v2 ~22!

and a compatible Weyl connection determined by the 1-formn given by

n5av11bv2, ~23!

with a,b as in~19!. If the functionL in the equation~5! satisfies the two conditions~11! and~20!,
the vanishing of the quantitiesI andJ, then the Weyl structure onM is well-defined, in the sense
of z-independent, and is automatically Einstein–Weyl. The quantitiesn and@g# as written depend
explicitly on z, but a change inz corresponds to a gauge-transformation of the Einstein–W
structure of the form of~14!.

We could check that the Einstein–Weyl condition is satisfied by the Weyl structure defin
~22! and ~23!, but this is unnecessary: by construction the surfaces of constantu are null and
totally geodesic, which is equivalent to the desired condition. However, it is worthwhile calc
ing two more things.

The first of these is the exterior derivativedn since this is conformally-invariant by~14!. If it
vanishes, thenn is exact and can be set to zero by conformally-rescaling, locally at least. In
case the Einstein–Weyl space is actually the conformal rescaling of an Einstein space, w
three dimensions is just a space of constant curvature.

We find

dn5Pv2`v31Qv3`v11Rv1`v2, ~24!

where

P52
1

3

]3L

]r 3
, ~25!
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andQ andR, which can be obtained explicitly if desired, are zero ifP is. Thus the vanishing of
this third derivative ofL is the condition for the manifoldM to be conformal to Einstein. It is the
first part of Cartan’s Eq.~47! @in Ref. 12; the second part of his Eq.~47! is an identity given the
first together with~11! and ~20!#.

The other quantity to calculate is the scalar curvature of the Weyl connection, in other w
W5gabWab , whereWab is the Ricci tensor of the Weyl connection. Clearly we have eno
information in ~21!–~23! to calculate this, though the calculation is lengthy. The result is

W5
d

dz S ]3L

]r 3 D 1
4

3

]L

]r

]3L

]r 3
1

]3L

]v]r 2
1

1

6 S ]2L

]r 2 D 2

, ~26!

with the given choice of representative metric, though of course it rescales under~14!.
In the next section we consider some examples.

IV. EXAMPLES

A. Einstein metrics

From~25!, we may impose the Einstein condition, as opposed to the Einstein–Weyl cond
by requiring

]3L

]r 3
50,

so thatL5ar21br1c for functionsa,b,c of u,v,z. We could impose the vanishing ofI andJ,
Eqs.~11! and~20!, on aL of this form, but this appears intractable. Instead we note that there
solutions withb and c zero anda5k/v for constantk equal to 3 or 3/2. The correspondin
third-order equation~5! is then

]3Z

]z3
5L~u,v,r ,z!5k

r 2

v

or

]3Z

]z3
5k

S ]2Z

]z2 D 2

]Z

]z

. ~27!

With k53/2, ~27! denotes the vanishing of the Schwarzian derivative ofZ so that the genera
solution is

Z5
Az1B

Cz1D
~28!

in terms of constantsA,B,C,D which we may assume, without loss of generality, to satisfyAD
2BC51. This is the familiar example in mini-twistor theory~see, e.g., Ref. 10! of the Lorentzian
space of constant curvature exhibited as the space of real conics on a quadric inRP3.

With k53, ~27! can be inverted to expressz as a function ofZ. One finds

]3z

]Z3
50.
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Clearly we can solve this and invert to obtainZ as a function ofz. Equally clearly, this case will
give flat-space as the Einstein–Weyl space.

B. The Berger sphere

The example of~28! suggests a way to find further examples. Equation~1!, when interpreted
as solving~5!, gives the curves in the mini-twistor space. From the literature, Ref. 10, one k
what these are for some Einstein–Weyl spaces, for example for the Berger sphere~strictly speak-
ing, we want an indefinite version of it obtained by analytic continuation!. Here they can be
written in the form

Z5
Az1B

~Cz1D !l
~29!

in terms of constantsA,B,C,D and l with AD2BC51. Now we can differentiate~29! three
times and eliminateA,B,C andD to arrive at the equation~6! and the correspondingL. Since we
began with the curves for an Einstein–Weyl space, we know that the resultingL satisfies the
required conditions~11! and ~20!. ~The explicit expression forL can readily be found but is no
illuminating!!

C. Solving the eikonal equation

One approach to finding examples is to seek a general solution of~3!, the eikonal or
Hamilton-Jacobi equation. If we can find a suitably general family of solutions then this fa
will satisfy an equation like~6! ~we shall see the details of this below!. As a specific example, we
consider a Lorentzian form of the three-metric calledNil in the classification of Thurston~see,
e.g., Ref. 16!, which is known to be Einstein–Weyl.10 The metric is

ds25dx22dy21~dt2xdy!2, ~30!

for which the eikonal equation is

S ]S

]xD 2

2S ]S

]yD 2

22x
]S

]y

]S

]t
2~x221!S ]S

]t D
2

50. ~31!

We seek a separable solution of~31! of the form

S5Ay1Bt1F~x! ~32!

for constantA andB, to find thatF(x) must satisfy

S dF

dxD 2

5~A1Bx!22B2.

This is solved by

F~x!5
B

2
~sinhu coshu2u!1C, ~33!

whereC is a constant andB coshu5A1Bx. Now ~32! gives a three-parameter family of solution
of ~31!, but one parameter is additive and there is a homogeneity in the set of three paramete
introducez5A/B andu52C/B, then the vanishing ofS is the equation

u5Z~x,y,t;z![zy1t1 1
2 ~~z1x!221!1/2~z1x!2 1

2 log~z1x1~~z1x!221!1/2!. ~34!

We view this as an instance of Eq.~2! and differentiate to obtainL. The result is
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]3Z

]z3
52S S ]2Z

]z2 D 2

21D 3/2

, ~35!

so that

L~u,v,r ,z!52~r 221!3/2. ~36!

It is a simple matter to check thatL as given by~36! does indeed satisfy~11! but does not satisfy
~20!. We have therefore failed to find the Einstein–Weyl structure known to exist onNil, and the
reason is because the separable solution~32! of the eikonal equation, while constant on a fam
of null hypersurfaces, is not constant on the totally geodesic null-hypersurfaces ofNil.

For an example of a similar phenomenon, we may solve the eikonal equation in a flat L
zian space but in Rindler coordinates, that is with metric

ds25x2dt22dx26dy2.

For a separable solutionS5Ay1Bt1G(x), the eikonal equation reduces to

dG5A~z26x2!1/2
dx

x
, where z5

B

A
,

and proceeding as before we arrive at

L52zr 3.

It turns out that thisL satisfies neither~11! nor ~20!: thus the metric~6!, obtained by the pre-
scription given there, still depends onz, as can be checked. Nonetheless, it is flat for every~fixed!
choice ofz, and so coincides with the metric from which we began. This is rather a degen
case, being flat, but is still odd. It seems to be connected to a failure ofdS to parametrize the
whole null-cone.

These last two examples highlight the outstanding problem of interest: what is the algo
to find a suitableL starting from the Einstein–Weyl space? Leaving that question aside for
the form of L in the last two examples suggests a more general class ofL for consideration,
which we investigate next.

D. A new class of Einstein–Weyl solutions

Suppose we seekL independent ofu andv, in other words a function of the formL(z,r ).
On such a function, the operatord/dz of ~7! reduces to

d

dz
5

]

]z
1L

]

]r
. ~37!

Now we impose both~11! and ~20!. I claim that ~11! and ~20! are both satisfied for such aL
providedL satisfies the single equation

d

dz S ]L

]r D2
1

3 S ]L

]r D 2

50. ~38!

To verify this claim is simply a matter of checking, so that we obtain a family of Einstein–W
structures from the solutions of~38!. We can investigate these further by writing out~38! with the
aid of ~37! as
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]2L

]r ]z
52L

]2L

]r 2
1

1

3 S ]L

]r D 2

. ~39!

From the form of~39!, we may chooseL(0,r ) arbitrarily and calculate thez-dependence. How-
ever, the metric and connection are independent ofz, precisely because~11! and~20! are satisfied.
In particular therefore, having foundL(z,r ) we can write down the Einstein–Weyl structure a
then takez equal to zero. Thus we obtain an Einstein–Weyl structure depending on the
functionL(0,r ) of one variable. If we set]L(0,r )/]r 5F(r ) for brevity, then the Einstein–Wey
structure is determined by

ds25
1

F2 S 2duS dr2
1

3
Fdv2

1

18
F2duD2dv2D ,

n5
dF

dr S 1

3
dv1

1

9
Fdu2

1

F
dr D . ~40!

It is not difficult to check that the functionF(r ) is ‘‘essential,’’ that is that it cannot be remove
by a coordinate transformation. The Einstein–Weyl structures given in~40! seem to be new, in
general. There is a special case of~38!, namely whenL is independent ofz. Solving this, we find

L5~ar1b!3/2, ~41!

wherea,b are constants. It is not difficult to check that the Einstein–Weyl space obtained froL
as in ~41! is now Nil, provideda is not zero.
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Analysis of the cosmological Oppenheimer-Volkoff
equations

Dale Wintera)

Department of Mathematics, Duke University, North Carolina 27708-0320
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We formulate the Oppenheimer–Volkoff equations with nonzero cosmological
constant,L. We analyze the behavior of solutions~under mild assumptions on the
equation of state!. We prove that solutions of the cosmological Oppenheimer–
Volkoff equations are either singularity-free or elseM (r ),0 for somer .0. @Here
M (r ) represents the total mass inside radiusr.# We show that this behavior is
independent of the magnitude ofL whenL<0. In the case whereL.0, we show
that these conclusions hold provided that the solution is contained within a ball of
radius 1/AL. We prove that ifM (r ),0 for somer .0 then the pressure tends to
infinity before r 50. © 2000 American Institute of Physics.
@S0022-2488~00!05605-X#

I. INTRODUCTION

The Oppenheimer–Volkoff equations are derived from the Einstein field equations whe
metric ~i.e., the gravitational field! is assumed to be spherically symmetric and independen
time, and when the stress-energy tensor is that of a perfect fluid. Physically, solutions
Oppenheimer–Volkoff equations describe the gravitational field, the pressure and the d
within a static sphere of perfect fluid. These equations have been applied to the study of sta1 and
used as a model for gravitational collapse of stars.2

In this paper, we will refer to the Oppenheimer–Volkoff equations with cosmological con
~L! as the OV-L equations@see~6! and~7!#. Although these equations are well known~especially
when L[0!,1,3 the properties of their solutions have not been rigorously or extensively stu
until relatively recently. @The Oppenheimer–Volkoff~OV! equations are called Tolman
Oppenheimer–Volkoff~TOV! equations by some authors.4,5# A recent result6 is that black holes
cannot be obtained as limits of smooth~i.e., C1! solutions of the Oppenheimer–Volkoff equation
with nonzero density. This result was obtained by Smoller and Temple in the case whereL[0. In
this paper, we extend their results to the case whenLÞ0.

The approach we follow is to specify the radius (r 0.0) of an OV-L solution, and specify the
‘‘boundary values’’ atr 0 . The OV-L equations are then used to study the evolution of th
quantities asr decreases fromr 0 to zero, that is, moving from the outer edge of the star inwa
toward the center.

Equations~6! and ~7! are a system of two ordinary differential equations in the unkno
functionsp[p(r ), r[r(r ) andM[M (r ). @Here,p refers to the pressure,rc2 is the mass-energy
density,M (r ) is the total mass enclosed in a sphere of radiusr, c is the speed of light.# Solutions
of the OV-L equations determine the gravitational field within a sphere of static fluid where
gravitational field is described by a Lorentzian metric of the form1

ds252B~r !d~ct!21
1

12
2GM

c4r
2

L

3
r 2

dr21r 2~du21sin2~u!df2!. ~1!

a!Electronic mail: amanita@math.duke.edu
55820022-2488/2000/41(8)/5582/16/$17.00 © 2000 American Institute of Physics

                                                                                                                



f

h
e
ent
ys the

rm is
d. With

e

5583J. Math. Phys., Vol. 41, No. 8, August 2000 Cosmological Oppenheimer–Volkoff equations

                    
The coefficient of thedr2 term is obtained through integration of the Einstein field equations,7 and
contains the cosmological constant. The metric functionB(r ) is determined via the equation o
hydrostatic equilibrium:

1

B

dB

dr
5

22
dp

dr

p1rc2 . ~2!

The idea is to solve the OV-L equations@~6! and~7! below#, thereby determiningp, r, andM. The
metric ~hence, the gravitational field! may then be determined by substituting these into~2!, and
solving for B. There is an obstacle to this program, however, namely that the OV-L equations
represents a system oftwo differential equations forthreeunknown functions. The usual approac
~but not the only approach7! is to specify anequation of state. This is an equation relating th
pressure and the density,p5p(r). The OV-L equations along with the equation of state repres
a system of two equations in two unknowns. We assume that the equation of state obe
following conditions~these are identical to the conditions used by Smoller and Temple6!:

0<m̃[
p~r!

rc2 ,S,` ~3!

and

0,S1,s̃[
1

c2

dp

dr

dr

dr

,S2,`, ~4!

whereS, S1 andS2 are all positive constants. Bothm̃ ands̃ may be functions ofr ~and possibly
thermodynamic variables, such as temperature or entropy!.

II. STATEMENT OF RESULTS

The OV-L equations are derived from Einstein’s field equations, when a cosmological te
included, and the stress-energy tensor used is the stress-energy tensor for a perfect flui
respect to a system of local coordinates~x05ct, x15r , x25u, andx35f!, these field equations
are written as

Gi j 1Lgi j 5
8pG

c4 Ti j , ~5!

whereTi j 5(p1rc2)uiuj2pgi j , whereui5gi j u
j , i 50...3, anduj is the fluid velocity vector.

Note that if we assume a system of ‘‘co-moving’’ coordinates,1,6 then we are able to specify th
components of the fluid’s velocity,

u05AB~r !,

u15u25u350.

The OV-L equations can then be obtained by substituting a metric of the form~1! into the
Einstein field equations,~5!. The derivation follows a similar pattern to theL[0 case,1 utilizing
the equation of hydrostatic equilibrium,~2!. The OV-L equations are

2r 2
dp

dr
5

GM

c2 rS 11
p

rc2D S 11
4pr 3p

M
2

c4Lr 3

3GM D S 12
2GM

c4r
2

L

3
r 2D 21

~6!
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and

dM

dr
54prr 2. ~7!

~Here,p refers to the pressure,rc2 is the mass-energy density,M (r ) is the total mass enclosed i
a sphere of radiusr, c is the speed of light, andG is Newton’s gravitational constant.!

These equations~~6! and~7!! can be transformed so as to be convenient for analysis. The
form of the OV-L equations is motivated by the study of astrophysical shock waves4 and is

dz

dr
52C

z

A F12A

r
2

L

3
r G , ~8!

dA

dr
5~123z!F12A

r
2

L

3
r G2

2L

3
r , ~9!

where

z5
r

r̄
, r̄5

3

4p

M

r 3 , ~10!

C5
~11m̃ !~113mz!

2s̃
2

1

3
Lr 2

s̃F12A2
L

3
r 2G 1

3A~z21!

12A2
L

3
r 2

, ~11!

A512
2G

c4

M

r
2

L

3
r 2, ~12!

and

m5
p

r
, m̃5

m

c2 , s5

dp

dr

dr

dr

, s̃5
s

c2 . ~13!

We shall analyze the behavior of solutions to~8! and ~9! on an intervalI[(r 1 ,r 0#, r 1>0.
This will be the maximal interval on which bothz(r ) andA(r ) are smooth~i.e., C1! solutions of
~8! and ~9!. The analysis of this new form of the OV-L equations culminates in the followin
result:

Theorem 1: ~If L.0, assume that 0,r 0<1/AL, otherwise simply assume thatr 0.0.! Let
(z(r ),A(r )) denote a smooth~i.e. C1! solution of ~8! and ~9! defined on a maximal interva
(r 1 ,r 0# ~where 0<r 1,r 0,`!, and satisfying the boundary conditionsz(r 0)5z0 and A(r 0)
5A0 , where

0,z0,`, 0,A0,1. ~14!

Assume that the equation of state obeys the following conditions:

0<m̄[
p

rc2,S,` ~15!

and
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0,S1,s̃,S2,`, ~16!

whereS, S1 andS2 are all positive constants. Then, for everyr P(r 1 ,r 0#:

0,z~r !,`, ~17!

0,A~r !,12
Lr 2

3
, ~18!

B~r !.0, ~19!

0,M ~r !,M ~r 0!, M 8~r !.0, ~20!

and

lim
r→r 1

1

M ~r !50. ~21!

Moreover, if r 1.0, then,

lim
r→r 1

1

z~r !51`, ~22!

lim
r→r 1

1

A~r !512
L~r 1!2

3
, ~23!

and

lim
r→r 1

1

B~r !5B~r 1!.0. ~24!

If r 150, then

0<z~r !,1, ~25!

;r P(0,r 0#, and if r(r ) has a finite limit atr 150, then~23! and ~24! hold.
The original variablesr andp of the Oppenheimer–Volkoff equations satisfy the inequaliti

0,r~r 0!,r~r !,r~r 1!,`, r8~r !,0 ~26!

and

0,p~r 0!,p~r !,p~r 1!,`, p8~r !,0. ~27!

Finally, if r 1.0, andp8,0;r<r 1 , then there is anr 2,0<r 2,r 1 such that

lim
r→r 2

1

p~r !51`. ~28!

III. REGULARITY OF THE OPPENHEIMER–TOLMAN SOLUTIONS

In this section, we formulate and prove the essential lemmas for Theorem 1.
Recall thatI[(r 1 ,r 0#, r 1>0 is the maximal interval on which bothz(r ) and A(r ) are

smooth~i.e., C1! solutions of~8! and~9!. The initial data~i.e. (z(0),A(0))5(z0 ,A0)) is taken to
satisfy
                                                                                                                



al

t of

5586 J. Math. Phys., Vol. 41, No. 8, August 2000 Dale Winter

                    
0,z0,`, 0,A0,12
Lr 0

2

3
. ~29!

Note:
In the case, whereL.0, ~29! implies that

r 0,A3~12A0!

L
.

Note that this requires thatA0,1 ~but this may also be deduced from the initial data!. Next, with
0,A0,1, there is a limit on ‘‘how far out’’ solutions to~8! and ~9! can exist when the initial
conditions are selected to satisfy~29!. Estimates8 give L<10256cm22. This value ofL gives an
upper bound ofr 0;1010 light years. This is the same order of magnitude9–11 as the distance from
the earth to the furthest things in the Universe~quasars!, so this bound presents no practic
difficulties if the OV-L equations are used to model an object like a star.

Most of the results for theL<0 and theL.0 cases have very similar statements. In mos
the lemmas, there are some differences in the arguments used for theL.0 and L<0 cases.
Where the differences are relatively minor, they are simply noted and one case~typically L.0! is
proven.

A. Some lemmas

Lemma 1:Let I[(r 1 ,r 0#,r 1>0, be the maximal interval on whichz(r ) andA(r ) are solu-
tions of the OV-L equations~8! and ~9!, with initial conditions given by~29!. Then the metric
function A(r ) satisfies:

A~r !,12
Lr 2

3
;r PI . ~30!

Moreover, if r 1.0, and if limr→r
1
1A(r )512Lr 1

2/3, then limr→r
1
1z(r )51`.

Proof of Lemma 1:Assume, for a contradiction, that'sP(r 1 ,r 0) such thatA(s)51
2Ls2/3. From~8! we have

dA1
2L

3
rdr

F12A2
Lr 2

3 G 5~123z!
dr

r
.

Integrating this froms to r 0 gives

12A~s!2
Ls2

3

12A~r 0!2
Lr 0

2

3

5e*
s

r 0~123z!~dr/r !. ~31!

Hence, ifA(s)512Ls2/3, then*s
r 0(123z)(dr/r )52`. This is a contradiction, sincez(r ) is

assumed to be a continuous function on (r 1 ,r 0#. This proves thatA(r ),12Lr 2/3 on I.
Now, assume thatr 1.0, and that limr→r

1
1A(r )512Lr 1

2/3. Replacing ‘‘s’’by ‘‘ r 1’’ in ~31!

gives

2`5E
r 1

r 0
~123z!

dr

r
,
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and so

E
r 1

r 0
zdr51`. ~32!

Lastly, we show that this implies

lim
r→r 1

1

z~r !51`.

By ~32!, we have the existence of a sequence$sn%↘r 1 such that for everyn,z(sn).n. Next, we
show that whenn is large,z8(r ),0 for everyr P(r 1 ,sn). From ~8!, we have

~33!

The terms in the square brackets of~33! are bounded on (r 1 ,r 0# @sinceA(r 1)512(L/3)r 1
2.0, so

if z is sufficiently large, then~33! will be dominated by the quadratic term inz#. Then, there exists
sN so that@by ~33!#

dz

drU
r 5sN

,0.

It is clear thatdz/dr remains negative forr 1,r ,sN . This concludes the proof of the lemma.;
The next lemma demonstrates that ifA(r ) is positive on a subinterval (r̃ ,r 0# of I, thenz(r ) is

positive on the same subinterval.
Lemma 2:Assume thatA(r ).0 on an interval (r̃ ,r 0#, wherer 1< r̃ ,r 0 . Thenz(r ).0 for

every r P( r̃ ,r 0#.
Proof of Lemma 2:Let sP( r̃ ,r 0# be given. Then, writing~9! in the form

d

dr FA1
Lr 2

3 G
123z

5

F12S A1
Lr 2

3 D G
r

,

and substituting into~8! gives

dz

dr
52C

z

A

d

dr FA1
Lr 2

3 G
~123z!

.

Rearranging and integrating this fromr 0 to s, we obtain

E
z~r 0!

z~s! S 1

z
23Ddz5E

A~s!

A0
c

dA

A
1E

s

r 0 2CLr

3A
dr,

so that

z~s!

z0
e23~z~s!2z0!5eP~s!, ~34!
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where

z05z~r 0!

and

P~s!5E
A~s!

A0
C

dA

A
1

2L

3 E
s

r 0 Cr

A
dr.

Both A(r ) and z(r ) are continuous on@s,r 0#,@ r̃ ,r 0#. By Lemma 1, and assumption, 0,A(r )
,12Lr 2/3 on @ r̃ ,r 0#. Thus, from~11!, C is continuous, and hence bounded on@s,r 0#. It follows
immediately from~34! that z(s).0 for everysP( r̃ ,r 0# sincez0.0 by assumption. Hence,

z~s!5z0eP~s!13~z~s!2z0!.0.
;

Lemmas 1 and 2 can be used to show that ifr 1.0, thenA.0 on the entire intervalI no
matter what the value ofL. This is made explicit in the next pair of results. TheL50 case is the
most straightforward, and is treated first. TheL.0 case involves an extra hypothesis~namely
r 0<1/AL!, and is treated separately because of this.

Lemma 3:Assume thatL<0, and thatr 1.0. Then A(r ).0 on the maximal intervalI
[(r 1 ,r 0#.

This lemma is proved via a modification of the argument given by Smoller and Temple.6 The
extra difficulty in this case is in making the estimate onC. The cosmological constant,L, intro-
duces an extra term into the expression forC. Fortunately, whenL,0, it is a straightforward
matter to show that this extra term is always positive forr P( r̃ , r̃ 0), so that the argument fo
estimatingC is similar to the case considered by Smoller and Temple.6 Defining

C15
~11m̃ !~113mz!

2s̃
1

3A~z21!

F12A2
Lr 2

3 G
gives that~from ~11!!

C5C12

1
3Lr 2

s̃F12A2
Lr 2

3 G >C1 .

Now, following a similar argument to Smoller and Temple,6 for r sufficiently close tor̃ , there
is a constantC0.0 so that

C>C1>C0.0. ~35!

This estimate established, the remainder of theL,0 case follows exactly the same pattern as
last part of theL.0 case~presented next!.

We now consider theL.0 case. As with theL,0 case, the cosmological constant intr
duces an extra term intoC. When L.0, the estimate ofC is not so straight-forward, and a
additional hypothesis is required~i.e., r 0,1/AL!.

Lemma 4:Assume thatL.0, r 1.0, and thatr 0<1/AL. Then A(r ).0 on the maximal
interval I[(r 1 ,r 0#.

Proof of Lemma 4:Let J5( r̃ ,r 0# now denote the maximal subinterval onI on which A(r )
.0. SinceI is the maximal interval on whichz(r ) andA(r ) areC1 functions, it follows that either
r̃ 5r 1 ~in which case we are done!, or elser̃ .r 1 andA( r̃ )50. If r̃ .r 1 andA( r̃ )50, we claim that
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lim
r→ r̃ 1

z~r !51`. ~36!

So, assume thatr̃ .r 1 and thatA( r̃ )50. Noting thatA( r̃ )50, a constantC0 will be obtained that
satisfies

C5
~11m̃ !~113mz!

2s̃
2

1
3Lr 2

s̃F12A2
Lr 2

3 G 1
3A~z21!

F12A2
Lr 2

3 G >C0.0.

To see how this is done, observe first that

~11m̃ !~113mz!

2s̃
5

1

2s̃
1

3mz

2s̃
1

m̃~113mz!

2s̃

and that

1
3Lr 2

s̄F12A2
Lr 2

3 G 5

21
6 Lr 22 1

2A1 1
21 1

2A1 1
2Lr 22 1

2

s̃F12A2
Lr 2

3 G 5
1

2s̃
2

~12A2Lr 2!

2s̃F12A2
Lr 2

3 G .

Substituting both of these observations into~11! and simplifying gives the following expressio
for C

C5
3mz

2s̃
1

s̃~113mz!

2s̃
1

~12A2Lr 2!

2s̃F12A2
Lr 2

3 G 1
3A~12z!

F12A2
Lr 2

3 G .

Since r 0<1/AL, 12Lr 2>0 for every r P( r̃ ,r 0#. Since s̃.0, and ~by Lemma 1! 12A
2Lr 2/3.0, the expression forC can be partitioned as follows

C5
3mz

2s̃
1

m̃~113mz!

2s̃
1

12Lr 2

2s̃F12A2
Lr 2

3 G 1A•3
~12z!

r F12A2
Lr 2

3 G .
The first three terms are positive, and the last term approaches zero asr→ r̃ .

Now, a similar argument to that used by Smoller and Temple6 can be used to show existenc
of the constantC0.0, satisfying~35!.

The reason for obtaining this estimate forC is to conclude that whenr . r̃ is sufficiently close
to r̃ ,

dz

dr
52C

z

r

S 12A2
Lr 2

3 D
A

,0.

Whenr . r̃ , and is sufficiently nearr̃ , A(r ).0, so by Lemma 2,z(r ).0. The conclusion is tha
'd.0 and'( r̃ , r̃ 0),( r̃ ,r 0# such that

;r P~ r̃ , r̃ 0!; z~r !>d.

So, for everyr P( r̃ , r̃ 0),
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dz

dr
<

2C28

A
~37!

and

dA

dr
<C38 , ~38!

for positive constantsC28 andC38 . Integrating~38! gives

A~r !<C38~r 2 r̃ ! ~39!

for every r P( r̃ , r̃ 0). Substituting~39! into ~37! yields

dz

dr
5

2C28

C38~r 2 r̃ !
. ~40!

Integrating~40! from anysP( r̃ , r̃ 0) to r̃ 0 gives

z~s!>z~ r̃ 0!1
C28

C38
lnS r̃ 02 r̃

s2 r̃ D . ~41!

Letting s→ r̃ 0 in ~41! gives the conclusion~36!.
This completes the proof of the lemma for theL.0 case. ;

Observe that in the case whenr 1.0, if z is uniformly bounded in a neighborhoodr 1,r
,r 11d of r 1 , then from~cf. 9!

dA

dr
5~123z!F12A

r
2

Lr

3 G2
2Lr

3
,

the derivativeA8(r ) is uniformly bounded on this neighborhood, and thusA has a limit and is
continuous from the right, atr 1 .

Corollary 1: SupposeL<0. If r 1>0 and limr n→r
1
1A(r n)50, for some sequencer n→r 1

1 ,

then limr→r
1
1z(r )51`.

Corollary 2: SupposeL.0 and r 0<1/AL. If r 1>0 and limr n→r
1
1A(r n)50, for some se-

quencer n→r 1
1 , then limr→r

1
1z(r )51`.

Corollary 1 follows from Lemma 3 and Corollary 2 from the proof of Lemma 4.
The result~under suitable hypotheses on the maximal intervalI!

0,A~r !,12
Lr 2

3

has been established on the maximal interval (I[(r 1 ,r 0#) on which A(r ) and z(r ) are smooth
solutions. This result will be used to establish the next two lemmas. Again, because the arg
are very similar, we state results for both theL<0 and L.0 cases, but give the complet
argument for only theL.0 case.

Lemma 5:Assume thatL<0. Supposez( r̃ )>1 for somer̃ PI . Then,z8(r ),0 and

d

dr FA~r !1
Lr 2

3 G,0

for every r P(r 1 , r̃ ).
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Because the proof in theL.0 case appeals to Lemma 4, the hypothesisr 0<1/AL is needed.
This is the only reason that we need to assume thatr 0<1/AL; there is nothing intrinsic to the
proof of the next lemma that requires this additional hypothesis. It is interesting to note that
L.0, then conclusion may be strengthened to: Ifz( r̃ )>1 for some r̃ P(r 1 ,r 0), then ;r
P(r 1 , r̃ ), A8(r ),0.

Lemma 6:Assume thatL.0 and thatr 0,1/AL. Suppose thatz( r̃ )>1 for somer̃ PI . Then,
z8(r ),0 andA8(r ),0 for everyr P(r 1 , r̃ ).

Proof of Lemma 6:Lemmas 1, 2, and 4 imply that;r PI ,

0,A~r !,12
Lr 2

3

and

z~r !.0.

Now, at r 5 r̃ ,

~11m̃ !~113mz!

2s̃
.0,

2 1
3Lr 2

s̃F12A2
Lr 2

3 G.0,

3A~z21!

F12A2
Lr 2

3 G.0, ~42!

and hence,C.0 at r 5 r̃ by ~11!. Recall that the derivatives ofz andA are given by~8! and~9!,
respectively. Sincez( r̃ )>1, A( r̃ ).0, 12A( r̃ )2L r̃ 2/3.0 andCur 5 r̃.0, ~8! gives immediately
that z8( r̃ ),0. Equation~9! can be rearranged to give

d

dr FA1
Lr 2

3 G5
~123z!

r F12A2
L

3
r 2G .

So, for r 5 r̃ ,

r̃ .0,

12A~ r̃ !2
L r̃ 2

3
.0,

and

123z~ r̃ !,0,

d

dr FA1
Lr 2

3 GU
r 5 r̃

,0.

Now, for r P(r 1 , r̃ ),(r 1 ,r 0#, 'd1.0 such thatr P( r̃ 2d1 , r̃ )⇒z8(r ),0. Hence,

;r P~ r̃ 2d1 , r̃ ! z~r !>z~ r̃ !>1. ~43!
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As demonstrated, if'r * such thatz(r * )>1, thenz8(z* ),0, and

d

dr FA~r !1
Lr 2

3 GU
r 5r

*

,0.

Let d1 be the largest value for which~43! is true. In particular, eitherr̃ 2d1<r 1 ~in which
case we are done!, or elser 1, r̃ 2d1, r̃ , and~by continuity ofz on I! z( r̃ 2d1)>1.

Repeating the above argument gives'd2.0 such that for everyr P( r̃ 2d12d2 , r̃ 2d1)

z8~r !,0

and

d

dr FA~r !2
Lr 2

3 G,0.

However, this contradicts the maximality ofd1 . So, it must be the case thatz8(r ),0 and

d

dr FA~r !1
Lr 2

3 G,0

for every r P(r 1 , r̃ ).
This completes the proof of the lemma. ;
The next two lemmas demonstrate that whenr 1.0, z(r )→1` as r→r 1

1 . As before, we
simply state theL<0 result, and give the~similar! argument for theL.0 case in detail.

Lemma 7:Assume thatL<0. Let r 1.0. Then

lim
r→r 1

1

z~r !51`.

Lemma 8:Assume thatL.0, andr 0<1/AL. Let r 1.0 be given so thatr 1,r 0 . Then

lim
r→r 1

1

z~r !51`.

Proof of Lemma 8:First, observe that ifA tends towards zero on a sequence$r n% with r n

→r 1
1 , then Corollary 2 implies that limr→r

1
1z(r )51`. Accordingly, it may be assumed tha

'd.0 so that;r P(r 1 ,r 0#d,A(r ),12Lr 2/3. ~Since 0,A(r ),12Lr 2/3 whenr .r 1 .!
The next assertion is that ifz is uniformly bounded onI, thenz, A, z8 andA8(r ) all have finite

limits at r 1 , c.f. Eqs.~8!, ~9!, and~11!.
Observe that ifz is uniformly bounded onI, then asm, m̃, s̃, 2 1

3Lr 2 and A ~sinced,A,
12 1

3r 0
2! are all uniformly bounded onI. SinceA is uniformly bounded onI, C@12A2(L/3)r 2# is

uniformly bounded onI. Uniform boundedness ofz also gives uniform boundedness ofdA/dr on
I. Sincez, z8, A, andA8 are all uniformly bounded onI, they all have finite limits atr 1 . However,
this contradicts the maximality ofI.

As before, this contradiction allows us to construct a subsequencer kj
→r 1

1 with z(r kj
)

> j ; j P$1,2,3,...%. Lemma 6 allows the conclusion,

; j P$1,2,3,...%; lim
r→r 1

1

z~r !> j ,

so that limr→r
1
1z(r )51`, concluding the proof. ;

In the next pair of lemmas, we will prove that
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lim
r→r 1

1

M ~r !50.

Combining this result with the observation thatdM/dr54prr 2.0 ~unlessr50! leads to the
conclusion thatM (r ),0 for 0,r ,r 1 . As before, we simply state the result for theL<0 case.
Note the only reason to include the hypothesisr 0,1/AL is to allow use of earlier results tha
include this hypothesis; the argument presented for Lemma 10 will still work forL<0 without
this additional hypothesis.

Lemma 9:Assume thatL<0. Let r 1>0 be given so thatr 1,r 0 . Then the mass function
M (r ) satisfies

lim
r→r 1

1

M ~r !50.

Lemma 10:Assume thatL.0, and thatr 0<1/AL. Let r 1>0 be given so thatr 1,r 0 . The
mass function,M (r ), satisfies

lim
r→r 1

1

M ~r !50.

Proof of Lemma 10:First, note that the following hold
1.

dM

dr
54pr 2r

2.

;r P~r 1 ,r 0#,
2GM~r !

c4r
512A~r !2

L

3
r 2.0

3.

;r P~r 1 ,r 0#, p~r !5m~r !r~r ! and m~r !.0

4.

;r P~r 1 ,r 0#, A~r !.0 ⇒z~r ! .0

5.

z~r !5
4pr 3

3

r~r !

M ~r !
.

So,

;r P~r 1 ,r 0#, M ~r !z~r !.0⇒r~r !.0⇒ dM

dr
.0. ~44!

Consider the caser 150. Writing @cf. Eq. ~12!#

2GM~r !

c4r
512A~r !2

L

3
r 2, ~45!

it is possible to see that ifM→M0Þ0 asr→r 1
1 , thenA→6` asr→r 1

1 . However, this violates
the requirement:;r P(r 1 ,r 0#0,A(r ),12(L/3)r 2. Thus,M050 whenr 150.
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Consider next the case whenr 1.0. From~45!,

lim
r→r 1

1

A~r !512
L

3
~r 1!2, ~46!

it is sufficient to ensure thatM (r )→0 as r→r 1
1 . To prove~46!, assume~in order to obtain a

contradiction! that

lim
r→r 1

1

A~r !Þ12
L

3
~r 1!2. ~47!

Recall from the proof of Lemma 4 that~31! may be written as

12A~r !2
L

3
r 2

12A~r 0!2
L

3
~r 0!2

5e2* r 0

r
~123z!~dr/r !. ~48!

Lemma 8 established thatz(r )→1` as r→r 1
1 , and it follows from~48! that A(r )→12(L/3)

3(r 1)2 as r→r 1
1 if z(r ) has a nonintegrable singularity atr 5r 1 , thereby violating~47!.

It remains to show thatz(r ) has a nonintegrable singularity atr 5r 1 . To show this, recall that
z(r )→1` as r→r 1

1 . So, for r sufficiently nearr 1 ~and r .r 1!, z(r )>1. By Lemma 5,

d

dr FA~r !1
L

3
r 2G,0

for r .r 1 when r is sufficiently close tor 1 . We also have that;r P(r 1 ,r 0#, A(r )1L/3r 2,1.
Hence, by~47!, 'd1.0 such that

;r P~r 1 ,r 0# A~r !1
L

3
r 2,12d1 .

Furthermore, since;r P(r 1 ,r 0#A(r ).0 ~this is the conclusion of Lemma 2!, 'd2 such that

;r P~r 1 ,r 0# A~r !.d2 .

For r .r 1 , andr sufficiently close tor 1 ~r P(r 1 ,r 2), say!, ~8! implies

dz

dr
<

2Cd1

d2r 0
z<

2Cd1

r 0d2
z2

sincez>1 for r sufficiently nearr 1 . So for some positive constantC1 ,

dz

dr
<2C1z2. ~49!

To show thatz(r ) is not integrable atr 5r 1 , we let z̃(r ) be the solution of

dz̃

dr
52C1z̃2, ~50!

with initial condition,

z̃~r 2!5 z̃2 . ~51!
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Integrating~50! from r to r 2 gives

z̃~r !5
1

C1F r 2S r 22
1

C1z̃2
D G . ~52!

Now, choosez̃2 to satisfy

z̃25
1

C1~r 22r 1!
.

Substituting this expression into~52!, gives thatz̃(r ) is defined throughout the interval (r 1 ,r 2#,
and is given explicitly by

z̃~r !5
1

C1~r 2r 1!
. ~53!

Equation~53! demonstrates thatz̃(r ) has a nonintegrable singularity atr 5r 1 . We now compare
z̃(r ) to z(r ). First, note that

;r P~r 1 ,r 2# z8~r !<2C1z25 z̃8~r !.

Choosing a constantC̃ so thatz(r 2), z̃(r 2)1C̃ yields

z~r !> z̃~r !1C̃. ~54!

Combining~53! and ~54! gives

z~r !>
1

C1~r 2r 1!
1C,

so thatz has a nonintegrable singularity atr 5r 1 . Therefore,~48! implies thatA(r )→12(L/3)
3(r 1)2 andM (r )→0 asr→r 1

1 . This contradicts~47!, and completes the proof of the lemma.;

B. Completion of the proof of Theorem 1

In this section, we employ the results of the lemmas to establish the remaining conclusi
Theorem 1. In particular, we demonstrate that ifM (r )50 for some r .0 then the pressure
becomes infinite beforer 50.

An argument similar to~49!–~54! shows that ifr 1.0, thenr and p have finite limits atr
5r 1 . To see this, note that if limr→r

1
1r(r )5`, thenr(r ) would have a nonintegrable singularit

at r 5r 1 because the rhs of Eq.~6! is quadratic inr. This implies

lim
r→r 1

1

M ~r !5M ~r 0!2 lim
r→r 1

1

E
r

r 0
4pr~s!s2ds52`

contradicting either Lemma 9 (L<0) or Lemma 10 (L.0). Thus,r(r ) and p(r )5m(r )r(r )
must have finite values atr 5r 1 whenr 1.0. This, together withp8,0, ~by 6!, andr8,0, ~since
s.0!, implies ~26! and ~27!.

We next show that~25! and~23! hold for the caser 150. For this, note first that~25! follows
becauseM (0)50 andr8,0. Noting that

r̄~r !5
3

4p

M ~r !

r 3 5
3

4p

1

r 3 E
0

r

4pr~s!s2ds>
3

4p

r~r !

r 3 E
0

r

4ps2ds5r~r !,
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hencez(r )<1 for all r PI , and ~25! is established. For~23!, note that ifr(r )→r(0),` as r
→0, then we can writer(r )5r(0)1o(r ). This implies that forr near zero,

M ~r !5E
0

r

4pr~s!s2ds5
4p

3
r~0!r 31o~r 4!.

Thus,

r̄[
3

4p

M ~r !

r 3 5r~0!1o~r !,

and so

z~r !5
r~r !

r̄~r !
→1,

as r→0. By L’Hopital’s rule,

lim
r→0

M ~r !

r
5 lim

r→0
M 8~r !5 lim

r→0
4pr~r !r 250,

so that~23! holds.
To verify ~19!, first note that from~2!, we have

~ ln B!85

~113m̃z!S 12A2
L

3
r 2D

rA
, ~55!

so that ifB→0 for somer→ r̃ P(r 1 ,r 0), then lnB→2` asr→ r̃ . But, by~55!, we see that (lnB)8
is bounded nearr̃ , and this is a contradiction; thus~19! holds. Whenr 1.0, ~23! holds because
M (r 1)50, and for~24!, integrate~55! from r to r̃ , r 1,r , r̃ , to obtain

B~r !5B~ r̃ !expS 2E
r

r̃ 113m̃z

s

12A2
L

3
r 2

A
dsD . ~56!

Note thatr .r 1.0, thatA→12(L/3)r 1
2, that bothm̃ and dz/dr are bounded~since (r , r̃ ),I !,

and thatC>C0.0 by Lemmas 3 and 4. Therefore, the integrand in~56! is bounded, andB(r )
.0. To show that~24! holds whenr 150 andr has finite limit atr 50, note that in this casez
tends to unity asr→0 and (12A2L/3r 2)/r 5(2GM)/r 2 has a finite limit atr 50 by L’Hopital’s
rule, so~56! implies thatB(r ) has a finite positive limit asr→0 in this case as well.

To complete the proof of the theorem, it remains only to verify~28!. So, assume thatr 1

.0, andp8,0 for r ,r 1 . In this case,s,0 implies thatr8,0, and so alsoM 8.0 andA.1
2L/3r 2 on the smooth continuation of the OV-L system~8!, ~9! to a maximal interval of exis-
tenceJ[(r 2 ,r 0# where 0<r 2,r 1 . Sincer8,0, it follows directly from the maximality ofJ that
eitherr→1` asr→r 2

1 , with r 2.0, in which case we are done, or elser 250. But if r 250 and
r ~hence alsop and M! have finite limits atr 50, then nearr 50, A;22M (0)/r , and thus it
follows from ~6! that the equation forr can be estimated above and below by an equation of
form

r852D
r

r
, ~57!
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for some positive constantD. But solutions of~57! take the form

r~r !5r~r 1!S r 1

r D D

, 0,r ,r 1 ,

and sor must blow up atr 50. This contradicts the boundedness ofr, and hence establishes~28!.
This completes the proof of Theorem 1.
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Exterior differentials of higher order
and their covariant generalization
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We investigate a particular realization of generalizedq-differential calculus of
exterior forms on a smooth manifold based on the assumption thatdN50 while
dkÞ0 for k,N. It implies the existence of cyclic commutation relations for the
differentials of first order and their generalization for the differentials of higher
order. Special attention is paid to the casesN53 andN54. A covariant basis of
the algebra of suchq-grade forms is introduced, and the analogs of torsion and
curvature of higher order are considered. We also study aZN-graded exterior cal-
culus on a generalized Clifford algebra. ©2000 American Institute of Physics.
@S0022-2488~00!03008-5#

I. INTRODUCTION

An appropriate framework fordN50,N>2 generalization of classical exterior differenti
calculus ~satisfying d250) is provided by the notions ofgraded q-differential algebraand
q-differential calculuswhich have been elaborated in recent papers.1–3

Let us recall that a gradedq-differential algebra is a graded unital algebra over the fieldC
which is a sum ofN algebras with respective gradek, kPN5$0,1,2, . . .N21%:A5 % i PNA i ,
equipped with an endomorphismd of degree one satisfying theq-Leibniz rule

d~AB!5d~A!B1qaAd~B!, APA a

and such thatdN50 wheneverqN51. A q-differential calculus over an algebraB is a graded
q-differential algebraA such thatB is a subalgebra ofA 0.

These definitions show the way in which the exterior calculus of differential forms o
smoothn-dimensional manifoldM should be generalized. The most striking property of t
generalized exterior calculus, due to the fact thatdN50, is that it contains not only first-orde
differentials dx1,dx2, . . . ,dxn but must also include thehigher-order differentials d2x1,
d2x1, . . . ,dN21xn as well.

After deriving from the conditiondNf 50 a set of cyclic commutation relations these diffe
entials must satisfy, it becomes clear that one needsa generalization of the Grassmann algebrain
addition to the above definitions in order to produce a self-consistent algebra of gener
differential forms. Such a generalization of Grassmann algebra, which displays a representa
the cyclic groupZ3 by cubic roots of unity, has been constructed in Ref. 4 and then used in a
general form in Refs. 5–7 for the construction of the generalized exterior calculus on a s
manifold. It should be mentioned that differential forms with higher-order differentials have
considered in Ref. 8, where a formalism of differential forms of higher order on any assoc
algebra has been developed.

In this paper we continue to study a generalizedq-exterior calculus on a classical finite
dimensional smooth manifoldM paying particular attention to the tensorial behavior of the g

a!Permanent address: Institute of Pure Mathematics, University of Tartu, Vanemuise 46, Tartu, Estonia.
b!Electronic mail: rk@ccr.jussieu.fr
55980022-2488/2000/41(8)/5598/17/$17.00 © 2000 American Institute of Physics
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eralized differential forms under a change of coordinates. The main problem here is th
higher-order differentials transform in a nonhomogeneous way under a coordinate transform
In order to circumvent this difficulty we introduce an analog of linear connection which allow
to replace the ordinary differentials of any order by their covariant generalizations.

The peculiar feature of linear connections we introduce is that due to the higher-order d
entials its definition includes not only the usual connection coefficientsG jk

i but also the additiona
coefficientsBjk

i ,Cjkl
i ~in the caseN53), whicha priori need not to be iterated by the first-ord

covariant differential. We find the transformation rules of these coefficient functions of a co
tion which could be calledconnection coefficients of higher orderand we show thatBjk

i is related
to the torsion of a connection. If there is no torsion, thenCjkl

i can be expressed in terms of th
Riemann curvature tensor.

We also study a particular realization of aq-exterior calculus on a generalized Cliffor
algebra.9,10

II. GRADED ALGEBRA OF FIRST- AND HIGHER-ORDER DIFFERENTIALS

Let M be a smoothn-dimensional manifold and letq be a Nth primitive root of unity q
5e2p i /N,qN51. Let U be an open subset ofM with local coordinatesx1,x2,...,xn. Our aim is to
construct an analog of the exterior algebra of differential forms with exterior differentiald satis-
fying the q-Leibniz rule

d~vu!5dvu1quvuv du, ~1!

wherev, u are complex valued differential forms,uvu is the degree ofv, and

dN50, ~2!

whereasdkÞ0 for 1,k<N21. We shall also assume that as in the classical case the ex
differential d is a linear operator and that it increases the degree of a form by one.

Let U be an open subset ofM with the local coordinatesx1,x2,...,xn. A differential form of
degree zero is a smooth function onU. Thus the set of differential forms of degree zeroV0(U)
is the subalgebra of a whole algebra which coincides with the algebra of smooth functionsU.
A differential one-form onM is an element of a free left moduleV1(U) over the algebraV0(U)
generated by the differentialsdx1,dx2,...,dxn, and the right module structure onV1(U) is defined
by the relations

dxi f ~x!5 f ~x!dxi , f ~x!PV0~U !. ~3!

The assumptiondkÞ0 for 1,k<N21 implies that there is no reason to use only the fir
order differentialsdxi in the construction of the algebra of differential forms induced byd; one
can also add a set of formalhigher-order differentials, in which case the algebra will be generat
by

dx1, . . . ,dxn, . . . ,dN21x1,dN21x2, . . . ,dN21xn.

In order to endow the algebra of differential forms with appropriateZN-grading we shall associat
the degreek to each differentialdkxi . As usual, the grade of a product of differentials is the s
of the degrees of its components moduloN. Given any smooth functionf and successively
applying to it the exterior differentiald one obtains the following expressions for the first thr
steps:

d f5
] f

]xi dxi , ~4!
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d2f 5
]2f

]xi]xj dx( idxj )1
] f

]xi d2xi , ~5!

d3f 5
]3f

]xi]xj]xk dx( idxjdxk)1
]2f

]xi]xj ~d2xi ,dxj !q1
] f

]xi d3xi . ~6!

The relation~3! between left and right structures of the module of one-formsV1(U) corresponds
to classical differential calculus onU.11 Because the partial derivatives of a smooth function
classical differential calculus do commute, only the totally symmetric combinations of indice
relevant in these definitions. That is why in the above-mentioned formulas the parenthese
the symmetrization with respect to the superscripts they contain, i.e.,

dx( idxj )5
1

2!
~dxi dxj1dxj dxi !,dx( idxj dxk)

5
1

3!
~dxi dxj dxk1dxj dxk dxi1dxk dxi dxj1dxk dxj dxi1dxi dxk dxj1dxj dxi dxk!,

~d2xi ,dxj !q5d2x( idxj )1~11q! dx( id2xj ).

The differentials of higher order of a functionf can be expressed by means of a recurrent form
Let us write thekth differential of a functionf in the form

dkf 5
] (k) f

]xi 1
¯]xi k

L (k)
i 1i 2¯ i k1

] (k21)f

]xi 1
¯]xi k21

L (k)
i 1i 2¯ i k211¯1

]2f

]xi]xj L (k)
i j 1

] f

]xi L (k)
i , ~7!

whereL (k)
i 1i 2¯ i k ,...,L (k)

i are homogeneous polynomials of differentials of total degreek symmetric
with respect to their superscripts. They can be described by means of the following rec
formula:

L (k)
i 1i 2¯ i m5dL(k21)

i 1i 2¯ i m1
1

m (
l 51

m

dxi l L (k21)
i 1¯ î l¯ i m21 , ~8!

for 2<m<k21, and

L (k)
i 1i 2 ...i k5dx( i 1dxi 2...dxi k), L (k)

i 5dkxi . ~9!

In order to guarantee that theN-nilpotency~2! of theq-exterior differential does not depend on th
choice of local coordinates, theNth power of the differentiald should vanish identically on any
smooth functionf of a manifoldM ,

dNf 50. ~10!

This leads to the conditions which should be imposed on formal differen
dx1,dx2,...,...,dN21x1,dN21x2,...,dN21xn in order to guarantee~10!. In their most general form
they are obtained from~7! and can be written as follows:

L (k)
i 1i 2¯ i k50, L (k)

i 1i 2 ...i k2150, ..., L (k)
i 50. ~11!

Let us write these conditions explicitly for the first few values ofN. If N52 then~11! takes on the
form

L (2)
i j 5dx( idxj )50, L (2)

i 5d2xi50. ~12!
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Obviously these relations generate the classical exterior algebra based on the skew-sym
Grassmann structure with square nilpotent differentiald250. The first nontrivial generalization o
the classical algebra is the caseN53 when the conditions~11! take on the form:

L (3)
i jk 5dx( idxjdxk)50,

L (3)
i j 5d2x( idxj )1~11q!dx( id2xj )50, ~13!

L (3)
i 5d3xi50.

Although this paper is concerned mainly with theN53 generalization of differential forms, w
also show the constitutive relations~11! for N54:

L (4)
i jkl 5dx( idxj dxk dxl )50,

L (4)
i jk 5d2x( idxj dxk)1~11q!dx( id2xj dxk)1~11q1q2!dx( idxj d2xk)50,

~14!
L (4)

i j 5d3x( idxj )1~11q1q2!d2x( id2xj )1~11q1q2!dx( id3xj ),

L (4)
i 5d4xi50.

The relations~11! represent the minimal set of conditions that should be imposed on the d
entials in order to ensure~10!. Comparing~11! with ~9! we conclude that for any integerN the
differentials of first-orderdxi areN-nilpotent:

~dxi !N50. ~15!

On the other hand, the relations~13! and~14! in the special cases ofN53 andN54 demonstrate
clearly that generally there are no relations implying the nilpotency of any power for the d
entials of higher order. Therefore, though the algebra generated by the relations~11! is finite
dimensional with respect to the first-order differentials because of~15!, it remains infinite dimen-
sional with respect to the entire set of differentials.

Since forN.2 conditions~11! do not represent binary commutation relations, the algebr
differential forms implemented by~11! will be rather hard to work with. One of the ways t
circumvent this difficulty is to find relations which, on the one hand, would be simpler than~11!
but, on the other hand, would satisfy them. Following this idea we propose to solve the
condition in~13! by assuming that each cyclic permutation of any three differentials of first o
is accompanied by the factorq, which in this case is a primitive cubic root of unity and satisfi
the identity

11q1q250. ~16!

Thus we assume that each triple of differentials of first orderdxi ,dxj ,dxk is subjected toternary
commutation relations

dxi dxj dxk5q dxj dxkdxi . ~17!

These ternary commutation relations cannot be made compatible with binary commutatio
tions of any kind.

Therefore we suppose that all binary productsdxi dxj are independent quantities. The seco
condition in ~13! can be easily solved by assuming the following commutation relations:

dxi d2xl5q d2xl dxi . ~18!
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Note that from~17! and~18! it follows that the above-mentioned ternary and binary commuta
relations are coherent in the sense that they respect the grading defined earlier, i.e., the qu
dxk dxm andd2xj behave as elements of degree 2 and could be interchanged in formulas~17! and
~18!.

The ternary commutation relations~17! are much stronger than the cubic nilpotence wh
follows from the first relation of~13!. It has been proved in Ref. 5 that if the generators of
associative algebra obey ternary commutation relations such as~17! then all the expression
containing four generators should vanish. This means that the highest degree monomials
can be made up of the first-order differentials have the formdxi dxj dxk,dxi(dxj )2. Thus there are
no fourth or higher degree differential forms which can be made up of first differentials. In o
to construct an algebra with self-consistent structure we shall extend this fact to the higher
differentials, supposing thatall differential forms of fourth or higher degree vanish.

Since we have assumed that smooth functions commute with the first-order differentia~3!,
i.e.,

xk dxm5dxm xk,

then by virtue of theq-Leibniz rule the second-order differentials do not commute with smo
functions, because differentiating the above equality we obtain

d~xkdxm!5dxk dxm1xkd2xm5d~dxm xk!5d2xmxk1q dxm dxk,

which leads to the identity

xkd2xm2d2xmxk5q~dxm dxk2q2 dxk dxm! ~19!

In what follows, we shall consider only the expressions in which the forms of different degree
multiplied on the left by smooth functions of the coordinatesxk, which means that we consider th
algebraV(U) as a free finite-dimensional left module over the algebra of smooth functions

Let us find the number of independent generatorsN of this module. We haven first-order
differentialsdxi . The number of monomials spanning the module of two-forms isn21n because
we haven2 independent binary productsdxi dxj andn second-order differentialsd2xi . The num-
ber of monomials spanning the module of three-forms is (n32n)/31n2 since there are (n3

2n)/3 independent monomialsdxi dxj dxk andn2 independent monomialsdxi d2xj . Summing all
these numbers one finally obtains the dimension of the moduleV(U),

N5
n316n215n

3
. ~20!

Although we have described the construction of the algebraV(U) only in the caseN53, it
can be extended to any integerN.3. In this case our algebra is generated by the different
dx1,...,dxn,...,dN21x1,...,dN21xn. Let da1xi 1da2xi 2

¯darxi r be a monomial made up of differ
entials. We shall call the suma11a21¯1a r an order of the monomial. For theNth-order
monomials we shall assume that they are subjected tor -cyclic commutation relations,

da1xi 1da2xi 2
¯dar 21xi r 21darxi r5qa1da2xi 2da3xi 3

¯darxi rda1xi 1, ~21!

whereq is aNth primitive root of unity. Relations~17! and~18!, which determine the structure o
the algebraV(U) in the case ofN53, are the special cases of relations~21!. We assume that the
monomials of order less thanN are independent. For the first-order differentials ther -cyclic
relations~21! take on the form

dxi 1 dxi 2
¯dxi N21 dxi N5q dxi 2 dxi 3

¯dxi N dxi 1. ~22!
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Similar to the case ofN53 it can be proved that the aboveN-cyclic relations for first-order
differentials imply the vanishing of all monomials containing more thanN first-order differentials.
Extending this property to the higher-order differentials, we shall assume thatall monomials of
order higher thanN vanish.

In Secs. III and IV we show examples of the realization of this exterior calculus. Firs
discuss the particular properties of aZ3-graded one- and two-dimensional realizations; then
give an example ofp independent differentials acting on a generalized Clifford algebra.

III. EXAMPLES IN LOW DIMENSIONS

The aim of this section is to investigate the structure of the above-introduced algeb
differential forms by studying the simplest case of one-dimensional manifold andN53. We shall
denote the unique coordinate of this space byt.

Differentiating a smooth functionf one finds

d f5 f 8 dt,

d2f 5 f 9~dt!21 f 8d2t, ~23!

d3f 5 f-~dt!31 f 9~d2t dt1~11q!dt d2t !1 f 8d3t.

In this simple case the above-mentioned definitions immediately yield the relations

~dt!350, dt d2t5qd2t dt. ~24!

If one does not impose any additional relations, then the algebra of differential forms based
above-mentioned commutation relations is infinite dimensional and it splits into the direct s
two subspaces,

V2m5$f~d2t !m1c~dt!2~d2t !m21%, V2m115$h dt~d2t !m%; ~25!

with f, c, andh smooth functions oft.
One has the following rules for calculating the exterior differential:

d~dt!5d2t, d~d2t !5d3t50, ~26!

d@~dt!2#5d2t dt1q dt d2t5~q1q2!dt d2t52dt d2t. ~27!

It is interesting that in their final form the rules for exterior differentiation do not contain
complex parameterq.

If vPV2m andv5f(d2t)m1c(dt)2(d2t)m21 then

dv5~f82c!dt~d2t !m,

which means thatv is closed if and only iff85c. It is easy to show that any closed differenti
form of even degree is exact. Indeed, if

v5f~d2t !m1f8~dt!2~d2t !m21,

thenv5du, whereuPV2m21 and

u5f dt~d2t !m21.

From this it follows that for any differential formu of odd degree one hasd2u50.
Iterating twice the action of the exterior differential on an even degree differential forv

5f(d2t)m1c(dt)2(d2t)m21, one obtains
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d2v5~f92c8!~dt!2~d2t !m1~f82c!~d2t !m11,

which shows thatd2v50 is equivalent todv50. Finally, if u5h dt(d2t)m is an odd degree
form, then

du5h8~dt!2~d2t !m1h~d2t !m11,

anddu50 impliesh85h50. Thus any closed form of odd degree is identically null. Now
turn to the transformation laws of differential forms under the change of coordinates. Giv
diffeomorphismt5t(t) and a differential form of odd degreeu5h dt(d2t)m one can express it in
coordinatet as follows:

u5~ t8!m11h dt~d2t!m,

which gives the transformation law for the coefficient function

h5~ t8!m11h.

If v5f(d2t)m1c(dt)2(d2t)m21 is a form of even degree, then expressing it in terms of co
dinatet one will obtain

v5~ t8!mf~d2t!m1~@m#q~ t8!m21t9f1~ t8!m11c!~dt!2~d2t!m21,

where@m#q511q1q21¯1qm21.
The above-mentioned formula gives the transformation law for the coefficient functions

form of even degree:

f5~ t8!mf, c5@m#q~ t8!m21t9f1~ t8!m11c.

Let us mention two facts. The first one is that given any even differential formv
5c(dt)2(d2t)2l one can solve the equationu25v by letting

u5q2 lc1/2dt~d2t ! l .

We shall denote this solution byv1/2. The second fact is that given any 2m11-degree form
u5hdt(d2t)m one can get the closed 2m-degree form by integrating with respect todt, i.e., we
define the operatorIab :V2m11→V2m by

Iab~u!5S E
a

b

h dtD ~d2t !m,

wherea,b are finite real numbers. These facts gives us a possibility to relate the differe
forms we have described with the length of a smooth curve on a Riemannian manifold. Inde
M be a Riemannian manifold with metricg anda:@a,b#→M be a smooth curve on this manifol
which in local coordinates of the manifoldM is given by the equationsxi5xi(t), a<t<b. Then
the first quadratic formds25gi j dxi dxj induces by means of the pullback the differential tw
form

v5a* ~ds2!5gi j ẋ
i ẋ j~dt!2.

If we now denote the length of a curvea by S then

S5Iab~v /1/2!.
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If we impose the vanishing of all monomials of degree 4 and higher, then on a
dimensional real manifold with local coordinates (x,y) the left module ofZ3-graded forms has the
dimension 14, as it follows from the general formula~20!. Indeed, one has to take into account t
following independent monomials:

degree one:dx, dy; degree two: ~dx!2, ~dy!2, dx dy, dy dx, d2x, d2y,

and degree three:d2x dx, d2x dy, d2y dx, d2y dy, dx dx dy, dx dy dy.

The particularity of the two-dimensional case is that it can be represented in a more e
way if we introduce complex notation with a single variablez5x1 iy . Then the 14 independen
real expressions above can be expressed as

dz5dx1 i dy, dz̄5dz5dx2 i dy,

d2z5d2x1 id2y, d2z̄5d2z5d2x2 id2y,

dz dz, dz dz̄, dz̄dz5dz dz̄, dz̄dz̄5dz dz

d2z dz, d2z̄ dz, d2z dz̄5d2z̄ dz, d2z̄ dz̄5d2z dz

dz dz dz, and dz̄dz̄dz5dz dz dz̄.

In two real dimensions the expression of a one-formd f , a two-formd2f , or of a two-form
v5du with u being an arbitrary one-form are easily computed with the help of general form
given in the Sec. II.

The situation becomes more interesting if we considercomplex holomorphic functionsof the
variablez. In such a case we have only one complex variable and only two independent d
entials,dz and d2z; there is no more need to introduce their complex conjugates. If we
require thatd3f 50 for any holomorphic functionf , then by virtue of

d f5
d f

dz
dz, d2f 5

d2f

dz2 dz dz1
d f

dz
d2z,

and imposing

d3f 5
d3f

dz3 dz dz dz1
d2f

dz2 @d2z dz1 j dz d2z1dz d2z#1
d f

dz
d3z50, ~28!

~with j denoting a primitive 3rd root of unity! we arrive at the conditions on the differentialsdz
andd2z which are formally the same as the ones verified by the single real variablet:

d3z50, ~dz!350, dz d2z5 jd2z dz. ~29!

It is easy to show that the above-mentioned relations imply that similar ones are verified b
real differentialsdx anddy:

dx d2x5 jd2x dx, dx d2y5 jd2y dx, etc.

As in the real case, the algebra of degree 1 forms is finite, but there is no reason to cut
powers of the degree 2 formsd2z. We do not see, however, how the integration introduced for
real one-dimensional case can be generalized to the complex plane.
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IV. EXAMPLE OF q-EXTERIOR CALCULUS ON GENERALIZED CLIFFORD ALGEBRAS

In this section we shall briefly describe the structure of the generalized Clifford algebra9,10and
construct aq-exterior calculus withp exterior differentialsd1 ,d2 ,...,dp each satisfyingdk

N50.
Generalized Clifford algebrais an associative algebra over the complex field whose gener
G1 ,G2 ,...,Gp obey the commutation relations

G iG j5qi j G jG i with Gk
N51, ~30!

where

qi j 5H 1, i 5 j

q, i , j

q21, i . j .

It can be proved that the above-mentioned commutation relations imply the generalized C
relation

$G i 1
,G i 2

,...,G i N
%5N!d i 1i 2¯ i N

, ~31!

where the curly braces at the left-hand side stand for the sum of all permutations with resp
the subscriptsi 1 ,i 2 ,...,i N , which we shall call theN-anticommutator, andd i 1i 2¯ i N

is the gener-
alized Kronecker symbol which equals 1 when all subscripts are equal and 0 in all other cas
us denote the generalized Clifford algebra byCp,N . This algebra can be endowed wit
ZN -grading if as usual one associates grade 1 with each generatorGk and defines the grade of an
monomial as a sum of the grades of the generators it is composed of moduloN. Then the
generalized Clifford algebra splits into the direct sum

Cp,N5 (
i 50

N21

Cp,N
( i ) ,

whereCp,N
( i ) is a subspace of the elements of gradei . The dimension of the vector space underlyi

the algebraCp,N is Np. It can also be proved that the generalized Clifford algebra withp genera-
tors is isomoprhic to the grade zero subalgebra of the generalized Clifford algebra withp11
generators, i.e.,

Cp,N>Cp11,N
(0) .

The generalized Clifford algebras have matrix representations which can be described as f
Let us introduce then3n matrices

s15S 0 1 0 ... 0

0 0 1 ... 0

A A � A

0 0 0 ... 1

1 0 0 ... 0

D , s35S 1 0 0 ... 0

0 q 0 ... 0

A A � A

0 0 0 ... 0

0 0 0 ... qN21

D , ~32!

and s25(Aq)s3s1 , whereAq is needed only in the case whenN is an even integer. Letk
5E(p/2). Then the generators of the generalized Clifford algebraCp,N are represented by th
nk3nk matrices
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G15s1^ I ^ (k21), G25s2^ I ^ (k21),

A A

G2l 215s3
^ ( l 21)

^ s1^ I ^ (k2 l 21), G2l5s3
^ ( l 21)

^ s2^ I ^ (k2 l 21),

A A

G2k215s3
^ (k21)

^ s1 , G2k5s3
^ (k21)

^ s2 ,

G2k115s3
^ k , ~33!

whereI is the unitN3N matrix.
Because the generalized Clifford algebraCp,N possesses a naturalZN-grading one can use th

q-commutator, which is defined by the formula

@B,B8#q5BB82qbb8B8B,

whereB,B8PCp,N and b,b8 are the grades ofB,B8. Thenq-exterior differentials d1 ,d2 ,...,dp

are defined by

dkB5@Gk ,B#q[GkB2qbBGk . ~34!

According to the definition ofZn-grading theq-exterior differential raises the degree of an e
mentB by 1, i.e.,dk :Cp,N

( i ) →Cp,N
( i 11) . It can be proved that eachq-exterior differential defined in

~34! is N-nilpotent,

dk
N50 for k51,...,p.

Indeed if one writes thel th power of theq-exterior differentialdk in the form

dk
l B5(

i 50

l

a i
( l )Gk

l 2 iBGk
i ,

then the coefficientsa i
( l ) are found to be

a i
( l )5~21! iqs@ l 2 i 11#q

( i 21) , s5
2a1 i 21

2
i ,

and

@ l #q511q1q21¯1ql 21,

@ l #q8511q@2#q1q2@3#q1¯1ql 21@ l 21#q ,

@ l #q9511q@2#q81q2@3#q81¯1ql 21@ l 21#q8 , ~35!

...

@ l #q
( i )511q@2#q

( i 21)1q2@3#q
( i 21)1...1ql 21@ l 21#q

( i 21) .

Thus in order to proveN-nilpotence ofq-exterior differentials suffice it to show that the relatio

@N2 i 11#q
( i 21)50

holds for everyi from 1 to N21. But this is very easily proved by the mathematical induct
with respect toi .
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It can be also proved that

$di 1
,di 2

,...,di N
%50 for 1< i 1< i 2<¯< i N<p. ~36!

The above relations follow from~31!.
The covariant differentials D1 ,D2 ,...,Dp can be defined by means ofq-exterior differentials

as follows:

DkB5dkB1AkB,

where Ak is a degree 1 element of the generalized Clifford algebra, which we shall c
k-component of a connection one-form, and use the notationA5(A1 ,A2 ,...,Ap) combining all
components into the connectionA.

Now if we apply the operator$Di 1
,Di 2

,...,Di N
% to an arbitrary elementB of the algebra the

relations~36! suggest that we getB multiplied by an element of grade zero of the algebraCp,N ,
which we call a (i 1 ,i 2,...,i N)-component of a curvature, and denote byV i 1i 2¯ i N

, i.e.,

$Di 1
,Di 2

,...,Di N
%~B!5V i 1i 2 ...i N

B. ~37!

Before giving the explicit expression forV i 1i 2¯ i N
in terms of connection in a general case w

show the expressions for components of curvature in the low-dimensional cases ofN52,3 and
p52. In the case ofN52,p52 the generalized Clifford algebra coincides with the class
Clifford algebra represented by the Pauli matrices

s15S 0 1

1 0D , s25S 0 i

2 i 0D , s35S 1 0

0 21D .

Computing the components of a curvature by means of formula~37! one obtains

V115$s1 ,A1%1A1
2 ,

V125$s1 ,A2%1$s2 ,A1%1$A1 ,A2%, ~38!

V225$s2 ,A2%1A2
2 .

If the number of generatorsp of the algebra remains the same but one takesN53 and denotes by
j a cubic root of unity to distinguish it from a genericNth root of unityq, then the components
of curvature are expressed in terms of the components of connection as follows:

V1115$h1 ,h1 ,A1%1$h1 ,A1 ,A1%1A1
3 ,

V1125$h1 ,h1 ,A2%1$h1 ,A1 ,A2%1$A1 ,h1 ,h2%1$A1 ,A1 ,A2%,
~39!

V1225$h1 ,h2 ,A2%1$h1 ,A2 ,A2%1$A1 ,h2 ,h2%1$A1 ,A2 ,A2%,

V2225$h2 ,h2 ,A2%1$h2 ,A2 ,A2%1A2
3 ,

whereh1 ,h2 are the generators of the generalized Clifford algebraC2,3 and according to~33! they
are represented by the matrices

h15S 0 1 0

0 0 1

1 0 0
D , h25S 0 1 0

0 0 j

j 2 0 0
D .
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It is worth mentioning that the algebra generated by the above matrices was dubbed by Sy
the algebra of nonions.12

The above expressions for the components of a curvature in particular casesN52,3 can be
generalized for an arbitrary integersp,N as follows. In order to obtain the expression for t
componentV i 1i 2¯ i N

one should take theNth anticommutator of generators$G i 1
,G i 2

,...,G i N
% and

start replacing the generators with the components of a connection with the same subscrip
us introduce the following notations. Since there can be equal ones among the integers< i 1

< i 2<¯< i N<p and they would give us the same terms we pick only different ones, den
them by 1< j 1< j 2<...j m<p and by u j ku the number of integers in (i 1 ,i 2 ,...,i N) equal to j k .
Then let us denote by$A;G% j k

the anticommutator$G i 1
,G i 2

,...,G i N
% with G j k

being replaced with
Aj k

, by $A;G% j kj l
the same anticommutator withG j k

,G j l
being replaced withAj k

,Aj l
and so on. It

should be mentioned that the subscriptsj k and j l can be equal to each other ifu j ku.1. Then the
components of the curvature are expressed in terms of connection as follows:

V i 1¯ i N
5$A;G% j 1

1¯1$A;G% j m
1$A;G% j 1 j 1

1$A;G% j 1 j 2
1¯1$A;G% j 1¯ j m

.

The components of a curvature satisfy the Bianchi identities:

di 1
V i 2i 3¯ i N11

1di 2
V i 1i 3¯ i N11

1¯1di N11
V i 1i 2¯ i N

5@V i 2i 3¯ i N11
,Ai 1

#q1@V i 1i 3¯ i N11
,Ai 2

#q1¯1@V i 1i 2¯ i N
,Ai N11

#q . ~40!

V. COVARIANT BASIS OF Z3-GRADED DIFFERENTIALS

The q-exterior calculus on generalized Clifford algebra described in Sec. IV has a
algebraic nature and though it is a good model of a generalized exterior calculus withdN50, there
does not even arise the question of a change of coordinates. Going back to the algebraV(U)
introduced in Sec. II one might ask the question whether this local algebra could be expan
to the whole manifoldM . The difficulty here is that the set of generators of the algebra inclu
the higher-order differentials which transform under a change of coordinates in a nonho
neous way. Our aim in this section is to show that by introducing an analog of a linear conn
and replacing the ordinary differentials of all orders with the covariant ones we can overcom
above-mentioned difficulty~cf. Ref. 6!.

If we suppose that the formal expressiond2f does not vanish identically, as is the case in t
usualZ2-graded exterior calculus of forms, then we must abandon the antisymmetry of the pr
of one-forms in this algebra. The vanishing of expression~5! could be given an intrinsic sense i
any local coordinate system because one supposes that simultaneouslyd250, so it applied to any
second differential of a local coordinate, be itdxk or d2yk8, and parallel, taking into account th
symmetry of partial second derivatives,

]2f

]xk]xm 5
]2f

]xm]xk ,

it had to be postulated that the product of one-forms must be antisymmetric:

dxk dxm52dxm dxk.

Under a change of local coordinates,xk→ym8(xk), and xk5xk(ym8), the basis of one-forms
transformed as a covariant tensor, i.e.,dxk5(]xk/]ym8) dym8. However, had we abandoned th
postulated250 and the antisymmetry of the product of one-forms, thesecond differentialsof the
coordinates, which are for the time being purely formal expressions, would not transfor
covariant tensors because of the nonhomogeneous term:
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d2xk5dS ]xk

]ym8
dym8D 5

]2xk

]yl 8]ym8
dyl 8 dym81

]xk

]ym8
d2ym8. ~41!

Introducingconnection coefficientsG lm
k we shall define thecovariant second differentials D2xk as

D2xk5d2xk1G lm
k dxl dxm ~42!

~in order to make our notation homogeneous, from now on we shall also denote the
differentials—which are naturally covariant—with capitalD, i.e., we shall identifyDxk5dxk).
Note that Eq.~42! can still be interpreted in terms of Grassmann algebra of exterior forms: i
still imposed250 and the antisymmetry of the exterior product, the covariant two-formD2xk is
equal to the torsion two-form. The vanishing ofD2xk is then equivalent to the condition of nu
torsion, which is valid in all coordinate systems.

Let us suppose now that the differentialsdxk andd2xm satisfy the relations imposed by th
conditiond350 derived before, i.e., withq5e2p i /3:

dxk dxl dxm5q dxl dxm dxk, dxk d2xm5qd2xm dxk.

It is obvious that these relations remain valid if we replace the ordinary first and second d
entials by theircovariantcounterparts:

DxkDxlDxm5qDxlDxmDxk, DxkD2xm5qD2xmDxk, ~43!

which span a covariant basis of the sameZ3-graded algebra, which has the property of transfor
ing covariantly under the change of a basis.

Now, although D2xk represents a tensorial quantity, its covariant differentialD(D2xk)
5D3xk cannot be computed by simple iteration, i.e., by applying the same formula as fo
covariant differential ofDxk. As a matter of fact,D3xk has to be a tensorial quantity of thir
degree, which in covariant basis should contain bothDxkD2xm andDxkDxlDxm. That is why we
should write

D3xk5D~D2xk!5d~D2xk!1Blm
k DxlD2xm1Clmn

k DxlDxmDxn ~44!

with new coefficients of two kinds, whose transformation properties under coordinate chan
yet to be derived, and which will assure the tensorial character ofD3xk. Acting with the operator
d on D2xk yields the explicit result

D3xk5d3xk1]nG lm
k dxn dxl dxm1G lm

k d2xl dxm1qG lm
k dxl d2xm1Blm

k DxlD2xm

1Clmn
k DxlDxmDxn. ~45!

Now, using the fact thatd2xl5D2xl2G rm
l dxr dxm, we can expressD3xk by means of cova-

riant quantities only:

D3xk5d3xk1@Blm
k 1q2Gml

k 1qG lm
k #DxlD2xm1@Clmn

k 1] lGmn
k 2G lm

r G rn
k 2qGmn

r G lr
k #DxlDxmDxm

5d3xk1B̃lm
k DxlD2xm1C̃lmn

k DxlDxmDxn. ~46!

Now we shall proceed by analogy with theZ2-graded case. As we have seen, the conditiond3

50 implies also the ternary and binaryq-commutation relations withq5e2p i /3. This means that
in the final expression we remain with

D3xk5B̃lm
k DxlD2xm1C̃lmn

k DxlDxmDxn.
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It is obvious that if we want to impose the tensorial behavior onD3xk, then both coefficientsB̃lm
k

and C̃lmn
k must transform as tensors given the manifestly tensorial character of the produ

differentials they are contracted with. In contrast, the coefficientsBlm
k and Clmn

k have obviously
nontensorial character, which is compensated by the connection coefficients and their deri
entering the definitions ofB̃lm

k and C̃lmn
k . In order to get the transformation rules for the coe

cients Blm
k and Clmn

k we use the observation that formula~44! implicitly determines how the
covariant differentialD is acting on the second-order differentials. Indeed the left-hand sid
~44! can be written in the form

D3xk5D~D2xk!5D~d2xk1G rs
k DxrDxs!

5D~d2xk!1
]G rs

k

]xl DxlDxrDxs1~qG rs
k 1q2Gsr

k !dxr D2xs. ~47!

Before we expressD(d2xk) in terms of the coefficientsBlm
i andClmn

i let us introduce the follow-
ing notations. Given whatever quantityRlmn one can split it intothree parts belonging to three
representations of the cyclic groupZ3 :

R lmn
k 5R ( lmn)

k 1R $ lmn%
k 1R [ lmn]

k ,

defined as follows:

R ( lmn)
k 5 1

3 ~R lmn
k 1R nlm

k 1R mnl
k !,

R $ lmn%
k 5 1

3 ~R lmn
k 1q2R nlm

k 1qR mnl
k !, ~48!

R [ lmn]
k 5 1

3 ~R lmn
k 1qR nlm

k 1q2R mnl
k !.

Now we can expressD(d2xk) in terms of coefficientsBlm
i andClmn

i as follows:

D~d2xk!5Blm
i DxlD2xm1~Clms

i 2G r [s
i G lm]

r 2G [ms
r G l ] r

i !DxlDxmDxs. ~49!

Differentiating covariantly both sides of~41! one obtains the relation

D~d2xk!5
]xk

]yk8
D~d2yk8!2

]2xk

]yk8]yl 8
G r 8s8

l 8 Dxk8Dxr 8Dxs8. ~50!

In order to give the transformation rules a more compact form we shall use the following
tions:

U j 8
i

5
]xi

]yj 8
, ] jUk

i 85
]2yi 8

]xk]xj .

Then replacingD(d2xk) andD(d2yk8) in the above formula by their expressions in terms of
coefficientsBlm

i and Clms
i according to~49! and collecting together similar terms we get t

transformation rules

Blm
i 5Bl 8m8

i 8 Ui 8
i Ul

l 8Um
m8 ,
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Clmn
i 5Ui 8

i Ul
l 8Um

m8Un
s8Cl 8m8s8

i 8 1Ui 8
i U [n

n8]mUl ]
r 8G r 8n8

i 8 1Us8
i ] rU [n

s8Ul
l 8Um]

m8Ur 8
r G l 8m8

r 8

1Us8
i ] rU [n

s8] lUm]
t8 Ut8

r
1Ui 8

i U [n
l 8 ] lUm]

r 8 G l 8r 8
i 8 1Us8

i ] rU [n
s8Ul

m8Um]
n8Ur 8

r Gm8n8
r 8

1Us8
i Ut8

r ] rU [n
s8] lUm]

t8 .

As in the case of torsion in ordinary exterior calculus, the tensorial character is displayed o
the irreducible part of these coefficients displaying the corresponding symmetry.

Here is what we mean by this. As in the usual case the connection coefficientsG lm
k could be

split into two parts, the torsion~antisymmetric part! and the symmetric part,

G lm
k 5 1

2 @G lm
k 1Gml

k #1 1
2 @G lm

k 2Gml
k #5G ( lm)

k 1Slm
k ,

so the four-index symbolsClmn
k as we have mentioned earlier can be split intothreeparts belong-

ing to three representations of the cyclic groupZ3 :

Clmn
k 5C( lmn)

k 1C$ lmn%
k 1C[ lmn]

k .

Therefore, only the partC̃[ lmn]
k has to be taken into account in the final expression:

D3xk5B̃lm
k DxlD2xm1C̃[ lmn]

k DxlDxmDxn5~Blm
k 1q2Gml

k 1qG lm
k !DxlD2xm1C̃[ lmn]

k DxlDxmDxn

~51!

with

C̃lmn
k 5Clmn

k 1] lGmn
k 2G lm

r G rn
k 2qGmn

r G lr
k .

Because the coefficients in both terms on the right-hand side are tensors, we can start to
gate their intrinsic properties. Among these, the condition of reality should be applied to
coefficients separately. Starting with the first coefficient,B̃lm

k , and recalling that

q52
1

2
1

i)

2
, q252

1

2
2

i)

2
,

we have explicitly

B̃lm
k 5Blm

k 2
1

2
~Gml

k 1G lm
k !1

i)

2
~G lm

k 2Gml
k !.

The imaginary part is thetorsion tensorof the connectionG lm
k , so the reality of the coefficientB̃lm

k

is equivalent with the vanishing of the torsion, leaving only thesymmetricpart of G lm
k . So, from

now on, we can write

B̃lm
k 5Blm

k 2G lm
k , with G lm

k 5Gml
k .

This means that theBlm
k transform as connection coefficients, so that the differenceBlm

k 2G lm
k is a

tensor. As a corollary, the vanishing ofD3xk implies thatBlm
k 5G lm

k andG lm
k 5Gml

k .
The symmetry of the connection coefficients makes it possible to identify the tensor app

in the coefficientsC̃lmn
k . As a matter of fact, only the partC̃[ lmn]

k is relevant here, the other tw
irreducible parts’ contribution vanishing when contracted with the covariant expres
DxlDxmDxn. The part ofC̃lmn

k containing the connection coefficients and their derivatives sho
also beZ3 antisymmetrized, yielding
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1
3 ~Clmn

k 1qCnlm
k 1q2Cmnl

k 1] lGmn
k 1q]nG lm

k 1q2]mGnl
k !DxlDxmDxn

2 1
3 ~G lm

r G rn
k 2qGnl

r G rm
k 2q2Gmn

r G rl
k 2qGmn

r G lr
k 2q2G lm

r Gnr
k 2Gnl

r G rm
k !DxlDxmDxn.

It is not difficult, taking into account the symmetries, to identify the final result in terms of
Riemann tensor:C̃lmn

k DxlDxmDxn is equal to

S C[ lmn]
k 1

1

3
@Rnlm

k 1Rmln
k #1

q

3
@Rmnl

k 1Rlnm
k #1

q2

3
@Rlmn

k 1Rnml
k # DDxlDxmDxn.

Taking into account that

C[ lmn]
k 5 1

3 ~C[ lmn]
k 1qC[nlm]

k 1q2C[mnl]
k !

and assuming that the coefficientsC[ lmn]
k are real, the vanishing of the above-mentioned exp

sion leads to the equality

C[ lmn]
k 52@Rnlm

k 1Rmln
k #. ~52!

The analogy with the usual exterior differential calculus is now obvious. In the usual cas
conditionD2xk50 implied the vanishing of torsion,Slm

k 5 1
2@G lm

k 2Gml
k #50, whereas now, in our

Z3-graded case, the similar conditionD3xk50 implies not only the vanishing of torsion, but als
entirely determines the coefficientsBlm

k ~equal toG (ml)
k ), and partly the coefficientsClmn

k namely,
their q-skew-symmetric partC[ lmn]

k ~equal then to the expression2@Rnlm
k 1Rmln

k #). By analogy,
one can impose similar conditions on the ‘‘conjugate’’q2-skew-symmetric partC$mnl%

k , defining
it, e.g., asC$mnl%

k 5C[ lnm]
k . However, thetotally symmetricpart C( lmn)

k , which is not a tensor, is
still undefined, because its contribution cancels automatically when contracted with the thre
DxlDxmDxn.

The symmetric part ofClmn
k together with the coefficientsBlm

k may be used for the definition
of a new kind of parallel transport and generalized geodesic curves. One can define, indep
of the usual covariant derivative of a vector along a parametrized curvexk(l) determined by given
connection coefficientsG lm

k ,

DYk

Dl
5

dYk

dl
1G lm

k dxl

dl
Ym50, ~53!

a second-order covariant derivative which is not an iteration of the first one:

D 2Yk

Dl2 5
d2Yk

dl2 1Elm
k dxl

dl

DYm

Dl
1Flm

k D2xl

Dl2 Ym1Glmn
k dxl

dl

dxm

dl
Yn, ~54!

where we use a different notation,D/Dl in order to stress that we do not consider here a sim
iteration of the usual covariant differentiationD/Dl. The coefficientsElm

k andFlm
k are not iden-

tical a priori; all we need to know about the transformation properties ofElm
k , Flm

k , andGlmn
k is

that the resulting quantityD 2Yk/Dl2 transforms as a vector under a coordinate change.
If we replace the vector fieldYk(xm(l)) by the vectordxk/dl tangent to the curve, we obtai

a third-order generalization of the geodesic equation:

D 3xk

Dl3 5
d3xk

dl3 1@Elm
k 1Fml

k #
dxl

dl

D2xm

Dl2 1Glmn
k dxl

dl

dxm

dl

dxn

dl
50. ~55!

Now thedxk/dl, etc., are commutative entities, so thatGlmn
k 5C( lmn)

k . Had we iterated the
usual covariant derivative in Eq.~55!, then the coefficientsElm

k 1Flm
k andC( lmn)

k would be com-
pletely determined from the connection coefficientsG lm

k and their derivatives; however, we ca
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introduce more general coefficients having the required transformation properties and indep
of G lm

k . This is reminiscent of a similar situation one level below, when the Christoffel conne
is totally determined by the metric, but a larger class of affine connections exists whic
independent of metric.

The generalized geodesic equation of third order~55! defines a larger class of curves than t
usual geodesics and may be of interest in probing certain geometrical objects. For example
flat Euclidean space the solutions of~55! include not only the straight lines, but also all possib
hyperbolae.

The geometric aspects of the new differential calculus are beyond the scope of our p
article, and we shall publish them later.
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The helicity of a smooth vector field defined on a domain in three-space is the
standard measure of the extent to which the field lines wrap and coil around one
another. It plays important roles in fluid mechanics, magnetohydrodynamics, and
plasma physics. The isoperimetric problem in this setting is to maximize helicity
among all divergence-free vector fields of given energy, defined on and tangent to
the boundary of all domains of given volume in three-space. TheBiot–Savart
operator starts with a divergence-free vector field defined on and tangent to the
boundary of a domain in three-space, regards it as a distribution of electric current,
and computes its magnetic field. Restricting the magnetic field to the given domain,
we modify it by subtracting a gradient vector field so as to keep it divergence-free
while making it tangent to the boundary of the domain. The resulting operator,
when extended to theL2 completion of this family of vector fields, is compact and
self-adjoint, and thus has a largest eigenvalue, whose corresponding eigenfields are
smooth by elliptic regularity. The isoperimetric problem for this modified Biot–
Savart operator is to maximize its largest eigenvalue among all domains of given
volume in three-space. Thecurl operator, when restricted to the image of the
modified Biot–Savart operator, is its inverse, and the isoperimetric problem for this
restriction of the curl is to minimize its smallest positive eigenvalue among all
domains of given volume in three-space. These three isoperimetric problems are
equivalent to one another. In this paper, we will derive the first variation formulas
appropriate to these problems, and use them to constrain the nature of any possible
solution. For example, suppose that the vector fieldV, defined on the compact,
smoothly bounded domainV, maximizes helicity among all divergence-free vector
fields of given nonzero energy, defined on and tangent to the boundary of all such
domains of given volume. We will show that~1! uVu is a nonzero constant on the
boundary of each component ofV; ~2! all the components of]V are tori; and~3!
the orbits ofV are geodesics on]V. Thus, among smooth simply connected do-
mains,noneare optimal in the above sense. In principal, one could have a smooth
optimal domain in the shape, say, of a solid torus. However, we believe that there
areno smooth optimal domains at all, regardless of topological type, and that the
true optimizer looks like the singular domain presented in this paper, which we can
think of either as an extreme apple, in which the north and south poles have been
pressed together, or as an extreme solid torus, in which the hole has been shrunk to
a point. A computational search for this singular optimal domain and the helicity-
maximizing vector field on it is at present under way, guided by the first variation
formulas in this paper. ©2000 American Institute of Physics.
@S0022-2488~00!00705-2#
56150022-2488/2000/41(8)/5615/27/$17.00 © 2000 American Institute of Physics
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I. INTRODUCTION

Let V be a compact domain in three-space with smooth boundary]V; ‘‘smooth’’ for us
always means of classC`. We allow bothV and]V to be disconnected.

Let VF~V! be the set of all smooth vector fieldsV on V. Then VF~V! is an infinite-
dimensional vector space, on which we use theL2 inner product̂ V,W&5*VV"Wd(vol).

The helicity H(V) of the vector fieldV on V, defined by the formula

H~V!5~1/4p!E
V3V

V~x!3V~y!"~x2y!/ux2yu3d~volx!d~voly!,

was introduced by Woltjer1 in 1958 and named by Moffatt2 in 1969. The formula itself is a
variation on Gauss’ integral formula3 for the linking number of two closed space curves, wh
dates back to 1833.

To help understand the formula for helicity, think ofV as a distribution of electric current, an
use the Biot–Savart law to compute its magnetic field, BS(V):

BS~V!~y!5~1/4p!E
V

V~x!3~y2x!/uy2xu3d~volx!.

Although the magnetic field BS(V) is well defined throughout all of three-space, we will restr
it to the domainV and thus view the Biot–Savart law as providing an operator

BS:VF~V!→VF~V!.

The relation between helicity and the Biot–Savart operator is as follows:

H~V!5~1/4p!E
V3V

V~x!3V~y!"~x2y!/ux2yu3d~volx!d~voly!

5E
V

V~y!"F ~1/4p!E
V

V~x!3~y2x!/uy2xu3d~volx!Gd~voly!

5E
V

V~y!"BS~V!~y!d~voly!

5E
V

V"BS~V!d~vol!,

so the helicity ofV is just theL2 inner product ofV and BS(V),

H~V!5^V, BS~V!&.

In this paper, we will mainly be interested in divergence-free vector fields which are de
on and tangent to the boundary of the domainV. They form a subspace K~V! of VF(V),

K~V!5$VPVF~V!: ¹"V50, V"n50%,

wheren is the unit outward normal vector field to]V. These vector fields are often regarded as
fluid analogs of knots and links.

Recall the modification of the Biot–Savart operator described in the abstract on the first
We start with a divergence-free vector fieldV, defined on and tangent to the boundary ofV, thus
an element of K~V!. We compute its magnetic field BS(V) and restrict it toV. Then we subtract
an appropriate gradient vector field from BS(V) so that the resulting vector field lies in K~V!; see
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Sec. II A for the Hodge Decomposition theorem. To say it another way, we take theL2 orthogonal
projection of BS(V) back into K~V!. In this way we define themodified Biot–Savart operator

BS8: K~V!→K~V!.

Just as the Biot–Savart operator BS is related to helicity by the formula

H~V!5^V, BS~V!&

for anyVPVF(V), so the modified Biot–Savart operator BS8 is related to helicity by the formula

H~V!5^V, BS8~V!&

for anyVPK~V!. The second formula follows from the first, since BS8(V) differs from BS(V) by
a gradient vector field, which isL2 orthogonal toV if VPK~V!.

Since we are focusing on divergence-free vector fields which are tangent to the bound
their domain of definition, it is this second formula for helicity which plays a central role in
present paper.

The modified Biot–Savart operator BS8, when extended to theL2 completion of its domain
K~V!, is a compact, self-adjoint operator. Applying the spectral theorem and elliptic regularit
will see that the vector fieldsV in K~V! with maximum helicity for given energy are precisely th
eigenfields of BS8 corresponding to its largest eigenvaluel~V!, and that for these vector fields w
have

H~V!5l~V! E~V!,

whereE(V)5^V,V& is the energy ofV. Then for allV in K~V! we have

H~V!<l~V! E~V!.

This approach to helicity was pioneered by Arnold4 in his 1974 study of the asymptotic Hop
invariant for vector fields on closed orientable three-manifolds.

Searching for the largest eigenvalue of BS8 on VF~V! might seem to favor vector fields o
positive helicity. However, if we reflect the domainV through the origin in three-space to obta
the domainV2, and carry along the vector fieldV on V to a vector fieldV2 on V2, then
helicities change sign because the reflection is orientation reversing. That is,H(V2)52H(V).
Thus the vector fields of negative helicity onV reflect through the origin to vector fields o
positive helicity onV2, where they get their deserved attention. In particular, for any vector
V on V, we have

uH~V!u<max$l~V!,l~V2!% E~V!.

Suppose the domainV is subject to a smooth volume-preserving deformationht :V→V t ,
with h0 the identity, whose initial velocity is the vector fieldW defined by W(x)
5d/dtu t50ht(x). By ‘‘volume-preserving,’’ we always mean that the volume form is preserve
each point; thus¹"W50. We would like to have a first variation formula for the largest eig
valuel~V! of the modified Biot–Savart operator BS8: K~V!→K~V!.

However, as we know from elementary linear algebra, the largest eigenvalue of a s
one-parameter family of self-adjoint matrices does not always vary smoothly.

We finesse this annoyance as follows. Given a divergence-free vector fieldV defined on and
tangent to the boundary ofV, consider theRayleigh quotient

l~V!5^BS8~V!,V&/^V,V&5H~V!/E~V!.
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If V happens to be an eigenfield of the modified Biot–Savart operator BS8, thenl(V) will be the
corresponding eigenvalue. The largest eigenvaluel~V! of BS8 is the maximum of all the Rayleigh
quotientsl(V).

Now, given the smooth volume-preserving deformationht of V defined above, letVt5(ht)* V
be the push-forward ofV to a vector field on the domainV t . One says thatVt is frozeninto the
domainV t as it deforms. The quantityl(Vt) does vary smoothly, so we define the first variati
dl(V) of l(V) to be

dl~V!5d/dtu t50l~Vt!

and seek a formula fordl(V).
Sincel(V)5H(V)/E(V), it is natural to seek first variation formulas for the helicityH(V)

and the energyE(V).
In the following theorems, keep in mind that the vector fieldV is divergence-free and tangen

to the boundary of the domainV, and remains frozen in asV is subject to a volume-preservin
deformation with initial velocity fieldW.

Theorem A: The helicity H(Vt) is independent of t.
This theorem is inspired by Arnold,4 who showed that for certain divergence-free vector fie

V on a compact orientable three-manifold without boundary, the helicityH(V) remains constan
when V is carried along by any volume-preserving, orientation-preserving diffeomorphism
discuss this at the beginning of Sec. III.

Theorem B: The first variation of energy is given by the formula

dE~V!52^V3~¹3V!, W&2E
]V

uVu2~W"n!d~area!.

If the domainV is again replaced by a compact orientable three-dimensional manifold wit
boundary, then the second term on the right disappears, and Theorem B reduces to anoth
of Arnold.4

Theorem C: The first variation of the Rayleigh quotientl(V)5H(V)/E(V) is given by the
formula

dl~V!5l~V!
22^V3~¹3V!, W&1*]V uVu2~W"n! d~area!

*V uVu2 d~vol!
.

If V is an eigenfield of the modified Biot–Savart operatorBS8, then

dl~V!5l~V!
*]V uVu2~W"n! d~area!

*V uVu2 d~vol!
.

If this eigenfield V corresponds to the largest eigenvaluel~V! of BS8 on V, then

dl~V!>l~V!
*]V uVu2~W"n! d~area!

*V uVu2 d~vol!
.

The inequality appears only in the case that the largest eigenvalue has multiplicity.1. This
can certainly happen: whenV is a round ball the largest eigenvalue has multiplicity 3. When
eigenvalue is simple, the inequality can be replaced by an equality.

The third part of Theorem C plays a key role in proving the next theorem.
Theorem D: Suppose the vector field V, defined on the compact, smoothly bounded dom

V, maximizes helicity among all divergence-free vector fields of given nonzero energy, defi
and tangent to the boundary of all such domains of given volume in three-space.
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Then

~1! uVu is a nonzero constant on the boundary of each component ofV.
~2! All the components of]V are tori.
~3! The orbits of V are geodesics on]V.

We already mentioned some of the consequences of this result in the abstract.
After proving Theorem A, we will modify its proof to derive a general first variation form

for helicity,

dH~V!52E
V
„BS~V!"V…~¹"W! d~vol!,

in which the vector fieldV is, as usual, divergence-free and tangent to the boundary of its do
V, but in which the deformationht is not required to be volume preserving, and hence in which
initial velocity field W is arbitrary. But we will not use this formula in the paper.

After proving Theorem C, we will describe an alternative first variation formula for
eigenvalues of the modified Biot–Savart operator BS8 which appears as an equality rather than
inequality.

For further information about helicity, its mathematical foundations, and the role it play
fluid mechanics and plasma physics, we refer the reader to the papers of Berger and5

Moffatt and Ricca,6,7 and to our papers.8–14

II. BACKGROUND
A. The Hodge decomposition theorem

Let V be a compact domain with smooth boundary in three-space.
The following theorem is arguably the single most useful expression of the interplay bet

the topology of the domainV, the traditional calculus of vector fields defined on this domain,
theL2 inner product structure on VF~V!. We will use this result a number of times in the sectio
to come.

The reader can find a detailed treatment and proof of this theorem in Ref. 9, along w
number of applications to boundary value problems for vector fields.

Hodge decomposition theorem:We have a direct sum decomposition ofVF~V! into five
mutually orthogonal subspaces,

VF~V!5FK % HK % CG%HG%GG,

with

ker curl5 HK % CG%HG%GG,

image grad5 CG%HG%GG,

image curl5FK % HK % CG,

ker div5FK % HK % CG%HG,

where

FK5Fluxless knots5$¹"V50,V"n50,all interior fluxes50%,
HK5Harmonic knots5$¹"V50,¹3V50,V"n50%,
CG5Curly gradients5$V5¹w ,¹"V50, all boundary fluxes50%,
HG5Harmonic gradients5$V5¹w ,¹"V50, w locally constant on]V%,
GG5Grounded gradients5$V5¹w ,wu]V50%,

and furthermore,
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HK>H1(V;R)>H2(V,]V;R)>Rgenus of ]V,
HG>H2(V;R)>H1(V,]V;R)>R(# components of]V)2(# components ofV).

We need to explain the meanings of the conditions which appear in the statement o
theorem.

The outward pointing unit vector field orthogonal to]V is denoted byn, so the condition
V"n50 indicates that the vector fieldV is tangent to the boundary ofV.

Let S stand generically for any smooth surface inV with ]S,]V. OrientS by picking one
of its two unit normal vector fieldsn. Then, for any vector fieldV on V, we can define theflux of
V throughS to be the value of the integralF5*S V"n d~area!.

Assume thatV is divergence-free and tangent to]V. Then the value of this flux depends on
on the homology class ofS in the relative homology groupH2(V,]V;Z). For example, ifV is an
n-holed solid torus, then there are disjoint oriented cross-sectional disksS1 ,...,Sn , positioned so
that cuttingV along these disks will produce a simply-connected region. The fluxesF1 ,...,Fn of
V through these disks determine the flux ofV through any other cross-sectional surface.

If the flux of V through every smooth surfaceS in V with ]S,]V vanishes, we’ll say
‘‘ all interior fluxes50.’’ Then

FK5$VPVF~V!: ¹"V50, V"n50, all interior fluxes50%

will be the subspace offluxless knots.
The subspace

HK5$VPVF~V!: ¹"V50, ¹3V50, V"n50%

of harmonic knotsis isomorphic to the absolute homology groupH1(V;R) and also, via Poincare´
duality, to the relative homology groupH2(V,]V;R), and is thus a finite-dimensional vecto
space, with dimension equal to the genus of]V.

The orthogonal direct sum of these two subspaces,

K~V!5FK%HK,

is the subspace of VF~V! mentioned earlier, consisting of all divergence-free vector fields defi
on V and tangent to its boundary.

If V is a vector field defined onV, we will say thatall boundary fluxes of V are zeroif the flux
of V through each component of]V is zero. Then

CG5$VPVF~V!: V5¹w, ¹"V50, all boundary fluxes50%

will be called the subspace ofcurly gradientsbecause these are the only gradients which lie in
image of curl.

We define the subspace ofharmonic gradients,

HG5$VPVF~V!: V5¹w, ¹"V50, w locally constant on]V%,

meaning thatw is constant on each component of]V. This subspace is isomorphic to the absolu
homology groupH2(V;R) and also, via Poincare´ duality, to the relative homology group
H1(V,]V;R), and is hence a finite-dimensional vector space, with dimension equal to the nu
of components of]V minus the number of components ofV.

The definition of the subspace ofgrounded gradients,

GG5$VPVF~V!:V5¹w, wu]V50%,

is self-explanatory.
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B. A rough upper bound on helicity

The following result, extracted from Ref. 8, provides a bound on the helicity of any ve
field V; this bound depends only on the energy ofV and the volume ofV.

Theorem E: Let V be a smooth vector field in three-space, defined on the compact domV
with smooth boundary. Then the helicity H(V) of V is bounded by

uH~V!u<R~V! E~V!,

where R(V) is the radius of a round ball having the same volume asV and E(V)
5*VV"V d~vol! is the energy of V.

This upper bound is not sharp, but it is of the right order of magnitude: for example
Woltjer spheromak fieldV on the round ballV ~shown in Fig. 2! has helicity greater than one-fift
of the asserted upper bound.

Sharp upper bounds obtained by spectral methods will be discussed in the following se

C. Properties of the Biot–Savart operators

It is useful to have a clear picture of the image of the modified Biot–Savart operator. We
say that a vector fieldVPK~V! satisfiesAmpere’s lawif

E
C
V"ds50

for all closed curvesC on ]V which bound inR32V.
We refer the reader to Ref. 10 for proofs of the following three theorems.
Theorem F: The image of the modified Biot–Savart operator consists of those vector fiel

VPK~V! which satisfy Ampere’s law.
Theorem G: The ordinary and modified Biot–Savart operatorsBS and BS8 are bounded

operators, and hence they extend to bounded operators on the L2 completions of their domains
there they are both compact and self-adjoint.

Theorem H: The equation“3BS(V)5V holds inV if and only if VPK~V!, that is, if and
only if V is divergence-free and tangent to the boundary ofV.

D. Connection with the curl operator

If the vector fieldV is divergence-free and tangent to the boundary of its domainV, then, by
Theorem H,

¹3BS~V!5V.

Since BS(V) and BS8(V) differ by a gradient vector field, we also have

¹3BS8~V!5V.

If V is an eigenfield of BS8,

BS8~V!5lV,

then

¹3V5~1/l!V.

Thus the eigenvalue problem for BS8 can be converted to an eigenvalue problem for curl
the image of BS8, which means to a system of partial differential equations. Even though
extended BS8 to theL2 completion of K~V! in order to apply the spectral theorem, the eigenfie
are smooth vector fields in K~V!; this follows, thanks to elliptic regularity, because on divergen
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free vector fields, the square of the curl is the negative of the Laplacian. Hence these eige
can be~and are! discovered by solving this system of partial differential equations~PDEs!.

E. Explicit computation of helicity-maximizing vector fields

We solve¹3V5(1/l)V on the flat solid torusD2(a)3S1, whereD2(a) is a disk of radius
a andS1 is a circle of any length. Although this is not a subdomain of three-space, the sol
here is so clear cut and instructive as to be irresistable; see Ref. 12.

The largest eigenvalue of BS8 on this domain is

l„D2~a!3S1
…5a/2.405...,

where the denominator is the first positive zero of the Bessel functionJ0 . The corresponding
eigenfield, discovered by Lundquist15 in 1951 in his study of force-free magnetic fields on
cylinder, and known in plasma physics as atokamakfield ~see Fig. 1!, is

V5J1~r /l!ŵ1J0~r /l!ẑ,

expressed in terms of cylindrical coordinates~r, w, z! and the Bessel functionsJ0 andJ1 .
It follows that if V is any vector field in K„D2(a)3S1

…, then

H~V!<~a/2.405...!E~V!,

with equality for the above eigenfieldV.

We solve¹3V5(1/l)V on the round ballB3(a) of radiusa in terms of spherical Besse
functions in Ref. 13.

The largest eigenvalue of BS8 on this domain is

l„B3~a!…5a/4.4934...;

the denominator is the first positive zero of

~sinx!/x2cosx.

The corresponding eigenfield is Woltjer’s model for the magnetic field in the Crab Nebula,16 also
known in plasma physics as aspheromakfield ~see Fig. 2!, and is described below in spheric
coordinates~r, u, w! on a ball of radiusa51:

V~r ,u,w!5u~r ,u! r̂ 1v~r ,u!û1w~r ,u!ŵ,

where

FIG. 1. The Lundquist tokamak field.
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u~r ,u!5~2l/r 2!„~sinr /l!/~r /l!2cosr /l…cosu,

v~r ,u!5~21/r !„~cosr /l!/~r /l!2~sinr /l!/~r /l!21sinr /l…sinu,

w~r ,u!5~1/r !„~sinr /l!/~r /l!2cosr /l…sinu.

Note that the valuel51/4.4934... makes bothu(r ,u) andw(r ,u) vanish whenr 51, that is,
at the boundary of the ball. As a consequence, the vector fieldV is tangent to the boundary of th
ball, and directed there along the meridians of longitude.

It follows that if V is any vector field in K„B3(a)…, then

H~V!<~a/4.4934...!E~V!,

with equality for the above eigenfieldV.
Compare this with the earlier rough upper bound,

uH~V!u<aE~V!,

promised by Theorem E.
Comparison of the two pictures above shows how the fundamental features of the he

maximizer persist even as the domain changes topological type.

III. THE ISOPERIMETRIC PROBLEM

A. Invariance of helicity

Arnold4 showed in 1974 that the helicity~he called it themean Hopf invariant! of a vector
field V on a closed orientable three-manifold can be defined using just a volume element~rather
than a Riemannian metric!, provided the vector field is ‘‘homologous to zero.’’ To see what
meant by this, convert the vector fieldV to a two-form vV in the usual way by defining
vV(U1 ,U2)5vol(V,U1 ,U2). If V is divergence-free, thenvV is closed. Arnold called a
divergence-free vector fieldV homologous to zeroif the corresponding two-formvV is exact. If a
Riemannian metric compatible with the volume form is present, then a vector field is homolo
to zero if and only if it is in the image of curl.

The corresponding results about helicity of vector fields defined on domains in three-spa
as follows.

FIG. 2. The Woltjer spheromak field.
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~1! Let V1 be a compact simply-connected domain in three-space with smooth boundary, aV1

a divergence-free vector field defined onV1 and tangent to its boundary. Leth:V1→V2 be an
orientation-preserving, volume-preserving diffeomorphism, and defineV25h* (V1). Then the
helicity H(V1)5H(V2).

~2! The same result holds if we drop the hypothesis thatV1 is simply connected, but add th
hypothesis that the vector fieldV1 is fluxless~as defined in the section on the Hodge deco
position theorem!.

The arguments are straightforward adaptations of those of Arnold; we do not give them
nor do we use these two results.

By contrast, if in~1! we drop the hypothesis thatV1 is simply connected, and do not replac
it with another suitable assumption, then we can haveH(V1)ÞH(V2) ~see Fig. 3!.

The invariance property of helicity in three-space that we do need is that it remains co
when the vector field is carried along by a volume-preservingdeformationof domain, as asserte
in Theorem A. We turn to this next.

B. Material derivatives and the transport theorem

Our proof of Theorem A will usematerial derivativesand thetransport theoremfrom fluid
mechanics, so we pause for a brief reminder, referring the reader to Chap. 1 of Ref. 17 fo
details.

Suppose that a fluid is moving through three-space, and thatW(x,t) is the velocity of the fluid
particle at locationx and timet.

Let F(x,t) be some quantity, scalar or vector, defined in the region where the fluid is flow
Let DF/Dt denote the rate of change ofF as measured by a person moving with the flo

This quantity is known as thematerial derivativeof F and is given by

DF/Dt5]F/]t1(
i

~]F/]xi !~dxi /dt!

5]F/]t1~W"¹!F.

Let d(vol) be a small chunk of fluid moving with the flow. Then

~D/Dt !d~vol!5~¹"W!d~vol!.

Hence

~D/Dt !„Fd~vol!…5~DF/Dt !d~vol!1F~D/Dt !d~vol!

5„]F/]t1~W"¹!F1F~¹"W!…d~vol!.

Suppose thatV t is a region moving with the fluid and always containing the same fl
particles. Then thetransport theoremasserts that

FIG. 3. Helicity can change.
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~d/dt!E
V t

F~x,t !d~vol!5E
V t

~D/Dt !„F~x,t !d~vol!…

5E
V t

„]F/]t1~W"¹!F1F~¹"W!…d~vol!.

If the fluid is incompressible~that is, the flow is volume-preserving!, thenW is divergence-free
and the last term in the integrand above is zero.

C. Proof of Theorem A

Let V be a compact domain with smooth boundary in three-space, andV a divergence-free
vector field defined onV and tangent to its boundary.

Let ht :V→V t be a smooth family of volume-preserving diffeomorphisms ofV into R3, with
h0 the identity.

Define a vector fieldW on V by W(x)5d/dtu t50ht(x). This vector field records the initia
velocity of the deformationht . Since eachht is volume preserving,W is divergence-free.

Let Vt5(ht)* V, a smooth divergence-free vector field defined onV t and tangent to its
boundary. ThusVt is frozen intoV t as it deforms.

Theorem A asserts that the helicityH(Vt) is independent oft.
We will demonstrate this by showing that the derivative (d/dt)H(Vt) is zero, and since the

argument will be independent of which instant of time we are at, it will be sufficient to show

d/dtu t50H~Vt!50.

We begin by writing

H~Vt!5E
V t

BS~Vt!"Vt d~vol!,

and then differentiate with respect tot at t50:

d/dtu t50H~Vt!5d/dtu t50E
V t

BS~Vt!"Vt d~vol!,

5E
V

D/Dtu t50„BS~Vt!"Vtd~vol!…

5E
V

~D/Dt !u t50„BS~Vt!"Vt)…d~vol!,

where the next-to-last equality uses the material derivativeD/Dt and the transport theorem, a
reviewed in the previous section, while the last equality uses the fact that the diffeomorphisht

are volume preserving.
Now

D/Dtu t50„BS~Vt!"Vt…5„D/Dtu t50BS~Vt!…"V1BS~V!"~D/Dtu t50Vt!.

From the previous section we have

D/Dtu t50Vt5d/dtu t50Vt1~W"¹!V,

D/Dtu t50BS~Vt!5d/dtu t50BS~Vt!1~W"¹!BS~V!,

indulging our habit of writingd/dt in place of]/]t.
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We need to learn the values ofd/dtu t50Vt andd/dtu t50BS(Vt).
We begin by staying put at the fixed locationx in the interior ofV and watching the vecto

Vt(x) change with time:

~d/dt!u t50Vt~x!5 lim
t→0

~1/t !„Vt~x!2V~x!…

5 lim
t→0

~1/t !„~ht!* V~ht
21x!2V~x!…

5@V,W#~x!,

the value atx of the Lie bracket@V,W# of the vector fieldsV andW.
Remaining atx, we watch the magnetic field BS„Vt(x)… change with time. This change is du

to two influences: for one thing, the vector fieldVt is changing; for another, the domainV t is
shifting.

The contribution to d/dtu t50BS(Vt) due to the changing vector field is simp
BS(d/dtu t50Vt) by the linearity of the operator BS.

The contribution tod/dtu t50BS(Vt) due to the shifting domain is the magnetic field due to
surface current distribution (W•n)V along the boundary ofV. We will record this contribution as

BS„~W"n!Vu]V… .

Thus

d/dtu t50BS~Vt!5BS~d/dtu t50V!1BS„~W"n!Vu]V…

5BS~@V,W# !1BS„~W"n!Vu]V….

Having learned the values ofd/dtu t50Vt andd/dtu t50BS(Vt), we get the following formulas
for the material derivatives ofVt and BS(Vt):

D/Dtu t50Vt5@V,W#1~W"¹!V,

D/Dtu t50BS~Vt!5BS~@V,W# !1BS„~W"n!Vu]V…1~W"¹!BS~V!.

We insert this information into our computation of the time rate of change of helicity:

d/dtu t50H~Vt!5E
V

D/Dtu t50„BS~Vt!"Vt)…d~vol!

5E
V
„D/Dtu t50BS~Vt!"V1BS~V!"~D/Dtu t50Vt!d~vol!

5^„D/Dtu t50BS~Vt!…,V&1^BS~V!,~D/Dtu t50Vt!&

5^BS~@V,W# !1BS„~W"n!Vu]V…1~W"¹!BS~V!,V&1^BS~V!,@V,W#1~W"¹!V&

5^BS~@V,W# !,V&1^BS~V!,@V,W#&1^BS„~W"n!Vu]V…,V&1^~W"¹!BS~V!,V&

1^BS~V!,~W"¹!V&,

where we have reordered the five terms for the convenience of further computation.
To begin, the first two terms are equal, thanks to the self-adjointness of the operator B

we combine them as 2^BS(V),@V,W#&.
The last two terms combine to yield

E
V

W"¹„BS~V!"V…d~vol!.
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The middle term can be rewritten as

^BS„~W"n!Vu]V…,V&5E
V

BS„~W"n!Vu]V…"V d~vol!

5E
]V

~W"n!V"BS~V! d~area!,

by using a version of the symmetry of BS appropriate to this situation.
Assembling, we get

d/dtu t50H~Vt!52^BS~V!,@V,W#&1E
]V

~W"n!V"BS~V! d~area!1E
V

W"¹~BS~V!"V! d~vol!.

Our job is now to process the three terms on the right-hand side of this equation and sho
they add up to zero.

We begin with the first term.
Recall the formula

¹3~A3B!5~B"¹!A2~A"¹!B1A~¹"B!2B~¹"A!

5@B, A#1A~¹"B!2B~¹"A!.

Apply this formula withA5W andB5V, keeping in mind that bothV andW are divergence-free
to get

¹3~W3V!5@V,W#.

Next, recall the formula

¹"~A3B!5B"~¹3A!2A"~¹3B!.

Apply this formula withA5W3V andB5BS(V) to get

¹"„~W3V!3BS~V!…5BS~V!"„¹3~W3V!…,

since the term

~W3V!"„¹3BS~V!…5~W3V!"V50,

becauseV is divergence-free and tangent to the boundary ofV.
Thus

^BS~V!,@V,W#&5^BS~V!,¹3~W3V!&

5E
V

BS~V!"(¹3~W3V!… d~vol!

5E
V

¹"„~W3V!3BS~V!… d~vol!

5E
]V
„~W3V!3BS~V!…"n d~area!

5E
]V
„BS~V!3~V3W!…"n d~area!
                                                                                                                



ary

we

add

5628 J. Math. Phys., Vol. 41, No. 8, August 2000 Cantarella et al.

                    
5E
]V

~„BS~V!"W…V2„BS~V!"V!W)"n d~area!

52E
]V
„BS~V!"V)~W"n! d~area!,

sinceV is tangent to]V.
The middle term in our expression ford/dtu t50H(Vt),

E
]V

~W"n!V"BS~V! d~area!5E
]V
„BS~V!"V…~W"n! d~area!,

needs no further modification.
We process the final term as follows.

E
V

W"¹„BS~V!"V… d~vol!5E
V

¹"~„BS~V!"V…W! d~vol!,

sinceW is divergence-free, and then

5E
]V
„BS~V!"V…~W"n! d~area!.

Putting this all together, we get

d/dtu t50H~Vt!52^BS~V!,@V,W#&1E
]V

~W"n!V"BS~V! d~area!

1E
V

W"¹„BS~V!•V… d~vol!.

522E
]V

~BS~V!"V!~W"n! d~area!1E
]V
„BS~V!"V…~W"n! d~area!

1E
]V
„BS~V!"V…~W"n! d~area!50,

completing the proof of Theorem A.

D. A general first variation formula for helicity

We continue to assume that the vector fieldV is divergence-free and tangent to the bound
of V, but for this section only we give up the assumption that the deformationht :V→V t is
volume preserving, and hence lose the condition thatW is divergence-free.

As a result, the helicityH(Vt) will no longer be independent oft ; instead, we will derive a
first variation formula for helicity involving the term

E
V
„BS~V!"V…~¹"W! d~vol!.

To get this formula, we simply modify the proof of Theorem A at the three locations where
used the old hypothesis that¹"W50, as follows.

First, at the beginning of the proof, when we apply the transport theorem, we must now
the above integral into our formula for the first variation of helicity.
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Again in the middle, where we process the term 2^BS(V),@V,W#&, we must now use the
identity

@V,W#5¹3~W3V!1V~¹"W!,

and so gain the term 2^BS(V),V(¹"W)&, which is twice the above integral.
And finally at the end, when we process the term*VW"¹„BS(V)"V… d(vol), we must now use

the identity

W"¹„BS~V!"V…5¹"~„BS~V!"V…W!2„BS~V!"V…~¹"W!,

and therefore must subtract our new integral from the formula.
The net result, 1122152, is that we must now add twice our new integral to the old fi

variation formula for helicity. Since helicity was invariant under volume-preserving deformat
the new formula reads

dH~V!52E
V
„BS~V!"V…~¹"W! d~vol!.

We can do a spot check on this new formula, as follows.
Let ht be a gradual expansion of all of three-space defined byht(x)5(11t)x, and then

restrictht to the domainV. The initial velocity fieldW of this deformation is the position vecto

r5xx̂1yŷ1zẑ,

and hence ¹"W53. The vector field Vt on V t5(11t)V is defined by the formula
Vt„(11t)x…5(11t)V(x).

But then in the helicity formula

H~V!5~1/4p!E
V3V

V~x!3V~y!"~x2y!/ux2yu3 d~volx! d~voly!,

each term in the integrand, includingd(volx) and d(voly), will be multiplied by an appropriate
power of (11t) when computingH(Vt), with the net result

H~Vt!5~11t !6H~V!.

It follows that

dH~V!5~d/dt!H~Vt!u t5056H~V!.

Since¹"W53, we get the same result from our new formula,

dH~V!52E
V
„BS~V!"V…~¹"W! d~vol!,

56E
V

BS~V!"V d~vol!

56H~V!,

providing a morsel of confirmation.

E. Variation of energy

As usual,V is a compact domain in three-space with smooth boundary.
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But now we letV be any smooth vector field onV, thus an arbitrary member of VF~V!. We
do not assume thatV is divergence-free, and we donot assume thatV is tangent to the boundar
of V.

Our first variation of energy formula will be presented in a way which makes clear
simplifying effects of the various special assumptions aboutV.

Let ht :V→V t be a smooth one-parameter family of volume-preserving diffeomorphism
V into three-space. As before, we define the vector fieldW on V by W(x)5d/dtu t50ht(x). Since
the deformation is volume preserving,W is divergence-free.

Again we let our original vector fieldV on V be carried along by the deformation, and
define the vector fieldVt on V t by the formulaVt5(ht)* V.

This time we consider the energy of the vector fieldVt on V t ,

E~Vt!5E
V t

Vt"Vt d~vol!,

and seek a useful formula for its first variation,

dE~V!5d/dtu t50E~Vt!.

Theorem I:

dE~V!52^V3~¹3V!,W&22^~¹"V!V,W&

12E
]V

~V"W!~V"n! d~area!2E
]V

uVu2~W"n! d~area!.

F. Proof of Theorem I

Consider the first variation of energy,

dE~V!5d/dtu t50E~Vt!5d/dtu t50E
V t

Vt"Vt d~vol!

5E
V

D/Dtu t50~Vt"Vt! d~vol!,

since the diffeomorphismsht are volume preserving.
Continuing, we get

E
V

D/Dtu t50~Vt"Vt! d~vol!52E
V

V"DVt /Dtu t50 d~vol!

52E
V

V"„@V,W#1~W"¹!V… d~vol!

52E
V

V"@V,W# d~vol!1E
V

W"¹uVu2 d~vol!.

The first integral on the right is simply theL2 inner product 2̂V,@V,W#&.
The second integral on the right can be written as

E
V

¹"~ uVu2W! d~vol!,

sinceW is divergence-free, and then as
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E
]V

uVu2W"n d~area!

by the divergence theorem.
So we have shown that

dE~V!52^V,@V,W#&1E
]V

uVu2W"n d~area!.

This formula can be regarded as a way station on route to our final answer. It is useful in
if @V,W#50, which means thatVt(x) agrees withV(x) to first order att50. In that case

dE~V!5E
]V

uVu2W"n d~area!,

which, upon a moment’s reflection, is intuitively plausible.
However, in general we will do better to further process the term^V,@V,W#&.
Our handling of the term̂V,@V,W#& here will be very similar to our treatment of the ter

^BS(V),@V,W#& in the proof of Theorem A.
Once again we use from vector calculus the formula

¹3~A3B!5~B"¹!A2~A"¹!B1A~¹"B!2B~¹"A!5@B, A#1A~¹"B!2B~¹"A!,

again withA5W andB5V, but this time we only know that¹"W50.
We get

¹3~W3V!5@V,W#1W~¹"V!,

or

@V,W#5¹3~W3V!2W~¹"V!.

Thus

^V,@V,W#&5^V,¹3~W3V!&2^V,W~¹"V!&.

Focus on the first term on the right, and let us try to take the curl operator away from (W3V)
and give it toV. To this end, we once again recall the formula:

¹"~A3B!5~¹3A!"B2A"~¹3B!.

This time we apply the formula withA5V andB5W3V to get

¹"„V3~W3V!…5~¹3V!"~W3V!2V"„¹3~W3V!…,

or

V"„¹3~W3V!…5~¹3V!"~W3V!1¹"„V3~V3W!….

Now integrate this last formula overV and apply the divergence theorem to get

^V,¹3~W3V!&5^¹3V,W3V&1E
]V
„V3~V3W!…"n d~area!

5^V3~¹3V!,W&1E
]V

~V"W!~V"n! d~area!2E
]V

uVu2W"n d~area!,
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where the last equality relies on the identity

V3~V3W!5~V"W!V2~V"V!W.

Finally, we get

dE~V!52^V,@V,W#&1E
]V

uVu2W"n d~area!

52^V,¹3~W3V!&22^V,W~¹"V!&1E
]V

uVu2W"n d~area!

52^V3~¹3V!,W&12E
]V

~V"W!~V"n! d~area!22E
]V

uVu2W"n d~area!

22^V,W~¹"V!&1E
]V

uVu2W"n d~area!

52^V3~¹3V!,W&22^~¹"V!V,W&12E
]V

~V"W!~V"n! d~area!

2E
]V

uVu2W"n d~area!,

completing the proof of Theorem I.

G. Proof of Theorem B and other corollaries to Theorem I

Consider once again the first variation of energy formula given by Theorem I:

dE~V!52^V3~¹3V!,W&22^~¹"V!V,W&

12E
]V

~V"W!~V"n! d~area!2E
]V

uVu2W"n d~area!.

If V is divergence-free, then the second term on the right vanishes; ifV is tangent to the
boundary ofV, then the third term vanishes.

We are left with

dE~V!52^V3~¹3V!,W&2E
]V

uVu2~W"n! d~area!,

which is exactly the assertion of Theorem B.
We turn now to a sequence of corollaries to Theorem I.
Corollary 1: If V is divergence-free and tangent to the boundary of its domainV, then

dE~V!522^~V"¹!V,W&.

Proof: We begin with the formula of Theorem B, and make the substitution

E
]V

uVu2W"n d~area!5E
V

¹"~ uVu2W! d~vol!5E
V

~¹uVu2!"W d~vol!,

sinceW is divergence-free, to get

dE~V!5^2V3~¹3V!2¹uVu2,W&.

Then we use the formula
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¹~A"B!5A3~¹3B!1B3~¹3A!1~A"¹!B1~B"¹!A,

with A5B5V to get

¹uVu252V3~¹3V!12~V"¹!V,

from which the desired result follows.
Corollary 2: If V is divergence-free and tangent to the boundary ofV, thendE(V)50 for all

divergence-free W if and only if(V"¹)V is the gradient of a function which vanishes on]V.
Proof: Recall, from the Hodge decomposition theorem, that the vector fields onV which are

gradients of functions vanishing ondV form the subspace GG of grounded gradients, which is
orthogonal complement insideVF(V) of the subspace of divergence-free vector fields.

Then Corollary 2 follows immediately from Corollary 1.
Corollary 3: Let V be divergence-free and tangent to]V, and suppose thatdE(V)50 for all

divergence-free W. Then on]V, the orbits of V are constant speed geodesics.
Caution: That constant speed may, at least in principle, vary from geodesic to geodesi
Proof: Let gt(p) be the orbit ofV which at time 0 passes through the pointp. Thus

(d/dt)gt(p)5V„gt(p)….
A straightforward computation shows that the acceleration along this orbit is given by

~d2/dt2!gt~p!5„~V"¹!V…„gt~p!….

Now the hypotheses onV imply, by Corollary 2, that (V"¹)V is the gradient of a function tha
vanishes on]V, and hence that (V"¹)V is orthogonal to]V.

Thus if p, and hence the orbitgt(p) through it, lie on]V, then the acceleration vecto
(d2/dt2)gt(p) is orthogonal to]V, and therefore this orbit is a constant speed geodesic on]V.

Corollary 4: If V is divergence-free and tangent to the boundary ofV, and is an eigenfield of
the curl operator, then

dE~V!52E
]V

uVu2~W"n! d~area!.

Proof: This follows immediately from the first variation formula for the energy given
Theorem I, since the hypotheses onV imply that the first three terms on the right-hand side of
formula vanish.

Note that if the vector fieldV is an eigenfield of the modified Biot–Savart operator BS8, then
it is also an eigenfield of curl, according to Theorem H, and hence the above formula hold

In particular, this formula holds when the vector fieldV maximizes helicity for given energy
Corollary 5: If V is divergence-free and tangent to the boundary ofV, and is an eigenfield of

the curl operator, thendE(V)50 for all volume-preserving deformations ofV if and only if uVu
is constant on the boundary of each component ofV.

Proof: We begin with the formula of Corollary 4 fordE(V) under these circumstances:

dE~V!52E
]V

uVu2~W"n! d~area!.

SinceW is divergence-free, we have*]V i
W"n d~area!50 for each componentV i of V. So if

uVu is constant on each]V i , we get

dE~V!52E
]V

uVu2~W"n! d~area!52(
i
E

]V i

uVu2~W"n! d~area!

52(
i

uVu2E
]V i

W"n d~area!50.
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If uVu is not constant on the boundary of the componentV i of V, pick two pointsp andq on
]V i whereuV(p)uÞuV(q)u. Connectp andq by a thin tube running throughV i . Then define a
volume-preserving deformationht :V→V t which is entirely supported on this thin tube, pushi
the material in it so that it dimples in from]V i nearp and bulges out nearq. The corresponding
initial velocity vector field W(x)5d/dtu t50ht(x) is also supported in this tube, and satisfi
(W"n)<0 on ]V i nearp and (W"n)>0 on ]V i nearq, and of course*]V i

W"n d~area!50. Then
clearly

dE~V!52E
]V

uVu2~W"n! d~area!52E
]V i

uVu2~W"n! d~area!Þ0,

completing the proof of the corollary.

H. Variation of energy—an illustrative example

The domainV in this example is the spherical shell centered at the origin in three-space
boundary spheres of radiia,b ~see Fig. 4!.

The vector fieldV, given in spherical coordinates by

V5r sinu ŵ,

is the velocity field of rigid rotation ofR3 about thez axis, and is divergence-free and tangent
the boundary ofV.

The vector field

W5~1/r 2! r̂ ,

defined onR32origin, is divergence-free and is the infinitesimal generator of the one-param
group$ht% of volume-preserving diffeomorphisms ofR32origin, given by

ht~r ,u,w!5„~r 313t !1/3,u,w….

The vector fieldV is invariant under the flow$ht%, that is, (ht)* V5V.
The energy

FIG. 4. An example of variation of energy.
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E~V!5E
V

uVu2 d~vol!

of V insideV can be computed by straightforward integration, and has the value

E~V!5~8p/15!~b52a5!.

Let V t5ht(V) andVt5(ht)* V5V. The energyEt of Vt insideV t is given by

E~Vt!5~8p/15!„~b313t !5/32~a313t !5/3
…,

and hence

dE~V!5~d/dt!u t50Et5~8p/3!~b22a2!.

Now consider the formula

dE~V!52^V, @V,W#&1E
]V

uVu2~W"n! d~area!,

obtained during the proof of Theorem I. In the present example,@V,W#50, so the formula
simplifies to

dE~V!5E
]V

V2~W"n! d~area!.

The right-hand side can be computed by direct integration, yielding (8p/3)(b22a2), which
coincides with the value obtained above by computing the left-hand side directly.

Now consider the formula

dE~V!52^V3~¹3V!,W&2E
]V

uVu2~W"n! d~area!,

from Theorem B.
Direct computation shows that the first term on the right-hand side is (16p/3)(b22a2), thus

providing yet another confirmation.

Proof of Theorem C

Recall the setup.V is a compact domain with smooth boundary in three-space.V is a
divergence-free vector field defined onV and tangent to its boundary.ht :V→V t is a smooth
volume-preserving deformation ofV, with h0 the identity.W is the vector field onV defined by
W(x)5d/dtu t50ht(x).

We are seeking a first variation formula for the Rayleigh quotient

l~V!5H~V!/E~V!,

that is to say, a formula for

dl~V!5d/dtu t50l~Vt!.

The first part of Theorem C asserts that

dl~V!5l~V!
22^V3~¹3V!,W&1*]V uVu2~W"n! d~area!

*V uVu2 d~vol!
.
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This is an easy consequence of Theorems A and B, as follows.
According to Theorem A,

dH~V!50.

Hence

dl~V!5d~H~V!/E~V!!

5„2H~V!/E~V!2
…dE~V!

5„H~V!/E~V!…„2dE~V!/E~V!…

5l~V!„2dE~V!/E~V!….

Substituting the value

dE~V!52^V3~¹3V!,W&2E
]V

uVu2~W"n! d~area!

from Theorem B, and the definition

E~V!5E
V

uVu2 d~vol!,

we get the desired formula fordl(V).
The second part of Theorem C asserts that ifV is an eigenfield of the modified Biot–Sava

operator BS8, say BS8(V)5l(V)V, then

dl~V!5l~V!
*]V uVu2~W"n! d~area!

*V uVu2 d~vol!
.

We saw earlier that curl is a left inverse to BS8. Hence¹3V5l(V)21V. Thus we have
V3(¹3V)50, and so the second part of Theorem C follows from the first.

The third part of Theorem C asserts that if this eigenfieldV corresponds to the larges
eigenvaluel~V! of BS8 on V, then

dl~V!>l~V!
*]V uVu2~W"n! d~area!

*V uVu2 d~vol!
.

In this case,l(V)5l(V). At the same time,l(V t)>l(Vt). We signal this by writing
dl(V)>dl(V), without meaning to suggest thatl(V t) depends differentiably ont. Thus the
third part of Theorem C follows from the second.

Theorem C is proved.

F. An alternative version of Theorem C

As mentioned in the Introduction, the largest eigenvalue of a smooth one-parameter fam
self-adjoint matrices does not always vary smoothly, and, as a result of this, our first var
formula for the largest eigenvaluel~V! of the modified Biot–Savart operator BS8 appears as an
inequality rather than an equality:

dl~V!>l~V!
*]V uVu2~W"n! d~area!

*V uVu2 d~vol!
.

In this section we will describe an alternative first variation formula which appears a
equality.
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We begin with a compact domainV with smooth boundary in three-space, and a smo
volume-preserving deformationht :V→V t , which dependsanalytically on t, with h0 the identity.
We are interested in the eigenvalues and eigenfields of the modified Biot–Savart operator

BSt8 : K ~V t!→K ~V t!.

Recall that the eigenfields lie inK (V t), rather than in itsL2 completion, as a consequence
elliptic regularity.

Consider a single eigenvaluel of BS85BS08 , of finite multiplicity m. We assume thatI is an
interval of real numbers containing the eigenvaluel and no other eigenvalues of BS8. Then the
Rellich perturbation theorem18 can be used to show that fort sufficiently small, there existm
real-valued functionsl1(t),...,lm(t), each taking the valuel when t50, and each dependin
analytically ont, such that the portion of the spectrum of BSt8 which lies within the intervalI
consists of just these eigenvalues, with total multiplicitym. Moreover, the theorem promises th
there arem vector fieldsV1(t),...,Vm(t) in K(V t), each depending analytically ont, which form
a corresponding orthonormal system of eigenfields.

Now let l i(t) and Vi(t) be one of the above eigenvalue functions and its correspon
eigenfield function. We havel5l i(0); for simplicity of notation, we will writeV5Vi(0), and
alsodl5dl i(t)/dtu t50 . As usual,W will denote the initial velocity vector field of the deforma
tion ht .

Then the following first variation equality holds:

dl5l
*]V uVu2~W"n! d~area!

*V uVu2 d~vol!
.

We left the denominator in place on the right-hand side to cover the case whenV does not
haveL2 norm equal to 1.

We compare this first variation formula with that appearing in Theorem C:

~1! The above formula is an equality, while its counterpart in Theorem C is an inequality.
~2! The above formula requires the smooth deformation of domain to be analytic in the

parametert, unlike its counterpart in Theorem C. Indeed, the Rellich perturbation theore
false when the family of operators is onlyC` in t.

~3! The above formula holds for all eigenvaluesl of BS8, but only for the eigenvalue function
promised by the Rellich theorem; in particular, the largest eigenvalue functionl(V t) may not
be analytic int. By contrast, the corresponding formula in Theorem C holds for the lar
eigenvalue functionl(V t).

~4! The above formula holds only for the eigenfields promised by the Rellich theorem; in
ticular, we do not get to choose the eigenfieldV. By contrast, the corresponding formula
Theorem C holds for all the eigenfieldsV with eigenvaluel~V!.

In the proof of the above first variation formula, we replace the various modified Biot–S
operators BSt8 by their inverse curl operators, and then pull all these operators back to the
domainV to permit application of the Rellich perturbation theorem. We will not use the ab
formula in this paper, and so omit its proof.

K. Proof of Theorem D

Now we suppose that the vector fieldV on the compact, smoothly bounded domainV maxi-
mizes helicity among all divergence-free vector fields of given nonzero energy, defined o
tangent to the boundary of all such domains of given volume in three-space.
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We must show that

~1! uVu is a nonzero constant on the boundary of each component ofV.
~2! All the components of]V are tori.
~3! The orbits ofV are geodesics on]V.

To start, the fact thatV maximizes helicity for given energy onV tells us thatV must be an
eigenfield of the modified Biot–Savart operator BS8 corresponding to the largest eigenval
l(V)5l(V).

Furthermore, the fact thatV on V maximizes helicity for given energy among all domai
having the same volume asV tells us thatdl(V)50 for all volume-preserving deformations ofV.
Otherwise there would be a volume-preserving deformation ofV for which dl(V).0. Then by
part 3 of Theorem C, we would havedl(V).0, contrary to assumption.

We must also havedE(V)50 for all volume-preserving deformations, since

dl~V!5l~V!„2dE~V!/E~V!….

Then from Corollary 3 to Theorem I we learn that the orbits ofV are constant speed geodesi
on ]V, while from Corollary 5 we see thatuVu must be constant on the boundary of each com
nent ofV.

It remains to see why each of these constants must be nonzero. Once this is in hand
follow immediately that all the components of]V are tori.

Vainshtein’s lemma19
„1992…: Suppose the vector field V defined on the compact, smo

bounded domainV is divergence-free and an eigenfield of curl.
If V[0 on ]V, then V[0 throughoutV.
Proof: Following Vainshtein, we define the vector field

U5 1
2uVu2r2~r "V!V,

wherer is the position vector field in three-space, and will show in the following sublemma
¹"U5 1

2uVu2 as a consequence of the hypotheses thatV is divergence-free and an eigenfield
curl.

Assuming this for the moment, we then have

E
V

1
2uVu2 d~vol!5E

V
¹"U d~vol!5E

]V
U"n d~area!50,

sinceU[0 on ]V.
ThusV[0 throughoutV, as claimed.
Sublemma: Let V be any vector field, and define the vector field U by

U5 1
2uVu2r2~r "V!V.

Then

¹"U5 1
2uVu21„V3~¹3V!…"r2~r "V!~¹"V!.

Hence if V is divergence-free and an eigenfield of curl, we get

¹"U5 1
2uVu2.

Proof: The argument seems to us a bit clumsy in the notation we have been using throu
this paper, but effortless in subscript notation with respect to rectangular coordinates.

In that notation, the vectorA5(a1 ,a2 ,a3) in rectangular coordinates is simply recorded
ai . Thus the position vectorr5(x1 ,x2 ,x3) appears asxi .

Summation convention over repeated indices is employed, so that
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A"B5aibi .

The partial derivative]v i /]xj is recorded asv i , j , and thus

¹"V5v i ,i .

In this style, the triple vector product is given by

~A3B!"C5s i jkaibjck ,

wheres i jk takes the value 1 ifijk is an even permutation of 123, the value21 if it is an odd
permutation of 123, and the value 0 otherwise.

Finally, the curl appears as

¹3V5s i jk~v j ,i2v i , j !.

With this notation, the proof simply flows:

U5ui5
1
2 v jv j xi2xjv jv i ,

¹"U5ui ,i5v jv j ,ixi1
1
2 v jv j xi ,i2xj ,iv jv i2xjv j ,iv i2xjv jv i ,i .

Now the divergencexi ,i of the position vectorr is 3 and the partial derivativexj ,i is 1 if j 5 i
and 0 if j Þ i , so our expression for¹"U simplifies to

¹"U5v jv j ,ixi1
3
2 v jv j2v jv j2xjv j ,iv i2xjv jv i ,i

5 1
2 v jv j1v jv j ,ixi2v iv j ,ixj2xjv jv i ,i

5 1
2 v jv j1v j~v j ,i2v i , j !xi2xjv jv i ,i ,

where the last line is obtained by interchanging the subscriptsi and j in the third term of the line
above it.

This is exactly the formula we want: the first term on the last line above is1
2uVu2, the second

can be recognized as the triple product„V3(¹3V)…"r by using the subscript formulas for cu
and triple product, and the third term is (r "V)(¹"V).

This completes the proof of the sublemma and, with it, that of Vainshtein’s lemma.

L. Conclusion of the proof of Theorem D

We have already seen thatuVu must be constant on the boundary of each component ofV, and
are left with the task of showing that each of these constants must be nonzero.

At the beginning of the proof, we noted that ifV satisfies the hypotheses of Theorem D, th
it must be an eigenfield of the modified Biot–Savart operator BS8. Hence, as we saw earlier,
must also be an eigenfield of curl. ThereforeV, since it is divergence-free, satisfies the hypothe
of Vainshtein’s lemma.

Suppose that the constant value ofuVu on the boundary of the componentV i of V is zero.
Apply Vainshtein’s lemma to that component to conclude thatV must be identically zero through
out V i .

SinceV has nonzero energy by hypothesis, there must be other components ofV whereV
does not vanish. WriteV5V1øV2 , whereV1 is the union of the components ofV whereV does
not vanish, andV2 is the union of the components whereV does vanish. We intend to replaceV
by a scaled up version ofV1 .

To do this, deleteV2 and multiplyV1 by the factork.1 so that

vol kV15k3 vol V15vol V;
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carry the vector fieldV on V1 along with the expansion to give the vector fieldkV on kV1 . Then
a glance at the formulas for helicity and energy shows that

H~kV!5k6H~V! while E~kV!5k5E~V!.

Hence the ratio of helicity to energy has increased by the factork.1, contrary to the hypothesi
that the original vector fieldV on V maximized helicity for given energy and given volume
domain.

It follows that V cannot vanish on any of the components ofV, and hence that on the
boundary of each of these components,uVu must be a nonzero constant.

Then each boundary component ofV, since it supports a nowhere-vanishing vector field, m
have Euler characteristic zero, and hence be a torus.

We saw earlier that the orbits ofV are geodesics on]V, and so we are now finished with th
proof of Theorem D.

M. Optimal domains

The goal of the isoperimetric problem in the setting of this paper is to maximize he
among all divergence-free vector fields of given energy, defined on and tangent to the boun
all domains of given volume in three-space.

Theorem E provides an upper bound for these helicities.
Theorem D tells us some features of an optimal~that is, helicity-maximizing! domain, and of

the helicity-maximizing vector field on it.
But how do we find such a domain?
Suppose we begin with the vector fieldV which maximizes helicity for given nonzero energ

on a round ballV, the Woltjer spheromak field described earlier and pictured in Fig. 2.
We seek a volume-preserving deformation ofV which increasesl~V!, guided by the inequal-

ity of Theorem C:

dl~V!>l~V!
*]V uVu2~W"n! d~area!

*V uVu2 d~vol!
.

We maximize the right-hand side by choosing

W"n5uVu22average value ofuVu2on ]V.

Then we imagine a volume-preserving deformation ofV whose initial velocity fieldW has
this preassigned normal component along the boundary. The deformation begins by dimpV
inwards near the poles and bulging it outwards near the equator, making the ball look som
like an apple. We repeat this calculation at each stage of the deformation, trying to follow a
of steepest ascent for the largest eigenvalue of the modified Biot–Savart operator.

We believe that this procedure will continue to dimple the apple inwards at the poles
bulge it outwards at the equator, until it reaches roughly the shape pictured in Fig. 5, which
maximizes the largest eigenvaluel~V! of the modified Biot–Savart operator among all domains
given volume. We think of this domain either as an extreme apple, in which the north and
poles have been pressed together, or as an extreme solid torus, in which the hole has bee
to a point. We also show in Fig. 5 the expected appearance of the helicity-maximizing vector
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Comparison of this picture with those of the helicity maximizers on the flat solid torus an
the round ball, given in Figs. 1 and 2, shows that we expect the common underlying patt
persist even as the domain becomes singular.

A computational search for this singular optimal domain and the helicity-maximizing ve
field on it is at present under way, guided by a discrete version of the evolution described a
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Lagrangian submanifolds in product symplectic spaces
S. Janeczkoa)

Institute of Mathematics, Warsaw University of Technology,
Pl. Politechniki 1, 00-661, Warsaw, Poland
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We analyze the global structure of Lagrangian Grassmannian in the product sym-
plectic space and investigate the local properties of generic symplectic relations.
The cohomological symplectic invariant of discrete dynamical systems is general-
ized to the class of generalized canonical mappings. Lower bounds for the number
of two-point and three-point symplectic invariants for billiard-type dynamical sys-
tems are found and several examples of symplectic correspondences encountered
from physics are presented. ©2000 American Institute of Physics.
@S0022-2488~00!01608-X#

I. INTRODUCTION

Let (M ,v) be a symplectic manifold. We consider the productM3M endowed with the
symplectic structureV5p2* v2p1* v, wherep i are the corresponding projections onto the co
ponents ofM3M . The space of Lagrangian submanifolds of (M3M ,V) is a natural generaliza
tion of the group of symplectic transformations of (M ,v). We notice that if f:(M ,v)
→(M ,v) is a symplectomorphism, then its graph, graphf,M3M is the Lagrangian submani
fold, Vugraphf50. There is an obvious motivation to study the global and local structure of
Lagrangian submanifolds, which are also called symplectic relations or symplectic corre
dences~cf. Ref. 1!. They are coming from various branches of mathematics in which the s
plectic ideas and methods were succesfully applied~cf. Refs. 1–5!.

The very elementary examples of symplectic relations, which are not the graphs of sym
tomorphisms, play an important role in geometrical diffraction theory~Ref. 6!. Consider the setM
of all oriented affine lines inR3. M is a four-dimensional symplectic manifold,M[T* S2, con-
structed by the symplectic reduction from the free particle Hamiltonian hypersurface~cf. Ref. 7!.
This is the space of rays of geometrical optics. One of the most classical systems that prov
nontrivial symplectic relation is a billiard system. IfV is a smooth compact, convex region inRn

andX denotes its boundary hypersurface, then the symplectic relation joining the incoming~going
through the interior of the region! and outgoing rays, by the reflection lawy5x22(xun)n ~where
n is the unit outer normal toX, and (•u•) denotes the scalar product inRn!, is a graph of
symplectomorphism called the billiard map~cf. Ref. 8!. However, ifV is no longer convex, then
the reflection law should be extended by the diffraction role~cf. Ref. 6!, which prescribe to one
incoming ray the family of outgoing rays gliding in the tangential point of an incoming ray.
billiard symplectic relation is no more the graph of a symplectomorphism. In the case of inco
ray, sayx, going through the one-dimensional edge of an aperture inR3, the outgoing raysy form
a cone defined by the equations (x2yug)50, uxu5uyu, whereg is a vector tangent to an edg
oriented according to the incoming ray orientation. Our aim in this paper is to provide the
metric framework for the action of generalized mechanical~like nonconvex billiard! and optical
~like diffraction on apertures! systems.

An important object in investigation of geometry of Lagrangian submanifolds is the man
Ln of linear Lagrangian spaces in 2n-dimensional symplectic space, called the Lagrangian Gr
mannian~cf. Ref. 9!. Its natural stratification, allowing us to indicate the global structure

a!Electronic mail: janeczko@ipe.pw.edu.pl
56420022-2488/2000/41(8)/5642/14/$17.00 © 2000 American Institute of Physics
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Lagrangian submanifolds and their singularities, is constructed as follows.
Let us fix aPLn . By Ln

a , we denote the set of all Lagrangian subspaces inLn that are not
transversal toa. We haveLn

a5øk51
n Ln,k

a ,

Ln,k
a 5$bPLn ;dim~bùa!5k%

and

dimLn,k
a 5

n~n11!

2
2

k~k11!

2
>3, ~1!

if k.1.
Ln

a may be oriented by choosing the vectors fromTL
n
aLn transversal toLn

a , formed by

symmetric bilinear quadratic forms on elementslPLn
a , which are positive definite onaùl. So

Ln
a with this orientation represents a singular cycle that is Poincare´ dual to the universal Maslov

class~cf. Ref. 10!.
Now we pose the following problem:Does there exists a similar (to that of the standa

classification of Lagrangian singularities in a cotangent bundle) classification of Lagran
submanifolds and their singularities in the product symplectic space exploiting the cano
product structure?Approaching the answer for this question we investigate the canonical s
fication ~i.e., a partition into smooth submanifolds as it was done forLn above! of the Lagrangian
GrassmannianL2n in the product symplectic space, induced by the product structure. This s
fication naturally appears in the theory of linear symplectic relations and is especially imp
for searching the geometric structure of the images by symplectic relations~cf. Refs. 7 and 11!. In
Sec. II we prove that any linear symplectic relation in the product space is a compositi
reduction relation and a symplectomorphism. By this decomposition propertyL2n is stratified and
the codimension formulas are calculated. In Sec. III, the first step into the theory of classifi
of germs of nonlinear symplectic relations is done, and the generic appearance of some s
points is proved. In the last section the action ofL2n onto elements ofLn is considered in the
framework of unitary groupU(2n) and homogeneous spaceU(2n)/O(2n) representingL2n ~cf.
Refs. 10 and 9!. In the nonlinear case of symplectic relations the iterational cohomological s
plectic invariant was introduced and its cohomological properties were described. By the
theory approach~cf. Refs. 12 and 13!, the number of two-point and three-point~defined on
two-point and three-point periodic orbit of symplectic relation! symplectic invariants were esti
mated from below for a possibly nonconvex billiard system and systems of equally ch
particles on the surface. To conclude, we note that this paper had its origin in an attempt to fi
possible complete classification of symplectic invariants by action of generalized symplectic
pings ~cf. Ref. 7!. The results here show that there is an open area for such invariants
applications to classical physical problems.

II. LAGRANGIAN GRASSMANNIAN IN THE PRODUCT SYMPLECTIC SPACE

Now we consider the linear product symplectic space,

M5~M3M ,p2* v2p1* v!,

where (M ,v) is a 2n-dimensional symplectic vector space. ByL2n we denote the Lagrangia
Grassmannian of linear subspaces inM. By M1 andM2 we denote the symplectic spaces cano
cally placed inM, M15M3$0%, M25$0%3M . Equivalently, we write

~M13M2 ,p2* v22p1* v1!,

for M, where
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v25p2* v2p1* vu$0%3M , 2v15p2* v2p1* vuM3$0% .

At first, we have the natural decomposition.
Lemma II.1: If LPL2n , then L is transversal to M1 and to M2 simultaneously, or L is not

transversal to M1 and L is not transversal to M2 .
Proof: If L is transversal toM2 then it may be parametrized byM1 so L is a graph of a

maximal rank symplectic mappingM1→M2 and so has to be transversal toM1 ~one can replace
M2 by M1 in this argument!. If L is not transversal toM1 , then assuming thatL is transversal to
M2 on the basis of the previous argument we get the transversality ofL to M1 , which contradicts
to our assumption. h

By the critical subset ofL2n we denote the setCL2n of those Lagrangian subspaces ofM,
which are not transversal simultaneously to both subspacesM1 andM2 :

CL2n5$LPL2n :L is not transversal toM1 and L is not transversal toM2%.

Elements ofCL2n cannot be obtained as the graphs of linear symplectic transformations be
M1 andM2 .

By supercritical set ofL2n we denote the Cartesian product,

SL2n5Ln3Ln .

The elements of this set are Lagrangian subspacesL5(W1 ,W2), whereW1 andW2 are Lagrang-
ian subspaces in (M1 ,v1) and (M2 ,v2), respectively.

By the formula dimLn5n(n11)/2, we find

codimSL2n5n2.

If R1,(M13M2 ,p2* v22p1* v1) is a Lagrangian subspace~linear symplectic relation!, then
we define the corresponding transpose Lagrangian subspaceR1

t in (M23M1 ,p1* v12p2* v2),

R1
t 5$~v2 ,v1!PM23M1 ;~v1 ,v2!PR%.

If we have another Lagrangian subspace, sayR2 in the product space (M23M3 ,p3* v3

2p2* v2), then we define the composition ofR1 and R2 , R2+R1 as the following Lagrangian
subspace:

R2+R15$~v1 ,v3!PM13M3 ;'v2PM2
~v1 ,v2!PR1 ,~v2 ,v3!PR2%,

in the product symplectic space (M13M3 ,p3* v32p1* v1).
Proposition II.1: If LPCL2n then L has the following decomposition:

L5R2
t +L̃+R1 ,

where L̃, R1 , R2 are linear Lagrangian subspaces:

L̃,~M̃13M̃2 ,p2* ṽ22p1* ṽ1!, R1,~M13M̃1 ,p2* ṽ12p1* v!,

R2,~M23M̃2 ,p2* ṽ22p1* v!,

and R1 , R2 are graphs of projectionsr1 and r2 onto M̃1 and M̃2 , respectively,

r1* ṽ15vup1(L) , r2* ṽ25vup2(L) .

The symplectic formsṽ1 , ṽ2 are defined uniquely by the above formulas, and L˜PL2n22k

2CL2n22k , for some kPN.
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Proof: If LPCL2n then, by Lemma II.1 we havep1(L)#V1 , p2(L)#V2 , whereV1 , V2 are
hypersurfaces inM1 and M2 , respectively. If there is an equality above thenV1 and V2 are
coisotropic, so we have the natural projectionsr i along the symplectic polarsV1

/,V1 , V2
/,V2

onto the symplectic reduced spacesM̃15(V1 /V1
/ ,ṽ1), M̃25(V2 /V2

/ ,ṽ2). The symplectic polar
to the subspaceV,(M ,v) is defined to be the subspaceV/5$vPM ;v(v,u)50,;uPV%. So we
representL uniquely by two hyperspacesVi and the Lagrangian subspaceL̃PL2n22 in (M̃1

3M̃2 ,p2* ṽ22p1* ṽ1). If L̃PCL2n22 , then we may proceed in an analogous way and obtain
noncritical representation forL̃. h

Example II.1: If n52 we have only two strata of the singular set CL4 : Elements of the first
maximal stratum C1L4 are determined by the pairs of two coisotropic subspaces, V1 in M1 and
V2 in M2 and the symplectic linear maps between the corresponding reduced symplectic s
It is easy to calculatedimC1L459. The second stratum is the supercritical set SL4 , and its
dimensiondimSL456.

In general, we have the following result concerning the structure of the singular setCL2n .
Theorem II.1: There is the following partition of the singular set CL2n into the smooth

submanifolds,

CL2n5 ø
k51

n

CkL2n ,

where the elements of CkL2n are determined by the pairs of two coisotropic subspaces V1 in M1

and V2 in M2 of codimension k and the symplectic linear automorphism of
2n22k-dimensional symplectic space. In this partition CnL2n5SL2n .

Proof: In fact, it follows from the property that the projection ofLPL2n onto M1 andM2 is
always coisotropic~or Lagrangian!. Thus, starting from the hypersurfaces we see that the co
spondingL̃PL2n22 , in the product of reduced symplectic spaces~as it was proved in the Propo
sition II.1!, projects onto these spaces or onto their hypersurfaces in the more degenerate
Repeating this argument for further representations ofL, we get the natural decomposition b
equally dimensional coisotropic subspaces and linear symplectic maps in, respectively, s
dimensional symplectic space. h

Corollary II.1:

codimCkL2n5k2, k51,...,n.

Proof: We calculate the dimension of the isotropic GrassmannianI k
2n of k-isotropic planes in

2n-dimensional symplectic spaceV ~cf. Ref. 14!,

dim I k
2n52nk2 1

2 k~3k21!.

This is the dimension of the corresponding space of 2n2k-dimensional coisotropic subspaces
V. Since dimL2n52n21n, we get

codimCkL2n5dimL2n22 dimI k
2n2dim~L2n22k!

5n~2n11!22„2nk2 1
2 k~3k21!…2~n2k!~2n22k11!5k2.

h

In comparison to the inequality~1!, we have

codimCkL2n>4,

if k.1.
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III. LOCAL CLASSIFICATION OF SYMPLECTIC RELATIONS

Let (L,p) be germ of a symplectic relation~Lagrangian submanifold! in M. Now we intro-
duce the natural equivalence group acting on the space of such germs.

Definition III.1: We say that the two germs(L1 ,p1), (L2 ,p2) of symplectic relations inM
are equivalent if there exist two symplectomorphism germs B1 :„M1 ,p1(p1)…→„M1 ,p1(p2)… and
B2 :„M2 ,p2(p1)…→„M2 ,p2(p2)… such that the symplectomorphism B13B2 of M sends L1 into
L2 and p1 into p2 .

For the symplectic relationL,M, we define the corresponding symplectic Gauss map,

G:L{p→TpLPL2n .

We call L to be, in general, position@or generic~cf. Ref. 15!# if G is transversal toCL2n

5øk51
n CkL2n . We say thatL has ak-vertical positionat pPL if G(p)PCkL2n . We call k a

rank of k-vertical position. A 0-vertical position corresponds to the case whenL is a graph of a
local symplectomorphism atp, i.e., G(p)PL2n2CL2n . For genericL the isolated points of
vertical position appear only ifn52s2, for somesPN. In this case they are isolated points in th
2s-vertical position. In their neighborhood there arek-vertical positioned points withk<2s.
Following the standard representation of Lagrangian germs~cf. Ref. 16! we have the following
preparatory lemma.

Lemma III.1: For any germ of a Lagrangian submanifold(L,p),M there are local cotan-
gent bundle structures aroundp1(p), say T* X and aroundp2(p), say T* Y, such that(L,p) is
generated in

M>~T* X3T* Y,p2* vY2p1* vX!,

by a germ of a generating function F:(X3Y,pX3Y(p))→R, such that, in local coordinates on
(X3Y,pX3Y(p)) we have

F~x,y!5 (
i j 51

n

xiyjf i j ~x,y!, ~2!

where vX and vY are the corresponding Liouville symplectic structures on T* X and T* Y,
respectively.

Proof: If „(p,q),(p̃,q̃)… are Darboux coordinates onM, then we find the partitionI øJ

5$1,...,n%, I ùJ50” , Ĩ ø J̃5$1,...,n%, Ĩ ù J̃50” , such that there exists a smooth functio
S(pI ,qJ ,p̃Ĩ ,q̃J̃), which is a generating function for (L,p) ~cf. Refs. 5 and 16, Sec. III.19.3!. By
the symplectomorphism

F~p,q; p̃,q̃!5~2qI ,pJ ,pI ,qJ ;2q̃Ĩ ,p̃J̃ ,p̃Ĩ ,q̃J̃!5~j,x;h,y!,

which preserves the product structure ofM, we find the generating functionF(x,y) for (L,p) in
the canonical special symplectic structureT* X3T* Y on M. The coordinates (j,x)PT* X,
(h,y)PT* Y are new coordinates on the cotangent bundles in which (L,p) is generated by the
generating functionF. Then, further on, using the symplectomorphisms ofM1 andM2 preserving
the corresponding cotangent bundle structures, we obtain the reduced form~2! of functionF. We
recall thatL is described by the following equations:

h i5
]F

]yi
~x,y!, j j52

]F

]xj
~x,y!, 1< i , j <n.

h

Theorem III.1: Let pPL and we assume that the Lagrangian submanifold L, around p, is
generated by the generating function in the normal form (2). Then we have the following.
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~1! Rank of the vertical position of L at p is equal to the corank of the matrix(f i j

5]2F/]xi ]yj ) at pX3Y(p).
~2! At each pPL, for a generic L, the family of mappings,

F:X3Y→Rn, F~x,y!5S (
j 51

n

yjf1 j~x,y!,...,(
j 51

n

yjfn j~x,y!D ,

wheref i j (x,y) are defined in Eq. (2), has a generic singularity atpX3Y(p).

Proof:

~1! Any linear relationL, by Lemma III.1, is equivalent to one generated by the quadratic f
( i j 51

n xiyjai j . So the dimension of the kernel of the matrix (ai j ) is exactly equal to the rank
of verticality of L. This is a local symplectic invariant of (L,p) that does not depend on th
choice of the corresponding cotangent bundle structures.

~2! By Lemma III.1, any relationL is locally generated by the generating functionF(x,y)
5( i j xiy jf i j (x,y), and by the form of functionF uniquely represented by a smooth family
mappings,

F~x,y!5„f̂1~x,y!,...,f̂n~x,y!…,

such thatF(x,0)[0. We see that the Gauss mapG:L→TpL corresponds exactly to the one-j
extensionj 1F(x,y) of the mappingF, so the transversality ofG is equivalent to the correspond
ing transversality ofF to the canonical stratification of smooth mappings ofRn3Rn into Rn ~cf.
Refs. 15, 16!. h

Corollary III.1: At any point pPL of the 0-vertical position of L, symplectic relation L is
parallelizable, i.e., it is locally symplectically equivalent to its tangent space TpL with the follow-
ing generating function:

F~x,y!5(
i 51

n

xiyi .

Remark III.1: If n52 then the supercritical points appear in generic L as the isolated poi
in fact codim C2L454, and G is transversal to SL45C2L4 (see Example II.1). If pPL is a
supercritical transversal point then on the basis of Lemma III.1, on a neighborhood of p, L is
generated locally by the following generating function:

F~x,y!5 (
i j 51

2

xiyjf i j ~x,y!,

wheref i j (0,0)50, i j 51,2, p50, and the transversality condition is equivalent to

rankDF~0!54,

whereF(x,y)5„f i j (x,y)…PM232 .
If we need to iterate a symplectic relationL we have to use the symplectic equivalence gro

preserving the canonical product structure ofM5(M3M ,p2* v2p1* v). We say that the two
germs (L1 ,p1), (L2 ,p2),M, wherep1(pi)5p2(pi)5 p̃i , i 51,2, are D-equivalent~diagonal
equivalence! if there exists a symplectomorphism germB:(M ,p̃1)→(M ,p̃2) such that (B3B)
3(L1)5L2 . Using the notation of the composition of symplectic relations, we can write

L25B̂+L1+B̂t.

Now slightly extending the proof of Lemma III.1, we have the following result.
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Lemma III.2: For any germ(L,p),M there exists a local cotangent bundle structure T* X
(D equivalence) aroundp1(p), such that(L,p) is generated in

M>~T* X3T* X,p2* vX2p1* vX!,

by a Morse Family germ F:(X3X3Rk,0)→R @we assumedp1(p)50#,

F~x,y,l!5(
i 51

n

xif i~x,y,l!, ~3!

such that k<dimX. If the integer k is minimal then it is an invariant of D-equivalence symple
group action.

We see that the linear symplectic relations inM are classified by the classes of line
mappings,

F5~f1 ,...,fn!:Rn3Rn3Rk→Rn,

extracted from the normal form~3!, with the standard equivalence relation

J:~x,y,l!→„A~x!,Y~y!,L~x,y,l!…,

where the equivalent mapping, sayF8, is given by

F8~x,y,l!5ATF„A~x!,B~y!,L~x,y,l!….

Remark III.2: An important source of the nontrivial symplectic relations is given by the
and MKdV hierarchies of nonlinear differential equations (cf. Ref. 2). The main example i
Darboux relation (correspondence). If we consider the Schro¨dinger operator,

L52D21u52~D1 f !~D2 f !52D21~ f 22 f 8!,

and its isospectral deformation,

L̃52D21v52~D2 f !~D1 f !52~D1g!~D2g!52D21g81g2 S D5
d

dxD ,

then we get the Darboux relation

2 f 81 f 25g81g2,

in the product of two copies of function spaceF of variable x, endowed with the difference of th
Poisson structures,

$F,G%5E dF

d f
D

dG

d f
dx,

where F@ f #,G@ f # are the functionals onF.
For the Schro¨dinger operator2D21u there is an infinite hierarchy of isospectral flows, wi

a corresponding set of integrals Ik@u#5*Lk(u,ux ,uxx ,...)dx. The first integrals expressed b
f -variable can be written in the form

Hk@ f #5E Lk~ f , f x , f xx ,...!dx;

H0@ f #5E ~ f x1 f 2!dx, H1@ f #5
1

2 E ~ f x
212 f xf 21 f 4!dx,
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H2@ f #5E S 1

2
f xx

2 15 f 2f x
21 f 61S f f x

21
3

5
f 5D

x
D dx.

The Darboux transformation preserves these integrals and gives the difference of the inte
that is the x derivative, i.e.,

Lk@ f #2Lk@g#5
d

dx
F̄k@ f ,g#, ~4!

where F̄k@ f ,g# are differential polynomials. Now we restrict the problem to n jets of function
x, so L5L( f , f x ,...,f x...x

(n) ) and provide the symplectic reduction to finite-dimensional symple
space by reduction of functional parameter; dH/d f 50, which gives the finite-dimensional re
duced space and indicates the symplectic structure from the formula

dL5
dH

d f
d f1

d

dx(
i

pi dqi ,

where q15 f , q25 f x ,...,qn5 f (n21). Thus, after restriction of Darboux transformation f→g to
the ‘‘stationary hypersurface’’dH/d f 50, on the basis of (4), we get the symplectic relation

d

dx S (
i

pi dqi2(
j

Pj dQj D 5
d

dx
dF̄,

generated by the Morse family S:

(
i

pi dqi2(
j

Pj dQj5dS.

As an example one can consider the integrand (cf. Ref. 2),

L5 1
2 ~ f x

21 f 4!1 1
2 a f21b f ,

where a, b are real parameters. In the symplectic variables q5 f , p5 f x , Q5g, P5gx , the
corresponding Darboux relation is generated by the function

S~q,Q!5 1
3 ~q31Q3!1 1

2 a~Q1q!1b log~q1Q!.

IV. ACTION AND ITERATION OF SYMPLECTIC RELATIONS

Let L,M be a symplectic relation andS,(M ,v) be a subset ofM . Then we define the
image ofS by L;

L~S!5$pPM :'p8PS ,~p8,p!PL%.

Obviously this action ofL on subsets ofM preserves all their symplectic properties. Thus, ifS is
Lagrangian, isotropic, or coisotropic, thenL(S) is also Lagrangian, isotropic, or coisotropi
respectively, unless it is singular~cf. Refs. 7, 17, and 18!.

Now we consider the linear case, and assumeS is a Lagrangian subspace. As a canonical p
we define (l ,L), whereLPL2n and l PLn .

Proposition IV.1: There is a natural mapping,

H:Ln3L2n→Ln , H~ l ,L !5L~ l !.
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Proof: We have to check thatL( l ) is a Lagrangian subspace of (M ,v). Indeed, we can
choose the cotangent bundle fibration onM and representl and L by generating families, say
(l,q1)→G(l,q1) for l and (m,q1 ,q)→F(m,q1 ,q) for L. Then the generating family for the
imageL( l ) is defined by

H~m,n,l,q!5F~m,n,q!1G~l,n!.

By the standard reduction of~m,n,l!-Morse parameters, we get the generating family forL( l ) in
the form ~cf. Refs. 16 and 5!

H>F̃~r,q!5 f ~q!1(
i 51

k

r igi~q!,

wheref is a quadratic form andg(q)5„g1(q),...,gk(q)… is a linear mapping,g(q)5Aq. Now we
easily see that the space

H ~p,q!PM :'rPRk:p5
]F̃

]q
~r,q!,05

]F̃

]r
~r,q!J

is ann-dimensional Lagrangian subspace of (M ,v) because dim(KerA)1dim(ImA)5n. h

Another view on the imageL( l ) is given through the unitary group reconstruction of Lagran
ian subspaces~cf. Ref. 9!. We write

L5H S A
BD S a1

•

a2n

D , a iPRJ ,

where

S A
BDPU~2n!.

The corresponding projections onto the first and the second component ofM are given in the form

Lt~M !5H AS a1

•

a2n

D ,a iPRJ 5p1~L !,

L~M !5H BS a1

•

a2n

D ,a iPRJ 5p2~L !.

If l is given in the form

l 5H GS b1

•

bn

D ,b iPRJ ,

whereGPU(n). Then, at first, we define the subspaceV(A,G) ,

R2n.V(A,G)5H a:'bPRnAS a1

•

a2n

D 5GS b1

•

bn

D J ,
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and finallyL( l ) is defined in the following way:

L~ l !5H BS a1

:
a2n

D ;aPV(A,G)J ,

where we denotea5(a1 ,...,a2n), andb5(b1 ,...,bn).
The mapping

r:L2n{L→H~ l 0 ,L !5L~ l 0!PLn ,

where l 0 is a fixed element ofLn , is a fiber bundle projection. LetL be represented by (B
A)

PU(2n), where we denote byA5A11 iA2 , B5B11 iB2 the decomposition ofA andB complex
matrices.

Proposition IV.2: The fiber ofr is defined by(B
A)PU(2n), such that we have the following.

~1! rank (B2

A2)<n.

~2! A1 and B1 are surjective on V5Ker(A2

B2).

Proof: It is enough to find suchLPL2n , that L( l 0)5 l 0 . Choosel 05$(q1 ip)PM :p50%,
then we get the condition

S A
BD S a1

:
a2n

D PR2n,

and surjectivity of A1 and B1 on the Kernel of (B2

A2) corresponds to the property thatl 0

5Rn,Cn is mapped byL onto l 0 . h

Now using the Proposition II.1 we investigate the geometric structure of an imageL( l ).
Proposition IV.3: Any image of lPLn by LPL2n is a Lagrangian subspace l8 of a coisotro-

pic space L(M )5p2(L),(M ,v). Thus, it is a counterimage, by a canonical reducti

L(M )→
p

L(M )/L(M )/ of some Lagrangian subspace in the reduced symplectic s
„L(M )/L(M )/,ṽ…, p* ṽ5vuL(M ) .

Proof: We defineLt(M )5p1(L), L(M )5p2(L), which are the coisotropic subspaces of t
same codimension in both components ofM. L(M ) is a coisotropic space, so the Kernel ofp1uL
projected ontoL(M ), by p2 , is a symplectic polar ofL(M ), andvice versathe Kernel ofp2uL

projected ontoLt(M ), by p1 , is a symplectic polar ofLt(M ). Thus, for the pair (l ,L), in any
common position, the imageL( l ) is a Lagrangian subspace of the coisotropic spaceL(M ). h

Remark IV.1:

~1! The mappingr is smooth on all strata ofL2n5GSp2nøøk51
n CkL2n , where GSp2n denotes

the graphs of symplectomorphisms. Only on these strata can we pull back the uni

Maslov class@r* m#, (L2n.GSp2n→
r

Ln →
det2

S1) (cf. Refs. 10 and 9).
~2! In the smooth nonlinear case, L( l ) is always isotropic on his smooth strata. The correspon

ing local generating family is of the form (cf. Ref. 7)
H~l,m,n,q!5G~l,m!1F~n,m,q!,

where G(l,q1) is a generating Morse family for l and F(n,q1 ,q) is a generating Morse
family for L. We notice that H is not necessary Morse family so the corresponding image( l )
may not be smooth.

There is an interesting symplectic invariant prescribed to the symplectic relation and bas
the cohomological properties of the relation~cf. Refs. 19 and 20!. Now we will assume that the
Lagrangian submanifoldL,M is compact~with boundary!, and the first cohomology group
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H1(L,R) is trivial. Instead of (M1 ,v1), (M2 ,v2) we take two copies of the same symplec
manifold (M ,v). For any choice of 1-forma, such thatv5da, the 1-formp2* a2p1* auL is exact
and

p2* a2p1* auL5dH, ~5!

for some smooth generating functionH:L→R.
If a1 is another choice of a 1-form for whichda15v, then d(a12a)50 and a12a

5dG, for some smooth functionG:M→R ~whereM has a boundary or is not compact!. For a
new underlying 1-forma1 , the Lagrangian submanifoldL has another generating functio
H1 :L→R, such that

p2* a12p1* a1uL5dH1 . ~6!

Proposition IV.4: The generating functions H1 and H defined by the formulas (6) and (5) a
joined by the following relation:

H15H1~p2* G2p1* G!uL . ~7!

Proof: Subtracting formula~5! from the formula~6!, by sides, we get

p2* ~a12a!1p2* ~a12a!5d~H12H !,

and becausea12a5dG we get finally

d~p2* G2p2* G!5d~H12H !.

If we normalize the additive constants in the definitions ofH, H1 , andG, we obtain the formula
~7!. h

Now we consider the multiple, iterated images by the relationL. Let s5$(x0 ,x1)
PL,(x1 ,x2)PL,...,(xk21 ,x0)PL,%. We will call s the periodic orbit ofL. We will associate
with s the following number:

N~s!5 (
i 50

k22

H~xi ,xi 11!1H~xk21 ,x0!.

Now using the formula~7! we have a natural property ofN(s) ~cf. Ref. 19!.
Corollary IV.1: N(s) is an invariant with respect to the action of the group of symplec

morphisms operating on(M ,v).
If L5graphF, whereF:(M ,v)→(M ,v) is a symplectomorphism, then the set of numb

$N(s)%, where s is any periodic orbit ofF is called the spectrum ofF. This spectrum is
extensively studied ifF is a billiard mapping associated with the convex region inRn ~cf. Refs. 20
and 8!. In the case of a graph, the formula~7! reduces to the following one:

H15H1F* G2G,

where

F* a2a5dH,

and the iterational invariant to the periodic orbit ofF, s5$x0 ,x1 ,...,xk21% is given in the form

N~s!5 (
i 50

k21

H~xi !.
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As an example, we consider the billiard symplectic map. LetV be a smooth compact conve
region inRn. Let X be the boundary ofV andT* X the cotangent bundle ofX. The symplectic
billiard map B:T* X→T* X is defined on the setU5$(x,j)PT* X:uju,1%. To the point (x,j)
PU we prescribe the point (x8,j8)PU in the following way. Letn(x) be the outward unit norma
vector toX at x. There is a unique, unit elementh̃P(Rn)* such that̂ h̃,n(x)&,0 and ^h̃,v&
5^j,v& for all vPTxX, where we identifyTxX with the corresponding subspace inRn. To a given
(x,j) there existsx8PX, which is the unique point of intersection ofX with the positive line
segment;x85Xù$x1th,t.0%, whereh is a unique vector inRn corresponding toh̃, andj8 is
defined as the unique element ofTx8

* X for which we havê h,v&5^j8,v& for all vPTx8X. Obvi-
ously B(x,j)5(x8,j8) is symplectic and the generating function for graphBP(T* X
3T* X,p2* uX2p1* uX) is defined as the perimeter,

H̃:X3X→R, H̃~x,x8!5ux82xu,

whereuX is the Liouville one-form onT* X. By the projectionpX3X :T* X3T* X→X3X and the
smooth map

r:T* X→T* X3T* X, r~x,j!5~x,2j,x8,j8!,

we get the functionH:T* X→R, H5r* pX3X* H̃ such thatB* uX2uX5dH, which gives the
symplectic invariant

N~s!5 (
i 50

k21

H~xi ,j i !,

for the periodic orbits5$(x0 ,j0),...,(xk21 ,jk21)%, which is the length

ux12x0u1¯1ux02xk21u

of the closed geodesic of the billiard system and defines, for all closed geodesics, the
spectrum ofV ~cf. Ref. 8!.

In general, if we assume that

L,M5~T* X3T* X,p2* vX2p2* vX!

is generated by the smooth generating functionF:(x,y)→F(x,y), then the invariantN(s) defined
on the periodic orbit ofL,

pX3X~s!5$~x0 ,x1!,~x1 ,x2!,...,~xk21 ,x0!%

is the critical value of the function

G:X3...3X→R, G~ x̃0 ,x̃1 ,...,x̃k21!5F~ x̃0 ,x̃1!1F~ x̃1 ,x̃2!1¯1F~ x̃k21 ,x̃0!,

for which pX3X(s) is a critical point.
Definition IV.1: By$N(s)%k we denote the set of symplectic invariants for k-point perio

orbits. We will call them k-point symplectic invariants.
For the general billiard system the Lagrangian submanifoldL may not be the graph of an

symplectomorphism. Letf:X→Rn be an imbedding of a closed orientable surface and we ass
that it is generic, i.e., the function

H̃f~x,y!5uf~x!2f~y!u,

defined onX3X outside of the diagonalD has only nondegenerate critical points onX3X2D.
We easily see that the critical points ofH̃f are, in fact, the two-point orbits or double normals
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the possibly nonconvex billiard system. The corresponding invariants are the critical valu
H̃f . Using the Morse theory methods, Morse inequalities,~cf. Refs. 13, 12, Theorem 1!, we
obtain an estimation for the number of k-point invariants for small k.

Theorem IV.1: If f is a generic imbedding of a surface of genus g, then we have the
following lower bound for the number of two-point symplectic invariants:

#$N~s!%2>2g213g13.

For the generic billiards on the plane we have at least two two-point symplectic invarian
the case of an ellipsoid,g50, with the three unequal axes #$N(s)%253. If this is an imbedding
of the torus we have at least eight two-point symplectic invariants of the toruslike billiard sy
In three-dimensional billiard systems, the lower bound for #$N(s)%2 is expressed by the first Bet
numberd1 of X. In fact, if f:X→Rn is generic, then the lower bound is given by the numbe

2d1
213d114, if d1 is even,

or

2d1
213d115, if d1 is odd.

If X5Sn21 then we have #$N(s)%2>n.
Now we consider an imbeddingf:X→Rn, which is generic with respect to the generati

function

Vf~x,y!5
1

uf~x!2f~y!u
,

defined outside of the diagonalD. The corresponding symplectic relationL̃,M, defined byVf ,
provides the geometric setting for finding the equilibrium positions of equally charged particl
an imbedded surface in Euclidean space. The iterational symplectic invariantsN(s) define the
least potential energy of the number of charged particles in equilibrium onX. The two-point
symplectic invariants forL̃ exactly correspond to the double normals—equilibrium positions
the two equally charged particles—and thus the corresponding lower bounds are analogous
established for the billiard system in Proposition IV.1. The three-point invariants are defin
the critical points of the function,

Vf
(3)~x,y,z!5

1

uf~x!2f~y!u
1

1

uf~y!2f~z!u
1

1

uf~z!2f~x!u
,

defined outside the total diagonalD in X3X3X and generic. Now, following the further Morse
theory estimations obtained in Ref. 12~Theorem 3!, we get the following lower bound for the
number of three-point symplectic invariants ofL̃.

Theorem IV.2: If f:X→Rn is a generic imbedding of a surface of genus g, then we have the
following lower bounds:

#$N~s!%3>~4g318g216g112!/3, for gÞ52~mod 3!,

or

#$N~s!%3>~4g318g216g114!/3, for g52~mod 3!,

if gÞ51 or #$N(s)%3>11 if g51.
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Analogies between finite-dimensional irreducible
representations of SO „2n … and infinite-dimensional
irreducible representations of Sp „2n ,R…. II. Plethysms
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The basic spin difference characterD9 of SO(2n) is a useful device in dealing with
characters of irreducible spinor representations of SO(2n). It is shown here that its
kth-fold symmetrized powers, or plethysms, associated with partitionsk of k fac-
torize in such a way thatD9^ $k%5(D9) r (k)Pk , wherer (k) is the Frobenius rank
of k. The analogy between SO(2n) and Sp(2n,R) is shown to be such that the
plethysms of the basic harmonic or metaplectic characterD̃ of Sp(2n,R) factorize
in the same way to giveD̃ ^ $k%5(D̃) r (k)P̃k . Moreover, the analogy is shown to
extend to the explicit decompositions into characters of irreducible representations
of SO(2n) and Sp(2n,R) not only for the plethysms themselves, but also for their
factorsPk andP̃k . Explicit formulas are derived for each of these decompositions,
expressed in terms of various group–subgroup branching rule multiplicities, par-
ticularly those defined by the restriction from O(k) to the symmetric groupSk .
Illustrative examples are included, as well as an extension to the symmetrized
powers of certain basic tensor difference characters of both SO(2n) and Sp(2n,R).
© 2000 American Institute of Physics.@S0022-2488~00!02608-6#

I. INTRODUCTION
In a preceding paper1 ~hereafter referred to as KWI! the analogy between finite-dimension

representations of SO(2N) and infinite-dimensional representations of Sp(2n,R) was made highly
explicit at the level of the characters of these representations and the decompositions o
various tensor products and powers. However, as pointed out in KWI a central problem in m
applications of Sp(2n,R) to various models of physical systems such as nuclei2,3 and quantum
dots4,5 is the resolution of tensor powers of the fundamental metaplectic representation whic

character6,7 D̃. Considerable progress8–11 has been made on this problem, which amounts to

evaluation of symmetrized powers, or plethysms, ofD̃. Here we tackle this problem by empha
sizing the remarkable analogies discussed in KWI that exist between SO(2n) and Sp(2n,R). In

this context the precise analog of the basic metaplectic character,D̃, of Sp(2n,R) is the basic
spin-difference character,12,13 D9, of SO(2n). While progress14–16 has also been made on th
problem of evaluating plethysms of such characters of SO(2n), the aim here is to draw on th
analogy that exists between the two problems so as to solve both problems in a unified m

Our notation follows that developed in KWI and in references contained therein. In the ca
the orthogonal group O(2n) the spin representation of dimension 2n with characterD decomposes

a!Electronic mail: rck@maths.soton.ac.uk
b!Electronic mail: bgw@phys.uni.torun.pl
56560022-2488/2000/41(8)/5656/35/$17.00 © 2000 American Institute of Physics
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on restriction to the proper orthogonal group SO(2n) into a direct sum of two irreducible repre
sentations each of dimension 2n21 with charactersD1 andD2 .

The relevant character formulas for SO(2n) take the form:

D5D11D25)
i 51

n

~xi
1/21xi

2 1/2!, ~1.1a!

D95D12D25)
i 51

n

~xi
1/22xi

2 1/2!, ~1.1b!

wherexi andxi
21 for i 51,2,...,n are the eigenvalues of an arbitrary group element of SO(2n). At

the identity elementI we havexi51 for i 51,2,...,n so that dimD52n while dimD950.
The sumD̃ and differenceD̃9 characters of the infinite-dimensional irreducible represen

tions of Sp(2n,R) are given by

D̃5D̃11D̃25)
i 51

n

~xi
2 1/22xi

1/2!21, ~1.2a!

D̃95D̃12D̃25)
i 51

n

~xi
2 1/21xi

1/2!21, ~1.2b!

where nowxi and xi
21 for i 51,2,...,n are the eigenvalues of an arbitrary group element

Sp(2n,R).
The symmetric and antisymmetric squares ofD andD9 are given by14–16

D ^ $2%5@1n#11@1n#21 (
x50

`

~@1n2124x#1@1n2324x#12@1n2424x# !, ~1.3a!

D ^ $12%5 (
x50

`

~@1n2124x#12@1n2224x#1@1n2324x# !, ~1.3b!

D9^ $2%5@1n#11 (
x50

`

~21!11x@1n212x#, ~1.3c!

D9^ $12%5@1n#21 (
x50

`

~21!11x@1n212x#, ~1.3d!

where @1k# is the character of thekth fold antisymmetrized power of the defining irreducib
representation@1# of SO(2n). These representations are irreducible fork51,2...,n21, while for
k5n we have@1n#5@1n#11@1n#2 .

Similarly, the symmetric squares ofD̃ and D̃9 are given by9–11

D̃ ^ $2%5^1~0!&1 (
x50

`

^1~x!&, ~1.4a!

D̃ ^ $12%5^1~0!&* 1 (
x50

`

^1~x!&, ~1.4b!
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D̃9^ $2%5^1~0!&1^1~0!&* 1 (
x50

`

~2^1~114x!&2^1~314x!&12^1~414x!&!, ~1.4c!

D̃9^ $12%5 (
x50

`

~2^1~114x!&12^1~214x!&2^1~314x!&!, ~1.4d!

where^1(m)& is the character of a certain harmonic series infinite-dimensional irreducible r
sentations of Sp(2n,R) and the asterisk signifies the associate11 of an irreducible representation o
Sp(2n,R).

Comparison of~1.1! and~1.2! gives a formal connection between the charactersD andD9 of
SO(2n) and the charactersD̃ andD̃9 of Sp(2n,R). The formal connection is brought home rath
forcibly in ~1.3! and~1.4! through the analogy between the symmetrized squares ofD andD̃9, and
between those ofD9 and D̃. It is the latter analogy which is explored further here through so
observations on the somewhat unexpected factorization of the plethysmsD9^ $k% of SO(2n) and
D̃ ^ $k% of Sp(2n,R).

For SO(2n), since16

D6D65@1n#61 (
x50

`

@1n2222x#, D6D75 (
x50

`

@1n2122x#, ~1.5!

it follows that ~1.3c! and ~1.3d! can be written in the form:

D9^ $2%5D9D1 , D9^ $12%52D9D2 , ~1.6!

with

dim~D1!52n21, dim~2D2!522n21. ~1.7!

These factorizations and the accompanying dimensionality formulas may appear somewha
markable, however, it is also the case that16

D9^ $21%5D9(
x50

`

~21!x~2@1n2123x#1@1n2223x# !, ~1.8!

with

dimS (
x50

`

~21!x~2@1n2123x#1@1n2223x# !D 523n21. ~1.9!

This factorization and the accompanying dimensionality formula is far from trivial to derive
taken in conjunction with~1.6! and~1.7! it is tempting to explore to what extent one might ha

D9^ $k%5D9Pk , ~1.10!

with Pk both belonging to the ring overZ of characters of irreducible representations of SO(2n)
and having dimension given by

dimPk56kn21, ~1.11!

wherek is a partition ofk.
Similarly for Sp(2n,R) it is known that9
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D̃6D̃65^1~0!&61 (
x50

`

^1~212x!&, D̃6D̃75 (
x50

`

^1~112x!&, ~1.12!

where it has been convenient to denote^1(0)& and ^1(0)&* by ^1(0)&1 and ^1(0)&2 , respec-
tively. It then follows that~1.4a! and ~1.4b! can be written in the following form:

D̃ ^ $2%5D̃D̃1 , D̃ ^ $12%5D̃D̃2 . ~1.13!

Once again we have a rather trivial looking factorization leading us to seek an Sp(2n,R) analog
of ~1.10! of the form

D̃ ^ $k%5D̃P̃k , ~1.14!

whereP̃k belongs to the ring overZ of characters of irreducible representations of Sp(2n,R), but
now we would expect

dim P̃k5`. ~1.15!

Before embarking on the evaluation of the plethysms of interest here, namelyD9^ $k% and
D̃ ^ $k%, some general formulas are given in Sec. II for the evaluation of arbitrary plethysms
form S^ $k%, emphasizing the advantages that follow from expressing the partitionk in Frobenius
notation and from distinguishing between even and odd weight contributions to series ofS func-
tions. In conjunction with a crucial proposition due to Scharf and Thibon,17 rederived here in Sec
II, some of these formulas are then used in Sec. III to evaluate quite explicitly the pleth
D9^ $k% andD̃ ^ $k%. The results are expressed in terms of the branching rule coefficients a
priate to the restriction from the orthogonal group O(k) to its finite subgroup, the symmetric grou
Sk . In the case of the plethysmsD̃ ^ $k% of Sp(2n,R) this connection with such branching ru
coefficients was first pointed out by Carvalho.8 The coefficients themselves may be evaluated i
variety of ways.18–23

The remaining formulas of Sec. II are then used in Sec. IV to derive factorizations of
same plethysms in the form

D9^ $k%5~D9!r (k)Pk ~1.16!

and

D̃ ^ $k%5~D̃ !r (k)P̃k , ~1.17!

wherer (k) is the Frobenius rank of the partitionk. Explicit formulas are given forPk andP̃k in
terms of characters of the symmetric group and certain symmetric functions. Furthermore,
determinantal expansions are derived for bothPk and P̃k , leading to a very simple dimensio
formula for Pk , but not of course forP̃k , which is infinite dimensional.

However, these formulas do not reveal whetherPk andP̃k can be expressed as linear com
binations of characters of irreducible representations of SO(2n) and Sp(2n,R), as appropriate,
with integer coefficients. This is accomplished in Sec. V, where formulas interpolating bet
D9^ $k% andPk , and betweenD̃ ^ $k% andP̃k are established. The coefficients in these exp
sions are all integers, determined once again by group–subgroup branching rules and th
verses. Numerous examples of the explicit calculation ofPk , P̃k , D9^ $k% and D̃ ^ $k% are
provided in Sec. VI.

Finally, in Sec. VII, the procedures are extended to the case of the plethysms of the
tensor difference characters of SO(2n) and Sp(2n,R). Once again factorization occurs, and t
remarkable analogy between SO(2n) and Sp(2n,R) is shown to hold true yet again.
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II. SOME TECHNIQUES FOR EVALUATING PLETHYSMS

Before embarking on the evaluation of pleythysms ofD9 and D̃, it is worth recalling from
KWI some of the Schur-function and character-theoretic background to these problems. This
heavily on the exploitation of partitions and Young diagrams.

Each partitionk5(k1 ,k2 ,...,kp) of k specifies a Young diagramFk consisting ofk5uku
boxes arranged inp5l (k) left-adjusted rows of lengthsk i for i 51,2,...,p. The lengthsk j8 for
j 51,2,...,q of the q5b(k) top-adjusted columns ofFk serve to define the conjugate partitio
k85(k18 ,k28 ,...,kq8). The number of boxesr 5r (k) on the principal diagonal ofFk is known as
the Frobenius rank of the partitionk. In Frobenius notation

k5S a1 a2¯ar

b1 b2¯br
D ,

where for k51,2,...,r the parametersak5kk2k and bk5kk82k are the arm and leg lengths
respectively, ofFk with respect to its main diagonal of lengthr . With this notation the Young
diagram can also be viewed as the union of a set of nested hooks of lengthhk5ak1bk11 with
k51,2,...,r . All this is illustrated schematically by

~2.1!

With this notation there exist a number of distinct determinantal expansions of the S
function $k%. These include the following:13,24,25

$k%5u$k i2 i 1 j %up3p5u$1k j82 j 1 i%uq3q5u$k i2 i 11,1k j82 j%ur 3r5UH ai

bj
J U

r 3r

. ~2.2!

In the present context the significance of the last of these expansions is that for any
combination,S, of Schur functions the evaluation of its plethysmS^ $k% can be effected by
means of the determinantal expansion:

S^ $k%5US^ Has

bt
J U

r 3r

. ~2.3!

An alternative expansion of$k%, entirely different to those of~2.2!, takes the form:13,23,24

$k%5(
r£k

1

zr
xr

kpr , ~2.4!

where the sum is taken over all partitionsr of k, andpr is the power sum symmetric functio
specified byr. The coefficientxr

k is the character in the irreducible representation~k! of the
symmetric groupSk of the conjugacy class of elements having cycle structure specified by
partition r. If the length ofr is l (r) then

r5~r1 ,r2 ,...,r l (r)!5~kmk,...,2m2,1m1! ~2.5!

with

(
j 51

k

mj5l ~r!, (
j 51

k

jmj5k. ~2.6!

With this notation
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zr5)
j 51

k

mj ! j mj , pr5)
j 51

k

pj
mj , ~2.7!

wherepj is just the elementary power sum function defined for allj >1 by

pj~x1 ,x2 ,...,xn!5(
s

xs
j , ~2.8!

for whatever is the appropriate set of indeterminates$x1 ,x2 ,...% that is denumerable but no
necessarily finite.

For any givenk the summation overr in ~2.4! may be restricted to those partitions for whic
the charactersxr

k of Sk are nonvanishing. The Murnaghan–Nakayama recurrence relation
characters of the symmetric group takes the form:12,13,24,25

xr
k5(

j
~21! l l (j)xs

l , ~2.9!

where if r5(r1 ,r2 ,...,r l (r)) thens5(r2 ,r3 ,...,r l (r)). The summation is over all continuou
boundary stripsj of lengthr1 such that their removal from the Young diagramFk leavesFl for
some partitionl. The parameterl l (j) is the leg length ofj, which is one less than the numbe
of rows containing boxes within the boundary stripj.

For xr
k to be nonvanishing it is necessary under the iteration of~2.9! to remove all boxes ofFk

through various sequences of preciselyl (r) continuous boundary strip removals leading tox0
0

51 multiplied by some combination of leg length factors (21)l l (j). Since these continuou
boundary strips each have at most one box on any diagonal and the longest diagonal ofFk is the
principal diagonal whose length is the Frobenius rankr 5r (k), it follows that25

xr
k50 if l ~r!,r ~k!. ~2.10!

Just as~2.2! could be used by way of~2.3! to simplify the evaluation of plethysms, so
further time-honored method of evaluatingS^ $k% makes use of the expansion~2.4!. This ap-
proach, supplemented by the multiplicative expansion ofpr in ~2.7! and the simple observatio
~2.10!, yields the following formula:

S^ $k%5 (
r£k,l (r)>r (k)

1

zr
xr

k)
j 51

k

~S^ pj !
mj . ~2.11!

It might be stressed that the boundl (r)5r (k) can always be saturated in such a way th
xr

kÞ0. This is done most simply by settingr5(h1 ,h2 ,...,hr). In fact xh1h2¯hr

k 5

(21)b11b21¯1br. Moreover, for anyS5S(x1 ,x2 ,...,xn) and j >1 we not only haveS^ pj5pj

^ S but also

S~x1 ,x2 ,...,xn! ^ pj5S~x1
j ,x2

j ,...,xn
j !. ~2.12!

In what follows a rather general lemma on plethysms is of use, namely:
Lemma 2.1: Let X and Y be two series of S-functions all of whose terms are of even and

odd weight, respectively, and letk be an arbitrary partition. If

~X1Y! ^ $k%5(
m

pk
m$m%, ~2.13!

then
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~X82Y8! ^ $k%5(
m

~21! umupk
m$m8%. ~2.14!

Proof: It should be noted from Lemma 5.3 of an earlier paper11 that Littlewood’s conjugacy
formula26 can be generalized to give in the present context

~X^ $r%!85X8^ $r%, ~Y^ $r%!85Y8^ $r8%, ~2.15!

for any partitionr. Moreover, Littlewood’s algebra of plethysm13,26 is such that

~X1Y! ^ $k%5(
s,t

cs,t
k ~X^ $s%!~Y^ $t%!5 (

m:umueven
pk

m$m%1 (
m:umuodd

pk
m$m%5(

m
pk

m$m%,

~2.16!

where the coefficientscs,t
k are the famous Littlewood–Richardson coefficients24,25 defining prod-

ucts of S-functions, and the second step involves evaluating further products of the va
S-functions appearing inX^ $s% and Y^ $t%, distinguishing between those of even and o
weight. Furthermore, thanks again in the first step to Littlewood’s algebra of plethysm and
second to~2.15!, we have

~X82Y8! ^ $k%5(
s,t

~21! utucs,t
k ~X8^ $s%!~Y8^ $t8%!5(

s,t
~21! utucs,t

k ~X^ $s%!8~Y^ $t%!8

5(
s,t

~21! utucs,t
k ~~X^ $s%!~Y^ $t%!!85 (

m:umueven
pk

m$m8%2 (
m:umuodd

pk
m$m8%

5(
m

~21! umupk
m$m8%, ~2.17!

as required. The penultimate step depends on the fact that the only terms$m% appearing in~2.16!
of odd weight are those that arise from products of the necessarily even weight termsX
^ $s% with some odd weight term ofY^ $t%. Such terms arise precisely whent has odd weight.h

As an application of Lemma 2.1 we may apply it directly to the fourS-function series denoted
in KWI by M , L, Q, andP, thereby obtaining:

Corollary 2.2: Let

M ^ $k%5S (
m50

`

$m% D ^ $k%5(
m

mk
m$m%, ~2.18a!

L ^ $k%5S (
m50

`

~21!m$1m% D ^ $k%5(
m

l k
m$m%, ~2.18b!

Q^ $k%5S (
m50

`

$1m% D ^ $k%5(
m

qk
m$m%, ~2.18c!

P^ $k%5S (
m50

`

~21!m$m% D ^ $k%5(
m

pk
m$m%, ~2.18d!

then

l k
m85~21! umumk

m and pk
m85~21! umuqk

m . ~2.19!
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Proof: If we write M5X1Y with X5$0%1$2%1¯ and Y5$1%1$3%1¯ , thenX85$0%
1$12%1¯ and Y85$1%1$13%1¯ , so thatL5X82Y8. The application of Lemma 2.1 the
leads immediately to the first part of~2.19!. Likewise, if we writeQ5X1Y with X5$0%1$12%
1¯ and Y5$1%1$13%1¯ , then X85$0%1$2%1¯ and Y85$1%1$3%1¯ , so thatP5X8
2Y8. The application of Lemma 2.1 then leads immediately to the second part of~2.19!. h

At least for reasonably small values ofk, the weight ofk, it is not difficult, although it is
certainly tedious, to evaluate the various coefficientsmk

m , l k
m , qk

m , and pk
m appearing in the

plethysms~2.18! up to any preassigned weightumu through the use, for example, of the softwa
packageSCHUR.27 However, it is well worth noting that the following proposition has been deri
by Scharf and Thibon17 as part of a Hopf algebra approach to inner plethysms:

Proposition 2.3: Letm be a partition which is U(k)-standard in the sense thatl (m)5m18
<k and let the coefficients gk

m be defined by the U(k) to Sk branching rule:

U~k!→Sk : $m%→ (
k:k£k

gk
m~k!, ~2.20!

where the summation is over all partitionsk of k, then

M ^ $k%5 (
m:l (m)<k

gk
m$m% and L^ $k%5 (

m:l (m)<k
~21! umugk

m$m8%. ~2.21!

The validity of the crucial first part of~2.21! was established17 as a reciprocity theorem
linking characters of U(n) andSk . The second part of~2.21! is then a trivial consequence of th
conjugacy relation~2.19!. However, we can also offer an alternative proof of~2.21! using one of
Littlewood’s results28 on inner plethysms.

First it should be noted that the irreducible representation~k! of the symmetric groupsSk

specified by the partitionk of k, may also be specified in reduced notation by^n& where (k)
5(k2unu,n). With this notation we have:

Lemma 2.4: Letl be a partition ofulu with ulu<k, and let p5k2ulu. Then

^l/M &5~p•l!, ~2.22!

where / and• signify S-function quotients and products, respectively.
Proof: The reduced notation used on the left-hand side of~2.22! is such that in more conven

tional standard notation we have

^l/M &5(
m

^l/m&5(
m

~k2ulu1m,l/m!. ~2.23!

However on the right-hand side of~2.22! the application of the special case of the Littlewood
Richardson rule known as the Pieri rule gives

~p•l!5(
m

~p1m,l/m!. ~2.24!

Sincep5k2ulu, comparison of~2.23! and ~2.24! yields ~2.22!, as required. h

Now we can return to the proof of Proposition 2.3.
Proof: From the definition ofM and the algebra of plethysms13 it follows that
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M ^ $k%5~$0%1$1%1$2%1¯ ! ^ $k%5 (
p,r,s,...

cprs¯
k ~~$0% ^ $p%!•~$1% ^ $r%!•~$2% ^ $s%!¯ !

5 (
p,r,s,...

cprs¯
k ~~$1% ^ $r%!•~$2% ^ $s%!¯ !5 (

p,r,s,¯
cprs¯

k c($1% ^ $r%)($2% ^ $s%)¯
m $m%,

~2.25!

where the coefficientscprs...
k are defined by theS-function product

$p%•$r%•$s%¯5(
k

cprs¯
k $k% ~2.26!

and use of the Littlewood–Richardson rule as many times as appropriate. Similarly, the c
cientsc($1% ^ $r%)($2% ^ $s%)¯

m are defined by

~$1% ^ $r%!•~$2% ^ $s%!¯5(
m

c($1% ^ $r%)($2% ^ $s%)¯
m $m%. ~2.27!

The second step of~2.25! makes use of the fact that$0% ^ $p%50 if p is not a one-part partition
while in the case of a one-part partitionp we have$0% ^ $p%5$0%51.

Turning to ~2.20!, the branching rule for the restriction fromU(k) to U(k21) may be
expressed in the form

U~k!→U~k21!:$m%→$m/M %5(
a

$m%/$a%5(
a

$m%/~$1% ^ $a%!, ~2.28!

where, largely for aesthetic reasons in what follows, use has been made of the fact th$1%
^ $a%5$a%. Littlewood28 has provided the branching rule for the restriction from U(k21) to Sk

in his Theorem XI. This takes the following form:

U~k21!→Sk : $n%→ (
b,c,...,h,z,...

^~$h%•$z%¯ !•~$n%/~~$2% ^ $h%!•~$3% ^ $z%!¯

•~$2% ^ $b%!•~$3% ^ $c%!¯ !!&, ~2.29!

where the angular brackets^¯& have been used again to signify characters ofSk expressed in
reduced notation.

Combining ~2.28! and ~2.29!, and using the fact that$m%/X5(jcjX
m $j% for all X, with $j%

5$1% ^ $j%, we obtain
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U~k!→Sk :

$m%→ (
a,b,c,...,j,h,z,...

c($1% ^ $j%)•($2% ^ $h%)•($3% ^ $z%)¯($1% ^ $a%)•($2% ^ $b%)•($3% ^ $c%)¯
m ^j•h•z¯&

5 (
a,b,c,...,j,h,z,...

c($1% ^ ($a•j%))•($2% ^ ($b•h%))•($3% ^ ($c•z%)¯
m ^j•h•z¯&

5 (
a,b,c,...,r,s,t,...

c(($1% ^ $r%)•($2% ^ $s%)•($3% ^ $t%)¯)
m ^~r/a!•~h/b!•~z/c!¯&

5 (
m,r,s,t,...

c(($1% ^ $r%)•($2% ^ $s%)•($3% ^ $t%)¯)
m ^~r•s•t¯ !/m&

5 (
r,s,t,...

c(($1% ^ $r%)•($2% ^ $s%)•($3% ^ $t%)¯)
m ^~r•s•t¯ !/M &

5 (
r,s,t,...

c(($1% ^ $r%)•($2% ^ $s%)•($3% ^ $t%)¯)
m ~p•r•s•t¯ !

5 (
r,s,t,...

c(($1% ^ $r%)•($2% ^ $s%)•($3% ^ $t%)¯)
m cprst...

k ~k!, ~2.30!

where in the penultimate step use has been made of Lemma 2.4, extended by virtue of its li
in l to the case in whichl is replaced byr•s•t¯ andp5k2uru2usu2utu2¯ .

Comparison of~2.30! with ~2.25! then completes the proof of the first part of~2.21! and hence
of Proposition 2.3, since the second part follows, as we have seen, from~2.19!. h

III. EVALUATION OF THE PLETHYSMS D9‹ˆk‰ AND D̃‹ˆk‰

It follows from KWI Sec. II that

D5e1/2Q̄5e1/2)
i 51

n

~11xi
21!, D95e1/2L̄5e1/2)

i 51

n

~12xi
21!, ~3.1a!

D̃5e1/2M5e1/2)
i 51

n

~12xi !
21, D̃95e1/2P5e1/2)

i 51

n

~11xi !
21, ~3.1b!

where it has been convenient to introduce the S-function seriesQ̄ andL̄, which are contragredien
to Q andL, respectively. It follows that in order to evaluate the required SO(2n) and Sp(2n,R)
plethysms ofD, D9, D̃, andD̃9 at the level of U(n) it is only necessary to evaluate plethysms
Q, L, M , andP, and take the contragredient where appropriate. However, general expressio
these plethysms are only available through Proposition 2.3 forM ^ $k% and L ^ $k%. These are
related through~3.1! to the plethysms ofD̃ andD9.

Taking the caseD̃ first, we arrive at a result first enunciated without proof by Carvalho.8

Proposition 3.1: Letl be a partition which isO(k)-standard in the sense thatl181l28<k and
let the coefficients bk

l be defined by theO(k) to Sk branching rule:

O~k!→Sk : @l#→ (
k:k£k

bk
l~k!, ~3.2!

where the summation is over all partitionsk of k. Then for any partitionk of k the corresponding

plethysm of the representationD̃ of Sp(2n,R) decomposes in accordance with the rule
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D̃ ^ $k%5 (
l:l181l28<k

bk
l^ 1

2k~l!&, ~3.3!

or, equivalently,

D̃ ^ $k%5H (
l:l (l),m

~bk
l^m~l!&1bk8

l ^m~l!&* !1 (
l:l (l)5m

bk
l^m~l!& if k52m

(
l:l (l)<m

~bk
l^D̃;m~l!&1bk8

l ^D̃;m~l!&* ! if k52m11,

~3.4!

where the asterisk~* ! signifies an associate11 irreducible representation ofSp(2n,R), and it has

been convenient to denote^ 1
21m(l)& by ^D̃;m(l)&.

Proof: From ~3.1c! and Proposition 2.3 we have

D̃ ^ $k%5~e1/2M ! ^ $k%5ek/2~M ^ $k%!5ek/2 (
m:l (m)<k

gk
m$m%, ~3.5!

where the coefficientsgk
m are defined by the U(k)→Sk branching rule~2.20!. We can refine this

branching rule by noting that O(k) is a subgroup of U(k) which itself containsSk as a subgroup.
For m such thatl (m)<k let the coefficientsRl

m be defined by the U(k) to O(k) branching rule:

U~k!→O~k!: $m%→ (
l:l181l28<k

Rl
m@l#. ~3.6!

Combining this with~3.2! gives

U~k!→O~k!→Sk : $m%→ (
l:l181l28<k

Rl
m@l#→ (

l:l181l28<k

k:k£k

Rl
mbk

l~k!. ~3.7!

Comparison with~2.20! reveals that

gk
m5 (

l:l181l28<k

Rl
mbk

l for l ~m!<k and k£k. ~3.8!

However, it is also known that7

Sp~2n,R!→U~n!: ^ 1
2k~l!&→ek/2 (

m:l (m)<k
Rl

m$m% for l181l28<k, ~3.9!

where this expression serves to define the character^ 1
2k(l)& of Sp(2n,R) completely since

Sp(2n,R) and U(n) are of the same rank. It follows that the successive use of~3.8! and ~3.9! in
~3.5! leads directly to~3.3! as follows:

D̃ ^ $k%5ek/2 (
m:l (m)<k

l:l181l28<k

Rl
mbk

l$m%5 (
l:l181l28<k

bk
l^ 1

2k~l!& for k£k. ~3.10!

The passage from~3.3! to ~3.4! is effected by noting that the summation overl in ~3.3! yields
mutually associated pairs of irreducible representations of Sp(2n,R) together with self-associat
irreducible representations in the casek52m. Hence~3.3! can be rewritten in the form
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D̃ ^ $k%5H (
l:l (l),m

~bk
l^m~l!&1bk

l* ^m~l!&* !1 (
l:l (l)5m

bk
l^m~l!& if k52m

(
l:l (l)<m

~bk
l^D̃;m~l!&1bk

l* ^D̃;m~l!&* ! if k52m11.

~3.11!

The notation11 is such that̂ m(l)&* 5^m(l* )& and^D̃;m(l)&* 5^D̃;m(l* )&, wherel* is thek
associate of the partitionl for k52m and k52m11, respectively. However, in O(k) we have
@l* #5@l#* 5@0#* @l# and on restriction from O(k) to Sk we have@0#* →(1k). Moreover inSk

we have (1k)•(k)5(k8) for all k. It follows that bk
l* 5bk8

l . Using this in~3.11! gives ~3.4!, as
required to complete the proof of Proposition 3.1. h

Turning to the case ofD9, the analog of Proposition 3.1 takes the form:
Proposition 3.2: Letl be such thatl181l28<k and let the coefficients bk

l be defined by the
O(k) to Sk branching rule (3.2). Then for any partitionk of k the corresponding plethysm of th
difference characterD9 of SO(2n) decomposes in accordance with the rule

D9^ $k%

5H (
l: l (l),m

(21)ulu(bk
l[mn/l8)] 11bk8

l [mn/l8] 2)1 (
l: l (l)5m

(21)ulubk
l[mn/l8] if k52m

(
l:l (l)<m

(21)ulu(bk
l[D;mn/l8] 12bk8

l
@D;mn/l8] 2) if k52m11.

~3.12!

Proof: From ~3.1!, Proposition 2.3, and~3.8! we have

D9^ $k%5~e1/2L̄ ! ^ $k%5ek/2~ L̄ ^ $k%!5 (
m:l (m)<k

~21! umuek/2gk
m$m8%

5 (
m:l (m)<k

l:l181l28<k

~21! umuek/2Rl
mbk

l$m8%

5

¦

(
m:l (m)<2m
l:l (l),m

~21! umuem~Rl
mbk

l$m8%1Rl*
m bk

l* $m8%!

1 (
m:l (m)<2m
l:l (l)5m

~21! umuemRl
mbk

l$m8% if k52m

(
m:l (m)<2m11

l:l (l)<m

~21! umuem11/2~Rl
mbk

l$m8%1Rl*
m bk

l* $m8%!

if k52m11.

~3.13!

This time it is necessary to convert the combination of characters of U(n) appearing on the
right-hand side of~3.13! into linear combinations of characters of SO(2n). To this end we require
an analog of~3.9!.

It will be recalled that~3.9! arises from a comparison of the branching rule6,7

Sp~2nk,R!→Sp~2n,R!3O~k!: D̃→ (
l:l181l28<k

^ 1
2k~l!&3@l#, ~3.14!
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with the sequence of branching rules associated with the group–subgroup chain

Sp~2nk,R!→U~nk!→U~n!3U~k!→U~n!3O~k!. ~3.15!

This chain is such that

D̃→e1/2M→ (
m:l (m)<k

ek/2$m%3en/2$m%→ (
m:l (m)<k

l:l181l28<k

ek/2Rl
m$m%3@l#. ~3.16!

In the last step of~3.16! use has been made of the U(k) to O(k) branching rule~3.6!. In addition
the k-independent factoren/2 with e561 has been dropped for convenience since its reten
would only involve various, but essentially equivalent, embeddings of O(k) in U(k). Now com-
parison of~3.14! and~3.16! leads directly to the required Sp(2n,R) to U(n) branching rule~3.9!.

Mimicking this procedure in the case ofD9 it is necessary to distinguish between the case
k even and odd. The branching rule of KWI for the restriction ofD9 from SO(2nk) to SO(2n)
3O(k) takes the form:

D9→5
(

l:l (l),m
~21! ulu~@mn/l8#13@l#1@mn/l8#23@l#* !1 (

l:l (l)5m
~21! ulu@mn/l8#3@l#

if k52m

(
l:l (l)<m

~21! ulu~@D;mn/l8#13@l#2@D;mn/l8#23@l#* ! if k52m11.

~3.17!

The analog of~3.15! is the group–subgroup chain

SO~2nk!→U~nk!→U~n!3U~k!→U~n!3O~k!, ~3.18!

for which we have

D9→e1/2L̄→ (
m:l (m)<k

~21! umuek/2$m 8̄%3en/2$m̄%→ (
m:l (m)<k

l:l181l28<k

~21! umuek/2Rl
m$m 8̄%3@l#.

~3.19!

In the last step use has been made of the U(k) to O(k) branching rule~3.6! together with the fact
that the restriction from U(k) to O(k) is such thatRl

m̄5Rl
m . As before, thek-independent factor

en/2 with e561 has been dropped. Distinguishing in the usual way between even and odd
of k and between irreducible representations of O(k) and their associates, this gives for th
branching from SO(2nk) to U(n)3O(k):
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D9→5
(

m:l (m)<2m
l:l (l),m

~21! umuem~Rl
m$m 8̄%3@l#1Rl*

m $m 8̄%3@l#* !

1 (
m:l (m)<2m
l:l (l)5m

~21! umuemRl
m$m 8̄%3@l# if k52m

(
m:l (m)<2m11

l:l (l)<m

~21! umuem11/2~Rl
m$m 8̄%3@l#1Rl*

m $m 8̄%3@l#* ! if k52m11.

~3.20!

Comparison of~3.17! and ~3.20! then yields the required branching rules for the restriction fr
SO(2n) to U(n):

@mn/l8#1→ (
m:l (m)<2m

~21! umu2uluemRl
m$m 8̄% for l ~l!,m, ~3.21a!

@mn/l8#2→ (
m:l (m)<2m

~21! umu2uluemRl*
m $m 8̄% for l ~l!,m, ~3.21b!

@mn/l8#→ (
m:l (m)<2m

~21! umu2uluemRl
m$m 8̄% for l ~l!5m, ~3.21c!

@D;mn/l8#1→ (
m:l (m)<2m11

~21! umu2uluem11/2Rl
m$m 8̄% for l ~l!<m, ~3.21d!

@D;mn/l8#2→ (
m:l (m)<2m11

~21! umu2ulu11em11/2Rl*
m $m 8̄% for l ~l!<m. ~3.21e!

As in the case of~3.9!, these branching rules furnish identities expressing characters of irredu
representations, in this case of SO(2n), in terms of those of U(n), a subgroup of the same ran

Using these identities in~3.13! and recalling thatbk
l* 5bk8

l gives~3.12!, and thereby completes th
proof of Proposition 3.2. h

IV. THE FACTORIZATION OF PLETHYSMS OF D9 AND D̃

We are now in a position to derive the following:
Proposition 4.1: Letk be a partition of k of Frobenius rank r5r (k). Then

D9^ $k%5~D9!r (k)Pk , ~4.1!

with

Pk5 (
r£k,l (r)>r (k)

1

zr
xr

k~D9! l (r)2r (k))
j 51

k

Pj
mj , ~4.2!

where

Pj5)
i 51

n

~ xi
~ j 21!/21xi

~ j 23!/21¯1xi
2 ~ j 21!/2! . ~4.3!

Proof: SettingS5D9 in ~2.12!, with D9 given by the character formula~1.1b!, immediately
gives
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D9^ pj5)
i 51

n

~xi
j /22xi

2 j /2!5)
i 51

n

~xi
1/22xi

2 1/2!~xi
~ j 21!/21xi

~ j 23!/21¯1xi
2 ~ j 21!/2!5D9Pj ,

~4.4!

with Pj as defined in~4.3!. It then follows from~2.11! that

D9^ $k%5 (
r£k,l (r)>r (k)

1

zr
xr

k)
j 51

k

~D9^ pj !
mj

5 (
r£k,l (r)>r (k)

1

zr
xr

k)
j 51

k

~D9Pj !
mj

5 (
r£k,l (r)>r (k)

1

zr
xr

k~D9! l (r))
j 51

k

Pj
mj , ~4.5!

where use has been made of~2.7!. As required, this gives~4.1! with Pk as defined in~4.2!. h

The factorization ofD9^ $k% spelt out in~4.1! and ~4.2! serves to both confirm and refin
~1.10!. In seeking to do the same for~1.11! the following result may be derived:

Corollary 4.2: Letk be a partition of k which in Frobenius notation takes the form

k5S a1 a2¯ar

b1 b2¯br
D

with r5r (k). ThenD9^ $k%5(D9) r (k)Pk with

Pk5uP S as
bt

D ur 3r ~4.6!

and

dim Pk5~21!b11b21¯1bru~as1bt11!n21ur 3r , ~4.7!

wheredimPk is the value ofPk at the identity, that is the value at xi51 for all i 51,2,...,n.
Proof: SettingS5D9 in ~2.3! gives

D9^ $k%5UD9^ Has

bt
J U

r 3r

5uD9P S as
bt

D ur 3r5~D9!r (k)uP S as
bt

D ur 3r . ~4.8!

Comparison with the definition ofPk in ~4.1! gives ~4.6!.
To derive~4.7! we first consider the special case wherek5(b

a)5(11a,1b) with k5uku5a
1b11 andr 5r (k)51. Then, since dimD950, it follows that in~4.2! the only terms contribut-
ing to dimPk are those for whichl (r)5r (k)51. But there is only one such term and th

corresponds to the one part partitionr5(k) for which zr5zk5k. Moreover,xk
11a,1b

5(21)b.
Hence

dimPk5
1

zk
xk

11a,1b
dim Pk5

1

k
~21!bkn5~21!b~a1b11!n21. ~4.9!

This confirms the validity of~4.7! in the casek51. Thanks to~4.6! we then have in the genera
case

dimPk5udimP S as
bt

D ur 3r5u~21!bt~as1bt11!n21ur 3r , ~4.10!

giving ~4.7!, as required. h
                                                                                                                



esult:

f

5671J. Math. Phys., Vol. 41, No. 8, August 2000 Analogy between plethysms of SO(2n), Sp(2n,R)

                    
Plethysms ofD̃ can be dealt with in exactly the same way and one arrives at the general r
Proposition 4.3: Letk be a partition of k of Frobenius rank r5r (k). Then

D̃ ^ $k%5~D̃ !r (k)P̃k , ~4.11!

with

P̃k5 (
r£k,l (r)>r (k)

1

zr
xr

k~D̃ ! l (r)2r (k))
j 51

k

Pj
2mj , ~4.12!

where

P̃j5)
i 51

n

~xi
~ j 21!/21xi

~ j 23!/21¯1xi
2 ~ j 21!/2!21. ~4.13!

Moreover,

P̃k5uP̃ S as
bt

D ur 3r . ~4.14!

Proof: Proceeding as before, we setS5D̃ in ~2.12! and use the character formula~1.2a! for D̃
to obtain instead of~4.4! the analogous formula

D̃ ^ pj5)
i 51

n

~xi
2 j /22xi

j /2!215)
i 51

n

~xi
2 1/22xi

1/2!21~xi
~ j 21!/21xi

~ j 23!/21¯1xi
2 ~ j 21!/2!21

5D̃Pj
21 . ~4.15!

Using this in~2.11! with S5D̃ then leads to the analog of~4.5!, namely:

D̃ ^ $k%5 (
r£k,l (r)>r (k)

1

zr
xr

k~D̃ ! l (r))
j 51

k

Pj
2mj . ~4.16!

Extracting the appropriate factors ofD̃ then gives~4.11! with P̃k as in ~4.12!.
This time because of the infinite-dimensional nature of bothD̃ and Pj

21 there exists no
complete analog of Corollary 4.2. However, the use ofS5D̃ in ~2.3! leads, as in the derivation o
~4.6!, to the identity~4.14!. h

To close this section we provide some conjugacy rules for bothPk and P̃k . The outer
automorphism,* , of SO(2n) is such that16

~D9^ $k%!* 5~D9!* ^ $k%5~2D9! ^ $k%5~21!kD9^ $k8%, ~4.17!

where, as usual,k5uku. From the factorization formula~4.1! it follows that

~D9* !r (k)~Pk!* 5~21!r (k)~D9!r (k)~Pk!* 5~21!k~D9!r (k)Pk8 , ~4.18!

sincer (k8)5r (k). Hence

Pk85~21! uku1r (k)~Pk!* . ~4.19!

Similarly, the properties of associate irreducible representations of Sp(2n,R) are such that12

~D̃ ^ $k%!* 5D̃ ^ $k8%. ~4.20!

It thus follows from the factorization formula~4.11! that
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~D̃* !r (k)~P̃k!* 5~D̃ !r (k)~P̃k!* 5~D̃ !r (k)P̃k8 , ~4.21!

and hence

P̃k85~P̃k!* . ~4.22!

There remain several problems with Propositions 3.1 and 3.3. First, it is not at all
whether or notPk ~respectively,P̃k) can be expressed as linear combinations of character
irreducible representations of SO(2n) @respectively, Sp(2n,R)]. Second, if this is indeed true the
the explicit formulas we have given forPk andP̃k are not amenable to re-writing them in term
of such characters. Third, even if this can be done it is by no means obvious that the re
coefficients of these characters are integers so thatPk ~respectively,P̃k) belongs to the rings of
the characters of SO(2n) @respectively, Sp(2n,R)# over the integersZ. These problems are ad
dressed in the following sections wherePk andP̃k are evaluated.

V. THE EVALUATION OF Pk AND P̃k

Having established the factorization ofD9^ $k% and D̃ ^ $k% as in ~4.1! and ~4.11!, respec-
tively, the evaluation ofPk and P̃k can be accomplished in a number of different ways.
principle one could proceed by exploiting~3.1! to express the required plethysms in the fo
ek/2(L̄ ^ $k%) and ek/2(M ^ $k%), then evaluating (L̄ ^ $k%) and (M ^ $k%), factoring out the
r (k)th power ofL̄ andM , and finally re-expressing the resulting characters of U(n) as characters
of SO(2n) or Sp(2n,R), as appropriate.

In the case of SO(2n) this may indeed be accomplished16 at least for smallk andn since the
relevant series are finite. The extension to arbitraryn may be carried out inductively and checke
dimensionally using~4.7!. Some short cuts may be found using the algebra of plethysms. In
way one arrives at the following results:

P151, ~5.1a!

P25D1 , ~5.1b!

P1252D2 , ~5.1c!

P35@1n#12 (
x50

`

~21!x@1n2323x#, ~5.1d!

P215 (
x50

`

~21!x~2@1n2123x#1@1n2223x# !, ~5.1e!

P135@1n#22 (
x50

`

~21!x@1n2323x#, ~5.1f!

P45 (
x,y50

`

~21!x~@D;1n23x24y#12@D;1n2623x24y#2!, ~5.1g!

P315 (
x,y50

`

~21!x~2@D;1n212x24y#11@D;1n232x24y#2!, ~5.1h!
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P2125 (
x,y50

`

~21!x~2@D;1n232x24y#11@D;1n212x24y#2!, ~5.1i!

P145 (
x,y50

`

~21!x~@D;1n2623x24y#12@D;1n23x24y#2!. ~5.1j!

The above partitions are all of Frobenius rank 1. The partitionk5(22) has Frobenius rank 2
and may be calculated in terms of the above rank 1 results by use of~4.6! of Corollary 4.2 as
follows:

D9^ $22%5D9^ H 1 0

1 0J 5UD9^ H1
1J D9^ H1

0J
D9^ H0

1J D9^ H0
0JU5~D9!2UP21 P2

P12 P1
U. ~5.2!

Hence

P225P21P12P2P125 (
x50

`

~21!x~2@1n2123x#1@1n2223x# !1 (
x50

`

@1n2122x#, ~5.3!

where use has been made of~5.1a!–~5.1c!, ~5.1e! and ~1.5!. The result~5.3! can be recast in the
simpler form:

P225 (
x50

`

~@1n2226x#1@1n2326x#1@1n2426x# !. ~5.4!

Proceeding in exactly the same way for other Frobenius rank 2 partitions one obtains, for ex

P325 (
x,y50

`

~21!x~@D;1n2223x24y#12@D;1n2423x24y#2!, ~5.5a!

P2215 (
x,y50

`

~21!x~@D;1n2423x24y#12@D;1n2223x24y#2!. ~5.5b!

It might be noted that these two results are in conformity, as they must be, with the conj
formula ~4.19!. Before turning to alternative ways of identifying the multiplicities of the vario
characters that appear inPk , it is worth pointing out that in all the examples of~5.1!, ~5.4!, and
~5.5! the multiplicities are integers. At first sight it would appear that the multiplicities we h
obtained are all61 but this is not the case. In~5.1g!, for example, the multiplicity of@D;1n212#
is 2, corresponding to the terms in the summation for whichx54, y50 andx50, y53. However
it is true that the multiplicities are indeed always integers.

In order to establish the general result it is helpful to consider the group–subgroup cha

O~k2r ~k!!→¯→O~k2s!→¯→O~k21!→O~k!→Sk ~5.6!

and the corresponding branching and inverse branching rules which are such that

@l/Mr (k)#→¯→@l/Ms#→¯→@l/M #→@l#→ (
k:k£k

bk
l~k!. ~5.7!

For s50,1,...,r (k) this chain may be used to define coefficientsbk,s
m associated with the subchai

extending from O(k2s) to Sk through the rule
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@m#→¯→@m/Ls21#→@m/Ls#→ (
k:k£k

bk,s
m ~k!, ~5.8!

whereL is the inverse ofM . It follows from ~5.7! and ~5.8! that

bk,s
l/Ms

5bk
l , bk,s

m 5bk
m/Ls

. ~5.9!

Consequently,

bk,s
n/M5bk

n/MLs
5bk

n/Ls21
5bk,s21

n . ~5.10!

In addition, for all O(k2s) we have@m* #5@m#* 5@0#* @m# and under the restriction from
O(k2s) to Sk we have@0#* →(1k) with (1k)•(k)5(k8) for all partitionsk of k. It follows that

quite generallybk,s
m* 5bk8,s

m , while

bk,s
m 5bk,s

m* 5bk8,s
m if k2s52x and l ~m!5x. ~5.11!

With the use of these coefficientsbk,s
m we may interpolate betweenD9^ $k% andPk by means of

the following:
Definition 5.1: Letk be any partition of k with Frobenius rank r(k), and let the coefficients

bk,s
m be defined by (5.8) for s50,1,...,r (k). Then, let

Xk
(s)55

(
m:l (m),x

(21)umu(bk,s
m [xn/m8)] 11bk8,s

m [xn/m8] 2)1 (
m:l (m)5x

(21)umubk,s
m [xn/m8]

if k2s52x

(
m:l (m)<x

(21)umu(bk,s
m [D;xn/m8] 12bk8,s

m [D;xn/m8] 2) if k2s52x11.

~5.12!

With this notation we have
Lemma 5.2: Letk be any partition of k with Frobenius rank r(k), then

D9Xk
(s)5Xk

(s21) for s51,2,...,r ~k!. ~5.13!

Proof: In the casek2s52x with s>1, the product ofD9 with Xk
(s) may be evaluated a

follows:

D9Xk
(s)5 (

m:l (m),x
~21! umu~bk,s

m @D;xn/m8L !#12bk8,s
m

@D;xn/m8L#2)

1 (
m:l (m)5x

~21! umubk,s
m ~@D;xn/m8L !#12@D;xn/m8L#2)

5 (
m:l (m)<x

~21! umu~bk,s
m @D;xn/m8L#12bk8,s

m
@D;xn/m8L#2!

5 (
m:l (m)<x

(
p50

`

~21! umu1p~bk,s
m @D;xn/~m•p!8#12bk8,s

m
@D;xn/~m•p!8#2!

5 (
m:l (m)<x

(
p50

`

(
n:l (n)<x

~21! unucmp
n ~bk,s

m @D;xn/n8#12bk8,s
m

@D;xn/~n!8#2!
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5 (
n:l (n)<x

(
p50

`

~21! unu~bk,s
n/p@D;xn/n8#12bk8,s

n/p
@D;xn/n8#2!

5 (
n:l (n)<x

~21! unu~bk,s
n/M@D;xn/n8#12bk8,s

n/M
@D;xn/n8#2!5Xk

(s21) . ~5.14!

The first step involves the use of the product rules enunciated in KWI. Thanks to~5.11! it is
possible to regroup all the terms into a single sum as in the second step. The next fou
depend on the fact thatL5(p50

` (21)p$1p% andM5(p50
` $p%, while

$m•p%5(
n

cmp
n $n%, $n/p%5(

m
cmp

n $m%, ~5.15!

wherecmp
n are the usual Littlewood–Richardson coefficients. These are nonvanishing onlyunu

5umu1p and l (m)<l (n)<l (m)11. In fact, potential terms for whichl (n)5x11 all vanish
since they all involvexn/n8. The final step is then accomplished by the use of~5.10! and a
comparison of the resulting expression with the second case of~5.12! in which s is replaced by
s21 so thatk2(s21)52x11, as required.

Proceeding in the same way in the casek2s52x11, the product ofD9 with Xk
(s) gives

D9Xk
(s)5 (

m:l (m)<x
~21! umu~bk,s

m @~x11!n/m8L !# (1)1bk8,s
m

@~x11!n/m8L# (2))

5 (
m:l (m)<x

(
p50

`

(
n:l (n)<x11

~21! umu1pcmp
n ~bk,s

m @~x11!n/n8# (1)1bk8,s
m

@~x11!n/n8# (2)!

5 (
n:l (n)<x

~21! unu~bk,s
n/M@~x11!n/n8#11bk8,s

n/M
@~x11!n/n8#2!

1 (
n:l (n)5x11

(
p50

`

(
m:l (m)5x

~21! unucmp
n ~bk,s

m 1bk8,s
m

!@~x11!n/n8#. ~5.16!

Thus far, the only new features are the use in the first step of the notation introduced in
whereby, for characters of SO(2n), we have

@l# (6)5H @l# if l18,n

@l#6 if l185n,
~5.17!

and the occurrence in~5.16! of the final set of terms for whichl (n)5x11. These cannot be
discarded in this case as they now involve@(x11)n/n8# rather than@xn/n8#. However, for all
such terms withl (n)5x11 we have

bk,s
n/M5 (

p50

`

(
l:x<l (l)<x11

clp
n bk,s

l 5 (
p50

`

(
m:l (m)5x

~cmp
n bk,s

m 1cm* p
n bk,s

m* !, ~5.18!

where it has been recognized that the only partitionsl with l (l)5x11 for which bk,s
l is

nonvanishing are those of the forml5m* with l (m)5x, wherem* 5(m,1) is the O(k2s)

5O(2x11)-associate ofm. For such terms we havebk,s
m* 5bk8,s

m as usual. Moreover, forl (n)
5x11 andl (m)5x we have

(
p50

`

cm* p
n

5cm* ,unu2umu21
n

5c(m,1),unu2umu21
n 5cm,unu2umu

n 5 (
p50

`

cmp
n , ~5.19!
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where the crucial third equality relies on the fact that the relevant coefficients are 1 or 0 acc
to whether the skew Young diagramsFn/(m,1) and Fn/m either are or are not, respectively, hor
zontal strips in the terminology of Macdonald.24 Such horizontal strips are indicated by the box
with an asterisk in the following illustrative diagrams appropriate to the casex53, n5(8663),
m5(763), andm* 5(7631):

~5.20!

It follows from the use of~5.19! in ~5.18! that

bk,s
n/M5 (

p50

`

(
m:l (m)5x

cmp
n ~bk,s

m 1bk8,s
m

!. ~5.21!

Substituting this into~5.16! gives

D9Xk
(s)5 (

n:l (n),x11
~21! unu~bk,s

n/M@~x11!n/n8#11bk8,s
n/M

@~x11!n/n8#2!

1 (
n:l (n)5x11

~21! unubk,s
n/M@~x11!n/n8#

5Xk
(s21) . ~5.22!

The final step involves the use of~5.10! and the observation that in this casek2(s21)52(x
11). This is necessary to make the connection with the first case of~5.12! with s replaced by
s21, andx by x11.

Taken together,~5.14! and ~5.22! imply the validity of ~5.13! for k2s both even and odd
thereby completing the proof of Lemma 5.2. h

This leads directly to
Proposition 5.3:Let k be any partition, and letr (k) be its Frobenius rank. Then

D9^ $k%5~D9!sXk
(s) for s50,1,...,r ~k!. ~5.23!

Proof: Comparing~3.12! with thes50 case of the definition~5.12!, and noting from~5.9! that
bk,0

m 5bk
m , shows that

D9^ $k%5Xk
(0) . ~5.24!

Then starting from this expression, factors ofD9 may be extracted one-by-one through the app
cation of Lemma 5.2 in the casess51,2,...,r (k) to give

D9^ $k%5Xk
(0)5D9Xk

(1)5~D9!2Xk
(2)5¯5~D9!r (k)Xk

(r (k)) . ~5.25!

This completes the proof of Proposition 5.3 h

Recalling the definition ofPk given in ~4.1!, it follows immediately from~5.25! that Pk

5Xk
(r (k)) . Thanks to Definition 5.1 this then implies:
Corollary 5.4: For any partitionk of k with Frobenius rank r(k),
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Pk55
(

m:l (m),x
(21)umu(bk,r (k)

m [xn/m8)] 11bk8,r (k)
m [xn/m8] 2)

1 (
m:l (m)5x

(21)umubk,r (k)
m [xn/m8] if k2r (k)52x

(
m:l (m)<x

(21)umu(bk,r (k)
m [D;xn/m8] 12bk8,r (k)

m [D;xn/m8] 2) if k2r ~k!52x11.

~5.26!

The procedure used to evaluatePk may now be used to evaluateP̃k . In fact, for technical
reasons that are largely a matter of notation and the absence of factors of21, the case of
Sp(2n,R) is slightly easier to deal with than that of SO(2k). This shows itself in the statement o
the analog of Definition 5.1, namely:

Definition 5.5: Letk be any partition of k with Frobenius rank r(k), and let the coefficients
bk,s

l be defined by (5.8) for s50,1,...,r (k). Then let

X̃k
(s)5 (

m:m181m28<k2s

bk,s
m ^ 1

2~k2s!~m!&. ~5.27!

With this notation we have:
Lemma 5.6: Letk be any partition of k with Frobenius rank r(k), then

D̃X̃k
(s)5X̃k

(s21) for s51,2,...,r ~k!. ~5.28!

Proof: For s>1 we have

D̃X̃k
(s)5 (

m:m181m28<k2s

bk,s
m D̃^ 1

2~k2s!~m!&

5 (
m:m181m28<k2s

bk,s
m ^ 1

2~k2s11!~m•M !&

5 (
n:n181n28<k2s12

bk,s
n/M^ 1

2~k2s11!~n!&

5 (
n:n181n28<k2s11

bk,s21
n ^ 1

2~k2s11!~n!&5X̃k
(s21) , ~5.29!

as required. The first step involves the use of the Sp(2n,R) product rule~5.8! of KWI. Then it
should be noted that multiplication ofm by M may give rise to termsn in which a box has been
added to each of the first two columns ofFm to form Fn. This is the origin of the condition onn

that n181n285k2s12. However, the fact that̂1
2(k2s11)(n)&50 if n181n285k2s12 allows

this condition to be relaxed ton181n285k2s115k2(s21), thereby leading to the identificatio
made in the final step. h

An immediate consequence of this Lemma is:
Proposition 5.7:Let k be any partition, and letr (k) be its Frobenius rank. Then

D̃ ^ $k%5~D̃ !sX̃k
(s) for s50,1,...,r ~k!. ~5.30!

Proof: Comparing~3.10! with the s50 case of the definition~5.27!, and noting once again
that bk,0

m 5bk
m , shows that
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D̃ ^ $k%5X̃k
(0) . ~5.31!

Then starting from this expression~5.31! factors ofD̃ may be extracted one-by-one through t
application of Lemma 5.6 in the casess51,2,...,r (k) to give

D̃ ^ $k%5X̃k
(0)5D̃X̃k

(1)5~D̃ !2X̃k
(2)5¯5~D̃ !r (k)X̃k

(r (k)) . ~5.32!

This completes the proof of Proposition 5.7. h

This, in turn, implies the following:
Corollary 5.8: For any partitionk of k with Frobenius rank r(k),

P̃k5 (
m:m181m28<k2r (k)

bk,r (k)
m ^ 1

2~k2r ~k!!~m!&. ~5.33!

or equivalently,

P̃k5H (
m:l (m),x

~bk,r (k)
m ^x~m!&1bk8,r (k)

m ^x~m!&* !1 (
m:l (m)5x

bk,r (k)
m ^x~m!& if k2r ~k!52x

(
m:l (m)<x

~bk,r (k)
m ^D̃;x~m!&1bk8,r (k)

m ^D̃;x~m!&* ! if k2r ~k!52x11.

~5.34!

Proof: The result~5.33! follows immediately from Proposition 5.7 and the definition ofP̃k

given in ~4.11! together imply thatP̃k5X̃k
(r (k)) . Finally, the passage from~5.33! to ~5.34! is a

straightforward consequence of the definition12 of associate irreducible representations
Sp(2n,R). The form~5.34! is included merely to stress once again the analogy between Sp(2n,R)
and SO(2n), exemplified this time by the direct correspondence between~5.34! and ~5.26!. h

VI. EXAMPLES

Although the formulas~5.26! and ~5.34! may look formidable, they depend only on th
coefficientsbk,r (k)

m . These coefficients are themselves defined by~5.8!. Fortunately, the relevan
branching rules for restrictions from O(k21) and O(k) to Sk , as well as the inverse branchin
rules from O(k2s) to O(k2s11), that are needed to exploit~5.8! to the full, are well under-
stood. The relevant coefficients may be found in a variety of ways18–23for both O(k21) and O(k)
to Sk , and for the inverse restriction29 from O(m) to O(m11). They are implemented, fo
example, in the software packageSCHUR.27

For low values ofk even this level of sophistication is not really required. For example, in
casek52 the only irreducible representations~k! of S2 are~2! and (12). Each of these is such tha
r (k)51 andk2r (k)52x11 with x50. With these values ofk andr (k) the relevant coefficients
bk,r (k)

m are the branching rule coefficients associated with restriction from O(1) toS2 . The com-
plete set of such branchings consists merely of@0#→(2) and@0#* →(12). Using this information
in ~5.34! immediately yields

P̃25^ 1
2~0!&5D̃1 , P̃125^ 1

2~0!&* 5D̃2 . ~6.1!

Similarly, for k53 all irreducible representations~k! of S3 are such thatr (k)51, and the
relevant O(2)→S3 branching rules are@0#→(3), @0#* →(13) and

@m#→H ~3!1~13! if m50~mod 3!

~21! if m51,2~mod 3!.
~6.2!

This enables us to conclude that
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P̃35^1~0!&1 (
x50

`

^1~313x!&, ~6.3a!

P̃215 (
x50

`

~^1~113x!&1^1~213x!&!, ~6.3b!

P̃135^1~0!&* 1 (
x50

`

^1~313x!&. ~6.3c!

The casek54 is more difficult. In those cases for whichr (k)51 the relevant branching rule
are those for O(3)→S4 . These are such that@0#→(4), @13#5@0#* →(14) and if @r #→(k bk,1

r

~k!, then@r ,1#5@r #* →(k bk8,1
r (k). The coefficientsbk,1

r are tabulated below:

@r #\(k) ~4! ~31! (22) (212) (14)

@0# 1
@1# 1
@2# 1 1
@3# 1 1 1
@4# 1 1 1 1
@5# 2 1 1
@6# 1 2 1 1 1 ~6.4!
@7# 1 2 1 2
@8# 1 2 2 2
@9# 1 3 1 2 1
@10# 1 3 2 2 1
@11# 1 3 2 3
@12# 2 3 2 3 1

Finally, it should be noted that

bks112t,15bks,11t f k, for s50,1,2,...,11 and t50,1,2,..., ~6.5!

where f k is the dimension of the irreducible representation~k! of S4 .
Using these results in~5.34!, with bk,r (k)

m 5bk,1
r andbk8,r (k)

m
5bk8,1

r for r 50,1,..., oneobtains
the following results:

P̃45 (
x,y50

`

~^ 3
2~3x14y!&1^ 3

2~613x14y!&* !, ~6.6a!

P̃315 (
x,y50

`

~^ 3
2~11x14y!&1^ 3

2~31x14y!&* !, ~6.6b!

P̃2125 (
x,y50

`

~^ 3
2~31x14y!&1^ 3

2~11x14y!&* !, ~6.6c!

P̃145 (
x,y50

`

~^ 3
2~613x14y!&1^ 3

2~3x14y!&* !. ~6.6d!

The analogy between~6.1!, ~6.3!, and~6.6! and the corresponding results forPk in ~5.1! could
not be more striking. Of course, given the validity of~5.26! all the results~5.1! now follow from
the information obtained here on branching rule coefficients.
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Furthermore in direct analogy to~5.2! we have

D̃ ^ $22%5D̃ ^ H 1 0

1 0J 5U D̃ ^ H1
1J D̃ ^ H1

0J
D̃ ^ H0

1J D̃ ^ H0
0JU5~D̃ !2UP̃21 P̃2

P̃12 P̃1
U . ~6.7!

Hence,

P̃225P̃21P̃12P̃2P̃125 (
x50

`

~^1~113x!&1^1~213x!&!2 (
x50

`

^1~112x!&

5 (
x50

`

~^1~216x!&2^1~316x!&1^1~416x!&!. ~6.8!

Again the analogy to~5.4! is clear. It should be noted that negative coefficients may and indee
appear inP̃k for somek, as in this example~6.8!.

In this case for whichk54, (k)5(22), and r (k)52, the same result~6.8! may also be
obtained directly from~5.34! and a consideration of the chain O(2)→O(3)→S4 . Under the
restriction O(2)→O(3) we have@m#→@m/L#5@m#2@m21#. Combining this with the tabula-
tion ~6.4! of the branching rule multiplicities for O(3)→S4 it follows that we have@m#→(k

bk,1
r (k) with the coefficientsbk,1

r now given by

@r #\(k) ~4! ~31! (22) (212) (14)

@0# 1
@1# 21 1
@2# 1
@3# 1 21 1
@4# 1
@5# 21 1 ~6.9!
@6# 1 1
@7# 1 21
@8# 1
@9# 1 21 1
@10# 1
@11# 1 21
@12# 1 1

In addition @12#→(14) and

bk,1
s112t5bk,1

s 1ds0mk
12

for s50,1,2,...,11 andt51,2,... . ~6.10!

It is then easy to see that~6.8! follows directly from ~6.9! and ~6.10!.
A more testing example of the use of Corollary 5.8 is provided by the calculation ofP̃33. In

this case we havek59, k5(33), and r (k)53 so that the relevant chain of groups
O~6!→O~7!→O~8!→S9 and the relevant coefficients arebk,3

m . Consideration of this chain for the
branching of all irreducible representations@m# of O~6! of weight umu<10 leads to the following:

P̃335^3~322!&1^3~32!&1^3~32!&* 2^3~321!&2^3~322!&

1^3~33!&1^3~421!&22^3~422!&22^3~43!&22^3~43!&* 12^3~431!&

13^3~432!&23^3~432!&13^3~42!&13^3~42!&* 23^3~421!&22^3~422!&
                                                                                                                



f

5681J. Math. Phys., Vol. 41, No. 8, August 2000 Analogy between plethysms of SO(2n), Sp(2n,R)

                    
1^3~52!&1^3~52!&* 2^3~521!&12^3~522!&1^3~53!&

1^3~53!&* 22^3~532!&23^3~54!&23^3~54!&* 14^3~541!&14^3~52!&

14^3~52!&* 1^3~612!&2^3~62!&2^3~62!&* 1^3~621!&12^3~622!&13^3~63!&

13^3~63!&* 2^3~631!&2^3~64!&2^3~64!&* 1^3~71!&1^3~71!&* 22^3~712!&

1^3~72!&1^3~72!&* 13^3~721!&23^3~73!&23^3~73!&* 2^3~81!&2^3~81!&*

13^3~812!&12^3~82!&12^3~82!&* 1^3~9!&1^3~9!&* 22^3~10!&22^3~10!&* 1¯

~6.11!

for all n>6. In accordance with~5.34! the coefficients are just the multiplicities of (33) in the
branching from O~6! to S9 . In this case we havek2r (k)52x with x53, so that in~5.34! the
summation is carried out only over those partitionsm for which l (m)<3. In addition, the fact that
in this casek is self-conjugate, that isk5k8, implies that the multiplicity of an irreducible
representation̂3(m)& is the same as that of its associate11 ^3(m)&* . Thus the coefficients of
^3(pq)& and ^3(pq)&* 5^3(pq12)& are necessarily the same for allp>q>1, as are those o
^3(p)& and^3(p)&* 5^3(p14)& for all p>1. The irreducible representations^3(pqr)& for which
p>q>r>1 are self-associate.

This expression, when multiplied byD̃3 in the case Sp(2n,R) with n>8, yields up to weight
10 the following result:

D̃ ^ $33%5^D̃;4~322!&1^D̃;4~322!&* 13^D̃;4~3221!&13^D̃;4~3221!&* 15^D̃;4~323!&

15^D̃;4~323!&* 1^D̃;4~32!&1^D̃;4~32!&* 12^D̃;4~321!&12^D̃;4~321!&*

1^D̃;4~3212!&1^D̃;4~3212!&* 15^D̃;4~322!&15^D̃;4~322!&* 18^D̃;4~3221!&

18^D̃;4~3221!&* 111̂ D̃;4~3222!&111̂ D̃;4~3222!&* 15^D̃;4~33!&15^D̃;4~33!&*

16^D̃;4~331!&16^D̃;4~331!&* 1^D̃;4~421!&1^D̃;4~421!&* 13^D̃;4~4212!&

13^D̃;4~4212!&* 14^D̃;4~422!&14^D̃;4~422!&* 112̂ D̃;4~4221!&

112̂ D̃;4~4221!&* 113̂ D̃;4~423!&113̂ D̃;4~423!&* 1^D̃;4~43!&1^D̃;4~43!&*

15^D̃;4~431!&15^D̃;4~431!&* 110̂ D̃;4~4312!&110̂ D̃;4~4312!&* 115̂ D̃;4~432!&

115̂ D̃;4~432!&* 138̂ D̃;4~4321!&138̂ D̃;4~4321!&* 115̂ D̃;4~432!&

115̂ D̃;4~432!&* 16^D̃;4~421!&16^D̃;4~421!&* 118̂ D̃;4~4212!&

118̂ D̃;4~4212!&* 118̂ D̃;4~422!&118̂ D̃;4~422!&* 1^D̃;4~52!&1^D̃;4~52!&*

15^D̃;4~521!&15^D̃;4~521!&* 110̂ D̃;4~5212!&110̂ D̃;4~5212!&* 114̂ D̃;4~522!&

114̂ D̃;4~522!&* 135̂ D̃;4~5221!&135̂ D̃;4~5221!&* 14^D̃;4~53!&14^D̃;4~53!&*

118̂ D̃;4~531!&118̂ D̃;4~531!&* 134̂ D̃;4~5312!&134̂ D̃;4~5312!&*

149̂ D̃;4~532!&149̂ D̃;4~532!&* 15^D̃;4~54!&15^D̃;4~54!&* 132̂ D̃;4~541!&

132̂ D̃;4~541!&* 110̂ D̃;4~52!&110̂ D̃;4~52!&* 1^D̃;4~612!&1^D̃;4~612!&*

13^D̃;4~613!&13^D̃;4~613!&* 12^D̃;4~62!&12^D̃;4~62!&* 113̂ D̃;4~621!&
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113̂ D̃;4~621!&* 129̂ D̃;4~6212!&129̂ D̃;4~6212!&* 133̂ D̃;4~622!&

133̂ D̃;4~622!&* 110̂ D̃;4~63!&110̂ D̃;4~63!&* 149̂ D̃;4~631!&149̂ D̃;4~631!&*

117̂ D̃;4~64!&117̂ D̃;4~64!&* 1^D̃;4~71!&1^D̃;4~71!&* 14^D̃;4~712!&

14^D̃;4~712!&* 17^D̃;4~713!&17^D̃;4~713!&* 17^D̃;4~72!&17^D̃;4~72!&*

134̂ D̃;4~721!&134̂ D̃;4~721!&* 125̂ D̃;4~73!&125̂ D̃;4~73!&* 12^D̃;4~81!&

12^D̃;4~81!&* 19^D̃;4~812!&19^D̃;4~812!&* 115̂ D̃;4~82!&115̂ D̃;4~82!&*

1^D̃;4~9!&1^D̃;4~9!&* 16^D̃;4~91!&16^D̃;4~91!&* 1^D̃;4~10!&1^D̃;4~10!&*

1¯ . ~6.12!

Despite the fact that negative terms appear in~6.11!, the coefficients in~6.12! are all positive, as
required. The same result~6.12! can also be obtained directly from Proposition 3.1 using
branching rules for O~9!→S9 to determine the relevant coefficientsbk

l .
As can be seen from~3.4! in any case for whichk is odd andk5k8, all the terms must appea

in mutually associate pairs that share the same multiplicity. This is indeed the case in~6.12! for all
Sp(2n,R) with n>8. However, more generally in the case Sp(2n,R) it is necessary to delete a
those terms of the form̂D̃;4(l)& for which l (l).n. Thanks to the modification rules of O~9!,

^D̃;4(p)&* 5^D̃;4(p17)&, ^D̃;4(pq)&* 5^D̃;4(pq15)&, ^D̃;4(pqr)&* 5^D̃;4(pqr13)& and

^D̃;4(pqrs)&* 5^D̃;4(pqrs1)&. It follows that in applying~6.12! to Sp(12,R), for example, it is
necessary to drop all the terms of the form^D̃;4(pq)&* and ^D̃;4(p)&* , but no others.

To give just one example of the calculation ofD9^ $k% for SO(2n) by means of the deter
minantal expansion of Corollary 4.2, we consider the casek5(332). In Frobenius notation

$332%5S 2 1 0

3 2 0D , ~6.13!

so that

P (332)5UP (313) P (312) P (3)

P (213) P (212) P (2)

P (14) P (13) P (1)

U , ~6.14!

where it has been typographically convenient to write (b
a) in standard partition notation (a

11,1b). In the case of SO~8!, for example, evaluating the individualP (a11,1b) by means of
Corollary 5.4 withk5(a11,1b) and r (k)51 and the use of the branching rules for O(k21)
→Sk for k51,2,...,6 gives

P (313)52@D;23#21@D;221#21@D;213#21@D;212#122@D;212#22@D;21#1

1@D;21#212@D;2#122@D;2#22@D;14#222@D;13#113@D;13#2

12@D;12#123@D;12#223@D;1#114@D;1#212@D;0#122@D;0#2 ,

P (312)51@23#2@221#2@213#12@213#212@212#2@21#1@2#1@14#11@14#2

22@13#12@12#22@1#,

P (3)51@14#12@1#,
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P (213)52@231#21@2212#22@213#21@212#2@21#1@2#12@14#222@13#1@12#

2@1#1@0#,

P (212)51@D;13#22@D;12#22@D;1#11@D;1#21@D;0#12@D;0#2 , ~6.15!

P (2)51@D;0#1 ,

P (14)52@D;14#21@D;1#22@D;0#2 ,

P (13)51@14#22@1#,

P (1)51@0#.

Each of the above expansions ofP (a11,1b) may be set inSCHURas an rvar and the determina

U rv1 rv2 rv3

rv4 rv5 rv6

rv7 rv8 rv9
U ~6.16!

evaluated inSCHUR to yield the result:

P33252@43#1@4212#11@4212#22@42#1@413#12@41#1@3212#22@321#2@32#2@323#2

2@322#1@3212#11@3212#21@321#23@32#12@313#11@313#22@312#22@31#2@24#2

2@231#212@2212#113@2212#22@22#1@213#11@213#21@212#23@21#1@2#1@14#2

22@13#2@12#1@1#12@0#. ~6.17!

The dimension is checked by noting that

U2216 125 27

2125 264 8

264 27 1
U53924. ~6.18!

Finally, sincek5(332) has Frobenius rankr (k)53, multiplication of~6.17! by (D9)3 gives

D9^ $332%52@D;5412#11@D;5412#213@D;541#123@D;541#225@D;54#115@D;54#2

1@D;5322#12@D;5322#223@D;5321#113@D;5321#214@D;532#124@D;532#2

18@D;5312#128@D;5312#2217@D;531#1117@D;531#2119@D;53#1

219@D;53#222@D;523#113@D;523#216@D;5221#129@D;5221#229@D;522#1

111@D;522#2213@D;5212#1119@D;5212#2128@D;521#1233@D;521#2

226@D;52#1129@D;52#216@D;513#1216@D;513#2217@D;512#1126@D;512#2

117@D;51#1224@D;51#226@D;5#1110@D;5#22@D;4222#22@D;4221#1

14@D;4221#214@D;422#126@D;422#215@D;4212#1211@D;4212#2

218@D;421#1123@D;421#2121@D;42#1224@D;42#21@D;433#223@D;4322#2

2@D;4321#114@D;4321#213@D;432#124@D;432#222@D;4322#1

111@D;4322#2113@D;4321#1230@D;4321#2232@D;432#1141@D;432#2
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233@D;4312#1157@D;4312#2194@D;431#12112@D;431#2292@D;43#1

1102@D;43#215@D;423#1220@D;423#2228@D;4221#1158@D;4221#2

164@D;422#1280@D;422#2166@D;4212#12111@D;4212#22178@D;421#1

1211@D;421#21160@D;42#12178@D;42#2248@D;413#1184@D;413#2

1136@D;412#12165@D;412#22137@D;41#11157@D;41#2152@D;4#1

261@D;4#222@D;34#217@D;332#213@D;331#1212@D;331#2210@D;33#1

114@D;33#212@D;3222#1224@D;3222#2224@D;3221#1170@D;3221#2

172@D;322#1298@D;322#2155@D;3212#12117@D;3212#22175@D;321#1

1222@D;321#21156@D;32#12181@D;32#228@D;323#1145@D;323#2

163@D;3221#12144@D;3221#22166@D;322#11212@D;322#22151@D;3212#1

1268@D;3212#21438@D;321#12525@D;321#22383@D;32#11428@D;32#2

1141@D;313#12209@D;313#22396@D;312#11448@D;312#21408@D;31#1

2438@D;31#22179@D;3#11186@D;3#219@D;24#1239@D;24#2264@D;231#1

1140@D;231#21168@D;23#12215@D;23#21156@D;2212#12273@D;2212#2

2453@D;221#11544@D;221#21395@D;22#12442@D;22#22192@D;213#1

1282@D;213#21547@D;212#12620@D;212#22585@D;21#11628@D;21#2

1302@D;2#12313@D;2#21109@D;14#12166@D;14#22323@D;13#1

1373@D;13#21376@D;12#12411@D;12#22262@D;1#11280@D;1#2198@D;0#1

2107@D;0#2 . ~6.19!

This may also be checked, or arrived at very tediously, through the use of Proposition 3.2 a
branching rules for O(11)→S11.

VII. BASIC TENSOR DIFFERENCE CHARACTERS OF SO „2n … AND SP„2N,R…

Basic tensor sum,h, and difference,h9, characters of SO(2n) are specified most conve
niently by writing16

h5h11h25@1n#11@1n#2 , ~7.1a!

h95h11h25@1n#12@1n#2 . ~7.1b!

Likewise, we may specify analogous basic tensor sumh̃ and differenceh̃9 characters of
Sp(2n,R) by writing

h̃5h̃11h̃25^1~0!&1^1~0!&* , ~7.2a!

h̃95h̃11h̃25^1~0!&2^1~0!&* . ~7.2b!

It follows from ~1.1! and ~1.5! that

h95@1n#12@1n#25~D1!22~D2!25DD9. ~7.3!

Similarly, it follows from ~1.2! and ~1.12! that
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h̃95^1~0!&2^1~0!&* 5~D̃1!22~D̃2!25D̃D̃9. ~7.4!

Hence, from~1.1! and ~1.2! we have

h95)
i 51

n

~xi2xi
21! ~7.5!

and

h̃95)
i 51

n

~xi
212xi !

21, ~7.6!

respectively.
Turning to plethysms of the basic tensor sum and difference characters, the results~8.10a! and

~8.10b! of Ref. 16 can be rewritten in the following form:

h1 ^ $2%5 (
x50

`

@2n/14x#11 (
x,y50

`

@2n/~22y1214x!#, ~7.7a!

h1 ^ $12%5 (
x50

`

@2n/14x12#11 (
x,y50

`

@2n/~22y1214x12!#, ~7.7b!

h2 ^ $2%5 (
x50

`

@2n/14x#21 (
x,y50

`

@2n/~22y1214x!#, ~7.7c!

h2 ^ $12%5 (
x50

`

@2n/14x12#21 (
x,y50

`

@2n/~22y1214x12!#. ~7.7d!

By the adaptation of a procedure30 developed for the evaluation of symmetrized products
SO* (2n) to the case of Sp(2n,R) one obtains the following minor modification of the resu
~6.2a! and ~6.2b! of Ref. 29:

^ 1
2k~0!& ^ $2%5^k~D1!N&, ~7.8a!

^ 1
2k~0!& ^ $12%5^k~D2!N&, ~7.8b!

whereN5min(k,n) and (D1)N is the infinite series of partitions with parts all even, of weig
0(mod 4) and number of parts<N while (D2)N is similar except that now the partitions are
weight 2(mod 4). Specializing~7.8a! and ~7.8b! to the casek52 then leads to

^1~0!& ^ $2%5h̃1 ^ $2%5^2~D1!2&, ~7.9a!

^1~0!& ^ $12%5h̃1 ^ $12%5^2~D2!2&. ~7.9b!

Sinceh̃25^1(0)&* 5h̃1* we may use the conjugacy theorem~5.25! of Ref. 11 to write down the

corresponding symmetrized powers ofh̃2 . This allows us to summarize the results in a for
analogous to~7.7!, namely:

h̃1 ^ $2%5 (
x50

`

^2~4x!&1 (
x,y50

`

^2~4x12y12,4x!&, ~7.10a!
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h̃1 ^ $12%5 (
x50

`

^2~4x12!&1 (
x,y50

`

^2~4x12y14,4x12!&, ~7.10b!

h̃2 ^ $2%5 (
x50

`

^2~4x!&* 1 (
x,y50

`

^2~4x12y12,4x!&, ~7.10c!

h̃2 ^ $12%5 (
x50

`

^2~4x12!&* 1 (
x,y50

`

^2~4x12y14,4x12!&, ~7.10d!

where it should be recalled that the irreducible representations^2(pq)& of Sp(2nR) with p>q
>1 are self-associate, whilê2(p)&* 5^2(p12)& for p>1, and^2(0)&* 5^2(14)&.

All this suggests as a strong possibility the existence of analogies between symmetrized

powers of the difference charactersh9 of SO(2n) with those ofh̃9 for Sp(2n,R) that are similar
to those found betweenD9 and D̃. Indeed, building on previously established results1,16 for
plethysms of SO(2n) and Sp(2n,R) it is not too difficult to show that

h9^ $2%5h9S h12 (
x50

~21!x@1n22x22# D , ~7.11a!

h9^ $12%5h9S 2h21 (
x50

~21!x@1n22x22# D ~7.11b!

and

h̃9^ $2%5h̃9S h̃12 (
x50

~21!x^1~2x12!& D , ~7.12a!

h̃9^ $12%5h̃9S 2h̃21 (
x50

~21!x^1~2x12!& D . ~7.12b!

Comparison of~7.11! with ~7.12! shows not only a striking analogy between the two pairs

plethysms, but also the existence of explicit factorization of these plethysms ofh9 andh̃9 that
are analogous to the factorizations ofD9 and D̃ given in ~1.3! and ~1.4!. That this is not an
accident may be seen by noting more generally that the factorization of the plethysmsh9^ $k%

and h̃9^ $k% essentially parallels that given in Sec. IV by changingD9 to h9 and D̃ to h̃9
throughout and replacingxi

1/2 by xi for all i in ~4.3!, ~4.5!, ~4.13!, and ~4.15!. To present this
formally, we note from~2.12! and the various definitions~1.1b!, ~1.1a!, ~7.5!, and~7.6! that

h95D9^ p2 , h̃95D̃ ^ p2 , ~7.13!

wherep2 is the elementary power sum function of degree 2. It then follows from the algeb
plethysm that

h9^ $k%5~D9^ p2! ^ $k%5D9^ ~p2^ $k%!5D9^ ~$k% ^ p2!5~D9^ $k%! ^ p2

5~~D9!r (k)Pk! ^ p25~D9^ p2!r (k)~Pk ^ p2!5~h9!r (k)~Pk ^ p2! ~7.14!

and
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h̃9^ $k%5~D̃ ^ p2! ^ $k%5D̃ ^ ~p2^ $k%!5D̃ ^ ~$k% ^ p2!5~D̃ ^ $k%! ^ p2

5~~D̃ !r (k)P̃k! ^ p25~D̃ ^ p2!r (k)~P̃k ^ p2!5~h̃9!r (k)~P̃k ^ p2!. ~7.15!

This gives

h9^ $k%5~h9!r (k)Sk , where Sk5Pk ^ p2 ~7.16!

and

h̃9^ $k%5~h̃9!r (k)S̃k , where S̃k5P̃k ^ p2 . ~7.17!

Finally, from ~4.6!, ~4.7!, and~4.14! we have the determinantal expansions

Sk5Pk ^ p25uP S as
bt

D ^ p2ur 3r5uS S as
bt

D ur 3r ~7.18!

and

S̃k5P̃k ^ p25uP̃ S as
bt

D ^ p2ur 3r5uS̃ S as
bt

D ur 3r , ~7.19!

with

dimSk5dimPk5~21!b11b21¯1bru~as1bt11!n21ur 3r . ~7.20!

To illustrate the outcome of calculations ofS̃k we quote the following two results calculate
in the case of Sp(6,R) up to terms of weight 12 in the first example and weight 10 in the seco

S̃35^2~0!&2^2~2!&1^2~22!&2^2~32!&1^2~4!&2^2~51!&1^2~53!&2^2~52!&1^2~612!&

1^2~62!&2^2~73!&2^2~812!&1^2~82!&1^2~84!&2^2~86!&2^2~93!&1^2~10 12!&

2^2~11 1!&1^2~12!&1¯ , ~7.21!

and

S̃225^2~22!&2^2~31!&12^2~32!&1^2~4!&1^2~412!&22^2~42!&13^2~42!&1^2~51!&

23^2~53!&13^2~52!&22^2~6!&22^2~612!&14^2~62!&23^2~64!&2^2~71!&

12^2~73!&13^2~8!&13^2~812!&25^2~82!&1¯ . ~7.22!

From these, through multiplication byh̃9 and (h̃9)2, respectively, we can recover:
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h̃9^ $3%5^3~0!&2^3~12!&1^3~212!&1^3~22!&2^3~23!&2^3~31!&22^3~32!&1^3~322!&

1^3~4!&12^3~42!&2^3~431!&2^3~432!&13^3~42!&1^3~43!&22^3~51!&

22^3~53!&1^3~532!&24^3~52!&2^3~522!&1^3~6!&1^3~612!&12^3~62!&

2^3~622!&13^3~64!&2^3~642!&1^3~651!&14^3~62!&22^3~71!&23^3~73!&

25^3~75!&1^3~8!&1^3~812!&13^3~82!&14^3~84!&22^3~91!&23^3~93!&

1^3~10!&1^3~10 12!&13^3~10 2!&22^3~11 1!&1^3~12!&1¯ ~7.23!

and

h̃9^ $22%5^4~22!&1^4~23!&2^4~31!&22^4~32!&2^4~322!&1^4~4!&2^4~412!&12^4~42!&

12^4~422!&2^4~431!&2^4~432!&12^4~42!&1^4~422!&22^4~51!&23^4~53!&

2^4~532!&22^4~52!&13^4~62!&13^4~622!&14^4~64!&23^4~71!&24^4~73!&

2^4~8!&1^4~812!&2^4~82!&24^4~91!&22^4~10!&1¯. ~7.24!

VIII. CONCLUSION

In this pair of papers, KWI1 and the present one, an attempt has been made to esta
explicit analogies between character theoretic results for finite-dimensional irreducible rep
tations of SO(2n) and infinite-dimensional irreducible representations of Sp(2n,R). This has
involved spelling out in detail a range of corresponding results for these two groups: on
characters and products in part I, and on symmetrized powers or plethysms here in part II

The most striking feature of these results is that the correspondence always involves
Propositions 3.1 and 3.2, for example, an infinite sequence of terms of the form^m(l)& for
Sp(2n,R) and @mn/l8# for SO(2n). In both cases the terms are indexed by partitionsl whose
lengthl (l) is finite. In factl (l)<m, wherem may be as large as one likes but is determined
the necessarily finite tensor power or degree of plethysm under consideration. However
breadthl (l8) is, in principle, unbounded in both cases. The fact that the SO(2n) case is rendered
finite dimensional, whereas the Sp(2n,R) case is infinite dimensional, is a consequence of
dependence of the former onmn/l8 rather than justl. As a result all summations overl in the
SO(2n) case are finite. This trivial looking distinction places an effective upper bound ofn on
l (l8) in the case of SO(2n). Fortunately, the unified approach adopted here allows both Pr
sitions to be treated on an equal footing.

In deriving Propositions 3.1 and 3.2 a noteworthy theorem from the pure mathematics
ture, due to Scharf and Thibon,17 has been brought to bear in such a way as to provide a proo
a result of considerable significance in the study of symplectic models of nuclei that wa
stated and indeed used by Carvalho.8 By exposing and exploiting the analogy between SO(2n)
and Sp(2n,R) the problem of decomposing tensor powers of bothD9 andD̃ has thus been reduce
to that of evaluating the branching rule multiplicities associated with the group–subgroup re
tion O(k)→Sk .

However, it has proved possible to go further. The factorizations of the plethysmsD9^ $k%
and D̃ ^ $k%, which have been identified in Propositions 4.1 and 4.3, were hitherto unexpe
Although of interest in their own right, it is perhaps more important that they contribute to
study in hand in two distinct ways. First, as indicated in~4.6! and~4.14!, the resulting factorsPk

and P̃k possess determinantal expansions which allow them to be calculated from specia
involving only partitions of the form (a11,1b). Second, it has been shown not only that the
factorsPk andP̃k belong to the rings of characters of SO(2n) and Sp(2n,R), respectively, but
also that they possess explicit expansions in terms of such characters involving integer coef
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that are amenable to calculation through Corollaries 5.4 and 5.8. Both these properties ofPk and
P̃k serve to make tractable the evaluation of the plethysmsD9^ $k% and D̃ ^ $k% themselves, as
illustrated here through the presentation of some substantial examples.

It is hoped, therefore, that the present work will have gone a long way toward dispelling
qualms researchers in the field might have quite naturally held regarding the difficulties of
ing with infinite-dimensional representations of the noncompact group Sp(2n,R). They are really
no more difficult to deal with than the finite-dimensional representations of SO(2n).

ACKNOWLEDGMENTS

The work of one of the authors~B.G.W.! is partially supported by Polish KBN Grant No
2-P03B 076 13. It is a pleasure to thank Dr. Toumazet for drawing to the author’s attentio
work of Scharf and Thibon~Ref. 17!.

1R. C. King and B. G. Wybourne, ‘‘Analogies between finite-dimensional irreducible representations of SO(2n) and
infinite-dimensional irreducible representations of Sp(2n,R). I. Characters and products,’’ J. Math. Phys.~to be pub-
lished!.

2D. J. Rowe, ‘‘Microscopic theory of the nuclear collective model,’’ Rep. Prog. Phys.48, 1419–1480~1985!.
3J. Carvalho, R. LeBlanc, M. Vassanji, and D. J. Rowe, ‘‘An effective shell model theory of collective states,’’
Phys. A452, 263–276~1986!.

4R. W. Haase and N. F. Johnson, ‘‘Classification ofN-electron states in a quantum dot,’’ Phys. Rev. B48, 1583–1594
~1993!.

5B. G. Wybourne, ‘‘Application ofS-functions to the quantum Hall effect and quantum dots,’’ Rep. Math. Phys.34, 9–16
~1994!.

6D. J. Rowe, B. G. Wybourne, and P. H. Butler, ‘‘Unitary representations, branching rules and matrix elements
non-compact symplectic groups,’’ J. Phys. A18, 939–953~1985!.

7R. C. King and B. G. Wybourne, ‘‘Holomorphic discrete series and harmonic series unitary irreducible represen
of non-compact Lie groups: Sp(2n,R), U(p,q) and SO* (2n), ’’ J. Phys. A18, 3113–3139~1985!.

8J. Carvalho, ‘‘Symmetrised Kronecker products of the fundamental representation of Sp(n,R), ’’ J. Phys. A 23, 1909–
1927 ~1990!.

9K. Grudzinski and B. G. Wybourne, ‘‘Plethysm for the noncompact group Sp(2n,R) and newS-function identities,’’ J.
Phys. A29, 6631–6641~1996!.

10J.-Y. Thibon, F. Toumazet, and B. G. Wybourne, ‘‘Symmetrised squares and cubes of the fundamental unir
Sp(2n,R), ’’ J. Phys. A31, 1073–1086~1998!.

11R. C. King and B. G. Wybourne, ‘‘Products and symmetrised powers of irreducible representations of Sp(2n,R) and
their associates,’’ J. Phys. A31, 6669–6689~1998!.

12F. D. Murnaghan,The Theory of Group Representations~Johns Hopkins Press, Baltimore, MD, 1938!.
13D. E. Littlewood,The Theory of Group Characters, 2nd ed.~Clarendon, Oxford, 1950!.
14D. E. Littlewood, ‘‘On the concomitants of spin tensors,’’ Proc. London Math. Soc.49, 307–327~1947!.
15P. H. Butler and B. G. Wybourne, ‘‘Reduction of the Kronecker products for rotational groups,’’ J. Phys.~Paris! 30,

655–664~1969!.
16R. C. King, L. Dehuai, and B. G. Wybourne, ‘‘Symmetrised powers of rotation group representations,’’ J. Phys.14,

2509–2538~1981!.
17T. Scharf and J.-Y. Thibon, ‘‘A Hopf algebra approach to inner plethysms,’’ Adv. Math.104, 30–58~1994!.
18V. V. Vanagas,Algebraic Methods in Nuclear Theory~Vilnius, Mintis, 1971! ~in Russian!.
19P. H. Butler and R. C. King, ‘‘The symmetric group: Characters, products and plethysms,’’ J. Math. Phys.14, 1176–

1183 ~1973!.
20R. C. King, ‘‘Branching rules for GL(N).Sm and the evaluation of inner plethysms,’’ J. Math. Phys.15, 258–267

~1974!.
21L. Dehuai and B. G. Wybourne, ‘‘The symmetric group: Branching rules, products and plethysms for spin repre

tions,’’ J. Phys. A14, 327–348~1981!.
22M. A. Salam and B. G. Wybourne, ‘‘Q-functions andOn→Sn branching rules for ordinary and spin irreps,’’ J. Phys.

22, 3771–3778~1989!.
23T. Scharf, J.-Y. Thibon, and B. G. Wybourne, ‘‘Generating functions for stable branching coefficients ofn)

→S(n), O(n)→S(n) and O(n21)→S(n), ’’ J. Phys. A30, 6963–6975~1997!.
24I. G. Macdonald,Symmetric Functions and Hall Polynomials~Clarendon, Oxford, 1979!.
25B. E. Sagan,The Symmetric Group~Brooks/Cole, Pacific Grove, CA, 1991!.
26D. E. Littlewood, ‘‘On invariant theory under restricted groups,’’ Philos. Trans. R. Soc. London, Ser. A239, 305–365

~1944!.
27SCHUR An interactive program for calculating properties of Lie groups and symmetric functions, distributed

Christensen. Electronic mail: steve@scm.vnet.net; http://scm.vnet/Christensen.html
                                                                                                                



an. J.

ions of

5690 J. Math. Phys., Vol. 41, No. 8, August 2000 R. C. King and B. G. Wybourne

                    
28D. E. Littlewood, ‘‘Products and plethysms of characters with orthogonal, symplectic and symmetric groups,’’ C
Math. 10, 17–32~1958!.

29R. C. King, ‘‘Branching rules for classical Lie groups using tensor and spinor methods,’’ J. Phys. A8, 429–449~1975!.
30R. C. King, F. Toumazet, and B. G. Wybourne, ‘‘Products and symmetrized powers of irreducible representat

SO* (2n), ’’ J. Phys. A31, 6691–6705~1998!.
                                                                                                                



thema-
dy of
forma-
linear

void-

tions

ial

amilies
es of
ects to
recent

t with
r small
critical,

riant

ora-

s of
rs, and
ously
the

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 8 AUGUST 2000

                    
Critical phenomena in nonlinear sigma models
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We consider solutions to the nonlinear sigma model~wave maps! with target space
S3 and base space 311 Minkowski space, and we find critical behavior separating
singular solutions from nonsingular solutions. For families of solutions with local-
ized spatial support a self-similar solution is found at the boundary. For other
families, we find that a static solution appears to sit at the boundary. This behavior
is compared to the black hole critical phenomena found by Choptuik. ©2000
American Institute of Physics.@S0022-2488~00!04908-2#

I. INTRODUCTION

Nonlinear sigma models have been of considerable interest to both physicists and ma
ticians for a number of years. Physicists use them to model symmetry breaking in the stu
pions and other fundamental particles, and also use them to model cosmological structure
tion. Mathematicians, who call them wave maps, use them as geometrically motivated, non
systems of hyperbolic partial differential equations with which to study the formation and a
ance of singularities.

During the past ten years, mathematicians have proven first, that for ‘‘small data,’’ solu
of the Cauchy problem for wave maps avoid singularities and exist for all time~‘‘global
existence’’!.1,2 They have also been able to show that, for three or more spatial dimensions~in the
base manifold!, there are sets of initial data which become singular in finite time.3 ~In one spatial
dimension, this cannot happen;4,5 it is not yet clear whether singularities form in two spat
dimensions.!

These results together suggest that it could be interesting to consider one-parameter f
of initial data such that for small parameter values no singularities occur, while for large valu
the parameter the fields become singular. Studying the evolution of such families, one exp
see critical behavior of some sort occurring near the transition values of the parameter. The
work by Choptuik6 and others in which experiments such as these have been carried ou
gravitational systems—collapse to a black hole for large parameter values, and dispersal fo
values of the parameters—shows that very interesting phenomenology can be found at the
transitional, values of the parameters.

Using primarily numerical methods, we carry out such studies for spherically equiva
nonlinear sigma models withS3 target@corresponding to the symmetry breaking SO~4!→SO~3!#.
We find critical behavior which is similar in some ways to that seen by Choptuik and collab
tors, but very different in other ways.

We first focus on sets of initial data with localized support and finite energy. For familie
such solutions, the small data global existence results hold for small values of the paramete
the presence of critical behavior is unambiguous. We find for these families a unique, continu
self-similar solution at the threshold. This critical solution is an intermediate attractor so
critical behavior is ‘‘type II,’’ like that seen in critical collapse to a black hole.

a!Electronic mail: steve@mozart.liu.edu
56910022-2488/2000/41(8)/5691/10/$17.00 © 2000 American Institute of Physics
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Motivated by the Turok–Spergel solution,7 which is the only known explicit wave map
solution which evolves from regular initial data to a singularity, we also examine sets of i
data which do not have localized support and have infinite energy. Although the smal
theorem does not apply to solutions generated by such data, the ‘‘texture’’ studies of wave
suggest that both nonsingular and singular solutions should occur.8,9 Our numerical studies sup
port this contention, and we have found that the transition is marked in some cases
self-similar solution noted above, but in others by static solutions. While the static solution
see at the transition are not intermediate attractors, and therefore, are not critical solutions
usual sense, our studies indicate interesting behavior which deserves further exploration.

We describe in more detail what we have learned about critical and threshold behaviorS3

wave maps in Secs. III and IV. Before doing this, we briefly review in Sec. II what wave maps
the equations for spherically equivariant wave maps, and some of the families of initial da
use to probe the critical boundary. We describe the results of these numerical probes in Sec
the families of data with localized support, and in Sec. IV for the other families. We also no
Secs. III and IV some of the properties of the solutions found on this boundary. We make
concluding remarks in Sec. V.

II. SPHERICALLY EQUIVARIANT WAVE MAPS

A nonlinear sigma model, or wave map, is defined to be a mapfa from a ~Lorentz signature!
space–time~the ‘‘base’’! into a Riemannian geometry~the ‘‘target’’!, with the map satisfying the
differential equation

]m]mfA1GBC
A ]mfB]mfC50, ~1!

whereGBC
A represents the Christoffel symbols corresponding to the metric on the target sp

In this work, we fix the base to be 311 Minkowski spacetime, and we fix the target to beS3.
Furthermore, we make the spherical equivariance ansatz, which may be expressed in ‘‘hedg
coordinate form~for S3,R4! as follows:

fa5S sinx~r ,t !sinu sinmw
sinx~r ,t !sinu cosmw

sinx~r ,t !cosu
cosx~r ,t !

D , ~2!

with m a positive integer.
The only free function in~2! is the spherically symmetric functionx(r ,t). It satisfies the

nonlinear wave equation

ẍ2
1

r 2 ~r 2x8!852m~m11!
sin~2x!

2r 2 , ~3!

where prime denotes]/]r and an overdot denotes]/]t. We enforce the regularity condition
x(0,t)50 at the origin, and apply a standard out-going radiation boundary condition at
radius. The radial energy density corresponding to this system is

r~r ,t !5
r 2

2 F ẋ21~x8!21
m~m11!

r 2 sin2 xG , ~4!

with the corresponding energy function

E~ t !5E
r
r~r ,t !dr. ~5!
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One of the features of this spherical equivariance ansatz is the possibility of nontrivial ‘‘te
charge’’ or ‘‘degree.’’ The degree of a particular wave mapf(r ,u,w,t0) at a fixed timet0

corresponds to the multiplicity of the covering of the target sphereS3 ~i.e., the order of the third
homotopy group!. In terms of the hedgehog form~3!, the degree depends onm, on the range of
x(r ,t0), and on certain continuity conditions at the poles ofS3. We note that the degree is zero s
long as the range ofx(r ,t0) is less thanp; if the range ofx(r ,t0) is greater thanp, the degree may
or may not be nonzero. The degree does not change during a smooth evolution.

If the degree of a wave map is nonzero, the energy cannot be arbitrarily small. Hence,
data arguments for global existence cannot be used. Indeed, numerical evidence~ours and that of
others! suggests that degree nonzero wave maps are inevitably singular. While this has no
proven, it leads us, in studying criticality, to focus on zero degree initial data.

To fully specify initial data, we must specify bothx(r ,0) and its time derivative at the initia
time, ẋ(r ,0). We then evolve this initial data with a first order formulation in which we take
fundamental fields to bex(r ,t) and P(r ,t)[ẋ(r ,t). As a matter of convenience, we genera
take as initial dataP(r ,0)5x8(r ,0) such that the fieldx(r ,0) represents an approximately in
going pulse. This choice has no affect on the critical behavior but helps to mitigate reflection
the outer boundary. Our method makes use of an iterative, second order accurate, C
Nicholson finite difference scheme which we have incorporated into the adaptive frame
developed by Choptuik.6 We have tested this code and shown it to converge quadraticall
conserve energy, and to be stable.

The first two families of initial data we have used to probe criticality have been chose
have localized support and finite energy. The parameters in these families can be chosen
the energy is very small, in which case the small data global existence results guarantee
singularity will develop. For other parameter values, the energy is large, and the developm
singularities is expected. Note that in each case, there is an amplitudeA which we use to scale the
data from nonsingular to singular solutions, and in addition there are two other parametersR0 and
d which we can use to change some of the qualitative features of the family:
Gaussian Pulse Data

x~r ,0!5Ae2(r 2R0)2/d2
,

P~r ,0!5x8~r ,0!. ~6!

Logarithmic Data

x~r ,0!5A
ln~r 1R0!

r 1d
,

P~r ,0!5x8~r ,0!. ~7!

We also examine two other families of data. One of them is special in that it includes the
data ~for e51! which generates the Turok–Spergel solution.7 This is the explicit self-similar
solution which is known to evolve into a singularity in finite time. Note that the Turok–Spe
solution has nonzero degree; all others in this family~with e,2! have zero degree. Note also th
the energy for all of the data in this family is infinite. Therefore, we cannot use the small
global existence theorem to guarantee that solutions generated by data withe small will be
nonsingular. This does, however, appear to be the case~see Sec. IV!. The same is true for ou
fourth family of data; while there is no theoretical guarantee that both nonsingular and sin
solutions are generated by data in this family, our numerical evidence supports the contenti
both do occur, and so transition behavior can be studied.
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Generalized Turok–Spergel Data7

x~r ,0!52e tan21S r

D D ,

P~r ,0!5
2er

D21r 2 . ~8!

Tanh Data

x~r ,0!5AF1

2
tanhS r 2R0

d D1
1

2G ,
P~r ,0!5x8~r ,0!. ~9!

For each of the families of data listed above, our numerical studies proceed as follows: W
a specific family by fixing a choice ofR0 andd ~or a choice ofD! in one of the family classes
listed above. With that fixed family, we run through a number of choices ofA ~or e!, from very
small to large, and we evolve the solution for each choice.

In the evolved solutions, we carefully monitor the behavior of the energy density fun
r(r ,t) as well as that ofx(r ,t); and we use these behaviors to determine which solutions bec
singular and which do not. Singularity formation is indicated by the unbounded growth o
derivativesx8 andẋ ~and hencer/r 2!. We find in each case that there is a critical value ofA ~or
e! which divides the initial data that evolve into a singularity from those which do not. We s
very carefully the solutions at or near this critical value.

We note that while numerical results never prove that a solution is singular or not, in
studies the singular behavior appears dramatically as much of the energy density concentra
grows without apparent bound at the origin. Note that for all of the solutions, the energy de
initially flows towards the origin. In the nonsingular cases, the energy density grows at the o
and then disperses; while in the singular cases, it continues to grow.

In the course of our studies, we have noticed another useful signal of impending sin
evolution: In all cases, whenever the range ofx(r ,t) exceedsp at a given time, a singularity
occurs to the future. Whether or not one can indeed prove such a result, it is useful in sorti
evolutions.

III. SELF-SIMILAR SOLUTIONS AT CRITICALITY

If we consider Gaussian Pulse data for various fixed values ofR0 and d, we find that asA
approaches its critical valueA* , the corresponding solution approaches a particular self-sim
solution. This critical solution isnot the solution found by Turok and Spergel; rather it appear
be one of the sequence of self-similar solutions discovered by Aminneborg and Bergstrom10 and
subsequently Bizon.11 These regular, self-similar solutions obey Eq.~3! together with the scaling
assumption thatx(r ,t)5x(2r /t). The resulting equation is

z2~z221!x ,zz12z~z221!x ,z1sin~2x!50, ~10!

where the differentiation is with respect toz[2r /t. This equation admits a countably infinit
number of solutions, labeled byn, the number of times the solution crossesp/2 betweenz50 and
z51. The Turok–Spergel solution is then50 solution. For alln exceptn50, these solutions have
zero texture charge. Figure 1 plots the first several solutions in this family.

Within the range of values ofr in which the near-critical solutions approach self-similarity,
is not easy to distinguish the various members of the AB sequence of solutions. In ord
determine which of these solutions, which we will callABn , does occur on the boundary betwe
singular and nonsingular solutions, we have examined the behavior of solutions near to sev
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theABn solutions. Specifically, on evolving members of this family, we choose a timet0 and add
a parametrized set of small amplitude Gaussian pulses to the exactly self-similar solution as
data att0 for ABn . Only for AB1 do we find that for negative amplitude pulses, the solution
nonsingular while for positive amplitude pulses, the solution is singular. This is particu
convincing evidence thatAB1 is the critical solution, and the others are not.

In addition to the nonlinear evolution of these self-similar solutions, we obtain further
firmation thatAB1 is the critical solution by carrying out a linear perturbation analysis for it,
well as for some of the otherABn solutions.

Our linear perturbation analysis around this family of self-similar solutions is standar
coordinates adapted to the self-similarity (z[2r /t andt[ lnu2tu!, the perturbed solution to lead
ing order will be

x~r ,t !5x0~z!1d•E eltx̂1~z;l!dl, ~11!

wherex0(z) refers to any member of theABn family andx̂1 is an eigenmode of the perturbatio
expansion associated with the eigenvaluel. With this expansion, the eigenmodes obey the lin
equation

z2~z221!x̂1,zz12z~z2212lz2!x̂1,z1~2 cos~2x0!1l2z22lz2!x̂150. ~12!

In general,l can be complex, but in this case it will suffice to considerl real. As t→0, t→
2`, thus ifl.0, the corresponding perturbations will decay. However, ifl,0, the perturbations
will grow and render the original self-similar solution unstable.

In order to solve the above equation it is sufficient to demand regularity atz50 andz51. On
performing the integration, we find that there is a single gauge mode atl521 for all members of
the ABn family. This gauge mode arises because of the freedom we have in choosing the z
time: t→t1c. In addition to this gauge mode we confirm that the Turok–Spergel solution~the
n50 member of this family! has no unstable modes, then51 member of this family has a singl
unstable mode, and that for all the exactly self-similar solutions we have considered withn.1,
there always exists more than a single unstable mode.12

FIG. 1. These are the first nine members of the family of self-similar solutions found by Aminneborg and Bergstrom~Ref.
10! as well as Bizon~Ref. 11!. Then50 solution is the original Turok–Spergel solution while then51 solution~the solid
line! is the critical solution which serves as an intermediate attractor for the collapse of certain families of initial dat
label n labels the number of timesx crosses the linep/2 on the interval~0, 1!.
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Thus this serves as further evidence thatAB1 is the critical solution. In the sense of dynamic
systems, that this exactly self-similar solution has a single unstable mode indicates that i
intermediate attractor on the boundary between the basin of attraction for singular solution
the basin of attraction for nonsingular solutions. When such an attractor exists for critical b
ior, one is said to have a ‘‘type II transition.’’

For the case of this intermediate attractor, theAB1 solution, the eigenvalue for the singl
unstable mode is found to bel'26.33.

In general, we find the same critical behavior occurring at the transition for all familie
Gaussian Pulse data that we have evolved. In addition, for a number of families of Logari
data and even some families of the nonlocaly supported Tanh data, we findAB1 occurring at the
transition as well.~Figure 2 indicates the closeness of the evolution of a near critical solution
Logarithmic data and the evolution ofAB1 .! This suggests thatAB1 is, at least in a local sense
‘‘universal.’’ Universality is a familiar occurrence in nonlinear dynamics. For example, fo
damped pendulum, for all initial data except that corresponding to the stationary straig
position, the pendulum eventually ends up in the stationary straight down state. This down s
a universal attractor for the whole system.

A particularly pertinent example of similar behavior has been found in the study of black
collapse critical behavior~for a review see Refs. 13 and 14!. This work has demonstrated tha
gravitational collapse exhibits critical solutions at the threshold of black hole formation. Ther
exactly critical solution within a specific model exhibits universality as well as self-simila
~which, depending on the model investigated, can be discrete or, as here, continuous!. The gravi-
tational critical solutions are also intermediate attractors, like theAB1 solution, in that they have
a single unstable mode and sit on the boundary between the dispersal of the collapsing ma
the formation of a black hole~i.e., singularity!. Presumably, if we were to couple this nonline
sigma model to gravity and evolve similar initial data, we would get black hole formation.
what is especially significant here is that even without gravity, we get singularity forma
together with the universality and self-similarity seen in the gravitational context.

FIG. 2. Demonstration of the self-similarity of the critical solution using initial data of the form Eq.~7!. Letting t
[ lnuT*2Tu whereT is the time of collapse, the four frames are equally spaced in ‘‘log time’’ progressing towards col
(t→2`). A near-critical solution forx(r ,t) is shown~circles! for R051 andd51 vs lnr. Then51 self-similar solution
is shown~solid! with the freedom to set the collapse time used to make the two solutions coincide in the first frame
That the solutions coincide at the other times demonstrates that the critical solution is self-similar and approachn
51 solution.
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IV. THE ROLE OF STATIC SOLUTIONS

Consider now evolving the Generalized Turok–Spergel data for various values ofe. By fixing
a value ofD and considering solutions parametrized bye we might expect to again get critica
behavior as before. Though we do observe some sort of threshold behavior, theAB1 self-similar
solution doesnot occur at the transition. Instead, our numerical evolutions suggest that
solutions play a role in the threshold behavior.

The possibility that static solutions occur at the transition between singular and nonsin
data has led us to consider whether the static solutions are critical in this sense. To investig
possibility, let us first consider the stability properties of the strictly static solutions.

Static solutions are studied in Ref. 15 and here we consider only those for whichx(0)50. We
could parametrize this family bya[x8(0), however, Lichtensteiger and Durrer observe that
static solutions are all related by a simple radial rescaling so we need consider onlya51. We
consider initial data of the form

x~r ,t !5xs~r !1Ae2(r 2R0)2/d2
,

P~r ,0!5F2
r 2R0

d2 GAe2(r 2R0)2/d2
, ~13!

which we proceed to evolve. The above initial data represents the static solution,xs(r ), perturbed
by an in-going Gaussian pulse. As with our nonlinear perturbation of the self-similar solution
expectation is that threshold behavior would be demonstrated if forxs(r ) the solution becomes
singular for positive amplitude perturbations (A.0) but remains nonsingular for perturbation
with A,0. A similar test is used in Refs. 16 and 17 to determine whether static solutions sit o
threshold of black hole formation.

An example of this experiment is shown in Fig. 3. The figure demonstrates that non
perturbations of opposite sign send the static solution either to collapse or dispersal depen
the sign of the perturbation. This suggests that the static solutionxs(r ) does indeed sit on thresh
old.

However, if the static solution sits on threshold, one would expect that it has a single un
mode. If so, then it should be an intermediate attractor within some basin of attraction. If
more than one unstable mode, then we would not expect to find it via a one parameter tun

FIG. 3. Demonstration of the instability of the static solution. The static solution~solid! is perturbed with a positive
amplitude Gaussian pulse~dashed! and negative amplitude~dotted!. The positive perturbation collapses while the negat
one disperses suggesting that the static solution sits on threshold.
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The mode structure for the static solution is determined by doing a linear perturbation
Writing

x~r ,t !5xs~r !1d•E e2 ivtx̃1~r ;v!dv, ~14!

with xs(r ) denoting the static solution, withx̃1(r ;v) denoting the perturbation, and withv being
the eigenvalue associated with the perturbative modex̃1 , we determine@after substituting~14!
into ~3!#, that the perturbation modes obey

x̃195
2x̃1 cos~2xa!

r 2 2v2x̃12
2

r
x̃18 , ~15!

with the regularity conditions

x̃1~0!50, x̃18~0!5free. ~16!

Unstable perturbation modes are signaled byv2,0. We find solutions numerically, using
standard shooting technique with the regularity condition at infinity beingx̃18(r→`)50. Due to
the linearity of the problem, we letx̃18(0)51 and adjustv2 until our regularity conditions are met
We find a number of unstable (v2,0) modes; it follows that the static solution does not repres
an intermediate attractor.

Since the static solution is clearly not an intermediate attractor, we might not expect it
found by tuning the Generalized Turok–Spergel~TS! initial data. For this reason, we do not vie
the static solution as a critical solution in the usual sense. However, it does seem to occur
threshold, both for the Generalized TS initial data and for a number of families of Tanh da

Here, we might comment on some of the difficulties associated with the numerical stu
solutions generated from data with infinite support:

As stated previously, fixingD and picking a largee for the TS data, the evolution clearl
demonstrates singular collapse~for e51 collapse is known!. With a small value ofe, one might
expect to observe dispersal. That is, one might expect to observe some energy density
moving towards the origin, turning around, and then traveling outwards forever. The problem
is that numerically we can neither evolve forever nor evolve over an infinite domain. Our e
tions are limited in domain because of finite computer resources and limited in time b
adulteration of boundary effects exacerbated by the infinite nature of the initial data.

The problem of determining dispersal is less crucial for the case of Gaussian initial dat
other families with localized support because we can rely on the small data global exis
theorems to guarantee that the evolution is nonsingular. Here though, those theorems
applicable because the initial data has infinite energy.

As corroborative support for our view that we are seeing nonsingular solutions, we no
work on textures in which scaling arguments are used to show that, at least for a particula
of initial data of infinite support, wave map evolutions that do not collapse can occur.9 In fact, a
number of these papers discuss the critical winding number of such textures~of infinite support!
which separates dispersal from collapse~see, for example, Ref. 8!.

Our evolutions for smalle show what appears to be dispersal, and those for largee show
apparent collapse. Tuning, however, is very difficult, since~as seen in Ref. 8!, we observe solu-
tions which at first appear to be dispersing but ‘‘turn around’’ and then ultimately collapse.
turn-around can occur very slowly. Hence, finding the transition is very hard.

Our evolutions therefore suggest three regimes ine for the TS initial data, as well as fo
certain families of the Tanh data.18 For largee, the evolutions quickly collapse. For smalle, the
evolutions suggest that the solutions do not collapse but instead disperse. For moderatee, solutions
appear to be dispersing but then turn around and collapse.

Given the resulting difficulty in finding a criticale, one is led to ask in what sense the sta
solution exhibits threshold behavior. It seems to arise for the intermediate range ofe as an
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evolving solution turns around from its initially outgoing, dispersive behavior and begin
collapse to a singularity. As this turn around point is approached, the field profiles approac
of the static solution and remain there for a certain amount of time.19 An example of this is shown
in Fig. 4. Although this behavior is certainly reminiscent of observed critical behavior, sinc
static solution has multiple unstable modes, it is not an intermediate attractor, and so not a
solution in the accepted sense. However, it appears that this static solution does arise i
sense, and does play some role in wave map threshold behavior.

The above discussion simply describes what our numerical evolutions suggest, but is
not definitive. Nonetheless, we conjecture that while for smalle data the solutions do disperse, fo
somewhat largere data, the solution will appear to be dispersing, but then will approach the s
solutionxs(r ) ~in general, for somee-dependenta!, and will finally collapse. Further, we conjec
ture that as one decreasese, one will observe the solution turning around at later and later tim
~and larger and largerr ! until for some nonzero value,e* , the solution turns around at infinit
time and radius. Any further reduction ofe below e* results in dispersal.

V. CONCLUSION

Our work shows that nonlinear sigma models, or wave maps, from 311 Minkowski space-
time into S3 exhibit critical behavior which is similar to that seen in the study of black h
collapse for Einstein’s equations with various source fields. We find that the boundary be
sets of data evolving into nonsingular solutions and sets of data evolving into singular sol
includes a self-similar solution. The static solutions are found to play a role as well. The
similar solution is an intermediate attractor, while the static solutions are not.

While this work is a first step toward understanding critical behavior in wave maps, it le
a number of questions unanswered:

~1! Does the critical boundary for spherically symmetric wave maps from 311 Minkowski
spacetime intoS3 include other solutions besides those we have seen?

~2! How do the solutions on this boundary fit together?
~3! What happens if one removes the spherical equivariance condition?
~4! What happens for target spaces other thanS3?

FIG. 4. Apparent approach of the tuned Turok–Spergel initial data to the static solution. Shown~dashed! is the evolution
of the energy densityr(r ,t) for the Turok–Spergel initial data, Eq.~8!, with e50.302. The energy quickly begins to mov
outward to larger . However, byt'126, the evolution has shed a large component of its energy density leaving behi
approximately static solution. Shown also is the energy density for thea50.12 static solution~solid!, chosen for the best
correspondence to the static part of the evolution.
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~5! What happens for base spaces other than 311 Minkowski spacetime?

A base space of particular interest is 211 Minkowski spacetime. For 211 wave maps, it is
not yet known whether in fact there are any singular solutions which evolve from regular i
data (211 is the ‘‘critical dimension’’ for the wave map system of partial differential equatio
just as 411 is the critical dimension for Yang–Mills!. If such solutions exist, there would likel
be critical behavior. However, one expects the nature of the critical boundary between si
and nonsingular solutions to be very different in this case. This issue is currently under stu
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The statistical analysis of Gaussian and Poisson signals
near physical boundaries

Mark Mandelkern and Jonas Schultz
Department of Physics and Astronomy, University of California, Irvine, California 92697
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We propose a construction of frequentist confidence intervals that is effective near
unphysical regions and unifies the treatment of two-sided and upper limit intervals.
It is rigorous, has coverage, is computationally simple and avoids the pathologies
that affect the likelihood ratio and related constructions. Away from nonphysical
regions, the results are exactly the usual central two-sided intervals. The construc-
tion is based on including the physical constraint in the derivation of the estimator,
leading to an estimator with values that are confined to the physical domain.
© 2000 American Institute of Physics.@S0022-2488~00!03508-8#

I. INTRODUCTION

Obtaining confidence intervals near physical boundaries is a long-standing problem. E
ments designed to detect a nonzero neutrino mass by observing neutrino oscillation or to d
small resonance signal in the presence of background are examples in which a negative res
be obtained for a quantity that is intrinsically positive. The difficulty arises when the estimat
the Gaussian or Poisson mean, as obtained from the data, is near or beyond the physical bo
in which case the standard~classical! result of Neyman’s construction is an unphysical or n
interval as illustrated in Figs. 1 and 2.

For the Gaussian case, Fig. 1, one obtains central confidence intervals for the meanm con-
strained to be non-negative, using the sample meanx̄ as the estimator form. x̄ sufficiently
negative leads to the null interval. Despite the fact that the construction has coveragea, which
means that, for any given true mean, the confidence interval includes that value with prob
a, the null intervalcannotcontain any true mean. It is necessarily one of the measured inte
that, with probability 12a, fail to contain the true mean. Even the non-null intervals obtained
this method for some negative values of the estimator are unphysically small in that,for most
possible (true) means, the confidence interval does not contain the true mean.

The other difficult case, illustrated in Fig. 2, is that of Poisson distributed data with unkn
signal meanm>0, in the presence of a background with known non-negative meanb; n is the
result of a single observation. Forn,b the interval form is unphysically small. For sufficiently
small n the interval is null. The implausibility of the resulting intervals is well illustrated by
example shown. For a background-free (b50) experiment that measures zero events (n50), the
90% upper limit form is 2.62, for the explicit construction exhibited in Fig. 2.~We note that,
depending upon the particular choice of construction, the 90% upper limit obtained for the
b50, n50 can vary over a small range; e.g., the limit is 2.30 for a one-sided upper
construction, 2.44 for the methods of Refs. 3 and 4 and 2.62 for the construction presented!
For an experiment with known mean backgroundb53.0 that measures 0~1! events, the upper limit
for m is 0~1.7!. Thus the poorer experiment has the potential to yield a much smaller~but not
believable! upper limit.

When the estimator takes on a value near or beyond the physical limit, we have inform
greater than that available when no boundary is present since we knowa priori that the true value
is not beyond the boundary. For the Gaussian case, where the confidence intervals are
length for measurements away from the boundary, we expect smaller confidence interv
measurements near or beyond the boundary. The classical construction gives this feature.
know that an estimate for the parameter beyond the physical limit is relatively improbable
57010022-2488/2000/41(8)/5701/9/$17.00 © 2000 American Institute of Physics
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flaw in the standard classical method is that increasingly improbable estimates lead to incre
small and ultimately null confidence intervals. One cannot accurately estimate a parame
making an extremely improbable observation. The best result for the determination of a par
should follow from the most probable measurement and, arguably, the smallest confidence i

FIG. 1. Confidence belt, in the usual construction, giving 68.27% central confidence intervals for the unknown me

Gaussian with variances2, in units ofsN5s/A(N), wherex̄ is the sample mean ofN measurements.

FIG. 2. The classical construction of the 90% central confidence belt~solid! for unknown non-negative Poisson signalm
in the presence of a Poisson background with known meanb taken to be 3.0, wheren is the result of a single observation
Herem05m1b is the parameter representing the mean of signal plus background. Forn50 the confidence interval is null
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should be obtained for that observation, i.e.,x̄5m for the Gaussian case andn5b1m for the
Poisson case.

II. PREVIOUSLY SUGGESTED METHODS FOR OBTAINING IMPROVED CONFIDENCE
INTERVALS

A number of suggestions have been made for estimating believable confidence interv
bounded parameters. In the Review of Particle Properties,1,2 the Particle Data Group sugges
several options for revising the intervals described above to make them conservative, lea
overcoverage for small true values, and also discusses the use of ‘‘Bayesian upper limit~s!, which
must necessarily contain subjective feelings about the possible values of the parameter.’’

Recently, several authors have suggested the use of differentselection principlesfor the
construction of intervals. In the Neyman construction, the confidence belt depends both
properties of the estimator and a selection principle. The Neyman construction can be
described by means of a plot containing values of the estimator on the abscissa and value
parameter on the ordinate. According to some prescription, i.e., the selection principle, one s
for any given value of the parameter, a horizontal interval corresponding to a designated
ability ~the coverage! as determined by the sampling distribution of the estimator. The re
mapped out in this way for all values of the parameter constitutes theconfidence belt. After an
experiment is performed, yielding a specific value for the estimator, the corresponding confi
interval for the parameter, with the designated coverage, is the vertical interval contained
confidence belt at that value of the estimator. The most commonly used selection principle~for
coveragea) arecentral ~probability a within the belt and equal probabilities on either side! and
one sided~for example, a horizontal interval withx̄upper5` and probabilitya to the right of
x̄lower). One has the freedom to depart from the usual selection principles by, for example, i
ing a selection which makes the confidence belt as narrow as possible.3

In recently suggested modifications, Ref. 4 addresses both the Gaussian and Poisso
while Ref. 5 deals only with the Poisson case. These approaches employordering principlesfor
the selection, i.e., rules which order the outcome probabilities before aggregating to give
probabilitya for each value of the parameter. In particular, the ordering is based on the likeli
ratio construction6 ~and a variant!, where the physical constraint on the parameter space is us
the computation. These constructions produce finite confidence intervals for all values
classical estimator and also achieve the admirable unifying feature that one need not
beforehand whether to set a confidence interval or a confidence bound. However, the in
obtained are small forimprobablevalues of the estimators and share with the classical cen
construction the difficulty that, for a quite improbable value, the confidence interval appro
the null interval. Thus, for the Gaussian case, a very negative measured value yields a ver
confidence interval with lower limit zero. Table X of Ref. 4 gives the confidence interval for
~non-negative! Gaussian meanm for measured valuex0 . For measured value23.0 ~unit variance
assumed!, the 68.27% confidence interval is@0.00, 0.04#. Despite the fact that this construction h
68.27% coverage, the confidence interval derived from this measurement does not contain
valuefor most possible true valuesof the Gaussian mean~excepting those in@0.00, 0.04#! that can
lead to the measurement. The resulting confidence interval is unphysically small. It doe
imply, in the words of the authors, a high ‘‘degree of belief’’ that the true value is within
interval. Our construction, which is described below, yields@0, 1.0#.

For the Poisson example cited above, of an experiment with known mean backgroundb of 3.0
and a single observation yieldingn50, the 90% interval for the signalm given by Refs. 4 and 5
are@0, 1.08# and@0, 1.86# respectively, smaller than the interval given forn50, b50 of @0, 2.44#.
Reference 5 emphasizes that the reason for obtaining small upper limits forn,b is not increased
sensitivity to the signal but just that fewer background events than expected are observe
views it as ‘‘an undesirable feature from the physical point of view’’ for the upper limit
decrease asb increases. Our construction, described below, yields@0, 2.62# for theb50 case and
@0, 4.69# for theb53.0 case, thus a larger rather than smaller interval for 0 events measured
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background is present. Of the constructions discussed here, ours is the only one where th
limit increases rather than decreases asb increases for fixedn.

In recognition of the problem of unphysical intervals, Ref. 4 introduces the concept of ‘
sitivity’’ to handle cases in which the measurement is less than the estimated background a
confidence interval is suspect. This, however, requires quoting a second value, a characte
the experiment itself, in addition to the interval quoted. No substitute interval is offered.

The authors of Ref. 7 construct confidence intervals for the Poisson case. They point o
the observationn50 implies that zero signal is seen, thus the estimate form ~zero! is independent
of b. They argue, therefore, that the confidence interval form for n50 must be independent ofb.
Extending the argument, they note that for any observationn, one has observed a signaln from the
Poisson pdfp(n;m1b) and at most a backgroundn. Thus they formulate a method of obtainin
confidence intervals based on the conditional probability to observen given a background<n and
obtain the desired result forn50 and approximately the classical confidence intervals forn.b.
While they identify their method as an ordering principle, it is not one in the same sense as
4 and 5. The confidence belt is not constructed from the sampling distribution of an estimat
hence does not have coverage in the usual sense. The method gives intervals that are in
more satisfying as measures of confidence. However, because the method does not prov
erage, one cannot precisely state the probability that the interval encloses the true value.

Although the intervals determined by the method of Ref. 7 do not have coverage, they c
easily modified so that they do, by restructuring the confidence belt, retaining the lower lim
adjusting the upper limit so that all horizontal intervals contain probabilitya. If one thus modifies
the construction, the procedure represents another selection principle applied to the Poisson
the sample mean. Forn50 independent ofb, this method gives a 90% upper limit of 2.42.

III. FREQUENTIST VERSUS BAYESIAN CONFIDENCE INTERVALS

The methods of Refs. 4 and 5 are frequentist, as they are constructed from the sa
distribution of an estimator, in this case the sample mean, and have coverage by constr
However any estimator may be chosen for the Neyman construction. The method used to
the estimator is arbitrary. The estimator may be a guess, or arrived at by the usual techniq
moments or the maximum likelihood method. Although it is in general desirable for an estim
to be sufficient and unbiased,11 it need not have these properties, so long as it possesses
desirable features, e.g., gives an appropriate point estimate of the parameter of interest an
to confidence intervals that are restrictive and believable from a physical point of view. Cov
is guaranteed by construction.

Bayesian confidence intervals are constructed from the Bayesian posterior density, w
interpreted as the probability density for the unknown parameter. A selection principle is
needed to specify the parameter interval containing the designated probability. The Ba
procedure for confidence intervals does not guarantee coverage because it is not obtained
probability density of a statistic or random variable and can be criticized for the subjectiv
inherent in establishing the required Bayesian prior. For a discussion of Bayesian metho
reader is referred to Ref. 8. Our interest is in a frequentist method, as described in the foll
section.

IV. INTERVALS BASED ON AN ESTIMATOR DERIVED FROM A LIKELIHOOD
FUNCTION THAT CONTAINS THE PHYSICAL CONSTRAINTS

The authors cited above have focused on modifying the selection principle to mak
confidence intervals more believable. However, the reason that their constructions lead to un
cally small confidence intervals near the boundary of a physical region is that the method u
obtain the estimator does not take into account the physical constraint on the parameter of
and the resulting estimator is thus the same as if there were no boundary. Even thoug
estimator is efficient, it is appropriate for a problem other than the one under consideration
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We propose a frequentist method and use the maximum likelihood method to deriv
estimator employed. Among methods for determining estimators, the maximum likelihood m
is preferred in that if a consistent estimator exists, the method will produce it.9–11 The likelihood
function chosen explicitly contains the physical constraint and leads to an estimator with v
within the physical domain that is appropriate for the problem. The confidence intervals ob
consequently from the sampling distribution of the estimator have coverage by constructio
more physical and support a higher degree of belief that the parameter of interest lies with
interval.

This method follows classical estimation theory; the only new element is that the likeli
function explicitly excludes nonphysical true values. The determination of the estimator, its
pling distribution, and the confidence intervals follow directly without further assumptions.
emphasize that the procedure we are following is not Bayesian and that the exclusion of non
cal true values is not equivalent to a uniform Bayesian prior for the physical region any more
the usual unconstrained likelihood function is viewed as containing a uniform Bayesian pri
the entire domain.

A. Gaussian variates

We assume thatx is normally distributed with non-negative meanm and variances2:

f ~xum!5
1

A2ps
expF2

~x2m!2

2s2 G . ~1!

The likelihood function, when there areN measurementsx1 ,x2 , . . . ,xN , is

L~m![)
i 51

N

f ~xi um!u~m!, ~2!

w~m![ ln L~m!5(
i 51

N S 2
~xi2m!2

2s2 D 2N ln~A2ps!1 ln u~m!, ~3!

whereu(m) is a step function;u(m)50 for m,0, u(m)51 for m>0. The estimator form, which
we denote bym* , is the function of the measurements,m(xi), that maximizesw. Since w
52` for m,0, m* must be>0. We set

dw

dm
5(

i 51

N
xi2m

s2
50. ~4!

For the sample meanx̄[ (1/N) ( i 51
N xi>0, m* 5 x̄. For x̄,0, dw/dm,0 for all m>0, so the

maximum ofw is at m* 50. x̄ has a normal distribution with meanm and variancesN
2 5s2/N.

The probability density function form* is normal with the usual normalization form* .0 and a
delta function atm* 50 normalized to the remaining probability

P0~m![
1

A2psN
E

2`

0

expF2
~x2m!2

2sN
2 Gdx5

12erf~m/A2sN!

2
. ~5!

Thus the probability density function form* is given by

P~m* um!5
1

A2psN

expF2
~m* 2m!2

2sN
2 G1d~m* !P0 . ~6!

The mean and variance ofm* are given by
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E~m* !5
sN

A2p
expF2

m2

2sN
2 G1m~12P0!, ~7!

V~m* !5~sN
2 1m2P0!~12P0!2

msN~122P0!

A2p
expF2

m2

2sN
2 G2

sN
2

2p
expF2

m2

sN
2 G . ~8!

E(m* ) approachesm andV(m* ) approachessN
2 for N large. For finiteN, E(m* ) does not equal

m, som* is a consistent but not unbiased estimator form. It is, however, asymptotically unbiased
From estimation theory9–11 we know thatif the likelihood equation has a solutionm* which is a
consistent estimator ofm, thenm* is asymptotically normally distributed with a mean ofm and a
variance of@2NE(d2 ln f(xum)/dm2)#21. V(m* ) equals 0.34sN

2 at m50, monotonically increasing
to sN

2 at largem. For finiteN, V(m* ) is smaller thansN
2 .

Nevertheless,V(m* ) satisfies the usual Cramer–Rao inequality11

V~m* !>
~dE~m* !/dm!2

I X
~9!

where I X is the Fisher information, the usual measure of the information contained in the
surements. One finds@dE(m* )/dm# 512P0 andI X5(1/sN

2 ) and by explicit calculation one ca
show that

V~m* !>~12P0!2sN
2 →

N→`

sN
2 . ~10!

We note thatm* does not satisfy the criteria for sufficiency. However, for the purpose
supplying a point or interval estimate for this special case where there is a boundary, it conta
of the necessary information.~For x̄,0, the best estimate ofm is zero.! We demonstrate the
construction of the 68.27% central confidence belt, in units ofsN5s/AN, in Fig. 3. We invoke
the Neyman construction and select, for any given value ofm, the ‘‘central’’ interval ofm* that
contains 68.27% of them* sampling distribution. Form50, 50% of them* probability distribu-
tion is associated withm* 50. The remaining 18.27% of the 68.27% belt is contained in them*
interval between 0 and what we calldm . A straightforward calculation gives erf(dm /A2)52
30.1827, ordm50.475.

As m increases from 0 to 1, the upper endpoint of the 68.27% interval rises linearly with
slope. Form.1, the central 68.27% interval inm* is m21<m* <m11. It is the requirement of
exactly 68.27% coverage, and the fact that the finite probability associated withm* 50 must be
taken into account, that introduces a discontinuity in the central interval atm51.

Once the confidence belt is constructed, as in Fig. 3, it follows from the Neyman metho
confidence intervals ofm with corresponding coverage can be read off as vertical intervals o
belt for any measuredx̄. We need only keep in mind that allx̄,0 correspond tom* 50.

In our formulation, the necessary ‘‘lift up’’1 of the estimate from an unphysical to a physic
value and/or the raising of an upper bound to a non-null value comes naturally from the est
derived from the likelihood function. In other approaches,1,4 the ‘‘lift-up’’ is obtained somewhat
arbitrarily byad hocprocedures or by specifying an ordering principle. The latter methods do
solve the problem that, in the words of Ref. 1, ‘‘in some~rare! cases it is necessary to quote
interval known to be wrong.’’

B. Poisson variates with background

We considern to be a single Poisson distributed variate with non-negative signal meanm and
known mean backgroundb. Let p(num)5mne2m/n! denote the Poisson probability for obtainin
the measurementn when the mean ism. Then
                                                                                                                



n

shown
o
ing of
on
g

rval

iring
or the

ining

n of a

5707J. Math. Phys., Vol. 41, No. 8, August 2000 The statistical analysis of Gaussian and . . .

                    
f ~num!5p~num1b!, ~11!

L~m![ f ~num!u~m!, ~12!

w~m![ ln L~m!5n ln~m1b!2~m1b!2 ln~n! !1 ln u~m!. ~13!

m* is the function ofn that maximizesL and is thus the estimator form. For n.b, m* 5n
2b. For n<b, m* 50. Thus the estimator form is non-negative. The probability ofm* for a
given m is P(m* um,b)5p(m* 1bum1b) for m* .0 and a value atm* 50 given by
(n<bp(num1b). Rather than work with the estimatorm* , it is more convenient to define a
integer estimator,n* , such thatn* 50 for n<b andn* 5n2b2 for n.b, whereb2 is the largest
integer less than or equal tob. Thusn* 5m* 1(b2b2) for n.b.

We demonstrate the construction of the 90% confidence belt by means of an example,
in Fig. 4, where the known mean backgroundb is equal to 2.8.b is chosen as a noninteger t
illustrate this slightly more complicated case. We also show the confidence belt consist
central intervals@n1(m0),n2(m0)] containing at least 90% of the probability for unknown Poiss
meanm0 in the absence of any known background~dotted! and the 90% one-sided belt consistin
of intervals@0, nos(m0)] ~dashed!. ~There is some arbitrariness in the choice of a central inte
for a discrete variate. We choose the smallest interval such that there is>90% of the probability
in the center and<5%, but as close as possible to 5%, on the right. The alternative of requ
<5%, but as close as possible to 5%, on the left gives slightly less symmetrical intervals. F
latter choice the 90% Poisson upper limit forn50 is m053.0 compared tom052.62 for our
choice. Form0,2.62, according to this prescription, one cannot construct an interval conta
probability .90% that does not includen50 and we adopt 90% one-sided intervals.! Our 90%
confidence belt is defined only form>0 andm* >0. We define a coordinate system (n* ,m) by
placing the ordinatem50 at m05b and choosing the integer abscissa valuen* 50 to coincide
with n5b2.

FIG. 3. Confidence belt, in our construction, giving 68.27% central confidence intervals for the unknown mea

Gaussian with variances2, in units ofsN5s/AN, wherex̄ is the sample mean ofN measurements. Forx̄<0, m* 50 and

the interval is@0,1#. For 0, x̄<dm the interval is@0, x̄11]. Fordm, x̄<11dm it is @ x̄2dm , x̄11#. For 11dm, x̄<2 the

interval is @1, x̄11# and for x̄.2 we obtain the usual central interval@ x̄21, x̄11]. dm50.475.
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Let m08 be the largest value ofm0 such that@n1(m0),n2(m0)# containsb2. @In the example
given, m0856.2, corresponding to a value ofm56.222.853.4, andnos(m08)59.] For 0<m
<m082b ~i.e., b<m0<m08), the 90% horizontal interval is@b2,nos(m0)#. For m.m082b ~i.e.,
m0.m08), the 90% horizontal interval is@n1(m0),n2(m0)#. The resulting confidence belt is show
in solid lines. The set of joined horizontal and vertical line segments is simple and continuou
no compensatory remedies are required. To obtain the 90% confidence intervals form, given a
measurementn, we need simply find the appropriate vertical interval from the plot. By the N
man construction, it has>90% coverage.

Let @c1(m),c2(m)# denote the usual~i.e., in the absence of known background! Poisson 90%
confidence interval for the mean,m0 , for m observed events~the dotted horizontal lines in Fig. 4!.
Also, let cos(m) denote the usual 90% one-sided lower limit form observed events~the dashed
horizontal lines in Fig. 4!. Then for n<b, n* 50 and we obtain the upper limit form of
c2(b2)2b. For b,n<nos(b) we obtain the upper limitc2(n)2b; for nos(b),n<nos(m08) we
obtain the interval@cos(n)2b,c2(n)2b#; for n5nos(m08)11 we obtain the interval@m082b,
c2(n)2b] and forn.nos(m08)11 we obtain the interval@c1(n)2b,c2(n)2b#. We note that any
Poisson interval with known background can be obtained from a single figure or table.

It is straightforward to generalize to the case ofN independent measurements. For measu
meann̄.b, m* 5n̄2b. For n̄<b, m* 50. The probability form* is Poisson form* .0 plus a
value atm* 50 normalized to the remaining probability,

P~m* um,b!m* .05p~N~m* 1b!uN~m1b!!, ~14!

FIG. 4. The 90% central confidence belt~solid! for unknown non-negative Poisson signalm in the presence of a Poisso
background with known meanb taken to be 2.8, wheren is the result of a single observation. We show the confidence
consisting of central intervals@n1(m0),n2(m0)] containing at least 90% of the probability for unknown Poisson meanm0

in the absence of background~dotted! and the 90% one-sided belt consisting of intervals@0,nos(m0)] ~dashed!. For m0

,2.62, only one-sided intervals can be constructed. Forb52.8, b252, m0856.2, nos(b)55, andnos(m08)59 ~see text for
definitions!. For n<b, the confidence interval form is @0,c2(b2)2b53.4# and the examples given are forn<2. For b
,n<5, the interval is@0,c2(n)2b# where the example given is forn54 and the interval is@0, 5.8#. For 5,n<9, the
interval is@cos(n)2b,c2(n)2b# where the example given is for n57 and the interval is@1.1, 9.7#; for n510, the interval
is @m082b,c2(n)2b]; and for n.10, the interval is@c1(n)2b,c2(n)2b#. Here @c1(m),c2(m)# is the Poisson centra
90% confidence interval andcos(m) is the one-sided Poisson 90% lower limit, both for a single observation givingm in the
absence of any known background.
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P~0um,b!5 (
m<Nb

p~muN~m1b!!. ~15!

In this case we can find the confidence interval form* by relabeling the axes in Fig. 4 as follows
n→Nn̄, m0→Nm0 , n* →Nn* , m→Nm, and the origin of the inner coordinate system
(Nb2,Nb).

V. MASS SQUARED OF THE ELECTRON NEUTRINO

As an example we obtain the 68.27% confidence interval for the mass squared of the e
neutrino, disregarding the possibility that the source of negative measurements is physics~fitting
to the wrong function! rather than statistical variation. Using the measurement quoting the sm
error, that of Ref. 12 giving22264.8 eV2, and assuming Gaussian probability we obtain
interval @0, 4.8#. The classical Neyman interval is null and the interval offered by Ref. 4 is@0,
0.02#. @To compute the intervals@x1 ,x2# of Ref. 4 at significancea for small m, we usem
5x2

2/(2(x22x1)) and the approximation erf(x2 /A2).2a2erf(2x1 /A2).]

VI. CONCLUSION

We have demonstrated a rigorous method for obtaining frequentist confidence interva
incorporates the physical constraints of the problem into the likelihood function, thus yieldin
estimator that is suitable to the presence of physical boundaries. Using a central ordering pr
we obtain either upper limits or central intervals with a smooth transition. The intervals
physical in that they support a high degree of belief that the true value is within the inte
avoiding the pathologies of null or unphysically small intervals and the consequent possibi
obtaining a better result~smaller confidence interval! for a worse experiment. The construction
not equivalent to the likelihood ratio construction which does not give satisfactory intervals
unphysical regions.

ACKNOWLEDGMENTS

We thank Giovanni Lasio for assisting with the figures and Ephraim Fischbach for sugge
the neutrino mass squared example.

1R. M. Barnettet al., Review of Particle Physics, Phys. Rev. D54, 1 ~1996!.
2C. Casoet al., Eur. Phys. J. C3, 1 ~1998!.
3E. L. Crow and R. S. Gardner, Biometrika46, 441 ~1959!.
4G. J. Feldman and R. D. Cousins, Phys. Rev. D57, 3873~1998!.
5C. Giunti, Phys. Rev. D59, 053001~1999!; 59, 113000~1999!.
6D. R. Cox and D. V. Hinkley,Theoretical Statistics~Chapman and Hall, London, 1974!.
7B. P. Roe and M. B. Woodroofe, Phys. Rev. D60, 053009~1999!.
8E. L. Lehmann,Testing Statistical Hypotheses, 2nd ed.~Wiley, New York, 1986!.
9N. Arley and K. R. Buch,Introduction to the Theory of Probability and Statistics~Wiley, New York, 1950!.

10H. Cramer,Mathematical Methods of Statistics~Princeton University Press, Princeton, NJ, 1946!.
11W. T. Eadie, D. Drijard, F. E. James, M. Roos, and B. Sadoulet,Statistical Methods in Experimental Physics~North-

Holland, Amsterdam, 1971!.
12A. I. Belesev, Phys. Lett. B350, 263 ~1995!.
                                                                                                                



ce of

tion

the

ce in

pertur-

antum

main
bles

case

rba-

solved
t of
tions.

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 8 AUGUST 2000

                    
Topology and perturbation theory
J. Manjavidzea)

Laboratory of Nuclear Problems, JINR, Dubna, Ru 141980, Russia

~Received 21 January 1999; accepted for publication 28 February 2000!

This paper contains description of the fields nonlinear modes successive quantiza-
tion scheme. It is shown that the path integrals for absorption part of amplitudes are
defined on the Dirac~d-like! functional measure. This permits arbitrary transfor-
mation of the functional integral variables. New form of the perturbation theory
achieved by mapping the quantum dynamics in the spaceWG of the~action, angle!-
type collective variables. It is shown that the transformed perturbation theory con-
tributions are accumulated exactly on the boundary]WG . Abilities of the devel-
oped formalism are illustrated by the Coulomb problem. This model is solved in
the WC5(angle, angular momentum, Runge–Lentz vector) space and the reason of
its exact integrability is emptiness of]WC . © 2000 American Institute of Phys-
ics. @S0022-2488~00!04107-4#

I. INTRODUCTION

Solution of a great number of modern field-theoretical problems rests on the absen
workable perturbation theory in the vicinity of actions nontrivial extremumuc(x). The thought is
that the dynamics of perturbations in such fields is rather complicated.1 So, for instance, beyond
the semiclassical approximation of path integrals one should know the solution of the equa

~]21v9~uc!!xG~x,x8;uc!5d~x2x8! ~1!

for the Green functionG(x,x8;uc). The exact solution of this equation is unknown since
operator (]21v9(uc))x is not translationally invariant ifuc5uc(x). Of course, one can find
G(x,x8;uc) perturbatively neglecting in the first approximation the coordinate dependen
v9(uc). But this approximation is applicable at small distancesux2x8u→0 only and the number
of modern speculations on the way that this restriction may be avoided is enormous. The
bative QCD is an example of such solution.

A suspicion that the fields are not always useful variables arises and an idea that the qu
theory formulated in other terms may be much more effective seems natural~actually hoping that
the substitution may considerably simplify calculation of the integral!. This paper shows the
quantitative realization of this idea and will construct corresponding perturbation theory. The
formal problem on this way2 consists of a demonstration that the transformation to new varia
is unitary, i.e., conserves thetotal probability.

So, the main goal of this paper is to formulate the perturbation theory formalism for the
of nontrivial uc(x). Our perturbation theory is nothing new if the fielduc5const, but is extremely
effective for nontrivialuc(x). Actually the successive approach to the strong-coupling pertu
tion theory is offered.

Having in mind the nonperturbative effects~field topological excitations!, the lattice decom-
positions are widely used. For instance, a number of problems of quantum mechanics was
using the time sliced method.3,4 This approach presents the path integral as a finite produc
well-defined ordinary Cauchy integrals and, therefore, allows to perform arbitrary transforma
But transformed effective Lagrangian gains additional term;\2 in the continuum limit. Last, one

a!Electronic mail: joseph@nu.jinr.ru
57100022-2488/2000/41(8)/5710/25/$17.00 © 2000 American Institute of Physics
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crucially depends from the way that the slicing was performed and a general solution o
problem is cumbersome. Our approach will not contain any ambiguities.

We will formulate the approach, risking to lose generality, considering the simplest quan
mechanical examples of particle motion in the potential holev(u) with one nondegenerate min
mum atu50. We will calculate theprobability r5r(E) to find the bound state with energyE.
Namely, at the end we would solve the plane Coulomb problem using our method.

Our experience may be useful for quantization of nonlinear waves also. Indeed, introd
the convenient variables~collective coordinates! one can reduce the quantum solitonlike excitati
problem to a quantum-mechanical one. This idea was considered previously by many auth5,6

The aim of this paper is to show
~i! Origin of desired perturbation theory.
The mechanism of unitary, i.e., the total probability conserved, mapping (u,p)(t)

→(j,h)(t), wherep(t) is the conjugate tou(t) momentum, of the functional measure on t
spaceWG with local coordinates (j,h)(t) is shown. It would be considered as the factor spa
WG5G/Ḡ, where G is the theory symmetry group and its subgroupḠ is the symmetry of
classical fieldsuc5uc(j,h).

It is well known that ifJi5Ji(u,p), i 51,2,...,N are the first integrals in involution then th
canonicaltransformation (u,p)→(J,Q) solves the mechanical problem~Liouville–Arnold theo-
rem!. The (u,p)c flow is defined by the 2N system of coupled algebraic equations

h5J~u,p!, j5Q~u,p!. ~2!

The mapping~2!:

J:T→WG , ~3!

whereT is the 2N-dimensional phase space andWG is a linear space, introduces integralmanifold
Jv5J21(v) in such a way that theclassicalphase space flaw belongs toJv completely.

Our methodological idea assumes quantization of theJv manifold instead of flow inT. This
becomes possible iff the quantum trajectory completely belongs toJv . Last one means that Eqs
~2! have unique solution (u,p)c and ~j, h! compose a manifold.

The direct mapping~3! assumes thatJ is known. But this approach to general quantu
problems seems inconvenient having in mind the nonlinear modes quantization, when the n
of degrees of freedomN5`, or if the transformation is not canonical, see~68!. We will consider
by this reason the inverse approach starting from assumption that the classical flow exist. T
would be able to reconstruct the motion inWG since (u,p)c belongs toWG completely.

In other words, we would like to describe the quantum dynamics in the space of cla
fields~orbits! uc parameters (j,h)(t). The unitarity of such mapping is guaranteed by the fact t
the functional measure, as the consequence of the unitarity condition, is Diracian:7

DM ~u,p!5d~E2HT~u,p!!)
t

du~ t !dp~ t !dS u̇1
]H j

]p D dS ṗ2
]H j

]u D , ~4!

where the Hamiltonian

H j5
1
2p

21v~u!2 ju

includes the energy of quantum fluctuationsju, with the provoking quantum excitations forcej
5 j (t). Then the dynamical equilibrium between ordinary mechanical forces (ṗ(t),2v8(u)) and
quantum force (j (t)) determined byd-like measure~4! allows to perform arbitrary transformatio
of quantum measure, i.e., ofj, caused by transformations ofu andp.
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A theory on such measure is simple since the functionald-function defines the complete set o
contributions. So, the constructive definition of the vacuum will be offered in Sec. II C. It wil
shown that the general method of the mapping, applicable for field theories also, whuc

5uc(xW ;j,h).
Note, there are in modern physics the remarkable attempts to construct a geometrical ap

to quantum mechanics8,9 and field theory.10 Our approach has an evident geometrical interpre
tion and it will be widely used. It has to deal with the excitations of classical phase-space
By this reason, in contrast with the above-mentioned approaches, the finite-dimensional ma
only, as in classical mechanics, would arise even in the field theories.

We would construct the mapping using the base of symplectic geometry. Starting fro
assumption that~j, h! form the symplectic space of arbitrary dimension we would demonstrat
projection onWG .

Describing the perturbations of new dynamical variables (j,h)(t) we take into account the
quantum excitations of fielduc5uc(j,h). The consideration that below the Coulomb problem,
set (j,h)5(angle, angular momentum, length of Runge-Lentz vector), unambiguously define
Kepler orbits. Hence, the mapping (u,p)→(j,h) is rightful since the quantum trajectory cove
WG5(j,h) densely@fluctuations ofj (t) are defined on Gauss measure# and since (u,p)c belong
to WG completely.

~ii ! Structure of perturbation theory in the G/Ḡ space and as it can be applied.
It will be shown that the quantum corrections of the transformed theory are accumulat

the boundaries~bifurcation manifolds11! ]WG of the factor space, i.e., are defined mainly byWG

topology. The important quantitative consequence would be the observation that the qu
corrections may disappear~totally or partly! on ]WG if the boundary is empty.

So, for the problem of quantum corrections, we reduce up to definition of intersection o
boundary set$]uc(j,h)%, with the boundary]WG . This circumstances would be useful fo
estimation of the quantum corrections. The explicit form ofuc is not necessary since$]uc%ù]WG

is estimated.
One should assume thatj (t) is switched on adiabatically~in this case we expand contribution

in the vicinity of j 50! for effective use of this definition of measure. Otherwise we should kn
j (t) exactly, including it into Lagrangian as the external field. The measure would remaind-like
in the last case also. So, the measure~4! allows to conclude that the solutions of the classi
equation

dS~u!

du~ t !
50 ~5!

defines the complete set of contributions.12

Equation ~5! reflects the ordinary Hamiltonian variational principle. But the measure~4!
contains following additional information:

~i! Only strict solutions of Eq.~5! should be taken into account.
~ii ! r(E) is described by thesumof all solutions of Eq.~5!, independently from the value o

the corresponding fluctuations.
~iii ! r(E) did not contain the interference terms from various topologically nonequiva

contributions. This displays the orthogonality of corresponding Hilbert spaces.
~iv! The measure~4! includesj (t) as the external source.
~v! In the frame of the above adiabaticity condition, the fieldu(t) disturbed byj (t) belongs to

the same manifold~topology class! as the classical field defined by~5!.12

One must underline that the measure~4! is derived forreal-time processes only, i.e., is no
valid for tunneling ones. By this reason, conclusions should be taken carefully. The correspo
selection rule will be given below in Sec. II C.

The main results of this paper looks as follows.
~A! If the amplitude has the path integral representation~22!, then the unitarity condition lead

to following representation forr(E):
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r~E!5E
0

`

dT e2 iK̂ ~e j!E DM e2 iU ~u,e!e2 iS0~u!, ~6!

where the exponential over differential operatorK̂(e j), see~29!, gives perturbation series, func
tional U(u,e), see~27!, describes interactions, the measureDM is Diracian, see~4! andS0 is the
closed path action.

~B! If coordinate variableuc(j,h) and corresponding momentumpc(j,h) obey the equations

$uc ,hj%5
]H j

]pc
, $pc ,hj%52

]H j

]uc
, at j 50, ~7!

where$,% is the Poisson bracket in the~j, h! space, if

hj~j,h!5H j~uc ,pc!,h~h![h0~j,h!, ~8!

where

H j~u,p!5 1
2p

21v~u!2 ju ~9!

is the total Hamiltonian, then~a! the transformed measure has the form

DM ~j,h!5d~E2h~T!!)
t

dS j̇2
]hj

]h D dS ḣ1
]hj

]j D , ~10!

since (uc ,pc) are the solutions of incident~classical! Hamiltonian equations,~b! the dimensions of
vectors (uc ,pc) and of the space (j,h)5WG are arbitrary. This property is important since th
physical trajectoryuc may occupy the space of dimension dimWG<dimT, whereT is the incident
phase space. Moreover,~c! dimWG may be even or odd.

~C! If the Green functiong(t2t8) of equations

j̇5
]hj

]h
, ḣ52

]hj

]j
~11!

we have the form

g~ t2t8!5u~ t2t8!, g~0!51, ~12!

then the quantum corrections to semiclassical approximation are accumulated on the bound
WG :

rq5E
]WG

drq. ~13!

This conclusion proves~v!. The explicit form ofdrq will be given below.
The generalization of formalism on the field theory, whereuc5uc(xW ;j,h), becomes eviden

noting ~ii ! and that the space coordinate may be considered as the index~of special cell!. By the
same reason~ii ! and taking into account~iii ! the formalism allows to consider also the situati
where (j,h)5(j,h)(x,t). Last, one incorporates the gauge freedom. So, in result, the map
allows to quantize the gauge theories without Faddeev–Popovansatz. This is important for non-
Abelian gauge theories, where the Faddeev–Popov ghosts and the Gribov’s ambiguities
the problem.

The field theories will be considered in subsequent publications.
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In Sec. II the differential measure forr(E) is derived. The connection between unitari
condition and d’Alembert’s variational principle is discussed. It is shown that our represen
restores the ordinary WKB perturbation series. The main general consequences of functiona
measure are listed.

In Sec. III the transformations of the path-integral variables are shown. The main purp
to demonstrate the (u,p)→(j,h) canonical transformation. The coordinate transformations
demonstrated also.

In Sec. IV the main properties of new perturbation theory in the invariant subspace~factor
manifold! WG are shown considering the simplest quantum-mechanical example. One can
that the properties stay useful for field-theoretical models also.

In Sec. V we solve the Coulomb problem to show explicitly the role of the reduction
quantum systems as the consequence of~A!, ~B!, and~C!.

II. UNITARITY CONDITION

Purpose of this section is to show how theS-matrix unitarity condition can be introduced int
the path-integral formalism to find measure~4!.7

The unitarity condition for theS-matrix SS15I presents the infinite set of nonlinear opera
equalities:

iAA* 5A2A* , ~14!

whereA is the amplitude,S5I 1 iA. Note, in this definitionA is dimensionless.~Obviously the
energy-momentum conservationd-functions are extracted from elements ofS-matrix and then the
net ones have the dimension of space@x#.! Expressing the amplitude by the path integral one c
see that the lhs of equality~14! offers the double integral and, at the same time, the rhs is a li
combination of integrals. Let us consider what this linearization of productAA* gives.

Using the spectral representation of one-particle amplitude:

A1~u1 ,u2 ;E!5(
n

Cn* ~u2!Cn~u1!

E2En1 i e
, e→10, ~15!

let us calculate

r~E!5E du1 du2 A1~u1 ,u2 ;E!A1* ~u1 ,u2 ;E!. ~16!

The integration over endpointsu1 andu2 is performed for sake of simplicity only. Using orthono
malizability of the wave functionsCn(u) we find that

r~E!5(
n

U 1

E2En1 i eU
2

5
p

e (
n

d~E2En!. ~17!

Certainly, the last equality is nothing new but it is important to note thatr(E)[0 for all E
ÞEn , i.e., that all unnecessary contributions withEÞEn were canceled by the difference on th
rhs of Eq.~14!. We will put the last equality in~17! in the basis of the approach.

We will build the perturbation theory forr(E) using the path-integral definition o
amplitudes.7 It leads to loss of some information since the amplitudes can be restored in
formulation with the phase accuracy only. Yet, that is quite enough for calculation of the e
spectrum. So, instead of Sp$1/(E2H1 i e)%,13 as follows from ~17!, the absorption parts
;JSp$1/(E2H1 i e)% would be calculated only.

The statement that the unitarity condition unambiguously determines the measure o
integral forr(E) looks like a tautology since exp$iS(u)%, whereS(u) is the action, is the unitary
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operator, which shifts a system along the trajectory.~It is well known that this unitary transfor
mation is the analogy of tangent transformations of classical mechanics.14! That is, the unitarity is
already included in the path integrals.

But the general path-integral solution contains unnecessary degrees of freedom~unobservable
states withEÞEn in our example!. Our idea is to define the functional measure in such a way
the condition of absence of unnecessary contributions be loaded from the very beginning.
this case the unitarity becomes the sufficient condition. Indeed, it will be shown that the eq
~14! leads tod-like functional measure, which unambiguously determines the complete s
classically permittedcontributions.

Formal realization is simple: one should find, as it follows from~17! the linear path-integra
representation forr(E). Indeed, to see the integral form of our approach, let us use the pro
time representation:

A1~u1 ,u2 ;E!5(
n

Cn~u1!Cn* ~u2!i E
0

`

dT ei ~E2En1 i e!T ~18!

and insert it into~16!:

r~E!5(
n
E

0

`

dT1 dT2 e2~T11T2!eei ~E2En!~T12T2!. ~19!

We will introduce new time variables instead ofT6 :

T65T6t, ~20!

where, following the Jacobian transformation,utu<T,0<T<`. But we can pututu<` sinceT
;1/e→` is essential in integral overT. In result,

r~E!52p(
n
E

0

`

dT e22eTE
2`

1` dt

p
e2i ~E2En!t. ~21!

In the last integral all contributions withEÞEn are canceled. Note that the product of amplitud
AA* was linearized after extraction of virtual timet5(T12T2)/2. The physical meaning of suc
variables will be discussed, see also Ref. 14. That is, we would divide the dynamical degr
freedom on the classical@like T5(T11T2)/2# and quantum~like t! ones. Such decompositio
becomes possible if the double integrals are considered.

A. Dirac functional measure

We will consider following the path integral

A1~u1 ,u2 ;E!5 i E
0

`

dT eiETE
u15u~0!

u25u~T!

Dx eiSC1~u!, ~22!

whereC1 is the Mills complex time contour:15

C6 : t→t6 i e, e→10, 0<t<T6 . ~23!

Calculating the probability to find a particle with energyE ~JE is not mentioned for sake o
simplicity! we have
                                                                                                                



rals
n,

the

r

nal

5716 J. Math. Phys., Vol. 41, No. 8, August 2000 J. Manjavidze

                    
r~E!5E du1 du2uAu25E
0

`

dT1 dT2 eiE~T12T2!

3E
u1~0!5u2~0!

u1~T1!5u2~T2!

DC1
u1 DC2

u2 eiSC1~T1!~u1!2 iSC2~T2!~u2!, ~24!

where, see ~23!, C2(T)5C1* (T). Note that the total actionSp(u)[(SC1(T1)(u1)
2SC2(T2)(u2)) describes the closed-path motion by definition.

New independent time variablesT and t will be used again, see~20!. The mean trajectory
u(t)5(u1(t)1u2(t))/2 and the deviatione(t) from it will be introduced,u6(t)5u(t)6e(t).
Note, we assume that this linear transformation in the path integral may be performed.

We will considere(t) andt as the fluctuating, virtual, quantities and calculate the integ
over them perturbatively. In the zero order overe andt, i.e., in the semiclassical approximatio
u is the classical path andT is the total time of classical motion.

The boundary conditions@see~24!# states the closed-path motion. We would consider
boundary conditions fore(t) only

e~0!5e~T!50. ~25!

Note the uniqueness of this solution if the integral overt is calculated perturbatively.
Extracting the linear overe andt terms from the closed-path actionS` and expanding overe

andt the remainder terms

2H̃T~u;t!5~SC1~T1t!~u!2SC2~T2t!~u!!12tHT~u!2S0~u!, ~26!

whereHT(u) is the Hamiltonian at the time momentT, and

2UT~u,e!5~SC1~T!~u1e!2SC2~T!~u2e!!12RE
C1~T!

dt~ ü1v8~u!!e ~27!

we find that

r~E!52pE
0

`

dT e2 iK̂ ~v,t; j ,e!E DM ~u!e2 iH̃ T~u:t!2 iU T~u,e!1 iS0~u!. ~28!

Note the necessity of boundary condition~25! to find ~28!. It allows to split the expansions ove
t ande.

The expansion over differential operators:

K̂~v,t; j ,e!5
1

2 S ]

]v

]

]t
1RE

C1~T!
dt

d

d j ~ t !

d

de~ t ! D ~29!

will generate the perturbation series. We will assume that it exists at least in Borel sense.
In ~28! the functional measure

DM ~u!5d~E1v2HT~u!!)
t

du~ t !d~ ü1v8~u!2 j ! ~30!

unambiguously defines the complete set of contributions in the path integral. The functiod
function is defined as follows:

)
t

d~ ü1v8~u!2 j !5~2p!2E
e~0!50

e~T!50

)
t

de~ t !

p
e22iR*C1

dte~ ẍ1v8~u!2 j !. ~31!
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Note, the phase in~31! stays real for arbitrary directions in the complex plane ofe. This explains
why calculation of the modulo square of amplitudes is important.

The physical meaning of thisd function is the following. We can consider (ü1v8(u)2 j ) as
the total force ande(t) as the virtual deviation from true trajectoryu(t). In classical mechanics
the virtual work must be equal to zero: (ü1v8(u)2 j )e(t)50 ~d’Alembert!16 since the motion is
time reversible. From this evident dynamical principle one can find the classical equati
motion

ü1v8~u!5 j , ~32!

sincee(t) is arbitrary.
In quantum theories, the virtual work usually is not equal to zero, i.e., the quantum mot

not time reversible since the quantum corrections can shift the energy levels. But integratio
e(t), with boundary conditions~25!, leads to the same result~32!. So, in quantum theories th
unitarity condition7 plays the same role as the d’Alembert’s variational principle in class
mechanics. We can conclude, the unitarity condition as the dynamical principle establis
time-localequilibrium between classical@lhs of ~32!# and quantum@rhs of ~32!# forces.

So, considering the double integral we may introduce integration over two independent
u ande. Then,~i! integral overe gives thed-function ~31! and~ii ! last one defines integral overu.
This definition of path integrals permits the Mills’ analytical continuation into complex time pl

It should be underlined that the real-time field theory is considered. We found actually th
real-time theories are simple, see the functional measure~4!. This seems important since the Wic
rotation is practically noncontrollable if the symmetry is high~symmetry content of a theory i
sensitive to the space-time metrics17! and especially if the dynamical problems are solved.

B. Comparison with WKB perturbation theory

Let us consider now the representation~28!. It is not hard to show that it restores the pertu
bation theory of stationary phase method. For this purpose it is enough to consider the or
integral

A~a,b!5E
2`

1` dx

~2p!1/2ei ~~1/2!ax21~1/3!bx3!, ~33!

with Ja→10 andb.0. Computing the probabilityr5uAu2 we find

r~a,b!5e~1/2i ! ĵ êE
2`

1`

dx e22~x21e2!Im ae2i ~b/3!e3
d~Rax1bx21 j !. ~34!

The caret symbol means, as usual, the derivative over corresponding quantity:X̂[]/]X. One
should put the auxiliary variables~j,e! equal to zero at the very end of the calculations.

Performing the trivial transformatione→ ie, ê→2 i ê of auxiliary variables we find in the
limit Ja50 that the contribution ofx50 extremum~minimum! gives the expression

r~a,b!5
1

a
e2~1/2! ĵ ê~124b j /a2!21/2e2~b/3!e3

~35!

and the expansion of the operator exponent gives the asymptotic series:

r~a,b!5
1

a (
n50

`

~21!n
~6n21!!!

n! S 2b4

3a6D n

, ~21!!! 50!! 51. ~36!

This series is convergent in the Borel sense.
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Note, if uAu only is interesting for us then Eq.~34! may be considered as the definition
integral ~33!. By this reason one may putJa50 from the very beginning. We will consider thi
suggestion more carefully.

Let us calculate nowr using the stationary phase method. Contribution from the minim
x50 gives (Ja50):

A~a,b!5e2 i ĵ x̂e2~ i /2a! j 2
ei ~b/3!x3S i

aD 1/2

.

The corresponding probability is

r~a,b!5
1

a
e2~1/2! ĵ êe2~b/3!e3

e~2b/a2!e j2. ~37!

This expression does not coincide with~35! but it leads to the same asymptotic series~36!.
To find the representation~37! from ~35! the transformation

d~Rax1bx21 j !5e2~ i /2! ĵ 8ê8e12i ~bx21 j !e8d~Rax1 j 8! ~38!

can be applied. Indeed, inserting this equality into~35! we find~37!. Equation~38! is evident from
the Fourier transformation of thed function.

Note, the transformation~38! practically solves, linearizing argument of thed function, the
problem of computation of the determinant. This will be important considering functional
grals. Moreover, it reflects the freedom in choice of terms in which the perturbation theo
vicinity of nontrivial trajectories in functional space is realized.

This property is the source of splitting

j ~ t !→~ j u~ t !, j h~ t !!, ~39!

of the Lagrange sourcej (t), onto the set of sources for each independent degree of freedom o
invariant subspace if the transformation~A! was performed. This splitting is demonstrated
Appendix A. By this way the actual Hamiltonian description is achieved in the invariant subs

C. General properties of theory with d-like measure

The solutionxj (t) of Eq. ~32! we would search expanding it overj (t):

uj~ t !5uc~ t !1E dt1 G~ t,t1 ;uc! j ~ t1!1¯ .

This is sufficient sincej (t) is the auxiliary variable. In this decompositionuc(t) is the strict
solution of unperturbated equationẍ1v8(x)50 andG(t,t8;uc) must obey Eq.~1!. Note that the
functional d function in ~31! does not contain the endpoint values of timet50 and t5T. This
means that the initial conditions to Eq.~32! are not fixed and the integration over them should
performed because of our definition ofr.

Thed likeness of measure allows to conclude that all strict regular solutions~including trivial!
of classical~unperturbated byj! equation~s! of motion must be taken into account.

We must consider only strict solutions because of strict cancellation of needless contribu
Thed likeness of measure means that the probabilityr(E) should contain asumover all discussed
solutions. This is the main distinction of our unitary method of quantization from stationary p
method: even having few solutions, there are no interference terms in the sum over themr.
Note that the interference terms are absent independently from the solutions ‘‘nearness’’
functional space. This reflects the orthogonality of Hilbert spaces building on the variousuc ~Ref.
1! and is the consequence of the unitarity condition.

The solutions must be regular since the singularuc gives zero contribution ond-like measure.
                                                                                                                



t.

e into

om.
in the

e

eling
tun-

tor
ntribu-

ing

our

-
e

the
id not

5719J. Math. Phys., Vol. 41, No. 8, August 2000 Topology and perturbation theory

                    
It is evident that having the sum over contributions of variousuc we must leave the larges
This selection rule7 is the constructive definition of physical vacuum.

Summation over all solutions of classical equation of motion means also necessity to tak
account all topologically equivalent orbitsuc . This means integration over the volumeVW of
factor spaceWG5G/Ḡ. This naturally introduces integration over zero-mode degrees of freed

So, our selection rule looks as follows: if there is not special external constraints then
sum over topologically nonequivalent trajectories one should leave, up to the volumeVW , the
contribution defined in the highest factor manifoldG/Ḡ if G is the theory symmetry group andḠ
is the uc invariance~sub!group of G group. ~Note G may be wider than the actions invarianc
group.! This selection rule means thatḠ should be the lowest~sub!group.

Note, the quantum corrections may violate our selection rule.
The Dirac measure defines the real-time motion only and is not applicable for tunn

processes since it reflects the dynamical equilibrium of real forces. The contributions from
neling processes should be added to the contributions defined by ourd-like measure. Then, fol-
lowing our selection rule, we should leave those contribution~s! which are proportional to the
highest volumeVW . So, our definition of measure is rightful if the real-time contributions fac
manifold have the highest dimension. One can say in this case that the imaginary-time co
tions are realized on zero measure (;1/VW).

The explicit investigation of this condition is the nontrivial task in spite of its seem
simplicity ~the dimension ofG/Ḡ is defined by classical solution only!. Actually we should know
all classical orbits and the quantum corrections may shrink the dimension ofWG . So, the above
selection rule gives the classification only of mostly probable contributions. Following from
selection rule we should start from the nontrivial solutionsucÞ0 since the volume of trivialuc

50 is equal to zero.

III. CANONICAL TRANSFORMATIONS

It is evident that the measure~30! admits the canonical transformations~the coordinate trans
formations are described in Appendix B!. This follows from d-likeness of measure. The phas
space differential measure has the form

DM ~x,p!5d~E1v2HT~u!!)
t

du dpdS u̇2
]H j

]p D dS ṗ1
]H j

]u D , ~40!

where

H j5
1
2p

21v~u!2 ju ~41!

is time dependent through thej (t) total Hamiltonian.
The transformation may be performed inserting

15E Du Dh)
t

d~h2 1
2p

22v~u!!dS u2Eu

du~2~h2v~u!!!21/2D . ~42!

It is important that both differential measures in~42! and~40! ared-like. This allows to change the
order of integration and first integrate over~u,p!. Calculating the result, one can use thed func-
tions of ~40!. In this case thed functions of~42! will define the constraints. But if we use thed
functions of~42! the mapping (u,p)→(u,h) is performed and the remainingd functions would
define motion in the factor spaceWG . We conclude that our transformation takes into account
constraints since both ways must give the same result. Note also, the transformation d
change the power of manifolds since both measures, inT and inT* G, ared-like.

We find by explicit calculations that
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DM ~u,h!5d~E1v2h~T!!)
t

du dh dS u̇2
]hj

]h D dS ḣ1
]hj

]u D , ~43!

since considered transformation is canonical,$h(u,p),u(u,p)%51, where

hj~u,h!5h2 juc~u,h! ~44!

is the transformed Hamiltonian anduc(u,h) is the classical trajectory parametrized byh andu.

A. General properties of the transformed perturbation theory

The transformed perturbation theory presents expansion over 1/g if uc;1/g, whereg is the
interaction constant. Hence, we construct the perturbation theory in the strong coupling lim
one should also remember that, generally, all solutions must be taken into account. This
that the perturbation theory forr(E) contains simultaneously both series overg ~from trivial
solution uc50! and over 1/g, i.e., the sum of weak-coupling and strong-coupling expansio
According to our selection rule we should leave the largest among them, i.e., start conside
from contributions of nontrivial trajectories.

In the invariant subspaceWG we must solve the following equations of motion:

ḣ5 j
]uc~u,h!

]u
, u̇512 j

]uc~u,h!

]h
. ~45!

They have a simple structure: the ‘‘propagator’’ inWG space is the simpleQ function.
Indeed, expanding solutions of Eqs.~45! over j, the zero order solutions areu05t01t and

h05const. The first order overj gives

ḣ1~ t,t8!5d~ t2t8!
]uc~u0 ,h0!

]u0
, u̇1~ t,t8!52d~ t2t8!

]uc~u0 ,h0!

]h0
.

This leads to the first order equation for the Green functiong(t2t8):

ġ~ t2t8!5d~ t2t8!. ~46!

The solution of this equation introduces the time irreversibility:

g~ t2t8!5Q~ t2t8!, ~47!

in opposite to the causal particles propagatorG(t,t8;uc). But, as will be shown below, the
perturbation theory with Green function~47! is time reversible. Note also, that the solution~47! is
unique and is the direct consequence of the usual quantum theoriesi e prescription.

The uncertainty is contained in the boundary valueg(0). Wewill see thatg(0)50 excludes
the number of quantum corrections. By this reason one should considerg(0)Þ0. We will assume
that

g~0!51 ~48!

since this boundary condition to Eq.~46! is natural for local theories. We will also use th
following formal equalities:

g~ t2t8!g~ t82t !50, 15g~ t2t8!1g~ t82t ! ~49!

consideringg(t2t8) as the distribution~generalized function!.
Note, the important property~13! of our perturbation theory is the consequence of bound

condition ~48!.
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The propertyJg(t)50 on the real time axis allows to conclude that the perturbation theor
the WG space can be constructed on the real-time axis. This excludes the natural proba
description doubling of degrees of freedom. But, for more confidence, one should introducei e
prescription and, extracting thed function in the measure, to analyze the theory boundary co
tions in thee50 limit. We will return to this question at the end of this section.

B. Splitting of the Lagrange source j „t …

Note now that j ]uc /]u and j ]uc /]h on the rhs of~45! can be considered as the ne
~renormalized! sources. This allows to note that the mapping on theWG splits Lagrange quantum
force j on a set of quantum forces individual to each independent degree of freedom.

Indeed, the simple algebra gives~see Appendix A!:

r~E!52pE
0

`

dT e~1/2i !~v̂t̂1R*C1
dt~ ĵ h~ t !êh~t!1 ĵ u~ t !êu~ t !!!E Dh Du e2 iH̃ ~uc;t!2 iVT~uc ,ec!1 iS0~uc!

3d~E1v2h~T!!)
t

d~ ḣ2 j h!d~ u̇212 j u!, ~50!

where

ec5eh

]uc

]u
2eu

]uc

]h
[~ehû2euĥ!uc . ~51!

Note, ec carries the symplectic structure of the Hamiltonian equations of motion, see~43!, i.e.,ec

is the invariant of canonical transformations.
Hiding theuc(t) dependence inec we solve the problem of the functional determinants a

simplify the equation of motion as much as possible. Performing the shift:

u→u1u8, h→h1h8,

where

u8~ t !5E
0

T

dt8 g~ t2t8! j u~ t8!, h8~ t !5E
0

T

dt8 g~ t2t8! j h~ t8!

we can consider (u8,h8) as the independent virtual variables:

DM ~h,u!5d~E1v2h~T!2h8~T!!)
t

dh~ t !du~ t !d~ ḣ~ t !!d~u~ t !21! ~52!

and the new perturbations generating operator takes the form

K̂5
1

2 S v̂t̂1E
0

T

dt1 dt2 Q~ t22t1!~ êh~ t1!ĥ8~ t2!1êu~ t1!û8~ t2!! D . ~53!

In UT(uc ,ec) we must changeh→(h1h8) andu→(u1u8).

C. Zero modes problem

Noting that

E )
t

dX~ t !d~Ẋ~ t !!5E dX~0!5E dX0 ~54!
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we see that the measure~52! coincide with the measure of ordinary integrals overh0 andt0 . Last
one defines the volume of translational mode. Note, using naively the WKB expansion we s
find r;V2, whereV is the zero modes volume, sincer;uAu2. But, as follows from~52! and~54!,
we may find only thatr;V. This evident discrepancy follows from our rough analytical contin
ation on the real time axis: it may, as was noted above, eliminate a doubling of degrees of fr
intrinsic to the considered approach.

Let us consider this question more carefully. Deriving the explicit form of the operatorÔ, the
following boundary condition was applied:

u1~ tP]C6!5u2~ tP]C6!, ~55!

where ]C6 are boundaries on corresponding branches of the total Mills time contourC5C1

1C2 . Generally, performing canonical mapping (u,p)→(u,h),

~u,p!~ t !uC6
→~u,h!~ t !uC6

~56!

since one should hold the Mills contours memory. Then, noting that the auxiliary variable(t
P]C6)50, the boundary conditions~55! means following equalities:

uc~u1 ,h1!~ tP]C6!5uc~u2 ,h2!~ tP]C6!. ~57!

Inserting here the explicit value ofuc we find the boundary conditions for (u,h)u6(t). Hence, the
doubling of degrees of freedom would disappear iff~57! leads to equality of generalized coord
nates~u, h! on the corresponding boundaries]C6 . Contrary to the doubling of degrees of freedo
should be taken into account.

We will find with solving Eqs.~52! that the doubling of degrees of freedom should be ta
into account in definition of initial data (u(0),h(0)) only since the Green function of transforme
theory is nonsingular on the real time axis. So, if the solution of~57! gives, for instance,h1(0)
5h2(0) then the doubling of scale degree of freedomh(0) would disappear. Note also, if th
classical trajectory is periodic function then we may choose the initial phases;u6(0) indepen-
dently. Just this effect takes into account the phaseS0 in ~26!.

From very beginning the measureDM (u,p) is defined on the whole Mills contourC5C1

1C2 :

DM ~u,p!5 )
tPC1

)
tPC2

¯ , ~58!

assuming corresponding generalization ofd functions on the complex arguments, see~31!. This
property should be conserved in the transformed perturbation theory. Hence, if the bou
condition ~57! will not lead to disappearance of the doubling, after integrations we would h
instead of~54!, double integrals

E dX1~0!dX2~0!.

IV. PERTURBATION THEORY

Let us consider motion in the action-angle phase space. Corresponding perturbations
ating operator has the form

K̂5
1

2 E0

T

dt dt8Q~ t2t8!~ Î ~ t !êI~ t8!1f̂~ t !êf~ t8!![K̂ I1I f . ~59!

The result of integration using the lastd function is
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r~E!52pE
0

`

dT e2 iK̂E
0

2p df0

v~E!
e2 iU T~uc ,ec!, ~60!

where

v5]h~ I 0!/]I 0

and I 05I 0(E) is defined by the algebraic equation:

E5h~ I !.

The classical trajectory

uc~ t !5uc~ I 0~E!1I ~ t !2I ~T!,f01ṽt1f~ t !!, ~61!

where

ṽ5
1

t E0

T

dt8 Q~ t2t8!v~ I 01I ~ t8!!.

The interaction potentialUT depends on

ec5ef

]uc

]I
2eI

]uc

]f
. ~62!

The operator~53! contains unnecessary terms. One can omit thet dependence since th
closed-path motion is described. This simplification was used in~59! and ~60!.

The operatorK̂ is linear overêf ,êI . The result of its action can be written in the form

r~E!52pE
0

`

dTE
0

2p df0

v~E!
:e2 iU T~uc ,êc/2i !eiS0~uc!:, ~63!

where

êc5 ĵ f

]uc

]I
2 ĵ I

]uc

]f
5~ ĵ f Î 2 ĵ If̂ !uc5E

0

T

dt8 u~ t2t8!$f̂~ t8!, Î ~ t !%uc~ t !, ~64!

since

ĵ X~ t !5E
0

T

dt8 Q~ t82t !X̂~ t8!, X5f,I . ~65!

The colons in~63! mean normal product: the differential operators must stay to the left oall
functions in expansion over commutator

$f̂~ t8!, Î ~ t !%5f̂~ t8! Î ~ t !2 Î ~ t8!f̂~ t !.

Now we are ready to offer the important statement:If Eqs. (47), (48), and (49) hold then eac
term of perturbation theory in the invariant subspace WG can be represented as the sum of to
derivatives over the subspace WG coordinates.

This statement directly follows from definition of perturbation generating operatorK̂ on the
cotangent bundle~53! and of homogeneity of the cotangent manifold in the classical approx
tion. The proof of this statement is given in Appendix C.
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So, we can conclude, contributions are defined by boundary values of classical trajectoruc in
the invariant subspace since the integration overX05(j,h)0 is assumed, see~60!, and since
contributions are the sum of total derivatives overX0 .

V. H-ATOM PROBLEM

Let us calculate now the integral

r~E!5E
0

`

dT e2 iK̂ ~ j ,e!E DM ~p,l ,r ,w!e2 iU T~r ,e!eiS0, ~66!

whereK̂( j ,e) was defined in~B3! andDM (p,l ,r ,w) in ~B2!.
Considering the Coulomb potential

UT~r ,e!5E
0

T

dtF 1

~~r 1er !
21r 2ew

2 !1/22
1

~~r 2er !
21r 2ew

2 !1/212
er

r G ~67!

describes the interaction.
We will restrict ourselves by the plane problem. Corresponding phase spaceT5(p,l ,r ,w) is

four dimensional. But the classical flaw of this problem can be parametrized by the an
momentuml, corresponding anglew and by the normalized total Hamiltonian Runge–Lentz v
tors lengthn. So, we will demonstrate the mapping~p is the radial momentum in the cylindrica
coordinates!:

Jl ,n : ~p,l ,r ,w!→~ l ,n,w! ~68!

to construct the perturbation theory in theWC5( l ,n,w) space. That is,WC is not the symplectic
space:WC5T* G3R1, where (l ,w)PT* G is the symplectic space andnPR1. Nevertheless we
start from the symplectic space adding ton the auxiliary canonical variablej.

It is well known18 that the consequence of hidden conservation of the Runge–Lentz vecNW

is close to the Kepler orbits independently from initial conditions. In result the orbit is the fun
of uNW u only. The external field leads to precession ofNW and the orbit should be parametrized b
four parameters in this case. So, the reduction~68! takes into account the hidden symmetry of t
Coulomb problem.

The bound state energies (E,0) in the Coulomb potential to illustrate our idea will b
calculated. This popular problem was considered by many authors, using various methods18 The
path-integral solution of this problem was offered in Ref. 19 using the time-sliced method.

A. General formalism of mapping

We consider now a more general method of mapping in theWC space. It is important to star
from the assumption that the invariant subspace has symplectic structure of cotangent m
and its farther possible reduction to linear subspaceWC(dim(T* G)<dim(WC)<dim(T)) would
be realized as the reduction of quantum degrees of freedom.

The first step of mapping consists in demonstrating that the classical trajectories belo
T* G completely. Let

D5E )
t

d2j d2h d~r 2r c~j,h!!d~p2pc~j,h!!d~ l 2 l c~j,h!!d~w2wc~j,h!! ~69!

be the functional of some functions (r ,p,w,l )(t) and ~j, h! are two vectors. Introducing this
functional we realize the transformation

~r ,p,w,l !→~r ,p,w,l !c~j,h!,
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i.e., we want to hide thet dependence into the four functions (j,h)(t) introducing the composite
functions (r ,p,w,l )c(j,h). These four functions will be defined later. The functions (j,h)(t) are
arbitrary.

It is assumed that there exist such functions (r ,p,w,l )(t) for given (r ,p,w,l )c , so that

Dc5E )
t

d2j̄ d2h̄ dS ]r c

]j
• j̄1

]r c

]h
•h̄ D dS ]pc

]j
• j̄1

]pc

]h
•h̄ D

3dS ]wc

]j
• j̄1

]wc

]h
•h̄ D dS ] l c

]j
• j̄1

] l c

]h
•h̄ DÞ0. ~70!

Note that this is the condition for (r ,p,w,l )c(j,h) only.
To perform the mapping we insert

15D/Dc ~71!

into ~66! and integrate over (r ,p,w,l )(t). The proof of equality~71! is the following. It assumes
that one always can find~j,h! from four equalities (r ,p,w,l )c(j,h)5(r ,p,w,l )(t). Then, noting
~70! and using the definition ofd function, Eq.~71! becomes evident.

In result of simple calculations~see Appendix D! we find that

DM ~j,h!5d~E2H0!)
t

d2jd2hd2S j̇2
]hj

]h D d2S ḣ1
]hj

]j D , ~72!

whereH05H0(h) is the classical Hamiltonian,H05H j at j 50. It is the desired result of the
transformation of the measure for given generating functions (r ,p,w,l )c(j,h). In this case the
Hamiltonianhj (j,h) is defined by four equations~D3!:

$r c ,hj%2
]H j

]pc
50, $pc ,hj%1

]H j

]r c
50,

~73!

$wc ,hj%2
]H j

] l c
50, $ l c ,hj%1

]H j

]wc
50.

But there is another possibility. Let us assume that

hj~j,h!5H j~r c ,pc ,wc ,l c! ~74!

and the functions (r ,p,w,l )c(j,h) are unknown. Then Eqs.~73! are the equations for thes
functions. It is not hard to see that Eqs.~73! simultaneously with equations given byd functions
in ~72! are equivalent of incident equations if the equality~74! holds. So, the incident dynamica
problem was divided on two parts. First, one defines the trajectory in theWC space through Eqs
~73!. Second, one defines the dynamics, i.e., the time dependence, through the equations
ments ofd functions in the measure~72!.

We should considerr c ,pc ,wc ,l c as the classical orbits in thej, h parametrization. The
desired parametrization of them is well known~one can find it in an arbitrary textbook of classic
mechanics!:

r c5
h1

2~h1
21h2

2!1/2

~h1
21h2

2!1/21h2 cosj1
, pc5

h2 sinj1

h1~h1
21h2

2!1/2, wc5j1 , l c5h1 . ~75!

At the same time,
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hj5
1

2~h1
21h2

2!1/22 j r r c2 j wwc[h~h!2 j r r c2 j wwx. ~76!

Note thatj2 is the irrelevant variable for classical flow~75!. This conclusion hides the assumptio
that the space is flat and homogeneous, i.e., an external field may violate this solution.

Our mapping contains two steps. We introduce the set ofansatzfunctions (r ,p,w,l )c assum-
ing that Eqs.~73! have solutionhj (j,h) for arbitrary j and that the condition~70! holds. For this
purpose auxiliary variablej2 was added assuming that]r c /]j2;e→0. In result we found the
measure~72! and

j̇5
]hj

]h
, ḣ52

]hj

]j
. ~77!

Having ~72! we may invert the problem assuming that justhj is known:hj5H j1O(e), see~74!.
In this case, Eqs.~73! gave (r ,p,w,l )c and taking]r c /]j2;e50 this set is the classical flow.

B. Reduction of quantum degrees of freedom

Noting that the derivatives overj2 are equal to zero we find that

DM ~j,h!5d~E2h~T!!)
t

d2j d2h dS j̇12v11 j r

r c

]h1
D

3dS j̇22v21 j r

r c

]h2
D dS ḣ12 j r

]r c

]j1
2 j wD d~ḣ2!, ~78!

where

v i5
]h~h!

]h i
~79!

are conserved in the classical limitj r5 j w50 velocities in theWC space.
It is seen from~78! that the length of Runge–Lentz vector is not perturbated by the quan

forcesj r and j w . To investigate the consequence of this fact it is necessary to project these
onto the axis ofWC space. This means splitting ofj r , j w on j j , j h . Then noting that the lastd
function in ~78! is source free, we find the same representation as~66! but with

K̂~ j ,e!5E
0

T

dt~ ĵ j1
êj1

1 ĵ j2
êj2

1 ĵ h1
êh1

!, ~80!

where the operatorsĵ are defined by the equality

ĵ X~ t !5E
0

T

dt8 u~ t2t8!X̂~ t8! ~81!

andu(t2t8) is the Green function of our perturbation theory.
We should change also

er→ec5eh1

]r c

]j1
2ej1

]r c

]h1
2ej2

]r c

]h2
, ew→ej1

~82!

in Eq. ~67!. The differential measure takes the simplest form
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DM ~j,h!5d~E2h~T!!)
t

d2jd2hd~j̇12v12 j j1
!d~ j̇22v22 j j2

!d~ḣ12 j h1
!d~ḣ2!.

~83!

Note now that thej,h variables are contained inr c only: r c5r c(j1 ,h1 ,h2). Then the action
of the operatorĵ j2

gives the identical zero contributions into perturbation theory series. And, s

êj2
and ĵ j2

are conjugate operators, see~80!, we must putj j2
5ej2

50. This conclusion ends the
reduction:

K̂~ j ,e!5E
0

T

dt~ ĵ j1
êj1

1 ĵ h1
êh1

!, ~84!

ec5eh1

]r c

]j1
2ej1

]r c

]h1
. ~85!

Using ~54! the measure takes the form

DM ~j,h!5d~E2h~T!!dj2 dh2)
t

dj1 dh1d~ j̇12v12 j j1
!d~ḣ12 j h1

! ~86!

sincer c is j2 independent.

C. Topological analyses

One can see from~86! that the reduction cannot solve the H-atom problem completely: th
are nontrivial corrections to the orbital degrees of freedom (j1 ,h1). By this reason we should
consider the expansion overK̂.

Using the lastd functions in~86! we find, see also Ref. 12@normalizingr(E) on the integral
over j2#:

r~E!5E
0

`

dT e2 iK̂ ~ j ,e!E dM eiS02 iU T~r c ,e!, ~87!

where

dM5
dj1 dh1

v2~E!
. ~88!

The operatorK̂( j ,e) was defined in~84! and

UT~r c ,ec!51E
0

T

dtF 1

~~r c1ec!
21r c

2ej1

2 !1/22
1

~~r c2ec!
21r c

2ej1

2 !1/212
ec

r c
G ~89!

with ec defined in~85! and

r c~ t !5r c~h11h~ t !,h̄2~E,T!,j11v1~ t !1j~ t !!, ~90!

whereh̄2(E,T) is the solution ofE5h(h).
The integration range overj1 andh1 is as follows:

]WC :0<j1<2p, 2`<h1<1`. ~91!
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First inequality defines the principal domain of the angular variablew and second ones take int
account the clockwise and anticlockwise motions of particle on the Kepler orbits,uh1u5` is the
bifurcation line. Note, this excludes the singularity ate50.

We can write

r~E!5E
0

`

dTE dM:e2 iU T~r c ,ê!eiS0: ~92!

since the operatorK̂ is linear overêj1
,êh1

. The colons mean our normal product andUT(r c ,ê) is
the functional of operators

2i êc5 ĵ h1

]r c

]j1
2 ĵ j1

]r c

]h1
, 2i êj1

5 ĵ j1
. ~93!

ExpandingUT(r c ,ê) over êc and êh1
we find

UT~r c ,ê!52 (
n1m>1

Cn,mE
0

T

dt
êc

2n11êh1

m

r c
2n12 , ~94!

whereCn,m are the numerical coefficients. We see that the interaction part presents expansio
1/r c and, therefore, the expansion overUT generates an expansion over 1/r c .

In result,

r~E!5E
0

`

dTE dM$eiS0~r c!1Bj1
~j1 ,h1!1Bh1

~j1 ,h1!%. ~95!

The first term is the pure semiclassical contribution and the last ones are the quantum corre
They can be written as the total derivatives:

Bj1
~j1 ,h1!5

]

]j1
bj1

~j1 ,h1!, Bh1
~j1 ,h1!5

]

]h1
bh1

~j1 ,h1!. ~96!

This means that the mean value of quantum corrections in thej1 direction are equal to zero:

E
0

2p

dj1

]

]j1
bj1

~j1 ,h1!50 ~97!

sincer c is the closed trajectory independent from initial conditions.
In the h1 direction the motion is classical:

E
2`

1`

dh1

]

]h1
bh1

~j1 ,h1!50, ~98!

since~i! bh1
is the series over 1/r c

2 and ~ii ! r c→` when uh1u→`. Therefore,

r~E!5E
0

`

dTE dM eiS0~r c!. ~99!

This is the desired result.
Noting that

S0~r c!5kS1~E!, k50,61,62,...,
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whereS1(E) is the action over one classical periodT1 :

]S1~E!

]E
5T1~E!,

and using the identity7

(
2`

1`

einS1~E!52p(
2`

1`

d~S1~E!22pn!,

we find, normalizing on zero-modes volume, that

r~E!5p(
n

d~E11/2n2!. ~100!

VI. CONCLUSION

The described approach is based on three whales. They are~i! the definition of observables in
quantum theories as the modulo square of amplitudes,~ii ! the description of quantum processes
the transformation induced by unitary operator exp$iS(x)%, whereS(x) is the classical action and
~iii ! the unitarity condition as the principle which determines connection between quantum
namics and classical measurement~optical theorem!. Less principal assumptions, usually taken
treaty, that the quantum perturbations are switched on adiabatically, and the Feynman’si e pre-
scription were also used.

The formalism in terms of observables only was considered to use all above fundam
principles. It must be noted that we are forced to work in terms of observablesr(E) since, this
was mentioned above, the transformation mix the degrees of freedom in such a way th
impossible to return to the habitual amplitudes formalism, writingr;uAu2.

The offered approach should be considered as the useful technical trick~probably not unique!
helping to calculate the observables if the complicated topologies should be taken into accou
the corresponding vacuum is so complicated that its quantitative description is a hopeless
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APPENDIX A: SOURCE COTANGENT FOLIATION

Let us consider the perturbation-generating operatorsK̂ action to show the splitting mecha
nism of the sourcej (t):

e2 i ~1/2!R*C1
dt ĵ~ t !ê~ t !e2 iU T~uc ,e!)

t
dS ḣ2 j

]uc

]u D dS u̇211 j
]uc

]h D
5E Deh Deu e2iR*C1

dt~ehḣ1eu~ u̇21!!e2 iU T~uc ,ec!, ~A1!

where
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ec5eh

]uc

]u
2eu

]uc

]h
[~ehû2euĥ!uc . ~A2!

The integrals over (eh ,eu) will be calculated perturbatively:

e2 iU T~uc ,ec!5 (
nh ,nu50

`
1

nh!nu! E )
k51

nh

~dtk eh~ tk!!)
k51

nu

~dtk8 eu~ tk8!!

3Pnh ,nu
~uc ,t1 ,...,tnh

,t18 ,...,tnu
!, ~A3!

where

Pnh ,nu
~uc ,t1 ,...,tnh

,t18 ,...,tnu
!5)

k51

nh

êh8~ tk!)
k51

nu

êu8~ tk8!e2 iU T~uc ,ec8! ~A4!

with ec8[ec(eh8 ,eu8) and the derivatives in this equality are calculated ateh850, eu850. At the same
time,

)
k51

nh

eh~ tk!)
k51

nu

eu~ tk8!5)
k51

nh

~ i ĵ h~ tk!!)
k51

nu

~ i ĵ u~ tk8!!e22iR*C1
dt~ j h~ t !eh~ t !1 j u~ t !eu~ t !!. ~A5!

The limit ( j h , j u)50 is assumed. Inserting~A4!, ~A5! into ~A1! we find new representation fo
r(E):

r~E!52pE
0

`

dT eiS0~uc!e~1/2i !~v̂t̂1R*C1
dt~ ĵ h~ t !êh~ t !1 ĵ u~ t !êu~ t !!!

3E Dh Due2 iĤ ~uc ;t!2 iU T~uc ,ec!

3d~E1v2h~T!!)
t

d~ ḣ2 j h!d~ u̇212 j u! ~A6!

in which the energy and the time quantum degrees of freedom are splitting.

APPENDIX B: COORDINATE TRANSFORMATIONS

Let us consider the coordinate transformations. For instance, the two-dimensional mode
potential v5v((x1

21x2
2)1/2) is simplified considering it in the cylindrical coordinatesx1

5r cosf, x25r sinf. Note, this transformation is not canonical.
Starting from flat space with trivial metric tensorgmn and inserting

15E DrDf)
t

d~r 2Ax1
21x2

2!dS f2arctan
x2

x1
D ~B1!

we find the measure in the cylindrical coordinates

D ~2!M ~r ,f!5d~E1v2HT~t,f!!)
t

dr df r 2~ t !d~ r̈ 2ḟ2r 1v8~r !2 j r !d~] t~ḟr 2!2r j f!,

~B2!

wherev8(r )5]v(r )/]r and j r , j f are the components ofjW in the cylindrical coordinates.
The perturbation generating operator has the form
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K̂~ j ,e!5
1

2 H v̂t̂1ReE
C1

dt~ ĵ r~ t !êr~ t !1 ĵ f~ t !êf~ t !!J ~B3!

and inUT(x,e) we must changee on ec with components

ec,15er cosf2ref sinf, ec,25er sinf1ref cosf. ~B4!

Note,ef was arise in product withr.
The transformation looks quite classically but the measure~B2! and perturbation generatin

operator~B3! cannot be derived bynaive coordinate transformation of initial path integrals f
amplitude. This becomes evident noting that transformed representation forr(E) cannot be writ-
ten in the product form;AA* of two functional integrals.

It is interesting also to find the measure starting from the curved space with the Lagra

L5 1
2gmn~y!ẏmẏn2v~y!. ~B5!

It is enough to consider the kinetic term only since, to find the Dirac measure, we should e
the odd overe terms from the closed-path actionST(y1e)2ST(y2e). This procedure is trivial
for the potential term. The lowest overem part of the kinetic terms have the form

2$glmÿm1Gl,mnẏmẏn%. ~B6!

Therefore, the semiclassical approximation is restored.
To find the quantum corrections we should linearize at least theO(e3) term in the exponent

expHRE dt gl,mnelėmėnJ .

This is possible noting that

em~ t8!êm8 ~ t8!ė8n~ t !5em~ t8!dmn] t8d~ t2t8!5 ėnd~ t2t8!.

In result,

DM ~y!5Aug~y1e!uug~y2e!u)
l

)
t

dyl d~glmÿm1Gl,mnẏmẏn1vl~y!2 j l!, ~B7!

wherevl(y)5]lv(y) andGl,mn is the Christoffel index. The perturbations generating operatoK̂
and the weight functionalUT(y;e) have the standard form.

APPENDIX C: EXTRACTION OF TOTAL DERIVATIVES

By definition UT is the odd overêc local functional:

UT~uc ,êc!52 E
0

T

(
n51

`

~ êc~ t !/2i !2n11vn~uc!, ~C1!

wherevn(uc) is somefunctionof uc . Inserting~64! we find

:e2 iU T~uc ,êc!
ª)

n51

`

)
k50

2n11

:e2 iU k,n~ ĵ ,uc!:, ~C2!

where
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Uk,n~ ĵ ,uc!5E
0

T

dt~ ĵ f~ t !!2n2k11~ ĵ I~ t !!kbk,n~uc!. ~C3!

Explicit form of the functionbk,n(uc) is not important.
Using definition~65! it easy to find:

ĵ ~ t1!bk,n~uc~ t2!!5Q~ t12t2!]bk,n~uc!/]X0

sinceuc5uc(X(t)1X0), see~61!, or

ĵ X,1b25Q12]X0
b2 ~C4!

since indices~k,n! are not important.
Let us start consideration from the first term withk50. Then expandingÛ0,n we describe the

angular quantum fluctuations only. Noting that]X0
and ĵ commute we can consider the lowe

orders overĵ . The typical term of this expansion is~omitting indexf!

ĵ 1 ĵ 2¯ ĵ mb1b2¯bm . ~C5!

It is enough to show that this quantity is the total derivative overf0 . The numberm counts an
order of perturbation, i.e., inmth order we have (Û0,n)m.

m51. In this approximation we have, see~C4!,

ĵ 1b15Q11]0b15]b1Þ0. ~C6!

Here the definition~46! was used.
m52. This order is less trivial:

ĵ 1 ĵ 2b1b225Q21b1
2b21b1

1b2
11Q12b1b2

2, ~C7!

where

bi
n[]nbi . ~C8!

Deriving ~C7! the first equality in~49! was used. At first glance~C7! is not the total derivative. But
inserting

I 5Q121Q21

@see the second equality in~49!# we can symmetrize it:

ĵ 1 ĵ 2b1b25Q21~b1
2b21b1

1b2
1!1Q12~b1b2

21b1
1b2

1!5]0~Q21b1
1b21Q12b1b2

1!, ~C9!

since the explicit form of functionb is not important. So, the second order term can be reduce
the total derivative also. Note, that the contribution~C9! contains the sum of all permutations. Th
shows the time reversibility of the constructed perturbation theory.

Let us consider now expansion overÛk,m , kÞ0. The typical term in this case is

ĵ 1
1 ĵ 2

1
¯ ĵ l

1 ĵ l 11
2 ĵ l 12

2
¯ ĵ m

2 b1b2¯bm , 0, l ,m, ~C10!

where, for instance,

ĵ k
1[ ĵ I~ tk!, ĵ k

2[ ĵ f~ tk!
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and

ĵ 1
i b25Q12]0

i b2 ~C11!

instead of~C4!.
m52, l 51. We have in this case

ĵ 1
1 ĵ 2

2b1b25Q21~b2]0
1]0

2b11~]0
2b2!~]0

1]0
2b1!!1Q12~b1]0

1]0
2b21~]0

2b2!~]0
1]0

2b1!!

5]0
1~Q21b2]0

2b11Q12b1]0
2b2!1]0

2~Q21b2]0
1b11Q12b1]0

1b2!. ~C12!

Therefore, we have the total-derivative structure.
This important property of new perturbation theory is conserved in arbitrary order overm and

l since the time-ordered structure does not depend from upper index ofĵ , see~C11!.

APPENDIX D: GENERAL FORMALISM OF MAPPING

The resulting measure looks as follows:

DM ~j,h!5
1

Dc
d~E2H0!)

t
d2j d2h dS ṙ c2

]H j

]pc
D dS ṗc1

]H j

]r c
D dS ẇc2

]H j

] l c
D dS l̇ c1

]H j

]wc
D .

~D1!

Note that the parametrization (r c ,pc ,wc ,l c)(j,h) was not specified.
A simple algebra gives

DM ~j,h!5
d~E2H0!

Dc
)

t
d2j d2hE )

t
d2j̄ d2h̄d2S j̄2S j̇2

]hj

]h D D d2S h̄2S ḣ1
]hj

]j D D
3dS ]r c

]j
• j̄1

]r c

]h
•h̄1$r c ,hj%2

]H j

]pc
D dS ]pc

]j
• j̄1

]pc

]h
•h̄1$pc ,hj%1

]H j

]r c
D

3dS ]wc

]j
• j̄1

]wc

]h
•h̄1$wc ,hj%2

]H j

] l c
D dS ] l c

]j
• j̄1

] l c

]h
•h̄1$ l c ,hj%1

]H j

]wc
D .

~D2!

The Poisson notation:

$X,hj%5
]X

]j

]hj

]h
2

]X

]h

]hj

]j

was introduced in~D2!.
We will define the auxiliary quantityhj by the following equalities:

$r c ,hj%2
]H j

]pc
50, $pc ,hj%1

]H j

]r c
50,

~D3!

$wc ,hj%2
]H j

] l c
50, $ l c ,hj%1

]H j

]wc
50.

Then, the functional determinantDc is canceled and

DM ~j,h!5d~E2H0~h!!)
t

d2j d2h d2S j̇2
]hj

]h D d2S ḣ1
] l i

]j D . ~D4!
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Tensor operators and Wigner–Eckart theorem
for Uq\0„sl „2……

V. Marottaa) and A. Sciarrinob)

Universitàdi Napoli ‘‘Federico II,’’ Dipartimento di Scienze Fisiche
and I.N.F.N.—Sezione di Napoli, I-80125 Napoli, Italy

~Received 12 November 1999; accepted for publication 18 April 2000!

Crystal tensor operators, which transform underUq→0(sl~2!), in analogous way as
the vectors of the crystal basis, are introduced. The Wigner–Eckart theorem for the
crystal tensor is defined: the selection rules depend on the initial state and on the
component of the tensor operator; the transition amplitudes to the states of the same
final irreducible representation are all equal. ©2000 American Institute of Phys-
ics. @S0022-2488~00!03208-4#

I. INTRODUCTION

Deformation of enveloping Lie algebraUq(G) introduced by Drinfeld1 and Jimbo2 is by now
a subject of standard text books. For the arguments discussed in this paper, see Ref. 3 w
accurate list of references can be found. In the limitq→0 it has been shown by Kashiwara4 that
Uq(G) admits a canonical peculiar basis, calledcrystal basis. Since that paper, crystal bases ha
been the object of very intensive mathematical studies and have also been extended to the
deformation of affine Kac–Moody algebras. However a point is still, to our knowledge, mis
it is possible to introduce the concept ofq-tensor andq-Wigner–Eckart theorem in the limitq
→0? Besides the mathematical interest, the question may be interesting in application to p
or to physics inspired models. It is clear that in this limit we are no longer dealing with
deformation of a universal enveloping Lie algebra, but it is interesting to study what are the
of the symmetry structure described originally by the algebraG and then by the deformation of it
enveloping algebraUq(G). It is, indeed, well known that Wigner–Eckart theorem is one of
milestones in the application of algebraic methods in physics. Let us remark that one
motivations to study the limitq→0 by Date, Jimbo, and Miwa,5 which firstly discovered the
peculiar behavior ofn-dimensionalUq→0(sl(n,C))-modules, whose axiomatic settlement has be
given in Ref. 4, was the study of solvable lattice models where the parameterq plays the role of
the temperature. Moreover, in Ref. 6 the quantum enveloping algebraUq(sl~2!% sl~2!) in the limit
q→0 has been proposed as symmetry algebra for the genetic code assigning the~4! nucleotides
~elementary constituents of the genetic code! to the fundamental representation and the~64!
codons~triplets of nucleotides! to the threefold tensor product of the fundamental representa
using crystal basis.

In the following we will consider only the crystal basis forUq(sl~2!). For completeness in Sec
II we give a short reminder of the main properties of the crystal basis andq-tensor operators
limiting ourself to the case ofUq(sl~2!). In Sec. III theq-tensor operators in the limitq→0, called
crystal tensor operators, are introduced on the basis of a conjecture. To support the conjec
consider a few examples of explicitly known tensor operator and we show that in such cas
conjecture is verified. A discussion of the results and a high-light of possible application
presented in Sec. V.

a!Electronic mail: vmarotta@na.infn.it
b!Address for correspondences: Mostra d’Oltremare, Pad. 20-I-80125 Napoli, Italy. Electronic mail: sciarrino@na.
57350022-2488/2000/41(8)/5735/10/$17.00 © 2000 American Institute of Physics
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II. A REMINDER OF THE CRYSTAL BASIS AND q-TENSOR OPERATORS

To set the notation, let us recall the definition ofUq(sl~2!)

@J1 ,J2#5@2J3#q , ~1!

@J3 ,J6#56J6 , ~2!

where

@x#q5
qx2q2x

q2q21 . ~3!

In the following we shall omit the lower labelq.
For later use let us remind that

@n#q! 5@1#q@2#q¯@n#q . ~4!

The algebraUq(sl~2!) is endowed with an Hopf structure. In particular, we recall that the
product is defined by

D~J3!5J3^ 111^ Js ,
~5!

D~J6!5J6 ^ qJ31q2J3^ J6 .

The Casimir operator can be written as

C5J1J21@J3#@J321#5J2J11@J3#@J311#. ~6!

For q generic, i.e., not a root of unity, the irreducible representations~IR! are laleled by an
integer or half-integer numberj and the action of the generators on the vector basisu jm& (2 j
<m< j ), of the IR is

J3u jm&5mu jm&, ~7!

J6u jm&5A@ j 7m#@ j 6m11#u j ,m61&5F6~ j ,m!u j ,m61&. ~8!

From Eqs.~7! and ~8! it follows that

Cu jm&5@ j #@ j 11#u jm&. ~9!

Let us study the behavior of aq-number@x# for q→0. In the following the symbol; in the
equations has to be read equal in the limitq→0 modulo, the addition of a function regular inq
50. From the definition Eq.~3!, we have

@x#q→0;q2x11, xÞ0. ~10!

So it follows that

F6~ j ,m!q→0;q2 j 11/2, ~11!

@ j #@ j 11#q→0;q22 j 11, ~12!

@x#! q→0;q21/2x~x21!. ~13!

From Eqs.~8! and ~11! it follows that the action of the generatorJ6 is not defined in the limit
q→0. Let us define the elementG0 belonging to the center ofUq(sl~2!)
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G05C21/2, ~14!

G0u jm&5~@ j #@ j 11# !21/2u jm&q→0;qj 21/2u jm&. ~15!

Let us define

J̃65G0J6 . ~16!

These operators are well behaved forq→0. Their action in the limitq→0 will define the crystal
basis:

J̃1u jm&5u j ,m11& for 2 j <m, j , ~17!

J̃2um&5u j ,m21& for 2 j ,m< j , ~18!

J̃1u j j &5 J̃2u j ,2 j &50. ~19!

The tensor product of two representations in the crystal basis is given by Ref. 4.
Theorem: If B1 andB2 are the crystal bases of theM1 andM2 Uq→0(sl~2!)-modules, foru

PB1 andvPB2 , we have

J̃2~u^ v !5H J̃2u^ v'n>1 such that J̃2
n uÞ0 and J̃1

n v50,

u^ J̃2v otherwise.
~20!

J̃1~u^ v !5H u^ J̃1v'n>1 such that J̃1
n vÞ0 and J̃2

n u50,

J̃1u^ v otherwise.
~21!

So the tensor product of the two crystal basis is a crystal basis and the states of the basi
tensor space are pure states. In other words, in the limitq→0 all theq-Clebsch–Gordan (q-CG)
coefficients vanish except one which is equal to61. Let us recall the definition ofq-tensor for
Uq(sl~2!).7–9,3 An irreducibleq-tensor of rankj is a family of 2j 11 operatorsTm

j (2 j <m< j )
which transform under the action of the generators ofUq(sl~2!) as

qJ3~Tm
j ![qJ3Tm

j q2J35qmTm
j ~22!

or

@J3 ,Tm
j #5mTm

j , ~23!

J6~Tm
j ![J6Tm

j qJ32q2J361Tm
j J65F6~ j ,m!Tm61

j . ~24!

In deriving the above equations, use has been made of the nontrivial co-product Eq.~5!. The
q-Wigner–Eckart (q-WE) theorem now reads10

^JMuTm
j u j 1m1&5~21!2 j ^JiTj i j 1&

A@2J11#
^ j 1m1 jmuJM&, ~25!

where^JiTj i j 1& is the reduced matrix element of theq-tensorTj and^ j 1m1 jmuJM& is theq-CG
coefficients. In the following we will use the explicit expression of theq-CG of Ref. 10. It is
useful to rewrite theq-WE theorem Eq.~25! in the following form:
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Tm
j u j 1m1&5~21!2 j (

J5 l j 2 j 1

j 1 j 1 ^JiTj i j 1&

A@2J11#
^ j 1m1 jmuJM&uJM&. ~26!

III. DEFINITION OF CRYSTAL TENSOR OPERATORS

Our strategy is to define the (q→0)-tensor and then (q→0)-WE is thefollowing.

~1! Let us write Eq.~24! in the form

J6Tm
j qJ35q2J361Tm

j J61F6~ j,m!Tm61
j . ~27!

~2! We multiply both sides of Eq.~27! from left and right by an elementG belonging to the cente
of the algebra and define

T̂m
j 5GTm

j G. ~28!

Let us remark thatT̂m
j is still a q-tensor operator of the same rank asTm

j . Indeed it transforms
under the action ofJ6,3 according to Eqs.~22!, ~24! or ~27! which have been derived b
application of the co-product Eq.~5!.

~3! We make theconjecturethat an element, in general not unique,G exists such thatT̂m
j has a

smooth and defined behavior in the limitq→0. We will discuss below some explicit example
in which Tm

j is not defined in the limitq→0 and its reduced matrix element diverges, wh
on the contrary it is possible to defineT̂m

j with a well-defined limit.
~4! We apply theJ̃6 ,J3 generators to Eq.~26! written for T̂m

1/2 and, subsequently, we study th
limit q→0 of both sides of the equation, assuming that^JiT̂j i j 1& has a well-defined behavio
in the limit.

~5! From the study of~4! we deduce the action of the generatorsJ̃6 ,J3 in the limit q→0 on T̂m
1/2.

~6! From the tensor product we can infer the action for the generic tensor.

To perform the third and fourth steps, we need to compute theq→0 limit of ^ j 1m1
1
2muJ,M &. The

results are reported in Table I, where we have used the expressions of^ j 1m1
1
2muJM& given in

Appendix B of Ref. 10 and Eq.~10!. For a study of the behavior forq→0 of the genericq-CG the
following formulas are useful:

@x#!

@x2a#!
.q→0q21/2a~2x2a21!, ~29!

@x1a#!

@x2a#!
.q→0q2a~2x21!, ~30!

@x#!

@x2a#!
.q→0q21/2a~2x2a21!, ~31!

@x1a#

@x2a#
.q→0q22a, ~32!

TABLE I. Behavior of theq-CG^ j 1m1
1
2muJM& for q→0.

J m51/2 m521/2

j 111/2 qj 12m1 1
j 121/2 21 qj 12m1 q
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@x#!

@x2a#!
.q→0q21/2a~2x2a21!, ~33!

@x1a#!

@x2a#!
.q→0q2a~2x21!, ~34!

@x#!

@x2a#!
.q→0q21/2a~2x2a21!, ~35!

@x1a#

@x2a#
.q→0q22a. ~36!

Using the results of Table I, denoting bytm
1/2 theq-tensor operatorT̂m

1/2 in the limit q→0, and

S ^JiT̂j i j 1&

A@2J11#
D

q→0

;^Jit j i j 1&, ~37!

we get

t1/2
1/2u j 1m1&5~21!d j 1 ,m1

^ j 111/2it1/2i j 1&u j 111/2,m111/2&

1^ j 121/2it1/2i j 1&u j 121/2,m111/2&, ~38!

t21/2
1/2 u j 1m1&5~21!^ j 111/2it1/2i j 1&u j 111/2,m121/2&. ~39!

Inspection of Eqs.~38! and~39! shows that the rhs of the equations has the structure of the te
product of1

2^ j in the crystal basis, see the above quoted Kashiwara’s theorem. Note that theorder
of the factors in the tensor productis important. Here and in the following the order of the facto
is read from left to right~western reading prescription!.

So we can write the action of the generatorsJ̃6 ,J3 on tm
1/2, as

J3~tm
1/2![mtm

1/2, J̃6~tm
1/2![tm61

1/2 . ~40!

Clearly, if umu.1/2 thentm
1/2 has to be considered vanishing. Equation~40! shows that the spino

rial operatorstm
1/2 transform under the action ofJ3,6 as the crystal basis vectorsu1/2,m&. It has

been proven by Rittenberg–Scheunert9 that for quasitriangular Hopf algebra@Uq~sl~2!! is ‘‘al-
most’’ quasitriangular which does not affect the following considerations# the tensor product of
tensor operators is a tensor operator. So by applying the Rittenberg–Scheunert’s theorem
the limit q→0 the Kashiwara’s theorem we can extend Eq.~40! to any valuej. So we define
crystal tensorof rank j a set of operator which transform underJ̃6 ,J3 according to Eq.~40!. As
an explicit check and a further example, we compute the (q→0)-WE theorem forT1. We need to
compute theq→0 limit of ^ j 1m11muJM&. The results are reported in Table II, where we ha
used the expressions of^ j 1m11muJM& given in Appendix B of Ref. 10 and Eq.~10! and Eqs.
~29!–~36!.

TABLE II. Behavior of theq-CG^ j 1m11muJM& for q→0.

J m51 m50 m521

j 111 q2( j 12m1) qj 12m1 1
j 1 2q21qj 12m1 q2q2( j 12m1)211d j 1m1

qqj 12m1

j 121 1 2qj 12m1 qq2( j 12m1)
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Using the results of Table II, we obtain in the limitq→0:

t1
1u j 1m1&5^J5 j 111it1i j 1&uJ,m111& if m15 j 1

52^J5 j 1it1i j 1&uJ,m111& if m15 j 121,s

5^J5 j 121it1i j 1&uJ,m111& if m1, j 121, ~41!

t0
1u j 1m1&5^J5 j 111it1i j 1&u j ,m1& if m15 j 1

52^J5 j 15 j 1it1i j 1&uJ,m1& if m1, j 1 , ~42!

t21
1 u j 1m1&5^ j 111it1i j 1&uJ,m121&. ~43!

Let us now prove the following statement.
Proposition 1: If the q-tensors Tˆ r 1 and T̂r 2 have a well-defined behavior for q→0, i.e., the

crystal tensorst r 1 and t r 2 are defined, than the q-tensors TR, obtained by the tensor product o
Tr 1 and Tr 2 has a well-defined limit for q→0.

Proof: Let us define

T̂K
R5 (

k1 ,k2

^r 1k1r 2k2uRK&T̂k1

r 1T̂k2

j 2. ~44!

Take the matrix element of the rhs and lhs of Eq.~44! between the initial stateu j 1m1& and the final
stateuJM&. Insert the identity

15(
j ,m

u jm&^ jmu ~45!

in the rhs and apply theq-WE theorem Eq.~25! for T̂r 1 and T̂r 2. We get

^JMuT̂K
Ru j 1m1&5 (

k1 ,k2 , j ,m
^r 1k1r 2k2uRK&^ jmr1k1uJM&^ j 1m1r 2k2u jm&

^JiT̂r 1i j &

A2J11

^ j iT̂J2i j 1&

A2 j 11
.

~46!

If we apply theq-WE to the lhs of the above equation and make the limitq→0, as by assumption
the rhs of Eq.~46! has a limit, it follows that

S ^JiT̂r i j 1&

A@2J11#
D

q→0

;^Jit j i j 1&. ~47!

Use of Eq.~45! requires at least a comment. The completeness of the basisujm& for su~2! is a
particular case of the completeness of the IRs of a compact group. ForqÞ1 we cannot appeal to
this general property as we are no longer dealing with a Lie group. However, the completen
theq-coherent states11 for theq-bosons12,13gives us an argument for the completeness of the st
u jm&, as a realization of the deformed enveloping algebraUq~su~2!!, for q generic, and of its
representations can be written in terms ofq-bosons. See below for comments about the use
q-bosons in theq→0 limit. However, should the above argument not convince the reader, a
elegant, but straightforward proof can be carried on using the explicit expression of a g
q-CG coefficients, see Eq.~5.18! of Ref. 10.

Let us remark that the knowledge of the elementsG r 1
and G r 2

, which allow to define,
respectively, the crystal tensorst r 1 and t r 2 from q-tensorsTr 1 and Tr 2, does not determine the
                                                                                                                



with

he

-
ob-

5741J. Math. Phys., Vol. 41, No. 8, August 2000 Tensor operators and Wigner–Echart theorem

                    
elementGR , which allows to define the crystal tensortR from theq-tensorTR, obtained from the
tensor product ofTr 1 andTr 2, as the elements of the center of the algebra do not commute
the genericq-tensorsTj , for j Þ0.

Now let us discuss in some explict examples ourconjecturethat it is possible to find an
elementG in the center of the algebra such that the operatorGTjG is well defined in the limitq
→0.

Let us consider the vector operator constructed with the generators10

T6
1 56

1

A@2#
q2J3J6 ,

T0
15

1

@2#
~q21@2J3#1~q2q21!J1J2!

5
1

@2#
~q21@2J3#1~q2q21!~C2@J321/2#2!!.

~48!

The reduced matrix element^ j 1iT1i j 1& ~which is the only nonvanishing! for theq-vector operator
Eq. ~48! can be computed from Eq.~25! and we get

^ j 1iT1i j 1&5
A@2 j 1#@2 j 111#@2 j 112#

@2#
. ~49!

The expression Eq.~48! has no defined meaning in the limitq→0 and

^ j 1iT1i j 1&q→0;q23 j 111. ~50!

If we multiply Eq. ~48! by the elementG5Aq1/2G0
3. we have, from Eqs.~14!–~22!:

^ j 1iT̂1i j 1&q→0;1. ~51!

Let us remark that the multiplication ofG by a real number, the addition of any element of t
center vanishing forq→0 as well as any functional construction ofG0 behaving in the limitq
→0 asq23 j 1

11 does not modify our conclusion. Our choice is theminimal one.
The Uq~sl~2!! can be realized in terms ofq-bosons12,13 defined by

aiaj
12qd i j aj

1ai5d i j q
2Ni, ~52!

@Ni ,aj
1#5d i j aj

1 , @Ni ,aj #52d i j aj , @Ni ,Nj #50. ~53!

Using q-boson,q-spinorial operators have been constructed7

T1/2
1/25a1

1qN2/2, T21/2
1/2 5a2

1q2N1/2. ~54!

As it can be seen from the defining expression Eq.~3! or from the relation betweenq-bosons and
standard bosonic operators,14 the q-bosons have no well-defined behavior in the limitq→0.

However, it is always possible to compute theq-spinor reduced matrix using Eq.~54!, even if
in the limit q→0 the explicit realization of the tensor operator in terms ofq-bosons is meaning
less. Indeed, in the case of theq-vector operator previously discussed, the same results are
tained using the definition Eq.~48! in terms of the abstract generators ofUq~sl~2!! or making use
of the explicit realization of the algebra generators in terms of theq-bosons. From Eq.~25! and the
expression ofq-CG we get

^ j 111/2iT1/2i j 1&52A@2 j 111#@2 j 112# ~55!
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and

^ j 111/2iT1/2i j 1&1&q→0;q22~ j 111/4!. ~56!

ChoosingG5AqG0 , we obtain from Eqs.~14!–~22!

^ j 111/2iT̂1/2i j 1&q→0;21. ~57!

If we consider theq-spinorial operators, Hermitian conjugate to Eq.~54!,3 given by

T1/2
†,1/252a2q2@N121#/2, T21/2

†,1/25a1q~N211!/2. ~58!

From Eq.~25! and the expression ofq-CG we get

^ j 121/2iT†,1/2i j 1&52A@2 j 1#@2 j 111# ~59!

and

^ j 121/2iT†,1/2i j 1&q→0;q22~ j 121/4!. ~60!

Multiplying by the same elementG5AqG0 , we used to buildT̂1/2 from T1/2, we obtain, using Eqs
~14!–~22!

^ j 121/2iT†,1/2i j 1&q→0;21. ~61!

IV. DISCUSSION

In conclusion we have introduced (q→0)-tensor operators, which we call crystal tens
operators, which transform underUq→0~sl~2!! according to Eq.~40!. We have made the conjectur
that an elementG of the center of the deformedq-algebra exists such that the limit, forq→0, of
theq-tensor operator forUq~sl~2!!, multiplied to the right and to the left byG, is well defined and
the expressions, in this limit, are the crystal tensor operators. To support our conjecture w
considered a few examples of explicitly knownq-tensor operators and we have shown that, in
considered cases, a~not unique! G element can be consistently found and its minimal~up a factor!
form has been explicitly obtained.

The transformation law for the generic crystal tensor operators is

J3~tm
j ![mtm

j , J̃6~tm
j ![tm61

j . ~62!

Clearly, if umu. j thentm
j has to be considered vanishing. The (q→0)-Wigner–Eckart theorem

can be written

tm
j u j 1m1&5~21!2 j (

a50

2 j

^ j 11 j 1ait j i j 1&u j 11 j 1a,m11m&

3~dm1 , j 12a1d2m, j 2a2dm1 j 12adm, j 2a!. ~63!

Let us emphasize that in order to discuss more generally our conjecture or to compu
reduced matrix element,^ j 2it j i j 1&, one should know an explicit realization of the generators
Uq→0~sl~2!! which, at our knowledge, is still missing.

Let us stress that while theq-WE theorem~for q generic! has the same form as the usual W
theorem, roughly speaking one has to replace the numerical expression byq-numerical expression
so its content~selection rules, relation between the transition amplitudes! is of the same form, the
(q→0)-WE theorem has a completely different structure. The IR to which the final state bel
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depends not only from the rank of the tensor and from initial IR, but in a crucial way from
initial state and from the component of the tensor in consideration. In Table III we report the
states, such that^ j 2m2utm

j u j 1m1&Þ0, for j 51,1/2 and forj 15 1
2,1,32,2.

In particular the highest weight state of the initial IRj 1 is always transformed under action o
t j into a state of the final IRJ5 j 11 j , while the lowest weight state is transformed into a state
any final IR~exactly one state ifj 1> j with J5 j 11m). Let us remark that the peculiar feature
that no vector crystal operator can be build up with the generatorsJ̃6 ,J3 . Indeed, as a generato
it should connect any initial state to a state of the same IR, but there is no crystal vector op
with such a property as one can realize from Table III or from the general form of the tran
mation law Eq.~63!. The transitions between an initial state, belonging to IRj 1 , and any final
state, belonging to the IR,J, are all equal, the nonvanishingq-CG in the limit q→0 being equal
to 61.

An interesting consequence of the above-discussed mathematical structure is the l
reversibility, in some sense, of the Wigner–Eckart theorem in the limitq→0. In quantum me-
chanics, it is a well-known and a straightforward consequence of the Wigner–Eckart theore
if a perturbation, described by a tensor operatorTjm , connects the initial statec i to the final state
c f , then the statec f is connected to the statec i by Tj ,2m , with the same transition amplitude
For qÞ1 this statement is true up to a possibleq factor, as a consequence of the symme
property10

^ j 1m1 jmuJM&5~21! j 11 j 2J~21! j 2mqmS @2J11#

@2J111# D
1/2

^JM jmu j 1m1&. ~64!

In the crystal basis the reversibility is completely lost. For example, from Table III, we see
under the action of the crystal vector operatort1

1, the initial stateu1/2, 1/2& is transformed~up to
a factor! into the final stateu3/2, 3/2&. The stateu3/2, 3/2&, under the action oftm

1 , is transformed
~up to a factor! into the final stateu5/2,3/21m&.

This amazing feature can be relevant in the mathematical model for biophysics. Indeed
realized for a long time, see e.g., the lectures by Schro¨dinger in 1943, ‘‘What is life?,’’ 15 that
models able to mimick ‘‘elementary’’ life process, as the mutations of the genetic code, ha

TABLE III. Selection rules fort1, on the left, andt1/2, on the right. In the
central entries the value of the finalJ(M5m11m), in function of the com-
ponent oft and of the initialj 1 , m1 /m entries, forj 151/2,1,3/2,2

m1 /m 1 0 21
1
2 2

1
2

1
2

3
2

3
2

3
2 1 1

2
1
2

1
2

1
2

3
2 0 1

1 2 2 2
3
2

3
2

0 1 1 2
1
2

3
2

21 0 1 2
1
2

3
2

3
2

5
2

5
2

5
2 2 2

1
2

3
2

3
2

5
2 1 2

2
1
2

1
2

3
2

5
2 1 2

2
3
2

1
2

3
2

5
2 1 2

2 3 3 3
5
2

5
2

1 2 2 3
3
2

5
2

0 1 2 3
3
2

5
2

21 1 2 3
3
2

5
2

22 1 2 3
3
2

5
2
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reproduce the irreversibility of such a process. Therefore mathematical models able to desc
least some simple features of the extremely complicated elementary biophysics process
incorporate structures suitable to reproduce the irreversible character of the process.
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Nonlinear Hodge maps
Thomas H. Otwaya)

Department of Mathematics and Department of Physics, Yeshiva University,
New York, New York 10033

~Received 23 November 1999; accepted for publication 24 February 2000!

We consider maps between Riemannian manifolds in which the map is a stationary
point of the nonlinear Hodge energy. The variational equations of this functional
form a quasilinear, nondiagonal, nonuniformly elliptic system which models certain
kinds of compressible flow. Conditions are found under which singular sets of
prescribed dimension cannot occur. Various degrees of smoothness are proven for
the sonic limit, high-dimensional flow, and flow having nonzero vorticity. The
gradient flow of solutions is estimated. Implications for other quasilinear field
theories are suggested. ©2000 American Institute of Physics.
@S0022-2488~00!01808-9#

I. INTRODUCTION: NONLINEAR HODGE THEORY

The original motivation for nonlinear Hodge theory was a conjecture of Bers on the exis
of subsonic compressible flow having prescribed periods on a Riemannian manifold. In est
ing Bers’ conjecture for an irrotational, polytropic flow,1 L. M. and R. J. Sibner were led to mor
general questions about the properties of differential forms on Riemannian manifolds.2–4 In Ref. 2
they introduced a variational principle for the generalized energy functional

E5
1

2 EM
E

0

Q

r~s!dsdM. ~1!

~See also Ref. 5, p. 221.! HereM is a smoothn-dimensional Riemannian manifold. Denote byv
a smooth section of thepth exterior power of the cotangent bundle onM ; thenQ(v) is the square
of the pointwise norm ofv on TM. The C1 function r:R→R1 is assumed to satisfy the cond
tions

0,
d

dQ
„Qr2~Q!…,` ~2!

for Q,Qcrit , and

lim
Q→Qcrit

d

dQ
„Qr2~Q!…50. ~3!

If p51 andv is the 1-form canonically associated to the velocity field of an adiabatic, isentr
compressible flow onM , thenr is given explicitly by the formula

r~Q!5S 12
ga21

2
QD 1/(ga21)

,

wherega.1 is the adiabatic constant of the medium, andQcrit52/(ga11) is the square of the
sonic flow velocity.

a!Electronic mail: otway@ymail.yu.edu
57450022-2488/2000/41(8)/5745/22/$17.00 © 2000 American Institute of Physics
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The variational equations ofE are thenonlinear Hodge equations,

d„r~Q!v…50. ~4!

If the flow is irrotational then we have an additional equation,

dv50. ~5!

Here d:Lp→Lp11 is the ~flat! exterior derivative onp-forms, with adjoint operatord:Lp

→Lp21.
Applying the converse of the Poincare´ Lemma to Eq.~5!, we find that, locally, there is ap

21-form u such thatdu5v.
It has been observed2 that if $x1 , . . . ,xn11% are coordinates inRn11, u is a mapping ofM

into Rn11 such thatxn115u(x1 , . . . ,xn), p51, and

r~Q!5~11Q!21/2, ~6!

then Eq.~4! can be interpreted as the equation for a family of codimension-1 minimal hype
faces having gradients¹u. The critical value ofQ is Q5`. Of courseE does not yield the area
functional but rather an indefinite functional,

E
M

~A11Q21!dM, ~7!

which differs from the area functional by an integration constant.
If p52, n54, andv denotes an electromagnetic field having electromagnetic potentiau,

then for r51 Eqs. ~4!, ~5! reduce to Maxwell’s equations onM . If, however, we replace the
standard model of electromagnetism with the Born–Infeld model, then we have~taking the energy
to be positive-definite!

EBorn–Infeld5b2E
M
SA11

1

2b2 Q21D dM, ~8!

whereb25mc2. The nonzero integration constant observed in~7! arises in~8! from independent
physical arguments@cf. Eqs.~1.1! and ~1.4! of Ref. 6#. Normalizing so thatb251/2, the energy
functional~8! becomes identical to the functional~7!, and we can chooser as in Eq.~6! in order
to write the variational equations of this common energy functional in the form of Eqs.~4!. Thus
the Born–Infeld model fits naturally into nonlinear Hodge theory as an application for 2-fo
~The equations for a nonparametric codimension-1 minimal surface also have a place
original gas dynamics context of nonlinear Hodge theory, as the Chaplygin approximation
compressible flow.7!

Because the bundleT* M is flat, any connection defined on it will have trivial Lie bracket. F
this reason, in comparison to the examples that follow, we call the foregoing casesAbelian. In
particular, in the example of electromagnetism the vector potentialu is identified with a connec-
tion 1-form on a bundle overM having Abelian structure groupU(1).

Suppose we replace the energy functionals~1! and ~7! by the functional

Eh5
1

2 EM
E

2h

Q

r~s!dsdM,

where

r~s!5~h1s!2a.
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Here h and a are non-negative parameters. LetX be a vector bundle overM having compact
structure groupG. DefineQ5^F,F&, where^,& is an inner product on the fibers of the bund
adX^ Lp(T* M ),p>1.

Case 1:Let p52 and letA be a connection 1-form on the fibers ofX; chooseF to be the
curvature 2-formFA corresponding toA. If a50, G5SO(n), andn54, thenE0 is the Yang–
Mills functional.

Case 2:If p52, a51/2, X is the bundle of orthonormal frames onM , G is the Lorentz
group O(1,3), andn54, thenE0 is formally analogous to a~torsion-free! gravitational action
functional for the curvature 2-formF.

Case 3: If p51, a51/2, z5A(x,y), where A is the graph of a surfaceS in R3, F
5gradA, X5T* M , and n52, thenE1 is the energy functional for a nonparametric minim
surface, as discussed above.

Case 4:If in the last exampleR3 is replaced by the Minkowski spaceRn,1 and if p5n21,
thenE1 is closely related to an energy functional for maximal space-like hypersurfaces.6

With the exception of the last two, these examples are characterized by a nonvanishi
bracket inA due to a non-Abelian structure group forX. Thus in general these cases arenon-
Abelian. If DA represents the exterior covariant derivative associated to a connection 1-formA on
ad(X) and if DA* is the formal adjoint ofDA , then the variational equations forEh can be
written8–10

DA* „r~Q!FA…50, ~9!

DAFA50. ~10!

The first equation represents a non-Abelian version of Eq.~4! for curvature 2-forms, and the
second equation replaces Eq.~5! by the second Bianchi identity.

An intermediate place between the Abelian and non-Abelian nonlinear Hodge theor
occupied bynonlinear Hodge maps. These are mapsu between Riemannian manifolds such th
u is a critical point of the nonlinear Hodge energy~1!. In this case the geometry of the target spa
is enriched in comparison to the Abelian case but does not have the nontrivial Lie group str
of the non-Abelian case; the target space is independent of the base space but is not a
bundle. In the context of fluid dynamics or the rotation of a nonrigid body, these maps rep
flows on a Riemannian manifoldM ~typically, a domain ofRn) for which the flow potential is
constrained to lie on a possibly different Riemannian manifoldN.

Nonlinear Hodge theory can be viewed as an attempt to extend to the quasilinear field
tions of classical physics the unified geometric treatment given linear field equations by the
of Hodge and Kodaira. The caser51 for the Abelian equations~4!, ~5! reduces to the continuity
equation for an incompressible flow (p51) or the field equations for electromagnetism (p52).
For the non-Abelian equations~9!, ~10! the caser51 reduces to the Yang–Mills equations. In th
intermediate case considered in the sequel the caser51 reduces to the equations for harmon
maps~nonlinear sigma-models!. In distinction to the approach in Refs. 1–4, our concern is w
the geometry of the target space rather than the geometry of the domain.

In the following we denote byC generic positive constants, which may depend on dimen
and which may change in value from line to line. We employ the summation conventio
repeated indices.

II. THE VARIATIONAL EQUATIONS

Consider a mapu:M→N taking a Riemannian manifold (M ,g) into a Riemannian manifold
(N,g). We are interested in maps which are critical points of the nonlinear Hodge energ~1!.
Here and throughout we denote byx5(x1, . . . ,xn) a coordinate chart on the manifoldM having
metric tensorgab(x), and we denote byu5(u1, . . . ,um) a coordinate chart on the manifoldN
having metric tensorgi j (u). Assume for the moment that the image ofu lies in a coordinate chart
The nonlinear Hodge energy assumes the form
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E~u!5
1

2 EM
E

0

Q

r~s!dsAgdx,

where

Q5gab~x!gi j „u~x!…
]ui

]xa

]uj

]xb .

We have, by the Leibniz rule,

d

dt
E~u1tc! ut505

1

2 EM
r~Q!

d

dt
Q~u1tc! ut50Agdx, ~11!

for arbitrarycPC0
`(M ). The construction of the test functionsc is not entirely straightforward.

Use must be made of the Nash Embedding Theorem to embedN in a higher-dimensional Euclid
ean space. One then employs a nearest point projectionP of a suitable Euclidean neighborhoo
O(N) onto N. If t is small enough andN is a C1 submanifold, the variationsP+(u1tc) will be
constrained to lie onN, where nowc:M→O. A discussion is given in Sec. 1 of Ref. 11 for th
special case of harmonic maps.

Carrying out the indicated operation on the right-hand side of~11!, we obtain

d

dt
E~u1tc! ut505E

M
r~Q!gab~x!gi j „u~x!…

]ui

]xa

]c j

]xbAgdx

1
1

2 EM
r~Q!gab~x!

]

]xk ~gi j ~u~x!!!ck
]ui

]xa

]uj

]xbAgdx. ~12!

But

E
M

r~Q!gab~x!gi j „u~x!…
]ui

]xa

]c j

]xb Agdx5E
M

]

]xb H r~Q!Aggab~x!gi j „u~x!…
]ui

]xa c j J dx

2E
M

]

]xb H r~Q!Aggab~x!
]ui

]xaJ gi j „u~x!…c j dx

2E
M

r~Q!gab~x!
]

]uk ~gi j „u~x!…!c j
]ui

]xa

]uk

]xb Agdx.

~13!

Substituting Eq.~13! into Eq. ~12! and taking into account thatc has compact support inM we
obtain, forh i5gi j c

j , the formula

d

dt
E~u1tc! ut5052E

M

]

]xb H r~Q!Aggab~x!
]ui

]xaJ h i dx

2
1

2 EM
r~Q!gab~x!gl j ~u!S ]gi j

]xk 1
]gk j

]xi 2
]gik

]xj D ]ui

]xa

]uk

]xb h lAgdx.

Applying the definition of affine connection, we conclude that stationary maps satisfy the s

1

Ag

]

]xb H r~Q!Ag~x!gab~x!
]ui

]xaJ 1r~Q!gab~x!G jk
i ~u!

]uj

]xa

]uk

]xb 50, ~14!
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for i 51, . . . ,m.
We can also approach the variational equations for nonlinear Hodge maps from an in

point of view, defining thenonlinear Hodge tension fieldt by the formula

t[trace¹cov„r~Q!v…,

where ¹cov denotes the covariant derivative in the bundleT* M ^ u21TN. If N5M , then the
equationt50 reduces to the conventional nonlinear Hodge equation~4! for v5du @which im-
plies Eq.~5!#. In particular, ifP+(u1tc) are the variations described earlier, then we can w
the equations for a weak stationary point in the form

1

2 EM
r~Q!@^¹u,¹c&1¹cu^DP~u!@¹u#,DP~u!@¹u#&N#dM50, ~15!

where

u¹cu^DP~u!@¹u#,DP~u!@¹u#&Nu<Cucuuuuu¹uu2; ~16!

¹u5gradu; ¹cu^,&N is the function onM whose value atx is the covariant derivative forN of
the metric^,&N in the directioncu(x). @See the discussion leading to inequality~1.2! in Ref. 12;
that paper considers the regularity of energy minimizing maps forr(Q)5Qs.# Here we use the
fact that foruPL0, uvu is the norm of the gradient ofu as well as the norm of its differential.

The harmonic map density satisfies

e~u!harmonic[
1

2
gabK ]u

]xa ,
]u

]xbL
uu21TN

5
1

2
^du,du& uT* M ^ u21TN .

That is, in the harmonic map case the energy density is the trace of the pullback, via the mu,
of the metric tensorg(u) on N. In the case of nonlinear Hodge maps the situation is a little m
complicated, as the energy density is the integral

F~v!5E
0

Q

r~s!ds,

which may not be a quadratic form ifrÞ1. Moreover, the nonlinear Hodge density need not sc
like a metric tensor. Thus the geometry of harmonic maps is more transparent than the ge
of nonlinear Hodge maps.

Proposition 1: In order for weak solutionsv5du of the equationst50 to exist locally on M
it is sufficient that N be Rn and that there exist a positive constant K,` for which

K21<r~Q!12Qr8~Q!<K. ~17!

Proof: The argument follows Sec. 1 of Ref. 13. DefineF(v) as in the preceding paragrap
Then ~17! implies that

]2F

]vb ]va
.0,

and there exist finite positive constantsk0 andk1 such that

k0Q<
]2F

]vb ]va
vavb<k1Q.

Moreover, there exist finite positive constantsk2 andk3 such that
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k2Q<F„Q~v!…<k3Q.

Thus the energy functionalE is convex, bounded above and below, and lower semicontinu
with respect to weakL2 convergence. This completes the proof of the proposition.

We will use in several contexts the following pointwise inequality for smooth solutions.
Theorem 2: Let u:M→N be a C2 stationary point of the nonlinear Hodge energy on M,

where M is a compact, n-dimensional C` Riemannian manifold, n.2, and N is a compact
m-dimensional C` Riemannian manifold. Then the scalar Q5u¹uu2 satisfies an inequality of the
form

L~Q!1C~Q11!Q>0,

where the second-order operator L is elliptic whenever condition (17) is satisfied, and the
stant C depends on the Ricci curvature of M and the Riemann curvature of N.

Proof: Denote by a subscriptedxs differentiation in the direction of thesth coordinate.
Differentiation of the metric tensor and Christoffel symbols in the direction of an index is i
cated by a comma preceding the subscripted index. Choose geodesic normal coordinate
pointsxPM andu(x)PN. At these points,

gab~x!5dab~x!;gi j ~u!5d i j ~u!;Gab
h ~x!5G i j

k ~u!50.

As in the preceding, Greek indices are used for coordinates onM , and Latin indices, for coordi-
nates onN.

Write Eq. ~14! in the form

gab$r~Q!uxbxa
j

1r8~Q!Qxauxb
j

2r~Q!@uxh
j Gab

h ~x!2G lk
j ~u!uxa

k uxb
l

#%50. ~18!

Differentiating ~18! with respect tox« and lettinga5b5s yields

r~Q!uxsxsx«
j

52r8~Q!Qx«uxsxs
j

2@r8~Q!Qxsuxs
j

#x«1r~Q!@uxh
j Gss,«

h ~x!2G lk,p
j ~u!ux«

p uxs
k uxs

l
#.

~19!

Now compute~cf. Sec. 3.2 of Ref. 14!

De~u![@gabgi j ~u!r~Q!uxa
i uxb

j
#xsxs

52gab,ssgi j ~u!r~Q!uxa
i uxb

j
1gabgi j ,lk~u!uxs

l uxs
k r~Q!uxa

i uxb
j

1@gabgi j r8~Q!Qxsuxa
i uxb

j
#xs1@gabgi j r~Q!uxaxs

i uxb
j

#xs1gabgi j r~Q!uxaxs
i uxbxs

j

1gabgi j r~Q!uxa
i uxbxsxs

j
1gabgi j r8~Q!Qxsuxa

i uxbxs
j [(

s51

7

Ts . ~20!

Here

T45@gabgi j r~Q!uxaxs
i uxb

j
#xs5@ 1

2 r~Q!Qxs#xs. ~21!

Subtract this term from the left-hand side of Eq.~20!. Applying Eq. ~19! with «5a, h5b, we
have

T11T21T61T35r~Q!~Rab
M uxa

i uxb
i

2Rik jl
N uxa

i uxa
j uxs

k uxs
l

!1L~Q!, ~22!

where

L~Q![$r8~Q!uxa
i

@Qxsuxa
i

2Qxauxs
i

#%xs,
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Rab
M is the Ricci curvature ofM , andRik jl

N is the Riemann curvature ofN. The last term in~22!
results from applying the product rule to the quantity2uxa

i
@r8(Q)Qxsuxs

i
#xa. We can write

T55gabgi j r~Q!uxaxs
i uxbxs

j
5r~Q!^]sv,]sv& uT* M ^ u21TN

and

T75gabgi j r8~Q!Qxsuxa
i uxbxs

j
5(

s
2r8~Q!^]sv,v& uT* M ^ u21TN

2 .

If r8(Q)<0, then~17! and the Schwarz inequality imply that

T51T7>K21u¹vu2. ~23!

If r8(Q)>0, then

T51T7>T55r~Q!u¹vu2>Cu¹vu2. ~24!

@See the argument leading to~26!, below.# In either case we obtain from expressions~20!–~24!,
defining

L~Q![De~u!2T42L~Q!5$@ 1
2 r~Q!1Qr8~Q!#Qxs%xs2L~Q!,

the inequality

L~Q!>r~Q!~Rab
M uxa

i uxb
i

2Rik jl
N uxa

i uxa
j uxs

k uxs
l

!1Cu¹vu2.

We can write

L~Q!1CFQ>0, ~25!

whereF5Q11.
We now show that the operatorL is elliptic whenever condition~17! is satisfied. Ifr8(Q)

<0, then

2r8~Q!uxa
i

@Qxsuxa
i

2Qxauxs
i

#Qxs5ur8~Q!uuxa
i

@Qxsuxa
i

2Qxauxs
i

#Qxs

5ur8~Q!u~Qu¹Qu22uxa
i uxs

i QxaQxs!

>ur8~Q!u~Qu¹Qu22uuxa
i uxs

i QxaQxsu!

>ur8~Q!u~Qu¹Qu22 1
2 @~uxa

i Qxa!21~uxs
i Qxs!2# !50,

where in the final step we have applied Young’s inequality. Thus in this case,

@ 1
2 r~Q!1Qr8~Q!#u¹Qu22r8~Q!uxa

i
@Qxsuxa

i
2Qxauxs

i
#Qxs

>@ 1
2 r~Q!1Qr8~Q!#u¹Qu2> 1

2 K21u¹Qu2.

If r8(Q)>0, thenr(Q)>r(Qmin)5r(0). At Q50,

1
2 r~Q!1Qr8~Q!5 1

2 r. ~26!

Condition ~17! then implies thatr is bounded below away from zero. Again using Young
inequality,
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@ 1
2 r~Q!1Qr8~Q!#u¹Qu22r8~Q!uxa

i
@Qxsuxa

i
2Qxauxs

i
#Qxs

>@ 1
2 r~Q!1Qr8~Q!#u¹Qu21r8~Q!uxa

i uxs
i QxaQxs

>@ 1
2 r~Q!1Qr8~Q!#u¹Qu22Qr8~Q!u¹Qu25 1

2 ru¹Qu2>Cu¹Qu2,

asr is bounded below away from zero.
Thus for either sign ofr8(Q), condition~17! implies that there is a constantm1.0 such that

@ 1
2 r~Q!1Qr8~Q!#u¹Qu22r8~Q!uxa

i
@Qxsuxa

i
2Qxauxs

i
#Qxs>m1u¹Qu2,

and we can write

L~Q!5
]

]xj S ai j ~v!
]Q

]xi D ,

for a matrixai j satisfying

m1uju2<ai j j ij j<m2uju2. ~27!

~See p. 106 of Ref. 3 or Proposition 1.1 of Ref. 4 for a different proof of ellipticity.! This
completes the proof of Theorem 2.

The contribution of the target geometry to the nonlinearity of inequality~25! significantly
exceeds that of the geometry of the base manifold, which in the sequel we generally take
Euclidean.

III. APPARENT SINGULAR SETS OF PRESCRIBED DIMENSION

In general we expect that finite-energy weak solutions to Eqs.~15! may be singular, as
singularities occur even in the caser[1. It is natural to seek extra conditions under whi
solutions are actually smooth.

Theorem 3: Let u:V→N be a C2 stationary point of the nonlinear Hodge energy onV/S,
whereV is a domain ofRn, n.2; N is a compact m-dimensional C` Riemannian manifold,
m<n; S,,B,,V is a compact singular set, completely contained in a sufficiently sm
n-disk B, which is itself completely contained inV. Let conditions (16) and (17) hold. If n.4, let
2n/(n22),m<n, where m is the codimension ofS, and let duPLn(B). If n53,4, let du
PL4q0b(B)ùL4q(B), whereb5(m2«)/(m222«) for 2,m<n, «.0, and 1

2,q0,q. Then
du is Hölder continuous inV.

Remarks:That anLn condition is necessary even forr[1 can be seen by considering th
equator map.15 In Theorem 3 we assume neither that the mapu minimizes energy nor that the
energy is small. In distinction to the harmonic map case, we do not obtain higher regularity
the Hölder continuity ofdu, as the system~15! is not diagonal.

Proof: Initially let n exceed 4. Integrate inequality~25! against a non-negative test functio
zPC0

`(B) given by

z5~hc!2J~Q!,

whereB5BR(x0) is an n-disk, of radius,R, centered at a pointx0P V; assume thatB com-
pletely containsS and is completely contained inV; h,c>0;c(x)50;x in a neighborhood of
S;hPC0

`(B8) where B8,,B; J(Q)5H(Q)H8(Q), where H(Q)5Hk(Q) is the following
variant of Serrin’s test function:16
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Hk~Q!5H Q[n/(n22)]kn/4, for 0<Q< l ,

m2«

m222« F ~ l •Q(m222«)/2! [n/(n22)]kn/2(m2«)2
2

m2«
l [n/(n22)]kn/4G , for Q> l .

Iterate the following sequence of elliptic estimates, taking successivelyuPLa(k)(B) for a(k)
5n@n/(n22)#k,k50,1, . . . . For allk,`,

E
B8

ai j ~u!] iQ•2~hc!] j~hc!J~Q!* 11E
B8

ai j ~u!~hc!2J8~Q!] iQ] jQ* 1

<E
B8

FQ~hc!2J~Q!* 1.

This inequality can be rewritten in the short-hand form

I 11I 2<I 3 , ~28!

the integrals of which we estimate individually. Becausem exceeds 2n/(n22) we have

J8~Q!>C„H8~Q!…2. ~29!

Also,

QJ<S n

n22D k n

4
H2. ~30!

Inequality ~29! implies, by ellipticity,

I 25E
B8

ai j ~u!~hc!2J8~Q!] iQ ] jQ* 1

>C~m1!E
B8

~hc!2
„H8~Q!…2u¹Qu2* 15CE

B8
~hc!2u¹Hu2* 1[ i 21. ~31!

Young’s inequality implies

I 15E
B8

ai j ~u!] iQ•2~hc!] j~hc!H~Q!H8~Q!* 1

52E
B8
„ai j ~u!~hc!~] iH !…] j~hc!H* 1

>2m2S «E
B8

~hc!2u¹Hu2* 11C~«!E
B8

u¹~hc!u2H2* 1D[2~ i 111 i 12!. ~32!

Using inequality~30! and the Sobolev inequality, we obtain

I 35E
B8

FQ~hc!2J~Q!* 1

<S n

n22D k n

4 EB8
F~hc!2H2* 1

<CiFin/2S E
B8

~hcH !2n/(n22)* 1D (n22)/n
                                                                                                                



g’s

.

this

obo-

5754 J. Math. Phys., Vol. 41, No. 8, August 2000 Thomas H. Otway

                    
<C8iFin/2ihcHi1,2
2

<CiFin/2H E
B8

@ u¹~hc!u21~hc!2#H2* 11E
B8

~hc!2u¹Hu2* 1J [ i 311 i 32. ~33!

For sufficiently smallB8 we have

0, i 212~ i 321 i 11!<C~ i 121 i 31!. ~34!

There exists~cf. Ref. 17, Lemma 2 and p. 73! a sequence of functionsjn such that
(a) jnP@0,1#, ;n;
(b) jn[1 in a neighborhood ofS, ;n;
(c) jn→0 a.e.asn→`;
(d) ¹jn→0 in Lm2« asn→`.
Apply the product rule to the squaredH1,2 norm in i 31 letting c5cn512jn . Observing that

the cross terms in (“h)c and (“c)h can be absorbed into the other terms by applying Youn
inequality, we estimate

lim
n→`

E
B8

h2u“cnu2H2* 1< lim
n→`

C~ l !E
B8

u¹cnu2Q@~m222«!/~m2«!#[n/~n22!] k n/2* 1

< lim
n→`

C~ l !i¹cnim2«
2 iuia(k)

a(k)(m222«)/(m2«)50. ~35!

Having shown that the integral on the left in~35! is zero for every value ofl , we can now letl
tend to infinity. We obtain via Fatou’s Lemma the inequality

E
B8

h2u“~Qa(k)/4!u2* 1<E
B8

u¹hu2Qa(k)/2* 1.

ThusQa(k)/4 is in H1,2 on some smaller disk on whichh51. But then, becauseu is assumed to be
C2 away from the singularity andS is compact,Qa(k)/4 must be inH1,2 on the larger disk as well
Apply the Sobolev inequality to conclude thatu is now in the spaceLa(k11)(B). Because the
sequence$n/(n22)%k obviously diverges, we conclude after a finite number of iterations of
argument thatQc is in H1,2(B) for any positive value ofc. A final application of the Sobolev
inequality implies thatvPLs(B) for all s,` and for any smallB,,V, providedn exceeds 4.

Now let n53 or 4. Define16

Hk~Q!5H Qq8, for 0<Q< l ,

1

q0
@q8l q82q0Qq02~q02q8!l q8#, for Q> l ,

whereq85@n/(n22)#kq. Arguing as in the higher-dimensional case we obtain, using the S
lev inequality, QPL2q8n/(n22)(B). Repeating the argument fork50,1,..., we obtain thatv
PLs(B) for all s,` whenn is 3 or 4.

Now let n be an arbitrary integer greater than 2. Again letcn512jn , wherejn satisfies
properties (a) – (d) above, and lethPC0

`(B8) as before. Ifz5h2 cn , then

E
BR

^dz,r~Q!v&* 15E
BR

^z,r~Q!b~v!&* 1, ~36!

with b given by ~15!. We have
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E
BR

^dz,r~Q!v&* 15E
BR

^h2~dcn!,r~Q!v&* 11E
BR

^cnd~h2!,r~Q!v&* 1,

where asn tends to infinity,cn tends to 1a.e., and

U E
BR

^h2~dcn!,r~Q!v&* 1U<C~K !i¹cnim2«ivi (m2«)/(m2«21)→0.

Choosingh2(x) to equal 1 forxPBR/2 , we find from~36! thatv is locally a weak solution in all
of V.

Let the mapw:BR(x0)→Rm satisfy the boundary-value problem

d~r„Q~dw!…dw!50, in BR~x0!;

wq5uq , on ]B,

where the subscriptedq denotes the tangential component of the map in coordin
(r ,q1 , . . .qn21). The existence of aC1 solution to this problem is well known.2 Moreover, if
(dw)R,x0

denotes the mean value of the 1-formdw on BR(x0), thendw satisfies aCampanato

estimate,18

E
BR(x0)

udw2~dw!R,x0
u2* 1<CRn12gH,

for some numbergHP(0,1#. Thenu2w is an admissible test function, and

E
BR(x0)

^d~u2w!,@r„Q~du!…du2r„Q~dw!…dw#&* 15E
BR(x0)

^~u2w!,r~Q!b~u,Du!&* 1,

~37!

with b given by~15!. Apply to identity~37! Sibner’s mean-value formula~Lemma 1.1 of Ref. 13!,
which asserts for the unconstrained case that

Ga~j, f !2Ga~h,h!5Aab~ f b2hb!1Hb
a~jb2hb!, ~38!

where

Ga~x,v!5Ag
]F

]va~x!
,

Aab is a positive-definite matrix, and

uHb
au<C„u f ~x!u1uh~x!u….

HereF is the function used in the proof of Proposition 1. Equation~38! extends immediately to
our case, as we can estimate the derivative of the metricg on N by

U]g

]xU<U]g

]uUU]u

]xU<Cuvu

@cf. inequality~1.3c! of Ref. 13; theg in the above inequalities is not the same object as theg in
Ref. 13, which corresponds to ourg#.

In formula ~38! choosej5x, h50, f 5v, andh5dw. We obtain, using~16!,
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E
BR(x0)

ud~u2w!u2* 1<CS E
BR(x0)

~ uvu1udwu!uxu* 11E
BR(x0)

uu2wur~Q!uuuQ* 1D . ~39!

We can find a numbers sufficiently large so that

E
BR(x0)

~ uvu1udwu!uxu* 1<C~ ivis1idwis!S E
0

R

uxus/(s21)uxun21duxu D (s21)/s

<C~s,n!R[n1s/(s21)](s21)/s[CRh, ~40!

whereh.n whenevers.n. Also, Young’s inequality yields

E
BR(x0)

uu2wur~Q!uuuQ* 1<R2nE
BR(x0)

uu2wu2uuu2* 11RnE
BR(x0)

Q2r2~Q!* 1

<R2nE
BR(x0)

uu2wu2uuu2* 11C~ iQis ,iri`!Rn(s21)/s1n,

for a constantn to be chosen ands so large thatns.n. We have

R2nE
BR(x0)

uu2wu2uuu2* 1<R2nS E
BR(x0)

uu2wu2n/(n22)* 1D (n22)/nS E
BR(x0)

uuun* 1D 2/n

<R2nCSE
BR(x0)

u¹~u2w!u2* 1S E
BR(x0)

uuun* 1D 2/n

, ~41!

whereCS is Sobolev’s constant. TheLp hypothesis ondu now implies by the Sobolev Theorem
~and a trivial application of the Gaffney–Ga˚rding inequality! that for any«.0 we have

E
BR(x0)

uuunr n21 dr<S E
BR(x0)

uuun1«r n21 dr D n/(n1«)S E
BR(x0)

r n21 dr D «/(n1«)

<CRl,

for l5n«/(n1«). Because of the highLp space in whichu sits we have some flexibility:
choosing either«, s, or n so thatn,2l/n allows us to subtract the right-hand side of inequal
~41! from the left-hand side of inequality~39!. Because the mean value minimizes variance o
all location parameters, we find that

E
BR(x0)

uv2~v!R,x0
u2* 1<E

BR(x0)
uv2~dw!R,x0

u2* 1

<E
BR(x0)

uv2dwu2* 11E
BR(x0)

udw2~dw!R,x0
u2* 1

<C max$Rn12gH,Rh,Rn(s21)/s1n%.

Choosingx0 so thatS,,BR(x0) completes the proof.

IV. THE SONIC LIMIT

Denote byg1 a closed 1-form having prescribed periods. We add to Eqs.~4!, ~5! thehomology
condition1 that v2g1 be an exact form. Denote byM a smooth, compact Riemannian manifo
and consider a family of mapsut :M→N into a smooth, compact Riemannian manifoldN. We
further assume that for eacht:0<t,tcrit , v t5dut is a weak minimizerof the nonlinear Hodge
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energy onM in the following sense: condition~17! is satisfied, Eqs.~14! are weakly satisfied by
the vector field canonically associated tov t , v t2tg1 is an exact form inL2(M ), and for all
other 1-formsaPL2(M ) such thata2tg1 is exact, the inequality

E
M
E

0

Q(v t)

r~s!ds dM<E
M
E

0

Q(a)

r~s!ds dM

is satisfied.19 Borrowing the terminology of fluid dynamics1 we call weak solutionsv t ,t
P@0,tcrit), subsonic. The question is whether such solutions converge, ast tends totcrit , to sonic
solutions having velocityQcrit . Ellipticity degenerates in the limit asQ tends toQcrit @cf. Eq. ~3!
of Sec. I#. In this limit condition~17! fails and is replaced by conditions~2!, ~3!. In the following
theorem we replaceM by a Euclidean domain; but see the remarks at the end of this sectio

Theorem 4: Assume the hypotheses of the preceding paragraph. That is, let ut :V→N denote
a family of maps between a smooth, compact domainV of Rn and a coordinate chart on a smooth
compact m-dimensional Riemannian manifold N, m<n, where 0<t,tcrit . Assume that the
1-formsv t5dut weakly minimize the nonlinear Hodge energy onV over a cohomology class. In
particular, let the homology condition of the above paragraph be satisfied for a fixed 1-formg1 .
Assume that the C1 functionr satisfies~2!, ~3! and that

Q<cE
V
E

0

Q

r~s!ds* 1,;Q,Qcrit , ~42!

for constant c. Then as t tends to tcrit ,

lim
t→tcrit

max
xP intV

Q„v t~x!…→Qcrit . ~43!

The conclusion of Theorem 4 implies thatv t depends continuously ont in the topology of
uniform convergence. This eventually implies Ho¨lder continuity for weak minimizers at the ellip
tic degeneracy represented by~3!; see Corollary 5.

Proof: The proof is similar to that of Theorem 4.8 of Ref. 13. Denote by$tn% a non-negative
sequence of points in@0,tcrit) converging to a limit point. We want to establish a sequence
inequalities satisfied by any subsonic minimizerv tn

[vn . Becausevn minimizes energy over a
cohomology class we have

cE
V
E

0

Q(vn)

r~s!ds* 1<cE
V
E

0

Q(hn)

r~s!ds* 1<CihniL2(V)
2 ,

wherehn is a harmonic form such thathn2tng1 is exact. This gives a uniform bound inL` on the
sequence$vn%. Now we proceed as in the concluding arguments in the proof of Theore
comparingvn to aC1 solutionw of the Euclidean nonlinear Hodge equations onV. Conditions~2!
and ~42! imply that u2w is an admissible test function. The continuity estimates, starting w
formula ~37!, are also uniform, as the highest bound imposed onvn by these inequalities is inL`.
@In particular, the hypotheses of Theorem 4 do not require us to apply inequality~29!, which
depends on an ellipticity constant, and~38! can be made uniform.# In fact, we can replace in-
equality ~40! by the estimate
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E
BR(x0)

~ uvu1udwu!uxu* 1<C~ iQin/21idwin!S E
0

R

uxun/(n21)uxun21duxu D (n21)/n

<CS Rd1S E
BR(x0)

udwunuxun21duxu D 1/nDRn

<CS Rd1idwinsS E
0

R

uxun21duxu D (s21)/nsDRn<CRh,

for someh.n. Thus the hypotheses of Theorem 4 imply the concluding Ho¨lder estimate of
Theorem 3, from which we obtain equicontinuity for the sequence$vn%. Now the Arzela´–Ascoli
Theorem guarantees uniform convergence of a subsequence to a 1-form satisfying both th
tions and the homology condition. This completes the proof of Theorem 4.

Corollary 5: Let the hypotheses of Theorem 4 be satisfied. Thenv is Hölder continuous in the
interior of V.

Proof: Theorem 4 is the crucial ingredient in the technique ofShiffman regularization, de-
scribed in the Appendix to Ref. 13. This technique is sufficient to establish the Ho¨lder continuity
of v and prove the corollary.

In Ref. 10 a comparison argument similar to~37!–~41! was constructed for solutions of Eq
~9!, ~10!. There we chose an exponential gauge at the origin of coordinates in a Euclidea
BR(0) in order to compare solutions of~9!, ~10! with Euclidean solutions of~4!, ~5!. It was shown
that the difference of the two solutions is small in a high Campanato space. It was then nec
to show that the gauge transformation to an exponential gauge preserves the Campanato e
this allowed us to extend the comparison outside ofBR(0) and apply a covering argument. Th
argument of Ref. 10 provides a guide for extending the results of this section to maps
Riemannian manifoldM . The analogy of an exponential gauge is a choice of geodesic no
coordinates in a local coordinate chart. The arguments of Ref. 13 imply that the differenc
tween a comparison mapw, taking a Euclidean ball intoRm, and a comparison mapw8, taking a
Riemannian ball intoRm, is itself small in a high Campanato space. This is the analogy of
estimates of the gauge transformations in Ref. 10. Now we can extend the local estimate to
M by a covering argument. Although in principle this method could be used to extend Theo
to a Riemannian domain as well, in that case no covering argument is needed becausS is
assumed to be small.

V. AN APPLICATION TO HARMONIC MAPS

We now consider the special case in whichS is a point,r is constant, andn exceeds 4. The
following result is a special case of a theorem which Liao20 proved by quite different methods.

Theorem 6„Liao…: Let u:V→N be a C2 stationary point of the nonlinear Hodge energy wi
r[1 on V2$p0%, where V is a domain ofRn, n.4; N is a compact m-dimensional C`

Riemannian manifold, m<n; p0PV is a point. If Q5uduu2 satisfies the growth condition

Q~x!<
g0

ux2p0u2
,

for xPBR(p0), where BR(p0) is an n-disk of radius R centered at p0 andg0 is a sufficiently small
positive constant, then du is Ho¨lder continuous onV.

Proof: The growth condition guaranteesduPLP(B), ;P,n. The idea of the proof is to
show thatduPLn(B) and apply Theorem 3. Without loss of generality we takep0 to lie at the
origin of coordinates inRn.

Let21 j(x)5z(x)c(x), wherexPBR(0)2$0%,

c~x!5uxu42n,
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andz is chosen so thatz(x)51 if 2«,uxu<R/2, andz(x)50 if uxu,« or uxu.R. We can findz
satisfying the additional conditions that

u¹zu<
C

«

and

uDzu<
C

«2 .

BecauseL is a divergence-form operator and¹j has compact support inBR , inequality ~25!
implies that

2E
BR(0)

~D rj!Q* 152E
BR(0)

j~DQ!* 1<CE
BR(0)

jQ2* 1, ~44!

whereD r is the Laplacian in radial coordinates. We have

D rj5Dz•c12 ¹z•¹c1z Dc,

where

Dc52~42n!uxu22n.

We can write inequality~44! in the form

E
BR(0)

czQS 2Dc

c
2CQD * 1<2E

BR(0)
u¹zuu¹cuQ* 11E

BR(0)
uDzucQ* 1. ~45!

We are interested in the behavior of this inequality as the constant« in the trapezoidal function
tends to zero. Write~45! in the form

i 1<2i 21 i 3 .

Because inBR(0)2$0% we haveQ<g0uxu22, integration in radial coordinates yields

i 2<
C

« E
G
duxu1C~R!,

where

G[$xu«<uxu<2«%.

Integral i 2 is obviously finite as« tends to zero. Similarly,

i 3<
C

«2 E
G
uxuduxu1C~R!,

which is also finite for every«. Finally,

i 1>E
BR(0)

uxu42nzQS 22~42n!2Cg0

uxu2 D * 1.
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The quantity inside the largest parentheses on the right is positive providedg0 is sufficiently
small. In this case

lim
«→0

i 1>CE
BR/2(0)

Quxu22n* 1.

But also,

E
BR/2(0)

Qn/2* 15E
BR/2(0)

Q~Q(n22)/2!* 1<CE
BR/2(0)

Quxu22n* 1.

Taken together, these inequalities imply thatv lies in the spaceLn in a neighborhood of the
singularity. The hypotheses of Theorem 3 being satisfied, we conclude thatv is Hölder continu-
ous, which completes the proof of Theorem 6.

VI. ROTATIONAL FIELDS

In this section we study systems of the form

d„r~Q!v…50, ~46!

dv5v`v, ~47!

wherevPLp(T* M ) for p>1; vPL1(T* M ); M is an n-dimensional Riemannian manifold
Q5^v,v&[* (v`* v); * : Lp→Ln2p is the Hodge involution;r: R→R1 is a C1 function
satisfying the condition5

K21~Q1k!q<r~Q!12Qr8~Q!<K~Q1k!q, ~48!

for some positive constantK and non-negative constantsk,q.
If v[0 ~or if p51 and v5v), then condition~47! degenerates to condition~5!. If v

PL1(T* M ) is the 1-form canonically associated to the velocity field of ann-dimensional fluid,
then condition~5! guarantees that the flow isirrotational: no circulation exists about any curv
homologous to zero.

If vPL1(T* M ), then condition~47! only guarantees, via the Frobenius Theorem, thav
5 l du locally; a potential exists only along the hypersurfacesl 5const, and circulation abou
topologically trivial points is excluded only along these hypersurfaces.~For the extension of this
result to exterior products of 1-forms, see, e.g., Ref. 22, Sec. 4-3.! Equations~4!, ~5! can be used
to prescribe a cohomology class for solutions as in Sec. IV, but Eqs.~46!, ~47! will only prescribe
a closed ideal.

We have as an immediate consequence of~47! the condition

dv`v50. ~49!

If v denotes tangential velocity of a rigid rotor@r5r(x) only#, Eq. ~49! corresponds in three
Euclidean dimensions to the fact that the direction of“3v is perpendicular to the plane o
rotation. Condition~49! also arises in thermodynamics.22,23

As in preceding sections, we replaceM by a Euclidean domain in proving the technic
results. In the general case, the curvature ofM enters in a predictable way.24

Theorem 7: Let v,v smoothly satisfy Eqs. (46), (47) on a bounded, open domainV,Rn.
Assume condition (48). Then the scalar Q5* (v`* v) satisfies the elliptic inequality

Lv~Q!1C~Q1k!q~ u“vu1uvu2!Q>0, ~50!

where Lv is a divergence-form operator which is uniformly elliptic for k.0.
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Proof: We have@Ref. 5, ~1.5!–~1.7!#

^v,D~r~Q!v!&5] i^v,] i~r~Q!v!&2^] iv,] i~r~Q!v!&

5DH~Q!2@r~Q!^] iv,] iv&1r8~Q!^] iv,v&] iQ#, ~51!

where

DH~Q!5] i@~
1
2 r~Q!1Qr8~Q!!] iQ#,

] i5]/]xi , x5x1, . . . , xnPV. Observe thatH is defined so that

H8~Q!5 1
2 r~Q!1Qr8~Q!.

Just as in the derivation of inequality~25!, we have

r8~Q!^] iv,v&] iQ5(
i

2r8~Q!^] iv,v&2. ~52!

If r8(Q)>0, then~52! implies that

r~Q!^] iv,] iv&1r8~Q!^] iv,v&] iQ>r~Q!u¹vu2>K21~Q1k!qu¹vu2. ~53!

In ~53! we have used the inequality

r~Q!>K21~Q1k!q, ~54!

which follows from ~48! ~with a possibly larger constantK). If r8(Q),0, then ~52! and the
Schwarz inequality imply, just as in the derivation of inequality~25!, the inequality

r~Q!^] iv,] iv&1r8~Q!^] iv,v&] iQ>r~Q!u¹vu212r8~Q!u¹vu2Q

5@r~Q!12Qr8~Q!#u¹vu2>K21~Q1k!qu¹vu2.

~55!

Thus ~51! implies, via either~53! or ~55! as appropriate, the inequality

^v,D~r~Q!v!&<DH~Q!2K21~Q1k!qu¹vu2. ~56!

Applying Eq. ~46! to the left-hand side of~56! yields, forD[2(dd1dd),

^v,D~r~Q!v!&52* @v`* dd~r~Q!v!#

5~21!n(p11)1n* @v`* ~* d* !d~rv!#

5~21!n(n13)2p* @v`d* d~rv!#

5~21!n(n13)* $d@v`* d~rv!#2@dv`* d~rv!#%

5~21!n(n13)$* d@v`* d~rv!#2* @v`v`* d~rv!#%[t12t2 . ~57!

We express the first term in this difference, up to sign, as a divergence in the 1-formdQ, writing

t15* d@v`* d~rv!#5* d@v`* ~r8~Q!dQ`v!#1* d@v`* rdv#[t111t12. ~58!

Notice that

* da5~21!nd* a5~21!n div~* a!,
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for aPLn21. Equation~47! implies that

t12>2ut12u52u* d@v`* ~rv`v!#u

>2C„u¹vuuvuruvu1u¹vurQ1uvuuvuu¹~rv!u…

[C~2t1212t1222t123!. ~59!

We have, analogously to~54!, the inequalityr(Q)<K(Q1k)q. Using this estimate and Young’
inequality, we write

2t12152Aru¹vuuvuAruvu>2«u¹vu2~Q1k!q2C~«,K !uvu2~Q1k!qQ. ~60!

Kato’s inequality and~48! yield, usingur8(Q)•Qu<K(Q1k)q,

2t12352uvuuvuu¹~rv!u

52uvuuvuur8~Q!¹Q•v1r¹vu

>2uvuuvu„u2r8~Q!uvu¹uvu•vu1ur~Q!¹vu)

>22uvuuvuur8~Q!•Quu¹uvuu2uvuuvuK~Q1k!qu¹vu

>23uvuuvuK~Q1k!qu¹vu

>2K~Q1k!q
„«u¹vu21C~«!uvu2Q…. ~61!

Substituting~60! and ~61! into ~59! yields, for a new«,

t12>2ut12u>2K«~Q1k!qu¹vu22„C~«,K !uvu21Ku¹vu…~Q1k!qQ. ~62!

Similarly,

t25* @v`v`* d~rv!#>2Cuvuuvuu¹~rv!u,

which can be estimated by~61!. Substituting~62! into ~58!, ~58! into ~57!, and~57! into ~56!, and
estimatingt2 of ~57! by ~61! yields, again for a new«,

* d@v`* ~r8~Q!dQ`v!#2K«~Q1k!qu¹vu22C~«,K !~Q1k!q~ u¹vu1uvu2!Q

<DH~Q!2K21~Q1k!qu¹vu2.

We obtain, choosing 0,«<K22,

0<~K212«K !~Q1k!qu¹vu2

<DH~Q!6div~* @v`* „r8~Q!dQ`v…# !1C~Q1k!q~ u¹vu1uvu2!Q

[Lv~Q!1C~Q1k!q~ u¹vu1uvu2!Q.

The ellipticity of the operatorLv under condition~48! is obvious from the proof of Theorem
2. This completes the proof of Theorem 7.

Corollary 8: Let (v,v) be a C2 solution of Eqs. (46), (47) onV/S, whereV is a domain of
Rn, n.2; S,,B,,V is a compact singular set, completely contained in a sufficiently sm
n-disk B, which is itself completely contained inV. Let condition (48) hold. If n.4, let 2n/(n
22),m,n, where m is the codimension ofS, and let vPLn(B). If n53,4, let v
PL4q0b(B)ùL4q(B), whereb5(m2«)/(m222«) for 2,m<n, «.0, and 1

2,q0,q. If (Q
1k)q(u¹vu1uvu2)PLn/2(B) and u¹vu1uvu2PLp(B) for some p exceeding n/2, then v is
bounded on compact subdomains ofV.
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Proof: In ~25! takeF5(Q1k)q(u¹vu1uvu2). Apply the arguments leading to~36! to show
that Q is anH1,2 weak solution. Now choose13

z5~ uvku1d!2t22h2,

for $vk% an increasing sequence chosen so that limk→` vk5v; hPC0
`(B); h>0; d.0; t

.1. Estimating~36! for this choice of test function implies in the limit thatuvutPH1,2(B) for
somet.1. Also, (uvut)l satisfies~25! for l,2. Now Theorem 5.3.1 of Ref. 19 implies thatuvu
is bounded.

VII. THE HEAT FLOW OF SOLUTIONS

Consider the system

2d~r„Q~x,t !…v~x,t !!5
]u~x,t !

]t
, ~63!

du~x,t !5v~x,t !, ~64!

wherexPM , tP(0,T#, and exterior differentiation is in the space directions only. Solutions
Eqs.~63!, ~64! describe theheat flow, or gradient flow, of nonlinear Hodge maps. Notice that~64!
implies dv50.

If M is compact or if the normal component ofv vanishes on]M , then the time decay of the
energy,

Et~v![
1

2 EM
E

0

Q(v(x,t))

r~s!dsdM,

is given by

d

dt
Et~v!5

1

2 EM
r~Q!

]Q

]t
dM5E

M
r~Q!K ]v

]t
,v L dM5E

M
K ]v

]t
,r~Q!v L dM.

Equations~63!, ~64! imply that

]v

]t
5

]~du!

]t
5dS ]u

]t D52dd„r~Q!v…. ~65!

These identities together imply that

d

dt
Et~v!52E

M
^dd„r~Q!v…,r~Q!v&dM52E

M
^d„r~Q!v…,d~r~Q!v!&dM<0. ~66!

We conclude from~66! that a finite energy functional will remain so indefinitely.
The local estimate forQ, taking M to be a bounded, open domain ofRn, is similar to its

elliptic counterparts in the proof of Theorem 7: Ifr„Q(x,t)… satisfies inequality~48!, then

] i@~
1
2 r~Q!1Qr8~Q!!] iQ#2K21~Q1k!qu“vu2

>^v,D~rv!&5* d@v`* „r8~Q!dQ`v…#1* Fv`*
]v

]t G ,
using ~63!, ~64!, and~65!, and
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0<K21~Q1k!qu“vu2

<Lv~Q!2
1

2

]Q

]t

[] iF S 1

2
r~Q!1Qr8~Q! D ] iQG6div * @v`* „r8~Q!dQ`v…#2

1

2

]Q

]t
. ~67!

This inequality is uniformly subparabolic whenever condition~48! is satisfied fork.0 or q50.
If M is a compact Riemannian manifold andu:M→N3@0,T#, then we can obtain a globa

estimate forQ. In place of~14! we have the parabolic system

1

Ag

]

]xb H r~Q!Aggab
]ui

]xaJ 1r~Q!gabG jk
i ~u!

]uj

]xa

]uk

]xb 5ut
i .

Arguing as in the proof of Theorem 2, we add to the middle and right-hand side of Eq.~20! a term
of the form

uxa
i utxa

i
5uxa

i uxat
i

5 1
2 Qt .

Let the sectional curvature ofN be nonpositive. We obtain as in~67! the inequality

Lv~Q!1CRrQ2
1

2

]Q

]t
>0, ~68!

where CR depends on the Ricci curvature ofM. This inequality is, of course, also uniforml
subparabolic whenever condition~17! is satisfied. In fact we have ana priori estimate in this case
which strongly depends on the ellipticity ofLv .

Theorem 9: Let u(x,t) be a mapping of a smooth, compact n-dimensional Riemannian
manifold M into the Riemannian cylinder N3@0,T#, where N is a smooth, compact Riemanni
manifold and T is a finite number. Suppose that u smoothly satisfies (68) withr small in Ls/2(M ),
s.n, and with r8( s̃)<0, s̃P@0,Q#. Let condition (17) hold and let Q(x,0)<1. Let the H1,2

Sobolev inequality hold on M for constants S1 , S2 . Then there is a constan
c(s,K,q,M ,N,T,S1 ,S2) such that for q.0,

sup
tP~0,T#

~ sup
xPM

Q~x,t !!<ct2n/2(q11)
„E@v~x,0!#…1/(q11),

where E is the nonlinear Hodge energy.
Proof: Multiply inequality ~68! by Qr 21 for r .2 and integrate overM . We obtain

r 21
]

]t EM
QrdM<E

M
Qr 21¹•„a~v!¹Q…dM1CE

M
r~Q!QrdM, ~69!

where¹ is the gradient onM anda is the matrix-valued function of inequality~27!. BecauseM
is compact, Stokes’ Theorem implies that
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E
M

Qr 21¹•„a~v!¹Q…dM5E
M

¹•„a~v!Qr 21 ¹Q…dM

2E
M

¹~Qr 21!•a~v!¹QdM52E
M

~r 21!Qr 22a~v!u¹Qu2dM

<2m1E
M

~r 21!Qr 22u¹Qu2dM52m1E
M

¹~Qr 21!•¹QdM,

wherem1 depends onr. Now

2u¹~Qr /2!u252U r2 Q(r 22)/2¹QU2

52
r 2

4
Qr 22~¹Q!252

r 2

4~r 21!
¹~Qr 21!¹Q,

so we can write inequality~69! in the form

r 21
]

]t EM
Qr dM<2

4m1~r 21!

r 2 E
M

u¹~Qr /2!u2dM1Ciris/2iQr is/(s22)
2 .

Employing the parabolic DeGiorgi–Nash–Moser iteration as in Sec. 4 of Ref. 25, takingp05q
11, we obtain

sup
tP~0,T#

~ sup
xPM

Q~x,t !!<Ct2n/2(q11)S E
M

uQ~x,0!uq11dMD 1/(q11)

.

Because

d

ds
„sr~s!…5r~s!1sr8~s!<r~s!,

we have, forr8(s)<0, the inequality

Qr~Q!5E
0

Q d

ds
„sr~s!…ds<E

0

Q

r~s! ds.

Thus

2Eut50>E
M
E

0

Q(x,0)

r~s!ds dM

>E
M

Q~x,0!r~Q,0!dM

>E
M

Q~x,0!@r~Q,0!12Q~x,0!r8~Q!#dM

>K21E
M

Q~x,0!q11 dM.

Taking the (q11)st root of this inequality and using~66! completes the proof of Theorem 9.
A local version of Theorem 9 would argue from inequality~67! rather than~68!. The initial

argument is as in the proof of Theorem 9 except that the integration is against cut-off func
The Moser iteration is implemented as in Ref. 26.
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q -deformed Poisson random variables on q-Fock space
Naoko Saitoh and Hiroaki Yoshida
Department of Information Sciences, Faculty of Science, Ochanomizu University, 2-1-1,
Otsuka, Bunkyou, Tokyo 112 Japan

~Received 17 February 2000; accepted for publication 21 April 2000!

The q-deformed Poisson distribution has been introduced as the orthogonalizing
probability measure for a certainq-deformation of Charlier polynomials, which is
reduced to the usual Poisson distribution in the limitq→1 and takes the free
Poisson distribution in case ofq50. We give the operator on theq-Fock space,
which has theq-deformed Poisson distribution with respect to the vacuum state. It
is a linear combination of aq-number operator, aq-Gaussian random variable, and
a scalar operator. This representation is of the same form as of Hudson and
Parthasarathy on the symmetric Fock space. ©2000 American Institute of Phys-
ics. @S0022-2488~00!03308-9#

I. INTRODUCTION

A noncommutative or quantum probability space is a unital~possibly noncommutative! alge-
bra,A together with a linear functional,f: A→C, such thatf(1)51. If A is a C* -algebra and
f is a state then we call a noncommutative probability space (A,f) a C* -probability space.A
corresponds to the algebra of measurable functions and hence an element inA is regarded as a
noncommutative random variable. The distribution ofxPA underf is determined as the linea
functional onC@X# ~the polynomials in one variable! by C@X#{ f °f( f (X))PC. Considered in
the C* -probability context, the distribution of a self-adjoint element inA can be realized as a
probability measure onR.

Bożejko, Kümmerer, and Speicher introduced and studied theq-analogues of Brownian
motions1,2 and Gaussian processes,3 which are governed by classical independence forq51 and
free independence forq50. Their constructions were based on theq-Fock space over a Hiber
spaceH. The q-deformed Gaussian random variables are given by the operators of the
a(j)1a(j)* (jPH), wherea(j) anda(j)* are theq-annihilation and theq-creation operators
associated with j, respectively, which satisfy theq-commutation relation a(j)a* (j)
2qa* (j)a(j)5uujuu2•1. Algebraic aspects of theq-commutation relations have been investigat
in Ref. 4 and van Leeuwen and Maassen5 also investigated aq-deformed Gaussian distributio
analytically.

We should mention here that Nica6 has found the niceq-analogue of the cumulant generatin
function Rq(z) which takes Voiculescu’sR-transform for the free convolution~see for definition,
for instance, Ref. 7! in the caseq50 and recovers the classical cumulant generating function,
logarithm of Fourier transform, if one takes the limitq→1. Nica has also investigated th
q-deformation of convolution in terms ofRq(z) and the central limit theorem, in which th
q-deformed Gaussian distribution appears as the limit distribution.

The combinatorics of the operatora(j)1a(j)* with respect to the vacuum state were al
studied in Refs. 1 and 3, and it was found that theq-Gaussian distribution can be given as t
orthogonalizing probability measure for theq-Hermite polynomials. Inspired by the above, w
have introduced theq-deformed Poisson distribution8 as the orthogonalizing probability measu
for a certainq-deformation of Charlier polynomials.

In this paper, we give theq-deformed Poisson random variable as an operator on theq-Fock
space. As a consequence, we will find that it can be represented as a linear combinatio
q-number operator, aq-Gaussian random variable, and a scalar operator. It is the same form
57670022-2488/2000/41(8)/5767/6/$17.00 © 2000 American Institute of Physics
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Ref. 9 on the symmetric (q51) Fock space, and interpolates between their operator and on
Speicher on the full (q50) Fock space in Ref. 10.

II. q-DEFORMED POISSON RANDOM VARIABLES

A. The q-Fock spaces

In a previous paper,8 we introduced theq-deformed Poisson distribution as the orthogona
ing probability measure for a sequence ofq-deformed polynomials, forqP@0,1) and determined
the supports and the density for the absolutely continuous part.

Definition II.1: For qP@0,1) and l.0, we define the q-deformed Poisson distribution of
parameterl as the orthogonalizing probability measure for the sequence of polynomials

P0~X!51, P1~X!5X2l,
~1!

Pn11~X!5~X2~l1@n#q!!Pn~X!2l@n#qPn21~X! ~n>1!,

where we use the customary notation that

@n#q511q1¯1qn215
12qn

12q
. ~2!

In the limit q→1, the above polynomials become the well-known Charlier polynomials
which the orthogonalizing probability measure is the usual Poisson distribution~see, for instance
Ref. 11!. If we take q50 then they become the orthogonal polynomials for the free Pois
distribution as in Ref. 12.

In the present paper, we will construct an operator on theq-Fock space, which has th
q-deformed Poisson distribution with respect to the vacuum state, forqP@0,1). First we shall
recall the definition of theq-Fock space.

For a Hibert spaceH andqP(21,1), theq-Fock spaceFq(H) can be defined as follows~see
for instance Ref. 3!.

Let F fin(H) be the linear span of vectors of the formj1^ ••• ^ jnPH ^ n, wheren varies in
Z>0 and we putH ^ 0>CV for some distinguished vectorV called vacuum. We consider th
sesquilinear form̂ • u • &q on F fin(H) given by the sesquilinear extension of

^j1^¯^ jnuh1^¯^ hm&q5dn,m (
pPSn

qi (p)^j1uhp(1)&¯^jnuhp(n)&, ~3!

whereSn denotes the symmetric group of permutations ofn elements andi (p) is the number of
inversions of the permutationpPSn defined by

i ~p!5#$~ i , j !u1< i , j <n,p~ i !.p~ j !%. ~4!

The strict positivity of^ • u • &q allows the following definitions~see Ref. 1!:
Definition II.2: The q-Fock spaceFq(H) is the completion ofF fin(H) with respect to

^ • u • &q . Given the vectorjPH, we define the creation operator a* (j) and the annihilation
operator a(j) on Fq(H) by

a* ~j!V5j,
~5!

a* ~j!j1^¯^ jn5j ^ j1^¯^ jn

and
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a~j!V50,
~6!

a~j!j1^¯^ jn5(
i 51

n

qi 21^juj i&j1^¯^ j ǐ ^¯^ jn ,

where the symbolj ǐ means thatj i has to be deleted in the tensor product.
Remark II.3: The operators a(j) and a* (j) are bounded operators onFq(H) with

uua~j!uuq5uua* ~j!uu5H uujuu

A12q
0<q,1

uuj u u 21,q<0

~7!

and they are adjoints of each other with respect to the scalar product^ • u • &q . Furthermore, it is
very important to note that they fulfill the q-commutation relations,

a~j!a* ~h!2qa* ~h!a~j!5^juh&•1 j,hPH. ~8!

For jPH with uujuu51 andl0, we consider the operator

x~j,l!5~a* ~j!1Al•1!~a~j!1Al•1!5a* ~j!a~j!1Al~a* ~j!1a~j!!1l•1, ~9!

that is, x(j,l) is the sum of theq-number operatora* (j)a(j) ~see Remark II.5 below!, the
q-Gaussian random variableAl(a* (j)1a(j)), and the scalar operatorl•1.

Now we shall see that, forqP@0,1) the operatorx(j,l) has theq-deformed Poisson distri
bution of the parameterl with respect to the vacuum state. First we note the basic actions o
q-creation and theq-annihilation operators with vectors of tensor power form in theq-Fock space,
which are direct consequences of the definitions.

Lemma II.4: ForjPH with uujuu51, we have

a* ~j!j ^ n5j ^ (n11) ~n>0!, ~10!

a~j!j ^ n5@n#qj ^ (n21) ~n>1!, ~11!

where we use the convention thatj ^ 05V.
Proof: The relation~10! is trivial by the definition ofa* (j). It also follows from the definition

of a(j) that

a~j!j ^ n5(
i 51

n

qi 21^juj&j ^ (n21)5@n#qj ^ (n21). ~12!

j

Remark II.5: Combining the relations (10) and (11) in Lemma II.4, we have that forjPH
with uujuu51 and n>1,

a* ~j!a~j!j ^ n5@n#qj ^ n. ~13!

Hence we may regard a* (j)a(j) as the q-number operator.
Theorem II.6: Let jPH with uujuu51 andl.0 and we simply denote x(j,l) by x. Then we

have

Pn~x!V5Alnj ^ n ~n>0!, ~14!

where Pn is the monic polynomial of degree n defined by the recurrence relation (1) in
definition of the q-deformed Poisson distribution.
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Proof: We show this by induction onn. It is clear that

P0~x!V51V5V,
~15!

P1~x!V5~x2l•1!V5~a* ~j!a~j!1Al~a* ~j!1a~j!!!V5Ala* ~j!V5Alj.

AssumePk(x)V5Alkj ^ k for k<n. Then with the help of Lemma II.4, we obtain that

Pn11~x!V5~~x2~l1@n#q!!Pn~x!2l@n#qPn21~x!!V

5x~Alnj ^ n!2~l1@n#q!~Alnj ^ n!2l@n#q~Aln21j ^ (n21)!

5~a* ~j!a~j!1Al~a* ~j!1a~j!!1l•1!~Alnj ^ n!2~l1@n#q!~Alnj ^ n!

2l@n#q~Aln21j ^ (n21)!

5@n#qAlnj ^ n1Aln11j ^ (n11)1@n#qAln11j ^ (n21)1lAlnj ^ n

2~l1@n#q!~Alnj ^ n!2l@n#q~Aln21j ^ (n21)!

5Aln11j ^ (n11). ~16!

j

The above theorem shows that

^Pn~x!Pm~x!VuV&q5^Pm~x!VuPn~x!V&q50 if mÞn, ~17!

because the elementx is self-adjoint with respect tô• u • &q . This means that for all polynomia
f

^ f ~x!VuV&q5E
tPR

f ~ t ! dn~ t !, ~18!

where the probability measuredn onR orthogonalizes the sequence of polynomials determined
the recurrence relation~1!. Thusdn is theq-deformed Poisson measure.

Remark II.7: In the free(q50) case, we can find the same operator as our x5a* a1Al(a
1a* )1l•1 for the free Poisson random variable on the full Fock space in Ref. 10, which i
free analog of the corresponding one for the usual Poisson on the symmetric(q51) Fock space
in Ref. 9. Hence our operator for the q-deformed Poisson random variables on the q-Fock sp
seems to be natural in this sense.

B. The model by weighted shifts

We will consider the following family of weighted shifts onl 2(Z>0), which are first studied
by Woronowicz:13 For qP@0,1), the weighted shift Sq defined as

Sqdn5A@n11#qdn11 ~n>0!, ~19!

where$dn%n50
` is the standard orthonormal basis inl 2(Z>0). The adjoint operatorSq* of Sq is

determined by

Sq* d050, Sq* dn5A@n#qdn21 ~n>1!. ~20!

The operatorsSq andSq* are bounded operators with

uuSquu5uuSq* uu5
1

A12q
, ~21!
                                                                                                                



y

i-

This

n

n.

ith a

5771J. Math. Phys., Vol. 41, No. 8, August 2000 q-deformed Poisson random variables

                    
and satisfy theq-commutation relation

Sq* Sq2qSqSq* 51. ~22!

ThusSq andSq* seem to be theq-creation and theq-annihilation operators, respectively, andSqSq*
is theq-number operator~see Ref. 13!. Now it is straightforward to obtain the next theorem b
same argument as above.

Theorem II.8: The distribution of the self-adjoint operator

~Sq1Al•1!~Sq* 1Al•1!5SqSq* 1Al~Sq1Sq* !1l•1 ~23!

on l 2(Z>0) with respect to the vector statef( • )5^ • d0ud0& is the q-deformed Poisson distr
bution.

We can actually work with the matrix of the truncation of the operatorSqSq* 1Al(Sq1Sq* )
1l•1 with respect to the canonical basis, in calculations of the moments for finite orders.
matrix is the tridiagonal matrix of the form

An53
l Al@1#q

Al@1#q l1@1#q Al@2#q 0

Al@2#q l1@2#q Al@3#q

� � �

Al@n22#q l1@n22#q Al@n21#q

0 Al@n21#q l1@n21#q

4 . ~24!

Let wn(t) be the characteristic polynomial of the matrixAn . That is we putwn(t)5utI n2Anu,
where I n is the n3n unit matrix. Applying Laplace expansion theorem on thenth row of the
matrix (tI n2An), it can be seen that the polynomials$wn(t)% satisfy the same recurrence relatio
as in ~1! for the q-deformed Poisson distribution with the same initial conditions.

It should be noted that we can find the same matrix representaion as~24! in the physical
stochastic model, namely the one-dimensional asymmetric simple exclusion process~see for in-
stance Ref. 14!.

C. The fermionic Poisson distribution

Here we would like to consider the fermionic (q521) analogue of the Poisson distributio
Since it is reasonable to regard the Fermi~antisymmetric! Fock space as the (21)-Fock space, we
can consider the operator

a* ~j!a~j!1Al~a* ~j!1a~j!!1l•1, ~25!

wherea* (j) anda(j) is the antisymmetric creation and annihilation operator associated w
unit vectorj, respectively, as the fermionic Poisson random variable. In the case ofq521, the
sequence of the orthogonal polynomials in~1! is essentially finite,

P0~X!51, P1~X!5X2l, P2~X!5X22~2l11!X1l2, ~26!

which means that the corresponding orthogonalizing probability measuren is supported only on
two points. In our case, it can be given as

n~dt!5m1d~g2!1m2d~g1!, ~27!

where
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g65
2l116A4l11

2
, m65

1

2 S 16
1

A4l11
D , ~28!

andd(t) denotes the Dirac unit mass at the pointt. Now we can calculate the moments direct
We give here the first few moments of the fermionic Poisson distribution comparing with tho
the usual (q51) and the free (q50) Poisson distributions in Table I.
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TABLE I. The moments of Poisson distributions.

Usual (q51) Free (q50)

l l
l21l l21l
l313l21l l313l21l
l416l317l21l l416l316l21l
l5110l4125l3115l21l l5110l4120l3110l21l
l6115l5165l4190l3131l21l l6115l5150l4150l3115l21l
l7121l61140l51350l41301l3163l21l l7121l61105l51175l41105l3121l21l

A A

Fermionic (q521)

l
l21l
l313l21l
l416l315l21l
l5110l4115l317l21l
l6115l5135l4128l319l21l
l7121l6170l5184l4145l3111l21l

A
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Wavelet approximate inertial manifold in nonlinear solitary
wave equation

Lixin Tiana)

Department of Mathematics and Physics, Jiangsu University of Science and Technology,
Zhenjiang, Jiangsu, 212013, People’s Republic of China

~Received 6 August 1999; accepted for publication 13 April 2000!

This paper studies the dynamical behavior of a weakly damped forced
Korteweg–de Vries~KdV! equation in a wavelet basis and introduces the wavelet
approximate inertial manifold and wavelet Galerkin solution of weakly damped
forced KdV equation. The results includes theorems that for the KdV equation the
wavelet approximate inertial manifold~WAIM ! exists and sets up the wavelet
Galerkin method of the equation. Error estimates are given by using the WAIM.
© 2000 American Institute of Physics.@S0022-2488~00!02208-8#

I. INTRODUCTION

Many phenomena of nature occur at a certain time and a certain point in space. The co
ity of time and space is due to describing the relation between time and space and the lon
behavior of a system by using a partial differential equation. Traditionally, the state functi
expanded in Fourier series, and the partial differential equation is transformed into the or
differential equation with the evolution of Fourier coefficients in time. But it is very difficult
know accurately which Fourier coefficients play an important role as the time–space beh
formation is changed~see Refs. 1–3!. We can easily observe the cluster structures, such as a la
eddies split into small eddies and small eddies split into smaller eddies, etc. Therefore, we
that by using wavelets to construct approximate inertial manifolds, one can obtain theorems
the relations between small eddies and high frequency and between large eddies and l
quency, and help obtain a new numerical method to study the questions of turbulence~see, Ref. 1!
and solitary wave.

On the other hand, Temam and co-workers introduced new mathematics tools; inertial
fold ~IM ! and approximate inertial manifold~AIM !,2 based on the Fourier analysis. The concep
IM is a very convenient tool to describe the long-time behavior solutions of nonlinear evolutio
equations. These manifolds, which are finite dimensional Lipschitz manifolds, contain the u
sal attractor and attract exponentially all solutions of the system under consideration. Furthe
the ambient dynamics, when restricted to the inertial manifold, reduces to a finite dimen
ordinary differential equation, which therefore is an ‘‘asymptotic replica’’ of the given evolut
ary equation. However, the existence of such manifolds relies on a spectral gap conditio
turns out be too restrictive for many applications. Many partial differential equation do not s
the IM conditions. For example, the weakly damped sine-Gordon equation, damped Schro¨dinger
equation, and damped Korteweg–de Vries~KdV! equation.4–6 To circumvent these difficulties
Temam and co-workers have introduced the concept of AIM in the case of the two-dimen
Navier–Stokes equation. These manifolds are finite dimensional smooth manifolds such t
orbits enter a thin neighborhood of the manifolds after a certain time.2,4 In Refs. 3 and 7, a
non-self-adjoint nonlinear evolutionary equation proved the result that AIM exist in we
damped forced KdV equations on the Fourier analysis.

The methods of using a wavelet basis to study partial differential equations have appea
some papers.8,9 Reference 8 gave an analysis of the Galerkin approximation of a time-depe

a!Electronic mail: tianlx@jsust.edu.cn
57730022-2488/2000/41(8)/5773/20/$17.00 © 2000 American Institute of Physics
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initial value problem posed correctly in the Petrovskii sense and obtained results on conve
estimates for semidiscrete Galerkin methods applied to the initial value problem:

]u

]t
5a

]qu

]xq , t.0, xPR, u~x,0!5v~x!.

Reference 9 studied fairly low dimensional projections of the Kuramoto–Sivashinsky p
differential equation, with periodic boundary conditions on a short interval, onto bases spann
periodic wavelets and observed heteroclinic cycles and modulated traveling waves arising
interactions of unstable modes on a four-dimensional subspace spanned by appropriate co
tions of wavelets.

In order to obtain good local property, one must break away from Fourier analysis. This
studies the dynamical behavior for a wavelet basis in a weakly damped forced KdV equatio
presents results that solutions to the equation exist in a wavelet approximate inertial ma
~WAIM !.

About the weakly damped forced KdV equation,3,7,10–12setup the global attractor and estima
the fractal dimension of the equation solution. The authors of Ref. 3 determined that there
an AIM for the Fourier basis in the non-self-adjoint and nonsector equations. Based on
papers, this paper will obtain the results that there exists the WAIM in the weakly damped f
KdV equation under the spline wavelet basis, setup the wavelet Galerkin method, and do
estimates of the wavelet Galerkin solution. Section II presents the WAIM of a perturbed pe
KdV equation. Section III studies the WAIM of a weakly damped forced KdV equation. Sec
IV studies the wavelet Galerkin solution of the equation and gives error estimates.

Denote byZ,R,Cthe integers, real numbers, and complex numbers, respectively,P5R/Z is a
one-dimensional torus,CN(P) is the set of allN times continuously differentiable functions inP.
CN(P),Hs(P), Hs(P) is ordinary periodic Sobolev space. Here we useHs(P) to denote func-
tion u in Hs(P) satisfying,*P u(x)dx50. Defines the scalar product inHs(P) as

~u,v !s5 (
kPZ

uku2sû~k!v̂~k!,û~k!5*Pu~x!e22ikpx dx, ~1.1!

whereHs(P) is Sobolev space. Denote byuuus , the relative norm,uuus5(u,u)s
1/2. As s51/2, one

hasH0(P)5L2(P).
Now consider the finite dimensional spaceVj5$vPCN(P):v is the piecewise polynomia

function with the order<N11 in @k/2j ,(k11)/(2j 11)#, the knot is atk/2j , 0<k,2 j %. Then

V0,V1,¯,Vi,Vi 11,¯,L2~P!. ~1.2!

DenoteWj5Vi 11ù(Vj )
', with L2(P)5 % j 50

` Wj , where the sum is an orthogonal dire
sum. Now the periodic wavelet forWj follows. From Ref. 13, for every integral numberN, there
existscN satisfying the following.

~1! cNPCN(R), wherecN is the piecewise polynomial function with the order<N11, the knot
is at an integer.

~2! There exists«N.0, such that form<N11, one hasu(]m/]xm)cN(x)u<Ce2«Nuxu.
~3! If m<N11, then*R xmcN(x)dx50.
~4! The family $2 j /2cN(2 j x2k)% j ,kPZ forms an orthogonal basisL2(R).

We omit the subscript tocN , and denotecN asc. From Ref. 13 the periodic wavelet is a
follows:

c j ,k~x!52 j/2 (
mPZ

c~2 j x12 j l 2k!, ~1.3!
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where the family of $c j ,k%1<k<2 j forms an orthogonal basis forWj , and the family of
$c j ,k%1<k<2 j ,0< j <1` forms an orthogonal basis forL2(P).

If for function f PL2@0,1#, the spacePj f denote the orthogonal projection off ontoVj , then

Pj 11f ~x!5Pj f ~x!1(
k

~ f ,c j ,k!c j ,k~x!.

This relation expresses the difference between the approximationPj f and higher resolution
approximationPj 11f given by a high frequency component

Qj f ~x!5(
k

~ f ,c j ,k!c j ,k~x!,

which is the orthogonal projection off onto Wj . Because of that, this technique provides
framework to analyze those phenomena that are well localized in either the space or freq
domain.

When the approximating space in the Galerkin method is from a multiresolution analy
L2(R) this technique is called the wavelet Galerkin method. The method was introduced in
14, where the Daubechies wavelet solutions for a set of boundary value problems are disc

In the paper we will use the following Propositions~see Ref. 13!.
Proposition 1.1:~1! There existsC.0, which for arbitraryvPVj , one has

uvuN11<C2 j ~N11!uvu0 .

~2! For arbitrarysP@0,N11#, and for arbitraryvPVj , one has

uvus<C2 jsuvu0 .

~3! There existsC1 ,C2.0, which for everysP@2N21,N11#, andv jPWj ,

v j5 (
k51

2 j

r j ,kc j ,k ,

one has

uv j u0<S (
k51

2 j

r j ,k
2 D 1/2

.

Proposition 1.2:Let sP(2N21,N11), uPHs(P), and

r j ,k5~u,c j ,k!Hs~p!,H2s~p! ,v jPWj , v j5 (
k51

2 j

r j ,kc j ,k ,

thenu5( j 50
` v j , where the sum converges.

Proposition 1.3:For arbitrarysP(2N21,N11), there exists

C1~s!,C2~s!.0,

where

u5(
j 50

`

(
k51

2 j

r j ,kc j ,kPHs~P!

satisfies
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C1~s!uuus
2<(

j ,k
4 jsur j ,ku2<C2~s!uuus

2.

Definition 1.1:If for any orbit u(t) of the nonlinear evolution equation

ut1Au1R~u!50, u~ t !PL2@0,1#ùHp@0,1#5H~p52 or 3!, u05u~0!PH,

whereA is a linear unbounded operator,R(u) is a nonlinear term, and the family of$c j ,k(x)% @see
~1.3!# is the periodic wavelet ofL2@0,1#, there existst0.0 depending onuu0u, while ast>t0 , one
has distH(u(t),M )<h, a finite dimensional manifoldM is called a wavelet approximate inertia
manifold with orderh of the equation.

From the Definition 1.1, if~1.4! has a global attractor, then the global attractor is imbed
into anh neighbor~in H! of M.

II. WAIM UNDER WAVELET BASIS IN A PERTURBED PERIODIC KdV EQUATION

In this section the following perturbed periodic KdV equation is studied:

ut1«uxxxx2huxx1uxxx1gu1uux5 f ,h,g.0, ~2.1!

u~x,t !5u~x11,t !, ~2.2!

u~x,0!5u0~x!PH, ~2.3!

f PH3~V! ~ f is independent of timet !, ~2.4!

whereH5L2(V), V5@0,1#, V5D(B1/2), Bu5uxxxx, denote the norm ofV asi•i. The norm in
H is written asu•u. Equation~2.1! can be rewritten as

ut1A«u5R~u!, ~2.5!

where

A«u5«uxxxx1A0u, A0u5uxxx2huxx1gu, R~u!5 f 2uux .

From Ref. 3, one has the following results:

R~u!:D~A«!→D~A«
3/4!5H3,

uA«
3/4R~u!u<C1 , uPH1, 0<«<«0 ,

uA«
3/4R~u1!2A«

3/4R~u2!u<C1uA«u12A«u2u, u1 , u2PH1, 0<«<«0 ,

uR~u1!2R~u2!u<C3iu12u2i ,

where«0 is a constant. As«.0, A« is a sectorial operator which has a compact resolvent set3 and

~A«u,u!>min$h,g,«%iui2>min$h,g,«%uuu2.

Fix j, let Vj be the flat manifold associated with the Galerkin approximation of~2.1!–~2.4!, by
periodic piecewise polynomial function. From Ref. 13 asN.3, one hasVj,V. DefinePj as the
orthogonal projection fromH ontoVj , andQj5I 2Pj . DefineP1,j as the orthogonal projection in
V ontoVj , andQ1,j5I 2P1,j . For convenience, omit the subscriptj of Pj , Qj , P1,j , Q1,j in the
following study. Denote

y~ t !5Pu~ t !, y1~ t !5P1u~ t !, z~ t !5Qu~ t !, z1~ t !5Q1u~ t !.
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Theorem 2.1:For N.3, if the initial valueu0 satisfiesuu0u<R for t large enough, one has

uz~ t !u,uz1~ t !u,uz18~ t !u<
C4

16j ,z85
dz

dt
,iz~ t !i ,iz1~ t !i<

C5

4 j ,

whereC4 and C5 are constant. Now the flat manifoldVj associated with splines of orderN in
~2.1!–~2.4! is a wavelet approximate inertial manifold~WAIM ! of order 1/16j in H and of order
1/4j in Vj .

Theorem 2.2:Let pPVj , the equation

«qxxxx
« 1qxxx

« 2hqxx
« 1gq«5QR~p!,

whereR(p)5 f 2ppx , has a unique solutionq«5w«(p)PVj
' in L2@0,1#.

Remark 2.1:Let w«:PH,Vj→QH,Vj
' , from Theorem 2.2 there exists a unique soluti

q«5w«(p)PVj
' satisfying: A«w«(p)5QR(p) for pPVj . Denote the graph ofw« as M « , or

M «5$(p,q)uq«5w«(p),pPVj%.
Theorem 2.3:As j .0, N.3, M « is a WAIM of orderC4/64j in ~2.2!–~2.5!.
Proof of Theorem 2.1:SinceH5L2(V), one hasQH5Vj

'5 % m> j Wm .
For anyzPQV, V5D(B1/2),H2(V), one has

z5 (
m5 j

m

(
k51

2 j

gm,kcm,k ,uzu25(
m,k

ugm,ku2.

From Proposition 1.3, one has(m,k 4mugm,ku2<C6izi2, and since

(
m5 j

`

(
k51

2 j

42mugm,ku2542 j

(
m5 j

`

42~m2 j !ugm,ku2,

and

uzu2< (
m5 j

`

42~m2 j !ugm,ku2<
C6

42 j izi2, uzu2<C6izi2/42 j
, ~2.6!

there existsC7 , for anyz1PQ1V, such that

uzu2<C7izi2/42 j . ~2.7!

Since

iz1i25~B1/2z1 ,B1/2z1!5~B1/2~y1z1!,B1/2z1!5~Bu,z1!

by orthogonality, one takes the scalar product in~2.1! with z1 to obtain

«iz1i52~R~u!,z1!2S du

dt
,z1D2~A0u,z1!<uR~u!uuz1u2Udu

dtUuz1u2~A0z1 ,z1!. ~2.8!

From Ref. 3, Eqs.~2.1!–~2.4! has global attractors, one has

uR~u!u<C8iui<M0 .

Now we will prove udu/dtu<C9 . Let 0,h,t0 and denotev(t)5u(t1h). One has
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1

2

d

dt Uu~ t !2v~ t !

h U2

1g0Uu~ t !2v~ t !

h U2

<
1

2

d

dt Uu~ t !2v~ t !

h U2

1S A«

u~ t !2v~ t !

h
,
u~ t !2v~ t !

h D
<

1

h2 ~Ru~ t !2Rv~ t !,u~ t !2v~ t !!

<
1

k
uRu~ t !2Rv~ t !u21kUu~ t !2v~ t !

h U2

~k.0!.

Set k5g0/2 and sinceuRu(t)2Rv(t)u5uuux2wwxu<M1 ~see Ref. 3!, denotey as u(u(t)
2v(t))/hu. Then one has

1

2

d

dt
y1g0y/2<M1 ,

or

d

dt
y1g0y<M1 .

From Gronwell’s inequality, one has

y<y~0!e2g0t1
M1

g0
~12e2gt!<C9 .

Let h→0, one hasudu/dtu<C9 . From Ref. 3, it follows that

2~A0u,z1!52~A0z1 ,z1!<2min$h,g%uz1u2.

Therefore, from~2.8! one hasizi2<C10uz1u<C5/4j , and from~2.7!, uz1u<C4/16j holds. Let
z5Qz1 , one hasuzu<uz1u<C4/16j . Hence,uzu<C4/16j .

Let

v5 (
m5 j

`

(
k50

2m

gm,kcm,k .

From Proposition 1.3, it is clear that

iQvi<CS (
m5 j

`

(
k50

2m

42mugm,ku2D 1/2

<CS (
m50

`

(
k50

2m

42mugm,ku2D 1/2

<C10ivi .

Denotingz5Qz1 , so izi<Ciz1i<C4/4j , follows the estimateuz1uuz18u. Let Hc , Vc , Vc
j and

D(B1/2)c be complex spaces ofH, V, Vj , and D(B1/2), respectively. It is easy to show tha
$cm,k%0<m<`,1<k<2m still is an orthogonal basis forVc

j and$cm,k%0<m<`,1<k<2m is an orthogonal
basis forL2(V)c . The valuablesy1 and z1 mentioned above can be extended into the anal
function of t whose domain is the same as the extension ofu. Let Y1 , Z1 , andU be extensions of
y1 , z1 , andu, respectively. Suppose

rPG5$rPC:Rer.0,uIm ru<T0 , if Rer.T0 ;

uIm ru<Rer, if Rer<T0%.

Rewriting ~2.1! into a complex number equation, one has
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]U

]r
1«BU1A0U5R~U !. ~2.9!

Taking the scalar product withZ1 , one has

«iZ1i25~R~U !,Z1!2S ]U

]r
,Z1D2~A0U,Z1!<uR~U !uuZ1u1U]U

]r UuZ1u2~A0U,Z1!. ~2.10!

SinceuR(U)u<CiUi<M , as in the above proof ofudz/dtu<C9 , one has

u]U/]ru<C11, and ~A0U,U !5~A0Z1 ,Z1!>min$h,g%iZ1i2.

From ~2.10! one hasiZ1i2<C12uZ1u<C4iZ1i /4j and iZ1i<C5/4j now.
Let Z5QZ1 , so uZu<uZ1u<C4/16j . Similarly one hasiZi ,iZ1i<C5/4j .
As rPG, from Cauchy’s formula on a ballB centered atr of radiusT0/2, one has

Udz

dtU<C13supuZ~p!u<C14uZu<C4/16j ,

Udz

dtU<C4/16j .

And this shows thatudz1 /dtu<C4/16j .
Proof of Theorem 2.2:The proof is similar to the Lemma 2.1 in Ref. 3 using the La

Milgram theorem.
Proof of Theorem 2.3:If u«5p«1q« is a solution of~2.2!–~2.5!, p«PVj , q«PVj

' , then
p«,q« satisfy the following equations:

pt
«81A«p«5PjR~p«1q«!,

qt
«85QjR~p«1q«!.

From the construction ofM « , for pPVj , w« satisfies

A«w«~p«!5QjR~p«!,
~2.11!

qt
«82A«~w«~p«!2q«!5Qj~R~p«1q«!2R~p«!!.

Taking the inner product in~2.11! with w«(p«)2q«, we have

k1iw«~p«!2q«i2<uqt
«8uuw«~p«!2q«u1uQjR~p«1q«!uuw«~p«!2q«u. ~2.12!

From Theorem 2.1, we haveuq«u,uqt
«8u<C2/16j , denotingh15w«(p«)2q«, then h1PVj

' .
Thus

h15 (
m5 j

`

(
k51

2 j

gm,kcm,k , uh1u25 (
m5 j

`

(
k51

2 j

ugm,ku2.

From Proposition 1.3, the inequality(m5 j
` (k51

2 j
4mugm,ku2<C9ih1i2 and

(
m5 j

`

(
k51

2 j

4mugm,ku2542 j

(
m5 j

`

(
k51

2 j

42~m21!ugm,ku2,
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yield

uh1u2< (
m5 j

`

(
k51

2 j

42~m2 j !ugm,ku2<C9ih1i2/42 j ,

uh1u<AC9ih1i /4j ,uR~p«1q«!2R~p«!u5up«qx
«1p«q«1q«qx

«u<k3uq«u1k4uqx
«u<k5/16j

here using the absorption property.3 From ~2.12!, one has

ih1i2<C2C10uh1u/16j<C2C10AC9ih1i /64j ,

ih1i<C4/64j .

III. WAIM IN A WEAKLY DAMPED FORCED KdV EQUATION

In this the following weakly damped forced KdV equation is studied:

ut1uxxx2huxx1gu1uux5 f , h,g.0, ~3.1!

u~x,t !5u~x11,t !, ~3.2!

u~x,0!5u0~x!PH2~V!, ~3.3!

f PH3~V! ~ time independence!, ~3.4!

whereV5@0,1#, h5L2(V), and the norm inH is i•i. The type of operators

A0u5uxxx2huxx1gu,

of ~3.1! are non-self-adjoint and nonsectorial; the proof of AIM in~3.1!–~3.4! is difficult. In Ref.
3 the existence of AIM for a Fourier basis was given. In this section we will show the exist
of WAIM for a wavelet basis. Consider the following equation:

ut1«uxxxx1uxxx2huxx1gu1uux5 f , h,g.0. ~3.5!

Lemma 3.1:Let «.0 and the solution of~2.2!–~2.5! is u«5p«1q« , where pPVj ,q«

PVj
' . Then

iDq«i1,̀ <C1 ,

where

D5
]

]p
dp,iBi1,̀ 5 sup

uPD~B!

uB~u!u1 .

Lemma 3.2:From Theorem 2.2 and Lemma 3.1, there exists a unique solution

q«5F«~p!,pPVj , then iDF«i1,̀ <C2 .

Lemma 3.3:Based on Lemma 3.2, for arbitrarypPVj , choose«→01, then there existsq1

5F(p) satisfying
~1! suppuF«(p)2F(p)u2→0, asn→`,
~2! iDFi1,̀ <C7 ,C7 is constant and independent of«,
~3! q15F(p) is the solution to the following equation

qxxx2hqxx1gq5QR~p!.
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Theorem 3.4: As N.3 for Eqs.~3.1!–~3.4!, the initial valueu0 satisfiesuu0u<R0 . R0 is a
constant. Then there existst0 , and fort>t0 , one has

p81pxxx2hpxx1gp5P~ f 2uux!, u5p1q,
~3.6!

qxxx2hqxx1gq5Q~ f 2ppx!,

and a unique solution of the equation

~p,q!,q5F~p!,pPVj ,qPVj
' .

The graphM1 of q5F(p) is a WAIM of order 1/64j in ~3.1!–~3.4!.
Proof of Lemma 3.1:From Remark 2.1,q«5F«(p), pPVj satisfies the following equation

A«q«5QjR~p!, pPVj . ~3.7!

If ur(r ) is a truncation function,u(r ):R1→@0,1# is a fixedC1 function andu(r )51, 0<r
<1; u(r )50, r>2; u(r )<1, uu8(r )u<1. ur5u(r /r). Then ur(uAuu)51, uAuu<r; ur(uAuu)
50, uAuu.2r. This gives the modified equation

A«q«5QjF~p!, pPVj . ~3.8!

From Theorem 2.2 there exists a unique solution of~3.8!. DenoteDF«5]2F«/]p2 and
consider the following equation:

2bDF«1A«F«5QjF~p!, pPVj .

Our approach to solution~3.8! is to construct an infinite sequence$t«
n%1

` of solution of the
related finite dimensional nonlinear equation:

2bDt«
n1A«t«

n5Fr ,n~p!, pPVj . ~3.9!

where

Fr ,n~p!5RMF~p!, RM5QjH
r ~M !5 %

j 11< l< j 1M
Wl

andt«
n assumes values in Hilbert space

Hr ~M !5span$c j ,k : j 11< l< j 1M ,1<k<2l%.

First, we prove thatDt«
n(p)→0 asupu→`.

Let the spline wavelet basis expansion oft«
n(p) be given by

t«
n~p!5 (

j 11< l< j 1M
(

l<k<2l
g l ,k

n c l ,k .

Have

A«t«
n~p!5 (

j 11< l< j 1M
(

1<k<2l
g l ,k

n A«c l ,k ,

whereg l ,k
n is a function ofp. As Vj5V0% W0%¯% Wj , thenQjH5 %

l . j
Wl . BecauseA«Vj,Vj ,

one can suppose that
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A«t«
n~p!5 (

j 11< l< j 1M
(

1<k<2l
g l ,k

n,lc l ,k .

From ~3.9!, if upu1.r, we haveF50 and

2bnDg l ,k
n 1g l ,k

n,l50. ~3.10!

As t«
nPW1,2(Vj ,Vj

'), theng l ,k
n,lPL2(Vj ), and

Dg l ,k
n 5

]

]p
g l ,k

n PL2~Vj \Rs!,

where Rs5$pPVj :upu1<s% for s.r. Let vPC` be a scalar valued function satisfyin
uv(p)u<1 for all pPVj and v(p)50, upu1<(r1s)/2; v(p)51, upu1.s; where s.r. By
~3.10! one has that

DbvDF j
n~p!PL2~Vj !. ~3.11!

For b>0, by the Sobolev embedding theorem,Wk,2,Lr for r>2 andk.2 j 2122 j , so that by
~3.11! one has

g~p! 5
Def

~ I 2D!~vDF j
n!~p!PLr~Vj ! ~r>2!.

SincevDF j
n(p)5DF j

n(p) for upu1.s, one can write that

DF j
n~p!5E

Vj

G~p2q!g~q!dq5E
Vj

G~q!g~p2g!dq,

whereG(q) is the Bessel potential15 which satisfies

G~q!5C6uqu222 j
1o~ uqu222 j

! as uqu→0 for j >2,

G~q!5C7 lnuqu1o~ lnuqu! as uqu→0 for j 51,

G~q!5C8~12uqu!1o~12uqu! as uqu→0 for j 50,

andG(q)<C9e2C10uqu, uqu→`.
For upu1.s, denotingv8 such that 1/v11/v851, one has

uDF j
n~p!u<U E

uqu.upu/2
~p2q!g~q!dqU1U E

uqu,upu/2
G~p2q!g~q!dqU

<uGuLvuguLv8~ uqu.upu/2!1F E
uqu,upu/2

uG~p2q!uvdqG1/v

uguLv8~Vj !

<uGuLvuguLv8~ uqu.upu/2!1@s2 j upu2
j
/2#1/vC9e2C10upu/2uguLv8~Vj !

→0, upu→`,

wheres2 j is the volume of the unit ball inR2 j 11, andv,2 j /(2 j22) for j >2; v<2 for j ,2.
One can see that

DF j
n~p!→0 as upu→`,

DF«
n~p!→0 as upu→`.
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Now Lemma 3.1 will be shown. DenotingA«q«5QjR(p) in Lemma 1, one considers th
following equation:

2bnDt«
n1A«t«

n5Fr ,n~p!, Fr ,n~p!5RMF~p!, bn→01. ~3.12!

By taking the Gateaux derivative of Eq.~3.12! in the direction

v5 (
0< l< j

(
1<k<2l

v l ,kc l ,k , uvu151,

one obtains

2bnD (
0< l< j

(
1<k<2l

t«,l ,k
n c l ,k1A« (

0< l< j
(

1<k<2l
t«,l ,k

n c l ,k5 (
0< l< j

(
1<k<2l

]

]pl ,k
Fr ,n~p!c l ,k ,p

PVj , ~3.13!

where

t«,l ,k
n 5Dt«

n~p!c l ,k ,
]

]pl ,k
Fr ,n~p!5DFr ,n~p!c l ,k .

Next the inner product of~3.13! with

A«
2 (

0< l< j
(

1<k<2l
t«,l ,k

n v l ,k

is taken, to obtain

2
bn

2
DU (

0< l< j
(

1<k<2l
t«,l ,k

n v l ,kU
1

2

1bnUD (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,kU

1

2

1S A«A« (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,k ,A« (

0< l< j
(

1<k<2l
t«,l ,k

n v l ,kD
5S (

0< l< j
(

1<k<2l
A«

]

]pl ,k
Fr ,nv l ,k ,A« (

0< l< j
(

1<k<2l
t«,l ,k

n v l ,kD , ~3.14!

for pPVj , which gives

S A«A« (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,k A« (

0< l< j
(

1<k<2l
t«,l ,k

n v l ,kD
>k2UA« (

0< l< j
(

1<k<2l
t«,l ,k

n v l ,kU2

>C11UA« (
0< l< j

(
1<k<2l

Dt«,l ,k
n v l ,kU

1

2

<C12U (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,kU

0

2

5C12U (
0< l< j

(
1<k<2l

Dt«
n~p!U2

→0 as upu→`.

Then
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U (
0< l< j

(
1<k<2l

t«,1,k
n v l ,kU→0 as upu→`.

Hence

U (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,kU

1

2

has a maximum for somep0PVj . By the maximum principle there exists a pointp0 :

DU (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,kU

1

2

50, DU (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,kU

L`

50.

From ~3.14!, it follows that

C11UA« (
0< l< j

(
l<k<2l

t«,l ,k
n v l ,kU2

<S A«A« (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,k ,A« (

0< l< j
(

1<k<2l
t«,l ,k

n v l ,kD
<U (

0< l< j
(

1<k<2l
A«

]

]pl ,k
Fr ,nv l ,k•A« (

0< l< j
(

1<k<2l
t«,l ,k

n v l ,kU
L`

<iDt«
ni1,̀ U (

0< l< j
(

1<k<2l
A«

]

]pl ,k
Fr ,nv l ,kU

0,̀

<iDt«
ni1,̀ sup sup

uvu151 uPVj

uDF~u!vu1

<C13iDt«
ni1,̀ sup sup

uvu151
uuxv1uvxu1

<C14iDt«
ni1,̀ supuuxu`uvu1

<C15iDt«
ni1,̀ .

HenceiDt«
ni1,̀ <C16, iDF«

ni1,̀ <C16.
Furthermore, sinceiDF«

ni1,̀ <C16, one can conclude by the Ascoli–Arzela` Theorem and the
limits n→`,bn→01, that iDF«

ni1,̀ <C4 .
Proof of Lemma 3.2:Let u«5p«1q« be a solution of~2.2!–~2.5!, p«PVj ,q«PVj

' . Then

p«81A«q«5PjR~p«1q«!; q«81A«q«5PjR~p«1q«!. ~3.15!

And as in~3.7! and ~3.8! one constructs the modified equation of~3.15!:

p«81A«q«5PjF~p«1q«!, q«81A«q«5PjF~p«1q«!. ~3.16!

From Refs. 3 and 14,~3.16! has a unique solution. Then forp«PVj , if the solution~3.15! is
u«5p«1q« , q« is a function of p« and denote it asq«5w«(p«). Suppose dq« /dt
5Dw«(p«)dp« /dt. Equation~3.16! is then changed into

Dw«~PjF~p1w«~q!!2A«q!5QjF~p1w«~q!!2A«w«~q!, pPVj .

Now consider the following equation:

A«w«2bDw«1Dw«~PjF~p1w«~p!!2A«p!5QjF~p1w«~p!!. ~3.17!
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To solve Eq.~3.17! we construct an infinite sequence$t«
n%1

` of solution of the related finite
dimensional nonlinear equation:

2bnDt«
n1A«t«

n1Dt«
n~Fp,n~p!2A«~p!!5Fr ,n~p!, pPVj , ~3.18!

where

Fp,n~p!5PjF~p1t«
n~p!!, Fr ,n~p!5RMF~p1t«

n~p!!,

RM5QjH
r ~M !5 %

j 11< l< j 1M
Wl

andt«
n assumes values in Hilbert space

Hr ~M !5span$c l ,k : j 11< l< j 1M ,1<k<2l%.

As in Lemma 3.1 one can prove that asupu→`, thenDt«
n(p)→0, by changing~3.10! into

2bnDg l ,k
n 1g l ,k

n 2A«~p!
]

]p
g l ,k

n ~p!50.

Next construct the equation:

2bnDt«
n1dt«

n/dt1A«t«
n5Fr ,n~p1t«

n!, ~3.19!

wherebn→01. By taking the Geteaux derivative of~3.19! in the direction

v5 (
0< l< j

(
1<k<2l

v l ,kc l ,k

uvu1512bnD(0< l< j (1<k<2l t«,l ,k
n v l ,k1 (

0< l< j
(

1<k<2l

dt«,l ,k
n

dt
c l ,k

1A« (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,k

5 (
0< l< j

(
1<k<2l

]

]pl ,k
Fr ,n~p1t«

n!v l ,k , ~3.20!

where

t«,l ,k
n 5Dt«

n~p!c l ,k ,
]

]pl ,k
Fr ,n~p1t«

n!5DFr ,n~p1t«
n!c l ,k .

Following Lemma 3.1 and taking the inner product of~3.20! with

A«
2 (

0< l< j
(

1<k<2l
t«,l ,k

n v l ,k ,

and using the maximum principle we get
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2
bn

2
DU (

0< l< j
(

1<k<2l
t«,l ,k

n v l ,kU
1

2

1bnUD (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,kU

1

2

1
1

2

d

dt S A« (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,k ,A« (

0< l< j
(

1<k<2l
t«,l ,k

n v l ,kD
1S A«A« (

0< l< j
(

1<k<2l
t«,l ,k

n v l ,k ,A« (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,kD

5S (
0< l< j

(
1<k<2l

A«

]

]pl ,k
Fr ,nv l ,k ,A« (

0< l< j
(

1<k<2l
t«,l ,k

n v l ,kD ~3.21!

for pPVj .

U (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,kU

1

2

has a maximum at some pointp0PVj and at the pointp0 has

DU (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,kU

1

2

50,DU (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,kU

L`

50. ~3.22!

From ~3.21! and ~3.22!, it follows that

C1UA« (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,kU2

1
1

2

d

dt UA« (
0< l< j

(
1<k<2l

Dt«,l ,k
n v l ,kU2

<S A«A« (
0< l< j

(
1<k<2l

t«,l ,k
n v l ,k ,A« (

0< l< j
(

1<k<2l
t«,l ,k

n v l ,kD
1

1

2

d

dt UA« (
0< l< j

(
1<k<2l

Dt«,l ,k
n v l ,kU2

<U (
0< l< j

(
1<k<2l

A«

]

]pl ,k
Fr ,nv l ,k•A« (

0< l< j
(

1<k<2l
Dt«,l ,k

n v l ,kU
L`

<iDt«
ni`U (

0< l< j
(

1<k<2l
A«

]

]pl ,k
Fr ,nv l ,kU

0,̀

<iDt«
ni` sup sup

uvu151uPVj

uDF~u!vu1

<C14iDt«
ni1,̀ sup

uvu151
supuuxv1uvxu1

<C14iDt«
ni`supuuxu`uvu1<C15iDt«

ni`5C8iDt«
ni` .

Then
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C1iDt«
ni1,̀

2 1
1

2

d

dt
iDt«

ni1,̀
2 <C8iDt«

ni1,̀
2

<C18
2/2C11C1iDt«

ni1,̀
2 /2

d

dt
iDt«

ni1,̀
2 <

C18
2

C1
2C1iDt«

ni1,̀
2 .

Next if

C18
2

C1
2C1iDt«

ni1,̀
2 >0,

we haveiDt«
ni1,̀ <C18/C1 .

If

C18
2

C1
2C1iDt«

ni1,̀
2 ,0,

we have

diDt«
ni1,̀

2

C1iDt«
ni1,̀

2 2C18
2/C1

<2dt.

Hence

iDt«
ni1,̀

2 <~C1iDt«
n~0!i1,̀

2 2C18
2/C1!e2C1t<~C1iDu~0!i1,̀

2 2C18
2/C1!e2C1t<C9.

We haveiDt«
ni1,̀ <C15.

By using the Ascoli–Arzela` theorem asbn→01, we can prove that

iDq«i1,̀ <C.

Proof of Lemma 3.3:By using Ascoli–Arzela` theorem and Lemma 3.1 and 3.2, we can eas
prove Lemma 3.3, so here we omit its proof.

Proof of Theorem 3.4:Let u5p1q be a solution of~3.1!–~3.4!, pPVj , qPVj
' , and

(p,q1)PM1 ,p,q1 be a solution of~3.6!. From the existence and uniqueness of the solution
~3.1!–~3.4! or ~2.2!–~2.5! and by using Lemma 3.2 and Lemma 3.3, one has thatu«5p«1q« is a
solution of ~2.2!–~2.5! and (p« ,q«1)PM « , such thatq«→q, q«1→q1 , as«→01. Choosing«
such that

uq«2qu,C4/3•64j , uq1«2q1u,C4/3•64j .

From Theorem 2.3, one hasuq12q1«u,C4/64j . Then

uq2q1u<uq2q«u1uq«2q1«u1uq1«2q1u<C8/64j .

IV. WAVELET GALERKIN METHOD AND ERROR ESTIMATE

In this section we will study the wavelet Galerkin solution of weakly damped forced K
equation by wavelet analysis and apply the wavelet Galerkin method to the following initial v
problem:
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ut1uxxxx2huxx1gu1uux50,h, g.0,
~4.1!

u~x,0!5u0~x!, xPR.

By translations and dilations of a single functionF, one studies the wavelet Galerkin solutio
uj (x,t) of the approximating spaceVj .

Concerning the wavelet Galerkin method, Refs. 8, 16, and 17 gave the analysis of Ga
approximation of an initial value problem correctly posed in the Petrovskii sense and obt
results on convergence estimates for semidiscrete Galerkin methods applied to the initia
problem

]u

]t
5a

]qu

]xq , t.0, xPR,

u~x,0!5v~x!,

which is a linear equation. In Ref. 9 the authors studied fairly low dimensional projections o
Kuramoto–Sivashinsky partial differential equation, with periodic boundary conditions on
intervals, onto bases spanned by periodic wavelets and observed heteroclinic cycles and
lated traveling waves arising from interactions of unstable modes on a four-dimensional sub
spanned by appropriate combinations of wavelets.

In this section, Eq.~4.1! is one of nonlinear evolution equations of Ref. 7. Now this results
the representation of the wavelet Galerkin solutionuj (x,t)PVj in ~4.1! and gives an error estimat
of the solution by WAIM.

A multiresolution analysis ofL2(R) is a family $Vj ,mPZ% of embedded closed subspace

¯V22,V21,V0,V1,V2,¯

with

ù
mPZ

Vm5$0%, ø
mPZ

Vm5L2~R!,

satisfying the property

f ~x!PVm if f ~2x!PVm11 .

Furthermore, there existsFPV0 such that$F(x2k),kPZ% constitutes a Riesz basis ofV0 . It
is called a scaling function. Then one can define

Fmk~x!52m/2F~2mx2k!.

Then for everymPZ, $Fmk ,kPZ% constitutes a Riesz basis forVm . If Wm is the orthogonal
complement ofVm in Vm11 , then it follows that there exists an orthogonal basis$2m/2C(2m

2k), kPZ% of Wm , defined also in terms of a basis functionC, called a basis wavelet.8

If for function f PL2@0,1#, Pj f denotes the orthogonal projection off onto Vj , then

Pj 11f ~x!5Pj f ~x!1(
k

~ f ,c j ,k!c j ,k~x!.

This relation expresses that the difference between the lower accuracy approximationPj f and
higher resolution approximationPj 11f is given by a high frequency component

Qj f ~x!5(
k

~ f ,c j ,k!c j ,k~x!,
                                                                                                                



ue
cy do-

naly-
ed in
ms are
to more
rkin
s with
imple

5789J. Math. Phys., Vol. 41, No. 8, August 2000 Wavelet approximate inertial manifold in . . .

                    
which is the orthogonal projection off onto Wj . Because of the separations, this techniq
provides a framework to analyze phenomena that are well localized in space or frequen
mains.

When the approximating space in the Galerkin method is taken from a multiresolution a
sis ofL2(R), this technique is called the wavelet Galerkin method. The method was introduc
Refs. 8 and 14, where the Daubechies wavelet solutions for a set of boundary value proble
discussed. Their results suggest that wavelets provide a robust and accurate alternative
traditional methods.8 It is worthwhile to emphasize that the advantage of the wavelet Gale
method is really appreciated when they are applied to irregular problems having solution
localized singular behavior. The multiresolution structure of the wavelet basis provides a s
way to adapt computational refinements to the local regularity of the solution.8,9,13,14

Let the Hilbert spaceH5L2(R), the inner product inH is ~•, •!. In this section, forh.0
consider the family of translations and dilations of a basis functionF:

Fhk~x!5h21/2F~h21x2k!, kPZ,

and the approximating subspacesVh defined by

Vh,L2~R!, Vh5span$Fhk ,kPZ%,L2~R!. ~4.2!

The wavelet Galerkin method of~4.1! is to consider the solutionsuk(x,t)PVh , such that, for
t.0,

S ]uh

]t
,FhkD2S ]2uh

]x2 ,
]Fhk

]x D1hS ]uh

]x
,
]Fhk

]x D1g~uh ,Fhk!1S uk ,
]uh

]x D50, ~4.3!

uh~x,0!5(
k

Ck~0!Fhk~x!PVh , ~4.4!

where arbitrarykPZ. Now denote that

ã~z!5(
k

a~k!e2 ikz, d~z!5(
k

d i~k!e2 ikz, a~ j !5*RF~x!F~x2 j !dx,

d1~ j !5E
R

]2F

]x2

]F~x2 j !

]x
dx, d2~ j !5E

R

]F

]x

]F~x2 j !

]x
dx.

Let

a5ã, b52h23d̃12hh23d̃11ã, d5h23/2*RF̃F 8̃F~y!dy,

expS b

a
t D5(

j
f j S t

h3De2 i j z,

and

gk52~h23d1~k!1hh22d2~k!2a~k!!.

Then
Theorem 4.1: For approximating subspaceVh , the wavelet Galerkin solutions of~4.1!

uh(x,t)PVh . Then

uh~x,t !5(
k

(
j

f j S t

h3D S 1

d
gk2 j1Ck2 j~0! DFhk . ~4.5!
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Now the error estimate of wavelet Galerkin solutions of Theorem 4.1 by WAIM of~3.1!–~3.3!
is given. Consider the following weakly damped forced KdV equation:

ut1uxxx2huxx1gu1uux50, h,g.0, ~4.6!

u~x11,t !5u~x,t !, ~4.7!

for

u~x,0!5u0~x!PH3@0,1#. ~4.8!

From Theorem 3.4 results that as the initial value of Eqs.~4.6!–~4.8! is boundary,Vh is a
WAIM of order 1/8h in H5L2@0,1#.

Theorem 4.2: For approximating subspaceVh of ~1.2! and periodic wavelet basis~1.3! if
uh(x,t)PVh is a wavelet Galerkin solution of Eqs.~4.6!–~4.8!, and u is the solution of Eqs.
~4.6!–~4.8!, then

uuh~x,t !2u~x,t !u<
C

8h ,

whereC is a constant and independent ofh.
Proof of Theorem 4.1:Let

uh~x,t !5(
k

Ck~ t !FhkPVh ,

seekCk(t) from ~4.3!, and one has

(
l

a~ l 2k!
dCl~ t !

dt
2h23(

l
d1~ l 2k!C1~ t !2hh22(

l
d2~ l 2k!C1~ t !

1g(
l

a~ l 2k!C1~ t !1S (
l

Cl~ t !Fhl(
m

Cm~ t !Fhm8 ,Fhk8 D 50.

Let h21x2k5y, then

S (
l

Cl~ t !Fhl(
m

Cm~ t !Fhm8 ,Fhk8 D 5(
l ,m

ClCmh23/2*RF~y!F~y2 l 1k!F8~y2m1k!dy

5h23/2E
R
S (

l
ClF~y1k2 l ! D

3S (
m

CmF8~y1k2m! DF~y!dy

5h23/2~C̃~z,y!!2*R~F̃~z,y!!2F~y!dy,

where

C̃~z,t !5(
k

Ck~ t !e2 ikz, ã~z!5(
k

a~k!e2 ikz,

d̃~z!5(
k

d i~ t !e2 ikz, a~ j !5*RF~x!F~x2 j !dx,
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d1~ j !5E
R

]2F

]x2

]F~x2 j !

]x
dx, d2~ j !5E

R

]F

]x

]F~x2 j !

]x
dx.

Then it follows that

ã~z!
dC̃~z,t !

dt
2h23d̃1~z!C̃~z,t !2hh22d̃2~z!C̃~z,t !1 d̃3~z,t !C̃~z,t !

1h23/2*RF~x!F̃~z,x!F 8̃~z,x!dxC̃~z,t !250. ~4.9!

Let

a5ã, b52h23d̃12hh23d̃11ã, d5h23/2*RF̃F 8̃F~y!dy,

from Eq. ~4.9!, one hasC̃(z,t)5exp((b/a)t)(C̃(0)1b/d). As

expS b

a
t D5expS h23d̃11hh22d̃22ã

ã~z!
D 5expS 2~ d̃11hhd̃22ãh3!

t

h3D5(
j

f j S t

h3De2 i j z

is a Fourier series, then

b52h23d̃12hb22d̃21ã

52 ih23gF,32hh22gF,21gF,0

52 ih23(
k

~z12kp!3uF̂~z12kp!u22hh22(
k

~z12kp!2uF̂~z12kp!u2

1(
k

uF̂~z12kp!u2

5(
k

~2 ih23~z12kp!32hh22~z12kp!211!uF̂~z12kp!u25(
k

gke
2 ikz

wheregk52(h23d1(k)1hh22d2(k)2a(k)), and

gF,s~z!5(
k

~z12kp!suF̂~z12kp!u2.

From Ref. 13, it is obvious that

gF,0~z!5ã~z!,gF,q~z!5~2 i !q22md̃~z!,gF,3~z!52 i d̃1~z!,gF,2~z!5 d̃2~z!.

Hence,

C̃5
1

d (
k

f kS t

h3De2 ikz(
l

gle
2 i l z1(

k
f kS t

h3De2 ikz(
l

Cl~0!e2 i l z

5
1

d (
k,l

f kgle
2 i ~k11!z1(

k,l
f kS t

h3DCl~0!e2 i ~k1 l !z

5
1

d (
k

f kgm2ke
2 imz1(

k
f kS t

h3DCm2k~0!e2 imz.

Hence, one has
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Cm~ t !5
1

d (
j

f jgm2 j1(
j

f j S t

h3DCm2 j~0!,

or,

Ck~ t !5
1

d (
j

f jgk2 j1(
j

f j S t

h3DCk2 j~0!.

Proof of Theorem 4.2:It easily follows from Theorems 3.4 and 4.1 and so it is omitted.
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General scheme of splittings of degenerate
eigensubspaces and eigenelements of self-adjoint
operators in high orders of perturbation theory
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The possibility of arbitrary alternation of splitting and nonsplitting orders is taken
into consideration through the idea of a stage of perturbation theory. In every order
an eigenvalue equation is to be solved; its effective operator is obtained by means
of a unified scheme from the operator of the previous order. The complete aggre-
gate of subspace splittings leads to the correct set of eigenvectors of zero approxi-
mation. Expressions of any order corrections for the correct vectors leading to
eigenvectors of a perturbed operator are obtained and discussed. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!03504-0#

I. INTRODUCTION

A perturbation theory~PT! of the linear operators in Hilbert space is one of the princi
general methods of the approximate solution of quantum mechanics problems. In one of th
papers laying the foundation of the quantum theory,1 primary statements of Rayleigh–Schro¨dinger
stationary PT~RSPT!, which is the core of stationary perturbation theories up to now, w
formulated. For the development and extension of quantum theory and several varieties
appeared.2–23 As the obtained results were published in a great number of works, it is impos
to mention all of them or even the bulk of them; we simply point to sources of their concent
presentation.24–36 For the past two decades interest in carrying out calculations in high orde
stationary PT of degenerate states of self-adjoint operators has grown. The reasons for
both the striving for internal completion of PT and the solution of practical problems arising
example, in quantum field theory or high-resolution molecular spectroscopy. In the latter a v
of PT-methods involving contact transformations in its various versions has become domina
basic conceptions and achievements are presented in Refs. 22, 36–41. RSPT is seldom use
sphere, though this PT can be reformulated in a way which makes it convenient for spectro
applications. This work is devoted to this subject as well as the inner improvement of the g
PT scheme. As dynamic variables in quantum mechanics are represented by unbounded op
the corresponding PT series in general case are asymptotic ones, and the development
order PT like RSPT comes down to the creation of an algorithmic procedure for the recu
construction of corresponding equations. In works,42–48 which take this approach, various recu
sive schemes leading to algorithms of diverse complexity are used. In most of the works~except
for Ref. 47!, at least two recursively determined auxiliary operators complicating the generati
equations are exploited. As a rule, the equations of previous orders are not taken into acc
the process of recursive construction of the equations in certain PT orders. As was noted
47, this leads to the appearance of zero terms. Determination of algorithms for high-order c
tions to eigenvectors are either absent or uncompleted. In this communication a scheme
series construction is proposed. Its distinctive features can be seen from the following desc
57930022-2488/2000/41(8)/5793/21/$17.00 © 2000 American Institute of Physics
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A. General splitting scheme of degenerate eigensubspaces for zero order
approximation operator

This scheme can be represented through building the splitting graph.49 Such a technique, bu
only as an illustration, was used in Refs. 42 and 48. In this work the technique defines a se
of steps in building the theory and in carrying on calculations as well as allows one to avoid
multi-index designation with increasing number of components in a branched process of spl

1. The splitting process of sth degenerate eigensubspace P sX for the operator of zero
order approximation H 0

A stationary state of a quantum system is determined by its eigenvalue and eigensubspa
the operator of zero approximation they are

Es
0[Es~0!

0 , PsX,

respectively; hereX is the Hilbert space of states,Ps[Ps(0) is an orthoprojector on the eigensu
space. Let the splitting not occur in the first PT order, but the eigenvalue changes byEs(0)

1 , then
after transition to the first order the state is determined by values

~Es~0!
0 1Es~0!

1 !, Ps~0!X.

An element of the graph corresponding to this transition is depicted in Fig. 1~A!.
An index of a correction to the eigenvalue in the graph is not written out, because

determined by the order shown on the axis. In mathematical formalism the transition from th
order to the first one is represented by the solution of the suitable eigenvalue problem
shown by a horizontal segment in the graph. In the case of (i 11)th splitting in the (n11)th order
(n> i ), the graph element is portrayed in Fig. 1~B!. In doing so the first, thenth and other orders
similar to them are called ‘‘nonsplitting,’’ whereas the (n11)th order is called ‘‘splitting.’’ Let us
consider the graph in Fig. 2. This graph represents a calculation process which begins w
degenerate subspace of zero approximation and ends with further unsplit subspacePs(3)X in the
ninth PT order. Further continuation of the process to the tenth, the eleventh, and other high
does not lead to new splittings, but may give new corrections to the eigenvalues. In this gra
splitting orders are the third~splitting into three subspaces!, the fifth, and the ninth~in every one
of them, splitting is in two subspaces!. Such graph is called a ‘‘skeletal branch with sprouts.’’
doing so the ‘‘branch’’ is formed by the sequence of ever smaller subspaces,

Ps~0!X.Ps~1!X.Ps~2!.Ps~3!X

in which nonsplitting orders are also taken into account because of changing the eigenva
them. Subspaces which do not get into the ‘‘branch’’ are the ‘‘sprouts’’ of the ‘‘skeletal bran
In the process of further calculation, new ‘‘branches’’ will appear from them~but they are not
‘‘skeletal’’ !.

FIG. 1. Examples of nonsplitting and splitting PT orders in the graph.~A! The subspacePs(0)X for the first nonsplitting PT
order is the same for the zeroth PT order.~B! The subspacePs( i )X for thenth nonsplitting PT order is one of the subspac
formed in thei th splitting. The subspacesPs( i 11)X and Ps( i 11)8 X are formed in the (i 11)th splitting and in the (n
11)th splitting PT order. It is clear that the direct sumPs( i )X5Ps( i 11)X% Ps( i 11)8 X takes place.
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The subspacePs(3)X may be nondegenerate~one-dimensional! or degenerate. In the latter th
perturbation has to possess some symmetry which is satisfied with the operatorH of the complete
problem. For development of mathematical formalism it is convenient to use notion o
‘‘stages’’ for every skeletal branch. The every PT stage consists of a sequence of conse
nonsplitting orders up to the splitting order inclusive. For the skeletal branch depicted in Fig.
stages are nonoverlapping order intervals:

the first stage, 1st–3rd orders;
the second one, 4th, 5th orders;
the third one, 6th–9th orders;
the fourth one, 10th, 11th, and others.

It is also convenient to use internal numeration of the orders inside the stages. There are
1,2,3 in the first stage, 1,2 in the second stage, 1,2,3,4 in the third stage, 1,2 in the fourth sta
so on. In some cases it is preferable to exploit ‘‘expanded stages’’ of the skeletal branch. Th
be obtained by adding the previous splitting order. This leads to overlapping a couple of ad
expanded stages, the numeration beginning with zero. Thus, the initial subspacePs(0)X is included
in the first expanded stage and the numeration within this stage is 0,1,2,3; within the s
expanded stage is 0,1,2. In this manner, the internal number of the third PT order, which is th
splitting order, is three in the first expanded stage, and is zero in the second expanded stag
a description is used in the above written identityPs[Ps(0) .

2. Expansion of the splitting graph from the ‘‘skeletal branch’’ up to a ‘‘splitting tree’’

The expansion is construction of ‘‘branches’’ of various orders beginning with ‘‘sprouts
the skeletal branch. It is convenient to start building with sprouts which are the closest to th
of the skeletal branch. For Fig. 2 this is the sproutPs(3)8 X in the ninth order, the branch growin
from this sprout is shown in Fig. 3~A!. There is splitting in this branch in the eleventh order whi
leads to appearance of subspacesPs(4)X andPs(4)8 X. The former is a nonsplitting subspace in a
orders following it and belongs to this branch, the latter,Ps(4)8 X, is a sprout of a new branch. I
this subspace is nonsplitting, then a subbranch is depicted in Fig. 3~B!.

Let us consider the sproutPs(2)8 X in the skeletal branch~Fig. 2!. The branch growing from the
sprout and ending with the subspacePs(3)X is shown in Fig. 3~C!. It also has two sproutsPs(3)8 X
andPs(3)9 X which appear in the eighth~splitting! PT order. Then the further steps are construct
of next branches beginning with the sproutPs(3)8 X or Ps(3)9 X. Other actions for expansion an

FIG. 2. ~Graph! Skeletal branch with sprouts. In the graph designations( i ) corresponds to a subspacePs( i )X of Hilbert
spaceH. ~Sprouts! In the third order,Ps(1)8 X,Ps(1)9 X; in the fifth orderPs(2)8 X; in the ninth order,Ps(3)8 X. The subspace
Ps(3)X, in 9th 10th, and other orders is nonsplitting.
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completion of the splitting graph are obvious. It is also clear that the initial skeletal branch m
built in another way. Indeed, after the second splitting in the fifth order~Fig. 2! instead ofPs(2)X
it is possible to continue the process beginning withPs(2)8 X and to get another branch@Fig. 3~C!#.
In this case another skeletal branch is shown in Fig. 4. Stages~both usual and expanded! of these
skeletal branches coincide only for their identical parts.

FIG. 3. Branches growing from the part of sprouts of the skeletal branch in Fig. 2.~A! One grows from the sproutPs(3)8 X
and has the sproutPs(4)8 X. The subspacePs(4)X is nonsplitting.~B! One grows from the sproutPs(4)8 X of the branch~A!.
Ps(4)8 X is nonsplitting.~C! One grows from the sproutPs(2)8 X and has sproutsPs(3)8 X,Ps(3)9 X. The subspacePs(3)X is
nonsplitting.

FIG. 4. Another possible skeletal branch. The subspacePs(3)X is nonsplitting. This branch coincides with the skelet
branch in Fig. 2 up to the fifth order, then it grows@Fig. 3~C!# from the subspacePs(2)8 X ~instead ofPs(2)X as for the first
skeletal branch Fig. 2!.
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3. Eigenvectors of zero approximation as the basis for solution of the perturbed
problem

Let us consider notions of a ‘‘correct basis vector’’ and a ‘‘basis vector’’ in a degene
subspace. It is assumed that the initial subspacePs(0)X is n-dimensional. Then it is possible t
build a basis consisting ofn vectors~we consider them to be orthonormalized! which are the
eigenvectors of the operatorH0. An arbitrary rotation of a basis inPs(0)X is also a basis and ther
is no information in the zero order operatorH0 allowing one to select the ‘‘preferable’’ basis from
the countless set of those innp0X. But among this countless multitude of an ‘‘arbitrary’’ basis s
there is, at least, one ‘‘correct’’ set determined by external~with respect toH0! conditions.
Namely, vectors of correct set inPs(0)X have to be first addends, in connection with~5!, in an
analytical representation of the corresponding eigenvectorsus@j#& of the operatorH@j#. This
operator as well as its eigenvectors is, by definition, an analytical function of the parameterj. The
basis inPs(0)X consisting of such vectors is determined completely only after the final splittin
the initial Ps(0)X into nonsplitting subspaces. In doing so the final one-dimensional subsp
determine the correct vectors uniquely and arbitrariness in selection of the corresponding
vectors appears in the final degenerate~due to symmetry! subspaces but only inside the fin
degenerate subspace.

4. Some general results

~a! It is impossible to solve the problem of the perturbed eigenvectors before the problem
perturbed eigenvalues is solved. The reason is that it is necessary to have the ‘‘co
vectors of the zero approximation for solution of the eigenvalue problem.

~b! Proposed general order of building the splitting scheme enables one to use the m
number of indices in the formalism. As is seen from the graphs depicted in Figs. 2–4
are:

~1! An index of initial degenerate subspace of the operatorH0 ~in our case, ‘‘s’’ !;
~2! An index indicating number of splitting in every possible skeletal branch~for example

‘‘ i’’ in s( i )!. This index is also number of corresponding stage in the branch;
~3! An index indicating number of PT order~in our case, in Figs. 1–4 it is shown in orde

axis, and in further developed mathematical formalism this index is obviously used!. It is
clear, in Figs. 2 and 4, that a general order number can be substituted for a stage n
and order number in it.

To distinguish among appeared subspaces in every splitting PT order we use an add
index ~in our case this is prime, for example,Ps(1)X,Ps(1)8 X,Ps(1)9 X in the third order, Fig. 2!. But
this index is unnecessary in the general formalism, because the eigenvalue corrections alo
uniquely corresponding subspaces in every splitting order. Thus, except for the eigenvalu
rections, three indices are enough for tracing the splitting process in every PT order. This e
one to obtain obvious expressions for eigenvector corrections in the general form.

II. PERTURBATIONS OF DEGENERATE EIGENVALUES, SPLITTING OF
EIGENSUBSPACES, AND EIGENVECTORS OF ZERO APPROXIMATION

As was noted in the Introduction, one of the peculiarities of the method described i
division of exposition and calculation process to the stages. The first stage is preparatory
called ‘‘zeroth’’ for reasons to be explained later.

A. The preparatory stage

Let H@j# be a self-adjoint holomorphic family ofA-type operators29 depending on the param
eterj. Then in the neighborhoodj50 the family can be represented as a power series

H@j#uu&5H0uu&1j1H1uu&1j2H2uu&1¯ , ~1!
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whereuu& is an arbitrary vector from the range of definitionD(H) of operatorH in Hilbert space
X. Furthermore,H0 is self-adjoint, and allHn are symmetric. We will be interested in thos
eigenvalues of the operatorH@j# which merge into one eigenvalue whenj50 ~degenerate eigen
value of the operatorH@0#[H!. Whenj50, the corresponding eigenvectors of the operatorH@j#
form ‘‘correct’’ sets of orthonormal eigenvectors of operatorH0 in the eigensubspacePsX of the
spaceX; herePs is the orthogonal projector~orthoprojector! on the subspace and

dim~PsX!>1,

equality taking place for nondegenerate states. It should be noted that allP, which will be used
here, denote only orthoprojectors, i.e.,PP5P,P15P. Eigenvalues and eigenvectors of the h
lomorphic operatorH@j# are also holomorphic.29 This enables one to differentiate the correspon
ing eigenvalue equation~Schrödinger equation!

$H@j#2Es@j#%us@j#&50 ~2!

with respect toj as many times as needed. By carrying out this operationn>1 times, denoting

Hk5
1

k!
$]j

kH%0 , Es
k5

1

k!
$]j

kEs%0 , usk&5
1

k!
$]j

kus&%0

~these expressions will be called ‘‘derivatives’’ for short! and using Leibniz formula,50 we obtain
the equation

(
k50

n

@Hn2k2Es
n2k#usk&50.

For short we denote

Hs
k5Hk2Es

k ~3!

and separate the first and the last addends~(q
p50 whenq.p!,

Hs
nus0&1 (

k51

n21

Hs
n2kusk&1Hs

0usn&50, n>0. ~4!

It should be noted that the determination of derivatives of eigenvalues and eigenvector
respect to operator parameters were examined in Refs. 51–54. Before exploiting Eq.~4!, which is
the basis for further consideration, we write out Taylor series for both operatorH@j# and its eigen
elements in the neighborhood ofj50,

H@j#5H01 (
k51

`

jkHk, Es@j#5Es
01 (

k51

`

jkEs
k ,

~5!

us@j#&5us0&1 (
k51

`

jkusk&.

The first equality in~5! coincides with~1! because the vectoruu.PD(H) is arbitrary, other
equalities are PT series for eigenvalues and eigenvectors. Thus the determination of the der
Es

k ,usk& from ~4! allows one to build PT series~5!. It should be noted that if power series~5! exist
then it is possible to obtain the main Eq.~4! through substitution of series~5! in Eq. ~2! and
equating to zero the total coefficients of different powers ofj. Thus, Eq.~4! together with the
formalism being developed has more extensive usage than that of analytic PT. As to condit
applicability Eq.~5!, they were studied by Rellich.3
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It is a common thing thatj is either a formal small parameter or equal to 1 after a suita
scaling in the final PT expressions. Then~5! can be rewritten in an often used form,

H@1#[H5H01 (
k51

`

Hk, Es@1#[Es5Es
01 (

k51

`

Es
k ,

~6!

us@1#&[us&5us0&1 (
k51

`

usk&.

From ~4! the zeroth order isHs
0us0&50, i.e.,

$H02Es
0%us0&50, ;us0&PPsX, ~7!

here ; is the universal quantifier,4 so the second expression means ‘‘for allus0& belonging to
PsX, ’’ and

H0[H@0#, Es
0[Es@0#, us0&[us@0#&.

As Es
0 is degenerate, linear combinations of these vectors satisfy the same equation. Amon

combinations it is possible to choose linearly independent vectorsus(0)0&, where zero in paren-
theses is used for distinction of vectors which are not ‘‘correct’’ vectors of zero approxima
Then Eq.~7! can be rewritten as

$H02Es
0%us~0!0&50, ;us~0!0&PPsX. ~8!

By virtue of Eq.~7! the following equalities are true:

Hs
0Ps5PsHs

050. ~9!

Let us introduce the reduced resolventSs of the operatorH0 with regard to the eigenvalueEs
0.

The resolvent to be exploited further satisfies the equation~from Ref. 29 with changing the sign in
the right part, this will be convenient hereafter!,

Hs
0Ss5SsHs

052~ I 2Ps!, PsSs5SsPs50. ~10!

The Hilbert spaceX can be represented as a direct sum of subspaces

X5PsX% ~ I 2Ps!X

and every derivative of an eigenvector can be written as the sum of external and interna~with
respect toPsX! parts,

usk&5~ I 2Ps!usk&1Psusk&, k>1.

By substituting this in~4! and taking into account~9!, we get

Hs
nus0&1 (

k51

n21

Hs
n2k~ I 2Ps!usk&1Hs

0~ I 2Ps!usn&1 (
k51

n21

Hs
n2kPsusk&50, n>1. ~11!

Equation~11! is the beginning for the recursive determination of derivatives of an eigenvalu
well as the external part of eigenvector derivatives. It should be stressed that usage of~9! means
that the zero term from~11! caused by the zeroth approximation equation has been exclude
the transition fromn>0 in ~4! to n>1 in ~11! conforms to this fact. We emphasize that neith
complete normalization
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^s@j#us@j#&51 ~12!

nor intermediate normalization~0<j<1 in both equations!

^s@0#us@j#&51 ~13!

are essential for eigenvalue derivatives via Eq.~7!. As far as eigenvector derivatives are concern
such normalization forms should be introduced only in the final phase of derivation of form
We note that intermediate normalization leads to the following equalities:

^s0usk&50, k51,2,... . ~14!

B. The first stage

By initially multiplying ~for this stage! Eq. ~11! on the left by the reduced resolventSs ~10!,
we obtain an expression for the external part of thenth eigenvector derivative,

~ I 2Ps!usn&5SsHs
nus0&1Ss(

k51

n21

Hs
n2k~ I 2Ps!usk&1Ss(

k51

n21

Hs
n2kPsusk&, n>1.

By analogy with the previous expression, an expression ofkth derivative is

~ I 2Ps!usk&5SsHs
kus0&1Ss(

l 51

k21

Hs
k2 l~ I 2Ps!usl&1Ss(

l 51

k21

Hs
k2 l Psusl&.

Substitution in the previous equation gives

~ I 2Ps!usn&5SsHs
nus0&1Ss(

k51

n21

Hs
n2kSsHs

kus0&1Ss(
k52

n21

(
l 51

k21

Hs
n2kSsHs

k2 l~ I 2Ps!usl&

1Ss(
k52

n21

(
l 51

k21

Hs
n2kSsHs

k2 l Psusl&1Ss(
k51

n21

Hs
n2kPsusk&.

The first step in excluding external parts of eigenvector derivatives has been carried out. Re
this process step by step, yields the final expression,

~ I 2Ps!usn&5Ss@1#s
nus0&1Ss (

k5n21

n21

(
l 5n22

k21

¯(
u52

t21

(
v51

u21

Hs
n2kSsHs

k2 lSs¯SsHs
u2vPsusv&1¯

1Ss(
k53

n21

(
l 52

k21

(
m51

l 21

Hs
n2kSsHs

k2 lSsHs
l 2mPsusm&

1Ss(
k52

n21

(
l 51

k21

Hs
n2kSsHs

k2 l Psusl&1Ss(
k51

n21

Hs
n2kPsusk&, ~15!

where an auxiliary operator of the first stage is

@1#s
n5Hs

n1 (
k51

n21

Hs
n2kSsHs

k1 (
k52

n21

(
l 51

k21

Hs
n2kSsHs

k2 lHs
l 1 (

k53

n21

(
l 52

k21

(
m51

l 21

Hs
n2kSsHs

k2 lSsHs
l 2mSsHs

m

1¯1 (
k5n21

n21

(
l 5n22

k21

¯(
u52

t21

(
v51

u21

Hs
n2kSsHs

k2 lSs¯SsHs
u2vSsHs

v . ~16!
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The last expression (I 2Ps)usk& contains only the internal part of eigenvector derivatives wh
can be summed. Then the external part of the eigenvector derivatives is

~ I 2Ps!usn&5Ss@1#s
nus0&1Ss(

k51

n21

@1#s
n2kPsusk&, n>1. ~17!

Let us obtain equations for eigenvalue derivatives. By multiplying the initial Eq.~11! on the left
by Ps , we get

Ps@1#s
nus0&1Ps(

k51

n21

Hs
n2k~ I 2Ps!usk&1Ps(

k51

n21

Hs
n2kPsusk&50.

Condition~9! has been taken into account. By using~17! we exclude the external parts of eige
vector derivatives and have

Ps@1#s
nus0&1Ps (

m51

n21

@1#s
n2mPsusm&50, n>1. ~18!

We assume that splitting occurs inN1th order in the first stage. Then forn51,2,...,N121 con-
secutively equations are

Ps@1#s
nus0&50, us0&5Psus0&, 1<n,N1 . ~19!

They are true for allus0&PPsX. Their linear combinations also satisfy~19!. This enables one to
choose linearly independent orthonormal vectorsus(0)0&PPsX and to replace~19! by equations

Ps@1#s
nus~0!0&50, 1<n,N1 , ;us~0!0&PPsX, ~20!

which emphasize the assumed absence of splittings in these orders. Ifn5N1 then the set$us0&%,
on whichPsX is pulled on, breaks into the parts, every of them pulls on one of thePs(1)X,PsX
and corresponding equations has the form

Ps@1#s
N1us0&50, us0&5Psus0&, ;us0&PPs~1!X. ~21!

Within every subset it is possible to choose linear combinations ofus0&, i.e., orthonormalus(1)0&,
which also satisfy~21!,

Ps@1#s
N1us~1!0&50, us~1!0&5Psus~1!0&, ;us~1!0&PPs~1!X. ~22!

Evidently ~20! and ~22! are the eigenvalue equations for nonsplitting and splitting order, res
tively.

In order to rewrite them in the usual form of eigenvalue equations we take into conside
the fact that the first term in the right-hand side of~15! can be represented according to~3!. Then,

@1#s
n5@1#s

n2Es
n , @1#s

N15@1#s
N12Es

N1,

and ~20!, ~22! are

Ps$@1#s
n2Es

n%us~0!0&50, 1<n,N1 , ;us~0!0.PPsX,

Ps$@1#s
N12Es

N1%us~1!0&50, us~1!0&5Psus~1!0&, ;us~1!0&PPs~1!X.
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Here @1#s
n ,@1#s

N1 are effective operators forn51,2,...,N121th, andNth orders in the first stage
Acting in PsX they differ from corresponding auxiliary operator~16! not only in the substitution
Hs

n→Hn, but also in

Hs
n2kSsH

k2 lSs¯SsHs
r 2tSsHs

t →Hn2kSsH
k2 lSs¯SsHs

r 2tSsH
t ~23!

as follows from~10!, ~3!. Equalities

Ps@1#s
nPs50, 1<n,N1 ; Ps@1#s

N1Ps~1!50, ~24!

obtained from~20!, ~22! are necessary for further exclusion of zero terms in the next stage i
same way as~9! was used for this stage. A new resolventSs(1)

s(0) reduced onPs(1)X,PsX with
respect to eigenvalueEs(1)

N1 is introduced. It is determined by equations

Ps@1#s
N1Ss~1!

s~0!5Ss~1!
s~0!@1#s

N1Ps52~Ps2Ps~1!!,

PsSs~1!
s~0!5Ss~1!

s~0!Ps5Ss~1!
s~0! , Ps~1!Ss~1!

s~0!5Ss~1!
s~0!Ps~1!50. ~25!

Upon returning to Eq.~18! we see that its consequences for 1<n<N have been realized in
~19!, ~21!, i.e., ~25!. Whenn.N let us assume

n5N11t, t>1. ~26!

Substituting~26! in ~18!, replacing summation indices, taking into account~24!, and introducing

Psusk&5~Ps2Ps~1!!usk&1Ps~1!usk&,

we get an equation

Ps@1#s
N11tus0&1Ps(

k51

t21

@1#s
N11t2k

~Ps2Ps~1!!usk&1Ps@1#s
N1~Ps2Ps~1!!ust&

1Ps(
k51

t21

@1#s
N11t2kPs~1!usk&50, t>1, ~27!

which is the basis for the next stage. It is interesting to compare~27! with the basic equation for
the first stage~11!. We use unified designations,

Ps[Ps~0! , I[Ps~21! , Hs
t [@0#s

t , Ss[Ss~0!
s~21! , ~28!

whereI is the identity operator in the Hilbert spaceX. Then Eq.~11! can be rewritten as

Ps~21!@0#s
N01nus0&1Ps~21! (

k51

n21

@0#s
N01n2k

~Ps~21!2Ps~0!!usk&1Ps~21!@0#s
N0~Ps~21!2Ps~0!!usn&

1Ps~21! (
k51

n21

@0#s
N01n2kPs~0!usk&, n>1. ~29!

Here,N050 is the number of the stage~zeroth! in which X splits into subspacesPs(0)X when Eq.
~8! is solved. Now we can see that basic equations for the first~29! and the second~27! stages
have an identical structure. The distinction is that Eq.~11! or ~29! determined inX contains parts
of eigenvector derivatives in (Ps(21)2Ps(0))X, whereas~27! determined inPs(0)X contains the
same parts in (Ps(0)2Ps(1))X. That is why all equations for the second stage can be obtaine
the same way which has been used for the first stage. At the end of the second stag
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equations~having the same structure as~11!, ~27!! for the third stage will be obtained. Sinc
obtaining equations for other stages repeats this procedure, we write out the general resu

C. Arbitrary „a¿1…th stage

An abbreviated designation of the derivative order~PT order! in which theath splitting occurs
is as follows:

Aa5 (
b50

a

Nb ; a50,1,2,...; N050, ~30!

whereNb is the splitting order within thebth stage. Evidently,

Aa115Aa1Na11 .

Let us write out the equations obtained in the previousath stage. The basic equation for th
(a11)th stage is

Ps~a21!@a#s
Aa1tus0&1Ps~a21!(

k51

t21

@a#s
Aa1t2k

~Ps~a21!2Ps~a!!usk&1Ps~a21!@a#s
Aa~Ps~a21!

2Ps~a!!ust&1Ps~a21!(
k51

t21

@a#s
Aa1t2kPs~a!usk&50, t>0. ~31!

Equations determining the reduced resolvent are

Ps~a21!@a#s
AaSs~a!

s~a21!5Ss~a!
s~a21!@a#s

AaPs~a21!52~Ps~a21!2Ps~a!!,

Ps~a21!Ss~a!
s~a21!5Ss~a!

s~a21!Ps~a21!5Ss~a!
s~a21! , ~32!

Ps~a!Ss~a!
s~a21!5Ss~a!

s~a21!Ps~a!50.

For the (a11)th stage we have the following results. The eigenvector derivative part belongi
subspace (Ps(a21)2Ps(a))X is

~Ps~a21!2Ps~a!!ust&5Ss~a!
s~a21!@a11#s

Aa1tus0&1Ss~a!
s~a21!(

k51

t21

@a11#s
Aa1t2kPs~a!usk&, t>1.

~33!

An auxiliary operator is

@a11#s
Aa1t

5@a#s
Aa1t

1 (
k51

t21

@a#s
Aa1t2kSs~a!

s~a21!@a#s
Aa1k

1 (
k52

t21

(
l 51

k21

@a#s
Aa1t2kSs~a!

s~a21!

3@a#s
Aa1k2 lSs~a!

s~a21!@a#s
Aa1 l

1¯1 (
k5t21

t21

(
l 5t22

k21

¯(
u52

r 21

(
v51

u21

@a#s
Aa1t2kSs~a!

s~a21!

3@a#s
Aa1k2 lSs~a!

s~a21!3¯3Ss~a!
s~a21!@a#s

Aa1u2vSs~a!
s~a21!@a#s

Aa1v , a>0, t>1.

~34!

Eigenvalue equations for the nonsplitting and splitting orders are

Ps~a!@a11#s
Aa1tus~a!0&50, 1<t,Na11 , ;us~a!0&PPs~a!X, ~35!
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Ps~a!@a11#s
Aa11us~a11!0&50, us~a11!0&5Ps~a!us~a11!0&, ~36!

;us~a11!0&PPs~a11!X,

respectively. Effective operators for the (a11)th stage are

@a11#s
Aa1t

5@a11#s
Aa11

1Es~a!

Aa1t
; @a11#s

Aa115@a11#s
Aa111Es~a11!

Aa11 . ~37!

Equation~35! and ~36! can be rewritten as~taking into consideration~37!!

Ps~a!$@a11#s
Aa1t

2Es~a!

Aa1t
%us~a!0&50,

1<t,Na11 , ;us~a!0&PPs~a!X, ~38!

Ps~a!$@a11#s
Aa112Es~a11!

Aa11 %us~a11!0&50,

us~a11!0&5Ps~a!us~a11!0&, ;us~a11!0&PPs~a11!X. ~39!

The first of these equations determines only the (Aa1t)th derivative of an eigenvalue~(Aa

1t)th correction of PT! without splitting it and not making vectorsus(a)0&PPs(a)X more precise.
The second equation makes more precise both the (Aa11)th derivative of the eigenvalue an

vectorsus(a)0& through splittingPs(a)X into variousPs(a11)X. If in a problem the last possible
splitting occurs in theath stage, i.e., in theAath order, then the (a11)th stage is the last possibl
stage of the problem. In this case, only eigenvalue equations like~35! or ~38! ~that is the same! are
possible here. Replacements like~23! also take place.

Equalities~which are analogous to~9! and ~24!!

Ps~a!@a11#s
Aa1tPs~a!50, 1<t,Na11 ,

Ps~a!@a11#s
Aa11Ps~a11!50

are consequences of Eqs.~35! and~36!. It is easy to verify that equations for the (a11)th stage
lead to the equations for the first stage whena50 ~Aa50 if ~28!, ~30! are taken into consider
ation!.

III. CORRECTIONS TO EIGENVECTORS

A. Obtaining corrections

Let us assume that splittings of the initial subspacePs(0)X for a vectorus0& belonging to the
‘‘correct’’ vector set are completed in thevth stage. ThenPs(v)X is the subspace arising in th
last splitting for the vectorus0&. Corresponding derivative of an eigenvector of thetth order can be
represented as

ust&5~Ps~21!2Ps~0!!ust&1 (
a51

v

~Ps~a21!2Ps~a!!ust&1Ps~v!ust&, ~40!

because

~Ps~21!2Ps~0!!1 (
a51

v

~Ps~a21!2Ps~a!!1Ps~v!5Ps~21![I .

The last addend in~40! is determined by normalization condition~12! or ~13!. By using an
identity,
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Ps~a!5 (
b51

v2a

~Ps~a1b21!2Ps~a1b!!1Ps~v! .

in Eq. ~33!, we have

~Ps~a21!2Ps~a!!ust&5Ss~a!
s~a21!@a11#s

Aa1tus0&1Ss~a!
s~a21!(

k51

t21

@a11#s
Aa1t2k (

b51

v2a

~Ps~a1b21!

2Ps~a1b!!usk&1Ss~a!
s~a21!(

k51

t21

@a11#s
Aa1t2kPs~v!usk&. ~41!

By analogy with~41! it is possible to write

~Ps~a1b21!2Ps~a1b!!usk&5Ss~a1b!
s~a1b21!@a1b11#s

Aa1b1kus0&1Ss~a1b!
s~a1b21!

3 (
l 51

k21

@a1b11#s
Aa1b1k2 l (

g51

v2~a1b!

~Ps~a1b1g21!2Ps~a1b1g!!usl&

1Ss~a1b!
s~a1b21!(

l 51

k21

@a1b11#s
Aa1b1k2 l Ps~v!usl&. ~42!

First substituting~41! in ~40! then ~42! in ~40! and so on, we may consecutively exclude
components of all eigenvector derivatives from~40! except for projections onPs(v)X. As making
eigenvectors and their derivatives more precise is completed only after the last splitting, we
final expression of an eigenvector derivative in arbitrary ordert,

us~v! t&5 (
a50

v

Ss~a!
s~a21!@a11#s

Aa1tus~v!0&

1 (
a50

v21

Ss~a!
s~a21!(

k51

t21

@a11#s
Aa1t2k (

b51

v2a

Ss~a1b!
s~a1b21!@a1b11#s

Aa1b1kus~v!0&

1 (
a50

v22

Ss~a!
s~a21!(

k52

t21

@a11#s
Aa1t2k (

b51

~v21!2a

Ss~a1b!
s~a1b21!

3 (
l 51

k21

@a1b11#s
Aa1b1k2 l (

g51

v2~a1b!

Ss~a1b1g!
s~a1b1g21!@a1b1g11#s

Aa1b1g1 l us~v!0&

1 (
a50

v23

Ss~a!
s~a21!(

k53

t21

@a11#s
Aa1t2k (

b51

~v22!2a

Ss~a1b!
s~a1b21!

3 (
l 52

k21

@a1b11#s
Aa1b1k2 l (

g51

~v21!2~a1b!

Ss~a1b1g!
s~a1b1g21!

3 (
m51

l 21

@a1b1g11#s
Aa1b1g1 l 2m (

d51

v2~a1b1g!

Ss~a1b1g1d!
s~a1b1g1d21!

3@a1b1g1d11#s
Aa1b1g1d1mus~v!0&1 (

a50

v24

Ss~a!
s~a21!(

k54

t21

@a11#s
Aa1t2k

3 (
b51

~v23!2a

Ss~a1b!
s~a1b21!(

l 53

k21

@a1b11#s
Aa1b1k2 l (

g51

~v22!2~a1b!

Ss~a1b1g!
s~a1b1g21!
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3 (
m52

l 21

@a1b1g11#s
Aa1b1g1d1 l 2m (

d51

~v21!2~a1b1g!

Ss~a1b1g1d!
s~a1b1g1d21!

3 (
n51

m21

@a1b1g1d11#s
Aa1b1g1d1m2n (

n51
2~a1b1g1d! Ss~a1b1g1d1n!

s~a1g1d1n21!

3@a1b1g1d1n11#s
Aa1b1g1d1n1nus~v!0&1¯

1 (
a50

v23

Ss~a!
s~a21!(

k54

t21

@a11#s
Aa1t2k (

b51

~v22!2a

Ss~a1b!
s~a1b21!

3 (
l 53

k21

@a1b11#s
Aa1b1k2 l (

g51

~v21!2~a1b!

Ss~a1b1g!
s~a1b1g21!

3 (
m52

l 21

@a1b1g11#s
Aa1b1g1 l 2m (

d51

v2~a1b1g!

Ss~a1b1g1d!
s~a1b1g1d21!

3 (
n51

m21

@a1b1g1d11#s
Aa1b1g1d1m2nPs~v!us~v!n&

1 (
a50

v22

Ss~a!
s~a21!(

k53

t21

@a11#s
Aa1t2k (

b51

~v21!2a

Ss~a1b!
s~a1b21! (

l 52

k21

@a1b11#s
Aa1b1k2 l

3 (
g51

v2~a1b!

Ss~a1b1g!
s~a1b1g21! (

m51

l 21

@a1b1g11#s
Aa1b1g1 l 2mPs~v!us~v!m&

1 (
a50

v21

Ss~a!
s~a21!(

k52

t21

@a11#s
Aa1t2k (

b51

v2a

Ss~a1b!
s~a1b21!(

l 51

k21

@a1b11#s
Aa1b1k2 l Ps~v!us~v! l&

1 (
a50

v

Ss~a!
s~a21!(

k51

t21

@a11#s
Aa1t2kPs~v!us~v!k&1Ps~v!us~v! t&, t> (

a50

v

Na . ~43!

Here for every summation sign the following condition is true:

(
q

p

50 when p,q. ~44!

It should be stressed that~43! contains two groups of addends. All addends from the first gr
end with the vectorus(v)0&, those from the second one end with the projectionsPs(v)us(v) t&,
t51,2,... .

Substituting these results obtained in~6! where now

us0&5us~v!0& and ust&5us~v! t&,

we have the complete expression of the perturbed eigenvector,

us&5us~v!0&1(
t51

`

us~v! t&. ~45!
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B. Influence of normalization conditions

Two types of normalization conditions are widely used in calculations; the complete no
ization~12! and the intermediate one~13!. In the latter, the equality~14! is true, so that in~43! one
has

Ps~v!us~v! t&50, t51,2,...,

whence there is a simplification of expressions in~43!. The consequent vectors of the perturb
problem ~45! are not normalized in any PT order. In the case of complete normalization
expression ofPs(v)us(v) t& is obtained through differentiating~12! with respect to the parameterj,
using~43! and separating corresponding parts from the expressions so obtained. As express
eigenvector derivatives~45! are complex, we write out only three first derivatives of eigenvec
after complete splitting,

Ps~v!us~v!1&50,

Ps~v!us~v!2&52us~v!0&
1

2 (
a50

v

^s~v!0u@a11#s
Aa11Ss~a!

~a21!3Ss~a!
s~a21!@a11#s

Aa11us~v!0&;

Ps~v!us~v!3&52us~v!0&H (
a50

v

^s~v!0u@a11#s
Aa11Ss~a!

s~a21!3Ss~a!
s~a21!@a11#s

Aa12us~v!0&

1 (
a50

v21

^s~v!0u@a11#s
Aa11Ss~a!

s~a21!3Ss~a!
s~a21!@a11#s

Aa11

3 (
b51

v2a

Ss~a1b!
s~a1b21!@a1b11#s

Aa1b11us~v!0&J .

For simplicity we assume that scalar products are real.

IV. GENERAL PECULIARITIES OF THE CALCULATION OF CORRECTIONS TO
EIGENVALUES AND EIGENVECTORS
A. Peculiarities of the result obtained for eigenvectors

In any case, corrections to eigenvectors are determined by three characteristics:

~1! correction ordert, wheret51,2,...;
~2! all ordersAa(a51,2,...,v), in which splittings of initially degenerate states occur;
~3! zeroth-approximation vectorsus(v)0& having the final form in thevth stage after the las

splitting.

When formula~43! was derived, auxiliary operators, which in final expressions would
replaced by effective operators, were exploited. This is possible due to~37! and because either o
these operators is situated in~43! between two resolvents of different stages. But the produc
such resolvents~in accordance with~32! is equal to zero. For example,

a50,1,...,v22

Ss~a1b!
s~a1b21!Ss~a1b1g!

s~a1b1g21!50, b51,2,...,~v21!2a

g51,2,...,v2~a1b!.

Then from~39! we get

Ss~a1b!
s~a1b21!@a1b11#s

Aa1b1k2 lSs~a1b1g!
s~a1b1g21!5Ss~a1b!

s~a1b21!@a1b11#s
Aa1b1k2 lSs~a1b1g!

~a1b1g21! .

Results for those auxiliary operators located between the reduced resolvents andPs(v) are analo-
gous, because~in accordance with~32!!
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Ss~a1b!
s~a1b21!Ps~v!50.

The detailed expression of the first addend on the right part~43! is ~hereA050!

(
a50

v

Ss~a!
s~a21!@a11#s

Aa1tus~v!0&5Ss~0!
s~21!@1#s

t us~v!0&1Ss~1!
s~0!@2#s

A11tus~v!0&

1Ss~2!
s~1!@3#s

A11tus~v!0&1¯ .

Using the second Eq.~32! we can see that the first addend is a vector-correction compo
located in (I 2Ps(0))X, and the other addends are components situated inPs(0)X. Thus, a ‘‘cor-
rect’’ eigenvector of zeroth approximationus0&5us(v)0& in ~45! cannot be represented as a pr
jection of the perturbed vectorus& on Ps(0)X.

B. Comparison of initial information necessary for the determination of perturbed
eigenvalues and eigenvectors

Let us begin with peculiarities of the calculation of corrections to eigenvalues. A few
terms of effective operators~37! of the first (a50) and the second (a51) stages are~in accor-
dance with~30! A050, A15N1!,

@1#s
t 5Ht1 (

k51

t21

Hs
t2kSs~0!

s~21!Hs
k1 (

k52

t21

(
l 51

k21

Hs
t2kSs~0!

s~21!Hs
l 1¯ ,

@2#s
A15Ht1 (

k51

t21

@1#s
A11t2kSs~21!

s~0! @1#s
A11k

1 (
k52

t21

(
l 51

k21

@1#s
A11t2kSs~1!

s~0!@1#s
A11k2 lSs~1!

s~0!@1#s
A11 l

1¯ ,

whereHs
p5Hp2Es

p .
Substituting@1#s

t in Eqs.~38!, ~39! and solving them consecutively beginning witht51, we
get A121 nonsplitting eigenvaluesEs

t and the set of splitting eigenvalues$Es
A1%. Using the

auxiliary operator of the second stage by analogy with the previous procedure, we get in s
sion this stage corrections to eigenvalues. Repeating these calculations for other stages, w
all necessary corrections to eigenvalues. In the process of making zero approximation eigen
more precise, we obtain a chain of ever smaller subspaces

Ps~0!X.Ps~1!X.¯.Ps~v!X. ~46!

All these processes forPs(0)X rely only on an arbitrary set of independent vectors of zer
approximation$us(0)0&%. Unlike this, the determination of corrections to eigenvectors in ac
dance with~43! requires more initial information. Namely, in order to get corrections to vect
which belong to the chain~46! where the last splitting occurs in thevth stage, up totth order
inclusively it is necessary to know both all successive corrections to eigenvalues up to

~Av1t21!th correction ~47!

inclusively and the ‘‘correct’’ vector set$us(v)0&%. The latter statements follow directly from
~43!, the former one can be easily proved. Sequence of equalities for auxiliary operators ba
~36! is

@a11#s
p5@a#s

p1¯ ,

@a#s
p5@a21#s

p1¯ ,

¯

@2#s
p5@1#s

p1¯ ,

@1#s
p5Hs

p1¯ ,
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where addends containing the senior correction to the eigenvalue are written out on the ri
the last equality this correction isEs

p becauseHs
p5Hp2Es

p . If one looks through these equalitie
in inverse order it becomes obvious thatEs

p is also the senior correction for all auxiliary operato
on the left. Thus, the senior correction to the eigenvalue included in auxiliary operator doe
depend on stage number and is equal to order index of this operator. Going to effective op
we can see that the order of the senior correction is equal to the correction index minu
accordance with~37!. It is easy to verify that the effective operator with maximal order index
~43! is

@v11#s
Av1t .

It belongs to the first sum. This implies that the highest order of corrections to eigenvalues
are necessary for determination ofus(v) t& is that of ~47!.

V. SUPPLEMENT

This supplement is added to clarify the use of the general formalism for building particula
series for the eigenvalues of the self-adjoint operators. We will use the general relations de
in Sec. II C and examine several lowest PT stages.

A. Zero PT approximation

The operator of the zero approximationH0 is chosen with respect to the operator of t
problem in handH in such a way that the remainder (H2H0) is ‘‘small’’ in comparison with both
H andH0, besides the eigenvalue problem~8! for H0 has exact solutions. In so doing PT seri
contains no terms preceding the zero approximation. Thus it belongs to the zero stage,a
50 and to the zero PT order, i.e.,N050. Therefore Eq.~30! gives A050. Substituting these
values in Eq.~31!, which is the initial one for next stage and puttingt50 in it, we obtain an
eigenvalue equation for the zero approximation

Ps~21!@0#s
0us~0!0&50, ;us~0!0&PPsX. ~48!

While obtaining~48! from ~31!, the condition~44! is taken into account. If one uses~28! and~3!
then ~48! is as follows:

1$H02Es~0!
0 %us~0!0&50, ;us~0!0&PPsX,

that coincides with~8!.
To obtain equations determining the reduced resolventSs(0)

s(21) of the operatorH0 with respect
to its eigenvalueEs(0)

0 , it is necessary to substitutea50, Aa5A050 in Eq. ~32!,

Ps~21!@0#s
0Ss~0!

s~21!5Ss~0!
s~21!@0#s

0Ps~21!52~Ps~21!2Ps~0!!,

Ps~21!Ss~0!
s~21!5Ss~0!

s~21!Ps~21!5Ss~0!
s~21! , ~49!

Ps~0!Ss~0!
s~21!5Ss~0!

s~21!Ps~0!50.

Here, the second equation is not mandatory, as it is identity in the Hilbert spaceX, the first and the
third ones coincide with~10!. Indeed, taking into consideration~28!, ~3! and puttingt50, we
obtain

~H02Es~0!
0 !Ss5Ss~H02Es~0!

0 !52~ I 2Ps~0!!,

ISs5SsI 5Ss , Ps~0!Ss5SsPs~0!50.
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B. The first PT stage

This stage follows the zero one, so that (a11)51, a50, Aa5A050 and containsN1 orders
marked byt51,2,...,N1 . The orders marked byt51,2,...,N121 are nonsplitting, the order marke
by t5N1 is splitting. The first stage auxiliary operators are obtained from~34!, i.e.,

@1#s
t 5@0#s

t 1 (
k51

t21

@0#s
t2kSs~0!

s~21!@0#s
k1 (

k52

t21

(
l 51

k21

@0#s
t2kSs~0!

s~21!@0#s
k2 lSs~0!

s~21!@0#s
l 1¯

1 (
k5t21

t21

(
l 5t22

k21

¯(
u52

r 21

(
v51

u21

@0#s
t2kSs~0!

s~21!@0#s
k2 lSs~0!

s~21!
¯Ss~0!

s~21!@0#s
r 2u

3Ss~0!
s~21!@0#s

u2vSs~0!
s~21!@0#s

y . ~50!

It is easy to show that the last addend can be rewritten as

(
k5t21

t21

(
l 5t22

k21

¯(
u52

r 21

(
v51

u21

@0#s
t2kSs~0!

s~21!@0#s
k2 lSs~0!

s~21!
¯@0#s

u2vSs~0!
s~21!@0#s

v

5@0#s
1Ss~0!

s~21!@0#s
1Ss~0!

s~21!
¯@0#s

1Ss~0!
s~21!@0#s

1, ~51!

it containingt operators@0#s
1.

Taking into account~44!, for several firstt from ~50! we have

@1#s
15@0#s

1,

@1#s
25@0#s

21 (
k51

221

@0#s
22kSs~0!

s~21!@0#s
k5@0#s

21@0#s
1Ss~0!

s~21!@0#s
1,

@1#s
35@0#s

31 (
k51

321

@0#s
32kSs~0!

s~21!@0#s
k1 (

k52

321

(
l 51

k21

@0#s
32kSs~0!

s~21!@0#s
k2 lSs~0!

s~21!@0#s
l

5@0#s
31@0#s

2Ss~0!
s~21!@0#s

11@0#s
1Ss~0!

s~21!@0#s
21@0#s

1Ss~0!
s~21!@0#s

1Ss~0!
s~21!@0#s

1,

@1#s
45@0#s

41 (
k51

421

@0#s
42kSs~0!

s~21!@0#s
k1 (

k52

421

(
l 51

k21

@0#s
42kSs~0!

s~21!@0#s
k2 lSs~0!

s~21!@0#s
l

1 (
k53

421

(
l 52

k21

(
m51

l 21

@0#s
42kSs~0!

s~21!@0#s
k2 lSs~0!

s~21!@0#s
l 2mSs~0!

s~21!@0#s
m5@0#s

41@0#s
3Ss~0!

s~21!@0#s
1

1@0#s
2Ss~0!

s~21!@0#s
21@0#s

1Ss~0!
s~21!@0#s

31@0#s
2Ss~0!

s~21!@0#s
1Ss~0!

s~21!@0#s
11@0#s

1Ss~0!
s~21!@0#s

2

3Ss~0!
s~21!@0#s

11@0#s
1Ss~0!

s~21!@0#s
1Ss~0!

s~21!@0#s
21@0#s

1Ss~0!
s~21!@0#s

1Ss~0!
s~21!@0#s

1Ss~0!
s~21!@0#s

1.

In a similar manner one can obtain expression for high PT orders. It is evident that sp
expressions support the validity of~51!.

Effective operators for everyt ~including t5N1! are determined in accordance with~37!.
Taking into consideration that in~50!, according to~28!, ~3!,

@0#s
t 5Ht2Es~0!

t ,

we have an expression of the effective operator corresponding to the auxiliary one~50!,
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@1#s
t 5Ht1 (

k51

t21

@0#s
t2kSs~0!

s~21!@0#s
k1 (

k52

t21

(
l 51

k21

@0#s
t2kSs~0!

s~21!@0#s
k2 lSs~0!

s~21!@0#s
l

1¯1@0#s
1Ss~0!

s~21!@0#s
1Ss~0!

s~21!
¯@0#s

1Ss~0!
s~21!@0#s

1. ~52!

For theN1th splitting order the effective operator@1#s
N1 is obtained from~52! through substitution

t5N1 .
Eigenvalue equations are obtained from~38!, ~39!: for nonsplitting orderst51,2,...,N121,

Ps~0!$@1#s
t 2Es~0!

t %5us~0!0&, ;us~0!0&PPs~0!X; ~53!

for the splitting one,

Ps~0!$@1#s
N12Es~1!

N1 %5us~1!0&,us~1!0&5Ps~0!us~1!0&, ;us~1!0&PPs~1!X. ~54!

This reduces the resolventSs(1)
s(0) of operator@@1#s

N1 in subspacePs(0)X with respect to the

eigenvalueEs(1)
N1 , for which the eigensubspace isPs(1)X, and is determined by the equations

Ps~0!@1#s
N1Ss~1!

s~0!5Ss~1!
s~0!@1#s

N152~Ps~0!2Ps~1!!,

Ps~0!Ss~1!
s~0!5Ss~1!

s~0!Ps~0!5Ss~1!
s~0! , ~55!

Ps~1!Ss~1!
s~0!5Ss~1!

s~0!Ps~1!50.

C. The second PT stage

This stage follows the first one, so that (a11)52, i.e.,a51, Aa5A15A01N15N1. The stage
containsN2 orders, the internal numbering beingt51,2,...,N2 . The external~or complete! one is
(A11t)5N111,N112,...,N11N2 . The orders with indicest51,2,...,N121 are nonsplitting, and
the order witht5N2 is splitting.

The second stage auxiliary operators are obtained from~34!,

@2#s
N11t

5@1#a
N11t

1 (
k51

t21

@1#s
N11t2kSs~1!

s~0!@1#s
N11k

1 (
k52

t21

(
l 51

k21

@1#s
N11t2kSs~1!

s~0!@1#s
N11k2 lSs~1!

s~0!@1#s
N11 l

1¯1 (
k5t21

t21

(
l 5t22

k21

¯(
u52

r 21

(
v51

u21

@1#s
N11t2kSs~1!

s~0!@1#s
N11k2 lSs~1!

s~0!
¯@1#s

N11u2vSs~1!
s~0!

3@1#s
N11v . ~56!

The last addend, as well as in~50!, has the form analogous~51!, i.e.,

@1#s
N111Ss~1!

s~0!@1#s
N111Ss~1!

s~0!
¯@1#s

N111Ss~1!
s~0!@1#s

N111

and containst factors@1#s
N111.

Several specific expressions~56! for different t ~taking into account~44!! are

@2#s
N111

5@1#s
N111,

@2#s
N112

5@1#s
N112

1 (
k51

221

@1#s
N1122kSs~1!

s~0!@1#s
N11k ,
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@2#s
N113

5@1#s
N113

1 (
k51

321

@1#s
N1132kSs~1!

s~0!@1#s
N11k

1 (
k52

321

(
l 51

k21

@1#s
N1132kSs~1!

s~0!@1#s
N11k2 lSs~1!

s~0!@1#s
N11 l ,

etc., untilt5N2 , which corresponds to the auxiliary operator of the splitting order for the sec
stage.

Eigenvalue equations in terms of the auxiliary operators have the form of Eq.~35!: in non-
splitting orders (t51,2,...,N221),

Ps~1!@2#s
N11tus~1!0&50, ;us~1!0&PPs~1!X, ~57!

in the splitting order,

Ps~1!@2#s
N11N2us~2!0&50, us~2!0&5Ps~1!us~2!0&, ;us~2!0&PPs~2!X. ~58!

The same equations in terms of the auxiliary operators have the form of Eqs.~38! and ~39!,

Ps~1!$@2#s
N11t

2Es~1!

N11t
%us~1!0&50, ;us~1!0&PPs~1!X;

Ps~1!$@2#s
N11N22Es~2!

N11N2%us~2!0&50, us~2!0&5Ps~1!us~2!0&, ;us~2!0&PPs~2!X.

Equations, which determine the reduce resolventSs(2)
s(1) of operator@2#s

N11N2 in the subspace

Ps(1)X with respect to the eigenvalueEs(2)
N11N2, which corresponds to the subspacePs(2)X, are

analogous to~49! and ~55!,

Ps~1!@2#s
N11N2Ss~2!

s~1!5Ss~2!
s~1!@2#s

N11N2Ps~1!52~Ps~1!2Ps~2!!,

Ps~1!Ss~2!
s~1!5Ss~2!

s~1!Ps~1!5Ss~2!
s~1! ,

Ps~2!Ss~2!
s~1!5Ss~2!

s~1!Ps~2!50.

The last thing which has to be done to finish the second PT stage is to express the op
@1#s

N11t (t51,2,...,N2) as functions of the operators@0#s
n . A new index is exploited

t85N11t, t85N111,N212,...,N11N2 ;

besides it is necessary to take into account that the resolventSs(1)
s(0) is used in~56! unlike Ss(0)

s(21) in
~50!. Summing it up we have

@1#s
t85@0#s

t81 (
k51

t821

@0#s
t82kSs~1!

s~0!@0#s
k1 (

k52

t821

(
l 51

k21

@0#s
t82kSs~1!

s~0!@0#s
k2 lSs~1!

s~0!@0#s
l

1¯1@0#s
1Ss~1!

s~0!@0#s
1Ss~1!

s~0!
¯@0#s

1Ss~1!
s~0!@0#s

1,

the last addend containingt8 factors@0#s
1.

D. The third PT stage

This stage is an extension of two previous stages and is described in the same way. N
(a11)53, a52, Aa5A25A11N25N11N2 . The stage containsN3 orders, the internal index
being t51,2,...,N3 . The external~or complete! one is (A21t)5N11N21t. The orders with
indicest51,2,...,N321 are nonsplitting, the order witht5N3 is splitting.
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The auxiliary operators are obtained from~34! analogously to~50!, ~56!. The eigenvalue
equations are obtained from~35!, ~36! or from ~38!, ~39! analogously to~53!, ~54! or ~57!, ~58!.

The other third stage actions are like those in two preceding ones.
It is clear that algorithmic schemes of subsequent stages are analogous to those desc
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Local optimization of the summation of divergent
power series

J. R. Walkup, M. Dunn, and D. K. Watson
Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019
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A method of optimizing a sequence of economized rational approximants~ERAs!
to produce a sequence of approximants with enhanced convergence properties is
described. It is shown that such a technique improves upon the error of the Pade´
approximants at a chosen value of the independent variable, and in some cases
leads to dramatic improvement, even in cases where Pade´ approximants behave
erratically. The procedure is tested on six known functions, with improved conver-
gence and accuracy in each case. The procedure is then applied to the problem of
evaluating a perturbation series of an atomic system, diamagnetic hydrogen, with
significant improvement in both convergence and accuracy as well. ©2000
American Institute of Physics.@S0022-2488~00!02008-9#

I. INTRODUCTION

The divergence of perturbation series is an important hindrance to progress in many fie
physics. Fortunately, many methods1–4 can often transform perturbation series into approxima
that converge to accurate results. Pade´ approximants5 can incorporate singularities into their stru
ture that the original perturbation series cannot, and for this reason have long been a f
method of approximation. They tend to have remarkable short-range accuracy~that is, when the
distance from the origin to the point of evaluation is small!, but somewhat poorer long-rang
accuracy. Therefore, although they almost always yield better results than directly summi
perturbation series and often converge when direct summation completely fails, they ca
produce frustratingly poor or meaningless results at larger distances away from the origin. V
extrapolation methods can extract accurate results from poorly converging sequences by e
lating the sequence out to infinity,1 but these frequently fail with poorly convergent Pade´ se-
quences since they tend to be quite irregular in their convergence. Other rational polyn
approximants2 can perform significantly better than Pade´ approximants, but rarely share the
rugged versatility.

In the field of applied computing one is usually interested in evaluating a function repea
within a certain range of the independent variablex. Because computers can only add, subtra
multiply, and divide, rational functions of polynomials are the most complex functions which
be directly evaluated on a computer.6 Therefore computers use rational polynomial approxima
to approximate more complex functions to a high degree of accuracy. The Pade´ approximant,
being one example, is hampered by its relatively poor long-range accuracy. Fortunately, th
methods that transform Pade´ approximants by sacrificing their superior short-range accuracy s
to lower the maximum error over the entire evaluation range. One such method iseconomization.
Padéapproximants can be economized6,7 to produce an approximant, called an economized ra
nal approximant~ERA!, that guarantees a lower maximum error throughout a specific range o
independent variable.

With perturbation theory, however, one is usually more concerned with evaluating the p
bation series at a particular value ofx which is known beforehand. In such cases it is beneficia
minimize the error at that specific value ofx, rather than to minimize the maximum error over t
entire range. In this paper, we introduce a method for optimizing ERAs8 to minimize the errorat
a specific valueof the independent variable. We chose to optimize ERAs because
58140022-2488/2000/41(8)/5814/18/$17.00 © 2000 American Institute of Physics
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~1! they are capable of providing a more accurate summation of the perturbation series tha´
approximants when the point of evaluation is far from the origin,

~2! they contain a variable parameter that allows one to change the convergence of the re
sequence in a continuous fashion.

In Sec. II we review the economization of power series and in Sec. III we briefly review
process of economization of Pade´ approximants. In Sec. IV we demonstrate how to optim
ERAs to produce a convergent sequence which reduces the error at a specific value of th
pendent variable, even when the original Pade´ sequence behaves erratically. We then test
method on six basic functions in Sec. V, and show in Sec. VI how optimizing ERAs impr
upon the convergence of the original Pade´ approximants when applied to the perturbation series
an atomic system. Finally, in Sec. VII we discuss various details of the numerical procedure
in optimization and suggest an explanation for its success.

II. ECONOMIZATION OF A POWER SERIES

In approximation theory one often derives an approximate representation of a functio~an
approximant!, specified byN11 parameters, that have been derived from the firstN11 coeffi-
cients of the power series. Such a representation may be, for example, the original power
truncated at theNth order,SN , or a Pade´ approximantPm,k(x), wherem andk are the respective
orders of the numerator and denominator polynomials andm1k5N. Economization involves
finding an alternative representation for the function containingN11 parameters that possess
the same functional form as the initial approximant, but also incorporates information pres
the higher orders of the original power series to minimize the maximum error of the new ap
imant over a specified range ofx. In other words, one has an economy of representation:
accuracy is obtained which would otherwise be achieved by taking the original approxima
higher order, which would require more thanN11 parameters to specify.

In this section we consider the economization of a power series representation. This m
achieved by subtracting fromSN11 ~the original power series truncated at orderN11) a suitable
polynomialPN11 of the same order such that the leading orders cancel. In other words,

SN11[ (
i 50

N11

cix
i⇒SN112PN115(

i 50

N

ci8x
i , ~1!

whereci8 denotes the resulting expansion coefficient ofxi . Naturally, the goal is to pickPN11 so
that the maximum error of the newNth order series representation over a specified rangex is
significantly reduced. We can satisfy this requirement with the Chebyshev polynomialTN11 such
that

PN1152cN11

aN11

2N11 TN11 , TN11~x/a!5
2N11

2 S x

a D N11

1pN~x/a!, ~2!

wherepN(x/a) is a polynomial of orderN anda is an arbitrary, unitless scaling parameter.9 If we
apply the transformation

SN11[ (
i 50

N11

cix
i⇒CN[SN1122cN11

aN11

2N11 TN11~x/a!5(
i 50

N

cix
i2pN~x/a!5(

i 50

N

ci8x
i , ~3!

we produce an economized power series representationCN of order N provided a is chosen
sufficiently small andx lies within the region2a<x<a. Whena50 we recover the origina
representationSN11 .

The maximum error of this newNth-order polynomial,CN , for finite a is nearly the same a
the maximum error of the (N11)th order polynomialSN11 and considerably less thanSN . In
Fig. 1~a! the errors for the power series and economized power series expansion off (x)5ex are
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shown for values throughout the range21<x<1. Here we have seta51, which guarantees tha
the economization principle will apply throughout the range shown in the figure.6 As we can see,
the maximum error ofC3 is only slightly larger thanS4 , but is considerably smaller thanS3 .
However, we emphasize that in certain regions, especially near the origin, evenSN provides a
better representation of the function. Again, the errors we discussed previously corresp
maximumerrors throughout a specified range, and do not indicate in any way how the error
compare at a specific value ofx. Economizing the power series represents a trade-off; the e
will be larger in some regions, but there is a guarantee that the maximum error of the entire
will be lower.

For those interested in finding an analytic approximation for a function in power series
that is valid for a specific range of the independent variablex and is as economic in its expressio
as possible, insuring that the maximum error is as small as possible is essential. However,
applications of perturbation theory it is desirable to minimize the errorat a particular value of the
independent variable x, irrespective of the effects this has on the maximum error throughou
range. We will denote this valuex0 . The fact that the parametera is arbitrary and continuous
allows us, in principle, to raisea from 0 until it reaches a value that minimizes the error at x0 .
This is illustrated in Fig. 1~b!, which is a closeup of Fig. 1~a! nearx050.42. At thisx0 the error
in C3 for a51 is significantly larger thanS4 . However, if we had instead increaseda to the value

FIG. 1. ~a! Comparison between the error of the third and fourth order power series expansions,S3 andS4 , and the third
order economized representationC3 for the function f (x)5ex, where we have highlighted a specific value of the ind
pendent variablex0 at x50.42. The maximum error ofC3 is considerably lower thanS3 , and compares favorably withS4 .
However, the error is larger in some regions ofx, especially near the origin.~b! A closeup of the circled region in the firs
figure. Whena0 approaches 0.61 we see that the error ofC3(x) reduces dramatically atx0 . Notice that increasinga further
to a51 leads to considerable error atx0 . (S3 not shown.!
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a50.61, the resulting error inC3 would have been considerably lower thanS4 .
From here on, we designate the value ofa that reduces the error atx0 to a minimum asa0 .

Finding a0 when the original function is not known is the goal of this research, but we
describe how the process of economization is applied to problems where the function is ap
mated by a Pade´ approximant.

III. PADÉ AND ECONOMIZED RATIONAL APPROXIMANTS

When the original power seriesSN diverges it is often beneficial to replace it with a mo
suitable representation such as a Pade´ approximant:

SN~x!⇒Pm,k~x![
Pm~x!

Qk~x!
5

a01a1x1a21...1amxm

11b1x1b2x21b3x31...1bkx
k , ~4!

where the orderN5m1k. The coefficients are chosen so that the Pade´ approximant and its first
N derivatives coincide with those of the original power series representation at the origin. W
economize the Pade´ approximant in much the same way as we economized the power series
preceding section. The corresponding economized rational approximantCm,k is6

SN11~x!⇒Cm,k~x!5
Pm~x!1( j 50

N21g j 11Pi~x!1g0

Qk~x!1( j 50
N21g j 11Qj 21~x!

, ~5!

where

g j 115
dN11

dj 11

aN2 j

2N t j 11 , g052
dN11aN11t0

2N ~ j 50,1,...,N21!, ~6!

and t i is the Chebyshev coefficient ofxi . The coefficients$di% are given bydi5( j 50
k ci 2 jbj ,

where$ci% are simply the expansion coefficients of the original power series andk is the power of
the leading coefficient ofQk . As for the Pade´ approximantsPm,k(x), m andk are the orders of the
polynomials of the numerator and denominator, respectively, andm1k5N. To calculate the ERA
from Eq.~5! Padéapproximant of the form in Eq.~4! must be chosen and generated, producing
termsPi , Qi , andbi . From the coefficients$bi% we can determine the coefficients10 $di% and,
therefore, calculate the parametersg0 andg j 11 .

Like PadéapproximantsPm,k , the ERAsCm,k are specified by (m11)1k5N11 param-
eters. Whena is reduced to 0, the ERACm,k is identical to the Pade´ approximantPm,k . The ERAs
are economized in the same sense as for the economized power seriesCN of Sec. II. For the Pade´
approximantsPm,k , theseN11 parameters are derived from the firstN11 coefficients of the
power series; however, theN11 parameters specifyingCm,k are derived from the firstN12
coefficients of the power series so that the maximum error over2a<x<a is minimized. The
(N12)th coefficient,cN11 , of the power series is needed to calculate theg i . ~A proof thatCm,k

economizes the Pade´ approximantPm,k for sufficiently smalla is given in Ralston.6!
In Fig. 2 we compare the error between a Pade´ approximant and the corresponding ERA f

the function f (x)5 log(11x) when a51. As expected, the ERA has a lower maximum er
throughout the range21<x<1, and for some values is significantly more accurate.

As in Sec. II, instead of using ERAs to minimizing the maximum error over a rangex
specified bya, we can use ERAs to minimize the error at some specific valuex0 of the indepen-
dent variablex by choosing a suitable value fora. We now turn our attention to finding th
appropriate value ofa.

IV. OPTIMIZING THE SCALING PARAMETER

There appears to be no definitive prescription in the literature for determining the op
value of a of an ERA, which we denotea0(m,k), that minimizes the error at a pointx0 . We
based our method for findinga0(m,k) on three assumptions:
                                                                                                                



cular
ly

o the
t
s.

s
f

ts
f a

eries

the

at
this

sary to
il

5818 J. Math. Phys., Vol. 41, No. 8, August 2000 Walkup, Dunn, and Watson

                    
~1! If the optimized ERA provides a good representation of the original function at a parti
point, then, for sufficiently largeN, the value of the optimized ERA will converge smooth
towards the correct value as the order is increased towards the maximum order,N, of the
power series. Therefore the values of the sequence of optimized ERAs will fit closely t
function of the formGA(N)[A(12e2g(N)), where g(N) is a smooth function such tha
g(N)→` asN→` andA is the fully converged (N→`) value of the summed power serie

~2! We also require that limN→` exp@2vN#g(N)50 for all v.0. Therefore, in the vicinity ofN
5N0 we can expandg(N) in a Taylor series aboutN0 and write

GA~N!5A~12e2g~N0! exp@2g8~N!uN0
DN$11@g9~N!/~2g8~N!!#N0

DN1¯%#!'A~12e2sNB!,
~7!

whereDN[N2N0 , B5exp@N0g8(N)uN0
2g(N0)#, s5g8(N)uN0

, and the approximation hold
whenN0 is sufficiently large andN is in the vicinity ofN0 . Hence we determine the value o
a5a0(m8,k8) which optimizes the accuracy of eachCm8,k8 in a sequence of approximan
m85(m1 i ), k85(k1 i ), wherei is an integer, as follows. We require that the values o
sequence of optimized ERAs at largeN5m81k8 locally fit close to a function of the form

FA,B,s~N![A~12e2sNB!, ~8!

whereA, B, ands are arbitrary fitting parameters, regardless of the nature of the original s
~convergent, or divergent!.

~3! If a for the@m,k# approximant is optimized whena5a0(m,k), then the optimal value ofa for
all approximants@(m1 i ),(k1 i )# of the same sequence near@m,k#, wherei can be positive or
negative and not too far from zero, will be close toa0(m,k). Therefore, when locally fitting
a sequence to a function of the formFA,B,s(N), each approximant may be assumed to have
same value ofa.

The basis for optimizinga can now be easily summarized:The optimal value ofa is that which
produces the closest fit to the function of the formFA,B,s(N) where A, B and s>0 are determined
by the fit. Since the functional formFA,B,s(N) for the optimal convergence emerges locally
large orders,FA,B,s(N) should be fitted to the last available terms of the sequence where
behavior is most strongly manifested. Four terms of the sequence are the minimum neces
determine the four quantitiesa0 , A, B ands specifying the optimal fit. At this point we can deta
an algorithm for optimizinga:

FIG. 2. The error of the Pade´ approximantP4,4(x) and the corresponding economized Pade´ approximant (ERA)C4,4(x)
for the functionf (x)5 log(11x). Here,a51. Notice that the overall maximum error ofC4,4 is much lower thanP4,4, at
least over the interval shown. Outside this interval the error inC4,4(x) diverges as well.
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~1! Select a sequence of ERAs specified by the integerp, wherep5m2k, for some initial value
of a.

~2! For this value ofa find the value ofA, Bands which maximizes the fit ofFA,B,s(N) to the last
four terms of the ERA sequence.

~3! Choose a new value fora and repeat Step 2.

The value ofa which maximizes the fit is designateda0 , from which the last and most accura
approximant in the sequence is generated. In the rest of the paper we refer to this last appro
of an optimized sequence as the optimized ERA and denote it byCm,k

a0 .
In practice we perform step 2 through a least-squares fit to the last four terms of the seq

by minimizing S i 50
3 @Cm2 i ,k2 i

a 2(A2e2s(N22i )B8)#2 with respect to the linear parametersA and
B8, whereB85AB. We use the coefficient of determinationR2 to quantify the accuracy of the fit
whereR2 is the square of the multiple correlation coefficientR, and is given by

R2[
S i 50

3 ~A2e2s~N22i !B8!2

S i 50
3 ~C~m2 i !,~k2 i !

a !2 512
S i 50

3 @C~m21!,~k2 i !
a 2~A2e2s~N22i !B8!#2

S i 50
3 ~C~m2 i !,~k2 i !

a !2 . ~9!

The coefficient of determinationR2 clearly runs between 0 and 1, and a perfect fit correspond
R251. The maximizing of the fit with respect to the nonlinear parameters is achieved by maxi-
mizing R2 with respect tos. The optimal parametera0 is that value ofa for which the maximum
value ofR2 with respect tos, is maximized.11

As in Fig. 1 and the discussion in Sec. II, we can see in Fig. 3@in this case, for
f (x)51/(11ex)# how optimization reduces the error of the ERAs: Asa is swept from 0, the error
reduces until it reaches a~near! minimum ata0 , corresponding to a sequence having the clos
fit to an exponential function. Beyonda0 the error begins to increase.

This procedure is illustrated in Figs. 4~a!–4~d! for f (x)5tanh(x). At a50 ~the Pade´ se-
quence! the highest-ordered term appears to be reasonably accurate, but the lower-ordere
do not converge towards the correct value in a smooth fashion. Asa is increased, the lower
ordered terms begin to drop in value so as to create a monotonic sequence that ultimately fi
closely to an exponential line. Finally, at some value ofa the terms line up very precisely to th
exponential line. Once this point is reached the corresponding value fora is designateda0 and we
can then determine whether this~optimized! ERA is more accurate than the original Pade´ approx-
imant.

FIG. 3. The role optimization plays in reducing the error of an ERA to a minimum. The function her
f (x)51/(11ex) in the asymptotic region. Asa is swept acrossa0 we see that the error reduces to a minimum at a va
very close toa0 . This minimization of error occurs in much the same way as choosing an optimal value fora reduces the
error of a power series, as we found by comparing Figs. 1~a! and 1~b!.
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Before we summarize our results in the next section, we should note that ERAs which
nally ~that is, whena50) have oscillatory convergence do indeed tend towards monotonic
vergence asa is increased towards its optimal value. This can be seen in Figs. 4~a!–4~d!. ~For a
discussion of similar behavior, see Ref. 12.!

V. RESULTS

We tested this method for determininga0 on the Pade´ approximants generated from pow
series of six known functions:

f ~x!51/~11ex!, ~10!

f ~x!5
~ex!1/x

A2px
G~1/x!, ~11!

f ~x!5ex, ~12!

f ~x!5 log~11x!, ~13!

f ~x!5arctan~x!, ~14!

f ~x!5tanh~x!. ~15!

The power series of the second function listed is an asymptotic series. We now summar
results.

FIG. 4. ~a!–~d! Economized rational sequences as the parametera is varied from 0~equivalent to the Pade´ sequence! to
4.662~corresponding to the optimized economized rational sequence!. Note the change and refinement of the vertical ax
The function being approximated here isf (x)5tanh(x) at x056, with the actual value represented by the horizontal so
line. For eacha, the second solid line corresponds to the best exponential fitFA,B,s(N). The coefficient of determination
R2, is maximized ata0 .
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~1! Enhanced accuracy and convergence. The most dramatic improvement over Pade´ approxi-
mants involved the test functionf (x)51/(11ex), which has a radius of convergence ofp
~there are poles atx56 ip). At x056000,the optimized ERAs were more accurate at seco
order (m5k51) than the Pade´ approximants at 16th order. From the results shown in
Fig. 5 and the right-hand columns of Table I, the Pade´ approximants do not even appear to
converging to the correct value. The optimization of the asymptotic series representin
function in Eq.~11! improved the accuracy to nearly the same extent, as shown in Table I
Fig. 6. As we see in Table III and Fig. 7, improvement in convergence off (x)5ex at
x058—where the low-order Pade´ approximants are essentially worthless—was also rem

FIG. 5. The magnitude of the errors in the Pade´ approximants and optimized ERAs for the asymptotic region
f (x)51/(11ex). Here, as in the rest of the figures, Pade´ approximants are denoted with open circles joined by strai
dashed lines, whereas ERAs are denoted with solid dots. The vertical axis is log scaled, so the differences in
considerable. The conversion from an alternating sequence to a monotonic sequence is very clear. Note that´
approximants do not appear to be even converging to the correct value, as the error is stabilizing to a nonzero va
errors here are derived from the data in Table I.

TABLE I. Results showing dramatic improvement in low order convergence and accuracy of a Pade´ approximantPm,k by
optimizing the corresponding economized rational approximant~ERA! Cm,k

a0 . The function here isf (x)51/(11ex), evalu-
ated at the two points,x056 andx056000. Note that relying on the low-order Pade´ approximant leads to considerabl
error, whereas even the low-order optimized ERAs are significantly more accurate. This is especially apparen
asymptotic region~right-hand columns!, where the@1/1# optimized ERA is more accurate than even the@8/8# Padé
approximant.~!! ~See also Fig. 5.! The last row in the table designates the error of the highest ordered approximan

x056 Exact value: 0.002 472 623 157 x056000 Exact value:'1022606

@m/k# Pm,k Cm,k
a0 a @m/k# Pm,k Cm,k

a0 b

@0/0# 0.500 000 00 0.500 000 00 @0/0# 0.500 00 0.500 00
@1/1# 21.000 000 0 0.241 058 56 @1/1# 21499.5 0.414 47
@2/2# 0.125 000 00 0.021 910 077 @2/2# 0.499 50 0.264 11
@3/3# 20.021 739 130 0.001 193 1096 @3/3# 2249.50 0.117 24
@4/4# 0.005 076 1421 0.002 468 6256 @4/4# 0.498 33 0.035 395
@5/5# 0.002 272 7273 0.002 478 1024 @5/5# 299.501 0.007 6689
@6/6# 0.002 483 7600 0.002 472 6212 @6/6# 0.496 50 0.001 2793
@7/7# 0.002 472 1536 0.002 472 6186 @7/7# 253.073 0.000 158 66
@8/8# 0.002 472 6386 0.002 472 6231 @8/8# 0.494 00 0.000 025 680

Error 21.546 0231028 1.682 12310212 20.494 000 29 20.000 025 680

aa058.757,FA,B,s(N)50.002 472 620910.104 965 0717 exp(2sN), s59.860.,R250.999 9995.
ba05529.71,FA,B,s(N)520.000 030 70110.045 665 exp(2sN), s51.78,R250.999 96.
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able. Even at 16th order~Table IV and Fig. 8, forx0510) optimization produces an ERA wit
an absolute error of only 531023, compared to the Pade´ approximant error of 1837. Even
more noteworthy in the table and figure is the improvement over dual-parametrized
transformations, considered to be highly effective for summing the power series o
function.13 We also show in Tables V and VI the optimization results for the functionsf (x)
5log(11x) and f (x)5arctan(x), respectively. In these cases the improvement over Pade´ ap-
proximants is less dramatic, but nonetheless significant.

~2! Precision. Almost all of the fits were very precise, even larger thanR250.999 999 9999 in
some cases.~The coefficient of determination,R2, is noted in each table.!

FIG. 6. Same as Fig. 5, except for the asymptotic series generated by the gamma function@see Eq.~11!# at x055. Again,
the vertical axis is logscaled, so the differences in error are considerable. These error results were calculated from
in Table II.

TABLE II. Padéand ERA values for the asymptotic power series generated
from Eq. ~11! at x055. For brevity we omit the low-ordered results. The
errors are plotted in Fig. 6, and in Fig. 11 we show the results when the Pade´
approximants are optimized individually at each successive order. Note that
the valueA51.379 6669~the converged limit of the fitting function! is more
accurate than the highest ordered ERA, so the exponential fit may well apply
globally as well as locally. Note that a straight sum of the asymptotic series
is optimally truncated at the zeroth order term, and so is unity.

Exact value: 1.380 290 405
@m/k# Pm,k Cm,k

a0 a

@5/5# 1.435 4227 1.386 5357
@6/6# 1.322 0338 1.375 3524
@7/7# 1.423 6428 1.379 4838
@8/8# 1.333 5364 1.378 6878
@9/9# 1.416 3588 1.378 9340
@10/10# 1.340 9803 1.379 0855
@11/11# 1.411 3652 1.379 1569
@12/12# 1.346 2210 1.379 2392
@13/13# 1.407 7065 1.379 3082
@14/14# 1.350 1264 1.379 3661

Error 0.030 164 0.000 924 30

aa051.089, FA,B,s(N)51.379 666920.000 608 2153 exp(2sN), s50.176,
R250.999 999 99.
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~3! Transformation of alternating sequences towards monotonic sequences. We already saw in
Figs. 4~a!–4~d! how the optimization process transforms an alternating Pade´ sequence into a
monotonic sequence. Analogous behavior was noticed by Le Guillou and Zinn–Justin
they optimized~using a different method! sequences of Borel-Leroy transformations.12 In each
case where the Pade´ approximants were alternatingly convergent, the optimization pro
found a value fora0 which coincided with a monotonically convergent sequence. For
ample, the Pade´ sequence forf (x)5arctan(x) converges alternatingly towards the corre
value. Yet, there exists a valuea0 that not only produces a sequence that is monotonic
convergent, but as seen in Table VI and Fig. 9 the error of each approximant is signific
lower than the Pade´ approximant at all orders. This behavior was repeated for the test f
tions f (x)5ex ~Table III! and f (x)5tanh(x) ~Table VII!.

~4! Stability with respect to the point of evaluation. The optimization method appears to off
significant improvement no matter which value ofx0 is chosen, up until the point where bot
Padéapproximants and optimized ERAs fail to converge. Table I shows that in some cas
improvement in accuracy~as measured by the number of additional decimal places of a
racy!, in comparison to the original Pade´ approximant, actually increases for largerx0 .

FIG. 7. The magnitude of the errors forf (x)5ex at x058. In this example, the best exponential fit of the ERA seque
is not completely monotonic, which explains the rise in error~exaggerated by the vertical logscaling! at N58. Again, the
vertical axis is logscaled so the difference in accuracy between the two approximates is considerable. The releva
tabulated in Table III.

TABLE III. Another comparison between Pade´ approximants and optimized ERAs. Here,f (x)5ex at x058 and both the
diagonal and off-diagonal sequences are tabulated. The errors for the diagonal sequence are plotted in Fig. 7.

Exact value: 2980.957 987
@m/k# Pm,k Cm,k

a0 a @m/k# Pm,k Cm,k
a0 b

@0/0# 1.000 00 1.000 00 @1/0# 9.000 00 25.5324
@1/1# 21.666 67 8.126 15 @2/1# 210.2000 241.537
@2/2# 4.442 86 192.552 @3/2# 23.9333 1603.42
@3/3# 218.0769 2988.20 @4/3# 299.3871 2982.66
@4/4# 101.952 2995.58 @5/4# 486.046 2985.83
@5/5# 21212.05 2979.09 @6/5# 7444.92 2980.62

Error 4193.01 1.872 93 24463.96 0.334 190

aa058.123,FA,B,s(N)52987.6223.361 363109 exp(2sN), s514, R250.999 97.
ba058.132,FA,B,s(N)52983.2323.334 043106 exp(2sN), s57.790,R250.999 99.
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FIG. 8. A comparison of the dual-parameter Euler transformation (PET@N,N12#), Pade´ approximants, and optimized
ERAs for f (x)5ex at x0510. The horizontal line corresponds to the exact value off (x). Notice that ifP7,7 were taken to
be the converged result~a seemingly converged result at low orders! the error would be considerable. On the other ha
the optimized ERAs are significantly more accurate for nearly all orders, even when compared to PETs. See Tab

TABLE IV. Same as Table III, except at higher order. Sincea0 here differs somewhat from that in Table III the resultin
sequence at all orders differ as well. Yet, the error remains significantly lower at nearly all orders than the Pade´ approxi-
mants, demonstrating that the optimization method is stable with respect to order. Here, we include the resu
applying a dual-parametrized Euler transformation~PET!. Note the dramatic improvement in accuracy of the optimiz
ERAs over the Pade´ approximants and Euler transformation. As in Table III, the optimization technique produc
monotonically converging sequence, despite the fact that the Pade´ approximants are alternatingly convergent. For
comparison of the errors as functions of order, see Fig. 8.

x0510

Exact Value: 22 026.465 79
N SN @N,N12# PET @N,N12#a @m/k# Pm,k Cm,k

a0 b

0 1.000 0000 - - @0/0# 1.000 0000 1.000 0000
2 61.000 000 @2,4# 232.750 000 @1/1# 21.500 0000 5.291 3740
4 644.333 33 @4,6# ~complex! @2/2# 3.307 6923 91.029 420
6 2866.5556 @6,8# ~complex! @3/3# 210.428 571 8427.3527
8 7330.8413 @8,10# 201 718.49 @4/4# 45.375 000 19 093.040

10 12 842.305 @10,12# 29 468.144 @5/5# 2269.645 16 22 106.611
12 17 435.192 @12,14# 23 450.497 @6/6# 1866.0847 22 026.513
14 20 188.171 @14,16# 22 325.434 @7/7# 2205 032.75 22 026.360
16 21 430.835 @16,18# 22 085.476 @8/8# 20 189.229 22 026.471

Error 595.631 59.010 1837.2370 24.908 202631023

aComputed from an algorithm adapted from Ref. 13.
ba0510.064,R250.999 998,FA,B,s(N)522 026.415165 608.939 exp(2sN), s56.707.
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~5! Stability with respect to order. It is important that this optimization method not be confined
a few select~and subjective! choices of order. In each test the optimized ERAs provid
significant improvement over Pade´ approximants no matter which maximum order is chos
An example is found by comparing the data in Table III forf (x)5ex, as well as Table IV for
the same function. Upon individually optimizing each ERA for each order nearN, the result-
ing values convergesmoothlyto the correct value, as seen in Table VIII and Fig. 10 for
tanh(x) function and in Fig. 11 for the asymptotic series generated from Eq.~11!. This indi-
cates that optimizing the ERAs at each order produces a sequence that reflects the
behavior of the fit. Table VIII clearly shows how the parameters of the local fitting funct
FA,B,s(N) adjust to provide a local approximation toGA(N) for different values ofN. This
characteristic is especially evident when examining the optimized sequence of the a
perturbation series in the next section.

We now demonstrate the effectiveness of the procedure as it pertains to a physical pr
when the original function is not known beforehand.

TABLE V. Here, f (x)5 log(11x) at x055. The gains here are not enor-
mous, but the error has been halved.

Exact value: 1.791 759 469
@m/k# Pm,k Cm,k

a0 a

@0/0# 0.000 000 0.000 000
@1/1# 1.428 5714 1.506 0643
@2/2# 1.721 3115 1.740 4539
@3/3# 1.778 7115 1.782 9493
@4/4# 1.789 8952 1.790 2805
@5/5# 1.791 3354 1.791 7137
@6/6# 1.791 6838 1.791 7189
@7/7# 1.791 7460 1.791 7528
@8/8# 1.791 7571 1.791 7594

Error 2.391231026 1.098831026

aa051.141, FA,B,s(N)51.791 759520.001 486 7123 exp(2sN), s51.800,
R250.999 999 996.

TABLE VI. Here, f (x)5arctan(x) at x054. Notice that optimizingCm,k

again transforms the alternating Pade´ sequence into a monotonic sequence,
which is apparent when examining the errors in this data in Fig. 9.

Exact value: 1.325 8177
@m/k# Pm,k Cm,k

a0 a

@0/0# 0.000 000 0.000 000
@1/1# 4.000 000 2.331 5173
@2/2# 0.631 5789 0.912 9322
@3/3# 1.987 4214 1.291 1074
@4/4# 1.023 6425 1.202 3396
@5/5# 1.544 3095 1.272 1575
@6/6# 1.205 8444 1.287 3382
@7/7# 1.403 8412 1.300 8169
@8/8# 1.280 0401 1.312 6944

Error 0.045 777 579 0.013 123 226

aa051.582, FA,B,s(N)51.404 086920.149 112 41 exp(2sN), s50.1224,
R250.999 9994.
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VI. APPLICATION: ENERGY CALCULATIONS OF DIAMAGNETIC HYDROGEN AT LOW
zmz AND LARGE FIELD STRENGTHS

The hydrogen atom in a constant magnetic fieldB is a well-studied problem in atomic
physics,14–17mainly due to its applications in astronomy and quantum chaos, and the fact tha
fundamentally simple and yet permits no analytic solution. For this reason many approache
been employed in order to derive accurate energy values, especially in the limit of enormou
strengths such as that found in white dwarfs and neutron stars.14,17 Since the paramagnetic field
strength term simply raises or lowers the overall energy, most research has focused on the
of the diamagnetic term.

In Ref. 18 we used dimensional perturbation theory19 ~DPT! to study the physical propertie
of circular ~and near-circular! states of diamagnetic hydrogen at large values of bothB and the
magnetic quantum numberm. The perturbation parameterd used in DPT varies inversely withumu,
so the resulting perturbation series diverges at low values ofumu for sufficiently large field
strengths. The DPT perturbation series for diamagnetic hydrogen can often be Pade´ summed quite
effectively at low umu for broad regions of the spectrum, even atm50 ~which corresponds to a
perturbation parameterd51/2).20 However, for noncircular states in certain regions of fie
strength the Pade´ approximants either converge slowly or erratically. In these situations we
plied the optimization procedure described in this paper and found the optimized ERAs in
cases converged smoothly and produced energies that compare favorably with those o
using a multiconfigurational Hartree–Fock procedure.17

FIG. 9. Error comparison between Pade´ approximants and optimized ERAs forf (x)5arctan(x) at x054. The conversion
from alternating to monotonic convergence here is very apparent. The relevant data is tabulated in Table VI.

TABLE VII. The tanh(x) at x056. Note the precise fit, surprising given the
low-order erratic behavior of the original Pade´ approximants.

Exact value: 0.999 987 72
@m/k# Pm,k Cm,k

a0 a

@0/0# 1.000 000 1.000 000
@1/1# 6.000 000 210.524 225
@2/2# 0.461 5384 0.571 484 64
@3/3# 1.324 6753 0.874 616 28
@4/4# 0.923 5352 0.968 293 00
@5/5# 1.017 4904 0.997 185 35

Error 20.017 5028 0.002 8023

aa054.065, FA,B,s(N)51.010 129321.419 9726 exp(2sN), s51.1747,
R250.999 999 993.
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As an example, in Fig. 12 we illustrate the convergence of the DPT perturbation series f
lowest-lying excitedm522 state at the field strengthb5700 ~around 329 MT! evaluated using
Padéapproximants and optimized ERAs.~The field strength parameterb is measured in units o
4.73105 T.) While the Pade´ approximants in this case do not converge strongly towards a w
defined result, the optimized ERAs converge monotonically and exponentially at all orders
the largest order, and still relatively low order, studied in this paper. The ability of the optim
tion process to create a smooth monotonic convergence becomes even more apparent wh
sidering the ground state shown in Fig. 13, where nine members of the ERA sequence we
in a single optimization toFA,B,s(N) with the same value ofa0 .

VII. DISCUSSION

One means of determining whether a result is likely to be accurate is to examine the c
gence of the sequence of approximants as the order is increased to its maximum value.
behavior in convergence is a good indication that the highest-ordered approximant may no
satisfactory representation of the function at the point it is being evaluated. In this case, ac
results could merely be the fortunate result of a numerical artifact. In optimizing the econom
rational approximants~ERAs!, the resulting sequence is required to be almost smooth and m
tonically convergent, which raises confidence that the optimized ERA is providing a satisfa
representation of the system.

FIG. 10. A comparison of the convergence of the optimized economized rational approximants~solid circles! with Padé
approximants~open circles! for f (x)5tanh(x) at x056. Here, each term of the optimized economized rational approxim
sequence has been optimized individually~see item 5 of Sec. V!. The value ofa0 corresponding to each order is shown
parentheses. The exact value off (x) is shown by the horizontal line. The data appears in Table VIII.

TABLE VIII. A comparison of the convergence of the optimized ERAs as the parametera is individually optimized at
each order, forf (x)5tanh(x) at x056. Notice thata0 , s ~the exponential fitting parameter!, andR2 are roughly the same
at all orders, and that the values of the resulting approximants converge asymptotically towards the correct val
gesting that this method of optimizing the ERAs is stable with respect to order. This data is plotted in Fig. 10. The
for the Pade´ approximants at each order are also tabulated. The numbers in parentheses correspond to powers o

Exact value: 0.999 987 72
@m/k# Cm,k

a0 A B s R2 Error (Pm,k) Error (Cm,k
a0 )

@5/5# 0.997 1854 1.010 129 21.420 33 1.175 0.999 999 9872 21.8~22! 2.8~23!
@6/6# 0.999 1068 1.000 052 21.233 28 1.793 0.999 999 9988 3.0~23! 8.8~24!
@7/7# 0.999 8925 1.000 050 20.205 655 1.795 0.999 999 9995 24.0~24! 9.5~25!
@8/8# 0.999 9752 0.999 9930 20.054 9783 2.010 0.999 999 9991 4.5~25! 1.2~25!
@9/9# 0.999 9869 0.999 9880 20.007 982 89 2.189 0.999 999 9984 24.1~26! 9.1~27!
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A few remarks on the numerical process are in order. We used the minimum number of
needed to determineA, B, sanda. As can be seen from Fig. 13 we can sometimes take many m
than four points and still provide an accurate exponential fit. Generally though, the more term
are included, the lowerR2 and the less accurate are the results at the relatively low or
considered in this paper. This is to be expected since in general, as we noted above, the
functionFA,B,s(N) will be valid only locally, not globally, aroundN5N0 . Since the least-square
fit used in this paper weights all points equally, any additional terms of the sequence used
fit could lower R2 and result in a less than optimala for the last approximant of the sequenc
Even if the fitting function happens to be globally appropriate@as appears to be the case for t
log (11x) function#, there is the possibility that the earlier terms of a sequence have non-negl
finite-N corrections to the large-N exponential behavior of the error. Again since the least-squ
fit weights all points equally, any additional earlier terms of the sequence used in the fit
lower R2. Keeping the number of terms of the sequence used in the fitting to the minimum nu
of four guards against these errors.

FIG. 11. Another example of individual optimization, but for the asymptotic series generated by the gamma functi@see
Eq. ~11!#. Again, the numbers in parentheses correspond to thea0 for each particular order. In this case, the exponen
fit is not only precise locally, but also appears to apply globally as well. The equation of the line shown is giv
1.379 428 9820.000 887 6041 exp@20.641N#.

FIG. 12. The energy of the lowest lyingm522 state of diamagnetic hydrogen forb5700(329 MT). The horizontal line
corresponds to the multiconfigurational Hartree–Fock calculation of Ruder~Ref. 17!. Note that the ERAs have bee
optimized individually.
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In general, the fitting parameterA @that is, limN→`FA,B,s(N)# will not be the converged value
of the sequence sinceFA,B,s(N) is valid only locally, not globally. However, ifR2 is exceptionally
large as with the functionf (x)5 log (11x) ~see Table V!, A can be more accurate than the la
approximate, implying that the fitting function,FA,B,s(N), may well be globally valid for this
function.

As a is increased there will usually be multiple regions ofa where the last four approximant
line up close to an exponential line and, as an example, in Table IX we tabulate the values
diagonal optimized ERAs for the functionf (x)5exp(x) at the next and slightly larger value ofa
at which this occurs. Again the optimized ERAs converge to the correct answer, somewha
slowly than at the smaller value ofa ~see Table III!, but still significantly better than the perfor
mance of the Pade´ approximants. We have found that the smallest value ofa for which the last
four points line up close to an exponential line yields the largest value ofR2 and the most accurat
results. This is perhaps to be expected since ERAs ‘‘spread the error’’ without systematic fa
the region from the origin tox'a. The larger the value ofa, the larger the region the error i

FIG. 13. Same as Fig. 12, but for the ground state atb51.5(705 kT). Here we show that we can often incorporate ma
elements of the sequence into the optimization process. Again, the horizontal line corresponds to the energy calc
Ruderet al.As in the other figures, the optimized ERAs are shown by solid dots, with the best-fitting exponential fit s
by a solid line.

TABLE IX. Diagonal Pade´ approximants and optimized ERAs for the func-
tion f (x)5ex at x058. However, here the next largest value ofa which
optimizes the convergence is used. This table should be compared with the
results of Table III and Fig. 7 where the smaller and most optimized value of
a is used. Note that the convergence, though still better than for Pade´ ap-
proximants, is significantly worse than for the optimized ERAs at the small-
est value ofa at which the last four terms of the sequence line up close to
an exponential line.

Exact value: 2980.957 897
@m/k# Pm,k Cm,k

a0 a

@0/0# 1.000 00 1.000 00
@1/1# 21.666 67 3.974 62
@2/2# 4.442 86 97.3388
@3/3# 218.0769 1877.56
@4/4# 101.952 2658.54
@5/5# 21212.05 2999.70
Error 4193.01 218.7424

aa059.541, FA,B,s(N)53266.6127232.74 exp(2sN), s50.8251,
R250.999 999 92.
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‘‘spread’’ over and so the larger the average error becomes forx<a. Therefore one would expec
the best results to be obtained for the smallest value for which the last four points line up cl
an exponential line. However, as the above discussion makes clear, this smallest value ofa cannot
be much smaller than the value ofx at which the series is being summed. As Pade´ approximants
sometimes appear to converge to the wrong value~an example appears in Fig. 5! it would not be
surprising if this were true of optimized ERAs as well. Indeed, if one chooses an ‘‘optimal’’ v
of a which is too large, even though the last four points are lining up around an exponentia
the sequence of ERAs appear to converge to the wrong result.

In order to further understand what is taking place during the optimization process we e
ined the effects the optimization process has on the singularity structure of the ERAs. As s
Fig. 14 for the entire functionf (x)5ex, ata0 the poles appear to be located such that the dista
of the closest pole to the point of summation is roughly maximized. Sinceex has no singularities
except at infinity, the poles mark isolated regions at which the ERAs locally fail. Therefor
optimization process moves the poles so that they are, as a whole, sufficiently far from the
of evaluation that their disturbing effects are minimized. Ifa is chosen large enough the poles
Fig. 14 move far to the right of the summation point and we might imagine that yet better re
would be obtained. However, as we have noted above, the overall error at the summation
x0 , of an ERA generally becomes very large whena@x0 , and this works against the reduction
the error resulting from moving the poles well away from the summation point.
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A 333 discrete eigenvalue problem and corresponding discrete soliton equations
are proposed. Under a constraint between the potentials and eigenfunctions, the
333 discrete eigenvalue problem is nonlinearized into an integrable Poisson map
with a Lie–Poisson structure. Further, a reduction of the Lie–Poisson structure on
the co-adjoint orbit yields the standard symplectic structure. The Poisson map is
reduced to the usual symplectic map when it is restricted on the leaves of the
symplectic foliation. ©2000 American Institute of Physics.
@S0022-2488~00!00408-4#

I. INTRODUCTION

In recent years, an interesting new field of research, namely the investigation of the inte
symplectic maps,1–5 has made an important progress. Many methods have been developed to
them, among which, the nonlinearization technique,6–10 is proved to be an effective way o
obtaining completely integrable symplectic maps from various discrete soliton hierarchie
important feature is that the discussion in the above-mentioned literatures was based
symplectic manifolds whose Poisson structure is nondegenerate. In Refs. 11–15, it ha
shown that the Lie–Poisson structure associated with a Lie algebra is a generalized Hami
structure on a Poisson manifold, which is convenient to deal with some mechanical system
famous example with this structure is the Euler–Poisson equations.16,17 The aim of the presen
paper is to construct the discrete version of the generalized finite-dimensional integrable H
tonian system, that is, integrable Poisson maps, on the Poisson manifold. A Poisson mapw:R3N

→R3N is called to be completely integrable on the Poisson manifoldR3N if it has N independent
Casimir functions andN independent conserved integrals in involution. In this paper, a disc
333 eigenvalue problem is introduced with the help of a Lie group homomorphism. It is sh
that the 333 eigenvalue problem has the same isospectral evolution equations with the 232 one
in Ref. 18. A constraint between the potentials and eigenfunctions is proposed, from whic
333 eigenvalue problem is nonlinearized to be a completely integrable Poisson map w
Lie–Poisson structure on the Poisson manifoldR3N. As a reduction of the integrable Poisson m
on the co-adjoint orbit, an integrable symplectic map on the symplectic manifoldR2N is obtained,
which is exactly the nonlinearized 232 eigenvalue problem.

The paper divides into six sections. In the next section, the Lie group homomorphism
SL(2,R) to some subgroup of SL(3,R) is introduced by the adjoint action of Lie group SL(2,R)
on its Lie algebra sl(2,R), and the corresponding Lie algebra isomorphism as the tangent m
also presented. These maps provide the basic matrices elements to study the eigenvalue p
Section III gives a 333 discrete matrix eigenvalue problem, which has the same isospe
evolution equation with the 232 matrix eigenvalue problem.18 Moreover, a 333 extended
Lenard pair of operators, which can eliminate the ambiguity of the inverse difference op
(E21)21, is introduced to study the discrete soliton hierarchy. The relation between the
58320022-2488/2000/41(8)/5832/17/$17.00 © 2000 American Institute of Physics
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eigenvalue problems is also discussed. In Sec. IV, the explicit polynomial solution of the Len
recursive equation, the discrete soliton vector fields and its commutative representation by
33 eigenvalue problem are obtained. In Sec. V, under a constraint between the potentia
eigenfunctions, we obtain a Poisson map, which is the nonlinearization of the 333 matrix spectral
problem. Moreover, the Lie–Poisson structure and the integrability of this Poisson map are
ied. The 3N-dimensional map we consider admitsN independent Casimir functions andN inde-
pendent first integrals, which are in involution in pairs, hence, it is completely integrable.
integrable symplectic map which is exactly a reduction of the Poisson map on the co-adjoin
is presented in Sec. VI.

II. PRELIMINARIES

The adjoint action of Lie group SL(2,R) and its Lie algebra sl(2,R) on sl(2,R) are given,
respectively, by

Ad g~A!5gAg21, adA~B!5@A,B#, A,BPsl~2,R!, gPSL~2,R!. ~2.1!

Here we use these actions to define the following maps to lift the 232 matrices to the 333 cases.
Let L1 ,L2 ,L3 be a basis of the Lie algebra sl(2,R), defined by

L15S 0 1

0 0D , L25S 0 0

l 0D , L35S l 0

0 2l
D , ~2.2!

where l is a nonzero real constant number. Then one checks that@L1 ,L2#52L3 ,@L2 ,L3#
522lL2 ,@L3 ,L1#522lL1 , from which one finds that the map

a°Ll~a!5S la3 a2

la1 2la3
D ~2.3!

is a Lie algebra isomorphism betweenR3 with Lie bracket@a,b#5Cl(a3b) and the sl(2,R);
that is,

@Ll~a!,Ll~b!#5Ll$Cl~a3b!%, ~2.4!

where

Cl5S 0 22l 0

22l 0 0

0 0 21
D .

Definepl :SL(2,R)→GL(3,R) by

Ll~pl~g!a!5Adg Ll~a!5gLl~a!g21, ~2.5!

that is

pl :g5S a b

c dD °pl~g!5S d2
2

1

l
c2 2cd

2lb2 a2 22lab

bd 2
1

l
ac ad1bc

D . ~2.6!

Since detpl(g)5(detg)3, it follows that
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pl~SL~2,R!!,SL~3,R!.

According to the Lie bracket of sl(2,R), one sees thatpl(g)Cl5Cl(pl(g)21)T, this yields

pl~SL~2,R!!5$pl~g!:~pl~g!!TCl
21pl~g!5Cl

21,gPSL~2,R!%.

From the definition, one sees thatpl(g1)5pl(g2) if and only if g156g2 . Sopl is 2 to 1 onto
homomorphism mapping from SL(2,R) to its image and it is also a local diffeomorphism.

Consider the tangent map ofpl ,Tepl :sl(2,R)→sl(3,R)

Ll~Tepl~A!g!5adA~Ll~g!!5@A,Ll~g!#. ~2.7!

A simple calculation shows

Tepl :A5Ll~a!°Tepl~A!5S 22la3 0 2la1

0 2la3 22la2

a2 2a1 0
D . ~2.8!

From the Jacobi identity of Lie algebra sl(2,R), we see that

L~Tepl~@A,B# !g!5ad@A,B#Ll~g!5Ll~@Tepl~A!,Tepl~B!#g!, ~2.9!

which together with Eq.~2.8! indicate thatTepl is a Lie algebra isomorphism mapping fro
sl(2,R) to its image, hence the Lie algebra of Lie grouppl(SL(2,R)) is

Tepl~sl~2,R!!5$Tepl~A!:~Tepl~A!!TCl
211Cl

21Tepl~A!50, APsl~2,R!%. ~2.10!

Let

s15Tepl~L1!, s25Tepl~L2!, s35Tepl~L3!. ~2.11!

Then the Lie algebra isomorphism of sl(2,R) to Tepl(sl(2,R)) implies thats15Tepl(L1),s2

5Tepl(L2),s35Tepl(L3) is the basis ofTepl(sl(2,R)), which has the same structure consta
with L1 ,L2 ,L3 in Lie algebra sl(2,R).

Consider the map

sl :a°sl~a!5Tepl~Ll~a!! ~2.12!

which is also a Lie algebra isomorphism betweenR3 with Lie bracket@a,b#5Cl(a3b) and
Tep(sl(2,R)), that is

@sl~a!,sl~b!#5sl~sl~a!b!5sl~Cl~a3b!!. ~2.13!

Further, a direct calculation leads to

sl~pl~g!a!5Adpl~g!sl~a!, ~2.14!

i.e., the adjoint action of Lie grouppl(SL(2,R)) on the Lie algebraTepl(sl(2,R)) is equivalent
to the action of Lie grouppl(SL(2,R)) on the isomorphic Lie algebraR3.

Remark:From Eqs.~2.13! and ~2.14!, we find that the 333 structure is a closed one.

III. TWO DISCRETE EIGENVALUE PROBLEMS

Let E be the shift operator:E f(n)5 f (n11), E21f (n)5 f (n21) andD5E21. Consider the
following two discrete eigenvalue problems
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Ec5gc, ~3.1!

Ey5pl~g!y, ~3.2!

with

g5S 11lab a

lb 1D , pl~g!5S 1 2lb2 2lb

2la2 ~11lab!2 22la~11lab!

a 2b~11lab! 112lab
D , gPSL~2,R!

and the potentialsa, b are the functions of integern, l is a constant spectral parameter.
Define two maps:Lg :R3→gl(2,R) by

Lg~g!5Ll~g!g ~3.3!

andslpl(g) :R3→gl(3,R) by

slpl~g!~g!5sl~g!pl~g!. ~3.4!

One can easily check thatLg ,slpl(g) are linear one to one maps. SetV5Ll(g),Ṽ5sl(g). Then

~EV!g2gV5Lg~Eg2pl~g!g!5Lg@T~K2lJ!g#, ~3.5!

~EṼ!pl~g!2pl~g!Ṽ5slpl~g!~Eg2pl~g!g!5slpl~g!@T~K2lJ!g#, ~3.6!

where

T5S 0 1 2lb

1 2la2 la~lab11!

0 a 2~lab11!
D

and

K5S 0 D 0

D 0 0

aE 2b 2D
D , J5S 0 ab 2a~E11!

2abE 0 b~11E!

0 0 0
D

are the extended Lenard pair of operators, which can eliminate the ambiguity of the operatoD21.
Proposition 3.1:Equations~3.1! and ~3.2! have a same isospectral evolution equation

S at

bt
D5P~K2lJ!g, ~3.7!

whereP is the projective mapa5(a1 ,a2 ,a3)T°(a1 ,a2)T.
Proof: Let

c t5Vc, ~3.8!

yt5Ṽy, ~3.9!

then the compatibility conditions of Lax pairs~3.1!, ~3.8! and ~3.2!, ~3.9! lead to the discrete
zero-curvature equations
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gt2~EV!g1gV5LgH TF S at

bt

0
D 2~K2lJ!gG J 50, ~3.10!

~pl~g!! t2~EṼ!pl~g!1pl~g!Ṽ5slpl~g!H TF S at

bt

0
D 2~K2lJ!gG J 50, ~3.11!

where

gt5LgS TS at

bt

0
D D , ~pl~g!! t5slp~g!S TS at

bt

0
D D .

Equations~3.10! and ~3.11! imply ~3.7!.
Proposition 3.2:Let F be a fundamental matrix solution of Eq.~3.1! with uFu51, then

pl(F) is a fundamental matrix solution of Eq.~3.2!.
Proof: ;aPR3, using Eq.~2.5!, we have

Ll~pl~F!a!5FLl~a!F21

and

ELl~pl~F!a!5Ll~Epl~F!a!5EFLl~a!EF215gFLl~a!F21g215Ll~pl~g!pl~F!a!.

Hence

Epl~F!5pl~g!pl~F!.

Using the properties of the Lie grouppl(SL(2,R)) and the Lie algebraTepl(sl(2,R)), we
have an important proposition, which plays a key role in the conserved integral.

Proposition 3.3:Let G satisfy EG5pl(g)G, Gt5sl(a)G and ^", "& be the standard inne
product inR3, then

^G,Cl
21G& ~3.12!

is invariant along the flows ofE and t.
Proof: SinceEG5pl(g)G,Gt5sl(a)G, hence

E^G,Cl
21G&5^EG,C21EG&5^G,~pl~g!!TCl

21pl~g!G&5^G,Cl
21G&,

^G,Cl
21G& t5^Gt ,Cl

21G&1^G,Cl
21Gt&5^G,@~sl~a!!TCl

211Cl
21sl~a!#G&50.

Remark:In fact, ^G,Cl
21G& is invariant under the action of Lie grouppl(SL(2,R)).

IV. THE DISCRETE SOLITON VECTOR FIELDS AND ITS COMMUTATIVE
REPRESENTATION

Consider the Lenard recursive equations

Jj~21!50, Kj~ j 21!5Jj~ j !. ~4.1!

Choosing a solution of the former as
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gn
~21!5S 1

an21

1

bn

1

2

D . ~4.2!

Then the latter has special polynomial solutions

gn
~0!5S 2

1

an21
2 S 1

bn21
1

1

bn
D

2
1

bn
2 S 1

an21
1

1

an
D

2
1

an21bn

D , ~4.3a!

5
gn

~ j ,1!5E21F1

a
~11E!gn

~ j ,3!2
1

ab
Dgn

~ j 21,1!G ,
gn

~ j ,2!5
1

ab
Dgn

~ j 22,2!1
1

b
~11E!gn

~ j ,3! , j >1

gn
~ j ,3!52 (

k1 l 5 j
gn

~k21,1!gn
~ l 21,2!2 (

k1 l 5 j 21
gn

~k,3!gn
~ l ,3! .

~4.3b!

The general solution of~4.1! is expressed as the linear combination

j~ j !5c0gn
~ j !1c1gn

~ j 21!1¯1cj 11gn
~21! , ~4.4!

wherec1 ,c2 ,...,cj 11 are arbitrary constants.
The discrete soliton vector fields are defined asXn

( j )5P(Jgn
( j )), and the first few members ar

Xn
~21!50, Xn

~0!5S 1

bn11
2

1

bn

1

an
2

1

an21

D , ~4.5a!

Xn
~1!5S 1

bn
2 S 1

an21
1

1

an
D2

1

bn11
2 S 1

an11
1

1

an
D

1

an21
2 S 1

bn21
1

1

bn
D2

1

an
2 S 1

bn11
1

1

bn
D D . ~4.5b!

In the following part, we will give the commutative representation with the 333 form. Let

G~N!~l,j!5(
j 50

N

j~ j 21!lN2 j , ~4.6!

we have
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P~K2lJ!G~N!5PKj~N21!1P (
j 50

N21

~Kj~ j 21!2Jj~ j !!lN2 j2P~Jj~21!!lN11

5P~Jj~N!!

5c0X~N!1c1X~N21!1¯1cNX~0!.

Theorem 4.1:Let G(N) be defined in~4.6! and Ṽ(N)5sl(G(N)). Then
~i!

~K2lJ!G~N!5Jj~N!. ~4.7!

~ii !

~EṼ~N!!pl~g!2pl~g!Ṽ~N!5slpl~g!@T~Jj~N!!#. ~4.8!

Corollary 4.2: The discrete soliton equation

S an

bn
D

t

5P~Jj~N!!

is equivalent to the discrete zero-curvature equation

~pl~g!! t5~EṼ~N!!pl~g!2pl~g!Ṽ~N!.

V. THE POISSON MAP AND THE LIE–POISSON STRUCTURE

Let

Ey~ j !5pl j
~g!y~ j !, y~ j !5~y1

~ j ! ,y2
~ j ! ,y3

~ j !!T, j 51,...,N, ~5.1!

wherel1 ,...,lN areN mutual distinct real numbers.
Using the Eq.~3.6!, we can easily get the following results, which play a crucial role in

constrained relations and the conserved integrals.
Proposition 5.1:Supposey( j ) satisfy Eq.~5.1!. Then

(
j 51

N
1

l2l j
@~Esl~y~ j !!!pl~g!2pl~g!sl~y~ j !!#52slpl~g!S TJ(

j 51

N

y~ j !D . ~5.2!

Theorem 5.2:Let Gl5S j 51
N 1/l2l j y

( j ). Then

~Esl~Gl!!pl~g!2pl~g!sl~Gl!50 ~5.3!

is equivalent to

an5
c

( j 51
N Ey1

~ j ! , bn5
c

( j 51
N y2

~ j ! , (
j 51

N

y3
~ j !5

c

2
, ~5.4!

wherec is a constant.
Remark:In the Eq.~5.4!, S j 51

N y3
( j ) is actually a conserved integral of theE flow.

Hereafter, for the sake of simplicity, we only choosec51. Substituting~5.4! into ~5.1!, we
obtain the discrete nonlinearized eigenvalue problem

EY5w~Y!, Y5~y1
~1! ,y2

~1! ,y3
~1! ,...,y1

~N! ,y2
~N! ,y3

~N!!T. ~5.5!
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From the Eq.~3.6!, we know that

EGl5pl~g!Gl

is equivalent to

~Esl~Gl!!pl~g!2pl~g!sl~Gl!50.

Hence, if Eq.~5.4! holds, then the Theorem 5.2 and Proposition 3.3 indicate that

Fl5l^Gl ,Cl
21Gl& ~5.6!

is the conserved integral of theE flow. By the direct calculation, we have

Fl52(
j 51

N y1
~ j !

l2l j
(
k51

N y2
~k!

l2lk
2lS (

j 51

N y3
~ j !

l2l j
D 2

5(
j 51

N
I ~ j !

l2l j
1(

j 51

N
h~ j !

~l2l j !
2

5 (
m50

`
Fm

lm11 , ~5.7!

where

h~ j !52y1
~ j !y2

~ j !2l j~y3
~ j !!2, j 51,...,N, ~5.8a!

I ~ j !52S (
k51

N

y3
~k!D y3

~ j !2(
kÞ j

y1
~ j !y2

~k!1y2
~ j !y1

~k!1~l j1lk!y3
~ j !y3

~k!

l j2lk
, j 51,...,N ~5.8b!

and

Fm5(
j 51

N

l j
mI ~ j !1m(

j 51

N

l j
m21h~ j !, m50,1,... . ~5.9!

We have already had the map~5.5! and its conserved integral~5.8!, now we turn to construct
the Poisson structure onR3N.

Consider the Lie algebras

LA~l j !5$M :MTCl j
1Cl j

M50, MPsl~3,R!%, j 51,...,N, ~5.10!

choosing«1
j ,«2

j ,«3
j as a base ofLA(l j ) by

«1
j 5S 0 0 1

0 0 0

0 22l j 0
D , e2

j 5S 0 0 0

0 0 21

2l j 0 0
D , e3

j 5S 21 0 0

0 1 0

0 0 0
D , j 51,...,N.

~5.11!

We have the commutation relations

@«1
j ,«2

j #522l j«3
j , @«1

j ,«3
j #5«1

j , @«2
j ,«3

j #52«2
j , j 51,...,N. ~5.12!

Let v1
j ,v2

j ,v3
j be a dual basis forLA(l j )* .R3 and y( j )5y1

( j )v1
j 1y2

( j )v2
j 1y3

( j )v3
j , ( j

51,...,N). If F:LA(l1)* 3...3LA(lN)* →R, then its gradient component is the vector
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¹ jF5
]F

]y1
~ j ! «1

j 1
]F

]y2
~ j ! «2

j 1
]F

]y3
~ j ! «3

j , j 51,...,N.

Thus according to the Refs. 11–15, the Lie–Poisson structure matrix associated with Lie a
LA(l j ) is

Jj5S 0 22l j y3
~ j ! y1

~ j !

2l j y3
~ j ! 0 2y2

~ j !

2y1
~ j ! y2

~ j ! 0
D , J51,...,N ~5.13!

and the Lie–Poisson bracket onLA(l1)* 3¯3LA(lN)* .R3N is

$F,G%5(
j 51

N

^y~ j !;@“ jF,“ jG#&

5(
j 51

N

^“ jF,Jj“ jG&

5(
j 51

N Fy1
~ j !S ]F

]y1
~ j !

]G

]y3
~ j !2

]F

]y3
~ j !

]G

]y1
~ j !D 1y2

~ j !S ]F

]y3
~ j !

]G

]y2
~ j !2

]F

]y2
~ j !

]G

]y3
~ j !D

12l j y3
~ j !S ]F

]y2
~ j !

]G

]y1
~ j !2

]F

]y1
~ j !

]G

]y2
~ j !D G , ~5.14!

where^"; "& is the natural pairing betweenLA(l j ) and its dualLA(l j )* , @", "# is the ordinary Lie
bracket on the Lie algebraLA(l j ) itself.

Having the preparation above, we now prove that the map~5.5! is a Poisson map on th
Poisson manifold$R3N,$""%%.

Theorem 5.4: ~i! Let z(k)5Ey(k), k51,...,N. Then

(
j 51

N

~Ak
j !TJj~y~ j !!Ak

j 5Jk~z~k!!, k51,...,N, ~5.15a!

(
j 51

N

~Ak
j !TJj~y~ j !!As

j 50, kÞs, ~5.15b!

where

Ak
j 5S ]z1

~k!

]y1
~ j !

]z2
~k!

]y1
~ j !

]z3
~k!

]y1
~ j !

]z1
~k!

]y2
~ j !

]z2
~k!

]y2
~ j !

]z3
~k!

]y2
~ j !

]z1
~k!

]y3
~ j !

]z2
~k!

]y3
~ j !

]z3
~k!

]y3
~ j !

D , k, j 51,...,N.

~ii ! Let w* be a pull back map induced byw. Then

w* $F,G%5$w* F,w* G%, ~5.16!

that is,Ey5w(y) is a Poisson map.
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Proof: From Eq.~5.4!, we have

aS (
j 51

N

y1
~ j !2b2(

j 51

N

l j y2
~ j !12b(

j 51

N

l j y3
~ j !D 51, b(

j 51

N

y2
~ j !51. ~5.17!

Thus we get the relations

]a

]y1
~ j ! 52a2,

]a

]y2
~ j ! 5a2b2S l j22b(

k51

N

lky2
~k!12(

k51

N

lky3
~k!D , j 51,...,N, ~5.18!

]a

]y3
~ j ! 522a2bl j ,

]b

]y1
~ j ! 50,

]b

]y2
~ j ! 52b2,

]b

]y3
~ j ! 50, j 51,...,N. ~5.19!

Using Eqs.~5.18! and~5.19! through a tedious calculation, we obtain Eq.~5.15!. According to the
Poisson bracket~5.14! and Eq.~5.15!, we can easily prove that

$F~w~y!!,G~w~y!!%5(
j 51

N

^“y~ j !F,Jj~y~ j !!“y~ j !G&

5 (
k51

N S (
s, j 51

N

^“z~k!F,~Ak
j !TJj~y~ j !!As

j ¹z~k!G& D
5 (

k51

N

^“z~k!F,Jk~z~k!!“z~k!G&

5$F~z!,G~z!%~z!,

this result is the one we need.
Next we consider the problem of the integrability of the Poisson map~5.5!. Regard the

generating functionFl as a Hamiltonian in the Poisson manifold$R3N,$","%%, the flow equation is

]

]tl
y~ j !5F 1

l2l j
sl~Gl!1W~l!Gy~ j !, j 51,...,N, ~5.20!

where

W~l!5S 0 0 22Gl
1

0 0 2Gl
2

0 0 0
D , Gl5S Gl

1

Gl
2

Gl
3
D .

Proposition 5.5:~i!

h~ j !52y1
~ j !y2

~ j !2l j~y3
~ j !!2, j 51,...,N ~5.21!

areN Casimir functions of the Poisson structure~5.14!.
~ii ! The equation ofGm along theFl flow is

d

dtl
Gm5

1

l2m
sm~TGl!Gm , ~5.22!

where
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T5S 1 0 0

0 1 0

0 0
l

m

D .

Proof: ~i! Since

Jj“ jh
~ j !50, j 51,...,N.

Thus;FPC`(R3N),

$F;h~ j !%50, j 51,...,N.

~ii ! Equation~2.13! implies that

sl~Gl!Gl50,

by Eq. ~5.20! we have

d

dtl
Gm5(

j 51

N
1

~m2l j !~l2l j !
sl~Gl!y~ j !1W~l!Gm

5
1

l2m (
j 51

N S 1

m2l j
2

1

l2l j
Dsl~Gl!y~ j !1W~l!Gm

5
1

l2m
sl~Gl!@Gm2Gl#1W~l!Gm

5
1

l2m
sl~Gl!Gm1W~l!Gm

5
1

l2m
sm~TGl!Gm .

Using Proposition 3.3 and Eq.~5.22!, we have the following corollary.
Corollary 5.6: $Fl ,Fm%50, ;l,mPC;

$I ~ j !,I ~k!%50, k, j 51,...,N; $Fm ,Fn%50, ;m,n50,1,... .

In the following, we will give the functional independence of the conserved integrals$I ( j ), j
51,...,N%.

The equivalent relation of the Hamiltonian functions on$R3N,$","%% defined asF(y).G(y)
only and if onlyF(y)5G(y)1C(y), andC(y) is a Casimir function. By this definition and Eq
~5.7!, we see that

Fl.Fl
~1!5(

j 51

N
I ~ j !

l2l j
. ~5.23!

A simple calculation gives

“kFl5(
j 51

N
1

l2l j
“kI

~ j !1(
j 51

N
1

~l2l j !
2 “kh

~ j !5(
j 51

N
1

l2l j
“kI

~ j !1OS 1

l2D , k51,...,N.

~5.24a!
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Let l 1 ,...,l N be N distinct sufficient large numbers and not equal to anyl j , by Eq. ~5.24a!,
omitting high order infinity small part, denotingIY5(I (1),...,I (N)), FY 5(FY l 1

,...,Fl N
), we have

]FY
]Y

5S 1

l 12l1
¯

1

l 12lN

] � ]

1

l N2l1
¯

1

l N2lN

D ]IY
]Y

. ~5.24b!

Proposition 5.7:

~i! rankFY 5rankIY,
~ii ! rankIY5N.
Proof: It is not difficult to prove the following equality by induction:

U 1

l 12l1
¯

1

l 12lN

] � ]

1

l N2l1
¯

1

l N2lN

U5)
j .k

~ l j2 l k!)
j ,k

~l j2lk!)
j 51

N

)
k51

N

~ l j2lk!Þ0,

thus ~i! holds. By Eq.~5.6!, we get

“ jFl5
2l

l2l j
Cl

21Gl .

Then

~“Fl 1
,...,“Fl N

!52)
j 51

N

l jS 1

l 12l1
Cl 1

21Gl l 1
¯

1

l N2l1
Cl N

21Gl l N

] � ]

1

l 12lN
Cl 1

21Gl l 1
¯

1

l N2lN
Cl N

21 Gl l N

D
52)

j 51

N

l jS 1

l 12l1
¯

1

l N2l1

] � ]

1

l 12lN
¯

1

l N2lN

D S Cl 1
21

�

Cl N
21
D S Gl 1

�

Gl N

D ,

only taking all l j not equal to the zero points ofGl , the last equality being not zero. Hence

rankFY 5N.

Theorem 5.8: ~i! I ( j ),1< j <N are functionally independent.
~ii ! There exit N independent function classes on the Poisson manifold$R3N,$""%%, with

representative elementsS j 51
N l j

mI ( j ), 1<m<N.
~iii ! Fm.S j 51

N l j
mI ( j ), 0<m<N21, i.e.,F0 ,...,FN21 belong toN distinct equivalent classes

The N Casimir functionsh( j ),1< j <N, are also functionally independent, because they
composed of distinct component and not mixture. Thus by Proposition 5.5 and Theorem 5
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see that the Poisson map~5.5! hasN independent Casimir functionsh( j ),1< j <N andN indepen-
dent conserved integralsI ( j ),1< j <N, which are in involution with respect to the Poisson brac
~5.14!, hence it is integrable.

VI. ONE REDUCTION ON THE CO-ADJOINT REPRESENTATIVE ORBIT

In order to get the reduction on the induced symplectic foliation by Lie–Poisson stru
~5.14!, we first introduce the Lie group associated with Lie algebraLA(l j ), according to the
theory of the Lie group, the one here we need is

LG~l j !5$r :r TCl j
r 5Cl j

, r PSL~3,R!%. ~6.1!

DefinesLA(l j )
:R3→LA(l j ) by

sLA~l j !
~a!5Cl j

21S 0 2a3 a2

a3 0 2a1

2a2 a1 0
D , ~6.2!

we have the commutation relation

@sLA~l j !
~a!,sLA~l j !

~b!#5sLA~l j !
~Cl j

21~a3b!!, ~6.3!

hencesLA(l j )
is a Lie algebra isomorphism betweenR3 with Lie bracket@a,b#5Cl j

21(a3b) and

the Lie algebraLA(l j ), a similar result as Eq.~2.14! is

sLA~l j !
~ra!5AdrsLA~l j !

~a!, ~6.4!

that is, the adjoint action of Lie groupLG(l j ) on the Lie algebraLA(l j ) is equivalent to the
action of Lie groupLG(l j ) on the isomorphic Lie algebraR3.

The co-adjoint action of a group elementr PLG(l j ) is the linear map Adr* :LA(l j )*
→LA(l j )* on the dual space satisfying

^Adr* ~v!;sLA~l j !
~a!&5^v;Adr 21sLA~l j !

~a!&, ~6.5!

for all vPLA(l j )* ,aPR3. Here^"; "& is the natural pairing betweenLA(l j ) andLA(l j )* .
Thus using Eq.~6.4!, the co-adjoint action Adr* of r on LA(l j )* has matrix representatio

Adr* 5(r 21)T5Cl j
rCl j

21 relative to the corresponding dual basis onLA(l j )* .R3.

Theorem 6.1: ~i! The symplectic leaves determined by the Casimir functionsh( j ) ( j
51,...,N) are the orbits of the co-adjoint representation ofLG(l j ).

~ii ! The co-adjoint action of Lie groupLG(l j ) on theLA(l j )* is equivalent to the action o
Lie grouppl j

(SL(2,R)) on theLA(l j )* .
~iii ! Casimir functionsh( j ),( j 51,...,N) are the invariant functions under the action of L

grouppl j
(SL(2,R)).

~iv! For eachr PLG(l j ) ~a constant matrix!, the co-adjoint map Adr* on y( j ),( j 51,...,N) is a
Poisson mapping, or for eachRPpl j

(SL(2,R)) ~a constant matrix! on y( j ) ( j 51,...,N) is a Pois-
son mapping.

Proof: ~i! Casimir functionsh( j ) can be rewritten as

h~ j !5l j^y~ j !,Cl j

21y~ j !&, j 51,...,N, ~6.6!

for a giveny( j ), usingr TCl j
r 5Cl j

, we have

^~r 21!Ty~ j !,Cl j

21~r 21!Ty~ j !&5^y~ j !,r 21Cl j

21~r 21!Ty~ j !&5^y~ j !,Cl j

21y~ j !&.
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~ii ! For

~~r 21!T!TCl j

21~r 21!T5r 21Cl j

21~r 21!T5Cl j

21,

thus (r 21)TPpl j
(SL(2,R)).

~iii ! Let RPpl j
(SL(2,R)), then

^Ry~ j !,Cl j

21Ry~ j !&5^y~ j !,RTCl j

21Ry~ j !&5^y~ j !,Cl j

21y~ j !&.

~iv! Only to prove it holds bypl j
(SL(2,R)), denotingz( j )5Ry( j ), then

Aj
j5RT, Ak

j 50, kÞ j ,

whereAj
j is the Jacobian matrix of the transformation. Similarly to Theorem 5.4, we only nee

obtain the following equality:

~Aj
j !TJj~y~ j !!Aj

j5Jj~z~ j !!, j 51,...,N.

Since

Jj~y~ j !!52
1

2l j
sl j

~y~ j !!Cl j
,

hence

~Aj
j !TJj~y~ j !!Aj

j52
1

2l j
Rsl j

~y~ j !!Cl j
RT

52
1

2l j
Rsl j

~y~ j !!R21Cl j

52
1

2l j
sl j

~Ry~ j !!Cl j

5Jj~z~ j !!.

Consider the common level set of the co-adjoint representative orbits

$h~1!50,...,h~N!50%, ~6.7!

which leads to the foliation ofR3N. As the Poisson map~5.5! is restricted on it, a symplectic ma
on the symplectic manifoldR2N with the canonical Poisson bracket

~F,G!5(
j 51

N S ]F

]qj

]G

]pj2
]F

]pj

]G

]qj D ~6.8!

is obtained.
Let

y~ j !5pl j
~g!y~ j !, j 51,...,N. ~6.9!

Definet : R2→R3 by
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t~c!5
1

2 S ~c2!2

2l~c1!2

c1c2
D . ~6.10!

Taking

y~ j !5t~c j !5
1

2 S ~qj !2

2l j~pj !2

pjqj
D , c j5S pj

qj D , j 51,...,N, ~6.11!

which satisfy

h~ j !52y1
~ j !y2

~ j !2l j~y3
~ j !!250, j 51,...,N. ~6.12!

By the relations

Ey~ j !2pl j
~g!y~ j !5M~Ec j2g~l j !c

j !, j 51,...,N, ~6.13!

where

M5
1

2 S 0 Edj1~qj1l jbpj !

2l jEpj2l j~aqj1pj1l jabpj ! 0

Eqj aqj1pj1l jabpj
D .

We get

Ec j5g~l j !c
j , j 51,...,N, ~6.14!

thus we have the map

EC5S~C!, C5~c1,...,cN!T, ~6.15!

where

a5
2

( j 51
N ~Eqj !2 , b52

2

( j 51
N l j~pj !2 . ~6.16!

Equation~6.15! is actually the nonlinearization of eigenvalue problem~3.1!. From Eq.~6.10! we
have the mapT:R2N→R3N by

T~C!5~t~c1!,...,t~cN!!T. ~6.17!

Proposition 6.2:~i! $yk
( j ) ,ys

( j )%5(yk
( j ) ,ys

( j )), j 51,...,N, k,s51,2,3.
~ii ! Let t* be the tangent map. Then

t* @c j #~ I“c jF !5Jj“y~ j !F,

whereI 5(1
0

0
21).

~iii !

dEp∧dEq5dp∧dq, p5~p1,...,pN!T, q5~q1,...,qN!T.

Proof: ~i! Using Eqs.~6.8! and ~6.11!, direct calculation leads to them.
~ii ! The matrix of the mapt @c j # is
*
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S 0 qj

2l j p
j 0

1

2
qj

1

2
pj
D

and

]F

]pj 52l j p
j

]F

]y2
~ j ! 1

1

2
qj

]F

]y3
~ j ! ,

]F

]qj 5qj
]F

]y1
~ j ! 1

1

2
pj

]F

]y3
~ j ! ,

hence

t* ~ I“c jF !5S 0 2l j p
jqj 1

2
~qj !2

l j p
jqj 0

1

2
l j~pj !2

2
1

2
~qj !2 2

1

2
l j~pj !2 0

D “y~ j !F5Jj“y~ j !F.

~iii ! By Eq. ~6.16!, we have

a~b2^L2p,p&12b^Lp,q&1^q,q&!52, b^Lp,p&522,

where^,& is the standard inner product inR2N, andL5diag(l1,...,lN). Thus we obtain

^Lp,db∧dp&50,

~b^L2p,p&1^Lp,q&!da∧db1^b2L2p1bLq,da∧dp&1^bLp1Lq,da∧dq&50.

Hence, using the above two identities, a simple calculation gives

dEp∧dEq5(
j 51

N

dEpj∧dEqj5dp∧dq.

Corollary 6.3: ~i! T* $F,G%5(T* F,T* G), that is,T is a Poisson map.
~ii ! S* (F,G)5(S* F,S* G), that is,S is a symplectic map.
Noting the theorem~5.8!, we have
Corollary 6.4: ~i! Symplectic map~6.15! has N independent conserved integralsFm

5( j 51
N l j

mI ( j ),m50,1,...,N, which are in involution with respect to the classic Poisson brac
~6.8!.

~ii ! Symplectic map~6.15! is integrable.
Remark: We would like to emphasize that the above technique is also effective for

continuous19,20 and other discrete21 111 soliton hierarchies.
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We study the level-one irreducible highest weight representations of the quantum
affine superalgebraUq@sl(N̂u1)#, and calculate their characters and supercharac-
ters. We obtain bosonizedq-vertex operators acting on the irreducibleUq@sl(N̂u1)#
modules and derive the exchange relations satisfied by the vertex operators. We
give the bosonization of the multicomponent supert2J model by using the
bosonized vertex operators. ©2000 American Institute of Physics.
@S0022-2488~00!00508-9#

I. INTRODUCTION

The purpose of this paper is twofold. One is to study irreducible highest weight repres
tions andq-vertex operators1 of the quantum affine superalgebraUq@sl(N̂u1)#, N.2. Another one
is to apply these results to bosonize the multicomponent supert2J model on an infinite lattice.

We shall adapt the bosonization technique initiated in Refs. 2 and 3, which turns out
very powerful in constructing highest weight representations andq-vertex operators. Recently
free bosonic realizations of the level-one representations and ‘‘elementary’’q-vertex operators
have been obtained forUq@sl(M̂ uN)#, MÞN4 and Uq@gl(N̂uN)#.5 However, these free boso
representations are not irreducible in general. Moreover, the elementaryq-vertex operators ob-
tained in Refs. 4 and 5 were determined solely from their commutation relations with
bosonized Drinfeld generators6 of the relevant algebras, and thus one can ask on which repre
tations these bosonizedq-vertex operators act. To construct irreducible highest weight repre
tations andq-vertex operators acting on them, we need to study in details the structure o
bosonic Fock space generated by the free boson fields. This has been done forUq@sl(2̂u1)#4,7 and
Uq@gl(N̂uN)#, N<2.8 In this paper we treat theUq@sl(N̂u1)# (N.2) case.

Irreducible highest weight representations and bosonizedq-vertex operators acting on them
play an essential role in the algebraic analysis method of lattice integrable models, whic
invented by the Kyoto group and collaborators.9,10 In this approach, the following assumption
the vital key.

‘ ‘the physical space of states of the model’ ’5 %
a,a8

V~la! ^ V~la8!*
S, ~I.1!

whereV(la) is the level-one irreducible highest weight module of the underlying quantum a
algebras andV(la)* S is the dual module ofV(la). By this method, various integrable mode
have been analyzed such as the higher spinXXZchains,11–13the higher rank cases,14,15 the twisted
A2

(2) case,16 and the face type statistical models.17,18
58490022-2488/2000/41(8)/5849/21/$17.00 © 2000 American Institute of Physics
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Spin chain models with quantum superalgebra symmetries have been the focus of
studies in the context of strongly correlated fermion systems.19–23 It is natural to generalize the
algebraic analysis method to treat super spin chains on an infinite lattice. In Ref. 7, theq-deformed
supersymmetrict2J model which hasUq8@sl(2̂u1)# as its non-abelian symmetry has been a
lyzed. However, the super case is fundamentally different from the nonsuper case. Unli
latter,Uq@sl(2̂u1)# has infinite number of level-one irreducible highest weight representations
the bosonizedq-vertex operators act in all of them. This leads to7 the assumption that for the
q-deformed supersymmetrict2J modela, a8 in ~I.1! take infinite number of integer values.

In this paper we extend the work7 to treat the multicomponentt2J model withUq8@sl(N̂u1)#
(N.2) symmetry. As we shall see, the level-one irreducible highest weight representatio
Uq@sl(N̂u1)# (N.2) have similar structures as theN52 case. So we shall make the assumpt
that the physical space of states of the multicomponentt2J model on an infinite lattice is of the
form ~I.1! with a, a8 being any integers.

This paper is organized as follows. After presenting some necessary preliminaries, in S
we construct the level-one irreducible highest weight representations ofUq@sl(N̂u1)# and calculate
their ~super!characters by means of the BRST resolution. In Sec. IV, we compute the exch
relations of theq-vertex operators and show that they form the graded Faddeev–Zamolodc
algebra. In Sec. V, we consider the application of these results to the multicomponent st
2J model on an infinite lattice. Generalizing the Kyoto group’s work,9 we give the bosonization
of this model using the bosonized vertex operators ofUq@sl(N̂u1)#. Finally, we compute the
one-point correlation functions of the local operators and give an integral expression of th
relation functions.

II. PRELIMINARIES

A. Quantum affine superalgebra Uq†sl „N̂z1…‡

Let us introduce orthonormal basis$e i8u i 51,2,...,N11% with the bilinear form (e i8 ,e j8)
5n id i j , wheren i51 for iÞN11 andnN11521. The classical fundamental weights are defin
by L̄ i5( j 51

i e j ( i 51,2,...,N), with e i5e i82@n i /(N21)#( j 51
N11e j8 . Introduce the affine weightL0

and the null rootd having (L0 ,e i8)5(d,e i8)50 for i 51,2,...,N11 and (L0 ,L0)5(d,d)50,
(L0 ,d)51. The affine simple roots and fundamental weights are given by

a i5n ie i82n i 11e i 118 , i 51,2,...,N, a05d2(
i 51

N

a i ,

~II.1!
L05L0 , L i5L01L̄ i , i 51,2,...,N.

The Cartan matrix of the affine superalgebra sl(N̂u1) reads as

~ai j !5S 0 21 1

21 2 21

21 2 �

� � �

21 2 21

1 21 0

D ~ i , j 50,1,2,...,N!. ~II.2!

The quantum affine superalgebraUq@sl(N̂u1)# is aq-analog of the universal enveloping alg
bra of sl(N̂u1) generated by the Chevalley generators$ei , f i ,qhi,du i 50,1,2,...,N%, whered is the
usual derivation operator. TheZ2-grading of the generators are@e0#5@ f 0#5@eN#5@ f N#51 and
zero otherwise. The defining relations are
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@hi ,hj #50, hid5dhi , @d,ei #5d i ,0ei , @d, f i #52d i ,0f i ,

qhiejq
2hi5qai j ej , qhi f jq

2hi5q2ai j f j , @ei , f j #5d i j

qhi2q2hi

q2q21 ,

@ei ,ej #5@ f i , f j #50, for ai j 50,

@ej ,@ej ,ei #q21#q50, @ f j ,@ f j , f i #q21#q50 for uai j u51, j Þ0, N.

Here and throughout,@a,b#x[ab2(21)@a#@b#xba and@a,b#[@a,b#1 . We do not write down the
extraq-Serre relations which can be obtained by using Yamane’s Dynkin diagram procedu24

Uq@sl(N̂u1)# is a Z2-graded quasi-triangular Hopf algebra endowed with the following
productD, counit e and antipodeS:

D~hi !5hi ^ 111^ hi , D~d!5d^ 111^ d,

D~ei !5ei ^ 11qhi ^ ei , D~ f i !5 f i ^ q2hi11^ f i ,
~II.3!

e~ei !5e~ f i !5e~h!50,

S~ei !52q2hiei , S~ f i !52 f iq
hi, S~h!52h,

wherei 50,1,...,N. Notice that the antipodeS is aZ2-graded algebra antihomomorphism. Name
for any homogeneous elementsa,bPUq@sl(N̂u1)# S(ab)5(21)@a#@b#S(b)S(a), which extends
to inhomogeneous elements through linearity. Moreover,

S2~a!5q22raq2r, ;aPUq@sl~N̂u1!#, ~II.4!

wherer is an element in the Cartan subalgebra such that (r,a i)5(a i ,a i)/2 for any simple root
a i , i 50,1,2,...,N. Explicitly,

r5~N21!d1 r̄5~N21!d1
1

2 (
k51

N

~N22k!ek82
1

2
NeN118 , ~II.5!

which r̄ is the half-sum of positive roots of sl(Nu1). The multiplication rule on the tensor produc
is Z2 graded: (a^ b)(a8^ b8)5(21)@b#@a8#(aa8^ bb8) for any homogeneous elemen
a,b,a8,b8PUq@sl(N̂u1)#.

Uq@sl(N̂u1)# can also be realized in terms of the Drinfeld generato6

$Xm
6,i ,Hn

i ,q6H0
i
,c,dumPZ,nPZ2$0%,i 51,2,...,N%. TheZ2-grading of the Drinfeld generators i

given by@Xm
6,N#51 for mPZ and zero otherwise. The relations satisfied by the Drinfeld gen

tors read24,25

@c,a#5@d,H0
i #5@H0

i ,Hn
j #50, @d,Hn

i #5nHn
i , ;aPUq@sl~N̂u1!#,

@d,Xn
6,i #5nXn

6,i , qH0
j
Xn

6,iq2H0
j
5q6ai j Xn

6,i ,

@Hn
i ,Hm

j #5dn1m,0

@ai j n#q@nc#q

n
, @Hn

i ,Xm
6, j #56

@ai j n#q

n
Xn1m

6 j q6unuc/2,

@Xn
1,i ,Xm

2 j #5
d i j

q2q21 ~q~c/2!~n2m!cn1m
1,i 2q2~c/2!~n2m!cn1m

2,i !, ~II.6!

@Xn
6,i ,Xm

6, j #50 for ai j 50,
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@Xn11
6,i ,Xm

6 j #q6ai j 2@Xm11
6, j ,Xn

6,i #q6ai j 50 for ai j Þ0,

Syml ,m@Xl
6,i ,@Xm

6,i ,Xn
6, j #q21#q50 for ai j 50, iÞN,

where(nPZcn
6, j z2n5q6H0

j
exp(6(q2q21)(n.0H6n

j z7n), and the symbol Symk,l means symme-
trization with respect tok and l. We used the standard notation@x#q5(qx2q2x)/(q2q21). The
Chevalley generators are related to the Drinfeld generators by the formulas:

hi5H0
i , ei5X0

1,i , f i5X0
2,i , i 51,2,...,N, h05c2 (

k51

N

H0
k ,

e052@X0
2,N ,@X0

2,N21,...,@X0
22,X1

2,1#q21¯#q21q(k51
N H0

k
, ~II.7!

f 05q(
k51

N

H0
kH0

k@@¯@@X21
1,1 ,X0

1,2 ,#q , ¯ ,X0
1,N21#q ,X0

1,N#q .

B. Free Bosonic realization of the quantum affine superalgebra Uq†sl „N̂z1…‡
at level one

Introduce bosonic oscillators$an
i ,bn ,cn ,Qai,Qb ,QcunPZ,i 51,2,...,N,% which satisfy the

commutation relations

@an
i ,am

j #5dn1m,0d i j

@n#q@n#q

n
, @a0

i ,Qaj #5d i j ,

@bn ,bm#52dn1m,0

@n#q
2

n
, @b0 ,Qb#521, ~II.8!

@cn ,cm#5dn1m,0

@n#q
2

n
, @c0 ,Qc#51.

The remaining commutation relations are zero. Define$hm
i u i 51,2,...,N,mPZ%:

hm
i 5am

i q2umu/22ai 11qumu/2, Qhi
5Qai2Qai 11, i 51,2,...,N21,

~II.9!
hm

N5am
Nq2umu/21bmq2umu/2, QhN

5QaN1Qb .

Let us introduce the notation

hj~z;k!5Qhj
1h0

j ln z2 (
nÞ0

hn
j

@n#q
qkunuz2n.

The bosonic fieldsc(z;b), b(z;b), andhj* (z;b) are defined in the same way. Define the Drinfe
currents,X6,i(z)5(nPZXn

6,iz2n21, i 51,2,...,N, and theq-differential operator]zf (z)5@ f (qz)
2 f (q21z)#/(q2q21)z. Then, the Drinfeld generators ofUq@sl(N̂u1)# at level one can be realize
by the free boson fields as4

c51, Hm
i 5hm

i , X1,N~z!5..e2hN~z;21/2!ec~z;0!:e2A21p(
i 51

N21

a0
i
,

X2,N~z!5..e2hN~z;1/2!]z$e
2c~z;0!%:eA21p(

i 51

N21

a0
i
, ~II.10!
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X6,i~z!56:e6hi ~z;71/2!:e6A21pa0
i
, i 51,2,...,N21.

C. Bosonization of level-one vertex operators

In order to construct the vertex operators ofUq@sl(N̂u1)#, we firstly consider the level-zero
representations~i.e., the evaluation representations! of Uq@sl(N̂u1)#.

Let Ei , j be the (N11)3(N11) matrix whose~i,j! element is unity and zero elsewhere. L
$v1 ,v2 ,...,vN11% be the basis vectors of the (N11)-dimensional graded vector spaceV. The
Z2-grading of these basis vectors is chosen to be@v i #5(n i11)/2. The (N11)-dimensional level-
zero representationVz of Uq@sl(N̂u1)# is given by

ei5Ei ,i 11 , f i5n iEi 11,i , t i5qn iEi ,i2n i 11Ei 11,i 11,
~II.11!

e052zEN11,1, f 05z21E1,N11 , t05q2E1,12EN11,N11,

wherei 51,...,N. Let Vz*
S be the left dual module ofVz , defined by

pV
z*

S~a!5pVz
~S~a!!st, ;aPUq@sl~N̂u1!#, ~II.12!

where st denotes the supertransposition.
Now, we study the level-one vertex operators1 of Uq@sl(N̂u1)#. Let V(l) be the highest

weightUq@sl(N̂u1)# module with the highest weightl and the highest weight vectorul&. Consider
the following intertwiners ofUq@sl(N̂u1)# modules:10

Fl
mV~z!:V~l!→V~m! ^ Vz , Fl

mV* ~z!:V~l!→V~m! ^ Vz*
S ,

~II.13!
Cl

Vm~z!:V~l!→Vz^ V~m!, Cl
V* m

~z!:V~l!→Vz*
S

^ V~m!.

They are intertwiners in the sense that for anyxPUq@sl(N̂u1)#

J~z!•x5D~x!•J~z!, J~z!5Fl
mV~z!,Fl

mV* ~z!,Cl
Vm~z!,Cl

V* m~z!. ~II.14!

We expand the vertex operators as10

Fl
mV~z!5(

j 51

N

Fl, j
mV~z! ^ v j , Fl

mV* ~z!5(
j 51

N

Fl, j
mV* ~z! ^ v j* ,

~II.15!

Cl
Vm~z!5(

j 51

N

v j ^ Cl, j
Vm~z!, Cl

V* m~z!5(
j 51

N

v j* ^ Cl, j
V* m~z!.

The intertwiners are even, which implies@Fl, j
mV(z)#5@Fl, j

mV* (z)#5@Cl, j
Vm(z)#5@Cl, j

V* m(z)#5@v j #

5(n j11)/2. According to Ref. 10,Fl
mV(z)(Fl

mV* (z)) is called type I~dual! vertex operator and

Cl
Vm(z)(Cl

V* m(z)) type II ~dual! vertex operator.
Introduce the bosonic operatorsf j (z), f j* (z), c j (z), andc j* (z):4

fN61~z!5..e2hN* ~qNz;1/2!ec~qNz;0!~qNz!@~N22!/~2N21!#:eA21p( i 51
N

~12 i !/~N21!a0
i
,

n lf l~z!~21!@ f l #~@v l #1@v l 11# !5@f l 11~z!, f l #qn l 11 ,

f1* ~z!5..eh1* ~qz;1/2!~qNz!@~N22!/2~N21!#:e2A21p( i 51
N

~12 i !/~N21!a0
i
,

2n lq
n lf l 11* ~z!~21!@ f l #~@v l #1@v l 11# !5@f l* ~z!, f l #qn l , ~II.16!
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c1~z!5..e2h1* ~qz;21/2!~qNz!@~N22!/2~N21!#:eA21p( i 51
N

~12 i !/~N21!ao
i
,

c l 11~z!5@c l~z!,el #qn l ,

cN11* ~z!5..ehN* ~q22Nz;21/2!]z$e
2c~q22Nz;0!%~qNz!@~N22!/2~N21!#:e2A21p( i 51

N
~12 i !/~N21!a0

i
,

2n ln l 11q2n lc l* ~z!5@c l 11* ~z!,el #qn l 11 ,

where

hn*
i5(

j 51

N
@a i j m#q@bi j m#q

@~N21!m#q@m#q
hn

j , Qhi* 5(
j 51

N
a i j b i j

N21
Qhi, h0*

i5(
j 51

N
a i j b i j

N21
hj ,

with a i j 5min(i,j), andb i j 5N212max(i,j). Define the even operatorsf(z), f* (z), c(z), and
c* (z) by f(z)5S j 51

N11f j (z) ^ v j , f* (z)5S j 51
N11f j* (z) ^ v j* , c(z)5S j 51

N11v j ^ c j (z), and

c* (z)5S j 51
N11v j* ^ c j* (z). Then the vertex operatorsFl

mV(z), Fl
mV* (z), Cl

Vm(z), andCl
V* m(z),

if they exist, are bosonized byf(z), f* (z), andc(z), c* (z), respectively.4 We remark that our
vertex operators differ from those of Kimuraet al.4 by a scalar factor (qNz)@(N22)/2(N21)#
which is needed in order for the vertex operators also satisfy~II.14! for the elementx5d. f(z),
f* (z), c(z), andc* (z) are referred to as the ‘‘elementaryq-vertex operators’’ ofUq@sl(N̂u1)#.

III. HIGHEST WEIGHT Uq†sl „N̂z1…‡ MODULES

We begin by defining the Fock module. Denote byFl1 ,l2 ,...,lN11 ;lN12
the bosonic Fock spac

generated bya2m
i ,b2m ,c2m(m.0) over the vectorul1 ,l2 ,...,lN11 ;lN12&:

Fl1 ,l2 ,...,lN11 ;lN12
5C@a21

i ,a22
i ,...;b21 ,b22 ,...;c21 ,c22 ...#ul1 ,l2 ,...,lN11 ;lN12&,

where

ul1 ,l2 ,...,lN11 ;lN12&5e( i 51
N l iQai1lN11Qb1lN12Qcu0&.

The vacuum vectoru0& is defined byam
i u0&5bmu0&5cmu0&50 for i 51,2,...,N, andm>0. Obvi-

ously,

am
i ul1 ,l2 ,...,lN11 ;lN12&50, for i 51,2,...,N and m.0,

bmul1 ,l2 ,...,lN11 ;lN12&5cmul1 ,l2 ,...,lN11 ;lN12&50, for m.0.

To obtain the highest weight vectors ofUq@sl(N̂u1)#, we impose the conditions

ei ul1 ,...,lN11 ;lN12&50, i 50,1,2,...,N,
~III.1!

hi ul1 ,...,lN11 ;lN12&5l i ul1 ,...,lN11 ;lN12&, i 50,1,2,...,N.

Solving these equations, we obtain two classes of solutions:

~1!

wherei 51,...,N, andb is arbitrary. It follows that
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and we have the identification

~2! (l1 ,...,lN ,lN11 ;lN12)5(b,...,b,b2a;2a), where a, b are arbitrary. We have
(l0,l1,...,lN21,lN)5(12a,0,...,0,a) and u(12a)L01aLN&5ub,...,b,b2a;2a&.

Associated to the above two classes of solutions are the following Fock spaces:

Fb
m5 %

$ i 1 ,...,i N%PZ

Fb111 i 1 ,b112 i 11 i 2 ,...,b112 i m211 i m ,b2 i m1 i m11 ,...,b2 i N211 i N ,b1 i N ; i N
,

F~a,b!5 %
$ i 1 ,...,i N%PZ

Fb1 i 1 ,b2 i 11 i 2 ,...,b2 i N211 i N ,b2a1 i N ;2a1 i N
,

wherem51,2,..., N, and it should be understood thati 0[0. However, it is easily seen thatFb
m

5F (m;b) , m51,..., N. Thus, it is sufficient to study the Fock spaceF(a;b) . In the following we
shall also restrict ourselves to theaPZ case.

It can be shown that the bosonized action ofUq@sl(N̂u1)# ~II.10! on F(a;b) is closed:

Uq@sl~N̂u1!#F~a;b!5F~a;b! .

Hence each Fock spaceF(a;b) constitutes aUq@sl(N̂u1)# module. However, these modules are n
irreducible in general. To obtain irreducible subspaces, we introduce a pair of ghost fields4

h~z!5 (
nPZ

hnz2n21
ªec~z!:, j~z!5 (

nPZ
jnz2n5..e2c~z!:.

The mode expansion ofh(z) andj(z) is well defined onF(a;b) for aPZ, and the modes satisfy
the relations

jmjn1jnjm5hmhn1hnhm50, j0hn1hnjm5dm1n,0 . ~III.2!

Sinceh0j0 and j0h0 qualify as projectors, we use them to decomposeF(a;b) into a direct sum
F(a;b)5h0j0F(a;b) % j0h0F(a;b) for aPZ. h0j0F(a;b) is referred to as Kerh0

and j0h0F(a;b)

5F(a;b) /h0j0F(a;b) as Cokerh0
. Sinceh0 commutes~or anticommutes! with the bosonized ac-

tion of Uq@sl(N̂u1)#, Kerh0
and Cokerh0

are bothUq@sl(N̂u1)# modules foraPZ.

A. Character and supercharacter

We want to determine the character and supercharacter formulas of theUq@sl(N̂u1)# modules
constructed in the bosonic Fock space. We first of all bosonize the derivation operatord as

d52 (
m>1

m2

@m#q
2 H (

i 51

N

h2m
i hm*

i1c2mcmJ 2
1

2 H (
i 51

N

h0
i h0*

i1c0~c011!J . ~III.3!

It obeys the commutation relations

@d,hi #50, @d,hm
i #5mhm

i , @d,Xm
6,i #5mXm

6,i , i 51,2,..., N,

as required. Moreover,@d,j0#5@d,h0#50.
The character and supercharacter of aUq@sl(N̂u1)# moduleM are defined by

ChM~q;x1 ,x2 ,...,xN!5trM~q2dx1
h1x2

h2
¯xN

hN!,

~III.4!
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SchM~q;x1 ,x2 ,...,xN!5StrM~q2dx1
h1x2

h2
¯xN

hN!5trM~~21!Nfq2dx1
h1x2

h2
¯xN

hN!,

respectively. The Fermi-number operatorNf can be bosonized as

Nf5H ~N21!b0 if N even, i.e., N52L,

L~Sk51
N a0

i 2b0!1c0 if N odd, i.e., N52L11.
~III.5!

Indeed,Nf satisfies

~21!NfQ~z!5~21!@Q~z!#Q~z!~21!Nf ,

whereQ(z)5X6,i(z), f i(z), f i* (z), c i(z), andc i* (z).
We calculate the characters and supercharacters by using the BRST resolution.7 Let us define

the Fock spaces, forl PZ

F~a;b!
~ i ! 5 %

$ i 1 ,¯ ,i N%PZ

Fb1 i 1 ,b2 i 11 i 2 ,...,,b2 i N211 i N ,b2a1 i N ;2a1 i N1 l .

We haveF(a;b)
(0) 5F(a;b) . It can be shown thath0 andj0 intertwine these Fock spaces as follow

h0 :F~a;b!
~ l ! →F~a;b!

~ l 11! , j0 :F~a;b!
~ l ! →F~a;b!

~ l 21! .

We have the following BRST complexes:

¯ ——→
Ql 215h0

F~a;b!
~ l ! ——→

Ql5h0

F~a;b!
~ l 11! ——→

Ql 115h0

¯

uO uO ~III.6!

¯ ——→
Ql 215h0

F~a;b!
~ l ! ——→

Ql5h0

F~a;b!
~ l 11! ——→

Ql 115h0

¯,

where O is an operator such thatF(a;b)
( l ) →F(a;b)

( l ) . Noting the fact thath0j01j0h051, and
h0j0(j0h0) is the projection operator fromF(a;b)

( l ) to KerQl
(CokerQl

), we get

KerQl
5ImQl 21

for any l PZ,

~III.7!

tr~O!uKerQl
5tr~O!u ImQl 21

5tr~O!uCokerQl 21
.

By the above results, we can write the trace over Ker or Coker as the sum of trace
F(a;b)

( l ) , and compute the latter by using the technique introduced in Ref. 26. The results a

ChKerF~a;b!

~q;x1 ,...,xN!5
q1/2a~a21!

)n51
` ~12qn!N11 (

l 51

`

~21! l 11q1/2$ l 21 l ~2a21!%

3 (
$ i 1 ,...,i N%PZ

q1/2$ i N
2

1 i N~122a22l !%q1/2D~ i 1 ,...,i N!

3x1
2i 12 i 2x2

2i 22 i 12 i 3
¯xN21

2i N212 i N2 i N22xN
a2 i N,
                                                                                                                



5857J. Math. Phys., Vol. 41, No. 8, August 2000 Level-one representations of Uq@sl(N̂u1)#

                    
ChCokerF~a;b!

~q;x1 ,...,xN!5
q1/2a~a21!

)n51
` ~12qn!N11 (

l 51

`

~21! l 11q1/2$ l 21 l ~122a!%

3 (
$ i 1 ,...,i N%PZ

q1/2$ i N
2

1 i N~122a12l !%q1/2D~ i 1 ,...,i N!

3x1
2i 12 i 2x2

2i 22 i 12 i 3
¯xN21

2i N212 i N2 i N22xN
a2 i N,

whereD( i 1 ,...,i N)5S l ,l 851
N (a l l 8b l l 8 /N21)l i 1 ,...,i N

l l i 1 ,...,i N
l 8 and

l i 1 ,...,i N
l 52i l2 i l 212 i l 11 , 2< l<N21

l i 1 ,...,i N
1 52i 12 i 2 , l i 1 ,...,i N

N 5a2 i N

. ~III.8!

Similarly, the supercharacters of KerF(a;b)
and CokerF(a;b)

are given by

~1! For N52L:

SchKerF~a;b!

~q;x1 ,...,xN!5
~21!aq1/2a~a21!

)n51
` ~12qn!N11 (

l 51

`

~21! l 11q1/2$ l 21 l ~2a21!%

3 (
$ i 1 ,...,i N%PZ

~21! i Nq1/2$ i N
2

1 i N~122a22l !%q1/2D~ i 1 ,...,i N!

3x1
2i 12 i 2x2

2i 22 i 12 i 3
¯xN21

2i N212 i N2 i N22xN
a2 i N,

SchCokerF~a;b!

~q;x1 ,...,xN!5
~21!aq1/2a~a21!

)n51
` ~12qn!N11 (

l 51

`

~21! l 11q1/2$ l 21 l ~ l 22a!%

3 (
$ i 1 ,...,i N%PZ

~21! i Nq1/2$ i N
2

1 i N~122a12l !%q1/2D~ i 1 ,...,i N!

3x1
2i 12 i 2x2

2i 22 i 12 i 3
¯xN21

2i N212 i N2 i N22xN
a2 i N.

~2! For N52L11:

SchKerF~a;b!

~q;x1 ,...,xN!52
~21!~L11!aq1/2a~a21!

)n51
` ~12qn!N11 (

l 51

`

q1/2$ l 21 l ~2a21!%

3 (
$ i 1 ,...,i N%PZ

~21! i Nq1/2$ i N
2

1 i N~122a22l !%q1/2D~ i 1 ,...,i N!

3x1
2i 12 i 2x2

2i 22 i 12 i 3
¯xN21

2i N212 i N2 i N22xN
a2 i N,

SchCokerF~a;b!

~q;x1 ,...,xN!52
~21!~L11!aq1/2a~a21!

)n51
` ~12qn!N11 (

l 51

`

q1/2$ l 21 l ~122a!%

3 (
$ i 1 ,...,i N%PZ

~21! i Nq1/2$ i N
2

1 i N~122a12l !%q1/2D~ i 1 ,...,i N!

3x1
2i 12 i 2x2

2i 22 i 12 i 3
¯xN21

2i N212 i N2 i N22xN
a2 i N.

SinceF(a2(N21);b11)
(1) 5F(a;b) and by~III.7!, we have
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ChCokerF~a2~N21!;b11!

5ChKerF~a;b!

, SchCokerF~a2~N21!;b11!

5SchKerF~a;b!

. ~III.9!

Relations~III.9! can also be checked by using the above explicit formulas of the~super!
characters.

B. Uq†sl „N̂z1…‡ module structure of F
„a; bÀ†1Õ„NÀ1…Õ‡a…

Setla5(12a)L01aLN and

ula&5ub,...,b,b2a;2a&PF~a;b! , aPZ,

uLm&5ub11,...,b11,b,...,b;0&PF~m;b! , m51,..., N,

The above vectors play the role of the highest weight vectors ofUq@sl(N̂u1)# modules. One can
check that

h0ula&50, for a50,21,...

h0uLm&50, for m51,..., N ~III.10!

h0ula&Þ0, for a51,2,... .

It follows that the modules

CokerF~a,b!
~a51,2,...!, KerF~a;b!

~a50,21,22,...!,

KerF~m;b!
~m51,2,...,N!,

are highest weightUq@sl(N̂u1)# modules. Denote them byV̄(la) andV̄(Lm), respectively. From
~III.10! and ~III.9!, we have the following identifications of the highest weig
Uq@sl(N̂u1)#-modules:

V̄~la!>KerF~a;b21/N21a!
[CokerF~a2~N21!;b21/N21a11!

for a50,21,22,...,

>CokerF~a;b21/N21a!
[KerF~a1~N21!;b21/N21a21!

for a51,2,..., ~III.11!

V̄~Lm!>KerF~m;b21/N21m!
[CokerF~m2~N21!;b21/N21m11!

for m51,...,N. ~III.12!

It is easy to see that the vertex operators~II.16! also commute~or anticommute! with h0 . It
follows from ~III.11!–~III.12! that each Fock spaceF(a;b2@1/(N21)#a) is decomposed into a direc
sum of the highest weightUq@sl(N̂u1)# modules:

Ker Coker
• • •

• • •

F (2N;b111@1/(N21)#)5 V̄(l2N) % V̄(l21)
f(z)↑↓f* (z) f(z)↑↓f* (z)

F (2N11;b11)5 V̄(l2N11) % V̄(L0)
f(z)↑↓f* (z) f(z)↑↓f* (z)

F (2N12;b112@1/(N21)#)5 V̄(l2N12) % V̄(L1)
f(z)↑↓f* (z) f(z)↑↓f* (z)

• • •

• • •

F (22;b112@(N22)/(N21)#)5 V̄(l22) % V̄(LN23)
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f(z)↑↓f* (z) f(z)↑↓f* (z)
F (21;b11@(N22)/N21)#)5 V̄(l21) % V̄(LN22)

f(z)↑↓f* (z) f(z)↑↓f* (z)
F (0;b)5 V̄(L0) % V̄(LN21)

f(z)↑↓f* (z) f(z)↑↓f* (z) ~III.13!

F (1;b2@1/(N21)#)5 V̄(L1) % V̄(LN)
f(z)↑↓f* (z) f(z)↑↓f* (z)

F (2;b2@2/(N21)#)5 V̄(L2) % V̄(l2)
f(z)↑↓f* (z) f(z)↑↓f* (z)

• • •

• • •

F (N22;b2@(N22)/(N21)#)5 V̄(LN22) % V̄(lN22)
f(z)↑↓f* (z) f(z)↑↓f* (z)

F (N21;b21)5 V̄(LN21) % V̄(LM21)
f(z)↑↓f* (z) f(z)↑↓f* (z)

F (N;b212@1/(N21)#)5 V̄(LN) % V̄(lN)
f(z)↑↓f* (z) f(z)↑↓f* (z).

It is expected thatV̄(la)(aPZ) and V̄(Lm) (m51,2,..., N21) are irreducible highes
weight Uq@sl(N̂u1)# modules with the highest weightsla and Lm , respectively. Thus we con
jecture that

V̄~la!5V~la!, V̄~Lm!5V~Lm!. ~III.14!

IV. EXCHANGE RELATIONS OF VERTEX OPERATORS

In this section, we derive the exchange relations of the type I and type II bosonized v
operators ofUq@sl(N̂u1)#. As expected, these vertex operators satisfy the graded Fadd
Zamolodchikov algebra.

A. The R matrix

Throughout, we use the abbreviation

~z;x1 ,...,xm!`5 )
$n1 ,...,nm%50

`

~12zx1
n1
¯xm

nm!,

~IV.1!

$z%`5
def

~z;q2~N21!,q2~N21!!` .

Let R̄(z)PEnd(V^ V) be theR matrix of Uq@sl(N̂u1)#,

R̄~z!~v i ^ v j !5 (
k,l 51

2N

R̄kl
i j ~z!vk^ v l , ;v i ,v j ,vk ,v lPV, ~IV.2!

where the matrix elements ofR̄(z) are given by

R̄i ,i
i ,i~z!521, R̄N11,N11

N11,N11~z!52
zq212q

zq2q21 , i 51,2,..., N,

R̄i j
i j ~z!5

z21

zq2q21 , iÞ j ,
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R̄i j
j i ~z!5

q2q21

zq2q21 ~21!@ i #@ j #, i , j ,

R̄i j
j i ~z!5

~q2q21!z

zq2q21 ~21!@ i #@ j #, i . j ,

R̄kl
i j ~z!50, otherwise.

Define theR matricesR~I!(z) andR~II !(z) by

R~ I!~z!5r ~z!R̄~z!, R~ II !~z!5 r̄ ~z!R̄~z!, ~IV.3!

where

r ~z!5z@~22N!/~N21!#
~zq2;q2~N21!!`~z21q2N22;q2~N21!!`

~z21q2;q2~N21!!`~zq2N22;q2~N21!!`
,

r̄ ~z!52z2 @1/~N21!#
~zq2N24;q2~N21!!`~z21q2N22;q2~N21!!`

~z21q2N24;q2~N21!!`~zq2N22;q2~N21!!`
.

TheseR matrices satisfy the graded Yang–Baxter equation onV^ V^ V:

R12
~ i !~z!R13

~ i !~zw!R23
~ i !~w!5R23

~ i !~w!R13
~ i !~zw!R12

~ i !~z!, i 5I,II.

Moreover, they enjoy~i! the initial conditionR( i )(1)5P, i 5I,II, where P is the graded permu
tation operator;~ii ! the unitarity conditionR12

( i )(z/w)R21
( i )(w/z)51, i 5I,II, where R21

( i )(z)5PR12
( i )

3(z)P; ~iii ! the crossing unitarity

~R~ i !!21,st1~z!~~q22r̄
^ 1!R~ i !~zq2~12N!!~q2r̄

^ 1!!st151, i 5I,II,

where

q2r̄[diag~q2r1,q2r2,...,q2rN,q2rN11!5diag~qN22,qN24,...,q2N,q2N!.

The various supertranspositions of theR matrix are given by

~Rst1~z!! i j
kl5Rk j

il ~z!~21!@ i #~@ i #1@k# !, ~Rst2~z!! i j
kl5Ril

k j~z!~21!@ j #~@ l #1@ j # !,

~Rst12~z!! i j
kl5Rkl

i j ~z!~21!~@ i #1@ j # !~@ i #1@ j #1@k#1@ l # !5Rkl
i j ~z!.

B. The graded Faddeev–Zamolodchikov algebra

We now calculate the exchange relations of the type I and type II bosonic vertex operat
Uq@sl(N̂u1)#. Define

rdz f(z)5Res(f )5 f 21 , for a formal functionf (z)5(nPzf nzn.

Then, the Chevalley generators ofUq@sl(N̂u1)# can be expressed by the integrals

ei5 R dz X1,i~z!, f i5 R dz X2,i~z!, i 51,2,..., N.

One can also get the integral expressions of the bosonic vertex operatorsf(z), f* (z), c(z), and
c* (z). Using these integral expressions and the relations given in Appendixes A and B, w
that the bosonic vertex operators defined in~II.16! satisfy the graded Faddeev–Zamolodchik
algebra
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f j~z2!f i~z1!5 (
k,l 51

N11

R~ I!S z1

z2
D

i j

kl

fk~z1!f l~z2!~21!@ i #@ j #,

c i* ~z1!c j* ~z2!5 (
k,l 51

N11

R~ II !S z1

z2
D

kl

i j

c l* ~z2!ck* ~z1!~21!@ i #@ j #, ~IV.4!

c i* ~z1!f j~z2!5tS z1

z2
Df j~z2!c i* ~z1!~21!@ i #@ j #,

where

t~z!52z@~22N!/~N21!#
~zq;q2~N21!!`~z21q2N23;q2~N21!!`

~z21q;q2~N21!!`~zq2N23;q2~N21!!`
.

By

:e2hN* ~zqN;1/2!1h1* ~zq;1/2!2h1~zq2;1/2!2h2~zq3;1/2!¯2hN~zqN11;1/2!
ª1,

we obtain the first invertibility relations

f i~z!f j* ~z!5g21~21!@ i #d i j , (
k51

N11

~21!@k#fk* ~z!fk~z!5g21, ~IV.5!

and the second invertibility relations

f i* ~zq2~N21!!f j~z!52g21q2r id i j , (
k51

N11

q22rkfk~z!fk* ~zq2~N21!!52g21, ~IV.6!

where

g5eA21pN/2~N21!
~q2;q2~N21!!`

~q2~N21!;q2~N21!!`
.

Using the fact thath0j0 is a projection operator, we can make the following identifications:

F i~z!5h0j0f i~z!h0j0 , F i* ~z!5h0j0f i* ~z!h0j0 ,
~IV.7!

C i~z!5h0j0c i~z!h0j0 , C i* ~z!5h0j0c i* ~z!h0j0 .

Set

ma5H La a50,1,...,N,

la2~N21! for a.N,

la for a,0.

~IV.8!

It is easy to see that the vertex operatorsf(z), f* (z), c(z), and c* (z) commute~or anti-
commute! with the BRST chargeh0 . It follows from ~III.13! and~III.14! that the vertex operator
~IV.7! intertwine all the level-one irreducible highest weightUq@sl(N̂u1)# modulesV(ma) (a
PZ) as follows:

F~z!:V~ma!→V~ma21! ^ Vz , F* ~z!:V~ma!→V~ma11! ^ Vz*
S , ~IV.9!
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C~z!:V~ma!→Vz^ V~ma21!, C* ~z!:V~ma!→Vz*
S

^ V~ma11!.

From ~IV.4!, we have

F j~z2!F i~z1!5 (
k,l 51

N11

R~ I!S z1

z2
D

i j

kl

Fk~z1!F l~z2!~21!@ i #@ j #,

C i* ~z1!C j* ~z2!5 (
k,l 51

N11

R~ II !S z1

z2
D

kl

i j

C l* ~z2!Ck* ~z1!~21!@ i #@ j #, ~IV.10!

C i* ~z1!F j~z2!5tS z1

z2
DF j~z2!C i* ~z1!~21!@ i #@ j #.

Moreover, we have the following invertibility relations:

F i~z!F j* ~z!5g21~21!@ i #d i j idV~ma! ,

(
k51

N11

~21!@k#Fk* ~z!Fk~z!5g21 idV~ma! ,

~IV.11!
F i* ~zq2~N21!!F j~z!52g21q2r id i j idV~ma! ,

(
k51

N11

q22rkFk~z!Fk* ~zq2~N21!!52g21 idV~ma! .

V. MULTICOMPONENT SUPER tÀJ MODEL

In this section, we give a mathematical definition of the multicomponent supert2J model on
an infinite lattice.

A. Space of states

By means of theR-matrix ~IV.2! of Uq@sl(N̂u1)#, one defines a spin chain model, referred
as the multicomponent supert2J model, on the infinite latticē ^ V^ V^ V¯ . Let h be the
operator onV^ V such that

PR̄S z1

z2
D511uh1¯ , y→0,

P: the graded permutation operator,eu[z1 /z2 .

The HamiltonianH of this model is given by

H5(
l PZ

hl 11,l . ~V.1!

H acts formally on the infinite tensor product,

¯V^ V^ V¯ . ~V.2!

It can be easily checked that

@Uq8~sl~Nu1!!, H#50,
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where Uq8@sl(Nu1)# is the subalgebra ofUq@sl(N̂u1)# with the derivation operatord being
dropped. SoUq8@sl(Nu1)# plays the role of infinite dimensionalnon-Abeliansymmetry of the
multicomponent supert2J model on the infinite lattice.

From the intertwining relation~IV.9!, one has the following composition of the type I vert
operators:

V~ma! →
F~1!

V~ma21! ^ V →
F~1! ^ id

V~ma21! ^ V^ V →
F~1! ^ id^ id

¯ →Wt , ~V.3!

where

Wl5
def

¯^ V^ V,

i.e., the left half-infinite tensor product. We conjecture that such a composition converge
map:

i :V~ma!→Wl .

Such a mapi satisfiesi (xv)5D (`)(x) i (v), xPUq@sl(N̂u1)# andvPV(ma). Following Ref. 9, we
could replace the infinite tensor product~V.2! by the level-zeroUq@sl(N̂u1)# module,

Faa85Hom~V~ma!,V~ma8!!>V~ma! ^ V~ma8!* ,

whereV(ma) is level-one irreducible highest weightUq@sl(N̂u1)# module andV(ma8)* is the
dual module ofV(ma8). By ~III.13!, this homomorphism can be realized by applying the typ
vertex operators repeatedly. So we shall make the~hypothetical! identification:

‘ ‘the space of physical states’’5 %
aa8PZ

V~ma! ^ V~ma8!* .

Namely, we take

F[End~ %
aPZ

V~ma!!> %
a,a8PZ

Faa8

as the space of states of the multicomponent supert2J model on the infinite lattice. The lef
action ofUq@sl(N̂u1)# on F is defined by

x• f 5( x~1!+ f +S~x~2!!~21!@ f #@x~2!#, ;xPUq@sl~N̂u1!#, f PF,

where we have used notationD(x)5Sx(1)^ x(2) . Note thatFaa has the unique canonical eleme
idV(ma) . We call it the vacuum10 and denote it byuvac&a .

B. Local structure and local operators

Following Jimboet al.,10 we use the type I vertex operators and their variants to incorpo
the local structure into the space of physical statesF, that is to formulate the action of loca
operators of the multicomponent supert2J model on the infinite tensor product~V.2! in terms of
their actions onFaa8 .

Using the isomorphisms

F~1! : V~ma!→V~ma21! ^ V,
~V.4!

F* ,st~q2~N21!! : V^ V~ma!* →V~ma21!* ,
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where st is the supertransposition on the quantum space, we have the following identificat

V~ma! ^ V~ma8!* →
;

V~ma21! ^ V^ V~ma8!* →
;

V~ma21! ^ V~ma821!* .

The resulting isomorphism can be identified with the super translation~or shift! operator defined
by

T52g(
i

F i~1! ^ F i*
,st~q2~N21!!~21!@ i #q22pi.

The inverse is given by

T215g(
i

F i* ~1! ^ F i
st~1!.

Thus we can define the local operators onV as operators onFaa8 .10 Let us label the tenso
components from the middle as 1, 2,... for the left half and as 0,21, 22,... for the right half. The
operators acting on the site 1 are defined by

Ei j 5
def

Ei j
~1!5gF i* ~1!F j~1!~21!@ j #

^ id. ~V.5!

More generally we set

Ei j
~n!5T2~n21!Ei j T

n21 ~nPZ!. ~V.6!

Then, from the invertibility relations of the type I vertex operators ofUq@sl(N̂u1)#, we can show
that the local operatorsEi j

(n) acting onFaa8 satisfy the following relations:

Ei j
~m!Ekl

~n!5H d jkEil
~n! if m5n,

~21!~@ i #1@ j # !~@k#1@ l # !Ekl
~n!Ei j

~m! if mÞn.

This result implies that the local operatorsEi j
(n) are nothing but theUq@sl(Nu1)# generators

acting on thenth component of̄ ^ V^ V^¯ . They include all the local operators in th
multicomponent supert2J model.10

As is expected from the physical point of view, the vacuum vectorsuvac&a are supertransla
tionally invariant and singlets~i.e., they belong to the trivial representation ofUq@sl(N̂u1)#!:

Tuvac&a5uvac&a21 , x.uvac&a5e~x!uvac&a , ;xPUq@sl~N̂u1!#.

This is proved as follows. Letul
(a)(ul*

(a)) be a basis vectors ofV(ma)(V(ma)* ) and

uvac&a5
def

idV~ma!5(
l

ul
~a!

^ ul*
~a! .

Then

Tuvac&a52g(
m,l

q22rmFm~1!ul
~a!

^ Fm*
,st~q2~N21!!ul*

~a!~21!@m#1@ l #@m#.

We want to showTuvac&a5uvac&a21 . This is equivalent to proving

2g(
m,l

q22rmFm~1!ul
~a!Fm*

,st~q2~N21!!•ul*
~a!~v !~21!@m#1@ l #@m#5v, ;vPV~ma21!.
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Now

lhs52g(
m,l

q22rmFm~1!ul
aul*

~a!~Fm* ~q2~N21!!st!stv)~21!@m#

52g(
m,l

q22rmFm~1!ul
~a!ul*

~a!~Fm* ~q2~N21!!v !

52g(
m

q22rmFm~1!Fm* ~q2~N21!!v5v,

where we have used (Fm* (z)st!st5Fm* (z)(21)@m# and~IV.11!. As to the second equation, we hav

x•uvac&a5Sx~1!ul
~a!

^ x~2!ul*
~a!~21!@ l #@x~2!#

5Sx~1!ul
~a!

^ pV~ma!* ~x~2!!mlum*
~a!~21!@ l #@x~2!#

5Sx~1!ul
~a!

^ pV~ma!~S~x~2!!! lmum*
~a!

5Sx~1!pV~ma!~S~x~2!!! lmul
~a!

^ um*
~a!

5Sx~1!S~x~2!!um
~a!

^ um*
~a!5e~x!uvac&a .

This completes the proof.
For any local operatorOPF, its vacuum expectation value is defined by

a^vacuOuvac&a5
def trV~ma!~q22rO!

trV~ma!~q22r!
5

trV~ma!~q22~N21!d22hr̄O!

trV~ma!~q22~N21!d22hr̄ !
, ~V.7!

where

2hr̄5(
l 51

N

l ~N212 l !hl .

We shall denote the correlatora^vacuOuvac&a by ^O&a .

VI. CORRELATION FUNCTIONS

The aim of this section is to calculate^Emn&a . The generalization to the calculation of th
multipoint functions is straightforward.

Set

Pn
m~z1 ,z2uqua!5

trV~ma!~q22~N21!d22hr̄Fm* ~z1!Fn~z2!!

trV~ma!~q22~N21!d22hr̄ !
,

then ^Emn&a5Pn
m(z,zuqua). By ~IV.8!, it is sufficient to calculate

Fmn
~a!~z1 ,z2!5

trF~a;b2a!)
~q22~N21!d22hr̄Fm* ~z1!fn~z2!h0j0!

trF~a;b2a!
~q22~N21!d22hr̄h0j0!

. ~VI.1!

Using the Clavelli–Shapiro technique,26 we get

Fmn
~a!~z1 ,z2!5

dmn

xa
Fm

~a!~z1 ,z2![
dmn

xa (
l 51

`

~21! l 11Fmi2 l
~a! ~z1 ,z2!,
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where

xa5ChKerF~a;b!
~q2~N21!;q2~N22!,...,q2 l ~N212 l !,...,qN!,

Fm,l
~a!~z1 ,z2!52e@A21pN/2~N21!#C1* CN* ~C1!N21~CN11!2~z1q!@1/~N21!#

3

H z1

z2
q2~N21!J

`
H z2

z1
q2~N21!J

`

H z1

z2
q2NJ

`
H z2

z1
q2NJ

`

R dw1¯ R dwN

3H )
k51

m21
~12q2!

qwk21S wk

wk21
q;q2~N21!D

`

S wk21

wk
q;q2~N21!D

`

J
3

1

wm21S wm

wm21
q;q2~N21!D

`

S wm21

wm
q2N21;q2~N21!D

`

3H )
k5m11

N
~12q2!

wkS wk

wk21
q;q2~N21!D

`

S wk21

wk
q;q2~N21!D

`

J
3 (

$ i 1 ,...,i N%PZ
I i 1 ,...,i N

~a,l ! ~z1 ,z2uw1 ,...,wN!

3H S z2

wN
qN21D l 2a1 i N

wNqS z2

wN
qN21;q2~N21!D

`

S wN

z2
qN21;q2~N21!D

`

1

S z2

wN
qN11D l 2a1 i N

z2qNS z2

wN
q3N21;q2~N21!D

`

S wN

z2
q2N21;q2~N21!D

`

J ,

for m51,...,N,

FN11,l
~a! ~z1 ,z2!5e@A21pN/2~N21!#C1* CN* ~C1!N~CN11!2~z1q!1/N21

H z1

z2
q2~N21!J

`
H z2

z1
q2~N21!J

`

H z1

z2
q2NJ

`
H z2

z1
q2NJ

`

3 R dw1 ••• R dwNH )
k51

N
~12q2!

qwk21S wk

wk21
q;q2~N21!D

`

S wk21

wk
q;q2~N21!D

`

J
3

1

wNS z2

wN
qN11;q2~N21!D

`

S wN

z2
qN21;q2~N21!D

`
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3 (
$ i 1 ,...,i N%PZ

I i 1 ,...,i N
~a,l ! ~z1 ,z2uw1 ,...,wN!3]wNH S z2

wN
qND l 2a1 i N

wNS z2

wN
qN;q2~N21!D

`

S wN

z2
qN22;q2~N21!D

`

J .

In the above equations,w0[z1q, and

I i 1 ,...,i N
~a,l ! ~z1 ,z2uw1 ,...,wN!5q~N21!a~a21!~z1q! i 12@a/~N21!#~z2qN!@N/~N21!#a2 i N

3q~N21!$ l 21 l ~122a!1 i N
2

1 i N~122a12l !1D~ i 1 ,...,i N!%

3)
k51

N

~wkq
k~N212k!!2l i 1,...,iN

k
,

C1* 5
$q2N%`

$q4N24%`
, CN* 5

$q4N22%`

$q2~N21!%`
,

C15~q2~N21!;q2~N21!!`~q2N;q2~N21!!` , CN115~q2~N21!; q2~N21!!` .

We now derive the difference equations satisfied by these one-point functions. Noticin

xdf i~z!x2d5f i~zx21!, xdf i* ~z!x2d5f i* ~zx21!,

xdc i~z!x2d5c i~zx21!, xdc i* ~z!x2d5c i* ~zx21!,

xdh0x2d5h0 , xdj0x2d5j0 ,

we get the difference equations

Fm
~a!~z1 ,z2q2~N21!!5q22rm(

k
R~z2 ,z1!mk

kmFk
~a21!~z1 ,z2!~21!@m#1@k#1@m#@k#.

SinceaPZ, it is easily seen that this is a set of infinite number of difference equations.
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APPENDIX A: NORMAL-ORDERED RELATIONS OF FUNDAMENTAL BOSONIC FIELDS

In this appendix, we give the normal ordered relations of the fundamental bosonic field

:ehi ~z;b1!<ehj ~w,b2!
ªzai j S 12

w

z
qb11b2D ai j

:ehi ~z;b1!1hj ~w;b2!:, iÞ j ,

:ehi ~z;b1!<ehi ~w;b2!
ªz2S 12

w

z
qb11b221D S 12

w

z
qb11b211D :ehi ~z;b1!1hi ~w;b2!:, iÞN,

:ehN~z;b1!<ehN~w,b2!
ª:ehN~z;b1!1hN~w;b2!:,
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:ehi ~z;b1!<ehj* ~w;b2!
ªzd i j S 12

w

z
qb11b2D d i j

:ehi ~z;b1!1hj* ~w;b2!:,

:ehi* ~z;b1!<ehj ~w;b2!
ªzd i j S 12

w

z
qb11b2D d i j

:ehi* ~z;b1!1hj ~w;b2!:,

:ehN* ~z;b1!<ehN* ~w;b2!
ªz2N/N21

S w

z
qb11b212N21;q2~N21!D

S w

z
qb11b221;q2~N21!D :ehN* ~z;b1!1hN* ~w;b2!:,

:eh1* ~z;b1!<eh1* ~w;b2!
ªzN22/N21

S w

z
qb11b211;q2~N21!D

S w

z
qb11b212N23;q2~N21!D :eh1* ~z;b1!1h1* ~w;b2!:,

:eh1* ~z;b1!<ehN* ~w;b2!
ªz21/N21

S w

z
qb11b21N;q2~N21!D

S w

z
qb11b21N22;q2~N21!D :eh1* ~z;b1!1hN* ~w;b2!:,

:ehN* ~z;b1!<eh1* ~w;b2!
ªz21/N21

S w

z
qb11b21N;q2~N21!D

S w

z
qb11b21N22;q2~N21!D :ehN* ~z;b1!1h1* ~w;b2!:,

:ec~z;b1!<ec~w;b2!
ªzS 12

w

z
qb11b2D :ec~z;b1!1c~w;b2!:,

whereai j is the Cartan matrix of sl(N̂u1) andi , j 51,2,...,N.

APPENDIX B: COMMUTATION RELATIONS OF VERTEX OPERATORS

By means of the bosonic realization~II.10! of Uq@sl(N̂u1)#, the integral expressions of th
bosonized vertex operators~II.16! and the technique given in Ref. 18, one can check the follow
relations.

For the type I vertex operators:

@fk~z!, f l #50 if kÞ l ,l 11, @f l 11~z!, f l #qn l 115n lf l~z!~21!@ f l #~@v l #1@v l 11# !,

@f l~z!, f l #q2n l50, @f l~z!,el #5qhlf l 11~z!~21!@el #~@v l #1@v l 11# !,

@fk~z!,el #50 if kÞ l , qh1f l~z!q2hl5q2n lf l~z!,

qhlfk~z!q2hl5fk~z! if kÞ l ,l 11, qhlf l 11~z!q2hl5qn l 11f l 11~z!,

@fk* ~z!, f l #50 if kÞ l ,l 11, @f l 11* ~z!, f l #q2n l 1150,

@fk* ~z!,el #50 if kÞ l 11, @f l 11* ~z!,el #52n ln l 11qhl2n lf l* ~z!~21!@el #~@v l #1@v l 11# !,

@f l* ~z!, f l #qn l52n lq
n lf l 11* ~z!~21!@ f l #~@v l #1@v l 11# !, qhlf l* ~z!q2hl5qn lf l* ~z!,
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qhlfk* ~z!q2hl5fk* ~z! if kÞ l ,l 11, qh1f l 11* ~z!q2h15q2n l 11f l 11* ~z!.

For the type II vertex operators:

@ck~z!,el #50 if kÞ l ,l 11, @c l 11~z!,el #q2n l 1150, @c l~z!,el #qn l5c l 11~z!,

@ck~z!, f 1#50 if kÞ l 11, @c l 11~z!, f l #5n lq
2hlc l~z!,

qh1c l~z!q2hl5q2n lc l~z!, qhlc l 11~z!q2hl5qn l 11c l 11~z!,

qhlck~z!q2h15ck~z! if kÞ l , l 11,

@ck* ~z!,el #50 if kÞ l ,l 11, @c l* ~z!,el #q2n l50,

@ck* ~z!, f l #50 if kÞ l , @c l* ~z!, f l #52n lq
2hl1n lc l 11* ~z!,

@c l 11* ~z!,el #qn l 1152n ln l 11q2n1c l* ~z!, qh1c l* ~z!q2hl5qn lc l* ~z!,

qhlck* ~z!q2hl5ck* ~z! if kÞ l ,l 11, qhlc l 11* ~z!q2hl5q2n l 11c l 11* ~z!.
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Erratum: ‘‘Precession of a freely rotating rigid body.
Inelastic relaxation in the vicinity of poles’’
†J. Math. Phys. 41, 1854 „2000…‡

Michael Efroimsky
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

~Received 3 April 2000; accepted for publication 4 April 2000!

@S0022-2488~00!01108-7#

A misprint occurred in formula~9.23!.
The formula should read:

v5
uJu
I 1
A~ I 32I 1!~ I 22I 1!

I 2I 3
A2^sin2 u&21 . ~9.23!

On page 1878, the second sentence of Appendix A should read:
Angle u is the one between the angular momentum vectorJ and the major-inertia axis 3.
58700022-2488/2000/41(8)/5870/1/$17.00 © 2000 American Institute of Physics
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Non-L 2 solutions to the Seiberg–Witten equations
Christoph Adam
Institut für Theoretische Physik, Universita¨t Karlsruhe, Germany

Bruno Muratori and Charles Nash
Department of Mathematical Physics, National University of Ireland, Maynooth, Ireland

~Received 24 March 2000; accepted for publication 12 May 2000!

We show that a previous paper of Freund describing a solution to the Seiberg–
Witten equations has a sign error rendering it a solution to a related but different set
of equations. The non-L2 nature of Freund’s solution is discussed and clarified and
we also construct a whole class of solutions to the Seiberg–Witten equations.
© 2000 American Institute of Physics.@S0022-2488~00!01909-5#

I. INTRODUCTION

With the introduction of the Seiberg–Witten equations1 there comes a wealth of results o
four manifold theory and a new improved point of view on Donaldson theory with an Abe
gauge theory supplanting a non-Abelian one—cf. Ref. 2 for a review.

An important vanishing theorem of Ref. 1, reminiscent of the Lichernowicz-Weitzenb¨ck
vanishing theorems, shows that there are no nontrivial solutions to the Seiberg–Witten equ
on four manifolds with non-negative Riemannian scalar curvature. However, one can hav
trivial solutions which are singular in some way—for example, one could have a nont
solution which was notL2: in Ref. 3 Freund describes such a non-L2 to the Seiberg–Witten
equations onR4. Unfortunately, a sign discrepancy in Ref. 3 means that the expressions
there obey equations which differ from the Seiberg–Witten equations in a certain sign.
other equations also admitL2 solutions as well as non-L2 ones and so Freund’s equations a
fundamentally different from the Seiberg–Witten equations.

In Sec. II we describe the Seiberg–Witten equations in a fairly explicit manner so as to e
notational conventions and matters of signs. In Sec. III we give the details concerning Fre
work and then in Sec. IV we give anL2 solution of Freund’s equations and a class of solutions
the Seiberg–Witten equations.

II. THE SEIBERG–WITTEN EQUATIONS

If M is an oriented Riemannian four manifold with metricgi j , then the data we need for th
Seiberg–Witten equations are aU(1) connectionAi on M and a local spinor fieldM.

If Fi j is the curvature ofAi , so that its self-dual partFi j
1 is given by Fi j

151/2(Fi j

1(Ag/2)e i jkl F
kl), then the Seiberg–Witten equations are

Fi j
152

i

2
M̄G i j M , G iDiM50, ~2.1!

whereG i are the gamma matrices.
Our conventions for theG i are

G05S 0 I

I 0D , G i5S 0 2 is i

is i 0 D , G552G0G1G2G3 , ~2.2!

wheres i are the Pauli matrices; finally theG i satisfy$G i ,G j%52gi j I .
Returning to the Seiberg–Witten equations~2.1!, Di andG i j are given by
58750022-2488/2000/41(9)/5875/8/$17.00 © 2000 American Institute of Physics
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Di5] i1 iAi , G i j 5
1
2 @G i ,G j #. ~2.3!

In Ref. 1 Witten also quotes the equations using the two component spinor formalism of W
and Penrose, cf. Ref. 4, where the gamma matrices make no explicit appearance. In this
form the equations are

FA8B85
i

2
~MA8M̃B81MB8M̃A8!,

~2.4!
DAA8MA850.

We now give a short summary of the relevant properties of the spinor formalism that we
here.

With a Riemannian metric of signature~1, 1, 1, 1! the four components of a four-vecto
va[(v0 ,v1 ,v2 ,v3) are represented by a 232 matrix which is denoted byvAA8 and given by

vAA85
1

&
S v01 iv3 iv11v2

iv12v2 v02 iv3
D . ~2.5!

This expression forvAA8 can be written as a linear combination of what are known as
Infeld–van der Waerden matricesgAA8

a defined by

gAA8
0

5
1

&
S 1 0

0 1D , gAA8
i

5
i

&
s i , i 51,2,3, ~2.6!

wheres i are the usual Pauli matrices so that

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D . ~2.7!

Using thegAA8
a ’s the linear combination mentioned above is given by

vAA85vagAA8
a , ~2.8!

and, more generally, if we have a tensorTa1a2 ...an
, it becomesTA1A

18A2A
28 ...AnA

n8
where

TA1A
18A2A

28 ...AnA
n8
5Ta1a2 ...an

g
A1A

18

a1 g
A2A

28

a2
¯g

AnA
n8

an . ~2.9!

In this formalism spinor indices are raised and lowered with the matrixeAB defined by

eAB5S 0 1

21 0D 5eAB. ~2.10!

For example, for one spinor index, one can write

vA5eABvB , vB5vAeAB . ~2.11!

An involution can also be defined on a spinorvA taking it to a spinorṽA defined by

vA5S a
b D , ṽA5S 2b̄

ā D , ~2.12!

where bar means complex conjugate.
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Simplification occurs if the tensor is antisymmetric such as the curvature tensorFi j : in that
case, one can verify that its spinor versionFAA8BB8 is a linear combination ofeA8B8 and eAB .
More precisely, one finds that

Fi j gAA8
i gBB8

j
5FAA8BB85FABeA8B81FA8B8eAB . ~2.13!

Moreover, it also turns out thatFA8B8 and FAB are the spinor projections of the self-dual a
anti-self-dual parts ofFi j , respectively; i.e., one can check that

Fi j
1gAA8

i gBB8
j

5FA8B8eAB , Fi j
2gAA8

i gBB8
j

5FABeA8B8 . ~2.14!

Now we return to the Seiberg–Witten equations and carry out the translation from the
ventional to the spinor form. Starting with the Dirac equation we write

M5S a
b
0
0
D [S MA8

0
0

D , ~2.15!

and then the Dirac equation

G iDiM50 ~2.16!

becomes

&gAA8
i DiMA850, ~2.17!

which we rewrite as

DAA8MA850, with DAA85
1

&
S D01 iD 3 iD 11D2

iD 12D2 D02 iD 3
D , ~2.18!

which is the desired form. Moving on to the other equation,

Fi j
152

i

2
M̄G i j M , ~2.19!

we first display this equation in full as

1

2 S 0 F011F23 F022F13 F031F12

2F012F23 0 F031F12 F132F02

F132F02 2F122F03 0 F011F23

2F122F03 F022F13 2F012F23 0

D
5

1

2 S 0 b̄a1āb i b̄a2 i āb uau22ubu2

2b̄a2āb 0 uau22ubu2 2 i b̄a1 i āb

2 i b̄a1 i āb 2uau21ubu2 0 b̄a1āb

2uau21ubu2 i b̄a2 i āb 2b̄a2āb 0

D , ~2.20!

and then find that
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Fi j
1gAA8

i gBB8
j

52
i

2
M̄G i j MgAA8

i gBB8
j ~2.21!

becomes

FA8B8eAB5TA8B8eAB , ~2.22!

i.e.,

FA8B85TA8B8 , ~2.23!

where

FA8B85
1

2 S iF 011 iF 231F132F02 2 iF 122 iF 03

2 iF 122 iF 03 2 iF 012 iF 231F132F02
D ~2.24!

and

TA8B85
1

2 S 2i āb 2 i uau21 i ubu2

2 i uau21 i ubu2 22iab̄
D . ~2.25!

One can now readily inspect Eqs.~2.20! and~2.23!–~2.25! and confirm that the conventional an
the spinor forms of the equations agree.

Also we can compute the matrix of components (i /2)(MA8M̃B81MB8M̃A8) and verify that
it is equal toTA8B8 . Doing this we find that, if we start withMA85(a,b) and use~2.11! and
~2.12!, we obtain

i

2
~MA8M̃B81MB8M̃A8!5

1

2 S 2i āb 2 i uau21 i ubu2

2 i uau21 i ubu2
22iab̄

D 5TA8B8 , ~2.26!

as it should. We now turn to the explicit Fermion and gauge field considered by Freund.

III. FREUND’S EQUATIONS

In Ref. 3 Freund chooses

Ai5
1

2r ~r 2z! S 0
2y
x
0
D ,

MA85
1

2rAr ~r 2z!
S x2 iy

r 2z D ,

~3.1!

M̃A85
1

2rAr ~r 2z!
S 2~r 2z!

x1 iy D ,

for which one readily verifies that

DAA8MA850 ~3.2!

so thatMA8 is indeed a zero mode.
                                                                                                                



lds
n,

nd

ions—
dratic

o that
n
of
nd’s

5879J. Math. Phys., Vol. 41, No. 9, September 2000 Non-L2 solutions to the Seiberg–Witten equations

                    
To check the other equation we compute the curvature and find that, ifFi j 5] iAj2] jAi , one
has

F0i50, F1252
z

2r 3 , F135
y

2r 3 , F2352
x

2r 3

~3.3!

⇒FA8B85
1

4r 3 S y2 ix iz

iz y1 ix D .

On the other hand, one also finds that

i

2
~Ma8M̃B81MB8M̃A8!5

1

4r 3 S 2y1 ix 2 iz

2 iz 2y2 ix D
52FA8B8 ,

so thatFA8B8Þ( i /2)(MA8M̃B81MB8M̃A8) and Freund’s equations are

FA8B852
i

2
~MA8M̃B81MB8M̃A8!,

~3.4!
DAA8MA850.

The Seiberg–Witten’s equations are known to admit no nontrivial regularL2 solutions in flat
space~or spaces of positive scalar curvature!, so Freund was concerned to point out that his fie
provide an example of a nontrivial solution which is notL2. Unfortunately, as we have see
Freund’s fields, though notL2, are not solutions to the Seiberg–Witten equations.

Since Freund’s fields are static and have a connection withA050 it is natural to consider
them in R3. We now do this lettingA5(A1 ,A2 ,A3) be the connection inR3 and denoting its
curvature components byF̂ab , a,b51,...,3. We obtain thereby the three-dimensional Freu
equations

F̂ab52eabcM̄scM , a,b51,...3,
~3.5!

]”AM50, where ]”A5 isa~]a1 iAa!.

In similar fashion we could also have obtained the three-dimensional Seiberg–Witten equat
cf. Ref. 2—and, as in four dimensions, these differ from Freund’s only in the sign of the qua
Fermion term. They are

F̂ab5eabcM̄scM , a,b51,..3,
~3.6!

]”AM50, where ]”A5 isa~]a1 iAa!.

There is also a vanishing theorem which does not allow nontrivial solutions in flat space s
there are no regularL2 solutions to the equations~3.6! in R3. However, there is no such restrictio
on the Freund’s equations~3.5!. In the next section we show how to construct examples
singular non-L2 solutions to the Seiberg–Witten equations and regular solutions to of Freu
equations which areL2 in R3.

IV. THE FREUND AND SEIBERG–WITTEN EQUATIONS IN THREE DIMENSIONS

First of all we simply note that Freund’s equations~3.5! @or indeed~3.4!# admit the following
regular solution which isL2 in R3:
                                                                                                                



ll
ns

te

5880 J. Math. Phys., Vol. 41, No. 9, September 2000 Adam, Muratori, and Nash

                    
MA85
A12~11 isW •rW !

~11r 2!3/2 S 1
0D ,

~4.1!

Ai52
3

~11r 2!2 S 2xz22y
2yz12x

12r 212z2
D ,

as may be checked easily.
Finally, we would like to display some~necessarily singular! solutions to the three-

dimensional Seiberg–Witten equations~3.6!; they will also of course be solutions of the fu
Seiberg–Witten equations~2.1! or ~2.4!. In fact, we construct a whole class of such solutio
parametrized by an arbitrary holomorphic function.

First we need some facts about the Dirac equation in~3.6!. A spinorM that obeys the Dirac
equation]”AM50 of ~3.6! must obey the condition

]aSa50, where Sa5M̄saM . ~4.2!

The connectionAi in the Dirac equation can be expressed in terms of the zero modeM by writing5

Ai52
1

ASaSa S 1

2
e i jk] jSk1Im M̄] iM D

52 1
2 e i jk~] j lnASaSa!Nk2 1

2 e i jk] jNk2Im M̂̄] i M̂ , ~4.3!

where

Na5
Sa

ASbSb
and M̂5

M

AM̄M
.

Now, if x is the complex variable

x5
x1 iy

r 2 ~4.4!

andG[G(x,x̄) is a function ofx and x̄, we obtain a new class of zero modesMG where

MG5eG/2M0 and M05
1

r 3 S z
x1 iy D . ~4.5!

The corresponding connectionAi
G is found using formula~4.3! and is given by

Ai
G52 1

2 e i jk] jGNk . ~4.6!

We note that the spinorM0 is singular and non-L2. For doing calculations it is also useful to no
that M0 is a solution of the free Dirac equation

]”M050, ~4.7!

and that the spin density forMG satisfies

MGsaMG5eGM0saM0 where M0saM05
Na

r 4 5
1

2i
~~]x̄ !3~]x!!a. ~4.8!
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The corresponding curvatureF̂ i j
G is

F̂ i j
G52

e i jk

2
@G,x~x ,klNl1x ,kNl ,l2x ,l l Nk2x ,lNk,l !1G,x̄~ x̄ ,klNl1x̄ ,kNl ,l2x̄ ,l l Nk2x̄ ,lNk,l !

2~G,xxx ,lx ,l1G,x̄x̄x̄ ,l x̄ ,l12G,xx̄x ,l x̄ ,l !Nk#. ~4.9!

After some tedious algebra we find that only the coefficient ofG,xx̄ is nonzero and that

x ,kx̄ ,k5
2

r 4 ~4.10!

and hence

F̂ i j
G5

2e i jk

r 4 G,xx̄Nk . ~4.11!

But to have a solution of the Seiberg–Witten equations we must require that

F̂ i j
G5e i jkMGskMG, ~4.12!

and this means that

2

r 4 G,xx̄Nk5MGskMG

⇒G,xx̄5 1
2 eG, ~4.13!

as may be easily checked. But this equation forG is nothing other than the Liouville equation i
the ‘‘target space coordinate’’x with the ‘‘wrong’’ sign; that is to say that the sign leads to th
general singular solution

G5
u f 8~x!u2

~12 f f̄ !2
, ~4.14!

wheref is an arbitrary holomorphic function ofx.
Hence any pair (MG,Ai

G) with G given by~4.14! is a solution the Seiberg–Witten equatio
~3.6!. In fact, these solutions resemble the two-dimensional solutions of the Seiberg–Witten
tions that were discussed in Ref. 6. Their solutions emerged as solutions to the same Li
equation~4.14!, however the coordinate space variablex15x1 iy appears rather than the targ
space variablex used here.

Finally, we want to briefly describe the geometry of the spin density termM̄saM . It is clearly
rotationally symmetric around thez axis and the integral curves ofM̄0saM0 are circles that touch
thez axis at the pointz50. If we restrict to thex–z plane, then these integral curves are the fi
lines of a dipole in two dimensions, and the vector fieldM̄0saM0 restricted to that plane is a
scalar function times the field of a dipole in two dimensions.

ACKNOWLEDGMENT

B.M. gratefully acknowledges financial support from the Training and Mobility of Resea
ers scheme~TMR No. ERBFMBICT983476!.
                                                                                                                



Pauli

5882 J. Math. Phys., Vol. 41, No. 9, September 2000 Adam, Muratori, and Nash

                    
1E. Witten, ‘‘Monopoles and four-manifolds,’’ Math. Res. Lett.1, 769–796~1994!.
2S. K. Donaldson, ‘‘The Seiberg–Witten equations and 4-manifold topology,’’ Bull. Am. Math. Soc.33, 45–70~1996!.
3P. G. O. Freund, ‘‘Dirac monopoles and the Seiberg–Witten monopole equations,’’ J. Math. Phys.36, 2673–2674
~1995!.

4R. Penrose and W. Rindler,Spinors and Space-time Vol. 1~Cambridge U.P., Cambridge, 1984!.
5M. Loss and H. Yau, ‘‘Stability of Coulomb systems with magnetic fields III. Zero energy bound states of the
operator,’’ Commun. Math. Phys.104, 283–290~1986!.

6S. Nergiz and J. Sacioglu, ‘‘Liouville vortex andf4 kink solutions of the Seiberg–Witten equations,’’ J. Math. Phys.37,
3753–3759~1996!.
                                                                                                                



antum
quan-
roblem
it of
exhibit

se
ni-
ons

tho-
-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 9 SEPTEMBER 2000

                    
Phase space observables and isotypic spaces
Gianni Cassinellia)

Dipartimento di Fisica, Universita` di Genova, I.N.F.N., Sezione di Genova,
Via Dodecaneso 33, 16146 Genova, Italy

Ernesto De Vitob)

Dipartimento di Matematica, Universita` di Modena, via Campi 213/B,
41100 Modena, Italy and I.N.F.N., Sezione di Genova, Via Dodecaneso 33,
16146 Genova, Italy

Pekka Lahtic)

Department of Physics, University of Turku, 20014 Turku, Finland

Alberto Levrerod)

Dipartimento di Fisica, Universita` di Genova, I.N.F.N., Sezione di Genova,
Via Dodecaneso 33, 16146 Genova, Italy

~Received 27 March 2000; accepted for publication 12 May 2000!

We give necessary and sufficient conditions for the set of Neumark projections of
a countable set of phase space observables to constitute a resolution of the identity,
and we give a criteria for a phase space observable to be informationally complete.
The results will be applied to the phase space observables arising from an irreduc-
ible representation of the Heisenberg group. ©2000 American Institute of Phys-
ics. @S0022-2488~00!01709-6#

I. INTRODUCTION

Phase space observables have turned out to be highly useful in various fields of qu
physics, including quantum communication and information theory, quantum tomography,
tum optics, and quantum measurement theory. Also many conceptual problems, like the p
of joint measurability of noncommutative quantities, or the problem of the classical lim
quantum mechanics have been greatly advanced by this tool. The monographs in Refs. 1–7
various aspects of these developments.

Any positive trace one operatorT ~a state! defines a phase space observableQT according to
the rule

QT~E!5
1

2p E
E
ei (qP1pQ)Te2 i (qP1pQ)dq dp,

whereE is a Borel subset of the~two-dimensional! phase space. It is well known that all the pha
space observables generated bypure stateshave the same minimal Neumark dilation to a cano
cal projection measure onL2(R2). On the other hand, the corresponding Neumark projecti
depend on the pure state in question. IfT is a pure stateuu&^uu defined by a unit vectoru, we let
Pu denote the Neumark projection associated withQuu&^uu . If two unit vectorsu and v are
orthogonal then alsoPuPv50. One could then pose the problem of determining a set of or
normal vectors$ui% such that the associated Neumark projections$Pui

% of the phase space ob

a!Electronic mail: cassinelli@genova.infn.it
b!Electonic mail: devito@unimo.it
c!Electronic mail: pekka.lahti@utu.fi
d!Electronic mail: levrero@genova.infn.it
58830022-2488/2000/41(9)/5883/14/$17.00 © 2000 American Institute of Physics
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servablesQuui &^ui u
constitute a resolution of the identity. In Ref. 8 it was shown that the se

number eigenvectors possesses this property. This was proved by a direct method us
properties of the Laguerre polynomials.

It turns out that this problem has a group theoretical background. This follows from the
of Borel9 on the group representations that are square integrable modulo the center. Usi
results of Borel this problem can be traced back to the study of the isotypic spaces
representations induced by a central character of the Heisenberg groupH1. @We recall that a
representation (p,H) is called isotypic if it is the direct sum of copies of the same irreduci
representation.# More precisely, the phase space observables arise from an irreducible repre
tion of H1 that is square integrable modulo the center. This is actually a general result:
irreducible representationp of a groupG that is square integrable modulo the center gives ris
covariant ‘‘phase space observables’’ with the above-mentioned properties. We prove that
essary and sufficient condition for the set of Neumark projections$Pui

% to be a resolution of the
identity is that the representation ofG induced by the central character ofp be isotypic. This
phenomenon occurs in particular for the Heisenberg group, which is behind the phase
observables.

Phase space observablesQT that are generated by statesT such that tr@Tei (qP1pQ)#Þ0 for
almost all (q,p)PR2, are known to have another important property. They are information
complete, namely, ifW1 andW2 are two states for which tr@W1QT(E)#5tr @W2QT(E)# for all E,
thenW15W2 , see, e.g., Refs. 10 and 11. We show that, under suitable conditions, this pro
holds in general for ‘‘phase space observables’’ associated with any irreducible representap
of G square integrable modulo center.

We hope that these results could shed further light on some of the many applications
phase space observables in quantum mechanics.

II. PRELIMINARIES AND NOTATIONS

In this paper we freely use the basic concepts and results of harmonic analysis, refer
Ref. 12 as our standard source. LetG be a Hausdorff, locally compact, second countable to
logical group, and letZ be its center.Z is a closed, Abelian, normal subgroup ofG. We denote by
X5G/Z the quotient space. It is a Hausdorff, locally compact, second countable topolo
group, and it is also a locally compactG-space with respect to the natural action by left multip
cation. Letp:G→X be the canonical projection ands:X→G a Borel section forp, fixed through-
out the paper.

Assume further thatG is unimodular so that its left Haar measures are also right H
measures. As an Abelian subgroup,Z is also unimodular. We denote bym andm0 two ~arbitrarily
fixed! Haar measures ofG andZ, respectively. Then there is a uniqueG-invariant positive Borel
measurea on X such that for each compactly supported continuous functionf PCc(G),

E
G

f ~g! dm~g!5E
X
S E

Z
f ~s~x!h! dm0~h! D da~x!. ~1!

Moreover,f PL1(m) if and only if the function (x,h)° f (s(x)h) is in L1(a ^ m0) and in this case
~1! holds for f . The measurea is also a Haar measure forX ~regarded as a group!, both right and
left.

We denote by (p,H) a continuous unitary irreducible representation ofG acting on a com-
plex separable Hilbert spaceH. Let hPZ,gPG. Then p(h)p(g)5p(hg)5p(gh)
5p(g)p(h), so thatp(h) commutes with allp(g),gPG. By Schur’s lemma,

p~h!5x~h! I ,

whereI is the identity operator onH andx is aT-valued character ofZ, T denoting the group of
complex numbers of modulus one. We callx the central character ofp.
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In the following we describe explicitly the imprimitivity system forG, based onX, induced
by the irreducible unitary representationx of Z. There are several equivalent realizations of t
object, and we choose those which are most appropriate for our purposes.

Let H x denote the space of~m-equivalence classes of! measurable functionsf :G→C for
which

~1! f (gh)5x(h21) f (g) for all hPZ,
~2! f +sPL2(X,a).

The definition of the spaceH x does not depend on the sections. Indeed, ifs8 is another Borel
section forp, then for anyxPX, s8(x)5s(x)h for somehPZ, so that

u f ~s8~x!!u25u f ~s~x!h!u25ux~h21! f ~s~x!!u25u f ~s~x!!u2.

The spaceH x is a complex separable Hilbert space with respect to the scalar product

^ f 1 , f 2&H xªE
X

f 1~s~x!! f 2~s~x!! da~x!,

which is independent ofs.
A description of the structure ofH x is given by the following property. LetK(G)x denote the

set of continuous functionsf :G→C with the properties

~1! f (gh)5x(h21) f (g) for all gPG,hPZ,
~2! p(suppf ) is compact inX.

If wPCc(G), then the functionf w , defined by

f w~g!ªE
Z
x~h!w~gh! dm0~h!,

is in K(G)x. Moreover, any functionf PK(G)x is of the form f 5 f w for somewPCc(G) ~see,
e.g., Ref. 13, Proposition 6.1, p. 152!. Obviously,K(G)x,H x andK(G)x is dense inH x.

The Hilbert spaceH x carries a continuous unitary representationl of G explicitly given by

~ l ~a! f !~g!5 f ~a21g!, a,gPG.

It is a realization of the representation ofG induced by the representationx of Z.
Let B(X) be thes-algebra of the Borel subsets ofX. We define a projection measure o

@X,B(X)# by

~P~E! f !~g!ªxE~p~g!! f ~g!,

where EPB(X) and f PH x. Clearly, B(X){E°P(E)PB(H x) is a projection measure an
( l ,P) is an imprimitivity system forG, based onX, and acting onH x. Indeed,

l ~a!P~E!l ~a!215P~a•E!, aPG,EPB~X!.

It is a realization of the imprimitivity system canonically induced byx and it is irreducible since
x is irreducible.

III. REPRESENTATIONS THAT ARE SQUARE INTEGRABLE MODULO THE CENTER

Let (p,H) be a continuous unitary representation ofG in a complex separable Hilbert spac
H. Givenu,vPH, we denote bycu,v the function onG defined through the formula

cu,v~g!ª^p~g!u,v&.
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This function is called acoefficientof p and it is continuous and bounded,

ucu,v~g!u5u^p~g!u,v&u<ip~g!ui ivi<iui ivi , gPG,

and it has the propertycu,v(gh)5x(h)21cu,v(g) for all hPZ.
Definition 1:Let (p,H) be a continuous unitary irreducible representation ofG. We say that

p is square integrable modulo the centerof G, when, for allu,vPH, cu,v+sPL2(X,a).
This definition is independent of the choice of the functions. Indeed, ifs8 is another section

for p, thens8(x)5s(x)h, hPZ, for all xPX, so thatp(s8(x))5p(s(x)h)5x(h)p(s(x)), and
thus u^p(s8(x))u,v&u25u^p(s(x))u,v&u2.

We shall next list the basic properties of the square integrable representations modu
center. These results are due to Borel,9 and they generalize the classical results of Godement13 for
square integrable representations.

~1! Let p be a unitary irreducible representation ofG with central characterx. Then the
following three statements are equivalent:

~a! p is square integrable moduloZ;
~b! there existu,vPH\$0% such thatcu,v+sPL2(X,a);
~c! p is equivalent to a subrepresentation of (l ,H x).

~2! If any ~hence all! of the preceding conditions is satisfied, thencu,vPH x for all u,v
PH.

~3! If ( p,H) is square integrable moduloZ, there exists a numberdp.0, calledthe formal
degreeof p, such that

^cu,v ,cu8,v8&H x5
1

dp
^u8,u&H ^v,v8&H .

The formal degree depends on the normalization of the Haar measurem so that, possibily rede-
fining m, one can always assume thatdp51 so that

^cu,v ,cu8,v8&H x5^u8,u&H ^v,v8&H . ~2!

~4! If ( p,H) and (p8,H8) are two representations ofG which are square integrable modu
Z, whose central charactersx andx8 coincide, and which are not equivalent, then

^cu,v ,cu8,v8
8 &H x50, ~3!

wherecu8,v8
8 are coefficients of (p8,H8).

IV. CANONICAL POSITIVE OPERATOR MEASURE ASSOCIATED WITH A SQUARE
INTEGRABLE REPRESENTATION MODULO THE CENTER

Let (p,H) be a fixed representation with central characterx and square integrable modulo th
center. FixuPH\$0%, and defineWu :H→H x by

Wuvªcu,v , vPH.

Wu is a linear map and it is a multiple of an isometry. Indeed, ifv,wPH, then

^Wuv,Wuw&H x5iuiH
2 ^v,w&H . ~4!

The range ofWu is a closed subspace ofH x, and 1/iuiH Wu is a unitary operator fromH to the
range ofWu . The operatorWu intertwines the action ofp on H with the action ofl on H x. In
fact, for anyaPG,
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~Wu~p~a!v !!~g!5cu,p(a)v~g!

5^p~g!u,p~a!v&H

5^p~a21g!u,v&H

5cu,v~a21g!

5~Wuv !~a21g!

5~ l ~a!~Wuv !!~g!,

showing that

Wu p~a!5 l ~a! Wu

for all aPG. Hence ranWu is invariant with respect tol and the unitary operator 1/iuiH Wu

defines an isomorphism of the unitary irreducible representations (p,H) and (l u ranWu
,ranWu) of

G,

~p,H!.~ l u ranWu
,ranWu!.

We are in a position to associate to any stateT a natural positive operator measure~POM! on
(X,B(X)), with values in the positive operators onH. Given a stateT, for all EPB(X) we define

QT~E!5E
E
p~s~x!!Tp~s~x!!21 da~x!, ~5!

where the integral is in the weak sense. The definition is well posed. Indeed, lT
5( i l i uei&^ei u be the spectral decomposition ofT and fix a trace class operatorB with the
decompositionB5(k wkuuk&^vku, wherewk>0 and (uk),(vk),H are orthonormal sequence
Sincep is square integrable moduloZ, the function

f ik~x!5cei ,vk
~s~x!!cei ,uk

~s~x!!5^vk ,p~s~x!!ei&^ei ,p~s~x!!21uk&

is a-integrable onX and, using the Ho¨lder inequality and the orthogonality relations~2!,

E
E
uf ik~x!u da~x!<S E

E
ucei ,vk

~s~x!!u2 da~x! D 1/2S E
E
ucei ,uk

~x!u2 da~x! D 1/2

<icei ,vk
iH xicei ,uk

iH x

<iei iH
2 ivkiHiukiH51.

Since( i ,k l iwk5iTi1iBi15iBi1 , the series( i ,k l iwkf ik convergesa-almost everywhere to an
integrable functionf and

E
E
f~x! da~x!5(

i ,k
l iwkE

E
f ik da~x!.

On the other hand, fora-almost all xPX, f(x)5tr@Bp(s(x))Tp(s(x))21#. Hence
*Eutr@Bp(s(x))Tp(s(x))21#u da(x)<iBi1 and the linear form

B°E
E
tr@Bp~s~x!!Tp~s~x!!21# da~x!
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is continuous on the Banach space of the trace class operators. Therefore it defines a b
operatorQT(E) such that

tr@BQT~E!#5E
E
tr@Bp~s~x!!Tp~s~x!!21# da~x!

5(
i ,k

l iwkE
E
^vk ,p~s~x!!ei&^ei ,p~s~x!!21uk& da~x!

5(
i ,k

l iwkE
E
cei ,vk

~s~x!!cei ,uk
~s~x!! da~x!.

By choosingB5uu&^vu we see thatQT(E) has the expression~5!.
The mappingE°QT(E) defines a POM onX. Indeed,QT(E) is a positive operator and

given u,vPH, the mapE°^u,QT(E)v&H is a complex measure on (X,B(X)), due to the
s-additivity of the integral.

Moreover,QT(X)5I . Indeed, for allu,vPH,

^u,QT~X!v&H5(
i

l iE
X
cei ,u~s~x!!cei ,v~s~x!! da~x!

5(
i

l i^cei ,u ,cei ,v&

5(
i

l i iei iH
2 ^u,v&H5^u,v&H .

The operator measureE°QT(E) is covariant under the representation (p,H), that is, for all
EPB(X),aPG,

p~a!QT~E!p~a!215QT~a•E!.

Indeed,

p~a!QT~E!p~a!215E
E
p~a!p~s~x!!Tp~s~x!!21p~a!21 da~x!

5E
E
p~as~x!!Tp~as~x!!21 da~x!

5E
E
p~s~a•x!!Tp~s~a•x!!21 da~x!

5E
a•E

p~s~x!!Tp~s~x!!21 da~x!

5QT~a•E!,

where we used the fact thatas(x)5s(a•x)h, for somehPZ.

V. THE MINIMAL NEUMARK DILATION OF Qu

In this section we consider the operator measureQuu&^uu associated with a pure stateuu&^uu and
we show that the canonical projection measureP defined in Sec. II is the minimal Neumar
dilation of Quu&^uu for any u.
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Given a unit vectoruPH, we denote simply byQu the POM Quu&^uu . Then for anyE
PB(X) and for allv,wPH,

^Wuv,P~E!Wuw&H x5E
X
~Wuv !~s~x!! xE~x! ~Wuw!~s~x!! da~x!

5E
E
cu,v~s~x!!cu,w~s~x!! da~x!

5^v,Qu~E!w&H ,

which shows thatP is a Neumark dilation ofQu .
Furthermore,P is minimal in the sense thatH x is the smallest closed space containing all t

vectors of the formP(E) f , asE varies inB(X) and f varies in ranWu ,

H x5span$P~E! f u EPB~X!, f P ranWu%.

We go on to prove this fact. Due to the irreducibility ofp, all the vectors ofH are cyclic forp
itself. Hence for anyvPH, vÞ0,

H5span$p~a!v u aPG%.

Therefore,

ranWu5span$Wu~p~a!v ! u aPG%5span$~ l ~a!Wu!~v ! u aPG%,

so that

span$P~E! f u EPB~X!, f PranWu%

5span$P~E!~ l ~a!Wu!~v ! u EPB~X!,aPG%

5span$ l ~a!P~a21
•E!Wu~v ! u EPB~X!,aPG%.

Now Wuv is a nonzero element ofH x and (l ,P) is an irreducible imprimitivity system forG,
acting inH x, so that

span$ l ~a!P~a21
•E!Wu~v ! u EPB~X!,aPG%5H x,

which completes the proof of the statement.
As a final remark we notice that the Neumark projectionPu :H x→H x onto the range ofWu

is explicitly given byPu5WuWu* .

VI. A DECOMPOSITION OF THE SPACE H x

In this section we describe a decomposition of the spaceH x associated with the represent
tion ~p,H! of G. We denote

M ~p!0ª (
uPH

ranWu5span$cu,v u u,vPH%,

M ~p!ªM ~p!0.

M (p) is the smallest closed subspace ofH x that contains all the ranges of the mapsWu . If p and
p8 are equivalent representations, then
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M ~p!5M ~p8!.

In other words,M (p) depends only on the equivalence class ofp. On the other hand, ifp andp8
are not equivalent, but they have the same central characterx, then the orthogonality condition~3!
implies that

M ~p!'M ~p8!.

We proceed to study the structure of the subspaceM (p).
~1! M (p) is invariant under the action ofl . This is clear sinceM (p)0 is invariant with respect

to l , hence, for anyaPG, l (a)M (p)5 l (a)M (p)05M (p)05M (p).
~2! Let (en)n>1 be a basis ofH. Then (Wep

en)n,p>1 is a basis ofM (p). To show this,
observe that̂Wep

en ,Weq
em&H x5^eq ,ep&H^en ,em&H , so that (Wep

en)n,p>1 is an orthonormal se
in M (p). Given u,vPH, one has that(n,pu^u,en&^ep ,v&u25iui2ivi2. Hence the series
(n,p^u,en&^ep ,v&Wep

en converges inM (p). Since, for allgPG, (n,p^u,en&^ep ,v&Wep
en(g)

converges toWuv(g), the set (Wep
en)n,p>1 generatesM (p)0 , henceM (p).

~3! The spaceM (p) is isotypic, in fact it can be decomposed as

M ~p!5 % p>1 ranWep

and, for anyp the representation~l uranWep
, ranWep

! is unitarily equivalent to~p,H!.

The Hilbert sum of the subspacesM (p), as p runs through the~inequivalent! irreducible
representations ofG with the same central characterx that are square integrable modulo th
center, does not exhaustH x, in general. This Hilbert sum is thediscrete partof H x. In fact, let
V be a closed subspace ofH x which is invariant and irreducible underl , and denote bys the
restriction ofl to V. Thens is a square integrable representation ofG modulo the center, with the
same central characterx, and one has the following result.

Proposition 1: The subspace V is contained in M(s).
Proof: Let f PV and denote byS:H x→V the orthogonal projection ontoV. For all gPH x

andaPG we have

^s~a!Sg, f &H x5^Sl~a!g, f &H x5^ l ~a!g, f &H x.

SinceSg and f are inV and (s,V) is square integrable moduloZ, we have

~a°^ l ~a!g, f &H x!PM ~s!.

Explicitly,

^ l ~a!g, f &H x5E
X
g~a21s~x!! f ~s~x!! da~x!.

For anyfPCc(G) the functionf f defined in Sec. II is inK(G)x,H x and we get

^ l ~a! f f , f &H x5E
X
da~x! f ~s~x!!E

Z
dm0~h!x~h!f~a21s~x!h!.

We claim that

~x,h° f ~s~x!!x~h!f~a21s~x!h!!PL1~a ^ m0!.

Indeed
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E
Z
u f ~s~x!!x~h!f~a21s~x!h!u dm0~h!5u f ~s~x!!u E

Z
uf~a21s~x!h!u dm0~h!

and the function

x°E
Z
uf~a21s~x!h!u dm0~h!

is in Cc(X) ~see, for instance, Ref. 12!. Hence its product withu f (s(x))u is in L1(a) and the claim
follows by Tonelli’s theorem. Now we can apply Eq.~1! to the function

f ~s~x!!x~h!f~a21s~x!h!5 f ~s~x!h!f~a21s~x!h!

to conclude that

^ l ~a! f f , f &H x5E
G

f ~g!f~a21g! dm~g!5~ f * f̃ !~a!,

wheref̃(a)ªf(a21), and the asterisk denotes the convolution. In particular,f * f̃PM (s). If we
let f run over a sequence of functions onG which is an approximate identity, see, e.g., Ref. 1
one can prove thatf * f̃→ f in H x ~see the following remark! and, sinceM (s) is closed, f
PM (s). This shows thatV#M (s). h

Remark 1:The proof of the above proposition uses the fact thatf * f̃→ f in H x whenf runs
over a sequence of functions onG which is an approximate identity. To show this technical res
one can mimic the standard proof inL2(G), taking into account that there exists a Borel meas
n on G having density with respect tom such that the induced representation (l ,H x) can be
realized on a suitable subspace ofL2(G,n) ~compare Exercise 6, Sec. XXII.3 of Ref. 14!.

To summarize,

H x5 % pM ~p! % R,

where the first direct sum ranges over the inequivalent irreducible representations ofG with
central characterx that are square integrable modulo the center and the orthogonal complemR
is the continuous part of the decomposition.

We can now state the main result of the paper.
Proposition 2: Let~p,H! be a square integrable representation of G modulo the center.

$ei% be a basis ofH. Then the set of orthogonal projections$Wei
Wei

* % is a resolution of the identity

in H x if and only if ( l ,H x) is an isotypic representation.
Proof: From items~2! and ~3! above it follows that the set$Wei

Wei
* % is a resolution of the

identity of M (p) and (l ,M (p)) is an isotypic representation. Hence,$Wei
Wei

* % is a resolution of

the identity inH x if and only if M (p)5H x and, in this case, (l ,H x) is isotypic. Conversely,
assume that (l ,H x) is an isotypic representation. Let (s,V) be an irreducible subrepresentation
( l ,H x), thens is square integrable modulo the center and, by Proposition I,V,M (s). Since
( l ,H x) is isotypic andp is equivalent to a subrepresentation of (l ,H x), s is equivalent top, so
that M (s)5M (p). SinceH x is direct sum of copies of (s,V), it follows thatH x5M (p). h

VII. THE INFORMATIONAL COMPLETENESS

An interesting property of the phase space observables is related to the notion of informa
completeness. We say that the operator measureQT , associated with the stateT, is information-
ally complete if the set of operators$QT(E) u EPB(X)% separates the set of states.11,15 An exten-
sive study of the conditions assuring the informational completeness is given in Ref. 16. I
section, we prove some results suited to our case. First of all,
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Lemma 1: Let T be a state inH and QT the corresponding POM generated by the repres
tation p. Then the following conditions are equivalent:

~1! QT is informationally complete;
~2! if B is a trace class operator andtr@Bp(g)Tp(g21)#50 for all gPG, then B50.

Proof: It is known, see, e.g., Ref. 11, thatQT is informationally complete if and only if it
separates the set of trace class operators. LetB be a trace class operator, then tr@QT(E)B#50 for
any EPB(X) if and only if tr@Bp(s(x))Tp(s(x)21)#50 for a-almost allxPX. Observing that
p(s(x))Tp(s(x)21)5p(g)Tp(g21) for all gPG such thatp(g)5x, this last condition is
equivalent to tr@Bp(g)Tp(g21)#50 for m-almost all gPG. Since the map
g°tr@Bp(g)Tp(g21)# is continuous, the lemma is proved. h

Let G1 be the commutator subgroup ofG, i.e., the subgroup ofG generated by the elemen
of the formghg21h21, whereg,hPG, and assume that there is subspaceK of H such that for all
gPG1 and vPK, p(g)v5c(g)v where c is a character ofG1 . Then the following result is
obtained, compare with Theorem 15 of Ref. 12.

Proposition 3: If T is a state such that TH,K and tr@Tp(g)#Þ0 for m-almost all gPG, then
QT is informationally complete.

Proof: Let B be a trace class operator, and consider the decompositions ofT andB as given
in Sec. IV, i.e.,T5( i l i uei&^ei u and B5(k wkuuk&^vku. SinceTH,K, it follows that p(g)ei

5c(g)ei for all gPG1 . GivengPG, using the orthogonality relations~2!, one has

tr@Tp~g!#tr@Bp~g21!#5(
i ,k

l iwk^ei ,p~g!ei&H^p~g!vk ,uk&H

5(
i ,k

l iwk^cp(g)ei ,p(g)vk
,cei ,uk

&H x

5(
i ,k

l iwkE
X
cp(g)ei ,p(g)vk

~s~x!!cei ,uk
~s~x!! da~x!

5(
i ,k

l iwkE
X
^vk ,p~s~x!!p~s~x!21g21s~x!g!ei&H

3^p~s~x!!ei ,uk&Hda~x!

5(
i ,k

l iwkE
X
c~s~x!21g21s~x!g!

3^vk ,p~s~x!!ei&H^p~s~x!!ei ,uk&Hda~x!

5E
X
c~s~x!21g21s~x!g!tr@Tp~s~x!21!Bp~s~x!!# da~x!,

since ( i ,k l iwk^vk ,p(s(x))ei&^p(s(x))ei ,uk& converges in L1(X,a) to
tr@Tp(s(x)21)Bp(s(x))#, as shown in Sec. IV, andc is bounded. Hence

tr@Tp~g!#tr@Bp~g21!#5E
X
c~s~x!21g21s~x!g!tr@Tp~s~x!21!Bp~s~x!!# da~x!

and, if tr@Bp(g)Tp(g21)#50 for all gPG, then tr@Bp(g21)#50 for m-almost allgPG. On the
other hand, if$en% is a basis ofH,

tr@Bp~g21!#5(
n,p

^en , Bep&^p~g!ep ,en&5(
n,p

^en , Bep&~Wep
en!~g!,
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where the double series converges inH x. Since the set$Wep
en%n,p is orthonormal inH x, the

condition tr@Bp(g21)#50 for m-almost allgPG implies ^en , Bep&50 for all n,p, i.e., B50,
and this proves thatQT is informationally complete. h

Remark 2:The condition thatG1 is represented by a character is automatically fulfilled~on
the wholeH! if G1 is contained in the center ofG, whencepuG1

5xuG1
.

Remark 3:SupposeG is a Lie group and letH v be the dense subspace ofH of analytic
vectors for p. If T has range inH v, then the functionG{g°tr@Tp(g)# is analytic. This
guarantees that tr@Tp(g)#Þ0 for m-almost allgPG.

VIII. AN EXAMPLE

To discuss an example it is convenient to work with another realization of the ind
representation (l ,H x).

Let J be the unitary operator fromH x onto L2(X,a) given by

~J f !~x!ª f ~s~x!!, xPX.

J intertwines the imprimitivity system (l ,P) with ( l̃ ,P̃), where

~ l̃ ~a! f !~x!5x~s~x!21as~a21
•x!! f ~a21

•x!, aPG,

~ P̃~E! f !~x!5xE~x! f ~x!, EPB~X!,

with f PL2(X,a).
Given uPH, if we composeWu :H→H x of Sec. IV with J we obtain an operato

W̃u :H→L2(X,a) explicitly given by

~W̃uv !~x!5cu,v~s~x!!5^p~s~x!!u,v&H .

If u is a unit vector,W̃u intertwines the operator measureQu , defined in Sec. IV, with the
projection measureP̃, which is the minimal Neumark dilation ofQu .

We denote byM̃ (p) the image ofM (p) under the mapJ. The analysis ofM (p), made in
Sec. VI, can easily be translated into an analysis ofM̃ (p).

~1! M̃ (p) is a closed subspace ofL2(X,a), invariant underl̃ .
~2! Let (en)n>1 be a basis ofH. ThenM̃ (p)5 % p>1ranW̃ep

.

~3! For eachn>1, ( l̃ uranW̃en
,ranW̃en

) is equivalent to the irreducible unitary representation~p,H!

of G.
~4! For eachn,p>1, we define

fn,pªW̃en
ep .

For eachn>1, (f n,p)p>1 is a basis of ranW̃en
, and (f n,p)n,p>1 is a basis ofM̃ (p).

The Heisenberg group. We denote byH1 the Heisenberg group. It isR3 as a set and we denot
its elements by (t,q,p). The product rule is given by

~ t1 ,q1 ,p1!~ t2 ,q2 ,p2!5S t11t21
p1q22q1p2

2
,q11q2 ,p11p2D .

H1 is a connected, simply connected, unimodular Lie group. Its center isZ5$(t,0,0) u tPR%, and
the quotient spaceX5H1/Z can be identified withR2 ~with respect to all relevant structures!. For
the sake of convenience we choose the Haar measuresm,m0 , anda on G, Z, andX, respectively,
as (1/2p) dt dq dp, dt, and (1/2p) dq dp. The canonical projectionp:G→X is the coordinate
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projection p((t,q,p))5(q,p), and we choose the natural, smooth sections((q,p))
5(0,q,p),q,pPR. With these choices the integral formula of Sec. II, which links together
measuresm,m0 , anda reads

E
R3

f ~ t,q,p!
dt dq dp

2p
5E

R2S ER
f ~~0,q,p!~ t,0,0!! dtD dq dp

2p
,

for all f PCc(R
3), and is simply a consequence of Fubini’s theorem.

Let H be a complex separable infinite dimensional Hilbert space, and let (en)n>1 be an
orthonormal basis ofH. There is a natural action ofH1 on H. Let a,a* denote the ladder
operators associated with the basis (en)n>1 , and define

Q5
1

&
~a1a* !,

P5
1

& i
~a2a* !

on their natural domains. Then

~ t,p,q!°ei (t1qP1pQ)

is aunitary irreduciblerepresentation ofH1 on H. It is theonly unitary irreducible representatio
of H1 whose central character ist°eit , see, e.g., Ref. 17. It isunitarily equivalentto the repre-
sentation ofH1 which acts onL2(R) as

~p~ t,q,p!f!~x!5ei (t1px1qp/2)f~x1q!, fPL2~R!.

We show that (p,L2(R)) is a representation ofH1 that is square integrable modulo the centerZ.
According to item 1 of Sec. III, it suffices to show thatcf,f+sPL2(R2) for somefPL2(R).
Explicitly,

cf,f~s~q,p!!5^p~s~q,p!!f,f&5e2 i ~pq/2!E e2 ipxf~x1q!f~x! dx.

ChoosefPCc(R), then, for anyqPR,

~x°f~x1q!f~x!!PL1~R!ùL2~R!.

Properties of the Fourier transform tell us that

S p°E
R
e2 ipxf~x1q!f~x! dxD PL2~R!, qPR.

Thus we have, by the Plancherel theorem,

E
R
Ue2 i ~pq/2!E

R
e2 ipxf~x1q!f~x! dxU2

dp52pE
R
uf~x1q!f~x!u2dx,

and, by the Fubini theorem,

E
R
S 2pE

R
uf~x1q!f~x!u2dxD dq52pifiL2(R)

4 .
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Tonelli’s theorem tells us that the functioncf,f+s is in L2(R2). Moreover, recalling thatda
5 dq dp/2p,

icf,f+siL2(R2,a)5ifiL2(R)
2 .

This shows thatp is square integrable modulo the center and that its formal degree is 1. Sinp
is the only irreducible representation ofH1 with the central charactereit and it is square integrable
modulo the center we conclude that

M̃ ~p!5L2~R2,a!,

namely, that (l̃ ,L2(R2,a)) is an isotypic representation. To exhibit this representation, le
observe that the mapW̃u :H→L2(R2,a) is given by

~W̃uv !~x,y!5^ei (xQ1yP)u,v&H .

The functionsf n,p , p>1, which constitute a basis of ranW̃en
, are

f n,p~x,y!5^ei (xQ1yP)en ,ep&H .

The operator measureQu is given by

^v,Qu~E!w&5
1

2p E
E

^v,p~0,q,p!u&H^u,p~0,q,p!21w&Hdq dp,

which can be written as

Qu~E!5
1

p E
E

Dzuu&^uuDz
21dl~z!,

wherez5 (2q1 ip)/& , Dz5eit 1za* 2 z̄a, andl is the Lebesgue measure onC. The action ofl̃
on L2(R2,a) can directly be computed and we get

~ l̃ ~ t,q,p! f̃ !~x,y!5expF i S t1
xp2yq

2 D G f̃ ~x2q,y2p!.

As a final remark we note that the commutator group of the Heisenberg group is contai
its center so that ifT is a state such that tr@Tp(g)#Þ0 for almost allgPH1, then by Proposition
3 the operator measureQT is informationally complete. This holds, in particular, if the range oT
is contained in the subspace ofH of analytic vectors.
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We present simple explicit coordinate transformations which serve to decouple the
Schrödinger equation for a pair of~not necessarily identical! harmonic oscillators in
the presence of bilinear perturbing potentials. We derivegeneralconditions for the
decoupling, and give some examples of physical interest. These include the much
studied example with just astaticperturbation, the parallel problem with adynamic
coupling term, and the classic example of anisotropictwo-dimensional oscillator in
a transverse magnetic field, first solved by Fock~1928! by separation of variables.
© 2000 American Institute of Physics.@S0022-2488~00!04409-1#

I. INTRODUCTION

In this paper, we consider Schro¨dinger’s equation for a system consisting of two~not neces-
sarily identical! one-dimensional harmonic oscillators coupled by a general bilinear perturba
and deriveexplicit conditions to decouple the equation, and obtain an exact solution. Specifi
we consider the Hamiltonian

H5H0~1;px ,x!1H0~2;py ,y!1V8~px ,py ,x,y!, ~1.1!

whereH0(k) denotes the usual Hamiltonian for an oscillator of massMk and frequencyvk , and
we write px for 2 i (]/]x),

H0~1;px ,x!5
1

2M1
px

21
1

2
M1v1

2x2. ~1.2!

The coupling potentialV8 includes one or more of all possible bilinear products from the orde
set$px ,x,py ,y%,

V85 1
2 @v128 pxx1v218 xpx1v348 pyy1v438 ypy#1@v138 pxpy1v148 pxy1v238 xpy1v248 xy# ~1.3!

and we have taken explicit account of two pairs ofnoncommutingvariables,$px ,x% and$py ,y%.
For convenience in the following, we list here the complete set of commutation relations whic
satisfied by all distinct pairs,

@px ,x#5@py ,y#52 i
@px ,py#5@y,px#5@x,py#5@x,y#50J . ~1.4!

Essentially, our problem is to decouple the given Hamiltonian of~1.1! subject to all these condi
tions ~1.4!, and we will show that this can be achieved quite generallyprovidedthat some of the
parameters$M1 ,M2 ,v1 ,v2 ,v i j8 (1<, j <4)% are suitably related.
58970022-2488/2000/41(9)/5897/13/$17.00 © 2000 American Institute of Physics
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One special case, with onlyv248 nonvanishing, has been treated very widely, and is even t
found as a textbook exercise~see for example, Merzbacher1!. In the standard treatment, relativ
and center-of-mass coordinates (X,Y) and the related momenta (PX ,PY) are used. In a convenien
matrix notation, these satisfy the transformation equations

S X
YD5S 1 21

m1 m2
D S x

yD , S PX

PY
D5S m2 2m1

1 1 D S px

py
D , ~1.5!

where we have introduced thetotal mass Mand the mass ratiosmi defined by

mi5Mi /M ~ i 51,2!, M5M11M2 . ~1.6!

It is readily verified that the extended transformed set$PX ,X,PY ,Y% obtained from~1.5! not only
satisfies all the relations~1.4! but also produces a diagonal form for the kinetic energy terms oH,

T5
1

2M1
px

21
1

2M2
py

25
1

2m
PX

21
1

2M
PY

2, ~1.7!

where m(5M1M2 /M ) is the usualreduced mass. For this special case where only astatic
perturbationv248 xy occurs, the total potential energy may also be brought to diagonal form,

V5 1
2 M1v1

2x21 1
2 M2v2

2y25 1
2 mk1

2X21 1
2 Mk2

2Y2 ~1.8!

provided thatthe parameters satisfy the relation

~M12M2!v248 5M1M2~v1
22v2

2!. ~1.9!

For the resulting operatorH5T1V to represent physical oscillators, we require that the frequ
cies (k1 ,k2) are real, so that

k1
25~M2v1

21M1v2
222v248 !/M.0

k2
25~M1v1

21M2v2
212v248 !/M.0J . ~1.10!

We see that for a pair ofidentical oscillators (M25M1 ,v25v1) condition ~1.9! is satisfied
for any v248 , but a physical spectrum still requires conditions~1.10!, giving

uv248 u,M1v1
2. ~1.11!

This condition is simply that the total potential energyV is positive definite.
Condition ~1.9! cannot be satisfied if the unperturbed frequencies differ (v2Þv1) but the

masses are identical (M25M1), evenfor the uncoupled problem withv248 50! This apparently
anomalous result shows that the coordinate transformation~1.5! is not appropriate in all cases.

We now give a simple procedure, which is of quite general validity, and use it for the fuH
of ~1.1!. We introduce a four-vectorq with elements$px ,x,py ,y% which we have chosen to orde

q5S px

x
py

y
D ~1.12!

and may then writeH as a real quadratic form,

H5 1
2 qTAq, ~1.13!
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whereA is a real symmetric 434 matrix andqT denotes thetransposeof q. Note thatq contains
all four natural variables, two momenta as well as two space coordinates. Our problem is t
obtain anorthogonalmatrix S which diagonalizes the coefficient matrixA and, at the same time
yields a transformed four-vectorQ5Sq with elements$PX ,X,PY ,Y% which also conserve the
commutation relations~1.4!.

A rather general Lie algebraic treatment of Hamiltonians of the generic form~1.13! was given
some years ago by Moshinsky and Winternitz,2 while the symmetry properties of a pair of osc
lators with static coupling only have been addressed in detail.3,4 Some interesting recent treatmen
of systems of two, three and four oscillators with static couplings5–7 have indicated continued
interest in the decoupling problem, in spite of earlier observations that such systems can be
quite generally.8,9

Our own objectives are more modest. Coupled oscillator systems, with onlydynamicpertur-
bations (v138 pxpy) should be amenable to the same kind of treatment as the well-studied
case, as should be the influence of external magnetic fields. In the present work, we e
elementary algebraic techniques to constructexplicit orthogonal transformations which lead to
decoupling of the general Schro¨dinger equation~1.1!, and lead to physical solutions.

In the following sections, we first examine the conditions imposed by the conservatio
~1.4!, and then go on to construct a suitable orthogonal transformation matrixS.

II. CONSERVING THE COMMUTATORS

Quite generally, for a system described by coordinates$qi% and momenta$pi%, the commu-
tation relations~1.4! may be written simply

@pj ,qk#52 id jk , @pj ,pk#5@qj ,qk#50, ~2.1!

and if we transform momenta and coordinatesseparatelyso that

Pr5(
j

br j pj , Qs5(
k

cskqk , ~2.2!

then a sufficient condition for

@Pr ,Qs#52 id rs ~2.3!

is obtained from~2.1! to ~2.2!,

d rs5(
j

br j cs j . ~2.4!

Introducing separate momentum and coordinate vectorsp8,q8 and coefficientmatrices B8,C8 we
see that~2.1!–~2.4! may be written,

P85B8p8, Q85C8q8, B8C8T5I . ~2.5!

Thus, it is very convenient to considerorthogonal transformationsB8,C8, in which case~2.5!
implies that

B85C8. ~2.6!

Note that transformations~1.5! satisfy the relations~2.5!, although the given matricesB8 and
C8 are not orthogonal. In the present work, we find it convenient to use orthogonal mat
throughout.
                                                                                                                



tions

-

e sole

e

5900 J. Math. Phys., Vol. 41, No. 9, September 2000 Feldmann, Cohen, and Burrows

                    
We now combine the momentap8 and coordinatesq8 into a singlecomposite vectorq with
elements ordered as in~1.12!. The corresponding composite vector ofconjugatevariables, which
we denotep, is evidently expressible as

p5S 2x
px

2y
py

D 5Cq. ~2.7!

Here, the nonsingular transformation matrixC is conveniently partitioned as follows:

C5S J 0

0 JD , J5S 0 21

1 0 D 52JT ~2.8!

and it follows from the properties ofJ thatC is orthogonal. The elements of the pair (p,q) clearly
satisfy all the commutation relations~2.1!.

If we denote byB the common orthogonal matrix which preserves the commutation rela
betweenP5Bp and the vector of conjugatesQ5Bq so thatP5CQ, B must be such that

Bp5B~Cq!5C~Bq! ~2.9!

for any q, so thatB andC commuteand, sinceC is orthogonal, we have

B5CBCT5CTBC; ~2.10!

we therefore seek an orthogonal matrixS which not only satisfies~2.10! but also diagonalizes the
coefficient matrixA of ~1.13!.

III. DIAGONALIZING THE COEFFICIENT MATRIX

A. The one-dimensional case

Before we treat the general Hamiltonian of~1.1!, we first consider the simpler one
dimensional case which involves only the single conjugate pair$px ,x%. Here the coefficient
matrix is explicitly

A5S 1/M1 v128

v128 M1v1
2D ~3.1!

and, from the results of the previous section, an orthogonal matrix which conserves th
commutation relation@px ,x#52 i satisfies

B52JBJ ~3.2!

so that

B5S b11 2b21

b21 b11
D , b11

2 1b21
2 51. ~3.3!

Thus,B may be parametrised as a rotation matrix

R~u!5S c 2s

s c D , c5cosu, s5sinu, ~3.4!

and the rotation angleu may be chosen so as to diagonalizeA. Thus, in this special case, we hav
S5B provided onlythat u is chosen as a Jacobi~or Givens! rotation angle,
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tan 2u5
2M1v128

~12M1
2v1

2!
; ~3.5!

however, the resulting transformed Hamiltonian, with diagonal coefficient matrixSTAS has the
required physical oscillator form only if the originalA was positive definite. SinceM1.0, and we
will assume that detA.0, this leads to the necessary condition

uv128 u,v1 . ~3.6!

In our earlier Lie algebraic treatment of this case,10 there was in fact a similar restriction on th
coefficients appearing in the Hamiltonian, although this was not emphasized in that treatm

B. Reducing the two-dimensional problem

It is clear that we may eliminate fromH both pairs of perturbations12v128 (xpx1pxx) and
1
2v348 (ypy1pyy) by using two independentrotations, each of which involves a single pair
conjugates. So without loss of generality, we may consider the most generalH with these terms
absent. At this point, it is convenient to change the variable scales so that

x→x/~M1v1!1/2, y→y/~M2v2!1/2; ~3.7!

we then arrive at thereducedcoefficient matrix,

A5S v1I VT

V v2I D , I 5S 1 0

0 1D , ~3.8!

where the nonvanishing perturbing potentialV which results from rotations and scaling ofH can
be written simply

V5S v11 v12

v21 v22
D . ~3.9!

All four elements ofV are, as yet, unrestricted.

C. The general two-oscillator problem

We exploit a general result~which does not seem to be very widely known! that anygiven
orthogonal matrixSN of order N3N may be decomposed into a product of not more th
1
2N(N21) orthogonal~rotation! matricesR( i , j ;u i j ) which are defined for all distinct pairs (i
, j ),

R~ i , j ;u i j !5R~ j ,i ;u i j !5@r mn# ~1<m,n<N!,

where

r ii 5r j j 5cosu i j , r i j 52r j i 52sinu i j , r mn5dmn ~otherwise!. ~3.10!

We have adopted the following convenient product form ofSN :

SN5)
j 52

N

Tj , Tj5)
i 51

j 21

R~ i , j ;u i j !, ~3.11!
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but emphasize that the ordering of theR( i , j ) is arbitrary. The order of any pair of adjacent facto
in ~3.11! may be reversed~usually with resulting changes to some rotation anglesu i j !. We present
a computational algorithm for the matrixSN of ~3.11! in Appendix A, and a reordering procedu
in Appendix B.

The form ~3.11! implies that it will be sufficient to consider only distinct rotations whi
involve pairs of variables selected from the generalized vectorq. There are six such pairs in th
present problem of two oscillators. With the variables$px ,x,py ,y% ordered as in~1.12!, we
associate the rotations R(1,2),R(1,3), . . . ,R(3,4) with the respective pairs
$px ,x%,$px ,py%, . . . ,$py ,y%. We have already noted thatR(1,2) andR(3,4) separately preserv
all the commutators, and they are conveniently combined into a single 434 matrix,

L5R~1,2;u5!R~3,4;u6!; ~3.12!

these two matrices commute~see Appendix B!. The remaining four rotation matrices do not a
commute, but may be combined into a single composite matrix, for example,

M5R~1,3;u1!R~1,4;u2!R~2,3;u3!R~2,4;u4!. ~3.13!

It should be noted that the ordering of factors in both productsLM andML may be obtained from
S4 of ~3.11! by using the methods of Appendix B.

Now it may be shown that, with this form~3.13! of M to preserve all the commutators, it
necessary and sufficientthat the rotation angles satisfy

u352u2 , u45u1 , ~3.14!

and we derive these conditions in Appendix C. The resulting matrixM is then a function of just
two angles (u1 ,u2) and is partitioned conveniently

M5S M11 M12

M21 M22
D ; ~3.15!

here, the submatrices are~writing ci5cosui ,si5sinui!:

M115M225c1c2I
M1252M21

T 52~s1c2I 1s2J!J ~3.16!

and are seen to commute both withJ and with each other.
Our diagonalization strategy is as follows; if we can ensure that the matrix

D5MTAM5S D11 D12

D21 D22
D ~3.17!

becomesblock diagonal(D125D2150) by a suitable choice of (u1 ,u2), a diagonal matrixLTDL
can be achieved subsequently. However,D12 containsfour elements, while we have at our dis
posal onlytwo independent parameters (u1 ,u2), so we anticipate that full diagonalization ofA is
not possible under all circumstances. From the four individual elements of the submatrixD12,

D125~v12v2!M11M121M11V
TM112M12VM12, ~3.18!

we find after some tedious but elementary algebra that the conditionD1250 requires a solution of
the following set of four equations,

W~v111v22!52~v12v2!~c1c2!~s1c2!

W~v122v21!52~v12v2!~c1c2!s2

W~v112v22!5W~v121v21!50
J ~3.19!
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where we have introduced the quantity

W52~c1c2!221.

There are now two, fundamentally different possibilities, depending onW.
If WÞ0, Eqs.~3.19! may possess a solutionif and only if the matrix elements ofV are related

in pairs,

v115v225~v12v2!~c1c2!~s1c2!/W

and

v1252v215~v12v2!~c1c2!s2 /W. ~3.20!

Thus, whenWÞ0, we have quite generally

V5v11I 2v12J, ~3.21!

and, if v1Þv2 , either or both of the pair (v11,v12) may be zero; however, ifv15v2 necessarily
v115v1250 andV50. In all these cases,V commutes withJ.

However, ifW50 so that (c1c2)25 1
2, and since quite generally

~c1c2!21~s1c2!21s2
25c2

21s2
251 ~3.22!

it follows that s1c2 and s2 cannot be zero simultaneously, and so Eqs.~3.19! are inconsistent
unlessv15v2 . But in that case, all four elements ofV remain unrestricted.

We now consider the diagonal blocks ofD. We calculate

D115d1I 1c1c2N1 , D225d2I 2c1c2N2 , ~3.23!

where we have written

d15v11~v22v1!~12c1
2c2

2!, d25~v11v2!2d1

Ni5~Ki1Ki
T!

K15s1c2V1s2JV, K25s1c2V1s2VJ
J . ~3.24!

Now, in all cases for whichv115v22 andv1252v21 ~so thatJV5VJ! it is readily verified
that

N15N252~s1c2v111s2v12!I , ~3.25!

and soboth D11 and D22 are automatically diagonal. One of the pairN1 ,N2 ~but not both! is
diagonal if the rotation angles (u1 ,u2) happen to be such that

s1c2

s2
56

v222v11

v121v21
; ~3.26!

quite generally, each of the symmetric 232 matricesN1 ,N2 may be diagonalized separately by
single additional Jacobi rotation, thereby completing the decoupling ofH.

We still need the reduced coefficient matrixA of ~3.8! to be positive definite, so that the
decoupled form ofH corresponds to physical oscillators~with real frequencies!. In the most
general case~sincev1 ,v2.0! these conditions can be written

v1v2.max~v11
2 1v12

2 ,v21
2 1v22

2 !

and @v1v22~v11
2 1v12

2 !#@v1v22~v21
2 1v22

2 !#.~v11v211v12v22!
2J ~3.27!
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and in casev115v22,v1252v21 these reduce to one simple condition

v1v2.v11
2 1v12

2 . ~3.28!

IV. SOME SIMPLE EXAMPLES

A. Static coupling

This is the ‘‘standard,’’ very widely studied example. It provides a model for many probl
in physics~cf. Ref. 3, 4, and references cited there!. The Hamiltonian

H5
1

2m
~px

21py
2!1

1

2
mvo

2~x21y2!1lxy ~4.1!

leads to a reduced perturbation matrix~3.9! with only v225l/mvo nonvanishing. The resulting
decoupled form is easily seen to be

H5 1
2 @vopx

21~vo2v22!x
2#1 1

2 @vopy
21~vo1v22!y

2# ~4.2!

leading to the spectrum~with n1 ,n2 independent real positive integers!

E~n1 ,n2!5Avo~vo2v22!~n11 1
2!1Avo~vo1v22!~n21 1

2!. ~4.3!

B. Dynamic coupling

The parallel case of dynamic coupling, with Hamiltonian

H5
1

2m
~px

21py
2!1

1

2
mvo

2~x21y2!1mpxpy ~4.4!

may be used to model a triatomic molecule, it being assumed that low-lying states are ap
mated by harmonic oscillator wave functions, and the only significant coupling is a produ
momenta. A similar model, but using Morse rather than harmonic potentials, has been t
numerically.11

The Hamiltonian~4.4! corresponds to a reduced perturbation matrix~3.9! with only v11

5mvom nonvanishing. The corresponding decoupled form ofH is now

H5 1
2 @~vo2v11!px

21vox2#1 1
2 @~vo1v11!py

21voy2# ~4.5!

yielding the spectrum

E~n1 ,n2!5Avo~vo2v11!~n11 1
2!1Avo~vo1v11!~n21 1

2!. ~4.6!

Not surprisingly, the examples of static and dynamic coupling are completely parallel.

C. Two-dimensional planar isotropic oscillator in a uniform transverse magnetic field

The Schro¨dinger equation for this model system was first solved by Fock12 using the classic
methods of separation of variables. Here, the Hamiltonian may be written

H5
1

2m
~px

21py
2!1

1

2
m~vo

21V2!~x21y2!1V~ypx2xpy!, ~4.7!

wherevo is the field-free frequency andV the Larmor frequency due to the magnetic field. In th
case, the reduced perturbation matrix hasv1252v215V, and if we denotev5Avo

21V2, the
decoupled form ofH is found to be
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H5 1
2 ~v2V!~px

21x2!1 1
2 ~v1V!~py

21y2! ~4.8!

with the spectrum

E~n1 ,n2!5~v2V!~n11 1
2!1~v1V!~n21 1

2!. ~4.9!

It remains to be seen how far our simple approach can be extended to larger systems in g

APPENDIX A: DECOMPOSITION OF SN

Here, we describe a convenient procedure leading to the form~3.11! of the text. For simplicity
of presentation, we treat the case of 434 matrices which are needed for the present coup
oscillator problem, but our procedure is readily extended to higherN.

We emphasize that, even forN53, it is not generally possible to diagonalize a real symme
matrix by afinite sequence of successive rotations. Nevertheless, once a set of orthogonal v
of A4$e1 ,e2 ,e3 ,e4% has been calculated~usually numerically!, they may be arranged as a matri
for example,

S45@e1 ,e2 ,e3 ,e4#, ej5S l j

mj

nj

pj

D , say. ~A1!

The arrangement~A1! is evidentlynot unique.
We now decompose the chosenS4 in the form of ~3.11!,

S45T2~u1!T3~u2 ,u3!T4~u4 ,u5 ,u6!, ~A2!

where

T2~u1!5R~1,2;u1!, T3~u2 ,u3!5R~1,3;u2!R~2,3;u3!,

and T4~u4 ,u5 ,u6!5R~1,4;u4!R~2,4;u5!R~3,4;u6!, ~A3!

and all the rotation matricesR( i , j ;u) are here of order 434. Writing (ci ,si) for (cosui ,sinui) we
have straightforwardly

T25S c1 2s1 0 0

s1 c1 0 0

0 0 1 0

0 0 0 1

D , T35S c2 2s2s3 2s2c3 0

0 c3 2s3 0

s2 c2s3 c2c3 0

0 0 0 1

D
and

T45S c4 2s4s5 2s4c5s6 2s4c5c6

0 c5 2s5s6 2s5c6

0 0 c6 2s6

s4 c4s5 c4c5s6 c4c5c6

D . ~A4!

We now observe that the final~fourth! row of the productT2T3T4 is identical with the final
row of T4 , so we may equate the fourth row elements ofT4 andS4 ,

s45p1 , c4s55p2 , c4c5s65p3 , c4c5c65p4 . ~A5!
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We now solve these successively,

s45p1 , s55p2 /c4 , s65p3 /c4c5 , ~A6!

and choose eachci5A12si
2 positive. @If the sign ofp4 is negative, we are at liberty to reverse th

sign of e4 in ~A1! so thatc6.0.#
ThusT4 is fully determined, and we may calculate the productS4T4

T ; from ~A.2!, we have

T2T35S4T4
T5@e18e28e38e48#, ej85S l j8

mj8

nj8

pj8

D say. ~A7!

The penultimate~third! rows of T2T3 and T3 are now identical, and we equate them inT3 and
S4T4

T to obtain

s25n18 , s35n28/c2 , ~A8!

so thatT3 is now determined.
Finally, T2 is recovered in the same way by using the equation

T25S4T4
TT3

T . ~A9!

This procedure may evidently be extended to largerN; beginning with the final (Nth) rows ofSN

andTN , proceeding with the penultimate rows ofSNTN
T andTN21 and so on, we finally reach

T25SNTN
TTN21

T
¯T3

T . ~A10!

A simple application of this procedure is used in the following Appendix B.

APPENDIX B: REORDERING THE ROTATIONS

EachR( i , j ;u i j ), a Jacobi rotation matrix of orderN3N, acts in a specified two-dimensiona
( i , j )-subspace of the totalN-dimensional space of the symmetric matrixAN . Two such matrices
R( i , j ) andR(k,l ) commuteif the corresponding subspaces are nonoverlapping (kÞ i , j ; lÞ i , j ) or
if they are identical, since then

R~ i , j ;u1!R~ i , j ;u2!5R~ i , j ;u11u2!. ~B1!

Thus, we need consider only distinct pairs from the set$R( i , j ),R( i ,k),R( j ,k)% which together
form a common three-dimensional (i , j ,k)-subspace. It will suffice to work with a set of noncom
muting matrices of order 333, $R(1,2),R(1,3),R(2,3)%.

Now one particular orthogonal matrixS3 is given by

S35R~1,3;u1!R~1,2;u2!5S c1c2 2c1s2 2s1

s2 c2 0

s1c2 2s1s2 c1

D ~B2!

and may be decomposed according to the procedure of Appendix A. If we take

S35T2T3 , T25R~1,2;u4!, T35R~1,3;u5!R~2,3;u6!, ~B3!

then the angles (u3 ,u4 ,u5) are found to satisfy
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s45s1c2 , s552s1s2 /c4 , c55c1 /c4 ,

s35s2 /c4 , c35c1c2 /c4 , c4
2512s4

2 J . ~B4!

We have thus shown directly that

R~1,3;u1!R~1,2;u2!5R~1,2;u4!R~1,3;u5!R~2,3;u6!, ~B5!

and sinceRT( i , j ;u)5R( i , j ;2u) for all ( i , j ), the transpose of~B5! gives

R~1,2;2u2!R~1,3;2u1!5R~2,3;2u6!R~1,3;2u5!R~1,2;2u4!. ~B6!

Since neither the indices~1,2,3! nor the angles (u i) are significant in~B5!–~B6!, we have the
general reordering theorems,

R~ i , j !R~ i ,k!5R~ i ,k!R~ i , j !R~ j ,k! ~B7!

and

R~ i , j !R~ i ,k!5R~ j ,k!R~ i ,k!R~ i , j !. ~B8!

We see that a product of two noncommuting rotationsR( i , j ) andR( i ,k) may be reordered, bu
this reordering necessarily involves the third memberR( j ,k) of the set$R( i , j ),R( i ,k),R( j ,k)%.

Now, writing (i , j ) for R( i , j ), the product form~3.11! appropriate to our two-oscillato
problem may be written symbolically,

S45T2T3T45~1,2!@~1,3!~2,3!#@~1,4!~2,4!~3,4!#, ~B9!

and we may reorder the members of the~1,2,3! subspace as follows:

@~1,2!~1,3!#~2,3!5@~1,3!~1,2!~2,3!#~2,3! @using ~B7!#

5~1,3!~1,2!~2,3! @using ~B1!#

5~1,3!@~1,3!~2,3!~1,2!# @using ~B8!#

5~1,3!~2,3!~1,2! @using ~B1!# ~B10!

and we have reached

S45~1,3!~2,3!~1,2!~1,4!~2,4!~3,4!. ~B11!

Similarly, we may reorder the members of the~1,2,4! subspace in the same way so that

~1,2!~1,4!~2,4!5~1,4!~2,4!~1,2!; ~B12!

we have thus reached the formS45ML of the text,

S45@~1,3!~2,3!~1,4!~2,4!#@~1,2!~3,4!#. ~B13!

The rearrangementS45LM is reached in a similar sequence of steps, after first interchanging
commuting pair (2,3)(1,4)5(1,4)(2,3). In practice, we have further decomposed each of
rotations~1,2! and~3,4!, using~B1! and have used an extended formLML8, with different angles
in L andL8.
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APPENDIX C: RELATIONS BETWEEN THE ROTATION ANGLES SO THAT M
PRESERVES THE COMMUTATORS

The orthogonal matrixM of ~3.13!,

M5R~1,3;u1!R~2,3;u3!R~1,4;u2!R~2,4;u4!5R~1,3;u1!R~1,4;u2!R~2,3;u3!R~2,4;u4!
~C1!

is calculated straightforwardly

M5S c1c2 2~c1s2s41s1s3c4! 2s1c3 2~c1s2c42s1s3s4!

0 c3c4 2s3 2c3s4

s1c2 2~s1s2s42c1s3c4! c1c3 2~s1s2c41c1s3s4!

s2 c2s4 0 c2c4

D ~C2!

5S M11 M12

M21 M22
D , say, ~C3!

and we seek conditions on the four rotation angles (u1 ,u2 ,u3 ,u4), so that the commutators~1.4!
are conserved. From~2.9!, these are equivalent to the matrix equation,

CM5MC, ~C4!

where

C5S J f

f J D , J5S 0 21

1 0 D . ~C5!

Thus,each separatesubmatrixMi j of M must satisfy an equation

JMi j 5Mi j J, ~C6!

and so we obtain four pairs of equations,

from M11, c1c25c3c4 , c1s2s41s1s3c450, ~C7!

from M12, s1c35c3s4 , c1s2c42s1s3s452s3 , ~C8!

from M21, s1c25c2s4 , s1s2s42c1s3c45s2 , ~C9!

from M22, c1c35c2c4 , s1s2c41c1s3s450. ~C10!

In addition, we must satisfy the natural conditions

ci
2512si

2 ~ i 51, . . . ,4! ~C11!

and we may assume that eachci.0 ~so that2(p/2),u i,(p/2)!.
We see at once that, unlessc25c350, we have from the first of each of~C7!–~C10!,

s45s1→c45c1→c35c2 ~C12!

and thuss356s2 . But if s35s2Þ0 the second of each pair~C7!, ~C10! yield

s1c41c1s450, ~C13!
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which is incompatible with~C12! unlesss1 or c1 vanishes. We conclude that we have the uniq
solutions352s2 , and it may be verified that all of~C7!–~C10! are satisfied. Thus, in general, w
have

u15u4 and u252u3 ~C14!

as stated in the text.
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Geometric modular action, wedge duality, and Lorentz
covariance are equivalent for generalized free fields

Johanna Gaier
Abt. f. Finanz- und Versicherungsmathematik, TU Wien,
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Jakob Yngvasona)

Institut für Theoretische Physik, Universita¨t Wien,
Boltzmanngasse 5, A-1090 Vienna, Austria

~Received 17 November 1999; accepted for publication 9 March 2000!

The Tomita–Takesaki modular groups and conjugations for the observable algebras
of spacelike wedges and the vacuum state are computed for translationally covari-
ant, but possibly not Lorentz covariant, generalized free quantum fields in arbitrary
space–time dimensiond. It is shown that ford>4 the condition of geometric
modular action~CGMA! of Buchholz, Dreyer, Florig, and Summers@Rev. Math.
Phys. ~2000!#, Lorentz covariance and wedge duality are all equivalent in these
models. The same holds ford53 if there is a mass gap. For massless fields ind
53, and ford52 and arbitrary mass, CGMA does not imply Lorentz covariance of
the field itself, but only of the maximal local net generated by the field. ©2000
American Institute of Physics.@S0022-2488~00!01508-5#

I. INTRODUCTION

The importance of Tomita–Takesaki modular theory for both structural analysis and con
tive aspects of quantum field theory has been amply manifested by important publicatio
recent years. We refer to Refs. 1–3 for extensive lists of references on this subjec
Bisognano–Wichmann theorem~Refs. 4 and 5!, proved already in 1975, is the basic insight
which these developments are founded. It provides a geometrical interpretation of the m
objects associated with algebras generated by Poincare´ covariant Wightman field operators loca
ized in spacelike wedges.

In 1992, Borchers6 discovered an important partial converse to this theorem. He showed
in two space–time dimensions the modular objects associated with a translationally covarian
net of von Neumann algebras and a vacuum state lead to a representation of the Poincare´ group,
even if no Lorentz covariance of the net is required at the outset.~See also Ref. 7 for a simplified
proof of Borchers’ theorem.! Such a geometrical interpretation of the modular objects is
always possible in higher dimensions, however, as can be seen from examples given in R

By postulatinga certain form of geometric action of the modular conjugations associated
spacelike wedges and a given state~‘‘Condition of geometric modular action’’! Buchholzet al.9

were able to construct a representation of the Poincare´ group in space–time dimension 4 witho
even assuming translational invariance. The essence of the CGMA is the requirement th
modular conjugation of every wedge leaves the family of all wedge algebras invariant. As s
in Ref. 3 the spectrum condition for the translations follows from the additional requiremen
the group generated by the conjugations contains the modular groups of the wedge a
~‘‘Modular stability condition’’!. Such a purely algebraic characterization of vacuum states ha
potential for generalizations to a stability condition for quantum fields on curved space–t
Other important results relying on geometric actions of modular groups have been obtaine
in Refs. 10–12.

a!Electronic mail: yngvason@thor.thp.univie.ac.at
59100022-2488/2000/41(9)/5910/10/$17.00 © 2000 American Institute of Physics
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As a contribution to the understanding of the possible modular actions in quantum field t
when the Bisognano–Wichmann theorem does not apply we compute in this paper the m
groups and the modular conjugations associated with the wedge algebras generated by tran
ally covariant generalized free quantum fields in arbitrary space–time dimensiond. Such a com-
putation was carried out in Ref. 8 for two-dimensional fields, depending only on one light
dinate, and certain special cases in higher dimensions. Here we treat the general case~for single-
component, Hermitian fields!.

We investigate the geometrical significance of the modular objects, and, in particula
answer the question when the adjoint action of the modular conjugation associated with a
algebra leaves the set of all wedge algebras invariant. We show that ind>4 this is the case if and
only if the two-point function defining the field is Lorentz invariant. In fact, Lorentz invaria
follows already from wedge duality for the field, i.e., the property that the algebra of any w
is the commutant of the algebra of the opposite wedge, which is a consequence of CGM
Proposition 4.3.1 in Ref. 9. This result is based on a lemma concerning the zeros of polyn
restricted to a mass shell~Lemma V.2! as well as the explicit formulas for the modular objec
The same conclusion can be drawn from the requirement that the modular groups act local
transform observables localized in a bounded region into observables localized in another b
region.

In view of the general result of Ref. 9, the Lorentz covariance of fields satisfying CGM
not a surprise, but it is important to note that this is not a consequence of Ref. 9 alone. The
is that the same wedge algebras coulda priori be generated by different fields and not all of the
might be Lorentz covariant. In fact, the wedge algebras for a massless free field ind53 can be
generated by certain derivatives of the field that do break Lorentz invariance. Ind53, however,
this massless case is the only exception: if there is a mass gap, then CGMA implies L
covariance of the field. Ind52 also massive fields without Lorentz covariance can fulfill CGM
In the cases where Lorentz covariance of the field is broken, but CGMA holds the minimal
net generated by the field operators is not Lorentz covariant, in contrast to the maximal net d
by intersections of wedge algebras that is strictly larger in these cases.

The bottom line is that ind>4 the following conditions are all equivalent for the mode
considered:~a! CGMA, ~b! wedge duality,~c! local action of the modular groups, and~d! Lorentz
covariance of the field. This equivalence holds also ford53, provided there is a mass gap.

II. DEFINITION OF THE MODELS

We consider ond-dimensional Minkowski space a Hermitian quantum fieldF(x) satisfying
the Wightman axioms,13 with the possible exception of covariance under Lorentz transformati
Hence, we do not requirea priori that a representation of the full Poincare´ group is defined on the
state space, but only a representationU(a) of the translation group, satisfying the spectru
condition. The field transforms covariantly under translations,U(a)F(x)U(2a)5F(x1a), and
F(x) andF(y) commute if (x2y) is spacelike. The general structure of the two-point funct
W2(x2y)5^V,F(x)F(y)V& for such a field, whereV denotes the vacuum state, follows fro
the Jost–Lehmann–Dyson representation~cf., e.g., Ref. 14!; its Fourier transform can be writte
as

W̃2~p!5*0
`M ~p,m2!Q~p0!d~p22m2!dr~m2!, ~2.1!

where the Lehmann weight dr is a positive, tempered measure onR1 andM (p,m2) is for fixedm
an even polynomial inp5(p0 ,...,pd21)PRd, i.e.,

M ~p,m2!5M ~2p,m2!, ~2.2!

with

M ~p,m2!>0, for pPHm
1
ª$pPRd:p22m250, p0>0%, ~2.3!
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and dr-almost allm2.
The Hilbert space of the field is the symmetric Fock space over the ‘‘one-field space’’H(1),

which is theL2 space corresponding to the positive measureW̃2(p)ddp on the forward light cone
V15$pPRd:p2>0,p0>0%. We shall make use of the decomposition ofH(1) as a direct integral,

H~1!5* %Hm
~1! dr~m2!, ~2.4!

whereHm
(1)5L2

„Rd,M (p,m2)Q(p0)d(p22m2)ddp….
The smeared field operatorsF( f )5*F(x) f (x)dx are defined not only for test functionsf

PS(Rd), but also for distributionsf PS(Rd)8 such that the Fourier transformf̃ belongs to theL2

space with respect to the measure„W̃2(p)1W̃2(2p)…dp on V5V1ø2V1. For realf, the field
operatorF( f ) is uniquely determined by the restrictionf̃ uV1 . It is a self-adjoint operator on a
natural domain in the Fock space, and we may consider the unitary Weyl operatorsW( f )
5expiF(f ). They satisfy the relation

W~ f !W~g!5e2K~ f ,g!/2W~ f 1g!, ~2.5!

with

K~ f ,g!5E „W̃2~p!2W̃2~2p!… f̃ ~2p!g̃~p!ddp. ~2.6!

Moreover,

^V,W~ f !V&5exp~2*W̃2~p! f̃ ~2p! f̃ ~p!dp!. ~2.7!

If O is a subset of Minkowski spaceRd, we can define the following subspace ofHm
(1) :

Hm
~1!~O!ªclosure of$g̃uH

m
1:gPS~Rd!, suppg,O%. ~2.8!

We define the local algebraM(O) as the von Neumann algebra generated by the Weyl opera
W( f ) @with real f PS1(Rd)8#, such that

f̃ uV1P* %Hm
~1!~O!dr~m2!. ~2.9!

We remark that if the Lehmann weight does not decrease rapidly at infinity, thenM(O) can be
larger than the algebra generated by the Weyl operatorsW( f ) with suppf ,O; cf. Ref. 15. This
possibility, however, is independent of the issues of interest here. Our definition ofM(O) sim-
plifies things because it allows a complete reduction to the case of fixed mass.

If O is a fixed open subset ofRd such that its causal complementO8 has a nonempty interior
thenV is cyclic and separating forM(O), and we may consider the corresponding modular gro
D i t and modular conjugationJ. Both are the second quantization of their restrictions to
one-field spaceH(1) and we denote these restrictions byd i t and j, respectively. Moreover, by ou
definition of M(O), we have a direct integral decomposition of these objects:

d i t5* %dm
it dr~m2!, j 5* % j m dr~m2!. ~2.10!

Heredm
it and j m are the restrictions to the one-field spaceHm

(1) of the modular objects for the field
with two-point function

W̃2,m~p!5M ~p,m2!Q~p0!d~p22m2!. ~2.11!

It is therefore sufficient to compute the modular objects for a fixed mass and we shall in the
drop the indexm. We shall also writeM (p,m2) simply asM (p).
                                                                                                                



‘right

,

of

x

5913J. Math. Phys., Vol. 41, No. 9, September 2000 Modular actions for generalized free fields

                    
III. COMPUTATION OF THE MODULAR OBJECTS FOR WEDGE ALGEBRAS

We shall now computed i t andj for the field with two-point function~2.11! andO a spacelike
wedgeW. Since the field is translationally covariant and general polynomialsM are allowed in
~2.11!, it is sufficient to do this for some standard wedge. We choose for this purpose the ‘
wedge,’’

WR5$x5~x0 ,...,xd21!PRd:ux0u,x1%. ~3.1!

The modular objects for this wedge will be denoteddR
it and j R . If L is a Lorentz transformation

then the modular objects for the wedgeW5LWR are the same as forWR , but with the polynomial
ML(p)ªM (L21p) instead ofM.

We introduce the light cone coordinatesp6ªp06p1 , and write the remaining components
p as p̂ª(p2 ,...,pd21). The two-point function~2.11! can then be written as

W̃2~p!5M ~p1 ,p2 ,p̂!Q~p1!d~p1•p22 p̂22m2! ~3.2!

5p1
21M „p1 ,p1

21~ p̂21m2!,p̂…Q~p1!d„p22p1
21~ p̂21m2!…. ~3.3!

Moreover, sinceM is a polynomial, we can write

M ~p1 ,p1
21~ p̂21m2!,p̂!5p1

22nQ~p1 ,p̂!, ~3.4!

with somenPNø$0% and a polynomialQ(p1 ,p̂). The properties ofM imply that Q satisfies

Q~p1 ,p̂!5Q~2p1 ,2 p̂! and Q~p1 ,p̂!>0. ~3.5!

We now considerQ as a polynomial inp1 , with coefficients that are polynomials inp̂. Its
zeros are algebraic functions ofp̂, and the properties~3.5! entail that every real zeror j ( p̂) of
Q(•,p̂) must be a double zero and every complex zerozk( p̂) comes together with its comple
conjugatezk( p̂)* . Moreover, each real zeror j ( p̂) is accompanied by a zero2r j (2 p̂) and every
complex zerozk( p̂) by 2zk(2 p̂).

All in all we can write

W̃2~p!5
1

p1
F~p1 ,p̂!F~2p1 ,2 p̂!Q~p1!dS p22

p̂21m2

p1
D , ~3.6!

with

F~p1 ,p̂!5
1

~ ip1!n •)
j 51

J

„p12r j~ p̂!…„p11r j~2 p̂!…)
k51

K

„p11zk~ p̂!…„p12zk~2 p̂!* …,

~3.7!

wherer j ( p̂)PR andzk( p̂)PC, Im zk(p̂).0. Thus,F has all the complex zeros ofQ in the lower
half-plane and no zeros in the upper half-plane, while

F~2p1 ,2 p̂!5F~p1 ,p̂!* ~3.8!

has no zeros in the lower half-plane. The real zeros ofQ are evenly divided betweenF(p1 ,p̂) and
F(2p1 ,2 p̂).

We shall now give explicit formulas fordR
it and j R . Note that everywPHm

(1) can be regarded
as a function ofp1.0 andp̂PRd22, since on the mass shellp25p1

21( p̂21m2).
Theorem III.1: On the one-particle spaceH(1) the modular group associated withM(WR)

and V has the form
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~dR
itw!~p1 ,p̂!5

F~e22ptp1 ,p̂!

F~p1 ,p̂!
w~e22ptp1 ,p̂!, ~3.9!

where F is given by (3.7). The corresponding modular conjugation is

~ j Rw!~p1 ,p̂!5
F~2p1 ,p̂!

F~p1 ,p̂!
w~p1 ,2 p̂!* . ~3.10!

Proof: One can easily check thatdR
it is unitary for all t and j R is antiunitary. The same hold

then for the second quantized operatorsDR
it andJR . To show thatDR

it is indeed the modular group
associated with the vacuum state onM(WR), one must verify thats tªadDR

it defines an auto-
morphism group ofM(WR) and that the KMS condition

^V,s tW~ f !W~g!V&5^V,W~g!s t2 iW~ f !V& ~3.11!

holds for Weyl operators localized inWR .
By Eqs.~3.9!, ~2.5!, and~2.7! the action ofDR

it on the Weyl operators is

DR
itW~ f !DR

2 i t5W~ f t!, ~3.12!

with

f̃ t~p1 ,p2 ,p̂!5
F~e22ptp1 ,p̂!

F~p1 ,p̂!
f̃ ~e22ptp1 ,e2ptp2 ,p̂!. ~3.13!

~Note that on the positive and negative mass shellsp1p25 p̂21m2.) Test functionsf with support
in WR are characterized by analyticity and decay properties of the Fourier transformf̃ : For fixed
p̂, f̃ is analytic in

TR5$~p1 ,p2!PC2:Im p1.0, Imp2,0%, ~3.14!

and decays rapidly at infinity in this domain. The same conditions apply iff is a distribution w.r.t.
the light cone variablesx6 , but f̃ may increase like an inverse polynomial asp1 or p2 approach
the real axis. SinceF has no zeros inp1 in the ~open! upper half-plane, it is evident thatf̃ t

satisfies these conditions iff̃ does. Hence, the group adDR
it leavesM(WR) invariant.

The KMS condition can be verified by essentially the same computation as the correspo
statement for fields on a light ray in Ref. 8, Eqs.~5.9!–~5.13!.

To show that~3.10! is the modular conjugation, we note first that the set of state vectow

PH(1), such thatw5 f̃ uH
m
1 with f PS(Rd) and suppf PWR , is a core for the restrictions to w

PH(1) of the S operator corresponding toM(WR) and V. The latter is defined bySW( f )V
5W( f )* V for supp f PWR . Suchw are analytic inp1 in the upper half-plane, and

dR
1/2w~p1 ,p̂!5

F~2p1 ,p̂!

F~p1 ,p̂!
w~2p1 ,p̂!, ~3.15!

by analytic continuation of~3.9! to t52 i /2. On the other hand,

sw~p1 ,p̂!5w~2p1 ,2 p̂!* . ~3.16!

Using ~3.8! we see thatj R satisfies

s5 j RdR
1/2, ~3.17!

as required for the modular conjugation. h
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IV. DUALITY AND MODULAR ACTION FOR A FIXED WEDGE

As a next topic we discuss duality and the geometrical significance of the modular objec
the right wedge. In particular, we compare them with the corresponding objects for the left w

WL5$x5~x0 ,...,xd21!PRd:ux0u,2x1%. ~4.1!

By an analogous computation as for the right wedge these are given by

~dL
itw!~p1 ,p̂!5

F~2e2ptp1 ,2 p̂!

F~2p1 ,2 p̂!
w~e2ptp1 ,p̂! ~4.2!

and

~ j Lw!~p1 ,p̂!5
F~p1 ,2 p̂!

F~2p1 ,2 p̂!
w~p1 ,2 p̂!* . ~4.3!

Wedge duality for the left and right wedge, i.e.,M(WR)85M(WL), holds if and only if the
modular conjugations coincide, i.e.,j R5 j L . By ~3.10! and ~4.3! the condition for this is

F~2p1 ,p̂!

F~p1 ,p̂!
5

F~p1 ,2 p̂!

F~2p1 ,2 p̂!
, ~4.4!

which by ~3.8! can be written as

F~p1 ,2 p̂!F~p1 ,p̂!5F~p1 ,2 p̂!* F~p1 ,p̂!* . ~4.5!

SinceF(p1 ,6 p̂), regarded as a function ofp1 , has all its complex zeros in the lower half-plan
we see that this holds if and only ifF has no complex zeros at all.

Let us now consider the geometric action of the modular conjugation. IfM has only real zeros
in p1 , then duality holds, and henceJRM(WR)JR5M(WL). A complex zero, on the other hand
implies that the prefactorF(2p1 ,p̂)/F(p1 ,p̂) in the definition ofj R is not analytic in the lower
half-plane. Hence, in general,j Rw is not analytic in p1 in the lower half-plane for
wPH(1)(WR). This implies thatj Rw is, in general, not contained inH(1)(W) for any wedge of the
form of WL1a, aPRd, and henceJRM(WR)JR is not contained in any translation ofM(WL). A
localization of JRM(WR)JR in any other wedge algebra is excluded since, for gen
wPH(1)(WR), w(p1 ,2 p̂)* has no further analyticity properties beyond the analytic continua
in p1 to the lower half-plane, which follows from the localization ofw in WR .

We summarize these findings as follows.
Proposition IV.1: The following are equivalent.

~i! M(WR)85M(WL).
~ii ! JRM(WR)JR is contained inM(W) for some wedgeW.
~iii ! The rational function,

p1°M„p1 ,p1
21~ p̂21m2!,p̂…, ~4.6!

has only real zeros, for all pˆ PRd22.

Our last concern in this section is the local action of the modular group. The general the
of Borchers6 implies that translations ofM(WR) are mapped onto algebras of the same type

DR
itM~WR1a!DR

2 i t5M„WR1L~ t !a…, ~4.7!

for all aPRd, with L(t) a Lorentz boost. Observables localized in bounded domains, how
are, in general, not localized in a bounded domain after transformation by adDR

it . In fact, if O is
bounded, thenwPH(1)(O) is the restriction to the mass shell of an entire analytic function. T
analyticity is, in general, destroyed by the prefactorF(e22ptp1 ,p̂)/F(p1 ,p̂), unlessF(p1 ,p̂)
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andF(e22ptp1 ,p̂) have the same set of zeros. This holds only ifM „p1 ,p1
21( p̂21m2),p̂… has the

form p1
2nC( p̂) for somenPZ. If M is independent ofp̂, then there is at least no dislocalization

the directions along the edge of the wedge, but the exampleM (p)5p0
2 mentioned in Ref. 9~this

corresponds to the time derivative of the free field! has F(p1 ,p̂)5(2ip1)22
„p11 i ( p̂2

1m2)1/2
…

2, and hereF(e22ptp1 ,p̂)/F(p1 ,p̂) also dislocalizes in thex̂ variables if there are such
variables at all, i.e., ifd>3.

V. DUALITY AND MODULATOR ACTION FOR ALL WEDGES

In the last section we dealt with a fixed wedge and saw, in particular, that duality forWR and
WL holds if and only if M has only real zeros inp1 on the mass shell. Ford52 this is the
complete answer to the question when wedge duality holds, and this does not necessarily
Lorentz covariance of the field.

We shall now see how the picture changes in dimensionsd>3. We start with the local action
of the modular groups.

Proposition V.1: Suppose d>3 and the modular group for every wedge acts locally on the
generated by the field. Then M is constant on the mass shell.

Proof: By the discussion in the last section local action of the modular group,DR
it requires that

M „p1 ,p1
21( p̂21m2),p̂… has the formp1

2nC( p̂) for somenPZ and some function~polynomial! C
depending only onp̂. If ML has the same form for allL then, in particular, we have for th
Lorentz boostsLW(t) corresponding to an arbitrary wedgeW and boost parametert,

M „LW~ t !21p…5D„LW~ t !…M ~p!, ~5.1!

with D„LW(t)…5„exp(2pt)…2nW for somenWPZ. Moreover, since this holds for allp on the mass
shell, we conclude thatD„LW1

(t)LW2
(s)…5D„LW1

(t)…D„LW2
(s)… for any two boosts in arbitrary

directions. Since any Lorentz transformation can be written as a product of boosts, we ob
this way a one-dimensional representation of the Lorentz group. Ifd>3, this implies thatD is
constant, and, hence, since the Lorentz group acts transitively on the mass shell, thatM is constant
on the mass shell. h

The requirement that wedge duality holds forall wedges also restricts the possible structure
M drastically in higher dimensions than 2. This is due to the following.

Lemma V.2: Let M(p1 ,p2 ,p̂) be an even polynomial onRd with d>4. If the rational
function,

p1°ML„p1 ,p1
21~ p̂21m2!,p̂…, ~5.2!

has only real zeros for every Lorentz transformationL and every pˆ PRd22, then M is constant on
the mass shell Hm

1 . The same holds for d53 if m.0.
Proof: We denote the rational functionM „p1 ,p1

21( p̂21m2),p̂… by R(p1 ,p̂) for short. IfL is
a Lorentz transformation, then the passage fromM to ML replacesR(p1 ,p̂) by RL(p1 ,p̂)
5R„(L21p)1 ,(L21p)…. Suppose now thatR is not constant. SinceL is invertible, it is clear that
RL is not constant either for anyL. We shall show that there exists a Lorentz transformationL
and ap̂PRd21 such thatp1°RL(p1 ,p̂) has a complex~i.e., not real! zero.

We start with a brief sketch of the idea. By a change of variablesR may on the mass shell b
regarded as a function ofp1 and p̂. Moreover, for fixedp̂, R has real zeros inp1 if and only if
it has real zeros inp1 . We write p̂5(p2 ,p̃), regardp̃ as fixed and considerR a function ofp1

with p2 as a parameter. If this function has only real zeros inp1 for every p2 , then there is an
analytic curve of zeros in the (p1 ,p2) plane, by a classical result of Rellich. If this curve is no
straight line, then it can by a suitable rotation,L, of the p1 andp2 axis be brought into the form
p25b1c(p12a)21O(up12au3) with some real constantsa, b, andc.0. This equation has a
complex solution inp1 for (p22c)/b negative and sufficiently small. HenceRL has a complex
zero. If the curve is a straight line, then a slight Lorentz boost is sufficient to reduce the situ
to the previous case, providedd>4, or m.0 andd>3. We now turn to the formal proof.
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The functionR has the form

R~p1 ,p̂!5 (
nPZ

p1
n an~ p̂!, ~5.3!

where thean are polynomials inp̂, andan[0 except for finitely manyn. Likewise,

RL~p1 ,p̂!5 (
nPZ

„~L21p!1
n an~~L21p! ˆ !…5 (

nPZ
p1

n an
L~ p̂!, ~5.4!

with different coefficientsan
L( p̂). The first remark is that there is at least onenÞ0 such thatan

L

is not identically zero for someL. In fact, supposeR is independent ofp1 , i.e., R(p1 ,p̂)
5a0( p̂). Since the polynomiala0 is not constant by assumption, it depends nontrivially onpi for
at least onei, 2< i<d21, i.e., it contains a termpi

nbn(p2 ,...,pi 21 ,pi 11 ,...pd21) with nÞ0. If L
is a rotation byp/2 in the 1i plane, then (L21p) i5p1 . For p on the mass shell,

p15 1
2 ~p12p2!5 1

2 „p12~ p̂21m2!p1
21

…, ~5.5!

and inserting this for (L21p) i , we see thatRL is not independent ofp1 . To simplify notation we
denote thisRL again byR.

SinceR depends nontrivially onp1 , we can write

R~p1 ,p̂!5p1
22nA~ p̂!B~p1 ,p̂!, ~5.6!

whereA( p̂) is a polynomial inp̂ andB(p1 ,p̂) a polynomial inp1 with coefficients that are rea
analytic functions ofp̂ on some open set inRd22 and the coefficient to the highest power ofp1

independent ofp̂. We write p̂5(p2 ,p̃) with p̃PRd23 ~if d53 there is nop̃) and fix p̃. ThenB
can be regarded as a polynomial inp1 with coefficients that are real analytic inp2 on some open
interval.

If B has a complex zero inp1 for somep2 there is nothing more to be proved. On the oth
hand, if all zeros ofB are real we may apply a theorem of Rellich16 ~see also Ref. 17!, from which
it follows that there is a real analytic functionr (•), so thatp15r (p2) is a zero ofB, and hence
of R, for all p2 in some open interval. SinceM and henceR is even, we may assume thatr (p2)
.0. @The caser (p2)[0 would mean thatM on the mass shell has the formp1

2nC( p̂). As shown
in Proposition V.1 this cannot hold in all Lorentz systems unlessM is constant on the mass shell#

It is convenient to replace the variables (p1 ,p2 ,p̃) on the mass shell by the variable
(p1 ,p2 ,p̃):

p15 1
2 ~p12p2!5 1

2 „p12~p2
21 p̃21m2!p1

21
…. ~5.7!

The inverse transformation is

p15p01p15~p1
21p2

21 p̃21m2!1/21p1 . ~5.8!

Insertingp15r (p2) in ~5.7! we obtain a real analytic curve,

p15s~p2!, ~5.9!

of zeros ofB, and hence ofR, in the 12-plane.
The functionRL has a corresponding curve of zeros at fixedp̃ for any Lorentz transformation

L that affects only the variablesp0 , p1 , andp2 . This curve is given by (Lp)15r „(Lp)2…, or
equivalently in the variablesp1 ,p2 , by (Lp)15s„(Lp)2…. The pointpPRd is here always on the
mass shell.

Returning to the original curvep15s(p2) there are two possibilities.
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~i! The curve is a straight line segment.
~ii ! There is a pointp̄2 , such that the second derivatives9( p̄2)Þ0.

We deal with the second case first.
By Taylor expansion we have

s~p2!5s~ p̄2!1s8~ p̄2!~p22 p̄2!1 1
2 s9~ p̄2!~p22 p̄2!2

„11g~p22 p̄2!…, ~5.10!

with some real analytic functiong satisfying g(t)→0 for utu→0. Let L be a rotation in the
~1,2!-plane by an anglew, determined by cotw5s8(p̄2). This transformation rotates the curve s
that the tangent that previously had the slopes8( p̄2) becomes parallel to the 1-axis. Moreover, t
point „s( p̄2),p̄2… is rotated into another point,~a, b!, while the curvature,12 s9( p̄2)5..cÞ0 remains
unchanged. Hence, the equation of the rotated curve, i.e., (Lp)15s„(Lp)2…, has the form

p25b1c~p12a!2
„11h~p12a!…, ~5.11!

with a,b,cPR, cÞ0 and whereh is real analytic withh(t)→0 for t→0.
By analytic continuation,RL vanishes also for complex pointsp1 satisfying this equation. It

is clear that if (p22b)/c is negative and sufficiently small, then there is a solution forp1 with a
nonvanishing imaginary part. By Eq.~5.8! this corresponds to ap1 with a nonvanishing imaginary
part. ~Note thatp2 and p̃ are still real.! Hence,RL has a complex zero inp1 for some (p2 ,p̃)
PRd22.

If the curve~5.9! is a straight line, we can by a rotation transform it to a line parallel to thep1

axis,

p25k, ~5.12!

with a constantk. A Lorentz boost in the 2-direction with boost parametera transforms~5.12! into

p25~cosha!k1~sinha!~k21p1
21 p̃21m2!1/2. ~5.13!

If k21 p̃11m2.0 we are back to the case considered before. This can always be achiev
choosingp̃Þ0 if d>4, and it holds also ford53 if m.0. Thus, we have again found aL, this
time a composition of a rotation and a Lorentz boost, such thatRL has a complex zero inp1 .

h

The following examples show that wedge duality and Lorentz invariance are not neces
equivalent in lower dimensions than 4.
Examples:

~1! Consider a massless field ind53 with M (p)5(a•p)2n, wherea5(a0 ,a1 ,a2) is a spacelike
or lightlike vector inR3. ~The exponent 2n guarantees the required positivity and symmetr!
It is clear thatML has the same form for all Lorentz transformationsL. Vanishing ofM is the
same as vanishing ofa•p, and on the mass shell,

a•p51
2 a0~p11p2

2p1
21!21

2 a1~p12p2
2p1

21!2a2p25p1
21@ 1

2 ~a02a1!p1
2 2~a2p2!p111

2 ~a01a1!p2
2#.

~5.14!
The discriminant of the quadratic equation forp1 is

~a2p2!
22~a02a1!~a01a1!p2

252~a•a!p2
2>0, ~5.15!

for all real p2 , if a is spacelike or lightlike. Thus, there are only real zeros. ButM is not
constant on the mass shell, unlessa50.

~2! In d52 we may also consider massm.0 ~fields without a mass gap, depending only on o
light cone coordinate, are discussed in Ref. 8!: With M as above we have on the mass she
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a•p5 1
2 a0~p11m2p1

21!2 1
2 a1„p12m2p1

21
…, ~5.16!

5 1
2 p1

21@~a02a1!p1
2 1~a01a1!m2#. ~5.17!

Again, if a is spacelike or lightlike there are only real zeros.
Remark: In both these examples the minimal von Neumann algebras,Mmin(O)

5$W( f ): suppf ,O%9 generated by the field are different from the maximal algebrasMmax(O)
5Mmin(O8)8, if O is a double cone. However, for every wedgeW we have Mmin(W)
5Mmax(W), and Mmax(O)5ùW.OMmin(W) for every double coneO. ~This is a well-known
consequence of wedge duality; cf., e.g., Lemma 4.1 in Ref. 18!. Moreover,Mmax(•) is Lorentz
covariant in both examples. In fact, it is straightforward to verify~cf. Sec. 3 in Ref. 8! that for a
spacelike or lightlike, the Lorentz covariant fieldF0 and the nonLorentz covariant derivativesa
•]F0 generate the same wedge algebras. In particular, CGMA also holds in these exa
because the wedge algebras are generated by a Lorentz covariant field.

Putting everything together, we finally obtain the main conclusion of this paper.
Theorem V.3: If d>4 the following are equivalent for the generalized free field mod

considered.
(i) CGMA.
(ii) Wedge duality for all wedges
(iii) Local action of the modular groups of all wedges.
(iv) Lorentz covariance of the field.

For models with a mass gap this holds also for d53.
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We present in this paper a covariant quantization of the ‘‘massive’’ vector field on
de Sitter~dS! space based on analyticity in the complexified pseudo-Riemanian
manifold. The correspondence between unitary irreducible representations of the de
Sitter group and the field theory on de Sitter space–time is essential in our ap-
proach. We introduce the Wightman two-point function for the case of generalized
free vector fields on de Sitter space. This function satisfies the conditions of~a!
positiveness,~b! locality, ~c! covariance,~d! normal analyticity,~e! transversality
and ~f! divergencelessness. The Hilbert space structure and the unsmeared field
operatorsKa(x) are also defined. This work is in the direct continuation of previ-
ous ones concerning the scalar and spinor cases. ©2000 American Institute of
Physics.@S0022-2488~00!02909-1#

I. INTRODUCTION

In two previous papers, the various physical motivations for studying the quantum field
Sitter space were explained.1,2 In dS space–time, familiar Minkowskian, or Galilean physic
quantities like mass or energy cannot be envisaged in a clear operational way. A time-like K
vector field cannot be globally defined, and we cannot deal with a four-momentumpm that
satisfiesp25constant. On the other hand, there is a five-component vector (ja)5(j0,j,j4) with
j250, which is similar to thepm in the null curvature limit. Again, a precise protocol of me
surement of such purely de-Sitterian quantities is still lacking.

Yet, the principle of causality is well defined in de Sitter space.3,4 A field called ‘‘massive’’
propagates inside the light-cone and corresponds to a massive Poincare´ field in the null curvature
limit. We call a field ‘‘massless’’ if it propagates on the dS light-cone and if it corresponds
massless Poincare´ field at H50. Only de Sitter vector fields of the ‘‘massive’’ type will b
considered in this paper. In the case of a ‘‘massless’’ dS vector field~dS QED for instance!, we
have to resort to quantization a` la Gupta–Bleuler in order to obtain a covariant construction. T
question will be addressed in a forthcoming paper.

The field equations for the scalar, spinor, and vector fields in dS space were first estab
by Dirac.5 The solution to the latter case was presented by Bo¨rner and Du¨rr3,6 in terms of flat
coordinates, which covers only one half of the dS hyperboloid. In 1986, Allen calculate
vector two-point functions in terms of the geodesic distance. The latter is independent
choice of coordinate system.7 We present in this paper the Hilbert space structure and the ve
field operator in terms of coordinate-independent dS plane waves. The construction is ba
analyticity properties offered by the complexified pseudo-Riemannian manifold in which th

a!Electronic mail: gazeau@ccr.jussieu.fr, gazeau@alpha.uwb.edu.pl
b!Electronic mail: takook@ccr.jussieu.fr
59200022-2488/2000/41(9)/5920/14/$17.00 © 2000 American Institute of Physics
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manifold is embedded, and we refer to Ref. 4 for a comprehensive review of these rig
mathematical results concerning the functional analysis side of QFT. Our present aim is ra
make explicit the extra algebraic structure inherent to the vector case. By first considerin
classical free vector field, we insist on its group theoretical content. We then give the expr
of the Wightman two-point function which entirely encodes the theory of the generalized
fields ~or quantum free vector field! on dS space–time.

In Sec. II we describe the dS-vector field equation as an eigenvalue equation of the C
operator. We define the notations and introduce the two independent Casimir operators.
comprehensive study of the de Sitter UIR’s, Dixmier8 ~see also the thesis dissertation
Takahashi9! employed three parametersp and alternativelyq or s for characterizing the repre
sentations of the dS group. We shall explain in what sense these parameters are connecte
spin (s) and a mass (m) in the Minkowskian limit. In Sec. III we solve the field equation. Th
solution is written in terms of a scalar fieldf and a five-component generalized ‘‘polarization
vectorE,

K~x!5E~x,j!f~x!.

In contrast to the Minkowskian situation, the vectorE(x,j) is a function of the space–time poin
xa. This is due to the fact that the momentum operators acquire a spin part.3 This five-component
vector E(x,j) is precisely defined in order to obtain the usual polarization vector at
Minkowskian limit H50. These solutions are not globally defined due to the presence
multiform phase factor. The extension of the former to the complex dS space allows us to
circumvent this problem.4

In Sec. IV, we define the Wightman two-point functions„Waa8(x,x8)…, which satisfies the
conditions of~a! positiveness,~b! locality, ~c! covariance,~d! normal analyticity,~e! transversality,
and~f! divergencelessness. The normal analyticity allows one to define this Wightman two
functionWaa8(x,x8) as the boundary value of an analytic two-point functionWaa8(z,z8) from the
tube domains. The normal analyticity is related to the Hadamard condition which selects a u
vacuum state in dS space.10 Waa8(z,z8) is defined in terms of dS plane-waves in their tu
domains. Then, the Hilbert space structure is introduced and the field operatorK( f ) is defined.
We also give a coordinate-independent formula for the unsmeared field operatorK(x).

A brief conclusion and outlook are given in Sec. V. In that part, it is concluded that
‘‘massless’’ vector field treatment requires an indecomposable representation of the dS gro
the construction of the corresponding covariant quantum field.

II. dS-VECTOR FIELD EQUATION

The de Sitter space is an elementary solution of the cosmological Einstein equation
conveniently seen as a hyperboloid embedded in a five-dimensional Minkowski space,

XH5$xPR5;x25habxaxb52H22%, a,b50,1,2,3,4, ~2.1!

where hab5diag(1,21,21,21,21). The kinematical group of the de Sitter space is the
parameter group SO0(1,4) and its contraction limitH50 is the Poincare´ group. There are two
Casimir operators:

Q(1)52
1

2
LabLab,

~2.2!

Q(2)52WaWa, Wa52
1

8
eabgdhLbgLdh,

where theLab’s are the infinitesimal generators andeabgdh is the usual antisymmetrical tenso
The de Sitter metrics reads as
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ds25hab dxa dxb5gmn
dS dXm dXn, m50,1,2,3,

where theXm’s are the 4 space–time coordinates in the dS hyperboloid. Different coord
systems can be chosen.11 The wave equation for the vector fieldAm(X) propagating on de Sitte
space can be derived from a variational principle using the action integral (\51)7

S~A!5E
MH

S 1

4
FmnFmn1

1

2
mH

2 AmAmDds, ~2.3!

whereFmn5¹mAn2¹nAm , mH is a ‘‘mass,’’ andds is theO(1,4)-invariant measure onMH .
The variational principle applied to~2.3! gives the field equation

¹mFmn1mH
2 An5¹m~¹mAn2¹nAm!1mH

2 An50. ~2.4!

The antisymmetry ofFmn implies mH
2 ¹•A50. In the case of the ‘‘massive’’ vector field,mH

Þ0 and we have

¹•A50. ~2.5!

Therefore the wave equation is

~hH13H21mH
2 !Am~X!50. ~2.6!

The five-component vector field notationKa(x) is used in the following discussion. With thi
notation, we can clarify the relation between the field and the unitary irreducible represent
~UIR! of the dS group. It is also simpler to express the solution in terms of the scalar field
four-component vector fieldAm(X) is locally determined by a five-component vector fieldKa(x)
through the relation

Am~X!5
]xa

]Xm Ka„x~X!…, Ka~x!5
]Xm

]xa Am„X~x!…. ~2.7!

This five-component vector field quantity has to be viewed as a homogeneous function
R5-variablesxa with some arbitrarily chosen degrees,

xa
]

]xa Kb~x!5x•]Kb~x!5sKb~x!. ~2.8!

It also satisfies the condition of transversality,5

x•K~x!50. ~2.9!

The wave equation satisfied byK can be established in terms of the tangential~or transverse!
derivative]̄ on de Sitter space,

]̄a5uab]b5]a1H2xax•], x• ]̄50, ~2.10!

whereuab5hab1H2xaxb is the transverse projector.K corresponds toA through~2.7!, so we
have

¹mAn→ua
a8ub

b8 ]a8Kb8 .

Hence the field equation reads as

„H22~ ]̄ !212…K~x!22x]̄•K~x!2H22]̄]•K1H22mH
2 K50, ~2.11!
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which, thanks to~2.9! and divergenceless condition]•K50, simplifies to

„H22~ ]̄ !2121H22mH
2
…K~x!50. ~2.12!

In terms of the Laplace–Beltrami operator on de Sitter space,2H2hH5Q052H2( ]̄)2, we
obtain

~Q0222H22mH
2 !K~x!505~hH12H21mH

2 !K~x!. ~2.13!

Let us now make the things more precise in the context of representation theory. The eq
~2.13! has indeed a clear group-theoretical content. The Casimir operatorQ1

(1) is defined by

Q1
(1)52 1

2L
abLab52 1

2~Mab1Sab!~Mab1Sab!, ~2.14!

where Mab52 i (xa]b2xb]a)52 i (xa]̄b2xb]̄a) and the action of the spin generatorSab is
defined by12

SabKg52 i ~hagKb2hbgKa!. ~2.15!

The operatorQ1
(1) commutes with the action of the group generators and consequently

constant on each unitary irreducible representation. In fact, the vector UIR’s can be classifi
using the eigenvalueŝQ1

(1)& of Q1
(1) ,

~Q1
(1)2^Q1

(1)&!K~x!50. ~2.16!

From Dixmier8 and Takahashi9 we get a general classification scheme for all UIR’s of the de S
group. The representationsPp,0 andPp,q

6 of the discrete series are labeled by two parameterp
andq, in terms of which are expressed the two Casimir operators:

Q(1)5„2p~p11!2~q11!~q22!…I d ,

Q(2)5„2p~p11!q~q21!…I d .

For the ‘‘scalar’’ representationsPp,0 , the parameterp is a positive integer,p51,2,... . For the
representationsPp,q

6 the parametersp andq can assume positive half-integer and integer value
the restricted rangep5 1

2,1,32,2,...; q5p, p21,...,1 or 1
2. On the other hand, the representatio

np,s of the principal and complementary series are labeled by two parametersp and s
[2q(q21), in terms of which are expressed the two Casimir operators:

Q„1)5„2p~p11!1~s12!…I d ,

Q(2)5„p~p11!s…I d .

For the ‘‘scalar’’ representationsn0,s , the parameters.22 labels, respectively, the compleme
tary series for22,s, 1

4 and the principal series fors> 1
4. For the representationsnp,s with p

.0, we are in the complementary series forp51,2,..., and 0,s, 1
4, and in the principal series

for p51,2,..., and 1
4<s, or for p5 1

2,
3
2,

5
2..., and 1

4,s. Therefore, in the present context, thre
types of vector UIR are distinguished for SO0(1,4) according to the range of values of paramet
p, q ands, namely the following.

~i! The UIR’s n1,s[U1,n of the principal series, for which
p5s51, s5n21 1

4⇔q5 1
21 in,

~2.17!^Q1
(1)&5s5n211

4,
with parameternPR. Note thatU1,n and U1,2n are equivalent and so we can supposen
>0.
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~ii ! The UIR’s n1,s of the complementary series, for which
p5s51,

~2.18!^Q1
(1)&5s, 0,s, 1

4.

~iii ! The UIR’s Pp,1
6 of the discrete series, for which

^Q1
(1)&52p~p11!12, p>1, q5s51. ~2.19!

In the ‘‘massless’’ case, we havep5q5s51, P1,1
6 .

Using ~2.14! and ~2.15!, the action ofQ1 on the five-component vector fieldK gives

Q1K~x!5~Q022!K~x!12x]̄•K~x!22]x•K~x!. ~2.20!

If the vector field satisfies the divergencelessness condition

]•K~x!5 ]̄•K~x!50, ~2.21!

it can be biunivocally associated with a UIR of the dS group. Therefore, with the conditiox

•K50 and]̄•K50 and by using Eq.~2.16! and Eq.~2.20!, we obtain

~hH12H21H2^Q1&!Ka~x!50, ~2.22!

which has the same form as~2.13!. Comparing with the latter, we getH2^Q1&5mH
2 . It follows the

respective mass relations for the three types of UIR:

mp
25H2s5~n21 1

4!, n>0 ~ for the principal series!,

mc
25H2s, 0,s, 1

4 ~for the complementary series!, ~2.23!

md
25H2

„22p~p11!…, p>1~for the discrete series!.

In particular, for the discrete series representation withp51, the ‘‘mass’’ parameter is zero, an
for p.1, it is purely imaginary. We shall return to this point later. In this paper, we only cons
the ‘‘massive’’ vector field, i.e., that one for which the values assumed by the parametemH

correspond to the principal series representations. Equation~2.22! then reads as

~hH12H21mp
2!Ka~x!50. ~2.24!

Let us recall at this point the physical content of the principal series representation from the
of view of a Minkowskian observer at the limitH50. The principal series UIRU1,n, n>0,
contracts toward the direct sum of two vector massive Poincare´ UIR’s P,(m,1) andP.(m,1),
with negative and positive energies, respectively,13

U1,n
H→0

n→`
→P,~m,1! % P.~m,1!. ~2.25!

The contraction limit has to be understood through the constraintm5Hn. The quantitymH ,
supposed to depend onH, goes to the classical massm when the curvature goes to zero.

In contrast, only two representations in the discrete series withp51 have a Minkowskian
interpretation. They are precisely the two (P1,1

6 ). The signs6 correspond to two types of helicity
for the massless vector field. The representationP1,1

1 has a unique extension to a direct sum of tw
UIR’s C(2;1,0) andC(22;1,0) of the conformal group SO0(2,4) with positive and negative
energies, respectively.14,15 The latter restrict themselves to the vector massless Poincare´ UIR’s
P.(0,1) andP,(0,1) with positive and negative energies, respectively. The following diagr
illustrate these connections:
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P1,1
1

C~2,1,0! C~2,1,0! ‚ P .~0,1!

� %
——→

H50
% %

C~22,1,0! C~22,1,0! ‚ P ,~0,1!,

~2.26!

P1,1
1

C~2,0,1! C~2,0,1! ‚ P .~0,21!

� %
——→

H50
% %

C~22,0,1! C~22,0,1! ‚ P ,~0,21!,

~2.27!

where the arrows� designate a unique extension andP :(0,1) are the massless Poincare´ UIR
with positive and negative energies and positive helicity.P :(0,21) are the massless Poinca´
UIR with positive and negative energies and negative helicity. Finally, all other representa
have no nonambiguous Minkowskian counterpart.

III. dS-VECTOR PLANE WAVES

In the five-component vector field notationKa(x), the solution can be written in terms of th
scalar fields. More precisely, we put16

Ka~x!5Z̄af11D1af2 , ~3.1!

where Z is a constant vector (Z̄a5uabZb5Za1H2xax•Z,x•Z̄50) and D1a5H22]̄a is the
generalized~transverse! gradient. An arbitrary five-component vectorZa is obtained in a similar
way for an arbitrary four-component spinor.2 We chooseZa such that, at the limitH50, one
obtains the usual vector field in the Minkowskian space. In this limit,Za must be related in some
sense to the usual massive polarization vectors. There are three polarization vectors for
vector field (s51). They generate the vector representation of the groupSU(2)(2s1153).

PuttingKa in ~2.16! and using the following relations:

Q1D1f25D1Q0f2 , ~3.2!

Q1Z̄af15Z̄a~Q022!f122H2D1~x•Z!f1 , ~3.3!

we find that the scalar fieldsf1 andf2 must obey:

S Q02S n21
9

4D Df1505S hH1H2S n21
9

4D Df1 , ~3.4!

Q0f22S n21
1

4Df222H2~x.Z!f150. ~3.5!

So f1 is a ‘‘massive’’ scalar field~principal seriesU0,n). Now the vector field must satisfy th
divergencelessness condition~2.21!. Therefore we have from~3.1!,

]•K~x!50⇒Q0f25Z• ]̄f114H2Z•xf1 .

Here, we have used the relation

]•Z̄f5Z• ]̄f14H2Z•xf.

So the fieldf2 can be written in terms off1 as follows:
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f25
1

n21 1
4

@Z• ]̄f112H2x•Zf1#. ~3.6!

Equation~3.4! has solutions which are homogeneous with degrees52 3
26 in, and which are

identified as dS plane waves,17

f1~x!5~Hx•j!s, ~3.7!

wherejPR5 lies on the null coneC5$jPR5; j250%. It follows that the two possible solution
for K are

K1a~x!5F Z̄a1
1

n21 1
4

D1a~Z• ]̄12H2x•Z!G ~Hx•j!23/21 in

[E1a~x,j,Z!~Hx•j!23/21 in, ~3.8!

K2a~x!5F Z̄a1
1

n21 1
4

D1a~Z• ]̄12H2x•Z!G ~Hx•j!23/22 in

[E2a~x,j,Z!~Hx•j!23/22 in, ~3.9!

whereE1a are components of the generalized polarization vector andE2a* 5E1a[Ea . The gener-
alized polarization vectorEa(x,j,Z) is a function of the space–time pointx. Its expression is
given by

Ea(x,j,Z)5
~ 3

2 2 in!

~ 1
2 2 in!

Z̄a1
1

n21 1
4

F S in2
3

2D S in2
5

2D Z̄•j

~Hx•j!2 13S in2
3

2D Z•x

x•j
G j̄a ,

~3.10!

in which j̄a5uabjb. In the limit H50, (Hx•j)23/22 in andEa(x,j,Z) behave like the plane wav
eik•X and the polarization vector in the Minkowski space, respectively. If we parametrizej in
terms of the four-momentum of the limit Minkowskian particle of massm,

j5S k0

mc
5A k2

m2c2 11,
k

mc
,21D , ~3.11!

we have from~3.8!,

lim
H→0

~Hx~X!•j!23/21 inEa~x,j,Z!5S Zm2
Znkn

m2 kmDeik•X[em
(l)~k!eik•X, l51,2,3. ~3.12!

Here, the dS pointx5xH(X) has been expressed in terms of the Minkowskian variableX5(X0

5ct,X) measured in units of the dS radiusH21:

xH~X!5S x05H21sinhHX0,x5H21
X

iXicoshHX0sinHiXi ,x45H21coshHX0cosHiXi D .

~3.13!

Note that (X0,X) are global coordinates. The compact spherical nature of space at fixedX0 is
apparent in~3.13!. The em

(l)(k)’s are the three polarization vectors in the Minkowski space:18

e (l)
•k50, e (l)

•e (l8)5dll8 , ~3.14!
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(
l51

3

em
(l)~k!en

(l)~k!52S hmn2
kmkn

m2 D , ~3.15!

andhmn5diag(1,21,21,21). For simplicity we choose three five-component vectorsZ(l) which
obey the transverse constraints:

Z(l)
•j50,

~3.16!
Za

(l)5~em
(l)~k!,Z4

(l)50!.

The generalized polarization vectors now read as

E a
(l)~x,j![Ea~x,j,Z(l)!5

~ 3
2 2 in!

~ 1
2 2 in!

S Z̄a
(l)2

Z(l)
•x

x•j
j̄aD . ~3.17!

Finally, the two solutions for the dS-vector field take the form

K1a~x!5E a
(l)~x,j!~Hx•j!23/21 in, ~3.18!

K2a~x!5E a*
(l)~x,j!~Hx•j!23/22 in, ~3.19!

where E a
(l) is given by ~3.17!. These solutions are not globally defined due to the ambig

concerning the phase factor. For a complete determination, one may consider the solution
complex de Sitter space–timeXH

(c) . XH
(c) denote the complex de Sitter space–time,

XH
(c)5$z5x1 iyPC5; habzazb5~z0!22z.z2~z4!252H22%

5$~x,y!PR53R5; x22y252H22, x.y50%. ~3.20!

Let T65R51 iV6 be the forward and backward tubes inC5. The domainV1 ~resp,V2) stems
from the causal structure onXH :

V65$xPR5; x0:Aixi21~x4!2%. ~3.21!

We then introduce their respective intersections withXH
(c) ,

T 65T6ùXH
(c) , ~3.22!

which will be called forward and backward tubes of the complex dSXH
(c) . Finally we define the

‘‘tuboid’’ above XH
(c)3XH

(c) by

T125$~z,z8!; zPT 1,z8PT 2%. ~3.23!

Details are given in Ref. 4. Whenz varies inT 1 ~or T 2) andj lies in the positive coneC 1,

jPC 15$jPC; j0.0%,

the plane wave solutions are globally defined because the imaginary part of (z.j) has a fixed sign.
The phase is chosen such that

boundary value of~z.j!sux.j.0.0. ~3.24!

Therefore we have

K1a~z!5E a
(l)~z,j!~Hz•j!23/21 in, ~3.25!
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K2a~z!5E a*
(l)~z,j!~Hz•j!23/22 in, ~3.26!

in which zPXH
(c) andjPC 1 ~positive energy in the Minkowskian limit!.

In the same way as in the Minkowskian space, it is seen that for the scalar and vector fie
two solutions~3.18! and ~3.19! are complex conjugate of each other. On the other hand, for
spinor field, there is no such relation between them.2

IV. TWO-POINT FUNCTION AND QUANTUM FIELD

Here we follow the procedure already presented and discussed in previous works.
briefly recall the required conditions on the matrix Wightman two-point functionW(x,x8). Its
matrix elementsWaa8 are defined by

Waa8~x,x8!5^V,Ka~x!Ka8~x8!V&, a, a850,...,4, ~4.1!

wherex,x8PXH . These functions entirely encode the theory of the generalized free fields o
space–timeXH . They have to satisfy the following requirements.

~a! Positiveness:for any test functionf aPD(XH), we have

E
XH3XH

f*a~x!Waa8~x,x8! f a8~x8!ds~x!ds~x8!>0, ~4.2!

wheref * is the complex conjugate off andds(x) denotes the dS-invariant measure onXH .
D(XH) is the space of functionC` with compact support inXH .

~b! Locality: for every space-like separated pair (x,x8), i.e., x•x8.2H22,

Waa8~x,x8!5Wa8a~x8,x!. ~4.3!

~c! Covariance:

g21W~gx,gx8!g5W~x,x8!, ~4.4!

whereg is viewed as 535 pseudorotation matrixPSO0(1,4).
~d! Transversality:

x•W~x,x8!505x8•W~x,x8!. ~4.5!

~e! Divergencelessness:
]x•W~x,x8!505]x8•W~x,x8!. ~4.6!

~f! Normal analyticity: Waa8(x,x8) is the boundary value~in the distributional sense! of an
analytic functionWaa8(z,z8).

Waa8(z,z8) is maximally analytic, i.e., can be analytically continued to the ‘‘cut domain,

D5$~z,z8!PXH
(c)3XH

(c) : ~z2z8!2<0%.

The two-point Wightman functionWaa8(x,x8) is the boundary value ofWaa8(z,z8) from T12 and
the ‘‘permuted Wightman function’’Wa8a(x8,x) is the boundary value ofWaa8(z,z8) from the
domain

T215$~z,z8!; z8PT 1,zPT 2%.
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As it has been comprehensively justified by Theorem 4.1 of Ref. 4, the analytic two-
functionWaa8

n (z,z8) is obtained from the complexified plane waves of the type~3.25! and~3.26!,

K1
j,l~z!5~Hz•j!23/21 inE l~z,j!, ~4.7!

K2
j,l~z!5~Hz•j!23/22 inE * l~z,j!, ~4.8!

where E l(z,j) is defined by~3.17!. Explicitly, it is given in terms of the following class o
integral representations:

Waa8
n

~z,z8!5cnE
T
~z•j!23/22 in~j•z8!23/21 in (

l51

3

E a
l~z,j!E a8

* l
~z8,j!dmT~j!. ~4.9!

HereT denotes an orbital basis ofC 15$jPC; j0.0%. dmT(j) is an invariant measure define
by

dmT~j!5 i JwC 1uT , ~4.10!

wherei JwC 1 denotes the 3-form onC 1 obtained from the contraction of the vector fieldJ with
the volume form

wC 15
dj0`¯`dj4

d~j•j!
. ~4.11!

The coefficientcn is a normalization constant which is fixed by the local Hadamard condition.
latter selects a unique vacuum state for quantum vector fields which satisfy the dS field eq

The functionsW aa8
n (x,x8), which are solution to the wave equation (2.16), can be fo

simply in terms of scalar Wightman two-point functionsW i
n(x,x8),i 51,2, without resorting to

any explicit calculation of the integral~4.9!. By using the recurrence formula~3.1! we obtain

W aa8
n

~x,x8!5ua .ua8
8 W 1

n~x,x8!1H22]̄a]̄a8
8 W 2

n~x,x8!. ~4.12!

By prescribingW aa8
n to obey Eq.~2.16! and by using the previous conditions and relations~3.2!

and ~3.3!, it is found thatW1 satisfies the equation

FQ02S n21
9

4D GW 1
n~x,x8!50, ~4.13!

while W2 is given in terms ofW1 by

W 2
n~x,x8!5

1

n21 1
4

@H22]̄• ]̄8W 1
n~x,x8!12H2x•x8W 1

n~x,x8!#. ~4.14!

The vector Wightman function can then be written in the form

W aa8
n

~x,x8!5Daa8~x,]̄;x8,]̄8!W 1
n~x,x8!, ~4.15!

whereW 1
n is a solution to~4.13! and

Daa85ua•ua8
8 1

1

H2~n21 1
4!

]̄a]̄a8
8 @H22]̄• ]̄812H2x•x8#. ~4.16!
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At the limit H50, the corresponding vector Wightman two-point function in Minkowski spac
obtained in terms of the Wightman two-point functionW P(X,X8) for the scalar field in the
Minkowski space:

Wmn~X,X8!5Fhmn1
1

m2

]2

]Xm ]XnGW P~X,X8!. ~4.17!

For the analytic functionW1
n we recall that we have the following expression:4

W1
n~z,z8!5CnP23/21 in

(5) ~H2z•z8!, ~4.18!

whereCn52p2epnH3cn and

cn5
e2pnG~ 3

2 1 in!G~ 3
2 2 in!

25p4H
. ~4.19!

P23/21 in
(5) is the generalized Legendre function of the first kind. Finally we get the analytic func

Waa8(z,z8) in terms of the latter:

Waa8
n

~z,z8!5CnDaa8~z,]̄;z8,]̄8!P23/21 in
(5) ~H2z•z8!. ~4.20!

Its analyticity properties follow from the expression of the plane-waves~3.25! and ~3.26!.
The positiveness property is issued from the hermiticity condition. The proof makes use

Fourier–Bros transformation onXH .4 The hermiticity property is also obtained by consideri
boundary values of the following identity:

Waa8~z,z8!5Wa8a
* ~z8* ,z* !, ~4.21!

which is easily checked in Eq.~4.9!.
The relationg21z1•j5z1•gj and the independence of the integral~4.9! with respect to the

selected orbital basisT entail the covariance property

g21W~gx,gx8!g5W~x,x8!. ~4.22!

In order to prove the locality condition, the following relation is needed:4

P23/21 in
(5) ~H2z•z8!5P23/22 in

(5) ~H2z•z8!. ~4.23!

It follows the hermiticity,

Waa8
n

~z,z8!5Wa8a
n

~z8*,z* !. ~4.24!

It is noted that the space-like separated pair (x,x8) lies in the same orbit of the complex dS grou
as the pairs (z,z8) and (z8* ,z* ), and so the locality conditionWaa8(x,x8)5Wa8a(x8,x) holds
for the former.

Now, going back to Eq.~4.9!, the boundary value ofWn(z,z8) gives rise to the following
integral representation of the Wightman two-point function itself:

Waa8
n

~x,x8!5cnE
T
@~x•j!1

2 3/22 in1eip(2 3/22 in)~x•j!2
2 3/22 in#

3@~x8•j!1
2 3/21 in1e2 ip(2 3/21 in)~x8•j!2

2 3/21 in# (
l51

3

E a
l~x,j!E a8

* l
~x8,j!dmT ,

~4.25!
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where

~x•j!15H 0, for x•j<0,

~x•j!, for x•j.0.

~Ref. 19.! This relation defines the two-point function in term of global plane waves onXH .
The explicit knowledge ofW allows us to make the QF formalism work. The vector fie

K(x) is expected to be an operator-valued distribution onXH acting on a Hilbert spaceH. In terms
of Hilbert space and field-operators the properties of the Wightman two-point function
equivalent to the following conditions:20

~1! Existence of a unitary irreducible representation of the dS group:
U1,n; n1,s ; Pp,1

6 , pÞ1.
~2! Existence of a Hilbert spaceH: with positive definite metric that can be described as

Hilbertian sum,

H5H0% @ % n51
` SH 1

^ n#, ~4.26!
where S denotes the symmetrization operation andH05$lV, lPC%. H1 is precisely
equipped with the scalar product,

~h1,h2!5E
XH3XH

h1*
a~x!Waa8~x,x8!h2

a8~x8!ds~x!ds~x8!>0, ~4.27!

wherehaPD(XH).
~3! Existence of at least one ‘‘vacuum state’’V: cyclic for the polynomial algebra of field

operators and invariant under the representation of the dS group.
~4! Covariance: of the field operators under the representation of the dS group.
~5! Locality: for every space-like separated pair (x,x8),

@Ka~x!,Ka~x8!#50. ~4.28!
~6! KMS condition or geodesic spectral condition:4 which means that the vacuum is defined

a physical state with the temperatureT5 H/2p.
~7! Transversality:

x•K~x!50. ~4.29!
~8! Divergencelessness:

]•K~x!50. ~4.30!

In terms of annihilation and creation operators, the field operatorK( f )5K1( f )1K2( f ) is
defined by

„K2~ f !h…(n)~a1 ,x1 ;a2 ,x2 ;¯;an ,xn!

5An11E
XH3XH

f a~x!W ba~y,x!h(n11)~b,y;a1 ,x1 ;¯;an ,xn!ds~x!ds~y!,

~4.31!

~K1~ f !h!(n)~a1 ,x1 ;a2 ,x2 ;¯;an ,xn!

5
1

An
(
k51

n

f ak
~xk!h

(n21)~a1 ,x1 ; . . . .;âk ,x̂k ; . . . .;an ,xn!, ~4.32!

in which hat marked symbols are omitted. Using the Fourier–Bros transformation onXH , the
unsmeared operatorsK(x) can be written as
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K~x!5E
T

(
l51

3

$al~j,n!E l~x,j!@~x•j!1
2 3/22 in1eip(2 3/22 in)~x•j!2

2 3/22 in#1al
†~j,n!E * l~x,j!

3@~x•j!1
2 3/21 in1e2 ip(2 3/21 in)~x•j!2

2 3/21 in#%dmT~j!, ~4.33!

whereal(j,n) is defined by

al~j,n!uV&50. ~4.34!

The integral representation~4.33! is independent of the orbital basisT if the following relation
exists:

al~ l j,n!5 l 23/21 inal~j,n!.

The number operatorN is defined as

N(l)5E
T
dmT~j!al

†~j,n!al~j,n!. ~4.35!

This integral is also independent of the orbital basisT. A ‘‘one-particle’’ state is defined via the
‘‘creation’’ operator in a Fock space,

al
†~j,n!uV&5uj,l&. ~4.36!

So far the physical meaning ofN and the statesuj,l& have not been clarified. Let us work with th
hyperbolic-type submanifoldT45T4

1øT4
2 defined by

T4
65$jPC 1; j4561%. ~4.37!

In this orbital basis we have

@al~j,n!,al8
†

~j8,n!#5cndll8

j0

uj4u
d3~j2j8!, ~4.38!

or

^V,al~j,n!al8
†

~j8,n!V&5cndll8

j0

uj4u
d3~j2j8!. ~4.39!

The relation between the quantum field in dS and its Minkowskian counterpart has now be
apparent. In the limitH50, Eq. ~4.33! goes to the corresponding massive vector field expan
in Minkowski space–time.

V. CONCLUSION

In this paper, we have considered the ‘‘massive’’ vector field associated to the principal
of the dS groupSO0(1,4) with ^Qn&5n21 1

4, n>0, and with corresponding ‘‘mass’’mp
2

5H2(n21 1
4). For the complementary series (^Qs&5s, 0,s, 1

4) and the discrete series@^Qp&
522p(p11), p>1#, we can replacen, respectively, by6As2 1

4 and6A 7
42p(p11).

In the case of the complementary series the associated ‘‘mass’’ is positive (mc
25H2s, 0

,s, 1
4), but no physically meaningful representation of the Poincare´ group comes out as a

contraction limitH50 of these representations. So the physical meaning of the compleme
vector fields is not clear yet.

For the discrete series the associated ‘‘mass’’ is zero or imaginary (md
25H2$22p(p

11)%, p>1). Only one among the discrete series representations, namely that one corresp
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to p51 has a physically meaningful Poincare´ limit. The latter is precisely the ‘‘massless’’ vecto
field ~QED in dS space! and n must be replaced by6 i /2 in the previous formulas. Yet the
generalized polarization vectorE @Eq. ~3.10!# and the scalar fieldf2 @Eq. ~3.6!# diverge at the
limit. This type of singularity is actually due to the divergencelessness condition imposed in
to associate this field with a specific UIR of the dS group. It can be as well understood fro
equation allowing to determinef2 in terms off1 . To solve this problem, the divergencelessne
condition must be dropped out. Then the vector field is associated with an indecomposab
resentation of the dS group. This situation will be considered in a forthcoming paper.
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~1963!.

10B. Allen, ‘‘Vacuum states in de Sitter space,’’ Phys. Rev. D32, 3136~1985!.
11E. Mottola, ‘‘Particle creation in de Sitter space,’’ Phys. Rev. D31, 754 ~1985!.
12J. P. Gazeau, ‘‘Gauge fixing and Gupta–Bleuler triplets in de Sitter QED,’’ J. Math. Phys.26, 1847~1985!.
13J. Mickelsson and J. Niederle, ‘‘Contractions of representations of de Sitter groups,’’ Commun. Math. Phys.27, 167

~1972!.
14A. O. Barut and A. Bo¨hm, ‘‘Reduction of a class of O~4, 2! representations with respect to SO~4, 1! and SO(3,2),’’ J.

Math. Phys.11, 2938~1970!.
15E. Angelopoulos and M. Laoues, ‘‘Masslessness inn-dimensions,’’ Rev. Math. Phys.10, 271 ~1998!.
16J. P. Gazeau and M. Hans, ‘‘Integral-spin fields on (312)-de Sitter space,’’ J. Math. Phys.29, 2533~1988!.
17J. Bros, J. P. Gazeau, and U. Moschella, ‘‘Quantum field theory in the de Sitter universe,’’ Phys. Rev. Lett.73, 1746

~1994!.
18C. Itzykson and J. B. Zuber,Quantum Field Theory~McGraw-Hill, New York, 1980!.
19I. M. Gel’fand and E. G. Shilov,Generalized Functions~Academic, New York, 1964!.
20R. F. Streater and A. S. Wightman,PCT, Spin and Statistics~Benjamin, New York, 1964!.
                                                                                                                



ns of

bilistic
mp-
implicit

a

u-
is-
es

to
om-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 9 SEPTEMBER 2000

                    
A perturbation of CHSH inequality induced by fluctuations
of ensemble distributions

Andrei Khrennikov
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We reconsider the theory of hidden variables under the assumption that the con-
jecture on the ensemble~experiment run! independence of the distribution of hid-
den variables~which was indirectly used by J. Bell and his followers! is violated.
Ensemble fluctuations imply perturbations of Bell’s inequality and its generaliza-
tions. We study~by experimental reasons! CHSH ~Clauser, Horne, Shimony, Holt!
inequality and obtain its modification. This modified inequality is not in disaccord
with the predictions of quantum formalism. The deviation from the standard CHSH
inequality depends on the magnitude of ensemble fluctuations. We find these mag-
nitude for fluctuating families of Gaussian distributions. We found that if the di-
mension of the space of hidden variables is very high, then to obtain a contradiction
between the local realism and quantum formalism, we must be sure there is no even
negligibly small deviations in probability distributions of hidden variables corre-
sponding to different runs of the experiment~in particular, the efficiency of detec-
tors must be equal to one!. © 2000 American Institute of Physics.
@S0022-2488~00!03309-0#

I. INTRODUCTION

The disagreement between Bell’s1 inequality and predictions of quantum mechanics2 implies
that there is something wrong in assumptions used to derive this inequality~and its generaliza-
tions!, see, for example Ref. 3 for the detailed analysis. The main attitude of investigatio
Bell’s assumptions is to demonstrate that conditions oflocality and realismplay the crucial role,
see Refs. 2,3,4. However, there is an alternative to such an approach, namely the proba
alternative.5–8 The derivation of Bell’s inequality is based on a number of probabilistic assu
tions. Some of these assumptions may be violated for some physical systems. One of such
assumptions is the following conjecture:

B: The probability distributionP of hidden variables (in an ensembleV prepared for some
measurement) is uniquely determined by fixing of a quantum statec.

So formally, if V5Vc , then we can writePc instead ofPVc
. TheB can be interpreted as

conjecture on thecompletenessof quantum mechanics, see Sec. V for analysis~fluctuations of
ensemble distributions may also be produced by low efficiency of detectors!. In fact, all main
probabilistic models with the absence of Bell’s inequality are~at least indirectly! connected with
the violation of B: ~i! Accardi,5 quantum probabilities, different probability distributions;~ii !
Gudder and Pitowsky,6 probability manifolds, families of probability distributions;~iii !
Muckenheim,7 negative probabilities, no conventional probabilities;~iv! De Baere,7 fluctuations of
probability distributions;~v! Fine and Rastal,7 the absence of simultaneous probability distrib
tion; ~vi! De Muynck, De Baere, Marten,7 ensemble and context dependence of probability d
tributions; ~vii ! Khrennikov,8 p-adic probabilities, no conventional probabilities, and von Mis
approach,9,10 fluctuating probabilities~in fact, mathematical justification of De Baere arguments7!.

It must be noted that the first discussion on the role of the implicit assumptionB in Bell’s
considerations was contained in Accardi’s paper,5 1981. In particular, he demonstrated that
obtain Bell’s inequality the only thing needed is that there exists a probability distribution c
59340022-2488/2000/41(9)/5934/11/$17.00 © 2000 American Institute of Physics
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patible with given correlations. Accardi also pointed out that the crucial point is the ‘‘multip
ity’’ of distributions associated to different experiments. It may be that this multiplicity is du
ensemble fluctuations.

If we suppose, see Ref. 9, that the probability distribution of hidden variables may vary
ensemble to ensemble~so the quantum statec does not determine the statistics of hidden object
properties of quantum systems described in mathematical quantum formalism byc!, then instead
of the original Bell’s inequality

u^a,b&2^c,b&u<12^a,c&, ~1!

we obtain the modified Bell’s inequality

u^a,b&2^c,b&u<~112ec!2^a,c&, ~2!

where ec>0 is a constant determined by the quantum statec. This constant is a statistica
measure of fluctuations of distributions of hidden variables in ensemblesVc of quantum systems
described by the quantum statec. We call ec a probability invariantof the statec.

Some experimentally verifiable generalizations of the original Bell inequality have been
cussed by Bell, Stapp, Clauser, Horne, Shimony, and many other authors. In particular, in
Clauser, Horne, Shimony, and Holt~CHSH! obtained the inequality

22<^a8,b8&1^a8,b9&1^a9,b8&2^a9,b9&<2, ~3!

which can be experimentally verified~CHSH inequality!.
In this paper we obtain the modified CHSH inequality

2224ec<^a8,b8&1^a8,b9&1^a9,b8&2^a9,b9&<214ec . ~4!

The derivation9 of modified Bell’s inequality~2! was essentially based on non-Kolmogor
probability model, namely von Mises approach.11 The use of non-Kolmogorov models may giv
the impression that this is a purely mathematical problem. In this paper we use the sta
Kolmogorov axiomatics, 1933.11 We consider fluctuating families of Kolmogorov probabili
distributions. In general modified CHSH inequality~4! does not contradict predictions of quantu
mechanics. Here the magnitude ofec plays a crucial role.

The essentially mathematical part of this paper is devoted to the estimation of the mag
of ec for concrete families of fluctuating distributions, namelyGaussianfamilies. We prove that
even negligibly small perturbations of parameters of some probability distributions can pro
quite largeec ~with magnitudes which are sufficiently high to explain experimental results!.

II. CHSH INEQUALITY

Let P5(V,F,P) be a Kolmogorov probability space.V is a space of elementary events,F is
an algebra of events,P is a probability measure. HereP is the probability distribution of hidden
variables. By the implicit probabilistic assumptionB this probability distribution does not depen
on an ensemble~a run of the experiment!. There are four different settings of measurement dev
(a8,b8),(a8,b9),(a9,b8), and (a9,b9), see Ref. 2. Herea,bP@21,1# for a5a8,a9 and b
5b8,b9. It is supposed that there exist conditional probabilitiesPa(a/v)[P(a5a/v),
Pb(b/v)[P(b5b/v), vPV, a,bP@21,1#. It is also supposed that there exist the tw
dimensional conditional probability distributionsPa,b(a,b/v)[P(a5a,b5b/v). It is supposed
that the two-dimensional probability distribution can be factorized

Pa,b~a,b/v!5Pa~a/v!Pb~b/v!, a,bP@21,1#. ~5!

This condition is typically considered as the condition oflocality, see, for example, Refs. 2–4 fo
the detailed analysis. For each hidden variablev, we define expectations
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E~a,v!5E
21

1

aPa~da/v!, and E~b,v!5E
21

1

bPb~db/v!,

and

E~a,b;v!5E
21

1 E
21

1

abPa,b~dadb/v!.

By using factorization condition~5!, we obtain thatE(a,b;v)5E(a,v)E(b,v). This factoriza-
tion implies, see Refs. 2,3, inequality

22<E~a8,b8;v!1E~a8,b9;v!1E~a9,b8;v!2E~a9,b9;v!<2. ~6!

By integrating~6! with respect to theP we obtain CHSH inequality~3!, see Refs. 2,3.

III. PROBABILITY INVARIANT OF A QUANTUM STATE AND MODIFIED CHSH
INEQUALITY

A. Metric on the space of measures

Let m be a signed measure defined on as-algebraF ~of subsets ofV!. Let m5m12m2,
wherem1,m2 are positive measures, bethe Jordan decompositionof m, see, for example, Ref. 12
The total variationof m is defined asimi5m1(V)1m2(V). Let m be a discrete signed measu
which is concentrated on a sequence of points$l j% j 51

` , namelym(A)5(l j PAm(l j ). Here imi
5( j 51

` um(l j )u. Let m be a signed measure that is absolutely continuous with respect to a po
measure n:m(dv)5 f (v)n(dv), where f :V→R is a n-integrable function. Hereimi
5*Vu f (v)un(dv).

Denote the space of all~signed! measures onF by the symbolM. Set r(m1 ,m2)5im1

2m2i . This is a metric on the spaceM ~andM is complete!.
We shall use the following estimate: u*Vg(v)m1(dv)2*Vg(v)m2(dv)u

<supvPVug(v)u r(m1 ,m2). In particular, if21<g(v)<1, then

U E
V

g~v!m1~dv!2E
V

g~v!m2~dv!U<r~m1 ,m2!. ~7!

B. Probability invariant

Let c be a quantum state. Denote the family of all probability distributions of hidden varia
corresponding toc by the symbolTc . Thus, for different runs corresponding toc, we prepare in
general distinct elements ofTc ~if Bell’s implicit assumptionB is true, thenTc must be a
singleton!. Set

ec5sup$r~P1 ,P2!:P1 ,P2PTc%. ~8!

This is the probability invariant of the quantum statec.

C. The modified CHSH inequality

Let c be a quantum state and letE5$Ej% j 51
4 , be four arbitrary statistical ensembles corr

sponding toc. Denote corresponding probability distributions byPj , j 51, . . . ,4 ~soPjPTc). We
set

D~a8, . . . ,b9;E!5^a8,b8&E1
1^a8,b9&E2

1^a9,b8&E3
2^a9,b9&E4

.

In general we have
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D~a8, . . . ,b9;Ej !5E
V

a8~v!b8~v!P1~dv!1E
V

a8~v!b9~v!P2~dv!

1E
V

a9~v!b8~v!P3~dv!2E
V

a9~v!b9~v!P1~dv!.

Let PPTc . Suppose that we could prepare four statistical ensemblesE B5$Ej
B% j 51

4 , having
the same probability distribution of hidden variablesP. Then CHSH inequality implies that22
<D(a8, . . . ,b9;E B)<2. By using inequality~7!, we obtain

uD~a8, . . . ,b9;E!2D~a8, . . . ,b9;E B!u<r~P,P1!1¯1r~P,P4!<4ec .

Thus

2224ec<D~a8, . . . ,b9;E!<214ec . ~9!

If ec50, then~9! coincides with CHSH inequality~3!. In fact, conditionec50 is nothing more
than De Baere condition of the precise reproducibility.

Remark 1:Accardi proposed5 to consider Bell’s inequality~and its generalizations! as ana-
logues of the inequality for the sum of angles in a triangle. The latter inequality gives the p
bility to find the right geometry to describe some physical phenomena. In the same wa
derived some new inequalities which differ from the original Bell inequality~and its generaliza-
tions!. Our inequalities may be used to find the right probability model corresponding to s
quantum experiments.

D. Connection with predictions of quantum mechanics and experimental results

Suppose that measurementsa8, . . .,b9 correspond to the following choice of angles:p/4,p/
8,0, and 3p/8. Here the quantum mechanical formalism gives the ans
D(a8, . . . ,b9;quantum)'2.828@in disaccord with CHSH inequality~3!#.

However, to violate modified CHSH inequality~4!, we must have 214ec,2.828 or

ec,0.207. ~10!

If the probability invariant satisfies inequality~10!, then the local realism cannot be used
describe this quantum statec. Otherwise there is no contradiction between predictions of
quantum formalism and local realism. Thus if ensemble fluctuations induce rather large pro
ity invariant, then CHSH considerations~as well as the original Bell considerations! cannot be
considered as an argument against the local realism.

It may seem that only large ensemble fluctuations could produce rather large prob
invariantec . However, it is not so, see examples in the next section.

IV. FAMILIES OF FLUCTUATING GAUSSIAN DISTRIBUTIONS

Here we study the connection between the magnitude of the probability invariant and
tuations of parameters of probability distributions of hidden variables. The main result is
negligibly small random fluctuations on the level of hidden variables may imply essential m
effects, namely rather large magnitudes of probability invariant.

Denote the Gaussian distribution~on the real line! with zero mean value and dispersionb
5s2 by the symbolPb . Let b85b1db and letj5 udbu/b .

Proposition 1: Let the relative perturbationj<1. Then

j

2e
<r~Pb8 ,Pb!<

1

&
ln~11j!. ~11!
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Proof: The estimate from below will be obtained directly in the multidimensional case,
Appendix B. Here we obtain the estimate from above. We may assume thatdb.0. Set f (x;b)
5e2x2/2b/A2pb. So ] f (x;b)/]b 5 f (x;b)@x2/b21#/2b. Thus we have

E U ] f ~x;b!

]b Udx<~1/2b!E u12x2/buPb~dx!<~1/2b!F E ~12x2/b!2Pb~dx!G1/2

51/&b.

Thus

r~Pb8 ,Pb!5E u f ~x;b1db!2 f ~x;b!udx

5dbE UE
0

1 ] f

]b
~x;b1udb!duUdx

<dbE
0

1

duE U ] f

]b
~x;b1udb!Udx<

db

&
E

0

1 du

b1udb
5

1

&
lnS 11

db

b D .

Suppose that a quantum statec describes a fluctuating family of Gaussian distributions
hidden variables such that dispersions fluctuate near the mean valueb:b85b1db. Denote byj̃
the supj over allj5 udbu/b corresponding to probability distributions belonging to the classTc .
As r(Pb8 ,Pb)<ec for all Pb8PTc , we get j̃/2e<ec . As ec5sup$r(Pb8 ,Pb9):Pb8 ,Pb9PTc%
<2sup$r(Pb8 ,Pb):Pb8PTc%, we getec<& ln(11j̃). We obtained the following inequality fo
the probability invariantec :

j̃

2e
<ec<& ln~11 j̃ !.

We remark that if dispersionb is very small, then even perturbations of negligibly sm
magnitudedb may induce sufficiently strong macro effects. Small values ofb correspond to
preparations of ensembles corresponding to the fixed value of hidden variablel. Therefore our
investigation implies that, for quantum states corresponding to sharp preparation of hidde
ables, CHSH inequality~3! must be violated.

Let us consider the quantum statec introduced in Sec. III D. Suppose that 4ec<4& ln(1
1j̃),0.828. If we use the approximation ln(11j̃)'j̃, we obtain the inequalityj̃,0.146. If we can
be sure that different runs of the experiment have relative deviationsj̃,0.146, then the loca
realism would not agree with experimental results.

Suppose thatc is characterized by dispersionb50.01 of the preparation of the hidden var
ables. If we can be sure that different runs of the experiment have fluctuations of disp
udbu<0.001 46, then the local realism does not agree with experimental results.

Suppose that 0.828,2j̃/e<4ec . Thus j̃.1.118. If relative deviationsj satisfy the latter
inequality, then there is no contradiction between the modified CHSH inequality~4! and quantum
description.

Suppose now thatc is characterized by dispersionb50.01 of the preparation of the hidde
variables. If deviationsdb are such that 0.0118,udbu, then there is no contradiction between t
modified CHSH inequality~4! and quantum description. If 0.00146,udbu,0.0118, then we can
not say anything. We have to find a better estimate for the probability invariant.

We now consider the multidimensional case. Here we use the well-developed probab
machinery for estimating the variation distance between probability distributions13 ~which is used,
for example, to study the convergence of probability distributions in limit theorems!.
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Let P andS be probability measures which are absolutely continuous with respect to the
probability measureQ. Let p ands be densities ofP andS, respectively, with respect toQ. The
number

H~P;S!5E Ap~v!s~v!Q~dv!

is called the Hellinger integral of measuresP andS. We remark that it does not depend on t
choice of Q. The Hellinger integral is the extremely powerfool tool in investigations of
variation–convergence of probability measures. There is the following estimate~see, for example,
Ref. 13, p.3!:

2@12H~P;S!#<r~P,S!<A8@12H~P;S!#. ~12!

This estimate will be used as the basis for our analysis in the multidimensional case. Howev
remark that in the one-dimensional case inequality~11! is more useful: it gives essentially bette
estimate of perturbations.

Let Pb and Pb8 be Gaussian measures onR with zero mean values and dispersionsb and
b85b1db, respectively. As usual,j5 db/b is the relative perturbation of dispersion. We stu
the casedb>0.

Lemma 1: The Hellinger integral ofPb and Pb8 is equal to

hj5
~11j!1/4

~11j/2!1/2.

Proof: We have:

H~Pb ,Pb8!5
1

~4p2b~b1db!!1/4E
2`

`

expH 2
x2

4b
2

x2

4~b1db!J dx

5
1

A2pb~11j!1/4E2`

`

expH 2
x2

2cJ dx,

wherec5 2b(11j)/(21j) .
Let n>2. Let Pb

n5Pb3¯3Pb and Pb8
n

5Pb83¯3Pb8 be Gaussian measures onX5Rn

~direct products ofn copies of measuresPb andPb8 , respectively!. We use the following property
of the Heillinger integral:H(Pn,Sn)5H(P,S)n for arbitrary product measuresPn andSn. Hence
H(Pb

n ,Pb8
n )5hj

n .
Let 0,q,1 be a constant. By~12! and the last remark if 2(12hj

n).q, then r(Pb
n ,Pb8

n )
.q. The first of these two inequalities is equivalent to inequalities (u512q/2):

~11j!n/4

~11j/2!n/2,u,
~11j/2!2n

~11j!n .
1

u4 ;

S 11
j2

4~11j! D
n

.
1

u4 . ~13!

Suppose thatj is rather small:j<1. The inequality,

S 11
j2

8 D n

.
1

u4 , ~14!
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implies inequality~13!. Seta5(n21)j2/8; soj5A8a/(n21). The inequality~14! is written as
(11a/(n21))n.1/u4 . It is well-known that (11a/(n21))n.ea. Thus the inequalityea

>1/u4 implies inequality~14!. So a>24 ln(12q/2). We know that2 ln(12x)5x*0
1du/(12xu)

< x/(12x) ,0,x,1. Thus it suffices to have:

a>
4q

22q
. ~15!

In the CHSH considerations we haveq'0.207 and 4q/(22q) 50.462. The inequality~15!
can be rewritten asa>0.462 or

j>1.992/An21 ~16!

~as we consider the casej<1, we have to assume that heren>4). If hidden variables can be
described as independent equally distributed Gaussian random variables and relative pertu
of dispersions satisfy inequality~16!, then the quantum formalism does not contradict to modifi
CHSH inequality. These relative perturbations can be arbitrarily small whenn→`. If the dimen-
sion of the space of hidden variables is infinite, then the contradiction between the qu
formalism and local realism~via CHSH-arguments! can be obtained only on the basis of qu
unrealistic hypothesis on the precise~ideal! reproducibility of probability distributions.

~AI ! Let n215100. Herej>0.1992.~AII ! Let n215104. Herej>0.019 92.~AIII ! Let n
215106. Here j>0.001 992. If, for example, dispersionb50.01, then:~AI ! db>0.001 992;
~AII ! db>0.000 1992;~AIII ! db>0.000 019 92. In the last case fluctuations of dispersion
negligibly small. It seems that it would be impossible to eliminate fluctuations of such an
from any quantum experiment.

Let 0,q,1 be a constant. By~12! if 8(12hj
n),q2, thenr(Pb

n ,Pb8
n ),q. The first of these

two inequalities is equivalent to inequalities

~11j!n/4

~11j/2!n/2.v,v512q2/8;
~11j/2!2n

~11j!n ,
1

v4 ; S 11
j2

4~11j! D
n

,
1

v4 .

The latter inequality is implied by the inequality: (11 (j2/4))n< 1/v4 . We setb5 nj2/4 . Soj
52Ab/n. The previous inequality is written as (11 (b/n))n< 1/v4 . It is well-known that (1
1 (b/n))n,eb. We consider the inequalityeb< 1/v4 or b<24 ln(12q2/8). We use the approxi-
mation2 ln(12q2/8)'q2/8. We get

b<q2/2. ~17!

In the CHSH considerations we haveq'0.207 andq2/250.0214. The inequality~17! can be
rewritten as

j<
0.293

An
. ~18!

~BI! Let n5100. Herej<0.0293.~BII ! Let n5104. Here j<0.002 93.~BIII ! Let n5106.
Here j<0.000 293. If, for example, dispersionb50.01, then~BI! db<0.000 293; ~BII ! db
<0.000 0293;~BIII ! db<0.000 002 93. Suppose that the space of hidden variables has suffic
high dimension,n5106. If we can be sure that fluctuations are less than 331026, then the CHSH
arguments would imply the contradiction between the quantum formalism and local realism
the other hand, if we know that fluctuations are larger than 231025, @see~AIII !# then the CHSH
arguments would not imply anything. Such a situation is quite typical in experimental physic
precision of measurement/preparation procedures was not taken into account.

In Appendix B we consider fluctuations of Gaussian distributions in the general case:~i! the
perturbationdB of the covariation operatorB need not commute withB; ~ii ! Gaussian variables
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are not equally distributed;~iii ! the dimension of the space of hidden variables can be infin
Here we could not obtain such strong estimate as~12!. So our analysis is not complete. The ma
feature of the infinite-dimensional case~which has been already observed in this section fon
→`) is that negligibly small perturbations of parameters of probability distributions of hid
variables can produce essential macro effects~due to the singularity of corresponding probabili
distributions!.

Remark 2:Although we have no direct physical motivations to use Gaussian distribution
hidden variables, some mathematical motivations can be found on the basis of the centra
theorem. Let us assume that hidden variables which determine results of macro measureme
in fact, ‘‘integral variables’’ which describe the collective effect of a huge number of ‘‘elemen
variables.’’ Then by the central limit theorem~under the natural assumption that element
variables are independent! we obtain the Gaussian law for integral variables.

V. PHYSICAL INTERPRETATION OF RESULTS

A. On the completeness of quantum mechanics

The main aim of the paper1 of Einstein, Podolsky, and Rosen~EPR! was to demonstrate tha
‘‘the quantum mechanical description of reality given by the wave function is not complete.’’
EPR considerations~as well as their further modifications, see, for example Ref. 2! imply that
either the quantum mechanical description of reality is not complete or the local realism m
eliminated from quantum formalism. There is quite general opinion that Bell’s considerat3

transformed the EPR alternative into a new~Bell’s! alternative: either nonlocality or nonreality.2,4

Our considerations demonstrated that such a viewpoint is not completely justified. It seem
despite Bell’s inequality and its generalizations, we still have the EPR alternative. In fact
supposed~in the rather indirect formB! that the quantum mechanical description of reality
complete.

It may seem that the ensemble dependence of distributions of hidden variables implie
these hidden variables cannot be considered as objective properties~properties of an object, se
Ref. 2!. However, it is not so. They are really properties of objects. There is nothing specia
the statistical distribution of these properties may vary from ensemble to ensemble~such a behav-
ior is standard in classical physics, economy, biology!. It may seem that the statistical fluctuation
of hidden variables contradict the statistical stability of physical observables. However, it is n
We illustrate this by a simple example, see Appendix A.

Of course, the dependence of Bell’s arguments~and numerous generalizations, Refs. 2,4! on
the ensemble invariance of the probability distribution of hidden variables is well-known sinc
pioneer paper of Accardi,5 1981 ~and investigations of many others, see Refs. 3–7!. In this note
we demonstrated that the ensemble-dependence can be expressed in numerical form, see~2!.

B. Efficiency of detectors

The completely different viewpoint to the origin of ensemble fluctuations may be prese
In principle distributions of hidden variables may fluctuate due to essentially different stati
structures of ensembles of quantum particles which were registered by detectors in differe
of experiments~compare with Refs. 2,3!. At the moment it is impossible to split detectors a
state fluctuations. In fact, we can start to investigate the problem of completeness of qu
mechanics only on the basis of detectors with'100% efficiency.

Finally, we remark that the consideration of fluctuating probability distributions blocks
derivation of so called GHZ theorem~‘paradox’!.14 In fact, if we have four different probability
distributionsPj , j 51, . . . ,4, andknow thatPj (V j )51,j 51,2,3, then in general we cannot infe
that P4(V1ùV2ùV3)51.
                                                                                                                



m

of the

le

of

ce

t

e

5942 J. Math. Phys., Vol. 41, No. 9, September 2000 Andrei Khrennikov

                    
APPENDIX A: FLUCTUATIONS OF PROBABILITY DISTRIBUTIONS OF HIDDEN
VARIABLES

Let a hidden variablel have two values, 0 and 1. LetV (k) be an ensemble ofk quantum
particles ~prepared in the same quantum statef!. Denote the relative frequency for quantu
particles inV (k) having a valuea(50,1) of l by the symbolnk(l5a). Let B be a physical
observable having two values, 0 and 1. Denote the relative frequency for an observation
valueb of B @for the statistical ensembleV (k)] by the symbolnk(B5b),b50,1.

Suppose thatnk(l50)'sin2 fk and nk(l51)'cos2 fk ,k→`. Here fk is a ‘‘phase of the
ensemble’’V (k). If phasesfk do not stabilize~mod 2p! when k→`, then frequenciesnk(l
5a) fluctuate whenk→`. Thus probabilitiesPV(k)(l5a),a50,1, depend essentially onV (k).
Suppose that, however, conditional probabilitiesP(B5b/l5a)5 limk→`nk(B5b/l5a) exist
and they are equal to 1/2. Herenk(B5b/l5a)5 nk(B5b/l5a)/k andnk(B5b/l5a) is the
number of elements of the ensembleV (k) having the valuel5a such that a measurement ofB
gives the valueB5b. Therefore sizes of subpopulationsV (k)(l5a) with the fixed valuel5a
fluctuate, but reactions of quantum systemssPV (k)(l5a) to a measurement of theB are stable.
In this case we find that measurements ofB satisfy the law of large numbers (b50,1):

P~B5b!5 lim
k→`

@nk~l50!nk~B5b/l50!1nk~l51!nk~B5b/1!#51/2.

Thus there is no contradiction between fluctuations of probability distributionsPV(k)(l5a) and
the observed stabilization of relative frequencies for measurements of a physical observabB.

APPENDIX B: GAUSSIAN DISTRIBUTIONS OF HIDDEN VARIABLES,
MULTIDIMENSIONAL AND INFINITE-DIMENSIONAL CASES

Let X5Rn and let (x,y)5( j 51
n xjyj ,ixi5A(x,x). We consider Gaussian distributions

hidden variables

PB~dx!5
1

A~2p!n detB
e2(B21x,x)/2 dx,

whereB.0 is a symmetric linear operator inX. So thePB has zero mean value and covarian
operatorB. Let dB be a relatively small symmetric perturbation of the covariation operatorB. We
obtain the estimate from below for the variation distance betweenPB and its perturbation. Se
B85B1dB. Set

j5 sup
~By,y!51

u~dBy,y!u.

We remark that

j5 sup
izi51

u~B21/2dBB21/2z,z!u5iB21/2dBB21/2i

~we have used the fact that the operatorB21/2dBB21/2 is self-adjoint!. In the one-dimensional cas
j5 udbu/b .

Lemma 2: The following inequality,

r~PB ,PB8!>
j

2e(11j)/2 ~B1!

holds true.
Proof: For eachyPX, we have
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D~y![U E
X
ei (x,y)~PB2PB8!~dx!U<r~PB ,PB8!

@as uei (x,y)u51 for all xPX]. But

D~y!5ue2(By,y)/22e2(B8y,y)/2u

5e2(By,y)/2u12e2(dBy,y)/2u5
u~dBy,y!u

2
e2(By,y)/2E

0

1

du e2u(dBy,y)/2.

For anyyPX such that (By,y)51, we have

D~y!>
u~dBy,y!u

2e1/2 E
0

1

du e2uu(dBy,y)u/2>
u~dBy,y!u

2e1/2 E
0

1

du e2uj/2.

Hence,r(PB ,PB8)>(j/2e1/2) e2j/2.
If j<1, then we have

r~PB ,PB8!>
j

2e
. ~B2!

We remark that

j<idBi iB21/2i25idBi iB21i

@here we have used the properties of a symmetric operator:iB21i5supizi51(B21z,z)
5supizi51(B21/2z,B21/2z)5iB21/2i2]. Thus we obtain the inequality

r~PB ,PB8!>
j

2e(11idBi iB21i)/2
. ~B3!

Estimates~19! and~20! can be easily generalized to the infinite dimensional spaces of hid
variables. Here we need the additional condition

j5 sup
~By,y!51

u~dBy,y!u,`. ~B4!

Let us consider Gaussians-additive measurePB on the s-algebra of Borel subsets of
separable Hilbert spaceX. PB has zero mean value and covariance operatorB.0 which is a
nuclear operator onX. Then the straightforward generalization of the proof of Lemma gi
estimates~19! and ~20!. We remark that, asB is a nuclear operator, the operatorB21 is un-
bounded. Thus~B3! has no meaning in the infinite-dimensional case. We also remark that~B4! is
equivalent to the boundedness of the operatorB21/2dBB21/2.

An essentially new feature of probability distributions on infinite-dimensional spaces of
den variables is the possibility to produce singular distributions via negligibly small perturba
of parameters. It is well-known~see, for example, Ref. 15! that Gaussian distributionsPB andPB8
are singular iff the operatorB21/2dBB21/2 does not belong to the class of Hilbert–Shmidt ope
tors. Let B and dB be diagonal in the same basis$ej%:Bej5bjej ,dBej5dbjej and let j j

5udbj u/bj . The Gaussian distributionsPB andPB8 are singular iff

(
j 51

`

j j
25`. ~B5!
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Suppose that, for example,j j5e/Aj , wheree.0 is an arbitrary small constant. Then the dist
butionsPB andPB8 are singular. In such a case

r~PB ,PB8!52.

Here always 4ec58.0.828. Thus there is no contradiction between the modified CHSH ineq
ity and predictions of the quantum formalism. The same singularity arguments can be u
block the derivation of the GHZ theorem.

Remark 3:~Hidden trajectories! Let us consider a class of hidden variables theories in tha
result of a macro measurements is determined not by the value ofl, but by the whole trajectory
v5v(t),v(0)5l, of a quantum particle in the process of the interaction with a measure
device a ~De Broglie, Bohm, Bohm and Vigier, Nelson, De Muynck, De Baere, Mart
Stekelborg16!. In general the trajectoryv5va(t) ~in fact, the distribution of trajectories! depends
on a. Here it is natural to suppose that there is a ‘‘mean value trajectory’’v̄(t) ~ergodic trajec-
tory?!. Other possible trajectories of a quantum particle~in the process of the interaction witha)
have the Gaussian distribution~on an infinite dimensional functional space! with the mean value
v̄ ~and some dispersion operator depending onc and a). For example, it may be a Wiene
measure. As we have seen Gaussian distributions on infinite dimensional spaces are quite u
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The role of infrared divergence for decoherence
Joachim Kupscha)

Fachbereich Physik, Universita¨t Kaiserslautern, D-67653 Kaiserslautern, Germany

~Received 10 November 1999; accepted for publication 30 May 2000!

Continuous and discrete superselection rules induced by the interaction with the
environment are investigated for a class of exactly soluble Hamiltonian models.
The environment is given by a boson field. Stable superselection sectors can only
emerge if the low frequences dominate and the ground state of the boson field
disappears due to infrared divergence. The models allow uniform estimates of all
transition matrix elements between different superselection sectors. ©2000
American Institute of Physics.@S0022-2488~00!03009-7#

I. INTRODUCTION

Superselection rules are the basis to understand classical physics within quantum theo
despite the great progress in understanding superselection rules, see, e.g., Ref. 1, quan
chanics and quantum field theory do not provide enough superselection rules to infer the cl
probability of ‘‘facts’’ from quantum probability. This problem is most often discussed in
context of measurement of quantum mechanical objects. In an important paper about the
of measurement Hepp2 presented a class of models for which the dynamics induces supersele
sectors. Hepp started with a very large algebra of observables—essentially all observables w
exception of the ‘‘observables at infinity’’ which constitute ana priori set of superselection
rules—and the superselection sectors emerge in the weak operator convergence. But it w
realized that the algebra of observables, which is relevant for the understanding of the pro
measurement3,4 and, more generally for the understanding of the classical appearance o
world5–7 can be severely restricted. Then strong or even uniform operator convergence is po

In this article the results of Chap. 7 of Ref. 7 and of Ref. 8 are extended. After a
introduction to superselection rules and the dynamics of subsystems we prove in Sec. I
uniform operator estimates are possible also for continuous superselection rules induced
environment. In Sec. IV. we investigate a class of Hamiltonian models with an environment
by a boson field. The restriction to the boson sector corresponds to a van Hove model.9 As the
main result of the article we prove for this class of models

~i! the superselection sectors are induced by the infrared contributions of the boson fiel
~ii ! the superselection sectors are stable fort→` only if the boson field is infrared divergen

This type of infrared divergence was studied by Schroer10 more than 30 years ago. The boso
field is still defined on the Fock space but the ground state of the boson field disappears
continuum.

II. INDUCED SUPERSELECTION RULES

We start with a few mathematical notations. LetH be a separable Hilbert space. Then t
following spaces of linear operators are used:

B(H): the linear space of all bounded operatorsA with the operator normiAi ,
T(H): the linear space of all nuclear operatorsA with the trace normiAi15trAA1A, and
D(H): the set of all positive nuclear operatorsW with a normalized trace, trW51.

a!Electronic mail: kupsch@physik.uni-kl.de
59450022-2488/2000/41(9)/5945/9/$17.00 © 2000 American Institute of Physics
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We consider standard quantum mechanics and quantum field theory where any sta
quantum system is represented by a statistical operatorWPD(H)—the rank one projection op
erators thereby correspond to the pure states—and any bounded observable is represent
operatorAPB(H). Without additional knowledge about the structure of the system we hav
assume that the set of all states corresponds toD(H), and the operator algebra of all~bounded!
observables coincides withB(H). In quantum field theory the superposition principle is partia
restricted to superselection sectors, see, e.g., Ref. 1. The projection operators onto the sup
tion sectors commute with all observables of the theory: they are classical observables. Bu
remains an essential problem for the understanding of the classical appearance of the worl
very few superselection rules can be found in quantum mechanics and quantum field the
possible solution is the emergence of superselection rules due to decoherence caused
dynamics.

Let A5A(0)→A(t)5Tt(A)PB(H) denote the dynamics in the Heisenberg picture. If th
exists a family of projection operators$Pm ,mPM% with the propertiesPmPn50 for mÞn and
(nPn5I , such that transition matrix elements (f uA(t)g) between different sectorsf PHm

5PmH,gPHn5PnH, mÞn, vanish for all observablesAPB(H) for t→`, the subspacesHm

5PmH,mPM , are denoted as superselection sectors induced by the dynamicsTt .
This definition can be applied to the usual Hamiltonian dynamicsA5A(0)→A(t)5Tt(A)

ªU1(t)AU(t), whereU(t)5exp(2iHt) is the unitary group generated by the HamiltonianH. A
class of examples has been given in Ref. 2 by Hepp. Thereby an essential consequenc
Hamiltonian time evolution or any other automorphic time evolution is the restriction to w
operator convergence. Moreover, as has been emphasized by Bell,11 the time scale can be arb
trarily large, such that the practical use of such models is questionable.

A strong or even uniform suppression of the off-diagonal matrix elements of all observ
can be obtained by the restriction to a subsystem.3–5 In the following we consider an open system
i.e., a systemS which interacts with an environmentE, such that the total systemS3E satisfies the
usual Hamiltonian dynamics. The Hilbert spaceHS3E of the total systemS3E is the tensor space
HS^ HE of the Hilbert spaces forS and forE. If the state of the total system isWPD(HS1E),
then the state of the subsystem is given by the reduced statistical operatorr5trEWPD(HS). The
dynamics of the states of the total systemWPD(HS3E)→W(t)5U(t)W(0)U1(t)PD(HS3E)
with the unitary groupU(t)5exp(2iHt), generated by the total HamiltonianH, yields the dy-
namics of the statistical operatorr(t)5trE U(t)W(0)U1(t)PD(HS) of the subsystemS. In the
following we assume that the initial state factorizesW5r ^ v with rPD(HS) and a fixed refer-
ence statevPD(HE) of the environment. Then the dynamics in the Heisenberg picture of
systemS is easily calculated as

APB~HS!→A~ t !5Tt~A!ªtrE U1~ t !~A^ I E!U~ t !vPB~HS!. ~1!

Before we investigate induced superselection sectors we generalize the definition given ab
the case of continuous superselection sectors. The finite or countable set of projection op
$Pm ,mPM% is substituted by a strongly continuous family of projection operatorsP(D) indexed
by measurable subsetsD,R, see, e.g., Ref. 12 or 4. These projection operators have to sat

P~D1øD2!5P~D1!1P~D2! and P~D1!P~D2!50 if D1ùD25B,
~2!

P~B !50, P~R!51.

If we chose for$P(D),D,R% a general~right continuous! spectral family, the case of discret
superselection rules is included in~2!.

The dynamics of the total system induces superselection rules in the systemS if there exists
a right continuous family of projection operators~2! $PS(D)uD,R% defined on the Hilbert spac
HS , such that the off-diagonal contributions of all statistical operators of the systemS vanish for
t→`, i.e., P(D1)r(t)P(D2)→0 if t→` and D1ùD25B, or in the Heisenberg picture
PS(D1)A(t)PS(D2)→0 if t→` and D1ùD25B for all observablesAPB(HS).
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III. SOLUBLE MODELS

In the following we present models for which the Hamiltonian of the total system provid
family of projection operators$PS(D),D,R% on HS such that the off-diagonal elements of an
bounded observable of the systemS can be estimated with the operator norm. We derive
uniform decrease

iPS~D1!A~ t !PS~D2!i→0 if t→` ~3!

for arbitrary bounded observablesAPB(HS) and arbitrary disjoint closed intervalsD1ùD2

5B.
The models have the following structure. The total Hamiltonian is defined on the tensor

HS3E5HS^ HE as

HS3E5HS^ I E1I S^ HE1F ^ G

5~HS2 1
2 F2! ^ I E1 1

2 ~F ^ I E1I S^ G!21I S^ ~HE2 1
2 G2!, ~4!

whereHS is the positive Hamiltonian ofS, HE is the positive Hamiltonian ofE, andF ^ G is the
interaction potential betweenS andE with operatorsF on HS andG on HE . To guarantee tha
HS3E is self-adjoint and semibounded we assume the following.

~i! The operatorsF andF2 ~G andG2! are essentially self-adjoint on the domain ofHS (HE).
The operatorsHS2 1

2 F2 andHE2 1
2 G2 are semibounded.

Since F2
^ I E62F ^ G1I S^ G2 are positive operators, the operatorF ^ G is (HS^ I E1I S

^ HE)-bounded with relative bound one, and Wu¨st’s theorem, see, e.g., Theorem X.14 in Ref. 1
implies thatHS3E is essentially self-adjoint on the domain ofHS^ I E1I S^ HE . Moreover,HS3E

is obviously semibounded.
To derive induced superselection rules we need the following rather severe restriction.
~ii ! The operatorsHS andF commute strongly, i.e., their spectral projections commute.
So far no model with Hamiltonian dynamics has been presented which violates this as

tion and allows the uniform estimate~3! of induced superselection sectors. If the Hamiltoni
includes a scattering potential it is possible to abandon this assumption. But then the off-di
termsP(D1)A(t)P(D2) decrease only in the strong operator topology~see Ref. 14!.

The operatorF has a spectral decompositionF5*RlPS(dl) with a right continuous family
of projection operatorsPS(D) indexed by measurable subsetsD,R. We shall see later tha
exactly the projection operators of this spectral decomposition determine the induced supe
tion sectors.

As a consequence of assumption~ii ! we have@HS ,PS(D)#50 for all intervalsD,R. The
Hamiltonian ~4! has therefore the formHS3E5HS^ I E1*RPS(dl) ^ (HE1lG). The operator
uGu5AG2 has the upper bounduGu<aG21(4a)21I with an arbitrarily small constanta.0.
SinceG2 is HE-bounded with relative bound 2, the operatorG is HE-bounded with an arbitrarily
small bound. The Kato–Rellich theorem, see, e.g. Ref. 13, implies that the operatorsHE1lG are
self-adjoint on the domain ofHE for all lPR. The unitary evolutionU(t)ªexp(2iHS3Et) of the
total system can therefore be written asU(t)5(e2 iH St

^ I E)*dPS(l) ^ e2 i (HE1lG)t. The dynamics
of the observables~1! follows as

A~ t !5eiH StS E E x~a,b;t !PS~da! A PS~db! De2 iH St ~5!

with the trace

x~a,b;t !5trE~ei (HE1aG)te2 i (HE1bG)tv!. ~6!
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The emergence of dynamically induced superselection rules depends on an estimate of th
For the models investigated below, we obtain for a large class of reference statesv @actually a
dense set withinD(HE)] the bounds

U ]n

]an x~a,b;t !U<c~11~a2b!2c~ t !!2g, n50,1, ~7!

with a functionc(t)>0 which diverges fort→` like a powertk, 0,d,1, and an exponentg
.0 which can be a large number. IfD1 and D2 are intervals with a distanced.0, then the
operator norm ofPS(D1)A(t)PS(D2) is estimated in Appendix A as

iPS~D1!A~ t !PS~D2!i<constiAi~11d2c~ t !!2g. ~8!

For operatorsF with a discrete spectrumF5(lnPn
S uniform norm estimates have already be

derived in Sec. 7.6 of Ref. 7. In this case the bound withn51 in ~7! is obsolete.
A simple class of explicitly soluble models which yield the estimates~7! can be obtained

under the additional assumption
~iii ! The HamiltonianHE and the potentialG commute strongly. The operatorG has an

absolutely continuous spectrum.
Such models have been investigated~for operatorsF with a discrete spectrum! by Araki4 and

by Zurek,5 see also Sect. 7.6 of Ref. 7 and Ref. 14. Under the assumption~iii ! the trace~6!
simplifies tox(a,b;t)5trE(ei (a2b)Gtv). Let G5*RlPE(dl) be the spectral representation
the operatorG. Then the measuredm(l)ªtrE(PE(dl) v) is absolutely continuous with respe
to the Lebesgue measure for anyvPD(HE), and the functionx(t)ªtrE(eiGtv)5*Reiltdm(l)
vanishes fort→`. But to have a decrease which is effective in sufficiently short time, we nee
additional smoothness condition onv. This condition does not impose restrictions on the stati
cal operatorrPD(HS) of the systemS. We assume thatGvPT(HE) and that the integra
operator, which representsv in the spectral representation ofG, is a sufficiently differentiable
function ~vanishing at the boundary points of the spectrum!. Then the measuredm(l)
5trE(PE(dl)v) has a smooth density, and we can derive a strong decrease of its Fourier
form x(t) and its derivative,u (dn/dtn) x(t)u<Cg(11t2)2g, n50,1, with arbitrarily large values
of g. That implies bounds~7! with c(t)5t2.

IV. THE INTERACTION WITH A BOSON FIELD

In this section we present a model without the restriction~iii !. Preliminary results have alread
been reported in Ref. 14. We choose a systemS which satisfies the constraints~i! and ~ii !. The
environment given by a boson field is investigated in detail below. As an essential result we
the uniform estimates~7!. Consequently the off-diagonal elements of the operatorF are sup-
pressed as given in~8!. As a specific example we may consider a particle on the real line
velocity coupling. The Hilbert space of the particle isHS5L 2(R). The Hamiltonian and the
interaction potential of the particle are

HS5 1
2 P2 and F5P, ~9!

whereP52 i d/dx is the momentum operator of the particle. The identityHS2 1
2F

250 guaran-
tees the positivity of the first term in~4!. Decoherence then yields superselection rules for
momentum of the particle.

As Hilbert spaceHE we choose the Fock space of symmetric tensorsF(H1) based on the one
particle Hilbert spaceH1 . The inner product ofF(H1) is denoted by (.u.). The Hamiltonian is
generated by a one-particle Hamilton operatorM on H1 with the following properties.

~i! M is a positive operator with an absolutely continuous spectrum.
~ii ! M has an unbounded inverseM 21.
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The spectrum ofM is ~a subset of! R1 , which—as a consequence of the seco
assumption—includes zero. The Hamiltonian of the free field is then the derivationHE

5dG(M ) generated byM ~see Appendix B!. Let a1( f ) denote the creation operator of th
one-particle statef PH1 and a( f )5(a1( f ))1 denote the corresponding annihilation operat
normalized to@a( f ),a1(g)#5( f ug). The interaction potentialG is then chosen as the self-adjoi
field operatorG5F(h)ªa1(h)1a(h), wherehPH1 satisfies the additional constraint

2iM 2 1/2hi<1. ~10!

That constraint guarantees thatHE2 1
2F

2(h) is bounded from below, and the Hamiltonian~4! is a
well defined semibounded operator onF(HS3E) ~see Appendix B!.

To derive induced superselection sectors for the observableP we have to estimate the tim
dependence of the traces~6! xab(t)ªtrEUab(t)v, aÞb, wherev is the reference state of th
field, and the unitary operatorsUab(t) are given by

Uab~ t !ªexp~ iH at !exp~2 iH bt !, with Ha5HE1aF~h!, a,bPR. ~11!

The HamiltoniansHa are Hamiltonians of the van Hove model.9 In Appendix B we prove the
following results for reference statesv which are finite superpositions or mixtures of cohere
states.

~1! If the vectorh also satisfiesM 21hPH1 , one can use the standard methods of the van H
model to evaluate the tracesxab(t)5trEUab(t)v. These traces do not vanish fort→`. But
one can achieve a strong decrease which persists for some finite time interval. This peri
be arbitrarily large, but, inevitably, recurrences exist.

~2! If M 21h¹H1 , the low energy contribution of the interaction potential dominates, and
lower limit limt→`xab(t)50 vanishes foraÞb. If the vectorh satisfies some additiona
regularity condition at small energies, see~12!, there exists a uniform limit
limt→`trEUab(t)v50 for all a,b with ua2bu>d.0, and zero can be approached on a sh
time scale~depending on the reference statev!.

The assumptionM 21hP” H1 is therefore necessary for the emergence of superselection r
which persist fort→`. In this case the Boson field is infrared divergent. It is still defined on
Fock space, but its ground state disappears in the continuum, see Ref. 10.

To formulate the additional regularity assumption we use the spectral resolutionPM(dl) of
the one-particle Hamilton operatorM . The energy distribution of the vectorhPH1 is given by the
absolutely continuous measuredsh(l)5(huPM(dl)h). The vectorh is in the domain ofMk,k
PR, if iMkhi25*R1

l2kdsh(l),`. The existence of superselection sectors is derived unde
following assumption for the measuredsh(l)

dsh~l!>c1ldl if 0<l,l1,`, ~12!

wherel1 can be arbitrarily small andc1 is a positive constant. For vectorsh with a homogeneous

energy distributiondsh(l);l2mdl nearl510, the conditionM 2
1
2hPH1 implies m.0, and

M 21h¹H1 is satisfied ifm< 1
2. For these energy distributions the assumption~12! is therefore

equivalent toM 21h¹H1 .
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APPENDIX A: NORM ESTIMATES OF OBSERVABLES

In the followingPS(D) with intervalsD,R denotes the spectral family of the potentialF. Let
D1 andD2 be closed intervals of the real axes, and let (a,b)PD13D2,R2→x(a,b)PC be a
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differentiable function with the uniform boundsux(a,b)u<c1 and u (]/]b) x(a,b)u<c2 . Then
bPD2→T2(b)5*D1

x(a,b)PS(da)PB(HS) is a differentiable family of operators with th

norm estimatesiT2(b)i<c1 andiT28(b)i<c2 . If APB(HS) is a bounded operator, the functio
bPD2→T(b)5T2(b)APB(HS) is again differentiable with the uniform estimates

iT~b!i<c1iAi and iT8~b!i<c2iAi . ~A1!

For all intervalsD2 the Stieltjes integrals*D2
T(b)PS(db) are well defined. LetD25@a,b# be an

interval of finite length. Then partial integration yields the operator identity*D2
T(b)PS(db)

5T(b)E(b)2T(a)E(a)2*D2
T8(b)E(b)db with the projection operators E(b)

ªPS((2`,b#)), and the inequalities~A1! imply the bound

I E
D2

T~b!PS~db!I<~2c11uD2uc2!iAi . ~A2!

The norm ofPS(D1)A(t)PS(D2), whereA(t) is the Heisenberg operator~5!, can now be
estimated using~A2!. If D1 andD2 are disjoint intervals with a distanced, the constantsc1 andc2

have to be substituted by the upper bounds in~7!, i.e., c15c25c(11d2c(t))2g.

APPENDIX B: THE VAN HOVE MODEL

Let F+G denote the symmetric tensor product of the Fock spaceF(H1) with vacuum 1vac.
For all f PH1 the exponential vectors expf51vac1 f 1 1

2 f + f 1¯ converge withinF(H1), the
inner product being (expfuexpg)5exp(fug). The linear span of all exponential vecto
$expfufPH1% is dense inF(H1). The creation operatorsa1( f ) are uniquely determined by
a1( f )expg5f+expg5 (]/]l) exp(f1lg)ul50, f,gPH1 , and the annihilation operators are give
by a(g)expf5(guf )expf. These operators satisfy the standard commutation relat
@a( f ),a1(g)#5( f ug). If M is an operator onH1 , thenG(M ) is uniquely defined as an operato
on F(H1) by G(M )expfªexp(Mf ), and the derivationdG(M ) is defined bydG(M )expf
ª(Mf )+expf.

As explicit example we may takeH15L 2(Rn) with inner product (f ug)5*Rnf (k)g(k)dnk.
The one particle Hamilton operator can be chosen as (M f )(k)ª«(k) f (k) with the positive
energy function «(k)5cuku,c.0,kPRn. Let ak

# ,kPRn, denote the distributional creation
annihilation operators, such thata1( f )5*ak

1 f (k)dnk anda( f )5*ak f (k)dnk. Then the Hamil-
tonianHE5dG(M ) coincides withHE5*«(k)ak

1akd
nk.

For arbitrary elementsgPH1 the unitary Weyl operators are defined on the set of expone
vectors by T(g)expf5e2(gu f )2(1/2)igi2

exp(f1g). This definition is equivalent toT(g)
5exp(a1(g)2a(g)). The Weyl operators are characterized by the properties

T~g1!T~g2!5T~g11g2! exp~2 i Im~g1ug2!!

~B1!
~1vacuT~g!1vac!5exp2~ 1

2 igi2!.

The time evolution on the Fock space is given byU(t)5exp (2iHEt)5G(V(t)) with V(t)
ªexp (2iMt). For exponential vectors we obtainU(t)expf5exp(V(t)f ). From these equations th
dynamics of the Weyl operators follows as

U1~ t !T~g!U~ t !5T~V1~ t !g!. ~B2!

For fixedhPH1 the unitary operatorsT1(h)U(t)T(h),tPR, form a one parameter group whic
acts on exponential vectors asT1(h)U(t)T(h)expf5exp((huV(t)(f1h)2f )2ihi2)exp(V(t)(f1h)
2h). For hPH1 with MhPH1 the generator of this group is easily identified wi
T1(h)HET(h)5HE1F(Mh)1(huMh), whereF(.) is the field operator. This identity was firs
derived by Cook15 by quite different methods. Ifh satisfiesM 21hPH1 we obtain
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T1~M 21h!HET~M 21h!2iM 2 1/2hi25HE1F~h!, ~B3!

which is the Hamiltonian of the van Hove model9 ~see also, Ref. 16 p.166ff, and Ref. 17!.
For all hPHE with M 21/2hPHE the field operatorF(h) satisfies the estimate

iF~h!ci<2iM 2 1/2hi iAHEci1ihi ici , ~B4!

wherecPF(H1) is an arbitrary vector in the domain ofHE , see e.g., Eq.~2.3! of Ref. 18. As
consequences we obtain the following.

Lemma 1: The operators HE1lF(h),lPR, are self-adjoint on the domain of HE if h
PH1 and M21/2hPH1 . The operator HE2 1

2F
2(h) has the lower bound HE2 1

2F
2(h)

>2ihi2, if hPH1 and iM 21/2hi<221.
Proof: From ~B4! and the numerical inequalityAx<ax1(4a)21, valid for x>0 and

a.0, we obtain a boundiF(h)ci<c1iHEci1c2ici with positive numbersc1 ,c2.0 where
c1 can be chosen arbitrarily small. Then the Kato–Rellich theorem yields the first state

From ~B4! we obtain iF(h)ci2<4iM 2
1
2hi2(cuHEc)14iM 21/2hiihiiAHEciici1ihi2ici2

<8iM 21/2hi2(cuHEc)12ihi2ici2. Hence the operator inequalities 0< 1
2F

2(h)
<4iM 21/2hi2HE1ihi2I E hold, and we have derived the second statement. j

Therefore the total Hamiltonian~4! is semibounded, and the unitary operatorsUl(t)
5exp(2i(HE1lF(h))t) are well defined if~10! is satisfied.

In a first step we evaluate the expectation value of~11! Uab(t)5Ua(2t)Ub(t) for a coherent
state ~5normalized exponential vector! exp(f21/2i f i2) under the additional constraintM 21h
PH1 . This assumption allows us to use the identity~B3! which reduces all calculations to th
Weyl relations and the vacuum expectation~B1!. The extension to the general case, which viola
M 21hPH1 , can then be performed by a continuity argument.

If M 21hPH1 the identity ~B3! implies Ul(t)5T(2lM 21h)U0(t)T(lM 21h)
3exp(il2(huM21h)t). Then Uab(t)5Ua(2t)Ub(t) can be evaluated with the help of~B1! and
~B2! with the result

Uab~ t !5T~~a2b!~V1~ t !2I !M 21h!exp~2 iw1~ t !!,
~B5!

w1~ t !5~a22b2!$~huM 21h!t1~M 21huM 21 sin~Mt !h!%.

Let v( f ) denote the projection operator onto the normalized coherent state exp(f21
2ifi2),fPH1 .

Then trEUab(t)v( f ) is evaluated as (1vacuT1( f )Uab(t)T( f )1vac)5(1vacuT((a2b)(V1(t)
2I )M 21h)1vac)exp(2iw(t)) with the phase w(t)52(a2b)Im(fu(I2V1(t))M21h)1(a22b2)
3((M21huht1M21 sin (Mt)h)). Using the second identity of~B1! we finally obtain

trEUab~ t !v~ f !5expS 2
~a2b!2

2
i~V1~ t !2I !M 21hi2Dexp~2 iw!. ~B6!

Under the assumptionM 21hPH1 the normi(V1(t)2I )M 21hi is uniformly bounded int and the
trace~B6! does not vanish fort→`. But nevertheless one can achieve a strong decrease w
persists for some finite time interval. This period can be chosen arbitrarily large if the low e
contributions are strong; but, inevitably, recurrences exist.14

The operatorsHE1lF(h) are self-adjoint on the domain ofHE if hPH1 and M 21/2h
PH1 . Therefore it is possible to extend the result~B6! to Hamilton operators which satisfy thes
constraints but violateM 21hPH1 . To make this statement more explicit we introduce the no

uihiuªihi1iM 2 1/2hi . ~B7!

Let hnPH1 ,n51,2,. . . , be asequence of vectors which converges in this topology to a vectoh.
Then we know from~B4! and the proof of Lemma 1 that there exist two null sequences of pos
numbersc1n andc2n such that
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i~F~hn!2F~h!!ci<c1ni~HE1F~h!!ci1c2nici .

Hence the operatorsHE1F(hn) converge strongly toHE1F(h). Then Theorem 4.4 of Ref. 19
or Theorem 3.17 of Ref. 20 implies the strong convergence ofU(hn ;t)5exp(2i(HE1F(hn))t) to
U(h;t)5exp(2i(HE1F(h))t), uniformly in all intervals 0<t<s,`. The operatorsUab,n(t)
ªexp(i(HE1aF(hn))t)exp(2i(HE1bF(hn))t) converge therefore in the weak operator topology
Uab(t). For n51,2,..., we can calculate the corresponding traces trEUab,n(t)v( f ) with the result
~B6! where h has to be substituted byhn . Since ~B6! is continuous in the variableh in the
topology ~B7! the limit for n→` is again given by~B6!.

As an essential statement we now derive that there is a set of vectorshPH1 which are in the
domain ofM 21/2 and for which the normi(V1(t)2I )M 21hi diverges ift→`. For this purpose
we introduce the spectral resolutionPM(dl) of the one-particle Hamilton operatorM . The energy
distribution of the vectorhPH1 is given by the measuredsh(l)5(huPM(dl)h). The norm of
(V1(t)2I )M 21h is the square root of

c~ t !ªi~V1~ t !2I !M 21hi254E
R1

l22 sin2
lt

2
dsh~l!. ~B8!

This integral is well defined for allhPH1 , andc(t) is differentiable fortPR.
Proposition 1: If M21h¹H1 , i.e., the integral*«

`l22 dsh(l) diverges for«→10, then

t21E
0

t

c~s!↗` if t→`. ~B9!

Proof: The time integral of ~B8! is ĉ(t)5*0
t c(s)ds5*0

`l23x(lt)dsh(l) with x(s)
54*0

s sin2(u/2) du52(s2sins)>s if s>2. Hence ĉ(t)>*2/t
` l23x(lt)dsh(l)

>t*2/t
` l22dsh(l), and~B9! is a consequence of the assumption. j

From ~B9! the divergence of the upper limitlimt→`c(t)5` follows, but not necessarily
c(t)↗` if t→`. To derive this stronger result we assume the uniform lower bound~12! for the
measuredsh(l).

Lemma 2: If the measure dsh(l) satisfies the condition~12!, then the integral~B8! diverges
at least logarithmically for t→`.

Proof: The integral is estimated by c(t)54*R1
l22 sin2(lt/2)dsh(l)

>4c1*0
l1l21 sin2(lt/2)dl54c1*0

l1t/2s21 sin2sds;log t if t→`. If dsh(l);l2mdl, 0,m, 1
2,

the divergence is power likec(t);t122m. j

So far the reference statev has been a coherent state. But the results remain obviously tr
the reference state is a finite linear combination of coherent states or a finite mixture of co
states.

As a final remark we indicate a modification of the model. The absolute continuity o
spectrum ofM has entered our proofs only in the assumption~12!. If we substitute this assumptio
by

l22sh~l!ªl22E
0

l

dsh~a!↗` if l→10, ~B10!

then we can derive the divergence of~B8! by the inequalities c(t)
>4*0

p/t l22 sin2(lt/2)dsh(l)> (4/p2) t2*0
p/tdsh(l)5 (4/p2) t2sh(p/t) using sinx> (2/p) x if

0<x< p/2. For measuresdsh(l);l2mdl the assumption~B10! is more restrictive than~12!—it
excludesdsh(l);ldl which is admitted by~12!. But ~B10! is also meaningful for point mea
suresdsh(l), and M may be an operator with a pure point spectrum. The boson field
therefore be substituted by an infinite family of harmonic oscillators, which have zero as
mulation point of their frequencies.
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Two-dimensional theory of chirality. I. Absolute chirality
Patrick Le Guenneca)

École Normale Supe´rieure, URA 1679, 24 rue Lhomond, F-75231 Paris Cedex 05, France

~Received 27 January 1998; accepted for publication 6 March 2000!

Chirality is a notion already familiar to undergraduates as the fact that an object is
not superposable to its mirror image. Its dichotomous or ‘‘yes/no’’ character, im-
plicit in this definition due to Lord Kelvin, has always been considered self-evident.
We prove here and in the companion article that in two dimensions chirality—the
very concept of chirality—is acontinuousphenomenon in the special case of
square-integrable wave functions. This conception of chirality is to Kelvin’s defi-
nition what the continuous conception of door opening is to the closed/nonclosed
dichotomy; hence it provides a continuous description of the discrete achiral sym-
metry breaking. This result is first extended to three and higher dimensions, then to
the whole nonrelativistic quantum description of matter. Thus molecules are more
or less chiral just as doors are more or less open, and molecular chirality changes
continuously during chemical reactions. Chirality splits into two complementary
forms—absolute and relative chirality. We present here the theory of absolute
chirality. More generally, this unexpected and paradoxical breakthrough in symme-
try theory is based on a geometrical description of wave functions that should find
broad applications in molecular physics and in stereochemistry, where the notion of
chirality has an overwhelming importance since long ago. ©2000 American In-
stitute of Physics.@S0022-2488~00!02307-0#

I. INTRODUCTION

Almost one century ago, chirality was defined by Lord Kelvin1 in the following terms: ‘‘I call
any geometrical figure, or group of points, chiral, and say it has chirality, if its image in a p
mirror, ideally realized, cannot be brought to coincide with itself.’’ It is equivalently said th
system is achiral when its symmetry group contains at least one indirect isometry, and
otherwise. It follows from that celebrated definition, which is nowadays universally accepted
the point that undergraduates already know of it, that~a!chirality is a discrete symmetry propert
closely related to parity. More precisely, the symmetry concept introduced by this definiti
achirality: Kelvin’s definition is nothing other than the definition of achirality. Chirality is t
name given to the situation of broken symmetry, and is only defined negatively. In other wo
system is chiral if and only if~iff! it is not achiral. This fascinating chapter of symmetry theo
finds broad applications in molecular and solid state physics~not to speak of high energy physic
especially weak interactions! because this discrete symmetry determines selection rules of int
to important physical phenomena, such as optical activity, circular dichroism, NMR, etc. I
also an overwhelming importance in~bio!chemistry, because almost all molecules of interes
biologists and organic chemists~except the smallest ones, water, carbon oxides, acetic acid,!
are chiral and because biological systems such as enzymes easily discriminate mirror-imag
ecules~enantiomers!. This particular molecular recognition effect is fundamental to life proces
and historically gave the initial impulse to a vast amount of experimental work, broadly spe
aimed at selectively producing only one of the two possible enantiomers in the course of o
syntheses or drug designs. A major and seemingly ever-increasing part of~bio!organic chemistry
is now devoted to such ‘‘enantioselective’’ syntheses.2

a!Present address: Institut de Chimie Mole´culaire d’Orsay, Batiment 410, Universite´ Paris–Sud, F-91405 Orsay Cede
France. Electronic mail: Leguennec@icmo.u-psud.fr
59540022-2488/2000/41(9)/5954/32/$17.00 © 2000 American Institute of Physics
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Kelvin’s definition is a very general statement that applies to every object that is ‘‘sufficie
geometrical’’ for its mirror image to be defined and compared to it. This range includes
different objects, for example, knots and the square-integrable (L2) wave functions of nonrelativ-
istic ~NR! quantum mechanics. However, while knots are mainly of interest to the theorist,
the chirality ofL2 wave functions represents a capital issue, because our present conception
physical world depends on quantum mechanics and, at least in regard to the NR fram
quantum mechanics depends onL2 wave functions to describe matter: starting, e.g., from the le
of electrons and nuclei, molecules—aminoacids, polymers, DNA—are basically describedL2

wave functions of the formcs1 ...sN
(r1 ...rN ;R1 ...RA), where r1 , s1 ...rN , sN (s i561) and

R1 ...RA are electrons and~spinless! nuclei coordinates, while thermodynamic phases—e.g., liq
crystals—are described by statistical averages ofL2 wave functions. Hence, provided we believ
in quantum mechanics, relativistic quantum field theory temporarily being set apart,chirality in
the physical world is the chirality of L2 wave functions. Now the purpose of this work is to prov
that there is indeed something special and totally unexpected about the chirality of wave fun
as opposed for example to the chirality of knots: in the case ofL2 wave functions there exists
continuousdescription of the way achiral symmetry is broken—a complete, exact, unique, theo
retical description of chirality. This description is like the continuous description of door ope
as the rotation of the door around its hinges. A door has one and only one arrangement
symmetrical with respect to the reflections through the wall—the closed state. Then the rotatio
description of door opening provides a complete, unique, and continuous description of th
this discrete symmetry is broken. This symmetry is analogous to achirality and the conti
description of achiral symmetry breaking arises just in the same way. Now how related a
continuous rotational conception of door opening and the dichotomous closed/nonclosed s
try conception? We show in Sec. II that the answer is that both are conceptions of thevery same
phenomenon—door opening—but of differentgeometrical levels. The rotational conception pre
supposes the knowledge of rotations as a geometrical tool box to ‘‘think’’ the various door s
while the closed/nonclosed conception is related to a much cruder tool box. Depending
relevant geometrical framework, door opening can equally well be defined as a continuous
dichotomous phenomenon. Both conceptions are correct while apparently irreconcilable, a
the continuous conception of door opening that underlies the description of the discrete sym
breaking. The same conceptual mechanism will be unveiled in the case of chirality:chirality can
be defined as a continuous phenomenon in the case of L2 wave functions. This is the central resul
of this work—a highly surprising but unescapable matter of mathematical proof. The asso
geometrical tool box generalizes Euclidean isometries. For the sake of simplicity, this pr
detailed here in the case of two spatial dimensions. This conception will, however, be infer
apply to all the types ofL2 fields on which NR quantum mechanics depends to describe ma
Therefore we are lead to conclude that, the high energy domain covered by relativistic qu
field theory being presently set apart,chirality in the physical world is a continuous phenomeno.
Kelvin’s dichotomous definition is indeed valid, but it issogeneral that it istoogeneral—provided
we believe in quantum mechanics, chirality in the physical world is the special continuous c
ity of L2 wave functions. Whatever the level of description—from the electronic as from
nuclear viewpoint, from large scale configuration interaction computations to one-electron o
models—molecules are more or less chiral just as doors are more or less open.

This theory shows that there are two special forms of chirality, to be calledabsoluteand
relative chirality. Chirality is the combination of absolute and relative chirality just as a vecto
the combination of its projections on a basis. Each of these forms of chirality features a se
graphical representation—the so-called absolute and relative chiral loops~ACLs, RCLs!. Chiral
loops provide a highly convenient and efficient representation of chirality. An illustration of
fact will be provided on the example of 2Dcis-transisomerism. The theory of absolute chiralit
and that of 2D ACLs are presented in this article. The theory of relative chirality and that o
RCLs, together with synthetic remarks on this conception of chirality, are presented in the
panion article, henceforth denoted II. Extensive mathematical proofs are presented in th
detailed account of this unexpected and paradoxical breakthrough in symmetry theory. This
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is in essence a geometrical description ofL2 wave functions that goes beyond the pure issue
chirality and applies to all types of wave functions, electronic or nuclear molecular orbitals
densities. Hence there is hope that this theory finds a wide range of applications in mol
physics, stereochemistry, and biology. These applications will be dealt with elsewhere. An
view is first presented, so as to clarify the structure of this article.

II. AN OVERVIEW

Imagine that on a planet there is a door framed so as to open on both sides of the wall, a
the planet folks know nothing of Euclidean geometrical tools such as rotations—only mas
the much more primitive concept of identity~id!. What could be their understanding of th
door/wall system? They would indeed ‘‘see’’ that all door arrangements are different, but
lack conceptual tools to ‘‘think’’ anything of them—except when there is ‘‘identity’’ between
door and the wall planes. This closed situation is the only one that they can conceptually gra
all other situations cannot be but negatively conceived of, through the fact that they differ fro
thinkable one—they are nothing but ‘‘nonclosed’’ arrangements. Now let our folks know o
reflections through the wall plane. This assumption turns the set of available geometrical
into the group containing id ands, to be denotedO(1). s allows our folks to think of a definite
relationship—enantiomerism—between a door arrangement and itss image. Nonclosed situation
are still unthinkable but now the closed case is defined by asymmetry property, as the single
arrangement superposable to itss image. A prominent scientist of theirs could synthetize t
conception as the followingO(1) definition. Now, this conception is radically altered in th
framework provided by the operations of Euclidean geometry, the group of isometries, be
this larger conceptual tool box includes rotations, which are indeed fit to conceive of the
pivoting movement around its hinges. Door arrangements are then ‘‘thought’’ as a conti
manifold of individual states interchanged by rotation, and the door/wall system as featu
single rotational degree of freedom~Fig. 1!.

O(1) definition of door opening: ‘‘I call any door nonclosed~open!, and say it has opening, i
its s image cannot be brought to coincide with itself.’’
Euclidean definition of door opening: door opening is the continuous phenomenon of rotat
the door with respect to the wall.

The former conception is indeed dichotomous while the latter is continuous, butboth deal with
one and the same phenomenon—door opening. The two conceptions are not conflicting but h

FIG. 1. The phenomenon of door opening as seen from two different geometrical ‘‘filters.’’ Left: a conceptual too
reduced to the two operationsid, s forming the groupO(1) cannot allow to ‘‘think’’ but of the symmetry property
associated to the closed arrangement. Right: the larger Euclidean tool box allows to ‘‘think’’ the rotational deg
freedom of the door/wall system. This results in a continuous conception of door opening describing the way the p
symmetry is broken.O(1) and Euclidean operations act as optical and electronic microscopes yielding pictures of di
resolutions of the same surface. The continuous conception of chirality arises just in the same way.
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archically related, because they are associated to differentlevelsof geometrical analysis. Both ar
equally correct while only apparently irreconcilable. More precisely, the geometrical tool b
which door opening is conceived as a discrete symmetry property is included in the geom
tool box in which it is conceived as continuous. In theO(1) conception door opening is negative
defined. The actually defined concept, closing, reduces to a symmetry property. In the Euc
conception door opening is a continuous, extensive, and positively defined phenomeno
origin of this breakthrough is simply that Euclidean geometry correctly brings out the structu
the internal degree of freedom while the crudeO(1) geometry cannot allow to think but of th
overall symmetry property. As aconsequencethe Euclidean conception provides the single p
sible description ofthe way symmetry is broken. This conception reflects the particular nature
the involved degree of freedom, whence the fact that its formal expression looks different fro
previous symmetry criterion. The continuous conception of chirality arises just in the same
The first idea is to consider a well-defined space of objects so that its mathematical structure
play the role of hinges putting the door/wall relationship on firm grounds~Sec. III A!. As previ-
ously emphasized, NR quantum theory tells us that matter is described by wave functions,
L2 complex distributions~fields!, whence the capital role ofL2 fields in theory. Then the spaceH
of L2 fields @Eq. ~2.1!# on the planeP was selected because it provides a simple test bench fo
generalization to 3D and relativistic physics~Sec. III A!. The elements ofH describe 2D NR
spinless particles;

cPH iff E
P
uc~x,y!u2 dx dy is finite. ~2.1!

The phenomenon which is naturally investigated inH is local chirality, or chirality at a given
origin O ~Sec. III B 2!. According to Kelvin a field is achiral iff its symmetry groupG contains
indirect ~orientation reversing! isometries. Here a field is said achiralat O iff G contains indirect
isometriesleaving O invariant. Local chirality is chirality ‘‘as seen from the siteO.’’ An impor-
tant while paradoxical result is that inH Kelvin’s conception is aspecial caseof local chirality,
intuitively speaking the case whenO is the field inertia center—which seldom is physically
chemically relevant~Sec. III B 2!. Hence considering chirality locally offers the advantage
freeing origin selection. Asymmetric carbons, proteins active centers, etc. can be selected
Assuming O selected, as with the door/wall system the next step is the identification o
‘‘degrees of freedom’’ involved in the problem of local chirality. The crucial result is thatthe
geometrical degrees of freedom of L2 fields are the orientations of ‘‘radial canonical groups
(RCG)~Fig. 2!. RCGs result from a two-step analysis ofL2 fields ~Sec. IV!. ~i! The groupO(2)
of isometries leavingO invariant move field values along circles of centerO ~Sec. IV B 1!. Every
circle thereby behaving as an autonomous universe, field restrictions to circles are geome
independent.~ii ! There is a single decomposition in irreducible linear representations~ILRs! of
O(2) of the restrictionc (r ) to the circle of radiusr of the fieldc ~Secs. IV B 2–IV B 3!, whose
form is c (r )5(n>1cn

(r ) @cf. Eq. ~2.2!#. The RCGs ofc are the symmetry groupsGn
(r ) of the cn

(r )

~Sec. IV C!:

cn
~r !~u!5Dn~r !

1

A2p
einu1complex conjugate

~2.2!

Dn~r !5E
0

2p

c~r cosu,r sinu!•
1

A2p
e2 inu du.

The crucial property of RCGs of real fields is that their structure is fixed~Sec. IV C 5, complex
field theory is shown in II to be a simple extension of real field theory!. Gn

(r ) contains aCn rotation
center atO plus n evenly spaced reflection axes~n-star!. Hence as above stated the only degre
of freedom left are their orientations, i.e., that ofn-stars. The importance of RCGs follows from
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the simple but apparently original idea that field decompositions into ILRs such as Eq.~2.2!
determine symmetry group decompositions~Sec. IV A, IV C!. This means practically that RCG
act as the independentbuilding blocksof indirect isometries, which are reflection axes in 2D. Th
theory shows that reflection axes are formed from radial alignments of RCGs. The field is a
iff all RCGs are aligned~Sec. V A!. As soon as RCGs are misaligned reflection axes are ‘‘tear
and the field is chiral~Sec. V A!. The operations that make the field chiral are those that ro
RCGs with respect to one another~Fig. 3!. As with the door/wall system, previously unthinkab
chiral situations are now positively conceived of as a continuous manifold. Euclidean oper
do not change the relative orientation of RCGs, so Euclidean geometry cannot allow us t
ceive of the internal degrees of freedom ofL2 fields but only of the overall symmetry property
thus leading to Kelvin’s historical definition—generalized to the local context. On the contrar
post-Euclidean operations here constructed correctly bring out the structure of these deg
freedom, thereby introducing the following conception of chirality as a continuous, exten
local, and positively defined phenomenon:

Euclidean definition of chirality at O (Kelvin’s definition):‘‘I call any geometrical figure~...!
chiral @at O#, and say it has chirality@at O#, if its image in a plane mirror@containingO# ~...!
cannot be brought to coincide with itself.’’1

FIG. 2. Geometrical degrees of freedom ofL2 fields. ~a! An example 2D achiral field is the projected electron densityc
of cis 1,2-difluoroethylene. The 2D symmetry group ofc contains a reflection axis, whose intersectionO with the double
bond is here selected as the origin.~b! Theory shows that this reflection axis can be analyzed into radially aligned ‘‘piec
associated to every circle centered atO. The ‘‘door’’ is ‘‘closed.’’ The piece here displayed at the distancer is the
reflection axis contained in the ‘‘radial canonical group’’G1

(r ) of c. ~c! and ~d!; in other field examples RCGs ar
misaligned. Then reflection axes are ‘‘teared to pieces’’ and the field is chiral. The ‘‘door’’ is ‘‘open.’’ The large
misalignment of RCGs the more ‘‘open’’ is the ‘‘door,’’ the more chiral is the field:L2 fields chirality iscontinuousand
extensive. It is alsolocal insofar as the orientation of RCGs, like the vibration of a string, is defined at every distancer. An
appealing feature of this result is that contributions to this distribution can be ascribed to molecular groups or
depending on their distance fromO. More generally, atr pieces are stars ofn reflection axes forming, together with aCn

rotation, the RCGsGn
(r ) (n>1) of c. There can be misalignment both overn and r so there are two independent an

complementary forms of chirality: absolute chirality~misalignment of RCGs overr at fixedn, as shown here! and relative
chirality ~misalignment of RCGs overn at fixedr!. Chirality is the addition of absolute and relative chirality just as a vec
is the addition of its projections on a basis.
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L2 definition of chirality at O:chirality @at O# is the continuous phenomenon of misalignme
~misorientation! of the indirect elements of radial canonical groups~II, Sec. III!.

There are only two special forms of chirality:~i! misalignment overr at constantn—absolute
chirality, ~ii ! misalignment overn at constantr—relative chirality. A more rigorous derivation o
this fundamental distinction is found in Sec. IV C 3. Chirality is the addition of absolute
relative chirality just as a vector is the addition of its projections on a basis. This concepti
chirality features a highly convenientgraphical representationby the so-called chiral loops
Absolute and relative chirality are respectively represented by absolute~ACL! and relative~RCL!
chiral loops~Sec. V, II, Figs. 4, 11!. Chiral loops express the same information than cumbers
representations like that of Fig. 2, and are straightforwardly calculated from Eq.~2.2!.

On the other hand knots and graphs are mathematical concepts whose chirality3 presumably
cannot be conceived as continuous, as homotopy invariance implies that continuously de
representative curves define the same knot chirality, while a continuous conception of knot
ity should feature continuous changes with curve shape. Then an important consequence
vious results is that knots and graphs definitely loose most of the richness of real world mol
chirality, so arequalitativelyunsuitable to model it. Therefore among all objects that are ‘‘su
ciently geometrical’’ to be in Kelvin’s definition range, there are those whose chirality ca
conceived as continuous—wave functions—and those whose chirality cannot—knots. At thi
point we understand how capital is the generalization of the 2D line of arguments to 3D:
generalization would prove that thewhole NR quantum domainis included in the category o
objects whose chirality is continuous. As emphasized in the Introduction, the significance o
statement is that, provided we believe in the description of matter put forward by NR qua
mechanics, the chirality of all forms of matter~except possibly ‘‘relativistic matter’’! is continu-
ous. At this point nothing is said of relativistic quantum fields~e.g., electrons are considered in t
NR Pauli framework!, but this exclusion is only provisional. In fact there is strong hope to ext
this conception to relativistic fields in future work by replacing Euclidean distances by inte
and isometries by the Poincare´ group ~II, Sec. VI!. Now, fortunately the very way 2D theory i
established can strictly be paraphrased in any higher dimensiond. Local chirality has dimension
independent definition and properties. Circles are generalized as the relevant orbits of the o
nal groupO(d)—spheres in 3D. The Lebesgue measure~Sec. IV B! is decomposed into a radia
and an ‘‘angular’’ measuredV in every dimension~dV is the solid angle measure on the sphe

FIG. 3. How the ‘‘door’’ is ‘‘opened.’’~a! By definition rotations allow to change the orientation of fields in space with
deforming them, i.e., to handle their ‘‘extrinsic’’ degrees of freedom. In fact ‘‘internal’’ degrees of freedom cou
defined as the degrees of freedom escaping the reach of Euclidean operations. Then it comes as no surprise tha
cannot bring out their structure. Actually, rotations move RCGs jointly hence cannot allow to conceive of varying
misalignment, varying door opening.~b! An achiral field can only be ‘‘opened’’ by rotating RCGs independently. This
achieved by applying independent rotations to every field componentcn

(r ) according tocn
(r )(u)°cn

(r )(u2an(r )) where the
an(r ) are arbitrary mappings. ThenGn

(r ) is rotated byan(r ). Hence the ‘‘post-Euclidean’’ rotations required to ‘‘think’
the way fields are ‘‘opened’’ are defined by all possible sets of~measurable! mappingsan(r ). Euclidean rotations are
obtained whenan(r ) does not depend onr nor n. Reflection axes are similarly generalized. The group resulting from
completion procedure is an infinite dimensional Lie group generalizing the orthogonal groupO(2).
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in 3D! and field restrictions to orbits are similarly decomposed in ILRs of the orthogonal g
O(d). In the 3D case the decomposition on the sphere has the form of Eq.~2.3!, where theYlm are
the usual spherical harmonics. In arbitrary dimension, RCGs are still to be defined as the s
try groups emerging from this decomposition. For example, 3D RCGs are the symmetry g
Gl

(r ) of thec l
(r ) . Whateverd, all orbits always reduce to the same decomposition, hence the

existence of RCGs and the fact that their structure is fixed do not depend on dimension. Mor
dimension does not appear in the principles of the theory of symmetry group structure, he
the role of RCGs as building blocks of indirect isometries~Sec. IV C!. Thereforethe continuous
conception of L2 fields chirality based on RCGs is equally valid in three and higher dimensi.
There are technical changes associated to dimension, but these changes are limited to the
RCGs, hence to the form that take chiral loops. In 3D the couple of real field ARFs (Dn ,D2n) is
replaced by a 2l 11 multiplet (D l l ,...D l ,2 l) satisfyingD l ,2m5D̄ lm , so 3D ACLs are the repre
sentations of ARFs multiplets in the 2l 11-dimensional space obtained by separating real
imaginary parts in these multiplets. Unpublished results show that these results are tech
extended to many-variableL2 fields and to spinorial~spin 1/2 electrons! and higher tensorialL2

fields ~high spin nuclei, electromagnetic fields, currents!. Then the first achievement of this theo
is to demonstrate that a mathematically exact description of a discrete symmetry brea
achirality—can be constructed in the spaces on which our understanding of the physical
depends. This theory thereby demonstrates that major features of real world chirality~continuity,
extensivity, locality! have been overlooked during almost one century:

c~r !5(
l>0

c l
~r ! H c l

~r !~u,w!5 (
m52 l

l

D lm~r !Ylm~u,w!

D lm~r !5E c~r ,u,w!Ȳlm~u,w!dV

. ~2.3!

FIG. 4. Chirality is a continuous time-dependent phenomenon during chemical reactions. This is illustrated by a 2D
of the archetypicalSN2 nucleophilic substitution. A distant~a! atom Cl impinges on a 2D chiral trivalent center~b!,
induces Walden inversion through an achiral transition state~c! then symmetrically expels the opposite Cl~d,e!. Here the
theory of chirality is used as a ‘‘black box’’: the collision mechanism is a given input, chirality evolution is the outpu
chose to emphasize electronic chirality, so time-dependent nuclear distances and angles were introduced to qua
reproduce Walden inversion~a!–~e!. Origin was set at the reacting center. Arbitrary electron orbitals or densities ca
analyzed depending on the issue in hand. We selected here the total system electron density, modeled by the sums-type
Gaussian atomic contributions. ARFs are known analytically in such cases. Figure 4 shows the ACLs representing
chirality of ordern51 at various reduced timest. Chiral loops theory will be detailed in Sec. V. The basic result is t
ACLs express graphically the same information than cumbersome representations such as that of Fig. 2, whi
directly obtained from the field through Eq.~2.2!. Hence ACLs provide an exact and convenient graphical expressio
absolute chirality. ACLs begin and end at the origin, whence the choice of their name. The field is absolutely ac
order n iff its nth order ACL degenerates to a line segment~c!. ACLs are oriented in the direction of increasingr.
Enantiomer fields have symmetrical ACLs run in opposite directions~a,e or b,d!. The closer to line segments are ACLs, th
less absolutely chiral is the field. In the course of this 2D model reaction mechanism, the absolute chirality of the e
density steadily decreases down to nullity~c! then increase symmetrically. Scale units: Å22.
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The total chirality of a molecule or a system of interacting molecules is fundamentally that
quantum state, saycs1 ...sN

(r1 ...rN ;R1 ...RA). This state combines all electronic and nucle
sources of chirality in the molecule, so its study can be cumbersome. Fortunately every sou
be considered separately. Nuclear chirality depends on the vibrational state. Electron chiral
be simply studied in the adiabatic approximation~Fig. 4!. This theory, e.g., applies to one-electro
orbital models. In that case chiral loops allow to study the geometry of every virtual or occu
molecular, or localized bond orbital~HOMO, LUMO, etc.! or of the electronic density.4 This
theory applies to all modelization levels from large scale CI to the simplified description
folded proteins. It also applies to transition states as well as to stable species, so both kine
thermodynamic applications can be foreseen. Like angular momentum, orbital geometry sho
studied from a definite origin and the fact that any site can be selected~asymmetric carbon, protein
active centers, etc.! is an important practical feature of the local approach.

The core of this theory is the concept of radial canonical group. For example, the ‘‘
Euclidean’’ group describing the ‘‘opening’’ of the ‘‘chiral door’’ is directly derived from RCG
~Fig. 3!. Therefore most of the forthcoming results deal with RCGs. The 3D theory is out o
scope of these two articles. Only the technically simpler 2D theory is detailed there.

III. FIELDS AND ISOMETRIES

A. Chirality in a definite space

Two distinct ingredients are found in Kelvin’s definition: objects and isometries operatin
these objects. Let us first consider sets of objects. Molecular theory is basically concerne
quantum wave functions. Other relevant objects are electric and magnetic fields distribu
electromagnetic potentials, electron dipolar moment/spin densities, and other distributions.
functions and electromagnetic field distributions obey a superposition principle stating tha
addition and their multiplication by either complex or real numbers are physically meaningf
other words, physical spaces of states of quantum mechanics and electromagnetism are
functional vector spaces, so the chirality of such systems is always considered in a very s
framework. This fact raises the following question: do such algebraic or topological struc
have any consequence on the qualitative features of chirality? CouldembeddingKelvin’s general
definition in a space of objects of definite overall structure result in qualitatively new featur
the phenomenon of chiralityoriginating in the structureof that space? To the best of our know
edge, this problem has never been discussed. Kelvin’s definition is a general symmetry sta
which can be applied to molecules, solids, liquid crystals, etc., as well as to mathematical o
~geometrical figures, knots, etc.!, so it cannot be but silent on this point. As an attempt to deco
pose this problem, we suggest to distinguish the following questions:~I! Does the structure of a
space have anything to do with the chirality of its elements?~II ! If the answer is positive, doe
every piece of structure~vector space structure, topology, inner product, etc.! have a definite role
in the resulting analysis?~III ! As a consequence, what are the spaces in which the assoc
theories of chirality are the richest?~IV ! What is the status of the spaces of definite physi
theories such as quantum mechanics from that point of view? As previously mentioned,
questions are approached here by investigating the phenomenon of chirality in a definite pro
space. These results~Secs. IV–V! will be analyzed in~II, Sec. VI!. Physical arguments supportin
the choice ofH will now be summarized. Wave functions and electromagnetic fields have
following properties:~i! they are eventually multicomponent or multivariable spatial distributi
of complex or real numbers;~ii ! they can be added, and multiplied by complex or real numb
~iii ! they can be spatially integrated; and~iv! are square-integrable. Square moduli of previo
distributions are interpreted as energy or probability distributions. As regards~iii !–~iv! quantum
mechanics and electromagnetism make use of the Lebesgue integral. The 2D integration e
is the Lebesgue measuredm5dx dy ~Ref. 5! on the planeP.6 Multi-variable or multi-component
fields ~electromagnetic and other tensorial fields! and 2D spin introduce needless technical co
plications at this stage, so we shall focus on one-component distributions of complex num
i.e., on the mapsc:P→C of P into the complex fieldC.7 The set of maps satisfying~iii !–~iv! is
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the vector spaceH of square-integrable measurable maps~2.1, 3.1!, denotedL2(P,dm) in inte-
gration theory.5 Now, in quantum theory as in electromagnetism two distributions that diffe
most over a ‘‘negligible’’ set of points cannot be distinguished by any physical measure
hence must be identified. The method of identification will be recalled as a means to introduH.
The so-called negligible sets are the measurable sets of measure zero~null sets!.8 cPH is said
almost everywhere~a.e.! zero or null, if zero except over a null set.5 Null maps form a linear
subspaceK of H. c, c8PH are identified iff c2c8PK. This defines a partition ofH into
equivalence classes, Eq.~3.2!, of a.e., equal maps. The associated quotient vector space i
spaceH5H/K we looked for. This space is denotedL2(P,dm) in Lebesgue theory. A well-
known result is thatH is aHilbert spacewith respect to the inner product Eq.~3.3! deduced from
the corresponding Hermitian form inH.5,9 Recall that Eq.~3.3! induces the normiċi5(ċuċ)1/2

on H;

0<E
P
ucu2 dm,1`, ~3.1!

ċ5$wPH/w2cPK%5c1KPH, ~3.2!

~ ċ1uċ2!5~c1uc2!5E
P
c̄1c2 dm, c1 ,c2PH. ~3.3!

H is a highly relevant example as regards the issue of the embedding spaces of chirality be
~i! H is the space of states of 2D spinless particles in NR quantum theory:~ii ! H is the prototype
of a large category of spaces of quantum or classical~e.g., electromagnetism! theories including
3D quantum theory;~iii ! H contains all~classes of! characteristic maps of geometrical figures
finite area@the characteristic map of a geometrical figure is the map equal to 1~0! inside~outside!
the figure#. Consequently geometrical figures of finite area, which can fully be handled thr
their characteristic maps, are included in the scope of this analysis. Beside these argume
fact that the 2D rotation group is commutative will prove an interesting technical simplificatio
begin with~Appendix A, Sec. III B 2!. Elements ofH are capable of various interpretations~wave
functions, geometrical figures, etc.! and we are free from specific constraints such as evolu
equations~Schrödinger equation...!.10 This is why elements ofH(H) will be neutrally called
fields.11

B. The group of isometries

1. The scalar representation

Operations of interest as regard chirality and their representation inH are discussed here. Th
planeP is an affine space and that fact will prove relevant to this theory~Sec. III B 2!, soP and its
directionP5R2 will be distinguished. Kelvin’s definition introduces mirror symmetries whose
equivalents are reflection axes, to be called indirect axes for the sake of generality. The ass
operations will be called pure indirect isometries. Kelvin’s definition also requires translation
rotations as tools to test coincidence. Any group containing all operations of interest in a d
framework can be called anenveloping group. In our case a natural choice of enveloping group
the group generated by indirect isometries, translations and rotations. This is the well-k
group of affine isometriesIs(P) ~Appendix A!.12 Let us then define the operation of isometries
H. Electric potential fields or wave functions are ‘‘bodily’’ transformed byuPIs(P) in the sense
that the field value atM is moved without change tou(M ). Generalizing this procedure to an
cPH, the valuec8(u(M )) of the transformed fieldc8 at u(M ) is equal toc(M ), Eq. ~3.4!. c8,
denotedr(u)c, depends linearly onc, so Eq.~3.4! defines a linear mapr(u) of H transforming
classes into classes (r(u)(K),K). The derived isomorphism ofH is also denotedr(u). Since
r(uu8)5r(u)+r(u8) the mapr associatingr(u) to u is a group morphism fromIs(P) into the
linear groupGL(H) of H.12 The linear representation~LR! (H,r) of Is(P) into H defines how
Is(P) is considered to operate inH in this paper. This continuous unitary LR12 is the so-called
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scalar representation ofIs(P).13 Elements ofH are henceforth called scalar fields. Kelvin
definition is now thatcPH is achiral iff its symmetry groupG, Eq. ~3.5!, contains at least one
indirect isometry:

c8~M !5~r~u!c!~M !5c~u21~M !!, ~3.4!

G5$uPIs~P!/r~u!c5c%,Is~P!. ~3.5!

2. Local chirality

An advantage of consideringIs(P) as the enveloping group is that the homogeneity ofP is
conserved. For example,Is(P) contains rotations centered at every point ofP. However, it is
equally important that the enveloping group:~i! should be kept as small as possible:~ii ! should
ideally becompactif any decomposition of the representation is ever considered, as in Sec.
because, broadly speaking, only the character theory of compact groups is as simple as
finite groups.14 ThenIs(P) has two major drawbacks:~i! Is(P) is not compact;~ii ! no cPH can
be invariant by translation because translation invariance is incompatible withc being square-
integrable~Appendix A!. Now Is(P) contains all translations hence is clearly too large as fa
symmetries of fields are concerned. Is there a physically meaningful way to restrict cons
operations to a group smaller thanIs(P)? It is commonplace that the symmetry group of
localized system is a point group, i.e., a group of isometries having a common fixed poA
~stabilizing A!. Let us consider this question in our framework. A first approach is to look dire
for a potential fixed point such as a center of inertia. The definition Eq.~3.6! is notably suggested
by the case of wave functions. As soon asC is well defined,C is independent from the originO
and is a fixed point ofG, so G is indeed a point group whencPHI \$0%. OtherwiseC is not
defined. This type of approach has this typical drawback that some fields should alwa
dropped out, like the elements ofH\HI in this case. Therefore we are lead to look for a pur
intrinsic approach. A remarkable result is that the absence of nontrivial translations inG is
sufficient to prove thatG stabilizes at least one point ofP. The 2D proof is algebraic~Appendix
A!. Then there always existsAPP such thatG,IsA(P) for any cPH. Now IsA(P) does not
contain nontrivial translations, and is isomorphous toO(2); hence it is compact as ideally re
quired~Appendix A!. Givenc, there is then a strong temptation to restrict the enveloping grou
IsA(P) whereA is some assumed fixed point of the symmetry groupG of c, since~i! the existence
of suchA is certain,~ii ! all possibleG are contained inIsA(P) as subgroups. This point has to b
argued carefully:

OC5
*POM ucu2 dm

*Pucu2 dm HcPHI \$0%
HI5$cPH/*POM ucu2 dm,1`%

. ~3.6!

If chirality is considered from a structural point of view, then, in order to allow for system
comparisons between series of chiral fields~e.g., 2D models of electronic densities or molecu
wave functions! it may appear as a natural convention to consider in every case chirality fro
unequivocally defined fixed pointA connected to the field such as its eventual center of ine
Then the enveloping group would be restricted toIsA(P). However, we argue that this viewpoin
is too restrictive as regard most other physical or chemical applications. In 3D let us cons
typical protein such as the enzyme chymotrypsin,15 whose biologically active site is close to th
surface. Chiral recognition of reacting species, called substrates, depends on the way the
~substrate! chirality is perceived by the substrate~protein! during the approach to the active sit
As far as the protein total electronic density is concerned in this process, its charge ce
located far from the active site and, as such, is not expected to be relevant as regard
recognition. On the contrary, the active site is expected to be relevant. Could the chira
chymotrypsin be ‘‘analyzed’’ from the active site? The same question is expected to occur
but the simplest situations. Let us recall theSN2 mechanism in the case of a chiral nucleophile a
the asymmetric carbon of 2-chlorobutane.15 The charge center of valence electronic density a
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other electronic distributions of 2-chlorobutane are distinct from the stereogenic carbon nu
As regard theSN2 mechanism, the position of this nucleus would intuitively be a better ori
Similar alternatives are expected in physics. For example, NMR chemical shifts are genera
hyperfine couplings of nuclei with electrons so depend on molecular orbitals as perceived
nuclei positions. In the case of chiral molecules, is it possible to analyze the chirality of orbit
electronic currents from these natural origins? The freedom to choose an arbitrary origin ma
benefit structural studies. Let us consider the series ofa-aminoacids R–CH~NH2!CO2H. The
electronic density charge center and other charge centers wander about asR is varied so these
points can hardly be considered as reliable origins. As far as the chirality of the aminoacid
is of interest, can it be uniformly considered from the position of the asymmetric carbon nuc
The question raised by these examples is whether or not chirality could be considered fr
arbitrary origin in the same way it is considered from a fixed point ofG. A positive answer would
mean the freedom to choose themost relevantorigin in every situation, thereby providing an
theory of chirality with its full versatility. We shall focus on this question now. The form
structure associated to a fixed pointA of G is the enveloping groupIsA(P) and the subgroupG of
IsA(P). Let us then associate to an arbitrary pointO a parallel structure: the enveloping grou
IsO(P) and the subgroupG(O) of the symmetry operations ofc contained inIsO(P), Eq. ~3.7!:

G~O!5$uPIsO~P!/r~u!c5c%,IsO~P!, ~3.7!

r PIsO
1~P!, sPIsO

2~P! then r~r !c5r~s!c⇔r 21 sPG2~O!. ~3.8!

G(O) is properly called the local symmetry group ofc at O since G(O) is the group of the
symmetries ofc stabilizing O. G(O) contains at least one rotation~id! but may contain no
indirect isometry. The physical interpretation ofG(O) is straightforward. Let us call local isom
etries the elements ofIsO(P), and local image ofc at O any imager(u)c of c under a local
isometryu. Recalling thatc is superposable toc8PH iff there is a direct isometryuPIs1(P)
such thatr(u)c5c8, c will be said locally superposable toc8 at O iff there is a local direct
isometryuPIsO

1(P) such thatr(u)c5c8. Then, in the same wayc is shown to be superposab
to its indirect images iffG is achiral, using Eq.~3.8! c is shown to be locally superposable to i
local indirect images atO iff G(O) is achiral. Now, paraphrasing Kelvin,c will be said locally
achiral at O iff c is locally superposable to its local indirect images atO. By theoremc is locally
achiral atO iff G(O) is achiral. There is an exact parallel between chirality and local chiral

It is clear thatG5G(A) iff A is a fixed point ofG. Then the fact thatG does have a fixed
point implies thatG is but one among the local symmetry groups ofc. Hence chirality is aspecial
caseof local chirality. In other wordsc is achiral iff c is locally achiral atA. Now, turning over
this approach, we can start from the previous definition of local~a!chirality and carry on our
analysis of chirality locally at arbitrary points. The distinctive property ofG is thatG is the single
maximal element of the set of local symmetry groups.16 The pointsO whereG(O) is maximal are
the fixed points ofG. At these pointsG(O)5G. Such properties are readily derived fro
G(O),G5G(A). The relationship of chirality with local chirality has other aspects. The loc
the points whereG(O) is achiral are the indirect symmetry elements ofc ~Fig. 5!. c is chiral iff
c is everywhere locally chiral. Converselyc is achiral iff there is at least one point wherec is
locally achiral. The seemingly paradoxical conclusion of this analysis is that the fact thatG has a
fixed point does not imply that this point should be chosen as origin. On the contrary, this f
the key argument of the construction of a local extension of chirality. AllIsO(P) are isomorphous
~Appendix A! so local chirality is an homogeneous concept reflecting the homogeneity of a
spaces such asP ~Sec. III B 1!. This concept provides a relevant definition of the intuitive noti
of chirality ‘‘considered from an arbitrary origin.’’17
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IV. THE STRUCTURE OF SYMMETRY GROUPS OF SCALAR FIELDS

A. Structure of symmetry groups and field decomposition

Through the concept of local chirality the choice of the origin is ascertained to be comp
independent from the considered fields. Taking advantage of this freedom a single arbitrary
O is chosen as the origin ofP in the following. The phenomenon to be henceforth analyze
chirality at O in H. For the sake of brevity ‘‘chirality’’ will stand for ‘‘chirality atO.’’ Explicit
references toO are suppressed@e.g.,G stands forG(O)#. A field cPH is achiral or not according
to the indirect contents ofG, Eq. ~3.7!. This is our only starting point. Our aim is to develop
theory of this phenomenon. How could we proceed? The principle of this analysis is to intro
a simple but, to the best of our knowledge, original argument on thestructure of G. Let us
illustrate the idea. LetH be the sum of two supplementary subspacesH1 ,H2 on which c is
decomposed asc11c2 . If the symmetry group ofc1PH1(c2PH2) is denotedG1(G2), then Eq.
~4.1! shows thatuPG1ùG2 implies uPG, hence shows thatG1ùG2,G:

r~u!c5r~u!c11r~u!c2 . ~4.1!

Conversely, ifH1 ,H2 areinvariant18 then, ifuPG r(u)c1(r(u)c2) must coincide withc1(c2).
ThenuPG1 ,G2 so G,G1ùG2 . HenceG5G1ùG2 . In plain words~i! G has a definite struc-
ture, as the intersection of two other definite symmetry groups, and~ii ! this structure is associate
to and determined by the description ofc as the sum ofc1 ,c2 . This relation between group
structure and field decomposition is a consequence of the vector space structure of the
objects~Sec. III A!. The effect of isometries is more ‘‘elementary’’ onc1 ,c2 than onc because
the LR (H,r) is reduced to subrepresentations onH1 ,H2 . Then the structure~not the contents! of
G1 ,G2 is expected to be simpler than that ofG. Now a natural strategy is to iterate this procedu
until the full structure ofG is uncovered. The natural endpoints of this iteration are the subre
sentations which do not contain nontrivial invariant subspaces: the ILRs of (H,r). A decompo-
sition of (H,r) into ILRs19 then turns questions on the contents ofG into questions on the
intersection, i.e., the ‘‘matching’’ or the ‘‘alignment,’’ of ILR symmetry groups. Basically th
strategy does not depend on the dimension of physical space~Sec. II!. Only the catalog of ILRs
and associated symmetry groups inH are specific of dimension two.

Since we have noa priori idea of what the structure of symmetry groups could be, we s
base our reasoning on the construction of an adapted decomposition of fields~Sec. IV B!, from
which the structure ofG will be extracted~Sec. IV C!. We must take care of the well-known fac
that the decomposition of LRs into ILRs is not unique if several equivalent ILRs are pre

FIG. 5. Local symmetry groupsG(O) of a field satisfyingGPD3 . The three indirect axes are shown as plain lines a
form a 3-star.A denotes the fixed point ofG. The 3-star is the locus of achiral local symmetry groups. Outside the 3-
G(O) reduce toC15$ id%. On the 3-star except atA, G(O)PD1 . At the fixed pointA, G(A)5G is maximal.
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However, the sum of the invariant subspaces ofequivalentILRs, i.e., the so-called canonica
subspace of the considered class of ILRs, is unique.12 Therefore our strategy involves two differ
ent questions:~i! What is the canonical decomposition of (H,r)? ~ii ! Is there a preferred decom
position of canonical subspaces into ILRs in relation with chirality? ILRs ofIsO(P) are recalled
in Appendix A ~cf. also Sec. IV B 1!. The canonical subspace of thenth tensorial~scalar, pseu-
doscalar! ILR is denotedHn(H0

1 , H0
2) and associated projectors~projections ofc! are denoted

pn ,p0
6 @cn5pn(c), c0

65p0
6(c)#. ThenH is the Hilbertian sum Eq.~4.2!:

H5H0
1

% H0
2

% @ %

n>1
Hn#. ~4.2!

B. The decomposition of fields
1. Isometries and circles

In Appendix A, we show that there is an infinite number of decompositions of the cano
subspacesH0

1 ,Hn , hence of (H,r), in the usual mathematical sense. No definite decompos
of this type appears preferred to the others in the context of chirality. Therefore question~ii ! does
not seem triviala priori. However, the fact that we deal with isometries opens another rou
tackle this question. This route is defined here and explored in the following sections. It w
found to provide a natural solution to the problem of unicity. The simplicity of the represent
of chirality by chiral loops is ultimately due to this solution. By definition isometries conse
distances. The distance fromO to MPP is conserved byIsO(P), so from Eq.~3.4! isometries
move the field valuesalong concentric circlescentered atO. The field values on distinct circle
cannot be mixed up while any two points of a given circle are connected by at least ou
PIsO(P). Isometries operate as if fields were decomposed into independent distributions
set of circles, much in the way Ptolemy considered the universe as a series of indep
concentric spheres.20 Consequently the decomposition ofcPH should be studied separately o
every circleC(r ) of radius r>0. However, circles are null sets so the distribution of a class
fields onC(r ) is not well-defined. This obstacle can be avoided by first considering fields w
distribution on circles can be properly defined and by generalizing the obtained results late
simplest solution is to consider continuous fields.21 All arguments of Sec. IV could be exposed
that framework. However, fields with a much stronger property of analyticity21 will be required in
II, so, for the sake of uniformity analytic fields will be considered from the beginning. Sq
integrable analytic~Cv or regular! fields form a linear subspaceC v,H which can be identified
with Cv5C v/K,H. The fact that this procedure entails no loss of generality is proved in
pendix B and Sec. IV B 4. In that context it is indicated to use a coordinate system containin
invariant distancer 5OM>0. In 2D r is completed by a single angleu measured from theOx axis
of an arbitrary fixed reference frame. In this frameworkP can be identified withR2 and IsO(P)
with O(2) ~Appendix A!, so Eq.~3.4! turns to Eq.~4.3! wherec(r ,u) is considered a periodic
function of uPR. From Fubini theorem the inner product Eq.~3.2! can be split as Eq.~4.4!
~Appendix B!. This defines radial and angular inner products Eq.~4.5! on the associated Hilber
spacesHm ,Hu of square-integrable maps:

@r~r a!c#~r ,u!5c~r ,u2a! r aPO1~2!

@r~sa!c#~r ,u!5c~r ,2a2u! saPO2~2!
aPR, ~4.3!

~c1uc2!5E
P
c̄1c2 dm5E

V
H E

I
c̄1~r ,u!c2~r ,u!duJ dm~r !, ~4.4!

~ f 1u f 2!u5E
I
f̄ 1~u! f 2~u!du f 1 , f 2PHu5L2~ I ,du!

~g1ug2!m5E
V

ḡ1~r !g2~r !dm~r ! g1 ,g2PHm5L2~V,dm!

. ~4.5!
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2. The canonical decomposition on circles

Let r>0. The restriction ofcPCv to C(r ), denotedc (r ), is the C` periodic u-function
defined byc (r )(u)5c(r ,u). c (r ) is u square-integrable, soc (r ) belongs toHu5L2(I ,du) and its
class toHu . r being invariant, Eq.~4.3! shows that the restriction ofr(u)c to C(r ) depends on
c (r ) only through the linear mapru(u) of Hu satisfying Eqs.~4.6!–~4.7!. This defines a
LR(Hu ,ru) of O(2) which does not depend onr and is extended toHu as in Sec. III B 1. Then
(H,r) is reduced to the same representation (Hu ,ru) on all circles. (Hu ,ru) is now to be decom-
posed into ILRs. The most intuitive method, unfortunately specific of 2D, is to use Fourier s
Let us call circular harmonics, with reference to 3D spherical harmonics, the set ofYn(u)
5(1/A2p)einu(nPZ). Circular harmonics form a Hilbertian basis ofHu .5 The development of
any f PHu over this basis is the Fourier series Eq.~4.8! which converges in the sense ofHu . The
action Eq.~4.9! of O(2) on Yn shows that the 2D subspaceHun generated by$Yn ,Y2n%(n>1)
and the 1D subspaceHu0 generated byY0 are invariant. The LR(Hu0 ,ru0) induced onHu0 is the
scalar ILR (ru(r a)Y05ru(sa)Y05Y0). In the basis (Yn ,Y2n) the matrix representation of th
LR(Hun ,run) induced onHun is Eq. ~4.10!, so (Hun ,run) is thenth tensorial ILR. The pseudo
scalar ILR is not present in (Hu ,ru). Every other ILR being present only once, the requir
decomposition of (Hu ,ru) is Eq. ~4.11!. This decomposition isunique:

@r~u!c#~r !5ru~u!c~r !, ~4.6!

@ru~r a! f #~u!5 f ~u2a! r aPO1~2!

@ru~sa! f #~u!5 f ~2a2u! saPO2~2!
, ~4.7!

f 5 (
nPZ

cn~ f !Yn

cn~ f !5~Ynu f !u5
1

A2p
E

I
f ~u!e2 inu du

, ~4.8!

ru~r a!Yn5e2 inaYn

ru~sa!Yn5e2inaY2n
aPR, nPZ, ~4.9!

Mat~run~r a!!5S e2 ina 0

0 einaD , Mat~run~sa!!5S 0 e22ina

e2ina 0 D , ~4.10!

~Hu ,ru!5~Hu0 ,ru0! % @ %

n>1
~Hun ,run!#. ~4.11!

Now the coordinate ofc (r ) over Yn is the inner product Eq.~4.12! denotedDn(r ), so the projec-
tion cn

(r ) of c (r ) on Hun is Eq.~4.13!. Sincec is reconstituted by radially collecting all restriction
c (r ), everything works outas if (H,r) contained thenth tensorial ILR once on every circle
~Appendix B!, i.e., as ifHn were the ‘‘sum’’ of a radial series ofnth tensorial ILRs. In that sense
cn can be obtained by radially collecting the projectionscn

(r ) , Eq. ~4.14!. The set of coordinates
Dn(r ) then turns to aC` dm square-integrable mapDn of the radiusr>0, to be called thenth
absolute radial function~ARF! of c. Similarly H0

1 appears as the ‘‘sum’’ of a radial series
scalar ILR, c0

1 being obtained by collecting thec0
(r ) , Eq. ~4.13!. Finally c0

250 henceH0
2

5$0%. Note thatc (r 50) is constant, so all ARFs are zero at the origin exceptD0 :

Dn~r !5~Ynuc~r !!u5E
I
Ȳn~u!c~r ,u!du, ~4.12!
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cn
~r !5Dn~r !Yn1D2n~r !Y2n

c0
~r !5D0~r !Y0

, ~4.13!

c5c0
11(

n> l
cn H c0

1~r ,u!5D0~r !Y0~u!

cn~r ,u!5Dn~r !Yn~u!1D2n~r !Y2n~u!
. ~4.14!

The idea of slicing ofP into concentric circles is suggested by the very definition of isometr
hence is an expression of the internal logic of the problem. In the previous sense the fact t
decomposition of (Hu ,ru) is unique provides a natural answer to question~ii ! of Sec. IV A. This
procedure also suggests ageometricalinterpretation of ARFs as radial series of coordinates
tained by projecting the set ofc (r ) on ILRs. ARFs are uniquely defined as an expression of
canonical decomposition Eq.~4.14! and completely describe the field from the point of view
local isometries. The representation of ARFs in the complex plane will accordingly be a c
tool in the analysis of chirality Sec. IV B.

3. The general case

The previous analysis is transposed to the general case here. Mathematical argume
presented in Appendix B. Only results will be stated here. Fields and classes of fields are
guished.~i! Let cPH. Then Dn is a.e. defined by Eq.~4.12! and isdm square-integrable, so
DnPHm5L2(V,dm). ~ii ! Let c, c8PH reduce to the same elementċ5ċ8 of H. ThenDn ,Dn8
PHm belong to the same class, so a single set ofDnPHm fulfilling Eq. ~B4! is associated to every
cPH. The summary Eq.~4.15! shows that the definition ofDn is simply weakened step by ste
in the generalization of theCv case. The canonical projectorsp0

1 ,pn can be expressed inH as
integrals over the irreducible characters ofO(2) ~Appendix B!. As a result we get the identitie
Eq. ~4.14! with c,c0

1,cn now being understood as elements ofH andDn as the previously defined
element ofHm . Sincer(u) commutes withp0

1 ,pn , canonical projections are scalar fields. No
that the ‘‘building blocks’’c0

1 ,cn of a geometrical figure are not expected to be other geomet
figures, so geometrical figures donot appear as privileged starting points in the theory of chiral
As regard the poor behavior at large orders of their ARFs~Sec. VI!, geometrical figures even ran
among the most pathological elements ofH. More comments on geometrical figures are found
~II, Sec. VI A!:

cPCv⇒DnPCm
`

cPH⇒DnPHm nPZ.

cPH⇒DnPHm

~4.15!

4. Regularization of fields

The previous results show that:~i! There is a direct geometrical interpretation of the canon
decomposition, at least in the case ofCv fields.~ii ! The general case is deduced from this case
a limiting process turningCv everywhere defined to a.e. defined quantities~fields, ARFs!. ~iii ! The
manipulation ofCv quantities in intermediate results is much easier. A natural temptation th
to work systematically withCv fields. It happens that this is possible because anycPH can
always be approximated~regularized! by a set or a sequence ofCv fields which can be chose
arbitrarily close toc.5 If some considered property depends continuously on the field in the s
of H, such as ARFs and as every property continuously related to ARFs~e.g., absolute chirality!,
it is possible to consider fields as regularized in intermediate manipulations, and to remove
larization only in the end. This procedure is used in Sec. V. Regularizations exist becauseH can
be obtained fromCv by completion, i.e., by adding toCv its ‘‘missing points’’ ~the missing limits
of Cauchy sequences!22 in such a way thatCv is dense inH. Among the several known types o
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regularization a most physically appealing one was selected, i.e., regularization bydiffusion. The
regularized fieldr («)c5c« is obtained by allowingc to diffuse during the ‘‘time’’«.0. In other
wordsc« is the solution of Eq.~4.16!:

]c«

]«
2Dc«50

ic«2ci ——→
«→01

0
«.0, ~4.16!

c«~r !5@r ~«!c#~r !5E
R2

k«~r2r 8!c~r 8!dm~r 8!

~4.17!
k«~r !5~4p«!21e2r 2/4«.

The following properties of diffusion are standard.5 Equation~4.16! has a single solutionc« which
depends only on the classcPH and can be expressed as the convolution product Eq.~4.17!.
Lebesgue theorem applied to a convenient series development ofk« shows thatc« is an analytic
map of the coordinatesx, y of r understood as two independent complex variables. As a sp
casec« is analytic as a function of realx, y.21 It is in the nature of diffusion to spread fields a
over space, i.e., to ‘‘fill in the blanks.’’ In particular regularized fields of bounded geomet
figures are a.e. nonzero whatever«.0. This is a very useful consequence of analyticity, that w
prove important in~II !. It is also shown thatc« is square-integrable and satisfiesic«i<ici , so
c«PCv and the continuous linear operatorr («) mapsH on Cv as required. Note thatc« always
vanishes asr→1`. From Eq.~4.18!, which follows from the invariance ofk« underO(2) (k«

5k«(r )), the projections of a regularized field are the regularizations of the original project
Regularized ARFs, denotedDn«5r («)DnPCm

` , depend linearly onDn , Eq. ~4.19!. The radial
kernel Kn« depends on the Fourier transformk̂« of k« and can be obtained analytically throug
calculations which will be reproduced elsewhere, Eq.~4.20!. Jn(I n) is the nth order ~modified!
Bessel function.23 Note finally that this regularization can similarly be defined and used in hig
dimensions:

@r ~«!,r~u!#5@r ~«!,p0
1#5@r ~«!,pn#50, ~4.18!

Dn«~r !5E
V

Kn«~r ,r 8!Dn~r 8!r 8 dr8 nPZ, ~4.19!

Kn«~r ,r 8!5E
V

Jn~qr !Jn~qr8!k̂«~q!q dq

Kn«~r ,r 8!5
1

2«
I nS rr 8

2« DexpS 2
r 21r 82

4« D r ,r 8>0. ~4.20!

C. The decomposition of symmetry groups

1. Introduction

The structure of symmetry groups is now to be extracted from the previous decomposit
fields. In Sec. IV B we found two levels of decomposition:~i! At the global level, we obtained the
canonical decomposition Eq.~4.14!. This is the answer to question~i! of Sec. IV A. ~ii ! At a finer
level, we found something in the nature of a decomposition of (H,r) into ILRs, in the form of the
unique decomposition Eq.~4.13! of each restrictionc (r ) to a circle. This pseudo-decomposition
not a decomposition into ILRs in the usual sense. However, the pseudo-decomposition~i! is
mathematically well characterized~Appendix B!, ~ii ! is suggested by the very nature of isometrie
~iii ! is unique, ~iv! will be found ideally suited to describe the structure ofG ~Sec. IV C 4,
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Appendix C!. On the other hand the conventional decompositions of (H,r) into ILRs leave
question ~ii ! open ~Appendix A, Sec. IV B 1!. Following Sec. IV A, arguments~i!–~iv! then
strongly suggest that we stick to the pseudo-decomposition in the following. All fields are
assumed regularized unless explicitly stated. Let us recall the relation between a subgrouG of
O(2) and its rotational partG1. If G contains an indirect isometrys then G5G13t$ id,s%,
otherwiseG5G1 ~Appendix A!. Note that symmetry groups are inverse images inO(2) of the
closed sets of the form$c%, hence are closed as regards the topology ofO(2). Closed subgroups
of O(2) areO(2), O1(2), and thefamiliar 2D point groups~Appendix A!.

2. The canonical structure

The projectionsc0
1 ,cn are scalar fields, so possess their own~local! symmetry groups

G0
1 ,Gn , to be called thecanonical groupsof c. As a first application of Sec. IV A, the relatio

betweenG and G0
1 ,Gn will be established.p0

1 and pn commute with ther(u), so Eq.~4.21!
holds in H. Equation ~4.21! implies G5G0

1ù( ù
n>1

Gn). Noting that G0
15O(2) becausec0

1

PH0
1 ~Sec. IV B 2! and thatO(2) is the neutral element of the intersections of its subgroups,

expression is simplified to Eq.~4.22!. Equation~4.22! is the structure ofG at the canonical level,
to be called thecanonical structureof G. As a first consequence the scalar projection can
completely ignored during the discussion of chirality. It may even prove useful to substract
from the outset. In addition zero projections do not contribute to Eq.~4.22! since their canonica
group isO(2). Thestructure Eq.~4.22! is extended toG1 andG2 as Eq.~4.23!:

r~u!c5c ⇔ H r~u!c0
15c0

1

r~u!cn5cn
, ~4.21!

G5 ù
n>1

Gn , ~4.22!

G65O6~2!ù~ ù
n>1

Gn!5 ù
n>1

Gn
1 . ~4.23!

3. The two sources of chirality

Let us interpret the canonical structure.G is the set of the common elements of the tenso
canonical groupsGn , so any element ofG must belong to everyGn . Consequently, if any of the
cn is chiral, thenc is chiral. Thus the chirality of individual projections is a first source
chirality for the field, to be calledabsolutechirality. However, even if allGn are achiral they may
or may not havecommonindirect elements. If not, their intersectionG is chiral. Then the relative
‘‘alignment’’ of the Gn is the second source of chirality for the field, to be calledrelativechirality.
The former source is said absolute and the latter relative because canonical projections a
sidered individually in the former case while they are compared with one another in the latter
Since the canonical decomposition is unique, the distinction between these two independe
complementary forms of chirality is intrinsic. Anticipating in~II !, let us state that relative chirality
will be recognized as a fully autonomous source of chirality, whose definition will be freed
any condition on theGn .

4. The radial structure

As the second application of our strategy let us call the symmetry group ofc (r )(cn
(r )) in the

sense of (Hu ,ru), the radial (radial canonical)groupG(r )(Gn
(r )) of c at r .0, Eq. ~4.24!. At r

50 all these groups are equal toO(2). Recalling the way (Hu ,ru) is decomposed ove
(Hu0 ,ru0), whose symmetry group isO(2), and the (Hun ,run), a transposition of the previou
proof yields the basic identities Eq.~4.25! which are readily extended toG(r )6 andGn

6 . Equation
~4.25! shows that symmetry groups ofCv fields have auniversal structureat the level of the
pseudo-decomposition. In Appendix C we prove that this structure is not an artifact ofCv fields,
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but is a result of general validity whose general form is merely obtained by weakening Eq.~4.25!
as in Sec. IV B. Following Sec. IV A any question concerning chirality, either absolute or rela
now boils down to the way the elementary ‘‘gear-wheels’’Gn

(r ) are ‘‘engaged’’ or ‘‘aligned’’:

G~r !5$uPO~2!/ru~u!c~r !5c~r !PHu%
Gn

~r !5$uPO~2!/ru~u!cn
~r !5cn

~r !PHu%
n>1, ~4.24!

G~r !5ù
n>1

Gn
~r !

⇒G5ù
r .0

ù
n>1

Gn
~r !5ù

n>1
ù
r .0

Gn
~r !

Gn5ù
r .0

Gn
~r ! . ~4.25!

5. The radial canonical groups of real fields
a. Real and complex fields.A question is to be discussed before we establish the structu

RCGs. The tensorial projectionscn of a complex field dependa priori on the two independen
ARFsDn andD2n . However, if the field is real,D2n5D̄n , so tensorial projections of a real fiel
depend on a single ARF. In this sense, projections of real fields are elementary, while proje
of arbitrary complex fields are not because they contain twice as much degrees of freedom24 As
regard chirality, a complex field should then be reduced to its real components first. This red
is considered here. A couplee5(e1 ,e2) of complex numbers is a basis ofC overR iff e1 ande2

are linearly independent overR, i.e., iff ē2e1Þe2ē1 . cPH is pointwise decomposed overe Eq.
~4.26!. If c̄ is the complex conjugate field ofc, Eq. ~4.26! turns to Eq.~4.27!. Since Qe is
invertible, the~classes of! real fields1c and2c belong toH as combinations ofc,c̄, so there are
two complementaryR-linear projectors1q,2q in H such that1c51q(c), 2c52q(c). 1q and2q
are shown to commute withr(u), p0

1 , pn and r (e), so the real components of~regularized!
canonical projections~of transformed fields! are the~regularized! projections~transforms! of real
components. Then the radial functions1Dn , 2Dn of 1q(c), 2q(c) are related toDn andD̄2n ~the
coordinate ofc̄n over Yn! by the same matrix relation Eq.~4.28!. Complex fields will always be
reduced to their real components, so our attention is focused on real fields from now on:

c~r !51c~r !e112c~r !e2 rPR2, ~4.26!

S c

c̄ D 5QeS 1c
2c D where Qe5S e1 e2

ē1 ē2
D , ~4.27!

S Dn

D̄2n
D 5QeS 1Dn

2Dn
D⇔S 1Dn

2Dn
D5Qe

21S Dn

D̄2n
D nPZ. ~4.28!

b. Radial canonical groups.The structure of the RCGs of real fields is established now.
cn(Dn) be thenth canonical projection~ARF! of a real fieldc (n>1). Let cn

(r )Þ0 at a given
r .0, andwn(r )(uDn(r )u) be the phase~modulus! of Dn(r ). SinceD2n5D̄n , cn

(r ) can be ex-
pressed as Eq.~4.29!. u-functions likecn

(r ) or c (r ) can have a graphical representation as 2D po
diagrams. For everyuPI draw a point at the angleu from thex-axis and the distanceucn

(r )(u)u
from the origin, so thatu-functions appear as closed curves in the plane. The sign of the fun
is to be reported beside everyu-sector where this sign is constant~Fig. 6!. This type of polar
diagrams has the advantage of emphasizing symmetries. In the case ofcn

(r ) all variation with u
comes from the factor cos(nu1wn(r))5cos(nu8), whereu85u1wn(r )/n Eq. ~4.29!. Apart from a
scale factor this curve is the polar diagram of cos(nu) rotated by2wn(r )/n. cos(nu) has 2n
equidistant zeros and its diagram is a regular star of 2n lobes,n equivalent lobes with the plus sig
andn lobes with the minus sign.Gn

(r ) can be trivially read off this polar diagram.Gn
(r )1 is Cn , the

symmetry of the two sets of equivalent lobes. Because of the sign constraint there are exn
equivalent indirect axes~to be called ann-star!, soGn

(r )PDn . Since the angle of undirected line
is defined modulop, the set of angles of then-star is the angular series Eq.~4.30!. ThereforeGn

(r )
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can be expressed as Eq.~4.31!. The representation of chirality by chiral loops is based on
important identity. Note thatGn

(r ) is achiral. A little reflection shows that this property should
satisfied whatever the dimension, otherwise it would be impossible for canonical projections
achiral because of Eq.~4.25!. On the circles wherecn

(r )50, Dn(r )50 soGn
(r )5O(2):

cn
~r !~u!52 Re$Dn~r !Yn~u!%5S 2

p D 1/2

uDn~r !ucos~nu1wn~r !!, ~4.29!

Sn@2wn~r !/n#5$2wn~r !/n1k~p/n!/kPZ%, ~4.30!

Gn
~r !5Dn~2wn~r !/n!. ~4.31!

V. ABSOLUTE CHIRALITY OF REAL FIELDS

A. Nature of absolute achirality

At this point, we have at our disposal a structural analysis of symmetry groups inH which is
presumably adapted to the problem of chirality, albeit clearly much more general in essen
this section, we apply these results to the discussion of absolute chirality. Relative ch
requires a distinct discussion, to be found in II. We have shown that complex fields shou
considered as aggregates of two real fields, Sec. IV C 5a, so our discussion will be limited to rea
fields. The chirality of complex fields is again tackled in II. Fields are assumed regularized u
explicitly stated. Following Sec. IV C 3, absolute chirality is the chirality of canonical projecti
so the question of absolute achirality is concentrated on the intersectionGn5 ù

r .0
Gn

(r ) . Let cn

Þ0. Since there is asinglegroupCn , all nontrivial Gn
(r ) have the same rotational partCn , Eq.

~5.1!, henceGn5Cn or GnPDn . Now the classDn contains aninfinite numberof groups differ-
ing by the orientation of then-star. If on two circlesC(r 1) andC(r 2), then-stars do not coincide
then they have no common element~Fig. 6! so they cancel each other in the intersection ofGn

(r 1)

andGn
(r 2) : Gn

(r 1)
ùGn

(r 2)
5Cn . Then all othern-stars are also cancelled, soGn5 ù

r .0
Gn

(r )5Cn and
cn is chiral. Conversely, if alln-stars, i.e., all nontrivialGn

(r ) coincide, thenGn is their common
value, henceGnPDn andcn is achiral. Thereforecn is achiral iff all n-stars~all Gn

(r )! are radially
aligned. Absolute achirality appears as the phenomenon ofradial alignmentof a series ofachiral
building blocks. We could say that absolute chirality exists only because the classDn is not

FIG. 6. Example polar diagrams ofcn
(r ) at two arbitrary distancesr 5r 1 ~plain line! and r 5r 2 ~dashed line! in the case

n52. The sign reported beside every lobe is the sign ofcn
(r ) . The two indirect axes forming the 2-star ofGn

(r ) at r 5r 1 are
shown as arrowed lines. The reported angle is a determination of the angular gap between the 2-star and theOx axis, and
is equal to2wn(r 1)/n modulop/n.
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reduced to one element. In 2D, there is no continuous rotational counterpart to chirality be
there is a single groupCn . Unpublished results show that there is a continuous rotational c
terpart to chirality in three and higher dimensions:

Gn
15ù

r .0

Gn
~r !15Cn . ~5.1!

B. Definition of the absolute chiral loop

The phenomenon of absolute achirality has a convenient representation that will be intro
now. Any ARF Dn of cPH is well defined except over adm-null setN and is set to zero onN
~Appendix B!. As a mapDn can be considered as one parametrization of a path in the com
plane. This path will be called thenth orderabsolute chiral loop~ACL! of c Eq. ~5.2!. Two
fields c,c8PH reducing to the same element ofH have a.e. equal ARFsDn , Dn8 ~Sec. IV B! that
consequently generate a.e. equal ACLs. Hence to everycPH is associated a class ofnth order
a.e. equal ACLs, to also be called annth order ACL for the sake of brevity. To represent a cla
of ACLs in the complex plane, it is sufficient to plot either a default representative, like the
obtained from the characteristic function in the case of geometrical figures, or a subset of
larized ARFs for smalle. In the general case ACLs are not continuous paths. However,
practical applications of this theory are concerned with fields generating continuous ARF
ACLs. Such fields form a dense linear subspace ofH containingCv:25

Dn : HV~ \N!→C
r→Dn~r !

. ~5.2!

Regularized ARFs have definite limits at the boundaries ofV. If nÞ0 Dn is zero atr 50 ~Sec.
IV B ! soDn vanishes asr→01. ce vanishes asr→1` soDn also vanishes in that limit Eq.~5.3!.
Then ACLs are continuous closed loops, since they begin and end at the origin, whence the
of this denomination. The general denomination is justified by the fact that any ACL ca
arbitrarily closely approximated by regular ACLs. Note that, ifc is differentiable up to orderk
>1 andunu,k, then Eq.~5.4! holds atr 50 @7 i 52 i (1 i ) if n.0(n,0)#. Hence ARFs ofC`

fields satisfyDn(r ) ;
r→01

r unu:

lim
r→01

Dn~r !50 nPZ\$0%

lim
r→1`

Dn~r !50 nPZ
, ~5.3!

Dn~r ! ;
r→01

r unu

unu!
A2pS p

2 D unu/2

D unu@c#

D unu@c#5 (
r50

unu

~7 i ! unu2pCunu
p ] unuc

]xp]yunu2p ~0!

. ~5.4!

C. The theorem of absolute achirality

Let C(r 1),C(r 2) be two circles on whichcn
(r 1) ,cn

(r 2) are nonzero.Gn
(r 1) andGn

(r 2) coincide iff
their n-stars have at least one common element. An equivalent statement is Eq.~5.5!:

Sn@2wn~r 1!/n#ùSn@2wn~r 2!/n#ÞB8 ⇔ wn~r 2!2wn~r 1!PpZ. ~5.5!

ThusGn
(r 1) andGn

(r 2) are equal iff the phases of the nonzero complex numbersDn(r 1), Dn(r 2) are
equal modulop, i.e., iff they are aligned with the origin in the complex plane, either on the s
or on opposite sides. By transitivity, any number of nontrivialGn

(r ) coincide iff the associated
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Dn(r ) and the origin are aligned. This condition is trivially extended to the casecn
(r )50. Now the

set$Dn(r )/r>0% is the support of the ACL, socn is absolutely achiral iff the ACL is included in
a straight line containing the origin. By removing regularization this result is weakened follo
Sec. IV B and Appendix C. Then we get the following theorem, to be called the theore
absolute achirality:

Theorem 1: A real cnPH is absolutely achiral iff the absolute chiral loop is almost eve
where included in a straight line containing the origin.

D. Geometrical interpretation of absolute chiral loops

According to Theorem 1, ACLs provide a simple criterion of absolute achirality. Howe
ACLs have a much wider geometrical interpretation which ultimately explains the existen
this theorem. The essential fact is that the orientation of then-star ofGn

(r ) is rigidly connected to
the phase ofDn(r ) by Eq. ~4.31!. This relation can be expressed geometrically. The line cont
ing the conjugateD̄n(r ) of Dn(r ) and the origin has two intersections6e2 iwn(r ) with the unit
circle. Thenth roots of6e2 iwn(r ) are the 2n vertices of a regular polygon on this circle, and t
n-star ofGn

(r ) coincides with then lines joining opposite vertices if theOx axis ofP is superposed
to the real axis. Accordingly,Dn(r ) is changed toe2 inaDn(r ) if c, hence then-star, is rotated by
a, Eq.~5.6!. Now letDn(r 1), Dn(r 2) and the origin be aligned~Fig. 7!. The previous construction
shows that then-stars ofGn

(r 1) and Gn
(r 2) coincide, in agreement with Theorem 1. IfDn(r 2) is

slightly rotated by an anglea!p then then-stars are slightly misaligned by2a/n. If a5
6p/2 the gap betweenn-stars is maximal (7p/2n). If a tends to6p, the n-stars tend to align
again, and so on. Then the phase gap modulop between two points of the ACL is a continuou
quantitative measure of the amount of misalignment ofn-stars. Theorem 1 is simply the applica
tion of this geometrical property to the limiting case of zero misalignment. The ACL sums u
this phase information together with the modulus informationuDn(r )u, which measures the inten
sity, i.e., the contribution ofcn at r;

Dn85e2 inaDn

Dn85e22in aD̄n
when

u5r aPO1~2!

u5saPO2~2!
. ~5.6!

ACLs are transformed by isometries in a simple way.Dn(r ) andD2n(r )5D̄n(r ) are transformed
by uPO(2) according to Eq.~4.10!, soDn is changed toDn8 according to Eq.~5.6!. Therefore the
ACL is rotated by2na in the complex plane when the field is rotated bya. The directions of
rotation are opposite. Two rotated ACL correspond to the same field but in two different or
tions. This defines an equivalence relation whose classes are generated by rotation ofDn . On the
other hand,sa changes the ACL to itssymmetricalwith respect to the axis whose angle is2na

from the real axis. The associated equivalence class is generated by rotation ofD̄n . Sincesa

changes a chiral field to an enantiomer, the two classes, if different, are associated to ena
fields, so are properly saidenantiomer. s0 changesDn to D̄n , to be called the reference enan
omer ARF ofDn . Note that if the ACL were a circle containing the origin, any enantiomer A
would be a circle run in the opposite direction. This direction property is to be used in
construction of the order parameters of chirality.

E. The concept of absolute chirality

The continuous conception of absolute chirality inH is here confronted with Kelvin’s defini-
tion. Let us consider specific examples~Fig. 8!. From Kelvin’s viewpoint, absolute chirality doe
not appear as a specific concept, while inH we found an intrinsic and fundamental distinctio
between absolute and relative chirality. When the ACL of a projectioncn is a.e. degenerated to
line containing the origin,Gn

2ÞB so, according to Kelvin’s definitioncn is called achiral. All
other ACLs geometries, including the slightest non-null distortions from such a line, im
Gn

25B so are indiscriminately stored into a single category called chiral by Kelvin. In partic
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this classification does not distinguish the distorted line segment~a! and the wandering loop~b!.
However, in case~a! n-stars are almost mutually aligned, socn is almost symmetrical with
respect to any of them. In case~b! any direction of the plane intersects the ACL at some rad
values, so the associatedn-star is an approximate symmetry ofcn in a neighborhood of these rad
but is disastrous far from them. Quantitatively,ir(sa)cn2cni!icni for some specialsa in case

FIG. 7. Geometrical relation between the phase of the ARF and the orientation of then-stars of RCGs in the casen
52. Two arbitrary nonzero pointsDn(r 1),Dn(r 2) of an ACL and the associated RCGs are reported. The orientatio

Gn
(r 1) with respect toGn

(r 2) is shown asDn(r 1) is clockwise rotated with respect toDn(r 2) from a!p ~a! to a'p ~c!. Gn
(r 1)

andGn
(r 2) are approximately aligned but with different sets of coinciding axes in cases~a! and ~c!. In case~b! Dn(r 1) is

orthogonal toDn(r 2). The angular gap between then-stars ofGn
(r 1),Gn

(r 2) is maximal.

FIG. 8. Example shapes of absolute chiral loops. Orientations of ACLs are emphasized by arrows. In case~a!, the dashed
line is a guide to the eye indicating the average direction of alignment. Here RCGs are approximately aligned, he
projection whose ACL is~a! is weakly chiral. In case~b! an arbitrary line was drawn~dashed line!. The corresponding
RCG is a very poor symmetry of the projection except in the neighborhood of the radii of its intersections with the
These small regions are emphasized. The projection whose ACL is~b! is highly chiral because of this large misalignme
of the RCGs.
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~a! andir(sa)cn2cni;icni for everysa in case~b!. Alternatively, an uniformly small phase
change makes~a! achiral while a large phase change is required in case~b!. ~a! is clearly much
closer to being achiral than~b!. In fact, as previously emphasized the analysis of geometr
degrees of freedom provided by RCGs allows to ‘‘think’’ how and to what extent the ‘‘ch
door’’ is ‘‘open,’’ that is, to introduce a continuous conception of absolute chirality. We are
lead to introduce the following definition:

Definition 1: In H, absolute chirality is the phenomenon ofradial misalignment of the indirect
elements~i.e., theirn-stars in 2D! of radial canonical groups at fixedn>1.

The definition of the operations ‘‘opening’’ fields follows trivially~Fig. 3!. Now we have firm
grounds that allow us to say that~a! is weaklychiral while ~b! is highly chiral. Furthermore, the
geometrical relation betweenDn andGn

(r ) show that the shape and the extension of ACLs int
duce an exhaustive description of that conception of absolute chirality. Let us briefly discu
qualitative differences between Kelvin’s definition and Definition 1. Definition 1 is conce
with mutual misalignment: no external reference is involved. Misalignment is defined up
dm-null set, since ARFs~ACLs! or the Gn

(r ) can be arbitrarily changed on adm-null set. The
wording of Definition 1 anticipates the theoretical extension of present theory to higher di
sions. Following Kelvin’s definition the chirality of projections is a mere dichotomous la
Following Definition 1 absolute chirality is a continuous and extensive geometrical phenom
Accordingly, ACLs can be continuously deformed to any arbitrary shape describing any qu
tive or quantitative form of radial misalignment. Absolute chirality is now positively defined~Sec.
II !. Achirality appears as the negative limiting case of nullity of radial misalignment. Abso
chirality also appears as radially distributed. Figure 9 shows the ACL of a projectioncn whose
n-stars are almost aligned except in a ringr 1,r ,r 2 . If cn were tested for chirality by a spaciall
discriminating chiral probe such as another field~molecule, etc.!, then almost no chirality would
be detected except in this ring. Then~i! enantioselective tests2 would fail if not sensitive to this
ring, ~ii ! the largest enantioselectivity is expected when the test is concentrated in the
Absolute chirality then appears as alocal property. In Fig. 9 chirality could be said localized in th
ring. This argument suggests that Definition 1 should be generalized to any non-null op
V8,V. In particularcn will be said absolutely achiral onV8 iff its restriction toV8 is absolutely
achiral, i.e., iff theGn

(r ) are a.e. aligned overV8 ~ ù Gn
(r )PDn in the case ofCv fields!. Thuscn

FIG. 9. Absolute chiral loops of a projectioncn ~a! and its reference enantiomer~b!. cn is weakly chiral in the union of
open sets 0,r ,r 1 and r .r 2 but n-stars are significantly misaligned in the domainr 1,r ,r 2 . Chiral probes testingcn

outside r1,r ,r 2 would find little absolute chirality so would have difficulty in distinguishing enantiomer projections.
the contrary, a large and easy discrimination is expected if testing occursinside r1,r ,r 2 . In that sense chirality is
localized in the ringr 1,r ,r 2 . Therefore chiral loops have predictive capability as regards chiral discrimination. Not
opposite orientations of enantiomer chiral loops.
r PV8
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can be achiral on a disk, a ring, etc. In the limitV8→$r 0%, Gn
(r 0) is achiral for anyr 0PV, socn

will ~loosely, since$r 0% is a null set! be said absolutely achiral at the distancer 0 . Furthermore, we
shall state without proof that absolute chirality can be quantitatively measured by order p
eters. The construction of these order parameters is to be treated in a forthcoming article.

F. An illustration

In this section, we briefly discuss a simple illustration of this theory. The considered exam
are 2D models which can be viewed as planar projections of thefacesof the substituted ethylene
CHX5CHX, where X5F,Cl,Br,I. These faces project as two different chiraltrans isomers and
one achiralcis isomer~Fig. 10!. 2D transchirality models the nonequivalence of the two faces
3D trans isomers, while the faces of 3Dcis isomers are identical, hence the unique 2Dcis isomer.
This nonequivalence is an important fact as regards addition of substrates to the double b
organic chemistry.2,15 Internuclear distances and angles are those of the 3D molecules, optim
by molecular mechanics using the MM2 force field. The considered fields are 2D illustr
models of the total electronic probability density of these molecules. Probability densities
modeled by linear combinations of 2D Gaussians in the following way: one normalized Gau
was attached to every site. Its root mean square was taken as the covalent radius of the co
element, while its weight in the linear combination was taken as the corresponding atomic n
divided by the total number of electrons.Trans isomers haveC2 symmetry at the double bon
center, which was chosen as the originO. Thus odd order ARFs oftrans isomers are zero.Cis
isomers being achiral, their ACLs degenerate to line segments, so will not be presented. A
cally obtained ACLs of ordersn52 to 8 are shown in Fig. 11 for thetrans isomers~a!. Those of
~b! are obtained by symmetry with respect to the real axis.

At short distances fromO the contribution of carbon sites is dominant, so radial canon
groups are almost aligned in that range. Therefore ACLs start by approximate line seg
Beyond carbon sites there are two conflicting influences: The system of halogens tends to
RCGs in a definite sense depending onn, while the two hydrogens have an opposite influence. T
influence of halogens tends to be dominant at most orders, hence to determine the rota
RCGs. At large distances the only remaining influence is that of halogens, so radial can
groups are again almost aligned, in the direction of halogens. The relative weight of halog
the total probability density increases fromF(Z59) to I (Z553) and tends to ‘‘polarize’’ mol-
ecules in their direction, so that absolute chirality decreases and ACLs flatten monotonica
secondary effect is that halogens tend to move away fromF to I while hydrogens remain at a
shorter fixed distance. Consequently there is an intricate interplay of influences betweenX andH
at intermediate distances, resulting in the change of shapes that is noticeable in then>4 ACLs. A
tentative summary of this discussion is that, within the limits of this model, the absolute chi
of the two faces of the~projected! electronic probability density, as seen for example by
impinging molecule,decreases monotonicallyfrom trans CHF5CHF to trans CHI5CHI. Note
that the total number of electrons is not taken into account in this model. Relative chirality in
system is discussed in II.

FIG. 10. 2Dcis-transstereoisomers of CHX5CHX. In 2D there are twotrans isomers~a!, ~b! (G5C2) and onecis
isomer~c! (GPD1). Transisomers are 2D enantiomers and hence have enantiomer ACLs. We used a 3D MM2 opt
geometry. Bond lengths aredC–H51.10 Å, dC5C51.34 Å, dC–X51.385, 1.714, 1.906, 2.085 Å for X5F,Cl,Br,I. The
corresponding covalent radii were taken as 0.77, 0.99, 1.14, 1.33 Å for halogens, and 0.37, 0.77 Å for H, C. An
carbon sites were set to 120°.
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VI. PROPERTIES OF LARGE ORDER RADIAL FUNCTIONS

Dn(r ) vanishes asn→1` at fixed r, so truncation of the series Eq.~4.14! generates finite
order approximations ofc, which are fully compatible with the analysis of absolute chirality. Th
a key issue is the way ARFs vanish at largen. The specifically 2D similarity of the canonica
decomposition with a Fourier series allows us to transpose a few standard results5 in present
theory. If cPH is k>1 times continuously differentiable then, at fixedr .0 Eq. ~4.12! can be
integrated by part to show Eq.~6.1!. Hence the canonical projections of aC` ~e.g., regularized!
field vanish faster than any power ofn(;k>0 nkDn(r ) →

n→1`
0). Then the first few terms of Eq

~4.14! are expected to provide excellent approximations toc:

uDn~r !u<
1

nk 3
1

A2p
E

I
U]kc

]uk ~r ,u!Udu5O~1/nk!. ~6.1!

On the contrary, in the case of geometrical figures inH, theC(r ) are expected to cross the figu
boundaries for some subsets ofr .0, soc (r ) steps between 0 and 1 at the corresponding an
and is constant everywhere else. Let us only consider the case when this set of angles is
r. Let 0<uP115u1,...,uP,2p be the associated subdivision ofI at r and let c i

(r )

5 lim
u→u i

1
c (r )(u)2 l im

u→u i
2

c (r )(u). In that case Eq.~4.12! can be integrated by part on ]u i ,u i 11@ .

The leading term Eq.~6.2! is isolated by application of the Riemann–Lebesgue lemma. If not
the 1/n factor Eq.~6.2! would be quasi-periodic as a function ofn hence would not cancel asn
→1` @if cancelled by some symmetry ofc (r ) thenDn(r ) is also cancelled#. Hence the series Eq
~4.14!, which is convergent only in the sense ofHu at fixedr hence at most pointwise converge
except over adu-null set,5 is at best expected to converge very slowly. Moreover, by the w
known Gibbs phenomenon,5 finite partial sums of Eq.~4.14! are strongly oscillatory near discon
tinuities of the field:

FIG. 11. ACLs of ordern52 to 8 of a model planar projection of the electronic probability density of thetrans isomer~a!
of CHX5CHX ~Fig. 10!. Dashed line: X5F, dotted line: X5Cl; crossed line: X5Br; plain line: X5I. Units: Å22. Equal
scales on real and imaginary axes must be selected in order to respect the shapes of ACLs. 2D Absolute ch
observed to decrease monotonically from X5F to X5I whatevern.
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A2puDn~r !u ;
n→1`

1

n U(i 51

P

c i
~r !e2 in u iU< 1

n (
i 51

P

uc i
~r !u5O~1/n!. ~6.2!

VII. CONCLUSION

Stating that chirality could equally correctly be viewed as a dichotomous property,
Kelvin’s conception, and as a continuous phenomenon, as exposed here, may appear do
absurd. However, we showed that this paradoxical statement istrue in the case ofL2 fields. The
two conceptions arenot conflicting because they are associated to different levels of geome
analysis ofL2 fields. More precisely, the two conceptions are hierarchically related since
geometrical tool box in which chirality is conceived as discrete, i.e., Euclidean geomet
included in the geometrical tool box in which it is conceived as continuous—the ‘‘p
Euclidean’’ operations associated with radial canonical groups~Fig. 3!. The discrete conception i
‘‘included’’ into the continuous one. The continuous conception provides a description of
way’’ the discrete one is broken. As a consequence, the first achievement of this theory
demonstrate, in the case of absolute chirality, to be generalized in~II !, that a mathematica
description of the breaking of a discrete symmetry can be constructed in the spaces on wh
understanding of the physical world depends. Complete proofs are presented in 2D and t
posed construction shows that these proofs extend to three and higher dimensions. This
thereby demonstrates that major features of chirality in NR quantum mechanics~continuity, ex-
tensivity, locality, positivity! have been overlooked during almost one century. In this concep
molecules are more or less chiral just as doors are more or less open.

Many conceptually new features follow from this analysis. There is a fundamental distin
between two independent and complementary forms of chirality—absolute and relative ch
As a consequence of the fact that absolute chirality is continuous, fields can properly b
weakly or highly absolutely chiral. The same feature is established in the case of relative ch
and chirality as a whole in~II !. Like angular momentum, orbitals should be studied from a defi
origin and an important feature of that theory is that any origin~in 3D, asymmetric carbons
protein active sites, etc.! can be selected at will. Absolute chiral loops were found to provid
description of absolute chirality that is both theoretically exact and practically appealing. A
theory of RCGs as a whole, this description goes much further than the pure descript
absolute chirality—it provides a description of the ‘‘internal’’~‘‘post-Euclidean’’! geometry of
wave functions. As exemplified in Sec. V F, this description for example allows to repre
molecular substitution effects~e.g., the substitution F→Cl→Br→I!. Similarly, many other effects
of interest to molecular physics, chemistry, and biology are expected to find a convenient
sentation by chiral loops. This representation applies to electronic as well as to nuclear mo
orbitals and to wave functions as well as to molecular densities.4 Outcomes of this breakthroug
are presently invaluable because of the very importance of chirality in the physical science
as a prototype of other discrete symmetries.

APPENDIX A: ISOMETRIES

Some properties of orthogonal groups and affine isometries are briefly recalled here6,12,26

mainly in order to state notations. Affine~linear! maps are here denotedu,v...(u,v...) in order to
emphasize the difference between affine and vectorial concepts. The orthogonal groupO(2) is the
group of linear maps ofR2 conserving the inner product Eq.~A1!. O(2) inherits a metrizable
topology from the vector spaceM (2,R) of real 232 square matrices. This topology is compatib
with the group structure ofO(2), soO(2) is a topological group. In fact,O(2) has a 1D real Lie
group structure, which is not explicitly used in the 2D theory. From the topological viewp
O(2) is compact@closed and bounded inM (2,R)# and divided in two connected components.12,22

The invariant subgroupO1(2) is the connected component of identity and contains rotat
(detu51). The other connected componentO2(2) is not a subgroup ofO(2) and contains axia
symmetries (detu521). In this Appendix, the rotation of anglea is denotedra and the axial
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reflection with respect to the line whose angle to theOx axis is a is denotedsa ~aPR, s
5sa50). Let us study the ILRs ofO(2). Let Z2 denote the multiplicative group$1,21%. Then
the group morphismsi,w of Eq. ~A2! show that O(2) is an extension ofZ2 by O1(2)
@i 5 injection of O1(2) into O(2), w5det#. Since there is a sections of O(2) by Z2 @s(1)
5 id, s(21)5s, w+s5 idz2

#, O(2) is asemi-directproduct ofO1(2) by Z2 .26 Such semi-direct
products are denotedO(2)5O1(2)3tZ2 in this paper. This semi-direct product structure can
be reduced to a direct product, contrarily to the 3D case. Consequently ILRs ofO(2) cannot be
directly deduced from those ofO1(2) andZ2 by tensorial product, so the distinction betwe
tensors and pseudo-tensors does not exist in 2D. In this simple case, ILRs ofO(2) can be obtained
from those ofO1(2) by direct examination.O1(2) is commutativeand so has only 1D comple
ILRs. A class of equivalent continuous ILRs is associated to everymPZ. This class, whose
irreducible character isxm

1(ra)5eima, can be represented by the ILR(C,rm
1) Eq. ~A3!. There are

no other continuous ILRs ofO1(2). Now continuous ILRs ofO(2) are at most 2D since
O(2)/O1(2)'Z2 and can be readily described inC2 by using commutation relations betwee
elements ofO1(2) andO2(2), notably,s + r2a + s5r22a . There are two classes of 1D ILRs
the so-called scalar and pseudo-scalar ILRs Eq.~A4!, respectively, denotedS1,S2 if considered
as ILRs of the isomorphous groupC`v . There is a class of 2D tensorial ILRs associated to ev
n>1, represented in matrix form by (C2,rn), Eq. ~A5!, whose character isxn(ra)52 cos(na),
xn(sa)50. There are no othercontinuousILRs of O(2). Other properties ofO(2) of interest in
the main text are~i! the Haar integral, and~ii ! the closed subgroups ofO(2). Onevery compact
topological group there is a normalized left and right invariant Borel measure—the
measure.18 This measure defines a left and right invariant Lebesgue integral over the group
Haar integral. DenotingdH the Haar measure, it is shown that the Haar integral overO(2) can be
expressed as Eq.~A6!.12

In the framework of local chirality, symmetry groups are closed subgroups ofO(2) ~Sec.
IV C 1!. What are the closed subgroups ofO(2)? Let usfirst consider subgroups ofO1(2).
O1(2) is isomorphous to the additive topological groupR/2pZ, whose closed subgroups can b
derived from those of~their universal covering! R by continuity of the projection:R→R/2pZ.
Subgroups ofR are either of the formaZ(a.0) or are dense inR. Then the closed subgroups o
R are R and theaZ, and the closed subgroups ofR/2pZ are R/2pZ and aZ/2pZ with a
P2p.Q, otherwiseaZ/2pZ is dense inR/2pZ. From Bezout theoremaZ/2pZ is shown to
reduce to a finite cyclic subgroup ofR/2pZ, hence to correspond to a cyclic groupCp(p>1) of
O1(2). Then the closed subgroups ofO1(2) areO1(2) and theCp . The simplest way to extend
this result is to note that, if a subgroupG of O(2) does not reduce to its rotational partG1

5GùO1(2) ~in which case the above result is applied! thenG contains some indirect symmetr
sa and the very argument used to analyze Eq.~A2! applies toG1,G. ThenG1 is invariant inG
andG is the semi-direct productG5G13t$ id,sa%, generating the second series of closed s
groups ofO(2): O(2) and theDp(a), Eq. ~A7!. Note that for everyp>1 there is asinglegroup
Cp while there areinfinitely manygroupsDp(a) differing by the orientationa ~defined modulo
p/p! of the resultingp indirect axes. It is theclassof these groups that is usually denotedDp .
This seemingly trivial remark reveals much of the mystery of 2D chirality, because 2D chi
depends on the misalignment of these groups~Sec. V A!:

O~2!5$u:R2→R2/ tu+u5u+ tu5 id%, ~A1!

O1~2!→
i

O~2!→
w

Z2 Im~ i !5Ker~w!, ~A2!

rm
1~ra!~x!5eimax xPC,aPR, ~A3!

r0
1~u!~x!5x ~scalar!

r0
2~u!~x!5~detu!x ~pseudo-scalar!

xPC,uPO~2!, ~A4!
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Mat~rn~ra!!5S e2 ina 0

0 einaD Mat~rn~sa!!5S 0 e22ina

e2ina 0 D , ~A5!

E
0~2!

f ~u!dH~u!5
1

4p S E
I
f ~ra!da1E

I
f ~s+ra!da D , ~A6!

Dp~a!5Cp3t$ id,sa% aPR. ~A7!

Let us prove some facts about affine isometries.6 A mapu:P→P is affine iff there is a linear map
u:R2→R2 satisfying Eq.~A8!. Thenu is unique. Affine isometries are affine maps associate
uPO(2) and form a topological group denotedIs(P). Affine isometries conserve Lebesgu
measures. Translations are the affine isometries associated tou5 id and form an invariant sub
group of Is(P) denotedT(P). As a topological spaceIs(P) is divided in the two connected
componentsIs1(P) and Is2(P). Is1(P) is the invariant subgroup of direct isometries@u
PO1(2)# and contains translations and rotations.Is2(P) is the subset of indirect isometries@u
PO2(2)# and contains pure indirect isometries combined with translations. Isometries m
may not have fixed points. The subgroup of affine isometries having the common fixed poA
PP ~stabilizing A! is denotedIsA(P) Eq. ~A9!. Let us consider howIs(P), IsA(P), andO(2) are
related. We can associatewA(u)PIsA(P) defined by wA(u)(M )5A1u(AM ) to every u
PIs(P). ThenwA is a group morphism and Eq.~A10! shows thatIs(P) is an extension ofIsA(P)
by T(P) @i 5 injection ofT(P) into Is(P)#. Since the injectioni A of IsA(P) into Is(P) is a section
of wA (wA+ i A5 id) Is(P) is a semi-direct productT(P)3tIsA(P) and Is(P)/T(P) is isomor-
phous toIsA(P). Then~i! IsA(P) is indeed obtained fromIs(P) after factorizing out translations
in the previous sense,~ii ! all IsA(P) are isomorphous whateverAPP. Moreover, at fixedA we
can associatefA(u)PIsA(P) defined byfA(u)(M )5A1u(AM ) to everyuPO(2). This defines
an isomorphism of topological groupsfA :O(2)→IsA(P) which is used to identifyIsO(P) to
O(2) as P is identified with R2 ~Sec. II B 1!. In that context all results on ILRs ofO(2) are
equally true ofIsO(P), andra(sa) is denotedr a(sa). Note thatIsO(P) is compact whileT(P)
and Is(P) are not bounded, hence not compact~Sec. III B 2!:

u~M !5u~N!1u~NM ! M ,NPP, ~A8!

IsA~P!5$uPIs~P!/u~A!5A%, ~A9!

T~P!→
i

Is~P!→
wA

IsA~P! Im~ i !5Ken~wA!5T~P!, ~A10!

Ank5$x5~x1 ,x2!PR2/ f ~x!.1/n and ka<x1,~k11!a%, ~A11!

E
R2

f dm>
1

n
dm~An!5

1

n (
kPZ

dm~Ank!51`. ~A12!

Let us finally show in the 2D case that the symmetry groupG,Is(P) of a nonzerocPH has at
least one fixed point. The 2D proof requires no topology. Generalizing Eq.~A2! to Is(P) we get
that subgroups ofIs(P) satisfy G5G1 or G5G13t$ id,s% for somesPIs2(P). Note that
translations have no fixed point, that, in 2D, rotations have one and only one fixed point an
an indirect isometry has a single decomposition as the product of a pure indirect isometry,
lizing an axis, by a translation parallel to that axis.6 The first step is to prove the intuitive resu
that G contains no translation ifc is nonzero. Letf be a nonzero positive measurable map ofR2

and assumef invariant by translation ofa.0 along theOx axis. Introducing the countable serie
of disjoint measurable setsAnk , Eq. ~A11!, andAn5 ø

kPZ
Ank , it is readily shown that~i! there is

n>1 such thatdm(An).0, ~ii ! dm(Ank) does not depend onk sincef is translationally invariant.
Then dm(Ank).0 otherwise~i! would be false, so Eq.~A12! shows thatf is not integrable.
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Applying this lemma toucu2, which is integrable by definition, we get the desired result. Note
the lemma can easily be generalized to arbitrary dimensions and to all affine isometries hav
fixed point. Only the fact thatG contains no translation is needed in 2D. IfG15$ id% then G
5$ id% or G5$ id,s%, in which cases is a pure indirect isometry otherwises2 would be a
nontrivial translation, soG indeed stabilizes at least one point. Let us now assumeG1Þ$ id%. Let
u,vPG1\$ id% and letA, B be the fixed points of the rotationsu, v. Then the linear map assoc
ated tow5uvu21v21PG1 is w5 id sinceO1(2) is commutative, sow is either a nontrivial
translation or the identity. Suppose nowAÞB. Thenw(B)5B⇔v@u21(B)#5u21(B). However,
B is not a fixed point ofu, sou21(B)ÞB hencev@u21(B)#Þu21(B) becauseB is the only fixed
point of v. Thenw(B)ÞB andwÞ id is a nontrivial translation. Since this is impossible we g
that A5B and that all elements ofG1 have a single common fixed point. IfG5G1 the proof is
finished. IfG5G13t$ id,s% thens is a pure indirect isometry stabilizing some axisD. Let A be
the fixed point ofG1 and assumeA¹D. ConsideruPG1\$ id%. Then sus21PG1\$ id% is a
rotation stabilizings(A)ÞA. This is in contradiction with previous results hence we conclu
that APD, so the theorem is proved in all cases. Note that, following a well-known result,6 the
fact thatG is closed inIs(P) and has a fixed point is equivalent toG being compact.

APPENDIX B: CANONICAL DECOMPOSITION

In this Appendix ARFs and canonical projections are studied in the general case,
analysis on every separate circle is not possible. In the first step we define ARFs of arbitc
PH; then we consider canonical projectorsp0

1 ,pn as Haar integrals over irreducible characters
O(2) ~Appendix A!, to find that canonical projections satisfy a straightforward generalizatio
Eq. ~4.14!. The polar coordinate system shows that the plane, minus the null set$O%, can be
identified with the product spaceV3I whereV5]0,1`@ and I 5@0,2p@ ~understand@0, 2p@ as
a shorthand for the unit circle. This notation is convenient but not rigorous since the circle a@0,
2p@ are not homeomorphous!. In this framework the Lebesgue measure is equal to the pro
measuredm5dm3du, where dm5rdr (du) will be called the radial~angular! measure and
where we assume thatdm,du anddm3du are defined over completes-algebra.5,8 dm anddu are
s-finite, so the conditions of Fubini theorem are satisfied. Let us now apply this theorem. F
and classes of fields will be distinguished.~i! Let cPH. c (r ) and uc (r )u2 are a.e. measurable a
functions ofu, so the positive mapw, Eq. ~B1!, is defined and measurable overV\N0 whereN0

is a dm-null set. Then Fubini theorem shows thatw is dm-integrable, Eq.~B2!, so w(r )
5ic (r )iu

2 is finite except on adm-null set N.N0 . Then c (r )PHu if r ¹N, so Dn(r ) is well-
defined by Eq.~4.12! as a scalar product inHu and satisfies Parseval identity Eq.~B3!. If r
PN Dn(r ) is set to zero following an usual convention, soDn can be considered a measurab
map overV. SinceuDn(r )u<ic (r )iu , Dn is dm square-integrable, soDnPHm5L2(V,dm). Note
that ARFs satisfy Eq.~B4! by integration of Eq.~B3! following the monotone convergenc
theorem.5 ~ii ! Let us now consider classes of fields. Letc,c8PH reduce to the same elementċ

5ċ8 of H. Following ~i! c ~c8! generatesDn(r )(Dn8(r )) if r ¹N(r ¹N8). Application of Fubini
theorem toc2c8PK shows thatDn(r )2Dn8(r )50 except on adm-null set M.NøN8. Then
Dn ,Dn8PHm aredm-a.e. equal. Hence to everycPH is associated a single classDnPHm satis-
fying Eq. ~B4!. The summary Eq.~B5! shows that generalization of the analytic case simply tu
out to a stepwise controlled ‘‘weakening’’ of the definition of ARFs:

w:H V\N0→R̄1

r→ic~r !iu
25E

I
uc~r ,u!u2 du

, ~B1!

E
R2

ucu2 dm5E
V
S E

I
Uc~r ,u!U2 du D dm5E

V
w dm,`, ~B2!
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ic~r !iu
25 (

nPZ
uDn~r !u2, ~B3!

ici25 (
nPZ

iDnim
2 , ~B4!

cPHa⇒DnPHm
`

cPH⇒DnPHm nPZ. ~B5!

cPH⇒DnPHm

Let us now turn to canonical projections. We shall only consider tensorial projectorspn(n>1)
since all arguments can be transposed top0

6 . Following the classical expression of canonic
projectors as Haar integrals over irreducible characters,12 and the results of Appendix A,pn can be
expressed as Eq.~B6!, sincexn(r a)52 cos(na), xn(sa)50. Let cPH. Then the integral Eq.
~B6! applied to the representativec of ċPH is a representative of the classpn(ċ). Let cn denote
this integral Eq.~B7!. The change of variableb5u2a yields a result of the expected form Eq
~B8!, and shows thatcn(r ,u) is defined as soon asDn(r ) is defined. NowDn(r ) is well-defined
by Eq. ~4.12! except over adm-null set N, so cn(r ,u) is well-defined by Eq.~B8! except over
N3I , which isdm-null @dm(N3I )5dm(N)du(I )50#. If cn(r ,u) is set to zero overN3I , cn

appears as a measurable anddm square-integrable field (ucnu<ucu). If we consider now anothe
c8Pċ, c8 generates acn8 which is indeeddm-a.e. equal tocn since, following previous argumen
Dn8 is dm-a.e. equal toDn . In conclusion, as summarized by Eq.~B9!, canonical projections are
formed in the general case by a suitable weakening of Eq.~4.14!. Equation~4.14! with DnPHm is
satisfied up to adm-null set if cPH and should be understood as a class identity withDnPHm if
cPH. The procedure of radially collecting projections of field restrictions isa posteriorijustified
by this result:

pn52E
O~2!

x̄n~u!r~u!dH~u!5
1

2p E
I
$2 cosna%r~r a!da, ~B6!

cn~r ,u!5
1

2p E
I
$eina1e2 ina%c~r ,u2a!da, ~B7!

cn~r ,u!5
1

2p E
I
$ein~u2b!1e2 in~u2b!%c~r ,b!db5Yn~u!Dn~r !1Y2n~u!D2n~r !, ~B8!

cPHa⇒c0
1 ,cnPH`

cPH⇒c0
1,cnPH, ~B9!

cPH⇒c0
1 ,cnPH

f k,6n~r ,u!5ek~r !Y6n~u!, ~B10!

Hn5 %

kPZ
Fk,n . ~B11!

Let us consider briefly decompositions of the canonical spaceHn into ILRs. SinceHm is
separable,5 any Hilbertian basis ofHm is countable and generates a decomposition ofHn through
Eq. ~4.14!. More precisely, lete5(ek)kPZ be an arbitrary Hilbertian basis ofHm , and let us
associate the countable set ofdm-a.e. defined fieldsf 5( f kn , f k,2n)kPZ to e by Eq. ~B10!. Then it
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is readily shown as a consequence of Eq.~4.14! and Fubini theorem; that~i! f is both orthonormal
and complete inHn , so f is a Hilbertian basis ofHn; ~ii ! The 2D subspaceFk,n spanned by
( f k,n , f k,2n) is invariant by (H,r); ~iii ! (H,r) reduces inFk,n to thenth tensorial ILR, since the
matrix representation of (H,r) is Eq.~A5! in the basis (f k,n , f k,2n). Consequently, following Eq.
~B11! we obtain a decomposition ofHn into equivalent ILRs. Now, there are infinitely man
different Hilbertian basis inHm , so we obtain infinitely many decompositions ofHn . There is no
apparent reason to prefer anyone of these decompositions over the others in application
strategy of Sec. IV A~Sec. IV C 1!. The pseudo-decomposition is related to such decomposit
in the same way field operatorsc1(x) creating particles localized at a single point are related
fields operatorsa1( f ) creating particles in well-defined states in second quantization.27

APPENDIX C: RADIAL DECOMPOSITION

In this Appendix, the general expression of the decomposition Eq.~4.25! is established.
Canonical matters have been considered in Sec. IV C 2, so we need only focus on the
decomposition. LetG be the symmetry group ofcPH in the sense of (H,r), i.e., the symmetry
group of ċPH. Except when explicitely stated arguments are based on Fubini theorem.5 Thus
there is adm-null setN,V over whichc (r ) is not measurable or does not belong toHu . Then the
symmetry groupG(r ) Eq. ~4.24!, of c (r ) in the sense of (Hu ,ru) is well-defined overVc

5V\N. Let uPG. Thenr(u)c is a.e. equal toc. It is important to keep in mind thatr(u)c and
c need not be equaleverywhere. There is adm-null set Mu such that;rPR2\Mu @r(u)c#(r )
5c(r ). The sectionsMu

(r ) Eq. ~C1! of Mu are a.e.du-measurable and satisfy Eq.~C2!, so there
is a dm-null set Ku,V such that;r PcKu5V\Ku du(Mu

(r ))50. Consequently, ifr PVc\Ku

thenru(u)c (r ) is equal toc (r ) except on thedu-null setMu
(r ) . HenceuPG(r ), so we get the first

implication of Eq.~C3!. Conversely, letu satisfy the r.h.s. of Eq.~C3! for thedm-null setK. Then
dm((KøN)3I )50. Moreover, if r PVc\K uPG(r ) so there is adu-null set P (r ) such that
u¹P (r ) implies @r(u)c#(r ,u)5c(r ,u). Let M be the measurable subset ofR2 over which
r(u)cÞc, and let M05M \((KøN)3I ). Then r PVc\K implies M0

(r ),P (r ), other sections
being empty, so we getdm(M0)50 by integration, hencedm(M )50 sinceM,M0ø((KøN)
3I ). ThenuPG. This completes the proof of Eq.~C3!. This result can be simplified in variou
cases. For example, ifG is countable the union of allKu over G is a dm-null set KG . Since
Vc\KG,Vc\Ku the preceding argument gives the simplified expression Eq.~C4!. This is the case
of fields whose nonscalar part is non-null, including non-null projections, since their symm
group is finite ~Secs. V A, IV C 2!. Then Eq.~C4! could be viewed as the final result in ou
context. The theory of absolute chirality can be directly established with such expressions,
expense of somewhat awkward notations and arguments:

Mu
~r !5$uPI /~r ,u!PMu%, ~C1!

dm~Mu!505E
V

$du~Mu
~r !!%dm, ~C2!

uPG⇔'K,V, K dm2null, such thatuP ù
r PVc\K

G~r !, ~C3!

G5 ù
r PVc\KG

G~r !5 ù
r PV\ ~NøKG!

G~r !. ~C4!

1W. T. Kelvin, Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light~C. J. Clay, London, 1904!, p.
619.

2E. L. Eliel, S. H. Wilen, and L. N. Mander,Stereochemistry of Organic Compounds~Wiley Interscience, New York,
1994!.

3M. Walba, inNew Developments in Molecular Chirality, edited by P. Mezey~Kluwer Academic, Dordrecht, 1991!, pp.
119–129. C. Millett,ibid. pp. 165–207. E. Flapan,ibid., pp. 209–239.
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4Continuous integrable fields vanishing at infinity, such as molecular electronic densities, are readily shown
square-integrable.

5W. Rudin, Real and Complex Analysis~Mc-Graw Hill, New York, 1970!; A. C. Zaanen,Continuity, Integration and
Fourier Theory~Springer-Verlag, Berlin, 1989!; P. R. Halmos,Measure Theory~Van Nostrand, Princeton, 1950!.

6M. Berger,Géométrie ~Nathan, Paris, 1990! ~in French!; E. Snapper and R. J. Troyer,Metric Affine Geometry~Aca-
demic, New York, 1971!. It is shown that there is a single canonical Lebesgue measure on affine Euclidean spa

7The real vector space of real distributions is obtained from the complex one by restricting both multipliers and dist
quantities to real numbers.

8In this article it is understood that alls-algebra are the completes-algebra of the considered Lebesgue (dm,du) and
Stieltjes–Lebesgue (dm) measures.

9A Hilbert space is a real or complex vector space on which there is an inner product, and which is complete with
to the topology induced by the inner product. Hilbert spaces are the simplest generalizations of finite dimensiona
spaces as regards geometry~Ref. 5!. Recall thatH is not a Hilbert space. (c1uc2) is not an inner product inH because
(cuc)50 implies thatc is null (cPK), but not thatc is zero. Thenici is a norm onH ~K is the zero ofH! but is only
a semi-norm onH. Consequently, from the point of view of Analysis, quantum mechanics is interested inH rather than
in H.

10But such concepts can indeed be applied to the Schro¨dinger equation and other evolution equations. Work in th
direction is in progress.

11Following a customary practice in integration theory~Ref. 5! the denomination ‘‘field’’ is applied both to fields and t
classes of fields unless explicitly stated.

12A. Robert,Introduction to the Representation Theory of Compact and Locally Compact Groups~Cambridge University
Press, Cambridge, 1983!; J.-P. Serre,Linear Representations of Finite Groups~Springer, New York, 1977!.

13Other tensorial LRs, including the pseudo-scalar LR, will not be considered in this paper.
14With the exception of commutative groups~Ref. 12!, but here direct and indirect isometries do not commute.
15N. L. Allinger, M. P. Cava, D. C. de Jongh, C. R. Johnson, N. A. Lebel, and C. L. Stevens,Organic Chemistry~Worth,

New York, 1976!; J. March,Advanced Organic Chemistry: Reactions, Mechanisms and Structure~Wiley, New York,
1992!.

16By definition a maximal elementG8 of the set $G(O)/OPP% ordered by inclusion, satisfies;O
PP G8,G(O)⇒G(O)5G8.

17The fact that chirality can be considered at a given molecular ‘‘site,’’ or ‘‘locally,’’ has previously been considere
some authors in a very different context, mainly as anauxiliary concept precising the chemical description of a chi
molecule by its finite symmetry group. In this theory the situation is reversed. Local chirality is shown to be the p
concept in the case ofL2 fields, and it is ‘‘chirality’’ that appears as a special case of ‘‘local chirality.’’ Apparently t
importance of local chirality in the context of quantum theory~L2 fields! was not previously mentioned. R. L. Flurry, Jr
Symmetry Groups: Theory and Chemical Applications~Prentice-Hall, Englewoods Cliffs, NJ, 1980!; J. A. Pople, J. Am.
Chem. Soc.102, 4615–4622~1980!; R. L. Flurry, Jr.,ibid. 103, 2901–2902~1981!; K. Mislow and J. Siegel,ibid. 106,
3319–3328~1984!.

18A subspaceH8 of H is invariant under (H,r) iff r(u)(H8),H8 ;uPIs0(P) ~Ref. 12!.
19The existence of this decomposition follows from the Peter–Weyl theorem~Ref. 12!.
20In other wordsIs0(P) does not operate transitively inP. The circles are the orbits ofIs0(P) in P ~Ref. 12!.
21A class of fields can contain at most one continuous representative~Ref. 5!. A class containing a continuous field can b

identified with this single representative. Here we callanalytic the fields representable by power series in the coordina
x, y understood as twoindependentreal or complex variables~Ref. 10!. Fields are not assumed representable by pow
series in the single variablex1 iy . Analytic ~indefinitely differentiable! fields are denotedCv (C`) in this and the
companion article.

22In the same way real numbers are obtained by adding the ‘‘missing points’’ of the set of rationals. N. Bourbaki,Elements
of Mathematics: General Topology~Hermann, Paris, 1966!; J. Dugundji,Topology~Allyn and Bacon, Boston, 1966!; J.
L. Kelley, General Topology~Van Nostrand, New York, 1955!.

23Notations follow M. Abramovitz and I. A. Stegun,Handbook of Mathematical Functions~Dover, New York, 1972!.
24The general criterium of independence ofDn andD2n is thatc, c̄ are linearly independent overC.
25Because of the integration Eq.~4.12! ARFs tend to be more regular than fields. Thus the default ARFs of triangles

everywhere defined, continuous and piecewiseC`. Therefore regularization is not necessary even in the case of m
geometrical figures.

26N. Bourbaki, Éléments de Mathe´matiques: Alge`bre ~Hermann, Paris, 1951! ~in French!; M. Hall, Jr., The Theory of
Groups~Macmillan, New York, 1959!.

27F. A. Berezin,The Method of Second Quantization~Academic, New York, 1966!.
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Two-dimensional theory of chirality. II. Relative chirality
and the chirality of complex fields

Patrick Le Guenneca)

École Normale Supe´rieure, URA 1679, 24 rue Lhomond,
F-75231 Paris Cedex 05, France

~Received 27 January 1998; accepted for publication 6 March 2000!

Chirality can equally be correctly viewed as a dichotomous symmetry property, as
in Kelvin’s historical conception, and as a continuous phenomenon. This highly
paradoxical result is proved, in this and the previous article~I! @Le Guennec, J.
Math. Phys.41, 5954 ~2000!#, in the case of the basic ingredient of quantum
mechanics, square-integrable (L2) wave functions. In the continuous conception,
chirality appears as the combination of two complementary forms—absolute and
relative chirality. Accordingly, while~I! focused on the conceptual issue and on the
2D theory of absolute chirality, this article focuses on 2D relative chirality. We
show that relative chirality is a continuous phenomenon described by relative radial
functions and relative chiral loops whose features are surprisingly close to those of
their absolute counterparts. This is illustrated on a 2D model ofcis-trans isomer-
ism. We then show that chirality as such is the ‘‘addition’’ of absolute and relative
chirality just as a vector is the addition of its projection on a basis. As a test of
versatility, the continuous conception of chirality is extended to 2D complex fields
and Fourier transforms. Why this conception of chirality is possible inL2 spaces is
tentatively discussed. ©2000 American Institute of Physics.
@S0022-2488~00!02207-6#

I. INTRODUCTION

Are molecules more or less chiral? Among other issues, this is the question raised
continuous conception of the chirality of square-integrable (L2) fields. This truly unexpected an
seemingly paradoxical conception was introduced in the companion article, henceforth d
~I!.1 This conception is exactly to Kelvin’s historical definition what the continuous conceptio
door opening is to the closed/nonclosed discrete symmetry conception, the basic idea und
this approach being that it cannot be true forall objects that are in Kelvin’s definition range, b
at least for some classes of objects. It happens thatL2 spaces, on which nonrelativistic~NR!
quantum mechanics crucially depends to describe all forms of matter, provide such a priv
class. As a direct consequence, the whole conception of chirality in the physical world
relativistic domain provisionally being set apart—is at stake.

Theory shows that there are two special forms of chirality, which were called absolute
relative chirality. The theory of 2D absolute chirality was detailed in~I!. Thus this article first
focuses on the mathematical theory of 2D relative chirality. This theory deals with real fields
following the arguments of~I!, and goes through specific intricacies, but the picture of rela
chirality that emerges is surprisingly close to that of absolute chirality. The relative chirality oL2

fields again appears as a continuous, extensive, local, and positively defined geometrical p
enon~Sec. II G!. This phenomenon is represented by relative radial functions~RRFs! and relative
chiral loops~RCLs!, whose interpretation is close, but not identical, to that of absolute ra
functions ~ARFs! and absolute chiral loops~ACLs! ~Secs. II C–II E!. This will be practically
illustrated on a 2D model ofcis-transisomerism~Sec. II H!. Considering the way relative chirality

a!Present address: Institut de Chimie Mole´culaire d’Orsay, Batiment 410, Universite´ Paris–Sud, F-91405 Orsay Cede
France. Electronic mail: Leguennec@icmo.u-psud.fr
59860022-2488/2000/41(9)/5986/21/$17.00 © 2000 American Institute of Physics
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appeared in the course of the theoretical construction~Ref. 1, Sec. IV C!, these results are no
immediately obvious. Even a proper definition of this elusive concept is first to be derived~Sec.
II A !. It is found that relative chirality is properly defined as the misalignment of the ra
canonical groups~RCGs! Gn

(r ) over n at fixedr ~I!. RCGs varying their orientation continuousl
this phenomenon of misalignment rather obviously appears as continuous and extensive—s
good. Now, contrarily to the case of absolute chirality it is not immediately clear that it ca
represented by chiral loops. Let us then attempt at an intuitive presentation~Fig. 1! limited to the
case of two indices; the whole theory will be shown to depend on this basic case~Sec. II F!.

RCGs of the different ordersn51 andn52 are to be compared at fixed distance fromO, e.g.,
r 2 . Orientations of RCGs depending on the phases of ARFs, we can handle them throughD1(r 2)
andD2(r 2), Eq.~1.5!. The problem is that the ‘‘wheels’’ do not have the same number of ‘‘cog
During one period rotation ofG1

(r 2) , this group comes across twice as many situations of al

ment ~null relative chirality! with G2
(r 2) than if it were being compared withG1

(r 1)
~null absolute

chirality!. Then the phases ofD1(r 2) and D2(r 2) cannot be directly compared. A better gue
would be to compare@D1(r 2)#2 with D2(r 2)—a little reflection shows thatG1

(r 2) and G2
(r 2) are

aligned if and only if~iff ! the phases of@D1(r 2)#2 andD2(r 2) are equal up to a multiple ofp.
DenotingD̄n the complex conjugate ofDn , we get thatG1

(r 2) andG2
(r 2) are relatively achiral iff the

complex numberD1,2(r 2)5@D̄1(r 2)#2D2(r 2) is real. The more general result that the phase
D1,2(r 2) measures relative chirality betweenG1

(r 2) andG2
(r 2) is shown in Sec. II E. Thus there is

point in the complex plane associated to the distancer , D1,2(r ), which represents relative chiralit
at that distance. Gathering all these points we get a loop—the relative chiral loop. Q

The next step is to substantiate the statements claimed in I on chirality as such. This is t
of Sec. III. First focusing on real fields, we show in particular that chirality is indeed to abs
and relative chirality what a vector is to its projections on a basis. The foundations ofL2 theory
are completed by the theory of complex fields~Sec. IV!. The Fourier transform is of interest t
most branches of physics. Then an important issue is to consider Fourier transforms in the
of this theory. This is done in Sec. V. Because of NR quantum mechanics, the theory of ch
in L2 spaces represents a capital issue as far as the physical world is concerned. Howeve
the purely mathematical viewpoint there is no evidence that the range of the continuous c
tion of chirality is limited to such spaces. Can we understand why is the continuous conc
successful inL2 spaces? Could this conception be generalized to other spaces? What is the
of the demarcation line between the ‘‘continuous’’ and ‘‘discrete’’ categories within Kelv
definition range? These are now open problems in pure mathematics. Analyzing the str
context on which theL2 theory is based is expected to provide insight into these problems, so
context is tentatively discussed in the framework defined by questions~I!–~IV ! formulated in~I!
~Sec. VI!. In this article notations of~I! are followed. Definitions and theorems are numberedafter

FIG. 1. The problem of relative chirality. At every distancer from O is a series of RCGsGn
(r ) wheren>1. The indirect

axes of the first two groupsG1
(r ) ~left! andG2

(r ) ~right! are pictured here at two distancesr 1 ,r 2 through their intersections
with relevant circles.G1

(r ) contains one indirect axis~1-star!, while G2
(r ) contains two of them~2-star!. Absolute chirality

is represented by the wavy lines showing radial misalignment at every fixedn. Relative chirality is misalignment overn at

fixed r: the orientation ofG1
(r 1) is compared with that ofG2

(r 1) , and the orientation ofG1
(r 2) with that of G2

(r 2) .
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those of~I!. Some background will then be recalled. The considered space is the Hilbert spH
of L2 fields. Local chirality is considered at a given arbitrary originO. ‘‘Chirality’’ now stands for
‘‘chirality at O.’’ Explicit references toO are suppressed. InH ~local! symmetry groups have a
definite structure which is the mathematical core of this theory. LetG be the~local! symmetry
group ofcPH. Its canonical structure can be written as Eq.~1.1!, where the groupsGn are the
symmetry groups of the canonical projections ofc. The canonical decomposition is defined b
Eqs.~1.2!–~1.3!. At a finer level symmetry groups have the radial canonical structure Eq.~1.4!. In
~I! a regularization that turns elements ofH into analytic fields2 was used, mainly as a short cu
This operation will be found more deeply involved in the mathematics of relative chirality. Th
of L2 analytic fields is denotedCv. The orientation of the RCGGn

(r ) of nonzero real fields is
directly related to the phasewn(r ) of Dn(r ), Eq. ~1.5!:

G5 ù
n>1

Gn , ~1.1!

c5c0
11 (

n>1
cn H c0

1~r ,u!5D0~r !Y0~u!

cn~r ,u!5Dn~r !Yn~u!1D2n~r !Y2n~u!
, ~1.2!

Dn~r !5E
I
Ȳn~u!c~r ,u!du, ~1.3!

G~r !5ù
n>1

Gn
~r !

Gn5ù
r .0

Gn
~r !

⇒ G5ù
r .0

ù
n>1

Gn
~r !5ù

n>1
ù
r .0

Gn
~r ! , ~1.4!

Gn
~r !5Dn~2wn~r !/n!. ~1.5!

II. RELATIVE CHIRALITY OF REAL FIELDS

A. Definition of relative achirality

Our first task is to clarify the concept of relative~a!chirality. Relative chirality appeared in~I,
Sec. IV C 3! as a matter of relative alignment of canonical groups. Note first that this questio
be raised not only for a realcPH, but also for the sum of any subset of its canonical projectio
that is, any subfieldAc5 (

nPA
cn of c, whereA,N is an arbitrary set of non-negative integers.

particularAc5c if A5N. This generalization is required in the following, so we shall direc
look for a proper definition of the relative achirality ofAc. Projections are assumed regularized,
Ac is analytic. Let us denoteAS5$cn /nPA%. Scalar projections can be ignored~I, Sec. IV C! so
A* 5A\$0% will be assumed nonempty.A* is at most countable. The~local! symmetry group of
Ac will be denotedAG. The first step is to write down the structure ofAG. In keeping with
previous results~I, Sec. IV!, this structure is readily shown to be Eq.~2.1!. Let us now consider the
question of relative achirality as it appeared in~I!, i.e., when allcnPAS are absolutely achiral.AS
or Ac will then be said absolutely achiral. In this case allGn contain indirect isometries, soAc is
relatively achiral iff theGn have at least one such element in common, i.e., iff Eq.~2.2! holds.
Thus Eq.~2.2! might be thought of as a definition of relative achirality. However, as already no
this approach fails when someGn lack the indirect isometries required to test relative matchi
i.e., whenAS contains absolutely chiral projections. Besides, if Eq.~2.2! holds then allGn.AG
are achiral soAc is both relatively and absolutely achiral. In fact Eq.~2.2! states thatAc is achiral
so it is clearly too strong a statement to fit our purpose. We are back to our starting point—a
back. Let us consider the restricted form Eq.~2.3! of Eq. ~2.2! at a given distance rfrom O. The
RCGsGn

(r ) , the radial counterparts of theGn , are structurally achiral ~all cn
(r ) are achiral! so

always allow for a relative comparison of their indirect elements at fixedr. Similarly to Eq.~2.2!,
Eq. ~2.3! states thatAc (r ) is achiral. However the fact thatAc (r ) is always structurally absolutely
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achiral implies thatAc (r ) is achiral iff it is relatively achiral. Therefore we get that Eq.~2.3! should
express relative achirality atr. Then a tentative definition of the relative achirality ofAc is that Eq.
~2.3! holds over allr PV:

AG5 ù
nPA*

ù
r .0

Gn
~r !5 ù

nPA*
Gn5ù

r .0

AG~r !, ~2.1!

AG5 ù
nPA*

Gn is achiral, ~2.2!

AG~r !5 ù
nPA*

Gn
~r ! is achiral, ~2.3!

Un5$rPR2/cn~r !Þ0%. ~2.4!

Let us examine if this definition is suitable.~i! If Ac is absolutely achiral, it is clear that neithe
Eq. ~2.3! nor Eq.~2.2! need hold.~ii ! If Eq. ~2.3! holds overV, sets ofn-stars can still be radially
twisted, soAc need not be absolutely achiral. Therefore Eq.~2.3! is independentfrom absolute
achirality. Equation~2.3!, even holding overV, is indeed free from any condition onGn ~cf. the
remark of I Sec. IV C 3!. Let us check that Eq.~2.3! holding overV is complementaryto absolute
achirality with respect to chirality.~i! Let Ac be achiral. SinceAG,AG(r ) all AG(r ) contain an
achiral subgroup to fulfill Eq.~2.3! overV. Besides,AG,Gn so theGn are also achiral. ThenAc
is absolutely achiral and fulfills Eq.~2.3! over V. ~ii ! Let Ac be absolutely achiral and fulfill Eq
~2.3! overV. Projections can be assumed nonzero without loss of generality. In that case,Un , Eq.
~2.4!, is nonempty for allnPA* . Now diffusion tends to spread fields all over space hence to ‘
in the blanks.’’ Mathematically, regularized fields are analytic. Then allUn are dense open sets o
R2.3 By definition allcn are nonzero onAU5 ù

nPA*
Un . Now A* is at most countable andR2 is a

Baire space. ThereforeAU is densein R2.4 Then there are infinitely many distances fromO at
which all restrictions of thecn are nonzero.5 Let r 0.0 be such a distance.Ac is absolutely
achiral, soGn5Gn

(r 0) over A* . Ac fulfills Eq. ~2.3! so AG(r 0)5 ù
nPA*

Gn
(r 0) is achiral. Then

AG5 ù
nPA*

Gn is equal to ù
nPA*

Gn
(r 0)5AG(r 0). ThereforeAc is achiral. The property Eq.~2.3!

holding overV is complementary to, and independent from, absolute achirality. Q.E.D. This r
is in agreement with intuition: Eq.~2.3! is a property of alignment overn at fixedr while absolute
chirality is the complementary property of alignment overr at fixedn. In conclusion Eq.~2.3! is
the proper definition of relative achirality.

This definition is not expected to depend on space dimension~Sec. III!. Moreover, the previ-
ous arguments can be interpreted as a proof of Theorem 2 in the case of analytic fields. T
that this proof relies on the existence of a circle on which all projections are nonzero sugges
in order to extend this theorem to arbitrary real fields, we take the precaution of defining
relative achirality through a detour to the limit of vanishing regularization:

Definition 2: A real AcPCv is said relatively achiral atr iff its restriction Ac (r ) ~its radial
groupAG(r )! is achiral.Ac is said relatively achiral iff relatively achiral overV. A real AcPH is
said relatively achiral iff itsregularizationAc« is relatively achiral in the limit«→01.

Theorem 2: A real AcPH is achiral iff it is absolutely and relatively achiral.

As absolute achirality~I, Sec. V E!, relative achirality appears as aradially distributedprop-
erty. This suggests that Definition 2 can be fruitfully generalized to non-null open setsV8,V.
ThenAc can be properly said relatively achiral on a disk, a ring, etc. Note the following differe
in the limit V8→$r 0%:

Ac need not be relatively achiral at fixedr 0 , since, contrary toGn
(r 0) ,AG(r 0)

need not be achiral.
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B. Relative achirality of two projections

A theorem discussed in Sec. II F shows that the study of relative achirality can alwa
reduced to the case of two projections. This case will therefore be discussed first. While Defi
2 applies in principle to projections of the same field, we shall consider here the more gener
of two ~regularized! projections1cn , 2cm (n,m>1) of two possibly different real fields1c, 2c.
Projections of different orders being independent, the only difference with the previous situa
the casen5m, where 1cn and 2cn can now be different. This generalization is useful, f
example, in the treatment of complex fields~Sec. IV!. By extension of Definition 2,1cn , 2cm will
be said relatively achiral atr iff their RCGs1Gn

(r ) and2Gm
(r ) have common indirect elements. Le

us look for common rotations first. Let1cn , 2cm be nonzero atr and letp>1 be the highest
common factor~Hcf! of n,m. Then Eq.~2.5! implies thatAG(r )5Cp or AG(r )PDp ~I, Sec. IV C!,
showing that1Gn

(r ) , 2Gm
(r ) havep common rotations, hence have either zero or exactlyp common

indirect axes. Let1wn(2wm) be the phase of the ARF1Dn(2Dm) of 1cn(2cm). The set of angles of
the n-star of 1Gn

(r )(2Gm
(r )) is the seriesSn@21wn(r )/n#(Sm@22wm(r )/m#), thus Eq.~2.6! ~Ap-

pendix A!. Now let N5n/p, M5m/p. N,M>1 are relatively prime. The least common multip
~Lcm! of n,m is q5NMp. It is shown in Appendix A that~i! the intersection in the r.h.s. of Eq
~2.6! is nonempty iff Eq.~2.7! holds,~ii ! if nonempty this intersection corresponds top different
indirect axes, in agreement with Eq.~2.5!. Now the condition Eq.~2.7! can be simplified as Eq
~2.78!, which shows that1cn , 2cm are relatively achiral atr iff the complex number

@1D̄n(r )#M@2Dm(r )#N is real. Since this result is also true for zero radial functions,1cn , 2cm are
relatively achiral iff the complex map (1D̄n)M(2Dm)N is real. Note that, strictly speaking, thi
criterion of relative achirality is only concerned with the phase of this map. Guided by the an
with absolute chirality, this phase is dealt with through the product of ARFs obtained by m
plication with appropriate moduli:

AG~r !151Gn
~r !1ù2Gm

~r !15CnùCm5Cp , ~2.5!

1Gn
~r !2ù2Gm

~r !2ÞB ⇔ Sn@21wn~r !/n#ùSm@22wm~r !/m#ÞB, ~2.6!

2wm~r !

m
2

1wn~r !

n
P

p

q
Z, ~2.7!

N2wm~r !2M1wn~r !P p Z. ~2.7’!

C. The relative radial function

Some properties of the map (1D̄n)M(2Dm)N will be examined here. Anticipating on forthcom
ing results, this map will be called the~regularized! relative radial function~RRF! of order~n,m!.
The definition Eq.~2.8! can be extended to all nonzero integersn,mPZ* with the convention
p5Hc f(unu,umu), q5Lcm(unu,umu), N5unu/p, M5umu/p:

Dn,m@1c,2c#5~1D̄n!M3~2Dm!N5~1D̄n!q/unu3~2Dm!q/umu5Dm,n@2c,1c#. ~2.8!

The transformation of the RRF under isometries throws some light on its structure. It is exp
that, as regard their relative properties, rotating one field bya is equivalent to rotating the othe
one by2a. The RRF satisfies this condition thanks to the powersN, M, which indeed compensat
for the different transformation laws of1Dn , 2Dm , Eq. ~2.9! ~I, Sec. V D!. The structure of the
RRF has another interpretation. Let1cn , 2cm be relatively achiral atr. Then Eq.~2.9! shows that
r(r a)1cn and 2cm are relatively achiral atr iff eiMna561, i.e., iff a is a multiple of p/q.
Multiples of p/n5M .(p/q) come from the rotational symmetry of then-star of1cn

(r ) . Thisn-star
appears asN interlacedp-stars as regards coincidence with theM p-stars of2cm

(r ) , so during a full
variation of a ~0 to p/n! there appearsM21 equally spaced coincidences with the remain
fixed p-stars of2cm

(r ) ~Fig. 2!. Now again the presence ofN,M is required to reproduce this patter
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of coincidences in Eq.~2.9!. As a consequence of Eq.~2.9! Dn,m@1c,2c# is invariant if both fields
are identically rotated Eq.~2.10! so, as expected,Dn,m@1c,2c# contains no information on the
fields ‘‘absolute’’ orientation. Indirect isometries permute RRFs in the sense of Eq.~2.11!, instead
of rotating them. If1cn or 2cm is achiral there is a direct relation betweenDn,m@1c,2c# on one
hand, andD2n,m@1c,2c# or Dn,2m@1c,2c# on the other hand. This relation disappears if1cn ,
2cm are both absolutely chiral. This is a first indication of the way1cn(2cm) distinguishes the
enantiomers of2cm(1cn) and is a direct appearance ofchiral discriminationin our framework. A
detailed theory of chiral discrimination indeed evolves from these remarks but is out of the
of this article:

Dn,m@r~r a!1c,2c#5eiMnaDn,m@1c,2c#5eiNmaDn,m@1c,2c#5Dn,m@1c,r~r 2a!2c#, ~2.9!

Dn,m@r~r a!1c,r~r a!2c#5ei ~Mn2Nm!aDn,m@1c,2c#5Dn,m@1c,2c#, ~2.10!

Dn,m@r~sa!1c,2c#5e2iMna~1Dn!M~2Dm!N5e2iMnaD2n,m@1c,2c#

~2.11!
Dn,m@1c,r~sa!2c#5e22iNma~1D̄n!M~2D̄m!N5e22iNmaDn,2m@1c,2c#.

Let us briefly discuss the definition of RRFs in the general case of nonregular1cn , 2cm . As a
consequence of Definition 2Dn,m@1c,2c# must not be defined as the product1D̄n

M2Dm
N but as the

limit of Dn,m@1c« ,2c«# as«→01. RRFs do not depend linearly on1c, 2c so we do not expec
that these two quantities need to be equal, contrarily to the case of ARFs inHm . This distinction
is essential when1Dn , 2Dm have disjoint supports. In that case1D̄n

M2Dm
N is identically zero, so

1cn , 2cm cannot be directly compared. The ‘‘spreading’’ property of diffusion is clearly requ
to force this comparison~Sec. II A! before regularization is removed. Intuitively,Dn,m@1c« , 2c«]
is not expected to vanish as«→01 when 1cn , 2cm are relatively chiral. However, proving thi
assertion on general grounds is a nontrivial problem involving a determination of the topolo
space in whichDn,m@1c« ,2c«# is to be embedded so that this property holds. In this article
shall postpone this purely mathematical question and merely assume that the limit de
Dn,m@1c,2c# does exist in the previous sense. It is then expected that~i! this limit corresponds to
a class of a.e. defined RRFs since a single regularization corresponds to a class of fields,~ii ! the
identities Eqs.~2.9!–~2.11! are conserved by the usual linearity of the limit.

FIG. 2. Coincidences of indirect stars generated by counter-clockwise rotation of1cn
(r ) with respect to2cm

(r ) in the case
n52, m53. Then different axes of an-starSn@a# are labeledn0 ...nn21(k50¯n21), where the axisnk corresponds to
the phase subsetS1@a1kp/n# of Sn@a#. Herep51, sop-stars reduce to single axes. By assumption the initial state is
coincidence 20530 . If axes are not distinguished the rotation period of an-star isp/n. A full period rotation in that sense
goes from~a! to ~d!, or ~b! to ~e!. The M2152 coincidences~b!, ~c! are inserted between~a! and ~d!. If axes are
distinguished the rotation period isp. Coincidences appear when the rotation angle is a multiple ofp/q5p/6.
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D. The theorem of relative achirality

Previous results suggest that the criterion of relative achirality of two projections shou
stated with reference to the representation of RRFs in the complex plane, in analogy with ab
chirality ~I, Sec. V C!. In that context the RRF of regularized1cn , 2cm is to be considered as on
parametrization of a path in this plane~I, Sec. V B!. RRFs of this type have the same limits tha
ARFs at the boundaries ofV, Eq.~2.12!, so this path is a continuous closed loop which begins
ends at the origin~note thatDn,m@1c,2c#(r ) ;

r→01
r 2uqu!. This path will be called therelative chiral

loop ~RCL! of order~n,m! of 1c, 2c. By extension and under the assumption of Sec. II C, the R
of 1cn , 2cmPH defines a class of a.e. equal paths in the complex plane~at least in the sense o
distributions! which can be arbitrarily closely approximated by regular RCLs, and which is
also to be called a RCL of order~n,m! ~I, Sec. V B!. Then we get Theorem 3, to be compared w
Theorem 1~I, Sec. V C!:

lim
r→01

Dn,m@1c,2c#~r !50

lim
r→1`

Dn,m@1c,2c#~r !50
n,mPZ* . ~2.12!

Theorem 3: Two real projections1cn , 2cmPCv are relatively achiral at r iff their relative
chiral loop crosses the real axis at r and are relatively achiral iff their relative chiral loop
included in the real axis. Under the assumption of Sec. II C, real1cn , 2cmPH are relatively
achiral iff their relative chiral loop is almost everywhere included in the real axis.

E. Geometrical interpretation of relative chiral loops

Theorem 3 does not exhaust the geometrical interpretation of RCLs. The key argument
the relative orientation of the stars of1Gn

(r ) , 2Gm
(r ) is rigidly connected to the phase o

Dn,m@1c,2c#(r ) because their individual orientations are rigidly connected to the phase
1Dn(r ), 2Dm(r ). As in the case of absolute chirality, this relation has a geometrical expres
Let n,m>1. From Eq.~2.8! the phase ofDn,m@1c,2c# is q3(2wm /m21wn /n). If the RRF is
nonzero atr, the line joining it with the origin has two intersections with the unit circle. Theirqth
roots are the 2q vertices of a regular polygon inscribed in the unit circle. Now consider the se
angles obtained by arbitrarily taking one axis of then-star of1Gn

(r ) and one of them-star of2Gm
(r )

and measuring their angular gap in the sensem→n. Then it follows from Eq.~2.13! and a trivial
application of Bezout theorem~N,M being relatively prime! that this set of angles is equal to th
set of phases of the 2q vertices previously defined. The polygon ofqth roots representing the se
of angles between arbitrary axes, the separation between stars, i.e., the smallest gap betwe
of axes, corresponds to the pair ofqth roots closest to the real axis. Now the argument duplica
that of ~I, Sec. V D!. If Dn,m@1c,2c#(r ) is real there are two realqth roots so there are two
coinciding axes, hence two coincidingp-stars, in agreement with Theorem 3. IfDn,m@1c,2c#(r ) is
rotated bya!p, the previous twop-stars are misaligned bya/q but remain the closest to the re
axis of then,m-stars~Fig. 3!. If Dn,m@1c,2c#(r ) is imaginary (a56p/2), the separation of the
n,m-stars is the largest possible (6p/2q). If a tends top another pair ofp-stars tends to align
and so on. A continued rotation ofDn,m@1c,2c#(r ) generates the full series of coincidences
independentp-stars. Therefore the phase ofDn,m@1c,2c#(r ) modulo p is a proper continuous
measure of the amount of relative misalignment of then,m-stars atr. Theorem 3 is merely the
application of this geometrical property to the limiting case of zero misalignment. The RCL
up all this phase information overr, together with a modulus information, which could be inte
preted as defining a measure of the relative intensity of projections atr appropriate to the problem
of relative chirality. The RCL is invariant under joint rotation of the projections Eq.~2.9!. The
RCL is changed to its symmetrical with respect to theOx axis under joint transformation of th
fields by any indirect isometrysa , Eq. ~2.14!. Then this symmetrical loop, run in reverse
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direction in the sense of~I, Sec. V D!, is properly called theenantiomerRCL. As expected,
whether absolutely achiral or not,1cn , 2cm are relatively achiral iff the RCL is invariant unde
isometries:

S 2
1wn~r !

n
11k

p

n D2S 2
2wm~r !

m
12k

p

mD5S 2wm~r !

m
2

1wn~r !

n D1~1kM22kN!
p

q
, ~2.13!

Dn,m@r~sa!1c,r~sa!2c#5~1Dn!M3~2D̄m!N5D2n,2m@1c,2c#5Dn,m@1c,2c#. ~2.14!

F. The theorem of relative achirality „II…

The general case of an arbitrary setAS of regularized real projections will now be consider
~Sec. II A!. At a givenr .0 some projections can be zero, so we need first introduce the s
A(r )* of nonzero projections Eq.~2.15!. The Hcf p(A(r )* )>1 of the elements ofA(r )* is well-
defined whetherA(r )* is finite or not. Then the rotational part ofAG(r ) is Eq. ~2.16!:

A~r !* 5$nPA* /cn
~r !Þ0% , A* , ~2.15!

AG~r !15 ù
nPA*

Gn
~r !15 ù

nPA~r !*

Cn5Cp~A~r !* ! , ~2.16!

AG~r !25 ù
nPA~r !*

Gn
~r !2ÞB ⇔ ù

nPA~r !*

Sn@2wn~r !/n#ÞB, ~2.17!

FIG. 3. Geometrical relation between the phase of the RRF and the relative orientation of then2(m2) stars of RCGs in
the casen52, m53, p51, q56. Axes are labeled as in Fig. 2. A single pointDn,m(r ) of the RCL is shown.Dn,m(r ) is
initially assumed on the real axis. Only one set of relative orientations, corresponding to the initial coincidence 20530 and
a counterclockwise rotationa/q of 2cm

(r ) with respect to1cn
(r ) , is reported. In this situation, rotatingDn,m(r ) by 1p rotates

Gm
(r ) by 1p/q and changes the coincidence 20530 ~a! into 21531 ~c!. The maximal angular gap between stars th

appears ata/q51p/2q, whenDn,m(r ) is purely imaginary~b!. A continued rotation ofDn,m(r ) generates the full series
of zero and maximal angular gap values.
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ù
nPA~r !*

Sn@2wn~r !/n#ÞB ⇔ ;n,mPA~r !* Sn@2wn~r !/n#ùSm@2wm~r !/m#ÞB.

~2.18!

Equation~2.16! is a generalization of Eq.~2.5! sincep(A(r )* ) divides the HCF of any nonempt
subset ofA(r )* . Equation~2.16! implies thatAG(r )5Cp(A(r )* ) or AG(r )PDp(A(r )* ) so the projec-
tions have either zero orp(A(r )* ) common indirect symmetries atr. Following Sec. II A, the
condition of relative achirality ofAS at r is Eq. ~2.17!. Despite various attempts it did not prov
possible to express Eq.~2.17! through a single aggregate of the whole set of radial functio
contrarily to the case of two projections. This negative result will be left as a conjecture be
such a global aggregate isnot needed. The powerful theorem Eq.~2.18!, which is proved in
Appendix A, shows that the full set of projections is relatively achiral atr iff nonzero projections
are pairwise relatively achiral atr. Since this statement is trivially extended to locally ze
projections and to projections of different fields~Sec. II B!, we finally get Theorem 4 for analytic
projections. The validity of Theorem 4 is extended toH under the assumption of Sec. II C. Th
geometrical contents of Theorem 4 is that there is no more relative chirality in a set of proje
than in the independent couples formed from this set. In other words, all sources of re
chirality are exhausted by a pairwise analysis.

Theorem 4: A countable setAS5$cn /nPA% of real analytic projections is relatively achira
at r iff its nonscalar elements are pairwise relatively achiral at r. A countable set of real projec
tions is relatively achiral iff its nonscalar elements arepairwiserelatively achiral.

G. The concept of relative chirality

The results gathered so far on relative chirality will be discussed here. While absolute ch
might be thought of as having a counterpart as the chirality of projections in Kelvin’s framew
relative chirality appears as a purely original concept. In Sec. II A relative chirality was implic
defined as the negative of the symmetry property of relative achirality; that is, according
purely dichotomous point of view. Nevertheless, it is equally apparent that beyond this dic
mous definition, exactly as in the case of absolute chirality there exists a continuous concep
relative chirality as the phenomenon of misalignment of RCGs overn—relative misalignment.
This phenomenon is basically defined at every fixedr, but is to be gathered overr when consid-
ering complete fields. Previous results have been mainly concerned with precising the rep
tation of this phenomenon, the most important result being that it is basically to be cons
pairwise. The formal definition of relative chirality according to the continuous conception i
following:

Definition 3: In H, relative chirality is the phenomenon ofrelative misalignment of the
indirect elements of the radial canonical groups of sets of projections at fixedr .0.

The parallel interpretations of ARFs and RRFs as continuous quantitative measures of
and relative misalignment~I, Secs. V D, II E! show that a representation of relative chirality clo
to that of absolute chirality is possible. Following Sec. II F this representation should be re
to the case of pairsn,m of projections. Let us, e.g., consider the RCLs~g!, ~d! of Fig. 4, to be
respectively compared with the ACLs~a!, ~b!. In case~g! the stars of the two projections ar
almost relatively aligned overV, so1cn(2cm) is almost symmetrical with respect to ap-substar of
them-(n-)star of2cm(1cn) whateverr .0. In case~d! the misalignment of then,m-stars is large
and almost maximal over a large part ofV, so no axis of the localm-(n-)star of2cm(1cn) does
fit, even approximately, as a local symmetry of1cn(2cm). Alternatively a uniformly small relative
phase change makes~g! relatively achiral, while a large relative phase change is required in
~d!. Symmetrically to the case of absolute chirality, these arguments show that~g! typically
represents aweakly relatively chiral pair of projections, while~d! represents ahighly relatively
chiral pair. More generally the arguments of Sec. II E show that the shape and the extens
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RCLs introduce an exhaustive description of ‘‘how,’’ ‘‘ where,’’ and ‘‘ to what extent’’ a pair of
projections is relatively chiral. An arbitrary set of projections is represented by the catal
RCLs formed from all possible pairs of indices.

Definition 3 has a strong and a weak mathematical interpretation. The strong sense
pointwise sense. The definition is directly applicable at a givenr to comparable continuou
projections, e.g., analytic projections. The weak sense is the quadratic one. Sets of ar
projections must in principle be regularized before evaluation of their relative chirality. Ascne

does not tend tocn pointwise but only in quadratic average~I, Sec. IV B 4!, the relative chirality
of Ac makes sense only over non-null subsetsV8,V. Relative misalignment is then defined u
to adm-null set. Note that the wording of Definition 3 anticipates theoretical extensions to h
dimensions. The fundamental difference between ACLs and RCLs is that points of ACL
mutually compared while points of RCLs are independently compared with an external refe
~the real axis! and have no mutual connection. Relative chirality is visualized by a loop only in
extent that relative information is radially gathered. Then chiral loops appear in the theo
absolute and relative chirality on quite different grounds. This accounts for the difference
tween Theorems 1 and 3. Nevertheless most remarks of I, Sec. V E equally apply to the r
case. Relative chirality is now established inH as a fully autonomous source of chirality and as
continuous and extensive geometrical phenomenon. Relative chirality is also positively de
relative achirality only appearing as the negative limiting case of nullity of relative misalignm
Relative chirality finally is a local, radially distributed, phenomenon. The relative counterpa
Fig. 9 in paper I are analyzed following the arguments of I, Sec. V E. The proof that rel
chirality can be quantitatively measured by order parameters will be presented elsewhere.

H. An illustration

This theory is illustrated here by the study of 2D relative chirality in the series of
dihalogenoethylenes CHX5CHX (X5F, Cl, Br, I) previously considered in~I, Sec. V F!. Model
description will not be repeated. The considered fields are 2D models of the projected el
probability density of these molecules. Note that total electron number is not taken into acco
order to compare all molecules with respect to the same reference. Linear combinations of

FIG. 4. ~g!, ~d! are example shapes of relative chiral loops. The ACLs~a!, ~b! are reported from~I! for comparison
purposes. In case~g!, RRF values are close to the real axis, showing that the angular gap between RCGs remains
constantly small with respect top/2q. Then at almost all radii there exists ap-star from one projection which is an
approximate symmetry of the second one, so the couple of projections whose RCL is~g! is weakly relatively chiral. On the
contrary, in case~d! the angular gap between RCGs is almost constantly close to its maximum~RRF values are closed to
the imaginary axis!, so the couple of projections whose RCL is~d! is highly relatively chiral.
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sians are analytic hence need no regularization. So RRFs are directly obtained by multiplica
the relevant ARFs. RRFs of orders~2,4! to ~2,8!, and~4,6!, of the trans isomer~a! are reported in
Fig. 5. Those of~b! are symmetrical to those of~a! with respect to the real axis.

Some features of these RCLs can be outlined following the arguments of I, Sec. V F. B
short and large distances fromO, RCGs tend to be radially aligned, so that at least the slope
RCLs are expected, and found, to be well-defined in these limits. Since relative chirality
question of relative alignment, projections whose ACLs tend to rotate in opposite sens
expected to generate significant amounts of relative chirality. This suggests that the ass
RCLs should be widely spread in the complex plane. In our example, projection pairs h
opposite absolute rotation senses are~2,4!, ~2,8!, and~4,6!. It is observed that their RCLs satisf
this conclusion. The fact that these RCLs appear grossly similar suggest that this effect m
determinant as regards the overall shape of RCLs. The monotone decrease of absolute
from F to I should then induce a progressive flattening of RCLs, as observed. On the contra
RCL shapes of projection pairs having the same absolute rotation sense are expected to b
tive to finer differences between ACLs. The tortured shape associated toD2,6 could tentatively be
ascribed to this secondary effect. The extent of RCLs is observed to decrease monotonical
F to I. In conclusion, within the limits of this model both absolute and relative chirality, he
their chirality, as will be clear after the next section~Sec. III!, of the faces of the electronic
probability density decreases monotonically fromtrans CHF5CHF to trans CHI5CHI.

III. THE CONCEPT OF CHIRALITY

We can now suggest a first synthetic vision of the phenomenon of chirality in the case o
fields. Absolute and relative chirality were found to differ only by the two ‘‘independent di
tions’’ along which the misalignment of RCGs is considered. Absolute chirality is concerned
radial~longitudinal! misalignment whereas relative chirality is concerned with relative~transverse!
misalignment. The two sub-concepts reflect the presence of two and only two indices inGn

(r ) . The
fact that there exists only two indices does not depend on spatial dimension. In higher dim
the radial index does not change while the canonical index is changed into whatever index

FIG. 5. RCLs of orders~2,4! to ~2,8!, and~4,6! of a model planar projection of the electronic probability density of t
trans isomer~a! of CHX5CHX ~cf. text!. Dashed line: X5F; dotted line: X5Cl; crossed line: X5Br; plain line: X5I.

Data for D2,45(D̄2)2D4 , D2,65(D̄2)3D6 , D2,85(D̄2)4D8 , and D4,65(D̄4)3(D6)2 are, respectively, expressed i
1025 Å 26, 1027 Å 28, 1029 Å 210, and 10210 Å 210. 2D relative chirality is observed to decrease monotonically from X5F
to X5I.
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ing a class of ILRs of the orthogonal group, so it is expected to remain discrete.6 The radial index
r PV is continuous. Thecanonical index nPN* is discrete. Therefore the same distinction b
tween absolute and relative chirality is to be found in every dimension. The definition of chi
in the continuous conception naturally follows~Fig. 6!:

Definition 4: In H, chirality is the phenomenon of misalignment of the indirect element
radial canonical groups over radial and canonical indices.

A posteriori it is the analogy of the concepts of absolute and relative chirality that appea
the fact allowing their gathering under a single heading—chirality. Misalignment is consid
over the domain of indicesV̄5V3N* and is defined up todm-null sets alongV for every n
value~I, Sec. V E!. The role of the two indices is apparently not symmetrical in this presenta
but their symmetry is readily restored.7 The catalog of all relevant ACLs and RCLs is an exha
tive representation of chirality. The subset of ACLs represents absolute chirality while the co
mentary subset of RCLs represents relative chirality. The qualitative differences between Ke
definition and Definition 4 follow from previous results and are mere paraphrases of I, Secs.
and II G. Following Definition 4, chirality is a continuous, extensive, and positively defi
phenomenon. Achirality appears as the negative limit case of nullity of misalignment, whate
radial or relative origin. This result is the geometrical root of Theorem 2. Quantitative measu
chirality as a whole will be discussed in a forthcoming article. Previous results also show tha
indices can be symmetrically restricted in Definition 4. For any non-null~open! setA,N* ,7 the
chirality of a setAS of projections can be defined over any non-null open setV8,V of distances
to O. Chirality is then represented by the set of ACLs and RCLs built up from the elementsAS
and restricted toV8. Hence chirality is also alocal phenomenon, distributed over the who
domain of indicesV̄.

Note two important special cases:~i! If two nonzero projections are absolutely achiral, th
RCL is a.e. included in a straight line. This line can still be arbitrarily oriented, so the projec
need not be relatively achiral. They are relatively achiral iff this line coincides with the real
~ii ! Conversely let two projections of different orders be relatively achiral and let one of the
absolutely achiral. Then the RCGs of the second one can have finitely many different orien
~Fig. 2! so can jump from one to another asr varies. Then the second projection need not
absolutely achiral.

A straightforward application of Definition 4 is the way the chirality of a fieldc is related to
the chirality of partial sums of the canonical series(N)c5c0

11 (
n<N

cn ~I, Sec. VI!. The chirality of
(N)c is the chirality ofc minus all chirality related to the neglected projectionsn.N, namely their
absolute chirality and the relative chirality of the couples containing at least one neglecte

FIG. 6. The relationship between absolute chirality, relative chirality and chirality. Each point in this plane repres
RCG Gn

(r ) . Absolute chirality is the phenomenon of misalignment of theGn
(r ) at fixed n, while relative chirality is the

phenomenon of misalignment of theGn
(r ) at fixedr, so both are represented by straight lines, respectively, horizontal

vertical. Chirality is misalignment over both indices. The corresponding domain of indices is a surface. Chirality
combination of absolute and relative chirality.
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jection. Then approximations of this type provide a well-defined control of the retained
neglected amounts of chirality. Therefore there does exist a ‘‘chirality oriented’’ developme
L2 fields. This is an important practical result, especially as regards numerical computatio
molecular structures—it shows that the numerical approach can be used in a controlled way
context of molecular chirality computations.

IV. THE CHIRALITY OF COMPLEX FIELDS

A. Radial and canonical symmetry groups of complex fields

As a straightforward application of previous results, we shall consider the generalizati
this theory to complex fields, i.e., its extension to the whole ofH. In all Sec. IV ‘‘chirality’’ stands
for ‘‘local chirality at O.’’ Fields are assumed regularized unless explicitely stated. The dec
position of a complexcPH into a pair of real components over a ‘‘uniform’’ basise was defined
in I, Sec. IV C 5.8 In that context it is expected that the chirality ofc ~symmetry groupG! can be
related to the chirality of the real pair1c,2c ~symmetry groups1G,2G!. It is easily checked tha
the strategy of I, Sec. IV A and the radial and canonical decompositions apply to complex fie
well as to real ones. Then the~local! groupsG, Gn , G(r ), andGn

(r ) are well-defined and we sha
consider how they are expressed in terms of the corresponding groups of1c,2c. Inversion of~I,
Eq. ~4.26! required the introduction of the conjugate fieldc̄, whose symmetry group will be
denotedḠ. The relationc̄5c(c) defines a semi-linear isometric operatorc in H, which is easily
shown to commute with ther(u), whence the important identityG5Ḡ. Then the structure Eq
~4.1! follows from ~I, Eq. ~4.27!. Note thatc also commutes withp0

1 , pn , andr (e). Then~I, Eq.
~4.26! is equally true of canonical projections, and can again be restricted to every circle, so w
the basic structures Eq.~4.2! along the radial and canonical axes. Ifc,c̄ were decomposed ove
another basisf then the RCGs1 fGn

(r ) ,2 fGn
(r ) of the new components1 fc,2 fc need not be, respec

tively, equal to1Gn
(r ) ,2Gn

(r ) . However, Eq.~4.2! proves that their intersection is aninvariantof the
decomposition. Equation~4.2! also shows thatGn

(r ) need not be achiral in the general case. T
justifies the central role of real fields in the theory, since the achiral structure ofGn

(r ) proved basic
to all previous arguments. Note also the important point that the definitions of absolute
relative achirality are trivially extended to complex fields as well as Theorem 2:

G5GùḠ51Gù2G, ~4.1!

G~r !51G~r !ù2G~r !

Gn51Gnù2Gn
and Gn

~r !51Gn
~r !ù2Gn

~r ! . ~4.2!

B. Absolute chirality of complex fields

The absolute chirality of a complex projectioncn can now be investigated. Letcn be abso-
lutely achiral. ThenGn,1Gn ,2Gn , Eq. ~4.2!, so 1cn ,2cn are absolutely achiral. Moreove
Gn,Gn

(r ) at everyr PV, so 1cn ,2cn are relatively achiral. Conversely, let1cn ,2cn be nonzero,
and be both absolutely and relatively achiral. Since1cn ,2cn are regularized, the nonempty ope
sets1Un ,2Un , hence the finite intersection1Unù2Un , are dense inR2. Then there isr 0.0 such
that 1cn

(r 0) ,2cn
(r 0) are nonzero.1cn ,2cn are relatively achiral atr 0 so Gn

(r 0)
51Gn

(r 0)
ù2Gn

(r 0) is

achiral.1cn ,2cn are absolutely achiral soiGn5 iGn
(r 0) ( i 51,2). ThenGn51Gnù2Gn is equal to

1Gn
(r 0)

ù2Gn
(r 0)

5Gn
(r 0) so cn is absolutely achiral. This statement is readily extended to zero

components, so Theorem 5 is proved in the analytic case. This equivalence is conserved
limit e→01 owing to Definition 2, so Theorem 5 is satisfied in the general case. This result
not depend on the basise. In plain words the absolute chirality of complex projections is
phenomenon of misalignment of the two sets of radial canonical groups1Gn

(r ) ,2Gn
(r ) associated to

real components, so it appears as a special case of the general concept of chirality~Sec. III!. The
absolute chirality ofcn in the basise is therefore represented by three chiral loops, two AC
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(1Dn ,2Dn) and one RCL (Dnn@
1c,2c#). cn is absolutely achiral iff the three loops are achir

Note that, in keeping with the special cases considered in Sec. III, three loops are not redu
The absolute chirality of complex fields is still a local, continuous, extensive, and posit
defined phenomenon:

iUn5$rPR2/ icn~r !Þ0% i 51,2. ~4.3!

Theorem 5: A complex projection is absolutely achiral iff its real components are absolu
and relatively achiral.

C. Relative chirality of complex fields

Let us first consider two complex projectionsacn ,bcm(n,m>1), possibly of the same orde
~hence the indicesa,b!, whose components are1acn , 2acn and1bcm , 2bcm on the same basise.
From Eq.~4.4! acn ,bcm are relatively achiral atr .0 iff 1acn ,2acn ,1bcm ,2bcm are relatively
achiral atr. Since this structure is readily generalized to any countable set of complex proje
as the intersection of the RCGs of real components, this result yields Theorem 6, which e
Theorem 4 to the complex case. Relative chirality ofacn ,bcm in the basise is represented by
(421)!56 RCLs. acn ,bcm are relatively achiral iff the six loops are achiral. The relati
chirality of sets of complex projections coincides with the relative chirality of sets of real c
ponents, so is a special case of the previous continuous conception of relative chirality;

aGn
~r !ùbGm

~r !51aGn
~r !ù2aGn

~r !ù1bGm
~r !ù2bGm

~r ! . ~4.4!

Theorem 6: A countable set of complex (analytic) projections is relatively achiral (at r)
their set of real components is relatively achiral (at r).

D. Real or complex vector spaces?

RCGs of real fields have the well-defined achiral structure that is central to this ana
RCGs of complex fields can lack this feature. The RCG of a complex field is achiral atr, i.e.,
belongs toDn , iff its real components are relatively achiral atr. Consequently the absolut
chirality of complex fields is a combination of the two different ‘‘pure’’ forms of chirality, whi
are basically related to real fields. Projections of complex fields are indeed not ‘‘elemen
~compare this result with its intuitive presentation in I, Sec. IV C 5!. These arguments emphasiz
that real fields are the true building blocks of the theory. Therefore two approaches to the
struction of this theory could be conceived:~i! Starting from the complex vector spaceH, consider
it as the real vector space obtained by restriction ofC to R and project its elements as real field
~restriction of the algebraic field of scalars!. This is the approach followed in this work after th
study of canonical decompositions.~ii ! Starting from the real vector space of real-valuedL2 maps,
construct the theory then complexify it9 in the end to obtainH. This second approach could b
viewed as following more closely the construction of abstract integration theory,9 to which this
theory is closely related. The two approaches are indeed equivalent. However, the seconda
priori may be considered as simpler, while it is the first one that was selected in this work.
~i! In any case radial functions are complex, so both approaches merge inHm , ~ii ! canonical
projectors are obtained from character theory. Now character theory requires an algebr
closed field, because it is based on Schur lemma.10 However,R is not algebraically closed—its
algebraic closure isC.10 Then some form of complexification would eventually have been requ
during the study of canonical decompositions, i.e., early before the analysis of chirality, s
second approach does not bring any simplification anyway.

V. FOURIER TRANSFORM AND LOCAL CHIRALITY

The Fourier transform is a central tool in the molecular domain, particularly in relation
linear evolution equations~Schrödinger, Maxwell, diffusion equations, etc.! and with quantities
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which can be expressed as convolution products~potentials generated by charge distribution
interaction energies, etc.!. The chirality of complex Fourier transforms will be briefly examin
here. Fields are assumed regularized unless explicitely stated. The basic definition of F
transforms is concerned with integrable (L1) fields. However, Plancherel theorem9 states that the
Fourier transform and its inverse are continuously extended fromL1(R2,dm)ùL2(R2,dm) to
L2(R2,dm), the resulting operators being isometries~continuous norm conserving linear oper
tors!. Accordingly, recalling thatH was identified with the Hilbert spaceL2(R2,dm), the direct or
inverse Fourier transform of any element ofH is merely another element ofH of the same norm.
In other words,H is a space where fields and their Fourier transforms are treated on the
footing. Then the previous analysis is directly applicable to Fourier transforms. The only que
left is the relation between the chirality of a field and of its Fourier transform. If the originO is
given in the planeP, the Fourier–Plancherel transform associated toO can be expressed as E
~5.1! and the identityĉ (O)(Q)5ĉ (O)(OQ) defines an element ofH. However, since the affine
plane has no natural origin~I, Sec. III B!, Eq. ~5.1! shows thatĉ (O) is not intrinsically defined in
H. ĉ (O) depends onO through a phase factor (ĉ (O8)5ei q̄•OO8ĉ (O)), so the symmetry groups o
Fourier transforms of different origins need not be equal. Moreover, the general relation be
r(u)ĉ (O) andr(u)c appears rather intricate ifuPIs(P) does not stabilizeO. However, all these
difficulties disappear in the framework of local chirality,if the point of analysis of chirality
coincides with the point selected in the definition of Fourier transforms. Then the only consi
isometries are those that stabilize this common originO and a basic result is thatr(u) commutes

with the Fourier–Plancherel operatorf̂ (O) whateveruPIsO(P). Consequentlyf̂ (O) also com-
mutes with p0

1 ,pn , so projections of the Fourier transform are the Fourier transforms
projections. This result shows that the canonical index isinvariant by Fourier transform, i.e.,
that the Fourier transform of a projection of given order is a projection of the same order.
direct consequence of these commutation relations, we get the identities Eq.~5.2!, where
Ĝ(O)(Ĝn(O)) denotes the local~local canonical! symmetry group ofĉ (O) , from which Theorem
7 follows. Another consequence is that only ARFsDn ,D̂n of c,ĉ (O) of equal order are related. A
straightforward application of Fubini theorem, following Definition 1, shows thatDn ,D̂n are the
nth order Hankel transforms Eq.~5.3!, where the limit is taken inHm .9,11 On the other hand, the
radial and radial canonical groups ofc,ĉ (O) at the same distance fromO are not related, so ACLs
and RCLs ofc,ĉ (O) can have entirely different shapes. There is, however, a definite relation
between direct and Fourier space order parameters, which will be discussed elsewhere. In
sion, the analysis of the local chirality of Fourier transforms is not only well-defined inH, but is
also closely related to the direct analysis:

ĉ~0!~q!5@ f̂ ~O!c#~q!5 lim
R→1`

1

2p E
OM<R

ce2 iq•OM dm, ~5.1!

Ĝ~O!5G~O!; Ĝn~O!5Gn~O!, ~5.2!

D̂n~q!5 lim
R→`

~2 i !nE
0<r<R

Dn~r !Jn~qr !dm~r !

Dn~r !5 lim
R→1`

i nE
0<q<R

D̂n~q!Jn~qr !dm~q!. ~5.3!

Theorem 7: cPH is absolutely achiral at O iffĉ (O)PH is absolutely achiral at O. c is

achiral at O iff ĉ (O) is achiral at O.
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VI. SPACES OF OBJECTS AND CHIRALITY

In this section, we shall discuss some arguments related to questions~I!–~IV ! of ~I, Sec. III A!.
These arguments tend~i! to establish the relevance of these questions as a framework in whic
problem of chirality is well-posed, and~ii ! to provide materials for preliminary answers.

A. Question „I…: Does the structure of a space have anything to do with the chirality of
its elements?

The relevance of the whole framework depends on the answer to this question. This an
positive as soon as we find an example space of objects in which the mathematical~algebraic,
topological, etc.! structure is proved to bring forth qualitatively new features to the concep
chirality. In the case ofH we found that chirality could be defined as the local, continuo
extensive geometrical phenomenon of misalignment of RCGs. There also exists an intrins
tinction between absolute and relative chirality. Chirality is exhaustively described by se
chiral loops. We shall argue in Sec. VI B that these features are direct consequences
structure ofH. Therefore it seems established that the answer to Question~I! is positive. This
result suggests that, in the theory of chirality, a problem should be considered ‘‘well-posed’
when posed in adefinitespace and as an expression of the spacestructure. Previous results show
that the issue of the qualitative properties of chirality inH is well-posed. The arguments of Se
VI B suggest, for example, that the chirality of the set of geometrical figures as such—abstracted
from any vector space context—is an example ill-posed problem since this set lacks algeb
structure. Geometrical figures as such are a dead-end as regards chirality.

B. Questions „II…–„III…: Does every piece of structure have a definite role in the
resulting analysis? What are the spaces in which the theories of chirality are the
richest?

Insofar as the answer to Question~I! is positive, it appears natural to look for the mathemati
structures best adapted to the ‘‘expression’’ of chirality and, to this end, to search for po
connections between specific features of chirality and specific elements of structure of th
sidered spaces. This is the general program defined by Questions~II !–~III !. We are not yet in a
position to propose clearcut answers to so broad a program. The structure ofH is so rich that some
pieces of structure are not easily disentangled. On the one handH has an ‘‘abstract’’ Hilbert space
structure whose topology determines the continuity properties of chirality. However, this top
is derived from a metric, this metric is derived from a norm, and this norm is derived from
inner product.9 The role of every nested piece of structure is not readily isolated. On the
hand,H has a ‘‘concrete’’ structure as the functional space ofL2 spatial distributions of complex
numbers. Our interest inH originated in this structure, which determines the abstract structure~the
inner product is an integral!. Therefore only brief comments will be stated here. It is the vec
space structure ofH andHu that made it possible to base our work on~i! a linear representation
of isometries, and~ii ! the notion of supplementary linear subspaces~I, Sec. IV!. Without this
structure, symmetry groups cannot be analyzed as intersections of simpler symmetry grou
the strategy of this theory is not conceivable. Moreover, the canonical decomposition relies
the notion of direct sum of~irreducible! linear subspaces. Then the concept of canonical struc
hence the distinction between absolute and relative chirality, is a consequence of the vecto
structure ofH and of that structure alone. Complexification and the converse technique of re
tion of scalars that lead to real field analysis are also purely algebraic concepts related to
spaces. On the other hand,~i! the fact that the canonical decomposition can beexpressedby a set
of ARFs is a different question, here purely connected to the ‘‘concrete’’ structure ofH, and~ii !
the proof ofexistenceof a decomposition of the infinite dimensional vector spacesH andHu into
finite dimensional irreducible subspaces is known to require additional topological argum
here, the compactness ofO(2) and a Hilbert space structure.10~b! With regard to this last structure
the orthonormal system that proved basic to the representation of fields by sets of ARFsHu ,
hence by direct extension inH, would not exist but for the inner product. Besides, completion
H andHu was specifically used to introduce analytic regularizations as a means to secure r
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analysis between fields~Sec. II A!. There we implicitely used the fact thatH is the completion, for
the quadratic norm, of a large category of prehilbertian spaces among which is the sp
analytic dm square-integrable fields.9 In that respect, since any other analytic regularization
cures relative analysis in the same way, because of the Baire property, it would be interes
examine if the limit of vanishing regularization depends on the type of regularization~Secs. II A,
II C!. On the other hand, the ‘‘concrete’’ structure ofH makes it possible to consider separation
radial and angular matters and restriction of fields to circles. This restriction lead us toHu and to
the basic definition of radial groups. From this follows the fact that ARFs characterize the ca
cal decomposition, hence that all chirality matters can be expressed by chiral loops.

As a tentative summary of this discussion, the structure that seems basic to the pro
results is thevector spacestructure. Analysis of symmetry groups and of allcanonicalmatters,
including the fundamental distinction between absolute and relative chirality, depends o
structure. Two additional pieces of structure proved instrumental in carrying out this an
practically: the inner product ofH, and the associated complete normed topology. On the o
hand, the ‘‘concrete’’ structure seems basic to allradial matters hence to the analysis of absolu
and relative chirality and to thedescriptionof previous concepts by chiral loops. These argume
suggest that~i! the Hilbert spacesL2(Rn,dm) are natural candidates as the ‘‘optimal spaces’’
Question~III !, and~ii ! a direct extension of this theory is the problem of chirality in the Lebes
spacesLp(Rn,dm)(1<pÞ2).

Let us accordingly consider a typical route to transform the ill-posed problem of geome
figures inRn into a well-posed one. We understand now that the first step is to build up a v
space structure out of them. Handling figures through their characteristic maps, which bel
the complex vector space of complex maps ofRn, we are lead to the linear subspaceHs generated
by the set of characteristic maps. The elements ofHs are the finite linear combinations of cha
acteristic maps. As far as the considered characteristic maps are assumed measurable~constructing
a nonmeasurable set with respect to the Lebesgues-algebra is no easy matter9!, Hs is the vector
space of the so-called simple or step functions,9 which are basic to integration theory. Geometric
figures of finite measure~area, volume, etc.! generate the vector subspaceHis,Hs of integrable
simple functions. NowHis is dense in all Lebesgue spacesLp(Rn,dm)(p>1). In that sense the
construction is not finished becauseHis does not contain all the limits of its ‘‘convergent
~Cauchy! sequences with respect to anyone of the semi-norms Eq.~6.1!. Then His should be
completed to finish the job. It is only a matter of choice to completeHis with respect to any given
semi-normi .ip . The resulting~quotient! space, to be considered as thestartingpoint of theory, is
Lp(Rn,dm). This is precisely the class of spaces previously isolated as ‘‘good’’ candidate
regards the theory of chirality:

icip5F E ucupdmG1/p

. ~6.1!

C. Question „IV…: What is the status of quantum mechanics from this point of view?

The present theory of chirality have recourse to the same Hilbert spaces as NR Qu
Mechanics. The discussion of Sec. VI B, however, suggests that they happen to benefit fr
same spaces on somewhat different grounds. Although integration theory is instrumental i
definition, the concepts emerging from this work have an intrinsically geometrical char
~RCGs, misalignment of symmetry elements! as expected from the theory of a geometrical ph
nomenon. Nevertheless, the fact is that the spaces of states of NR quantum mechanics
spacesL2(Rn,dm) ~spinless particles! or are directly derived from them~particles with spin!.
Tensorial~including spinorial! and multivariable fields have not been considered here for the
of simplicity, but unpublished results show that they can be treated in the same way. This
that this theory is indeed fully compatible with NR quantum mechanics. It is as a mecha
consequence of this result that we are allowed to state that, provided we believe in NR qu
mechanics—and provisionally forgetting the relativistic domain—chirality in the physical wor
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a continuous phenomenon. As regard relativistic quantum field theory, note that there is h
extend this theory to relativistic kinematics by replacing Euclidean distances by interval
isometries by the Poincare´ group. In the local approach the orthogonal group is replaced by
Lorentz group. The only notable technical difference is that this group is not compact but lo
compact. Circles and spheres are replaced by hyperboloids.

The 3D theory cannot be detailed in these two preliminary articles, focused on the
extensive presentation of this conceptual framework in the simplest nontrivial case. Practica
2D theory is already applicable to 2D modelizations of various low dimensional physica
chemical phenomena, in particular chiral phenomena connected to interfaces, membran
chiral monolayers. This theory can be applied both to molecular orbitals and other types of
functions~I, Secs. V F, II H!. It can also be applied to molecular electronic densities becaus~i!
molecular electronic densities are continuous,dm integrable and vanish at infinity, and~ii ! a
continuousdm integrable field vanishing at infinity isdmsquare-integrable, so molecular electr
densities belong toH. In the general case molecular orbitals should be treated as complex fi
hence projected first as pairs of real fields. However, in the absence of~pseudo-scalar in 2D!
magnetic couplings the problem is somewhat simplified because molecular orbitals can b
sidered real, the possible sources of chirality being accordingly reduced. Generally speaking
is strong hope that many physical and chemical effects related to chirality, and more gen
every molecular effect whose understanding would gain from a fine local geometrical descr
of wave functions and densities, can be tackled along the new and original lines provided b
theory.

VII. CONCLUSION

The first conclusion of this work is that the relative chirality ofL2 fields indeed has feature
very close to those of absolute chirality. Both are continuous, extensive, local, and pos
defined phenomena. Both admit a theoretically sound and practically highly convenient rep
tation by the so-called ‘‘chiral loops.’’ The very nature of relative chirality made its 2D anal
more cumbersome than that of absolute chirality; important steps of this analysis were th
definition of relative chirality as misalignment along the ‘‘canonical’’ direction, the proof t
relative misalignment can always be reduced to a pairwise analysis, and the elegant feat
relative radial functions. In keeping with the complementary natures of absolute and re
chirality with respect to chirality, we found a stepwise complementary theory in this article,
complementary to the first one.

Accordingly, the chirality ofL2 fields appeared as the combination of absolute and rela
chirality much as a vector can be the combination of its projections. In the continuous conce
chirality is the misalignment of the indirect elements of RCGs, and RCGs can be ‘‘misalig
along two directions—there is aplaneof RCGs, spanned by the radial and canonical axes.
solute and relative chirality are the forms of chirality associated to each of these two axe
same is expected in three and higher dimensions because RCGs cannot have but the sa
indices; the radial index is defined by the considered orbit~circle, sphere, etc.! of the orthogonal
group, the canonical index is defined by the decomposition in irreducible linear representati
its scalar representation on this orbit. Therefore the distinction between absolute and r
chirality is of general validity. This is a fundamental and completely unsuspected result o
conception of chirality. The reason why such a breakthrough in symmetry theory is possibl
evolved continuous conception of a discrete symmetry in the spaces on which our concep
the physical world depends—does not appear completely understood at present. The dem
line between the ‘‘continuous’’ and the ‘‘discrete’’ categories within Kelvin’s definition range
unknown. A limited discussion of this problem was presented. This mathematical discu
points at the importance both of algebraic structures and of Lebesgue integration theory
problem.

Practical applications of this theory offer a brighter perspective. Beyond direct applicatio
2D models of interfacial phenomena~membranes, monolayers, etc.!, from thevery factthat a 3D
continuous conception of chirality exactly parallel to the 2D onedoesexist, a sophisticated pictur
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of molecular chirality emerges. In the NR framework, the chirality of a molecule is that o
wave function, of the formcs1 ...sN

(r1 ...rN ;R1 ...RA) ~I, Sec. I!. Far from being the purely
dichotomous label provided for by Kelvin’s definition, molecular chirality is a continuous p
nomenon which changes when that state changes, and in which several sources are merg
electrons and nuclei contribute to that global amount of chirality. In the adiabatic approxim
nuclear chirality is found to depend on the vibrational state, while electron chirality, differe
every different eigenstate of the formcs1 ...sN

@R1 ...RA#(r1 ...rN), where nuclear coordinate
R1 ...RA are now considered parameters, continuously depends on nuclei positions throu
every electronic term. In the independent electrons approximation, electronic cloud chirality
combination of occupied orbitals chirality, in a way defined by the Hartree–Fock wave func
Furthermore, much beyond the pure issue of chirality, this theory primarily is a general the
the geometrical degrees of freedom ofL2 fields; it is a description of the ‘‘internal’’~‘‘post-
Euclidean’’! geometry of wave functions. As exemplified in I, Secs. V F and II H, it allows
visualize many effects of interest to molecular physics, chemistry or biology, e.g., enantiom
steric hindrance and molecular substitution effects (F→Cl→Br→I!. Applications of this approach
are both concerned with structural~analysis of individual molecules! and dynamic~evolution of
chirality during collisions or chemical reactions! aspects of molecular chirality. Insofar as it ca
equally be applied to stable species and transition states, both thermodynamic and kinetic~in the
framework of transition state theory! can be foreseen. The very importance of chirality in t
physical sciences imply that the range of applications of this theory is presently incalculab
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APPENDIX: ANGULAR SERIES „Ref. 12…

In this Appendix real numbers are denoteda,b... and positive integersn,m... Arithmetic
series of the typeSn@a# Eq. ~A1! are the set of angles defining the orientation ofn-stars. Such
series will be called angular series, andn the ratio ofSn@a#. Some properties of intersections o
angular series are proved in this appendix. Hcf~Lcm! stands for highest common factor~lowest
common multiple!:

Sn@a#5$a1kp/n/kPZ%5a1
p

n
Z. ~A1!

Lemma 1:Let a,bPR andn,m>1. Let p(q) be the Hcf~Lcm! of n,m. Then the intersection
Sn@a#ùSm@b# is nonempty iffb2aP(p/q)Z. If this condition is satisfied then'gPR such
that Sn@a#ùSm@b#5Sp@g#.

Proof: Let N5n/p, M5m/p. ThenN,M>1 are relatively prime andq5nM5Nm. Now let
Sn@a#ùSm@b# be nonempty, hence contain somegPR. There existsk,l PZ such thatg5a
1kp/n5b1 lp/m, so b2a5kp/n2 lp/m, henceq(b2a)PpZ. Conversely letq(b2a)
5rpPpZ. Since N,M are relatively prime'k0 ,l 0PZ such thatk0M2 l 0N51 from Bezout
theorem. Thenr 5(rk0)M2(rl 0)N, so a1rk0p/n5b1rl 0p/m and Sn@a#ùSm@b# is non-
empty. Q.E.D. Now let the intersection be nonempty, andg be defined as before. Everyg8
PSn@a#ùSm@b# satisfies g85a1k8/n5b1 l 8/m, k8,l 8PZ. Then m(k82k)5n( l 82 l ) so
M (k82k)5N( l 82 l ). Since N,M are relatively prime,'sPZ such thatk82k5sN and l 82 l
5sM. Henceg85g1s/pPSp@g# soSn@a#ùSm@b#,Sp@g#. The converse inclusion is trivial

Lemma 2:If Sn@a#,Sn@b# thenSn@a#5Sn@b#.

Proof: Trivial. This harmless lemma is of regular use in the following arguments.
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Lemma 3: Let a1 ,a2 ,a3PR and n1 ,n2 ,n3PN* . ù
i 51,2,3

Sni
@a i #ÞB iff

Sn1
@a1#,Sn2

@a2#,Sn3
@a3# intersect each other pairwise. Then the ratio ofù

i 51,2,3
Sni

@a i # is
Hc f(n1 ,n2 ,n3).

Proof: Let the three pairwise intersections be nonempty. Letni j 5Hc f(ni ,nj ) for i , j
51,2,3. From Lemma 1 there area12,a23,a31PR satisfying the first part of Eq.~A2!. Now
Lemma 2 shows thata i j PSni

@a i # implies Sni
@a i j #5Sni

@a i #; i , j 51,2,3. ThenSn1
@a12#

5Sn1
@a31#, so a312a12P(p/n1)Z from Lemma 1. Generalizing this result, there exis

q1 ,q2 ,q3PZ such that Eq.~A2! is satisfied. The first two terms of the intersectionS0

5 ù
i 51,2,3

Sni
@a i # can be merged asSn12

@a12#, soS05Sn12
@a12#ùSn3

@a3#:

Sn1
@a1#ùSn2

@a2#5Sn12
@a12#, a312a125~p/n1!q1 ,

Sn2
@a2#ùSn3

@a3#5Sn23
@a23#, a122a235~p/n2!q2 , ~A2!

Sn3
@a3#ùSn1

@a1#5Sn31
@a31#, a232a315~p/n3!q3 ,

S5$a311k~a232a31!/kPZ%, ~A3!

a311k~a232a31!5a121
p

n12
F ~12k!

q1

N1
2k

q2

N2
G . ~A4!

To prove this lemma, we shall construct an element ofSn3
@a3# that belongs toSn12

@a12#. Let us
consider the setS Eq. ~A3!. Sincea232a31P(p/n3)Z, S is a subset ofSn3

@a3#. Introducing
N15n1 /n12, N25n2 /n12, the elements ofS can be expressed as Eq.~A4!. SinceN1 ,N2 are
relatively prime, there areK1 ,K2PZ such thatK1N11K2N251. The element ofS corresponding
to k5K2N2 , 12k5K1N1 , is a121(p/n12)@K1q12K2q2# hence belongs toSn12

@a12#. Then
SùSn12

@a12#ÞB, so S05Sn3
@a3#ùSn12

@a12#ÞB. The converse implication is trivial. The
ratio of S0 is Hc f(n12,n3)5Hc f(n1 ,n2 ,n3).

Theorem „finite case…: Let M,N* be a nonempty finite set of positive integer and (an)nPM

a finite family of reals indexed overM. ù
nPM

Sn@an# is nonempty iff all pairwise intersections o
the series of the family (Sn@an#)nPM are nonempty. Then the ratio ofù

nPM
Sn@an# is Hc f(M ).

Proof by induction:This proposition is satisfied for Card(M )52,3. Let us assume it satisfie
for Card(M )5P>3 and consider the case Card(M )5P11. Lemma 1 allows us to merge the tw
first series into a single one, whose pairwise intersections with the others are nonempty by L
3, hence the proof. Elementary properties of Hcfs account for the global ratio.

Theorem „countably infinite case…: Let M,N* be an infinite set of positive integers an
(an)nPM a family of reals indexed overM. ù

nPM
Sn@an# is nonempty iff all pairwise intersection

of the series of the family (Sn@an#)nPM are nonempty. Then the ratio ofù
nPM

Sn@an# is Hc f(M ).

Proof: There is afinite subsetM0 of M such thatHc f(M0)5Hc f(M ). From the previous
theorem,S05 ù

nPM0
Sn@an# is a nonempty series of ratioHc f(M0). Let mPM . Pairwise inter-

sections ofSm@am# with the finite subfamily (Sn@an#)nPM0 are nonempty, soSm@am#ùS0 is a
nonempty seriesS of ratio p with Hc f(M )<p<Hc f(M 0), hencep5Hc f(M0). Then Lemma 2
shows thatS5S0, so all elements of (Sn@an#)nPM contain S0. Then S0, ù

nPM
Sn@an#. The

converse inclusion being trivial,ù
nPM

Sn@an# is a nonempty series whose ratio isHc f(M0)
5Hc f(M ). The other implication is trivial. Q.E.D.

1P. Le Guennec, ‘‘Two dimensional theory of chirality. I. Absolute chirality,’’ J. Math. Phys.41, 5954~2000!. Section
II A of I will here be referred to as I, Sec. II A, the equation~4.31! of I as I, ~4.31!.

2We call analytic the fields representable by power series in the coordinatesx, y understood as twoindependentreal or
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complex variables. Fields are not assumed representable by power series in the single variablex1 iy .
3A nonzero analytic function cannot be zero on a nonempty open set. Then the intersection ofUn with any nonempty open
set ofR2 is nonempty, soUn is ~everywhere! dense. H. Cartan,Théorie élémentaire des fonctions analytiques d’une o
plusieurs variables complexes~Hermann, Paris, 1961! ~in French!; cf. also Ref. 9.

4A Baire space is a topological space in which countable intersections of dense open sets are dense. The idea of
Baire property in this question is due to M. Balabane~private communication!. The properties of Baire spaces a
discussed in: J. Dugundji,Topology~Allyn and Bacon, Boston, 1966!; J. L. Kelley, General Topology~Van Nostrand,
New York, 1955!.

5If not analytic, C` projections can have compact supports, so examples in which there isno circle on which all
projections~and even all pairs of projections! are nonzero are trivially built.

6The strategy followed in this article can clearly be transposed to similar discrete symmetry matters~similar to the
presence or the absence of indirect elements in symmetry groups! in the context of other Lie groups, which may not b
compact, as the Lorentz or Poincare´ groups of interest to the relativistic generalization of this theory. In such cases
to be expected that neither indices need be discrete.

7If the discrete topology, the discretes-algebra and the measuredv(A)5card(A) are considered onN, the empty set is
the only null subset ofN. Then ‘‘almost everywhere’’ and ‘‘everywhere’’ coincide inN. The analogy of radial and
relative indices is now complete. Thes-finite measuredm̄5dm3dv can be considered onV̄. Every measurableL,V̄
can be decomposed in disjoint measurable subsets asL5ø

n>1
@Vn3$n%#, sodm̄(L)5 (

n>1
dm(Vn). HenceL is dm̄-null

iff all Vn are dm-null. From this unified point of view chirality is a property distributed overV̄ and defined up to a
dm̄-null subset. This argument points again at the relevance of integration theory to the theory of chirality.

8Only uniform bases, i.e., bases that do not vary withr, will be considered in this article. ‘‘Local’’ bases depending onr
can be introduced. These bases and the associated coordinates are related to each other by local phase change
to second order gauge transformations. The first order gauge transformations are the rotations.

9W. Rudin,Real and Complex Analysis~Mc-Graw Hill, New York, 1970!.
10~a! J.-P. Serre,Linear Representations of Finite Groups~Springer, New York, 1977!; ~b! A. Robert,Introduction to the

Representation Theory of Compact and Locally Compact Groups~Cambridge University Press, Cambridge, 1983!.
11R. Bracewell,The Fourier Transform and its Applications~McGraw Hill, New York, 1965!.
12Statements of the theorems of the Appendix were guessed by us, but proofs were established by H. Randriam

~private communication!.
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The uniqueness and approximation of a positive solution
of the Bardeen–Cooper–Schrieffer gap equation

J. Bryce McLeod
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Yisong Yanga)

Department of Mathematics, Polytechnic University, Brooklyn, New York 11201

~Received 6 March 2000; accepted for publication 30 March 2000!

In this paper we study the Bardeen–Cooper–Schrieffer energy gap equation at
finite temperatures. When the kernel is positive representing a phonon-dominant
phase in a superconductor, the existence and uniqueness of a gap solution is estab-
lished in a class which contains solutions obtainable from bounded domain ap-
proximations. The critical temperatures that characterize superconducting–normal
phase transitions realized by bounded domain approximations and full space solu-
tions are also investigated. It is shown under some sufficient conditions that these
temperatures are identical. In this case the uniqueness of a full space solution
follows directly. We will also present some examples for the nonuniqueness of
solutions. The case of a kernel function with varying signs is also considered. It is
shown that, at low temperatures, there exist nonzero gap solutions indicating a
superconducting phase, while at high temperatures, the only solution is the zero
solution, representing the dominance of the normal phase, which establishes again
the existence of a transition temperature. ©2000 American Institute of Physics.
@S0022-2488~00!04108-6#

I. INTRODUCTION

The onset of the superconducting phase in the Bardeen–Cooper–Schrieffer~BCS! quantum
theory of superconductivity is characterized by the existence of a positive solution to a non
integral equation—usually called the energy gap equation. In this equation the kernel fu
describes the interaction pattern of a many-fermion system at zero temperature, which,
context of superconductivity, is a system of electrons—called the Cooper pairs which are c
of supercurrent. The formation of the Cooper pairs is due to the dominance of the attr
phonon interaction between the electrons over the repulsive photon interaction: When s
feature is present, the superconducting phenomenon will take place at zero temperature
kernel function in the BCS equation is positive-valued. A positive solution of the equation~the
energy gap! represents a quantity that is proportional to the order parameter in the Ginzb
Landau theory near the critical temperature or gives rise to the density amplitude of the C
pairs. Moreover, the BCS equation also respects thermal effects on superconductivity. Nam
bound electron pairs may break at high temperature and the BCS equation then can have
zero solution or vanishing energy gap.

As usual, letD(k) (kPR3) be the energy gap function. The BCS equation governing
superconducting–normal phase transition phenomena in terms ofD(k) and the absolute tempera
ture T51/b reads~see, for example, Refs. 1, 2! as

D~k!5M~D!~k!5E
R3

dk8 K~k,k8!
tanh~ 1

2 b„@k822m#21D2~k8!…1/2!

„@k822m#21D2~k8!…1/2 D~k8!, ~1.1!

a!Electronic mail: yyang@math.poly.edu
60070022-2488/2000/41(9)/6007/19/$17.00 © 2000 American Institute of Physics
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where the kernel functionK(k,k8) decides the interaction potential of electrons with wave vec
k and k8, respectively,m.0 is the Fermi energy, andk25uku2. The existence of a positive
solution of~1.1! indicates the presence of an energy gap or superconducting Cooper pairs.
superconducting phase appears. In Ref. 3, we were interested in bounded positive solut
~1.1!. Under the assumption on the kernel functionK:

K~k,k8!<s~k8!,
s~k!

~k211!
PL~R3!, ~1.2!

we showed that there is a unique critical temperatureTc51/bc.0 so that~1.1! has a positive
solution for 0<T,Tc but no positive solution forT.Tc . Such a global bifurcation picture
confirms the phase transition phenomena described earlier.

The condition~1.2! ensures the existence of bounded solutions inR3. There are two importan
open problems. The first one is whether for given temperature below the critical thresholdTc , the
equation~1.1! has a unique bounded positive solution. The second one is whether every po
solution of~1.1! can be approximated by solutions of~1.1! over bounded domains. The former h
a theoretical value while the latter is useful in the practical computation of solutions.4 Our purpose
in the present paper is to make a fairly complete study of these two problems.

In Ref. 3, we showed the uniqueness of a positive solution of~1.1! on any bounded domain b
using the convexity property of the monotone operatorM and a standard argument. In the fu
spaceR3, M is of course still convex. However, due to a loss of compactness, the method o
3 fails to work inR3 and some additional conditions may be needed in order to achieve un
ness. Recently, Du5 has found one of such conditions. Under his condition one can overcom
aforementioned difficulty of noncompactness inR3 and use a modified argument to show th
~1.1! indeed permits at most one positive bounded solution at a given temperature.

In this paper we unify and generalize these results.
First we shall show that Du’s condition~in a more general form! leads to the conclusion tha

any positive solution of~1.1! can be approximated by solutions of~1.1! over bounded domains
Thus the uniqueness is a natural thing to expect. In Sec. II we consider the full space so
obtainable from bounded domain approximations. The condition~1.2! will be relaxed to a form
that is more symmetric in the variablesk andk8. We shall see that this leads to a convenient cl
of solution configurations generalizing bounded solutions, yet, providing a better track o
properties of the solutions. Such a formulation gives rise to two transition temperaturesTc8 andTc

~say! realized by solutions obtainable from approximations and by solutions in the configur
class, respectively. Assuming the above condition, we can show in Sec. III thatTc and Tc8 are
identical. Furthermore, we will consider in Sec. IV the uniqueness problem in our setting
The question of whether the BCS equation has more than one positive solution has been a
issue. In Sec. V we give some examples of nonuniqueness and comment on an important
conditions for uniqueness along the line ofu0-positivity in the sense of Krasnosel’skii.6 In Secs.
VI–VIII we give more existence and uniqueness results of this flavor.

Another problem of interest is the existence of a gap solution at low temperatures for the
equation with a kernel function which is not positive definite and may change signs in
regions. Physically this corresponds to a situation that the phonon force is not dominant a
electron pairs at all energy spectra. Assuming more or less that phonon interaction is do
near the Fermi level, we shall show in Sec. IX that there are gap solutions at low temperatur
also remark that, at high temperatures, there is no gap solution. Thus the phase transitions
temperature changes take place as well.

II. EXISTENCE OF POSITIVE SOLUTIONS

The condition~1.2! is sufficient to ensure the existence of a bounded positive solution at a
temperature but takes a rather peculiar form in which the restrictions on the two argumentsk and
k8, are uneven and may be too crude to capture some detailed properties of solutions.
paper, we assume the condition
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K~k,k8!< f ~k!g~k8!,
f ~k!g~k!

~k211!
PL~R3!, ~2.1!

where f ,g are positive-valued continuous functions. Whenf 51, ~2.1! becomes~1.2!.
Let V be a bounded domain inR3. Of course, we always assume that any concerned boun

domain contains the Fermi surface,k25m. We useM (V) to denote the BCS operator restricted
V. It is known3 that for eachb:0,b<`, the equation

D5M (V)~D! ~2.2!

has at most one positive solution onV.
In this section, we are interested in a positive solution of~1.1! that can be constructed from a

approximation sequence$Dn% of solutions of the equation~2.2! with V5Vn , n51,2,..., and
øn51

` Vn5R3.
Theorem 2.1:Suppose that the kernel function K in (1.1) satisfies (2.1). Then there ex

unique critical temperature, Tc8.0, so that for0<T51/b,Tc8 , the BCS equation (1.1) has
unique positive solution, D(k).0, which can be obtained by bounded domain approximatio
while for T51/b.Tc8 , the only solution that can be approximated by solutions on boun
domains is the trivial solution, D(k)[0.

We shall prove this theorem in several steps.
Theorem 2.2: For any bounded domainV,R3 [suppose that K(k,k8).0 for almost all

k8PV], there is a unique critical temperature Tc
(V).0 so that, for0<T51/b,Tc

(V) , (2.2) has
a unique positive solutionD5D (V); while for T.Tc

(V) , the only solution of (2.2) is the zer
solution. Moreover, ifV1 is another bounded domain inR3 with V,V1 , then Tc

(V)<Tc
(V1) and

D (V)(k)<D (V1)(k) (kPV) ~with equality only ifV5V1!. Finally, the positive solution is a
continuous increasing function ofb for b21,Tc

(V) and tends to zero asb21→Tc
(V) . In particu-

lar, the only solution at the critical temperature Tc
(V) is the zero solution.

Proof: This ~except for the rather trivial matter of the dependence onb! has been proved in
Ref. 3. It is also in effect a particular case of Theorem 6.8 in Ref. 6. For a bounded domainV the
operatorM (V):C(V̄)→C(V̄) is compact, whereC(V̄) denotes the space of functions continuo
on V̄, and it is also concave and monotone in the sense of Krasnosel’skii. This follows imm
ately from the observations that, if

hb~ t !5
tanh~ 1

2 bt !

t
, tÞ0, hb~0!5

1

2
b,

Hb~k,u!5hb„~@k22m#21u2!1/2
…, u.0,

wb~k,u!5Hb~k,u!u, u.0; wb~k,0!50.

Thenhb is decreasing int.0 andwb(k,u) is increasing inu>0.
To complete the proof of the theorem, we have to consider the dependence onb. Continuity

is trivial, since if there were two possible limits asb→b0 , this would contradict uniqueness a
b5b0 . To prove monotonicity, we note that the Fre´chet derivative ofM (V) at D is given by the
linear ~positive! operator,

„dM (V)~D!f…~k!5E
V

K~k,k8!
]wb

]D
~k8,D!f~k8!dk8.

Since

]wb~k,u!

]u
5Hb~k,u!1u

]Hb~k,u!

]u
,
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and the second term on the right-hand side of above is negative, the kernel of the linear i
operatordM (V)(D) is strictly less than that of

E
V

K~k,k8!Hb„k8,D~k8!…f~k8!dk8.

The equation~2.2! in effect says that the operator defined above, regarded as a linear opera
f, has an eigenvalue 1 with positive eigenvectorD. Thus the largest eigenvalue ofdM (V)(D) is
certainly less than 1.

Now differentiate~2.2! with respect tob. By the implicit function theorem, we have

„I 2dM (V)~D!…
dD

db
5

1

2 EV
K~k,k8!sech2H S 1

2
b@k822m#21D2~k8! D 1/2J D~k8!dk85G~k!,

say. Since the operator on the left is invertible, we see thatdD/db exists and is positive. ForG
.0, and „I 2dM (V)(D)…21 is a positive operator, as we see by expanding by the bino
theorem. ThusD is differentiable and increasing as a function ofb.

That D→0 asb21→Tc
(V) follows from the fact, that, if this were not so, then we could u

the implicit function theorem above to continue the positive solution~as a function ofb! for
b21.Tc

(V) , which is a contradiction. h

Lemma 2.3: Assume0<T,Tc
(V) and letD (V) be the unique positive solution of (2.2). The

sup
kPV

D (V)~k!

f ~k!
[cV,c0 , ~2.3!

where c0.0 is such that

E
R3

f ~k!g~k!

„@k22m#21c2f 2~k!…1/2dk,
1

2
~say! ~2.4!

whenever c>c0 .
Proof: In view of ~2.1!, we see that

E
R3

f ~k!g~k!

~k211!
•

~k211!

„@k22m#21c2f 2~k!…1/2dk→0,

asc→`. Thus there is ac0 to make~2.4! true.
Hence

D (V)~k!< f ~k!E
V

g~k8!wb„k8,cV f ~k8!…dk8<cV f ~k!E
R3

f ~k8!g~k8!

„@k822m#21cV
2 f 2~k8!…1/2dk8.

~2.5!

Using ~2.4! in ~2.5!, we arrive atcV,c0 . h

Corollary 2.4: If D(k) is a solution of (1.1) inR3 that can be obtained by bounded doma
approximations, thenD(k)<c f(k)(kPR3) where c,c0 and c0 is as defined in (2.4).

Proof: This is a direct consequence of Lemma 2.3. h

Lemma 2.5: For c0 defined in (2.4) and c>c0 , the functionD̄(k)5c f(k) is always a super-
solution of (1.1) for any T51/b>0.

Proof: As in ~2.5!, we get forc>c0 the inequalityM(D̄)(k)< 1
2c f(k),D̄(k). h

Lemma 2.6: If the temperature T51/b>0 is sufficiently low, the BCS equation (1.1) has
positive solution which can be constructed from bounded domain approximations.
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Proof: Let V,R3 be a bounded domain andTc
(V) the corresponding transition temperature

the equation~2.2!. For 0<T,Tc
(V) , choose a monotone chain of bounded domains$Vn% so that

øn51
` Vn5R3 andV,V1 . ThenT,Tc

(Vn) (n51,2,...). LetDn be the unique positive solution o
~2.2! with V5Vn , n51,2,... . We haveDn<Dn11<¯,c f (c>c0) in Vn . As a consequence
the limit

D~k!5 lim
n→`

Dn~k!

exists and is a solution of~1.1!. h

We next show that, for large temperatureT.0, no positive solutions of~1.1! may be con-
structed from bounded domain approximations.

Lemma 2.7: If T51/b is sufficiently large, the BCS equation (1.1) has no positive solutio
the configuration category,

C5$D~k!uD~k!<c f~k!,kPR3 for some c.0%.

Proof: From ~2.1!, we see that there is somer .0 so that

E
uku.r

f ~k!g~k!

uk22mu
dk,

1

4
. ~2.6!

For suchr , we can find largeT51/b.0 to make

bE
uku<r

f ~k!g~k!dk,
1

2
. ~2.7!

It is then easy to show that, now,~1.1! has no positive solution inC. In fact, suppose otherwise tha
D(k) is a solution. Then

sup
kPR3

D~k!

f ~k!
[c.0. ~2.8!

Consequently, it follows from~2.6!–~2.7! that

D~k!5M~D!~k!

5E
uk8u<r

1E
uk8u.r

<c f~k!F1

2
bE

uk8u<r
f ~k8!g~k8!dk81E

uk8u.r

f ~k8!g~k8!

uk822mu
dk8G

,
1

2
c f~k!, ~2.9!

where we have used the inequality

0,hb~ t !5
1

t
tanhS 1

2
bt D,

1

2
b, t.0.

However,~2.9! violates~2.8!. h

We are ready to prove Theorem 2.1.
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Using Corollary 2.4 and Lemma 2.7, we see that, whenT51/b is sufficiently large, the only
full space solution that can be constructed from bounded domain approximations is the trivia
D50. Thus, with the notation of Lemma 2.2, the set

T5$Tc
(V)uV is a bounded domain inR3%

is a bounded subset ofR1 . Put

Tc85sup$TuTPT %. ~2.10!

ThenTc8 is the desired unique transition temperature described in the theorem.
To see the uniqueness, letD andD8 be two positive solutions of~1.1! that can be approxi-

mated by sequences$Dn% and $Dn8% of positive solutions of~2.2! with V5Vn and V5Vn8 ,
respectively, where$Vn% and$Vn8% are monotone chains of bounded domains inR3. For givenn,
there ism so thatVn,Vm8 . HenceDn<Dm8 according to Lemma 2.2. ThusD<D8. Similarly
D8<D. The theorem is proved.

In the remaining part of the section, we concentrate on solutions of~1.1! in the classC defined
in Lemma 2.7. The following existence result generalizes the global bifurcation theorem ob
in Ref. 3 for bounded solutions.

Theorem 2.8: There is a unique critical temperature, Tc51/bc.0, so that, for T51/b
,Tc the BCS equation (1.1) has a positive solution inC, indicating the occurrence of the supe
conducting phase; while for T.Tc , the only non-negative solution of (1.1) inC is the zero
solution which implies the dominance of the normal phase.

Proof: For c0.0 defined in Lemma 2.3, setD05c0f . Then the schemeDn5M(Dn21) (n
51,2,̄ ) determines a monotone sequenceD0.D1.D2.¯.Dn.¯.0. SinceD0 is greater
than any solution of~1.1! in the setC, we see that

lim
n→`

Dn~k![D̄~k!, kPR3

is the maximal solution of~1.1! in C. PutTc5sup$Tu the equation~1.1! with b51/T has a positive
solution inC%.

Of course,Tc>Tc8.0. By virtue of Lemma 2.7, we also haveTc,`. Using the argument in Ref
3, it is straightforward to prove that, for any 0<T51/b,Tc , the BCS equation~1.1! has a
positive solution inC as expected. h

III. CRITICAL TEMPERATURES

In Sec. II, we investigated two types of positive solutions of the BCS equation~1.1!: the
solutions that can be constructed from bounded domain approximations and the solution tha
the configuration setC generalizing bounded solutions. The solvability of these different probl
leads to two transition temperatures,Tc8 andTc . We have seen thatTc8<Tc . It is still an open
question whether the strict inequalityTc8,Tc indeed occurs for some special choices of the ker
function K. However, in this section, we prove that the sufficient condition of Du5 ~in an
extended form! for the uniqueness of a positive solution of~1.1! leads toTc85Tc .

The first result below is a simple observation at the critical temperatureTc
(V) defined in

Lemma 2.2 for the BCS equation~2.2! over a bounded domain.
Theorem 3.1:If V is a bounded domain inR3, then, at T51/b5Tc

(V) , the only non-negative
solution of (2.2) is the zero solution.

Proof: Suppose otherwise that~2.2! has a non-negative solution,D ~say!, which is not iden-
tically zero inV. SinceK(k,k8).0, we haveD(k).0 for all kPV.

Let aP(0,1) be a fixed number. Then, atTc
(V) ,

M (V)~aD!.aM (V)~D!5aD,
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in view of the property thatHb„k,aD(k)….Hb„k,D(k)… ~see Sec. II!. However, sinceV is
bounded, the above inequality will be preserved under small fluctuations ofT51/b aroundTc

(V) .
In particular, for 0,T2Tc

(V) small, we haveM (V)(aD).aD whenb51/T. This says thataD
is a positive sub-solution of~2.2! at T51/b.Tc

(V) , a contradiction. h

Corollary 3.2: At the critical temperature Tc8 , the only non-negative solution of (1.1) that ca
be constructed from bounded domain approximations is the zero solution.

We set

f r~k!5E
uk8u<r

K~k,k8!
f ~k8!

~k8211!
dk8, f~k!5f`~k!,

F r~k!5E
uk8u<r

K~k,k8!
f ~k8!

„@k822m#21 f 2~k8!…1/2dk8, F~k!5F`~k!.

Of course,f r(k)→f(k) andF r(k)→F(k) asr→` everywhere inkPR3. The uniqueness
condition imposed in Ref. 5@with f (k)[1] reads as

f r~k!>sf~k!, kPR3, ~3.1!

wherer .0 is sufficiently large ands.0 is a constant. A weaker version of~3.1! is

F r~k!>sF~k!, kPR3, ~3.2!

with r , s assuming the same meanings as in~3.1!. The connection of~3.1! and~3.2! is through the
additional assumption

f ~k!5O~k2!, for large k2. ~3.3!

In fact, when~3.3! holds, we can find constantsc1.0,c2.0 so thatc1f r(k)<F r(k)<c2f r(k)
for any r .0 andkPR3. This says~3.1! and ~3.2! are equivalent under~3.3!.

Theorem 3.3: If the kernel function K in (1.1) is such that the conditions (3.1) or (3.2) a
(3.3) hold, then any positive solution inC of the full space BCS equation (1.1) can be appro
mated by solution sequences of the equations on bounded domains of the type (2.2). In par,
Tc85Tc and the positive solution at any given temperature is unique. Furthermore, the
non-negative solution inC at the critical temperature Tc51/bc is the zero solution.

Proof: We shall take an approach similar to that in the proof of Theorem 3.1. The diffic
with noncompactness in~1.1! can be overcome by the condition~3.1! or ~3.2!.

Let DPC be a positive solution of~1.1! andV r5$kPR3u uku<r % (r .0). As in the proof of
Theorem 3.1, there holdsM(aD).aD for any aP(0,1). The major step in our proof here is
show that

M (Vr )~aD r !.aD r , kPV r , ~3.4!

when r .0 is sufficiently large. Here and in the sequel,

D r~k!5M (Vr )~D!5E
uk8u<r

K~k,k8!wb„k8,D~k8!… dk8, kPR3.

We first assert that there exists a constantc.0 such that whenr .0 is large enough, we hav

D r~k!>cD~k!, kPR3. ~3.5!

In fact, this inequality is a consequence of~4.2!–~4.3! to be derived in the next section.
DefineF(k,r )5aD r(k)2M (Vr )(aD r)(k). ThenF has the decomposition
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F~k,r !5F1~k!1F2~k,r !1F3~k,r !, ~3.6!

where

F1~k!5aD~k!2M~aD!~k!,

F2~k,r !5E
R3

K~k,k8!@wb„k8,aD~k8!…2wb„k8,aD r~k8!…#dk8,

F3~k,r !5E
uk8u.r

K~k,k8!@wb~k8,aD r~k8!…2awb„k8,D~k8!…#dk8.

We shall show that, whenr .0 is sufficiently large,F(k,r ),0. To this end, we first rewrite
F1 as

F1~k!5aE
R3

K~k,k8!@Hb„k8,D~k8!…2Hb„k8,aD~k8!…#D~k8!dk8

,aE
uk8u<r

K~k,k8!@Hb„k8,D~k8!…2Hb„k8,aD~k8!…#D~k8!dk8

52aE
uk8u<r

K~k,k8!wb„k8,D~k8!…FHb„k8,aD~k8!…

Hb„k8,D~k8!…
21Gdk8

<2am~r !D r~k!,

with

m~r !5 inf
uk8u<r

FHb~k8,aD~k8!…

Hb„k8,D~k8!…
21G.0.

However, setting

c1~r !5 inf
uk8u<r

k8211

f ~k8!
wb„k8,D~k8!…,

we obtain the lower bound

D r~k!5E
uk8u<r

K~k,k8! f ~k8!

~k8211!
•

~k8211!

f ~k8!
wb„k8,D~k8!…dk8>c1~r !f r~k!>sc1~r !f~k!,

if r .0 is sufficiently large. Thus,

F1~k!<2asc1~r !m~r !f~k![2m1~r !f~k!. ~3.7!

Besides, in view of~2.1!, for any r .0, we have the estimate

D~k!2D r~k!5E
uk8u.r

K~k,k8!wb„k8,D„k8)…dk8<«~r ! f ~k!, «~r !→0 asr→`.

Consequently,
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F2~k,r !5aE
R3

K~k,k8!@Hb„k8,aD~k8!…D„k8!2Hb„k8,aD r~k8!…D r~k8!]dk8

<aE
R3

K~k,k8!Hb„k8,aD~k8!…„D~k8!2D r~k8!…dk8

<a«~r !E
R3

K~k,k8!
f ~k8!

~k8211!
•

~k8211!

„@k822m#21a2D2~k8!…1/2dk8

<m2~r !f~k!, ~3.8!

wherem2(r )→0 asr→`.
Furthermore,

F3~k,r !<E
uk8u.r

K~k,k8!@wb„k8,aD~k8!…2awb„k8,D~k8!…#dk8

5aE
uk8u.r

K~k,k8!wb„k8,D~k8!…FHb„k8,aD~k8!…

Hb„k8,D~k8!…
21Gdk8

<a@D~k!2D r~k!#«1~r !, ~3.9!

where

«1~r !5 sup
uk8u.r

FHb„k8,aD~k8!…

Hb„k8,D~k8!…
21G→0 asr→`.

Using the inequalityD(k)<CF(k) @see~4.3!# andF(k)<c2f(k) in ~3.9!, we find that

F3~k,r !<m3~r !f~k!, with m3~r !→0 asr→`. ~3.10!

Chooser 0 sufficiently large so that~3.7! holds with r 5r 0 . Note thatm1(r 0).0. However,
m2(r )→0, m3(r )→0 in ~3.8!, ~3.10! asr→`, we see from~3.6! thatF(k,r ),0 (;kPR3) when
r .0 is large. This proves the assertion we made earlier.

The inequalityF(k,r ),0 implies thataD r is a positive sub-solution of~2.2! on V5V r .
Thus~1.1! has a positive solution,D8 ~say!, which can be approximated by a sequence of boun
domain solutions of~2.2!. ObviouslyD8.aD r . SinceaD r,D, we also haveD8<D. We assert
that D85D. Suppose otherwise thatD8<D but D8ÓD. Since the kernel functionK.0 in ~1.1!,
there holdsD8(k),D(k) for all kPR3. Fix any k0PR3. We can choosea close to 1 andr .0
large to make

aD r~k0!.D~k0!2@D~k0!2D8~k0!#5D8~k0!.

Of course, we may use suchaD r as a positive sub-solution to initiate an iterative approximat
sequence to obtainD8. Therefore the above inequality saysD8(k0).aD r(k0).D8(k0), a con-
tradiction. Here we have applied the uniqueness part of Theorem 2.1. HenceD85D andD itself
can be constructed by bounded domain approximations. Applying Theorem 2.1 again, we s
the proof of the theorem is complete. h

IV. UNIQUENESS OF THE FULL-SPACE SOLUTION

In this section, we consider the uniqueness problem of the BCS equation~1.1! in the full R3.
The following is our main result of this section.

Theorem 4.1: Suppose that (3.2) is fulfilled. At any given temperature T51/b, the positive
solution inC of the BCS equation (1.1) is unique.
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Proof: Let D and D̄ be two positive solutions of~1.1! with D̄(k).D(k) (kPR3) @D̄ can be
obtained from iterating the equation~1.1! from the super-solutionc0f (k)—see Sec. II!. As in Du,5

we furnish the proof in several steps below.
~1! There is a constantt.0 so that

D~k!>tD̄~k!, kPR3. ~4.1!

Indeed, set

c~r!5 inf
uku<r

D~k!

f ~k!
.

Thenc(r ).0 @it is easily checked that bothD(k) and D̄(k) are continuous inR3# for r .0 and
with the c0.0 defined in Sec. II and

tanh~ 1
2 b~@k822m#21c0

2f 2~k8!!1/2>a0.0,

we have
D~k!>D r~k!

>E
uk8u<r

K~k,k8!Hb„k8,c0f ~k8!…c~r ! f ~k8!dk8

>a0c~r !E
uk8u<r

K~k,k8!
f ~k8!

„@k822m#21c0
2f 2~k8!…1/2dk8

>a0a1c~r !E
uk8u<r

K~k,k8!
f ~k8!

„@k822m#21 f 2~k8!…1/2dk8

5a0a1c~r !F r~k!

>a0a1sc~r !F~k!, kPR3, ~4.2!

where we have used the simple inequality
@k822m#21 f 2~k!

@k822m#21c0
2f 2~k8!

>minH 1

c0
2,1J [a1

2 .

On the other hand, using tanhs<1, we obtain

D̄~k!<M~c0f !~k!<
c0

a1
E

R3
K~k,k8!

f ~k8!

„@k822m#21 f 2~k8!…1/2dk85
c0

a1
F~k!. ~4.3!

Thus ~4.1! follows from ~4.2!–~4.3!.

~2! Define

t05sup$t.0uD~k!>tD̄~k!, kPR3%.

Then t0.0 by Step~1!. SinceD̄(k).D(k), we must havet0,1. Therefore

D~k!>M~ t0D̄ !~k![E
uk8u<r

1E
uk8u.r

. ~4.4!

However, the property of functionHb gives us the inequality

E
uk8u<r

.t0E
uk8u<r

K~k,k8!Hb„k8,D̄~k8!…D̄~k8!dk8.
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Thus there is an«(r ).0 such that

E
uk8u<r

5t0„11«~r !…E
uk8u<r

K~k,k8!Hb„k8,D̄~k8!…D̄~k8!dk8. ~4.5!

By the same reason, we have

E
uk8ur

.t0E
uk8u.r

K~k,k8!Hb„k8,D̄~k8!…D̄~k8!dk8. ~4.6!

Applying ~4.5!–~4.6! in ~4.4!, we arrive at

D~k!>t0D̄~k!1t0«~r !E
uk8u<r

K~k,k8!wb„k8,D̄~k8!…dk8. ~4.7!

~3! In view of the derivation of~4.2!, we find that

the integral on the R.H.S. of~4.6! >a0a1s c̄~r !F~k!,

wherer .0 is sufficiently large and

c̄~r!5 inf
uku<r

D̄~k!

f ~k!
.

Thus, using~4.2!, ~4.3!, and~4.7!, we obtain a positive constant«.0 so that

D~k!>t0~11«!D̄~k!, kPR3.

This statement contradicts the assumption ont0 and the theorem is proved. h

V. THE u 0-POSITIVITY CONDITION AND UNIQUENESS

The well-known Perron–Frobenius theory concerning the uniqueness of a positive eigen
~up to the norm! of a positive matrix may be generalized to an infinite dimensional case whe
positive linear operatorA under consideration satisfies some restrictive conditions. For exam
in the case thatA is u0-positive on a Banach spaceE with a coneK, namely there exists au0

PK such that for eachuPK there are numbersa,b.0 and an integern>1 so that

au0<An~u!<bu0 ,

the theory is systematically developed in Krasnosel’skii6 which may be used to study the uniqu
ness problem of the BCS equation~1.1!. Following the discussion in Ref. 6, a convenient suf
cient condition ensuring theu0-positivity for the relevant linear operators in our problem is t
assumption that there exists a functiong0.0 such that

f ~k!g0~k8!<K~k,k8!< f ~k!g~k8!, ~5.1!

wheref ,g have the properties described in Sec. II. It is easily seen that~5.1! implies also~3.1!. In
fact, we have

f r~k!> f ~k!E
uk8u<r

f ~k8!g0~k8!

~k8211!
dk8>« f ~k!>

«

C
f~k!,

where

0,«<E
uk8u<r

f ~k8!g0~k8!

~k8211!
dk8, r .0 is large,

C5E
R3

f ~k8!g~k8!

~k8211!
dk8.
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In this section, we sketch a proof of the uniqueness of the BCS solution using direct
Perron–Frobenius theory under the strongeru0-positivity condition~5.1!.

Suppose on the contrary that~1.1! has two distinct positive solutions inC, D1 , D2 ~say!. As in
the proof of Theorem 4.1, we may assume that 0,D1,D2 . ThenD1 andD2 are positive eigen-
functions of thef -positive operatorsA1 andA2 , respectively, associated with the unique simp
eigenvaluesl15l251, where

Aj~u!~k!5E
R3

K~k,k8!Hb„k8,D j~k8!…u~k8!dk8, j 51,2

are operators acting on the Banach spaceC with

iuiC5 inf$cuucu is such thatuu~k!u<cuf ~k! for all kPR3%

and the obvious cone. SinceHb(k8,•) is decreasing, we haveA1.A2 . Consequently,l1.l2 ~see
p. 94 in Ref. 6!, which is a contradiction.

In fact, the f -positivity condition can actually be relaxed to the condition that the relev
operators are onlyf -bounded below~cf. pp. 94–95 in Ref. 6!. Thus, uniqueness also holds whe
more or less, only the left half of the inequality~5.1! is assumed.

We now explore further theu0-positivity theory. First we formulate and discuss a few ba
hypotheses which are different from those used earlier.

~H1!: K(k,k8) is continuous, non-negative, and not identically zero inR33R3.
~H2!: There exists a positive continuous functionf over R3 such that

E
R3

K~k,k8! f ~k8!

„@k822m#21 f 2~k8!…1/2dk8< f ~k!, kPR3. ~5.2!

We remark that~H2! can evidently be guaranteed by taking

K~k,k8!< f ~k!g~k8!,

whereg is also positive and continuous and

E
R3

f ~k8!g~k8!

„@k822m#21 f 2~k8!…1/2dk8<1.

To discuss the uniqueness of the full space problem, we need more, introducing a f
hypothesis which is a generalization of that of Du.5 Specifically, we have the following.

~H3!: For r .0 sufficiently large, there is a constants.0 such that

E
uk8u<r

K~k,k8! f ~k8!

k821 f ~k8!
dk8>sE

R3

K~k,k8! f ~k8!

k821 f ~k8!
dk8, kPR3. ~5.3!

@An alternative hypothesis would be to replace the denominator byk8211.# Du’s hypothesis is the
particular case wheref 51.

Mathematically, the assumption~H3! in effect makes the operatorT, defined by

~Tc!~k!5E
R3

K~k,k8!c~k8!

k821 f ~k8!
dk8,

u0-bounded below in the sense of Krasnosel’skii,6 where

u0~k!5E
R3

K~k,k8! f ~k8!

k821 f ~k8!
dk8.
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For if c is a continuous and strictly positive function, then there clearly exists a numberd(c) such
that

~Tc!~k!>E
uk8u<r

K~k,k8!c~k8!

k821 f ~k8!
dk8>d~c!E

uk8u<r

K~k,k8! f ~k8!

k821 f ~k8!
dk8>sd~c!u0~k!.

~5.4!

This u0-boundedness assumption is crucial in much of Krasnosel’skii’s work on positive o
tors, and although we will find it more convenient to give a self-contained treatment, it is
surprising that the assumption would make its appearance.

Without ~H3!, or something comparable, the solution need not be unique. We shall giv
example where~H1! and~H2! hold, but not~H3!, and show that there is nonuniqueness in the
space problem.

Assume that the kernel function is given by

K~k,k8!55
«, if uk8u<1,

«

uku11
, if 2<uk8u<M ~ uku11!,

«

uku11
e2(uk8u2M [ uku11]), if uk8u>M ~ uku11!.

~5.5!

Here« is a small positive constant, andM a large one, and they will be specified more precis
later. For 1,uk8u,2, we defineK by interpolating monotonically between the values atuk8u
51,2.

By an easy calculation we see that there are two positive constants,C1 ,C2 such that

C1«z1~M ,k!<E
R3

K~k,k8!dk8<C2«z1~M ,k!,

where

z1~M ,k!511M1M2~ uku11!1M3~ uku11!2.

Moreover, we also have

C1«z2~M ,k!<E
R3

K~k,k8!

k8211
dk8<C2«z2~M ,k!,

where

z2~M ,k!511M1
1

uku11
.

By choosing« andM so that«M is small but«M3 large, we can certainly satisfy~5.2! by taking
f 5 f 151 or f 5 f 2 where

f 2~k!5E
R3

K~k,k8!dk8.

For, sincef (k8)<„@k822m#21 f 2(k8)…1/2, the left-hand side of~5.2! does not exceedf 2 . We thus
have two solutions,f 1 , f 2 , to the inequality~5.2!, and f 1 and f 2 are not comparable since
althoughf 1<C f2 for some suitable positive constantC, the reverse inequality can never be tru

This might suggest that there are two solutions to the BCS equation~1.1!, and this is indeed
the case. In fact, Theorem 7.1 guarantees the existence of a solutionD1 such thatD1 is bounded
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by a multiple of f 1 , at least forb sufficiently large. Further, since~5.3! is satisfied withf 5 f 1

51, Theorem 7.1 assures us that there is a unique solution which is bounded by a multiplef 1 .
But we can also show that there is a second solution, not bounded byf 1 , but bounded byf 2 .

~Indeed it is self-clear that any solution must be bounded byf 2 .! Since~5.3! is not satisfied with
f 5 f 2 , there is no guarantee of uniqueness, and indeed we know that the solution is not u
the existence of the second solution will be shown briefly in Sec. VIII.

VI. EXISTENCE THEOREMS UNDER „H1… AND „H2…

In this section, we study~1.1! under the new hypotheses,~H1! and ~H2!. Although our
existence results are of independent interest, they are important preparations for our uniq
theorem to be presented in the next section and for our second example of nonuniquenes
considered fully in Sec. VII.

The following result is analogous to Theorem 2.1.
Theorem 6.1: Suppose that (H1) and (H2) hold with K(k,k8).0 for almost all k8. Then,

there is one and only one solution of (1.1) which can be obtained as a limit of the solutio
Theorem 2.2 by takingV→R3. Indeed, there exists a uniquely defined critical value ofb, say
bc8 , such that, ifb<bc8 , then that limit is zero, while ifb.bc8 , the limit is strictly positive and
is an increasing function ofb.

Proof: The existence and uniqueness of the limit is immediate from the monotone depen
on V. We define

bc85 lim
V→R3

bc
(V) ,

which exists because of the monotonic dependence ofbc
(V) on V. Clearly, if b.bc8 , then b

.bc
(V) for some sufficiently largeV, and so we will have a positive solution overV, and so over

all largerV, showing that the limit is positive. Ifb<bc8 , the solution overV is zero for allV.
Thus all we have to show is that there indeed exists a solution, and we note first that there
a constantc0.0 such that, for allV, the solutionD (V) satisfies

D (V)~k!<c0f ~k!, kPR3. ~6.1!

@Indeed, once this is proved, the theorem is complete, since~6.1! implies thatD (V) increases to a
limit D not exceedingc0f , and ~H2! together with dominated convergence implies thatD is a
solution of ~1.1!. Further,D is increasing inb since eachD (V) is increasing.#

To prove~6.1!, suppose that

D (V)~k!<c(V) f ~k!, kPV, ~6.2!

and thatc(V) is the best such constant. Then there exists a pointk0 where~6.2! becomes equality.
Evaluating~2.2!, we have

c(V)5
1

f ~k0!
E

V
K~k0 ,k8!wb„k8,D (V)~k8!…dk8

<
1

f ~k0!
E

V
K~k0 ,k8!wb„k8,c(V) f ~k8!…dk8

<
1

f ~k0!
E

V
K~k0 ,k8!

c(V) f ~k8!

„@k822m#21~c(V)!2f 2~k8!…1/2dk8,

which indicates that
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f ~k0!<E
R3

K~k0 ,k8! f ~k8!

„@k822m#21~c(V)!2f 2~k8!…1/2dk8,

a contradiction to~5.2! unlessc(V)<1. Hence the theorem is proved. h

Of course, we have no guarantee that the positive solutionD(k) thus found of the full space
problem is unique. However, we do have the following theorem.

Theorem 6.2: Suppose that (H1) and (H2) hold with K(k,k8).0 for almost all k8. Then
there is a unique maximal solutionDmax in the space Bf of functionsD such thatD/ f is bounded,
maximal in the sense that any other solution in Bf satisfies

D<Dmax.

Further, there exists a uniquely defined critical value ofb, say bc2
, such that, ifb<bc2

, then

Dmax50, while if b.bc2
, Dmax is strictly positive and is an increasing function ofb. Clearly,

bc2
<bc1

.
Proof: The argument in the proof of Theorem 6.1 shows that, if we define a sequence$Dn% by

Dn5M~Dn21!,

and takeD05c f with a sufficiently large choice ofc, in fact c.1, thenD0 is a supersolution and
the limit of $Dn% goes toDmax. SinceD0 is clearly larger than any solution inBf , Dmax is the
desired maximal solution. The monotone dependence is self evident from the inequality

Dn,b2
>Dn,b1

, b2>b1 .

Here we use the subscripts to denote the dependence onb which has been implicit. h

VII. UNIQUENESS UNDER „H1…, „H3…

In this section, we study the uniqueness problem assuming~H1!, ~H3!. Here is our result.
Theorem 7.1: Suppose that (H1), (H3) hold with K(k,k8).0 for almost allk8. Then there

exists at most one solution of (1.1) in Bf .
Proof: Suppose that we have two distinct solutionsD1 ,D2 . Since D jPBf ( j 51,2) and

wb(k8,u) is increasing inu, we have

D j5E
R3

K~k,k8!wb~k8,D j !dk8<E
R3

K~k,k8!wb~k8,cj f !dk8<CjE
R3

K~k,k8! f ~k8!

k821 f ~k8!
dk8,

~7.1!

whereCj is sufficiently large. Besides, sinceHb(k8,u) is decreasing inu, we have

D j5E
R3

K~k,k8!Hb~k8,D j !D jdk8

>E
R3

K~k,k8!Hb~k8,cj f !D jdk8

>E
uk8u<r

K~k,k8!Hb~k8,cj f !D jdk8. ~7.2!

Now D j , on any compact set ofR3, has a strictly positive lower bound. Thus

D j>D jE
uk8u<r

K~k,k8!Hb~k8,cj f ! f dk8>EjE
R3

K~k,k8! f ~k8!

k821 f ~k8!
dk8 ~7.3!
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for suitable positive constantsD j ,Ej ( j 51,2) by use of~H3! and some trivial estimates. Sinc
D1 ,D2 are thus bounded both above and below by a multiple of

E
R3

K~k,k8! f ~k8!

k821 f ~k8!
dk8, ~7.4!

the functionD2 /D1 is bounded both above and from zero. If we definet0 to be its largest lower
bound ort05 inf(D2 /D1), then

D2>t0D1 .

Further, we may suppose without loss of generality thatt0,1 ~otherwise reverseD1 and D2!.
Then

D22t0D15E
R3

K~k,k8!$wb~k8,D2!2t0wb~k8,D1!%dk8.

However,

wb~k8,D2!>wb~k8,t0D1!5t0D1Hb~k8,t0D1!.t0D1Hb~k8,D1! ~since t0,1!5t0wb~k8,D1!.

Thus D22t0D1.0, and we can conclude, as in the discussion leading to~7.3!, that D22t0D1

exceeds a positive multiple of~7.4!, contradicting the definition oft0 as the largest lower bound
The proof of the theorem is complete. h

VIII. AN EXAMPLE OF NONUNIQUENESS

We return to the example given by the kernel~5.5!. We note that, iff 2(k) is as defined there
and«M3 is large,f 2(k) is always large and dominatesuku2. Thus, for allk, wb(k8, f 2) is close to
1, and if we define a sequence of functionsDn by

Dn5M~Dn21!, D05 1
2 f 2 ,

then $Dn%, which is necessarily bounded byf 2 , is an increasing sequence becauseD0 is a
subsolution. Thus the sequence converges and gives a solution of~1.1! which is different from the
bounded solution obtained in Sec. V.

IX. KERNELS WITH VARYING SIGNS

In some circumstances, especially in the recent theoretical developments of high-Tc super-
conductivity models,7,8 the kernel functionK(k,k8) in ~1.1! may vary signs~cf. Ref. 9, 10 and
references therein!. In order to study these models, an initial step would be the proof of
existence or nonexistence of a nontrivial~gap! solution for ~1.1! when K(k,k8) is not positive
definite. In such a situation, an earlier existence result was given in Ref. 11 for the
temperature limit with a spherical symmetry assumption. In this section, we consider the
equation at a finite temperatureT>0 without any symmetry assumption. We shall show that
equation has nontrivial solutions at low temperatures, while, at high temperatures, the only
tion is the trivial one. To prove the existence at low temperatures, we consider the BCS op
as acting on a convex subset ofC as in Ref. 11 which does not contain the zero element. Hen
fixed-point argument gives us a nontrivial solution. On the other hand, to prove nonexiste
high temperatures, we directly apply the results obtained in Sec. II and use the estimates
for uK(k,k8)u.

We first replace~2.1! by the assumption that

uK~k,k8!u<a~k! f ~k!g~k8!,
f ~k!g~k!

~k211!p PL~R3!. ~9.1!
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Here pP(0,1) is a constant and the non-negative functiona is normalized to satisfya<1 and
a(k)→0 as uku→`. Note that~2.1! follows trivially from ~9.1!. Thus, for sufficiently larged0

.0, there holds

uM~d0f !~k!u<d0f ~k!E
R3

f ~k8!g~k8!Hb„k8,d0f ~k8!…dk8

<d0f ~k!E
R3

f ~k8!g~k8!

~k8211!
•

~k8211!

„@k822m#21d0
2f 2~k8!…1/2dk8

<d0f ~k!. ~9.2!

Next, in view of ~9.1!, we have

E
uku.R

f ~k!g~k!Hb„k,d0f ~k!…dk<E
uku.R

f ~k!g~k!

~k211!p •

~k211!p

„@k22m#21d0
2f 2~k!…1/2dk,

a2

d0
,

~9.3!

for any R sufficiently large, witha.0 an arbitrarily given constant.
To motivate the final condition to be imposed, we recall the prevailing physical assum

that the interaction near the Fermi energy level is phonon dominant. Namely,

K~k,k8!.0, for uk22mu1uk822mu small. ~9.4!

For certain technical reasons of our study, we strengthen~9.4! into the form thatK(k,k8).0 for
k fairly away from as well as neark25m anduk822mu small. Therefore, we have forf (k8)Þ0 at
k825m andR.Am the property

lim
«→0

E
uk8u<R

K~k,k8! f ~k8!

„@k822m#21«2f 2~k8!…1/2dk85`. ~9.5!

We now further strengthen~9.5! to

E
uk8u<R

K~k,k8! f ~k8!

„@k822m#21a2f 2~k8!…1/2dk8>2~11a! f ~k!, uku<R. ~9.6!

Herea.0 is a small number@see also~9.3!#.
Theorem 9.1: Assume (9.1). Let a,R.0 be such that the kernel function K satisfies t

conditions (9.3), (9.6), and K(k,k8)>0 for uku<R, uk8u<R. Suppose that the absolute temper
ture T51/b is so small that

tanh~ 1
2 b@~k22m!21a2f 2~k!#1/2!. 1

2 ~say!,

for uku<R. Then the BCS equation (1.1) has a nontrivial solutionD(k) verifying

a f~k!<D~k!, uku<R; D~k!<d0f ~k!, kPR3.

Proof: Let C(a,R) be the subset ofC satisfying

C~a,R!5$uPCuu~k!>a f~k! for uku<R,iuiC<d0%.

ThenC(a,R) is a closed convex set. We can show thatM mapsC(a,R) into C(a,R).
In fact, for uPC(a,R), we have fromuuu<d0f that

uM~u!~k!u<M̄~d0f !~k!<d0f ~k!
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@see the notation in the proof of the next theorem and~9.2!#. Thus iM(u)iC<d0 . Besides, for
uku<R, we have

M~u!~k!>E
uk8u<R

K~k,k8!wb„k8,a f~k8!…dk82E
uk8u.R

uK~k,k8!uwb„k8,d0f ~k8!…dk8

.~11a!a f~k!2
a2

d0
d0f ~k!

5a f~k!,

by virtue of ~9.3!, ~9.6!, and wb(k8,a f )> 1
2a f /(@k822m#21a2f 2)1/2 (uk8u<R). This proves

M(u)PC(a,R).
In order to show thatM has a fixed point inC(a,R), it suffices to prove thatM is completely

continuous onC. However, this property is ensured by~9.1! and the assumption thata(k)→0 as
uku→` and a standard argument using, for example, the«-net.

Theorem 9.2:Suppose that the kernel function K satisfies the condition (9.1). Then (1.1
no nontrivial solutions at high temperatures. Furthermore, if the conditions stated in Theore
hold, then, there is a positive critical temperature Tc so that whenever T51/b.Tc , the equation
(1.1) has only the zero solutionD50. Moreover, for any«.0, there is T:Tc2«,T,Tc so that
the equation~1.1! has at least one nontrivial solution atb51/T.

Proof: SetK̄(k,k8)5uK(k,k8)u and let the associated BCS operator be denoted byM̄. Then
there is a critical temperatureT̄c.0 so that the only solution ofM̄(D)5D for T.T̄c is the zero
solution ~Theorem 2.1!. We claim thatM(D)5D has no nonzero solution forT.T̄c as well.

Suppose otherwise thatD is a nontrivial solution. ThenD̄5uDu verifies

D̄5uM~D!u<M̄~D̄ !.

Namely, D̄ is a nontrivial sub-solution of the equationD5M̄ (D) with a non-negative kernel
HenceT<T̄c , a contradiction.

Finally, if in addition the conditions of Theorem 9.1 are fulfilled, then the desired trans
temperatureTc can be obtained as

Tc5 infH T5
1

b U the equation~1.1! has no nontrivial solutions atbJ ,

as a consequence of Theorem 9.1 and the first part of the statement above. h

Thus, we have shown in this section that, even the phonon interactions are not unif
dominant, superconductivity is still a low-temperature phenomenon. It will be interesting to
further whether for the transition temperatureTc stated in Theorem 9.2 the equation~1.1! has a
nontrivial solution for allT,Tc as in the phonon-dominant case,K(k,k8)>0.
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Hyperspherical theory of anisotropic exciton
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A new approach to the theory of anisotropic exciton based on Fock transformation,
i.e., on a stereographic projection of the momentum to the unit four-dimensional
~4D! sphere, is developed. Hyperspherical functions are used as a basis of the
perturbation theory. The binding energies, wave functions and oscillator strengths
of elongated as well as flattened excitons are obtained numerically. It is shown that
with an increase of the anisotropy degree the oscillator strengths are markedly
redistributed between optically active and formerly inactive states, making the lat-
ter optically active. An approximate analytical solution of the anisotropic exciton
problem taking into account the angular momentum conserving terms is obtained.
This solution gives the binding energies of moderately anisotropic exciton with a
good accuracy and provides a useful qualitative description of the energy level
evolution. © 2000 American Institute of Physics.@S0022-2488~00!00509-0#

I. INTRODUCTION

The interest to the anisotropic exciton problem1,2 has been revived with the progress in t
physics of semiconductor heterostructures. In semiconductor superlattices the mini-band for
causes a strong mass anisotropy.3 In fact, the localization of carriers inside quantum wells a
their tunneling trough barriers can be described in terms of anisotropic medium approximat
the effect of mass renormalization. The dielectric constant becomes anisotropic also if the
lattice constituent layers have different dielectric susceptibilities. Recently such a formalism
been used in the theory of excitons in short-period superlattices~see, e.g., Refs. 4 and 5!.

The main complication of the uniaxial anisotropic exciton problem is that the Coulomb
tential symmetry is broken~the spherical symmetry as well as the ‘‘hidden’’ one, the intrin
property of the hydrogenlike system! so that only the angular momentum projection and pa
conserve. As a consequence, the solution of the Schro¨dinger equation is no longer factorized in
radial and angular parts and cannot be represented as a finite combination of standard
functions.

The anisotropic exciton problem was first studied by Kohn and Luttinger2 ~for donor states in
silicon and germanium! by means of the variational approach with allowance for a group s
metry of the particular materials. Further theoretical studies6–16 were focused on perturbativ
solutions of the anisotropic exciton problem. For slightly anisotropic system Hopfield
Thomas6 found the first-order solution, treating the anisotropy of the kinetic energy a
perturbation17 linear in the anisotropy parameter. The effects in a weak magnetic field also
been taken into account in this approximation. For a moderate exciton anisotropy Wheel
Dimmock7 used an expansion of the anisotropic potential over its asymmetric partz2/r 2 up to the
second order in the anisotropy parameter terms, thus calculating in part the second-order
bation solution. This partial diagonalization was completed by Deverin,8 who considered the
diagonal elements of the exact anisotropic kinetic energy~for nondegenerate levels! as well as the
transcendental solution of a secular problem for degenerate levels. The full expansion
anisotropic potential was considered by Segal,9 where only the spherically symmetric part of th

a!Electronic mail: muljarov@gpi.ru
60260022-2488/2000/41(9)/6026/16/$17.00 © 2000 American Institute of Physics
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full expansion was taken into account. Finally, Faulkner10 performed calculations of donor energ
levels by means of a Rayleigh–Ritz perturbation method containing numerous~depending on
hydrogen quantum numbers! variational parameters. Being included in the radial part of hydro
basis functions, these variational parameters served as scaling factors depending on the an
degree. In the limit of an extreme anisotropy, the exciton binding energies were calculated2,11,12in
adiabatic approximation. Following the method suggested by Faulkner, Baldereschi and13

obtained similar results and attempted to calculate excitonic oscillator strengths. The
Rayleigh–Ritz method was used in Ref. 16 for calculations of the energy levels of 2D aniso
exciton.

Recently, an elegant model of fractional-dimensional space has been developed~see Refs. 18
and 19 and references therein!. It allows one to treat self-consistently the bound as well
continuum states in hydrogen problem of noninteger dimension. However, its direct applica
to the anisotropic exciton problem is problematic. The reason is that the fractional-dimen
hydrogen problem conserves the Coulomb degeneracy of levels~so that the binding energie
depend on the principal quantum number only!, whereas in reality the anisotropy lifts this dege
eracy and restores it only in 2D and 3D cases.

In spite of a long history of theoretical study, the investigation of the optical properties o
anisotropic exciton is still not complete. For example, the behavior of exciton oscillator stre
is very important for the understanding the experimental absorption spectra. However, the
tion of the oscillator strengths of the anisotropic exciton with the increase of the anisotropy h
been investigated, for our knowledge, with two exceptions: calculations for slightly anisot
exciton13 and simulations of optical spectra within an isotropic exciton model.20 One should note
that none of the approaches13,20 is able to describe the drastic changes of oscillator strengths~due
to the level anticrossings10! with increase of the anisotropy reported in our article.

In the present article we develop21 a perturbation approach to the uniaxial anisotropic exci
problem, based on the method of stereographic projection of the momentum space to the u
sphere, proposed by Fock.22 We use the hyperspherical harmonics, i.e., the irreducible repre
tation of rotation groupO(4) of a 4D sphere, as a basis of the Brillouin–Wigner perturba
method.

This approach has a number of advantages and clarifies the physical properties of the
tropic exciton.

~i! It allows us to utilize the additional hidden symmetry of Coulomb potential for expan
of anisotropic exciton wave function. Namely, for the bound exciton states the irredu
representation of the full symmetry groupO(4) constitutes a complete set for such expa
sion. This expansion depends explicitly on the exciton energy through scaling param
which follow adiabatically the changes in anisotropy. These parameters, similar to
introduced in the Rayleigh–Ritz method10 ~where they were defined by minimizing th
energy functional!, are exactly determined in our method. As a result, the hypersphe
functions turn out to be the most effective basis for numerical calculations.

~ii ! Within Fock representation, the hydrogenic spectrum with the level series limit transf
into an equidistant one, which provides a good convergence of our method in a wide r
of the anisotropy parameter.

~iii ! The matrix elements of the perturbation are found as analytical elementary express
~iv! This analytical form of perturbation matrix elements allows us to construct a sphe

approximation with an analytical solution and to summarize exactly the rest part of pe
bation in the second order. This spherical approximation, which works well in the regio
a moderate anisotropy, turns out to be very useful for qualitative classification of the e
levels.

We calculate numerically the energy spectrum, excitonic wave functions and osc
strengths for flattened as well as elongated excitons.

The article is organized as follows. In Sec. II the expansion is formulated on the ba
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hyperspherical formalism and basic equations of the perturbation method are derived. Resu
discussions are presented in Sec. III.

II. ANISOTROPIC EXCITON IN FOCK REPRESENTATION

A. Hyperspherical formalism

The Hamiltonian of the uniaxial anisotropic exciton is given by

Ĥ52
\2

2m'
S ]2

]x2 1
]2

]y2D2
\2

2m i

]2

]z2 2
e2

A« i«'~x21y2!1«'
2 z2

. ~1!

Herem is the reduced exciton mass,« is the semiconductor dielectric constant, and subscripi
and' refer to the quantities along and normal to the axis of symmetry (z axis!, respectively. In
Eq. ~1! both the kinetic and potential energies are anisotropic. However, a dilatatioz
→zA« i /«' makes the potential energy spherically symmetric. In the effective atomic units

Ry* 5
m'e4

2«0
2\2 , aB* 5

\2«0

m'e2 , ~2!

where«05A«'« i, Eq. ~1! takes the form

S p̂21e p̂z
22

2

r Dc~r !5Ec~r !. ~3!

Here we introduced the perturbation parameter,e5g21, connected to the anisotropy paramet

g5
«'m'

« im i
~4!

(0,g,1 and 1,g,` for, respectively, flattened and elongated exciton!, p̂ and p̂z denote,
respectively, the dimensionless operators of momentum and itsz-projection.

We investigate the bound states with eigenenergiesEn,0, measured in Ry* , Eq. ~2!. It is
convenient to introduce a parameter~for each bound statesn!

pn5A2En, ~5!

which will play the role of the adiabatic parameter in the perturbation theory. After the Fo
transform, Eq.~3! takes the integral form

~p21epz
21pn

2!cn~p!5
1

2p2 E cn~p8!

up2p8u2
d3p8. ~6!

Following Fock’s paper,22 we perform a stereographic projection of 3D momentum space to
4D unit sphere,p/pn→uW , where the 4D vectoruW on the sphere is defined as

uW 5$u,un%5H 2pnp

p21pn
2 ,

p22pn
2

p21pn
2J , ~7!

p5upu. In the hyperspherical coordinates,~a,u,w!, the unit vectoruW takes the form

ux5
2pnpx

p21pn
2 5sina sinu cosw,
                                                                                                                



r-
ll
-

6029J. Math. Phys., Vol. 41, No. 9, September 2000 Hyperspherical theory of anisotropic exciton

                    
uy5
2pnpy

p21pn
2 5sina sinu sinw,

~8!

uz5
2pnpz

p21pn
2 5sina cosu,

un5
p22pn

2

p21pn
2 5cosa,

and

d4V5sin2 ada sinududw5
8pn

3

~p21pn
2!3 d3p. ~9!

Let us introduce a new wave function

Cn~uW !5
~p21pn

2!2

4pn
5/2 cn~p!, ~10!

with normalization condition

E ucn~p!u2 d3p5E ~12cosa!uCn~uW !u2 d4V51. ~11!

Then Eq.~6! takes the form

S 11
e

2
V̂DCn~uW !5

1

pn
Ĥ0Cn~uW !. ~12!

Here Ĥ0 is the Hamiltonian of unperturbed~hydrogenlike! problem,

Ĥ0C~uW !5
1

2p2 E C~uW 8!

uuW 2uW 8u2
d4V8, ~13!

and V̂ is the perturbation operator,

V̂5
uz

2

12un
5~11cosa!cos2 u. ~14!

If e50 ~or g51!, Eq. ~12! describes the isotropic 3D exciton. As it was shown by Fock,22 the
solutions of the integral equation

C (0)5l (0)Ĥ0C (0) ~15!

are

Cnlm
(0) ~a,u,w!5~22i ! l l !A2n~n2 l 21!!

p~n1 l !!
sinl aCn2 l 21

l 11 ~cosa!Ylm~u,w!, ~16!

lnlm
(0) 5n, n51,2,. . . , l 50, . . . ,n21, m50,61, . . . ,6 l . ~17!

HereCk
m(x) are the Gegenbauer polynomials23 andYlm(u,w) are the conventional spherical ha

monics. The hyperspherical functions, Eq.~16!, afford the irreducible representation of the fu
symmetry groupO(4) of the hydrogenlike system.24 Due to the properties of irreducible repre
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sentations, the hyperspherical function are orthogonal and normalized as

E uCnlm
(0) ~a,u,w!u2 d4V5E ~12cosa!uCnlm

(0) ~a,u,w!u2 d4V51, ~18!

in accordance25 with Eq. ~11!. It can be shown26 that the standard hydrogen wave functionfnlm
(0) (r )

with a given set of quantum numbers (n,l ,m) ~see, e.g., in Ref. 27! can be Fourier transforme
into the hyperspherical function, Eq.~16!.

B. Formulation of Brillouin–Wigner perturbation theory

We use the Brillouin–Wigner perturbation theory, i.e., the direct diagonalization of a
cated Hamiltonian matrix, in order to solve the anisotropic exciton problem in the form of
~12!. The set of the hydrogen bound states eigenfunctions is not complete and the scatterin
also must be taken into account. However, in Fock representation we are able to cons
complete basis out of the set of hydrogen bound states. As it was shown in Ref. 24, the sca
states are mapped on a two-sheeted hyperboloid in a 4D space with Minkowski metrics, w
the bound states are mapped into a unit sphere via the transformation Eq.~8!. Thus, the problems
of the bound and scattering states are mapped onto different subspaces, each of them to
own complete basis. The anisotropic problem is mapped into the same subspaces thro
transformation Eqs.~7!–~10! for the bound states and the corresponding procedure~with positive
energies! for the scattering states. So, being interested in bound states in the whole physical
21,e,`, excluding the pointse521 ~purely 2D exciton! ande5` ~purely 1D exciton!, we
can use the hyperspherical harmonics Eq.~16! as a complete set of basic functions.28 As it
immediately appears from Eqs.~12! and ~14!, the perturbation scheme converges forueu,1. For
the opposite case ofe.1 we can reformulate the perturbation problem with the help of
transformationp21epz

25(e11)@p21(1/(e11)21)(px
21py

2)#. After this, we can redefine the
effective atomic units Eq.~2! and consider the operator (1/(e11)21)(px

21py
2) as a perturbation,

thus providing the convergence foru1/(e11)21u,1.
The eigenfunctions are expanded as

Cn~a,u,w!5Sn
21(

s
C s

nAnCs
(0)~a,u,w!, s5~n,l ,m!, ~19!

where normalizing constants are defined as

Sn
25(

n,l
C n,l ,m

n @nC n,l ,m
n 2A~n1 l 11!~n2 l !C n11,l ,m

n #. ~20!

Then, the Schro¨dinger equation takes the matrix form

(
s8

S ndss81
e

2
Vss8D C s8

n
5lnC s

n , ~21!

where

ln5
1

pn
5

1

A2En

, ~22!

and the perturbation matrix is

Vss85Ann8E Cs
(0)* ~a,u,w!~11cosa!cos2 uCs8

(0)
~a,u,w! d4V. ~23!

Nonvanishing matrix elementsVss8 are ~see the Appendix A!
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Vnn8
l l ;mm

5Qlm$ndnn81
1
2A~n2 l !~n1 l 11!dn11 n81

1
2A~n2 l 21!~n1 l !dn21 n8% ~24!

with

Qlm5
1

2
1

124m2

2~2l 21!~2l 13!
, ~25!

and

Vnn8
l l 22;mm

5A@ l 22m2#@~ l 21!22m2#

~2l 11!~2l 23!
2nn8A~n2 l 21!!

~n1 l !!

~n81 l 22!!

~n82 l 11!!
F nn8

l ~26!

with

F nn8
l

55
21, n8<n22,

n2 l

2n~2l 21!
35

n224nl2 l 21n13l 22

2~n21!
, n85n21,

n2 l 11, n85n,

~n2 l 11!~n2 l 12!

2~n11!
, n85n11,

0, n8>n12.

~27!

All the other matrix elements vanish.
The perturbation method in the form of Eq.~21! is very convenient. First of all, the pertur

bation e p̂z
2 is invariant with respect to rotations around thez-axis and to the transformationp

→2p. Thus, each perturbed state has a definite parity and definite magnetic quantum numm,
and the perturbation problems Eq.~21! can be solved separately for different parity andm. It
implies also that the summation overs8 in Eq. ~21! and thereafter means that only the hydrog
states with a given parity and magnetic quantum number have to be taken into accoun
time-conjugated states6m are still degenerate. Second, the precise form of perturbation m
Vss8 provides more rigorous selection rules. Namely, only the matrix elements with@see Eqs.
~24!–~27!#

l 85H l , n85n,n61,

l 22, n8<n11,

l 12, n8>n21

~28!

are nonvanishing.
The expansion~19! corresponds to the following coordinate representation of the anisotr

exciton wave function,

fn~r !5
pn

3/2

Sn
(

s
C s

nn2fs
(0)~rpnn!, ~29!

wherefnlm
(0) (r ) are the standard hydrogen wave functions. It follows from Eq.~29! that the wave

function of anisotropic exciton takes the form of an infinite superposition of spherical harm
with radially dependent coefficients. The scaling factorspn in the wave functions Eq.~29!, which
are different for different perturbed states and change adiabatically withe, play the role of adia-
batic scaling parameters in the perturbation theory. Moreover, the coefficientspn are analogous to
the parameters in the Rayleigh-Ritz method. In contrast with previous works,10,13 wherepn have
been calculated variationally, in our approach they are strictly determined by Eq.~22!. Finally, in
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spite of the energy scaling factors in the basis functions, the effective Hamiltonian matrix i
~21! is energy independent, thus allowing for the direct diagonalization.

It can be seen from Eq.~21! that in Fock representation the spectrum of the unpertur
problem does not have a series limit. This fact is favorable for the convergence of the pertur
theory. Moreover, the spectrum is equidistant with respect to the hydrogen principal qua
numbern. The matrix Eq.~24! is tridiagonal. The off-diagonal matrix elements Eq.~26! with
n8;n are rather significant but do not exceedn/2, i.e., they are of the order of the magnitude
the corresponding eigenvalues of the unperturbed problem. The other nonzero ele
Vnn8

l l 22;mm}n2 l , decrease rapidly for fixedn8 and l , andn@n8, l .1. Thus, in numerical calcula
tions we can take into account only the states with lowerl , and introduce ag-dependent uppe
bound for the orbital quantum number. Though the method provides a good convergence in
region ofg, it does not allow us to avoid instabilities nearg50 or g→`, where the perturbation
scheme becomes unstable, and a strong mixing of levels occurs.

We would like to emphasize that the presented perturbation method can be easily gene
for an arbitrary integer dimensionD>2 in accordance with Ref. 24, where the method of ster
graphic projection has been expanded to higher dimensions. In particular, forD52 the standard
spherical harmonicsYlm(u,w) have to be used as a basis and the operator (e/2)V̂5(e/2)(1
1cosu)cos2 w used as a perturbation. Here cosu5(p22pn

2)/(p21pn
2) and tanw5py /px .

The problem of anisotropic exciton scattering states can be approached analogously
hyperspherical harmonics on a two-sheeted 4D hyperboloid as a basis for the perturbation
lem. The eigenvalues should be defined with positive energies, instead of Eq.~22!. However, the
eigenvalue problem@analogous to Eq.~21!# becomes more complicated: we have to solve now
system of integral equations, because of dependence on continuum quantum numbers.

One should note that the method of stereographic projection can be formally generaliz
the fractional-dimensional exciton problem, the exciton binding energies coinciding with
obtained in Ref. 18. However, due to the generalized hyperspherical symmetry conservatio~the
anisotropy parameter now appears in a role of the fractional dimensionality!, the energy levels are
Coulomb degenerate, as it was mentioned earlier.

III. RESULTS AND DISCUSSIONS

Due to the symmetry properties of uniaxial anisotropic exciton Hamiltonian, matrices
even and oddl as well as with differentm can be diagonalized independently. In contrast to
variational technique which provides only the upper bound of the binding energies, the Brillo
Wigner perturbation method allows us to reach necessary precision by choosing a suffi
large matrix to be diagonalized. We perform our calculation with a relative energy precisi
1024. In order to provide this precision in the calculation of the ground state energy fo
<g1/3<2, hydrogen states with principal quantum number up to 15 and orbital quantum nu
up to 6 must be taken into account. The numerical procedure becomes unstable forg→0 andg
→`. This nonconvergency is caused by the fact that these points, where the symmetry c
~to 2D and 1D, respectively!, are peculiar for the perturbation theory. The dimension cha
causes the levels’ degeneration, when a very large~divergent! number of levels is mixed due to
perturbation, and has to be taken into account. To calculate the ground state exciton energy
a relative accuracy of 1024, the levels with principle quantum numbern<N should be taken into
account. In Fig. 1 we show the numerically found dependence ofN on the anisotropy paramete
g ~for g<1!, which is approximately logarithmic.

Note that at a rather strong anisotropy, wheng!1, the ground state exciton behaves asE0

'24110.3g1/3, uf0(0)u2}g21/3 and A^z2&}g21/3 ~see in Ref. 2!. Thus, it is useful to plot
physical values in dependence ong1/3 instead ofg.

A. Energy levels

Figures 2 and 3 show the calculated eigenvaluesln of Eq. ~21!, related to the exciton ener
gies,En521/ln

2 , as functions ofg1/3 for g<1 ~left panels!; g21/2ln are shown as functions o
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g21/3 for g>1 ~right panels!. The multiplierg21/2 in the latter case makes the effective Rydbe
finite whenm'→`. The binding energies ofm50 even parity states andm51 odd parity states
are shown, respectively, in Figs. 2 and 3. Starting atg51 from ln5lnml

(0) 5n, all the eigenvalues
with the samem and parity do not intersect wheng changes~multiple anticrossings occur due t
the interaction between states! and approach the ground state eigenvalue of 1D excito29

FIG. 1. The maximum principle quantum numberN of the states used in numerical calculations of the ground state exc
energy within a relative margin of 1024 as a function of the anisotropy parameterg (g<1). Solid line shows the
logarithmic approximation forN.

FIG. 2. Fock eigenvaluesln of m50 even parity states as functions of the anisotropy parameterg1/3, g<1 ~left panel!,
andg21/2ln as functions ofg21/3, g>1 ~right panel!. Solid curves never intersect each other due to a small anticros
between the levels. The eigenvalues of purely 2D exciton~left panel! and 1D exciton~right panel! are shown by semi-
circles. A linear approximation of the ground and first excited state eigenvalues is plotted by dotted and dashe
respectively.
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g21/2ln→g21/2l0
1D→0 ~Figs. 2 and 3, right panels!, wheng→`. In the opposite case ofg→0

all shown eigenvalues approach the ground state eigenvaluel0
2D51/2 of 2D exciton (m50, Fig.

2, left panel! or the first excited state eigenvaluel1
2D53/2 (m51, Fig. 3, left panel!. As it is clear

from Fig. 2, the ground state eigenvalue dependence is almost linear overg1/3 for g<1, and

E0'2
4

~11g1/3!2 . ~30!

The ground state which lies much lower than the excited states almost does not interact w
latter. However, for the first excited state this interaction becomes much more significant, a
energy dependence upong1/3 deviates from the linear one~cf. with dashed line in Fig. 2!.

The ratio of the energy separation between the ground state and the first excited state
exciton binding energy is shown in Fig. 4. Starting from 3/4 for 3D-isotropic exciton (E1S

2E2S)/E1S decreases monotonously with change ofg and vanishes wheng→0 or g→`. Thus,
this quantity can be considered as a measure of the anisotropy of a system. Note that wit

FIG. 3. Fock eigenvaluesln of m51 odd parity states as functions of the anisotropy parameterg1/3, g<1 ~left panel!, and
g21/2ln as functions ofg21/3, g>1 ~right panel!.

FIG. 4. The energy separation between the ground and first excited states in units of the exciton binding energy verg1/3.
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fractional dimensional model (E1S2E2S)/E1S grows up as 12@(D21)/(D11)#2 ~D is the di-
mensionality!. Thus, in the anisotropic model the transition from 3D exciton to 2D or 1D exc
differs completely from that of a system, in which the carriers localization in one or two dim
sions becomes stronger and using of the fractional dimensional model is justified.

Results of our calculation for several low levels reproduce Faulkner’s calculations10 with a
good accuracy~see Table I!. As compared to Faulkner, we calculate a large number of exc
states~up to 100 for each parity andm considered!; we calculate the excitonic parameters in t
region of g<1 as well asg>1, thus covering all possible values of the anisotropy parame
Note the difference between Faulkner’s and our designations of 3S and 3D0 states.30 When the
states are split off due to perturbation, we always label the states with larger oscillator stren
g'1 asS-state, thus establishing an order reversed to that among the states withmÞ0, within our
notations~see also discussions in Sec. III C and Fig. 5!. Thus, atg,1 the 3D0 level lies lower
than 3S, contrary to the classification by Faulkner.10 The same situation holds if we consider th
higher excited states.

B. Spherical approximation

Even in the case of small anisotropyueu!1, the exciton states are linear combinations
hydrogen states with differentl . However, for smalle the admixture of such states becomes rat

TABLE I. Exciton binding energies of several lower states calculated by means of Brillouin–Wigner perturbation m
compared with that taken from Ref. 10.

g1/3 1S 2S 2P0 2P6 3Sa 3D0
a 3P0 3P6

Reference 10 0.8 1.233 0.3151 0.3663 0.2823 0.158 0.1375 0.1653 0.1
This work 1.2327 0.3151 0.3664 0.2823 0.1374 0.1577 0.1652 0.12

Reference 10 0.4 2.01 0.695 0.933 0.3612 0.394 0.265 0.496 0.21
This work 2.011 0.6832 0.9381 0.3615 0.2835 0.4141 0.4959 0.21

aThe levels classification used in the present work differs from that of Ref. 10.

FIG. 5. Classification scheme of the energy levels of the anisotropic exciton with general quantum numbern<4 in
accordance with the spherical approximation, Eq.~35!. g50.5.
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small, and the accounting only for the spherically symmetric part of the perturbation proves
very useful for understanding the evolution of levels. It is important that within such a sphe
approximation, the anisotropic exciton problem is exactly soluble.

In this section we consider the approximate solution of the anisotropic exciton problem
form c(r )5R(r )Ylm(u,w), thus taking into account only diagonal inl parts of the perturbation
Eqs. ~24! and ~25!, and neglecting the perturbation matrix elements mixing different sphe
harmonics.

In order to neglectlÞ l 8 matrix elements, let us replace in the Schro¨dinger equation, Eq.~6!,
the operatorp̂z

2 by the operatorQ̂, defined as

Q̂Ylm~u,w!5p2QlmYlm~u,w!, ~31!

Qlm5E cos2 uuYlm~u,w!u2d3V ~32!

@see also Eq.~25!#. Then, after the substitution

p→ p

11eQlm
, pn

2→
pn

2

11eQlm
, ~33!

which, in fact, corresponds to a (l ,m)-dependent mass renormalization, we arrive at a symmet
~unperturbed! Schrödinger equation with the solution

fn~r !5~11eQlm!23/2fnlm
(0) S r

11eQlm
D , ~34!

En52
1

n2~11eQlm!
, ~35!

in units of Eq.~2! and with the use of dilatation ofz.
One can easily see from Eq.~34! that in this spherical approximation the perturbation co

presses~for e,0! or dilates~for e.0! the scale of a given hydrogen wave function by the fac
11eQlm , which is different for different spherical harmonics. Note that the hidden hydrogen
symmetry is broken within this spherical approximation, and the binding energies now depe
l and m. However, the spectrum Eq.~35! still has a hydrogenlike dependence on the princi
quantum numbern.

In Fig. 5 we show schematically the energy levels of anisotropic exciton, calculated vi
~35! for g50.5, n<4 and all possiblel and m. Equation~35! provides a correct qualitative
description of the levels evolution and is in agreement with the result of calculations presen
Sec. III A in the vicinity ofg51 ~see Fig. 6!.

The accounting forlÞ l 8 matrix elements~in case of smalle! yields correct quadratic ine
terms in the energies. The rational form of matrix elements Eqs.~26! and~27! allows us to sum up
the standard perturbation theory series in the second order. The calculated in the secon
exciton binding energies of several lower levels are given in the Appendix@see Eq.~A17!#, and
their dependence ong is also illustrated in Fig. 6~dashed lines!.

C. Oscillator strengths

Within the envelope function approximation, the relative oscillator strengths of dip
allowed transitionsf n are proportional toufn(0)u2 ~see, e.g., in Ref. 31!. Bearing in mind the
expansion of Eq.~29! and the fact that for the unperturbed statesfn(0)Þ0 only for l 5m50, we
obtain
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f n}ufn~0!u25
pn

3

pSn
2 U(

n
Cn,0,0

n AnU2

. ~36!

Figure 7 shows the calculated numerically oscillator strengths of lowerS, D0 andG0-like states as
functions of the anisotropy parameter. It is seen in Fig. 7 that the oscillator strengths of all s
states do not vanish atg51. Originated from the degenerate states of isotropic 3D exciton,
perturbed states become fixed linear combinations of the former even when the perturbatio
to zero. It can be explained as follows. The perturbation of a symmetry lower than the or
Hamiltonian implies the existence of strictly definite combinations of basis functions for de
erate states wheng51, while the symmetry of the unperturbed Hamiltonian allows an arbitr
choice of these combinations. Atg'1 theS-like state is optically more intensive than theD0-like
state. The picture changes drastically with the increase of anisotropy. Nearg1/350.8 the oscillator
strength of the 3D0 state overcomes that of the 3S one. Forg1/3,0.8 the intensity of the 3S state
collapses due to the interaction with the 4D0 state and then revives after interaction with high
levels. Moreover, the anisotropy increase leads to substantial growth of the oscillator stren
higher excited states, such as 4S and 4D0 , making them optically significant. A similar situatio
takes place ifg.1 ~when a transition from 3D to 1D exciton occurs!. Such a redistribution of the

FIG. 6. Lower energy levels as functions ofg1/3, calculated by means of the perturbation method~solid curves!, within the
spherical approximation~dotted lines!, and in the second order perturbation theory approximation~dashed curves!.
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oscillator strengths between different states is due to multiple unticrossings between energy
interacting with each other. This effect can be clearly seen in Fig. 8, where the area of a
placed on the energy curve is proportional to the oscillator strength of a given excited
normalized to the ground state oscillator strength.

Within the spherical approximation, as it follows from Eq.~34!,

f n5S 11
e

3D 23

f n
(0) , ~37!

FIG. 7. The anisotropic exciton oscillator strengths of lowerS-, D0- and G0-like states as functions of the anisotrop
parameterg1/3, calculated numerically and within the spherical approximation~in units of the ground state oscillato
strength atg51!. Within the spherical approximation, the oscillator strengths ofD0- andG0-like states are vanishing.

FIG. 8. Energies and oscillator strength of excited optically active states versusg1/3 (g<1). The area of a circle is equa
to the oscillator strength, normalized to the ground state oscillator strength, which is taken constant for allg. See a single
circle on the bottom~ground state! curve.
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where f n
(0)51/n3 are the oscillator strengths of the isotropic exciton~in units of f 1S

(0)!. The oscil-
lator strengths of 1S, 2S and 3S states calculated according to Eq.~37! are displayed in Fig. 7 by
dashed lines. Note that the oscillator strengths of the 3S state, calculated numerically and withi
the spherical approximation, do not coincide atg51, as the spherical approximation does n
reflect correctly the symmetry violation in the vicinity of this point. However, the sum of
oscillator strengths of 3S and 3D0 levels is equal to 1/33.

IV. CONCLUSIONS

The perturbation theory of anisotropic exciton is developed based of the Fock transform
This transformation depends on the exciton energies as adiabatic parameters and admits
ration of bound and scattering exciton states. For the bound states the eigenfunctions are ex
into a complete set of hyperspherical harmonics on a 4D sphere, creating a representation
full symmetry groupO(4) of hydrogenlike system, and the perturbation matrix elements acq
an explicit algebraic form. This allows us to analytically perform a partial diagonalization o
Hamiltonian matrix. It results in a spherical approximation which proves to be very usefu
levels evolution analysis. The eigenvalues and eigenvectors are found by a numerical dia
ization of the effective Hamiltonian matrix. The energies and oscillator strengths of aniso
exciton states are calculated for all values of the anisotropy parameter 0,g,` ~including both
flattened and elongated excitons!, except the vicinities ofg50 andg5` where the dimension-
ality of the system changes, respectively, toD52 and toD51. It is found that with the increase
of the anisotropy a strong redistribution of oscillator strengths between optically active an
merly inactive states occurs: the oscillations in optical intensities of higher excited state
place, and the switching on of formerly weak optical transitions is predicted.
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APPENDIX: PERTURBATION MATRIX. EXCITON BINDING ENERGIES IN THE SECOND
ORDER APPROXIMATION

Due to a separation of variables, the matrix elementVss8 , Eq. ~23!, takes the form

Vnn8
l l 8;mm85J l l 8

mm8I nn8
l l 8 Ann8, ~A1!

where

J l l 8
mm85dmm8NlmN l 8mE

21

1

Pl
m~x!Pl 8

m
~x!x2 dx, ~A2!

Nlm5F ~2l 11!

2

~ l 2umu!!
~ l 1umu!! G

1/2

, ~A3!

I nn8
l l

5Dnl* D n8 lE
21

1

~12x2! l 1 1/2~11x!Cn2 l 21
l 11 ~x!Cn82 l 21

l 11
~x! dx, ~A4!

Dnl5~22i ! l l !A2n~n2 l 21!!

p~n1 l !!
. ~A5!
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Using the recurrent relations

~2l 11!xPl
m5~ l 2m11!Pl 11

m 1~ l 1m!Pl 21
m , ~A6!

2~n1a!xCa
n ~x!5~a11!Ca11

n ~x!1~2n1a21!Ca21
n ~x!, ~A7!

and normalization property for Legendre (Pl
m) and Gegenbauer (Ca

n ) polynomials, we obtain

J l l 8
mm85dmm8H 1

2 F11
124m2

~2l 21!~2l 13!Gd l l 81
1

2l 21
A@ l 22m2#@~ l 21!22m2#

~2l 11!~2l 23!
d l 22l 8

1
1

2l 13
A@~ l 11!22m2#@~ l 12!22m2#

~2l 11!~2l 15!
d l 12l 8J ~A8!

and

I nn8
l l

5dnn81
1

2
A~n2 l !~n1 l 11!

n~n11!
dn11n81

1

2
A~n1 l !~n2 l 21!

n~n21!
dn21n8 . ~A9!

To derive matrix elementsInn8
l l 62 we use the tabulated integral23

2

p E
21

1

~12x!21~12x2!n2 1/2Cm
n ~x!Cn

n~x! dx5
2

Ap

G~n2 1/2!

G~n!
Cm

n ~1!, m<n, ~A10!

where

Cm
n ~1!5

~m12n21!!

~2n21!!m!
, nÞ0, Cm

0 ~1!5
2

m
, mÞ0. ~A11!

I nn8
l l 22

5Dnl* D n8 l 22E
21

1

~12x2!~11x! l 2 1/2~12x! l 2 3/2Cn2 l 21
l 11 ~x!Cn82 l 11

l 21
~x! dx. ~A12!

Using Eq.~A7! and the recurrent relations

2n~12x2!Ca22
n11~x!5~a12n21!xCa21

n ~x!2aCa
n ~x!, ~A13!

aCa
n21~x!52~n21!@xCa21

n ~x!2Ca22
n ~x!#, ~A14!

we are able to write the integral in Eq.~A12! in the form of Eq.~A10!,

Inn8
l l 22

5Dnl* D n8 l 22

l 21

l E
21

1

~11x! l 2 1/2~12x! l 2 3/2~jnl Cn2 l 21
l 2hnlCn2 l 11

l !

3~Cn82 l 21
l

2Cn82 l 11
l

! dx, ~A15!

where

jnl5
~n1 l !~n1 l 21!

4nn8
, hnl5

~n2 l !~n2 l 11!

4nn8
. ~A16!

After simple transformations we arrive at Eqs.~24!–~27!.
Note that we are able to apply the standard Reley–Schro¨dinger perturbation theory to Eq.~21!

and to calculate analytically the perturbation theory corrections~to nondegenerate levels! of a
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given order, due to the rational form of the perturbation matrix elements Eqs.~24!–~27!. For
example, for several lower levels the accounting for the perturbation theory terms up to the s
order inclusive leads to

E1S52
1

@11 1
6 e1~p2/452 59/216!e2#2

,

E2S52
1

4@11 1
6 e1~2 4p2/451 173/216!e2#2

,

~A17!

E2P0
52

1

4@11 3
10 e1~4p2/352 25 441/21 000!e2#2

,

E2P6
52

1

4@11 1
10 e1~8p2/1052 49 307/63 000!e2#2

.

1C. Kittel and A. Mitchell, Phys. Rev.96, 1488~1954!.
2W. Kohn and J. M. Luttinger, Phys. Rev.98, 915 ~1955!.
3G. Bastard,Wave Mechanics Applied to Semiconductor Heterostructures~Les Editions de Physique, Les Ulis, Franc
1988!, p. 26.

4M. F. Pereira, Jr., I. Galbraith, S. W. Koch, and G. Duggan, Phys. Rev. B42, 7084~1990!.
5Partha Ray and P. K. Basu, Phys. Rev. B47, 15958~1993!.
6J. J. Hopfield and D. G. Thomas, Phys. Rev.122, 35 ~1961!.
7R. G. Wheeler and J. O. Dimmock, Phys. Rev.125, 1805~1962!.
8J. A. Deverin, Nuovo Cimento B63, 1 ~1969!.
9B. Segal, Phys. Rev.163, 769 ~1967!.

10R. A. Faulkner, Phys. Rev.184, 713 ~1969!.
11O. Akimoto and H. Hasegawa, J. Phys. Soc. Jpn.22, 181 ~1967!.
12E. O. Kane, Phys. Rev.180, 852 ~1969!.
13A. Baldereschi and M. G. Diaz, Nuovo Cimento B68, 217 ~1970!.
14R. Zimmermann, Phys. Status Solidi B46, K111 ~1971!.
15J.-B. Xia, Phys. Rev. B39, 5386~1989!.
16J. Deppe, M. Balcanski, R. F. Wallis, and K. P. Jain, Solid State Commun.84, 67 ~1992!.
17As it immediately follows from the form of the anisotropic exciton Hamiltonian@see Eq.~1!#, through a substitution of

variables one can make isotropic either the kinetic or the potential energy.
18X. F. He, Phys. Rev. B42, 11751~1990!; 43, 2063~1991!.
19Ch. Tanguy, P. Lefebvre, H. Mathieu, and R. J. Elliot, Phys. Status Solidi A164, 159 ~1997!.
20M. F. Pereira, Jr., Phys. Rev. B52, 1978~1995!.
21For a short description of our method see E. A. Muljarov, A. L. Yablonskii, S. G. Tikhodeev, A. E. Bulatov, and

Birman, Phys. Rev. B59, 4600~1999!.
22V. A. Fock, Z. Phys.98, 145 ~1935!.
23I. S. Gradshtein and I. M. Ryzhik,Tables of Integrals, Series, and Products~Academic, New York, 1980!.
24M. Bander and C. Itzykson, Rev. Mod. Phys.38, 330 ~1966!; 38, 346 ~1966!.
25It can be shown that* cosauCnlm

(0) u2 d 4V50.
26B. Podolansky and L. Pauling, Phys. Rev.34, 109 ~1929!.
27L. D. Landau and E. M. Lifchitz,Quantum Mechanics. Nonrelativistic Theory~Pergamon, New York, 1976!.
28For instance, in the coordinate representation theS-type basic functions are proportional to exp(2pnr)Ln

1(2pnr) instead of
exp(2r/n)Ln

1(2r/n), thus forming a complete set for spherically symmetric functions@see also Eq.~29!#.
29It is well known that in exactly 1D case the ground state exciton energy is infinite~logarithmically diverges!. See, e.g.,

in Ref. 27.
30The standard quantum numbersn,l and hydrogenlike notations can be used in the case of the anisotropic exciton

approximately.
31G. Dresselhaus, Phys. Rev.106, 76 ~1957!.
                                                                                                                



the low
erg
nn

ies.
iformly
ge of
r

roup.

not

of

als in
ions.
hird-
o-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 9 SEPTEMBER 2000

                    
Dual WDVV equations in NÄ2 supersymmetric
Yang–Mills theory
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This paper studies the dual form of Witten–Dijkgraaf–Verlinde–Verlinde
~WDVV ! equations inN52 supersymmetric Yang–Mills theory by applying a
duality transformation to WDVV equations. The dual WDVV equations called in
this paper are nonlinear differential equations satisfied by dual prepotential and are
found to have the same form with the original WDVV equations. However, in
contrast with the case of weak coupling calculus, the perturbative part of dual
prepotential itself does not satisfy the dual WDVV equations. Nevertheless, it is
possible to show that the nonperturbative part of dual prepotential can be deter-
mined from dual WDVV equations, provided the perturbative part is given. As an
example, the SU~4! case is presented. The nonperturbative dual prepotential de-
rived in this way is consistent to the dual prepotential obtained by D’Hoker and
Phong. © 2000 American Institute of Physics.@S0022-2488~00!03709-9#

I. INTRODUCTION

We have had a rich harvest since the seed of approach using a Riemann surface for
energy effective description ofN52 supersymmetric Yang–Mills theory was sowed by Seib
and Witten.1,2 For example, instanton effect3 for prepotentials obtained by using a Riema
surface4 showed a good agreement to the prediction of instanton calculus,5–7 integrable structure
behind Seiberg–Witten solutions was discussed in terms of Whitham theory,8 and the approach
taken by Seiberg and Witten was extended to the case of higher dimensional gauge theor9 Of
course, there are a lot of other interesting developments, but the best way to understand un
all these aspects ofN52 supersymmetric gauge theories may be encoded in the langua
Witten–Dijkgraaf–Verlinde–Verlinde~WDVV ! equations10–17 because they can widely cove
various aspects of prepotentials.

In general, WDVV equations hold in various dimensional gauge theories15,18 and~in the case
not including massive matter hypermultiplets! they are of the form

~Fi !~Fk!
21~Fj !5~Fj !~Fk!

21~Fi !, ~1.1!

where F is the prepotential, (Fi) jkª]3F/]ai]aj]ak are matrix notations,ai are regarded as
periods of Seiberg–Witten differential and the indices run from 1 to the rank of the gauge g
Equation ~1.1! was extensively investigated at the perturbative level,14–17 but not as much is
known about the nonperturbative effect obtainable from~1.1!.19

On the other hand, the study of strong coupling region in view of WDVV equations are
found in the literature. According to the electromagnetic duality of Seiberg and Witten,1,2 in the
strong coupling region where charged particles become massless, the role of periodsai and their
magnetic dualsaD j

ª]F/aj are exchanged. If this duality is applied to third-order derivatives
prepotential, we will obtain nonlinear equations like~1.1! written in terms of dual periods. The
equations obtained in this way will make it possible to derive the strong coupling prepotenti
the standpoint of WDVV equations. The aim of the paper is to study such nonlinear equat

This paper is organized as follows. In Sec. II we apply the duality transformation to t
order derivatives of prepotential and by using~1.1! we derive nonlinear equations for dual prep
60420022-2488/2000/41(9)/6042/6/$17.00 © 2000 American Institute of Physics
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tential. These equations are found to have the same form with~1.1!, so we call them dual WDVV
equations throughout the paper. In Sec. III we consider the relation among dual prepotentia
the dual WDVV equations. In particular, we first show in SU(r 11) gauge theory that the dua
perturbative prepotential20,21 do not satisfy dual WDVV equations. Of course, in order to det
mine the nonperturbative part, the perturbative part must be required, so we provide it as
data. However, as the general case is slightly intractable, we present the calculation of th
perturbative part of the dual prepotential in SU~4! gauge theory as an example. We can find t
the nonperturbative dual prepotential which is consistent to that found by D’Hoker and Phon21 is
available from dual WDVV equations. Section IV is a brief summary.

II. THE DUAL WDVV EQUATIONS

In this section, we prove the existence of dual form of WDVV equations for all known mo
with WDVV equations~1.1!. Our method here is based on the action of duality transformation
prepotential.

To begin with, let us consider how the third-order derivatives of prepotential transform u
the electromagnetic duality. In general, it is well known that in the case of rankr gauge group the
full electromagnetic duality group is a subgroup of Sp(2r ,Z),22–27 and the generator

SªS 0 I

2I 0D , ~2.1!

whereI and 0 are the unit matrix and zero matrix of sizer 3r , respectively, induces the exchang
of periods and their duals and therefore the inversion of the effective coupling constant. No
in order to see a strong coupling behavior it is enough to take into account~2.1! and it is not
necessary to consider all actions of the duality group.

In fact, the periods transform under~2.1! as

S aDi

aj
D→S ãDi

ã j
DªSS aDi

aj
D . ~2.2!

Then the effective coupling constants transform as

t i jª

]aDi

]aj
5

]2F
]ai]aj

→tDi j
ª

]ãDi

]ã j
52

1

]aD j

]ai

52
1

t i j
, ~2.3!

where tDi j
are the dual effective coupling constants. From this transformation property,

immediate to see that

]tDi j

]ãk
5(

l 51

r
]

]al
S 2

1

t i j
D ]al

]ãk
5(

l 51

r
~Fi ! j l

t i j
2 tDlk

. ~2.4!

Note that in~2.4! the repeated indicesi and j arenot summed.
Now, suppose thatãDi

are given by differentiations of some functionFD ~the dual prepoten-
tial!

ãDi
ª

]FD

]ãi
52

]FD

]aDi

. ~2.5!

Then the relation~2.4! can be rewritten as
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~FDi
! jk5(

l 51

r

~Fi ! j l ~tD! lk , ~2.6!

where

~FDi
! jkª

]3FD

]ãi]ã j]ãk
52

]3FD

]aDi
]aD j

]aDk

~2.7!

and (tD) lkªtDlk
are matrix notations and the overall factor is ignored because it is not nece

in the following discussions. Note that the right-hand side of~2.6! is simply a matrix multiplica-
tion.

With the aid of~2.6!, it is easy to see that

~FDi
!pl~FDk

! lm
21~FD j

!mn5~Fi !pl~Fk! lm
21~Fj !mq~tD!qn , ~2.8!

where (FDk
) lm

21 mean the (l ,m) components of (FDk
)21 and we have ignored the determinants

(Fk) and (tD) arising from (FDk
)21 because they can be summarized into an overall factor. T

from ~2.8! and ~1.1!, we can obtain the dual form of WDVV equations

~FDi
!~FDk

!21~FD j
!5~FD j

!~FDk
!21~FDi

!. ~2.9!

Since~2.9! is written by dual variables, we often refer to~2.9! as dual WDVV equations through
out the paper.

From our construction, it would be obvious that there also exist dual WDVV equatio
WDVV equations~1.1! hold.

III. DUAL PREPOTENTIAL AVAILABLE FROM DUAL WDVV EQUATIONS

The dual WDVV equations~2.9! take the same form with~1.1!, but the study of dual prepo
tential in the strong coupling region from a standpoint of~2.9! is slightly different from that in the
weak coupling calculus.

To see this, first, let us recall the prepotentials in the weak coupling region. In this cas
WDVV equations were satisfied even at perturbative level.14,15,17,18Namely, the perturbative pre
potentials can be obtained by solving WDVV equations at perturbative level as was exp
shown by Bradenet al.18 in the case of SU~4! gauge theory.

A. Perturbative dual prepotential of SU „r¿1… gauge theory

In the case of strongly coupled theory, on the other hand, the dual perturbative prepot
themselves do not satisfy~2.9!, thus in this case the dual WDVV equations do not hold at
perturbative level.

To check this, let us recall the dual prepotential of SU(r 11) gauge theory obtained from th
study of period integrals.20,21 According to the result, the perturbative part of dual prepoten
FD,per can be represented by a single functionf

FD,per5(
i 51

r

f ~aDi
!. ~3.1!

As the argument off is single, the matrices (FDi
) in ~2.9! become singular, e.g., the only nonze

entry of (FD1
) is (FD1

)115]3FD,per/]aD1

3 . This indicates that we cannot determineFD,per from

~2.9! even if we follow the method of Bradenet al.18
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B. Nonperturbative dual prepotential of SU „4… gauge theory

Then, what happens when the nonperturbative part is introduced? In this case, we a
nonperturbative partFD,non to FD,per and consider

FD5FD,per1FD,non, ~3.2!

where

FD,non5 (
k51

`

FD,kL
k ~3.3!

andL21[LSU(r 11) is the dynamically generated mass scale of SU(r 11) gauge theory. In~3.3!,
the coefficientsFD,k are functions in dual variablesaDi

.
As it is not easy to study the general case ofr , we restrict ther 53 case in the following

discussion. In this case, substituting~3.2! into ~2.9!, we can obtain nothing from the coefficient o
L0, but we can find from the coefficient ofL1

f-~aD1
! f-~aD2

! f-~aD3
!]1]2]3FD,150 ~3.4!

and from that ofL2

f-~aD1
! f-~aD2

!~]2]3
2FD,1•]1]3

2FD,12]3
3FD,1•]1]2]3FD,1!2 f-~aD1

! f-~aD3
!~]2

3FD,1

•]1]2]3FD,12]2
2]3FD,1•]1]2

2FD,1!1 f-~aD2
! f-~aD3

!~]1
2]3FD,1•]1

2]2FD,12]1
3FD,1

•]1]2]3FD,1!2 f-~aD1
! f-~aD2

! f-~aD3
!]1]2]3FD,250, ~3.5!

where f-(aDi
)5d3f (aDi

)/daDi

3 and ] i[]/]aDi
. It is interesting to notice that in the weak cou

pling calculus of SU~4! gauge theory one-instanton prepotential satisfies a complicated equa19

while in the present case the equation forFD,1 is very simple.
To calculateFD,k explicitly, the perturbative prepotential must be fixed, although it is

available directly from~2.9! in contrast with the weak coupling study. For this reason, we m
provide it as the input data. Actually, the perturbative part is known to be calculated as20,21

f ~aDi
!5aDi

2 ln
aDi

LSU(4)
, ~3.6!

where we have ignored the overall numerical factor and the normalization ofLSU(4) in ~3.6!. In
this case, the third-order derivatives of~3.6! do not vanish, so the general solution to~3.4! is easily
calculated to give

FD,15 f 1~aD2
,aD3

!1 f 2~aD1
,aD3

!1 f 3~aD1
,aD2

!, ~3.7!

where f i are arbitrary functions.
For FD,2 , on the other hand, from~3.5! and ~3.7!, we get

FD,25
1

2 E ~aD1
]1

2]3f 2•]1
2]2f 31aD2

]1]2
2f 3•]2

2]3f 11aD3
]2]3

2f 1•]1]3
2f 2!daD1

daD2
daD3

1g1~aD2
,aD3

!1g2~aD1
,aD3

!1g3~aD1
,aD2

!, ~3.8!

where we have again used arbitrary functionsgi .
Here, let us notice that the scaling relation forFD,k is given by
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(
i 51

3

aDi

]FD,k

]aDi

5~21k!FD,k ~3.9!

which follows from dimensional analysis. The scaling relation28–33for dual prepotential21,34,35was
a basic tool of the study of strong coupling expansion presented by D’Hoker and Phong21 ~as for
a close study of the scaling relation including massive hypermultiplets in the weak cou
region, see Ref. 36, for example, which appeared after the submission of this paper!.

Of course, although there are various functions satisfying~3.9!, we can easily see that a
monomials of degree 3 for~3.7! are also solutions to~3.9! by following the method presented i
the weak coupling study of WDVV equations,19 thus we get

FD,15(
i 51

3

siaDi

3 1c1aD1

2 aD2
1c2aD1

2 aD3
1c3aD2

2 aD3
1c4aD1

aD2

2 1c5aD1
aD3

2 1c6aD2
aD3

2 ,

~3.10!

wheresi andci are integration constants. The function form of~3.10! is consistent to the result o
SU~4! gauge theory obtained by D’Hoker and Phong,21 but note that the integration constan
should be determined by other approaches.A priori, we do not know explicit values for them in
view of ~2.9!.

In a similar manner, we can determineFD,2 from ~3.8! as

FD,25(
i 51

3

t iaDi

4 1c1c2aD1

2 aD2
aD3

1c3c4aD1
aD2

2 aD3
1c5c6aD1

aD2
aD3

2

1$aD1
aD2

3 , aD1

2 aD2

2 , aD1

3 aD2
, aD1

aD3

3 , aD1

2 aD3

2 , aD1

3 aD3
, aD2

aD3

3 , aD2

2 aD3

2 , aD2

3 aD3
%,

~3.11!

wheret i are integration constants, the curly braces mean any linear combination of the ele
and we have assumed that thegi consist of polynomials.

Remark: In general, it is known from explicit examples4,34,37 that FD,k are represented by
polynomials in dual periods.

IV. SUMMARY

In this paper, we have considered the consequence of electromagnetic duality transfor
for the WDVV equations~1.1! and derived the dual WDVV equations~2.9! satisfied by dual
prepotentials. The dual WDVV equations are turned out to have the same form with the or
WDVV equations, but the perturbative part of the dual prepotential do not satisfy dual W
equations. However, we have derived the nonperturbative dual prepotential in pure SU~4! gauge
theory as an example by appropriately introducing the perturbative part and following the m
to get solutions developed in the weak coupling calculus.19 In fact, we have found that there is th
nonperturbative prepotential in the strong coupling region which is consistent to the res
D’Hoker and Phong.21 From this result, it is important to notice that we can study both weak
strong coupling prepotentials in the standpoint of WDVV equations.

As for another direction to study the strong coupling region, it may be interesting to t
develop the topological string theoretic interpretation38 in the strong coupling region and to sear
for a connection to~2.9!. More detailed study should be expected in the future.
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The standard model is reconstructed in a generalized differential geometry~GDG!
on the product spaceM43X2 by reformulating the work of Coquereauxet al. that
dealt with the same theme based on the noncommutative geometry~NCG!. A GDG
on M43X2 is constructed by adding the basisxn(n51,2) of a differential form on
the discrete spaceX2 to the ordinary basisdxm on Minkowski spaceM4 , and so it
is a direct generalization of the differential geometry on the continuous manifold. A
GDG is a version of NCG. The Yang–Mills–Higgs Lagrangian and the Dirac
Lagrangian are reconstructed by using the fermion representation similar to that in
a SO~10! grand unified model. ©2000 American Institute of Physics.
@S0022-2488~00!02609-8#

I. INTRODUCTION

The reconstruction of the spontaneously broken gauge theory in noncommutative geo
~NCG! on the discrete spaceM43Z2 has revealed the essence of the Higgs mechanism to m
obvious that the Higgs boson field is a kind of gauge field as a connection on the discrete
This approach was initiated by Connes1 in 1990, and then, many authors have studied NCG on
discrete space and proposed2–24 many variants of formulations.

We also proposed thex formalism16 in which we introduce the one-form basisx on the
discrete spaceX2 in addition to the ordinary one-form basedxm on the Minkowski spaceM4 to
describe the generalized gauge field containing the gauge and Higgs boson fields. This form
of NCG is very similar to the differential geometry on the continuous manifold. Based on
formulation and adopting the representation of fermion field similar to that in SO~10! grand
unified theory~GUT!, the standard model was nicely reconstructed.22 In this formulation, the
generalized gauge fieldA(x,y) that consists of the gauge and Higgs fields is expressed by u
unknown fundamental functionsai(x,y) andbi(x,y) as

A~x,y!5
1

2 (
i

$ai
†~x,y!dbi~x,y!1bi

†~x,y!dai~x,y!%, ~1.1!

wherex andy(51,2) are arguments onM43X2 , respectively, andd is the generalized exterio
derivative. This formulation is easily generalized to more general discrete spaceM43XN

23 by
introducing the basis of differential formxk (k51,2,...,N), and it enables us to reconstruct th
left–right symmetric gauge model21 and SU~5! GUT.17 We name the discrete space to beXN in
this formulation because it is by no means a permutation group aboutxk (k51,2,...,N). However,
unknown fundamental functionsai(x,y) andbi(x,y) never appear in the final stage to express
Yang–Mills–Higgs Lagrangian~YMH !. YMH is denoted only by ordinary gauge and Higg

a!Present address: Department of Natural Science, Chubu University, Kasugai, 487-8501, Japan. Electronic ma
@isc.chubu.ac.jp
60480022-2488/2000/41(9)/6048/12/$17.00 © 2000 American Institute of Physics
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fields. Thus, the physical meaning of fundamental functions are rather obscure. Then, we
this paper to formulate the standard model inx formalism onM43X2 without using unknown
fundamental functionsai(x,y) andbi(x,y). Thus, the expression of the generalized gauge fielA
is similar to that in the papers of Coquereauxet al.6 The approach in this paper is in fact th
reformulation of Ref. 6. But, we introduce the basisxn (n51,2) of a differential form on the
discrete space so that the operation of exterior derivativedx is easily expressed with the commu
tation relation between fields and the symmetry breaking functionM without the notion of graded
algebra.

This article is divided into four sections. In the next section, the basic formulation is pres
in which a geometrical picture for the unification of the gauge and Higgs fields is realized
third section is an application to the reconstruction of the standard model by using the fe
representation similar to that in a SO~10! grand unified model. The last section is devoted
concluding remarks.

II. BASIC FORMULATION

The generalized gauge field which realizes the unification of the ordinary gauge field an
Higgs boson field is expressed in differential one-form on the discrete spaceM43X2 as follows:

A~x!5A~x!1F~x!, ~2.1!

where

A~x!5S Am~x,1!dxm 0

0 Am~x,2!dxmD , ~2.2a!

F~x!5S 0 F12~x!x2

F21~x!x1 0 D , ~2.2b!

whereAm(x,n)(n51,2) is the ordinary gauge field identified with the argumentn on the discrete
spaceX2 and is anti-Hermitian,Am(x,n)†52Am(x,n), and F12(x)@5F21

† (x)# is the shifted
Higgs boson field as shown later.dxm is an ordinary one-form basis in Minkowski spaceM4 , and
xn (n51,2) is the one-form basis on the discrete spaceX2 . These one-form basesdxm and xn

(n51,2) are taken to be dimensionless.A(x) is rewritten in a matrix form to be

A~x!5A~x!1F~x!5S Am~x,1!dxm F12~x!x2

F21~x!x1 Am~x,2!dxmD . ~2.3!

In order to construct the generalized field strength and discuss the gauge transformation o
fields the generalized exterior derivatived must be prescribed. The derivatived consists of two
exterior derivativesd anddx as

d5d1dx , ~2.4!

whered5]m dxm is the ordinary exterior derivative onM4 anddx is the extra exterior derivative
on X2 . These two derivatives operate onA as

dA~x!5S ]mAn~x,1!dxm`dxn ]mF12~x!dxm`x1

]mF21~x!dxm`x2 ]mAn~x,2!dxm`dxnD , ~2.5a!

dxA~x!52~21!aAA~x!M1MA~x!, ~2.5b!

whereaA is in general the degree of differential form ofA and soaA51 in this case, andM is
the x-independent differential one-form to be expressed as
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M5S 0 M12x2

M21x1 0 D . ~2.6!

Here, the matrixM12(5M21
† ) turns out to determine the scale and pattern of the spontan

breakdown of the gauge symmetry in the flavor sector. We define the operation ofd to any
differential formB(x) with degreeaB in the same way as in Eq.~2.5!. Especially, we rewrite the
operation ofdx to B as

dxB~x!52~21!aBB~x!`M1M`B~x!. ~2.7!

In order to obtain the gauge covariant formulation, the nilpotency ofd is very important. It is
obvious thatd is nilpotent but in order fordx to be nilpotent, we must prescribe the operation
dx to the special matrixM to be

dxM5M`M , ~2.8!

though the degree ofM equals 1 and Eq.~2.8! is contrary to Eq.~2.7!. This is permitted becaus
M is a special one-form to be distinguishable with other differential forms. As in the ordi
differential geometry, the Leibniz rule,

dx~B`C!5~dxB!`C1~21!aBB`~dxC!, ~2.9!

keeps correct. Here, letB andC be arbitrary differential forms composed of a series of anA-like
matrix and a 0 form matrix. With these algebraic prescriptions, let us address the nilpotencydx

by calculating

dx
2B5dx$2~21!aBB`M1M`B%

52~21!aB$~dxB!`M1~21!aBB`~dxM !%1$~dxM !`B1~21!1M`~dxB!%

50, ~2.10!

where we use an algebraic rule such as

dx~B`M !5~dxB!`M1~21!aBB`~dxM !. ~2.11!

In addition, it is natural to set up the following algebraic rules:

dxm`dxn52dxn`dxm ,

dxm`xk52xk`dxm , ~2.12!

xk`x l52x l`xk ,

with k, l 51,2, which along with Eq.~2.10! enable us to obtain the equations

d2B50 ~ddx1dxd!B50. ~2.13!

As a result, the proof of the nilpotency ofd follows as

d2B5~d21ddx1dxd1dx
2!B50. ~2.14!

Then, we address the gauge transformation of the generalized gauge field, Eq.~2.1!. It is
defined as

A g5g21Ag1g21 dg, ~2.15!
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whereg is the gauge transformation function in matrix form to be denoted in

g5S g1 0

0 g2
D , ~2.16!

with gk (k51,2) being an element of the groupGk on thekth sheet in the discrete spaceX2 . The
groupGk (k51,2) is assumed to be a unitary group in this article.g21 dg is explicitly written as

g21 dg5g21~d1dx!g5g21]mg dxm1g21~2gM1Mg!

5S g1
21 ]mg1 dxm ~2M121g1

21M12g2!x2

~2M211g2
21M21g1!x1 g2

21]mg2 dxm D , ~2.17!

because the degree of the functiong equals 0 and the above calculation follows according to E
~2.7! and~2.16!. From these considerations, we find the gauge transformations of gauge and
boson fields.

Am
g ~k!5gk

21Am~k!gk1gk
21 ]mgk , ~2.18a!

F12
g 5g1

21F12g21g1
21~2g1M121M12g2!, ~2.18b!

where we should note thatF12
† 5F21 andM12

† 5M21. It is natural that the functionM12(5M21
† ) is

invariant against the gauge transformation because it prescribes the exterior derivativedx . Thus,
from Eq. ~2.18b!, the field

H125F121M12, H215F211M21 ~2.19!

transforms covariantly against the gauge transformation as

H12
g 5g1

21H12g2 , H21
g 5g2

21H21g1 . ~2.20!

These equations make obvious thatH12(5H21
† ) is an un-shifted Higgs field whereasF12 denotes

a shifted one with the vanishing vacuum expectation value. This observation is confirme
from Eq. ~2.18b! because the gauge transformation ofF12 includes the inhomogeneous ter
similar to that of the ordinary gauge fieldAm(k) (k51,2) in Eq.~2.18a!.

Here, we should note that in general the Leibniz rule,

dx~B`dxC!5dxB`dxC1B`dx
2A5dxB`dxC ~2.21!

is necessarily correct for any differential formsB andC according to the algebraic rule, Eq.~2.11!.
This enables us to define the generalized field strengthF as

F5dA1A`A, ~2.22!

of which matrix elements are easily calculated by use of the equations elaborated so far,

F5S 1
2Fmn~1!dxm`dxn1V12x2`x1 DmH12dxm`x2

DmH21dxm`x1
1
2Fmn~2!dxm`dxn1V21x1`x2

D , ~2.23!

where

Fmn~1!5]mAn~1!2]nAm~1!1@Am~1!,An~1!#, ~2.24a!

Fmn~2!5]mAn~2!2]nAm~2!1@Am~2!,An~2!#, ~2.24b!
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DmH125]mH121Am~1!H122H12Am~2!, ~2.24c!

V125H12H212M12M21, ~2.24d!

V215H21H122M21M12, ~2.24e!

andDmH215(DmH12)
†. It should be noted that the generalized field strength transforms co

antly under gauge transformation,

F g5g21Fg. ~2.25!

This gauge covariance is essential to construct the gauge invariant Lagrangian. However,
modify the gauge fields sector ofF so as not to violate its gauge covariance. We call itF8 in
which the parameters related to coupling constants are changed. This modification is ex
expressed in the following section. It should be noted thatF8 transforms covariantly against gaug
transformation,

F8g5g21F8g. ~2.26!

In order to obtain the Yang–Mills–Higgs LagrangianLYMH , the metric structure is defined t
be

^dxm,dxn&5gmn, gmn5diag~1,21,21,21!, ~2.27a!

^xk ,dxm&50, ~2.27b!

^xk ,x l&52dkl , ~2.27c!

from which LYMH is written as

LYMH~x!52TrS 1

g1
2 0

0
1

g2
2
D ^F8,F&

52Tr(
n51

2
1

2gn
2 Fmn8† ~x,n!Fmn~x,n!

1Tr (
n,k51

2
1

gn
2 „DmHnk8 ~x!…†DmHnk~x!

2Tr (
n,k51

2
1

gn
2 Vnk8†~x!Vnk~x!, ~2.28!

wheregn is a constant relating to the coupling constant of the flavor gauge field and Tr denot
trace over internal symmetry matrices including the color, flavor symmetries and generation
The first term in the right hand side is the kinetic term of the gauge field, the second is the
kinetic term and the third is the potential term of the Higgs particle.

Let us turn to the fermion sector to construct the Dirac Lagrangian. We start to defin
covariant derivativeD acting on the spinor fieldC(x) denoted as
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C~x!5S c~x,1!

c~x,2! D , ~2.29!

wherec(x,1) andc(x,2) are the left-handed and right-handed representation of a semi-s
group of the corresponding flavor gauge and color group, respectively, and are explicitly as
later. Let again abbreviate the argumentx in M4 . DC is defined as

DC5~d1A f !C5~d1Af1F f !C, ~2.30!

whereAf is the differential representation ofC chosen to makeDC gauge covariant and

F f5S 0 F12
f x2

F21
f x1 0

D 5S 0 F12gYx2

gY
†F21x1 0 D , ~2.31!

with the Yukawa coupling constantgY . Since the role ofdx makes the shiftF→F1M as shown
previously, we define also for the fermion field,

dxC5KC, ~2.32!

with

K5S 0 M12gYx2

gY
† M21x1 0 D . ~2.33!

These considerations leads Eq.~2.30! to

DC5~]m1Am
f !C dxm1H̃ fC, ~2.34!

where

H̃ f5S x2 0

0 x1
DH f5S 0 ~F121M12!gYx2

gY
† ~F211M2!x1 0 D , ~2.35!

with

H f5S 0 ~F121M12!gY

gY
† ~F211M21! 0 D . ~2.36!

As C is subject to the gauge transformation

Cg5g21C, ~2.37!

DC becomes gauge covariant thanks to Eqs.~2.15! and ~2.30!.

DCg5g21 DC. ~2.38!

In addition,d1A f is Lorentz invariant, and soDC transforms as a spinor just likeC against
Lorentz transformation. From Eqs.~2.34! and~2.35!, the covariant spinor one-formDC is rewrit-
ten as

DC5S Dc~1!

Dc~2! D , ~2.39!

where
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Dc~1!5„]m1Am
f ~1!…c~1!dxm1~F121M12!gYc~2!x2 , ~2.40a!

Dc~2!5„]m1Am
f ~2!…c~2!dxm1gY

† ~F211M2!c~1!x1 . ~2.40b!

In order to obtain the Dirac Lagrangian for the fermion sector, the associated spinor one-f
introduced as the counter-part of Eq.~2.30! by

C̃5S gm 0

0 gm
DC dxm1 i S x2 0

0 x1
DC. ~2.41!

With the inner products for spinor one-forms that

^A dxm,B dxn&5ĀBgmn,
~2.42!

^Axn ,Bxk&52ĀBdnk ,

with vanishing other inner products andn, k51,2, we can obtain the Dirac Lagrangian,

LD5 i ^C̃,DC&

5 i $C̄gm~]m1Am
f !C%2C̄H fC. ~2.43!

Equation~2.43! is apparently invariant under the Lorentz and gauge transformations.

III. RECONSTRUCTION OF STANDARD MODEL

We first specify the fermion fieldC in Eq. ~2.29! with the existing leptons and quarks an
then determine the generalized gauge fieldA in Eqs.~2.2a! and ~2.2b!,

c~1!5S uL
r

uL
g

uL
b

nL

dL
r

dL
g

dL
b

eL

D , c~2!5S uR
r

uR
g

uR
b

nR

dR
r

dR
g

dR
b

eR

D , ~3.1!

where the subscriptsL andR denote the left-handed and right-handed fermions, respectively,
the superscriptsr , g andb represent the color indices. We must consider three generation i
standard model, therefore, in the precise notation, for example,u should be written as (u,c,t) t

where the superscriptt stands for the transpose of the matrix. In this notation,c(n) (n51,2) is a
vector in the 24-dimensional Hilbert space.

Corresponding to the specification of fermion fields in Eq.~3.1!, we specifyAm(n), Fnk in
Eq. ~2.3! as follows:

Am~1!52
i

2 H a2(
k51

3

tk
^ 14ALm

k 1a1aBmJ ^ 132
i

2
a3(

a51

8

t0
^ l8aGm

a
^ 13, ~3.2!

whereALm

k (k51,2,3) andBm are SU~2!L and U~1! flavor gauge fields, respectively, andGm
a (a

51,2...8) is a SU~3!c color gauge field.tk is the Pauli matrix,t2 is 232 unit matrix andl8a is
                                                                                                                



d

.

right-

6055J. Math. Phys., Vol. 41, No. 9, September 2000 Reformulation of the standard model . . .

                    
434 matrix made of the Gell–Mann matrixla by adding 0 components to the fourth line an
column,

l8a5S 0

la 0

0

0 0 0 0

D . ~3.3!

Matrix 13 represents the unit matrix in the generation space anda is the U~1! hypercharge matrix
corresponding toc(1) in Eq. ~3.1! and it is expressed as

a5diagS 1

3
,
1

3
,
1

3
,21,

1

3
,
1

3
,
1

3
,21D . ~3.4!

It should be noted that three terms on the right-hand side of Eq.~3.2! commute with each other
Am(2) is assigned as

Am~2!52
i

2
a1bBm ^ 132

i

2
a3(

a51

8

t0
^ l8aGm

a
^ 13, ~3.5!

whereb is the U~1! hypercharge matrix corresponding toc(2) in Eq. ~3.1! expressed in

b5diagS 4

3
,
4

3
,
4

3
,0,2

2

3
,2

2

3
,2

2

3
,22D . ~3.6!

Thus,a andb are 838 diagonal matrices. Three parametersa1 , a2 anda3 in Eqs.~3.2! and~3.5!
are related to the gauge coupling constants. It should be also noted that two terms on the
hand side of Eq.~3.5! commute with each other.

The Higgs fieldFnk (n,k51,2,nÞk) is also represented in the 24324 matrix by

F125S f0* f1

2f2 f0
D ^ 14

^ 13, F215S f0 2f1

f2 f0*
D ^ 14

^ 13. ~3.7!

Corresponding to Eq.~3.7!, the symmetry breaking functionM12(5M21
† ) is given by

M125S m 0

0 m D ^ 14
^ 13. ~3.8!

With these specifications, all quantities needed to give the explicit expression toF in Eq. ~2.24!
can be explicitly written down as follows.

From Eqs.~2.24!, we find field strengths of gauge fields in

Fmn~1!52
i

2
a2(

k51

3

tkFLmn

k 2
i

2
a1aBmn2

i

2
a3(

a51

8

l8aGmn
a , ~3.9a!

Fmn~2!52
i

2
a1bBmn2

i

2
a3(

a51

8

l8aGmn
a , ~3.9b!

where

FLmn

k 5]mALn

k 2]nALm

k 1a2 (
l ,m51

3

f L
klmALm

l ALn

m , ~3.10a!
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Bmn5]mBn2]nBm , ~3.10b!

Gmn
a 5]mGn

a2]nGm
a 1a3 (

b,c51

8

f c
abcGm

b Gn
c , ~3.10c!

with structure constantsf L
klm and f c

abc of groups SU~2!L and SU~3!c , respectively. The kinetic
term of the Higgs fieldDmHnk is

DH125~DH21!
†5H ]mh122

i

2 S a2(
k51

3

tkALm

k h121a1h12cBmD J ^ 14
^ 13, ~3.11!

whereh12 andc are given as

h125S f0* 1m f1

2f2 f01m
D 5~ h̃,h!, ~3.12!

with h5(f1,f01m) t and h̃5 i t2h* , and

c5S 21 0

0 1D . ~3.13!

The matrixc stems from

a2b5S 21 0

0 1D ^ 145c^ 14. ~3.14!

Equation~3.13! ensures that the Higgs doubleth has plus one hypercharge andh̃ minus one.Vnk

in Eqs.~2.24! is expressed in

V125~h12h212m212! ^ 14
^ 13, ~3.15a!

V215~h21h122m212! ^ 14
^ 13. ~3.15b!

In order to obtain YMH, we must construct the modified field strengthF8 in Eq. ~2.28!. The
reform ofF can afford any extent as long as the gauge covariance is retained. Here, the ref
limited to remove the parametersan (n51,2,3) from the field strengths of gauge fields,

Fmn8 ~1!52
i

2 (
k51

3

tkFLmn

k 2
i

2
aBmn2

i

2 (
a51

8

l8aGmn
a , ~3.16a!

Fmn8 ~2!52
i

2
bBmn2

i

2 (
a51

8

l8aGmn
a . ~3.16b!

With these considerations and after rescaling gauge and Higgs fields, we find YMH of the sta
model as

LYMH52
1

4 (
k51

3

~FLmn

k !22
1

4
Bmn

2 1uDmhu22l~h†h2m2!22
1

4 (
a51

8

Gmn
a †Gamn, ~3.17!

where

Fmn
k 5]mAn

k2]nAm
k 1g fL

klmAm
l An

m , ~3.18a!
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Bmn5]mBn2]nBm , ~3.18b!

Dmh5F ]m2
i

2 S (
k

tkgALm

k 1t0g8BmD Gh, h5S f1

f01m D , ~3.18c!

Gmn
a 5]mGn

a2]nGm
a 1gcf c

abcGm
b Gn

c , ~3.18d!

with

g25
g1

2

12
a2

2 , ~3.19a!

g825
2g1

2g2
2

3g1
2 Tr a213g2

2 Tr b2 a1
25

g1
2g2

2

16g1
214g2

2 a1
2 , ~3.19b!

gc
25

g1
2g2

2

6~g1
21g2

2!
a3

2 , ~3.19c!

l5
g1

2g2
2

24~g1
21g2

2!
. ~3.19d!

Let us turn to the construction of the Dirac Lagrangian for the fermion sector. With the sp
cations of gauge and Higgs fields and after the rescaling of the boson fields, we write the co
spinor one-form in Eq.~2.39! and the associated spinor one-form in Eq.~2.38! as

Dc~1!5F ]m ^ 182
i

2 H g(
k51

3

tk
^ 14ALm

i 1t0
^ ag8BmD 1 (

a51

8

t0
^ l8agcGm

a J ^ 13c~1!dxm

1h^ 14
^ 13gYc~2!x2 ~3.20a!

c̃~1!5gmc~1!dxm1 ic~1!x2 , ~3.20b!

and

Dc~2!5F18]m2
i

2 H bg8Bmc~2!1 (
a51

8

t0
^ l8agcGm

a J G ^ 13c~2!dxm1gY
†h†

^ 14
^ 13c~1!x1 ,

~3.21a!

c̃~2!5gmc~2!dxm1 ic~2!x1 . ~3.21b!

According to Eq.~2.43! we find the Dirac Lagrangian for the standard model as follows:

LD5 i ^C̃,DC&

5 i c̄~1!gmF18]m2
i

2 H g(
k51

3

tkALm

k
^ 141g8aBm1gc(

a51

8

t0
^ l8aGm

a J G ^ 13c~1!

1 i c̄~2!gmF18]m2
i

2 H g8bBm1gc(
a51

8

t0
^ l8aGm

a J G ^ 13c~2!2c̄~1!h12^ 14
^ 13gYc~2!

2c̄~2!gY
†h21^ 14

^ 13c~1!, ~3.22!
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where the Yukawa coupling constantgY is given in a 24324 matrix form as

gY5diag~gu,gu,gu,gn,gd,gd,gd,ge!. ~3.23!

gu, gd, gn andge in Eq. ~3.23! are complex Yukawa coupling constants written in 333 matrix
form in generation space. Equation~3.23! yields the interaction Lagrangian between Higgs a
fermion fields as

LY52q̄Lh^ 13gddR2q̄Lh̃^ 13guuR2 l̄ Lh^ 13geeR2h.c., ~3.24!

where

qL5S uL

dL
D , l L5S nL

eL
D ~3.25!

with color indices abbreviated.

IV. CONCLUDING REMARKS

NCG on the product spaceM43Z2 ~in general,M43ZN) has revealed the essence of t
Higgs mechanism. The formulation in this article also makes it obvious that the Higgs boson
is a kind of gauge field as a connection on the discrete spaceX2 . The standard model is recon
structed in the generalized differential geometry on the product spaceM43X2 without using
fundamental functionsai and bi . This makes the reconstruction of the standard model ra
concrete because the physical meaning of fundamental functions is obscure. It is not neces
introduce the notion of graded algebra as in the articles of Coquereauxet al.6 so that the operation
of the exterior derivativedx is clearly defined with the commutation relation between fields
the symmetry breaking functionM . The Higgs potential is retained even in the case that gen
tion number of fermions is one contrary to many other articles including Connes’s works.1 This is
due to a GDG includingxn (n51,2) basis on the discrete spaceX2 .
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Stochastic mechanics and the Feynman integral
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The Feynman integral is given a stochastic interpretation in the framework of
Nelson’s stochastic mechanics employing a time-symmetric variant of Nelson’s
kinematics recently developed by the author. ©2000 American Institute of Phys-
ics. @S0022-2488~00!00909-9#

I. INTRODUCTION

In 1964, Nelson, exploiting results of Kato and Trotter, established the following impo
result.1

Theorem I.1: Let V be a real function onRn belonging to the Kato class, letc0PL 2(Rn),
and letH52 (\2/2m) D1V(x) be the Hamiltonian operator. Then, with x5x0 ,

c~ t,x!ªS expF2
i

\
tHGc0D ~x!5L 22 lim

l→`
F2p\ i t

lm G2 ~nl/2!

3E ¯E expF2(
j 51

l
i

\ S 2
m

2

uxj2xj 21u2

t/ l
1V~xj !

t

l D Gc0~xl !dxl¯dx1 .

This result gives a precise meaning to the Feynman integral.2 There exists, by now, a large bod
of literature investigating various aspects of the Feynman integral and its generalization, se
3–15 and references therein. Two years later, Nelson, elaborating on previous work of Fe´nyes and
others, laid the foundations of a quantization procedure for classical dynamical systems ba
diffusion processes.16 The purpose of this paper is to show that there is a connection between
1 and 16. More explicitly, we shall exhibit a natural interpretation of Theorem 1 within Nels
stochastic mechanics.16–20

As is well known, a close formal analogy between Feynman and Wiener integrals wa
served very early. In order to emphasize the crucial difficulty in making this analogy complet
recall a few well-known facts. Let us consider the free caseV[0. Then,

c~ t,x!ªS expF2
i

\
tHGc0D ~x!5F2p\ i t

m G2 ~n/2!E expF2
i

\ S 2
m

2\

ux2yu2

t D Gc0~y!dy,

~1.1!

since

K~s,y,t,x!ªF2p\ i ~ t2s!

m G2 ~n/2!

expF im

2\

ux2yu2

t2s G ~1.2!

is the fundamental solution of

]c

]t
5

i\

2m
Dc.

a!Electronic mail: pavon@dei.unipd.it
60600022-2488/2000/41(9)/6060/19/$17.00 © 2000 American Institute of Physics
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Consider the heat equation

]u

]t
5

1

2
Du, ~1.3!

whose fundamental solution is

p~s,y,t,x!ª@2p~ t2s!#2 ~n/2! expF2
ux2yu2

2~ t2s!G , s,t. ~1.4!

The solution of~1.3!, with initial conditionu0 at time t50, is then given by

u~ t,x!5E p~0,y,t,x!u0~y!dy.

On the other hand,p(s,y,t,x) is also the transition density of a standard,n-dimensional Wiener
processW. Hence, we immediately get the probabilistic representation

u~ t,x!5E$u0~W~0!!uW~ t !5x%. ~1.5!

Moreover, the kernel~1.4! may be employed to construct the Wiener measure on path spac
the Riesz–Markov representation theorem.1 Formula~1.5! may then be replaced by

u~ t,x!5E
V

u0~v~0!!dWtx~v!, ~1.6!

whereVªC(@0,t#;Rn). With the help of the Trotter product formula, it is then possible to der
the Feynman–Kac formula for the semigroup exp@2t(21

2 D1V)#.1

In 1956, Gelfand and Yaglom suggested that the same route could be followed in order t
sense to the Feynman integral as a path-integral.21 However, as argued by Cameron,22 kernel~1.2!
cannot be employed to construct a countably additive path-space measure. In particular,
the free caseV[0, and differently from the diffusion case, there is no probabilistic interpreta
of formula ~1.1!, as we don’t have a probabilistic interpretation of kernel~1.2!.

In this paper, we show that a probabilistic interpretation of~1.2! is possible in the framework
of Nelson’s stochastic mechanics. More explicitly, it is possible to connect the kernel~1.2! to the
bi-directional generatorLb of the Nelson process~Proposition VIII.2! very much the same way
that the kernel~1.4! is connected to the usual generator of the Markov process in the diffusion
~Proposition VII.2!. The bi-directional generator of the Nelson process@see~3.13! for the defini-
tion# originates from a certain time-symmetric differential for finite-energy diffusions that
been used in Refs. 23–25 to develop elements of Lagrangian and Hamiltonian dynamics
Nelson’s stochastic mechanics. Moreover, as we showed in Ref. 26, this time-symmetric kin
ics permits toderive the collapse of the wave function after a position measurement throu
stochastic variational principle. The connection between the operators@(]/]t) 1Lb# and
@(]/]t) 1 ( i /\) H#, whereH is the Hamiltonian operator, is given in Theorem VI.4. The lat
generalizes a well-known unitary correspondence between the usual generator and the
tonian operator through the so-calledground state transformation.

II. NELSON–FÖLLMER KINEMATICS OF FINITE-ENERGY DIFFUSIONS

In this section, we review some basic results of the kinematics of diffusion processes.
information and the proofs may be found in Refs. 17–19, 27, and 28. Let (V,E,P) be a probability
space. A stochastic process$j(t);t0<t<t1% mapping@ t0 ,t1# into Ln

2(V,E,P) is called afinite-
energy diffusionwith constant diffusion coefficientI ns2 if the increments admit the representatio
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j~ t !2j~s!5E
s

t

b~t!dt1s@w1~ t !2w1~s!#, t0<s,t<t1 , ~2.1!

where theforward drift b(t) is at each timet a measurable function of the past$j(t);0<t
<t%, and w1(•) is a standard,n-dimensionalWiener processwith the property thatw1(t)
2w1(s) is independent of$j(t);0<t<s%. Moreover,b must satisfy the finite-energy conditio

EH E
t0

t1
b~ t !•b~ t !dtJ ,`. ~2.2!

In Ref. 27, Fo¨llmer has shown that a finite-energy diffusion also admits a reverse-time differe
Namely, there exists a measurable functiong(t) of the future$j(t);t<t<t1%, calledbackward
drift, and another Wiener processw2 such that

j~ t !2j~s!5E
s

t

g~t!dt1s@w2~ t !2w2~s!#, t0<s,t<t1 . ~2.3!

Moreover,g also satisfies

EH E
t0

t1
g~ t !•g~ t !dtJ ,`, ~2.4!

and w2(t)2w2(s) is independent of$j(t);t<t<t1%. Let us agree thatdt always indicates a
strictly positive variable. For any functionf defined on@ t0 ,t1#, let

d1 f ~ t !ª f ~ t1dt!2 f ~ t !

be theforward incrementat time t, and

d2 f ~ t !5 f ~ t !2 f ~ t2dt!

be thebackward incrementat timet. For a finite-energy diffusion, Fo¨llmer has also shown in Ref
27 that the forward and backward drifts may be obtained as Nelson’s conditional deriva
namely,

b~ t !5 lim
dt↘0

EH d1j~ t !

dt Uj~t!,t0<t<tJ ~2.5!

and

g~ t !5 lim
dt↘0

EH d2j~ t !

dt Uj~t!,t<t<t1J , ~2.6!

the limits being taken inLn
2(V,B,P). It was finally shown in Ref. 27 that the one-time probabil

density r(•,t) of j(t) ~which exists for everyt.t0! is absolutely continuous onRn, and the
following relation holds a.s.;t.0

E$b~ t !2g~ t !uj~ t !%5s2
“ logr~j~ t !,t !. ~2.7!

Let j be a finite-energy diffusion satisfying~2.1! and ~2.3!. Let f :Rn3@ t0 ,t1#→R be twice
continuously differentiable with respect to the spatial variable and once with respect to time.
we have the following change of variables formulas:
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f ~j~ t !,t !2 f ~j~s!,s!5E
s

tS ]

]t
1b~t!•¹1

s2

2
D D f ~j~t!,t!dt

1E
s

t

s ¹ f ~j~t!,t!•d1w1~t!, ~2.8!

f ~j~ t !,t !2 f ~j~s!,s!5E
s

tS ]

]t
1g~t!•¹2

s2

2
D D f ~j~t!,t!dt

1E
s

t

s ¹ f ~j~t!,t!•d2w2~t!. ~2.9!

The stochastic integrals appearing in~2.8! and~2.9! are a~forward! Ito integral and a backward Ito
integral, respectively, see Ref. 29 for the details. Let us introduce thecurrent drift v(t)ª(b(t)
1g(t))/2 and theosmotic drift u(t)ª(b(t)2g(t))/2. Notice that, whens tends to zero,v tends
to j̇, andu tends to zero. The semidifference of~2.1! and~2.3! gives the relation between the tw
driving ‘‘noises’’

05E
s

t

u~t!dt1
s

2
@w1~ t !2w1~s!2w2~ t !1w2~s!#. ~2.10!

The finite-energy diffusionj(•) is calledMarkovian if there exist two measurable function
b1(•,•) and b2(•,•) such thatb(t)5b1(j(t),t) a.s. andg(t)5b2(j(t),t) a.s., for all t in
@ t0 ,t1#. The duality relation~2.7! now reduces to Nelson’s relation17,30

b1~j~ t !,t !2b2~j~ t !,t !5s2 ¹ logr~j~ t !,t !. ~2.11!

This immediately gives theosmotic equation

u~x,t !5
s2

2
¹ logr~x,t !, ~2.12!

whereu(x,t)ª(b1(x,t)2b2(x,t))/2. The probability densityr(•,•) of j(t) satisfies~at least
weakly! the Fokker–Planck equation

]r

]t
1¹•~b1r!5

s2

2
Dr.

The latter can also be rewritten, in view of~2.11!, as theequation of continuityof hydrodynamics

]r

]t
1¹•~vr!50, ~2.13!

wherev(x,t)ª(b1(x,t)1b2(x,t))/2.

III. THE QUANTUM DRIFT, THE QUANTUM NOISE AND THE BI-DIRECTIONAL
GENERATOR

We recall now the basic facts from the time-symmetric kinematics employed in Refs. 23
In order to develop stochastic mechanics as a generalization of classical mechanics a
difficulty is that the finite-energy diffusion$x(t);t0<t<t1% representing position of the nonrela
tivistic particle hastwo natural velocities, namely the pair (b(t),g(t)) or, equivalently, the pair
(v(t),u(t)). It seems therefore natural to replace the pair of real velocities by a unique com
valued velocity. Since in the semiclassical limit we want to recover the classical velocity, we
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have the two choicesv6 iu. As observed in Ref. 24,v2 iu leads through a variational principl
to the Schro¨dinger equation andv1 iu to the conjugate of the Schro¨dinger equation, respectively
For a general, finite-energy diffusion$j(t);t0<t<t1%, how can we view the processv2 iu as a
drift? Let us multiply~2.1! by (12 i )/2 and~2.3! by (11 i )/2, respectively, and then add. We g

j~ t !2j~s!5E
s

tF12 i

2
b~t!1

11 i

2
g~t!Gdt1

s

2
@~12 i !~w1~ t !2w1~s!!

1~11 i !~w2~ t !2w2~s!!#. ~3.1!

We call

vq~ t !ª
12 i

2
b~ t !1

11 i

2
g~ t !5v~ t !2 iu~ t !

the quantum drift, and

wq~ t !ª
12 i

2
w1~ t !1

11 i

2
w2~ t ! ~3.2!

the quantum noise. Hence, we can rewrite~3.1! as

j~ t !2j~s!5E
s

t

vq~t!dt1s@wq~ t !2wq~s!#. ~3.3!

Representation~3.3! enjoys the time reversal invariance property.25 It has been employed in Refs
23–25 in order to develop elements of Lagrangian and Hamiltonian dynamics in the fram
Nelson’s stochastic mechanics. In particular, to derive the second form of Hamilton’s prin
the key tool has been a change of variables formula related to representation~3.3!. In order to
recall such a formula, we need first to define stochastic integrals with respect to the quantum
wq . Let us denote by

dbf ~ t !ª
12 i

2
d1 f ~ t !1

11 i

2
d2 f ~ t !

the bilateral incrementof f at time t. From ~3.2! and ~2.10!, we get

d1wq~ t !5
11 i

s
u~ t !dt1d1w11o~dt!, ~3.4!

d2wq~ t !5
211 i

s
u~ t !dt1d1w21o~dt!. ~3.5!

These in turn give immediately the important relation

dbwq~ t !ª
12 i

2
d1w1~ t !1

11 i

2
d2w2~ t !1o~dt!. ~3.6!

Proposition III.1: Let f (x,t) be a measurable,Cn-valued function such that

PH v:E
0

T

f ~j~ t !,t !• f ~j~ t !,t !dt,`J 51.

In view of ~3.6!, we define
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E
s

t

f ~j~t!,t!•dbwq~t!ª
12 i

2 E
s

t

f ~j~t!,t!•d1w1~t!1
11 i

2 E
s

t

f ~j~t!,t!•d2w2~t!.

Thus, integration with respect to the bilateral increments ofwq is defined through a linear com
bination with complex coefficients of a forward and a backward Ito integral. Letf (x,t) be a
complex-valued function with real and imaginary parts of classC2,1. Then, multiplying~2.8! by
(12 i )/2 and ~2.9! by (11 i )/2, respectively, and then adding, we get the change of varia
formula

f ~j~ t !,t !2 f ~j~s!,s!5E
s

tS ]

]t
1vq~t!•¹2

is2

2
D D f ~j~t!,t!dt

1E
s

t

s ¹ f ~j~t!,t!•dbwq~t!. ~3.7!

Rewriting ~2.8! and~2.9! in differential form, and exploiting~3.6!, we get the differential form of
~3.7!

dbf ~j~ t !,t !5S ]

]t
1vq~ t !•¹2

is2

2
D D f ~j~ t !,t !dt1s ¹ f ~j~ t !,t !•dbwq~ t !1o~dt!. ~3.8!

Finally, specializing~3.8! to f (x,t)5x, we get the differential form of~3.3!

dbj~ t !5vq~ t !dt1s dbwq~ t !1o~dt!.

A few remarks are now in order. As it is apparent from~3.4! and ~3.5!, there are profound
differences between the representations~2.1!–~2.3! and representation~3.3! for the increments of
j.

The distribution of the quantum noisewq depends on the stochastic processj.
Let F t

2 and F t
1 denote thes-fields induced by the past$j(t);t0<t<t% and the future

$j(t);t<t<t1% of j, respectively. The quantum noisewq is not a forward$F t
2%-martingale nor

a reverse-time$F t
1%-martingale.

The quantum noisewq is not Markovian even whenj is Markovian.
The increments of the quantum noisewq are, nevertheless, adapted both to the increasing filtra
F 2

ª$F t
2%, and to the decreasing filtrationF 1

ª$F t
1%). Moreover, wq is mean-forward

differentiable17 with respect to the filtrationF 2 and the corresponding mean-forward derivative

~D1
F 2

wq!~ t !5 lim
dt↘0

EH d1wq~ t !

dt UF t
2J 5

11 i

s
u~ t !.

Similarly, wq is mean-backward differentiablewith respect to the filtrationF 1 and the corre-
sponding mean-backward derivative is

~D2
F 1

wq!~ t !5 lim
dt↘0

EH d2wq~ t !

dt UF t
1J 5

211 i

s
u~ t !.

We then have the following remarkable result.
Proposition III.2: The quantum drift of wq with respect to(F 2,F 1) is zero, i.e.,

vq
(F 2,F 1)~wq!~ t !ª

12 i

2
~D1

F 2
wq!~ t !1

11 i

2
~D2

F 1
wq!~ t !50 ;tP@ t0 ,t1#.
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Observing that, for alltP@ t0 ,t1#, we have (D1
F 2

w1)(t)50 and (D2
F 1

w2)(t)50, we see that
that there is in fact a deep analogy between the three driving processes in the representatio~2.1!,
~2.3!, and~3.3!. It follows from this result and~3.6!, that the quantum noise forwq corresponding
to the pair of filtrations (F 2,F 1) is wq itself. From now on, we consider the case whe
$j(t);t0<t<t1% is Markovian. The analogy between the three driving noise can then also be
in the following result:31

E$dbwq~ t !uj~ t !%50, ~3.9!

E$dbwq~ t !dbwq~ t !Tuj~ t !%52 i I n dt. ~3.10!

Proposition III.3: Now let L1 andL2 , defined by

L1ªb1•¹1
s2

2
D, L2ªb2•¹2

s2

2
D,

be the forward and the backward generator ofj, respectively. Then,29 for a scalarf of classC2

with compact support inRn, we have

lim
dt↘0

EH d1 f ~j~ t !!

dt Uj~ t !5xJ 5@L1 f #~x!, ~3.11!

lim
dt↘0

EH d2 f ~j~ t !!

dt Uj~ t !5xJ 5@L2 f #~x!. ~3.12!

Let Cb
2(Rn;C) denote the complex, twice continuously differentiable, functions with comp

support inRn. For f PCb
2(Rn;C), in view of ~3.7!, we define thebi-directional generator Lb of

$j(t)% by

Lbf 5vq•¹ f 2
is2

2
D f 5F12 i

2
L11

11 i

2
L2G f , ~3.13!

where the quantum drift field is

vq~x,t !ª
12 i

2
b1~x,t !1

11 i

2
b2~x,t !.

Motivation for this definition is provided also by the following result.
Proposition III.4:

lim
dt↘0

EH dbf ~j~ t !!

dt Uj~ t !5xJ 5@Lbf #~x!.

Notice that the operatorLb is completely different from the generator of the bi-directional Mark
semigroupL̃ in Ref. 32, Sec. 2.

IV. DISCUSSION

We come now to a crucial point. Consider the forward driving noisew1 in ~2.1!. Strictly
speaking,w1 is originally only defined as an-dimensionalWiener difference process w1(s,t), see
Ref. 17, Chap. 11 and Ref. 29, Sec. 1. It is namely a process such thatw1(t,s)52w1(s,t),
w1(s,u)1w1(u,t)5w1(s,t), andw1(s,t) is Gaussian distributed with mean zero and varian
I nus2tu. Moreover,~the components of! w1(s,t) andw1(u,v) are independent whenever@s,t#
and @u,v# do not overlap. Of course,w1(t)ªw1(t0 ,t) is a standard Wiener process such th
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w1(s,t)5w1(t)2w1(s) andw1(t0)50. The fact thatw1(t0)50 is important. It makes so tha
the pasts-fields generated byw1 and by the increments ofw1 coincide. Similarly, we can define
w2 of ~2.3! so thatw2(t1)50. Hence, the futures-fields generated byw2 and by the increments
of w2 are made to coincide. Now letf :Rn3@ t0 ,t1#→C be of classC2,1. Then, we have

f ~w1~ t !,t !2 f ~w1~s!,s!5E
s

tS ]

]t
1

1

2
D D f ~w1~t!,t!dt1E

s

t

¹ f ~w1~t!,t!•d1w1~t!,

f ~w2~ t !,t !2 f ~w2~s!,s!5E
s

tS ]

]t
2

1

2
D D f ~w2~t!,t!dt1E

s

t

¹ f ~w2~t!,t!•d2w2~t!.

Thus, the forward generator ofw1 is 1
2 D, and the backward generator ofw2 is 2 1

2 D. It would
be nice if we could argue along the same lines that, forf PCb

2(Cn;C), the bi-directional generato
of the quantum noise is the operator

12 i

2 S 1

2
D D1

11 i

2 S 2
1

2
D D52

i

2
D.

But this is not possible because of measurability problems. Let us see why. Instead of defi
~3.2!, we could start by definingwq only as a difference process by

wq~s,t !ª
12 i

2
w1~s,t !1

11 i

2
w2~s,t !.

For a difference processu(s,t), we defined1u(t)ªu(t,t1dt) andd2u(t)ªu(t2dt,t). We can
then derive as before formulas~3.4!–~3.6!. Then, we would need to define the quantum noisewq

at some timet̄ so that the processwq(t)ªwq( t̄ )1wq( t̄ ,t) is simultaneously adapted to the tw
filtrations induced by its past and future increments. But this is clearly impossible. Henc
object such as

E
s

t

¹ f ~wq~t!,t!•dbwq~t!5
12 i

2 E
s

t

¹f ~wq~t!,t!•d1wq~t!1
11 i

2 E
s

t

¹ f ~wq~t!,t!•d2wq~t!

cannot be given a meaning, since at least one of the two Ito integrals in the right-hand side
be defined.

V. STOCHASTIC MECHANICS

Nelson’s stochastic mechanics16–20 may be based, since the important paper by Guerra
Morato,33 on stochastic variational principles of hydrodynamic type. Other versions of the v
tional principle have been proposed in Refs. 19, 20, and 23. The solution of the stochastic
tional principle is anyway a finite-energy Markov diffusion process$x(t);t0<t<t1% with diffu-
sion coefficient\/m to which it is naturally associated a quantum evolution$c(x,t);t0<t<t1%,
namely a solution of the Schro¨dinger equation

]c

]t
5

i\

2m
Dc2

i

\
V~x!c, ~5.1!

such that

E
t0

t1E
Rn

@¹c~x,t !•¹c~x,t !#dx dt,`. ~5.2!
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The probability densityr(•,t) of x(t) satisfiesr(x,t)ªuc(x,t)u2, and the quantum drift field is
given by

vq~x,t !5
\

mi
¹ logc~x,t !. ~5.3!

Conversely, given a solution of the Schro¨dinger equation$c(x,t);t0<t<t1% satisfying the finite
action condition~5.2!, a probability measureP may be constructed on path space under which
coordinate process is a finite-energy Markov diffusion with quantum drift as in~5.3!, cf. Ref. 34
and Ref. 20, Chap. IV.

VI. RELATION BETWEEN THE BI-DIRECTIONAL GENERATOR AND THE HAMILTONIAN
OPERATOR

In order to establish the relation in the section title, we need first the following eleme
result.

Lemma VI.1: Let a and b be two complex numbers, and let V:Rn→R be a measurable
function. Let u:Rn3@ t0 ,t1#→C be a never vanishing solution of the p.d.e.

]u

]t
5aDu1bVu, ~6.1!

on @ t0 ,t1#. Thenuªuf is another solution of~6.1! on @ t0 ,t1# if and only if f satisfies on the
same time interval

]f

]t
52a¹ logu•¹f1aDf. ~6.2!

Proof: We have the following chain of equalities

]~uf!

]t
5

]u

]t
f1u

]f

]t
5aDuf1bVuf1u

]f

]t

5a~Duf12¹u•¹f1uDf!1bVuf1u
]f

]t
22a¹u•¹f2auDf

5aD~uf!1bV~uf!1uS ]f

]t
22a

¹u

u
•¹f2aDf D .

j

Remark VI.2:We shall apply Lemma VI.1 to both the diffusion and the quantum ca
Particularly for the latter application, it would be desirable to have a more general result whu
may vanish. In order to avoid obscuring ideas with technicalities, we shall be content here
discussing the nonsingular case. It appears quite feasible, however, that applying ideas and
of Carlen and others, see Ref. 20, Chap. IV, and references therein, some of these appl
may be suitably extended to the singular case.

Lemma VI.3: Let u and V be as in Lemma VI.1. Let Cb
2,1(Rn3@ t0 ,t1#;C) denote the complex

valued functions of class C2,1 with compact support inRn3@ t0 ,t1#. On this domain, we conside
the operators

Aª
]

]t
2aD2bMV ,

where MV denotes the operator of multiplication by the function V, and
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Bª
]

]t
22a“ logu•“2aD.

Then, for fPCb
2,1(Rn3@ t0 ,t1#;C), we have

B f5Mu21AMuf . ~6.3!

Let L c
2,1 denote the Hilbert space of complex-valued functionsf satisfying

E
t0

t1
i f iL

c
2(Rn)

2
dt,`.

Theorem VI.4: Let a5 i\/2m and b52 i /\ in Lemma VI.1 let$c(x,t);t0<t<t1% be a
never vanishing solution of the Schro¨dinger equation (5.1) satisfying (5.2). Let Lb denote the
bi-directional generator of the associated Nelson process as defined in (3.13), and leH5
2 (\2/2m) D1V(x) denote the quantum Hamiltonian operator. We consider the oper
@(]/]t) 1 ( i /\) H# defined inL c

2,1. Let L c
2,1(ucu2) denote the Hilbert space of functions g su

that (gc)PL c
2,1. Then, @(]/]t) 1Lb# defined inL c

2,1(ucu2) and @(]/]t) 1 ( i /\) H# are unitarily
equivalent. Indeed, it follows from (6.3) that

]

]t
1Lb5Mc

21S ]

]t
1

i

\
HD Mc . ~6.4!

Remark VI.5:Relation ~6.4! supports the choice of the kinematics of Sec. III to stu
quantum-mechanical problems. It may be viewed as a generalization of a well-known
relating the usual generator to the Hamiltonian operator through theground state transformation,
see e.g. Refs. 8, 35, and 36. Indeed, forc(x,t)5c0(x) the ground state of the Hamiltonia
(Hc050), and f PL 2(Rn;uc0u2 dx), Eq. ~6.4! reads

\

im
¹ logc0•¹ f 2

i\

2m
D f 5

i

\
Mc0

21HMc0
f .

This immediately gives

2
\2

m S ¹ logc0•¹ f 1
1

2
D f D5Mc0

21HMc0
f . ~6.5!

VII. THE FEYNMAN–KAC FORMULA

Let h:Rn3@ t0 ,t1#→R be a classical, never vanishing solution of the terminal value prob

]h

]t
1

1

2
Dh5V~x!h, h~x,t1!5h1~x!, ~7.1!

whereV is a non-negative, measurable function onRn. A simple calculation shows that logh
satisfies

] logh

]t
1¹ logh•¹ logh1

1

2
D logh5

1

2
¹ logh•¹ logh1V~x!. ~7.2!

Assume that there exists a weak solutionP on @ t0 ,t1# of the stochastic differential equation

dx5¹ logh dt1dw.
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Namely, the coordinate process$x(t);t0<t<t1% underP admits the above forward differentia
Applying Lemma VI.1 to the diffusion case, we get a different generalization of~6.5!. Let L 2,1

denote the Hilbert space of real-valued functionsf satisfying

E
t0

t1
i f iL 2(Rn)

2 dt,`.

Proposition VII.1: Let a52 1
2 and b51 in Lemma VI.1. Let h(x,t);t0<t<t1% be a never

vanishing solution of equation (7.1). Let

L15¹ logh•¹1 1
2 D

denote the generator of the measure P and let H52 1
2 D1V(x) denote the Hamiltonian operator

We consider the operator@(]/]t) 2H# defined inL 2,1. Let L 2,1(h2) denote the Hilbert space o
functions g such that(gh)PL 2,1. Then, @(]/]t) 1L1# defined inL 2,1(h2) and @(]/]t) 2H# are
unitarily equivalent. Indeed, it follows from (6.3), that

]

]t
1L15Mh

21S ]

]t
2H D Mh . ~7.3!

We recall below three derivations of the Feynman–Kac formula, see e.g., Ref. 8. These will
for the purpose of comparison in the following section. Hence, no effort will be made for max
generality.

Derivation 1: Suppose now that, underP, $x(t)% is a finite energy diffusion. UnderP, we
have

h~x~ t !,t !5h1~x~ t1!!expF2E
t

t1
d logh~x~t!,t!dtG .

By Ito’s rule, and~7.2!, we get

h~x~ t !,t !5h1~x~ t1!!expH 2E
t

t1F1

2
¹ logh•¹ logh1VGdt2E

t

t1
¹ logh•dw~t!J . ~7.4!

Let us introduce the random variable

Zt
t15expH 2E

t

t1 1

2
¹ logh•¹ logh dt2E

t

t1
¹ logh•dw~t!J

5expH E
t

t1 1

2
¹ logh•¹ logh dt2E

t

t1
¹ logh•dx~t!J , ~7.5!

and rewrite~7.4! as

h~x~ t !,t !5h1~x~ t1!! expH 2E
t

t1
V~x~t!!dtJ Zt

t1 . ~7.6!

Now let Ptx denote the conditional measureP@•ux(t)5x#. Integrating on both sides of~7.6! with
respect toPtx , we get

h~x,t !5E
V

h1~x~ t1!!expH 2E
t

t1
V~x~t!!dtJ Zt

t1 dPtx , ~7.7!
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whereV5C(@ t,t1#;Rn). By the finite energy assumption,Zt
t1 induces a measure transformation28

Indeed,dWtx5Zt
t1 dPtx , whereWtx denotes Wiener measure starting atx at time t. Hence, Eq.

~7.7! gives

h~x,t !5E
V

h1~v~ t1!!expH 2E
t

t1
V~v~t!!dtJ dWtx~v!, ~7.8!

which is the Feynman–Kac formula. The above derivation of~7.8!, based on the Girsanov trans
formation, is by no means the simplest. The simplest derivation of~7.8! is, in our opinion, the
following.

Derivation 2: Let $w(t):t<t<t1% be a standard,n-dimensional Wiener process such th
w(t)5x. Let us introduce the processy(t)ªh(w(t),t). By Ito’s rule, and Eq.~7.1!, we have

dy5V~w~t!!y~t!dt1¹h~w~t!,t!•dw. ~7.9!

The crucial observation here is thaty satisfies alinear stochastic differential equation@with
random, but adapted to the past ofw, coefficient V(w(t))#. It is natural to try to solve the
equation with the aid of an integrating factor. We multiply both sides of~7.9! by exp
(2*t

tV(w(s))ds) and get

dFexpS 2E
t

t

V~w~s!!ds D yG5expS 2E
t

t

V~w~s!!ds D¹h~w~t!,t!•dw. ~7.10!

Integrating betweent and t1 , we get

expS 2E
t

t1
V~w~s!!ds D y~T!2y~ t !5E

t

t1
expS 2E

t

t

V~w~s!!ds D¹h~w~t!,t!•dw.

~7.11!

Let us assume that

EH E
t0

t1
¹h~w~t!,t!•¹h~w~t!,t!dtJ ,`.

Then, observing that exp(2*t
tV(w(s))ds) is bounded, we conclude that the stochastic integra

the right-hand side is a martingale. Taking the conditional expectationE$•uw(t)5x% on both
sides, we get~7.8!.

Derivation 3:We shall now look at the derivation of the Feynman–Kac formula based on
Trotter product formula. We consider first the caseV[0. Letq(t,x,t1 ,y) be the transition density
of the measureP. Takinga52 1

2 in Lemma VI.1, we get that

h~x,t !

h1~y!
q~ t,x,t1 ,y!

is the fundamental solution of

]u

]t
1

1

2
Du50.

Proposition VII.2: The kernel

h~x,t !

h1~y!
q~ t,x,t1 ,y!
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does not depend on$h(x,t);t0<t<t1%. Indeed,

h~x,t !

h1~y!
q~ t,x,t1 ,y!5p~ t,x,t1 ,y!5@2p~ t12t !#2 ~n/2! expF2

ux2yu2

2~ t12t !G . ~7.12!

Notice that relation~7.12! between transition densities mirrors the corresponding relation betw
probability measures that, in view of~7.6!, here reads

h~x~ t !,t !

h1~x~ t1!!
dPtx5dWtx .

From ~7.12!, we immediately get

h~x,t !5E$h1~w~ t1!uw~ t !5x%5E
V

h1~v~ t1!!dWtx~v!.

Consider now the case whereV is any continuous function. An interesting consequence of Lem
VI.1 is the following. Let$h2(x,t);t0<t<t1% be another solution of~7.1!. Let

w~x,t !ª
h2~x,t !

h~x,t !
.

Corollary VII.3: Under P, the stochastic processw(x(t),t) satisfies

w~x~ t !,t !2w~x~s!,s!5E
s

t

¹w~x~t!,t!•dw~t!, s,t. ~7.13!

Proof: By Lemma VI.1,

F ]

]t
1¹ logh~x,t !•¹1

1

2
D Gw50.

By Ito’s rule, we now get~7.13!. j

Now let q(t,x,t1 ,y) be the transition density of the measureP. Takinga52 1
2 andb51 in

the Lemma VI.1, we get thatw(t,x,t1 ,y) defined by

w~ t,x,t1 ,y!ª
h~ t,x!

h1~y!
q~ t,x,t1 ,y!

is another solution of Eq.~7.1!. Let us find some heuristic connection betweenw(t,x,t1 ,y) and the
kernelp(t,x,t1 ,y) in ~1.4!. Let

r ~ t,x,t1 ,y,x1!ªw~ t,x,t1 ,y! exp@V~x1!~ t12t !#.

r satisfies

]r

]t
1

1

2
Dr 5@V~x!2V~x1!#r .

Then, for ux12xu small, the functionr (t,x,t1 ,y,x1) is close top(t,x,t1 ,y). Now let v(•) be a
continuous curve on@ t,t1#, and letxj5v(t1(t12t) j / l ), j 50,1,...,l . Iterating, we then get
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h~ t,x!5 lim
l→`

@2p~ t12t !/ l #2 ~nl/2!

3E ¯E expF2(
j 51

l
t12t

l S 2
uxj2xj 21u2

2~ t12t !/ l
1V~xj ! D Gh~ t1 ,xl !dxl¯dx1 . ~7.14!

Observing that

E
t

t1
2

1

2
v̇~t!2 dt

may be viewed as the density of the Wiener measure with respect to a~fictitious! uniform measure
onR`, we recognize that~7.14! coincides with the Feynman–Kac formula~7.8!. ForV in the Kato
class, this heuristic argument can be turned into the rigorous one of Theorem I.1 by means
Trotter formula.1

VIII. FEYNMAN INTEGRALS

Let $c(x,t);t0<t<t1% be the solution of the Schro¨dinger equation~5.1! with initial condition
c(x,t0)5c0(x). We suppose thatc never vanishes and satisfies

E
t0

t1E
Rn

@¹c~x,t !•¹c~x,t !#dx dt,`. ~8.1!

Hence, the finite-energy condition of Ref. 34 is satisfied, and there exists a probability meaP
on path space under which the coordinate process has forward drift field,

v~x,t !1u~x,t !5
\

m
¹@I logc~x,t !1R logc~x,t !#,

and quantum drift fieldvq(x,t)5(\/mi) ¹ logc (x,t). Let $x(t);t0<t<t1% denote the coordinate
process with the Nelson measureP. Observe that logc (x,t) satisfies

] logc

]t
1

\

2im
¹ logc•¹ logc1

i

\
V~x!2

i\

2m
D logc50. ~8.2!

We now seek to derive a path-integral representation forc(x,t) adapting to the present settin
the first derivation of the Feynman–Kac formula in the preceding section. Under the N
measureP, we have

c~x~ t !,t !5c0~x~0!! exp@ logc~x~ t !,t !2 logc0~x~0!!#. ~8.3!

By the change of variables formula~3.7!, we get

c~x~ t !,t !5c0~x~0!!3expH E
0

tF ]

]t
1@v~x~t!,t!2 iu~x~t!,t!#•¹2

i\

2m
D G logc~x~t!,t!dt

1E
0

t

¹ logc~x~t!,t!•dbwq~t!J . ~8.4!

By Eq. ~8.2!, and recalling that

v~x~t!,t!2 iu~x~t!,t!5
\

im
¹ logc~x~t!,t!,
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we get

c~x~ t !,t !5c0~x~0!! expH E
0

tF im

2\
[v~x~t!,t!2 iu~x~t!!G•[v~x~t!,t!2 iu~x~t!!G

2
i

\
V(x~t!)E

0

t

¹ logc~x~t!,t!•dbwq~t!. ~8.5!

Let us introduce the random variable

Z̃t0
t
ª expH E

0

t im

2\
@v~x~t!,t!2 iu~x~t!,t!#•@v~x~t!,t!2 iu~x~t!,t!#dt

1E
0

t im

\
@v~x~t!,t!2 iu~x~t!,t!#•dbwq~t!J

5 expH E
0

t 2 im

2\
@v~x~t!,t!2 iu~x~t!,t!#•@v~x~t!,t!2 iu~x~t!,t!#dt

1E
0

t im

\
@v~x~t!,t!2 iu~x~t!,t!#•dbx~t!J , ~8.6!

and rewrite~8.5! as

c~x~ t !,t !5c0~x~0!! expH E
0

tF2
i

\
V~x~t!!GdtJ Z̃t0

t . ~8.7!

Let Ptx denote the conditional Nelson measureP@•ux(t)5x# on V5C(@0,t#,Rn). Taking expec-
tations of both sides of~8.7! with respect toPtx , we get

c~x,t !5E
V

c0~v~0!! expH E
0

tF2
i

\
V~v~t!!GdtJ Z̃t0

t dPtx~v!. ~8.8!

This representation appears similar to representation~7.7! for the solutionh(x,t) of the antipara-
bolic equation of the preceding section. What made~7.7! useful was the relationZt

t1 dPtx

5dWtx showing that the productZt
t1 dPtx is a universal measure on path spaceindependent of the

particular solution h(x,t). It is apparent thatZ̃t0
t cannot be a Radon–Nikodym derivative betwe

two probability measures on path space since it iscomplex valued. We are then led to the
following two crucial questions.

~1! Is Z̃t0
t dPtx a bona fide complex measure of bounded variation~see the Appendix! on

C(@0,T#;Rn)?
~2! Is Z̃t0

t dPtx in some appropriate sense independent from the particular solution$c(x,t)%, i.e.,

is it independent ofc0(x) and ofV(x)?

Obviously, we expect a negative answer to the second question as the quantum noise, to w
‘‘measure’’ Z̃t0

t dPtx should correspond, does depend on the particular solution$c(x,t)%.

Proposition VIII.1: Let$c(x,t);t0<t<t1% be a never vanishing solution of the Schro¨dinger
equation (5.1) with initial conditionc(x,t0)5c0(x), and satisfying (8.1). Assume thatc0

PL1(Rn). Let Ptx be the conditional Nelson measure associated to$c(x,s);0<s<t% and let Z̃t0
t

be defined by (8.6). Then, Z̃t0
t PL1(Ptx). It follows that dmªZ̃t0

t dPtx is a complex measure o

bounded variation on C(@ t0 ,t#;Rn).
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Proof: Taking absolute values on both sides of~8.7!, and recalling Born’s relation
uc(x,t)u25r(x,t) relating the wave function to the probability density of the Nelson proces
time t, we get

uZ̃t0
t u5

r1/2~x~ t !,t !

r0
1/2~x~0!!

, ~8.9!

wherer0(x)5uc0(x)u2. Hence

E uZ̃t0
t udPtx5E r1/2~x~ t !,t !

r0
1/2~x~0!!

dPtx5r1/2~x,t !E
Rn

r0
1/2~x!dx5r1/2~x,t !E

Rn
uc0~x!udx,`.

j

Thus, under the hypothesis and in the notation of the above proposition, we can rewrite~8.8! in the
form

c~x,t !5E
V

c0~v~0!! expH E
0

tF2
i

\
V(v~t!GdtJ dm~v!. ~8.10!

It follows, however, from~8.9! that thetotal variation umu of m satisfies

dumu~v!5uZ̃t0
t udPtx~v!5

r1/2~x,t !

r0
1/2~v~0!!

dPtx~v!.

Thus, the measurem does depend on the particular solution$c(x,t)%. An attempt to derive a
path-integral representation forc(x,t) along the lines of the second derivation of the Feynma
Kac formula appears hopeless becausec(wq(t),t) makes no sense sincewq has complex values
and, more importantly, because of the considerations made in Sec. IV. We turn, therefore,
third derivation. Consider first the caseV50. In view of the change of variable formula~3.8!, we
takepq(t0 ,y,t,x) to be the fundamental solution of the equation

S ]

]t
1vq~x,t !•¹2

i\

2m
D Du50, ~8.11!

where, as usual,vq(x,t)5 (\/ im) ¹ logc(x,t). Takinga5 i\/2m in Lemma VI.1, we get that

c~ t,x!

c0~y!
pq~ t0 ,y,t,x!

is the fundamental solution of

]u

]t
2

i\

2m
Du50. ~8.12!

Hence, we get the counterpart of Proposition VII.2.
Proposition VIII.2: The kernel

c~ t,x!

c0~y!
pq~ t0 ,y,t,x!

does not depend on$c(x,t);t0<t<t1%. Indeed,

c~ t,x!

c0~y!
pq~ t0 ,y,t,x!5K~ t0 ,y,t,x!5F2p\ i ~ t2t0!

m G2 ~n/2!

expF imux2yu2

2\~ t2t0! G . ~8.13!
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Consider now the case whereV is any continuous function. Let$c(x,t);t0<t<t1% be a never
vanishing solution of the Schro¨dinger equation~5.1! with initial condition c(x,t0)5c0(x), and
satisfying~8.4!, and let$c2(x,t);t0<t<t1% be another solution of~5.1!. Let

w̃~x,t !ª
c2~x,t !

c~x,t !
.

Corollary VIII.3: Under the Nelson measure P associated to$c(x,t);t0<t<t1%, the stochas-
tic processw̃(x(t),t) satisfies

w̃~x~ t !,t !2w̃~x~s!,s!5E
s

tA\

m
¹w̃~x~t!,t!•dbwq~t!, s,t. ~8.14!

Proof: By Lemma VI.1,

F ]

]t
1vq~x,t !•¹2

i\

2m
D G w̃50, ~8.15!

wherevq(x,t)5 (\/ im) ¹ logc(x(t). By ~3.7!, we now get~8.14!. j

This result is the counterpart of Corollary VII.3. Notice that, since the ratio of two solutions o
Schrödinger equation satisfies~8.15!, the function

u~x,t !ª log
c2~x,t !

c~x,t !

satisfies the nonlinear equation

]u

]t
1vq~x,t !•¹u~x,t !2

i\

2m
Du~x,t !5

i\

2m
¹u~x,t !•¹u~x,t !.

This is precisely the Hamilton–Jacobi-type equation associated to the variational problem
produces the new Nelson process after a position measurement, causing the ‘‘collapse of th
function,’’ see Ref. 26, Sec. VI.

Now, let pq(t0 ,y,t,x) be the fundamental solution of~8.11!. Taking a5 i\/2m and b
52 ( i /\) in Lemma VI.1, we get thatw̃(t0 ,y,t,x) defined by

w̃~ t0 ,y,t,x!ª
c~ t,x!

c0~y!
pq~ t0 ,y,t,x!

is another solution of the Schro¨dinger equation~5.1!. Let us find some heuristic connectio
between w̃(t0 ,y,t,x) and the kernel K(t0 ,y,t,x) in ~1.2!. Let r̃ (t0 ,y,t,x,x1)
ªw̃(t0 ,y,t,x)exp@(i/\) V(x1)(t2t0)#. Then r̃ satisfies

] r̃

]t
2

i\

2m
D r̃ 5

i

\
@V~x1!2V~x!# r̃ .

or ux12xu small, the functionr̃ (t0 ,y,t,x,x1) is close toK(t0 ,y,t,x). Now let v(•) be a continu-
ous curve on@ t0 ,t#, and letxj5v(t01(t2t0) j / l ), j 50,1,...,l . Iterating, we then get

c~ t,x!5 lim
l→`

F2p\ i ~ t2t0!

lm G2 ~nl/2!

3E ¯E expF2(
j 51

l
i

\ S 2
m

2\

uxj2xj 21u2

~ t2t0!/ l
1V~xj !

~ t2t0!

l D Gc0~xl !dxl¯dx1 .
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This heuristics can be turned into the rigorous argument of Theorem I.1 by means of the
Trotter formula.1

IX. CLOSING COMMENTS

We have shown that, employing the time-symmetric kinematics of Sec. III, it is possib
establish a link between Nelson’s stochastic mechanics and the Feynman integral. Not s
ingly, we do have the following negative result. It is not possible to view the operator2 ( i /2) D
as the bi-directional generator of the quantum noise, as argued in Sec. IV. Moreover, the co
measurem in Proposition VIII.1 does depend on the particular solution of the Schro¨dinger equa-
tion. Nevertheless, the results in the second part of the preceding section show that the a
with the diffusion case goes far beyond what was believed, provided the time-symmetric
matics of stochastic mechanics is employed in the quantum case.

In Ref. 18, concerning the Feynman integral and stochastic mechanics, Guerra writes
full clarification of the deep connection between the two approaches will be a major step to
a better understanding of the physical foundations of quantum mechanics.’’ We hope th
paper will stimulate new research in this direction.
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APPENDIX: COMPLEX MEASURES

We collect in this appendix a few basic facts about complex measures. We refer the rea
Ref. 37, Chap. 6 for the proofs and more information.

Let V be a set andB a s-algebra of subsets ofV. A complex functionm on B, i.e., m:B
→C, is called acomplex measureon B if, for every BPB,

m~B!5(
i 51

`

m~Bi !

holds whenever$Bi% i 51
` is a countable partition of the setB. It is implicit in this definition that

every such series must converge.
Let m be a complex measure. Then, among allpositive, i.e., usual, measuresl satisfying

um(B)u<l(B),;BPB, there exists a least one calledtotal variationof m and denoted byumu. The
measureumu is minimal among all positive measuresl described above in the sense thatumu(B)
<l(B) for all BPB. The measureumu has the remarkable property thatum(V)u,`. Thus the
range of every complex measurem lies in a disc of finite radius. It is then usual to say thatm is of
bounded variation.

Theorem A.1: Let l be a positive, s-finite measure onB. Let m be a complex measure onB.
Suppose thatm is absolutely continuous with respect tol, namelym(B)50 for every BPB for
which l(B)50. Then there exists a unique function hPL1(l) such that

m~B!5E
B
h dl

for every BPB.
A consequence of this theorem takingl5umu, is the following result.
Theorem A.2: Let m be a complex measure onB. Then there exists a unimodular function

i.e., uh(v)u51 for all vPV, such that the following polar decomposition ofm holds

dm5h dumu.

We also have the following result.
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Theorem A.3: Supposel is a positive measure onB, hPL1(l), and m is the complex
measure onB defined by

m~B!5E
B
h dl.

Then, for all BPB, we have

umu~B!5E
B
uhudl.
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Modular localization of elementary systems in the theory
of Wigner
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Starting from Wigner’s theory of elementary systems and following a recent ap-
proach of Brunetti, Guido, and Longo also taken up by Schroer we define certain
subspaces of localized wave functions in the underlying Hilbert space with the help
of the theory of modular von-Neumann algebras of Tomita and Takesaki. We
characterize the elements of these subspaces as boundary values of holomorphic
functions in the sense of distribution theory and show that the corresponding ho-
lomorphic functions satisfy the sufficient conditions of the theorems of Paley–
Wiener–Schwartz and Ho¨rmander. ©2000 American Institute of Physics.
@S0022-2488~00!04708-3#

I. INTRODUCTION

The subject of this paper is the localization of elementary systems in the sense of W
These are quantum mechanical systems whose states are all obtainable from any state by
istic transforms and superposition. They constitute a relativistic invariant linear manifold an
corresponding wave functions satisfy relativistic invariant wave equations.

Bargmann and Wigner1 realized that these wave equations can be replaced by represent
of the inhomogeneous Lorentz group given by these same equations. A classification of a
sible representations amounts then to a classification of all possible relativistic wave equati
this way it is possible not only to construct solutions of the wave equations but also to specify
relevant invariant properties. It is natural to realize these representations in momentum spac
the momenta and energies of the system, but not the coordinates, are defined by the Loren
as infinitesimal translations.

A priori it is not clear which localization properties do correspond to the different elemen
systems, since the coordinates which appear as arguments in the coordinate space wave f
are not eigenvalues of the position operator conjugate to the momentum operator.

General quantum field theory in the sense of Haag, Araki, and Kastler2 is primarily concerned
with local operations. Thus to each open region in Minkowski space there is associated an a
of operators acting on the underlying Hilbert space which are interpreted as physical operat
observables that can be performed within this region. The states of the system are then de
positive linear functionals over these algebras. Since it is sufficient to consider only bou
operators one is led to the study of von-Neumann algebras; their properties can be an
independently of the generating fields. By the theory of modular von-Neumann algebras of T
and Takesaki3,4 it is possible to associate operators to certain states and space time regions
contain important features of the theory. It was first pointed out by Brunetti, Guido, and Lon5,6

and later by Schroer7,8 that by knowing these modular operators for certain regions one
associate real subspaces of localized wave functions in the original Wigner representation s
space time regions in Minkowski space. These real subspaces can then be used to const
quantum theories.

In this paper we characterize the elements of these subspaces as boundary values of

a!Electronic mail: ramacher@mathematik.hu-berlin.de
60790022-2488/2000/41(9)/6079/11/$17.00 © 2000 American Institute of Physics
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functions in the sense of distribution theory which fulfill certain boundary conditions and we s
that these analytic functions are the Fourier–Laplace transforms of distributions with supp
the considered closed, but not necessarily compact, convex regions. We restrict ourselve
case of the massive scalar field, but all our considerations can be carried over to massive q
fields with arbitrary spin as well as to massless fields with discrete spin.

II. REPRESENTATIONS OF THE INHOMOGENEOUS LORENTZ GROUP

Let R4 be the four dimensional Minkowski space with coordinatesx0, x1, x2, x3 and metric
tensorg given byg0051, g115g225g33521, gi j 50, iÞ j , and denote the scalar product of tw
vectors by$x,y%5gi j x

iyi . The group of all linear transformations which leave the quadratic fo

~x0!22~x1!22~x2!22~x3!2

invariant is called the general homogeneous Lorentz group. An inhomogeneous Lorentz tra
is a transformation which consists of a homogeneous Lorentz transform together with a tran
in Minkowski space, the translation being performed after the homogeneous Lorentz tran
The component of the unity of the general inhomogeneous Lorentz group is denoted byP1

↑ (3,1),
the proper orthochronous inhomogeneous Lorentz group.

According to Wigner9 the unitary irreducible representations of the inhomogeneous Lor
group can be classified as follows:

Theorem 1: The representations of class Ps
1 are given by a positive number P5m2.0 and

a discrete parameter s50, 1/2, 1, . . . and p0.0. They correspond to particles with mass m a
spin s. There is also a class Ps

2 with p0,0. The class0s
1 contains representations which corre

spond to massless particles with discrete helicity and there is also a class0s
2 . The representations

which are given by P50, p0.0 and a positive real numberJ constitute the classes01(J),
01(J)8 and correspond to elementary systems of mass zero and continuous spin. They are
respectively two valued. The classes02(J), 02(J)8 are characterized analogously. The remai
ing classes are given by the cases p50 and P,0.

Physical realizations are only known of the classesPs
1 and 0s

1 . They are realized in Hilbert
spaces ofL2-integrable functionsw(p,s) on the pseudo-Riemannian space forms

GP
15$pPR4:pkpk5P, p0.0%.

The variables is discrete and can assume the values2s, . . .1s. To each Lorentz transformatio
yk5L l

kxl1ak corresponds a unitary operatorU(L)5T(a)d(L) whose action is given by

U~L !w~p,s!5ei $p,a%Q~p,L!w~L21p,s!, ~1!

whereQ(p,L) is a unitary operator which depends onp but acts only on the variables. By the
continuity of the representations there is for each one-parameter group of unitary operatorU(t)
an uniquely determined self adjoint operatorH such thatU(t)5exp(2itH).

In the following we will consider analytic elements of the given representations and use
to characterize real subspaces of localized wave functions. As a corollary of Nelson’s an
vector theorem we have the following proposition.10

Proposition 1: A closed symmetric operator H with domain D(H) acting on a Hilbert space
H is self-adjoint if and only if there is a dense set of analytic elements in D(H). The vector-valued
functions

U~t!cªe2 i tHc5 (
n50

`
~2 i t!n

n!
HncPH

are then analytic intPC for each analytic elementc.
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The domain of the closed operatorU(t) depends only on Imt. Sett5l1 i% and letDU(%)
be the subset ofH such that (U(t),DU(%)) is a closed and normal operator. Then the followi
statement holds.11

Proposition 2: IfwPDU(%) then the vector-valued function

U~t!w

is strongly continuous for0<Im t/%<1 and analytic for0,Im t/%,1.

III. BOUNDARY VALUES OF ANALYTIC FUNCTIONS AND FOURIER–LAPLACE
TRANSFORM

We consider boundary values of analytic functions in the sense of distribution theory
specify the necessary conditions for the existence of such limits. We also state the theor
Paley–Wiener–Schwartz and Ho¨rmander which will be of relevance in the ensuing sections.

The following is a generalization of a theorem proved by Epstein12 for boundary values of
analytic functions inS8(R).

Theorem 2: Let G be an open convex cone inRn andT5Rn1 iG. If f (z) is analytic inT and
converges forIm z→0 to a tempered distribution, that islimIm z→0f(.1i Im z) exists inS8(Rn),
then for each compact set M inG there is an estimate

u f ~z!u<C~11uzu!N, Im zPM , ~2!

whereuzuªmaxj$zj%.
Proof: We choose inG an open convex coneD andn affine independent vectors inD̄ such

that in this basis the components of each vector inRn1 iD have strictly positive imaginary parts
Let f (.1 ih) converge inS8(Rn) to the tempered distributionu. This means that we can choos
n positive numbers 0,g j,`, j 51, . . . ,n, such that forhPDgª$hPD:0,h j,g j% and any
wPS(Rn) the relation

lim
h→0

E f ~j1 ih!w~j!dj5u~w!

holds. We setf 05u and write this in what follows also as

f h~w!5^ f ~ .1 ih!,w&→^ f 0 ,w&5 f 0~w!.

SinceD can be chosen in such a way thatD̄\$0%,G, we obtain a continuous maph° f h from the
compactumD̄g to S8(Rn). The image of this map is also compact and hence bounded. One
then infer the existence of a seminormi•ik in S(Rn) such that allf h with hPD̄g are uniformly
continuous with respect to this norm, i.e., there is a constantC and a positive numberk such that
for eachwPS(Rn) andhPD̄g the inequality

u^ f h ,w&u<C (
uau,ubu<k

sup
x

uxa]bw~x!u5Ciwik ~3!

is fulfilled. In this way the distributionsf h can be extended to linear functionals on the Bana
space whose topology is induced by the seminormi•ik . So thef h can be considered as elemen
of S8k(Rn).

Since f is an analytic function inTg5Rn1 iDg , f (z)/) j 51
n (z j1 i )2k is also analytic inTg

5Rn1 iDg and by Cauchy’s integral formula we obtain forf (z) the representation

) j 51
n ~z j1 i !k

~2p i !n E
k1

¯E
kn

f ~z1 , . . . ,zn!

) j 51
n ~zj2z j !~zj1 i !k dz1¯dzn ,
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where eachk j is a closed path in the stripV j5$zjPC:0,Im zj,gj% aroundz j , respectively. This
representation is independent of the chosen paths and we may thus take them as border
rectangles@2xj

1 ,xj
1#3@yj

1 ,yj
2#, xj

1.0, 0,yj
1,yj

2,g i . If we now let the rectangles approach th
strips in which they are contained, the integrals along the borders@yj

1 ,yj
2# disappear and we obtai

for f (z) the expression

) j 51
n ~z j1 i !k

~2p i !n (
u

6E
2`

` f ~x1 iu!

) j 51
n ~xj1 iu j2z j !~xj1 iu j1 i !k dx1¯dxn ,

whereu5(u1 , . . . ,un) and theu j are equal toyj
1 or equal tog j , respectively, and the sign in th

sum overu depends on the orientation of the corresponding borders. We put

Fz,u~x!5)
j 51

n

~xj1 iu j2z j !
21~xj1 iu j1 i !2k.

The functionsFz,u as well as their derivatives up to order<k decrease at infinity faster than an
polynomialxa, uau<k. On the other handu°Fz,u is a continuous map foru jÞh j5Im zj into the
Banach spaceSk(Rn) andFz,u remains in a compact set asu→u8 with some or all of they1

j going
to zero, theg j remaining unchanged. Foru→u8 we have therefore

^ f u ,Fz,u&→^ f u8 ,Fz,u8&.

We obtain forf in Tg the expression

f ~z!5
) j 11

n ~z j1 i !k

~2p i !n (
u

6^ f u ,Fz,u&,

whereu5(u1 , . . . ,un) and theu j are equal tog j
1 or zero.

As a consequence of the continuity condition~3! it follows for f (z) the estimate

u f ~z!u<C)
j 51

n

uz j1 i uk(
u

iFz,uik<C)
j 51

n

~11uz j u!k(
u

(
uau,ubu<k

sup
x

uxa]bFz,u~x!u, ~4!

where we have made use of

u~z j1 i !ku< (
m50

k

~m
k !uz j

mi k2mu5 (
m50

k

~m
k !uz j

mu5~11uz j u!k.

Differentiation yields for the sum overuau, ubu<k,

(
uau,ubu<k
d j 1e j 5b j

sup
x
Uxa

d!k!

e!
~x11 iu12z1!212d1

¯~xn1 iun2zn!212dn

3~x11 iu11 i !2k2e1
¯~xn1 iun1 i !2k2enU

so that the estimate~4! now reads

u f ~z!u<C)
j 51

n

~11uz j u!k(
u

(
udu<k

uIm z12u1u2d121
¯uIm zn2unu2dn21. ~5!

The u j are equal zero or equalg j and we have 0,Im zj,gj . SinceD and the numbersg j are
arbitrary, we obtain for each compactM in G an estimate of the form
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u f ~z!u<C~11uzu!N, Im zPM ,

for a positive integerN and a constantC. h

It can be shown that the given conditions, especially relations~4! and~5!, are also sufficient.
The Fourier transform is an isomorphism ofS, so that the Fourier transform of a temper

Distribution uPS8(Rn) can be defined as

û~w!5u~ ŵ !, wPS.

For distributions with compact support the Fourier transform is given by the entire ana
function

û~z!5ux~e2 i ^x,z&!, zPCn.

It is called the Fourier–Laplace transform ofu. Here^x,y& denotes the Euclidean scalar produ
in Cn.

For each closed convex setE we define now the convex, positively homogeneous functio

HE~j!ªsup
xPE

^x,j&, jPRn. ~6!

with values in (2`,`#. It characterizes the setE completely, sinceE is given as the set of al
xPRn for which ^x.j&<HE(j), jPRn. Conversely, ifH is a function with the mentioned prop
erties, there exists exactly one closed convex setE such thatH5HE andE5$x:^x,j&<H(j), j
PRn%. If E is compact thenHE(j),` for eachj.

We state now the theorems of Paley–Wiener–Schwartz13 and Hörmander.14

Theorem 3: Let K be a compact convex set inRn with support function HK . If u is a
distribution of order N with support contained in K, then

uû~z!u<C~11uzu!NeHK(Im z), zPCn. ~7!

Conversely, every entire analytic function inCn which satisfies the relation~7! for some N is the
Fourier–Laplace transform of a distribution with support in K.

It turns out that it is possible to define the Fourier–Laplace transform at least on c
subspaces ofCn for more general distributions. So forzPCn and fixedh5Im z,

û~z!5^u,e2 i ^.,z&&

could be defined as a distribution inj5Rez if e^.,h&uPS8. We set

Gu5$hPRn:e^.,h&uPS8%. ~8!

Then the following theorem holds:
Theorem 4: If uPD8(Rn), ~8! defines a convex setGu . If its interior Gu

o is not empty, there
exists a function uˆ analytic in Rn1 iGu

o such that the Fourier transform of e^.,h&u is given by
û(.1 ih) for all hPGu

o . For each compact set M,Gu
o there is an estimate

uû~z!u<C~11uzu!N, Im zPM . ~9!

Conversely, ifG is an open convex set inRn and U an analytic function inRn1 iG which fulfills
an estimate of the form~9! for every compact set M inG, then there is a distribution u such tha
e^.,h&uPS8 with Fourier transform U(•1 ih) for all hPG.

If in addition supu,K, then

uû~z!u<C~11zu!NeHK(Im z2h), ~10!
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if hPM , HK(Im z2h),`, where M is a compact set inGu
o . If conversely there is anh for which

~10! holds, thensupu,K if K is closed and convex.

IV. LOCALIZATION FOR THE MASSIVE SCALAR FIELD

Algebraic quantum field theory is concerned with von Neumann algebrasM(O) of observ-
ables localized in space time domainsO together with statesv on these algebras satisfying certa
selection criteria. Due to the Reeh–Schlieder property of the vacuum one may associat
certain regionsO and statesv the operatorsd and j of the modular theory of Tomita and Takesak
Hered is a positive operator which generates a one parameter group of automorphisms add i t of
M(O) and j is an antiunitary operator that defines the conjugation adj which mapsM(O) onto
its commutant in the Hilbert space associated withv by the Gelfand–Neumann–Segal constru
tion.

Important features of the theory are contained in these operators but explicit realizatio
them are only known for certain regions,v being the vacuum state. So in the case whereO is a
spacelike wedge and the local algebras are generated by Wightman fields that transform
antly under a finite dimensional representation of the Lorentz group the modular group
group of velocity transforms that leave the wedge invariant, and the conjugation is thePCT
operation combined with a rotation.

With the knowledge of these modular objects for wedge like regions we associate, follo
Brunetti, Guido, Longo5,6 and Schroer,7 to certain closed and convex sets in Minkowski spa
which arise out of the intersection of wedges real subspaces of wave functions in Wigner
sentation space. These wave functions can then be viewed as localized in the corresp
regions.

We characterize the elements of these subspaces as boundary values of analytic func
three-dimensional complex submanifolds of complex Minkowski space which satisfy ce
boundary conditions and show that the latter can be analytically continued to open regi
Minkowski space. They converge in the sense of distribution theory to square-integrable fun
and we show that they satisfy the sufficient conditions of the theorems of Paley–Wie
Schwartz and Ho¨rmander.

In the following we will restrict ourselves to the massive scalar field. This field correspon
the representations of classP0

1 of the inhomogeneous Lorentz groupP1
↑ (3,1). The wave func-

tions have only one component and the unitary operatorQ(p,L) in Eq. ~1! is equal to 1. In this
case the wave equation reduces topkpk5P. To each Lorentz transformationyk5L l

kxl1ak cor-
responds a unitary operatorU(L)5T(a)d(L) whose action on anywPL2(GP

1) is given by

U~L !w~p!5ei $p,a%w~L21p!, ~11!

while thePCT transformation is realized by the antiunitary operator

Qw~p!5w̄~p!.

We consider now in Minkowski space the regionWª$xPR4:x3.ux0u%. W is open and
convex as well as invariant under velocity transformations inx3-direction, under rotations aroun
thex3-axis and under translations in direction ofx1 andx2. All these transformations constitute
subgroup of isometric isomorphisms ofW in P1

↑ (3,1). The velocity transforms inx3-direction,

yk5L l
k~ t !xl

are given in their active form in the coordinatesx0, x1, x2, x3 by the matrices
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S cosht 0 0 2sinht

0 1 0 0

0 0 1 0

2sinht 0 0 cosht

D , tPR.

By transformation with elementsL5(a,I ) of P1
↑ (3,1) we obtain fromW open convex regionsWL

to which correspond again certain subgroups of isometric automorphisms. The corresp
velocity transformations

yk5I l
kLm

l ~ t !~ I 21!n
mxn1~dn

k2I l
kLm

l ~ t !~ I 21!n
m!an

constitute a one-parameter Abelian subgroup to which we associate the one-parameter g
unitary operators,

UL~ t !ªU~~12IL~ t !I 21!a,IL~ t !I 21!5T~a!d~ I !d~L~ t !!d~ I !21T~a!21. ~12!

Finally, eachL defines the antiunitary involution

j LªT~a!d~ I !d~Y!Qd~ I !21T~a!215T~11IYI 21!a)d~ IYI 21!Q, ~13!

whereY denotes a rotation byp around thex3-axis.
Following Bisognano and Wichmann11 we consider the analytic continuation of the operat

UL(t) and define the closed operators

~dL,1
1/2 ,D1!ª~UL~ ip!,DUL

~p!!, ~dL,2
1/2 ,D2!ª~UL~2 ip!,DUL

~2p!!.

Together with the involutionj L they define the antilinear closed operators

~sL,1 ,D1!ª~ j LdL,1
1/2 ,D1!, ~sL,2 ,D2!ª~ j LdL,2

1/2 ,D2!.

They are then the modular operators corresponding to the regionWL . We consider now in
Minkowski space a closed polyhedral regionK with verticesai , i 51, . . . ,n, which arises out of
the intersection of the family

$W̄L%LPXK
~14!

of closed convex regionsW̄L ; XK is some subset ofP1
↑ (3,1) depending onK. This family is

supposed to decompose inton subfamilies

$W̄(ai ,I )% I PXK,ai
, ~15!

where theXK,ai
are nonempty closed convex six-dimensional subsets ofL1

↑ (3,1), the proper
orthochronous homogenous Lorentz group associated to each vertexai . These assumptions cor
respond to the prescription that the intersection over the family$W̄L%LPXK

is to be understood a

the intersection of all the regionsW̄L which containK.
Definition 1:Let K be a closed convex region as above. We associate toK in L2(GP

1) the real
subspaces

H K,6
R

ª$wPL2~GP
1!:sL,6w5w, LPXK%.

Let wPH K,1
R . ThenwPDUL

(p) for all LPXK and we define for each vertexai the functions

u1,ai
~z!ªUL~t!w~p!, L5~ai ,I !, I PXK,ai

, 0<Im t<p, ~16!
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wherepPGP
1 andz5IL(t)21I 21p. Let GP

(c) 5$zPC4:zkzk5P%.
Lemma 1: For every vertex ai , the set

MK,ai

1
ª$zPGP

(c) :z5IL~t!21I 21p, pPGP
1 , 0,Im t,p, I PXK,ai

o % ~17!

is a complex three-dimensional submanifold inC4 and the function u1,ai
is holomorphic on MK,ai

1

and hence uniquely determined. For0<Im t<p, u1,ai
is continuous.

Proof: It can be shown that the setsMK,ai

1 are given by

MK,ai

1 5GP
(c)ùTK,ai

1 ,

whereTK,ai

1 5R41 iGK,ai

1 and

GK,ai

1
ª$hPR4:h5Ih8, I PXK,ai

o , h8PG1%,

G1
ª$hPR4:uh0u,h3, h15h250%.

SinceGP
(c) is given as the set of zeros of the analytic functionm(z)5$z,z%2P it is a complex

submanifold ofC4 and sinceT K,ai

1 is open inC4, so isMK,ai

1 as well.L1(C), the component of the

unity of the homogeneous complex Lorentz group, acts transitively onGP
(c) and the isotropy group

of a pointzPGP
(c) is given by SU~3!, so that

GP
(c).L1~C!/SU~3!.

GP
(c) is thus the orbit of a pointz under complex velocity transforms and we can write eachz in

MK,ai

1 5GP
(c)ùTK,ai

1 as

z5IL21~t I !I
21p5L1

21~t1!L2
21~t2!L3

21~t3!p0 ,

where theL i(t i) are complex velocity transforms inxi-direction with 0<Im ti<p, i 51,2,3, and
p0 is a fixed point inGP

1 . We can thus interpret the functionsu1,ai
(z) as functions oft

5(t1 ,t2 ,t3) and writeu1,ai
(z)5u1,ai

(t1 ,t2 ,t3). Since every complex velocity transform ca
be obtained from any other by adjoining the latter with a homogeneous Lorentz transform
analycity of theu1,ai

follows by Proposition 1. h

The u1,ai
satisfy the boundary conditions

u1,ai
~2j!5UL~ ip!w~p!5 j Lw~p!5ei $p,ai %ei $j,ai %ū1,ai

~j!

for all j5IY21I 21p, pPGP
1 , I PXK,ai

. Note thatL21( ip)52Y. Analogous consideration

hold in the case thatwPH K,2
R . Hence, we have the following proposition:

Proposition 3: Let an irreducible representation of the inhomogeneous Lorentz group P(3,1)
of class P0

1 be given in the Hilbert space L2(GP
1) of L2-integrable functions onGP

1 . The sub-
spacesH K,6

R associated with the polyhedral region K with vertices ai , i 51, . . . ,n, are then
given by the set of all functionsw(p)PL2(GP

1) which are boundary values of analytic function
u1,ai

, resp.,u2,ai
, in MK,ai

1 , resp.,MK,ai

2 for some i satisfying the boundary conditions

u6,ai
~2j!5ei $p,ai %ei $j,ai %ū6,ai

~j! ~18!

for all j5IYI 21p, pPGP
1 , and (ai ,I )P$ai%3XK,ai

,XK , respectively.
By the second theorem of Cartan every holomorphic function on a closed analytic sub

fold of a Steinian manifoldX is the restriction of a holomorphic function defined onX.15 There-
fore everyu1,ai

can be extended analytically toT K,ai

1 , respectively. Since the holomorphic hull o

T K,ai

1 is given by its convex hull, we have the following lemma:
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Lemma 2: u1,ai
can be analytically extended toconvhT K,ai

1 .

We consider now the operatorR(L)w(p)5w(L21p) and set

RI~ t !ªR~ IL21~ t !I 21!.

By definition we have

UL~ t !w~p!5ei $p,a%e2 i $IL21(t)I 21p,a%RI~ t !w~p!.

If wPDRI
(p) we define the function

r 1~z!ªRI~t!w~p!, ~a,I !PXK , 0<Im t<p. ~19!

In a similar way as before for the functionsu1,ai
we have the following lemma:

Lemma 3: r1 is holomorphic on the complex manifold

MK,1ª$zPGP
(c) :z5IL~t!21I 21p, pPGP

1 , 0,Im t,p, L5~a,I !PXK
o %

and can analytically be extended toconvhT K
1 , where

GK
1
ª$hPR4:h5Ih8, ~a,I !PXK

o , h8PG1%.

As before we can represent each elementz of MK,15GP
(c)ùT K

1 as

z5IL21~t I !I
21p5L1

21~t1!L2
21~t2!L3

21~t3!p0 ,

whereL i(t i) are complex velocity transformations inxi direction with 0<Im ti<p, i 51,2,3, and
p0 a fixed point inGP

1 . We can therefore interpretr 1(z) as a function oft5(t1 ,t2 ,t3) and write

r 1~z!5r 1~t1 ,t2 ,t3!5R~L3~t3!!R~L2~t2!!R~L1~t1!!w~p0!5RL3L2L1
~t!w~r0!.

Proposition 4: r1 satisfies inconvhT K
1 an estimate of the form

ur 1~z!u<C~11uzu!N, Im zPH, ~20!

where H is a compact set inconvhGK
1 .

Proof: The elementRI(t I)w(.) in L2(GP
1) is a tempered distribution

RL3L2L1
~t!w~ .!5RL3L2L1

~ .1 i% !w~p0!

which depends on the parameters%5(%1 ,%2 ,%3); for FPS(GP
1) we have thus

^RL3L2L1
~ i% !w,F&5E

2`

`

RL3L2L1
~l81 i% !w~p0!F~L1

21~l18!L2
21~l28!L3

21~l38!p0!dl8

5E
GP

1
RL3L2L1

~ i% !w~p!F~p!dM,

where u](p1,p2,p3)/](l1 ,l2 ,l3)u5p0 and dM5dp1dp2dp3/up0u is the volume form onGP
1.

Now RI(t I)w5RL3L2L1
(t)w is strongly continuous for 0<Im tI<p as well as for corresponding

values oft i , i 51,2,3; in particular we obtain

iRL3L2L1
~t!w2wi→0 for t→0;

since strong convergence implies weak convergence we have for all elementsc of L2(GP
1),
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~RL3L2L1
~t!w,c!→~w,c! for t→0.

Hence it follows that

lim
%→0

E
GP

1
RL3L2L1

~ i% !w~p!F~p!dM5w~F!,

and by Theorem 2 we obtain forr 1(z)5RL3L2L1
(t)w(p0) in MK,1 an estimate of the form

ur 1~z!u<C~11uzu!N, Im zPH, ~21!

whereH is a compact set in ImMK,1 . Continuingr 1[r 1(z i), z i[t i , z45m(z)2P, analytically
to convhT K

1 in such a way thatr 1 also has a bound of the given form with respect toz4 we obtain
for r 1 in all convhT K

1 an estimate of the form~21! whereH is now a compact set in convhGK
1 .h

For all functionsu1,ai
the relation

u1,ai
~z!5ei $p,ai %e2 i $z,ai %r 1~z!, zPconvhTK,ai

1 ~22!

holds and we obtain with~20! the estimates

uu1,ai
~z!u5e$Im z,ai %ur 1~z!u<C~11uzu!NeHK

(1,3)(Im z), Im zPH,

for each compact setH in convhGK,ai

1 and all ai , i 51, . . . ,n. HereHK
(1,3)(x):5xPK

sup $x,x%. We

reformulate this and summarize the above results in the following theorem:
Theorem 5: Let K be a polyhedral region inR4 with vertices ai , i 51, . . . ,n, and w

PH K,1
R resp. H K,2

R the boundary value of the functions u1,ai
resp. u2,ai

analytic in MK,ai

1

5GP
(c)ùTK,a

i
1 resp. MK,ai

2 5GP
(c)ùTK,ai

2 . Then u1,ai
and u2,ai

can be analytically extended t

convhTK,ai

1 resp.convhTK,ai

2 and satisfy for each compact set H inconvhGK,ai

1 resp.convhGK,ai

2 an

estimate

uu6,ai
~z!u<C~11uzu!NeHK

(1,3)(Im z2h), zPconvhTK,ai

6 ,

if hPH and HK
(1,3)(Im z2h),`.

Thus the functionsu1,ai
andu1,ai

satisfy the sufficient conditions of Theorem 4. If in add
tion K is compact we have the following theorem:

Theorem 6: Let K a compact polyhedral region inR4 andwPH K,1
R resp.H K,2

R . Thenw is
the boundary value of an entire analytic function u(z) which satisfies an estimate of the form

uu~z!u<C~11uzu!NeHK
(1,3)(Im z), zPC4.

According to Theorem 3 the elements ofH K,1
R resp.H K,2

R are then boundary values o
Fourier–Laplace transforms of distributions with support inK.

ACKNOWLEDGMENTS

I am grateful to Bert Schroer for suggesting the line of research of this paper. The wor
supported by the SFB 288 of the DFG.

1V. Bargmann and E. P. Wigner, ‘‘Group theoretical discussion of relativistic wave equations,’’ Proc. Natl. Acad
USA 34, 211–223~1948!.

2R. Haag,Local Quantum Physics, Fields, Particles, Algebras~Springer-Verlag, Berlin, 1992!.
3M. Tomita, ‘‘Quasi-standard von Neumann algebras,’’ mimeographed notes, 1967.
4M. Takesaki,Tomita’s Theory of Modular Hilbert-Algebras and its Application, Vol. 128 in Lecture Notes in Math-
ematics~Springer-Verlag, Berlin, 1970!.
                                                                                                                



ory’’

.

6089J. Math. Phys., Vol. 41, No. 9, September 2000 Modular localization of elementary systems . . .

                    
5R. Brunetti, D. Guido, and R. Longo, ‘‘First quantization via the BW-property’’~in progress!.
6R. Brunetti, D. Guido, and R. Longo, ‘‘On the intrinsic construction of free theories via Tomita–Takesaki the
~unpublished!.

7B. Schroer, ‘‘Wigner representation theory of the Poincare´ group, localization, statistics, and theS-matrix,’’ Nucl. Phys.
B 499, 519–546~1997!.

8B. Schroer, ‘‘Modular wedge localization and thed5111 formfactor program,’’ Ann. Phys.275, 190–223~1999!.
9E. P. Wigner, ‘‘On unitary representations of the inhomogenous Lorentz group,’’ Ann. Math.40, 149–204~1939!.

10M. Reed and B. Simon,Methods of Modern Mathematical Physics~Academic, San Diego, 1975!.
11J. J. Bisognano and E. H. Wichmann, ‘‘On the duality condition for a Hermitian scalar field,’’ J. Math. Phys16,

985–1007~1975!.
12H. Epstein, ‘‘Some analytic properties of scattering amplitudes in quantum field theory,’’ inAxiomatic Field Theory,

Vol. 1 in Brandeis University Summer Institute in Theoretical Physics, 1965~Gordon and Breach, New York, 1966!, pp.
1–133.
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Effect of couplings weakening and reversing
in ferromagnetic Ising systems—
Rigorous inequalities
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James L. Monroe
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We consider Ising systems where all the many-spin couplingsJA are positive. We
show that the absolute value of all the many-spin correlations does not increase
when the value of any of the couplings is reduced, taking any value in the interval
@2JA ,JA#. Results of this type are motivated by work in systems such as random
field Ising models. ©2000 American Institute of Physics.
@S0022-2488~00!00209-7#

Ferromagnetic Ising systems in the presence of position dependent magnetic fields h
tracted a lot of interest over the last three decades, in particular in the context of the random
problem. It turned out that rigorously proven inequalities, such as in Refs. 1, 2, played an i
tant role in understanding that system and in evaluating various theoretical approaches.

Our purpose in the present article is to compare the correlation of spins in the most g
ferromagnetic Ising system with the same correlations but in a system in which some or all
interactions have been reduced. Reduced in such a way that their final values may in f
negative, although the sum of an interaction in the original system and the corresponding
action in the reduced system must be non-negative. We prove that the value of a man
correlation in the original system is greater than or equal to the absolute value of the spin
lation in the reduced system. This result does not follow immediately from previous inequa
such as the second Griffiths, Kelly, Sherman inequality~hereafter GKS!3,4 because the reduce
system can have negative, i.e., anti-ferromagnetic, interactions. It is true that as long as
couplings in the reduced system remain nonnegative then the inequality follows. In fact i
case the correlations are monotonically increasing functions of any coupling. This is not th
if some of the couplings become negative. Indeed, it is not difficult to construct examples in w
when some of the couplings become negative the many-spin couplings are not monotonic
coupling strengths.

We will be using the method of ‘‘duplicate’’ variables in our proof. Such a technique has
used to prove a number of previous correlation inequalities. For one dimensional spins, inc
Ising spins, higher spins such as spin61 and 0 systems, and spins allowed to take on a continu
range of values, see the review of correlation inequalities by Sylvester.5

Consider two systems of Ising spins, each situated on a set of sitesV, one described by the
unprimed Hamiltonian,

H52 (
A#V

JAsA , ~1!

a!Electronic mail: mosh@tarazan.tau.ac.il
b!Electronic mail: avishaye@tarazan.tau.ac.il
60900022-2488/2000/41(9)/6090/3/$17.00 © 2000 American Institute of Physics
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the other by the primed Hamiltonian,

H852 (
A#V

JA8sA8 , ~2!

and the sum overA is over all subsets ofV. The notationsA is used for the product of all spin
belonging toA,

sA5)
i PA

s i . ~3!

We then have the following theorem.
Theorem: For any subsetA of V,

^sA&>u^sA&8u, if JA>0 and uJA8 u<JA , ~4!

where^ &8 indicates that the thermal average is for the primed system.
Proof: We need to show that both

DA
2[^sA&2^sA&8>0 and DA

1[^sA&1^sA&8>0, ~5!

or, as may be denoted simply, to show thatDA
6[^sA&6^sA&8>0.

The techniques we will be using in the following are closely related to those reviewe
Sylvester.5 We start by representingDA

6 as

DA
65

(ssAe2bH

(se2bH 6
(s8sA8e2bH8

(s8e
2bH8

5
(s(s8~sA6sA8 !e2bHe2bH8

(s(s8e
2bHe2bH8

. ~6!

The denominator, as a sum of positive terms, is obviously positive, and therefore, we need t
that

D̃A
6[(

s
(
s8

~sA6sA8 !e2bHe2bH8>0. ~7!

In order to do so, we define for each sitei PV

t i[
1
2 ~s i1s i8! and qi[

1
2 ~s i2s i8!, ~8!

so that

s i5t i1qi and s i85t i2qi . ~9!

Substitutingt ’s andq’s, for all s’s ands8’s, in Eq. ~7!, we have

D̃A
65(

$s%
(
$s8%

H )
i PA

~ t i1qi !6)
i PA

~ t i2qi !J 3 )
B#V

expFbJB)
j PB

~ t j1qj !1bJB8 )
j PB

~ t j2qj !G .
~10!

Consider first the curly brackets in the equation above. For any choice of the sign, it is clea
expanding the products that any term with a negative prefactor, coming from the second pr
is canceled by a matching term with a positive prefactor, coming from the expansion of th
product. The result is that only multiples oft ’s andq’s with positive prefactors are left. Conside
next a single exponent in the product overB. Imagine then expanding the products in the exp
nents as above. When expanding the second product in the exponent, some of the product ’s
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andq’s have a prefactor that isbJB8 and some have a negative prefactor that is2bJB8 . As a result,
the whole exponent is made up of a sum of products oft ’s andq’s, some having a prefactor tha
is b(JB1JB8 ) and some having a prefactor that isb(JB2JB8 ). Because of the restrictions in~4!,
both,JB1JB8 , andJB2JB8 , are positive. So, in the exponent we have the sum of products ot ’s
and q’s with positive prefactors. Next we expand the exponential and then take the produ
exponentials. The result is still a sum of products oft ’s andq’s with positive prefactors.

We show next that, when summing over configurations of the two spin systems, each o
terms gives either zero or a positive contribution. In order to do so, we collect for each of
terms all thet ’s andq’s by site. Thus each site is represented in each of these terms by a
of the form

S i[ (
s i561

(
s i8561

t i
aqi

g5 (
s i561

(
s i8561

~s i1s i8!a~s i2s i8!g. ~11!

As our concluding step, we show now the r.h.s. of Eq.~11! to be nonnegative. Calculating
explicitly we have

S i55
0, aÞ0 and gÞ0,

(
s i561

(
s i8561

~s i2s i8!g52g1~22!g>0, a50 and gÞ0,

(
s i561

(
s i8561

~s i1s i8!a52a1~22!a>0, aÞ0 and g50.

~12!

This completes the proof.
Comparing the l.h.s. of Eq.~11! with a very similar expression given by Sylvester~the l.h.s.

of Eq. ~22! in Ref. 5!, we believe that the theorem proven here can be extended to the much
class of spin systems, considered by Sylvester.

The first two authors have an independent proof using a ghost spin approach similar to
Ref. 3.
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Quantum time and spatial localization: An analysis
of the Hegerfeldt paradox
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Two related problems in relativistic quantum mechanics, the apparent superluminal
propagation of initially localized particles and dependence of spatial localization on
the motion of the observer, are analyzed in the context of Dirac’s theory of con-
straints. A parametrization invariant formulation is obtained by introducing time
and energy operators for the relativistic particle and then treating the Klein–Gordon
equation as a constraint. The standard, physical Hilbert space is recovered, via
integration over proper time, from an augmented Hilbert space wherein time and
energy are dynamical variables. It is shown that the Newton–Wigner position op-
erator, being in this description a constant of motion, acts on states in the aug-
mented space. States with strictly positive energy are nonlocal in time; conse-
quently, position measurements receive contributions from states representing the
particle’s position at many times. Apparent superluminal propagation is explained
by noting that, as the particle is potentially in the past~or future! of the assumed
initial place and time of localization, it has time to propagate to distant regions
without exceeding the speed of light. An inequality is proven showing the Heger-
feldt paradox to be completely accounted for by the hypotheses of subluminal
propagation from a set of initial space–time points determined by the quantum time
distribution arising from the positivity of the system’s energy. Spatial localization
can nevertheless occur through quantum interference between states representing
the particle at different times. The nonlocality of the same system to a moving
observer is due to Lorentz rotation of spatial axes out of the interference minimum.
© 2000 American Institute of Physics.@S0022-2488~00!00609-5#

I. INTRODUCTION

It is well known that there are problems in relativistic quantum mechanics regarding issu
spatial localization and causality. Although it has been generally acknowledged since the pa
Newton and Wigner1 that positive energy states exist which are spatially localized at a partic
time, Fleming,2 Hegerfeldt,3–6 and others7 have shown that such states do not remain locali
under time evolution; an effect which has been dubbed8 the ‘‘Hegerfeldt paradox.’’ Its simples
demonstration is with the relativistic Klein–Gordon particle with a free positive energy Ha
tonian

H~pŴ !5c~pŴ 21m2c2!1/2, ~1.1!

wherepŴ 5( p̂1,p̂2,p̂3) is the momentum,c the speed of light, andm the rest mass. If we take

strictly localized stateuc& and translate it alongrW under the translation operatorÛ(0,rW )

5e2 ipŴ •rW/\, there exists some minimumr such thatÛ(0,rW )uc& is orthogonal touc&. But if

Û(0,rW )uc& evolves under the evolution operatorÛ(ct,0)5e2 iĤ t/\ for any time t, the scalar

product ofuc& and Û(ct,0)Û(0,rW )uc& is

a!Present address: Lockheed Martin Aeronautics Company, P.O. Box 748, Fort Worth, Texas 76101; electron
vonzuben@ieee.org
60930022-2488/2000/41(9)/6093/23/$17.00 © 2000 American Institute of Physics
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^cuÛ†~ct,rW !uc&5
c

2\ E
2`

1` d3p

v~pW !
expS i

\
pW •rW DexpF i

\
~pŴ 21m2c2!1/2ctG uc~pW !u2, ~1.2!

where v(pW )5H(pW )/\ is the frequency. According to a theorem on the analyticity of Fou
transforms,9,10 ~1.2! cannot vanish because its Fourier transform is not an entire function
exponential in (pW 21m2c2)1/2 has singularities~branch points! on the complex hyperplane at th
roots of pW 252m2c2. Thus Û(ct,rW)uc& is not orthogonal touc& for any rW and anytÞ0. An
apparent consequence is that the particle can be found outside the light cone of the initial lo
which is inconsistent with special relativity.

A similar result is suggested by the systems’ phase velocities. Letki5pi /\ be the wave
number along some axis; then the phase velocity isv/ki5cApW 21m2c2/pi . Its magnitude is
always greater thanc, again implying superluminal dispersion of the wave packet. But the ap
ent conclusion that the particle actually travels faster than light contradicts well under
theorems11 identifying the particle’s velocity with thegroup velocity dv/dki5cpi /ApW 21m2c2,
whose magnitude is alwaysless than c.

Yet another problem is revealed by the theorem on Fourier transforms cited above.
states which are localized at a particular instant of time are so in only one frame of refer1

They have infinite spatial extent in any reference frame moving relative to that frame. I
example just given, att50, Eq.~1.2! vanishes for somer. But if we transformuc& andÛ(ct,rW)uc&
into a reference frame moving relatively with velocityvW in the direction ofrW and calculate their
scalar product att50, we obtain

^c̃uÛ†~0,rW !uc̃&5
c

2\
E

2`

1` d3p̃

v~pW̃ !
expS i

\
gpW̃ •rW D expF i

\
g~pW̃ 21m2c2!1/2bW •rWG

3UcFgS pW̃ 1
bW

c
\v~pW̃ !D GU2

, ~1.3!

where the tilde symbol indicates quantities transformed to the new frame of reference;bW [vW /c;

and g[(12bW 2)21/2. Again, ~1.3! cannot vanish for anyrW because of the exponential in (pŴ 2

1m2c2)1/2. Apparently spatial localization is not only an extraordinarily fleeting condition,
one which depends on the motion of the observer.

These problems have received various interpretations,8,12–14most commonly that the notion o
spatial localization is not well defined in relativistic quantum mechanics: because a loca
potential, or the measurement interaction may cause particle/antiparticle pair creation, a
indistinguishability of resulting particles renders localization meaningless, it is argued t
satisfactory relativistic description must include indefinite number states, i.e., quantum
theory.8,13 But a free particle has no localizing potential which could induce the transitions
tween particle number states corresponding to particle creation or annihilation. The interac
the position measurement itself might be thought to do so, but no reference to this interac
found in the problems cited above; it is not included in the theory. In any case, difficulties wit
concept of localization are not restricted to cases involving a position operator. The Eins
Podolsky–Rosen paradox15,16 can be formulated without explicit position operators, as can F
mi’s two-atom system,17 which has recently been re-evaluated by Hegerfeldt5 and others.18 For
this and other reasons, Fleming14 and others19 stress the need to resolve these issues wi
quantum mechanics.

In this paper we propose a resolution to these problems based on the parametrization in
formulation of quantum mechanics. The central idea is that the positive energy particle can
assigned a definite time, and problems arise from an unwarranted identification oftime of the
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measurementwith the time of the particle. The tacit assumption that these times must be the s
is traceable to the strict interpretation in quantum mechanics of time as a parameter, no
namical variable.

In the standard theory a measurement with, say, the~Heisenberg picture! Newton–Wigner

operatorQŴ (t) on a stateuc& yielding resultrW is considered to imply the event of the particle bei
at the space–time point (ct,rW). Since per Eq.~1.2! two consecutive measurements can yield t
such results having spacelike separation, superluminal propagation is inferred. But suppo

particle possessed, in addition to its three spatial variablesqŴ 5(q̂1,q̂2,q̂3), a quantum time vari-
able q̂0. Then another interpretation is possible:rW is the position of the particle extrapolated toa
particular value of the particle’s time, q05ct, ct being the time of measurement20,21 ~in units of
distance from the factorc!. By ‘‘time of measurement’’ we mean the time on the experimente
clock, assumed definite, when the measurement occurs. By ‘‘time of the particle’’ we refe
quantum variable which is indefinite. Eigenvalues ofq̂0 other thanct are allowed, corresponding
to space–time points in the past and the future of (ct,rW). The locus of points arising from the
particle’s time uncertainty about the two measurementtimesincludes pairs of space–time poin
associated with any two measurementresultswhose separation istimelike. Conclusions of super-
luminal propagation can thus be overcome.

This hypothesis raises another possibility: localization on a particular spacelike hyperpl
an interference minimum arising from superposition of states having different values ofq0. The
non-locality of the same state viewed from another frame of reference is the result of Lo
rotation of the spatial coordinate axes out of the hyperplane wherein the localized interfe
minimum occurs.

Numerous quantum time formulations have been proposed~summaries may be found in Refs
22–24!. One which remains of interest, because of its manifest Lorentz covariance, is the p
time ~or indefinite mass! formulation of quantum mechanics.20,21,25In the context of this theory, in
which time in the rest frame is the parameter while time in other frames of reference is quan
Horwitz and Usher show that states having equal distributions of positive and negative ene
not exhibit the Hegerfeldt paradox.21 But a drawback of this description is the unphysical inde
nite mass, implied by the canonical time operator.19,26However, definite masses may be recove
through the Dirac theory of constraints.27,28 The resulting formulation has been called parame
zation ~or reparametrization! invariant,29 because the action integral is unchanged regardles
which timelike variable serves as the parameter.

The parametrization invariant formulation will be employed in this paper. For simplicity,
will focus on the free Klein–Gordon particle; however, our results apply also to higher
particles and particles in an external potential, as will be discussed in Sec. III. In Sec.
parametrization invariant formulation is developed, yielding a description of a constrained s
wherein observables appear as constants of the motion. A physical Hilbert space is deriv
integration over the proper time, from an augmented Hilbert space in which time and ener
dynamical variables. The Newton–Wigner operator is then derived naturally from the cla
position observable. In Sec. III these results are applied to reveal the Hegerfeldt paradox a
non-Lorentz invariance of localized states to be consequences of the time indeterminacy o
tive energy states. The main result of this paper is an inequality showing that the quantum
distribution of the particle entirely accounts for the probability of finding that same particle ou
the light-cone of the assumed initial time and place of measurement, without assuming su
minal velocities. Conclusions are given in Sec. IV.

II. THE PARAMETRIZATION INVARIANT FORMULATION

In order to make this paper self-contained and introduce notation, we will briefly review D
constraint theory as applied to the relativistic particle. Dirac showed that, for any physical sy
it is possible to take the time parameter as anadditional coordinate, introduce anew parameterto
track system progress, and then impose the physical constraints which are implied b
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formulation.27 When quantized, the physical states are just those of the standard noncons
theory; however, the description suggests a freedom in time which the standard theory do
recognize.

In constraint theory, constraints are classified as first or second class according to whe
not they Poisson-commute with all other constraints. Systems having only first class cons
can be quantized by well-established procedures. This method was originally developed D27

and Bergmann28 during the 1950’s, having as one objective a quantum theory of gravity.23,29It has
since found numerous applications, especially in field theories. See Refs. 30 and 31 for
discussions.

A. Classical description of the free particle as a constrained system

We take as a starting point32 a LagrangianL52mc(c22vW 2)1/2 dependent on three spatia
velocitiesv i[dqi /dt, from which the usual Hamiltonian is obtained by computing the conjug
momentapi[]L/]v i and performing the Legendre transformationH[piv

i2L ~repeated indices
imply summation, italic indices running over the three spatial axes!. The resulting expression
when quantized, is Eq.~1.1!.

1. The Dirac Hamiltonian

To obtain a parametrization invariant description, we will takect as anadditional coordinate
q0, introduce anew parametert ~which is real valued and has units of time!, and define a new
LagrangianLS in terms ofL,

LS[S dt

dt DL52mc~ q̇mq̇m!1/2. ~2.1!

LS is manifestly Lorentz covariant, depending on four canonical velocitiesq̇m[dqm/dt ~through-
out this paper the overdot means differentiation with respect tot, not t; repeated Greek indice
imply summation over the four space–time axes; and the metric tensor is diagonal with ele
gmm511,21,21,21!. The canonical momenta are defined

pm[2
]LS

]q̇m 5
mcq̇m

~ q̇vq̇v!1/2. ~2.2!

The minus sign in the definition of the momenta is determined by choice of metric and relati
sign conventions.33,34 Equation~2.2! yields, besides the three spatial momentapi already defined
in the previous paragraph, an additional temporal momentump0 .

Since the dependence oft on t is not yet specified, the denominator (q̇vq̇v)1/25(dt/dt)(c2

2vW 2)1/2 of ~2.2! contains the arbitrary factordt/dt. Therefore, the four momentapm are not
uniquely defined in terms of the velocitiesq̇m , and the system is ‘‘singular’’ in the sense of Re
35 ~hence the subscriptS!. Furthermore, the four momenta are not all independent of each o
from Eq. ~2.2! the sum of the squared momenta ism2c2. We recognize this as aprimary, first
class constraint, since it is implied byLS , and~as will be shown! it Poisson commutes with othe
constraint~s! to be identified below. We formally write this constraint as follows:

w[pmpm2m2c2'0. ~2.3!

Constraint~2.3! will become the Klein–Gordon equation when quantized. The symbol' denotes
a weak equality, which, in constraint theory terminology meansw is not set to zero untilafter any
Poisson brackets in a given expression have been calculated.27 Physically, this constraint reflect
the fact that not all values of the four momenta are accessible to the system;p is constrained to
hyperboloid~2.3!. We may rewrite Eq.~2.3! asp0'6H/c, i.e., the energy is proportional to th
standard Hamiltonian.
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The LagrangianLS is homogeneous of the first degree in the velocitiesq̇u. Consequently,
from Euler’s theorem on homogeneous functions,35 a vanishing canonical Hamiltonian is ob
tained, defined by the Legendre transformation

HC[2pmq̇m2LS50 ~2.4!

@the minus sign precedingpmq̇m follows from that in Eq.~2.2!#. The Dirac Hamiltonian, denoted
HD , is defined as the sum of the canonical HamiltonianHC , and each primary first class con
straint multiplied by an undetermined multiplierl. SinceHC vanishes, and there is~as yet! only
one constraint,HD consistsentirely of the constraintw multiplied by l. We may replacel with
l/2m to provide a form ofHD analogous to a nonrelativistic Hamiltonian with constant potent
thus obtaining

HD5
l

2m
w5

l

2m
~pmpm2m2c2!. ~2.5!

In analyzing the Hegerfeldt paradox we shall be concerned with the propagation of the p
from one space–time pointx8(t8)5(x80,xW8) to anotherx9(t9)5(x90,xW9). The total action for
this propagation is

J~t8,t9!5E
t8

t9
dt L5E

t8

t9
dt

dt

dt
L5E

t8

t9
dt LS'E

t8

t9
dt~2pmq̇m2HD!. ~2.6!

From ~2.6! we note that, as long asx8m(t8)5x8m(t8) and x9m(t9)5x9m(t9), the actionJ is
invariant under the reparametrizationt→t.23 It is also proportional to the length of the particle
world line, sincedJ52mc(gmndqm dqn)1/2.36 Between endpoints, the trajectory follows from th
requirement thatJ be stationary, leading, from the last equality in Eq.~2.6!, to Hamilton’s equa-
tions of motion. These equations will be written with the aid of the fundamental Poisson br
relations,

@qm,pn#P5dn
m , ~2.7a!

@qm,qn#P5@pm ,pn#P50, ~2.7b!

where dn
m51, m5n; 0, mÞn is the Kronicker delta, and@A,B#P[(]A/]qm)(]B/]pm)

2(]B/]qm)(]A/]pm) is the Poisson bracket. Hamilton’s equations of motion are then

q̇m5@qm,HD#P5
l

2m
@qm,w#P1

1

2m
@qm,l#Pw'l

pm

m
, ~2.8a!

ṗm5@pm ,HD#P5
l

2m
@pm ,w#P1

1

2m
@pm ,l#Pw'0. ~2.8b!

Comparison of~2.8a! and ~2.2! reveals thatl5(q̇nq̇n)1/2/c ; in other words, the multiplierl
is a function of the velocities, carried into the Hamiltonian formalism because the momenta a
uniquely determined.27 Sincel may vary arbitrarily and still yield a Hamiltonian such that th
system remains on the constraint hypersurface~2.3!, it is a gauge variable without physical sig
nificance. In fact, a well-known feature of the parametrization invariant formulation is that ‘‘
tion’’ generated by the Dirac HamiltonianHD is indistinguishable from gauge
transformations.23,29–31,34

2. Gauge fixation and the definition of observables

In order to fix the gauge, we place a new constraint directly onl,23,34 specifically requiring
that l be a constant of the motion through the condition
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wg5l̇5
]l

]t
1@l,HD#P5

]l

]t
1

l

2m

]l

]qm pm'0. ~2.9!

From ~2.9! we may write, using~2.8a! and ~2.2!,

dqm dqm2@cd~l t!#2'0. ~2.10!

Therefore, we identifylt with the proper time. This gauge is accordingly referred to asthe proper
time gauge. Since@wg ,w#P'0, both constraintsw andwg are first class.

Now let us return to Eqs.~2.8!. Since~2.8b! vanishes weakly, the momentapm are constants
of the motion. On the other hand~2.8a! does not vanish, and as a resultl appears in the fina
expression forq̇m. This makesqm(t) dependent on the gauge choice~2.9!,24,29,34so the coordi-
nates remain arbitrary. In gauge theories, observables must begauge invariant,30,31 and since in
the parametrization invariant formulationHD is the generator of gauge transformations,observ-
ables must poisson-commute weakly with HD . That is, observables must be constants of t
motion. This requirement is not met by the coordinatesqm. But if we subtract from thespatial
coordinateqi the i th component of the three-velocity multiplied by the time coordinateq0, we
obtain a constant of the motion. Using~2.8a! and ~2.2! we write

v i5c
dqi

dq0 5c
q̇i

q̇0 5c
pi

p0 . ~2.11!

Thus, the quantity

Qi5qi2
pi

p0
q0 ~2.12!

has weakly vanishing Poisson brackets withHD ~as may be checked!. Also, the three quantitiesQi

have weakly vanishing Poisson brackets with each other. The three-vectorQW 5(Q1,Q2,Q3) will
therefore be taken as an observable corresponding to the spatial position of the particle e
lated to the timeq050.37 In fact it is Qi , not qi , which when quantized is an Hermitian operat
on the physical Hilbert space, where it is equivalent to the Newton–Wigner position opera

B. Quantum description of the free particle as a constrained system

Quantization is accomplished as in standard quantum mechanics by formally replacin
dynamical variables with operators, and replacing the Poisson bracket with the commuta
vided by i\. This leads to a Schro¨dinger equation involving the Dirac Hamiltonian and th
parametert. As in the standard theory, expectation values correspond to classical quantitie
recover the physical description, constraints~2.3! and ~2.9! are imposed on the system. Bu
constraints cannot simply be written as relations between operators; for instance, we canno

~2.3! as p̂056ApŴ 21m2c2, because this would eliminatep̂0 and q̂0 as independent variables
which is inconsistent with Poisson brackets~2.7!. Instead, we recognize that operators have sta
corresponding to all mathematical values of the dynamical variables. We will refer to
generalized states asaugmentedstates, and we denote the Hilbert space to which they belon
Kaug. Constraints, on the other hand, areconditions set on states, consistent with their classica
description as weak equalities@see Eq.~2.3!#. States satisfying the constraint relations are refer
to asphysicalstates, belonging to the physical Hilbert spaceKphy. Since the primary constraint i
actually the Klein–Gordon equation, and physical states are solutions to this equation, the p
states are the same as those of standard relativistic quantum mechanics.
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1. Quantization

We now proceed with quantization of the system. The Dirac Hamiltonian is

ĤD5
l̂

2m
ŵ5

l̂

2m
~ p̂mp̂m2m2c2!, ~2.13!

where the constraintŵ and the multiplierl̂ are now shown as operators~quantum operators ar
designated with the caret!. The fundamental commutation relations are

@ q̂m,p̂n#5 i\dn
m , ~2.14a!

@ q̂m,q̂n#5@ p̂m ,p̂n#50, ~2.14b!

where@Â,B̂#[ÂB̂2B̂Â. The equations of motion~2.8! have the quantum form

d

dt
^c~t!uÂuc~t!&5^c~t!u

]Â

]t
1

1

i\
@Â,ĤD#uc~t!&, ~2.15!

where in~2.15! Â is an arbitrary function ofq̂m, p̂m , or l̂. Equation~2.15! leads to the Schro¨-
dinger equation in the same way as in standard nonrelativistic quantum mechanics,

i\
d

dt
uc~t!&5ĤDuc~t!&, ~2.16!

and has solutions of the form

uc~t!&5expS 2 i

\
ĤDt D uc~0!&. ~2.17!

The proper-time constraint~2.9! is imposed as a condition on the states

^c~t!uŵguc~t!&5^c~t!u
]l̂

]t
1

1

i\
@l̂,ĤD#uc~t!&50. ~2.18!

Finally, to meet the condition of gauge invariance as stated in Sec. II A 1, every observaÔ
must commute with the constraint operatorŵ:

@Ô,ŵ#50. ~2.19!

2. The augmented Hilbert space

The linear vector space of normalizable solutions of the Schro¨dinger equation~2.16! com-
prises theaugmented Hilbert spaceKaug. Operatorsp̂m , q̂m, and l̂ are assumed Hermitian o
Kaug,

38 and the scalar product onKaug is

^f~t8!uc~t!&5E
2`

1`

d4p f* ~p,t8!c~p,t!5E
2`

1`

d4q f* ~q,t8!c~q,t!, ~2.20!

where coordinate-representation functionsc(q0,q1,q2,q3,t) are defined in terms of the Fourie
transform, c(q,t)5(2p\)24/2*2`

1`d4p exp(2i/\pmqm)c(p,t), of functions c(p0 ,p1 ,p2 ,p3 ,t).
The identity operator inKaug is expressible in terms of orthonormal and complete sets of eig
vectorsupm& and uqm& of p̂m and q̂m,

^p8up&5d~4!~p2p8!, ~2.21a!
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^q8uq&5d~4!~q2q8!, ~2.21b!

Î 5E
2`

1`

d4pup&^pu5E
2`

1`

d4quq&^qu, ~2.22!

whered(x) is the Dirac delta function~except where otherwise noted, basis vectors forKaug are
shown asug&5ug0& ^ ug1& ^ ug2& ^ ug3&!.

3. The physical Hilbert space

Unlike the augmented Hilbert spaceKaug, whose simple structure resembles nonrelativis
quantum mechanics, the physical Hilbert spaceKphy, is complicated by constraints. To understa
the Hegerfeldt paradox, it will be necessary in Sec. III to make use of expressions defined oboth
Kaug andKphy; that is, we will represent states and operators defined onKphy in terms of coore-
sponding quantities defined onKaug. We shall therefore briefly discuss the mathematical relati
ship between the two Hilbert spaces. Further discussion may be found in Refs. 24, 34, an

The constraintŵ determines the physical state vectors, which are solutions of

^quŵuc&5^qu p̂mp̂m2m2c2uc&5F2\2
]2

]q02 1\2¹22m2c2Gc~q!50. ~2.23!

We recognize in~2.23! the Klein–Gordon equation, from which two observations are made:~1!

physical states are eigenstates ofĤD with eigenvalue zero~sinceĤD containsŵ as a factor!; and
~2! physical states are solutions of the Klein–Gordon equation. From Eq.~2.16!, such states are
independent of the parametert; accordingly, physical statesuc& will be distinguished notationally
from augmented statesuc~t!& simply by the absence of the parametert in their argument. Physica
states are not generally normalizable inKaug,

29,31,39and therefore belong to the separate Hilb
spaceKphy, the state space of standard relativistic quantum mechanics.

To derive the scalar product inKphy, we take the scalar product inKaug of statesux8(t8)& and
ux9(t9)&, then integrate over their proper-time differencel̂(t92t8):

^x90,xW9ux80,xW8&5~2m!21E
2`

1`

d~t92t8!^x9~t9!ul̂ux8~t8!&

5E
2`

1`

d~t92t8!^x9~0!ul̂ exp@ i l̂ŵ~t92t8!#ux8~0!&

52p\^x9~0!ud@ p̂mp̂m2m2c2#ux8~0!&. ~2.24!

Note that the gauge constraint~2.18! allows us to eliminatel̂ in ~2.24! ~becausel̂ commutes
weakly with ŵ!. Equation~2.24! is a sum over historiesfor all paths connecting the space–tim
points x85(x80,xW8) and x95(x90,xW9). Since the duration of each history in terms of its prop
time l̂t is equal to the length of that history’s path@see Eq.~2.10!#, and all histories contribute to
the total transition amplitude, setting the integration range in~2.24! to ~2`, 1`! yields thetotal
propagatorfrom x8 to x9 andvice versa.23,24The classical trajectory emerges through destruc
interference between all paths except those for which the phase of the integrand is statio40
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We may write Eq.~2.24! in the momentum representation by inserting Eq.~2.2!:

^x90,xW9ux80,xW8&5~2p\!23E
2`

1` d4p

2up0u
expF i

\
pm~x9m2x8m!G

3@d~p02ApW 21m2c2!1d~p01ApW 21m2c2!#

5~2p\!23E
2`

1` d3p

ApW 21m2c2
expF i

\
pW •~xW82xW9!GcosF 1

\c
H~pW !~x802x90!G ,

~2.25!

whereH(pW ) is the standard Hamiltonian~1.1!.41 Equation~2.25! is the Hadamard~or Schwinger!
Green’s function,42 which will be taken as the scalar product ofphysical statesux80,xW8& and
ux90,xW9&. These states may be written asux0,xW &[ux0,xW 1&1ux0,xW 2&, the sum of positive and
negative energy states, which in turn may be writtenux0,xW 6&5e(7 i /\c)H(pW )x0

uxW &, whereuxW & satis-
fies qŴ uxW &5xW uxW & ~basis vectors forKphy are shown asugW &5ug1& ^ ug2& ^ ug3& unless noted other
wise!. Note that the Lorentz invariant momentum-space measured3p/ApW 21m2c2 @obtained in
evaluating~2.25!# preventsux0,xW & and ux0,xW 6& from being orthogonal for different values ofx,
consistent with the fact thatqŴ 5 i\“pW is not Hermitian onKphy.43

Equation~2.24! or ~2.25! could serve as the starting point for a path integral formulation
relativistic quantum mechanics, and Halliwell and Ortiz observe24 that the Hadamard Green’
function ~2.25! supports causal propagation. Furthermore, the author shows elsewhere34 that the
Hegerfeldt paradox can be explained by noting that the endpoints of path integrals represen
apparent noncausal propagation are separated by timelike intervals. In this paper, howe
shall adhere to the canonical formulation of relativistic quantum mechanics, but we will reta

negative-energy sector. The momentum eigenstatesupW 6& satisfying pŴ upW 6&5pW upW 6& and p̂0upW 6&
56ApW 21m2c2upW 6& form together an orthonormal complete basis forKphy:

^pW 18 upW 1&5^pW 28 upW 2&52ApW 21m2c2d~3!~pW 2pW 8!, ~2.26a!

^pW 28 upW 1&50, ~2.26b!

Î 5E
2`

1` d3p

2ApW 21m2c2
~ upW 1&^pW 1u1upW 2&^pW 2u!. ~2.27!

The scalar product in the momentum representation is therefore

^fuc&5E
2`

1` d3p

2ApW 21m2c2
@f1* ~pW !c1~pW !1f2* ~pW !c2~pW !#, ~2.28!

where c6(pW ) are the positive and negative frequency portions of the functionc(pW )5c1(pW )
1c2(pW ). Defining the coordinate representation functionsc6(q) as Fourier transforms

c6~q!5~2p\!23/2E
2`

1`

d3p e~ i /\!@pW •qW 7H~pW !q0/c#c6~q!/2ApW 21m2c2

of c6(pW ), wherec(q)5c1(q)1c2(q) is the sum of the positive and negative frequency co
ponents, the scalar product in the coordinate representation inKphy becomes

^fuc&5
i\

2 E
2`

1`

d3qFf1* ~q!
]J

]q0 c1~q!2f2* ~q!
]J

]q0 c2~q!G , ~2.29!
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where the symbol]/]J x is defined byf(]/]J x)c[f(]c/]x)2(]f/]x)c. Using coordinate eigen
statesux0,xW 6& defined below Eq.~2.25! ~Fourier transforms ofupW 6&!, the identity operator forKphy

in the coordinate representation is

Î 5
i\

2 E
2`

1`

d3qS uq0,qW 1&
]J

]q0 ^q0,qW 1u2uq0,qW 2&
]J

]q0 ^q0,qW 2u D . ~2.30!

The unusual resolution of~2.30!, with negative frequency terms subtracted, accounts for the sc
product being positive definite despite inclusion of negative energies.24

For a givenl̂, the time coordinateq̂0 may move forward or backward according asp̂0 is
positive or negative@see Eq.~2.8a!#. Negative energies correspond to the antiparticle. Since
productp0q̇0 does not change sign, the action, Eq.~2.6!, is unchanged by transitions6p0 . Note
that c21( p̂mp̂m)1/2 is a mass operator, implying that quantum states in this formulation h
indefinite mass; however, discrete mass eigenvalues6m are recovered on physical states with1m
yielding the decreasing action integral~2.6!.

4. Representation of physical states in terms of augmented states

We conclude this section by showing how an arbitrary physical state may be represen
terms of augmented states. The key to this representation is integration of the augmente
over the proper time. For an arbitrary physical stateuc&, there exist augmented statesuc~t!& such
that34,39

uc&5~2pm\!21E
2`

1`

d~ l̂t!N̂uc~t!&5p21E
2`

1`

dt e2 i ŵtN̂uc~0!&52d~ŵ !N̂uc~0!&.

~2.31!

N̂ is a normalizing factor chosen to permituc& and uc~t!& to be normalized, respectively, inKphy

andKaug ~i.e., ^c(t)uc(t)&5^cuc&51!. We require that@N̂,ŵ#50. The resulting stateuc& satis-
fies constraint~2.23!, and is thus physical. An example of this representation for Newton–Wig
states is given below in Eq.~2.36!.

We now make an important observation about observables acting on physical states. S
observableÔ commutes with constraintŵ, per Eq.~2.19!, we may write

Ôuc&5p21E
2`

1`

dt exp~2 i ŵt!Ô@N̂uc~0!&]. ~2.32!

In other words, we may first moveÔ under the integral to the right ofe2 i ŵt, operate on the
corresponding augmented state, and then integrate over the proper time.

C. Spatially localized states and the position observable

It was noted below Eq.~2.25! that the physical statesux0,xW & and ux0,xW 6& are not orthogonal
for different values ofx because of the factor (pW 21m2c2)21/2 appearing in the physical momen
tum space measure. Localized states such as Newton–Wigner states can be orthogonal
they are proportional to (pW 21m2c2)1/4; this renders the scalar product an entire function,
spoils the states’ Lorentz invariance, localization occurring in only one frame of reference.
remainder of this paper it is understood, unless stated otherwise, that the discussion pertain
particular frame of reference.

1. Newton –Wigner states

To incorporate Newton–Wigner states into our formalism, we wish to represent them ter
augmented states, as in Eq.~2.31!. SinceKphy includes states with positive and negative ener
while Newton–Wigner states are restricted to either positive or negative energy, there is roo
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two orthogonal copies of each physical position state for everyxW . To restrict the states which w
shall construct to a single energy sector, we will first define a basis of positive~negative! energy
augmentedstates as follows:

ux6~t!&[u~6 p̂0!ux~t!&, ~2.33!

whereux(t)& is an eigenstate ofq̂ at t50 with eigenvaluex, and we insert the unit step functio
u to eliminate negative~positive! energies.

Now consider a property of statesux1(t)&: they are nonlocal in time, since their scalar
product withuq(t)& is

^q~t!ux1~t!&5~2p\!24E
2`

1`

d3p expF i

\
pW •~xW2qW !G E

2`

1`

dp0 u~p0!expF2 i

\
p0~x02q0!G

5d~3!~qW 2xW ! f ~q02x0!, ~2.34!

where

f ~q02x0!5 lim
«→10

~2p!21
i

q02x01 i«
5

i

2p
PS 1

q02x0D1
1

2
d~q02x0!, ~2.35!

P denoting Caucy principle part. The functionf, the Fourier transform of the unit step functio
u(p0), is not the delta function, implying thatux1(0)& does not represent a single point
space–time. Thetime coordinates represented byux1(0)& are distributed over~2`, 1`!, al-
though their amplitudes are strongly peaked atq05x0, as illustrated in Fig. 1. This time indeter
minacy, an example of the time-energy uncertainty relation, will be seen to be responsible
Hegerfeldt paradox.

We now define the positive~negative! energy Newton–Wigner statesux0,xWnw6&:

ux0,xWnw6&[~2pm\!21E
2`

1`

d~ l̂t!~2p\ p̂0!1/2ux6~t!&. ~2.36!

FIG. 1. Quantum time distribution of the positive energy particle. This graph represents the augmented stateux1(t)&
[u( p̂0)ux(t)& at t50, the wave function for which is given by Eq.~2.35! ~the limit «→10 is not yet taken!. Restriction
to only positive frequency results, through the Fourier transformation, in an indefinite time coordinate, which leads
localization paradoxes of corresponding physical states constructed from augmented statesux1(t)&. The line shape is that
of the Lorentzian from quantum optics.
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Comparing with Eq.~2.31!, the factorN̂ is (2p\ p̂0)1/2. Takingx050 in ~2.36! we obtain, upon
integration overt, ^pu0,xWnw6&5(pW 21m2c2)1/4e2 ipW •xW /\, the conventional Newton–Wigner state1

We also define the physical states

ux0,xW loc&[221/2ux0,xWnw1&1221/2ux0,xWnw2&, ~2.37!

equal superpositions of positive and negative energy Newton–Wigner states, which are trul
~in the Hegerfeldt sense!; hence the subscript loc.

Scalar products forux0,xW loc& and ux0,xWnw6& in Kphy are

^x80,xWnw68 ux0,xWnw6&5~2p\!23E
2`

1`

d3p expF7
i

\c
H~pW !~x02x80!GexpF i

\
pW •~xW2xW8!G ,

~2.38a!

^x80,xWnw18 ux0,xWnw2&50, ~2.38b!

^x80,xW loc8 ux0,xW loc&5~2p\!23E
2`

1`

d3p cosF 1

\c
H~pW !~x02x80!GexpF i

\
pW •~xW2xW8!G .

~2.38c!

Both Eqs.~2.38a! and~2.38c! become the delta function forx805x0. It will be noted that, unlike
~2.38a!, Eq. ~2.38c! is the Fourier transform of cos@ApW 21m2c2(x02x80)#, which is analytic on
the entire complex plane. This may be seen from the expansion cos(x)512x2/2!1x4/4!1¯

involving only even powers of the exponent, eliminating the branch point at the roots ofpW 25
2m2c2. As noted by Horwitz and Usher,21 states may therefore be constructed in terms of st
ux0,xW loc& which do not exhibit the instantaneous spreading cited by Hegerfeldt. Finally, we
that statesux0,xW loc& form a complete set onKphy, i.e.,

Î 5E
2`

1`

d3quq0,qW loc&^q
0,qW locu. ~2.39!

2. The Newton –Wigner operator

As noted in Sec. II A, observables for the Klein–Gordon particle in the parametriza
invariant formulation are constants of the motion. In particular, the classical position obser
Qi defined in Eq.~2.12! is a constant of motion, and has the meaning of the position of the par
extrapolated to the timeq050. To find the quantum operator forQi , we follow the arguments tha
lead us to Eq.~2.12!; however, for more generality we extrapolate to the timeq̂05ct. From now
on we shall treatct as aparticular value of the operatorq̂0 ~ct is therefore a number, not a
operator!.

As the time coordinate changes byDq0, the spatial position changes by (dqW /dq0)Dq0

5vW Dq0, wherevW is the spatial velocity. O’Connel and Wigner have shown11 that, in spite of the
Hegerfeldt paradox with its apparent implications regarding superluminal velocity, the s
velocity operatorv̂ i is neverthelesscp̂i / p̂0. Thus, if we subtract (q̂02ct)( p̂i / p̂0) from q̂i , we will
have ‘‘backed out’’ all motion since the timeq̂05ct, i.e., we will obtain a constant of the motion
But sincep̂0 does not commute withq̂0, it is necessary to use a symmetrized product involv
the anticommutator,$q̂0,p̂0

21%, where$Â,B̂%[ÂB̂1B̂Â. This yields

Q̂j~ t ![q̂ j2 1
2p̂

j$~ q̂02ct!,p̂0
21%. ~2.40!

Evaluating the anticommutator, Eq.~2.40! becomes in the momentum representation
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Q̂j~ t !5 i\
]

]pj
2

pj

p0
S i\

]

]p0
2ctD1

i\pj

2~p0!2 . ~2.41!

The corresponding three-vectorQŴ (t)5@Q̂1(t),Q̂2(t),Q̂3(t)# is the position of the particle ex
trapolated toq̂05ct, as was originally found by Horwitz and Piron in the context of the theory
indefinite mass.20

The observableQŴ (t) obeys the following commutation relations:

@Q̂j ,p̂k#5 i\dk
j , ~2.42a!

@Q̂j ,Q̂k#50, ~2.42b!

@Q̂j ,ĤD#uc&5
i\l̂

m S 2 p̂ j1
p̂ j

p̂0
p̂0D uc&50, ~2.42c!

where the commutator withĤD is shown multiplied into a physical state, allowing us to drop t
commutator withl̂ @i.e., @Q̂j ,ĤD# vanishes weakly; compare Eqs.~2.8!#.

The statesux0,xWnw6& and ux0,xW loc& are eigenfunctions ofQŴ (t5x0/c) with eigenvaluexW @see

Eq. ~3.18! below#. It can be shown20,21,34that QŴ (t) is Hermitian onKphy. Also, on the constraint

hypersurfacew50, QŴ (t) is just the Newton–Wigner position operator in the Heisenberg pict
i.e.,

Q̂j~ t !uw505e~6 i /\!H~pW !tF i\
]

]pj
1

i\pj

2~pW 21m2c2!Ge~7 i /\!H~pW !t. ~2.43!

We conclude this section by deriving two expansions forQŴ (t) as integral expressions o
dyads ua&Oab^bu, Oab being matrix elements, which will be employed in Sec. III. If such
expansion is in a representation for whichÔ is diagonal and statesua& are orthonormal, it is a
spectral decomposition, yielding the probability amplitude^auc& of obtaining the eigenvalueOaa

for an arbitrary stateuc&. Evidently from~2.38! and~2.39! such a representation is provided by t
statesux0,xW loc& which form an orthonormal basis forKphy. A spectral decomposition is therefor

Q̂j~ t !uw505E
2`

1`

d3quct,qW loc&qW ^ct,qW locu. ~2.44!

Expressions like *dnxux&x^xu in Eqs. ~2.44! and ~2.45! ~below! are to be read as
*dx1ux1&x1^x1u ^ *dx2ux2&x2^x2u ^¯^ *dxnuxn&xn^xnu. Since ~2.45! is constructed in terms o
physical states, it is aconstrained operator, generally valid only if not commuted with othe
operators. If we wish to obtain an expansion consistent with the Dirac constraint method

QŴ (t) must be represented byaugmented states. Using commutators~2.14!, the expressionvŴ

5cpŴ / p̂0 for velocity, and an expansion of the form*2`
1`d4quq&q^qu in place ofq̂, we obtain

QŴ ~ t !5E
2`

1`

d4ququq~t!&~1,qW !^q~t!u2vŴ E
2`

1`

d4q~ p̂0!1/2uq~t!&S q0

c
2t,1W D ^q~t!u~ p̂0!21/2,

~2.45!

where the statesuqm(t)& are eigenstates ofq̂m at t50. Equation~2.45! is not a spectral decom
position~since it is not diagonal!, but it exhibits the spectral properties of the position observa
in terms of the particle’s intrinsic quantum timeq̂0.
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III. QUANTUM TIME AND SPATIAL LOCALIZATION

In this section we propose a resolution to the spatial localization problems discussed in
For simplicity, we will begin with a positive energy Klein–Gordon particle state prepare
definitely yield the valueqW 5(0,0,0)50W when measured at timeq050 with the Newton–Wigner

operatorQŴ (0); in other words, the Newton–Wigner stateu0,0W nw1&. The Hegerfeldt paradox
suggests this system can be found at positionqW 5rW at timeq05ct, with urWu.uctu. We will show
the reason for this is simply thatu0,0W nw1& represents the particle located at 0W at different timesq0,
including times such that (ct,rW) is within the light cone of (q0,0W ).

First we will evaluate the expressionQŴ (t)u0,0W nw1& which represents this measurement in t
Dirac constraint formalism of Sec. II. Then we will present our main result: an inequality sho
that the quantum time distribution ofu0,0W nw1& completely accounts for the positive probabili
distribution of the particle outside the light cone of (0,0W ), with the particle traveling at sublumina
velocities. We will finally show that the reason positive energy Newton–Wigner states are
ized at all, in view of their time distribution, is destructive interference between contributions
different times. This interference minimum does not occur in other frames of reference, wh
why localization is not Lorentz invariant. We conclude the section with remarks generalizing
results to other particle states, and a discussion of implications for causality.

A. Analysis of a position measurement

Let us evaluate the expressionQŴ (t)u0,0W nw1&, which represents a position measurement, a
measurement timet, of the Newton–Wigner state localized at the origin at time zero. We
expressu0,0W nw1& as an expansion of augmented states as in Eqs.~2.31! and~2.36!, then move the

operatorQŴ (t) under the integral sign as in Eq.~2.32!:

QŴ ~ t !u0,0W nw1&5QŴ ~ t !F ~2pm\!21E
2`

1`

d~ l̂t!~2p\ p̂0!1/2u01~t!&G
5~2p!21/2E

2`

1`

dt exp~2 i ŵt!QŴ ~ t !~ p̂0!1/2u01~0!&. ~3.1!

Now we substitute forQŴ (t) the expansion~2.45! which represents the operator in terms
augmented statesuq(t)&:

QŴ ~ t !u0,0W nw1&5~2p!21/2E
2`

1`

dt exp~2 i ŵt!

3F E
2`

1`

d4quq~0!&~1,qW !^q~0!u2vŴ E
2`

1`

d4q~ p̂0!1/2uq~0!&

3S q0

c
2t,1W D ^q~0!uG u01~0!&. ~3.2!

Finally we multiply the expressions inside the square brackets into the augmented stateu01(0)&
@see Eq.~2.34!#, and perform the integration overt to obtain

QŴ ~ t !u0,0W nw1&5E
2`

1`

dq0 vŴ S t2
q0

c D f ~q0!uq0,0W loc&, ~3.3!

wheref is defined in~2.35!.
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Equation~3.3! is a superposition of physical statesuq0,0W loc& localized at the origin at differen
timesq0, each multiplied by an amplitudef (q0)5 iP(1/2pq0)1d(q0)/2, each multiplied in turn
by a position eigenvaluevW (t2q0/c). In other words, Eq.~3.3! predicts a spread of possibl
measurement resultsvW (t2q0/c) whose uncertainty arises from two sources:~1! the velocityvW
5cpW /p0 of the particle is indeterminate yielding different position values when multiplied b
time differencet2q0/c; ~2! the time q0 of the particle is indeterminate, yielding a range
differences t2q0/c between the time of the particle and the time of measurement.

This situation is illustrated in Fig. 2, where we exhibit the time axis and one spatial
passing through the space–time origin. Shading indicates regions for which^q0,qloc

1 u0,0nw1& does
not vanish. Besides the origin~0, 0! and measurement event (ct,r ), a point in the past (x80,0) and
another in the future (x90,0) are also plotted. Forward and backwards light cones are show
dashed lines. The vector~ct, r! is shown as spacelike, making this an illustration of the Hegerf
paradox.

It is apparent from Eq.~3.3! that the measurement receives contributions from the p
including some timex80 such that (x80,0) has~ct,r! within its light cone. But, in order to propa
gate from (x80,0) to ~ct,r! ~dashed arrow! the particle does not exceed the speed of light. It does
have to pass through theq050 line where it has zero probability of being found~save atq150!.
We return to this point in Sec. III C.

Notice that the statesuq0,0W loc& in the expansion on the right-hand side of Eq.~3.3! are not
positive energy Newton–Wigner states, but thepositive–negative energy superpositions defined
Eq. ~2.37!. The negative energy components represent~in relativistic quantum mechanics!
backward-in-time motion. Thus, the measurement also receives contributions from thefuture. This
contribution includes some timex90 such that~ct,r! is within the backward light cone of (x90,0).
Again, to propagate from (x90,0) to ~ct,r! ~dashed arrow! the particle does not exceed the speed
light.

FIG. 2. Minkowski diagram of Hegerfeldt scenario. Shading notionally depicts regions where the Newton–Wigne
tion ^q0,qloc

1 u0,0nw1& is nonvanishing. Both proper and moving~denoted with a tilde;! coordinate axes are shown. Ligh
dashed lines denote forward or backward light cones. Apparent superluminal propagation from~0, 0! to ~ct,r! is the result
of subluminal propagation from earlier points such as (x80,0) or later points such as (x90,0). Localization on theq050
plane is an interference minimum which the moving observer does not see because his spatial axis is tilted out of t
where the minimum occurs.
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If the time of the particle represented byu0,0W nw1& were definitelyq050, as is generally tacitly

assumed, the measurementQŴ (t) could yield values only within the light cone of (0,0W ). This is
because the speed is bounded byucpW /p0u'ucpW /ApW 21m2c2u,c ~since the states acted on by th

velocity operatorvŴ are physical!, confining possible measurement result events (ct,vW t) to timelike
distances from (0,0W ). In fact, this is precisely the result obtained when we substituteu0,0W loc& in
place ofu0,0W nw1& in Eq. ~3.1!, as has already been shown by Horwitz and Usher.21 However, since
the positive energy Newton–Wigner stateu0,0W nw1& represents the particle a times other thanq0

50, QŴ (t) can and will yield values outside the light cone.
We wish to point out that the statement, ‘‘the measurement receives contributions fro

past or future,’’ simply means that, if the particle is at the origin at timeq0/c and is moving with
constant velocityvW , then when the particle’s time ist, its position will bevW (t2q0/c). Or, an
equivalent way of saying ‘‘the particle is at positionrW at time t9 is to say ‘‘the particle is on a
world line which passes through the point (ct,rW). ’’

B. The space–time inequality

The question arises, if the time uncertainty of the particle represented byu0,0W nw1&, surround-
ing the timeq050, explains its propagation to a space–time point (ct,rW) outside the light cone of
(0,0W ) at subluminal velocities, should it not be possible to establish that the probability o
particle’s position beingqW 50W , summed over all timesq0 such that (ct,rW) becomes accessibl
within the light cone of (q0,0W ), is greater than the probability of the particle being found at
points which are a distancer from the origin at timet; and could we not thereby entirely accou
for the distribution outside the light cone of (0,0W )?

In fact, the answer to the above question is yes. Refer to Fig. 3. For those timesq0,r 2ct,
(ct, r) is within the light cone of (q0,0) ~bottom dotted arrow!. For timesq0.r 1ct,(ct,r ) is
within the backward light cone of (q0,0) ~top dotted arrow!. Since probabilities are additive, it i
sufficient to show that the probability densityP(q05r 2ct) for q0 being equal tor 2ct, plus the
probability densityP(q05r 1ct) for q0 being equal tor 1ct, is always greater than the prob
ability densityP(t,uqW u5r ) that a measurement at timet will find the particle at a distancer from
the origin, given thatt.0 and r .ct. If this is established, then upon integration ofP(q05r
2ct)1P(q05r 1ct) over all r in the interval (ct,1`), the result is greater than the tot

FIG. 3. Illustration of the space–time inequality. The Newton–Wigner stateu0,0nw1& represents a particle located at th
spatial origin at various timesq0 determined by probability distributionP(q0). The probability of various position
measurement resultsqW at time t is determined by probability distributionP(t,qW ). For those timesq0,r 2ct or q0.r
1ct it is possible for the particle to have traveled a distancer at time t without exceeding the speed of light. Hence,
account for the Hegerfeldt paradox, we need to show thatP(q05r 2ct)1P(q05r 1ct) integrated over allr in the interval
(ct,1`) is greater thanP(t,uqW u5r ) integrated over allr in the same interval.
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probability of a measurement finding the particle outside the light coner 56ct at timet, obtained
by integratingP(t,uqW u5r ) over the same interval (ct,1`). This would suffice to entirely accoun
for the particle’s positive probability distribution outside the light cone of~0, 0W ! with subluminal
velocities. Therefore, we need to prove that

P~q05r 2ct!1P~q05r 1ct!>P~ t,uqW u5r !. ~3.4!

Equation~3.4! will be referred to as thespace–time inequality.
From Eqs.~2.34! and ~2.35!, the particle represented byu0,0Wnw1& has atime distribution,

described by the augmented wave function

f ~q0!5^q0~t!u01~t!&5 lim
«→10

1

2p

i

~q01 i«!
. ~3.5!

The distributionf is normalized~in the sense of distributions! because

E
2`

1`

dq0 f ~q0!5 lim
g→10

i

2p R
C
dq0

exp~2 igq0!

q01 i«
51, ~3.6!

where the contourC is taken clockwise around the pole atq052 i«, enclosing the lower half-
plane, yielding a residual of unity. A further remark about normalizing~3.5! is given below Eq.
~3.12!. We will treat f (q0) as the probability amplitude for the time of the particle being betw
q0 andq01dq0. Therefore, the left member of~3.4! is

P~q05r 2ct!1P~q05r 1ct!5~2p!22F 1

~r 2ct!2 1
1

~r 1ct!2G . ~3.7!

We wish to compare this with the probability of a position measurement finding the partic
a distancer from the origin at timet. This requires thatu0,0W nw1& be expressed in the positio
representation. We expect the wave function, which we will denoteg(r ,t), to be spherically
symmetric about the spatial origin, because the particle was localized at the origin, has a
metrical momentum distribution, and has no forces acting on it. The wave function only de
on r 5urWu. Therefore it will be given by an expansion of free spherical waves, satisfyingrW3pW
50, normalized so that*0

`dr 4pr 2ug(r ,t)u251, and reducing tod(r )/A4pr as t→0. We thus
obtain44

g~r ,t !5^ct,rW locu0,0W nw1&5
1

r

1

4p3/2\ E
2`

1`

dp expH i

\
@pr2H~p!t#J , ~3.8!

whereH(p)5cAp21m2c2. @Note: in this section,p represents the radial component ofpW , not
(p0 ,pW ).# The correspondingprobability densityis

P~ t,uqW u5r !54pr 2ug~r ,t !u2. ~3.9!

Calculation of the right member of~3.9! is complicated by the square root in the exponen
of ~3.8!. The problem will be approached in two stages. We first take the limit of a mas
particle,m→0, permitting an exact evaluation ofg(r ,t), and we prove that inequality~3.4! holds
in this case. Then, we evaluate the change tog(r ,t) asm goes positive and prove the inequali
still holds for a massive particle.
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1. The massless particle

In the limit m→0, H(p)→cupu, and~3.8! becomes

g~r ,t !5
1

r

1

4p3/2\ E
2`

1`

dp expF i

\
~pr2upuct!G

5
1

r

1

4p3/2\ H E
2`

0

dp expF i

\
p~r 1ct!G1E

0

1`

dp expF i

\
p~r 2ct!G J

5
1

r

1

2p1/2F2
i

2p
PS 1

r 1ctD1
1

2
d~r 1ct!1

i

2p
PS 1

r 2ctD1
1

2
d~r 2ct!G . ~3.10!

From inspection, ast→0, g(r ,t)→d(r )/A4pr , as expected. Substuting~3.10! into ~3.9! we ob-
tain at timet the probability density

P~ t,uqW u5r !5~2p!22F 1

~r 2ct!22
2

r 22c2t2 1
1

~r 1ct!2G . ~3.11!

One can see from inspection that~3.11! yields peaks on the light coner 56ct. We expect this on
physical grounds, because asm→0, the speeduvu5upu/H(p)→c, making the light cone the mos
likely region to find the particle given̂q̂0&50.

Now we evaluate the space–time inequality~3.4! for the massless particle. Substituting~3.11!
on the right-hand side and~3.7! on the left-hand side of~3.4!, we obtain

1

~r 2ct!2 1
1

~r 1ct!2 >
1

~r 2ct!22
2

r 22c2t2 1
1

~r 1ct!2 . ~3.12!

Because of the cross terms on the right-hand side, absent on the left,the inequality is satisfied for
m50. Indeed, the cross terms are the result of interference of amplitudes ing(r ,t) between
contributions from the past and future. This time interference is responsible for Newton–W
states being spatially localized in spite of their nonlocality in time.

A possible objection to the above analysis is that the time distributionf (q0) is not normaliz-
able in the sense of ordinary wave functions. However, a normalizable wave functioncan be
obtained if wedo not take the limit «→0 in ~3.5!. Keeping« positive, it can be shown tha
*2`

1`dq0u f (q0)u25(4p«)21, so to normalizef (q0) we need to multiply it by 4p«. What does this
do to the inequality~3.4!? Inspection of~3.10! shows thatg(r ,t) also is not normalizable, due to
singularities atr 56ct. In fact, forg(r ,t) to be normalizable, we have to follow exactly the sam
procedure, not taking the limit«8→0, and it can be shown that*2`

1`dru4pr 2g(r ,t)u2

5(4p«8)21, yielding a normalization factor forg(r ,t) of A4p«8. Since« and«8 are arbitrary,
we can choose«5«8 and inequality~3.4! will be satisfied as before.

2. The massive particle

Now consider the casem.0. This is more difficult, because of the square root appearin
the exponent in~3.8!. The theorem on analyticity of Fourier transforms alluded to in Sec. I~or
rather, its converse9! will be used to show that the effect of the massm going positive is to
introduce an exponential decay factor in the right member of inequality~3.4!, with the result that
the inequality is still satisfied.

To simplify calculations, let us define a new radial wave functionh in terms ofg:

h~r ,t !5A4prg~r ,t !5~2p\!21E
2`

1`

dp expH i

\
@pr2H~p!t#J . ~3.13!

From the form of Eq.~3.13!, the Fourier transform ofh(r ,t) is
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h̃~p,t !5expS i

\
Ap21m2c2ctD . ~3.14!

The functionh̃(p,t) has an analytic continuation forp→p1 ih onto the complex plane in the stri
2m8c<h<m8c, wherem8 is a positive number just less than the rest mass,m; i.e., m81«
5m, « a positive infinitesimal. A partial binomial expansion yields

H~p1 im8!

c
5Ap212ipm8c2m82c21m2c2'Ap212ipm8c'upu1 ipm8c/upu. ~3.15!

In the approximationupu@mc ~valid for mostp!, for positivep,h̃(p1 im8,t) becomes

h̃~p1 im8c,t !5expS 2 i

\
upuctDexpS 1

\
m8c2t D , ~3.16!

which is a finite quantity~for finite t!. From the Fourier integral theorem,

h̃~p1 im8c,t !5~2p\!21/2E
2`

1`

dr h~r ,t !expF2 i

\
~p1 im8c!r G ,

expS 2 i

\
upuctDexpS 1

\
m8c2t D5~2p\!21/2E

2`

1`

dr h~r ,t !expS 2 i

\
pr DexpS 1

\
m8cr D ,

~3.17!

expS 2 i

\
upuctD5~2p\!21/2E

2`

1`

dr h~r ,t !expS 2 i

\
pr DexpFm8c

\
~r 2ct!G .

Since the integrand in the right member of the last line in~3.17! containsh(r ,t) multiplied by a
factor which grows exponentially as a function ofr 2ct, and the expression is finite,h(r ,t) must
decay exponentially asexp@(2m8c/\)(r2ct)#.

So we see that the effect of the massm going positive is to widen the strip of analyticity o
h̃(p,t) on the complex momentum plane, which~takingm8→m! introduces an exponential deca
factor of exp@(22mc/\)(r2ct)# in the probability densityP(t,uqW u5r ) on the right-hand side o
inequality ~3.4!. This is exactly what we would expect on physical grounds, because the
uvu5cupu/H(p)5cupu/Ap21m2c2 will be attenuated with increasing mass, yielding a mo
strongly localized wave function. The factor exp@(22mc/\)(r2ct)# is actually abound, since it
involves the assumptionupu@mc. The effect of the approximation is to yield a weaker decay th
an exact calculation would yield, because ifupu is smaller, it corresponds to lower velocities, a
hence to wave components decreasing faster than this bound.

On the other hand, the exponential factor does not enter into the left-hand side of ineq
~3.4!, since the rest massm is in no way involved with the calculation of the time distributio
P(q0). Therefore, inequality (3.4) remains satisfied for m.0.

This result is entirely consistent with Hegerfeldt’s theorem,4 applied to the case where th
wave function is initially exponentially bounded. Hegerfeldt only found ‘‘violations of causali
when the probability distribution of the initial state decayed faster than exp@(22mc/\)(r2ct)#.
Now we see that the decay factor exp@(22mc/\)(r2ct)# results from the time uncertainty of th
state, not superluminal velocities.

C. Dependence on the motion of the observer

We now address the other issue raised in Sec. I, Eq.~1.3!, that a positive energy state localize
in one frame of reference has infinite spatial extent in any reference frame moving with resp

it. It is known that the Newton–Wigner stateux0,xWnw1& is an eigenvector ofQŴ (x0/c) with eigen-
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valuexW . Let us reproduce calculation~3.5! through~3.7! where we performed a position measur

ment onu0,0W nw1&, but this time our measurement time is zero; that is, we operate withQŴ (0)

rather thanQŴ (t):

QŴ ~0!u0,0W nw1&5E
2`

1`

dq0vŴ S 2q0

c D f ~q0!uq0,0W loc&

5
2vŴ
c

i

2p E
2`

1`

dq0uq0,0W loc&

5
2vŴ
c

i

2p E
2`

1`

dq0 expF2 i

\
H~pŴ !q0G u0,0W loc&50W . ~3.18!

Since we have sett50, when the position eigenvalue2vW q0/c is multiplied into the amplitude
iP(1/2pq0)1d(q0)/2, we obtain2 ivW /2pc, which is constant with respect toq0. The integral

therefore becomes a delta function inH(pW ) which vanishes becauseH(pŴ )Þ0. So in spite of the
fact thatu0,0W nw1& represents the particle being at the origin at different timesq0, and has ampli-
tudes for the particle being at distancesvq0/c from the origin, a measurement at timet50 will
nevertheless definitely find the particle at 0W .

We propose the following explanation of this result. The delta functiond(x)
52p21*2`

1`dx exp(2ix) is an interference minimum for all values of its argument except z
where it is a maximum. Its appearance in~3.18! suggests that contributions from various timesq0

interfere destructively; thus, localization on theq050 plane is an interference minimum. Ref
again to Fig. 2, recalling that shading denotes regions where the wave function does not
The situation of Eq.~3.18! corresponds to a measurement time oft50; therefore, the solid arrow
~ct,r! now lies on theq1 axis. For any given value ofq0Þ0, another value exists~for a given
velocity! such that their contributions precisely cancel. Therefore the only time which contrib
to the measurement result isq050.

But suppose the measurement is taken in a frame of reference moving relativistically
direction of theq1 axis. The Lorentz transformed spatial axis, denoted in the figure with a tild;,
is tilted out of the interference minimum. On theq̃1 axis, cancellation of components from
different times does not occur; the transformed wave function^q̃0,q̃loc

1 u0,0nw1& is not localized,
and cannot vanish for anyq̃0.

D. Discussion

We will conclude this section with some remarks extending these results to more ge
quantum states, and a discussion of possible implications for causality.

So far, only point localizations for spinless particles have been considered. But the Heg
paradox also applies to positive energy states of arbitrary spin having any finite spatial exte
also to exponentially bounded states. Newton–Wigner states form an orthogonal basis
physical Hilbert spaceHphy. Therefore, an arbitrary positive energy stateuc1(x0)& at timex0 can
be represented as a superposition

uc1~x0!&5~2pm\!21E
2`

1`

d3x c1~x0,xW !E
2`

1`

d~ l̂ t!~2p\ p̂0!1/2ux1~t!&, ~3.19!

where expansion~2.36! of the Newton–Wigner state was employed. Every point in the spa
integral of ~3.19! for which c1(x0,xW ) is nonvanishing will be surrounded by a position unc
tainty, arising from the time uncertainty of its corresponding positive energy augmented
ux1(t)&5ux0,xW 1(t)& aboutx0. This leads to the same explanation of the Hegerfeldt paradox
uc1(x0)& as we found forux0,xWnw1&.
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If the particle is an external potentialAm(q̂), we may obtain exactly the same results if w
replacep̂m with p̂m2(e/c)Am(q̂) in all expressions. Finally, we note that all of these results ap
equally well to individual spinor components of Dirac particle, since these components ar
solutions of the Klein–Gordon equation.8,34

Now let us consider whether any new problems with causality have been introduced
picture that emerges from the forgoing discussion is that Newton–Wigner statesux0,xWnw1& appear
to be tailor made to vanish on one spacelike hyperplane. As one moves forward along theq0 axis,
wave components converge superluminally onto a point, then superluminally diverge.

But nature does not exhibit converging waves; only diverging waves. So if an experim
can prepare a Newton–Wigner stateux0,xWnw1&, we must assume that the can do so no sooner
ct5x0. Let us assume for the moment that an ideal measurement prepares such a state. Th
Sec. III C we know that, at the time, and in the reference frame of its preparation, the
component of the particle’s time which contributes to a measurement result is the time of
surement. The particle is ‘‘here and now’’ as far as measurements at that time and in that ref
frame are concerned. However the particle still has ‘‘virtual’’ components in the past which
affect measurements in the future or in another reference frame. It may be supposed tha
components could conceivably influence events leading up to the measurement in such a w
preclude the measurement’s occurrence: this is the ‘‘grandfather paradox.’’

Now let us extend von Neumann’s reduction postulate45 to this model. Since it is the positive–
negative energy superposition statesux0,xW loc& that appear in the spectral decomposition~2.44!, not
the Newton–Wigner statesux0,xWnw1&, we may argue that an infinitely precise measurement w

QŴ (x0/c) will yield a stateux0,xW loc&, not ux0,xWnw1&. The stateux0,xW loc& represents a particle whic
is definitely atqW 5xW at the definite timeq05x0, with no virtual components in the past. This rul
out the ‘‘grandfather paradox’’ as it arises above. It is true that these states have negative
components moving backwards in time, but this is no more of a problem here than in qu
field theory, where these components are interpreted as anti-particles moving forward in ti

IV. CONCLUSIONS

In this paper it has been shown that the nonlocality of states demonstrated by the Heg
paradox has its origin in time uncertainty. It is known that spatially localized states exis
particular times; but without quantizing the time variable, we are left with no quantum mecha
explanation for the infinite expansion of such states within finite time periods, nor for the d
dence of their localization on the motion of the observer.

In the parametrization invariant description, on the other hand, a free relativistic parti
constrained in the momenta, but not in position or time, suggesting a temporal freedom whi
conventional theory fails to exhibit. Observables appear as constants of the motion, while ph
states are superposition of states in an augmented Hilbert space, summed over the prop
The position observable, acting on a physical state, operates on associated augmented
allowing measurement results to be interpreted in terms of their properties. Augmented stat
strictly positive energy are non-local in time, their temporal distribution being manifested thr
the position observable as expansion of its spectrum beyond the light cone of what is inter
as an earlier measurement result. Spatial localization arises on a particular spacelike hyp
through quantum interference over time, position measurements generally receiving contrib
from states representing the particle at many times. Since the time of the particle is potenti
the past of the time of measurement, the particle’s propagation to distant regions later do
imply superluminal velocities. An inequality can be proven showing that the Hegerfeldt parad
completely accounted for by the hypotheses of subluminal propagation from a set of initial s
time points determined by the quantum time distribution arising from the positivity of the syst
energy. Dependence on the motion of the observer arises because the Lorentz transforma
coordinate axes out of the spacelike hyperplane wherein the interference minimum is obta
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A frequency–domain inverse problem for a dispersive
stratified chiral medium
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We study the inverse problem for a dispersive stratified chiral slab. The problem is
treated as an analytic factorization problem in the complex plane of frequencies.
Emphasis is made on the reconstruction of the spatial dependence of the medium
parameters, whereas the frequency dependence is supposed to be a single-
resonance Lorentz model. It is shown that, under the normal incidence of exciting
plane waves, the scattering data as functions of alternating frequency allows recon-
structing three independent combinations of four space-varying medium param-
eters. If one parameter is known, all other parameters are uniquely reconstructed.
© 2000 American Institute of Physics.@S0022-2488~00!04607-7#

I. INTRODUCTION

The interest in wave propagation, scattering, and guidance in complex media~such as aniso-
tropic, chiral, omega media, etc.! is due to their potential usefulness in a variety of applicatio
see, e.g., Ref. 1. Chirality is a purely geometric notion that refers to the lack of symmetry o
object: an object is chiral if it cannot be brought into congruence with its mirror image
translation and rotation. The interaction between an electromagnetic wave and a collec
randomly distributed small chiral objects~like left- or right-handed metal helices placed in a ho
dielectric material! is manifested in electromagnetic chirality, i.e., in the effects of handedne
electrodynamics such as the rotation of the plane of polarization to the left or to the right de
ing on the handedness of the objects. On the macroscopic level, electromagnetic chira
characterized by a coupling between the electric and magnetic fields in the constitutive rel
where the coupling strength is measured by a quantity known as the chiral parameter.

Among others, direct and inverse scattering problems for stratified media characteriz
parameters varying in one particular direction have attracted considerable attention~see Refs. 2
and 3 and the abundant references therein!. Such idealizations are relevant in many situations, b
in natural sciences~the Earth’s atmosphere and crust, sea water, etc.! and in the design of artificia
media. Inverse problems for stratified bi-isotropic nondispersive media are studied in Refs
Another example of a one-dimensional direct and inverse scattering problem is the analy
wave propagation on a nonuniform transmission line.6,7

Generally, when a material is subjected to an electromagnetic field with harmonic tim
pendence, its parameters are functions of the frequency of the alternating field, so that an a
modeling of dispersive effects is required.8,9 For a stratified medium consisting of materials wi
the same type of dispersion, a reasonable assumption is that the susceptibility functions
written in a product form, where one factor is a function of the stratification parameter, an
other one is a function of the frequency and is responsible for a particular dispersion type~see,
e.g., Refs. 10 and 11!.

a!Current address: Universite´ Paris 7-Denis Diderot, Institut de Mathe´matiques, case 7012, 2 place Jussieu, 75251 P
Cedex 05, France. Electronic mail: aboutet@math.jussieu.fr; telephone:~33! 1 44 27 56 05; fax:~33! 1 44 27 56 05.

b!Current address: Universite´ Paris 7-Denis Diderot, Institut de Mathe´matiques, case 7012, 2 place Jussieu, 75251 P
Cedex 05, France. Electronic mail: shepel@math.jussieu.fr; telephone:~33! 1 44 27 86 86; fax:~33! 1 44 27 56 05.
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In the present paper we consider an inverse problem of the reconstruction of the m
parameters for a dispersive stratified chiral medium. A chiral~bi-isotropic reciprocal! medium is
described by two constitutive relations:12,13

D5 «̂E2 i k̂H, B5 i k̂E1m̂H, ~1!

where «̂ is the permittivity, m̂ is the permeability, andk̂ is the chirality parameter measurin
effects of the first-order spatial dispersion. To take into account the temporal dispersion~or, in the
frequency domain, the frequency dependence of the medium parameters«̂, m̂, andk̂!, we adopt
a single-resonance Lorentz model of dispersion. The parameters of a nonhomogeneous s
medium occupied the slab 0<z<L are assumed to have the following forms~the time dependence
of all fields iseivt!:

«̂~z,v!5«~z!1
A1

2~z!

v0
22v21 i2nv

,

m̂~z,v!5m~z!1
A2

2~z!v2

v0
22v21 i2nv

, ~2!

k̂~z,v!5
A1~z!A2~z!v

v0
22v21 i2nv

,

wherev0 is the resonant frequency andn is the damping constant. Such a dispersion mode
relevant if the artificial chiral medium is made through the dispersion of small chiral elements~i.e.,
helices! varying in shape, size, concentration, etc., into a stratified dielectric host material; cf
14.

It is assumed that a plane harmonic wave impinges normally the slab from a vacuum
z,0 ~the regionz.L is also assumed to be a vacuum region!. The scattering produced by the sla
is measured~so as the frequency-dependent scattering coefficients! and constitutes the input dat
for the inverse problem, i.e., the problem of the reconstruction of the functions«(z), m(z), A1(z),
andA2(z) ~v0 andn are assumed to be known!.

A concept of wave splitting based on the decomposition of the wave field into the left- g
and right-going wave fields has been successfully used as a basis for a variety of techniq
solving direct and inverse problems for stratified media both in the time domain15–21 and in the
frequency domain.22–24In Ref. 14 an optimization approach to the parameter reconstruction p
lem for a stratified bianisotropic material was presented.

Our approach is based on using analytic properties of solutions of the related Maxwell
tions in the complexv plane. This approach allows us, first of all, to give an exact answer on
uniqueness question that can be formulated as follows: what kind of information about th
dium parameters can be obtained, in principal, by using a certain type of excitation. In the p
paper we show that, under the normal incidence of exciting waves, three combinations
medium parameters can be uniquely reconstructed.

The paper is organized as follows. Basic relations are presented in Sec. II. The reformu
of the scattering problem as a Riemann–Hilbert factorization problem is given in Sec. III.
reconstruction of the medium parameters is based on the solution of the Riemann–Hilbert p
and is presented in Sec. IV.

II. BASIC EQUATIONS AND SCATTERING RELATION

In what follows it is assumed that«(z), m(z), A1(z), and A2(z) are positive absolutely
continuous functions on the intervalzP@0,L#, andm(z).A2

2(z). For definiteness, it is suppose
that v0.n.0. In the regionsz,0 andz.L, «(z)5«0 , m(z)5m0 , A1(z)5A2(z)50. Then,
Maxwell’s equations,
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“ÃH5 ivD, “ÃE52 ivB,

together with the constitutive relations~1! give the system of differential equations for the ta
gential field componentsEx , Ey , Hx , andHy :

dY

dz
~z,v!5W~z,v!Y~z,v!, ~3!

whereY(z,v)5(Ex ,Ey ,Hx ,Hy)
T,

W~z,v!5 ivS 0 2 i k̂ 0 2m̂

i k̂ 0 m̂ 0

0 «̂ 0 2 i k̂

2 «̂ 0 i k̂ 0

D ~z,v!, zP~2`,`!. ~4!

It is seen from~2! that, as a function ofv, the 434 matrix W(z,v) has its poles in the
complex v plane at v5`, v5v1 , and v5v2 , where v15g1 in, v252g1 in, g
5Av0

22n2. In a neighborhood ofv5`,W(z,v) can be written as

W~z,v!5 ivW1
`~z!1W0

`~z!1WR
`~z,v!, ~5!

whereWR
`(z,v)5O(1/v) asv→`. The propagating~split! modes are determined via the diag

nalization of the main term in~5!, W1
`(z). Let T`(z)5E`(z)T̂D`(z), where

E`~z!5diag$E1
`~z!,E2

`~z!,E3
`~z!,E4

`~z!%,

T̂5
1

2 S 1 i 2 i 1

i 1 21 i

2 i 1 1 i

1 2 i 2 i 21

D ,

D`~z!5diagH S «

m1
D 1/4

~z!,S «

m1
D 1/4

~z!,S «

m1
D 21/4

~z!,S «

m1
D 21/4

~z!J , ~6!

m1~z!5m~z!2A2
2~z!, ~7!

E1
`~z!5expH nE

0

z

A2
2~ t !S «

m1
D 1/2

~ t !dt2 i E
0

z

A1~ t !A2~ t !dtJ ,

E2
`~z!5expH nE

0

z

A2
2~ t !S «

m1
D 1/2

~ t !dt1 i E
0

z

A1~ t !A2~ t !dtJ ,

E3
`~z!5expH 2nE

0

z

A2
2~ t !S «

m1
D 1/2

~ t !dt2 i E
0

z

A1~ t !A2~ t !dtJ ,

~8!

E4
`~z!5expH 2nE

0

z

A2
2~ t !S «

m1
D 1/2

~ t !dt1 i E
0

z

A1~ t !A2~ t !dtJ .

ThenT`(z)W1
`(z)T`

21(z)5D`(z), where

D`~z!5A«~z!m1~z! diag$21,21,1,1%, ~9!
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and, after the transformationY`(z,v)5T`(z)Y(z,v), the system of equations~3! becomes

dY`

dz
~z,v!5$ ivD`~z!1A`~z!1W̃R

`~z,v!%Y`~z,v!, ~10!

where

A`~z!5S 0 0 a1~z! 0

0 0 0 a1~z!

a2~z! 0 0 0

0 a2~z! 0 0

D , W̃R
`~z,v!5OS 1

v D , as v→`, ~11!

a1~z!5 i expH 2nE
0

z

A2
2~ t !S «

m1
D 1/2

~ t !dtJ S nA2
2~z!S «

m1
D 1/2

~z!1
1

4

d

dz
lnS «

m1
~z! D D ,

~12!

a2~z!5 i expH 22nE
0

z

A2
2~ t !S «

m1
D 1/2

~ t !dtJ S nA2
2~z!S «

m1
D 1/2

~z!2
1

4

d

dz
lnS «

m1
~z! D D .

Notice that the diagonal factorE`(z) does not affect the diagonal termD`(z) in ~10!, but it
provides the D`(z)-off-diagonal structure of the next term,A`(z), so that A`(z)
Pran adD`(z), where (ada)b5a•b2b•a.

We shall consider Eq.~10! on the whole axis2`,z,`, adding to it the conjugation
conditions to be satisfied by a solutionY`(z,v) at z50 andz5L. The continuity of the tangentia
field componentsY(z,v) gives

Y`~10,v!5T`~10!T`
21~20!Y`~20,v!,

~13!
Y`~L20,v!5T`~L20!T`

21~L10!Y`~L10,v!.

Notice that for z¹@0,L#, D`(z)5A«0m0 diag$21,21,1,1% and A`(z)1W̃R
`(z,v)50. We

define the split modesF2(z,v) andF1(z,v) as the solutions of~10!, satisfying the conjugation
conditions~13! and the following initial conditions:

F2~20,v!5I , F1~L10,v!5exp$ ivD`~L10!L%, ~14!

whereI is the identity matrix, so that

F2~z,v!5exp$ ivD`~20!z%, for z,0,

F1~z,v!5exp$ ivD`~L10!z%, for z.L.

The first two columns ofF6(z,v) represent the right-going eigenmodes, whereas the last
columns are the left-going eigenmodes. The propagating modes are related by the sc
matrix S(v):

F1~z,v!5F2~z,v!S~v!, zP~2`,`!. ~15!

The 434 scattering matrixS(v), as a function ofv.0, is the input data to be used t
reconstruct«(z), m(z), A1(z), andA2(z), for zP@0,L#.

Theorem 1: The scattering matrix S(v),v.0 determines implicitly three independent spac
varying functions that are correspondent to three ratios of the material parameters«, m, A1

2, and
A2

2. If one of the parameters is known a priori then three others are determined uniquely
explicitly.
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The proof of the theorem is based on the solution of a Riemann–Hilbert problem corre
dent to the scattering relation~15!.

III. RIEMANN–HILBERT PROBLEM

In this section we seek a piecewise holomorphic~i.e., holomorphic on each connected com
ponent! invertible matrix-valued function in thev plane~depending onz as a parameter! having
good behavior in neighborhoods of the poles ofW(z,v). On the other hand, as a function ofz, it
will be constructed by using particular solutions of~3! @or the related equations like~10!#. This
will allow us to go from the scattering matrixS(v),v.0 to a matrix function given on a certai
contour in thev plane and explicitly depending on space-type variables. This function const
a multiplicative jump across the contour of the above-mentioned piecewise holomorphic fun
that can be reconstructed via the solution of the Riemann–Hilbert problem. Finally, thez depen-
dence of the medium parameters is reconstructed by the solutions of a family of the Riem
Hilbert problems taken at particular points.

To construct the right matrix function in a neighborhood ofv5`, Eq. ~10! for zP@0,L# is
used in a similar way as in the nondispersive case.5 Namely, let us define two matrix solution
of ~10!, F`

2(z,v) and F`
1(z,v), as F`

6(z,v)5F̂`
6(z,v)E`(z,v), where E`(z,v)

5exp$iv*0
zD`(t)dt%, andF̂`

6(z,v) are the solutions of the Fredholm equations:

F̂`
m~•,v!5I 1K`

mF̂`
m~•,v!, mP$1,2%, ~16!

where the matrix-valued integral operatorsK`
m :L`@0,L#→L`@0,L# have the triangular structur

with respect to the matrix elements such that~16! are written as

~ F̂`
m! jk~z,v!5d jk1E

Q~ j ,k,m!

z

expH ivE
t

z

@~D`! j j ~s!2~D`!kk~s!#dsJ
3@„A`~ t !1W̃R

`~ t,v!…F̂`
m~ t,v!# jk dt, ~17!

where j ,kP$1,...,4%,

Q~ j ,k,m!5H 0, j 5k or m•sign~ j 2k!.0,

L, m•sign~ j 2k!,0.

The integral equations~16! have a unique solutionF̂`
m(z,v) holomorphic inm•Im v.0, uvu

.R, where R is sufficiently large@see, e.g., Refs. 5, 25; notice that theD`(z)-off-diagonal
structure ofA`(z) is of importance here#; moreover,

F̂`
m~z,v!→I , as uvu→`, m•Im v>0. ~18!

We chooseR such thatR.uv1u5uv2u.
On the other hand,~17! implies that the boundary values ofF`

m(z,v) at z50 andz5L have
a triangular structure:

F`
2~0,v!5V`

2,l~v!, F`
2~L,v!5V`

2,u~v!,
~19!

F`
1~0,v!5V`

1,u~v!, F`
1~L,v!5V`

1,l~v!,

where V`
6,l(v) are lower triangular,V`

6,u(v) are upper triangular; the diagonal elements
V`

2,l(v) andV`
1,u(v) are equal to 1.

The functionsF2(z,v) andF`
6(z,v) are solutions of the same differential equation~10! for

zP@0,L#, and, in virtue of~13!, ~14!, and~19!, they are related as follows:
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F`
2~z,v!5F2~z,v!„F2~10,v!…21V`

2,l~v!

5F2~z,v!T`~20!T`
21~10!V`

2,l~v!, ~20!

F`
1~z,v!5F2~z,v!„F2~10,v!…21V`

1,u~v!

5F2~z,v!T`~20!T`
21~10!V`

1,u~v!. ~21!

Settingz5L in ~20! and ~21! and using the scattering relation~15!, one has

V`
2,u~v!5F2~L20,v!T`~20!T`

21~10!V`
2,l~v!

5F1~L20,v!S21~v!T`~20!T`
21~10!V`

2,l~v!

5T`~L20!T`
21~L10!eivD`~L10!LS21~v!T`~20!T`

21~10!V`
2,l~v!, ~22!

and, similarly,

V`
1,l~v!5T`~L20!T`

21~L10!eivD`~L10!LS21~v!T`~20!T`
21~10!V`

1,u~v!. ~23!

Relations~22! and~23! are viewed as triangular factorizations~for any fixedv,uvu.R! of the
matrix

Ŝ~v!5T`~L20!T`
21~L10!eivD`~L10!LS21~v!T`~20!T`

21~10!. ~24!

The scattering matrixS(v) is holomorphic outside neighborhoods of the poles ofW(z,v), i.e.,
v5`, v5v1 , andv5v2 ; hence, it is uniquely determined by its value in any finite freque
band. Let us suppose for a moment that the constant~with respect tov! matrix factors involved in
the construction ofŜ(v) ~24! are known. Then,~22! and ~23! allow us, starting fromS(v), to
determine uniquely the triangular factorsV`

6,u(v) andV`
6,l(v) on the related parts of the circl

$uvu5R% as well as onG15(2`,2R) andG25(R,`).
The matrix piecewise holomorphic functionm(z,v) ~depending onz as on a parameter! is

defined in the domainsV15$v:Im v.0,uvu.R% and V25$v:Im v,0,uvu.R% as m(z,v)
5F̂`

1(z,v) andm(z,v)5F̂`
2(z,v), respectively. One has

m1~z,v!5m2~z,v!V~z,v!, ~25!

wherem1(z,v) andm2(z,v) denote the boundary values ofm(z,v) from V1 andV2 , respec-
tively,

V~z,v!5E`~z,v!„V`
2,l~v!…21V`

1,u~v!E`
21~z,v!, vPG1øG2 . ~26!

Notice thatm(z,v)→I as uvu→`.
Now let us return to the determination ofŜ(v). The needed constants can be found by us

the asymptotic behavior of the scattering matrixS(v) as uvu→`.5 Namely, let us consider Eq
~10! on the whole axis2`,z,` without the conjugation conditions~13! and with D`(z)
continued byD`(10) and D`(L20) for z,0 and z.L, respectively. The scattering matri
Saux(v) relates the solutionsFaux

1 (z,v) and Faux
2 (z,v) determined by the conditionsFaux

2 (0,v)
5I , Faux

1 (L,v)5exp$ivD`(L20)L%: Faux
1 (z,v)5Faux

2 (z,v)Saux(v). The solutionFaux
1 (z,v) sat-

isfies the Volterra integral equation,
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Faux
1 ~z,v!5expH 2 ivF E

z

L

(D`~ t !dt2D̃~L0!LG J
2E

z

L

expH ivE
t

z

D`~s!dsJ ~A`~ t !1W̃R
`~ t,v!!Faux

1 ~ t,v!dt.

Hence,

Saux~v!5Faux
1 ~0,v!.exp$ iv@D`~L20!L2D̃`#%, as v→`, vPR,

whereD̃`5*0
LD`(s)ds.

On the other hand,Saux(v) andS(v) are related as follows:

S~v!5F1~20,v!5T`~20!T`
21~10!F1~10,v!

5T`~20!T`
21~10!Faux

1 ~0,v!„Faux
1 ~L,v!…21F1~L20,v!

5T`~20!T`
21~10!Saux~v!e2 ivD`~L20!LT`~L20!T`

21~L10!eivD`~L10!L.

Therefore,

eivD`~L10!LS21~v!T`~20!.T`~L10!T`
21~L20!eivD̃`T`~10!,

as v→`, vPR, which gives means to determine the constant*0
LA«(t)m1(t)dt as well as

T`(L10)T`
21(L20) and T`(10) @equivalently («/m1)(10), («/m1)(L20), and

*0
L A2

2(t)«1/2(t)m1
21/2(t)dt#.

The construction ofm(z,v) in a neighborhood of the polev1 is performed in a similar way.
First, we diagonalize the main term in the expansion ofW(z,v) nearv1 ,

W~z,v!5
1

v2v1
W1

1~z!1W0
1~z!1WR

1~z,v!, ~27!

whereWR
1(z,v)5O(v2v1) asv→v1 . TakingT1(z)5E1(z)T̂D1(z), where

E1~z!5diag$E1
1~z!,E2

1~z!,E3
1~z!,E4

1~z!%,

D1~z!5diagH S A1~z!

v1A2~z! D
1/2

,S A1~z!

v1A2~z! D
1/2

,S A1~z!

v1A2~z! D
21/2

,S A1~z!

v1A2~z! D
21/2J ,

E1
1~z!5expH E

0

z

u1~ t !dt2 i
v1

4g2 ~2v22v1!E
0

z

A1~ t !A2~ t !dtJ ,

E2
1~z!5expH E

0

z

u1~ t !dt1 i
v1

4g2 ~2v22v1!E
0

z

A1~ t !A2~ t !dtJ ,

E3
1~z!5expH 2E

0

z

u1~ t !dt2 i
v1

4g2 ~2v22v1!E
0

z

A1~ t !A2~ t !dtJ ,

E4
1~z!5expH 2E

0

z

u1~ t !dt1 i
v1

4g2 ~2v22v1!E
0

z

A1~ t !A2~ t !dtJ ,

u1~z!5
i

2
A1~z!A2~z!H v1

2 «

A1
2 ~z!1

m

A2
2 ~z!1

v1~2v22v1!

2g2 J ,
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we haveT1(z)W1
1(z)T1

21(z)5D1(z), where

D1~z!5C1A1~z!A2~z!diag$21,0,0,1%, C152
iv1

2

g
.

After the transformationY1(z,v)5T1(z)Y(z,v), the system of equations~3! becomes

dY1

dz
~z,v!5H 1

v2v1
D1~z!1A1~z!1W̃R

1~z,v!J Y1~z,v!, zP@0,L#, ~28!

with

A1~z!5S 0 0 b1~z! 0

0 0 0 b1~z!

b2~z! 0 0 0

0 b2~z! 0 0

D , W̃R
1~z,v!5O~v2v1!,

b1~z!5expH 2E
0

z

u1~ t !dtJ S u2~z!1
i

4

d

dz
lnS A1

A2
~z! D D ,

b2~z!5expH 22E
0

z

u1~ t !dtJ S u2~z!2
i

4

d

dz
lnS A1

A2
~z! D D , ~29!

u2~z!5
1

2
A1~z!A2~z!H v1

2 «

A1
2 ~z!2

m

A2
2 ~z!1

v1

g J .

Again, E1(z) provides theD1(z)-off-diagonal structure ofA1(z).
As above, we seek the solutions of Eq.~28! having well-controlled behavior nearv5v1 , i.e.,

of the form

F1
6~z,v!5F̂1

6~z,v!E1~z,v!,

whereE1(z,v)5exp$@1/(v2v1)#*0
zD1(t)dt% and F̂1

6(z,v)→I as v→v1 . FunctionsF̂1
6(z,v)

are defined as the solutions of the equations of the same form as~16! and ~17!:

~ F̂1
m! jk~z,v!5d jk1E

Q~ j ,k,m!

z

expH 1

v2v1
E

t

z

@~D1! j j ~s!2~D1!kk~s!#dsJ
3@~A1~ t !1W̃R

1~ t,v!!F̂1
m~ t,v!# jk dt. ~30!

Denote byV3 andV4 the half-disks,

V35H v:uv2v1u,d, ReH C1

v2v1
J .0J ,

V45H v:uv2v1u,d, ReH C1

v2v1
J ,0J .

For definiteness we supposeg.n. For sufficiently smalld, Eqs.~30! have unique holomorphic
solutions,F̂1

1(z,v) in V3 ,F̂1
2(z,v) in V4 . To relateF1

6(z,v) andF2(z,v) we use the triangular
boundary values ofF1

6(z,v) at z50 andz5L,
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F1
2~0,v!5V1

2,l~v!, F1
2~L,v!5V1

2,u~v!,
~31!

F1
1~0,v!5V1

2,u~v!, F1
1~L,v!5V1

2,l~v!,

where V1
6,l(v) are lower triangular,V1

6,u(v) are upper triangular. SinceT1
21(z)F1

2(z,v) and
T`

21(z)F2(z,v) are solutions of the same equation~3! for zP(0,L), we have

F1
6~z,v!5T1~z!T`

21~z!F2~z,v!C6~v!,

whereC6(v) are determined via~31!. Arguing as in the case nearv5`, we arrive at the another
set of the triangular factorizations of the scattering matrix, namely

V1
2,u~v!5T1~L20!T`

21~L10!eivD`~L10!LS21~v!T`~20!T1
21~10!V1

2,l~v!, ~32!

V1
1,l~v!5T1~L20!T`

21~L10!eivD`~L10!LS21~v!T`~20!T1
21~10!V1

1,u~v!. ~33!

The constant matrices involved on the right-hand sides of~32! and~33! are determined by the
asymptotics ofS(v) asv→v1 in the same way as in the casev→`. After that,~32! and~33! are
used to determineV1

6,l(v) andV1
6,u(v) for vP]V3ø]V4 . Finally, m(z,v) is defined as

m~z,v!5H T`~z!T1
21~z!F̂1

1~z,v!, vPV3 ,

T`~z!T1
21~z!F̂1

2~z,v!, vPV4 ,
~34!

so that the jump matrixV(z,v)5m2
21(z,v)m1(z,v) for vPG35$v:uv2v1u,d, Re$C1 /(v

2v1)%50% has the form

V~z,v!5E1~z,v!„V1
2,l~v!…21V1

1,u~v!E1
21~z,v! ~35!

@herem1(z,v) andm2(z,v) denote the boundary values ofm(z,v) from V3 andV4 , respec-
tively#.

The neighborhood ofv2 is treated in strictly the same way resulting in formulas with t
index 2 instead of 1; in particular,G45$v:uv2v2u,d, Re$C2 /(v2v2)%50%, whereC25 iv2

2/g,
corresponds toG3 . Outside the neighborhoods of the poles`, v1 , v2 , m(z,v) is defined via
F2(z,v):

m~z,v!5F2~z,v!E`
21~z,v!.

Now let us connect the end points ofG1 , G2 , G3 , andG4 by smooth curves, as shown i
Fig. 1.

The resulting contourG dividesC in two open sets,V1 andV2 , such thatG may be viewed
as the positively oriented boundary ofV1 . The matrixm(z,v) is piecewise holomorphic inv

FIG. 1.
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PC ~z is a parameter!, m(z,v)→I as v→`, and has the multiplicative jumpV(z,v)
5m2

21(z,v)m1(z,v) acrossG @m1(z,v) andm2(z,v) are the boundary values ofm(z,v) from
V1 andV2 , respectively#.

We have already definedV(z,v) on øk51
4 Gk . On the other smooth parts ofG,V(z,v) is

defined following the definition ofm(z,v) above:

V~z,v!5

¦

E`~z,v!T`~20!T1
21~0!V1

1,u~v!E1
21~z,v!, uv2v1u5d,ReH C1

v2v1
J .0,

E1~z,v!~V1
2,l~v!!21T1~0!T`

21~20!E`
21~z,v!, uv2v1u5d,ReH C1

v2v1
J ,0,

E`~z,v!T`~20!T2
21~0!V2

1,u~v!E2
21~z,v!, uv2v2u5d,ReH C2

v2v2
J .0,

E2~z,v!~V2
2,l~v!!21T2~0!T`

21~20!E`
21~z,v!, uv2v2u5d,ReH C2

v2v2
J ,0,

E`~z,v!~V`
2,l~v!!21T`~10!T`

21~20!E`
21~z,v!, uvu5R,Rev,0,

E`~z,v!T`~20!T`
21~10!V`

1,u~v!E1
21~z,v!, uvu5R,Rev.0,

~36!

andV(z,v)5I on the remaining part ofG.
The Riemann–Hilbert problem consists in the determination of a piecewise holomo

function with given multiplicative jumps across a piecewise smooth contour on the Riem
sphere. The relation~25! whereV(z,v),vPG is defined by~26!, ~35!, and~36! serves as a basi
for construction of a family of Riemann–Hilbert problems, the solutions of which are use
solve the problem of the parameter reconstruction for a dispersive medium. Notice thatm(z,v) is
invertible inC\G ~by construction, detm51!, so that, in our case, the Riemann–Hilbert problem
regular.

One cannot directly use~25! as a family of Riemann–Hilbert problems~parametrized byz!,
because the construction ofV(z,v) includesE`(z,v) and E1,2(z,v) that were defined via the
unknownD`(z) and D1,2(z). Instead, let us introduce the following matrix functions ofv de-
pending on two real parametersJ1 andJ2 :

Ê`~J1 ,J2 ;v!5diag$e2 ivJ1,e2 ivJ1,eivJ1,eivJ1%,

Êk~J1 ,J2 ;v!5diag$e2@Ck /~v2vk!#J2,1,1,e@Ck /~v2vk!#J2%, k51,2.

Then

Ek~z,v!5 Êk~J1 ,J2 ;v!uJ15J1~z!

J25J2~z!

, k51,2,̀ , ~37!

where

J1~z!5E
0

z
A«~ t !m1~ t !dt, J2~z!5E

0

z

A1~ t !A2~ t !dt. ~38!

A family of Riemann–Hilbert problems parametrized byJ1 and J2 is given as follows:
determine a 434 matrix functionG(J1 ,J2 ;v), invertible and piecewise holomorphic relative
the contourG, such thatG(J1 ,J2 ;v)→I for v→` and

G1~J1 ,J2 ;z!5G2~J1 ,J2 ;z!V̂~J1 ,J2 ;z!, zPG, ~39!
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where

G6~•;z!5 lim
v→z

vPV6

G~•;v!,

and V̂(J1 ,J2 ;z) is constructed via~26!, ~35!, and~36!, with Ek(z,v) replaced byÊk(J1 ,J2 ;v).
Summing up the construction ofV̂(J1 ,J2 ;z) we arrive at the following proposition.
Proposition 1: The family of the jump matrices Vˆ (J1 ,J2 ;z),zPG is completely and uniquely

determined by the scattering matrix S(v),v.0.
Proposition 2: For each fixed J1 and J2 , the Riemann–Hilbert problem (39) has a unique

solution.
This proposition is the direct consequence of Liouville’s theorem applied toG1G2

21, where
G1 and G2 are two solutions of~39!: G1G2

21 is holomorphic inC, tends toI as v→`; hence,
G1G2

21[I .

IV. PARAMETER RECONSTRUCTION

The reconstruction of the medium parameters is based on using the behavior of the so
of the Riemann–Hilbert problems~39! at the particular points in thev plane.

Uniqueness in the Riemann–Hilbert problem yields

G~J1 ,J2 ;v!uJ15J1~z!

J25J2~z!

5m~z,v!.

As v→0,

m~z,0!5F2~z,0!5T`~z!Y~z,0!, ~40!

whereY(z,0) is a solution of~3! for v50. SinceW(z,0)[0,Y(z,0) does not vary with respect t
z, and we can write~40! as

m~z,0!5T`~z!Y~0,0!5T`~z!T`
21~20!F2~20,0!5T`~z!T`

21~20!.

Therefore we have

G~J1 ,J2 ;0!uJ15J1~z!

J25J2~z!

T`~20!5T`~z!.

If we define

P1~J1 ,J2!52S @G~J1 ,J2 ;0!T`~20!#11

@G~J1 ,J2 ;0!T`~20!#13
D 2

,

P2~J1 ,J2!5 i
@G~J1 ,J2 ;0!T`~20!#11

@G~J1 ,J2 ;0!T`~20!#31
,

then, taking into account the matrix structure ofT`(z), we get

P1~J1 ,J2!uJ15J1~z!

J25J2~z!

5
«~z!

m1~z!
, ~41!

P2~J1 ,J2!uJ15J1~z!

J25J2~z!

5expH 2nE
0

z

A2
2~ t !S «

m1
D 1/2

~ t !dtJ . ~42!
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As v→v1 , m(z,v1)5T`(z)T1
21(z), so that

T1~z!5m21~z,v1!T`~z!5G21~J1 ,J2 ;v1!G~J1 ,J2 ;0!T`~20!uJ15J1~z!

J25J2~z!

.

Defining

P3~J1 ,J2!52S @G21~J1 ,J2 ;v1!G~J1 ,J2 ;0!T`~20!#11

@G21~J1 ,J2 ;v1!G~J1 ,J2 ;0!T`~20!#13
Dv1 ,

we get

P3~J1 ,J2!uJ15J1~z!

J25J2~z!

5
A1~z!

A2~z!
. ~43!

Finally, asv→`,

m~z,v!5I 1
m1~z!

iv
1OS 1

v2D . ~44!

Substituting~44! into the differential equation form(z,v) (uvu.R),

dm

dz
~z,v!5 iv@D`~z!,m1~z!#1~A`~z!1W̃R

`~z,v!!m~z,v!

gives

A`~z!52@D`~z!,m1~z!#5A«~z!m1~z!„m1~z!L2Lm1~z!…, ~45!

whereL5diag$21,21,1,1%. Hence, in virtue of~11! and ~12!,

@m1~z!#135
@A`~z!#13

2A«~z!m1~z!

5
i

2
expH 2nE

0

z

A2
2~ t !S «

m1
D 1/2

~ t !dtJ H n
A2

2~z!

m1~z!
1

1

4A«~z!m1~z!

d

dz
lnS «

m1
~z! D J ,

~46!

@m1~z!#3152
@A`~z!#31

2A«~z!m1~z!

52
i

2
expH 22nE

0

z

A2
2~ t !S «

m1
D 1/2

~ t !dtJ H n
A2

2~z!

m1~z!
2

1

4A«~z!m1~z!

d

dz
lnS «

m1
~z! D J .

~47!

Writing G(J1 ,J2 ;v) as

G~J1 ,J2 ;v!5I 1
G1~J1 ,J2!

iv
1OS 1

v2D , v→`

and denoting

P4~J1 ,J2!5@G1~J1 ,J2!#13, P5~J1 ,J2!5@G1~J1 ,J2!#31,

P6~J1 ,J2!52
i

n S P4

P2
2P5P2D ,
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from ~42!, ~46!, and~47! one has

P6~J1 ,J2!uJ15J1~z!

J25J2~z!

5
A2

2~z!

m1~z!
. ~48!

So far we have obtained three independent combinations of the medium parameters,«/m1 ,
A1 /A2 , andA2

2/m1 , as functions of the auxiliary parametersJ1 andJ2 , which, being replaced by
the functionsJ1(z) andJ2(z), give the above-mentioned combinations as functions of the ph
cal parameterz.

Notice that one cannot obtain more information about the medium parameters, usin
normal incidence, since, if one makes the change of variablez°J15J1(z) in Eq. ~10!, by the
solutions of which the scattering matrixS(v) is defined, then its coefficients are complete
determined by the combinations«/m1 , A1 /A2 , andA2

2/m1 .
Therefore, to achieve unique reconstruction, additional information is needed, e.g., on

rameter or a combination of the parameters should be known. For example, ifm(z) is known, then
~38!, ~41!, and~48! yield

dJ1

dz
5A«~z!m1~z!5m~z!

AP1~J1 ,J2!

11P6~J1 ,J2!
UJ15J1~z!

J25J2~z!

,

~49!
dJ2

dz
5A1~z!A2~z!5m~z!

P3~J1 ,J2!P6~J1 ,J2!

11P6~J1 ,J2!
UJ15J1~z!

J25J2~z!

.

The relations~49! are differential equations, the right-hand sides being already determ
Together with the initial conditionsJ1(0)5J2(0)50, they ensure a unique reconstruction
J1(z) andJ2(z). Substituting the reconstructedJ1(z) andJ2(z) into P1(J1 ,J2), P3(J1 ,J2), and
P6(J1 ,J2) gives, via~41!, ~43!, and~48!, three other medium parameters:«(z), A1(z), andA2(z).

The statement of the theorem now follows from Propositions 1 and 2 and the reconstr
algorithm given in Sec. IV.

V. CONCLUDING REMARKS

In the present paper, an emphasis has been made on the possibility to use the Rie
Hilbert approach to the inverse problem in the case of a dispersive medium. The chosen
dispersion model reflects the resonance behavior of the medium, but, if more accurate a
mation is needed, the model should be replaced by the appropriate one. The problem can
principle, treated in the similar way provided the dependence onv remains piecewise analyti
~e.g., being described by different analytic expressions in the domainsuvu,vb anduvu.vb , for
some fixedvb!.

The assumption that the parametersA1 andA2 are positive~continuous! functions corresponds
to the right-handedness of the medium. One may assume as well, without any changes, thatA1 and
A2 have different signs, so that the medium is left-handed throughout the slab. Allowing
parameters to become zero at some internal points~at which they change the sign in the case o
continuous medium! and/or to have discontinuities, requires additional care in the construction
analysis of the solutions; this question will be addressed elsewhere.
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Two-dimensional, highly directive currents on large
circular loops
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Properties of idealized, two-dimensional current distributions on circular loops are
investigated analytically via the solution of a constrained optimization problem.
The directivity in the far field is maximized under a fixedC5N/T, whereN is the
integral of the square of the current magnitude andT is the total radiated power.C
enters the ensuing Fourier series for the current implicitly through a Lagrange
multiplier a. For non-negativea and large electrical radiuska, the directivity and
the current are evaluated approximately via combined use of the Poisson summa-
tion formula and the Mellin transform technique. As a result, a geometrical-ray
representation for the current is derived for the case of directivities that are slightly
larger than that of the uniform distribution. The analysis indicates certain advan-
tages of large radiating structures for moderate values of the constraintC. In the
limit C→` of Oseen’s ‘‘Einstein needle radiation,’’ an asymptotic formula for the
directivity is obtained. Possible extensions of these results to classes of smooth
convex loops are briefly discussed. ©2000 American Institute of Physics.
@S0022-2488~00!04109-8#

I. INTRODUCTION

In a recent paper,1 a theoretical scheme for studying properties of monochromatic, hi
directive source distributions was formulated and analyzed. The first step is to pose a cons
optimization problem for the optimum continuous source distribution, the solution of whic
then shown to satisfy a Fredholm integral equation of the second kind. In this equatio
constraint enters implicitly via a non-negative Lagrange multipliera. In Ref. 1, the sources ar
classical currents along a fixed axis, generating electromagnetic fields that obey Maxwell’s
tions in free space.

In this paper, the aforementioned scheme is applied to two-dimensional sources that
large circular loops of radiusa, under the conditionka@1, wherek is the wave number. Thes
sources appear as boundary data for the scalar wave equation. Two considerations motiva
work are the following. The first consideration is that, due to the continuous rotational symm
of the source region, the integral equation can be solved exactly. Alternatively, the optimiz
problem can be solved directly, with no recourse to the integral equation. Exact solutions o
type have been given elsewhere~see, e.g., Ref. 1 and the references therein, especially the st
by Katsenelenbaum and Shalukhin2 and by Angell and co-workers3!. The most familiar exact
solution involves source distributions of uniform magnitude that generate the maximum direc
by constructive interference, herein called ‘‘the reference case’’; it corresponds toa50.1 The
present paper focuses on the case of largeka and positivea, where the optimum sources produc
directivities higher than that of the reference case. Insight into this demanding problem is ob

a!Electronic mail: dmarget@fas.harvard.edu
61300022-2488/2000/41(9)/6130/43/$17.00 © 2000 American Institute of Physics
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by deriving simple asymptotic formulas for the optimum source distributions, as well as fo
directivity. Necessarily, these sources are oscillatory in nature.

The second consideration is that, for the case of the electromagnetic fields, the source
butions may serve as a model for axially (z-) invariant surface currents flowing in infinitely long
highly conducting cylindrical shells along the axial (z) direction. The constraining quantity mea
sures the efficiency of the radiating system in the plane transverse to the cylindrical axis1 The
geometry is depicted in Fig. 1 for an arbitrary, simple closed curveC as the boundary. Notably
interesting properties of electrically large, convex cylindrical shells have been indicated by
experimental and theoretical work on resonant circular arrays of cylindrical dipoles.4,5 As dis-
cussed in Sec. IX, it is hoped that, conversely, the present study may offer some insigh
similar properties of currents in convex,noncirculararrays of dipoles. Such properties have not
yet been observed experimentally. An outline of the present paper is provided in the follow

Section II is devoted to the derivation of suitable series expansions describing the op
current, directivity, and constraint. The starting point is a familiar boundary-value problem fo
wave equation in two space dimensions. In Sec. III, the reference case (a50) is studied in detail
for a large circular loop; in particular, an asymptotic expansion is derived for the direct
Sections IV–VI deal with the asymptotic evaluation of the directivity as a function of the
straint whenka@1 anda.0. In Sec. VII, the results of these calculations are discussed,
emphasis on the possible theoretical advantages of large radiating structures. Section VIII p
a description for the asymptotic behavior of the optimum current for moderate values o
constraintC. Thee2 ivt time dependence is suppressed throughout the analysis.

II. PRELIMINARIES

As depicted in Fig. 2,C is the boundary of a simply connected regionR in two space
dimensions, withRùC5B. Consider the boundary-value problem6

FIG. 1. The three-dimensional geometry of the problem considered in this paper~general formulation!. C is the cross
section of an infinitely long cylindrical shell that extends along thez axis. The arrows show the direction of thez-invariant
surface currenth(s) ẑ.
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¹2U~r !1k2U~r !50, rPE2\C,

U~r ! twice continuously differentiable inE2\C,

U~r ! continuous acrossC,

]U1~r !/]h2]U2~r !/]h5h~s!, rPC,

]U~r !/]r 2 ikU~r !5o~r 21/2!, r 5ur u→`,

~2.1!

whereE2 denotes the entire two-dimensional Euclidean space,k is a fixed positive number, and
]U6/]h is the derivative ofU(r ) in the outward local normal toC as the position vectorr
approachesC from the exterior ofC (1) or from R (2).7 h(s) is assumed to be continuous an
have the finite normAN, where1

N5
1

LC
E

C
ds uh~s!u2. ~2.2!

LC5*C ds andds is the usual measure onC. U(x,y) is interpreted as the sole (z) component of
the vector potential in the Lorentz gauge due to the surface current distributionh(s) ẑ oscillating
with frequencyv5kc in a long cylindrical shell of cross sectionC ~see Fig. 1!, wherec is the
velocity of light in vacuum.

This boundary-value problem admits the solution

U~r !5
i

4 EC
ds8 H0

(1)~kur2r ~s8!u!h~s8!. ~2.3!

The associated far-field pattern is defined as

c~ r̂ !5
4

LC
lim

kr→`
Fe2 i (kr1p/4)Apkr

2
U~r !G5

1

LC
E

C
ds8 e2 ik r̂ (f)•r (s8)h~s8!, ~2.4!

wherer̂5 r̂ (f)5(cosf,sinf) (0<f,2p). The power flux and the total radiated power~per unit
length! are

S~f!5uc~ r̂ !u2, ~2.5!

FIG. 2. The geometry of the problem in two space dimensions~general formulation!. R is the cross section of the cylinde
of Fig. 1 andC is the boundary ofR.
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T5
1

2p E
0

2p

df S~f!. ~2.6!

Following the analysis in Ref. 1, define

D5P/T, P5S~f0!, ~2.7!

C5N/T, ~2.8!

whereD is the directivity in a given directionf0 . In the electromagnetic case,C measures the
efficiency of the radiating system, becauseN is proportional to the dissipation losses.

Attention now focuses on currents that produce the maximumD under a fixedC. Such an
optimum currenth(s)5h̃(s) uniquely solves the following problem:

Problem 2.1:Given k and C, maximize P for fixed N, T, and phase Argc( r̂0)50 @ r̂0

5 r̂ (f0)#.
All optimum currents can be obtained via multiplication ofh̃(s) by arbitrary nonzero con-

stants. By use of the method of Lagrange,h̃(s) is found to satisfy a Fredholm integral equation
the second kind:1,8

h̃~s!1
a

LC
E

C
ds8 J0~kur ~s!2r ~s8!u!h̃~s8!5eik r̂ (f0)•r (s), ~2.9!

where a is essentially a Lagrange multiplier, taken to be non-negative, andJn is the Bessel
function of ordern.

A. Optimum source distribution on the circle

WhenC is a circle of radiusa centered at the origin~s5af, as depicted in Fig. 3!, h̃(s) can
be obtained in simple closed form. The starting point is the Fourier expansion

h̃~s~f!!5 j ~f!5 (
n52`

`

f neinf, ~2.10!

where f n are coefficients yet to be determined. It follows that

FIG. 3. The circular loop.
.

                                                                                                                



erial

the

6134 J. Math. Phys., Vol. 41, No. 9, September 2000 D. Margetis and G. Fikioris

                    
c~ r̂ !5 (
n52`

`

f nJn~ka!ein(f2p/2), ~2.11!

P5U (
n52`

`

f nJn~ka!ein(f02p/2)U2

, ~2.12!

N5 (
n52`

`

u f nu2, ~2.13!

T5 (
n52`

`

u f nu2Jn~ka!2. ~2.14!

Due to the continuous rotational symmetry of the current-carrying region, it is immat
what the value off0 is. For definiteness, takef05p/2. BecauseN and T depend only on the
magnitudesu f nu, it is advantageous to maximizeP first by keeping allu f nu fixed and varying the
phases Argf n . For nonzero coefficientf 0 , the choice

f 0 real ~2.15!

is made conveniently without loss of generality. The sign off 0 has no significance; iff 0 is zero,
a remedy is to changeka slightly by invoking the continuity of eachf n in ka. Accordingly, the
maximum of

P5U (
n52`

`

f nJn~ka!U2

~2.16!

is attained by taking allf n to be real. Consider

f nJn~ka!>0, n50,61,62,... . ~2.17!

The task is thus assigned to maximize the function

AP5 (
n52`

`

f nJn~ka!, ~2.18!

by keeping fixed theN andT of Eqs.~2.13! and ~2.14!.
The method of Lagrange furnishes9

Jn~ka!2l1f n2l2Jn~ka!2f n50,

or

f n5:
Jn~ka!

11aJn~ka!2 , ~2.19!

where a5l2 /l1 , and : is a constant that may be set equal to 1 since it is irrelevant to
maximization ofD. Consequently,

j ~f;a!5 j ~f!5 (
n52`

`
Jn~ka!

11aJn~ka!2 einf. ~2.20!

This current generates the real far field
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c~ r̂ ;a!5 (
n52`

`
Jn~ka!2

11aJn~ka!2 ein(f2p/2). ~2.21!

The ensuing optimum quantities of interest are

AP~a!5 (
n52`

`
Jn~ka!2

11aJn~ka!2 , ~2.22!

N~a!5 (
n52`

`
Jn~ka!2

@11aJn~ka!2#2 , ~2.23!

T~a!5 (
n52`

`
Jn~ka!4

@11aJn~ka!2#2 . ~2.24!

Alternatively, one may expand the kernel of the integral equation~2.9! as10

J0~w!5 (
n52`

`

Jn~ka!2ein(f2f8), w52ka sinS f2f8

2 D , f,f8P@0,2p!. ~2.25!

The eigenfunctions of the homogeneous counterpart of Eq.~2.9! areeinf for the circle~n: inte-
ger!, with eigenvaluesan52Jn(ka)2. The procedure to obtain Eq.~2.20! is outlined in Appendix
E of Ref. 1.

B. Alternative representations

The original series representations~2.20! and ~2.22!–~2.24! can be converted into series o
integrals by application of the Poisson summation formula~see Appendix A!.11 Thus,

j ~f!5 (
m52`

` E
0

`

dn
Jn~ka!

11aJn~ka!2 @einf1ein(p2f)#ei2pmn, ~2.26!

AP~a!52 (
m52`

` E
0

`

dn
Jn~ka!2

11aJn~ka!2 ei2pmn, ~2.27!

N~a!52 (
m52`

` E
0

`

dn
Jn~ka!2

@11aJn~ka!2#2 ei2pmn, ~2.28!

T~a!52 (
m52`

` E
0

`

dn
Jn~ka!4

@11aJn~ka!2#2 ei2pmn. ~2.29!

Introduce

A~n!5 1
2 Hn

(1)~ka!, B~n!5 1
2 Hn

(2)~ka!. ~2.30!

There exist functionst15t1(n) andt25t2(n) such that

11 iAa Jn~ka!5t2~11t1A!~11t1B!. ~2.31!

This equation leads to a system of nonlinear equations fort1(n) andt2(n), viz.,

t2~11t1
2AB!51, t1t25 iAa, ~2.32!
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with the solution

t15
2iAa

11A114aAB
, t25

1

2
~11A114aAB!. ~2.33!

Successive decompositions into partial fractions give

Jn~ka!

11aJn~ka!2 5
~22iAa!21

11 iAaJn~ka!
2

~22iAa !21

12 iAaJn~ka!

5
1

t2
21aAB F A

12~t1A!2 1
B

12~t1B!2G . ~2.34!

In this last expression, only the bracketed terms exhibit oscillations inn to leading order in (ka)21

whenka@1. In the following, Eqs.~2.26!–~2.29! are treated analytically forka@1.

III. REFERENCE CASE „aÄ0…

The case witha50 deserves some special attention. The resulting optimum current i
familiar uniform distribution

j ~f;0!5 (
n52`

`

Jn~ka!einf5eika sin f. ~3.1!

The other quantities of interest are

c0~ r̂ !5c~ r̂ ;0!5
1

2pa E0

2p

d~af8!eikau r̂2 ŷucosf85J0„2ka sin~f/22p/4!), ~3.2!

AP~0!5N~0!5 (
n52`

`

Jn~ka!251, ~3.3!

T~0!5 (
n52`

`

Jn~ka!45T0~ka!. ~3.4!

A. Asymptotic formula for T0„ka …

A convenient, alternative expression forT0(ka) is

T0~ka!5
1

2p E
0

2p

df uc0~ r̂ !u25
2

p E
0

p/2

du J0~2ka sinu!2. ~3.5!

Its Mellin transform reads12,13

T̄0~z!5E
0

`

d~ka! ~ka!2zT0~ka!522z
G~z!2G~ 1

22 1
2 z!

G~ 1
21 1

2 z!5
. ~3.6!

Note that for Rez5c0 and Imz5y→6`,

T̄0~z!5O~ uyu212c0!. ~3.7!

The inversion formula forT̄0(z) is
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T0~ka!5
1

2p i Ec02 i`

c01 i`

dz T̄0~z!~ka!z21, 0,c0,1

5
1

2pka

1

2p i Ec82 i`

c81 i`
dz

G~z!2G~ 1
2 2z!

G~ 1
2 1z!3

~2ka!2z, 0,c8, 1
2, ~3.8!

wherez is replaced by 2z in the first line and Legendre’s duplication formula is invoked.
Equation~3.7! indicates that an asymptotic expansion ofT0(ka) cannot be obtained by merel

shifting the inversion contour in the left half of thez plane and calculating the relevant residu
~see Fig. 4!. Additional contributions come from two imaginary saddle points6zsp that give rise
to oscillations inka. To extract these oscillations, let

T0~ka!5
1

p
ReE

0

p/2

du H0
(1)~2ka sinu!21

1

p E
0

p/2

du H0
(1)~2ka sinu!H0

(2)~2ka sinu!.

~3.9!

Evaluation of the first integral is carried out along the positive imaginary axis and the
Reu5p/2, Imu.0, as shown in Fig. 5:

FIG. 4. Pole configuration for the integrand of Eq.~3.8! (m50, 1, 2, . . .!. G1 is the original inversion path in Eq.~3.8!,
andG2 serves the evaluation ofT0(ka) in terms of power series~3.33!.

FIG. 5. Integration path~with arrows! for Eq. ~3.10!.
                                                                                                                



6138 J. Math. Phys., Vol. 41, No. 9, September 2000 D. Margetis and G. Fikioris

                    
E
0

p/2

du H0
(1)~2ka sinu!252 i

4

p2 E
0

`

dt K0~2ka sinht !22 i E
0

`

dt H0
(1)~2ka cosht !2,

~3.10!

T0~ka!5Im I1~ka!1I2~ka!, ~3.11!

I1~ka!5
1

p E
0

`

dt H0
(1)~2ka cosht !2, ~3.12!

I2~ka!5
1

p E
0

p/2

du @J0~2ka sinu!21Y0~2ka sinu!2#. ~3.13!

For ka@1, the major contribution to integration inI1(ka) arises from the end pointt50, indi-
cating that the resulting asymptotic expansion exhibits oscillations inka. The situation is dis-
tinctly different for I2(ka). These two cases are treated separately.

The change of variablem5sinh(t/2)e2 ip/4 in I1 , rotation of the integration path byp/4 in the
counterclockwise sense, and use of the formula

H0
(1)~x!5ei (x2p/4)A 2

pxF12
i

8x
2

9

128x2 1O S 1

x3D G as x→` ~3.14!

result in retaining the first three terms of an asymptotic expansion forI1 ,

I1~ka!5
2

p
eip/4E

0

`

dm
H0

(1)~2ka~112im2!!2

A11 im2
;~2pka!23/2ei4ka2 ip/4F12

9i

32ka
2

281

2~32ka!2G .
~3.15!

This procedure can be readily carried out ad infinitum.
The evaluation ofI2(ka) is more involved. By use of the Mehler–Sonine formula10

Y0~x!52
2

p E
0

`

dt cos~x cosht !, x.0, ~3.16!

and the elementary integrals

E
0

`

dx x2z cosx5G~12z!sin~pz/2!, 0, Rez,1, ~3.17a!

E
0

`

dt ~cosht !z215
Ap

2

G~ 1
22 1

2 z!

G~12 1
2 z!

, Rez,1, ~3.17b!

the Mellin transform ofY0(bx) (b.0,x.0) is found to be

E
0

`

dx x2zY0~bx!52
bz21

Ap
sin~pz/2!

G~12z!G~ 1
22 1

2 z!

G~12 1
2 z!

. ~3.18!

The combination of this result with the known formula10

J0~x!22Y0~x!25
4

p E
0

`

dt Y0~2x cosht ! ~3.19!

and Eq.~3.17b! yields
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E
0

`

dx x2z@J0~x!22Y0~x!2#5sin~pz/2!Ī~z!, ~3.20!

Ī~z!52
1

p
2z

G~12z!G~ 1
22 1

2 z!2

G~12 1
2 z!2

. ~3.21!

Note thatĪ(z) is holomorphic for Rez,0.
It follows from Eqs.~3.13! and ~3.20! and the integral

E
0

p/2

du ~sinu!z215
Ap

2

G~ 1
2 z!

G~ 1
21 1

2 z!
~3.22!

that the Mellin transform ofI2(ka) equals

Ī2~z!5E
0

`

d~ka! ~ka!2zI2~ka!, 0,Rez,1

52Ap
2z22

G~12 1
2 z!G~ 1

21 1
2 z!

Ī~z!1T̄0~z!

5p232z22
G~ 1

22 1
2 z!3G~ 1

2 z!2

G~ 1
21 1

2 z!
, ~3.23!

Ī2~z!5O~ uyu212c0e2puyu!, Rez5c0 , Im z5y→6`. ~3.24!

Ī2(z)2T̄0(z) is holomorphic for Rez,0. Compare with Eq.~3.7!.
Evidently, Ī2(z) has double poles atzm2522m (m50,1,2,...). In view of Eq. ~3.24!, an

asymptotic expansion ofI2(ka) can be obtained by merely shifting the contour in the left half
the z plane and summing the relevant residues. In the vicinity of eachzm2 ,14

Ī2~z!~ka!z21;
1

2 S ka

2 D 22m21 G~ 1
2 1m!

~2m!! 2G~ 1
2 2m!5 H 1

~z2zm2!2 1@2c~112m!23c~ 1
21m!

1 ln~ka/2!#
1

z2zm2
J , ~3.25!

c~z!5
d

dz
ln G~z!, c~11z!5

1

z
1c~z!, ~3.26!

c~1!52g520.577 215 664 9̄ , c~ 1
2!52g22 ln 2. ~3.27!

Hence, forka@1 and positive integerM ,

I2~ka!5
1

2p i Ec02 i`

c01 i`

dz Ī2~z!~ka!z21, 0,c0,1

;
1

p2ka (
m50

M21 S 2

kaD 2m ~21!m

~2m!! 2 S 1

2D
m

6

@2c~112m!23c~ 1
21m!1 ln~ka/2!#, ~3.28!

where (a)m is Pochhammer’s symbol, i.e.,
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~a!051, ~a!m5a~a11!¯~a1m21!, m51,2,... . ~3.29!

An asymptotic formula forT0(ka) follows from Eqs.~3.11!, ~3.15!, and ~3.28! with Eqs.
~3.26!, ~3.27!, and~3.29! andM52:

T0~ka!;
ln~32ka!1g

p2ka
2

1

~2pka!3/2cos~4ka1p/4!2
9p

16~2pka!5/2sin~4ka1p/4!

2
ln~32ka!231g

64p2~ka!3 1
281p2

512~2pka!7/2cos~4ka1p/4!. ~3.30!

Compare with Ref. 15. The first three terms of this asymptotic formula~up to the first cosine!
provide remarkable accuracy even for low values ofka (ka>0.5). See Figs. 6~a! and 6~b! for
comparisons with the numerically computed exact series. The corresponding formula fC0

5N0 /T0 andD05P0 /T0 is

FIG. 6. ~a! Comparison of the exact series~3.4! with the term@g1 ln(32ka)#/(p2ka) of approximate formula~3.30!. ~b!
Comparison of the exact series~3.4! with the first two terms~including the cosine! of approximate formula~3.30!.
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C05D0;
p2ka

g1 ln~32ka! H 11
p

2

cos~4ka1p/4!

~ka!1/2@g1 ln~32ka!# J , ka@1. ~3.31!

B. Exact formula for T0„ka …

In Eq. ~3.8!, allow the original integration path to envelope the positive real axis~Fig. 4!. In
the vicinity of each simple polezm15m1 1

2 (m50,1,2,...),

G~z!2 G~ 1
2 2z!

G~ 1
2 1z!3

;
~21!m11

m!

G~m1 1
2!

2

G~m11!3

1

z2zm1
. ~3.32!

The evaluation and summation of the residues give

T0~ka!5
1

p (
m50

` G~m1 1
2!

2

~m! !4 ~24k2a2!m52F3~ 1
2,

1
2;1,1,1;24k2a2!. ~3.33!

2F3 is a hypergeometric series.16

IV. POWER FLUX P„a…

A. Case a™ka

For 0<a!ka, series~2.22! is recast in the form17,18

AP~a!512aT0~ka!12a2(
n50

`
Jn~ka!6

11aJn~ka!2 2a2
J0~ka!6

11aJ0~ka!2 ~4.1!

;12aT0~ka!12S 2

kaD 1/3

ã2GP~ ã ! as ka→`, ~4.2!

where

ã5aS ka

2 D 22/3

, ~4.3!

GP~x!5E
2`

`

dj
Ai ~j!6

11x Ai ~j!2 , x.0. ~4.4!

By virtue of expansion~3.30!,

AP~a!512a
ln ka

p2ka
1OS a

kaD , ã<O~1!. ~4.5!

If a is scaled asa/ka, the leading term of the asymptotic expansion forGP produces a term
that exactly cancels the logarithm~see Appendix B!. It follows from approximation~4.2! and Eq.
~C48! of Appendix C that

AP~a!;12
3

p2

a

ka
ln

ka

a
2

3 ln~4p!2 7
2

p2

a

ka
, ã@1, a!ka. ~4.6!

This expansion breaks down whena5O(ka).
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B. aÄO„ka …

In view of decomposition~2.34!, the integrand of Eq.~2.27! for m50 is written as

Jn~ka!2

11aJn~ka!2 5FP
~osc!~n!1FP

~nos!~n!. ~4.7!

The FP
~osc! defined as

FP
~osc!~n!5

11t1
2AB

t2
21aAB F A2

12~t1A!2 1
B2

12~t1B!2G ~4.8!

is oscillatory inn when 0,n,ka. In contrast, theFP
~nos! given by

FP
~nos!~n!5

2AB

t2
21aAB

~4.9!

is not oscillatory to the leading order in (ka)21.
Accordingly,

AP~a!52 (
m52`

`

@IP,,m
(osc) ~a!1IP,,m

(nos) ~a!1IP.,m~a!#, ~4.10!

IP,,m
(osc) ~a!5E

0

ka

dn FP
~osc!~n!ei2pmn, ~4.11!

IP,,m
(nos) ~a!5E

0

ka

dn FP
~nos!~n!ei2pmn, ~4.12!

IP.,m~a!5E
ka

`

dn
Jn~ka!2

11aJn~ka!2 ei2pmn. ~4.13!

The inspection of themÞ0 terms suggests that18

AP~a!;2 @IP,,m50
(nos) ~a!1IP.,m50~a!#, ~4.14!

which is useful for alla>0.
In particular, fora5O(ka),

AP~a!;2IP,,m50
(nos) ~a!. ~4.15!

This approximation can be justified heuristically by noticing that the width of the critical inte
tion range in formula~4.14! is roughly determined by the condition

aJn~ka!25O~1!. ~4.16!

According to Ref. 10,

FP
~nos!~n!;

1

a H 12
1

A11ā @12~n/ka!#21/2J , ~4.17!

where
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ā5
2a

pka
. ~4.18!

It follows from Eq. ~4.12! that

IP,,m50
(nos) ~a!5

ka

a F12E
0

1 dx

A114aA~kax!B~kax!
G ~4.19!

;
2

pā
@12ZP~ ā !#, ~4.20!

ZP~ ā !5E
0

1

dx
~12x2!1/4

@~12x2!1/21ā#1/2. ~4.21!

With the change of variablex52t/(11t2),

ZP~ ā !5
2

A11ā
E

0

1

dt
~12t2!2

~11t2!2

1

A~12t2!~12k2t2!
, ~4.22!

k25
12ā

11ā
. ~4.23!

ZP(ā) is evaluated in terms of the complete elliptic integralsE andP1 as follows.10

Consider each one of the two integrals arising from the decomposition

~12t2!2

~11t2!2 52
2

11t2 1
~11t2!212~12t2!

~11t2!2 . ~4.24!

The first integral is identified withP1(1,k). In view of the identity

d

dt F t
A~12t2!~12k2t2!

11t2 G5
1

A~12t2!~12k2t2!

3F2~11k2!
12t2

~11t2!22
113k2

11t2 12k22k2~12t2!G , ~4.25!

the second integral is evaluated as

E
0

1 dt

~11t2!2

~11t2!212~12t2!

A~12t2!~12k2t2!
5

113k2

11k2 P1~1,k!1
1

11k2 E~k!. ~4.26!

Equation~4.21! then gives

ZP~ ā !5A11ā@E~k!2~12k2!P1~1,k!#. ~4.27!

With approximation~4.20! and ā5O(1),

IP,,m50
(nos) ~a!;

2

pā
$12A11ā@E~k!2~12k2!P1~1,k!#%. ~4.28!

It is easily verified that this formula can be extended toa@ka, whenZP(ā) becomes of the orde
of 1/Aā. From expression~4.15!,
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AP~a!;
4

pā
$12A11ā@E~k!2~12k2!P1~1,k!#%, ā<O~1!. ~4.29!

This formula is compared with the original exact series~2.22! in Fig. 7. It is verified thata scales
asa/(ka).

It remains to check whether the preceding formula connects smoothly to expansion~4.6!.
Indeed, withk85A12k2 and the expansions

E~k!511
1

2 S ln
4

k8
2

1

2Dk821
3

16S ln
4

k8
2

13

12Dk841OS k86 ln
1

k8D , ~4.30!

P1~1,k!5
1

2
ln

4

k8
1

p

8
1

p22

32
k821OS k84 ln

1

k8D as k8→01, ~4.31!

it becomes evident that~4.29! reproduces all three terms of expansion~4.6!.

C. Considerations for aÌO„ka …

It is worthwhile noting that

I P,,m50
(nos) ~a!5O~ka/a!, a@ka. ~4.32!

Condition ~4.16! indicates that the integralIP.,m50 of formula ~4.14! should be invoked.
For sufficiently largea, the principal contribution to integration inIP.,m50 arises from a

range outside the transitional region for the Bessel function.10 Accordingly,

IP.,m50~a!;I P~a!, ~4.33!

where

I P~a!5
ka

a E
1

` dh

Ah221

e2ka[L2F(h)]

11~h221!21/2e2ka[L2F(h)] , ~4.34!

F~h!5h ln~h1Ah221!2Ah221, ~4.35!

FIG. 7. Comparison of the exact series~2.22! for AP(a) with approximate formula~4.29!.
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L5
1

2ka
ln

a

2pka
. ~4.36!

The analysis is facilitated by introduction of the variable

§5F~h!1
1

4ka
ln~h221!, h5h~§!. ~4.37!

The major contribution to integration arises from§5O(L) with a width O@(ka)21#. It is found
through differentiation of both sides of the preceding equation that when

uLu5OS ln ka

ka D , L,0, ~4.38!

h(L)21 becomes of the order of (ka)22/3, and the integration in Eq.~4.13! for m50 needs to
take into account the transitional region of the Bessel function. Then formula~4.33! apparently
breaks down. This remains a reasonable approximation if

0<2L!
ln ka

ka

or

L.0. ~4.39!

In some detail,

I P~a!5
ka

a E
2`

`

d§ h8~§!
e2ka(L2§)

11e2ka(L2§)

5
ka

a
@h~L!21#1

1

2a E
0

`

dt Fh8S L1
t

2kaD2h8S L2
t

2kaD G 1

11et

;
ka

a
@h~L!21#1

p2

24aka
h9~L!, ka@1, kaL@1, ~4.40!

where the prime here denotes differentiation with respect to the argument. The following
cases are distinguished forL.

1. Lš1

Starting with the asymptotic expansion

§~h!5h ln
2h

e
12

ln h

ka
1

3

4h
2

1

4kah2 1O~1/h3! as h→`, ~4.41!

define anh05h0(§) such that

§5h0 ln
2h0

e
. ~4.42!

If terms of the order of 1/h2 or smaller are neglected in expansion~4.41!, then
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h~L!;h0~L!2
2

ka
h08~L!ln h0~L!2

3

4

h08~L!

h0~L!
, L@1. ~4.43!

Through successive iterations of Eq.~4.42!,

h0~L!5
L

ln~2L/e!
H 11

ln L̄

L̄
1

~ ln L̄ !22 ln L̄

L̄2
1

~ ln L̄ !32~5/2!~ ln L̄ !21 ln L̄

L̄3

1
~ ln L̄ !42~13/3!~ ln L̄ !31~9/2!~ ln L̄ !22 ln L̄

L̄4
1OF ~ ln L̄ !5

L̄5 G J , ~4.44!

h08~L!5
1

ln@2h0~L!#
5

1

L̄
1

ln L̄21

L̄2
1

~ ln L̄ !223 ln L̄11

L̄3

1
~ ln L̄ !32~11/2!~ ln L̄ !216 ln L̄21

L̄4
1OF ~ ln L̄ !4

L̄5 G , ~4.45!

h09~L!5OF 1

L~ ln L!2G as L→`, ~4.46!

where

L̄5 ln
2L

e
. ~4.47!

An asymptotic formula forI P ensues from expansion~4.40!:

I P;
ka

a
@h0~L!21#. ~4.48!

In particular,

IP.,m50~a!5
1

2a

ln a

ln ln a H 11
ln ln ln a

ln ln a
1OF S ln ln ln a

ln ln a D 2G J as a→`. ~4.49!

2. LÄO„1…

Clearly,

I P~a!5
ka

a
@h~L!21#1O@~aka!21#, ~4.50!

where

L;h ln~h1Ah221!2~h221!1/2. ~4.51!

This approximate equation forh can be solved numerically for fixedL.
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3. 1™ka L™ka

For (ka)2/5(ln ka)3/5!kaL!ka, the term

1

4ka
ln~h221!

can be neglected in Eq.~4.37!:

I P~a!;
ka

a
@h~L!21#5

ka

a F1

2
~3L!2/31O~L4/3!G . ~4.52!

For 1!kaL!(ka)2/5(ln ka)3/5, the previously neglected logarithm needs to be taken
account. The scaling

j521/3~ka!2/3~h21!, L̃53kaL/2, j5j~§!.0, ~4.53!

leads to

j~L!3/21 3
8 ln j~L!;L̃, L̃@1, ~4.54!

which in turn gives

j~L!;L̃2/3@12 1
6 L̃21 ln L̃2 1

144 L̃22~ ln L̃ !21 1
24 L̃22 ln L̃#. ~4.55!

I P(a) is readily evaluated from approximation~4.40! with the neglect ofh9(L).

D. Asymptotic formula for P„a…

The foregoing discussion suggests that the integralsI P,,m50
(nos) and IP.,m50 become of the

same order in magnitude when 0,L5O(1), thesecond one dominating whenL@1. The leading
term for AP(a) is

AP~a!;
2ka

a
$12A11ā @E~k!2~12k2!P1~1,k!#1@h~L!21#%, ~4.56!

to all orders ina, where

§5h~§!ln@h~§!1Ah~§!221#2Ah~§!2211
1

4ka
ln@h~§!221#. ~4.57!

ā, k, andL are defined by Eqs.~4.18!, ~4.23!, and~4.36!.

V. CURRENT NORM

The asymptotic analysis forN(a) is quite similar to that forAP(a).

A. Case a™ka

The exact series~2.23! is recast in the form

N~a!5122aT0~ka!12a2H 2(
n50

`
Jn~ka!6

11aJn~ka!2 1 (
n50

`
Jn~ka!6

@11aJn~ka!2#2 J
2a2J0~ka!6

312aJ0~ka!2

@11aJ0~ka!2#2
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;122aT0~ka!12S 2

kaD 1/3

ã2@2GP~ ã !1GN~ ã !#, ~5.1!

where

GN~x!5E
2`

`

dj
Ai ~j!6

@11xAi ~j!2#2 , x.0. ~5.2!

ã andGP(x) are defined by Eqs.~4.3! and ~4.4!. In analogy with Eq.~4.5! and expansion~4.6!,

N~a!5122a
ln ka

p2ka
1OS a

kaD , ã<O~1!, ~5.3!

N~a!;12
6

p2

a

ka
ln

ka

a
2

6ln~4p!210

p2

a

ka
, ã@1, a!ka. ~5.4!

B. aÄO„ka …

In consideration of decomposition~2.34!, let

Jn~ka!2

@11aJn~ka!2#2 5FN
~osc!~n!1FN

~nos!~n!, ~5.5!

where

FN
~osc!~n!5

1

~t2
21aAB!2 H A2

@12~t1A!2#2 1
2AB

12~t1
2AB!2

~t1A!2

12~t1A!2 1
B2

@12~t1B!2#2

1
2AB

12~t1
2AB!2

~t1B!2

12~t1B!2 J , ~5.6!

FN
~nos!~n!5

2AB

~t2
21aAB!2

1

12~t1
2AB!2 . ~5.7!

t1,2 are defined by Eq.~2.33!. With the definitions18

I N,,m
(osc) ~a!5E

0

ka

dn FN
~osc!~n!ei2pmn, ~5.8!

I N,,m
(nos) ~a!5E

0

ka

dn FN
~nos!~n!ei2pmn, ~5.9!

IN.,m~a!5E
ka

`

dn
Jn~ka!2

@11aJn~ka!2#2 ei2pmn, ~5.10!

it is evident that onlyI N,,m50
(nos) andIN.,m50 contribute to the lowest order in (ka)21:

N~a!;2@I N,,m50
(nos) ~a!1IN.,m50~a!#. ~5.11!

Now considera5O(ka). By analogy with Eq.~4.20!,

I N,,m50
(nos) ~a!;p21ZN~ ā !, ~5.12!

where
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ZN~ ā !5
2

~11ā !3/2E
0

1

dt
~12t2!2

~11t2!~12k2t2!

1

A~12t2!~12k2t2!
, ~5.13!

and ā andk are defined by Eqs.~4.18! and ~4.23!. The use of the equalities

~12t2!2

~11t2!~12k2t2!
52

1

k2 1
4

11k2

1

11t2 1
~12k2!2

k2~11k2!

1

12k2t2 ~5.14!

and

d

dt S tA 12t2

12k2t2D 5
1

k2A12k2t2

12t2 2
12k2

k2

1

~12k2t2!A~12t2!~12k2t2!
~5.15!

yields

ZN~ ā !5
2

A11ā
F2P1~1,k!2

K ~k!2āE~k!

12ā G , ~5.16!

whereK is the complete elliptic integral of the first kind.10 I N,,m50
(nos) (a) is evaluated from formula

~5.12!. This formula can be extended toa@ka.
The ensuing leading term forN(a) reads

N~a!;2 I N,,m50
(nos)

;
4

pA11ā
F2P1~1,k!2

K ~k!2āE~k!

12ā G , a<O~ka!. ~5.17!

See Fig. 8 for a comparison of this expression with the exact series~2.23!.
It is noted in passing that withk85A12k2, the expansions~4.30!, ~4.31!, and

K ~k!5 ln
4

k8
1

1

4 S ln
4

k8
21Dk821

9

64S ln
4

k8
2

7

6Dk841OS k86 ln
1

k8D , k8→01, ~5.18!

reproduce all three terms of expansion~5.4!.

FIG. 8. Comparison of the exact series~2.23! for N(a) with approximate formula~5.17!.
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C. Considerations for aÌO„ka …

By following the steps of Sec. IV C, one gets

IN.,m50~a!;I N~a!, ~5.19!

where

I N~a!5
ka

a E
1

` dh

Ah221

e2ka[L2F(h)]

$11~h221!21/2e2ka[L2F(h)]%2

5
1

2a
h8~L!1

1

4aka E0

`

dt Fh9S L1
t

2kaD2h9S L2
t

2kaD G 1

11et

;
1

2a
h8~L!1

p2

48a~ka!2 h-~L!, ka@1, kaL@1. ~5.20!

F(h) andL are given by Eqs.~4.35! and ~4.36!. With the variable§ of Eq. ~4.37!,

h8~§!5H ln@h~§!1Ah~§!221 #1
1

2ka

h~§!

h~§!221 J 21

. ~5.21!

1. Lš1

From Eq.~5.21!,

h8~L!;
1

ln@h~L!1Ah~L!221#
~5.22!

;
1

ln@2h0~L!#
, ~5.23!

whereh0(§) is defined by Eq.~4.42!. Furthermore,

h0-~L!5O@L22~ ln L!22#, L→`. ~5.24!

It is evident that

I N~a!;
1

2a
h8~L!;

1

2a
h08~L!, ~5.25!

with recourse to expansion~4.45!. Of particular interest is the asymptotic formula

IN.,m50~a!5
1

2a

1

ln ln a H 11
ln ln ln a

ln ln a
1OF S ln ln ln a

ln ln a D 2G J as a→`. ~5.26!

2. LÄO„1…

Obviously,

I N~a!;
1

2a
h8~L!. ~5.27!

h8(L) is given by formula~5.22!, in combination with approximation~4.51!.
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3. 1™ka L™ka

For (ka)2/5!kaL!ka, the term proportional to (ka)21 in Eq. ~5.21! can be neglected:

I N~a!;
1

2a
h8~L!;

1

2a
~3L!21/3. ~5.28!

If 1 !kaL!(ka)2/5, both terms in Eq.~5.23! need to be retained. From Eq.~4.53!,

h8~L!;S ka

2 D 1/3 1

j~L!1/21@4j~L!#21

;S ka

2 D 1/3

L̃21/3F11
1

12

ln L̃

L̃
2

1

4L̃
1

1

72

~ ln L̃ !2

L̃2
2

5

48

ln L̃

L̃2 G . ~5.29!

It is now a trivial matter to write down an expansion forI N(a).

D. Asymptotic formula for N„a…

The foregoing discussion suggests thatI N,,m50
(nos) (a) becomes of the same order of magnitu

as IN.,m50(a) when a5O@(ka)7/3(ln ka)2/3#. This entails that 0,kaL5O(lnka). The leading
term for N(a) to all orders ina is

N~a!;
4

pA11ā
F2P1~1,k!2

K ~k!2āE~k!

12ā G1
1

a
h8~L!, ~5.30!

whereā andk are defined by Eqs.~4.18! and~4.23!, and the derivativeh8(L) is evaluated from
Eq. ~5.21! with ~4.37!.

VI. TOTAL POWER T„a…

Despite the equality

T~a!5
AP~a!2N~a!

a
, ~6.1!

the derivation of an asymptotic formula forT(a) is somewhat tricky. For instance, it is clearly n
allowed to replace in Eq.~6.1! AP(a) and N(a) for all a<O(ka) by expressions~4.29! and
~5.17! that involve complete elliptic integrals. These terms produce an erroneous formula forT(a)
when ã becomes small.

A. aÏO†„ka …2Õ3
‡

From Eqs.~4.2! and ~5.1!,

T~a!;T0~ka!2
4ã

ka
@GP~ ã !1GN~ ã !#, ã5a S ka

2 D 22/3

, ~6.2!

whereGP andGN are defined by Eqs.~4.4! and ~5.2!, andT0(ka) corresponds to the referenc
case already examined in Sec. III. For present purposes, it suffices to take

T0~ka!;
g1 ln~32ka!

p2 ka
, ka@1. ~6.3!
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B. aš„ka …2Õ3

By invoking the large-argument approximations of Appendix B forGP(ã) andGN(ã), and
scalinga by ka inside the logarithms, the right-hand side of formula~6.2! becomes

T0~ka!2
4ã

ka
@GP~ ã !1GN~ ã !#;

3

p2

1

ka
ln

ka

a
1

6 ln~4p!213

2p2ka
, ~6.4!

provided thatã@1 while ā!1. Both of these terms are correctly reproduced by Eq.~6.1! with
formulas~4.29! and ~5.17!, and expansions~4.30! and ~5.18!. Without further ado,T(a) is

T~a!;
8

p2ka

1

ā2 F12
1

A11ā

E~k!2āK ~k!

12ā G , ~ka!2/3!a<O~ka!. ~6.5!

ā andk are defined by Eqs.~4.18! and ~4.23!. This formula breaks down whena5O@(ka)2/3#.
For larger values ofa, contributions in series~2.29! representingT(a) arise from terms with

m50 andn.O(ka). Finally, a combination of expressions~4.56! and ~5.30! yields

T;
2ka

a2 H 12
1

A11ā

E~k!2āK ~k!

12ā
1@h~L!21#2

1

2ka
h8~L!J , a@~ka!2/3. ~6.6!

VII. REMARKS ON C AND D OPTIMUM

It is worthwhile noting the following.
~i! As pointed out in Sec. II, the constraintC of Eq. ~2.8! is intended as a measure of th

efficiency of the radiating system in thexy plane. In the electromagnetic case, the efficien
should express the ratio

dissipation ~Ohmic! losses

total radiated power
.

The Ohmic losses are obtained via multiplication ofC/(ka) by a quantity independent ofa. Thus,
for a fixed given frequencyv, it is desirable to employ the ratio

Ce5
C

ka
. ~7.1!

~ii ! It follows from Eqs.~4.2!, ~5.1!, and~6.2! that

D/D0

Ce
5kaT0

P

N
;kaT0;

ln~32ka!1g

p2 , a!ka, ka@1, ~7.2!

where the subscript 0 corresponds to the reference case, while

Ce5Ce~a!;H ln~32ka!1g

p2 24ã@GP~ ã !1GN~ ã !#J 21

. ~7.3!

GP andGN are given by Eqs.~4.4! and ~5.2!. In particular,

Ce~a!;
p2

3 F ln
ka

a
1 ln~4p!2

13

6 G21

, ~ka!2/3!a!ka. ~7.4!

Note that fora,O(ka), D/D0 increases moderately above 1 at the expense of a mod
increase in the constraintCe . The slope ofD/D0 , qua function ofCe , is logarithmic inka.

For a5O(ka),
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D/D0

Ce
5kaT0W~ ā !, ā5

2a

pka
5O~1!, ~7.5!

while Ce depends ona andka only throughā. In the above,W(ā) is a known function that is
expressed in terms of the complete elliptic integrals~see Secs. IV and V!. It follows that for fixed
Ce , D/D0 increases logarithmically inka.

These remarks can be verified by direct comparison with Fig. 9. Notice the range ofa over
which D/D0 varies almost linearly inCe .

~iii ! According to formulas~4.56!, ~5.30!, and~6.1!, if

ka!a!~ka!7/3~ ln ka!2/3, ~7.6!

then

AP~a!;
2ka

a
, ~7.7!

T~a!;
AP~a!

a
;

2ka

a2 . ~7.8!

Therefore,

D

D0
5T0

P

T
;2kaT0;

2

p2 @ ln~32ka!1g#. ~7.9!

Evidently, this value requires an extremely large constraintCe .
~iv! In the limit C→` ~or a→`!, expressions~4.49! and ~5.26! furnish

C~a!;
a

ln a
, D~a!;

ln a

ln lna
as a →`, ~7.10!

which in turn lead to

FIG. 9. Normalized directivityD/D0 vs constraintCe for different values ofka. D0 is the directivity of a uniform
distribution ~reference case!, a50.
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D;
ln~ClnC!

ln lnC
as C→`. ~7.11!

Note that this formula is independent ofka and signifies Oseen’s ‘‘Einstein needle radiation.’’19

An underlying condition whenka@1 reads

ln
C

ka
@ka, ~7.12!

which stems from the conditionL@1 by invoking Eq.~4.36!.

VIII. OPTIMUM CURRENT j „f…

By inspection of Eq.~2.20!,

j ~p2f!5 j ~f!, j ~2f!5 j * ~f!. ~8.1!

Without loss of generality, one may assume 0<f<p/2.

A. Remarks on the integral equation

For sufficiently smalla, an approximate expression for the current can be obtained from
integral equation~2.9! according to the iterative scheme1

j (p)~f!1
a

2p E
0

2p

df8 J0S 2ka sin
f2f8

2 D j (p21)~f8!5eika sin f, p51,2,..., ~8.2!

j (0)~f!5eika sin f, ~8.3!

which results in a Neumann series. Evidently,

j ~f!5eika sin f1 (
p51

` S 2
a

kaD p

ǧp~f!, a!ka, ~8.4!

where

ǧ1~f!5
ka

p E
0

p

dx J0~2ka sinx!eika sin (f22x), ~8.5!

ǧp~f!5
ka

p E
0

p

dx J0~2ka sinx!ǧp21~f22x!, p52,3,... . ~8.6!

Whenka is large andf, p2f are O(1), themajor contribution to integration in the preced
ing two equations distinctly comes from~i! neighborhoods of stationary-phase points with wid
O(1/Aka), and~ii ! the vicinities ofx50, p with widths O(1/ka). The stationary-phase points a
given by

d

dx
@62 sinx1sin~f22x!#50, 0,x,p, ~8.7!

or

x5f,
f1np

3
, n50,1,2. ~8.8!
                                                                                                                



y

6155J. Math. Phys., Vol. 41, No. 9, September 2000 Two-dimensional, highly directive currents

                    
The widths of the contributing regions are of the order of (ka sinf)21/2 and $kausin@(f
1np)/3#u%21/2, respectively. The total stationary-phase contribution toǧ1(f) is

ǧ1
(sp)~f!;

1

2p H eika sin f

usinfu
1

1

)
Fei3ka sin (f/3)2 ip/2

usin~f/3!u
1

ei3ka sin [(f12p)/3]2 ip/2

usin@~f12p!/3#u

1
ei3ka sin [(f22p)/3]1 ip/2

usin@~f22p!/3#u G J , ~8.9!

while the total contribution from the end pointsx50,p is

ǧ1
(ep)~f!;

2ka

p E
0

`

dx J0~2kax!eika sin f2 i2kax cosf5
eika sin f

pusinfu
. ~8.10!

Therefore, to the lowest order in (ka)21,

ǧ1~f!;
3

2p

eika sin f

usinfu
1

1

2p)
H ei3ka sin(f/3)2 ip/2

usin~f/3!u
1

ei3ka sin[(f12p)/3]2 ip/2

usin@~f12p!/3#u

1
ei3ka sin[(f22p)/3]1 ip/2

usin@~f22p!/3#u J . ~8.11!

The preceding calculations can be extended to higher orders ina, but the iteration procedure
becomes increasingly cumbersome. In view of Eq.~8.6!, the pth iteration (p>2) introduces
stationary-phase points that solve

d

dx F62 sinx1~2p21!sinS f22x12np

2p21 D G50, n52~p21!,...,p21. ~8.12!

These points are

xn55
f1~2n12p21!p

2p11
, n52~p21!,...,21,0

f12np

2p11
, n50,1,...,p21

f12~n12p21!p

2p11
, n52p11,

~8.13!

with corresponding phases

~2p11!ka sincpm , m52p, 2p11,...,p21,p, ~8.14!

where

cpm5
f12mp

2p11
, m52p, 2p11,...,p21,p. ~8.15!

For non-negativem which is less than or equal top/2, cpm represents the reflection anglec̄pm

at the local tangent of a ray that originates from thex axis, travels in the direction of maximum
field atf5p/2, and reaches the observation point after bouncingp times at the circular boundar
counterclockwise, withm being the winding number. For larger values ofm, p2cpm becomes
the reflection angle, the sense of circulation is clockwise, andp2m is the winding number. When
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m is negative, the ray runs initially antiparallel to the positivey axis and the previous conside
ations hold withm being replaced byumu andcpm by 2cpm , and the sense of circulation reverse
in each case. See Figs. 10~a!–10~d!, for p50,1, and Figs. 11~a!–11~e! for p52.

Because the expansion parameter here is proportional toa/(ka), this scheme is restricted in
its applicability. Furthermore, whenf5O@(ka)21/3#, x50 falls inside the critical region of the
stationary-phase points atx5f/(2p11) (p50,1,2,. . . ) and theapproximations made hithert
break down. This case is particularly interesting because the major contribution to the max
field at f5p/2 is determined by the current in the vicinities off50,p. Indeed, in view of Eqs.
~2.4! and ~8.4!, consider the integral

E
0

2p

df8 e2 ika cos(f2f8)ei (2p11)ka sin[(f812mp)/(2p11)]. ~8.16!

With f5p/21e, ueu!1, stationary-phase points are located at

f85S 11
1

2pD S e1
2mp

2p11D , m50,1,2, . . . , p51,2, . . . . ~8.17!

For m50, these points fall arbitrarily close to 0.

B. Asymptotic expansion for j „f…, fÄO„1…, pÀfÄO„1…

To get an asymptotic expansion forj (f), start with Eqs.~2.26! and ~2.34!, and

1

12~t1A!2 5 (
p50

L21

~t1A!2p1
~t1A!2L

12~t1A!2 , ut1~n!A~n!u,1, n: positive, ~8.18!

FIG. 10. A geometric interpretation of iterative formula~8.2! with cpm from Eq. ~8.15! andp50,1. P is the observation
point and P1 the point at reflection.~a! p50, m50 (1), ~b! p51, m50 (1), ~c! p51, m51 (1), ~d! p51, m
521 (2).
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along with its complex conjugate involvingB5B(n). In the limit L→`,

j ~f!5 (
p50

`

(
m52`

`

@ ̌pm~f!1 ̌pm~p2f!#. ~8.19!

A rigorous justification of this expansion is a trifling matter. In the above,

̌pm~f!5E
0

` dn

t2~n!21aA~n!B~n!
@A~n!~t1A!2p1B~n!~t1B!2p#ein(f12mp). ~8.20!

These integrals can be evaluated by the standard method of stationary phase. The as
overall phase reads

Ppm6~n;f!56~2p11!A~ka!22n27~2p11!n arccos@n/~ka!#7~2p11!
p

4
1nf12mpn.

~8.21!

In the first branch of arccos,Ppm6(n.0;f) is rendered stationary at

npm6
(sp) 5ka coscpm , ~8.22a!

where

FIG. 11. A geometric interpretation of formula~8.2! with ~8.14! andcpm from Eq. ~8.15!, andp52. P is the observation
point andPi , i 51,2, points at reflection.~a! m50 (1), ~b! m51 (1), ~c! m52 (1), ~d! m521 (2), ~e! m522
(2).
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1: 0,cpm<p/2, 2: 2p/2<cpm,0, ~8.22b!

andcpm is defined by Eq.~8.15!, while

P pm6
(sp) 5~2p11!ka sincpm7~2p11!

p

4
,

d2P pm6

dn2 Un5n
pm6
(sp) 56

2p11

ka sincpm
. ~8.23!

Condition ~8.22b! poses a restriction on the allowed values ofm for fixed p:

1: H 0<2m<p, 0,f<p/2

0<2m<p21, p/2,f,p,

2: H 2p<2m<21, 0,f<p/2

2p21<2m<21, p/2,f,p.
~8.24!

Consequently,

̌pm~f!;2
~2ā !p

A2p11

1

@ usincpmu1/21Ausincpmu1ā#2p11

usincpmu

Ausincpmu1ā

3exp@ i ~2p11!ka sincpm2 ipp/2#, 0<2m<p, ~8.25!

or

̌pm~f!;2
~2ā !p

A2p11

1

@ usincpmu1/21Ausincpmu1ā#2p11

usincpmu

Ausincpmu1ā

3exp@ i ~2p11!ka sincpm1 ipp/2#, 2p<2m<21, ~8.26!

whereā is given by Eq.~4.18!. It follows from Eq. ~8.19! that

j ~f!;2(
p50

`
~2ā !p

A2p11
(

s56
(

mPSps

1

@ usincpmu1/21Ausincpmu1ā#2p11

3
usincpmu

Ausincpmu1ā
exp@ i ~2p11!ka sincpm2 ispp/2#, ~8.27!

Sp15$ integer m: 0<m<p%, Sp25$ integer m: 2p<m<21%. ~8.28!

The condition 0,ucpmu<p/2 is now replaced by 0,ucpmu,p.
This ray representation for the optimum current is reminiscent of the geometrical optic

electromagnetic fields. Withp@1 and fixedm andā, each corresponding term of the series is
the order ofp23/2 and absolute convergence obtains. Fora,pka minpmusincpmu/2, the summands
can be expanded in powers ofā. Note that16

~11A11z!22p215222p21
2F1~p1 1

2,p11;2p12;2z!, ~8.29!

where2F1 is the hypergeometric function andz5āusincpmu21. Expanding2F1 readily reproduces
asymptotic formulas for the iterative solutions described by Eqs.~8.2!–~8.6!.

Investigating expansion~8.27! in routine mathematical rigor is beyond the scope of this pa
A condition for its validity is

a<O~ka!, ~8.30!
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while expansions~8.25! and ~8.26! make sense if

ucpmu, up2cpmu.O@~ka!21/3#, ~8.31!

at least forp, m<O(1). Thelatter conditions follow from the requirement that the stationa
phase points lie outside the transitional region of the Bessel functions. Forp5O(1), thefirst one
of conditions~8.31! is violated whenm50 andf5O@(ka)21/3#.20

In the next paragraphs, attention focuses on the rangesa<O(ka) and 0<f<O@(ka)21/3#.
From a practical viewpoint, this case is perhaps the most interesting one, since it amount
optimum directivityD that is moderately larger than the directivityD0 of the uniform distribution.

C. Case 0ÏfÏO†„ka …À1Õ3
‡, aÏO„ka …

Considera<O@(ka)2/3#. The optimum current is approximated by17,18

j ~f!;E
0

`

dn
Jn~ka!

11aJn~ka!2 einf

;eikafE
2`

`

dj
Ai ~j!

11ãAi ~j!2 ei f̃j, ã5aS ka

2 D 22/3

<O~1!, ~8.32!

where

f̃5fS ka

2 D 1/3

<O~1!. ~8.33!

It has not been possible to evaluate the requisite integral in terms of known transcendenta
tions whenf̃5O(1) andã5O(1).

By virtue of Eq.~C31! of Appendix C,

j ~f!;eikafF E
2`

`

dj Ai ~j!ei f̃j2ãE
2`

`

dj Ai ~j!3ei f̃jG
5eika(f2f3/6)2ãf̃1/2

e2 ip/6

3A2p
FJ1/6S 2

27
kaf3D

1
1

2
e2 ip/3H1/6

(2)S 2

27
kaf3D Geika(f25f3/54),

ã!1, kaf5!1. ~8.34!

This result agrees with expression~8.27! when f̃@1. Indeed, the substitutions

J1/6S 2

27
kaf3D;

3)

Apkaf3
cosS 2

27
kaf32

p

3 D ,

H1/6
(2)S 2

27
kaf3D;

3)

Apkaf3
e2 i (2kaf3/272p/3)

into formula ~8.34! for f@(ka)21/3 anda!(ka)2/3 give

j ~f!;S 12
3a

2pkaf Deika(f2f3/6)2
)a

2pkaf
eika(f2f3/54)2 ip/2. ~8.35!
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On the other hand,

2(
p50

`
~2ā !p

A2p11

1

@ usincp0u1/21Ausincp0u1ā#2p11

usincp0u

Ausincp0u1ā
ei (2p11)ka sin cp02 ipp/2

;2F 1

Asinf1Asinf1ā

sinf

Asinf1ā
eika sin f

2
ā

)

1

@Asin~f/3!1Asin~f/3!1ā#3

sin~f/3!

Asin~f/3!1ā
ei3ka sin(f/3)2 ip/2G . ~8.36!

With the approximations

1

Af1Af1ā
;

1

2Af
S 12

ā

4f D ,
1

Af1ā
;

1

Af
S 12

ā

2f D ,

1

@Af/31Af/31ā#3
;

3)

8f3/2
, a!kaf,

the sum~8.36! reduces to

j ~f!;S 12
3a

2pkaf Deika sin f2
)a

2pkaf
ei3ka sin(f/3)2 ip/2. ~8.37!

Obviously, expression~8.35! is recovered iff!(ka)21/5.
With ã5O(1) andf̃@1, the major contribution to the integral~8.32! stems from stationary-

phase points that are distributed along the negativej axis. These are singled out by expanding t
integrand according to Eq.~8.18!,

Ai ~j!

11ã Ai ~j!2 5
1

t2
21ãAB H (

p50

L21

@~t1A!2pA1~t1B!2pB#1
~t1A!2LA

12~t1A!2 1
~t1B!2LB

12~t1B!2 J ,

~8.38!

where

A5A~j!5e2 ip/3Ai ~ ujue2 ip/3!, B5B~j!5eip/3Ai ~ ujueip/3!, ~8.39!

t15t1(j) and t25t2(j) are given by Eq.~2.33! with a being replaced byã, and 1!L

5O(f̃) so that the remainders whenL terms are summed can be neglected. TakeL→` once the
stationary-phase calculation is carried out. Notably, the stationary-phase points lie away fro
origin and large-argument approximations for the Airy functions become effective. The en
expansion connects smoothly to them50 terms of series~8.27! with

sincp0;
f

2p11

in the amplitude, and

sincp0;
f

2p11
2

1

6

f3

~2p11!3 ,
kaf5

~2p11!5 !1,

in the phase.
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The casea.O@(ka)2/3# is more involved, because contributions to the integral~8.32! arise
from positivej such thatã Ai( j)25O(1), inaddition to themÞ0 terms from series~8.27!. When
f̃<O(1) andā5O(1), theformer contributions may become negligible.

D. Graphical representations of j „f… and far-field pattern

In Figs. 12~a! and 12~b!, the real and imaginary parts of the optimum currentj (f) are plotted
versusf (0<f<p) for four different values of the constraintCe . The corresponding radiation
patterns scaled asuc( r̂ )u/c( ŷ) are shown in Fig. 13. As expected intuitively, the number of
side lobes increases while their size decreases withCe .

IX. CONCLUSIONS AND DISCUSSION

Starting with a familiar boundary-value problem for the wave equation, this paper applie
general scheme of Ref. 1 in order to analyze optimally directive circular currents in two s
dimensions. The integral equation for the current is solved exactly in terms of Fourier serie
the optimal quantities, such as the directivity, are evaluated approximately for large values

FIG. 12. ~a! Real part of the optimum currentj (w) from exact series~2.20! for ka510 and different values of the
constraintCe . ~b! Imaginary part of the optimum currentj (w) from exact series~2.20! for ka510.
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electrical radiuska. A noteworthy indication of this study is that large radiating structures can
advantageous for the achievement of directivities moderately larger than the directivityD0 of the
uniform current distribution. In the case of the circle, a more precise statement quantified i
VII is that the rate of the directivity increase slightly aboveD0 is logarithmic inka. Intuitively, a
similar result is expected to hold for some class of sufficiently smooth and convex closed lo
electrically large linear dimensions.

The asymptotic analysis reveals oscillatory optimum currents that can be represen
geometrical rays bouncing and circulating inside the circle. This picture breaks down i
vicinity of width O@(ka)21/3# of points (a,f) which contribute to the leading order in the max
mum of the radiation field, and lie in a direction perpendicular to that of the maximum pea
formula to remedy this anomaly has been provided for directivities moderately larger thanD0 . It
is expected that a somewhat analogous picture should hold for a wide class of convex,
closed curvesC, where the specifics of the ray structure depend on the radius of curvaturer c(s).21

The principal contribution to the field in the direction of maximum may then be determined
the behavior of the current in the vicinities of the local extrema ofr c(s).

As implied by Oseen’s analysis,19 the Einstein needle radiation requires optimal curre
reversing extremely rapidly along the loop, with large values of the constraintC (a→`). Then
the normalized far-field pattern tends to resemble a needle in the direction of maximum direc
For a→` andka>O(1), theFourier series~2.20! for the current can be reasonably approxima
by noticing that the major contribution to summation comes from all integern’s for which
condition~4.16! is satisfied~with n replaced byn!. Thus, there is always a contributing region th
lies above the transition pointka; there, the Bessel functions decrease exponentially inn. As
expected, the corresponding terms exhibit rapid oscillations inf. In addition, there is possibly
another contributing region,n,ka, where the Bessel functions have zeros qua functions of t
index. For certain narrow ranges ofka, some of these zeros may happen to fall sufficiently cl
to integers and the corresponding terms have a magnitude of the order of 1/Aa. This rather
exceptional case is not investigated any further in this paper.

The leading term of an asymptotic expansion for the directivityD as C→` is intimately
related to the behavior asm→` of the logarithms lnuamu, wheream are the eigenvalues pertainin
to integral equation~2.9!. Under quite restrictive conditions on the convexity and smoothnessC,
it can be conjectured that this leading behavior approximates, in some sense, the oneam

52Jm(ka)22. It is therefore expected that there exists a class of curvesC that reasonably satisfy
the asymptotic formula~7.11!. The required consistency conditions such as the degree of sm
ness ofC are left as an open question for future research.

FIG. 13. Normalized optimum radiation pattern from exact series~2.21! for ka510.
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A next step is to extend the methodology applied hitherto to the cases of circular and n
cular loops embedded in a three-dimensional space. An intriguing question that could be add
is whether the optimum current examined in this paper may resemble, and if so in what se
current that can be excited on resonant, noncircular closed-loop arrays of cylindrical dipol5 If
the answer to this question is positive, it may be possible to excite the optimum current dis
tions in convex, noncircular loops.
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APPENDIX A: ON THE POISSON SUMMATION FORMULA

By relaxing the requirements of mathematical rigor, consider the series

S5 (
n50

`

f ~n!. ~A1!

When f (n) is properly replaced byf (n:complex), the Poisson summation formula can be deri
from the ‘‘Watson transformation.’’22 It is assumed that the positive real axis, includingn50, is
free of any singularities off (n). Clearly,

S5
21

2i R
G
dn

f ~n!

tanpn
, ~A2!

where the contourG is wrapped around the positive real axis clockwise, leaving all singularitie
f (n) outside the enclosed region. LetG6 be a portion ofG lying in the upper (1) or lower
(2) half of then plane, andGe a semicircle of small~finite! radiuse, centered atn50, such that
G5G1øGeøG2 . The expansion of (1/tanpn) as

1

tanpn
57 i H (

n50

N621

@e6 i2pnn1e6 i2p(n11)n#1
e6 i2pnN6~11e6 i2pn!

12e6 i2pn J , nPG6 , ~A3!

and subsequent use of the limitsN6→` independently while keepinge fixed, furnish

S5
1

2
lim

N6→`
H (

n50

N121 E
G1

dn f ~n!@ei2pnn1ei2p(n11)n#

2 (
n50

N221 E
G2

dn f ~n!@e2 i2pnn1e2 i2p(n11)n#J 2
1

2i EGe

dn
f ~n!

tanpn
. ~A4!

In the limit e→01, the integration overGe picks up half the residue of@ f (n)/tanpn# at n50,
leading to

(
n50

`

f ~n!5 1
2 f ~0!1 lim

N6→`
(

n52N2

N1 E
0

`

dn f ~n!ei2pnn. ~A5!
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APPENDIX B: EVALUATION OF GP„x … AND GN„x … FOR xš1

In this Appendix, the integralsGP(x) andGN(x) of Eqs.~4.4! and ~5.2! are evaluated forx
@1 by the Mellin transform technique.

1. Integral GP„x …

The Mellin transform ofGP(x) equals

ḠP~z!5E
0

`

dx x2zGP~x!5
p

sinpz E2`

`

dj @Ai ~j!2#21z, 0,Rez,1. ~B1!

The strip given here is the region where the original integral of the Mellin transform conve
The functionḠP(z) may be continued analytically to the entirez plane.

Whenz→01, the integral of Eq.~B1! tends to diverge in2`. In the spirit of Sec. III, the
first two terms of the asymptotic expansion ofGP(x) asx→` can be determined by expandin
ḠP(z) in powers ofz in the vicinity of z50. By writing

E
2`

`

dj @Ai ~j!2#21z5E
d

`

dj @Ai ~2j!2#21z1E
2d

`

dj @Ai ~j!2#21z, 0,d5O~1!, ~B2!

it is recognized that only the first term becomes singular asz→0. Specifically,

E
d

`

dj@Ai ~2j!2#21z;p222zE
d

`

djFj21/2sin2S 2

3
j3/21

p

4 D G21z

1E
d

`

djFAi ~2j!42p22j21 sin4S 2

3
j3/21

p

4 D G . ~B3!

While nothing further needs to be done about the second term of this formula, the first o
approximated as follows:

p222zE
d

`

djFj21/2sin2S 2

3
j3/21

p

4 D G21z

;p222zE
d

`

dj j212z/2 sin4S 2

3
j3/21

p

4 D F11z ln sin2S 2

3
j3/21

p

4 D G
;p222zE

d

`

dj j212z/2 sin4S 2

3
j3/21

p

4 D12p222z^sin4~u1p/4!ln sin2~u

1p/4!&d2z/2 as z→01, ~B4!

where

^sin4~u1p/4!ln sin2~u1p/4!&5
1

2p E
0

2p

du sin4u ln sin2 u52
3

4
ln 21

7

16
, ~B5!

E
d

`

dj j212z/2 sin4S 2

3
j3/21

p

4 D5E
d

`

dj j212z/2F3

8
2

1

8
cosS 8

3
j3/2D1

1

2
sinS 4

3
j3/2D G

;
3

4z S 12
z

2
ln d D1E

d

` dj

j F2
1

8
cosS 8

3
j3/2D1

1

2
sinS 4

3
j3/2D G . ~B6!
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Note that the preceding integral is canceled exactly by terms produced by the second inte
the right-hand side of approximation~B3!.

The combination of formulas~B1!–~B6! yields

ḠP~z!;
3

4p2z2 2
Ł

8p2z
as z→0, ~B7!

where

Ł512 ln~2Ap!2728p2E
2d

`

dj Ai ~j!428p2E
d

`

djFAi ~2j!42
3

8p2jG13 lnd. ~B8!

Of course, Ł is independent ofd. The preceding equation reads

Ł512 ln~2Ap!2728p2E
0

`

dj Ai ~j!428p2E
0

`

djFAi ~2j!42
3

8p2~11j!G . ~B9!

The analytical evaluation of Ł is performed in Appendix C. It is of some interest to recas
~B9! in a form that is amenable to numerical computation. With

Ai ~2j!45e2 i2p/3Ai ~jeip/3!41ei2p/3Ai ~je2 ip/3!414ei2p/3Ai ~jeip/3!3Ai ~je2 ip/3!

14e2 i2p/3Ai ~je2 ip/3!3Ai ~jeip/3!1 3
8@Ai ~2j!21Bi~2j!2#2, ~B10!

where use is made of the known identity17

Ai ~je6 ip/3!5 1
2 e7 ip/3@Ai ~2j!6 i Bi~2j!#, ~B11!

Eq. ~B9! becomes

Ł512 ln~2Ap!27224p2E
0

`

dj Ai ~j!423p2E
0

`

djH @Ai ~2j!21Bi~2j!2#22
1

p2~11j! J .

~B12!

Carrying out the calculations to higher orders inz suggests thatḠP(z) admits a Laurent
expansion atz50. Calculating the residue at this double pole gives

GP~x!;
3

4p2

ln x

x
2

Ł

8p2x
as x→`. ~B13!

2. Integral GN„x …

The Mellin transform ofGN(x) reads

ḠN~z!5E
2`

`

dj @Ai ~j!2#21zE
0

`

dt
t2z

~11t !2 5
pz

sinpz E2`

`

dj@Ai ~j!2#21z. ~B14!

The original inversion path should lie inside the strip 0,Rez,1. Note thatḠN(z) has a simple
pole atz50, in contradistinction to the double pole ofḠP(z). From formula~B7!,

ḠN~z!5
3

4p2z
1O~1! as z→0, ~B15!

which in turn leads to
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GN~x!;
3

4p2x
as x→`. ~B16!

APPENDIX C: ON THE FOURIER INTEGRALS OF Ai „x …n, nÄ1,2,3,4

Let

wn~x!5Ai ~x!n, n: positive integer. ~C1!

Eachwn(x) admits the integral representation

wn~x!5
1

2p E
Cn

dle2 ilxw̄n~l!, ~C2!

whereCn is an infinite contour with asymptotes that are subject to the usual convergence re
ments asl→`. w̄n(l) is holomorphic in any finite part of thel plane, except possibly atl
50, and obeys

w̄n* ~l!5w̄n~2l* !. ~C3!

In this Appendix, the task is to determinew̄n(l) and the integration pathCn for n51,2,3,4. The
constant Ł of Appendix B is subsequently computed through the limitw̄4(l→01).

1. Case nÄ1

The casen51 is well-known yet instructive and needs to be revisited. The starting poi
Airy’s equation

d2w1

dx2 2xw150. ~C4!

Therefore,w̄1(l) has to satisfy

dw̄1

dl
1 il2w̄150. ~C5!

It follows that

w̄1~l!5C1e2 il3/3, ~C6!

whereC1 is a constant yet to be determined. The right-hand side of Eq.~C2! for n51 uncovers a
linear combination of Ai(x) and Bi(x). The contourC1 is chosen to lie in the lower half of thel
plane with asymptotes in the sectors$l: 2p,Arg l,22p/3% and $l: 2p/3,Arg l,0%, and
be described from left to right, as depicted in Fig. 14.

With the change of variablel5Axq, wherex is positive and large,C1 is deformed into the
steepest descents path

Im q52A11~Req!2/3, ~C7!

that passes through the saddle point atq52 i . An elementary calculation gives

w1~x!5
C1

2p
AxE

C1

dqe2 ix3/2(q1q3/3);
C1

2Ap
x21/4e2(2/3)x3/2

as x→1`. ~C8!

A comparison with the known formula for the large-x behavior of Ai(x) furnishes17
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C151. ~C9!

The ensuing integral representation forw1(x) is

w1~x!5
1

2p E
C1

dl e2 ilx2 il3/3. ~C10!

2. Case nÄ2

w2(x) satisfies the third-order differential equation

d3w2

dx3 24x
dw2

dx
22w250, ~C11!

with solutions Ai(x)2, Ai( x)Bi(x), and Bi(x)2. The Fourier transform of this equation is

4l
dw̄2

dl
1~ il312!w̄250, ~C12!

with the solution

w̄2~l!5C2

e2 il3/12

Al
. ~C13!

The first Riemann sheet is defined so thatAl is positive forl.0, with the branch cut lying
in the upper half of thel plane, as shown in Fig. 14. The integration pathC2 is subsequently
chosen as in the case withn51. With the change of variablel52Axq, the leading saddle-poin
contribution atq52 i is

w2~x!5
C2

& p
x1/4E

C2

dq

Aq
e22ix3/2(q1q3/3)5

C2

2Ap
eip/4x21/2e2(4/3)x3/2

as x→1`. ~C14!

It follows that

FIG. 14. Inversion pathCj ( j 51,2,3,4) for the Fourier transformsw̄j (l) of Ai( x) j examined in Appendix C. The branc
cut along the positive imaginary axis is necessary only forj 52,3,4.
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C25
e2 ip/4

2Ap
. ~C15!

w2(x) is

w2~x!5
e2 ip/4

4pAp
E

C2

dl e2 ilx
e2 il3/12

Al
. ~C16!

Alternatively, one may have recourse to the convolution integral

1

2p E
C1

dt w̄1~ t !w̄1~l2t !5
e2 ip/4

2Apl
e2 il3/12. ~C17!

Clearly, the appropriate branch for the square root is selected via condition~C3!.

3. Case nÄ3

In light of the foregoing analysis, it is straightforward yet somewhat laborious to calculat
Fourier transform of Ai(x)3. The starting point is the differential equation

d4w3

dx4 210x
d2w3

dx2 210
dw3

dx
19x2w350, ~C18!

which has solutions Ai(x)3, Ai( x)2Bi(x), Ai( x)Bi(x)2, and Bi(x)3, and is transformed into

9
d2w̄3

dl2 110il2
dw̄3

dl
2~l4210il!w̄350. ~C19!

Let

w̄3~l!5e2 iuY~u!, u5 5
27 l3. ~C20!

Equation~C19! reads

u
d2Y

du2 1
2

3

dY

du
1

16

25
uY50. ~C21!

Y(u) can be determined through the replacement

Y~u!5unZm~bu!, ~C22!

whereZm denotes any Bessel function of orderm. Equation~C21! is satisfied if and only if

m56 1
6 , n5 1

6 , b56 4
5 . ~C23!

Accordingly, the general solution to Eq.~C19! is

w̄3~l!5C3AlFJ1/6S 4l3

27 D1C̃3H1/6
(2)S 4l3

27 D Ge2 i5l3/27. ~C24!

With the branch cut lying in the upper half of thel plane so that22p1u0,Arg l<u0 , 0
,u0,p, the integration pathC3 is chosen as in the case withn52 ~see Fig. 14 foru05p/2!. By
virtue of the analytic continuation formulas10
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J1/6~e2 i2pz!5e2 ip/3J1/6~z!, ~C25!

H1/6
(2)~e2 i2pz!52H1/6

(2)~z!2)eip/6H1/6
(1)~z!, ~C26!

Eq. ~C24! is equivalent to

w̄3~e2 ip/2z!5C3e2 ip/4AzF S 1

2
e2 ip/32C̃3)eip/6DH1/6

(1)S i
4z3

27 D
1S 1

2
e2 ip/32C̃3DH1/6

(2)S i
4z3

27 D Ge5z3/27. ~C27!

In the Fourier inversion formula, the saddle-point contribution stemming from theH1/6
(2) term is

dominant unless

C̃35 1
2 e2 ip/3. ~C28!

The preceding value ofC̃3 ensures that the leading exponential forw3(x) asx→1` agrees
with the known asymptotic formula for Ai(x).17 In some detail, with Eq.~C28! and the large-
argument approximation forH1/6

(1)(z),10

w3~x!5
C3

4p
eip/4E

C 38
dz AzH1/6

(1)S i
4z3

27 De5z3/272zx ~z53Axt!

;
C3

4pA2p
33/2e2 ip/3e22x3/2E

12 i`

11 i`

dt e3x3/2(t21)2

5
3C3

4p&
eip/6x23/4e22x3/2

as x→`, ~C29!

whereC 38 results from the counterclockwise rotation ofC3 by p/2 about the origin. Hence,

C35
e2 ip/6

3A2p
. ~C30!

The desired Fourier representation forw3(x) is

w3~x!5
e2 ip/6

6pA2p
E

C3

dl e2 ilxAlFJ1/6S 4l3

27 D1
1

2
e2 ip/3H1/6

(2)S 4l3

27 D Ge2 i5l3/27. ~C31!

4. Case nÄ4

The differential equation

d5w4

dx5 220x
d3w4

dx3 230
d2w4

dx2 164x2
dw4

dx
164xw450, ~C32!

with solutions Ai(x)4, Ai( x)3Bi(x), Ai( x)2Bi(x)2, Ai( x)Bi(x)3, and Bi(x)4, is transformed into

64il
d2w̄4

dl2 2~20l3264i !
dw̄4

dl
2~ il5130l2!w̄450. ~C33!

Evidently, this equation can be solved via the substitutions
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w̄4~l!5e2 iuZ0~3u/5!, u5 5
96 l3. ~C34!

Z0 is any Bessel function of order 0. The general solution to Eq.~C33! reads

w̄4~l!5C4FJ0S l3

32D1C̃4H0
(2)S l3

32D Ge2 i5l3/96. ~C35!

The first Riemann sheet and the integration pathC4 are chosen as in Appendix C 3~see Fig. 14!.
Consider the analytic continuation formula

w̄4~e2 ip/2z!5C4F S 1

2
22C̃4DH0

(1)S i
z3

32D1S 1

2
2C̃4DH0

(2)S i
z3

32D Ge5z3/96. ~C36!

The coefficientC̃4 is determined by elimination of theH0
(2) term in this equation:

C̃45 1
2 . ~C37!

A standard steepest-descent calculation as in Eq.~C29! then gives

w4~x!52
C4

4p
e2 ip/2E

C 48
dz H0

(1)S i
z3

32De5z3/962zx

; i
C4

2px
e2(8/3)x3/2

as x→1`. ~C38!

Comparison with the leading term for Ai(x)4 from Ref. 17 yields

C452
i

8p
. ~C39!

Consequently,

w4~x!5
1

16p2i EC4

dl e2 ilxFJ0S l3

32D1
1

2
H0

(2)S l3

32D Ge2 i5l3/96. ~C40!

Alternatively, one may employ the convolution integral

w̄4~l!5
1

2p E
2`

1`

dt w̄2~l2t !w̄2~ t ! @ t5l~t11!/2#

5
e2 il3/48

4p2 S 2 i E
0

1

dt
e2 il3t2/16

A12t2
1E

1

`

dt
e2 il3t2/16

At221
D

5
e2 i5l3/96

8p2 S 2 i E
0

p

du eil3 cosu/321E
0

`

du e2 il3 coshu/32D , ~C41!

which immediately leads to Eq.~C40!. In the above, the changes of variablet5sin(u/2) andt
5cosh(u/2) are made in the first and second integral of the second line, respectively.

5. Analytical evaluation of Ł

On the basis of Eq.~C40!, it is a simple task to calculate explicitly the Ł of Eq.~B9! of
Appendix B. This equation is recast in the form
                                                                                                                



the

,

and the

e

6171J. Math. Phys., Vol. 41, No. 9, September 2000 Two-dimensional, highly directive currents

                    
Ł512 ln~2Ap!2728p2 lim
l→01

E
2`

1`

dx eilx@Ai ~x!42b~x!#, ~C42!

where

b~x!5H 3

8p2

1

12x
, x,0

0, x.0.

~C43!

Note that the function Ai(x)42b(x) is absolutely integrable, while each one of Ai(x)4 andb(x)
is square integrable in (2`,`). For the sake of some routine rigor, it is advisable to invoke
Fourier–Plancherel operator23 and rewrite Eq.~C42! as

Ł512 ln~2Ap!2728p2 lim
l→01

d

dl F E
2`

`

dx
eilx21

ix
Ai ~x!42E

2`

`

dx
eilx21

ix
b~x!G . ~C44!

The second integral is calculated explicitly to give

d

dl E
2`

`

dx
eilx21

ix
b~x!52

3

8p2 eil Ei~2 il!

;2
3

8p2 S ln l1g1
ip

2 D as l→01, ~C45!

where Ei(2z) is the exponential integral.16 The integral involving Ai(x)4 follows from Plancher-
el’s theorem23,24 and Eq.~C40!, along with the approximations

J0~z!;1, H0
(2)~z!;12

2i

p S g1 ln
z

2D as z→0. ~C46!

Accordingly,

d

dl E
2`

`

dx
eilx21

ix
Ai ~x!45w̄4~l!

;
3

16p i
2

3 lnl1g26 ln 2

8p2 as l→01. ~C47!

The combination of Eqs.~C44!, ~C45!, and~C47! furnishes

Ł56 ln~2p!22g27. ~C48!

This result agrees with the numerical calculation based on Eq.~B12! of Appendix B.
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Classification of certain integrable coupled potential KdV
and modified KdV-type equations

Mikhail V. Foursov
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
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In this article we describe the classification of integrable symmetrically coupled
potential KdV and modified KdV-type equations that possess higher symmetries.
Restricting our attention to the systems that cannot be decoupled by a change of
dependent variables, we obtain 11 previously unknown classes of integrable equa-
tions. In some cases we present Hamiltonian or bi-Hamiltonian formulations.
© 2000 American Institute of Physics.@S0022-2488~00!03109-1#

I. INTRODUCTION

While there are many different approaches to the problem of classification of integ
evolution equations, the most successful ones are the conservation law method and the gen
symmetry method. These methods were extensively used by many authors~cf. Mikhailov, Shabat
and Sokolov1 or Mikhailov, Shabat and Yamilov2! and they led to the discovery of many ne
systems, bothS-integrable andC-integrable in Calogero’s terminology.3

This article is a direct continuation of our previous articles4,5 about the complete classificatio
of coupled symmetric Korteweg–de Vries~KdV!-type equations4 and Burgers-type equations5

possessing higher generalized symmetries. We consider equations taking values in a comm
associative algebraA involving an involution of the dependent variable. The present articl
devoted to generalizations of the potential KdV~pKdV! equationut5uxxx1ux

2 and of the modi-
fied KdV ~mKdV! equationut5uxxx1u2ux that include the complex pKdV and mKdV equation
as well as other types of coupled pKdV-like and mKdV-like equations.

The complex equations of mKdV type were first considered back in the early 1970s. Ab
itz, Kaup, Newell and Segur6 have shown that the equationut5uxxx1uuu2ux is solvable by inverse
scattering, even though they only used this fact to prove the existence of Lax pairs fo
equations that can be obtained from it by a reduction. Another complex mKdV equatiout

5uxxx1(uuu2u)x came up in the field of electrostatic waves in an anisotropic media7 and in the
asymptotic investigation of one-dimensional plane wave propagation in a weakly nonlinea
cropolar solid.8 This equation has only three conserved densities9 and it does not pass the Painlev´
partial differential equations~PDE! test.10 Therefore it is not likely to be integrable. And, indee
this equation does not appear in our classification.

Other paths for generalizing the mKdV were followed by several authors. For exam
Svinolupov11 considered the followingN-component mKdV equation,

ut
i16S (

1< j ,k<N
cjkujukDux

i 1uxxx
i 50, i 51,2,...,N, ~1!

while Iwao and Hirota12 have calculated the multi-soliton solutions of such equations. Howe
they seem to have used a nonstandard definition of multi-soliton solutions that does not r
elastic interaction.

On the other hand, coupled potential KdV-type equations do not seem to have eve
investigated in any detail. Surprisingly, our classification shows that the majority of them d
come as potential forms of coupled KdV-type equations.
61730022-2488/2000/41(9)/6173/13/$17.00 © 2000 American Institute of Physics
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In another development, Zhang and Gu13 found a Lax formulation for a certain hierarchy o
multi-dimensional equations that includes a coupled Burgers’ equation and a coupled m
equation.

II. STATEMENT OF THE PROBLEM

Let us consider an equation$whereF@u#5F(u,ux ,uxx ,...) denotes a differential polynomia
function of u, i.e., a function ofu and its derivatives%

ut5F@u,ū# ~2!

with values in an associative commutative algebraA involving an involutionū of the dependent
variableu. We can write it as a system of two evolution equations without involutions by app
ing its own involution and substitutingv for ū to obtain

H ut5F@u,v#,

v t5F̄@v,u#.
~3!

The general classification of such equations is usually an intractable problem. However,
restrict ourselves to the case of real or purely imaginary coefficients, the computations can
be carried out completely. In this article we are considering symmetric equations of the f
type,

H ut5F@u,v#,

v t5F@v,u#,
~4!

which generalize the pKdV and mKdV equations. Since the known integrable equations o
~4! possess higher symmetries either of the same symmetric form~4! or of the anti-symmetric
form

H ut5F@u,v#,

v t52F@v,u#,
~5!

we will restrict our attention to symmetries of types~4! and ~5!.
A two-component system is calleddecoupledif it involves either an equation depending on

on u or an equation depending only onv. Hence we can first solve this equation and then, us
it, reduce the other equation to anx,t-dependent one-component equation. As a consequence
function has no effect on the other and thus these equations are less interesting for applic
Hence in the present article we will only consider equations that cannot be decoupled b
change of variables.

We note that the right-hand sides of the pKdV and mKdV equations, as well as of
generalized symmetries, are homogeneous if we assign weight 1 both to the dependent vau
and to thex-differentiation. Thus it is natural to consider equations of type~2! that are homoge-
neous in the same weighting. For the systems of type~4! this would result in assigning weight
to u,v and thex-differentiation. We call this weighting themKdV weighting. In checking for
symmetries, we can assume without loss of generality that they are also homogeneous in th
weighting since a homogeneous component thereof is a symmetry itself.

The complete list of integrable real-valued scalar equations homogeneous in this weigh
given in Ref. 14. It was shown that there are

~i! one nonlinear integrable equation of weight 2, viz. the Burgers equationut5uxx1uux ;
~ii ! two nonlinear integrable equations of weight 3, viz. potential KdVut5uxxx1ux

2 and modi-
fied KdV ut5uxxx1u2ux ; and
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~iii ! three nonlinear integrable equations of weight 5, viz. potential Kaup–Kupershmidt, p
tial Sawada–Kotera and Kupershmidt equations.

In this article we will be looking for the real-coefficient integrable equations with an inv
tion that generalize the pKdV and mKdV equations. We will be searching for systems of typ~4!
that possess two generalized symmetries. We were able to completely investigate the c
equations of weights 2 and 3. The former case was the topic of a previous article,5 while the latter
case is presented here. In the weight 5 case, there are far too many equations and our c
~500 MHz Pentium III! needs over a week just to produce all the necessary equations.

Remark:Unlike the case of KdV weighting, we obtain very large classes of integrable e
tions in the mKdV weighting case. We have over 100 equations of weight 3. Since the clas
large that any kind of complete analysis seems to be unfeasible, we have further restrict
attention to its most interesting subclass, namely to the non-decouplable equations. As w
noted above, there are many more such equations in this case than in the KdV weightin
when we only obtained two KdV-type equations and two Kaup–Kupershmidt-type equation4

Let us recall that a pair oft-independent differential functionsQ5(Qu@u,v#,Qv@u,v#) is a
characteristic of ageneralized symmetryvQ5Qu]/]u1Qv]/]v for a system

H ut5F@u,v#,

v t5G@u,v#,
~6!

if and only if it commutes with the evolutionary vector field of characteristicK5(F,G), i.e.,

@vQ ,vK#50.

For a detailed explanation of generalized symmetries, see Ref. 15.
To compute the symmetries, we used a MATHEMATICA package created by Olver16 that auto-

matically performs a large part of the required computations. It was successfully used to
ment several classification of integrable equations.4,5,16–18

The package works as follows. First, it creates a generic equation and a generic~potential!
symmetry of a given weight in a given weighting scheme and calculates the commutator
corresponding vector fields. Subsequently, it solves all the equations that are linear in at le
unknown, leaving us a system of nonlinear polynomial equations that we have to solve in or
complete the classification. These systems are often quite complicated and the computer re
existing today are not sufficient to solve many of them. However, it is usually possible to
them ‘‘manually’’ on MATHEMATICA . For a more detailed description of the package and
algorithm used therein, see Ref. 16 or 18.

Definition: Let us call a system~4! integrable if it possesses infinitely many generalize
symmetries.

In all the known cases, though, it is sufficient to produce only a few generalized symm
to guarantee integrability. The property of possessing a fixed number of generalized symm
has the advantage of being easily verifiable. But for every class of equations we have to
carefully the number of symmetries that is necessary for that. One symmetry would be the
convenient case, but it is well known that one symmetry is not enough to insure the existe
an infinite number thereof. The first such example is due to Bakirov19 ~see Ref. 20 for the proof!.
However, Fokas21 conjectured that for ann-dimensional system it suffices to producen higher
symmetries. Quite recently, van der Kamp and Sanders22 claim to have found an example of
two-component system possessing only two higher-order symmetries. If correct, this fact
disprove Fokas’ conjecture. We note that there is no pattern for the orders of the two symm
in this ‘‘anomalous’’ example, the system being of order 7 and the two symmetries of orde
and 29. Moreover, the Bakirov and van der Kamp–Sanders systems are trivially decoupled
in this work we consider only ‘‘truly’’ coupled equations. And for all the known cases of in
grable non-decouplable equations Fokas’ conjecture is still valid~as a matter of fact, only one
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higher symmetry is enough in all these case! and thus we will use it in our classification. Finally
we would like to remark that in several cases we were able to present bi-Hamiltonian formul
for the equations from our list, thereby proving the existence of infinitely many symmetries

III. THE CLASSIFICATION

Now let us consider symmetric systems of type~4! that are of weight 3 in the mKdV weight
ing. The general form of such a system is

5
ut5a1uxxx1a2vxxx1a1uuxx1a2vuxx1a3uvxx1a4vvxx1b1ux

21b2uxvx1b3vx
21c1u2ux

1c2uvux1c3v2ux1c4u2vx1c5uvvx1c6v2vx1d1u41d2u3v1d3u2v21d4uv31d5v4,

v t5a2uxxx1a1vxxx1a4uuxx1a3vuxx1a2uvxx1a1vvxx1b3ux
21b2uxvx1b1vx

21c6u2ux

1c5uvux1c4v2ux1c4u2vx1c2uvvx1c1v2vx1d5u41d4u3v1d3u2v21d2uv31d1v4.

~7!

Definition: We call a two-component equation~7! integrable in the higher symmetry senseif
it has two higher symmetries of the same type~4! of weight 5 and 7. We note that our classifi
cation showed that every equation of type~7! possessing a symmetry of weight 5 also possess
symmetry of weight 7.

Since the reductionv5u reduces an integrable equation of type~7! to a scalar integrable
equation, we can obtain equations that generalize the third-order symmetry of the Burgers
tion, the mKdV equation, the potential KdV equation or the linear equationut5uxxx .

Remark:In the next theorem we list only the first components of our integrable system
type ~7!, since the second components can be easily reconstructed from the first ones by~7!.

Theorem: An integrable equation of type~7! is either decoupled in the variablesu1v and
u2v, equivalent to the third-order symmetry of an integrable Burgers-type system~~2.2!–~2.4! in
Ref. 5! or scaling equivalent to one of the following:

ut5uxxx1aux
222uxvx1vx

2, ~8!

ut5uxxx1~312a!uuxx2~312a!vuxx22auvxx12avvxx

1~31a!ux
222auxvx1avx

21~314a!~u2v !2ux , ~9!

ut5uxxx1~31a!uuxx2~31a!vuxx2auvxx1avvxx13ux
2

13uxvx1~312a!u2ux2~614a!uvux1~312a!v2ux , ~10!

ut5
1
2uxxx1

1
2vxxx1~21a!ux

222auxvx1~11a!vx
2, ~11!

ut5
1
2uxxx1

1
2vxxx1~11a!uuxx2~11a!vuxx2auvxx1avvxx1~31a!ux

21~222a!uxvx

1~11a!vx
21~214a!u2ux2~418a!uvux1~214a!v2ux1b~u2v !4, ~12!

ut52 1
2uxxx1

3
2uxxx1~2a212!~u2v !uxx1~622a!~u2v !vxx1~a26!ux

2

1~1222a!uxvx1avx
214~2a29!~u2v !2vx1 1

3~2a29!2~u2v !4, ~13!

ut5
5
2uxxx2

3
2vxxx1~612a!~u2v !uxx22a~u2v !vxx1~622a!ux

21~1214a!uxvx

2~612a!vx
224~312a!~u2v !2~ux2vx!2 1

3~312a!2~u2v !4, ~14!

ut5uxxx1au2ux1~122a!uvux1av2ux , ~15!

ut5uxxx12au2ux1~323a!uvux1av2ux1~12a!u2vx1auvvx , ~16!
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ut5uxxx1au2ux22uvux2u2vx1v2vx , ~17!

ut5uxxx1~31a!uuxx2~31a!vuxx2auvxx1avvxx1~31a!ux
22~312a!uxvx1avx

2

1~314a!u2ux2~1216a!uvux1~312a!v2ux2~613a!u2vx1~614a!uvvx2av2vx ,

~18!

ut5uxxx1~31a!uuxx2~31a!vuxx2auvxx1avvxx1~31a!ux
2

2~312a!uxvx1avx
21~317a!u2ux2~24110a!uvux1~313a!v2ux

2~1215a!u2vx1~616a!uvvx2av2vx , ~19!

ut5
1
2uxxx1

1
2vxxx1auuxx2avuxx2auvxx1avvxx1~a21!ux

222auxvx1~a11!vx
2

1~8a24!u2ux2~12a18!uvux1~4a24!v2ux2~2a12!u2vx24uvvx1~2a22!v2vx ,

~20!

ut5
1
2uxxx1

1
2vxxx1~a11!uuxx2~a11!vuxx2auvxx1avvxx1~a11!ux

22~112a!uxvx

1avx
213au2ux2~4a14!uvux1av2ux2~2a12!u2vx12auvvx , ~21!

ut5
1
2uxxx1

1
2vxxx1auuxx2avuxx2auvxx1avvxx1~a21!ux

222auxvx1~a11!vx
2

1~4a24!u2ux2~4a18!uvux24v2ux1~2a22!u2vx2~8a14!uvvx1~6a22!v2vx

1~2a212a!u42~8a214a!u3v112a2u2v21~4a28a2!uv31~2a222a!v4, ~22!

ut5
1
2uxxx1

1
2vxxx1~a12!uuxx2~a12!vuxx2auvxx1avvxx1~a11!ux

22~2a12!uxvx

1~a11!vx
21~10a22!u2ux2~12a136!uvux1~2a210!v2ux2~2a114!u2vx

2~4a128!uvvx1~6a26!v2vx1~2a214a26!u42~8a2124a132!u3v

1~12a2132a120!u2v21~1628a28a2!uv31~2a224a12!v4, ~23!

ut52 1
2uxxx1

3
2vxxx1~32a!~u2v !uxx1a~u2v !vxx1~32a!ux

21~2a23!uxvx

2avx
21au2ux2av2ux22auvvx1~2a26!v2vx . ~24!

Remark:The equations~8!–~14! are complex generalizations of the potential KdV, while t
equations~15!–~24! are complex generalizations of the mKdV equation. No nondecouplable e
tion reduces to the linear equationut5uxxx . Also, unlike the Burgers case,5 there are no non-
decoupled integrable systems for general values ofa1 anda2 in ~7!.

The systems~9!, ~15! and ~18! can be reduced to third-order symmetries of integrable n
linear Schro¨dinger-type equations.16 Equation~11! is the potential symmetrized Ito equation.23

Equations~8! and ~17! can be decoupled, while all the other 11 systems seem to be new.
For the integrable equations of type~7! we have computed all the conserved densities

weights 1, 2, 3, 4, 5, 6 and 7.~For example, the first four of them are of the formsa1u1a2v,
b1u21b2uv1b3v2, c1uvx1c2u31c3u2v1c4uv21c5v3 and d1ux

21d2uxvx1d3vx
21d4uvux

1d5uvvx1d6u41d7u3v1d8u2v21d9uv31d10v
4 correspondingly.! Only the systems~9!, ~15!

and ~18! possess conserved densities of weights 3 and 5 because they are parts of a hi
starting at a lower order system. Moreover, sinceu2 is not a conserved density for the potent
KdV equation, and equations~8!–~14! can only possess conserved densities of this kind
reduce to 0 whenu5v. Below, we will write down only the conserved densities of weights 1
3, 4, 5. Since these are the ones we need to try to obtain the bi-Hamiltonian formulations f
systems, we will most likely not need any higher ones.
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IV. DETAILED INVESTIGATION OF INTEGRABLE SYSTEMS OF TYPE „7…

A general transformation that preserves the form~4! is of the form

w5Ku1Lv,
~25!

z5Lu1Kv.

Since we consider the equations equivalent up to scalings, without loss of generality w
assume thatK51. In the caseK50, the system can be scaled back to the original form.

Applying transformations of type~25! with K51,

w5u1Lv,
~26!

z5Lu1v,

to our systems, we see that the coefficients of the linear terms stay invariant. Moreover,
these transformations, we can obtain all 17 classes of integrable equations from a single re
tative of the corresponding class by choosing a certain value ofL depending on the paramete
@For the system~12! there is one representative for every value ofb.# And the equations tha
cannot be obtained this way are exactly those cases when the equations are decouple
variablesu1v andu2v. Since we are interested here only in genuinely non-decoupled sys
we will not consider these exceptional cases in any detail.

A. System „8…

The transformation~26! reduces the general case to the case witha50 unlessa51 or a
523. The representative case,

H ut5uxxx1ux
2,

v t5vxxx1vx
2,

~27!

trivially splits into two potential KdV equations.

B. System „9…

The transformation~26! reduces the general case to the case witha50 unlessa523/4. We
use~26! with L5(2322a1A9112a)/(2a). The representative case is

H ut5uxxx13uuxx23vuxx13ux
213u2ux26uvux13v2ux .

v t5vxxx23uvxx13vvxx13vx
213u2vx26uvvx13v2vx .

~28!

The first conserved densities are

u2v,uvx ,uxvx22uvux22uvvx23u2vux13uv2ux2v3ux13uuxvx23vuxvx1vxuxx .
~29!

This system is the third-order symmetry of an antisymmetric@i.e., of type ~5!# nonlinear
Schrödinger-type equation

H ut5uxx12uux22uvx ,

v t52vxx12uvx22vvx ,
~30!

which is equivalent to~4.9! in the classification by Olver and Sokolov16 and which can be written
in complex form as
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ur5 iuxx12iuux22i ūux , ~31!

whereū5v andt5 i t . I was able to construct a bi-Hamiltonian formulation for the equation~30!
that does not seem to be known in the literature.

S ut

v t
D5S 0 21

1 0 D d S E ~uxvx22uvux22uvvx! dxD5S K1 K2

K3 K4
D d S E uvx dxD , ~32!

where

S K1 K2

K3 K4
D 5S uxDx

211Dx
21ux Dx1~u2v !1uxDx

211Dx
21vx

Dx1~v2u!1vxDx
211Dx

21ux vxDx
211Dx

21vx
D . ~33!

C. System „10…

The transformation~26! reduces the general case to the case witha50 unlessa523/2. The
representative case is

H ut5uxxx13uuxx23vuxx13ux
213uxvx13u2ux26uvux13v2ux ,

v t5vxxx23uvxx13vvxx13uxvx13vx
213u2vx26uvvx13v2vx .

~34!

The first conserved densities areu2v, uxvx2uvux2uvvx . The Hamiltonian structure of~5.17!
generated by the latter is

S ut

v t
D5S K1 K2

K3 K4
D d S E ~2uxvx1uvux1uvvx! dxD , ~35!

where

K152uxDx
2112Dx

21ux ,

K25Dx12~u2v !12uxDx
2112Dx

21vx ,
~36!

K35Dx12~v2u!12vxDx
2112Dx

21ux ,

K452vxDx
2112Dx

21vx .

D. System „11…

The transformation~26! reduces the general case to the case witha50 unlessa523/4. The
representative case is

H ut5
1
2 uxxx1

1
2 vxxx12ux

21vx
2,

v t5
1
2 uxxx1

1
2 vxxx1ux

212vx
2.

~37!

This is the potential form of the symmetrized Ito equation.23 The first conserved density isux
2

2uxvx1vx
2 and the corresponding Hamiltonian structure can be obtained directly from th

case:
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S ut

v t
D5S 1

2 Dx1uxDx
211Dx

21ux
1
2 Dx1uxDx

211Dx
21vx

1
2 Dx1vxDx

211Dx
21ux

1
2 Dx1vxDx

211Dx
21vx

D d S E ~2ux
21uxvx2vx

2! dxD .

~38!

E. System „12…

The transformation~26! reduces the general case to the case witha50 unlessa521/2. The
representative case is

H ut5
1
2 uxxx1

1
2 vxxx1uuxx2vuxx13ux

212uxvx1vx
212u2ux24uvux12v2ux1b~u2v !4,

v t5
1
2 uxxx1

1
2 vxxx2uvxx1vvxx1ux

212uxvx13vx
212u2vx24uvvx12v2vx1b~u2v !4.

~39!

The first conserved densities are (u2v)2, 2(ux1vx)
214uvux14uvvx22b(u2v)4. We

were able to find one Hamiltonian structure:

S ut

v t
D5S 1

2 Dx12uxDx
2112Dx

21ux
1
2 Dx1~u2v !12uxDx

2112Dx
21vx

1
2 Dx1~v2u!12vxDx

2112Dx
21ux

1
2 Dx12vxDx

2112Dx
21vx

D
3d S E S 2

1

8
~ux1vx!

21
1

2
uvux1

1

2
uvvx2

1

4
b~u2v !4D dxD . ~40!

F. System „13…

The transformation~26! reduces the general case to the case witha53 unlessa59/2. The
representative case is

H ut52 1
2 uxxx1

3
2 vxxx16uuxx26vuxx13ux

226uxvx23vx
2212~u2v !2vx23~u2v !4,

v t5
3
2 uxxx2

1
2 vxxx26uvxx16vvxx23ux

226uxvx13vx
2212~u2v !2ux23~u2v !4.

~41!

The first conserved densities areu2v, ux
21vx

228uvux28uvvx1(u2v)4.

G. System „14…

The transformation~26! reduces the general case to the case witha50 unlessa523/2. The
representative case is

H ut5
5
2 uxxx2

3
2 vxxx16uuxx26vuxx16ux

2112uxvx26vx
2212~u2v !2~ux2vx!23~u2v !4,

v t52 3
2 uxxx1

5
2 vxxx26uvxx16vvxx26ux

2112uxvx16vx
2112~u2v !2~ux2vx!23~u2v !4.

~42!

The first conserved densities are

~u2v !2,~ux1vx!
218uvux18uvvx1~u2v !4,ux

216uxvx1vx
218uvux18uvvx .

H. System „15…

The transformation~26! reduces the general case to the case witha50 unlessa51/4. The
representative case is
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H ut5uxxx1uvux ,

v t5vxxx1uvvx .
~43!

This is the well-known6 complex mKdV equationut5uxxx1uuu2ux .
Its first conserved densities areuv, uvx, 6uxvx2u2v2, 2vxuxx2uv2ux . This equation is the

third-order symmetry of the~anti-symmetric! nonlinear Schro¨dinger equation

H ut5uxx1
1
3 u2v,

v t52vxx2
1
3 uv2,

~44!

which has an equivalent complex form

ut5 iuxx1
1
3iu

2ū, ~45!

whereū5v andt5 i t . Its well-known24 Hamiltonian structure is

S ut

v t
D5S 0 21

1 0 D d S E S uxvx2
1

6
u2v2D dxD5S K1 K2

K3 K4
D d S E uvx dxD , ~46!

where

S K1 K2

K3 K4
D 5S 2 1

3 uDx
21u Dx1 1

3 uDx
21v

Dx1 1
3 vDx

21u 2 1
3 vDx

21v
D . ~47!

I. System „16…

The transformation~26! reduces the general case to the case witha50 unlessa51/2. The
representative case is

H ut5uxxx13uvux1u2vx ,

v t5vxxx1v2ux13uvvx .
~48!

Its first conserved densities are:u2, uv, v2, 3uxvx22u2v2. We were able to find one Hamiltonia
structure

S ut

v t
D5S 1

3 uDx
21u Dx2 1

3 uDx
21v

Dx2 1
3 vDx

21u 1
3 vDx

21v
D d S E S uxvx2

2

3
u2v2D dxD . ~49!

J. System „17…

For aÞ62 the transformation~26! reduces the general case to the system of trivially coup
mKdV equations

H ut5uxxx1u2ux ,

v t5vxxx1v2vx .
~50!

K. System „18…

The transformation~26! reduces the general case to the case witha50 unlessa523/2. The
representative case is
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H ut5uxxx13uuxx23vuxx13ux
223uxvx13u2ux212uvux13v2ux26u2vx16uvvx ,

v t5vxxx23uvxx13vvxx23uxvx13vx
216uvux26v2ux13u2vx212uvvx13v2vx

~51!

whose first conserved densities are

u,v,uv,uvx1uv22u2v,2uxvx13uvux13uvvx1uv~u223uv1v2!,

vxuxx14~u2v !uxvx26u2vux19uv2ux22v3ux2uv~u2v !~u225uv1v2!.

This equation is the third-order symmetry of an antisymmetric nonlinear Schro¨dinger-type
system

H ut5uxx12uux22vux22uvx ,

v t52vxx12vux12uvx22vvx ,
~52!

which is equivalent to~4.10! in the classification by Olver and Sokolov.16 We were able to
construct its bi-Hamiltonian structure that seems to be previously unknown.

S ut

v t
D5S 0 Dx

Dx 0 D d S E ~vux2uv21u2v ! dxD5S K1 K2

K3 K4
D d S E uv dxD , ~53!

where

S K1 K2

K3 K4
D 5S 22uDx2ux Dx

21~u2v !Dx1ux

2Dx
21~u2v !Dx2vx 2vDx1vx

D . ~54!

L. System „19…

The transformation~26! reduces the general case to the case witha50 unlessa523/2. The
representative case is

H ut5uxxx13uuxx23vuxx13ux
223uxvx13u2ux224uvux13v2ux212u2vx16uvvx ,

v t5vxxx23uvxx13vvxx23uxvx13vx
216uvux212v2ux13u2vx224uvvx13v2vx .

~55!

Its first conserved densities areu,v,uv,2uxvx13uvux13uvvx1uv(u226uv1v2). We were
able to find one Hamiltonian form

S ut

v t
D5S 0 Dx

Dx 0 D d S E ~2uxvx13uvux13uvvx1uv~u226uv1v2!! dxD . ~56!

M. System „20…

The transformation~26! reduces the general case to the case witha51 unlessa50. The
representative case is

5
ut5

1
2 uxxx1

1
2 vxxx1uuxx2vuxx2uvxx1vvxx22uxvx12vx

2

14u2ux220uvux24u2vx24uvvx ,

v t5
1
2 uxxx1

1
2 vxxx1uuxx2vuxx2uvxx1vvxx12ux

222uxvx24uvux

24v2ux220uvvx14v2vx .

~57!
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Its first conserved densities areuv,2 1
2(ux1vx)

214uvux14uvvx28u2v2.

N. System „21…

The transformation~26! reduces the general case to the case witha50 unlessa521/2. The
representative case is

H ut5
1
2 uxxx1

1
2 vxxx1uuxx2vuxx1ux

22uxvx24uvux22u2vx ,

v t5
1
2 uxxx1

1
2 vxxx2uvxx1vvxx2uxvx1vx

222v2ux24uvvx .
~58!

Its first conserved densities areuv,uv,2 1
2(ux1vx)

212uvux12uvvx22u2v2. The bi-
Hamiltonian formulation is

S ut

v t
D5S 0 Dx

Dx 0 D d S E S 2
1

4
~ux1vx!

21uvux1uvvx2u2v2DdxD5S K1 K2

K3 K4
D d S E uv dxD ,

~59!

where

K15 1
2 Dx

322uDxu12uxDx
21ux ,

K25 1
2 Dx

31~u2v !Dx
21~ux2vx22uv !Dx22vux12uxDx

21vx ,
~60!

K35 1
2 Dx

31~v2u!Dx
21~vx2ux22uv !Dx22uvx12vxDx

21ux ,

K45 1
2 Dx

322vDxv12vxDx
21vx .

O. System „22…

The transformation~26! reduces the general case to the case witha51 unlessa50. The
representative case is

5
ut5

1
2 uxxx1

1
2 vxxx1uuxx2vuxx2uvxx1vvxx22uxvx12vx

2212uvux

24v2ux212uvvx14v2vx14u4212u3v112u2v224uv3,

v t5
1
2 uxxx1

1
2 vxxx1uuxx2vuxx2uvxx1vvxx12ux

222uxvx14u2ux

212uvux24u2vx212uvvx24u3v112u2v2212uv314v4.

~61!

Its first conserved densities areuv,2 1
2(ux1vx)

214uvux14uvvx28u2v2.

P. System „23…

The transformation~26! reduces the general case to the case witha50 unlessa521. The
representative case is

5
ut5

1
2 uxxx1

1
2 vxxx12uuxx22vuxx1ux

222uxvx1vx
222u2ux236uvux

210v2ux214u2vx228uvvx26v2vx26u4232u3v120u2v2116uv312v4,

v t5
1
2 uxxx1

1
2 vxxx22uvxx12vvxx1ux

222uxvx1vx
226u2ux228uvux

214v2ux210u2vx236uvvx22v2vx12u4116u3v120u2v2232uv326v4.

~62!
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Its first conserved densities areu216uv1v2,2(ux1vx)
218uvux18uvvx1(u216uv1v2)2.

Q. System „24…

The transformation~26! reduces the general case to the case witha50 unlessa53/2. The
representative case is

H ut52 1
2 uxxx1

3
2 vxxx13uuxx23vuxx13ux

223uxvx26v2vx ,

v t5
3
2 uxxx2

1
2 vxxx23uvxx13vvxx23uxvx13vx

226u2ux .
~63!

Its first conserved densities areu, v, uv, 3ux
222uxvx13vx

2212uvux212uvvx12u412v4.
We were able to construct one Hamiltonian form

S ut

v t
D5S 0 Dx

Dx 0 D d S E S 2
3

4
ux

21
1

2
uxvx2

3

4
vx

213uv~ux1vx!2
1

2
u42

1

2
v4DdxD . ~64!

V. CONCLUSIONS

In this article we presented a classification of symmetrically coupled potential KdV
modified KdV-like equations possessing higher generalized symmetries. We have foun
Hamiltonian formulations for several of these integrable equations. However, such a formu
might not exist in other cases, whereas there might be a recursion operator or a Hopf–Co
differential substitution reducing our equations to linear ones, similar to the classical Bu
equation. Since there are no algorithmic techniques for finding such substitutions, it is s
interesting open problem to produce such Hopf–Cole-type maps.

Moreover, there might be Miura-type transformations that map known integrable equatio
the integrable equations from our list, in analogy with the relation between the KdV an
mKdV. We remark that our~non-decouplable! systems are most likely to be the images of Miur
type maps of non-decouplable equations. We know that there are only two symmetrically co
non-decouplable integrable equations homogeneous in the KdV weighting:4,18 Hirota–Satsuma
and Ito equations.
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A new proof of the Demidowitsch–Schneider criterion on the absence of closed
trajectories ofR3 is given. The new proof is generalized and applied in several
directions:Rn vector fields (n.3),... . © 2000 American Institute of Physics.
@S0022-2488~00!03108-X#

I. INTRODUCTION

The ruling out of closed trajectories~oscillations! of dynamical systems in engineering an
physics is important, practically and theoretically.1 On the other hand, a lot of work has been do
concerning the existence of closed trajectories of dynamical systems, in particular on Hamil
systems,2 on Hamiltonian systems with convex Hamiltonian,3 on Hamiltonian systems on tori,4 on
the Hamiltonians of theN-body system,5 and on Hamiltonian systemsXW H of type H5T1V
~whereT is the kinetic energy andV stands for the potential of the acting forces! whereV is
singular,6 periodic,7 asymptotically quadratic,8 or bounded.9

Note also that Kozlov10 has explored certain connections between the least action prin
and the existence of closed trajectories.

Similarly, there are some references on the connections ofnon-Hamiltoniansystems and
closed trajectories: see Ref. 11 for connections with Lienard systems, Ref. 12 for connection
perturbed second differential equations, and Ref. 13 for the study of closed trajectories on
tonian systems with tensorial mass.

One of the classical results concerning the absence of closed~periodic! trajectories ofR2

vector fields is the Bendixon–Dulac criterion.14 This criterion asserts that ifXW is anR2 vector field
~VF! and DivXW 5X,x1Y,y.0 on a certain domainD,R2 ~or Div aXW .0 for some smooth,
nonvanishing functiona!, then XW is free from closed trajectoriesC,D. The same conclusion
holds when DivXW or Div aXW are negative inD. But in this paper we shall always refer to the ca
of positive divergence.

Demidowitsch15 obtained a similar result forR3 VF with a regular first integralI . In fact,
under the regularity assumption¹W IÞ0W and the condition DivXW 5X,x1Y,y1Z,z.0 on a certain
domain he showed thatXW is free, onD, of closed trajectoriesbounding a planelike region~on the
level sets ofI !.

Remember that a smooth (C `) function I is called a first integral ofXW if

LXW ~ I !50

with LXW standing for the derivative ofI along the streamlines ofXW .
WhenXW is anRn vector field (n52,3,...) therequirementLXW (I )50 is equivalent to

a!Electronic mail: giraldo@eucmax.sim.ucm.es
61860022-2488/2000/41(9)/6186/7/$17.00 © 2000 American Institute of Physics
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(
i 51

n

Xi

]I

]xi
50,

Xi being the components of the vector fieldXW . Note that these conditions imply that the VFXW is
tangent to the level sets ofI at every pointPPRn such thatI is regular at P ~i.e.,¹W I uPÞ0W !. When
I is singular at P (¹W I uP50W ) the vector fieldXW is not necessarily tangent to the level setI (xW )
5I 21(P) at P. This problem arises since the setI (xW )5I 21(P) is, in general, no longer a differ
ential manifold nearP. In fact the geometry of the setI (xW )5I 21(P) can be quite complicated
~near the singular pointP!, particularly when the equation¹W I 50W hasnonisolatedsolutions near
P.

Note also that the particular generalization of the Bendixon–Dulac criterion by Demidow
rests on the idea thatR3 vector fields are tangent~at a regular point! to the level sets of the firs
integral I , which are generally manifolds of lower dimension. Of course there have to be fu
restrictions since the topology of the level sets ofI can be quite complicated, particularly if the
happen to benoncompactmanifolds~remember that the classification of unboundedR3 surfaces
has never been achieved!.

Demidowitsch criterion15 suffered from certain shortcomings that were corrected
Schneider.16

When the level sets ofI are topological planes, every closed trajectory lying on them o
ously bounds a planelike domain and, therefore, the Demidowitsch–Scheneider~codes DS! crite-
rion rules out, in this case,all the closed trajectoriesC,D.

Note that a closed curveC contained in a two-dimensional manifoldM2 is not necessarily a
boundary of a planelike domain~let M2 be the standard two-dimensional torus and consider
parallels and meridians!.

A geometrical proof of the DS criterion forR3 VF is given here. The new proof is ver
flexible. In fact, it has allowed us to generalize the Demidowitsch criterion in several directio
VF with more than one first integral~Sec. III! and using a generalized divergence operator~Sec.
IV !. Some examples are given in Sec. V. In the final remarks section certain open problem
discussed and proposed.

Concerning the mathematical formalism used in the paper, we must say that it has
impossible for us to avoid expressing our formal proof in terms of the operatorsd, L, and c,
instead of the classical operators gradient, divergence, and curl. The main reason for this is
honestly believe that proofs are obtained quicker in the language of the operatorsd, L, andc. The
reader can have a look at Ref. 15 in order to check howad hoc, long and complicated the proo
in Sec. III becomes in terms of the operators grad, div, curl.

On the other hand, the curl of a vector field is not a vector filed inRn (n.3), but an
antisymmetric tensor of rank two. Therefore, the simplicity of the curl operator is lost when w
working in Rn (n>4).

Summarizing, it is an open problem~at least whenn53! to give a proof of the results of this
paperonly in terms of the classical operators gradient, divergence, and curl.

Bibliographies on closed trajectories of VF can be found in Refs. 2–13 and 18.

II. NEW PROOF OF THE DEMIDOWITSCH CRITERION

Assume that:

~1! C is a closed trajectory ofXW ~a R3 VF!.
~2! I is a first integral ofXW and¹W IÞ0W on a certain domainD of R3.
~3! Div XW .0 on D.
~4! LXW (nW ) is tangent to the level sets ofI . That is LXW (nW )"nW 50 where the dot stands for th

Euclidean scalar product.
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Under these conditionsD is free from closed trajectoriesC bounding a planelike regionon
I 21(0), I (C)50.

In fact, callingw35dx`dy`dz, nW 5¹W I /i¹W I i , using operatorsd, L, c and its relations, as
well as Stokes theorem,17 we can write

05E
C
XW cnW cw35E

R
dXW cnW cw35E

R
~LXW 2XW cd!nW cw3 ~1!

with R standing for the planar region onI 21(0) bounded byC.
Now,

E
R
XW cdnW cw3

vanishes, sinceXW is tangent toR. Concerning the other integral

E
R
LXW nW cw3 ,

we can write

E
R
LXW nW cw35E

R
@XW ,nW # cw31E

R
nW cLXW w3

5E
R
LXW ~nW !cw31E

R
nW cDiv XW •w3501E

R
d2S•Div XW .0, ~2!

where use has been made of these two properties:

~1! LXW (nW ) is tangent toR.
~2! If d2S stands for the element of area ofR,

E
R
nW cDiv XW w35E

R
d2S•Div XW .

By comparing the left-hand side of~1! and the right-hand side of~2! we see that we have
obtained a contradiction. Therefore a closed trajectoryC,D cannot exist. Note that the above
mentioned proof holds ifLXW (l(xW )nW ) is tangent to the level sets ofI , l(xW ) being an arbitrary
positive function.

Let us now give some examples appearing in chemical kinetics models~see Toth, Ref. 16!.
~1! Let XW be the VF given by

XW 5~y1x•z2!]x1~2x!]y .

It is easy to check that DivXW 5z2, LXW (z)50, andLXW (nW )"nW 50, nW standing for¹W z/i¹W zi .
ThereforeXW satisfies the requirements of this section on the regionsz.0 or z,0. Closed

trajectories lying on these two regions are, therefore, forbidden, although oscillating solutio
z50 or crossing the planez50 are not excluded by our criterion.

~2! Consider now the VF

XW 5~2ax1gy1dx2y!]x1~bz2gy2dx2y!]y1~ax2bz!]z ,

wherea, b, g, d are real numbers anddÞ0. The reader will check that
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Div XW 52a12dxy2g2dx22b,

LXW ~x1y1z!50,

nW 5~1,1,1!•~3!2 1/2,

LXW ~nW !"nW 50.

Therefore the couple~XW , I 5x1y1z! meets all the requirements of this section on each of
cylindrical regions defined by

2a12dxy2g2dx22b.0,

2a12dxy2g2dx22b,0

andXW will be free from closed trajectories on any of these two regions.
~3! Consider finally the VFXW given by

XW 5y]x1z]y1~2ay2bz!]z,

wherea andb are real numbers (bÞ0). One can check that

Div XW 52b,

LXW ~ax1by1z!50,

nW 5~a,b,1!•~11a21b2!21/2,

LXW ~nW !•nW 50.

Accordingly,XW is free from closed trajectories. This fact can also be verified by explicitly get
the solutions ofXW ~note thatXW is a linear VF!.

III. A GENERALIZATION OF THE DEMIDOWITSCH CRITERION

We prove in this section the following generalization of Demidowitsch criterion.
Assume thatXW is anR4 VF with two first integralsI 1 , I 2 such that

rank~¹W I 1 ,¹W I 2!52,

LXW ~nW i !•nW j50,

i , j 51,2.

Assume also that DivXW .0 on D, whereD is an R4 domain. ThenXW is free, onD, of closed
trajectories ofXW bounding two-dimensional regionson the common level sets ofI 1 and I 2 .

The proof of the criterion is

05E
C
XW cnW 1cnW 2cw45E

R
dXW cnW 1cnW 2cw45E ~LXW 2XW cd!nW 1cnW 2cw4 , ~3!

nW i standing for¹W I i /i¹W I i i , (i 51,2) andw4 for the standardR4 volume formdx`dy`dz̀ du.
Now, as we explained concerning formula~1! we can write:
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E
R
LXW nW 1cnW 2cw45E

R
nW 1cnW 2cLXW ~w4!5E

R
nW 1cnW 2cDivXW •w45E

R
d2S•sin~nW 1 ,nW 2!•Div XW .0. ~4!

The integral*R XW cdnW 1cnW 2cw4 vanishes, sinceXW is parallel toR on each of its points.
Therefore we have again obtained a contradiction, since the left hand side of~3! is zero and

the right-hand side is positive. The criterion has been proved.
Note that sin(nW1,nW)2.0, sinceI 1 andI 2 were assumed independent first integrals; that imp

rank(¹W I 1 ,¹W I 2)52 globally.
Note also that the above proof holds forRn VF with (n22) first integrals such tha

rank(¹W I 1 ,¯ ,¹W I n22)5n22.

IV. A CRITERION DEPENDING ON THE HIGHER ORDER DERIVATIVES OF X¢

The Bendixon–Dulac criterion depends on the sign of DivXW . Let us see that a more gener
criterion can be obtained resting upon the computation of the sign of a differential expresio
depends on themth derivatives of the components ofXW .

In fact, assume thatXW is a plane VF satisfying:

L
XW
m

~dx`dy!5 f m~dx`dy!, mPN, f m.0 on Dm , ~5!

thenXW is free from closed trajectories onDm .
The functionf m can be called generalized divergence ofXW . In fact, whenm51, f 15Div XW .

Whenm52, it can be immediately proven thatf 2 becomesLXW (Div XW )1(Div XW )2, a second-order
differential expression. The proof of the criterion is

0,E
R
L

XW
m

~dx`dy!5E
R
L

XW
m21

~XW cd1dXW c !~dx`dy!

5E
R
d~L

XW
m21

XW c~dx`dy!!

5E
C
L

XW
m21

XW c~dx`dy!

5E
C
XW cL XW

m21
~dx`dy!50, ~6!

as we desired to prove.
This criterion is useful if the domainsD1 , D2 ,... form an increasing sequence of sets. S

Sec. V for some examples.
Let us show now that this criterion can also be applied toR3 VF with a regular first integral.

The proof inRn will not be given.
The proof inR3 is

~7!

w3 standing for the standard volume formdx`dy`dz of R3. Note that the overdotted term in~7!
vanishes.

Now, appliying the operatorL
XW
m21

to the left- and right-hand sides of~7! we get
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05E
R
L

XW
m

nW cw35E
R
nW cL XW

m
w35E

R
nW c f •w35E

R
f •d2S.0. ~8!

A contradiction has been obtained and therefore the hypothesis thatC is a closed trajectory ofXW

~bounding a region! must be false. This ends the proof.

V. EXAMPLES

In this section we give some examples concerning the use of the function

f 25LXW ~Div XW !1~Div XW !2

of Sec. IV.
1. Let XW be theR3 VF

XW 5~x1
22x2

2!]x1
1~x2

22x3
2!]x2

1~x3
22x1

2!]x3
. ~9!

It is immediate to check that

~1! x11x21x3 is a first integral ofXW .
~2! Div XW 52(x11x21x3).
~3! f 254(x11x21x3)2.

Since f 15Div XW Þ0 implies (DivXW )2.0 the sameclosed trajectories ofXW are forbidden byf 1

5Div XW and f 2 and, therefore, the criterion isnot useful in this particular case.
2. Consider theR3 VF

XW 5~x1
22x2

21x3
4!]x1

1~x2
22x1

22x3
4!]x2

1~x3
21G~x1 ,x2!!]x3

, G~x1 ,x2!.0. ~10!

It is immediate to check that:

~1! I 5x11x2 is a first integral ofXW .
~2! Div XW 52(x11x21x3).
~3! f 252(x3

21G)14(x11x21x3)2.0 globally.

Therefore~remember that the level sets ofI are planes! we conclude thatXW is free from closed
trajectories. In this casef 2 has been useful. This result cannot be obtained using DivXW , since it
vanishes on the planex11x21x350.

Nevertheless the result could have been obtained directly from

ẋ35x3
21G~x1 ,x2! ~11!

by integrating both members of~11! along a closed trajectoryC of XW . We would be led to a
contradiction, proving thatC cannot exist.

3. Consider theR2 VF

XW 5~x22y2!]x1~y223x2!]y . ~12!

It is immediate to check that:

~1! f 15Div XW 52x12y.
~2! f 2524x21(2x12y)2.
~3! The sign off 2 changes alongy50 andy522x.
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Therefore the regions wheref 15Div XW is positive are not the same as those wheref 2.0 and,
therefore, the criteria based onf 1.0 and f 2.0 complement each other. The discussion of
details is left to the reader.

VI. FINAL REMARKS

The criteria considered in this note are only useful to rule out closed trajectories when th
boundaries of planelike domains on the level sets of the first integrals ofXW . It would be very
interesting to get a criterion ruling out some, or part of the closed trajectories ofXW that are not
boundaries of planelike domains. A hint in this direction is contained in Sec. V, example 2
~11!. Namely, if the vector field has a positive component then it cannot possess closed or
any kind ~either of boundary type or of nonboundary type!. The difficulty lies in the fact that a
two-dimensional surface~a torus, a cylinder, . . .! is free from global coordinates, in the absence
which the very concept of positive component is rather doubtful.

Another open problem is this one. Can we get sufficient conditions implying that the leve
of the first integrals are topological planes? Note that in this case all the closed trajectorieXW

are boundaries of planelike domains and therefore,all of them can be excluded via the criterio
considered in this note. The regular functionx1

21x2
21arctanx3 ~whose level sets are either topo

logical planes or cylinders! suggests that this problem is far from trivial.
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Invariant subspaces of the periodic Navier–Stokes
and magnetohydrodynamics equations: Symmetries
and inverse cascades
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It is shown that when the initial condition and the forcing term of the periodic
Navier–Stokes or magnetohydrodynamics equations have Fourier coefficients
which vanish outside a certain semigroup of frequencies, the same happens to the
solutions for all time. Subgroups of frequencies correspond to solutions possessing
certain symmetries. By taking as a semigroup the frequencies whose Fourier com-
ponents are non-negative integers, we get a class of solutions for which the higher
modes do not influence the evolution of the lower ones; therefore, the phenomenon
of inverse cascading cannot occur for them. ©2000 American Institute of Phys-
ics. @S0022-2488~00!03609-4#

I. INTRODUCTION

So far there exists a wide gulf between what is accepted in fluid mechanics and what
rigorously deduced from the Navier–Stokes equations. This is specially true in the field of t
lence, where the standard view of the transfer of energy in fully developed turbulent flows re
analytically unproved. Let use remember that energy is typically introduced into the turbulen
by a large-scale forcing, is transported to smaller scales through an intermediate~called inertial!
range, and finally it is dissipated into heat at the dissipative range. For periodic problems,
ranges are identified with certain subsets of Fourier modes: the scales decrease as the
frequency grows. For dimension two, however, the above picture of a direct cascade is not e
correct: Kraichnan and others1–5 showed that energy injected at a certain intermediate scale
be transferred to the largest scales and fairly obvious large structures appear in the flow.
inverse cascades are believed to occur also for a number of magnetohydrodynamic magn
the mean-square magnetic potential in two-dimensional and the magnetic helicity in
dimensional magnetohydrodynamics~MHD! ~see Ref. 6 for the relevant definitions!.

The standard modern presentation7–10 of these evolution equations involves a number
subspaces of the space of square-integrable functionsL2(V), plus Galerkin approximations an
compactness theorems. These techniques work as well for closed subspaces of the standa
provided these subspaces are invariant for the relevant operators. For the periodic case, a
of possibilities are apparent. By choosing a certain class of invariant subspaces, we will sho
when the initial condition and the forcing term satisfy a certain type of symmetry, the s
happens to the solutions for as long as they are defined. A second example will yield
families of solutions for which there is no inverse cascade at all: the large scales ignore the
ones in their evolution, irrespective of the value of the Reynolds number. These results, ho
do not represent a threat for our picture of inverse cascading, because our velocity and m
fields are complex functions and therefore do not have any clear-cut physical meaning
nonlinear character of the Navier–Stokes and MHD equations precludes the classical tr
taking the real part of a complex solution to find a real one. Hopefully this construction ma
helpful to understand which analytic techniques may work in order to prove rigorously the
tence of inverse cascades. Another caveat is that our results depend on very specific arith
61930022-2488/2000/41(9)/6193/5/$17.00 © 2000 American Institute of Physics
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properties of the complex exponentials and therefore cannot be extended in any obvious
other boundary value problems.

II. THE MATHEMATICAL FORMALISM

Consider a viscous incompressible fluid filling~for notational simplicity! the box V
5@0,2p#N, possessing a velocityu and pressurep, under the action of a time-independent forci
f. We will assume that all the magnitudes are spatially periodic, and that the mean ofu and
~necessarily! f are zero,

^u&5E
V

u~ t,x!dV50. ~1!

After normalization of constants,u will satisfy the incompressible Navier–Stokes equation

]u

]t
5nDu2u•¹u2¹p1f,

¹•u50, ~2!

u~0!5u0 ,

wheren stands for the fluid viscosity. If the fluid is a conducting one with resistivityh, and a
magnetic fieldB is present, it acts upon the velocity through the Lorentz force while satisfying
induction equation. The resulting magnetohydrodynamic~MHD! equations, after normalization o
constants, are

]u

]t
5nDu2u•¹u1B•¹B2¹S p1

B2

2 D1f1 ,

]B

]t
5hDB2u•¹B1B•¹u1 f 2 ,

¹•u50,

¹•B50, ~3!

^u&5^B&50,

u~0!5u0 ,

B~0!5B0 .

Both systems may be cast in the same form: after projection in the space of fields with
divergence~killing in this way all the gradients!, one gets

]w

]t
5Dw1C~w,w!1f, ~4!

wherew5u ~Navier–Stokes! or (u;B) ~MHD!; D is an elliptic operator~eithervD or (vD;hD)!,
and C is a bilinear form with the antisymmetric property (C(w1 ,w2),w2)50. For the Navier–
Stokes equations,C(u,v)52P(u•¹v), where as mentioned beforeP is the orthogonal projection
upon the space of solenoidal fields, with mean zero. In the MHD case,

C~~u1 ,B1!;~u2 ;B2!!5~P~2u1•¹u21B1•¹B2!;P~2u1•¹B21B1•¹u2!!.
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From now on, we will restrict ourselves to the Navier–Stokes equations to simplify the nota
The proofs for the MHD case are the same with obvious modifications.

The main working spaces are

H5$uPL2~V!N:¹•u50,̂ u&50,u•n anti2periodic%, ~5!

V5H1~V!NùH. ~6!

The divergence ofu is to be understood in the sense of distributions. It may be shown tha
boundary valuesu•n have in this case a precise mathematical sense.7 H1(V) is the usual Sobolev
space of functions whose gradient is square-integrable. The projectionP:L2(V)N→H is easily
expressed in terms of the Fourier series of a periodic function,

PS (
kPZN

ake
ik•xD 5 (

kPZN
bke

ik"x, ~7!

whereb050, andbk is the projection withinCN of ak on the hyperplanek•x50. It is known that
C takesV3V into the dual spaceV8.

III. ALTERNATIVE SETTINGS AND CONSEQUENCES

Let H0 be a closed subspace ofH such that the LaplacianD takesH2(V)NùH0 into H0 , and
if u,vPH0 are such thatP(u•¹v)PH, thenP(u•¹v)PH0 . Let V05VùH0 , and assumeu0 ,f
PH0 . Then all the standard proofs of existence work withH0 , V0 instead ofH, V and we get the
same results: the solutionuPC(@0,T#,H0)ùL2(@0,T#,V0) up to someT (T5` for N52! and, if
u0PV0 , uPC(@0,T#,V0)ùL2(@0,T#,H0ùH2(V)N). Thus the solution remains withinH0 for all
time. The only difficulty is to find a subspaceH0 satisfying all the requirements. Let us look at th
Fourier representation ofu. Du corresponds to(2uku2ûke

ik"x. On the other hand, thek-th Fourier
coefficient ofujv l is

^ujv l& ~k!5 (
nPZN

ûj~n!v̂ l~k2n!. ~8!

Take tentatively asH0 the space of functions ofH whose Fourier coefficients vanish outside
subsetA,ZN. ThenH0 is invariant forD. For the product of two functions ofH0 to lie within H0 ,
we need that wheneverk¹A,(ujv l)ˆ(k)50. Since we may choose at willuj andv l , this happens
if and only if all the summands within~8! vanish, i.e., ifk¹A, nPA, thenk2n¹A. This means
that A must be a semigroup ofZN: i.e., if m,nPA, thenm1nPA. The projectionP keeps such
functions withinH0 , since it does not extend the support of the Fourier transform. Hence
subspaceH(A) formed by the functions whose Fourier transform has support contained wit
semigroupA,ZN is an invariant one for the Navier–Stokes equation.

If A is a subgroup, we may say a good deal about the possible solutions. Subgroups ofZN are
free and generated by at mostN elements. This means that there are a number of basic frequen
k1 ,...kp ,p<N, such thatH(A) is formed by the functions whose Fourier modes correspon
frequencies which are a linear combination with integer coefficients ofk1 ,...kp . Since any com-
plex exponentialeink"x is a function ofk•x, such solutions depend only on the variablesk1

•x,...kp•x. To see the meaning of this, considerN52, k15(1,0). All such velocities are func
tions of the first spatial variablex. Take nowk15(2,0), k25(0,2). Then the velocities depend o
2x,2y, i.e.,u(x,y)5u(p1x,y)5u(x,p1y). We see that those are functions satisfying a cert
number of symmetries. It is not unexpected for the Navier–Stokes and MHD equations to ke
all time the symmetries of the initial condition and the forcing, although it is not entirely tri
given their nonlinear character.
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The analysis for general semigroups is made difficult by its possible complicated stru
We will concentrate on the simplest and most important:NN, i.e., the set ofkPZN with kj>0 for
all j. Of course, ifA is a semigroup, so is2A, which means that we could have taken as w
negative frequencies.

Let QM denote the projection fromL2(V)N into the finite-dimensional space of trigonometr
polynomials with frequencies bounded byM,

QM~ f !5 (
uku<M

f̂ ~k!eik•x,

uku5uk1u1•••1ukNu . ~9!

Let u be a solution of the Navier–Stokes equations such thatu0 , fPH(NN). ThenQMu satisfies

]QMu

]t
5nDQMu2PQM~QMu•¹QMu!1QMf,

¹•QMu50, ~10!

QMu~0!5QMu0 .

The proof is simple: let us apply the projectionQM to the Navier–Stokes equation.QM commutes
with ]/]t, D, andP. For any productuv of functions withinH(NN), anduku<M , thekth Fourier
coefficient is

~uv !ˆ~k!5(
l

û~ l!v̂~k2 l!. ~11!

For any summand to be nonzero, we needl j>0, kj2 l j>0, which meanskj>0, plus( j kj<M ;
thus ( j l j<M , ( j kj2 l j<M . Hence only the coefficientsû( l), v̂( l) with u lu<M occur. In other
words,

QM~u•¹u!5QM~QMu•¹QMu!, ~12!

from which the result follows.
Equation~10! is in fact an ordinary differential one, sinceQMu is finite dimensional: all the

spatial derivatives are continuous linear functionals. It is known that it has a unique solution
time ~even whenN53! because the nonlinear term is a polynomial inQmu: it is a finite-
dimensional reaction-diffusion equation. Standard energy inequalities show thatQmu tends in
L2((0,̀ ),H) to a weak solutionu, which of course coincides forN52 with the smooth one.

The important thing, however, is thatQMu satisfies by itself an evolution equation with n
implication whatsoever of the remaining modes ofu. Thus, although smaller frequencies~larger
scales! do have an effect on the behavior of a certain mode, larger frequencies~smaller scales! do
not. This clearly precludes inverse cascades.

As for the kind of forcing withinH(NN), they can be indeed very complicated functions, b

they cannot be real ones: for real functions one hasf̂(2k)5 f̂(k). Henceu itself must be complex,
which is hard to interpret as a physically realistic velocity field. And, as told before, the rea
of u is not a solution of a Navier–Stokes equation with time-independent forcing: certainly
could add a term2v•¹v to f, with v the imaginary part ofu, but of course any function is a
solution of the Navier–Stokes equation with a suitable forcing term, so this is not meanin
Moreover, this trick would yield a time-dependent forcing term.

It is worth noting that whenf satisfies a Gevrey condition ((u f̂(k)u2esuku,` for somes
.0!, the solutionu is itself Gevrey for as long as it remains bounded in theH1-norm, which mean
always for N52 ~see Ref. 11; the proofs there work without substantial modification for
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MHD case!. Taking as new variableszj5eix j , this means thatf and u(t) may be analytically
extended to a neighborhood of the torusTN,CN. If moreover f and u0 belong toH(NN), the
Fourier expansion becomes a Taylor one, and what we have proved is thatu(t) remains analytic
in a neighborhood of the polidiskB̄(0,1),CN. The wide variety of analytic functions shows th
the forcing functionsf may be made to satisfy many properties.

Concerning other magnitudes for which the phenomenon of inverse cascading is claim
find much the same result. The mean-square magnetic potential in two-dimensional MHD is
in the following way: letB5(B̂(k)eik"x be the Fourier series of the plane magnetic fieldB
5(B1 ,B2,0), satisfying as alwaysk•B̂(k)50. TakeÂ(k) such thatik3(0,0,Â(k))5B̂(k). Then
A(x)5(Â(k)eik"x is the scalar potential vector. Its mean-square potential is(uÂ(k)u2. Since the
Fourier componentsB̂(k), uku<M , depend for all time only on the remainingB̂( l), u lu<M , the
same happens forÂ(k). Thus the mean potential ofQMA depends only on the previous history
the modes up to sizeM, and there is no inverse cascade. As for the magnetic helicityH in three
dimensions, it has no interest inH(NN) becauseH5(Â(k)•B̂(2k)50. Since the magnetic
helicity measures in a sense the knottedness of the magnetic field, these fields are in
topologically simple; but this has not much to do with turbulence, which may be prese
dimension two, where there is no possibility of a field to become entangled.

IV. CONCLUSIONS

By analyzing the invariant subspaces of the operators occurring in the periodic Navier–S
and magnetohydrodynamic equations, we have found that when the Fourier frequencies
forcing and initial conditions lie within a certain semigroup ofZN, the same happens to th
solution for as long as it is defined in the classical sense. When we take as a semigroup a su
of ZN, we find that these solutions correspond to fields satisfying a certain number of symm
By taking as a semigroup the set of positive frequencies, we find that the truncated Fourier
of the solution satisfies an evolution equation by itself and therefore it ignores the rema
Fourier modes. As a consequence there cannot be inverse cascading for this class of so
These turn out to be always complex functions and not realistic physical fields, but these
may be helpful to understand the analytic setting where existence of inverse cascades ma
tually be rigorously proved.
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Moment invariants for nonlinear Hamiltonian systems
Branislav Radaka)

Department of Physics, University of Maryland at College Park, College Park,
Maryland 20742-4111

~Received 14 September 1999; accepted for publication 24 March 2000!

In this paper we study the behavior of the moments of a particle distribution as it is
transported through a Hamiltonian system. Functions of moments that remain in-
variant for an arbitrary nonlinear Hamiltonian system are constructed perturba-
tively. The perturbation expansion is carried out according to the degree of nonlin-
earity of the symplectic mapping associated with the Hamiltonian. The existence of
these moment invariants is entirely a consequence of the symplectic nature of the
flow generated by Hamiltonian systems. These invariants may be of use in accel-
erator design, in the general area of charged particle beam transport, and in other
areas of Hamiltonian dynamics. ©2000 American Institute of Physics.
@S0022-2488~00!04507-2#

I. INTRODUCTION

Consider a distribution of particles being transported through some Hamiltonian system
assume either that the particles are noninteracting or that effects arising from particle intera
can be treated in the Vlasov approximation.1,2 An important first step toward a complete unde
standing of the dynamics of this transport would be to determine quantities that remain inv
under transport.

Examine the motion of a ‘‘test particle’’ in the distribution. Describe its motion by
generalized coordinatesq1, q2, q3 and their conjugate momentap1, p2 , p3 . It is convenient to
treat theq’s andp’s on an equal footing. This can be done by introducing the quantitiesz1 ,...,z6

using the prescription

z5~q,p!. ~1.1!

That is, the first three components ofz areq1 , q2 , q3 , and the last three arep1 , p2 , p3 . Let M
be the symplectictransfer map that describes for a test particle the effect of being transpo
through some Hamiltonian system. Then we have the relations

zf5Mzi , zi5M21zf . ~1.2!

Herezi is any initial condition, andzf is the correspondingfinal condition.
Suppose the distribution of particles in phase space at any instant is described in term

particle distribution functionh(z). That is, if d6z is a small volume in phase space, then t
number of particlesd6N in this small volume is given by the relation

d6N5h~z!d6z. ~1.3!

Let hi(z) be the distribution function describing theinitial distribution of particles~before trans-
port through some Hamiltonian system!, and let hf(z) be the correspondingfinal distribution
function after transport through the Hamiltonian system. Then, by Liouville’s theorem, the i
and final distribution functions are connected by the relation

a!Present address: Prudential Securities, Financial Strategies Group, 15th floor, 1 New York Plaza, New Yor
York 10292; electronic mail: radak@worldnet.att.net
61980022-2488/2000/41(9)/6198/35/$17.00 © 2000 American Institute of Physics
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hf~z!5hi~M21z!. ~1.4!

The problem we would really like to solve is the following: Suppose we are given
functions f (z) andg(z). Then how can we tell if there is a symplectic mapM such that

f ~z!5g~M21z!? ~1.5!

If two functionsf andg are connected by a relation of the form~1.5! for some symplectic mapM,
we say thatf is equivalentto g and write

f ;g. ~1.6!

It can be shown that, in mathematical terms, ‘‘;’’ is an equivalence relation. This means that
equivalence classesof distribution functions can be defined. Specifically, letg be a particular
distribution function, and let$g% be the set of all distribution functionsf such thatf ;g. The set$g%
is called theequivalence classof g. Put in more physical terms, suppose we are given
distribution functions,hi(z) and hf(z), and we wish to know if it is possible to design som
device that will converthi into hf . Then if the device is Hamiltonian, its effect must be descr
able in terms of some symplectic mapM, and hence by~1.4! we must havehf;hi .

The problem of determining the equivalence classes of functions under the action of sym
tic maps is very difficult. We will address the more modest but still very challenging goa
finding invariant functionalsof phase-space distributions. LetI @ f # be a functional of the phase
space distributionf. We say thatI is an invariant functional if it satisfies the property

I @ f #5I @g#, whenever f ;g. ~1.7!

Even this more modest goal is a bit too ambitious. Among the functionals associated w
distribution is its set ofmoments. We will seek invariant functions of these moments, and, in
doing, will seek a special class of invariant functionals.

Previous work has found functions of moments that remain invariant under the action
linear but otherwise arbitrary Hamiltonian system.3,4 In this paper we extend the previous work
the case ofnonlinearHamiltonians under the assumption that the nonlinearities can be expa
in a Taylor series.

II. MOMENTS AND MOMENT TRANSPORT

Let Pa(z) be some complete set of polynomials labeled by some running indexa. Theninitial
momentswa

i can be defined by the rule

wa
i 5E d6z hi~z!Pa~z!. ~2.1!

Similarly, final momentswa
f are defined by the rule

wa
f 5E d6z hf~z!Pa~z!. ~2.2!

Suppose~1.4! is inserted into~2.2!. Doing so gives the result

wa
f 5E d6z hi~M21z!Pa~z!. ~2.3!

Introduce new variables of integrationz8 by the rule

z5Mz8. ~2.4!
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Then one has the relation

d6z5d6z8, ~2.5!

since the Jacobian matrix of a symplectic map has determinant11. Consequently,~2.3! may be
rewritten in the form

wa
f 5E d6z8 hi~z8!Pa~Mz8!. ~2.6!

But, by completeness of thePa , there is a relation of the form

Pa~Mz!5(
b

Dab~M!Pb~z!. ~2.7!

The quantitiesDab(M) may be viewed as a ‘‘matrix’’ representation of the group of symplec
maps. Now insert~2.7! into ~2.6! and use~2.1!. Doing so gives the result

wa
f 5(

b
Dab~M!wb

i . ~2.8!

Equation ~2.8! is the basic relation for moment transport. It shows that one can com
directly how moments change under beam transport, without the need for following a
number of particles, provided the coefficientsDab(M) are known.

III. TRUNCATION PROCEDURE

The polynomialsPa(z) form a Lie algebra with the Lie product taken to be the Poiss
bracket. Thus, by the completeness of thePa(z), we have a relation of the form

@Pa ,Pb#5(
g

cab
g Pg . ~3.1!

Here the quantitiescab
g may be viewed as thestructure constantsof the Lie algebra.

For everyPa there is an associatedLie operator denoted by the symbols :Pa :. The Lie
operator :Pa : is a differential operator, and is defined by the rule

:Paª(
i

~]Pa /]qi !~]/]pi !2~]Pa /]pi !~]/]qi !. ~3.2!

From ~3.2! and ~3.1! we find the result

:Pa :Pb5@Pa ,Pb#5(
g

cab
g Pa . ~3.3!

Also, as a result of the Jacobi identity for Poisson brackets, we have the commutation rela

$:Pa :,:Pb :%5:Pa ::Pb :2:Pb ::Paª:@Pa ,Pb#ª(
g

cab
g :Pb :. ~3.4!

A comparison of~3.1! and~3.4! shows that thecommutatorLie algebra of the Lie operators :Pa :
is the same as thePoisson bracketLie algebra of thePa .

According to thefactorization theorem,5,6 any analytic symplectic mapM can be written in
the factored product form
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M5exp~ : f 1 : !exp~ : f 2 : !exp~ : f 3 : !exp~ : f 4 : !¯ . ~3.5!

Here eachf m is a homogeneous polynomial of degreem in the variablesz.
Consider the case whereM is of the form

M5exp~ea :Pa : !, ~3.6!

whereea is a small quantity.~Note that, without loss of generality, we may also assume that
Pa are homogeneous polynomials.! Use ~3.6! and ~3.3! to find the result

Pb~Mz!5MPb~z!5exp~ea :Pa : !Pb~z!5~11ea :Pa :1¯ !Pb~z!

5Pb~z!1ea :Pa :Pb~z!1¯

5Pb~z!1ea(
g

cab
g Pg~z!1¯ . ~3.7!

Next, change summation indices to rewrite~2.7! in the form

Pb~Mz!5(
g

Dbg~M!Pg~z!. ~3.8!

Upon comparing~3.7! and ~3.8! we find the relation

Dbg@exp~ea :Pa : !#5dbg1eacab
g 1¯ . ~3.9!

Also, we see from~2.8! and~3.9! that, under the action of the map~3.6!, moments are transforme
according to the rule

wb
f 5wb

i 1ea(
g

cab
g wg

i 1¯ . ~3.10!

The relation~3.9! and ~3.10! show that, in fact, moments transform infinitesimally under
adjoint representation of the Lie algebra, and finitely under the adjoint representation of the
of symplectic maps.

The Lie algebra described by~3.1! is infinite dimensional. From~3.5! and~3.4! we see that the
corresponding Lie group of symplectic maps is also infinite dimensional. In what follows we
describe a truncation scheme that maintains a Lie algebraic structure. We know that fro
Baker–Campbell–Hausdorff formula7 and~3.4! that the rules for multiplying symplectic maps ca
be expressed entirely in Lie algebraic terms. Moreover, we see from~3.10! that the transformation
rules for moments involve the same Lie algebraic structure. Thus, if the truncation scheme
tains a Lie algebraic structure, it follows that maps may either be truncated and then multipli
multiplied and then truncated. Also, maps may be truncated and then used to transform mo
or be used to transform moments with the results then truncated. If a Lie algebraic struc
maintained, the results from all these procedures are guaranteed to be the same.

Define theorder ~ord! of a homogeneous polynomial to be its degree,

ord~Pa!5degree of Pa . ~3.11!

In particular, we have the result

ord~ f m!5m. ~3.12!

We also assign an order to moments by the rule

ord~wb!5ord~Pb!. ~3.13!
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It is easily verified from the definition of the Poisson bracket that there is the relation

ord~@Pa ,Pb#!5ord~Pa!1ord~Pb!22. ~3.14!

Suppose we agree to consider onlyPa , and also onlyf m , whose order is two or higher.@From
~3.5! we see that this agreement implies that we will not consider translations. That is, we r
our attention to cases whereM as given by~3.5! has nof 1 part and therefore sends the origin in
itself.# We see from~3.14! that such entities form a Lie algebra~also infinite dimensional! in their
own right.

For Lie operators we have the relation@already used in~3.4!#

$: f :,:g:%5:@ f ,g#:. ~3.15!

Now think about what happens if one arbitrarily decides to discard from maps all entitief m

whose order exceeds some integerN, and to discard all Poisson brackets whose results have o
exceedingN. Then it is easy to verify that what remains forms a finite-dimensional Lie alge
Therefore, entities whose order exceedsN form a Lie algebraicideal; the decision to discard an
ideal is equivalent to passing to thequotientLie algebra.8

It follows from ~3.13! that this truncation scheme can be carried over to the associated
Lie operators simply by ignoring all :f m : for which the order off m lies outside the range
N>order>2. Thus, one may also produce in this way a finite-dimensional quotient Lie algeb
Lie operators. Finally, the exponentials of elements in this quotient Lie algebra form a quotie
group of symplectic maps. For lack of any standard terminology, we will refer to the group
symplectic maps acting on 2n-dimensional~real! phase space asSp M(2n,R), and will denote its
associated Lie algebra bysp m(2n,R). Correspondingly, we will denote the associated quoti
group, obtained by droppingf 1 and f m polynomials withm.N, by the symbolsSp M(2n,N,R);
and its Lie algebra will be calledsp m(2n,N,R).

Observe from~3.1! that the decision to discard all Poisson brackets whose results hav
order exceedingN amounts to replacing the structure constantscab

g in ~3.1!, ~3.4!, and~3.5! by a
modified setc̄ab

g that is defined in such a way that

c̄ab
g 5cab

g if ord~Pg!<N,

50, if ord~Pg!.N. ~3.16!

What should be done to modify the relation~3.10!? Let us rewrite it in the form

wb
f 5wb

i 1ea(
g

dab
g wg

i 1¯ . ~3.17!

One consistent procedure would be to make the rule

dab
g 5 c̄ab

g . ~3.18!

Under this procedure, according to~3.14! and ~3.16! through~3.18!, the wb for which ord(wb)
<N are transformed among themselves under the action ofM, and thewb with ord(wb).N are
left unchanged. Another consistent procedure would be to make the rule

dab
g 5cab

g , if ord~Pg!<N,

dab
g 5cab

g , if ord~Pg!.N and ord~Pa!52,
~3.19!

dab
g 5cab

g , if ord~Pg!.N and ord~Pb!52,

dab
g 50, otherwise.
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In this case thewb for which ord(wb)<N transform as before under the rule~3.18!, and thewb

with order.N transform only under the exp(:f2:) part ofM ~what may be called the ‘‘linear’’ part
of M! as given by~3.5!. Furthermore, each set of moments with a given order.N is transformed
into itself. In either case the moments with order<N are uncoupled from those with order.N,
and the effective transformation group has been made finite dimensional.

The situation with regard to moments is not quite as favorable. Every physical distrib
function h satisfies throughout its evolution the condition

h>0, ~3.20!

and can be~and then remains! normalized so that it satisfies throughout its evolution the condi

E d6z h~z!51. ~3.21!

Therefore the relations~3.20! and ~3.21! hold for bothhi andhf no matter what symplectic ma
connects them as in~1.4!. Consider the set of quadratic moments, which we write in the form

^zazb&5E d6z h~z!zazb . ~3.22!

Also, define a matrixZab by the rule

Zab5^zazb&. ~3.23!

Then it can be shown from~3.20! and ~3.21! ~assumingh is continuous! that Zab is positive
definite. Thus, no matter what symplectic map is used in~1.4!, bothZab

i andZab
f must be positive

definite. Unfortunately, this condition is not necessarily honored by the modified relation~3.17!.
That is,Zab

f need not necessarily be positive definite~even if Zab
i is positive definite! if Zab

f is
obtained from the initial moments using~3.17! along with ~3.18! or ~3.19!.

To see how this violation can come about, consider the caseN54 and the effect of a map o
the form exp(:f4:). Then we find the result

za
f 5Mza

i 5exp~ : f 4 : !za
i 5~11: f 4 :1: f 4 :2/2!1¯ !za

i 5za
i 1@ f 4 ,za

i #1¯ . ~3.24!

We note from~3.14! that the terms@ f 4 ,za
i # are of third order, and that the terms not explicit

displayed at the end of~3.24! are of higher order still. We next observe that, under the assump
N54, it is not consistent to retain terms beyond third order in~3.24! because such terms cou
also arise from expressions of the form@ f m ,za

i # with m.4, and the assumptionN54 means that
we have agreed to ignore such terms. Thus, we rewrite~3.24! in the form

za
f 5Mza

i 5za
i 1ga~3,zi !, ~3.25!

wherega(3,zi) denotes third-order terms. Suppose~3.25! is used to transform the second-ord
moments~3.22!. We find from~2.6! the result

Zab
f 5^zazb&

f5E d6z hi~z!@za1ga~3,z!#@zb1gb~3,z!#. ~3.26!

Examination of~3.26! shows thatZab
f as it stands is still positive definite. However, it als

contains sixth-order initial moments that arise from integrating the cross termsga(3,z)gb(3,z).
But, according to~3.17! through~3.19! with N54, under the truncation procedure second-or
moments can couple only to themselves, to third-order moments, and to fourth-order mo
Thus, according to the truncation procedure, we should discard all the moments of order
than four that occur in evaluating~3.26!. Evidently, when this is doneZab

f need not be positive
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definite. We see that truncation procedure results should be viewed with caution in the c
moments, and may lead to spurious results if the nonlinear terms inM are too large. Nevertheless
we are required to use the moment truncation procedure, as described, in order to maint
algebraic consistency.

IV. DEFINITION OF KINEMATIC INVARIANTS

Use the notation

wf5D~M!wi ~4.1!

to write ~2.8! in a more compact way with the understanding that its infinitesimal and trunc
version is given by~3.17! along with~3.18! or ~3.19!. Let I @w# be a function that depends on th
momentsw, and is therefore a functional of the distribution functionh. We will say thatI is a
kinematic moment invariantif it has the property

I @D~M!w#5I @w#, ~4.2!

for all symplectic mapsM.1 @We emphasize that~4.2! is required to hold for all symplectic maps
and hence all underlying Hamiltonians. By contrast, for any Hamiltonian system there are
dynamic moment invariants, which can be constructed from, perhaps formal, constants of mo
that are invariant only for that specific Hamiltonian system.3,9 Next, suppose thatwa andwb are
two sets of moments. We say that these two sets areequivalent, and write

wa;wb, ~4.3!

if there exists a symplectic mapM such that

wa5D~M!wb. ~4.4!

In analogy with the case of distribution functions discussed in Sec. I, it can be shown that ‘‘;’’ is
an equivalence relation, and therefore equivalence classes of moments can be defined.
cally, let w be a particular set of moments, and let$w% be the collection of all sets of momentswa

such thatwa;w. The collection$w% is called theequivalence classof w.
We now observe that a kinematic invariant is aclassfunction. That is, we have the relation

I @wa#5I @wb# ~4.5!

if ~4.3! holds. Thus, the value ofI @w# depends only on the equivalence class to whichw belongs,
and we write

I 5I @$w%#. ~4.6!

From this relation we conclude that the number offunctionally independentinvariants is equal to
the dimensionality of the set of equivalence classes.

Suppose now that we truncate the Lie algebra at a particular value ofN. We want to know if,
for a givenN, there are invariants that involve the moments having order,N.

The answer to this question is not obvious. First of all, it might conceivably be the case
the moments having order,N all belong to asingleequivalence class. In this case there would
no invariant at all. Second, the usual construction of invariants involves the Killing form o
underlying Lie algebra, and requires that this Killing form be invertible.8 However, the calculation
shows that the Killing form associated with the structure constantsc̄ab

g given by ~3.16! is not
invertible.

In the next sections, we will describe what we have discovered about the existence o
matic moment invariants for nonlinear symplectic maps. Some general mathematical tools w
presented for their construction, and we will explicitly exhibit a nontrivial kinematic mom
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invariant for the case of two-dimensional phase space. We will see that, even in this simples
the construction of a nontrivial invariant is remarkably complicated, and that the invarian
tained contains a very large number of terms.

V. CONSTRUCTION OF SOME INVARIANTS

The transformation relation~3.17! can be written in the infinitesimal form

dwb5ea(
g

dab
g wg . ~5.1!

SupposeI @w# is any function of moments. Then, by the chain rule, we have the relation

dI 5(
b

~]I /]wb!dwb . ~5.2!

Now combine~5.1! and ~5.2! to give the result

dI 5ea(
bg

~]I /]wb!dab
g wg . ~5.3!

Next, require thatI be an invariant,dI 50, and note that~5.3! holds for all choices of theea .
Doing so gives the set of partial differential equations,

(
bg

dab
g wg~]I /]wb!50. ~5.4!

We observe that the group of all symplectic maps, and its quotient group obtained by trunca
some orderN, are infinitesimally generated. It follows that the relations~5.4! are necessary an
sufficient conditions forI to be an invariant.

In this section we will develop some simple theorems about the solutions to~5.4!, and then
use them construct some invariants in some special cases. In the next section we will d
various deeper theorems.

Consider a collection of differential operatorsOa defined by the relations

Oa5(
bg

dab
g wg~]/]wb!. ~5.5!

With this notation, the relations~5.4! can be written in the more compact form

OaI 50. ~5.6!

We note that ifI and J are any two solutions to the equations~5.6!, then so is their sum and
product. Consequently, in mathematical terms, the solutions to~5.6! form a ring.

It is easily verified that the operatorswg(]/]wb) satisfy the commutation rules

$wn~]/]wm!,wg~]/]wb!%5dmgwn~]/]wb!2dbn
wg~]/]wm!. ~5.7!

Let H be the operator defined by the relation

H5(
m

wm~]/]wm!. ~5.8!

Then we find from~5.7! that H commutes with the operatorswg(]/]wb),
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$H,wg~]/]wb!%50. ~5.9!

We will call H thehomogeneityoperator because ifhr(w) is any homogeneous function of thew
of degreer,

hr~lw!5l rhr~w!, ~5.10!

thenhr must satisfy the relation

Hhr~w!5rhr~w!. ~5.11!

From ~5.5! and ~5.9! we conclude thatH commutes with all theOa ,

$H,Oa%50. ~5.12!

It follows from ~5.12!, and the ring property of solutions, that we may restrict our attention
solutions of~5.6! that are homogeneous.

Consider the commutator of two operatorsOa andOb . From~5.5! and~5.7! we find the result

$Oa ,Ob%5(
mn

F(
t

~dat
n dbm

t 2dam
t dbt

n !Gwn~]/]wm!. ~5.13!

However, if ~3.18! or ~3.19! are satisfied, we have from the Jacobi identity for the underlying
algebra~3.1! the relation

(
t

~dat
n dbm

t 2dam
t dbt

n !5(
g

dab
g dgm

n . ~5.14!

Combining~5.5!, ~5.13!, and~5.14! gives the result

$Oa ,Ob%5(
g

dab
g Og . ~5.15!

That is, under commutation, the operatorsOa form a Lie algebra; and this Lie algebra is identic
to the chosen quotient algebra of the original Lie algebra defined by~3.1!. The relations~5.15!
have a bearing on the solution of~5.6!: if ~5.6! is satisfied for two operatorsOa andOb , then it
is also satisfied for their commutator$Oa ,Ob%.

Before proceeding further, it is useful to introduce a notation that consolidates the resul
obtained. From~5.5! we have the relation

Oawb5(
g

dab
g wg . ~5.16!

Let f (z) be any function of the phase-space variablesz having an expansion of the form

f 5(
a

f aPa . ~5.17!

Associate with this function an operatorO( f ) by the rule

O~ f !5(
a

f aOa . ~5.18!

As a special case of~5.18!, we have the relation
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O~Pa!5Oa . ~5.19!

Let g(z) be another function having the expansion

g5(
b

gbPb . ~5.20!

Associate withg a moment functionw(g) by the rule

w~g!5(
b

gbwb . ~5.21!

As a special case of~5.21!, we have the relation

w~Pb!5wb . ~5.22!

We observe from~3.18! or ~3.19! that ~5.16! can be written in the form

O~Pa!w~Pb!5(
g

dab
g w~Pg!5wS (

g
dab

g PgD 5w~@Pa ,Pb#N!. ~5.23!

Here the symbols@ ,#N denote the truncated Poisson bracket for which all resulting terms be
orderN have been dropped. As a result of the linearity conditions~5.18! and ~5.21!, the relation
~5.23! may be extended to give the general rule

O~ f !w~g!5w~@ f ,g#N!. ~5.24!

We also observe that~5.15! can be written in the form

$O~Pa!,O~Pb!%5(
g

dab
g O~Pg!5OS (

g
dab

g PgD 5O~@Pa ,Pb#N!. ~5.25!

This relation has the generalization

$O~ f !,O~g!%5O~@ f ,g#N!. ~5.26!

Finally, in analogy to~3.22!, we will introduce the notation

wa5w~Pa!5^Pa&, ~5.27!

and its generalization

w~g!5^g&. ~5.28!

We now turn to the construction of some solutions of~5.6! in some special cases. We wi
look for solutions that are polynomial inw. ~This assumed form for the solution will be justifie
in the next section.! In view of ~5.12!, these polynomials can be taken to be homogeneous.

We begin by considering the simplest case of a two-dimensional phase space and a tru
order N53. In this case the space of relevant polynomials is spanned by the seven mon
q2, pq, p2; q3, q2p, qp2, p3. Thus, the~quotient! Lie algebra is seven dimensional. Th
quadratic monomials are conveniently labeled by the basis elements,

l 152p2/2, ~5.29!

l 35pq/2, ~5.30!
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l 25q2/2. ~5.31!

These basis elements obey the symplectic Lie algebrasp(2,R) Poisson bracket relations,

@ l 1 ,l 2#52l 3 , ~5.32!

@ l 3 ,l 1#5 l 1 , ~5.33!

@ l 3 ,l 2#52 l 2 . ~5.34!

We will also need the additional notation

a1
15p2, ~5.35!

a0
15~2!1/2pq, ~5.36!

a21
1 5q2. ~5.37!

The cubic monomials are conveniently labeled by the basis elements,

a3/2
3/25p3, ~5.38!

a1/2
3/25~3!1/2p2q, ~5.39!

a21/2
3/2 5~3!1/2pq2, ~5.40!

a23/2
3/2 5q3. ~5.41!

Both the quadratic and cubic basis elements satisfy the Lie algebraic relations,

@ l 3 ,am
j #5mam

j , ~5.42!

@ l 2 ,am
j #5@~ j 1m!~ j 2m11!#1/2am21

j , ~5.43!

@ l 1 ,am
j #5@~ j 2m!~ j 1m11!#1/2am11

j . ~5.44!

The reader will observe that the notation has been arranged to resemble that for the Lie al
treatment of angular momentum. ‘‘The indexj labels the total angular momentum, andm labels its
third component.’’ This resemblance is possible because the Lie algebrasu(2) ~the Lie algebra for
the rotation group! and the symplectic Lie algebrasp(2,R) are the same over the complex fiel
We conclude that the quadratic monomials behave like spin-1 objects, and the cubic mon
behave like spin-3/2 objects.

We are now ready to try to construct polynomial solutions of~5.6!. First, consider polynomi-
als in w of degree 1. From~5.24! and ~5.42! we have the relation

O~ l 3!w~am
j !5w~@ l 3 ,am

j # !5mw~am
j !. ~5.45!

Thus, ~5.6! for O( l 3) requires thatI contain onlyw(a0
1). However,~5.24! and ~5.44! give the

result

O~ l 1!w~a0
1!5w~@ l 1 ,a0

1# !5~2!1/2w~a1
1!Þ0. ~5.46!

We conclude that there is no invariant function that is linear inw.
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Next, consider polynomials inw of degree 2. They are sums of terms of the fo

w(am
j )w(am8

j 8 ). From ~5.5! we see that the operatorsOa are first-order differential operators
Consequently, we have the product differentiation rule

Oa@wbwg#5@Oawb#wg1wb@Oawg#. ~5.47!

In mathematical language, we say that each operatorOa is aderivation. As a special case of~5.47!
we have the result

O~ l 3!@w~am
j !w~am8

j 8 !#5@O~ l 3!w~am
j !#w~am8

j 8 !1w~am
j !@O~ l 3!w~am8

j 8 !#

5~m1m8!w~am
j !w~am8

j 8 !. ~5.48!

From~5.6! for O( l 3) we see that the only terms that can appear inI are of the formw(am
j )w(am8

j 8 ),
with

m1m850. ~5.49!

Thus,I is of the general form

I 5s1w~a1
1!w~a21

1 !1s2w~a0
1!w~a0

1!1t1w~a3/2
3/2!w~a23/2

13/2!1t2w~a1/2
3/2!w~a21/2

3/2 !, ~5.50!

where the coefficientssi and t j are yet to be determined. Now we require that~5.6! hold for
O( l 1). We find, for example, intermediate results of the form

O~ l 1!@w~a1
1!w~a21

1 !#5@O~ l 1!w~a1
1!#w~a21

1 !1w~a1
1!@O~ l 1!w~a21

1 !#, ~5.51!

O~ l 1!w~a1
1!5w~@ l 1 ,a1

1# !50, ~5.52!

O~ l 1!w~a21
1 !5w~@ l 1 ,a21

1 # !5~2!1/2w~a0
1!. ~5.53!

Completion of the calculation gives the relations

s112s250, ~5.54!

t11t250, ~5.55!

t250. ~5.56!

Next, we require that~5.6! also hold forO( l 2). Doing so duplicates the condition~5.54!. From
~5.55! and ~5.56! we conclude that thet j must vanish, and thereforeI has the form

I 5s1@w~a1
1!w~a21

1 !2~1/2!w~a0
1!w~a0

1!#5s1@^q2&^p2&2^pq&2#. ~5.57!

At this stage, which was reached by requiring~5.6! for O( l 3), O( l 1), and O( l 2), we have
produced a quantity proportional to the mean-square emittance. The mean-square emittanc
known to be invariant under the linear phase-space transformations generated byl 3 , l 1 , andl 2 .
Finally, we require that~5.6! hold for O(a3/2

3/2). From ~5.57! we find the result

O~a3/2
3/2!I 5s1@22~3!1/2w~a1

1!w~a1/2
3/2!13~2!1/2w~a0

1!w~a3/2
3/2!#. ~5.58!

Here we have used the truncation result

@am
3/2,am8

3/2
#350. ~5.59!
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We conclude that thesi must also vanish, and thus there is no invariant that is quadratic inw.
Before going on to the cases of possible cubic, quartic, and higher degree inw invariants, let

us pause to see what has been learned so far. We have seen that for the caseN53 it is possible
to employ bases for the quadratic and cubic polynomials that have definite transformation
erties under the Lie algebrasp(2,R). Specifically, they transform as irreducible representatio
The same is true for anyN. For example, for the caseN54 we may introduce for the quarti
polynomials the basis elements

a2
25p4, ~5.60!

a1
252p3q, ~5.61!

a0
25~6!1/2p2q2, ~5.62!

a21
2 52pq3, ~5.63!

a22
2 5q4. ~5.64!

These basis elements also satisfy the relations~5.42!–~5.44!. Next, we try to build homogeneou
polynomial invariants of integer degreer by taking linear combinations of products of the for
w(am1

j 1 )w(am2

j 2 )¯w(amr

j r ). Because of~5.24! and ~5.42!–~5.44! we know that each term in the

various products carries an irreducible representation ofsp(2,R). Also, we know from group
theory ~Clebsch–Gordan series analysis! that products and sums of products of such factors
again be decomposed into irreducible representations ofsp(2,R). Finally, the requirement tha
~5.6! hold for O( l 3), O( l 1), andO( l 2) is equivalent to requiring thatI contain only the scalar
( j 50) representation. Thus, the problem of constructing invariants undersp(2,R) is equivalent to
the problem of coupling together some collection of ‘‘spins’’ to obtain a total spin of zero.
note that~5.49!, which generalizes to become the relation

(
i 51

r

mi50, ~5.65!

is a step in this direction since it requires that the totalm value be zero. In terms ofp andq, it is
easily verified that~5.65! requires that each productw(am1

j 1 )w(am2

j 2 )¯w(amr

j r ) should contain

equal numbers ofp andq factors.
We already know, in principle~although we are still somewhat ignorant in practice! how to

build ~for a givenN andr! all the invariants undersp(2,R). For a givenN andr there are only a
finite number of~linearly independent! invariants. Now suppose we take all the invariants un
sp(2,R) for a givenN and r, and from them try to construct~by taking linear combinations! an
invariant that will satisfy~5.6! for all operatorsOa . We claim that it is sufficient to require th
relation

O~a3/2
3/2!I 5O~p3!I 50. ~5.66!

That is, if ~5.6! is satisfied forO( l 3), O( l 1), O( l 2), andO(p3), then it is automatically satisfied
for all Oa . @Actually, as the reader can prove, evenO( l 3) can be omitted from the list.# To see
how this comes about, suppose~5.66! holds. SinceI is by construction invariant undersp(2,R),
we also have the relation

O~ l 2!I 50. ~5.67!

From ~5.66! and ~5.67! we conclude that
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$O~ l 2!,O~a3/2
3/2!%I 50. ~5.68!

But use of~5.26! and ~5.43! gives the result

$O~ l 2!,O~a3/2
3/2!%5O~@ l 2 ,a3/2

3/2# !5~3!1/2O~a1/2
3/2!. ~5.69!

It follows from ~5.68! and~5.69! that~5.6! also holds forO(a1/2
3/2). Moreover, after but a moment’

reflection, it is clear that the processs of ‘‘loweringm’’ that we have just exhibited can be repeat
at will to show that~5.6! holds for allO(am

3/2).
Now we are ready for the master stroke. Observe that if~5.6! holds forO(a3/2

3/2) andO(a1/2
3/2),

it must also hold for

$O~a3/2
3/2!,O~a1/2

3/2!%5O~@a3/2
3/2,a1/2

3/2# !5~3!1/2O~@p3,p2q# !52~3!3/2O~p4!52~3!3/2O~a2
2!.
~5.70!

Thus, we have been able toraise the degreeof the polynomialPa @see~5.19!# for which ~5.6!
holds. In fact, we have the general relation

@p3,ps21q#523ps11, ~5.71!

which shows that any degree can be raised with the use ofp3. Finally, if ~5.6! holds forO(aj
j ),

then by the lowering process form it must hold for allO(am
j ).

At this point we come to a key question. Given anyN, one can always construct ansp(2,R)
invariant from moments of the formw(gN). For example, forN54 and r 52 we have the
sp(2,R) invariant,

I 5^q4&^p4&13^q2p2&224^q3p&^qp3&. ~5.72!

Also, this kind of invariant satisfies

O~p3!I 50, ~5.73!

since, by the truncation procedure, we always have the relation

@p3,gN#N50. ~5.74!

This is the kind of invariant we called trivial. What we want to know is are there invariants
also involve the moments having order,N? The answer, at least in the case of two-dimensio
phase space, is yes. We have found for the caseN55 andr 55 that the quantity shown below i
invariant undersp(2,R) and also satisfies~5.66!,

I 5^p4&@^p5&^p3q2&^q5&223^p5&^p2q3&^pq4&^q5&12^p5&^pq4&31^p4q&2^q5&2213̂ p4q&

3^p3q2&^pq4&^q5&116̂ p4q&^p2q3&2^q5&25^p4q&^p2q3&^pq4&224^p3q2&2^p2q3&^q5&

130̂ p3q2&2^pq4&2240̂ p3q2&^p2q3&2^pq4&115̂ p2q3&4#1^p3q&@40̂ p4q&^p2q3&2^pq4&

112̂ p5&^p3q2&^pq4&^q5&24^p5&^p2q3&2^q5&24^p5&^p2q3&^pq4&2116̂ p4q&2^pq4&^q5&

228̂ p4q&^p3q2&^p2q3&^q5&240̂ p4q&^p3q2&^pq4&2112̂ p3q2&3^q5&24^p5&^p4q&^q5&2

120̂ p3q2&2^p2q3&^pq4&220̂ p3q2&^p2q3&3#1^p2q2&@70̂ p4q&^p3q2&^p2q3&^pq4&

28^p5&^p4q&^pq4&^q5&12^p5&^p3q2&^p2q3&^q5&24^p5&^p3q2&^pq4&2260̂ p3q2&3^pq4&

24^p4q&2^p2q3&^q5&16^p4q&^p3q2&2^q5&12^p5&2^q5&2260̂ p4q&^p2q3&3

150̂ p3q2&2^p2q3&216^p5&^p2q3&2^pq4&#1^pq3&@12̂ p5&^p4q&^p2q3&^q5&
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228̂ p5&^p3q2&^p2q3&^pq4&112̂ p5&^p2q3&3116̂ p5&^p4q&^pq4&224^p5&^p3q2&2^q5&

24^p5&2^pq4&^q5&24^p4q&2^p3q2&^q5&240̂ p4q&2^p2q3&^pq4&140̂ p4q&^p3q2&2^pq4&

120̂ p4q&^p3q2&^p2q3&2220̂ p3q2&3^p2q3&#1^q4&@^p5&2^p2q3&^q5&1^p5&2^pq4&2

116̂ p5&^p3q2&2^pq4&23^p5&^p4q&^p3q2&^q5&213̂ p5&^p4q&^p2q3&^pq4&

24^p5&^p3q2&^p2q3&212^p4q&3^q5&25^p4q&2^p3q2&^pq4&130̂ p4q&2^p2q3&2

240̂ p4q&^p3q2&2^p2q3&115̂ p3q2&4#. ~5.75!

Note thatI contains moments of the formw(g4) andw(g5), and thus this invariant is nontrivia
in the sense that there are relations of the form

@p3,g4#55g5Þ0. ~5.76!

The way in which this invariant was constructed is described in Sec. VIII.

VI. REALIZATION OF QUOTIENT GROUP

In this section we will study how the quotient groupSp M(2n,N,R) can be realized as a
group of linear transformations acting on moment space~w space!. Let us rewrite~5.16! in the
form

Oawb5(
g

Mbg
a wg , ~6.1!

where the matrixMa is defined by the relation

Mbg
a 5dab

g . ~6.2!

Then we find the result

~Oa!2wb5(
g

Mbg
a Oawg5(

g
Mbg

a (
s

Mgs
a ws5(

s
@~Ma!2#bsws . ~6.3!

It follows that we have the general relation

~Oa! lwb5(
s

@~Ma! l #bsws . ~6.4!

Similarly, we have the general relation

S (
a

uaOaD l

wb5(
s

F S (
a

uaMaD l G
bs

ws . ~6.5!

Correspondingly, we find the result

wb
f 5FexpS (

a
uaOaD Gwb

i 5(
s

FexpS (
a

uaMaD G
bs

ws
i . ~6.6!

Let T(u) denote the transformation matrix

T~u!5expS (
a

uaMaD . ~6.7!
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With this definition,~6.6! can be written in the compact form

wf5T~u!wi . ~6.8!

This result is the general finite version of the infinitesimal relation~5.1!. Let DN be the dimen-
sionality of moment space~w space!. Then~6.8! shows that the quotient groupSp M(2n,N,R) is
embedded in the groupGL(DN ,R), as is already implied by the trunated version of~2.8!.

In fact, we can show that the quotient group is embedded in the groupSL(DN ,R). From~6.1!
we obtain the relation

Oa8Oawb5(
g

Mbg
a Oa8wg5(

g
Mbg

a (
s

Mgs
a8 ws5(

s
~MaMa8!bsws . ~6.9!

Thus, the commutator$Oa8 ,Oa% has the effect

$Oa8 ,Oa%wb5(
s

$Ma,Ma8%bsws . ~6.10!

But, we also know from~5.15! the result

$Oa8 ,Oa%wb5(
t

da8a
t Otwb5(

t
da8a

t (
s

Mbs
t ws . ~6.11!

A comparison of~6.9! and ~6.11! gives the relation

$Ma,Ma8%5(
t

da8a
t M t, ~6.12!

which also follows from~5.14! and ~6.2!. We now assume, as is evident from our discussion
sp m(2,N,R), and can also be shown to be true, in general, forsp m(2n,N,R), that there is a
choice of basis vectors for theOa operator Lie algebra such that any basis element is proporti
to the commutator of two others. Then, by~6.12!, the same is true for their associated matric
However, we know that the trace of the commutator of any two~finite-dimensional! matrices is
zero. It follows that the matricesMa must all be traceless,

tr~Ma!50. ~6.13!

Correspondingly, we have the relation

det@T~u!#51. ~6.14!

Thus, the quotient group is indeed embedded inSL(DN ,R).

VII. DEEPER THEOREMS

In this section we will develop various deeper theorems about the solutions to~5.4!. Since the
solutions form a ring, there are an infinite number of them for anyN. However, in this section we
will show that for eachN there are only afinite number offunctionally independentsolutions. All
other solutions can be taken to be~arbitrary! functions of these functionally independent solution
Moreover, we will show that these functionally independent solutions can be taken to be h
geneous polynomials in the moment-space variablesw.

As defined earlier, letDN be the dimensionality of moment space~w space!. For the case of
a two-dimensional phase space, we find the result

DN5314151¯1~N11!5~1/2!~N14!~N21!. ~7.1!
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For the case of a six-dimensional phase space, we find the result

DN52115611261¯1@~N15!!/ ~N!5! !#5261(
l 51

6

Binomial@N1 l 21,l #. ~7.2!

The values ofDN for the first fewN values for this case are listed below:

Values ofDN for a 6-Dimensional Phase Space
N DN

2 21
3 77
4 203
5 455
6 917

Let wi be some point in moment space, and letI (wi) be the value of an invariant at this poin
Equation~5.4! says thatI must have the same value at all other points in moment space tha
be reached fromwi as a result of repeated application of the transformations whose infinites
forms are given by~5.1!, and finite forms are given by~6.8!. Suppose all points in the vicinity o
wi can be reached in this fashion.@Put another way, in the context of~4.3! and~4.4!, suppose all
points in the vicinity ofwi are equivalent towi .# Then I must have the same value at all the
points, and we conclude thatI is, in fact, independentof w. Thus, in this case, there are n
invariants~except for completely uninteresting constant functions!. Note that, at least from the
perspective of naive counting, this possibility is not precluded. We see from~5.1! and ~6.7! that
there areDN transformations~in a suitable labeling schemea ranges from 1 toDN! and, if the
displacements given by each are all linearly independent, we then could indeed reach ever
in the vicinity of wi .

On the other hand, suppose that the points that can be reached fromwi form a
D(wi)-dimensional manifold~as will eventually be shown to be the case! with D(wi),DN . In
this case we can construct a local coordinate system~in moment space! aboutwi such thatD(wi)
of the coordinates label points in the manifold, and the remainingD8(N,wi) coordinates, with

D8~N,wi !5DN2D~wi !, ~7.3!

label excursions out of the manifold. Indeed, we will find that moment space is~at least locally!
foliated into leaves with each leaf labeled byD8(N,wi) coordinates, and points within each le
labeled byD(wi) coordinates. In the equivalence class language used earlier, each leaf
equivalence class, and theD8(N,wi) coordinates label the equivalence classes. Thus, in this
we will haveD8(N,wi) functionally independent invariants.

Eventually we will want to calculateD8(N,wi). Before doing so, let us examine in mo
detail the nature of the manifold of points that can be reached from eachwi . Suppose some
arbitrary collection of operatorsOa j act on some initial pointwi to give a transformed resultwf of
the form

wb
f 5)

j
exp~f jOa j !wb

i . ~7.4!

Since theOa j form a finite-dimensional Lie algebra@see ~5.15!#, we may use the Baker–
Campbell–Hausdorff formula~at least sufficiently near the identity transformation! to rewrite
~7.4! in the form

wb
f 5FexpS (

a51

DN

uaOaD Gwb
i 5(

s
FexpS (

a51

DN

uaMaD G
bs

ws
i , ~7.5!
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or, with the use of~6.7! and ~6.8!, in the more compact form

wf5T~u!wi . ~7.6!

We are now prepared to computeD8(N,wi). Superficially, it would appear from~6.7! and
~7.6! thatwf ~for fixed wi! should sweep out aDN-dimensional manifold as theua are varied, for
there areDN theta values that can be varied. However, there might be somespecialclass of theta
values, call themus, such that the transformation~7.6! leaveswi fixed,

T~us!wi5wi . ~7.7!

Evidently such transformations form a subgroup of SpM (2n,N,R). Call this subgroupH(wi), the
stability ~stationary, isotropy, little! group of wi . Also, there might be two transformations th
would lead to the same result:

T~u!wi5wf , ~7.8!

T~u8!wi5wf . ~7.9!

From ~7.8! and ~7.9! we conclude that

@T~u8!#21T~u!wi5wi , ~7.10!

and therefore there would be aus such that

@T~u8!#21T~u!5T~us!. ~7.11!

Thus, transformations that lead to the same result belong to the same coset of the cose
SpM (2n,N,R)/H(wi), and vice versa. We are thus led to study the groupH(wi). In fact, a
moment’s reflection shows that we have the result

D8~N,wi !5dimension @H~wi !#. ~7.12!

The relation~7.5! shows that in the neighborhood of the identity transformation the requ
ment ~7.7! is equivalent to the requirement

(
g

S (
a

ua
s MaD

bg

wg
i 50. ~7.13!

Let us define a matrixA(w) by the relation

Aba~w!5(
g

Mbg
a wg5(

g
dab

g wg . ~7.14!

Evidently A is antisymmetric sincedab
g is antisymmetric under the interchange ofa andb. With

the definition~7.14!, the relation~7.13! can be rewritten in the form

(
a

Aba~wi !ua
s 50. ~7.15!

It is now clear that theus are eigenvectors ofA(wi) with eigenvalue zero. SinceA is antisym-
metric, there is a real orthogonal matrixR(wi) such thatA(wi) can be brought to 232 block form
by the relation
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R~wi !A~wi !R̃~wi !5S L1

L2

�

0

�

0

D . ~7.16!

Here theL j are 232 matrices having the block form~with l jÞ0!

L j5S 0 l j

2l j 0 D , ~7.17!

and the zeros denote 131 zero matrices. Note that ifA is odd dimensional~DN odd!, then the
number of zero matrices must be odd and there must be at least one such zero matrix
dimension ofA is even, the number of zero matrices must be even~including, at this stage of ou
knowledge, the possibility of no zero matrices!. We conclude thatD(wi) is the rank ofA(wi), and
D8(N,wi) is the dimension of the null space ofA(wi). Next, we observe from~7.14! that A(wi)
depends analytically onwi . Consequently, the eigenvalues and eigenvectors ofA will depend
analytically onwi ~except for possible singularities occurring on sets having dimensionality
thanDN!, and there will be in moment spaceopensets of full dimensionDN , where the null space
of A has a minimum dimension~and the rank has a maximum dimension!. Indeed, if at some poin
in moment space the null space ofA has minimum dimension, then it will also have minimu
dimension in some open neighborhood of that point. Conversely, the dimension of the null
of A can be larger than its minimum value only on moment-space sets having dimension les
DN . Finally, we see from~7.16! and~7.17! that the dimension of the null space~and the rank! of
A(wi) can change only byeveninteger amounts aswi ranges over moment space. Since we
interested in results for generic distribution functions, and hence generic values ofwi , we shall
generally restrict our attention to the case where the null space dimension has it minimum
therefore also generic, value.

We next show that if two points in moment spacewi andwf are related by~7.6!, thenA(wi)
and A(wf) have the same rank. This constancy in rank is comforting because it guarante
expected on physical grounds, that the number of functionally independent invariants c
change under transport. In particular, a generic distribution function remains generic unde
trary Hamiltonian transport. As a consequence of the Jacobi identity, we have the relation

(
a8b8

Taa8Tbb8da8b8
g8 5(

g
dab

g Tgg8 . ~7.18!

From ~7.14! we find the relation

(
a8b8

Taa8Tbb8Ab8a8~wi !5 (
a8b8g8

Taa8Tbb8 da8b8
g8 wg8

i . ~7.19!

Next, by employing~7.6! and ~7.18!, we find the result

(
a8b8g8

Taa8Tbb8 da8b8
g8 wg8

i
5(

gg8
dab

g Tgg8 wg8
i

5(
g

dab
g wg

f 5Aba~wf !. ~7.20!

A comparison of~7.19! and ~7.20! gives the relation

A~wf !5TA~wi !T̃. ~7.21!
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It follows that A(wf) and A(wi) have the same rank. Specifically, we know from the gene
matrix theory of rank that there are nonsingular matricesS(wi) andU(wi), such that

S~wi !A~wi !Ũ~wi !5S I

0

�

0

D . ~7.22!

Here I denotes aD(wi)3D(wi) identity block, and the zeros denote 131 zero matrices, which
total D8(N,wi) in number. It follows from~7.21! and ~7.22! that we also have the relation

ST21A~wf !~ T̃!21Ũ5S I

0

�

0

D . ~7.23!

@Note thatT and T̃ are guaranteed to be invertible by~6.14!.# We see explicitly from~7.22! and
~7.23! that A(wi) andA(wf) have the same rank.

As a result of the previous discussion, we hope that the reader by now is interested to
specific values forD8(N,wi). The table below lists the values ofD8(N,wi) for genericwi and the
case of two-dimensional phase space.

Values ofD8(N,Wi) for a 2-Dimensional Phase Space
N odd N even and50 mod 4 N even and52 mod 4

N D8 N D8 N D8

2 1
3 1 4 2 6 7
5 4 8 12 10 21
7 9 12 30 14 43
9 16

11 25
13 36

These results are consistent with the general formulas

D85~N21!2/4 for N odd, ~7.24!

D85~N2/42N/2!, for N even and50 mod 4, ~7.25!

D85~N2/42N/211!, for N even and52 mod 4. ~7.26!

The derivation of these results is described in the Appendix. With somewhat more effort, it s
be possible to find analogous results for the case of six-dimensional phase space.

We now turn to the task of showing that moment space is foliated into leaves. With the
the definition~7.14!, the operatorsOa can be written in the form

Oa52(
b

Aab~]/]wb!. ~7.27!

Introduce local coordinatesut(w) in the vicinity of some generic moment-space pointwi by the
rule

u~w!52Uwi1Uw, ~7.28!
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whereU is some fixed~w independent! invertible matrix yet to be determined. Then, by the cha
rule, we have the result

]/]wb5(
t

~]ut /]wb!~]/]ut!5(
t

Utb~]/]ut!5(
t

~Ũ !bt~]/]ut!. ~7.29!

Here we have used the relation

Utb5]ut /]wb , ~7.30!

which follows from~7.28!. From ~7.27! and~7.29! we find that, in terms of the local coordinate
u, the operatorsOa take the form

Oa52(
bt

Aab~Ũ !bt~]/]ut!52(
t

~AŨ!at~]/]ut!. ~7.31!

Let Sbe yet another fixed invertible matrix. Define a new collection of differential operatorsLs by
the relations

Ls5(
a

SsaOa , ~7.32!

and their inverse,

Oa5(
s

~S21!asLs . ~7.33!

By combining~7.31! and ~7.32! we see that the operatorsLs can be written in the form

Ls52(
at

Ssa~AŨ!at~]/]ut!52(
t

~SAŨ!st~]/]ut!. ~7.34!

We now again use the general matrix theory of rank to select the matricesS(wi) andU(wi) in
such a way that the matrixB(0) defined below is diagonal and has the form

B~0!52S~wi !A~wi !A~wi !Ũ~wi !5S I

0

�

0

D . ~7.35!

Here, as before,I denotes aD(wi)3D(wi) identity block, and the zeros denote 131 zero matri-
ces, which totalD8(N,wi) in number. We also define a general matrixB(u) by the rule

B~u!52S~wi !A~w!Ũ~wi !. ~7.36!

With this definition, the operatorsLs take the form

Ls5(
t

Bst~]/]ut!. ~7.37!

Finally, from ~5.15!, ~7.32!, and ~7.33!, we find that the operatorsLs satisfy the commutation
rules,
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$Lm ,Ln%5(
s

emn
s Ls , ~7.38!

where the transformed structure constantsemn
s are given by the relation

emn
s 5 (

abg
SmaSnb~S21!gsdab

g . ~7.39!

Moment space may be viewed as aDN-dimensional Euclidean manifold, and the operatorsLs

~or, equivalently,Oa! may be regarded as a system ofvector fieldson this manifold. The condition
~7.38! @or, equivalently,~5.18!# is the condition for this system of vector fields to be ininvolution.
In this circumstance,Frobenius’ theorem,10 as generalized byHermann,11 states that this system
of vector fields is integrable, and produces families of submanifolds~leaves! that foliate the
manifold. Indeed, with the use of theLs we can findflat local coordinates in the vicinity ofw
5wi (u50).

The construction of flat local coordinates, which we will callya , is carried out as follows: Let
us(y) be specialpoints in the neighborhood ofu50 defined by the relations

ub
s ~y!50, for b51,2,...,D~wi !, ~7.40!

ub
s ~y!5yb for b5D~wi !11,D~wi !12,...,DN . ~7.41!

Next, specifygeneralpointsug(y) in the neighborhood ofu50 by the relations

ub
g~y!5H FexpS (

a51

D~wi !

yaLaD GubJ U
u5us

. ~7.42!

From ~7.35!–~7.37! and ~7.40!–~7.42! we find thatug has the expansion

ub
g~y!5yb1quadratic and higher-order terms. ~7.43!

Consequently,~7.42! provides a diffeomorphism betweenug andy in the vicinity of u50.
We claim that theD8 coordinatesya with a5D(wi)11, D(wi)12,...,DN label leaves, and

the D(wi) coordinatesya with a51,2,...,D(wi) label points within a leaf. To see that this
indeed so, suppose we apply a general transformation of the form exp(Sg51

DN ugLg) to the general
point ug. From ~7.42! we find the result

FexpS (
g51

DN

ugLgD Gub
g5H FexpS (

g51

DN

ugLgD GFexpS (
a51

D~wi !

yaLaD GubJ U
u5us

. ~7.44!

With the aid of the Baker–Campbell–Hausdorff theorem we can combine the two expone
the right-hand side of~7.44! to get a result of the form

FexpS (
g51

DN

ugLgD GFexpS (
a51

D~wi !

yaLaD G5expS (
a51

DN

ua8LaD . ~7.45!

Next, we observe that not all theLa are linearly independent. Indeed, we see from~7.35!–~7.37!
that whenu50 only D(wi) of the La ~for example,L1 throughLD(wi )! are linearly independent
Since we have assumed thatwi is generic, the number of linearly independentLa will remain the
same@namely,D(wi)# everywhere in the neighborhood ofu50. Also, the operatorsL1 through
LD(wi ) will remain linearly independent everywhere in the neighborhood ofu50. Thus, in the
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neighborhood ofu50, any linear combination of theLa must be expressible as a linear comb
nation ofL1 throughLD(wi ). It follows that there must be valuesy18¯yD(wi )

8 such that the right-
hand side of~7.45! can written in the form

expS (
a51

DN

ua8LaD 5expS (
a51

D~wi !

ya8LaD . ~7.46!

Now combine the results of~7.44!–~7.46! to get the net result

FexpS (
g51

DN

ugLgD Gub
g5H FexpS (

a51

D~wi !

ya8LaD GubJ U
u5us

. ~7.47!

Upon comparing~7.42! and ~7.47!, we see that the effect of the general transformat
exp((g51

DN ugLg) on the general pointug is to change the coordinatesy1¯yD(wi ) to y18¯yD(wi )
8 , and

to leave the coordinatesya with a5D(wi)11,D(wi)12,...,DN unchanged. This is just what is t
be expected: The coordinates that label a leaf should not change, and those that label point
a leaf should change.

Now suppose we invert~7.42! to solve for theya in terms of theua
g to gety(ug). As we have

already seen, such an inversion is possible nearu50 because~7.42! is a diffeomorphism. Then
since theya with a5D(wi)11,D(wi)12,...,DN do not change under the action of the gene
transformation exp((g51

DN ugLg), theseya(ug) provide D8(N,wi)-invariant functions. Moreover,
these functions are obviously functionally independent by construction. Also, theya with a
51,2,...,D(wi) do change and can be changed independently~and are therefore not invarian!
under the action of exp((g51

DN ugLg). In fact, the effect of exp((g51
DN ugLg) on theseya is, in lowest

order, simply a translation since an examination of~7.45! and ~7.46! gives the result

ya85~ya1ua1higher-order terms!, when a51,2,...,D~wi !. ~7.48!

Theseya are also functionally independent by construction. We thus conclude, as advertise
there are exactlyD8(N,wi) functionally independent invariants.

We close this section with a proof that for anyN there areD8(N,wi) functionally independent
solutions to~5.4! that arehomogeneous polynomialsin the moment-space variablesw. This result
is important because, as solutions go, homogeneous polynomial solutions are the easiest
find. Moreover, according to our previous discussion, all other solutions are simply arb
functions of these homogeneous polynomials.

In order to show that all independent solutions of the system of Eqs.~5.4! can be taken to be
homogeneous polynomials, we first note that the algebrasp m(2n,N,R) given in ~5.15!, which
underlies the system of equations~5.4! is an algebraic Lie algebra. It satisfies the conditi
@sp m,sp m#5sp m. ~The precise definition of this relation is as follows:12 If L is a Lie algebra,
the set@L, L# of all commutators@a, b#, a,bPL, and their linear combinations, is denoted byH,
@L,L#5H. The algebraH is known as the derived subalgebra ofL.!

It can easily be seen from the commutator table of~5.15! that any basis vectorOa can be
obtained as a commutator of two other elements of the algebra~in this case two other basi
vectors!. That implies@sp m,sp m#5sp m. We also observe that the system of differential o
erators~5.15! is closed under commutation. Such systems are called complete. At each le
truncation there are as many equations,DN , as independent variables. If all these equations w
mutually linearly independent, the only solution would beI 5const. Let us denote the number
independent equations in~5.4! by D(v). That is the maximum rank of the matrixAab defined in
~7.14!. One can than solve~5.4! for D(v) derivatives~after possibly renaming them! ]/]va ,a
51,2,...,D(v) in terms of the remainingDN2D(v) partial derivatives and define
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ÕaI[
]I

]va
1bab~v!

]I

]vb
, a51,2,...,D~v!, b5D~v!11,...,DN . ~7.49!

The operatorsÕa are obtained fromD(v)-independent operators contained in the
Oa ,a51,...,DN , by a linear,v-dependent, invertible transformation. The remainingDN2D(v)
operatorsOa are linear combinations ofD(v) independent operatorsOa . Therefore, the set o
D(v)-independent operatorsOa is closed under commutation—it is a complete system. Due
the invertibility of the transformation between operatorsÕa andD(v)-independent operatorsOa ,
it is trivially easy to show thatÕa’s also form a complete system. Furthermore, the par
derivatives]/]va ,a51,2,...,D(v) cannot appear in the commutator of twoÕ operators. These
operators then commute. Such systems are called complete Jacobian systems:

@Õa ,Õb#50, a,b51,2,...,D~v!. ~7.50!

It is a well-known theorem13 that such system hasDN2D(v)-independent solutions. These s
lutions can be polynomial, rational, or transcendental functions. To exclude the transcen
functions as solutions of~5.4! we invoke the theorem by Dixmier.14

First, we recall the definition of the transcendence degree of the fieldL0 over a subfieldK of
L0 .15 Let x1 ,x2 ,...,xd be elements ofL0 . An algebraic relation betweenx1 ,x2 ,...,xd with coef-
ficients ar 1r 2¯r d

,r 1 ,r 2 ,...,r d>0 in K is any linear relation between the monomials
x1 ,x2 ,...,xd :

(
r 1 ,...,r d>0

ar 1r 2¯r d
x1

r 1x2
r 2
¯xd

r d50.

If, for fixed d, this relation holds only if all the coefficientsar 1r 2¯r d
are zero, thenx1 ,x2 ,...,xd are

said to be algebraically independent overK. The transcendence degree ofL0 over K is then the
largest integerd for which there existd algebraically independent elements ofL0 .

Theorem „Dixmier …: Let K be a commutative field of characteristic zero,V be a vector space
of finite dimension overK, L be a field of fractions ofS(V), g be an algebraic Lie algebra o
endomorphisms ofV,L0 a subfield of elements ofL which are annulled byg, and letd be a
transcendence degree ofL0 overK. Also let (e1 ,e2 ,...,en) be a basis ofV overK, (x1 ,x2 ,...,xq)
a basis ofg over K, and letr be the rank overL of the matrix (xlej ),1< l<q,1< j <n. We then
haved5n2r . ~See Ref. 14.!

Note: S(V) is a ring of all symmetric polynomials ofV over K.
It is easy to see that this theorem applies to our case. We identifyxls with Oas in ~5.5!, and

ejs with vbs, the vector space of all moments.L is then the field of all rational functions o
moments. The matrix (xlej ) becomesOavb5dar

g vg(]vb /]vr)5dab
g vg , which brings us again

to the determination of the rank of matrixAab in ~7.14!. This proves that the transcendence deg
in the field of quotients of an algebraic Lie algebra is equal to the difference between the or
the algebra and the rank of the corresponding matrixdab

g vg . In our case this number is equal t
DN2D(v). Sincesp m(2n,N,R) is an algebraic Lie algebra, this theorem excludes the poss
ity of transcendental functions as solutions of~5.4!.

To see that the rational invariants can be excluded as well, we note16 that if a certain rational
function is a solution of~5.4!, then both the nominator and the denominator must be se
invariants of the same system,Oa f 5l(Oa) f ~wheref is either the nominator or the denominat
of the invariant ofOa!, and wherel:sp m(2n,N,R)→R ~or C! is a one-dimensional represent
tion of the algebrasp m. But since@sp m,sp m#5sp m, and representations are homomorphism
the only one-dimensional representation allowed is the trivial onel[0. That proves that both the
nominator and the denominator must be independently invariant. It was already shown in~5.12!
that if we knew that all solutions are of the polynomial type, we could take as indepen
solutions only those polynomials that are homogeneous.
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This completes the demonstration that we can take forDN2D(v)-independent solutions o
~5.4! only those that are homogeneous polynomials inv.

VIII. FUNCTIONALLY INDEPENDENT INVARIANTS FOR SMALL N

In this section we calculate some of the invariants for smallN. Let us takeN52. The system
of equations~5.4! reads as follows:

~1! ~v1]212v2]3! f 50,

~2! ~v1]12v3]3! f 50, ~8.1!

~3! ~v2]11v3]2! f 50.

We use] i[] f /]v i and f is a polynomial function inv i to be found.
Theorem 1 in the Appendix tells us that this system has only one independent invarian

also know that the solution is a homogeneous polynomial. It is easy to calculate that the so
has the form given in~5.57!:

I 2
~2!5v1v32v2

2.

The lower index onI tells us that moments correspond to quadratic monomials and the u
index denotes the fact that the solution is a quadratic function in moments.

For N53 we again have only one invariant. The system~5.4! is as follows:

~1! ~v1]222v2]31v4]512v613v6]7! f 50,

~2! ~2v1]122v3]313v4]41v5]52v6]623v7]7! f 50,

~3! ~2v2]11v3]213v5]412v6]51v7]6! f 50,

~4! ~v4]212v5]3! f 50, ~8.2!

~5! ~2v4]12v5]224v6]3! f 50,

~6! ~4v5]11v6]22v7]3! f 50,

~7! ~2v6]11v7]2! f 50.

Let us look first at the equations~4!–~7! above. Those equations are formed by the comm
tators@ l 2 ,l 3#, wherel n ; is defined in~A4!. The matrix of coefficients of this set of equations h
rank equal to three. Therefore]1f 5]2f 5]3f 50. From the first three equations we easily obta

I 3
~4!5v4

2v7
223v5

2v6
214v7v5

314v4v6
326v4v5v6v7 . ~8.3!

We now set out to find all invariants for the algebrasp m(2,4,R). According to Theorem 1,
there should be two of them. We solve the appropriate system of differential equations~5.4! which
reads as follows:

~1! ~v1]212v2]31v4]512v5]613v6]71v8]912v9]1013v10]1114v11]12! f 50,

~2! ~2v1]122v3]313v4]41v5]52v6]623v7]7

14v8]812v9]922v11]1124v12]12! f 50,

~3! ~2v2]11v3]213v5]412gq6]51v7]614v9]813v10]912v11]101v12]11! f 50,
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~4! ~v4]212v5]31v8]512v9]613v10]7! f 50,

~5! ~2v4]12v5]224v6]313v8]423v10]626v11]7! f 50,

~6! ~4v5]11v6]222v7]316v9]413v10]523v12]7! f 50,
~8.4!

~7! ~2v6]11v7]213v10]412v11]513v12]6! f 50,

~8! ~v8]212v9]3! f 50,

~9! ~v8]12v9]223v10]3! f 50,

~10! ~v9]12v11]3! f 50,

~11! ~3v10]11v11]22v12]3! f 50,

~12! ~2v11]11v12]2! f 50.

To solve forf we first look at the lowest block of equations~8!–~12! above. They come from
the block of the commutators@ l 4 ,l 2#. The equation~10! gives]3f 5(v9 /v11)]1f and the equa-
tion ~12! produces]2f 52(2v11/v12)]1f . This is substituted into the equation~8!:

S 2
v8v11

v12
1

v9
2

v11
D ]1f 50.

Since this equation must be fulfilled for any value of independent variablesv i , we conclude that
]1f 5]2f 5]3f 50, which means that the invariant cannot contain moments made up ofl 2 basis
vectors, i.e., variablesv1 , v2 , v3 .

We now look at the equations~4!–~7! in ~8.4! (@ l 3 ,l 3#5 l 4). One can understand this syste
of differential equations as the system of linear equations in] i f . It is easy to see that the dete
minant of this system is different from zero, which forces]4f 5]5f 5]6f 5]7f 50. Thus, it is
derived that all invariants ofsp m(2,4,R) are pure invariants having onlyl 4 moments.

Solving what is left of the system~8.4! one finds two independent solutions:

f 1~v!5v8v1213v10
2 24v9v11,

~8.5!
f 2~v!5v8v10v1212v9v10v112v10

3 2v9
2v122v8v11

2 .

These two solutions correspond to pure invariants,

I 4
~2!5^q4&^p4&13^q2p2&224^q3p&^qp3&,

~8.6!
I 4

~3!5^q4&^p4&^q2p2&2^q4&^qp3&22^q2p2&32^q3p&2^p4&12^q3p&^qp3&^q2p2&.

These invariants have been investigated numerically in Ref. 17. The system~8.4! has an infinite
number of other, higher-order solutions, but all of them are algebraically dependent combin
of f 1(v) and f 2(v), i.e., if f (v) is an invariant, then there is a relationship of the form

(
r 1 ,r 2 ,r 3>0

ar 1r 2r 3
f ~v!r 1f 1~v!r 2f 2~v!r 350,

where some of the coefficientsar 1r 2r 3
are not zero.

Let us now go one level higher and look at the algebrasp m(2,5,R). It has 18 generators and
correspondingly, its system~5.4! has 18 equations. Variablesv13,...,v18 will correspond to the
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basis vectors:p5:,...,:q5:, respectively. We follow the procedure we used for the calculation
the invariants ofsp m(2,4,R). The last block of equations (@ l 5 ,l 2#) will read as follows:

~13! v13]2f 12v14]3f 50,

~14! 2v13]1f 23v14]2f 28v15]3f 50,

~15! 4v14]1f 2v15]2f 26v16]3f 50,
~8.7!

~16! 6v15]1f 2v16]2f 24v17]3f 50,

~17! 8v16]1f 23v17]2f 22v18]3f 50,

~18! 2v17]1f 1v18]2f 50.

It is easy to convince oneself that we again have]1f 5]2f 5]3f 50. If we use this result in
equations~8!–~12!, (@ l 4 ,l 3#):

~8! v13]5f 12v14]6f 13v15]7f 50,

~9! 3v13]4f 2v14]5f 25v15]6f 29v16]7f 50,

~10! 3v14]4f 1v15]5f 2v16]6f 23v17]7f 50, ~8.8!

~11! 9v15]4f 15v16]5f 1v17]6f 23v18]7f 50,

~12! 3v16]4f 12v17]5f 1v18]6f 50,

we get five linear equations with four variables] i f , i 54,5,6,7. Since the rank of this matrix i
four, we again have]4f 5]5f 5]6f 5]7f 50. But now, the block@ l 3 ,l 4# @equations~4!–~7!#,
which reads~after previous results have been used! as follows:

~4! O4f [v13]9f 12v14]10f 13v15]11f 14v16]12f 50,

~5! O5f [4v13]8f 1v14]9f 22v15]10f 25v16]11f 28v17]12f 50,
~8.9!

~6! O6f [8v14]8f 15v15]9f 12v16]10f 2v17]11f 24v18]12f 50,

~7! O7f [4v15]8f 13v16]9f 12v17]10f 1v18]11f 50,

has four linear~and independent! equations and five independent variablesv8 ,...,v12. The op-
eratorsOi , i 54,5,6,7 commute~complete and Jacobian system!. The rank of the resulting coef
ficient matrix is four, and we get one solution:

f ~v!5v8@v13v15v18
2 23v13v16v17v1812v13v17

3 1v14
2 v18

2 213v14v15v17v18116v14v16
2 v18

25v14v16v17
2 24v15

2 v16v18130v15
2 v17

2 240v15v16
2 v17115v16

4 #1v9@24v13v14v18
2

112v13v15v17v1824v13v16
2 v1824v13v16v17

2 116v14
2 v17v18228v14v15v16v18

240v14v15v17
2 140v14v16

2 v17112v15
3 v18120v15

2 v16v17220v15v16
3 #1v10@2v13

2 v18
2

28v13v14v17v1812v13v15v16v1824v13v15v17
2 16v13v16

2 v1724v14
2 v16v18

16v14v15
2 v18170v14v15v16v17260v14v16

3 260v15
3 v17150v15

2 v16
2 #

1v11@24v13
2 v17v18112v13v14v16v18116v13v14v17

2 24v13v15
2 v18228v13v15v16v17
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112v13v16
3 24v14

2 v15v18240v14
2 v16v17140v14v15

2 v17120v14v16
2 220v15

3 v16#

1v12@v13
2 v16v181v13

2 v17
2 23v13v14v15v18213v13v14v16v17116v13v15

2 v15
2 v17

24v13v15v16
2 12v14

3 v1825v14
2 v15v17130v14

2 v16
2 240v14v15

2 v16115v15
4 #. ~8.10!

We identify this solution with~5.75!. Other solutions of~8.9! are necessarily dependent o
~8.10!. At this point we must not forget that there are three more equations in the pres
investigated system:

~1! O1f [v8 ]9f 12v9 ]10f 13v10]11f 14v11]12 f 1v13]14f 12v14]15f

13v15]16f 14v16]17f 15]17]18f 50,

~2! O2f [4v8 ]8f 12v9 ]9f 22v11]11f 24v12]12 f 15v13]13f 13v14]14f

1v15]15f 2v16]16f 23]17]17f 25v18]18f 50, ~8.11!

~3! O3f [4v9 ]8f 13v10]9f 12v11]10f 1v12]1115v14]13f 14v15]14f

13v16]15f 12v17]16f 1]18]17f 50.

Does the solution~8.10! of ~8.9! also satisfy the equations~8.11!? It will be proved in the next
section that it must. For now, it suffices to say that this has been checked by computer
symbolic manipulation capabilities of theMATHEMATICA package.18 The remaining three invari-
ants~see the Appendix! that exist at this level are all pure invariants made ofl 5 moments. This is
to be expected becausesp m(2,5,R)8[( l 2 ,l 5) is an algebra withD58592653 invariants.

We notice that pure invariants involve only one nontrivially acting commutator—@ l 2 ,l n#.
Other operators (l 3 ,l 4 ,...) pass trivially through pure invariants. That means that pure invari
do not feel nonlinear effects! In the case of the just derived mixed invariant we have not on
nontrivial action of@ l 2 ,l 4#5 l 4 and @ l 2 ,l 5#5 l 5 , but also the nontrivial action of@ l 3 ,l 4#5 l 5 as
well. This invariant, though, is far from being exact—we still have truncation conditions@ l 3 ,l 5#
5@ l 4 ,l 4#5@ l 4 ,l 5#5@ l 5 ,l 5#50.

Thus, we see that mixed invariants are what we are interested in. We also see th
nonlinear operators inl 3 act as a filter: there are infinitely many polynomials inv i , i 51,2,3,...
~pure and mixed invariants; see Ref. 3! that are invariant under the action of operators inl 2 ; the
operators froml 3 select only one of those that is also invariant under operators inl 3 . At higher
levels, we shall see, other nonlinear operators join in and refine the filtering, choosing fi
many mixed invariants and classifying them into a hierarchy with one mixed invariant at
level being ‘‘better’’ than all others.

We are now ready to address the following general question: what is the structure of h
order invariants? How can one classify them?

IX. STRUCTURE OF INVARIANTS

Theorem 1 in Appendix A establishes the number of independent invariants for the alg
sp m(2,N,R), N53,4,... . In the last section we have seen that one can explicitly calculate
by solving the appropriate system of partial differential equations~5.4!. This direct method be-
comes more difficult at higher levels, but, if we use the fact that the solutions are homoge
polynomials, the problem can be recast into the form of a system of linear equations, a
rather big one, and solved in a simple way by computer. Nevertheless, we would like to k
without an explicit calculation of invariants, what the structure and behavior of higher-o
invariants is.

Theorem: For N odd the algebrasp m(2,N,R) has one solution of the typeI @ l @N/2#12 ,l N#,
three solutions of the typeI @ l @N/2#13 ,l N#, five solutions of the typeI @ l @N/2#14 ,l N#,...,N24 solu-
tions of the typeI @ l N21 ,l N#, andN22 solutions of the typeI @ l N#. For N52(mod 4) the algebra
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sp m(2,N,R) has one solution of the typeI @ l @N/2#11 ,l N#, two solutions of the typeI @ l @N/2#12 ,l N#,
four solutions of the typeI @ l @N/2#13 ,l N#,...,N24 solutions of the typeI @ l N21 ,l N#, and N22
solutions of the typeI @ l N#. For N50(mod 4) the structure of the invariants is the same as for
N52(mod 4) case, with the exception that the first invariantI @ l @N/2#11 ,l N#, is identically equal to
zero.

The notationI @ l @N/2#11 ,l N# means that the invariantI is composed of the momentsv made of
operators inl @N/2#11 andl N sectors of the algebrasp m(2,N,R), where the definition ofl n sectors
and their operator content is given in~A4!.

Proof: Let us start withN odd. If we look at the system of Eqs.~5.4! for this case, we see tha
all equations can be divided intoN21 groups: three equations corresponding to blocks@ l 2 ,l i #,
i 52,3,...,N, four equations corresponding to blocks@ l 3 ,l i #, i 52,3,...,N21,...,N11 equations for
the block@ l N ,l 2#. All these equations can be viewed as linear equations in the variables] i f , i
51,2,...,(N14)(N21)/25„3141¯1(N11)…. We start analyzing this system by first lookin
at the last group of equations and then moving up. There areN11 of them with three unknowns
]1f ,]2f ,]3f . One can easily see from Table I that the rank of its coefficient matrix is three, w
forces]1f 5]2f 5]3f 50. ~Look at the second block from the top in the first column of bloc
This block corresponds toN53. The fourth block down the same row of blocks will correspo
to N55, and so on.! This result is used in the next set of equations. They are obtained usin
blocks lying immediately above the already considered block. It containsN equations and four
variables~i.e., four partial derivatives:]4f , ]5f , ]6f , ]7f !. If N>5, the rank of this system o
coefficients multiplying partial derivatives is 4 and again we have]4f 5]5f 5]6f 5]7f 50. We
continue this process until our block has more variables~partial derivatives! than equations. Tha
will be the block@ l @N/2#11 ,l @N/2#12# with @N/2#12 equations and@N/2#13 variables. Its rank is
@N/2#12 and we can find one solution. The coefficients in this system will be the ones c
sponding to the basis vectors inl N , denoted byv( l N), and derivatives will be made of coefficien
corresponding tol @N/2#12 , denoted byv( l @N/2#12), so we can write symbolically

v~ l N!
] f

]v~ l N/212!
50. ~9.1!

@For N53 look at the first three equations in~8.2!, where we have already used the solution of t
remaining four equations:]1f 5]2f 5]3f 50.# The solution must involvel N and l N/212 moments.
Let us call the solution of~9.1!, I @ l @N/2#12 ,l N#.

It is easy to see that the solution of~9.1! cannot involve moments other than those obtain
from the l N and l @N/2#12 sectors of operators. Suppose, to the contrary, that it also containsv( l k)

TABLE I. The matrixAba5(gdab
g vg for a,b,g51,2,...,12 (N54).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

v1 0 22v1 24v2 0 22v4 24v5 26v6 0 22v8 24v9 26v10 28v11

v2 2v1 0 22v3 3v4 v5 2v6 23v7 4v8 2v9 0 22v11 24v12

v3 4v2 2v3 0 6v5 4v6 2v7 0 8v9 6v10 4v11 2v12 0
v4 0 23v4 26v5 0 23v8 26v9 29v10 0 0 0 0 0
v5 2v4 2v5 24v6 3v8 0 23v10 26v11 0 0 0 0 0
v6 4v5 v6 22v7 6v9 3v10 0 23v12 0 0 0 0 0
v7 6v6 3v7 0 9v10 6v11 3v12 0 0 0 0 0 0
v8 0 24v8 28v9 0 0 0 0 0 0 0 0 0
v9 2v8 22v9 26v10 0 0 0 0 0 0 0 0 0
v10 4v9 0 24v11 0 0 0 0 0 0 0 0 0
v11 6v10 2v11 22v12 0 0 0 0 0 0 0 0 0
v12 8v11 4v12 0 0 0 0 0 0 0 0 0 0
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variables,kÞN, kÞ@N/2#12. We can then expand the solution into independent homogen
monomials inv( l k) and apply to it~9.1!. Each coefficient in this expansion must then be
solution of~9.1!, and since we know that there is only one solution, the total solution is of the

f ~v!5 f 1„v~ l N!,v~ l @N/2#12!…f 2„v~ l k!…. ~9.2!

We then keep onlyf 1 . We now move one block up and write the corresponding@N/2#11
equations in the symbolic form:

Fv~ l N21!
]

]v~ l @N/2#12!
1v~ l N!

]

]v~ l @N/2#13!G f 50. ~9.3!

The equations in~9.3! do not commute~except in the caseN55!. But, together with equations in
~9.1! they form a complete algebra. One can therefore easily determine the number of indep
solutions for this system. We now try to find simultaneous solutions for all equations in~9.1! and
~9.3!.

It is easy to see that the solution of~9.3! cannot have dependence onv( l @N/2#12). Suppose it
does. That solution must also be a solution of~9.1!, and we have just shown that there is only o
solution of ~9.1! involving v( l @N/2#12): f 1(v( l N),v( l @N/2#12)…. Therefore,~9.3! turns into

v~ l N!
] f

]v~ l @N/2#13
50. ~9.4!

Since all the equations in~9.1! and ~9.3! are mutually independent, and their total number
2@N/2#13, this gives the rank. The number of variables is 2@N/2#17. Therefore there will be
three solutions of the typeI @ l @N/2#12 ,l N#. It is now clear that the solution of~9.1! must also be
solution of ~9.3!. We continue this process and obtain:

1 solution of the type I @ l @N/2#12 ,l N#,

3 solutions of the type I @ l @N/2#13 ,l N#,

5 solutions of the type I @ l @N/2#14 ,l N#,

] ]

N24 solutions of the typeI @ l N21 ,l N#,

N22 solutions of the type I @ l N# ~pure invariants!.

Altogether, there are 113151¯1(N22)5(N21)2/4 solutions, as must be the case fro
Theorem 1~see the Appendix!.

We note here, in passing, that at each levelsp m(2,N,R), N odd or even, there will beN
11235N22 pure invariants.

We can now ask whether the solution of~9.1! will also satisfy equations in~9.3!? Will it
satisfy the remaining equations in the system if such equations exist? Will the solutions of~9.3!
also satisfy the remaining equations? The answer is always positive.

The invariants displayed above behave quite differently under the Hamiltonian transpo
operatorsl 2 ,l 3 ,...,l @N/2#11 act nontrivially on the invariantI @ l @N/2#12 ,l N#, while the number of
such nontrivial actions gets progressively smaller for other invariants until we reach pure i
ants that ‘‘feel’’ only quadratic operators corresponding to moments inl 2 .

This completes the proof of the Theorem forN odd. Let us now take the caseN even. Just like
the case of Theorem A.1, we have two situations here:N50(mod 4) andN52(mod 4). We
analyze firstN52(mod 4). The strategy is the same as in theN odd case, with the only differenc
being that the block containing the main diagonal of the commutation table belongs to the
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blocks we must analyze. Since it is the first block, starting again from the bottom of~5.4!, which
produces a solution, we now look at it. It is generated by@ l N/211 ,l N/211# and is of dimension
(N/212)3(N/212). Since it is antisymmetric and of odd dimension, its determinant is zero.
rank of the coefficient matrix isN/211 and we have one solution of the typeI @ l @N/2#11 ,l N#. The
arguments leading to~9.2! and~9.4! and their consequences are valid here, too. At the next le
there are two solutions of the system:

v~ l N!
] f

]v~ l @N/2#12!
50, ~9.5!

because, the rank of the system ofN13 equations inN15 variables isN12 ~and we have
already found the single solution of the first block of equations!. The solutions will be of the form
I @ l @N/2#12 ,l N#. We continue the same way and find

1 solution of the type I @ l @N/2#11 ,l N#,

2 solutions of the type I @ l @N/2#12 ,l N#,

4 solutions of the type I @ l @N/2#13 ,l N#,

] ]

N24 solutions of the typeI @ l N21 ,l N#,

N22 solutions of the type I @ l N#.

The total number of solutions is 112141¯1(N22)5N2/42N/211, as it should be.
For N50(mod 4) the block@ l N/211 ,l N/211# is of dimension (N/212)3(N/212) and its rank

is N/212. There will be no invariants coming from this block. Since there are no solut
involving v( l N/211), the next block@ l N/2 ,l N/212# has two solutions of the typeI @ l @N/2#12 ,l N#.
Continuing, we obtain the previous hierarchy of invariants, without the first, single invariant
total number of solutions is 2141¯1(N22)5N2/42N/2.

This completes the proof of the Theorem.
We again note that the invariantI @ l @N/2#11 ,l N#, for N52(mod 4) and two invariants

I @ l @N/2#12 ,l N#, for N50(mod 4) have a property that they commute with all the opera
l 2 ,l 3 ,...,l @N/2#11 ~or l @N/2#12 in the latter case!. All other solutions commute only with the smalle
number of operators.

X. CONCLUSION

In this work we demonstrate that among an infinite number of linear moment invariant
can find those that also remain invariant under a nonlinear symplectic mapping of finite orde
procedure is peturbative in the degree of the polynomial representing the symplectic mappin
invariants are kinematic, i.e., they are independent of the specific form of the Hamiltonian, a
as the Hamiltonian can be expanded in a Taylor series. At each perturbation level a co
classification of moment invariants is given. Theorem A.1 and formulas~7.24!–~7.26! give the
number of invariants and the theorem in Sec. IX tells us what the order of moments is that
invariants are built of. The algebraic properties of these invariants and their relationship wi
representations of the symplectic group is studied and is given in Secs. V and VI. One of
invariants is explicitly constructed in Sec. VIII. The methodology is directly applicable to f
and six-dimensional phase space Hamiltonians, as well as Hamiltonians that depend explic
time ~by treating time as a new coordinate and introducing the conjugate momentum!.
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APPENDIX: NUMBER OF INVARIANTS

As promised in Sec. VII we derive here the general formulas~7.24!–~7.26! that determine the
number of invariants that can be constructed in a two-dimensional phase space for anyN, N
52,3,4,... . We first choose a set of basis vectors in the space of all moments and enumera
in such a way as to facilitate the determination of the rank of the matrixAba5(g dab

g vg . The
basis vectors are constructed from the set of homogeneous polynomials. They can be, th
divided into groups, according to the degree of the polynomials that are used in their constru
Within each group we can sort them in the following way: let the first basis vector within a g
be integral of only the moment variable raised to the power representing that group and let t
one be integral of the coordinate variable only—raised to the same power. The vectors in be
will have both moments and coordinates present, with the power of the moment variable
reduced by one and the power of the coordinate variable increased by one, starting from t
basis vector and going toward the last one.

For N52 we shall therefore have three basis vectors:

v15E h~p,q!p2 dp dq, v25E h~p,q!pq dp dq, v35E h~p,q!q2 dp dq. ~A1!

For N53, we have four more basis vectors:

v45E hp3 dp dq, v55E hp2q dp dq, v65E hpq2 dp dq, v75E hq3 dp dq.

~A2!

For higher values ofN, we simply keep adding new basis vectors constructed by the s
rule.

The matrix (gdab
g vg for a,b,g51,2,...,12 (N54) is displayed in Table I. It involves the

basis vectors composed of second-, third-, and fourth-order polynomials. The matrixAba is
displayed below and to the right of the double lines. The moments above and to the left
double lines are shown for bookkeeping purposes. The zero blocks are the consequence
truncation procedure—the fifth-and sixth-order polynomials are set to zero at this level of ap
mation. As indicated the whole matrix can be divided into blocks. The corresponding matrix f
arbitraryN is obtained by simply adding new blocks to the already existing matrix obtained
the homogeneous polynomials of orderN21. For an arbitraryN, the first three rows comprise
N21 blocks; the next four rows give usN22 nonzero blocks,...; the lastN11 rows give us one
nonzero block. One look at the formula~5.23! tells us that this matrix is nothing but the comm

TABLE II. An off-diagonal block in the commutation table of Lie operators. This block is of the size (i 11)3( j 11). The
element in the center of the commutation table is zero if bothi and j are even.

:pj : :pj 21q: ¯ :pqj 21: :qj :

:pi : 0 2 i :pi 1 j 22: ¯ 2 i ( j 21):piqj 22: 2 i j :pi 21qj 21:
:pi 21q: j :pi 1 j 22: ( j 2 i ):pi 1 j 23q: ¯ j 2 i ( j 21):pi 21qj 21: j (12 i ):pi 22qj :
• •

• •

• •

:pqi 21: j ( i 21):pjqi 22: @ j ( i 21)2 i #:pj 21qi 21: ( i 2 j ):pqi 1 j 23: 2 j :qi 1 j 22:
:qi : i j :pj 21qi 21: i ( j 21):pj 22qi : i :qi 1 j 22: 0
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tator table given in~3.4! with proper truncation. Therefore, the exact content of any block ca
deduced immediately from the commutation table, whose two typical blocks, off-diagona
diagonal, are displayed in Table II and Table III, respectively.

Before we give the precise formulation of the theorem we want to prove, let us ob
several properties these matrices have.

~i! The size of the matrix isDN5(N14)(N21)/2; for some values ofN, DN is odd, and due
to antisymmetry, its rank must be smaller thanDN .

~ii ! As indicated in~7.16! and in the paragraph following it, the rank ofAab is always even and
changes analytically as a function ofv. The rank can change only by an even integer a
function of v.

~iii ! The generic rank we are looking for supv rank((dab
g vg) is greater than or equal to th

maximum value of the rank of the same matrix in which allvg’s except one are equated t
zero.

Theorem A.1: The number of invariantsD8(N,v) for a two-dimensional phase space
given by the following formulas:

D85~N21!2/4, for N odd,

D85N2/42N/2, for N even andN50~mod 4!,

D85N2/42N/211, for N even andN52~mod 4!.

Proof: Let N be an odd number,N>3. The algebrasp m(2,N,R), N52k11, k51,2,3,..., has
3141¯1(2k12)5k(2k15) independent basis vectors. If we denote the dimensionalit
sp m(2,N,R) by DN we therefore haveDN5k(2k15). The dimensionality of the matrix whos
rank we have to determine isDN3DN . We note that the first three rows starting from the top
linearly independent—there is a basis vector that appears in all three rows, but in dif
columns—and that basis vector does not appear anywhere else within those three rowsk
>2, the same is true for the next four rows. Furthermore, these seven rows taken toget
mutually independent. This is the case due to the fact that the last block composed of the
group of four rows is zero due to the truncation~see Table I!. We continue the counting until we
reach the set of blocks withk12 rows. Altogether, we have 3141¯1(k12)5k(k15)/2
independent rows. The number of the remaining rows is (k13)1(k14)1¯1(2k12)5k(3k
15)/2. Due to the truncation procedure the length of the longest of these remaining ro
k(k15)/2. The problem is therefore reduced to finding the rank of this smaller matrix of the

TABLE III. The diagonal block in the commutation table of Lie operators. This block is antisymmetric and of the
(n/212)3(n/212), n52,4,6,... .

:pn/211: :pn/2q: ¯ :pqn/2: :qn/211:

:pn/211: 0 2Sn211D:pn: ¯ 2
n

2 Sn211D:pn/211qn/221: 2S n

2
11D 2

:pn/2qn/2:

:pn/2q: 0 ¯ 2Sn221DSn211D:pn/2qn/2: 2
n

2 S n

2
11D :pn/221qn/211:

• •

• •

• •

:pqn/2: 0 2Sn211D:qn:

qn/211: 0
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k(3k15)/23k(k15)/2. Since the commutation table is antisymmetric, this reduced matrix
have k(k15)/2 independent columns, and therefore the rank of the whole matrix will beRN

5k(k15), N52k11.
The number of independent invariants forN odd is

D85DN2RN5k~2k15!2k~k15!5k25
~N21!2

4
. ~A3!

The caseN even is similar, although somewhat more subtle. We takeN52k, k52,3,... . We
first divide the algebrasp m(2,N,R) into blocks l n , n52,3,...,N, each blockl n containing only
operators of ordern

l n5~ :pn:,:pn21q:,...,:qn: !, n52,3,...,N. ~A4!

Alternatively, we can think ofl n as a collection of moments obtained through the integration
operators in~A4!.

Two facts are present that were not valid in the previous case.

~1! There is an odd number of blocks in which the elements ofl N appear. These blocks are th
result of the commutation in@ l 2 ,l N#, @ l 3 ,l N21#,...,@ l N ,l 2#, N21 blocks altogether, which
produces a block in the middle of this series, which does not have its pair:@ l N/211 ,l N/211#.
This block brings in an additional complication.

~2! The block@ l i ,l j #5 l i 1 j 22 will produce the zero element in the middle ifi andj are even. This
is due to the fact that@ :pi /2qi /2:,:pi /2qi /2:#50. Again we start the analysis with the first thre
rows of the matrixAab . The last block made out of these three rows,@ l 2 ,l N#5 l N , N52k,
k52,3,4,..., will be of the size 33(N11) and all the blocks beneath it will have ze
elements due to truncation. Since, again, there is at least one element in this block that a
in all three rows and in different columns, these three rows are independent of each ot
well as of all other rows. By discarding these three rows we obtain reduced matrix of the
„4151¯1(N11)…3(3141¯1N)5(N15)(N22)/23(N13)(N22)/2. The rank of
this new matrix enlarged by 3 will give the rank of the original matrix. We take now the n
four rows and recognize, using the same arguments as before, that they must be indep
if N.4. This process is continued until we come to the middle block@ l N/211 ,l N/211#5 l N . If
N54(mod 4) this block has the element :pN/2qN/2: at any matrix position along the diagon
orthogonal to the main diagonal of the block. Therefore, those (N/212) rows are indepen-
dent. If, on the other hand,N52(mod 4) the middle element on that diagonal is zero. Si
(N/212) is odd in that case and the block itself is antisymmetric, the number of indepe
rows is (N/211).

What is left is the matrix of the size„(k13)1(k14)1¯1(2k11)…3„3141¯1(k
11)…5(k21)(3k14)/23(k21)(k14)/2. The rank of this matrix is maximal: (k21)(k
14)/2 due to the fact that the original matrix is antisymmetric. Therefore, the rank of the w
matrix is

RN5„3141¯1~k11!…1~k21!~k14!/21H k12, if 2k54~mod 4!,

k11, if 2k56~mod 4!.

Summing, we get

RN5H ~k14!~k21!/21k~k15!/2, if 2k54~mod 4!,

~k14!~k21!1k11, if 2k56~mod 4!.

Since the order of the algebrasp m(2,N,R) is

DN53141¯1~2k11!5~k12!~2k21!,
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one easily calculates the number of independent invariants forsp m(2,N,R):

D85DN2RN5H k22k5
N2

4
2

N

2
, if N50~mod 4!,

k22k115
N2

4
2

N

2
11, if N52~mod 4!.

This completes the proof of Theorem 1.
For the several lowest-order truncated algebras we haveD8(3)51, D8(4)52, D8(5)54,

D8(6)57, D8(7)59,... .
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Generalized smooth and weak-discontinuous
unsteady waves
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A theorem of equivalence regarding the weak discontinuity of the solutions
(ũ(1),ũ(2),...,ũ(n),ũ) of an underdetermined system ofn quasi-linear partial differ-
ential equations in one spatial dimension is proven. The theorem demonstrates the
theoretical existence of a smooth wave and a weak-discontinuous wave in a gen-
eralized unsteady wave, which consists of a shock wave, new (n11) elementary
waves, and a rarefaction wave. Aũ( j )2ũ( i ) path has anomalous characteristics such
as a peak, an inflection, and a discontinuity in slope. ©2000 American Institute of
Physics.@S0022-2488~00!04809-X#

I. INTRODUCTION

Consider an underdetermined system ofn quasi-linear partial differential equations in on
spatial~x! dimension:

Bũt1Cũx1d50, ~1!

where ũ(x,t) is a differentiable state vector (ũ(1),...,ũ(n),ũ), ũt(ũ t
(1),...,ũ t

(n)), and
ũx(ũ x

(1),...,ũ x
(n),ũx); B is ann3n matrix-valued function (bi j ), C an n3(n11) matrix-valued

function (ci j ), andd ann-vector field (di). They depend onũ, x, andt. The constitutive relation
is expressed by

ũ5 f ~ ũ ~1!,ũ t
~1!,...,ũ ~2!,ũ t

~2!,...,ũ ~n!,ũ t
~n!,...!. ~2!

System~1! with a known constitutive equation~2! is a determined system. If Eq.~2! is reduced to
ũ5 f (ũ(1),ũ(2),...,ũ(n)), then system~1! belongs to the determined system~4! derived from the
conservation laws in Ref. 1.

System~1! for n52, whereb115b225c125c2351, and b125b215c115c135c215c225d1

5d250, has been considered. In this case, the conservation equations of mass and mom
constitute system~1!. Three variables,ũ(1), ũ(2), and ũ(3), included in this system might be th
strain, particle velocity, and stress in thex-direction, respectively. The conservation equatio
arise in fluid mechanics, nonlinear elasticity, and other branches of continuum mechanic1,2 If
ũ(3)5 f (ũ(1)), then system~1! is a determined system because the stress–strain relation is g
ally known. Such systems have been applied in mathematics and physics to the initial
problems, called Riemann problems,1,3,4 where smooth or weak-discontinuous steady waves
anomalous structure can be handled only by considering anomalous constitutive relati
media.3

In general, however, the stress in condensed matters, especially in solids and porous m
also depends on the strain rate. That is,ũ(3)5 f (ũ (1),ũ t

(1)). It was recently clarified that the effect

a!Electronic mail: san@cc.kshosen.ac.jp
62330022-2488/2000/41(9)/6233/15/$17.00 © 2000 American Institute of Physics

                                                                                                                



wave
ity and

es the
en
ause it

ng the
ined

e of a
ve is a
The
, four
nd

sumed
efined
as the

ers.

ew

6234 J. Math. Phys., Vol. 41, No. 9, September 2000 Y. Sano and I. Miyamoto

                    
of the strain rate and strain acceleration induce smooth or weak-discontinuous unsteady
fronts in those materials and they are responsible for anomalous stress–particle veloc
stress–strain paths.5–15 In addition, Rankine–Hugoniot jump conditions16,17 can only be applied
insufficiently to some unsteady wave fronts that induce nonzero strain accelerations.13,14 Use of
these jump conditions in translating particle velocity into stress is one of the factors that caus
precursor decay anomaly in single-crystal lithium fluoride.15 The unsteady wave fronts have be
analyzed using only the conservation equations without using the constitutive relations bec
is difficult to determine the functionf in this case.

In the present study, we first establish a fundamental theorem of equivalence regardi
jumps of the first derivatives, i.e., the weak discontinuity of the solutions of an underdeterm
system~1!. Next, we consider a set of solutions of system~1!, which aren11 component waves
ũ(1),...,ũ(n),ũ in a generalized wave, whereB andC are given by

B5F b11 0

�

0 bnn

G ,

~3!

C5F 0 c12 0

� �

0 0 cnn11

G ,

wherebii Þ0 andcii 11Þ0; i 51,2,...,n. This generalization of the previous plane wave theory5–15

using the conservation equations of mass and momentum also considers thatB, C, andd depend
on ũ, x, andt, respectively. The fundamental theorem demonstrates the theoretical existenc
smooth wave and a weak-discontinuous wave in a generalized wave. Here, the smooth wa
wave in which there is no discontinuity in slope, namely kink, in any component wave.
weak-discontinuous wave is a wave in which there are kinks in all component waves. Finally
kinds of plane wave fronts whered50, that is, smooth attenuating and growing wave fronts a
weak-discontinuous attenuating and growing wave fronts, are analyzed qualitatively. It is as
that there is a peak in each component wave in a generalized wave front. The wave front is d
as an attenuating wave if all peaks in the component waves in it attenuate with time, where
wave front is defined as a growing wave if they grow with time.

II. WEAK DISCONTINUITY

A. General

Theorem: Let Pi1 and Pi2 be properties of the first derivatives of the solutionũ of an
underdetermined system (1) with respect to x and t, respectively, as stated below:

Pi1 :ũ x
( i ) has a discontinuity at a point;

Pi2 :ũ t
( i ) has a discontinuity at a point.

Then Pi1 and Pi2 are all equivalent, i.e., if one of the properties holds, then so do all the oth
Proof: We introduce a moving coordinate system:

j5x2t, ~4a!

t5E
0

t

a~ t !dt, ~4b!

wherea(t) is the velocity of the origin of the coordinate axes changing smooth with time. N
variables depending onj andt are related to the original ones by

u~j,t!5ũ~x,t !. ~5!
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Because

2ũt52ut5a~ t !~uj2ut!, ~6a!

ũx5ux5uj , ~6b!

system~1! can be translated to

a~ t !B~uj2ut!5Cuj1d, ~7!

whereB, C, andd depend onu, j, andt.
Assume a curvef in eachx2t plane of ũ(1)2x2t,...,ũ(n)2x2t, and ũ2x2t spaces. If

there is a discontinuity in slope in any one ofũ(1),ũ(2),...,ũ(n),ũ, then the curvef is the locus of
this discontinuity. Let it be given by

dx

dt
5a~ t !, ~8!

wherex5x0 at t50. Then, curve~8! is translated to a line parallel to thet axis in thej2t plane:

j5j0 , ~9!

wherej05x0 . Take two points at timet, j15j01d andj25j02d, whered.0, in a neighbor-
hood ofj0 . From Eq.~7!, we get

a~ t !$B~uj2ut!uj1
2B~uj2ut!uj2

%5~Cuj!uj1
2~Cuj!uj2

1~duj1
2duj2

!. ~10!

We introduce the following notations:

B15 lim
d→0

Buj1
, B25 lim

d→0
Buj2

, C15 lim
d→0

Cuj1
, C25 lim

d→0
Cuj2

,

@d#5 lim
d→0

~duj1
2duj2

!, @uj#5 lim
d→0

~ujuj1
2ujuj2

!, @ut#5 lim
d→0

~utuj1
2utuj2

!,

where@ # represents the jump of the closed quantity atj0 . In this limit, Eq. ~10! becomes

a~ t !~B11B2!~@uj#2@ut# !5~C11C2!@uj#1@d#1g, ~11!

where

g5$C12a~ t !B1%ujuj2
2$C22a~ t !B2%ujuj1

1a~ t !~B1utuj2
2B2utuj1

!. ~12!

Similarly, we obtain from Eqs.~6a! and ~6b!,

@ ũt#52a~ t !~@uj#2@ut# !, ~13a!

@ ũx#5@uj#, ~13b!

where@ ũt# and @ ũx# denote the jumps at a point onf, that is,@ ũt#5 lim
d→0

(ũtux1
2ũtux2

) and @ ũx#

5 lim
d→0

(ũxux1
2ũxux2

), wherex15x(t)1d andx25x(t)2d.

Let us transform Eq.~11! as

a~ t !~B11B2!~@uj#2@ut# !5~C181C28!@uj#1~c11c2!@uj#1@d#1g,
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whereC8 is ann3n matrix-valued function (ci j ) andc is ann-vector (c1n11 ,c2n11 ,...,cnn11).
From the above equation,

$a~ t !~B11B2!2~C181C28!%@uj#5~c11c2!@uj#1a~ t !~B11B2!@ut#1@d#1g.

If determinantua(t)(B11B2)2(C281C28)u is not zero, a set of solutions@uj
(1)#,...,@uj

(n)# is given
by

@uj#5$a~ t !~B11B2!2~C181C28!%21$~c11c2!@uj#1a~ t !~B11B2!@ut#1@d#1g%. ~14!

Equation~14! is translated into the jump equation at a point onf by replacing@uj# with @ ũx#
using Eq.~13b!:

@ ũx#5$a~ t !~B11B2!2~C181C28!%21$~c11c2!@ ũx#1a~ t !~B11B2!@ut#1@d#1g%. ~15!

Let us prove the theorem using Eqs.~13a!, ~13b!, and ~15!. In Eq. ~15!, we assume that (c1

1c2)@ ũx#1a(t)(B11B2)@ut#1@d#1gÞ0 except for@ ũx#50, @ut#50, @d#50, andg50. Equa-
tion ~15! states that if only@ ũx#Þ0, then@ ũx#Þ0, whethera(t)(B11B2)@ut#1@d#1g50 or not.
In other words, if there is a discontinuity in slope moving with velocitya(t) along f in a ũ( i )

2x profile, then there is a discontinuity in slope~kink! in all the other profiles along the path. I
Eq. ~13a!, we assume@uj#Þ@ut# except for@uj#50 and @ut#50. Therefore, if@ ũx#Þ0, then
@ ũt#Þ0. In other words, a discontinuity in slope is equivalent to a discontinuity of its
derivative with respect tot along the pathf. Furthermore, Eq.~13a! states that the converse is als
true because if@ ũ t

( i )#Þ0, then@ ũ x
( i )#Þ0 and/or@ut

( i )#Þ0. Therefore, if one of the derivatives
ũ x

(1),...,ũ x
(n),ũx ,ũ t

(1),...,ũ t
(n), is discontinuous alongf, then so are the other derivatives along t

path.
Let us consider a simpler case where the constitutive relation is expressed by

ũ5 f ~ ũ~1!,ũt
~1!,ũtt

~1!,ũ~2!,ũt
~2!,ũtt

~2!,...,ũ~n!,ũt
~n!,ũtt

~n!!. ~28!

If B, C, andd are assumed to be continuous functions depending onũ, x, and t, then Eq.~11!
reduces to

a~ t !B~@uj#2@ut# !5C@uj#,

whereB5Buj0
andC5Cuj0

. From the above equation we get

@ ũx#5$a~ t !B2C8%21~c@ ũx#1a~ t !@ut# !. ~158!

The theorem can similarly be proven using Eqs.~13a!, ~13b!, and~158!.
For @ut#50, Eq. ~158! reduces to

@ ũx#5$a~ t !B2C8%21c@ ũx#. ~1588!

Corollary: Let @ ũx# approach zero at a time. Then the other jumps also approach zero at
time.

Proof: It is evident from Eq.~159! indicating thatũx→0 leads toũx
( i )→0, and vice versa.

Thus, for@ut#50, all components ofũx and ũt can be continuous at a time. This stateme
implies that if there is no kink in aũ( i )2x or ũ( i )2t profile, then there exists no kink in all th
ũ2x and ũ2t profiles.

B. Generalized waves

Let us consider the jump equation~11! where B5B11B2 and C5C11C2 are given by
Eq. ~3!, namely, a generalized wave that is composed of (n11) component waves:
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a~ t !bii ~@uj
~ i !#2@ut

~ i !# !5cii 11@uj
~ i 11!#1@di #1g~ i !; i 51,2,...,n.

A set of solutions is explicitly given by

@uj
~ i !#5S 1

aD ~n2 i 11!S cii 11

bii
D S ci 11i 12

bi 11i 11
D¯S cnn11

bnn
D H @uj#1

1

cnn11
~@dn#1g~n!!J

1S 1

aD ~n2 i !S cii 11

bii
D S ci 11i 12

bi 11i 11
D¯S cn21n

bn21n21
D H @ut

~n!#1
1

cn21n
~@dn21#1g~n21!!J

1¯1S 1

aD 2S cii 11

bii
D S ci 11i 12

bi 11i 11
D H @ut

~ i 12!#1
1

ci 11i 12
~@di 11#1g~ i 11!!J

1
1

a

cii 11

bii
H @ut

~ i 11!#1
1

cii 11
~@di #1g~ i !!J 1@ut

~ i !#; i 51,2,...,n. ~16!

Equation ~16! indicates that@uj#50 can hold only for@uj#50, @ut#50, @d#50, and g50.
Therefore, it is only for@ut#50, @d#50, andg50 that there can theoretically exist smooth wav
where@uj#50, which was revealed in the corollary.

III. QUALITATIVE ANALYSIS OF PLANE SMOOTH WAVE FRONTS

The following equations hold for componentũ( i ) waves (i 51,2,...,n11), whereũ(n11)[ũ,
in a plane wave front whered50:

bii ũ t
~ i !1cii 11ũ x

~ i 11!50. ~17!

For a smooth plane wave front, incrementDũ( i )5ũ( i )(x1Dx,t1Dt)2ũ( i )(x,t) is expressed by

Dũ~ i !5ũ x
~ i !Dx1ũ t

~ i !Dt. ~18!

Although shown below for an attenuating wave front, there is at least one peak where the s
zero in each component wave. Becauseũ x

( i )50 along the path in time of a peakxi(t) in a ũ( i )

wave,Dũ( i ) is expressed by

Dũ~ i !5ũ t
~ i !Dt. ~19!

From Eq.~19!,

dũ~ i !

dt
5ũ t

~ i !.

For an attenuating wave front,dũ( i )/dt,0 along the paths, so that

ũ t
~ i !,0. ~20!

On the other hand,dũ( i )/dt.0 along the paths for a growing wave front, so that

ũ t
~ i !.0. ~21!

A. Attenuating wave front

1. Preceding order of peaks

At the position of the peakxi(t) in a ũ( i ) component wave in an attenuating wave fro
ũ( i )(x,t)5ũ( i )(x1Dx,t), and therefore, Dũ( i )5ũ( i )(x1Dx,t1Dt)2ũ( i )(x1Dx,t), where
x5xi(t) and Dx5Dxi(t). Because ofDũ( i ),0, there is at least one stationary point ahe
of the peak. It is assumed here that any component wave contains only one stationary
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Equation~17! indicates thatũx
( i 11)50 when ũ t

( i )50 or that the position of the peak inũ( i 11)

wave coincides with the position of the stationary position in theũ( i ) wave. Thus, the peak in th
ũ( i 11) wave precedes the peak in theũ( i ) wave. Therefore, the preceding order of the peaks
ũ( i ); i 51,...,n11 component waves is expressed by

x1~ t !,x2~ t !,¯,xn11~ t !, ~22!

wherexn11(t) represents the position of the peak in theũ(n11)([ũ) component wave. A sche
matic diagram of the component waves, in each of which there is a peak, drawn in obedie
Dũ( i ),0 and inequalities~20! and~22! is shown in Fig. 1, wherexf is the position of the front or
leading edge andxb is that of the back or rear of the wave front.

FIG. 1. Schematics of the 1st,2nd,...,n11st component waves~ũ(1),ũ(2),...,ũ(n11) waves! at time t and timet1Dt in a
plane smooth attenuating wave front.
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2. New elementary waves

In Fig. 1, 1, 2,...,n13 refer to 1st, 2nd,...,n13rd wave portions orũ1 ,ũ2 ,...,ũn13 wave
portions, respectively; thei th wave portion is composed ofũ i

(1),ũ i
2,...,ũ i

(n11) waves. The com-
ponent waves are dissimilar. As a result, all (n13) wave portions are different in property~time
variation! and/or form~slope!. The illustration reveals the properties of the wave portions:

u̇̃ i
~1!.0,...,u̇̃ 1

~n11!
.0,

u̇̃ i
~1!.0,...,u̇̃ i

~n2 i 12!.0,u̇̃ i
~n2 i 13!,0,...,u̇̃ i

~n11!,0; i 52,3,...,n11, ~23!

u̇̃ i
~1!,0,...,u̇̃ i

~n11!,0; i 5n12,n13,

where an overdot represents the differentiation with respect tot. This illustration also reveals the
forms of the wave portions:

ũ i
~1!8,0,...,ũ i

~n11!8,0; i 51,2,

ũ i
~1!8,0,...,ũ i

~n2 i 13!8,0,ũ i
~n2 i 14!8.0,...,ũ i

~n11!8.0; i 53,4,...,n12, ~24!

ũ n13
~1!8 .0,...,ũ n13

~n11!8.0,

where a dash represents the differentiation with respect tox. The property and form of the 1s
wave portion are the same as those of a generalized shock wave,u̇̃.0 andũ8,0. The property
and form of then13rd wave portion are the same as those of a generalized rarefaction
u̇̃,0 andũ8.0. The (n11) remaining wave portions are new elementary waves that are diffe
in property and/or form from generalized shock and rarefaction waves.

3. Anomalous characteristics of a u ˜ „ j …Àũ „ i … path

Figure 2~a! shows aũ(2)2ũ(1) path curve depicted schematically using Fig. 1.ũ(1) increases
with time by passage of the 1st, 2nd,...,n11st wave portions, whereas it decreases by the pas
of n12nd andn13rd wave portions. On the other hand,ũ(2) increases with time by passage
the 1st, 2nd,...,nth wave portions, whereas it decreases with time by passage of then11st,
n12nd,n13rd wave portions. Therefore,ũ(2) increases with increasingũ(1) during passage of the
1st, 2nd,...,nth wave portions~path 1!, decreases with increasingũ(1) during passage of the
n11st wave portion~path 2!, and decreases with decreasingũ(1) during passage of then12nd
and n13rd wave portions~path 3!. Figures 2~b! and 2~c! show ũ(3)2ũ(1) and ũ(4)2ũ(1) path
curves depicted schematically in the similar manner.

The slope of theũ( j )2ũ( i ) path is used to examine the path characteristics, because
slope distinguishes them. The slope is formulated with phase velocities at constantũ( i ), be-
cause their schematics are easily available from Fig. 1. The phase velocity at constantũ( i ) is
obtained by substitutingDũ( i )50 into Eq. ~18!. It is expressed byacu

( i )52ũ t
( i )/ũ x

( i ). From
ũ t

( i 11)52acu
( i 11)ũ x

( i 11) and Eq.~17! we obtain

dũ~ j 11!

dũ~ j ! 5
bj j

cj j 11
acu

~ j 11!; j 5 i ,i 11,...,n.

The product ofdũ( j 11)/dũ( j ) from j 5 i to j 5 j yields

dũ~ j 11!

dũ~ i ! 5 f j~ t !acu
~ i 11!acu

~ i 12!
¯acu

~ j 11! ; j 5 i ,i 11,...,n, ~25!
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where f j (t) is a continuous function expressed by f j (t)5(bii /cii 11)
3(bi 11i 11 /ci 11i 12)¯(bj j /cj j 11).

The path characteristics, which do not depend onf j (t), are here examined using the abo
equation. Therefore, coefficientsbj j andcj j 11 constituting a continuous functionf j (t), which are
dependent onũ(t) and t or only on t, are not specified, but it is assumed thatf j (t).0 within the
time under consideration. Then, the generality of the path characteristics is not lost due
assumption.

A schematic of the time variation ofacu
(2) at a position through which an attenuating wave fro

is passing is obtained from the time variation ofũ(2) wave in Fig. 1. The distance of movement
the ũ(2) wave forDt,Ds, is shown by arrows. The change ofDs5acu

(2)Dt in position (Ds2x) is
identical to that ofacu

(2). The change ofacu
(2) in time (acu

(2)2t) is similar to the change ofacu
(2) in

position. Therefore, the change ofacu
(2) in time is similar to the change ofDs in position. This

change ofacu
(2) in time is shown schematically in Fig. 3~a!, wheret f , tb , andts2 denote the times

that the leading edge and rear of the wave front and the stationary point inũ(2) wave~the interface

FIG. 2. Schematics of~a! ũ(2)2ũ(1), ~b! ũ(3)2ũ(1), and~c! ũ(4)2ũ(1) paths for a plane smooth attenuating wave fron
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betweennth andn11st wave portions! passed through, respectively. At timetp2 when the peak in
the ũ(2) wave~interface between then11st andn12nd wave portions! passes through,acu

(2) jumps
to a positive value from a negative value. A schematic of the change ofacu

(2)acu
(3) in time is shown

in Fig. 3~b!, wherets3 denotes the time when the stationary point in theũ(3) wave ~the interface
betweenn21st andnth wave portions! passed through, and the fine line represents the chang
acu

(3) in time. A dip is produced between timests2 andts3 by theũ(2) andũ(3) waves. A schematic
of the change ofacu

(2)acu
(3)acu

(4) in time is shown in Fig. 3~c!, wherets4 denotes the time when th
stationary point inũ(4) wave~the interface between then22nd andn21st wave portions! passed
through. A dip is produced between timests3 andts4 by theũ(3) andũ(4) waves. In general, there
is one jump and (i 21) dips in the change ofacu

(2)acu
(3)...acu

( i ) in time.

FIG. 3. Schematics of~a! acu
(2)2t, ~b! acu

(2)acu
(3)2t, and ~c! acu

(2)acu
(3)acu

(4)2t profiles for a plane smooth attenuating wav
front.
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The anomalous characteristics of theũ(2)2ũ(1) path curve shown in Fig. 2~a! are examined
using dũ(2)/dũ(1)5 f 1(t)acu

(2), where f 1(t).0. Path 1 for the 1st, 2nd,...,nth wave portions
is convex upward. The reason for this is thatacu

(2) decreases with increasingũ(1) during pass-
age of these wave portions. For a similar reason, path 2 for then11st wave portion is also conve
upward. The connecting point of paths 1 and 2 is a peak where the slope is zero, b
acu

(2)50 at the interface between thenth andn11st wave portions. Path 3 for then12nd andn
13rd wave portions is concave upward, becauseacu

(2) decreases with decreasingũ(1). acu
(2) jumps

during passage of the interface between then11st andn12nd wave portions, so that the con
necting point of paths 1 and 2 is a kink.

The anomalous characteristics of theũ(3)2ũ(1) path curve shown in Fig. 2~b! are examined
usingdũ(3)/dũ(1)5 f 2(t)acu

(2)acu
(3), wheref 2(t).0. Path 1 for the 1st, 2nd,...,n21st wave portions

is convex upward. Path 2 for thenth wave portion is convex upward up to a point in this pa
becauseacu

(2)acu
(3) decreases with increasingũ(1), whereas it is concave upward beyond this po

becauseacu
(2)acu

(3) increases with increasingũ(1). Thus, there is an inflection point in the inside
this path, where the slope is negative. This path is referred to as a contained IP path. The
zero at the connecting point of paths 1 and 2. By comparing Figs. 3~a! and 3~b!, it is found that
path 3 is similar toũ(2)2ũ(1) path 2 and path 4 is similar toũ(2)2ũ(1) path 3. Thus, for the
ũ(3)2ũ(1) path, one contained IP path is inserted into theũ(2)2ũ(1) path. Furthermore, it is clea
from Figs. 3~a! and 3~c! that for theũ(4)2ũ(1) path, two successive contained IP paths are inse
into the ũ(2)2ũ(1) path. In general, for theũ( i )2ũ(1) path, (j 21) successive contained IP path
are inserted into theũ(2)2ũ(1) path. Figures 2~a!–2~c! demonstrate that the attenuating-type pa
have the anomalous form of a figure ‘‘0’’ and anomalous characteristics such as a pe
inflection, and a kink.

B. Growing wave front

1. Preceding order of peaks

It is assumed here that any component wave in a growing wave front contains onl
stationary point. In any of the component waves, the stationary point is at the back of the
Thus, the peak in theũ( i ) wave precedes the peak in theũ( i 11) wave. Therefore, the precedin
order of the peaks in the component waves is expressed by

x1~ t !.x2~ t !.¯.xn11~ t !. ~26!

2. New elementary waves

Figure 4 shows schematics of the component waves, the peaks in which have the pre
order expressed by inequality~26!. Because the component waves are dissimilar, all (n13) wave
portions are different in property and/or form. Illustrated properties of the wave portions are
by

u̇̃i
~1!.0,...,u̇̃i

~n11!.0; i 51,2,

u̇̃i
~1!,0,...,u̇̃i

~ i 22!,0,u̇̃i
~ i 21!.0,...,u̇̃i

~n11!.0; i 53,4,...,n12, ~27!

u̇̃n13
~1! ,0,...,u̇̃n13

~n11!,0.

Illustrated forms of the wave portions are given by

ũ 1
~ i !8,0,...,ũ 1

~n11!8,0,

ũ i
~1!8.0,...,ũ i

~ i 21!8.0,ũ i
~ i !8,0,...,ũ i

~n11!8,0; i 52,3,...,n11, ~28!
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ũ i
~1!8.0,...,ũ i

~n11!8.0; i 5n12,n13.

As was the case with an attenuating wave front, the 1st wave portion has the same prope
form as a generalized shock wave and then13rd wave portion has the same property and form
a generalized rarefaction wave. The (n11) remaining wave portions are different in proper
and/or form from generalized shock and rarefaction waves. They are new elementary wav
are different in property and/or form from the (n11) remaining wave portions in an attenuatin
wave front.

FIG. 4. Schematics of the 1st,2nd,...,n11st component waves~ũ(1),ũ(2),...,ũ(n11) waves! at time t and timet1Dt in a
plane smooth growing wave front.
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3. Anomalous characteristics of the u ˜ „ j …Àũ „ i … path

Figure 5~a! shows theũ(2)2ũ(1) path curve depicted schematically using Fig. 4.ũ(2) increases
with increasingũ(1) during passage of the 1st and 2nd wave portions~path 1!, with decreasingũ(1)

during passage of the 3rd wave portion~path 2!, and decreases with decreasingũ(1) during
passage of the 4th, 5th,...,n13rd wave portions~path 3!. Figures 5~a! and 5~b! show ũ(3)2ũ(1)

and ũ(4)2ũ(1) path curves depicted schematically in the similar manner.
Figure 6~a! shows a schematic of the change ofacu

(2) in time that is similar to the change ofDs
in the position shown in Fig. 4. In Fig. 6~a!, ts2 denotes the time that the stationary point in t
ũ(2) wave~the interface between 3rd and 4th wave portions! has passed through. At timetp2 when
the peak in theũ(2) wave~interface between the 2nd and 3rd wave portions! passes through,acu

(2)

drops discontinuously to a negative value from a positive value. A schematic of the chan
acu

(2)acu
(3) in time is shown in Fig. 6~b!, wherets3 denotes the time when the stationary point in t

ũ(3) wave ~the interface between 4th and 5th wave portions! passed through. A dip is produce
between timests2 and ts3 . As shown in Fig. 6~c!, acu

(2)acu
(3)acu

(4) curve has a further dip produce

FIG. 5. Schematics of~a! ũ(2)2ũ(1), ~b! ũ(3)2ũ(1), and~c! ũ(4)2ũ(1) paths for a plane smooth growing wave front.
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between timests3 and ts4 . As in the attenuating wave front, there is one discontinuous drop
( i 21) dips in the change ofacu

(2)acu
(3)...acu

( i ) in time.
The path characteristics of theũ(2)2ũ(1) path curve depicted in Fig. 5~a! are examined using

dũ(2)/dũ(1)5 f 1(t)acu
(2), where f 1(t).0. In Figs. 6~a!–6~c!, it was assumed thatacu

(2) decreased
with time during passage of the 1st and 2nd wave portions. For this, path 1 is convex upw
acu

(2) is assumed to increase with time during this passage, path 1 becomes concave u
Becauseacu

(2) increases with time during passage of the 3rd wave portion, path 2 is also co
upward. The connecting point of paths 1 and 2 is a kink. Path 3 is also convex upward
connecting point of paths 2 and 3 is a peak where the slope is zero. Figures 6~a!–6~c! indicate that

FIG. 6. Schematics of~a! acu
(2)2t, ~b! acu

(2)acu
(3)2t, and~c! acu

(2)acu
(3)acu

(4)2t profiles for a plane smooth growing wave fron
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for the ũ( j )2ũ(1) path, (j 21) successive contained IP paths are inserted into theũ(2)2ũ(1) path.
Figures 5~a!–5~c! demonstrate that the growing-type paths have the anomalous form of a fi
‘‘8’’ and anomalous characteristics such as a peak, an inflection, and a kink.

IV. QUALITATIVE ANALYSIS OF PLANE WEAK-DISCONTINUOUS WAVE FRONTS

A plane weak-discontinuous wave front that has a discontinuity in slope at all (n12) inter-
faces between two successive (n13) wave portions is considered here. For an attenuating w
front, the preceding order of the peaks in the component waves is expressed by inequality~22!, the
properties of the wave portions are expressed by inequality~23!, and their forms are expressed b
inequality ~24!. Then, the slope of theacu

(2)acu
(3)...acu

( i )2t profile at ts j is discontinuous and, as
result, the peaks inũ( j )2ũ(1); j 52,3,...,n11 paths have discontinuous slopes. For a grow
wave front, the preceding order is expressed by inequality~26!, the properties are expressed b
inequality ~27!, and the forms are expressed by inequality~28!. Also in this case, the peaks i
ũ( j )2ũ(1); j 52,3,...,n11 paths have discontinuous slopes.

V. CONCLUSIONS

A theorem of equivalence regarding the weak discontinuity of the solut
(ũ(1),ũ(2),...,ũ(n11)) of an underdetermined system ofn quasilinear partial differential equation
in one spatial dimension,Bũt1Cũx1d50, was proven in a simple manner. This theorem
simplified systembii ũt

( i )1cii 11ũx
( i 11)1di50; i 51,2,...,n demonstrates the theoretical existen

of a smooth and a weak-discontinuous wave front in a generalized wave that is compo
(n11) component waves. Plane (di50) smooth attenuating and growing wave fronts that w
composed of (n13) wave portions, that is, generalized shock and rarefaction waves
(n11) new elementary waves, respectively, were analyzed qualitatively. Due to the proper
the elementary waves, the attenuating-type paths had the anomalous form of a figure
whereas the growing-type paths the anomalous form of a figure ‘‘8.’’ In addition, both path
had anomalous characteristics such as a peak, an inflection, and a kink. A weak-discon
attenuating wave front was analyzed such that it was composed of (n13) wave portions and thei
properties and forms were similar to those of the corresponding wave fronts in the smooth a
ating wave front, but it had kinks at all interfaces between wave portions. Therefore, the
were similar to the corresponding smooth paths, except that the peak points in the path
kinks. The same was true of a weak-discontinuous growing wave front analyzed in the s
manner. Thus, four kinds of generalized unsteady wave fronts and the characteristics of res
caused by them were clarified. Therefore, the proof is important in both mathematics and p
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Multidimensional hierarchies of „1¿1…-dimensional
integrable partial differential equations.
Nonsymmetric ̄-dressing

A. I. Zenchuka)

Department of Mathematics, The University of Arizona, Tucson, Arizona 85721

~Received 19 April 1999; accepted for publication 12 May 2000!

In this paper the]̄-problem has been constructed for a class of multidimensional
integrable partial differential equations~PDE! which can be classified as the mul-
tidimensional hierarchies of the (111)-dimensional systems of integrable PDE.
We introduce the nonsymmetric dressing procedure for this purpose. Among the
examples we consider the (n11)-dimensional (n.1) hierarchies of nonlinear
Schrödinger, modified Korteveg–de Vries, and Camassa–Holm equations.
© 2000 American Institute of Physics.@S0022-2488~00!01609-1#

I. INTRODUCTION

It is well known that any (111)-dimensional integrable system of nonlinear partial differe
tial equations~PDE! belongs to a (111)-dimensional integrable hierarchy which can be rep
sented by the compatibility condition for the overdetermined linear system,1–9

L0~l;]x!C50, ~1!

„]tk
1Lk~l;]x!…C50, ~2!

whereLk are linear differential operators with respect to the independent variablex. The coeffi-
cients of these operators are the rational functions ofl and depend on the variablesx, tk .
Equation~1! is called the spectral problem and Eqs.~2! describe the evolution with respect to th
parameterstk .

Any known (111)-dimensional integrable hierarchy has a natural (211)-dimensional inte-
grable generalization which can be represented as the compatibility condition of the over
mined linear system,8,10–13

L0~l;]x ,]y!C50, Lk~l;]tk
,]y ,]x!C50, ~3!

where Lk are linear differential operators with variable coefficients. Equations~1! and ~2! are
(111)-dimensional reductions of Eqs.~3!.

The feature of the system~3! is that the variabley is necessarily introduced in the spectr
equation. In many cases@for example the Kadomtsev–Petviashvili equation~KP!, Davey–
Stewartson equation~DS!# the y-differentiation can be eliminated from the evolution part of t
linear system@the second equation in~3!# ~see, for example, Ref. 8!.

But this is not the only way to construct multidimensional nonlinear integrable systems
PDE. For example, together with the spectral problem~1! one can use the following linear evo
lution equation:

a!Electronic mail: azenchuk@math.arizona.edu
62480022-2488/2000/41(9)/6248/29/$17.00 © 2000 American Institute of Physics
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S (
m51

N1k

P1m~l!] tkm
1 (

m51

N2k

P2m~l!]ykm
1Vk~l;]x!DC50, Nk ,nk jPZ, ~4!

instead of Eq.~2!. In this equation operatorsVk have the same structure asL0 in ~1! andPim , i
51,2 are the rational functions of the complex parameterl. The compatibility condition of the
system~1! and~4! leads to a multidimensional system of the nonlinear PDE for the coefficien
the operatorsVk andL0 . The systems of this kind had been introduced in Refs. 9 and 14 wher
generalization of the dressing method8 was constructed. The examples of these systems have
considered, for instance, in Refs. 15, 16. Although formally the nonlinear PDE constructed b
way represent the multidimensional systems of equations with independent variablestki ( i
51, . . . ,Nk

( l )) and yk j ( j 51, . . . ,Nk
(r )) for any fixedk, this multidimension is not a strong on

because the solutions of these PDE belong to the (111)-dimensional surfaces, each one is p
rametrized by the fixed pair of the parameters from the setx, tk , where the parameterstk

represent the evolution parameters of the (111)-dimensional hierarchy. Due to this fact we ca
the above type of multidimensional systemsmultidimensional hierarchy of the (111)-dimensional
integrable systems of PDE.

In this paper we construct the]̄-dressing for these systems, based on both the local
nonlocal ]̄-problems.17,18 We develop this technique since it allows us to recognize the m
important properties of nonlinear integrable systems of PDE, such as the Ba¨cklund and Miura
transformations, and generates the complete hierarchy of a given integrable system of P
addition to the above one can receive a large class of explicit solutions through the]̄-problem. In
Sec. II we introduce a definition of the nonsymmetric dressing on the basis of the local]̄-problem.
Also we receive the example of the (n11)-dimensional hierarchy of the nonlinear Schro¨dinger
equation which leads to the Davey-Stewartson type equation in the casen52.15 In Sec. III we
expand the nonsymmetric dressing on the nonlocal]̄- problem with reduction. We give an ex
ample of the multidimensional hierarchy of anN-wave system, which is related with the matr
]̄-problem, consider the multidimensional hierarchy of the modified Korteveg–de Vries equ
~mKdV!, and related with this hierarchy the multidimensional hierarchy of the Camassa–
equation~CH!. The general conclusions are summarized in Sec. IV.

II. NONSYMMETRIC DRESSING WITH LOCAL ̄-PROBLEM

It is known that any solutionu of the (111)-dimensional integrable PDE with independe
variablesx andt0 depends on an infinite set of parameterstk : u5u(x,tk). The dependence on
these parameters is introduced by a set of nonlinear PDEs, with each of them
(111)-dimensional equation with independent parametersx andtk ~k is fixed!. We demonstrate
by using the local]̄-problem that it is possible to introduce other types of parameterstki andyk j

in the solution of the (111)-dimensional equation so that the dependence on these parame
described by a multidimensional nonlinear PDE. Before doing this let us recall briefly the
definitions and notations of the]̄-dressing method. Further details of this method one can fin
Refs. 17–19.

A. Nonsymmetric dressing operators

The local]̄-problem is the matrix integral equation on the functionc(l;X),

L~c![c~l;X!2
1

2p i E dm∧dm̄

m2l
c~m;X!R~m;X!5h~l;X!, ~5!

whereX is the compact notation for the set of independent variablesX5$x,t,y,t%, t5$tk%, t
5$tk j% ( j 51, . . . ,Nk

( l )), y5$yk j% ( j 51, . . . ,Nk
(r )), h is the normalization, and the kernel of th

integral operatorR is of the form
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R~l;X!5exp„K0~l;x,t!…R̂~l;y,t!exp„2K0~l;x,t!…, ~6!

where the dressing operatorK0(l;x,t) is rational in thel matrix function, which satisfies the
conditions

@Dx ,Dtk
#50, Dxf5]xf1f]xK0 , Dt j

f5]t j
f1f]t j

K0 . ~7!

The operatorR̂ in ~6! is a matrix function which provides a unique solution for Eq.~5! with fixed
hÞ0. If t- and y- dependences are absent in the kernelR then the equation~5! generates an
ordinary (111)-dimensional hierarchy due to the operatorK0 . For classical models,17,18

K05Q0~l!x1(
k

Qk~l!tk , @Qk ,Qj #50, ~8!

where the matricesQk are rational functions ofl and do not depend on the variablesX.
The variablesy andt represent another type of parameters, which are introduced in the k

R in a different manner@see below, Eqs.~10! and~11!# and are related with the multidimension
hierarchy. Now we describe the dependence on these parameters.

Suppose that the kernelR satisfies the symmetry reduction

R~l!5J21~l!R~l!J~l!, ~9!

and J ~the nondegenerated rational matrix function ofl! does not depend on the parametersX
~J5diag$1% is also possible!. We introduce they- and t-dependence with the matrix system
PDE on the kernelR̂:

l kR̂[(
j 51

Nk
( l )

R̂tk j
~l;t,y!Pk j~l;X!5Ak~l;X!R̂~l;t,y!, ~10!

r knR̂[(
j 51

Nk
(r )

R̂yk j
~l;t,y!Pkn j~l;X!52R̂~l;t,y!Ak~l;X!, n51, . . . ,Mk , ~11!

Pk j~l;X!5 (
m5Nk j2

( l )

Nk j1
( l )

gk jm~l;X!Jm~l!, ~12!

Pkn j~l;X!5 (
m5Nkn j2

(r )

Nkn j1
(r )

gkn jm~l;X!Jm~l!, ~13!

wheregk jm , gkn jm are the scalar polynomial in our consideration~rational in the general case!
functions ofl; Nk

( l ) , Nk
(r )PN, Nk j6

( l ) , Nkn j6
(r ) PZ. The matrix functions in the above system satis

the following commutation relations:

@Ak ,Aj #5@Aj ,Qk#5@J,Qk#50. ~14!

In analogy to the long derivativesDx andDtk
which have been introduced in Eq.~7! for the

construction the (111)-dimensional equations, we introduce the long derivativesDkn ,
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Dknf[~ l k1r kn!f1fAk

[(
j 51

Nk
( l )

~] tk j
f!Pk j~l;X!1(

j 51

Nk
(r )

~]yk j
f!Pkn j~l;X!1fAk , n51, . . . ,Mk , ~15!

for construction of the multidimensional systems. Now the difference among the variablesx, t and
t, y is evident. In fact, from Eq.~15! it follows that operatorsDkn with any fixedk andn mix the
variables from the coupled sets,

Tk5$tki , yk j , i 51, . . . ,Nk
( l ) , j 51, . . . ,Nk

(r )%, ~16!

whereas each of the operatorsDx , Dtk
@see Eq.~7!# involves onlyoneindependent variable. This

means that variablesyk j andtk j can be usedonly in combinations defined by operatorsDkn . Note
also that due to the definitions~11! and~15! one can introduceMk different operatorsDkn for any
fixed k. This means that the whole hierarchy introduced here can be enumerated by two in

It is evident that the functionsgk jm(l;X), gkn jm(l;X) are not arbitrary ones but shoul
satisfy the compatibility conditions for the equations both inside the systems~10! and ~11! and
between them. Compatibility of these systems leads, generally speaking, to the nonlinear
of equations for the potentialsPjk , Pjkn , Ak . In this paper we will not consider this gener
situation. For the sake of simplicity we assume that the kernelR̂ is of the form

R̂~l;t,y!5R1~l;t!R2~l;y!, ~17!

which provides the compatibility between the systems~10! and~11!. Also for the purpose of this
paper we consider only those functionsgjkm , gjknm , Ak which do not depend on the paramete
X. Then the equationsinsideof the systems~10! and~11! are always compatible if Eqs.~14! are
satisfied.

In this case the general solution of any equation from the linear system of PDE with con
coefficients~10!, ~11! is represented by the Fourier integral. This is important for the investiga
into the solutions of the nonlinear PDE. But presently we concentrate on the construction
nonlinear integrable PDE rather then their solutions. For this purpose it is not necessary t
sider the general solution of the system~10!, ~11!. Instead of that one can take a simple soluti
represented by Eq.~17!, where

R1~l;t!5eK1(l;t)R10~l!, R2~l;y!5R20~l!eK2(l;y), ~18!

K1~l;t!5(
k j

Fk j~l!tk j , K2~l;y!5(
k j

Gk j~l!yk j , ~19!

(
j 51

Nk
( l )

Pk jFk j5Ak , (
j 51

Nk
(r )

Gk jPkn j52Ak , n51, . . . ,Mk , ~20!

and along with Eq.~14! the following commutation relations are satisfied:

@J,K1#5@J,K2#5@Fk j ,Flm#5@Gk j ,Glm#50. ~21!

The dressingoperatorsK1 , K2 generatet- andy-dependence, respectively. They are linear fu
tions of these variables. So the complete set of the independent variablesX is introduced by three
dressing operatorsK0 , K1 , andK2 . Emphasize that onlyK0 should be used to construct the (
11)-dimensional hierarchy whereas a multidimensional hierarchy is generated bytwo different
operatorsK1 andK2 .
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There is an interesting particular case of the system~10!, ~11! in which one can use a mor
general structure of the kernelR1 andR2 in ~17!. This is possible when some of the matricesAj

are zero:Aj50, j PZ0,Z. In this case the solution of the system~10!, ~11! can be taken of the
form

R1~l;t!5eK18(l;t)F )
j PZ0

Cj~l!e( iF j i (l)t j i GR10~l!,

R2~l;y!5R20~l!F )
j PZ0

e( iGji (l)yji Bj~l!GeK28(l;y), ~22!

where K185(k¹Z0
( iFkitki , K285(k¹Z0

( iGkiyki ; Cj , Bj are arbitrary matrix functions of the
parameterl which should commute only withJ,

@Bj ,J#5@Cj ,J#50, ~23!

and the relations~21! should be replaced by the following ones:

@Fnk ,J#5@Gnk ,J#50, for all n,k, ~24!

@Fnk ,Fml#5@Gnk ,Gml#50, n,m¹Z0, ~25!

@F jk ,F jl #5@Gjk ,Gjl #50, j PZ0, ~26!

@Fnk ,Fml#Þ~5 !0, @Gnk ,Gml#Þ~5 !0,
~27!

n,mPZ0, nÞm, or n¹Z0, mPZ0.

From the commutation relations~23! it follows that all matricesBj and Cj commute unless the
operatorJ has multiple eigenvalues. As far as the commutation relations~24!–~27! are not as
strong as the relations~21! @all matricesFk j and Gk j commute in Eq.~21!# we have some
additional freedom in the construction of solutions of the nonlinear PDE in this case: Eq~27!
demonstrates that some of the matrices do not necessarily commute.

B. Construction of nonlinear systems of PDE

Now let us turn to the construction of multidimensional systems of nonlinear PDE. In
following we assumeh51 in Eq. ~5!. Let K0 , Ak , andJ are rational matrix functions of param
eterl analytical in the complex plane everywhere except the points~all points below are different
for the sake of simplicity!

cj
(K) , j 51, . . . ,N(K)—simple poles of the functionK0 , ~28!

cj
(J) , j 51, . . . ,N(J) simple poles of the functionJ, ~29!

cj
(0) , j 51, . . . ,N(0)—simple poles of the functionJ21~zeros of J!, ~30!

bk j, j 51, . . . ,Nk
(b)—simple poles of the functionsAk . ~31!

This situation is the most general one since all other rational functionsK0 , Ak , J can be received
as some reductions of correspondent matrices with simple poles18 if one imposes the relation
among these poles. Also assume thatgk jm5gkn jm51 in formulas~12! and ~13!.

In the case of simple poles the solutionc of Eq. ~5! ~with h51! has the following expansion
at infinity and in the neighborhoods of the pointscj

(K,J,0) , bk j ~hereafter we use the compa
ntationa(a1, . . . ,an) for the list a(a1), . . . ,a(an):
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cul→`→11 (
k.0

ck

lk , cul→c
j
(K,J,0)→(

k>0
ck~cj

(K,J,0)!~l2cj
(K,J,0)!k, ~32!

cul→bjn
→(

k>0
ck~bjn!~l2bjn!k,

ck52
1

2p i E dm∧dm̄mk21c~m;X!R~m;X!, ~33!

ck~cj
(K,J,0)!5dk01

1

2p i E dm∧dm̄~m2cj
(K,J,0)!2(k11)c~m;X!R~m;X!, ~34!

ck~bjn!5dk01
1

2p i E dm∧dm̄~m2bjn!2(k11)c~m;X!R~m;X! ~35!

~dk j51 if k5 j , otherwisedk j50!.
With this preliminary discussion we give the following three statements which are impo

for the construction of the nonlinear systems of PDE.17–19

~1! Since the solution of Eq.~5! with fixed normalizationh is unique~which is provided byR!,
the only solution of this equation withzeronormalization iszero:

L~wm!50, ⇒ wm50. ~36!

~2! As long as Eq.~5! is a linear one the superposition of any two solutionsw1 and w2 with
different normalizationsh1 andh2 andfixedkernelR is also a solution of the same equatio
whose normalization is the superposition ofh1 andh2 . Namely, if

L„w1~l;X!…5h1~l!, L„w2~l;X!…5h2~l!,
then for an arbitrary matrix functionv(X) which does not depend onl one has

L„w1~l;X!1v~X!w2~l;X!…5h1~l!1v~X!h2~l!. ~37!

~3! If w is a solution of Eq.~5! with normalizationh, g(l) is a ~matrix! rational function of the
parameterl, and f (l) is a scalar rational function ofl then g(l)w and w f (l)Jm(l) (m
PZ) are solutions of the equation~5! with normalizationshg andh f J , respectively,

L~g~l!w!5hg~l!5g~l!h~l!1h1r~X;l!, ~38!

L„w f ~l!Jm
…5h f J~l!5h~l! f ~l!Jm1h2r~X;l!, ~39!

whereh1r andh2r are the rational functions ofl.

The first statement is self-consistent. The second statement can be proved directly by
plying Eq. ~5! with an arbitrary matrix functionv(X) from the left. To prove the third statemen
one needs to multiply Eq.~5! with the ~matrix! rational functiong(l) from the left @or with the
function f (l)Jm(l) from the right# and transform the integral by keeping in mind the symme
~9! and the following transformation rule for any rational matrix functiong:

g~l!5g~l!2g~m!1g~m!5~m2l!P0~l,m!P1~l!P2~m!1g~m!, ~40!

whereP0 is polynomial inl andm with matrix coefficients,P1(n) andP2(n) are matrices with
rational dependence onn.

From these statements and from the structure of the kernelR given by Eqs.~6!, ~8!, ~9!,
~17!–~21! it follows that the solutionc of Eq. ~5! with h51 generates the set of solutions of E
~5! with the same kernel and different rational normalizationshkn . Namely the following equa-
tions appear along with~5!:

L~fJ![L~cJ!5hJ , L~fJ2![L~cJ21!5hJ2 , ~41!
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L~f00![L~Dxc!5h00, L~f0n![L~Dtn
c!5h0n , ~42!

L~fkn![L~Dknc!5hkn , Dknc5~ l k1r kn!c1cAk , kÞ0, ~43!

where the normalizationshJ , hJ2 , hkn are determined by the structure of the operatorsK1 , K2 ,
andJ. For the rationalK1(l), K2(l), J(l), J21(l) with simple poles, normalizationshJ , hJ2 ,
hkn can be represented in the following general forms:

hJ5PJ~l;X!1 (
m51

N(J)
hnm

(J)~X!

l2cm
(J) , hJ25PJ2~l;X!1 (

m51

N(0)
hnm

(J2)~X!

l2cm
(0) ,

h0n5P0n~l;X!1 (
m51

N(K)
h0nm

(K) ~X!

l2cm
(K) , ~44!

hkn5Pkn~l;X!1 (
m51

Nk
(b)

hknm
(b) ~X!

l2bkm
1 (

m51

N(J)

(
j 51

Nkn
(1)

hknm j
(J) ~X!

~l2cm
(J)! j 1 (

m51

N(0)

(
j 51

Nkn
(2)

hknm j
(J2)~X!

~l2cm
(0)! j , kÞ0,

where

Nkn
(1)5max~Nk j1

l ,r ,Nkn j1
l ,r ,0!, Nkn

(2)5umin~Nk j2
l ,r ,Nkn j2

l ,r ,0!u ~45!

are the maximal degrees of the operatorsJ and J21, respectively, inside of the operatorsDkn ;
constantsNk j6

l ,r , Nkn j6
l ,r have been introduced in~12!, ~13!; PJ , PJ2 , Pkn are polynomials inl

with coefficients depending onX ~the polynomial part of normalization function appears only
the operatorsJ(l), J21(l), K0(l) andAk(l) have the polynomial dependence onl!.

The matrix functionshknm
(b,K)(X), hnm

(J,J2)(X), hknm j
(J,J2)(X) and coefficients of the polynomial

Pkn are expressible in terms of the potentialsck , ck(bjn), ck(cj
(K,J,0)) @see ~32!–~35!#. This

statement along with the relations~41!, ~42!, ~43! can be proved in the usual manner.17–19 For
instance, to derive Eq.~43! one needs to apply the operator (l k1r kn) @see definition~15!# to Eq.
~5!,

~ l k1r kn!L~c![~ l k1r kn!c~l;X!2(
j 51

Nk
( l )

] tk jS 1

2p i E d2m

m2l
c~m;X!R~m;X! D Pk j~l!

2(
j 51

Nkn
(r )

]yk jS 1

2p i E d2m

m2l
c~m;X!R~m;X! D Pkn j~l!50. ~46!

Equation~46! can be simplified by using Eqs.~10!, ~11! through the symmetry~9! of the kernelR
and transformation rule~40!. Finally one ends up with Eq.~43! with normalization~44! expressed
in terms of the functionsck , ck(bjn), ck(cj

(K,J,0)), which are defined by Eqs.~32!–~35!.
In view of ~37!, ~38! and due to the rational structure of the normalizationshkn one can

construct the solutionwm with zero normalization as the superposition of the solutionsfJ , fJ2 ,
fkn andc of the equations~41!–~43! and ~5!:

L~wm!50. ~47!

Since the solution of the integral Eq.~5! is unique, Eq.~47! results inwm50 @see~36!#. Due to the
structure of the functionswm they represent an overdetermined linear system for the functionc(l)
with potentials depending onck , ck(bjn), ck(cj

(K,J,0)) @vide Eq.~32!#. It follows from eqs.~37!
and~38! that only two different solutions from the setfJ , fJ2 , fkn , c are enough to construc
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the solution with zero normalization~or a linear equation for the functionc(l)#. For example, the
pairs (c,Dxc) and (c,Dtk

c) lead to the spectral and the evolution parts of the linear system
a (111)-dimensional hierarchy,

Dxc5Û~l;X!c, ~48!

Dtk
c5Ûk~l;X!c, ~49!

while the evolution part of the linear system for the multidimensional hierarchy is generated b
functionsc, Dknc and has the form

Dknc5V̂kn~l;X!c. ~50!

Here Û, Ûk , and V̂k j are the rational functions ofl @due to the functionsJ(l), Pk j(l), and
Pkn j(l)#, their X-dependence is defined byck , ck(bjn), ck(cj

(K,J,0)) @vide Eq. ~32!# and their
derivatives,

Û~l;X!5 (
m51

N(K)

Um~X!

l2cm
(K) 1 (

m50

PK0

lmVm~X!,

Ûk~l;X!5 (
m51

N(K)

Ukm~X!

l2cm
(K) 1 (

m50

PK0

lmVkm~X! ,

V̂kn~l;X!5 (
m51

Nk
(b)

Vknm
(b) ~X!

l2bkm
1 (

m51

N(J)

(
j 51

Nkn
(1)

Vknm j
(J) ~X!

~l2cm
(J)! j 1 (

m51

N(0)

(
j 51

Nkn
(2)

Vknm j
(0) ~X!

~l2cm
(0)! j 1 (

m50

Pkn

lmVknm~X!,

whereNkn
(1) andNkn

(2) have been introduced by Eqs.~45!; PK0
, Pkn are degrees of the polynomia

~in l! parts of the operatorsK0 andDkn , respectively;N(K,J,0) , Nk
(b) are given in~28!–~31!.

In the same way the pairs of the solutions (cJn,c) with nPZ lead to the equations

cJn5 (
m51

N(J)

(
j 50

n Unm j
(J) ~X!

~l2cm
(J)! j c1 (

m51

Pn

unm
(J)~X!lmc, n.0 ~51!

or

cJn5 (
m51

N(0)

(
j 50

n Unm j
(J2)~X!

~l2cm
(0)! j c1 (

m50

Pn

unm
(J2)~X!lmc, n,0 ~52!

~wherePn is the degree of the polynomial part of the operatorJn! which we need to construct th
compatibility condition of the linear system~48!, ~50!.

Finally let us rewrite the whole system~48!–~52! in terms of the functionC,

C5c exp„K0~l!1K1~l!…, ~53!

to replace the functionsDxc, Dtk
c, Dknc with the functionsCx , Ctk

, and (l k1r kn)C, respec-
tively. One gets

Cx5Û~l;X!C, ~54!

Ctk
5Ûk~l;X!C, ~55!
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~ l k1r kn!C5V̂kn~l,X!C, ~56!

CJn5 (
m51

N(J)

(
j 50

n Unm j
(J) ~X!

~l2cm
(J)! j C1 (

m51

Pn

unm
(J)~X!lmC, n.0, ~57!

CJn5 (
m51

N(0)

(
j 50

n Unm j
(J2)~X!

~l2cm
(0)! j C1 (

m51

Pn

unm
(J2)~X!lmC, n,0. ~58!

The feature of the above system is that all independent parameterst, y have been introduced with
the linear differential operators lk1r kn in Eq. ~56!, while the dependence on the parameterx has
been described by the the spectral problem~54! which is a first order ordinary differential equatio
~ODE! and is associated with some (111)-dimensional nonlinear integrable system.

Now the nonlinear system can be constructed in the following two different ways.

~1! By expanding the system~48!–~50! in powers of small parameterse051/l ul→` , e jn
(b)5(l

2bjn)ul→bjn
, e jn

(K,J,0)5(l2cj
(K,J,0))ul→c

j
(K,J,0) and considering the first several terms in each

these expansions to get the complete system of equations for the potentialsck , ck(bjn),
ck(cj

(K,J,0)): the system~48!, ~49! gives rise to the (111)-dimensional hierarchy of nonlinea
PDE, while Eqs.~48!, ~50! result in the multidimensional hierarchy.

~2! As the compatibility condition of the system~54!–~56!: system~54!, ~55! generates the (1
11)-dimensional hierarchy of nonlinear PDE, while the compatibility of Eqs.~54! and ~56!
results to the multidimensional hierarchy of the nonlinear PDE for the potentials~functions of
X! of the operatorsÛ, Ûk , V̂kn .

In relation with a compatibility condition let us emphasize that the operators (l k1r kn) in the
left hand side of the equation~56! act on the functionC in accordance with the formulas~10!, ~11!

~ l k1r kn!C5(
j 51

Nk
( l )

] tk j
~C!Pk j~l;X!1(

j 51

Nk
(r )

]yk j
~C!Pkn j~l;X!, ~59!

i.e. multiply functionC by the matricesPk j and Pkn j from the right. This is not convenient for
work with the compatibility condition. But this multiplication can be replaced with the left m
tiplication if one takes into account the fact that the matricesPk j and Pkn j are polynomials inJ
andJ21. So one can use the relations~57!, ~58! and rewrite the equation~59! in the form

~ l k1r kn!C5(
j 51

Nk
( l )

] tk j
„Pk j

( l )~l;X!C…1(
j 51

Nk
(r )

]yk j
„Pkn j

( l ) ~l;X!C…, ~60!

with

Pk j
( l )~l!5 (

m51

N(J)

(
i 51

max(Nk j1
( l ) ,0)

wk jmi
(J) ~X!

~l2cm
(J)! i 1 (

m51

N(0)

(
i 51

umin(Nk j2
( l ) ,0)u

wk jmi
(0) ~X!

~l2cm
(0)! i 1 (

m50

P̃k j

wk jm~X!lm,

Pkn j
(r ) ~l!5 (

m51

N(J)

(
i 51

max(Nkn j1
(r ) ,0)

wkn jmi
(J) ~X!

~l2cm
(J)! i 1 (

m51

N(0)

(
i 51

umin(Nkn j2
(r ) ,0)u

wkn jmi
(0) ~X!

~l2cm
(0)! i 1 (

m50

P̃kn j

wkn jm~X!lm,

where constantsNk
( l ) , Nk

(r ) , Nk j6
( l ) , Nkn j6

(r ) have been introduced by the formulas~10!–~13!, con-
stantsN(J,0) are given by~29!, ~30! and all potentials~functions ofX! are expressible in terms o
the potentials of the equations~57! and ~58!; P̃k j , P̃kn j are the degrees of polynomial parts
operatorsPk j

( l )(l) andPkn j
( l ) (l), respectively.
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After this the compatibility condition of the system~54! and ~56! can be represented in th
usual form

@]x2Û,l k1r kn2V̂kn#50 ~61!

@with operator (l k1r kn) given by the formula~60!# and leads to the system of nonlinear PDE f
the potentials of the operatorsÛ, V̂kn , l k , andr kn .

Emphasize that Eq.~61! represents the general formula for the multidimensional hierar
generated by both a linear system~54!, ~56! and local]̄-problem with rational dressing operato
Ki , i 50,1,2, operatorJ @see~9!# and canonical normalizationh51 in Eq. ~5!.

C. Examples: Multidimensional hierarchy of the Nonlinear Schro ¨ dinger equation

As an example let us consider the matrix (N3N) ]̄-problem~5! with the kernelR of the form
~6!, ~8!, ~9!, ~17!–~19! @and~22! for the second example# and canonical normalization@see~32!–
~35!#,

cul→`→11 (
k>1

ck

lk ,

~62!

cul→0→(
k>0

ck~0!lk.

We fix K0 of the form

K05lxA01 (
k>1

i ~ il!ktkA0 . ~63!

In the particular caseN52, A05s5diag(1,21) andJ51, K0 generates the (111)-dimensional
hierarchy of the nonlinear Schro¨dinger equation~NS! ~the ]̄-dressing for NS one can find in Re
20!,

2iwt2
1wxx18uwu2w50. ~64!

We will not discuss the (111)-dimensional hierarchy, generated by the dressing oper
~63!. Also we will not consider the whole multidimensional hierarchy related with a givenK0 .
Below are given two examples in whichAk are diagonal matrices.14 For convenience we fixMk

51 in Eq. ~11!, assume that all parameterst are enumerated with one index, and take
following set ofy and t parameters:

Tk5$tk ,yk j , j 5Mn2 , . . . ,Mn1%, Mn6PZ, ~65!

instead of~16!.
Example 1.
Let

K1~l!5 (
nÞ0,1

Anlntn , ~66!

K2~l!5 (
nÞ0,1

(
m5Mn2

Mn1

f nmynm , @Ai ,Aj #50, ~67!

J5lA, ~68!
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where constantsMn6 can be either negative or positive,A is the matrix which does not depend o
both l andX with

(
m5Mn2

Mn1

f nmJm52lnAn . ~69!

The correspondent spectral problem~48! and multidimensional linear evolution equation~50! have
the form

Dxc2lA0c2uc50, u5@c1 ,A0#, ~70!

] tn
c1 (

m5Mn2

Mn1

]ynm
cJm1lncAn5 (

m5min(Mn2 ,n,0)

max(Mn1 ,n,0)

Wnmlmc. ~71!

To eliminate right multiplication by the operatorsJm let us use the equations~51! and~52! which
have a very simple form in the case of operatorJ given by the formula~68!:

cJn[lncAn5 (
k5min(n,0)

max(n,0)

lkUkc, ~72!

with potentialsUm are related with either functionsck (n.0) or functionsck(0) (n,0). So that
finally the spectral~70! and evolution~71! equations can be rewritten in the form@C is given by
~53!#

Cx2lA0C2u~X!C50, u5@c0 ,A0#, ~73!

] tn
C1 (

m5Mn2

Mn1

(
k5min(m,0)

max(m,0)

lk]ynm
„Uk~X!C…5 (

m5min(Mn2 ,n,0)

max(Mn1 ,n,0)

Wnm~X!lmC. ~74!

This form is preferable for the construction of the compatibility condition~61!, which looks like

F ]x2lA02u,] tn
1 (

m5Mn2

Mn1

(
k5min(m,0)

max(m,0)

lk]ynm
Uk2 (

m5min(Mn2 ,n,0)

max(Mn1 ,n,0)

lmWnmG50. ~75!

This formula is the particular case of Eq.~61! and represents the whole multidimensional hier
chy generated by the isospectral problem~73!, ~74! and local ]̄-problem with operatorsKi ( i
50,1,2) andJ of the form ~63!, ~66!–~68!, and canonical normalization.

In more details let us consider the (311)-dimensional system with independent parameterx,
t5t2 , y15y21, y25y22, and f 2152A1l sin(aulu)2, f 2252A1 cos(aulu)2, A51, a5const. The
spectral problem is the same~50!, ~73! while the evolution equation now has the following form

c t1lcy1
1l2cy2

1l2cA12l2A1c2~lw11w2!c50,

w15@c1 ,A1#1]y2
c1 ,

w25@c2 ,A1#2w1c11]y2
c21]y1

c1 ;

or in terms of the functionC ~53! one has the following linear evolution equation:

C t1lCy1
1l2Cy2

2l2A1C2~lw11w2!C50. ~76!

The nonlinear system associated with Eqs.~73! and ~76! can be written for the matricesu, w1 ,
andw2 :
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uy2
2@w1 ,A0#1@u,A1#50,

uy1
2w1x2@w1 ,u#2@w2 ,A0#50, ~77!

ut2w2x2@w2 ,u#50,

which follows from the commutator~75!.
Now we discuss the reduction of the system~77! which has the physical meaning. LetN

52, A05A15s5diag(1,21). The matricesu, w1 , andw2 can be represented in the form

u5S 0 q

r 0D , w15S w11 w12

w22 2w11
D , w25S w21 w

v 2w21
D ,

and the system~77! results in the following one:

qy1
2qx1 1

2 qxy2
12w2q]x

21~qr !y2
50,

r y1
2r x2 1

2 r xy2
22v1r ]x

21~qr !y2
50,

~78!
qt2wx22q]x

21~qv2rw !50,

r t2vx12r ]x
21~qv2rw !50,

which allows the evident reductionq52 r̄ 522w, w5 v̄5x with replacement]y2
→ i ]y2

, ] t

→ i ] t . Thetk-evolution of the functionw is represented by the (111)-dimensional NS-hierarchy
while the above nonlinear system~78! takes the form

x5wy1
2wx1

i

2
wxy2

14iw]x
21~ww̄!y2

,

~79!
2iw t1xx18]x

21~xw̄1wx̄!w50.

This system represents an example of a (311)-dimensional equation from the multidimension
hierarchy of NS~64!.

Emphasize that if they2-dependence is absent in the system~79! (]y2
50) then it leads to the

Davey–Stewartson type equation,14,16

2iw t1~]y1x2]xx!w28w2w̄18w]x
21~ww̄!y1

50.

The last one in terms of independent variablest, j5x1y1 , h5y1 , takes the form

2iw t1wjh18w]j
21~ww̄!h50, ~80!

which is a (211)-dimensional equation representing a multidimensional hierarchy of NS.
Example 2:Let Ak50 in Eqs.~10!, ~11! and considerR1 andR2 in ~17! of the form~22! with

K150, K2~l!5(
n

Bn~l! (
m5Mn2

Mn1

f nmynm , @Ai ,Aj #50, @Bn ,J#50, ~81!

and
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(
m5Mn2

Mn1

f nmJm50, J5Al. ~82!

The spectral problem for this example is the same~73!, while the multidimensional linear evolu
tion equation~56! has the form

(
m5Mn2

Mn1

]ynm
C Jm5 (

m5Mn2

Mn1

WnmlmC.

Again the right multiplication by the matricesJm can be replaced with the left multiplication b
using the equations~72!. As a result one has

(
m5Mn2

Mn1

(
k5min(m,0)

max(m,0)

lk]ynm
~UkC!5 (

m5Mn2

Mn1

WnmlmC. ~83!

In this case the compatibility condition of the system~73! and ~83! looks like

F ]x2lA02u, (
m5Mn2

Mn1

(
k5min(m,0)

max(m,0)

lk]ynm
Uk2 (

m5Mn2

Mn1

WnmlmG50, ~84!

and is analogous to Eq.~75! with reduction] tn
50.

The equation~84! is the general formula which represents the multidimensional hiera
generated by the spectral problem~73! and local ]̄-problem with canonical normalization an
operatorsKi , i 50,1,2 andJ of the form ~81! and ~82!.

For detailed consideration let us takef 115l2, f 1252l/2, f 13521/2, A51, y15y11, y2

5y12, y35y13. The linear equation~83! looks like

Cy1
1lCy2

1l2Cy3
2~lv11v2!C50,

~85!
v15c1y3

, v25c1y2
1c2y3

2v1c1 ,

and the compatibility condition~84! results in the nonlinear system of PDE:

uy3
2@v1 ,A0#50,

uy2
2v1x2@v1 ,u#2@v2 ,A0#50, ~86!

uy1
2v2x2@v2 ,u#50,

which is very similar to the system~77!.
The problem of the construction of the explicit solutions is closely related with the reduc

for the kernelR. Let us emphasize that the matricesBk in operatorK2 are arbitrary matrices of the
parameterl. This fact extends the manifold of the solutions available through the]̄-technique for
the nonlinear systems of this type.

D. Particular solutions

In this section we consider only the simplest example of particular solutions for the sy
~79!. The detailed analysis of the nonolinear PDE constructed in this section is left beyon
scope of this paper.

As usual,17–19 the first step is to solve the integral equation~5!. Since this equation is a loca
integral one, the construction of its solutions is more complicated in comparison with the
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procedure for nonlocal]̄-problem.17,19 For example, in the local case the kernel of the integ
operator in the equation~5! cannot be degenerated. Nevertheless, there is a particular case
operatorsR1 andR2 in the representation~18! such that the solutions of the integral equation~5!
are well formed and correspondent solutions of the nonlinear PDE can be found.

Namely, to solve the system~79! we consider the equation~5! with a kernel~17!–~19! and
operatorsK05ls, K152 isl2t, K252s(l sin2(ulu)y12i cos2(ulu)y2)5sk2(l), i 2521, which
solves the system~79!. Introduce also the special structure of matricesR10 andR20 in ~17!:

R10R20522p i S 0 (
k51

N

akd~l2b!

(
k51

N

ākd~l1b̄ ! 0
D , ~87!

wherebk5ak1 ibk ~ak andbk are real numbers!. Then the integral equation has the solution in t
form (E5diag$1,1%)

c~l![S c11~l! c12~l!

c21~l! c22~l!
D 5E1S (

k51

N
c12~2b̄k!E2k

l1ā1k

(
k51

N
c11~bk!E1k

l2bk

(
k51

N
c22~2b̄k!E2k

l1b̄k

(
k51

N
c21~bk!E1k

l2bk

D ,

E1k5ak exp„2bkx2 i ~bk!
2t1k2~bk!…, ~88!

E2k5āk exp„2b̄kx1 i ~ b̄k!
2t2k2~2b̄k!…,

wherec ln(bk) andc ln(2b̄k) are the solutions of the following linear algebraic system:

S c11~bn! c12~2b̄n!

c21~bn! c22~2b̄n!
D 5E1S (

k51

N
c12~2b̄k!E2k

bn1b̄k

2 (
k51

N
c11~bk!E1k

b̄n1bk

(
k51

N
c22~2b̄k!E2k

bn1b̄k

2 (
k51

N
c21~bk!E1k

b̄n1bk

D , ~89!

with n51, . . . ,N. The solution w of the nonlinear system~79! takes the form w
5(k51

N c11(bk)E1k in accordance with Eq.~62!. Another functionx of the system~79! is related
with w due to the first equation of this system.

Formulas~88! and ~89! describe theN-soliton solution of Eq.~79!. In the particular case o
N51, b15a1 ib, a15a one has one soliton solution,

w5
aaei (2bx1by1 sin2(ua1 ibu)2y2 cos2(ua1 ibu)1(b22a2)t)

uaucosh~a„22bt22x2y1 sin2~ ua1 ibu!…1 ln~2a/uau!!
. ~90!

III. NONSYMMETRIC DRESSING WITH NONLOCAL ̄-PROBLEM

A. Nonlocal ̄-problem with reduction

The nonlocal]̄- problem,17,18

Ln~c![c~l;X!2
1

2p i E E dn∧dn̄dm∧dm̄

m2l
c~n!R~n,m;X!5h~l;X!, ~91!
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h511(
k

hk~X!

l2ak
, ~92!

is well suited for the construction of a wide class of solutions for the (211)-dimensional inte-
grable system of nonlinear PDE. Hereh is a normalization function andhk are residues of the
function c at the pointsak . Like the local]̄-problem for (111)-dimensional integrable PDE, i
allows us to construct the Ba¨cklund and Miura transformations as well as the complete hierarc
of (211)-dimensional equations.

It is also known~see for instance Ref. 21! that if the kernel satisfies the condition

V~m!R~m,l!5R~m,l!V~l!, ~93!

whereV is a matrix function with rational dependence onl which does not depend onX, then the
(211)-dimensional system reduces to the (111)-dimensional one. For example, by this way, t
sinh-Gordon equation with nonlocal deformation22 and CH-equation23,24have been described. Th
symmetry~93! of the kernelR can be used for the construction of the multidimensional hierarc
of the (111)-dimensional nonlinear PDE. In this section we perform the nonsymmetric dre
with the nonlocal]̄-problem~91!–~93! to construct them. Since we are going to use the symm
~93!, the proceeding algorithm is restricted to the (111)-dimensional systems of PDE, i.e., w
cannot construct themultidimensional hierarchies of the(211)-dimensional integrable equation
in the same manner.

Note that the symmetry of the kernel~93! is analogous to the symmetry~9! of the kernel of a
local ]̄-problem. But in Eq.~9! the variantJ51 is possible, whileV should be always a rationa
function ofl in Eq. ~93!: V(l)Þconst. This fact is important for the construction of multidime
sional nonlinear systems of PDE.

B. Nonsymmetric dressing operators

To begin with let us represent the kernelR in the form

R~m,l;X!5exp„K0~m;x,t!…R̂~m,l;y,t!exp„2K0~l;x,t!…, ~94!

whereK0(l;x,t) is a rational function of the variablel which should satisfy the commutatio
relations

@V,K0#5@Dx ,Dtk
#50 ~95!

@the definitions of long derivativesDx , Dtk
are given by Eqs.~7!#. Together with theV operator

K0 generates the (111)-dimensional hierarchy. For the present consideration we fix the ope
K0 of the form ~8! ~the classical model!. The matrix functionR̂ should guarantee the uniqu
solution of Eq.~91! with hÞ0. Variablest andy of the multidimensional hierarchy are introduce
by the nonsymmetric manner with the equations analogous to Eqs.~10! and ~11!:

l kR̂[(
j 51

Nk
( l )

R̂tk j
~m,l;X!Pk j„V~l!,X…5Ak~m!R̂~m,l;X!, ~96!

r knR̂[(
j 51

Nk
(r )

R̂yk j
~m,l;X!Pkn j„V~l!,X…52R̂~m,l;X!Ak~l!, n51, . . . ,Mk , ~97!

where
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Pk j„V~l!;X…5 (
m5Nk j2

Nk j1

gk jm~X!Vm~l!, ~98!

Pkn j„V~l!;X…5 (
m5Nkn j2

Nkn j1

gkn jm~X!Vm~l! ~99!

~gk jm and gkn jm are the scalar functions ofX only, Nk
( l ) , Nk

(r ) , Nk j6 , Nkn j6PZ!, so that the
operatorsPk j , Pkn j depend onl only through the operatorV, while operatorsAk and K0 are
functions ofl, whose structures are not necessarily related withV. This is the difference betwee
systems described by local and nonlocal]̄-problems: in the first case@Eqs. ~10! and ~11!# the
l-dependence ofPk j , Pkn j is not restricted by the operatorJ, which plays the same role a
operatorV in Eqs.~96!, ~97!.

Another feature of the nonlocal problem is that the normalization functionh ~92! plays a
major role for the construction of nonlinear systems. Along with the canonical normalizatih
51 one can consider also rational one, like~92!.18

In the following considerationsgk jm , gkn jm , andAk do not depend onX which leads to the
nonlinear PDE with constant coefficients. In this case the equations~96!, ~97! are always com-
patible if only the kernelR̂ is factorized on three factors@instead of two factors in~17!#:

R̂~m,l;t,y!5R1~m;t!R0~m,l!R2~l;y!. ~100!

FunctionsR1 and R2 in ~100! have the form~18!–~21! @with replacementJ→V in ~21!#. One
should remember that the operatorsPk j , Pkn j depend onV. The formulas analogous to~22!–~27!
@with replacementJ(l)→V(l)# take place if only there are some zero matricesAj50, j
PZ0,Z.

C. Construction of systems of nonlinear PDE

Now let the operatorsK0(l), Ak(l), V(l) and normalizationh to be rational functions of
the complex parameterl and analytical everywhere on the complex plane except the points~for
simplicity, all points are different!

cj
(K) , j 51, . . . ,N(K)—simple poles of operatorK0 , ~101!

cj
(V) , j 51, . . . ,N(V)—simple poles of operatorV, ~102!

cj
(0) , j 51, . . . ,N(0)—simple poles of operatorV (21) ~zeros of V!, ~103!

bk j , j 51, . . . ,Nk
(b)—simple poles of operatorsAk , ~104!

aj , j 51, . . . ,N(a)—simple poles of normalization functionh. ~105!

Then the solutionc has the following expansions at infinity and in the neighborhoods of the ab
points:

cul→`→11 (
k.0

ck

lk , cul→c
j
(K,V,0)→(

k>0
ck~cj

(K,V,0)!~l2cj
(K,V,0)!k, ~106!

cul→bjn
→(

k>0
ck~bjn!~l2bjn!k, ~107!
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cul→an
→ hn

l2an
1 (

k>0
ck~an!~l2ak!

k,

~108!

ck5(
n

hnan
k212

1

2p i E dn∧dn̄dm∧dm̄ mk21c~n!R~n,m;X!,

ck~am!5dk02 (
nÞm

hn~an2am!2(k11)

1
1

2p i E dn∧dn̄dm∧dm̄~m2am!2(k11)c~n!R~n,m;X!, ~109!

ck~cm
(K,V,0)!5dk02(

n
hn~an2cm

(K,V,0)!2(k11)

1
1

2p i E dn∧dn̄dm∧dm̄~m2cm
(K,V,0)!2(k11)c~n!R~n,m;X!, ~110!

ck~bjm!5dk02(
n

hn~an2bjm!2(k11)

1
1

2p i E dn∧dn̄dm∧dm̄~m2bjm!2(k11)c~n!R~n,m;X!. ~111!

In analogy to the local]̄-problem the derivation of the nonlinear system from the nonlo
]̄-problem is based on three statements.17,18 Two of them are exactly the same@see Eqs.~36!,
~37!#. But the third one should be modified in the following way. The equation~38! is not true for
this case while Eq.~39! should be rewritten in terms of the operatorV instead ofJ. Namely if the
function c is the solution of Eq.~91! with fixed normalizationhcÞ0 then the functioncVn(l)
is also a solution of Eq.~91! with the same kernelR and some different normalizationhV ,

L~cVn!5hV
(n)5hc~l!Vn~l!1h r

(n)~l!, ~112!

whereh r is the rational function ofl. This statement can be proved directly by multiplying E
~91! by the functionVn from the right hand side and taking into account the reduction~93! and the
transformation rule~40! for the rational matrix functionV(l).

In analogy to the formulas~42!, ~43! one gets the solutionsfkn of Eq. ~91! with rational
normalization whose structure is determined by the normalizationh ~92! and operatorsK0 , Ak ,
andV,

L~f00![L~Dxc!5h00, L~f0k![L~Dtk
c!5h0k , ~113!

L~fkn![L~Dknc!5hkn , Dknc5~ l k1r kn!c1cAk , kÞ0, nÞ0, ~114!

h0n5P0n~l;X!1 (
m51

N(K)
h0nm

(K) ~X!

l2cm
(K) 1 (

m51

N(a)
h0nm

(a) ~X!

l2am
, nÞ0, ~115!
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hkn5Pkn~l;X!1 (
m51

Nk
(b)

hknm
(b) ~X!

l2bkm
1 (

m51

N(V)

(
j 51

Nkn
(1)

hknm j
(V) ~X!

~l2cm
(V)! j

1 (
m51

N(0)

(
j 51

Nkn
(2)

hknm j
(0) ~X!

~l2cm
(0)! j 1 (

m51

N(a)
hknm

(a) ~X!

l2am
, kÞ0, nÞ0. ~116!

ConstantsNkn
(1,2) are given by~45!; constantsN(K,a,V,0), Nk

(b) are introduced by~101!–~105!;
operatorsDkm in eq. ~114! are defined by the formula~15! with replacementl→V(l) in coef-
ficientsPk j andPkn j . The last term in~115! and~116! is related with poles of the normalizatio
h ~92! @the term of this kind is absent in Eqs.~44!, since we take the normalizationh51 in the
local ]̄-problem~5!#. Pkn are polynomials inl @the polynomial part of normalizations is relate
with polynomial parts of the operatorsK0(l), Ak(l), V(l), andV21(l)#. The coefficients of
these polynomials along with the functionshknm

(a,b,K) , hknm j
(V,0) are the functions of the potentialsck ,

ck(bjn), ck(cn
(K,V,0)), ck(an) ~106!–~111!. This statement together with Eqs.~113!–~116! can be

proved in the same way as Eqs.~42!–~44! with the structure of their normalizations have be
proved: one needs to apply the operatorsDx , Dtk

, or Dkn to Eq.~91! and use the special structur
of the kernel@which is given by~94!–~100!#, symmetry~93!, and transformation rule~40! for the
rational matrix function ofl. After this, it is not difficult to check that the following functions ar
also solutions of Eq.~91! with rational normalizations,

Dx
nfkn , Dtk

n fkn , nPZ.

By combining the solutions from the setc, fkn , Dx
l fkn , Dtk

l fkn , cVn and taking into accoun

~37! and~112! one can construct solutions with zero normalizations~36!. Due to the structure of
the operatorsDx , Dtk

, Dkn , and V these solutions represent the linear system of PDE on
function c. For example, the linear system for a (111)-dimensional hierarchy appears if on
constructs the solution with zero normalization by using the operatorsDx

k , Dtk

m , Vn (k,m,n

PZ) and solutionc. The number of terms in these linear equations is defined by the numbe
orders of the poles in it, which is indicated below by the formulas~118!, ~120!, ~122!, ~123!, ~124!

Û~V,Dx ,X!c50, Û5 (
k50

M1
(x)

(
m50

M2
(x)

U1kmDx
kVm, ~117!

~M1
(x)11!~M2

(x)11!>M1
(x)N(K)1M2

(x)Nc
(V)1N(a), ~118!

Ûk~Dx ,Dtk
,X!c50, Ûk5 (

n50

M
1

(tk)

(
m50

M
2

(tk)

UknmDx
nDtk

m , ~119!

~M1
(tk)

11!~M2
(tk)

11!>M1
(tk)M2

(tk)N(K)1N(a). ~120!

The linear system for the multidimensional hierarchy is related with the operatorsDkn , Dx
m , Vn

(m,nPZ),

Dknc1V̂kn~V,Dx ,X!c50,
~121!

V̂kn5 (
j 50

M1
(kn) S (

m50

M2
(kn)

Vkn jm
(1) Dx

kVm1 (
m51

M3
(kn)

Vkn jm
(2) Dx

kV2mD ,
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~M1
(kn)11!~M3

(kn)1M2
(kn)11!>M1

(kn)N(K)1M2
(kn)N(V)1M3

(kn)N(0)1Nk
(b)1N(a), ~122!

M2
(kn)>max~Nk j1

l ,r ,Nkn j1
l ,r ,0!, ~123!

M3
(kn)>umin~Nk j2

l ,r ,Nkn j2
l ,r ,0!u ~124!

~remember that operatorsVm act on the functionc from the right!.
Finally let us rewrite the above linear system in terms of the functionC ~53! to replaceDxc,

Dtk
c, Dknc with Cx , Ctk

, and (l k1r kn)C. So one has

Û~V,]x ,X!C50, ~125!

Ûk~]x ,]tk
,X!C50, ~126!

~ l k1r kn!C1V̂kn~V,]x ,X!C50. ~127!

Generally speaking, operatorsÛ, Ûk , V̂kn are the linear differential ones with respect tox

~operatorsÛ, V̂kn! or x,tk ~operatorsÛk!. The coefficients of these operators depend onV and
functionsck , ck(bjn), ck(cj

(K,V,0)), ck(an) which are given by Eqs.~106!–~111!.
An important fact is that all parameterst, y of multidimensional hierarchy have been intr

duced by Eq.~127! with first order differential operators (l k1r kn), while thex-dependence ha
been described by the spectral problem~125! which is ODE and is related with some nonline
integrable (111)-dimensional system of PDE.

Now the basis has been prepared for the construction of the nonlinear multidimen
systems of PDE. It can be done by the same two manners which have been pointed in the
Sec. II.

~1! By the expansion the system~117!, ~119!, ~121! in the neighborhood of the singularities of th
operatorsK0 , Ak , V, V21, and normalization functionh.

~2! From the compatibility condition of the system~125!–~127!. The compatibility of the system
~125!, ~126! produces the (111)-dimensional hierarchy of nonlinear PDE, while the comp
ibility of the systems~125! and ~127! produces the multidimensional hierarchy.

The last one can be represented by the commutator

@Û~]x ,V;X!,Dkn2V̂kn~]x ,V;X!#5B̂kn~]x ,V;X!Û~]x ,V;X!, ~128!

with the operatorB̂kn is the linear differential operator of the form

B̂kn~]x ,V;X!5(
m j

Bknm j~X!]x
mV j ,

with potentialsBknm j are functions ofX expressible in terms of the potentials of the operatorsÛ

andV̂kn , which also fix the order of the differential operatorB and the maximal degree ofV in it.
Equation~128! represents the general formula for the multidimensional hierarchy gene

by both the linear system~125!–~127! and nonlocal]̄-problem~91! with rational dressing opera
tors Ki ( i 50,1,2), V, and normalization functionh.

Following are the examples.
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D. Examples

For all examples below we fixMk51 in the equations~97! and assume that the set oft and
y variables is given by~65!. We consider examples of multidimensional hierarchies based on
matrix ~Sec. III D 1! and scalar~Sec. III D 2! ]̄-problems.

1. Matrix nonlocal ̄-problem with canonical normalization

As the first example we consider the multidimensional hierarchy generated by the m
problem with canonical normalization,

cul→`→11 (
k.0

ck

lk ,

~129!

cul→c→(
k>0

ck~c!~l2c!k

@see~106!–~111!#, wherec is a complex constant. We choose the operatorsK0 , V, K1 , andK2 of
the form

K0~l!5Ilx1 (
k.0

I ktkl, @ I i ,I j #50, @ I ,I i #50, ~130!

V5
B

l2c
, @B,I i #50, ~131!

K15(
k

tkJkl, @Ji ,I #5@Ji ,Jj #5@Ji ,I j #50, ~132!

K25(
k

(
n5Mk2 ,nÞ1

Mk1

f kn~l!ykn , ~133!

with

(
n5Mk2

Mk1

f knV
n52lJk .

Note that the operatorsK0 andV of the above form describe theN-wave interaction (N.2).3 So
the multidimensional nonlinear system derived below~138!, ~141! with N.2 can be considered a
the multidimensional hierarchy of theN-wave system.

The spectral problem~117! looks like the following equation:

„Dxc1U0~X!c…V5U1c,
~134!

U052Dxc~c!c~c!21, U15IB5const,

and the linear evolution equation~121! has the form

Dk1c[] tk
c1 (

n5Mk2

Mk1

]ykn
cVn1cJkl5 (

n5min(Mk2,0)

max(Mk1,0)

Wkn~X!cVn, ~135!

where potentialsWkn are expressible in terms of the functionsck , ck(c) ~129! ~we do not
represent these expressions for the sake of brevity!.

Both of these equations~134! and ~135! can be rewritten in terms of the functionC ~53!,
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„Cx1U0~X!C…V2U1C50, ~136!

] tk
C1 (

n5Mk2

Mk1

]ykn
CVn2 (

n5min(Mk2,0)

max(Mk1,0)

Wkn~X!CVn50, ~137!

with the compatibility condition~128! looks like the following one:

F ]xV1U0~X!V2U1 ,] tk
1 (

n5Mk2

Mk1

]ykn
Vn2 (

n5min(Mk2,0)

max(Mk1,0)

Wkn~X!VnG50, ~138!

which gives the nonlinear system for the potentialsU0 , Wnm . This is the general formula which
represents the multidimensional hierarchy associated with the dressing operatorsK0 , V of the
form ~130! and ~131! and operatorsK1 , K2 of the form ~132! and ~133!.

Let us consider in detail the simple example of the (311)-dimensional equation with vari
ablesx, t5t1 , y15y11, y25y1,21 , and

f 1,21V211 f 11V52lJ.

The spectral problem is the same~134!, ~136!, while the evolution equation~135! looks like the
following one:

Dk1c5] t1]y1
c

B

l2c
1]y2

c~l2c!B211lcJ5W1c
B

l2c
1W2cB21~l2c!1W3c,

W15cy1
~c!c21~c!, W25JB5const, ~139!

W35c1y2
B211Jc12W2c1B211cW2B21,

or in terms of the functionC ~53!:

C t1Cy1
V1Cy2

V212W1CV2W2CV212W3C50. ~140!

The compatibility condition~138! of the linear equations~136! and ~140! gives the following
matrix system on the potentialsU0 andWk , k51,2,3:

]y1U01]xW12@W1 ,U0#50,

] tU01]xW31@W1 ,U1#2@W3 ,U0#50, ~141!

]y2
U02@W2 ,U0#1@W3 ,U1#50,

@W2 ,U1#50, U15const, W25const,

which is identical to the system~77! with the map

~U0 ,U1 ,W1 ,W2 ,W3 ,]y1
,]x ,] t ,]y2

!→~2u,A0 ,w2 ,A1 ,w1 ,] t ,]x ,]y1
,]y2

!,

so that the nonlocal]̄-problem considered in this example represents another manifold of pa
lar solutions to the system~77!.
                                                                                                                



of the
ul-

ce
s
tions
-
ener-
e (
model

h

sen-

r
-

if
idi-
-

hy

hy

6269J. Math. Phys., Vol. 41, No. 9, September 2000 Multidimensional hierarchies of integrable PDE

                    
2. Scalar ̄-problem: Multidimensional hierarchy of modified KdV (mKdV) and
associated hierarchies

In Ref. 25 a (211)-dimensional generalization of the Camassa–Holm equation~CH!26–30has
been derived by introducing the additional independent variable in the spectral equation
auxiliary ~overdetermined! linear system for the CH. There is another way to construct the m
tidimensional equations which are reducible to the (111)-dimensional CH when the dependen
on all extra variables is absent~see, for example, Ref. 15!. In this case the additional variable
appear only in the evolution part of the auxiliary linear system. Multidimensional generaliza
of this kind can be investigated also by using the modification of the]̄-dressing procedure intro
duced in this section. Here we consider only integrability aspects of this multidimensional g
alizations and do not discuss their physical application. Particularly, their relation with thn
11)-dimensional CH equation, which has been obtained in Ref. 31 as the hydrodynamical
will be discussed elsewhere.

As long as CH,

mt22kux2umx22mux50, m5u2uxx , ~142!

is related with nonlocal deformation of the sinh-Gordon equation,22

1
2xt̂2c1ex2c2e2x2„]X

21~ex!]X
21~e2x!…X50, ~143!

through the hodograph transformation,24 the CH-hierarchy~multidimensional as well! can be also
received from the~multidimensional! hierarchy of the equation~143! through the same hodograp
transformation.

So we start with the]̄-problem for hierarchy of the last mentioned equation, which is es
tially the hierarchy of mKdV,

U2h2 1
4 U2XXX1 3

8 U2
2U2X50, U25xX ~144!

~h is an evolution parameter!, since both equations~143! and~144! have the same spectral linea
equation~153!. After this we introduce the hodograph transformation~160! and hierarchy associ
ated with mKdV-hierarchy under the given hodograph transformation.

Note that the hierarchy of this kind has anarbitrary function of independent variablesF @see
~160!#. This arbitrary function can be fixed byany acceptable additional equation. Particularly
one fixesF with the equation~161! then the above mentioned hierarchy results in the mult
mensional CH-hierarchy. We write down the example of a (311)-dimensional system of equa
tions from this hierarchy.

If the functionF is fixed with the equation~177! then one has the multidimensional hierarc
of the equation~179! ~its physical meaning is not clarified yet!. We represent explicitly a (2
11)-dimensional system of equations from this hierarchy~178!.

a. About multidimensional hierarchy of mKdV.In this paragraph we consider the hierarc
which is given by the dressing operators of the form

K05lX1 (
nÞ0,1

lnt̂n , K15 (
nÞ0,1

Tnln, ~145!

K25 (
nÞ0,1

(
k5Mn2

Mn1

Ynkf nk~l!, V5
1

l~l21!
, ~146!

(
k5Mn2

Mn1

f nkV
k52ln, nÞ0,1.
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Here we use the different notations for independent variables:X is the space variable,t̂m are
evolution variables of (111)-dimensional CH hierarchy, parametersTk , Ykn correspond to the
multidimensional hierarchy. In other words parameters (X,t̂k ,Tk ,Ykn) correspond to the param
eters (x,tk ,tk ,ykn) in the previous sections. We use these re-designations for convenience
the results of this example in the next one, where the CH hierarchy will be discussed.

We consider the solution of Eq.~91! with singular normalizationh51/(l21) and the fol-
lowing expansions@see~106!–~111!#:

cul→`5 (
k.0

ckl
2k, cul→15

1

l21
1 (

k>0
ck~1!~l21!k,

cul→05 (
k>0

ck~0!lk.

Then the linear system~117!, ~119!, ~121! for the deformed sinh-Gordon~143!22 and multidimen-
sional mKdV hierarchy takes the form (t̂5 t̂21)

DXXc2
1

V
c2U1 DXc1U2c50, ~147!

D t̂c1VV DXc2VVc1Wc50, ~148!

Dn1c[cTn
1 (

m5Mn2

Mn1

VmcYnm
1lnc

5S (
m50

umin(2Mn2 ,n,0)u

U1nmDX
m1 (

m51

max(Mn1 ,2n,0)

U2nmD t̂
m

1 (
m51

max(Mn1,0)

U3nmVmDc, ~149!

where

V2152
1

c0~0!
~c0~0!2c0X~0!!,

~150!
W52~11Vc0X~1!1V!,

U15
1

c1
~2c1X1c1!,

~151!
U25U121,

and potentialsUinm , i 51,2,3 are the functions ofX which can be expressed in terms of th
functionsck , ck(1), ck(0), andtheir derivatives. We will not give the explicit expressions f
these potentials in the general situation for the sake of brevity. Note that theD t̂ andDx

n operators
in the equation~149! can be expressed in terms of the first order operatorDx and operatorV by
using the equations~147! and~148!. Finally rewrite the equations~147! and~149! in terms of the
function C,

C5c exp~K01K12x!, ~152!

to end up with the system

CXX2UCX2
1

V
C50, U5U122, ~153!
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Dn1C[CTn
1 (

m5Mn2

Mn1

CYnm
Vm5 (

m5N2
(1)

N1
(1)

Ū1nm ]X CVm1 (
m5N2

(2)

N1
(2)

Ū2nmCVm ~154!

~the constantsN6
(1,2) are defined by the constantsMn6 andn! and the compatibility condition of

the system~153!, ~154! looks like the following equation:

F ]XX2U]X21/V,]Tn
1 (

m5Mn2

Mn1

]Ynm
Vm2 (

m5N2
(1)

N1
(1)

Ū1nmVm]X2 (
m5N2

(2)

N1
(2)

Ū2nmVmG
522 (

m5N2
(1)

N1
(1)

Vm~]XŪ1nm!~]XX2U]X21/V!. ~155!

Equation ~155! gives the general formula which describes the multidimensional hiera
generated by the isospectral problem~153!, ~154! and nonlocal]̄-problem with dressing operator
K1 ( i 50,1,2), V ~145!, ~146! and singular normalizationh51/(l21).

For the detailed consideration let us take the simple case of the equations with four ind
dent variablesX, T5T21 , Y15Y11, Y25Y1,21 which are introduced by the operatorsDX5]X

1l andD115]T1V]Y1
1(1/V) ]Y2

with

f 1,21V211 f 11V52
1

l
.

In this case the linear equation~149! has the form@we use the equations~147!, ~148! in order
to eliminate the operatorDx

2 andD t̂#

cT1VcY1
1V21cY2

1
1

l
c1W1 DXc1W2V DXc2W2Vc1W3V21c1W4c50,

with potentialsWk , k51,2,3,4 are defined by the system of algebraic equations,

c2Y2
2c1Y2

1W1c11W3~c22c1!50,

c0~0!2c0Y1
~0!2W2„c0X~0!2c0~0!…50, ~156!

W352c1Y2
/c1 , c0Y1

~1!111W11W2„11c0X~1!…1W450,

or in terms of the functionC ~152!,

S ]T1V]Y1
1

1

V
]Y2DC1~P11VP2!CX1S Q11

Q2

V DC50, ~157!

P15W1 , P25W2 , Q15W11W4 , Q25W3 . ~158!

In this case the compatibility condition~155! leads to the following nonlinear system:

UY1
1P2XX1~P2U !X50,

UY2
12Q2X50,

UT12Q1X1P1XX1~P1U !X50, ~159!
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Q2XX12P1X2UQ2X50,

Q1XX12P2X2UQ1X50,

which is the example of the (311)-dimensional system from the multidimensional mKdV hie
archy.

b. About hodograph transformationIn the beginning of Sec. III D we mentioned about tran
formations between Eqs.~142! and~143!. This transformation has been found in Ref. 24 and is
hodograph one of the form~we adjust the notations!

X5F~x,tk ,t,y!, Tk5tk , Ykn5ykn , t̂k5tk ,
~160!

u5
Ft21

Fx
,

with function F satisfies the equation

UFx1
Fxx

Fx
51 ~161!

~in Refs. 27, 29 this transformation had been introduced in another context!. We will keep the
same transformation~160! with arbitrary functionF to get the multidimensional hierarchy ass
ciated with the mKdV hierarchy. The reduction~161! we will use in the next example where w
turn to the CH-hierarchy itself.

Although it is not difficult to construct the multidimensional hierarchy generated by
overdetermined system~153!, ~154! and the compatibility condition~155! under the hodograph
transformation~160!, we consider only the multidimensional generalization related to the no
ear system~159!. In this case the transformation~160! looks like

X5F~x,tk ,t,y1 ,y2!, T5t, Y15y1 , Y25y2 , t̂k5tk . ~162!

Under this transformation the linear system~153!, ~157! becomes of the form

Cxx2ŨCx2
Ũ1

V
C50, ~163!

S ] t1V]y1
1

1

V
]y2DC1S P̃0

V
1 P̃11V P̃2DCx1S Q̃11

Q̃2

V
DC50, ~164!

where

Ũ5UFx1
Fxx

Fx
, Ũ15Fx

2,

P̃052
Fy2

Fx
, P̃15P12

F t

Fx
, P̃25P22

Fy1

Fx
,

Q̃15Q1 , Q̃25Q2 ,

so that the nonlinear system~159! ~the compatibility condition of the above linear system! looks
like

Ũy1
1 P̃2xx1~ P̃2Ũ !x50, ~165!
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Ũy2
12Q̃2x1 P̃0xx1~ P̃0Ũ !x50, ~166!

Ũt12Q̃1x1 P̃1xx1~ P̃1Ũ !x50, ~167!

Ũ1y2
1Ũ1xP̃012Ũ1P̃0x50, ~168!

Ũ1t1Q̃2xx1Ũ1xP̃12ŨQ̃2x12Ũ1P̃1x50, ~169!

Ũ1y1
1Q̃1xx1Ũ1xP̃22ŨQ̃1x12Ũ1P̃2x50. ~170!

This is the general multidimensional system related with the system~159! through the
hodograph transformation~162!. The functionF is arbitrary there, that is why the system~165!–
~170! hassix equations andsevenindependent functions. So one can impose anarbitrary accept-
able reduction on this system, which fixes the functionF. Below we give two examples of thes
reductions.

c. Multidimensional generalization of the CH-equation.Remember that the reductionŨ51
@see~161!# transforms the spectral problem~163! into the spectral problem for CH.23,24Let us use
the same reduction here. Then the equation~165! allows the solutionP̃251, and equations~168!–
~170! with substitutionsQ̃1,2 from ~166!, ~167! result in the following system of equations:

Ũ1y2
1Ũ1xP̃012Ũ1P̃0x50, ~171!

Ũ1t2
1
2 ~ P̃0xxx2 P̃0x!1Ũ1xP̃112Ũ1P̃1x50, ~172!

Ũ1y1
2 1

2 ~ P̃1xxx2 P̃1x!1Ũ1x50, ~173!

which represent the (311)-dimensional integrable generalization of the CH. Let us also repre
the overdetermined linear system for the nonlinear equations~171!–~173!:

Cxx2Cx2
Ũ1

V
C50, ~174!

S ] t1V]y1
1

1

V
]y2DC1S P̃0

V
1 P̃1DCx1S Q̃11

Q̃2

V
DC50,

~175!

Q̃1x521/2~ P̃1xx1 P̃1x!, Q̃2x521/2~ P̃0xx1 P̃0x!.

The particular reduction]y2
50, ]y1

1]x5]y , P̃050 transforms the system~171!–~173! to (2
11)-dimensional PDE:

nt1nxVy12nVxy50, n52Ũ15Vxxx2Vx2k, P̃15Vy , k5const, ~176!

which had been derived in Ref. 15. This equation is equivalent to the CH~142! with ]y5]x and
u52Vx

d. Another integrable hierarchy.Another multidimensional hierarchy is related with
mKdV-hierarchy through the hodograph transformation~162! with the reduction

Q̃151. ~177!
                                                                                                                



the

e

r-

in this
r

6274 J. Math. Phys., Vol. 41, No. 9, September 2000 A. I. Zenchuk

                    
We represent only one (211)-dimensional equation of this hierarchy which comes from
system~165!–~170! if the y2-dependence is absent andP̃05Q̃250,

Ũy1
1 P̃2xx1~ P̃2Ũ !x50,

Ũt1 P̃1xx1~ P̃1Ũ !x50,
~178!

Ũ1y1
1Ũ1xP̃212Ũ1P̃2x50,

Ũ1t1Ũ1xP̃112Ũ1P̃1x50.

This system leads to the system of (111)-dimensional equations in the case of reduction]y1

5]x :

Ũt1 P̃1xx1~ P̃1Ũ !x50, Ũ1t1 P̃1xŨ11~ P̃1Ũ1!x50, Ũ5
1

2
]x ln~Ũ1!, ~179!

so that the multidimensional hierarchy, generated by the linear system~153!, ~154! with
hodograph transformation~160!, ~177!, can be considered as the hierarchy of Eq.~179!.

e. Link to the dressing operator with arbitrary function.Note that one can also introduce th
change of variables~160! in the dressing operatorsK j ( j 50,1,2) ~145!, ~146!. In this case they
assume the following form:

K05lF~x,t,t,y!1 (
nÞ0,1

lntn , K15 (
nÞ0,1

tnln, ~180!

K25 (
nÞ0,1

(
k5Mn2

Mn1

ynkf nk~l!, V5
1

l~l21!
,

~181!

(
k5Mn2

Mn1

f nkV
k52ln, nÞ0,1,

and represent the example of the nonsymmetric dressing operators with anarbitrary function of
independent variablesF.32 Equation~165!–~170! ~as well as the whole multidimensional hiera
chy of this kind! can be received immediately from the nonlocal]̄-problem~91!–~94!, ~98!, ~99!,
~18!, ~19! with dressing operators~180!, ~181!.32

E. Particular solutions

To represent the example of the particular solutions for the nonlinear PDE described
section, let us consider the simplest solutions of the system~159! which is solved by the scala
nonlocal ]̄-problem withK0(l)5lX, K1(l)5T/l, K2(l)52 Y1(l21)/22 Y2/(2l2(l21)) ,
V(l)51/„l(l21)… normalizationh51/(l21) and kernelR0 in ~100! of the form

R0~n,m!522p id~n1m21!(
k51

N

akd~n2bk!

with real constantsak and bk . In this case the solutionc of the integral equation~91! can be
written down explicitly:

c~l!5
1

l21
1 (

k51

N
c~bk!e

(2bk21)X1 T/bk 1 Y1bk/2 1Y2/~2(12bk)2bk!

l1bk21
, ~182!
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wherec(bk) are solutions of the linear algebraic system of equations,

c~bn!5
1

bn21
1 (

k51

N
c~bk!e

(2bk21)X1 T/bk 1 Y1bk/2 1Y2/~2(12bk)2bk!

bn1bk21
, n51, . . . ,N. ~183!

Formulas~182! and ~183! allow us to find the solutionsU , Pi , andQi for the system~159! by
using the relations~151!, ~153!, ~156!, ~158!. The potential of the spectral problemU has the form
of an N soliton solution. In particular caseN51 one has (b15b):

U25212
2~2b21!3ex1f

~~122b!ex1ef!~~b21!~2b21!ex1bef!
,

f52bX1
T

b
1

Y1b

2
1

Y2

2~12b!2b
.

If 0 ,b,1/2 this formula represents a regular soliton with constant asymptotesUux→6`→21.
For other values ofb one has singular solutions.

IV. CONCLUSIONS

There is no general approach to investigating the nonlinear PDE in the multidimensiona
(N11), N.2. The dressing method,8,9,14,18which is one of the main tools for the investigation
(111)- and (211)-dimensional integrable equations, allows us to treat only certain type
multidimensional nonlinear PDE. In this paper we have considered one of these types of m
mensional systems, which are associated with (111)-dimensional PDE. The solutions of th
multidimensional system of this type can be parametrized by two independent parameters
which is the independent variable ofthis nonlinear system and the remaining one comes from
(111)-dimensional hierarchy associated with it. From this point of view these nonlinear
represent the multidimensional generalizations of (111)-dimensional integrable equations. A
though this type of multidimension is a weak one, it contains many important equations w
appear in physics. We have constructed the nonsymmetric dressing operators for several
~see the examples in Secs. II and III!. Note that the equations which admit the breaking solitons
particular solutions~like those considered in Refs. 33–35! can also be treated by this method,
far as they have the overdetermined linear system of the same structure, which is discusse
paper. But presently we are not able to construct the breaking solitons by using the]̄-technique.

Emphasize also that this kind of multidimensional generalizations can be performed on
(111)-dimensional integrable PDE.
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This paper studies early universe cosmologies derived from a scalar–tensor action
containing cosmological constant terms and massless fields. The governing equa-
tions can be written as a dynamical system which contains no past or future
asymptotic equilibrium states~i.e., no sources nor sinks!. This leads to dynamics
with very interesting mathematical behavior such as the existence of heteroclinic
cycles. The corresponding cosmologies have novel characteristics, including cycli-
cal and bouncing behavior possibly indicating chaos. The connection between these
early universe cosmologies and those derived from the low-energy string effective
action is discussed. ©2000 American Institute of Physics.
@S0022-2488~00!00709-X#

I. INTRODUCTION

In this paper we consider the qualitative dynamics of a class of spatially flat, scalar–t
cosmological models derived from the action

S5E d4xA2g$e2F@R1~¹F!22 1
2 e2F~¹s!222L#2LM% ~1!

whereR is the Ricci curvature scalar of the space-time with metricgmn , g[detgmn , $L,LM% are
constants and$F,s% represent scalar fields. The dynamics of these cosmological models has
interesting mathematical properties. In particular, there are no asymptotically attracting eq
rium states in the phase space and this may lead to important physical consequences.

The form of action~1! can be partially motivated from string theory, which is the mo
promising candidate for a unified theory of the fundamental interactions.1,2 When LM vanishes,
Eq. ~1! represents the truncated effective four-dimensional action of the Neveu–Schwarz/N
Schwarz~NS–NS! sector of the theory.1 The scalar field,F, represents the dilaton field and th
axion field,s, is the Poincare´ dual of the antisymmetric two-form potential. The constant,L, may
be interpreted in terms of the central charge deficit of the string theory and can be negativ
evolution of the very early universe immediately below the string scale may have been deter
by an effective action of this form. The dynamics of the spatially flat and homogeneous cos
gies in the caseLM50 was presented in Ref. 3. One of the main purposes of the present w
to determine the effects of introducing a nontrivial cosmological constant,LM , that does not
couple directly to the dilaton field. Such a term represents a vacuum energy contribution
energy-momentum tensor. A discussion of the spatially flat and homogeneous cosmologies
caseL50 was presented in Ref. 4, and a partial analysis of the dynamics with a nonvan
axion field when bothL andLM are nonzero was investigated in Ref. 5.
62770022-2488/2000/41(9)/6277/7/$17.00 © 2000 American Institute of Physics
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II. ANALYSIS

We assume that the metric corresponds to the spatially flat, Friedmann–Robertson–W
~FRW! universe:ds252dt21e2a(t) dxi dxi . Substituting thisansatzinto the action~1! and inte-
grating over the spatial variables then yields the reduced action

S5E dt e3a$e2F@6ȧḞ26ȧ22Ḟ21 1
2 e2Fṡ222L#2LM%, ~2!

where a dot denotes differentiation with respect to cosmic time,t. The Friedmann constrain
derived from Eq.~2! is given by

3ȧ22ẇ212L1 1
2 ṡ2e2w16a1LMew13a50, ~3!

in terms of the shifted dilaton field,w[F23a.
A generalization to the spatially flat, Bianchi type I cosmology may also be considered.

effectively results in the introduction of two massless scalar fields into the reduced actio~2!.
These fields parametrize the shear of the models. Similar degrees of freedom also aris
considering the toroidal compactification of higher-dimensional theories. Although we do
consider these extra fields in this paper, their overall contribution to the dynamics can be mo
by introducing a single modulus field,ḃ2[( i ḃ i

2 , into the reduced action~2!,4 and their inclusion
could be important in the discussion of chaotic behavior.

A. Zero central charge deficit

We first consider the caseL50.4 We assume thatLM.0, and employ the generalized Fried
mann constraint equation~3! to eliminate the axion field from the system. The resulting fie
equations may then be simplified by introducing the new variables and time coordinate@we
assume thatc.0; the casec,0 is related to a time reversal of the system and the qualita
mathematical behavior is similar~although the physical interpretation is quite different!#:

x[
)a8

c
, z[

LM

c2 ,
d

dQ
[

1

c

d

du
[

1

c
e2(w13a)/2

d

dt
, ~4!

where a prime denotes differentiation with respect tou and c[w8. The Friedmann constrain
yields

12x22z>0, ~5!

from which it follows that the phase space is bounded with

0<$x2,z%<1. ~6!

The invariant set 12x22z50 corresponds to a trivial axion field.
The cosmological field equations for the isotropic FRW model can now be expressed in

of the plane system:

dx

dQ
5~x1) !@12x22z#1 1

2 z@x2)#, ~7!

dz

dQ
52z$@12x22z#2 1

2 ~12z2)x!%. ~8!

The equilibrium points of this system areL (2)
1 (x,z521,0), L (1)

1 (1,0) and S1

(21/3),16/27). The first two are saddles andS1 is a repelling focus. The functional form o
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these solutions was presented and discussed in Ref. 4 and the phase portrait is given in Fig
note that the exact solutions corresponding to all of the equilibrium points are self-similar co
logical models.6

We see from Fig. 1 that the orbits are future asymptotic to aheteroclinic cycle. This is
comprised of the two saddle equilibrium pointsL (2)

1 andL (1)
1 and the single~boundary! orbits in

the invariant setsz50 (LM50) and 12x22z50 (ṡ50) joining L (2)
1 and L (1)

1 . Hence, the
orbits exhibitcyclical behavior.4 For each cycle, an orbit is quasistationary in the neighborhoo
the saddle pointL (2)

1 . It then shadows the orbit in the invariant setz50 as it moves rapidly
towards the equilibrium pointL (1)

1 . It settles into another quasistationary phase close toL (1)
1 and

eventually moves quickly back toL (2)
1 shadowing the orbit in the invariant set 12x22z50. It is

important to emphasize that the orbits move progressively closer towards the two saddlesL (6)
1 ,

after the completion of each cycle. Thus, the motion isnot periodic and a given orbit spends mo
and more time in the neighborhood of these equilibrium points.

The physics behind the cyclical nature of these orbits is as follows. The sign of the variax
determines whether the universe is expanding or contracting. The value of this variable
through zero during each cycle. This behavior arises because the cosmological constant eff
resists the expansion of the universe, but the axion field has the opposite effect. Since the
density of the latter scales asṡ2}e26a, it is negligible when the spatial volume of the universe
large. Consequently, the cosmological constant forces the expanding universe to recollapse
ever, the axion field inevitably becomes dominant and reverses this collapse, causing the u
to enter into a new expanding phase. The process is then repeated and the interplay betw
two opposing trends results in a universe that undergoes a series of bounces.

B. Nonzero central charge deficit

We now consider the caseLÞ0. We again employ Eq.~3! to eliminate theṡ2 term from the
field equations, and make the following definitions:

x[
)ȧ

j
, y[

22L

j2 , z[
LMew13a

j2 , u[
ẇ

j
,

d

dt
[j

d

dT
. ~9!

FIG. 1. Phase portrait of the system~7!–~8!, corresponding to the isotropic FRW model withLM.0 andL50. We shall
adopt the convention that large black dots represent sources~i.e., repellers!, large gray-filled dots represent sinks~i.e.,
attractors!, and small black dots represent saddles. Note that in this phase space orbits are future asymptotic to a
clinic cycle.
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We assume thatL,0 (LM.0) and we definej25ẇ222L. The generalized Friedmann con
straint equation~3! now yields 0<x21z<1, so that all variables are bounded: 0<$x2,y,z,u2%
<1. From the definition ofj, y is given byu21y51. The resulting three-dimensional syste
therefore becomes

dx

dT
5)~12x22 3

2 z!1xu~12x22 1
2 z!, ~10!

du

dT
5~12u2!~x21 1

2 z!.0, ~11!

dz

dT
5z@u~122x22z!1)x#. ~12!

The invariant setsx21z51, z50, u251 define the boundary of the phase space and
important to note that the variableu is monotonically increasing. This ensures that there are n
closed or recurrent orbits in the phase space. The equilibrium points of the system are all s
S6 (x,u,z571/A27,61,16/27),L (6)

1 (61,1,0) andL (6)
2 (61,21,0). The pointsL (6)

1 represent
power-law cosmologies withẇ.0, where only the dilaton field is nontrivial, i.e., the axion fie
and cosmological constant terms are dynamically negligible. These solutions are termed d
vacuum solutions and have an analytical form given byea}t61/) and eF}t216). The points
L (6)

2 are the corresponding solutions whereẇ,0. The phase portrait is given in Fig. 2.
In this case there areno sinksandno sourcesin the full three-dimensional phase space. Sin

the variableu ~and henceẇ! is monotonically increasing, solutions generically asymptote in b
the past and future towards the invariant setsu561. These both include an heteroclinic cycle a
this implies that generically the solutions exhibit similar asymptotic behavior at both early an
times to that discussed above.~For example, to the future the orbits in the three-dimensional ph
space shadow the orbits in the two-dimensional invariant setL50.! The orbits interpolate be
tween the dilaton-vacuum solutions corresponding to the saddle pointsL (6)

2 in the past and the
dilaton-vacuum solutions corresponding to the saddle pointsL (6)

1 in the future. The effect on the
dynamics of the cosmological constant,LM , is significant at both early and late times. The poin

FIG. 2. Phase diagram of the system~10!–~12! for L,0 andLM.0, whereẇ.0 is assumed. See caption to Fig. 1. Gr
lines represent typical trajectories found within the two-dimensional invariant sets, dashed black lines are those tra
along the intersection of the invariant sets, and solid black lines are typical trajectories within the full three-dimen
phase space.
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S6 correspond to the equilibrium pointS1 in Fig. 1, but unlike in theL50 case in whichS1 is
a repelling focus, in the three-dimensional phase space they are saddles and hence they do
a primary role in the asymptotic behavior.

From a physical point of view, the cyclical behavior arises due to the complex inte
between the axion field and the cosmological constant terms. The universe continues to un
succession of bounces between expanding and contracting phases due to the axion fi
vacuum energyLM . However, the inclusion of the central charge deficit,L, causesẇ to ulti-
mately change sign. Thus, the asymptotic behavior in the future is related to a time reversa
asymptotic behavior in the past. We remark that the dilaton-vacuum solution,ea}t21/), corre-
sponding to the pointL (1)

1 is inflationary over the ranget,0, because the expansion is accel
ating. In this case, the accelaration is driven by the kinetic energy of the dilaton field.~For a recent
review of the cosmological significance of these solutions see, e.g., Ref. 7.!

Finally, we make some brief remarks on the caseL.0. We can definej[ẇ and consider the
subsetẇ>0. Introducing normalized variables as before yields a three dimensional, com
system of autonomous, ordinary differential equations. We have completed a full dynamical
sis of this system, but we only describe the main features here. There is a nonhyperbolic e
rium point,C1, which can be shown to be a~global! source, sincey is a monotonically decreasin
function. This point represents a static universe, where the dilaton field is evolving linearly
time and the axion field andLM are dynamically negligible. There are also two saddle poi
L (6)

1 , which represent dilaton-vacuum solutions; these are analogues of the saddles that
above. Again, there is also a saddleS1. We stress that there are no sinks in the phase sp
Therefore, trajectories generically asymptote into the past towardsC1, and then spiral away
towards the heteroclinic cycle in the invariant sety50 containing the saddle pointsL (2)

1 and
L (1)

1 . The phase space is depicted in Fig. 3.

III. DISCUSSION

The most important mathematical feature of the models we have considered is thecyclical
behavior that arises due to the existence of a heteroclinic cycle. This is of great physical s
cance, because it might be an indicator of possible chaotic behavior. The solutions inter

FIG. 3. Phase diagram of the system withL.0 andLM.0, whereẇ.0 is assumed. See captions to Figs. 1 and 2
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between different Kasner-like dilaton-vacuum, power-law models, undertaking cycles betwe
saddles in the three-dimensional phase space. This is similar to the dynamical behavior that
in spatially homogeneous Bianchi cosmological models.6,8 The question of chaos in anisotrop
Bianchi type IX string cosmologies has been considered.9 It was shown that since the axion an
dilaton fields behave collectively as a stiff perfect fluid, the system oscillates only a finite nu
of times. Consequently, there is no Mixmaster-type chaos in these models.8,10 This is to be
expected since it is known that the admission of stiff fluid matter causes chaos to ceas11 In
contrast to the anisotropic Bianchi type IX cosmologies, however, the models described
contain cosmological terms, e.g., an effective dilaton potential and a dynamically important
field. It is these intrinsically stringy effects that give rise to chaotic behavior and this chaos
different origin to the chaotic behavior that arises in general relativistic models. On the other
there may be some connection with models that contain Yang–Mills fields. It is known
chaotic oscillations occur for such fields12 and, moreover, it was shown in Ref. 11 that t
oscillations that are suppressed by a single massless scalar field can be restored by cou
electromagnetic field to a Brans–Dicke-type field. This model is related to a scalar field m
with an exponential potential13 and, consequently, is also related to string theory cosmolog
models.14

There are a number of outstanding issues that need to be addressed regarding the
existence of chaos in string cosmology. First, the chaotic behavior depends crucially o
dimensionality of space–time and on the product manifold structure of the extra dimension9 In
particular, superstring theories are formulated inD510 space–time dimensions, whileM theory,
with its low-energy supergravity limit, is an eleven-dimensional theory.15 Second, the low-energy
effective action is only valid in the perturbative regime of weak coupling and small curvatur
general, it may be necessary to study chaos within the context of a full nonperturbative for
tion of the theory, but at present such a formulation is unknown. Nevertheless, if chaotic be
occurs at the level of the effective action, it is to be expected that similar behavior should a
the nonperturbative regime. Finally, there is the question of what will happen if inhomogen
are introduced. Again, such effects will be most unlikely to lead to any suppression of ch
behavior and will perhaps make chaos even more predominant.9

There are other questions which are important in early universe cosmology in general,
string cosmology in particular. The questions of whether cosmological models can isotr
and/or inflate~and if they can inflate whether there is a graceful exit from inflation! are of great
importance.16 The techniques utilized in this paper can easily be adapted to study the po
isotropization in more general spatially homogeneous but anisoptropic string cosmological
els. Inflationary properties of simple string cosmologies have been discussed above. How
chaotic cosmological regime might either be an alternative to inflation or, perhaps more i
tantly, could work in tandem with an inflationary mechanism17 to produce new interesting physica
phenomena. For example, a chaotic regime due to dissipative effects or chaotic mixing18 could
possibly be an alternative to inflation as a cause of homogenization and isotropization. This
alleviate the problems of initial conditions in inflation. This last point has been addressed in
19, where it was suggested that there would be sufficient time for a compact, negatively c
universe to homogenize since chaotic mixing smooths out primordial fluctuations in a pre
tionary period.
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Signs of the cusps in binary lenses
V. Bozzaa)

Dipartimento di Scienze Fisiche ‘‘E.R. Caianiello,’’ Universita` di Salerno, Italy,
and Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Italy
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The cusps of the caustics of any gravitational lens model can be classified into
positive and negative ones. This distinction lies on the parity of the images in-
volved in the creation/destruction of pairs occurring when a source crosses a caustic
in a cusp. In this paper, we generalize the former definition of the sign of the cusps.
Then we apply it to the binary lens. We demonstrate that the cusps on the axis
joining the two lenses are positive while the others are negative. To achieve our
objective, we combine catastrophe theory, usually employed in the derivation of the
properties of caustics, with perturbative methods, in order to simplify calculations
and get readable results. Extensions to multiple lenses are also considered.
© 2000 American Institute of Physics.@S0022-2488~00!04709-5#

I. INTRODUCTION

The application of catastrophe theory in the study of the lens mapping represents a co
able step in the understanding of the critical behavior in gravitational lensing.1 Particularly inter-
esting is the classification of singularities through these methods, relying on the evaluat
intrinsic mathematical quantities.2 A complete treatment of these topics can be found in Ref.

The methods of catastrophe theory have proved very powerful in the study of the c
structure of the binary lens4 where it has been employed to find the transitions between diffe
topologies, previously studied in the equal mass case.5 Erdl and Schneider derived the positions
the cusps and showed that, in these transitions, pairs of cusps are created or destroyed
through beak-to-beak singularities.4 Witt and Petters6 used complex notation to study the sing
larities of the binary lens with an additional shear field and continuously distributed matter

Since the binary lens is one of the most important lens models, a detailed study
singularities can help in the interpretation of the physical behavior of this system and gain
mation about features that cannot be calculated analytically. For example, the study of the
fication map near the cusps, performed in general by Schneider and Weiss,7 can provide very
useful information on the amplification of images in some regimes. Several results on cusp
ing in multiple lens systems can be found in Refs. 8 and 9.

A particular problem is the creation of images in the neighborhood of cusps. When a s
crosses a caustic in a fold singularity, two images of opposite parities are created. The crea
these images happens in a different way when the crossing occurs at a cusp. In this ca
pre-existing image changes parity and two new images of the same parity are created.
parity of the two new images is the same as the first before the crossing, the sum of th
parities equals the parity of the single image before the crossing.

The parity of the original image involved in this process is a characteristic property o
cusp, called sign.1 Positive and negative cusps clearly behave in an opposite way, but also th
mapping in their neighborhood is influenced in different ways. The sign of a cusp can be
mined by a detailed study of the analytical form of the caustic, through the evaluation o
fundamental quantities of catastrophe theory.

In this work, we first give an intrinsic definition of the sign of the cusps and then we use
determine the signs of the cusps in the caustics of the binary lens. Instead of dealing w

a!Electronic mail: valboz@sa.infn.it
62840022-2488/2000/41(9)/6284/12/$17.00 © 2000 American Institute of Physics
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involved exact formulas, we prefer to prove our assertions in some particular cases where
bative approximations are available10,11 and then extend our results by means of continuity ar
ments.

In Sec. II, we review the principal steps in the description of a cusp by catastrophe the
state our definition. Section III contains the body of the calculation of the signs of the cus
binary lenses. Section IV contains some considerations about the extensions to multiple le

II. CUSPS IN CATASTROPHE THEORY

As usual, we introduce the Einstein radius of a reference massM0:

RE
05A4GM0

c2

DLSDOL

DOS
. ~1!

We indicate the coordinates in the lens plane normalized toRE
0 by x5(x1 ;x2) and the coordinates

in the source plane byy5(y1 ;y2). All masses are measured in terms ofM0. The matter density
normalized to the critical density,

Scr5
c2DOS

4pGDOLDLS
, ~2!

is k(x).
The Fermat potential of a given distribution of matter is

f~x,y!5
1

2
~x2y!22

1

pE d2x8k~x8!lnux2x8u. ~3!

The lens equation is obtained by taking the gradient of this potential:

¹xf~x,y!50. ~4!

This equation can be written in the form of an application from the lens plane to the source

y5y~x!. ~5!

Given a source positiony, thex’s solving Eq.~5! are called images.
The local properties of the lens mapping can be studied through its Jacobian matrix,

J5S ]y1

]x1

]y1

]x2

]y2

]x1

]y2

]x2

D 5S 12k2g1 2g2

2g2 12k1g1
D , ~6!

whereg15 1
2(f112f22) andg25f125f21. We use the notationf i5]f/]xi . The trace of the

Jacobian matrix is

Tr J52~12k!. ~7!

Many properties of the lens mapping can be studied through the determinantD of the Jacobian
matrix,

D5~12k!22~g1
21g2

2!. ~8!
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The sign of this determinant, evaluated at the position of an image, is called parity. Image
negative parity are characterized by a reversed handedness. In the points whereD50, the lens
mapping is not invertible. These points are arranged in smooth curves called critical curve
their images through the lens mapping~5! are called caustics.12

If a parametrization of the critical curve is available in the form

x5xc~u!, ~9!

its tangent vector can be written as

T5
dxc

du
. ~10!

For the caustic, we have the natural parametrization:

y5yc~u!5y„xc~u!…, ~11!

leading to a tangent vector:

dyc

du
5JT5~T"¹!y~x!ux5xc(u) . ~12!

The caustic singularities can be classified into different types, including folds, cusp
umbilics, beak-to-beaks and lips.3

The zero order singularity is the fold, that is a simple critical point, satisfying

D50, ~13!

not belonging to other special classes.
What we are interested in is the cuspoid sequence. A cusp point is a point belonging

critical curve@thus satisfying condition~13!#, such that the vector tangent to the caustic vanish

dyc

du
50. ~14!

Its image on the caustic is the cusp.
The cuspoid of second order is the swallowtail, coming up when the condition

d2yc

du2
50, ~15!

is added to the conditions~13! and ~14!. The vanishing of higher order derivatives leads
singularities of higher order. These definitions do not depend on reparametrizations of the
curve, since for a cuspoid of orderp we require all derivatives up to thepth order to vanish
simultaneously.

To analyze in detail the lensing behavior near a cusp, it is convenient to choose the c
nates so as to have the cusp point in the origin of the lens plane and the cusp in the origin
source plane. With an opportune rotation, the lens mapping can be generally written in the

y15cx11 1
2 bx2

2, ~16a!

y25bx1x21ax2
3 , ~16b!

wherea, b, c are coefficients depending on the derivatives of the Fermat potential evaluated
cusp point.3
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The determinant and the trace of the Jacobian, in this frame, are

D5bcx11~3ac2b2!x2
2, ~17!

Tr J5c. ~18!

The critical curve is found solving the equationD50. We parametrize it in this way:

x1
c5

b223ac

bc
u2, ~19a!

x2
c5u. ~19b!

The caustic is

y1
c53

b222ac

2b
u2, ~20a!

y2
c5

b222ac

c
u3. ~20b!

The sign of the quantity 2ac2b2 defines the sign of the cusp.1 We can guess that the behavi
of the caustic changes in an evident way according to this sign. To see these differences, o
solve the lens mapping explicitly in the neighborhood of a cusp point. A detailed discussion o
topic can be found in Refs. 1 and 3. In Fig. 1, we briefly recall the behavior of the lens ma
near positive~top row! and negative cusps~bottom row!. When a source crosses the caustic in
positive cusp, a positive image crosses a critical curve, thus changing its parity. Moreove
positive images come up from the crossing point in the direction tangential to the critical c
For negative cusps, all parities are reversed. Then a negative image changes its parity an
of negative images arises. Of course, the sum of the parities is unchanged in both proces

FIG. 1. The lens mapping near cusps. On the right column, we have the caustics corresponding to the critical curve
left. The first row represents the situation for a positive cusp. The bottom row shows the situation for a negative cu
sign ofD is indicated in the left figures. The circles on the left figures are the images corresponding to the source p
in the right. When the source is outside of the caustic~empty circles! there is one image, while when it is inside~filled
circles! three images are formed. Their parity is discussed in the text.
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Now we want to give a definition for the sign of the cusp that can be used in all frames.
this definition, we will be able to compute easily the signs of the cusps for the caustics of an
mapping without having to look for the standard frame for each cusp.

The vector tangent to the cusp is

dyc

du
5S 3

b222ac

b
u

3
b222ac

c
u2
D . ~21!

Its derivative, evaluated at the cusp, is

d2yc

du2
5S 3

b222ac

b

0
D . ~22!

We can notice, recalling~15!, that a cusp with a vanishing sign is a swallowtail.
The vector

N52
¹D

Tr J
, ~23!

is everywhere orthogonal to the critical curve. In the standard frame, it reads as

N5S 2b

2~b223ac!

c
x2
D . ~24!

At the cusp point,N is parallel to the second order derivative of the caustic~22!.
Then, the quantity

N•

d2yc

du2
, ~25!

evaluated at the cusp point, is 3(2ac2b2). So its sign coincides with the sign of the cus
Moreover, the expression~25! is invariant for translations and rotations of the coordinate fra
and for reparametrizations of the critical curve~as long as it is evaluated at the cusp point!. Then
it is natural to take Eq.~25! as the general definition for the sign of the cusp, valid not only in
standard frame but for any choice of the coordinates and parametrizations of the critical c

In what follows, we will use this definition to determine the signs of the cusps in the bi
lens.

III. SIGNS OF THE CUSPS IN BINARY LENSES

The critical curves of binary lenses can be classified according to two parameters: the
ratio of the two lenses and their separation. We indicate the two masses~always measured in term
of the reference massM0) by m1 andm2. The total mass isM5m11m2. For each mass ratio
three possible topologies are present depending on the separationa between the lenses. In Fig. 2
we show them for a system of two equal masses.

For close binaries, i.e., when (M22a4)3/27a8.m1m2,6 three caustics are present: the one
the center of the system has four cusps, while the other two have three cusps@Fig. 2~a!#.

Wide binary systems, characterized by the conditiona2.(m1
1/31m2

1/3)3, have two caustics
with four cusps each@Fig. 2~c!#.
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Intermediate binaries have one caustic with six cusps@Fig. 2~b!#.
If we change the parameters of the system continuously, we can follow each cusp unam

ously, since their positions are continuous functions of the parameters. Also the quantity~25!,
giving the sign of the cusp, is a continuous function of the parameters. So, remembering th
two vectors in the scalar product of Eq.~25! are parallel at the cusp, a change of sign in a cusp
only occur through a higher order singularity, according to Eq.~15!. But no higher order cuspoid
is present in binary lenses, so each cusp bears its sign unaltered as the parameters chan
when transitions between different topologies occur~if the cusp is not directly involved in thes
transitions!.

These observations allow us to introduce an overall labeling for the cusps as we have d
Fig. 2. As we are interested in the study of the sign of the cusps, we have given the same l
the cusps which can be obtained by reflection on one or both axes in the equal-masses

FIG. 2. Topologies of the caustics of the equal-mass binary lens.~a! Close binary,~b! intermediate binary,~c! wide binary.
The letters identify the different kinds of cusps.
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they obviously have the same sign. For this reason we have two cusps of typea, four of typeb and
so on.

In total, twelve cusps can be distinguished in the binary lens: two of them@indicated bye in
Fig. 2~c!# are only present in wide binaries; four of them~indicated byc andd in Fig. 2! only exist
in close binaries. The other six are always present. The disappearance of cuspsc and d and of
cuspse occurs through beak-to-beak singularities at the critical values of the separation be
the masses, leading to the intermediate topology.4

Since the sign of the cusp is a characteristic not depending on the particular choice
parameters, we can lead our study in the simplest cases and then extend our results in
exploiting the continuity of the quantities involved in our calculations. Of course, a natural
plifying choice can be the equal-mass case, as concerns the mass ratio. So, from now on
m15m25M /2.

Now, we could deal with the exact formulas for the caustics, given in Refs. 4, 5, and 6, b
would rather simplify our treatment further, reducing to the cases where perturbative resu
employable. In this way, by very few steps, we can derive properties of the general binar
from the study of its particular cases.

In Ref. 13 approximations are given for the caustics of the binary lens in the form of mult
expansions in its extreme cases: very close binary systems (a!AM ), very wide binary systems
(a@AM ) and planetary systems (m2!m1). Perturbative expansions to the first significant ord
for multiple lenses were derived by Bozza10 in the same cases. In the following subsections,
use the expressions in Refs. 10 and 11 to analyze the signs of the cusps in representativ
Deriving these signs for all types of cusps identified in Fig. 2, our demonstration will be
cluded.

A. Cusps in wide binary caustics

Let us begin from the caustics formed by the two lenses when they are very far from
other. Choosing the mass of each single lens as the reference mass, i.e.,M /251, the starting
hypothesis is

a@1. ~26!

These caustics are the results of the deformations on the two separated Einstein rings
mass induced by the other. We put the first lens at the origin and the second at the posix2

5(a;0). Thanks to Eq.~26!, we shall expand all our objects in the series of the perturba
parameter 1/a to the first nontrivial order. The lens equation becomes

y15x12
x1

uxu2
1

1

a
1

x1

a2
, ~27a!

y25x22
x2

uxu2
2

x2

a2
. ~27b!

The determinant of the Jacobian matrix is

D512
1

uxu4
2

2~x1
22x2

2!

a2uxu4
. ~28!

The solution of the equationD50 with D given by Eq.~28! is the critical curve of the first
mass,10
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xc~u!5S cosuS 11
cos 2u

2a2 D
sinuS 11

cos 2u

2a2 D D . ~29!

The caustic is

yc~u!5S 1

a
1

2 cos3u

a2

2
2 sin3u

a2

D . ~30!

Now we can build the objects involved in the classification of the cuspoids. The vector ta
to the caustic,

dyc

du
52

3sin 2u

a2 S cosu

sinu
D , ~31!

vanishes atu5np/2 for n50,1,2,3. The cusp obtained forn50 is on thex1-axis, directed
towards the other mass. Looking at Fig. 2~c!, where the caustic of the first mass is the left one
can be identified as a cusp of typee. The cusp forn52 is in the opposite direction and is a cus
a. The other two are cusps of typeb.

Now, let us calculate the signs of these cusps. The second derivative of the caustic is

d2yc

du2
52

3

a2 S cosu~2113cos 2u!

sinu~113cos 2u!
D , ~32!

and the vectorN, defined in Eq.~23!, is

N5S 22cosu1
1

a2
~5cosu1cos 3u!

22sinu1
1

a2
~25cosu1cos 3u!

D . ~33!

Finally, the quantity~25! evaluated at the four cusps, is

N•

d2yc

du2
uu5np/25~21!n

12

a2
. ~34!

Then, the cuspsa ande are positive, while the cuspsb are negative. Having established th
signs of these three types of cusps, the only cusps to be studied are of typec andd, to be found
in the analysis of close binary systems.

B. Cusps in close binary main caustic

We calculate now the signs of the cusps of the main caustic of close binary systems. T
necessary to obtain the sign of the cusps of typec. However, we also get a confirmation for cus
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of typea. Now we choose the origin to be at the center between the two masses and consi
total mass as the reference mass:M51, x15(2 a/2 ;0), x25(a/2 ;0). Weconsider the limit

a!1. ~35!

By virtue of this hypothesis, all objects will be expanded in powers ofa. Stopping at the first
significant order, the lens equation becomes

y15x12
x1

uxu2
2

a2x1~x1
223x2

2!

4uxu6
, ~36a!

y25x22
x2

uxu2
1

a2x2~x2
223x1

2!

4uxu6
. ~36b!

The Jacobian determinant is

D512
1

uxu4
2

3a2~x1
22x2

2!

2uxu8
. ~37!

The main critical curve is given by the expression10

xc~u!5S cosuS 11
3a2cos 2u

8 D
sinuS 11

3a2cos 2u

8 D D . ~38!

The caustic is

yc~u!5S a2

2
cos3u

2
a2

2
sin3u

D . ~39!

The calculation proceeds in a way analogous to the previous case.
The vector tangent to the caustic,

dyc

du
52

3a2sin 2u

4 S cosu

sinu
D , ~40!

vanishes atu5np/2 for n50,1,2,3. The cusps obtained forn50,2 are on thex1-axis, thus being
of type a. The other two are cusps of typec.

The second derivative is

d2yc

du2
52

3a2

8 S cosu13cos 3u

2sinu13sin 3u
D , ~41!

and the vectorN is
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N5S 22cosu1
3a2

8
~cosu23cos 3u!

22sinu2
3a2

8
~sinu13sin 3u!

D . ~42!

Finally, the quantity~25! evaluated at the four cusps is

N"
d2yc

du2
uu5np/25~21!n

3a2

2
. ~43!

Then, besides the confirmation of the positivity of cuspsa, we find that the cuspsc are
negative.

C. Cusps in close binary secondary caustics

Finally, we need the sign of the cusps of typed. They arise in close binary systems and belo
to secondary caustics. Studying the cusps of these caustics, we also have the confirmatio
negativity of cuspsb. We retain the same choices of the previous subsection for the paramet
the system. The critical curve we investigate is the upper secondary one,11

xc~u!5S a3cosu

4

a

2
1

a3sinu

4

D , ~44!

corresponding to the bottom secondary caustic,

yc~u!5S a3

8
~2cosu2sin 2u!

2
1

a
1

a

2
1

a3

8
~2sinu2cos 2u!

D . ~45!

The vector tangent to the caustic,

dyc

du
5

a3

4 S cos 2u1sinu

sin 2u1cosu
D , ~46!

vanishes atu52np/31p/2 for n50,1,2. The cusp obtained forn50 is on thex2-axis, then it is
the one of typed. The other two are the cusps of typeb.

The second order derivative is

d2yc

du2
5

a3

4 S cosu22sin 2u

2sinu12cos 2u
D , ~47!

and the vectorN is
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N5S 4cosu

a3

4sinu

a3

D . ~48!

Finally, the quantity~25! evaluated at the four cusps is

N"
d2yc

du2
uu52np/31p/2523,;n. ~49!

All of the cusps are negative, not only the ones of typeb, already studied, but also the cuspd.
In conclusion, in binary lenses, we have that the cusps on thex1-axis (a ande) are positive

and the others are negative.

IV. EXTENSIONS TO MULTIPLE SYSTEMS

In Refs. 10 and 11, the expressions for the caustics were derived not only for binary sy
but for a general multiple lens. Then, by further continuity arguments, we can extend our r
even to some special multiple lenses.

In a first approximation,10 the caustic of a lens very far from the other components of
distribution of mass is a Chang–Refsdal caustic,14,15 with shear:

g5AF(
i 52

n
mi sin~2w i !

r i
2 G 2

1F(
i 52

n
mi cos~2w i !

r i
2 G 2

, ~50!

along the direction

w5
1

2
arctanF (

i 52

n
mi sin~2w i !

r i
2

(
i 52

n
mi cos~2w i !

r i
2

G . ~51!

In these two expressions, the positions of the masses producing the shear are given i
coordinatesr i , w i .

In Sec. III A, we have analyzed the case of a binary system where only the massm2 produced
the shear field on the first mass. This field was directed towardsm2. We found that the cusps alon
this direction were positive and the other two were negative. Then, if we let a third massm3 arise
from zero to some finite value~also placed far from the massm1, in order to remain in the
approximation of wide multiple lenses!, the shear would be modified, but the shape of the cau
would remain the same. The positions of the cusps change continuously and then we can s
that the cusps on the shear axis are positive and the other two are negative as long as the t
is unaltered.

Regarding close multiple lenses, we can follow the same procedure. In this case, the
formed by masses having mutual distances much smaller than the total Einstein radius is a
rupole caustic,10 with moment

Q5MAF(
i 51

n

mir i
2 cos~2w i !G2

1F(
i 51

n

mir i
2 sin~2w i !G2

, ~52!

oriented along
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w5arctan

Q2M(
i 51

n

mir i
2 cos~2w i !

M(
i 51

n

mir i
2 sin~2w i !

. ~53!

In the binary case, examined in Sec. III B,w50. The two cusps on this axis were positive a
the other two were negative. Again, turning on additional masses from zero to some finite
the orientation changes continuously and the signs of the cusps are preserved as long
topology remains the same. Then, the cusps on the orientation axis are positive and the ot
are negative.

For secondary caustics, in close multiple systems, we start referring to planetary syste
we have a star surrounded by one planet placed inside the Einstein ring of the star, two sec
critical curves are formed very close to the planet.16 According to the arguments in Sec. III C, th
resulting secondary caustics have three negative cusps each. Now, if we add more planet
the Einstein ring of the star, each of them will be accompanied by two small secondary c
curves. Since, in a first approximation, each couple of secondary critical curves formed b
planet is not affected by the presence of the other planets,16 we deduce that these caustics have
same properties of the binary secondary caustics~obtained putting the masses of the other plan
to zero!: they have only negative cusps. Now, we let the masses of all the planets inc
continuously from their small values to their definitive values, in order to obtain a generic mu
system with distances smaller than the global Einstein radius. The positions of the sec
critical curves will change, but their shape~and the signs of the cusps! will remain the same as
long as they remain simple critical curves, i.e., as long as they do not meet each other t
multiple critical curves.11 Yet, even in this case, the transitions can be achieved by suppre
two cusps through a beak-to-beak singularity.11 The surviving cusps will anyway preserve the
sign. In conclusion, all secondary caustics~both simple and multiple! have negative cusps. A
direct calculation using the formulas given in Ref. 11 confirms this statement derived he
continuity arguments.

We see that the approach used in this specific problem~calculations in perturbative cases an
extensions by continuity arguments! can be a powerful tool in order to gain information abo
situations where there is poor analytical direct knowledge. In the study of caustics of gravita
lens models, this methodology can surely provide a great help for the comprehension
topologies actually realized in physical systems.
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The Goldberg–Sachs theorem in linearized gravity
Sergio Daina) and Osvaldo M. Moreschib)

FaMAF, Ciudad Universitaria, Universidad Nacional de Co´rdoba,
5000 Córdoba, Argentina

~Received 19 April 2000; accepted for publication 24 May 2000!

The Goldberg–Sachs theorem has been very useful in constructing algebraically
special exact solutions of the Einstein vacuum equation. Most of the physically
meaningful vacuum exact solutions are algebraically special. We show that the
Goldberg–Sachs theorem is not true in linearized gravity. This is a remarkable
result, which sheds light on the understanding of the physical meaning of the
linearized solutions. ©2000 American Institute of Physics.
@S0022-2488~00!04509-6#

Solutions of the linearized Einstein vacuum equation are usually considered as appro
tions of solutions of the full vacuum equation. They are useful tools for describing phy
systems.

It is important to understand the relation between the full vacuum equation and the line
one; in particular it is interesting to know which properties are common, or not, to both se
solutions. An example of a common property is Birkhoff’s theorem; which can be enunciat
the following way: Vacuum spherically symmetric solutions are static. This statement remain
in linearized gravity~i.e., if we replace the vacuum equation by the linear one!, as one can check
by reconstructing the linear version of the standard proofs that appear in the literature.

In this work we present an example of a property, the so-called Goldberg–Sachs the1

which is not common to both sets of solutions.
The Goldberg–Sachs theorem for the Einstein vacuum equation relates algebraic prope

the Weyl tensor with the existence of a null, geodesic, shear-free congruence in space–time
search of vacuum solutions, the existence of such a congruence leads to considerable sim
tion in the calculation. The Schwarzschild, Kerr, and Robinson–Trautman space–times, wh
probably the most useful metrics in the study of compact objects, are all algebraically sp
However our present result shows that if one has a linearized solution admitting shear fre
geodesic congruence, then in general it will not be algebraically special. The proof of this co
in presenting explicit counterexamples.

The statement of Goldberg–Sachs theorem follows1 ~see also Refs. 2 and 3!.
Theorem 1 „Goldberg-Sachs…: A vacuum metric admits a shear free null geodesic cong

ence la if and only if la is a degenerate eigendirection of the Weyl tensor

Cabc[dl e] l
bl c50. ~1!

Condition ~1! is what characterizes algebraically special space–times.
Let us study this statement in the context of linearized gravity. Consider a one-para

family of metricsgab(g) with the corresponding metric, torsion free, connection¹a , Weyl tensor
Cabcd, and Ricci tensorRab . We define the first-order Weyl and Ricci tensor by

Cabcd
(1) 5

d

dg
Cabcdug50 , Rab

(1)5
d

dg
Rabug50 .

a!Fellowship holder of C.O.N.I.C.O.R; present address: Max-Planck-Institut fu¨r Gravitationsphysik, Am Mu¨hlenberg 1,
D-14476 Golm, Germany; electronic-mail: dain@aei-potsdam.mpg.de

b!Member of CONICET.
62960022-2488/2000/41(9)/6296/4/$17.00 © 2000 American Institute of Physics
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In the same way, we can define the ‘‘first-order’’ shear of a vector field, and so on.
We assume that

gab~g50!5hab , ~2!

wherehab is the flat metric. We say thatgab(g) satisfies the linear vacuum equation if

Rab
(1)50.

Let us assume thatgab(g) satisfies the linear vacuum equation, and also thatgab(g) admits a
first-order geodesic shear free null vector fieldl a. We ask the following question: Is it true thatl a

is a degenerate eigendirection of the first order Weyl tensor (Cabc[d
(1) l e] l

bl c50)? Note that this
question is a linearized version of the first implication of the Goldberg–Sachs theorem.

We prove that the answer is negative by giving an explicit one-parameter familygab(g) and
a vector fieldl a, with the following properties~we definel a[gabl

b):
~i! The vector fieldl a is null, geodesic, and shear free with respect togab(g), i.e., it satisfies

l al bgab~g!50,

l a¹al b5f l b,

¹ (al b)5J(al b)1ugab ,

for some scalar fieldsf, u and some vector fieldJa . The last equation means that the shear is ze
~ii ! The family gab(g) satisfies the linear field equation

Rab
(1)50.

~iii ! The vector fieldl a is not a degenerate eigendirection of the linear Weyl tensor

Cabc[d
(1) l e] l

bl cÞ0.

We would like to emphasize here that our example in the following satisfies~i! exactly; i.e.,
to all orders ing. Of course in order to construct a counterexample it is enough to satisfy
condition only up to first order ing.

A one-parameter familygab(g) which satisfies condition~i!, can be constructed in the fol
lowing way.

Let l a be a vector field that is null, geodesic, and shear free with respect to the flat conn
]a5¹a(g50):

l al bhab50, ~3!

l b]bl a5f l a, ~4!

] (al b)
0 5J(al b)

0 1uhab , ~5!

for some scalars fieldsf andu, some vector fieldJa , and where we have definedl a
05habl

b in
order to distinguish it froml a5gabl

b. In other words,l a satisfies condition~i! for g50.
Consider the following one-parameter family:

gab~g!5hab1g~mhab1 l (a
0 vb)!, ~6!

wherevb is a smooth vector field, andm a smooth scalar field.
We now claim: For allva andm, the metricgab(g) satisfies condition~i!, i.e., it preserves the

null, geodetic, shear-free character ofl a.
First note that preservation of the null character
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l al bgab50 ~7!

is immediate.
Now we computel a¹al b. We calculate the Lie derivate £l of l a

0,

£l~ l a
0!5 l b]b~ l a

0!1 l b
0]al b,

using Eqs.~3! and ~4! and we obtain

£l~ l a
0!5f l a

0 . ~8!

The Lie derivative can also be written in terms of the connection¹a :

£l~ l a
0!5 l b¹bl a

01 l b
0¹al b5f l a

0 . ~9!

We use~6! to replacel a
0 by

l a
05 l a~11g~m1 l cvc!!21 ~10!

in Eq. ~9! to obtain

l b¹bl a5 l aS l c]cg~m1 l eve!

11g~m1 l eve!
1f D ; ~11!

where we have used Eq.~7!. Then l a is geodesic with respect togab .
It remains to be shown thatl a is shear free with respect togab . We have to prove that¹ (al b)

is equal to some vector symmetrized withl a plus some multiple ofgab . In order to prove this, let
us note that

2¹ (al b)5£lgab5ghab£lm1~£lv (a!l b)
0 1~11gm!£l~hab!1~£l l (a

0 !vb) . ~12!

We will prove that each term on the right-hand side of Eq.~12! has the desired form.
For the first and second terms one only has to use the definition~6! and the relation~10!. For

the third term one uses £l(hab)52] (al b) and Eq.~5! ~the flat shear-free condition!. Finally, for the
last term one uses Eq.~8!.

Consider now a metric of the following form:

gab
KS~g!5hab1g f l al b , ~13!

where f is some scalar field. We assume also thatgab
KS(g) satisfies the linear vacuum equatio

@condition ~ii !#. This class of metrics is said to have the Kerr–Schild form.4,5 Examples of these
metrics are the Schwarzschild and Kerr metrics.

Let ka be an arbitrary Killing vector ofhab ~i.e., it satisfies £khab50). Take the metric given
by

gab~g!5hab1£kgab
KS. ~14!

Since by hypothesisgab
KS satisfies the linear vacuum equation, it follows that alsogab satisfies it

@condition ~ii !#; and also we can see that condition~i! is fulfilled; since one can easily show tha
it has the form~6!.

The linear Weyl tensor corresponding togab is

Cabcd
(1) 5£kCabcd

KS(1) , ~15!

whereCabcd
KS(1) is the linear Weyl tensor ofgab

KS.
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One can prove that the vectorl a is a degenerate eigendirection ofCabcd
KS(1) . But, if we choose

ka such that £kl
a is not proportional tol a, thenl a will be a principal null direction ofCabcd

(1) but not
a degenerate one; as one can see from Eq.~15!. An explicit example of this situation is given whe
gab

KS is the Schwarzschild metric andka is any space translation.
Then the metricgab also satisfies condition~iii !, and this completes the proof.
The given counterexamples are by no means the only possible ones. In a separate w

discuss another class of linearized solutions, which also include different counterexamples
Goldberg–Sachs theorem in linearized gravity.6

Given an exact vacuum solution which depends smoothly on some parameterg whose van-
ishing yields Minkowski space, and which is algebraically special for all values of the param
then the corresponding linearized solution will also be algebraically special. The solution
indicate in this work belong to a set of linearized solutions that cannot be reached by this m
They are linearizations of some vacuum solutions which are not algebraically special.
vacuum solutions have a vector fieldl a which is null, shear free, and geodesic only up to the fi
order ing, but they are not algebraically special, not even up to the first order ing.

We have shown here that the Goldberg–Sachs theorem is one of those properties
Einstein vacuum equation with no analog in linear theory. As we have mentioned in the intr
tion, most useful metrics in the study of a compact object are algebraically special; we hop
our result will contribute to the understanding of the relevance of the algebraic special con
in the physically meaningful solutions of the Einstein vacuum equation.
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We begin with a four-dimensional manifold,M, that possesses a two parameter
family of ~local! foliations by three-surfaces, with the two parameters being the
coordinates on the sphere of directions at each point of the manifold expressed via
homogeneous coordinatespA andpA8 . By then requiring that each foliation~of the
two parameter set of foliations! be a one parameter family of null surfaces for some
~as yet unkown! conformal Lorentzian metric—we derive an explicit expression, in
terms of the foliation description, for this conformal metric. We then show~1! how
a conformal factor can be chosen to convert the conformal metric into a metric and
~2! how to impose on the foliation and conformal factor conditions so that the
metric satisfies the vacuum Einstein equations. The material described here is very
much connected to the null surface formulation~NSF! of GR developed earlier.
The advantages of the present formulation are that one can much more easily see
the logical structure of the NSF, one can calculate with much greater ease and
finally it allows @because of the use of~spinor! index calculus# generalizations of
the NSF so that the study of the evolutionary development of the null surface
singularities~caustics, etc.! can be developed. ©2000 American Institute of Phys-
ics. @S0022-2488~00!04609-0#

I. INTRODUCTION

It is the purpose of this work to reconstruct the null surface formulation~NSF! of general
relativity from a new point of view. This new point of view combines the basic ideas from
original construction1–4 using the suggestion5 that the consistent use of spinors would offer co
siderable benefits, both computational and conceptual. This indeed is the case. The constru
much easier, faster and allows a much clearer view of its logic and organization. It has a f
major advantage in that it allows continuing developments of the theory that were pract
impossible in the original formulation due to their length and complexity.

The basic ideas behind the NSF begin with the introduction of a four-dimensional manifoM
with no other structure except the existence~locally! of a two-parameter family of foliations ofM
by three-surfaces. The two parameters which label the foliation take their values onS2. The level
surfaces of the foliations, which form the basic variables of the theory, eventually become th
surfaces of some conformal Lorentzian metric onM. This conformal metric, in turn, is actually
defined by the level surfaces. If points ofM are denoted byx and points ofS2 by s then the level
surfaces can be described byu5Z(x,s)5constant. The null condition is imposed onZ(x,s), for
all values ofs, by the basic equation

gab]aZ]bZ50 ~1!
63000022-2488/2000/41(9)/6300/18/$17.00 © 2000 American Institute of Physics
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for some unknowngab(x). By repeated differentiations of Eq.~1! on the sphere coordinates, the
are two important conclusions that can be reached.

~1! For Eq.~1! to hold for alls, Z must satisfy two partial differential equations~or one complex
equation!, the ~so-called! basic metricity conditions,M1(Z)50.

~2! When Z satisfies these conditions, one can express the Lorentzian metricgab(x), up to an
unknown conformal factorV2(x,s), completely in terms ofZ(x,s); i.e.,

gab~x!5V2~x,s!hab@Z~x,s!#,

wherehab is a Lorentzian metric constructed fromZ. V must satisfy its own~auxiliary! metricity
condition,M2(Z,V)50.

Finally, in addition to the metricity conditions, the vacuum Einstein equations are impose
a further equation onV and Z; namely, someE(Z,V)50.

In the original treatment, the points onS2, i.e.,s, were described by the complex stereograp
coordinates (z,z̄). As there were often, in the calculations, many sums of terms with high de
tives with respect to (z,z̄) andx, the equations were long and cumbersome without any na
index structure. In the new treatment, (z,z̄) is replaced by the use of projective coordinat
~2-component spinors! on S2, i.e., (z,z̄)5. (pA8 ,pA) with (z,z̄)5(p18 /p08 ,p1 /p0). The
effect of this on calculations is that all the lengthy sums of individual terms within each equ
are replaced by tensorial~spinorial! expressions~using indices! allowing both conciseness an
clarity.

Though it is not our intention to go into the subject in any detail here, we mentioned e
that further developments in the NSF were hindered greatly by the complexity of the equa
More specifically we found that in the original version of the NSF, it was initially very difficul
see and understand, from the equations, where the caustics of the null surfaces would dev
even how to recognize them. Finally using the theory of Legendrian mappings6,7 we understood
how our equations could be modified by changing our variables so that caustics could be ide
and studied, we nevertheless could not implement this understanding because of the te
complexity of the resulting equations; the use of the spinors (pA8 ,pA) replacing the (z,z̄) avoids
these difficulties. More specifically the most important application of the NSF was to asym
cally flat spaces where the level surfaces ofu5Z(x,s) for constant (u,s), i.e., the two-paramete
foliation, was given by the families of past light-cones from each null generators of future
infinity, i.e., from the generators ofI`. An alternate meaning tou5Z(x,s) comes from holding
x fixed and lettingu vary ass ranges over the sphere of null directions at the pointx; this is the
intersection of the future light-cone ofx with I` and is referred to as the light-cone cut of th
point x. Unfortunately this does not work well. The sphere variabless which label the generator
of I` do not necessarily parametrize the sphere of null directions atx. In fact the mapping from
the sphere atx to the generators ofI` in general is not invertible, i.e., ifs* parametrize the
x-sphere then the mapping,s5S(x,s* ) is in general not invertible for fixed x; and it is precise
where it is not invertible that caustics develop. The idea is to replace thes* variable with a second
pair of projective coordinates~spinors!, (sB8

* ,sB* ) and have the mapping given by

~pA8 ,pA!5~WA8~x,sB8
* ,sB* !,WA~x,sB8

* ,sB* !!,

whereWA8 andWA are complex conjugates of each other. This allows us to use the technique
tools of Lagrangian and Legendrian maps, with the spinor calculus, to study the caustics an
they enter the Einstein equations. It was extremely difficult to do this without the use of sp
but it now appears to be feasible. Work on this problem has begun.

In Sec. II, after an introduction to the notation and a description of the planned calculatio
will give, without any detailed derivation, the main results of the paper. A summary of how t
results were obtained will be given in Sec. III. In Sec. IV we will describe what is the ne
modification of our variables so that the NSF can be used to treat the development of ca
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This is a necessary prelude to developing a perturbation theory~within the NSF! for the integra-
tion of the Einstein equations. In several Appendices we describe many of the identities u
Sec. III and the translation of notation from the (z,z̄) calculations to that of (pA8 ,pA) calcula-
tions.

II. THE METRIC AND METRICITY CONDITIONS

A. The starting point

Our basic variable is the function onM3S2, namelyu5Z(xa,pA8 ,pA) with xa[xAA8. Z is
taken as a function of homogeneity~1,1! in both pA8 and pA , i.e., Z(xa,lpA8 ,mpA)
5lmZ(xa,pA8 ,pA). This plays an important role in many of the identities used later. We wil
taking ~up to four! derivatives ofZ with respect topA8 andpA and will be using the notation

]Z

]pA8

[]A8Z[ZA8,
]Z

]pA
[]AZ[ZA,

]2Z

]pA8]pB8

[]A8B8Z[ZA8B8,
]2Z

]pA]pA8

[]AA8Z[ZAA8, etc.

We also use

]Z

]xa
[]aZ[Za ,

]Za

]pA8

[]A8Za[Za
A8 ,

]2Za

]pA]pA8

[]AA8Za[Za
AA8 , etc.

@An important notational usage is the following:All superscript spinor indices,with the exceptions
to be mentioned, arise asspinor derivativesas in the above definitions. The exceptions are of t
types, ~1! the basis spinors~defined later! pA8, pA, hA8, and hA do appear with superscrip
indices and~2! one expression arising later, namely,lAA8

B , possesses a spinor superscript.
avoid confusion, we will always write it aslAA8

B [lAA8
(B) . Also, often we use, in an expression su

as Za
AA8 , both a space–time index ‘‘a’ ’ as well as the spinor index pairAA8. There is no

implication of a contraction, as is occasionally done, between the ‘‘a’ ’ and the AA8.]

We point out thatZa
AA8 forms an independent basis for covectors and the dual setZAA8

a for
vectors. We also note that

Za5pA8Za
A85pAZa

A5pApA8Za
AA8 ~2!

which follows from the Euler theorem on homogeneous functions. These relations are often
From our basic starting equation

gab~x!ZaZb50,

by taking thep8,p derivatives twice each we have

gabZaZb50, gabZaZb
A50, gabZaZb

A850,

gabZa
AZb

A81gabZa
AA8Zb50,

~3!
gab~]AA8B8Za!Zb1gabZa

B8Zb
AA81gabZa

AZb
A8B81gabZa

AB8Zb
A850,

gab~]AA8BB8Za!Zb12gabZa
(B8Zb

A8)AB12gabZa
B8(BZb

A)A81gabZa
ABZb

A8B812gabZa
(AZb

B)A8B850,
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or

gabZa
BB8Zb

AA81gabZa
AB8Zb

A8B52$gab~]AA8BB8Za!Zb1gabZa
ABZb

A8B8

12gabZa
(AZb

B)A8B812gabZa
AB(B8Zb

A8)%

or, with

gi j [gAA8BB8[gabZa
BB8Zb

AA8 ,

and by putting in the unknown trace part, we have an expression for the metric

gAA8BB85V2eABeA8B82 1
2 $gab~]AA8BB8Za!Zb1gabZa

ABZb
A8B8

12gabZa
(AZb

B)A8B812gabZa
AB(B8Zb

A8)%. ~4!

Note that it appears as if the metricgi j [gAA8BB8[gabZa
BB8Zb

AA8 is defined in terms of itself,
i.e., thegab is on both the right-hand and left-hand side; in fact if one computes thegi j term by
term and replaces them in the right-hand side, as we will show in the next subsection, th

right-hand depends only onZa
AB andZb

A8B8 , their derivatives andV. We will refer to Eq.~4! as
the implicit metric equation; later we will have the explicit metric equation.

The main metricity conditions, which guarantee that the expression

gab~x,pA ,pA8![gAA8BB8ZAA8
a ZBB8

a ~5!

~with ZAA8
a dual toZb

AA8, i.e., ZAA8
a Zb

AA85db
a), defines families of conformally equivalent metric

aspA ,pA8 vary, arise from

]A8]B8]C8~gabZaZb!50,

or

gabZaZb
A8B8C81gabZa

C8Zb
A8B81gabZa

B8C8Zb
A81gabZa

B8Zb
A8C850. ~6!

This also will be explicitly worked out later showing it is just a differential equation
Z(xa,pA8,pA).

A second pair of metricity conditions, which are conditions onV(xa,pA8,pA) and
Z(xa,pA8,pA), guarantee that the conformally equivalent family of metrics from the main me
ity condition really are metrically equivalent, i.e., thegab(xa,pA8,pA) of Eq. ~5! depends only on
xa. They will be worked out in detail in Sec. III.

B. The metric

Before constructing the explicit metric we make several preliminary observations and d
several important variables.

It is not hard to see from the~1,1! homogeneity ofZ that ZA8B8 andZAB must have the form

ZA8B85LpA8pB8, ZAB5L̄pApB, ~7!

which then definesL and L̄. The L and L̄, or more precisely the tetrad components of th
gradients,LAA8 and L̄AA8 , defined by

]aL[La[LAA8Za
AA8 and]aL̄[L̄a[L̄AA8Za

AA8 ~8!
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are the variables in which the metric will be expressed. Along the way we will also use

]ALa[La
A[lBB8

(A) Za
BB8 , ]A8L̄a[L̄a

A8[l̄BB8
(A8)Za

BB8 , ~9!

where thelBB8
(A) andl̄BB8

(A8) are known functions ofLAA8 andL̄AA8 and their derivatives, given later
Also used is

La
ABpA8pB85L̄a

A8B8pApB[CapApBpA8pB8[CEE8Zb
EE8pApBpA8pB8, ~10!

where theCEE8 is also a known explicit function ofLAA8 andL̄AA8 . ~The first equality follows
from the commutation ofpA8 and pA derivatives and the definitions ofLa and L̄a .) Actually
only the component

C1[CEE8p
EpE8 ~11!

enters the metric.
The following identities, which follow from the homogeneities, are often used:

lDD8
(B)

52hClDD8
(C) pB1LDD8h

B, l̄DD8
(B8)

5hC8l̄DD8
(C8)pB81L̄DD8h

B8, ~12!

wherehA completes the spinor dyad andhApA51.
We begin with the implicit form of the metric, Eq.~4!,

gAA8BB85V2eABeA8B82 1
2 $gab]AA8BB8ZaZb1gabZa

ABZb
A8B812gabZa

(AZb
B)A8B812gabZa

AB(B8Zb
A8)%

~13!

and show that the bracket expression contains only terms involvingLAA8 and L̄AA8 and their
p8,p derivatives withV2 as a common factor. First, using Eqs.~7!, ~8!, ~9!, and~10!, we rewrite
the four terms inside the bracket yielding

~1! gabZa
ABZb

A8B85gCC8DD8L̄CC8LDD8p
ApBpA8pB8,

~2! gabZa
A8B8(BZb

A)5 1
2@pC8g

DD8AC8lDD8
(B)

1pC8g
DD8BC8lDD8

(A)
#pA8pB8

5 1
2pE8@gAE8DD8(LDD8h

B2hClDD8
(C) pB)1gBE8DD8

3(LDD8h
A2hClDD8

(C) pA)]pA8pB8,

~3! gabZa
AB(B8Zb

A8)5 1
2(g

A8EDD8l̄DD8
(B8)pE1gB8EDD8l̄DD8

(A8)pE)pApB,

~4! gab]AA8BB8ZaZb5gabLa
ABpA8pB8Zb5gEE8DD8CEE8pDpD8p

ApBpA8pB8.

Inserting the terms #1, 2, 3, and 4 back into Eq.~13! we have after rearrangement

gAA8BB85V2eABeA8B82 1
2 gEE8DD8pDpD8CEE8p

ApBpA8pB82~gDD8AC8pC8lDD8
(B)

1gDD8BC8pC8lDD8
(A)

!pA8pB82~pEgA8EDD8l̄DD8
(B8)

1pEgB8EDD8l̄DD8
(A8)

!pApB

2 1
2 gCC8DD8L̄CC8LDD8p

ApBpA8pB8. ~14!

By multiplying Eq. ~14!, respectively, bypB8pB , pA8pB8 , pApB , pA , andpA8 , we obtain the
five relations

gAA8BB8pB8pB5V2pApA8, ~15!

gAA8BB8pA8pB852V2pCpC8L̄CC8p
ApB52V2L̄1pApB, ~16!
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gAA8BB8pApB52V2pCpC8LCC8p
A8pB852V2L1pA8pB8, ~17!

gAA8BB8pB85V2eABpA82 1
2 ~gA8EDD8L̄DD8pE1V2pDpD8l̄DD8

(A8)
!pApB, ~18!

gAA8BB8pB5V2eA8B8pA2 1
2 ~gAE8DD8LDD8pE81V2pDpD8lDD8

(A)
!pA8pB8, ~19!

with

L1[pA8pALAA8 and L̄1[L̄BB8p
BpB8. ~20!

We now note that both Eqs.~18! and ~19! have terms that contain the two expressio
gAA8BB8pB8 andgAA8BB8pB . It is a relatively simple matter to algebraically solve Eqs.~18! and
~19! for these two expressions obtaining

gAA8BB8pB85V2$ 1
4 KpA8pApB1eABpA82 1

2 eF8A8pFL̄FF8p
ApB

1 1
4 pDpD8lDD8

(F) L̄FF8p
ApBpF8pA82 1

2 pApBl̄1
(A8)%. ~21!

gAA8BB8pB5V2$ 1
4K̄pApA8pB81eA8B8pA2 1

2 eFApF8LFF8p
A8pB8

1 1
4 pDpD8l̄DD8

(F8)LFF8p
A8pB8pFpA2 1

2 pA8pB8l1
(A)%, ~22!

where

K5P* 21$~eABpA8pB8L̄BB8LAA8!2 1
2 ~eB8A8pApBL̄BB8LAA8

2 1
2 l1

(F)L̄FF8L1pF81LAA8p
Al̄1

(A8)!L̄1%, ~23!

K̄5P* 21$~eA8B8pApBLBB8L̄AA8!2 1
2 ~eBApA8pB8LBB8L̄AA8

2 1
2l̄1

(F8)LFF8L̄1pF1L̄AA8p
A8l1

(A)!L1%, ~24!

P* 512 1
4 L1L̄1 , ~25!

and

l1
(F)[lDD8

(F) pDpD8, l̄1
(A8)[l̄DD8

(A8)pDpD8.

Though Eqs.~21! and ~22! contain Eqs.~15!, ~16!, and ~17!, it is useful to retain them
separately.

Returning to Eq.~14!, we can see that on the right-hand side every term except the last
namely,gCC8DD8L̄CC8LDD8 , contains thegAA8BB8 in the form ofgAA8BB8pB8pB , gAA8BB8pB8 or
gAA8BB8pB each of which is written in terms ofV and derivatives ofL, L̄. This leaves the
problem of just expressinggCC8DD8L̄CC8LDD8 also in terms ofV and derivatives ofL, L̄.

This actually is easily done. First writing Eq.~14!,

gAA8BB85V2eABeA8B82 1
2 gEE8DD8pDpD8CEE8p

ApBpA8pB82~gDD8AC8pC8lDD8
(B)

1gDD8BC8pC8lDD8
(A)

!pA8pB82~pEgA8EDD8l̄DD8
(B8)

1pEgB8EDD8l̄DD8
(A8)

!pApB

2 1
2 gCC8DD8L̄CC8LDD8p

ApBpA8pB8 ~26!
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as

gAA8BB85JAA8BB82 1
2 gCC8DD8L̄CC8LDD8p

ApBpA8pB8, ~27!

thus definingJAA8BB8as V2 times aknown expression in terms of derivatives ofL, L̄. Then
multiplying Eq. ~27! by LAA8 and L̄BB8 we obtain

gAA8BB8LAA8L̄BB85L̄BB8LAA8J
AA8BB82 1

2 gCC8DD8L̄CC8LDD8L1L̄1

or

gAA8BB8LAA8L̄BB8~11 1
2 L1L̄1!5L̄BB8LAA8J

AA8BB8.

Hence, with

P[~11 1
2 L1L̄1!, ~28!

we have

gAA8BB8LAA8L̄BB85P21L̄CC8LDD8J
CC8DD8, ~29!

where the right-hand side is given only in terms ofV2 and derivatives ofL and L̄.
Replacing Eq.~29! in Eq. ~27!, we thus have the full explicit form of the metric

gAA8BB85JAA8BB82 1
2 P21L̄CC8LDD8J

CC8DD8pApBpA8pB8 ~30!

expressed in terms ofL and L̄ andV.

Though we have earlier said that there are explicit expressions forlDD8
(F) , l̄DD8

(F8) andCAA8 we
have not until now displayed them. Their derivation is given in the Appendix,

lAA8
(C)

5LAA8h
C1P21$2hELAA8

E
1LEE8L̄AA8

E8 pE1L1L̄DD8h
DpD8LAA8%p

C, ~31!

l̄AA8
(C8)

5L̄AA8h
C81P21$2hE8L̄AA8

E8 1L̄EE8LAA8
E pE81L̄1LDD8h

D8pDL̄AA8%p
C8, ~32!

CCC85hEhFLCC8
EF

1LDD8~]Dl̄CC8
(D8)

1l̄EE8
(D8)l̄CC8

(E8)pEpD!

12l̄CC8
(D8)

~LDD8h
D2hELDD8

E pD!, ~33!

C15CCC8p
CpC85hEhFL1

EF1LDD8~]Dl̄1
(D8)1l̄EE8

(D8)l̄1
(E8)pEpD!

12l̄1
(D8)~LDD8h

D2hELDD8
E pD!. ~34!

See Appendix C for a detailed discussion ofhA.

C. The metric components

Though Eq.~30! is the full closed~spinor! form for the metric, it is useful to see the metric
terms of its components in thep and h basis. Most components can be obtained directly fr
Eqs.~21! and ~22!,
                                                                                                                



t
plicit

nents.

6307J. Math. Phys., Vol. 41, No. 9, September 2000 A spinor reformulation

                    
gAA8BB8pB85V2$ 1
4 KpA8pApB1eABpA82 1

2 eF8A8pFL̄FF8p
ApB

1 1
4 pDpD8lDD8

(F) L̄FF8p
ApBpF8pA82 1

2 pApBl̄1
(A8)%,

gAA8BB8pB5V2$ 1
4K̄pApA8pB81eA8B8pA2 1

2 eFApF8LFF8p
A8pB8

1 1
4 pDpD8l̄DD8

(F8)LFF8p
A8pB8pFpA2 1

2 pA8pB8l1
(A)%

by contraction with the appropriatep or h. Using the notation

eAA8
0 [pA8pA , eAA8

1 [hA8pA , eAA8
2 [pA8hA , eAA8

1 [hA8hA ,

one obtains

g00[gAA8BB8pApBpA8pB850,

g01[gAA8BB8pApA8pBhB850, g02[gAA8BB8pApA8hBpB850,

g11[gAA8BB8pAhA8pBhB852V2L1 , g22[gAA8BB8hApA8hBpB852V2L̄1 ,

g01[gAA8BB8pB8pBhA8hA5V2, g21[gAA8BB8pAhA8hBpB852V2,

g12[gAA8BB8hAhA8hBpB852 1
2 V2$ 1

2 K1hF8pFL̄FF81
1
2 l1

(F)L̄FF8p
F81hA8l̄1

(A8)%,

g11[gAA8BB8hAhA8pBhB8

52 1
2 V2$ 1

2K̄1hFpF8LFF81
1
2l̄1

(F8)LFF8p
F1hAl̄1

(A)%,

g11[gAA8BB8hAhBhA8hB8

5JAA8BB8hAhBhA8hB82
1
2 P21L̄CC8LDD8J

CC8DD8,

the last and most complicated component coming from Eq.~30!. If one tries to write out the las
component in detail it is quite lengthy and does not appear to simplify. However the ex
expression is not often needed.

D. The space–time metric components

One can easily convert the spinor components of the metric into their space–time compo
Writing

Za
AA85Za

BB8pBpB8h
AhA82Za

BB8pBhB8h
ApA8

2Za
BB8hBpB8p

AhA81Za
BB8hBhB8pApA8

5ua
0hAhA82ua

1hApA82ua
2pAhA81ua

1pApA8,

where theua
i form a gradient basis. The following linear combinations of theua

i form a null tetrad
basis~though still depending on thep8s); i.e., l •n52m•m̄51, all other products vanishing,

l a[ua
0 , ma5a~ua

11bua
2!, m̄a5a~ua

21b̄ua
1!, na5~ua

01mua
11m̄ua

21gua
1!,

with
                                                                                                                



6308 J. Math. Phys., Vol. 41, No. 9, September 2000 Frittelli, Mason, and Newman

                    
a25
g11g22

2D~AD2g21!
, b5

AD2g21

g22
, m5

g22g112g21g12

D

g52
g11

2g01
2

$g22g112g21g121g12AD%$g11g122g21g111g11AD%

2g01D~AD2g21!

and

D5~g21!22g11g22.

The metric then becomes

gab5 l anb1 l bna2mam̄b2mbm̄a .

III. METRICITY CONDITIONS

A. Main metricity condition

The main metricity condition begins with the thirdpA8 derivative ofgabZaZb50, namely Eq.
~6!,

gabZaZb
A8B8C81gabZa

C8Zb
A8B81gabZa

B8C8Zb
A81gabZa

B8Zb
A8C850, ~35!

which, whenZb
A8B85 LbpA8pB8 is used, becomes

gabZbZa
A8B8C81gabpE~Za

EC8pA8pB81pB8pC8Za
EA81Za

EB8pC8pA8!Zb
DD8LDD850. ~36!

This has only one nontrivial component,hA8hB8hC8 , and thus

hA8hB8hC8g
abZbZa

A8B8C813LDD8g
DD8CC8pChC850.

Using the expansion

Za
A8B8C852hD8La

D8pA8pB8pC82La~pA8pB8hC81pC8pA8hB81pB8pC8hA8!,

we have that

hA8hB8hC8Za
A8B8C85hD8La

D8 ,

and thus Eq.~35! becomes

gabZbhD8La
D813LDD8g

DD8CC8pChC850. ~37!

With the expansion ofLa
D8 in the Za

BB8 basis we have

La
D85~LBB8

D8 1LCA8lBB8
(C) pA8pD8!Za

BB8 ,

and using the expression forgDD8CC8pChC8 in terms ofL the main metricity condition finally
becomes

hD8L1
D82 3

4K̄L113LAA8h
A8pA2 3

4l̄1
(F8)L1LFF8p

F1 1
2 LAA8p

A8l1
(A)50. ~38!
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This is to be considered either as an equation for the determination ofL andL̄ as functions
of pA8, pA, andZAA8 or as an equation for the determination ofZ(x,pA8,pA).

B. The second metricity condition

The second metricity condition is the relationship between the conformal factorV and the
variablesL andL̄ so that the conformal class of metrics~arising from the main metricity condi
tion! are metrically equivalent, i.e., as metrics they differ only by a coordinate transforma
Though there are several ways of deriving this condition8 the easiest, perhaps, is to start with t
expression

~gAA8BB8pB8pB![gabZaZb
AA85V2pApA8

and take itspC8 derivative. After noticing that

]C8~gabZaZb
AA8!5gAA8CC8pC1gabZaZb

C8AA8 ,

one has

gAA8CC8pC1gabZaZb
C8AA852V]C8VpApA81V2pAeA8C8.

By multiplying by hC8hAhA8 and using the identity

gabZaZb
A8C8AhC8hAhA85V2P21~hAL1

A2LEE8L̄1
E8pE2L1L̄EE8p

E8L1hE!5V2hCl1
(C) ,

and the metric component

gAA8CC8hAhA8pChC852 1
2 V2$ 1

2K̄1hFpF8LFF81
1
2l̄1

(F8)LFF8p
F1hAl1

(A)%,

we have

hC8]
C8V5 1

4 V~hAl1
(A)2 1

2K̄2hFpF8LFF82
1
2l̄1

(F8)LFF8p
F!, ~39!

the second metricity condition.

IV. THE EINSTEIN EQUATIONS

In this section we will simply translate the vacuum Einstein equations from the notation o
earlier papers on the Null Surface formulation of GR into the spinor version. This proce
actually quite simple and straightforward, yielding a minimum amount of change.

We first point out that the relationship between the old basic variable and the new one is
by Z5TẐ, whereẐ(xa,z,z̃) is the ~old! cut function of the NSF papers~homogeneity zero! and
Z(xa,pA8 ,pA) is the new cut function of the spinor version, with homogeneity~1,1!. See Appen-
dix B for a complete discussion of the translation from the old form~the space–time form! to the
spinor form.

We have the space-time form of the NSF version of the Einstein equation,

Rab50⇒Ẑ,aẐ,bRab50⇔D̂2V5Q̂~L̂1!V, ~40!

where

Q̂~L̂1!5
3

8q2
~D̂q!22

1

4q
$D̂2q2D̂2L̂•D̂2L̂̄%, q512D̂L̂•D̂ L̂̄, ~41!
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andD̂[]/]R[û1
a]a , whereû1

a is one of the legs of the tetradû i
a , which isdefinedas the dual to

ûa
i [(Ẑ,a ,ZẐ,a ,ZpẐ,a ,ZpZẐ,a), namely,ûa

i û j
a5d j

i . (Z andZp are the spin raising and lowering ed
operators, discussed in the last Appendix.! We want to write, first, the spinor version ofD̂ and
then finally the spinor version of Eq.~40!.

We first show thatû1
a5V22gabẐ,b . We start by expanding the vectorẐa[gabẐ,b in terms of

the tetrad basis,

Ẑa5aû1
a1bû1

a 1gû2
a 1eû0

a . ~42!

Then, byûa
i û j

a5d j
i , we have

a5Ẑaûa
15gabẐ,bZpZẐ,a5V2, ~43!

b5Ẑaûa
15gabẐ,bZẐ,a50, ~44!

g5Ẑaûa
25gabẐ,bZpẐ,a50, ~45!

e5Ẑaûa
05gabẐ,bẐ,a50. ~46!

Thusu1
a5V22gabẐ,b . In terms of the newZ; Ẑ,b5Z,b /T we have

û1
a5

1

TV2
gabZ,b5

1

TV2
gabpBpB8Zb

BB8 . ~47!

Now, since we can useZAA8 as coordinates for the space–time for fixed values ofpA,pA8, then

]

]xa
5Za

AA8
]

]ZAA8
. ~48!

Finally,

D̂5 û1
a]a5

1

TV2
gabpBpB8Zb

BB8Za
AA8

]

]ZAA8

5
1

TV2
gAA8BB8pBpB8

]

]ZAA8
5

1

T
pApA8

]

]ZAA8
~49!

or

D̂5 û1
a]a5

1

T
pApA8

]

]ZAA8
[

1

T
D.

The left-hand side of the Einstein equation,~40!, is thus rewritten asD̂2V5T22D2V. The
right-hand side is the functionQ(L̂1), whereL̂5Z2Ẑ andL̂15D̂L̂; it must now be re-expresse
in terms ofL, ~defined~earlier! by ZA8B8[pA8pB8L), instead ofL̂1. In Appendix B, we showed
that

ZA8B85pA8pB8T21~p0 /p08!
2 Z2Ẑ5pA8pB8T 21~p0 /p08!

2L̂

so that
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T21~p0 /p08!
2L̂5L ~50!

or

L̂5T~p08 /p0!2L. ~51!

Differentiating both sides with respect toxa and expressingLa5LAA8Za
AA8 we obtain

L̂,a5T~p08 /p0!2LAA8Za
AA8 . ~52!

Contracting by

û1
a5

1

TV2
gabpBpB8Zb

BB8

yields

D̂L̂5~p08 /p0!2
1

V2
gabZbLAA8Za

AA8

5~p08 /p0!2
1

V2
pBpB8g

AA8BB8LAA8 , ~53!

D̂L̂[L̂15~p08 /p0!2pApA8LAA8[~p08 /p0!2DL[~p08 /p0!2L1 .

The factors ofT21 in the D̂ has canceled with theT in the L̂ and we have that

L̂15D̂L̂5~p08 /p0!2L1 . ~54!

This is then substituted into the expression forQ(L̂1). First notice thatD L̂̄DL̂5L1L̄1 , i.e.,
the p factors cancel out, and thus

q512D L̂̄DL̂512L1L̄1 .

In the Q(L̂1) there are two more factors ofT21 which cancel out with theT22 on the left
side. This leaves thevacuum Einstein equationsvirtually unchanged in form

D2V5Q~L1!V, ~55!

now with

Q~L1!5
3

8q2
~Dq!22

1

4q
$D2q2D2L̄D2L%, q512DL̄DL. ~56!

V. CONCLUDING REMARKS

In this work we have recast the null surface reformulation of GR into spinor language. Th
the expressions encountered are lengthy and appear to be rather forbidding, they neverthele
several great advantages over the earlier formalism. The calculations are much easier to p
and there is much less chance of algebraic error. The internal logic is considerably easier
and understand—the earlier arguments were often quite difficult to fully comprehend. Perha
greatest advantage of the spinor language is that we will be able to generalize the null s
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version of the Einstein equations to include new variables; in the older version it was extre
difficult to see and to understand how wavefront singularities~caustics! could be described and
how to study their evolutionary development.Thoughin principle, we knew what variables to ad
and how to add them, the computations were so forbidding that after a few attempts we ga
Now, with the use of index methods, these calculations appear to be well within our r
Preliminary work on this has begun.

APPENDIX A: MISCELLANEOUS RELATIONS, NOTATION, AND DEFINITIONS

1. Miscellaneous relations

e1
AA85pA8pA, e2

AA852hA8pA,

e1
AA852pA8hA, e0

AA85hA8hA,

Za
A8AZBB8

a
5dB8

A8dB
A ,

eA8C85pA8hC82pC8hA8, eA8C85pA8hC82pC8hA8 ,

hA8pA852pA8hA851.

For an arbitrary space-time functionF,

]aF5Za
AA8FAA8 , FAA85ZAA8

a ]aF,

pA8pAFAA85pA8pAZAA8
a ]aF[F1 ,

hA8pAFAA85hA8pAZAA8
a ]aF[F2 ,

pA8hAFAA85pA8hAZAA8
a ]aF[F1 ,

hA8hAFAA85hA8hAZAA8
a ]aF[F0 .

2. Definitions and homogeneities

~1! Za5pA8pAZa
AA8 , Za

A5pA8Za
AA8 , Za

A85pAZa
AA8 ,

~2! Za
A8B85LapA8pB8, La[LAA8Za

AA8 ,

~3! Za
CB8A85La

CpA8pB8, Za
CDB8A85La

CDpA8pB8,

~4! Z5.(1,1), Za
AA85.(0,0), Za

A5.(1,0), Za
A85.(0,1),

~5! Za
B8A85.(21,1), Za

AB5.(1,21),
~6! La5.(23,1), LAA85.(23,1), L̄a5.(1,23), L̄AA85. (1,23),
~7! L15pApA8LAA85.(22,2),

~8! La
C5.(23,0), L̄a

C85.(0,23),

~9! Za
ABA8B85La

ABpA8pB85L̄a
A8B8pApB5CapApBpA8pB85.(21,21),

~10! La
AB5.(23,21), L̄a

A8B85.(21,23),

~11! Ca[La
ABhAhB5L̄a

A8B8hA8hB8E5CEE8Za
EE8 ,CEE85.(23,23),

~12! hD85.(0,21), hD5.(21,0).

Example of uses of the homogeneities,
pCLAA8

C
5LAA8 , LAA8

D
5LAA8h

D2hELAA8
E pD,
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La
C852hB8La

B8pC823LahC8, LAA8
C8 52hB8LAA8

B8 pC823LAA8h
C8.

3. Expansions in the Za
AA 8 basis

a. The expansion of La
C in the Z a

AA 8 basis

We start withZa
A8B85LapA8pB8 andLa[LAA8Za

AA8 . By differentiation, this leads to

Za
CB8A85La

CpA8pB8. DefininglAA8
(C) by the expansion

La
C[lAA8

(C) Za
AA8 ,

we have that

La
C[lAA8

(C) Za
AA85LAA8

C Za
AA81LAA8Za

ACA8

or

La
C5LAA8

C Za
AA81LAA8L̄a

A8pApC ~A1!

and the conjugate relationship,

L̄a
C85L̄DD8

A8 Za
DD81L̄DD8La

DpD8pA8. ~A2!

Now by algebraic manipulation we solve Eqs.~A1! and ~A2! for La
C and L̄a

C8 obtaining

La
C5P21~LAA8

C
1LEE8L̄AA8

E8 pEpC1L1L̄DD8p
D8pCLAA8h

D2L1L̄1hCLAA8!Za
AA8 ~A3!

and

L̄a
C85P21~L̄AA8

C8 1L̄EE8LAA8
E pE8pC81L̄1LDD8p

DpC8L̄AA8h
D82L1L̄1hC8L̄AA8!Za

AA8

~A4!

with

P512L1L̄1 .

From La
C[lAA8

(C) Za
AA8 and a bit more manipulation we thus have

lAA8
(C)

5LAA8h
C1P21$2hELAA8

E
1LEE8L̄AA8

E8 pE1L1L̄DD8h
DpD8LAA8%p

C,

l̄AA8
(C8)

5L̄AA8h
C81P21$2hE8L̄AA8

E8 1L̄EE8LAA8
E pE81L̄1LDD8h

D8pDL̄AA8%p
C8.

These are very important relations and were used extensively.

b. The expansion of La
C8 in the Z a

AA 8 basis

By differentiating

Za
A8B85LapA8pB8

we obtain

Za
A8B8C85La

C8eA8E8pE8p
B81La~eA8C8pB81pA8eB8C8!
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or

Za
A8B8C852hD8La

D8pA8pB8pC82La~pA8pB8hC81pC8pA8hB81pB8pC8hA8!.

By differentiatingLa5LAA8Za
AA8 we obtain

La
C85LAA8

C8 Za
AA81LAA8Za

AA8C85LAA8
C8 Za

AA81LCA8La
CpA8pC8,

and then using the already knownLa
C[lDD8

C Za
DD8 , we have

La
C85~LDD8

C8 1LCA8lDD8
C pA8pC8!Za

DD8 . ~A5!

These relations were used in the derivation of the metricity conditions.

c. The expansion of Z a
ABA 8B8 and Ca in the Z a

CC8 basis

The expansion of]AA8BB8Za into the Za
CC8 basis is needed. We begin with the obvio

expressions

]AA8BB8Za5Za
ABA8B85L̄a

A8B8pApB5La
ABpA8pB8[CapApBpA8pB8

with the identities

hAhBLa
AB5L̄a

A8B8hA8hB8

and

Ca5La
ABhAhB5L̄a

A8B8hA8hB85CEE8Za
EE8 .

Our task is to express theCEE8 in terms ofL andL̄ using eitherLa
AB or L̄a

A8B8 . To do this we
return to

La
A[LDD8

A Za
DD81LDD8Za

ADD8

with its pB derivative

La
AB[LDD8

AB Za
DD81LDD8

A Za
BDD81LDD8

B Za
ADD81LDD8Za

BADD8 . ~A6!

The second and third terms are rewritten via

Za
BDD85L̄a

D8pBpD5l̄EE8
(D8)Za

EE8pBpD, ~A7!

while the last term becomes after anotherp derivative

Za
BAD8D5$~]Dl̄CC8

(D8)
1l̄EE8

(D8)l̄CC8
(E8)pEpD!pBpA1l̄CC8

(D8)
~eBDpA1pBeAD!%Za

CC8 . ~A8!

Substituting Eqs.~A7! and ~A8! into Eq. ~A6! and some manipulation we have

La
AB5$hEhFLCC8

EF
1LDD8~]Dl̄CC8

(D8)
1l̄EE8

(D8)l̄CC8
(E8)pEpD!

12l̄CC8
(D8)

~LDD8h
D2hELDD8

E pD!%pApBZa
CC8

and hence
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Ca5$hEhFLCC8
EF

1LDD8~]Dl̄CC8
(D8)

1l̄EE8
(D8)l̄CC8

(E8)pEpD!12l̄CC8
(D8)

~LDD8h
D2hELDD8

E pD!%Za
CC8

or

CCC85$hEhFLCC8
EF

1LDD8~]Dl̄CC8
(D8)

1l̄EE8
(D8)l̄CC8

(E8)pEpD!12l̄CC8
(D8)

~LDD8h
D2hELDD8

E pD!%.

APPENDIX B: TRANSLATING EDTH INTO HOMOGENEOUS COORDINATES

In this appendix we make the conversion between the standard edth operator on the
sphere and spinor derivatives. We begin with some conventions and definitions,

t i[~1,0,0,0!5tAA85U1 0

0 1
U5.T[tAA8pApA8 , ~B1!

pA85p08~1,z!, pA5p0~1,z̃ !, ~B2!

eA8B85U0 1

21 0
U5eA8B8, ~B3!

pA85~p08 ,p18!5pB8eB8A85~2p18,p08!, pA85eA8B8pB85~p18 ,2p08!,

]

]pA8

[]A8,
]

]pA
[]A, ~B4!

]2

]pA]pA8

[]AA8,
]2

]pA]pB
[]AB,

]2

]pA8
]pB8

5]A8B8,

z5p18 /p08 , z̄5p1 /p0 , ~B5!

]A8z52pA8/p08
2 , ]Az̄52pA/p0

2 .

The standard sphere operator edth for a spin-weight zero functionẐ(z,z̄) is given by

ZẐ5
T

p0p08

]zẐ, ZpẐ5
T

p0p08

]z̄Ẑ, ZpZẐ5
T2

~p0p08!
2
]z]z̄Ẑ. ~B6!

Our ‘‘new’’ variable Z(pA8 ,p̃A) is defined in terms of theẐ(z,z̃) by

Z~pA8 ,pA!5T~pA ,pA8!Ẑ~p18 /p08 ,p1 /p0!; or Z5TẐ, ~B7!

whereẐ(z,z̄) is a function ofpA8 ,pA of homogeneity weight~0,0! while the new variable has
homogeneity~1,1! in the (pA8 ,pA). This change is of extreme importance.

Remark 1:@Note that we are making a change from the standard notation where formerl

present Zˆ (z,z̄) was called Z(z,z̄). The reason for the change is that we want to use the symb
for our new basic variable.#

Then

]A8Z5ẐtAA8pA2~p0 /p08!p
A8ZẐ, ~B8!

]AZ5ẐtAA8pA82~p08 /p0!pAZpẐ, ~B9!
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]AA8Z5ẐtAA82
pApBtBA8

T S p08
p0

DZpẐ2
pA8tAB8pB8

T S p0

p08
D ZẐ1

pApA8

T
ZpZẐ. ~B10!

Define the Eastwood/Tod/Mason version of edth, symbolized byP, by

PZ[
pBtA8

B

T
]A8Z5hA8]

A8Z.

~See below for the definition ofhA8 .) We then have the relations

]A8Z5ẐtAA8pA2~p0 /p08!p
A8ZẐ5

Z

T
tAA8pA2pA8PZ5ZhA82pA8PZ

with

PZ5~p0 /p08!ZẐ.

A natural choice for a spinor basis is

pB, p̃B8, hA5
tAB8pB8

T
, hA85

pBtBA8

T
, ~B11!

with

hApA5152pAhA , hA8pA85152pA8hA8 ~B12!

hAhA8t
AA8T51, tAA85ThAhA81T21pApA8,

and Eq.~B10! becomes

]AA8Z5ẐThAhA82pAhA8S p08

p̃0
D ZpẐ2hApA8S p0

p08
D ZẐ1pApA8T21~ Ẑ1ZpZẐ! ~B13!

and thus

F pA]AZ5pApA8]
AA8Z5Z5ẐT, hA8]

A8Z5pAhA8]
AA8Z5S p0

p08
D ZẐ,

hA]AZ5hApA8]
AA8Z5S p08

p̃0
D ZpẐ, hAhA8]

AA8Z5T21~ Ẑ1ZpZẐ!
G . ~B14!

After a straightforward but lengthy calculation we also have, the very useful relationsh

]A8B8Z5LpA8pB85pA8pB8T21S p0

p08
D 2

Z2Ẑ, Z2Ẑ5L̂, ~B15!

]ABZ5L̄p̃Ap̃B5p̃Ap̃BT21S p08

p̃0
D 2

Zp2Ẑ, Zp2Ẑ5 L̂̄, ~B16!

so that

L5L̂~p0 /p08!
2T21, L̄5 L̂̄~p08 /p0!2T21.
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On a class of invariant coframe operators with application
to gravity

Yakov Itina) and Shmuel Kanielb)
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Let a differential 4D-manifold with a smooth coframe field be given. Consider the
operators on it that are linear in the second order derivatives and quadratic in the
first order derivatives of the coframe, both with coefficients that depend on the
coframe variables. The article exhibits the class of operators that are invariant
under a general change of coordinates, and, also, invariant under the global
SO~1,3!-transformation of the coframe. A general class of field equations is con-
structed. We display two subclasses in it. The subclass of field equations that are
derivable from action principles by free variations and the subclass of field equa-
tions for which spherical-symmetric solutions, Minkowskian at infinity, exist.
Then, for the spherical-symmetric solutions, the resulting metric is computed. In-
voking the geodesic postulate, we find all the equations that are experimentally~by
the three classical tests! indistinguishable from Einstein field equations. This family
also includes, of course, Einstein equations. Moreover, it is shown, explicitly, how
to exhibit it. The basic tool employed in the article is an invariant formulation
reminiscent of Cartan’s structural equations. The article sheds light on the possi-
bilities and limitations of the coframe gravity. It may also serve as a general
procedure to derive covariant field equations. ©2000 American Institute of Phys-
ics. @S0022-2488~00!02309-2#

I. INTRODUCTION

In the framework of the Einstein theory the gravity field is described as a geometrical pro
of a four-dimensional pseudo-Riemannian manifold~differential manifold endowed with a
pseudo-Euclidean metric!. In this manifold the evolution of the metric is described by a fie
equation which is covariant, i.e., invariant under the group of diffeomorphic transformations
manifold. The metric is used as the basic building block. Thus, componentwise, the field eq
is a system of ten differential equations for ten components of the metric tensor. Further
Einstein looked for the second order partial differential equations~PDEs!, linear in the principle
part. It is interesting to note that Einstein in general relativity as well as his later writing
unified field theories did not rely on the action principle.

After the establishment of general relativity, E. Cartan1 introduced the notion of a frame t
differential geometry. He then showed that the basic constructs of classical differential geo
can be obtained via his repere mobile. Einstein2,3 applied Cartan’s ideas for the definition of
teleparallel space. He attempted, by that, to construct a unified theory of gravity and electr
netism. Weitzenbo¨ck4 investigated the geometric structure of teleparallel spaces. Theories
on this geometrical structure are used for alternative models of gravity and also to descri
spin properties of matter. For the recent investigations in this area see Refs. 5–27.

For an account of teleparallel spaces in the metric-affine framework see Refs. 13–1
cently a reformulation of teleparallelism was achieved by the introduction of chiral variable
E. Mielke.16,17

a!Electronic mail: itin@math.huji.ac.il
b!Electronic mail: kaniel@math.huji.ac.il
63180022-2488/2000/41(9)/6318/23/$17.00 © 2000 American Institute of Physics
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In Ref. 28 an alternative gravity model based on teleparallel spaces was suggested.
exhibit here a short account of it. There, the field equation was taken to be

hqa5lqa, ~1!

whereh5d* d* 1* d* d is the Hodge–de Rham Laplacian. It turns out that there exists a un
~up to a constant, which is identified with the mass! spherical-symmetric, asymptomatically fla
and static solution:

q05e2m/rdt, q i5em/rdt, i 51,2,3. ~2!

The resulting line element is

ds25e22m/rdt22e2m/r~dx21dy21dz2!. ~3!

The metric defined by~3! is the celebrated Yilmaz–Rosen metric.29–32 This metric is experimen-
tally ~by three classical tests! indistinguishable from the Schwarzschild metric. In Ref. 28 it w
shown that~1! is derivable from a constrained variational principle. U. Muench, F. Gronwald
F. W. Hehl33 placed the model in the area of the various teleparallel theories. They also de
strated that the equation~1! cannot be derived from a variational principle, by unconstrain
variations.

If ~1! is taken to be the field equation for a gravity theory, it has to meet other criterio
well. M. Sue and E. W. Mielke19 showed that Cartan structure equations seem to be weak
‘‘strength’’ than Einstein equations~the concept of ‘‘strength’’ of field equations was introduc
by Einstein!.

Thus it is not clear whether the Cauchy problem is well posed.
Furthermore,~1! may have too many degrees of freedom for a spin two graviton. By c

parison, in Ref. 18 a three-dimensional model with a similar wave equation was exhibited. F
model the Lorentz constraints for a graviton comes automatically.

Moreover, it is not clear what kind of modes~‘‘particles’’ ! occur in the related mode decom
position for the linearized equations~spin, mass and ghost content!, cf. R. Kuhfuss and J. Nitsch.22

Since~1! is arbitrary it is worthwhile to consider other invariant operators as well.
In the present article we study the structure of the invariant differential coframe operato

a teleparallel manifold. We construct a general field equation on the coframe variable. T
covariant and SO~1,3! invariant. It is a system of 16 PDEs for 16 coframe variables. The equa
are linear in the second order derivatives and quadratic in the first derivatives. It turns out t
contrast to the metric gravity, there exists on a teleparallel space a wide class of invarian
equations.

We also study the structure of field equations that can be derived from a quadratic Lagra
by free variations. We show that these equations form a subclass of the class above. We als
that the Einstein field equation is a unique symmetric equation in this subclass.

Another subclass of equations is defined by the conformity to observations, i.e., confirm
with the three classical tests of gravity.

We will deal with the important subclass of gauge invariant operators in a subsequent
All the computations are carried out, explicitly, in a covariant manner. An important feature
great computational simplicity achieved.

Once the structure of the invariant operators is known and computable, the author
attempt to answer the queries raised, not only for~1! but for the whole class of invariant operato
as well as the particular subclasses. Naturally, they expect different behavior for different o
tors.

II. INVARIANT OBJECTS ON THE TELEPARALLEL SPACE

Consider a 4D-differential manifoldM endowed with a smooth coframe tetradqa, a
50,1,2,3. This is a basis of the cotangent spaceL1

ªTx* M at an arbitrary pointxPM . Let the
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vector spaceL1 be endowed with the Lorentzian metrichab5hab5diag(1,21,21,21). We will
refer to the triad$M ,qa,hab% as ateleparallel space. A hyperbolic metric on the manifoldM is
defined by the coframe$qa(x)% as

g5habq
a

^ qb. ~4!

The coframe$qa(x)% is pseudo-orthonormal with respect to the metricg,

gmnqm
a qn

b5hab.

Let us exhibit our basic construction.
Consider the exterior differential of the basis one-forms~we use here and later abbreviatio

qab¯5qa`qb`¯),

dqa5qb,a
a dxa`dxb5 1

2 Ca
bcq

bc, ~5!

where, for uniqueness, the coefficientsCa
bc are antisymmetric:

Ca
bc52Ca

cb .

We will refer to the coefficientsCa
bc as to three-indexedC-objects.~This object is known as the

object of unholonomity.!
These coefficients can be written explicitly as

Ca
bc5ecc~ebcdqa!. ~6!

Their contraction, i.e.,

Ca5Cm
bm52Cm

mb ,

will be referred to as the one-indexedC-object.
Their explicit expression is

Ca5emc~eacdqm!. ~7!

TheseC-objects represent diffeomorphic covariant and SO~1,3! invariant generalized derivative
of the coframe fieldqa. In Refs. 34 and 35 it is shown that the coderivative of the coframe
also be represented by theC-objects.

The exterior differentials of the basic one-forms form a set of one-indexed two-forms. Th
has the same algebraic structure as the torsion in Riemann–Cartan space. Consequently,dqa has
the same irreducible decomposition with respect to the~pseudo! orthonormal group:

dqa5 (1)dqa1 (2)dqa1 (3)dqa, ~8!

where

(2)dqa
ª

1
3 qa`~emcdqm!, ~9!

(3)dqa
ª

1
3 eac~qm`dqm!, ~10!

(1)dqa
ªdqa2 (2)dqa2 (3)dqa. ~11!

The second part of the two-formdqa depends on the one-indexedC-object:

(2)dqa5 1
3 qa`~Cmqm!5 1

6 ~Cmdn
a2Cndm

a !qmn. ~12!
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This irreducible part has four independent components which are related to four indepe
components of the one-indexedC-object.

The third part of the two-formdqa depends on the antisymmetric part of the three-inde
C-object

(3)dqa5 1
6 ~Camn1Cmna1Cnam!qmn5

1
2 C[amn]qmn . ~13!

This irreducible part has also four independent components which are related to four indep
components ofC[amn] .

As for the first part,

(1)dqa5 1
2 ~~Camn2C[amn] !2 1

3 ~Cmhan2Cnham!!qmn . ~14!

The two-form has 16 independent components because 24 of its coefficients

Xamn
ªCamn2C[amn]2 1

3 ~Cmhan2Cnham! ~15!

satisfy four antisymmetric conditions

X[amn]50 ~16!

and four traceless conditions

hamXamn52hanX
amn50. ~17!

This way the irreducible pieces ofdqa are constructed from the invariant combinations of t
C-objects.

In order to construct the invariant generalized second order derivative we consider the e
differential of theC-objects:

dCa
mn5Ba

mnpq
p. ~18!

The components of this one-formBa
mnp will be referred to as four-indexedB-objects. Again, the

Ba
mnp are scalars. Observe that they are antisymmetric in the middle indices

Ba
mnp52Ba

nmp.

The explicit expression of a four-indexedB-object is

Ba
bcd5edcd~ecc~ebcdqa!!. ~19!

As we will see later, the field equation should include only the two-indexed values. These c
obtained by a contraction of four-indexedB-objects withhab . Because of the antisymmetry th
only possible contractions are

(1)Bab5Babm
m , ~20!

(2)Bab5Bm
mab, ~21!

(3)Bab5Bm
abm, ~22!

where the indices are raised and lowered via thehab , for example,Babm
m5hmkhapB

p
bmk. These

contracted objects will be referred to as two-indexedB-objects. Observe that one of them, name
(3)Bab , is antisymmetric, and two others have generally nonzero symmetric and antisymm
parts.
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Note, also, that the exterior differential of the one-indexedC-object can be expressed by th
two-indexedB-object

dCa5dCm
am5Bm

ampq
p52 (2)Bapq

p. ~23!

We will also include in the general equation the scalar~nonindexed! objects constructed from th
Ba

nmp. By the antisymmetry of the middle indices only one nontrivial full contractionB of the
quantitiesBa

nmp is possible~up to a sign!:

B5Ba
ab

b5Ba
abch

bc5 (1)Ba
a5 (2)Ba

a . ~24!

The fully contractedB-object with no index attached will be referred to as the scalarB-object.
The coframeqa is usually used as a device to express physical variables like metric

connections. We take the view that theqa may serve as physical variables, as well. As such
construct field equations for it. Let us list the conditions that we impose on these equation

~i! The field equation should be global SO~1,3!-invariant and tensorial diffeomorphic covar
ant. For that theB- andC-objects may serve as building blocks. Thus we construct it fr
the B- andC-objects.

~ii ! The coframe fieldqa has 16 independent components. These components are the ind
dent dynamical variables. Thus, if we write the equation in a scalar form, it should
two-indexed equation.

~iii ! We are interested only in partial differential equations of the second order. Moreove
are looking for equations that are linear in theB-objects~so that an approximation by th
wave operators is possible!.

~iv! The nonlinear part of the field equation is taken to be quadratic in theC-objects. Thus, if
the coframe fieldqa is dimensionless, all the parts of the equation have the same dime
and all the free parameters are dimensionless.

In the sequel we will develop a general procedure for getting all the field equations tha
constructed by theC- and B-objects. It is a wide class. In particular, we get all the equati
derived by the variation of a general quadratic Lagrangian. The Einstein equation is a par
case of our general field equation. The procedure above allows us to treat also the situation
the metric tensorg, as defined by~4!, is the primary physical variable. In this case there are
independent variables which are the combinations of the components of the coframeqa. These
variables satisfy ten field equations that turn out to be the Einstein equations. This will be w
out explicitly in the sequel.

Let us write the leading~second order! part of the equation as a linear combination of t
two-indexedB-objects:

Lab5b1
(1)B(ab)1b2

(2)B(ab)1b3
(3)Bab1b4 habB1b5

(1)B[ab]1b6
(2)B[ab] , ~25!

where the symbols (ab) and@ab# mean, consequently, symmetrization and antisymmetrizatio
the indices. The coefficientsb i are free numerical constants.

Equation~25! is the general two-indexed tensorial expression constructed by the four-ind
objectBa

bcd by combination of contraction and transpose operators. The scalarB is transformed
into a two-indexed object by multiplying it withhab . Note that the terms in~25! are not inde-
pendent. Their number will be reduced.

The general quadratic part of the equation can be constructed as a linear combina
two-indexed terms of typeC3C contracted by the Minkowskian metrichab . Consider all the
possible combinations of the indices and take into account the antisymmetry of theC-objects to
get the following list of independent two-indexed terms:

(1)AabªCabmCm, ~26!
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(2)AabªCmabC
m antisymmetric object, ~27!

(3)AabªCamnCb
mn symmetric object, ~28!

(4)AabªCamnC
m

b
n , ~29!

(5)AabªCmanC
n

b
m symmetric object, ~30!

(6)AabªCmanC
m

b
n symmetric object, ~31!

(7)AabªCaCb symmetric object. ~32!

In addition to the two-indexedA-objects the general field equation may also include their tra
multiplied by hab . These traces of two-indexed objects are scalar SO~1,3! invariants:

(1)Aª (1)Aa
a52 (7)Aa

a , ~33!

(2)Aª (3)Aa
a5 (6)Aa

a , ~34!

(3)Aª (4)Aa
a5 (5)Aa

a . ~35!

The trace of the antisymmetric object(2)Aab is zero.
It is easy to see that not all of the objects( i )Aab ,( i )Bab are independent. Starting from th

relation

ddqa50,

we obtain

d~Ca
mnq

mn!5Ba
mnpq

mnp1Ca
mndqmqn5~Ba

knp1Ca
mnC

m
pk!q

pkn50.

This equation results in a two-indexed Bianchi identity of the first-order

Ba
[knp]1Ca

m[nCm
pk]50 , ~36!

where@knp# and @npk# are the antisymmetrization of the respective indices. Taking the un
nonvanishing contraction of the relation~36! we obtain

Ba
[kna]1Ca

m[nCm
ak]50.

Using the antisymmetry of theB-objects in the middle indices the first term on the lhs of t
relation results in

Ba
[kna]52~Ba

kna1Ba
nak1Ba

akn!52~2(2)B[kn]1
(3)Bkn!.

As for the second part,

Ca
m[nCm

ak]52~Ca
mnC

m
ak1Ca

maC
m

kn1Ca
mkC

m
na!52(2)Akn .

Thus ~36! reduces to a two-indexed Bianchi identity of the first-order
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2• (2)B[kn]1
(3)Bkn1 (2)Akn50 . ~37!

Here(2)B[kn] is a linear combination of(3)Bkn and(2)Akn . Consequently,b6 in ~25! can be taken
to be zero.

The general quadratic part of an equation can be written as

Qab5a1
(1)A(ab)1a2

(2)Aab1a3
(3)Aab1a4

(4)A(ab)1a5
(5)Aab1a6

(6)Aab1a7
(7)Aab

1a8
(1)A[ab]1a9

(4)A[ab]1hab~a10
(1)A1a11

(2)A1a12
(3)A!, ~38!

wherea i , i 51, . . . ,12 arefree dimensionless parameters.
Let us summarize the construction with the following theorem.
Theorem 0.1: The most general two-indexed system of equations satisfying the follo

conditions,

~1! diffeomorphic covariant andSO~1,3!-invariant,
~2! linear in the second order derivatives and quadratic in the first order derivatives with c

ficients depending on the coframe variables, and
~3! obtained from the quantities Cabc and Ba

bcd by contractions and transpose is

Lab1Qab50, ~39!

where the linear leading part Lab is defined by~25! while the quadratic part Qab is defined by
~38!.

The field equation~39! is a system of 16 equations and it can be SO~1,3! invariantly decom-
posed into three independent equations:

the trace equation

La
a1Qa

a50, ~40!

the traceless symmetric equation

~L (ab)2
1
4 Lm

mhab!1~Q(ab)2
1
4 Qm

mhab!50, ~41!

and the antisymmetric equation

L [ab]1Q[ab]50. ~42!

Again, the brackets (ab), @ab# mean, respectively, symmetrization and antisymmetrization.
trace equation~40! can be explicitly written as

~b11b214b4!B1~a12a714a10!
(1)A1~a31a614a11!

(2)A1~a41a514a12!
(3)A50.

~43!

As for the traceless symmetric equation,

b1
(1)B(ab)1b2

(2)B(ab)1a1
(1)A(ab)1a3

(3)Aab1a4
(4)A(ab)1a5

(5)Aab1a6
(6)Aab1a7

(7)Aab

50, ~44!

where the bar means

Mab5Mab2 1
4 habMm

m . ~45!

The antisymmetric equation is
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b3
(3)Bab1b5

(1)B[ab]1b6
(2)B[ab]1a2

(2)Aab1a8
(1)A[ab]1a9

(4)A[ab]50. ~46!

In this way a general family of field equations for the coframe fieldqa was constructed. Every
equation in the family is invariant under diffeomorphic transformations of the coordinate sy
It is invariant under global SO~1,3!-transformations of the coframe as well. In the followin
sections we impose two additional conditions:

~1! An action condition. That means that the equation is derivable from a suitable action.
~2! Long-distance approximation conditions. That means that the equation has a solution co

ing with the observed data.

III. QUADRATIC LAGRANGIANS

One of the basic tools to derive field equations is the variational principle. By that, a su
Lagrangian is chosen and its variation is equated to zero. In the teleparallel approach the c
field qa is the basic field variable, while the LagrangianL is a differential four-form. A genera
Lagrangian density for the coframe fieldqa ~quadratic in the first order derivatives and linear
the second order derivatives! can be expressed as a linear combination of scalarA- andB-objects.

L5
1

l 2 ~m0B1m1
(1)A1m2

(2)A1m3
(3)A!* 1, ~47!

wherel is a length-dimensional constant,B is the second order scalar object, defined by~24!, and
( i )A with i 51,2,3 are quadratic scalar objects defined by~33!–~35!.

The terms in the expression~47! are completely independent. They are diffeomorphic co
riant and rigid SO~1,3! invariant. Let us show that the linear combination~47! is equivalent to the
gauge invariant translation Lagrangian of Rumpf12 ~up to hisL-term!:

V5
1

2l 2 (
I 51

3

r I
(I )V, ~48!

where

(1)V5dqa`* dqa , ~49!

(2)V5~dqa`qa!`* ~dqb`qb!, ~50!

(3)V5~dqa`qb!`* ~dqb`qa!. ~51!

Note another useful form of the Rumpf Lagrangian via the irreducible components ofdqa ~Ref.
33!:

V5
1

2l 2 (
I 51

3

aIdqa`* (I )dqa , ~52!

with the dimensionless constantsaI related to the constantsr I as

a15r11r3 , a25r122r3 , a35r113r21r3 . ~53!

The first term~49! can be rewritten as

(1)V5Ca
mnq

mn`* Ca
pqqpq52CamnC

amn* 152 (2)A* 1. ~54!

As for the second term~50!,
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(2)V5Camnq
amn`Cbpq* qbpq522Camn~Camn1Cmna1Cnam!* 152~2 (3)A2 (2)A!* 1.

~55!

The third term~51! takes the form

(3)V5Camnq
mnb`Cbpq* qpqa524CmCm* 152~2 (1)2A(2)A!* 1. ~56!

Thus the coefficients of~47! are the linear combinations of the coefficients of~48!. As for the
second derivative termB,

B* 15Ba
ab

b
* 15hbcBa

abc* 15hbc~eccdCa
ab!* 152qb`* d~Ca

ab!

52d~Ca
ab!`* qb52d~Ca

ab* qb!1Ca
abd* qb5d~Cb* qb!2Cbd* qb.

Using the relation

d* qb52Cb* 1 ~57!

we obtain

B* 15d~Ca* qa!1CaCa* 15d~Ca* qa!2 (1)A* 1. ~58!

It is well known that total derivatives do not contribute to the field equation. Thus we can ne
the B-term in the Lagrangian~47!.

The comparison of~47! and ~48! yields

m152r3 , m25r12r22r3 , m352r2 . ~59!

Therefore, the Rumpf Lagrangian~48! is the most general quadratic Lagrangian.
In Ref. 33, the Einsteinian theory of gravity is reinstated from the Lagrangian~48! by letting

r150, r252 1
2 , r351. ~60!

Thus, correspondingly,

m152, m252 1
2 , m3521. ~61!

This way we have shown that the general translation invariant Lagrangian can be expressed
scalarA-objects.

IV. THE ACTION GENERATED FIELD EQUATION

It is natural to expect that the field equation, derived from the Lagrangian above, ca
expressed in terms of theA- and B-objects. The free variations of the Rumpf Lagrangian~48!
yield the field equation due to Kopczyn´ski.8 Let us express it in the following form~cf. Ref. 33!:

22l 2Sa52r1d* dqa22r2qa`d* ~dqb`qb!22r3qb`d* ~qa`dqb!1r1@eac~dqb`* dqb!

22~eacdqb!`* dqb#1r2@2dqa`* ~dqb`qb!1eac~dqc`qc`* ~dqb`qb!!

22~eacdqb!`qb`* ~dqc`qc!#1r3@2dqb`* ~qa`dqb!

1eac~qc`dqb`* ~dqc`qb!!22~eacdqb!`qc`* ~dqc`qb!#, ~62!

whereSa depends on matter fields.
By Appendix A this equation can be rewritten as
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22l 2Sa5r1~22 (1)Bab22(1)Aab2 (3)Aab2 1
2
(2)Ahab14 (6)Aab!* qbr2~4 (1)B[ab]12 (3)Bab

14 (1)A[ab]12 (2)A[ab]13 (3)Aab1 1
2
(2)Ahab2 (3)Ahab12 (5)Aab22 (6)Aab!* qb

1r3~2 (1)Bab12 (2)Bba22Bhab12 (1)Aab23 (1)Ahab

1 1
2
(2)Ahab1 (3)Aab22 (6)Aab!* qb. ~63!

Observe that, of all the objects defined in~39!, only the objects(2)
A(ab) and(4)Aab are missing in

~63!.
The calculations above can be summarized by the following.
Theorem 0.2: The field equation generated by the variation of the Rumpf Lagrangia

expressed by combination of the structural A- and B-objects as in~63!.
Consider the special case when the antisymmetric part of Eq.~63! is identically zero. Extract-

ing the antisymmetric part of Eq.~63! we obtain

l 2* ~qa`Sb2qb`Sa!5r1~22 (1)B[ab]22 (1)A[ab] !1r2~4 (1)B[ab]12 (3)B[ab]14 (1)A[ab]

12 (2)A[ab] !1r3~2 (1)B[ab]12 (2)B[ba]12 (1)A[ab] !. ~64!

Impose the symmetry condition on the matter currentSa :

qa`Sb5qb`Sa . ~65!

Substitute the Bianchi identity~37! to get

~22r114r212r3! (1)B[ab]1~2r21r3! (3)B[ab]1~22r114r212r3! (1)A[ab]

1~2r21r3! (2)A[ab]50. ~66!

The lhs of this equation is identically zero if and only if

r150, 2r21r350. ~67!

By homogeneity we obtain that the system~67! is equivalent to the system~60!. This is the case
for the teleparallel equivalent of the Einsteinian gravity. In this case the metric is an indepe
field variable and the field equation is restricted to a system of ten independent equations. T
have shown that the Einstein equation is the unique symmetric field equation that can be d
from a quadratic Lagrangian.

V. DIAGONAL STATIC ANSATZ

Another subclass of the general field equation~39! can be constructed by with the requireme
to have a solution which is confirmed by the observational data. We restrict ourselves to the
classical gravity tests, namely the Mercury perihelion shift, the light ray shift and the red shift
experimental results can be described by a metric element

ds252Fdt21G~dx21dy21dz2!,

with

F512
2m

r
1

4m2

r 2 1¯ ,

G511
2m

r
1¯ .
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The contribution of the third order term in the temporal component and the second order te
the spatial component cannot be experimentally detected.

In order to obtain a metric of such type we begin with a diagonal static ansatz

q05efdx0, qm5egdxm, m,n51,2,3, ~68!

wheref andg are two arbitrary functions of the spatial coordinatesx,y,z. We substitute~68! into
Eq. ~39! to get the following.

Theorem 0.3:All the possible solutions of the equation

Lab1Qab50

of the form~68! are determined by the solutions of

m1D f 1m2Dg5m3~¹ f ¹ f !1m4~¹g¹g!1m5~¹ f ¹g! . ~69!

hmn~n1D f 1n2Dg!1n3f mn1n4gmn

5hmn~n5~¹ f ¹ f !1n6~¹g¹g!1n7~¹ f ¹g!!

1n8f mf n1n9gmgn1n10 f mgn1n11f ngm , ~70!

wherem1 , . . . ,m5 and n1 , . . . ,n11 are determined by

m15b11b4 ,

m252b4 ,

m35a122a32a42a61a1022a112a12,

m452b414a1024a1122a12,

m55b11b412a114a10,

n15b4 ,

n25b112b4 ,

n350,
~71!

n45b122b2 ,

n55a1022a112a12,

n65b112b412a122a32a42a614a1024a1122a12,

n75b41a114a10,

n85a51a61a7 ,
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n952b11b212a122a32a412a51a614a7 ,

n1052b22a212a7 ,

n115a21a7 .

The detailed computations are carried out in Appendix B. Only 12 coefficients in~71! are inde-
pendent. Indeed, in addition to the relationsn350 and 2n15m2 , them i andn i have to satisfy

22m114m312m514n21n550 ~72!

and

3m12m222m42m512n214n550. ~73!

Observe that~70! is a system of four equations. Thus, the system~69! and~70! is overdetermined.
This means that the coefficientsmk andnk have to be chosen so that two independent equation
f andg are left. This can be done in a variety of ways. Let us turn to a special case of the sph
symmetry.

Theorem 0.4: If f and g are functions of the radial coordinate r5(x21y21z2)1/2, then (69)
and (70) read

m1f 91m2g912
1

r
~m1f 81m2g8!5m3f 821m4g821m5f 8g8,

n1f 91n2g91
1

r
@2n1f 81~2n21n4!g8#5n5f 821n6g821n7f 8g8, ~74!

n4g91
1

r
n4g85n8f 81n9g821~n101n11! f 8g8.

This is obtained by a direct substitution of spherical-symmetric ansatz in~69! and ~70!. Observe
that in this case the termsf mn , gmn , f mf n , gmgn and f mgn all containxmxn as a factor. Thus the
equation~70! is decomposed into two distinct equations. Note that the system~74! is still over-
determined—three ordinary differential equation~ODEs! for two independent variablesf andg.
An obvious way to reduce~74! to two equations is to taken45n85n95n101n1150.

VI. APPROXIMATE SOLUTIONS

In order to confirm the field equation~39! with the observed data we construct an approxim
solution of the restricted system~74!. Correspondingly we consider the long-distance approxim
tion of the functionsf and g. This means that the weak field on a distance far greater than
mass of the body~in the natural system of units! is studied. Take the Taylor expansion of th
functions f andg:

f 511
a1

r
1

a2

r 2 1¯ , ~75!

g511
b1

r
1

b2

r 2 1¯ . ~76!

So, the first equation of the system~74! takes the form
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m1S 6
a2

r 4 1¯ D1m2S 6
b2

r 4 1¯ D12
1

r S m1S 22
a2

r 3 1¯ D1m2S 22
b2

r 3 1¯ D D
5m3S a1

r 2 12
a2

r 3 1¯ D 2

1m4S b1

r 2 12
b2

r 3 1¯ D 2

1m5S a1

r 2 12
a2

r 3 1¯ D S b1

r 2 12
b2

r 3 1¯ D .

Thus, up toO(1/r 4),

2m1a212m2b25m3a1
21m4b1

21m5a1b1 . ~77!

As for the second equation of the system~74!,

n1S 6
a2

r 4 1¯ D1n2S 6
b2

r 4 1¯ D1
1

r F2n1S 22
a2

r 3 1¯ D1~2n21n4!S 22
b2

r 3 1¯ D G
5n5S a1

r 2 2
a2

r 3 1¯ D 2

1n6S b1

r 2 12
b2

r 3 1¯ D 2

1n7S a1

r 2 12
a2

r 3 1¯ D S b1

r 2 12
b2

r 3 1¯ D .

Thus

n4b150, ~78!

2n1a212n2b222n4b25n5a1
21n6b1

21n7a1b1 . ~79!

The third equation of the system~74! is

n4S 2
b1

r 3 16
b2

r 4 1¯ D1
1

r
n4S 2

b1

r 2 22
b2

r 3 1¯ D
5n8S 2

a1

r 2 22
a2

r 3 1¯ D 2

1n9S 2
b1

r 2 22
b2

r 3 1¯ D 2

1~n101n11!S 2
a1

r 2 22
a2

r 3 1¯ D S 2
b1

r 2 22
b2

r 3 1¯ D .

Consequently,

n4b150, ~80!

4n4b25n8a1
21n9b1

21~n101n11!a1b1 . ~81!

The classical gravity tests~Mercury perihelion shift, light ray shift and the red shift! can be
described by the following choice of the coefficients:

a152m, b15m, a25m2, b25km2, ~82!

wherem is the mass of the Sun in dimensionless units. As fork, it is an arbitrary dimensionles
constant. This really means thatb2 is free. For such a choice, it follows that

n450,

2m112km25m31m42m5 ,
~83!

2n112n2k5n51n62n7 ,

n81n95n101n11.
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By ~71! rewrite these relations by the coefficientsa i ,bk ,

b152b2 ,

6b21~114k!b452a122a32a42a61a1026a1123a12,
~84!

2b2~2k21!1~4k11!b45a122a32a42a61a1026a1123a12,

2a122a32a413a513a612a750,

or

b152b2 ,

2~k22!b25a1 ,
~85!

6b21~114k!b452a122a32a42a61a1026a1123a12,

2a122a32a413a513a612a750.

In order to eliminate the arbitrary constantk from the system~85! we first consider the specia
case

b250. ~86!

The system~85! now takes the form

b15b25a150, ~87!

~114k!b4522a32a42a61a1026a1123a12, ~88!

22a32a413a513a612a750. ~89!

The equation~88! gives no information, since it contains the arbitrary constantk. The remaining
equations~87! and ~89! do not constitute a viable physical system. Indeed, in this case,
traceless symmetric equation~44! has no leading~second derivatives! part. Thus one cannot get a
approximation by a wave equation for small fluctuations of the coframe and, consequently,
metric tensor.

In the caseb2Þ0 we use the homogeneity of the system~85! to takeb251. Thus the system
~85! is rewritten

b152,

b251,
~90!

~912a1!b45262a122a32a42a61a1026a1123a12,

2a122a32a413a513a612a750.

Theorem 0.5: Any operator that satisfies~90! has solutions that cannot be experimenta
distinguished, by the three classical tests, from the Schwarzschild solution.

In this way we obtain a wide class of field equations which are confirmed by three cla
tests.
                                                                                                                



com-
ng of

-

6332 J. Math. Phys., Vol. 41, No. 9, September 2000 Y. Itin and S. Kaniel

                    
ACKNOWLEDGMENTS

The authors are grateful to Professor F. W. Hehl for useful discussions and valuable
ments. The authors would like to thank the referee for critical reading, criticism and furnishi
relevant literature.

APPENDIX A: FIELD EQUATION FROM ACTION

In order to rewrite the field equation~62! in terms of theA,B,C variables we use the follow
ing formulas:

d1~qa!5Ca, ~A1!

d1~qab!5Caqb2Cbqa2Cm
abqm, ~A2!

d1~qabc!5Caqbc2Cbqac1Ccqab1Cm
bcqam2Cm

acqbm1Cm
abqcm, ~A3!

d1~qabcd!50. ~A4!

For the first second derivative term in Eq.~62! we obtain

2r1d* dqa 5r1d~Cabc* qbc!5r1Babc
mqm`* qbc1r1Cabcd* qbc

5r1Babc
m~dm

b
* qc2dm

c
* qb!1r1Cabcd* qbc

52r1Bamc
m
* qc1r1Cabc~Cb* qc2Cc* qb2Cm

bc
* qm!

5r1~2Bamc
m1CabcC

b2CacbC
b2CabmCc

bm!* qc

5 2r1~2 (1)Bab12(1)Aab1 (3)Aab!* qb ~A5!

The second term in~62! takes the form

22r2qa`d* ~dqb`qb!

52r2qa`d~Cbmn* qmnb!

52r2~Bbmn
kqak`* qmnb1Cbmnqa`d* qmnb!

5r2Bbmn
kqa`* ~dk

mqnb2dk
nqmb1dk

bqmn!1r2Cbmnqa`* @Cmqnb2Cnqmb1Cbqmn

1~Ck
nbqmk2Ck

mbqnk1Ck
mnqbk!#

5r2Bbmn
k
* ~dk

m~da
nqb2da

bqn!2dk
n~da

mqb2da
bqm!

1dk
b~da

mqn2da
nqm!!r2Cbmn* @Cm~da

nqb2da
bqn!1Cn~da

mqb2da
bqm!

1Cb~da
mqn2da

nqm!2r2~Ck
nb~da

mqk2da
kqm!

2Ck
mb~da

nqk2da
kqn!1Ck

mn~da
bqk2da

kqb!!#

52r2~Bnka
k1Bank

k1Bkan
k!* qn12r2Cm~Cbma1Cabm1Cmab!* qb

12r2~CmanCk
nm1CamnCk

mn1CamnC
mn

k!* qk

5r2~4 (1)B[ab]12 (3)Bab14(1)A[ab]12 (2)A[ab]12 (3)Aab14 (4)A[ab] !* qb

~A6!
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Note that the first five terms in the brackets are antisymmetric matrices while the last one, n
(3)Aab , is symmetric.

The third term in Eq.~62! is

22r3qb`d* ~qa`dqb! 52r3qb`d~Cbmn* qamn!

52r3Bbmnkqbk`* qamn2r3Cbmnqb`d* qamn

5r3Bb
mnk* @ebc~ekcqamn!#1r3Cbmn* ~ebcd1qamn!

5r3Bb
mnk* ~ebc~da

kqmn2dm
k qan1dn

kqam!!1r3Cb
mn

* @ebc~Caqmn

2Cmqan1Cnqam1Ck
mnqak2Ck

anqmk1Ck
amqnk!#

5r3Bb
mnk* ~da

k~dm
b qn2dn

bqm!2dm
k ~da

bqn2dn
bqa!1dn

k~da
bqm

2dm
b qa!!1r3Cb

mn
* ~Ca~dm

b qn2dn
bqm!2Cm~da

bqn2dn
bqa!

1Cn~da
bqm2dm

b qa!!1r3Cb
mn

* ~Ck
mn~da

bqk2dk
bqa!

2Ck
an~dm

b qk2dk
bqm!1Ck

am~dn
bqk2dk

bqn!!

52r3* ~Bb
bn

aqn1Ba
mn

nqm1Bb
mb

mqa!2r3* ~Cb
bnCaqn

1Cb
mbCmqa1Ca

mnCnqm!1r3* ~Ca
mnCbmn2Ck

mnCk
mn

12CmCbam12Ckb
nCk

an!q
b

5r3~2 (1)Bab12 (2)Bba22Bhab14 (1)A(ab)22 (1)Ahab

2 (2)Ahab1 (3)Aab12 (6)Aab22 (7)Aab)* qb

~A7!

The first quadratic term in Eq.~62! is

r1eac~dqb`* dqb! 5 1
4r1Cb

mnCb
pqeac~qmn`* qpq!5 1

4r1Cb
mnCb

pq~dp
ndq

m2dq
ndp

m!* qa

52 1
2r1CbmnC

bmn* qa5 2 1
2r1

(2)Ahab* qb ~A8!

The second quadratic term in Eq.~62! is

22r1~eacdqb!`* dqb 52 1
2 r1Cb

mnCb
pq~eacqmn!`* qpq ~A9!

52 1
2 r1Cb

mnCb
pq~da

mqn2da
nqm!`* qpq

52 1
2 r1Cb

mnCb
pq~da

mdp
n
* qq2da

mdq
n
* qp2da

ndmp
m
* qq

1da
ndmq

m
* qp!

54r1CbapC
bqp* qq5 4r1

(6)Aab* qb ~A10!

The third quadratic term in Eq.~62! is
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2r2dqa`* ~dqb`qb! 5 1
2 r2CbmnCapqq

pq`* qbmn

52 1
2 r2CbmnCapqq

p`* 2~qq`* qbmn!

52 1
2 r2CbmnCapqq

p`~db
q
* qmn2dm

q
* qbn1dn

q
* qbm!

52 1
2r2CbmnCapq* ~db

qdm
p qn2db

qdn
pqm2dm

q db
pqn1dm

q dn
pqb

1dn
qdb

pqm2dn
qdm

p qb!

52 1
2r2Capq* ~Cqpnqn2Cqmpqm2Cpqnqn1Cbqpqb1Cpmqqm

2Cbpqqb!

52r2Capq~Cqpn1Cpnq1Cnqp!* qn

5
r2~ (3)Aab22 (4)Aab!* qb ~A11!

The fourth quadratic term in Eq.~62! using the previous one takes the form

r2eac~dqc`qc`* ~dqb`qb!! 5 1
2r2~ (3)Amn22(4)Amn!eac~qm`* qn!

5 1
2r2~ (3)Amn22(4)Amn!h

mn* qa

5 1
2r2~ (2)A22 (3)A!hab* qb ~A12!

The fifth quadratic term in Eq.~62! is

22r2~eacdqb!`qb`* ~dqc`qc! 52 1
2 r2Cb

mnCcpq~eacqmn!`qb`* qpqc

5 1
2 r2Cb

mnCcpq~eacqmn!`* ~ebcqpqc!

5 1
2 r2Cb

mnCcpq~da
mqn2da

nqm!`* ~dn
pqqc2dn

qqpc

1dn
cqpq!

5r2Cb
a

a* ~Ccbnq
c2Cnbqq

q2Ccnbq
c1Cnpbq

p

1Cbnqq
q2Cbpnq

p!

52r2Cm
a

n~Cbmn1Cnbm1Cmnb!* qb

5 2r2~ (4)Aba1 (5)Aab2 (6)Aab!* vb ~A13!

The sixth quadratic term in Eq.~62! is

2r3dqb`* ~qa`dqb! 5 1
2 r3CbmnC

bpqqmn`* qapq522CbmnC
bpqqm`* ~encqapq!

52 1
2 r3CbmnC

bpqqm`* ~da
nqpq2dp

nqaq1dq
nqap!

52 1
2 r3CbmnC

bpq* ~da
n~dp

mqq2dq
mqp!2dp

n~da
mqq2dq

mqa!
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1dq
n~da

mqp2dp
mqa!!

52r3Cbpq* ~Cbpaqq1Cbqpqa1Cbaqqp!

5 r3~ (2)Ahab22 (6)Aab!* qb ~A14!

The seventh quadratic term in Eq.~62! can be calculated using the relation~56!,

r3eac~qc`dqb`* ~dqc`qb!! 5r3eac (3)V5 1
2r3~22(1)A1 (2)A!hab* qb

~A15!

The eighth quadratic term in Eq.~62! is

22r3~eacdqb!`qc`* ~dqc`qb! 5 1
2 r3Cb

mnCc
pq~~eacqmn!`* ~eccqpqb!!

5r3Cb
anCc

pq
* ~enc~dp

cqqb2dq
cqpb1db

cqpq!!

52r3~CbanCm
mn1CaCb1CmanC

mn
b!

5 2r3~2 (1)Aba2 (6)Aab1 (7)Aab!* qb ~A16!

The substitution of~26!–~35! in ~47! results in~48!.

APPENDIX B: A DIAGONAL STATIC ANSATZ

Consider a diagonal static coframe~Greek indices run from 0 to 3 while Roman indices r
from 1 to 3!

q05efdx0, qm5egdxm, ~B1!

where f andg are two arbitrary functions of the spatial coordinatesx,y,z. Compute the exterior
derivative of the coframe:

dq05ef f mdxm`dt5e2gf mqm0,

dqk5eggmdxm`dxk5e2ggmqmk.

Thus the nonvanishingC-objects take the form

C0
m052C0

0m5e2gf m , ~B2!

Ck
mn5e2g~gmdn

k2gndm
k !, ~B3!

or, lowering the indices@recall that we use the signature (1,2,2,2)#

C0m052C00m5e2gf m ~B4!
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Ckmn52Cknm5e2g~gmhkn2gnhkm! ~B5!

The one-indexedC-objectsCa5Cb
ab are

C05Ck
0k50 ~B6!

and

Cm5C0
m01Cn

mn5e2gf m1e2g~gmdn
n2gndm

n !5e2g~ f m12gm!. ~B7!

Compute the exterior derivative of theC-objects:

dC0
m05e22g~ f mk2 f mgk!q

k,

dCk
mn5e22g~~gmp2gmgp!dn

k2~gnp2gngp!dm
k !qp.

Thus the nonvanishing four-indexedB-objects are

B0
m0k5e22g~ f mk2 f mgk!, ~B8!

Bk
mnp5e22g~~gmp2gmgp!dn

k2~gnp2gngp!dm
k !, ~B9!

or, lowering the first index,

B0m0k52B00mk5e22g~ f mk2 f mgk! ~B10!

Bkmnp5e22g~~gmp2gmgp!hkn2~gnp2gngp!hkm! ~B11!

The first two-indexedB-object is(1)Bab5Babgdhgd. Thus

(1)B005B00mkh
mk52e22g~ f mk2 f mgk!h

mk5e22g~n f 2¹ f ¹g!, ~B12!

(1)B0m5 (1)Bk050, ~B13!

(1)Bkm5Bkmnph
np5e22g~~gmp2gmgp!hkn2~gnp2gngp!hkm!hnp

5e22g@hkm~ng2¹g ¹g!1~gmk2gmgk!#. ~B14!

We use here and later the following notations

D f 5 f 111 f 221 f 3352hmnf mn , ~B15!

¹ f ¹g5 f 1g11 f 2g21 f 3g352hmnf mgn . ~B16!

The second two-indexedB-objects(2)Bab5Bgdabhgd are calculated to be

(2)B005
(2)B0n5 (2)Bn050, ~B17!

(2)Bnp5B00np1Bkmnph
km52e22g~ f np2 f ngp!1e22g~~gmp2gmgp!hkn2~gnp2gngp!hkm!hkm

5e22g~~gnp2gngp!23~gnp2gngp!2~ f np2 f ngp!!

52e22g~2~gnp2gngp!1~ f np2 f ngp!!. ~B18!

The antisymmetricB-object (3)Bab5Bgabdhgd has the components

(3)B0m5 (3)Bm050, ~B19!
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(3)Bmn5Bkmnph
kp5e22g~~gmp2gmgp!hkn2~gnp2gngp!hkm!hkp

5e22g~~gmn2gmgn!2~gnm2gngm!!50. ~B20!

The full contraction of the quantitiesBa
nmp gives

B5 (1)B001
(1)Bkmhkm5e22g~D f 2¹ f ¹g!1e22g@hkm~Dg2¹g ¹g!1~gmk2gmgk!#h

km

5e22g@2~Dg2¹g ¹g!1~D f 2¹ f ¹g!#. ~B21!

Calculate the first two-indexedA-object (1)Aab5CabmCm:

(1)A005C00mCm5e22ghmnf m~ f n12gn!5e22g~¹2f 12¹ f ¹g!, ~B22!

(1)A0m5 (1)Am050, ~B23!

(1)Amn5Cmn0C01CmnkC
k5e22g~gnhmk2gkhmn!~ f p12gp!hkp

5e22g~gnf m12gngm1hmn~2¹2g1¹ f ¹g!!. ~B24!

For the second antisymmetric two-indexedA-object (2)Aab5CmabCm:

(2)A005Cm00C
m50, ~B25!

(2)A0m5 (2)Am050, ~B26!

(2)Amn5C0mnC
01CkmnC

k5e22g~gmhkn2gnhkm!~ f p12gp!hkp

5e22g~gm~ f n12gn!2gn~ f m12gm!!5e22g~gmf n2gnf m!.

~B27!

For the third symmetric two-indexedA-object (3)Aab5CamnCb
mn :

(3)A005C00mC0
0m1C0m0C0

m01C0mnC0
mn52e22gf mf nhmn522e22g¹2f , ~B28!

(3)A0m50, ~B29!

(3)Amn5Cm00Cn
0012Cm0kCn

0k1CmpqCn
pq

5e22g~gphmq2gqhmp!~grhns2gshnr!h
prhqs522e22g~hmn¹

2g1gmgn!. ~B30!

For a fourth two-indexedA-object (4)Aab5CamnCm
b
n :

(4)A005C00mC0
0
m1C0m0Cm

0
01C0mnC

m
0
n

5C00mC00m1C0m0Cm001C0mnCm0n

5e22gf mf nhmn

52e22g¹2f , ~B31!

(4)A0a5 (4)Aa050, ~B32!

(4)Aab5Ca0nC0
b
n1Cam0Cm

b
01CamnC

m
b
n

5Ca0nC0bmhmn1Cam0Cnb0hmn1CamnCpbqh
pmhqn

5e22g~gmhan2gnham!~gbhpq2gqhpb!h
pmhqn52e22g~hab¹

2g1gagb!, ~B33!
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The fifth symmetric two-indexedA-object (5)Aab5CmanCn
b
m is

(5)A00ªC00nCn
0
01Cm0nCn

0
m50, ~B34!

(5)A0a50, ~B35!

(5)Aab5C0a0C0
b

01C0anC
n

b
01Cma0C0

b
m1CmanC

n
b

m

5C0a0C0b01C0anCmb0hmn1Cma0C0bnh
mn1CmanCpbqh

pnhqm

5e2gf ae2gf b1e2g~gahmn2gnhma!e
2g~gbhpq2gqhpb!h

pnhqm

5e22g~ f af b12gagb!. ~B36!

The symmetricA-object (6)Aab5CmanCm
b

n has the components

(6)A005C00nC0
0

n1Cm0nCm
0

n5C00nC00mhmn1Cm0nCp0qhpmhqn5e22gf mf nhmn52e22g¹2f ,

~B37!

(6)A0a5C00nC0
a

n1Cm0nCm
a

n50. ~B38!

(6)Aab5C0a0C0
b

01Cma0Cm
b

01C0anC
0

b
n1CmanC

m
b

n

5C0a0C0b01Cma0Cnb0hmn1C0anC0bmhmn1CmanCpbqh
pmhqn

5e22gf af b1e22g~gahmn2gnhma!~gbhpq2gqhpb!h
pmhqn

5e22g~ f af b1gagb2hab¹
2g!. ~B39!

For the symmetric object(7)Aab5CaCb ,

(7)A005
(7)A0a50, ~B40!

(7)Aab5e22g~ f a12ga!~ f b12gb!5e22g@ f af b12~ f agb1 f bga!14gagb#. ~B41!

The traces of theA-matrices are

(1)A5 (1)Aa
a5Ca

amCm52CaCa

52e22ghmn~ f m12gn!~ f n12gn!5e22g~¹2f 14¹ f ¹g14¹2g!,

~B42!

(2)A5 (3)Aa
a5CamnCamn522e22g~¹2f 12¹2g!, ~B43!

(3)A5 (4)Aa
a5CamnCman52e22g~¹2f 12¹2g!. ~B44!

The leading~second order! part of the equation~39! is a linear combination of two-indexe
B-objects:

Lab5b1
(1)B(ab)1b2

(2)B(ab)1b3
(3)Bab1b4habB1b5

(1)B[ab]1b6
(2)B[ab] . ~B45!

The general quadratic part of the equation~39! is

Qab5a1
(1)A(ab)1a2

(2)Aab1a3
(3)Aab1a4

(4)A(ab)1a5
(5)Aab1a6

(6)Aab1a7
(7)Aab

1a8
(1)A[ab]1a9

(4)A[ab]1hab~a10
(1)A1a11

(2)A1a12
(3)A!. ~B46!

Using the calculations above the leading part is
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L005b1e22g~D f 2¹ f ¹g!1b4e22g@2~Dg2¹g ¹g!1~D f 2¹ f ¹g!#

5e22g@~b11b4!D f 12b4Dg2~b11b4!¹ f ¹g22b4¹g ¹g#, ~B47!

L0m5Lm050, ~B48!

Lmn5b1e22g@hmn~Dg2¹g ¹g!1~gmn2gmgn!#2b2e22g~2~gmn2gmgn!1~ f mn2 f mgn!!

1b4hmne
22g@2~Dg2¹g ¹g!1~D f 2¹ f ¹g!#

5e22g@~b122b2!gmn1~b112b4!hmnDg2b2f mn1b4hmnD f #

2~b12b2!gmgn1b2f mgn2~b112b4!hmn¹g ¹g2b4hmn¹ f ¹g]. ~B49!

The quadratic part of the equation takes the form

Q005e22g@a1~¹2f 12¹ f ¹g!22a3¹2f 2a4¹2f 2a6¹2f 1a10~¹2f 14¹ f ¹g14¹2g!

22a11~¹2f 12¹2g!2a12~¹2f 12¹2g!#

5e22g@~a122a32a42a61a1022a112a12!¹
2f

1~4a1024a1122a12!¹
2g1~2a114a10!¹ f ¹g#, ~B50!

Q0m5Qm050, ~B51!

Qmn5e22g@a1~gnf m12gngm1hmn~2¹2g1¹ f ¹g!!1a2~gmf n2gnf m!22a3~hmn¹
2g1gmgn!

2a4~hmn¹
2g1gmgn!1a5~ f mf n12gmgn!1a6~ f mf n1gmgn2hmn¹

2g!

1a7~ f mf n12~ f mgn1gmf n!14gmgn!1hmn~a10~¹2f 14¹ f ¹g14¹2g!!

22a11~¹2f 12¹2g!2a12~¹2f 12¹2g!#

5e22g@~a51a61a7! f mf n1~a21a7!gmf n1~2a212a7!gnf m

1~2a122a32a412a51a614a7!gmgn1hmn~~a1022a112a12!¹
2f

1~a114a10!¹ f ¹g1~2a122a32a42a614a1024a1122a12!¹
2g!#. ~B52!

Thus the field equation~39! reduces to the form

m1D f 1m2Dg5m3¹2f 1m4¹2g1m5~¹ f ¹g! ~B53!

hmn~n1D f 1n2Dg!1n3f mn1n4gmn5hmn~n5¹2f 1n6¹2g1n7~¹ f ¹g!!1n8f mf n1n9gmgn

1n10 f mgn1n11f ngm ,

where the numerical coefficients are exhibited in~71!.
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Billiard representation for multidimensional cosmology
with intersecting p-branes near the singularity

V. D. Ivashchuka) and V. N. Melnikov
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Moscow, 117313, Russia
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Multidimensional model describing the cosmological evolution ofn Einstein spaces
in the theory withl scalar fields and forms is considered. When electromagnetic
compositep-brane ansatz is adopted, and certain restrictions on the parameters of
the model are imposed, the dynamics of the model near the singularity is reduced to
a billiard on the (N21)-dimensional Lobachevsky spaceHN21, N5n1 l . The
geometrical criterion for the finiteness of the billiard volume and its compactness is
used. This criterion reduces the problem to the problem of illumination of (N
22)-dimensional sphereSN22 by pointlike sources. Some examples with billiards
of finite volume and hence oscillating behavior near the singularity are considered.
Among them examples with square and triangle two-dimensional billiards~e.g.,
that of the Bianchi-IX model! and a four-dimensional billiard in ‘‘truncated’’D
511 supergravity model~without the Chern–Simons term! are considered. It is
shown that the inclusion of the Chern–Simons term destroys the confining of a
billiard. © 2000 American Institute of Physics.@S0022-2488~00!04808-8#

I. INTRODUCTION

At present there exists a special interest to the so-calledM- andF-theories.1–4 These theories
are ‘‘supermembrane’’ analogs of superstring models5 in D511, 12 etc. The low-energy limit o
these theories leads to models governed by the action

S5E
M

dDzAugu H R@g#22L2habgMN]Mwa]Nwb2 (
aPD

ua

na!
exp@2la~w!#~Fa!g

2J , ~1.1!

whereg5gMNdzM
^ dzN is a metric,w5(wa)PRl is a vector from dilatonic scalar fields, (hab)

is a positively-defined symmetricl 3 l matrix (l PN), ua561

Fa5dAa5
1

na!
FM1¯Mna

a dzM1∧¯∧dzMna, ~1.2!

is a na-form (na>1) on aD-dimensional manifoldM, D.2, L is cosmological constant andla

is a one-form onRl : la(w)5laawa, aPD, a51,...,l . In ~1.1! we denoteugu5udet(gMN)u,
(Fa)g

25FM1¯Mna

a FN1¯Nna

a gM1N1
¯gMna

Nna, aPD, whereD is some finite~nonempty! set. In mod-

els with one time allua51 when the signature of the metric is~21, 11,..., 11!.
In Ref. 6 ~see also Ref. 7! it was shown that after dimensional reduction on the manif

M* 3M13¯3Mn with Mi being Einstein space (i 51,...,n) and when the compositep-brane
ansatz is considered~for review see, for example, Refs. 6,8–12! the problem is reduced to th
gravitating self-interactings-model with certain constraints imposed. For electricp-branes see
also Refs. 13–15~in Ref. 15 the composite electric case was considered!.

a!Electronic mail: ivas@rgs.phys.msu.su
63410022-2488/2000/41(9)/6341/23/$17.00 © 2000 American Institute of Physics
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In cosmological~or spherically symmetric! caseM* 5R and the problem is effectively re
duced to a Toda-type system with the Lagrangian16

L5 1
2 ḠABẋAẋB2 (

sPS*
As exp~2UA

s xA!, ~1.3!

and the zero-energy constraintE50 imposed, where (ḠAB) is a nondegenerate symmetricN
3N matrix (N5n1 l ), AsÞ0, x5(xA)PRN, Us5(UA

s )PRN, sPS* . The considered cosmologi
cal model contains some stringy cosmological models~see, for example Ref. 17!. It may be
obtained~at a classical level! from a multidimensional cosmological model with a perfect fluid18,19

as a special case.
The integrability of the Lagrange equations corresponding to~1.3! crucially depends upon the

scalar products (Us1,Us2), s1 , s2PS* , where (U,U8)5ḠABUAUB8 ,U,U8PRN, where (ḠAB)
5(ḠAB)21.

In the orthogonal case: (Us,Us8)50,s,s8PS* , a class of cosmological and spherically sym
metric solutions was obtained in Ref. 16. Special cases were also considered in Refs.
Recently the ‘‘orthogonal’’ solutions were generalized to so-called ‘‘block orthogonal’’ case24,25

This paper is devoted to the investigation of the possible oscillating~and probably stochastic!
behavior near the singularity~see Refs. 26–44 and references therein! for cosmological models
with p-branes.

We remind that near the singularity one can have an oscillating behavior like in the
known mixmaster~Bianchi-IX! model26–29 ~see also Refs. 38–41!. Multidimensional generaliza-
tions and analogs of this model were considered by many authors~see, for example, Refs. 30–37!.
In Refs. 42–44 a billiard representation for a multidimensional cosmological models nea
singularity was considered and a criterion for a volume of the billiard to be finite was establ
in terms of illumination of the unit sphere by pointlike sources. For perfect-fluid this was co
ered in detail in Ref. 44. Some topics related to general~nonhomogeneous! situation were con-
sidered in Ref. 45.

Here we apply the billiard approach suggested in Refs. 42–44 to ap-brane cosmology. The
cosmological model withp-branes may be considered as a special case of a cosmological m
for multicomponent perfect fluid with the equations of state for ‘‘brane’’ components:pi

s52rs or
pi

s5rs, when branes ‘‘lives’’ or ‘‘does not live’’ in the spaceMi , respectively,i 51,...,n.
The paper is organized as follows. In Sec. II the cosmological model withp-branes is con-

sidered. Section III deals with the Lagrange representation to equations of motion and the
nalization of the Lagrangian. In Sec. IV a billiard approach in the multidimensional cosmo
with p-branes is developed. A necessary condition for the existence of oscillating~e.g., stochastic
behavior! near the singularity is established

m>n1 l , ~1.4!

wherem is the number ofp-branes. In Sec. V and VI some examples of billiards~e.g., in truncated
D511 supergravity, etc.! are considered.

II. THE MODEL

Equations of motion corresponding to~1.1! have the following form:

RMN2 1
2 gMNR5TMN , ~2.1!

D@g#wa2 (
aPD

ua

la
a

na!
e2la~w!~Fa!g

250, ~2.2!

¹M1
@g#~e2la~w!Fa,M1¯Mna!50, ~2.3!
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aPD; a51,...,l . In ~2.2! la
a5hablab , where (hab) is a matrix inverse to (hab). In ~2.1!

TMN5TMN@w,g#1 (
aPD

uae2la~w!TMN@Fa,g#. ~2.4!

where

TMN@w,g#5hab~]Mwa]Nwb2 1
2 gMN]Pwa]Pwb!, ~2.5!

TMN@Fa,g#5
1

na! F2
1

2
gMN~Fa!g

21naFMM2¯Mna

a F
N

a,M2¯MnaG . ~2.6!

In ~2.2!, ~2.3! D@g# and ¹@g# are the Laplace–Beltrami and covariant derivative operators
spectively corresponding tog.

Let us consider a manifold

M5R3M1¯3Mn , ~2.7!

with the metric

g5we2g~ t !dt^ dt1(
i 51

n

e2f i ~ t !gi , ~2.8!

wherew561, t is a distinguished coordinate which, by convention, will be called ‘‘time;’’gi

5gmini

i (yi)dyi
mi ^ dyi

ni is a metric onMi satisfying the equation

Rmini
@gi #5j igmini

i , ~2.9!

mi , ni51,...,di ; di5dim Mi ; j i5const,i 51,...,n; nPN. Thus, (Mi ,gi) are Einstein spaces. Th
functionsg,f i :(t2 ,t1)→R are smooth.

Remark: It is more correct to write in (2.8) gˆ i instead of gi , where ĝi5pi* gi is the pullback
of the metric gi to the manifold M by the canonical projection: pi :M→Mi , i 51,...,n. In what
follows we omit ‘‘hats’’ for simplicity.

Each manifoldMi is assumed to be oriented and connected,i 51,...,n. Then the volume
di-form

t i5Augi~yi !udyi
1`¯`dyi

di, ~2.10!

and the signature parameter

«~ i !5sign det~gmini

i !561, ~2.11!

are correctly defined for alli 51,...,n.
Let V05$B,$1%,...,$n%,$1,2%,...,$1,...,n%% be a set of all subsets of$1,...,n%. Let I

5$ i 1 ,...,i k%PV0 , i 1,¯, i k . We define a form

t~ I ![t i 1
`¯`t i k

, ~2.12!

of rank

d~ I ![(
i PI

di . ~2.13!
                                                                                                                



n

6344 J. Math. Phys., Vol. 41, No. 9, September 2000 V. D. Ivashchuk and V. N. Melnikov

                    
and a correspondingp-brane submanifoldMI[Mi 1
3 . . . 3Mi k

, where p5d(I )21 @dim MI

5d(I )#. We also define«-symbol

«~ I ![«~ i 1!¯«~ i k!. ~2.14!

For I 5B we putt(B)5«(B)51, d(B)50.
For fields of forms we adopt the following ‘‘composite electro-magnetic’’ ansatz

Fa5 (
I PVa,e

F~a,e,I !1 (
JPVa,m

F~a,m,J!, ~2.15!

where

F~a,e,I !5dF~a,e,I !`t~ I !, ~2.16!

F~a,m,J!5e22la~w!* ~dF~a,m,J!`t~J!!, ~2.17!

aPD, I PVa,e , JPVa,m , andVa,e ,Va,m,V0 . @For emptyVa,v5B, v5e,m, we putS
B

50 in

~2.15!.# In ~2.17! * 5* @g# is the Hodge operator on~M,g!.
For potentials in~2.16! and ~2.17! we put

Fs5Fs~ t !, ~2.18!

sPS, where

S5SetSm , Sv[taPD$a%3$v%3$v%3Va,v , ~2.19!

v5e,m. Here t means the union of nonintersecting sets. The setS consists of elementss
5(as ,vs ,I s), where asPD, vs5e, m and I sPVa,vs

are ‘‘color,’’ ‘‘electro-magnetic,’’ and
‘‘brane’’ indices, respectively.

For dilatonic scalar fields we put

wa5wa~ t !, ~2.20!

a51,...,l .
From ~2.16! and ~2.17! we obtain the relations between dimensions ofp-brane worldsheets

and ranks of forms

d~ I !5na21, I PVa,e , ~2.21!

d~J!5D2na21, JPVa,m , ~2.22!

in electric and magnetic cases, respectively.

III. LAGRANGE REPRESENTATION

Here, like in Ref. 16, we impose a restriction onp-brane configurations, or, equivalently, o
Va,v . We assume that the energy momentum tensor (TMN) has a block-diagonal structure@as it
takes place for (gMN)#. Sufficient restrictions onVa,v that guarantee a block-diagonality of (TMN)
are the following ones:

~1! for any aPD andv5e,m there are noI ,JPVa,v such that
I5$i%t~IùJ!, J5$j%t~IùJ!, di5dj51, iÞ j ; ~3.1!
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~2! for any aPD there are noI PVa,m andJPVa,e such that

Ī5$j%tJ, dj51, ~3.2!
i , j 51,...,n.

In ~3.2! Ī [$1,...,n%\I is a ‘‘dual’’ set. The restrictions~3.1! and ~3.2! are trivially satisfied
when n1<1 and n150, respectively, wheren1 is the number of one-dimensional manifold
amongMi .

It follows from Ref. 6~see Proposition 2 in Ref. 6! that the equations of motion~2.1!–~2.3!
and the Bianchi identities

dF s50, sPS, ~3.3!

for the field configurations~2.8!, ~2.15!–~2.17!, ~2.18!, ~2.20! with the restrictions~3.1!, ~3.2!
imposed are equivalent to equations of motion for Lagrange system with the Lagrangian

L5 1
2 N21H Gi j ḟ

iḟ j1habẇaẇb1(
sPS

«s exp@22Us~f,w!#~Ḟs!222N 2V~f!J , ~3.4!

whereẋ[dx/dt

V5V~f!5~2wL!e2g0~f!1
w

2 (
i 51

n

j idie
22f i12g0~f!, ~3.5!

is a potential withg05g0(f)[S i 51
n dif

i , andN5exp(g2g0).0 is the lapse function

Us5Us~f,w!52xslas
~w!1 (

i PI s

dif
i , ~3.6!

«s5~2«@g# !~12xs!/2«~ I s!uas
, ~3.7!

for s5(as ,vs ,I s)PS, «@g#5sign det(gMN), @more explicitly, ~3.7! reads:«s5«(I s)uas
for vs

5e and«s52«@g#«(I s)uas
, for vs5m#, xs511, for vs5e; xs521, for vs5m, and

Gi j 5did i j 2didj , ~3.8!

are components of a ‘‘pure cosmological’’ minisupermetric;i , j 51,...,n.46

Let x5(xA)5(f i ,wa),

Ḡ5ḠABdxA
^ dxB5Gi j df i

^ df j1habdwa
^ dwb, ~3.9!

~ḠAB!5S Gi j 0

0 hab
D , ~3.10!

Us(x)5UA
s xA is defined in~3.6! and

~UA
s !5~did i I s

,2xslasa
!. ~3.11!

Here

d i I [(
JPI

d i j 5
1, i PI

0, i ¹I
, ~3.12!

is an indicator ofi belonging toI. The potential~3.5! reads
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V5~2wL!e2UL~x!1(
j 51

n
w

2
j jdje

2UJ~x!, ~3.13!

whereU j (x)5UA
j xA52f j1g0(f), UL(x)5UA

LxA5g0(f), with

~UA
j !5~2d i

j1di ,0!, ~3.14!

~UA
L!5~di ,0!. ~3.15!

The integrability of the Lagrange system~3.4! depends upon the scalar products of the
vectorsUL, U j , Us corresponding toḠ

~U,U8!5ḠABUAUB8 , ~3.16!

where

~ḠAB!5S Gi j 0

0 habD , ~3.17!

is a matrix inverse to~3.10!. Here~as in Ref. 46!

Gi j 5
d i j

di
1

1

22D
, ~3.18!

i , j 51,...,n. These products have the following form:6

~Ui ,U j !5
d i j

dj
21. ~3.19!

~UL,UL!52
D21

D22
, ~3.20!

~Us,Us8!5d~ I sùI s8!1
d~ I s!d~ I s8!

22D
1xsxs8laalbbhab, ~3.21!

wheres5(as ,vs ,I s), s85(as8 ,vs8 ,I s8)PS.
First we integrate the ‘‘Maxwell equations’’~for sPSe! and Bianchi identities~for sPSm!:

d

dt
~exp~22Us!Ḟs!50⇔Ḟs5Qs exp~2Us!, ~3.22!

whereQs are constants,sPS. We putQsÞ0, for all sPS.
For fixed chargesQ5(Qs ,sPS) Lagrange equations for the Lagrangian~3.4! corresponding

to (xA)5(f i ,wa), @when relation~3.22! are substituted# are equivalent to Lagrange equations f
the Lagrangian16

LQ5 1
2 N21ḠABẋAẋB2NVQ , ~3.23!

where

VQ5V1
1

2 (
sPS

«sQs
2 exp@2Us~x!#, ~3.24!
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(ḠAB) andV are defined in~3.10! and ~3.13!, respectively.

A. Diagonalization of the Lagrangian

The minisuperspace metric~3.9! has a pseudo-Euclidean signature~2, 1,...,1!, since the
matrix (Gi j ) has the pseudo-Euclidean signature, and (hab) has the Euclidean one. Hence the
exists a linear transformation

za5eA
axA, ~3.25!

diagonalizing the minisuperspace metric~3.9!

Ḡ5habdza
^ dzb52dz0

^ dz01 (
k51

N21

dzk
^ dzk, ~3.26!

where

~hab!5~hab![diag~21,11,...,11!, ~3.27!

and here and in what followsa,b50,...,N21; N5n1 l . The matrix of linear transformation (eA
a)

satisfies the relation

habeA
aeB

b5ḠAB , ~3.28!

or, equivalently

hab5eA
aḠABeB

b5~ea,eb!, ~3.29!

whereea5(eA
a).

Inverting the map~3.25! we get

xA5ea
Aza, ~3.30!

where for components of the inverse matrix (ea
A)5(eA

a)21 we obtain from~3.29!

ea
A5ḠABeB

bhba . ~3.31!

Like in Ref. 44 we put

e05q21UL, q5@~D21!/~D22!#1/25@2~UL,UL!#1/2, ~3.32!

and hence

z05eA
0xA5(

i 51

n

q21dix
i . ~3.33!

In z-coordinates~3.25! with z0 from ~3.33! the Lagrangian~3.23! reads

LQ5LQ~za,ża,N!5 1
2N21habż

ażb2NV~z!, ~3.34!

where

V~z!5 (
r PS

*

Ar exp~2Ua
r za!, ~3.35!

is a potential,S* 5$L%ø$1,...,n%øS is an index set and
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AL52wL, Aj5
w

2
j jdj , As5

1

2
«sQs

2, ~3.36!

j 51,...,n; sPS. Here we denote

Ua
r 5ea

AUA
r 5~Ur ,eb!hba . ~3.37!

a50,...,N21; r PS* @see~3.31!#.
From ~3.16!–~3.18!, ~3.32!, and~3.37! we deduce

U0
r 52~Ur ,e0!5S (

i 51

n

Ui
r D /q~D22!, ~3.38!

r PS* . For theL-term and curvature-term components we obtain from~3.32! and ~3.38!

U0
L5q.0, U0

j 51/q.0, ~3.39!

j 51,...,n.
For brane components we get from~3.11!, ~3.32!, and~3.38!

U0
s5d~ I s!/A~D22!~D21!.0. ~3.40!

We remind that@see~3.19! and ~3.20!# that

~UL,UL!5~D21!/~22D !,0, ~U j ,U j !5S 1

dj
21D,0, ~3.41!

for dj.1, j 51,...,n. For dj51 we havej j5Aj50.

IV. BILLIARD REPRESENTATION

Here we put the following restrictions on parameters of the model:

~ i! «s511, ~4.1!

~ ii ! d~ I s!,D22, ~4.2!

sPS. For ua51, aPD, and«@g#521, the first restriction means that all«(I s)51, sPS, i.e., all
p-branes are either Euclidean or contain even number of ‘‘times.’’ Restriction~ii ! implies

~Us,Us!5d~ I s!S 11
d~ I s!

22D D1las

2 .0, ~4.3!

wherel25lalbhab, D.2. As we shall see below, both restrictions are necessary for a fo
tion of potential walls in the Lobachevsky space when a certain asymptotic in time varia
considered.

Here we consider a behavior of the dynamical system, described by the Lagrangian~3.34!
with the potential~3.35! for N>3 in the limit

z0→2`, z5~z0,z!PV2 , ~4.4!

whereV2[$(z0,z)PRNuz0,2uzu% is the lower light cone. For the volume scale factor

v5expS (
i 51

n

dix
i D 5exp~qz0!, ~4.5!
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(q.0) we have in this limitv→10. Under certain additional assumptions the limit~4.4! de-
scribes an approaching to the singularity.

Due to relations~3.36!, ~3.39!–~3.41!, ~4.1!, and ~4.3! the parametersUr in the potential
~3.35! obey the following restrictions:

1. Ar.0 for ~Ur !252~U0
r !21~Ur !2.0, ~4.6!

2. U0
r .0 for all r PS* . ~4.7!

Now we restrict the Lagrange system~3.34! on V2 , i.e. we consider the Lagrangian

L2[LuTM2
, M 25V23R1 , ~4.8!

whereTM2 is a tangent vector bundle overM 2 andR1[$N.0%. ~HereFuA means a restriction
of function F on A.! Introducing an analog of the Misner–Chitre coordinates inV2

36,37 which
reduce the problem to a unit disk

z052exp~2y0!
11y2

12y2 , ~4.9!

z522 exp~2y0!
y

12y2 , ~4.10!

uyu,1, we get for the Lagrangian~3.34!

L25 1
2N21e22y0

@2~ ẏ0!21h̄i j ~y!ẏi ẏ j #2NV. ~4.11!

Here

h̄i j ~y!54d i j ~12y2!22, ~4.12!

i , j 51,...,N21, and

V5V~y!5 (
r PS

*

Ar exp@F̄~y,2Ur !#, ~4.13!

where

F̄~y,u![2e2y0
~12y2!21@u0~11y2!12uy#. ~4.14!

We note that the (N21)-dimensional open unit disk~ball!

DN21[$y5~y1,...,yN21!uuyu,1%,RN21, ~4.15!

with the metrich̄5h̄i j (y)dyi
^ dyj is one of the realization of the (N21)-dimensional Lobachev

sky spaceHN21.
We fix the gauge

N5exp~22y0!52z2. ~4.16!

Then, it is not difficult to verify that the Lagrange equations for the Lagrangian~4.11! with the
gauge fixing~4.6! are equivalent to the Lagrange equations for the Lagrangian

L* 52 1
2~ ẏ0!21 1

2h̄i j ~y!ẏi ẏ j2V* , ~4.17!
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with the energy constraint imposed

E* 52 1
2~ ẏ0!21 1

2h̄i j ~y!ẏi ẏ j1V* 50. ~4.18!

Here

V* 5e22y0
V5 (

r PS
*

Aa exp@F~y,2Ur !#, ~4.19!

where

F~y,u!522y01F̄~y,u!. ~4.20!

Now we are interested in a behavior of the dynamical system in the limity0→2` ~or,
equivalently, in the limitz252(z0)21(z)2→2`, z0,0! implying ~4.4!. Using the relations
(U0Þ0)

F~y,2U !522U0 exp~2y0!
A~y,2U/U0!

12y2 22y0, ~4.21!

with A(y,v)[(y2v)22v211, we get

lim
y0→2`

expF~y,2U !50, ~4.22!

for U252(U0)21(U)2<0, U0.0 and

lim
y0→2`

expF~y,2U !5u`~2A~y,2U/U0!!, ~4.23!

for U2.0, U0.0. In ~4.23! we denote

u`~x![1`, x>0,

0, x,0. ~4.24!

Using relations~4.6! and ~4.7! and relations~4.19!, ~4.22!, and~4.23! we obtain

V`~y![ lim
y0→2`

V* ~y0,y!5 (
sPS

*

u`~2A~y,2Us/U0
s!!. ~4.25!

The potentialV` may be written as follows:

V`~y!5V~y,B![0, yPB,

1`, yPDN21\B, ~4.26!

where

B5 ù
sPS

Bs,DN21, ~4.27!

Bs5$yPDN21uuy2vsu.r s%, ~4.28!

where
                                                                                                                



in

asner

ite
one

asner-

f a

rces

ly

6351J. Math. Phys., Vol. 41, No. 9, September 2000 Billiard representation for multidimensional . . .

                    
vs52Us/U0
s , ~4.29!

(uvsu.1) and

r s5A~vs!221, ~4.30!

sPS. Remind that (Ua
s)5(U0

s ,Us) is defined by relation~3.37!.
B is an open domain. Its boundary]B5B̄\B is formed by certain parts ofm5uSu

(N22)-dimensional spheres with the centers in the pointsvs (uvsu.1) and radiir s , sPS.
So, in the limity0→2` we are led to the dynamical system

L`52 1
2~ ẏ0!21 1

2h̄i j ~y!ẏi ẏ j2V`~y!, ~4.31!

E`52 1
2~ ẏ0!21 1

2h̄i j ~y!ẏi ẏ j1V`~y!50, ~4.32!

which after the separating ofy0 variable

y05v~ t2t0!, ~4.33!

(vÞ0, t0 are constants! is reduced to the Lagrange system with the Lagrangian

LB5 1
2h̄i j ~y!ẏi ẏ j2V~y,B!. ~4.34!

Due to ~4.33!

EB5
1

2
h̄i j ~y!ẏi ẏ j1V~y,B!5

v2

2
. ~4.35!

We putv.0, then the limitt→2` describes an approach to the singularity.
WhenSÞB the Lagrangian~4.34! describes a motion of a particle of unit mass, moving

the (N21)-dimensional billiardB,DN21 @see~4.27!#. The geodesic motion inB corresponds to
a ‘‘Kasner epoch’’ and the reflection from the boundary corresponds to the change of K
epochs.44

Let the billiardB has an infinite volume: volB51` and there are open zones at the infin
sphereuyu51. After a finite number of reflections from the boundary a particle moves towards
of these open zones. In this case for a corresponding cosmological model we get the ‘‘K
type’’ behavior in the limitt→2` and the absence of a stochastic behavior.

Let volB,1`. There are two possibilities in this case:~i! the closure of the billiardB̄ is
compact~in the topology ofDN21!; ~ii ! B̄ is noncompact. In these two cases the motion o
particle is oscillating.

In Ref. 44 we proposed the simple geometric criterion for finiteness of volume ofB and
compactness ofB̄ in terms of the positions of the points~4.29! with respect to the
(N22)-dimensional unit sphereSN22 (N>3).

Definitions: A pointnPSk (k>1) is illuminated by a pointlike source located at a pointv
PRk11, uvu.1, if and only if un2vu<Auvu221. A point nPSk is strongly illuminated by a
pointlike source located at the pointvPRk11, uvu.1, if and only if un2vu,Auvu221. The subset
P,Sk is called (strongly) illuminated by a pointlike sources at$va,aPA% if and only if any point
from P is (strongly) illuminated by some source atva,aPA.

Proposition (Ref. 44): The billiard B (4.27) has a finite volume if and only if pointlike sou
of light located at the pointsvs (4.29) illuminate the unit sphere SN22. The closure of a billiard

B̄ is compact (in the topology of DN21.HN21! if and only if sources at points (4.29) strong
illuminate SN22.
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We remind, that the problem of illumination of a convex body in a multidimensional ve
space by pointlike sources for the first time was considered in Refs. 47 and 48. For the c
SN22 this problem is equivalent to the problem of covering spheres with spheres.49,50

There exists a topological bound on a number of pointlike sourcesm illuminating the sphere
SN22 ~Ref. 48!

m>N. ~4.36!

Thus, we obtain the restriction~1.4!. According to this restriction the number ofp-branesm
5uSu should at least exceed the critical valueN5n1 l for the existence of oscillating~e.g.,
stochastic! behavior near the singularity.

We remind that Kasner-type solutions have the following form:

g5wdt ^ dt1(
i 51

n

Ait
2a i

gi , ~4.37!

wb5ab ln t1w0
b , ~4.38!

(
i 51

n

dia
i5(

i 51

n

di~a i !21abaghbg51, ~4.39!

Fa50, ~4.40!

whereAi.0, w0
b are constantsi 51,...,n; b, g51,...,l ; aPD. These solutions correspond to ze

p-brane charges. If the vector of Kasner parametersa5(aA)5(a i ,ag) obeys the relations

Us~a!5UA
s aA5 (

i PI s

dia
i2xslasg

ag.0. ~4.41!

sPS, then the field configurations~4.37!–~4.40! is the asymptotical~attractor! solution for a
family of ~exact! solutions with nonzero charges:QsÞ0, whent→10.

Relation~4.41! may be easily understood using relation~3.22!. Indeed, from~3.22! and zero
value limits for formsFa, aPD, we get

exp@2Us~x!#5Cst
2Us~a!→0, CsÞ0, ~4.42!

for t→10. These relations imply~4.41!.
Now we give a rigorous explanation of~4.41!. Let us denote byK a set of Kasner vecto

parametersa5(aA)PRN satisfying ~4.39!. K is an ellipsoid isomorphic toSN22. The isomor-
phism is defined by the relations

aA5ea
Ana/q, ~na!5~1,n!, nPSN22. ~4.43!

Here we use the diagonalizing matrix (ea
A) and the parameterq defined in Sec. III A@see~3.32!#.

Proposition 1: Let us consider a pointlike source located at a pointvs from ~4.29!. A point
nPSN22 is illuminated by this source if and only if the corresponding Kasner vectora5(aA)
PK defined by~4.43! satisfies the relation

Us~a!5UA
s aA5 (

i PI s

dia i2xslasg
ag<0. ~4.44!

Proof: A point nPSN22 is illuminated by a point-like source of light located at a pointvs,
uvsu.1, if and only if
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nvs>1, ~4.45!

sPS. For vs52Us/U0
s , U0

s.0, this inequality may be rewritten as

naUa
s5qeA

aaAUa
s5qaAUA

s <0, ~4.46!

sPS. Thus, we obtain the relation~4.44!.
Corollary: A point nPSN22 is not illuminated by a source at a pointvs from (4.29) if and

only if the relation~4.41! is satisfied.
A small modification of the Proposition 1 is the following one.
Proposition 1a: A pointnPSN22 is strongly illuminated by a source atvs if and only if

Us(a),0.
Due to Proposition 1 the criterion of the finiteness of a billiard volume~see Proposition! may

be reformulated in terms of inequalities on Kasner-type parameters.44

Proposition 2: Billiard B (4.27) has a finite volume if and only if there are noa satisfying the
relations (4.39) and (4.41).

The positions of sources are defined@up to O(N21)-rotation# by scalar products

vsvs85
UsUs8

U0
sU0

s8
511

~D22!~D21!

d~ I s!d~ I s8!
Fd~ I sùI s8!1

d~ I s!d~ I s8!

22D
1xsxs8laalbbhabG . ~4.47!

Thus, we obtained a billiard representation for the model under consideration when t
strictions~4.1! and ~4.2! are imposed.

Now we relax the first restriction, i.e., we put

«s521, ~4.48!

for somesPS. Relation~4.48! occurs when spherically symmetric solutions withp-branes are
considered.16,25 In this case we may obtain ‘‘waterfall potentials’’ withV52` instead ofV
51` inside of ‘‘walls.’’ The waterfall potentials prevent the oscillating behavior near the
gularity but meanwhile do not forbid the existence of solutions with Kasner-type asympto
behavior~if there are open shadow zones!. Let us consider the following example:

1PI s , d151, ~4.49!

for all sPS, i.e., all branes overlap the one-dimensional spaceM1 . In this case the Kasner set

a151, a i5ab50, ~4.50!

i 52,...,n; b51,...,l , satisfies~4.39! and ~4.41!. For any«s561, sPS, we get a family of solu-
tions with asymptotical Kasner-type behavior with parametersa5(aA) belonging to an open
neighborhood of the~Milne! point from ~4.50!.

V. EXAMPLES OF TWO-DIMENSIONAL BILLIARD

In this section we give several examples of two-dimensional billiards with finite areas
occur in the models under consideration.

A. Billiard is a square

Here we consider a model defined on the manifold

M5R3M13M2 , ~5.1!

governed by the Lagrangian
                                                                                                                



-

6354 J. Math. Phys., Vol. 41, No. 9, September 2000 V. D. Ivashchuk and V. N. Melnikov

                    
L5R@g#22L2gMN]Mw]Nw2
1

n1!
exp@2l1w#~F1!g

22
1

n2!
exp@2l2w#~F2!g

2, ~5.2!

whered15dim M15d, d25dim M25d, D5112d, n15d11, n25d, d>2, w521 and«(1)
5«(2)51. Let

s15~1,e,$1%!, s25~1,e,$2%!, s35~2,m,$1%!, s45~2,m,$2%!, ~5.3!

i.e., we have two electric branes corresponding to the formF1, and two magnetic branes corre
sponding toF2. Braness1 ands3 ‘‘live’’ in M1 and braness2 ands4 live in M2 .

We put

l15l25l, l25d/2. ~5.4!

Then from~4.47! we get

~vsi !252vs1vs452vs2vs352~2d21!, ~5.5!

i 51,2,3,4, and

vs1vs25vs1vs35vs2vs45vs3vs450. ~5.6!

This means that the pointsvsi, i 51,2,3,4, form a square inR2 containingS1 (vs152vs4,
vs252vs3!, i.e., all points ofS1 are illuminated by these four points. The billiardB ~4.27! is a
sub-compact square (B̄ is compact! in the Lobachevsky space. Ford52 (D55) it is depicted in
Fig. 1.

B. Billiard is a triangle

Let us consider a model defined on

M5R3M13M23M3 , ~5.7!

and governed by the Lagrangian

L5R@g#22L2
1

n1!
~F1!g

2, ~5.8!

FIG. 1. Square billiard in the five-dimensional model with two internal spaces, scalar field and four ‘‘branes’’~two electric
and two magnetic!.
                                                                                                                



ky

.’’

6355J. Math. Phys., Vol. 41, No. 9, September 2000 Billiard representation for multidimensional . . .

                    
wheredi5dim Mi5d, n15d11, d>2, w521, «( i )51, i 51,2,3, andD5113d. Let

s15~1,e,$1%!, s25~1,e,$2%!, s35~1,e,$3%!, ~5.9!

i.e., we have three electric branes corresponding to the formF1. The branesi lives in Mi , i
51,2,3.

From ~4.47! we get

~vsi !256d22. ~5.10!

vsivsj5123d, ~5.11!

iÞ j ; i, j 51,2,3.
For d>2 the pointsvsi, i 51,2,3, form a triangle inR2 containingS1 and all points ofS1 are

illuminated by these three points. The billiard~4.27! is a sub-compact triangle in the Lobachevs
spaceD2. For d52 it is depicted in Fig. 2.

For d51 we obtain~at least formally! the billiardB depicted in Fig. 3. The closure ofB is not
compact but the area ofB is finite. This billiard appears in the well-known Bianchi-IX model~for
a review, see Refs. 38, 39, and 44!. For d51 the restriction on compositep-branes~3.1! is not

FIG. 2. Triangle billiard in the seven-dimensional model with three internal spaces and three electric ‘‘branes

FIG. 3. Triangle billiard forD54 coinciding with that of Bianchi-IX model.
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satisfied but to avoid this obstacle we may consider noncomposite case when the Lagrangia~5.8!
is replaced by the following Lagrangian in the dimensionD54 with three two-formsFa, a
51,2,3.

L5R@g#22L2 (
a51

3
1

2!
~Fa!g

2, ~5.12!

and the relation~5.9! is replaced by its noncomposite analogue

s15~1,e,$1%!, s25~2,e,$2%!, s35~3,e,$3%!. ~5.13!

VI. DÄ11 SUPERGRAVITY

A. ‘‘Truncated’’ DÄ11 supergravity

Now we consider a ‘‘truncated’’ bosonic sector ofD511 supergravity governed by the actio
~truncated means without Chern–Simons terms!

Str5E d11zAugu H R@g#2
1

4!
Fg

2J , ~6.1!

whereF5dA5F is a four-form. In this case we have electric two-branes (d(I s)53) and mag-
netic 5-branes (d(I s)56).

From ~4.47! we get

~vs!2521, vs5e, ~6.2!

~vs!256, vs5m, ~6.3!

and

vsvs851110@d~ I sùI s8!21#, vs5vs85e, ~6.4!

511 5
2@d~ I sùI s8!24#, vs5vs85m, ~6.5!

5115@d~ I sùI s8!22#, vs5e, vs85m. ~6.6!

Scalar products~6.2!–~6.6! are ~in some sense! ‘‘building blocks’’ for constructing billiards for
the model under consideration.

Now we suggest an example of a billiard with a finite volume that occurs in the trunc
D511 supergravity. Let us consider the metric~2.8! defined on the manifold

M5R3M13¯3M5 , ~6.7!

where all (Mi ,gi), i 51,...,5, are two-dimensional Einstein manifolds of the Euclidean signa
andw521.

We consider ten magnetic 5-branes wrapped on six-dimensional ‘‘submanifolds’’Mi3M j

3Mk , 1< i , j ,k<5. Thus, the 5-branes are labeled by indices

s5s~ i , j ,k!5~1,m,$ i , j ,k%!, ~6.8!

1< i , j ,k<5.
It follows from ~6.3! and ~6.5! that all vectorsvs have the same length:uvsu5A6 andvsvs8

51,24 for dimensions of intersectionsd(I sùI s8)54,2, respectively.
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Now we prove that in our case the set of sources located at pointsvsPR4, sPS5Sm ‘‘illu-
minates’’ the three-dimensional~Kasner! sphereS3 and hence~according to the Proposition from
Sec. IV! the four-dimensional billiard~4.27! B,D4 has a finite volume. Due to Proposition
from Sec. IV it is sufficient to prove the following proposition.

Proposition 3: There are noa5(a1,...,a5)PR5 satisfying the relations

(
i 51

5

a i5(
i 51

5

~a i !25
1

2
~6.9!

and

a i1a j1ak.0, ~6.10!

for all 1< i , j ,k<5.
This proposition is a consequence of the following statement.
Proposition 4: Let a5(a1,...,a5)PR5 satisfy the relations (6.9) anda1<a2<a3<a4

<a5 . Then

a11a21a3<0, ~6.11!

and a11a21a350 only if a5a1 , where

a15~2 1
2,

1
4,

1
4,

1
4,

1
4!. ~6.12!

Proof: Let us consider the setK of Kasner vector parametersa5(a1,...,a5)PR5 satisfying
~6.9!. Let

G5$aPKua1,a2,a3,a4,a5%, ~6.13!

and Ḡ5$aPKua1<a2<a3<a4<a5%. G is an open submanifold of the three-dimension
‘‘Kasner’’ manifold K andḠ is a closure ofG. Ḡ is compact subset ofK. Let us consider a smooth
function f :R5→R defined by the relation

f ~a!5a11a21a3. ~6.14!

Let f u5 f uḠ be a restriction off on Ḡ. f u is a continuous function reaching an~absolute! maximum
on the compact~topological! spaceḠ

C5maxf u5 f ~amax!, ~6.15!

amaxPḠ. It is clear thatC>0, sinceC> f (a1)50, wherea1 is defined in~6.12!. To prove the
proposition it is sufficient to prove that the point of maximumamax is unique and

amax5a1 . ~6.16!

Let us prove the relation~6.16!. The pointamax does not belong toG. Indeed, if we suppose tha
amaxPG we get the conditional extremum relation

dF~a!50, ~6.17!

at a5amax, where

F~a!5F0~a![ f ~a!1l1(
i 51

5

a i1l2(
i 51

5

~a i !2, ~6.18!
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andl1 andl2 are Langrange multipliers. It follows from~6.17! and ~6.18! that:

] iF511l112l2a i50, i 51,2,3. ~6.19!

] jF5l112l2a j50, j 54,5, ~6.20!

at a5amax. Relations~6.19! and ~6.20! imply l2Þ0 and a45a5. The latter contradicts the
inequalitya4,a5 for points inG. Thus,amaxPḠ\G. The set]G5Ḡ\G is a border of the curved
tetrahedronḠ. It is a union of four faces

a15a2,a3,a4,a5 ~G1!,

a1,a25a3,a4,a5 ~G2!,

a1,a2,a35a4,a5 ~G3!,

a1,a2,a3,a45a5 ~G4!,

six edges:

a15a25a3,a4,a5 ~E12!,

a15a2,a35a4,a5 ~E13!,

a15a2,a3,a45a5 ~E14!,

a1,a25a35a4,a5 ~E23!,

a1,a25a3,a45a5 ~E24!,

a1,a2,a35a45a5 ~E34!,

and four vertices:

a1,a25a35a45a5 ~V1!,

a15a2,a35a45a5 ~V2!,

a15a25a3,a45a5 ~V3!,

a15a25a35a4,a5 ~V4!.

The point of maximumamax does not belong to any faceGa , a51,2,3,4. Indeed, if we
suppose thatamax belongs to some faceGa we get the conditional extremum relation~6.17! with
modifiedF

F5F01l3~aa2aa11!, ~6.21!

a51,2,3,4. But one may verify that there are no solutions of the relation~6.17! in this case.
Analogous arguments lead us to a nonexistence of points of maximum among the points o
E12,E13,E14,E23,E24,E34. Here the only difference is that there exist~only! two extremal points
belonging toE13 andE23, respectively

a15a25
1

10S 12
12

A14
D , a35a45

1

10S 11
3

A14
D , a55

1

10S 11
18

A14
D , ~6.22!
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a15
1

10S 12
3

2
A6D , a25a35a45

1

10S 12
1

4
A6D , a55

1

10S 11
9

4
A6D . ~6.23!

but f (a),0 in these points and hence they are not the points of maximum. Thus,amax belongs to
the set of vertices

a152 1
2, a25a35a45a55 1

4 ~V1!, ~6.24!

a15a25 1
10~ 12 3

2 A6! , a35a45a55 1
10 ~11A6! ~V2!, ~6.25!

a15a25a35 1
10~12A6!, a45a55 1

10 ~11 3
2A6! ~V3!, ~6.26!

a15a25a35a452 1
20, a55 7

10 ~V4!. ~6.27!

The calculation gives usf (a),0 for a5Vi , i 52,3,4. Thus, the first vertexV15a1 is the point
of maximum. The Proposition 4 is proved.

We also proved the Proposition 3~as a consequence of the Proposition 4! and due to Propo-
sition 2 the following proposition.

Proposition 5: For the model (6.1)–(6.8) the Kasner sphere S3 is illuminated by the set of ten
sources located at pointsvsPR4 from (4.29), with s5s( i , j ,k), 1< i , j ,k<5, defined in (6.8),
and hence the billiard B (4.27) has a finite volume.

Moreover, this proposition may be strengthen as follows.
Proposition 5a: In terms of Proposition 5 all points of the Kasner S3 sphere except five point

n1 ,...,n5PS3 corresponding to the Kasner sets

a15~2 1
2,

1
4,

1
4,

1
4,

1
4!,...,a

55~ 1
4,

1
4,

1
4,

1
4,2

1
2!PK, ~6.28!

respectively [see (4.43)] are strongly illuminated by the set of ten sourcesvsPR4,sPS.
Proof: The setK of Kasner parameters satisfying~6.9! is a union of 5!5120 ‘‘sectors’’

K5K12345øK21345ø¯øK54321, ~6.29!

whereKi 1i 2i 3i 4i 5
5Ḡ5$aPKua i 1<a i 2<a i 3<a i 4<a i 5% and (i 1 ,i 2 ,i 3 ,i 4 ,i 5) is a permutation of

~1,2,3,4,5!. Due to Proposition 1a and Proposition 4 any pointn5n(a)PS3 corresponding toa
PK12345\$a1% is strongly illuminated by the source located at pointvs, with s5s(1,2,3). Analo-
gously, any pointn5n(a)PS3 corresponding toaPKi 1i 2i 3i 4i 5

\$a i 1
% is strongly illuminated by

the source located at pointvs, with s5s( i 1 ,i 2 ,i 3), where (i 1 ,i 2 ,i 3 ,i 4 ,i 5) is a permutation of~1,
2,3,4,5!. The proposition is proved.

The pointsn1 ,...,n5 from Proposition 5a are not strongly illuminated~see Proposition 1a!.
Thus, Proposition 5, Proposition 5a and Proposition~from Sec. IV! imply that the billiardB ~4.27!
has a finite volume but its closureB̄ is not compact. Pointsn1 ,...,n5PS3 are ending points of five
‘‘horns’’ of B. ~These horns look similar to potential energy ‘‘valleys’’ that occur in some
models, e.g., related to M~atrix! theory51!.

Using relations~4.43! one may verify that

ninj52 1
4, iÞ j , ~6.30!

i , j 51,...,5. This means thatn1 ,...,n5 are vertices of a four-dimensional simplex.
Here we considered the billiardB generated by ten sources, corresponding to nonzero cha

QsÞ0, sPS. If some charges are zero:Qs50, sPS0 , then the corresponding pointsvs, s
PS0(S0ÞB) are ‘‘switched off’’ and billiard is generated bym<9 pointlike sources. In this cas
we have the following proposition.
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Proposition 5b In terms of Proposition 5 any subset of sourcesvs,sPS\S0 , with S0ÞB, does
not illuminate the Kasner sphere S3 and hence the billiard B generated by this subse t has
infinite volume.

Proof: Without a loss of generality let us suppose thatS0 containss(1,2,3), i.e., at least the
source atvs,s5s(1,2,3), is switched off. Then, the pointn corresponding to the seta5(a i) from
~6.26! belongs to the shadow, since

a i1a j1ak.0, ~6.31!

for all 1< i , j ,k<5, (i , j ,k)Þ(1,2,3). Thus, the shadow set is nonempty.~This set is open
since it is an intersection of a finite number of open shadow sets corresponding to sources o!
The proposition is proved.

B. Inclusion of Chern–Simons term

Now we consider the total bosonic sector action forD511 supergravity with the Chern–
Simons term included

S5Str1cE
M

A∧F∧F, ~6.32!

whereStr is defined in~6.1!, c5const, (F5dA). Since the second term in~6.32! ~Chern–Simons
term! does not depend upon a metric the Einstein equations are not changed. The only mo
tion of equations of motion is related to ‘‘Maxwell’’ equations

d* F5constF∧F. ~6.33!

Due to ~6.33! solutions to field equations corresponding to the truncated model~6.1! with the
trivial Chern–Simons term

F∧F50 ~6.34!

are also solutions forD511 supergravity.
Now, we are interested in existence of solutions for the truncated model with nonzero ch

QsÞ0 satisfying~6.34!.
Calculating the Hodge dual in~2.17! and using the solution~3.22! we get

F52ef (
sPS

Qst~ Ī s!, f 52(
i 51

5

xi2g, ~6.35!

where Ī s5$1,2,3,4,5%\I s , sPS5Sm , and S is the index set defined in~6.8!. For the Chern–
Simons term we obtain

e22 fF∧F52 (
i 51

5

Pit~$ ī %!, ~6.36!

where

2Pi5 (
s,s8PS

QsQs8d~ I sùI s8 ,$ i %!, ~6.37!

i 51,2,3,4,5. Hered(A,B)51 for A5B, d(A,B)50 otherwise.
Proposition 6: Let all charges be nonzero: QsÞ0 for all sPS. Then

~F∧F !~z!Þ0, ~6.38!
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in all points zPM .
Proof: Let us suppose that the Chern–Simons term vanishes in some point~i.e., relation~6.34!

in some point is satisfied!. Since formst($ ī %) are linearly independent at any point, we obta
Pi50, i 51, 2, 3, 4, 5, or explicitly

P15Q123Q1451Q124Q1351Q125Q13450, ~6.39!

P25Q123Q2451Q124Q2351Q125Q23450, ~6.40!

P35Q123Q3451Q134Q2351Q135Q23450, ~6.41!

P45Q124Q3451Q134Q2451Q145Q23450. ~6.42!

P55Q125Q3451Q135Q2451Q145Q23550, ~6.43!

where we denoteQi jk5Qs for s5s( i , j ,k), 1< i , j ,k<5. Let us denotek25Q345, k35Q245,
k45Q235, k55Q234 anda5Q145, b5Q135. From ~6.43! we get

Q12552
k3

k2
b2

k4

k2
a. ~6.44!

From the relationk3P31k4P41k5P550 we get

Q13452
k5

k4
b2

k5

k3
a. ~6.45!

From ~6.41! and ~6.42! we deduce

Q1235
k4k5

k2k3
a, Q1245

k3k5

k2k4
b. ~6.46!

Substituting~6.44!–~6.46! into Eq. ~6.39! we get

~k4a!21~k3b!21~k4a1k3b!250. ~6.47!

Hencea5b50. But this contradicts our supposition, thatQsÞ0. So, the proposition is proved.
Thus, it follows from Proposition 5b and Proposition 6, that the inclusion of the Che

Simons term leads us to the billiardB of infinite volume. In this case some Kasner~shadow! zones
are opened and we have the Kasner-type behavior near the singularity.

VII. DISCUSSIONS

In this paper we considered the behavior near the singularity of the multidimensional m
describing the cosmological evolution of several Einstein spaces in the theory with scalar
and fields of forms. Using the results from Refs. 42–44 we obtained the billiard representat
multidimensional Lobachevsky space for the cosmological model near the singularity. We
gested and studied examples with oscillating behavior near the singularity in the model wit
p-branes and a square billiard and in the model with threep-branes, when the billiard is a triangl
~like it takes place in Bianchi-IX model!. A four-dimensional billiard with a finite volume in the
truncatedD511 supergravity was also considered. It was shown that the inclusion of the Ch
Simons term leads to the destruction of some confining walls of the billiard.
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The structure of cosmic strings
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Mathematics Group, School of Mathematical and Information Sciences,
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It is normal to treat cosmic strings as line defects in space–time. The interpretation
of mass as the deficit angle associated with such a defect has the consequences of
mass being nonadditive, and Lorentz boosts acting as magnifying glasses of arbi-
trarily high resolution. Herein, an alternative is proposed which has neither of the
above properties. ©2000 American Institute of Physics.
@S0022-2488~00!00409-6#

I. INTRODUCTION

Research into cosmic strings has been extremely fruitful, both in the area of cosmolog~see
Ref. 1 for a fairly recent review! and in some thought provoking questions of principle~for
example, the question of whether cosmic strings can give rise to space–times containing
timelike curves–see Ref. 2 and references therein for this debate!. In addition, if one considers the
special case of space–times in which all cosmic strings are straight and parallel, one is led t
the consideration of particles in~211!-dimensional space–time, as in Ref. 3, and, extending fr
classical considerations to quantum ones, as in Refs. 4 and 5.

However, although some aspects of cosmic strings have been studied in great detai
remain some fairly fundamental questions about the details of their mathematical models.
tionally, strings have been idealized as line defects in space–time, although it is well unde
that this is only an approximation, justified by their extremely small radius. Part of the purpo
this article is to consider one particular model for the interior of a string, and its consequenc
the string’s large-scale properties. Prior investigations into the mathematical description of c
strings include that of Clarke, Vickers and Wilson6 who used Colombeau’s new generaliz
functions to investigate the sense in which one can make use of the notion of distribu
curvature, and Gruszczak7 ~and references therein!, who used the notion of a differential space
examine the behavior of fields on a space–time containing a cosmic string. However,
investigations have largely confined themselves to the question of the intrinsic space–time
etry of the cosmic string, without reference to its appearance to a moving observer. The rem
of the purpose of this article is to extend the discussion by including moving observers and
at least a first attempt at a description of a cosmic string which is more palatable when
observers are included.

In this article, I shall examine some of the properties of line defects in flat space, in part
as they are observed by a moving observer, and attempt to construct a new model which
rather naive use of infinitesimals, but which nevertheless has fewer of the undesirable prope
a line defect. To proceed with this, I will restrict my attention to the case where all string
straight and parallel, so that the dimension can be reduced by one. I will therefore, in fa
considering how to model a particle in (211)-dimensions and only return to the original questi
of modeling a cosmic string as such in my concluding remarks.

In Sec. II, I briefly review some of the relevant geometry of the standard model of particl
(211)-dimensional space–time. In Sec. III, I consider the justification for this model, and su

a!Electronic mail: r.low@coventry.ac.uk
63640022-2488/2000/41(9)/6364/5/$17.00 © 2000 American Institute of Physics
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an alternative. In Sec. IV, I investigate some of the properties of this alternative. Finally, in
V, I consider potential further developments.

II. PROPERTIES OF THE STANDARD MODEL

The conventional means of treating a particle in (211)-dimensions is as a point defect
(211)-dimensional Minkoswki space–time. This results in a conical structure for a surfa
constantt ~t being a time coordinate in the particle’s rest frame as is indicated in Fig. 1, w
represents a single surface of constantt in such a space–time.

The rest mass of the particle is then conventionally taken to beM5a/2p, wherea is the
deficit angle of the cone, and the gravitational constantG satisfiesG51.3 ~Note that there are
minor variations in this convention: some authors use the half-angle rather than the angle
use a different numerical convention.!

The rest mass can also be defined for an observer stationary relative to the particle by
the holonomy of a path surrounding the particle, as is described in some detail in Refs. 3
The process is straightforward: ifT is the tangent timelike vector to the observers worldline~so in
this case,T5]/]t wheret is the usual Minkowski time coordinate!, then one parallel transport
some spacelike vectorV orthogonal toT around a loop surrounding the particle. Parallel transp
returnsT to its initial value, whileV is rotated through the anglea.

However, there is a problem if we wish to describe the mass of the particle as seen
observer relative to whom it is moving with speedv. First, the surface of simultaneity of such a
observer cannot be made globally smooth, so one cannot repeat the above definition. Se
one attempts to find the mass by transporting around a spacelike vector,V8, orthogonal toT8, the
tangent to the boosted observer’s worldline, one notes thatT8 is not preserved by parallel trans
port, so the rotation of the orthogonal spacelike vector is not well defined.

To obviate this problem, one solution is to boostT8 to T, carry out the parallel transport, an
then boostT back toT8. This provides a rotation ofV8 by a boosted deficit anglea8 given by

a852 tan21S g tanS a

2 D D ,

whereg is the usualg(v)51/A12v2. Again, the details of this may be found in Ref. 8.
Although this seems somewhat arbitrary, it does in fact agree with various other ob

attempts to define the deficit angle as seen by a moving observer. If we start
(211)-dimensional Minkowski space, remove a wedge of anglea with its edge along thet axis,
and then intersect the resulting space–time witht850 ~t8 being the time coordinate in the movin
observer’s frame of reference!, we find that the deficit angle of this surface is preciselya8. Also,
if we define the deficit angle to be the angle at which initially parallel light rays intersect afte
passes to each side of the particle,a8 is the angle as measured by an observer traveling tow
the particle with speedv. Note that both these constructions require the observer to be trav
parallel to the bisector of the excised wedge.

Unfortunately this definition does suffer from one or two blemishes.
First, if we replace our single particle of massM by two relatively stationary nearby particle

each of massM /2, then the stationary observer assigns a total mass ofM , just as before. But an
observer moving with respect to the particles finds a total deficit angle of 4 tan21(g tan(a/4))
instead of 2 tan21(g tan(a/2)). Two consequences follow from this.

First, we note immediately that mass is not additive. Now, of course, mass is in gener
additive in relativity—but here we have nonadditivity of noninteracting masses which are a

FIG. 1. Conical defect.
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relative to each other. In special relativity, such masses are additive, and at least i
(211)-dimensional ‘‘flat’’ setting we might have expected a similar result.

Second, if the two particles of massM /2 are very close together, the geometry looks~to a
stationary observer! very similar to that of a single particle of massM . However, a Lorentz boos
seems to act as a magnifying glass with an ability to resolve the structure of the pair w
resolving power that is unaffected by the distance between the two particles.

Neither of these properties is any indication of inconsistency, of course. However,
alternative could be found which does not entail them, it would be worth investigating furth

III. THE DUST MODEL

Let us now consider briefly the justification for treating a particle as a point defect.
Given a cone with a rounded tip, one can remove the smooth ‘‘cap,’’ and replace the rem

portion with a cone. Outside this section, the geometry of the surface is unchanged, as sh
Fig. 2.

This smoothed out cone is then thought of as representing a smooth mass distribution, b
confined to a small region of space, and the cone as an idealization of this surface, with
mass concentrated at a point. The justification for this is that the particle is highly localized
that the error involved in replacing such a localized smooth mass density by a distributional
insignificant: one finds the corresponding argument for strings in, for example, Ref. 9. Alth
the string is assumed actually to have a finite radius, this radius is taken to be sufficiently
that it can be neglected.

However, we can approach this from another direction, and ask what structure is obta
we start off with many particles of very small mass which are at rest close together. As lo
they are only considered in a frame of reference which is stationary relative to them, this will
much the same consequence as before: outside the region which the particles inhabit we
have a flat space with an angle deficit, which can easily be measured by comparing the c
ference to the radius of a circle with its center at the location of the particles.

But the situation now looks quite different to the moving observer. If the~say! N component
particles are of massm/N, so that each contributes a deficit anglea/N, the boosted deficit angle
now becomes

a852N tan21S g tanS a

2ND D .

It then follows that if we regard the particle as composed of a region containing infin
many particles of infinitesimal mass, we obtaina85ga. I will call this model of the particle’s
mass distribution the ‘‘dust model.’’ In order for this limiting procedure to make sense, we re
that the density of the dust be bounded above in the limit asN→`. From this it follows that
infinitesimal regions inside the particle only contribute infinitesimally to the net deficit, so tha
do not have any finite defects to consider; thus we can conceptually keep dividing up the
inside the particle into dust particles of ever-decreasing mass. This corresponds to the
density inside the particle being nonsingular, and so is physically reasonable.

It is worth noting that this is not an arbitrary procedure. If we wish to consider the partic
not actually being confined to an infinitesimal region, then it is necessary to consider the effe

FIG. 2. Smooth surface approximated by cone.
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its being smeared out. For a stationary observer, the deficit angle is unchanged, by const
but for a moving observer, the boosted deficit is now different. This new point of view has va
consequences, some more obvious than others.

IV. CONSEQUENCES OF THE DUST MODEL

The first, and most obvious, consequence is that the mass of particles at relative rest
more additive, whether the observer measuring their mass is at rest relative to them or not.
a collection of particles of massesm1 ,...,mn all at rest relative to one another, the total associa
mass isM5(mi , and for an observer moving with speedv relative to the particles, the booste
mass is simplygM , rather than 2 tan21(((tan(mi/2p))). Note that to obtain this result we mus
compute the total defect due to anN-particle approximation to the system of particles, and then
N→`. If we take the limit for each string first and then combine them, the standard resul
follow.

It immediately follows from this that a Lorentz boost cannot be used as a magnifying gla
distinguish between two nearby particles and a single particle of the same total mass.

There is another consequence for the moving observer. In the case of a point defe
observer moving relative to the particle does not have smooth surfaces of constant tim
attempt to construct such a surface results in an object with a crease. But let us now consi
effect of replacing a point defect with a smooth distribution of dust.

This requires some description: we are thinking here of the dust as comprising infinitely
particles of infinitesimal mass, so the idea is that we regard the distribution as smooth if,
averaged over any finite region, it approaches a smooth limit as the size of the region dec
If we consider this model, then a moving observer’s attempt to construct a surface of consta
is more successful: the crease which resulted from the removal of a finite wedge from spac
is replaced by an infinite family of infinitesimal creases, which rounds out the crease occurr
the point defect case. This rounding is smooth in the same way that mass distribution is s
roughly speaking, one requires an infinitely powerful magnifying glass to see the creases.
call a function which is smooth in this sense ‘‘pseudo-smooth.’’

It then follows that associated with any moving observer is a pseudo-smooth surfa
constant time, and the angle deficit measured by the observer for his surface of constant tim
boosted mass,gM . Furthermore, since the deficit can be measured in the same way as
stationary observer, the boosted mass is the Gaussian curvature of this surface of constan

One other consequence is actually a nonconsequence. Recall10 that a pair of parallel cosmic
strings moving with the right relative velocities produces a space–time with closed tim
curves. One might expect that with this model, which has a different dependence of mas~i.e.,
angle deficit! on velocity, the conditions under which a Gott pair can form might be differ
However, it follows from the analysis of the resulting closed timelike curve in Ref. 10 that
the rest mass of each string matters—the boosted deficit does not enter into the calcula
follows that the condition on the velocities of the particles~in the laboratory frame of Gott10!
remains as calculated there.

V. CONCLUSION

I have presented here an attempt to model the geometry of a flat (211)-dimensional space–
time containing a particle, making naive use of infinitesimals. Although the idea as presen
rather heuristic, and the results suggestive rather than rigorously established, they sugges
more detailed investigation attempting to find a more rigorous setting for this model would
interest. The nonstandard analysis of Robinson11 suggests itself as a suitable framework. A
investigation of both this model in the nonstandard framework and its relationship with the
lombeau approach will form the basis of future investigation.
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By using our recent generalization of the colliding waves concept to metric–affine
gravity theories, and also our generalization of the advanced and retarded time
coordinate representation in terms of Jacobi functions, we find a general class of
colliding wave solutions with fourth degree polynomials in metric-affine gravity.
We show that our general approach contains the standard second degree polyno-
mial colliding wave solutions as a particular case. ©2000 American Institute of
Physics.@S0022-2488~00!01809-0#

I. INTRODUCTION

Recently we generalized1 the formulation of the general relativistic colliding gravitation
waves concept2–5 to metric-affine gravity theories~MAG! and presented a simple example of th
kind of exact solution. The resulting plane waves are equipped with five symmetries an
resulting geometry after the collision possesses at least two spacelike Killing vectors. The s
presented describes the scattering of two noncollinear polarized gravitational plane waves.
leading edge of each colliding type N gravitational wave, the curvature tensor exhibits a
discontinuity arising, for example, from the second derivative (2U2)95u2d8(u)14ud(u)
12Q(u). The former is interpreted as a gravitational impulsive wave, whereas the latt
attributed to a gravitational shock wave.

As far as the nonmetricity and torsion are concerned, they could present delta singulariti
jump discontinuities. However, even then the Bianchi identities hold in a distributional sens6 In
particular, alsoDTa5Rb

a`qb holds. There are no problems on the right-hand side becaus
delta type singularities of the curvature are multiplied by the smooth distributionsA12Q(u)u2

andA12Q(v)v2, respectively. Thus, one can interpret them as torsion and nonmetricity g
tational shock waves.

All techniques for generating solutions can be applied to generate cylindrically symm
space–times, in particular colliding plane waves. The way of derivation of these solutio
related to the search of a class of cylindrically symmetric solutions in MAG, starting with the
element7

ds25
1

H~x,t ! F D̃S dx2

X~x!
2

dt2

Y~ t !
D 1

X~x!

D̃
~dy1Ñ~ t !ds!21

Y~ t !

D̃
~dy1M̃ ~x!ds!2G , ~1.1!

a!Electronic mail: macias@fis.cinvestav.mx, amac@xanum.uam.mx
b!Electronic mail: claus@spock.physik.uni-konstanz.de
c!Electronic mail: aagarcia@fis.cinvestav.mx
63690022-2488/2000/41(9)/6369/12/$17.00 © 2000 American Institute of Physics

                                                                                                                



.
ture

ture

braic
ver, it

lass
umed
ides, in
ion
aves

Killing

n is
we

epre-
intro-

sults are

ts
in

cur-

6370 J. Math. Phys., Vol. 41, No. 9, September 2000 Macı́as, Lämmerzahl, and Garcı́a

                    
with D̃ªM̃2Ñ. It is clear thatt is a timelike coordinate, whilex, y, ands are spacelike ones
Notice that]y and]s are spacelike Killing vectors. Moreover, since we are working with signa
(1,1,1,2) the ranges of thex- and t-variables require the fulfillment of the conditionsX(x)
.0, Y(t).0, D̃.0, andH(x,t).0 in order to mantain the signature. Therefore, this signa
condition yields constraints on the coefficients appearing in the polynomials.

Assume first, thatX(x) andY(t) are polynomials up to fourth degree onx andt, respectively;
second,M̃ andÑ are polynomials up to second degree also onx andt, respectively; and, third, the
torsion and nonmetricity are proportional rational functions. Therefore, one arrives at alge
equations, solvable by computer algebra programs, for the polynomials coefficients. Moreo
is always possible to introduce the retarded and advanced time coordinatesu and v. However,
only certain solutions satisfy the Ernst8 requirement for being colliding waves.

The main pruporse of this article is to give the formulation in MAG of the most general c
of colliding waves, nowadays known, i.e., with fourth degree polynomials. As usual, it is ass
that in the corresponding space–time, the two waves approach each other, from opposite s
flat Minkowski background. After the collision, a new gravitational field equipped with tors
and nonmetricity evolves, which satisfies certain continuity conditions. The colliding plane w
possess five symmetries, while the geometry resulting after the collision has two spacelike
vectors.

The plan of the article is as follows: In Sec. II the general quadratic MAG Lagrangia
revisited. In Sec. III a class of cylindrically symmetric waves in MAG is presented. In Sec. IV
review briefly the generalization of the colliding waves concept to MAG and the general r
sentation through advanced and retarded time coordinates for fourth degree polynomials is
duced. In Sec. V we reduce the general approach to second degree polynomials and the re
discussed. In Sec. VI we give the outlook of the theory.

II. GENERAL QUADRATIC MAG LAGRANGIAN

In a metric-affine space–time,9 a general parity conserving quadratic Lagrangian reads

VMAG5
1

2k F2a0Rab`hab22lh1Ta`* S (
I 51

3

aI
(I )TaD 12S (

I 52

4

cI
(I )QabD `qa`* Tb

1Qab`* S (
I 51

4

bI
(I )QabD 1b5~ (3)Qag`qa!`* ~ (4)Qbg`qb!G

2
1

2
Rab`* S (

I 51

6

wI
(I )Wab1(

I 51

5

zI
(I )ZabD . ~2.1!

The signature of spacetime is (2111), hª* 1 is the volume four-form and the constan
a0 ,...,a3 , b1 ,...,b5 , c2 ,c3 ,c4 , w1 ,...,w6 , z1 ,...,z5 are dimensionless. We have introduced
the curvature square term the irreducible pieces of the antisymmetric partWabªR[ab] and the
symmetric partZabªR(ab) of the curvature two-form. It is worthwhile to note that inZab , we
meet a purely post-Riemannian part.

The first and the second field equations of MAG9 read

DHa2Ea5Sa , ~2.2!

DHa
b2Ea

b5Da
b , ~2.3!

respectively, whereSa andDa
b are the canonical energy-momentum and hypermomentum

rent three-forms associated with matter. The left hand-sides of~2.2! and ~2.3! involve the gravi-
tational gauge field momenta two-formsHa and Ha

b . We find them, together withMab, by
partial differentiation of the Lagrangian~2.1!:
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Mab
ª22

]VMAG

]Qab
52

2

k H * S (
I 51

4

bI
(I )QabD 1

1

2
b5Fq (a`* ~Q`qb)!2

1

4
gab* ~3Q1L!G

1c2q (a`* (1)Tb)1c3q (a`* (2)Tb)1
1

4
~c32c4!gab* TJ , ~2.4!

Haª2
]VMAG

]Ta 52
1

k
* F S (

I 51

3

aI
(I )TaD 1S (

I 52

4

cI
(I )Qab`qbD G , ~2.5!

Ha
bª2

]VMAG

]Ra
b 5

a0

2k
ha

b1W a
b1Z a

b , ~2.6!

where we introduced the abbreviations

Wabª* S (
I 51

6

wI
(I )WabD , Zabª* S (

I 51

5

zI
(I )ZabD . ~2.7!

The three-formsEa and Ea
b describe the canonical energy-momentum and hypermomen

currents of the gauge fields themselves. They can be written as follows:9

Ea5eacVMAG1~eacTb!`Hb1~eacRb
g!`Hb

g1 1
2 ~eacQbg!Mbg, ~2.8!

Ea
b52qa`Hb2Ma

b , ~2.9!

whereeac denotes the interior product with the frame. We will restrict ourselves, from now
only to theelectrovacuumcase

L5VMAG1VMax , ~2.10!

whereVMax52(1/2)F`!F is the Lagrangian of the Maxwell field andF5dA is the electromag-
netic field strength.Db

a50 and the only external current is the electromagnetic one,

Sa
(max)52a0~eacLMax1~eacF !`H !. ~2.11!

We concentrate ourselves on the simplest nontrivial case with shear. We assume that nonm
and torsion are represented by atriplet of one-forms,10,11 i.e., the Weyl covector~the dilation
piece!, the traceless covector piece of the nonmetricity~a proper shear piece! and the torsion trace
so that

Qab5Q~u,v !gab1 4
9 ~q (aeb)cL~u,v !2 1

4 gabL~u,v !!, ~2.12!

Ta5 1
3 qa`T~u,v !, with TªeacTa. ~2.13!

Thus we are left with three nontrivial one-formsQ(u,v), L(u,v), andT(u,v).
We assume the following ansatz, the so-calledtriplet ansatz, for our triplet of one-forms

~2.12! and ~2.13!:

Q5k0f, L5k1f, T5k2f, ~2.14!

where k0 , k1 , and k2 are coupling constants. In other words, we assume that the triple
one-forms are proportional to each other.1,10,12,13

The triplet ansatz~2.14! reduces the MAG field equations~2.2! and ~2.3! to an effective
Einstein–Proca system:10,12
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a0

2
habg `R̃bg5kSa

(f) , ~2.15!

d* df1m2* f50, ~2.16!

with respect to the metricg, and the Proca one-formf. Here the tilde (̃ ) denotes the Riemannia
part of the curvature.Sa

(f) is the energy-momentum current of the Proca fieldf. Moreover, by
settingm50 the system acquires a constraint among the coupling constants of the Lagra
~2.1!, and the MAG system of field equations reduces to the Einstein–Maxwell system, cf
13.

Therefore, under the triplet ansatz~2.14! and for theelectrovacuumcase~2.10!, the MAG
field equations become

a0

2
habg `R̃bg5kSa

(f)1Sa
(max) , ~2.17!

d* df50, ~2.18!

d* dA50, ~2.19!

with Sa
(max) given by ~2.11!, andA the electromagnetic one-form. Hence, the problem is redu

to find the metric, the electromagnetic and the triplet one-forms.

III. A CLASS OF CYLINDRICALLY SYMMETRIC WAVES IN MAG

We start from the following coframe with coordinates (t,x,y,s):

q 0̂5
1

H
AD̃

Y
dt, ~3.1!

q 1̂5
1

H
AY

D̃
~dy1x2ds!, ~3.2!

q 2̂5
1

H
AD̃

X
dx, ~3.3!

q 3̂5
1

H
AX

D̃
~dy2t2ds!. ~3.4!

Here we have the structure functionsH5H(x,t), X5X(x), Y5Y(t), andD̃5D̃(x,t). The cof-
rame is assumed to be orthonormal:

g5oabqa
^ qb. ~3.5!

Then the metric explicitly reads

g5
1

H2 H 2
D̃

Y
dt21

Y

D̃
~dy1x2ds!21

D̃

X
dx21

X

D̃
~dy2t2ds!2J . ~3.6!
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When we substitute the local metricoab , the coframe~3.4!, the nonmetricity~2.12!, and the
torsion ~2.13! into the field equations~2.2! and ~2.3! of the Lagrangian~2.1!, then, provided the
constraints

32a0
2b424a0a2b4164a0b3b4232a2b3b4148a0b4c3124b4c3

2124b3c4
2

112a0a2b3148a0b3c429a0c3
2118a0c3c413a0c4

216a0
2a2124a0

2c450, ~3.7!

b550, ~3.8!

on the coupling constants are fulfilled, we find a general exact solution for the following funct

f5
H

AD̃
S Net

AY
q 1̂1

Ngx

AX
q 3̂D , ~3.9!

H~x,t !ª12m0xt,

X~x!ªb2@g21g0
2#12nx2e0x212mm0x31S 2

l

3
2m0

2b2m0
2@e21e0

2# D x4,

~3.10!

Y~ t !ª2~b1@e21e0
2#e2!12mt2e0t212nm0t31S l

3
1m0

2b2m0
2@g21g0

2# D t4,

D̃~x,t !ªx21t2.

HereNe andNg are the gravito-electric and gravito-magnetic nonmetricity-torsion charges o
source which fulfill

z4k0
2

2a0
~Ne

21Ng
2!5e21g2. ~3.11!

The coefficientsk0 ,k1 ,k2 in ~3.9! are determined by the dimensionless coupling constants o
Lagrangian~2.1!:

k0ªS a2

2
2a0D ~8b31a0!23~c31a0!2, ~3.12!

k1ª29Fa0S a2

2
2a0D1~c31a0!~c41a0!G , ~3.13!

k2ª
3
2 @3a0~c31a0!1~8b31a0!~c41a0!#. ~3.14!

Then, it is easy to put the constraint~3.7! into the following more compact form:

b45
a0k12c4k2

8k0
, with kª3k02k112k2 . ~3.15!

Therefore, the constantsm0 , g, e, b, e0 , m, andn are free parameters.
The electromagnetic potentialA associated to these solutions reads

A5
1

D̃
@~e0x1g0t !dy1~g0x2e0t !txds#5

H

AD̃
S g0t

AY
q 1̂1

e0x

AX
q 3̂D , ~3.16!
                                                                                                                



me,
f
n of

ent

sts of

nds
the

elec-
,

aving
nown,
harac-
f
netic

s our

6374 J. Math. Phys., Vol. 41, No. 9, September 2000 Macı́as, Lämmerzahl, and Garcı́a

                    
with e0 andg0 the electric and the magnetic charges, respectively.
Collecting our results, nonmetricity and torsion read

Qab5Fk0oab1
4

9
k1S q (aeb)c2

1

4
oabD G H

AD̃
S Net

AY
q 1̂1

Ngx

AX
q 3̂D , ~3.17!

Ta5
k2

3
qa`

H

AD̃
S Net

AY
q 3̂1

Ngx

AX
q 3̂D . ~3.18!

The physical interpretation of the parameters of the solution is clear: The dilation~‘‘Weyl’’ !
charges~related to(4)Qab! are described byk0Ne andk0Ng . The shear charges~related to(3)Qab!
are described byk1Ne and (k1Ng), and, eventually, the spin charges~related to(2)Ta) are de-
scribed by (k2Ne) and (k2Ng).

IV. COLLIDING WAVES IN MAG

At this point it is important to mention that not every cylindrically symmetric space–ti
even in vacuum, satifies the colliding waves requirements of Ernst,8 Only certain classes o
cylindrically symmetric solutions can be thought of as solutions generated by the collisio
waves.

The set of colliding wave solutions in metric-affine gravity is described by the line elem

g52g~u,v !dudv1gab~u,v !dxadxb, a,b51,2, ~4.1!

wherex15y andx25s are ignorable coordinates. The domain of the coordinates chart consi
(y,s)PR2 and (u,v)PR2. As usual, it is the union of four continuous regions: Iª$(u,v):0
<u,1,0<v,1%, IIª$(u,v):u<0,0<v,1%, IIIª$(u,v):0<u,1,v,0%, and IVª$(u,v):u
<0,v<0%.

We shall assume that the triplet one-formf shares the space–time symmetries, i.e., it depe
on the variablesu and v only. The metric and the triplet fields have to be continuous over
whole domain.

In the region IV, a closed subregion of the Minkowski space, it is required thatg(u,v)
5g(0,0), A50, andf50.

In region II, the metric components and the triplet one-form depend only onv i.e., g
5g(0,v), A5A(0,v), andf5f(0,v). In region III these fields are functions of the coordinateu,
i.e., gmn5gmn(u,0), A5A(u,0), andf5f(u,0).

In region I, which is occupied by the scattered null fields, the metric components, the
tromagnetic, and the triplet one-forms are all functions of bothu andv coordinates. In this way
the problem is reduced to know the metric~coframe!, the electromagnetic potentialA, and the
one-formf.

Moreover, until now our analysis has been concerned mostly with metrical aspects, le
aside the task of having suitable field and matter energy-momentum tensors. As it is well k
each participating wave in the head-on collision is assumed to be plane fronted, i.e., it is c
terized by a covariantly constant null eigenvectork, i.e.,km;n50 of the Weyl conformal tensor o
Petrov type N. This condition implies a null energy-momentum tensor for the electromag
field, i.e., a radiation field or electrovacuum, into the field equations, cf. Krameret al.14 Therefore,
the existence of colliding wave solutions with nonvanishing cosmologicall term is thus forbid-
den.

In this approach, one deals with real polynomials of fourth degree. In order to expres
solutions~3.9! and~3.10! in terms of the advanced and retarded time coordinatesũ, ṽ, one has to
use the procedure outlined in Ref. 15.
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When looking for advanced and retarded time variables one has to deal with elliptic inte
i.e., we shall use the Legendre first kind integrals. The explicit transformation of the ellip
integral to the Legendre first kind integral is given by

E dx

AG4~x!
5mE df

A12k2 sin2 f
5mF~f,k!, ~4.2!

whereG4(x) is a fourth degree polynomial. The real roots are denoted byr j , with j 51,...,4 and
r 1.r 2.r 3.r 4 , while the complex roots are denoted bys16 i t 1 , s26 i t 2 , with s1>s2 , t1.t2

.0. We also introduce the following useful notation:

r ik5r k2r i ~ i ,k51,2,3,4!,

~r ,b,g,d!5
r 2g

r 2d

b2d

b2g
,

tanu15
r 12s1

t1
, tanu25

r 22s1

t1
,

~4.3!

tanu35
t11t2

s12s2
, tanu45

t12t2

s12s2
,

tan@~u5/2!2#5
cosu3

cosu4
,

n5tan@~u22u1!/2#tan@~u21u1!/2#.

The elliptic integralF(f,k) is the Legendre integral of the first kind. As it is well known, th
standard form of writing this function is

z5Ef df

A12k2 sin2 f
5F~f,k!, f5amz, ~4.4!

where amz denotes the function amplitude ofz. Replacingf throughv, according tov5sinf
5sin amzªsnz, reduces Eq.~4.4! to

z5Ev dv

~12v2!A12k2v2
5F̃~v,k!, ~4.5!

where snz belongs to the Jacobi family of elliptic functions (snz,cnz,dnz), with well established
analytical properties. The values and main properties of these functions can be found in tabl
for example, Ref. 16.

Let us return to our problem. The two-dimensional line element can be written in terms o
retarded and advanced time coordinatesũ and ṽ, respectively, as follows:

dx2

X4~x!
2

dt2

Y4~ t !
5dũ^ dṽ54

du

U
^

dv
V

, ~4.6!

with U5A12u2 andV5A12v2. Moreover,

dũ
dṽJ 5

dx

AX4~x!
6

dt

AY4~ t !
5mf

df

A12kf
2 sin2 f

6mu

du

A12ku
2 sin2 u

, ~4.7!
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whereu5sinũ/2, andv5sinṽ/2. Straightforward integration of~4.7! yields

ũ
ṽJ 5mfF~f,kf!6muF~u,ku!. ~4.8!

Hence, one has relations between the Legendre elliptic integrals and the null coordinatesũ andṽ,
i.e.,

F~f,kf!5
1

2mf
~ ũ1 ṽ !5arcsin~uV1vU !, ~4.9!

F~u,ku!5
1

2mu
~ ũ2 ṽ !5arcsin~uV2vU !. ~4.10!

Therefore, the inversion formulas bring the following functional dependence upon the gener
advanced and retarded time coordinates

f5amF 1

2mf
~ ũ1 ṽ !G , v5sinf5snF 1

2mf
~ ũ1 ṽ !G , ~4.11!

u5amF 1

2mu
~ ũ2 ṽ !G , V5sinu5snF 1

2mu
~ ũ2 ṽ !G , ~4.12!

which allow us to write the originalx and t coordinates, initially expressed throughf andu in
terms of the null coordinatesũ and ṽ, i.e., x5x(ũ,ṽ), and t5t(ũ,ṽ). One may encounter, in
general, combinations of the different possible cases depending on the character of the root
fourth degree polynomials, namely, real or complex.~For a detailed treatment of all possible cas
see Ref. 15!.

For instance, let us consider the caseX4 with four real roots andY4 also with four real roots,
in which the coefficients of the higher degree are 1. These conditions lead to constraints
coefficients appearing in the polynomials. The roots ofX4 and Y4 are all real and different,
moreover, they are denoted byr i andr i , respectively. For the elliptic integral depending on t
x-coordinate, withX4(x)5(x2r 1)(x2r 2)(x2r 3)(x2r 4), one has the relation

E dx

AX4~x!
5mfE df

A12kf
2 sin2 f

5mfF~f,k!, ~4.13!

where the explicit relation betweenx andf reads

x5
r 1r 422r 2r 41sin2 f

r 422r 41sin2 f
,

~4.14!

sin2 f5
r 42

r 41

x2r 1

x2r 2
⇒f5arcsinS 6Ar 42

r 41

x2r 1

x2r 2
D .

The parameterkf (0,kf
2 ,1) is given by

kf
2 5~r 1 ,r 2 ,r 4 ,r 3!5

r 12r 4

r 12r 3

r 22r 3

r 22r 4
, and mf5

2

Ar 31r 42

. ~4.15!

It is straightforward to find the analogous expression for the elliptic integral depending o
t-coordinate. The explicit expressions of the coordinatesx and t in terms of ũ and ṽ are the
following:
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x~ ũ,ṽ !5
r 1r 422r 2r 41~sn~1/2mf! ~ ũ1 ṽ !!2

r 422r 41~sn~1/2mf! ~ ũ1 ṽ !!2 , ~4.16!

t~ ũ,ṽ !5
r1r422r2r41~sn~1/2mu! ~ ũ2 ṽ !!2

r422r41~sn~1/2mu! ~ ũ2 ṽ !!2 . ~4.17!

On the other hand, the relations betweenf andu with x andy read

f6u5arcsinAr 42

r 41

x2r 1

x2r 2
6arcsinAr42

r41

t2r1

t2r2
, ~4.18!

wheref andu stand correspondingly for the arguments of the elliptical Legendre integrals re
with the integration ofX4 andY4 . We define the auxiliary variablesu andv by using the relation
arcsina6arcsinb5arcsin(aA12b26bA12a2). Thus,

2 arcsinu5f1u, 2 arcsinv5f2u, ~4.19!

with

f5arcsinu1arcsinv5arcsin@uA12v21vA12u2#5arcsin@uV1vU#, ~4.20!

analagously

u5arcsin@uV2vU#, ~4.21!

where

V5A12v2 and U5A12u2. ~4.22!

Thus, substituting~4.20! and ~4.21! into ~4.14! it is staightforward to find

x~u,v !5
r 1r 422r 2r 41~uV1vU !2

r 422r 41~uV1vU !2 , ~4.23!

t~u,v !5
r1r422r2r41~uV2vU !2

r422r41~uV2vU !2 . ~4.24!

Moreover, the advanced and retarded time coordinatesũ andṽ are related with the variablesu and
v through

dũ
dṽJ 5F mf

A12kf
2 ~uV1vU !2

6
mu

A12ku
2~uV2vU !2G du

U

1F mf

A12kf
2 ~uV1vU !2

7
mu

A12ku
2~uV2vU !2G dv

V
. ~4.25!

According to our general procedure~4.25! can be inverted, yieldingu5u(ũ,ṽ) andv5v(ũ,ṽ).
The explicit representation requires the use of tables for the Jacobi functions.

Our class of solutions~3.9!, ~3.10!, and~3.16! defined in region I can be extended to the fu
space–time by introducing the Heaviside step function

Q~ ũ!5H 1, ũ>0

0, ũ,0,
~4.26!
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with Q2(ũ)5Q(ũ), and replacingũ→Q(ũ)ũ, ṽ→Q( ṽ) ṽ. For the case of real roots of th
polynomials, treated extensively in Ref. 15, we have explicitly for region II

x~ ũ,ṽ !5
r 1r 422r 2r 41~sn~1/2mf!ṽ !2

r 422r 41~sn~1/2mf!ṽ !2 , ~4.27!

t~ ũ,ṽ !5
r1r422r2r41~sn~1/2mu!ṽ !2

r422r41~sn~1/2mu!ṽ !2 , ~4.28!

and for region III

x~ ũ,ṽ !5
r 1r 422r 2r 41~sn~1/2mf!ũ!2

r 422r 41~sn~1/2mf!ũ!2 , ~4.29!

t~ ũ,ṽ !5
r1r422r2r41~sn~1/2mu!ũ!2

r422r41~sn~1/2mu!ũ!2 , ~4.30!

where (1/2mf)ũ5(1/2mu)ũ5arcsinu, and (1/2mf) ṽ5(1/2mu) ṽ5arcsinv.

V. COLLIDING WAVES FOR SECOND DEGREE POLYNOMIALS

In this section, we recover from our more general approach to colliding waves with fo
degree polynomials the well known cases involving only second degree polynomials.

In the limit of polynomials of second degree, i.e.,X2 , Y2 , one haskf5ku50, andmf ,mu

→1, hence one recovers from~4.25! the widely used standard retarded and advanced time
coordinates

dũ52
du

U
, dṽ52

dv
V

. ~5.1!

Let us restrict to the casem50, l50, ande51; with this choice the fourth degree polyno
mials X4 andY4 reduce to second degree onesX2 andY2 , respectively. Therefore, these poly
nomials now read17

Y252~ t2m!21m22b2@e21e0
2#

5a22~ t2m!25a2$12~uV2vU !2%5a2@UV1uv#2 ~5.2!

with t2m5a(uV2vU), a2
ªm22b2@e21e0

2# and

X25b2@g21g0
2#12nx2x25h22~x2n!25h2$12~uV1vU !2%5h2$UV2uv%2, ~5.3!

with x2n5h(uV1vU) and h2
ªn21b2@g21g0

2#. In order to write the two-dimensional line
element we note that

dx5h~UV2uv !H du

U
1

dv
V J , dt5a~UV1vu!H du

U
2

dv
V J , ~5.4!

therefore

dx2

X
2

dt2

Y
54

du

U

dv
V

, ~5.5!

and
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D̃5x21t25@n1h~uV1vU !#21@m1a~uV2vU !#2. ~5.6!

In this way, one arrives at a class of colliding wave solutions with second degree polyno
namely,

g54D̃
du

U

dv

V
1

b2~UV2vu!2

D̃
$dy2@m1a~uV2vU !#2ds%2

1
a2~UV1uv !2

D̃
$dy1@n1h~uV1vU !#2ds%2. ~5.7!

The corresponding electromagnetic potential reads

A5
H

AD̃
S @m1a~uV2vU !#

AY
q 1̂1

@n1h~uV1vU !#

AX
q 3̂D . ~5.8!

Then nonmetricity and torsion read

Qab5Fk0oab1
4

9
k1S q (aeb)c2

1

4
oabD G H

AD̃
S Ne@m1a~uV2vU !#

AY
q 1̂

1
Ng@n1h~uV1vU !#

AX
q 3̂D , ~5.9!

Ta5
k2

3
qa`

H

AD̃
S Ne@m1a~uV2vU !#

AY
q 1̂1

Ng@n1h~uV1vU !#

AX
q 3̂D , ~5.10!

respectively. The relation~3.11! for z4 still stands.
As it has been pointed out, this solution describes the scattering of two noncollinear pol

gravitation plane waves. At the leading edge of each colliding type N gravitational wave
curvature tensor exhibits delta and jump discontinuities. The former is interpreted as a g
tional impulsive wave, whereas the latter is attributed to a gravitational shock wave.

As stated above, this class of solutions, defined again in region I, can also be extended
full space–time by introducing the Heaviside step functionQ.

The nonmetricity and torsion present delta singularities and jump discontinuities. How
the Bianchi identities hold in a distributional sense, see Ref. 6. In particular, alsoDTa5Rb

a

`qb holds. There are no problems on the right-hand side because the delta type singular
the curvature are multiplied by the smooth distributionsA12Q(u)u2 andA12Q(v)v2, respec-
tively.

This example shows very clear the generality of our new approach, which allows the
pretation of the resulting waves as curvature, nonmetricity and torsion shock waves.

These solutions were checked with Reduce18 with its Excalc package19 for treating exterior
differential forms20 and the Reduce-based GRG computer algebra system.21,22

VI. OUTLOOK

Examples in which space–time might become non-Riemannian above Planck energies
in string theory or in the very early universe in the inflationary model. The simplest such geo
is metric-affine geometry, in which nonmetricity appears as a field strength, side by side
curvature and torsion.23 Nowadays, there exists a revival of interest in metric–affine gra
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~MAG! theories. It has been demostrated that they contain the axi–dilatonic sector of low e
string theory24 as a special case. Moreover, the gravitational interactions involving the axion
dilaton may be derived from a geometrical action principle involving the curvature scalar w
non-Riemannian connection. In other words, the axi-dilatonic sector of the low energy
theory can be expressed in terms of a geometry with torsion and nonmetricity.25 This formulation
emphasizes the geometrical nature of the axion and dilaton fields and raises questions ab
most appropiate geometry for the discussion of physical phenomena involving these fields

It is important to mention that, on the one hand, the axion–dilaton theory comes, as men
above, from the low energy limit of string models. On the other hand, this kind of mo
represents one sector of the MAG models. Since these two models have one important s
common, we should consider the MAG models in a new perspective as an effective low e
theory towards quantum gravity.

ACKNOWLEDGMENTS

We thank Friedrich W. Hehl, Yuri N. Obukhov, and Eckehard W. Mielke for useful disc
sions and literature hints. This research was partially supported by CONACyT Grant Nos. 28
and 32138E, by the joint German-Mexican project DLR-Conacyt MXI 010/98 OTH—E130-1
and by FOMES Grant No. P/FOMES 98-35-15.

1A. Garcı́a, C. Lämmerzahl, A. Macı´as, E. W. Mielke, and J. Socorro, Phys. Rev. D57, 3457~1998!.
2K. Khan and R. Penrose, Nature~London! 229, 185 ~1971!.
3P. Szekeres, J. Math. Phys.13, 286 ~1972!.
4S. Chandrasekhar and V. Ferrari, Proc. R. Soc. London, Ser. A396, 55 ~1984!.
5S. Chandrasekhar and B. C. Xanthopoulos, Proc. R. Soc. London, Ser. A398, 223 ~1985!.
6A. H. Taub, J. Math. Phys.21, 1423~1980!.
7A. Garcı́a and A. Macı´as, ‘‘Black holes as solutions of the Einstein-Maxwell equations of Petrov type D,’’ inBlack
Holes: Theory and Observations, edited by F. W. Hehl, C. Kiefer, and R. J. K. Metzler, Lecture Notes in Physics, V
514 ~Springer Verlag, New York, 1998!, pp. 203–224.

8F. J. Ernst, A. Garcı´a, and I. Hauser, J. Math. Phys.28, 2951~1987!.
9F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Ne’eman, Phys. Rep.258, 1 ~1995!.

10Yu. N. Obukhov, E. J. Vlachynsky, W. Esser, and F. W. Hehl, Phys. Rev. D56, 7769~1997!.
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The zeros of the eigenfunctions of self-adjoint Sturm–Liouville eigenvalue prob-
lems interlace. For these problems interlacing is crucial for completeness. For the
complex Sturm–Liouville problem associated with the Schro¨dinger equation for a
non-HermitianPT-symmetric Hamiltonian, completeness and interlacing of zeros
have never been examined. This paper reports a numerical study of the Sturm–
Liouville problems for three complex potentials, the large-N limit of a 2( ix)N

potential, a quasiexactly-solvable2x4 potential, and anix3 potential. In all cases
the complex zeros of the eigenfunctions exhibit a similar pattern of interlacing and
it is conjectured that this pattern is universal. Understanding this pattern could
provide insight into whether the eigenfunctions of complex Sturm–Liouville prob-
lems form a complete set. ©2000 American Institute of Physics.
@S0022-2488~00!04309-7#

I. INTRODUCTION

The spectra of many classes of non-HermitianPT-symmetric Hamiltonians are real an
positive.1–13 It is believed that the positivity of the spectra is a consequence ofPT symmetry.
Examples of heavily studiedPT-symmetric Hamiltonians are1,2

H5p22~ ix !N ~N>2! ~1.1!

and3

H5p22x412iax31~a222b!x212i ~ab2J!x ~J integer, a214b.Kcritical!, ~1.2!

where Kcritical grows with increasingJ. For Hamiltonians like those in~1.1! and ~1.2! the
Schrödinger equations for thekth eigenfunction,

HCk~x!5EkCk~x!, ~1.3!

involve a complex potential and may requirex to be complex for the boundary conditions to b
defined properly.14 Thus, the Schro¨dinger eigenvalue problems may be regarded as analytic
tensions of Sturm–Liouville problems into the complex plane.

The eigenfunctions of a conventional self-adjoint Sturm–Liouville problem are comp
Completeness is the statement that a given function can be represented as a linear superpo
the eigenfunctions,

a!Electronic mail: cmb@howdy.wustl.edu
b!Electronic mail: stb@physics.emory.edu
c!Electronic mail: vmsavage@hbar.wustl.edu
63810022-2488/2000/41(9)/6381/7/$17.00 © 2000 American Institute of Physics
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FIG. 1. Zeros of the 14th and 15th eigenfunctions,C14(x) andC15(x), of the2( ix)N potential in the large-N limit. The
plot shows thez-plane where the turning points have all been scaled to21 and 1 as in~2.1!. The zeros lie in a small
arch-shaped region in the complex plane. For any two zeros ofC15(z), a zero ofC14(z) lies between them along the
arch-shaped region. This is a complex version of interlacing.

FIG. 2. Zeros for the first 15 eigenfunctions of the2( ix)N potential in the large-N limit. The plot shows thez-plane where
the turning points have all been scaled to21 and 1 as in~2.1!. The complex version of interlacing in Fig. 1 is again evide
in this plot, but this plot also suggests that the zeros are becoming dense in a small region in the complex-z plane.
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f ~x!5(
n

anCn~x!. ~1.4!

It is necessary for the zeros of the eigenfunctions in the complete set to become dense
interval in which the Sturm–Liouville problem is defined. If the zeros did not become den
would be impossible to represent a rapidly varying function.15,16 For conventional Sturm–
Liouville problems one can prove that the zeros of successive eigenfunctions interlace, a
interlacing of the zeros ensures that the zeros become dense.15

A major open mathematical question forPT-symmetric Hamiltonians is whether the eige
functions form a complete set. If the zeros of the eigenfunctions of complex Sturm–Liou
eigenvalue problems exhibit the property of interlacing, this provides heuristic evidence th
eigenfunctions might be complete. A proof of completeness would require that we identif
space in which they are complete, and we do not yet know how to do this. Nevertheless, if w
understand the distribution of the zeros of the eigenfunctions, we gain some insight in
question of completeness for eigenfunctions ofPT-symmetric Sturm–Liouville problems.

II. SOME EXAMPLES OF DISTRIBUTIONS OF ZEROS

We have studied three different complexPT-symmetric Hamiltonians. We find that in ever
case the qualitative features of the distribution in the complex plane of the zeros of the eige
tions are very similar. We observe a shifted interlacing of zeros. We believe that this patt
zeros is universal.

FIG. 3. Zeros for the 21 exactly solvable eigenfunctions of the quasiexactly-solvable2x4 potential in~1.2!. The zeros lie
in a small arch-shaped region in the complex-x plane and exhibit a complex version of interlacing. The zeros do
become dense in a region of the complex-x plane because the zeros lie on the Stokes’ line of the wave function~the curve
along which the wave function is oscillatory!. These curves are different for each eigenfunction; the curves move do
ward as the energy increases and there is no limiting curve.
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Example 1: Large-N limit of the2( ix)N potential. The large-N limit of a 2( ix)N potential is
exactly solvable.5 In Fig. 1 the zeros of the 14th and 15th eigenfunctions are plotted and cl
exhibit a form of interlacing in the complex plane. For convenience, we have scaled the ze
dividing by the magnitude of the turning points; we have then performed a linear transform
to fix the turning points at61. The appropriate scaling is

z5~xE21/N1 i !N/p. ~2.1!

As shown in Fig. 2, the zeros of the first 15 eigenfunctions interlace and appear to be
dense in a narrow region surrounding an arch-shaped contour in the complex plane. This c
is the Stokes’ line that joins the turning points; that is, it is the path along which the phase
WKB quantization condition is purely real~and thus the quantum-mechanical wave function
purely oscillatory!.1 ~It is interesting that this WKB path differs from the path that a class
particle follows in the complex plane as it oscillates between the turning points. The path
classical particle follows is an inverted arch-shaped contour between the same two t
points.2!

Example 2: Quasiexactly-solvable2x4 potential. Next, consider the quasiexactly-solvab
potential in~1.2! with a510 andb52. The eigenfunctions of the Schro¨dinger equation have the
form of an exponential multiplied by a polynomial. The zeros of this polynomial are eas
calculate numerically. For a givenJ the polynomials in the eigenfunctions all have the sa
degree and, as a result, all of the eigenfunctions have the same number of zeros. However
kth wave function,J2k zeros lie along the branch cut on the positive imaginary axis, and

FIG. 4. Zeros for the 21 exactly solvable eigenfunctions of the quasiexactly-solvable2x4 potential~1.2! with the mag-
nitudes of the turning points fixed. The plot shows the complex-z plane in which the magnitudes of the turning points a
fixed to unit length. In thez plane the zeros lie in a much narrower arch-shaped region than in Fig. 3. Once again, the
exhibit a complex version of interlacing, and now, we believe they become dense in a narrow region of the scaled c
plane.
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consider these zeros to be irrelevant. For values ofJ ranging from 1 to 21, the qualitative behavio
is always the same. In Fig. 3 the results forJ521 are plotted and the relevant zeros again lie alo
the WKB paths in the complex plane. In this case the zeros are not contained in as narrow a
of the complex plane as for the2( ix)N potential because the zeros have not been scaled a
Fig. 2. The zeros have an imaginary part that becomes more negative ask increases and exhibit th
complex version of interlacing.

In Fig. 4 the zeros are scaled so thatz5x/uxTPu, where uxTPu are the magnitudes of th
classical turning points.~The classical turning points are the roots of2x4120ix3196x222ix
5E.! The scaled zeros lie in a more compact region in the complex-z plane than the zeros in
Fig. 3. We believe the zeros become dense in this region. Notice that this arch-shaped re
broader than the corresponding region in Fig. 2 because the turning points do not all lie alo
same polar angle; therefore, the scaling fixes the magnitudes but not the positions of the
points. Potentials with various values ofa andb were also investigated and similar results we
obtained.

Example 3: ix3 potential. We obtain anix3 potential when we setN53 in ~1.1!. Using
Runge–Kutta techniques in the complex plane, we have plotted the level curves of the re
imaginary parts of the complex eigenfunctions. By finding the intersections of these level c
we have determined the zeros of the eigenfunctions numerically. These zeros, which are sh
Fig. 5, lie along the Stokes’ lines of the WKB approximation. Again, the zeros exhibit the com
version of interlacing. They have an imaginary part that decreases ask increases. In Fig. 6 the
zeros are scaled byz5x/uxTPu5xE21/3, which fixes the magnitudes and positions of the turn
points. This plot suggests that after the scaling the zeros become dense in the complex-z plane.
Once again, this plot suggests that the distribution of zeros in the complex plane is a un

FIG. 5. Zeros of the first six eigenfunctions of theix3 potential. These zeros lie in a small arch-shaped region in
complex plane and exhibit a complex version of interlacing. The zeros do not become dense in a region of the c
plane because, as in Fig. 3, the zeros lie on a sequence of curves that move downward with increasing energy an
well separated.
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property of complex Sturm–Liouville eigenvalue problems associated withPT-symmetric Hamil-
tonians.

III. STATEMENT OF THE CONJECTURE

From our studies we observe that the unscaled zeros of the complex eigenfunctions
become dense on a contour or in a narrow region of the complex-x plane. In particular, for theix3

potential WKB theory predicts thatEk;Ck6/5(k→`), whereC is a constant. Thus, the turnin
points behave likexTP;(2 iC)1/3k2/5(k→`) and

dxTP

dk
;

2

5
~2 iC !1/3k23/5 ~k→`!. ~3.1!

Using Richardson extrapolation we have verified that the distance between zeros along the
nary axis exhibits thisk-dependence. Consequently, the distance from the contour along whic
zeros ofC1 lie to the contour along which the zeros ofCk for largek lie is given bySk50

` k23/5

which is infinitely far away.
We have scaled the zeros by fixing the magnitudes of the turning points relative to a

length. After this scaling is performed, the zeros appear to become dense in a narrow arch-
region in the scaled complex plane. If the zeros do become dense in this narrow region and
the shifted complex version of interlacing, we conjecture that this behavior suggests th
eigenfunctions are complete in the scaled complex plane. Since we do not know what space
which to define completeness, we are unable to give a rigorous proof.

FIG. 6. Zeros for the first six eigenfunctions of theix3 potential with the turning points fixed. The plot is done in th
complex-z plane where the magnitudes of the turning points are fixed to unit length. As a result, the zeros lie in a na
arch-shaped region in the complex plane than in Fig. 5. The zeros exhibit a complex version of interlacing and we
they become dense in the scaled complex-z plane.
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This paper examines underdetermined systems of partial differential equations in
which the independent variables may be classicalc-numbers or even quantum
operators. One can view an underdetermined system as expressing the kinematic
constraints on a set of dynamical variables that generate a Lie algebra. The arbi-
trariness in the general solution reflects the freedom to specify the dynamics of
such a system. ©2000 American Institute of Physics.@S0022-2488~00!02009-0#

I. INTRODUCTION

This paper is concerned with a class of partial differential equation problems that we
underdetermined systems. For instance, in the context of Maxwell’s equations one such sy

¹3E50. ~1.1!

This is an underdetermined system consisting of three coupled partial differential equation
taining three dependent and three independent variables. The general solution to this syst

E5¹f~x,y,z!, ~1.2!

wheref is an arbitrary function of the three independent variables.
The distinguishing feature that characterizes an underdetermined system is the deg

arbitrariness in its general solution. To understand the special nature of underdetermined s
we review the notion of the general solution to a linear differential equation. Let us beg
considering ordinary differential equations. The general solution to a linearNth-order ordinary
differential equation having one independent variable and one dependent variable contN
arbitrary constants. Similarly, the general solution to a coupled system ofN first-order ordinary
differential equations inN dependent variables also containsN arbitrary constants.~We can
imagine solving such a system by eliminating all but one of the dependent variables and re
to the previous case.! Next, consider partial differential equations. The general solution of a si
Nth-order linear partial differential equation inK independent variables containsN arbitrary
functions havingK21 arguments each.1 Note that the partial differential equation acts as
constraint that reduces the arbitrariness in the dependent variable by one functional depend
is quite difficult in practice to reduce a system ofN coupled linear first-order partial differentia
equations inK independent variables to a single higher-order equation. Nevertheless, one
still expect that the system of partial differential equations acts to restrict the functional for
the solution.

a!Electronic mail: cmb@howdy.wustl.edu
b!Electronic mail: dunne@hep.phys.uconn.edu
c!Electronic mail: lrmeads@orca.st.usm.edu
63880022-2488/2000/41(9)/6388/11/$17.00 © 2000 American Institute of Physics
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An underdetermined system possesses a general solution having more than the e
degree of arbitrariness discussed above. For example, the system in Eq.~1.1! is underdetermined
because we might naively expect such a system of three coupled first-order linear partial
ential equations in three independent variables would have a general solution containingthree
arbitrary functions oftwo arguments each. Instead, as we see in Eq.~1.2!, the general solution
contains one arbitrary function ofthree arguments and is therefore far less constrained t
anticipated.

Our purpose here is to investigate large classes of underdetermined systems of partial
ential equations in which the independent variables are eitherc-numbers or quantum operator
Such equations arise in the study of Hamiltonian systems in which the Poisson brackets
commutators of the dynamical variables satisfy the relations of an algebra. The algebra in qu
could be the Heisenberg algebra of quantum mechanics, the SU~2! algebra of spin systems, a mor
exotic algebra such as E2 , or indeed a generaln-element Lie algebra. The difficult aspect o
solving a system of partial differential equations such as that in Eq.~1.1! is to know the form of
the general solution; that is, the number of arbitrary functions appearing in the general so
and the number of arguments in these functions. We will see that the underlying structure
algebra is a guide that reveals the form of the solution to this problem.

The systems of partial differential equations examined here can be interpreted as exp
the kinematical constraints on the variables of a physical system. The arbitrariness in the g
solution is then a measure of the freedom to choose the dynamics.

As a particularly simple example, consider the classical partial differential equation

]G

]p
1

]F

]q
50, ~1.3!

which one may think of as a system consisting of just one equation. The general solution

F5
]H
]p

, G52
]H
]q

, ~1.4!

whereH5H(p,q) is an arbitrary function of two variables. Of course, one may think of
simple system Eq.~1.3! as expressing the vanishing of a two-dimensional curl~in which q is
replaced by2q! and the solution in Eq.~1.4! as stating that the vector (F,G) is the gradient of the
scalar potentialH. However, we will see that it is more natural to regard the solution as expres
the physical condition that we have a Hamiltonian system whose dynamical variablesp and q
satisfy the Poisson brackets$q,p%51. The arbitrariness in the general solution is the freedom
specify the dynamics by choosing the HamiltonianH.

As a second example, consider the classical partial differential equation system

y
]G

]z
1x

]F

]z
50,

y
]F

]x
2x

]F

]y
1y

]H

]z
5G, ~1.5!

y
]G

]x
2x

]G

]y
2x

]H

]z
52F,

where the independent variables arex, y, andz, and the dependent variables areF, G, andH.
The general solution to this strange looking system is

F52y
]H
]z

,
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G5x
]H
]z

, ~1.6!

H5y
]H
]x

2x
]H
]y

.

Note that the general solution depends on a single arbitrary function of three argumeH
5H(x,y,z). The solution in Eq.~1.6! emerges very naturally as soon as one realizes that Eq.~1.5!
represents a Hamiltonian system in which the Poisson brackets of the dynamical variables
sent the Lie algebra E2.

We will show that any Hamiltonian system whosen dynamical variables belong to a Li
algebra is associated with aninfinite sequence of underdetermined partial differential equat
systems. The general solutions of these systems are always expressible in terms of a
arbitrary function ofn arguments. This arbitrary function expresses the freedom to specify
dynamics of such a physical system.

This paper is organized very simply. In Sec. II we discuss the case of a classical Hamil
system ofn dynamical variables that satisfy a general Lie algebra with arbitrary structure
stantsf i jk . Next, in Sec. III we discuss some special illustrative cases of classical Hamilto
systems for which the dynamical variables satisfy the E2, the SU~2!, and the Heisenberg algebra
In Sec. IV we examine the case of quantum Hamiltonian systems, whose dynamical variab
not commute, and make some concluding remarks.

II. GENERAL CASE OF AN ARBITRARY LIE ALGEBRA

Consider a general Hamiltonian system in which the HamiltonianH is a function of then
generatorsuk of a Lie algebra. These generators satisfy a set of commutation relations of the

@uj ,uk#5 i f jklul , ~2.1!

where f jkl are called structure constants and the indices range from 1 ton.2

The structure constants exhibit two useful properties. First, a commutator is an antisym
object, sof i jk52 f j ik . Second, because the right side of Eq.~2.1! is linear in the generators, w
can commute both sides of this equation with the generatorup and use the properties of neste
commutators to obtain the standard Jacobi identity:

f i lm f jpl1 f j lm f ipl1 f lmpf il j 50. ~2.2!

Using Hamilton’s equations of motion we can derive the evolution equations for the qua
system described by a given Hamiltonian:

d

dt
uj52 i @uj ,H# ~1< j <n!, ~2.3!

where we evaluate the right side of this equation using the commutation relations in Eq.~2.1!.
~Note that the factor ofi on the right side cancels when the indicated commutator is performe
the resulting equations of motion are real.!

In a quantum system the order of the generatorsuj in the equation of motion is crucial an
must be strictly preserved. However, we may treat the evolution equations in Eq.~2.3! classically
by simply ignoring the order of the generators on the right side once the indicated commutat
been evaluated. The resulting classical evolution equations can be expressed in terms of
brackets, which we define as follows:

$uj ,uk%5 f jklul . ~2.4!
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Next, we define the Poisson bracket of a generatorui and an arbitrary functionF of the
generators:

$ui ,F~u1 ,u2 ,...,un!%5 f i jkuk

]

]uj
F~u1 ,u2 ,...,un!. ~2.5!

If we use the Poisson bracket defined this way in place of the commutators, then the cl
system of equations

d

dt
uj5$uj ,H% ~1< j <n! ~2.6!

is precisely the quantum equations in Eq.~2.3! with all operator orderings ignored.
Let us assume that the solution to the system of evolution equations in Eq.~2.6! satisfying the

initial conditionsui(0)5Ui has a Taylor series in the time variable of the form

ui~ t !5Ui1 (
k51

`

Fi ,kt
k, ~2.7!

where the coefficient functionsFi ,k are functions of then generators att50.
The solution in Eq.~2.7! is required to satisfy the general constraint

$ui~ t !,uj~ t !%5 f i jkuk~ t !. ~2.8!

The analog of this constraint for the equivalent quantum system expresses the condition
tarity ~constancy of the equal-time commutation relations!.

Let us substitute the Taylor expansion of the solution in Eq.~2.7! into Eq. ~2.8! and collect
powers of the variablet. To zeroth order int we obtain the identity$Ui ,U j%5 f i jkUk . To first
order int we evaluate the Poisson brackets and obtain the following system of partial differ
equations:

f i lmUm

]F j ,1

]Ul
2 f j lmUm

]Fi ,1

]Ul
5 f i jkFk,1 . ~2.9!

We now change our perspective. Rather than regarding Eq.~2.9! as a consequence of th
preceding analysis, we will take this system of partial differential equations as the starting po
our discussion. We will show that this is an underdetermined system of partial differential
tions and find its general solution.

When one encounters a new partial differential equation system, one must attempt to as
the form of the general solution. Knowing the form of the general solution is crucial becau
tells one when to stop searching for new solutions. Finding the form of the general solution c
extremely difficult. A superficial analysis might go as follows: The system in Eq.~2.9! is labeled
by the pair of indices (i , j ) and it is antisymmetric in these indices. Thus it containsn(n21)/2
distinct partial differential equations. Each of these linear first-order partial differential equa
containsn dependent variables, each of these being a function ofn independent variables. Give
that each of the equations is linear one might consider an iterative process of eliminatin
dependent variables by repeated substitution and differentiation. In principle, the objective
be to reduce the system to a single linear higher-order partial differential equation in jus
dependent variable. If this could be done we would be able to specify the form of the ge
solution; namely, we could say how many arbitrary functions are present in the general so
and how many arguments there are in each of these arbitrary functions. Such a procedure m
might not work in practice depending on whether one encounters redundant or contrad
equations.
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We are going to deduce the form of the general solution to Eq.~2.9! without having to follow
the cumbersome elimination procedure described above. The general solution contains on
trary functionF of n arguments:

Fk,15 f klmUm

]

]Ul
F~U1 ,U2 ,...,Un! ~1<k<n!. ~2.10!

Thus the partial differential equation system is not a severe constraint; it does not restr
general solution to depend on arbitrary functions of fewer thann variables. Hence, we identify Eq
~2.9! as anunderdeterminedsystem.

We verify that Eq.~2.10! solves Eq.~2.9! by direct substitution. Upon substitution, the le
side of Eq.~2.9! becomes

f i lm f jpqUmS dql

]F

]Up
1Uq

]2F

]Up]Ul
D2 f j lm f ipqUmS dql

]F

]Up
1Uq

]2F

]Up]Ul
D . ~2.11!

In this expression the second-derivative terms cancel explicitly. We use the Jacobi identity
~2.2! to combine the first-derivative terms into a single term:

Uq

]F

]Ul
f i jm f mlq , ~2.12!

which can be rearranged to read

f i jmS f mlqUq

]F

]Ul
D . ~2.13!

But, the expression in Eq.~2.13! is just the right side of Eq.~2.9!. This concludes the verification
To derive the solution in Eq.~2.10! we use of the equations of motion~2.6! and the definition

of the Poisson bracket in Eq.~2.5!, to obtain

d

dt
ui5 f i lmum

]H
]ul

. ~2.14!

Next, we insert the series in Eq.~2.7! and equate coefficients of powers oft. To first order int we
have

Fi ,15 f i lmUm

]H
]Ul

~1< i<n!. ~2.15!

From this equation we immediately see that the arbitrary functionF appearing in Eq.~2.10! is the
Hamiltonian itself. Thus the difficult mathematical problem of how much arbitrariness resid
the general solution to the system Eq.~2.9! has a simple and elegant physical solution. The par
differential equation system merely expresses kinematical constraints; the arbitrary function
solution corresponds to our freedom to impose independently the dynamics of the system

Before concluding this discussion, we point out that Eq.~2.9! is actually the first of an infinite
tower of linear first-order partial differential equation systems. Thekth such system is the coef
ficient of tk in the equation obtained by substituting the expansion Eq.~2.7! into Eq. ~2.8!. In
general, thekth such system is inhomogeneous with its homogeneous part being identical in
to the system Eq.~2.9!. Therefore, the general solution of each of these systems contains
arbitrary function ofn arguments. The inhomogeneous part consists of combinations of Po
brackets between solutions of thek21 previous systems. We will examine some special case
these higher systems in the next section.
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III. ILLUSTRATIVE EXAMPLES USING THE SU „2… AND E2 ALGEBRAS

A. The E2 algebra

The Poisson brackets for this algebra are

$x,y%50, $y,z%5x, $z,x%5y, ~3.1!

where the nonzero structure constants are

f 1325 f 321521, f 3125 f 23151. ~3.2!

The partial differential equation system corresponding to Eq.~2.9! is

y
]G1

]z
1x

]F1

]z
50,

y
]F1

]x
2x

]F1

]y
1y

]H1

]z
2G150, ~3.3!

y
]G1

]x
2x

]G1

]y
2x

]H1

]z
1F150.

We have already seen in Sec. I that the general solution@see Eq.~2.10!# to this underdeter-
mined system is

F152y
]H
]z

,

G15x
]H
]z

, ~3.4!

H15y
]H
]x

2x
]H
]y

.

The system in Eq.~3.3! is the first of an infinite sequence of underdetermined partial dif
ential equation systems. To obtain these systems, we generalize the Poisson brackets Eq.~3.1! to
arbitrary functions ofx, y, andz:

$A~x,y,z!,B~x,y,z!%5Bz~xAy2yAx!1Az~yBx2xBy!. ~3.5!

Here, we are using an abbreviated notation; a subscript indicates a partial derivative with r
to that variable.

Following the procedure outlined in Sec. II, we expand to second order in powers oft and
obtain the next higher-order system:

y
]G2

]z
1x

]F2

]z
52~x21y2!HzHzz,

y
]F2

]x
2x

]F2

]y
1y

]H2

]z
2G25yHzz~2xHx22xyHxy1x2Hyy1y2Hxx2yHy!22xy2HxzHyz

1x2y~Hyz!
21y3~Hzx!

22xyHzHzx1x2HzHyz , ~3.6!
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y
]G2

]x
2x

]G2

]y
2x

]H2

]z
1F25xHzz~2xHx22xyHxy1x2Hyy1y2Hxx2yHy!12x2yHxzHyz

2x3~Hyz!
22xy2~Hzx!

22y2HzHzx1xyHzHyz .

A particular solution to this equation is

F252yHHz2
1
2 x~Hz!

21y2HzHzx2xyHzHyz ,

G25xHHz2
1
2 y~Hz!

21x2HzHyz2xyHzHzx , ~3.7!

H25yHHx2xHHy1Hz~xHx1yHy12xyHxy2x2Hyy2y2Hxx!.

Thus since the system Eq.~3.6! has the same homogeneous form as that in Eq.~3.3!, the general
solution to this underdetermined system is the sum of the general solution in Eq.~3.4! and the
particular solution in Eq.~3.7!.

B. The SU „2… algebra

The Poisson brackets for this algebra are

$x,y%5z, $y,z%5x, $z,x%5y, ~3.8!

where the nonzero structure constants are

f i jk5e i jk , ~3.9!

ande i jk is the totally antisymmetric unit tensor of rank 3.
The underdetermined partial differential equation system corresponding to that in Eq.~2.9! is

z
]F1

]x
2x

]F1

]z
1z

]G1

]y
2y

]G1

]z
2H150, ~3.10!

with cyclic permutationsx→y, y→z, z→x, andF1→G1 , G1→H1 , H1→F1 .
The general solution to this system is

F15zHy2yHz ,

G15xHz2zHx , ~3.11!

H15yHx2xHy .

If we generalize the Poisson bracket in Eq.~3.8! to functions of the variablesx, y, andz,

$A~x,y,z!,B~x,y,z!%5Ax~zBy2yBz!1Ay~xBz2zBx!1Az~yBx2xBy!, ~3.12!

we can use this formula to write down the next-order underdetermined partial differential equ
system:

z
]F2

]x
2x

]F2

]z
1z

]G2

]y
2y

]G2

]z
2H2

5~zHxy2yHxz!~zxHzy2z2Hxy2xyHzz1yzHzx1yHx!

1~zHyy2yHyz2Hz!~x2Hzz22xzHxz1z2Hxx2xHx2zHz!

1~zHyz2yHzz1Hy!~xyHxz2yzHxx2x2Hyz1xzHxy1yHz!, ~3.13!
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with cyclic permutationsx→y, y→z, z→x, F2→G2 , G2→H2 , H2→F2 .
The general solution to Eq.~3.13! is the sum of the solution to the homogeneous part and

particular solution

F25 1
2 ~zHxy2yHzx!~zHy2yHz!1 1

2 ~zHyy2yHzy2Hz!~xHz2zHx!

1 1
2 ~zHyz2yHzz1Hy!~yHx2xHy!,

G25 1
2 ~xHzx2zHxx1Hz!~zHy2yHz!1 1

2 ~xHyz2zHxy!~xHz2zHx!

1 1
2 ~xHzz2zHzx2Hx!~yHx2xHy!, ~3.14!

H25 1
2 ~yHxx2zHxy2Hy!~zHy2yHz!1 1

2 ~yHxy2xHyy1Hx!~xHz2zHx!

1 1
2 ~yHxz2xHyz!~yHx2xHy!.

C. The Heisenberg algebra

The Heisenberg algebra is a particularly simple case because the Poisson bracket$p,q%, or the
commutator@p,q#, is a c-number independent ofp and q. Suppose that we have a dynamic
system described by a HamiltonianH(p,q), which is a function of two canonical variablesp and
q. The system may be either a classical or a quantum system. In the classical case, the eq
of motion are obtained by computing the Poisson brackets:

dp

dt
5$p,H%,

~3.15!
dq

dt
5$q,H%.

In the quantum case, one simply replaces the Poisson brackets by commutators:

dp

dt
52 i @p,H#,

~3.16!
dq

dt
52 i @q,H#.

In the quantum case, we evaluate the above commutators by demanding that the operp
andq satisfy the Heisenberg algebra:

@p,q#52 i . ~3.17!

In the classical case, we may perform exactly the same calculations; however, upon finish
evaluation of the commutation relations we ignore the ordering of the variablesp and q. This
procedure is equivalent to defining the Poisson brackets as

$U~p,q!,V~p,q!%5
]U

]q

]V

]p
2

]U

]p

]V

]q
. ~3.18!

In either the classical or quantum case, these procedures define a pair of coupled diffe
equations that describe the evolution ofp(t) and q(t) in time, assuming that the initial value
p(0)5P and q(0)5Q are given. For the purposes of this paper we assume thatp(t) and q(t)
have a Taylor expansion in powers of the timet:
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p~ t !5P1 (
n51

`

tnFn~P,Q!,

~3.19!

q~ t !5Q1 (
n51

`

tnGn~P,Q!.

In the classical case one need not be concerned about the ordering of the operatorsP andQ in the
coefficient functionsFn andGn . However, in the quantum case the ordering of these operato
crucial.

The solutions in Eq.~3.19! to the evolution equations must preserve the Poisson bracket
all t in the classical case:

$P,Q%5$p~ t !,q~ t !%51. ~3.20!

In the quantum case the equal-time commutator is preserved in time:

@P,Q#5@p~ t !,q~ t !#52 i . ~3.21!

Let us examine the condition in Eq.~3.20! order by order in powers oft. The coefficient oft1

is

]F1

]P
1

]G1

]Q
50, ~3.22!

the coefficient oft2 is

]F2

]P
1

]G2

]Q
1$G1 ,F1%50, ~3.23!

the coefficient oft3 is

]F3

]P
1

]G3

]Q
1$G1 ,F2%1$G2 ,F1%50, ~3.24!

and so on.
The solution to Eq.~3.22! has already been given in Sec. I:

F15HP , G152HQ , ~3.25!

The solutions to Eqs.~3.23! and ~3.24! are

F25fP1 1
2 HQPHP2 1

2 HPPHQ ,

~3.26!
G252fQ1 1

2 HQPHQ2 1
2 HQQHP ,

wheref5f(P,Q) is an arbitrary function of its arguments, and

F35cP2 1
4 HPQQH P

2 1 1
2 HPPQHPHQ2 1

4 HPPPH Q
2 ,

~3.27!
G35cQ1 1

4 HPPQH Q
2 2 1

2 HPQQHPHQ1 1
4 HQQQH P

2 ,

wherec5c(P,Q) is another arbitrary function of its two arguments.
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IV. UNDERDETERMINED QUANTUM-DIFFERENTIAL-EQUATION SYSTEMS

One can consider the problem of solving operator differential equations as well asc-number
differential equations.3–7 The quantum-mechanical analogue of the general system of partia
ferential equations~2.9! @special cases of which are Eqs.~3.3!, ~3.10!, and~3.22!# can be written
down and solved in terms of a new kind of derivative operator. We merely define asubstitutional
Lie derivative, Li j . This operator acts on factors of terms made of generators. Its action
remove each factor of the generatoruj , one at a time, and to replace it by the operatorui while
maintaining the order of all factors. If there is no factor ofuj in the term, the result of the actio
of Li j is zero. Some examples are

L12u1u2
25u1

2u21u1u2u1 , L12u3
250. ~4.1!

The quantum analogues of commutators,~first-order! differential equations, and their solution
follow.

The substitutional derivatives satisfy the following commutation relations:

@Li j ,Lkl#5d jkLil 2d i l Lk j . ~4.2!

We also have the following commutation relations involving the generators:

@um ,B#5 i f mabLbaB, ~4.3!

whereB is an arbitrary function of the generators.
Using this notation, the quantum equation of motion takes the form

d

dt
ur52 i @ur ,H#5 f rstLtsH. ~4.4!

The quantum analogue of Eq.~2.9! ~from substituting the series solution in powers oft into
the commutation relations for the generators and equating the coefficients of the lowest po
t to zero! is

f i lmLmlF j ,12 f j lmLmlFi ,15 f i jkFk,1 . ~4.5!

The solution of Eq.~4.5! is obtained by substituting the series solution into the equation
motion and equating to zero the coefficient of the lowest power oft:

Fk,15 f klmLmlH. ~4.6!

Note carefully the order of the indices in Eq.~4.6!.
We verify the solution Eq.~4.6! as follows. Substitute Eq.~4.6! into Eq. ~4.5! to obtain

f i lm f jpqLmlLqpH2 f j lm f ipqLmlLqpH5 f i jm~ f mlqLqlH!. ~4.7!

In the second term on the left hand side of Eq.~4.9! we make a change of dummy variablesq↔m,
p↔ l . Then the left side of Eq.~4.7! becomes

f i lm f jpq@Lml ,Lqp#H5 f i lm f jpq~d lqLmp2dmpLql!H. ~4.8!

Finally, in the first term of Eq.~4.8! make the change of dummy variables,m→q, p→ l , and
l→m. The left hand side then becomes

~ f imqf j lm2 f i lm f jmq!LqlH. ~4.9!

By the Jacobi identity Eq.~2.2!, Eq. ~4.9! collapses to the right side of Eq.~4.7!. This completes
the verification.
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It would be interesting to examine the question of solving underdetermined systems of o
tor difference equations. Operator difference equations arise naturally if one attempts to
operator differential equations using finite-element methods.8–11However, one must be aware th
the general solution to an operator partial difference equation system has less freedom than
the corresponding continuum partial differential equation because the general solution must
certain operator ordering constraints.12,13We intend to discuss these issues in an upcoming pa
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Nonlinear Schro¨ dinger-type equations from multiscale
reduction of PDEs. I. Systematic derivation

F. Calogero, A. Degasperis, and Ji Xiaodaa)

Dipartimento di Fisica, Universita´ di Roma ‘‘La Sapienza,’’ P.le A.Moro 2, 00185 Roma,
Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy

~Received 25 February 2000; accepted for publication 1 June 2000!

In this article we begin a systematic investigation via multiscale expansions of
nonlinear evolution PDEs~partial differential equations!. In this first article we
restrict consideration to asingle, autonomous, but otherwise generic, PDE in 1
11 variables (space1time), of first order in time, whoselinear part isdispersive,
and to solutions dominated by asingleplane wave satisfying thelinear part of the
PDE. The expansion parameter is an, assumedly small, coefficient multiplying this
plane wave. The main~indeed, asymptotically exact! effect of the~weak! nonlin-
earity is then to cause amodulationof the amplitudeof the plane wave and of its
harmonics, which is generally described, in~appropriately defined! coarse-grained
time and space variables, by evolution equations ofnonlinear Schro¨dinger type. A
systematic analysis of such equations is presented, corresponding to various as-
sumptions on the ‘‘resonances’’ occurring for the first few harmonics. ©2000
American Institute of Physics.@S0022-2488~00!03209-6#

I. INTRODUCTION

This article is the first of a series in which we plan to treat more systematically than i
been done hitherto the technique of reduction of nonlinear partial differential equations~NLPDEs!
to equations of ‘‘nonlinear Schro¨dinger’’ ~NLS! type. This reduction is generally applicable
NLPDEs whoselinear part isdispersive. The underlying philosophy is to focus on only one, or
most a few, ‘‘carrier waves,’’ namely monochromatic wave solutions of the linear part o
NLPDE under consideration, and to investigate the nonlinear effects which, in the limit of
nonlinearity, manifest themselves as ‘‘amplitude modulations:’’ indeed it turns out that the
plitudes of the carrier waves, constant in the linear limit, get weakly modulated in the we
nonlinear regime. They are then conveniently considered functions of new ‘‘coarse-gra
space variables and of ‘‘slow’’ time variables, and satisfy, in these new ‘‘rescaled’’ varia
NLPDEs of NLS type which have some kind of ‘‘universal’’ character, inasmuch as the s
NLPDE is obtained by appying this reduction technique to quite large classes of NLPDE
systematic display and analysis of these universal NLPDEs constitute the core of this artic

This approach is important from several points of view, some of which have been know
a long time~say, three decades!, while others have been pointed out more recently~say, since a
dozen years or so!.

First, this technique is the appropriate one to use in many applicative contexts, where
the phenomenology is characterized by one, or a few, dominant dispersive waves interacti
weakly nonlinear environment.

Second, it provides a route to discover integrable systems; the trick is to start from
known integrable NLPDE, and to apply to it the reduction technique, getting thereby a NLPD
NLS type, which is then itself at least as integrable as the equation one started from. Here w
at the notion of different degrees of integrability, hierarchically ordered in terms of how ex

a!Visiting professor, on temporary leave from the Department of Mathematics, University of Science and Techno
China, Hefei, People’s Republic of China.
63990022-2488/2000/41(9)/6399/45/$17.00 © 2000 American Institute of Physics
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the technique of solution associated with the property of integrability is, so that, for inst
C-integrable NLPDEs, which can be solved via a change of variables, are ‘‘more integrable’
S-integrable NLPDEs, for whose solution the machinery of the spectral~or scattering! transform is
needed. Consistent with this notion, the reduction technique preserves integrability, sin
solution of the reduced equation cannot be ‘‘more difficult’’ than the solution of the orig
equation: indeed, the option is always available to first solve the original equation and then
the reduction to its solution, thereby getting the solution of the reduced equation~the applicability,
at least in principle, of this methodology is guaranteed by the ‘‘asymptotically exact’’ nature o
reduction technique, see later in this work!. These notions have, of course, a somewhat heur
~i.e., useful and essentially correct, but not quite precise! character: indeed the term ‘‘solution’’ is
somewhat imprecise, there being, for instance, much difference between (i ) finding the general
solution of a NLPDE, (i i ) solving an initial-value problem with given input data~possibly includ-
ing boundary conditions!, (i i i ) getting some specific solution~say, of solitary-wave type!, and so
on. Nevertheless, let us emphasize that the notion that a NLPDE obtained by reduction fr
integrable NLPDE isat least as integrableas the original NLPDE is quite robust, and, moreov
it can be generally verified by deriving the mechanism~be it an appropriate change of variables
a spectral transform! underlying the integrability of the reduced NLPDE, from that underlying
integrability of the original equation, by applying the reduction technique to the mechanism
For instance, it would have been possible~although, historically, things went otherwise! to derive
in this manner, rather than toinventby a great show of ingenuity,1 the spectral transform under
lying the integrability of the NLS equation from the spectral transform underlying the integrab
of the Korteweg–de Vries equation.2

Third, by taking advantage of the hierarchical nature of various kinds of integrability an
its preservation under reduction, as explained above, it is possible to derive simple and po
necessary conditions of integrabilityvia the reduction technique. The idea~which is not new3~b!!
is that, if by reduction a given NLPDE yields an equation that is not integrable, it cannot itse
integrable. A detailed and practical treatment of this approach is however postponed to a
quent paper.4

The reduction technique on which this article is based has a long history, whose de
survey exceeds our scope here. Suffice to mention the pioneering 1968 paper by T. Taniuti
Yajima,5 the 1974 special issue of a journal in Japan entirely devoted to this topic,6 and the books
by A. Jeffrey and T. Kawahara7 and by T. Taniuti and K. Nishihara.8 This article is a continuation
of work that originated a dozen years ago from a visit to Rome by W. Eckhaus3 and that over the
years has yielded significant insights.9,10 In addition to this line of research, whose main focus
on the nonlinear Schro¨dinger type equations which obtain at the lowest order of the multis
expansion, further work has been devoted to the derivation and properties of the equations
appear at higher orders of this expansion.11 This approach provides the appropriate tools to
dress applicative and basic issues such as the computation of inelastic effects to solitar
collisions due to nonintegrable nonlinearities, and the notion of~asymptotic! integrability of order
n.12–14

In Sec. II the notation is introduced and the main methodology is explained. In Sec. I
basic results are reported. Examples are discussed in Sec. IV. Various developments are c
to several Appendices. Section V outlines future developments.

II. NOTATION, METHODOLOGY AND BASIC ANSATZ

The starting point of our treatment is the dispersive nonlinear partial differential equati

Du5~]/]x!hF@u,ux ,uxx ,...;u* ,ux* ,uxx* ,...#. ~2.1!

Hereu[u(x,t) is the~generally complex! dependent variable, whilex andt are the~‘‘original’’ !
independent variables~x: ‘‘space,’’ t: ‘‘time’’ !.

D is a linear dispersivedifferential operator:
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D5]/]t1 iv~2 i]/]x!, ~2.2a!

v~k!5 (
m50

M

amkm, am5am* , aMÞ0. ~2.2b!

The fact that only the first time-derivative appears inD, see~2.2a!, as well as the restriction to a
dependent variableu which is ascalar ~rather than avectoror a matrix!, are limitations that we
shall lift in future publications, as well as the restriction to a single space variable. Thedispersive
character of the linear differential operatorD is entailed by thereality of the constantsam , see
~2.2b!, as well as by the assumption, hereafter always understood, thatM.1, see~2.2b!. It
corresponds to the property of thelinear differential equation

Du50 ~2.3a!

to possess the solution

u~x,t !5exp$ i@kx2v~k!t#%, ~2.3b!

or, more generally,

u~x,t !5E
2`

1`

dkû~k!exp$ i@kx2v~k!t#%, ~2.3c!

with v(k) real for real k, so that the expression~2.3b! has atime-independentmodulus, equal in
fact to unity. Associated with the~real! ‘‘circular frequency’’ v(k) is the ~also real! ‘‘group
velocity’’

v~k!5dv~k!/dk5 (
m51

M

mamkm21. ~2.4!

The operator (]/]x)h on the right-hand side of~2.1! is introduced for convenience; hereh is
a non-negative integer, and, as it will become clear in the following, the main cases req
separate attention are those withh50 andh>1. Of course the latter cases might be identified w
the former, via an appropriate redefinition of the coefficientscj 1 ,...,j s ; j s11 ,...,j m

(s,m2s) , see~2.5b! below,

characterizing the nonlinear part~right-hand-side! of ~2.1!, or via the introduction of the new
dependent variableũ(x,t) via u(x,t)5]hũ(x,t)/]xh; but it is generally~i.e., often, albeit not
necessarily always! more convenient not to do so, namely it is preferable to exploit the nota
~2.1! with the largest value ofh consistent with the specific application one has in mind. We s
return to this question below in more specific contexts, after the relevant formalisms have
introduced.

The termF on the right-hand-side of~2.1! represents the nonlinear part of the evolution PD
~2.1!, and we assume hereafter that it can be written as follows:

F@«u,«ux ,«uxx ,...;«u* ,«ux* ,«uxx* ,...#5 (
m52

`

«mF (m)@u,ux ,uxx ,...;u* ,ux* ,uxx* ,...#,

~2.5a!

where« is a ‘‘small parameter’’~which has been introduced by replacingu with «u!, andF (m) is
a homogeneous polynomialof degreem in its arguments,
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F (m)@u,ux ,uxx ,...;u* ,ux* ,uxx* ,...#

5(
s50

m

(
j 150

`

(
j 25 j 1

`

... (
j s5 j s21

`

(
j s1150

`

(
j s125 j s11

`

... (
j m5 j m21

`

cj 1 ,...,j s ; j s11 ,...,j m

(s,m2s) u( j 1)u( j 2)...u( j s)

3@u( j s11)...u( j m)#* . ~2.5b!

Here and throughout

u( j )[~]/]x! ju~x,t !, ~2.6a!

namely,

u(1)[ux , u(2)[uxx ,... . ~2.6b!

For instance, ifcj 1 , j 2 ;
(2,0) , cj 1 ; j 2

(1,1) andc; j 1 , j 2

(0,2) vanish for j 1.2 or j 2.2,

F (2)5c0,0;
(2,0)u21c0,1;

(2,0)uux1c0,2;
(2,0)uuxx1c1,1;

(2,0)ux
21c1,2;

(2,0)uxuxx1c2,2;
(2,0)uxx

2 1c0;0
(1,1)uuu21c0;1

(1,1)uux*

1c0;2
(1,1)uuxx* 1c1;0

(1,1)uxu* 1c1;1
(1,1)uuxu21c1;2

(1,1)uxuxx* 1c2;0
(1,1)uxxu* 1c2;1

(1,1)uxxux* 1c2;2
(1,1)uuxxu2

1c;0,0
(0,2)u* 21c;0,1

(0,2)u* ux* 1c;0,2
(0,2)u* uxx* 1c;1,1

(0,2)ux*
21c;1,2

(0,2)ux* uxx* 1c;2,2
(0,2)uxx*

2
. ~2.7!

We assume hereafter that the sum on the right-hand-side of~2.5! is convergent. Indeed, in
most cases of interest this sum only contains a finite number of terms, and, most importantly
of the results reported below only involve the first two terms on the right-hand-side of~2.5a!,
namely the quadraticF (2) and the cubicF (3) ~see, however, Appendix E!.

Note that a necessary and sufficient condition for~2.1! to be invariant under thegauge
transformation

u→exp~ iQ!u, ~2.8!

with Q any arbitraryreal constant, is that the coefficientscj 1 ,...,j s ; j s11 ,...,j m

(s,m2s) vanish unlessm

52s21.
Hereafter we assume the coefficientscj 1 ,...,j s ; j s11 ,...,j m

(s,m2s) to becomplex. In the special case in

which all these coefficients arereal and satisfy some obvious restrictions~see later in this work!,
and in addition all the coefficientsam with evenm vanish,a2m50, see~2.2b!, the PDE~2.1!
possessesreal solutions, characterized by the propertyu(x,t)5u* (x,t); the analysis may then b
restricted to such real solutions. Hereafter we shall refer to this restricted case as thereal case.
Clearly in this case, without loss of generality, we can assumecj 1 ,...,j s ; j s11 ,...,j m

(s,m2s) 50 unlesss

5m, and setcj 1, . . . ,j m ;
(m,0) [cj 1, . . . ,j m

(m) , of course with the additional restriction that these coefficie

be real,cj 1, . . . ,j m

(m) 5@cj 1, . . . ,j m

(m) #* . For the convenience of the reader who is only interested in

special ~but important! case, a brief outline of its characteristics is provided in Appendix
including some indication on how to extract the results which are relevant to this special c

The basicansatzon which our treatment is based reads as follows:

u~x,t !5 (
n52`

1`

«gnexp~ inz!cn~j,t!, ~2.9a!

z[kx2v~k!t, ~2.9b!

j5«p@x2Vt#, ~2.9c!

V5v~k!, ~2.9d!
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t5«qt. ~2.9e!

The sum on the right-hand-side of~2.9a! has an asymptotic character; it need not converge,
only a few terms~typically, only those withunu<2! play a role~see later in this work!. The real
constantk which enters in the definitions ofz, see~2.9b! and ~2.2b!, and ofj, see~2.9c,d! and
~2.4!, can be chosen at one’s convenience~see later in this work!. The real exponentsgn , p and
q have to be appropriately chosen, as explained and reported later, so that, in the asymp«
→0 limit, on which our entire treatment is pinned, finite, consistent and nontrivial results em
in the guise of ‘‘evolution PDEs of nonlinear Schro¨dinger type’’ for the newdependentvariables
cn(j,t), with n taking a few small~integer! values~see later in this work!; for higher values of
n the quantitiescn(j,t) are given byalgebraicexpressions in terms of the quantitiescm(j,t) of
lower order, namely withumu,unu ~see later on!. The newindependentvariables are the rescale
‘‘dilated’’ space variablej and ‘‘slow’’ time t; the quantitiesp andq that characterize, see~2.9c!
and ~2.9e!, the degree of space dilation and time slowness, which are necessary and suffic
yield finite nonlinear effectsin the limit of weak nonlinearity («→0), turn out to be always
positive, and appropriately adjusted in each case~see below!. The appropriate choice of th
exponentsgn , p andq is the least ‘‘trivially algorithmic’’ part of the calculations@except for the
standard choiceg150, which corresponds to the special role of the fundamental harm
c1(j,t), see~2.9a! and below#. The quantityv(k) in ~2.9d! is, of course, thegroup velocity~2.4!;
the identification~2.9d! of the constantV in ~2.9c! with the group velocityv(k) is essential to
obtain equations of nonlinear Schro¨dinger type~see later in this work!.

When using the basicansatz~2.9!, the possibility must be kept in mind that additional depe
dences on the small parameter« may be present, either in the choice ofk, which might conve-
niently be assigned a valuek5k01«lk1 , with k0 andk1 two real constants andl a convenient
positive exponent, or via relations such ascn(j,t)5cn

[0] (j,t)1«mncn
[1] (j,t), again with mn

some convenientpositiveexponents. Such refinements may indeed be necessary when can
tions occur and one wishes nevertheless to push ahead with the method, going beyond the
obtained by taking into account only the leading contributions. They may be introduced ind
dently of such circumstances, entailing an extension of our approach; that is, however, not p
in this article.

The strategy is now to insert theansatz~2.9! in the original evolution equation~2.1!, and to
obtain thereby nontrivial evolution equations for the quantitiescn(j,t). These are obtained b
equating first the coefficients of exp(inz) on the left- and right-hand-sides of~2.1!, by then taking
the limit «→0 ~after having made an appropriate choice for the exponentsgn , p and q! and
finally, if need be, by performing some algebraic calculations and possibly also some ‘‘cos
rescalings’’ of the dependent and independent variables, to present the results in neater fo

Let us first treat the linear part, namely the left-hand-side of~2.1!. Clearly we get

Du~x,t !5 (
n52`

1`

«gnexp~ inz!Dncn~j,t!, ~2.10!

with

Dn5«q]/]t1 i (
m50

M

«pm An
(m)~k!~2 i]/]j!m ~2.11!

and

An
(0)~k!5v~nk!2nv~k!5~12n!a01 (

m52

M

am~nm2n!km, ~2.12a!
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An
(1)~k!5v~nk!2v~k!5 (

m52

M

mam~nm2121!km21, ~2.12b!

An
(2)~k!5 (

m52

M
1

2
m~m21!am nm22km22, ~2.12c!

An
(s)~k!5

1

s!

ds

dqs v~q!uq5nk5 (
m5s

M

@m!/ ~m2s!!s! #am nm2skm2s, s>2. ~2.12d!

Here we evidenced the coefficientsAn
(s)(k) with s50,1,2, because of the special role they play

the following. Note that~2.12a! and ~2.12b! entail

A1
(0)~k!50, ~2.13a!

A1
(1)~k!50; ~2.13b!

the first of these equations,~2.13a!, is a consequence of the fact that the fundamental harm
exp(iz) @corresponding ton51, see the right-hand-side of~2.9a!# satisfies thelinear part of ~2.1!,
see~2.3a!; the second of these equations,~2.13b!, is a consequence of~2.9d!. This corresponds to
the pivotal role of the componentc1(j,t), which multiplies, on the right-hand-side of theansatz
~2.9a!, precisely the solution~2.3b! of the linear equation~2.3a!. It is indeed clear from~2.10! and
~2.11! that the value ofgn , which is determined by the requirement to match the dominant te
as«→0 of the quantities multiplying exp(inz) on the right-hand-side of~2.1! ~see below!, tends
to be smaller ifAn

(0) vanishes and even smaller if, in addition, alsoAn
(1) vanishes and so on. O

course, the smaller the value ofgn is, the larger the role the componentcn(j,t) plays in the
regime of weak nonlinearity~small «!. This qualitative notion is given quantitative substan
subsequently; but already at this stage it indicates that the different possibilities discussed
emerge from various different assumptions about the vanishing of some of the quantitiesAn

(s)(k);
a vanishing which might occur for all values ofk, as it were forstructural reasons, for instance
because some of the constantsam characterizing the original equation~2.1! vanish@see~2.2!#, or
it might happen only for some special value ofk, on which attention may then be focused. T
illustrate this point, and for future reference, we now exhibit some additional, more transp
expressions of certain coefficientsAn

(s) :

A1
(2)5

1

2 (
m52

M

m~m21!amkm22, ~2.14!

A0
(s)5as , sÞ1, ~2.15a!

A0
(1)52 (

m52

M

mamkm21, ~2.15b!

A21
(0)5v~2k!1v~k!52Fa01 (

m51

[ M /2]

a2mk2mG , ~2.16a!

A21
(1)5v~2k!2v~k!524 (

m51

[ M /2]

m a2mk2m21, ~2.16b!

A21
(2)5 (

m52

M

~21!m
1

2
m~m21!amkm22, ~2.16c!
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A62
(0)5~172!a062 (

m52

M

@~62!m2121#amkm, ~2.17a!

A62
(1)5 (

m52

M

@~62!m2121#mamkm21, ~2.17b!

A62
(2)5

1

8 (
m52

M

~62!mm~m21!amkm22. ~2.17c!

Note that in thereal case(a2m50), in addition toA1
(0)(k) and A1

(1)(k) @see~2.13!#, also
A21

(0)(k) andA21
(1)(k), as well asA0

(2s)(k) @see~2.15a!#, vanish:

A21
(0)~k!5A21

(1)~k!5A0
(2s)~k!50 ~ if a2m50!, ~2.18a!

and moreover

A2n
(s) ~k!5~2 !s11An

(s)~k! ~ if a2m50!. ~2.18b!

Let us now insert theansatz~2.9! in the nonlinear right-hand-side of~2.1!, see~2.5!, and then
equate the coefficients of the term exp(inz) on the left- and right-hand-sides of~2.1!. This yields

«gnDncn5~ ink1«p]/]j!h (
m52

m

«m21f n
(m)1O~«m!, ~2.19a!

with

f n
(m)5(

s50

m

f n
(s,m2s) , ~2.19b!

f n
(s,m2s)5 (

{ n1 ,n2 ,...,nm ;( j 51
s nj 2( j 5s11

m nj 5n}
(

$ j 1 , j 2 ,...,j m ; j i>0%
«G1pJ

• f n1 ,n2 ,...,nm

(s,m2s)( j 1 ,...,j m)cn1

( j 1) ...cns

( j s)cns11

( j s11)* ...cnm

( j m)* , ~2.19c!

G[gn1
1gn2

1...1gnm
, ~2.19d!

J[ j 11 j 21...1 j m , ~2.19e!

f n1 ,n2 ,...,nm

(s,m2s)( j 1 ,...,j m)
5 (

$0<J1<J2<...<Js ;0<Js11<Js12<...<Jm%
cJ1 ,...,Js ;Js11 ,...,Jm

(s,m2s)
•S J1

j 1
D S J2

j 2
D ...S Jm

j m
D

3~ in1k!J12 j 1...~ insk!Js2 j s~2 ins11k!Js112 j s11...~2 inmk!Jm2 j m, ~2.19f!

where of coursecn
( j )[(]/]j) jcn and

S J
j D5J!/ @ j ! ~J2 j !! # if 0< j <J,

S J
j D50 if j ,0 or j .J.
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These formulas look rather complicated, but they can be simplified by taking advantage
small parameter«. Hence, in place of~2.19c! we write

f n
(s,m2s)5 (

{ n1<n2<...<ns ;ns11<ns12<...<nm ;( j 51
s nj 2( j 5s11

m nj 5n}

«G$g~n1 ,...,ns ;ns11 ,...,nm!

3cn1
...cns

cns11
* ...cnm

* 1O~«p!%. ~2.20a!

HereG is defined by~2.19d!.
For the constantsg we get

g~n1 ,...,ns ;ns11 ,...,nm!5 (
$0< j 1< j 2<...< j s ;0< j s11< j s12<...< j m%

~ ik!J cj 1 ,...,j s ; j s11 ,...,j m

(s,m2s)

•F (
P(n1 ,...,ns)

)r51
s ~nr! j rGF (

P(ns11 ,...,nm)
)r5s11

m ~2nr! j rG .
~2.20b!

HereJ is defined by~2.19e!, and the notation(P(n1 ,...,ns)
indicates the sum over all permu

tations of the indicesn1 ,...,ns having different values.
More transparent expressions of the constantsg that play a key role in the following are

exhibited in Appendix A. In this respect, since the expression ofg in the rhs of~2.20b! is clearly
symmetric with respect ton1 ,...,ns and, separately, with respect tons11 ,...,nm , here and in the
following we adopt, for the arguments ofg, the orderingn1<...<ns andns11<...<nm .

Additional, drastic simplifications occur when further steps are taken towards impleme
the «→0 limit; indeed in this context we shall generally need to consider only the quadratic
cubic terms on the right-hand-side of~2.1!, because the contributions of all other terms@with m
.3, see~2.1! and~2.5!# turn out to be negligible~see, however, the separate treatment in App
dix E of equations which contain no quadratic terms!. Hence~2.19! can now be written, in more
explicit form, as follows:

«2p@c1t2 iA1
(2)c1jj#5~ ik!h

•$«11g0@g~0,1;!c01g~1;0!c0* #c11«11g01g21@g~0;21!c0

1g~ ;21,0!c0* #c21* 1@«11g2g~2;1!c1* 1«11g211g2g~21,2;!c21#c2

1@«11g22g~ ;22,1!c1* 1«11g211g22g~21;22!c21#c22*

1«2g~1,1;1!uc1u2c11«21g21@g~1;21,1!uc1u2c21* 1g~21,1,1;!c1
2c21#

1«212g21@g~21,1;21!uc21u2c11g~ ;21,21,1!c1* c21* 2#

1«213g21g~21;21,21!uc21u2c21* %, ~2.21a!

«g21$ iA21
(0)c211«pA21

(1)c21j1«2p@c21t2 iA21
(2)c21jj#%

5~2 ik!h
•$«11g211g0@g~21,0;!c01g~21;0!c0* #c211«11g0@g~0;1!c0

1g~ ;0,1!c0* #c1* 1@«11g22g~22,1;!c11«11g211g22g~22;21!c21* #c22

1@«11g2g~1;2!c11«11g211g2g~ ;21,2!c21* #c2* 1«2g~1;1,1!uc1u2c1*

1«21g21@g~21,1;1!uc1u2c211g~ ;21,1,1!c1*
2c21* #1«212g21

3@g~21;21,1!uc21u2c1* 1g~21,21,1;!c1c21
2 #1«213g21g~21,21;21!uc21u2c21%,

~2.21b!
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«g0$ iA0
(0)c01«pA0

(1)c0j1«2p@c0t2 iA0
(2)c0jj#%

5~]/]j!h
•«hp$«112g0@g~0,0;!c0

21g~0;0!uc0u21g~ ;0,0!c0*
2#1«g~1;1!uc1u2

1«112g21g~21;21!uc21u21«11g21@g~21,1;!c1c211g~ ;21,1!c1* c21* #

1«112g2g~2;2!uc2u21«112g22g~22;22!uc22u21«11g21g22@g~22,2;!c2c22

1g~ ;22,2!c2* c22* #%, ~2.21c!

«g2$ iA2
(0)c21«pA2

(1)c2j1«2p@c2t2 iA2
(2)c2jj#%

5~2ik!h
•$«g~1,1;!c1

21«11g21g~1;21!c1c21* 1«112g21g~ ;21,21!c21* 2

1«11g01g2@g~0,2;!c01g~2;0!c0* #c2

1«11g01g22@g~0;22!c01g~ ;22,0!c0* #c22* %, ~2.21d!

«g22$ iA22
(0)c221«pA22

(1)c22j1«2p@c22t2 iA22
(2)c22jj#%

5~22ik!h
•$«g~ ;1,1!c1*

21«11g21g~21;1!c1* c211«112g21g~21,21;!c21
2

1«11g01g2@g~0;2!c01g~ ;0,2!c0* #c2*

1«11g01g22@g~22,0;!c01g~22;0!c0* #c22%. ~2.21e!

To write these equations we did set

q52p; ~2.22!

this is suggested by the validity of both~2.13a! and ~2.13b!, namely by the structure of the
left-hand-side of~2.21a! where the terms of order 1, respectively«p, are missing because o
~2.13a!, respectively~2.13b!, hence the remaining terms are of order«q and«2p. Note that we are
making here the assumption thatA1

(2)(k) does not vanish~otherwise the most appropriate choic
could beq53p; we shall return to this point below and in Appendix D!.

These equations contain terms of different order in the small parameter«, and this requires
some explaning.

In the first place, many other terms which might have been present have been omitted b
they are of higher order in« than terms which are present. This is, for instance, the case forcubic
terms on the right-hand-side of~2.21a! involving c0 , c2 , orc22 , which are of higher order than
quadratic terms that are present. Of course this argument, and analogous ones later o
applicable only if the relevant dominant terms are indeed present, namely provided they a
absent. Note that such an absence might happen for some ‘‘accidental’’ reason~possibly only for
some special value ofk! or for a ‘‘structural’’ reason, for instance if the original equation~2.1!
contains nonlinear terms only of cubic order and higher, but no quadratic terms~indeed we briefly
treat in Appendix E the case without quadratic nonlinearity, because of its possible appli
relevance!.

The second point that must be emphasized about~2.21! is that these equations general
contain contributions of different orders in«, and only those of lowest order are relevant. T
identification of these depends of course on the assignments of specific numerical values tp ~of
coursep.0! and to the paramentersg j ~of courseg j>0,j 50,61,62!. These assignments ar
dictated by the structure of these equations~2.21!, by imposing that the dominant terms in th
«→0 limit are of the same order on the left-hand-side as in the right-hand-side~‘‘balancing
principle’’!. This sets the correct time and space scales at which nonlinear effects become r
by fixing the values ofp andq, see~2.9c! and ~2.9d!, as well as the relative importance of th
different harmonics, by fixing the values of the exponentsg j , see~2.9a!. In the context of this
treatment, assumptions must be made about the vanishing or nonvanishing of the qu
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Aj
(m)(k), m50,1,2,j 50,61,62, appearing on the left-hand-side of~2.21b!–~2.21e!; hence one

must consider many subcases, and this analysis is performed systematically in Sec. III.
reemphasize that, in this treatment which yields the results reported below~see Sec. III and
Appendix B!, the implicit assumption is also made that no nonlinear terms are missing d
‘‘accidental’’ cancellations or ‘‘structural’’ causes. Whenever this hypothesis turns out not to
the analysis leading to the assignment of the exponentsp andg j must be performed anew. Thi
analysis can be based on the equations~2.21! only if all the relevant higher order terms are alrea
present on the rhs of these equations, otherwise account of additional terms in the«-expansion is
necessary. Explicit instances of this phenomenon are exhibited by some of the examples tre
Sec. IV. Let us also emphasize that while the assignments we make for the exponentsg j are
always adjusted so that the order of the dominant term, as«→0, in the ‘‘linear part’’ of the
equation@left-hand-side of~2.21!# matches exactly the order of the dominant term in the ‘‘no
linear part’’ of the equation@right-hand-side of~2.21!#, this is not always an indispensable r
quirement for the consistency of the treatment.

Of course ifAj
(0)(k)Þ0, the terms proportional toAj

(1)(k) andAj
(2)(k) on the left-hand-side of

the corresponding equation~2.21b!–~2.21e! can be neglected~since p.0!; likewise the term
proportional toAj

(2)(k) can be neglected ifAj
(0)(k)50 and Aj

(1)(k)Þ0. If Aj
(0)(k) vanishes,

Aj
(0)(k)50, we say that thej th harmonic is ‘‘at resonance;’’ ifAj

(0)(k)5Aj
(1)(k)50, we say that

the j th harmonic is ‘‘strongly at resonance.’’ If the harmonicc j is at resonance, and even more
if it is strongly at resonance, it is likely to play a more important role@see ~2.9!#, since the
structure of~2.21b!–~2.21e! clearly entails that the corresponding value ofg j , obtained by match-
ing the dominant terms in the«→0 limit on the right- and left-hand-sides of these equations
going to be smaller. Moreover, if a harmonic isat resonance, it generally ends up satisfying a
auxiliary differential equation~with the j-derivative ofc j on the left-hand-side, and a, genera
nonlinear, combination ofck’s on the right-hand-side!, while if a harmonic isstrongly at reso-
nance, it ends up satisfying anevolution equation of (nonlinear) Schro¨dinger type@with the
time-dependent Schro¨dinger operator, rather than thej-derivative, appearing on the left-hand-sid
of course the equation satisfied byc1(j,t) is always of this type, see~2.21a!#.

As indicated by the structure of~2.21!, we have confined our analysis to the five harmon
c j (j,t) with u j u,3, and to the case in which at most bothAj

(0)(k) andAj
(1)(k) vanish simulta-

neously: we do not treat the very special, hence rather uninteresting, cases withAj
(0)(k)

5Aj
(1)(k)5Aj

(2)(k)50, nor cases in whichc j (j,t) with u j u.2 play a non-negligible role.~For
this to happen these harmonics should resonate quite strongly, or, due to cancellations, t
tributions on the right-hand-sides of~2.21! should turn out to be smaller than expected, requir
then, however, a new look at the entire treatment; see, for instance, Appendix E and some
examples in Sect. IV A.!

Finally, let us emphasize that, for thenonresonatingharmonics, the relevant equation
~2.21b!–~2.21e! become, in the«→0 limit, algebraic rather than differential, since the left-han
sides of these equations contain thenc j (j,t) multiplied by a constant, so thatc j (j,t) can then be
explicitly computed in terms of the other harmonicsck(j,t), and therefore does not appear in t
final version of the equations.

We now end this qualitative analysis of the equations~2.21!. The results that are obtained b
carrying out the«→0 limit ~after having made appropriate choices for the parametersp andg j )
are displayed and analyzed in Sec. III. But before ending this section we like to comple
discussion of the possible ambiguities associated with the presence of the differential op
raised to the non-negative integer powerh,(]/]x)h, on the right-hand-side of~2.1!.

A first observation is connected with the possibility to set simply

~]/]x!hF@u,ux ,uxx , . . . ;u* ,ux* ,uxx* , . . . #5F̄@u,ux ,uxx , . . . ;u* ,ux* ,uxx* , . . . #, ~2.23!

and then to defineF̄ by equations completely analogous to~2.5!, except for the attachment of
superimposed bar on all relevant quantities,F̄ (m) and c̄ j 1 , . . . j s ; j s11 , . . . j m

(s,m2s) . It is, however, clear

that, via this approach, some information, which does play an important role especially fo
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evaluation of the zeroth harmonics, gets obscured: in particular, the factor«hp, which is clearly
featured by the right-hand-side of~2.21c!, would not emerge automatically and explicitly in th
new formulation, but only as a result caused by certain ‘‘miraculous’’ cancellations, thems
due to the nongenericity of the constantsc̄ j 1 , . . . ,j s ; j s11 , . . . ,j m

(s,m2s) , see~2.5b!, hence as well of the

constantsḡ(n1 , . . . ,ns ;ns11 , . . . ,nm), see~2.20b!, an intrinsic nongenericity, attributable in th
context to the fact thatF̄@u,ux ,uxx , . . . ;u* ,ux* ,uxx* , . . . # is an exact differential of orderh, see
~2.23!. Since we have repeatedly warned that our entire treatment hinges on the nonoccurr
cancellations in the contributions coming from the nonlinear part of our original equation,~2.1!, it
is plain that it would be a bad idea to take as starting point of our treatment, rather than~2.1!, the
‘‘simpler’’ equation that obtains from~2.1! via ~2.23!.

The other reformulation to get rid of the operator (]/]x)h on the right-hand-side of the
evolution PDE~2.1! is via the change of dependent variable

u~x,t !5~]/]x!hũ~x,t !, ~2.24!

which clearly transforms~2.1! into

Dũ~x,t !5F̃@ ũ,ũx ,ũxx , . . . ;ũ* ,ũx* ,ũxx* . . . #, ~2.25a!

where of course

5F̃@ ũ,ũx ,ũxx , . . . ;ũ* ,ũx* ,ũxx* , . . . #

5F@ ũ(h),ũ(h11),ũ(h12), . . . ;ũ(h)* ,ũ(h11)* ,ũ(h12)* , . . . #. ~2.25b!

It is now clear from this formula thatF̃ lacks genericity, since it contains neither term
ũ( l )(x,t)[] l ũ(x,t)/]xl nor @ ũ( l )(x,t)#* [@] l ũ(x,t)/]xl #* with l 50,1,. . . ,h21. Hence it is
again inadvisable to take~2.25a! as a starting point of our treatment. Indeed it is easily seen t
in self-evident notation,~2.24! entails the relations

cn~j,t!5~ ink1«p]/]j!hc̃n~j,t!, ~2.26a!

namely

cn~j,t!5~ ink!hc̃n~j,t!, nÞ0, ~2.26b!

c0~j,t!5«hpc̃0
(h)~j,t!, ~2.26c!

where of coursec̃0
(h)(j,t)5(]/]j)hc̃0(j,t), as well as

gn5g̃n , nÞ0, ~2.27a!

g05g̃01ph. ~2.27b!

The nongenericity ofF̃ @see~2.25b!# would entail, again in self-evident notation@see~2.5b!#,

c̃ j 1 , . . . ,j s ; j s11 , . . . ,j m

(s,m2s) 50, ~2.28!

if any one of the indicesj 1 , . . . ,j m takes a value less thanh, j l,h, and likewise@see~2.20b!#

g̃~n1 , . . . ,ns ;ns11 , . . . ,nm!50 ~2.29!
                                                                                                                



linear

6410 J. Math. Phys., Vol. 41, No. 9, September 2000 Calogero, Degasperis, and Ji Xiaoda

                    
if any one of the indicesn1 , . . . ,nm vanishes. Finally, the new treatment based on~2.25a! would
require going beyond the approximation~2.20a! to include also terms of typec̃0

(h) @see~2.26c!#.
Again, one would, in the end, obtain exactly the same final result, as entailed by~2.26!, but via
more cumbersome computations.

III. BASIC RESULTS

Our basic finding can be presented synthetically as a set of five coupled PDEs ‘‘of non
Schrödinger type’’ for the five dependent variablescn(j,t), n50,61,62:

ic1t1A1
(2)c1jj5 i~ ik!h

•$d1~0,1!@g~0,1;!c01g~1;0!c0* #c11d1~0,21!@g~0;21!c0

1g~ ;21,0!c0* #c21* 1@d1~1,2!g~2;1!c1* 1d1~21,2!g~21,2;!c21#c2

1@d1~1,22!g~ ;22,1!c1* 1d1~21,22!g~21;22!c21#c22*

1d1~1,1,1!G~1,1;1!uc1u2c11d1~21,61,61!@G~21,1;21!uc21u2c1

1G~1;21,1!uc1u2c21* 1G~21;21,21!uc21u2c21* 1G~21,1,1;!c1
2c21

1G~ ;21,21,1!c1* c21* 2#%, ~3.1a!

D21
(2)@ ic21t1A21

(2)c21jj#5 iD21
(2)~2 ik!h

•$d21~0,21!@g~21,0;!c01g~21;0!c0* #c21

1d21~0,1!@g~0;1!c01g~ ;0,1!c0* #c1* 1@d21~1,22!g~22,1;!c1

1d21~21,22!g~22;21!c21* #c221@d21~1,2!g~1;2!c1

1d21~21,2!g~ ;21,2!c21* #c2* 1d21~1,1,1!G~1;1,1!uc1u2c1*

1d21~21,61,61!@G~21,1;1!uc1u2c21

1G~21,21;21!uc21u2c211G~21;21,1!uc21u2c1*

1G~21,21,1;!c1c21
2 1G~ ;21,1,1!c1*

2c21* #%, ~3.1b!

D0
(1)A0

(1)c0j1D0
(2)@ ic0t1A0

(2)c0jj#5@D0
(1)1 iD0

(2)#~]/]j!h
•$d0~0,0!@g~0,0;!c0

21g~0;0!uc0u2

1g~ ;0,0!c0*
2#1d0~1,1!g~1;1!uc1u21d0~21,61!

3@g~21;21!uc21u21g~21,1;!c1c21

1g~ ;21,1!c1* c21* #1d0~2,2!g~2;2!uc2u2

1d0~22,22!g~22;22!uc22u21gd0~2,22!

3@g~22,2;!c2c221g~ ;22,2!c2* c22* #%, ~3.1c!

D2
(1)A2

(1)c2j1D2
(2)@ ic2t1A2

(2)c2jj#5@D2
(1)1 iD2

(2)#~2ik!h
•$d2~1,1!g~1,1;!c1

21d2~21,61!

3@g~1;21!c11g~ ;21,21!c21* #c21* 1d2~0,2!

3@g~0,2;!c01g~2;0!c0* #c21d2~0,22!@g~0;22!c0

1g~ ;22,0!c0* #c22* %, ~3.1d!

D22
(1)A22

(1)c22j1D22
(2)@ ic22t1A22

(2)c22jj#5@D22
(1)1 iD22

(2)#~22ik!h
•$d22~1,1!g~ ;1,1!c1*

2

1d22~21,61!@g~21;1!c1* 1g~21,21;!c21#c21

1d22~0,2!@g~0;2!c01g~ ;0,2!c0* #c2* 1d22~0,22!
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3@g~22,0;!c01g~22;0!c0* #c22%. ~3.1e!

These equations, as written here, comprise many subcases, several of which deserve
analysis~see later in this work!. But the reader should first pause and understand the structu
the above equations, on the basis of the following explanations.

The notationcnt , of course, stands for]cn /]t, and analogouslycnj[]cn /]j and so on.
The arguments~independent variables! j,t of the dependent variablescn[cn(j,t) are omit-

ted.
All other quantities besides the dependent variablescn are constant, namely they are ind

pendent ofj andt. The quantitiesA, g andG depend, of course, on thereal parameterk ~see later
on!; their dependence onk is omitted here, as well as often above and below, for notatio
simplicity.

The real quantitiesAn
(s)[An

(s)(k) are defined~only! in terms of thereal quantitiesam that
characterize thelinear part of the basic PDE~2.1! @see~2.2!#, via ~2.12! and, more transparently
~2.14!–~2.18!. The vanishing or nonvanishing of some of these quantities is the key eleme
determine the actual structure of~3.1!, as indicated above and explained below. As discusse
Sec. II@before~2.14!#, the vanishing may be a structural consequence~valid for any value ofk! of
the basic equation~2.1! under consideration, or it may only hold for some special value ofk.

In writing ~3.1! we implicitly assume that there holds the condition

A1
(2)~k!Þ0. ~3.2!

The validity of~3.1! is actually not subject to the validity of this condition; but ifA1
(2)(k) vanishes,

~3.1a! ceases to be a PDE@it becomes an ordinary differential equation~ODE!#. Moreover, in such
a case a different rescaling of the independent variables@typically characterized byq53p rather
thanq52p; see~2.9c!, ~2.9e! and below# becomes possible and indeed appropriate, leading
different class of nonlinear PDEs in place of~3.1!. We relegate a sketchy treatment of this case
Appendix D.

The exponenth on the right-hand-side of~3.1! is, of course, the same as that on the rig
hand-side of~2.1!.

The quantitiesDn
(s) anddn(n1 ,n2) are eitherzeroor unity; their values characterize the actu

structure of~3.1!, which, as discussed later, may turn out to be much simplified thanks to
vanishing of many of these parameters.

The value of these parameters is determined by the vanishing or nonvanishing of the q
tiesAn

(s)(k), and possibly also by the values ofh, and it is detailed in Table I, whose notation w
now explain.

Let us begin by emphasizing that the position in which the entries appear inside a box h
relevance; we trust the significance of the partition into columns and~possibly multiply divided!
rows to be self-evident~albeit requiring attentive scrutiny!.

Let us now proceed and describe, one by one, the significance of the various columns in
I. The entries which appear in the column labeledA ~whose division in two halves is merely fo
notational convenience, to avoid repetition of the quantitiesAn

(s) that appear on the left-hand hal!
identify the quantitiesAn

(s)(k) thatdo vanish; when such a quantity appears inside a curly brac
$An

(s)%, it means that its vanishing or not vanishing does not influence the type of PDE~3.1! that
obtains~namely, the corresponding entries in the columns labeledD,d and Equation no.!, but it
does affect the choice of the corresponding exponentgn ~the two choices ofgn are then given
inside a curly bracket in the appropriate column, see below: the first, larger, value correspo
An

(s)Þ0, the second, smaller, value toAn
(s)50!. The notationA6n

(s) indicates that eitherAn
(s) or A2n

(s)

vanishes; correspondingly the upper or lower sign must be selected for the corresponding
which are labeled by a6 index in the subsequent columns. In these cases the corresponding
of the canonical PDEs of Schro¨dinger type, as reported in Appendix B, come in two forms, o
characterized by the presence of the harmonic~s! cn ~displayed in Appendix B! and another one
which obtains~in complex conjugate version! via the systematic replacement ofcn with c2n* .
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This second equation is denoted by an asterisk in the last column of Table I, and is not dis
in Appendix B. Of course a blank in the columns labeledA means no condition, while the propert
A1

(0)(k)5A1
(1)(k)50 always holds.

The next column labels by a sequential number the lines of Table I; this is useful for f
reference~see later in this work!.

The entries under the headingh identify restrictions, if any, on the~integer! values of this
parameter@see~2.1!#.

The entries under the headingp provide the appropriate assignment of this quantity, wh
sets the scale of the new independent variablesj,t relative to the original variablesx,t @see~2.9c!
and ~2.9e!; here alwaysq52p#.

The entries under the headingg provide the appropriate assignment only for those expon
gn ,n50,21,62, on the right-hand-side of~2.9a!, which play a significant role in the derivation o
the final equations; anyway, unless otherwise indicated in Table I, the appropriate assignm
g2 andg22 is unity, g6251. As for the exponentsgn with unu.2, it has been checked in ever
case that their assignments are consistent with the reported results, of course under the ass
as already emphasized above, that the nonlinear part of the original equation isgeneric.

The entries in the columns labeledD and d identify which ones of these quantities@whose
values play a key role in determining the actual structure of the equations~3.1!# haveunit value
~all those not reportedvanish!.

Finally, in the last column, the reader finds the address of the relevant equation in App
B corresponding to the case under consideration, written in ‘‘canonical form.’’ Of course
‘‘canonical’’ form of the nonlinear equations, as written in Appendix B, is applicable only if
relevantcoefficientsg andG, see the right-hand-sides of~3.1!, do not vanish for ‘‘accidental’’ or
‘‘structural’’ reasons.

The entries in Table I are ordered on the basis of two criteria: In the first place, the num
conditions on the quantitiesAn

(s) : less conditions have priority. Note that each condition requ
a quantityAn

(s)(k) to vanish: it may entail a restriction on the choice of the parameterk and/or on
the coefficients characterizing thelinear part of the original equation~2.1! @see~2.11!–~2.18!#. But
in some cases such restrictions are automatically enforced by the structure of the original eq
for instance, in thereal caseA21

(0)5A21
(1)5A0

(0)50, @see~2.18a!#. Let us recall that the vanishing o
An

(0) can be interpreted as a ‘‘resonance condition,’’ entailing a more important role fo
amplitudecn(j,t) of the corresponding harmonic@see~2.9a!#, as reflected by a smaller value o
the corresponding parametergn , an effect which is enhanced if not onlyAn

(0) vanishes, butAn
(1) as

well ~‘‘strong resonance condition’’!.
A secondary criterion relevant to order the entries in Table I emerges from the follo

‘‘pecking order’’ we always adopt for the harmonics: 1,21,0,2,22.
The effort to compactify the information contained in Table I has, however, resulted i

organization of the data that may entail some difficulty in their retrieval. Hence we also prese
Table II, a clear taxonographic ordering of the resonance status of the 4 harmonics21,0,2,22
with the corresponding line addresses in Table I: the symbols2,* ,** in the first four columns of
Table II indicate respectively no resonance, a simple resonance, a strong resonance in th
sponding harmonic~which identifies the four columns!, while the last column identifies the num
ber~s! of the line~s! of Table I where the relevant information is contained.

Note that the type of equations obtained is primarily determined by the coefficientsam ap-
pearing in thelinear part of the original equation~2.1!, and possibly, as explained earlier, by th
choice of the value of the parameterk, inasmuch as these data cause the vanishing or nonva
ing of the~relevant! quantitiesAn

(s)(k). It is instead largely independent of the nonlinear part of
equation; recall that, as already emphasized, we assume that none of the terms that might
ute is in fact missing, due to ‘‘structural’’ reasons~see, for instance, Appendix E! or because the
coefficient multiplying it turns out to vanish. The nonlinear part of the equation determine
course, the values of the coefficientsg @see the right-hand-sides of~3.1!#; their explicit expressions
are displayed in Appendix A, in terms of the coefficientscj 1, . . . ,j s ; j s11, . . . ,j m

(s,m2s) that characterize the

nonlinear part of the original equation~2.1! @see~2.5! and ~2.7!#. As for the coefficientsG that
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multiply the cubic terms on the right-hand-sides of~3.1a! and ~3.1b!, they depend on the param
eters of both the nonlinear and linear parts of the original equation~2.1!; the latter dependenc
enters generally via an equation for whichAn

(0) does not vanish, so that the correspondingcn can
be explicitly evaluated by solving the corresponding equation~2.21!, which in such a case, in th
«→0 limit, becomesalgebraic rather than differential; an analogous phenomenon also hap
for c0 even if A0

(0) vanishes, providedA0
(1) does not vanish andh>1, as clearly implied by the

structure of~2.21c!. The calculation of the relevant coefficientsG is an easy task, starting from
~2.21! and using Table I; they are reported below only for some examples~see Sec. IV!, since their
display in the general case would require too much space due to the large multiplicity of cas
need separate consideration.

This ends our discussion of~3.1!. Special cases are discussed in Sec. IV.

IV. EXAMPLES

In this section we illustrate the results reported and discussed in the preceding sect
exhibiting several relevant examples.

First, in Sec. IV A, we discuss the case of integrable equations. Namely, we take as s
point, see~2.1!, various integrable nonlinear PDEs, and we exhibit the results yielded by
application of this approach. Of course the equations arrived at in this manner are them
integrable.

Second, in Sec. IV B, we exhibit prototypical examples of nonlinear evolution PDEs of
~2.1!, which yield the various reduced equations identified in Sec. III. Moreover, at the end o
IV B, we discuss briefly a few examples in which the final results of this article, as exhibite

TABLE II. A guide to Table I: From the weakly~* ! or strongly~** ! resonant harmonics to the revelant rows of Table
For additional explanations see the text.

Resonant
harmonics

Row~s! of Table I

Resonant
harmonics

Row~s! of Table I

Resonant
harmonics

Row~s! of Table21 0 2 22 21 0 2 22 21 0 2 22

— — — — 1 * — — — 1 ** — — — 4
— — — * 11 * — — * 11 ** — — * 20
— — — ** 14 * — — ** 14 ** — — ** 23
— — * — 11 * — * — 11 ** — * — 20
— — * * 28 * — * * 28 ** — * * 36
— — * ** 14 * — * ** 14 ** — * ** 23
— — ** — 14 * — ** — 14 ** — ** — 23
— — ** * 14 * — ** * 14 ** — ** * 23
— — ** ** 31 * — ** ** 31 ** — ** ** 39
— * — — 2,7 * * — — 2,7 ** * — — 5,16
— * — * 12,25 * * — * 12,25 ** * — * 21,33
— * — ** 14 * * — ** 14 ** * — ** 23
— * * — 12,25 * * * — 12,25 ** * * — 21,33
— * * * 29,41 * * * * 29,41 ** * * * 37,44
— * * ** 14 * * * ** 14 ** * * ** 23
— * ** — 14 * * ** — 14 ** * ** — 23
— * ** * 14 * * ** * 14 ** * ** * 23
— * ** ** 31 * * ** ** 31 ** * ** ** 39
— ** — — 3,8,9,10 * ** — — 3,8,9,10 ** ** — — 6,17,18,19
— ** — * 8,13,26 * ** — * 8,13,26 ** ** — * 17,22,34
— ** — ** 15,27 * ** — ** 15,27 ** ** — ** 24,35
— ** * — 8,13,26 * ** * — 8,13,26 ** ** * — 17,22,34
— ** * * 8,30,42 * ** * * 8,30,42 ** ** * * 17,38,45
— ** * ** 15,27 * ** * ** 15,27 ** ** * ** 24,35
— ** ** — 15,27 * ** ** — 15,27 ** ** ** — 24,35
— ** ** * 15,27 * ** ** * 15,27 ** ** ** * 24,35
— ** ** ** 32,43 * ** ** ** 32,43 ** ** ** ** 40,46
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Table I and in the Appendices B and C, are not directly applicable, because the nonlinear p
the relevant equations are not ‘‘sufficiently generic,’’ namely because some relevant contrib
are missing from the nonlinear part of the equation. We advise the reader to devote some a
to these examples, as a warning to avoid uncritical applications of our findings which might
misleading conclusions. Of course, a rich collection of ‘‘nongeneric’’ behaviors, resulting in tr
cancellations, is also exhibited by the results reported in Sec. IV A.

Thirdy, and most importantly, in Sec. IV C we discuss in some detail the more intere
equations of nonlinear Schro¨dinger type yielded by the approach used in this article, as liste
Appendix B, several of which can be recast in a neater, ‘‘canonical,’’ form. We also review
is now known about their integrability. Some of these results are indeed instrumental to
necessary conditions for the integrability of nonlinear PDEs.4

A. Integrable PDEs

In this section, we discuss the application of our approach to~certain classes of! integrable
evolution PDEs. These special examples can, of course, only yieldintegrableequations; in fact, as
we see below, more often than not they yieldlinear evolution PDEs. Hence, the equations o
tained in this manner, while of course belonging to the classes of PDEs we have identifie~see
Appendices B and C!, correspond often only to the linear part of those equations, the nonli
part having dropped out due to the vanishing by ‘‘miraculous’’ cancellations of the nume
coefficients multiplying them. The results reported below are interesting inasmuch as they
onstrate this phenomenon. They are sometimes based on rather cumbersome computatio

The first class of evolution PDEs we consider is the following ‘‘Burgers’’ class ofreal
C-integrablePDEs, which corresponds to~2.1! with

h51, ~4.1a!

and to~2.2! with

M52N11, a2m50, ~4.1b!

and with

F~u,ux ,uxx , . . . !5 (
n51

N

~2 !na2n11$~]/]x!2n2@~]/]x!1u#2n%u. ~4.1c!

HereN is an arbitrary positive integer, and theN real arbitrary constantsa2n11 in ~4.1c! are the
same coefficients which featured in~2.2! with ~4.1b!.

The first (N51) equation of this class reads

ut1a1ux2a3uxxx5a3~3uux1u3!x . ~4.2!

The ‘‘preceding’’ one, which corresponds toN5 1
2 hence is not included in our class~because it

is not real!, reads

ut1a1ux2 ia2uxx5 ia2~u2!x , ~4.3!

and fora150,a252 i it becomes the~real, but not dispersive! Burgers equation

ut2uxx52uux . ~4.4!

This justifies our attribution of the ‘‘Burgers’’ label to this class,~4.1!, of ~C-integrable! real
PDEs.

TheC-integrabilityof this class of nonlinear evolution PDEs,~2.1! with ~4.1!, is demonstrated
by the change of dependent variable
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v~x,t !5expF Ex

dx8u~x8,t !G , ~4.5a!

u~x,t !5vx~x,t !/v~x,t !, ~4.5b!

which transforms thenonlinearPDE ~2.1! with ~4.1!, satisfied byu(x,t), into the linear PDE

Dv~x,t !50, ~4.5c!

satisfied byv(x,t). Here the differential operatorD is, of course, again defined by~2.2! with
~4.1b!.

The application of the methodology of Secs. II and III to~2.1! with ~4.1! leads to, after some
cumbersome if straightforward computations, the following three equations:

«2p@c1t2 iA1
(2)c1jj#5«11g0A0

(1)c0c12«11g2@1/~2k!#A2
(0)c1* c21«2@ i/ ~2k2!#A2

(0)uc1u2c1 ,
~4.6a!

A0
(1)c0j1«pc0t50, ~4.6b!

«g2$ iA2
(0)c21«pA2

(1)c2j1«2p@c2t2 iA2
(2)c2jj#%52«~1/k!A2

(0)c1
21«11g01g2@A0

(1)2A2
(1)#c0c2 ,

~4.6c!

which clearly correspond to~C9! with ~4.1a! and

g~0,0;!5g~21,1;!5g~22,2;!50, ~4.7a!

g~0,1;!52~ i/k!A0
(1) , ~4.7b!

g~21,2;!5g~1,1;!5@ i/ ~2k2!#A2
(0) , ~4.7c!

g~21,1,1;!5@1/~2k3!#A2
(0) , ~4.7d!

g~0,2;!5@1/~2ik!#@A0
(1)2A2

(1)#. ~4.7e!

Here the five quantitiesA1
(2)(k),A0

(1)(k),A2
(0)(k),A2

(1)(k) andA2
(2)(k), which characterize both the

linear and nonlinear parts of these equations, are of course defined by~2.12! in terms of the
parameterk and of the coefficientsa2m11 @see~4.1b!#; but, in view of the arbitrariness of these
we can also consider it our privilege to chose arbitrarily the five quant
A1

(2) , A0
(1) , A2

(0) , A2
(1) , A2

(2) , and to then make appropriate assignments for the quantitiesg0 andg2

before taking the«→0 limit. In this manner one can obtain results that correspond to var
entries of Table I; but while such choices allow a certain freedom in determining the linear p
~4.6!, hence the relevant lines of Table I one is selecting, there remains then no freedom
respect to the nonlinear part of these equations.

Indeed it is immediately seen that, if the quantityA2
(0) does not vanish, ~4.6c! entails

g251, c25~ i/k!c1
2 , ~4.8!

but then insertion of these determinations in~4.6a! causes the last two terms on the right-hand-s
of this equation to cancel each other. One is then left with a linear~trivial! equation forc0 ~whose
form depends on whetherA0

(1) does, or does not, vanish!, and then with a linear equation forc1 .
On the other hand, ifA2

(0) does vanish, then the last two terms on the right-hand-side of~4.6a!
disappear, and one is again left only with linear equations. An analogous argument also ho
the ~Schrödinger-like! equation satisfied byc2 , if both A2

(0) andA2
(1) vanish.

In conclusion we see that, starting from the C-integrable Burgers class, in the context
analysis such as the one performed herein, one is only led to linear PDEs. It is indeed plaus
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presume that, of the ten equations~C10!–~C19!, none isC-integrable, hence none of them can b
obtained starting from aC-integrableequation. To obtainC-integrable nonlinear evolution equa
tions via a multiple-scale expansion technique the treatment must be extended beyond tha
herein, to take account of the possible existence of cancellations: such an analysis, which
for instance, the Eckhaus equation,3,9,10 is, however, beyond the scope of our presentation in
article.

The diligent reader will however, find it of some interest to trace in detail how the resul
this article, and in particular the data of Table I, apply in the context of the class of equatio
have just discussed.

The next example we consider is the ‘‘KdV–mKdV’’ class of S-integrable PDEs. They
defined as follows:

ut1n~L!ux50, ~4.9!

with

v~k!5kn~2k2!, ~4.10a!

andv(k) defined by~2.2b!, entailing

n~z!5 (
m50

N

~2 !ma2m11zm ~4.10b!

with M52N11, and with

L5]2/]x212b~2u1uxI !14c~u21uxIu !, ~4.11a!

whereb andc are 2 arbitrary~real! constants andI is the inverse of the differential operator, sa

I f ~x!5E
2`

x

dy f~y! ~4.11b!

for the class of functionsf (x) that vanish, sufficiently fast, asx→2`, to which attention, for
simplicity, can be restricted hereafter.

It is easily seen that this class of real evolution equations,~4.9!, belongs to the class o
dispersive PDEs~2.1! with ~2.2!, ~4.1a! and ~2.5!. The first nontrivial (N51) instance of these
equations reads

ut1a1ux2a3uxxx56a3~buux1cu2ux!, ~4.12!

hence it reduces to the Korteweg–de Vries~KdV! equation if c50 and to the modified
Korteweg–de Vries~mKdV! equation ifb50 ~hereafter we assume thatb does not vanish,b
Þ0; otherwise one is confronted with equations whose nonlinearities are at least cubic,
require a separate treatment, see Appendix E!.

It is moreover well known that all the equations of this class,~4.9!–~4.11!, are S-integrable.
We will not elaborate on this point any further here, except to note that this entails that a
nonlinear Schro¨dinger-type equations obtained by multiscale reductions from these equations
themselves be as well S-integrable. We indeed found~see later in this work! that, up to simple
transformations,all the nonlinear equations obtainable in this manner reduce to the stan
nonlinear Schro¨dinger equation~B3! ~with real l!.

Note that, as for the Burgers class considered earlier, this KdV–mKdV class,~4.9!–~4.11!,
features anarbitrary linear part@except for the two restrictions to bedispersiveandreal, entailing
a2n50, see~2.2b!#, while the nonlinear part, namely the right-hand-side of~2.1! @which in this
case is again characterized by~4.1a!#, is completely determined by the linear part, and by the t
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constantsb andc @see for instance,~4.12!#. Accordingly, application of the multiscale expansio
technique, as described above, leads, of course, to the fundamental equations~2.21!, or rather,
since we are in thereal case, to ~C9!, with the following expressions~obtained via quite cumber
some computations! of the quantitiesg(n1 ,n2 ;) andg(n1 ,n2 ,n3 ;) appearing in them, in terms o
the quantities that characterize the linear part of the original PDEs, see~2.2!, indeed~as, not
surprisingly, it happens! in terms of~some of! the quantitiesAn

(m)(k) @see~2.11! and ~2.12!#:

g~0,1;!522bk22A0
(1) , ~4.13a!

g~21,2;!5bk23A2
(0) , ~4.13b!

g~21,1,1;!52ck21A1
(2)2b2~2k23A1

(2)14k24A0
(1)1k25A2

(0)!, ~4.13c!

g~0,0;!53bA0
(3) , ~4.13d!

g~21,1;!522bk22A0
(1)5g~0,1;!, ~4.13e!

g~22,2;!5~ 1
2!bk22~A2

(1)2A0
(1)!, ~4.13f!

g~1,1;!5~ 1
2!bk23A2

(0)5~ 1
2!g~21,2;!, ~4.13g!

g~0,2;!5~ 1
2!bk22~A2

(1)2A0
(1)!5g~22,2;!. ~4.13h!

Note that here~and later on as well! we have, for notational simplicity, omitted to indicate th
dependence of these quantities on the parameterk.

It is now easy, but also quite instructive in order to illustrate certain tricky aspects o
approach, to apply the results reported earlier, by focusing on various choices of the paramk
and of the constansan which cause some of the quantitiesAn

(m)(k) to vanish, allowing us to
explore thereby various instances considered in Table I.

But first we consider the completely generic case, characterized by the condition that n
the relevant quantitiesAn

(m)(k) vanish, in particular,

A1
(2)Þ0, A0

(1)Þ0, A2
(0)Þ0. ~4.14a!

Then, as suggested by Table I@recall that our consideration is restricted to thereal case, entailing
A21

(0)(k)5A21
(1)(k)5A0

(0)(k)50, see~2.18!, as well as~C3!, with h51#, we make the standard
assignment~line 5 of Table I!

p51, g051, g251, ~4.14b!

and we then get

ict1A1
(2)cjj5hucu2c, ~4.14c!

h52@~b/k!22c#A1
(2) . ~4.14d!

Here, and later in this section, we use the notational simplificationc1[c. Clearly, these
equations,~4.14c! and~4.14d!, yield the standard nonlinear Schro¨dinger equation, namely~C10!.

Next, let us consider the case characterized by the condition~‘‘second harmonic at reso
nance’’!

A2
(0)~k!50. ~4.15a!
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Hereafter, whenever considering the various cases identified by the vanishing of certain qu
An

(m)(k), we always understand that all other quantitiesAn
(m)(k), namely all those not identified a

vanishing, have generic, and in particular nonvanishing, values.
According to Table I~see the line 37! we now set

p5 2
3, g051, g25 1

3, ~4.15b!

and we accordingly get

ict1A1
(2)cjj52kg~21,2;!c2c* , ~4.15c!

A2
(1)c2j52ikg~1,1;!c2, ~4.15d!

which, up to cosmetic rescalings, we identify as~C12!. However, now~4.15a! together with
~4.13b! entails that the right-hand-side of~4.15c! vanishes, so that this equation becomes simp
the ~certainly integrable!! linear Schrödinger equation. Moreover, via the same mechanism,
right-hand-side of~4.15d! also vanishes@see~4.15a! and ~4.13g!#.

In the context of our treatment the vanishing of the right-hand-side of~4.15c! @as well as
~4.15d!# might be seen as a ‘‘miracle.’’ Of course, it originates from the special,integrable,
character of the nonlinear equation we used as the starting point of the analysis.

The natural interpretation of this result is that, due to a cancellation, the dominant term
small « expansion of the nonlinear contribution does not match up to the linear term. He
different ~larger! assignment becomes appropriate for the exponentp which characterizes the
coarse-grainedness of the space and time scales of the amplitude modulations. In this case
appropriate assignment is just that used in the generic case treated earlier@see~4.14b!#, and it then
yields again~4.14c! and~4.14d!. Note, however, that, while this conclusion is easy to reach on
basis of the results reported earlier@see~4.13!#, it requires in addition a careful check that none
the contributions that had been neglected in writing~C9! now become relevant: see the discuss
after ~2.21!, and also later in this work.

The next case we consider is characterized by the vanishing of bothA2
(0)(k) and A2

(1)(k)
~‘‘second harmonic strongly at resonance’’!,

A2
(0)~k!5A2

(1)~k!50. ~4.16a!

The assignments suggested in this case~see line 39 of Table I! are

p5 1
2, g051, g250, ~4.16b!

and this leads to

ict1A1
(2)cjj52kg~21,2;!c* c2 , ~4.16c!

ic2t1A2
(2)c2jj522kg~1,1;!c2, ~4.16d!

which look like a nonlinearly coupled pair of Schro¨dinger equations, were it not for the fact th
the right-hand-sides of both these equations@see~C18!, ~4.16c! and ~4.16d!# vanish@see~4.13b!
and ~4.13g! with ~4.16a!#. We are therefore again left with a pair of~decoupled! linear Schrö-
dinger equations.

One can then try to proceed further, as explained earlier. It turns out that a new,
consistent, assignment of parameters, of course with a larger value ofp ~an assignment which
however, underplays the role of the second harmonic in spite of its being strongly at reson!,
is p51,g051,g251; it yields again the nonlinear Schro¨dinger equations~4.14c! and~4.14d! for
the leading harmonicc, and a decoupled@due to the vanishing ofg(1,1;); see~C9c!, ~4.13g! and
~4.16a!# linear Schrödinger equation for the second harmonicc2 . A more general analysis, cor
responding to the assignmentp51,g051,g250,g351,g451, would require the involvement als
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of the third and fourth harmonics, thereby going beyond the framework of the treatment rep
in this article. Such a more complete analysis@which requires the evaluation of other quantiti
g(n,m;) besides those given above, see~4.13!, and which yields finally two decoupled nonlinea
Schrödinger equations for the first and second harmonics# will be reported by one of us~JX! in a
separate paper.15

The next case we consider is characterized by the condition

A0
(1)~k!50 ~4.17a!

@‘‘zeroth harmonic strongly at resonance;’’ recall thatA0
(0) vanishes due to the reality of the linea

part of the original equation, see~2.18!#. Then the parameters suggested by Table I~see line 18!
are

p5 2
3, g05 1

3, g251, ~4.17b!

and one gets then

ict1A1
(2)cjj52kg~0,1;!c0c, ~4.17c!

c0t5g~21,1;!~ ucu2!j . ~4.17d!

But again the right-hand-sides of both these equations vanish@see~4.13a!, ~4.13e! and ~4.17a!#,
and an analysis closely analogous to that given immediately above ensues. A new, self-con
assignment, which however underplays the role of the zeroth harmonic, isp51,g051,g251, and
it yields again the nonlinear Schro¨dinger equations~4.14c! and~4.14d! for the leading harmonicc
and a decoupled@due to the vanishing ofg(21,1;); see~C9b!, ~4.13e! and~4.17a!# linear Schrö-
dinger equation for the zeroth harmonicc0 . Another self-consistent assignment isp51,g0

50,g250,g351,g451; it leads again, after much labor, to a standard nonlinear Schro¨dinger
equation forc.15

The next case we consider is characterized by the conditions

A0
(1)~k!50, A2

(0)~k!50 ~4.18a!

~‘‘zeroth harmonic strongly at resonance, second harmonic at resonance’’!. The corresponding
parameter assignment suggested by Table I~next to last line! is

p5 2
3, g05 1

3, g25 1
3, ~4.18b!

and it leads to the following set of coupled equations:

ict1A1
(2)cjj52k@g~0,1;!cc01g~21,2;!c* c2#, ~4.18c!

c0t5g~21,1;!~ ucu2!j , ~4.18d!

A2
(1)c2j52ikg~1,1;!c2, ~4.18e!

which would yield~C17!, were it not for the fact that the right-hand-sides of all three of th
equations vanish: see~4.13a!, ~4.13b!, ~4.13e!, ~4.13g!, and~4.18a!. As above, one must then loo
for other assignments, with larger values ofp. One such assignment, which leads again to
nonlinear Schro¨dinger equation~4.14c!–~4.14d!, is p51,g051,g251. Other possible assignmen
are p51,g050,g251 andp51,g050,g250,g351,g451, and they again eventually lead to
standard nonlinear Schro¨dinger equation forc.15

Finally, the last case we consider is characterized by the condition that both the zero
second harmonic~in addition of course to the first, main, one! be strongly at resonance:
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A0
(1)~k!50, A2

(0)~k!50, A2
(1)~k!50. ~4.19a!

In this case Table I~see line 40! suggests

p5 1
2, g051/2, g250, ~4.19b!

and one gets

ict1A1
(2)cjj52g~21,2;!c* c2 , ~4.19c!

ic2t1A2
(2)c2jj522kg~1,1;!c2, ~4.19d!

which would yield~C18!, were it not for the vanishing of the right-hand-sides of both of th
equations: see~4.13b! and ~4.13g! and ~4.19a!. It is then easily seen that the assignmentp
51,g051,g251 is also self-consistent, and it yields again the nonlinear Schro¨dinger equations
~4.14c! and~4.14d!; while two other assignments are also self-consistent, namelyp51,g050 and
g251 and p51,g051,g250,g351,g451, and after much labor they also eventually yield
standard nonlinear Schro¨dinger equation forc.15

B. Simple PDEs yielding nonlinear Schro ¨ dinger-type equations

In this section we exhibit simple instances of nonlinear evolution PDEs with dispersive l
parts, which yield the 30 equations of nonlinear Schro¨dinger type derived earlier and listed i
Appendix B. The main role in identifying which one of the 30 equations of Appendix B d
emerge is played, as explained above, by thelinear part of these equations, for which we mainta
or rather implement, the notation~2.2!. The choice of the value of the parameterk is also, in
almost all cases, crucial~see later on in this work!; it is convenient to display this role, wheneve
it is relevant, by entering the value ofk that must eventually be chosen as a parameter of
equations we display.

As for the nonlinear part, its detailed structure hardly plays any role, except, more often
not, for the dependence on the value@see~2.1!# of the parameterh, whether it is 0,1,2, . . . , of
course on the understanding that the structure of the nonlinear part of the equation does no
‘‘accidental cancellations’’~that this may happen, indeed not quite accidentally, is amply il
trated by the results of Sec. IV A; and see the end of this section!. In any case later we will always
make exceedingly specific, simple, choices for the nonlinear part; the diligent reader will che
we did, that in every case the equation we display indeed yields, for the appropriate choice ok ~as
explained earlier!, via the multiple scale expansion technique described earlier~with the suitable
choices of the various parameters,p andg’s, obtainable from Table I!, precisely the appropriate
equation of Appendix B. But it is obvious that there remains an enormous freedom to modi
nonlinear part of the equations listed later, without destroying the characteristic property
motivates their display here.

A last preliminary remark: in all the equations listed next we seta150 @see~2.2!# since this
particular coefficient plays only a trivial role in the entire treatment; indeed, if present, it
always be eliminated via the change of variablex→x2a1t.

A PDE that yields~B3! reads as follows:

ut1 ia0u2 ia2u(2)2a3u(3)5uuu2 ~4.20a!

with a0Þ0, anda2Þ0 or a3Þ0; another PDE that also yields~B3! reads

ut2 ia2u(2)2a3u(3)5~ uuu2!x , ~4.20b!

again witha2Þ0 or a3Þ0. Note that, in this case, the value ofk remains arbitrary.
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Here, and always later on, we use the notation~2.6! on the left-hand-sides~linear part of the
equations!.

A PDE that yields~B4! reads as follows:

ut2 ia2u(2)2a3u(3)5uuu2 ~4.21!

with a2Þ0 or a3Þ0. Again, the value ofk need not be specified.
Two PDEs that yield~B5! read

ut1 ia3~4k3u1ku(2)1 iu(3)!5u21uuu2, ~4.22a!

ut1 ia4~4k2u(2)2 iku(3)1u(4)!5uxu1~ uuu2!x . ~4.22b!

In these two equations, as well as in all those written later, the single coefficientan appearing
in each equation is of course required not to vanish.

A PDE that yields~B6! reads

ut1 ia4~7k2u(2)1u(4)!5uuu21u2. ~4.23!

A PDE that yields~B7! reads

ut1 ia3~4k3u1ku(2)1 iu(3)!5u21u* 21uuu2. ~4.24!

A PDE that yields~B8! reads

ut1 ia4~4k2u(2)2 iku(3)1u(4)!5u21u* 21uuu2. ~4.25!

A PDE that yields~B9! reads

ut1 ia4~k4u12k2u(2)1u(4)!5u2. ~4.26!

A very simple PDE that yields~B10! ~for arbitraryk! reads

ut2a3u(3)5u2. ~4.27!

A PDE that yields~B11! reads

ut1 ia4@k4u12k2u(2)2~3i/2!ku(3)1u(4)#5uuu2. ~4.28!

A PDE that yields~B12! reads

ut2 ia6@k4u(2)16ik3u(3)12k2u(4)1u(6)#5u2. ~4.29!

A PDE that yields~B13! reads

ut1a5@5k2u(3)1u(5)#5uxu. ~4.30!

A PDE that yields~B14! reads

ut1a5@5k2u(3)1u(5)#5u2. ~4.31!

A PDE that yields~B15! reads

ut1a3@~3i/2!ku(2)2u(3)#5uuu2. ~4.32!

A PDE that yields~B16! reads
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ut1a3@~3i/2!ku(2)2u(3)#5~ uuu2!x . ~4.33!

A PDE that yields~B17! reads

ut1a3@~3i/2!ku2)2u(3)#5uxxu1ux
21~ uuu2!xx . ~4.34!

A PDE that yields~B18! reads

ut1 ia4@23k2u(2)2~10i/3!ku(3)1u(4)#5uxu1~ uuu2!x . ~4.35!

A PDE that yields~B19! reads

ut1~a5/7!@240ik3u(2)125k2u(3)210iku(4)17u(5)#5uxu1ux* u* 1~ uuu2!x . ~4.36!

A PDE that yields~B20! reads

ut2a3@3ik3u2~9/2!iku(2)1u(3)#5u21uuu2. ~4.37!

A PDE that yields~B21! reads

ut2 ia6@k4u(2)12k2u(4)1u(6)#5u2. ~4.38!

A PDE that yields~B22! reads

ut2 ia6@k4u(2)12k2u(4)1u(6)#5uxu. ~4.39!

A PDE that yields~B23! reads

ut2 ia6@k4u(2)12k2u(4)1u(6)#5uxxu1ux
2. ~4.40!

A PDE that yields~B24! reads

ut2 ia6@k4u(2)23ik3u(3)12k2u(4)2~9i/5!ku(5)1u(6)#5uxu. ~4.41!

A PDE that yields~B25! reads

ut1 ia8~4k6u(2)19k4u(4)16k2u(6)1u(8)!5uxu. ~4.42!

A PDE that yields~B26! reads

ut2~a5/7!@20ik5u140ik3u(2)25k2u(3)120iku(4)27u(5)#5uuu2. ~4.43!

A PDE that yields~B27! reads

ut1a6@26ik4u(2)238k3u(3)217ik2u(4)2 iu(6)#5uuu2. ~4.44!

A PDE that yields~B28! reads

ut2 i~a5/13!@160k5u180k3u(2)195ik2u(3)110ku(4)113iu(5)#5u21u* 21uuu2. ~4.45!

A PDE that yields~B29! reads

ut1a7@~7i/2!k5u(2)1~ 7
2!k

4u(3)17ik3u(4)1~ 7
10!k

2u(5)1~7i/2!ku(6)2u(7)#5u2. ~4.46!

Two PDEs that yield~B30! read

ut2a9@170k6u(3)151k4u(5)2u(9)#5u2, ~4.47a!
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ut2 ia10@16k8u(2)140k6u(4)133k4u(6)110k2u(8)1u(10)#5uxu. ~4.47b!

A PDE that yields~B31! reads

ut1~a7/11!@224ik5u(2)2140k4u(3)1112ik3u(4)2~413/5!k2u(5)114iku(6)211u(7)#5u2.
~4.48!

A PDE that yields~B32! reads

ut2 ia10@16k8u(2)140k6u(4)133k4u(6)110k2u(8)1u(10)#5u2. ~4.49!

Let us now briefly present an example of~obviously nongeneric!! a nonlinear PDE that yields
via the multiscale reduction technique, equationsdifferent from those listed in Appendix B. This
also serves to illustrate how the formulas of this article can be used to easily arrive at the
after result even in cases that go beyond those treated in full detail herein.

We take as a starting point the nonlinear PDE

ut1 iau2 iuxx5cuuxx* , ~4.50!

which clearly corresponds to~2.1! with

h50, a05aÞ0, a251, c0;2
(1,1)5c, ~4.51!

and all other constants, of typea andc @see~2.2! and~2.5!# set to zero. This entails, in the notatio
of Sec. II,

v52k, An
(0)5~n21!~nk22a!, An

(1)52k~n21!, An
(2)51. ~4.52!

Hence, forkÞ0, there cannot be any strong resonance~An
(1)Þ0 for nÞ1!, and there can be only

one weak resonance withn.1 if a.0, and instead withn,0 if a,0 ~in both cases, atk
56ua/nu1/2!. Moreover,

g~n1 ;n2!52n2
2k2c, ~4.53!

while all other quantities of typeg @see~2.20! and Appendix A# vanish.
Hence in this case~2.21! can be rewritten as follows:

«2p@c1t2 ic1jj#52k2c«@«g01g21c0c21* 1«g2c1* c214«g211g22c21c22* #, ~4.54a!

«g21@2i~k21a!c2124k«pc21j#52k2c«@«g0c0c1* 1«g211g22c21* c2214«g2c1c2* #,
~4.54b!

ia«g0c052k2c«@ uc1u21«2g21uc21u214«2g2uc2u214«2g22uc22u2#, ~4.54c!

«g2@ i~2k22a!c212k«pc2j#52k2c«@«g21c1c21* 14«g01g22c0c22* #, ~4.54d!

3«g22@ i~2k21a!c2222k«pc22j#52k2c«@«g21c1* c2114«g01g2c0c2* #. ~4.54e!

It is easily seen that, both in the case without any resonance as well as in all cases w
weak resonance~for n521, orn52 or n522!, by adopting the assignments mandated by Ta
I one would always end up with uninterestinglinear equations. More interesting results can
obtained with the following assignments, suggested directly from the structure of these equ
~4.54!.

In the case without resonances (kÞ6ua/nu1/2) this entails the assignment

p52, g2152, g051, g25g2253, ~4.55!
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yielding, after a little elementary algebra, explicit expressions in terms ofc1 ~which we do not
write! for all other harmonicscn ,n521,0,2,22, and forc1(j,t) the nonlinear PDE

ic1t1c1jj5luc1u4c1 , ~4.56a!

l52k10c4/@a2~k21a!~2k22a!#. ~4.56b!

Note that the exponent on the right-hand-side of~4.56! is 4, not 2; hence this PDE,~4.56!, is
not the~standard! NLS equation~B3!.

Likewise, if

a,0, k5suau1/2, s561, ~4.57!

so that there is a weak resonance forn521, it is easily seen that a proper assignment is

p5 4
3, g215 2

3, g051, g25g225 5
3, ~4.58!

yielding, after a little elementary algebra, explicit expressions in terms ofc1 for c0 and ofc1 and
c21 for c2 andc22 and the following nonlinear PDEs forc1 andc21 :

ic1t1c1jj5luc1u2c21* , ~4.59a!

c21j5 ismuc1u2c1* , ~4.59b!

l52ac2/3, ~4.59c!

m52uau1/2c2/4. ~4.59d!

Likewise, if

a.0, k5s~a/2!1/2, s561, ~4.60!

so that there is a weak resonance forn52, the proper assignment entailed by~4.54! is

p5 4
3, g2152, g051, g25 5

3, g2253, ~4.61!

yielding, after a little elementary algebra, explicit expressions of the nonresonating harm
c21 ,c0 andc22 , and forc1 andc2 the nonlinear PDEs

ic1t1c1jj5lc1* c2 , ~4.62a!

c2j5smuc1u2c1
2 , ~4.62b!

l52 iac/2, ~4.62c!

m5ucu2c* ~a/2!1/2/24. ~4.62d!

Finally, if

a,0, k5sua/2u1/2, s561, ~4.63!

so that there is a weak resonance forn522, the proper assignment entailed by~4.54! is

p52, g2152, g051, g253, g2251, ~4.64!

yielding, after a little elementary algebra, explicit expressions of the nonresonating harm
c21 ,c0 andc2 , and forc1 andc22 the nonlinear PDEs
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ic1t1c1jj5luc1u4c11 inuc1u2c1* c22* , ~4.65a!

c22j5smuc1u2c1*
2 , ~4.65b!

l52aucu4/32, ~4.65c!

n52ac3/4, ~4.65d!

m52c3ua/2u1/2/24. ~4.65e!

C. Analysis of the ‘‘universal’’ equations yielded by multiscale reduction

In this section we analyze the equations of nonlinear Schro¨dinger type yielded by the ap
proach used in this article, as listed in Appendix B. We show that several of them can be re
a neater, ‘‘canonical,’’ form, and we also review what is known about their integrability.

In the title of this section we have called these nonlinear PDEs ‘‘universal.’’ Our motiva
for doing so rests on the fundamental property of these equations to be obtainable from quit
classes of nonlinear PDEs via an asymptotically exact~and often phenomenologically relevan!
limiting procedure, as described earlier.

This universality motivated the expectation that these equations be ‘‘integrable.’’9 As we will
see later, in some cases this hunch is indeed correct, but not always. On the other hand, w
invalid, namely when some universal equation isnot integrable, this entails the important info
mation that the entire class from which it is derived cannot contain any integrable equ
Hence, as already noted long ago,3,9 the property~see later in this work! of a universal equation
not to be integrable provides the point of departure for the derivation ofnecessaryconditions for
the integrability of nonlinear PDEs, applicable to large classes of such equations, a develo
we, however, prefer to pursue in a separate paper.4

There is, moreover, an obvious ranking in the ‘‘degree of universality’’ associated with t
equations; the more ‘‘resonance conditions’’ are required for their validity, the less universa
are. Clearly the more universal, hence also more interesting~also for the derivation of necessar
conditions for integrability4!, equations tend to be those appearing earlier in the list of 30 no
ear PDEs given in Appendix B,~B3!–~B32!.

To present in neater form some of these equations, as listed in Appendix B, we pe
convenient ‘‘cosmetic’’ rescalings of thedependentvariables. These are, of course, always ma
on the understanding that the relevant constants do not vanish. Additional cosmetic rescal
the independentvariablesx and t ~note that we use here the notation of Appendix B for the
variables!! are not performed, since the additional aesthetic advantage this would entail fo
‘‘look’’ of the universal equations written later in this work is marginal.

Let us now start our gloss of the equations listed in Appendix B; of course, only t
equations which deserve some elaboration are commented upon. Let us recall that the cona
are real and satisfy~B2!, while the constantsl area priori complex.

The most universal equation is of course, the first one,~B3!. It is the standard nonlinea
Schrödinger equation~NLS!. It is not C-integrable, unlessl vanishes; it isS-integrable, iff l is
real. If, moreover,l/a,0 ~‘‘focusing’’ case!, there exist localized ‘‘solitonic’’ and ‘‘multisoli-
tonic’’ solutions that vanish at both ends, namely asx→6`. If l/a.0 ~‘‘defocusing’’ case!,
there are no solitons in the class of solutions vanishing at both ends.

The PDE~B4! can be recast, by setting

l5l (1)l (3)1l (2)l (3)* , ~4.66!

h~x,t !5@l (1)c0~x,t !1l (2)c0* ~x,t !#/l, ~4.67!

into the neater form
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iw1t1aw1xx5lhw1 , ~4.68a!

hx5uw1u2. ~4.68b!

Note that the last equation,~4.68b!, entails thath(x,t) is real ~up to an additivex-independent
contribution!. It appears that this nonlinear PDE,~4.68! is not integrable;16 we shall discuss this
question in more detail in a separate paper on necessary conditions for integrability.4

Equation~B5! can be recast, by setting

m5l (1)l (2), ~4.69!

x~x,t !5x1~x,t !/l (2), ~4.70!

into the neater form

iw1t1aw1xx5mxw1* , ~4.71a!

xx5w1
2 . ~4.71b!

It appears that this nonlinear PDE,~4.71!, is not integrable;17 we shall discuss this question i
more detail in a separate paper on necessary conditions for integrability.4

Equation~B6! can be recast by setting

l5l (1)l (4)1l (2)l (4)* , ~4.72!

m5l (3)l (5), ~4.73!

x~x,t !5x1~x,t !/l (5), ~4.74!

and by using~4.67! @with l defined by~4.72!#, into the neater form

iw1t1aw1xx5lhw11mxw1* , ~4.75a!

hx5uw1u2, ~4.75b!

xx5w1
2 . ~4.75c!

Note that~4.75b! entails thath(x,t) is real ~up to an additivex-independent contribution!. Clearly
this nonlinear PDE is generally not integrable.

Equation~B7! can be recast, by setting

m5ln
(1)ln

(2) , ~4.76!

x~x,t !5ln
(1)xn~x,t !/m, ~4.77!

again in the form~4.71!. Let us recall that, as in Appendix B, repeated indices are summed u
from 1 to 2 @see~4.76! and ~4.77!#.

Likewise, ~B8! is reduced to~4.75! by setting

m5ln
(3)ln

(5) , ~4.78!

x~x,t !5ln
(3)xn~x,t !/m, ~4.79!

and by using~4.67! together with~4.72!.
                                                                                                                



6431J. Math. Phys., Vol. 41, No. 9, September 2000 Nonlinear PDEs obtained by . . .

                    
Equation ~B9! is S-integrable if the 2 real constantsanm @see ~B2!# and the 12,a priori
complex, constantslnm jk are restricted as follows:

a115a225a, ~4.80!

lnm jk5d jkdnml j ~4.81!

@the right-hand-side of this equation,~4.81!, could of course be symmetrized in the indicesm and
j , see~B9!#, so that~B9! becomes the following~special! set of two coupled NLS equations:

iwnt1awnxx5@l1uw1u21l2uw2u2#wn , ~4.82!

with the additional requirement that bothl1 andl2 be real.18

Equation~B16! can be recast, by using~4.66! and ~4.67!, into the neater form

iw1t1a (1)w1xx5lhw1 , ~4.83a!

ih t1a (2)hxx5~ uw1u2!x . ~4.83b!

If a (2) vanishes@as automatically guaranteed in thereal case, see~2.18a!; indeed, see~C15!#,
the last equation,~4.83!, entails thath(x,t) is imaginary, up to an additionalt-independent
contribution. If, moreover,l is imaginary, this equation is S-integrable;19 indeed it can be ob-
tained by multiple-scale reduction9 from the S-integrable Boussinesq equation

utt2uxx2uxxxx13~u2!xx50. ~4.84!

Likewise Eq.~B17! can be recast, by setting

l5l (2)l (4)1l (3)l (4)* , ~4.85!

h~x,t !5@l (2)c0~x,t !1l (3)c0* ~x,t !#/l, ~4.86!

into the neater form

iw1t1a (1)w1xx5l (1)uw1u2w11lhw1 , ~4.87a!

ih t1a (2)hxx5~ uw1u2!xx . ~4.87b!

If a (2) vanishes@as automatically guaranteed in thereal case, see~2.18a!; indeed, see~C16!#, the
last equation,~4.87b!, entails thath(x,t) is imaginaryup to an additivet-independent contribu-
tion.

Equation~B18! can be recast, by using~4.72!, ~4.67! with ~4.73! and ~4.74!, into the neater
form

iw1t1a (1)w1xx5lhw11mxw1* , ~4.88a!

ih t1a (2)hxx5~ uw1u2!x , ~4.88b!

xx5w1
2 . ~4.88c!

Again, if a (2) vanishes@as automatically guaranteed in thereal case, see~2.18a!; indeed, see
~4.82!#, ~4.88b! entails thath(x,t) is imaginary, up to an additivet-independent contribution.

Likewise ~B19! takes the same form~4.88!, via ~4.72!, ~4.67! with ~4.78! and ~4.79!.
Finally ~B20! can be recast, by using~4.69! and ~4.70!, into the neater form

iw1t1a (1)w1xx5mxw1* , ~4.89a!
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ix t1a (2)xxx5w1
2 , ~4.89b!

V. OUTLOOK

We have exhibited the ‘‘universal’’ evolution equations, of nonlinear Schro¨dinger type, that
characterize, in the limit of weak but non-negligible nonlinearity, the behavior of the harmo
associated with the amplitude modulation of solutions, dominated by a single plane wave
generic nonlinear PDE. In this article, the first of a planned series, we focus on a single a
mous evolution PDE in 111 variables (space1time), of first order in time, whose linear part
dispersive and whose nonlinear part is, in some weak sense, analytic. In future papers we
extend the treatment to coupled equations, to more independent variables and also to situa
which the solutions under consideration feature more than one dominant plane wave, in ad
of course, to the corresponding harmonics.

We also plan to use the findings reported here, as well as other analogous results fo
general classes of nonlinear evolution equations, to obtain convenient and robust condition
generic PDE, whose linear part is dispersive and whose nonlinear part is~weakly! analytic, must
satisfy, in order that it might be integrable~necessaryconditions of integrability!.
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APPENDIX A: THE QUANTITIES g

In this Appendix we list the expressions of the quantitiesg @see~2.20b!# that enter on the
right-hand-side of~2.21! and~3.1!, in terms of the coefficientscj 1, . . . ,j s ; j s11, . . . ,j m

(s,m2s) that characterize

the nonlinear part of the basic equation~2.1! @see~2.5! and ~2.7!#:

g~n1 ,n2 ; !5S 12
1

2
dn1n2D (j 50

`

~ ik! j (
j 850

[ j /2]

cj 8, j 2 j 8;
(2,0)

~n1
j 8n2

j 2 j 81n1
j 2 j 8n2

j 8!, ~A1a!

g~n1 ;n2!5(
j 50

`

~ ik! j (
j 850

j

cj 8; j 2 j 8
(1,1) n1

j 8~2n2! j 2 j 8, ~A1b!

g~ ;n1 ,n2!5S 12
1

2
dn1n2D (j 50

`

~2 ik! j (
j 850

[ j /2]

c; j 8, j 2 j 8
(0,2)

~n1
j 8n2

j 2 j 81n1
j 2 j 8n2

j 8!, ~A1c!

g~n,n;n!5(
l 50

`

~ ink! l (
j 50

l

~21! l 2 j (
j 850

[ j /2]

cj 8, j 2 j 8; l 2 j
(2,1) , ~A2a!
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g~n,2n;2n!52(
l 50

`

~ ink! l (
j 50

[ l /2]

(
j 850

j

~21! j 8cj 8,2j 2 j 8; l 22 j
(2,1) , ~A2b!

g~n;n,2n!52(
l 50

`

~ ink! l (
j 50

[ l /2]

(
j 850

j

~21! j 8cl 22 j ; j 8,2j 2 j 8
(1,2) , ~A2c!

g~2n;2n,2n!5(
l 50

`

~ ink! l (
j 50

l

~21! l 2 j (
j 850

[ j /2]

cl 2 j ; j 8, j 2 j 8
(1,2) , ~A2d!

g~n,n,2n; !5(
l 50

`

~ ink! l (
j 50

[2 l /3]

(
j 85max[0,2j 2 l ]

[ j /2]

~21! j 8@11~21! j1~21! l 1 j 1 j 8#cj 8, j 2 j 8,l 2 j ;
(3,0) ,

~A2e!

g~ ;n,2n,2n!5(
l 50

`

~ ink! l (
j 50

[2 l /3]

(
j 85max[0,2j 2 l ]

[ j /2]

~21! j 8@11~21! j1~21! l 1 j 1 j 8#c; j 8, j 2 j 8,l 2 j
(0,3) .

~A2f!

In these formulasnj5d j 0 for n50.

APPENDIX B: EXPLICIT FORM OF THE PDES OF SCHRÖ DINGER TYPE

In this Appendix we report all the special cases of~3.1!, identified according to Table I, an
written in a compact form which shows that they all look like multi-component versions of
basic equations. We do so by taking advantage of their gauge-invariance property entailed
multiscale method of deriving them. This property requires that any equation~3.1! be invariant
under the gauge transformationc1→exp(iQ)c1,c21* →exp(iQ)c21* ,c0→c0,c2→exp(2iQ)c2,c22*
→exp(2iQ)c22* , which naturally suggests the introduction of the following vectors,

~f1 ,f2![~c1 ,c21* !, ~x1 ,x2![~c2 ,c22* !, ~B1!

to deal with those equations in which the amplitudec1 andc21 and/orc2 andc22 are coupled
to each other.

In the following, the vectors~B1! appear always through their componentsfn andxn , and we
adopt the convention that repeated indices are summed upon over their two values, 1 and

In order to display here all PDEs in a similar format, and also in view of the poss
vanishing~see later in this work! of some of the coefficients multiplying the nonlinear terms,
display all the constants that multiply all the terms that emerge from our multi-scale analys
addition, we introduce the real coefficientsa or anm in the linear~dispersive! part of the equations
below; note that, foranm , there always holds the ‘‘diagonal’’ property

anm50 if nÞm. ~B2!

We do not, however, report explicit expressions for the variousl’s that appear in the formula
written later, because this would require too much space~including the identification of too many
subcases!; we trust the interested reader will have no difficulty in retrieving the appropr
expressions for the case of interest from the treatment given earlier@see in particular~3.1!#.

Of course, some of the coefficients appearing in the linear and nonlinear parts of the equ
reported in this Appendix could be set to unit or to a phase factor exp(iu), u being a real number
via a ‘‘cosmetic rescaling’’ of both the dependent variablecn and the independent variablesj and
t. Thus, for instance, the first case of the list below obtains from the first entry of Table I i
form ic1,t1A1

(2)c1,jj5 i( ik)hG(1,1;1)uc1u2c1 , and it corresponds to the prototypical NLS equ
tion. This equation could be written in the cleaner form iCT1CXX5exp(iu)uCu2C by appropri-
ate rescalings, which however, cannot change the phaseu of the coefficient i(ik)hG(1,1;1)
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~hence,u50 or u5p iff this coefficient is real!. However let us recall that if, for ‘‘accidental’’ or
‘‘structural’’ reasons,G(1,1;1) vanishes, one obtains in this case thelinear Schrödinger equation
rather than the NLS equation~B1!. One should then reexamine the treatment, first by check
whether~2.21a! is applicable in this case as it stands~one must make sure that, in obtaining it, n
terms have been omitted on the right-hand-side on the basis of their being of higher order ine than
the terms which are nominally present but in fact are either absent or are eventually not c
uting due to cancellations!, and, second, by performing the transition from~2.21a! to ~3.1a! via an
appropriate,newassignment of the exponentsp andg j determined by taking due account of th
fact thatG~1,1;1! vanishes.

In the following we replace the variablesj, respectivelyt, with x, respectivelyt, for ‘‘aes-
thetic’’ reasons; these new coordinates,x andt, should of course not be confused with the origin
coordinatesx,t used before the reduction technique@see, e.g.,~2.1!–~2.7!#. The evolution equa-
tions listed in this Appendix are ordered on the basis of the following~self-evident! criteria: ~i!
priority to smaller number of coupledevolutionequations;~ii ! priority of the harmonics, according
to the ordering 1,21,0,2,22; and~iii ! priority to smaller number ofauxiliary equations~nonevo-
lution PDEs!. Finally, let us reemphasize that thea, respectivelyl, coefficients in the equation
below are real, respectively complex numbers, which have been given, for notational conven
the samesymbol though they takedifferentvalues indifferentequations:

iw1t1aw1xx5luw1u2w1 ; ~B3!

iw1t1aw1xx5~l (1)c01l (2)c0* !w1 ,
~B4!

c0x5l (3)uw1u2;

iw1t1aw1xx5l (1)x1w1* ,
~B5!

x1x5l (2)w1
2;

iw1t1aw1xx5~l (1)c01l (2)c0* !w11l (3)x1w1* ,

c0x5l (4)uw1u2, ~B6!

x1x5l (5)w1
2;

iw1t1aw1xx5ln
(1)xnw1* ,

~B7!
xnx5ln

(2)w1
2 ;

iw1t1aw1xx5~l (1)c01l (2)c0* !w11ln
(3)xnw1* ,

c0x5l (4)uw1u2, ~B8!

xnx5ln
(5)w1

2;

iwnt1anmwmxx5lnm jkwmw jwk* ; ~B9!

iwnt1anmwmxx5~lnm
(1)c01lnm

(2)c0* !wm ,
~B10!

c0x5lnm
(3)wnwm* ;

iwnt1anmwmxx5lnm
(1)x1wm* ,

~B11!
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x1x5lnm
(2)wnwm ;

iwnt1anmwmxx5~lnm
(1)c01lnm

(2)c0* !wm1lnm
(3)x1wm* ,

c0x5lnm
(4)wnwm* , ~B12!

x1x5lnm
(5)wnwm ;

iwnt1anmwmxx5lnm j
(1) wm* x j ,

~B13!
xnx5lnm j

(2) wmw j ;

iwnt1anmwmxx5~lnm
(1)c01lnm

(2)c0* !wm1lnm j
(3) wm* x j ,

c0x5lnm
(4)wnwm* , ~B14!

xnx5lnm j
(5) wmw j ;

iw1t1a (1)w1xx5~l (1)c01l (2)c0* !w1 ,
~B15!

ic0t1a (2)c0xx5l (3)uw1u21l (4)uc0u21l (5)c0
21l (6)c0*

2;

iw1t1a (1)w1xx5~l (1)c01l (2)c0* !w1 ,
~B16!

ic0t1a (2)c0xx5l (3)~ uw1u2!x ;

iw1t1a (1)w1xx5l (1)uw1u2w11~l (2)c01l (3)c0* !w1 ,
~B17!

ic0t1a (2)c0xx5l (4)~ uw1u2!xx ;

iw1t1a (1)w1xx5~l (1)c01l (2)c0* !w11l (3)x1w1* ,

ic0t1a (2)c0xx5l (4)~ uw1u2!x , ~B18!

x1x5l (5)w1
2 ;

iw1t1a (1)w1xx5~l (1)c01l (2)c0* !w11ln
(3)xnw1* ,

ic0t1a (2)c0xx5l (4)~ uw1u2!x , ~B19!

xnx5ln
(5)w1

2 ;

iw1t1a (1)w1xx5l (1)x1w1* ,
~B20!

ix1t1a (2)x1xx5l (2)w1
2 ;

iwnt1anm
(1)wmxx5~lnm

(1)c01lnm
(2)c0* !wm ,

~B21!
ic0t1a (2)c0xx5lnm

(3)wnwm* 1l (4)uc0u21l (5)c0
21l (6)c0*

2 ;

iwnt1anm
(1)wmxx5~lnm

(1)c01lnm
(2)c0* !wm ,

~B22!
ic0t1a (2)c0xx5~lnm

(3)wnwm* !x ;
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iwnt1anm
(1)wmxx5lnm jk

(1) wmw jwk* 1~lnm
(2)c01lnm

(3)c0* !wm ,
~B23!

ic0t1a (2)c0xx5~lnm
(4)wnwm* !xx ;

iwnt1anm
(1)wmxx5~lnm

(1)c01lnm
(2)c0* !wm1lnm

(3)x1wm* ,

ic0t1a (2)c0xx5~lnm
(4)wnwm* !x , ~B24!

x1x5lnm
(5)wnwm ;

iwnt1anm
(1)wmxx5~lnm

(1)c01lnm
(2)c0* !wm1lnm j

(3) xmw j* ,

ic0t1a (2)c0xx5~lnm
(4)wnwm* !x , ~B25!

xnx5lnm j
(5) wmw j ;

iwnt1anm
(1)wmxx5ln

(1)x1wn* ,
~B26!

ix1t1a (2)x1xx5lnm
(2)wnwm ;

iw1t1a (1)w1xx5~l (1)c01l (2)c0* !w11l (3)x1w1* ,

ic0t1a (2)c0xx5l (4)uw1u21l (5)uc0u21l (6)c0
21l (7)c0*

21l (8)ux1u2, ~B27!

ix1t1a (3)x1xx5l (9)w1
21~l (10)c01l (11)c0* !x1 ;

iw1t1a (1)w1xx5ln
(1)xnw1* ,

~B28!
ixnt1anm

(2)xmxx5ln
(2)w1

2 ;

iwnt1anm
(1)wmxx5~lnm

(1)c01lnm
(2)c0* !wm1lnm

(3)x1wm* ,

ic0t1a (2)c0xx5lnm
(4)wnwm* 1l (5)uc0u21l (6)c0

21l (7)c0*
21l (8)ux1u2, ~B29!

ix1t1a (3)x1xx5lnm
(9)wnwm1~l (10)c01l (11)c0* !x1 ;

iwnt1anm
(1)wmxx5lnm j

(1) xmw j* ,
~B30!

ixnt1anm
(2)xmxx5lnm j

(2) wmw j ;

iw1t1a (1)w1xx5~l (1)c01l (2)c0* !w11ln
(3)xnw1* ,

ic0t1a (2)c0xx5l (4)uw1u21l (5)uc0u21l (6)c0
21l (7)c0*

21lnm
(8)xnxm* , ~B31!

ixnt1anm
(3)xmxx5ln

(9)w1
21~lnm

(10)c01lnm
(11)c0* !xn ;

iwnt1anm
(1)wmxx5~lnm

(1)c01lnm
(2)c0* !wm1lnm j

(3) xmw j* ,

ic0t1a (2)c0xx5lnm
(4)wnwm* 1l (5)uc0u21l (6)c0

21l (7)c0*
21lnm

(8)xnxm* , ~B32!

ixnt1anm
(3)xmxx5lnm j

(9) wmw j1~lnm
(10)c01lnm

(11)c0* !xm .
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APPENDIX C: THE REAL CASE

In this Appendix we briefly indicate, for the convenience of the reader who is espec
interested in this important case, how the results specialize in thereal case, namely if Eq.~2.1! is
real, which requires that theevencoefficientsa2m in the linear part of~2.1! vanish@see~2.2!# and
the coefficientcj 1, . . . ,j s ; j s11 . . . ,j m

(s,m2s) of the nonlinear part bereal and vanish unlesss5m,

a2m50, cj 1, . . . ,j s ; j s11, . . . ,j m

(s,m2s) 5dsmcj 1, . . . ,j m

(m) 5dsm@cj 1, . . . ,j m

(m) #* , ~C1!

and, moreover, that the solutionu(x,t) be alsoreal,

u~x,t !5@u~x,t !#* . ~C2!

Note, moreover, that the reality ofu(x,t) @see~C2!# entails@see~2.9a!#

gn5g2n , ~C3a!

cn~j,t!5@c2n~j,t!#* . ~C3b!

In this case some of the quantitiesAn
(s)(k) vanish @see~2.18a!# or are simply related@see

~2.18b!#. Moreover, the only coefficientsg that do not vanish are those with the semicolon at
extreme right,g(n1 ,...,nm ;), and the formulas of Appendix A now take the simpler express
@see~C1!#:

g~0,0;!5c0,0
(2) , ~C4!

g~0,n; !52c0,0
(2)1(

j 51

`

~21! j~nk!2 j c0,2j
(2) 1 i(

j 50

`

~21! j~nk!2 j 11c0,2j 11
(2) , nÞ0, ~C5!

g~n1 ,n2 ; !5S 12
1

2
dn1n2D F (j 50

`

~21! j k2 j (
j 850

j

cj 8,2j 2 j 8
(2)

~n1
j 8n2

2 j 2 j 81n1
2 j 2 j 8n2

j 8!

1 i(
j 50

`

~21! j k2 j 11 (
j 850

j

cj 8,2j 112 j 8
(2)

~n1
j 8n2

2 j 112 j 81n1
2 j 112 j 8n2

j 8!G ,

n1Þ0, n2Þ0, ~C6!

g~n,n,2n; !5(
l 50

`

~21! l~nk!2l (
j 50

[4 l /3]

(
j 85max[0,2j 22l ]

[ j /2]

@~21! j 81~21! j1~21! j 1 j 8#cj 8, j 2 j 8,2l 2 j
(3)

1 i(
l 50

`

~21! l~nk!2l 11 (
j 50

[ ~4l 12!/3]

(
j 85max[0,2j 22l 21]

[ j /2]

@~21! j 82~21! j

1~21! j 1 j 8#cj 8, j 2 j 8,2l 112 j
(3) . ~C7!

Note that these formulas entail@g(0,n;)#* 5g(0,2n;), @g(n1 ,n2 ;)#* 5g(2n1 ,2n2 ;) @im-
plying thatg(n,2n;) is real# and @g(n,n,2n;)#* 5g(2n,2n,n;).

In this case the two PDEs~2.21b!, respectively~2.21e!, of course become redundant, becau
~C3b! entails that they are merely the complex conjugates of~2.21a!, respectively~2.21d!. An
additional simplification in the remaining three PDEs~2.21a!, ~2.21c! and ~2.21d! is entailed by
the reality ofc0 ,

c05c0* , ~C8!
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and of course by~C3b!. Likewise for Eqs.~3.1!. And of course some of the cases of Table I a
automatically excluded due to~2.18a!.

We now write the equations that correspond to~2.21! in the real case, since they provide the
starting point to obtain the equations in final form~including all their coefficients!. There are now
of course only three such equations:

«2p@c1t2 iA1
(2)c1jj#5~ ik !h

•@«11g0g~0,1;!c0c11«11g2g~21,2;!c1* c2

1«2g~21,1,1;!uc1u2c1#, ~C9a!

«g01p@A0
(1)c0j1«pc0t#5~]/]j!h

•«hp@«112g0g~0,0;!c0
21«g~21,1;!uc1u2

1«112g2g~22,2;!uc2u2#, ~C9b!

«g2$ iA2
(0)c21«pA2

(1)c2j1«2p@c2t2 iA2
(2)c2jj#%5~2ik !h

•@«g~1,1;!c1
21«11g01g2g~0,2;!c0c2#.

~C9c!

We finally display the PDEs that obtain in thereal case, in the same format as in Appendi
B, and anologous notation@in particularc15c21* 5w, c25c22* 5x, see~B1! and~C3b!#. There
are now ten such equations~instead of 30!; for the reader’s convenience each of them is a
labeled here with the number~s! of the corresponding equation~s! of Appendix B.

iw t1awxx5luwu2w; @~B3!,~B9!# ~C10!

iw t1awxx5l (1)c0w, @~B4!,~B10!#
~C11!

c0x5l (2)uwu2;

iw t1awxx5l (1)xw* , @~B5!,~B7!,~B11!,~B13!#
~C12!

xx5l (2)w2;

iw t1awxx5l (1)c0w1l (2)xw* ,

c0x5l (3)uwu2, @~B6!,~B8!,~B12!,~B14!# ~C13!

xx5l (4)w2;

iw t1awxx5l (1)c0w, @~B15!,~B21!#
~C14!

c0t5l (2)c0
21l (3)uwu2;

iw t1awxx5l (1)c0w, @~B16!,~B22!#
~C15!

c0t5l (2)~ uwu2!x ;

iw t1awxx5l (1)uwu2w1l (2)c0w, @~B17!,~B23!#
~C16!

c0t5l (3)~ uwu2!xx ;

iw t1awxx5l (1)c0w1l (2)xw* ,

c0t5l (3)~ uwu2!x , @~B18!,~B19!,~B24!,~B25!# ~C17!

xx5l (4)w2;
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iw t1a (1)wxx5l (1)xw* , @~B20!,~B26!,~B28!,~B30!#

~C18!

ix t1a (2)xxx5l (2)w2;

iw t1a (1)wxx5l (1)c0w1l (2)xw* ,

c0t5l (3)c0
21l (4)uwu21l (5)uxu2, @~B27!,~B29!,~B31!,~B32!# ~C19!

ix t1a (2)xxx5l (6)c0x1l (7)w2.

Let us emphasize that, as in Appendix B, the coefficientsa and l appearing in different
equations aredifferent quantities, even if they have the same symbol. Note, moreover, tha
equations featuring on the left-hand-side the zeroth harmonicc0 are nowreal, henceall coeffi-
cients~botha andl! appearing in them are real. For the other equations the coefficientsa arereal,
and the coefficientsl are generallycomplex.

We forsake an additional scrutiny of these equations, analogous to that perfomed in Sec
indeed many of the considerations given there apply equally, or with marginal changes, her
for instance, the comments in Sec. IV C on the NLS equation~B3!, which coincides with~C10!;
or the reduction of~B4! to ~4.68!, which might be applied, up to marginal changes, to~C11!; and
so on.

APPENDIX D: THE CASE A 1
„2…

„k …Ä0

In this Appendix, without detailed explanations, we report results for the case characteriz
the condition

A1
(2)~k!50, ~D1!

which, of course, generally only holds for some specific values ofk @see~2.14!#.
In this case Eqs.~2.21! are essentially still relevant, up to the following modifications.

~2.21a!, the«2p on the left-hand-side is replaced by«3p; the term which featuresA1
(2) is, of course,

missing@see~D1!# and it is replaced by2A1
(3)c1,jjj ; these modifications are of course, consiste

with the assignmentq53p ~instead ofq52p!, which is in this case the appropriate one. Lik
wise, on the left-hand-sides of~2.21b!–~2.21e!, the termscn,t ~multiplying «2p! are missing; such
terms are indeed now of order«3p. The right-hand-sides of~2.21! need no modifications.

An analysis of the equations that then result, analogous to that presented in Sec. III,
entailing the construction of a table analogous to Table I, is left as an exercise for the d
reader. Here we restrict our consideration to two cases only: the generic case in which no
nance occurs, namely none of the quantitiesAn

(s)(k) vanishes@other, of course, thanA1
(s)(k) with

s50,1,2, see~2.13! and ~D1!#, and the genericreal case, in which again none of the quantitie
An

(s)(k) vanishes except those mentioned earlier~A1
(s) with s50,1,2! and in addition those whos

vanishing is mandated by the reality property@which now entailsA21
(s) 50 for s50,1,2, as well as

A0
(2s)50; see~2.18!#.

In the first case, the appropriate assignments of the exponents turn out to bep5 2
3 , g21

52, g0511 2
3 h, g25g2251, and there obtains the following single equation forc1 :

c1t2A1
(3)c1jjj5Huc1u2c1 , ~D2!

with
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H5~ ik!hH g~1,1;1!1
idh0

A0
(0) @g* ~1;1!g~1;0!2g~1;1!g~0,1;!#

2 i~2ik!hF 1

A2
(0) g~1,1;!g~2;1!2

1

A22
(0) g* ~ ;1,1!g~ ;22,1!G J . ~D3!

Of course both the real coefficientA1
(3) and the modulus of the~generally complex! coefficient

H can be replaced by unity~provided they do not vanish!! by rescalingj andt.
In the ~second! real casethe outcome depends on the value ofh. If h>1, the appropriate

assignments of the exponents arep5 2
3, ,g0511p(h21),g251 and, of course, see~C3a!, g21

50,g2251, and one obtains again~D2! with the following new definition of the coefficientH:

H5~ ik!hH g~21,1,1;!1
dh1

A0
(1) g~21,1;!g~0,1;!2

i~2ik!h

A2
(0) g~1,1;!g~21,2;!J . ~D4!

To obtain these results we have, of course, taken into account the restrictions approp
the real caseas detailed in Appendix C, where the reader may also find the expressions
quantitiesg appearing in~D4!. Note that the remarks made after~D3! apply as well to~D2! with
~D4!.

If instead h50, the appropriate assignments arep5 1
2 ,g05 1

2 ,g251 @and again of course
g2150,g2251; see~C3a!#. There obtain then two coupled equations for the harmonicsc1 and
c0 :

c1t2A1
(3)c1jjj5g~0,1;!c0c1 ,

~D5!

c0j5
1

A0
(1) g~21,1;!uc1u2.

In this case as well the quantitiesg are given in Appendix C.
Finally let us remark that the two real coefficientsA1

(3) andg(21,1;)/A0
(1) in ~D5!, as well as

the modulus of the~generally complex! coefficientg(0,1;), can be replaced by unity by rescalin
j, t andc0 .

APPENDIX E: EQUATIONS WITHOUT QUADRATIC NONLINEARITIES

We repeatedly emphasized that our results refer to thegeneric case, in which Eq.~2.1!, which
provides the point of departure for our approach, does not miss any term whose presence p
important role in our treatment. We already saw in Appendix C where we discussed thereal case
that such a departure from complete genericity entails some significant changes.

In that case, the modifications were mainly associated with thelinear part of ~2.1!. In this
Appendix we outline briefly the quite substantive~additional! modifications that emerge if a
significant departure from genericity is made in thenonlinear part of ~2.1!. In particular, as
indicated by the title of this Appendix E, we assume now that the func
F@u,ux ,uxx , . . . ;u* ,ux* ,uxx* , . . . # that characterizes the nonlinear part of~2.1! containno qua-
dratic contributions, namely we consider the case in which~2.5a! is replaced by

F@«u,«ux ,«uxx , . . . ;«u* ,«ux* ,«uxx* , . . . #5 (
m53

`

«mF (m)@u,ux ,uxx , . . . ;u* ,ux* ,uxx* , . . . #

~E1!
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@note the lower limit in the sum: it is 3 in~E1!, 2 in ~2.5a!#. A motivation for focusing on this case
is because of its applicative relevance. But we also consider it worthwhile to exhibit vi
example the role played by our previous assumption of genericity, entailing thatF be character-
ized by ~2.5a! rather than~E1!.

For simplicity, we restrict our discussion here to thereal case, and we merely outline the main
findings relative to the case we consider, see~E1!, without presenting any detailed analysis of ho
they are obtained: this should be clear enough from our detailed treatment of the generic ca~see
above!. We particularly focus below on the differences from the case treated previously, w
obviously are quite significant: all but the first one of the ten equations~C10!–~C19! contain only
quadratic contributions on their right-hand-sides, while no such terms can be present if n
dratic contributions are featured in~2.1!, see~E1!.

Indeed it is easily seen that unless at least one of the three harmonicsc0 , c2 or c3 is strongly
resonant, via the standard assignments,

p51, q52; g15g2150, gn.0, nÞ1,21, ~E2a!

one gets the standard nonlinear Schro¨dinger equation,

ic1t1A1
(2)c1jj5 i~ ik!hg~21,1,1;!uc1u2c1 , ~E2b!

for the leading hamonicc1(j,t). Here, and always in what follows, we assume of course
A1

(2)(k)Þ0, and that no other harmonic is strongly at resonance. Note, however, that in this
no consistent assignment can be given forg0 andg2 in the framework of our approach; the wa
out is either to assume that all theevenamplitudes vanish identically,c2n50, which is only
admissible if only nonlinear terms ofodd order are present; or to modify appropriately the ba
ansatz~2.9!, by introducing additional rescaled time variables.13,14

Let us next consider the three cases in which one of the three harmonicsc0 ,c2 or c3 is
strongly resonant. We do not treat, again for the sake of simplicity, cases in which more than
of these three harmonics are~simultaneously! strongly at resonance: the diligent reader will ha
no difficulty extrapolating the relevant results from those exhibited next.

Let us start from the simpler case, which happens to be that of the second harmonic.
then assume first that~only! this harmonic,c2(j,t), is strongly at resonance:

A2
(0)~k!5A2

(1)~k!50. ~E3a!

It is then easily seen that the appropriate, relevant, assignments are

p51, q52; g15g215g25g2250; gn.0 for nÞ61,62, ~E3b!

and that they yield

ic1t1A1
(2)c1jj5 i~ ik!h@g~21,1,1;!uc1u21g~22,1,2;!uc2u2#c1 , ~E3c!

ic2t1A2
(2)c2jj5 i~2ik!h@g~21,1,2;!uc1u21g~22,2,2;!uc2u2#c2 . ~E3d!

Hence, in this case, one finds a system of two coupled nonlinear Schro¨dinger equations. Let us
reemphasize that the two real coefficientsA, and the four, generally complex, coefficientsg,
featured by these equations depend on the parameterk, whose value is restricted by the conditio
~E3a!.

Incidentally, it is quite obvious that these results for the second harmonic are immed
extendable, in a completely analogous manner, to the case of thenth harmonic withn.3, if this
harmonic is strongly at resonance. The case of the third harmonic is different~because we are now
focusing on a nonlinearity that is cubic or higher!, as we now see.

Let us then assume that~only! the third harmonic is strongly at resonance,
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A3
(0)~k!5A3

(1)~k!50. ~E4a!

The proper assignments then clearly read

p51, q52; g15g215g35g2350; gn.0, nÞ61,63, ~E4b!

and the corresponfing Schro¨dinger-type equations yielded by the multi-scale reduction techn
read as follows:

ic1t1A1
(2)c1jj5 i~ ik!h$@g~21,1,1;!uc1u21g~23,1,3;!uc3u2#c11g~21,21,3;!~c1* !2c3%,

~E4c!

ic3t1A3
(2)c3jj5 i~3ik!h$@g~21,1,3;!uc1u21g~23,3,3;!uc3u2#c31g~1,1,1;!c1

3%. ~E4d!

These are also two coupled nonlinear Schro¨dinger equations@but of a more general form tha
~E3c! and ~E3d! if the coefficientsg(21,21,3;) andg(1,1,1;) do not vanish#. They feature the
two real coefficientsA, and the six, generally complex, coefficientsg, which depend on the
parameterk, whose value is restricted by the condition~E4a!.

Lastly, let us consider the case in which the zeroth harmonic is~strongly! at resonance, which
in this case entails

A0
(0)~k!5A0

(1)~k!5A0
(2)~k!50, ~E5a!

since the vanishing ofA0
(0)(k) andA0

(2)(k) ~for any value ofk) is guaranteed by our restriction t
the real case, see~2.18a! @and note that in this casec0(j,t) is real, see~C3b!#.

Now one must consider separately theh50 case@see~2.1!#, when the appropriate assign
ments read

p51, q52; g15g215g050; gn.0, nÞ1,21,0. ~E5b!

The corresponding Schro¨dinger-type equation reads

ic1t1A1
(2)c1jj5 i@g~21,1,1;!uc1u21g~0,0,1;!c0

2#c1 , ~E5c!

c0t5@g~21,0,1;!uc1u21g~0,0,0;!c0
2#c0 . ~E5d!

These coupled equations feature three real coefficients,A1
(2) ,g(21,0,1;) andg(0,0,0;), andtwo,

generally complex, coefficients,g(21,1,1;) andg(0,0,1;); they depend, of course, on the param
eter k, whose value must be adjusted so that the~single! condition A0

(1)(k)50 is satisfied@see
~E5a!, and recall thatA0

(0)(k) andA0
(2)(k) vanish automatically in the real case, see~C3b!#.

Finally, if ~E5a! holds buth.0, it is easily seen that the standard assignment~E1! becomes
again applicable, and it yields again the standard nonlinear Schro¨dinger equation@see~E2b! and
~C10!#.
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Bosonic field propagators on algebraic curves
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In this paper we investigate the theory of massless scalar fields on nondegenerate
algebraic curves. The propagator is written in terms of the parameters appearing in
the polynomial defining the curve. This provides an alternative to the language of
theta functions. The main result is the derivation of a third kind differential nor-
malized in such a way that its periods around the homology cycles are purely
imaginary. All the physical correlation functions of the scalar fields can be ex-
pressed in terms of this object. This paper contains a detailed analysis of the
techniques necessary to study field theories on algebraic curves. A simple expres-
sion of the scalar field propagator is found in a particular case, in which the
algebraic curves haveZn internal symmetry and one of the fields is located at a
branch point. ©2000 American Institute of Physics.@S0022-2488~00!01208-1#

I. INTRODUCTION

In the last decade there has been a growing interest in the applications of algebraic cu
several problems in theoretical physics, ranging from the theory of strings to condensed
physics.1–11 Algebraic curves, defined as the region in which a complex polynomial of two v
ables vanishes, provide an explicit and useful representations of Riemann surfaces. Thus,
take advantage of well established results and theorems of algebraic geometry.12–14So far, mainly
applications involving curves with the cyclic monodromy group have been studied negle
other, more interesting examples of algebraic curves. The reason is that computations on
algebraic curves are intrinsically complicated. For instance, it is not known how to expres
theta functions12 in terms of the parameters appearing in the polynomial which defines the c
This is a great handicap, since theta functions are the main building blocks in the construc
tensors with given zeros and poles on Riemann surfaces. Other problems are connected
analytical continuation of multivalued functions on the complex plane. For example, attem
setting up an operator formalism on algebraic curves based on the monodromy of the fie4,15

lead to differential equations of the Riemann monodromy problem type which are too diffic
be solved in practice. On the contrary, there exist several ways to expand free conformal fie
a Riemann surface using the formalism of theta functions.16–24

Some progress in the physical applications of general algebraic curves can be obtai
studying simple conformal field theories. For example, the correlation functions of theb–c sys-
tems have been explicitly computed by means of an operator formalism in Refs. 25 and 2
construction of a generalized Laurent basis in order to expand meromorphic tensors ha
achieved in Ref. 26. In the particular case of nonabelian monodromy groupsDn , n52,3,4,..., it is
possible to show that these elements are connected to a Riemann monodromy problem27 The
relations between freeb–c systems on algebraic curves and new conformal field theories on

a!Electronic mail: fferrari@science.unitn.it
b!On leave of absence from Institute for Theoretical Physics, Wroclaw University, pl. Maxa Borna 9, 50204 Wro

Poland. Electronic mail: jsobczyk@proton.ift.uni.wroc.pl
64440022-2488/2000/41(9)/6444/19/$17.00 © 2000 American Institute of Physics
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complex plane has been explored in Refs. 28 and 29. The operator formalism of Ref. 26 ha
extended to theb–g systems30,31 with integer spins in Ref. 32.

In this paper we study the correlation functions of a free massless scalar field theo
algebraic curves. The form of the curve is restricted only by the requirement of nondegen
The problem is reduced to the computation of a differential of the third kind normalized so th
periods along the homology cycles are purely imaginary.13 To this purpose, we construct here
differential of the third kind using the techniques developed in Ref. 26. Its periods alon
homology cycles are then fixed by adding suitable linear combinations of holomorphic diff
tials. To pick up exactly the linear combination which makes all the periods imaginary is how
not a simple task. As a matter of fact, on general algebraic curves it is not even known h
construct a basis of homology cycles. To overcome this difficulty, we exploit here a s
Riemann bilinear identities,12 the derivation of which is presented for a sake of completenes
Appendix A. These relations uniquely determine the desired differential of the third kind
provide an explicit expression for it in terms of the parameters which characterize the curv
us notice that similar methods, using integral identities like the Riemann bilinear relations,
been already used in the computation of scalar Green functions on hyperelliptic curves.33

The material contained in this paper is organized as follows. In Sec. II we develo
necessary techniques to study field theories on algebraic curves. With respect to Ref.
curves are entirely general apart from the non-degeneracy. To simplify our analysis, the de
polynomials are reduced to a canonical form introducing a set of suitable transformations
relevant differentials like the Weierstrass kernel and the holomorphic differentials are de
together with their divisors. The genus of the curve is obtained from the number of holomo
differentials. This result is checked using a method due of Baker.34 In Sec. III the theory of
massless scalar field theories is briefly reviewed following Ref. 35. It is shown that al
correlation functions can be written in terms of the canonical differential of the third kind
purely imaginary periods around the nontrivial monodromy cycles. This canonical different
constructed as a linear combination of Weierstrass kernels and holomorphic differentials
coefficients of the linear combination are determined by means of a system of Riemann b
equations, which are satisfied if and only if the differential of the third kind has purely imagi
periods. The correlation functions of the scalar fields obtained in this way explicitly depend o
parameters of the polynomial which defines the algebraic curve as desired. Some examp
worked out in Sec. IV. The latter section contains also the derivation of the massless scala
propagator onZn symmetric algebraic curves4 supposing that one of the scalar fields is located
a branch point. This particular case is of some relevance in string theories as explained in
The Riemann bilinear relations used in Sec. III are derived in Appendix A, while in Append
it is shown how integrals on an algebraic curve can be rewritten as integrals of multiv
volume forms over the complex sphere following Ref. 14. Finally, we discuss our results and
possible applications.

II. THE LANGUAGE OF ALGEBRAIC CURVES

Let C be the complex plane andCP1 the complex projective line which coincides with th
compactified complex planeCù$`%. We will describe Riemann surfaces asn-sheeted branched
covers ofCP1.14 The latter are given as algebraic curves defined as the locus of pointsz,y)
PCP13CP1 for which the following equation is satisfied:

F~z,y!50. ~2.1!

HereF(z,y) denotes a polynomial of the form,

F~z,y!5Pn~z!yn1Pn21~z!yn211¯1P1~z!y1P0~z!50 ~2.2!
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with Ps(z)5 (
m50

ns

As,mzm for s50,...,n andnsPN. By a well known theorem, apart from subtletie

coming from singular points, any Riemann surface can be expressed as an algebraic curve
kind. Thus, from now on, we will use the words Riemann surface,n-sheeted branched covers
CP1 and algebraic curves interchangeably. The best known algebraic curves are the hyper
curves, whose polynomialsF(z,y) are simply given byF(z,y)5y22P0(z). Also the slightly
more generalZn symmetric curves will be often mentioned here. They are characterize
F(z,y)5yn2P0(z).

One can solve Eq.~2.1! with respect toy and obtain in this way a functiony(z) which is
multivalued onCP1. Its n branches are interchanged at a set ofNbp branch pointsai ,...,aNnp

PCP1 as will be discussed below. In the following, the branches ofy(z) will be denoted with the
symbol y(a)(z), a50,...,n21 and the first letters of the Greek alphabet will be used as bra
indices. To simplify our analysis, we assume thatPn(z)51 in Eq. ~2.2!. There is no loss of
generality in this assumption. As a matter of fact, ifPn(z)Þ1, one can always perform the chang
of variables

ỹ~z!5y~z!Pn~z! ~2.3!

which does not affect the monodromy properties ofy(z), so that bothỹ(z) and y(z) are mero-
morphic functions on the same Riemann surface. However, it is easy to realize thatỹ satisfies the
equationS i 50

n P̃n2 i(z) ỹn2 i50, where nowP̃n(z)51 as desired andP̃n2 i(z)5Pn2 i(z)Pn
i 21(z)

for i 51,...,n.
Further, we require that none of the branch points is inz5`. Again, this condition does no

restrict the generality of our discussion as we will show below. First of all, the presence
branch point at infinity can be detected investigating the fact that, for large values ofz, the
function y(z) exhibits the following behavior:

y~z! ;
z→`

czp1 lower order terms. ~2.4!

Substituting Eq.~2.4! into Eq.~2.1! and solving the latter at the leading order inz, one determines
the allowed values of the constantsc and p. A branch point atz5` is indicated by nonintege
solutions forp. If this is the case, it is always possible to perform an SL(2,C) transformation inz,
in such a way that the branch point at infinity is moved to a finite region of the plane. Of co
the conditionPn(z)51 does no longer hold in the new variable, but it can be easily restored
the aid of the transformations~2.3! in y. Since the latter transformation does not affect t
monodromy properties ofy, the branch point atz5` cannot be reintroduced.

We are now ready to study the finite branch pointsa1 ,...,aNbp
. Supposing that the curve~2.1!

is nondegenerate~see, for instance, Ref. 14 for the definition of nondegeneracy!, they are the
solutions of the following system of equations:

F~z,y!5Fy~z,y!50, ~2.5!

whereFy(z,y)5dF(z,y)/dy. It is useful to eliminate from Eq.~2.5! the variabley. As an upshot,
one obtains a polynomial equation inz of the kind r (z)50. Apart from very special curves, in
which r (z) has multiple roots, its degree coincides with the number of branch pointsNbp . Let us
notice that it is possible to derive the resultantr (z) of Eq. ~2.5! explicitly using the dialitic method
of Sylvester.36

To each branch pointai one can associate an integern i , called the ramification index and
defined as the number of branches ofy(z) that are exchanged at that branch point. Clearly
<n i<n. At a branch point of ramification indexn i , the polynomialF(z,y) vanishes togethe
with its first n i21 partial derivatives iny. The genusg of the Riemann surface~2.1! is related to
the ramification indices of the branch points and the number of sheetsn composing the curve a
follows ~Riemann–Hurwitz theorem!:
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2g22522n1(
s51

L

~ns21!. ~2.6!

The genusg can be explicitly computed once the form of the Weierstrass polynomial is kn
exploiting the Baker’s method, see Ref. 34. This will be done at the end of this section.

On a Riemann surfaceSg represented as ann-sheeted cover ofCP1 there is a ‘‘canonical’’
complex structure inherited fromCP1. A possible atlas onSg is the following. Let us putR
5maxuaiu andr5minuai2aju for i , j 51,...,Nbp . Near a branch pointai of ramification indexn i , or
more precisely in the open diskuz2ai u,r, we choose the local coordinatejn i5z2ai . For uzu
.R, the local coordinate isz851/z. Let us notice that on the algebraic curve the setuzu.R
corresponds to an union ofn disjoint discs. On the remaining open sets the local coordinatez
~the same letterz denotes here coordinates onn different branches ofSg ; this convention is very
useful and, hopefully, does not generate ambiguities.!

In the rest of this section, we discuss the construction of the relevant meromorphic tenso
the computation of their divisors. We are interested in tensors of the kindT(a)(z)dzl, with l
upper or lower indices depending on the sign ofl50,61,62,... . The treatment of tensors cha
acterized by half-integer values ofl is possible only on hyperelliptic curves and will not b
considered here. The meromorphic functions correspond to the casel50. The branch indexa has
been added to recall that a tensorT is multivalued onCP1 due to its dependence ony(z). To any
meromorphic tensorTdzl with zeros atzr of order kr and poles atps of order l s , one can
associate a divisor@T#,12

@T#5(
r

krzr2(
s

l sps . ~2.7!

kr and l s are integers whilezr and ps denote points on the algebraic curve. The degree of
divisor @T# is defined as follows:

deg@T#5(
r

kr2(
s

l s . ~2.8!

The most general tensor on an algebraic curve is of the form,

T~a!~z!dzl5Q~z,y~a!~z!!
dzl

@Fy~z,y~a!~z!!#l , ~2.9!

where Q(z,y) is a rational function ofz and y. The reason for which the factor@Fy(z,y(a)

3(z))#2l has been singled out in~2.9! will soon become clear. From Eq.~2.9! it is evident that,
in order to construct tensors on an algebraic curve with poles and zeros at given points
necessary to know the divisors of the basic building blocksdz, y, andF(z,y). This can be done
quite explicitly for the general polynomials described by Eq.~2.2! if Pn(z)51 and if there are no
branch points at infinity. We only need the additional assumption that the polynomialsP1(z) and
P0(z) appearing inF(z,y) have no roots in common. In this way, Eq.~2.1! is approximated for
small values ofy by the relationy;2P0(z)/P1(z). Therefore, the zerosq1 ,...,qn0

of y(z) occur
for values ofz corresponding to the roots ofP0(z). To study the behavior ofy(z) at infinity we
try the ansatz~2.4! in Eq. ~2.1!. If we retain only the leading order terms ofy(z) and of the
polynomialsPs(z) appearing in~2.2!, then eq.~2.1! is approximated by

cnzpn1¯1As,ns
cszps1ns1¯1A0,n0

zn050. ~2.10!

Since by assumptiony(z) is not branched at infinity, there should ben different solutions forc
that satisfy~2.10!. Clearly, this can be true only if the first and last monomialscnzpn andA0,n0

zn0
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entering in Eq.~2.10! are growing with the same power ofz near the pointz5`, i.e., zpn;zn0.
Moreover, all the other leading order monomials appearing in Eq.~2.10! must not contain higher
order powers inz, i.e.,

ps1ns<n0 s51,...,n21. ~2.11!

Thus, we obtain forp the following result:

p52
n0

n
51,2,... . ~2.12!

This implies that the integern0 is a multiple ofn.
In this way we have derived the divisor ofy,

@y#5(
r 51

n0

qr2 (
j 50

n21
n0

n
` j . ~2.13!

The symbols̀ j denote the points on the curve corresponding to the pointz5` in CP1 . In the
covering of the algebraic curve described above they belong to then disjoint disks where the
condition uzu.R is satisfied. As we see from the above equation, the degree of the divisor@y# is
zero as expected for a meromorphic function. Analogously, it is possible to compute the di
of Fy(z,y) anddz using the methods developed in Ref. 26,

@Fy#5(
r 51

nbp

~n r2q!ar2~n21! (
j 50

n21
n0

n
` j , ~2.14!

@dz#5(
r 51

nbp

~n r21!ar22(
j 50

n21

` j . ~2.15!

Exploiting the above divisors, one is able to prove that, ifl>2, the following tensor has only a
simple pole at the pointz5w on the sheeta5b:

Kl
~ab!~z,w!dzl5

1

z2w

F~w,y~a!~z!!

@y~a!~z!2y~b!~w!#

dzl

@Fy~z,y~a!~z!!#l , ~2.16!

where the indicesa and b label the branches inz and w, respectively. The tensorKl
(ab)

3(z,w)dzl will be hereafter called the Weierstrass kernel. Ifl51, it is easy to check that

nuw
~abg!~z!dz5K1

~ab!~z,u!dz2K1
~ag!~z,w!dz ~2.17!

is a differential of the third kind with two simple poles inz5u andz5w on the sheetsa5b and
a5g respectively. Let us note that we follow here the classification of differential provide
Ref. 37. Accordingly, third kind differentials are defined as meromorphic differentials with at
simple poles. This definition differs for instance from that of Ref. 12.

The residue ofnuw
(abg)(z)dz is 11 atz5u and21 atz5w. For our purposes we will also nee

differentials of the first kind, or holomorphic one forms and differentials of the second kind, w
consists of meromorphic one forms with vanishing residue. Any meromorphic differential ca
decomposed in terms of the elements of a generalized Laurent basis given by25

f k,i~z!dz5
z2 i 21yn212k~z!

Fy~z,y~z!!
dz H i 50,1162,...

k50,...,n21 . ~2.18!

For the functions, instead, it is possible to use the following basis:
                                                                                                                



of the

s of
qs.

this
e

is
e
e

6449J. Math. Phys., Vol. 41, No. 9, September 2000 Bosonic field propagators on algebraic curves

                    
fk,i~z!5z2 i~yk~z!1yk21~z!Pn21~z!1yk22~z!Pn22~z!1¯1Pn2k~z!!, ~2.19!

where k and i take the same values as in Eq.~2.18!. The elements of the basis~2.19! look
apparently complicated, yet they are very convenient in order to expand the differentials
third kind ~2.17!. As a matter of fact, it is possible to show that26

nuw
~abg!~z!dz5 (

k50

n21 f k,21
~a! ~z!fk,0

~b!~u!

z2u
dz2 (

k50

n21 f k,21
~a! ~z!fk,0

~g!~w!

z2w
dz. ~2.20!

To construct a basis of holomorphic differentials it is sufficient to find all possible value
s andk in Eq. ~2.18! for which f k,s(z)dz has no poles. It is easy to check with the help of E
~2.13!–~2.15! that such a basis is given by

V~ j ,sj !
~z!dz5

zsjyj~z!

Fy~z,y~z!!
dz, ~2.21!

where, forp51,2,...,

j 50,...,n222dp,1 , sj50,...,~n212 j !p22, dp,15H 1 if p51

0 if p.1
. ~2.22!

The number of the above holomorphic differentials coincides with the genus of the curve~2.2!. A
straightforward computation gives

g5
pn~n21!22~n21!

2
. ~2.23!

The above calculation ofg can be verified using the already mentioned method of Baker. To
purpose, let us consider a two dimensional integer lattice on thex–y plane. One draws a triangl
OAC with vertices at the pointsO5(0,0), A5(a,0), andC5(0,b), wherea5n and b5pn.
According to Baker’s method, the genus of the curve~2.2! with the additional constraints~2.11!–
~2.12! andPn(z)51 coincides with the numberg̃ of lattice points contained inside the area of th
triangle, the boundary excluded. Let us evaluateg̃. First of all, one counts the number of lattic
points T inside the rectangleOABC, whereB5(a,b), excluding also the boundary. Then on
subtracts the number of linksD lying on the diagonalAC. One finds thatT5(pn21)(n21) and
D5n21. Clearly,

g̃5
T2D

2
~2.24!

and it is easy to see that this gives for the genus of the curve~2.2! exactly the result of Eq.~2.23!,
i.e., g̃5g.

Finally, a possible metric on the curve~2.2! is given by

ds25 r̃zz̄dzdz̄5~11zz̄!m
dzdz̄

uFy~z,y!u2
, m5p~n21!22. ~2.25!

III. SCALAR GREEN FUNCTIONS ON ALGEBRAIC CURVES

In this section we consider the free bosonic scalar field theory described by the action

S5E
Sg

d2z]w]̄w ~3.1!
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defined on a general algebraic curvesSg discussed above. A conformal metric onSg is under-
stood in~3.1!. Moreover,d2z is a shorthand notation for (1/2i )dzdz̄.

Classically, a scalar field in the two dimensional field theory~3.1! satisfies the Poisson equa
tion and can be interpreted as an electrostatic potential of a Coulomb system of charges.]zwdz is
a meromorhic differential with the sum of residues at poles equal to zero. Consequently, th
of charges on the Riemann surface must be zero as well. Thus we consider a system of chqi

set in the positionszi , i 51,...,M interacting with another system of chargesqj8 located at the
points wj , j 51,...,N and satisfying the relations(

i
qi5(

j
qj850. The corresponding correlatio

function

G~z1¯zM ;wi¯wN!5(
i 51

M

(
j 51

N

qi^w~zi ,z̄i !w~wj ,w̄j !&qj8 ~3.2!

can be computed once the following Green function is known:

Gz~z;u,w!5^]zw~z,z̄!@w~u,ū!2w~w,w̄!#&. ~3.3!

As a matter of fact, one can prove the following relation:

G~z1¯zM ;wi¯wN!5(
i 51

M

(
j 51

N

qiqj8 ReF E
z0

zi
dẑ ]zw~z,z̄!@w~wj ,w̄j !2w~u,ū!#&G

5
1

2 (
i 51

M

(
j 51

N

qiqj8F E
z0

zi
dẑ ]zw~z,z̄!@w~wj ,w̄j !2w~u,ū!#&1c.c.G .

~3.4!

Moreover, onceGz(z;u,w) is known, one obtains also the correlator

Gzu~z;u!1^]zw~z,z̄!]uw~u,ū!& ~3.5!

as it can be seen by differentiating both sides of Eq.~3.3! with respect tou. For these reasons, w
will limit ourselves to the computation ofGz(z;u,w).

To simplify the notations, we introduce the composite indicesI ,J,K,... with I 5( i ,si), J
5( j ,sj ), etc. For instance, in this notationV I(z)dz5V ( i ,si )

(z)dz. It is now possible to construc
Gz(z;u,w) starting from any third kind differential with two poles atz5u,w and adding to it a
suitable linear combination of holomorphic differentials. Using for example the third kind di
ential defined in Eq.~2.17!, we have in general,

Gz~z;u,w!dz5nuw~z!dz1(
I

BI~u,w!V I~z!dz. ~3.6!

Following the strategy of Ref. 38, we try to determine the coefficientsBI(u,w) exploiting the
fact that the fieldsw(z,z̄) are single-valued functions onSg , so that they must obey the relation

R
gs

dw5 R
gs

]zwdz1 R
ḡs

]̄ z̄wdz̄50, ~3.7!

where thegs , s51,...,2g, form a basis of homology cycles onSg . For consistency, the right-han
side of Eq.~3.4! has to be single-valued along the homology cycles. This condition is satisfi
and only if the correlatorGz(z;u,w) is a differential of the third kind normalized in such a wa
that all its periods are purely imaginary. Let us denote this normalized differential with the sy
vuw(z)dz. Thus we require that
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Gz~z;u,w!dz5vuw~z!dz. ~3.8!

The above equation determinesGz(z;u,w)dz uniquely. Comparing in fact Eq.~3.6! with the
above equation and imposing the condition thatnuw(z)dz1S IBI(u,w)V I(z)dz has imaginary
periods around all homology cycles, one obtains the following linear system of 2g equations in the
2g real unknowns Re@BI(u,w)# and Im@BI(u,w)#:

ReF R
gs

nuw~z!dz1(
I

BI~u,w! R
gs

V I~z!dzG50 s51,...,2g. ~3.9!

Unfortunately, the construction of a basis of homology cycles on algebraic curves of the
discussed here is a complicated mathematical problem. As a consequence, the
rgs

nuw(z)dz andrgs
V I(z)dz cannot be evaluated in a closed form. An exception is provided

theZn symmetric curves, where these periods are expressed as definite integrals having the
points as extrema. In the present case, however, even the positions of the branch points
known. The reason is that they are the roots of the polynomialr (z)50, wherer (z) is the resultant
of the system~2.5! as discussed in the previous section. Clearly, those roots cannot be com
analytically apart from simple cases.

To avoid these difficulties, we evaluate the coefficientsBI(u,w) using the Riemann’s bilinea
equations,13

05E
Sg

vuw`V̄J5E
Sg

d2zvuw~z!V̄ I~ z̄!, ~3.10!

where theV̄J( z̄)’s denote the antiholomorphic differentials onSg . In Appendix A we will show
that the above relation holds if and only ifvuw(z)dz is a normalized differential of the third kind
with imaginary periods along the nontrivial homology cycles ofSg .

The integral in~3.10! is to be understood as a sum over all possible values ofz and y for
which the relationF(z,y)50 is satisfied. Supposing that the curveSg is nondegenerate, Eq
~3.10! can be put in a form which is more convenient for explicit computations,

I 5E
CP1

d2z(
a50

n21

f zz̄~z,z̄;y~a!~z!,y~a!~z!!. ~3.11!

A detailed proof of Eq.~3.11! is provided in Appendix B~see also Ref. 14!. Once the polynomial
F(z,y) is given, it is possible to compute the integral~3.11! numerically. As a matter of fact, to
evaluate the integrand

I zz̄~z,z̄!5 (
a50

n21

f zz̄~z,z̄;y~a!~z!,y~a!~z!! ~3.12!

appearing in~3.11! at any given pointzPCP1, we just need to invert the equationF(z,y)50. The
latter is a polynomial equation of degreen from which one derives then roots y(0)

3(z),...,y(n21)(z). The values ofy(0)(z),...,y(n21)(z) are obtained by complex conjugation. Th
advantage of this strategy is that all branches ofy(z) enter symmetrically in the sum of Eq.~3.12!.
Thus it is not necessary to know how these branches are exchanged at the branch points
other information which requires the analytic continuation ofy(z).

Using the identity~3.8!, we substitute in Eq.~3.10! the expression ofGz(z;u,w)dz in terms of
the not canonically normalized differentialnuw(z)dz given by Eq.~3.6!. In this way, we obtain
linear equations for the coefficientsBI(u,w),
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05E
Sg

nuw`V̄J1(
I

BI~u,w!E
Sg

V I~z!∧V̄J ~3.13!

whose solution in matrix form is given by

BI~u,w!52(
J

F E
Sg

nuw`V̄JGF E
Sg

VJ~z!`V̄ I G21

. ~3.14!

In compact form the final result can be written up as~a,b,g label sheets of the Rieman
surface!

Gz
~abg!~z;u,w!5

1

detAIJ
detS nuw

~abg!~z!

FJ
~a!~u!2FJ

~b!~w!
U V I

~a!~z!

AIJ
D , ~3.15!

where

AIJ[A~ i ,si !~ j ,sj !
5E

CP1
d2z(

a50

n21
@y~a!~z!# i@y~a!~z!# j

uFy~z,y~a!~z!!u2 zsi z̄sj ~3.16!

and

FJ
~b!~u![F~ j ,sj !

~b! ~u!5 (
k50

n21

fk,0
~b!~u! (

a50

n21 E
CP1

d2z
@y~a!~z!#n212k@y~a!~z!# j z̄sj

uFy~z,y~a!~z!!u2~z2u!
. ~3.17!

In Eq. ~3.16! the range of the integersi, j, si , andsj is given by Eq.~2.22!. Moreover, we notice
that the integrals in Eqs.~3.16! and ~3.17! are convergent, since the integrands have at m
harmless poles of the first order. These singularities occur only in the integrals~3.17! at the points
z5u,w and at infinity. The singularity at infinity is present only whenk50 andp.1. Clearly, the
discussion following Eq.~3.11! applies also to the particular case of the integrals in~3.16! and
~3.17!, which can thus be computed numerically without problems of analytical continuation

Equations~3.15!–~3.17! provide an explicit representation of the correlatorGz(z;u,w), where
neither the knowledge of a basis of homology cycles nor the analytic continuation of multiv
functions are necessary. This is a great advantage, since the latter are formidable problem
case of general curves like those discussed in this paper. Of course, the integrals~3.16!–~3.17! are
complicated and cannot be computed analytically, but only numerically, exploiting for instanc
recipe explained after Eq.~3.11!.

To conclude this section, we study the behavior ofGz(z;u,w)dz for large values ofu,
showing that there are no spurious divergences in this case. From Eqs.~2.20! and ~3.17! one
realizes thatGz(z;u,w)dz depends onu through the function

f ~u!5
fk,0~u!

z2u
. ~3.18!

Whenu becomes large, one can write

f ~u!5 f div~u!1 f fin~u!, ~3.19!

where f div(u) diverges inu5` while f fin(u) remains finite. It is easy to see that

f div~u!52
fk,0~u!

u (
i 50

pk22 S z

uD i

~3.20!

with
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k.0 if p.1 ~3.21!

and

k.1 if p51. ~3.22!

Using the above formula, we extract the diverging contributionsGz
div(z;u,w)dzwhich are present in

the correlatorGz(z;u,w)dz. To this purpose, it is convenient to define the composite index

Ī ~k,i !5~n212k,i !. ~3.23!

Hereafter, the dependence ofĪ on k and i will be only understood for simplicity. After some
calculations one finds

Gz
div~z;u,w!5

1

detAIJ
(

k511dp,1

n21

(
i 50

pk22
fk,0~u!

u
detS V Ī ~z!

AĪ J
U VK~z!

AJK
D . ~3.24!

Clearly,

detS V Ī ~z!

AĪ J
U VK~z!

AJK
D50 ~3.25!

showing thatGz(z;u,w)dz has no singularities for large values ofu as desired. The absence
divergences whenw approaches infinity can be proved in the same way.

IV. EXAMPLES

A first nontrivial example of curves which can be explicitly worked out is provided by
algebraic curve,

y313py22q50. ~4.1!

q(z) is a polynomial of degreen056, while p(z) has degreen1<2n0/354. Thus, exploiting the
formulas of Sec. II, one realizes that the curve~4.1! corresponds to the particular casep52 and
g54. For future convenience let us put

j6~z!5A3 q6Aq21p3. ~4.2!

Solving Eq.~4.1! with respect toy one finds

ya5eaj11e2aj2 , a50,1,2, e5e2p i /3. ~4.3!

The four holomorphic differentials of the above curve are

V~0,s0!~z!dz5
zs0dz

Fy
V~1,1!~z!dz5

ydz

Fy
, ~4.4!

wheres050,1,2 andFy53(y21p). The differential of the third kind of Eq.~2.17! becomes in
this particular case,

nuw~z!dz5
y2~z!1y~z!y~u!1y2~u!13p~u!

Fy~z,y~z!!~z2u!
2~u↔w!. ~4.5!

At this point, we are ready to compute the matrix elementsAIJ andF I . They will be expressed a
integrals of single-valued forms onCP1. To simplify the notations, let us first define the followin
functions:
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F~z!5 )
a50

2

Fy~z,y~a!~z!!, ~4.6!

a~z,z̄!5j1
2 ~z!j1

2 ~z!1j2
2 ~z!j2

2 ~z!1p~z!p~z!, ~4.7!

b~z,z̄!5j1
2 ~z!j2

2 ~z!2p~z!j1
2 ~z!2p~z!j2

2 ~z!, ~4.8!

c~z,z̄!5j1
2 ~z!j2

2 ~z!2p~z!j2
2 ~z!2p~z!j1

2 ~z!, ~4.9!

A~z,z̄!53~a22bc!, ~4.10!

B~z,z̄!53@j1~b22ac!1j2~c22ab!#, ~4.11!

C~z,z̄!5@j1~c22ab!1j2~b22ac!#, ~4.12!

D~z,z̄!53@~j1j11j2j2!~a22bc!1j2j1~b22ac!1j1j2~c22ab!#, ~4.13!

E~z,z̄!53@2j1j2~a22bc!1j2
2 ~b22ac!1j1

2 ~c22ab!#, ~4.14!

F~z,z̄!53@~j2
2 j11j1

2 j2!~a22bc!1~j1
2 j122pj2!~b22ac!1~j2

2 j222pj1!~c22ab!#.

~4.15!

The above functions are not meromorphic, since they depend both onz and z̄, but are single-
valued onCP1 . To prove this fact, we notice that under the most general monodromy tran
mation for going from one branch of the curve to anotherj1 behaves as

j1~z!→eaj6~z! a50,1,2 mod 3 ~4.16!

as can be easily seen from the explicit expression ofj1 given by Eq.~4.2!. The above equation
fixes also the monodromy properties ofj2(z). In fact, sincej1(z) and j2(z) must satisfy the
relation j1(z)j2(z)52p(z), wherep(z) is a single-valued function ofz, it is clear from Eq.
~4.16! that j2(z) should transform as follows:

j2~z!→e2aj7~z!. ~4.17!

Moreover, taking the complex conjugate of both members of Eqs.~4.16! and ~4.17!, one finds

j1~z!→e2aj6~z!, ~4.18!

j2~z!→eaj7~z!. ~4.19!

It is now easy to check that the functions defined in Eqs.~4.10!–~4.15! are invariant under the
transformations~4.16!–~4.19!, so that they are single-valued onCP1. In terms of these functions
the matrix elementsAIJ andF I appearing in the normalized differential of the third kind~3.15!
read as follows:

A~0,s0!~0,s
08!5E

CP1
d2z

zs0z̄s08

uF~z!u2 A~z,z̄!, ~4.20!

A~1,0!~0,s0!5E
CP1

d2z
z̄s0

uF~z!u2
B~z,z̄!, ~4.21!
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A~0,s0!~1,0!5E
CP1

d2z
zs0

uF~z!u2 C~z,z̄!, ~4.22!

A~1,0!~1,0!5E
CP1

d2z
D~z,z̄!

uF~z!u2
, ~4.23!

F~0,s0!~u!5E
CP1

d2z
z̄s0E~z,z̄!

uF~z!u2~z2u!
1y~u!E

CP1
d2z

z̄s0B~z,z̄!

uF~z!u2~z2u!
1~y2~u!

13p~u!!E
CP1

d2z
z̄s0A~z,z̄!

uF~z!u2~z2u!
, ~4.24!

F~1,0!~u!5E
CP1

d2z
F~z,z̄!

uF~z!u2~z2u!
1y~u!E

CP1
d2z

D~z,z̄!

uF~z!u2~z2u!
1~y2~u!

13p~u!!E
CP1

d2z
C~z,z̄!

uF~z!u2~z2u!
. ~4.25!

Substituting the matrix elements~4.20!–~4.25! and the third kind differential~4.5! in Eq. ~3.15!,
we obtain the explicit expression of the correlator~3.3!. As we see, all the integrands appearing
the right-hand sides of Eqs.~4.20!–~4.25! are one-valued on the complex sphere as desired, s
they depend on the one-valued functions~4.6!–~4.15!. In this way the integrals in~4.20!–~4.25!
can be numerically evaluated without the problem of performing the analytic continuation ofy(z).
Also the problem of constructing a basis of homology cycles has been avoided.

Let us now briefly discuss the simple case of theZn algebraic curves of the kind

yn5p0~z!, ~4.26!

wherep0(z) is a polynomial of degreen05n,2n,3n,... . Thegenus of these curves is provided b
the general formula~2.23!. For p.1, i.e.,n0.n, the zero modes are

V j ,sj
~z!dz5

zsjyj~z!

yn21 dz. ~4.27!

The matrix elementsAIJ are given by

A~ i ,si !~ j ,sj !
50 iÞ j , ~4.28!

A~ j ,sj !~ j ,sj !
5nE

CP1
d2zzsj z̄sj uyȳu12n1 j . ~4.29!

Clearly, the integrand in the right-hand side of the above equation is single-valued. In the
way one can discuss the elementsF I(u). This is a straightforward exercise which will not b
performed here. Instead, we compute on aZn symmetric curve the propagator

G~z;a!5^w~z,z̄&w~a,ā!&, ~4.30!

wherea is one of thepn branch points of the curve~4.26!. The starting point is the Weierstras
kernel at a branch point, which in the case of aZn symmetric curve takes a particularly simp
form ~put y(a)50 in ~2.16!!,

K1~z,a!dz5
1

n

dz

z2a
. ~4.31!
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We define the following function on the complex sphere,

G~z,w!5
1

n
logS uz2wu2

~11zz̄! D , ~4.32!

which has only logarithmic singularities forz→w. G(z,w) satisfies the identity

]z] z̄G~z,w!5
p

n
dzz̄

~2!~z2w!2
1

n

1

~11zz̄!2 , ~4.33!

wheredzz̄
(2)(z2w) is defined by

E
CP1

d2z f~z,z̄!dzz̄
~2!~z2w!5 f ~w,w̄!. ~4.34!

~4.33! is the relation satisfied by a Green function on the complex sphere with the metricds2

5dzdz̄/(11zz̄)2. Let us now consider a two-formf (z,z̄)5 f zz̄(z,z̄)(dz̄∧dz/2i ) on Sg with suf-
ficiently smooth behavior.f zz̄ is in general a multivalued function onCP1 . Exploiting Eq.~3.11!,
we have

E
Sg

d2w fww̄~w,w̄;y,ȳ!d̃zz̄
~2!~z2w![ (

a50

n21 E
CP1

d2w fww̄~w,w̄;y~a!~w!,y~a!~w!!dzz̄
~2!~z2w!

5 (
a50

n21

f zz̄
~a!~z,z̄!. ~4.35!

On Zn symmetric curves near branch points all the branches ofy(z) coincide. For this reason, i
z→a, Eq. ~4.35! becomes

E
Sg

d2w fww̄~w,w̄;y,ȳ!d̃zz̄
~2!~a2w!5n fzz̄~z,z̄!uz5a

z̄5ā
. ~4.36!

Thus, the proper definition of ad-function onSg at a branch point is (1/n) d̃zz̄
(2)(z2a).

We try now an ansatz,

G~z;a!5G~z,a!2
1

A E
Sg

d2wr̃ww̄G~z,w! ~4.37!

for the propagator~4.30!. In the obvious wayG is treated in~4.37! as an object onSg, the metric
r̃ww̄ is given by Eq.~2.25!, while

A5E
Sg

d2wr̃ww̄ ~4.38!

is the area ofSg . We notice that, by construction, the metricr̃ww̄ is Zn symmetric, so that all its
branches coincide. As a consequence,

r̃ww̄~w,w̄;y~a!~w!y~a!~w!!5rww̃~w,w̄!, ~4.39!

whererw,w̄(w,w̄) is a tensor onCP1 . Thus, exploiting again Eq.~3.11!, we can put
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A5nE
CP1

d2wrww̄~w,w̄!. ~4.40!

Applying now the Laplacian onSg to both members of Eq.~4.37! and using Eq.~4.33!, we find
that G(z,a) satisfies the following identity:

]z] z̄G~z,a!5pd̃zz̄
~2!~z2a!2

p

A
r̃zz̄~z,z̄!. ~4.41!

As explained above, thed-function on the algebraic curve near a branch pointa is exactly
(1/n)dzz̄

(2)(z2a). Moreover, all the branches of the metricr̃zz̄ coincide withrzz̄(z,z̄). Thus we
conclude that Eq.~4.37! is the desired propagator of the scalar fields when one of the field
located at a branch point.

V. CONCLUSIONS

In this paper the correlatorGz(z;u,w)dz defined in Eq.~3.3! has been computed on th
general algebraic curves~2.2!. This Green function plays a fundamental role in the theory
massless scalar fields, since all other correlation functions can be written in terms of its deriv
or integrals as shown by Eqs.~3.4! and~3.5!. The expression ofGz(z;u,w)dz given in Eq.~3.15!
depends explicitly on the constant parametersAs,m of the polynomial~2.2! as desired. In fact, it
contains the Weierstrass kernel and the holomorphic differentials which have been derived
~2.16! and ~2.21!, respectively. The calculation of the coefficientsAIJ and fJ

a(w), in principle
more tricky, has been reduced to the evaluation of the integrals~3.16! and~3.17! on the complex
sphere. The latter may be very complicated, especially if the polynomial~2.2! has high degreen,
but they do not hide outstanding technical difficulties and can be performed at least nume
~see Eq.~3.11! and the following discussion!. Actually, the integrands appearing in Eqs.~3.16! and
~3.17! should also be single-valued, because they consists in the sum over all branches of
valued complex forms. This fact has been explicitly shown in the particular example of an
braic curve of genus four worked out in Sec. IV. However, this example shows also tha
single-valuedness is realized in a very nontrivial way. Let us notice that the absence of tec
problems in the computation ofGz(z;u,w)dz was not granteda priori. For instance, choosing th
set of Eqs.~3.9! in order to determine this Green function, we would have not been abl
compute the necessary line integrals along the homology cycles even numerically, since it
known how to construct an homology basis on general algebraic curves.

Concluding, the formula~3.15!, which gives the explicit form of the canonical third kin
differential with purely imaginary periods, is new in the theory of algebraic curves and has
potential applications beyond the theory of free scalar fields. Let us remember in fact tha
canonical differential is well known in the mathematical literature and has already been w
used in physical applications of Riemann surfaces. Also the propagator at the branch points
~4.37! may have some interest in string theories. Finally, we have developed in this paper s
techniques which might be useful for whoever is wishing to work on general algebraic curv
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APPENDIX A: DERIVATION OF THE RELEVANT RIEMANN BILINEAR FORMULAS

In this Appendix we show that the condition~3.13! is valid if and only if vuw(z)dz is a
differential of the third kind normalized in such a way that all its periods around the homo
cycles are imaginary. In the proof, it will be convenient to use the representation of the Rie
surfaceSg as a polygonM5P i 51

g ajbjaj
21bj

21, where$ai ,bi u i 51,...,g% is a canonical basis o
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homology cycles.12 Accordingly, the notation will be changed with respect to the rest of the pa
Let x,y be real coordinates onM and z5x1 iy , z̄5x2 iy . The basis of canonical holomorphi
differentials onSg will be denoted as follows:

v i5v i~z!dz i51,...,g. ~A1!

The v i are normalized in such a way that

R
ai

v j5d i j , R
bi

v j5Ti j ~A2!

for i , j 51,...,g. TheTi j 5Tji are elements of the period matrixT. This is a symmetricg3g matrix
with positive definite imaginary part. SinceM is simply connected, there exist holomorphic fun
tions f j (z) such that

d f j~z!5v j~z!dz. ~A3!

In the above equationd denotes the external derivative operator such thatd250. Analogously, one
can define the antiholomorphic differentialsv̄ j5v̄ j ( z̄)dz̄ and functionsf̄ j ( z̄). Finally, third kind
differentials will be denoted with the symbolvPQ5vPQ(z)dz, with P,QPM . We are now ready
to prove the following:

Proposition:The conditions

E
M

vPQ∧v̄ j50 j 51,...,g ~A4!

are verified iffvPQ is normalized in such a way that all its periods are imaginary, i.e.,

R
ai

vPQ52 R
ai

vPQ , R
bi

vPQ52 R
bi

vPQ . ~A5!

Proof: We assume first that Eq.~A4! is true. Introducing the antiholomorphic functionsf̄ j ( z̄)
and exploiting the Stoke’s theorem after an integration by parts, we obtain

052E
]M

f̄ jvPQ1E
M

f̄ jdvPQ , ~A6!

where]M is the boundary of the polygonM. Using the Riemann’s bilinear formula,13

E
]M

f̄ jvPQ5(
l 51

g F R
al

v j R
bl

vPQ2 R
bl

v j R
al

vPQG ~A7!

and remembering Eq.~A2!, the first term in the right-hand side of Eq.~A6! becomes

E
]M

f̄ jvPQ5 R
bj

vPQ2(
l 51

g

T̄l j R
al

vPQ . ~A8!

The second term gives instead

E
M

f̄ jdvPQ5E
M

f̄ j~ ]̄ z̄vPQ!dz̄∧dz, ~A9!

where]̄ z̄ denotes partial derivative with respect toz̄. At this point, we notice that
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]̄ z̄vPQ~z!5p@d~2!~z,P!2d~2!~z,Q!# ~A10!

anddz̄∧dz52idx∧dy52id2x, whered (2)(z,w) is the Diracd-function onM defined in such a
way that

E
M

f ~z,z̄!d~2!~z,w!d2x5 f ~w,w̄!. ~A11!

Thus

E
M

f̄ jdvPQ52p i ~ f̄ j~ P̄!2 f̄ j~Q̄!!52p i E
Q

P

v j . ~A12!

Substituting Eqs.~A8! and ~A12! in Eq. ~A6! we obtain the relation

R
bj

vPQ2(
l 51

g

T̄l j R
al

vPQ52p i E
Q

P

v j . ~A13!

On the other side, exploiting similar arguments to evaluate the integral*vPQ`v j ~which neces-
sarily vanishes sincevPQ is a meromorphic differential anddz∧dz50) one has13

R
bj

vPQ2(
l 51

g

Tl j R
al

vPQ52p i E
Q

P

v j . ~A14!

Equations~A13! and ~A14! provide a system of linear equations for the 2g unknown periods of
vPQ around the homology cycles. After solving it, one finds

R
ak

vPQ52p i (
j 51

g

~ Im@T# ! jk
21 ImF E

Q

P

v j G , ~A15!

R
bj

vPQ52p i(
l 51

g

Re@Tl j #(
k51

g H ~ Im@T# !kl
21 ImF E

Q

P

vkG J 12p i ReF E
Q

P

v j G , ~A16!

where Im@T# is the imaginary part of the period matrix and (Im@T#)kl
21 are the elements of its

inverse. From Eqs.~A15! and ~A16! it is clear that the periods ofvPQ are purely imaginary as
desired.

Conversely, let us assume that~A5! is true. Evaluating as before*MvPQ∧v̄ j we obtain

E
M

vPQ∧v̄ j5(
l 51

g

T̄l j R
al

vPQ2 R
bj

vPQ12p i E
Q

P

v j . ~A17!

Moreover, the complex conjugate of Eq.~A14! becomes with the help of Eqs.~A5!,

R
bj

vPQ5(
l 51

g

T̄j l R
al

vPQ12p i E
Q

P

v j . ~A18!

Substituting the above value of thebj -periods ofvPQ in Eq. ~A17! we recover exactly Eq.~A4!.
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APPENDIX B: REDUCTION OF VOLUME INTEGRALS TO INTEGRALS ON THE
COMPLEX SPHERE

In this Appendix we show that the surface integral overSg of a tensorf zz̄(z,y) can be
rewritten in the form~3.11!. The material presented here can be found in standard textbooks14–39

To keep the notations as simple as possible, we will omit to write explicitly the dependen
f zz̄(z,y) on the conjugate variablesz̄,ȳ. We start from

I 5E
Sg

d2z fzz̄~z,y! ~B1!

supposing thatf zz̄(z,y) is such that the above integral is convergent. Integrals of the kind~B1! are
to be understood as a sum over all values ofzPCP1 andy for which Eq.~2.1! is satisfied, i.e.,

I 5EzPCP1

F~z,y!50

f zz̄~z,y!. ~B2!

Since we assume that our curves are not degenerate, it is possible to write

I 5E
CP1

d2zE
CP1

d2yAG fzz̄~z,y!d~2!~F~z,y!!, ~B3!

whereAG is the determinant of the metric in they domain and the Diracd-function is defined as
follows:

E
CP1

d2yAG f~y!d~2!~y2y8!5 f ~y8!. ~B4!

It is now convenient to choose a conformally flat metric,

Gyy5Gȳȳ50, Gyȳ5Gȳy , ~B5!

so that Eq.~B3! becomes

I 5E
CP1

d2zE
CP1

d2y fzz̄~z,y!dyȳ
~2!~F~z,y!!. ~B6!

Locally, we have that

dyȳ
~2!~F~z,y!!5 1

4 ]y] ȳ loguF~z,y!u2. ~B7!

Exploiting the relation,

F~z,y!5 )
a50

n21

~y2y~a!~z!!, ~B8!

we see that the zeros ofF(z,y) are concentrated at the branches ofy(z), whereF(z,y) can be
approximated as follows:

F~z,y!;Fy~z,y~a!~z!!~y2y~a!~z!!1¯ . ~B9!

As a consequence,

I 5 (
a50

n21 E
CP1

d2zE
CP1

d2y fzz̄~z,y~a!~z!!dyȳ
~2!~Fy~z,y~a!~z!!~y2y~a!~z!!!. ~B10!
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Performing now the change of variables

Fy~z,y~a!~z!!~y2y~a!~z!!5y8, ~B11!

and integrating overy8, we obtain the desired result,

I 5E
CP1 (a50

n21

f zz̄~z,y~a!~z!!. ~B12!
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We present a new generalized topological current in terms of the order parameter
field f to describe the arbitrary dimensional topological defects. By virtue of the
f-mapping method, we show that the topological defects are generated from the
zero points of the order parameter fieldf, and the topological charges of these
topological defects are topological quantized in terms of the Brouwer degrees of
f-mapping under the condition that the JacobianJ(f/v)Þ0. WhenJ(f/v)50, it
is shown that there exist the crucial case of branch process. Based on the implicit
function theorem and the Taylor expansion, we detail the bifurcation of generalized
topological current and find different directions of the bifurcation. The arbitrary
dimensional topological defects are found splitting or merging at the degenerate
point of field functionf but the total charge of the topological defects is still
unchanged. ©2000 American Institute of Physics.@S0022-2488~00!01209-3#

I. INTRODUCTION

The world of topological defects is amazingly rich and have been the focus of much atte
in many areas of contemporary physics.1–3 The importance of the role of defects in understand
a variety of problems in physics is clear.4–7 Whenever we have a field theory with a set of vac
given by a nonconnected space there is the possibility of having different regions in space
on different vacuum sectors. Two such regions will meet at what is generally named a topol
defect, i.e., a thin hypersurface where the field rapidly evolves from one vacuum to the oth8

As evidence of cosmological phase transitions in the early Universe, topological defects
as cosmic string, domain wall, monopole and texture, remain somewhere in our Universe, a
help to resolve some long standing puzzles such as the origin of structure formation.9 The physics
of space–times containing the defects has been investigated extensively.10 The existence of topo-
logical defects2,10 with a nontrivial core phase structure has recently been demonstrated fo
bedded global domain walls and vortices.11 A solution for a Schwarzschild particle with globa
monopole charge has been obtained by Barriola and Vilenkin.2 The texture model of structure
formation in the universe12 and the one-texture universe13 have been studied by man
researchers.14 p-branes,15 which have been found to play important roles inM-theory,16 have also
proven to be topological defects in gauge theory.17 Recently, some physicists noticed18 that the
topological defects are closely related to the spontaneously brokenO(m) symmetry group to
O(m21) by them-component order parameter fieldf and pointed out that form51, one has
domain walls,m52, strings, andm53, monopoles, and form54, there are textures. AndO(m)
symmetric vector field theories are a class of models describing the critical behavior of a

a!Electronic mail: yjiang@itp.ac.cn
b!Mailing address.
c!Electronic mail: ysduan@lzu.edu.cn
64630022-2488/2000/41(9)/6463/14/$17.00 © 2000 American Institute of Physics
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variety of important physical systems.19,20 But for the lack of a powerful method, the topologic
properties of these systems are not very clear, and some important topological informati
been lost. Also the unified theory of describing the topological properties of all these d
objects is not established yet.

In this paper, in light of thef-mapping topological current theory,21 a useful method which
plays an important role in studying the topological invariants22,23and the topological structures o
physical systems,24,25 will investigate the topological quantization and the branch process of a
trary dimensional topological defects. We will show that the topological defects are gene
from the zero points of the order parameter fieldf, and their topological charges are quantized
terms of the Brouwer degrees off-mapping under the condition that the zero points of fieldf are
regular points. While at the critical points of the order parameter fieldf, i.e., the limit points and
bifurcation points, there exist branch processes, the topological current of defect bifurcates a
topological defects split or merge at such point, this means that the topological defects sys
unstable at these points.

This paper is organized as follows: In Sec. II, we investigate the topological quantizati
these topological defect and point out that the topological charges of these defects are the W
numbers which are determined by the Brouwer degrees of thef-mapping. In Sec. III, we study the
branch process of the defect topological current at the limit points, bifurcation points and h
degenerated points systematically by virtue of thef-mapping theory and the implicit function
theorem.

II. TOPOLOGICAL QUANTIZATION OF TOPOLOGICAL DEFECTS

In our previous papers,21,25–28we have studied the topological properties of pointlike defe
and stringlike defects systematically via thef-mapping topological current theory and rank
topological current theory, respectively. In this paper, in order to study the topological prop
of arbitrary dimensional topological defects, we will extend the concept to present an arb
dimensional generalized topological current.

It is well known that the m-component vector order parameter fieldf(x)
5(f1(x), . . . ,fm(x)) determines the properties of the topological defect system, and it ca
looked upon as a smooth mapping between then-dimensional Riemannian space–timeG @with the
metric tensorgmn and local coordinatesxm (m,n51, . . . ,n)# and anm-dimensional Euclidean
spaceRm as f:G→Rm. By analogy with the discussion in our previous work,25–28 from this
f-mapping, one can deduce a topological tensor current as

j m1•••mk5
1

A~Sm21!~m21!!Agx

em1•••mkmk11•••mnea1•••am
]mk11

na1]mk12
na2

•••]mn
nam ~1!

to describe the system of the topological defects, wherek5n2m. In this expression,]m stands for
]/]xm, A(Sm21)52pm/2/G(m/2) is the area of (m21)-dimensional unit sphereSm21, andna(x)
is the direction field of them-component order parameter fieldf,

na~x!5
fa~x!

uuf~x!uu
, uuf~x!uu5Afa~x!fa~x! ~2!

with na(x)na(x)51. It is obvious thatna(x) is a section of the sphere bundleS(G) ~Ref. 21! and
it can be looked upon as a map ofG onto an (m21)-dimensional unit sphereSm21 in order
parameter space. Clearly, the zero points of the order parameter fieldf(x) are just the singular
points of the unit vectorna(x). It is easy to see thatj m1•••mk are completely antisymmetric, an
from the formulas above, we conclude that there exists a conservative equation of the topo
tensor current in~1!

¹m i
j m1•••mk50, i 51, . . . ,k.
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In the following, we will investigate the intrinsic structure of the generalized topolog
current j m1•••mk by making use of thef-mapping method. From~2!, we have

]mna5
1

uufuu
]mfa1fa]mS 1

uufuu D ,
]

]fa S 1

uufuu D52
fa

uufuu3
,

which should be looked upon as generalized functions.29 Due to these expressions the generaliz
topological current~1! can be rewritten as

j m1•••mk5Cm

1

Agx

em1•••mkmk11•••mnea1•••am
•]mk11

fa
•••]mn

fam
]

]fa

]

]fa1
~Gm~ uufuu!!, ~3!

whereCm is a constant,

Cm55 2
1

A~Sm21!~m22!~m21!!
, m.2

1

2p
, m52

,

andGm(uufuu) is a Green function,

Gm~ uufuu!5H 1

uufuum22
, m.2

lnuufuu, m52

.

Defining general JacobiansJm1•••mk(f/x) as the following:

ea1•••amJm1•••mkS f

x D5em1•••mkmk11•••mn]mk11
fa1]mk12

fa2
•••]mn

fam,

and by making use of them-dimensional Laplacian Green function relation inf-space,21

Df~Gm~ uufuu!!52
4pm/2

G~m/221!
d~f!,

whereDf5(]2/]fa]fa) is them-dimensional Laplacian operator inf-space, we do obtain the
d-function structure of the defect topological current rigorously

j m1•••mk5
1

Agx

d~f!Jm1•••mkS f

x D . ~4!

This expression involves the total defect information of the system and it indicates that a
defects are located at the zero points of the order parameter fieldf(x). It must be pointed out that
comparing to similar expressions in other papers, the results in~4! is gotten theoretically in a
natural way. We find thatj m1•••mkÞ0 only whenf50, which is just the singularity ofj m1•••mk. In
detail, the Kernel of thef-mapping is the singularities of the topological tensor currentj m1•••mk in
G, i.e., the inner structure of the topological tensor current is labeled by the zeroes off-mapping.
We think that this is the essential of the topological tensor current theory andf-mapping is the
key to study this theory.

From the above discussions, we see that the kernel off-mapping plays an important role i
the topological tensor current theory, so we are focused on the zero points off and will search for
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the solutions of the equationsfa(x)50 (a51, . . . ,m) by means of the implicit function theorem
These points are topological singularities in the orientation of the order parameter fieldf(x).

Suppose that the vector fieldf(x) possessesl zeroes, according to the implicit functio
theorem,30 when the zeroes are regular points off-mapping at which the rank of the Jacobia
matrix @]mfa# is m, the solutions off50 can be expressed parameterizedly by

xm5zi
m~u1,...,uk!, i 51, . . . ,l , ~5!

where the subscripti represents theith solution and the parametersuI (I 51, . . . ,k) span a
k-dimensional submanifold with the metric tensorgIJ5gmn (]xm/]uI)(]xn/]uJ) which is called
the ith singular submanifoldNi in the Riemannian manifoldG corresponding to thef-mapping.
These singular submanifoldsNi are just the world volumes of the topological defects. For e
singular manifoldNi , we can define a normal submanifoldMi in G which is spanned by the
parametersvA with the metric tensorgAB5gmn (]xm/]vA)(]xn/]vB) (A,B51, . . . ,m), and the
intersection point ofMi andNi is denoted bypi which can be expressed parameterizedly byvA

5pi
A . In fact, in the words of differential topology,Mi is transversal toNi at the pointpi . By

virtue of the implicit function theorem at the regular pointpi , it should be held true that the
Jacobian matricesJ(f/v) satisfies

JS f

v D5
D~f1, . . . ,fm!

D~v1, . . . ,vm!
Þ0. ~6!

In the following, we will investigate the topological charges of the topological defects
their quantization. LetS i be a neighborhood ofpi on Mi with boundary]S i satisfyingpi¹]S i ,
S iùS j5B. Then the generalized winding numberWi of na(x) at pi ~Ref. 31! can be defined by
the Gauss mapn:]S i→Sm21

Wi5
1

A~Sm21!~m21!!
E

]S i

n* ~ea1•••am
na1dna2`•••`dnam!, ~7!

where n* denotes the pull back of mapn. The generalized winding numbers is a topologic
invariant and is also called the degree of Gauss map.32 It means that, when the pointvA covers]S i

once, the unit vectorna will cover a regionn@]S i # whose area isWi times ofA(Sm21), i.e., the
unit vectorna will cover the unit sphereSm21 for Wi times. Using the Stokes’ theorem in exteri
differential form and duplicating the above process, we get the compact form ofWi ,

Wi5E
S i

d~f!JS f

v Ddmv. ~8!

By analogy with the procedure of deducingd( f (x)), since

d~f!5H 1`, for f~x!50

0, for f~x!Þ0
5H 1`, for xPNi

0, for x¹Ni
, ~9!

we can expand thed-function d(f) as

d~f!5(
i 51

l

cid~Ni !, ~10!

where the coefficientsci must be positive, i.e.,ci5uci u. d(Ni) is thed-function in space–timeG
on a submanifoldNi ,29
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d~Ni !5E
Ni

1

Agx

dn~x2zi~u1, . . . ,uk!!Agudku, ~11!

wheregx5det(gmn), gu5det(gIJ). Substituting~10! into ~8!, and calculating the integral, we ge
the expression ofci ,

ci5
b iAgv

uJ~f/v !pi
u
5

b ih iAgv

J~f/v !pi

, gv5det~gAB!, ~12!

whereb ih i is the Brouwer degree32 of f-mapping onMi , it means that when the pointv covers
the neighborhood of the zero pointpi once, the functionf covers the corresponding region
f-spaceb ih i times, b i5uWi u, h i5signJ(f/v)pi

561 . Substituting this expression ofci and
~10! into ~4!, we gain the total expansion of the rank-k topological current,

j m1•••mk5
1

Agx
(
i 51

l
b ih iAgv

J~f/v !upi

d~Ni !J
m1•••mkS f

x D
or in terms of parametersyA85(v1, . . . ,vm,u1, . . . ,uk)

j A18•••Ak85
1

Agy
(
i 51

l
b ih iAgv

J~f/v !upi

d~Ni !J
A18•••Ak8S f

x D . ~13!

From the above equation, we conclude that the inner structure ofj m1•••mk or j A18•••Ak8 is labeled by
the total expansion ofd(f), which includes the topological informationb ih i .

Takingu1 anduI (I 52, . . . ,k) as the timelike evolution parameter and spacelike parame
respectively, the inner structure of the generalized topological current just represel
(k21)-dimensional topological defects with topological chargesgi5b ih i moving in the
n-dimensional Riemann manifoldG. Thek-dimensional singular submanifoldsNi ( i 51,... ,l ) are
their world sheets in the space–time. Mazenko19 and Halperin20 also got similar results for the
case of pointlike defects and line defects, but unfortunately, they did not consider the cab i

Þ1. In fact, what they lost sight of is just the most important topological information for
charge of topological defects. In detail,b i characterize the absolute values of the topologi
charges of these defects andh i511 correspond to defects whileh i521 to antidefects. Further
more, they did not discuss what will happen whenh i is indefinite, which we will study in detail
in Sec. III.

Corresponding to the rank-k topological tensor currentsj m1•••mk, it is easy to see that the
Lagrangian of many defects is just

L5A 1

k!
gm1n1

•••gmknk
j m1•••mkj n1•••nk5d~f!

which includes the total information of arbitrary dimensional topological defects inG and is the
generalization of Nielsen’s Lagrangian.33 The action inG is expressed by

S5E
G

LAgxd
nx5(

i 51

l

b ih iE
Ni

Agudku5(
i 51

l

b ih iSi ,

whereSi is the area of the singular manifoldNi . It must be pointed out here that the Nambu–Go
action,34 which is the basis of many works on defect theory, is derived naturally from our the
From the principle of least action, we obtain the evolution equations of many defect object
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1

Agu

]

]uI S AgugIJ
]xn

]uJD 1gIJGml
n

]xm

]uI

]xl

]uJ
50, I ,J51, . . . ,k. ~14!

As a matter of fact, this is just the equation of harmonic map.35

III. THE BRANCH PROCESSES OF THE TOPOLOGICAL DEFECTS

With the discussion mentioned above, we know that the results in the above sectio
obtained straightly from the topological view point under the conditionJ(f/v)upi

Þ0, i.e., at the
regular points of the order parameter fieldf. When the condition fails, i.e., the Brouwer degreeh i

are indefinite, what will happen? In what follows, we will study the case whenJ(f/v)upi
50. It

often happens when the zero points of fieldf include some branch points, which lead to t
bifurcation of the topological current.

In this section, we will discuss the branch processes of these topological defects. By a
with our previous work,36 in order to simplify our study, we select the parameteru1 as the timelike
evolution parametert, and let the spacelike parametersuI5s I(I 52, . . . ,k) to be fixed, i.e., just

select one point on the defect object to study. In this case, the Jacobian matricesJA18•••Ak8(f/y) are
reduced to

JAI1•••I k21S f

y D[JAS f

y D , JABI1•••I k22S f

y D50, J(m11)•••nS f

y D5JS f

v D ,

A,B51, . . . ,~m11!, I j5m12, . . . ,n, ~15!

for yA5vA(A<m), ym115t,ym1I5s I(I>2). The branch points are determined by them11
equations,

fa~v1,...,vm,t,s!50, a51, . . . ,m ~16!

and

fm11~v1,...,vm,t,s![JS f

v D50 ~17!

for the fixeds, and they are denoted as (t* ,pi). In f-mapping theory usually there are two kind
of branch points, namely, the limit points and bifurcation points,37 satisfying

J1S f

y D U
(t* ,pi )

Þ0 ~18!

and

J1S f

y D U
(t* ,pi )

50, ~19!

respectively. In the following, we assume that the branch points (t* ,pi) of f-mapping have been
found.

A. Branch process at the limit point

We first discuss the branch process at the limit point satisfying the condition~18!. In order to
use the theorem of implicit function to study the branch process of topological defects at the
point, we use the JacobianJ1(f/y) instead ofJ(f/v) to discuss the problem. In fact, this mea
that we have replaced the parametert by v1. For clarity we rewrite the problem as
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fa~ t,v2,...,vm,v1,s!50, a51, . . . ,m. ~20!

Then, taking account of the condition~18! and using the implicit function theorem, we have
unique solution of Eq.~20! in the neighborhood of the limit point (t* ,pi),

t5t~v1,s!, v i5v i~v1,s!, i 52,3,. . . ,m ~21!

with t* 5t(pi
1 ,s). In order to show the behavior of the defects at the limit points, we

investigate the Taylor expansion of~21! in the neighborhood of (t* ,pi). In the present case, from
~18! and ~17!, we get

dv1

dt U
(t* ,pi )

5
J1~f/y!

J~f/v !
U

(t* ,pi )

5`,

i.e.,

dt

dv1U
(t* ,pi )

50.

Then we have the Taylor expansion of~21! at the point (t* ,pi),

t5t~pi ,s!1
dt

dv1U
(t* ,pi )

~v12pi
1!1

1

2

d2t

~dv1!2U
(t* ,pi )

~v12pi
1!25t* 1

1

2

d2t

~dv1!2U
(t* ,pi )

~v12pi
1!2.

Therefore,

t2t* 5
1

2

d2t

~dv1!2U
(t* ,pi )

~v12pi
1!2 ~22!

which is a parabola in thev1–t plane. From~22!, we can obtain the two solutionsv (1)
1 (t,s) and

v (2)
1 (t,s), which give the branch solutions of the system~16! at the limit point. If

d2t/(dv1)2 u(t* ,pi )
.0, we have the branch solutions fort.t* , otherwise, we have the branc

solutions fort,t* . The former is related to the creation of defect and antidefect in pair at the
points, and the latter to the annihilation of the topological defects, since the topological curr
topological defects is identically conserved, the topological quantum numbers of these two
erated topological defects must be opposite at the limit point, i.e.,b1h11b2h250.

B. Branch process at the bifurcation point

In the following, let us consider the case~19!, in which the restrictions of the system~16! at
the bifurcation point (t* ,pi) are

JS f

v D U
(t* ,pi )

50, JS f

v D U
(t* ,pi )

50. ~23!

These two restrictive conditions will lead to an important fact that the dependency relatio
betweent andv1 is not unique in the neighborhood of the bifurcation point (t* ,pi). In fact, we
have

dv1

dt U
(t* ,pi )

5
J1~f/y!

J~f/v !
U

(t* ,pi )

~24!
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which under the restraint~23! directly shows that the tangential direction of the integral curve
Eq. ~24! is indefinite at the point (t* ,pi). Hence,~24! does not satisfy the conditions of th
existence and uniqueness theorem of the solution of a differential equation. This is why th
point (t* ,zi) is called the bifurcation point of the system~16!.

In the following, we will find a simple way to search for the different directions of all bra
curves at the bifurcation point. As assumed that the bifurcation point (t* ,pi) has been found from
~16! and ~17!, the following calculations are all conducted at the value (t* ,pi). As we have
mentioned above, at the bifurcation point (t* ,pi), the rank of the Jacobian matrix@]f/]v# is
smaller thanm. In order to derive the calculating method, we consider the rank of the Jaco
matrix @]f/]v# is m21. The case of a more smaller rank will be discussed in the next subse
Suppose that one of the (m21)3(m21) submatrixJ1(f/v) of the Jacobian matrix@]f/]v# is

J1S f

v D5S f2
1 f3

1
••• fm

1

f2
2 f3

2
••• fm

2

A A � A

f2
m21 f3

m21
••• fm

m21

D ~25!

and its determinant detJ1(f/v) does not vanish at the point (t* ,pi) @otherwise, we have to
rearrange the equations of~16!#, where fA

a stands for (]fa/]vA) (a51, . . . ,m21; A
52, . . . ,m). By means of the implicit function theorem we obtain one and only one functi
relationship in the neighborhood of the bifurcation point (t* ,pi),

vA5 f A~v1,t,s2,...,sk!, A52,3,. . . ,n ~26!

with the partial derivatives

f 1
A5

]vA

]v1
, f t

A5
]vA

]t
, A52,3,. . . ,n.

Then, fora51, . . . ,m21 we have

fa5fa~v1, f 2~v1,t,s!, . . . ,f m~v1,t,s!,t,s![0

which gives

(
A52

m
]fa

]vA
f 1

A52
]fa

]v1
, a51, . . . ,m21, ~27!

(
A52

m
]fa

]vA
f t

A52
]fa

]t
, a51, . . . ,m21 ~28!

from which we can calculate the first order derivatives off A: f 1
A and f t

A . Denoting the second
order partial derivatives as

f 11
A 5

]2vA

~]v1!2
, f 1t

A 5
]2vA

]v1]t
, f tt

A5
]2vA

]t2

and differentiating~27! with respect tov1 and t, respectively, we get

(
A52

m

fA
a f 11

A 52 (
A52

m F2fA1
a f 1

A1 (
B52

m

~fAB
a f 1

B! f 1
AG2f11

a , a51,2,. . . ,m21, ~29!
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(
A52

m

fA
a f 1t

A 52 (
A52

m FfAt
a f 1

A1fA1
a f t

A1 (
B52

m

~fAB
a f t

B! f 1
AG2f1t

a , a51,2,. . . ,m21. ~30!

And the differentiation of~28! with respect tot gives

(
A52

m

fA
a f tt

A52 (
A52

m F2fAt
a f t

A1 (
B52

m

~fAB
a f t

B! f t
AG2f tt

a , a51,2,. . . ,m21 ~31!

where

fAB
a 5

]2fa

]vA]vB
, fAt

a 5
]2fa

]vA]t
.

The differentiation of~28! with respect tov1 gives the same expression as~30!. If we use the
Gaussian elimination method to the three vectors at the right-hand sides of the formulas~29!, ~30!,
and ~31!, we can obtain the three partial derivativesf 11

A , f 1t
A , and f tt

A . Notice that the three
equations~29!, ~30!, and~31! have the same coefficient matrixJ1(f/v), which are assumed to b
nonzero, and we should substitute the values of the partial derivativesf 1

A and f t
A , which have been

calculated out in the former, into the right-hand sides of the three equations.
The above discussions do not matter to the last componentfm(v1,...,vm,t,s). In order to

find the different values ofdv1/dt at the bifurcation point, let us investigate the Taylor expans
of fm(v1,...,vm,t,s) in the neighborhood of (t* ,pi). Substituting the existing, but unknown
dependency relationship~26! into fm(v1,...,vm,t,s), we get the function of the two variablesv1

and t,

F~ t,v1,s!5fm~v1, f 2~v1,t,s!, . . . ,f m~v1,t,s!,t,s! ~32!

which according to~16! must vanish at the bifurcation point,

F~ t* ,pi !50. ~33!

From ~32!, we can calculate the first order partial derivatives ofF(t,v1,s) with respect tov1 and
t, respectively, at the bifurcation point (t* ,pi),

]F

]v1
5f1

m1 (
A52

m

fA
mf 1

A ,
]F

]t
5f t

m1 (
A52

m

fA
mf t

A . ~34!

Using ~27! and ~28!, the first equation of~23! is expressed by

JS f

v D U
(t* ,pi )

5U 2 (
A52

m

fA
1 f 1

A f2
1

••• fm
1

2 (
A52

m

fA
2 f 1

A f2
2

••• fm
2

A A • A

2 (
A52

m

fA
m21f 1

A f2
m21

••• fm
m21

fA
m f2

m
••• fm

m

U
(t* ,pi )

50,

which, by Cramer’s Rule,~25! and ~34!, can be rewritten as
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JS f

v D U
(t* ,pi )

5U 0 f2
1

••• fm
1

0 f2
2

••• fm
2

A A � A

0 f2
m21

••• fm
m21

f1
m1 (

A52

m

fA
mf 1

A f2
m

••• fm
m

U
(t* ,pi )

5
]F

]v1
det J1S f

v D U
(t* ,pi )

50.

Since

detJ1S f

v D U
(t* ,pi )

Þ0,

which is our assumption, the above equation leads to

]F

]v1U
(t* ,pi )

50. ~35!

With the same reasons, we can prove that

]F

]t U
(t* ,pi )

50. ~36!

The second order partial derivatives of the functionF(t,v1,s) are easily found out to be

]2F

~]v1!2
5f11

m 1 (
A52

m F2f1A
m f 1

A1fA
mf 11

A 1 (
B52

m

~fAB
m f 1

B! f 1
AG ,

]2F

]v1]t
5f1t

m1 (
A52

m Ff1A
m f t

A1f tA
m f 1

A1fA
mf 1t

A 1 (
B52

m

~fAB
m f t

B! f 1
AG ,

]2F

]t2
5f tt

m1 (
A52

m F2fAt
m f t

A1fA
mf tt

A1 (
B52

m

~fAB
m f t

B! f t
AG ,

which at (t* ,pi) are denoted by

A5
]2F

~]v1!2U
(t* ,pi )

, B5
]2F

]v1]t
U

(t* ,pi )

, C5
]2F

]t2 U
(t* ,pi )

. ~37!

Then, by virtue of~33!, ~35!, ~36!, and~37!, the Taylor expansion ofF(t,v1,s) in the neighbor-
hood of the bifurcation point (t* ,pi) can be expressed as

F~ t,v1,s!5 1
2 A~v12pi

1!21B~v12pi
1!~ t2t* !1 1

2 C~ t2t* !2, ~38!

which is the expression offm(v1,...,vm,t,s) in the neighborhood of (t* ,pi). The expression~38!
shows that at the bifurcation point (t* ,pi),

A~v12pi
1!212B~v12pi

1!~ t2t* !1C~ t2t* !250. ~39!
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Dividing ~39! by (v12pi
1)2 or (t2t* )2, and taking the limitt→t* as well asv1→pi

1, respec-
tively, we get two equations,

CS dt

dv1D 2

12B
dt

dv1
1A50 ~40!

and

AS dv1

dt D 2

12B
dv1

dt
1C50. ~41!

So we get the different directions of the branch curves at the bifurcation point from the solu
of ~40! or ~41!. There are four possible cases:

First, AÞ0, D54(B22AC).0, from Eq. ~40! we get two different solutions:dv1/dtu1,2

5(2B6AB22AC)/A, this means that two topological defects meet and then depart a
bifurcation point. Second,AÞ0,D54(B22AC)50, there is only one solution,dv1/dt
52B/A, which includes three important cases:~a! two topological defects tangentially collide a
the bifurcation point;~b! two topological defects merge into one topological defect at the bi
cation point;~c! one topological defect splits into two topological defects at the bifurcation po
Third, A50,CÞ0, D54(B22AC).0, from Eq.~41! we havedt/dv150 and22B/C. There are
two important cases:~i! One topological defect splits into three topological defects at the bi
cation point;~ii ! Three topological defects merge into one at the bifurcation point. FinallyA
5C50, Eqs.~40! and ~41! give, respectively,dv1/dt50 anddt/dv150. This case is similar to
the third situation.

In order to determine the branches directions of the remainder variables, we will us
relations simply

dvA5 f 1
Adv11 f t

Adt, A52,3,. . . ,n,

where the partial derivative coefficientsf 1
A and f t

A are given in~27! and~28!. Then, respectively,

dvA

dv1
5 f 1

A1 f t
A dt

dv1

or

dvA

dt
5 f 1

A dv1

dt
1 f t

A , ~42!

where partial derivative coefficientsf 1
A and f t

A are given by~27! and~28!. From these relations we
find that the values ofdvA/dt at the bifurcation point (t* ,zi) are also possibly different becaus
~41! may give different values ofdv1/dt.

C. Branch process at a higher degenerated point

In the following, let us discuss the branch process at a higher degenerated point. In the
subsection, we have analyzed the case that the rank of the Jacobian matrix@]f/]v# of Eq. ~17! is
m21. In this section, we consider the case that the rank of the Jacobian matrix ism22 ~for the
case that the rank of the matrix@]f/]v# is lower thanm22, the discussion is in the same way!.
Let the (m22)3(m22) submatrixJ2(f/v) of the Jacobian matrix@]f/]v# be
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J2S f

v D5S f3
1 f4

1
••• fm

1

f3
2 f4

2
••• fm

2

A A � A

f3
m22 f4

m22
••• fm

m22

D
and suppose that detJ2(f/v)u(t* ,pi )

Þ0. With the same reasons of obtaining~26!, we can have the
function relations

vA5 f A~v1,v2,t,s!, A53,4,. . . ,m. ~43!

For the partial derivativesf 1
A , f 2

A , and f t
A , we can easily derive the system similar to Eqs.~27!

and~28!, in which the three terms at the right-hand sides can be figured out at the same tim
order to determine the 2-order partial derivativesf 11

A , f 12
A , f 1t

A , f 22
A , f 2t

A , and f tt
A , we can use the

equations similar to~29!, ~30!, and~31!. Substituting the relations~43! into the last two equations
of the system~16!, we have the following two equations with respect to the argume
v1, v2, t,s:

H F1~v1,v2,t,s!5fm21~v1,v2, f 3~v1,v2,t,s!,...,f m~v1,v2,t,s!,t,s!50,

F2~v1,v2,t,s!5fm~v1,v2, f 3~v1,v2,t,s!,...,f m~v1,v2,t,s!,t,s!50.
~44!

Calculating the partial derivatives of the functionF1 andF2 with respect tov1, v2, andt, taking
notice of ~43! and using six similar expressions to~35! and ~36!, i.e.,

]F j

]v1U
(t* ,pi )

50,
]F j

]v2U
(t* ,pi )

50,
]F j

]t U
(t* ,pi )

50, j 51,2, ~45!

we have the following forms of Taylor expressions ofF1 andF2 in the neighborhood of (t* ,pi),

F j~v1,v2,t,s!'Aj 1~v12pi
1!21Aj 2~v12pi

1!~v22pi
2!1Aj 3~v12pi

1!,

~ t2t* !1Aj 4~v22pi
2!21Aj 5~v22pi

2!~ t2t* !1Aj 6~ t2t* !250,

j 51,2. ~46!

In the case ofAj 1Þ0,Aj 4Þ0, by dividing ~46! by (t2t* )2 and taking the limitt→t* , we obtain
two quadratic equations ofdv1/dt anddv2/dt,

Aj 1S dv1

dt D 2

1Aj 2

dv1

dt

dv2

dt
1Aj 3

dv1

dt
1Aj 4S dv2

dt D 2

1Aj 5

dv2

dt
1Aj 650, ~47!

j 51,2.

Eliminating the variabledv1/dt, we obtain an equation ofdv2/dt in the form of a determinant,

UA11 A12Q1A23 A14Q
21A15Q1A16 0

0 A11 A12Q1A13 A14Q
21A15Q1A16

A21 A22Q1A23 A24Q
21A25Q1A26 0

0 A21 A22Q1A23 A24Q
21A25Q1A26

U50, ~48!

whereQ5dv2/dt, which is a fourth order equation ofdv2/dt,
                                                                                                                



anch
of the

rank of
s is

sses in
, may
nt
of the

t, i.e.,

e we
ess is

litting

gical
e
ined

ion

-

tt.

r,

.

.

6475J. Math. Phys., Vol. 41, No. 9, September 2000 A new topological aspect of the arbitrary . . .

                    
0S dv2

dt D 4

1a1S dv2

dt D 3

1a2S dv2

dt D 2

1a3S dv2

dt D1a450. ~49!

Therefore we get different directions at the bifurcation point corresponding to different br
curves. The number of different branch curves is four at most. If the degree of degeneracy
matrix @]f/]v# is higher, i.e., the rank of the matrix@]f/]v# is lower than the present (m22)
case, then the procedure of deduction will be more complicated. In general supposing the
the matrix@]f/]v# is (m2s), the number of possible different directions of the branch curve
2s at most.

At the end of this section, we conclude that there exists crucial cases of branch proce
our topological defect theory. This means that a topological defect, at the bifurcation point
split into several~for instances) topological defects along different branch curves with differe
charges. Since the topological current is a conserved current, the total quantum number
splitting topological defects must precisely equal the topological charge of the original defec

(
j 51

s

b i j
h i j

5b ih i

for fixed i. This can be looked upon as the topological reason of the defect splitting. Her
should point out that such splitting is a stochastic process. The sole restriction of this proc
just the conservation of the topological charge of the topological defects during this sp
process. Of course, the topological charge of each splitting defect is an integer.

In summary, we have studied the topological property of the arbitrary dimensional topolo
defects in the general case by making use of thef-mapping topological current theory and th
implicit function theorem. We would like to point out that all the results in this paper are ga
from the viewpoint of topology without any particular models or hypotheses.
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The path realization of Demazure crystals is reviewed and Demazure characters in
the light of symmetric functions are discussed. ©2000 American Institute of
Physics.@S0022-2488~00!02808-5#

I. INTRODUCTION

Let Uq(g) be a quantum affine Lie algebra. Representation ofUq(g) at q50 is well described
by the crystal base theory.1–3 For example, consider the irreducible highest weightUq(g)-module
V(l) for any dominant integral weightl of level l. At q50 its crystalB(l) admits a parametri-
zation in terms ofpaths. The latter is the combinatorial object that arose in the studies of solv
lattice models4,5 by Baxter’s corner transfer matrix method.6 Given a perfect crystalB of level l,
a path is an element of the semi-infinite tensor product¯B^ B. It must obey some boundar
condition on the left tail, which is uniquely specified froml andB. LettingP(l,B) denote the set
of such paths, one has an isomorphism of crystalsc:B(l)→̃P(l,B). These features2,3 will be
summarized in Sec. II.

In Ref. 7, Kashiwara showed that for each Weyl group elementw there exists a finite subse
Bw(l),B(l) that corresponds to the crystal of the Demazure moduleVw(l),V(l). Then a
natural question arises: What kinds of paths are contained in the imagec„Bw(l)…? This was
answered in Ref. 8 for a class ofw obeying certain conditions. The result is given for each va
of the ‘‘mixing index’’ kPZ>1 that reflects some property ofl and B. For simplicity we shall
exclusively consider thek51 case in this paper and refer to Ref. 8 for thek general case. Then
roughly speaking there occur only those paths corresponding to a tensor product of some
Ba

( j ),B and finitely manyB’s. The precise description will be given in Sec. III, which constitu
the first main content in this report. The result may also be viewed as a combinatorial expla
of the tensor product structure in the Demazure modules observed in Ref. 9. In Sec. IV we
give an example fromsl̂n . Results on the other classical affine Lie algebras are available in
10.

Section V is devoted to our other main topic in this paper, namely, the characters ofVw(l) in
the light of symmetric functions. By Theorem 3 the Demazure characters provide aq-analog of the
products of classical characters, that is, Schur functions. We then relate them with the Ko
Foulkes polynomial and Milne polynomial. Results on some Demazure characters of the
classical affine Lie algebras are available in Ref. 11.
64770022-2488/2000/41(9)/6477/10/$17.00 © 2000 American Institute of Physics
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II. PERFECT CRYSTALS AND DEMAZURE MODULES

First we fix the notations following Ref. 2.Uq(g) is the quantized universal envelopin
algebra of an affine Lie algebrag. Let $a i% i PI , $hi% i PI , and$L i% i PI denote the set of simple roots
coroots, and fundamental weights.P is the weight lattice andP15$lPPu^l,hi&>0 for anyi %.
V(l) is the irreducible highest weight module of highest weightlPP1 and „L(l),B(l)… is its
crystal base@which was originally denoted by (L(l),B(l)) in Ref. 2#. For the notation of a
finite-dimensional representation ofUq8(g), we follow Sec. III in Ref. 2. For instance,Pcl is the
classical weight lattice,Uq8(g) is the subalgebra ofUq(g) generated byei , f i , qh @hP(Pcl)* #,
and Modf(g,Pcl) is the category of finite-dimensionalUq8(g)-modules which have the weigh
decompositions. We set Pcl

15$lPPclu^l,hi&>0 for anyi %.(Z>0L i and (Pcl
1) I5$l

PPcl
1u^l,c&5 l %, wherec is the canonical central element. AssumeV in Modf(g,Pcl) has a crystal

base~L, B!. For an elementb of B, we set« i(b)5max$n>0uẽ i
nbPB%,«(b)5(i«i(b)Li and w i(b)

5max$n>0u f̃ i
nbPB%,w(b)5(iwi(b)Li .

Let B be a perfect crystal of levell. We refer to Definition 4.6.1 in Ref. 2 for its definition. Fo
lP(Pcl

1) l , let b(l)PB be the element such thatw„b(l)…5l. From the definition of perfect
crystal, such ab(l) exists and is unique. Lets be the automorphism of (Pcl

1) l given by sl

5«„b(l)…. We set b̄k5b(sk21l) and lk5skl. Then perfectness assures that we have
isomorphism of crystals

B~lk21!.B~lk! ^ B.

Iterating this isomorphism, we have

ck :B~l!.B~lk! ^ B^ k.

Defining the set of pathsP(l,B) by

P~l,B!5$p5¯^ p~2! ^ p~1!up~ j !PB,p~k!5b̄k for k@0%,

we see that there is an isomorphism of crystalsc:B(l)→̃P(l,B). In particular, the imagec(ul)
of the highest weight vectorulPB(l) is given by p̄5¯^ b̄k^¯^ b̄2^ b̄1 . We call p̄ the
ground-statepath. One can explicitly describe the weights and the actions ofẽi and f̃ i on P(l,B)
by the energy function and the signature rule. See Secs. 1.3 and 1.4 of Ref. 8.

Now we proceed to Demazure crystals. Let$r i% i PI be the set of simple reflections, and letW
be the Weyl group. ForwPW, l (w) denotes the length ofw, anda denotes the Bruhat order o
W. Let Uq

1(g) be the subalgebra ofUq(g) generated byei ’s. For lP(Pcl
1) l we consider the

irreducible highest weightUq(g)-moduleV(l) as before. LetVw(l) denote theUq
1(g)-module

generated by the extremal weight spaceV(l)wl . These modulesVw(l) (wPW) are called the
Demazure modules. They are finite-dimensional subspaces ofV(l). Let (L(l),B(l)) be the
crystal base ofV(l). In Ref. 7 Kashiwara showed that for eachwPW, there exists a subse
Bw(l) of B(l) such that

Vw~l!ùL~l!

Vw~l!ùqL~l!
5 %

bPBw~l!

Qb.

Furthermore,Bw(l) has the following recursive property:

If r iwsw, then Br iw
~l!5ø

n>0

f̃ i
nBw~l!\$0%. ~1!

We call Bw(l) a Demazure crystal.
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III. MAIN THEOREM

Let us present the main theorem in Ref. 8 in the casek51. For the definition of themixing
indexk, see Sec. 2.3 of Ref. 8.

Let l be an element of (Pcl
1) l , and letB be a classical crystal. For the theorem, we need

assume four conditions~I–IV !.
~I ! B is perfect of levell.
Thus, we can assume an isomorphism betweenB~l! and the set of pathsP(l,B). Let p̄5...
^ b̄2^ b̄1 denote the ground-state path. Fix a positive integerd. For a set of elementsi a

( j )( j
>1,1<a<d) in I, we defineBa

( j )( j >1,0<a<d) by

B0
~ j !5$b̄ j%, Ba

~ j !5ø
n>0

f̃ i
a
~ j !

n
Ba21

~ j ! \$0% ~a51,...,d!. ~2!

~II ! For any j >1, Bd
( j )5B.

~III ! For any j >1 and 1<a<d, ^l j ,hi
a
( j )&<« i

a
( j )(b) for all bPBa21

( j ) .

We now define an elementw(k) of the Weyl groupW by

w~0!51, w~k!5r i
a
~ j !w~k21! for k.0,

wherej anda are fixed fromk by k5( j 21)d1a, j >1,1<a<d.
~IV ! w(0)aw(1)a¯aw(k)a¯ .
See Refs. 8 and 10 on how to check the last condition.

Now the main statement in Ref. 8 is
Theorem 1: ~Ref. 8! Under the assumptions (I–IV), we have

Bw~k!~l!.ul j
^ Ba

~ j !
^ B^ ~ j 21!.

The proof is done by showing the recursion relation~1! in the path realization. The paths o
the right-hand side enjoy ‘‘full fluctuations’’ overB in the first j 21 steps, while at thej-th step
they are allowed only ‘‘partial fluctuations’’ overBa

( j ),B. After that, they are completely froze
to the ground-state pathp̄.

IV. EXAMPLE FROM sl̂ n

In this section, we describe an example in thesl̂n case. We begin with fixing notations. We us
the cyclic notation fora i ,hi ,L i ,r i ,ei , f i , etc. that is, we consider their subscriptsi belong to
Z/nZ. Let Vk,l be the irreducible highest weightUq(sln)-module with highest weightlLk . It turns
out thatVk,l admitsUq8(sl̂n) actions, and has a crystalBk,l .

We describe the explicit actions ofẽi , f̃ i whenk51 ~symmetric tensor case!. As a set,B1,l is
described asB1,l5$(x0 ,...,xn21)PZ>0

n uS i 50
n21xi5 l %. The actions ofẽi , f̃ i are defined as follows

ẽi~x0 ,...,xn21!5H ~x0 ,...,xi 2111,xi21,...,xn21! ~ iÞ0!

~x021,̄ ,xn2111! ~ i 50!
, ~3!

f̃ i~x0 ,...,xn21!5H ~x0 ,...,xi 2121,xi11,...,xn21! ~ iÞ0!

~x011,...,xn2121! ~ i 50!
. ~4!

If the right-hand side contains a negative component, we should understand it as 0.
Example 1: Let n52. Under the identification of the elemen

(2,0)↔00, (1,1)↔01, (0,2)↔11, B1,2 is described as follows:
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B1,2 00

0

1

01

0

1

11.

Here b→
i

b8 means b85 f̃ ib.
We are to showl5 lL0 andB5B1,l satisfy the four conditions in Sec. III. First, as listed

Ref. 3,B1,l is perfect of levell. @Note that we deal with the (An21
(1) ,B( lL1)) in their notation.# l j

and b̄ j are given byl j5 lL2 j and b̄ j5(0,...,0,l
r

,0,...,0) (r 52 j mod n,0<r<n21). Setd5n
21, and definei a

( j )PZ/nZ by i a
( j )5a2 j . To illustrate, we consider the casej 51. From the

definition ~2! and the rule~4!, we easily obtain

B0
~1!5$~0,...,0,l !%,B1

~1!5$~x0,0,...,0,xn21!ux01xn215 l %,¯ ,

Ba
~1!5$~x0 ,...,xa21,0,...,0,xn21!ux01¯1xa211xn215 l %,¯ .

Thus, we haveBd
(1)5B. For j .1, the situation is the same, andB1,l satisfies~II !.

Example 2: Let n53 and l52. Under the identification of the elements(2,0,0)↔00,
(1,1,0)↔01, (1,1,0)↔02, (0,2,0)↔11, (0,1,1)↔12, (0,0,2)↔22, Ba

(1) (a50,1,2) are given by

B0
15$22%,B1

~1!5B0
~1!t$00,02%,B2

~1!5B1
~1!t$01,11,12%~5B!.

The third condition is obviously cleared, since^l j ,hi
a
( j )&5^ lL2 j ,ha2 j&50 for 1<a<d. By

definition, we have

and the last condition is also true. Therefore, from Theorem 1 we have

Bw~K !~ lL0!.ulL2 j
^ Ba

~ j !
^ B^ ~ j 21!. ~5!

Here j anda are determined fromK by K5( j 21)d1a, j >1, 1<a<d, andulL2 j
is identified

with ¯^ b̄ j 12^ b̄ j 11 .
Example 3: Let n52, l 51, then d51. Under the identification(1,0)↔0, (0,1)↔1, illus-

trated in Fig. 1 is the Demazure crystalBr 0r 1r 0
(L0). The symbol̂ is omitted.

Let us assumeK5Ld for someLPZ>0 . Then,~5! turns out to be

Bw~Ld!~ lL0!.ulL2L
^ ~B1,l ! ^ L. ~6!

For this fixed L, consider a subalgebraUq(sln)5^ei , f i ,t i( iÞ2L)& of Uq(sl̂n). Noting that
Q(q)ulL2L

is a trivial Uq(sln)-module, we see the Demazure crystalBw(Ld)( lL0) is isomorphic to
(B1,l) ^ L asUq(sln)-crystals. This is also true forqÞ0, namely, we have the following theorem

Theorem 2:

Vw~Ld!~ lL0!.~V1,l ! ^ L as Uq~sln!-modules.

Here Uq(sln)5^ei , f i ,t i( iÞ2L)&.
As crystals, we already have~6!. Thus it is enough to show theUq(sln)-invariance of
Vw(Ld)( lL0). For this purpose, we cite two propositions from Ref. 7.

Proposition 1:~Ref. 7, Lemma 3.2.1~i!! If r iwaw, then
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f iVw~l!,Vw~l!.

Proposition 2:~Ref. 7, Corollary 3.2.2! If w5r i 1
...r i l

is reduced, then

Vw~l!5 (
k1 ,...,kl>0

Q~q! f i 1

k1...f i l

klul .

Let us prove Theorem 2. We assumen>3. ~The n52 case is simple.! By definition,
eiVw(Ld)( lL0),Vw(Ld)( lL0). We are to showf iVw(Ld)( lL0),Vw(Ld)( lL0) for iÞ2L. If r iw

(Ld)

aw(Ld), the statement is a direct consequence of Proposition 1.~This case includesi 52L21.)
Assumer iw

(Ld)sw(Ld). Sincew(Ld)5r Ld21 ...r 1r 0 is reduced,r iw
(Ld)5r i r Ld21 ...r 1r 0 should be

also reduced. Using the braid relationr j r j 11r j5r j 11r j r j 11 and the conditioniÞ2L,2L21, we
can checkr iw

(Ld)5w(Ld)r i 1L . Sincer iw
(Ld)5r i r Ld21 ...r 1r 0 and w(Ld)r i 1L5r Ld21 ...r 1r 0r i 1L

are both reduced, from Proposition 2 we have

Vr iw
~Ld!~ lL0!5 (

k>0
f i

kVw~Ld!~ lL0!,

Vw~Ld!r i 1L
~ lL0!5 (

k0 ,k1 ,...,kLd>0
Q~q! f Ld21

kLd ...f 0
k1f i 1L

k0 ulL0

5 (
k1 ,...,kLd>0

Q~q! f Ld21
kLd ...f 0

k1ulL0

5Vw~Ld!~ lL0!.

From Vr iw(Ld)( lL0)5Vw(Ld)r i 1L
( lL0), we can conclude the invariance underf i . The theorem is

proved.
These facts admit straightforward generalization to arbitraryk cases. To define the corre

sponding Weyl group sequence, fork(1<k<n21) andi PZ/nZ, we set

Ri
~k!5~r i 1~n2k21!2~k21!¯r i 112~k21!r i 2~k21!!¯~r i 211~n2k21!¯r i r i 21!

3~r i 1~n2k21!¯r i 11r i !.

FIG. 1. Demazure crystalBr 0r 1r 0
(L0).
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There arek blocks in Ri
(k), and in each block there are (n2k) simple reflections. From the

relations among fundamental reflections,Ri
(k) admits another expression.

Ri
~k!5~r i 2~k21!1~n2k21!¯r i 211~n2k21!r i 1~n2k21!!¯~r i 112~k21!¯r i r i 11!

3~r i 2~k21!¯r i 21r i !.

In this case, there are (n2k) blocks, and in each block there arek simple reflections. We taked
to bek(n2k), and letw(Ld) be determined recursively by

w~0!51, w~~L11!d!5R2kL
~k! w~Ld!.

Example 4: Explicit expression of w(Ld).

n52, k51 w~d!5r 0 , w~2d!5r 1r 0 , w~3d!5r 0r 1r 0 ,¯ .

n53, k51 w~d!5r 1r 0 , w~2d!5r 0r 2r 1r 0 , w~3d!5r 2r 1r 0r 2r 1r 0 ,¯ .

k52 w~d!5r 2r 0 , w~2d!5r 0r 1r 2r 0 , w~3d!5r 1r 2r 0r 1r 2r 0 ,¯ .

n54, k51 w~d!5r 2r 1r 0 , w~2d!5r 1r 0r 3r 2r 1r 0 ,

w~3d!5r 0r 3r 2r 1r 0r 3r 2r 1r 0 ,¯ .

k52 w~d!5r 0r 3r 1r 0 , w~2d!5r 2r 1r 3r 2r 0r 3r 1r 0 ,

w~3d!5r 0r 3r 1r 0r 2r 1r 3r 2r 0r 3r 1r 0 ,¯ .

k53 w~d!5r 2r 3r 0 , w~2d!5r 3r 0r 1r 2r 3r 0 ,

w~3d!5r 0r 1r 2r 3r 0r 1r 2r 3r 0 ,¯ .

Theorem 3: We have

Bw~Ld!~ lL0!.ulL2kL
^ ~Bk,l ! ^ L,

Vw~Ld!~ lL0!.~Vk,l ! ^ L as Uq~sln!-modules,

where Uq(sln)5^ei , f i ,t i( iÞ2kL)&.

V. DEMAZURE CHARACTERS AND SYMMETRIC FUNCTIONS

In this section, we consider the characters of the Demazure modules we have seen
previous section. Using the automorphism coming from the Dynkin diagram symmetry, The
3 turns out to be the following:

Bw~Ld!~ lLkL!.ulL0
^ ~Bk,l ! ^ L, ~7!

Vw~Ld!~ lLkL!.~Vk,l ! ^ L as Uq~sln!-modules. ~8!

Note thatw(Ld) is also changed suitably. Here and in what follows,Uq(sln) always means the
subalgebra ofUq(sl̂n) generated byei , f i , t i ( iÞ0).

By definition, the character of the Demazure moduleVw(l) reads as

chVw~l!5(
m

]„Bw~l!…mem.
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Here„Bw(l)…m is the set of elements inBw(l) of weightm, andm runs over all weights. Conside
the character ofVw(Ld)( lLkL) given above. Since it has theUq(sln)-invariance, its character ha
the following form:

e2 lL0 chVw~Ld!~ lLkL!5 (
l£klL

l ~l!<n

K̄l~q!sl . ~9!

Herel runs over all partitions ofklL having at mostn parts,K̄l(q) is some polynomial inq, and
sl is the Schur function considered as a character ofsln . q stands fore2d, whered is the null root
of sl̂n . In view of ~8!, we have

@e2 lL0 chVw~Ld!~ lLkL!#uq515s
~ l k!

L .

Thus,~9! can be viewed as aq-analog ofs( l k)
L .

Example 5: We consider the case given in Example 3. To adapt the rule in this sectio
apply the automorphism of the Dynkin diagram.

e2L0 chVr 1r 0r 1
~L1!5~11q!s~21!1q2s~3! .

Let us examine the polynomialK̄l(q). First, we focus on the case ofk51 ~symmetric tensor
case!. The following theorem was suggested by A. N. Kirillov.

Theorem 4: If k51, we have

K̄l~q!5q2E0Kl~ l L!~q!,

E05 laS L2
n

2
~a11! D S a5FL

nG D ,

where Klm(q) is the Kostka–Foulkes polynomial.
This is a direct consequence of the following expression shown in Ref. 12.~See also Refs. 13 an
14.!

Kl~ l L!~q!5( q( j 51
L21 jH ~bj 11^ bj !,

where the sum is over all elementsbL ^ ...^ b1 in (B1,l) ^ L which are killed byẽi( iÞ0) and have
weight ( i 51

n21(l i2l i 11)L̄ i . H stands for the so-called energy function. Recalling the Milne po
nomial ~see p. 73 of Ref. 15 and references therein!,

Mm~x;q!5(
l

sl~x!Klm~q!,

we see the Demazure character~9! for k51 turns out to be the Milne polynomialM ( l L)(x;q) up
to a power ofq.

We mention some generalizations of the Kostka–Foulkes polynomial and Milne polyno
to generalk. For the former, there exists aq-analog of the multiplicity of the irreducible compo
nentVl in the tensor productVm1

^ ...^ VmN
when allm i have a rectangular shape.~See~2.35! of

Ref. 15.! It was proved later that it agrees with a generating function of so-called Littlewo
Richardson tableaux with an appropriate weight.16 In particular, it coincides withK̄l(q) in ~9!
whenm i5( l k) for any i. It also turned out to be the Poincare´ polynomial of an isotypic componen
of the coordinate ring associated with a nilpotent variety.17 For the latter, there exists aq-analog
of products of Schur functions by Lascoux, Leclerc, and Thibon.18 ~They call it H function.! The
coefficients of theirH function on the basis of Schur function were shown to be equal to para
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Kazhdan–Lusztig polynomials for affine Hecke algebra of typeA.19 It is believed thatH functions
corresponding to the tensor products of rectangles with the same width are equal to Dem
characters but it is still unsolved.

We finish with presenting an inhomogeneous version of~9! and Theorem 4.
Theorem 5: For a partition m5(m1 ,...,mm) of umu5m11...1mm , we set

wm5Rm1

~m1!Rm11m2

~m2! ...Rumu
~mm! .

Then we have

e2L0 chVwm
~L umu!5qc~Tm! (

l£umu
l ~l!<n

Kl8m~q21!sl .

Here c(Tm) is the Lascoux–Schüzenberger~LS! charge of the tableau Tm , whose shape is
(npr )(umu5pn1r ,0<r ,n). The contents of Tm

are filled in the natural way from left to right from the first row. l8 stands for the transposition o
l.

For the definition of the LS charge, see Chap. III of Ref. 20.
Example 6: Set n54, m5(321). Thenumu56, wm5r 1r 2r 3r 1r 0r 2r 1r 0r 3r 2 ,

Tm5
1 1 1 2

2 3
.

We have

e2L0 chVwm
~L2!5~11q!s~2212!1qs~313!1qs~23!1q2s~321! .

We sketch the proof of Theorem 5. First, we note

Bwm
~L umu!.uL0

^ Bm1,1
^ Bm2,1

^¯^ Bmm,1.

This is a consequence of an inhomogeneous version of Theorem 1. We also note thatVwm
(L umu)

is Uq(sln)-invariant. Next, we refer to the following expression of the Kostka–Foulkes poly
mial from Ref. 12:

Kl8m~q21!5(
p

qE~p!,

wherep5uL0
^ b1^ ...^ bm runs over all elements inBwm

(L umu) such thatẽip50 (iÞ0), wtp

[( i 51
n21(l i2l i 11)L̄ i modZd. The energyE(p) of a pathp5uL0

^ b1^ ...^ bm is defined by

E~p!5(
j 51

m

(
i 51

j 21

HLm i
Lm j

~bi ^ bj
~ i 11!!.

Now we have to explain two things: the energy functionH and the definition ofbj
( i 11) . Both come

from Ref. 12. Let us consider the following isomorphism of crystals:
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B1^ B2.B2^ B1 ,

b1^ b2°b28^ b18 .

Up to a constant shift, the energy functionH on B1^ B2 is determined by

H„ẽi~b1^ b2!…5H~b1^ b2!11 if i 50,ẽ0~b1^ b2!5ẽ0b1^ b2 ,

ẽ0~b28^ b18!5ẽ0b28^ b18 ,

5H~b1^ b2!21 if i 50,ẽ0~b1^ b2!5b1^ ẽ0b2 ,

ẽ0~b28^ b18!5b28^ ẽ0b18 ,

5H~b1^ b2! otherwise.

If B15Bm i ,1 and B25Bm j ,1, we write H5HLm i
Lm j

. On the other hand,bj
( i )( i< j ) is defined

recursively bybj
( j )5bj and

Bm i ,1^ Bm j ,1.Bm j ,1^ Bm i ,1,

bi ^ bj
~ i 11!°bj

~ i !
^ bi8 .

Since the crystal graphBwm
(L umu) is connected, the proof reduces to

Proposition 3: If ẽipÞ0, then

E~ ẽip!5E~p!21 ~ i 50!,

5E~p! ~ iÞ0!.

The case ofiÞ0 is clear. Fori 50, we need
Lemma 1: Let p5uL0

^ b1^ ...^ bm and ẽ0p5uL0
^ b1^ ...^ ẽ0bk^ ...^ bmÞ0. Then we

have kÞ1, and

E~ j !~ ẽ0p!5E~ j !~p!21 ~ j 5k!,

5E~ j !~p! ~ j Þk!.

Here E( j )(p)5( i 51
j 21HLm i

Lm j
(bi ^ bj

( i 11)).
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Induced representations of the two parametric quantum
deformation U pq †gl „2Õ2…‡

Nguyen Anh Ky
Department of Physics, Chuo University, Kasuga, Bunkyo-ku Tokyo 112-8551, Japan and
Institute of Physics, P.O. Box 429, Bo Ho, Hanoi 10000, Vietnam

~Received 31 January 2000; accepted for publication 6 March 2000!

The two-parametric quantum superalgebra Up,q@gl(2/2)# and its induced represen-
tations are considered. A method for constructing all finite-dimensional irreducible
representations of this quantum superalgebra is also described in detail. It turns out
that finite-dimensional representations of the two-parametric Up,q@gl(2/2)#, even at
generic deformation parameters, are not simply trivial deformations from those of
the classical superalgebra gl~2/2!, unlike the one-parametric cases. ©2000
American Institute of Physics.@S0022-2488~00!04308-5#

LIST OF SYMBOLS

fidirmod~s!: finite-dimensional irreducible module~s!
GZ basis: Gel’fand-Zetlin basis
QGZ basis: quasi-Gel’fand-Zetlin basis
lin.env.$X%: linear envelope ofX
p,q: the deformation parameters
@x#[@x#p,q

5(qx2p2x)/
q2p21: a pq-deformation of a number or an operatorx

Vl
p,q

^ Vr
p,q : a tensor product between two linear spacesVl

p,q and Vr
p,q or a tensor

product between a Up,q@gl~2!l #-module Vl
p,q and a Up,q@gl~2!r #-module

Vr
p,q

Tp,q:V0
p,q : a tensor product between two Up,q@gl~2!%gl~2!#-modulesTp,q andV0

p,q

@E, F%: supercommutator betweenE andF
@E,F# r[EF2rFE: an r-deformed commutator betweenE andF

We hope the notations@x#[@x#p,q for quantum deformations,@m# for highest weights~signatures!
in ~quasi-! GZ bases~m!, and@,# for commutators do not confuse the reader.

I. INTRODUCTION

Introduced in the 1980’s as a result of the study on quantum integrable systems and
Baxter equations,1 the quantum groups2–7 have been intensively investigated in different aspe
Since then many~algebraic and geometric! structures and various applications of quantum~super!
groups have been found~see in this context, for example, Refs. 8–11!. It turns out that quantum
groups are related to unrelated, at first sight, areas of both physics and mathematics~Refs. 8–15
and references therein!. For applications of quantum groups, as in the non-deformed cases
often need their explicit representations. However, despite remarkable results in this directi
problem of investigating and constructing explicit representations of quantum groups, esp
those for quantum superalgebras, is still far from being satisfactorily solved. Even in the c
one-parametric quantum superalgebras, explicit representations are mainly known for quant
superalgebras of lower ranks and of particular types like Uq@osp(1/2)# and Uq@gl(1/n)# ~Refs.
15–17!, while for higher rank quantum Lie superalgebras,18–23 besides someq-oscillator repre-
sentations which are most popular among those constructed, we do not know so much abo
64870022-2488/2000/41(9)/6487/22/$17.00 © 2000 American Institute of Physics
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representations, in particular, the finite-dimensional ones which in many cases are rela
trigonometric solutions of the quantum Yang–Baxter equations.1,8 Some general aspects and t
module structure of finite-dimensional representations of the quantum superalgebras Uq@gl(m/n)#
are considered in Ref. 21, but, unfortunately, their explicit construction is still absent. S
explicit finite-dimensional irreducible representations are all known and classified only for
Uq@gl(m/n)# with both m andn<2 ~see Refs. 15, 22, and 23!.

What about multi-parametric deformations~first considered in Ref. 4!? This area is even les
covered and results are much poorer. Some kinds of two-parametric deformations hav
considered by several authors from different points of view~see Refs. 24 and 25 and referenc
therein! but, to our knowledge, explicit representations are known and/or classified in a few
rank cases such as Up,q@sl(2/1)# and Up,q@gl(2/1)# only.25,26 The latter two-parametric quantum
superalgebra Up,q@gl(2/1)# was consistently defined and investigated in Ref. 25 where al
finite-dimensional irreducible representations were explicitly constructed and classified at g
deformation parameters. This Up,q@gl(2/1)#, however, is still a small quantum superalgebra wh
can be defined without the so-called extra-Serre defining relations27–29 representing additiona
constraints on odd Chevalley generators in higher rank cases. Now, in order to include the
Serre relations on examination we consider a bigger two-parametric quantum supera
namely Up,q@gl(2/2)#, and its representations. This quantum superalgebra Up,q@gl(2/2)# resembles
to the one-parametric quantum superalgebra UApq@gl(2/2)# but cannot be identified with the latte
Here we supposepÞq, otherwise we should return to the case of Uq@gl(2/2)# investigated already
in Refs. 22 and 23. Another motivation is that already in the non-deformed case, the supera
gl(n/n), especially, their subalgebras sl(n/n) and psl(n/n), have special properties@in compari-
son with other gl(m/n), mÞn# and, therefore, attract interest.30 Additionally, structures of two-
parameter deformations considered in Ref. 25 and here are, of course, richer than those
parameter deformations. Every deformation parameter can be independently chosen to
separate generic value~including zero! or to be a root of unity.

Combining the advantages of the previously developed methods for Uq@gl(2/2)# and
Up,q@gl(1/2)# ~see Refs. 22, 23, and 25! we can construct all finite-dimensional representations
the two-parametric quantum Lie superalgebra Up,q@gl(2/2)#. In the framework of this article we
consider representations at genericp and q only ~i.e., p and q are not roots of unity!, while
representations at roots of unity are a subject of later separate investigations. In compariso
previous papers,22,25 the approach here is somewhat modified because of some specific fe
arising in the present case but the main steps in the construction procedure remain the
Following this approach we can directly construct explicit representations of the quantum s
algebra Up,q@gl(2/2)# induced from some~usually, irreducible! finite-dimensional representation
of the even subalgebra Up,q@gl~2!% gl~2!#, which itself is a quantum algebra. Since the latter i
stability subalgebra of Up,q@gl(2/2)# we expect the representations of Up,q@gl(2/2)# constructed
are decomposed into finite-dimensional irreducible representations of Up,q@gl~2!% gl~2!#. For a
clear description of this decomposition we shall introduce a Up,q@gl(2/2)#-basis ~i.e., a basis
within a Up,q@gl(2/2)#-module or briefly a basis of Up,q@gl(2/2)# which will be convenient for us
in investigating the module structure. This basis@see~4.26!# can be expressed in terms of som
basis of the even subalgebra Up,q@gl~2!% gl~2!# which in turn represents a~tensor! product be-
tween two Up,q@gl~2!#-bases referred to as the left and the right ones. As is shown in Ref. 25
Gel’fand–Zetlin~GZ! patterns can serve again as a basis of finite-dimensional representatio
Up,q@gl~2!#. Thus, finite-dimensional representations of Up,q@gl~2!% gl~2!# are realized in tenso
products of two such Up,q@gl~2!# GZ bases. For genericp and q, the finite-dimensional
Up,q@gl(2/2)#-modules constructed have similar structures to those of Uq@gl(2/2)# investigated in
Refs. 22 and 23 and to those of gl~2/2! investigated in Ref. 31. However, finite-dimension
representations of Up,q@gl(2/2)# at generic deformation parameters are not simply trivial de
mations from those of gl~2/2!, that is, the former cannot be obtained from the latter by putt
quantum deformation brackets in appropriate places, unlike many cases of one-parametric
mations. When one or both ofp andq are roots of unity the structures of Up,q@gl(2/2)#-modules
are drastically different, but we hope that the present method for construction of finite-dimen
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representations of Up,q@gl(2/2)# at generic deformation parameters can be extended on its fi
dimensional representations at roots of unity.

This paper is organized as follows. The two-parametric quantum superalgebra Up,q@gl(2/2)# is
consistently defined in Sec. II where we also describe how to construct its representations i
from representations of the stability subalgebra Up,q@gl~2!% gl~2!#. Section III is devoted to con-
structing finite-dimensional representations of Up,q@gl(2/2)#. Finally, some comments and con
clusions are made in Sec. IV.

II. THE QUANTUM SUPERALGEBRA U p,q†gl „2Õ2…‡

The quantum superalgebra Up,q[Up,q@gl(2/2)# as a two-parametric deformation of the un
versal enveloping algebra U@gl~2/2!# of the Lie superalgebra gl~2/2! is generated by the operato
Lk , E12, E23, E34, E21, E32, E43, andEii (1< i<4) called again Cartan–Chevalley generato
and satisfying32 the following.32

~a! The super-commutation relations~1< i , i 11,j , j 11<4! are

@Eii ,Ej j #50, ~2.1a!

@Eii ,Ej , j 11#5~d i j 2d i , j 11!Ej , j 11 , ~2.1b!

@Eii ,Ej 11,j #5~d i , j 112d i j !Ej 11,j , ~2.1c!

@even generator,Lk#50, k51,2,3, ~2.1d!

@Ei ,i 11 ,Ej 11,j%5d i j S q

pD Li2hi ~11d i2!/2

@hi #, ~2.1e!

with hi5@Eii 2(di 11 /di)Ei 11,i 11#, L15Ll , L250, L35Lr , andd15d252d352d451.
~b! The Serre relations are

@E12,E34#5@E21,E43#50, ~2.2a!

E23
2 5E32

2 50, ~2.2b!

@E12,E13#p5@E21,E31#q5@E24,E34#q5@E42,E43#p50. ~2.2c!

~c! The extra-Serre relations are

$E13,E24%50, ~2.3a!

$E31,E42%50. ~2.3b!

Here, the operators

E13ª@E12,E23#q21, ~2.4a!

E24ª@E23,E34#p21, ~2.4b!

E31ª2@E21,E32#p21, ~2.4c!

E42ª2@E32,E43#q21, ~2.4d!

and the operators composed in the following way,

E14ª@E12,@E23,E34#p21#q21[@E12,E24#q21, ~2.5a!
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E41ª@E21,@E32,E43#q21#p21[2@E21,E42#p21, ~2.5b!

are defined as new generators which, likeE23 andE32, are all odd and have vanishing square
These generatorsEi j , 1< i , j <4, are two-parametric deformation analogs~pq-analogs! of the
Weyl generatorsei j , 1< i , j <4, of the superalgebra gl~2/2! whose universal enveloping algeb
U@gl~2/2!# is a classical limit of Up,q@gl(2/2)# whenp,q→1. The so-called maximal-spin opera
tors Lk are constants within a Up,q@gl(2)#-fidirmod and are different for differen
Up,q@gl(2)#-fidirmods. Therefore, commutators between these operators with the odd gene
intertwining Up,q@gl(2)#-fidirmods take concrete forms on concrete basis vectors. Other com
tation relations betweenEi j follow from the relations~2.1!–~2.3! and the definitions~2.4! and
~2.5!.

The subalgebra Up,q@gl(2/2)0#(,Up,q@gl(2/2)#0,Up,q@gl(2/2)#) is even and isomorphic to
Up,q@gl(2)% gl(2)#[Up,q@gl(2)# % Up,q@gl(2)#, which is completely defined byL1 , L3 , E12,
E34, E21, E43, andEii , 1< i<4,

Up,q@gl~2/2!0#5 lin. env.$L1 ,L3 ,Ei j i i , j 51,2 and i , j 53,4%. ~2.6!

In order to distinguish two components Up,q@gl(2)# of Up,q@gl(2/2)0# we set

left Up,q@gl~2!#[Up,q@gl~2! l #ª lin. env.$L1 ,Ei j i i , j 51,2%, ~2.7!

right Up,q@gl~2!#[Up,q@gl~2!r #ª lin. env.$L3 ,Ei j i i , j 53,4%, ~2.8!

that is,

Up,q@gl~2/2!0#5Up,q@gl~2! l % gl~2!r #. ~2.9!

Looking at the relations~2.1!–~2.3! we see that the odd spacesA1 andA2 spanned on the
positive and negative odd roots~generators! Ei j andEji , 1< i<2, j <4, respectively,

A15 lin. env.$E14,E13,E24,E23%, ~2.10!

A25 lin. env.$E41,E31,E42,E32%, ~2.11!

are representation spaces of the even subalgebra Up,q@gl(2/2)0# which, as seen from~2.1! and
~2.2!, is a stability subalgebra of Up,q@gl(2/2)#. Therefore, we can construct representations
Up,q@gl(2/2)# induced from some~finite-dimensional irreducible, for example! representations o
Up,q@gl(2/2)0# which are realized in some representation spaces~modules! V0

p,q representing
tensor products of Up,q@gl(2)l #-modulesV0,l

p,q and Up,q@gl(2)r #-modulesV0,r
p,q :

V0
p,q~L!5V0,l

p,q~L l ! ^ V0,r
p,q~L r !, ~2.12!

whereL’s are some signatures~such as highest weights, respectively! characterizing the module
~highest weight modules, respectively!. HereL l and L r are referred to as the left and the rig
components ofL, respectively,

L5@L l ,L r #. ~2.13!

If we demand

E23V0
p,q~L!50, ~2.14!

hence

Up,q~A1!V0
p,q50, ~2.15!
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we turn the Up,q@gl(2/2)0#-moduleV0
p,q into a Up,q(B)-module where

B5A1 % gl~2! % gl~2!. ~2.16!

The Up,q@gl(2/2)#-moduleWp,q induced from the Up,q@gl(2/2)0#-moduleV0
p,q is the factor-space

Wp,q5Wp,q~L!5Up,q^ V0
p,q~L!]/ I p,q~L!, ~2.17!

which, of course, depends onL, where

Up,q[Up,q@gl~2/2!#, ~2.18!

while I p,q is the subspace

I p,q5 lin. env.$ub^ v2u^ bviuPUp,q,bPUp,q~B!.Up,q ,vPV0
p,q%. ~2.19!

Using the commutation relations~2.1!–~2.3! and the definitions~2.4! and ~2.5! we can prove the
following analog of the Poincare´–Birkhoff–Witt theorem.

Proposition 1: The quantum deformationUp,qªUp,q@gl(2/2)# is spanned on all possible
linear combinations of the elements

g5~E23!
h1~E24!

h2~E13!
h3~E14!

h4~E41!
u1~E31!

u2~E42!
u3~E32!

u4g0 , ~2.20!

or equivalently

g5~E41!
u1~E31!

u2~E42!
u3~E32!

u4b, ~2.21!

where g0PUp,q@gl(2/2)0#, bPUp,q(B) and h i , u i50,1.
Any vectorw from the moduleWp,q can be represented as

w5u^ v, uPUp,q , vPV0
p,q . ~2.22!

ThenWp,q is a Up,q@gl(2/2)#-module in the sense

gw[g~u^ v !5gu^ vPWp,q, ~2.23!

for g, uPUp,q , wPWp,q, and vPV0
p,q . Taking into account the fact thatV0

p,q(L) is a
Up,q(B)-module we have

Wq~L!5 lin. env.$~E41!
u1~E31!

u2~E42!
u3~E32!

u4^ vivPV0
p,q ,u1 ,...,u450,1%. ~2.24!

Consequently, a basis ofWp,q can be constituted by taking all the vectors of the form

uu1 ,u2 ,u3 ,u4 ;~l!&ª~E41!
u1~E31!

u2~E42!
u3~E32!

u4^ ~l!, u i50,1, ~2.25!

where~l! is a ~GZ, for example! basis ofV0
p,q[V0

p,q(L). We refer to this basis ofWp,q as the
induced Up,q@gl(2/2)#-basis~or simply, the induced basis! in order to distinguish it from anothe
Up,q@gl(2/2)#-basis introduced later and called a reduced basis, which is more convenie
investigating the module structure ofWp,q. It is obvious that if the moduleV0

p,q is finite dimen-
sional so is the moduleWp,q. Finite-dimensional representations of Up,q@gl(2/2)# are namely the
subject of the next section.
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III. FINITE-DIMENSIONAL REPRESENTATIONS OF U p,q†gl „2Õ2…‡

In this section we consider finite-dimensional representations of Up,q@gl(2/2)# induced from
irreducible finite-dimensional representations of Up,q@gl(2/2)0#. We first construct the bases of th
moduleWq and then find the explicit matrix elements for the finite-dimensional representatio
Up,q@gl(2/2)#.

We can show that the GZ patterns

Fm12 m22

m11
G[F @m#

m11
G , ~3.1!

wheremi j are complex numbers such thatm122m11PZ1 and m112m22PZ1 , can serve as a
basis of a Up,q@gl(2)#-fidirmod. Indeed, finite-dimensional representations of Up,q@gl(2)# are high
weight and if the operatorsL andEi j , i , j 51,2, are defined on the basis~3.1! as follows,

LFm12 m22

m11
G5 1

2
~ l 122 l 2221!Fm12 m22

m11
G ,

E11Fm12 m22

m11
G5~ l 1111!Fm12 m22

m11
G ,

E22Fm12 m22

m11
G5~ l 121 l 222 l 1112!Fm12 m22

m11
G , ~3.2!

E12Fm12 m22

m11
G5~@ l 122 l 11#@ l 112 l 22# !1/2Fm12 m22

m1111 G ,
E21Fm12 m22

m11
G5~@ l 122 l 1111#@ l 112 l 2221# !1/2Fm12 m22

m1121 G ,
they really satisfy commutation relations of Up,q@gl(2)# given in ~2.1!. Here the notation

l i , j5mi , j2 i , i 51,2, ~3.3a!

and later also the notation

l i j8 5mi j 2 i 12, i 53,4, ~3.3b!

are used. Since the Up,q@gl(2/2)0#-fidirmod V0
p,q is decomposed into a Up,q@gl(2)l #-fidirmod V0,l

p,q

and a Up,q@gl(2)r #-fidirmod V0,r
p,q via the tensor product

V0
p,q5V0,l

p,q
^ V0,r

p,q , ~3.4!

its basis, therefore, is a tensor product

Fm13 m23

m11
G ^ Fm33 m43

m31
G[F @m# l

m11
G ^ F @m# r

m31
G[~m! l ^ ~m!r[~m! ~3.5!

between a GZ basis ofV0,l
p,q spanned on the vectors (m) l and a GZ basis ofV0,r

p,q spanned on the
vectors (m) r . Following the approach of Ref. 22~see also Refs. 23 and 31! and keeping the
notations used there, we can represent the basis~3.5! of V0

p,q in the form

Fm13 m23

m11
;
m33 m43

m31
G[F @m# l

m11
;
@m# r

m31
G[~m!. ~3.6!
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Then, the signatureL, which now is the highest weight, is given by the first ro
@m13,m23,m33,m43#[@@m# l ,@m# r #[@m# common for all the basis vectors~3.6! of V0

p,q :

V0
p,q[V0

p,q~L!5V0
p,q~@m# !5Vo,l

p,q~@m# l ! ^ V0,r
p,q~@m# r !. ~3.7!

The explicit action of Up,q@gl(2/2)0# on V0
p,q(@m#) follows directly from ~3.2! and

g0~m!5g0,l~m! l ^ ~m!r1~m! ^ g0,r~m!r ~3.8!

for g0[g0,l % g0,rPUq@gl(2/2)0# and (m)PV0
q(@m#).

The basis vector withm115m13 andm315m33,

Fm13 m23

m13
;
m33 m43

m33
G[F @m# l

m13
;
@m# r

m33
G[~M !, ~3.9!

satisfying the conditions

Eii ~M !5mi3~M !, i 51,2,3,4,
~3.10!

E12~M !5E34~M !50,

is the highest-weight vector inV0
p,q(@m#). Therefore, as in the classical case (p5q51)31 and in

the case of one-parametric deformation (p5q),22 the highest-weight@m# is nothing but an ordered
set of the eigenvalues of the Cartan generatorsEii on the highest-weight vector~M!. The latter is
also the highest-weight vector inWp,q(@m#) because of the condition~2.14!. All other, i.e., lower
weight, basis vector ofV0

p,q can be obtained from the highest-weight vector~M! through acting on
the latter by monomials of the lowering generatorsE21 andE43 in definite powers:

~m!5S @m112m23#! @m312m43#!

@m132m23#! @m132m11#! @m332m43#! @m332m31#!
D 1/2

~E21!
m132m11~E43!

m332m31~M !,

~3.11!

where@n#’s stand for

qn2p2n

q2p21 [@n#p,q[@n#, ~3.12!

while

@n#! 5@1#@2#¯@n21#@n#. ~3.13!

Therefore, the induced basis~2.25! of Wp,q(L)5Wp,q(@m#) now takes the form

uu1u2 ,u3 ,u4 ;~m!&ª~E41!
u1~E31!

u2~E42!
u3~E32!

u4^ ~m!. ~3.14!

The subspaceTp,q consisting of

uu1 ,u2 ,u3 ,u4&ª~E41!
u1~E31!

u2~E42!
u3~E32!

u4 ~3.15!

can be considered as a Up,q@gl(2/2)0#-adjoint module which is 16-dimensional when all theu i

( i 51,2,3,4) take all two possible values 0 and 1, that is( i 51
4 u i runs all over the range from 0 to

4. ThusWp,q(@m#) being a tensor product between two Up,q@gl(2/2)0#-modules,

Wp,q~@m# !5Tp,q(V0
p,q~@m# !, ~2.248!

is, in general, a reducible Up,q@gl(2/2)0#-module and is decomposed into irreducib
Up,q@gl(2/2)0#-submodules. We arrive at the next assertion.
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Proposition 2: The inducedUp,q@gl(2/2)#-module Wp,q is the linear span

Wp,q~@m# !5 lin. env.$~E41!
u1~E31!

u2~E42!
u3~E32!

u4^ vivPV0
p,q~@m# !,u i50,1%,

~2.2488!

which is decomposed into a direct sum of (16, at most)Up,q@gl(2/2)0#-fidirmods Vk
p,q(@m#k):

Wp,q~@m# !5 %

k50

15

Vk
p,q~@m#k!, ~3.16!

where@m#k are signatures of Vk
p,q[Vk

p,q(@m#k).
Here, we call@m#k[@m12,m22,m32,m42#k the local highest weights of the submodulesVk

p,q in
their GZ bases denoted now as

Fm12 m22

m11
;
M32 m42

m31
G

k

[~m!k . ~3.17!

The highest-weight@m#0[@m# of V0
p,q being also the highest weight ofWp,q is referred to as the

global highest weight. We call@m#k , kÞ0, the local highest weights in the sense that th
characterize the submodulesVk

p,q,Wp,q as Up,q@gl(2/2)0#-fidirmods only, while the global high-
est weight@m# characterizes the Up,q@gl(2/2)#-moduleWp,q as the whole. In the same way w
define the local highest-weight vectors (M )k in Vk

p,q as those (m)k satisfying the conditions@cf.
~3.10!#

Eii ~M !k5mi2~M !k , i 51,2,3,4,
~3.18!

E12~M !k5E34~M !k50.

The highest-weight vector~M! of V0
p,q is also the global highest-weight vector inWp,q for which

the condition@see~2.14!#

E23~M !50 ~3.19!

and the conditions~3.18! simultaneously hold.
Let us denote byGk

p,q the basis system spanned on the basis vectors (m)k in ~3.17! in each
Vk

p,q(@m#). For a basis ofWp,q we can choose the unionGp,q5øk50
15 Gk

p,q of all the basesGk
p,q ,

namely, a basis vector ofWp,q has to be identified with one of the vectors (m)k , 0<k<15. The
basisGp,q is referred to as the Up,q@gl(2/2)#-reduced basis or, simply, the reduced basis. It is cl
that every basisGk

p,q5Gk(@m#k)
p,q is labeled by a local highest-weight@m#k , while the basis

Gp,q5Gp,q(@m#) is labeled by the global highest-weight@m#. Going ahead, we modify the nota
tion ~3.17! for the basis vectors inGp,q as follows@cf. ~4.26! in Ref. 22#

Fm13 m23 m33 m43

m12 m22 m32 m42

m11 0 m31 0
G

k

[Fm12 m22

m11
;
m32 m42

m31
G

k

[~m!k , ~3.20!

with k running from 0 to 15 as fork50 we must take into accountmi25mi3 , i 51,2,3,4, i.e.,

~m!0[~m!5Fm13 m23 m33 m43

m13 m23 m33 m43

m11 0 m31 0
G . ~3.21!

In ~3.20! the first row @m#5@m13,m23,m33,m43# being the~global! highest-weight ofWp,q is
fixed for all the vectors in the wholeWp,q and characterizes this module itself, while the seco
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row is a ~local! highest weight of some submoduleVk
p,q and tells us that the considered bas

vector (m)k of Wp,q belongs to this submodule in the decomposition~3.16! corresponding to the
branching rule Up,q@gl(2/2)#.Up,q@gl(2/2)0#.Up,q@gl~1!^gl(1)#. We refer to ~3.20! as the
quasi-Gel’fand–Zetlin~QGZ! basis.

It is easy to see that the highest-weight vectors (M )k in the notation~3.20! are

~M !k5F m13 m23 m33 m43

m12 m22 m32 m42

m12 m22 m32 m42

m12 0 m32 0

G
k

, k50,1,...,15. ~3.22!

The ~global! highest-weight vector~M! in ~3.9! is given now by

~M !5Fm13 m23 m33 m43

m13 m23 m33 m43

m13 0 m33 0
G . ~3.23!

A highest-weight vector (M )k expressed in terms of the induced basis~3.14! has the form of a
homogeneous polynomial of a definite degreeh in negative odd generators (Ei j ,1< j <2, i<4)
acting on (m)PV0

p,q(@m#):

~M !k[~M !h,h5 (
u i50,1

Ch,h~u1 ,u2 ,u3 ,u4!uu1 ,u2 ,u3 ,u4 ;~m!& ~3.24!

with h5( i 51
4 u i fixed for every (M )h,h , and the coefficientsCh,h determined by solving Eqs

~3.18!. Applying ~3.11! to any (M )h,h we find all the basis vectors (m)h,h of the corresponding
fidirmod Vh,h

p,q , which is a linear space spanned on homogeneous polynomials of the negativ
generators of the same degreeh since~3.11! does not changeh. Here we callh the level ofVh,h

p,q .
It is easy to see that on the levelh50 there is only one fidirmod, namelyV0

p,q[V0,1
p,q , while on the

next levelh51 there are four fidirmods, say,V1,h
p,q , h51,2,3,4. On the levelh52 we can find six

fidirmodsV2,h
p,q , 1<h<6, which are divided into two groups~h51 – 3 andh54 – 6! expressed in

terms of two independent groups of second-order monomials of odd generators~3.15! acting on
~m!. For h53 the number of fidirmods is four,V3,h

p,q , h51,2,3,4, and finally onh54 we find
again only one fidirmodV4,1

p,q . However, this form~3.24!, which was used in the one-parametr
case,22 is now inconvenient for us here to apply formula~3.11! in order to find all other~i.e., lower
weight! reduced basis vectors. It is so because of the presence of the maximal-spin operaLi

which are not diagonalized in the induced basis but in the reduced basis@since an eigenvalue o
anyLi is a fixed constant only within a Up,q@gl(2)#-fidirmod ~or fidirmod, for short! and changes
from fidirmod to fidirmod#. Applying ~3.11! we have to push generatorsE21 andE43 to the right
side until reachingV0

p,q by using commutation relations~2.1! and ~2.2! which give rise toLi ’s
acting on the induced basis vectors. But it is extremtly difficult to get explicit actions ofLi on the
latter vectors before knowing how they are projected on the reduced basis which, however,
now looking for. Instead, we will write down (M )k[(M )h,h in a form convenient for applying
~3.11! which leaves theh’s unchanged:

~M !0[~M !0,15a0u0,0,0,0;~M !&[~M !, a0[1,

~M !1[~M !1,15a1u0,0,0,1;~M !&[a1[E32~M !,

~M !2[~M !1,25a2H 1

a1
E21~M !12

@2l 11#

@2l #
E32E21~M !J ,
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~M !3[~M !1,35a3H 1

a1
E43~M !12

@2l 811#

@2l 8#
E32E43~M !J ,

~M !4[~M !1,4

5a4H 1

a1
E21E43~M !12

1

a2
E43~M !22

1

a3
E21~M !32

@2l 11#@2l 811#

@2l #@2l 8#
E32E21E43~M !J ,

~M !5[~M !2,15a5u0,0,1,1;~M !&[a5E42E32~M !,

~M !6[~M !2,25a6H 1

a5
E21~M !52

@2l 12#

@2l #
E42E32E21~M !J ,

~M !7[~M !2,35a7H 1

a5
E21

2 ~M !52
1

a6

@2#@2l 11#

@2l #
E21~M !62

@2l 11#@2l 12#

@2l #@2l 21#
E42E32E21

2 ~M !J ,

~3.25!
~M !8[~M !2,45a8u0,1,0,1;~M !&[a8E31E32~M !,

~M !9[~M !2,55a9H 1

a8
E43~M !82

@2l 812#

@2l 8#
E31E32E43~M !J ,

~M !10[~M !2,6

5a10H 1

a8
E43

2 ~M !82
1

a9

@2#@2l 811#

@2l 8#
E43~M !92

@2l 811#@2l 812#

@2l 8#@2l 821#
E31E32E43

2 ~M !J ,

~M !11[~M !3,15a11u0,1,1,1;~M !&[a11E31E42E32~M !,

~M !12[~M !3,25a12H 1

a11
E21~M !112

@2l 11#

@2l #
E31E42E32E21~M !J ,

~M !13[~M !3,35a13H 1

a11
E43~M !112

@2l 811#

@2l 8#
E31E42E32E43~M !J ,

~M !14[~M !3,4

5a14H 1

a11
E21E43~M !112

1

a12
E43~M !122

1

a13
E21~M !13

2
@2l 11#@2l 811#

@2l #@2l 8#
E31E42E32E21E43~M !J ,

~M !15[~M !4,15a15u1,1,1,1;~M !&[a15E41E31E42E32~M !,

where l 5 1
2 (m132m23) and l 85 1

2 (m332m43), while ak5ak(p,q) are coefficients depending, i
general, onp and q. Indeed, (M )k given in ~3.25! form a set of all linear-independent vecto
satisfying the conditions~3.18!. Looking at~3.25! we easily identify the highest weights@m#k :

@m#05@m13,m23,m33,m43#,

@m#15@m13,m2321,m3311,m43#,

@m#25@m1321,m23,m3311,m43#,
                                                                                                                



t,

6497J. Math. Phys., Vol. 41, No. 9, September 2000 Induced representations of the two-parametric . . .

                    
@m#35@m13,m2321,m33,m4311#,

@m#45@m1321,m23,m33,m4311#,

@m#55@m13,m2322,m3311,m4311,m4311#,

@m#65@m1321,m2321,m3311,m4311#6 ,

@m#75@m1322,m23,m3311,m4311#,
~3.26!

@m#85@m1321,m2321,m3312,m43#,

@m#95@m1321,m2321,m3311,m4311#9 ,

@m#105@m1321,m2321,m33,m4312#,

@m#115@m1321,m2322,m3312,m4311#,

@m#125@m1322,m2321,m3312,m4311#,

@m#135@m1321,m2322,m3311,m4312#,

@m#145@m1322,m2321,m3311,m4312#,

@m#155@m1322,m2322,m3312,m4312#.

In the latest formula~3.26!, with the exception of@m#6 and@m#9 where a degeneration is presen
we skip the subscriptk on the rhs. The proofs of~3.25! and ~3.26! follow from direct computa-
tions.

Using the rule~3.11!, which now reads

~m!k5S @m112m22#! @m312m42#!

@m122m22#! @m122m11#! @m322m42#! @m322m31#!
D 1/2

~E21!
m122m11~E43!

m322m31~M !k ,

~3.118!

we can find all the basis vectors (m)k :

~m!05u0,0,0,0;~m!&,

~m!15a1qH 2S @ l 132 l 11#@ l 332 l 3111#

@2l 11#@2l 811# D 1/2

u1,0,0,0;~m!111&

2ql 82s8S @ l 132 l 11#@ l 312 l 4321#

@2l 11#@2l 811# D 1/2

u0,1,0,0;~m!111231&

1p2 l 1sS @ l 112 l 23#@ l 332 l 3111#

@2l 11#@2l 811# D 1/2

u0,0,1,0;~m!&

1p2 l 1sql 82s8S @ l 112 l 23#@ l 312 l 4321#

@2l 11#@2l 811# D 1/2

u0,0,0,1;~m!231&J ,
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~m!252a2qS q

pD l 2s21H S @ l 112 l 23#@ l 332 l 3111#

@2l #@2l 811# D 1/2

u1,0,0,0;~m!111&

1ql 82s8S @ l 112 l 23#@ l 312 l 4321#

@2l #@2l 811# D 1/2

u0,1,0,0;~m!111231&

1ql 1s11S @ l 132 l 11#@ l 332 l 3111#

@2l #@2l 811# D 1/2

u0,0,1,0;~m!&

1ql 1s1 l 82s811S @ l 132 l 11#@ l 312 l 4321#

@2l #@2l 811# D 1/2

u0,0,0,1;~m!231&J ,

~m!35a3H 2qS q

pD l 82s8S @ l 132 l 11#@ l 312 l 4321#

@2l 11#@2l 8# D 1/2

u1,0,0,0;~m!111&

1S q

pD 2l 8S @ l 132 l 11#@ l 332 l 3111#

@2l 11#@2l 8# D 1/2

u0,1,0,0;~m!111231&

1qp2 l 1sS q

pD l 82s8S @ l 112 l 23#@ l 312 l 4321#

@2l 11#@2l 8# D 1/2

u0,0,1,0;~m!&

2p2 l 1sS q

pD 2l 8S @ l 112 l 23#@ l 332 l 3111#

@2l 11#@2l 8# D 1/2

u0,0,0,1;~m!231&J ,

~m!45a4S q

pD l 2s1 l 82s821H qS @ l 112 l 23#@ l 312 l 4321#

@2l #@2l 8# D 1/2

u1,0,0,0;~m!111&

2p2 l 82s8S @ l 112 l 23#@ l 332 l 3111#

@2l #@2l 8# D 1/2

u0,1,0,0;~m!111231&

1ql 1s12S @ l 132 l 11#@ l 312 l 4321#

@2l #@2l 8# D 1/2

u0,0,1,0;~m!&

2ql 1s11p2 l 82s8S @ l 132 l 11#@ l 332 l 3111#

@2l #@2l 8# D 1/2

u0,0,0,1;~m!231&J ,

~m!55a5S q

pD l 82s811H S @ l 132 l 11#@ l 132 l 1121#

@2l 11#@2l 12# D 1/2

u1,1,0,0;~m!111111231&

1p2 l 1sS @ l 132 l 11#@ l 112 l 2311#

@2l 11#@2l 12# D 1/2

u0,1,1,0;~m!111231&

2p2 l 1s11S @ l 132 l 11#@ l 112 l 2311#

@2l 11#@2l 12# D 1/2

u1,0,0,1;~m!111231

1p2~2 l 1s!S @ l 112 l 23#@ l 112 l 2311#

@2l 11#@2l 12# D 1/2

u0,0,1,1;~m!231&J .

~m!65
a6

a5
S @2l 11#@2l 12#@ l 132 l 11#

@ l 112 l 2311# D 1/2

~m!52a6S q

pD l 82s811 @2l 12#

@2l #

3H @ l 132 l 1122#S @ l 132 l 1121#

@ l 112 l 2311# D
1/2

u1,1,0,0;~m!111111231&

1p2 l 1s11@ l 132 l 1121#u0,1,1,0;~m!111231&2p2 l 1s12@ l 132 l 1121#u1,0,0,1;~m!111231&
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1p22~ l 2s21!~ @ l 112 l 23#@ l 132 l 11# !1/2u0,0,1,1;~m!231&J ,

~m!75
a7

a5
S @2l 21#@2l #@2l 11#@2l 12#@ l 132 l 1121#@ l 132 l 11#

@ l 112 l 23#@ l 112 l 2311# D 1/2

~m!5

2
a7

a6
@2#@2l 11#S @2l 21#@ l 132 l 1121#

@2l #@ l 112 l 23#
D 1/2

~m!6

2a7

@2l 11#@2l 12#

~@2l 21#@2l # !1/2 S q

pD l 82s811H @ l 132 l 1122#@ l 132 l 1123#

~@ l 112 l 23#@ l 112 l 2311# !1/2 u1,1,0,0;~m!111111231&

1p2 l 1s12@ l 132 l 1122#S @ l 132 l 1121#

@ l 112 l 23#
D 1/2

u0,1,1,0;~m!111231&

2p2 l 1s13@ l 132 l 1122#S @ l 132 l 1121#

@ l 112 l 23#
D 1/2

u1,0,0,1;~m!111231&

1p22~ l 2s22!~ @ l 132 l 1121#@ l 132 l 11# !1/2u0,0,1,1;~m!231&J ,

~3.27!

~m!85a8q2S q

pD l 2s21H S @ l 332 l 3111#@ l 332 l 3112#

@2l 811#@2l 812# D 1/2

u1,0,1,0;~m!111&

1q2l 8S @ l 332 l 3112#@ l 312 l 4321#

@2l 811#@2l 812# D 1/2

u1,0,0,1;~m!111231&

1q2l 811S @ l 332 l 3112#@ l 312 l 4321#

@2l 811#@2l 812# D 1/2

u0,1,1,0;~m!111231&

1q2~2l 811!S @ l 312 l 4322#@ l 312 l 4321#

@2l 811#@2l 812# D 1/2

u0,1,0,1;~m!111231231&J ,

~m!95
a9

a8
S @2l 811#@2l 812#@ l 332 l 3112#

@ l 312 l 4321# D 1/2

~m!82a9q2S q

pD l 2s-1 @2l 812#

@2l 8#

3H @ l 332 l 31#S @ l 332 l 3111#

@ l 312 l 4321# D
1/2

u1,0,1,0;~m!111&1ql 82s821@ l 332 l 3111#

3u1,0,0,1;~m!111231&1ql 82s8@ l 332 l 3111#u0,1,1,0;~m!111231&

1q2~ l 82s8!~ @ l 332 l 3112#@ l 312 l 4322# !1/2u0,1,0,1;~m!111231231&J ,

~m!105
a10

a8
S @2l 821#@2l 8#@2l 811#@2l 812#@ l 332 l 3111#@ l 332 l 3112#

@ l 312 l 4322#@ l 312 l 4321# D 1/2

~m!8

2
a10

a9
@2#@2l 811#S @2l 821#@ l 332 l 3111#

@2l 8#@ l 312 l 4322# D 1/2

~m!92a10S q

pD l 2s21 @2l 811#@2l 812#

@2l 821#@2l 8#

3H q2@ l 332 l 3121#@ l 332 l 31#S @2l 821#@2l 8#

@ l 312 l 4322#@ l 312 l 4321# D
1/2

u1,0,1,0;~m!111&

1ql 82s8@ l 332 l 31#S @2l 821#@2l 8#@ l 332 l 3111#

@ l 312 l 4322# D 1/2

u1,0,0,1;~m!111231&
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1ql 82s811@ l 332 l 31#S @2l 821#@2l 8#@ l 332 l 3111#

@ l 312 l 4322# D 1/2

u0,1,1,0;~m!111231&

1q2~ l 82s8!~ @2l 821#@2l 8#@ l 332 l 3111#@ l 332 l 3112# !1/2u0,1,0,1;~m!111231231&J ,

~m!115a11S q

pD l 2s1 l 82s811H pS @ l 132 l 1121#@ l 332 l 3112#

@2l 11#@2l 811# D 1/2

u1,1,1,0;~m!111111231&

1p2 l 1s12S @ l 112 l 2311#@ l 332 l 3112#

@2l 11#@2l 811# D 1/2

u1,0,1,1;~m!111231&

1ql 82s811pS @ l 132 l 1121#@ l 312 l 4322#

@2l 11#@2l 811# D 1/2

u1,1,0,1;~m!111111231231&

1ql 82s812p2 l 1s11S @ l 112 l 2311#@ l 312 l 4322#

@2l 11#@2l 811# D 1/2

u0,1,1,1;~m!111231231&J ,

~m!125
a12

a11
S @2l #@2l 11#@ l 132 l 1121#

@ l 112 l 2311# D 1/2

~m!112a12pS q

pD l 2s1 l 82s8 @2l 11#

@2l #

3H @ l 132 l 1122#S @2l #@ l 332 l 3112#

@ l 112 l 2311#@2l 811# D
1/2

u1,1,1,0;~m!111111231&

1p2 l 1s12S @2l #@ l 132 l 1121#@ l 332 l 3112#

@2l 811# D 1/2

u1,0,1,1;~m!111231&

1ql 82s811@ l 132 l 1122#S @2l #@ l 312 l 4322#

@@ l 112 l 2311##@2l 811# D
1/2

u1,1,0,1;~m!111111231231&

1ql 82s812p2 l 1s11S @2l #@ l 132 l 1121#@ l 312 l 4322#

@2l 811# D 1/2

u0,1,1,1;~m!111231231&J ,

~m!135
a13

a11
S @2l 8#@2l 811#@ l 332 l 3112#

@ l 312 l 4322# D 1/2

~m!112a13pS q

pD l 2s1 l 82s8 @2l 811#

@2l 8#

3H @ l 332 l 3111#S @2l 8#@ l 132 l 1121#

@2l 11#@ l 312 l 4322# D
1/2

u1,1,1,0;~m!111111231&

1p2 l 1s11@ l 332 l 3111#S @ l 112 l 231 l #@2l 8#

@2l 11#@ l 312 l 4322# D
1/2

u1,0,1,1;~m!111231&

1ql 82s8S @ l 132 l 1121#@ l 332 l 3112#@2l 8#

@2l 11# D 1/2

u1,1,0,1;~m!111111231231&

1ql 82s811p2 l 1sS @ l 112 l 2311#@ l 332 l 3112#@2l 8#

@2l 11# D 1/2

u0,1,1,1;~m!111231231&J ,
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~m!145
a14

a11
S @2l #@2l 11#@ l 132 l 1121#@2l 8#@2l 811#@ l 332 l 3112#

@ l 112 l 2311#@ l 312 l 4322# D 1/2

~m!11

2
a14

a12
S @2l 8#@2l 811#@ l 332 l 3112#

@ l 312 l 4322# D 1/2

~m!122
a14

a13
S @2l #@2l 11#@ l 132 l 1121#

@ l 112 l 2311# D 1/2

~m!13

2a14pS q

pD l 2s1 l 82s821 @2l 11#@2l 811#

@2l #@2l 8# H @ l 132 l 1122#@ l 332 l 3111#

3S @2l #@2l 8#

@ l 112 l 2311#@ l 312 l 4322# D
1/2

u1,1,1,0;~m!111111231&1p2 l 1s12@ l 332 l 3111#

3S @ l 132 l 1121#@2l #@2l 8#

@ l 312 l 4322# D 1/2

u1,0,1,1;~m!111231&1ql 82s8@ l 132 l 1122#

3S @2l #@2l 8#@ l 332 l 3112#

@ l 112 l 2311# D 1/2

u1,1,0,1;~m!111111231231&

1ql 82s811p2 l 1s11~@2l #@ l 132 l 1121#@ l 332 l 3112#@2l 8# !1/2u0,1,1,1;~m!111231231&J ,

~m!155a15~m!,

where l 5 1
2 (m132m23), s5m112

1
2 (m131m23), l 85 1

2 (m332m43), ands85m312
1
2 (m331m43),

while (m)k
6 i j is a QGZ basis vector obtained from (m)k with replacing the elementmi j by mi j

61. We can write down the coefficients in~3.27! all in terms ofl, s, l 8, ands8 only, but here we
leave them partially expressed in terms ofl i j andl i j8 . From~3.27! we can immediately find all the
~local! lowest weight vectors (M )k

V which, by definition, are annihilated byE21 andE43. Let us
remind the reader again that every firdirmodVk

p,q on a levelh, spanned on linear combinations o
uu1 ,u2 ,u3 ,u4 ;(m)& in ~3.14! with a fixed ( i 51

4 u i[h is a linear space of homogeneous polyn
mials of a definite powerh in the negative odd generatorsEi j (1< j ,3< i<4) acting on (m)
PV0

p,q(@m#). Taking into account all results obtained above we have proved the following a
tion.

Proposition 3: EveryUp,q@gl(2/2)0#-fidirmod Vk
p,q in decomposition (3.16) is characterized b

a highest weight@m#k given in (3.25) and is spanned by a QGZ basis(m)k given in (3.27).
The latest formula~3.27!, in fact, represents a way in which the reduced basis is express

terms of the induced basis and vice versa it is not a problem for us to find the inverse re
between these bases~see the Appendix!. For further convenience the vectors (m) k̄[(m)k ~for k
56, 7, 9, 10, 12, 13, and 14! are partially given via other (m)k which are completely expressed
terms ofuu1 ,u2 ,u3 ,u4 ;(m)&. It is not difficult to write down the explicit decompositions of the
(m) k̄ in the induced basis. But here we prefer the expressions in~3.27! which are more compac
and more convenient for finding the inverse relation between two bases and matrix eleme
odd generators.

Now we are ready to calculate the matrix elements of the generatorsEi j . It is sufficient to
calculate the matrix elements of the Cartan–Chevalley generators only, since Up,q@gl(2/2)# can be
generated by these generators and any of its representation in some basis is completely de
their actions on the same basis. For the even generators which do not shift theh’s we readily have

E11~m!k5~ l 1111!~m!k ,

E22~m!k5~ l 121 l 222 l 1112!~m!k ,

E12~m!k5~@ l 122 l 11#@ l 112 l 22# !1/2~m!k
111,
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E21~m!k5~@ l 122 l 1111#@ l 112 l 2221# !1/2~m!k
211,

L1~m!k5 1
2 ~ l 122 l 2221!~m!k ,

~3.28!
E33~m!k5~ l 3111!~m!k ,

E44~m!k5~ l 321 l 422 l 3112!~m!k ,

E34~m!k5~@ l 322 l 31#@ l 312 l 42# !1/2~m!k
131,

E43~m!k5~@ l 322 l 3111#@ l 312 l 4221# !1/2~m!k
231,

L3~m!k5 1
2 ~ l 322 l 4221!~m!k .

As the matrix elements ofE23 andE32 are very long expressions we only explain here how to fi
them. By construction a reduced basis vector (m)k in ~3.27! belonging to a fidirmodVk

p,q on a
level h is a homogeneous polynomial of a powerh in odd generatorsEi j , 1< j ,3< i<4, acting
on (m)PV0

p,q . Under the action ofE23 ~or E32, respectively! this vector (m)k is shifted to other
fidirmodsVk8

p,q on the previous levelh21 ~or on the next levelh11, respectively!, i.e., we get on
the rhs ofE23(m)k @or E32(m)k , respectively# a homogeneous polynomial of a degreeh21 ~or
h11, respectively!. Using the inverse relations~A1! we can express the latter polynomials o
tained in terms of the reduced basis, that is, we get matrix elements ofE23 andE32 in this basis.
It is a standard way to find matrix elements but in practice we can use a trick making calcul
simpler. SinceE23 commutes withE21 andE43 we first calculate the action ofE23 on the highest
vectors only and then apply~3.11! to find all matrix elements of this generator on arbitrary (m)k .
It is less complicated to compute matrix elements ofE32 in the standard way, but we can apply
similar trick, namely, we first calculate the action ofE23 ~which commutes withE12 andE34! on
the lowest weight vectors and then apply the rule inverse to~3.11!.

It can be shown that the representations constructed contain all finite-dimensional irred
representations of Up,q@gl(2/2)# classified as typical or nontypical representations which are s
jects of next investigations.

IV. CONCLUSION

We have considered the two-parametric quantum deformations Up,q@gl(2/2)# and described in
detail a method for constructing its finite-dimensional representations. The representation
structed can be decomposed into finite-dimensional irreducible representations of the even
gebra Up,q@gl(2/2)0# and therefore can be given in bases of the latter. Using Poincare´–Birkhoff–
Witt theorem and the induced representation method we constructed the induced basis
induced moduleWp,q. This basis, however, does not allow a clear description of a decompos
of Wp,q into Up,q@gl(2/2)0#-fidirmods. It was the reason the reduced basis was introduced.
latter basis representing a union of GZ bases of the even subalgebra Up,q@gl(2/2)0# according to
the branching rule Up,q@gl(2/2)#.Up,q@gl(2/2)0#.gl~1!^gl~1! is refered to as quasi-GZ basi
This step is intermediate but of independent interest. Having these two bases, the induced
reduced ones, and the relations between them we can find all matrix elements of finite-dime
representations of Up,q@gl(2/2)#. It turn out that the representations constructed contain all fin
dimensional irreducible representations of Up,q@gl(2/2)# and can be classified into typical an
nontypical representations which are subjects of later papers.

Looking at the basis transformations and the matrix elements we observe, even at g
deformation parameters, some ‘‘anomalies’’ which are canceled out atp5q. It means that the
finite-dimensional representations of the two-parametric quantum superalgebra Uq@gl(2/2)# are
not simply trivial deformations from those of the classical Lie superalgebra gl~2/2! in the sense
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that they cannot be found from classical analogs by putting quantum deformation brack
appropriate places unlike many cases of one-parametric deformations. For example, the
sions

q

p
@2l #@ l 132 l 11#2@2l 11#@ l 132 l 1121# ~4.1!

and

q

p
@2l 8#@ l 332 l 31#2@2l 811#@ l 332 l 3121# ~4.2!

appearing in the basis transformations and matrix elements can be written in the forms

S q

p
21D @2l #@ l 132 l 11#1S q

pD l 132 l 1121

@ l 112 l 23# ~4.18!

and

S q

p
21D @2l 8#@ l 332 l 31#1S q

pD l 332 l 3121

@ l 312 l 43#, ~4.28!

respectively. Atp5q the latest expressions become@ l 112 l 23# and@ l 312 l 43#, respectively, exactly
as in the one-parametric case.22,23

We hope that it is not very difficult to extend the present method to the case of one or
deformation parameters being roots of unity. For conclusion, let us emphasize that our meth
an advantage that it avoids the use of the Clebsch–Gordan coefficients which are not
known, especially for higher rank~classical and quantum! groups and multi-parametric deforma
tions.
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APPENDIX

The induced basis~4.20! is expressed in terms of the reduced basis through the follow
inverse relation:

u1,0,0,0;~m!&52
1

a1
ql 1s21p2 l 82s8S @ l 132 l 1111#@ l 332 l 3111#

@2l 11#@2l 811# D 1/2

~m!1
211

2
1

a2

q2 l 1s21p2 l 82s821

@2l 11# S @2l #@ l 112 l 2321#@ l 332 l 3111#

@2l 811# D 1/2

~m!2
211

2
1

a3

ql 1spl 82s8

@2l 811# S @ l 132 l 1111#@ l 312 l 4321#@2l 8#

@2l 11# D 1/2

~m!3
211

1
1

a4

q2 l 1spl 82s821

@2l 11#@2l 811#
~@2l #@ l 112 l 2321#@2l 8#@ l 312 l 4321# !1/2~m!4

211,
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u0,1,0,0;~m!&52
1

a1
ql 1sS @ l 132 l 1111#@ l 312 l 43#

@2l 11#@2l 811# D 1/2

~m!1
211131

2
1

a2

q2 l 1s

p@2l 11# S @2l #@ l 112 l 2321#@ l 312 l 43#

@2l 811# D 1/2

~m!2
211131

1
1

a3
S p

qD l 82s821 ql 1s

@2l 811# S @ l 132 l 1111#@2l 8#@ l 332 l 31#

@2l 11# D 1/2

~m!3
211131

2
1

a4
S p

qD l 82s822 q2 l 1s21

@2l 11#@2l 811# S @2l #@ l 112 l 2321#@2l 8#

@ l 332 l 31#
D 1/2

~m!4
211131,

u0,0,1,0;~m!&52
1

a1
q21p2 l 82s8S @ l 112 l 23#@ l 332 l 3111#

@2l 11#@2l 811# D 1/2

~m!1

1
1

a2
S p

qD l 2s p2 l 82s821

@2l 11# S @2l #@ l 132 l 11#@ l 332 l 3111#

@2l 811# D 1/2

~m!2

1
1

a3

pl 82s8

@2l 811# S @ l 112 l 23#@2l 8#@ l 312 l 4321#

@2l 11# D 1/2

~m!3

1
1

a4
S p

qD l 2s21 pl 82s8

@2l 11#@2l 811#
~@2l #@ l 132 l 11#@2l 8#@ l 312 l 4321# !1/2~m!4 ,

u0,0,0,1;~m!&5
1

a1
S @ l 112 l 23#@ l 312 l 4311#

@2l 11#@2l 811# D 1/2

~m!1
131

2
1

a2
S p

qD l 2s21 1

@2l 11# S @2l #@ l 132 l 11#@ l 312 l 43#

@2l 811# D 1/2

~m!2
131

2
1

a3
S p

qD l 82s821 1

@2l 811# S @ l 112 l 23#@2l 8#@ l 332 l 31#

@2l 11# D 1/2

~m!3
131

2
1

a4
S p

qD l 2s1 l 82s822 1

@2l 11#@2l 811# S @2l #@2l 8#

@ l 132 l 11#@ l 312 l 43#
D 1/2

~m!4
131,

u1,1,0,0;~m!&5
1

a5
q2~ l 1s!S p

qD l 82s8S @ l 132 l 1111#@ l 132 l 1112#

@2l 11#@2l 12# D 1/2

~m!5
211211131

1
1

a6
S p

qD l 82s823 q22~ l 2s!23

@2l 12#
~p2q2l 211~p2q!@2l 21# !~@ l 112 l 2321#

3@ l 132 l 1121# !1/2~m!6
2112111312

1

a7
S p

qD l 82s823 q22~ l 2s11!

@2#@2l 11#@2l 12#

3~@2l #@2l 21#@ l 112 l 2322#@ l 112 l 2321# !1/2~m!7
211211131,

E~22![u0,1,1,0;~m!&2pu1,0,0,1;~m!&

5
1

a5
ql 1s11S p

qD l 82s811

@2#S @ l 132 l 1111#@ l 112 l 23#

@2l 11#@2l 12# D 1/2

~m!5
211131

1
1

a6
S p

qD l 2s1 l 82s822 q2 l 1s

@2l 12#
$@2#@2l 21#@ l 132 l 11#2@2l #~p2@ l 132 l 11#
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1q21@ l 132 l 1121# !%~m!6
2111311

1

a7
S p

qD l 2s1 l 82s822 q2 l 1s

@2l 11#@2l 12#

3~@2l #@2l 21#@ l 132 l 11#@ l 112 l 2321!#1/2~m!7
211131,

u0,0,1,1;~m!&5
1

a5
S p

qD l 82s8S @ l 112 l 23#@ l 112 l 2311#

@2l 11#@2l 12# D 1/2

~m!5
1311

1

a6
S p

qD 2~ l 2s!1 l 82s824

3H p

q
@2l #@ l 132 l 1122#2@2l 21#@ l 132 l 1121#J 1

@2l 12# S @ l 132 l 11#

@ l 112 l 23#
D 1/2

~m!6
131

2
1

a7
S p

qD 2~ l 2s!1 l 82s824 ~@2l #@2l 21#@ l 132 l 1121#@ l 132 l 11# !1/2

@2#@2l 11#@2l 12#
~m!7

131,

u1,0,1,0;~m!&5
1

a8
q21p22~ l 81s8!S p

qD 2 l 1sS @ l 332 l 3111#@ l 332 l 3112#

@2l 811#@2l 812# D 1/2

~m!8
211

1
1

a9
q21p2~ l 82s8!21S p

qD l 2s ~@ l 332 l 3111#@ l 312 l 4321# !1/2

@2l 812#
~m!9

211

2
1

a10
S p

qD l 2s qp2~ l 82s8!21

@2#@2l 811#@2l 812#

3~@2l 8#@2l 821#@ l 312 l 4322#@ l 312 l 4321# !1/2~m!10
211,

~A1!

E~12![u0,1,1,0;~m!&1q21u1,0,0,1;~m!&

5
1

a8
q21p2 l 82s821S p

qD l 2s11

@2#S @ l 332 l 3111#@ l 312 l 43#

@2l 811#@2l 812# D 1/2

~m!8
211131

1
1

a9
S p

qD l 2s1 l 82s822 pl 82s8

q@2l 812#
$@2#@2l 21#@ l 332 l 31#2@2l 8#~q22@ l 332 l 31#

1p@ l 332 l 3121# !%~m!9
2111311

1

a10
S p

qD l 2s1 l 82s822 pl 82s8

q@2l 811#@2l 812#

3~@2l #@2l 21#@ l 332 l 31#@ l 312 l 4321# !1/2~m!10
211131,

u0,1,0,1;~m!&5
1

a8
S p

qD l 2sS @ l 312 l 43#@ l 312 l 4311#

@2l 811#@2l 812# D 1/2

~m!8
2111311311

1

a9
S p

qD l 2s12~ l 82s8!24

3
1

@2l 812# S @ l 332 l 31#

@2l 811# D
1/2S p

q
@2l 8#@ l 332 l 3122#2@2l 821#@ l 332 l 3121# D

3~m!9
2111311312

1

a10
S p

qD l 2s12~ l 82s8!24 1

@2#@2l 811#@2l 812#

3~@2l 8#@2l 821#@ l 332 l 3121#@ l 332 l 31# !1/2~m!10
211131131,
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u1,1,1,0;~m!&5q2 l 1s22pl 82s822S q

pD l 2s1 l 82s8

3H 1

a11
S @ l 132 l 1111#@ l 332 l 3111#

@2l 11#@2l 811# D 1/2

~m!11
211211131

1
1

a12

q

@2l 11# S @2l #@ l 112 l 2321#@ l 332 l 3111#

@2l 811# D ~m!12
211211131

1
1

a13

q2

@2l 811# S @ l 132 l 1111#@2l 8#@ l 312 l 4321#

@2l 11# D 1/2

~m!13
211211131

1
1

a14

q3

@2l 11#@2l 811#
~@2l #@ l 112 l 2321#@2l 8#@ l 312 l 4321# !1/2~m!14

211211131J ,

u1,0,1,1;~m!&5pl 82s8S p

qD 2~ l 2s!1 l 82s823H 1

a11
q23~q@2l #@ l 132 l 11#2p@2l 11#@ l 132 l 1121# !

3~p@2l 811#2q2@2l 8# !S @ l 332 l 3111#

@2l 11#@2l 811#@ l 112 l 23#
D 1/2

~m!11
211131

2
1

a12

q22

@2l 11#
~p@2l 811#2q2@2l 8# !S @2l #@ l 132 l 11#@ l 332 l 3111#

@2l 811# D 1/2

3~m!12
2111312

1

a13

q21

@2l 811#
~q21@2l #@ l 132 l 11#2p@2l 11#@ l 132 l 1121# !

3S @2l 8#@ l 312 l 4321#

@2l 11#@ l 112 l 23#
D 1/2

~m!13
2111311

1

a14

1

@2l 11#@2l 811#

3~@2l #@ l 132 l 11#@2l 8#@ l 312 l 4321# !1/2~m!14
211131J ,

u1,1,0,1;~m!&5q2 l 1s23S p

qD l 2s12~ l 82s8!24H 1

a11
~q@2l #2p2@2l 11# !~p@2l 811#@ l 332 l 3121#

2q@2l 8#@ l 332 l 31# !S @ l 132 l 1111#

@2l 11#@2l 811#@ l 312 l 43#
D 1/2

~m!11
211211131131

2
1

a12

q

@2l 11#
~p@2l 811#@ l 332 l 3121#2q@2l 8#@ l 332 l 31# !

3S @2l #@ l 112 l 2321#

@2l 811#@ l 312 l 43#
D 1/2

~m!12
2112111311311

1

a13

q

@2l 811#
~q@2l #2p2@2l 11# !

3S @ l 132 l 1111#@2l 8#@ l 332 l 31#

@2l 11# D 1/2

~m!13
211211131131

1
1

a14

q2

@2l 11#@2l 811#
~@2l #@ l 112 l 2321#@2l 8#@ l 332 l 31# !1/2~m!14

211211131131J ,
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u0,1,1,1;~m!&5S p

qD 2~ l 2s1 l 82s822!H 1

a11
q22~p@2l 11#@ l 132 l 1121#2q@2l #@ l 132 l 11# !

3~p@2l 811#@ l 332 l 3121#2q@2l 8#@ l 332 l 31# !

3S 1

@2l 11#@2l 811#@ l 112 l 23#@ l 312 l 43#
D 1/2

~m!11
2111311311

1

a12

q21

@2l 11#

3~p@2l 811#@ l 332 l 3121#2q@2l 8#@ l 332 l 31# !

3S @2l #@ l 132 l 11#

@2l 811#@ l 312 l 43#
D 1/2

~m!12
2111311311

1

a13

q21

@2l 811#
~p@2l 11#@ l 132 l 1121#

2q@2l #@ l 132 l 11# !S @2l 8#@ l 332 l 31#

@2l 11#@ l 112 l 23#
D 1/2

~m!13
211131131

2
1

a14

1

@211#@2l 811#
~@2l #@ l 132 l 11#@2l 8#@ l 332 l 31# !1/2~m!14

211131131J ,

u1,1,1,1;~m!&5
1

a15
~m!211211131131.

1Yang-Barter Equation in Intergrable Systems, edited by M. Jimbo~World Scientific, Singapore, 1989!.
2L. D. Faddeev, N. Y. Reshetikhin, and L. A. Takhtajan, Alg. Anal.1, 178 ~1987!.
3V. D. Drinfel’d, ‘‘Quantum groups,’’ inProceedings of the International Congress of Mathematicians, 1986, Berkeley
~American Mathematical Society, Providence, RI, 1987!, Vol. 1, pp. 798–820.

4Y. I. Manin, Quantum Groups and Non-commutative Geometry~Centre des Recherchers Mathe´matiques, Montre´al,
1988!.

5Y. I. Manin, Topics in Non-commutative Geometry~Princeton U. P., Princeton, NJ, 1991!.
6M. Jimbo, Lett. Math. Phys.10, 63 ~1985!, ibid. 11, 247 ~1986!.
7S. I. Woronowicz, Commun. Math. Phys.111, 613 ~1987!.
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Symmetry analysis and exact solutions of the 2 ¿1
dimensional sine-Gordon system
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According to the space variable exchange symmetry, we change the 211 dimen-
sional sine-Gordon system obtained by Konopelchenko and Rogers~KR! to a vari-
ant form. Some types of similarity reductions are obtained by using some Lie
symmetry analysis. From these similarity reductions, we find that the soliton struc-
ture of the system possesses quite a rich structure. The line solitons parallel to the
lines x1y50 andx2y50 may have an arbitrary shape. In addition to the well-
known dromion solution, which is constructed by two line solitons, one may find
many other kinds of soliton solutions localized in all directions. For instance, some
kinds of ring type~basin-like, plateau-like and bowl-like! and instanton type soliton
solutions, can be found directly by selecting the arbitrary functions included in the
‘‘single’’ soliton solution. The dromion solutions may also be constructed by
straight line and curved line solitons. ©2000 American Institute of Physics.
@S0022-2488~00!00309-1#

I. INTRODUCTION

Recently, the 211 dimensional sine-Gordon~sG! system,

S uxt

sinu D
x

2S uyt

sinu D
y

1
uxũy2uyũx

sin2 u
50, ~1!

S ũx

sinu
D

x

2S ũy

sinu
D

y

1
uxu ty2uyuxt

sin2 u
50, ~2!

derived by Konopelchenko and Rogers1 has been attracted much attention because it is a ‘‘stro
211 dimensional generalization of the 111 dimensional sG equation,

uxt5sinu. ~3!

Many other types of physically significant models like the pumped Maxwell–Bloch system
second, third and fifth Painleve´ transcedents are all the special reductions of the system~1!, ~2!.2

The 211 dimensional sG system~1,2! can also be considered as a special reduction of
integrable 211 dimensional Toda lattice Scheme.3 The special case of~1! and ~2! for ũ5u t ,

S uxt

sinu D
x

2S uyt

sinu D
y

1
uxuyt2uyuxt

sin2 u
50, ~4!

a!Electronic mail: sylou@mail.sjtu.edu.cn
65090022-2488/2000/41(9)/6509/16/$17.00 © 2000 American Institute of Physics
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appears in the work of Darboux on classical differential geometry.4 Many kinds of exact solutions
of the 211 dimensional sG system have been given by many authors. For instance, An
Bäcklund transformation and some exact coherent structure solutions are given by Konopelc
et al.5 and a class of solitonic solution is given by Nimmo.6 In Ref. 7, Nimmo and Schief dis
cussed the superposition principles associated with the Moutard transformation of the m
Schief had studied the geometry of the system.8 Clarkson has given an excellent group analysis
a gauge equivalent form of the system and then various significant similarity solutions are g2

More recently, we notice that there may exist many abundant symmetry and soliton stru
for the high dimensional nonlinear models.9 Say, for a 311 dimensional KdV equation there ma
be some types of ring soliton solutions which are finite at some types of closed curve and
exponentially apart from the curve.10 For the 211 dimensional Nizhnik–Novikov–Vesselo
~NNV! equation,11 there may be some types of soliton solutions with arbitrary shapes.12 In this
paper, we find that for the 211 dimensional sG system there are also some types of ring
soliton solutions and soliton-like solutions with arbitrary shapes.

In the next section, making a simple dependent variable transformation, we change
11) dimensional sG system~1!, ~2! to an equivalent form. From the new form, one may imm
diately obtain a first type of solitonic solution with some arbitrary shapes. In Sec. III, we dis
the Lie point symmetry structure of the (211) dimensional sG system~6!, ~7!. Using the obtained
Lie point symmetry, five kinds of two dimensional reductions are obtained in Sec. IV. These
of reductions are reduced further to the ordinary differential equations~ODE! in Sec. V. Section
VI is devoted to discuss some special types of the soliton structures. The last section is
summary and discussion.

II. 2¿1 DIMENSIONAL sG SYSTEM IN NEW SPACE–TIME

From Eqs.~1! and ~2!, we know that the 211 dimensional sG system is invariant under t
transformation,x↔y. This fact hints us to make the following transformation:

j5x1y, h5x2y, ~5!

to simplify the calculations. Under the transformation~5!, the 211 dimensional sG system i
changed to

~ujuh! t cosu22ujht sinu1ujũh2 ũjuh50, ~6!

~ujũh1 ũjuh!cosu22ũhj sinu1ujuht2ujtuh50. ~7!

From the equations~6!, ~7!, we obtained immediately that the (211) dimensional sG system
admits two types of soliton like solutions with an arbitrary shape:

u5u1~x1y,t !, ũ5 ũ1~x1y,t !1c1~ t !; ~8!

u5u2~x2y,t !, ũ5 ũ2~x2y,t !1c2~ t !; ~9!

whereu i , ũ i andci are all arbitrary functions of the indicated variables. The result solutions~8!
and ~9! show us that in some special lines~parallel to the axesh50 or j50!, the shape of the
soliton solutions may be arbitrary. For instance, anarbitrary multi-soliton solution of anarbitrary
111 dimensional integrable model with the space time$x,t% can be deformed to be a multi-lin
soliton solution of the 211 dimensional sG system~1,2! simply by the transformationx→x1y or
x→x2y. As a special example, the reduction equations~8! and~9! will be re-obtained in the nex
section by means of the Lie point symmetry approach.
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III. LIE POINT SYMMETRIES AND THE RELATED FINITE TRANSFORMATION

A symmetry,s[s(u), of a partial differential equation,

F~xi ,uxi
,uxixj

, . . . ![F~u!, ~10!

is defined as a solution of its linearized equation,

F8s[
d

de
F~u1es!U

e50

, ~11!

which means~10! is invariant under the transformation

u→u1es, ~12!

with infinitesimale. For the 211 dimensional sG system~6!, ~7!, the symmetry definition equa
tion becomes

s5S su

sũD , S A B

C D
D s50, ~13!

where the operatorsA, B, C andD have the forms (]j5]/]j ,]jh5]2/]j]h , . . . ),

A5cosu~uh]jt1ujt]h1uht]j1uj]ht22ujht!2sinu„~ujuh! t12]jht…2 ũj]h1 ũh]j , ~14!

C5cosu~ũh]j1 ũj]h22ũjh!2sinu~ũjuh1 ũhuj!1uj]ht1uht]j2ujt]h2uh]jt , ~15!

B5uj]h1uh]j , D5cosu~ũh]j1 ũj]h22ũjh!22sinu]jh . ~16!

Though we have not yet found a general method to obtain all the possible generalized
metries of the 211 dimensional sG system, we can really find out all the possible classica
point symmetries which means we can find out all the possible solutions of~13! in the form

s5J~j,h,t,u,ũ !Qj1H~j,h,t,u,ũ !Qh1T~j,h,t,u,ũ !Q t1F~j,h,t,u,ũ !, ~17!

where Q[(
ũ

u
), F[(F2

F1), and $J,H,T,F1 ,F2% are functions of$j,h,t,u,ũ%. Because of the

existence of the cosu and sinu in ~13!, we can immediately conclude that$J,H,T,F1% are$u,ũ%
independent andF2 is alsou independent but it may be dependent on the fieldũ linearly. To
determined the explicit form of~17!, we should substitute~17! into ~13! and eliminate the terms
havingujht , ujjht , ujhht , ujhtt , ũjh , ũjjh , ũjhh , ũjht by means of~6!, ~7!. Vanishing all the
coefficients of the resulting equations yields the following overdetermined equations:

Tjt1Hjh5Tht1Jjh5Jjt6Hht5F212Tt50, ~18!

Jjht5Jjh5Jht5Jh5J t50, ~19!

Hjht50, Hjh50, Hjt50, Hj50, Ht50, ~20!

Tjht50, Tjt5Tht50, Tjh50, Tj5Th50, ~21!

F21jh5F20jh50, F21j5F21h50, F20h5F20j50, F150. ~22!

To obtain~18!–~22!, we have used the fact that theũ dependence ofF2 is only linear:
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F25F21ũ1F20. ~23!

From the above equations, one can obtain the only possible solution:

J5 f ~j!, H5g~h!, F25h~ t !ũ1p~ t !, T5q~ t !, F150, ~24!

where f , g, h, p andq are arbitrary functions of the indicated variables.
The corresponding finite transformation of~17! with ~24! can be determined by solving th

following initial problem:

dj8

de
5 f ~j8!,

dh8

de
5g~h8!,

dt8

de
5q~ t8!,

du8

de
50,

dũ8

de
52h~ t8!ũ82p~ t8!, ~25!

je508 5j, he508 5h, te508 5t, ue508 5u, ũe508 5 ũ. ~26!

The general solution of~25! and ~26! read as

j85F21
„e1F~j!…, h85G21

„e1G~h!…, t85Q21
„e1Q~ t !…, ~27!

u8~j8,h8,t !5„e1u~j,h,t !…uj5F21
„F(j8)2e…, h5G21

„G(h8)2e…, t5Q21
„Q(t8)2e… , ~28!

ũ8~j8,h8,t8!5H2~ t8!

3S H1~ t8!2H1~ t !1
ũ~j,h,t !

H2~ t !
D U

j5F21
„F(j8)2e…, h5G21

„G(h8)2e…, t5Q21
„Q(t8)2e…

,

~29!

where

F~j!5E 1

f ~j!
dj, G~h!5E 1

g~h!
dh, Q~ t !5E 1

q~ t !
dt, ~30!

H2~ t !5expS E h~ t !

p~ t !
dtD , H1~ t !5E 1

H2~ t !
dt, ~31!

andF21, G21 andQ21 are the inverse functions ofF, G andQ, respectively. In other words, i

$u(j,h,t),ũ(j,h,t)% is a solution of the (211) dimensional sG system~6!, ~7!, then

$u8(j8,h8,t8),ũ8(j8,h8,t8)% given by~28! and~29! is also a solution of the (211) dimensional
sG system~6!, ~7! under the new independent variables$j8,h8,t8%.

IV. TWO DIMENSIONAL SIMILARITY REDUCTIONS

To find the similarity reduction, we may solve the symmetry constraint equation,

f ~j!Qj1g~h!Qh1q~ t !Q t1S 0

h~ t !ũ1p~ t ! D 50. ~32!

We can solve the symmetry constraint, Eq.~32!, by using the following characteristic equation

dj

f ~j!
5

dh

g~h!
5

dt

q~ t !
5

du

0
5

dũ

2h~ t !ũ2p~ t !
. ~33!

To solve the characteristic equation~33!, we should consider five special cases:
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~i! q(t)Þ0, f (j)Þ0, g(h)Þ0;
~ii ! q(t)50, f (j)Þ0, g(h)Þ0;
~iii ! $q(t)50, f (j)50,g(h)Þ0% or $q(t)50, g(h)50, f (j)Þ0%;
~iv! $q(t)Þ0, f (j)50,g(h)Þ0% or $q(t)Þ0, f (j)Þ0, g(h)50%;
~v! $q(t)Þ0, f (j)50,g(h)50%.

For the first case,q(t)Þ0, f (j)Þ0, g(h)Þ0, four group invariants can be obtained fro
~33! as

X15E 1

f ~j!
dj2E 1

q~ t !
dt, Y15E 1

g~h!
dh2E 1

q~ t !
dt, ~34!

U1~X1 ,Y1!5u, V1~X1 ,Y1!5
1

q~ t !
ũ2

1

q~ t ! E p~ t !dt. ~35!

To find the group invariant solutions of the 211 dimensional sG system, we have to substit
~35! into ~6!, ~7! to determine the functionsU1(X1 ,Y1),V1(X1 ,Y1). The resulting equations rea
as

U1X1
V1Y1

2U1Y1
V1X1

12 sinU1~U1X1
1U1Y1

!X1Y1

2cosU1„U1X1
~U1X1

1U1Y1
!Y1

1U1Y1
~U1X1

1U1Y1
!X1

…50, ~36!

22 sinU1V1X1Y1
1cosU1~U1X1

V1Y1
1U1Y1

V1X1
!1U1Y1

~U1X1
1U1Y1

!X1
2U1X1

~U1X1
1U1Y1

!Y1

50. ~37!

SettingV15(U1X1
1U1Y1

), the reduction system~36! and~37! will be degenerated to a reductio
of ~4!.

For the second case,q(t)50, f (j)Þ0, g(h)Þ0, we can obtain the following relations:

X25E 1

f ~j!
dj2E 1

g~h!
dh, U2~X2 ,t !5u, ũ52p~ t !E 1

f ~j!
dj1V2~X2 ,t !, ~38!

from the characteristic equation~33!. The reduction equations in this case read as

2U2X2X2t sinU222U2X2
UX2t cosU22p~ t !U2X2

50, ~39!

2V2X2X2
sinU22~2U2X2

V2X2
2p~ t !U2X2

!cosU250. ~40!

In the third case,$q(t)50, f (j)50, g(h)Þ0% or $q(t)50, g(h)50, f (j)Þ0%, the corre-
sponding result has the form

u5U3~j,t !,ũ52p~ t !E 1

g~h!
dh1V3~j,t !, ~41!

p~ t !

g~h!
U3j50, ~42!

for q(t)50, f (j)50, g(h)Þ0 or

u5U4~h,t !, ũ52p~ t !E 1

f ~j!
dj1V4~h,t !, ~43!
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p~ t !

f ~j!
U4h50, ~44!

for q(t)50, g(h)50, f (j)Þ0. It is interesting that~8! and~9! are just the special limiting case
for $g(h)→` or p(t)→0% and $f (j)→` or p(t)→0%, respectively.

In the fourth case,$q(t)Þ0, f (j)50, g(h)Þ0% or $q(t)Þ0, g(h)50, f (j)Þ0%, we have

u5U5~j,Y1!, ũ~j,Y1!5
1

q~ t !
S V5~j,Y1!2E p~ t !dt D , ~45!

2U5jY1Y1
sinU52~U5jU5Y1Y1

1U5Y1
U5jY1

!cosU51U5jV5Y1
2U5Y1

V5j50, ~46!

22V5jY1
sinU51~U5Y1

V5j1U5jV5Y1
!cosU51U5Y1

U5jY1
2U5jU5Y1Y1

50, ~47!

for $cÞ0,f (j)50,g(h)Þ0% or

u5U6~X1 ,h!, ũ5
1

q~ t !
S V6~X1 ,h!2E p~ t !dt D , ~48!

2U6X1X1h sinU62~U6hU6X1X1
1U6X1

U6X1h!cosU62U6hV6X1
1U6X1

V6h50, ~49!

22V6X1h sinU61~U6X1
V6h1U6hV6X1

!cosU61U6hU6X1X1
2U6X1

U6X1h50, ~50!

for $q(t)Þ0, g(h)50, f (j)Þ0%.
In the final case,$q(t)Þ0, f (j)50, g(h)50%, we have the following similarity reduction

solution:

u5U7~j,h!, ũ5
1

q~ t !
S V7~j,h!2E p~ t !dt D , ~51!

U7hV7j2V7hU7j50, ~52!

22V7jh sinU71~U7jV7h1U7hV7j!cosU750. ~53!

V. ODE REDUCTIONS

To give some concrete group invariant solutions, we reduce the two dimensional redu
given in the last section to ODE reductions. Similarly, to reduce the two dimensional equa
given in the last section, we will write down at first the corresponding Lie point symmetries
A. ODE reductions of the system „36…, „37…

For the system~36!, ~37!, its only possible Lie point symmetry has the form

s5bS U1

V1
D

X1

1aS U1

V1
D

Y1

1S 0
v0

D50, ~54!

wherea, b andv0 are arbitrary constants. The corresponding similarity reduction reads as

U15U11~z1!, V15V11~z1!1v0 , z15aX11bY1 , ~55!

U11- sinU112U118 U119 cosU1150, ~56!

U118 V118 cosU112V119 sinU1150, ~57!

where the primes denote derivatives with respect to the related argument.
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B. ODE reductions of the system „39…, „40…

For the two dimensional system~39!, ~40!, the related Lie point symmetry possesses the fo

s5~aX21b!S U2

V2
D

X2

1q~ t !S U2

V2
D

t

1S 0
h1~ t !V21h0~ t ! D50, ~58!

wherea andb are arbitrary constants andq(t), h1(t) andh0(t) are determined by

q~ t !52
1

h0~ t !
S aE h0~ t !dt2c1D , h1~ t !5

21

h0~ t !
„ah0~ t !1q~ t !h0t~ t !…, ~59!

with constantc1 for arbitraryh0(t) or

h0~ t !50, ~60!

for arbitraryh1(t) andq(t).
In this case the corresponding similarity reductions have five different subcases
~i! aÞ0, h0(t)Þ0,

U25U21~z2!, V25expE 2h1~ t !dt

q~ t ! S V21~z2!1E t h0~ t2!

q~ t2!
expE t2 h1~ t1!dt1

q~ t1!
dt2D , ~61!

z25S X21
b

aDexpE 2a dt

q~ t !
, ~62!

22a~z2U21- 12U219 !sinU2112a~z2U219 U218 1U218
2!cosU211U218 50, ~63!

U218 ~122V218 !cosU2112V219 sinU2150. ~64!

~ii ! aÞ0, h0(t)50,

U25U22~z2!,V25V22~z2!expE 2h1~ t !dt

q~ t !
, ~65!

~2z2U22- 22U229 !sinU221~z2U229 U228 1U228
2!cosU2250, ~66!

2U228 V228 cosU221V229 sinU2250. ~67!

~iii ! a50, h0(t)Þ0,

U25U23~z3!, V25expE 2h1~ t !dt

q~ t ! S V23~z3!1E t h0~ t2!

q~ t2!
expE t2 h1~ t1!dt1

q~ t1!
dt2D , ~68!

z35S X22E b dt

q~ t ! D , ~69!

22bU23- sinU2312bU239 U238 cosU232c1U238 50, ~70!

~U238 22U238 V238 !cosU2312V239 sinU2350. ~71!

~iv! a50, h0(t)50,
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U25U24~z3!, V25V24~z3!expE 2h1~ t !dt

q~ t !
, ~72!

2U24- sinU241U249 U248 cosU2450, ~73!

2U248 V248 cosU241V249 sinU2450. ~74!

The reduction equations~73! and ~74! have the same forms as~56! and ~57!. The independent
variable of~73!, ~74! is also equivalent to that of~56!, ~57!. However, the exact solutions for th
field ũ are different in two reductions because an additionalj dependent term is included in~38!.

~v! In all the above four subcases,q(t) is assumed not to be zero. Forq(t)50, a quite trivial
reduction has the form

U25U25~ t !, V25V251~ t !X21V250~ t !, ~75!

with U25(t), V251(t) andV250(t) being three arbitrary functions oft.

C. ODE reductions of the systems „46…, „47… and „49…, „50…

For the two dimensional system~46!, ~47!, the related Lie point symmetry possesses the fo

s5 f ~j!S U5

V5
D

j

1~aY11b!S U5

V5
D

Y1

1S 0
aV51cD50, ~76!

wherea, b andc are arbitrary constants andf (j) is an arbitrary function ofj. To write down the
corresponding similarity ODE reductions, we have four subcases.

~i! aÞ0, f (j)Þ0,

U55U51~z4!, V55
V51~z4!2cY1

aY11b
, ~77!

z45~aY11b!expE 2a dj

f ~j!
, ~78!

22a2z4~z4U51- 12U519 !sinU5112a2z4~z4U519 U518 1U518
2!cosU511~bc1aV51!U518 50, ~79!

U518 ~aV511bc22aV518 z4!cosU5112aV519 z4 sinU5150. ~80!

~ii ! a50, f (j)Þ0,

U55U52~z5!, V55
1

b
„bV52~z5!2cY1…, ~81!

z55S Y11E 2b dt

f ~j! D , ~82!

22bU52- sinU5212bU529 U528 cosU521cU528 50, ~83!

~c22bV528 !U528 cosU5212bV529 sinU5250. ~84!

~iii ! a50, b50, f (j)Þ0,

U5U~Y1!, V5V53~Y1!2cE 1

f ~j!
dj, ~85!
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cU538 50, ~86!

with V53(Y1) being an arbitrary function ofY1 .
~iv! aÞ0, f (j)50,

U55U54~j!, V55
V54~j!2cY1

aY11b
, ~87!

2U548 ~aV541bc!50, ~88!

2U548 ~aV541bc!cosU5412aV548 sinU5450. ~89!

For the two dimensional system~49!, ~50!, the corresponding four types of similarity ODE redu
tions can be obtained simply by using the following change:

j↔h, Y1↔X1 , f ~j!↔g~h!, ~90!

from the reductions of the system~46!, ~47!.

D. ODE reductions of the systems „52…, „53…

For the two dimensional system~52!, ~53!, the related Lie point symmetry possesses the fo

s5 f ~j!S U7

V7
D

j

1g~h!S U7

V7
D

h
1S 0

aV71cD50, ~91!

where a and c are arbitrary constants andf (j) and g(h) are arbitrary functions ofj and h,
respectively.

In this case the corresponding similarity ODE reductions can also be cast to six subca
~i! aÞ0, f (j)Þ0, g(h)Þ0,

U75U71~X2!, V75
1

a S aV71~X2!expE 2a dj

f ~j!
2cD , ~92!

V71U718 50, ~93!

U718 ~aV7122V718 !cosU7112~V719 2aV718 !sinU7150. ~94!

~ii ! a50, f (j)Þ0, g(h)Þ0,

U75U72~X2!, V75V72~X2!2cE dj

f ~j!
, ~95!

cU728 50, ~96!

~c22V728 !U728 cosU7212V729 sinU7250. ~97!

~iii ! aÞ0, g(h)50, f (j)Þ0,

U75U73~h!, V75V73~h!expE 2a

f ~j!
dj2

c

a
, ~98!

V73U738 50, ~99!
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V73U738 cosU732V738 sinU7350. ~100!

~iv! a50, f (j)Þ0, g(h)50,

U75U74~h!, V75V74~h!2cE dj

f ~j!
. ~101!

~v! aÞ0, g(h)Þ0, f (j)50,

U75U75~j!, V75V75~j!expE 2a

g~h!
dh2

c

a
. ~102!

~vi! a50, f (j)50, g(h)Þ0,

U75U76~j!, V75V76~j!2cE dh

g~h!
. ~103!

In the subcases~iv!, ~v! and ~vi!, the functionsU74, U75, U76, V74, V75 andV76 are all deter-
mined by~99! and ~100! though their independent arguments are different.

VI. SOME SPECIAL TYPES OF EXPLICIT SOLUTIONS

It is easy to see that the general solution of the system~56!, ~57! can be obtained by solving

U119 5A sinU11, V115BU118 1C, ~104!

whereA, B, C are three arbitrary integral constants. The general solution of~104! reads as

z12z056EU11 dy1

A22A cosy11C1

, V1156BA22A cosU111C11C, ~105!

whereC1 andz0 are two further integral constants. ForC152A, ~105! is simplified to

U11564 tan21 exp„AA~z12z0!…, V11564BAA sech„AA~z12z0!…1C. ~106!

The corresponding soliton solution of the 211 dimensional sG system~6!, ~7! and then~1!, ~2!
reads (j5x1y, h5x2y! as

u564 tan21 exp„AA~z12z0!…, z15E a dj

f ~j!
1E b dh

g~h!
2E ~a1b!dt

q~ t !
, ~107!

ũ5q~ t !~62BAA sech„AA~z12z0!…1C1v0!1E p~ t !dt. ~108!

For the exact solutions of the reduction system~73!, ~74!, a j dependent term shown by the fir
term of ~38! should be added to~108!. It is interesting that the ‘‘single’’ soliton solution~107!,
~108! of the 211 dimensional sG system possesses quite rich structures because the entr
the arbitrary functionsf (j), g(h), q(t) andp(t). Generally, the soliton~108! is a curve soliton
at any fixed timet. In other words, at timet5t0 , after ruling out thet0 dependent backgroun
(C1v0)q(t0)1* t0p(t)dt, the soliton solutionũ given by ~108! is finite on the curve,

E a dj

f ~j!
1E b dh

g~h!
2E t0 ~a1b!dt

q~ t !
50, ~109!
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and decays exponentially apart from the curve. More interestingly, if the curve becomes a
one, then different from the known dromion solution we obtain a new type of soliton solu
localized in all directions. We list some special interesting cases here.

Case 1. Static curve soliton.If we takea52b51, then we obtain a static curved kink-lik
soliton solution for the fieldu. If we takep(t)50, andq(t)5constant further, the fieldũ becomes
also a static curved soliton. Figure 1~a! is a plot of the curved kink for the fieldu and the curve is
taken as

~x1y!214~x2y!2950, ~110!

while Fig. 1~b! is a plot of the curve soliton for the fieldũ with the conditions

~C1v0!q~ t !1E p~ t !dt50, A5B5q~ t !51, ~111!

and the curve being given by~110! also.
Case 2. Static ring soliton.As a special static curve soliton, if the curve is a closed curve t

we get a ring type soliton solution. Figures 2~a! and 2~b! are plots of the circle kink~a basin
soliton! and antikink~a plateau soliton!, respectively, for the fieldu and the curve is taken as
circle,

A~x1y!21~x2y!22950, ~112!

while Fig. 2~c! is a plot of the circle soliton~a bowl type soliton! for the field ũ.
Case 3. Static point soliton.As a limit case of the static ring soliton solution, if the radius

the ring soliton is small enough or the minimal manifold determined by* a dj/ f (j)
1* 2a dh/g(h) is located at a small region, then the static ring soliton reduces to a static
soliton. Figure 3 shows a standard static point soliton of the 211 dimensional sG system with th
condition ~111! and

z12z05A~x1y!21~x2y!2. ~113!

Case 4. Instanton solutions.For the nonstatic soliton solutions, the time dependence of
soliton is also very complicated. For a ring type soliton solution, its radius of the ring wil
changed as the evolution of the time. If the arbitrary functionq(t) is taken to possesses th
property

FIG. 1. ~a! A plot of the curved kink for the fieldu and the curve is taken as (x1y)214(x2y)2950. ~b! A plot of the

curve soliton for the fieldũ on the same curve with (C1v0)q(t)1*p(t)dt50, A5B5q(t)51.
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E dt

q~ t !U
t→6`

→1`, ~114!

then some types of soliton solutions become instantons. Figure 4 is the evolution plot of a s
point instanton solution for the fieldũ with the condition~111! and

z12z05~x1y!21~x2y!21t2, ~115!

from t50, 61, 62, 63 to 64. From Fig. 4 we see that as the value of timeutu increases the
amplitude of the soliton decays exponentially.

FIG. 2. Ring type soliton solutions.~a! A basin soliton and~b! a plateau soliton for the fieldu and the circle is taken as
A(x1y)21(x2y)22950. ~c! A bowl type soliton for the fieldũ.

FIG. 3. A standard static point soliton of the 211 dimensional sG system withz12z05A(x1y)21(x2y)2. ~a! Point

soliton solution for the fieldu. ~b! Point soliton for the fieldũ.
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Case 5. Multidromion solutions for the fieldsux , uy , uxy , uj , ujh etc. In Ref. 5, Schief had
pointed out that for the 211 dimensional sG system~1!, ~2!, the fielduxũx possesses a coheren
structure, dromion solution, which is constructed by two perpendicular line solitons. In Refs.
12, we have also pointed out that the dromions for many kinds of high dimensional models
also be constructed by some straight line and curved line solitons. Now the situation occurs
for the 211 dimensional sG system~1!, ~2!, the dromion solutions can also be constructed
some straight line solitons and curve solitons for many kinds of fields
ux ,uy ,uxy ,uj ,uh ,ujh ,ũx , . . . , in addition to the fielduxũx by selecting the arbitrary functions
appropriately. For instance, ifu is given by~107!, then

u2[uj5
aA2A

f ~j!
sech„AA~z12z0!…, ~116!

and

FIG. 4. The evolution plot of a special point instanton solution for the fieldũ with the condition~111! andz12z05(x
1y)21(x2y)21t2. ~a! t50. ~b! t561. ~c! t562. ~d! t563 and~e! t564. From~a!–~e! we see that as the value o
time utu increase one, the amplitude of the soliton decays tremendously up to several orders of 0.1.
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u3[ujh5
22Aab

f ~j!g~h!
sech„AA~z12z0!…tanh„AA~z12z0!…, ~117!

will exhibit some types of multi-dromion structures if 1/f (j) and 1/g(h) are taken as some
multi-parallel line solitons,

1

f ~j!
5(

i 51

n

f i~j2j i0!,
1

g~h!
5(

i 51

n

gi~h2h i0!, ~118!

where f i(j2j i0) andgi(h2h i0) are line solitons located at the straight lines,

j2j i050, h2h i050. ~119!

The dromions are located at the cross points of the straight lines~119!, and the curve~109! with
z050. Figure 5~a! exhibits the single dromion structure ofu2 with

a52b5g~h!5z01151,
1

f ~j!
5sech~j!. ~120!

Figure 5~b! displays a single dromion structure of the fieldu3 with the same conditiona52b
5g(h)5z01151.

Figure 6~a! and Fig. 6~b! are the plots of the three dromion solution for the fieldsu2 andu3
with

FIG. 5. Single dromion solution.~a! A single dromion structure ofu2[uj with a52b5g(h)5z01151 and 1/f (j)
5sech(j), j5x1y. ~b! A single dromion solution of the fieldu3[ujh with the same conditiona52b5g(h)5z011
51.

FIG. 6. A three dromion solution.~a! Plot of the three dromion solution for the fieldu2 and~b! Plot of the three dromion
solution for the fieldu3, with a52b5g(h)5z01151, 1/f (j) 5sech2(j)2sech2(j210)1sech2(j220).
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a52b5g~h!5z01151,
1

f ~j!
5sech2~j!2sech2~j210!1sech2~j220!. ~121!

Figure 7 shows the structure of a nine dromion solution of the fieldu3 with a52b5z0

1151,

1

f ~j!
5sech2~j!2sech2~j210!1sech2~j220!, ~122!

and

1

g~h!
52„sech2~h!2sech2~h210!1sech2~h220!…. ~123!

From two dimensional reduction equations~42! and~44! or ~8! and~9!, we know that the two
dimensional sG system allows the existence of arbitrary 111 dimensional soliton solutions in th
space time$j,t% and/or $h,t%. That means the straight line solitons parallel to the axesj(5x
1y) and h(5x2y) possess arbitrary shapes. From the other ODE reductions, we may o
some exact solutions with other types of arbitrariness. For instance, if we fix the fieldu as
constant, then all the reductions~99!–~103! give us an equivalent solution for the fieldũ:

ũ5F1~ t !F2~j!1F3~ t !F4~h!1F5~ t !, ~124!

with five arbitrary functionsFi , i 51, . . . ,5. The solution~124! presents that the fieldũ may be a
multi-straight line solitons constructed by two sets of parallel lines, one set lines are para
j50 and the other one set lines are parallel toh50. Two sets of line solitons for the fieldũ are
nonpropagating but their amplitude and the background may be changed as the evolution
if the functionsF1 , F3 andF5 are not taken as constants.

For other types of ODE reductions~63!,~64!, ~66!,~67!,~79!,~80! and ~83!,~84!, we can prove
that they have the Painle`ve property~some variant form of them are single valued around
arbitrary singularity manifold!. However we have not yet obtain any significant solutions of the

VII. SUMMARY AND DISCUSSION

In summary, using the Lie point symmetry approach, we have obtained five types o
dimensional partial differential equation reductions of the 211 dimensional sG system obtaine
by Konopelchenko and Rogers which includes many types of significant special reductions2 One

FIG. 7. A nine dromion solution of the fieldu3 with a52b5z01151, 1/f (j) 5sech2(j)2sech2(j210)1sech2(j
220), and 1/g(h) 52„sech2(h)2sech2(h210)1sech2(h220)….
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special reduction shows us that the system possesses a quite rich line soliton structure. Esp
every multi-soliton solution of an arbitrary 111 dimensional integrable model can be deformed
be a multi-line soliton solutions of the 211 dimensional sG system parallel to the axis x1y or
x2y.

All the two dimensional partial differential equations reduced to the 211 dimensional sG
system have been reduced to ODE by using Lie point symmetry approach also. From a g
‘‘single’’ soliton solution of the reduction equation, we find that the 211 dimensional sG system
possesses not only the rich line soliton structures but also the abundant soliton solutions lo
in all directions. By selecting the arbitrary functions which are included in the ‘‘single’’ sol
solutions, many kinds of localized solutions can be obtained. Actually, because three ar
functionsf (j), g(h), q(t) are included in the ‘‘single’’ soliton solution~107!, ~108!, the solution
for the fieldsu and ũ is a curve soliton and the curve may have quite a free form withF(x1y)
1G(x2y)1Q(t)50 for arbitrary F, G and Q. When the curve is closed, the curved lin
becomes a localized ring type solution~the basin-like and/or plateau-like soliton for the fieldu and
the bowl-like soliton for the fieldũ). If the ring is small enough, the ring type solution
degenerated to a point-like soliton solution.

For the potential fields likeuxiy
j , ũxiy

j , uj ih
j andũj ih

j for arbitraryi , j , may have some type
of multi-dromion structures. And the dromions which are localized in all directions are constr
by some ghost straight line solitons~parallel tox1y50 andx2y50! and a ghost curved line
soliton located atF(x1y)1G(x2y)1Q(t)50.

Actually, because of the model possessing the general symmetry with some arbitrary
tions, all the usual multi-solitons known in literature1–6 may be evolved to some much mo
complicated solutions. More about such types of multi-soliton solutions should be studied fu
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Continuous causal representation of space–time via
sphere orderings
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Mathematics Department, Coventry University, Coventry CV1 5FB, United Kingdom
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A space–time can be regarded as a partially ordered set, or poset, where the partial
ordering is causal precedence. The question of when this poset can be represented
by spheres in Euclidean space is investigated, and it is shown that spaces which can
be so represented are rare, if the position and radius of the spheres are required to
be continuous functions on the space–time. ©2000 American Institute of Physics.
@S0022-2488~00!01409-2#

I. INTRODUCTION

A time-orientable and causal space–time,M, may be regarded as a poset1 where the partial
ordering is that of causal precedence; so ifx,yPM, we havexay iff there is a future-pointing
causal curve connectingx to y. ~We note that ifM is not causal, then there exists distinct poin
x, yPM such thatxay andyax. Thusa fails to satisfy the antisymmetry axiom, and soM is
not a poset.!

A sphere ordering is a set of spheres in Euclidean space, with the ordering defined by
sion; soxay if x lies insidey.

There are constructions2 which exhibit, for a given dimension of Euclidean space, a po
which cannot be represented by spheres in that space; indeed, it has recently been sho3 that
there exists finite posets which are not sphere orderings.

It is also known4 that the causal structure of a strongly causal space–timeM can locally be
represented by the linking ofS2’s in a five-dimensional manifold, the space of null geodesicsN of
M. At least locally, this linking can be reinterpreted via spheres inR3 ordered by inclusion. The
spheres in this case are topological spheres, but not~in general! Euclidean round spheres in an
natural way.

The purpose of this article is to investigate the representability of a time-orientable sp
time as a poset via round spheres in Euclidean space.

First, we will see that it is easy to represent Minkowski space in this way; then, subject
additional constraint that the mapping fromM, our space–time, to the space of round sphere
Euclidean space, be continuous, we will find that there are strong constraints on both the lo
global nature ofM. For the moment at least, we leave open the question of what happens
mapping is not required to be continuous.

II. GENERAL NOTATION AND CONVENTIONS

Minkowski space will be denoted byM, and we will use standard coordinates~t, x, y, z!, in
which the metric has the form

ds25dt22dx22dy22dz2.

The set of spheres inE3, three-dimensional Euclidean space, will be denotedS. This space is

a!Electronic mail: r.low@coventry.ac.uk
65250022-2488/2000/41(9)/6525/4/$17.00 © 2000 American Institute of Physics
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naturally isomorphic toE33(0,̀ ), where (c,r )PE33(0,̀ ) represents the sphere inE3 with
centerc and radiusr. We regard this as a subspace ofE4, equipped with the standard differentiab
structure and Euclidean metric.M will represent a general space–time.

Then we say thatf :M→S is a continuous representation ofM iff f is a continuous injection
and f (y) containsf (x) as spheres inE3 wheneverxay in M. Note that the requirement thatf be
injective, so that a sphere inf (M)#S specifies a unique point inM, already forces us to conside
only distinguishing space–times.

III. MINKOWSKI SPACE

First, we show thatM admits a continuous representation inS. Lygeros5 already gives an
explicit demonstration for points lying to the future of some plane, and only a slight adaptat
required to obtain a construction for all ofM.

Proposition 1:Minkowski space,M, admits a continuous representation inS.
Proof: First, we use the conformal transformation given in Hawking and Ellis, pp. 118–6

to mapM to the regionM5I 1(0)ùI 2((1/2,0,0,0)) inM. Now, if p is any point inM, then we can
mapp to the sphere,P, in which the past light cone throughp meets the surfaceS5$(0,x,y,z)
PM%, which may be identified withE3. The intersection of this past light cone is a roundS2 in E3,
and it is clear that ifp,qPM thenpaq iff P is contained inQ, whereQ is the sphere in which
the past light cone ofq intersectsS.

This association clearly gives a continuous map fromM into S, and since the conformal ma
from M to M is also continuous, we thus have a continuous representation ofM via spheres inE3

ordered by inclusion. h

Note: the obvious extension of this will give a continuous representation
(d11)-dimensional Minkowski space via (d21)-dimensional spheres inEd. As a consequence
we see that the results of Felsneret al.show that there is a finite poset which cannot be embed
into any finite-dimensional Minkowski space so that the causal relation agrees with the p
ordering.3

We now have the natural question, ‘‘which space–times admit a continuous representa
this sense?’’

IV. GLOBAL CONSTRAINTS

Recall that a distinguishing space–time,M, is causally simple ifJ(x), the set of points
reachable fromx by a causal curve, is closed for allxPM. Then we have the following result:

Proposition 2:A space–time admitting a continuous representation by a sphere ordering
be causally simple.

Proof: Suppose thatM fails to be causally simple, and letx be a point such thatJ1(x) ~the
set of points reachable fromx by a future-directed curve! is not closed. Letpn be a sequence o
points in J1(x) such thatp5 limn→` pn is not in J1(x). Then if f :M→S is a continuous
representation ofM, we find that f (x) lies inside eachf (pn), but not insidef (p), which is a
contradiction. h

Since causal simplicity implies stable causality, and,a forteriori, strong causality7 we see that
the causality constraints imposed by the existence of a continuous representation as a
ordering are quite strong. As an aside, we may note that the problem of deciding just
causality conditions are satisfied by a particular space–time can be rather delicate, as is e
fied by the case of the gravitational plane-wave space–time.8

The next significant step up the ladder is the condition of global hyperbolicity; but the
tence of a continuous representation as a sphere ordering does not require this. For the
causal ordering on the subset$(t,x,y,z)ux21y21z2,1% of M clearly agrees with that induced b
the causal ordering onM, and so it has a continuous representation as a sphere ordering. How
this space–time is not globally hyperbolic.

It is worth noting that the proof of Proposition 2 holds regardless of the dimension of Eu
ean space in which we attempt to construct a sphere ordering; therefore there follows the co
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that if a space–timeM fails to be causally simple, then there is no dimension of Euclidean s
admitting a continuous representation ofM via spheres ordered by inclusion.

V. LOCAL CONSTRAINTS

The results obtained above are all of a global nature; but in fact, the existence of a cont
representation inS also places a very tight local constraint on the structure of a space–time

Proposition 3:Let M be continuously represented by a sphere ordering in some dimensi
Euclidean space. ThenM is conformally flat.

Proof: First, we note that the continuous representation can be used to construct a cont
embedding ofM in Mn, for somen. Now, since the causal ordering onM agrees with that onMn,
the null geodesics ofM are mapped to null geodesics ofMn. But it then follows that the null
cones inM are conformal to the intersection of a null cone inMn with a timelike plane, and so ar
shear free. From this we deduce that all null directions inM are principal null directions, and s
the Weyl tensor must vanish.9 HenceM is conformally flat. h

Thus if a space–time is to admit a continuous representation as a sphere ordering
dimension at all, it must be conformally flat. Note that this tells us that although any glo
hyperbolic space–timeM can be embedded isometrically in a Minkowski space–time of su
ciently high dimension,10 the causal relation onM cannot agree with that induced by the ambie
Minkowski space ifM is not conformally flat.

We can establish a stronger result in the case where the representation is actually inS; but
first, we require a technical lemma.

Lemma 1:Let g:Rn→Rn be a continuous injection. Theng is open.
Proof: At first sight this seems obvious; since we can exhaustRn by compact sets, we can us

the fact that a continuous bijection from a compact space to a Hausdorff space is open. B
only shows thatg is open as a map fromRn to its range equipped with the subspace topology.
need to know that the range is itself open as a subset ofRn to draw the required conclusion.

So let us show thatf is open at 0.
Let S be the unit sphere centered on 0, letg(S)5K, and letD be the unit ball centered on

~so that ]D5S!, and let B be the interior ofD. Now, K is the image of a sphere under
continuous injection, and so is a topological sphere. Letp be some point insideK, and letq be any
point of B such thatg(q)Þp. We can contractS within D to q by a continuous family of mapsct

such that ift1Þt2 , then the ranges ofct1
andct2

are disjoint; this induces a contraction ofK to
some point other thanp. It follows that at some point in the contraction the image ofK must
containp; but this means thatp lies in g(D). Henceg(D) contains all points insideK.

Next, suppose thatp lies outsideK, but is still within g(B), sayp5g(x). Then if x is some
point in B such thatg(x) lies insideK, there is a continuous curve fromx to p in B, which is
therefore mapped to a continuous curve fromg(x) to g(p); but the curve fromx to p never meets
S, and its image underg must get from a point insideK to one outsideK. This contradiction
establishes thatg(B) consists of precisely the points insideK.

Now, considerg(0). This point lies insideK, and the mappingd:K→R defined byd(p)
5ip2g(0)i is a continuous function on a compact space. It is bounded below and attai
bounds. Since it is never zero, it is bounded below by some positive number,e, and so the open
ball of radiuse aboutg(0) lies insideK.

We can finally observe that this shows thatg(B) contains an open neighborhood ofg(0) in
Rn; since exactly the same argument works for any element ofRn, g is open. h

Note that the condition that the domain and codomain ofg have the same dimension is crucia
the mapf :R→R2 give by f (x)5(x,0) is a continuous bijection, but clearly is not open.

Armed with this result, we can now prove
Proposition 4:Any space–timeM which admits a continuous representation inS must be

conformal to an open subset ofM.
Proof: Let xPM, and letg:M→S be a continuous representation ofM. Now, S can be

identified with $(t,x,y,z)ut.0%,M by mapping~t, x, y, z! to f (t,x,y,z), the sphere inE3 with
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center~x, y, z! and radiust. Then the functionf 21+g is a continuous, open bijection fromM to
some open set inM which preserves the causality relationship. ThusM is conformally equivalent
to some open subset ofM, which establishes the result. h

In fact, we can say slightly more; since the causal structure on the region must be that in
by the causal structure onR, the region must be causally convex, in the sense that if any
points in f 21+g(M) are joined by a causal geodesic inM, they are joined by a causal geodes
that remains insidef 21+g(M).

At this point we should ask whether any space–time whose causal structure admits a c
ous representation via a sphere ordering in any dimension must in fact do so inS. However, this
is not the case, as we see from the case of de Sitter space. As is well known, de Sitter sp
be embedded in five-dimensional Minkowski space, and this embedding induces the right
structure on de Sitter space. However, de Sitter space is not conformal to any subsp
Minkowski space. Thus there are space–times which admit a continuous representation viaS3’s in
E4, but not viaS2’s in E3.

Finally, we note that so far only necessary conditions have been obtained. That the prob
finding sufficient conditions is harder is suggested by the example ofE, the Einstein cylinder.6 For
the Einstein cylinder is conformally flat and, in addition, globally hyperbolic, so that any
points in it which are causally related are connected by a causal geodesic. However,E cannot be
represented by a sphere ordering. For if it were, there would be a mapf :E→Md11 ~for somed!
such that the image underf of any null geodesic inE would be a null geodesic ofMd11. But given
any point,p, of E, the null geodesics throughp all reconverge at a single point, while the nu
geodesics inMd11 throughf (p) never reconverge anywhere. This provides a contradiction to
hypothesis thatE can be represented by a sphere ordering.

VI. DISCUSSION

Gathering together the various results obtained above, we have a local necessary cond
a space–time to be continuously represented by a sphere ordering, namely that the space–
conformally flat; and a global necessary condition, namely, that the space–time be ca
simple. These constraints are very restrictive. However, a useful sufficient condition thu
eludes us.

There is a variety of related questions still left unanswered; what is the situation i
condition of continuity be dropped, or perhaps weakened slightly? Dually, one might consid
question of which posets can be embedded inM, or, more generally, in some causal space–ti
M. There are also many combinatorial issues, some of which are reviewed in Lygeros.5
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We study the Hopf algebra structure and the highest weight representation of a
multiparameter version ofUqgl(2). The Hopf algebra maps of this algebra are
explicitly given. We show that the multiparameter universalR matrix can be con-
structed directly as a quantum double intertwiner without using Reshetikhin’s twist-
ing transformation. We find there are two types highest weight representations for
this algebra: type a corresponds to the qenericq and type b corresponds to the case
that q is a root of unity. When applying the representation theory to the multi-
parameter universalR matrix, both standard and nonstandard colored solutions of
the Yang–Baxter equation are obtained. ©2000 American Institute of Physics.
@S0022-2488~00!02409-9#

I. INTRODUCTION

As is well known, the Yang–Baxter equation~YBE!1,2 plays an essential role in the study
quantum groups~QG! and quantum algebras~QA!,3–8 integrable models,9–12 as well as in the
construction of knot or link invariants.13–19 For instance, in the Faddeev–Reshetikhin–Takhta
~FRT! approach5–7 to construct quantum groups or quantum algebras, one has to find anR matrix,
which is a matrix solution of the YBE,2 then, using thisR matrix as input, substitute it into the
RTT or RLL relations to get the quantum group or quantum algebra as output.

There are various methods to find the appropriateR matrix. One way is to borrow anR(u)
matrix from the integrable model2 and then take an appropriate limit to remove the spec
parameteru. The second method is to solve the matrix YBE directly.19–21 In this approach one
usually assumes anR with prescribed nonzero elements, and impose some restrictions on th
find a class of solutions. SomeR matrices obtained in this way have unexpected interes
features, so a number of authors call them ‘‘nonstandard’’ solutions.22–26

Many known quantum algebras belong to the category of quasitriangular Hopf alg
~QTHA!.8 This observation provides us an alternative approach to findR matrices. When applying
representation theory to the universalR matrix8 of a QTHA, the desiredR matrix is obtained.~We
denote the universal algebraic solution of YBE byR and the matrix solution byR.! To get more
interesting solutions, people also try various methods to additional parameters intoR
matrix.27,28 This has led to the study ofq-boson realizations29–33with q being a root of unity and
the multiparameter deformations34–39 of Hopf algebras. These solutions are sometimes ca

a!Electronic mail: luan@fermi.phy.ncu.edu.tw
b!Electronic mail: hclee@sansan.phy.ncu.edu.tw
c!Electronic mail: rzhang@maths.uq.edu.au
65290022-2488/2000/41(9)/6529/15/$17.00 © 2000 American Institute of Physics
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‘‘colored’’ solutions.18,38 Although theq-boson realization method is very powerful in constru
ing representations of quantum groups or quantum algebras, it tends to obscure the structur
Hopf algebra.

In this article we studyUqgl(2). Weshow that the appearance of the commuting elemeJ
makes it possible to introduce additional parameterst, u andv, and hence yields a multiparamet
version of Hopf maps and a multiparameter universalR matrix. We then explain how to get th
sameR from quantum double construction. In this way the Hopf algebra structure is pres
and emphasized. We also compare our results with those obtained via Reshetikhin’s tw
transformation.

We consider only the highest weight representations ofUqgl(2). Under the finite-dimension
restriction, two categories of representation appear automatically. When applying this repre
tion theory toR, the standard and nonstandard colored solutions are obtained and the
consistent with those published in the literature.

This article is organized as follows: In Sec. II, we review some basic definitions and prop
of Hopf algebras, quasitriangular Hopf algebras and quantum double. In Sec. III, different ch
of coproduct, antipodeand universalR matrices are given. We also briefly discuss quant
double construction and its relation with the multiparameter version ofUqgl(2). In Sec. IV, we
compare our results to those obtained from Reshetikhin’s twisting transformation.35 In Sec. V, the
highest weight representations are studied and applied toR to obtain matrix solutionsR. In Sec.
VI, colored solutions are obtained and compared to the literature. Section VII contains conc
remarks.

II. HOPF ALGEBRAS, QUASI-TRIANGULAR HOPF ALGEBRAS AND QUANTUM
DOUBLE

In this section we give a brief review of some definitions and properties of Hopf alge
~HA! and quasi-triangular Hopf algebras~QTHA! and their relations to the notion of quantu
double~QD!.8 These ideas will be used in our latter discussions of the multiparameterUqgl(2).

A. Hopf algebras

A Hopf algebra is an associative algebraA with five basic maps~in this article, we call them
Hopf maps!, namely, four homomorphisms:m:A^ A→A ~multiplication!, D:A→A^ A ~coprod-
uct!, h:C→A ~inclusion!, «:A→C ~counit!, and one antihomomorphism:S:A→A ~antipode!.
They satisfy the following relations for anyaPA:

~D ^ id!D~a!5~ id^ D!D~a!,

~« ^ id!D~a!5~ id^ «!D~a!5 id~a!5a, ~2.1!

m~S^ id!D~a!5m~ id^ S!D~a!5h+«~a!5«~a!1,

where id is theidentity map. To be more precise, we use the notation (A,m,D,h,«,S) instead of
A to denote a Hopf algebra. The following proposition is apparent:

Proposition II.1: The algebra(A,m,D8,h,«,S21) is also a Hopf algebra.
HereD8 denotes the opposite coproduct, which maps anyaPA to A^ A as

D8~a!5s+D~a!5(
i

ci ^ bi if D~a!5(
i

bi ^ ci , ~2.2!

andS21 is defined as the inverse ofS:

S~S21~a!!5S21~S~a!!5a. ~2.3!
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B. Quasitriangular Hopf algebras

A quasitriangular Hopf algebra~QTHA! is a Hopf algebra equipped with an elementRPA
^ A which is the solution of the algebraic version of YBE. We start with the definition.

Definition II.1: LetA5(A,m,D,h,e,S) be a Hopf algebra andR (intertwiner) be an invert-
ible element in Â A. Then the pair~A, R! is called a QTHA if for any aPA we have

~i! RD(a)5D8(a)R,
~ii ! (D ^ id)R5R13R23,
~iii ! (id^ D)R5R13R12.

Here, for example,R13 lives in the first and third sections inA3A3A.

By definition, the three relations are satisfied:

R12R13R235R23R13R12,

~S^ id!R5~ id^ S21!R5R 21, ~2.4!

~« ^ id!R5~ id^ «!R51.

The first line is the Yang–Baxter equation.
As in the case of Hopf algebras, we denote (A,R,m,D,h,«,S) as a QTHA. From (i ) of

Definition II.1, we immediately find

RD~a!5D8~a!R, ~s+R!D8~a!5D~a!~s+R!,

R 21D8~a!5D~a!R 21, ~s+R 21!D~a!5D8~a!~s+R 21!.

DefineR (1)5s+R, R (2)5R 21 andR̄5s+R 21, then

RD5D8R, R̄D5D8R̄. ~2.5a!

Also, writing D8 as D̄, then

R (1)D̄5D̄8R (1), R (2)D̄5D̄8R (2). ~2.5b!

These observations lead to the following result:
Proposition II.2: If (A,R,m,D,«,S,h) is a QTHA, then (A,R̄,m,D,«,S,h),

(A,R (1),m,D8,«,S21,h) and (A,R (2),m,D8,«,S21,h) are all QTHAs.
This can be easily proved by using Definition II.1 and Eq.~2.1!. It tells us that for a pair

(D,S), there are two universalR matrices:R andR̄5s+R 21. Both can be used as intertwiner i
a QTHA. Now let us turn to the discussion ofquantum double.8

C. Quantum double

Suppose we have a Hopf algebraA that is spanned by basis$ei%. By introducing a nonde-
generate bilinear form̂ , &, we can defineA’s dual algebraAo that is spanned by$ei%; here
^ei ,ej&5d j

i . Then all the Hopf maps ofAo can be defined in terms of^ , &. Introduce theinter-
twiner,

R5(
i

ei ^ ei . ~2.6!

The commutation relations betweenA andAo can be established via the relation
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RD~a!5D8~a!R, for aPA or Ao,

which tells us how to expand aneiej type product as a sum ofeie
j type products. Choosing$eie

j%
as the basis, one can ‘‘combine’’A andAo to form an enlarged algebraD(A), thequantum double
of A, and treatA or Ao as its subalgebra. ThenD(A) can be proved to be a QTHA equipped wi
R5( iei ^ ei as its intertwiner~universalR matrix!. In other words, a QTHA is a quantum doub
of its subalgebra. In the next section, we will show that theUqgl(2) is a quantum double as we
as a QTHA.

III. UNIVERSAL R MATRIX OF Uqgl „2…

We define our version ofUqgl(2) algebra as a multiparameter QTHA generated
(H,J,X1,X2) with the commutation relations

@J,H#5@J,X6#50,

@H,X6#562X6, ~3.1!

@X1,X2#5
qHt2J2q2HtJ

q2q21 ;

coproduct, antipode and counit,

coproduct:H D~H !5H ^ 111^ H, D~J!5J^ 111^ J,
D~X1!5q2 ~1/2! H~utv !~1/2! J

^ X11X1
^ q~1/2! H~utv21!2 ~1/2! J,

D~X2!5q2 ~1/2! H~u21tv21!~1/2! J
^ X21X2

^ q~1/2! H~u21tv !2 ~1/2! J,
~3.2!

antipode: S~H !52H, S~J!52J, S~X6!52q61v7JX6, ~3.3!

counit: «~H !5«~J!5«~X6!50; ~3.4!

and the universalR matrix given by

R5R 0(
n50

`
~12q2!n

$n%q2!
qn(n21)q~n/2!(H ^ 121^ H)~~uvt21!~1/2! JX2!n

^ ~~uv21t !~1/2! JX1!n,

~3.5!

where

R05q2 ~1/2! H ^ Ht ~1/2!(H ^ J1J^ H)u~1/2!(H ^ J2J^ H), ~3.6!

t, u andv are arbitrary parameters, and$n%q2 and$n%q2! are defined as

$n%q25
12q2n

12q2 5qn21@n#q ,

~3.7!

$n%q2! 5)
j 51

n

$ j %q25q~1/2! n(n21)@n#q!,

with $0%q2! 5@0#q! 51. Note that since the generatorJ commutes with each element inUqgl(2),
different expressions of Hopf maps~i.e., multiplication, coproduct, antipodeandcounit! are pos-
sible. If we replaceH by H85H2cJ and definet85q2ct ~herec is an arbitrary constant!, then
a new Hopf map is obtained by the replacement

H→H8, t→t8.
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The parametert can even be made to disappear when one definesqHt2J5qH̃ and replaces the
generatorH by H̃. For reasons that will become clear we shall retain the parametert. In addition
to t, two more parameters,u andv, appear in the expressions forD(X6), although they do not
explicitly appear in the commutation relations~3.1!. It is important to note thatt, u andv are all
arbitrary parameters. Knowing this allows one to see that many so-called ‘‘multiparameter d
mations’’ of Uqgl(2) are in fact different expressions ofUqgl(2). We will discuss this point
further in the next section.

Consider the transformation

X̃65v71/2JX6, ~3.8!

under which the expressions forD andS on X6 become

D~X̃6!5~q2 ~1/2! Ht ~1/2! J!u6~1/2! J
^ X̃61X̃6

^ ~q~1/2! Ht2 ~1/2! J!u7~1/2! J, ~3.9!

S~X̃6!52q~1/2! HX̃6q2 ~1/2! H52qX̃6, ~3.10!

and the commutation relations~3.1! preserve their form~with the replacementX6→X̃6!. More-
over, the universalR matrix now becomes

R5R 0(
n50

`
~12q2!n

@n#q!
q2 ~1/2! n(n21)~~ut21!~1/2! Jq~1/2! HX̃2!n

^ ~~ut!~1/2! Jq2 ~1/2! HX̃1!n.

~3.11!

In the following, we shall useX̃6 instead ofX6 as generators.
As stated in the last section, corresponding to the same pair (D,S), there is another appropri

ate universalR matrix that shares the same Hopf algebra structure:

R̄5R̄0(
n50

`
~12q22!n

@n#q!
q~1/2! n(n21)~~ut!2 ~1/2! Jq~1/2! HX̃1!n

^ ~~u21t !~1/2! Jq2 ~1/2! HX̃2!n

~3.12!

with

R̄05s+R 0
215q~1/2! H ^ Ht2 ~1/2!(H ^ J1J^ H)u~1/2!(H ^ J2J^ H). ~3.13!

Similarly, if we chooseD̄5D8 andS̄5S21 as another choice of coproduct and antipode, th
for the pair (D̄,S̄), we have the other two universalR matrices,R (1) andR (2):

R (1)5R 0
(1) (

n50

`
~12q2!n

@n#q!
q2 ~1/2! n(n21)~~ut!~1/2! Jq2 ~1/2! HX̃1!n

^ ~~ut21!~1/2! Jq~1/2! HX̃2!n,

R 0
(1)5s+R05q2 ~1/2! H ^ Ht1/2(H ^ J1J^ H)u2 ~1/2!(H ^ J2J^ H), ~3.14!

and

R (2)5R 0
(2) (

n50

`
~12q22!n

@n#q!
q~1/2! n(n21)~~u21t !~1/2! J!q2 ~1/2! HX̃2)n

^ ~~ut!2 ~1/2! Jq~1/2! HX̃1!n,

R 0
(2)5R 0

215q~1/2! H ^ Ht2 ~1/2!(H ^ J1J^ H)u2 ~1/2!(H ^ J2J^ H). ~3.15!
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These universalR matrices can be compared to the literature.27,28,38,39However, since different
authors adopt different conventions in the definition ofD andS, one has to properly choose on
universalR matrix from the set$R, R̄, R (1), R (2)% to make the comparison.

If we defineqa15u21t andqa25ut, and useH15H2a1J andH25H2a2J as generators
instead ofH andJ, then the form of the universalR matrix becomes~here a trivial commuting
element2 1

2 a1a2J^ J is added to the exponent ofR0!:

R5q2 ~1/2! H1^ H2 (
n50

`
~12q2!n

@n#q!
q2 ~1/2! n(n21)~q~1/2! H1X̃2!n

^ ~q2 ~1/2! H2X̃1!n, ~3.16!

which is very similar to the universalR matrix of Uqsl(2):

RUqsl(2)5q2 ~1/2! H ^ H (
n50

`
~12q2!n

@n#q!
q2 ~1/2! n(n21)~q~1/2! HX2!n

^ ~q2 ~1/2! HX1!n. ~3.17!

In fact, the similarity is not an accident but a consequence of QD. To see this, we first re
the generatorsX̃1 and X̃2 by e and f :8

e5q2 H2/2X̃1, f 5qH1/2,X̃2, ~3.18!

then Eqs.~3.1!–~3.4! become

@H1,2,e#52e, @H1,2, f #522 f ,

@e, f #5
qH12q2H2

q221
, ~3.19!

D~H1,2!5H1,2^ 111^ H1,2, D~1!51^ 1,

D~e!5e^ 11q2H2^ e, D~ f !51^ f 1 f ^ qH1. ~3.20!

S~H1,2!52H1,2, S~e!52qH2e, S~ f !52 f q2H1, S~1!51, ~3.21!

«~H1,2!5«~e!5«~ f !50, «~1!51. ~3.22!

These equations provide us the coefficients in the construction of a quantum double. Now,
ing the lower Borel subalgebra ofUqgl(2),

UqB25span$H1
nf m%n,m50

`

as the Hopf algebraA in the quantum double construction, then by applying the same metho
Tjin did in Ref. 8, we find thatAo can be identified with the upper Borel subalgebra

UqB15span$H2
nem%n,m50

` .

This obtains the quantum double structure ofUqgl(2).
Note that in the case ofUqsl(2), thedual element ofH can only be identified as an eleme

proportional toH itself. However, in theUqgl(2) case, sinceJ is a commuting element, it is
possible to identify the dual element ofH1 asH2 , with

H12H2}J,

and thus obtain the universalR matrix of Eq.~3.16!.
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IV. MULTIPARAMETER DEFORMATION AND RESHETIKHIN’S TWISTING
TRANSFORMATION

The same multiparameter universalR matrix can also be obtained in a different way. In th
section we shall discuss Reshetrikhin’s twisting transformation,35 and compare our definition o
Uqgl(2) with those introduced by other authors.27,28,38,39First denoteR in ~3.11! asR(H1 ,H2).

Let u51 and defineH̃5H2aJ with qH̃5qHq2aJ5qHt2J. We obtain a single-paramete
Uqgl(2) and the corresponding universalR matrix now denoted byR(H̃,H̃):

R~H̃,H̃ !5q2 ~1/2!H̃ ^ H̃ (
n50

`
~12q2!n

@n#q!
q2 ~1/2! n(n21)~q~1/2!H̃X̃2!n

^ ~q2 ~1/2!H̃X̃1!n. ~4.1!

According to the procedure introduced by Reshetikhin, for a QTHAA, if we can find an elemen
F5( i f

i
^ f iPA^ A such that

~D ^ id!F5F13F23, ~ id^ D!F5F13F12,
~4.2!

F12F13F235F23F13F12, F12F2151,

then a possible multiparameter version of this QTHA can be established and the transf
universalR matrix can be obtained:

R (F)5F 21RF 21, ~4.3!

where R represents the original single-parameter universalR matrix. For the present single
parameterUqgl(2) case the appropriateF is

F5u2 ~1/4!(H̃ ^ J2J^ H̃)5u2 ~1/4!(H ^ J2J^ H). ~4.4!

After applying Reshetikhin’s twisting transformation onR(H̃,H̃), the transformed Hopf algebr
is indeed~3.1!–~3.4! and the new universalR matrix R (F) is that which appeared in~3.11!, i.e.,

R (F)5R~H1 ,H2!.

Note that in the expression ofR0 @cf. Eq. ~3.6!#, the exponent of the parameteru has an
antisymmetricform, which can be obtained from Reshetikhin’s transformation@note that in Eq.
~4.2! the restrictionF215F 21 is required#. In contrast, the exponent of the parametert has a
symmetric form that comes from the third formula of~3.1! and cannot be obtained from a twistin
transformation. It also seems not possible to obtain an expression containing the parametev via
a twisting transformation. We conclude that twisting transformation is the multiparameter g
alization of thecoproductstructure, whereas our construction is the multiparameter generaliz
for both product andcoproductstructures.

Now we compare ourUqgl(2) algebra with those introduced by other authors.27,28,38,39First
consider the algebra introduced by Burdik and Hellinger.27 Denote their coproduct, antipode an
universalR matrix asDBH , SBH andRBH , respectively. Then, the following substitutions,

H̃→2J0 , X6→J6 , J→2Z,

v→s, u→q, ~4.5!

D→DBH , S→SBH , R̄→RBH ,

recover their algebra and universalR matrix. As a second example we consider the alge
introduced by Chakrabarti and Jagannathan.28 The replacements
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H̃→2J̃0 , X̃6→ J̃6 , J→2Z̃,

q→Q, v→1, u→l21, ~4.6!

D→DCJ, S→SCJ, R̄→RCJ

recover their results. The main differences between their results and ours are: (i ) in the first
exampleu is set equal toq, which is not an arbitrary parameter; (i i ) in the second example ther
is nov-like parameter and (i i i ) there is an extra arbitrary parametert in the commutation relation
~3.1!.

In some sense our expression ofUqgl(2) is a ‘‘general gauge form,’’ whereas other autho
have considered ‘‘gauge fixing form’’ of the same algebra. The advantage of our expression
when we consider the representation theory ofUqgl(2), more general and interesting matr
solutions of the Yang–Baxter equation are obtained.

V. THE HIGHEST WEIGHT REPRESENTATIONS OF Uqgl „2…

For the representation theory, we only study the highest weight representations.15,32,38Let p
be the map fromUqgl(2) to anm-dimensional (m>2) representation:

p~J!5l1, p~H !5m11(
i 51

m

~m22i 11!eii ,

~5.1!

p~X̃1!5(
i 51

m-1

ai ei ,i 11 , p~X̃2!5(
i 51

m-1

bi ei 11,i .

Hereei j represents the matrix basis@(ei j )kl5d ikd j l # and1 denotes the unit matrix. Our strategy
to find a proper choice of parametersl, m, $ai ,bi% i 50

m such that they will give us the appropria
highest weight representations ofUqgl(2). Substituting these expressions into~3.1!, we get

aibi5@ i #qS qmqm2 i t2l2q2mqi 2mtl

q2q21 D , i 51,2,...,m21. ~5.2!

Here we do not requirebi to have any prior relation toai . Equation~5.2! naturally comes from the
commutation relation~3.1! of Uqgl(2). Let tl5qt. Equation~5.2! can now be rewritten as

aibi5@ i #q@m2t1m2 i #q , i 51,2,...,m21.

For i 5m21, comparing with another expression@also obtained from~3.1!#,

am21bm2152@m2t112m#q ,

and, using the identities

@x#q
22@y#q

25@x2y#q@x1y#q ,

@x#q@y#q5Fx1y

2 G
q

2

2Fx2y

2 G
q

2

,

we find

@m2t#q@m#q50. ~5.3!

This result thus gives us two kinds of highest weight representation:
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Type a: If q2(m2t)51 or q2mt22l51, thenq can be any complex number.
Type b: If m, t or q2mt22l are arbitrary complex numbers, thenm satisfies@m#q50 or

q2m51. In other words,q must be restricted to the roots of unity.
Now let us consider two simple examples. First, them52 case:

p~H !5S m11 0

0 m21D , p~J!5lS 1 0

0 1D ,

~5.4!

p~X̃1!5S 0 a

0 0D , p~X̃2!5S 0 0

b 0D ,

ab5
qm11t2l2q2m21tl

q2q21 . ~5.5!

The 434 matrix solutionsR of the YBE can be obtained via the representationR5(p ^ p)R:

R5q2 ~1/2!(m221)tlmS q21~q2mtl! 0 0 0

0 ul 0 0

0 ~q212q!ab u2l 0

0 0 0 q21~qmt2l!

D . ~5.6!

Let qmt2l5q21s, ul5g and drop the factorq2(1/2)(m221)tlm. We then have

R5S s21 0 0 0

0 g 0 0

0 s212s g21 0

0 0 0 q22s

D . ~5.7!

According to previous discussions, thisR matrix in fact represents two solutions, which ar

Ra5S s21 0 0 0

0 g 0 0

0 s212s g21 0

0 0 0 s21

D , Rb5S s21 0 0 0

0 g 0 0

0 s212s g21 0

0 0 0 2s

D . ~5.8!

Whenq is generic~type a!, we haveq22s251, which gives us solutionRa . On the other hand, if
s is arbitrary~type b!, we haveq451, which impliesq2521 ~q251 is ruled out since that will
causeab→`! and gives us solutionRb . Next, we consider them53 case,

p~H !5S m12 0 0

0 m 0

0 0 m22
D , p~J!5lS 1 0 0

0 1 0

0 0 1
D ,

~5.9!

p~X̃1!5S 0 a1 0

0 0 a2

0 0 0
D , p~X̃2!5S 0 0 0

b1 0 0

0 b2 0
D ,
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a1b15@m2t12#q5S qm12t2l2q2m22tl

q2q21 D , tl5qt,

~5.10!

a2b25@2#q@m2t11#q5~q1q21!S qm11t2l2q2m21tl

q2q21 D .

Let q2mtl5q2s22, ul5g and remove the factorq2(1/2)m2
tlm. Then we get

R5S A1 0 0

B1 A2 0

C B2 A3

D , ~5.11!

whereA1 , A2 , A3 , B1 , B2 andC are 333 matrices:

A15S q2s24 0 0

0 q2s22g 0

0 0 q2g2
D , A25S q2s22g21 0 0

0 1 0

0 0 q22s2g
D ,

~5.12!

A35S q2g22 0 0

0 q22s2g21 0

0 0 q26s4
D ,

B15S 0 q2~s2421! 0

0 0 ~12q2!ga2b1

0 0 0
D ,

~5.13!

B25S 0 ~12q2!g21a1b2 0

0 0 ~11q22!~12q22s4!

0 0 0
D ,

C5S 0 0 ~s2421!~q22s4!

0 0 0

0 0 0
D . ~5.14!

This result also provides us two kinds ofR matrices. When (q/s)451, we have the type a
solution ~the standard solution!, whereas in the situation (q/s)4Þ1, we haveq651→11q2

1q450, which gives us type b solution~the nonstandard solution!. Note that the factorsa1b2 and
a2b1 appearing inB1 andB2 cannot be uniquely determined in terms ofq,g,s only, whereas their
product (a1b2a2b1)5(a1b1a2b2) is unique. The type a solution is well known and can be
tained by different methods. The type b solutions are also known by many authors.15–20,32–34

However, most of the authors obtain type b solutions via solving matrix equations and d
emphasize their algebraic origin. Some authors use the ‘‘q-boson realization’’ method combine
with representation theory.32,33 Nevertheless, this method destroys the Hopf algebra structure

For a general integerm, after removing the factorq2(1/2)m2
tlm, and letting

qmt2l5~q21s!m21, ul5g, ~5.15!

we have
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R5q~1/2!(m21)2s2(m221) (
n50

m21
~12q2!n

$n%q2!
qn (

i , j 51

m2n

q22(i 21)( j 21)2n( i 1 j )

3s(m21)(i 1 j 1n)g2~ i 2 j !~ajbi !¯~aj 1n21bi 1n21! ei 1n,i ^ ej , j 1n , ~5.16!

where

aibi5@ i #qS qmt2lqm2 i2q2mtlqi 2m

q2q21 D
5@ i #qS sm21q12 i2s12mqi 21

q2q21 D ~5.17!

and the identity

~q2mt22l21!@m#q5S S s

qD 2(m21)

21D @m#q50 ~5.18!

holds. Here we define (ajbi)¯(aj 1n21bi 1n21)[1 whenn50.
In the last section we see that Reshetikhin’s twisting transformation transforms the s

parameter expression of a Hopf algebra into its multiparameter deformation form. Hence a n
question may arise: when we consider the representation of a Hopf algebra, in what sense d
twisting transformation generalize theR matrix solution of the Yang–Baxter equation? In order
answer this question, we now study the representations ofF. Denote the representation ofF asF
~hereF5u2(1/4)(H ^ J2J^ H)), i.e., F5(p ^ p)F. For them-dimensional representation we have

F5g2 ~1/4!(p(H) ^ 121^ p(H))5 (
i , j 51

m

g~1/2!( i 2 j )eii ^ ej j , ~5.19!

where the relationul5g is used and one finds thatF contains only parameterg. As an example
let us consider them52 case. TheF matrix now reads

F5S 1 0 0 0

0 g2 1/2 0 0

0 0 g1/2 0

0 0 0 1

D . ~5.20!

The representation of theR(H̃,H̃) that mentioned in Sec. IV, denoted asRH̃H̃ , is

RH̃H̃5c~ t,m,l!S s21 0 0 0

0 1 0 0

0 s212s 1 0

0 0 0 q22s

D . ~5.21!

Herec(t,m,l) is an unimportant factor and can be ignored. Now the transformedR matrix R(F),

R(F)5F21RH̃H̃F215S s21 0 0 0

0 g 0 0

0 s212s g21 0

0 0 0 q22s

D , ~5.22!
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is indeed theR in ~5.7!.
From these observations we see that only the parameterg can appear in the representations

F. Thus we conclude that: (i ) Reshetikhin’s twisting transformation transforms anR solution
without parameterg to a new solution withg; ( i i ) The twisting transformation cannot change t
type of representation, i.e., it is impossible to obtain anR matrix of type b from anR matrix of
type a via a twisting transformation.

One more point should be emphasized: there are two sets of free parameters, one
algebraUqgl(2) itself, they aret, u andv, and the other for the representation ofUqgl(2), they
ares andg. In this article we distinguish these two sets of parameters explicitly.

VI. COLORED SOLUTIONS OF THE YANG–BAXTER EQUATION

In order to obtain a colored solution of the YBE via representation, we have to prepar
representations ofUqgl(2):32,38 p15pm,l andp25pm8,l8 acting on the first and second facto
of the direct product̂ , respectively. Then the colored solution is given by

R~m,l;m8,l8!5~p1^ p2!R. ~6.1!

Now let us calculateR(m,l;m8,l8). For the first factor, we have

p1~H !5(
i 51

m

~m1m22i 11!eii , p1~J!5l15l(
i 51

m

eii ,

p1~X̃2!5(
i 51

m-1

bi ei 11,i ,

and, for the second factor, we have

p2~H !5(
i 51

m

~m81m22i 11! eii , p2~J!5l815l8(
i 51

m

eii ,

p2~X̃1!5(
i 51

m-1

ai8 ei ,i 11 .

Here,

R~m,l;m8,l8!5 f ~m,l;m8,l8! (
n50

m-1
~12q2!n

$n%q2!
qn~ss8!~n/2!(m21)S g

g8D
n/2

3 (
i , j 51

m-n

q22(i 21)( j 21)2n( i 1 j )~~s8!m21~g8!21! i~sm21g! j

3~aj8bi !¯~aj 1n218 bi 1n21! ei 1n,i ^ ej • j 1n , ~6.2!

ands,s8,g,g8 are defined by

S s

qD m21

5qmt2l, S s8

q D m21

5qm8t2l8, g5ul, g85ul8, ~6.3!

and the factor
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f ~m,l;m8,l8!5q2 ~1/2! mm8t ~1/2!(ml81m8l)u~1/2!(ml82m8l)

3q~1/2!(m21)2~ss8!2 ~1/2!(m221)S g8

g D ~1/2!(m11)

~6.4!

is irrelevant and can be dropped.
As discussed in the previous section, there are two different types of solution: type a~q is

generic! and type b~q is a root of unity!. Whenm52, let us compare our results with Hlavaty´’s
solutions40 ~see also Ref. 25!:

R1~l,m!5f~l,m!S 1 0 0 0

0 p1~l! 0 0

0 ~12k!j~l!/j~m! k/p1~m! 0

0 0 0 p1~l!/p1~m!

D , ~6.5!

R2~l,m!5f~l,m!S 1 0 0 0

0 p1~l! 0 0

0 W~l,m! p2~m! 0

0 0 0 2p1~l!p2~m!

D , ~6.6!

where

W~l,m!5~12p1~l!p2~l!!j~l!/j~m! ~6.7!

with j(l) being an arbitrary function.
~1! For type a,

Ra5q2~g/g8!S 1 0 0 0

0 qg 0 0

0 6~12q2!~g/g8!1/2 q/g8 0

0 0 0 g/g8

D , ~6.8!

which becomesR1 when we definep1(l)5qg, p1(m)5qg8, k5q2, and j(l)/j(m)
56(g/g8)1/2.

~2! For type b,

Rb5~ss8!S g

g8D S 1 0 0 0

0 sg 0 0

0 22q~ss8!1/2~g/g8!1/2a8b s8/g8 0

0 0 0 2ss8~g/g8!

D , ~6.9!

whereq2521, a8, b are arbitraryC numbers. Letp1(l)5sg, p1(m)5s8g8, p2(l)5s/g, and
p2(m)5s8/g8. We get the diagonal part ofR2 . Furthermore, rewritinga8b5a8ab/a, using the
relationab5(s2s21)/(q2q21)5(q/2s)(12s2), and defining

j~l!

j~m!
5

@~g/s!1/2/a#

@~g8/s8!1/2/a8#
, ~6.10!

we obtainW(l,m)522q(ss8)1/2(g/g8)1/2a8b, which leads to the nonstandard solutionR2 .
Another interesting application is to compare our solutions with those given in Ref. 32.

universalR matrix ~4.1! is ourR̄. The equivalence can be easily established by the replacem
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2N̂2l1→H1 , 2N̂2l2→H2 , ~6.11!

a†
•a~N̂!→X̃1, a•b~N̂!→X̃2. ~6.12!

The additional relation

a i~N̂21!•b i~N̂!5@l i112N̂#q ~6.13!

appearing in Ref. 32 is a consistency condition, just like our Eqs.~5.17! and ~5.18!. Therefore,
without explicit calculation, we know the solutions obtained in Ref. 32 are the same as~6.2!.

When comparing the solution~6.2! with those in Refs. 18, 38, and 39, one has to be v
careful. Since different authors sometimes adopt different definitions and conventions~for ex-
ample, some authors define ourRP or PR as theirR, P which represents the permutation matrix!,
before the comparison one needs to choose appropriate conventions of$D,S% and definition ofR
or R.

VII. CONCLUDING REMARKS

We have studied the Hopf algebra structure and representation theory of a multipara
version of Uqgl(2). We show that the YBE can be solved directly in the QTHA framewo
without introducing additional tricks or doing any transformations. The interesting featur
highest weight representation shows that there exist two kinds of representations. A large c
Borel type solutionsR can be obtained via the highest weight representation, including stan
and nonstandard colored solutions. We also study in what sense Reshetikhin’s twisting tra
mation generalizes a single-parameterR (R) to a multiparameterR (R). However, in this article
we have not yet discussed the cyclic representation31,41,42of Uqgl(2) for q being a root of unity.
We also have not explored what will happen to theUqgl(2) algebra itself and its universalR
matrix whenq is a root of unity.43,44 We leave these discussions to another publication.
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Clebsch–Gordan coefficients of SU „3… in SU „2… and SO „3…
bases

D. J. Rowe and C. Bahria)
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New algorithms are developed for the purpose of optimizing the efficient calcula-
tion of SU~3! Clebsch–Gordan coefficients in both SU~2!- and SO~3!-coupled
bases. The new algorithms make use of the fact that highest weight states in a
tensor product space are easily identified by vector coherent state methods. The
methods are developed for SU~3! but apply to other compact semi-simple Lie
groups. © 2000 American Institute of Physics.@S0022-2488~00!00109-2#

I. INTRODUCTION

The group SU~3! and its Lie algebra su~3! play central roles both in nuclear1 and elementary
particle physics.2 Applications of SU~3! and other unitary groups are also useful in the analysi
quantum interferometers.3 Moreover, SU~3! occurs as a physically significant subgroup of ma
groups needed in physical theory. For example, the subgroup chain U~6!.SU~3!.SO~3! is used in
the interacting boson model4 of nuclear physics and the chain Sp(3,R).SU~3!.SO~3! is used in
the microscopic theory of nuclear collective models.5,6 In such applications, one needs the mat
ces of SU~3! irreps~irreducible representations! and CG~Clebsch–Gordan! coefficients for reduc-
ing the tensor products of irreps.

Algorithms and computer codes for computing SU~3! irreps and CG coefficients have lon
existed in both SU~2!- and SO~3!-coupled bases~cf., for example, the papers of Moshinsky7

Hecht,8 Resnikoff,9 Vergados,10 Sharpet al.,11 Draayeret al.,12 Millener,13 Alis̆auskas,14 Pluhar,15

Klink,16 LeBlanc, Hecht, and Biedenharn,17 and Rowe and Repka18!. However, because the d
mensions of some applications, e.g., the nuclear symplectic model, can be huge, it is imp
that the algorithms be as fast and efficient as they can be. Thus it is worthwhile to see if so
the new techniques of VCS~vector coherent state! theory,19 developed for the purpose of com
puting Lie group and Lie algebra representations and coupling coefficients, result in imp
efficiencies.

The SU~3! algorithms of Draayeret al.,12 LeBlanc et al.,17 and Rowe and Repka,18 for ex-
ample, rely on the shift tensor methods of Biedenharnet al.20 As shown in Refs. 17, 21, VCS
theory gives complete sets of shift tensors that can be used to compute the CG coefficien
wide range of semi-simple Lie groups. However, in this paper, we develop simpler and
efficient methods. The most important advance is the use of VCS representation theory to i
the highest grade states in the tensor product of two irreps. This enables one to infer see
ficients from which all other CG coefficients are derived, both in SU~2!- and SO~3!-coupled bases
The methods given are systematic and well-suited for the development of corresponding
rithms for other groups~algebras! and subgroup~subalgebra! chains.

II. THE CANONICAL SU „2…-COUPLED BASIS

A. Basis states

The su~3! Lie algebra~more precisely its complex extension! is spanned by operators

Ĉi j , i , j , raising operators,

a!Electronic mail: bahri@physics.utoronto.ca
65440022-2488/2000/41(9)/6544/22/$17.00 © 2000 American Institute of Physics
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Ĉi j , i . j , lowering operators, ~1!

ĥ15Ĉ112Ĉ22, ĥ25Ĉ222Ĉ33, Cartan operators,

and has commutation relations

@Ĉi j ,Ĉkl#5d jkĈil 2d i l Ĉk j . ~2!

A highest weight stateulm& for an irrep of highest weight (l,m) satisfies the equations

Ĉi j ulm&50, i , j ,

ĥ1ulm&5lulm&, ĥ2ulm&5mulm&. ~3!

Without loss of generality, we may suppose thatulm& is also an eigenstate of the operatorĈ33

with zero eigenvalue so that

Ĉ11ulm&5~l1m!ulm&, Ĉ22ulm&5mulm&, Ĉ33ulm&50. ~4!

The Hilbert space,H(lm), for the SU~3! irrep with highest weight (l,m) thereby becomes a
Hilbert space for a U~3! irrep of highest weight (l1m,m,0).

Let SU~2!23 denote the SU~2!,SU~3! subgroup whose Lie algebra is spanned by theI -spin
operators,

Î 15Ĉ23, Î 25Ĉ32, Î 05 1
2 ~Ĉ222Ĉ33!. ~5!

The highest weight stateulm& is then them5s5m/2 state of a SU~2!23 multiplet of states
$u(lm)0sm&;m52s,...,s% which satisfy the conditions

Ĉ12u~lm!0sm&5Ĉ13u~lm!0sm&50, Ĉ11u~lm!0sm&5~l1m!u~lm!0sm&,

Î 0u~lm!0sm&5mu~lm!0sm&. ~6!

The states$u(lm)0sm&% have the largest eigenvalues ofĈ11 in the space and are referred to
highest grade states.

Lower grade states are generated by repeated application of lowering operators to the
grade states. Since the lowering operators are components of a SU~2!23 spin-12 tensorP̃1/2 with
components

P̃1/2
1/2~ f̂ !5 f̂ 25Ĉ21, P̃21/2

1/2 ~ f̂ !5 f̂ 35Ĉ31, ~7!

we define a spin-j lowering tensorP̃j ( f̂ ) with components

P̃m
j ~ f̂ !5

f̂ 2
( j 1m) f̂ 3

( j 2m)

A~ j 1m!! ~ j 2m!!
, m52 j ,...,1 j . ~8!

An orthonormal SU~2!23-coupled basis for a (lm) irrep is then given, to within norm factors, b

u~lm! j IN &5
1

K jI
(lm) (

mn
~sn, jmuIN ! P̃m

j ~ f̂ !u~lm!0sn&5
1

K jI
(lm) @ P̃j~ f̂ ! ^ u~lm!0s&] N

I , ~9!

where the coupling is right-to-left SU~2! coupling. The labelj defines the grade of a state. If w
define a grading operator,
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X̂52Ĉ112Ĉ222Ĉ33, ~10!

then

X̂u~lm! j IN &5~2l1m26 j !u~lm! j IN &, ~11!

and the stateu(lm) j IN & is said to have grade (2l1m26 j ). The norm factorK jI
(lm) is derived by

VCS methods18 and given below@cf. Eq. ~17!#.

B. Vector-coherent-state representation

In a VCS representation~details are given in Ref. 18!, the highest grade (j 50) states are
identified with a basis$jm

(lm)[u(lm)0sm&% for an irrep r (lm) of the direct product group
U~1!13SU(2)23 for which

Ĉ11jm
(lm)5~l1m!jm

(lm) , ŝ0jm
(lm)5mjm

(lm) , ŝ6jm
(lm)5A~s7m!~s6m11! jm61

(lm) , ~12!

where Ĉ115r (lm)(Ĉ11), ŝk5r (lm)( Î k) and s5m/2. A stateuc&PH(lm) is then assigned a VCS
wave functionc with vector values,

c~z!5(
m

jm
(lm)^~lm!0smueẑuc&, ~13!

where

ẑ5z2Ĉ121z3Ĉ13. ~14!

It is then determined18 that the wave functions for the~orthonormal! basis states$u(lm) j IN &% are
given by

c j IN
(lm)~z!5K jI

(lm)@ P̃j~z! ^ j (lm)#N
I , ~15!

with

P̃m
j ~z!5

z2
( j 1m)z3

( j 2m)

A~ j 1m!! ~ j 2m!!
, m52 j ,...,1 j , ~16!

and that the normalization factors have values~with s5m/2!

K jI
(lm)5A ~l1m11!!l!

~l1s1I 2 j 11!! ~l1s2I 2 j !!
. ~17!

In the VCS representation an elementÂ in the u~3! Lie algebra is represented by the opera
G (lm)(Â), where

@G (lm)~Â!c#~z!5(
m

jm
(lm)^~lm!0smueẑÂuc&. ~18!

From this definition, it is inferred18 that raising and lowering operators of the su~3! algebra have
VCS representations,

G (lm)~ êi !5¹ i , G (lm)~ f̂ i !5@L̂,zi #, ~19!

where
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êi5Ĉi1 , f̂ i5Ĉ1i ,

¹ i5]/]zi , Ĉi j 5r (lm)~Ĉi j !, i , j 52,3, ~20!

and L̂ is an operator that is diagonal in the$c j IN
(lm)% basis with eigenvalues given by

L̂c j IN
(lm)5V j I

(lm)c j IN
(lm) ,

~21!
V j I

(lm)5~2l1m13! j 2 j ~ j 11!2I ~ I 11!.

It will be noted that the subset of wave functions of highest grade in the set$c j IN
(lm)% are those

that are annihilated by the raising operatorsG (lm)(êi)5¹ i ; these are thez-independent functions
$c0sm

(lm)(z)5jm
(lm)%.

C. Highest grade states in a tensor product space

Basis states,$u(l1m1) j 1I 1N1& ^ u(l2m2) j 2I 2N2&%, for the tensor product of two SU~3! irreps
of highest weights (l1m1) and (l2m2) have VCS wave functions in two sets of complex va
ables,z15(z2

1 ,z3
1) andz25(z2

2 ,z3
2), with values

c j 1I 1N1

(l1m1)
~z1! c j 2I 2N2

(l2m2)
~z2!. ~22!

The highest grade states for irreducible subrepresentations are the linear combinations o
products which are annihilated by the raising operatorsê2 and ê3 . Thus, the identification of
highest grade states in the tensor product space is easy in the VCS representation for wh
raising operators take the simple form

G (l1m1) ^ (l2m2)~ êi !5¹ i
11¹ i

2. ~23!

Observation:A complete set of~unnormalized! highest grade states for the subrepresenta
of highest weight (lm) in the tensor productG (l1m1)

^ G (l2m2) are given fors in the ranges

5 1
2 um12m2u,...,1

2(m11m2) by linear combinations

FN
i (lm)5(

s
FN

s(lm)asi ~24!

of wave functions$FN
s(lm); N52m/2, . . . ,m/2% whose values are expressible in the form

FN
s(lm)~z1,z2!5@ P̃j~z22z1! ^ ~j (l2 ,m2)

^ j (l1 ,m1)!s#N
m/2 ~25!

with

6 j 52l11m112l21m222l2m. ~26!

Proof: From the definition of the grading operator, given by Eq.~10!, one determines tha
FN

s(lm) has grade 2l11m112l21m226 j . The stateFN
s(lm) is evidently annihilated by the rais

ing operators and so is a highest grade state for some irreducible subrepresentation of the
product representation. A state of highest weight (lm) has grade 2l1m. Thus, the observation
follows. The running multiplicity indexi serves to distinguish different subirreps of the sa
highest weight.
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D. Clebsch–Gordan coefficients

A complete set of SU~3! Clebsch–Gordan coefficients can be generated from a set ofseed
coefficients. These are SU~2!-reduced CG coefficients$„(l1m1) j 1I 1 ,(l2m2) j 2I 2ir(lm)0m/2…%
for coupling to highest grade states. From these coefficients, one obtains, for example,

„~l1m1! j 1I 1N1 ,~l2m2! j 2I 2N2ur~lm!0,m/2,N…

5~ I 1N1 ,I 2N2um/2,N!„~l1m1! j 1I 1 ,~l2m2! j 2I 2ir~lm!0,m/2…, ~27!

where (I 1N1 ,I 2N2um/2,N) is a SU~2! CG coefficient andr indexes the multiplicity of different
couplings to irreps of the same highest weight (lm).

If $uC0,m/2,N
r(lm) &% is an orthornormal set of highest grade states within the tensor product spa

two irreps of highest weights (l1 ,m1) and (l2 ,m2), respectively, then the seed coefficients a
the overlaps,

„~l1m1! j 1I 1 ,~l2m2! j 2I 2ir~lm!0,m/2…5^@c j 2I 2

(l2m2)
^ c j 1I 1

(l1m1)
#N

m/2uC0,m/2,N
r(lm) &. ~28!

The other SU~3! CG coefficients are obtained by stepping down from the highest grade states
the lowering operators. In this way, one obtains~as shown in Ref. 18! the expressions

„~l1m1! j 1I 1 ;~l2m2! j 2I 2ir~lm! j I …

5
K j 1I 1

(l1m1)K j 2I 2

(l2m2)

K jI
(lm) A~2 j 11!~m11!~2I 111!~2I 211!~2 j 111!! ~2 j 211!!

3 (
j 18I 18 j 28I 28

~21! I 11I 22I 182I 282 jA ~2I 1811!~2I 2811!

~2 j 18!! ~2 j 122 j 18!! ~2 j 28!! ~2 j 222 j 28!!

3WS m1

2
j 1I 18 j 12 j 18 ;I 1 j 18D WS m2

2
j 2I 28 j 22 j 28 ;I 2 j 28D S 2 j

2 j 122 j 18
D 1/2

35 I 18 I 28
m

2

j 12 j 18 j 22 j 28 j

I 1 I 2 I
6 S ~l1m1! j 18I 18 ,~l2m2! j 28I 28ir~lm!0

m

2 D
K

j
18I

18

(l1m1)
K

j
28I

28

(l2m2) . ~29!

Claim 1: Coupling coefficients for the nonorthonormal highest grade states are given b

^@c j 2I 2

(l2m2)
^ c j 1I 1

(l1m1)
#N

m/2uFN
i (lm)&5(

s

~21!2 j 1

K j 1I 1

(l1m1)K j 2I 2

(l2m2)A ~2 j !!

~2 j 1!! ~2 j 2!! F s1 s2 s

j 1 j 2 j

I 1 I 2 m/2
G asi ,

~30!

where j 5 j 11 j 2 and

F s1 s2 s

j 1 j 2 j

I 1 I 2 m/2
G5A~2s11!~2 j 11!~2I 111!~2I 211!H s1 s2 s

j 1 j 2 j

I 1 I 2 m/2
J ~31!
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is a unitary SU~2! 9 j -symbol;$asi% is a set of solutions to the equations

(
s F s1 s2 s

j 1 j 2 j

I 1 I 2 m/2
G asi50 ~32!

for all values ofj 1I 1 and j 2I 2 for which the correspondingK-factors,K j 1I 1

(l1m1) andK j 2I 2

(l2m2), vanish.

Proof: Making use of the expression

~ j 1m1 , j 2m2u j 5 j 11 j 2 ,m5m11m2!5A ~2 j 1!! ~2 j 2!! ~ j 1m!! ~ j 2m!!

~2 j !! ~ j 11m1!! ~ j 12m1!! ~ j 21m2!~ j 22m2!!
,

~33!

for a stretched SU~2! CG coefficient, one determines thatP̃m
j (z22z1) has the expansion

P̃m
j ~z22z1!5 (

j 11 j 25 j
~21!2 j 1A ~2 j !!

~2 j 1!! ~2 j 2!!
@ P̃j 2~z2! ^ P̃j 1~z1!#m

j . ~34!

The claim then follows by making the recoupling

@@ P̃j 2~z2! ^ P̃j 1~z1!# j
^ @j (l2m2)

^ j (l1m1)#s#N
m/25(

I 1I 2
F s1 s2 s

j 1 j 2 j

I 1 I 2 m/2
G @@ P̃j 2~z2! ^ j (l2m2)# I 2

^ @ P̃j 1~z1! ^ j (l1m1)# I 1#N
m/2 . ~35!

The linear combinationsFN
i (lm)5(s FN

s(lm)asi must be chosen such that they only invol
states that appear in the space of the tensor productG (l1m1)

^ G (l2m2). To simplify the notation, let
us temporarily denote bya the set of quantum numbers of a product state

xaN5†@ P̃j 2~z2! ^ j (l2m2)#J2^ @ P̃j 1~z1! ^ j (l1m1)# I 1
‡N
m/2 ~36!

that appears on the rhs of Eq.~33! and define the dot product

xaN•xbM5dabdNM . ~37!

The desired$asi% coefficients are then solutions of the constraint equations

(
s

xaN•FN
s(lm)asi50 ~38!

for all a for which xaN is a disallowed state.~Note that Eq.~38! is independent ofN.! Using Eqs.
~25!, ~34!, ~35!, and~37!, we obtain Eq.~32!.

If none of theK-factors vanishes for anyj 1I 1 and j 2I 2 appearing in Eq.~33!, the constraint
equations become redundant; one can setasj i

5d i j , wheresj runs over the values ofs.
Using the claim, we can evaluate the expression

^FN
i 8(lm)uFN

i (lm)&5 (
j 1I 1 j 2I 2

^@c j 2I 2

(l2m2)
^ c j 1I 1

(l1m1)
#N

m/2uFN
i 8(lm)&^@c j 2I 2

(l2m2)
^ c j 1I 1

(l1m1)
#N

m/2uFN
i (lm)&

~39!
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for the overlaps of the nonorthonormal highest grade states with one another and find ortho
combinations,

C0,m/2,N
r(lm) 5(

i
FN

i (lm)Bi
r(lm)5(

s
FN

s(lm)Cs
r(lm), S Cs

r(lm)5(
i

asiBi
r(lm)D . ~40!

Thus, one determines the seed coefficients

„~l1m1! j 1I 1 ,~l2m2! j 2I 2ir~lm!0,m/2…5(
s

^@c j 2I 2

(l2m2)
^ c j 1I 1

(l1m1)
#N

m/2uFN
s(lm)& Cs

r(lm) . ~41!

E. A multiplicity-free example

The seed coefficients for multiplicity-free couplings are particularly easy to determine.
sider, for example, the CG coefficients for the decomposition,

~l2,0! ^ ~l1,0!→(
m

~l5l11l222m,m!, ~42!

of a tensor product of twom50 irreps. Since there is no multiplicity, the recoupling involved
deriving Eq.~30! is trivial and the expression for the overlaps reduces to

^@c I 2

(l2,0)
^ c I 1

(l1,0)
#N

m/2uFN
(lm)&5~21!2I 1Am! ~l122I 1!! ~l222I 2!!

l1!l2! ~2I 1!! ~2I 2!!
d I 11I 2 ,m/2 . ~43!

Thus, the squared norm of the stateFN
(lm) is simply

^FN
(lm)uFN

(lm)&5
m!

l1!l2! (
m1n5m

~l12m!! ~l22n!!

m!n!
5

~l1m11!! ~l12m!! ~l22m!!

l1!l2! ~l11!!
,

~44!

where we have used the identity

(
m11m25 j 3

~ j 11m1!! ~ j 21m2!!

~ j 12m1!! ~ j 22m2!!
5

~ j 11 j 21 j 311!! ~ j 21 j 32 j 1!! ~ j 11 j 32 j 2!!

~2 j 311!! ~ j 11 j 22 j 3!!
, ~45!

derived by Sharp.22 Thus, we obtain the seed coefficients,

~~l1,0!I 1 ,~l2,0!I 2i~lm!0,m/2!

5~21!2I 1A ~l11!!m! ~l122I 1!! ~l222I 2!!

~l1m11!! ~l12m!! ~l22m!! ~2I 1!! ~2I 2!!
d I 11I 2 ,m/2 , ~46!

in agreement with a known result.18 As remarked in Ref. 18, the general (l2,0)^ (l1,0)
→(l,m) CG coefficients are then determined, by Eq.~29! to be given by
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~~l10!I 1 ,~l20!I 2i~lm! j I !

5A~l11!~m11!! ~l1m1I 2I 12I 211!! ~l1m2I 2I 12I 2!! ~2I 112I 22m11!!

~l12m!! ~l22m!! ~l122I 1!! ~l222I 2!!

3A~2I 111!! ~2I 211!!

~l1m11!! (
I 181I 285m/2

~21!2I 28
~l122I 18!! ~l222I 28!!

~2I 18!! ~2I 122I 18!! ~2I 28!! ~2I 222I 28!!

35 I 18 I 28
m

2

I 12I 18 I 22I 28 j

I 1 I 2 I
6 . ~47!

Expressions for these multiplicity-free coefficients were derived previously by VCS method
given in terms of ordinary angular–momentum recoupling coefficients in Ref. 17.

III. SU„3… CLEBSCH–GORDAN COEFFICIENTS IN A SO „3…-COUPLED BASIS

A. Construction of orthonormal basis states

Claim 2: Let H(lm) denote the Hilbert space for a SU~3! irrep of highest weight (lm) and let
F(lm) denote the space of complex functions over SO~3! spanned by

wKLM5A2L11

8p2 D KM
L , ~48!

whereD KM
L is a Wigner~rotation matrix coefficient! function with K, L, andM in the ranges

K5m, m22,...,0 or 1,

L5H l1K,l1K21,...,K, for KÞ0,

l,l22,...,0 or 1, for K50.
~49!

M52L, . . . ,1L .

Then there is a map23 F(lm)→H(lm) in which

w°uw&5E R~V21!ulm& w~V! dV, ~50!

whereulm&PH(lm) is the highest weight state and dV(a,b,g)5da sinb db dg is the invariant
SO~3! volume element. The spaceF(lm) is a Hilbert space, isomorphic toH(lm), with the inner
product given by

~w,w8![^wuw8&5E E w* ~V8! ^lmuR~V8V21!ulm& w8~V! dV8 dV, ~51!

with kernel ^lmuR(V8V21)ulm&, given24 in terms of Euler angles by

^lmuR~a,b,g!ulm&5~cosb!l~cosa cosg2sina cosb sing!m. ~52!

Proof: The claim follows from the observations, proved by Elliott,1 that the set of states
$R(V)ulm&;VPSO(3)% spans the Hilbert spaceH(lm) and the states
                                                                                                                



an

ights
in

6552 J. Math. Phys., Vol. 41, No. 9, September 2000 D. J. Rowe and C. Bahri

                    
uKLM &5A2L11

8p2 E R~V21!ulm& D KM
L ~V! dV, ~53!

with K, L andM in the ranges specified by Eq.~49!, are a basis forH(lm).
The claim yields the known overlaps of the Elliott basis states24

^KLM uK8L8M 8&5dLL8dMM8S KK8
L , ~54!

with

S KK8
L

5E D KK8
L* ~V!^lmuR~V!ulm& dV. ~55!

These overlap integrals are evaluated in Sec. IV C.
Given the positive Hermitian matrixS L, one can determine the expansion coefficients of

orthonormal basis,

uaLM &5(
K

uKLM & K̄Ka~L !, ~56!

and the inverse expansion

uKLM &5(
a

KKa* ~L ! uaLM &, ~57!

where

(
K

K̄Ka~L !KKb* ~L !5dab . ~58!

It follows that theK matrices are related to theS L matrices by

S KK8
L

5(
a

KKa~L !KK8a
* ~L !. ~59!

For example, one can chooseK(L) to be the Hermitian square root ofS L.

B. Clebsch–Gordan coefficient

If urlm& is a highest weight state in the tensor product space of two irreps of highest we
(l1 ,m1) and (l2 ,m2), then the seed coefficients for a SO~3!-coupled basis are the coefficients
the expansion

urlm&5( ~~l1m1!a1L1M1 ,~l2m2!a2L2M2urlm! @ u~l2m2!a2L2M2& ^ u~l1m1!a1L1M1&].

~60!

These coefficients are given in terms of the SU~2! seeds and overlaps by

„~l1m1!a1L1M1 ,~l2m2!a2L2M2urlm…

5( ^~l1m1!a1L1M1u~l1m1! j 1I 1N1& ^~l2m2!a2L2M2u~l2m2! j 2I 2N2&

3~ I 1N1 ,I 2N2um/2,m/2! „~l1m1! j 1I 1 ,~l2m2! j 2I 2ir~lm!0,m/2…, ~61!
                                                                                                                



6553J. Math. Phys., Vol. 41, No. 9, September 2000 Clebsch-Gordan coefficients of SU(3)

                    
where the sum is over all repeated indices.
Given the seed coefficients, one can construct a highest weight stateur(lm)& and from it, by

Eqs.~53! and ~56!, determine the correponding SO~3!-coupled basis states;

ur~lm!aLM &5A2L11

8p2 (
K>0

K̄Ka
(lm)~L !E R~V21!ur~lm!&D KM

L ~V! dV

5 (
M18M28M1M2

u~l2m2!a2L2M28&

^ u~l1m1!a1L1M18& „~l1m1!a1L1M1 ,~l2m2!a2L2M2urlm…

3A2L11

8p2 (
K>0

K̄Ka
(lm)~L !E D

M2M
28

L2* ~V! D
M1M

18

L1* ~V! D KM
L ~V! dV

5 (
M1M2

@ u~l2m2!a2L2&

^ u~l1m1!a1L1&] M
L
„~l1m1!a1L1M1 ,~l2m2!a2L2M2urlm…

3A 8p2

2L11 (
K>0

K̄Ka
(lm)~L ! ~L1M1 ,L2M2uLK !. ~62!

This leads to the~reduced! Clebsch–Gordan coefficients,

„~l1m1!a1L1 ,~l2m2!a2L2ir~lm!aL…

5A 8p2

2L11 (
M1M2

„~l1m1!a1L1M1 ,~l2m2!a2L2M2urlm…

3 (
K>0

~L1M1 ,L2M2uLK ! K̄Ka
(lm)~L !. ~63!

C. The overlap integrals

To evaluate the seed coefficients$((l1m1)a1L1M1 ,(l2m2)a2L2M2urlm)%, we need the
overlaps

^~lm!aLM u~lm! j IN &5 (
K>0

^~lm!KLM u~lm! j IN & K̄Ka* ~L !. ~64!

The first factor in this expression is given by

^~lm!KLM u~lm! j IN &5A2L11

8p2 E D KM
L* ~V! c j IN

(lm)~V! dV, ~65!

wherec j IN
(lm) is the coherent state wave function for the stateu(lm) j IN &; i.e.,

c j IN
(lm)~V!5^lmuR~V!u~lm! j IN &. ~66!

An elementV of SO~3! is parametrized in terms of Euler angles in the usual way by

V~a,b,g!5e2 iaL̂ze2 ibL̂ye2 igL̂z, ~67!

with
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L̂z52 i~Ĉ232Ĉ32!52Î y , L̂y52 i~Ĉ122Ĉ21!52T̂y , ~68!

where Î y and T̂y are infinitesimal generators of the SU~2!23 and SU~2!12 subgroups of SU~3!,
respectively. Thus,V(a,b,g) is expressed as

V~a,b,g!5R23~0,2a,0! R12~0,2b,0! R23~0,2g,0! ~69!

and

c j IN
(lm)~V!5(

mM
dsm

s ~2a! ^~lm!0smuR12~0,2b,0!u~lm! j IM & dMN
I ~2g!. ~70!

As shown in Ref. 25, matrix elements ofR12(0,2b,0) are evaluated by writing

R12~0,2b,0!5P132R23~0,2b,0!P123, ~71!

wherePi jk is a Weyl permutation of the~1,2,3! axes. Matrix elements of the Weyl permutatio
are given in Refs. 25, 26~cf. also the Appendix!. The relevant matrix elements for the prese
purposes are given by

^~lm!0smuP132u~lm!kJJ&5d2k,l1s1md2J,l1s2m~21!m, ~72!

and, with the understanding that

2k5l1s1m, 2J5l1s2m, s5m/2, ~73!

by

^~lm!kJKuP123u~lm! j IM &5dM , j 1mdK,J22 j ~21! I 1l2 j 2sA~2J11!~2I 11!

3H l1m22 j

2

2 j 1s1m

2
J

s2m

2

l

2
I
J . ~74!

Thus, we obtain

c j IN
(lm)~V!5(

m
Cm

(lm)~ j I ! dsm
s ~2a! dJ,J22 j

J ~2b! dj 1m,N
I ~2g!, ~75!

with

Cm
(lm)~ j I !5~21! I 1l1s2 jA~2J11!~2I 11!H l1m22 j

2

2 j 1s1m

2
J

s2m

2

l

2
I
J . ~76!

For example, ifm50, thenm5s50, j 5I , Cm
(lm)( j I )→C(l0)(I )51 and

c IN
(l0)~a,b,g!5dl/2,l/222I

l/2 ~2b! dI ,N
I ~2g!. ~77!

The needed overlaps are now given by
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^~lm!KLM u~lm! j IN &5A2L11

8p2 (
m

Cm
(lm)~ j I !E

0

2p

dsm
s ~2a! eiKa da

3E
0

p

dJ,J22 j
J ~2b! dKM

L ~b!sinb db

3E
0

2p

dj 1m,N
I ~2g! eiMg dg, ~78!

and it remains to perform the integrals in this expansion.
The reduced Wigner functions have the well-known expansion

dMN
J ~2b!5 (

m50

J2M

d~M ,J,N,m! ~cosb!2J1N2M22m ~sinb!M2N12m, ~79!

with

d~M ,J,N,m!5~21!M2N1m
A~J1M !! ~J2M !! ~J1N!! ~J2N!!

~J1N2m!!m! ~J2M2m!! ~M2N1m!!
. ~80!

Let I (p,q,K) denote the integral

I ~p,q,K !5E
0

2p

~cosa!p~sina!q eiKada. ~81!

Then, as shown by Draayer and Williams,12

I ~p,q,K !5
1

2p~2i!q E
0

2p

~eia1e2 ia!p~eia2e2 ia!qeiKada52p
~2 i!q

2p1q (
n

~21!nS p

s2nD S q

nD ,

~82!

wheres5 1
2(p1q1K) @note thatI (p,q,K) vanishes unlesss is an integer in the range 0<s

<p1q]. Thus, we obtain

E
0

2p

dsm
s ~2a! eikada5d~s,s,m,0! I ~s1m,s2m,k!, ~83!

E
0

2p

dj 1m,N
I ~2g! eiMgdg5 (

m50

I 2 j 2m

d~ j 1m,I ,N,m! I ~2I 1N2 j 2m22m, j 1m2N12m,M !.

~84!

We now consider the integral

E
0

p

dJ,J22 j
J ~2b! dKM

L ~b!sinb db5(
n

d~J,J,J22 j ,0! d~K,L,M ,n!E
0

p

~cosb!2J22 j~sinb!2 j 11

3~cosb/2!2L1M2K22n~sinb/2!K2M12n db. ~85!

Standard tables of integrals~e.g., Gradshteyn and Ryzhik27! give

E
0

p/2

~cosb!p~sinb!q db5
1

2
BS p11

2
,
q11

2 D5
1

p1q S ~p1q22!/2

~p21!/2 D 21

, ~86!

whereB is the beta function and the binomial coefficient is defined, generally, by
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S m
n D5

G~m11!

G~m2n11!G~n11!
. ~87!

It follows that

E
0

p

dJ,J22 j
J ~2b! dKM

L ~b!sinb db52
~22!2 j 11

2J1L11 S 2J
2 j D 1/2

(
n50

L2K

d~K,L,M ,n! (
r 50

2(J2 j )

~21!r S 2J22 j
r D

3S 2J1L
~K2M12r 12n12 j !/2D 21

. ~88!

D. The K̄„L … and S„L … matrices

TheK̄(L) matrices, for an irrep of highest weight (l,m), are obtained by solution of Eqs.~58!
and ~59! with

S KK8
L

5E D KK8
L* ~V! ~cosb!l @cosa cosg2sina cosb sing#m dV

5 (
n50

m

~21!nS m
n D E ~cosa!m2n~sina!n eiKa daE ~cosg!m2n~sing!n eiK 8g dg

3E dKK8
L

~b!~cosb!l1n sinb db. ~89!

With the substitution

~cosb!l1n5d(l1n)/2,(l1n)/2
(l1n)/2 ~2b!, ~90!

all the integrals in this expression forS KK8
L are special cases of the integrals given above. Th

we obtain

S KK8
L

52(
n50

m

~21!n
1

l1n1L11 S m
n D I ~m2n,n,K ! I ~m2n,n,K8! (

n50

L2K

d~K,L,K8,n!

3 (
r 50

l1n

~21!r S l1n
r D S l1n1L

~K2K812n12r !/2D 21

. ~91!

The S L overlap integrals simplify when there are no multiplicities. For example, fo
multiplicity-free (l,m50) irrep, the overlaps are given by

S 00
L 5^~l0!0LM u~l0!0LM &

54p2E
0

p

d00
L ~b! ~cosb!l sinb db54p2E

21

1

PL~z! zl dz. ~92!

From Eq.~8.14.15! of Abramowitz and Stegun,28 we have

E
0

1

PL~z! zl dz5
l!

~l2L !!! ~l1L11!!!
, ~93!

and, hence,
                                                                                                                



. For

6557J. Math. Phys., Vol. 41, No. 9, September 2000 Clebsch-Gordan coefficients of SU(3)

                    
S 00
L 5uK (l0)~L !u254p2

l!

~l2L !!! ~l1L11!!!
@11~21!l1L#. ~94!

For a multiplicity-free (l50,m) irrep,

S LL
L 52(

n50

m

~21!nS m
n D @ I ~m2n,n,L !#2 (

r 50

n

~21!r
~n!! ~n1L2r !!

~n2r !! ~n1L11!!
. ~95!

For an arbitrary irrep, the states of lowest angular momentum are always multiplicity free
example, ifl andm are both even, there is single state of angular momentumL50 whereas, if
l1m is odd, the state of angular momentumL51 is multiplicity free.

Supposel andm are both even. Then

S 00
0 5 (

n50

m

~21!nS m
n D F E

0

2p

~cosa!m2n~sina!n daG2E
0

p

~cosb!l1n sinb db

5
4p2~m21!!!

m!! (
n50

m

~11~21!n!
~n21!!! ~m2n21!!!

~l1n11! n!! ~m2n!!!
, ~96!

with the understanding that

~21!!! 51. ~97!

If l is odd andm is even,

S 00
1 5 (

n50

m

~21!nS m
n D F E

0

2p

~cosa!m2n~sina!n daG2E
0

p

d00
1 ~b! ~cosb!l1n sinb db

5
4p2~m21!!!

m!! (
n50

m

~11~21!n!
~n21!!! ~m2n21!!!

~l1n12! n!! ~m2n!!!
. ~98!

If l is even andm is odd,

S 11
1 5 (

n50

m

~21!nS m
n D F E

0

2p

~cosa!m2n~sina!n eia daG2E
0

p

d11
1 ~b! ~cosb!l1n sinb db

5
2p2 m!!

~m11! ~m11!!! (
n50

m F11~21!n

l1n11

~n21!!! ~m2n!!!

n!! ~m2n21!!!
1

12~21!n

l1n12

n!! ~m2n21!!!

~n21!!! ~m2n!!! G .
~99!

E. CG coefficients for some multiplicity-free couplings

According to Eq.~63!, CG coefficients for the multiplicity-free (l2,0)^ (l1,0)→(l11l2

22m,m) couplings are given by

~~l10!L1 ,~l20!L2i~lm!aL&5A 8p2

2L11 (
M1M2K

~~l10!L1M1 ,~l20!L2M2ulm!

3~L1M1 ,L2M2uLK ! K̄Ka
(lm)~L !, ~100!

with SO~3! seed coefficients given in terms of the SU~2! seeds and overlaps by Eq.~61!. Inserting
the explicit expression for the SU~2! seeds, given by Eq.~46!, we obtain
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„~l10!L1M1 ,~l20!L2M2ulm…5 (
I 1 ,I 2

d I 11I 2 ,m/2^~l10!L1M1u~l10!I 1I 1&

3^~l20!L2M2u~l20!I 2I 2&

3~21!2I 1A ~l11!!m! ~l122I 1!! ~l222I 2!!

~l1m11!! ~l12m!! ~l22m!! ~2I 1!! ~2I 2!!
.

~101!

The overlapŝ (l0)LM u(l0)II &, given by Eqs.~64! and ~78!, are

^~l0!LM u~l0!II &5A2L11

2
K̄(l0)~L !

3E
0

p

dl/2,l/222I
l/2 ~2b! d0M

L ~b!sinb dbE
0

2p

dI ,I
I ~2g! eiMg dg. ~102!

The second integral in this equation, evaluated by means of Eq.~83!, is given by

E
0

2p

dI ,I
I ~2g! eiMg dg5I ~2I ,0,M !5

2p

22I S 2I
I 1M /2D , ~103!

and is seen to vanish unlessI 1M /2 is a positive integer less than 2I . With the substitutions

dl/2,l/222I
l/2 ~2b!5~21!2I S l

2I D 1/2

~cosb!l22I~sinb!2I , ~104!

d0M
L ~b!5~21!MF ~L2M !!

~L1M !! G
1/2

PL
M~cosb!, ~105!

wherePL
M(cosb) is an associated Legendre polynomial, the first integral is expressed in ter

the standard integral27

E
0

1

zl22I~12z2! I PL
M~z!dz5

2M~2I 2M !!! ~l22I 21!!!

~2M !! ~l2M11!!! 3F2~~L2M11!/2,

2~M1L !/2,I 112M /2;12M ,~31l2M !/2;1!, ~106!

where 3F2(...) is a hypergeometric function. BecauseI 1M /2 is an integer for nonvanishing
overlaps, the parity of the integrand in Eq.~106! is determined to be (21)l1L. So the overlaps
vanish forl1L odd. Finally, using the explicit expression ofK̄(l0)(L), from Eq. ~94!,

^~l0!LM u~l0!II &52M22I
11~21!l1L

2 F ~2L11!~l2L !!! ~l1L11!!!

l! G1/2S 2I
I 1M /2D

3S l
2I D 1/2F ~L2M !!

~L1M !! G
1/2~2I 2M !!! ~l22I 21!!!

~2M !! ~l2M11!!! 3F2„~L2M11!/2,

2~M1L !/2,I 112M /2;12M ,~31l2M !/2;1…. ~107!

With this expression for the overlaps, Eqs.~100! and ~101! give an explicit, albeit complicated
expression for the CG coefficient ((l10)L1 ,(l20)L2i(lm)aL) to within multiplication by the
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K̄(lm)(L) matrix. If the final irrep (lm) is generic, there is an inner multiplicity and one mu
resort to numerical methods to take the square root of theS L matrix to determine theK (lm)(L)
matrix and its inverseK̄(lm)(L).

For the special case ofm50, there is neither outer nor inner multiplicity and comple
expressions are obtained. Equation~63! gives

„~l10!L1 ,~l20!L2i~l0!L…5A 8p2

2L11
„~l10!L10,~l20!L2ul0…

3~L10,L20uL0! K̄(l0)~L !, ~108!

where, from Eq.~61!,

„~l10!L10,~l20!L20ul0…5( ^~l10!L10ul10& ^~l20!L20ul20&~ I 1N1 ,I 2N2u00!

3„~l10!I 1 ,~l20!I 2il0…. ~109!

From Eq.~46!, we have

„~l10!I 1 ,~l20!I 2il0…5d I 1,0d I 2,0 , ~110!

and, from Eqs.~56! and ~65!,

^~l0!LM u~l0!0&5^~l0!LM ul0&

5A2L11

8p2 K̄(l0)~L !E D 0M
L* ~V! ^l0uR~V!ul0& dV

54p2dM0A2L11

8p2 K̄(l0)~L !E d00
L ~b! ~cosb!l sinb db. ~111!

Evaluating this expression with the results of Eqs.~92!–~94! gives

^~l0!LM u~l0!0&5dM0

1

2
@11~21!l1L#A ~2L11!l!

~l2L !!! ~l1L11!!!
. ~112!

Putting these results together, we obtain

„~l10!L1 ,~l20!L2i~l0!L…

5
1

4
@11~21!l11L1#@11~21!l21L2#~L10,L20uL0!

3A ~2L111!~2L211!l1!l2! ~l2L !!! ~l1L11!!!

~2L11!l! ~l12L1!!! ~l22L2!!! ~l11L111!!! ~l21L211!!!
. ~113!

IV. DISCUSSION

The above algorithms have been programmed to give computer codes for the computa
any SU~3! Clebsch–Gordan coefficient in either a SU~2! or a SO~3! basis. For comparison, w
have also programmed the algorithm of Rowe and Repka18 for the canonical SU~2! basis. The
results show that the Rowe–Repka algorithm leads to little or no increase in speed ov
Draayer–Akiyama code.12 This is perhaps not surprising because both algorithms resolve the
multiplicity problems with recursive methods based on similar shift-tensor concepts. In con
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the new algorithms presented in this paper increase the speed of computation by;15% for the
SU~2! basis and a factor of;2 for the SO~3! basis. The latter is a particularly significant im
provement.

The new algorithms have their foundations in recent developments in vector-coheren
theory. Most applications of VCS theory in the past have been to determine the explicit ma
of Lie algebra representations. For such applications, only the ratios of the importantK-matrices,
which give the norms of states, are needed. However, for the calculation of Clebsch-G
coefficients, absolute values of theK-matrices are needed. It is important to be assured that
K-matrices are the same, even if derived differently.

When there are missing labels~i.e., multiplicity indices are needed to distinguish basis stat!,
there is arbitrariness in the choice of basis states and a corresponding arbitrariness in the c
K matrices. For example, the SU~3!.SO~3! multiplicity has a natural resolution in which theK
matrices are taken to be the Hermitian square roots of the corresponding~uniquely defined! S
matrices@cf. Eq. ~59!#. However, for some purposes it may be convenient to choose a cano
SU~3!.SO~3! basis that diagonalizes Racah’s (L̂ ^ Q̂^ L̂)0 operator.29 Such a basis has the prop
erty that the reduced matrix elements of the quadrupole operator between states of th
angular momentum are diagonal in the multiplicity indices, i.e.,

^~lm!aLiQ̂i~lm!bL&5dabM aa
LL . ~114!

The matrix element of the SU~3! quadrupole operator in a SU~3!.SO~3! basis have been evalu
ated and determined30,6 to be given by

^~lm!bL8iQ̂i~lm!aL&5A2L11 (
K8>0

(
K>0

K̄K8b~L8!MK8K
L8L KKa~L !, ~115!

with

MK8K
L8L

5F ~2l1m13!1
1

2
L~L11!2

1

2
L8~L811!G~LK,20uL8K8!2dK,1~21!l1LA3

2
~m11!

3~L,21,22uL8K8!1A3

2
~m2K !~LK,22uL8K8!1A3

2
~m1K !~LK,2,22uL8K8!%.

~116!

Thus, a basis that diagonalizes the Racah operator corresponds to a choice ofK matrices that bring
the matricesMLL to diagonal form. Since theS-matrices commute with the matrix representatio
of the Racah operator,31 it follows that this construction givesK-matrices which satisfy Eq.~59!.
Note also that, since allK-matrices that satisfy Eq.~59! are the same to within unitary transfo
mations,K-matrices that diagonalizeMK8K

LL are unitarily equivalent to others which are the He
mitian square roots of theS-matrices.

Although the algorithms reported in this paper are given explicitly for SU~3!, they also apply,
with suitable adjustment, to other groups of importance in physics. For example, they r
adapt to SO~4! and to SO~5!;Sp~2!.

As a useful extension of the present program, we plan to derive the asymptotic express
which the SU~3! Clebsch–Gordan coefficients approach in the limit of large-dimensional irrep
is our belief that such limiting values become very accurate for the kinds of large-dimens
irreps that occur, for example, in applications of the SU~3! model and its various symplectic mod
extensions to heavy deformed nuclei.
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APPENDIX A: MATRIX ELEMENTS OF THE SU „3… WEYL OPERATORS

Matrix elements of the SU~3! Weyl operators have been derived in a Gel’fand–Tsetlin bas32

by Chaco´n and Moshinsky26 and by Rowe, Sanders, and de Guise.25 In particular, the latter article
gave

^~lm!n8I 8uP123u~lm!nI &5dn
18 ,n3

dn
28 ,n1

dn
38 ,n2

~21!(n312I 812m1l)/2A~2I 11!~2I 811!

3H n1/2 n2/2 I 8

n3/2 l/2 I J ~A1!

and

^~lm!n8I 8uP132u~lm!nI &5^~lm!nI uP123u~lm!n8I 8&* . ~A2!

As shown below, the basis states$u(lm)nI &% of Ref. 25 are related to the VCS basis used in t
paper by

u~lm! j IN &5~21! I 2 j 2su~lm!nI &, ~A3!

with

n15l12s22 j , ~2s5m!,

n25s1 j 1N, ~A4!

n35s1 j 2N.

Thus, both bases are Gel’fand–Tsetlin bases, albeit with different phase conventions.
Generic irreps of SU~3! can be constructed in a space of two copies of a three-dimens

harmonic oscillator. Let$aia
† ; i 51,2,3,a51,2% denote the raising operators of two thre

dimensional harmonic oscillators. These operators transform as bases for two three-dime
irreps of U~3!, under U~3! transformation of thei -index, and as three two-dimensional~spin-12!
irreps ofU~2! under U~2! transformation of thea-index; the bar is used to distinguish thisU~2!
from subgroups of U~3!.

Simultaneous highest weight states for U~3! andU~2! are given~to within a proportionality
constant! by

~a11
† !l@a11

† a22
† 2a12

† a21
† #mu0&. ~A5!

This state has a U~3! weight (l1m,m,0) and aU~2! weight (l1m,m). The two commuting
groups U~3! andU~2! are said to form adual pair.

The doublet (ai1
† ,ai2

† ) can be regarded~for eachi ! as the two components of a spin-1
2 U~2!

tensorai
† . It is then inferred that (ai

†)2 j /A(2 j )! is a spin-j tensor with components

@~ai
†!2 j #m

j

A~2 j !!
u0&5

~ai1
† ! j 1m~ai2

† ! j 2m

A~ j 1m!! ~ j 2m!!
c0 , m52 j , . . . ,1 j . ~A6!

The states$u(lm)nI &% can now be defined asU~2!-coupled states,

u~lm!nI &5
1

An1!n2!n3!
@~a1

†!n1^ @~a2
†!n2^ ~a3

†!n3# I #l/2
l/2u0&. ~A7!

It is seen by inspection thatu(lm)nI & is a U~2! highest weight state ofSU~2! spin l/2. Also
it is seen that the total number of oscillator quanta in the state isn11n21n3 . Thus, if we set
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n11n21n352l1m, in accord with Eq.~A4!, the stateu(lm)nI & is determined to haveU~2!

~highest! weight (l1m,m). It follows by duality that the set of states$u(lm)nI &% belong to a
U~3! irrep of highest weight (l1m,m,0). In fact, since the U~3! operators are realized by

Ĉi j 5 (
a51

2

aia
† aj a , ~A8!

it is seen that the components ofn5(n1 ,n2 ,n3) are eigenvalues of the weight operators,

Ĉii u~lm! j IN &5n i u~lm! j IN &, i 51,2,3. ~A9!

We say that the stateu(lm)nI & is a weight stateof weight n.
Claim 3: A VCS stateu(lm) j IN & is also a weight state with weight given by Eq.~A4!.

Moreover, the states$u(lm) j IN &% form a Gel’fand–Tsetlin basis for a U~3! irrep.
Proof: The highest weight stateulm&[u(lm)0ss& is, by definition@cf. Eq. ~4!#, an eigenstate

of the U~3! weight operators,

Ĉ11u~lm!0ss&5~l1m!u~lm!0ss&, Ĉ22u~lm!0ss&5mu~lm!0ss&, Ĉ33u~lm!0ss&50,
~A10!

of weight (l1m,m,0)5(l12s,2s,0). The commutation relations,

@Ĉ11, Î 2#50, @Ĉ22, Î 2#52 Î 2 , @Ĉ33, Î 2#5 Î 2 , ~A11!

then imply that

Ĉ11u~lm!0sm&5~l12s!u~lm!0sm&, Ĉ22u~lm!0sm&5~s1m!u~lm!0sm&,
~A12!

Ĉ33u~lm!0sm&5~s2m!u~lm!0sm&.

And the commutation relations,

@Ĉ11,P̃n
j ~ f̂ !#522 j P̃n

j ~ f̂ !, @Ĉ22,P̃n
j ~ f̂ !#5~ j 1n!P̃n

j ~ f̂ !, @Ĉ33,P̃n
j ~ f̂ !#5~ j 2n!P̃n

j ~ f̂ !,

~A13!

imply that

Ĉ11u~lm! j IN &5~l1m22 j !u~lm! j IN &, Ĉ22u~lm! j IN &5~s1 j 1N!u~lm! j IN &,
~A14!

Ĉ33u~lm! j IN &5~s1 j 2N!u~lm! j IN &.

Since the states$u(lm) j IN &% reduce the subgroup chain U~3!.U~2!.U~1!, they are, by defini-
tion, a canonical Gel’fand–Tsetlin basis, albeit expressed in an unfamiliar manner.

Claim 4: If n is given by Eq.~A4!, then

u~lm! j IN &5~21! I 2 j 2su~lm!nI &. ~A15!

Proof: It has been shown that the statesu(lm) j IN & andu(lm)nI & are both eigenstates of th
Ĉii operators and that, withj andN related to the components ofn by Eq. ~A4!, they have the
same eigenvalues. That they also have the same SU~2!23 angular momentumI is seen by observing
that, if

Ĉ23u~n2n3!II &50, ~A16!
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then the state

u~n2n3!II &5@~a2
†!n2^ ~a3

†!n3# I
I u0& ~A17!

is simultaneously of SU~2!23 andU~2! highest weight. The condition~A16! is satisfied whenn2

2n352I . It follows, by duality, that the states$u(n2n3)IM &% belong to SU~2!23 andU~2! irreps of
angular momentumI . Thus, withn given by Eq.~A4!, the statesu(lm) j IN & and u(lm)nI & have
the same weight and the same SU~2!23 angular momentum. Hence they are the same to with
phase factor. It remains to derive the phase factor.

The highest weight stateu(lm)0ss& can be set equal to

u~lm!0ss&5u~lm!~l12s,2s,0!s&, ~A18!

thereby fixing the phase of this state to accord with the claim. Comparing the actions o
SU~2!23 lowering operatorĈ32 on the statesu(lm)0sm& and u(lm)(l12s,s1m,s2m)s&,

Ĉ32u~lm!0sm&5A~s1m!~s2m11!u~lm!0sm21&,
~A19!

Ĉ32u~lm!~l12s,s1m,s2m!s&5A~s1m!~s2m11!u~lm!~l12s,s1m21,s2m11!s&,

then implies the identity

u~lm!0sm&5u~lm!~l12s,s1m,s2m!s&, ~A20!

for all highest-grade states, consistent with the claim.
Writing the su~3! operatorsĈi j of Eq. ~A8! as theSU~2! scalars:

Ĉi j 5&@ai
†3aj #

0, ~A21!

one can show that

P̃m
j ~ f̂ !5A ~2 j 11!

~ j 1m!! ~ j 2m!!
@~a3

†! j 2m
^ ~a2

†! j 1m
^ ~a1!2 j #0 ~A22!

and, hence, that

u~lm! j IN &5
1

K jI
(lm) (

mn
~sm, jnuIN ! P̃n

j ~ f̂ !u~lm!0sm&

5
1

K jI
(lm) (

mn
~sm, jnuIN !A ~2 j 11!

~ j 1n!! ~ j 2n!! ~s1m!! ~s2m!!
@@~a3

†! j 2m
^ ~a2

†! j 1m

^ ~a1!2 j #0@~a1
†!l1m

^ @~a2
†!m#s#l/2

l/2u0&. ~A23!

It remains to combine and recouple the operators in this expression to prove the claim.
The a1 anda1

† operators can be combined using the identity

@~a1!n
^ ~a1

†!m#n
(m2n)/2u0&5~21!m2n

m!

~m2n!!
A m11

m2n11
@~a1

†!m2n#n
(m2n)/2u0&. ~A24!

Then, after some tedious but straightforward recoupling, one obtains

u~lm! j IN &5(
I 8

CI 8
(lm)

~ j IN !u~lm!nI 8&; ~A25!
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with the n i values given by Eq.~A4! and

CI 8
(lm)

~ j IN !5(
mn

~sm, jnuIN !A ~s1 j 1N!! ~s1 j 2N!!

~ j 1n!! ~ j 2n!! ~s1m!! ~s2m!!

3F s2m

2

s1m

2
s

j 2n

2

j 1n

2
j

s1 j 2N

2

s1 j 1N

2
I 8

GA~2I 811!~l1s1I 2 j 11!! ~l1s2I 2 j !!

l! ~l12s22 j !!

3H s j I8

l12s22 j

2

l

2

l12s

2
J ; ~A26!

the 9j -symbol with square brackets is the unitary 9j -coefficient~i.e., with the square root factor
included!. The 9j -and 6j -symbols used here are of a special type, i.e., some arguments are th
of some others. Consequently, Eq.~A26! reduces to

CI 8
(lm)

~ j IN !5A ~l1s1I 2 j 11!! ~l1s2I 2 j !!

~l1s1I 82 j 11!! ~l1s2I 82 j !!

3(
mn

~sm, jnuIN ! S s1 j 2N

2

s2m2 j 1n

2
,
s1 j 1N

2

s1m2 j 2n

2 UI 8,s2 j D .

~A27!

Using the properties of Regge symmetries of the SU~2! Clebsch–Gordan coefficients,

CI 8
(lm)

~ j IN !5~21! I 2s2 jd II 8 . ~A28!

This completes the proof of the claim.
The claim can also be proved by showing that the matrix elements of theĈi j operators are

identical in the$u(lm) j IN &% and $u(lm)nI &% bases provided the two basis sets are related
claimed.33
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On Laplace–Darboux-type sequences of generalized
Weingarten surfaces
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Two novel classes of integrable surfaces~‘‘generalized Weingarten surfaces of
Class 1 and 2’’! which may be defined in a coordinate-independent manner or,
equivalently, via an extension of the classical Lelieuvre formulas are introduced.
The classes 1 and 2 generalize Bianchi surfaces and surfaces of harmonic inverse
mean curvature respectively and turn out to be governed by analogs of the Ernst–
Weyl equation descriptive of gravitational and neutrino fields in general relativity.
The latter connection is exploited to derive Laplace–Darboux-type transformations
for Class 2 via the associated Loewner–Konopelchenko–Rogers representation.
The Laplace–Darboux-type transformations are shown to have remarkable geomet-
ric properties in terms of sphere congruences. Connections with the Pohlmeyer–
Lund–Regge vortex model and an inhomogeneous Heisenberg spin equation are
recorded. A Ba¨cklund transformation for a particular Painleve´ III equation is de-
rived in a purely geometric manner and a geometric interpretation of an associated
discrete Painleve´ III equation is given. ©2000 American Institute of Physics.
@S0022-2488~00!01109-9#

I. INTRODUCTION

In 1922, in the preface to his monograph ‘‘Transformations of Surfaces,’’ Eisenhart1 asserted
that ‘‘during the past twenty-five years many of the advances in differential geometry of su
in euclidean space have had to do with transformations of surfaces of a given type into su
of the same type.’’ Indeed, differential geometers such as Bianchi, Darboux, Demoulin, Guich
Jonas, Ribaucour, and Weingarten discussed in great detail privileged classes of surface
are characterized by the admittance of various types of symmetries. Surfaces of constant G
and mean curvature, Bianchi surfaces and isothermic surfaces constitute prototypical mem
the vast body of geometries that accumulated in that period.1,2

In 1973, the fundamental AKNS spectral system was set down.3,4 This linear representation
encapsulates via compatibility conditions a wide but likewise privileged class of physically
nificant partial differential equations which have come to be known as ‘‘soliton equations.’’
sine-Gordon,~modified! Korteweg–de Vries and nonlinear Schro¨dinger equations constitute ca
nonical members of that class. It was in 1976 that Lund and Regge5 and Pohlmeyer6 established
in a field-theoretical context a deep connection between a particular class of surfaces
includes pseudospherical surfaces and soliton theory. In fact, Lund and Regge used a
formulation to demonstrate that the Gauß–Weingarten equations for pseudospherical surfac
be regarded as an so~3! version of the AKNS linear representation for the sine-Gordon equa

The next major development in the geometry of soliton theory came in 1982 with the
neering work of Sym7 when he introduced the notion of ‘‘soliton surfaces.’’ Thus, it was sho
that any integrable system in 111 dimensions which admits an underlying semisimple Lie alge
formulation may be related via the ‘‘Sym formula’’ to the position vector of an associated cla
surfaces provided that a constant ‘‘spectral parameter’’ is present in the linear represen
Since then various integrable geometries in 111 and 211 dimensions have been~re-!discovered
and investigated by means of well-established tools of soliton theory~see Refs. 8–11, and refe
ences therein!. In particular, a quaternion formulation was used by Bobenko12 to embark on a
65660022-2488/2000/41(9)/6566/34/$17.00 © 2000 American Institute of Physics
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detailed analytic study of classical minimal and constant mean curvature surfaces, surfa
constant Gaußian curvature and Bianchi-type surfaces as well as a new class of integrabl
monic inverse mean curvature’’ surfaces. Remarkably, in recent years, it has come to lig
natural ‘‘geometric’’ discretizations of integrable geometries, which can be traced back t
early twentieth century, frequently preserve integrability and therefore give rise to integ
differential-difference or fully discrete equations.8

Here, we show that the classical and recent geometries studied by Bobenko may be
naturally to obtain a novel class of integrable surfaces whose properties depend on the ch
two arbitrary harmonic functions. If these harmonic functions are constant then surfaces wh
parallel to surfaces of constant Gaußian or mean curvature are retrieved. As a conseque
Gaußian and mean curvatures of such surfaces are functionally dependent and hence the
are of classical Weingarten-type.2 Thus, ‘‘generalized Weingarten surfaces’’ are obtained in
generic case. It is emphasized that the existence oftwo harmonic functions is critical to the
analysis undertaken in the present work.

Generalized Weingarten surfaces consist of two subclasses and may be defined in an in
manner without reference to a particular coordinate system on the surfaces. However, i
cases, it turns out convenient to introduce a canonical coordinate system which gives ris
generalization of the classical Lelieuvre formulas for~complex! asymptotic coordinates.2 As in the
classical case, the compatibility condition for the generalized Lelieuvre formulas produ
vector equation for the unit normal to the surfaces. Remarkably, parametrization in term
complex potential leads to a second-order equation which is akin to the Ernst–Weyl eq
governing the interaction of ‘‘neutrino’’ and gravitational fields in axially symmetric space–ti
of general relativity.13,14 It turns out that generalized Weingarten surfaces of revolution are
erned by the Painleve´ III and stationary double sine-Gordon equations and are compact in
simplest case.

The integrability of generalized Weingarten surfaces is established by relating the unde
Ernst-type equations to particular time-independent cases of the 211-dimensional Loewner–
Konopelchenko–Rogers integrable system15–17 which was introduced in 1991 in connection wi
a reinterpretation and generalization of a class of infinitesimal Ba¨cklund transformations set dow
by Loewner in a gasdynamics context.18 On use of the Loewner-type representation of generali
Weingarten surfaces, it is then shown that the Laplace–Darboux-type transformation for the
Weyl equation as presented in Ref. 19 may also be formulated for the Ernst-type equation
lying generalized Weingarten surfaces of Class 2. In fact, remarkably, any generalized Wein
surface of Class 2 and its Laplace–Darboux-type transform may be identified as the sheet
envelope of a sphere congruence with a specific harmonic radius function. As a by-prod
complete geometric description of the Loewner–Konopelchenko–Rogers system in ques
recorded.

The ‘‘middle surface’’ formed by the centers of a sphere congruence which is envelop
two generalized Weingarten surfaces of Class 2 also enjoys important geometric properti
deed, the position vector of a middle surface obeys a generalized elliptic version o
Pohlmeyer–Lund–Regge model alluded to at the beginning of the introduction. The Lap
Darboux-type transformation is used to construct sequences of middle surfaces and their ge
properties are investigated. In particular, a connection with an integrable differential-diffe
analog of an inhomogeneous Heisenberg spin equation20,21 is exploited to generate Ba¨cklund
chains of solutions of both the aforementioned Painleve´ III equation and an associated discre
PainlevéIII equation.

II. PARALLEL SURFACES AND THE BONNET THEOREM

This paper is concerned with the geometry of surfaces in Euclidean spaceE3. If the position
vector of a surfaceS is denoted byr5r (x,y), wherex,y are some~local! coordinates, then the
surface is determined up to its position in space by the fundamental forms2

I5dr•dr5E dx212F dxdy1G dy2,
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II52dr•dN5e dx212 f dxdy1g dy2. ~2.1!

Here,N5r x3r y /ur x3r yu represents the unit normal to the surface. For our purposes, it is co
nient to introduce the third fundamental form

III 5dN•dN5E dx212F dxdy1G dy2 ~2.2!

which constitutes the quadratic form of the spherical representation of the surfaceS. It is noted
that the three fundamental forms are not independent. In fact, it is known22 that

K I2M II1III 50, ~2.3!

where the Gaußian and mean curvaturesK andM, respectively, are defined by

K5
eg2 f 2

EG2F2 , M5
gE1eG22 f F

EG2F2 . ~2.4!

A surfaceS̃ is said to be parallel to a given surfaceS if the relation

r̃5r1mN ~2.5!

holds, where the constantm denotes the distance between the surfacesS andS̃. For convenience,
we temporarily assume that the coordinate lines coincide with the lines of curvature, t
f 5F50, so that use of the Rodrigues formulas2

r x52r1Nx , r y52r2Ny ~2.6!

may be made. In terms of the curvature coordinatesx,y, the principal radii of normal curvaturer1

andr2 are given by

r15
E

e
, r25

G

g
. ~2.7!

Differentiation of ~2.5! then delivers

r̃ x52~r12m!Nx , r̃ y52~r22m!Ny , ~2.8!

which shows that the surfaceS̃ is also parametrized in terms of curvature coordinates and
corresponding principal radii read

r̃15r12m, r̃25r22m. ~2.9!

This implies that

~ r̃11m!~r̃21m!5r1r2 . ~2.10!

On use of the relations

K5
1

r1r2
, M5

1

r1
1

1

r2
, ~2.11!

we may now distinguish between two cases. First, if the surfaceS is hyperbolic, that is

K52
1

r2 ,0, ~2.12!
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then ~2.10! assumes the form

~m21r2!K̃1mM̃1150. ~2.13!

Accordingly, surfaces which are parallel to pseudo-spherical surfaces (r5const) constitute par-
ticular Weingarten surfaces2 since the principal curvatures

k̃15
1

r̃1
, k̃25

1

r̃2
~2.14!

are functionally dependent. It is evident that the integrable nature of these Weingarten surfa
particular, their Ba¨cklund transformation, is inherited from the pseudospherical surfaces.~For the
application of an ‘‘extended’’ Sym formula to surfaces which are parallel to integrable surf
see Ref. 23, and references therein.!

Second, ifS is elliptic, that is

K5
1

r2 .0, ~2.15!

then the relation

~m22r2!K̃1mM̃1150 ~2.16!

obtains and hence surfaces of constant positive Gaußian curvature are also mapped to p
Weingarten surfaces. In particular, if

m56r, ~2.17!

then the two surfacesS̃ have constant mean curvature

M̃57
1

r
~2.18!

and their distance to the surfaceS is 6r. This observation is due to Bonnet.2

It is the aim of this paper to show that surfacesS which admit the relation

~m26r2!K1mM1150 ~2.19!

or, equivalently,

~r11m!~r21m!57r2, ~2.20!

wherer,m are harmonic functions in a specified sense, are integrable. Indeed, they will be s
to possess remarkable geometric and algebraic properties. These ‘‘generalized Weingar
faces’’ include classical Bianchi surfaces,24 their cousins of positive Gaußian curvature togeth
with harmonic inverse mean curvature surfaces12 characterized, in turn, by

S 1

A2KD
xy

50, S 1

AKD
zz̄

50, S 1

MD
zz̄

50. ~2.21!

III. GENERALIZED LELIEUVRE FORMULAS AND GENERALIZED WEINGARTEN
SURFACES OF CLASS 1

It turns out that the relations~2.19! appear naturally if one adopts an appropriate coordin
system. Thus, we first observe that if a surfaceS is hyperbolic with
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K52
1

r2 , ~3.1!

then one may introduce asymptotic coordinatesx,y defined bye5g50 and the position vectorr
is related to the normal N by the Lelieuvre formulas2

r x5rNx3N, r y5rN3Ny . ~3.2!

The coordinates on the parallel surfacesS̃ are no longer asymptotic but the relations

r̃ x5rÑx3Ñ1mÑx , r̃ y5rÑ3Ñy1mÑy ~3.3!

hold by virtue of the definition~2.5! and Ñ5N. Moreover, it is readily shown that

ẽ

Ẽ
5

g̃

G̃
, ~3.4!

which, in geometric terms, means that the normal curvatures of the coordinate lines onS̃ are

equal. Since the Gaußian and mean curvatures ofS̃ may be obtained from~3.3! by purely
algebraic means, we are led to the following generalization of the classical Lelieuvre formu

Theorem 1: (Generalized Lelieuvre formulas) If a surfaceS:r5r (x,y) is parametrized in
such a way that the normal curvatures of the coordinate lines coincide, that is

E:e5G:g, ~3.5!

then there exist functionsr and m such that the generalized Lelieuvre formulas

r x5rNx3N1mNx , r y5rN3Ny1mNy ~3.6!

hold and the Gaußian and mean curvatures are related by

~m21r2!K1mM1150. ~3.7!

Proof: It is evident that any surface parametrized in terms of arbitrary coordinates admi
relation (3.6)1 and

r y5r8N3Ny1m8Ny ~3.8!

for some functionsr,r8 andm,m8. However, the condition~3.5! implies that

E:e:E5G:g:G ~3.9!

by virtue of ~2.3! and hencem85m. This, in turn, implies thatr85r since r x•Ny5r y•Nx .
Accordingly, we deduce that

E5~m21r2!Nx
2 , e52mNx

2,

G5~m21r2!Ny
2 , g52mNy

2 , ~3.10!

which shows that~3.7! indeed holds if one evaluates the diagonal terms of~2.3!. h

The compatibility condition of the generalized Lelieuvre formulas which guarantees th
istence of the surfaceS is readily seen to be

~rNx3N!y1~rNy3N!x1myNx2mxNy50. ~3.11!
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Stereographic projection of the unit normalN onto the complex plane labeled by a functionE via

N5
1

uEu211 S E1Ē

2 i~E2Ē!

uEu221
D ~3.12!

takes~3.11! to the single equation

Exy1
1

2

p̄yEx1pxEy

R~p!
52

ExEy

uEu211
Ē, p5r1 im. ~3.13!

Thus, for a given complex functionp, any solution of~3.13! uniquely determines a surfaceS by
means of the generalized Lelieuvre formulas~3.6! and the relations~3.5!, ~3.7! hold.

We are now in a position to formulate a coordinate dependent definition of genera
Bianchi surfaces. An invariant definition is given in the following section.

Definition 1 (Parametrized generalized Weingarten surfaces. Class 1): A parametrized
face S:r5r (x,y) which admits the generalized Lelieuvre formulas (3.6) for ‘‘harmonic’’ fun
tions r and m, that is

rxy50, mxy50, ~3.14!

is termed a generalized Weingarten surface of Class 1 (generalized Bianchi surface).
Remark 1: Any solution of the Ernst-type equation (3.13) for a given complex harm

functionp defines uniquely a generalized Bianchi surface.
If p is real and hencem50 then the coordinatesx,y are asymptotic and

K52
1

r2 , rxy50. ~3.15!

Accordingly, Bianchi’s classical surfaces which were derived in connection with the isom
deformation of conjugate coordinates are retrieved.24 The governing equation~3.13! indeed re-
duces to a hyperbolicO(3) version of the Ernst equation of general relativity.25 In fact, in the
general case,~3.13! is the hyperbolicO(3) variant of the Ernst–Weyl equation which governs t
interaction of ‘‘neutrino’’ and gravitational fields in axially symmetric space–times of gen
relativity.13,14,26 An interpretation of Ernst’s equation in terms of surfaces in three-dimensi
Minkowski space has been given in Ref. 27.

IV. GENERALIZED WEINGARTEN SURFACES OF CLASS 2

It is evident that the procedure employed in the previous section may be modified to a
modate the case of complex coordinatesx5z, y5 z̄. However, it is desirable to give a coordina
independent definition of generalized Weingarten surfaces. We here propose a second c
generalized Weingarten surfaces which contains Bianchi surfaces of positive Gaußian cu
and harmonic inverse mean curvature surfaces.12 The definition given below may readily b
adapted to the case discussed in the preceding section.

Definition 2: A surfaceS for which there exists a functionm which is harmonic with respec
to the quadratic form

II1m III ~4.1!

and the functionr defined by the relation

~m22r2!K1mM1150 ~4.2!

is harmonic is said to be a generalized Weingarten surface of Class 2.
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If m50, then

K5
1

r2 ~4.3!

andr is harmonic with respect to the second fundamental form. This is the definition of Bia
surfaces of positive Gaußian curvature.12 In the case

m56r, ~4.4!

the relation~4.2! delivers

M57
1

r
~4.5!

andr is harmonic with respect to the first fundamental form by virtue of~2.3!. Thus, harmonic
inverse mean curvature surfaces are retrieved.12 If r5const then there exist surfaces correspo
ing to ~4.3! and ~4.5! which are parallel as stated in Bonnet’s theorem. In the generic cas
analogous connection has not yet been found and may not exist. However, we shall demo
that surfaces associated with a fixed pair (r,m) may be related to surfaces with (r,m62nr) by
means of sequences ofn Laplace–Darboux-type transformations of a type recently introduce
Ref. 19.

The generalized Lelieuvre formulas for generalized Weingarten surfaces of Class 2 are
obtained by introducing an adapted coordinate system onS.

Theorem 2: (Parametrized generalized Weingarten surfaces. Class 2) Generalized Wei
ten surfaces of Class 2 may be parametrized in such a way that the generalized Lelieuvre fo

r z5 irNz3N1mNz , r z̄5 irN3Nz̄1mNz̄ ~4.6!

hold and

rzz̄50, mzz̄50. ~4.7!

Their spherical representation is governed by the Ernst-type equation

Ezz̄1
1

2

pz̄Ez1pzEz̄

R~p!
52

EzEz̄

uEu211
Ē, pzz̄50, ~4.8!

where

p5r1 is, sz52 imz , s z̄5 im z̄ . ~4.9!

Proof: Sincem is harmonic, it is natural to introduce conformal coordinates with respec
II1mIII, that is we choose complex coordinatesz,z̄ such that

II1mIII ;dzdz̄. ~4.10!

Consequently,

e52mNz
2 , g52mNz̄

2 ~4.11!

and the relations~2.3!, ~4.2! deliver

E5~m22r2!Nz
2 , G5~m22r2!Nz̄

2 . ~4.12!
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One may now follow the reasoning of the proof of Theorem 1 to obtain the generalized Leli
formulas~4.6! if one takes into account that the functionr is defined by~4.2! only up to its sign.
Moreover, the Ernst-type equation~4.8! is nothing but the compatibility condition of the genera
ized Lelieuvre formulas written in terms of the functionE as defined in~3.12!. h

Remark 2: Any solution of the Ernst-type equation (4.8) defines uniquely a generalize
ingarten surface of Class 2.

V. GENERALIZED WEINGARTEN SURFACES OF REVOLUTION: THE PAINLEVE´ III
AND STATIONARY DOUBLE SINE-GORDON EQUATIONS

Harmonic inverse mean curvature surfaces of revolution have been studied in detail in
28 and 29. They may be expressed in terms of particular Painleve´ III transcendents if the mean
curvature is nonconstant and elliptic functions in the case of constant mean curvature surfac
here focus on generalized Weingarten surfaces of revolution of Class 2 and show that, impo
the additional harmonic functionm may be exploited to constructcompactsurfaces which are
expressed in terms of elementary functions. A similar analysis may be undertaken for gene
Bianchi surfaces.

In terms of real coordinatesx andy defined byz5x1 iy, the generalized Lelieuvre formula
~4.6! assume the form

r x5rNy3N1mNx , r y5rN3Nx1mNy . ~5.1!

We now regard thex- and y-parametric lines as the meridians and parallels respectively
surfaces of revolution and make the ansatz

N5S sinw cosy
sinw siny

cosw
D , r950, m950, ~5.2!

where w,r,m are functions ofx only and the prime denotes differentiation with respect tox.
Insertion into the generalized Lelieuvre formulas results in

r x5~r sinw1mw8!S cosw cosy
cosw siny

2sinw
D ,

r y5~rw81m sinw!S 2siny
cosy

0
D , ~5.3!

the compatibility condition for which yields

~rw8!85r sinw cosw2m8 sinw. ~5.4!

If this equation is satisfied then the position vector of the surface of revolution is given by

r5S ~rw81m sinw!cosy
~rw81m sinw!siny

2E ~r sinw1mw8!sinw dx
D 5S ~rw81cx sinw!cosy

~rw81cx sinw!siny

2E ~r sinw1cxw8!sinw dx
D 1 c̃ N, m5cx1 c̃.

~5.5!

The latter representation reflects the fact that any surface which is parallel to a gene
Weingarten surface also constitutes a generalized Weingarten surface.
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A. The case rÄx

If r8Þ0 then we may assume thatr5x without loss of generality and the second-ord
equation~5.4! may be regarded as a particular Painleve´ III equation ‘‘in trigonometric form,’’ viz.,

xw91w85x sinw cosw2c sinw. ~5.6!

Indeed, on setting

w5 i ln w, ~5.7!

we obtain the Painleve´ III equation

w95
w82

w
2

w8

x
2

c

2

w221

x
1

1

4 S w32
1

wD . ~5.8!

This is in agreement with the fact that the Gauß–Mainardi–Codazzi equations for harm
inverse mean curvature surfaces of revolution reduce to the above Painleve´ III equation with
c561.28 In this connection, it is important to note that the surfaces considered here are
relevant to the theory of isothermic surfaces2 since any surface of revolution is isothermic. Th
position vector of this class of generalized Weingarten surfaces may be obtained explic
terms ofw, viz.,

r5S ~rw81cx sinw!cosy
~rw81cx sinw!siny

1
2 x2~w822sin2 w!

D 1 c̃ N. ~5.9!

B. The case rÄ1

If r is constant then we may setr51 and the stationary double sine-Gordon equation30

w95sinw cosw2c sinw ~5.10!

is obtained. Its general solution may be expressed in terms of elliptic functions. In the
c50, the classical surfaces of constant positive Gaußian curvature of revolution are retriev
particular, the sphere corresponds to the kink solution of the pendulum equation. The kink so
is embedded in the class of solutions represented by the first integral

w825sin2 w12c~cosw11!, ~5.11!

in which case the elliptic functions degenerate to hyperbolic functions and the solution of~5.10!
reads

w52 arctanFedx1
12d2

4d2 e2dxG , c5d221. ~5.12!

The corresponding position vector is given by

r5S ~R̂1 c̃N̂!cosy

~R̂1 c̃N̂!siny

R̃1 c̃Ñ
D , ~5.13!

where the functionsR̂,R̃ and N̂,Ñ are defined by
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R̂58d2~d221!x
edx~4d2e2dx112d2!

D
18d3

edx~4d2e2dx211d2!

D
,

R̃532d4~d221!x
e2dx

D
14d

4d2~d211!e2dx1~d221!2

D
,

~5.14!

N̂58d2
edx~4d2e2dx112d2!

D
,

Ñ532d4
e2dx

D
21, D5@4d2e2dx1~12d!2#@4d2e2dx1~11d!2#.

In the cased561, that isc50, ~5.12! reduces to the kink solution of the pendulum equation
dÞ61 then it is readily shown that

lim
x→`

~R̂,R̃,N̂,Ñ!5~0,0,0,21!

lim
x→2`

~R̂,R̃,N̂,Ñ!5~0,4d,0,21!J for d.0,

lim
x→`

~R̂,R̃,N̂,Ñ!5~0,4d,0,21!

lim
x→2`

~R̂,R̃,N̂,Ñ!5~0,0,0,21! J for d,0.

~5.15!

Moreover,

lim
x→6`

d

dx
~R̂,R̃,N̂,Ñ!5~0,0,0,0! ~5.16!

in both cases. Thus, the generators of the surfaces of revolution approach the axis of rev
horizontally asx→6`. In other words, the cross sections through the axis of revolution co
tute closed curves which are differentiable with respect to the parameterx. Accordingly, the
particular generalized Weingarten surfaces considered here are compact. These are disp
Fig. 1 for various values ofd and c̃. The first two surfaces are parallel and the last has b
clipped to reveal the interior ‘‘bubble.’’

VI. THE LOEWNER REPRESENTATION

The integrability of the generalized Weingarten surfaces is readily established by ident
the Ernst-type equations~3.13! and ~4.8! as particular members of the integrable Loewne
Konopelchenko–Rogers system as introduced in Refs. 15 and 16. For brevity, we consid
generalized Weingarten surfaces of Class 2 and observe that Class 1 is dealt with in an an
manner. We focus on the particular Loewner system

St5@V,S#, Vy2VxS1@W,S#50, Wy5~SW!x , ~6.1!

which arises as the compatibility condition of the linear triad

fy5Sfx , fxt5Vfx1Wf, fyt5Vfy1Ŵf, ~6.2!

whereŴ5SW. In the time-independent case of 232-matrices subject to the constraints

S2521, tr S50, ~6.3!
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the Loewner system has been shown to admit the parametrization19

V5rS1n, W5 1
2 ~rS1s!x2 1

2 S~rS1s!y , ~6.4!

where the functionsr ands are harmonic, viz.,

rxx1ryy50, sxx1syy50, ~6.5!

andn is conjugate tor, that is the Cauchy–Riemann equations

nx5ry , ny52rx ~6.6!

hold. The Loewner system under consideration then reads

~rSSx!x1~rSSy!y1sxSx1sySy50, ~6.7!

which is a consequence of the ‘‘conservation law’’ (6.1)3 .
The above ‘‘extended nonisospectrals-model’’ admits various reductions of physical an

mathematical interest. For instance, if the dependent variables are real then it is natural to
the constraints~6.3! by introducing a complex functionE according to

FIG. 1. Generalized Weingarten surfaces of revolution, (d,c̃)5(0.9,20.3); ~0.9,3!; (22,1); ~1.1,0!; (0.6,20.5); ~1.2,5!.
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S5
1

E1Ē
S i~E2Ē! 22EĒ

2 2 i~E2Ē!
D ~6.8!

and set

p5r1 is. ~6.9!

In this case, the Loewner system reduces to the Ernst–Weyl equation17,26

DE1
¹p•¹E

R~p!
5

~¹E!2

R~E!
, Dp50 ~6.10!

with the LaplacianD5]x
21]y

2 and the gradient¹5(]x ,]y)
T which encodes the interaction of

classical neutrino~Weyl! field and gravitational fields in axially symmetric space-times of gen
relativity.13,14

If we consider the reduction

S†52S ~6.11!

or, equivalently,

S52 iN, N†5N, N251, tr N50, ~6.12!

then we may employ the parametrization

N5N•s5
1

uEu211 S uEu221 2Ē

2E 12uEu2D , ~6.13!

whereN is parametrized as in~3.12! ands is the vector composed of the standard Pauli matri

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D . ~6.14!

On use of the complex harmonic functionp as defined by~6.9!, the Loewner system may be ca
into the form

DE1
¹p•¹E

R~p!
52

~¹E!2

uEu211
Ē, Dp50 ~6.15!

which is precisely the Ernst-type equation~4.8! written in terms of the real variablesx andy. It is
now evident that the Ernst–Weyl equation~6.10! is related to generalized Weingarten surfaces
Minkowski spaceM3 with time-like normal. In particular, ifp is real then the surfaces discuss
in Ref. 27 are retrieved.

We have established that the matrixS in the Loewner system admits a direct interpretation
terms of the normal to generalized Weingarten surfaces. In fact, the matricesW,Ŵ and the
potentialF defined by

Fx5W, Fy5Ŵ ~6.16!

turn out to be of equal geometric importance. This will be demonstrated in connection wit
Laplace–Darboux-type sequences of generalized Weingarten surfaces discussed in Secs.
IX. Before we do so, it is required to locate the position vectorr of generalized Weingarten
surfaces in the Loewner system. Thus, the parametrization~6.4! implies that
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W5 1
2@~r2m!S1s1n#x2 1

2 rSSy1 1
2 mSx ,

~6.17!
Ŵ5 1

2 @~r2m!S1s1n#y1 1
2 rSSx1 1

2 mSy ,

where the functionm is conjugate tos, that is

mx5sy , my52sx . ~6.18!

Comparison with~6.16! now shows that the matrix

R52F2~r2m!S2~s1n! ~6.19!

obeys the generalized Lelieuvre-type formulas

Rx52rSSy1mSx , Ry5rSSx1mSy . ~6.20!

The geometric significance of the choice~6.19! is revealed in Sec. IX. The constraint~6.11!
guarantees that the matrixR may be decomposed into

R52 i r•s ~6.21!

so that~6.20! reads

r x5rNy3N1mNx , r y5rN3Nx1mNy . ~6.22!

Consequently, the generalized Lelieuvre formulas~4.6! are obtained on settingz5x1 iy.
To summarize, we have shown that the time-independent Loewner system~6.1! encapsulates

in a natural geometric manner generalized Weingarten surfaces~of Class 2!. It is emphasized that
constraints of the type~6.12! are standard and indeed preserved by appropriate Darboux–Le
type transformations.31,32 The Darboux–Levi transformation set down in Ref. 17 for
211-dimensional Ernst-type equation and, in particular, the Ernst–Weyl equation may easi
modified to obtain a Ba¨cklund transformation acting at the level of the generalized Weingart
surfaces.

VII. LAPLACE–DARBOUX-TYPE SEQUENCES OF ERNST-TYPE EQUATIONS

Laplace–Darboux transformations were formulated by Laplace33 in connection with the re-
duction of scalar linear hyperbolic differential equations of the form

fxt5Uf t1Vfx1Wf. ~7.1!

It was Darboux34 who noted the geometric significance of Laplace’s transformations in the the
of conjugate nets. Matrix analogs of the classical Laplace–Darboux transformations and conc
tant ‘‘invariants’’ have been proposed by Konopelchenko35 in the context of soliton theory. These
have been recently applied to the Loewner system to construct sequences of Ernst-type equ
in 211 and 210 dimensions.19 In particular, it has been demonstrated that these Laplac
Darboux-type transformations fornonlinear partial differential equations reduce to the classica
ones if one linearizes the Ernst-type equations appropriately. However, up to now, a direct
metric interpretation of the results presented in Ref. 19 has not been available. Here, we set
the Laplace–Darboux-type transformations for the Ernst-type equation~4.8! and discuss their
algebraic properties. In the following section, we show that they admit a remarkably simple
important geometric interpretation.

It is directly verified that the linear triad~6.2! is invariant under the matrix Laplace–Darboux
transformations

f→f15L1f5f t2Vf,
~7.2!
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f→f25L2f5W21fx ,

and

L1+L25L2+L15 id. ~7.3!

In fact, the form ofL2 is motivated by the following soliton-theoretical observations.32,36 First,
L2 represents the matrix version of the standard Laplace–Darboux transformation whic
serves the constraintU50 and hence (6.2)2 . Second, since (6.2)1 constitutes the ‘‘scattering
problem’’ of the multicomponent modified Kadomtsev–Petviashvili hierarchy, it is invariant
der the Darboux-type transformation

f→Fx
21fx , ~7.4!

whereF is another ‘‘eigenfunction’’ satisfying

Fy5SFx . ~7.5!

Thus, if we choose the particular ‘‘eigenfunction’’F defined by~6.16! then the Laplace–Darbou
transformation (7.2)2 is retrieved.

SinceL1 constitutes the inverse ofL2 , it is sufficient to restrict our considerations toL2 ,
say. In the time-independent case, the new matricesS2 , V2 , W2 , andŴ2 are given by

S25W21SW, W25W1~W21VW!x ,
~7.6!

V25W21VW, Ŵ25Ŵ1~W21VW!y ,

which shows that detS and trS are invariants of the Laplace–Darboux transformations. Acco
ingly, the constraints~6.3! are preserved. Moreover, preservation of the specializationS†52S
requires that

@WW†,S#50, ~7.7!

which is indeed the case sinceW and its transpose are of the form

W5F1 f , W†52F1 f , ~7.8!

whereF and f are a trace-free matrix and a scalar respectively, whence

WW†52F21 f 2;1. ~7.9!

Now, evaluation of the determinant ofS2 and the traces ofS2 , W2 , Ŵ2 reveals that

r25r, s25s12n,
~7.10!

n25n, m25m22r,

without loss of generality so that parametrization of the relation

N25W21NW ~7.11!

in terms of the functionE results in the following theorem.
Theorem 3: (Laplace–Darboux-type transformations for the Ernst-type equation of Class

If (E,p) is a solution of the Ernst-type equation (4.8), then the Laplace–Darboux-type transforms
E6 and p6 are given by
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E15
E~ uEu211!pz12R~p!Ez

~ uEu211!pz22R~p!ĒEz

, p15p22in,

~7.12!

E25
E~ uEu211!pz̄12R~p!Ez̄

~ uEu211!pz̄22R~p!ĒEz̄

, p25p12in.

Proof: The Laplace–Darboux transformsE1 , p1 may be derived in the same manner asE2 ,
p2 . The relations

~E6!75E, ~p6!75p ~7.13!

are indeed satisfied as may be verified directly. It is noted that iterative application of eitherL1 or
L2 to the seed solution (E,p) produces solutions (En ,pn) of the Ernst-type equation~4.8! with

pn5p22inn, nPZ. ~7.14!
h

VIII. LAPLACE–DARBOUX-TYPE SEQUENCES OF GENERALIZED WEINGARTEN
SURFACES AND SPHERE CONGRUENCES

It turns out that the action of the Laplace–Darboux-type transformationsL6 on the general-
ized Weingarten surfaces may be obtained explicitly without integration of the generalize
lieuvre formulas~4.6!. Indeed, comparison of the transformation laws

W25W1V2x , Ŵ25Ŵ1V2y ~8.1!

and the definition~6.16! for the potentialF shows that

F25F1V2 ~8.2!

without loss of generality. The transform of the matrixR defined by~6.19! therefore reads

R25R1~r2m!~S2S2! ~8.3!

and hence

r25r1~r2m!~N2N2!. ~8.4!

The geometric significance of the latter becomes apparent if one analyzes the equivalent

r21~r2m!N25r1~r2m!N. ~8.5!

Thus, at corresponding points, the normals to the surfacesS and S2 not only intersect but
intersect at the same distancer2m to the surfaces as illustrated in Fig. 2. Accordingly, t
Laplace–Darboux-type transformationL2 ~andL1 by analogy! admits the following important
geometric interpretation:

Theorem 4: (Generalized Weingarten surfaces of Class 2 as the envelopes of sphere co
ences) A generalized Weingarten surfaceS of Class 2 and its Laplace–Darboux-type transform
S2 constitute the sheets of the envelope of a two-parameter family of spheres (sphere c
ence). The radius function r5r2m of the spheres is harmonic. The harmonic inverse m
curvature surfaces defined bym5r are the fixed points ofL2 . If r2m5constthen the surfaces
S and S2 are parallel.

Proof: From a geometric point of view it is clear that the surfacesS andS2 are parallel if the
radius functionr 5r2m is constant. In this case, the surfaceS is parallel to a surface of harmoni
inverse mean curvatureM521/r. Alternatively, one may use the fact that
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W5 1
2 r~Sx2SSy!, ~8.6!

which implies that

WS1SW50. ~8.7!

Consequently, the transformation law (7.6)1 reduces to

S252S ~8.8!

so that

N252N. ~8.9!

We observe thatL2 changes the orientation of the normalN. h

Corollary 1: Generalized Weingarten surfacesS of Class 2 may be mapped to generaliz
Weingarten surfacesS8 with

r85r, m85m mod 2r ~8.10!

by means of iterative application of the Laplace–Darboux-type transformationsL6 . In particu-
lar, generalized Weingarten surfaces withm5nr, nPZ are linked to Bianchi surfaces of positiv
Gaußian curvature or harmonic inverse mean curvature surfaces if n is even or odd respec.

IX. MIDDLE SURFACES AND A GENERALIZED POHLMEYER–LUND–REGGE MODEL

For a generalized Weingarten surfaceS and its Laplace–Darboux-type transformS2 , the

‘‘middle surface’’ Š is defined as the set of the centers of the sphere congruence~cf. Fig. 2!. Its
position vector is given by

ř5r1~r2m!N. ~9.1!

In matrix notation, the latter takes the form

Ř5R1~r2m!S, ~9.2!

FIG. 2. The sheetsS,S2 and the middle surfaceŠ.
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where

Ř52 i ř•s, ~9.3!

so that the defintion~6.19! becomes

Ř52F2~s1n!. ~9.4!

Thus, the trace-free part of the ‘‘eigenfunction’’F encapsulates the middle surfaceŠ of the
sphere congruence and consequently, the trace-free parts of the matricesW and Ŵ encode the

tangent vectorsř x and ř y to Š. Since the matrixS is associated with the normalN to one sheet of
the envelope, we have established a complete geometric characterization of the time-indep
Loewner system~6.1!.

It has been shown in Ref. 26 that the time-independent Loewner system under consid
may be expressed equivalently in terms of the potentialF. The governing equation turns out to b

r~Fxx1Fyy!1@Fx ,Fy#50 ~9.5!

subject to the admissible constraint

det~Fx1 iFy!50 ~9.6!

which merely constitutes a reformulation of the conditions~6.3! on S5FyFx
21 . The matrixŘ

therefore obeys the equation

2r~Řxx1Řyy!1@Řx ,Řy#50, ~9.7!

whence

r~ ř xx1 ř yy!5 ř y3 ř x , rxx1ryy50. ~9.8!

Thus, if r5const then the position vectorř of the middle surfaceŠ obeys the well-known
~elliptic! Pohlmeyer–Lund–Regge model which has been derived in the context of relativist
invariant field theories.5,6 It is noted that the hyperbolic Pohlmeyer–Lund–Regge model

ř tt2 ř xx5 ř t3 ř x ~9.9!

is descriptive of the motion of a ‘‘relativistic string’’ in Minkowski spaceM4. The surfaceŠ
represents the projection of the world surface of the string onto a ‘‘spacelike’’ hyperplane w
may be identified withE3. The hyperbolic Pohlmeyer–Lund–Regge model is also known to
equivalent to the Maxwell–Bloch and self-induced transparency~SIT! equations as well as th
system governing stimulated Raman scattering~SRS!.37

For lack of a better expression, we here refer to the vector equation~9.8! as a generalized
Pohlmeyer–Lund–Regge model. Since the matrix equation~9.5! is equivalent to the time-
independent Loewner system, it is possible to~re!construct generalized Weingarten surfaces fr
generalized Pohlmeyer–Lund–Regge surfaces.

Theorem 5: (The Pohlmeyer–Lund–Regge–Weingarten correspondence) LetŠ denote a
generalized Pohlmeyer–Lund–Regge surface represented by a solution of

2r ř zz̄5 i ř z3 ř z̄ , rzz̄50 ~9.10!

and the harmonic functiont be (nonuniquely) defined by the relation

ř z
25tz

2 . ~9.11!
                                                                                                                



ein-
re

ge

r–

ed

ux-type

6583J. Math. Phys., Vol. 41, No. 9, September 2000 On generalized Weingarten surfaces

                    
If the centers of a sphere congruence with radius function r5t are attached to the surfaceŠ then
the two sheetsS and S2 of the envelope of the sphere congruence constitute generalized W
garten surfaces of Class 2 withm5r2t andm252r2t. The position vectors of the sheets a
given by

r5 ř2t~Ni1N'!, r25 ř2t~Ni2N'! ~9.12!

with the definitions

Ni5
txř x1tyř y

ř x
21ty

2 , N'5
ř x3 ř y

ř x
21ty

2 . ~9.13!

Proof: The vector equation~9.10! is nothing but the generalized Pohlmeyer–Lund–Reg
model written in terms ofz and z̄. In these variables, the constraint~9.6! becomes

detFz50 ~9.14!

or, equivalently,

det@Ř1~s1n!#z50. ~9.15!

Evaluation of this condition produces

ř z
25~r2m!z

2 ~9.16!

by virtue of (s1n)z5 i(r2m)z . Conversely, ifř is a solution of the generalized Pohlmeye
Lund–Regge model~9.10! then

ř z
25 f ~z!, ~9.17!

which defines a harmonic functiont via ~9.11! up to its sign and an additive constant. For a fix
choice oft, we introduce a harmonic functionm by setting

m5r2t ~9.18!

so that~9.16! holds. Hence, the generalized Weingarten surfaceS encoded in the Loewner system
is retrieved. The second sheet of the envelope is generated by means of the Laplace–Darbo
transformationL2 so that

m25m22r52r2t. ~9.19!

In order to obtain the position vector of the sheetS explicitly in terms of the middle surface

Š, we cast the relation

R5Ř2tS5Ř2tŴW21 ~9.20!

into the form

DRW5tŴ, DR5Ř2R, ~9.21!

whence

DR~Řx1ty!5t ~Řy2tx!. ~9.22!

Decomposition of the above into the trace and trace-free parts yields
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Dr3 ř x1tyDr5t ř y , Dr• ř x5ttx ~9.23!

which may be solved forr to obtain the expression (9.12)1 . Comparison with the relation

r5 ř2tN ~9.24!

therefore shows that the quantitiesNi andN' may be identified as the components of the norm

N which are parallel and orthogonal to the tangent planeŤ of the middle surfaceŠ. It is noted that
the identity

N25~Ni!21~N'!251 ~9.25!

is readily verified on use of the relations

ř x
22 ř y

25tx
22ty

2 , ř x• ř y5txty . ~9.26!

The representation of the second sheetS2 may be set down immediately without furthe
calculations. Thus, it is known2 that the sheets of the envelope of a sphere congruence
‘‘symmetric’’ with respect to the tangent planes of the middle surface, that is

~r22r ! i Ň i ~N22N! ~9.27!

as illustrated in Fig. 2. Accordingly, the position vectorr2 and the normalN2 admit the charac-
terization

r25r12t ~Ň•N!Ň, N25N22~Ň•N!Ň ~9.28!

which implies (9.12)2 .
It is noted that the representations (9.12)1,2 are related by the transitiont→2t. The arbitrary

additive constant int gives rise to two families of generalized Weingarten surfaces which
parallel to the two sheets of the envelope obtained for a fixed choice oft. Moreover, the symmetry
property~9.27! may be confirmed analytically by considering

tr @Řx~S22S!#52 tr@W~S22S!#52 tr~SW2WS!50 ~9.29!

and similarly

tr @Řy~S22S!#50. ~9.30!

In geometric terms, the above relations amount to

ř x•~N22N!5 ř y•~N22N!50, ~9.31!

which completes the proof. h

We conclude this section with a remark which is based on the expression

M52i
ř zz̄•~ ř z3 ř z̄!

~ ř z3 ř z̄!
2 ~9.32!

for the mean curvature of a surfaceŠ parametrized in terms of conformal coordinates so that

first fundamental form Iˇ is proportional todzdz̄.
Remark 3: The classes of harmonic inverse mean curvature surfaces and gene

Pohlmeyer–Lund–Regge surfaces witht5constare identical.
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X. SEQUENCES OF MIDDLE SURFACES AND PARTICULAR GENERALIZED
POHLMEYER–LUND–REGGE SURFACES

The action of the Laplace–Darboux-type transformationL2 on the middle surfaceŠ is

readily obtained by means of geometric considerations. Indeed, since bothŠ and its transformŠ2

constitute sheets of the envelopes of two sphere congruences, the centers of corresponding
must be located on the straight line passing through the normalN2 , that is

~ ř22 ř ! i N2 . ~10.1!

The radii of the spheres arer2m and r22m2 , respectively, so that the distance between
centers is given by

~r22m2!2~r2m!52r. ~10.2!

Moreover, in the preceding section, it has been established that the normalN2 may be decom-
posed into

N25Ni2N', ~10.3!

whereNi andN' are defined as in Theorem 5. Hence, the following theorem holds:
Theorem 6: (The Laplace–Darboux-type transform of generalized Pohlmeyer–Lund–Regge

surfaces) Ifř is the position vector of a generalized Pohlmeyer–Lund–Regge surfaceŠ, then

ř25 ř12r~Ni2N'! ~10.4!

constitutes another solution of the generalized Pohlmeyer–Lund–Regge model (9.8) with assoc

ated surfaceŠ2 .

Remark 4: As a consequence of Remark 3, ift5constand r5const, then Š constitutes a

constant mean curvature surface and the surfaceŠ2 is the associated parallel constant mea

curvature surface sinceNi50 and N'5Ň.

A. Pohlmeyer–Lund–Regge surfaces of revolution

As an illustration of Theorem 6, we now discuss Pohlmeyer–Lund–Regge surfaces of
lution as particular generalized Pohlmeyer–Lund–Regge surfaces. As in Sec. V, we co
position vectors of the form

ř5S X~x!cosy
X~x!siny

X̂~x!
D ~10.5!

which parametrize surfaces of revolution on which the coordinate linesx5const are the parallels
and the curvesy5const constitute the geodesics. Insertion into the Pohlmeyer–Lund–R
model (r5const) produces the ordinary differential equations

r~X92X!2XX̂850, rX̂91XX850 ~10.6!

or, equivalently,

r2X91 1
2 X32~r21c!X50, rX̂81 1

2 X25c, ~10.7!

wherec is an arbitrary constant of integration. The general solution of~10.7! may be expressed in
terms of elliptic functions. In the degenerate case of hyperbolic functions, the nonsingular so
is given by
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X5
2

coshdx
, X̂5

d221

d
x22 tanhdx, r5

1

d
~10.8!

without loss of generality. The above curveG: ř5(X,0,X̂)T constitutes the prototypical generat
of ‘‘one-soliton’’ surfaces. These have been classified by Sym.7 The character of the generato
depends crucially on the constantd which may be assumed to be positive without loss of gen
ality. If d,1 then the surface of revolution is ‘‘embedded’’ as illustrated in Fig. 3. Ifd51, then
the generator constitutes a semicircle corresponding to a sphere. In the cased.1, the generator is
self-intersecting and contains a loop. A typical associated surface of revolution is depic
Fig. 3.

Since the above class of surfaces consists of the complete collection of regular Pohlm
Lund–Regge surfaces of revolution which may be expressed in terms of hyperbolic function
evident that~10.8! represents the middle surfaces associated with the class~5.13! of generalized
Weingarten surfaces of revolution. It is interesting to note that even though the Pohlmeyer–L
Regge surfaces of revolution (dÞ1) are unbounded asx→6`, the sheets of the envelopes of th
corresponding sphere congruences are compact. This implies that the radius functionr 5t is
divergent asx→6`. Indeed, comparison of the relations

ř x
22 ř y

25
~d221!2

d2 , ř x• ř y50 ~10.9!

with ~9.26! shows that

t5
d221

d
x1const ~10.10!

diverges unlessd51.
The Laplace–Darboux-type transformation~10.4! is also readily shown to act within the clas

of surfaces of revolution. Accordingly, the Laplace–Darboux-type transformG2 of the generator
G should be represented by~10.8! up to translations in the ambient and parameter spaces. Ind

for d.1, the components of the generatorG2 : ř25(X2,0,X̂2)T are given by

X25
2

cosh~dx1b!
, X̂25

2

d
1

d221

d
x22 tanh~dx1b! ~10.11!

with

tanhb5
2d

d211
. ~10.12!

FIG. 3. Pohlmeyer–Lund–Regge surfaces of revolution,d53/4; 4.
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Hence, the Laplace–Darboux-type transformationL2 merely translates the surface of revolutio
by 2/d and reparametrizes the geodesics. However, inspection of sequences of Laplace–D
type transformations reveals a nontrivial and interesting feature. Aftern applications ofL2 , the
position vector of the surface of revolution reads

ř2n5S X2n cosy
X2n siny

X̂2n

D , ~10.13!

where

X2n5
2

cosh~dx1bn!
, X̂25

2

d
n1

d221

d
x22 tanh~dx1bn!. ~10.14!

Thus, if we regardř2n as a function of the original variablesx,y and the discrete variablen then
x andn turn out to be qualitatively on the same footing. Specifically, if we holdx constant then
ř2n defines ‘‘semidiscrete’’ surfaces of revolution. The generators of these surfaces con
polygons which contain ‘‘discrete loops’’ and whose edges are of constant length 2r. In fact, it
may be shown that the one-parameter family of polygons represent ‘‘integrable’’ discretizatio
the same curve with the parameterd being a measure of the degree of ‘‘coarseness.’’ Remarka
this curve may be identified as one of the classical elasticas.38 We return to this observation in
Sec. XII and give an explanation of this phenomenon in the context of lattices generat
Laplace–Darboux-type invariants. Two semidiscrete surfaces of revolution are displayed in

B. A triply orthogonal system of surfaces and its Laplace–Darboux-type transforms

SurfacesŠ of constant positive Gaußian curvatureǨ51/k2 ~‘‘spherical surfaces’’! are asso-
ciated with the Lelieuvre formulas~cf. Theorem 2!,

ř x5kŇy3Ň, ř y5kŇ3Ňx , ~10.15!

which implies that

k

2
~ ř xx1 ř yy!5 ř y3 ř x . ~10.16!

Thus, spherical surfaces constitute particular Pohlmeyer–Lund–Regge surfaces. This obse
is the analog of the well-known fact that the position vector of pseudospherical surfaces sa
the hyperbolic Pohlmeyer–Lund–Regge model~9.9!. It is therefore natural to investigate th
action of the Laplace–Darboux-type transformation on particular surfaces of constant po
Gaußian curvature.

FIG. 4. Semidiscrete surfaces of revolution generated by sequences of the Laplace–Darboux-type transformatL2 :
d52; 4.
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The first fundamental form of spherical surfaces may be brought into the canonical for

Ǐ5cosh2 vdx21sinh2 vdy2, ~10.17!

so that the Gauß equation2 reduces to the elliptic sinh-Gordon equation

vxx1vyy1
1

k2 sinhv coshv50. ~10.18!

The analogs of the well-known ‘‘stationary breather solutions’’ of the sine-Gordon equation39,40

v tt2vxx5sinv cosv ~10.19!

are given by

v52 arctanhFkl sin~ly/k!

coshx G , l22k251. ~10.20!

The associated position vectorř of the spherical surfaces may be shown to be

ř5S f 1 sin~y/k!1 f 2f 3 cos~y/k!cos~ly/k!

f 1 cos~y/k!2 f 2f 3 sin~y/k!cos~ly/k!

x2 f 2f 3 sinhx
D , ~10.21!

where the functionsf i are defined by

f 15
2l sin~ly/k!coshx

l2 cosh2x2k2 sin2~ly/k!
, f 25

2l2 coshx

l2 cosh2 x2k2 sin2~ly/k!
,

f 35
cosh2 x2sin2~ly/k!

cos2~ly/k!cosh2 x1sin2~ly/k!sinh2 x
. ~10.22!

It is seen that if the constantl is rational then the spherical surface possesses a discrete rota
symmetry. A prototypical such surface is depicted in Fig. 5. Iterative application of Theor
now produces a sequence of generalized Pohlmeyer–Lund–Regge surfacesŠ2n . The first four
Laplace–Darboux-type transforms are displayed in Fig. 6. A clipping of a generalized Weing
surfaceS23 associated with the middle surfaceŠ23 is depicted in Fig. 7. Once again, it may b
shown thatS23 is compact.

The above one-parameter family of spherical surfaces exhibits an interesting property.
parametrize the constraint (10.20)2 according to

l5coshz, k5sinhz, ~10.23!

FIG. 5. A surface of constant positive Gaußian curvature (l52).
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then we may regard the position vectorř as a vector-valued function ofx,y, andz. Thus,ř defines
a ~local! coordinate system inE3. In fact, the coordinate system turns out to be orthogonal s

ř x• ř y50, ř x• ř z50, ř y• ř z50, ~10.24!

which implies that the coordinate surfaces form a triply orthogonal system of surfaces. More
the Gaußian curvatureǨ51/k2 of the coordinate surfacesŠ: ř5 ř (x,y,z5const) depends onz
only.

Triply orthogonal systems of surfaces or, equivalently, orthogonal coordinate systemsE3

were studied extensively by classical geometers such as Bianchi, Darboux, Lame´, Ribaucour, and
Weingarten.2,41,42Recently, they have attracted widespread interest in the context of integra
due to their appearance in particular areas of mathematical and theoretical physics such
theory of Hamiltonian systems of hydrodynamic type and quantum field theory.43 Orthogonal
coordinate systems inE3 are governed by the integrable Lame´ system2,44

Hi,k,l5~ln Hk!,lHi,k1~ln Hl!,kHi,l ,

SHk,i

Hi
D
,i

1SHi,k

Hk
D
,k

1
Hi,lHk,l

Hl
2 50,

iÞkÞ lÞ i , ~10.25!

where the Lame´ coefficientsHi parametrize the metric

ds25Hi
2~dxi !25H1

2dx21H2
2dy21H3

2dz2 ~10.26!

and,i5]/]xi . If one demands that there exist a family of coordinate surfaces of constant po
~or negative! Gaußian curvature then the integrable nature of the Lame´ system is still present.45 In
this case, the metric takes the form2

FIG. 7. A compact generalized Weingarten surfaceS23 .

FIG. 6. A sequence of Laplace–Darboux-type transformsŠ2n .
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ds25cosh2 vdx21sinh2 vdy21k2vz
2dz2, ~10.27!

and the Lame´ equations reduce to the elliptic sinh-Gordon equation~10.18! and

vxyz5vyvxz tanhv1vxvyz cothv,

S vxz

coshv D
x

1
1

k S sinhv

k D
z

1
vyvyz

sinhv
50,

~10.28!

S vyz

sinhv D
y

1
1

k S coshv

k D
z

1
vxvxz

coshv
50.

In particular,v as given by~10.20! is a solution of (10.28)1 which is nothing but a different avata
of the integrable 211-dimensional sine-Gordon equation set down in Ref. 31 as a cano
reduction of the Loewner system. It would be of considerable interest to study the geom
properties of the coordinate systemsř2n which are generated by the iterative action of t
Laplace–Darboux-type transformation on orthogonal coordinate systems and the corresp
coordinate systemsr2n which admit a family of generalized Weingarten surfaces as coordi
surfacesS2n :r2n5r2n(x,y,z5const).

XI. LAPLACE–DARBOUX INVARIANTS AND A DIFFERENTIAL-DIFFERENCE
INHOMOGENEOUS HEISENBERG SPIN EQUATION

A classical result due to Darboux34 states that the Laplace–Darboux invariants associated
hyperbolic equations of the form~7.23! obey a differential-difference equation which, in mode
terminology, constitutes an integrable 111-dimensional version of the Toda lattice.46 The non-
Abelian or matrix analog of the 111-dimensional Toda lattice47 has been analyzed in Ref. 35 i
connection with matrix Laplace–Darboux transformations. Here, we focus on the geomet
relevant ‘‘time-independent’’ case and show how the non-Abelian 111-dimensional Toda lattice
reduces to a differential-difference analog of an integrable inhomogeneous Heisenberg spin
tion.

A. An integrable differential-difference inhomogeneous Heisenberg spin equation

The matrix Laplace–Darboux ‘‘invariants’’H and K are obtained by decomposing the h
perbolic equation (6.2)2 into

@]x~] t2V!2H#f5@~] t2V!]x2K#f50, ~11.1!

that is

H5W2Vx5W1 , K5W ~11.2!

by virtue of the transformation law (8.1)1 . Accordingly, the Laplace–Darboux invariants may
expressed entirely in terms of the potentialF. The ‘‘time-independent’’ non-Abelian Toda lattic
is now retrieved by combining the relations

F25F1V2 , F5F11V ~11.3!

with the transformation law (7.28)3 . Elimination ofV andV2 results in

~F12F!Fx5Fx~F2F2! ~11.4!

which we interpret as a differential-difference equation by employing the notation

F5F~x,y;n!, F15F~x,y;n11!, F25F~x,y;n21!. ~11.5!
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It is noted that the independent variabley enters~11.4! only parametrically.

In terms of the position vectorř of the middle surfacesŠ, the differential-difference equatio
~11.4! reads

ty~ ř122ř1 ř2!5 ř x3~ ř12 ř2! ~11.6!

together with

~ ř122ř1 ř2!• ř x50 ~11.7!

which is a consequence of~11.6!. The vector equation~11.6! also implies that

~ ř12 ř !25~ ř2 ř2!2 ~11.8!

which means that the vertices of the polygonsř5 ř (x5const,y5const;n) are equidistant. This fac
could have been deduced from Theorem 6 since (ř2 ř2)254r2 is indeed preserved by th
Laplace–Darboux-type transformationL2 and therefore byL1 . Moreover, since

t122t1t250, ~11.9!

it is seen that for any value ofy, the position vectorř is a solution of a differential-difference
equation of the form

2 f ~ ř122ř1 ř2!5 ř x3~ ř12 ř2!, f 122 f 1 f 250. ~11.10!

The above differential-difference equation may be regarded as a semidiscretization
partial differential equation

f ř ss5 ř x3 ř s , f ss50 ~11.11!

with ‘‘first integrals’’

ř x• ř ss50, ř s• ř ss50. ~11.12!

The latter represent the continuum limit of the relations~11.7! and ~11.8!, respectively. Cross-
multiplication by ř s leads to the vector equation

ř s
2ř x2~ ř x• ř s! ř s5 f ř s3 ř ss ~11.13!

which is equivalent to~11.11! if the constraint (11.12)2 is taken into account. The change
variables

f̃ 5u ř su f , ] s̃5
]s

u ř su
, ] x̃5]x2

ř x• ř s

ř s
2 ]s ~11.14!

now produces the canonical form

ř x̃5 f̃ ř s̃3 ř s̃ s̃ , f̃ s̃ s̃50 ~11.15!

subject to the constraint

ř s̃
251. ~11.16!

It is emphasized that the existence of the variabless̃ and x̃ is guaranteed since@] s̃ ,] x̃#50. As a
consequence of~11.15!, we observe that the relations~11.12! may be satisfied identically by
imposing the strongerconstraints
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ř s
251, ř x• ř s50. ~11.17!

The differential equation~11.15! supplemented by the constraint~11.16! constitutes the po-
tential form of the continuum limit of a one-dimensional classical inhomogeneous ferroma
Indeed, if we define the ‘‘spin vector’’

S5 ř s̃ , ~11.18!

then ~11.15! is equivalent to the inhomogeneous Heisenberg spin equation

Sx̃5S3~ f̃ Ss̃! s̃ , S251. ~11.19!

Application of ‘‘integrability tests’’ based on the Painleve´ property and Lie algebraic method
indicates that the inhomogeneous Heisenberg spin equation is integrable if and only if the fu

f̃ , which encodes the coupling constants between neighboring spins, is linear ins̃.48 An integrable
differential-difference version of~11.19! with f being linear in the discrete variablen is readily
obtained by imposing the analogues of the constraints~11.17!, namely,

~ ř12 ř !251, ~ ř12 ř !• ř x50, ~11.20!

on the differential-difference equation~11.10!. The first condition represents the usual ‘‘discre
arc length parametrization’’ of a polygon. The second constraint isa priori nongeometrical since
it is not symmetric with respect to backward and forward shifts on the lattice. However
condition ~11.7! implies that

~ ř2 ř2!• ř x50 ~11.21!

which establishes full symmetry. The component of~11.10! parallel toř12 ř2 is satisfied modulo
the constraint (11.20)1 . The orthogonal components yield the differential-difference analog
~11.15!, viz.,

ř x52 f
~ ř2 ř2!3~ ř12 ř !

11~ ř2 ř2!•~ ř12 ř !
, f 122 f 1 f 250. ~11.22!

It is noted that the constraints (11.20)2 and ~11.21! are satisfied modulo~11.22!. The remaining
condition (11.20)1 may be exploited to introduce a ‘‘spin vector’’S according to

S5 ř12 ř ~11.23!

so that~11.22! becomes

Sx52DS f
S23S

11S2•SD , S251 ~11.24!

with Dg5g12g for any discrete functiong.
It is interesting to compare the discretization~11.24! of the inhomogeneous Heisenberg sp

equation with the original classical spin model of which~11.19! is the continuum limit. On the one
hand,~11.24! may be brought into the form

Ṡn5Sn3S 2 f n11Sn11

11Sn•Sn11
1

2 f nSn21

11Sn21•Sn
D , ~11.25!

where we have introduced a convenient self-explanatory notation. This variant is readily r
nized as the ‘‘equation of motion’’
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Ṡn5$Sn ,H% ~11.26!

associated with the Hamiltonian

H522(
m

f m lnF11Sm21•Sm

2 G , ~11.27!

where the Poisson bracket of two functionsA and B which depend on the spin vectorsSn is
defined by

$A,B%5eabg(
k

]A

]Sk
a

]B

]Sk
b Sk

g . ~11.28!

On the other hand, in the case of nearest neighbor interaction, the classical inhomog
Heisenberg ferromagnet is governed by the equation of motion~11.26! with Hamiltonian

H52(
m

f mSm21•Sm , ~11.29!

where f m denotes the coupling constant between the spinsSm21 and Sm . In this case, the
differential-difference Heisenberg spin equation

Ṡn5Sn3~ f n11Sn111 f nSn21! ~11.30!

is nonintegrable. However, if the angles between neighboring spins are ‘‘small,’’ that is, i
continuum limit when the factor (11Sn21•Sn)/2 approaches unity, then the integrable mo
~11.25! constitutes an approximation of the nonintegrable physical model~11.30!.

In the particular casef 5const, the semidiscretization of the Heisenberg spin equation c
cides with the standard integrable differential-difference Heisenberg spin equation49,50 which has
also been derived in a purely geometric manner in the context of ‘‘binormal motions
polygons.51 In the generic case, one may exploit the known fact that the Lax pair and the Ba¨cklund
transformation for the classical 111-dimensional Toda lattice are readily obtained from t
Laplace–Darboux and Fundamental transformations for conjugate nets.1 For brevity, we here
merely mention the Lax representations of the inhomogeneous differential-difference Heise
spin equation in its various forms:

Theorem 7: (A Lax representation for the differential-difference inhomogeneous Heisen
spin equation) Lax representations for the differential-difference equations (11.10) and (1
may be derived from the linear representation

f15~l1F12F!f, ~l1F12F!fx5Fxf, ~11.31!

which is compatible modulo the matrix equation

~F12F!Fx5Fx~F2F2! ~11.32!

by specializing the matrixF to

F52
i

2
ř•s1E f dx. ~11.33!

Proof: In the time-independent case considered here, it is admissible to seek solutions
Loewner representation~6.2! of the form

f~x,y,t !5eltf~x,y!, ~11.34!
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wherel is an arbitrary constant. Consequently, the linear equation (6.2)2 and the definition (7.2)1
of the matrix Laplace–Darboux transformationL1 reduce to

lfx5Vfx1Wf, f15~l2V!f ~11.35!

which is precisely~11.31! written in terms of the potentialF only. We may now ignore the
genesis of the pair~11.31! and verify directly that it is indeed compatible modulo the mat
equation~11.32!. The relation~11.33! is borrowed from the connection between the potentiaF

and the position vectorř for the middle surfaceŠ. Insertion ofF as given by~11.33! into the
matrix equation~11.32! is readily shown to lead to the differential-difference equation~11.10!.h

B. Solutions of the differential-difference inhomogeneous Heisenberg spin equation
generated by means of Laplace–Darboux-type transformations

It is evident that in order to obtain the largest possible class of solutions of the differe
difference inhomogeneous Heisenberg spin equation via sequences of generalized Pohl
Lund–Regge surfaces, one should replace the condition (11.20)1 by the constraint

~ ř12 ř !25p~y!. ~11.36!

Nevertheless, for any particular value ofy, the latter is equivalent to the original constraint. If w
now specialize the harmonic functionsr andt to

r5r~y!, t5t~y!, ~11.37!

then the conditions~11.21! and~11.36! are met by virtue of Theorem 6 andr x•r y50. Moreover,
an alternative formulation of the transformation law (7.6)3 is given by

V25Ŵ21VŴ ~11.38!

since the matricesS andV commute. Thus, on use of the relations~11.3!, we obtain the matrix
equation

~F12F!Fy5Fy~F2F2! ~11.39!

in which the independent variablex may now be regarded as a parameter. Accordingly, we h
the following theorem:

Theorem 8: (Solutions of the differential-difference inhomogeneous Heisenberg spin equ
generated via Laplace–Darboux-type transformations) Any sequence of position vec
...,ř2 , ř , ř1 ,... generated by iterative application of the Laplace–Darboux-type transformations

L6 to a generalized Pohlmeyer–Lund–Regge surfaceŠ obeys the two differential-differenc
equations

2 f ~ ř122ř1 ř2!5 ř x3~ ř12 ř2!, f 122 f 1 f 250,

2g~ ř122ř1 ř2!5 ř y3~ ř12 ř2!, g122g1g250, ~11.40!

where f5ty/2 and g52tx/2. If tx5rx50, then (11.40)1 reduces to the differential-differenc
inhomogeneous Heisenberg spin equation

Sx5
1

r
DS f

S23S

11S2•SD , S251, ~11.41!

while in the casety5ry50, the differential-difference inhomogeneous Heisenberg spin equa
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Sy5
1

r
DS g

S23S

11S2•SD , S251 ~11.42!

is equivalent to(11.40)2 . In both cases, the position vectorř is related to the spin vectorS by
ř12 ř52rS.

Proof: The differential-difference equation (11.40)2 may be derived from the matrix equatio
~11.39! in the same manner as (11.40)1 . Alternatively, it is readily shown that the action ofL1 on

the surfaceŠ is represented by

ř15 ř22r~Ni1N'!. ~11.43!

Thus, combination of the latter with the transformation law~10.4! shows that

~ ř12 ř2!3~txř x1tyř y!50, ~11.44!

which implies that ř12 ř2 is tangent to the surfaceŠ. The differential-difference equation
(11.40)2 is therefore a consequence of (11.40)1 and ~11.44!. The differential-difference inhomo-
geneous Heisenberg spin equations~11.41! and ~11.42! are obtained by following the procedur
which has led to the differential-difference inhomogeneous Heisenberg spin equation~11.24!. h

It is evident@and confirmed by~11.43!# that the spin vectorS associated with two generalized

Pohlmeyer–Lund–Regge surfacesŠ andŠ1 constitutes the ‘‘antinormal’’2N to the generalized

Weingarten surfaceS which envelops the sphere congruences corresponding toŠ andŠ1 . Thus,
the following geometric interpretation of the differential-difference inhomogeneous Heisen
spin equation obtains

Corollary 2: (A geometric interpretation of the spin vector): IfS constitutes a generalized
Weingarten surface of Class 2 withrx5mx50 or ry5my50 then the antinormals...,2N2 ,
2N,2N1 ,... to the Laplace–Darboux-type sequence...,S2 ,S,S1 ,... of generalized Weingar-
ten surfaces obey the differential-difference inhomogeneous Heisenberg spin equations (11
(11.42), respectively.

XII. GEOMETRIC GENERATION OF SOLUTIONS OF A DISCRETE PAINLEVÉ III
EQUATION VIA A BÄ CKLUND TRANSFORMATION FOR THE PAINLEVÉ III EQUATION

We conclude with important illustrations of Theorem 8 and Corollary 2. First, the harm
functionsr andt2n associated with the Pohlmeyer–Lund–Regge surfaces of revolution discu
in Sec. X A have been shown to be

r5
1

d
, t2n5

d221

d
x1

2n

d
1const, ~12.1!

so that ř2n as given by~10.13!, ~10.14! constitutes a solution of the potential differentia
difference Heisenberg spin equation

ř y5d~12d2!
~ ř2 ř2!3~ ř12 ř !

41d2~ ř2 ř2!•~ ř12 ř !
~12.2!

for any value ofx. If we setx50 without loss of generality then the one-parameter family
vector-valued functions

ř5S X cosy
X siny

X̂
D ,

~12.3!
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X5
2

coshbn
, X̂52

2

d
n12 tanhbn, tanhb5

2d

d211

may be regarded as the position vectors of semidiscrete surfaces of revolution~cf. Fig. 4!. In order
to analyze this particular class of semidiscrete surfaces, we consider the limit

s5en, d52/e, e→0 ~12.4!

which takes~12.2! to the Heisenberg spin equation

ř y52 ř s3 ř ss, ř s
251. ~12.5!

The family of semidiscrete surfaces of revolution then reduces to one surface of revolutio
position vector of which reads

ř5S X cosy
X siny

X̂
D , X5

2

coshs
, X̂52s12 tanhs. ~12.6!

The generatorG: ř5(X,0,X̂)T of this surface constitutes one of Kirchhoff’s elasticas38 which arise
in the study of perfectly flexible rods subjected to longitudinal thrusts. Accordingly, the dis
generators associated with~12.3! represent a one-parameter family of discretizations of this c
sical curve. In fact, the above family coincides with that obtained in Ref. 52 in connection
integrable discretizations of surfaces of revolution.

Second, iterative application of the Laplace–Darboux-type transformation to the gener
Weingarten surfaces of revolution investigated in Sec. V generates a suite of solutions
PainlevéIII equation in trigonometric form~5.4!. Here, we regard the stationary double sin
Gordon equation~5.10! as a degenerate case. A short calculation reveals that the Lap
Darboux-type transform of the normal~5.2! reads

N25S sinw2 cosy
sinw2 siny

cosw2

D , ~12.7!

where the new solutionw2 of the Painleve´ III equation in trigonometric form is given by

w25w12 arctanFr~w81sinw!

r82m8 G , m25m22r. ~12.8!

The inverseL1 of this Bäcklund transformation for the Painleve´ III equation in trigonometric
form is obtained in an analogous manner.

Theorem 9: (A Bäcklund chain of solutions of the Painleve´ III equation in trigonometric
form) The Laplace–Darboux-type transformsNn of the normalN5N0 to a generalized Weingar
ten surface of revolutionS5S0 are given by

Nn5S sinwn cosy
sinwn siny

coswn

D , ~12.9!

where the solutionswn of the Painleve´ III equation in trigonometric form

~rwn8!85r sinwn coswn2mn8 sinwn , r95mn950 ~12.10!

are related to the initial solutionw5w0 by the Ba¨cklund transformations
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wn115wn12 arctanFr~wn82sinwn!

r81mn8
G , mn115mn12r,

~12.11!

wn215wn12 arctanFr~wn81sinwn!

r82mn8
G , mn215mn22r.

Sincer andt are linear functions ofx only, Corollary 2 implies that the normalsNn satisfy the
differential-difference inhomogeneous Heisenberg spin equation

Nny5DS zn

Nn213Nn

11Nn21•Nn
D , ~12.12!

where the linear functionzn , which depends parametrically onx, is given by

zn5
r82mn8

2r
5

~122n!r82m08

2r
~12.13!

andD denotes the usual first-order difference operator, that isDqn5qn112qn . Insertion of the
parametrization~12.9! now leads to the difference~discrete! equation

DFzn tanS wn2wn21

2 D G5sinwn ~12.14!

which clearly represents a discretization of the ordinary differential equation

~zws!s5sinw, zss50. ~12.15!

Once again, the latter reduces to the pendulum equation ifz is constant and a particula
PainlevéIII equation in trigonometric form otherwise. Thus, if we consider the pendulum equa
as a degenerate case then the difference equation~12.14! may be identified as an integrab
discretization of a particular Painleve´ III equation in trigonometric form. Theorem 9 therefo
implies

Theorem 10: (A discrete Painleve´ III equation) Any sequence (12.11) of solutions of t
PainlevéIII equation in trigonometric form (12.10) obeys the discrete Painleve´ III equation in
trigonometric form

zn11 tanS wn112wn

2 D2zn tanS wn2wn21

2 D5sinwn , ~12.16!

where the linear function zn is given by (12.13).
It is important to note that elimination ofwn8 from the Bäcklund relations~12.11! confirms in

a purely algebraic manner that the discrete Painleve´ III equation in trigonometric form~12.16! is
satisfied. Moreover, if (12.11)1 is solved forwn11 and substituted into (12.11)2,n→n11 , then the
PainlevéIII equation in trigonometric form~12.10! is obtained. Hence, both the continuous a
discrete Painle´ve III equations in trigonometric form are consequences of the Ba¨cklund relations
~12.11!. This kind of phenomenon is well-known for~discrete! Painlevéequations. In fact, if one
uses the formulation

zn11

wn112wn

wn111wn
2zn

wn2wn21

wn1wn21
5

wn
221

2wn
~12.17!

of the discrete Painleve´ III equation, which is obtained from~12.16! by means of the usual chang
of dependent variable

wn5 i ln wn , ~12.18!
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then it is readily shown that the above-mentioned elimination process is equivalent to that a
to the Painleve´ III equation in standard form in Ref. 53. In this connection, we observe that
Bäcklund transformation~12.8! may indeed be expressed in terms of well-established invaria
of the standard Painleve´ III equation ~5.8! ~Ref. 54! if one employs the change of variable~5.7!.
Thus, we have isolated the~particular! PainlevéIII equation, its canonical Ba¨cklund transforma-
tion, and the associated discrete Painleve´ III equation as algebraic by-products of our pure
geometric considerations. Similarly, certain transformations of the Painleve´ V and VI equations
which are encapsulated in the class of generalized Weingarten surfaces26,28,29,55may also be
placed on a purely geometric basis, thereby demonstrating the importance of sphere cong
in the ‘‘geometric theory of solitons.’’ It is emphasized that this outcome and, in fact, the
results presented in this paper are entirely due to the flexibility granted by the second har
function.
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Sciences de Paris~1773!.
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The system of Gegenbauer or ultraspherical polynomials$Cn
l(x);n50,1,...% is a

classical family of polynomials orthogonal with respect to the weight function
vl(x)5(12x2)l21/2 on the support interval@21,11#. Integral functionals of
Gegenbauer polynomials with integrandf (x)@Cn

l(x)#2vl(x), where f (x) is an
arbitrary function which does not depend onn or l, are considered in this paper.
First, a general recursion formula for these functionals is obtained. Then, the ex-
plicit expression for some specific functionals of this type is found in a closed and
compact form; namely, for the functionals withf (x) equal to (12x)a(11x)b,
log(12x2), and (11x)log(11x), which appear in numerous physico-mathematical
problems. Finally, these functionals are used in the explicit evaluation of the mo-
mentum expectation values^pa& and^ log p& of theD-dimensional hydrogenic atom
with nuclear chargeZ>1. The power expectation values^pa& are given by means
of a terminating5F4 hypergeometric function with unit argument, which is a con-
siderable improvement with respect to Hey’s expression~the only one existing up
to now! which requires a double sum. ©2000 American Institute of Physics.
@S0022-2488~00!01509-7#

I. INTRODUCTION

The Gegenbauer polynomials$Cn
l(x);n50,1,...% form a system of polynomials orthogona

with respect to the weight function1–3

vl~x!5~12x2!l2 1/2

on the interval@21,11#. They have received a great deal of attention for both fundamental
applied reasons. This is because they naturally appear in the description of numerous mathe
notions~e.g., Legendre functions, spherical and hyperspherical harmonics1–4! and physical phe-
nomena. To mention some, let us point out that the Gegenbauer polynomials are involved
angular or spatial part of the wave function of physical systems in a central potential in
position and momentum spaces,5,6 and in the radial part of the wave function of hydrogen
systems in momentum space,7,8 as well as in the eigenfunctions of numerous quantum-mechan
prototypic and effective potentials as, for example, the relativistic harmonic oscillator,9,10 the

a!Electronic mail: walter@wis.kuleuven.ac.be
b!Electronic mail: ryanez@ugr.es
c!Electronic mail: rogonzal@ugr.es
d!Electronic mail: dehesa@ugr.es
66000022-2488/2000/41(9)/6600/14/$17.00 © 2000 American Institute of Physics
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Demkov–Ostrovsky potentials,11 and some model molecular potentials,12 first introduced in the
study of spatially confined simple quantum systems13 and then used to interpret spectra of lum
niscence centers in some solids.14

So, the explicit evaluation of numerous physical quantities, which are described by th
pectation values of the corresponding Hermitian operators, necessarily requires the calcula
functionals of Gegenbauer polynomials. In particular, this is the case for quantities lik
Boltzmann–Shannon information entropy of single particle systems in a central potential a
radial momentum expectation values^pa& and^ log p&, which are described later. These quantit
require the evaluation of the following integrals of squares of Gegenbauer polynomials:

F n
l~~12x!a~11x!b!)5E

21

11

~12x!a~11x!b@Cn
l~x!#2vl~x!dx, ~1a!

F n
l~ log~12x2!!5E

21

11

log~12x2!@Cn
l~x!#2vl~x!dx, ~1b!

and

F n
l~~11x!log~11x!!5E

21

11

~11x!log~11x!@Cn
l~x!#2vl~x!dx. ~1c!

These three integrals are particular cases of the following general class of Gegenbauer func

F n
l~ f ~x!!5E

21

11

f ~x!@Cn
l~x!#2vl~x!dx, ~2!

where f (x) is some function which does not depend onn andl.
This paper has a threefold aim. First, the recursive determination of the general Gege

functionalF n
l( f (x)), which is done in Sec. II. Second, the explicit evaluation of the three spe

Gegenbauer functionals mentioned previously, which is given in Sec. III. Finally, these ex
expressions are used in Sec. IV to determine the momentum expectation values^pa&, aPR, and
^ log p& of D-dimensional hydrogenic systems, which illustrates the usefulness of the afore
tioned functionals. The calculation of these momentum quantities is important not only for its
but also because~i! the momentum probability densityg(pW ) for real (D53) atomic systems15 and
specifically for hydrogen atom15,16 has been experimentally measured, and the expectation v
themselves can be extracted from the isotropic Compton profiles.17 Indeed, contrary to the radia
expectation valueŝr a& for which various analytical formulas in the hydrogenic case18–20 are
known, there exists only an analytical expression~to the best of our information! for the momen-
tum expectation valueŝpa& with integera due to Hey.8 This expression is given by means of
double sum of a rational function with several gamma functions of involved arguments w
depend on the two summation indices and the main quantum numbers (n,l ) of the state under
consideration. Here, in this paper, the quantities^pa& with real a are given by means of a
terminating5F4 function with unit argument; thus requiring a single sum.

II. GENERAL GEGENBAUER FUNCTIONALS: A RECURSION FORMULA

The main result of this section is the following
Theorem 1: The Gegenbauer functionals

F n
l~ f !5E

21

1

~12x2!l21/2@Cn
l~x!#2f ~x!dx,

satisfy the recursion relation
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S n

2l D 2

F n
l~ f !2S n12l21

2l D 2

Fn21
l ~ f !5Fn22

l11~ f !2Fn21
l11~ f !. ~3!

Proof: In Ref. 21 the following recursive formula for squares of Gegenbauer polynomia
found:

S n

2l D 2

@Cn
l~x!#25 (

k50

n21
l1k

l
@Ck

l~x!#22~12x2!@Cn21
l11~x!#2. ~4!

Multiplying both sides by (12x2)l21/2f (x) and integrating, we obtain

S n

2l D 2

F n
l~ f !5 (

k50

n21
l1k

l
F k

l~ f !2F n21
l11~ f !, ~5!

which gives a linear recurrence inn andl for F n
l( f ). Taking ~5! for n and subtracting the sam

equation forn21,

S n

2l D 2

F n
l~ f !2S n21

2l D 2

F n21
l ~ f !5

n211l

l
F n21

l ~ f !1F n22
l11~ f !2F n21

l11~ f !,

which, after collecting terms, gives

S n

2l D 2

F n
l~ f !2S n12l21

2l D 2

F n21
l ~ f !5F n22

l11~ f !2F n21
l11~ f !. ~6!

This is a recurrence relation of finite order connecting four ‘‘contiguous’’F n
l( f ). If F 0

l1k( f ) is
known for k50,1,...,n, then this allows the computation ofF n

l( f ). j

III. SOME GEGENBAUER FUNCTIONALS: EXPLICIT EXPRESSIONS

In this section we obtain closed formula for some specific functionals of Gegenbauer po
mials of the formF n

l( f ); namely, when

f ~x!5~12x!a~11x!b, log~12x2!, and ~11x! log~11x!.

The corresponding results are given by Theorems 2, 3, and 4, respectively. An important l
necessary for the proof of Theorem 4, is also described. This lemma allows us to find the va
another Gegenbauer functional with kernel log(11x)Cn21

l11(x)Cn
l(x)vl(x).

Theorem 2: The Gegenbauer functionalsF n
l(a,b)5F n

l((12x)a(11x)b) defined as

F n
l~a,b!5E

21

1

~12x2!l21/2@Cn
l~x!#2~12x!a~11x!b dx ~7!

have the following values:

F n
l~a,b!5

ApG~l1a1 1
2!G~l1b1 1

2!

GS l1
a1b11

2 DGS l1
a1b

2
11D S ~2l!n

n! D 2

35F4S 2n,n12l,l,l1a1 1
2 ,l1b1 1

2

2l,l1
1

2
,l1

a1b11

2
,l1

a1b

2
11

;1D . ~8!
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Proof: The Gegenbauer polynomial has the hypergeometric representation

Cn
l~x!5

~2l!n

n! 2F1S 2n,n12l

l1 1
2

;
12x

2 D .

If we use a quadratic transformation formula@Ref. 22, Eq.~9.133! on p. 1070# then this gives

Cn
l~x!5

~2l!n

n! 2F1S 2n/2, n/21l

l1 1
2

;12x2D .

Observe that forn even this is a terminating hypergeometric series, but forn odd this is nonter-
minating. Now apply the Clausen’s formula@Refs. 1, 23, Eq.~2.5.7! on p. 75# to find

@Cn
l~x!#25S ~2l!n

n! D 2

3F2S 2n,n12l,l

2l,l1 1
2

;12x2D ,

which is now always a terminating series. Using this in~7!, gives

F n
l~a,b!5S ~2l!n

n! D 2

(
k50

n
~2n!k~n12l!k~l!k

~2l!k~l1 1
2!kk!

E
21

1

~12x!l2 1/21k1a~11x!l2 1/21k1 bdx.

The last integral can be evaluated in term of gamma functions, giving

E
21

1

~12x!l2 1/21k1a~11x!l2 1/21k1bdx522l12k1a1b
G~l1k1a1 1

2!G~l1k1b1 1
2!

G~2l12k1a1b11!

5Ap
G~l1k1a1 1

2!G~l1k1b1 1
2!

GS l1k1
a1b11

2 DGS l1k1
a1b

2
11D ,

where the last equality follows from the duplication formula for the gamma function. Hence

F n
l~a,b!5

ApG~l1a1 1
2!G~l1b1 1

2!

GS l1
a1b11

2 DGS l1
a1b

2
11D S ~2l!n

n! D 2

3 (
k50

n ~2n!k~n12l!k~l!k~l1a1 1
2!k~l1b1 1

2!k

~2l!kS l1
1

2D
k
S l1

a1b11

2 D
k
S l1

a1b

2
11D

k

k!

giving the desired result~8!.
Whena5b then the hypergeometric function simplifies to

F n
l~a,a!5

ApG~l1a1 1
2!

G~l1a11! S ~2l!n

n! D 2

4F3S 2n,n12l,l,l1a1 1
2

2l,l1 1
2 ,l1a11

;1D . ~9!

Another simplification occurs when one of the parameters is zero,
                                                                                                                



6604 J. Math. Phys., Vol. 41, No. 9, September 2000 Van Assche et al.

                    
F n
l~0,b!5

ApG~l1 1
2!G~l1b1 1

2!

GS l1
b11

2 DGS l1
b

2
11D S ~2l!n

n! D 2

34F3S 2n,n12l,l,l1b1 1
2

2l,l1
b11

2
,l1

b

2
11

;1D .

~10!

Another interesting case occurs whenb512a,

F n
l~a,12a!5

ApG~l1a1 1
2!G~l2a1 3

2!

G~l11!G~l1 3
2!

S ~2l!n

n! D 2

35F4S 2n,n12l,l,l1a1 1
2 ,l2a1 3

2

2l,l1 1
2 ,l11,l1 3

2

;1D . ~11!

j

Theorem 3: The Gegenbauer functional J(n,l)5F n
l(log(12x2)) defined by

J~n,l!5E
21

1

~12x2!l21/2@Cn
l~x!#2 log~12x2!dx,

has the expression

J~n,l!5
G~2l1n!222l

n!G2~l!

2p

l1n F2c~2l1n!22c~l1n!22 log 22
1

l1nG .
Proof: Use

2
2l

~2l1n!n
@~12x2!l11/2Cn21

l11~x!#85~12x2!l21/2Cn
l~x!,

then integration by parts gives

J~n,l!5
2l

~2l1n!n E21

1

~12x2!l11/2Cn21
l11~x!@Cn

l~x!log~12x2!#8dx.

Now use@Cn
l(x)#852lCn21

l11(x) to find

J~n,l!5
4l2

~2l1n!n
J~n21,l11!2

2l

~2l1n!n E21

1

~12x2!l21/22xCn21
l11~x!Cn

l~x!dx.

Since 2xCn21
l11(x)5 (n/l) Cn

l(x)1 lower degree terms, this gives by orthogonality

J~n,l!5
4l2

~2l1n!n
J~n21,l11!2

2

2l1n E21

1

~12x2!l21/2@Cn
l~x!#2 dx

5
4l2

~2l1n!n
J~n21,l11!2

p2222lG~n12l!

~2l1n!G2~l!~n1l!n!
.

Define

K~n,l!5
n!G2~l!22l

G~2l1n!
J~n,l!,
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then this becomes

K~n,l!5K~n21,l11!2
4p

~2l1n!~n1l!
.

This is a nice inhomogeneous recurrence relation. SettingB(k)5K(k,l1n2k) with n fixed,
gives the first-order recurrence

B~k!5B~k21!2
4p

~2l12n2k!~l1n!
.

Solving recursively gives

B~n!5B~0!2
4p

l1n (
k51

n
1

2l12n2k
,

which in terms ofK(n,l) is

K~n,l!5K~0,l1n!2
4p

l1n
@c ~2l12n!2c~2l1n!#,

wherec (x)5G8(x)/G(x). The initial condition~for n50! can be checked fairly easy

K~0,a!5
2p

a
@c~a11/2!2c~a11!#,

and to finish the proof we need the duplication formula for the psi-function

2c~2z!52 log 21c~z!1c~z11/2!,

which applied toc (2n12l) leads to the desired expression. j

Alternatively one can prove Theorem 3 as follows. Consider the integral

E
21

1

~12x2!l21/2@Cn
l~x!#2dx5

p2122lG~2l1n!

n! ~n1l!@G~l!#2 ,

and differentiate this with respect tol. Then this gives the required expression. This meth
however, cannot be used for the other functionals.

Lemma 1: Let

L~n,l!5E
21

1

~12x2!l11/2Cn21
l11~x!Cn

l~x!log~11x!dx,

then

L~n,l!5
p

n1l

G~2l1n11!

G~l!G~l11!22l~n21!! S 1

2n12l11
1

1

2n12l21
2

1

2l1nD .

Proof: Use

2
2~l11!

~2l1n11!~n21!
@~12x2!l13/2Cn22

l12~x!#85~12x2!l11/2Cn21
l11~x!,

which holds forn>2, then integration by parts gives
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L~n,l!5
2l12

~2l1n11!~n21!
E

21

1

~12x2!l13/2Cn22
l12~x!@Cn

l~x!log~11x!#8dx.

Since@Cn
l(x)#852lCn21

l11(x), this gives

L~n,l!5
4l~l11!

~2l1n11!~n21!
L~n21,l11!

1
2~l11!

~2l1n11!~n21!
E

21

1

~12x2!l13/2Cn22
l12~x!Cn

l~x!
dx

11x
. ~12!

For the last integral we observe that

~12x2!l13/2Cn22
l12~x!Cn

l~x!~11x!215~12x2!l21/2Cn
l~x!@~12x2!~12x!Cn22

l12~x!#.

If we expand the polynomial between square brackets into Gegenbauer polynomialsCk
l(x), then

~12x2!~12x!Cn22
l12~x!5 (

k50

n11

AkCk
l~x!,

and we only need to know the coefficientAn of Cn
l(x). We can find this coefficient by comparin

the coefficients ofxn, and taking into account that

Cn
l~x!5

2nG~l1n!

G~l!n!
xn1 lower order terms,

we thus find

An

2nG~l1n!

G~l!n!
52

2n22G~l1n!

G~l12!~n22!!
,

so thatAn52n(n21)/@4l(l11)#. Hence

E
21

1

~12x2!l13/2Cn22
l12~x!Cn

l~x!
dx

11x
52

n~n21!

4l~l11!
E

21

1

~12x2!l21/2@Cn
l~x!#2dx

52
n~n21!

4l~l11!

pG~n12l!222l11

~n1l!n!G2~l!
.

If we insert this in~12! then we find

L~n,l!5
4l~l11!

~2l1n11!~n21!
L~n21,l11!2

p222lG~n12l!

G~l!G~l11!~n1l!~2l1n11!~n21!!
.

In order to solve this recurrence relation, we set

M ~n,l!5
G~l!G~l11!22l~n21!!

G~2l1n11!
L~n,l!,

to find

M ~n,l!5M ~n21,l11!2
p

~n1l!~2l1n11!~2l1n!
.
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Decreasingn by one and increasingl by one successively gives

M ~n,l!5M ~1,n1l21!2
p

n1l (
k52

n
1

~2n12l2k11!~2n12l2k!
.

Decomposition into partial fractions gives

(
k52

n
1

~2n12l2k11!~2n12l2k!
5 (

k52

n F 1

2n12l2k
2

1

2n12l2k11G
5

1

2l1n
2

1

~2n12l21!
,

and thus

M ~n,l!5M ~1,n1l21!2
p

n1l F 1

2l1n
2

1

~2n12l21!G .
We only need to computeM (1,n1l21). Observe that

L~1,n1l21!52~n1l21!E
21

1

~12x2!n1l21/2x log~11x!dx.

Use

@~12x2!n1l11/2#852~2n12l11!x~12x2!n1l21/2,

then

L~1,n1l21!52
2n12l22

2n12l11 E21

1

log~11x!@~12x2!n1l11/2#8dx

5
2n12l22

2n12l11 E21

1

~12x!n1l11/2~11x!n1l21/2dx

5~n1l21!22n12l11
G2~n1l11/2!

G~2n12l12!
.

This gives forM (1,n1l21),

M ~1,n1l21!5
p

n1l

1

2n12l11
,

and thus

M ~n,l!5
p

n1l S 1

2n12l11
1

1

2n12l21
2

1

2l1nD ,

from which the lemma follows. j

We have now the tools to prove
Theorem 4: The Gegenbauer functionals I(n,l)5F n

l((11x)log(11x)) defined as

I ~n,l!5E
21

1

~12x2!l21/2@Cn
l~x!#2~11x!log~11x!dx, ~13!
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have the following value:

I ~n,l!5
pG~2l1n!222l

n!G2~l!

3S 2

n1l
@12 log 21c ~2l1n!2c~l1n!#2

4~2l21!

4~n1l!221
2

1

~n1l!2D .

Proof: Use

2
2l

~2l1n!n
@~12x2!l11/2Cn21

l11~x!#85~12x2!l21/2Cn
l~x!,

then integration by parts gives

I ~n,l!5
2l

~2l1n!n E21

1

~12x2!l11/2Cn21
l11~x!@Cn

l~x!~11x!log~11x!#8dx

5
4l2

~2l1n!n E21

1

~12x2!l11/2@Cn21
l11~x!#2~11x!log~11x!dx

1E
21

1

~12x2!l11/2Cn21
l11~x!Cn

l~x!@11 log~11x!#dx.

Observe thatCn21
l11(x)Cn

l(x) is an odd function, hence

E
21

1

~12x2!l11/2Cn21
l11~x!Cn

l~x!dx50,

and thus

I ~n,l!5
4l2

~2l1n!n
I ~n21,l11!1

2l

~2l1n!n
L~n,l!,

whereL(n,l) is the expression given in the previous lemma. If we set

K~n,l!5
22lG2~l!n!

G~2l1n!
I ~n,l!,

and if we use the expression forL(n,l) given in the previous lemma, then we have

K~n,l!5K~n21,l11!1
8p

4~n1l!221
2

2p

~n1l!~2l1n!
.

Solving recursively gives

K~n,l!5K~0,l1n!1
8pn

4~n1l!221
2

2p

n1l (
k51

n
1

2l12n2k

5K~0,l1n!1
8pn

4~n1l!221
2

2p

n1l
@c~2l12n!2c~2l1n!#.

So all one still needs isK(0,n1l). It is not too hard to compute
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I ~0,n1l!522n12l~2n12l11!
G2~n1l11/2!

G~2n12l12!
@c~2n12l12!2c~n1l11!2 log 2#,

and using this in the previous formula then gives the desired result, provided one uses the
cation formula for the gamma function. j

Note that, in principle, Theorem 4 can be proved by taking a derivative with respect tob in
expression~10! and then takingb51.

IV. MOMENTUM EXPECTATION VALUES OF THE D-DIMENSIONAL HYDROGEN ATOM

The momentum expectation values^pa&, aPR, of an N-electron system in an arbitrar
quantum-mechanical densityg(pW ), are defined by

^pa&5E pag~pW !dpW . ~14!

These quantities are physically meaningful24–28and/or experimentally accessible.15 Let us remem-
ber the exact relations

^p21&52J~0!, ^p0&5N,

^p2&52TNR, ^p4&528c2TBP,

where J(0), N, TNR, and TBP are the peak height of the isotropic Compton profile,15,24 the
number of electrons, the nonrelativistic electron kinetic energy,24 and the Breit–Pauli mass
velocity correction at first order to the energy,25 respectively, andc denotes the speed of ligh
Also the following empirical and highly accurate relationships have been found:26–29

^p&.2pK0 , ^p3&.
3p2

2
^r&

and

Vee.dN4/3^p3&1/3, d50.13560.003,

whereK0 , ^r&, and Vee are the Dirac–Slater exchange energy, the average electron dens
position space, and the total electron–electron repulsion energy, respectively. Moreover, th
^p3& is roughly proportional to the initial value of the Patterson function of x-
crystallography.26,28

The momentum expectation values^pa& have been recently evaluated for22<a<4 particu-
larly by means of huge numerical Hartree–Fock calculations for all existing neutral atoms30 and
54 singly charged atomic cations from He1 ~atomic numberZ52! to Cs1 (Z555) and 43 anion
from Z2 (Z51) to I2 (Z553) in their experimental ground states.31 Moreover, some inequalities
for various momentum expectation values and other density functionals or even with some
properties of the system have been found either rigorously,32–34empirically28 or semiclassically.35

Also, analytical approximations for these momentum quantities have been derived36 in neutral
atoms.

However, the exact values of these quantities cannot be found because the atomic
function is not known except for hydrogenic systems. The purpose of this section is the an
determination of the momentum expectation values^pa&, aPR, and^ log p& of a D-dimensional
hydrogen atom in an arbitrary quantum-mechanical state. It is known2 that this system is describe
by the radially symmetric Coulomb potential
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V~r !52
1

r
, r 25(

i 51

D

xi
2

and its associated Born momentum probability density is

g~pW !5Knl
2 ~hp!2l

~11h2p2!2l 1D11 FCn2 l 21
l 1(D21)/2S 12h2p2

11h2p2D G2

uYl ,m~VD!u2, ~15!

whereh is a parameter which depends on the principal quantum numbern and the dimensionD
by

h5n1
D23

2
,

Yl ,m(VD) is a hyperspherical harmonic which depends on the orbital quantum numberl and the
magnetic quantum numbersm,2 and the normalization constantKnl is given by

Knl5S ~n2 l 21!!

2p~n1 l 1D23!! D
1/2

22l 1DGS 11
D21

2 Dh (D11)/2.

Taking the explicit expression~15! for g(pW ) into Eq. ~14! together with the use of the orthono
malization condition of the hyperspherical harmonics2 we find that

^pa&5
Kn,l

2

22l 1D11hD1a E
21

11

~12t !n1 ~a21!/2~11t !n2 ~a21!2@Ck
n~ t !#2 dt ~16!

with k5n2 l 21 andn5 l 1 (D21)/2. Using~8! we find the closed formula

^pa&5
2122nAp

k!ha

~k1n!G~k12n!

G2~n1 1
2!

GS n1
a11

2 DGS n1
32a

2 D
G~n11!G~n1 3

2!

35F4S 2k,k12n,n,n1
a11

2
,n1

32a

2

2n,n1 1
2 ,n11,n1 3

2

;1D , ~17!

which clearly holds for all values ofa: 22l 2D,a,2l 1D12. The5F4-hypergeometric func-
tion in ~17! is terminating~i.e., it is a finite series!, Saalschutzian~or balanced!, i.e., 11a11a2

1a31a41a55b11b21b31b4 , and with unit argument.23 The lack of a general summatio
formula for a terminating, Saalschutzian5F4-hypergeometric function with unit argument, do
not allow us to obtain a general closed formula for^pa&, for generala. Let us study in detail some
special cases.

~1! For a50, we obtain

^p0&5
2122nAp~k1n!G~k12n!

G~n1 1
2!G~n11!

3F2S 2k,n,k12n

2n,n11
;1D .

Using Saalschutz’s theorem23

3F2S 2n,a,b

c,11a1b2c2n
;1D 5

~c2a!n~c2b!n

~c!n~c2a2b!n
,
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we obtain

^p0&51

as expected.
~2! For a52, the result is

^p2&5
2122nAp~k1n!G~k12n!

h2GS n1
1

2DG~n11!
3F2S 2k,n,k12n

2n,n11
;1D .

Again, the use of Saalschutz’s theorem, allows us to find

^p2&5
1

h2 .

Now, let us calculate the logarithmic expectation value^ log p&, which is defined by

^ log p&5E log pg~pW !dpW .

Taking into account the explicit expression~15! for the momentum densityg(pW ) we find

^ log p&5
Kn,l

2

22l 1D12hD ~22 logh1I 12I 2!,

where the symbolsI 1 and I 2 denote

I 15E
21

11

~12t2!n2 1/2~11t !log~12t !@Ck
n~ t !#2 dt5J~k,n!2I ~k,n!,

I 25E
21

11

~12t2!n2 1/2~11t !log~11t !@Ck
n~ t !#2 dt5I ~k,n!,

respectively, so that

^ log p&5
Knl

2

22l 1D12hD @22 logh1J~k,n!22I ~k,n!#

with k5n2 l 21 andn5 l 1 (D21)/2. The use of the values ofJ(k,n) and I (k,n) supplied by
Theorems 3 and 4, respectively, leads us to

^ log p&52 logh211
2~2n21!h

4h221
. ~18!

For hydrogenic atoms with nuclear chargeZ>1, in which the Coulomb potential is2Z/r , the
momentum density isZ2Dg(pW /Z). The power and logarithmic expectation values, given by E
~17! and ~18!, respectively, have to be modified in the formZa^pa& and logZ1^log p&, respec-
tively.

Finally, let us point out that the momentum expectation power and logarithmic values fo
ground state of aD-dimensional hydrogenic atom with nuclear chargeZ are
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^pa&5

2GS D2a

2
11DGS D1a

2 D
DG2~D/2!

Za, 2D,a,D12,

and

^ log p&5 logS D21

2
ZD2

1

D
,

respectively.

ACKNOWLEDGMENTS

This work has been partially supported by European Project No. INTAS-93-219-Ext as
as by Spanish Project No. DGES PB 95-1205 and Research Grant No. FQM-207 of the Ju
Andalucia. We are grateful to Dr. J. C. Angulo for useful discussions. W.V.A. is a Rese
Director of the Belgian Fund for Scientific Research~FWO!.

1G. E. Andrews, R. Askey, and R. Roy,Special Functions~Cambridge University Press, Cambridge, 1998!.
2J. Avery,Hyperspherical Harmonics: Applications in Quantum Theory~Kluwer Academic, Dordrecht, 1989!.
3G. Szego¨, Orthogonal Polynomials~American Mathematical Society, Providence, RI, 1975!.
4H. van Haeringen, ‘‘A class of sums of Gegenbauer functions: Twenty-four sums in closed form,’’ J. Math. Phy27,
938–952~1986!.
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Complete eigenfunctions of linearized integrable
equations expanded around a soliton solution
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Complete eigenfunctions for an integrable equation linearized around a soliton
solution are the key to the development of a direct soliton perturbation theory. In
this article, we explicitly construct such eigenfunctions for a large class of inte-
grable equations including the KdV, NLS and mKdV hierarchies. We establish the
striking result that the linearization operators of all equations in the same integrable
hierarchy share thesamecomplete set of eigenfunctions. Furthermore, these eigen-
functions are precisely the squared eigenfunctions of the associated eigenvalue
problem. The key step in our derivation is to show that the linearization operator of
an integrable equation can be factored into a function of the integro-differential
operator which generates the integrable equation, and the linearization operator of
the lowest-order integrable equation in the same hierarchy. We also obtain similar
results for the adjoint linearization operator of an integrable equation. Even though
our analysis is conducted only for the KdV, NLS and mKdV hierarchies, similar
results are expected for other integrable hierarchies as well. We further explicitly
present the complete eigenfunctions for the KdV, NLS and mKdV hierarchy equa-
tions and give their inner products, thus they can be readily used to develop a direct
soliton perturbation theory for any of those hierarchy equations. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!02709-2#

I. INTRODUCTION

Many physical wave systems are governed by nonlinear integrable equations at the
order of approximation. For instance, pulse transmission in optical fibers and wave propaga
deep water are described by the nonlinear Schro¨dinger ~NLS! equation.1,2 Evolution of shallow
water waves is described by the Korteweg–de Vries~KdV! equation,3,4 and internal waves at the
interface of two layers of equal depth are described by the modified Korteweg–de Vries~mKdV!
equation.5 Integrable equations support soliton solutions which travel stationarily and co
elastically. They also possess many other remarkable properties such as infinite conservati
and Painleve´ property.5–7 When perturbations such as damping, higher order dispersion and
linearity are brought into consideration, a physical system is then better modeled by per
integrable equations.1,2,8,9 In a perturbed system, solitons in general will not remain station
anymore. To study their evolution and subsequent excitation of radiation, one would ne
develop a soliton perturbation theory. Several such theories have been developed in the pa
is the inverse-scattering-based soliton perturbation theory, which was developed in the 197010–14

This method is intimately related to the inverse scattering technique. The second one, also
oped in the 1970s, is based on the Green’s function for the linearized integrable equation ex
around solitons.15 The third one, also originated in the 1970s16,17 and further developed in the
1990s,18–23 is the direct soliton perturbation theory. It is based on the complete set of eigen
tions for the linearized equation expanded around solitons. In essence, this theory shares th
ideas as the second one, but it is conceptually simpler and has a wider appeal. Severa

a!Electronic mail: jyang@emba.uvm.edu
66140022-2488/2000/41(9)/6614/25/$17.00 © 2000 American Institute of Physics
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approaches such as the adiabatic method24 and the variational method25 have also been developed
But these methods cannot capture radiation modes, and thus are mathematically incomple

The key in the direct soliton perturbation theory is to find a complete set of bounded e
functions for the linearized equation around a soliton solution. This set allows one to solv
linear inhomogeneous equations at various orders of the perturbation expansion. Suppres
secular growth in those solutions then results in the dynamical equations for soliton para
and radiation coefficients. At the moment, such a complete set of eigenfunctions has bee
tified only for the sine-Gordon, Benjamin–Ono, NLS and KdV equations.16–22,26But some genera
ideas have also been hinted or put forward. In Ref. 18, Kaup obtained the complete s
eigenfunctions for the linearized NLS equation around a soliton solution from his observatio
these functions are related to the squared Zakharov–Shabat eigenstates. Indeed, the co
between eigenfunctions of linearized integrable equations and squared eigenstates of the
ated eigenvalue problem has been hinted by inverse-scattering-based soliton pertu
theory.10–13But it has never been clearly articulated and demonstrated for the general case.
19, Herman proposed to use the Lax pair of an integrable equation to find the complete
functions of linearized equations. In this approach, one first determines the time evolution
squared eigenfunctions of the associated eigenvalue problem from the Lax pair. Then one
find the correct combination of squared eigenfunctions to satisfy the linearized integrable
tion. Herman applied this method to the KdV and NLS equations and successfully obtaine
complete eigenstates. The procedure proposed by Herman is suggestive, and it can also w
linearization of integrable equations around time-dependent solutions such as multi-soliton
tions. However, its disadvantage is that, for every integrable equation, one has to verif
squared eigenfunctions of the eigenvalue problem solve the linearized equation around a
solution~or a general solution!. It is not clear yet whether this will always be the case. From th
previous works, we see that, although some interesting ideas have been proposed to c
complete eigenfunctions of linearized integrable equations, what these eigenfunctions mus
a general integrable equation is still unknown.

In this article, we construct complete eigenfunctions for a large class of integrable equ
linearized around a single-soliton solution. This class includes the KdV, NLS and mKdV hi
chies. The striking result which we will establish is that linearization operators of all integ
equations in the same hierarchy share thesamecomplete set of eigenfunctions~the corresponding
eigenvalues differ from one equation to another!. Furthermore, these eigenfunctions are a
eigenstates of the integro-differential operator which generates the hierarchy, thus they are
related to the squared eigenfunctions of the eigenvalue problem associated with the hierar
fact, our results are even stronger. We will show that the linearization operator for any equa
a hierarchy can be factored into the integro-differential operator which generates the hier
and the linearization operator of the lowest-order equation in this hierarchy. All the other r
cited above are simple consequences of this factorization result. Our findings confirm that
broad class of integrable equations, squared eigenstates of the eigenvalue problem also s
linearized equation around a soliton solution. Thus, squared eigenfunctions of the eige
problem are the natural basis of expansion in a direct soliton perturbation theory. They
indicate that, unlike Herman’s approach,19 only the eigenvalue operator of the Lax pair is releva
in the construction of complete eigenfunctions for the linearized equation around single-s
solutions. The time evolution operator of the Lax pair can be neglected. This is why an
hierarchy can share the same complete set of eigenfunctions, since they are all associated
same eigenvalue operator. Although our focus of this article is on the KdV, mKdV and
hierarchies, the ideas and basic results should hold for other integrable hierarchies as well
on these results, we then explicitly give the complete sets of eigenfunctions for lineariz
operators of the KdV, NLS and mKdV hierarchies. We also give similar results for the ad
linearization operators, and explicitly obtain the common adjoint eigenstates for each hier
With these complete eigenstates and adjoint eigenstates available, it is now a simple ma
develop a direct soliton perturbation theory for all the KdV, NLS and mKdV hierarchy equat
We note that another application of these complete eigenfunctions is in the study of eige
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bifurcation of solitary waves from the edge of the continuous spectrum in a perturbed integ
equation.27–29 Lastly, we comment that our analysis is independent of the inverse scatt
theory, even though connections to inverse scattering are still visible.

II. COMPLETE EIGENFUNCTIONS OF LINEARIZATION OPERATORS FOR THE KdV
HIERARCHY

We start by considering the eigenmodes of linearization operators for the KdV hierarchy
hierarchy is of the form30

qt1C~4Ls
1!qx50, ~2.1!

whereC(k2) is the phase velocity of the linearized equations, and the integro-differential ope
Ls

1 is

Ls
152

1

4

]2

]x2 2q1
1

2
qxE

x

`

dy. ~2.2!

Here the subscript ‘‘s’’ in Ls
1 refers to ‘‘Schro¨dinger,’’ as the associated eigenvalue problem

the KdV hierarchy~2.1! is the Schro¨dinger equation.30,31 The adjoint operator ofLs
1 is

Ls52
1

4

]2

]x2 2q1
1

2 E2`

x

dyqy . ~2.3!

Notice that

Ls
1 f x5~Lsf !x ~2.4!

for any function f (x) which vanishes at infinity. Thus Eq.~2.1! can be recast in terms of th
adjoint operatorLs as

qt1@C~4Ls!q#x50. ~2.5!

In this section, we require the phase velocity functionC(z) to be entire. WhenC(z)52z, Eq.
~2.1! becomes the KdV equation:

qt16qqx1qxxx50. ~2.6!

WhenC(z)5z2, Eq. ~2.1! is the fifth-order KdV hierarchy:

qt1qxxxxx110qqxxx120qxqxx130q2qx50. ~2.7!

Other members in this hierarchy can be obtained by choosing different functions for the
velocity C(z).

In the rest of this section, occasions will arise where we want to apply the operatorLs
1 @and

L0
1 to be defined in Eq.~2.13!# on a functiong8(x), whereg(x) is related to continuous eigen

functions and is oscillatory at infinity. In such cases, we adopt the following convention fo
integral term involved:

E
x

`

g8~y! dy[2g~x!. ~2.8!

This convention echoes the fact that, when we obtain a particular KdV hierarchy equation
~2.1!, terms such as*x

`q8(y) dy are always evaluated as2q(x) and so on. This convention
applies notably to the commutability relation~2.20! and the factorization formula~2.22! when they
operate on continuous eigenfunctions. It applies to the eigenfunction relation~2.61! as well. We
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emphasize that this convention is only a technical issue. It does not cause any controve
ambiguity in our main results expressed in Theorems 1 and 2. In fact, we could have cho
work with the operatorLs and avoid operatorsLs

1 ~andL0
1! altogether. The way to do it is to sta

with the KdV hierarchy~2.5! instead of~2.1!. The results of course would be the same, but
derivations would be a little cumbersome.

We now consider soliton solutions in the KdV hierarchy~2.1! and linearization of~2.1!
around solitons. One can check that the soliton family

q~x,t !52h2 sech2 h$x2C~24h2!t% ~2.9!

satisfies Eq.~2.1!, whereh is a free amplitude parameter. By rescaling the variablesx andq by h
and h2, respectively, and by denotingC(h2z) as C(z), we can normalizeh51 in the soliton
solution ~2.9! while keeping the evolution equation~2.1! intact. We also adopt the coordina
system moving with speedC(24), i.e.,

x̄5x2C~24!t, t̄ 5t. ~2.10!

When the bars are dropped, Eq.~2.1! finally becomes

qt1@C~4Ls
1!2C~24!#qx50, ~2.11!

where

q0~x!52 sech2 x ~2.12!

is its normalized soliton solution.
Two operators,L0

1 andL0 , will be used frequently in the rest of this section. They are defi
asLs

1 andLs with q(x,t) replaced byq0(x), i.e.,

L0
152

1

4

]2

]x2 2q01
1

2
q0xE

x

`

dy, ~2.13!

and

L052
1

4

]2

]x2 2q01
1

2 E2`

x

dyq0y . ~2.14!

Naturally,L0 is the adjoint operator ofL0
1 , just asLs is the adjoint operator ofLs

1 . Note that

L0
1q0x52q0x . ~2.15!

This relation will be used in the proof of Theorem 1.
We now linearize the evolution equation~2.11! around its soliton solution~2.12!. We set

q~x,t !5q0~x!1q̃~x,t !, ~2.16!

where q̃!1. When it is substituted into Eq.~2.11! and higher order terms are discarded, t
linearized equation of~2.11! is

q̃t1Lkhq̃50, ~2.17!

whereLkh is the linearization operator. Here the subscript ‘‘kh’’ is the abbreviation of ‘‘KdV
hierarchy.’’ We also denote the adjoint operator ofLkh as Lkh

A . For the KdV equation,C(z)
52z. In this case, linearization of Eq.~2.11! around the soliton~2.12! shows that the linearization
operator is
                                                                                                                



,

ple

ation

se, Eq.

6618 J. Math. Phys., Vol. 41, No. 9, September 2000 Jianke Yang

                    
Lkdv5
]3

]x3 1~6q024!
]

]x
16q0x . ~2.18!

Its adjoint operator is

Lkdv
A 52

]3

]x3 2~6q024!
]

]x
. ~2.19!

An important property is that,L0
1 andLkdv are commutable, andL0 andLkdv

A are commutable, i.e.

L0
1Lkdv5LkdvL0

1 , ~2.20!

and

L0Lkdv
A 5Lkdv

A L0 . ~2.21!

These facts can be verified by direct calculations.
The first important result of this section is the following theorem which gives the sim

expressions for the linearization operatorLkh and its adjoint operatorLkh
A for any KdV hierarchy

equation.
Theorem 1: For any KdV hierarchy equation (2.11) where C(z) is an entire function, the

linearization operator Lkh and its adjoint operator Lkh
A have the following factorizations:

Lkh5M ~4L0
1!Lkdv , ~2.22!

Lkh
A 5M ~4L0!Lkdv

A , ~2.23!

where the function M(z) is defined as

M ~z![
C~24!2C~z!

41z
. ~2.24!

Before proving this theorem, we present an example first. Let us take the fifth-order KdV equ
~2.11!, whereC(z)5z2. ThenM (z)542z. Straightforward calculations show that

M ~4L0
1!Lkdv5

]5

]x5 110q0

]3

]x3 120q0x

]2

]x2 1~216180q0230q0
2!

]

]x
140q0x . ~2.25!

This is exactly the linearization operatorLkh when one linearizes Eq.~2.11! directly. TheLkh
A

factorization formula~2.23! can be similarly verified in this special case.
Proof: It suffices to prove this theorem forC(z) as a power function,C(z)5zn, wheren is

any positive integer, as any entire function can be expanded into a power series. In this ca
~2.11! becomes

qt1@~4Ls
1!n2~24!n#qx50, ~2.26!

and

M ~z!52(
i 51

n

zi 21~24!n2 i . ~2.27!

When Eq.~2.16! is substituted into the operator 4Ls
1 , linearization of 4Ls

1 is
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4Ls
154L0

124q̃12q̃xE
x

`

dy1O~ q̃2!. ~2.28!

Thus, linearization of (4Ls
1)n is

~4Ls
1!n5~4L0

1!n1(
i 51

n

~4L0
1! i 21F24q̃12q̃xE

x

`

dyG~4L0
1!n2 i1O~ q̃2!. ~2.29!

When this equation is utilized, we find the linearization operatorLkh of the evolution equation
~2.26! to be

Lkhq̃5@~4L0
1!n2~24!n#

]q̃

]x
1(

i 51

n

~4L0
1! i 21F24q̃12q̃xE

x

`

dyG~4L0
1!n2 iq0x . ~2.30!

Recalling Eqs.~2.15!, ~2.18! and ~2.27!, the above equation becomes

Lkhq̃5(
i 51

n

~4L0
1! i 21~24!n2 iF ~4L0

114!
]q̃

]x
24q0xq̃22q0q̃xG

5(
i 51

n

~4L0
1! i 21~24!n2 i@2q̃xxx2~6q024!q̃x26q0xq̃#

52(
i 51

n

~4L0
1! i 21~24!n2 iLkdvq̃5M ~4L0

1!Lkdvq̃. ~2.31!

Thus the factorization formula~2.22! is proved. To proveLkh
A factorization formula~2.23!, we

recall the fact that, for any two operatorsP andQ, (PQ)A5QAPA, where the superscript ‘‘A’’
represents the adjoint operator. SinceL0 is the adjoint operator ofL0

1 , thus from Eq.~2.31!, we
have

Lkh
A 52(

i 51

n

~24!n2 iLkdv
A ~4L0! i 21. ~2.32!

But L0 andLkdv
A are commutable@see Eq.~2.21!#. So

Lkh
A 52(

i 51

n

~4L0! i 21~24!n2 iLkdv
A 5M ~4L0!Lkdv

A . ~2.33!

This proves theLkh
A factorization formula~2.23!.

Remark:The only piece of information we used to prove theLkh factorization formula~2.22!
is the simple relation~2.15! for q0 , and the only information we used to prove theLkh

A factoriza-
tion formula ~2.23! is ~2.22! and the commutability relation between operatorsL0 andLkdv

A .
Theorem 1 is an elegant and important result of this section. It relates the lineariz

operatorsLkh andLkh
A of an arbitrary KdV hierarchy equation to the integro-differential operat

L0
1 , L0 , and the KdV linearization operatorsLkdv and Lkdv

A . Another important fact, which we
will establish later, is thatL0

1 (L0) and Lkdv (Lkdv
A ) share the same complete set of eigensta

This fact, together with the factorization formulas~2.22! and~2.23!, will immediately result in the
samecomplete set of eigenstates forLkh andLkh

A of all KdV hierarchy equations.
We first write down the complete sets of eigenfunctions forLkdv andLkdv

A , which have been
worked out before.19,20,26The complete eigenfunctions and generalized eigenfunctions ofLkdv are
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C~x,k!5
1

~k12i !2 @ ik~k214!24~k212!tanhx28ik tanh2 x18 tanh3 x#eikx, ~2.34!

C1~x!5sech2 x tanhx, C2~x!5sech2 x~12x tanhx!, ~2.35!

where

LkdvC52 ik~k214!C, ~2.36!

LkdvC150, LkdvC2528C1 , ~2.37!

and2`,k,` in ~2.34! and~2.36!. We note that the discrete statesC1 andC2 are obtained by
taking variations to the free amplitude and position parameters in a KdV soliton. Eigenstat
the adjoint operatorLkdv

A are

F~x,k!5
1

~k12i !2 @k224ik tanhx24 tanh2 x#e2 ikx, ~2.38!

F1~x!5sech2 x, F2~x!5tanhx1x sech2 x, ~2.39!

where

Lkdv
A F52 ik~k214!F, ~2.40!

Lkdv
A F150, Lkdv

A F2528F1 , ~2.41!

and2`,k,` in ~2.38! and ~2.40! as well.
The nonzero inner products between eigenstates and their adjoint eigenstates are

^C~x,k!,F~x,k8!&52p ika0
2d~k2k8! ~2.42!

and

^C1~x!,F2~x!&5^C2~x!,F1~x!&51, ~2.43!

wherea05(k22i )/(k12i ). Here the inner products between two~vector! functions f (x) and
g(x) are defined as

^ f ~x!,g~x!&[E
2`

`

f ~x!Tg~x! dx, ~2.44!

and the superscript ‘‘T’’ represents the transverse of a vector or matrix. The closure relation

E
2`

` 1

2p ika0
2 C~x,k!F~x8,k!dk1(

j 51

2

C j~x!F j~x8!5d~x2x8!. ~2.45!

A critical fact is that the above eigenstates ofLkdv andLkdv
A arealso the eigenstates ofL0

1 andL0 ,
respectively. More specifically, we have

L0
1C5

k2

4
C, L0

1C152C1 , L0
1C252C22C1 , ~2.46!

and
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L0F5
k2

4
F, L0F152F1 , L0F252F221. ~2.47!

These results can be proved in several different ways. One way is to verify them direc
substituting the eigenstates~2.34!, ~2.35!, ~2.38!, and~2.39! into Eqs.~2.46! and ~2.47!. A better
way is to recall the crucial fact thatL0

1 (L0) andLkdv (Lkdv) are commutable. Thus

LkdvL0
1C~x,k!5L0

1LkdvC~x,k!52 ik~k214!L0
1C~x,k!. ~2.48!

This shows thatL0
1C is an eigenstate ofLkdv with eigenvalue2 ik(k214). But we know from

~2.36! that the only eigenstate ofLkdv with eigenvalue2 ik(k214) is C(x,k). Thus L0
1C

5lC, wherel is a constant. In other words,C(x,k) is also an eigenstate ofL0
1 . By taking the

limit x→`, we can easily find that the eigenvaluel5 k2/4. Other relations in~2.46! and ~2.47!
can be proved similarly.

The third way of proving~2.46! and~2.47! is probably the most stimulating. This proof mak
use of the important relationship between eigenfunctions~2.34!, ~2.35!, ~2.38!, and~2.39! of the
KdV linearization operators and squared eigenstates of the Schro¨dinger equation with a soliton
potential~2.12!:

vxx1~z21q0~x!!v50. ~2.49!

Using conventional notation, we define the eigenstatesc(x,z) andf(x,z) of ~2.49! as

c→ei zx, x→`, ~2.50!

f→e2 i zx, x→2`. ~2.51!

Then it is easy to check that

c~x,z!5
z1 i tanhx

z1 i
ei zx ~2.52!

and

f~x,z!5
z2 i tanhx

z1 i
e2 i zx. ~2.53!

For real values ofz, Eqs. ~2.52! and ~2.53! give the continuous eigenstates of the Schro¨dinger
operator. Whenz5 i , they produce the same discrete eigenstate

c15f15 1
2 sechx. ~2.54!

It can be directly verified that eigenstates~2.34!, ~2.35!, ~2.38!, and~2.39! of the KdV linearization
operators are related to the the squared eigenstates of the Schro¨dinger operator as follows:

C~x,k!5
]c2~x,k/2!

]x
, ~2.55!

C1~x!522
]c1

2

]x
, C2~x!52S i

]2c2

]x]z
1

]c2

]x D U
z5 i

, ~2.56!

F~x,k!5f2~x,k/2!, ~2.57!
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F1~x!54f1
2 , F2~x!52S i

]f2

]z
1f2D U

z5 i

21. ~2.58!

Now we need to recall the fact that squared eigenstates of the Schro¨dinger equation are eigenstate
of the integro-differential operatorsL0

1 andL0 . Specifically, we have

L0f25z2f2, ~2.59!

L0f1
252f1

2 , L0

]f2

]z U
z5 i

5S 2
]f2

]z
12if2D U

z5 i

, ~2.60!

L0
1~c2!x5z2~c2!x , ~2.61!

L0
1~c1

2!x52~c1
2!x , L0

1
]2c2

]z]x U
z5 i

5H 2
]2c2

]z]x
12i ~c2!xJ U

z5 i

. ~2.62!

Proof of Eq.~2.59! for general potentialq(x,t) can be found in Ref. 30. By takingz5 i in ~2.59!,
the first equation in~2.60! can be obtained. By taking the derivative of Eq.~2.59! with respect to
z, and then takingz5 i , the second equation in~2.59! is proved. Equations~2.61! and~2.62! can
be derived similarly. We note that Eq.~2.61! is valid for general potentialq(x,t), not just the
soliton potential~2.12!. We also remind the reader that in Eq.~2.61!, the convention~2.8! has been
applied. When all the relations~2.55!–~2.58! and~2.59!–~2.62! are utilized, Eqs.~2.46! and~2.47!
are proved again.

Now since the eigenstates ofLkdv (Lkdv
A ) are also the eigenstates ofL0

1 (L0), theLkh andLkh
A

factorization formulas~2.22! and~2.23! quickly show that the eigenstates of the KdV linearizati
operatorLkdv (Lkdv

A ) are also the eigenstates of the linearization operatorsLkh (Lkh
A ) of all KdV

hierarchy equations. This is the major result of this section. We summarize it in the follo
theorem.

Theorem 2: The linearization operators Lkh of all KdV hierarchy equations (2.11) expande
around the soliton (2.12) share the same complete set of Lkdv-eigenstates (2.34) and (2.35), an
the adjoint linearization operators Lkh

A of all KdV hierarchy equations (2.11) share the sam
complete set of Lkdv

A -eigenstates (2.38) and (2.39). Furthermore,

LkhC~x,k!5 ik$C~k2!2C~24!%C~x,k!, ~2.63!

LkhC1~x!50, LkhC2~x!528M ~24!C1~x!, ~2.64!

Lkh
A F~x,k!5 ik$C~k2!2C~24!%F~x,k!, ~2.65!

Lkh
A F1~x!50, Lkh

A F2~x!528M ~24!F1~x!. ~2.66!

The proof of this theorem follows readily from the factorization formulas~2.22! and ~2.23!, the
Lkdv andLkdv

A eigenfunction relations~2.36!, ~2.37!, ~2.40!, and~2.41!, andL0
1 andL0 eigenfunc-

tion relations~2.46! and ~2.47!. With the results of Theorem 2, one can now develop a dir
soliton perturbation theory for any KdV hierarchy equation.6,14,19,20

An interesting fact which was not appreciated in the past is that, for any constantl, all the
linearly independent solutions to the linearization operator equation

Lkhu~x!5lu~x! ~2.67!

are given by the functionC(x,k) @see Eq.~2.34!#, where

l5 ik$C~k2!2C~24!%, ~2.68!
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andk is allowed to be a complex number. This fact follows directly from Theorem 2. To see
we takeC(z) as a power function,C(z)5zn, wheren is a positive integer. Notice that operato
Lkh , as well as Eq.~2.67!, is (2n11)-th order. Thus Eq.~2.67! should have (2n11) linearly
independent solutions. But Eq.~2.68! has exactly (2n11) roots, and each rootk would give one
solutionC(x,k) for ~2.67!. Thus we do get (2n11) solutions altogether for~2.67!, all of which
are in the same formC(x,k) with just different k values. If k is real, C(x,k) is bounded at
infinity, and is thus an eigenfunction of operatorLkh . If k is truly complex, then the correspondin
C(x,k) solution becomes unbounded. Thus we see that, for the integrable KdV hierarch
linearization operator equation~2.67! is also completely solvable. Similar facts go to the adjo
operator equationLkh

A ū5l̄ū, where all its solutions are given byF(x,k̄) with l̄5 i k̄@C( k̄2)
2C(24)#. These facts are additional manifestations of magic associated with integrable
tions.

In the next two sections, we will derive similar results for the NLS and mKdV hierarch
More specifically, we will show that the linearization operators of all NLS~mKdV! hierarchy
equations share the same complete sets of eigenfunctions. In each case, we will pres
common eigenfunctions explicitly, work out their inner products, and relate them to squ
eigenstates of the associated eigenvalue problem.

III. COMPLETE EIGENFUNCTIONS OF LINEARIZATION OPERATORS FOR THE NLS
HIERARCHY

The integrable equations associated with the Zakharov–Shabat eigenvalue problem
written as30

i F r t

2qt
G2v~2Lz

1!F r
qG50, ~3.1!

where the integro-differential operatorLz
1 is

Lz
15

1

2i F ]

]x
22r E

2`

x

dyq 2r E
2`

x

dyr

22qE
2`

x

dyq 2
]

]x
12qE

2`

x

dyr
G , ~3.2!

andv(k) is the dispersion relation of the linearization equation in ther -component. The adjoin
operator ofLz

1 is

Lz5
1

2i F 2
]

]x
22qE

x

`

dyr 22qE
x

`

dyq

2r E
x

`

dyr
]

]x
12r E

x

`

dyq
G . ~3.3!

For the NLS hierarchy,v(k) must be an even function ofk, andq52r * . In this section, we
requirev(k) to be an entire function ofk. Thenv(k) can be expanded into a Taylor series
even powers ofk. Thus, we can rewrite the NLS hierarchy~3.1! as

i F r t

2qt
G2V~ L̂1!F r

qG50, ~3.4!

where the operator

L̂154Lz
12 , ~3.5!
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or specifically,

L̂152F ]2

]x2 24qr22r xE
2`

x

dyq12r E
2`

x

dyqy 2r xE
2`

x

dyr12r E
2`

x

dyry

2qxE
2`

x

dyq12qE
2`

x

dyqy

]2

]x2 24qr22qxE
2`

x

dyr12qE
2`

x

dyry
G ,

~3.6!

V(z) is an entire function, andq52r * . The adjoint operatorL̂ of L̂1 is 4Lz
2 , i.e.,

L̂52F ]2

]x2 24qr12qxE
x

`

dyr22qE
x

`

dyry 2qxE
x

`

dyq12qE
x

`

dyqy

2r xE
x

`

dyr12r E
x

`

dyry

]2

]x2 24qr12r xE
x

`

dyq22r E
x

`

dyqy
G .

~3.7!

WhenV(z)5z, Eq. ~3.4! becomes the NLS equation

ir t1r xx12ur u2r 50. ~3.8!

WhenV(z)5z2, Eq. ~3.4! gives the fourth-order NLS hierarchy equation:

ir t2@r xxxx16~ ur u2r x!x12ur u2r xx12r 2r xx* 22rr xr x* 16ur u4r #50. ~3.9!

Higher order NLS hierarchy equations can be obtained similarly.
The NLS hierarchy~3.4! allows soliton solutions whose amplitude and velocities are f

parameters, just like the NLS equation. We can normalize the velocity to be zero by a Ga
transformation, and amplitude to be 1 by a rescaling of variables. Then the normalized s
simply becomes

F r
qG5F sechx e2 iV(21)t

2sechx eiV(21)tG . ~3.10!

With a change of variables

r̄ 5re2 iV(21)t, q̄5qeiV(21)t, ~3.11!

and the bars dropped, the NLS hierarchy~3.4! becomes

i F r t

2qt
G1@V~21!2V~ L̂1!#F r

qG50, ~3.12!

and

r 052q05sechx ~3.13!

is its soliton solution. We define operatorsL̂0
1 and L̂0 as L̂1 and L̂ with (r ,q) replaced by

(r 0 ,q0), Then one can verify that

L̂0
1F r 0

q0
G52F r 0

q0
G . ~3.14!

This relation will be used to prove Theorem 3.
Next, we linearize the NLS hierarchy~3.12! around its soliton~3.13!. We write
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F r
qG5F r 01 r̃

q02q̃G , ~3.15!

where r̃ ,q̃!1. When ~3.15! is substituted into the NLS hierarchy~3.12!, linearization of this
equation is

i F r̃
q̃G

t

1LnhF r̃
q̃G50, ~3.16!

whereLnh is the linearization operator, and the subscript ‘‘nh’’ is abbreviation for ‘‘NLS hierar-
chy.’’ The adjoint operator ofLnh will be denoted asLnh

A . For the NLS equation,V(z)5z. Then
linearization of Eq.~3.12! shows that

LNLS5F ]2

]x2 2114sech2 x 2 sech2 x

22sech2 x 2
]2

]x2 1124 sech2 x
G . ~3.17!

Its adjoint operatorLNLS
A is

LNLS
A 5LNLS

T . ~3.18!

We introduce the Pauli spin matrices

s15F0 1

1 0G , s35F1 0

0 21G , ~3.19!

which we will use below. Then

LNLSs35s3LNLS
A , ~3.20!

asLNLSs3 is a self-adjoint operator.
Similar to the KdV hierarchy, here we also have the important property thatLNLS andL̂0

1 are
commutable, andLNLS

A and L̂0 are commutable, i.e.,

LNLSL̂0
15L̂0

1LNLS , ~3.21!

and

LNLS
A L̂05L̂0LNLS

A . ~3.22!

In addition, the following factorization theorem forLnh andLnh
A holds.

Theorem 3: For any NLS hierarchy equation (3.12) whereV(z) is an entire function, the
linearization operator Lnh and its adjoint operator Lnh

A have the following factorizations:

Lnh5M̂ ~ L̂0
1!LNLS , ~3.23!

Lnh
A 5M̂ ~ L̂0!LNLS

A , ~3.24!

where the function Mˆ (z) is defined as

M̂ ~z![
V~z!2V~21!

z11
. ~3.25!
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Proof: Recall that an entire function can be expanded into a power series. Thus it suffi
prove the above theorem forM̂ (z)5zn, where n is a positive integer. In this case, the NL
hierarchy~3.12! becomes

i F r t

2qt
G1@~21!n2~ L̂1!n#F r

qG50, ~3.26!

and M̂ (z)5( i 51
n zi 21(21)n2 i . We first derive the linearization of operator (L̂1)n. Substituting

Eq. ~3.15! into ~3.6!, we find that

L̂15L̂0
11F1O~ r̃ 2, r̃ q̃,q̃2!, ~3.27!

where the operatorF contains all terms which are first order inr̃ and q̃. Even though the
expression forF can be readily obtained, it is not really needed in this proof. From theL̂1

linearization~3.27!, we then find linearization of (L̂1)n as

~ L̂1!n5~ L̂0
1!n1(

i 51

n

~ L̂0
1! i 21F~ L̂0

1!n2 i1O~ r̃ 2, r̃ q̃,q̃2!. ~3.28!

When the above equation and~3.15! are substituted into the NLS hierarchy~3.26!, we find that the
linearization operatorLnh as defined in Eq.~3.16! is

LnhF r̃
q̃G5@~21!n2~ L̂0

1!n#s3F r̃
q̃G2(

i 51

n

~ L̂0
1! i 21F~ L̂0

1!n2 iF r 0

q0
G . ~3.29!

Recalling the relation~3.14!, we can simplify Eq.~3.29! as

LnhF r̃
q̃G52M̂ ~ L̂0

1!H ~ L̂0
111!s3F r̃

q̃G1FF r 0

q0
G J . ~3.30!

This equation holds for any positive integers ofn. Whenn51, the NLS hierarchy~3.26! becomes
the NLS equation, andM̂ (z)51. Thus Eq.~3.30! leads to the relation

LNLSF r̃
q̃G52 H ~ L̂0

111!s3F r̃
q̃G1FF r 0

q0
G J . ~3.31!

Of course, this relation can also be checked directly when one derives the specific express
F from the linearization ofL̂1, and substitutes it into the above equation. Finally, when Eq.~3.31!
is inserted into Eq.~3.30!, the Lnh factorization formula~3.23! is then proved. To prove theLnh

A

factorization formula~3.24!, we note thatL̂0 is the adjoint operator ofL̂0
1 . Thus, from~3.23!, we

immediately have

Lnh
A 5LNLS

A M̂ ~ L̂0!. ~3.32!

But L̂0 andLNLS
A are commutable@see Eq.~3.22!#, thus formula~3.24! is obtained.

Next, we use the factorization formulas~3.23! and~3.24! to construct complete sets of eige
states forLnh andLnh

A of an arbitrary NLS hierarchy equation. The complete sets of eigenstate
the NLS linearization operatorsLNLS andLNLS

A have been worked out by Kaup18 by his observa-
tion that these eigenstates were related to the squared Zakharov–Shabat eigenfunctions.
formulate his results as follows. For the operatorLNLS , the continuous and discrete eigenstates

C~x,k!5
1

~k1 i !2 F 2sech2 x
~ tanhx1 ik !2Ge2 ikx, 2`,k,`, ~3.33!
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C̄~x,k!5s1C~x,k!, ~3.34!

C1~x!5sechxF 1
21G , C2~x!5sechx tanhxF11G , ~3.35!

C3~x!5sechx~x tanhx21!F11G , C4~x!5x sechxF 1
21G , ~3.36!

where

LNLSC5~11k2!C, LNLSC̄52~11k2!C̄, ~3.37!

LNLSC15LNLSC250, ~3.38!

LNLSC3522C1 , LNLSC4522C2 . ~3.39!

Note that these four discrete eigenstates are derived from variations of the NLS soliton
respect to its four free parameters: phase, position, amplitude and velocity. The continuo
discrete eigenstates for the adjoint operatorLNLS

A are

F~x,k!52
1

~k1 i !2 F sech2 x
~ tanhx2 ik !2Geikx, 2`,k,`, ~3.40!

F̄~x,k!5s1F~x,k!, ~3.41!

F j~x!5s3C j~x!, j 51,2,3,4, ~3.42!

where

LNLS
A F5~11k2!F, LNLS

A F̄52~11k2!F̄, ~3.43!

LNLS
A F15LNLS

A F250, ~3.44!

LNLS
A F3522F1 , LNLS

A F4522F2 . ~3.45!

The nonzero inner products between the eigenstates and adjoint eigenstates are

^C~x,k!,F~x,k8!&522pa2d~k2k8!, ~3.46!

^C̄~x,k!,F̄~x,k8!&52pa2d~k2k8!, ~3.47!

^C1 ,F3&5225^C3 ,F1&, ~3.48!

^C2 ,F4&525^C4 ,F2&. ~3.49!

Here the inner product̂,& is as defined in Eq.~2.44!, and

a5~k2 i !/~k1 i !. ~3.50!

The closure relation is
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F1 0

0 1Gd~x2x8!5E
2`

` 1

2pa2 @C̄~x,k!F̄~x8,k!2C~x,k!F~x8,k!#dk

1
1

2
@C2~x!F4~x8!1C4~x!F2~x8!2C1~x!F3~x8!2C3~x!F1~x8!#.

~3.51!

Commutability relations~3.21! and~3.22! between operatorsL̂0
1 (L̂0) andLNLS (LNLS

A ) imply
that the eigenstates ofLNLS (LNLS

A ) are also eigenstates ofL̂0
1 (L̂0). Indeed, we can show that

L̂0
1C~x,k!5k2C~x,k!, ~3.52!

L̂0
1C̄~x,k!5k2C̄~x,k!, ~3.53!

L̂0
1C j~x!52C j~x!, j 51,2, ~3.54!

L̂0
1C3~x!52C3~x!22C2~x!, ~3.55!

L̂0
1C4~x!52C4~x!22C1~x!, ~3.56!

and

L̂0F~x,k!5k2F~x,k!, ~3.57!

L̂0F̄~x,k!5k2F̄~x,k!, ~3.58!

L̂0F j~x!52F j~x!, j 51,2, ~3.59!

L̂0F3~x!52F3~x!12F2~x!, ~3.60!

L̂0F4~x!52F4~x!12F1~x!. ~3.61!

This fact, together with theLnh and Lnh
A factorization formulas~3.23! and ~3.24!, immediately

leads to the conclusion that theLNLS (LNLS
A ) eigenstates are eigenstates of linearization opera

Lnh (Lnh
A ) of all NLS hierarchy equations. This result is summarized in the following theore

Theorem 4: The linearization operators Lnh of all NLS hierarchy equations (3.12) expande
around the soliton (3.13) share the same complete set of LNLS eigenstates (3.33) to (3.36), and th
adjoint operators Lnh

A of all NLS hierarchy equations share the same complete set of LNLS
A eigen-

states (3.40)–(3.42). Furthermore,

LnhC~x,k!5@V~k2!2V~21!#C~x,k!, ~3.62!

LnhC̄~x,k!52@V~k2!2V~21!#C̄~x,k!, ~3.63!

LnhC1~x,k!5LnhC2~x,k!50, ~3.64!

LnhC3~x,k!522M̂ ~21!C1 , LnhC4~x,k!522M̂ ~21!C2 , ~3.65!

and

Lnh
A F~x,k!5@V~k2!2V~21!#F~x,k!, ~3.66!
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Lnh
A F̄~x,k!52@V~k2!2V~21!#F̄~x,k!, ~3.67!

Lnh
A F1~x,k!5Lnh

A F2~x,k!50, ~3.68!

Lnh
A F3~x,k!522M̂ ~21!F1 , Lnh

A F4~x,k!522M̂ ~21!F2 . ~3.69!

The equations~3.62!–~3.69! come directly from Eqs.~3.23!, ~3.24!, ~3.33!–~3.36!, ~3.40!–~3.42!,
and ~3.52!–~3.61!. A by-product of this theorem is that, for any constantsl and l̄, the linear
equationLnhu5lu and its adjoint equationLnh

A ū5l̄ū are completely solvable, and their solution
all have the formC(x,k) and F(x,k̄), respectively~k and k̄ are now allowed to be comple
numbers!. This is similar to the KdV hierarchy case~see the end of Sec. II!.

Lastly, we would like to draw the reader’s attention to the close relationship between e
states~3.33!–~3.36! and ~3.40!–~3.42! of linearized NLS hierarchy equations~3.12! and squared
eigenstates of the Zakharov–Shabat eigenvalue problem with a soliton potential:

v1x1 i zv15q0v2 , ~3.70!

v2x2 i zv25r 0v1 , ~3.71!

wherer 0 andq0 are given in Eq.~3.13!. This connection was first mentioned in Ref. 18. It is al
hinted by the result that the NLS hierarchy eigenstates~3.33!–~3.36! and ~3.40!–~3.42! are also
eigenstates of the integro-differential operatorsL̂0

1 and L̂0 . Using standard notations, we defin
Jost functions of Eqs.~3.70! and ~3.71! as

c~x,z!5Fc1

c2
G→F01Gei zx, x→`, ~3.72!

c̄~x,z!5F c̄1

c̄2
G→F10Ge2 i zx, x→`, ~3.73!

f~x,z!5Ff1

f2
G→F10Ge2 i zx, x→2`, ~3.74!

f̄~x,z!5F f̄1

f̄2
G→F 0

21Gei zx, x→2`. ~3.75!

For the soliton potential~3.13!, these Jost functions have the following simple expressions:

c~x,z!5
1

122i z F sechx
tanhx22i z Gei zx, ~3.76!

c̄~x,z!5
1

112i z F tanhx12i z
2sechx Ge2 i zx, ~3.77!

f~x,z!5
2i z11

2i z21
c̄~x,z!, f̄~x,z!5

122i z

112i z
c~x,z!. ~3.78!

An important property is that the squared eigenstates of the Zakharov–Shabat system are
functions of operatorsLz

1 andLz .30 Specifically,
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Lz
1F f2

2

2f1
2G5zF f2

2

2f1
2G , Lz

1F f̄2
2

2f̄1
2G5zF f̄2

2

2f̄1
2G , ~3.79!

LzFc1
2

c2
2G5zFc1

2

c2
2G , LzF c̄1

2

c̄2
2G5zF c̄1

2

c̄2
2G . ~3.80!

These relations hold for general potentials, not just for soliton ones.
Now it is a simple matter to recognize that eigenstates~3.33!–~3.36! and ~3.40!–~3.42! are

related to the squares of the Zakharov–Shabat eigenstates~3.76!–~3.78! as follows:

C~x,k!5F f2
2

2f1
2G

z5k/2

, C̄~x,k!5F f̄2
2

2f̄1
2G

z52k/2

, ~3.81!

C1~x!52H F f2
2

2f1
2G

z5 i /2

1F f̄2
2

2f̄1
2G

z52 i /2
J , ~3.82!

C2~x!52H F f2
2

2f1
2G

z5 i /2

2F f̄2
2

2f̄1
2G

z52 i /2
J , ~3.83!

C3~x!5 i H ]

]z F f2
2

2f1
2G

z5 i /2

1
]

]z F f̄2
2

2f̄1
2G

z52 i /2
J 12H F f2

2

2f1
2G

z5 i /2

2F f̄2
2

2f̄1
2G

z52 i /2
J , ~3.84!

C4~x!5 i H ]

]z F f2
2

2f1
2G

z5 i /2

2
]

]z F f̄2
2

2f̄1
2G

z52 i /2
J , ~3.85!

F~x,k!5Fc1
2

c2
2G

z5k/2

, F̄~x,k!5F c̄1
2

c̄2
2G

z52k/2

, ~3.86!

F1~x!52H Fc1
2

c2
2G

z5 i /2

1F c̄1
2

c̄2
2G

z52 i /2
J , ~3.87!

F2~x!522H Fc1
2

c2
2G

z5 i /2

2F c̄1
2

c̄2
2G

z52 i /2
J , ~3.88!

F3~x!5 i H ]

]z Fc1
2

c2
2G

z5 i /2

1
]

]z F c̄1
2

c̄2
2G

z52 i /2
J 12H Fc1

2

c2
2G

z5 i /2

2F c̄1
2

c̄2
2G

z52 i /2
J , ~3.89!

F4~x!52 i H ]

]z Fc1
2

c2
2G

z5 i /2

2
]

]z F c̄1
2

c̄2
2G

z52 i /2
J . ~3.90!

It has been shown by Kaup10 that the sets of squared Zakharov–Shabat eigenstates

H F f2
2

2f1
2G ,F f̄2

2

2f̄1
2G ,z real,F f2

2

2f1
2G

z5 i /2

,
]

]z F f2
2

2f1
2G

z5 i /2

,F f̄2
2

2f̄1
2G

z52 i /2

,
]

]z F f̄2
2

2f̄1
2G

z52 i /2
J
~3.91!
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and

H Fc1
2

c2
2G ,F c̄1

2

c̄2
2G ,z real,Fc1

2

c2
2G

z5 i /2

,
]

]z Fc1
2

c2
2G

z5 i /2

,F c̄1
2

c̄2
2G

z52 i /2

,
]

]z F c̄1
2

c̄2
2G

z52 i /2
J ~3.92!

are each complete~Kaup’s proof was actually made for general potentials!. Thus, in view of the
above relationship between NLS hierarchy eigenstates and squared Zakharov–Shabat eig
the respective completeness of the NLS hierarchy eigenstates~3.33!–~3.36! and adjoint eigenstate
~3.40!–~3.42! naturally follows. In fact, this is how Kaup18 established the completeness of t
NLS eigenstates~3.33!–~3.36! in the first place. We also note that Eqs.~3.79! and~3.80!, together
with the relations~3.81!–~3.90!, reproduce Eqs.~3.52!–~3.61! again.

IV. COMPLETE EIGENFUNCTIONS OF LINEARIZATION OPERATORS FOR THE mKdV
HIERARCHY

In this section, we extend our results above to the mKdV hierarchy. Similar to the
hierarchy, the mKdV hierarchy is also a special case of the more general class of inte
equations~3.1!. It can be written as

F r t

2qt
G1C̄~2Lz

1!F r x

2qx
G50, ~4.1!

whereq52r , Lz
1 is the operator defined in Eq.~3.2!, and C̄(k) is the phase velocity of both

variables and must be an even function. In this section, we requireC̄(k) to be entire. The vector
form ~4.1! of the mKdV hierarchy is convenient as it then becomes a special class of the ge
integrable equations~3.1!, on which a wealth of information has been obtained.30 However, in
applications, one usually works with only one variable, and the equation is scaler, just lik
mKdV equation. It is often awkward to work with the vector form~4.1! of this hierarchy and
translate the results into the scaler form in the end. Thus one is motivated to obtain a scale
for the mKdV hierarchy and work with it from the very beginning. We will do this and const
complete eigenstates of linearization operators for the scaler mKdV hierarchy below.

We first derive the scaler form of the mKdV hierarchy~4.1!. Note thatC̄(k) is an even and
entire function. Thus we can writeC̄(2Lz

1) as C(4Ls
12), where C(k) is entire. Recallingq

52r , the operator 4Ls
12 becomes

4Ls
125FA B

B AG , ~4.2!

where operatorsA andB are

A52
]2

]x2 24r 222r xE
2`

x

dyr12r E
2`

x

dyry , ~4.3!

B522r xE
2`

x

dyr22r E
2`

x

dyry . ~4.4!

One can verify that, for any positive integern,

~4Ls
12!n5FAn Bn

Bn An
G , ~4.5!

where
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An1Bn5~A1B!n. ~4.6!

Thus, if we define the operator

Lm
15 1

2 ~A1B!, ~4.7!

i.e.,

Lm
152

1

4

]2

]x2 2r 22r xE
2`

x

dyr, ~4.8!

then the mKdV hierarchy~4.1! simply becomes

r t1C~4Lm
1!r x50. ~4.9!

This equation is the scaler form of the mKdV hierarchy~4.1!. Notice that it is very similar to the
KdV hierarchy~2.1!. WhenC(k)52k, Eq. ~4.9! gives the mKdV equation

r t1r xxx16r 2r x50. ~4.10!

Other mKdV hierarchy equations can be obtained by choosing different phase velocity fun
C(k).

The rest of this section runs parallel to Secs. II and III. We first note that the mKdV hiera
~4.9! admits a family of soliton solutions whose amplitude is a free parameter. With a scali
variables, we can normalize the amplitude to be 1. The normalized soliton is

r ~x,t !5sech$x2C~21!t%. ~4.11!

In moving coordinates,

x̄5x2C~21!t, t̄ 5t, ~4.12!

and with the bars dropped, the mKdV hierarchy~4.9! becomes

r t1@C~4Lm
1!2C~21!#r x50, ~4.13!

and

r 0~x!5sechx ~4.14!

is its soliton solution.
Next, we linearize the mKdV hierarchy~4.13! around its soliton~4.14!. We set

r ~x,t !5r 0~x!1 r̃ ~x,t !, ~4.15!

wherer̃ !1, and substitute it into Eq.~4.13!. With the higher order terms inr̃ neglected, Eq.~4.13!
becomes the linearized equation

r̃ t1Lmhr̃ 50, ~4.16!

whereLmh is the linearization operator. Here the subscript ‘‘mh’’ refers to ‘‘mKdV hierarchy.’’
Similar to the KdV and NLS hierarchy cases, we have the following factorization theorem forLmh

and its adjoint operatorLmh
A .

Theorem 5: For any mKdV hierarchy equation (4.13) where C(z) is an entire function, the
linearization operator Lmh and its adjoint operator Lmh

A expanded around the soliton (4.14) hav
the following factorizations:
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Lmh5M̄ ~4Lm0
1 !Lmkdv, ~4.17!

Lmh
A 5M̄ ~4Lm0!Lmkdv

A . ~4.18!

Here operator Lm0
1 is defined as Lm

1 with r(x,t) replaced by r0(x), i.e.,

Lm0
1 52

1

4

]2

]x2 2r 0
22r 0xE

2`

x

dyr0 , ~4.19!

Lm0 is the adjoint operator of Lm0
1 , which is

Lm052
1

4

]2

]x2 2r 0
22r 0E

x

`

dyr0y , ~4.20!

Lmkdv is the linearization operator of the mKdV equation,

Lmkdv5
]3

]x3 1~6r 0
221!

]

]x
1~6r 0

2!x , ~4.21!

its adjoint operator Lmkdv
A is

Lmkdv
A 52

]3

]x3 2~6r 0
221!

]

]x
, ~4.22!

and function M̄(z) is defined as

M̄ ~z![
C~21!2C~z!

11z
. ~4.23!

The proof of this theorem is very similar to those of Theorems 1 and 3 for the KdV and
hierarchies, and is thus omitted here.

Also similar to the KdV and NLS hierarchies, we can verify that operatorsLm0
1 andLmkdv are

commutable, andLm0 andLmkdv
A are commutable, i.e.,

Lm0
1 Lmkdv5LmkdvLm0

1 , Lm0Lmkdv
A 5Lmkdv

A Lm0 . ~4.24!

This fact implies thatLmkdv (Lmkdv
A ) andLm0

1 (Lm0) share the same set of eigenfunctions. Then
factorization formulas~4.17! and~4.18! indicate that these same sets of eigenstates are then s
by linearization operators of all mKdV hierarchy equations. The complete sets of eigensta
mKdV linearization operatorsLmkdv andLmkdv

A have not been reported before in the literature. B
we can obtain them from eigenstates ofLm0

1 andLm0 , as will be done below.
For generalr andq potentials in the Zakharov–Shabat eigenvalue problem~3.70! and~3.71!,

Eq. ~3.79! holds. Whenq52r , as is the case for the mKdV hierarchy~4.1!, it is easy to see tha

f̄1~x,z!5f2~x,2z!, f̄2~x,z!52f1~x,2z!. ~4.25!

Thus we find from~3.79! that the two relations

4Ls
12F f2

2

2f1
2G54z2F f2

2

2f1
2G ~4.26!

and
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4Ls
12F f1

2

2f2
2G54z2F f1

2

2f2
2G ~4.27!

hold simultaneously. Subtracting the second equation from the first one, we get

4Ls
12Ff2

22f1
2

f2
22f1

2G54z2Ff2
22f1

2

f2
22f1

2G . ~4.28!

Recalling Eqs.~4.2! and ~4.7!, the above equation leads to

Lm
1~f2

22f1
2!5z2~f2

22f1
2!, ~4.29!

i.e., f2
22f1

2 are eigenfunctions of operatorLm
1 . Similarly, we can show that

Lm~c1
21c2

2!5z2~c1
21c2

2! ~4.30!

for generalr andq potentials. Soc1
21c2

2 are eigenfunctions of operatorLm .
For soliton potentialsr 052q05sechx, the Zakharov–Shabat eigenstates (c1 ,c2)T and

(f1 ,f2)T have been given in Eqs.~3.76! and ~3.78!. We define two sets of functions

C~x,k![~f2
22f1

2!uz5k/25
1

~k1 i !2 @~ tanhx1 ik !22sech2 x#e2 ikx, 2`,k,`, ~4.31!

C1~x!5sechx tanhx, C2~x!5sechx~12x tanhx!, ~4.32!

and

F~x,k![~c1
21c2

2!uz5k/252
1

~k1 i !2 @~ tanhx2 ik !21sech2 x#eikx, 2`,k,`, ~4.33!

F1~x!5sechx, F2~x!5x sechx. ~4.34!

Then from Eqs.~4.29! and~4.30! we see thatC(x,k) @F(x,k)# are continuous eigenfunctions o
operatorsLm0

1 (Lm0) with

Lm0
1 C~x,k!5

k2

4
C~x,k!, ~4.35!

Lm0F~x,k!5
k2

4
F~x,k!, ~4.36!

and C j (x) @F j (x)#, j 51,2, are discrete eigenmodes or generalized eigenmodes ofLm0
1 (Lm0)

with

Lm0
1 C152 1

4 C1 , Lm0
1 C252 1

4 C21 1
2 C1 , ~4.37!

and

Lm0F152 1
4 F1 , Lm0F252 1

4 F21 1
2 F1 . ~4.38!

Commutability of operatorsLmkdv (Lmkdv
A ) andLm0

1 (Lm0) indicates that the above eigenmodes
Lm0

1 (Lm0) are also eigenstates ofLmkdv (Lmkdv
A ). Indeed, the set

$C~x,k!, real; C1~x!,C2~x!% ~4.39!
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are all the linearly independent eigenstates and generalized eigenstates of operatorLmkdv, where

LmkdvC~x,k!5 ik~k211!C~x,k!, ~4.40!

LmkdvC150, LmkdvC2522C1 ; ~4.41!

and the set

$F~x,k!, k real; F1~x!,F2~x!% ~4.42!

are all the linearly independent eigenstates and generalized eigenstates of operatorLmkdv
A , where

Lmkdv
A F~x,k!5 ik~k211!F~x,k!, ~4.43!

Lmkdv
A F150, Lmkdv

A F2522F1 . ~4.44!

To calculate the inner products between eigenstates~4.39! and adjoint eigenstates~4.42!, we first
recall Eqs.~3.81! and~3.86! and inner-product relations such as~3.46! in Sec. III. Explicitly, such
inner-product relations tell us that

E
2`

`

@f2
2~x,k/2!c1

2~x,k8/2!2f1
2~x,k/2!c2

2~x,k8/2!#dx522pa2d~k2k8!, ~4.45!

and

E
2`

`

@f2
2~x,k/2!c2

2~x,k8/2!2f1
2~x,k/2!c1

2~x,k8/2!#dx50, ~4.46!

wherea is given in Eq.~3.50!. Adding these two equations together, and recalling Eqs.~4.31! and
~4.33!, we find the inner product betweenC(x,k) andF(x,k8) as

^C~x,k!,F~x,k8!&522pa2d~k2k8!. ~4.47!

Similarly, we get

^C1 ,F2&5^C2 ,F1&51, ~4.48!

and all other inner products are zero.
Next, we show that each of the two sets~4.39! and ~4.42! is complete. In Sec. III, we have

known that theLNLS eigenstates

H F f2
2

2f1
2G

z5k/2

,F f̄2
2

2f̄1
2G

z52k/2

,k real; sechxF 1
21G ,sechx tanhxF11G ,

sechx~x tanhx21!F11G ,x sechxF 1
21G J ~4.49!

is complete. Here (f1 ,f2)T and (f̄1 ,f̄2)T are given in Eq.~3.78!. Recalling Eq.~4.25!, we see
that the set~4.49! with (f̄2

2 ,2f̄1
2)z52k/2

T replaced by (f1
2 ,2f2

2)z5k/2
T is also complete. Thus, fo

any functionf (x) in L2 functional space, we can expand the vector function@ f (x), f (x)#T into this
complete set and get
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F f ~x!

f ~x!G5E
2`

` H c1~k!F f2
2

2f1
2G

z5k/2

1c2~k!F f1
2

2f2
2G

z5k/2
J dk1a1 sechxF 1

21G
1a2 sechx tanhxF11G1a3 sechx~x tanhx21!F11G1a4x sechxF 1

21G , ~4.50!

wherec1(k),c2(k),a j ,1< j <4 are constants. Adding the two components of Eq.~4.50! together,
we get

f ~x!5
1

2 E2`

`

@c1~k!2c2~k!#~f2
22f1

2!z5k/2 dk1a2 sechx tanhx1a3sechx~x tanhx21!.

~4.51!

In view of the definitions~4.31!–~4.34!, Eq. ~4.51! means that the set~4.39! is complete. Simi-
larly, the completeness of the set~4.42! can also be proved. The closure relation for these two
is then

2E
2`

` 1

2pa2 C~x,k!F~x8,k! dk1C1~x!F2~x8!1C2~x!F1~x8!5d~x2x8!. ~4.52!

With the complete sets of eigenstates~4.31! to ~4.34! for Lmkdv andLmkdv
A obtained, then from the

factorization formulas~4.17! and ~4.18! and eigenfunction relations~4.35!–~4.38! and ~4.40!,
~4.41!, ~4.43!, and~4.44!, the following theorem naturally follows.

Theorem 6: The linearization operators Lmh of all mKdV hierarchy equations (4.13) ex
panded around the soliton (4.14) share the same complete set of Lmkdv eigenstates (4.31) and
(4.32), and the adjoint linearization operators Lmh

A of all mKdV hierarchy equations share th
same complete set of Lmkdv

A eigenstates (4.33) and (4.34). Furthermore,

LmhC~x,k!52 ik$C~k2!2C~21!%C~x,k!, ~4.53!

LmhC1~x!50, LmhC2~x!522M̄ ~21!C1~x!, ~4.54!

Lmh
A F~x,k!52 ik$C~k2!2C~21!%F~x,k!, ~4.55!

Lmh
A F1~x!50, Lmh

A F2~x!522M̄ ~21!F1~x!. ~4.56!

Obviously, Theorem 6 is the counterpart of Theorems 2 and 4. A by-product of this theorem
the linear equationLmhu5lu and its adjoint equationLmh

A ū5l̄ū are completely solvable, and a
their solutions are given byC(x,k) andF(x,k̄), respectively~with k and k̄ complex in general!.

V. CONCLUDING REMARKS

In this article, we constructed complete sets of eigenfunctions for linearized KdV, NLS
mKdV hierarchy equations expanded around single-soliton solutions. We showed that all
tions within the same integrable hierarchy share thesamecomplete sets of eigenfunctions. Fu
thermore, these eigenstates are intimately connected to the squared eigenstates of the a
eigenvalue problem. We then explicitly obtained these eigenstates, derived their inner pro
and established their closure relations. Even though our analysis is just for the KdV, NLS
mKdV hierarchies, it is quite obvious that similar results should hold for other integrable hi
chies as well.

The value of this work, as we see it, is that it allows one to develop a direct soliton pe
bation theory for all equations in the same integrable hierarchy. As we mentioned in the
duction, the direct soliton perturbation theory has a simplistic appeal, and its key componen
complete set of eigenfunctions for the linearized integrable equation expanded around solit
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the literature, this theory was developed only for the sine-Gordon, Benjamin–Ono, KdV and
equations16–22~it was also developed for the nonintegrable cubic-quintic NLS equation,23 but that
theory was not complete!. Based on our results in this article, however, one can now rea
develop direct soliton perturbation theories for the mKdV equation and all higher order KdV,
and mKdV hierarchy equations. From a physical point of view, at the moment, only the lo
order hierarchy equations such as the KdV and NLS equations found most physical applicat1,5

However, higher order hierarchy equations do become relevant in certain situations. One e
is the fifth-order KdV hierarchy equation, which arises in shallow water waves.8,9 So perturbation
theories for higher order equations are in order. As physical systems become more comple
their studies get more quantitative, we expect more applications of soliton perturbation the
higher order hierarchy equations in the coming years. In some cases, such perturbation the
higher order equations prove to be very beneficial, as they reveal interesting soliton dyn
which is totally absent in the perturbed lowest order hierarchy equations. The compreh
study of embedded-soliton dynamics in the perturbed fifth-order KdV hierarchy equation i
good example.32

We would like to point out that the key results of this article actually were already hinte
the inverse-scattering-based soliton perturbation theory, which was developed in the 1970s.10–13In
those works, the soliton perturbation theory was developed for a large class of integrable eq
associated with the Zakharov–Shabat eigenvalue problem. For all those equations, the ex
basis for the potentials was the same squared eigenstates of the Zakharov–Shabat syst
main contribution of this article is that we have shown those squared eigenstates also so
linearized equations of an entire hierarchy expanded around soliton solutions, thus they a
the expansion basis in the direct soliton perturbation theory. This connection indicates th
direct soliton perturbation theory and inverse-scattering soliton perturbation theory are intim
related.

Lastly, we note that the eigenfunctions we constructed in this article are only for integ
equations linearized around single-soliton solutions. However, these results can be exten
linearization around any time-dependent solution such as a multi-soliton solution. In this g
case, the elegant factorization results of linearization operators for the single-soliton cas~see
Theorems 1, 3 and 5! are no longer valid. But we can still show that the squared eigenstates o
eigenvalue problem also solve the linearized equation, thus they still form the complete
eigenfunctions for the linearization operator around any time-dependent solution. This fac
allows one to develop a direct multi-soliton perturbation theory for a large class of integ
equations including the KdV, NLS and mKdV hierarchies. We will report these results in a fu
article.
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Structure and representations on the quantum supergroup
OSPq„2z2n …

R. B. Zhanga)

Department of Mathematics, University of Queensland, Brisbane,
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The structure and representations of the quantum supergroup OSPq(2u2n) are stud-
ied systematically. The algebra of functions on the quantum supergroup, which
specifies the quantum supergroup itself, is taken to be the superalgebra generated
by the matrix elements of the vector representation of the quantized universal
superalgebra Uq(osp(2u2n)). It is shown that the algebra of functions is dense in
the full dual Uq(osp(2u2n))* of Uq(osp(2u2n)) and possesses a Hopf superalge-
bra structure. The left integral and right integral on the quantum supergroup are
discussed. Induced representations are developed using the noncommutative geom-
etry of quantum homogeneous supervector bundles, and a geometric realization of
irreducible representations is obtained. ©2000 American Institute of Physics.
@S0022-2488~00!01009-4#

I. INTRODUCTION

This is the third of a series of papers developing the theory of the quantum supergroup~i.e.,
the duals of the quantized universal enveloping algebras of Lie superalgebras!.1,2 In Refs. 3 and 4
the structures and representations of the quantum supergroups GLq(mun) and OSPq(1u2n) were
developed systematically. An important aspect of the subject is its connection with noncom
tive geometry.5 In particular, quantum homogeneous superspaces and quantum homoge
supervector bundles provide the natural framework for studying induced representations. A
theory of these quantum supergeometries has been established and applied to the develop
the representation theory of GLq(mun) and OSPq(1u2n), yielding, amongst other results, quantu
generalizations of the celebrated Borel–Weil theorem. It is the purpose here to treat OSPq(2u2n).
Together with Ref. 3, the present paper completes the development of a basic theory for th
I quantum supergroups.@A quantum supergroup is called type I~or II! if the associated simple
basic classical Lie superalgebra6 is type I ~or II!. The Lie superalgebrassl(mun) andosp(2u2n)
are type I, while the rest are type II.7#

Quantized universal enveloping algebras of Lie algebras and the associated quantum
have been extensively studied in the last decade~see Ref. 8 for a review!. There has also bee
much activity in studying the theory of the quantized universal enveloping algebras of Lie
ralgebras~quantum superalgebras!1,2 and its applications in two-dimensional physics1,9 and low
dimensional topology.10,11 We mention in particular that the universal R-matrices of the quan
superalgebras were investigated in Ref. 12; the representation theory was systematically de
for Uq(gl(mun)),13 Uq(osp(2u2n)),14 Uq(osp(1u2n)) ,15 the gl(mun) super Yangians16 and the
quantum affine superalgebras with symmetrizable Cartan matrices.17 The representation theory o
Uq(osp(2u2n)) at genericq is particularly well studied,14 resulting in a thorough understanding
the structure of the finite dimensional irreducible representations~by calling upon results in the
classical limit18,19!. Our general strategy of studying OSPq(2u2n) is to investigate its algebra o
functions, which will be taken as a subalgebra of the finite dual of Uq(osp(2u2n)). It is the

a!Present address: School of Mathematics and Statistics, the University of Sydney, Sydney, NSW 2006, Australia
66390022-2488/2000/41(9)/6639/18/$17.00 © 2000 American Institute of Physics
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knowledge gained in Ref. 14 on Uq(osp(2u2n)) representations which renders this investigat
possible.

The main body of the paper consists of three sections. Section II reviews some known
on Uq(osp(2u2n)) and also serves to establish notations. Section III develops the structure t
of OSPq(2u2n). We introduce the algebra of functionsTq(osp(2u2n)) on OSPq(2u2n), and show
that Tq(osp(2u2n)) is dense in the full dual of Uq(osp(2u2n)) and also forms a Hopf superalge
bra. Another result presented is the left integral20 on Tq(osp(2u2n)), which is the counter part o
a left invariant measure on the corresponding classical Lie supergroup. Section IV develo
theory of induced representations in a geometric setting. Amongst the main results is a qu
Borel–Weil theorem for the quantum deformations of the two types of* -representations.

It remains to develop the theory of the type II quantum supergroups apart from the e
tionally nice case of OSPq(1u2n).4 We should point out that the quantum superalgebras assoc
with the type II Lie superalgebras exceptosp(1u2n) have been much less studied. As far as we
aware, there is no systematic treatment of their representation theory. This makes it very d
to extend the studies of Refs. 3,4 and the present paper to the quantum supergroups OSPq(mu2n)
for m>3. It appears that new methods and techniques are required to develop the theory o
quantum supergroups and the associated quantum superalgebras.

II. Uq„osp„2z2n ……

We recall some basic facts about the quantum superalgebra Uq(osp(2u2n))14. For conve-
nience, we will denote byg the Lie superalgebraosp(2u2n), and byg0 the even subalgebra
sp(2n) % gl(1),osp(2u2n). We will take Uq(g) as the quantization of the universal envelopi
algebra ofosp(2u2n) in the distinguished simple root system~i.e., the one with a unique odd
simple root!. To describe this simple root system, we follow Kac7 to introduce the
(n11)-dimensional Minkowski spaceH* with a basis$d i u i 50,1,2,. . . ,n% and the bilinear form
( , ):H* 3H* →C defined by

~d i ,d j !52~21!d0i ; i , j .

Then the simple roots can be expressed asa i5d i2d i 11 , 0< i ,n, an52dn , with a0 being the
unique odd simple root. A convenient version of the Cartan matrixA5(ai j ) i , j 50

n is ai j

52(a i ,a j )/(a i ,a i), ; i .0, a0 j5(a0 ,a j ). Clearly, (ai j ) i , j 51
n is the Cartant matrix ofsp(2n),

and a0i5ai050, ; iÞ1, a0152a1051. We denote byD0
1 and D1

1 the set of the even positive
roots and that of the odd positive roots, respectively. Then

D0
15$d i2d j ,d i1d j ,2d i u0, i , j %,

D1
15$d06d i u i .0%.

Let q be a generic complex parameter. Set

di5H ~a i ,a i !/2, i .0,

1, i 50,

and letqi5qdi. The Jimbo version of the quantum superalgebra Uq(g) is a Z2-graded complex
associative algebra with generators$ki

61 ,ei , f i ,i PNn%, Nn5$0,1,2,. . . ,n%, wheree0 and f 0 are
odd and the rest are even. The defining relations are

ki
61kj

615kj
61ki

61 , kiki
2151,

kiejki
215qi

ai j /2ej , ki f jki
215qi

2ai j /2f j ,

@ei , f j%5d i j ~ki
22ki

22!/~qi2qi
21!, i , j PNn ,
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~e0!25~ f 0!250, ~1!

(
m50

12ai j

~21!mF12ai j

m G
qi

ei
12ai j 2mejei

m50, iÞ0,

(
m50

12ai j

~21!mF12ai j

m G
qi

f i
12ai j 2m f j f i

m50, iÞ0,

where

Fm

n G
q

5
@m#q!

@n#q! @m2n#q!
, m>n,

@k#q! 5H )
i 51

k
qi2q2 i

q2q21
, k.0,

1, k50.

In ~1!, @x,y%5xy2(21)[x][ y]yx, with the gradation indices@x# and@y# defined for any monomials
u,v in the generators by@uv#[@u#1@v#(mod 2), with

@ki #50, ; i , @ei #5@ f i #5H 0, i .0

1, i 50.

As is well known, the quantum superalgebra Uq(g) has the structures of aZ2-graded Hopf
algebra, i.e., a Hopf superalgebra, with invertible antipode. We take the co-multiplication

D~ki
61!5ki

61
^ ki

61,

D~ei !5ei ^ ki1ki
21

^ ei ,

D~ f i !5 f i ^ ki
211ki ^ f i .

The corresponding co-unite and antipodeS are, respectively, given by

e~ei !5e~ f i !50,

e~ki !5e~ki
21!51,

S~ei !52kieiki
21 ,

S~ f i !52ki f iki
21 ,

S~ki
61!5ki

71 , ; i .

Note that the elements of $ei , f i ,ki
6u i 51,2,. . . ,n% generate a Hopf subalgebr

Uq(sp(2n)),Uq(g). Together with$k0
61%, they generate Uq(g0)5Uq(sp(2n) % gl(1)).

The representation theory of Uq(g) with g5osp(2u2n) at genericq was systematically devel
oped in Ref. 14. It is known that finite-dimensional irreducible representations of Uq(g) are of
highest weight type. LetW(l) be a finite-dimensional irreducible Uq(g)-module with highest
weight lPH* . Let w1 be the unique highest weight vector ofW(l). Then in general

eiw
150, kiw

15e iq
(a i ,l)/2w1, i 50,1,. . . ,n, ~2!
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wheree i56A21. However, thee i may be eliminated by the following automorphism of Uq(g):

ei°e i
22ei , f i° f i , ki°e i

21ki , ; i .

Thus we will assume that to any irreducible Uq(g) module, an appropriate automorphism of th
kind has been applied to cast the last equation of~2! into

kiw
15q(a i ,l)w1, i 50,1,. . . ,n.

The Uq(g)-moduleW(l) is finite dimensional if and only if

2~a i ,l!

~a i ,a i !
PZ1 , i 51,2,. . . ,n, ~3!

that is,l is integral dominant with respect to thesp(2n) subalgebra ofg. Of particular importance
for the remainder of the paper is the vector moduleM, which has the highest weightd0 and the
standard basisma , a5 i or ī , wherei 50,1,. . . ,n, ī 50̄,1̄, . . . ,n̄, defined in the following way:

m0 is maximal and even,

mi 115 f imi , 0< i ,n,

mn̄5 f nmn ,

mī 5~21!n2 i f imi 11 , 0< i ,n.

Relative to this basis, we have

t~ei !5ei ,i 112~21!d0iei 11, ī , t~ f i !5ei 11,i2eī ,i 11 , i ,n,

t~en!5enn̄ , t~ f n!5en̄n , t~ki !5qi
Hi /2 ,

where

H05d0* 1d1* ,

Hm5dm* 2dm11* , 0,m,n,

Hn5dn* ;

d i* 5eii 2eī ī , 0< i<n.

Let M̄ be the dual vector space ofM, for which we choose a basis$m̄a% such thatm̄a(mb)
5dab . M̄ can be endowed with a Uq(g)-module structure in the standard way. We denote
corresponding representation relative to the chosen basis byt̄ . Then

~xm̄a!~mb!5~21! [a][ x]m̄a~S~x!mb!,

i.e., t̄ ~x!ba5~21! [a]([ a] 1[b]) t~S~x!!ab , ;xPUq~g!,

where

@a#5H 0, a50,0̄,

1, otherwise.
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The highest weight vector ofM̄ is m̄0̄ with weightd0 . ThusM is self-dual. Therefore, there exis
a nonsingular even matrixU relating the two bases$ma% and$m̄a%:

(
b

m̄bUba5ma , ~4!

whereU is unique upon the identificationm̄0̄5m0 . We have

Ui ī 52q2(r,d01dn1(p5 i
n21ap),

U ī i5q2(r,(p50
i ap), ~5!

rest50,

wherer5 1
2 ((aPD

0
1a2(gPD

1
1g). The inverse of this matrix is given by

~U21! i ī 5q(r,(p50
i ap),

~U21! ī i52q(r,d01dn1(p5 i
n21ap),

rest50.

III. THE QUANTUM SUPERGROUP OSPq„2z2n …

Let us recall the following general facts. If (A;m,1A ;D,e,S) is a Hopf superalgebra, then it
finite dual is a Hopf superalgebra (A0;m0 ,1A0;D0 ,e0 ,S0) with structures dualizing that ofA. Let
us fix the following notation: for any vector spaceV with dual spaceV* , we denote by

^•,•&: V* ^ V→C ~6!

the dual space pairing. Now the structure ofA0 is defined, for anyf , gPA0, a, bPA, by

^m0~ f ^ g!,a&5^ f ^ g,D~a!&5(
(a)

~21! [g][ a(1)]^ f ,a(1)&^g,a(2)&,

^D0~ f !,a^ b&5(
( f )

~21! [ f (1)][ f (2)]^ f (1) ,a&^ f (2) ,b&5^ f ,m~a^ b!&,

^S0~ f !,a&5^ f ,S~a!&,

and 1A05e, e051A . The matrix elements of any finite-dimensional representation ofA clearly
belong to A0. It can also be shown thatA0 is generated by the matrix elements of all t
finite-dimensional representations ofA.

In the theory of quantum groups associated with ordinary Lie algebras, one takes~an appro-
priate completion of! the finite dual of the quantized universal enveloping algebra as the algeb
functions on the quantum group.~In the case of theB andD series of Lie algebras, this will lead
to the quantum spin groups. The quantum orthogonal groups can be obtained by taking a
gebra of the finite dual.! The structure of the quantum group is relatively easy to study, with
main features captured in the quantum Peter–Weyl theory~see Ref. 8 for a review!. In contrast,
the structure of the finite dual of a quantum superalgebra is extremely complicated because
noncomplete reducibility of finite-dimensional representations of quantum superalgebras e
genericq. In the case of OSPq(2u2n) at hand, issues are further complicated by the existenc
                                                                                                                



we

ll
ent
For
t. The

e anti-

e in

g

on-
te by

-

6644 J. Math. Phys., Vol. 41, No. 9, September 2000 R. B. Zhang

                    
typical representations of Uq(g) which depend on arbitrary complex parameters. Fortunately,
can avoid some of the complications when constructing the quantum supergroup.

A. OSPq„2z2n …

We will work at the algebraic level. The quantum supergroup OSPq(2u2n) will be defined by
specifying its algebraTq(g) of functions, which is required~i! to be a dense subspace of the fu
dual space Uq(g)* of Uq(g), and ii! also form a Hopf superalgebra. The former requirem
ensures thatTq(g) contains sufficient information to determine the quantum supergroup.
example, the algebra of functions on some quantum subgroup will not meet the requiremen
latter is best understood when compared to the situation of classical Lie groups, where th
pode of the algebra of functions transcribes to the inverse map of the Lie group.

Now we turn to the construction of OSPq(2u2n). Let

tabPUq~g!* , a,b50,1,. . . ,n,0̄,1̄, . . . ,n̄

be the matrix elements of the vector representationt of Uq(g), i.e.,

tab~x!5t~x!ab , ;xPUq~g!.

Finite dimensionality of the representation implies that all thetab belong to Uq(g)0.
Definition 1: The subalgebraTq(g) of Uq(g)0 generated by

$tabua,b50,1,. . . ,n,0̄,1̄, . . . ,n̄%,

will be called the algebra of functions onOSPq(2u2n).
Now we need to show thatTq(g) indeed satisfies the two basic requirements that it is dens

Uq(g)* and forms a Hopf superalgebra. Clearly, we have the following proposition.
Proposition 1:Tq(g) forms aZ2-graded Hopf subalgebra ofUq(g)0.
The co-multiplication ofTq(g) is given by

D0~ tab!5(
c

~21!([a] 1[c])([ c] 1[b]) tac^ tcb . ~7!

The antipode can be constructed by using the self-duality of the vector moduleM:

S0~ tab!5~21! [a]([ a] 1[b])(
c,d

tcdUbc~U21!da , ~8!

where the matrixU is given by~5!. The defining property of the antipode implies the followin
relations:

~UtU21!†t5t~UtU21!†5eI , ~9!

where the superscript dagger indicates the super transposition21,22 of a matrix @with entries in
Tq(g) here#.

The generatorstab also satisfyRTT-type relations. To understand such relations in our c
text, we recall that the Drinfeld version of the quantum superalgebra, which we will deno
Ût(g), is a Hopf superalgebra overC@@t## @whereq5exp(t)] completed with respect to thet-adic
topology. The quantum superalgebra is generated by$ei , f i ,hi u i PNn% subject to the same rela
tions as~1! but with ki5exp(thi/2). The universalR-matrixR of Ût(g) has the important property

RD~x!5D8~x!R, ;xPÛt~g!. ~10!
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Let r and r 8 be two finite-dimensional representations of Uˆ
t(g) @i.e., representations on

Ût(g)-modules which are freeC@@t##-modules of finite ranks#. We also denote byr and r 8,
respectively the matrices with entries in Uˆ

t(g)0 such that the evaluationsr (Ût(g)) andr 8(Ût(g))
give rise to the corresponding representations. Applyingr ^ r 8 to ~10! we obtain

~r ^ r 8!RD~x!5~r ^ r 8!D8~x!R, ;xPÛt~g!,

which can be rewritten as the following equation in Uˆ
t(g)0:

R12
r ,r 8r 1r 285r 28r 1R12

r ,r 8 , ~11!

where Rr ,r 85(r ^ r 8)R. As long as the weights of the representationsr and r 8 are integral,
equation~11! makes perfect sense in the Jimbo formalism, wheret is regarded as a generi
complex parameter and the equation is interpreted as in Uq(g)0. In particular,r 5r 85t leads to
RTT relations for the generators$tab% of the Hopf superalgebraTq(g).

We will call a subspaceỸ,X* , whereX* is the dual space ofX, dense inX* if for any 0
ÞxPX, there exists someỹPỸ such thatỹ(x)Þ0.

Proposition 2:Tq(g) is dense inUq(g)* .
Proof: Let us first consider the Drinfeld version of the quantum superalgebra. Uˆ

t(g) is a
deformation of the universal enveloping algebra U(g) with

Ût~g!/tÛt~g!>U~g!.

Let p:Ût(g)→Ût(g)/tÛt(g) be the canonicalC-linear map. If uPÛt(g) is nonzero, thenu
5tkv for somek>0 andvPÛt(g) such thatp(v)Þ0. As t coincides with the vector represen
tation of g, by using Ado’s theorem for this Lie superalgebra6 one can show tha
t ^ p(v)Ó0(modt) for somep.0, i.e., t ^ p(u)Þ0.

Now we return to the Jimbo algebra Uq(g), which is the subject of our study. We still tak
q5exp(t) with t being agenericcomplex parameter. Uq(g) has a PBW basis, which consists
ordered products ofki

61 and raising operatorsEa and lowering operatorsFa , aPD0
1øD1

1 .
Given a nonvanishinguPUq(g), we wish to determinet ^ p(u). For the purpose of computing th
matrix t ^ p(u), we are allowed to do the following: we first expressu in terms of the PBW basis
then formally replace eachki

61 by

ki
615 (

n50

`
1

n!
~6dit/2!n~hi !

n.

Regard ordered products of thehi , Ea and Fa as linearly independent, and consider the vec
space spanned by them. ThenuÞ0 if and only if the resultant power series int with coefficients
in this vector space is nonzero. Nowt ^ p(u) is obtained by settingEa to t ^ p(Ea), Fa to t ^ p(Fa),
andhi to

This is exactly the same as in the Drinfeld algebra setting~but with a different interpretation oft),
hence

t ^ p~u!Þ0 for somep.0.
j

From here on, we shall drop the subscript 0 from the notations for the co-multiplication
antipode ofTq(g) for convenience. This cannot cause confusion with the co-multiplication
antipode of Uq(g), as the domains of the various maps will always be clearly specified.
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B. Integrals on OSP q„2z2n …

Let us now briefly look at integrals onTq(g). A comprehensive treatment of integrals o
classical and quantum Lie supergroups is given in Ref. 20. We will make frequent use of r
obtained there, and repeat some of the proofs in order to make the present paper rea
self-contained.

Let Tq(g)* denote the full dual ofTq(g). The co-superalgebra structure ofTq(g) leads to a
natural superalgebra structure forTq(g)* . We will call an element* lPTq(g)* a left integral on
Tq(g) if it satisfies

S id^ E l DD5eE l

:Tq~g!→Tq~g!.

Let us explain the meaning of the definition in more concrete terms: for anyf PTq(g),

S id^ E l DD~ f !5(
( f )

~21! [ f (1)][ * l ] f (1)E l

f (2)5eE l

f ,

where* l f and* l f (2) are the evaluations of* l ~in Tq(g)* ) on f and f (2) ~in Tq(g)), respectively,
ande is the identity element ofTq(g). Similarly we define a right integral* r on Tq(g)* by

S E r

^ idDD5eE r

:Tq~g!→Tq~g!.

The fact that the antipode ofTq(g) is invertible implies that there is a one-to-one corresponde
between left and right integrals onTq(g). Indeed, if* l is a left integral, then*̃ l defined by

E l̃

f 5E l

S~ f ! ; f PTq~g!,

gives rise to a right integral. Similarly, any right integral* r leads to the left integral*̃ r defined by

E r̃

f 5E r

S21~ f ! ; f PTq~g!.

Therefore, we only need to investigate left or right integrals, and we will focus on the forme
Ref. 20 we have shown that the left~right! integral, if exists, is unique up to normalizations.

Introduce the algebra homomorphism

Uq~g!→Tq~g!* , x° x̂ ~12!

defined by

^x̂, f &5~21! [x]^ f ,x& ; f PTq~g!,

where, as in Eq.~6!, ^ •,• & denotes dual space pairing. This map is injective asTq(g) is dense in
Uq(g)* . Furthermore, the image of Uq(g) under this embedding is dense inTq(g)* . If * is a left
integral, we set

D~ f !5(
( f )

~21! [ f (1)][ * ] f (1)E f (2)2eE f , f PTq~g!.

The defining property of a left integral is equivalent toD( f )50, ; f PTq(g). Now D( f ) vanishes
if an only if
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^D~ f !,x&5~21! [x] K x̂•E , f L 2e~x!E f 50 ;xPUq~g!.

Here the notation requires some explanation. The elementsx̂ and* all belong to the superalgebr
Tq(g)* , thus their productx̂•* is again inTq(g)* . Therefore, we can re-state the defining prope
of a left integral as

x̂•E 5e~x!E ;xPUq~g!.

The ordinary quantum algebra Uq(g0) is contained in Uq(g) as a Hopf subalgebra. Thus th
pullback of the natural embedding defines a Hopf algebra map

P:Uq~g!0→Uq~g0!0.

We denote

A05P~Tq~g!!.

To understandA0 , we note that the vector representationt of g restricts to a representationt0 of
Uq(g0). The matrix elements oft0 generate the Hopf subalgebraA0 of Uq(g0)0. As the tensor
products oft0 are completely reducible, the structure ofA0 can be described by a quantu
Peter–Weyl theory. In particular, there exists a unique integral~which is both left and right
invariant!

E
0

8
:A0→C,

such that*081Uq(g0)051. Now

E
0
5E

0

8P:Tq~g!→C

is a well-defined linear map, which is left invariant with respect to Uq(g0),Uq(g) in the follow-
ing sense:

û•E
0
5e~u!E

0
;uPUq~g0!.

We use the notation of the Appendix and consider the following elements of the quantum
ralgebra Uq(g):

Ḡ5c1c2 • • • cnc2nc2n11 • • • c21 ,

G5f21f22 • • • f2nfnfn21 • • • f1 , ~13!

z5ḠG,

wherec i andf i are odd elements of Uq(g) defined in the Appendix. Letẑ be the image ofz under
the embedding~12!. We define

E ª ẑ•E
0
:Tq~g!→C. ~14!
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Here againẑ•*0 denotes the multiplication ofẑ and*0 in Tq(g)* . We have the following propo-
sition.20

Proposition 3: The* defines a nontrivial left integral onTq(g).
Proof: The proof makes extensive use of results of the Appendix. It is an immediate c

quence of Lemma 4 that* is invariant under Uq(g0):

û•E 50 ;uPUq~g0!.

Also, becausee0z50, we have

ê0•E 50.

In order to prove the proposition, we need further to show thatf̂ 0•*50, which, however, requires
considerable calculations.

By using ~A3! we can show that

c1 • • • c i 21E1ic i 11 • • • cnc2n • • • c21

5c1 • • • c i 21c i 11 • • • cnc2n • • • c21E1i8 ,

c1 • • • cnc2nc2n11 • • • c2 i 21E1 ī c2 i 11 • • • c21

5c1 • • • cnc2n • • • c2 i 21c2 i 11 • • • c21E1 ī8 .

Here the exact form of theE1i8 andE1 ī8 are not important, but we should observe that they are v
similar to theE1i andE1 ī , respectively, except that the various powers ofq appearing in them are
different. By Lemma 4 and the invariance of*0 with respect to Uq(g0), we have

Ê1i8 Ĝ•E
0
5Ê1 ī8 Ĝ•E

0
50.

Therefore,

f̂ 0•E 5@ f̂ 0 ,#Ĝ•E
0
.

It follows from similar arguments that

f̂ 0•E 5
k̂0

22 k̂0
22

q2q21
ĉ2ĉ3 • • • ĉnĉ2n • • • ĉ21Ĝ•E

0

5ĉ2ĉ3 • • • ĉnĉ2n • • • ĉ21Ĝ
k̂0

22 k̂0
22

q2q21
•E

0
50.

This proves the invariance of* . To show that* is nontrivial, i.e., not identically zero, we conside

L5t 1̄0̄ . . . t n̄0̄tn0̄ . . . t10̄t 1̄0 . . . t n̄0tn0 . . . t10.

Using the following property of the Hopf superalgebra homomorphismP,

P~ ta0!5P~ ta0̄!50 ;aÞ0,

P~ t00̄!5P~ t 0̄0!50,
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we obtain

E L5^L, z&E
0

8P~~ t 0̄0̄!2n~ t00!
2n!.

Now

P~ t 0̄0̄t00!5P~ t00t 0̄0̄!51A0
,

thus

E L5^L, z&.

A brute force calculation shows

u^L, z&u→1 as q→1.

Hence* is indeed nontrivial. j

Direct calculations also easily show the following lemma.
Lemma 1:

E 1Tq(g)50.

This has a profound implication on the representation theory of Uq(g): by reversing Masch-
ke’s theorem one immediately concludes that finite-dimensional representations of Uq(g) are not
completely reducible.

IV. INDUCED REPRESENTATIONS

We investigate the induced representations of the quantum supergroup OSPq(2u2n) in this
section. The natural framework for doing this is the theory of quantum homogeneous super
and quantum homogeneous supervector bundles which was initiated in Refs. 3 and 4 in the
of the quantum supergroups OSPq(1u2n) and GLq(mun). We will adapt some of the results her
and apply them to study the representation theory of OSPq(2u2n). The theory of homogeneou
superspaces and supervector bundles at the classical level was developed in Ref. 22 base
sheaf theoretical formulation of supermanifolds.21

We will need two left actions, ‘• ’ and ‘+ ’ , of Uq(g) on Tq(g), which correspond to left and
right translations in the classical theory of Lie supergroups, and are, respectively, defined

x• f 5(
( f )

^ f (1) ,S21~x!& f (2) ,

~15!

x+ f 5(
( f )

~21! [ f (1)][ f (2)] f (1)^ f (2) ,x&, xPUq~g!, f PTq~g!.

The two actions supercommute.
Let V be a finite-dimensional graded vector space. We extend the actions+ and• trivially to

V^ Tq(g): for any z5(v i ^ f iPV^ Tq(g),

x•z5( ~21! [x][ v i ]v i ^ x• f i ,
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x+z5( ~21! [x][ v i ]v i ^ x+ f i , xPUq~g!.

Let Q be any subset ofNn5$0,1,. . . ,n%. Set

Sk5$ki
61 ,i PNn ;ej , f j , j PQ%;

Sp5Skø$ej , j PNn\Q%.

The elements of each set generate aZ2 - graded Hopf subalgebra of Uq(g). The subalgebra
generated by the elements ofSk will be denoted by Uq(k), and called a reductive subalgebra
Uq(g), while that generated by the elements ofSp will be denoted by Uq(p) and called a parabolic
subalgebra. Note that Uq(k) is a Z2-graded Hopf subalgebra of Uq(p).

Corresponding to eachQ, and thus Uq(k), there exists a quantum homogeneous supersp
the algebra of functions of which is defined by

A q
k
ª$ f PTq~g!ux+ f 5e~x! f ;xPUq~k!%. ~16!

It is indeed true thatA q
k is a subalgebra ofTq(g).

Let V be a finite-dimensional Uq(k)-module. A quantum homogeneous supervector bun
~over the quantum homogeneous superspace! induced fromV is defined by the space of section

Gq
k ~V!ª$zPV^ Tq~g!ux+z5~S~x! ^ idTq(g)!z, ;xPUq~k!%. ~17!

The same method as that used in Ref. 4 can show thatGq
k (V) furnishes a two-sidedA q

k module,
with the left and right actions, respectively, defined by

az5(
r

~21! [a][ v i ]v i ^ a fi ,

za5(
r

v i ^ f ia,

whereaPA q
k andz5 ( iv i ^ f i PGq

k (V).
When the inducing module is actually a Uq(g)-module, the quantum bundle is trivial. Mor

precisely, ifW is a finite dimensional left Uq(g)-module, which we regard as a left Uq(k)-module
by the natural restriction, thenGq

k (W) is isomorphic toW^ A q
k either as a left or rightA q

k -module.
Let d:W→W^ Tq(g) be the natural rightTq(g) co-module structure ofW

d~w!~x!5~21! [x] 1[x][ w]xw, xPUq~g!, wPW. ~18!

@Expressd(w) 5 ( (w)w(1)^ w(2) , thend(w)(x)5( (w)w(1)^w(2) ,x&.# Define the linear maph
:W^ Tq(g) → W^ Tq(g) by the following composition of maps:

W^ Tq~g! →
d ^ id

W^ Tq~g! ^ Tq~g!→W^ Tq~g!,

where the last map is the multiplication ofTq(g). Thenh defines a rightA q
k -module isomorphism,

with the inverse map given by the composition

W^ Tq~g! →
d ^ id

W^ Tq~g! ^ Tq~g! →
~ id^ S^ id!

W^ Tq~g! ^ Tq~g!→W^ Tq~g!,

where the last map is again the multiplication ofTq(g). The restriction ofh to Gq
k (W) provides the

desired rightA q
k -module isomorphism.
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The left module isomorphism is given by the restriction toGq
k (W) of the linear mapk:W

^ Tq(g) → W^ Tq(g), which is defined by the following composition of maps:

W^ Tq~g! →
d ^ id

W^ Tq~g! ^ Tq~g! →
id^ P~S2

^ id!

W^ Tq~g! ^ Tq~g!→W^ Tq~g!,

where

P:Tq~g! ^ Tq~g!→Tq~g! ^ Tq~g!,
~19!

a^ b°~21! [a][ b] b^ a.

The inverse mapk21 is given by

W^ Tq~g! →
d ^ id

W^ Tq~g! ^ Tq~g! →
id^ P~S^ id!

W^ Tq~g! ^ Tq~g!→W^ Tq~g!.

The following theorem immediately follows from the above discussion.
Theorem 1:Gq

k (V) is projective and of finite type either as a left or rightA q
k -module if V can

be embedded as a direct summand in aUq(k)-module which is the restriction of a finite
dimensionalUq(g)-module.

The theorem is of crucial importance for developing the differential geometry of the qua
homogeneous supervector bundles, as connections exist on a quantum bundle if and onl
space of the sections is projective. Fortunately, the rather mild condition of the theorem is sa
in most of the interesting cases, e.g., when 0¹Q.

The importance of quantum homogeneous supervector bundles to representation theor
from the following fact.

Proposition 4: Under the• action, Gq
k (V) is a left Uq(g)-module. Also, under the co-actio

v5 idV^ (idTq(g) ^ S21)D, Gq
k (V) is a right Tq(g) co-module.

Thus we callGq
k (V) an induced Uq(g) module, and also an inducedTq(g) co-module.

If W is a Uq(g)-module which is either a quotient module or a submodule of% k>0M ^ k, then
there exists a canonical isomorphism

HomUq(g)~W,Gq
k ~V!!>HomUq(k)~W,V!, ~20!

where Uq(g) acts on the left moduleGq
k (V) via the• action. The isomorphism is given by

F:HomUq(g)~W,Gq
k ~V!!→HomUq(k)~W,V!,

c°c~1Uq(g)!,

with the inverse map

F̄:HomUq(k)~W,V!→HomUq(g)~W,Gq
k ~V!!,

f°f̄5~f ^ S!d,

whered:W→W^ Tq(g) is the rightTq(g) co-module action defined by~18!. This result is the
quantum analogue of the celebrated Frobenius reciprocity.

Let us now study the quantum deformations of the *-representations in detail. Recall t
the classical level,osp(2u2n) admits two classes of finite-dimensional *-representations, wh
were referred to as type 1 and type 2, respectively in Ref. 23.@In the case of, e.g., the Lie
superalgebragl(mun), the contravariant and covariant tensor representations24 are the two types of
*-representations.# An important fact, which follows from Sergeev’s results and ideas,24 is that the
tensor product of two *-representations of the same type is completely reducible.
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Let D1
(1) andD1

(2) , respectively, denote the sets of the highest weights of the irreducible
1 *-representations and that of the type 2 *-representations ofosp(2u2n). D1

(1) and D1
(2) are

known explicitly.23 An examination of them shows that both types of irreducible *-representat
arise as quotient modules of someM ^ p, p50,1,2,. . . , whereM is the vector module over Uq(g).
Also,

D1
(1)ùD1

(2)5$0%.

Denote byl̄ the lowest weight of an irreducibleosp(2u2n)-module with highest weightl. If l

PD1
(1) , thenl†52l̄PD1

(2) , and vice versa.
By calling upon results of Ref. 15, we can see that the above discussion also applies

quantum setting. In particular, the tensor product of two irreducible Uq(g)-modulesW(l) and
W(m) is completely reducible ifl,mPD1

(1) or l,mPD1
(2) .

Let $wi
(l)u i 51,2,. . . ,dimW(l)% be a basis of W(l), and denote by t (l) the

Uq(g)-representation associated with this basis. Consider the vector space

Tq
(1)5 %

lPD1
(1)

~ % i j Ct i j
(l)!, ~21!

where t i j
(l)PUq(g)0 are the matrix elements oft (l). The lemma immediately follows from the

complete reducibility of tensor products of irreducible representations with highest weigh
D1

(1) .
Lemma 2: Tq

(1) forms aZ2-graded sub bi-algebra ofTq(g).
Let $w̄i

(l)u i 51,2,. . . ,dimW(l)% be a basis ofW(l)* 5W(l†) such that

w̄i
(l)~wj

(l)!5d i j .

Denote byt̃ (l) the Uq(g)-representation relative to this basis.
Lemma 3: The vector space

Tq
(2)5 % lPD

1
(1)~ % i j C t̃ i j

(l)!, ~22!

forms aZ2-graded sub bi-algebra ofTq(g).
Let Vm be a finite-dimensional irreducible Uq(p)-module with highest weightm and lowest

weight m̃. Then

Oq~Vm!ª$zPGq
k ~Vm!up+z5~S~p! ^ idTq(g)!z,;pPUq~p!%

is a well-defined subspace ofGq
k (Vm). Define

Oq~Vm!(r )
ª~Vm ^ Tq

(r )!ùOq~Vm!, r 51,2. ~23!

We have the following result.
Theorem 2: There exists the followingUq(p)-module isomorphisms

Oq~Vm!(r )>H W~~2m̃ !†!, 2m̃PD1
(r ) ,

0, otherwise,
r 51,2. ~24!

Proof: Consider ther 52 case. Eachz P Oq(Vm)(2)can be expressed in the form

z5 (
lPD1

(1)
(
i , j

v i j
(l)

^ t̃ i j
(l) ,
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for somev i j
(l)PVm . Fix an arbitrarylPD1

(1) . For any nonvanishingwPW(l), the following
linear map is clearly surjective:

HomC~W~l!,Vm! ^ w→Vm ,

f ^ w°f~w!.

Thus there existf i
(l) P HomC(W(l),Vm) such thatv i j

(l)5f i
(l)(wj

(l)), where$wi
(l)% is the basis of

W(l) discussed before. Therefore, we can rewritez as

z5 (
lPD1

(1)
(
i , j

f i
(l)~wj

(l)! ^ t̃ i j
(l) .

The defining property ofOq(Vm)(2) states that

l +z5~S~ l ! ^ idTq(g)!z ;l PUq~p!.

Thus we have

(
lPD1

(1)
(
i , j ,k

t jk
(l)~S~ l !!f i

(l)~wj
(l)! ^ ~21! [ l ][ f i

(l)] t̃ ik
(l)5 (

lPD1
(1)

(
i , j

S~ l !f i
(l)~wj

(l)! ^ t̃ i j
(l) ,

which is equivalent to

l f i
(l)~wj

(l)!5~21! [ l ][ f i
(l)]f i

(l)~ l wj
(l)! ;l PUq~p!,

as the t̃ ki
(l) are linearly independent. This equation is precisely the statement that thef i

(l) be
Uq(p)-module homomorphisms of degrees@f i

(l)#,

f i
(l)PHomUq(p)~W~l!,Vm! ; i .

A little bit of representation theory of Uq(p) leads to

f i
(l)5cif

(l), ciPC,

andf (l) may be nonzero only when

l̄5m̃.

Hence, if2m̃¹D1
(2) , we haveOq(Vm)(2)50. When2m̃PD1

(2) , we set

n5~2m̃ !†

which belongs toD1
(1) . Then,Oq(Vm)(2) is spanned by

z i5(
j

f (n)~wj
(n)! ^ t̃ i j

(l) , ~25!

which are obviously linearly independent. Furthermore,

x•z i5~21! [x][ f(n)](
j

t j i
(n)~x!z j , xPUq~g!.
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Thus Oq(Vm)(2)>W(n). The case forOq(Vm)(1)can be shown in exactly the same way. Th
completes the proof of the theorem. j

This result provides an analog of the celebrated Borel–Weil theorem for the *-represent
of the quantum supergroup OSPq(2u2n). For the classical Lie supergroups, the program of
veloping a Bott–Borel–Weil theory was extensively investigated by Penkov and co-worker22,25

Also, a quantum Borel–Weil theorem for GLq(mun) and OSPq(1u2n) were established in Refs.
and 4.

V. CONCLUDING REMARKS

In view of their applications to representation theory, it will be worthwhile to develo
systematic theory of quantum homogeneous superspaces and quantum homogeneous su
bundles. As we have shown, the quantum homogeneous supervector bundles introduc
possess~in interesting cases! the required projectivity to allow an interesting differential geomet
There have been activities in studying the differential geometry of quantum groups, althoug
studies are still at a rather primitive stage. So far the main effort has been concentrated
analysis of various differential calculi themselves. However, nothing of interests seems to
come out of this. Trying to make connections of the differential calculi with representation th
might be a good test case to see whether the entire program is on the right track.

APPENDIX

In this appendix we collect some technical results on the odd elements of Uq(g), which were
all established in Ref. 15. Define

c15e0 ,

c i 115c iei2qeic i , 1< i ,n,
~A1!

c2n5cnen2q2encn ,

c2 i5c2 i 21ei2qeic2 i 21 , 1< i ,n;

f05 f 0 ,

f i 115 f if i2q21f i f i , 1< i ,n,
~A2!

f2n5 f nfn2q22fnf n ,

f2 i5 f if2 i 212q21f2 i 21f i , 1< i ,n.

They have the following properties:

c6 ic6 j1q61c6 jc6 i50, i< j ,

c ic2 j1qc2 jc i50 ; iÞ j ,

cnc2n1q2c2ncn50,
~A3!

c2 i 21c i 111c i 11c2 i 211qc2 ic i1q21c ic2 i50, i ,n;

c jei2q(a i ,d02d j )eic j5d i j c i 11 ; i , j ,

c2 jei2q(a i ,d01d j )eic2 j5d i 11,jc2 i 11 , i .1,
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and similar relations forf6 i , wherecn11 and fn11 are understood asc2n and f2n , respec-
tively. Let

E125e1 ,

E1i 115E1iei2qeiE1i , i ,n,

E1n̄5E1nen2q2enE1n ,

E1 ī 5E1i 1̄1ei2qeiE1i 1̄1 , 1, i ,n,

E11̄5E12̄e1q212qe1E12̄ .

Then

$c i , f 0%5E1ik0
22 ,

~A4!
$c2 i , f 0%5E1 ī k0

22 .

Define

Ḡ5c1c2 • • • cnc2nc2n11 • • • c21 ,

G5f21f22 • • • f2nfnfn21 • • • f1 , ~A5!

z5ḠG.

Then we have the following lemma.
Lemma 4: Let uPUq(g0), and vPUq(sp(2n)),Uq(g0). Then

@v,G#50, @v,Ḡ#50, @u,z#50. ~A6!

1A. J. Bracken, M. D. Gould, and R. B. Zhang, Mod. Phys. Lett. A5, 831 ~1990!.
2R. Floreanini, D. A. Leites, and L. Vinet, Lett. Math. Phys.23, 127 ~1991!; M. Scheunert,ibid. 34, 320 ~1993!; H.
Yamane, Proc. Jpn. Acad., Ser. A: Math. Sci.70, 31 ~1994!.

3R. B. Zhang, Commun. Math. Phys.195, 525 ~1998!.
4H. C. Lee and R. B. Zhang, J. Math. Phys.40, 3175~1999!.
5A. Connes,Noncommutative Geometry~Academic, New York, 1994!.
6V. Kac, Adv. Math.26, 79 ~1977!; M. Scheunert,The Theory of Lie Superalgebras, Lecture Notes in Mathematics, Vol
716 ~Springer-Verlag, Berlin, 1979!.

7V. Kac, Representations of Classical Lie Superalgebras, Lecture Notes in Mathematics, Vol. 676~Springer-Verlag,
Berlin, 1978!, p. 597.

8V. Chari and A. Pressley,A Guide to Quantum Groups~Cambridge University Press, Cambridge, 1994!.
9R. B. Zhang, A. J. Bracken, and M. D. Gould, Phys. Lett. B257, 133 ~1991!; A. J. Brackenet al., Phys. Rev. Lett.74,
2768 ~1995!; M. J. Martins, Phys. Lett. B359, 334 ~1995!.

10H. C. Lee, NATO ASI Ser., Ser. B245, 359~1990!; R. B. Zhang, J. Math. Phys.33, 3918~1992!; J. Links, M. D. Gould,
and R. B. Zhang, Rev. Math Phys.5, 345 ~1993!; M. D. Gould, I. Tsohantjis, and A. J. Bracken,ibid. 5, 533 ~1993!.

11R. B. Zhang, Rev. Math Phys.7, 809 ~1995!; R. B. Zhang and H. C. Lee, Mod. Phys. Lett. A11, 2397~1996!.
12H. Yamane, Proc. Jpn. Acad., Ser. A: Math. Sci.67, 108 ~1991!; S. M. Khoroshkin and V. N. Tolstoy, Commun. Math

Phys.141, 599 ~1991!.
13R. B. Zhang, J. Math. Phys.34, 1236~1993!; T. D. Palev and V. N. Tolstoy, Commun. Math. Phys.141, 549~1991!; T.

D. Palev, N. I. Stoilova, and J. Van der Jeugt,ibid. 166, 367 ~1994!.
14R. B. Zhang, J. Phys. A26, 7041~1993!.
15R. B. Zhang, Lett. Math. Phys.25, 317 ~1992!.
16R. B. Zhang, Lett. Math. Phys.37, 419 ~1996!.
17R. B. Zhang, J. Math. Phys.38, 535 ~1997!.
18D. A. Leites, C. R. Acad. Bulg. Sci.33, 1053~1980!; I. N. Bernstein and D. A. Leites,ibid. 33, 1049~1980!.
19J. Van de Jeugt, Commun. Algebra19, 199 ~1991!.
20M. Scheunert and R. B. Zhang, math.RA/9911200.
21D. A. Leites, Russ. Math Surveys35, 3 ~1980!.
                                                                                                                



, pp.

6656 J. Math. Phys., Vol. 41, No. 9, September 2000 R. B. Zhang

                    
22Y. I. Manin, Gauge Field Theory and Complex Geometry~Springer-Verlag, Berlin, 1988!.
23R. B. Zhang and M. D. Gould, J. Math. Phys.31, 1889~1990!.
24A. N. Sergeev, Math. Sbornik123, 422 ~1984!; A. N. Sergeev, Funkts Anal Prilozhen18, 80 ~1984!; A. Berele and A.

Regev, Adv. Math.64, 118 ~1987!.
25I. B. Penkov, Borel-Weil-Bott Theory for classical Lie supergroups, Sovr. Probl. Math. 32 VINITI, Moscow, 1988

71–124.
                                                                                                                



dom of
ful even
ecause
theory

out by
d
some

ector-

ive

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 10 OCTOBER 2000

                    
Spontaneous compactification of DÄ5 two-form
gauge fields and the obtainment of Maxwell
and Yang–Mills theories

J. Barcelos-Netoa)

Instituto de Fı´sica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21945-970,
Caixa Postal 68528, Brazil

~Received 19 May 1999; accepted for publication 7 July 2000!

We show that the spontaneous compactification of the Abelian and non-Abelian
two-form gauge field theories fromD5411 to D5311 leads to the same theo-
ries plus the Maxwell and Yang–Mills ones, respectively. The vector potential
comes from the zero mode of the fifth component of the tensor gauge field inD
55. Concerning the non-Abelian case, it is necessary to make a more refined
definition of the three-form stress tensor in order to be compatible, after the com-
pactification, with the two-form stress tensor of the Yang–Mills theory. ©2000
American Institute of Physics.@S0022-2488~00!02210-6#

I. INTRODUCTION

A significant number of quantum field theories we have to describe the real world inD54 are
effective theories, in the sense that they result from the absorption of some degrees of free
more general theories. For example, the vector particles related to the weak force are mass
though the corresponding gauge theory considers them initially massless. This occurs b
spontaneous symmetry breaking together with Higgs mechanism leads to an effective
where gauge particles become actually massive.

Another interesting aspect of mass generation for gauge fields, as was initially pointed
Cremmer and Scherk,1 is by means of a vector-tensor gauge theory2 where these fields are couple
in a topological way. Let me present some details of this mechanism in order to make
comparison with the work we are going to develop in this paper. The Lagrangian for the v
tensor gauge theory with topological coupling is given by~we consider the Abelian case first!

L5 1
12 HmnrHmnr2 1

4 FmnFmn1 1
2 memnrlAm]nBrl, ~I.1!

where the antisymmetric stress tensorsHmnr and Fmn are defined in terms of~antisymmetric!
tensor and vector potentialsBmn andAm as

Hmnr5]mBnr1]rBmn1]nBrm ,
~I.2!

Fmn5]mAn2]nAm .

This theory is invariant under the gauge transformations

dBmn5]mjn2]njm , ~I.3!

dAm5]me. ~I.4!

If one considers the path integral formalism and integrates out the tensor fieldsBmn , the
resulting effective theory is massive for the vector field.3,4 This can be considered as an alternat

a!Electronic mail: barcelos@if.ufrj.br
66610022-2488/2000/41(10)/6661/10/$17.00 © 2000 American Institute of Physics
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mechanism of mass generation without Higgs bosons. The non-Abelian version of this
requires some care, because the reducibility condition is only achieved in the vanishing sur
the Maxwell stress tensor,5 or by using a kind of Stuckelberg field.6,7

Another example that reinforces this point of view can be found in the string scenario
well known that consistent string theories can only be formulated in space–time dimen
higher than four. Consequently, the theories we have to describe the world inD54 might be
effective theories of those ones formulated in, say,D510 or D511, and conveniently compac
tified to D54. Of course, it is not an easy task to know what are those original theoriesD
510 or D511. However, it might be an interesting subject to investigate how the theorie
have inD54 can come from extended theories formulated in space–times with dimensions h
than four. In this sense we mention Kaluza–Klein,8 which is formulated inD55 as a pure
Einstein theory and gives Einstein and Maxwell theories inD54 ~the gauge symmetry of the
Maxwell theory is originated from the fifth space–time coordinate transformation!.

The purpose of the present paper is to follow a similar procedure as Kaluza–Klein
starting from a pure two-form gauge field theory inD55, both Abelian and non-Abelian. W
show that, after spontaneous compactification, Maxwell and Yang–Mills theories natu
emerge as the zero mode of infinite Fourier excitations. However, contrary to Kaluza–Klei
gauge symmetry does not come from a space–time coordinate transformation, but from th
component of the tensor gauge symmetry. Another interesting aspect of this mechanism
photon and color fields remain massless when tensor fields are integrated out~only higher exci-
tations become massive!. We also show that the topological coupling term of expression~I.1! does
not come from the compactification of any term formulated atD55.

This paper is organized as follows: In Sec. II we develop the compactification of the Ab
case, where the electromagnetic Maxwell theory is obtained. In the first part of Sec. III we p
some details of the non-Abelian formulation for the two-form gauge theory. Our goal in
section is to figure out the action we are going to compactify fromD55 to D54 in order to
obtain the Yang–Mills theory. We show that it is necessary to make an appropriate definit
the three-form stress tensor different from that we usually find in the literature. Section IV
tains the compactification of the non-Abelian case and we left Sec. V for some concl
remarks. We also include an Appendix to illustrate the Abelian compactification in the langua
differential forms.

II. SPONTANEOUS COMPACTIFICATION: ABELIAN CASE

Let us start from the Lagrangian

L5 1
12 HMNPHMNP, M ,N,P50, . . . ,4, ~II.1!

where we use capital indices to characterize theD55 space–time components. The stress ten
HMNP is defined as in the first relation~I.2! and, consequently, the gauge transformation ofBMN

is similar to the one given by~I.3!.
In order to perform the spontaneous compactification toD54, which is achieved by integrat

ing out the coordinatex4 in a circle of radiusR, we consider the tensor potentialBMN split as

BMN5~Bmn ,B4m! m,n50, . . . ,3. ~II.2!

So, we get the action

S5E d4xE
0

R

dx4S 1

12
HmnrHmnr1

1

4
H4mnH4mnD . ~II.3!

Developing the stress componentH4mn , we may write
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H4mn5]4Bmn1]nB4m1]mBn4

5]4Bmn1]mBn42]nBm4

5]4Bmn1Fmn , ~II.4!

where we have defined

Bm45Am ~II.5!

with the purpose of making future comparisons in the Maxwell theory. However, the quantitAm

given by ~II.5! is not the photon field yet. We notice that all fields in the action~II.3! depend on
xm andx4 and the gauge transformation ofAm is not the usual gauge transformation of the pho
field @from ~I.4!, we havedAm5]mj42]4jm#.

Using the result given by~II.4!, the general form of the action turns to be

S5E d4xE
0

R

dx4S 1

12
HmnrHmnr2

1

4
FmnFmn1

1

4
]4Bmn]4Bmn1

1

2
Fmn]4BmnD . ~II.6!

The next step is to expand the fieldsBmn andAm , as well as the gauge parametersjm andj4 ,
in terms of Fourier harmonics

Bmn~x,x4!5
1

AR
(

n52`

1`

B(n)mn~x!expS 2inp
x4

R D ,

Am~x,x4!5
1

AR
(

n52`

1`

A(n)m~x!expS 2inp
x4

R D ,

~II.7!

jm~x,x4!5
1

AR
(

n52`

1`

j (n)m~x!expS 2inp
x4

R D ,

j4~x,x4!5
1

AR
(

n52`

1`

j (n)~x!expS 2inp
x4

R D .

Since the fieldsBmn and Am are real, as well as the gauge parameters, the Fourier modes
satisfy the conditionsB(n)mn

† 5B(2n)mn
† , A(n)m

† 5A(2n)m , etc., where the dagger means compl
conjugation.

Developing the terms of the action~II.6! by using the expansions given by~II.7!, we obtain

S5E d4x(
n50

` S 1

12
H (n)mnrH (n)

†mnr2
1

4
F (n)mnF (n)

†mn1
p2n2

R2 B(n)mnB(n)
†mn2

ipn

R
F (n)mnB(n)

†mnD ,

~II.8!

which is invariant for the gauge transformations

dB(n)mn5]mj (n)n2]nj (n)m , ~II.9!

dA(n)m5]mj (n)2
2ipn

R
j (n)m . ~II.10!

We then notice that2 1
4 F (0)mnF (0)

mn is the Maxwell Lagrangian. In fact, from~II.10! we have
that the gauge transformation ofA(0)m is just ]mj (0) . Further, contrary to the vector-tensor gau
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theory inD54, the photon fieldA(0)m does not acquire mass after integrating over the tensor
B(0)mn ~for n50, A(n)m andB(n)mn decouple!. However, higher excitations are massive.

III. NON-ABELIAN FORMULATION OF THE TWO-FORM GAUGE THEORY

We start this section by reviewing the main aspects of the non-Abelian two-form gauge
theory. We shall see that there is an arbitrariness in defining the corresponding field strength~what
does not happen in the Abelian counterpart!. The definition that usually appears in the literature6,7

is not in agreement, after the compactification, with the Yang–Mills theory. We find thi
important point because the coherency between compactification and the correct obtainmen
Yang–Mills theory might be the guidance to a precise definition of the non-Abelian field stre
tensor.

From this section on, we opt to work with differential forms because the notation is sim
and it is easier to make comparisons between one- and two-form gauge theories. We
convenience does not work with differential forms in the previous sections because this co
notation would hide some details we would like to emphasize at that opportunity. We disp
the Appendix the compactification of the Abelian case in the language of differential forms

Let us first consider the one-form case. We then start from the introduction of the one
connection

G5Amdxm

5Am
a Tadxm ~III.1!

that is a Lie algebra valued on the SU(N) symmetry group (a51, . . . ,N221), whose generators
satisfy

@Ta,Tb#5 i f abcTc,

Tr ~TaTb!5 1
2 dab, ~III.2!

~Ta!bc52 i f abc.

Of course, in the definition of a differentialp-form, the space–time can have any dimensionD
with p<D. In this brief review, we take the usual space–time dimensionD54, which is implicit
in the use of Greek indices.

The connection permits us to define the exterior covariant derivative as9

Dv5dv2 iG`v1 i ~21!pv`G

[dv2 i @G,v#, ~III.3!

wherev is a Lie algebra valuedp-form (v5vaTa) andd represents the usual exterior derivativ
The curvature two-form is defined to be

F5dG2 iG`G. ~III.4!

It is important to observe thatF is not the covariant derivative ofG. At this point resides the
arbitrariness in the definition of the three-form strength, as we are going to see soon.

The definition of the exterior derivative and the curvature two-form permit us to introduc
Bianchi identities

DDv5 i @v,F#, ~III.5!

DF50, ~III.6!
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which are satisfied for any gauge connectionG and any algebra valuedp-form v. A fundamental
consequence of~III.5! is that if one defines the gauge variation of the one-form connection

dG5De, ~III.7!

where e is an infinitesimal Lie-algebra valued zero-form parameter (e5eaTa), the curvature
two-form transforms as

dF5ddG2 idG`G1 iG`dG

5DdG

5DDe

5 i @e,F#. ~III.8!

We observe, in the second step above, thatdF is the covariant derivative ofdG, even thoughF
does not have this property with respect toG.

The result~III.8! implies that the action

S52
1

2
TrE F`* F ~III.9!

is gauge invariant, due to the cyclic property of the trace operation. In~III.9!, the asterisk repre-
sents the Hodge duality operation. So, the integrand is proportional to the oriented volume e
in the Minkowiski space–time. To be more precise, the duality operation maps thep-form coor-
dinate basis $1,dxm,dxm`dxn,dxm`dxn`dxr,dxm`dxn`dxr`dxs% into the basis
$h,hm,hmn,hmnr,hmnrs%. In these expressions,h is the four-form oriented volume element,hm is
a three-form,hmn is a two-form, and so on. They satisfy relations suchdxm`hn5dn

mh, dxm

`hnr52d [n
m hr] anddxm`hnrs53d [n

m hrs] . As F5 1
2 Fmndxm`dxn, * F5 1

2 Fmnhmn and conse-

quentlyF`* F5 1
2 FmnFmnh.

Let us now consider the non-Abelian two-form case. We start by introducing a two-
Lie-algebra valued objectL in a similar way as was done for the connectionG, i.e.,

L5 1
2 Bmn

a Tadxm`dxn. ~III.10!

Even thoughG is not a connection, it looks natural to assume its gauge transformation as b

dTL5Dj, ~III.11!

where the subscriptT means that the above-mentioned transformation is just part~related to the
tensor sector! of a more general transformation as we are going to see in the following. Herej is
an infinitesimal Lie-albegra valued one-form gauge parameter.

We see that the gauge transformation~III.11! is a natural extension of~I.3! and ~III.7!.
However, contrary to the Abelian two-form case, it is not reducible. In fact, if one takes
one-form parameterj as the~covariant! derivative of a zero-form parameter, saya, we find

dTL5DDa

5 i @a,F#, ~III.12!

where in the last step we have used the Bianchi identity~III.5!. We notice that the reducibility
condition is only attained if the curvatureF vanishes identically.5

Since L is a Lie-algebra valued object, it may couple with the connectionG and, conse-
quently, it can have an additional transformation related to the vector sector. One conside
this additional transformation is given by@see expression~III.8!#
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dVL5 i @e,L#. ~III.13!

So, the general gauge transformation forL is

dL5 i @e,L#1Dj. ~III.14!

Now, a controversial point is to define the object that will be the extension ofF. In the
Abelian case, this is very simple and direct because sinceF is just the exterior derivative ofG, it
is natural to assume that the extension ofF, that we callH, is the exterior derivative ofL.
However, in the non-Abelian case,F is not the covariant derivative ofG. Hence, it is not clear
what should beH in this case. What is usually done in the literature is to define this stress te
as the covariant derivative ofL, even thoughF does not have this property with respect toG. Let
us then see what happens if this definition is taken, i.e.,

H5DL. ~III.15!

Using ~III.7! and ~III.14!, we obtain that the gauge transformation forH reads

H5 i @j,F#1 i @e,H#. ~III.16!

We notice that an action forH similar to ~III.9!, i.e., 2 1
2 Tr*H`* H, will be invariant for the

second part of~III.16!, but not for the first.
This initial problem can be circumvented by redefining the two-formL as6,7

L̃5L1DV, ~III.17!

where the one-form quantityV plays the role of a Stuckelberg field. Considering thatV has the
gauge transformation

dV5 i @e,V#2j, ~III.18!

we obtain that the gauge transformation forL̃ reads

dL̃5 i @e,L̃#. ~III.19!

Keeping the definition thatH̃ is the covariant derivative ofL̃, we have

dH̃5 i @e,H̃#. ~III.20!

Now, an action like2 1
2 Tr*H̃`* H̃ is gauge invariant.

The problem in definingH as the covariant derivative ofL ~or H̃ in terms ofL̃! is that the
Yang–Mills theory is not obtained after the compactification fromD55 to D54. This is so
becauseF is not attained fromH after the compactification. In fact, in the definition ofF we have
the productG`G, while in the case ofH ~or H̃! the corresponding product is@G,L# ~or @G,L̃#!
~there is a factor 2 that spoils the correct obtainment ofF!.

This problem can also be circumvented by introducing another Stuckelberg-like field i

definition of the three-form stress tensor. Denoting this quantity byH̃̃, and considering the defi
nition

H̃̃5dL̃2
i

2
@L1J,L̃#, ~III.21!

we have that an action like
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S52
1

2
TrE H̃̃`* H̃̃ ~III.22!

will be gauge invariant ifJ transforms as

dJ5de2 i @J,e#. ~III.23!

This will be the action we are going to use in the compactification fromD55 to D54 in order to
obtain the Yang–Mills theory.

It might be opportune to mention that the use of two auxiliary Stuckelberg fields is not
They have already been introduced with the purpose of restoring the reducible condition
non-Abelian sector,6 which is a different purpose of the use we are making here.

IV. SPONTANEOUS COMPACTIFICATION OF THE NON-ABELIAN CASE

For comparison, see a similar development of the Abelian case in the Appendix. We
from the action

S52
1

2
TrE

M5

H̃̃`* H̃̃, ~IV.1!

where

H̃̃5dL̃2
i

2
@G1J,L̃#, ~IV.2!

L̃5L1DV. ~IV.3!

We are using the boldface notation to represent the geometrical elements inM5 . Following the
same steps of the Abelian case, we isolate thedx4 component from the above-mentioned quan
ties. First, we takeL, V, G, andJ, and introduce some definitions for thedx4 component,

L5G`dx41L,

V5w dx41V,
~IV.4!

G5f dx41G,

J5x dx41J,

whereL, G, w, V, f, x, andJ depend on (xm,x4). Consequently, we have

DV5~2]4V1 i @f,V#1Dw!`dx41DV,

L̃5~G2]4V1 i @f,V#1Dw!`dx41L̃,

dL̃5~]4L̃1dG2d]4V1 i @df,V#1 i @f,dV#1dDw!`dx41dL̃. ~IV.5!

The combination of~IV.4! and ~IV.5! gives

H̃̃5H̃1F`dx41G`dx4, ~IV.6!

whereG is a compact notation for
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G5]4L̃1d~Dw2]4V1 i @f,V#!2
i

2
@f1x,L̃#2

i

2
@G1J,Dw2]4V1 i @f,V#. ~IV.7!

Now, the first Fourier component ofF, that appears in~IV.6!, can be identified as the Yang–Mill
stress tensor. It is important to emphasize that this was actually possible by virtue of the
1
2 we have introduced in the definition ofH̃̃.

The Hodge duality* H̃̃ is given by

* H̃̃52* H̃̃`dx41* F1* G. ~IV.8!

Developing the above-mentioned quantities in terms of Fourier harmonics and replacing
in action~IV.1!, we easily obtain the Yang–Mills theory from the first harmonic component w
the coordinatex4 is integrated out.

V. CONCLUSION

In this paper, we have studied the spontaneous compactification of the two-form gaug
theory fromD55 to D54. In the Abelian case, this leads to the same theory plus the Max
one. However, in the non-Abelian case, the Yang–Mills theory is only attained if we ma
convenient new definition of the non-Abelian three-form stress tensor.

To conclude, let us say that the topological term which couples vector and tensor gauge
in D54, given at Eq.~I.1!, cannot be generated from compactification. At first sight, we co
think that it is originated from a Chern–Simon term inD55 like keMNPQR]MBNPBQR . But we
can directly verify that this term is zero. We may then conclude that the topological term o
~I.1! has its own origin just inD54. In a physical point of view, there are two explanations
this fact. First, we know that the topological term inD54 is the starting point to generate mass f
the vector potential if tensor degrees of freedom are integrated out. On the other hand, if on
from the pure tensor gauge theory inD55 and integrated out thex4 component, the excitation
for n.0 are already massive, without the necessity of any topological coupling terms. An
possibility is that this term may have a quantum origin like the usual Chern–Simon termD
53.10 This second possibility is presently under study, and possible results shall be re
elsewhere.11
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APPENDIX

In this Appendix we consider the spontaneous compactification of the Abelian case
language of differential forms. First we introduce the quantity

L5 1
2 BMNdxM`dxN. ~A1!

Let us rewrite it by isolating thedx4 component~that shall be integrated out in a circle!

L5Bm4~x,x4!dxm`dx41 1
2 Bmn~x,x4!dxm`dxn

5Am~x,x4!dxm`dx41 1
2 Bmn~x,x4!dxm`dxn

5G~x,x4!`dx41L~x,x4!, ~A2!
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whereG andL are differential forms inM4 , but they do not correspond to one- and two-forms
the Maxwell and tensor gauge theories, respectively, because they still depend on the coo
x4 . Using the expression~A2!, we calculateH by means of the following relation:

H5dL

5~dx4]41dxm]m!`~G`dx41L!

5dx4`]4L1dxm`]mG`dx41dxm`]mL

5]4L`dx41F`dx41H. ~A3!

To construct the action, we need the dual* H, directly obtained by

* H5* ~dL!

5 1
4 eMNPQ]MBNPdxQ`dxR

5]4* L1* F2* H`dx4, ~A4!

where* L, * F, and* H, even though they depend onx4 , are Hodge dualities inM4 . Using the
expressions forH and* H given by the above-mentioned expressions, we have the action

S5
1

2 EM5

H`* H

5
1

2 EM5

~]4L`]4* L12F`]4* L1F`* F2H`* H !`dx4. ~A5!

The next step is to integrate the coordinatex4 over a circle of radiusR. We then consider the
following expansion of the formsL, F, and H, as well as their Hodge dualities, in terms
Fourier harmonics

L~x,x4!5
1

AR
(

n52`

n51`

L (n) expS 2inp
x4

R D ,

~A6!

* L~x,x4!5
1

AR
(

n52`

n51`

* L (n) expS 2inp
x4

R D ,

etc.

Introducing these expansions into expression~A5! and integrating out the coordinatex4 on a circle
of radiusR, we obtain

S5 (
n52`

n51` E
M4

F2
1

2
H (n)`* H (2n)1

1

2
F (n)`* F (2n)

3
1

2 S 2np

R D 2

L (n)`* L (2n)2
2inp

R
F (n)`* L (2n)G . ~A7!

SinceL and* L are real quantities, we have thatL (2n)5L (n)
† and* L (2n)5* L (n)

† .
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Feynman diagrams of generalized matrix models
and the associated manifolds in dimension four
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The problem of constructing a quantum theory of gravity has been tackled with
very different strategies, most of which rely on the interplay between ideas from
physics and from advanced mathematics. On the mathematical side, a central role is
played by combinatorial topology, often used to recover the space–time manifold
from the other structures involved. An extremely attractive possibility is that of
encoding all possible space–times as specific Feynman diagrams of a suitable field
theory. In this work we analyze how exactly one can associate combinatorial four-
manifolds with the Feynman diagrams of certain tensor theories. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!02310-0#

I. INTRODUCTION

We describe in this paper precise conditions which allow one to associate a four-dimen
manifold with a Feynman diagram of a rank-four tensor theory. The question originates fro
attempt to formulate a quantum theory of gravity1 in terms of a generalization of the matrix mod
formulation of two-dimensional quantum gravity.2 As much as possible, we try to keep o
discussion independent of dimension, but we only give precise conditions in dimension two,
and four. The result was actually previously known in dimension two and three, but the fac
we can give a unified treatment allows us to clarify better the specific conditions which we e
in dimension four.

To give ann-dimensional theory of Euclidean quantum gravity one needs to define a
integral of the following form over equivalence classes of metrics:

Z@L,G#5 (
MPTopn

E
Riem(M )/Diff( M )

D@g#e2Sg[L,G] . ~1!

Here Riem(M )/Diff( M ) is the space of Riemannian metrics overM modulo diffeomorphism, the
weight factorSg@L,G# is the standard Einstein–Hilbert action

Sg@L,G#5E
M
AgdnxS 2

1

16pG
R@g#1L D ,

and a sum over all possiblen-dimensional topologies has also been included. Formal expres
like ~1! have demonstrated extremely powerful heuristic tools in theoretical physics but,
matter of fact, they generally lack a proper definition. To actually give a definition one typi
needs to be more specific and restrictive about the class Topn of manifolds under consideration

a!Electronic mail: depietri@pr.infn.it
b!Electronic mail: petronio@dm.unipi.it
66710022-2488/2000/41(10)/6671/18/$17.00 © 2000 American Institute of Physics
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and about the space Riem(M )/Diff( M ) of metrics. A possible strategy is to consider triangula
manifolds and to approximate path integration over inequivalent Riemannian structures with
mation over inequivalent triangulations of the manifold. Here a triangulationT is considered to
define thesingular Riemannian structure in which alln-simplices are flat and have edges of
given lengtha. The action takes the form

S~L,G;T!5knnn~T!2hn22nn22~T!, ~2!

wheren i(T) is the number ofi -simplices inT and ki , hi are given as follows in terms of th
volume vol(s i) of the flat i -simplex with edges having lengtha:

kn5Lvol~sn!1
n~n11!

2

arccos~1/n!

16pG
vol~sn22!,

hn225
1

8G
vol~sn22!.

This approach is known as ‘‘Dynamical triangulation’’~see Ref. 3 for discussion, and referenc
therein! and the partition functionZ@L,G# is given by

ZDT@L,G#5 (
MPTopn

(
TPTria(M )

e2knnn(T)1hn22nn22(T). ~3!

Here Tria(M ) denotes the set of triangulations, up to combinatorial equivalence, of a manifolM ,
and the partition function is perfectly analogous to that of~1!. Note that the sum over triangula
tions together with the sum over topologies corresponds to the sum over alln-dimensional sim-
plicial complexes which are manifolds.~As usual we also consider ‘‘singular’’ triangulations, i.e
we allow self-adjacencies and multiple adjacencies.! Note also that if in~1! one wants to conside
the action on Riem(M ) of only those diffeomorphisms which are isotopic to the identity, then
discretized analog again has the form of~3!, except that each triangulationT should now be
weighted according to the number of nonisotopic ways it can be realized in the correspo
manifold.

Dynamical triangulations have been intensively investigated in two, three and four di
sions. It is of particular interest that in two dimensions the theory may be reformulated in ter
a matrix model.2 In the perturbative approach to this theory, the resulting Feynman diagrams
vertices which correspond to two-simplices, and propagators which correspond to edge pa
so a diagram leads to a surface obtained by gluing triangles. In extending the triangulation s
to arbitrary dimension one is brought to the search for theories having Feynman diagrams in
vertices can be identified withn-simplices, and propagators with gluings of codimension-o
faces. If this happens, then each Feynman diagram gives ann-dimensional simplicial complex.

Generalized matrix models with Feynman diagrams corresponding to simplicial comp
were discussed by Sasakura,4 Gross,5 Boulatov,6 Ooguri,7 and more recently by De Pietri–
Freidel–Krasnov–Rovelli8 and others. However, in all these works a complete discussion o
topological properties of the resulting simplicial complexes is missing, and the results o
present paper allow us to fill this gap. More precisely, it is the aim of the present pap
introduce a specificn-tensor model whose Feynman diagrams can be identified
n-dimensional simplicial complexes, and to explicitly analyze the topological properties of
spaces. After a brief discussion of the two- and three-dimensional cases we address th
dimensional problem. As a main result we provide an explicit criterion to decide whether o
the simplicial complex associated with a given Feynman diagram is a manifold. When the
rion is fulfilled the value of a Feynman diagram corresponds to the value of the discre
Einstein–Hilbert action of~2! on the associated triangulation. In connection with the pap
above-mentioned, it is worth remarking here that the weight factor of model corresponds
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three dimensional Ponzano–Regge9 model and the one of model8 to the Barrett–Crane10 four-
dimensional relativistic spin model, while in our model each Feynman graph is weighted b
simplicial action~2!. Moreover, as a consequence of Remark III.2, all these models can be se
spin foam11 models.

II. GENERALIZED MATRIX MODELS AND FAT GRAPHS

In this section we review the matrix model whose Feynman diagrams lead to surfaces, th
introduce more complicated models which eventually will give higher-dimensional simp
complexes. We setup a useful graphical encoding of the Feynman diagrams, which will help
describing how exactly a diagram leads to a simplicial complex.

A. Two-dimensional quantum gravity as a matrix model

The partition function of the matrix model corresponding to two-dimensional quantum gr
is

Z@N,l#5E @df#expS 2
1

2
Tr[f2] 1

l

3
Tr[f3] D , @df#5

1

N )
a<b

dRfab )
a,b

dIfab , ~4!

where the configuration variable is a HermitianN3N matrix f5(fab), andN is a normalization
constant chosen such thatZ@N,0#51. We note that the integral definingZ@N,l# is divergent for
real l. This means that some procedure must be given to properly define~4!. For the purpose of
this work we will considerZ@N,l# as a formal power series inl and we will view~4! as a formal
definition of the coefficientsZ(k)@N# such thatZ@N,l#5(k Z(k)@N#lk/k!, whereZ(k)@N# corre-
sponds todkZ@N,l#/dlkul50 , and is computed by interchanging integration and derivation. In
standard field-theoretical language we say that we evaluate the integral of~4! as the Feynman
graph expansion~formal power series inl! generated by

Z@N,l#5expFl3 Va1a2 ;b1b2 ;g1g2
d

dJa1a2

d

dJb1b2

d

dJg1g2GZ(0)@N;J#J50 ,

Z(0)@N;J#5E @df#expS 2
1

2
Tr[f2] 1fabJabD5const expF1

2
JabGab;gdJgdG ,

where the Einstein convention of sum over repeated covariant–contravariant indices is as
Ga1a2 ;b1b2

5ga1b2
•ga2b1

, Va1a2 ;b1b2 ;g1g25ga2b1
•gb2g1gg2a1, gab5gab5db

a , where d is the
Kronecker symbol. The functionZ(0)@N;J# thus defined is the free partition function in presen
of the sourceJ.

It is now convenient to use a graphical representation of tensor expressions containing
over dummy indices. We will represent the metric andd as

ga1a2
5 ø

a1a2

, gb1b25 ù
b1b2

, db
a5 u

b

a

. ~5!

Moreover, we will use the following symbols

~6!

to represent a generic tensor withi contravariant andj covariant indices, and a permutations
PSn , respectively. When two strands are connected by a line we assume that the strands c
same dummy index and that summation over this index is taken. Using these conventio
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propagator and the vertex are represented by the following diagrams:

A direct inspection shows that, up to orderl2, the formal power seriesZ@N,l# is given by

Z@N,l#511l2~ 1
6 @@D1##1 1

2 @@D2##1 1
6 @@D3## !1¯

511l2~ 1
6 N31 1

2 N31 1
6 N!1¯ ,

where @@D1##, @@D2##, and @@D3## are the evaluations of the Feynman diagrams of Fig
carried out using the correspondence just discussed between diagrams and tensor exp
Note that if we associate a triangle to each vertex and an edge gluing to each propag
described in Fig. 1, then the two diagrams corresponding to the sphere evaluate toN3, while the
one corresponding to the torus evaluates toN.

B. Higher-rank generalized matrix models

It is possible to consider higher-dimensional extensions of the matrix model~4! using higher-
rank tensors. The natural generalization of the matrix model partition function is achieve
considering as configuration variable ann-tensorfa1¯an

, where eacha i varies between 1 andN,
having the following symmetry:

fat(1)¯at(n)
5R@fa1¯an

#1 i sgn~t!•I@fa1¯an
#, ~7!

where tPSn and sgn(t) is the signature~also called parity! of t. Using multi-indicesa
5(a1¯an) we consider the following partition function for then-tensor model:

Zn@N,l#5E @df#expF2
1

2 (
a

ufau21
l

n11 (
a(0)

¯a(n)
Va(0)

¯a(n)
•fa(0)• ¯ •fa(n)G , ~8!

whereVa(0)
¯a(n)

is the vertex function which will be defined in~20! in the following ~we do not
define it here because its form is not needed and because the general definition will in
notations introduced later. A definition for the three-tensor and four-tensor model will be g
before the general one in~14! and ~15!, respectively!.

As in the two-dimensional case, the expansion ofZn@N,l# is obtained by introducing anothe
function Zn

(0)@N;J# such that

Zn@N,l#5expF l

n11
Va(0)

¯a(n) d

dJa(0)¯
d

dJa(n)GZn
(0)@N;J#uJ50 . ~9!

FIG. 1. The three inequivalent Feynman diagrams of the two-dimensional matrix model~4! at orderl2. The association
of triangles with vertices is explicitly shown. Interpreting each propagator as a gluing instruction between two ed
triangles, it is easy to see thatD1 andD2 correspond to different triangulation of the sphere, whileD3 corresponds to a
triangulation of the torus.
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Proposition II.1: The free partition function in the presence of the source of the generalized m
models (8) whose fundamental field fulfills the symmetry requirements (7), defined as

Zn
(0)@N;J#5E @df#expF2

1

2 (
a1 ,¯ ,an

ufa1¯an
u21 (

a1 ,¯ ,an

fa1¯an
Ja1¯anG ,

is given by

Zn
(0)@N;J#5exp@ 1

2J
a1¯anGa1¯an ;b1¯bn

Jb1¯bn#, ~10!

where the propagator is defined as

Ga1¯an ;b1¯bn
5

2

n! (
tPSn

sgn(t)521

Ga1¯an ;b1¯bn

(t) , ~11!

and Ga1¯an ;b1¯bn

(t) 5dat(1)b1
¯dat(n)bn

. Moreover, if integration is restricted to realf, the par-

tition function has the same form (10) but the propagator is given by

Ga1¯an ;b1¯bn
5

1

n! (
tPSn

Ga1¯an ;b1¯bn

(t) . ~12!

Proof: The measure@df#, as usual, is the product of the Lebesgue measures over all the
pendent components off multiplied by a normalization constantN such thatZn

(0)@N;0#51.
The symmetry requirement~7! implies that the free partition function in the presence of

source can be written as follows just in terms of the completely symmetrizedJS
b1¯bn and the

completely antisymmetrizedJA
b1¯bn parts of the sourceJb1¯bn:

Zn
(0)@N;J#5

1

N E )
a1<¯<an

dRfa1¯an

3expF2
1

2 (
a1 ,...,an

uRfa1¯an
u21 (

a1 ,...,an

Rfa1¯an
JS

a1¯anG
3 )

a1,...,an

dIfa1¯an
expF2

1

2 (
a1 ,...,an

uIfa1¯an
u21 i (

a1 ,...,an

Ifa1¯an
JA

a1¯anG .
Gaussian integration with respect to the variablesRfa1¯an

and Ifa1¯an
can be easily per-

formed. The result is indeed

Zn
(0)@N;J#5

k

NexpF1

2 (
a1 ,...,an

~JS
a1¯an!22

1

2 (
a1 ,...,an

~JA
a1¯an!2G ,

wherek5k(n,N) is a constant which takes into account the number Gaussian integrations
have been performed. It is now easy to check that, fixingN5k, the first part of the proposition
holds. Now, if the variablef is restricted to be real, i.e., integration with respect to
Rfa1¯an

’s is only considered, then the term depending onJA
a1¯an does not appear and thi

proves the second part of the proposition.~Note that restricting to realf one has to make a
different choice ofN.! h

Using Proposition II.1, we can now rewrite the partition function of then-tensor model in
terms of its Feynman diagram expansion. In fact, combining~9! and~10!, it is possible to express
Zn@N,l# as the formal power series
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Zn@N,l#5(
k

1

k!

lk

~n11!k Va(0)
¯a(n)

•...•Va(kn1k2n21)
¯a(kn1k21)

3
~1/2!k(n11)/2

~k~n11!/2!! (
sPS$0,...,kn1k21%

Ga(s(0))a(s(1))• ¯ •Ga(s(kn1k22))a(s(kn1k21)), ~13!

where the sum overk is restricted to all positivek’s such thatk(n11) is even. The explicit form
of the propagatorGa(1)a(2) is given by~11!, whereas the vertex has not been defined yet. Note
restricting to realf we would have obtained the same expression with the propagator of~12!.

C. The three-tensor and four-tensor generalized matrix models

Since our main interest is to analyze models related to quantum gravity in three and
dimensions, we provide now the explicit definition of the partition function in these two cas

Z3@N,l#5E @df#expF2
1

2 (
a1 ,a2 ,a3

ufa1a2a3
u2

1
l

4 (
a1 ,...,a6

fa1a2a3
fa4a5a3

fa4a2a6
fa1a5a6G , ~14!

Z4@N,l#5E @df#expF2
1

2 (
a1 ,...,a4

ufa1a2a3a4
u2

1
l

5 (
a1 ,...,a10

fa1a2a3a4
fa4a5a6a7

fa7a3a8a9
fa9a6a2a10

fa10a8a5a1G . ~15!

Using the graphic presentation defined by~5! and ~6!, the Feynman rules of the two mode
~14! and ~15! are illustrated, respectively, in Figs. 2 and 3.

Remark II.2:The choice of indices in the last term of~14! may appear to be a weird one, sinc
it leads to the vertex picture of Fig. 2, in which two of the ends of the vertex have a seem
unnatural torsion. An explanation of this choice will be given in Remark III.1

FIG. 2. Feynman rules of the three-tensor generalized matrix model. The analogy of the vertex diagram with the
dron is explicitly shown.

FIG. 3. Feynman rules of the four-tensor generalized matrix model. The analogy of the vertex diagram with th
simplex is explicitly shown.
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D. Encoding of Feynman diagrams: Fat graphs

We introduce in this paragraph labeled graphs which conveniently encode the Feynma
grams arising from the models discussed previously.

Definition II.3: A fat n-graph is a connected (n11)-valent graph with the following addi
tional structures: All the edges are oriented and labeled by a permutation inSn , and at each vertex
the n11 initial portions of edge emanating from the vertex are numbered by 0,1,. . . ,n. We will
denote byFGn the set of all fatn-graphs up to homeomorphisms which preserve all structur

A practical way of describing a fatn-graph, which we will always use, is as follows. We ta
an immersion~possibly with double points! of the graph inR2, in such a way that at each verte
all the edges start with a positive upward component of the velocity, as in~17! in the following.
Then the numbering 0,1,. . . ,n is simply taken from left to right. The direction and label of a
edge are marked on the edge itself.

Definition II.4: A fat n-graph is said to beoriented if all its edges are labeled byeven
permutations. The set of all such graphs is denoted byFGn

1 .
It is now straightforward to encode the Feynman diagram expansion~13! of the n-tensor

model in terms of a sum over allfat n-graphs. We proceed as follows. We first label all the initi
portions of edges by a multi-indexk. We then associate tensor expressions to vertices and e
of the fat graph, according to the following rules:

where t5s+(1n). In this way we obtain a tensor expression in which each multi-indexa ( i )

appears exactly twice. We denoted by@@G## the sum over all the possible values of the mu
indicesa ( i ) of this tensor expression.

Using the definition just given, we can now plug into~13! the explicit formula for the
propagators given in Proposition II.1, and rewriteZn@N,l# as a sum over all fatn-graphs. One
only needs to be careful about multiplicities. Denoting byn0(G) and n1(G) the numbers of
vertices and edges of a fat graphG, the right expression is computed to be

Zn@N,l#511 (
GPFGn

1
wn~G!•ln0(G)

•@@G##,

~16!

wn~G!5
m~G!

n0~G!! •~n11!n0(G)
•~n! !n1(G) ,

wherem(G) is the number of the inequivalent ways of labeling the vertices ofG with n0(G)
symbols. Note also thatn1(G)5(n11)n0(G)/2, and that the factorsn1(G)! and 2n1(G) originally
appearing in~13! get simplified during the computation.

III. COMPLEX ASSOCIATED WITH A FAT GRAPH

Given a finite setS of ~disjoint! simplices, all having the same dimension, we callface-pairing
P on S a set of simplicial homeomorphisms between codimension-one faces of the elementS,
where each such face appears exactly once as the source or target of a homeomorphi
interpretP as a set of gluing instructions between the simplices ofS, and we denote byS/P the
space resulting from the gluing. We will often implicitly assume thatS/P is connected. We will
denote byGSn the set of all spaces of the formS/P where all the elements ofS aren-simplices.
So an element ofGSn is a simplicial complex with a fixed ‘‘singular’’ triangulation.

We now define a map from the setFGn of fat n-graphs to the setGSn of spaces obtained by
gluing n-simplices. To each vertexv of GPFGn we associate ann-simplexS(v) with vertices
labeledpi(v), i 50,...,n. To each initial portion of edge atv we associate an (n21)-face of
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S(v), according to the rule

, ~17!

where u(pi(v)) represents the face opposite topi(v). Each edge ofG determines a pairing
~simplicial identification! between the (n21)-faces associated with its ends, as described n
First, to each vertex ofG we associate the following object:

, ~18!

where the sequence (i 1
k ,i 2

k ,...,i n
k) depends on whethern•k is even or odd. Ifn•k is even then the

sequence is (k21,k22,...,k2n), with indices meant modulon11, while if n•k is odd then the
sequence is (k11,k12,...,k1n), with indices again modulon11. Now an edge ofG can be
pictured as follows:

~19!

and we associate with the edge the map fromu(pi 0
(v)) to u(pj 0

(w)) which mapspi k
(v) to

pj t(k)
(w) wheret5s+(1n). Summing up, we have associated toGPFGn a setS of n-simplices

and a face-pairingP on this set. The result is then a triangulated complexS/P, so indeed a map
FGn→GSn has been defined.

Remark III.1: If we give to S(v) the orientation induced by the orderingp0(v), p1(v),...,
pn(v), and to its faces the orientation as portions of the boundary, then the ordering chosen~18!
is always a positive one. In particular, a face-gluing as in~19! reverses the induced orientatio
precisely whensPSn is an even permutation. This explains Fig. 2 and answers the natu
issue raised in Remark II.2.

Remark III.2:Taking Figs. 2 and 3 as models, one can rather easily turn~18! and ~19! into
rules which allow one to associate with a fat graphG a pattern of circuits~i.e., maps from the
circle! on the graph. If there aren2(G) of these circuits and we attachn2(G) disksD2 to G along
them, we get a polyhedron with precisely three types of points. Namely, the neighborhoo
point is either a plane, or the union ofn half-planes with common boundary line, or the infini
cone over the one-skeleton of ann-simplex. It is not hard to see that this polyhedron is actually
two-skeleton of the cellularization dual to the triangulation defined by the graph as just expl
We can then interpret the fat graph as a way of describing the dual two-skeleton of a triangu
In particular, this dual two-skeleton determines the triangulation itself. Note that, in gene
simplicial complex isnot determined by the two-skeleton dual to the decomposition into s
plices. This is, however, true if the complex is obtained by gluing codimension-one fac
simplices, as in the case of complexes defined by fat graphs.

Remark III.3: For a triangulation of a manifold it is always automatically true that it
obtained by gluing codimension-one faces of simplices. Moreover, if the manifold has e
boundary, any codimension-one face belongs to precisely two simplices~or to only one but with
multiplicity two!. So the triangulation defines an element ofGSn , and in particular it comes from
a fat graph.
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Remark III.4:As already mentioned, the geometric construction described in this section can
be used to define a mapFGn→GSn . Any space presented asS/P arises from some fat graph, so
the map is surjective. Moreover, given an element ofGSn , if we choose a direction for the gluings
and a numbering from 0 ton of the vertices of each simplex, a unique fat graph is determined.
This shows that the mapFGn→GSn is a bijection, provided one defines onFGn the equivalence
relation which corresponds to the arbitrariness of the choices just described. In other words, up t
taking the appropriate identifications, a fat graph and a space obtained by gluing simplices are on
and the same thing.

A. Equivalence of fat graphs

We describe here how to turn the mapFGn→GSn into a bijection. Let us first spell out the
equivalence relation implicit in the definition ofGSn . Two spacesS/P andS8/P8 are identified if
they arecombinatorially equivalent, namely if there exists a simplicial isomorphismf:S→S8
such that each gluing ofP corresponds viaf to one ofP8 or to the inverse of one ofP8. The
equivalence relation onFGn needed to makeFGn→GSn bijective is now generated by two
moves. The first move consists in reversing the direction of an edge and at the same time replacin
its color s by (1n)•s21

•(1n). The second move takes place at a vertex and depends on the
choice oflPS$0, . . . ,n% , as described in the left-hand side of Fig. 4, where as usual↓l means that
the i th strand on the bottom is matched with thel( i )th strand on the top. Here
l ( i ):$0,...,n%\$ i %→$0,...,n%\$l( i )% is just the restriction ofl, and its action on strands is defined
as follows, as suggested in the center of Fig. 4. For the sake of simplicity in the center of Fig. 4
we have assumed that bothn• i and n•l( i ) are even; in general the rule described after~18!
should be employed. Note that after the second move some edges can have multiple colors. To g
rid of them, one should employ the~very natural! association rule described in the right-hand side
of Fig. 4 ~but note that to apply the rule one may first need to reverse the direction of the edge,
using the first move!.

B. General vertex function

We can now provide the general definition of the vertex function to be used in~8!, so that it
translates precisely~18! under the correspondence between fat graphs and tensor expressions
defined in~5! and ~6!. Namely, we define

Va(0)...a(n)
5)

r ,s
dam(r ,s)

(r ) an(r ,s)
(s)

, ~20!

where m(r ,s) and n(r ,s) are implicitly defined by the condition that, using the sequencei l
k

defined in~18!, i m(r ,s)
r 5s andi n(r ,s)

s 5r , respectively. So for instance whenn is even we have that
m(r ,s) and n(r ,s) are given, respectively, byr 2s modulo n11 and s2r modulo n11. Of
course this definition is coherent with the vertex function already defined in the case of rank-3 and
rank-4 tensor models given in Figs. 2 and 3, respectively.

We go back now to~3! and ~16!, in order to compare them. First of all we note that, by the
very choice of the vertex function of~20!, the evaluation of the tensor expression corresponding to
a fat n-graph G involves the computation of preciselyn2(G) traces of the Kroneckerd, so

FIG. 4. The move which corresponds to a change of numbering of vertices of a simplex.
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@@G##5Nn2(G). Heren2(G) is the number of circuits determined on the graphG by Eqs.~18! and
~19! as already explained in Remark III.2. In the same remark we have also noted thatn2(G) is
precisely the number of codimension-two faces of the complex associated withG. Note that the
evaluation is indeed invariant under the moves which define the equivalence relation onFGn .
This shows that whenG defines a manifold with a triangulationT, the evaluation@@G## which
appears in~16! is precisely the same as the evaluation exp(2knnn(T )1hn22nn22(T )) of T which
appears in~3!, provided one chooses the constants in such a way thathn225 logN and kn

52 log(l).
Summing up, with the choice of constants just described, we can split the sum in~16!

according to whetherGPGSn
1 defines a manifold or not~in the latter case we will just write

G¹Topn for the sake of simplicity!. Namely,

Zn@N,l#511 (
MPTopn

1
(TPTria(M )

wn~T !e2knnn~T !1hn22nn22~T !

1 (
GPGSn

1 , G¹Topn

wn~G!•ln0(G)
•Nn2(G), ~21!

where the weight ofT is computed by picking anyGPFGn
1 which definesT, and settingwn(T )

equal town(G) times the number of all such differentG’s. This number is of course just equal t
the number of different elements ofFGn

1 which are equivalent toG under the moves defined i
the previous paragraph.

Equation~21! shows that, to understand the exact relation between the partition functio
the n-tensor model and that of the dynamical triangulation, one needs to be able to tell
elements ofGSn

1 definen-manifolds. This is the topic of Sec. IV section, where we deal with
more general case ofGSn , which would arise anyway by restricting to a real integration varia
in the partition function~8!.

IV. SIMPLICIAL GLUINGS WHICH DEFINE MANIFOLDS

The discussion of the preceding sections motivates a purely topological question, to
which we setup notations will be used throughout this section. Fix an integern and consider a
finite number of copiesS5$D1 , . . . ,Dk% of the standardn-simplex. LetP be a face-pairing onS,
denoteS/P by X, and letp:S→X be the natural projection. LetX* be the space obtained fromX
by removing the projection of the vertices of theD i ’s.

Question IV.1: When is X a (closed) n-manifold?
Question IV.2: When is X* an (open) n-manifold?
A remark is in order. The reason why we also considerX* and notX only is that a satisfactory

answer exists forX only if n<3, while if n54 we can provide such an answer forX* but not for
X. Moreover the answer forX* andn53 is very easily expressed.

A. Piecewise-linear category

Before proceeding we need to be more specific about the category in which we as
questions. Since we are dealing with simplices, the obvious category to use is the piecewise
one ~PL for short!. All the definitions and results we will mention about PL topology may
found in Ref. 12.

The spaceX has an obvious~finite! PL structure. Note, however, that the projections of
D i ’s do notprovide in general a triangulation ofX, because the restriction ofp to D i may well be
noninjective. However, if we triangulate eachD i using a fine enough subdivision, we do get
triangulation in the projection.~One sees thatn iterations of the barycentric subdivision alway
suffice, but we do not insist on this point.!

The spaceX* also has a PL structure, obtained by choosing~infinite but locally finite!
triangulations of theD i* 5D i \$vertices%, in a way which is consistent with the gluings. Rather th
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providing the details of this construction, we show how to realizeX* as a subset of anothe
polyhedronX], which will allow us to understandX* better. Let us consider inD i the second
barycentric subdivision, and let us remove the open stars of the original vertices, thus ge
polyhedronD i

] . ~Recall that thestar of a vertex in a simplicial complex is the union of all th
simplices containing the vertex; for theopen staronly the interior of these simplices is taken!
Since the elements ofP are simplicial maps, they restrict to gluings between theD i

]’s. We denote
by X] space resulting from these gluings. Of courseX] has a~finite! PL structure. It easily follows
thatX* embeds inX] as an open subset~see Remark IV.7 in the following!. The natural question
to ask aboutX] is now as follows:

Question IV.3: When is X] a (compact) n-manifold (with boundary)?
Another natural question is
Question IV.4: Provided X (or X]) is a manifold, when is it orientable?
The answer to this question is actually easy. Knowing that a common codimension-on

induced opposite orientations from two adjacent simplices, we are led to the following con
on ~S,P! and the subsequent straightforward result:

Ori: Up to reversing the natural orientation of some of theD i ’s, all face-pairings inP reverse
the induced orientation.

~Here Ori stands for ‘‘orientability of the manifold.’’!
Proposition IV.5: Let X and X] be manifolds. They are orientable if and only if Ori holds.
To face the other questions raised we will need to recall what a PLn-manifold exactly is, but

we first state the result which clarifies the mutual relations. We will give a proof at the end o
section, after having acquainted the reader with the basic techniques of PL topology.

Proposition IV.6: (1) X* is an open n-manifold if and only if X] is a compact n-manifold with
boundary, and in this case X* is homeomorphic to X]\]X].

(2) X is a closed n-manifold if and only if X] is a compact n-manifold with boundary and a
the components of]X] are homeomorphic to Sn21.

Using this proposition we will only focus henceforth onX andX* , leavingX] in the back-
ground.

So, let us start with some basics of PL topology. LetX be a polyhedron with a triangulatio
K, and letpPX. Assuming firstp is a vertex ofK, we define itslink as

lkK~p!5ø $sPK:p¹s, 'tPKs.t.t.$p%øs%.

If p is not a vertex we consider a subdivision ofK in which p is a vertex, and consider its link
there. It is a fact that the link is independent ofK up to PL homeomorphism, so we will just writ
lkX(p). Some examples of links in a small two-dimensional polyhedron are shown in Fig. 5.
that the star of a pointp, mentioned previously, is just the cone fromp over the link ofp. This
remark motivates the following fact~which is actually often used as a definition!: a polyhedron is
a PL n-manifold if and only if the link of every point is homeomorphic either to the (n21)-sphere
Sn21 (for interior points) or to the closed (n21)-disk Dn21 (for boundary points).

FIG. 5. The links of the various pointsp are shown in bold.
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Remark IV.7:Even whenX] is not a manifold we can define]X] as the projection of the links
of the vertices ofS ~in the second barycentric subdivision!. Then we always haveX* 5X]\]X].

B. Dimension two

When the dimension is two, Question IV.1 always has a positive answer. To see this, no
~in all dimensions! the link of any pointpPX is obtained by gluing the links~in the D i ’s! of its
preimagesp21(p) via the pairings induced from those inP. Now, for n52, eitherp21(p) is a
single point in the interior of a triangle, and its link isS1, or it is made of points on the boundar
of the triangles, and all the links are segments. The face-pairingP induces the identification in
pairs of the end points of these segments, and the result is againS1.

Before turning to dimension three, we make another general remark. Since the restric
the projectionp to eachD i can be far from injective, one cannot predict in general how m
points a fiberp21(p) will contain, but there are two exceptions. First, ifq belongs to the interior
of one of theD i ’s, thenq is not glued to any other point, sop21(p(q))5$q%, and the link of
p(q) certainly isSn21. Second, ifq lies in the interior of a codimension-one face of one of t
D i ’s, thenq gets glued to another point only, i.e.,p21(p(q))5$q,q8%. In this case lkX(p(q)) is
obtained from lkD i

(q) and lkD
i8
(q8), which are both homeomorphic toDn21, by an identification

of their common boundarySn22, and the result is againSn21. This shows that when facing
Question IV.1 or IV.2, one only needs to compute the links of the pointsp(q) whereq lies in a
face of codimension two or more.

C. Dimension three

To answer Question IV.2 forn53 we now introduce the following condition on~S,P!. Note
that this condition, as all others we will introduce, can be checked algorithmically in a very
way once a concrete encoding of the pair~S,P! is given.

Dir: The edges of theD i ’s can be given an orientation so that all the elements inP, when
restricted to edges, match the orientation.

~Here Dir stands for ‘‘direction of the edges,’’ the termorientationhaving been already taken u
before.!

Proposition IV.8: X* is an open three-manifold if and only if Dir holds.
Proof: One sees quite easily that for all points ofX* except the projections of midpoints o

edges the link inX is alwaysS2, without any assumption. Consider now an edge of one of
D i ’s, and letq be its midpoint. If we arbitrarily choose pointsq6 lying on the same edge but o
opposite sides ofq, we see that lkD i

(q) is a bigon with verticesq1 and q2 . Considering the
gluings induced byP, we will have that the edges of the bigons get glued in pairs. A conne
space obtained by gluing in pairs the edges of certain bigons is eitherS2 or the projective plane,
depending on whether the two vertices of each bigon remain distinct in the glued space
Now one easily sees that Dir is precisely the condition that these vertices remain distinct, a
conclusion follows. h

Using the result just established and Proposition IV.6~2!, we see that in dimension three,
check whetherX is a closed manifold, we must first check Dir, and then verify that]X] is a union
of S2’s. When we truncate theD i ’s to get theD i

]’s, we get triangles on the boundary, so~S,P!
determines a triangulation]X]. Now, a triangulated surface isS2 if and only if it is connected and
its Euler–Poincare´ characteristicx is 2. This implies that the question whetherX is a manifold can
be checked algorithmically.

D. Orientation in dimension three

We have now the following result which shows that in dimension three all is really easy.
result underlies the construction in Ref. 13.

Proposition IV.9: If n53 then Dir is implied by Ori.
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Proof: We assume that all tetrahedra are oriented in such a way that the elements ofP reverse
the induced orientation. Consider an edge (v0 ,v1) belonging to a tetrahedron (v0 ,v1 ,v2 ,v3).
Considering the triangle (v0 ,v1 ,v2), we can assume that this ordering of the vertices defines
positive orientation induced by the tetrahedron on the triangle. Consider the face (v0 ,v1 ,v3) and
the face (v08 ,v18 ,v28) glued to it~where the gluing respects the ordering of vertices!. The assump-
tions easily imply that the ordering (v08 ,v18 ,v28) defines the positive orientation. Now letv38 be the
other vertex of the tetrahedron which contains (v08 ,v18 ,v28), and consider the face (v09 ,v19 ,v29)
glued to (v08 ,v18 ,v38). Again (v09 ,v19 ,v29) is a positive ordering. Proceeding like this we will end
at some point with a gluing between (v0

(k) ,v1
(k) ,v3

(k)) and (v i 0
,v i 1

,v2), with $ i 0 ,i 1%5$0,1%. Since
(v i 0

,v i 1
,v2) is a positive ordering, the permutation (0,1,2)→( i 0 ,i 1,2) is an even one, soi 050

andi 151. Along our sequence we have considered all edges glued to (v0 ,v1), and our conclusion
shows that a consistent orientation for these edges can be chosen. h

E. Dimension four

Assume from now on thatn54. It will turn out thatX* is a four-manifold if and only if the
same condition Dir considered previously, and two more conditions Cycl and Surf, are sat
Rather than giving formal definitions soon, we illustrate how these conditions arise. Recall th
have nothing to check up to codimension one, and codimension four~i.e., vertices! is ruled out of
X* . So we have codimension two~triangles! and three~edges!. By analogy with dimension three
we will only worry at first about barycenters~later we will show that indeed if the barycente
have spherical link then all points do!.

Starting from codimension two, letq be the barycenter of a triangleT contained inD i . The
link of q in D i is PL homeomorphic toD3, but it is convenient to analyze its combinatori
structure. First note that lkD i

(q)ùT5 lkT(q), so it is the boundary of a triangle, which may b
identified with ]T itself. Now T is contained in two three-faces ofD i , and ] lkD i

(q) is given
precisely by the intersection with these two faces. Moreover, the intersection with each on
triangle bounded by]T. Summing up, we may identify lkD i

(q) with the space shown in Fig. 6~a!.
Now, to get lkX(p(q)) we must glue together the links of the various points identified toq. Using
Fig. 6~a! we note that each gluing identifies a~lower or upper! triangular hemisphere to anothe
one. As we proceed with the gluings, we still have a ballD3 whose boundary is given by the unio
of two triangular hemispheres, until the upper and lower hemisphere are glued together.
gluing is determined by a permutation of the vertices of the triangle, and the result isS3 if the
permutation is the identity, it is the lens spaceL3,1 if the permutation is even but nontrivial, and
is not a three-manifold if the permutation is odd~of the three vertices, one is fixed by th
permutation, and it is easy to see that its link is the projective plane!. Since the triangle gluings ar
precisely those induced by the face-pairingsP, we have following definition and result:

Cycl: The following should happen for all triangles (v0 ,v1 ,v2). Let v3 ,v4 be the other
vertices of the same four-simplex. Let (v0 ,v1 ,v2 ,v4) be glued to (v08 ,v18 ,v28 ,v38), in this
order. Letv48 be the other vertex of the same four-simplex, and proceed until a gluin
(v0

(k) ,v1
(k) ,v2

(k) ,v4
(k)) with (vs(0) ,vs(1) ,vs(2) ,v3) is first found, where$s~0!,s~1!,s~2!%

5$0,1,2%. Then we should haves5id.

FIG. 6. Links of the barycenters of a triangle~a! and an edge~b!. The link of the midpoint of an edge is the double con
on the link in a cross section~c!.
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~Here the name Cycl comes from the fact that we look at simplices cyclically arranged aro
codimension-two face.!

Proposition IV.10: Cycl holds if and only iflkX(p(q))>S3 for all barycenters q of triangles.
Note that condition Cycl as stated previously only makes sense in dimension four, but on

easily devise an extension to all dimensions. In particular, the three-dimensional analog of C
condition Dir discussed previously.

We turn now to codimension three, so we consider the midpointq of an edge ofD i . We
arbitrarily choose two pointsq6 on the same edge but on opposite sides ofq, and we note that
lkX(q) can be naturally identified with the ‘‘join’’ of$q1 ,q2% with lkD iùP(q), where P is a

hyperplane throughq, orthogonal to the edge containingq. The notion of ‘‘join’’ A~B of two
polyhedraA and B is another general one from PL topology, but in the special case wheA
consists of two points$q1 ,q2%, the space$q1 ,q2%~B is simply the union of the two cone
$q1%~B and$q2%~B glued along the common basisB. The link ofq in D i is shown in Fig. 6~b!,
and the explanation of why it can be described like this is suggested in Fig. 6~c!.

Now, as previously, lkX(p(q)) is obtained by gluing together the faces of the vario
lkD i 8

(q8), wherep(q8)5p(q). Each face of lkD i 8
(q8) is given by$q18 ,q28 %~e8, wheree8 is an

edge of the triangle lkD i 8ùP8(q8). Every gluing between lkD i 8
(q8)5$q18 ,q28 %~e8 and lkD i 9

(q9)

5$q19 ,q29 %~e9 maps$q18 ,q28 % to $q19 ,q29 % ande8 to e9, and it is determined by these data. T
resulting space is then determined by the answers to the following questions:

~1! Can the arbitraryq1 /q2 choice be made in such a way that eachq18 is glued to aq19 ?
~2! What surface results from the triangles lkD i 8ùP8(q8) under the edge gluingse8→e9?

Of course the answer to~1! is positive if and only if Dir holds. To answer~2! we first
formalize the construction of the surface.

Surf: Associate to each edge (v0 ,v1) of a four-simplex (v0 ,v1 ,v2 ,v3 ,v4) an abstract triangle
T(v0 ,v1). The edge is not oriented, soT(v0 ,v1)5T(v1 ,v0). Denote the vertices o
T(v0 ,v1) by Tv j(v0 ,v1), for j 52,3,4. For each pairing (v0 ,v1 ,v2 ,v3)→(v08 ,v18 ,v28 ,v38),
consider the edge-pairings

~Tvi~vj ,vk!,T
vl~vj ,vk!!→~Tvi8~vj8 ,vk8!,T

vl8~vj8 ,vk8!!,

where

$i,j,k,l%5$0,1,2,3%.

The closed surfaceS~S,P! resulting from these edge-pairings between the triangles shou
a union of components homeomorphic toS2.

~Here Surf stands for surface.!
Remark IV.11:~1! Each four-simplex determines ten triangles, and each face-pairing bet

four-simplices determines six edge-pairings between triangles.
~2! Since S~S,P! is intrinsically defined as a triangulated surface, one can algorithmic

check that a certain componentS0 is S2, by checking whetherx(S0)52.
Proposition IV.12: Dir and Surf jointly hold if and only iflkX(p(q))>S3 for all midpoints q

of edges.
Proof: If q is the midpoint of (v0 ,v1) then lkD i

(q)5$q1 ,q2%~T(v0 ,v1), and the labels
Tv i(v j ,vk) are chosen so that the gluings induced byP are precisely those described in Surf. If D
and Surf hold we deduce that lkX(p(q))>$q1 ,q2%~S2>S3. Assume now that lkX(p(q))
>S3. A closed surface embedded inS3 is necessarily orientable, and hence transversely ori
able. This implies that we can make a consistent choice ofq1 /q2 , so Dir holds. ThereforeS3 is
realized as$q1 ,q2%~S0 for a componentS0 of S0(S,P). The link of q1 in $q1 ,q2%~S0 is
preciselyS0 , soS0>S2. h

We can now state our main result~see the following for a formal proof!:
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Theorem IV.13: X* is a four-manifold if and only if conditions Cycl, Dir, and Surf hold.
Remark IV.14:This result implies that it is very easy to check algorithmically whetherX] is

a four-manifold with boundary or not. It is also easy to give a presentation of]X] as a triangulated
three-manifold, but the triangulation which arises is arbitrarily complicated, so the proble
recognizing whether it is a union ofS3’s is theoretically solved by the Rubinstein–Thompson14

algorithm, but undoable in practice. This shows that the best one can really do, using c
knowledge, about Questions IV.1–IV.3, is the closed three-dimensional case and the bo
four-dimensional case.

F. Orientation in dimension four

Recall that, in dimension three, condition Ori implies condition Dir. The situation in dim
sion four is more elaborate.

Proposition IV.15: Assume n54. If Ori holds then the permutationsPS3 which arises in
condition Cycl is automatically an even one. Moreover Ori and Surf jointly imply Dir.

Proof: The first assertion is easy: All the triangle-pairings along the sequence in Cycl re
the induced orientation. For the second assertion, we first note that if Ori holds then eac
lkD i

(q) can be oriented as the boundary of the corresponding star, and the pairings betwe
bigonal faces of the lkD i

(q)’s reverse the induced orientation. Now, if Surf holds, we can cho
orientations on theT(v0 ,v1)’s so that all edge-pairings reverse orientation. Now we can com
the orientations of lkD i

(q) andT(v0 ,v1) to get a consistent choice ofq1 /q2 , so Dir holds. h

It is a tedious exercise, which we omit, to show that these are the only relations which h
general between the various conditions considered.

G. Final proofs

The discussion accompanying the introduction of the various conditions almost but not
proves our main result. We complete its proof now.

Proof of IV.13:By Propositions IV.10 and IV.12, ifX* is a four-manifold then Cycl, Dir, and
Surf hold. To see the opposite implication we must show that links of all points, not on
barycenters, are homeomorphic toS3. Now condition Cycl implies that the projectionp is injec-
tive on the interior of each triangular face. It follows that our description of lkX(p(q)) extends
verbatimfrom the center of a triangle to any point in the interior of the same triangle. The s
argument applies to edges, because Dir implies thatp is injective on their interior. h

We conclude this section with a proof omitted above. Heren is again arbitrary.
Proof of IV.6:For ~1!, we note thatX* may be equivalently defined by removing fromX not

just the vertices but also theirclosedstars in the second barycentric subdivision. SoX* naturally
embeds inX], and it is clear that ifX] is manifold thenX* 5X]\]X] is a manifold.

To conclude~1!, we are left to show that ifX* is a manifold thenX] is. Of course we only
need to examine links of points of the candidate boundary, i.e., points in the projection o
bases of the stars removed from theD i ’s. Let p be such a point and considerqPp21(p). Note
thatq lies in the link of a vertexv of one of theD i ’s. Consider now the line inD i throughv and
q, and choose on it pointsq6 nearq so thatq2 ,q,q1 ,v appear in this order on the line. LetP
be the hyperplane inD i orthogonal to the line. Then

lkD i
~q!5$q1 ,q2%~ lkPùD i

~q!, lkD
i
]~q!5$q2%~ lkPùD i

~q!.

When we consider the gluingsP, we see that all theq2’s corresponding to the variousq’s in
p21(p) get identified to a certain pointp2PX], while the q1’s get identified to a pointp1

PX* \X]. In the meantime the various lkPùD i
(q)’s get glued together, yielding a certain polyh

dron Wp . This shows that

lkX* ~p!5$p1 ,p2%~Wp , lkX]~p!5$p2%~Wp .
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Now, the assumption thatX* is a manifold guarantees that lkX* (p) is Sn21. But the link ofp1 in
$p1 ,p2%~Wp is Wp , andSn21 is a manifold, soWp is Sn22. Then$p2%~Wp is Dn21, and the
proof of ~1! is complete.

To prove~2!, note that ifX is a manifold thenX* is, because it is an open subset ofX. So, by
~1!, we see thatX] is a manifold. So we can assume in any case thatX] is a manifold. NowX is
obtained fromX] by attaching to each component of]X] the cone based on the component, a
the conclusion easily follows. h

V. GRAPHIC TRANSLATION OF CONDITIONS

We describe in this section the combinatorial counterparts inFG4 of the conditions Ori, Dir,
Surf, and Cycl introduced previously. We only provide quick statements and we omit the p
~except for some hints concerning Surf!. One basically only needs to plug the definitions of S
IV into the construction described in Sec. III.

Condition Ori is of course just the condition that the fat graph should be equivalent,
respect to the relation defined at the end of Sec. III, to one ofFG4

1 . An easy criterion goes a
follows: Ori holds if only we can attach a signe(v) to each vertexv of the graph, in such a way
that the parity of the permutation attached to any edge is precisely the product of the
attached to the ends of that edge.

To translate condition Dir, recall from~18! that the four strands leaving a vertexv from a
branchu(pi 0

(v)) are numbered by$0,1,2,3,4%\$ i 0%. Moreover a propagator matches such a q
druple of indices with another one, belonging to the same or to another vertex. We now
i 1 ,i 2P$0,1,2,3,4%\$ i 0% and arbitrarily declare thatpi 1

(v)api 2
(v). Note now that$ i 1 ,i 2% appears

precisely in three of the branches leavingv. We then extend the orderinga to the three other pairs
matched to$pi 1

(v),pi 2
(v)% by the propagators, and we continue in a similar way until eithe

contradiction toa is reached or all matching pairs have been visited. Condition Dir is now
condition that no contradiction is ever reached, for any initial choice ofv and i 1 ,i 2 .

We illustrate the procedure to check Dir with an example. Consider the fat graph of Fig.

v and v̄ be its vertices, and seti 5pi(v), ī 5pi( v̄) by simplicity. Start for instance by declarin
that 3a4. Extending this relation through the edges labeled~1 2!, id, and~1 2 3! we, respectively,
deduce that 0̄a2̄, 4̄a0̄ and 2a4. Now for each of these pairs we have to follow two edges~not
three, because with the third one we would get back to 3a4!, and proceed so forth. Following th
inverse of the edge labeled~2 4! from 0̄a2̄ we deduce that 3ā4̄, and then following the same

FIG. 7. A fat graph and the corresponding propagators with canonical labels.

FIG. 8. Circuits determined by a fat graph, and labels along one of them.
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edge again we deduce that 2ā1̄, whereas following the edge labeled~1 2! from 2a4 we deduce
that 1̄a2̄. So we have a contradiction, and Dir does not hold in this case.

Condition Cycl involves the pattern of circuits already mentioned in Remark III.2, and
tained by joining the vertices~Fig. 3—center! with the propagators~Fig. 3—the left-hand side!. To
translate Cycl we pick one of these circuits with an arbitrary direction, and we follow the ci
starting from one of the vertex-propagator junctions. We give arbitrary labelsa,b,g to the three
other strands at the same junction, and we follow the labeling as we travel along the c
according to the following rules. First, when we travel through a propagator, we give matc
strands the same label. Second, when we travel through a vertex, referring to the center of
we note that the various strands come in groups of four, and we examine the relative posi
the strand at which the circuit enters the vertex. If this position is thei th one, then the circuit exits
at the (42 i )th position, and the labeling rules are as follows:@u,a,b,g#↔@a,b,g,u# and
@a,b,u,g#↔@g,u,a,b#, where the vertical segmentu represents the strand of circuit we are followin
The condition is now that, when we come back to the starting junction, the labeling of the
other strands should be the same as at the beginning. Some attention should be paid when
travels more than once through a junction, but the same formal rules actually apply, one s
just locally ignore that other strands are globally part of the same circuit.

We again use the same example considered previously to illustrate the procedure for ch
Cycl. Figure 8 shows the pattern of circuits and highlights one of them. We follow the five e
of this circuit as suggested in Fig. 8, starting with labelsa1 ,b1 ,g1 , denoting bya i8 ,b i8 ,g i8 the
labels after thei th edge, and bya i 11 ,b i 11 ,g i 11 the new labels after going through a verte
Since when we get back to the beginning of the circuit labels are changed, Cycl does not h
this case.

We are left to translate condition Surf. Recall that we have to show that a certain triangu
surfaceS is the union of components homeomorphic to the sphere. This can be checked b
computing the numberk of components, and then by checking thatx(S)52k. To computek we
will use the fact that it equals the number of components of the one-skeleton of the cellulariz
dual to the triangulation. To check thatx(S)52k we note that if the fat graph hash vertices, then
in the triangulation ofS there are 10h triangles and 15h edges, so we only need to compute t
numberm of vertices ofS and check thatm55h12k. Summing up, we can express Surf in th
following purely combinatorial terms. Consider first the rules of Fig. 9, which allow one
associate with the fat graph a trivalent graph. Here the rule for the vertex is explicitly shown
the rule for the edge is that the strand labeled$ i , j % on the right should be matched with the stran
labeledws($ i , j %) on the left, wherews($ i , j %)5$t( i ),t( j )%, and t5s +~1 4!. Denote byk the
number of trivalent graphs in this picture. Next consider the rules of Fig. 10, where the me
is as previously, withcs($ i , j %,k)5($t( i ),t( j )%,t(k)), t5s +~1 4!. Denote bym the number of
circuits in Fig. 10. Then Surf is precisely the condition thatm22k is 5 times the number of
vertices of the fat graph.

Remark V.1:It is actually possible to attach colors inS2 to the edges of the trivalent graph o
Fig. 9, turning it into a fat two-graph, in such a way that the circuits of Fig. 10 are precisely t

FIG. 9. Combinatorial description of the one-skeleton dual to the triangulation ofS.
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defined by this graph as explained in Remark III.2. We have refrained from doing this
preferred to give an explicit rule.
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Vol. 1, pp. 601–611; A. Thompson, Math. Res. Lett.1, 613 ~1994!.

FIG. 10. Circuits corresponding to the vertices of the triangulation ofS.
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Light-cone expansion of the Dirac sea in the presence
of chiral and scalar potentials
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We study the Dirac sea in the presence of external chiral and scalar/pseudoscalar
potentials. In preparation, a method is developed for calculating the advanced and
retarded Green’s functions in an expansion around the light cone. For this, we first
expand all Feynman diagrams and then explicitly sum up the perturbation series.
The light-cone expansion expresses the Green’s functions as an infinite sum of line
integrals over the external potential and its partial derivatives. The Dirac sea is
decomposed into a causal and a noncausal contribution. The causal contribution has
a light-cone expansion which is closely related to the light-cone expansion of the
Green’s functions; it describes the singular behavior of the Dirac sea in terms of
nested line integrals along the light cone. The noncausal contribution, on the other
hand, is, to every order in perturbation theory, a smooth function in position space.
© 2000 American Institute of Physics.@S0022-2488~00!02910-8#

I. INTRODUCTION

In relativistic quantum mechanics with interaction, the fermionic wave functionsC are solu-
tions of a Dirac equation of the form

~ i ]” 1B2m!C50, ~1.1!

whereB is composed of the classical bosonic potentials. According to the common conceptio
Dirac sea of the system is built up of all the negative-energy solutions of the Dirac equatio
can describe it with the so-calledfermionic projector P˜ .1 On the nonrigorous level of this intro
duction, the fermionic projector is given by the formal sum of the projectors on all these solu
i.e.,

P̃~x,y! 5
formally

X aCa~x!Ca~y!, ~1.2!

where the index ‘‘a’’ runs over all the quantum numbers of the negative-energy states. We
to analyze how the fermionic projector depends on the bosonic potentials in~1.1!. According to
the decomposition~1.2! into the individual states, this dependence can be regarded as a coll
effect of all the fermions of the Dirac sea moving in the external potentialB. Following Dirac’s
original concept that the completely filled Dirac sea describes the vacuum, we can also say
are interested in how the fermionic vacuum is influenced by the bosonic fields. Our aim
describe this physical effect in a detailed and explicit way.

It turns out that the dependence of the fermionic projector on the external potential
complicated nonlocal structure. In order to simplify the problem, we shall studyP̃(x,y) in an
expansion about the light cone, which is calledlight-cone expansion. The light cone around a
space–time pointx consists of all points which can be reached fromx with a light ray. In flat

a!Electronic mail: Felix.Finster@mis.mpg.de
66890022-2488/2000/41(10)/6689/58/$17.00 © 2000 American Institute of Physics
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Minkowski space, which we will consider here, the light cone is given by all pairs of points (x,y)
of Minkowski space whose Lorentzian distance (y2x)2[(y2x) j (y2x) j is zero. In the simplest
case of a smooth functionA(x,y), the light-cone expansion is just an expansion in powers
(y2x)2, i.e., a representation of the form

A~x,y!5(
j 50

`

~y2x!2 jAj~x,y! ~1.3!

with smooth functionsAj (x,y). Since the expansion parameter (y2x)2 vanishes on the light cone
the coefficientsAj (x,y) give approximations ofA(x,y) in a neighborhood of the light cone@i.e.,
A0(x,y) coincides withA(x,y) on the light cone,A1(x,y) gives the first-order behavior ofA(x,y)
for pairs (x,y) which are close to the light cone, etc.#. The important point is that theAj (x,y) are
approximations ofA(x,y) even for pointsx,y which are far apart. We only need that the p
(x,y) is close to the light cone, which is an unbounded hypersurface inR43R4. In this sense, the
light-cone expansion is anonlocal expansion. The major advantage over local approxima
techniques~like, e.g., Taylor expansions in the space–time coordinates! is that the light-cone
expansion gives a much more detailed description of the fermionic projector in position s
Furthermore, since the light cone is the boundary of the domain of causal dependence,
effects related to the causality of the Dirac equation occur near the light cone. Thus the ligh
expansion describes the fermionic projector precisely in the region which is most intere
physically. In this paper, we will develop an efficient method for performing the light-c
expansion of the fermionic projector.

After this simplified and very qualitative introduction, we briefly discuss the difficulties
methods of the more detailed study. First of all, it is not obvious how to characterize
‘‘negative-energy solutions’’ of the Dirac equation in the case with general interaction. In
words, one problem is to find the right quantum numbers for thea-summation in~1.2!. As
explained in Ref. 1, this problem can only be solved if the notion of ‘‘negative-energy state
given up and replaced by a causality principle for the Dirac sea; this gives a unique definit
P̃ in terms of a power series in the external potential. Our task is to convert this formal defi
into explicit formulas for the fermionic projector in position space. The basic technique
construct solutions of the inhomogeneous Klein–Gordon and Dirac equations and to sho
these solutions coincide with the contributions to the perturbation expansion ofP̃. For the con-
tribution to first order in the external potential, a similar technique was already used in R
which also contains a general discussion of the method. In the following, we will first gene
this technique to higher order perturbation theory. Then we will explicitly sum up the light-
expansions of all Feynman diagrams, which will finally yield exact formulas for the light-c
expansion of the fermionic projector without the restriction for the external potential to be~in any
sense! ‘‘small.’’ We shall use the notation, the definitions, and the results of Ref. 1 through
Since the method of Ref. 2 had to be refined considerably for the analysis of higher order Fe
diagrams, we will develop the light-cone expansion from the very beginning. Thus this pape
be considered as being independent of Ref. 2. Nevertheless, the more elementary approac
2 is a preparation and might be helpful for the understanding. We will use the so-calledresidual
argumentto deduce the light-cone expansion of the Dirac sea from that of the advance
retarded Green’s functions. This allows us to bypass the explicit Fourier transformations in R
However, the residual argument has its limitations; making it mathematically precise leads
decomposition of the Dirac sea into a causal and a noncausal contribution.

In the remainder of this section, we specify our problem in mathematical terms. Sin
realistic physical system consists of several types of fermions, we describe empty space
fermionic projector of the vacuum, which was introduced in Ref. 1 as the direct sum off >1 Dirac
seas. Thechiral asymmetry matrix Xand themass matrix Yare considered asa priori given. The
reader who is only interested in the light-cone expansion of a single Dirac sea may specia
f 51 andX515Y. On the wave functions, we consider the indefinite scalar product
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^CuF&5E
R4(l 51

f

C l~x!F l~x!d4x ~1.4!

with the adjoint spinorC̄5C* g0. Similar to ~1.1!, the interaction is described by a perturbati
B of the Dirac operator. We allowB to be composed of chiral and scalar/pseudoscalar poten

B~x!5xLA” R~x!1xRA” L~x!1F~x!1 ig5J~x!, ~1.5!

wherexL/R5 1
2(17g5) are the chiral projectors and where we use a matrix notation in the D

sea index,

AL/R5~AL/Rm
l ! l ,m51,...,f , F5~Fm

l ! l ,m51,...,f , J5~Jm
l ! l ,m51,...,f ~1.6!

~so the potentials may be nondiagonal on the Dirac seas and thus describe a general intera
all the fermions!. Furthermore, the perturbationB shall be Hermitian with respect to the scal
product~1.4!. We assume the Dirac operator to becausality compatiblewith X, i.e.,

X* ~ i ]” 1B2mY!5~ i ]” 1B2mY!X.

This assumption is crucial; if it was violated, unbounded line integrals would occur in the l
cone expansion, making it impossible to carry out the sum over all Feynman diagrams~see the
calculations in Ref. 3 for more details!. The form of the chiral decompositionxLA” R1xRA” L is
useful because, as we will see later, the left- and right-handed components of the fermions
to AL andAR , respectively. An interesting feature of our system is that, as a consequence
nondiagonal form~1.6! of the potentials on the Dirac seas, the potentials and the mass matr
in general not commute with each other,

@AL~x!,AL/R~y!#Þ0, @AL~x!,F~y!#Þ0, @AL~x!,Y#Þ0,... . ~1.7!

Compared to the situation in Ref. 2, the bilinear potentialH jks jk is missing in~1.5!. It leads to
complications when the sum over all Feynman diagrams is carried out. These complicatio
not serious, but in order to keep the expansion reasonably simple, the bilinear potential w
out. Furthermore, we do not consider the gravitational field. The reason is that the higher
contributions in the gravitational potential become more and more singular on the light cone
leads to technical problems which we will not deal with here. Despite these simplification
considered ansatz forB includes arbitrary left- and right-handed Yang–Mills potentials and
general enough for a description of, e.g., the interactions of the standard model. Thefermionic

projector in the presence of external fields, P̃(x,y), is defined via the perturbation series in Re
1, which is a formal sum of operator products of the form

P̃5 (
n50

`

(
...

const~n,...!Cn,...BCn21,...B¯BC0,... ,

where the factorsCj ,... coincide either with the spectral projectorsk, p, or with the Green’s
function s ~the index ‘‘̄ ’’ is a short notation for the different configurations of these factors!.

In the language of Feynman diagrams, the perturbation series forP̃ only consists of tree
diagrams. These tree diagrams are all finite; this is not difficult to prove if we assume su
regularity of the potential:

Lemma 1.1: Let(Cj ), 0< j <n, be a choice of operators Cj5k,p, or s. If the external
potential (1.5) is smooth and decays so fast at infinity that the functionsB(x), xiB(x), and
xixjB(x) are integrable, then the operator product

~CnBCn21B¯BC0!~x,y! ~1.8!
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is a well-defined tempered distribution onR43R4.
Proof: Calculating the Fourier transform of~1.8! gives the formal expression

M ~q2 ,q1!ªE d4p1

~2p!4¯E d4pn21

~2p!4 Cn~q2!B̃~q12pn21!Cn21~pn21!B̃~pn21

2pn22!¯C1~p1!B̃~p12q1!C0~q1!, ~1.9!

where we consider theCj as multiplication operators in momentum space and whereB̃ denotes the
Fourier transform ofB. It is more convenient to work in momentum space because the oper
Cj then have a simpler form. We will show thatM (q2 ,q1) is a well-defined tempered distribution
our Lemma then immediately follows by transforming back to position space.

The assumptions onB yield that B̃ is C2 and has rapid decay at infinity, i.e.,

sup
qPR4,uku<2

uqi 1
¯qi n]kB̃~q!u,`

for all n, tensor indicesi 1 ,...,i n , and multi-indicesk @so k5(k1,...,kp), ukuªp#. As is verified
explicitly in momentum space, the distributionsk, p, ands are bounded in the Schwartz norms
the test functions involving derivatives of only first order. More precisely,

uC~ f !u<consti f i4,1

with

C5k,p, or s and f PS,

where the Schwartz norms are as usual defined by

i f ip,q5 max
uI u<p,uJu<q

sup
xPR4

uxI]Jf ~x!u.

As a consequence, we can applyk, p, ands even to functions with rapid decay which are on
C1. Furthermore, we can form the convolution of such functions withk, p, or s; this gives
continuous functions~which will no longer have rapid decay, however!. A convolution decreases
the order of differentiability of the functions by one.

We consider the combination of multiplication and convolution

F~p2!ªE d4p1

~2p!4 f ~p22p1!C~p1!g~p1!, ~1.10!

where we assume thatf PC2 has rapid decay andgPC1 is bounded together with its first deriva
tives, igi0,1,`. For any fixedp2 , the integral in~1.10! is well-defined and finite becausef (p2

2.)g(.) is C1 and has rapid decay. The resulting functionF is C1 and bounded together with it
first derivatives. More precisely,

iFi0,1<consti f i4,2igi0,1. ~1.11!

After these preparations, we can estimate the integrals in~1.9! from the right to the left: We
choose two test functionsf ,gPS(R4,C4 f) and introduce the functions

F1~p1!5E d4q2

~2p!4 B̃~p12q1!C0~q1!g~q1!, ~1.12!
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F j~pj !5E d4pj 21

~2p!4 B̃~pj2pj 21!Cj 21~pj 21!F j 21~pj 21!, 1, j <n. ~1.13!

The integral~1.12! is of the form ~1.10! and satisfies the above-considered assumptions on
integrand. Using the bound~1.11!, we can proceed inductively in~1.13!. Finally, we perform the
q2-integration,

M ~ f ,g!5E d4q2

~2p!4 f ~q2!Cn~q2!Fn~q2!.

We conclude thatM is a linear functional onS(R4,C4 f)3S(R4,C4 f), which is bounded in the
Schwartz normi .i4,1 of the test functions. j

Clearly, the existence of the perturbation expansion to every order does not imply the
vergence of the perturbation series, and we will not study this problem here. Our method is
perform the light-cone expansion of the individual Feynman diagrams. For the resulting form
it will then be possible to sum up the perturbation series. Since the Feynman diagrams ar
defined as distributions, we must generalize~1.3! in a way which allows for the possibility tha
A(x,y) is singular on the light cone.

Definition 1.2: A tempered distribution A(x,y) is of the orderO((y2x)2p), pPZ, if the
product

~y2x!22pA~x,y!

is a regular distribution (i.e., a locally integrable function). It has the light-cone expansion

A~x,y!5(
j 5g

`

A[ j ]~x,y! ~1.14!

with gPZ if the distributions A[ j ] (x,y) are of the orderO((y2x)2 j ) and if A is approximated by
the partial sums in the way that

A~x,y!2(
j 5g

p

A[ j ]~x,y! is of the order O~~y2x!2p12! ~1.15!

for all p>g.
The lowest summandA[g] (x,y) gives the leading order ofA(x,y) on the light cone. IfA is

singular on the light cone,g will be negative. The light-cone expansion~1.3! of a smooth function
is recovered as a special case by settingg50 andA[ j ] (x,y)5(y2x)2 jAj (x,y). Notice that the
definition of the light-cone expansion does not include the convergence of the infinite su
~1.14!, which is only a convenient notation for the approximation ofA(x,y) by the partial sums
~1.15!.

II. THE LIGHT-CONE EXPANSION OF THE GREEN’S FUNCTIONS

In this section, we shall perform the light-cone expansion for the advanced and ret
Green’s functionss̃∨, s̃∧, which are defined in Ref. 1 by the perturbation series

s̃∨5 (
k50

`

~2s∨B!ks∨, s̃∧5 (
k50

`

~2s∧B!ks∧. ~2.1!

These perturbation expansions are causal in the sense thats̃∨(x,y) ands̃∧(x,y) only depend on the
potentialB in the ‘‘diamond’’ (Lx

∨ùLy
∧)ø(Lx

∧ùLy
∨), where

Lx
∨5$yu~y2x!2>0,y02x0>0%, Lx

∧5$yu~y2x!2>0,y02x0<0% ~2.2!
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denote the future and past light cones aroundx, respectively. Since this ‘‘diamond’’ is~for fixed
x and y! a bounded region of space–time, the assumptions of Lemma 1.1 on the decay
external potential at infinity are not necessary in this section; it suffices to assume thaB is
smooth. Furthermore, the chiral asymmetry matrixX and the causality compatibility condition wil
not be needed in this section.

In order to get a first idea of how the light-cone expansion can be carried out, we look
free advanced Green’s functionsm

∨ of a single Dirac sea in position space: It is convenient to p
the Dirac matrices out ofsm

∨ by setting

sm
∨ ~x,y!5~ i ]” x1m!Sm2

∨
~x,y!, ~2.3!

whereSm2
∨ is the advanced Green’s function of the Klein–Gordon operator,

Sm2
∨

~x,y!5 lim
0,«→0

E d4p

~2p!4

1

p22m22 i«p0 e2 ip(x2y). ~2.4!

This Fourier integral can be calculated explicitly; we expand the resulting Bessel functionJ1 in a
power series,

Sm2
∨

~x,y!52
1

2p
d~~y2x!2!Q~y02x0!1

m2

4p

J1~Am2~y2x!2

Am2~y2x!2
Q~~y2x!2!Q~y02x0!

52
1

2p
d~~y2x!2!Q~y02x0!1

m2

8p (
j 50

`
~21! j

j ! ~ j 11!!

~m2~y2x!2! j

4 j Q~~y2x!2!

3Q~y02x0! ~2.5!

@Q is the Heaviside functionQ(t)51 for t>0 andQ(t)50 otherwise#. This computation shows
that Sm2

∨ (x,y) has ad((y2x)2)-like singularity on the light cone. Furthermore, one sees thatSm2
∨

is a power series inm2. The important point for the following is that the higher order contributio
in m2 contain more factors (y2x)2 and are thus of higher order on the light cone. More precis

S d

dm2D n

Sm2um250
∨

~x,y! is of the order O~~y2x!2n22!. ~2.6!

According to~2.3!, the Dirac Green’s function is obtained by computing the first partial der
tives of ~2.5!. Thereforesm

∨ (x,y) has a singularity on the light cone which is even;d8((y
2x)2). The higher order contributions inm are again of increasing order on the light cone. T
means that we can view the Taylor expansion of~2.3! in m,

sm
∨ ~x,y!5 (

n50

`

~ i ]” 1m!
1

n! S d

dm2D n

Sm2um250
∨

~x,y!,

as a light-cone expansion of the free Green’s function. Our idea is to generalize this formula
case with interaction. More precisely, we want to express the perturbed Green’s function
form

s̃∨~x,y!5 (
n50

`

Fn~x,y!S d

dm2D n

Sm2um250
∨

~x,y! ~2.7!

with factors Fn which depend on the external potential. We will see that this method is
convenient; especially, we can in this way avoid working with the rather complicated ex
formula ~2.5!. Apart from giving a motivation for the desired form~2.7! of the formulas of the
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light-cone expansion, the mass expansion~2.5! leads to the conjecture that even the higher or
contributions in the mass to theperturbedGreen’s functions might be of higher order on the lig
cone. If this conjecture was true, it would be a good idea to expand the perturbation expans
s̃ with respect to the parameterm. Therefore our basic strategy is to first expand~2.1! with respect
to the mass and to try to express the contributions to the resulting expansion in a form sim
~2.7!.

The expansion of~2.1! with respect tom gives a double sum over the orders in the ma
parameter and in the external potential. It is convenient to combine these two expansion
single perturbation series. For this, we first write the mass matrix and the scalar/pseudo
potentials together by setting

YL~x!5Y2
1

m
~F~x!1 iJ~x!!, YR~x!5Y2

1

m
~F~x!2 iJ~x!!. ~2.8!

The matricesYL/R(x) are calleddynamic mass matrices; notice thatYL* 5YR . With this notation,
we can rewrite the Dirac operator in the form

i ]” 1B2mY5 i ]” 1B ~2.9!

with

B5xL~A” R2mYR!1xR~A” L2mYL!. ~2.10!

For the light-cone expansion of the Green’s functions, we will always viewB as the perturbation
of the Dirac operator. This has the advantage that the free theory consists only of zero
fermions; the Green’s functions of the free Dirac operator have the simple form

s∨~x,y!5 i ]” xSm250
∨

~x,y!, s∧~x,y!5 i ]” xSm250
∧

~x,y! ~2.11!

~to be very precise, we should writes∨5 i ]” S0
∨

^ 1, where15(1m
l ) l ,m51,...,f is the identity on the

Dirac seas!. The Green’s functions with interaction are given by the perturbation series

s̃∨5 (
k50

`

~2s∨B!ks∨, s̃∧5 (
k50

`

~2s∧B!ks∧. ~2.12!

The constructions of Secs. II A–II C are exactly the same for the advanced and re
Green’s functions. In order to treat both cases at once, we will in the remainder of this sectio
all superscripts ‘‘∨’’ ‘‘ ∧’’ The formulas for the advanced and retarded Green’s functions
obtained by either adding ‘‘∨’’ or ‘‘ ∧’’ to all factors s, S.

A. Inductive light-cone expansion of all feynman diagrams

In this section, we explain how the individual contributions to the perturbation expan
~2.12! can be written similar to the right-hand side of~2.7! as a sum of terms of increasing ord
on the light cone. For the mass expansion ofSm2, we seta5m2 and use the notation

S( l )5S d

daD l

Saua50 . ~2.13!

In preparation, we derive some computation rules for theS( l ): Sa satisfies the defining equation o
a Klein–Gordon Green’s function

~2hx2a!Sa~x,y!5d4~x2y!.

Differentiating with respect toa yields
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2hxS
( l )~x,y!5d l ,0d

4~x2y!1 lS( l 21)~x,y!, l>0. ~2.14!

~For l 50, this formula does not seem to make sense becauseS(21) is undefined. The expressio
is meaningful, however, if one keeps in mind that in this case the factorl is zero, and thus the
whole second summand vanishes. We will also use this convention in the following calculat!
Next, we differentiate the formulas forSa in momentum space,

Sa
∨~p!5

1

p22a2 i«p0 , Sa
∧~p!5

1

p22a1 i«p0 , ~2.15!

with respect to bothp anda. Comparing the results gives the relation

]

]pk Sa~p!522pk

d

da
Sa~p!,

or, after expanding in the parametera,

]

]pk S( l )~p!522pkS
( l 11)~p!, l>0. ~2.16!

This formula also determines the derivatives ofS( l ) in position space; namely

]

]xk S( l )~x,y!5E d4p

~2p!4 S( l )~p!~2 ipk!e
2 ip(x2y)

5
~2.16! i

2 E d4p

~2p!4

]

]pk S( l 21)~p!e2 ip(x2y)

52
i

2 E d4p

~2p!4 S( l 21)~p!
]

]pk e2 ip(x2y)

5 1
2~y2x!kS

( l 21)~x,y!, l>1. ~2.17!

We iterate this relation to calculate the Laplacian,

2hxS
( l )~x,y!52

1

2

]

]xk ~~y2x!kS( l 21)~x,y!!52S( l 21)~x,y!2
1

4
~y2x!2S( l 22)~x,y!, l>2.

After comparing with~2.14!, we conclude that

~y2x!2S( l )~x,y!524lS( l 11)~x,y!, l>0. ~2.18!

Finally, S( l )(x,y) is only a function of (y2x), which implies that

]

]xk S( l )~x,y!52
]

]yk S( l )~x,y!, l>0. ~2.19!

The following lemma gives the light-cone expansion of an operator product which is line
the external potential. We will later use it for the iterative light-cone expansion of more com
cated operator products; in this case, the potential will be a composite expression inB and its
partial derivatives. In order to avoid confusion then, we denote the external potential byV.

Lemma 2.1 (light-cone expansion to first order): The operator product S( l )VS(r ) with l,r
>0 has the light-cone expansion
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~S( l )VS(r )!~x,y!5 (
n50

`
1

n! E0

1

a l~12a!r~a2a2!n~hnV! uay1(12a)xda S(n1 l 1r 11)~x,y!.

~2.20!

Proof: The method of the proof is to first compute the Laplacian of both sides of~2.20!. The
resulting formulas will be of similar structure, which allows us to proceed inductively.

On the left-hand side of~2.20!, we calculate the Laplacian with the help of~2.14! to

2hx~S( l )VS(r )!~x,y!5d l ,0V~x!S(r )~x,y!1 l ~S( l 21)VS(r )!~x,y!. ~2.21!

The Laplacian of the integral on the right-hand side of~2.20! can be computed with~2.17! and
~2.14!,

2hxE
0

1

a l~12a!r~a2a2!n~hnV! uay1(12a)xda S(n1 l 1r 11)~x,y!

52E
0

1

a l~12a!r 12~a2a2!n~hn11V! uay1(12a)xda S(n1 l 1r 11)~x,y!

2E
0

1

a l~12a!r 11~a2a2!n~]khnV! uay1(12a)xda~y2x!kS(n1 l 1r )~x,y!

1~n1 l 1r 11!E
0

1

a l~12a!r~a2a2!n~hnV! uay1(12a)xda S(n1 l 1r )~x,y!. ~2.22!

In the second summand, we rewrite the partial derivative as a derivative with respect toa and
integrate by parts,

E
0

1

a l~12a!r 11~a2a2!n~]khnV! uay1(12a)xda~y2x!k

5E
0

1

a l~12a!r 11~a2a2!n
d

da
~hnV! uay1(12a)xda

52dn,0d l ,0V~x!2~n1 l !E
0

1

a l~12a!r 12~a2a2!n21~hnV! uay1(12a)xda

1~n1r 11!E
0

1

a l~12a!r~a2a2!n~hnV! uay1(12a)xda

52dn,0d l ,0V~x!2nE
0

1

a l~12a!r 12~a2a2!n21~hnV! uay1(12a)xda

1~n1 l 1r 11!E
0

1

a l~12a!r~a2a2!n~hnV! uay1(12a)xda

2 l E
0

1

a l 21~12a!r~a2a2!n~hnV! uay1(12a)xda.

We substitute back into the original equation and obtain
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~2.22!5dn,0d l ,0V~x!S(r )~x,y!1 l E
0

1

a l 21~12a!r~a2a2!n~hnV! uay1(12a)xda S(n1 l 1r )~x,y!

2E
0

1

a l~12a!r 12~a2a2!n~hn11V! uay1(12a)xda S(n1 l 1r 11)~x,y!

1nE
0

1

a l~12a!r 12~a2a2!n21~hnV! uay1(12a)xda S(n1 l 1r )~x,y!.

After dividing by n! and summation overn, the last two summands are telescopic and cancel e
other. Thus one gets

2h (
n50

`
1

n! E0

1

a l~12a!r~a2a2!n~hnV! uay1(12a)xda S(n1 l 1r 11)~x,y!

5d l ,0V~x!S(r )~x,y!1 l (
n50

`
1

n! E0

1

a l 21~12a!r~a2a2!n~hnV! uay1(12a)xda S(n1 l 1r )~x,y!.

~2.23!

We now compare the formulas~2.21! and~2.23! for the Laplacian of both sides of~2.20!. In
the special casel 50, these formulas coincide, and we can use a uniqueness argument f
solutions of the wave equation to prove~2.20!: We assume that we consider the advanced Gre
function ~for the retarded Green’s function, the argument is analogous!. For giveny, we denote
the difference of both sides of~2.20! by F(x). Since the support ofF(x) is in the past light cone
xPLy

∧ , F vanishes in a neighborhood of the hypersurfaceH5$zPR4uz05y011%. Moreover, the
Laplacian ofF is identically zero according to~2.21! and ~2.23!. We conclude that

hF50 and F uH5]kF uH50.

Since the wave equation has a unique solution for given initial data on the Cauchy surfaceH, F
vanishes identically.

The general case follows by induction inl : Suppose that~2.20! holds for given l̂ ~and
arbitraryr !. Then, according to~2.21!, ~2.23!, and the induction hypothesis, the Laplacian of bo
sides of~2.20! coincides forl 5 l̂ 11. The above-mentioned uniqueness argument for the solu
of the wave equation again gives~2.20!. j

We recall for clarity that, according to~2.6!, the highera-derivatives ofSa(x,y) are of higher
order on the light cone. Thus the summands in~2.20! are of increasing order on the light cone, a
the infinite sum makes mathematical sense in terms of Definition 1.2 via the approximation
partial sums~1.15!.

The representation~2.20! of an operator product as an infinite series of line integrals has s
similarity with the formal light-cone expansion~Ref. 2, Theorem 3.3!. In order to make it easie
for the reader to see the connection between these two expansions, we briefly discuss the
and the differences: First of all, we are here considering the Green’s functions instead
negative-energy solutions of the Klein–Gordon equation. The causality of the Green’s fun
@i.e., suppS(x,.),Lx] simplifies the construction considerably. We could use it to avoid
explicit Fourier transformations of the proofs in Ref. 2; furthermore, it makes the resummati
nonlocal contributions unnecessary. In this paper, the complications related to the noncaus
the negative-energy states will reappear in the light-cone expansion of the Dirac sea in S
We point out that the light-cone expansion in Ref. 2 is more general in the way that the
parametera5m2 need not be zero. This is sometimes more convenient, because then the m
just a parameter of the Green’s functions instead of occurring in the line integrals of the light
expansion. With our concept of dynamic mass matrices, however, an expansion arounda50 is
more appropriate. The important generalization in~2.20! is that the two factorsS on the left-hand
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side may be derivatives with respect toa. On the right-hand side of Eq.~2.20!, this is taken into
account by the additional factorsa l(12a) r in the integrand and by the higher order (n1 l 1r
11) of thea-derivative ofS. This generalization is the basis for the following iterations.

Lemma 2.1 can be used for the light-cone expansion of more complicated operator pro
To explain the method, we look at the simplest example of three factorsS(0) and two potentialsV,
W,

~S(0)VS(0)WS(0)!~x,y!5E d4zS(0)~x,z!V~z!~S(0)WS(0)!~z,y!. ~2.24!

Having split up the operator product in this form, we can apply Lemma 2.1 to the fa
S(0)WS(0),

5 (
n50

`
1

n! E d4zS(0)~x,z!H V~z!E
0

1

~a2a2!n~hnW! uay1(12a)zdaJ S(n11)~z,y!.

Now we rewrite thez-integral as the operator product (S(0)gyS
(0))(x,y), where gy(z) is the

function in the curly braces. They dependence ofgy causes no problems because we can viewy
as a fixed parameter throughout the expansion. Thus we can simply apply Lemma 2.1 onc
and obtain

5 (
m,n50

`
1

m!n! E0

1

db~12b!n11~b2b2!mE
0

1

da~a2a2!nhz
m~V~z!

3~hnW! uay1(12a)z! uz5by1(12b)xS
(m1n12)~x,y!.

The Laplacianhz
m could be further computed with the Leibniz rule. Notice that the manipulat

of the infinite sums are not problematic because the number of terms to every order on th
cone is actually finite@the situation would be more difficult if we studied the convergence of
sum ~1.14!, but, as pointed out earlier, the light-cone expansion is defined merely via the p
sums#.

We want to iteratively perform the light-cone expansion of the operator products in~2.12!.
This is not directly possible with the method just described, because~2.12! contains the Dirac
Green’s functions ~instead ofS!. We must think about how to deal with this problem. Relati
~2.11! allows us to replace the factorss by S, but this gives additional partial derivatives in th
operator product. These derivatives can be carried out after each iteration step using the
rule and the differentiation rule~2.17!. In the simplest example, we have

~s(0)VS(0)!~x,y!5~ i ]” /x!~S(0)VS(0)!~x,y!

5 i ]” x(
n50

`
1

n! E0

1

~a2a2!n~hnV! uay1(12a)xS
(n11)~x,y!

5 i (
n50

`
1

n! E0

1

~12a!~a2a2!n~]” hnV! uay1(12a)xS
(n11)~x,y!

1
i

2 (
n50

`
1

n! E0

1

~a2a2!n~hnV! uay1(12a)x~y2x! jg
jS(n)~x,y!.

The only problem with this method is that the partial derivatives might hit a factorS(0), in which
case rule~2.17! cannot be applied. In order to resolve this problem, we extend our construc
in a way which allows us to use all previous formulas also in this special case. For this, we
~2.17! as the defining equation for (y2x)kS

(21)(x,y),
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~y2x!kS
(21)~x,y!ª2

]

]xk S(0)~x,y! ~2.25!

@notice thatS(21) itself remains undefined, only the combination (y2x)kS
(21)(x,y) makes math-

ematical sense as the partial derivative of the distributionS(0)#. With this definition, the compu-
tation rule ~2.18! also becomes valid forl 521: According to ~2.18!, the distribution (y
2x)2S(0)(x,y) vanishes identically, and thus

05hx~~y2x!2S(0)~x,y!!

5~hx~y2x!2!S(0)~x,y!24~y2x! j
]

]xj S(0)~x,y!

1~y2x!2hxS
(0)~x,y!.

In the last summand, we substitute~2.14!, which gives2(y2x)2d4(x2y)50. Using the identity
hx(y2x)258 and the definition~2.25!, we conclude that

~y2x!2S(21)~x,y!54S(0)~x,y!. ~2.26!

The following lemma extends the result of Lemma 2.1 to the case when the right factor
operator product isS(21).

Lemma 2.2 (light-cone expansion to first order for r521): The operator product(S( l ).S(21)),
l>0, has the light-cone expansion

E d4zS( l )~x,z!V~z!~y2z!kS
(21)~z,y!

5 (
n50

`
1

n! E0

1

a l~12a!21~a2a2!nhz
n~V~z!~y2z!k! uz5ay1(12a)xda S(n1 l )~x,y!.

~2.27!

Proof: We deduce the light-cone expansion for the left-hand side of~2.27! from ~2.20! by
pulling oney-derivative outside,

E d4zS( l )~x,z!V~z!~y2z!kS
(21)~z,y!

5
~2.25!,~2.19!

22
]

]yk ~S( l )VS(0)!~x,y!

522
]

]yk (
n50

`
1

n! E0

1

a l~a2a2!n~hnV! uay1(12a)xdaS(n1 l 11)~x,y!

5
~2.19!,~2.17!

(
n50

`
1

n! E0

1

a l~a2a2!n~hnV! uay1(12a)xda~y2x!kS
~n1 l !~x,y! ~2.28!

22(
n50

`
1

n! E0

1

a l 11~a2a2!n~]khnV! uay1~12a!xda S~n1 l 11!~x,y!. ~2.29!

In ~2.29!, we substitute the identity

]khnV~z!52
1

2~n11!
hz

n11~V~z!~y2z!k!1
1

2~n11!
~hz

n11V~z!!~y2z!k . ~2.30!
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The contribution of the second summand in~2.30! cancels all the summandsn51,2,... of~2.28!,
and we get

E d4zS( l )~x,z!V~z!~y2z!kS
(21)~z,y!

5E
0

1

a lVuay1(12a)xda~y2x!kS
( l )~x,y!

1 (
n50

`
1

~n11!! E0

1

a l 11~a2a2!nhz
n11~V~z!~y2z!k! uz5ay1(12a)xdaS(n111 l )~x,y!.

After shifting the summation index, this coincides with~2.27!. j

Notice that the pole of the factor (12a)21 for a51 does not lead to problems in~2.27!: In
the casen50, it disappears since (12a)21(y2z)5y2x; for n.0, it is compensated by the zer
of the factor (a2a2)n.

After these preparations, we come to the light-cone expansion of general Feynman dia
For the line integrals of Lemma 2.1 and Lemma 2.2, we introduce the short notation

E
x

y

@ l ,r un#dz f~z!ªE
0

1

da a l~12a!r~a2a2!nf ~ay1~12a!x!. ~2.31!

If l , r , andn all vanish, we sometimes omit the bracket, i.e.,

E
x

y

dz f~z!ªE
0

1

da f ~ay1~12a!x!.

Furthermore, we abbreviate the following products with multi-indices:

]z
J
ª

]

]zj 1
¯

]

]zj l
, ~y2x!J

ª~y2x! j 1
¯~y2x! j l, gJ

ªg j 1
¯g j l,

whereJ5( j 1 ,...,j l).
Theorem 2.3 „inductive light-cone expansion…: The light-cone expansion of the kth order

contribution((2sB)ks)(x,y) to the perturbation series (2.12) can be written as an infinite sum
expressions, each of which has the form

xcC~y2x! IE
x

y

@ l 1 ,r 1un1#dz1]z1

I 1hz1

p1VJ1 ,c1

(1) ~z1!E
z1

y

@ l 2 ,r 2un2#dz2]z2

I 2hz2

p2VJ2 ,c2

(2) ~z2!¯

3E
zk21

y

@ l k ,r kunk#dzk]zk

I khzk

pkVJk ,ck

(k) ~zk!g
JS(h)~x,y!. ~2.32!

In this formula, C is a complex number and the parameters la , r a , na , and pa are non-negative
integers; the indices c and ca can take the two values L or R. The functions VJa ,ca

(a) coincide with

any of the individual potentials in (2.10) with chirality ca , i.e.,

Vca

(a)5Aca
(in which caseuJau51)

or

Vca

(a)5mYca
(in which caseuJau50). ~2.33!

The chirality ca of the potentials is determined by the following rules:
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(i) The chirality c1 of the first potential coincides with the chirality of the projectorxc .
(ii) The chirality of the potentials is reversed at every mass matrix, i.e.,

ca and ca11H coincide i f Vca

(a)5Aca

are opposite i f Vca

(a)5mYca
.

The tensor indices of the multi-indices in (2.32) are all contracted with each other, acco
to the following rules:

(a) No two tensor indices of the same multi-index are contracted with each other.
(b) The tensor indices of the factorgJ are all contracted with different multi-indices, in th

order of their appearance in the product (2.32) [i.e., for J5( j 1 ,...,j l) and 1<a,b< l , the
multi-index with which ja is contracted must stand to the left of the multi-index correspondin
j b] .

The parameter h is given by

2h5k212uI u1 (
a51

k

~ uI au12pa!. ~2.34!

The number of factors (y2x) is bounded by

uI u<k112 (
a51

k

uI au. ~2.35!

Basically, this theorem states that the light-cone expansion of thekth order Feynman diagram
can be written withk nested line integrals. Notice that, according to~1.7!, the potentialsV(a)(za)
do not in general commute with each other, so that the order of multiplication is importa
~2.32!. In order to avoid misunderstandings, we point out that the derivatives]za

I a andhza

pa do not

only act onV(a)(za), but also on all the following factorsV(a11)(za11), V(a12)(za12),... ~note
that the variablesza11 , za12 ,... implicitly depend onza via the inductive definition of the line
integrals!. Clearly, these derivatives could be carried out further with the Leibniz rule, but
easier not to do this at the moment. The restrictions (a) and (b) on the possible contractions of th
tensor indices were imposed in order to avoid an abuse of our multi-index notation. More
cisely, (a) prevents factors (y2x)2 in (y2x) I , an unnecessary large number ofg-matrices ingJ,
and ‘‘hidden’’ Laplacians in the partial derivatives]za

I a. Rule (b), on the other hand, prevent

factors (y2x)2 and hidden Laplacians in combinations of the form (y2x) i(y2x) jg
ig j and

] i j VJa

(a)g ig j , respectively. Our ordering condition for theg-matrices is just a matter of conve

nience. Relation~2.34! is very useful because it immediately tells for any configuration of the
integrals and potentials in~2.32! what the corresponding order on the light cone is. Notice t
~2.34! and ~2.35! imply the inequality

h>211 (
a51

k

uI au1pa . ~2.36!

In particular, one sees thath>21. In the caseh521, ~2.34! yields thatuI u.0, so that~2.32! must
contain at least one factor (y2x). Therefore the factorS(h) in ~2.32! is always well-defined by
either ~2.13! or ~2.25!.

We point out that, although the total number of summands~2.32! is infinite, the number of
summands for any given value of the parameterh is finite. This is clear because, for fixedh,
relations~2.34! and~2.35! only allow a finite number of possibilities to choose the parametersuI u,
uI au, andpa ; thus one only gets a finite combinatorics for all expressions of the form~2.32!. Since,
according to~2.6!, the contributions for higher values ofh are of higher order on the light cone
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we conclude that the number of summands~2.32! is finite to every order on the light cone
Therefore the light-cone expansion of Theorem 2.3 makes mathematical sense in terms o
nition 1.2.

Proof of Theorem 2.3:We proceed inductively ink. For k50, the assumption is true becau
we can write the free Dirac Green’s function in the required form~2.32!,

s~x,y! 5
~2.11,~2.25!

~xL1xR!
i
2 ~y2x! jg jS

(21)~x,y!. ~2.37!

Conditions (i ), (i i ), (a), (b), and relations~2.34! and ~2.35! are clearly satisfied.
Assume that the theorem holds for a givenk. With the formula

~~2sB!k11s!~x,y! 5
~2.11!

2 i ]” xE d4zS(0)~x,z!B~z!~~2sB!ks!~z,y!, ~2.38!

we can express the (k11)st order contribution to the perturbation series~2.12! in terms of thekth
order contribution. We must show that~2.38! can again be written as a sum of expressions of
form ~2.32! ~with k replaced byk11!, and that (i ), (i i ), (a), (b), and~2.34!, ~2.35! are satisfied.
This is done in several construction steps:

(1) Chiral decomposition:We substitute the induction hypothesis~2.32! into ~2.38!. This
gives a sum of expressions of the form

Ci]” xE d4zS(0)~x,z!H ~y2z! IB~z!xcE
z

y

@ l 1 ,r 1un1#dz1]z1

I 1hp1VJ1 ,c1

(1) ~z1!¯

3E
zk21

y

@ l k ,r kunk#dzk]zk

I khpkVJk ,ck

(k) ~zk!g
JJ S(h)~z,y!. ~2.39!

We insert the special form of the potentialB, ~2.10!, and expand. Using the commutation ru
g ixL/R5xR/Lg i , we bring all chiral projectors to the very left, where they can be combined
the formulaxcxd5dcdxc to a single chiral projector. Next, we bring theg matrices ofB to the
right and write them together with the factorgJ in ~2.39! ~notice that the Dirac matrices commu
with the potentialsVca

(a) , which are only nondiagonal in the Dirac sea index!. Denoting the

individual potentials of the factorB in ~2.39! by VJ0 ,c0

(0) , we thus get for~2.39! a sum of expres-

sions of the form

xcCi]” xE d4zS(0)~x,z!H ~y2z! IVJ0 ,c0

(0) ~z!E
z

y

@ l 1 ,r 1un1#dz1]z1

I 1hp1VJ1 ,c1

(1) ~z1!¯

3E
zk21

y

@ l k ,r kunk#dzk]zk

I khpkVJk ,ck

(k) ~zk!g
JJ S(h)~z,y!. ~2.40!

The chiral decomposition~2.10! and the induction hypothesis (i ) yield that the chiralityc0 coin-
cides withc, whereasc1 coincides withc0 if and only if Vc0

(0)5Ac0
. Since the chiralitiesc2 , c3 ,...

satisfy the induction hypothesis (i i ), we conclude that rules (i ) and (i i ) are also satisfied in~2.40!
~after relabeling the indices in an obvious way!. The chirality of the potentials will not be affecte
in all the following construction steps; to simplify the notation, we will omit the indicesca from
now on.

(2) Light-cone expansion with Lemma 2.1, Lemma 2.2:Sincey can be considered as a fixe
parameter, we can in~2.40! apply either Lemma 2.1 or Lemma 2.2 withV given by the expression
in the curly braces,
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~2.40!5xcCi]” x(
n50

`
1

n! Ex

y

@0,hun#dzhz
nS ~y2z! IVJ0

(0)~z!E
z

y

@ l 1 ,r 1un1#dz1]z1

I 1hp1VJ1

(1)~z1!¯

3E
zk21

y

@ l k ,r kunk#dzk]zk

I khpkVJk

(k)~zk! D gJS(n1h11)~x,y!. ~2.41!

(3) Computation of the Laplacianhz
n : We carry out thez-derivatives in~2.41! inductively

with the Leibniz rule. Each derivative can act either on the factors (y2z) I or on the functions
V(a). In the first case, one of the factors (y2z) disappears. Thus we get a sum of expression
the form

xcCi]” xE
x

y

@0,hun#dz~y2z! Î]z
I 0hz

p0VJ0

(0)~z!E
z

y

@ l 1 ,r 1un1#dz1]z1

I 1hp1VJ1

(1)~z1!¯

3E
zk21

y

@ l k ,r kunk#dzk]zk

I khpkVJk

(k)~zk!g
JS(n1h11)~x,y! ~2.42!

with u Î u<uI u and

2n5uI u2u Î u1uI 0u12p0 . ~2.43!

We can assume that no tensor indices of]z
I 0 are contracted with each other~otherwise we rewrite

the corresponding partial derivatives as additional Laplacians!. Then all the partial derivatives]z

in ~2.42! were generated in the case when one derivative of a Laplacianhz in ~2.41! hit a factor
(y2z) whereas the other derivative acted on theV(a). Thus the number of factors (y2z) which
disappeared by carrying out the Laplacians in~2.41! is larger or equal than the number of parti
derivatives]z ,

uI u2u Î u>uI 0u. ~2.44!

(4) Extraction of the factors(y2x): In ~2.42!, we iteratively apply the identity

E
x

y

@0,r un#dz~y2z!¯5~y2x!E
x

y

@0,r 11un#dz̄ . ~2.45!

This gives (k11) nested line integrals of the form

~2.42!5xcCi]” x~y2x! ÎS(ĥ)~x,y!E
x

y

@ l 0 ,r 0un0#dz0]z0

I 0hp0VJ0

(0)~z0!¯

3E
zk21

y

@ l k ,r kunk#dzk]zk

I khpkVJk

(k)~za!gJ ~2.46!

with

l 050, r 05h1u Î u, n05n, ~2.47!

0<2ĥ52~n1h11! 5
~2.43!

2h121uI u2u Î u1uI 0u12p0 . ~2.48!

We can arrange that the parametersl 0 , r 0 , and n0 are all positive: The only parameter whic
might be negative isr 0 ; in this case,h521, u Î u50, and thusr 0521. The induction hypothesis
~2.34! yields thatuI u.0. ThusuI u.u Î u, and relation~2.43! gives that (n05)n.0. Therefore we
can apply the identity
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@ l 0 ,r 0un0#5@ l 011,r 011un021#

to make all the parameters in this bracket positive.
(5) Computation of the partial derivative]” x : Thex-derivative in~2.46! can act on the factors

S(ĥ), (y2x) Î , or V(a)(za). The first case can be computed with the rules~2.17! or ~2.25!; it
decreasesĥ by one and gives one additional factor (y2x). In the second case, one factor (y

2x) disappears, and thusu Î u is decremented. The last case can be handled with the rule

]

]xk E
x

y

@ l ,r un#dz f~z,y!5E
x

y

@ l ,r 11un#
]

]zk f ~z,y!, ~2.49!

which increasesuI 0u by one. As is immediately verified in each of these cases, Eq.~2.48! trans-
forms into

2ĥ52h111uI u2u Î u1uI 0u12p0 , ~2.50!

whereas inequality~2.44! must be weakened to

u Î u<11uI u2uI 0u. ~2.51!

Finally, we combine theg-matrix of the factor]” x with gJ.
After these transformations, the (k11)st order Feynman diagram consists of a sum of te

of the form

xcC~y2x! ÎE
x

y

@ l 0 ,r 0un0#dz0]z0

I 0hz0

p0VJ0

(0)~z0!¯E
zk21

y

@ l k ,r kunk#dzk]zk

I khzk

pkVJk

(k)~zk!g
JS(ĥ)~x,y!.

~2.52!

Notice that the parametersI a ,pa , a51,...,k, were not changed by the above-mentioned const
tion steps; they are still the same as in the induction hypothesis~2.32!. After renaming the indices
and the integration variables,~2.52! is of the required form~2.32!. The conditions (a) and (b) for
the contractions of the tensor indices, however, will in general be violated. Therefore we nee
further computation steps:

(6) Simplification of theg-matrices: If any two of the tensor indices of the factorgJ are
contracted with each other, we reorder theg-matrices with the anticommutation relations

$g i ,g j%52gi j 1 ~2.53!

until the corresponding matrices are next to each other. Applying the identityg ig i541, both Dirac
matrices disappear. We iterate this procedure until no tensor indices ofgJ are contracted with each
other ~notice that the iteration comes to an end because the number ofg-factors is decreased b
two in each step!. Again using the anti-commutation rule~2.53!, we reorder the Dirac matrice
until they are in the same order in which the factors to which their tensor indices are cont
appear in the product~2.52!. If any two of theg-matrices are contracted with the same mu
index, theseg-matrices are next to each other, and we can use the symmetry in the tensor i
to eliminate them both, more precisely

~y2x! i~y2x! j¯g ig j5~y2x!2
¯1, ~2.54!

] i j V
(a)
¯g ig j5hV(a)

¯1. ~2.55!

After all these transformations, condition (b) is satisfied.
Notice that the parametersuI au andpa are in general changed in this construction step. M

precisely, each transformation~2.55! modifies the parameters according to
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uI au→uI au22, pa→pa11. ~2.56!

~7! Handling of the new contractions:If any two tensor indices of a factor]za

I a are contracted

with each other, we rewrite the corresponding partial derivatives as a Laplacian; this chang
parametersuI au and pa according to~2.56!. If two tensor indices of the factor (y2x) Î are con-
tracted with each other, this gives a factor (y2x)2. Using the identity~2.18! or ~2.26!, we
inductively absorb the factors (y2x)2 into S(ĥ)(x,y), which transformsĥ and u Î u as

ĥ→ĥ11, u Î u→u Î u22. ~2.57!

After these transformations, condition (a) is also satisfied.
After all these construction steps, the (k11)th order Feynman diagram is a sum of terms

the form ~2.52! satisfying conditions (a) and (b). It remains to show that relations~2.34! and
~2.35! remain valid in our inductive construction: As mentioned earlier, the parametersI a , pa ,
a51,...,k are not changed in construction steps~1!–~5!. In steps~6! and~7!, the transformations
~2.56! and ~2.57! preserve both the induction hypothesis~2.34!,~2.35! and the relations
~2.50!,~2.51!, as is immediately verified. By substituting~2.50! and ~2.51! into ~2.56!,~2.57!, we
conclude that

2ĥ5~k11!212u Î u1 (
a50

k

uI au12pa , u Î u<~k11!112 (
a50

k

uI au.

j

Note that this proof is constructive in the sense that it gives a procedure with which the light
expansion of every Feynman diagram can be carried out explicitly. The disadvantage o
procedure, however, is that the resulting formulas become more and more complicated to
order perturbation theory. Therefore it is essential to rearrange and collect the contributions
Feynman diagrams in a way which makes it clear hows̃(x,y) looks like to every order on the ligh
cone. In preparation for this analysis, which will be the task of the Sec. II B, we shall now sim
the light-cone expansion of Theorem 2.3 a little bit. More precisely, we want to eliminate
~2.32! the partial derivatives in the direction of the line integrals, i.e., those derivatives]zl

which
are contracted with a factor (y2x). We call these derivativestangential. The following combi-
natorial lemma controls the number of tangential derivatives.

Lemma 2.4: The contributions (2.32) to the light-cone expansion of Theorem 2.3 satisf
a51,...,k the inequalities

l a1na>ta21 and ra1na> (
b5a

k

tb , ~2.58!

where ta denotes the number of tensor indices of the multi-index Ia which are contracted with the
factor (y2x) I .

Proof: As in the proof of Theorem 2.3, we proceed inductively in the orderk of the pertur-
bation theory. Fork50, the inequalities~2.58! are trivially satisfied according to~2.37!. Assume
that ~2.58! is true for a givenk. We go through the construction steps~1!–~7! of Theorem 2.3 and
check that the inequalities~2.58! then also hold in~2.52! for a50,...,k.

We first consider the casea.0. The parametersl a , r a , andna remain unchanged in all the
construction steps of Theorem 2.3. Furthermore, it is obvious that the parametersta are not
affected in steps~1!, ~2!, ~4!, and~7!. In steps~3! and~5!, the computation of the derivativeshz

n

and]” x might annihilate some of the factors (y2x) which were contracted with the factors]za

I a;

this may decrease the parametersta . For the analysis of step~6!, note that allg-matrices which are
contracted with factors (y2x) stand to the left of thoseg-matrices which are contracted with th
]z

I a, a51,...,k @this follows from the ordering condition (b) in the induction hypothesis and th

a
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fact that additional factors (y2x) j
¯g j are only generated during the construction if the par

derivative]” x hits S(ĥ) in step(5); in this case, the correspondingg-matrix stands at the very lef
in gJ#. Therefore the commutations of the Dirac matrices do not lead to additional contrac
between factors (y2x) and ]za

I a, which implies that the parametersta remain unchanged in ste

~6!. We conclude that thel a , r a , andna remain unchanged whereas theta may only decrease, an
thus ~2.58! holds fora51,...,k throughout all the construction steps.

It remains to show that the inequalities~2.58! hold in ~2.52! for a50. We first look at the
situation after step~4! in ~2.46!: The values~2.47! for l 0 , r 0 , andn0 give in combination with
~2.43! the equations

l 01n05 1
2 ~ uI u2u Î u1uI 0u12p0!, ~2.59!

r 01n05h1 1
2 ~ uI u1u Î u1uI 0u12p0!. ~2.60!

Moreover, the number of tangential derivativest0 at the first potential is clearly bounded by th
total number of derivatives there,

uI 0u>t0 . ~2.61!

Furthermore, the total number of tangential derivatives is smaller than the number of facty
2x),

u Î u> (
a50

k

ta . ~2.62!

Substituting~2.44! and ~2.61! into ~2.59! yields the inequalities

l 01n0>uI 0u1p0>t0 . ~2.63!

In order to get a bound forr 01n0 , we must distinguish two cases. Ifh>0, we substitute~2.44!
into ~2.60! and get with~2.62! the inequality

r 01n0>u Î u1uI 0u1p0>u Î u> (
a50

k

ta . ~2.64!

In the caseh521, ~2.36! shows thatuI au, and consequently alsota , vanish for 1<a<k. Fur-
thermore,~2.34! yields thatuI uÞ0. Thus~2.60! and ~2.61!, ~2.62! give the bound

r 01n0>h1
uI u
2

1
1

2 (
a50

k

ta1
1

2
t0>

1

2 (
a50

k

ta1
1

2
t0 ,

where we used in the last inequality thath1uI u/2>21/2 and that all the other terms are intege
Sincet05(a50

k ta , we conclude that inequality~2.64! also holds in the caseh521.
We finally consider how the bounds~2.63! and~2.64! for l 01n0 andr 01n0 must be modified

in the subsequent construction steps. In step~5!, the partial derivative]” x may annihilate a factor
(y2x), in which case the parametersta might decrease. On the other hand, the partial derivat
]” x may produce an additional factor]z0

; in this case,r 0 is incremented according to~2.49!. In step

~6!, only this additional factor]z0
may be contracted with (y2x) Î . Step~7! does not changel 0 ,

r 0 , n0 , andt0 . Putting these transformations together, we conclude that the inequality~2.63! for
l 01n0 must be weakened by one, whereas the bound~2.64! for r 01n0 remains valid as it is. This
gives precisely the inequalities~2.58! for a50. h
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Theorem 2.5„partial integration of the tangential derivatives…: Every contribution (2.32)
to the light cone expansion of Theorem 2.3 can be written as a finite sum of expressions
form

xcC~y2x!KW(0)~x!E
x

y

@ l 1 ,r 1un1#dz1W(1)~z1!E
z1

y

@ l 2 ,r 2un2#dz2 W(2)~z2!¯

3E
za21

y

@ l a ,r auna#dza W(a)~za!gJS(h)~x,y!, a<k, ~2.65!

where the factors W(b) are composed of the potentials and their partial derivatives,

W(b)5~]KabhpabVJab
,cab

(ab)
!¯~]KbbhpbbVJbb

,cbb

(bb)
! ~2.66!

with a151, ab115bb11, bb>ab21 (in the case bb5ab21, W(b) is identically one), and ba

5k. The parameters la , r a , and na are non-negative integers, C is a complex number, and
5L/R, ca5L/R are chiral indices. The potentials V(a) are again given by (2.33); their chirality
is determined by rules (i) and (ii) of Theorem 2.3. The tensor indices of the multi-indices J, Ka ,
and Ka are all contracted with each other, according to rules (a), (b) of Theorem 2.3 and

(c) The tensor indices of(y2x)K are all contracted with the tensor indices of the factors VJa

(a)

or gJ (but not with the factors]Ka).
We have the relation

2h5k212uKu1 (
a51

k

~ uKau12pa!. ~2.67!

Proof: The basic method for the proof is to iteratively eliminate those partial derivatives]za

I a

in ~2.32! which are contracted with a factor (y2x). This is done with the partial integratio
formula

~y2x! jE
x

y

@ l ,r un#dz] j f ~z! 5
~2.31!E

0

1

da a l~12a!r~a2a2!n
d

da
f ~ay1~12a!x!

5d r 1n,0f ~y!2d l 1n,0f ~x!2~ l 1n!E
x

y

@ l 21,r un#dz f~z!

1~r 1n!E
x

y

@ l ,r 21un#dz f~z!. ~2.68!

In order to see the main difficulty, consider the example of two nested line integrals with
tangential derivatives

~y2x! j~y2x!kE
x

y

@0,1u0#dz1 V(1)~z1!E
z1

y

@0,1u0#dz2 ] jkV(2)~z2! ~2.69!

5~y2x! jE
x

y

@0,0u0#dz1 V(1)~z1!~y2z1!kE
z1

y

@0,1u0#dz2 ] jkV(2)~z2!

52~y2x! jE
x

y

dz1 V(1)~z1!] jV
(2)~z1! ~2.70!
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1~y2x! jE
x

y

dz1 V(1)~z1!E
z1

y

dz2 ] jV
(2)~z2!. ~2.71!

Although the line integrals in~2.69! satisfy the conditions of Theorem 2.3A, the expression can
be transformed into the required form~2.65!. Namely in~2.70!, we cannot eliminate the remainin
tangential derivative@because partial integration would yield a term (y2x) j] jV

(1)(z1)]. In ~2.71!,
on the other hand, we can successfully perform a second partial integration

~2.71!5E
x

y

@0,21u0#dz1 V(1)~z1!~V(2)~y!2V(2)~z1!!,

but then the second parameter in the bracket@ .,.u.# becomes negative. More generally, we mu
ensure that the boundary terms contain no tangential derivatives, and that the parametersl a ,r a ,
andna stay positive in the construction.

Since the chirality of the potentials is not affected by the partial integrations, it is obvious
the rules (i ) and (i i ) of Theorem 2.3 will remain valid. For simplicity in notation, we will omit th
indicesca in the following.

First of all, we split up the factor (y2x) I in ~2.32! in the form (y2x) I5(y2x)K(y2x)L,
where L are those tensor indices which are contracted with the partial derivatives]za

I a, a

51,...,k. Settingb51 andz05x, the first line integral in~2.32! can be written as

¯~y2zb21!LE
zb21

y

@ l b ,r bunb#dzb ]zb

I bhzb

pbVJb

(b)~zb!¯ . ~2.72!

We rewrite the tangential derivatives in this line integral as derivatives in the integration var

5¯~y2zb21!NE
0

1

da a l~12a!r S d

da D q

]zb

Kbhzb

pbVJb

(b)~zb!¯ ~2.73!

with uLu5uNu1q and l 5 l b1nb , r 5r b1nb . Lemma 2.4 gives the bounds

l>q21, r>q1uNu. ~2.74!

More generally, we use~2.73!, ~2.74! as our induction hypothesis, whereby the left factor ‘‘¯ ’’
stands for all previous line integrals~which containno tangential derivatives!, and the right factor
‘‘ ¯ ’’ stands for subsequent line integrals. The tensor indices of the factor (y2za21)N must all be
contracted with the partial derivatives]za

I a for a.b and thus give tangential derivatives in th

subsequent line integrals. The induction step is to show that all thea-derivatives in~2.73! can be
eliminated, and that we can write the resulting expressions again in the form~2.73!, ~2.74! with b
replaced byb11. Under the assumption that this induction step holds, we can eliminat
tangential derivatives ink steps. The resulting expressions are very similar to~2.65!, ~2.66!. The
only difference is that the derivatives]Ka and hpa in the resulting expressions are differenti
operators acting on all the following factorsV(a), V(a11),...; in ~2.66!, on the other hand, the
partial derivatives act only on the adjacent potentialV(a). In order to bring the resulting expres
sions into the required form, we finally carry out all the derivatives with the Leibniz rule and
chain rule~2.49!.

For the proof of the induction step, we integrate in~2.73! q times by parts@if q is zero, we can
skip the partial integrations; our expression is then of the form~2.76!#. Since the powers of the
factorsa and (12a) are decreased at most by one in each partial integration step,~2.74! implies
that the boundary values vanish unless in the last step fora50. We thus obtain a sum of terms o
the form
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¯~y2zb21!N]zb

Kbhzb

pbVJb

(b)~zb!¯ uzb[zb21
~2.75!

and

¯~y2zb21!NE
zb21

y

@ l ,r un50#dzb ]zb

Kbhzb

pbVJb

(b)~zb!¯ with l>0,r>uNu. ~2.76!

In ~2.76!, we iteratively use the relation

~y2x! jE
x

y

@ l ,r un#dz̄ 5E
x

y

@ l ,r 21un#dz~y2z! j
¯ ~2.77!

to bring all factors (y2zb21) to the right,

~2.76!5¯E
zb21

y

@ l ,r un50#dzb~y2zb!N]zb

Kbhzb

pbVJb

(b)~zb!¯ with l ,r>0. ~2.78!

It might be convenient to reorganize the polynomials in this line integral with the identity

E
x

y

@ l ,r un#dz̄ 5E
x

y

@ l 21,r 21un11#dz̄ ,

but this is not relevant for the statement of the theorem.
In both cases~2.75! and ~2.78!, we have an expression of the form

¯~y2zb!N]zb

Kbhzb

pbVJb

(b)~zb!¯ , ~2.79!

where the first factor ‘‘̄ ’’ stands for line integrals without tangential derivatives, and where n
of the factors (y2zb) are contracted with]zb

Kb. Applying the ‘‘inverse Leibniz rules’’

~y2x! j
]

]xk 5
]

]xk ~y2x! j1dk
j , ~2.80!

~y2x! jhx5hx~y2x! j12
]

]xj , ~2.81!

we iteratively commute all factors (y2zb) in ~2.79! to the right. This gives a sum of expressio
of the form

¯]zb

Kbhzb

pbVJb

(b)~zb!~y2zb!L
¯ , ~2.82!

where the factors (y2zb) are all contracted with the partial derivatives]za

I a, a5b11,...,k. The

Leibniz rules may have annihilated some factors (y2zb) ~i.e., uLu might be smaller thanuNu!; in
this case, the parametersta , a5b11,...,k have decreased. As a consequence, the inequalitie
Lemma 2.4 are still valid for all expressions~2.82!. If we write ~2.82! in the form ~2.72! with b
replaced byb11, we can thus split up the tangential derivatives in the form~2.73!, ~2.74!, which
concludes the proof of the induction step.

It remains to derive Eq.~2.67!: Note that each partial integration decreases both the numb
factors (y2za21) and the total number of partial derivatives by one. If we carry out the remai
derivatives with the Leibniz rule~in the last step of the proof!, this does not change the total ord
(a51

k uKau12pa of the derivatives. Therefore relation~2.34! in Theorem 2.3 transforms into
~2.67!. h
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B. Resummation, reduction to the phase-free contribution

In Sec. II A, we gave a procedure for performing the light-cone expansion of every sum
of the perturbation series~2.12!. In order to obtain formulas for the light-cone expansion ofs̃, we
must sum up the light-cone expansions of all Feynman diagrams. Collecting the contributi
all Feynman diagrams gives, to every order on the light cone, an infinite number of terms. T
control over all these terms, we shall reorder the sums and partly carry them out. In the en
light-cone expansion fors̃(x,y) will, to any order on the light cone, consist of only a finite numb
of summands. This rearrangement and simplification of the sums is calledresummationof the
light-cone expansion.

In order to get a first impression of what needs to be done, we consider the leading sing
on the light cone@more precisely, we neglect all terms of the orderO((y2x)22)#. This corre-
sponds to taking only the contributions withh521 in Theorem 2.3. According to the boun
~2.36!, the multi-indicesI a and the parameterspa must all vanish. Furthermore, Eq.~2.34! yields
that uI u5k11. The only possibility to satisfy rules (a) and (b) is to contract one factor (y2x)
with each potentialV(a), a51,...,k, and the remaining factor (y2x) with a g-matrix. Thus the
potentialsV(a) must all be chiral potentialsAL/R . According to rules (a) and (b), the chirality of
all potentials must coincide with the chirality of the projectorxc . We conclude that the leadin
order of ((2sB)ks)(x,y) on the light cone consists of a sum of expressions of the form

xcC~y2x! j 1
¯~y2x! j k

E
x

y

@ l 1 ,r 1un1#dz1 Ac
j 1~z1!•••

3E
zk21

y

@ l k ,r kunk#dzk Ac
j k~zk!~y2x! jg jS

(21)~x,y!

with c5L or c5R. Thus Theorem 2.3 makes a precise statement on the mathematical struc
all the contributions to the light-cone expansion. However, it does not give information abo
values of the parametersC, l a , r a , andna . In order to see more precisely how the leading or
on the light cone looks, we perform the light-cone expansion directly with Lemma 2.2. To
order in the external potential, we obtain

~2sBs!~x,y! 5
~2.11!,~2.25! 1

2 ]” xE d4zS(0)~x,z!~B~z!~y2z!kgk!S
(21)~z,y!

�
~2.27! 1

2
]” xE

x

y

@0,21u0#dzB~z!~y2z!kgkS
(0)~x,y!

�
~2.25! 1

4Ex

y

dz~y2x! jg jB~z!~y2x!kgkS
(21)~x,y!

� 1

2 E
x

y

dz~xLAL
j ~z!1xRAR

j ~z!!~y2x! j~y2x!kgkS
(21)~x,y!

5
~2.25!,~2.11!

2 i ~y2x! jE
x

y

dz~xLAL
j ~z!1xRAR

j ~z!!s~x,y!, ~2.83!

where ‘‘�’’ denotes that we only take the leading order on the light cone. Since~2.83! is a product
of a smooth function with a single factors(x,y), this formula can be immediately iterated. W
obtain for the left- and right-handed component of thekth order Feynman diagram
                                                                                                                



e

s.
grams

iffer-

atively

the
e

6712 J. Math. Phys., Vol. 41, No. 10, October 2000 Felix Finster

                    
xc~~2sB!ks!~x,y!�xc~2 i !k~y2x! j 1
¯~y2x! j k

E
x

y

@0,k21u0#dz1 Ac
j 1~z1!

3E
z1

y

@0,k22u0#dz2 Ac
j 2~z2!¯E

zk21

y

@0,0u0#dzk Ac
j k~zk!s~x,y!. ~2.84!

@Notice that, according to Lemma 2.1, the higher order terms which were neglected in~2.83! also
give contributions of the orderO((y2x)22) in the iteration. Therefore it is really sufficient to tak
only the leading contribution on the light cone in every step.# The line integrals in~2.84! are
particularly simple. Namely, they are thekth order contributions to the familiar Dyson serie
From this we conclude that, to leading order on the light cone, the sum over all Feynman dia
converges absolutely. We can carry out the sum and obtain

xcs̃~x,y!�xc PexpS 2 i E
0

1

Acuay1(12a)x
j ~y2x! jda D s~x,y!, ~2.85!

where Pexp is the usual ordered exponential. For completeness, we give its definition:
Definition 2.6: For a smooth one-parameter family of matrices F(a), aPR, the ordered

exponentialPexp(*F(a)da) is given by the Dyson series

PexpS E
a

b

F~a!da D 511E
a

b

dt0 F~ t0!dt01E
a

b

dt0 F~ t0!E
t0

b

dt1 F~ t1!

1E
a

b

dt0 F~ t0!E
t0

b

dt1 F~ t1!E
t1

b

dt2 F~ t2!1¯ .

As is verified by a direct calculation, the ordered exponential is a solution of the ordinary d
ential equation

d

da
PexpS E

a

b

F~a!da D 52F~a!PexpS E
a

b

F~a!da D ~2.86!

with the boundary conditions

PexpS E
b

b

F~a!da D 51. ~2.87!

Because of the uniqueness of the solutions of ordinary differential equations, one can altern
take ~2.86!, ~2.87! as the definition for the ordered exponential.

For the ordered exponential in~2.85!, we also use the shorter notations

PexpS 2 i E
x

y

Ac
j ~y2x! j D and PexpS 2 i E

x

y

Ac
j (y2x) j D . ~2.88!

Notice that~2.88! is a unitary (f 3 f )-matrix which depends only on the chiral potentials along
line segmentxy. Its inverse is as follows:~We mention for clarity that this is in general not th
same as

PexpS i E
x

y

Ac
j ~y2x! j D , ~2.89!

because the exponentials in~2.90! and ~2.89! are ordered in opposite directions.!
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PexpS 2 i E
x

y

Ac
j ~y2x! j D †

5PexpS 2 i E
y

x

Ac
j ~x2y! j D . ~2.90!

If the chiral potentials are commutative, i.e.,@Ac(x),Ac(y)#50, then the ordered exponentia
coincides with the ordinary exponential~this is, e.g., the case if one considers the systemf 51 of
only one Dirac sea!. For the ordered exponential~2.88! along a line segment in Minkowski spac
the differential equation~2.86! can be written with partial derivatives as

~y2x!k
]

]xkPexpS 2 i E
x

y

Ac
j (y2x) j D 5 i ~y2x!kAc

k~x!PexpS 2 i E
x

y

Ac
j (y2x) j D . ~2.91!

We conclude that, to leading order on the light cone, the special form of the formulas o
light-cone expansion allows us to immediately carry out the sum over all Feynman diag
Unfortunately, the situation to higher order on the light cone is more difficult, because the
binatorics of the partial derivatives and of the tensor contractions becomes very complicate
cannot expect that the sum over all Feynman diagrams can then still be written in a simple,
form. Nevertheless, ordered exponentials over the chiral potentials should be helpful. Mor
cisely, it is promising to write the light-cone expansion with line integrals which contain inte
diate ordered exponentials, like, e.g., the line integral

E
x

y

dzPexpS 2 i E
x

z

AL
j (z2x) j D ~hA” L~z!!PexpS 2 i E

z

y

AL
k(y2z)kD ~2.92!

~expressions of this form are also suggested in view of the behavior of the fermionic pro
under local gauge transformations of the external potential!. Our basic idea is to arrange th
contributions to the light-cone expansion of Theorem 2.5 to any given order on the light co
such a way that all infinite sums~which arise from the fact that we have an infinite number
Feynman diagrams! can be carried out giving ordered exponentials. We want to end up w
finite number of terms which are of the form~2.65! with the only exception that the nested lin
integrals contain, similar to~2.92!, additional ordered exponentials.

Before we can make this idea mathematically precise, we must clarify the connection be
the line integrals in~2.65! and the line integrals with intermediate ordered exponentials. For
we consider the example~2.92!. If we expand the ordered exponentials in a Dyson series
reparametrize the integrals,~2.92! goes over into an infinite sum of nested line integrals of
form as in~2.65!, more precisely

~2.92!5 (
p,q50

` E
x

y

@ l 1 ,r 1un1#dz1 AL
j 1~z1!~y2x! j 1

E
z1

y

@ l 2 ,r 2un2#dz2 AL
j 2~z2!~y2x! j 2

¯

3E
zp21

y

@ l p ,r punp#dzp AL
j p~zp!~y2x! j p

E
zp

y

@ l ,r un#dzhA” L~z!

3E
z

y

@ l p11 ,r p11unp11#dzp11 AL
j p11~zp11!~y2x! j p11

E
zp11

y

AL
j p12~zp12!~y2x! j p12

¯

3E
zp1q21

y

@ l p11 ,r p1qunp11#dzp1q AL
j p1q~zp1q!~y2x! j p1q

. ~2.93!

The formulas of our desired light-cone expansion must be such that, after expanding the o
exponentials in this way, we get precisely all the contributions to the light-cone expansi
Theorem 2.5. We point out that we can view the expansion~2.93! as a power series in th
functionsAL/R

j (y2x) j . The leading contribution to this power series is simply the line integr
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E
x

y

dzhA” L~z!;

it is obtained from~2.92! by taking out the ordered exponentials there. In view of this example
can hope to get the contributions to our desired expansion without the ordered exponentia~i.e.,
with all the ordered exponentials removed from the formulas! by picking those contributions to th
light-cone expansion of Theorem 2.5 which contain no factorsAL/R

j (y2x) j . We take these con
tributions as the starting point for our construction.

Definition 2.7: A contribution (2.65), (2.66) to the light-cone expansion of Theorem 2
called phase free if all the tangential potentials VJa

(a) are differentiated, i.e.,

uKau12pa.0 whenever Ja is contracted with~y2x!K.

To leading order on the light cone, the only phase-free contribution is the free Green’s funcs
@namely, according to~2.84!, the contributions withk>1 all contain factorsAL/R

j (y2x) j #. The
restriction to the phase-free contribution also simplifies the situation in the general case. N
the following proposition shows that the phase-free contributions of the higher order Fey
diagrams involve higher mass-derivatives of the Green’s functions.

Proposition 2.8: For every phase-free contribution (2.65) to the light-cone expansion o
kth order Feynman diagram((2sB)ks)(x,y), the parameter h satisfies the bound

h>211Fk11

2 G , ~2.94!

where@.# denotes the Gauß bracket.
Proof: Consider a phase-free contribution~2.65! of the kth order Feynman diagram. Accord

ing to the rules for the possible contractions of the tensor indices, only one factor (y2x) may be
contracted withgJ; the remaininguKu21 factors (y2x) must be contracted with theVJa ,ca

(a) . Thus

at leastuKu21 potentials are tangential and must~according to Definition 2.7! be differentiated.
This gives the inequality

uKu21< (
a51

k

~ uKau12pa!.

We substitute this bound into~2.67! and obtain 2h>221k; this is equivalent to~2.94! j

According to the explicit formula~2.5!, the higher mass-derivatives of the Green’s functio
are of higher order on the light cone. More precisely,~2.94! and ~2.6! yield that the phase-free
contribution to the light-cone expansion of thekth order Feynman diagram is of the order

O~~y2x!2g! with g5221Fk11

2 G . ~2.95!

This means that, to every order on the light cone, only a finite number of Feynman diag
contribute. As a consequence, there are, to every order on the light cone, only a finite num
phase-free terms.

The phase-free contributions are useful because our desired light-cone expansion is o
from them by inserting ordered exponentials into the line integrals. We do this ‘‘by ha
according to simple rules.

Definition 2.9: For every phase-free contribution (2.65) to the light-cone expansion of T
rem 2.5, we introduce a corresponding phase-inserted contribution. It is constructed accord
the following rules:

(I) We insert one ordered exponential into each line integral and one ordered exponen
the very end. More precisely, the phase-inserted contribution has the form
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xcC~y2x!KW(0)~x!E
x

y

@ l 1 ,r 1un1#dz1 PexpS 2 i E
x

z1
Ac1

j 1(z12x) j 1DW(1)~z1!

3E
z1

y

@ l 2 ,r 2un2#dz2 PexpS 2 i E
z1

z2
Ac2

j 2(z22z1) j 2DW(2)~z2!¯

3E
za21

y

@ l a ,r auna#dza PexpS 2 i E
za21

za
Aca

j a (za2za21) j 1DW(a)~za!

3PexpS 2 i E
za

y

Aca11

j a11(y2za) j a11D gJS(h)~x,y!. ~2.96!

(II) The chirality cb , b51,...,a11 of the potentials in the ordered exponentials is det
mined by the number of dynamic mass matrices in the factors W(b); namely,

cb21 and cbH coincide
are oppositeJ if W(b21) contains an Heven

oddJ number of factors Y,

where c0ªc is the chirality of the projectorxc in (2.96).
To illustrate these insertion rules, we consider the example of two nested line integrals

xLE
x

y

dz1~hA” L!~z1!E
z1

y

dz2 mYL~z2!S(1)~x,y!.

The corresponding phase-inserted contribution is

xLE
x

y

dz1 PexpS 2 i E
x

z1
AL

j (z12x) j D ~hA” L!~z1!

3E
z1

y

dz2 PexpS 2 i E
z1

z2
AL

k(z22z1)kDmYL~z2!PexpS 2 i E
z2

y

AR
l (y2z2) l DS(1)~x,y!.

Theorem 2.10:The light-cone expansion of the Green’s function s˜(x,y) coincides with the
sum of all phase-inserted contributions.

Proof: A possible method for the proof would be to rearrange all the contributions to
light-cone expansion of Theorem 2.5 until recovering the Dyson series of the ordered expon
in ~2.96!. However, this method has the disadvantage of being technically complicated. It is
elegant to use a particular form of ‘‘local gauge invariance’’ of the Green’s function for the p
First we will, for givenx andy, locally transform the spinors. The transformation will be such t
the light-cone expansion for the transformed Green’s functionŝ(x,y) consists precisely of al
phase-free contributions. Using the transformation law of the Green’s function, we then sho
the light-cone expansion ofs̃(x,y) is obtained from that ofŝ(x,y) by inserting unitary matrices
into the line integrals. Finally, we prove that these unitary matrices coincide with the ord
exponentials in Definition 2.9.

In preparation, we consider the transformation law of the Dirac operator and the Gr
function under generalized local phase transformations of the spinors: We letUL andUR be two
unitary matrix fields acting on the Dirac sea index,

UL5~UL~x!m
l ! l ,m51,...,f , UR5~UR~x!m

l ! l ,m51,...,f with ULUL* 515URUR* ,

and transform the wave functionsC5(C l
a(x)) l 51,...,f

a51,...,4 according to

C~x!→Ĉ~x!5U~x!C~x! with U~x!5xLUL~x!1xRUR~x!.
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Thus UL and UR independently transform the left- and right-handed component of the w
functions, respectively. Notice that the transformationU is not unitary with respect to our scala
product~1.4!, because

VªU215xLUL
211xRUR

21 but

U* 5g0U†g05xRUL
211xLUR

21 .

Therefore we must in the following carefully distinguish betweenU, U* and their inversesV,
V* . As an immediate consequence of the Dirac equation (i ]” 1B2m)C50, the transformed
wave functionsĈ satisfy the equation

V* ~ i ]” 1B!VĈ50.

A short computation yields for the transformed Dirac operator

V* ~ i ]” 1B!V5 i ]” 1B̂

with

B̂5xL~A”̂ R2mŶR!1xR~A”̂ L2mŶL!, ~2.97!

wherebyÂL/R and ŶL/R are the potentials

ÂL/R
j 5UL/RAL/R

j UL/R
21 1 iU L/R~] jUL/R

21 !, ~2.98!

ŶL/R5UL/RYL/RUR/L
21 . ~2.99!

We denote the advanced and retarded Green’s functions of the transformed Dirac operai ]”

1B̂ by ŝ. They satisfy

~ i ]” x1B̂~x!!ŝ~x,y!5d4~x2y!. ~2.100!

Since we can viewB̂ as the perturbation of the Dirac operator, the Green’s functionŝ is, in
analogy to~2.12!, given by the perturbation series

ŝ5 (
n50

`

~2sB̂!ns. ~2.101!

The important point for the following is that the Green’s functionss̃ andŝ are related to each othe
by the local transformation

ŝ~x,y!5U~x!s̃~x,y!U~y!* . ~2.102!

This is verified as follows: The right-hand side of~2.102! also satisfies the defining equatio
~2.100! of the Green’s functions; namely

~ i ]” x1B̂~x!!U~x!s̃~x,y!U~y!* 5V~x!* ~ i ]” x1B~x!!V~x!U~x!s̃~x,y!U~y!*

5V~x!* ~ i ]” x1B~x!!s̃~x,y!U~y!*

5V~x!* d4~x2y!U~y!*

5V~x!* U~x!* d4~x2y!5d4~x2y!.
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Furthermore, the support of both sides of~2.102! lies ~depending on whether we consider th
advanced or retarded Green’s functions! either in the upper or in the lower light cone. A uniqu
ness argument for the solutions of hyperbolic differential equations yields that both sid
~2.102! must coincide.

Next, we specify the unitary transformationsUL andUR : We fix the pointsx andy. For any
point z on the line segmentxy, we choseUL/R(z) as

UL/R~z!5PexpS 2 i E
x

z

AL/R
j ~z2x! j D . ~2.103!

The differential equation~2.91! yields that

~y2x! jUc~z!~] jUc~z!21!5PexpS 2 i E x
zAc

k(z2x)kD ~y2x! j
]

]zj PexpS 2 i E z
xAc

k(x2z)kD
5PexpS 2 i E x

zAc
k(z2x)kD i ~y2x! jAc

j ~z!PexpS 2 i E z
xAc

k(x2z)kD
5 i ~y2x! jUc~z!Ac

j ~z!Uc~z!21.

Substituting into~2.98! gives

ÂL/R
j ~z!~y2x! j50 for zPxy. ~2.104!

Thus our choice ofUL andUR makes the potentialsÂL(z) and ÂR(z), zPxy, orthogonal to (y
2x). Notice, however, that sinceYL/R in ~2.99! is arbitrary and independent ofUL/R , ~2.103!
gives no constraints for the dynamic mass matricesŶL/R .

We point out that we did not specifyUL/R(z) outside the line segmentzPxy; the unitary
transformationUL/R may be arbitrary there. This means that alsoÂL/R is undetermined outside th
line segmentxy. Especially, all the non-tangential derivatives ofÂL/R(z), zPxy, are undeter-
mined. However, Eq.~2.103! does give constraints for the tangential derivatives. For exam
differentiating~2.104! in the direction (y2x) yields

~y2x! j~y2x!k] j ÂL/R
k ~z!50 for zPxy. ~2.105!

We now consider the perturbation expansion~2.101!. The light-cone expansion of all Feyn
man diagrams according to Theorem 2.5 gives a sum of terms of the form

xcC~y2x!KŴ(0)~x!E
x

y

@ l 1 ,r 1un1#dz1 Ŵ(1)~z1!E
z1

y

@ l 2 ,r 2un2#dz2 Ŵ(2)~z2!¯

3E
za21

y

@ l a ,r auna#dza Ŵ(a)~za!gJS(h)~x,y!, ~2.106!

where the factorsŴ(b) are given by

Ŵ(b)5~]KabhpabV̂Jab
,cab

(ab)
!¯~]KbbhpbbV̂Jbb

,cbb

(bb)
!. ~2.107!

Because of condition~2.104!, all the contributions which are not phase free vanish. Furtherm
according to Theorem 2.5, the contributions~2.106!, ~2.107! contain no tangential derivatives
Clearly, the derivatives in these formulas may have a component in direction of (y2x); but the
contribution of the derivatives transversal to (y2x) uniquely determines the form of each deriv
tive term. Therefore all the phase-free contributions of the form~2.106!, ~2.107! are independen
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in the sense that we have no algebraic relations between them. We conclude that, as long
potentialsÂL/R andŶL/R are only specified by~2.98!, ~2.99!, and~2.103!, the light-cone expansion
~2.106!,~2.107! consists precisely of all phase-free contributions.

Next, we exploit the local transformation law~2.102! of the Green’s functions: We solve thi
equation fors̃,

s̃~x,y!5V~x!ŝ~x,y!V~y!* . ~2.108!

The transformationUL/R does not enter on the left-hand side of this equation. Thus the right-
side of~2.108! is also independent ofUL/R . Especially, we conclude that the light-cone expans
of ŝ(x,y) must be independent of the derivatives ofUL/R along the line segmentxy. At first sight,
this might seem inconsistent because the individual contributions~2.106!, ~2.107! do depend on
the derivatives ofUL/R @this is obvious if one substitutes~2.98! and~2.99! into ~2.107! and carries
out the derivatives with the Leibniz rule#. The right way to understand the independence ofŝ(x,y)
on the derivatives ofUL/R is that all derivative terms ofUL/R cancel each other to every order o
the light cone if the~finite! sum over all contributions~2.106! to the light-cone expansion o
ŝ(x,y) is carried out. Since we will form the sum over all contributions to the light-cone ex
sion in the end, it suffices to consider only those contributions to the light-cone expansion
contain no derivatives ofUL/R . This means that we can substitute~2.98! and~2.99! into ~2.107!,
forget about the derivative termiU L/R(] jUL/R

21 ) in ~2.98!, and pull the unitary transformation
UL/R ,UL/R

21 out of the derivatives. In other words, we can replaceŴ(b), ~2.107!, by

Ŵ(b)5Ucab
~]KabhpabVJab

,cab

(ab)
!Udab

21
¯Ucbb

~]KbbhpbbVJbb
,cbb

(bb)
!Udbb

21 ~2.109!

with chiral indicesca ,da5L/R. The light-cone expansion forŝ(x,y) consists precisely of the sum
of all phase-free contributions of the form~2.106!, ~2.109!.

The chiralitiesca , da of the unitary transformationsUL/R , UL/R
21 in ~2.109! are determined by

rules (i ) and (i i ) ~in Theorem 2.3! and by~2.98! and~2.99!. According to the rule (i i ), the indices
ca and ca11 coincide iff V(a) is a chiral potential. According to~2.98! and ~2.99!, on the other
hand, the indicesca andda coincide iff V(a)5AL/R . We conclude that the indicesda andca11

always coincide. Thus all the intermediate factorsUda
Uca11

give the identity, and~2.109! simpli-
fies to

Ŵ(b)5Ucb
W(b)Udb

21. ~2.110!

Furthermore, the chiralitiescb anddb coincide if and only ifW(b) contains an even number o
dynamic mass matrices.

Finally, we substitute the light-cone expansion~2.106!, ~2.110! for ŝ(x,y) into ~2.108!. This
gives for the light-cone expansion ofs̃(x,y) a sum of expressions of the form

xcC~y2x!KUc
21~x!~Uc0

W(0)Ud0

21!~x!E
x

y

@ l 1 ,r 1un1#dz1~Uc1
W(1)Ud1

21!

3~z1!¯E
za21

y

@ l a ,r auna#dza~Uca
W(0)Uda

21!~za!Uca11
~y!gJS(h)~x,y!, ~2.111!

where the sum runs over all phase-free contributions of this type. Similar to the consider
before~2.110!, one sees that adjacent unitary transformations always have the same chirality
~2.111! can be simplified to
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xcC~y2x!KW(0)~x!E
x

y

@ l 1 ,r 1un1#dz1Uc1
~x!21Uc1

~z1!W(1)
¯

3E
za21

y

@ l a ,r auna#dzaUca
~za21!21Uca

~za!W(0)~za!Uca11
~za!213Uca11

~y!gJS(h)~x,y!,

whereby the indicesca satisfy rule (II ) of Definition 2.9. According to~2.103!, the factors
Uc

21(.)Uc(.) coincide with the ordered exponentials in~2.96!, which concludes the proof. h

For clarity, we point out that all the constructions following Definition 2.9 are based on
light-cone expansion of Theorem 2.5. It is essential for the statement of Theorem 2.10 th
phase-free contributions contain no tangential derivatives. If we had worked with the light
expansion of Theorem 2.3~instead of Theorem 2.5!, the light-cone expansion ofŝ(x,y) would not
have consisted of all the phase-free contributions to the light-cone expansion. For example
integral containing the tangential derivative~2.105! would vanish, although it is phase free. As
consequence of this problem, the whole construction would break down.

The introduction of the phase-free and phase-inserted contributions has simplified the
cone expansion of the Green’s functions considerably: Assume that we want to perfor
light-cone expansion to some given order on the light cone. Then we first calculate the pha
contribution to the light-cone expansion; according to Proposition 2.8, this gives only a
number of terms. Using the rules of Definition 2.9, we can easily construct the correspo
phase-inserted contributions. According to Theorem 2.10, this finite number of phase-in
contributions gives precisely the light-cone expansion of the Green’s functions to the desired
on the light cone. This procedure is called thereduction to the phase-free contribution.

C. Calculation of the phase-free contribution

According to the reduction to the phase-free contribution, it remains to calculate the p
free contribution to any given order on the light cone. Although this is still a very complic
problem, we know from Proposition 2.8 that we only get a finite number of terms. This mak
possible to use a computer algebra program for the calculation. The author has develop
C11 program ‘‘CLASS_COMMUTE’’ specifically for this problem. It generates explicit formula
for the phase-free contribution to any order on the light cone. We now outline how this pro
works, without entering implementation details.~The commented source code of the progra
‘‘ CLASS_COMMUTE’’ is available from the author on request. It is an extension of the program
in Ref. 2 for the light-cone expansion to first order in the external potential.!

All the objects occurring in the calculation~like integrals, partial derivatives, Laplacian
potentials, Dirac matrices, etc.! are described by different data structures~classes in C11!. For-
mulas are built up as sums of lists of these data structures. The calculation is perform
manipulating the lists. More precisely, this works as follows: Each data structure carrie
ordering number. At the beginning of the computation, the lists are disordered in the sens
their elements do not occur with increasing ordering numbers. For ordering the lists, the pr
iteratively commutes adjacent elements of a list. Each commutation is performed by a funct
the program which is specific to the particular pair of data structures; i.e., there is a functio
commuting a partial derivative with a potential, a function for commuting two Dirac matrices
~this is easily implemented in C11 using virtual class functions!. The data structures and com
mutation rules are designed in such a way that, after the ordering process has come to an
lists consist of the desired formulas of the light-cone expansion.

The main advantage of this implementation with commutation rules is that the progra
must only think of the calculation on a ‘‘local’’ scale by telling the computer the rules
commuting a given pair of data structures. Furthermore, this gives a convenient segmenta
the computer program into small, independent parts, which can be written and debugged
rately. As soon as all commutation rules are specified correctly, the program can perfor
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whole calculation ‘‘globally’’ by recursively applying the commutation rules. Compared to s
dard computer algebra packages like, e.g.,MATHEMATICA or MAPLE, this concept is very flexible
and efficient.

For the more complex manipulations like partial integrations and the handling of te
indices, the program uses a so-called ‘‘message pipe,’’ through which the objects in the for
can pass information to other objects~this is again implemented with virtual class functions!. In
this way, the elements of the lists can exchange data and give commands to each othe
allows a convenient coordination of the formula manipulations.

The calculation rules of the program ‘‘CLASS_COMMUTE’’ are very similar to the construction
steps described in the proofs of Theorem 2.3 and Theorem 2.5. The only difference is
according to our implementation as commutation rules, the calculation does not follow the
strict and clear order as in Sec. II A. Basically, one may think of the construction steps of The
2.3 and Theorem 2.5 as being performed simultaneously in a disordered way, whereby th
gram ensures that all rules are applied consistently.

Some formulas generated by the program ‘‘CLASS_COMMUTE’’ are compiled in the appendix
they give a picture of the leading singularities ofs̃(x,y) on the light cone. We remark tha
‘‘ CLASS_COMMUTE’’ was also a valuable tool for finding and checking the combinatorial result
Theorem 2.3, Lemma 2.4, and Theorem 2.5.

III. THE LIGHT-CONE EXPANSION OF THE DIRAC SEA

In this section, we shall perform the light-cone expansion of the fermionic projector as de
in Ref. 1. In Sec. III A, we establish a formal analogy between the light-cone expansions
Dirac sea and of the Green’s functions. Thisresidual argumentallows us to use the results of Se
II also for the fermionic projector. However, the analogy between the Dirac sea and the G
functions cannot be extended beyond a purely formal level. The basic reason is that, in con
the Green’s functions, the Dirac sea is anoncausalobject. This is developed in detail in Secs. III
and III C.

We point out that, in this section, we do not work with the dynamic mass matricesYL/R(x),
~2.8!. The reason is that, for the Dirac sea, the regularity conditions of Lemma 1.1 are nec
for the contributions to the perturbation expansion to be well-defined. Working with the dyn
mass matrices, however, implies that we consider the potentialB, ~2.10!, as the perturbation of the
Dirac operator; butB does not in general go to zero at infinity. For our notation, the reade
referred to Ref. 1.

A. The residual argument

We begin by describing how the light-cone expansion of the Green’s functions can be u
stood in momentum space. Apart from giving a different point of view, this allows us to g
connection to the light-cone expansion of the Dirac sea. For clarity, we begin with the specia
mY50 of zero fermion mass. This case is particularly simple because thenB5B, so that the
perturbation expansions~2.1! and~2.12! coincide. This is sufficient to explain the basic constru
tion; the extension tomYÞ0 will later be accomplished by a general argument. Furthermore
only consider the advanced Green’s function; for the retarded Green’s function, the calcula
analogous.

Suppose that we want to perform the light-cone expansion of thekth order contribution to the
perturbation series~2.1!5~2.12!. We write the contribution as a multiple Fourier integral,

~~2s∨B!ks∨!~x,y!5E d4p

~2p!4 E d4q1

~2p!4¯E d4qk

~2p!4 Ds∨~p;q1 ,...,qk!e
2 i (p1q11¯1qk)x1 ipy,

~3.1!

where the distributionDs∨(p;q1 ,...,qk) is the Feynman diagram in momentum space,
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Ds∨~p;q1 ,...,qk!5~21!ks∨~p1q11¯1qk!B̃~qk!s
∨~p1q11¯1qk21!B̃~qk21!¯

3B̃~q2!s∨~p1q1!B̃~q1!s∨~p!. ~3.2!

@B̃ denotes the Fourier transform of the potentialB, ands∨(p) is the multiplication operator in
momentum space.# For the arguments of the Green’s functions, we introduce the abbreviatio

p0ªp and plªp1q11¯1ql , 1< l<k. ~3.3!

Substituting the explicit formulas~2.3! and ~2.15! into ~3.2!, we obtain

Ds∨~p;q1 ,...,qk!5~21!kp” kB̃~qk!p” k21¯p” 1B̃~q1!p” 0

3 lim
0,«→0

1

~pk!
22 i«pk

0

1

~pk21!22 i«pk21
0 ¯

1

~p0!22 i«p0
0 . ~3.4!

We now expand the Klein–Gordon Green’s functions in~3.4! with respect to the momentapl

2p. If we expand the termsi«pl
0 with a geometric series,

1

~pl !
22 i«pl

0 5 (
n50

`
~ i«~pl

02p0!!n

~~pl !
22 i«p0!11n ,

all contributions withn>1 contain factors« and vanish in the limit«→0. Therefore we must only
expand with respect to the parameters ((pl)

22p2). This gives, again with geometric series,

Ds∨~p;q1 ,...,qk!5~21!kp” kB̃~qk!p” k21¯p” 1B̃~q1!p” 0

3 (
n1 ,...,nk50

`

~p22pk
2!nk

¯~p22p1
2!n1 lim

0,«→0

1

~p22 i«p0!11k1n11¯1nk
.

Rewriting the negative power of (p22 i«p0) as a mass-derivative,

1

~p22 i«p0!11k1n11¯1nk
5

1

~k1n11¯1nk!!
S d

daD k1n11¯1nk 1

p22a2 i«p0
ua50

, ~3.5!

we obtain a formula containing only one Green’s function. Namely, using the notation~2.13!,

Ds∨~p;q1 ,...,qk!5~21!kp” kB̃~qk!p” k21¯p” 1B̃~q1!p” 0

3 (
n1 ,...,nk50

`
1

~k1n11¯1nk!!
~p22pk

2!nk
¯~p22p1

2!n1S∨(k1n11¯1nk)~p!.

~3.6!

This is the basic equation for the light-cone expansion of the Green’s functions in mome
space. Similar to the light-cone expansion of the previous section,~3.6! involves the differentiated
Green’s functionsS∨(.). It remains to transform the polynomials in the momentap0 ,...,pk until
getting a connection to the nested line integrals of, say, Theorem 2.3: Substituting~3.3!, we
rewrite ~3.6! in terms of the momentap, q1 ,...,qk and multiply out. Furthermore, we simplify th
Dirac matrices with the anticommutation rules~2.53!. This gives for~3.6! a sum of terms of the
form

xcCg Iqk
I k
¯q1

I 1ṼJk ,ck

(k) ~qk!¯ṼJ1 ,c1

(1) ~q1!pLS∨(h)~p! ~h>@ uLu/2# !, ~3.7!
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where the tensor indices of the multi-indicesI , I l , Jl , and L are contracted with each othe
~similar to the notation of Theorem 2.3, the factorsṼJl ,cl

( l ) stand for the individual potentials ofB̃!.

If tensor indices of the powerpL are contracted with each other, we can iteratively eliminate
corresponding factorsp2 with the rule~2.14!, more precisely

p2S∨(h)~p!5hS∨(h21)~p! ~h>1!. ~3.8!

Thus we can arrange that the tensor indices ofpL in ~3.7! are all contracted with tensor indices o
the factorsg I , ql

I l , or ṼJl ,cl

( l ) . By iteratively applying the differentiation rule~2.16!, we can now

rewrite the powerpL in ~3.7! with p-derivatives, e.g.,

pj pkS
∨(2)~p!52

1

2
pj

]

]pk S∨(1)~p!52
1

2

]

]pk ~pjS
∨(1)~p!!1

1

2
gjkS∨(1)~p!

5
1

4

]2

]pj]pk S(0)~p!1
1

2
gjkS(1)~p!.

In this way, we obtain forDs∨(p;q1 ,...,qk) a sum of terms of the form

xcCg Iqk
I k
¯q1

I 1ṼJk ,ck

(k) ~qk!¯ṼJ1 ,c1

(1) ~q1!]p
KS∨(h)~p!, ~3.9!

whereby no tensor indices of the derivatives]p
K are contracted with each other. We substitute th

terms into~3.1! and transform them to position space. Integrating the derivatives]p
K by parts gives

factors (y2x)K. The factorsql
I l , on the other hand, can be written as partial derivatives] I l acting

on the potentialsV( l ). More precisely, the term~3.9! gives after substitution into~3.1! the contri-
bution

xcCi uI 1u1¯1uI ku~2 i ! uKug I~] I kVJk ,ck

(k) ~x!!¯~] I 1VJ1 ,c1

(1) ~x!!~y2x!KS∨(h)~x,y!, ~3.10!

where the tensor indices of the factor (y2x)K are all contracted with tensor indices of th
multi-indicesI , I l , or Jl . The Feynman diagram ((2sB)ks)(x,y) coincides with the sum of al
these contributions.

This expansion shares much similarity with the light-cone expansion of Theorem 2.3. Na
if one expands the nested line integrals in~2.32! in a Taylor series aroundx, one gets precisely the
expansion into terms of the form~3.10!. Clearly, the light-cone expansion of Theorem 2.3 goes
beyond the expansion~3.10!, because the dependence on the external potential is describe
nonlocal line integrals. Nevertheless, the expansion in momentum space~3.6! and subsequen
Fourier transformation give an easy way of understanding in principle how the formulas o
light-cone expansion come about. We remark that, after going through the details of the c
natorics and rearranging the contributions~3.10!, one can recover the Taylor series of the li
integrals in ~2.32!. This gives an alternative method for proving Theorem 2.3. However,
obvious that this becomes complicated and does not yield the most elegant approach~the reader
interested in the details of this method is referred to Ref. 2, where a very similar technique i
for the light-cone expansion to first order in the external potential!.

Our next aim is to generalize the previous construction. Since we must, similar to~3.5!,
rewrite a product of Green’s functions as the mass-derivative of a single Green’s function, w
only expect the construction to work if all Green’s functions in the product~3.2! are of the same
type~e.g., the construction breaks down for a ‘‘mixed’’ operator product containing both adva
and retarded Green’s functions!. But we need not necessarily work with the advanced or retar
Green’s functions. Instead, we can use Green’s functions with a different position of the po
the complexp0-plane: We consider the Green’s functions
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s6~p!5p” Saua50
6 ~p! with S6~p!5 lim

0,«→0

1

p22a7 i«
~3.11!

and again use the notation~2.13!,

S6( l )5S d

daD l

Saua50
6 .

The perturbation expansion for these Dirac Green’s functions is, similar to~2.1! or ~2.12!, given
by the formal series

s̃1
ª(

n50

`

~2s1B!ns1, s̃2
ª(

n50

`

~2s2B!ns2. ~3.12!

The light-cone expansion in momentum space is performed exactly as for the advance
retarded Green’s functions; we obtain in analogy to~3.1! and ~3.6! the formula

~~2s6B!ks6!~x,y!5E d4p

~2p!4 E d4q1

~2p!4¯E d4qk

~2p!4 Ds6~p;q1 ,...,qk!e
2 i (p1q11¯1qk)x1 ipy

with

Ds6~p;q1 ,...,qk!5~21!kp” kB̃~qk!p” k21¯p” 1B̃~q1!p” 0

3 (
n1 ,...,nk50

`
1

~k1n11¯1nk!!
~p22pk

2!nk
¯~p22p1

2!n1S6(k1n11¯1nk).

SinceS6 are Green’s functions of the Klein–Gordon equation, they clearly also satisfy the
tity ~3.8!. Furthermore, the differentiation rule~2.16! is also valid forS6; namely

]

]pj S6( l )~p!5S d

daD l

lim
0,«→0

]

]pj S 1

p22a7 i« D
ua50

5S d

daD l

lim
0,«→0

22pj

~p22a7 i«!2ua50522pjS
6( l 11)~p!.

Therefore we can, exactly as in~3.9!, rewrite the powerpL with p-derivatives. Thus the expansio
~3.10! is valid in the same way for the Green’s functionss6 if one only replaces the index ‘‘∨’’ in
~3.10! by ‘‘ 6. ’’ As explained before, the expansion~3.10! is obtained from the light-cone expan
sion of Theorem 2.3 by expanding the potentials around the space–time pointx. Since the
formulas of the light-cone expansion are uniquely determined by this Taylor expansion, w
mediately conclude that the statement of Theorem 2.3 is also valid for thekth order contribution to
the perturbation expansion~3.12! if the factor S(h) in ~2.32! stands more generally forS1(h) or
S2(h), respectively. This simple analogy between the formulas of the light-cone expansion
Feynman diagrams ((2s∨/∧B)ks∨/∧) and ((2s6B)ks6), which is obtained by changing the po
sition of the poles of the free Green’s functions in momentum space, is called theresidual
argument.

After these preparations, we come to the fermionic projector in the general casemYÞ0. We
want to extend the light-cone expansion to an objectP̃resbeing a perturbation of the free fermion
projector. Our method is to defineP̃res in such a way that it can be easily expressed in terms of
Green’s functionss̃∨, s̃∧, s̃1, and s̃2. The light-cone expansion of the Green’s functions th
immediately carries over toP̃res. We denote the lower mass shell byTa , i.e., in momentum space
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Ta~q!5Q~2q0!d~q22a!, ~3.13!

and set

T( l )5S d

daD l

Taua50 . ~3.14!

Furthermore, we introduce, exactly as in Ref. 1, the series of operator products

b,5 (
k50

`

~2sB!k, b5 (
k50

`

~2Bs!kB, b.5 (
k50

`

~2Bs!k.

Definition 3.1: The residual fermionic projector P˜ res(x,y) is defined by

P̃res~x,y!5 1
2 X~ p̃res2 k̃!~x,y!, ~3.15!

where the operators p˜ res and k̃ are given by the perturbation series

p̃res5 (
b50

`

~2 ip!2bb,p~bp!2bb., ~3.16!

k̃5 (
b50

`

~2 ip!2bb,k~bk!2bb.. ~3.17!

Proposition 3.2 (formal light-cone expansion of the residual fermionic projector): The re
of Sec. II also apply to the residual fermionic projector. More precisely, the light-cone expa

of Theorem 2.3 holds for P˜ res(x,y) if we replace S(h) by T(h) and multiply the formulas of the
light-cone expansion from the left with the chiral asymmetry matrix X. According to Theorem 2.5
all tangential derivatives can be integrated by parts. With Definitions 2.7, 2.9, and Theorem
the light-cone expansion can be reduced to the phase-free contribution. According to Propo
2.8, the phase-free contribution consists, to every order;T(h), of only a finite number of terms.

Proof: First of all, we must generalize the residual argument to the casemYÞ0 of massive
fermions. According to~2.1! and ~2.12!, there are two equivalent perturbation series fors̃∨,

s̃∨5 (
k50

`

~2s∨B!ks∨ ~3.18!

5 (
k50

`

~2sm50
∨ B!ksm50

∨ . ~3.19!

In both perturbation series, each summand is a well-defined tempered distribution~this follows
from the smoothness ofB, B and from the causality of the perturbation expansion!. In Sec. II, we
developed the light-cone expansion from the series in~3.19!. But by arranging the contributions t
this light-cone expansion in powers of the potentialB, one also obtains formulas for the light-con
expansion of every Feynman diagram of the perturbation series~3.18!. For the Green’s functions
s6, we have similar perturbation expansions

s̃65 (
k50

`

~2s6B!ks6 ~3.20!
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5 (
k50

`

~2sm50
6 B!ksm50

6 . ~3.21!

Since the support of the distributionss6(x,y) doesnot vanish outside the light cone, we now ne
the conditions of Lemma 1.1 on the decay of the potentials at infinity. According to our ass
tions onB, each summand of the perturbation expansion~3.20! is a well-defined distribution. The
potentialB, however, does not in general decay at infinity; thus the Feynman diagrams o
perturbation expansion~3.21! are ill-defined. This is a problem, especially because in our ab
consideration, the residual argument was derived for the Feynman diagrams of the expa
~3.19! and ~3.21!. The solution to this problem is an approximation argument using the ‘‘cau
ity’’ of the formulas of the light-cone expansion: We consider a smooth functionhR(x) which is
equal to one inside the ball of radiusR around the origin and vanishes outside the ball of rad
2R ~in R4 equipped with the standard Euclidean metric!. Then the potentialhRB has compact
support and, according to Lemma 1.1, the Feynman diagrams

~~2sm50
6 hRB!ksm50

6 !~x,y! ~3.22!

are well-defined. We can apply the above-mentioned residual argument formY50; this yields
formulas of the light-cone expansion in terms of the potential (hRB) and its partial derivatives
Since the potential enters into the formulas of the light-cone expansion only along the conve
xy, we can, by taking the limitR→`, remove the cutoff functionhR from these formulas. This
limiting process shows that the summands of the perturbation series in~3.21! make mathematica
sense in terms of the light-cone expansion. By reordering the contributions, we immediatel
get formulas for the light-cone expansion of the Feynman diagrams of the perturbation
~3.20!. The analogy between the light-cone expansions of the Feynman diagrams of the pe
tion series~3.18! and~3.20! finally yields the extension of the residual argument to a general m
matrix mY.

Evaluating the poles in~2.15! and ~3.12! in the complexp0-plane gives@using the formula
lim0,«→0((x2 i«)212(x1 i«)21)52p id(x)# the relations

s∨5s1 ipk, s∧5s2 ipk, ~3.23!

s15s1 ipp, s25s2 ipp, ~3.24!

wheres denotes as in Ref. 1 the arithmetic mean of the advanced and retarded Green’s fun

s5 1
2 ~s∨1s∧!.

We substitute~3.23! and ~3.24! into the perturbation series~2.1!, ~3.20! and multiply out. After
rearranging the sums, one sees that the series~3.16! and ~3.17! can be written as

p̃res5
1

2p i
~ s̃12 s̃2! and k̃5

1

2p i
~ s̃∨2 s̃∧!, ~3.25!

respectively~see@Ref. 1, proof of Theorem 3.2# for the details of the combinatorics!. According to
the residual argument, all Green’s functions have a light-cone expansion according to Th
2.3. By substituting into~3.25!, this light-cone expansion immediately generalizes top̃res and k̃.
Using ~3.15!, we conclude that Theorem 2.3 is also valid forP̃res after the replacementS(h)

→T(h) and multiplication with the chiral asymmetry matrix. Since the results of Theorem
Proposition 2.8, and Theorem 2.10 are obtained merely by manipulating and rearrangi
formulas of the light-cone expansion, they also hold for the residual fermionic projector.j

We point out that the argumentation in this section was only formal in the sense that w
not care about the convergence of the infinite sums. Also, the approximation argument in the
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of Proposition 3.2 requires a mathematical justification. Furthermore, the derivative~3.14! is
ill-defined because, fora50, the mass shell degenerates to the cone$q250,q0,0%, which is not
differentiable atq50. We postpone the mathematical analysis of these problems to Sec. III

B. The noncausal high energy contribution

Unfortunately, the residual fermionic projectorP̃res of the Sec. III A does not coincide with
the fermionic projectorP̃ of Ref. 1,

P̃~x,y!5 1
2 X~ p̃2 k̃!~x,y!. ~3.26!

The difference is that, instead of the operatorp̃res in the residual fermionic projector~3.15!, the
fermionic projector~3.26! involves the operatorp̃, which is formally given by

p̃ 5
formally

Ak̃2. ~3.27!

Using an operator calculus method, this formal definition is made mathematically precise in
1 in terms of a perturbation series forp̃. Similar to ~3.16!, this perturbation expansion consists
a sum of operator products. But the operator products are more complicated; they also c
operatorsk with some combinatorial factors~see Ref. for details!.

Before entering the mathematical analysis of the operator products, we point out that it
just a matter of taste to take~3.26!, and not~3.15!, as the definition of the fermionic projector; on
the definition~3.26! makes physical sense. This comes as follows: As explained in Ref. 1
operatork̃ generalizes the splitting of the solutions of the Dirac equation into solutions of pos
and negative frequency to the case with interaction. The ‘‘generalized positive and ne
frequency solutions’’ are given by the eigenstates ofk̃ with positive and negative eigenvalue
respectively. The construction~3.27!, ~3.26! projects out all positive eigenstates ofk̃; the operator
1
2( p̃2 k̃) consists precisely of all eigenstates ofk̃ with negative eigenvalue. The residual fermion
projector~3.15!, however, consists of a mixture of positive and negative eigenstates ofk̃, which is
not a reasonable physical concept.

We begin by giving the difference between the fermionic projector and the residual ferm
projector a name.

Definition 3.3: The noncausal high energy contribution P˜ he(x,y) to the fermionic projector is
given by

P̃he~x,y!5 P̃~x,y!2 P̃res~x,y!.

Clearly, this definition is only helpful ifP̃he has some nice properties. The reason why
definition makes sense is that every contribution to the perturbation expansion ofP̃he(x,y) is a
smooth function. Thus the singular behavior of the fermionic projector on the light con
completely described by the residual fermionic projector and its light-cone expansion, Propo
3.2.

Theorem 3.4:The noncausal high energy contribution P˜ he(x,y) is, to every order in pertur-
bation theory, a smooth function in x and y.

Proof: The perturbation series~Ref. 1 Theorem 4.1! definesp̃ as a sum of operator produc
of the form

CnBCn21B¯BC0 , ~3.28!

where the factorsCl coincide with eitherk, p, or s. The number of factorsk in these operator
products is always even. If one replaces all factorsk by p, one gets precisely the perturbatio
series forp̃res, ~3.16! ~this is verified using the details of the combinatorics in Ref. 1!. Therefore
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we can convert the perturbation series forp̃ into that for p̃res by iteratively replacing pairs of
factorsk in the operator products by factorsp. Thus the difference (p̃2 p̃res) can, to every order
in perturbation theory, be written as a finite sum of expressions of the form

CnB¯Cb11B~pBCb21¯Ca11Bp2kBCb21¯Ca11Bk!BCa21¯BC0 , ~3.29!

where the factorsCl again stand fork, p, or s. SinceP̃he5 1
2X( p̃2 p̃res), it suffices to show that

~3.29! is a smooth function in position space.
We first simplify our problem: Once we have shown that the bracket in~3.29! is smooth and

bounded in position space, the additional multiplications to the very left and right can be c
out by iteratively multiplying withB and forming the convolution withCl , which again gives a
smooth and bounded function in each step~notice that, according to the assumptions of Lem
1.1, B decays sufficiently fast at infinity!. Thus we must only consider the bracket in~3.29!. We
rewrite this bracket with the projectors12(p2k) and 1

2(p1k) on the lower and upper mass shel

pBCn21¯C1Bp2kBCn21¯C1Bk

5 1
2 ~p1k!BCn21¯C1B~p2k!1 1

2 ~p2k!BCn21¯C1B~p1k!.

For symmetry reasons, it suffices to show that the first summand of this decomposition,

~~p1k!BCn21¯C1B~p2k!!~x,y!, ~3.30!

is smooth and bounded.
We proceed in momentum space. We say that a functionf (q) hasrapid decay for positive

frequencyif it is C1, bounded together with its first derivatives~i.e., supu f u,supu] l f u,`!, and
satisfies for everya.0 the bounds

sup
v.0,kWPR3

uva f ~v,kW !u, sup
v.0,kWPR3

uva] l f ~v,kW !u,`. ~3.31!

After settingC05p2k andCn5p1k, the operator product~3.30! is of the form~1.8!. We choose
a functiong with rapid decay for positive frequency and decompose the operator product i
form ~1.12!, ~1.13!. It follows by induction that the functionsF j all have rapid decay for positive
frequency: The induction hypothesis is obvious by settingF05g. The induction step is to show
that for a functionF j 21 with rapid decay for positive frequency, the convolution

F j~v,kW !5E dv8

2p E dkW8

~2p!3B̃~v2v8,kW2kW8!Cj 21~v8,kW8!F j 21~v8,kW8! ~3.32!

also has rapid decay for positive frequency. In Lemma 1.1, it was shown thatF j is C1 and
bounded together with its first derivatives. As a consequence, we must only establish the b
~3.31! for v.1. Because of monotonicityva,vb for a,b ~andv.1!, it furthermore suffices
to show that there are arbitrarily large numbersa satisfying the bounds~3.31!; we only consider
a52n with nPN. For v.1 andv8PR, we have the inequality

v2n<~2v8!2nQ~v8!1~2~v2v8!!2n,

as is immediately verified by checking the three regionsv8<0, 0,v8<v/2, andv8.v/2. We
combine this inequality with~3.32! and obtain forv.1 the estimate

uv2nF j~v,kW !u<U E dv8

~2p!
E dkW8

~2p!3B̃~v2v8,kW2kW8!Cj 21~v8,kW8!@~2v8!2nQ~v8!F j 21~v8,kW !#U
~3.33!
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1U E dv8

2p E dkW8

~2p!3 @~2~v2v8!!2nB̃~v2v8,kW2kW8!#

3Cj 21~v8,kW8!F j 21~v8,kW !U. ~3.34!

According to the induction hypothesis, the square brackets in~3.33! are bounded together with
their first derivatives. SinceB̃ has rapid decay at infinity, the square brackets in~3.34! also have
rapid decay at infinity. Thus both integrals in~3.33! and ~3.34! satisfy the hypothesis considere
in Lemma 1.1 for~1.10!, and are therefore bounded. For estimatinguv2n] lF j u, we differentiate
~3.32! and obtain similar to~3.33! and ~3.34! the inequality

uv2n] lF j~v,kW !u

<U E dv8

2p E dkW8

~2p!3 ] l B̃~v2v8,kW2kW8!Cj 21~v8,kW8!@~2v8!2nQ~v8!F j 21~v8,kW !#U
1U E dv8

dv E dkW8

~2p!3 @~2~v2v8!!2n] l B̃~v2v8,kW2kW8!#Cj 21~v8,kW8!F j 21~v8,kW !U.
This concludes the proof of the induction step.

We have just shown that for a functiong with rapid decay for positive frequency, the functio

Fn~q!5E d4q1

~2p!4 ~BCn21B¯BC1BC0!~q,q1!g~q1! ~3.35!

has rapid decay for positive frequency. We now consider what this means for our operator p
~3.30! in position space. For a given four-vectory5(y0,yW ), we choose

g~v,kW !5h~v!e2 i (vy02kWyW ),

whereh is a smooth function withh(v)51 for v<0 andh(v)50 for v.1 ~this choice ofg
clearly has rapid decay for positive frequency!. Since the support of the factorC05(p2k) is the
lower mass cone$q2>0,q0<0%, g(v,kW ) enters into the integral~3.35! only for negativev. But
for v<0, the cutoff functionh is identically one. Thus the integral~3.35! is simply a Fourier
integral, i.e., with a mixed notation in momentum and position space,

Fn~q!5~BCn21B¯BC1B~p2k!!~q,y!.

Next, we multiply from the left with the operator (p1k),

~~p1k!BCn21B¯BC1B~p2k!!~q,y!5~p1k!~q!Fn~q!. ~3.36!

SinceFn has rapid decay for positive frequency and (p1k) has its support in the upper mass co
$q2>0,q0.0%, their product decays fast at infinity. More precisely,

uqI~p1k!~q!Fn~q!u<const~ I !~p1k!~q!

for any multi-index I . As a consequence, the Fourier transform of~3.36! is even finite after
multiplying with an arbitrary number of factorsq, i.e.,

U E d4q

~2p!4 qI~p1k!~q!Fn~q!e2 iqxU<const~ I !,`
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for all x and I . This shows that our operator product in position space~3.30! is bounded and, for
fixed y, a smooth function inx ~with derivative bounds which are uniform iny!. Similarly, one
obtains that~3.30! is, for fixedx, a smooth function iny. We conclude that the distribution~3.30!
is a smooth and bounded function. j

We point out thatP̃he(x,y) is a noncausal object in the sense that it does not only depen
the potentialB in the ‘‘diamond’’ (Lx

∨ùLy
∧)ø(Lx

∧ùLy
∨) @with Lx

∨ andLx
∧ according to~2.2!#, but

on the external potential in the entire space–time. This becomes clear from the fact th
support of the operatorsp(z1 ,z2) in the perturbation expansion forP̃he is the whole space
(z1 ,z2)PR43R4. In particular, it is not possible to expressP̃he(x,y) similar to the formulas of the
light-cone expansion in terms of the potential and its partial derivatives along the convex linxy.

The noncausal high energy contribution is an effect of higher order perturbation theo
vanishes to first order in the external potential.2 According to the decomposition into terms of th
form ~3.30!, it comes about because states on the upper and lower mass shells are mixed
multiplication with the potential. Qualitatively speaking, this mixing only becomes an impo
effect if the energy~i.e., frequency! of the external potential is high enough to overcome
energy difference between the states on the upper and lower mass shell. This gives the just
for the name ‘‘high energy’’ contribution.

C. The noncausal low energy contribution

In this section, we will put the residual argument and the formal light-cone expansio
Proposition 3.2 on a satisfying mathematical basis. In order to explain what we precisely n
do, we first recall how the light-cone expansion of the Green’s functions makes mathem
sense: Theorem 2.3 gives a representation of every Feynman diagram of the perturbation
~2.12! as an infinite sum of contributions of the form~2.32!. According to the bound~2.36!, there
are, for any givenh, only a finite number of possibilities to chooseI a andpa ; as a consequence
we get, for fixedh, only a finite number of contributions~2.32!. Thus we can write the light-cone
expansion in the symbolic form

~~2sB!ks!~x,y!5 (
h521

`

(
finite

¯S(h)~x,y!, ~3.37!

where ‘‘̄ ’’ stands for a configuration of theg-matrices and nested line integrals in~2.32!.
According to the explicit formula~2.5!, the highera-derivatives ofSa(x,y) contain more factors
(y2x)2 and are thus of higher order on the light cone. This makes it possible to understan
infinite sum in~3.37! in terms of Definition 1.2; we can give it a mathematical meaning via
approximation by the finite partial sums~1.15!. In Sec. II B, it is shown that understanding th
light-cone expansion via these partial sums even makes it possible to explicitly carry out th
over all Feynman diagrams.

According to Proposition 3.2, all the results of Sec. II are, on a formal level, also valid fo
residual Dirac sea. We begin by considering the light-cone expansion of the individual Fey
diagrams in more detail. Similar to~3.37!, the kth order contributionDPres to the residual Dirac
sea has an expansion of the form

DPres~x,y!5 (
h521

`

(
finite

¯T(h)~x,y!, ~3.38!

whereT(h) is thea-derivative~3.14! of the lower mass shellTa , ~3.13!. In position space,Ta has
the explicit form
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Ta~x,y!52
1

8p3 lim
0,«→0

1

j22 i«j0 1
a

32p3 lim
0,«→0

~ log~aj22 i«j0!1 ip1c!(
j 50

`
~21! j

j ! ~ j 11!!

~aj2! j

4 j

2
a

32p3 (
j 50

`
~21! j

j ! ~ j 11!!

~aj2! j

4 j ~F~ j 11!1F~ j !! ~3.39!

with j[(y2x), c52C2 log 2 with Euler’s constantC, and the function

F~0!50, F~n!5 (
k51

n
1

k
for n>1.

The logarithm in~3.39! is understood in the complex plane which is cut along the positive
axis ~so that lim0,«→0log(x1i«)5loguxu is real forx.0!. Alternatively, one can avoid the com
plex logarithm using the formula

lim
0,«→0

log~aj22 i«j0!1 ip5 loguaj2u1 ipQ~j2!e~j0!

@e is the step functione(x)51 for x>0 ande(x)521 otherwise#; thus the complex logarithm
describes both a logarithmic pole on the light cone and a constant contribution in the interior
light cone. The basic difference between the light-cone expansions~3.37! and~3.38! is related to
the logarithmic pole loguau in ~3.39!. Namely, as a consequence of this logarithm, the hig
a-derivatives ofTa are not of higher order on the light cone. To the orderO((y2x)2), for
example, one has

S d

daD n

Ta~x,y!5
1

32p3 S d

daD n

~a loguau!1O~~y2x!2! ~n>2!. ~3.40!

This means that the infinite sum in~3.38! cannot be understood in terms of Definition 1.2; t
number of summands is already infinite to a given order on the light cone. In our context
expansion arounda50, the situation is even worse, because thea-derivatives ofTa are singular
for a→0 @as one sees, e.g., in~3.40!#. Thus not even the individual contributions to the light-co
expansion make mathematical sense. These difficulties arising from the logarithm in~3.39! are
called the logarithmic mass problem~see Ref. 2 for a more detailed discussion in a sligh
different setting!. Since we know from Lemma 1.1 that the Feynman diagrams are all w
defined, the logarithmic mass problem is not a problem of the perturbation expansion, but
that something is wrong with the light-cone expansion of Proposition 3.2.

In order to resolve the logarithmic mass problem, we first ‘‘regularize’’ the formal light-c
expansion by taking out the problematic loguau term. By resumming the formal light-cone expa
sion, we then show that the difference between the residual Dirac sea and the ‘‘regularized’’
sea is a smooth function in position space. We introduce the notation

Ta
reg~x,y!5Ta~x,y!2

a

32p3 loguau(
j 50

`
~21! j

j ! ~ j 11!!

~aj2! j

4 j , ~3.41!

Treg(l )5S d

daD l

Taua50
reg . ~3.42!

Definition 3.5: The causal contribution P˜ causalto the fermionic projector is obtained from th

residual Dirac sea P˜ res by replacing all factors T(h) in the formal light-cone expansion by Treg(h).
The noncausal low energy contribution P˜ le to the fermionic projector is given by
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P̃le~x,y!5 P̃res~x,y!2 P̃causal~x,y!.

By the replacementT(h)→Treg(h), the formal light-cone expansion of Proposition 3.2 becom
mathematically meaningful in terms of Definition 1.2. Thus we can restate this result as a the
leaving out the word ‘‘formal.’’

Theorem 3.6„light-cone expansion of the causal contribution…: The results of Sec. II also
apply to the causal contribution to the fermionic projector. More precisely, the light-cone ex

sion of Theorem 2.3 holds for P˜ causalif we replace S(h) by Treg(h), (3.42), and multiply the formulas
of the light-cone expansion from the left with the chiral asymmetry matrixX. According to
Theorem 2.5, all tangential derivatives can be integrated by parts. With Definitions 2.7, 2.9
Theorem 2.10, the light-cone expansion can be reduced to the phase-free contribution. Acc
to Proposition 2.8, the phase-free contribution consists, to every orderO((y2x)2g) on the light
cone, of only a finite number of terms.

We come to the analysis of the low energy contribution. In the following lemma, we re
mulate the light-cone expansion of Theorem 2.3 in a way where the infinite sums are ha
more explicitly.

Lemma 3.7: The light-cone expansion of the kth order contribution((2sB)ks)(x,y) to the
perturbation series (2.12) can be written as a finite sum of expressions of the form

(
n1 ,...,nk50

`
1

n1!¯nk!
xcC~y2x! IE

x

y

@a1 ,b11n21¯1nkun1#dz1]z1

I 1hz1

n11q1VJ1 ,c1

(1) ~z1!

3E
z1

y

@a2 ,b21n31¯1nkun2#dz2 ]z2

I 2hz2

n21q2VJ2 ,c2

(2) ~z2!¯

3E
zk21

y

@ak ,bkunk#dzk ]zk

I khzk

nk1qkVJk ,ck

(k) ~zk!g
JS(r 1n11¯1nk)~x,y!. ~3.43!

In this formula, we use for the chiral and tensor indices the same notation as in Theorem 2.l ,
bl , andql are non-negative integers. The parameters r and bl satisfy the bounds

r<k2uI u, ~3.44!

bl>r 2 l 1uI u, 1< l<k. ~3.45!

Proof: The form of expression~3.43! is straightforward if one keeps track of the infinite sum
in the inductive construction of Theorem 2.3; it is also obvious that we only get a finite numb
such expressions. The only point which needs an explanation is how one can arrange
infinite sums are of the form

(
n50

`
1

n!
@ .,.un#hn

¯ . ~3.46!

For this, we must manipulate the sums when then Laplacianhn is carried out after~2.41!.
Whenever a Laplacian acts on a factor (y2x) I , we shift the summation index by one. Mor
precisely, in the case of one factor (y2x), we use the transformation
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(
n50

`
1

n!
@a,bun#hx

n~y2x! i f (n)~x!

5 (
n50

`
1

n!
@a,bun#~~y2x! ihx

nf (n)22n] ihn21f (n)!

5~y2x! i (
n50

`
1

n!
@a,bun#hx

nf (n)~x!22

3 (
n50

`
1

n!
@a11,b11un#hx

n] i f (n11)~x! ~3.47!

@wheref (n) denotes a function depending onn#; in the general case of several factors (y2x), we
inductively apply~3.47!.

It remains to show that the parametersal , bl , andql are non-negative, and that the inequa
ties~3.44! and~3.45! hold. For this, it suffices to consider the leading summandn15¯5nk50 of
~3.43!. Since this is a~special! contribution of the form~2.32!, we can apply Theorem 2.3 with
ai5 l i1ni , bi5r i1ni , andpi5qi . It follows thatal , bl , andql are non-negative. For the proo
of the inequalities~3.44! and ~3.45!, we proceed inductively in the orderk of the perturbation
theory. Fork50, we haver 521 and uI u51, so that the inequalities are satisfied. Assume t
~3.44! and~3.45! hold for a givenk. We go through the construction steps of Theorem 2.3 us
the index shift~3.47! and verify that~3.44! and ~3.45! are also valid to (k11)st order:

For the proof of~3.44!, we note that additional factors (y2x) are generated at most once
the construction; namely, if the derivative]” x acts onS(ĥ) in step ~5!. The parameterr is only
increased if either a Laplacian acts on the factor (y2x) I in step ~3! @leading to the index shift
~3.47!# or if the derivative]” x does not act onS(ĥ) in step(5). In both cases, one loses at least o
factor (y2x). This gives~3.44!.

For the proof of~3.45!, we take the contribution~3.43! with n15¯5nk50 and apply the
construction of Theorem 2.3. When computing the Laplacianhz

n in step~3!, we shift the index
according to~3.47! whenever a Laplacian acts on a factor (y2x). Denoting the number of index
shifts bys, we get a finite number of terms of the form

(
n50

`
1

n!
xcCi]” xS

( r̂ 1n)~x,y!E
x

y

@s,r 1su0#dz~y2x! Î]z
I 0hnVJ0

(0)~z!

3E
z

y

@a1 ,b1u0#dz1 ]z1

I 1hz1

q1VJ1 ,c1

(1) ~z1!¯E
zk21

y

@ak ,bku0#dzk ]zk

I khzk

qkVJk ,ck

(k) ~zk!g
J.

Each index shift decreases the number of factors (y2z) and increments the order of the mas
derivative of the Green’s function, thus

u Î u<uI u2s, r̂ 5r 111s. ~3.48!

It again suffices to consider the leading summandn50; this is a contribution of the form~2.32!.
After extracting the factors (y2x) in step~4!, the parameterb05r 01n0 satisfies

b05r 1u Î u1s >
~3.48!

r̂ 1u Î u21.

The parametersbl , 1< l<k, remain unchanged in the construction; they are still the same a
~3.45!,

bl>r 2 l 1uI u> r̂ 2~ l 11!1u Î u, l 51,...,k.
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When the derivative]” x is carried out in step(5), eitherr is decremented andu Î u increased by one
or u Î u is decreased. In steps(6) and (7), the transformations~2.56! and ~2.57! may only decrease
the sumr̂ 1u Î u. We conclude that, after performing all the construction steps,

bl> r̂ 2~ l 11!1u Î u, l 50,...,k.

The index shiftl→ l 11 finally gives the inequalities~3.45! for l 51,...,k11. j

Theorem 3.8: The noncausal low energy contribution P˜ le(x,y) is, to every order in pertur-
bation theory, a smooth function in x and y.

Proof: We first outline our strategy: According to Definition 3.1, Proposition 3.2, and D
nition 3.5, thekth order contribution toP̃le(x,y) is obtained from~3.37! by the replacemen
S(h)→(T(h)2Treg(h)),

DPle~x,y!5X (
h521

`

(
finite

¯~T(h)2Treg(h)!~x,y!. ~3.49!

Because of the logarithmic mass problem, the infinite sum in~3.49! is ill-defined. In order to give
~3.49! a mathematical meaning, we manipulate the infinite sum until recovering it as a fo
Taylor series, which can be carried out explicitly. Finally, we show that the mathematical o
DPle(x,y) obtained in this way is a smooth function inx andy.

Consider the light-cone expansion of the Green’s functions of Lemma 3.7. Since the
only a finite number of contributions of the form~3.43!, we can restrict ourselves to one of them
In order to get the corresponding contribution toP̃le, we replace the factorS(h) in ~3.43! according
to ~3.49! by the operatorL (h)

ªT(h)2Treg(h), i.e., more explicitly

L (h)~x,y!5S d

daD h

Laua50

with

La~x,y!5
a

32p3 loguau(
j 50

`
~21! j

j ! ~ j 11!!

~a~y2x!2! j

4 j . ~3.50!

We can leave out the factor (y2x) I in ~3.43! and disregard the chiral asymmetry matrixX in
~3.49!, because they are irrelevant as smooth functions. Furthermore, we can carry out the
derivatives]zl

I l in ~3.43! with the Leibniz rule. According to the chain rule~2.49!, this may increase

the parametersbl ; nevertheless, the inequalities~3.44! and~3.45! remain valid. We conclude tha
it suffices to consider the formal series

DPle~x,y!5 (
n1 ,...,nk50

`
1

n1!¯nk!
E

x

y

@a1 ,b11n21¯

1nkun1#dz1hz1

n1W1~z1!¯E
zk21

y

@ak ,bkunk#dzk

3hzk

nkWk~zk!L
(r 1n11¯1nk)~x,y! ~3.51!

together with the bounds~3.44! and~3.45!, whereWl stand for partial derivatives of the potenti
VJl ,cl

( l ) . Our task is to give this series a mathematical meaning and to show that it is a sm

function in x andy.
We first consider the case that the potentialsWl are plane waves,
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Wl~x!5e2 iqlx.

This allows us to explicitly carry out the Laplacians in~3.51!, and we obtain

DPle~x,y!5E
x

y

@a1 ,b1u0#dz1 e2 iq1z1
¯E

zk21

y

@ak ,bku0#dzke
2 iqkzk

3 (
n1 ,...,nk50

`
1

n1!¯nk!
~~a1

22a1!p1
2!n1~~12a1!~a2

22a2!p2
2!n2

¯

3~~12a1!~12a2!¯~12ak21!~ak
22ak!pk

2!nkL (r 1n11¯1nk)~x,y!, ~3.52!

wherea l denote the integration variables of the line integrals~all running from zero to one!, and
wherepl are the momenta

pl5ql1~12a l !ql 111¯1~12a l !~12a l 11!¯~12ak21!qk . ~3.53!

For fixed values of the parametersa1 ,...,ak , ~3.52! is a product ofk formal Taylor series. For
example by using the continuation of the logarithm into the complex plane

loguau5 1
2 lim
0,«→0

~ log~a1 i«!1 log~a2 i«!12ip!

@which is, as in~3.39!, cut along the positive real axis#, we can carry out these formal Taylor seri
and obtain

DPle~x,y!5E
x

y

@a1 ,b1u0#dz1e2 iq1z1
¯E

zk21

y

@ak ,bku0#dzke
2 iqkzkS d

daD r

La~x,y! ~3.54!

with

a5~a1
22a1!p1

21~12a1!~a2
22a2!p2

21¯1~12a1!~12a2!¯~12ak21!~ak
22ak!pk

2

~3.55!

and the momentapl according to~3.53!. This construction is helpful in two ways: all infinite sum
have disappeared, and the mass parametera is now in general nonzero, so that thea-derivatives
of La are no longer singular.

After this preparation, we consider the case that the potentialsV( l ) in ~3.43! are smooth and
satisfy the conditions of Lemma I on the decay at infinity. Then the Fourier transformṼ( l ) is C2

and has rapid decay at infinity. Since the potentialsW( l ) are partial derivatives ofV( l ), their
Fourier transformsW̃l are alsoC2 and have rapid decay at infinity. The low energy contributi
is obtained from~3.54! by integrating over the momentaql . More precisely,

DPle~x,y!5S d

dbD rE d4q1

~2p!4¯E d4qk

~2p!4 W̃1~q1!¯W̃k~qk!E
x

y

@a1 ,b1u0#dz1e2 iq1z1
¯

3E
zk21

y

@ak ,bku0#dzke
2 iqkzkLa1b~x,y! ub50 , ~3.56!

where the parametera depends on the momentaql via ~3.55! and ~3.53!. We must show that
~3.56! is well-defined and depends smoothly onx andy. Qualitatively speaking, we can view th
ql-integrations as a multiple convolution in the parametera. These convolutions mollifyLa1b in
such a way that theb-derivatives can be carried out giving a smooth function inx and y.
Unfortunately, this ‘‘mollifying argument’’ is quite delicate. Complications arise from the fact
the ql-integrals are multidimensional and that we must handle the additional line integrals
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a l . The main problem is that the dependence ofa on the momentaql becomes singular when th
parametersa l approach zero or one@see~3.55!#. Because of these difficulties, we give the mo
lifying argument in detail. Equivalently to analyzing the regularity in the parametera, one can
take its Fourier transform,

La~x,y!5E
2`

` dt

2p
L̃t~x,y!e2 i ta, ~3.57!

and study the decay properties int for t→6`. We prefer working with the parametert, because
this is a bit easier and makes our argument clearer.

In the first step of the mollifying argument, we transform theql-integrals into integrals ove
the momentapl . Since the transformation~3.53! is volume preserving, we get

DPle~x,y!5S d

dbD rE d4p1

~2p!4¯E d4pk

~2p!4

3E
x

y

@a1 ,b1u0#dz1¯E
zk21

y

@ak ,bku0#dzk f $a%~p1 ,...,pk!La1b~x,y! ub50

~3.58!

with

f $a%~p1 ,...,pk!ªW̃1~q1!¯W̃k~qk!e
2 i (q1z11¯1qkzk),

wherepl andql are related to each other via~3.53!. The explicit inverse of~3.53!,

ql5pl2~12a l !pl 11 , 1< l<k, and qk5pk ,

shows that this transformation is regular for all values of the parametersa l . As a consequence, th
function f $a%(p1 ,...,pk) is C2 and has rapid decay at infinity, both uniformly ina l ~more pre-
cisely, the Schwartz normsi f $a%ip,2 , p>0, are all uniformly bounded ina l!. Because of this
uniformity, we need not care about the dependence off $a% on the parametersa l in the following.

According to the bound~3.44!, r<k. Thus we can insert into~3.58! the identity

15E
2`

`

da1¯E
2`

`

dar d~a12p1
2!¯d~ar2pr

2!,

pull the al-integrals outside, and carry out the integrations overp1 ,...,pr . This gives

DPle~x,y!5S d

dbD rE
2`

`

da1¯E
2`

`

darE d4pr 11

~2p!4 ¯E d4pk

~2p!4

3E
x

y

@a1 ,b1u0#dz1¯E
zk21

y

@ak ,bku0#dzkU~a1 ,...,ar ,pr 11 ,...,pk!La1b~x,y! ub50

~3.59!

with

U5E d4p1

~2p!4¯E d4pr

~2p!4 d~a12p1
2!¯d~ar2pr

2! f $a%~p1 ,...,pk!. ~3.60!

In ~3.59!, the parametera depends onal , pl , anda l via
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a5~a1
22a1!a11¯1~12a1!¯~12a r 21!~a r

22a r !ar1~12a1!¯

3~12a r !~a r 11
2 2a r 11!pr 11

2 1¯1~12a1!~12a2!¯~12ak21!~ak
22ak!pk

2 .

Sincef $a% is C2 and has rapid decay at infinity, it follows by evaluating the integrals over the m
shells in~3.60! that U is C1 in the variablesal and has rapid decay at infinity.

Next, we take the Fourier transform in the variablesa anda1 ,...,ar by substituting~3.57! and

U~a1 ,...,ar ,pr 11 ,...,pl !5E
2`

` dt1

2p
¯E

2`

` dt r

2p
Ũ~t1 ,...,t r ,pr 11 ,...,pk!e

2 i (t1a11¯1trar )

into ~3.59!. Theal-dependence of the resulting expression forDPle has the form of plane waves
thus theal-integrals gived-distributions. We can then also carry out thet l-integrations. Finally,
the b-derivatives in~3.59! give a factor (2 i t) r , and we obtain

DPle~x,y!5E
x

y

@a1 ,b1u0#dz1¯E
zk21

y

@ak ,bku0#dzkE d4pr 11

~2p!4 ¯E d4pk

~2p!4

3E
2`

` dt

2p
Ũ~t1 ,...,t r ,pr 11 ,...,pk!~2 i t!r L̃t~x,y!, ~3.61!

where the parameterst l are given in terms oft anda l by

t l5~12a1!¯~12a l 21!~a l2a l
2!t.

The Fourier transformL̃t(x,y) is an integrable function int which depends smoothly onx andy
@this can, e.g., be verified by writing the infinite sum~3.50! with the Bessel functionsJ1 andK1

which decay at infinity#. SinceU is C2 in the parametersal and has rapid decay, its Fourie
transformŨ is a function int l which decays at infinity at least likeO(t l

21).
We now estimate thea l-integrals in~3.61! for l 51,...,r , from the right to the left. SinceŨ

decays int r at infinity like O(t r
21), we have the bound

E
0

1

da r¯Ũ utr5(12a1)¯(12ar 21)(ar2a
r
2)t< sup

arP@0,1#

¯~~12a1!¯~12a r 21!t!21g,

where we have for clarity only written out thea r-integral; g is a function depending on th
variablest1 ,...,t r 21 and pr 11 ,...,pk . The inequality~3.45! implies that all factors (12a l)

21

cancel against corresponding factors (12a l) in the nested line integrals. The decay properties
the remaining parameterst1 ,...,t r 21 remain unchanged by our estimate of thea r-integral. There-
fore we can proceed inductively in the same way for the integrals overa r 21 ,a r 22 ,...,a1 . The
bounds~3.45! ensure that all factors (12a l)

21 drop out. Since we get a factorst21 in each step,
the factor (2 i t) r in ~3.61! disappears. Using thatL̃t is integrable and that we have fast decay
infinity in the variablespr 11 ,...,pk , all the remaining integrals are finite. We conclude th
DPle(x,y) is well defined.

If we take partial derivatives of~3.56! with respect tox andy, the derivatives act either on th
exponentials, yielding additional factorsa l , (12a l), andql , or they act onLa(x,y). SinceLa

and its Fourier transformL̃t depend smoothly onx and y, we can repeat the above-mention
mollifying argument and conclude thatDPle(x,y) is smooth. j

For a very rigid mathematician, it might not seem quite satisfying that the light-cone ex
sion of the residual fermionic projector was first performed on a formal level and later m
rigorous by resumming the formal expansion. We remark that one could avoid all formal se
intermediate steps of the construction by already ‘‘regularizing’’ the logarithmic mass terms
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Green’s functionss6 after~3.12!. However, this has the disadvantage of becoming quite techn
Our procedure is easier to understand because we could introduce the residual argument
III A without entering the mathematical details right away.

Similar to the high energy contribution, the low energy contributionP̃le(x,y) is noncausal in
the sense that it depends on the external potential in the entire Minkowski space. This c
understood from the fact that the operator products in the perturbation expansion~3.16! contain
factorsp(z1 ,z2), whose support is the whole space (z1 ,z2)PR43R4. We point out that, although
the statements of Theorems 3.4 and 3.8 are very similar, their proofs are completely differen
shows and illustrates that the high and low energy contributions describe two different ph
effects. In contrast to the high energy contribution, the potential in the low energy contrib
need not overcome an ‘‘energy gap;’’ as a consequence, the low energy contribution pla
important role even if the energy of the external potential is small.

This concludes our analysis of the Dirac sea. We briefly summarize our main results: Ac
ing to Definitions 3.1, 3.3, and 3.5, we decompose the fermionic projector in the form

P̃~x,y!5 P̃causal~x,y!1 P̃le~x,y!1 P̃he~x,y!. ~3.62!

The causal contributionP̃causal(x,y) has singularities on the light cone, which are complet
described by the light-cone expansion of Theorem 3.6. The noncausal low and high energ
tributions P̃le(x,y) and P̃he(x,y), on the other hand, are, to every order in perturbation the
smooth functions inx andy ~see Theorems 3.4 and 3.8!.

We finally point out that, in contrast toP̃causal, both noncausal contributionsP̃le andP̃he were
only studied to every order in perturbation theory, but we did not consider the convergence o
perturbation series. ForP̃le, this convergence problem could be studied by resumming all ph
free contributions to the formal light-cone expansion of Proposition 3.2. However, there see
be no easy method at the moment to control the convergence of the perturbation expansio
high energy contributionP̃he(x,y). Nevertheless, Theorems 3.4 and 3.8 give a strong indica
that the noncausal contribution is a smooth function. Even if singularities or divergences oc
when carrying out the sum over the perturbation series~which seems unlikely!, these singularities
would be of very different nature than the singularities ofP̃causal(x,y). More precisely, they could
not be expressed in terms of the external potential and its derivatives along the convex lixy,
because singularities of this type necessarily show up in finite order perturbation theory. Th
can say that, although the noncausal contributionsP̃le andP̃he require further study in order to ge
a complete understanding, the decomposition~3.62! is well established. The light-cone expansio
gives a method to explicitly calculate the causal contributionP̃causal(x,y).
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APPENDIX: SOME FORMULAS OF THE LIGHT-CONE EXPANSION

Here, we give a compilation of explicit formulas of the light-cone expansion. More preci
we list the phase-free contribution to the light-cone expansion of the Green’s functions~cf. Defi-
nitions 2.7!. According to the reduction to the phase-free contribution, the light-cone expansi
the Green’s functions is immediately obtained by inserting ordered exponentials into th
integrals, see Definition 2.9 and Theorem 2.10. Furthermore, using Theorem 3.6, the formu
be directly applied to the fermionic projector; they then describe the singularities ofP̃(x,y) on the
light cone.

All the following formulas were generated by the C11 programCLASS–COMMUTE ~see Sec.
II C!. Our listings are not intended to be in any sense complete; we made a selection in o
give the reader a first impression of the form of the singularities. The more detailed formu
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higher order on the light cone can be easily obtained withCLASS–COMMUTE. Without loss of
generality, we restrict ourselves to the left-hand component of the Green’s functions; fo
right-hand component, the formulas are analogous.

We begin with the perturbation by a chiral perturbation to first order. The phase-free c
bution to the orderO((y2x)2) on the light cone is

xL~2s~xLA” R1xRA” L!s!~x,y! �
phase free

O~~y2x!2!1xLS(0)~x,y!j iE
x

y

dz@0,1u0#~]” ALi ! ~A1!

2xLS(0)~x,y!E
x

y

dz@0,0u0#A” L ~A2!

1xLS(0)~x,y!A” L~x! ~A3!

1
1

2
xLS(0)~x,y!j” E

x

y

dz@0,0u0#~]” A” L! ~A4!

2xLS(0)~x,y!j” E
x

y

dz@1,0u0#~] iALi ! ~A5!

1
1

2
xLS(0)~x,y!j” j iE

x

y

dz@0,0u1#~hALi ! ~A6!

1xLS(1)~x,y!j iE
x

y

dz@0,1u1#~]” hALi ! ~A7!

1xLS(1)~x,y!E
x

y

dz@0,2u0#~hA” L! ~A8!

22xLS(1)~x,y!E
x

y

dz@0,0u1#~]” ] iALi ! ~A9!

1
1

2
xLS(1)~x,y!j” E

x

y

dz@0,0u1#~]” hA” L! ~A10!

2xLS(1)~x,y!j” E
x

y

dz@1,0u1#~] ihALi ! ~A11!

1
1

4
xLS(1)~x,y!j” j iE

x

y

dz@0,0u2#~h2ALi !, ~A12!

where we used the abbreviationj[(y2x). This formula has the disadvantage that it conta
ordinary partial derivatives of the chiral potential; it would be better for physical application
work instead with the Yang–Mills field tensor and the Yang–Mills current. Therefore, we in
duce left- and right-handed gauge-covariant derivativesDL/R,

D j
L5

]

]xj 2 iAL j , D j
R5

]

]xj 2 iAR j ,
                                                                                                                



e

e-
in the

n-
nsated
ns out
gauge
ment

ow-

rder
r

6739J. Math. Phys., Vol. 41, No. 10, October 2000 Light-cone expansion of the Dirac sea

                    
and define the corresponding field tensor and current as usual by the commutators

F jk
c 5 i @D j

c ,Dk
c#, j l

c5@Dck,Flk
c # ~c5L orR!. ~A13!

In the Abelian case of a single Dirac sea~i.e., f 51!, ~A13! reduces to the familiar formulas for th
electromagnetic field tensor and current,

F jk
c 5] jAck2]kAc j , j l

c5] lkAc
k2hAcl .

Notice, however, that in the general case of a system of Dirac seas,~A13! involves quadratic and
cubic terms in the potential.

By substituting~A13! into ~A1!–~A12! and manipulating the line integrals with partial int
grations, one can rewrite the phase-free contribution in a way where the linear terms
potential are gauge invariant. For example, we can combine~A1!–~A3!, by transforming the line
integrals as

jkE
x

y

dz@0,1u0#~]” ALk!5jkE
x

y

dz@0,1u0#~g jF jk
L 1]kA” L!1O~AL

2!

5jkE
x

y

dz@0,1u0#g jF jk
L 2A” L~x!1E

x

y

dz@0,0u0#A” L1O~AL
2!. ~A14!

However, this procedure yields~in the non-Abelian case! quadratic and cubic terms in the pote
tial which arenot gauge invariant. Fortunately, these gauge-dependent terms are all compe
by corresponding contributions of the higher order Feynman diagrams. More generally, it tur
that, after summing up the perturbation series for the chiral perturbation, we can arrange a
invariant phase-free contribution for which the insertion rules of Definition 2.9 and the state
of Theorem 2.10 hold. This is not astonishing in view of the behavior~2.102! of the Green’s
functions under local gauge transformations; we verified it explicitly term by term for all foll
ing formulas. We now list the gauge invariant phase-free contribution to the orderO((y2x)2) on
the light cone. For simplicity, we omit all third-order terms in the potential which are of the o
O((y2x)0) on the light cone and which have a prefactorj” ~the combinatorics of the tenso
contractions leads to many such terms, but they are not very instructive here!,

xL(
k50

`

~~2s~xLA” R1xRA” L!!ks!~x,y!

�
phase free

O~~y2x!2!1j” AL
i AL

j AL
kO~~y2x!0!1xLS(0)~x,y!j iE

x

y

dz@0,1u0#g lFli
L

1
1

4
xLS(0)~x,y!j” E

x

y

dz@0,0u0#g jgkF jk
L 2

1

2
xLS(0)~x,y!j” j iE

x

y

dz@0,0u1# j i
L

1xLS(1)~x,y!j iE
x

y

dz@0,1u1#~]” j i
L!1xLS(1)~x,y!E

x

y

dz@0,2u0# j k
Lgk

2
1

2
xLS(1)~x,y!j” E

x

y

dz@0,0u1#~]” j k
L!gk2

1

4
xLS(1)~x,y!j” j iE

x

y

dz@0,0u2#~h j i
L!

2 ixLS(0)~x,y!j” j ij
jE

x

y

dz1@0,1u1#Fk j
L E

z1

y

dz2@0,1u0#FL
ki
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1 ixLS(1)~x,y!j ij jE
x

y

dz1@0,3u0#gkFk j
L E

z1

y

dz2@0,0u1# j i
L

1 ixLS(1)~x,y!j ij jE
x

y

dz1@0,2u1# j j
LE

z1

y

dz2@0,1u0#g lFli
L

22ixLS(1)~x,y!j ij
jE

x

y

dz1@0,2u1#Fm j
L E

z1

y

dz2@0,2u0#~]” FL
mi!

22ixLS(1)~x,y!j ij
jE

x

y

dz1@0,2u1#~]” Fk j
L !E

z1

y

dz2@0,1u0#FL
ki

1 ixLS(1)~x,y!j ij jE
x

y

dz1@0,2u1#gkFk j
L E

z1

y

dz2@0,2u0# j i
L

2
i

2
xLS(1)~x,y!j iE

x

y

dz1@0,2u0#g jF ji
L E

z1

y

dz2@0,0u0#gkg lFkl
L

2
i

2
xLS(1)~x,y!j iE

x

y

dz1@0,2u0#g jgkF jk
L E

z1

y

dz2@0,1u0#g lFli
L

12ixLS(1)~x,y!j iE
x

y

dz1@0,3u0#g jF jk
L E

z1

y

dz2@0,1u0#FL
ki

22ixLS(1)~x,y!j jE
x

y

dz1@0,1u1#Fi j
L E

z1

y

dz2@0,1u0#gkFL
ki

2
i

2
xLS(1)~x,y!j” j jjkE

x

y

dz1@0,2u1# j j
LE

z1

y

dz2@0,0u1# j k
L

2
i

2
xLS(1)~x,y!j” j jjkE

x

y

dz1@0,1u2# j j
LE

z1

y

dz2@0,2u0# j k
L

1 ixLS(1)~x,y!j” j ij jE
x

y

dz1@0,2u1#Fk j
L E

z1

y

dz2@0,1u1#~]kj i
L!

1 ixLS(1)~x,y!j” j ij jE
x

y

dz1@0,1u2#Fk j
L E

z1

y

dz2@0,3u0#~]kj i
L!

2 ixLS(1)~x,y!j” j ij
jE

x

y

dz1@0,1u2#~]kFl j
L !E

z1

y

dz2@0,2u0#~]kFL
li !

1
i

4
xLS(1)~x,y!j” j iE

x

y

dz1@0,2u0#g jgkF jk
L E

z1

y

dz2@0,0u1# j i
L

1
i

4
xLS(1)~x,y!j” j iE

x

y

dz1@0,1u1#g jgkF jk
L E

z1

y

dz2@0,2u0# j i
L
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1
i

4
xLS(1)~x,y!j” j iE

x

y

dz1@0,1u1# j i
LE

z1

y

dz2@0,0u0#g jgkF jk
L

2
i

2
xLS(1)~x,y!j” j iE

x

y

dz1@0,1u1#g jgk~] lF jk
L !E

z1

y

dz2@0,1u0#Fli
L

2
i

2
xLS(1)~x,y!j” j iE

x

y

dz1@0,1u1#F ji
L E

z1

y

dz2@0,1u0#gkg l~] jFkl
L !

1 ixLS(1)~x,y!j” j ij jE
x

y

dz1@0,1u2#~]kj j
L!E

z1

y

dz2@0,1u0#Fki
L

2 ixLS(1)~x,y!j” j jE
x

y

dz1@0,1u1#Fi j
L E

z1

y

dz2@0,0u1# j L
i

2 ixLS(1)~x,y!j” j jE
x

y

dz1@0,0u2#Fi j
L E

z1

y

dz2@0,2u0# j L
i

1 ixLS(1)~x,y!j” j iE
x

y

dz1@0,1u1# j L
j E

z1

y

dz2@0,1u0#F ji
L

12ixLS(1)~x,y!j” j iE
x

y

dz1@0,2u1#Fkl
L E

z1

y

dz2@0,2u0#~]kFL
li !

22ixLS(1)~x,y!j” j jE
x

y

dz1@0,0u2#3~]kFl j
L !E

z1

y

dz2@0,1u0#FL
kl

2
i

8
xLS(1)~x,y!j” E

x

y

dz1@0,1u0#g jgkF jk
L E

z1

y

dz2@0,0u0#g lgmFlm
L

13ixLS(1)~x,y!j” E
x

y

dz1@0,1u1#Fkl
L E

z1

y

dz2@0,1u0#FL
kl

22xLS(1)~x,y!j ij
jjkE

x

y

dz1@0,4u0#g lFlk
L E

z1

y

dz2@0,1u1#Fm j
L E

z2

y

dz3@0,1u0#FL
mi

22xLS(1)~x,y!j ij
jjkE

x

y

dz1@0,3u1#g lFlk
L E

z1

y

dz2@0,3u0#Fm j
L E

z2

y

dz3@0,1u0#FL
mi

22xLS(1)~x,y!j ij
jjkE

x

y

dz1@0,3u1#Fmk
L E

z1

y

dz2@0,3u0#g lFl j
L E

z2

y

dz3@0,1u0#FL
mi

22xLS(1)~x,y!j ij jj
kE

x

y

dz1@0,3u1#Fmk
L E

z1

y

dz2@0,3u0#FL
m jE

z2

y

dz3@0,1u0#g lFli
L .

We call this formulation of the phase-free contributions purely in terms of the Yang–Mills
tensor and the Yang–Mills current thegauge invariant formof the light-cone expansion.

For clarity, we mention a subtlety in the transformation to the gauge invariant form:
gauge invariant phase-free contribution implicitly contains tangential derivatives of the c
potential~as one sees by writing outFc and j c in in terms of the chiral potentials!. Thus it is not
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a phase-free contribution in correspondence with Definition 2.7; as a consequence, it is no
ous that the statement of Theorem 2.10 holds. In other words, one must be very carefu
transforming the line integrals in order to ensure that the insertion rules of Definition 2.9
Theorem 2.10 remain valid. A safe method is to insert all ordered exponentials into the
integrals before performing the partial integrations. According to Theorem 2.10, the phase-in
formulas coincide with the light-cone expansion of the Green’s functions. Therefore the p
integrations become identical transformations of the Green’s functions; we need not worry
the insertion rules. In the final step, we again take out the ordered exponentials from th
integrals, verifying that they are still in accordance with Definition 2.9. In the example of the
integral ~A14!, the partial integration of the phase-inserted contribution gives

jkE
x

y

dz@0,1u0#P expS 2 i E
x

z

AL
l (z2x) l D ]” ALk~z!P expS 2 i E

z

y

AL
m(y2z)mD

5jkE
x

y

dz@0,1u0#P expS 2 i E
x

z

AL
l (z2x) l D S g jF jk

L 1 i [A” Lq,ALk] 1]kA” LuzP

3expS 2 i E
z

y

AL
m(y2z)mD

5jkE
x

y

dz@0,1u0#P expS 2 i E
x

z

AL
l (z2x) l D S g jF jk

L 1 i [A” L q,ALk] uzP

3expS 2 i E z
yAL

m(y2z)mD ~A15!

2A” L~x!P expS 2 i E
x

y

AL
m(y2z)xD ~A16!

1E
x

y

dz@0,0u0#P expS 2 i E
x

z

AL
l (z2x) l DA” L~z!P expS 2 i E

z

y

AL
m(y2z)mD ~A17!

1jkE
x

y

dz@0,1u0#P expS 2 i E
x

z

AL
l (z2x) l D i @ALk ,A” L#~z!P expS 2 i E

z

y

AL
m(y2z)mD .

~A18!

Thus the correct transformation of the phase-free contribution is

jkE
x

y

dz@0,1u0#~]” ALk! �
phase free

jkE
x

y

dz@0,1u0#g jF jk
L 1E

x

y

dz@0,0u0#A” L2A” L~x!.

Notice that~A18! are the derivative terms of the ordered exponentials; they get lost if the ph
free contribution is transformed in a naive way.

It remains to consider the scalar/pseudoscalar perturbation, i.e., we must study how t
namic mass matricesYL/R(x) show up in the light-cone expansion. We begin with the case
single mass matrix. To first order in the external potential, the corresponding Feynman di
has the light-cone expansion

xLm~2s~2xLYR2xRYL!s!~x,y!

�
phase free

O~~y2x!2!1
1

2
xLmS(0)~x,y!j” E

x

y

dz@0,0u0#~]” YL!1xLmS(0)~x,y!YL~x!
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1xLmS(1)~x,y!E
x

y

dz@0,1u0#~hYL!1
1

2
xLmS(1)~x,y!j” E

x

y

dz@0,0u1#~]” hYL!.

~A19!

Similar to ~A1!–~A12!, this formula involves partial derivatives of the potential, which is no
gauge invariant formulation. Since the chirality changes at every mass matrix~see e.g., Definition
2.9!, the correct way to make the light-cone expansion gauge invariant is to work with
gauge-covariant mass derivatives D, D given by

~DiYL!5Di
LYL2YLDi

R5~] iYL!2 iALiYL1 iYLARi ,

~DYL!5Di~DiYL!5Di
L~DiYL!2~DiYL!Di

R ,

and similarly forYR and higher derivatives. Rewriting~A19! with gauge-covariant mass deriva
tives yields additional terms which are linear or quadratic in the chiral potentials and which anot
gauge invariant. But, similar to that described for the above-mentioned chiral perturbatio
these terms cancel if the sum over the perturbation series for the chiral potentials is carried
the orderO((y2x)2) on the light cone, we obtain in this way the gauge invariant phase-
contribution

xLm (
n1 ,n250

`

~~2s~xLA” R1xRA” L!!n1s~xLYR1xRYL!s~~2xLA” R2xRA” L!s!n2!~x,y!

5xL (
n1 ,n250

`
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2
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x

y
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LE
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The higher orders in the mass matrices are treated similarly. To the orderO((y2x)2) on the
light cone, only the terms up to fourth order inmYL/R contribute @see ~2.95!#. One gets the
formulas
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These classes of Feynman diagrams completely characterize the Green’s functions to th
O((y2x)2) on the light cone; notice that we only get a finite number of contributions.
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We provide an explicit construction of quasi-invariant measures on polarized co-
adjoint orbits of a Lie groupG. The use of specific~trivial! central extensions ofG
by the multiplicative groupR1 allows us to restore the strict invariance of the
measures and, accordingly, the unitarity of the quantization of coadjoint orbits. As
an example, the representations ofSL(2,R) are recovered. ©2000 American
Institute of Physics.@S0022-2488~00!00410-2#

I. INTRODUCTION

The aim of this paper is to proceed a bit further in search of a unified algorithm for achie
unitary and irreducible representations~unirreps for short! of Lie groups in the context of quan
tization. Our starting point here is a rather developed group approach to quantization~GAQ! ~see
Refs. 1–4, and references therein, and also Ref. 5 for an introductory presentation!, which gener-
alizes and improves geometric quantization~GQ! and/or the coadjoint-orbit method~COM!6,7 in
many respects, and particularly in the treatment of the non-Ka¨hler orbits of the Virasoro group,8

denominated ‘‘non-quantizable orbits’’ in Ref. 9.
Basically, GQ starts from a classical phase spaceM, of dimension 2n, on which a Poisson

bracket $ % ~relative to a symplectic formv! is defined, and associates a natural opera
Xf :F(M )→F(M ) with any real functionf PF(M ). This operator is nothing other than th
Hamiltonian vector field acting as a derivation onF(M ); that is, Xfg5$ f ,g%. However, the
correspondencef→Xf is not faithful because the constant functions are in its kernel. To overc
this problem a new term has to be added to the operatorX so as to associate the natural const
operators with the constant functions. This is achieved by enlarging nontrivially~in general! M
with a new parameterzPU(1) to give rise to aquantum manifold Pbearing the structure of a
U(1)-principal bundle overM with a connection one-formQ. The dependence of the wav
functions~now complex functionsc on P! with respect to the new coordinatez is fixed by means
of the U(1)-function condition

Xzc5 ic,

whereXz is the fundamental vector field, which generates the action ofU(1). On thespaceH of
wave functions, a scalar product can be defined with the help of the natural volume onM, vn:

a!Electronic mail: valdaya@iaa.es
67470022-2488/2000/41(10)/6747/19/$17.00 © 2000 American Institute of Physics
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~c,f![E vnc* f.

The connectionQ must be defined in such a way that its curvaturedQ recovers the symplectic
form v on M. In fact, Q allows us to extend the definition of Hamiltonian vector field,Xf ,
associated withf PF(M ), to the operatorX̃f defined through the relationships

i X̃f
Q5 f , i X̃f

dQ52d f .

These equations now define a faithful correspondencef ° f̂ 'X̃f . Nevertheless, the correspondin
representation of the Poisson bracket, usually calledprequantization, is in general reducible; there
are nontrivial operators,X̃a ,aPI , which commute with the basic ones,X̃qi ,X̃pj

. The irreducibility
~truequantization! can be achieved by requiring that a maximal set of these operators act tri
on the physical Hilbert space:

X̃ac50 for some aPI , ;cPH.

The last condition, named polarization condition, roughly amounts to saying that the wave
tions depend only on half the coordinates~either theq’s, the p’s, or a particular combination o
these!.

Two basic problems still remain in this GQ scheme. One is that it refers to the compat
between quantum operators and polarization conditions; not all functionsf lead to a quantum
operatorX̃f commuting with every element in the algebra of vector fields constituting a pola
tion. The other, and the most relevant one for the present work, concerns the integration v
In fact, once the polarization conditions are imposed, the functionc* f proves to be constan
along the integral submanifold of the polarization, so that the integration of it on the w
manifold M frequently becomes infinite, and, unfortunately, there is no natural invariant me
on the polarized submanifold. To solve this problem, GQ resorted to a rather cryptic algo
involving ‘‘half-forms,’’ 10 which came to weaken the original beauty of this geometric sche

The GAQ is primarily intended to solve these mathematical problems related to the pol
tion condition in addition to others, of more physical character, like that of avoiding the prev
step of passing to the classical solution manifold, an operation which hits against the n
feeling that Nature is quantum in origin.

The starting point is a Lie groupG̃ with a U(1) principal bundle structure, as for example,
central extension of a Lie groupG by U(1). OnG̃, a natural connection one-formQ is provided
by a component of the canonical~say! left-invariant one-form, dual to the fundamental vector fie
@generatingU(1)# in a given basis. The quotient manifoldG̃/U(1) does not need to be a sym
plectic manifold although it is endowed with the presymplectic formdQ. On G̃, the right-
invariant vector fieldsX̃R can be considered as prequantum operators, leaving invariant thequan-
tization form Q. They provide a faithful~reducible in general! representation of the Poisso
algebra of functionsi X̃RQ on G̃ ~they are also functions on the true symplectic manifo
G/KerdQ!. As in GQ, the reduction is achieved by a polarization which is now defined
maximal horizontal left subalgebra containing the kernel of the presymplectic form dQ. The
difference now lies in that a polarization is always compatible with the quantum operators,
left- and right-invariant vector fields do commute on any Lie group.

GAQ inherited, however, the technical problem of finding an appropriate and natural inva
integration measure on the polarized submanifold, and this is the chief aim of the present
Nevertheless, the virtue of GAQ working directly on a group manifold, rather than on a coad
orbit, taking advantage of the tools available on any Lie group~left- and right-invariant vector
fields, Haar measure, etc.! brings out the solution to the present problem of finding invari
measures. The precise technique of pseudoextensions employed here was introduced in Re
an equal footing with nontrivial central extensions, and was further elaborated in Refs. 12 a
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emphasizing its relation with COM. Now the main trick consists in considering pseudoexten
by the multiplicative real lineR1 along with~pseudo!-extensions byU(1). Central~even trivial!
extensions byR1 can modify well the common factor accompanying the wave functions~the
weight! with an extra nonunimodular real function, thus providing half of the correction need
make a quasi-invariant measure strictly invariant. The resulting construction shed new light
above-mentioned cryptic language of half-forms in GQ.

This paper is organized as follows. In Sec. II we provide a general background on pseu
tensions and the explicit connection with the coadjoint orbits of a general simply connecte
group. In Sec. III the existence and uniqueness of a quasi-invariant measurem with Radon–
Nikodym derivativeL on a homogeneous space is translated to the groupG itself, providing a
constructive proof of the existence of such aL. Then, with the aid of this function, we find
specificR1 pseudoextension ofG making m strictly invariant. The above-mentioned results a
applied, as an example, to the explicit construction of the representations ofSL(2,R), including
the Mock representation.

II. PSEUDOEXTENSIONS

A central extensionG̃ of a Lie groupG by U(1) is an exact sequence of group homom
phisms:

1→U~1!→G̃→G→1. ~1!

Locally, the groupG̃ is G3U(1), and thegroup law forG̃ can be written as

~g8,z8!* ~g,z!5~g8* g,z8zv~g8,g!!, ~2!

whereg,g8PG,z,z8PU(1),g8* g is the group law forG, andv: G3G→U(1) is a two-cocycle
~or factor!, satisfying the following relations:

v~g1 ,g2!v~g1* g2 ,g3!5v~g1 ,g2* g3!v~g2 ,g3!, ;g1,g2 ,g3PG,
~3!

v~g,e!5v~e,g!5v~e,e!51, ;gPG.

A two-cocyclew which can be writtenv(g8,g)5h(g8* g)h21(g8)h21(g) is called a co-
boundary, whereh: G→U(1) is the generating function of the coboundary.

We shall consider, following Bargmann,15 local exponentsj: G3G→R such thatv5ei j

defines a two-cocycle~or factor!, v: G3G→U(1). Similarly, for a coboundaryv5ei j with
generating functionh5eil, with l: G→R, the local exponent can be written asj(g8,g)
5l(g8* g)2l(g8)2l(g).

Since two central extensionsG̃ and G̃8 characterized by the two-cocyclesv and v85vh,
with h: G→U(1), areisomorphic as Lie groups, we can introduce an equivalence relation in
set of all central extensions ofG by U(1). Theequivalence classes turn out to be parametrized
the groupH2 @G,U(1)], thesecond cohomology group ofG with values inU(1).

A pseudoextension of a Lie groupG is a central extensionG̃ of G by U(1) by means of a
two-cocyclejl : G3G→R, which is a coboundary and therefore defines a trivial central ex
sion, i.e., there exists a functionl: G→R, the generating function of the coboundary, such t
jl(g8,g)5l(g8* g)2l(g8)2l(g), but with the property that the Lie derivative ofl at the
identity is different from zero for some left-invariant vector fields. In other words, the gradie
l at the identity,l i

0[]l(g)/]gi , with respect to a basis of local canonical coordinates$gi% at a
neighborhood of the identity ofG, is not zero.

It should be emphasized thatlW 0[(l1
0,...,ln

0) defines an element in the dualG* of the Lie
algebraG of G. Before going further into the properties of pseudoextensions and their class
tion into equivalence classes~in the same way as true extensions!, we must introduce some
definitions.
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We shall restrict ourselves to the case of simply connected Lie groups, to avoid some
logical subtleties. A brief comment on how to proceed for nonsimply connected Lie grou
given in the examples.

Let $Xi
L% be a basis of left-invariant vector fields associated with the canonical coordi

$gi%,i 51,...,n5dimG at the identity. Let$uLi% be the dual basis of left invariant one-forms onG.
They verify the relations:

i X
i
LuL j5d i

j ,

~4!
LX

i
LuL j5Cik

j uLk ,

whereCik
j are the structure constants of the Lie algebraG generated by$Xi

L%.
Right-invariant vector fields$Xi

R% can also be introduced together with the dual basis
right-invariant one-forms$uR( i )%, satisfying properties similar to~4!, but changingCik

j by 2Cik
j ,

since right-invariant vector fields generate an algebra isomorphic to that of left-invariant on
with the structure constant with opposite sign.14 Left-invariant one-forms have zero Lie derivativ
with respect to right-invariant vector fields and vice versa, as it should be. An important for
which will be extensively used in this paper is the set of Maurer–Cartan equations:

duLi5 1
2Cjk

i uL j∧uLk, ~5!

with analogous expression for the right-invariant counterpart, but changing the sign to the
ture constants, as before. These equations state, for instance, that, for an Abelian group,
and right-invariant one-forms are closed, and that left- and right-invariant one-forms dual to v
fields that are not in the commutant ofG are also closed. These properties will be relevant in
following.

Let us consider a central extensionG̃ of G by U(1) characterized by a two-cocyclej: G
3G→R, which has to satisfy

j~g1 ,g2!1j~g1* g2 ,g3!5j~g1 ,g2* g3!1j~g2 ,g3!,
~6!

j~e,e!50,

for all g1 ,g2 ,g3PG, in order to define a~associative! group law. This group law is given by

g95g8* g,
~7!

z95z8ze i j~g8,g!,

wherez,z8,z9PU(1). Left- and right-invariant vector fields for the extended groupG̃, denoted
with a tilde, can be derived from the ones ofG and from the two-cocycle as follows:

X̃i
L5Xi

L1
]j~g8,g!

]gi U
g5e,g85g

]

]f
,

~8!

X̃i
R5Xi

R1
]j~g8,g!

]g8 i U
g85e

]

]f
,

where we have introducedz5eif. Left- and right-invariant one-forms do not change, and,
course, there are new left- and right-invariant vectors fields and one-forms associated with th
variablezPU(1). These are
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X̃z
L5

]

]f
52 ReS i z

]

]z D[J,

X̃z
R5J,

~9!

uL~z!5
dz

i z
1

]j~g8,g!

]gi U
g85g21

dgi ,

uR~z!5
dz

i z
1

]j~g8,g!

]g8 i U
g5g21

dgi ,

wheredz/ i z5df. We shall callQ[uL(z) the quantization one-form. This one-form defines
connection on the fiber bundleU(1)→G̃→G, and will play an important role in our formalism
since it contains all the information about the dynamics of the system under study. In factQPC

5Q2dz/ i z is the Poincare´–Cartan one-form, anddQ5dQPC is a presymplectic two-form onG
which defines a symplectic two-form once the distribution generated by its kernel is remov

Now let us assume that we add toj the coboundaryjl , generated by the function
l,jl(g8,g)5l(g8* g)2l(g8)2l(g), with l satisfyingl(e)50 for jl to verify ~6!. Then j8

5j1jl determines a new extended groupG̃8, and a new quantization one-formQ85Q1Ql ,
with

Ql5l i
0uLi2dl. ~10!

The new presymplectic two-form isdQ85dQ1dQl , with dQl5 1
2l i

0Cjk
i uL j∧uLk ~making

use of the Maurer–Cartan equations!. We shall use this decomposition ofQ8 anddQ8 to split an
arbitrary two-cocyclej8 in the form

j85j1jl , ~11!

for somel(g). The termj is such that, when considered on its own, it determines a pure ce
extension, i.e., a central extension for which the Lie algebra satisfies: IfCi j

z Þ0, thenCi j
k 50 ;k

Þz.
The termjl is such that, when considered on its own, it determines a pure pseudoexte

i.e.., a central extension for which the Lie algebra satisfies:Ci j
z 5lk

0Ci j
k ,; i , j , with lW 0 the gradient

at the identity ofl(g).
An arbitrary central extension determined byj will belong to a given cohomology class@@j##

constituted by all two-cocyclesj8 differing from j by coboundaries with arbitrary generatin
functionsl:G→R. This is the usual definition of the second cohomology groupH2(G,U(1))
@see, e.g., Ref. 15#. Now we are going to introduce subclasses@j# inside @@j##, called pseudoco-
homology classes. For the sake of simplicity, we shall restrict ourselves to the trivial cohom
class@@j##0 of two-cocycles which admit a generating function and are therefore cobound
The partition of@@j##0 into pseudocohomology subclasses can be translated to any other
mology class using the decomposition~11!. The equivalence relation defining the subclasses@j# is
given by:
Two coboundariesjl andjl8 with generating functionsl andl8, respectively, are in the sam
subclass@j#lW 0 if and only if their gradients at the identity verifylW 085Ad* (g)lW 0, for someg
PG.

In particular, iflW 085lW 0,jl andjl8 are in the same pseudocohomology class. This allow
always to choose representatives that are linear in the canonical coordinates,jlW 05l i

0gi .
The conditionlW 085Ad* (g)lW 0 simply says thatlW 08 andlW 0 lie in the same coadjoint orbit in

G* , and it is justified becausedQlW 08 and dQlW 0 are symplectomorphic, the symplectomorphis
being the pull-back of the coadjoint action~see Ref. 13!.
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The equivalence relation we have just introduced constitutes a partition of the trivial c
mology class@@j##0 of coboundaries@or of any cohomology class once translated by relat
~11!#, but there is not a one to one correspondence between pseudocohomology class
coadjoint orbits, since the coadjoint orbits must satisfy the integrality condition~see Refs. 13 and
16 for the proof! for jl to define a central extension. This restriction can be expressed
different manner:

The gradient at the identitylW 0PG* defines a linear functional ofG on R. But it also defines
a one-dimensional representation of the isotropy lie subalgebraGlW 0 of the point lW 0 under the
coadjoint action ofG on G* . In particular, if lW 0 is invariant under the coadjoint action~i.e., it
constitutes a zero-dimensional coadjoint orbit!, it defines a one-dimensional representation of
whole Lie algebraG. The condition of integrability of the coadjoint orbit passing throughlW 0 is
nothing more than the condition forlW 0 to be exponentiable~integrable! to a character of the
isotropy subgroupGlW 0 ~whose Lie algebra isGlW 0!.

The introduction of a pseudoextension generated byl(g) in G, defining a central extension
G̃, has the effect of modifying left- and right-invariant vector fields in the following way:

X̃i
L5Xi

L1~Xi
L
•l2l i

0!J, X̃i
R5Xi

R1~Xi
R
•l2l i

0!J. ~12!

It also modifies the commutation relations in the Lie algebraG of G ~defining the commutation
relations ofG̃!:

@X̃i
L ,X̃j

L#5Ci j
k ~X̃k

L1lk
0J!, ~13!

whereCi j
k are the structure constants of the original algebraG. For right-invariant vector fields, we

get the same commutation relations up to a sign. Once the representations ofG̃ have been obtained
~using a technique like GAQ, for instance!, we recover the representations ofG by simply rede-
fining the operators~right-invariant vector fields! in the following manner:

X̃i
R→X̃i

R85X̃i
R1l i

0J5Xi
R1~Xi

R
•l!J. ~14!

It is trivial to check that the new generatorsX̃i
R8 satisfy the~original! commutation relations of

G.
Once the pseudoextensions have been introduced and classified according to equi

classes, they can be treated as if they were true extensions and the ordinary quantizatio
niques, in particular GAQ, can be applied. We refer the reader to Ref. 13 for a detailed desc
of GAQ, and here we shall simply use it to arrive at the irreducible representations ofSL(2,R) in
Sec. IV.

III. QUASI-INVARIANT MEASURES

For any Lie groupG, there exists a measure, the Haar measure, which is invariant unde
left or right action of the group on itself. However, ifM is a manifold on which there is a transitiv
action ofG ~that is,M is a homogeneous space underG!, the existence of an invariant measure
M is not guaranteed, despite the fact thatM is locally diffeomorphic to the quotientG/H of G by
a certain closed subgroupH, which is the isotropy group of an arbitrary pointx0PM . More
precisely, each point inM has a different isotropy group, although all of them are conjugat
each other; in particular all are isomorphic.

It can be proven~see Refs. 17 and 18!, however, thatM admits quasi-invariant measures.
measuredm(x) on M is called quasi-invariant ifdm(gx) is equivalent todm(x) for all gPG,
wheregx denotes the action ofG on M, and the equivalence relation is defined among meas
that have the same sets of measure zero. Then the Radon–Nikodym theorem asserts th
exists a positive functionL ~the Radon–Nikodym derivative! on M such thatdm(gx)/dm(x)
5L(g,x).
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Furthermore, it turns out that any two quasi-invariant measures are equivalent.18,17 Therefore,
up to equivalence, there exists a unique quasi-invariant measuredm(x) with Radon–Nikodym
derivativeL(•,x) on M. The functionL can be derived from a strictly positive, locally integrab
Borel functionr(g) satisfying19

r~gh!5
DG~h!

DH~h!
r~g!, ~15!

whereDG ,DH are the modular function ofG andH, respectively@a modular function ofG is a
non-negative function onG such that, ifmG(•) is the left-invariant Haar measure onG, then
mG(Rgf )5D(g)mG( f ), whereRg means right translation by the elementg#. A modular function
is a homomorphism ofG into the positive reals with the product as composition law!. The
Radon–Nikodym derivative is given by

L~g,x!5
r~gg8!

r~g8!
, ~16!

whereg8 is any element whose image under the natural projectionG→M is x. This definition
makes sense sincer(gg8)/r(g8) depends only onx and not on the particular choice ofg8.

Note that ifDH(h)5DG(h),;hPH, thenr(gh)5r(g), so that we can chooser(g)51 and
L(g,x)51 as the Radon–Nikodym derivative. Thus, in this case,M admits an invariant measur
underG.

Let us rewrite the above-mentioned considerations in infinitesimal terms. Defining the m
lar constants

ki
G[

]DG~g!

]gi U
g5e

, i 51,...,n5dimG,

and similarly forki
H ,i 51,...,p5dimH, we can rephrase ther-function condition~15! as

Xi
Lr~g!5ki

G/Hr~g!, ~17!

where ki
G/H[ki

G2ki
H ,i 51,...,p. Modular constants possess properties derived from thos

modular functions. First, it can be proven thatki
G5( j 51

n Ci j
j , and accordingly, ki

G/H

5( j 5p11
n Ci j

j , where we have assumed that the firstp5dimH elements ofG belong toH, the Lie
algebra ofH. In addition,ki

G ,i 51,...,n define a characterkG of the Lie algebraG of G, coming
from the fact thatDG(g) defines a~nonunitary! character ofG, in such a way thatkG(Xi

L)
5ki

G . This property implies linearity, and alsoCi j
l kl

G50, sincekG(@Xi
L ,Xj

L#)50. As a result,
ki

G50 for G semisimple.
However,ki

H can be nontrivial, even ifH is a subgroup of a semisimple groupG, allowing for
nontrivial ki

G/H , and, according to~17!, for the possibility of homogeneous spaces with non
variant, although quasi-invariant, measures.

Let us develop a constructive technique for obtaining quasi-invariant measures on ho
neous spaces. That is, a procedure for constructingr functions satisfying~15! @or ~17!#. According
to Mackey,17 such a function always exists, although the proof of his theorem is not constru

Consider the left-invariant Haar measureVL on G. This is ann-form, with n5dimG, and can
be written, up to a constant, asVL5uL1∧uL2∧¯∧uLn, whereuLi ,i 51,...,n, is the set of left
invariant one-forms onG dual to a given basis$Xi

L% of left-invariant vector fields. Let us suppos
that the firstp5dimH elements in these bases correspond to left-invariant one-forms and v
fields of H, respectively. Then we tentatively define a measure onG/H as

VH
L 5 i X

p
Li X

p21
L ¯ i X

i
LVL5uLp11∧...∧uLn. ~18!
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In general,VH
L is not an invariant measure onG/H; in fact, it is not even a measure onG/H,

in the sense that it does not fall down to the quotient. This can be checked by computi
invariance properties underXi

L ,i 51,...,p. After a few computations we getLX
i
LVH

L

52ki
G/HVH

L . Therefore, ifki
G/HÞ0 for somei ,VH

L does not fall down to the quotient, and this
the same condition forG/H not to have a strictly invariant measure. Therefore, these two f
seem to be related. Indeed, if we look for a functionr on G such thatLX

i
L(rVH

L )50,i 51,...,p, we

find thatr has to be ar function, satisfyingXi
Lr5ki

G/Hr, as in~17!.
Now we have to prove that Eq.~17! always has nontrivial solutions. We know from Mackey17

that Eq.~15! always has a solution, but we would like to provide a proof in infinitesimal te
and, moreover, we would like to construct the solutions explicitly.

Let us consider the radical ofH, RadH—the maximal solvable ideal ofH. We know that
H/RadH is semisimple. According to the previous considerations, theki ’s vanish on this quotient.
Thus, the nontrivialki ’s lie only on RadH, which is solvable. According to one of Lie’
theorems,20 a solvable algebra of operators always possesses a common eigenvector. We p
to construct it as follows.

Let us consider the equationXi
Lr5ki

G/Hr,i 51,...,p. Let x be the general solution ofXi
Lx

50, which always exists and which we know how to construct, according to the Frobe
theorem. Then we can writer5xh, whereh is a particular solution ofXi

Lh5ki
G/Hh, with Xi

L

PRadH ~the rest of the equations give zero, and sinceh is a particular solution, we can choose
as not to depend on the corresponding variables!. Then Lie’s theorem guarantees the existence
such a functionh, since RadH is solvable.

Once we have constructed the measurerVH
L on G/H, we must check its invariance propertie

under the action ofG. For this, we computeLX
i
R(rVH

L )51/r(Xi
R
•r)(rVH

L ),i 51,...,n. The result

is that rVH
L is quasi-invariant underG and the divergence of the vector fieldXi

R is (1/r)(Xi
R

•r). Once the divergence of all vector fields has been computed, it is very easy to modi
~infinitesimal! action of the groupG in order to restore the invariance ofrVH

L , by defining the
new vector fields:

X̃i
R5Xi

R1
1

2r
~Xi

R
•r!, ~19!

i.e., right-invariant vector fields are modified with the addition of a multiplicative term, half
divergence of the corresponding vector field. In the context of Sec. II, we could think of
redefinition as coming from a pseudoextension ofG by means of some pseudococycle genera
by a certain functionl on G. In fact, this is the case, since the extra term can be written

Xi
R( 1

2 logr), i.e., the functionl, according to Eq.~14!, would bel52 i1/2 logr. Note the pres-
ence of the imaginary constanti in l ~so thatl is a pure imaginary function! revealing thatG has
been centrally pseudoextended byR1 instead ofU(1). Therefore, the invariance of a measure
a quotient spaceG/H can be restored by means of a central extension ofG by R1 with generating
function 2 i1/2 logr, wherer is a r function.

If we compute the commutation relations of the redefined vector fields, we get

@X̃i
R ,X̃j

R#52Ci j
k X̃k

R , ~20!

showing that this pseudoextension does not modify the commutation relations. As in Sec.
can compute the gradient of the generating functionl at the identity, proving to bel i

0

52( i /2)ki
G/H ,i 51,...,n. It is pure imaginary, as would be expected of a pseudoextension byR1.

If, instead of working with local exponents, we use factors, we have an extension ofG by R1

with factor v(g8,g)5h(g8* g)h21(g8)h21(g), where the generating functionh:G→R is
h(g)5r1/2(g).
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IV. EXAMPLE: REPRESENTATIONS OF SL „2,R…

Let us consider, as an example of application of the formalism developed previously
study of the unitary and irreducible representations ofG5SL(2,R). Since this group is nonsimply
connected, in order to apply our previous considerations, we shall consider its universal co
groupḠ, with p:Ḡ→SL(2,R) the covering map, which is a group homomorphism. The kerne
p is Z, the first homotopy group ofSL(2,R). It is easy to check that a unirrepU of Ḡ is also a
unirrep of SL(2,R) if and only if Kerp is represented as phases, i.e.,U(g)5eiag,;gPKer p.
Therefore, we shall compute the representationsU of Ḡ and then retain only the ones that veri
U(g)5e iag,agPR,;gPKer p. For simplicity, we shall denoteḠ just byG, bearing in mind that
at the end we wish to get the representations ofSL(2,R).

SinceSL(2,R) is semisimple, it has no nontrivial central extensions byU(1), i.e., its second
cohomology groupH2(G,U(1))5$e%. However, as shown in Sec. II, this group admits nontriv
pseudo-extensions byU(1), which can be classified into pseudocohomology classes. T
pseudocohomology classes are in one-to-one correspondence with the coadjoint orbits ofSL(2,R)
with integral symplectic two-form~see Ref. 13!.

Thus, we must first study the coadjoint orbits ofSL(2,R). These can be classified into thre
types: the one-sheet hyperboloids, the two-sheet hyperboloids, and the cones. The cones a
three different orbits, the upper and lower cones and the origin. The origin is the only
dimensional orbit, and is associated with the only one-dimensional representation~character! of
SL(2,R), the trivial one.

As we shall see below, the one-sheet hyperboloids are associated with the Principal c
ous series of unirreps ofSL(2,R), the two-sheet hyperboloids are associated with the Princ
discrete series of unirreps and the two cones are associated with the Mock representation

A. The group law

The SL(2,R) group can be parametrized by

SL~2,R!5H S a b

c dD PM2~R!/ad2bc51J . ~21!

If aÞ0 ~the casea50 is treated in an analogous manner, changinga by c!, we can eliminate
d,d5(11bc)/a, and we arrive at the following group law from matrix multiplication:

a95a8a1b8c,

b95a8b1b8
11bc

a
, ~22!

c95c8a1
11b8c8

a8
c.

Left- and right-invariant vector fields are easily derived from the group law:

Xa
L5a

]

]a
1c

]

]c
2b

]

]b
, Xa

R5a
]

]a
1b

]

]b
2c

]

]c
,

Xb
L5a

]

]b
, Xb

R5
11bc

a

]

]b
1c

]

]a
, ~23!

Xc
L5

11bc

a

]

]c
1b

]

]a
, Xc

R5a
]

]c
.
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The Lie algebra satisfied by the~say, left-invariant! vector fields is

@Xa
L ,Xb

L#52Xb
L ,

@Xa
L ,Xc

L#522Xc
L , ~24!

@Xb
L ,Xc

L#5Xa
L ,

and the Casimir for this Lie algebra is given byĈ51/2(Xa
L)21Xb

LXc
L1Xc

LXb
L . The left-invariant

one-forms~dual to the set of left-invariant vector fields! are given by

uL~a!5
11bc

a
da2bdc,

uL~b!5
1

a
db2

b2

a
dc1

b

a

11bc

a
da, ~25!

uL~c!5adc2cda.

The exterior product of all left-invariant one-forms constitutes a~left-invariant! volume form
on the whole group~Haar measure!:

VL5uL~a!∧uL~b!∧uL~c!5
1

a
da∧db∧dc. ~26!

B. Pseudoextensions

The different~classes of! pseudoextensions ofSL(2,R) by U(1) are classified, according t
the discussion in Sec. II, by the coadjoints orbits of the groupSL(2,R). Let us parametrizeG* by
$a, b, g%, a coordinate system associated with the base$Xa

L ,Xb
L ,Xc

L% of G. Instead of looking for
the different coadjoint orbits by direct computation, we can classify them by means of the Ca
functions. The CasimirsCi are invariant functions under the coadjoint action of the group onG* ,
so that the equationsCi5ci define hypersurfaces onG* invariant under the coadjoint action. O
course, these hypersurfaces could be the union of two or more coadjoint orbits, and we sha
extra conditions to characterize them~these are called invariant relations, see Refs. 13 and 2!.

The only ~independent! Casimir function forSL(2,R) is C51/2a21bg. This is a quadratic
function, and therefore its level sets are conic sections.

It is more appropriate for our purposes to perform the change of variablesa5a,b5m
1n,g5m2n. In terms of the new variables, the Casimir function is writtenC51/2a212m2

22n2. In this form, it is easy to identify the conics, of which there are essentially three ty
depending on whetherC.0, C50, or C,0. The caseC.0 corresponds to one-sheet hyperb
loids; the caseC50 corresponds to the two cones and the origin, i.e., the union of three coad
orbits; and finally, the caseC,0 corresponds to two-sheet hyperboloids~i.e., the union of two
coadjoint orbits!.

Now we select a particular pointlW 0 in each coadjoint orbit, which will be used to define
pseudoextension inSL(2,R) ~different choices oflW 0 in the same coadjoint orbit will lead to
equivalent pseudoextensions!. For the caseC.0, the easiest choice islW 05(a,0,0). ForC50, we
havelW 05(0,0,0) for the origin, and we can chooselW 05(0,0,g,0) for the upper cone andlW 0

5(0,0,g.0) for the lower cone. Finally, for the caseC,0, we selectlW 05(0,b.0,g52b) for
the upper sheet andlW 05(0,b,0,g52b) for the lower sheet of the two-sheet hyperboloid.
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C. Representations associated with the one-sheet hyperboloid: Principal continuous
series

According to the previous discussion, let us chooselW 05(a,0,0) as the representative point
the one-sheet hyperboloids. We need to look for a functionl on SL(2,R) satisfying
(]/]g)l(g)ug5e5l i

0. The easiest one would be a function linear on the coordinatea, but we
should take into account thata is not a canonical coordinate, since its composition law is mu
plicative. That is, the uniparametric subgroup associated with it isR1 instead ofR ~the value ofa
at the identity of the group is 1 instead of 0!. Thus, we can select forl(g)5a loga or rather
l(g)5a(a21), since the generating functionl must satisfyl(e)50 for jl to satisfy~6!.

Let us fixl(g)5a(a21), to be precise~the other choice would lead to an equivalent resu!.
The representation achieved when applying GAQ to the resulting group will be associated w
coadjoint orbit for which the Casimir isC51/2a2.0. The resulting group law forSL(2,R)
pseudoextended byU(1) by means of the two-cocyclejl is

a95a8a1b8c,

b95a8b1b8
11bc

a
,

~27!

c95c8a1
11b8c8

a8
c,

z95z8zeia~a8a1b8c2a82a11!.

Left- and right-invariant vector fields, obtained as usual from the group law, are

X̃a
L5a

]

]a
1c

]

]c
2b

]

]b
1a~a21!J, X̃a

R5a
]

]a
1b

]

]b
2c

]

]c
1a~a21!J,

X̃b
L5a

]

]b
, X̃b

R5
11bc

a

]

]b
1c

]

]a
1acJ,

~28!

X̃c
L5

11bc

a

]

]c
1b

]

]a
1abJ, X̃c

R5a
]

]c
,

X̃z
L5

]

]f
52 ReS i z

]

]z D[J, X̃z
R5J.

Left- and right-invariant one-forms associated with the variables ofSL(2,R) remain the same
and there are extra left- and right-invariant one-forms associated with the variablez. We are
interested in the left-invariant one, which is

Q[uL~z!5
dz

i z
1a~uL~a!2da!5

dz

i z
1aS 11bc2a

a
da2bdcD . ~29!

The resulting Lie algebra is that ofSL(2,R) with one of the commutators modified:

@X̃a
L ,X̃b

L#52X̃b
L ,

@X̃a
L ,X̃c

L#522X̃c
L , ~30!

@X̃b
L ,X̃c

L#5X̃a
L1aJ.
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The two-form

dQ5aS dc∧db1
c

a
db∧da1

b

a
dc∧daD ~31!

defines a presymplectic structure onG̃. The characteristic module, or more precise
Ker dQùKerQ, is generated by thecharacteristic subalgebra, GC5^X̃a

L&. We should remembe
that the characteristic subalgebra is nothing more than the isotropy subalgebraGlW 0 of the point
lW 0PG.

Now we have to look for polarization subalgebras. These should contain the charact
subalgebraGC and must be horizontal~i.e., in the kernel ofQ!. There are essentially two, an
these lead to unitarily equivalent representations~since they are related by the adjoint action of t
Lie algebra on itself, and this turns out to be a unitary transformation!. We shall choose as
polarization

P5^X̃a
L ,X̃b

L&, ~32!

and this, by solving the equationX̃a
LC5X̃b

LC50, provides the wave functionsC
5ze2 ia(k21)k iaF(t), wherek[a andt[c/a. The action of the right-invariant vector fields o
polarized wave functions is

X̃a
RC5ze2 ia~k21!k iaF22t

d

dtGF~t!,

X̃b
RC5ze2 ia~k21!k iaF iat2t2

d

dtGF~t!, ~33!

X̃c
RC5ze2 ia~k21!k iaF d

dtGF~t!.

According to Sec. II, the right-invariant generators should be redefined asX̃gi
R→X̃gi

R85X̃gi
R

1l i
0J in order to obtain the representations ofG, and this affects only the generatorsX̃a

R , which

changes toX̃a
R85X̃a

R1aJ. Its action on polarized wave functions turns out to be

X̃a
R8C5ze2 ia~k21!k iaF ia22t

d

dtGF~t!. ~34!

The representation ofSL(2,R) here constructed is irreducible but not unitary. One way
viewing it ~before discussing integration measures! is to consider the Casimir operator, which
the quadratic operatorĈ51/2(X̃a

R)21X̃b
RX̃a

R1X̃c
RX̃b

R . After the pseudoextension and redefinitio

of operators~X̃a
R should be changed byX̃a

R8!, the resulting Casimir operator,Ĉ8, acts on polarized
wave functions asĈ8C5(2a2/21 ia)C. The fact that it is a number reveals that the repres
tation is irreducible, but since it is not real, the representation cannot be unitary~the Casimir is a
quadratic function of~anti-!Hermitian operators, and should therefore be a self-adjoint operat
any unitary representation!.

The reason for this lack of unitarity is that the support manifold for the representation
not admit an invariant measure. Since the process of polarizing wave functions really am
to reducing the space of functions to those defined in the quotientG/GP , where GP is the
group associated with the polarization subalgebraP!, the support manifold is given byG/GP ,
which is naturally an homogeneous space underG. According to Sec. III, it may well happen tha
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G/GP does not admit an invariant measure, and in fact this is the case. However, the existe
quasi-invariant measures is granted, and this fact will allow us to restore the unitarity o
representation.

If we compute the measure onG/GP , derived from the left Haar measureVL on G, we
obtainVP

L5 i X̃
b
Li X̃

a
LVL5adc2cda. When expressed in terms of the new variablesk andt, it takes

the formVP
L5k2 dt. Taking into account thatG/GP is parametrized byt, it now becomes clear

why the representation is not unitary: the measure does not even fall down to the quotient
A solution to this problem consists in choosing any quasi-invariant measure onG/GP and

introducing the appropriate Radon–Nikodym derivative.17,18 Here, we propose another, ye
equivalent, solution to this lack of unitarity, giving new insight into the problem according to
III. We shall consider a pseudoextension ofG by R1, rather thanU(1). Thereason is that we
wish to restore the unitarity of a nonunitary representation, and for this we need a ‘‘piec
nonunitary representation, in such a way that the resulting representation is unitary. To en
direct comparison with the treatment of Mackey, we shall employ the equivalent techniq
nonhorizontal polarizations instead of that of pseudoextensions. A nonhorizontal polarizatioPnh

is a polarization in which the horizontality condition has been relaxed. The polarization equ
acquire the form:X̃j

LC5 ia jC,;X̃j
LPPnh ~see Ref. 13 for a discussion on the equivalence

tween pseudoextensions and nonhorizontal polarizations!.
The key point is to keepVP

L as the measure onG/GP , and to impose the polarizatio
conditionsX̃i

LC̃51/2ki
G/GPC̃, instead ofX̃i

LC50,;X̃i
LPP. In finite terms, this condition is writ-

ten as

C̃~g* h!5ADG~h!

DH~h!
C̃~g!. ~35!

We can rephrase this by saying thatC̃ is a 1/2-r-function.22 The purpose of this definition is
to makeC̃* C̃8 a r-function, with two 1/2-r-functionsC̃ andC̃8, in such a way thatC̃* C̃8VP

L

is a well-defined quantity onG/GP and can be integrated with respect tot. In other words,C̃* C̃8
is a r-function necessary to makeVP

L a quasi-invariant measure onG/GP .
To begin, we must compute the modular constantski

G/GP5ki
G2ki

GP,i 51,...,p. First, since

G5SL(2,R) is semisimple,ki
G50,i 51,...,n. Second, we haveka

GP52 and kb
GP50. Therefore,

ka
G/GP522 andkb

G/GP50.
Accordingly, the new polarization equations we have to solve are

X̃a
LC̃52C̃, X̃b

LC̃50. ~36!

It is easy to verify that the solutions of these new polarization equations are of the form

C̃~g!5a21C~g!, ~37!

whereC(g) is a solution of the previous~horizontal! polarization equations. Thus, the form of th
solutions is

C̃5zk21e2 ia~k21!k iaF~t!. ~38!

Now it is clear whyC̃* C̃8VP
L5F(t)* F8(t)dt can be integrated inG/GP ; the k depen-

dence has been removed.
The right-invariant vector fields, when acting on 1/2-r-functions, acquire extra terms tha

restore the unitarity of the representation:23

X̃i
RC̃5k21@X̃i

RC1~kX̃i
R
•k21!C#. ~39!
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The extra termkX̃i
R
•k21 turns out to be the divergence term of Eq.~19!, (1/2r)X̃i

R
•r, needed

to restore the invariance of the measure.
In this way, the final representation has the form, restricted to its action onF~t!:

X̃a
R8F~t!5F211 ia22t

d

dtGF~t!,

X̃b
RF~t!5F2t1 iat2t2

d

dtGF~t!, ~40!

X̃c
RF~t!5F d

dtGF~t!.

We can readily verify that these operators are self-adjoint with respect to the quasi-inv
measuredt ~what remains ofVP

L after multiplication by the factork22 contained in the wave
functions!. Even more, the Casimir operator, acting on the new wave functions, turns out
real, revealing that the representation is now unitary:

Ĉ8F~t!52 1
2~11a2!F~t!. ~41!

In finite terms, we can write the left action ofG̃ on modified wave functions~37! as

L̃g8C̃~g!5Ar~g8* g!C~g8* g!5Ar~g8* g!

r~g!
Ar~g!L̃g8C~g!. ~42!

According to Mackey, this constitutes a unitary representation with respect to the me
rVP

L . Since the representation was irreducible, it is unitary and irreducible.

D. Representations associated with the cones: Mock representation

In accordance with Sec. IV. B, let us chooselW 05(0,0,g) as the representative point in th
cone. Ifg,0 we are in the upper cone and ifg.0 we are in the lower cone. We have to look f
a functionl on SL(2,R) satisfying (]/]gi)l(g)ug5e5l i

0. The easiest one is the function linear o
the coordinatec, since herec is a true canonical coordinate, and therefore, we fixl(g)5gc.

The representation obtained when applying GAQ to the resulting group will be assoc
with one of the coadjoint orbit for which the Casimir isC50. The resulting group law for
SL(2,R) pseudoextended byU(1) by means of the two-cocyclejl is

a95a8a1b8c,

b95a8b1b8
11bc

a
,

~43!

c95c8a1
11b8c8

a8
c,

z95z8zexpF igS c8a1
11b8c8

a8
c2c82cD G .
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Left- and right-invariant vector fields, derived as usual from the group law, are

X̃a
L5a

]

]a
1c

]

]c
2b

]

]b
1gcJ, X̃a

R5a
]

]a
1b

]

]b
2c

]

]c
2gcJ,

X̃b
L5a

]

]b
, X̃b

R5
11bc

a

]

]b
1c

]

]a
,

~44!

X̃c
L5

11bc

a

]

]c
1b

]

]a
1gS 11bc

a
21DJ, X̃c

R5a
]

]c
1g~a21!J,

X̃z
L5

]

]f
52 ReS i z

]

]z D[J, X̃z
R5J.

The left-invariant one-form associated with the variablez is

Q[uL~z!5
dz

i z
1g~uL~c!2dc!5

dz

i z
1g~~a21!dc2cda!. ~45!

The resulting Lie algebra is, again, that ofSL(2,R) with one of the commutators modified, i
this case the one givingX̃c

L on the right-hand side:

@X̃a
L ,X̃b

L#52X̃b
L ,

@X̃a
L ,X̃c

L#522~X̃c
L1gJ!, ~46!

@X̃b
L ,X̃c

L#5X̃a
L .

The two-form

dQ52gda`dc ~47!

defines a presymplectic structure onG̃. The characteristic subalgebra isG C5^X̃b
L&. In this case,

there is essentially one polarization, given by

P5^X̃b
L ,X̃a

L&, ~48!

and this provides, by solving the equationX̃a
LC5X̃b

LC50, the wave functionsC
5ze2 igcF(t), where againt[c/a. The action of right-invariant vector fields on polarized wa
functions is

X̃a
RC5ze2 igcF22t

d

dtGF~t!,

X̃b
RC5ze2 igcF2t2

d

dtGF~t!, ~49!

X̃c
RC5ze2 igcF d

dt
2 igGF~t!.
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The redefinition of the right-invariant generatorsX̃gi
R→X̃gi

R85X̃gi
R

1l i
0J in order to obtain the

representation ofG, affects only theX̃c
R generator, which changes toX̃c

R85X̃a
R1gJ. Its action on

polarized wave functions turns out to be

X̃c
R8C5ze2 igcF d

dtGF~t!. ~50!

The representation ofSL(2,R) here constructed, as in the case of the one-sheet hyperbo
is irreducible but not unitary.

The reason for this lack of unitarity is the same as before, that is, the lack of an inva
measure on the support manifoldG/GP . In fact, the polarizationP is the same as in the case
the one-sheet hyperboloid, only the vector fields are slightly different, since they come
different pseudoextensions. Therefore, the wave functions are essentially the same as bef
consequentlyG/GP is the same as in the case of the one-sheet hyperboloid.

The measure onG/GP is againVP
L5 i X̃

b
Li X̃

a
LVL5adc2cda5k2 dt, which does not fall down

to the quotient.
Thus, we keepVP

L as the measure onG/GP , and we impose the polarization condition
X̃i

LC̃51/2ki
G/GPC̃, instead ofX̃i

LC50,;X̃i
LPP. In other words, we imposeC̃ to be a 1/2-r-

function in such a way thatC̃* C̃8 is a r-function, C̃ and C̃8 being two 1/2-r-functions. Now,
C̃* C̃8VP

L is a well-defined quantity onG/GP and can be integrated with respect tot.
Modular constantski

G/GP5ki
G2ki

GP, i 51,...,p, are the same as before, sinceGP is the same

group. Therefore,ka
G/GP522 andkb

G/GP50.
The new polarization equations are

X̃a
LC̃52C̃, X̃b

LC̃50 ~51!

with solutions:

C̃~g!5a21C~g!, ~52!

whereC(g) is a solution of the previous~horizontal! polarization equations. Thus, the form of th
solutions is

C̃5zk21e2 igktF~t!. ~53!

The right-invariant vector fields, when acting on 1/2-r-functions, acquire extra terms restorin
the unitarity of the representation:

X̃i
RC̃5k21@X̃i

RC1~kX̃i
R
•k21!C#. ~54!

This way, the final representation restricted to its action onF~t! has the following form:

X̃a
RF~t!5F2122t

d

dtGF~t!,

X̃b
RF~t!5F2t2t2

d

dtGF~t!, ~55!

X̃c
R8F~t!5F d

dtGF~t!.
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Again, we can readily verify that these operators are self-adjoint with respect to the q
invariant measuredt ~what remains ofVP

L after multiplication by the factork22 contained in the
wave functions!. Therefore, the representation is now unitary.

This representation can be seen as the limita→0 of the Principal series of representation
We should stress at this point that the representations does not depend ong, nor even on its sign.
Therefore, we obtain the same representation for both cones, which are clearly equivalen
reason for this equivalence is that the group isomorphism (a,b,c)→(a,b,2c) induces a unitary
transformation between the two representations. This representation~up to equivalence! is called
the Mock representation and is associated with the two cones.

E. Representations associated with the two-sheet hyperboloids: Discrete series

According to Sec. IV. B, we can choose the pointlW 05(0,b.0,g52b) in the upper shee
andlW 05(0,b,0,g52b) in the lower sheet of the two-sheet hyperboloid, to define the pse
extension ofSL(2,R) by U(1). Let usconsiderlW 05(0,b,2b), keeping the sign ofb undeter-
mined for the time being.

The easiest functionl on SL(2,R) satisfying (]/]gi)l(g)ug5e5l i
0 is the function linear on

the coordinate (b2c), since hereb and c are true canonical coordinates. Therefore, we
l(g)5b(b2c).

The representation obtained when applying GAQ to the resulting group will be assoc
with one of the coadjoint orbits for which the Casimir isC52b2,0. The resulting group law for
SL(2,R), pseudoextended byU(1) by means of the two-cocyclejl , is

a95a8a1b8c,

b95a8b1b8
11bc

a
,

~56!

c95c8a1
11b8c8

a8
c,

z95z8z expF ibS ~a821!b2~a21!c81
11bc2a

a
b82

11b8c82a8

a8
cD G .

The left- and right-invariant vector fields are

X̃a
L5a

]

]a
1c

]

]c
2b

]

]b
2b~b1c!J, X̃a

R5a
]

]a
1b

]

]b
2c

]

]c
1b~b1c!J,

X̃b
L5a

]

]b
1b~a21!J, X̃b

R5
11bc

a

]

]b
1c

]

]a
1bS 11bc2a

a DJ,

~57!

X̃c
L5

11bc

a

]

]c
1b

]

]a
2bS 11bc2a

a DJ, X̃c
R5a

]

]c
2b~a21!J,

X̃z
L5J, X̃z

R5J.
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The left-invariant one-form associated with the variablez is

Q[uL~j!

5
dz

i z
1b~uL~b!2db2uL~c!1dc!

5
dz

i z
1bF12a

a
db2S 11a1

b2

a Ddc1S b

a2 ~11bc!2cDdaG . ~58!

The resulting Lie algebra is, as in the other cases, the one ofSL(2,R) with some of the
commutators modified, in this case those givingX̃b

L and X̃c
L on the right-hand side:

@X̃a
L ,X̃b

L#52~X̃b
L1bJ!,

@X̃a
L ,X̃c

L#522~X̃c
L2bJ!, ~59!

@X̃b
L ,X̃c

L#5X̃a
L .

The two-form defining a presymplectic structure onG̃ is

dQ522bFb

a
db∧dc1

11bc

a2 da∧db1da∧dcG . ~60!

The characteristic subalgebra turns out to beGC5^X̃b
L2X̃c

L&. Looking for a polarization sub-
algebra containing the characteristic subalgebra, we get into trouble, since there is no su
subalgebra. We are forced to complexify the algebra, and then we find~essentially! two complex
polarizations:

P5^X̃b
L2X̃c

L ,X̃b
L1X̃c

L6 iX̃a
L&. ~61!

Clearly, the solution to these polarization equations are complex functions defined on a
plex submanifold of the complexification ofSL(2,R). These will be holomorphic or antiholomor
phic, depending on the choice of sign in~61!. The explicit construction of the representations
the discrete series, according to the group quantization framework, was first given in Ref.
connection to the quantum dynamics of a free particle on Anti-de Sitter space–time. Higher-
real polarizations were used in Ref. 25 in the study of the relativistic harmonic oscillator.
have also been considered in conformal field theory as factor ofSO(2,2)'SL(2,R) ^ SL(2,R)
representations.26
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Optimal ensemble length of mixed separable states
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The optimal~pure state! ensemble length of a separable stateA is the minimum
number of~pure! states needed in convex combination to constructA. We study the
set of all separable states with optimal~pure state! ensemble length equal tok or
fewer. Lower bounds onk are found below which these sets have measure 0 in the
set of separable states. In the bipartite case and the multiparticle case where one of
the particles has significantly more quantum numbers than the rest the lower
bounds are sharp. A consequence of our results is that for all two-particle systems,
except possibly those with one qubit or those with a nine-dimensional Hilbert
space, and for all systems with more than two particles the optimal pure state
ensemble length for a randomly picked separable state is with probability 1 greater
than the state’s rank. In bipartite systems with probabilty 1 it is greater than 1/4 the
rank raised to the 3/2 power and in a system ofp qubits with probability 1 it is
greater than 22p/(112p), i.e., almost the square of the rank.
@S0022-2488~00!02510-X#

I. INTRODUCTION

One of the important mathematical problems in quantum information theory is the char
ization of separable states. In the case of pure separable states, much progress has been m
instance, if one considers a quantum system ofp particles with state spaceH5 ^ j 51

p Cnj , then the
pure states are rays inH. Mathematically, this is the complex projective spaceCP(N21), which
is a real manifold of dimension 2N22, whereN5n1¯np . The separable pure states are prod
pure states and so correspond to a submanifold isomorphic to the Cartesian product,CP(n121)
3¯3CP(np21), which has real dimension( j 51

p (2nj22). Thus the set of separable pure sta
is a measure zero, closed, nondense subset of the set of pure states. In particular if one ra
picks a pure state inH, the probability that it is entangled~i.e., not separable! is one. Moreover,
every entangled state has an open set of entangled states around it.

The situation for separable mixed states is quite different. To see why, first recall that m
states are described in terms of density matrices. These areN3N, complex, positive semidefinite
Hermitian matrices with trace equal to 1. IfN5n1¯np , then the separable density matrices a
those which are convex combinations of product matrices, whereby product matrix we mea
of the form A5A1^¯^ Ap . Unlike the pure state case, the set of separable density mat
S(n1 ,...,np), is not of measure 0 in the set of all density matrices,DM(N)—it is not negligible.
In fact the vector space ofN3N Hermitian matrices has bases which consist solely of prod
density matrices. This meansS(n1 ,...,np) contains an open subset ofDM(N), since the convex
hull of a vector space basis contains a set which is open in the hyperplane that contains th
elements. In the case ofS(n1 ,...,np) that hyperplane is the set of matrices with trace equal to
ThusS(n1 ,...,np) is a compact, convex subset ofDM(N), which is the closure of its nonempt
interior. The interior, moreover, contains an element which is in some sense the cen
DM(N), the totally mixed state.1–3

One might think thatS(n1 ,...,np) would thus be easy to characterize. After all, such is
case for common convex, compact sets with nonempty interiors such as balls and polytop

a!Electronic mail: rbl@nadn.navy.mil
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S(n1 ,...,np) is not simple at all. For instance, unlike balls and polytopes, there is no easy w
determine the minimum number of product states needed in convex combination to cons
given separable mixed state.

If APS(n1 ,...,np), we say its optimal ensemble length is the minimum number of prod
states needed in convex combination to constructA. When we require all the product states to
pure, we call the minimum number needed the optimal pure state ensemble length. This
quantity was studied for two-particle systems withH5Cn

^ Cn by Ulhmann4 and DiVincenzo,
Terhal, and Thapliyal5 among others. Uhlmann showed that the optimal pure state ensemble l
is at least equal to the rank of the density matrix and no greater than its square. DiVinc
Terhal, and Thapliyal took up the question of whether one actually needed more than the
This is an important question, for the spectral theorem assures that every density matrix
expressed as the convex combination of pure states, the number equaling the rank of the
They found examples of states with optimal pure state ensemble length greater than their ra
shall see for systems with three or more particles and for systems of two particles—othe
possibly those modeled onC2

^ Cn or C3
^ C3—that almost every separable state has an opti

pure state ensemble length greater than its rank.
In this paper we examine the size of the set of all separable mixed states which have o

ensemble length ofk or fewer and the set of all which have optimal pure state ensemble leng
k or fewer. The first set will be denoted bySk(n1 ,...,np) and the second bySpure

k (n1 ,...,np). We
completely determine thek for which Sk(n1 ,...,np) has measure 0 inS(n1 ,...,np) in both the
bipartite case and the case in which one of the particles has substantially more quantum n
than all the rest, e.g., a molecule and photons. This result is the content of theorem 1. In th
2 ~respectively, theorem 3! a lower bound onk for which Sk(n1 ,...,np) @respectively,
Spure

k (n1 ,...,np)# has measure 0 inS(n1 ,...,np) is given. Moreover, in theorem 2 an upper bou
on k for which S(n1 ,...,np) has positive measure and contains an open subset is also give
order to put the main theorems in context, I should mention that a classical theorem of C
eodory assures that one never needs more thanN2 pure product states to construct a separa
state. ThusS(n1 ,...,np)5Sk(n1 ,...,np)5Spure

k (n1 ,...,np) for k5N2. However, it is not the case
that one always needs this many. For instance Sanpera, Tarrach, and Vidral6 have shown in the
2-qubit case that one needs no more than four pure product states.

Our main results are the following:
Theorem 1: Let N5n1¯np with n1<n2<¯<np and n1¯np21<np . ThenSk(n1 ,...,np)

has the following properties: (a) It is a connected, compact subset ofS(n1 ,...,np). In particular
if it is not all of S(n1 ,...,np), then it is not dense and its complement inS(n1 ,...,np) is an open
subset. (b) If k,n1

2
¯np21

2 , then Sk(n1, ...,np) has measure 0 inS(n1 ,...,np ). (c) If k
>n1

2
¯np21

2 , then Sk(n1 ,...,np) has positive measure inS(n1 ,...,np) and in fact contains an
open subset.

Theorem 2: The setSk(n1 ,...,np) has the following properties: (a) It is a connected, co
pact subset ofS(n1 ,...,np). In particular if it is not all of S(n1 ,...,np), then it is not dense and
its complement inS(n1 ,...,np) is an open subset. (b) If k,(n1

2
¯np

2)/(12p1( j 51
p ni

2), then
Sk(n1 ,...,np) has measure 0 inS(n1 ,...,np). (c) If n1<n2<¯<np and k>n1

2
¯np21

2 , then
Sk(n1 ,...,np) has positive measure inS(n1 ,...,np) and in fact contains an open subset.

Theorem 3: The setSpure
k (n1 ,...,np) has the following properties: (a) It is a connecte

compact subset ofS(n1 ,...,np). In particular if it is not all of S(n1 ,...,np), then it is not dense
and its complement inS(n1 ,...,np) is an open subset. (b) If k,(n1

2
¯np

2)/(122p1( j 51
p 2nj ),

thenSpure
k (n1 ,...,np) has measure 0 inS(n1 ,...,np).

The proofs of these theorems will be presented in Sec. II. First though let us look at
consequences.

In the bipartite case considered by Uhlmann and by DiVincenzo and co-workersH5Cn

^ Cn. By theorem 1 there is an open set of separable mixed states with optimal ensemble le
n2 or fewer. Noten25Rmax, the maximal rank of density matrices in this case. By theorem
however, the set of separable mixed states with optimal pure state ensemble length e
n3/(423/n) or fewer is of measure 0. Thus one must almost always use more than (Rmax)

3/2/4
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pure product states to construct a mixed separable state in the bipartite case. This is
disparity. However, it is not indicative of all situations.

For instance, consider a system consisting ofp qubits. Caratheodory’s theorem assures t
every separable state can be decomposed into a convex combination of 22p pure product states o
fewer. From our theorems 2 and 3, it is seen that for large values ofp one must almost always us
close to that number, whether one uses pure product states or general ones. In pa
Sk(2,...,2) has measure 0 fork,22p/(113p) and Spure

k (2,...,2) has measure 0 fork,22p/(1
12p). In terms of the maximal rank, these inequalities arek,Rmax

2 /(113 log(Rmax)) and k
,Rmax

2 /(112 log(Rmax)). On the other hand, theorem 2 impliesSk(2,...,2) has positive measur
and a nonempty interior ifk>22p22. This is not sharp. For instance, whenp53 one gets an open
set withk513.

Turning to the general multiparticle system, we note that the maximum rank of a de
matrix onH5Cn1^¯^ Cnp is n1¯np . When this is less thann1

2
¯np

2/(122p1( j 51
p 2nj ), we

can conclude from theorem 3 that the optimal pure state ensemble length of a separable
almost always greater than the rank of the state. In particular, one must almost alway
entangled pure states in the spectral~i.e., eigenvalue! decomposition of separable states. Th
occurs for all systems with three or more particles and for systems with two particles, e
possibly those withH5C2

^ Cn or H5C3
^ C3. That there are exceptions was shown by Sanp

Tarrach, and Vidral in Ref. 6. As mentioned before, in Ref. 6 the authors showed that
separable state onC2

^ C2 can be written as the convex combination of four or fewer pure prod
states. It would be interesting to see if the otherC2

^ Cn andC3
^ C3 are also exceptions.

Before turning to the proofs, two things need to be mentioned about measurability. First
in this paper, ‘‘almost always’’ is used in the strict mathematical sense of meaning ‘‘except
set of measure 0.’’ Second, there is a controversy over the proper measure to use for the
density matrices. That does not apply to the results presented here since any two measure
are absolutely continuous with respect to each other have the same sets of measure 0. S
hyperplane of Hermitian matrices with trace equal to 1 is a realN221 dimensional affine spac
and S(n1 ,...,np) is a compact, convex subset of it with nonempty interior, we shall use anN2

21 dimensional Lebesgue measure for both.

II. PROOFS

SupposeM andN are two finite dimensionalC` manifolds andf is aC` function fromM to
N. A point mPM is a critical point for f if d fm :TMm→TNf (m) is not onto. In words:m is a
critical point for f if the differential of f at m, which is a linear transformation from the tange
space ofM at m, TMm , to the tangent space ofN at f (m), TNf (m) , is not onto. A pointnPN is
a critical value for f if it is the image of a critical point. A classical theorem in differenti
topology due to Sard7 states that the set of critical values inN is of measure 0. This will be the ke
to our proofs. We shall apply it, along with the rank theorem,8 to the lengthk mixing function
which we shall define shortly.

For w, an integer, let Herm(w) denote the set ofw3w complex Hermitian matrices
Herm(w) is a real vector space of dimensionw2. The subset of positive semidefinite matrices
Herm(w) form a closed, convex cone with nonempty interior. Forr , a real number, taket r(w) to
be the subset of Herm(w) consisting of those matrices with trace equal tor . Eacht r(w) is a
w221 dimensional hyperplane in Herm(w). They are all parallel tot0(w), which is a vector
space. The intersection oft1(w) with the cone of positive semidefinite matrices in Herm(w) is the
set of density matrices,DM(w). As mentioned before, it is a compact, convex set with nonem
interior in t1(w). Also, note that the tangent space oft1(w) at Q is t0(w), since the hyperplane
are parallel.

Let N5n1¯np . The lengthk mixing functionmk :Rk213(t1(n1)3¯3t1(np))k→t1(N) is
defined forQÄ(l1 ,...,lk21 ,A11,...,A1p ,...,Ak1 ,...,Akp) by
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mk~Q!5 (
j 51

k21

l jAj 1^¯^ Ajp1S 12 (
j 51

k21

l j DAk1^¯^ Akp .

When mk is restricted toLk3(DM(n1)3¯3DM(np))k, where Lk5$(l1 ,...,lk21):l j

>0 and ( j 51
k21 l j<1%, it yields elements inDM(N). Moreover, it does so by forming conve

combinations of product states. Sincemk is an algebraic function, it is infinitely differentiable an
so the criteria for Sard’s theorem are satisfied. The differential ofmk at the point
QÄ(l1 ,...,lk21 ,A11,...,Akp) applied to the tangent vectorV5(r 1 ,...,r k21 ,H11,...,Hkp) is
given by

dmk~Q!V5 (
j 51

k21

l j FH j 1^ Aj 2^¯^ Ajp1Aj 1^ H j 2^ Aj 3^¯^ Ajp

1Aj 1^¯^ Ajp21^ H jp
G

1S 12 (
j 51

k21

l j D @Hk1^ Ak2^¯^ Akp1¯1Ak1^¯^ Akp21^ Hkp#

1 (
j 51

k21

r jAj 1^¯^ Ajp2S (
j 51

k21

r j DAk1^¯^ Akp . ~1!

We need to determine whendmk is never onto. To this end observe thatt0(N), the tangent
space at each point oft1(N), equals

t0~n1! ^ Herm~n2! ^¯^ Herm~np!1Herm~n1! ^ t0~n2! ^ Herm~n3! ^¯^ Herm~np!

1¯1Herm~n1! ^¯^ Herm~np21! ^ t0~np!. ~2!

~Note, this is sum, not direct sum. There is a great deal of overlap in the terms. In particul
not add dimensions.!

Let us first prove part~b! of theorem 1 for the bipartite case. ThusN5n1n2 , n1<n2 , and
k,n1

2. We need to showdmk(Q) is not onto for anyQ5(l1 ,...,lk21 ,A11,A12,...,Ak1 ,Ak2). To
begin, notice thatk,n1

2<n2
2 means that neither$Aj 1% spans Herm(n1) nor $Aj 2% spans Herm(n2).

Hence if either the projections of theAj 1 ontot0(n1) do not spant0(n1) or the projections of the
Aj 2 onto t0(n2) do not spant0(n2), then dmk(Q) cannot be onto. Indeed, without loss
generality suppose the projections of theAj 2 onto t0(n2) do not span. Then there is aC
Pt0(n2) which is orthogonal to the span of those projections. Since$Aj 1% does not span
Herm(n1) there is aBPHerm(n1) which is orthogonal to the span of$Aj 1%. The productB^ C is
then both int0(n1n2) and orthogonal to every term in Eq.~1! and sodmk(Q) is not onto.

Since dimt0(n2)5n2
221, the situation just considered occurs if any of the following ho

k,n1
221, n1,n2 , any of thel j are 0, or thel j add to 1. Therefore, to finish this part of the pro

let us assumen15n25n, k5n221, none of thel j are 0, and thel j do not add to 1.
SupposeAj 15Ej1 (1/n) I andAj 25F j1 (1/n) I where$Ej% and$F j% are bases fort0(n). In

order to establishdmk(Q) is not onto, we only need to show it does not send a basis ofRk21

3(t0(n)3t0(n))k onto a basis oft0(n2). The elements ofRk213(t0(n)3t0(n))k are of the
form V5(r 1 ,...,r k21 ,H11,H12,...,Hk1 ,Hk2). By successively picking oner j to be 1 and all the
other entries inV to be 0 and then picking allr j to be 0 and successively pickingH ji to be one of
the Es or Ft depending upon whetheri 51 or 2, we obtain a basis forRk213(t0(n)3t0(n))k.
Applying dmk(Q) to this basis, we obtain the set

H Es^ Ft1Es^
1

n
I ,Es^ Ft1

1

n
I ^ Ft ,

Es^ Ft1
1

n
I ^ Ft1Es^

1

n
I 2Ek^ Fk2

1

n
I ^ Fk2Ek^

1

n
I

J , ~3!
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wheres and t range independently from 1 ton221. Subtracting the first group of these elemen
from the second and third groups and adding the first group withs5t5k to the third, we get the
set

H Es^ Ft1Es^
1

n
I ,

1

n
I ^ Ft2Es^

1

n
I ,

1

n
I ^ Ft2

1

n
I ^ FkJ . ~4!

Subtracting the last group from the second and adding the result to the first group, we obt

H Es^ Ft1
1

n
I ^ Fk ,

1

n
I ^ Fk2Es^

1

n
I ,

1

n
I ^ Ft2

1

n
I ^ FkJ . ~5!

Since dimt0(n)5n221, there are (n221) (n221) elements in the first group of this last se
There aren221 elements in the second group and there aren222 in the third group. Thus all told
there aren422 elements in the set. But dimt0(n2)5n421 and so the set cannot form a bas
which meansdmk(Q) is never onto ifk,n1

2.
Hence if k,n1

2, then every point inRk213(t1(n1)3t1(n2))k is a critical point formk . It
follows from Sard’s theorem that the image ofmk is of measure 0 int1(N). The bipartite case of
part ~b! of theorem 1 is then a result of the facts thatSk(n1 ,n2) is in the image ofmk and any
measure 0 subset oft1(N) has measure 0 inS(n1 ,n2), too.

To finish the proof of part ~b! of theorem 1, we only need to note th
Sk(n1 ,...,np),Sk() j 51

p21nj ,np) and use what we have just proved for the bipartite case.
Let us now prove part~c! of theorems 1 and 2. We shall use the rank theorem,8 which states

that if dmk is onto at a pointQ5(l1 ,...,lk21 ,A11,...,Akp), then mk maps some open ba
centered atQ onto an open set containingmk(Q). Thus we need to find such a pointQ in the
interior of Lk3(DM(n1)3¯3DM(np))k at whichdmk(Q) is onto.

We know there are bases of Herm(ni) which consist of elements in the interior ofDM(ni).
We also know (1/np) I is in the interior of DM(ni). Therefore, sincek>n1

2
¯np21

2

5dim Herm(n1¯np21), we can pick theAji for j 51,...,k, i 51,...,p21 to be in the interior of
DM(ni) and such that$Aj 1^¯^ Ajp21% spans Herm(n1¯np21). Choosing them so and als
choosing alll j51/k and allAjp5(1/np) I , we obtain aQ which satisfies our needs. To see th
note an element of Rk213(t0(n1)3¯3t0(np))k is of the form V
5(r 1 ,...,r k21 ,H11,...,H1p ,...,Hk1 ,...,Hkp). Let G i be the set of allV for which the only non-
zero component is aH ji . Since$Aj 1^¯^ Ajp21% spans Herm(n1¯np21) andAjp5(1/np) I , we
have thatdmk(Q) mapsG i onto t0(n1¯np) ^ (1/np) I for i ,p and Gp onto Herm(n1¯np21)
^ t0(np). These two sets spant0(N) and so part~c! of theorems 1 and 2 is proved.

To finish the proofs of these two theorems we first note that ifk satisfies the condition in par
~b! of theorem 2, then the dimension of the domain ofmk is less than the dimension of its targe
In such a case it is impossible fordmk(Q) to ever be onto because the dimension of its domai
too small. And so the result again follows from Sard’s theorem. As for part~a! of theorems 1 and
2, it is a consequence of the factSk(n1 ,...,np) is the image of the connected, compact setLk

3(DM(n1)3¯3DM(np))k under the continuous mapmk .
Finally, as for theorem 3, let us recall that the set of pure states inDM(q) is isomorphic to

the complex projective spaceCP(q21), which has real dimension 2q22. Hence we need to
consider the composition of the embedding

i:Rk213~CP~n121!3¯3CP~np21!!k→Rk213~t1~n1!3¯3t1~np!!k

with mk . Part ~a! of theorem 3 is a result of the factSpure
k (N) is the image of the connected

compact setLk3(CP(n121)3¯3CP(np21))k under the continuous mapmksi. As for part
~b!, it is a simple consequence of Sard’s theorem and the observation thatRk213(CP(n121)
3¯3CP(np21))k has dimensionk(122p1( j 51

k 2nj )21 while t1(N) has dimension
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n1
2
¯np

221. Sincedmksi is a linear transformation, it cannot be onto if the dimension of
domain is strictly less than the dimension of its image, which is the case herek
,(n1

2
¯np

2)/(122p1( j 51
k 2nj ).
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Why two qubits are special
K. G. H. Vollbrechta) and R. F. Wernerb)

Institut für Mathematische Physik, TU Braunschweig, Mendelssohnstrasse 3,
38106 Braunschweig, Germany

~Received 25 October 1999; accepted for publication 9 March 2000!

We analyze some special properties of a system of two qubits, and in particular of
the so-called Bell basis for this system, and discuss the possibility of extending
these properties to higher dimensional systems. We give a general construction for
orthonormal bases of maximally entangled vectors, which works in any dimension,
and is based on Latin squares and complex Hadamard matrices. However, for none
of these bases the special properties of the operation of complex conjugation in Bell
basis hold, namely that maximally entangled vectors have up-to-a-phase real coef-
ficients and that factorizable unitaries have real matrix elements. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!03707-5#

I. INTRODUCTION

The qubit system is the smallest nontrivial quantum system. Formerly known as a two
system, it has often served as an example for basic quantum phenomena.1 Many of the basic ideas
of quantum information theory were first tested on qubits. Indeed, for the invention of proc
like entanglement enhanced teleportation2 and dense coding3 it was very helpful to have an
explicit example, in which every detail could be explicitly worked out. For these two processe
generalization to higher dimensional systems was not difficult, hence the intuition gained fro
qubit case turned out to be valid.

On the other hand, in the theory of entanglement there have been two achievements,
were so far only possible for qubits, and probably have no higher dimensional analogs. The
the ‘‘partial transpose’’4 form of the criterion for separable~classically correlated! states, and the
remarkable formula of Wootters5,6 for the entanglement of formation of an arbitrary state of t
qubits. Hence in these cases it may be dangerous to rely too much on the intuitions gaine
the qubit case. The purpose of this article is to state as clearly as possible, which of the ingr
of Wootters’ proof and, in particular, which properties of the ‘‘Bell basis’’ ofC2

^ C2 have a
chance of generalization to higher dimensions. We hope that this will serve as a caveat a
help researchers in the field to develop more accurate intuitions for higher dimensional ent
ment.

Entanglement of formation7 is one of the basic quantitative notions of entanglement for mi
states, but it is often a very hard task to calculate it. For the two qubit system this problem
solved by Wootters, who gives a quite simple formula. The Wootters formula is based esse
on the spectrum of the product of the density-operatorr with an operatorr̄Bell , defined as the
complex conjugate ofr, to be computed in a ‘‘magic basis,’’ the ‘‘Bell basis,’’ defined as

F05 1
2~ u↑↑&1u↓↓&), F15

i

2
~ u↓↑&1u↑↓&),

~1.1!

F25 1
2~ u↓↑&2u↑↓&), F35

i

2
~ u↑↑&2u↓↓&).

a!Electronic mail: k.vollbrecht@tu-bs.de
b!Electronic mail: r.werner@tu-bs.de
67720022-2488/2000/41(10)/6772/11/$17.00 © 2000 American Institute of Physics
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Note that this Bell basis is only defined up to the choice of the$↑,↓%-basis inC2. So we have not
a single Bell basis, but a whole class of Bell bases. Wootter’s formula will work for any of th
in fact, the spectrum ofrr̄Bell is already independent of this choice.

The purpose of this article is to search for the magic in that basis, i.e., to find its distin
properties, and to generalize them, if possible, to higher dimensional systems. One simple
erty, namely that the Bell basis is anorthonormal basis of maximally entangled states, does allow
realizations in arbitrary dimension, and we describe a very general construction for such ba
Sec. III. In C2

^ C2 this property does single out the Bell basis up to trivial modifications~see
Lemma 3 in Sec. III A!. This would justify calling orthonormal bases of maximally entang
vectors ‘‘Bell bases’’ in any dimension.

However, we propose not to do so, because this property alone does not capture w
essential in Wootter’s formula. Two really important properties of the Bell basis refer not dir
to the basis, but to the operation of complex conjugation in Bell basis. The first is that a u
operator UPSU4 can be factorized as U5~U1^U2), with U1,U2PSU2 if and only if U has real
matrix elements in Bell basis. The second key property says that a pure state is max
entangled, if and only if it can be represented by a vector with real components in Bell basis
that we have here two two-way logical implications, altogether four implications. One might
to find at least one of them realized for some basis onCd

^ Cd with higherd. However, we find in
our main theorem~Theorem 5! that any one of these implications already forcesd52 and char-
acterizes the Bell basis given above~up to local unitary transformations!. Hence, to our regret
none of the ‘‘magical’’ properties of the Bell basis can be found in higher dimension. Altho
the main theorem is thus somewhat negative in content, we hope our proof will be se
instructive. It contains a surprising variety of methods, some of which we hope might be a
interest in related problems.

So what is so special about dimension two? We believe that the root is already in a pr
of the single qubit system, which we describe in Sec. II: only in dimensiond52 we have a
‘‘universal NOT’’ operation, which takes any pure state to an orthogonal one, without singlin
any basis. One can even define this operation by~nontriviality and! this universality property alone
~see Proposition 1!. The complex conjugation in Bell basis is simply the tensor product of s
operations in each factor. Its insensitivity to local changes of basis comes precisely for
universality of the one-qubit operation. But this insensitivity seems necessary for the ‘‘ma
properties, which always relate aprima faciebasis dependent concept~real components in the
basis under consideration! to a basis-independent one~factorizability or maximal entanglement!.

Our article is organized as follows. Section II will recall some well~maybe not widely! known
special properties characterizing the qubit case and give a short proof that there are no ‘‘u
sal’’ quantum operations aboved52. In Sec. III we do some preparatory work on maxima
entangled vectors, describe our construction of bases of maximally entangled vectors in g
dimension, and show the uniqueness of the Bell basis ford52. Section IV contains our main
result, namely that even weak forms of the relationships between factorizable unitaries an
unitaries, or maximally entangled vectors and real vectors remain special to dimension tw
close with a remark on potential applications to more than two qubits.

II. HOW SINGLE QUBITS ARE SPECIAL

In this section we will describe some of the properties of single qubits, which are fals
systems with more than two-dimensional Hilbert space. Some of these are well-known, a
only recall them because they are referred to later on. Others will have to be treated in more
for application in Sec. IV. Throughout we will denote byd the dimension of the Hilbert space o
the systems under consideration, so that qubits are characterized byd52.

Of course, everybody working in quantum information theory or indeed quantum physic
whole is familiar with the Poincare´ ball ~or Bloch or Stokes sphere! representing the state spac
~space of density matrices! of a two-level system. It is so well circulated as the paradigm o
quantum state space that one must perhaps warn students about its not so typical featu
most conspicuous of these, which is in fact at the root of several others, is that the ball
                                                                                                                



ap-

er
the

ne
m,
ich
y the
antum

r a

es.
ld be
n

tum
e that

sense.

ity
t.
l

gate

is
U.

ady

6774 J. Math. Phys., Vol. 41, No. 10, October 2000 K. G. H. Vollbrecht and R. F. Werner

                    
center. That is, there is a density matrixr̄5(1/2)1 such that for every density matrixr there is an
opposite one,r8, such thatr̄5(r1r8)/2. In the language of Jordan algebras, an axiomatic
proach in which more exotic state spaces than usual can arise, thed3d-matrices are a ‘‘spin
factor’’8 iff and only if d52. Another geometrical feature which is only valid ind52 is that the
extreme points~pure states! form the complete~topological! boundary of the state space: in high
dimension every density matrix withsomezero eigenvalue is on the boundary, whereas
extreme points are those withall but oneeigenvalue equal to zero.

A consequence of the fact that ford52 every one-dimensional projection has only o
one-dimensional projection in its orthogonal complement is the failure of Gleason’s theore9,10

This theorem says that ford.2 any real valued function on one-dimensional projections, wh
sums to 1 on every maximal set of orthogonal one-dimensional projections, is given b
expectations of a density matrix. Again, this has had some repercussions in axiomatic qu
mechanics.

Since ind52 every pure stater5uw&^wu has a unique complement it is natural to ask fo
‘‘quantum NOT’’ operation,11 i.e., a mapw°w', which takes every vectorwPCd to an orthogo-
nal one,w'. It is easy to see that there can be no linear operatorA such thatw'5Aw: By
definition, such an operator would satisfy the equation^w,Aw&50 for all w, from which one gets
A50 by polarization, i.e., by inserting complex linear combinations forw. However, the polar-
ization trick uses complex linearity in a crucial way, and it is indeed possible to findconjugate
linear ~‘‘antilinear’’ ! operatorsU such that

^w,Uw&50, ~2.1!

for all w. Indeed, ifU acts on the vectors of a basis$ea% as Uea5(bUbaeb then Eq.~2.1! is
equivalent toUba52Uab . Clearly, ford.2, we have many choices for antisymmetric matric
A natural additional requirement for a NOT operation would be that double negatives shou
the identity. It turns out thatU25l1 can hold for an antiunitary NOT operation only in eve
dimension~for odd d an antisymmetric matrix is never invertible! and withl521.

For d52 there is only one antisymmetric matrix, up to a factor, so the antiunitary quan
NOT operation is uniquely defined. Because this argument works in any basis, we conclud
the U is the same in every basis, so indeed this operation is universal in a very strong
Formally, this universality is expressed by saying that UUU*5v~U!U for all ‘‘basis changes,’’
i.e., all unitaries U, wherev~U!PC, uv~U!u51, is a suitable phase. By looking at the universal
condition in terms of the matrixUab , one can see that ford>3 a universal NOT does not exis
However, the following proposition makes an even stronger claim: ford>3 there is no universa
antiunitary at all.

Proposition 1: Let d.1 be natural number, and suppose that there is a nonzero conju
linear operatorU on Cd such that for any unitary operatorU there is a phasev~U! satisfying
UUU*5v~U!U.

Then d52 and there is a factorlPC such that

US a
bD5lS b̄

2āD . ~2.2!

Moreover, v~U!5det~U!, and whenulu51, U is antiunitary.
Proof: Since UUU*5v~U!U, we may take any matrix element of this equation, which

nonzero forU, to conclude thatv~U! is a continuous function of the matrix elements of
Moreover, it is straightforward to verify thatv is a character, i.e.,v(U1U2!5v~U1!v~U2). To-
gether withv~1!51, this implies thatv(U)5det(U)N for some integerN. Inserting multiples of
the identity, U5z1 we find z25zNd, i.e., Nd52. Since we have assumedd.1, this impliesN
51 andd52. That theU in ~2.2! satisfies the conditions and is unique up to a factor was alre
argued above.
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A more elementary argument, not relying on the representation theory of the unitary gro
the following.~We omit here the part of the argument dealing with the null space ofU, so assume
U to be non-singular.! Suppose thatu1 ,...,ud are the eigenvalues of U with eigenvectorswa , then
the vectorsUwa are also eigenvectors with eigenvaluesv(U)ua. Note that the conjugateua

appears, due to the conjugate linearity ofU. It follows that the spectrum of every unitary must b
congruent to itself, subject to a reflection followed by a rotation of the complex plane. Fd
52 the spectrum consists of two points on the unit circle, and is hence symmetric with resp
a reflection on a line orthogonal tou12u2 . Clearly, ford>3 a general set ofd points on the unit
circle has no such symmetry. j

Of course, the operatorU from Eq. ~2.2! also satisfies the condition~2.1!. Note that the
definition of universality does not really requireU to be conjugate linear: we could also consid
linear operators. It is easy to see, however, that that choice would be uninteresting: the un
linear operations are multiples of the identity, so the states only implement the identity tra
mation.

III. MAXIMALLY ENTANGLED STATES

We define a vectorFPH1^ H2 in a Hilbert space tensor product to be maximally entang
whenever both of its restrictions are maximally mixed. The restricted density matricesr1 ,r2 are
defined by tr(r1A1)5^F,(A1^ 1)F& and tr(r2A2)5^F,(1^ A2)F& for all A1 ,A2 . Thus F is
maximal entangled, ifr1 and r2 are proportional to the identities onH1 andH2 . By the well-
known Schmidt decomposition12 this is only possible if dimH15dimH2 , so we will setH1

5H25Cd throughout this section. We will denote byM the set of maximally entangled vector
The Schmidt decomposition for an arbitrary maximally entangled vectorV now reads

V5
1

Ad
(
a51

d

ea ^ ea8 , ~3.1!

where$ea% and$ea8 % are suitable orthonormal bases in the tensor factors. Generically~i.e., when
the reduced density matrices have only nondegenerate eigenvalues! the Schmidt decomposition i
unique up to phase factors. Maximally entangled states constitute the opposite case: Si
reduced density matrices are totally degenerate, the bases are only determined up to a c
unitary transformation, i.e.,

V5~U^Ū!V, ~3.2!

where Ū is defined by the matrix elements^ea8 ,Ūeb8 &5^ea ,Ueb&. Note that this operation de
pends on the bases$ea%, $ea8 %, and hence on the particular maximally entangled stateV.

It is clear from the definition of maximal entanglement that local unitary transformations
U1^U2 with U1,U2 unitary, take maximally entangled vectors into maximally entangled one
view of Eq. ~3.2! we get the same transformations, by performing a unitary rotation only of
factor. Other vectors, too, can be represented in this form. In fact, there is a general identifi
between operators acting in one factor and vectors in the tensor product, based on the f
both objects require ad3d-matrix of coefficients for their description. The salient facts a
collected in the following Lemma.

Lemma 2: LetVPCd
^ Cd be a maximally entangled unit vector. Then every vectorFPCd

^ Cd can be written as

F5~XF ^ 1!V,

with a uniquely determined linear operator XF . Moreover,
(1) ^F,C&5tr(XF* XC).
(2) (XF ^ 1)V5(1^ XF

T )V.
(3) the restrictions of the stateF are given by the density matrices1/dXF* XF and1/dX̄FXF

T .
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(4) F is maximally entangled iff XF is unitary.
Here complex conjugation XF̄ and transpose XF

T are defined in terms of the matrix elemen
in the basis given by the Schmidt decomposition ofV ~3.1!.

Proof: To prove this lemma we write outF in components with respect to the bases$ea% and
$ea8 % appearing in~3.1!, but adding the factorAd to each component

F5
1

Ad
(
a,b

Xabea ^ eb85
1

Ad
(
b

S (
a

XabeaD ^ eb8 ,

whereXab5Ad^F,ea ^ eb&. We now define the linear operatorXF by XFebª(aXabea so we
can write

F5
1

Ad
(
b

~XFeb! ^ eb85~XF ^ 1!V.

By this XF is uniquely defined. The properties~1!¯~4! can be checked by simple calculation
which are left to the reader. j

How many maximally entangled states are there? Since the maximally entangled vecF
are in one-to-one correspondence with the unitariesXF , the manifoldM has the same dimensio
as the unitary group, i.e.,d2. But this says very little about howM is embedded intoCd

^ Cd,
about geometric relations inM, and about the question whether we can find an orthonormal b
of maximally entangled vectors. This is addressed in the next section.

A. Constructing bases of maximally entangled vectors

By Lemma 1 the task of constructing a basis$Fa%,M is equivalent to finding a basis o
unitary operatorsXa on Cd, satisfying the orthonormality condition

tr~Xa* Xb!5ddab , a,b51,...,d2. ~3.3!

It turns out that such bases exist in any dimension. Ind52 the Pauli matrices and the identity thu
determine the Bell basis~1.1!. This is somewhat surprising because the system~3.3! of equations
is formally overdetermined. The variables in this system are the unitariesXa , each of which we
can take in SUd , i.e., with detXa51. The dimension of this group isd221, so with d2 such
operators we end up with ad2(d221)-dimensional manifold. On this we have one constra
equation for every pairaÞb. Since these equations are complex, and we are counting real di
sions, this amounts tod2(d221) constraints. Since this exactly balances the number of unkno
the usual rule of thumb would indicate a discrete set of solutions. On the other hand,
solution is embedded into a manifold of solutions of the formXa85UXaV, with U, VPSUd

independent ofa. These solution manifolds are generically of dimension 2(d221). So this is the
dimension mismatch between unknowns and equations.~Another way to count this is to mak
some special choices, e.g., using U andV to fix U151 and U2 diagonal, which reduces the numb
of unknowns, but not the number of equations.!

There are several general constructions for bases of unitaries. Since such bases are p
what is needed for generalizing the entanglement enhanced teleportation scheme to dim
d.2, one such construction~working for anyd! has been noted in Ref. 13. Here we give the m
comprehensive general construction known to us.

By definition, a shift-and-multiply basis of unitaries consists ofd2 unitary operators
$Xi j % i , j 51...d of the form

Xi j ek5Hik
j et~k, j ! , ~3.4!

where$ek% denotes the canonical basis ofCd, Hik
j are phases, andt:I d3I d→I d is a suitable map,

whereI d5$1,...,d%. Then for$Xi j % to satisfy~3.3! it is necessary and sufficient that the followin
conditions are satisfied:
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~1! The shift mapt has to be injective in each argument, i.e., it has to satisfy the cancellation
(t( i ,k)5t( j ,k))⇒( i 5 j ) and (t(k,i )5t(k, j ))⇒( i 5 j ). In other words, every symbol ap
pears exactly once in each row or column of the composition table. Such tables are
investigated in combinatorial mathematics under the name of Latin Squares.14

~2! EachH j has to be a complex Hadamard matrix15,16 with respect to the lower indices. Here
d3d-matrix H is called Hadamard, if all entries have modulus one and it is unitary up
factor

uHkl u51, k,l 51,...,d, HH* 5d1. ~3.5!

The proof that these conditions are sufficient forXi j to be a basis is easy. To prove necessity, n
thatt(•, j ) must be bijective for eachXi j to be unitary, and theHik

j must be phases. Orthogonalit
of Xi j andXi 8 j 8 for j 5 j 8 implies thatH j is Hadamard, and orthogonality forj Þ j 8 implies that
H j P(H j 8)* 50, whereP is the projection onto the span of$ekut(k, j )5t(k, j 8)%. Hencet(k,•) is
also injective.

The problem is now shifted to constructing Hadamard matrices and Latin squares. Both
topics are flourishing branches of combinatorial mathematics, with applications in coding the17

However, the Hadamard matrices considered in the literature are mostly taken to be reaHkl

561), which forces the dimension to be two or divisible by four. The complex case is much
understood. Since we claim that bases of maximally entangled vectors exist in any dimensi
must display at least one Latin square and one Hadamard matrix of every orderd. In both cases,
group theory helps us out: fort we take the composition of a group, e.g., the cyclic group of or
d, and forH we can take the matrix of the discrete Fourier transform, i.e.,

Hkl 5expS 2p i

d
kl D . ~3.6!

Some generalizations are obvious, for example to other, possible nonabelian groups fort, and to
the Fourier transforms of other finite abelian groups forH. However, one should be aware that f
largerd these simple group theoretical constructions exhaust only a minute fraction of the
bilities. On the other hand, for smalld the conditions are fairly tight, and ford52 andd53 both
the Hadamard matrix and the Latin square are essentially unique. Nevertheless, ford53 one can
already find inequivalent bases. So qubits are also special in the sense that only in th
uniqueness holds, as we now proceed to show.

Lemma 3: Let$Ca%, a50...3be a basis of maximally entangled vectors inC2
^ C2 and let Xa

denote the unitaries such thatCa5(Xa ^ 1)V.
(1) Then there are unitariesU1, U2 , and phasesxa such thatCa5xa(U1^U2)Fa , where

$Fa% denotes the standard Bell basis (1.1).
(2) If all Xa have the same determinant then either (a) the phasesxa may all be chosen equa

to 1 or (b) the phases may be chosen as$1,1,21,1% or, equivalently, U1^U2Fa may be made
into an odd permutation of the given basis.

Proof: From Lemma 2 a local unitary transformation of the vectorCa affect theXa matrix
like

U1^U2Ca5~~U1XaU2
T) ^ 1)V, ~3.7!

i.e., Xa°(U1XaU2
T). By choosing U151 and U25X0* , we may assume thatX051. Note that

under the assumptions of part~2! this also achieves detXa51 for all a. The local unitary trans-
formations leaving the conditionX051 invariant areXa°UXaU* . Moreover, from orthogonality
with X0 we get tr(Xa)50. This means that each of the unitariesXa , a51,2,3 has two eigenvalue
adding up to 0, and is hence of the formXa5 ixarWa•sW , where therWaPR3 are real three-
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dimensional unit vectors, andsW is the vector of Pauli matrices. Orthogonality of theCa implies
these three vectors to be orthogonal, too. Moreover, condition~2! is equivalent toxa561, or
xa51, since a sign can be absorbed inrWa .

Since the operationX°UXU* is just a three-dimensional proper rotation, we can rotate
orthonormal frame (rW1 ,rW2 ,rW3) to be parallel to the standard basis inR3. Hence we getXa

5 ixasa , proving part~1!, or Xa56 isa in case~2!. By further rotations we can make all sign
but at most one11. The distinction between cases~a! and ~b! is precisely, whether the rea
orthogonal transformation taking the frame (rW1 ,rW2 ,rW3) to the standard basis has determinant11 or
21. In the second case we need an orientation reversing operation~such as reversing one directio
or permuting some basis elements! before a proper rotation~implemented by a local unitary!
brings the given basis to the standard form. j

B. Unitaries respecting maximal entanglement

As noted above, all local unitaries map the setM of maximally entangled vectors into itsel
It turns out that the converse is also true, apart from one obvious counterexample, the
unitary defined byF~w^c!5c^w:

Proposition 4: LetU be a unitary operator onCd
^ Cd. ThenUM,M if and only ifU is local

up to a flip, i.e., there are unitariesU1, U2 such that eitherU5U1^U2 or U5~U1^U2)F.
Proof: Every unitary operator U onCd

^ Cd defines a linear bijective mapf U from the space of
all d3d-matrices into itself by

UF5U~XF ^ 1!V5..~ f U~XF! ^ 1!V. ~3.8!

Then by Lemma 2 the condition UM,M is equivalent tof U taking unitary operators to unitar
operators. We have to show that in this casef U can be written either asf U(X)5U1XU2 or
f U(X)5U1XTU2, which is equivalent to above proposition. From Lemma 2 it is easy to see
in this sense the transposition belongs to the flip operation:f F(X)5XT. We note that since the
implication UM.M is trivial, the assumption UM,M is actually equivalent to UM5M, and
hence also to U*M,M.

By composing U with a local unitary map we may assume thatf U(1)51 or, equivalently that
the reference vectorV from Lemma 2 is invariant under U. Consider a unitaryX5eiA511 iA
21/2A21O(A3) close to the identity~with A5A* small!. Then f U(X) also has to be unitary, an
we will evaluate this condition to second order inA, using the linearity off U :

15 f U~X!* f U~X!511 f U~ iA !* 1 f U~ iA !2 1
2 ~ f U~A2!1 f U~A2!* !

1 f U~ iA !* f U~ iA !1O~A3!. ~3.9!

From the first order,f U(A)5 f U(A)* for A5A* . Hence from the second orderf U(A2)
5 1

2( f U(A2)1 f U(A2)* )5 f U( iA)* f U( iA) is a positive operator. Since every positive operator
be written asA2 for someA5A* , we find thatf U , and by the same token its inverse, map posit
operators to positive operators. Hence by Wigner’s theorem18 f U can be written either asf U(X)
5SXS* or f U(X)5SXTS* with some unitaryS. ~We use a form of Wigner’s theorem which
formulated with positive and invertible maps.!19,20 j

IV. BELL BASES

A. Characterization theorem

The most surprising properties of the Bell basis are related to the antiunitary operat
complex conjugation in this basis: a vector is maximally entangled iff its components with re
to the Bell basis are real up to a factor, and a unitary operator onC2

^ C2 is local iff, after
multiplication with a suitable phase, it becomes real in Bell basis and has determinant11 ~in the
folklore on this subject, the determinant condition is sometimes forgotten, inviting the flipF as an
obvious counterexample, see Proposition 7!. Both these properties are extremely useful and pla
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crucial role in the Wootters formula for the two qubit system. It is thus highly desirable to
extensions to higher dimensional systems. One direction in which a generalization might be
is to break the above ‘‘iff’’ statements, and to require in higher dimensions maybe only
direction of implication. This leaves four possibilities to be tested. However, as the follo
theorem shows, none of them can be realized in any dimensiond.2.

Theorem 5: Let dPN, and Ca , a50,...,d221 a basis of maximally entangled vectors
Cd

^ Cd. Let Xa denote the unitaries such thatCa5(Xa ^ 1)V, with a maximal entangled vecto
V (see Lemma 2). Then the following conditions are equivalent:

(1) d52, and there are unitary operatorsU1, U2 and a permutationp such that theCa can
be written as(U1^U2)Ca5Fp(a) with a50,...,3.

(2) U1, U2PSUd⇒;a,b^Ca ,U1^U2Cb&PR
(3) UPSUd2 and ;a,b^Ca ,UCb&PR⇒U5U1^ U2 or U5~U1^U2)F
(4) wPM⇒'v,uvu51;av^Ca ,w&PR
(5) ;a^Ca ,w&PR⇒wPM
(6) Xa* Xb1Xb* Xa52dab1.
Proof: We will prove the inclusions:~1!⇒~2!⇒~4!⇒~5!⇒~6!⇒~1!, and~4 and 5!⇒~3!⇒~5!.
~1!⇒~2!: It suffices to takeCa5Fa as the standard Bell basis~1.1! with F05..V and Fa

5( isa ^ 1)V, ~a51,2,3!. Since exponentiation is a power series with real coefficients, it suffi
to show that the generators of the local unitary group with determinant one, namelyisk^ 1 and
1^ isk (k51,2,3) are real in the standard Bell basis. Computing the matrix elements^Fa ,(isk

^ 1)Fb& of the generators involves a case distinction as to how many ofa,b are equal to 0. If
a5b50 we get^F0 ,(isk^ 1)F0&5d21 tr( isk)50, becauseF0 is maximally entangled, and its
restriction to the first factor is 1/d1. If exactly one ofa,b is zero, the matrix element carries a
even power ofi, and we get matrix elements of the form̂F0 ,(isk^ 1)F l&52d21 tr(sks l),
which is real anyway.

If both are nonzero, we find

^Fa ,isk^ 1Fb&5^V,i ~sasksb! ^ 1V&5
i

2
tr~sasksb!, ~4.1!

wherea, b, k51...3. When two indices are the same this trace is zero, when they are all diffe
the relationss1s25 is3 ~and cyclic! imply that the trace is imaginary and the matrix elemen
real.

~2!⇒~4!: From ~3.1! it is easy to see, that all maximally entangled vectors are equivalen
local unitary transformation. So every maximally entangled vectorw can be written asw
5v̄(U1^U2)C0 , with U1 , U2PSUd and a phasev̄. v^Ca ,w& is hence the~a,0!-row of matrix
elements of U1^U2 in the $Ca% basis. Condition~2! guarantees that these matrix elements
real.

~4!⇒~5!: Condition~4! refers to two different sets of vectors inCd
^ Cd: on the one hand, the

space of maximally entangled vectorsM, which by Lemma 2 can be parametrized by the unit
group Ud , and on the other hand the space of ‘‘up to an overall phase factor real in$Ca%-basis’’
normalized vectors, which we callQ for the sake of this proof. So~4! meansM,Q and we now
have to showQ,M. These two manifolds of vectors have the same dimension, namelyd2: On
the one hand this is the dimension of Ud ~the tangent space at the identity is the space of hermi
operators!. On the other hand, a real vector hasd2 real components. The overall phase for vecto
in Q adds an extra dimension, but we have to subtract one for normalization.

Now consider a small neighborhoodN,M of some pointFPM. We can parametrize its
points uniquely as~U^1!F, with U in a neighborhood of the identity in Ud . Thereby we get a
d2-dimensional set of vectors, which by assumption~4! lies in thed2-dimensional manifoldQ,
and hence contains an open neighborhood ofF in Q. This shows thatM is an open subset ofQ.
On the other hand,M is the continuous image of the compact space Ud , hence compact, henc
closed inQ. But Q is clearly connected. SoM, being both open and closed, must be equal toQ.

~5!⇒~6!: Condition ~5! means that every vector of the form
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w5(
a

aaCa5S S (
a

aaXaD ^ 1DV, ~4.2!

with real aa , (aaa
251 is maximally entangled. Therefore(aaaXa has to be unitary for every

normalized real vectoraW . Expanding the unitarity condition, and using the normalization condi
to cancel the diagonal, we are left with the condition

(
a.b

aaab~Xa* Xb1Xb* Xa!50. ~4.3!

Since this holds for all vectorsaW each term of this sum has to be zero. The relation fora5b is
clear from the unitarity of eachXa .

~6!⇒~1!: Note that unitaries satisfying these relations retain this property under the tran
mationXa°UXa , with U unitary. Choosing U5X0* , we find that we may assumeX051 without
loss of generality. Then the relations forb50 say thatXa1Xa* 50. SettingXa5 iRa a.0, the
problem is reformulated to findingd221 Hermitian, unitary, operators acting on ad-dimensional
Hilbert space satisfying the relations~4.4! below. Hence by Lemma 6,d is even,N5d221 is odd,
and henced52d2/221. This is possible only ford52. We can thus invoke Lemma 3 showing th
the Ra must be the Pauli matrices, up to at most a permutation of the indices.

~4 and 5!⇒~3!: From ~4! and ~5! it follows, that a unitary matrix, which is real in the$Ca%
basis mapsM into itself. Hence~3! follows from Proposition 4.

~3!⇒~5!: Any unit vectorw which is real in some basis$Ca% can be obtained by rotating th
first basis vectorC0 in his direction via a in this basis real orthogonal transformation. This i
say that there is a unitary operator U satisfying the hypothesis of~3! and w5UC0 . Hence,
whetherw5(U1^U2)C0 or w5F(U1^U2)C0 , this vector is maximally entangled. j

To complete the proof, especially the crucial step~6!⇒~1!, in which dimensiond52 is
forced, we invoked the following Lemma, which belongs to the representation theory of Cli
algebras. It can be found, e.g., in Ref. 21. But since it is a crucial step, we will give an indepe
proof in the following Lemma.

Lemma 6: Assume that R1 ,...,RN is a set ofN.1 Hermitian operators (generators) actin
irreducibly on a d-dimensional space, and satisfying the relations

RaRb1RbRa52dab1. ~4.4!

Then d is even, and if N is odd, we have d52(N21)/2.
Proof: Because this Lemma belongs to the representations theories of algebraic grou

will now denoteRa as the generators of a group. Consider the generatorR1 : Settinga5b51 in
~4.4! it can be seen thatR1 has two eigenspaces for the eigenvalues61, and from the relation
RaR152R1Ra it is clear that each of the other generators exchanges these two eigens
SinceRa is unitary, this also shows that the eigenspaces are of equal dimension, sod is even. Let
us take the second generator,R2 to furnish a standard mapping between these spaces. Then w
characterize the action of generatorsRa with a>3 completely by the action ofR2Ra inside the
‘‘ 11’’-eigenspace ofR1 . In other words, we consider, fora>3 the operators

Ra85 iR2Ra .

It is straightforward to verify that these operators again satisfy the Clifford relations~4.4!, and are
Hermitian. Moreover, they commute withR1 . Restricting to the ‘‘11’’-eigenspace ofR1 we are
thus left with the same representation problem as before, albeit withN85N22 generators, and in
a representation space of dimensiond85d/2. Moreover, the$Ra8 % are again an irreducible se
because any operatorC8 commuting with them all determines an operatorC commuting with the
Ra , by extendingC8 asR2C8R2 to the ‘‘21’’-eigenspace ofR1 .
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This argument can be iterated until exactly one generator is left~sinceN is odd!. Irreducible
representations of the only remaining relationsRN

2 51, RN5RN* are one-dimensional, withR5
61. @The sign coming out at this stage can also be determined from the sign of the pr
R1R2¯RN , which commutes with allRa by virtue of ~4.4!, and is hence a multiple of the
identity.# Collecting the factors 2 for the dimension then givesd52(N21)/2. j

We now want to look back at condition~3! of Theorem 5. It would be nice here to have
simple condition on U distinguishing the two cases. It turns out that this criterion is simply
determinant of U.

Proposition 7: LetU be a unitary operator onC2
^ C2 which is real in the standard Bell basis

ThenU5~U1^U2) iff det ~U!51 and U5~U1^U2)F iff det ~U!521.
Proof: From Theorem 5 we know that U has to factorize in one of the given forms. U lie

the connected component of the identity of SO4 iff its determinant is one, and iff it can be writte
as the square of another element, say U5V2. Either factorization forV now implies that U is
local. Since SU2 is connected, every local unitary U can be written as a square, so det U51. This
proves the first assertion, and hence the remaining cases, det U521 and UF local must also
match. Indeed, detF521, because the dimension of its ‘‘21’’-eigenspace is one, hence odd.j

B. Conjugation in Bell basis

The remarkable properties of the Bell basis described in Theorem 5 are in some sense
much a property of this basis, but of the antiunitary operation ofcomplex conjugationin Bell
basis. Indeed, if we change the Bell basis by a local unitary transformation, the new basis v
will also be maximally entangled, hence real in Bell basis~up to a common factor!, and the
complex conjugation with respect to the new basis will be exactly the same as before~again, up to
a common factor!. Hence this conjugation operation is ‘‘universal’’ in a way very similar to t
universal NOT of Proposition 1. We would like to formulate the following proposition in a m
general way, so that it also could be applied to multiparticle systems.

Proposition 8: Let d1 , d2 ...dn.1, n>2 be natural numbers, and suppose that there is
nonzero conjugate linear operatorUn on Cd1^ Cd2...^ Cdn such that for any local unitary opera
tor U5U1^U2¯^Un there is a phasev~U! satisfyingUUnU*5v~U)Un . Then d15d2 ...5dn

52 and there is a factorlPC such that

Un5lU ^ U¯^ U5..U ^ n,

and v~U!5det~U!, whereU denotes the operator described in Proposition 1. For two qubits
get U25lU ^ U5lUBell , whereUBell denotes the complex conjugation in Bell basis.

Note that the antilinear operator–tensor product is uniquely defined on product vecto
from there it can be extended by antilinearity to arbitrary vectors.

Proof: Similarly to the proof of Proposition 1 we get thatv~U! is a character, i.e.
v(U1U2!5v~U1!v~U2). Therefore, it is clear thatv~U! has to factorize in the following form
v(U1^U2¯^Un)5v1(U1!v2~U2)...vn(Un). d152 follows by applying exactly the same argu
ments as in the proof of Proposition 1 to the equation (U1^ 1...^ 1)Un(U1^ 1...^ 1)*
5v1(U1)Un . Similarly, we getd2 ,...,dn52 andv~U!5det~U!. It is clear thatUn5U ^ U¯

^ U has the required properties. On the other hand, ifUn andUn8 both satisfy these conditions, th
linear operatorC5UnUn8 satisfies the equation UCU*5v~U!v8~U)C5udet(U)u2C5C. There-
fore C commutes with all local unitaries and has to be a multiple of the identity, and therewitUn

2

andUn8
2 are multiples of the identity, and finallyUn8 is a multiple ofUn .

For the two qubit system (n52) this shows thatUBell5lU ^ U. However, the proposition
makes the stronger claim thatl51. This is readily verified by checking that the Bell basis
invariant underU^U. j

As noted above,Un
2 has to be a multiple of the identity. If we choseUn antiunitary~ulu51!

and rememberU2521, then we can specify this statement to

Un
25~21!n. ~4.5!
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From this, we see, that theUn operation applied to density matrices (r→UnrUn* ), as it is used
in the Wootters formula for two qubits, can only have pure fix-points, ifn is even. Exactly in this
casesUn can be identified with a complex conjugation in some given base, namely tensor pro
of the Bell basis. But up to now there are no hints that these bases or theUn operations could be
helpful to characterize multiparticle entanglement in a similarly strong way as in the two
case.
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It is shown that there is a false assumption hidden in the description of a relaxed
state with inhomogeneous boundary conditions as the vector sum of a potential
field, satisfying the boundary conditions, and a sum of eigenfunctions of the asso-
ciated eigenvalue problem expanded by certain coefficients. In particular, although
the Jensen and Chu formula~1984! can provide the correct expansion coefficients,
it contains an implicit paradox in its derivation according to a general vector theo-
rem. The same paradox led Chuet al. ~1999! to be concerned about a contradiction
obtained by taking the curl of their magnetic field expansion which, if permitted,
becomes inconsistent with a current normal to the surface. The assumption that the
curl can be commuted across an infinite sum of terms is the mechanism leading to
these, apparently paradoxical, conclusions. Two mechanisms for resolving this ap-
parent paradox are possible, one of which will be described in some detail below
and the other discussed further in a forthcoming, more theoretical paper~Laurence
et al., 2000!. The decomposition of the magnetic field above is valid with conver-
gence in the mean squared sense, but a decomposition of the current needs to be
reinterpreted in terms of negative Sobolev spaces. To avoid this, and remain in a
more easily managable and familiar setting, we derive the expansion coefficients in
a way that involves the commuting of the inverse curl~as opposed to the curl! and
the series. The resulting series converges in a mean square sense. When this is done
the calculation can conform to the general vector theorem and a new gauge-
invariant expression for the coefficients is obtained. However the consequence of
the non-commutability is nullified in the Jensen and Chu formula, in both simply
and multiply connected domains, by theimportantextra requirement of aboundary
conditionon the vector potential eigenfunctions; this excludes magnetic field eigen-
functions that carry flux, but there remains a complete set for the expansion and all
flux is carried by the potential field. The two formulas are then identical. On a
different issue, it is shown that if the general expansion is taken over a half-space,
by combining positive and negative eigenvalue terms, then the coefficients are
anisotropic, that is they are tensors except when evaluated at the first eigenvalue. A
specific example is presented to illustrate the situation and to validate the new
method of deriving the coefficients. ©2000 American Institute of Physics.
@S0022-2488~00!03909-8#
67830022-2488/2000/41(10)/6783/25/$17.00 © 2000 American Institute of Physics
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I. INTRODUCTION

In many astrophysical plasmas, such as the solar corona, and magnetically confined
plasmas it is often sufficient to adopt a force-free field model of the magnetic equilibrium, th
one in which the Lorentz force vanishes. This representation allows for plasma currents t
and so is more realistic than the potential field approximation. The current along the fie
characterized by a parametera5m0j•B/B2 and in general this will change between different fl
surfaces. However, the simplification wherea is uniform is widely studied and such equilibria a
determined by the well-known elliptic system

¹3B5aB ~1!

in a volumeV subject to appropriate boundary conditionsB•n5 f across the surfaceS. Equation
~1! is obtained from a classical Ampere’s law¹3B5m0j with a parallel currentj5(a/m0)B.
Such configurations, known as Taylor states, are particularly significant as they have m
magnetic energy for a given magnetic helicity1,2 and hence are natural relaxed states in a sligh
dissipative plasma.3,4 Relaxation theory was first applied to laboratory reverse field pi
devices,3,5 but relaxed states have also been widely used to model magnetic fields in the
corona,6–14 solar prominences,15 spheromaks,16,17 and toroidal configurations including
tokamaks.18–22

Since the work of Jensen and Chu23 it has become common to describe a plasma equilibriu
that is a Taylor state with flux across the boundary, as a sum of a potential field which acc
for the inhomogeneous boundary conditions of the original problem and a sum of eigenfun
of the associated homogeneous eigenvalue problem.4,13,17,24The problem can be formulated d
rectly in terms of the field, or by working in terms of a vector potential as described by Jense
Chu, or with a scalar function which can later be transposed into the magnetic field. It is cen
all of these methods that ultimately the magnetic field can be expanded as

B5BV1 (
n52`

`

cnBn, ~2!

whereBV is a potential field

¹3BV50 ~3!

satisfying the boundary conditionsB•n5BV
•n5 f over S. The scalar coefficientscn are associ-

ated with the eigenfunctionsBn of the homogeneous problem

¹3Bn5anBn, ~4!

whereBn•n50 overS, andan are the eigenvalues.
In 1999 Chuet al.25 published, while this work was in progress, a re-evaluation of the gen

Taylor configuration expansion having noticed a similar paradox as ourselves that upon tak
curl of ~2!, and using~3! and ~4! then there isapparentlya relationship that

j5¹3 (
n52`

`

cnBn5 (
n52`

`

cnanBn ~5!

which is paradoxical because the normal component of the LHS overS is ~in general! nonzero
whereas the normal componentBn•n of each term on the RHS vanishes. Chuet al. ~1999!
conclude that~5! is valid, and that the paradox can be resolved through accepting an expans
to a boundary layer, where there is a Gibbs phenomenon, while accepting also that the val
~2! could be questioned in respect of local quantities such as the local magnetic field at the p
boundary. It is our contention that~5! is in fact an erroneous equation if convergence is interpre
in the standard mean square sense. In Sec. III we present a general theorem which demo
that the right-hand side~RHS! of ~5! cannotconvergein the mean square senseto a sum with a
nonzero normal current. A notion of convergence in a so-called negative Sobolev space
used to make sense of the convergence of the series. But many rather subtle issues are
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and, since convergence in these spaces is both unintuitive and computationally unattract
will in this paper discuss a simple alternative derivation of the coefficients, for which converg
is recovered in the mean squared sense.

The new calculation to derive the expansion coefficients, the ‘‘Laurenceet al. formula’’ for cn

in ~2!, does not commute the curl across the series and no conflict arises with the theorem
III. Both this formula and that derived by Jensen and Chu23 are gauge-invariant, but the Lauren
et al. formula is more convenient to use since there is no need to constrain any vector po
constituents by a boundary condition~as for the eigenfunctions used by Ref. 23!. The Laurence
et al. method is validated here for the example of a force-free plasma in a cylinder with
through one end~Sec. IV!. In a companion paper26 the new formula is used to find a serie
expansion for the three-dimensional linear force-free field within a spherical shell, a mod
practical importance for astrophysical systems, and validated against an independent~nonseries!
solution. Despite some controversy about the derivation of the Jensen and Chu formula,
yields identical coefficients, but dependent on access to a particular boundary condition app
the vector potential eigenfunctions. The subject of whether such a condition can always b
posed is discussed in Sec. III since this determines whether the two formulas are fully com

A different comment is made in this paper that if the series expansion~2! is taken over only
a half-spaceof paired positive and negative eigenvalues then there is necessarily an anisotr
the coefficients, that is a diagonal tensorxJn is needed to expand the field eigenfunctions. T
series foreachcomponent of the field is then

Bi5Bi
V1 (

n51

`

xn
( i )Bni , ~6!

wherexn
( i ) will in general differ between the component directionsi 51,2,3. It is also shown tha

the anisotropy of the coefficients in~6! is sensitive to a ratioa/an , that the asymmetry vanishe
at the first eigenvalue, that is the coefficients in~6! become scalar. The anisotropy of coefficien
is then related to the degree of closure of the field lines or conversely to the impact o
inhomogeneous boundary conditions. Thus in astrophysical situations, there is a marked s
the coefficients if pairs of positive and negative eigenvalues are combined into a half-spac
~6!, whereas near to the first eigenvalue, a region often explored in the plasma technology c
symmetry is restored.

The present paper begins with a description of the two methods to find the expansion
cients in~2! attributed to Jensen and Chu, and to Laurenceet al., respectively. The general vecto
theorem is then presented~Sec. III! to which all calculations should conform, and the circu
stances where the Jensen and Chu coefficients are identical to those from the Laurencet al.
formula are obtained. In Sec. IV, a specific example of a force-free field inside an open-
cylinder solution is solved exactly and used as a benchmark to confirm a numerical conve
of the series results. The model calculation is also used to show that a tensor coefficient se~6!
is formed if positive and negative eigenvalues are combined into an expansion over an i
half-space, and the reason for this skew is identified. An overview is given in Sec. V.

II. A PARADOX IN THE FORCE-FREE EQUATIONS?

In this section the steps that produce the Jensen and Chu expansion coefficients are de
as well as those for the alternative Laurenceet al. formulation. We recall that the aim is to solv
¹3B5aB in a regionV with inhomogeneous boundary conditions on theS, that is some mag-
netic flux may penetrate the boundaries.

The Jensen and Chu expansion is phrased in terms of a vector potentialA, which is related to
~2! through

¹3A5B. ~7!

Explicitly, the series of Jensen and Chu~74! is
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A5AV1 (
n52`

`

dnAn ~8!

with scalar coefficientsdn . Here the vacuum~or potential! field AV satisfies

¹3¹3AV50 ~9!

in V, (¹3AV)•n5 f over S, and the eigenfunctionsAn of the homogeneous problem satisfy

¹3¹3An5an¹3An ~10!

in V, (¹3An)•n50 overS. A specific boundary condition onAn is necessary if the series~8! is
to converge@following Yoshida and Giga,27 see Appendix A, but in Sec. III B it is pointed out tha
the requirements of convergence for~8!, as opposed to~2!, are very demanding on the vecto
potentials such that they become incompatible with a Coulomb gauge, part of the space a
for the basis functions#.

As mentioned in the introduction, the reason why an erroneous equation can be obtai
this context through an apparently valid series of manipulations is that the curl is commuted
an infinite summation. This might be validated in some situations, but in others it is inco
unless interpreted in an appropriate weak sense where the curl can be commuted across an
sum of terms. Without necessarily accepting~8!, let us take its curl

B5BV1¹3 (
n52`

`

dnAn ~11!

and also assume that the curl can be commuted with the series, providing

B2BV5 (
n52`

`

dnBn. ~12!

Now this series can be shown to converge~using the results of Appendix A!, but this fact does not
necessarily validate~8! or the assumption to commute the curl. It is also noted that the expan
~12! we support is compatible with the theorem in Sec. III because the sum term, each elem
which satisfiesBn•n50 on S, equates to a difference quantity there where (B2BV)•n50, and
¹•(B2BV)50.

Notwithstanding our deliberations on the two forms for the expansion~2! and ~8! there
follows some problems associated with finding the coefficientsdn themselves. It is demonstrate
that an interim expression is generated in findingdn , where it has again been assumed that the
operation can be commuted but, unlike~12!, this turns out to be correctonly if interpreted in terms
of the negative Sobolev spaces. However, manipulation of the resulting series is delicate w
a necessary familiarity with the proper notions of convergence in that setting.

To see what kinds of contradictions we are referring to, take the curl of~12! and use the
conditions~1! and ~3! so that

aB5¹3 (
n52`

`

dnBn ~13!

and re-use~12! on the LHS so that

BV52 (
n52`

`

dnBn1~1/a!¹3 (
n52`

`

dnBn. ~14!
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Now make theassumptionthat the curl in the right-hand term can be commuted across the su
that

BV5 (
n52`

`

dn ~211an /a!Bn, ~15!

where we have also used~4!. This is an erroneous equation@akin to ~5!# because it contradicts th
conditions onS whereBV

•n5 f but Bn•n50 and we will see that this means convergence
denied by the theorem of Sec. III. Later the orthonormality of eigenfunctions will be used to
dn , but consider first a complementary situation where convergence might be obtained. In S
an axisymmetric equilibrium field is calculated~cylindrical coordinates]/]u50) by introducing
a scalar flux function F,

B5
1

r
¹F3 û1a

F

r
û ~16!

and an equation similar to~15! is obtained

FV5(
n,m

cnm~211anm
2 /a2!Fnm , ~17!

where Fnm are homogeneous eigenfunctions~elsewhere the subscriptn is used in a generic
context, with other quanta implicit! andFV is related to the potential field being nonzero on t
boundary. Thus~17! alsoappearsto be paradoxical with respect to conditions on the bounda

While the validity of ~5!, ~15!, and ~17! remains so far untested, there is a simple Fou
series analogy whichmight resolve the apparent paradoxes. This shows how there can
nonzero quantity on the boundary which is the limit in the mean-square sense of the partia
of a series which are zero on the boundary. For example, the pointx5p2d wherex52@sin(x)
2sin(2x)/21sin(3x)/32 ¯ # is convergentarbitrarily close to the boundary, the boundary lay
distanced vanishing in the mean square sense, but not strictly on the boundaryx5p. It turns out
that at least in specific examples~17! does indeed converge in this way, but the theorem, prese
in Sec. III, proves that the corresponding vector relationships~5! and ~15! mustbe incorrect.

A. The Jensen and Chu derivation of the expansion coefficients

Having identified some problematic equations let us complete the Jensen and Chu der
to find dn . Continuing from~15! we have

¹3AV5 (
n52`

`

dn~211an /a!¹3An ~18!

and the orthogonality condition to be used is

E Am•¹3An dV5Kv dnm , ~19!

whereKn5*An•Bn dV. It is important to realize that this choice of orthogonality relation c
only be reconciled with the more usual expression~29! by making a surface integral term@linking
~19! to ~29!# vanish, that is by imposing a specific gaugeAn @Eq. ~48! as discussed in Sec. III A#.
Taking the scalar product of~18! with An8 and applying~19!, the Jensen and Chu coefficients a

dn5
a

~an2a!
E An•¹3AV dVY E An•Bn dV. ~20!
                                                                                                                



e
-

ts.

zero

as the
like

icurl-
not a

e, and
is just

al

6788 J. Math. Phys., Vol. 41, No. 10, October 2000 Clegg et al.

                    
Equation~20! is invariant to a gauge transformationA→A1¹ f since the gauge is carried into th
AV term and so does not appear when curled in~20!. However, without the ‘‘boundary condi
tion,’’ that is the specific gauge~48!, imposed onAn the numerator would not be unique.

In principle then, Eq.~20! together with Eqs.~48! and~12! provides a full explicit solution for
the field; but the theorem in Sec. III shows that~15! is flawed and so the validity of~20! should
be questioned. However, there is an alternative way to determine the expansion coefficien

B. New derivation of the expansion coefficients

Take theinversecurl of both sides of~2! to get

¹213B5¹213BV1¹213 (
n52`

`

cn Bn, ~21!

where the LHS,¹213B5A, is defined as the unique divergence-free vector potential having
normal component,A•n50 on S, which is always accessible by proposition~1!, Sec. III B.

A crucial point is that the inverse curl can always be commuted with the series, where
curl cannot. To get an intuition about why this is, just notice that if you antidifferentiate a term
exp(nx) you get (1/n)exp(nx), that is a term that is smaller in a mean-square sense. Thus ant
ing helps the series converge and if it converges, commuting operators in an infinite sum is
problem. On the other hand, when you take the curl the resulting series may not converg
hence there is no such representation; an equation formed in this way is not paradoxical, it
without a practical basis.

Hence we can write

¹213B5¹213BV1 (
n52`

`

cn ¹213Bn ~22!

now from ~1!,

~1/a!~B2¹f!5¹213B, ~23!

where f is a solution to a Neumann problem~a harmonic function with a prescribed norm
boundary value!, that isDf5¹2f50 in V with ¹f•n5B•n on S. From ~7!,

AV5¹213BV ~24!

and from~4!

Bn /an5¹213Bn, ~25!

so that

B5aAV1¹f1 (
n52`

`

cn ~a/an!Bn. ~26!

Using ~2! on the LHS

BV1 (
n52`

`

cnBn5aAV1¹f1 (
n52`

`

cn~a/an!Bn ~27!

and rearranging
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~aAV1¹f2BV!5 (
n52`

`

cn @12~a/an!#Bn. ~28!

The¹f term is only necessary to ensure that~28!, unlike ~15!, conforms to the requirements of th
theorem explained in the next section, but it has no effect on the coefficient formula below.
the orthogonality condition

E Bm•¹3Bn dV5Nv dnm , ~29!

whereNn5*Bn
2 dV. The expansion coefficients become

cn5
an

~an2a!
E ~aAV1¹f2BV!•Bn dVY E Bn

2 dV. ~30!

However, the contribution of the¹f term is zero, as follows:

E ¹f•Bn dV5E ¹•~fBn!2f¹•Bn dV5E fBn•dS50, ~31!

since ¹•Bn50 and Bn•n50 on S, that is the Laurenceet al. coefficient equation is gaug
invariant, as for~20!. So that the final formula is

cn5
an

~an2a!
E ~aAV2BV!•Bn dVY E Bn

2 dV. ~32!

There is no auxilliary condition needed@as for ~20! which needs~48!#. It can be shown@see Eq.
~44!# that there is a further simplification to the formulaif the domain is simply connectedwhereby
the second term in the numerator of~32! vanishes. Further mathematical details are given in R
28.

III. A THEOREM CONCERNING A SUM OF DIVERGENCE-FREE VECTORS

In this section we show using a theoretical argument that~5! or ~15! cannot be convergent in
any reasonable sense. The sense we make use of here is the mean square sense. A se
vectorsBn is said to converge toB in the mean square sense on a domainV if we have

lim
n→`

E
V

uB2Bnu2 d3x50. ~33!

This notion of convergence is the natural one in the context of eigenfunctions for most
well-known operators in mathematical physics. This is because it is naturally associated w
concept of orthogonality, that is, the projection of a vector on a set of basis vectors. The proj
is the best approximation possible of the given vectors by the set of basis vectors. Poi
convergence does not imply and is not implied by mean square convergence with our add
assumptions. For instance in the simple case of Fourier series, where the bases consist
functions exp(inx), convergence in the mean square sense~of the partial sums! is the basic re-
quirement and pointwise convergence follows only if additional requirements are made abo
underlying function whose Fourier series is being calculated. And thus everywhere poin
convergence is much more delicate to prove. Put another way, the mean square~also known as
‘‘ L2’’ ! convergence is a rough sense of convergence, i.e., the ‘‘least’’ one would expect. So
show that a sequence of partial sumsBn5( i 51

n bi fails to converge in the mean square sense, t
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it fails the most basic and fundamental convergence test. The fundamental tool that we will
show that the magnetic field series~5! and ~15! do not converge in the mean square sense is
following lemma.

Given a smooth domainV and a sequence of distributionally divergence-free vector fieldsBn
with zero normal on the boundary ofV. Then ifBn converges toB in the mean square sense, th
B is divergence free and has zero normal component.

Proof: The fact thatB is divergence free in the distributional sense inV may be written

~i! E
V

B•¹f dV50 ~34!

for every smooth~so-called ‘‘test’’! function f which is zero on the boundary ofV.
The fact thatB•n50 at ]V in the distributional sense on the boundary ofV means that for

any ~specifically, no longer zero at the boundary! smooth test functionf,

~ii ! E
V

B•¹f dV50. ~35!

So, as in the statement of the theorem, letBn be a sequence of divergence-free fields with z
normal components that converges toB, thenBn satisfies~i! and ~ii ! for eachn and we need to
show that the same conditions are satisfied byB.

To see that condition~i! is satisfied, letf be a smooth test function zero on the boundary, th
we have

lim
n→`

E
V

Bn•¹f dV5E
V

B•¹f dV ~36!

and so

E
V

B•¹f dV50. ~37!

Indeed, to see that the limit of the left-hand side of~36! is equal to the right-hand side, use th
mean square convergence ofBn to B in conjunction with Schwarz’s inequality to get

U E
V

~Bn2B!•¹f dVU<E
V

uBn2Buu¹fudV<F E
V

uBn2Bu2 dVG1/2

3F E
V

u¹fu2 dVG1/2

. ~38!

SinceBn tends toB in the mean square sense, we have

lim
n→`

E
V

uBn2Bu2 dV50 ~39!

and so~i! is proved forB.
The proof of condition~ii ! is identical.
With this lemma at hand we easily prove our claim. Indeed if we now have

C5(
i 51

`

Ci , ~40!

where eachCi is a divergence free vector field with zero normal component, then clearly any
sum
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Bn5(
i 51

n

Ci ~41!

is divergence free with zero normal component and therefore

B5 lim
n→`

Bn5(
i 51

`

Ci ~42!

is divergence free with zero normal component on the boundary and this contradicts the fa
we have nonzero normal component as in~5! and ~15!.

Thus ~5! is disproved in general, as is~15!, but it might still be possible for~20! to be valid
and identical to~32! under certain constraints.

A. Can Eqs. „32… and „20… be equivalent?

Notwithstanding the denial of~15!, the Jensen and Chu formula~20! does with its auxilliary
condition reduce to that of Laurenceet al. ~32!. From the two equations

dn5
a

~an2a!
E An•¹3AV dVY E An•Bn dV, ~20!

cn5
an

~an2a!
E ~aAV2BV!•Bn dVY E Bn

2 dV, ~32!

the following transformations can be applied: From¹3An5Bn5¹3(Bn /an), because¹an

50, and allowing for an arbitrary gaugeAn5Bn /an1¹ f then *An•Bn dV5*(Bn /an1¹ f )
•Bn dV but using~31!, a gaugeherehas no effect so that simply,

E An•Bn dV5~1/an!E Bn
2 dV. ~43!

Also, since*BV
•Bn dV5*(¹3An)•BV dV5*An•(¹3BV)dV2*BV

•(An3dS)

E BV
•Bn dV52E BV

•~An3dS! ~44!

which must vanish ifsimply connectedby an argument independent of the imposition of a gau
@for a simply connecteddomain it can be shown that, even ifAn•dS50, the boundary integral~44!
is zero. Integration by parts in the boundary gives*BV

•(An3dS)5*fV(n•¹3An)dS
5*fV(Bn•n)dS50 wherefV satisfies¹fV5BV, and the RHS is zero because ofBn on S]. The
final manipulation is that from*AV

•Bn dV5*(¹3An)•AV dV then

E AV
•Bn dV5E An•~¹3AV!dV2E AV

•~An3dS!. ~45!

Now first use~43! in ~20! so that

dn5
aan

~an2a!
E An•~¹3AV!dVY E Bn

2 dV ~46!

and then using~44! and ~45! on ~32!,

cn5dn2
an

~an2a!
E ~aAV2BV!•~An3dS!Y E Bn

2 dV. ~47!
                                                                                                                



for

bility

y of

o the

.
s

lled

e

, a
amak

lem
erpo-

n and
as
ltiply

or. For

or
n
quation

6792 J. Math. Phys., Vol. 41, No. 10, October 2000 Clegg et al.

                    
Thus, the requirement forcn5dn is that the surface integral vanishes. A sufficient condition
this to be true is that a special boundary condition, or gauge, is chosenfor the vector potential
eigenfunctionswith the Jensen and Chu formula, but this is just the requirement for compata
of the orthogonality condition~19! with ~29!, that is

An3dS50 ~48!

@see also Ref. 13, Eq.~5!#. In fact Jensen and Chu use the more generous constraint that

An50 ~49!

on S. The question now is whether it is always possible to impose a constraint~48! or ~49!.

B. Accessibility to a different vector potential

There are certain propositions that constrain the choice of vector potentials.
~1! For any divergence-free fieldB it is always possible to find a vector potentialA with
A•n50 on S. This is true even if the domain is multiply connected. It is true independentl
whetherB has a zero or nonzero normal component.
~2! For a given divergence-free fieldB with B•n50 onS ~such as the eigenfunctionsBn) a vector
potential can always be chosen, in a simply connected domain, which is wholly normal t
boundary, that isA3n50 @note ~i!, Appendix B#.
~3! The result~2! also applies to multiply connected geometriesprovidedthat all fluxes are zero
Conversely, it is not possible to find a gaugeA3n50 in a multiply connected domain if there i
a net flux. In the context of eigenfunctions the boundary conditionAn3dS50 will be accessible
if and only if all the eigenfunctions used have zero flux@note ~ii !, Appendix B#.
~4! Vector potentials withA3n50 also exist in the presence of corners and in the so-ca
Lipschitz domains which could have an infinite number of corners@note ~iii !, Appendix B#.
~5! A boundary condition whereA50 onS is possible by the result~1!, combined with results~2!
and~3! ~which requireB•n50 onS, and a zero flux if multiply connected!. The resulting vector
potential isnot in the Coulomb gauge, that is, it is not divergence free.
~6! A gauge withA3n50 on S is never possible whenB•nÞ0 on S @note ~iv!, Appendix B#.

To summarize, for the Jensen and Chu coefficients~20! to be identical to those of Laurenc
et al. ~32! the surface term in~47! has to vanish. The gauge~or boundary condition! of the
constituent eigenfunctionsAn3dS50 is always accessible in simply connected domains~2!, even
when the geometry includes corners~4!, ~such as for the cylinder example in Sec. IV!, and in
multiply connected systems having no net flux~3!. This leaves one further situation to consider
torus where the relaxed state has a net toroidal flux, for example the spherical tok
experiment17 or an RFP.3,5

In any nonsimply connected domain there are botheigenfunctionswith and without a net flux
@note ~v!, Appendix B#; examples are given in Ref. 29. However, in the context of our prob
~2!, all of the flux is carried by the potential field and the relaxed state is attained by a sup
sition, that is an expansion that comprises a complete set of onlyfluxlesseigenfunctions. This
basis is appropriate because the series relates to thedifferencevectorB2BV that is itself diver-
gence free, fluxless, and with zero normal component on the boundary. The justificatio
completeness of the basis@note~vi!, Appendix B# is shown by the results of Yoshida and Giga,
well as from the variational approach of Laurence and Avellaneda, where even in a mu
connected domain, it is always possible to find eigenfunctions~with zero normal component! and
with zero flux; convergence is assured for such a series of eigenfunctions of the curl operat
our purposes thenAn3dS50 is always accessible and is moreover a required condition~by
Stokes’ theorem! since the vector potentialsAn relate only to the set offluxlessfield eigenfunc-
tions Bn of ~4!. Thuspost factothe two coefficient formulas are reconciled, as all boundary
gauge related terms involved in going from~32! to ~20! cancel out. This is a surprising conclusio
given that the Jensen and Chu coefficients have been associated with the now disproved e
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~15!. Our argument is that it is only that derivation that is flawed, not the final result. The pr
justification for those coefficients is as a further transformation of the Laurenceet al. formula
~obtained through the inverse curl means!, whereby vector potential eigenfunctionsAn are in-
cluded explicitly and simplifications follow because of their boundary constraint. Either~equiva-
lent! form of the coefficients can now be used in thefield expansion~2! and this series mus
converge by Yoshida and Giga. However, our determinations are independent from, and
necessarily support, thevector potentialexpansion~8! @remember that the commuting of the cu
from ~11! to ~12! wasassumed#. Yoshida and Giga gave some criteria to ensure the converg
of a series and, for~8!, this imposes a constraint on the normal componentAn•n50 on S ~in
addition to the transverse condition discussed above! and so overall the condition described b
proposition~5! becomes necessary. But this is then contrary to the divergence-free assump
the basis space. Thus convergence of~8! appears not to be guaranteed by this theorem.

A specific example is now introduced to demonstrate the consistency of the two~fully speci-
fied! coefficient formulas, which are to be applied to the series~2!. The relationship between scala
and magnetic field expansions is also clarified.

IV. MODEL CALCULATIONS

In order to illustrate the previous analysis and to develop further understanding, we lo
detail at a specific model field. Consider an open cylinder containing a plasma that is axisym
(]/]u50; cylindrical coordinates are used! and in a force-free magnetic field configuration. Th
is broadly representative of a laboratory device such as a spheromak.17,33Defining a flux function
F, see~16!:

B5
1

r
¹F3 û1a

F

r
û52

1

r

]F

]z
r̂1

1

r

]F

]r
ẑ1a

F

r
û. ~50!

A. Benchmark solution

The problem~1! then reduces to the inhomogeneous problem using a flux functionF written
as

~L1a2!F50, ~51!

where the Grad–Shafranov operator is

L5
]2

]r 2 2
1

r

]

]r
1

]2

]z2 ~52!

and boundary conditions are chosen so that

Fz505F0

r

L
J1~l1r /a!, ~53!

Fz5L5F r 505F r 5a50. This represents conducting walls with a flux source~such as a magne
tized gun! on the surfacez50. A simple ‘‘exact’’ analytical scalar solution can be written as

Fan5F0

r

L
J1~l1r /a!cos~pz/2L ! ~54!

associated with a specific value ofa given by

a5~p2/4L21l1
2/a2!1/2 ~55!

and wherel1 is the first zero of the first order Bessel function, so thatJ1(l1)50. From~50! and
~54!, the ‘‘exact’’ benchmark field~see Fig. 1! is
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Ban
r ~r ,z!5~F0 /L !J1~l1r /a!~p/2L !sin~pz/2L !, ~56a!

Ban
z ~r ,z!5~F0 /L !~l1 /a!J0~l1r /a!~p/2L !cos~pz/2L !, ~56b!

Ban
u ~r ,z!5~F0 /L !aJ1~l1r /a!cos~pz/2L !. ~56c!

B. Series solution

We can also obtain a series solution from the flux function along the lines discussed in S
Consider a series solution of the form

Fser5FV1(
n,m

cnmFnm , ~57!

where the potential field satisfies

L~FV!50 ~58!

with

Fz50
V 5F0

r

L
J1~l1r /a!

andFz5L
V 5F r 50

V 5F r 5a
V 50. By inspection, a potential field that satisfies these constraints ca

written as

FV5~F0 /L !rJ1~l1r /a!
sinh~l1~L2z!/a!

sinh~l1L/a!
~59!

and the eigenfunctions satisfy

FIG. 1. Field lines for the solution Eq.~56! for the open cylinder. In~i! the cylinder hasL54 anda51, the model
corresponding toa/an150.985 and in~ii ! L52 anda51 associated witha/an150.944.
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~L1anm
2 !Fnm50 ~60!

with Fnm on the boundaries, and so can be written

Fnm5KnmrJ1~lmr /a!sin~npz/L !, ~61!

wherelm is themth zero ofJ1 . The normalization constantKnm can be obtained from

E
V

1

r 2 FnmFn8m8 dV5dnn8dmm8 ~62!

but this is not needed explicitly@for completeness, the normalization factor is in factKn1

5(1/aJ0(l1))(2/pL)1/2]. Now substitute~57! into ~51! so that

~L1a2!S FV1(
n,m

cnmFnmD 50 ~63!

and using~58! and ~60! and assuming the operatorL can be commuted across the sum~which
turns out to be valid, as checked numerically! then, Eq.~17! introduced earlier is obtained:

FV5(
n,m

cnm~211anm
2 /a2!Fnm . ~64!

Now multiply both sides byFn8m8 /r 2 and integrate over the volume

E 1

r 2 FVFn8m8 dV5(
n,m

cnm~211anm
2 /a2!E 1

r 2 FnmFn8m8 dV ~65!

so that using~62! the coefficients are

cnm5
a2

~2a21anm
2 !

E 1

r 2 FVFnm dV. ~66!

However, it is convenient to work with~64! which is explicitly

F0

L
rJ1S l1r

a D sinh~l1~L2z!/a!

sinh~l1L/a!
5(

n,m
cnm

~2a21anm
2 !

a2 KnmrJ1S lmr

a D sinS npz

L D . ~67!

Evidently cnm50 if mÞ1. Noting that the sinh term on the LHS can be expanded as a seri
sines by

sinh~l1~L2z!/a!

sinh~l1L/a!
5 (

n51

`
2np

L2

1

an1
2 sin~npz/L ! ~68!

then ~67! becomes

F0

L
rJ1S l1r

a D (
n51

` F2n

L2 p
1

an1
2 GsinS npz

L D5 (
n51

`

~cn1Kn1!
~2a21an1

2 !

a2 rJ1S l1r

a D sinS npz

L D
~69!

and canceling terms,

cn15bn /Kn1 , ~70!
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where

bn5
2F0npa2

L3

1

an1
2

1

~2a21an1
2 !

. ~71!

Substituting into~57!, with the results~59! and ~61!,

Fser5F0

r

L
J1S l1r

a D sinh~l1~L2z!/a!

sinh~l1L/a!
1 (

n51

`

bn rJ1S l1r

a D sinS npz

L D ~72!

with l1 the first zero ofJ1 , and

an1
2 5~np/L !21~l1 /a!2 ~73!

are the eigenvalues of interest. Convergence is shown in Fig. 2.
We note also that, since the Fourier series~68! certainly converges in a mean square sense

all z.0 ~though not atz50, obviously!, the apparently paradoxical~17! is in fact valid for this
example at least.

To find an equivalent seriesfield, we first find the potential field corresponding to theFV term
in ~72!, as

BV5¹3~FV/r !û52
1

r

]FV

]z
r̂1

1

r

]FV

]r
ẑ, ~74!

so that

BV
r ~r ,z!5~F0 /L !~l1 /a!J1~l1r /a!

cosh~l1~L2z!/a!

sinh~l1L/a!
, ~75a!

BV
z ~r ,z!5~F0 /L !~l1 /a!J0~l1r /a!

sinh~l1~L2z!/a!

sinh~l1L/a!
, ~75b!

BV
u ~r ,z!50. ~75c!

Now apply ~16! to derive a series field expression from~72! as

FIG. 2. The series flux function solution Eq.~72! is shown to converge to the exact solution Eq.~54!. With F51 and a
cylinder a5L51, at r 50,5, plotting ‘‘exact,’’ 5 and 10 modes for~a! the full domainz50,1, ~b! exploded viewz
50,0.25,~c! exploded viewz50.85,1.
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Br~r ,z!5
F0

L

l1

a
J1~l1r /a!

cosh~l1~L2z!/a!

sinh~l1L/a!
2 (

n51

`

bn

np

L
J1~l1r /a!cos~npz/L !, ~76a!

Bz~r ,z!5
F0

L

l1

a
J0~l1r /a!

sinh~l1~L2z!/a!

sinh~l1L/a!
1 (

n51

`

bn

l1

a
J0~l1r /a!sin~npz/L !, ~76b!

Bu~r ,z!5
F0

L
aJ1~l1r /a!

sinh~l1~L2z!/a!

sinh~l1L/a!
1 (

n51

`

abnJ1~l1r /a!sin~npz/L !. ~76c!

Although ~76a!, ~76b!, and~76c! are a convergent series, it isnot decomposed into the form of
vacuum field1sum, as in~6!, because a termaFV/r û has been generated through~16! and does
not fit into this regime. Only theû component~76c!, has a different external term to the vacuu
field, that is~75c!, and this is always orthogonal to the boundary and so can be absorbed in
~homogeneous! sum. However, the resulting coefficients differ from those in the series forBr and
Bz.

To see this, we first write down the relevant vector eigenfunction

Bn1
r 52Kn1J1~l1r /a!~np/L !cos~npz/L !, ~77a!

Bn1
z 5Kn1 ~l1 /a!J0~l1r /a!sin~npz/L !, ~77b!

Bn1
u 5Kn1an1J1~l1r /a!sin~npz/L !, ~77c!

so that~76a! and ~76b! immediately conform to the eigenfunction series of the form

Bser
r 5BV

r 1 (
n51

`

xn
r Bn1

r , ~78a!

Bser
z 5BV

z 1 (
n51

`

xn
z Bn1

z , ~78b!

wherexn
r 5xn

z5bn /Kn1 , but Eq.~76c! requires manipulation~rememberBV
u 50). Using the Fou-

rier series~68!, we obtain

Bser
u 5

F0

L
a (

n51

`
2np

L2

1

an1
2 J1~l1r /a!sin~npz/L !1 (

n51

`

abnJ1~l1r /a!sin~npz/L !5 (
n51

`

xn
u Bn1

u .

~78c!

Hence,

xn
u5~bn /Kn1!S an1

a D , ~79a!

whereas

xn
r 5xn

z5bn /Kn1 . ~79b!

The resulting ‘‘tensor coefficient’’ series of form~6! is

Bser
r ~r ,z!5

F0

L

l1

a
J1~l1r /a!

cosh~l1~L2z!/a!

sinh~l1L/a!
2 (

n51

`

@bn#
np

L
J1~l1r /a!cos~npz/L !,

~80a!
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Bser
z ~r ,z!5

F0

L

l1

a
J0~l1r /a!

sinh~l1~L2z!/a!

sinh~l1L/a!
1 (

n51

`

@bn#
l1

a
J0~l1r /a!sin~npz/L !,

~80b!

Bser
u ~r ,z!5 (

n51

` Fbn

an1

a Gan1J1~l1r /a!sin~npz/L !, ~80c!

whereKn1 has been cancelled between coefficient and eigenfunction. Notice the tensor coe
series uses thehalf-space limits, that isn51,̀ . The convergence of~80a!, ~80b!, and ~80c! is
shown in Fig. 3.

We have so far shown that the eigenfunction series, with the coefficients derived by e
tially the straightforward Jensen and Chu approach, is valid when working with ascalar flux
function ~for an axisymmetric field!—at least for this example. However, we have also sho
somewhat surprisingly, that the series for the~vector! magnetic field although convergent, do
not conform to the expected form~2!. We now proceed to investigate this discrepancy.

It is straightforward to rearrange~2! and use orthogonality to find a series expression wh
has scalar not tensor coefficients, that is

cn5E Bn•~B2BV!dVY E Bn
2 dV. ~81!

This would not normally be useful~becauseB has to be knowna priori! but given that~56a!,
~56b!, and ~56c! are known, it is a means to determine a common scalar coefficientcn without
controversy, which may be compared with~80a!, ~80b!, and ~80c!. The integration is somewha
laborious~details in Appendix C!, but the final result is that

cn5~bn /Kn1!
~an11a!

2a
. ~82!

This should be compared with the tensor coefficients~79a! and ~79b! xn
r 5(bn /Kn1), xn

z

5(bn /Kn1), and xn
u5(bn /Kn1) (an1 /a) of the half-space sum. It is clear that they becom

identical to the scalar coefficient at the first eigenvalue, that isa5an1 .
Explicitly the ‘‘scalar coefficient’’ series solution is

Br~r ,z!5~F0 /L !~l1 /a!J1~l1r /a!
cosh~l1~L2z!/a!

sinh~l1L/a!
2 (

n52`

` Fbn

~an11a!

2a G
3~np/L !J1~l1r /a!cos~npz/L !, ~83a!

Bz~r ,z!5~F0 /L !~l1 /a!J0~l1r /a!
sinh~l1~L2z!/a!

sinh~l1L/a!
1 (

n52`

` Fbn

~an11a!

2a G
3~l1 /a!J0~l1r /a!sin~npz/L !, ~83b!

Bu~r ,z!5 (
n52`

` Fbn

~an11a!

2a Gan1J1~l1r /a!sin~npz/L !, ~83c!

where again the normalization termKn1 has been cancelled out.
We now consider the equivalence of this series with the tensor coefficient series~80a!, ~80b!,

and ~80c!. The difference is that~80a!, ~80b!, and ~80c! is an infinitehalf-spacesum whereas
~83a!, ~83b!, and ~83c! includes the positive and negative space explicitly. To see this, spli
~83a!, ~83b!, and~83c! we can write
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Br5BV
r 1 (

n52`

21

cn Bn1
r 1 (

n51

`

cn Bn1
r , ~84a!

Bz5BV
z 1 (

n52`

21

cn Bn1
z 1 (

n51

`

cn Bn1
z , ~84b!

Bu5BV
u 1 (

n52`

21

cn Bn1
u 1 (

n51

`

cn Bn1
u , ~84c!

FIG. 3. The tensor coefficient field solution Eq.~80! is shown to converge to the exact solution Eq.~56!. With F51 for
a cylinder witha5L51, plotted atr 50.5 as follows: columns show~a! the full domainz50,1 ~b! exploded viewz
50,0.25,~c! exploded viewz50.85,1; rows show the field components~i! Br for exact 5 and 10 modes,~ii ! Bz for exact,
20 and 40 modes, and~iii ! Bu for exact, 5 and 10 modes.
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where the eigenvalues in each sum are2uan1u and uan1u, respectively. The two sums can b
combined into one by taking pairs of terms. Thus in the sum terms of~83a! and ~83b! are
transformed into pairs as

~an11a!

2a
→ ~ uan1u1a!

2a
1

~2uan1u1a!

2a
51, ~85a!

whereas the sum term of~83c! is modified into a pair by

an1 ~an11a!

2a
→ uan1u~ uan1u1a!

2a
2

uan1u~2uan1u1a!

2a
5uan1u2/a. ~85b!

Thus an appropriate ‘‘paired’’ series is

Br~r ,z!5~F0 /L !~l1 /a!J1~l1r /a!
cosh~l1~L2z!/a!

sinh~l1L/a!
2 (

n51(pairs)

`

bn J1~l1r /a!

3~np/L !cos~npz/L !, ~86a!

Bz~r ,z!5~F0 /L !~l1 /a!J0~l1r /a!
sinh~l1~L2z!/a!

sinh~l1L/a!

1 (
n51(pairs)

`

bn ~l1 /a!J0~l1r /a!sin~npz/L !, ~86b!

Bu~r ,z!5 (
n51(pairs)

`

bn ~ uan1u2/a!J1~l1r /a!sin~npz/L ! ~86c!

which is identical to~80a!, ~80b!, and~80c! @or its abbreviation~78a!, ~78b!, and~78c!#.

C. Coefficients derived by the Laurence et al. and Jensen and Chu methods

We now apply the Laurenceet al. method described in Sec. II B to this example, using~32!:

cn5
an1

~an12a!
E ~aAV2BV!•Bn1 dVY E Bn1

2 dV. ~87!

The potential field is given by~75a!, ~75b!, and ~75c!, and a simple generating vector potent
function fromBV5¹3AV is

AV5~F0 /L !J1S l1r

a D sinh~l1~L2z!/a!

sinh~l1L/a!
û ~88!

which is consistent withA•n50 @see Sec. II B, although in practice any gauge could be ad
without effect, see~31!#. Thus using~75a!, ~75b!, ~75c!, ~77a!, ~77b!, ~77c!, and~88!,

cn5
an1

~an12a!
2p~F0 /L !Kn1 Fl1

a

np

L E
0

a

rJ1
2S l1r

a DdrE
0

L

cosS npz

L D cosh~l1~L2z!/a!

sinh~l1L/a!
dz

2S l1

a D 2E
0

a

rJ0
2S l1r

a DdrE
0

L

sinS npz

L D sinh~l1~L2z!/a!

sinh~l1L/a!
dz

1aan1E
0

a

rJ1
2S l1r

a DdrE
0

L

sinS npz

L D sinh~l1~L2z!/a!

sinh~l1L/a!
dzG Y E Bn1

2 dV. ~89!
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In fact the first two integrals cancel out, confirming that since the domain is simply connecte
second term in~32! *BV

•Bn1 dV50 @see~44!#. The denominator is

E Bn1
2 dV52pE

0

aE
0

L

Kn1
2 rJ1

2~l1r /a!~np/L !2 cos2~npz/L !

1Kn1
2 ~l1 /a!2rJ0

2~l1r /a!sin2~npz/L !

1Kn1
2 an1

2 rJ1
2~l1r /a!sin2~npz/L !dz dr ~90!

and using the Appendix C integrals~C3a!, ~C3b!, ~C3c!, ~C3d!, ~C3e!, ~C3f!, and ~C3g!, the
calculation reduces to

cn5F a

~an12a!
F0 Kn1p2a2J0

2~l1!~n/L2!G Y Fpa2J0
2~l1!LKn1

2 an1G ~91!

or

cn5~bn /Kn1!
~an11a!

2a
~92!

as for the incontravertable result~82!.
Finally, we evaluate the expansion coefficients using the Jensen and Chu approach, Se

using ~20!:

dn5
a

~an12a!
E An1•BV dVY E An1•Bn1 dV. ~93!

Vector potential eigenfunctions are required in the gaugeAn3n50, and since

¹3Bn15an1Bn15an1¹3An1 ~94!

then uncurling

An15~Bn1 /an1!1¹ f , ~95!

wheref is a gauge to be determined in order to satisfy the boundary conditions onAn1 ~which are
different from the boundary conditions onBn1 , that isBn1

r 50 on r 5a andBn1
z 50 on z50,L).

From ~77a!, ~77b!, and~77c!,

An1
r 52~Kn1 /an1!~np/L !J1~l1r /a!cos~npz/L !1] f /]r , ~96a!

An1
z 5~Kn1 /an1!~l1 /a!J0~l1r /a!sin~npz/L !1] f /]z, ~96b!

An1
u 5Kn1J1~l1r /a!sin~npz/L !. ~96c!

The gauge is somewhat difficult to find~the difficulties are substantial in a cylinder with a
asymmetric plasma, see Ref. 33!, but is in fact

f 5~Kn1 /an1!~a/l1!~L/np!@2~np/L !2J0~l1r /a!1an1
2 J0~l1!#cos~npz/L !, ~97!

so that

An1
r 50, ~98a!

An1
z 5Kn1an1 ~a/l1!@J0~l1r /a!2J0~l1!#sin~npz/L !, ~98b!
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An1
u 5Kn1J1~l1r /a!sin~npz/L !. ~98c!

Notice that¹•AÞ0 in this gauge~that fulfils A50 on S). Using the potential field~75a!, ~75b!,
and ~75c! and field eigenfunctions~77a!, ~77b!, and ~77! the coefficients~20! are calculated
explicitly. Only thez component contributes to the numerator

dn5
Kn1aan1

~an12a!

F0

L F E
0

aF rJ0
2S l1r

a D2J0~l1!rJ0S l1r

a D GdrE
0

L

sinS npz

L D sinh~l1~L2z!/a!

sinh~l1L/a!
dzG Y

FKn1
2 an1E

0

a

@rJ1
2~l1r /a!1rJ0

2~l1r /a!2J0~l1!rJ0~l1r /a!#drE
0

L

sin2~npz/L !dzG . ~99!

Now using the Appendix C integrals~C3a!, ~C3b!, ~C3c!, ~C3d!, ~C3e!, ~C3f!, and~C3g!,

dn5~bn /Kn1!
~an11a!

2a
~100!

which is identical to the Laurenceet al. formula. This is consistent with the conclusions of Se
III, and for this simply connected domainat least, the Jensen and Chu, and Laurenceet al.
formulas agree.

Although only the gauge~48! can be used as ageneral rulewith the Jensen and Chu formul
~20!, there are some circumstances where the surface integral in~47! can vanish in another gauge
It is left to the reader to verify that the same coefficients would be obtained using

An1
r 50, ~101a!

An1
z 5Kn1an1 ~a/l1!J0~l1r /a!sin~npz/L !, ~101b!

An1
u 5Kn1J1~l1r /a!sin~npz/L !. ~101c!

It is just that simplifications~here axisymmetry! can allow the surface integral to vanish throu
vanishing dot product terms. The surface integral requirement in~47!, using~44!, reduces becaus
it is simply connected to

E AV
•~An13dS!50 ~102!

and although the gauge~101a!, ~101b!, ~101c! hasAn1
z (r 5a)Þ0 its dot product involvesAV

u (r
5a)50 @see~88!#. Such a situation has no general applicability and the only universally v
choice of gauge is~48! @or subsumed by~49!#.

V. SUMMARY

The paper has focused on the calculation of linear force-free fields with inhomogen
boundary conditions through the utility of a decomposition into a potential field and an eigen
tion expansion. The primary motivation was an apparent paradox arising in the derivation
series coefficients by the conventional route~Jensen and Chu, 1984!, whereby an equation for the
vacuum field~15! is obtained as an infinite sum of homogeneous eigenfunctions. This is para
cal since the normal component of the vacuum field is necessarily nonzero on~at least part of! the
boundary, whereas the normal component of every term on the expansion vanishes th
closely related version of the same paradox was noted recently by Ref. 25. In our particular
different expressions have been tested which provide the expansion coefficients, and the
tions for their validity has been clarified. We have shown during the conventional derivation o
coefficients,23 and also when obtaining the current by curling the magnetic field expressed
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series, that an equation is obtained, whose interpretation requires the introduction of the so
negative Sobolev spaces. Manipulation of a series in such a setting is subtle and not intuit
in this paper we have introduced a new method, whose theoretical underpinnings will be f
examined in Laurenceet al. ~2000!. The problem leading to the subtleties has been identified a
issue about whether a curl operation~or related differential operations! can be commuted across a
infinite series of terms. A theorem has been described in Sec. III that can determine if an eq
so formed does not converge in the mean squared sense. This problem does not occur in thscalar
formulation where it is valid to commute the operatorL in ~63!, that is the series~17! converges
akin to a Fourier expansion.

The situation with the coefficients is quite subtle, that is the Jensen and Chu~1984! formula
can be obtained through a derivation that includes a problematic series equation~15!, yet tests
appear to validate its usage. However there is an alternative strategy: the difficulties c
overcome through a new formula for the expansion coefficients where the derivation avoi
contentious commutability operation and produces a new gauge-invariant expression. Th
method only commutes an inverse-curl across the sum such that successive terms can dim
size and so enhance the convergence. This new formula has been used for the first tim
verified for the case of a cylindrical force-free plasma~and elsewhere for a three-dimension
force-free field for a plasma in-between spherical shells with open boundary conditions!. A veri-
fication is possible because such solutions have also been found ‘‘exactly’’ by an indepe
means that is without controversy; thence the true coefficients can be reconstructed. It ha
shown that the formula of Jensen and Chu must be used with aparticular boundary conditionon
its vector potential eigenfunctions, and it is this that provides an immunity from the conseq
of commutability. Discussion then centers on whether such a gauge, where the vector po
eigenfunctions are wholly normal to the bounding surface, is always accessible. It has
demonstrated that such a gauge can be found in all simply and multiply connected situatio
particular this is possible even for the case of a torus with a net flux since only fluxless e
functions appear in the expansion, the flux being carried through the potential field term. Thu
equivalent coefficient formulas could be used in the expansion~2!, although we prefer the Lau
renceet al. formula which is free from any special constraint. Convergence of~2! is assured by the
results of Yoshida and Giga, but we have not found a justification for convergence of~8! ~although
this might exist!.

On a different issue the form of an infinite series expansion~2! has been compared to that ov
a half-space obtained by summing over pairs of positive and negative eigenvalues~6!. It is pointed
out that the combined series is asymmetrical, that is the coefficients take on a tensor rath
scalar form~except at the first eigenvalue!. The explanation is found through the utility of a flu
function, that is by solving a Grad–Shafranov equation assuming for the scalar function a d
position into a series added to the potential flux function. The symmetry breaking occurs
transforming into a magnetic field since then there is nodirect partition as a potential field
superposed with a sum of field eigenfunctions. Rather, an external nonpotential term is gen
which has to be absorbed into the half-space sum; this creates the tensor coefficient. Ho
both the infinite scalar coefficient series and the half-space tensor coefficient representatio
been proved to be identical, that is the form of the coefficients is merely an artifact of the pr
of combining terms that lack reflectional symmetry.
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APPENDIX A: DECOMPOSITION OF DIVERGENCE FREE VECTOR FIELDS

The key mathematical underpinning to the Jensen and Chu approach and to our modifi
thereof, is a theorem thatcertain classes of divergence free fields can be expanded in a com
set of divergence free vectors. Yoshida and Giga identified this class in their important pa27

The class consists of all divergence free vector fields with zero normal component whose cu
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has zero normal component. The inverse curl operator turns out to be self-adjoint on this
This is somewhat surprising, since, in integrating by parts, a boundary term appears which
all obvious vanishes in the class, i.e.,

E
V

u•¹3v dV5E
V

¹3u•v dV2E
]V

n•~u3v!dS. ~A1!

To make the boundary term vanish one is tempted to impose a condition on thetangential
componentof the field, since it explictly appears in the boundary term. But an eigenfunction o
curl is such that the field and the field’s curl must~being constant multiples of each other! have the
sameboundary condition. Since, in the magnetic field setting we mainly wish to impose cond
on the normal component of the magnetic field, so conditions on the tangential component
fit in the picture. Surprisingly, as Yoshida and Giga showed the boundary term also vanishe
require that both the fieldand the curl of the field have a zero normal component. This follow
from integration by parts, after observing that the two conditions imply that on the boundar
field’s is equal to a sum of surface gradients of single and multiply valued potentials, so th
boundary term turns into the normal component of a sum of Clebsch potentials.

To be more precise, given a bounded domainV, introduce the space

L2~V!S5$uPL2~V!,¹•u50, u•n50, on, ]V, all fluxes of u50%, ~A2!

then the operator¹3u which, given a vectoru in L2(V) seeks a vector potential in the sam
space, i.e., in particular with azero normal component, is a self-adjoint and compact operator o
the spaceLS

2 . Its domain is the space:

HSS
1 5$uPLS

2 u,¹3uPLS
2 %. ~A3!

The inverse curl operating on this space is a compact self-adjoint operator. Also, by g
theorems~see for instance, Refs. 30 and 31!, one then has that the eigenfunctions of the curl fo
a complete basis in the spaceLS

2 . The eigenvalues and eigenfunctions of the curl operator are
considered in Cantarelet al.,32 applied to spherically symmetric domains.

In the text we have applied this result to the vectorB2BV, whereB is a vector field with
nonzero normal component whish satisfies¹3B5aB and whereBV is a vacuum field.Note that
B2BV is in LS

2 , but is never inHSS
1 , whenB as in our case is an eigenfunction of the curl w

nonzeronormal boundary component. Indeed¹3(B2BV)•n5(¹3B)•n5aB•nÞ0.

APPENDIX B: NOTES ON THE PROPOSITIONS FROM SECTION III B

~i! Proposition 2is proved in Ref. 33, as follows: they ask whether there is a scalar func
x such thatt̂•¹x52 t̂•A50 on the boundary, wheret̂ is a tangential unit vector. Assumingx
50 at some frequencies pointx0, they find thatx(x)52*x0

x A•dl. The functionx so defined is
single valued because the integral over a closed path equals the magnetic flux through that
the boundary encircled by the path.

~ii ! Proposition 3: If the flux through a torus is nonzero thenA3nÞ0 on S by Stokes’
theorem~the line integral around the minor axis is equal to the flux!. If there is no flux, a vector
potential withA3n50 can be found by the following strategy~see also Refs. 34 and 35!: Find the
Biot-Savart potential ofB, call this ABiot. Now ABiot has the property that¹s•(ABiot3n)5BBiot

•n50; this means that the tangential part ofABiot is a surface gradient of a scalar, writingABiot

3n5¹g. Now g is obtained by taking the line integral ofABiot in the boundary~just pick a point
in the boundary and integrate along the boundary!. Once this potential is known~or if the surface
has several components, there will be several such!, ~a! get rid of its multivalued part by subtract
ing any potential with the same circulation. Call the new potentialf. ~b! Now solve Laplace’s
equation with thatf as a Dirichlet boundary data, and take the gradient of the solution~c!
Subtract the gradient~b! from ABiot and the result is still a vector potential but hasA3n50.
                                                                                                                



he
ts
with

nt
ent

the
te, is

s

ce
holm

n-

mpact

the

s

6805J. Math. Phys., Vol. 41, No. 10, October 2000 On inhomogeneous linear force-free fields

                    
~iii ! Proposition 4:The real definition of Lipschitz being that, when written locally as t
graph of a function, the boundary isu f (x)2 f (y)u<Cux2yu, which means that its derivative exis
almost everywhere and is bounded byC where it exists. Such vector potentials are associated
very irregular solutions at corners but can be smooth elsewhere.

~iv! Proposition 6:follows because¹s•(A3n)5B•n, where¹s denotes the surface gradie
operator andn the unit normal todS, where the right-hand side is interpreted as an elem
of H21/2(dS) and the left-hand side as the surface divergence of a distribution inH1/2(dS), see
Ref. 2.

~v! Flux and fluxless eigenfunctions: proved by Yoshida and Giga, and by Kress: In
special case of a torus,~a! the existence of fluxless eigenfunctions, and that they are comple
a standard theorem of functional analysis since the inverse curl, defined on the space~A2! ~Ap-
pendix A! is a self-adjointcompactoperator, and~b! the existence of flux-bearing eigenfunction
is as follows: choose al that isnot an eigenvalue of a fluxless eigenfunction. Leth be a harmonic
vector with zero normal component and with one or more nonzero fluxes. Now solveu in the
equation¹3u2lu5lh. Here u is a fluxless, divergence-free vector field withzero normal
component, that is it is in the space~A2! ~Appendix A!. This can always be done because, sin
l is not in the spectrum of the fluxless curl operator, it is in the resolvent and so the Fred
alternative says any inhomogeneous equation has solution. Now claimV5u1h is an eigenfunc-
tion with flux: Proof¹3V5¹3u5l(u1h)5lV. Thus there are also uncountably many eige
functions with flux in any nonsimply connected domain.

~vi! Compactness and self-adjoint relationship: There is a theorem which says that co
self-adjoint operators have a complete set of eigenfunctions. Thecompactnessof the inverse of the
curl operator with the zero flux and zero normal component boundary conditions follows from
work of Friedrichs, while Yoshida and Giga showed theself-adjointnessin this space.

APPENDIX C: THE INTEGRALS „80a…–„80c…

Equation~81! can be split up into dot product elements in the numerator, abbreviated a

cn5~ I 11I 21I 3!/I 4 , ~C1!

where

I 1522pKn1 ~F0 /L !~np/L !E
0

a

rJ1
2~l1r /a!dr F p

2L E
0

L

cos~npz/L !sin~pz/2L !dz

2
l1

a E
0

L

cos~npz/L !
cosh~l1~L2z!/a!

sinh~l1L/a!
dzG , ~C2a!

I 252pKn1 ~F0 /L !~l1 /a!2E
0

a

rJ0
2~l1r /a!dr F E

0

L

sin~npz/L !cos~pz/2L !dz

2E
0

L

sin~npz/L !
sinh~l1~L2z!/a!

sinh~l1L/a!
dzG , ~C2b!

I 352pKn1aan1E
0

a

rJ1
2~l1r /a!drE

0

L

sin~npz/L !cos~pz/2L !dz, ~C2c!

I 452pKn1
2 E

0

LE
0

a

rJ1
2~l1r /a!~np/L !2 cos2~npz/L !1rJ0

2~l1r /a!~l1 /a!2 sin2~npz/L !

1rJ1
2~l1r /a!an1

2 sin2~npz/L !dr dz. ~C2d!

Now
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E
0

a

rJ1
2~l1r /a!dr5E

0

a

rJ0
2~l1r /a!dr5

a2

2
J0

2~l1!, ~C3a!

E
0

a

rJ0~l1r /a!dr50, ~C3b!

E
0

L

cos~npz/L !sin~pz/2L !dz5
~2L/p!

124n2 , ~C3c!

E
0

L

cos~npz/L !
cosh~l1~L2z!/a!

sinh~l1L/a!
dz5

l1 /a

an1
2 , ~C3d!

E
0

L

sin~npz/L !cos~pz/2L !dz5
~nL/p!

n221/4
, ~C3e!

E
0

L

sin~npz/L !
sinh~l1~L2z!/a!

sinh~l1L/a!
dz5

np/L

an1
2 , ~C3f!

E
0

L

sin2~npz/L !dz5E
0

L

cos2~npz/L !dz5L/2, ~C3g!

sinceJ1(l1)50. Thus,

I 1522pKn1 ~F0 /L !~np/L !
a2

2
J0

2~l1!S 1

124n2 2
~l1 /a!2

an1
2 D , ~C4a!

I 252pKn1 ~F0 /L !~l1 /a!2
a2

2
J0

2~l1!S nL/p

n221/4
2

np/L

an1
2 D , ~C4b!

I 352pKn1 ~F0 /L !aan1

a2

2
J0

2~l1!
nL/p

n221/4
, ~C4c!

I 45Kn1
2 pa2J0

2~l1!Lan1
2 , ~C4d!

which following some algebra and using~71! and~73!, this can be combined into the result~82!.
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Covariant field theory on frame bundles
of fibered manifolds

M. McLean and L. K. Norris
Department of Mathematics, North Carolina State University,
Raleigh, North Carolina 27695-8205

~Received 1 October 1999; accepted for publication 20 June 2000!

We show that covariant field theory for sections ofp : E→M lifts in a natural way
to the bundle of vertically adapted linear framesLpE. Our analysis is based on the
fact thatLpE is a principal fiber bundle over the bundle of 1-jetsJ1p. On LpE the
canonical soldering 1-forms play the role of the contact structure ofJ1p. A lifted
LagrangianL: LpE→R is used to construct modified soldering 1-forms, which we
refer to as the Cartan–Hamilton–Poincare´ 1-forms. These 1-forms onLpE pass to
the quotient to define the standard Cartan–Hamilton–Poincare´ m-form onJ1p. We
derive generalized Hamilton–Jacobi and Hamilton equations onLpE, and show
that the Hamilton–Jacobi and canonical equations of Carathe´odory–Rund and de
Donder–Weyl are obtained as special cases. ©2000 American Institute of Phys-
ics. @S0022-2488~00!00910-5#

I. INTRODUCTION

The Cartan–Hamilton–Poincare´ ~CHP! m-form is the central object in covariant Lagrangia
field theory. The ingredients which go into the construction of thism-form are

~1! A LagrangianL: J1p→R, on the bundle of 1-jets of sections ofp : E→M , whereE is the
configuration manifold of the theory.

~2! A volume on them-dimensional parameter spaceM .
~3! The contact structure ofJ1p.

It is the contact structure1 in this mixture of ingredients that provides the geometrical fou
dation of the theory. In this paper we give a new geometrical formulation of the covariant
theory onJ1p by lifting it to the bundle of vertically adapted linear framesLpE of E. We will
show that the full depth of Lagrangian and Hamiltonian field theory onJ1p has a useful geo-
metrical representation on the bundleLpE. In this representation the role of the contact struct
of J1p is taken over by the canonical vector-valued soldering 1-form onLpE. Introduction of a
Lagrangian leads to the definition of a modified soldering form, and this vector-valued 1
plays the role of the CHP-m-form. These structures pass to a certain quotient ofLpE to give the
standard structures onJ1p. The advantage gained by this reformulation is that it allows us
utilize the natural geometry that is supported onLpE, namelyn-symplectic geometry, to furthe
develop covariant field theory.

If E is an arbitraryn-dimensional manifold, then the bundle of linear framesl: LE→E
supports a canonically definedRn-valued 1-form, the ‘‘soldering’’ 1-form.n-symplectic geometry
on LE is the generalized symplectic geometry that emerges upon taking the soldering 1-formu as
the generalized symplectic potential. This geometry, including the notions ofn-symplectic observ-
ables, the corresponding generalized Hamiltonian vector-valued vector fields, and gene
Poisson and graded Poisson brackets, has been developed in a series of papers.2–7 A sketch of the
basic structure of the theory can be found in Sec. II, but let us point out here that in Ref. 6
shown that the fundamentals of the canonical symplectic geometry on the cotangent bundT* E
can be constructed entirely in terms of then-symplectic geometry onLE.

WhenE has extra structure, in particular whenp : E→M is a fiber bundle as it is in Lagrang
68080022-2488/2000/41(10)/6808/16/$17.00 © 2000 American Institute of Physics
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ian field theory, then then-symplectic geometry likewise inherits extra structure onLE. In par-
ticular, the fiber structure ofp: E→M leads to a reduction ofLE to the sub-bundle of vertically
adapted linear framesLpE, with a corresponding reduction in the generality ofn-symplectic
observables. The structure groupGv of LpE is the subgroup ofGL(n) that is block lower
triangular, corresponding to the convention that the lastk5n2m vectors in each linear frame ar
required to be vertical. Following the model construction given in Ref. 6 Lawson showed3,8 that
the multisymplectic geometry9,10on the affine cojet bundleJ1* p can also be derived directly from
the n-symplectic geometry onLpE.

Turning our attention in this paper to the covariant field theory onJ1p, we will show that the
geometrical foundations of the theory, namely the contact structure onJ1p, follows directly from
then-symplectic structure onLpE, while the CHP-form follows from a modified soldering form
The central idea on which the analysis is based is the following theorem.

Theorem I.1: Let p : E→M be an m1k dimensional fiber bundle over the m-dimensional
manifold M. The vertically adapted frame bundle LpE is a principal H5GL(m)3GL(k) bundle
over J1p. In particular, J1p>LpE/H.

As a consequence of this theorem, which we prove in Sec. III, the canonical soldering
on LpE pass to the quotient to define the contact structure ofJ1p ~see Sec. V!.

A simple picture of the main ideas can be sketched out as follows. Let (xi) be local coordi-
nates onM and let (yA) be fiber coordinates onE, so that (za)5(xi ,yA) are adapted loca
coordinates onE. With respect to such coordinates a general vertically adapted linear frame
point in E will be of the form

~ei ,eA!5S v i
j ]

]xj 1v i
B ]

]yB ,vA
B ]

]yBD ,

i , j 51, . . . ,m, A,B5m11, . . . ,m1k.

The firstm vectors (ei) are nonvertical while the lastk vectors (eA) are vertical with respect top.
The matrices (v i

j ) and (vA
B) are necessarily nonsingular, while the matrix (v i

B)PRk3m is arbitrary.
Hence we may take the collection (xi ,yA,v i

j ,v i
B ,vA

B) as local coordinates onLpE. We can repre-
sent an arbitrary adapted linear frame in terms of these local coordinates as the (m1k)3(m
1k) matrix

S v i
j 0

v i
B vA

BD .

Using the notationp j
i 5(v j

i )21 andpA
B5(vA

B)21, this matrix can be decomposed as follows:

S v i
j 0

v i
B vA

BD 5S dk
j 0

pk
ava

B dC
BD S v i

k 0

0 vA
CD . ~I.1!

The first factor isH invariant and defines a natural projection toJ1p. We thus obtain the decom
position

LpE5J1p3E~LVE3MLM !,

whereLVE denotes the bundle of vertical frames ofE.
These results suggest that it may be useful to lift the covariant Lagrangian field theory oJ1p

to LpE. In particular onLpE we have available then-symplectic geometry to use in studying th
structure of field theories. We show in Sec. IV that for a lifted LagrangianL5r* (L), the
n-symplectic Hamiltonian vector fields defined by vertical vector fields onE may be thought of as
variational vector fields. If X is such a vector field thenX(L) gives the Euler–Lagrange operat
to within a total divergence.
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In Sec. VI we turn to the problem of constructing, onLpE, a lifted version of the CHP
m-form. We show that in fact one can use a lifted Lagrangian to define anRn-valued CHP-form
using the canonicalRn-valued soldering formu. The key to the construction is to use the fund
mental vertical vector fields onLpE together with the Lagrangian to give a global, invaria
definition of the covariant momentum, which is essentially a frame bundle version of the Leg
transformation of classical theory. The result is that theRn-valued CHP-form is amodified, or
noncanonical soldering formuL . This new vector-valued CHP-formuL passes to the quotient t
define the standard CHP-m-form on J1p.

As an application of the general formalism we derive in Sec. VII a generalized Hamil
Jacobi differential equation and generalized Hamilton equations. Under appropriate assum
these equations reproduce the Hamilton–Jacobi equations and Hamilton equations of
Donder–Weyl11,12 and Carathe´odory–Rund12,13 theories.

We recall that there is a certain degree of arbitrariness in Rund’s12 canonical formalism for
Carathe´odory’s theory. We find that by identifying the canonical variables introduced here
the canonical variables in Rund’s formalism, the undetermined features of the Carathe´odory–
Rund theory can be given a natural interpretation onLpE, namely as the variables defining line
frames for M . Looking again at the decomposition~I.1! we see now that the entries in th
right-hand factor represent a linear frame forM @the (v i

j ) factor# together with a linear frame fo
the fibers ofE @the (vA

B) factor#. Section IX contains concluding remarks together with plans
applications and extensions of the results presented in this paper.

II. VERTICALLY ADAPTED LINEAR FRAME BUNDLE L pE

Let p : E→M be a fiber bundle whereM is m-dimensional andE is n5m1k-dimensional.
Lower case latin indices are assumed to range over 1,...,m, upper case italic indices overm
11,...,m1k, and greek indices over 1,...,m1k. This convention will be used throughout th
paper.

An adapted frame atePE is a frame where the lastk basis vectors are vertical. Note th
coordinate frames that come from adapted coordinates are adapted frames. The adapte
bundle ofp, denotedLpE, consists of all adapted frames forE:

LpE5$~e,$ei ,eA%!:ePE,$ei ,eA% is a basis forTeE, and dup~eA!50%.

The canonical projection,l: LpE→E, is defined byl(e,$ei ,eA%)5e.
LpE is a reduced sub-bundle ofLE, the frame bundle ofE ~Lawson8!. As such it is a

principal fiber bundle overE. Its structure group isGv , the nonsingular block lower triangula
matrices

Gv5H S A 0

C BD : APGL~m!,BPGL~k!,CPRkmJ .

Gv acts onLpE on the right-hand side by

~e,$ei ,eA%!•S A 0

C BD 5$~e,$eiAj
i 1eACj

A ,eABB
A%!.

A. Coordinates

If ( xi ,yA) are adapted coordinates on an open setU#E, then one may induce several differe
coordinates onl21(U). First consider thecoframe or n-symplectic momentum coordinate
(xi ,yA,p j

i ,p j
A ,pB

A) on l21(U) defined by

xi~e,$ei ,eA%!5xi~e!, p j
i ~e,$ei ,eA%!5ei S ]

]xj D , pB
A~e,$ei ,eA%!5eAS ]

]yBD ,
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yA~e,$ei ,eA%!5yA~e!, p j
A~e,$ei ,eA%!5eAS ]

]xj D .

Here (ei ,eA) is the dual frame to (ei ,eA). We have, as is customary, retained the same sym
for the induced horizontal coordinates.

Second consider theframe or n-symplectic velocitycoordinates (xi ,yA,v j
i ,v j

A ,vB
A) on l21(U)

defined by

xi~e,$ei ,eA%!5xi~e!, v j
i ~e,$ei ,eA%!5ej~xi !, vB

A~e,$ei ,eA%!5eB~yA!,

yA~e,$ei ,eA%!5yA~e!, v j
A~e,$ei ,eA%!5ej~yA!.

The v coordinates, viewed together as a block triangular matrix, form the inverse of thp
coordinates above. The blocks have the following relations:

v j
i pk

j 5dk
i , v j

Apk
j 1vB

Apk
B50, vB

ApC
B5dC

A .

Last consider the following coordinates which are constructed from the previous two. D
(xi ,yA,uj

i ,uj
A ,uB

A) on l21(U) by

xi~e,$ei ,eA%!5xi~e!, uj
i 5p j

i , uj
A5v i

Ap j
i 52vB

Ap j
B ,

yA~e,$ei ,eA%!5yA~e!, uB
A5pB

A .

It will turn out that theuj
A coordinates are pull-ups of the standard jet coordinates onJ1p. As

such, we will refer to these coordinates asLagrangiancoordinates.
Later in the paper we will need the following formulas for the fundamental vertical ve

fields Eb*
a on LpE in Lagrangian coordinates:

Ej*
i52uk

i ]

]uk
j , EB*

A52uC
A ]

]uC
B , EA*

i5uk
i vA

B ]

]uk
B . ~II.2!

B. n -symplectic structure

n-symplectic geometry arises naturally on the frame bundleLE of any n-dimensional mani-
fold E. LE supports a canonically definedRn-valued 1-form u, the soldering 1-form, and
n-symplectic geometry is the geometry onLE when one takesdu as a vector-valued generalize
symplectic form. We present here a sketch of the structure of the theory and refer the reade
literature2–7 for more details. See also the works of de Leo´n, Salgadoet al.,14 and Awane.15

The intrinsic definition of the soldering 1-formu parallels the definition of the canonical form
on T* M :

uu~X!5ea~dul̄~X!!r a5uu
a~X!r a . ~II.3!

Hereu5(e,$ea%)PLE, l̄: LE→E is the canonical projection, and$r a% is the standard basis fo
Rn. In canonical coordinates,

ua5pb
a dxb.

The above formula parallels the local coordinate formulaq5pi dqi for the canonical 1-form on
T* M .

Because the soldering 1-formu is vector valued, the natural structure equation
n-symplectic geometry takes the generalized form
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d f̂a1a2¯ap52p!Xf̂
a1a2¯ap21

4duap. ~II.4!

Here f̂ 5( f̂ a1a2¯ap): LE→ ^
pRn is a vector-valued function onLE andXf̂5(Xf̂

a1a2¯ap21) is the
corresponding set of Hamiltonian vector fields.~Each superscriptak , k51,2,. . . ,p, runs from 1
to n.! Moreover, since the soldering form is equivariant under the free right action of the stru
group GL(n,R) on LE, the class of functions that can satisfy~II.4! is restricted. They divide
naturally into vector-valued functions that map to either the symmetric tensor spaces (^ s)

pRn or
the antisymmetric tensor spaces (^ a)pRn, where^ s and ^ a denote the symmetric and antisym
metric tensor products, respectively. There is anaturally defined Poisson bracketfor both sets of
observables, and the complete set of symmetric observables is aPoisson algebrawith respect to
the bracket, while the set of antisymmetric observables is agraded Poisson algebrawith respect
to the bracket. These brackets, when restricted to the subsets of tensorial observables,
frame bundle versions of the Schouten–Nijenhuis brackets.7 On LpE the allowable tensoria
observables8 correspond to contravariant tensor fields onE that are projectable toM .

As a reduced sub-bundle ofLE, LpE has then-symplectic geometry obtained by restrictin
the soldering form. Since this soldering form isRm1k valued, we will denote it (u i ,uA). Let u
5(e,$ei ,eA%) be a point inLpE. If l: LpE→E is the canonical projection andXPTuLpE, then
u defined as in~II.3! above splits naturally into the two terms

uu~X!5u i~X!r i1uA~X!r A ,

where (ei ,eA) is the dual frame and (r i ,r A) is the standard basis forRm1k. In local momentum
coordinates

u i5p j
i dxj , uA5p j

A dxj1pB
A dyB.

III. RELATIONSHIP BETWEEN L pE AND J 1p

We will demonstrate three useful facts relatingLpE andJ1p.

~1! J1p is an associated bundle toLpE.8

~2! LpE is a principal fiber bundle overJ1p.
~3! LpE is a pull-back bundle overJ1p.8

A. A special case

Consider the case wherep is a trivial bundle. LetM5Rm and E5Rm3F with F a
k-dimensional manifold. Letp: Rm3F→Rm be the standard projection. It is known that for th
bundle each 1-jet corresponds to anm-tuple of tangent vectors toF:

J1p>Rm3~TF%¯% TF!.

It is clear that such a bundle is associated toLpE.
Let us examineLpE in this case. We will make use of the other projection mappingp̄: Rm

3F→F. For each frame (u,$ei ,eA%) in LpE, we decompose each vector into

ei5~v i ,wi !, eA5~vA ,wA!,

where v i5dup(ei), wi5dup̄(ei), vA5dup(eA), and wA5dup̄(eA). Note thatvA50 by the
definition of LpE, so we have

ei5~v i ,wi !, eA5~0,wA!.

Thek vectors$wA% form a basis forTp̄(u)F, and them vectors$v i% form a basis forTp(u)R
m. The

m vectors$wi% are simply anm-tuple of vectors inTp̄(u)F.
Decomposing all ofLpE in this way, we obtain
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LpE>J1p3E~LRm3LF !.

This is a bundle isomorphism overE5Rm3F. From this decomposition, it is clear thatLpE is a
pull-back bundle overJ1p. Furthermore, the fiber is the Lie groupGL(m)3GL(k).

B. General case

Consider an arbitrary fiber bundlep : E→M . In this more general setting, a 1-jet is no long
simply anm-tuple of tangent vectors. There are three major ways of describing 1-jets, each
its own charm.

~1! Equivalence classes of sections ofp.
~2! Linear right inverses todup.
~3! Nonverticalm-dimensional subspaces ofTuE.

One quick way to define the projection fromLpE to J1p is to map each adapted frame to th
span of its nonvertical elements.

~u,$ei ,eA%!°~u,span$ei%!.

However, we will benefit from starting withJ1p as an associated bundle.
As stated earlier, the structure group ofLpE is Gv , the nonsingular block lower triangula

matrices. This groupGv can be decomposed8 into the product of two of its subgroups,H andJ,
where

H5H S A 0

0 BD :APGL~m!,BPGL~k!J
and

J5H S I 0

C I D :CPRkmJ .

Note thatJ is Lie group isomorphic to the additive groupRkm.
We will show thatJ1p is a bundle associated toLpE with fiber Gv /H. Although H is a

closed Lie subgroup ofGv , it is not normal. As suchGv /H does not have a natural grou
structure; it is a manifold with a leftGv action. For each cosetgHPGv /H, we select the unique
representative inJ:

S A 0

C BD;S A 0

C BD S A21 0

0 B21D 5S I 0

CA21 I D .

By choosing these representatives, we identifyGv /H with J and henceRkm. These identifications
are diffeomorphisms.

Consider how the leftGv action looks for our selected representatives:

S A 0

C BD S I 0

j I D 5S A 0

C1Bj BD;S I 0

CA211BjA21 I D .

So theGv action appearsaffinewhenGv /H is identified withRkm. Therefore it is prudent to use
this identification to define an affine structure onGv /H modelled onRkm. This Gv-invariant
structure will pass to the fibers of the associated bundle, making it an affine bundle.

Theorem III.1: LpE3Gv
(Gv /H)>J1p.

Proof: The isomorphism maps each equivalence class@(e,$ei ,eA%,j)# to the linear mapf:
Tp(e)M→TeE defined byf(êi)5ei1j i

AeA , where we use the basisêi5dep(ei). j
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Corollary III.2: L pE is a principal fiber bundle over J1p with fiber H.
Proof: This fact follows directly from Proposition 5.5 in Ref. 16. j

We will denote the projection fromLpE to J1p by r. It is given by

r~e,$ei ,eA%!5~e,t!, where t~ êi !5ei .

We now show that theuj
A coordinates defined earlier are the pull-ups of the jet coordinate

(xi ,yA) are adapted coordinates on an open setU#E andu5(e,$ei ,eA%)Pl21(U) then

yi
A+r~u!5yi

A~e,t!5dey
A+tS ]

]xi U
p(e)

D
5dey

AS ej ê
j S ]

]xi U
p(e)

D D
5dey

A~ej !e
j S ]

]xi U
e
D 5v j

A~u!p i
j~u!5uj

A~u!.

What remains to be shown is thatLpE is a pull-back bundle overJ1p. To see this, we will
decompose each adapted frame in a manner similar to the trivial case covered earlier. We c
each adapted frame (u,ei ,eA) into three pieces:

~1! A point in LM , (p(u),ẽi), whereẽi5dup(ei).
~2! A point in LVE, (u,eA), whereLVE is the bundle of vertical frames overE.
~3! A point in J1p, (u,f), wheref: Tp(u)M→TuE is defined byf(ẽi)5ei .

Theorem III.3: LpE>J1p3E(LVE3MLM ).
Proof: The isomorphism is given by (u,ei ,eA)°((u,f),(u,eA),(p(u),ẽi)). The inverse map

is quite nice: ((u,f),(u, f A),(p, f i))°(u,f( f i), f A). j

IV. PROLONGATIONS OF VECTOR FIELDS TO L pE

Definition IV.1: A Lagrangian on LpE is a functionL: LpE→R. A Lagrangian on LpE is
lifted if it satisfies the auxiliary conditions

Ej*
i~L!50, EB*

A~L!50.

Remark:Using ~II.2! one can show that these conditions imply thatL is constant on the fibers
of r: LpE→J1p, and thus is the pull up of a function onJ1p. For the remainder of this paper w
will assume that our Lagrangians are lifted.

In order to see the role played by the canonicaln-symplectic structure onLpE in Lagrangian
field theory, we consider a variation of a local sectionf: M→E. The variation off can be defined
by a vector fieldf on E that projects to the zero vector field onM , so that in adapted loca
coordinatesf has the formf 5 f A]A . The associated tensorial functionf̂ : LpE→Rm1k is given in
local coordinates onLpE by f̂ 5 f̂ a r̂ a , where

~ f̂ a!5~ f̂ i , f̂ A!5~0,f BpB
A!.

Then-symplectic Hamiltonian vector fieldXf̂ determined byf̂ is the unique solution of Eq.~II.4!
with p51. ThusXf̂ is defined by

d f̂a52Xf̂4dua

and in local coordinates it has the form4
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Xf̂5 f A]A2
] f A

]xj pA
B ]

]p j
B 2

] f A

]yC pA
B ]

]pC
B .

Transforming to Lagrangian coordinates we find

Xf̂5S f A]A1S ] f A

]xj 1uj
B ] f A

]yBD ]

]uj
AD 2S ] f A

]yC uA
BD ]

]uC
B

5S f A]A1
d fA

dxi

]

]uj
AD 2S ] f A

]yC uA
BD ]

]uC
B . ~IV.5!

Lemma IV.2: Let f be a vertical vector field on E. The projection of the associated Hami
tonian vector field Xf̂ on LpE to J1p is the prolongation j( f ) of f to J1p.

Proof: The vector fields]/]uC
B are vertical with respect tor, andr* (]/]uj

A)5 ]/]yj
A . j

This lemma shows that the Hamiltonian vector fieldXf̂ on LpE is a lift of the prolongation of
f to J1p. ThatXf̂ actually has the properties of the prolongation off with respect to Lagrangian
follows from the following lemma. We let

EA~• !5
]~• !

]yA 2
d

dxi S ]~• !

]ui
A D

denote the Euler–Lagrange operator in local coordinates onLpE.
Lemma IV.3: If Xf̂ is the n-symplectic Hamiltonian vector field on LpE of a vertical vector

field f on E, and if L is a lifted Lagrangian on LpE, then

Xf̂~L!5 f AEA~L!1
d

dxi ~ f ApA
i !. ~IV.6!

Proof: The proof is a straightforward calculation using~IV.5!. j

After introducing the CHP 1-forms in Sec. VI we will use~IV.6! to lift the variational
principle toLpE.

Remark:As mentioned in Sec. II.2 there are other observables inn-symplectic geometry on
LpE beyond those corresponding to vertical vector fields onE. In particular, there is the Poisso
algebra of all vertical symmetric contravariant tensor fields onE, as well as the graded Poisso
algebra of all vertical antisymmetric contravariant tensor fields onE. The associated~equivalence
classes of! vector-valued Hamiltonian vector fields onLpE also project to tensor fields onJ1p.
Since these vector-valued Hamiltonian vector fields generalize the natural lift of a vector
from E to LpE, their projections toJ1p can be taken as the prolongation of the tensor fields
E to J1p. These ideas will be elaborated in more detail elsewhere.

V. CONTACT STRUCTURE

The contact structure onJ1p amounts to a natural splitting of the tangent and cotang
spaces toE. For every (e,t)PJ1p there is a natural splitting ofTeE andTeE* into horizontal and
vertical subspaces. This is usually encoded via the linear projections onto the vertical and
zontal. Saunders1 envisions the contact structure as linear endomorphisms of the pull-back v
bundlesJ1p3E(TE) andJ1p3E(T* E). These maps can be defined invariantly as follows.
(e,t)PJ1p, XPTeE, andvPTe* E:

h~X!5t+dep~X!, v~X!5X2h~X!,

ht~v!5v+t+dep, v t~v!5v2ht~v!.
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Guillemin and Sternberg17 prefer to think of the contact structure asTE-valued 1-forms onJ1p.
To achieve this, they compose theh andv above withd(e,t)p1,0, wherep1,0: J1p→E.

In local coordinates, the contact structure looks like a pair of~1,1! tensor fields onE, except
that they depend on jet coordinates:

h5dxk
^ S ]

]xk 1yk
A ]

]yAD , v5~dyB2yj
B dxj ! ^

]

]yB .

Depending on interpretation, the expressions above can be the horizontal and vertical proj
for eitherJ1p3E(TE) or J1p3E(T* E). They can also be interpreted asTE-valued 1-forms on
J1p.

A. Contact structure viewed from L pE

The contact structure arises onJ1p because each 1-jet (e,t) allows us to decomposeTeE into
a direct sum. Similarly, the soldering form arises onLpE because each adapted frameu
5(e,ei ,eA) allows us to representTeE as Rm1k. So the contact structure is analogous to t
soldering form. Recall that

uu~X!5ei~dul~X!!r i1eA~dul~X!!r A5uu
i ~X!r i1uu

A~X!r A

and that in local coordinates

u i5p j
i dxj , uA5p j

A dxj1pB
A dyB.

Consider the followingTE-valued one-forms onLpE

uh~u!5u i~u! ^ ei , uv~u!5uA~u! ^ eA .

In local coordinates,

uh5pk
i dxk

^ v i
l S ]

]xl 1ul
A ]

]yAD5dxk
^ S ]

]xk 1uk
A ]

]yAD ,

uv5pB
A~dyB2uj

B dxj ! ^ vA
C ]

]yC 5~dyB2uj
B dxj ! ^

]

]yB .

These objects are strikingly similar to the contact structure ofJ1p. In fact, they pass to the
quotient to give the contact structure onJ1p. The contact structure is known to appear in ‘‘vario
guises;’’1 the soldering form onLpE is another, perhaps more potent, version.

We also remark that the contact structure falls trivially from the following theorem.
Theorem V.1: Let l: P→E be a principal fiber bundle with structure group G, let H#G be

a closed lie subgroup, and let F be a manifold with a left G-action. Then

P3HF>~P/H !3E~P3GF !.

Proof: First note that by Proposition 5.5 in Ref. 16,P/H>P3G(G/H) andr: P→P/H is a
principal bundle. SoP3HF is a bundle associated tor. This makes sense ifF has a leftG action
then it has a leftH action. The isomorphism map is

~p, f !H°~pH,~p, f !G!.

It is well-defined and a smooth diffeomorphism. j

Corollary V.2:

LpE3HRm1k>J1p3ETE,
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LpE3H~Rm1k!* >J1p3ET* E.

The natural splitting of the fibersRm1k and (Rm1k)* is H invariant and passes to the quotie
to form the contact structure.

VI. CARTAN–HAMILTON–POINCARÉ FORMS

One associates9,10,17 with a given LagrangianL on J1p the Cartan–Hamilton–Poincar´
~CHP!-m-form uL , which one may use to re-express the action integral of the Lagrangian.
form can be defined directly17 on J1p, or it can be defined9,10 on J1p as the pull back of the
canonical multisymplectic form onJ1* p, the affine dual ofJ1p. Although the CHP form onLpE
can be defined in terms of then-tangent structure onLpE, we will define this form directly in
terms of invariant quantities onLpE. We will first define CHP-1-forms, from which the CHP
m-form will be constructed.

The fundamental vertical vector fieldsEA*
i are given in Lagrangian coordinates in~II.2!. If L:

LpE→R is a lifted Lagrangian onLpE, then it is the pull-up underr of a LagrangianL on J1p.
Hence, sincer* (]/]ui

A)5 ]/]yi
A , we have

EA*
i~L!5uk

i vA
B ]L

]uk
B 5uk

i vA
B ]L

]yk
B .

This leads us to the following definition.
Definition VI.1: LetL: LpE→R be a Lagrangian on LpE. The covariant momenta ofL are

P A
i 5EA*

i~L!5~uk
i vA

B!pB
k ,

where pB
k 5]L/]uk

B denotes the canonical momenta of the Lagrangian.
Remark:Notice that the covariant momenta (P A

i ) are globally defined tensorial objects o
LpE, while the canonical momenta (pB

k )5(]L/]uk
B) are only defined locally.

We are now in a position to give a global definition of the CHP-form onLpE. We first define
the related 1-forms.

Definition VI.2: LetL: LpE→R be a lifted Lagrangian on LpE, andt(m) a positive function
of m, the dimension of M. The CHP-1-formsuL

a on LpE are

uL
i 5t~m!Lu i1EA*

i~L!uA, ~VI.7!

uL
A5uA. ~VI.8!

Remark:The positive functiont(m) in this definition is included to allow for various theorie
to occur as special cases. We will see that the choicet(m)51 yields the canonical theory o
Carathe´odory–Rund, andt(m)5 1/m yields the canonical theory of de Donder–Weyl.

Remark:The collection of forms (uL
a)5(uL

i ,uL
A), whereuL

A5uA, is a modified, or noncanoni
cal soldering form ifL.0. This follows from the easily verifiable propertiesX4uL

a50 for all a
51,2,. . . ,n if and only if X is vertical with respect tol: LpE→E andRg* uL5g21

•uL .
Working out the local coordinate form of the CHP-1-forms in Lagrangian coordinates we

uL
i 52H j

i dxj1PA
i dyA, ~VI.9!

uL
A5Pj

Adxj1PB
A dyB, ~VI.10!

where

H j
i 5uk

i ~pB
k uj

B2t~m!Ld j
k!, ~VI.11!

PB
i 5uk

i pB
k , ~VI.12!
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Pj
A52uB

Auj
B , ~VI.13!

PB
A5uB

A . ~VI.14!

We will refer to theH j
i as the components of the covariant Hamiltonian, and to thePB

i as the
components of the covariant canonical momentum. If we define symbolshj

k by the formula

hj
k5pB

k uj
B2t~m!Ld j

k ~VI.15!

then the covariant Hamiltonian~VI.11! can be expressed asH j
i 5uk

i hj
k . Settingt(m)51 we find

thathj
i has the form of Carathe´odory’s Hamiltonian13,12 tensor. Similarly, settingt5 1/m we find

that h5hi
i yields the Hamiltonian in the de Donder–Weyl theory.11,12

Finally we show how the CHP-1-forms can be used to construct the CHP-m-form on J1p.
Proposition VI.3: Let(Bi ,BA) denote the standard horizontal vector fields of any torsion f

linear connection onl: LpE→E, and let vol denote the pull up to LpE of a fixed volume m-form
on M. Set voli5Bi4 vol. Then whent(m)5 1/m the m-form

uLªuL
i ∧voli

passes to the quotient to define the CHP-m-form QL on J1p.
Proof: The vector fieldsBi have the local coordinate formBi5v i

a (]/]za) 1V whereV is
vertical with respect tol: LpE→E. Using this and formulas~VI.7! through~VI.12! one can show
that

uL52~pB
j uj

B2L! vol1pA
j dyA∧S ]

]xj 4volD .

The right-hand side is constant on the fibers ofr: LpE→J1p and is in fact the pull-upr* (QL) of
the CHP-m-form QL on J1p. j

Remark:The above geometrical construction of the CHP-m-form is analogous to the geo
metrical construction given by Guillemin and Sternberg.17

A. Variational principle on L pE

We now lift the variational principle fromJ1p to LpE. This is a simple procedure since w
are using a lifted Lagrangian and only varying a section ofp. Let f: M→E be a section ofp and
j f its 1-jet prolongation toJ1p. For any sectionj: J1p→LpE we have thatu5j+ j f: M
→LpE is a section ofp+l: LpE→M .

The action integral onJ1p lifts nicely sinceL5L+r:

E
M

j f* ~L !vol5E
M

u* ~L!vol.

We recall9 that the action integral is extremized byf iff j f* (W4dQL)50 for all vector fieldsW
on J1p. However, this condition can be weakened toj f* ( j ( f )4dQL)50 for all vertical vector
fields f on E.

Now for any such vertical vector fieldf , consider itsJ1p prolongation j ( f ) and its
n-symplectic Hamiltonian vector fieldXf̂ on LpE ~also a kind of prolongation!. From ~IV.2! we
know r* (Xf̂)5 j ( f ). From Proposition~VI.3! we now haveXf̂4duL5Xf̂4r* (dQL). It follows
that

u* ~Xf̂4duL!5 j f* ~ j ~ f !4dQL!.

We conclude that the action integral is extremized byf iff u* (Xf̂4duL)50 for all vertical vector
fields f on E.
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VII. GENERALIZED HAMILTON–JACOBI EQUATION

As an application of our general formalism we derive the Carathe´odory–Rund and de
Donder–Weyl Hamilton–Jacobi equations. By analogy with the time-independent Hami
Jacobi theory~see, for example, Ref. 18! we seek Lagrangian submanifolds ofLpE. However,
since the dimension ofLpE is in general not twice the dimension ofE, a new definition is needed
For our purposes here we will considern5m1k dimensional submanifolds ofLpE that arise as
sections ofl. In particular we consider sectionss: E→LpE that satisfy

s* ~duL
a!50. ~VII.16!

We will refer to this equation as thegeneralized Hamilton–Jacobi equation.
Sinces* (duL

a)5d(s* (uL
a)) the condition~VII.16! asserts that the 1-formss* (uL

a) are lo-
cally exact, and we express this as

s* ~uL
a!5dSa ~VII.17!

in terms ofm1k new functionsSa defined on open subsets ofE. For convenience we will denote
objects onLpE pulled back toE using s with an overtilde. Thus, for example,H̃ j

i 5H j
i +s and

P̃A
i 5PA

i +s. Then we get from~VI.11!–~VI.14! and ~VII.17!,

~a! H̃ j
i 52

]Si

]xj , ~b! P̃A
i 5

]Si

]yA , ~VII.18!

~a! ũB
Aũj

B52
]SA

]xj , ~b! ũB
A5

]SA

]yB . ~VII.19!

Recalling thatH j
i 5PB

i uj
B2t(m)Luj

i andPA
i are functions of the coordinatesxi , yA, uj

i , andui
A ,

Eqs.~VII.18! can be combined into the single equation

H j
i S xa,yB,ub

a ,ua
B ,

]Si

]yBD +s52
]Si

]xj . ~VII.20!

Similarly combining Eqs.~VII.19! we obtain

dSA

dxj 50.

We next consider special cases of these generalized Hamilton–Jacobi equations.

A. Theory of Carathe´odory and Rund

We note from~VI.11!, ~VI.12!, and~VI.15! that H j
i 5uk

i hj
k andPA

i 5uk
i pA

k , where the matrix
of functions (uj

i ) is GL(m) valued. Using the notationPj
i 52H j

i and ũ j
i 5uj

i +s we may rewrite
~VI.11! and ~VI.12! in the form

P̃j
i 52ũk

i h̃ j
k , P̃A

i 5ũk
i p̃A

k . ~VII.21!

If we take t(m)51 then these equations are the equations defining thecanonical momentain
Rund’s canonical formalism for Carathe´odory’s geodesic field theory@see Eqs.~1.22!, p. 389 in
Ref. 12, with the obvious change in notation#. In this situation Eq.~VII.20! can be identified with
the Rund’s Hamilton–Jacobi equation for Carathe´odory’s theory@see Eq.~3.29! on p. 240 in Ref.
12#. We recall12 that one can derive the Euler–Lagrange field equations from this Hamil
Jacobi equation.

In ~VII.21! we have the result that the arbitrary nonsingular matrix-valued functions (ũ j
i ) that

occur in Rund’s canonical formalism for Carathe´odory’s theory have a geometrical interpretati
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in the present setting. Specifically they correspond to the coordinates for linear frames fM .
These defining relations are derived from Rund’s transversality condition, and this conditio
the elegant reformulation here as the kernel of (uL

i ).
We will say that a vectorX at ePE is transverse to a solution surface throughe that is defined

by a given LagrangianL, if X5dl(X̂), where X̂PTu(LpE) satisfiesX̂4uL
i 50, for someu

Pl21(e). X̂ thus satisfies the equations

052H j
i Xj1PA

i XA5uk
i ~2hj

kXj1pA
k XA!,

Xj5X̂~xi !, XA5X̂~yA!

from which we infer

052hj
kXj1pA

k XA. ~VII.22!

This is Rund’s transversality condition for the theory of Carathe´odory when we taket(m)51 @see
Eq. ~1.10!, p. 388 in Ref. 12#. The canonical momentaPj

i and PA
i are defined by Rund to be

solutions of

05Pj
i Xj1PA

i XA ~VII.23!

when (Xj ,XA) satisfy~VII.22!. Rund’s solutions of these equations are given in~VII.21!. Looking
at ~VII.21!, ~VII.22!, and~VII.23! we see that the introduction of theuj

i in ~VII.21! amounts to the
introduction of theGL(m) freedom for linear frames forM .

B. de Donder–Weyl theory

Returning to~VII.20! let us reduce this equation by making several assumptions. We sup
thatL is regular~in the usual sense onJ1p!, that the sections is such thatũ j

i 5d j
i , and we make

the choicet(m)5 1/m. Now summingi 5 j in ~VII.20! we obtain

h̃S xi ,yB,
]Si

]yBD52
]Si

]xi ,

where h̃5 p̃A
i ũi

A2L̃. This equation is the Hamilton–Jacobi equation of the de Donder–W
theory, as presented by Rund@see Eq.~2.31! on p. 224 in Ref. 12#. We recall12 that one can derive
in this case also the Euler–Lagrange field equations from the de Donder–Weyl Hamilton–
equation.

VIII. HAMILTON’S EQUATIONS

The structure of Eqs.~VI.9!–~VI.12! suggests that one should be able to derive general
Hamilton equations if the canonical momentapA

i 5]L/]ui
A can be introduced as part of a loc

coordinate system onLpE. Part of the original philosophy used in developingn-symplectic
geometry in Ref. 4 was to switch from scalar equations to tensor equations, motivated by th
that the soldering 1-form is vector valued. In particular, the basic structure equation~II.4! in
n-symplectic geometry is tensor valued. We show next that

u* ~h4duL
i !50, ~VIII.24!

whereu: M→LpE is a section ofp+l, and h is any vector field onLpE, yields generalized
canonical equations that contain known canonical equations as special cases. We consid
only duL

i since by Proposition~VI.3! it alone is needed to construct the CHP-m-form on J1p.
We need the following definition in order to introduce the canonical momenta as part

coordinate system onLpE.
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Definition VIII.1: A LagrangianL on LpE is regular if the(m1k)3(m1k) matrix

~EA*
i+EB*

j~L!!

is nonsingular.
Working out the terms of this matrix in Lagrangian coordinates using~II.2! we obtain

EA*
i+EB*

j~L!5ua
j ub

i vB
EvA

DS ]2L
]ua

E]ub
DD .

It is clear that this definition is equivalent to the standard definition of regularity onJ1p.
We now consider the transformation of coordinates from the set (xi ,yA,uj

i ,uk
A ,uB

A) to the new
set (x̄i ,ȳA,ū j

i ,pA
j ,ūB

A), where

x̄i5xi , ȳA5yA, ū j
i 5uj

i , ūB
A5uB

A , pA
i 5

]L
]ui

A .

Computing the Jacobian one finds that the new barred functions will be a proper coordinate
whenever the Lagrangian is regular. For the remainder of this section we shall assume thaL has
this property, despite the fact that many important examples@see Refs. 9 and 10# have nonregular
Lagrangians. Moreover, for simplicity we will drop the bars on the new coordinates.

In the generalized canonical Eq.~VIII.24! we now takeh5 ]/]pA
i . We find the result

05S ]Hk
j

]pA
i +uD 1~ui

j +u!S ]~yA+u!

]xk D .

Using Hk
j 5ui

jhk
i and the fact that (uj

i ) is a nonsingular matrix valued function, this last equat
reduces to

]hk
j

]pA
i +u5

]~yA+u!

]xk d i
j .

This is our first set of generalized Hamilton equations. Notice that by summingj 5k in this
equation we obtain

]h

]pA
i +u5

]~yA+u!

]xi . ~VIII.25!

Upon settingt(m)5 1/m we obtain half of the de Donder–Weyl canonical equations. Un
suitable but complicated conditions these equations, witht(m)51, will also reproduce part of
Rund’s canonical equations for the theory of Carathe´odory.

In the generalized canonical Eq.~VIII.24! we now takeh5 ]/]yA. We find

05u* S d~uk
i pA

k !1uk
i
]hj

k

]yA dxj D .

Using an ‘‘overbar’’ notation to denote objects pulled back toM by u we may write this as

]

]xj ~ ūk
i p̄A

k !52ūk
i S ]hj

k

]yAD +u. ~VIII.26!

This is our second set of generalized Hamilton’s equations.
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Notice that what is nonstandard in~VIII.26! is the appearance of the derivatives of t
functionsū j

i 5uj
i +u. If, however, the sectionu: M→LpE is such that theū j

i are constants, then
these equations reduce to

]~ p̄A
k !

]xj 52
]hj

k

]yA +u.

Settingt(m)5 1/m and summingk5 j in this equation we obtain

]~ p̄A
i !

]xi 52
]h

]yA +u.

These equations, together with Eqs.~VIII.25! when t(m)5 1/m, are the complete canonica
equations in the de Donder–Weyl theory.

IX. CONCLUSIONS

In this paper we have reformulated covariant field theory for sections ofp : E→M on the
bundle of vertically adapted linear framesLpE. The advantage gained by this reformulation is th
it allows us to utilize the natural geometry that is supported onLpE, namelyn-symplectic geom-
etry, to further develop covariant field theory. We have concentrated on demonstrating thaLpE
with its canonicaln-symplectic structure provides an appropriate arena for formulating cova
field theory, leaving aside the development of the modifiedn-symplectic geometry defined by th
Cartan-Hamilton-Poincare´ ~CHP! 1-forms to future papers.

To this end we showed that covariant field theory onJ1p lifts in a natural way toLpE. The
analysis was based on the theorem, presented in Sec. III, thatJ1p is a principal fiber bundler:
LpE→J1p over the bundle of 1-jets of sections ofp. This theorem was used to show that t
soldering 1-formsua on LpE play the role of the contact structure onJ1p. The soldering 1-forms
and a lifted LagrangianL5r* (L) were then used to construct modified soldering 1-formsuL

a on
LpE, the CHP 1-forms. These CHP 1-forms were shown to pass to the quotient to defin
standard CHPm-form onJ1p. Further we used the CHP 1-forms to derive generalized Hamil
Jacobi and generalized canonical equations onLpE, and then showed that the Hamilton-Jaco
and canonical equations in the theories of Carathe´odory-Rund and de Donder-Weyl are contain
as special cases. What we did not do was develop the explicit structure of the mo
n-symplectic geometry, including allowable observables, Hamiltonian vector fields, and Po
and graded Poisson brackets, that one should be able to define using the CHP 1-forms. Nor
develop the variational principle onLpE for a Lagrangian that is not lifted fromJ1p. These
problems we leave to future publications.
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Symmetries in covariant classical mechanics
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In the framework of covariant classical mechanics~i.e., general relativistic classical
mechanics on a space–time with absolute time!, developed by Jadczyk and
Modugno, we analyze systematically the relationship between symmetries of geo-
metric objects. We show that the~holonomic! infinitesimal symmetries of the co-
symplectic structure on space–time and of its horizontal potentials are also sym-
metries of spacelike metric, gravitational and electromagnetic fields, Euler–
Lagrange morphism and Lagrangians. Then, we provide a definition for a covariant
momentum map associated with a group of cosymplectic symmetries by means of
a covariant lift of functions of phase space. In the case of holonomic symmetries,
we see that any covariant momentum map takes values in the quantizable functions
in the sense of Jadczyk and Modugno, i.e., functions quadratic in velocities with
leading coefficient proportional to the spacelike metric. Finally, we illustrate the
results by some examples. ©2000 American Institute of Physics.
@S0022-2488~00!00710-6#

I. INTRODUCTION

At the beginning of the 1990s, Modugno and Jadczyk proposed a new geometric fram
for covariant classical and quantum mechanics on a curved space–time with absolute t1–3

based on jets, connections and cosymplectic forms. This approach was later developed i
4–11. In the following, this theory will be referred to as covariant classical Galilei~CCG! and
covariant quantum Galilei~CQG! theory.

The goal of this paper is to analyze systematically the symmetries of the structures inv
in the CCG theory and to introduce an associated momentum map for conserved quantitie

The CCG–CQG theory was partially inspired by the wide literature on geometric formula
of classical and quantum mechanics. Main sources were symplectic and cosymplectic cl
mechanics,12–19 Newton or Galilei classical mechanics as general relativistic theories,20–28 and
quantum theories of mechanics within a symplectic or cosymplectic framework~such as geometric
quantization!.29–34

The CCQ–CQG theory shares nice ideas with the above literature, trying at the same t
avoid some typical problems.8 For instance, the theory is explicitly covariant with respect
changes of coordinates, even time-dependent ones. This feature partially comes from the
plectic structure of the classical phase space, and overcomes the problem of explicit time
pendence of symplectic mechanics. Additionally, the theory is covariant with respect to the c
of units of measurement, due to the use of unit spaces. Regarding the application, the th
supported by nontrivial physically relevant examples, such as the quantized rigid body.7 Another
important feature is that CCG theory is a one-dimensional multisymplectic theory provid
working quantum theory, i.e., CQG. Such a problem has not been solved, yet, in field theor~see

a!Electronic mail: saller@euler.math.uni-mannheim.de
b!Electronic mail: Raffaele.Vitolo@unile.it
68240022-2488/2000/41(10)/6824/19/$17.00 © 2000 American Institute of Physics
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Refs. 35 and 36 and references therein!. See Ref. 8 for a more complete comparison of
CCG–CQG theory with standard literature.

In this paper, we provide two main results.
First, we analyze systematically thesymmetriesof the structures involved in CCG theory. W

find the set of natural bijections between geometric objects that rule the dynamics of part
CCG theory. By these bijections we deduce analogous correspondences for symmetries
finitesimal symmetries. Note that some similar bijection is known in literature about nondeg
ate mechanical systems~see Ref. 19, for instance!, but neither to the same extent nor in the sa
framework as us.

Second, in order to study conserved quantities, we define amomentum mapassociated to the
action of a group of symmetries of CCG theory. We show that all conserved quantities co
from holonomic symmetries are of a special kind, i.e.,quantizable functions, according to Jadczyk
and Modugno. Such functions are quadratic polynomials with respect to velocities, and
second derivative is proportional to the spacelike metric on space–time. This result esse
comes from covariance, and seems to be a completely new feature of CCG mechanics with
to symplectic and cosymplectic classical mechanics. In a sense, it is a way by which the ge
of space–time selects a subspace of the space of functions on phase space, namely the
quantizable functions. Moreover, this result seems to be a covariant and classical analog
Groenwald–van Hove theorem.37

In a subsequent paper we shall apply these results to the covariant quantum Galilei th
The paper has the following structure.
In the second section we recall the basic geometric objects of the CCG theory,1–3,6 empha-

sizing natural bijective correspondences between these objects.
Classical space–time in CCG theory is an (n11)-dimensional manifold fibered over a on

dimensional affine space. The geometric objects by which CCG mechanics is built are a
vertical metric over space–time, a linear connection of the tangent bundle of space–time w
compatible with the time form, called space–time connection~gravitational field!, and a scaled
2-form f of space–time~electromagnetic field!. The phase space is taken to be the first jet sp
with respect to the space–time fibering. When a mass and a charge are chosen, the fields
incorporated naturally into a distinguished 2-form on space–time, called ‘‘total’’ dynamical p
2-form. The dynamical equations for the fields are assumed by requiring the total form
closed. In this case, phase space endowed with this form and the time form constitutes acosym-
plectic manifold. The corresponding Reeb vector fieldg12–17 yields the dynamics on space–tim
through its flow.

We shall see that there is a natural bijective correspondence between space–time conn
affine connections of the phase space~called phase connections!, and homogenous connections
the phase space~called dynamical connections!. Reeb vector fields of dynamical phase 2-forms a
dynamical connections, so any dynamical phase 2-form yields a dynamical connection en
gravitational and electromagnetic structures.

Moreover, there is a natural bijective correspondence between the pairs of a phase con
and a spacelike metric and the dynamical phase 2-forms. On the other hand, there is a
bijective correspondence between the pairs of a dynamical connection and a spacelike me
distinguished 2-forms of the second jet space, called the ‘‘horizontal phase 2-forms.’’ These
can also be obtained by dynamical phase 2-forms through horizontalization with respect
contact structure of the second jet space.

Finally, we introduce a special class of potentials of closed phase 2-formsV, namely dynami-
cal phase 1-formsQ. Their horizontal partL is a Lagrangian density on the phase space.
prove that dynamical phase 1-forms are in bijection with Lagrangian densities obtained i
way. Moreover, it turns out that dynamical phase 1-forms are the Poincare´–Cartan forms for their
corresponding Lagrangians. On the other hand, if we evaluate the Euler–Lagrange operatoe(L)
of these Lagrangians, we discover that it is exactly the horizontal phase 2-form correspond
the differential of the dynamical phase 1-form. Summarizing, we have the following diagra
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We also recall the notion oft-Hamiltonian lift,1–3 which is a covariant lift of functions of the
phase space to vector fields of phase space, motivated from the CQG theory. We will see t
lift plays an important role in the definition of momentum map.

In the third section, we analyze systematically the infinitesimal symmetries of the geom
objects that we have introduced so far. Hereby, we are mainly interested in holonomic symm

As one could expect, the bijective correspondences in our model imply correspondence
in symmetries. We prove, indeed, that any holonomic infinitesimal symmetry of a space
connection is a symmetry of the corresponding phase connection and of the correspond
namical connection, and vice-versa.

Moreover, we prove that any holonomic infinitesimal symmetry of a dynamical phase 2-
form is also a symmetry of the corresponding pair of a spacelike metric and a phase conn
and vice-versa. Similarly, we prove that any holonomic infinitesimal symmetry of a Eu
Lagrange morphism is also a symmetry of the corresponding pair of a spacelike metric
dynamical connection, and vice-versa. Eventually, we prove that the dynamical connection
sponding to a closed dynamical phase 2-form is the only second order connection whic
~nonholonomic! symmetry of the cosymplectic structure. Then, we prove that any holono
infinitesimal symmetry of a Poincare´–Cartan form is a symmetry of the corresponding Lagr
gian, and vice-versa. Consequently, we are able to give two equivalent versions of Noe
theorem, first for symmetries of Poincare´–Cartan forms and then, for symmetries of Lagrangia

In Sec. III D, we provide a definition of covariant momentum map for an action of a grou
symmetries of the cosymplectic structure. This definition is similar to momentum map in pre
plectic and cosymplectic literature.12–14,16,17However, the covariance of our theory requires t
concept oft-Hamiltonian lifts. The momentum map has its values in the pairs of a conse
quantity and an element of the space of time units. This yields a Lie algebra morphism be
such pairs with respect to the~extended! Poisson bracket, andt-Hamiltonian lifts of these pairs
with respect to the standard Lie bracket. In the particular case of a group of symmetries
projects on space–time, the momentum map turns out to take values into the quantizabl
tions, i.e., functions which are polynomials of second degree in the velocities, and whose s
derivative~with respect to velocities! is proportional to the metric. Quantizable functions are
fundamental importance in CQG theory.1–3 This feature is not present in general symplectic
cosymplectic momentum maps. Then, we consider an action of a group of symmetries
additionally, is a group of symmetries of a Poincare´–Cartan form. Here, a natural momentum m
is determined by the Poincare´–Cartan form.

Finally, three very simple examples are provided in order to show the machinery at
These examples show also that, in standard time-independent situations of particle mechan
get the same results as standard symplectic mechanics.18 However, we are able to treat time
dependent cases, as well.

II. CLASSICAL THEORY

We recall the main geometric objects of CCG theory,1–4 and give natural bijective correspon
dences between them.

A. Unit spaces

Now, we are going to assume the fundamental spaces of units of measurement and co
The theory ofunit spaceshas been developed in Refs. 1 and 2 to make the independen

classical and quantum mechanics from scales explicit. Unit spaces are defined similarly to
spaces, but usingR1 instead ofR. We will use one-dimensional~over R1) unit spaces. It is
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possible to definenth tensorial powers andnth roots of unit spaces. Moreover, ifP is a positive
unit space andpPP, then we denote by 1/pPP* the dual element. Hence, we can setP21

ªP* . In this way, we can introduce rational powers of unit spaces.
We assume the following unit spaces.
T, the oriented one-dimensional semivector space oftime intervals;
L, the positive unit space oflength units;
M, the positive unit space ofmass units;
We denote byP̄ªP^ R the associated vector space to the unit spaceP. An elementu0PT ~or

u0PT21) represents atime unit of measurement, a charge is represented by an elementqPQ
ªT21

^ L3/2
^ M1/2, and aparticle is represented by a pair (m,q), wherem is a mass andq is a

charge. A tensor field with values into mixed rational powers ofT, L, M is said to bescaled. We
assume thePlanck’s constant\PT21

^ L2
^ M.

We remark that Lie derivative of scaled tensor fields commutes with the scaling.
In the following, we assume all manifolds and maps to beC`.

B. Space time and phase space

Assumption.We assumespace–time to be a (n11)-dimensional oriented fibered manifold

t: E→T

over a one-dimensional oriented affine spaceT ~time! associated with the vector spaceT̄, where
nPN with n>2. h

We shall refer tospace–time charts(x0,xi), which are adapted to the fibring, to a time unit
measurementu0PT and to the chosen orientation ofE. The index 0 will refer to the base spac
indices i , j , . . .51,2,3 will refer to the fibers, while Greek indicesl,m, . . .50,1,2,3 will refer
both to the base space and the fibers.

A motionis defined to be a sections: T→E. The coordinate expression of a motions is of the
type si

ªxi+s: T→R.
We shall be involved with thetangent bundletE : TE→E and thevertical tangent subspace

VEªkerTt,TE. We denote the charts induced onTE by (xl,ẋl); moreover, we denote the
induced local bases of vector fields, of forms and of vertical forms ofE, respectively, by (]l),
(dl), and (ďi).

The phase spaceis defined to be the first jet space of motionst0
1 : J1E→E ~see Refs. 38 and

39 for the theory of jet spaces!. We denote the charts induced onJ1E by (x0,xi ,x0
i ). We will be

involved with the second jet space of motionst0
2 : J2E→E. We denote the charts induced onJ2E

by (x0,xi ,x0
i ,x00

i ).
The velocity of a motions is the sectionj 1s: T→J1E, with coordinate expressionx0

i + j 1s
5]0si .

The phase space is equipped with the natural mapsD1 : J1E→T* ^ TE andq1 : J1E→T* E
^ EVE, with coordinate expressionsD15u0

^ D1,05u0
^ (]01x0

i ] i) and q15q1
i

^ ] i5(di

2x0
i d0) ^ ] i . Analogously, the jet spaceJ2E is equipped with the natural mapsD2 : J2E→T*

^ TJ1E and q2 : J2E→T* E^ J1EVJ1E, with coordinate expressionsD25u0
^ D2,05u0

^ (]0

1x0
i ] i1x00

i ] i
0) andq25q2

i
^ ] i5(d0

i 2x00
i d0) ^ ] i

01(di2x0
i d0) ^ ] i .

An observeris defined to be a sectiono: E→J1E. Its coordinate expression is of the typ
o5u0

^ (]01o0
i ] i), whereo0

i : E→R.
An observero can be regarded as a scaled vector field ofE. The integral motionsof an

observero are defined to be the motionss such thatj 1s5o+s. An observero yields locally a
fibered splittingE→T3P, whereP is the manifold of integral motions ofo. An observer is said
to becompleteif it yields a global splitting ofE. A space–time chart is said to beadaptedto o if
it is adapted to the local splitting ofE induced byo, i.e., if o0

i 50.
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An observero can be regarded as a connection of the fibered manifoldE→T. Accordingly, it
yields the translation fibered isomorphism¹@o#: J1E→T* ^ VE, given by ¹@o#(e1)ªe1

2o(t0
1(e1)). We have the coordinate expression¹@o#5(x0

i 2o0
i ) d0

^ ] i .

C. Natural bijective correspondences

In the following we define distinguished objects living on space–time or phase space a
investigate their relations. In a concrete model of a classical system these objects will be
mined by further assumptions~see Sec. III E!.

Definition II.1: A scaled vertical Riemannian metric

g: E→L2
^ ~V* E^

E
V* E! ~II.1!

is said to be aspacelike metric. h

The coordinate expression of a spacelike metricg is g5gi j ďi
^ ď j , wheregi j : E→L̄2.

Given a massmPM, it is convenient to introduce a ‘‘normalized’’ metricG[ (m/\) g, with
coordinate expressionG5Gi j

0 u0^ ďi
^ ď j , whereGi j

0 : E→R.
Next, we analyze distinguished connections that can be defined on space–time or phas
Definition II.2: A space–time connectionis defined to be adt-preserving torsion free linea

connection of the vector bundleTE→E,

K: TE→T* E^

TE
TTE. ~II.2!

h

The coordinate expression of any space–time connectionK is of the type K5dl
^ (]l

1Kl
i
n ẋn ]̇ i), whereKn

i
l5Kl

i
n : E→R. The compatibility withdt, i.e., the condition¹@K#dt

50, is expressed byKm
0

n50.
The restriction of a space–time connectionK to the vertical tangent bundle is a linear co

nectionK8: VE→T* E^ VETVE.
A space–time connectionK is said to bemetric if ¹@K8# G50. In this case,K is partially

determined by the metric according to the local formulasKih j52 1
2(] iGh j1] jGhi2]hGi j ) and

K0i j 1K0 j i 52]0Gi j , where indices have been raised or lowered by the metricG.
Definition II.3: A phase connectionis defined to be a torsion-free affine connection of t

affine bundleJ1E→E

G: J1E→T* E ^

J1E
TJ1E. ~II.3!

Here the torsion is defined through the vertical valued formq1 .41 h

The coordinate expression ofG is of the typeG5dl
^ (]l1Gl0

i ] i
0), whereGl0

i [Gl0
i

h
0 x0

h

1Gl0
i

0
0 andGl0

i
m
0 : E→R.

It can be easily seen that there is a natural bijective correspondence1,3,5

K↔G@K#

between space–time connections and phase connections, namely such that the coordinate
sions are given byGl0

i
m
0 5Kl

i
m .

A second order connectionof space–time is defined to be a~nonlinear! connection of the
fibered manifoldJ1E→T

g: J1E→T* ^ TJ1E, ~II.4!

which is projectable on the contact mapD1 . The coordinate expression ofg is of the typeg
5u0

^ (]01x0
i ] i1g00

i ), whereg00
i : J1E→R.
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Definition II.4: A second order connection is said to be adynamical connectionif it is
‘‘homogeneous’’ in the sense of Ref. 40, i.e., if its coordinate expression is of the typeg00

i

[g00
i

h
0

k
0 x0

hx0
k12 g00

i
h
0 x0

h1g00
i

0
0 andg00

i
h
0

k
0 , g00

i
m
0 : E→R. h

We will be involved with the covariant derivative of a dynamical connection, i.e., the m
phism¹@g#: J2E→T* ^ T* ^ VE with coordinate expression¹@g#5u0

^ (x00
i 2g00

i )d0
^ ] i .

We can easily see that the mapG°g@G#ªD14G is a natural bijective correspondence6

G↔g@G#

between the phase connections and dynamical connections, namely such thatg00
i

h
0

k
05Gh0

i
k
0 ,

g00
i

l
05Gl0

i
0
0 .

Next, we define distinguished forms ofJ1E andJ2E through the above objects.
Definition II.5: A 2-form V of J1E of the type

V@G,G#5n@G# `̄ q1 : J1E→L2T* J1E, ~II.5!

wheren@G# is the vertical projection associated with a phase connectionG and where the con-
tracted wedge product is taken with respect to a spacelike metricG a dynamical phase 2-form.h

We have the coordinate expressionV@G,G#5Gi j
0 (d0

i 2Gl0
i dl)`q1

j 5Gi j
0 (d0

i 2g00
i d0

2Gh0
i q1

h)`q1
j .

We observe that the above form is the only natural 2-form which can be obtained fromG and
G.1,5 Moreover, the formV@G,G# is nondegenerate in the sense thatdt`V@G,G#n is a volume
form of J1E. We can easily prove that there is a unique scaled vector fieldX: J1E→TJ1E such
that i X dt51 and i X V@G,G#50, namely,X5g@G#, the dynamical connection. This yields
natural bijective correspondence

~G,G!↔V@G,G#

between pairs of a spacelike metric and a phase connection and dynamical phase 2-forms
Definition II.6: A 2-form E of J2E of the type

E@G,g#5¹@g# `̄ q1 : J2E→L2T* E, ~II.6!

where¹@g# is the covariant differential associated with a dynamical connectiong and where the
contracted wedge product is taken with respect to a spacelike metricG is called ahorizontal phase
2-form. h

We have the coordinate expressionE@G,g#5Gi j
0 (x00

i 2g00
i )d0`(dj2x0

j d0).
Analogously to the case of a dynamical phase 2-form, it turns out that there is a n

bijective correspondence

~G,g!↔E @G,g#

between pairs of a spacelike metric and a dynamical connection and horizontal phase 2
Consequently, we obtain the natural bijective correspondence

V@G,G#↔E@g@G#,G#

between dynamical phase 2-forms and horizontal phase 2-forms. The horizontal phase 2-E
corresponding to a dynamical phase 2-formV coincides with the horizontal part ofV according
to the contact splitting of forms ofJ1E induced byJ2E.6

Let us consider the case of a closed dynamical phase 2-formV. We can prove1–3,41 that
dV50 is equivalent to the conditions that¹@K8#G50 and that, in coordinates, the curvatu
R@K#: E→L2T* E^ EVE^ ET* E fulfills Rl

i
m

j5Rm
j
l

i . Given an observero we can define the
2-form of E F@o#ª2o* V: E→`2T* E. It turns out thatdV50 is also equivalent to the con
ditions ¹@K8#G50 anddF@o#50.
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Remark II.1:If the phase spaceJ1E is equipped with a closed dynamical phase 2-formV, the
triple (J1E,V,dt) turns out to be a~scaled! cosymplectic manifold in the sense of Refs. 12 and
~see also references therein!. The associated dynamical connection turns out to be the~scaled!
Reeb vector field for this cosymplectic structure.

Moreover, ifV is a closed dynamical phase 2-form, it admits potential 1-forms ofJ1E. In the
following we introduce a special kind of such potential forms.

Definition II.7: A horizontal 1-formQ: J1E→T* E such thatdQ5V whereV is a closed
dynamical phase 2-form is said to be adynamical phase 1-formassociated withV. h

For any observero, the expression of a dynamical phase 1-form associated withV in adapted

coordinates is given byQ52( 1
2Gi j

0 x0
i x0

j 2A0)d01(Gi j
0 1Ai)d

i whereAldl is a potential of the
closed 2-formF@o#52o* V. Clearly, a dynamical phase 1-form associated withV is determined
up to a closed 1-form ofE.

Remark II.2:The triple (J1E,V,Q) is not a contact structurein the sense of Ref. 16: the form
Q`Vn is not a volume form onJ1E.

According to the contact splitting ofQ induced byJ1E we define the following object.
Definition II.8: The LagrangianL associated with a phase 1-formQ is defined to be the

horizontal 1-form

L@Q#ªD14Q: J1E→T* T. ~II.7!

ThemomentumP@L# of the LagrangianL is defined to be the vertical restriction ofL with respect
to the fiberingt0

1 : J1E→E, i.e., P@L#ªVEL. h

We have the coordinate expressionsL@Q#5( 1
2Gi j

0 x0
i x0

j 1Aix0
i 1A0)d0 and P@L#5(Gi j

0 x0
j

1Ai)(d
i2x0

i d0).
It turns out thatQ splits intoQ5L@Q#1P@L@Q##. This splitting coincides with the contac

splitting of Q induced byJ1E.
This yields directly the natural bijective correspondence

Q↔L@Q#

between dynamical phase 1-forms and Lagrangians.
Moreover,Q@L# turns out to be the Poincare´–Cartan form associated with the LagrangianL.

Hence, in the following, we say any dynamical phase 1-form to be aPoincaré–Cartan form.
Given a closed dynamical phase 2-formV it can be proved that the corresponding horizon

phase 2-formE@V# coincides with the Euler–Lagrange morphism associated with any corresp
ing LagrangianL of a Poincare´–Cartan formQ of V. Hence, the above results concerningQ, V,
L andE are described by the following commutative diagram:

This diagram can be regarded as a piece of a more comprehensive natural bicomplex,
accounts for the Lagrangian formalism via a cohomological scheme.6,42,43

We stress the fact that the objectsQ, L, andP do not depend on an observer but on a cho
local gauge. However, it is convenient that we have given their coordinate expressions
respect to an observer, since there is another splitting of a Poincare´–Cartan form that is observe
dependent. Namely, given an observero, each Poincare´–Cartan form splits, according to th
splitting of T* E induced byo, as

Q52H@o#1P@o#,
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2H@o#ª2o4Q: J1E→T* T,

P@o#ªq14~n@o#4Q!: J1E→T* E,

whereH@o# andP@o# are said to be the observedHamiltonianandmomentum.
Remark II.3:The above splitting shows that CCG theory fulfills the axioms formultisymplec-

tic first order field theories~see Refs. 35 and 36 and references therein for definitions and p
erties!, in the special case of one-dimensional base space. In this hypothesis we are able to
a working quantum theory, namely CQG theory. This problem is still open in field theory.h

We summarize the above results in the following theorem.
Theorem II.1: The following natural bijective correspondences hold

K↔G↔g, ~II.8!

V↔~G,G!↔~g,G!↔E, ~II.9!

Q↔L. ~II.10!

D. Classical dynamics

We are involved with two different approaches to the classical dynamics in our context
first consists in a direct definition of the law of particle motion, namely, the~generalized! Newton
law.

Definition II.9: Let g be a dynamical connection ands a motion. Then, the condition ons,

¹@g# j 1sª j 2s2g+ j 1s50
h

is said to be thelaw of motionfor the dynamical connectiong.1–4

The law of motion has the coordinate expression]0]0si2g00
i +s50.

A dynamical connectiong can be regarded~up to a time scale! as a vector field ofJ1E, hence,
a motion fulfilling the above equation is just an integral curve ofg.

It is easy to see that a motions fulfills the above law if and only if, for anyf : J1E→R, we
have

d~ f + j 1s!5~g. f !+ j 1s ~II.11!

whereg. fªd f(g). In the particular case wheng. f 50 we call f a conserved quantity.
On the other hand, if the metricG is given by a concrete model, the natural bijective cor

spondenceE↔(G,g) leads to an equivalent approach to the equations of motion, namely
equationE(L) j 2s50 for any LagrangianL.

E. Hamiltonian lift and quantizable functions

A dynamical phase 2-formV yields in a natural way the Hamiltonian lift of function
f : J1E→R to vertical vector fieldsH@ f #: J1E→VJ1E. The musical morphismV[: VJ1E
→Tg* J1E turns out to be an isomorphism of vector spaces between vertical vector fields oJ1E
and forms ofJ1E that annihilate the correspondingg. Clearly, in the case whenV5V@G,G#,
theng5g@G#.

More generally, taking into account the independence of units, a time scalet: J1E→TT and
a cosymplectic formV yield, in a natural~covariant! way, thet-Hamiltonian lift of functions
f : J1E→R to vector fields

Ht@ f #ª^t,g&1 ~V[!21~d f2^g. f ,dt&!: J1E→TJ1E ~II.12!

whose time component ist. Its coordinate expression is
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Ht@ f #5t0~]01x0
h]h1g00

h ]h
01G0

hk~2]k
0f ]h1~]kf 1~Gk0

l 2Gkr
0 G0

lsGs0
r ! ] l

0f ! ]h
0!,

wheret0
ª^t,u0&.

In view of later developments in the quantum theory, it can be proved1,2 that Ht@ f # is
projectable on a vector fieldX@ f #: E→TE if and only if the following conditions hold:~i! the
function f is quadratic with respect to the affine fibres ofJ1E→E with second fibre derivative
f 9^ G, wheref 9: E→TT and ~ii ! t5 f 9. A function of this kind is calledspecial quadraticand
is of the type

f 5 1
2 f 0Gi j

0 x0
i x0

j 1 f i
0x0

i 1 f o,

with f 0, f i
0 , f o: E→R.

The t-Hamiltonian lift yields a Poisson bracket for functions ofJ1E, namely, the bracke
$ f , g%ª5 i H0[ f ] i H0[g] V. We observe that ift,s are time scales, then$ f , g%5 i Ht[ f ] i Hs[g] V. The
vector space of special functions is not closed under the Poisson bracket, but it turns out to
R-Lie algebra through the naturalspecial bracket@ f , g#5$ f , g%1g( f 9).g2g(g9). f , where
$ f , g% is the Poisson bracket of the functionsf and g. Of particular interest are such speci
functions whose time component is a constant. They are calledquantizable functions with constan
time component, and play a fundamental role in the covariant quantum Galilei theory.

III. SYMMETRIES IN COVARIANT CLASSICAL MECHANICS

In this section we introduce the notion of symmetry of the objects which we have define
space–time and phase space. The bijections that we found so far provide connections b
symmetries of these objects. Moreover, we give a definition for a covariant momentum map
directly leads us to conserved quantities which are quantizable functions. Finally, we pr
simple examples showing our theory at work.

A. Symmetries and infinitesimal symmetries

First, we want to recall the basic facts about symmetries, groups of symmetries and
tesimal symmetries of manifolds, fibered manifolds and tensors.

Let M be a manifold. Then, we define asymmetry of the manifoldM to be a diffeomorphism
f : M→M . The group of diffeomorphisms Diff(M ) operates on the manifoldM via a natural left
action In practice, we are interested in finite dimensional subgroups of Diff(M ) with the structure
of a Lie group.

By taking the tangent prolongation of the actionF with respect toG, at the unit elemente
PG, we obtain the map

]F: g→Sec~TM !: j°X@j#ª]F~j!,

~whereg is the Lie algebra ofG) which turns out to be an antihomomorphism of Lie algebras.
say ]F to be aninfinitesimal left actionof g on M and the vector fieldX@j# of M to be the
infinitesimal generatorof the infinitesimal action corresponding toj. Let us say a vector field
X: M→TM to be aninfinitesimal symmetry of the manifoldM ~since its local flow is a local
group of diffeomorphisms!. Now, by considering a left actionF of a Lie groupG on M , the set
of infinitesimal generators$X@j#: M→TM , ; jPg% turns out to be a subalgebra of the L
algebra of infinitesimal symmetries ofM .

Now we extend the definition of symmetries to manifolds that are equipped with fu
structure.

Let p: E→B be a fibered manifold. Then, we define asymmetry of the fibered manifold pto
be a fibered diffeomorphismf of E over B. We say any projectable vector fieldX of E to be an
infinitesimal symmetry of the fibered manifold p.
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Let f : M→M be a symmetry of the manifoldM . Then, the tangent prolongationT f : TM
→TM turns out to be a symmetry of the fibered manifoldTM→M . Moreover, for each left action
F: G3M→M , the tangent prolongationT̄F: G3TM→TM : (g,y)°T(Fg)(y) turns out to be
a left action.

Let n be a tensor field ofM , which is contravariant of orders and covariant of orderr. Then,

we define asymmetry of the tensor fieldn to be a diffeomorphismf : M→M such thatn+ ^
s

T f

5 ^
r

T f+n. We say any vector fieldX of M such thatLX n50 to be aninfinitesimal symmetry o
the tensor fieldn.

Now, let f : E→E be a symmetry of the fibered manifoldp: E→B. Then, for each 1<k, the
k-jet prolongationJkf : JkE→JkE turns out to be a symmetry of the fibered manifoldsph

k : JkE
→JhE and pk: JkE→B, for each 1<h,k. Moreover, for each left action of symmetriesF: G
3E→E, the k-jet prolongationJ̄kF: G3JkE→JkE: (g,ek)°Jk(Fg)(ek) turns out to be a left
action, called thek-jet prolongationof F.

Let us recall the natural involutions: TTM→TTM .45 This map yields the natural prolonga
tion of each vector fieldX: M→TM to the vector fieldX(T)ªs+TX: TM→TTM . If X5Xl]l ,
thenX(T)5Xl]l1]mXlẋm]̇l . The mapX°X(T) turns out to be a morphism of Lie algebras. L
F: G3M→M be a left action ofG on M . Then, we obtains+T̄]F5]T̄F: g3TM→TTM ,
hence,s+T̄]F turns out to coincide with the infinitesimal left action of the Lie algebrag on the
manifold TM .

We recall the natural mapr k: JkTE→TJkE.38 This map yields the natural prolongation o
each vector fieldX: E→TE to the vector fieldX(k)ªr k+JkX: JkE→TJkE. In particular, if B
5T, thenX5Xl]l andX(1)5Xl]l1(]0Xi1]kX

ix0
k2]0X0x0

i )] i
0 . The mapX°X(k) turns out to

be a morphism of Lie algebras. LetF: G3E→E be a left action of a groupG such that
$Fg ,gPG% is a group of symmetries of the fibered manifoldp: E→B. Then, we obtainr k

+ J̄k]F5] J̄kF: g3JkE→TJkE, hence,r k+ J̄k]F turns out to coincide with the infinitesimal lef
action of the Lie algebrag on the manifoldJkE.

In general, we say all above natural prolongation of symmetries, infinitesimal symmetrie
actions to beholonomic. By an abuse of language we often call the groupG a group of symmetries
if the left actionF of G is given such thatFg is a symmetry for allgPG.

B. Infinitesimal symmetries of space–time structures

Now, we apply the above general definitions of infinitesimal symmetries to covariant cla
mechanics. However, some of the morphisms~contact maps, spacelike metric! cannot be regarded
as tensors, naturally. Consequently, a~direct! definition of their symmetries would require natu
rality techniques.44 Instead, we show that it is possible in our case to give a meaning to
infinitesimal symmetries by keeping the standard Lie derivative.

Symmetries of space–time. An infinitesimal symmetry of space–time is an infinitesimal
metry of the fibered manifoldt: E→T which, additionally, preserves the affine structure ofT.
More precisely, we define aninfinitesimal symmetry of space–time as a vector fieldX: E→TE
which is projectable on a vector fieldX: T→TT and such thatX is constant.

An easy calculation shows that
Proposition III.1: A vector field X: E→TE is an infinitesimal symmetry of space–time if and

only if LX dt50.
If X5X0]01Xi] i is the coordinate expression, then the conditions are equivalent to0

PR.
Symmetries of the contact maps. On any fibered manifoldp: E→B, the contact mapsq1 and

D1 are not tensors. Hence, their symmetries require naturality techniques. However, it is po
to use a standard Lie derivative for both objects by using the one-dimensional affine struct
T in the following way. The affine structure ofp0

1 : J1E→E allows us to regardq1 as a~scaled!
tensorq1 : J1E→T^ (T* J1E^ J1ETJ1E). Easy calculations yield the following results.
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Proposition III.2: Let X be an infinitesimal space–time symmetry. Then, X(1) is a holonomic
infinitesimal symmetry ofq1 , i.e., LX(1)

q150.
Lemma III.1: Let p: F→B a fibered manifold. Let X: F→TF be a vector field which projects

on a vector fieldX: B→TB, and let Y: F→TB be a fibered morphism (over the identity onB).

Let Ỹ: F→TF be any extension of Y, i.e., a vector field projectable on Y. Then, LX YªTp

+(LX Ỹ) is well defined,i.e., it does not depend on the extension Y˜ of Y.
We obtain the following coordinate expression:

LX Y5~Xm]mYl2Ym]mXl1Xi] iY
l!]l .

Proposition III.3: Let X: E→TE be an infinitesimal space–time symmetry. Then, X(1) is a
holonomic infinitesimal symmetry ofD1, i.e., LX(1)

D150.
Symmetries of spacelike metrics. A spacelike metric is not a tensor ofE. Hence, in order to

define its infinitesimal symmetries, we need the following lemma.3

Lemma III.2: Let us consider a fibered manifold p: F→B, a vector field X ofF which is

projectable on a vector fieldX of B and a vertical covariant tensora: F→ ^

r

V* F. Then, the

vertical restriction(L@X#ã) : F→ ^

r

V* F of the Lie derivative L@X#ã, whereã: F→T* F is an

extension ofa, does not depend on the choice of the extensionã.

Hence, the Lie derivative L@X#aª(L@X#ã) : F→ ^

r

V* F is well defined.
Its coordinate expression is

LX a5~Xl]la j 1 . . . j r
1Xi] ia j 1 . . . j r

1a i j 2 . . . j r
] j 1

Xi1 ¯1a j 1¯ j r 21i] j r
Xi !dj 1^¯^ dj r

where( j 1 , . . . j r) is any permutation of the fibre indices, and where we have used Greek in
for the coordinates of the base space and italic indices for the fibres.

Thus, for each spacelike metricG, we call a projectable vector fieldX of E such thatLX G
50 an infinitesimal symmetry of the spacelike metric G. An easy calculation shows

Proposition III.4: Let X be an infinitesimal space–time symmetry and G a spacelike metric.
Then, we have the coordinate expression

LX G5$Xl~]lGi j
0 !1Gk j

0 ~] iX
k!1Gik

0 ~] jX
k!%di

^ dj .

Symmetries of connections. LetK be a space–time connection,G a phase connection andg a
dynamical connection. An easy calculation yields the following coordinate expressions.

Proposition III.5: Let X be an infinitesimal space–time symmetry. Then,

LX(1)
G5$]mX0

i 2~Gl00
i 1Gl0k

i x0
k!~]mXl!2]l~Gm00

i 1Gm0k
i x0

k!Xl

2Gm0k
i X0

k1~Gm00
j 1Gm0k

j x0
k!~] jX

i !% dm
^ ] i

0,

LX(1)
g5u0$X0~]0g00

i !1Xi~] jg00
j !2~]0X0

i !2~] jX0
i !x0

j

1X0
j ~] j

0g00
i !2g00

j ~] j
0X0

i !% ] i
0,

LX(T)
K5$~]lXi !G i0n

k ẋn2]l]nXkẋn1Xa]aGl0i
k ẋm

1~]aXi !Gl0m
k ẋa2~] iX

k!Gl0m
i ẋm% ]̇k^ dl.
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Now let us consider the particular case whenG and g are corresponding toK. The natural
bijective correspondences~II.8! suggest the following theorem.

Theorem III.1: Let X be an infinitesimal space–time symmetry. The following equivalen
hold

~1! LX(T)
K50⇔~2! LX(1)

G50⇔~3! LX(1)
g50.

Proof: The proof of~1! ⇒ ~2! ⇒ ~3! follows easily in virtue of the Leibnitz rule and the fac
that X(1) is a symmetry of the contact maps.

The proof of~3! ⇒ ~2! ⇒ ~1! can be obtained easily by considering the expressions of Lem
III B 0 which are polynomial in the coordinatesx0

i or ẋm.
QED

Symmetries of phase 2-forms. Let us consider a spacelike metricG and a phase connectionG.
Moreover, let the dynamical phase 2-formV, the Euler–Lagrange morphismE and the dynamical
connectiong be the corresponding objects. The natural correspondences~II.9! suggest the follow-
ing theorem.

Theorem III.2: Let X be an infinitesimal symmetry of space–time. Then, the follow
equivalence holds:

~1! LX(1)
V50⇔~2! LX(1)

G50, LX G50.

Proof: The definition ~II.5! yields, LX(1)
V5LX(1)

n@G#`̄q11n@G#`̄LX(1)
q11n@G#`̃q1 .

The proof of~2! ⇒ ~1! can be seen directly because of the fact thatX(1) is a symmetry ofq1 .

For the proof of ~1! ⇒ ~2! we consider the coordinate expressionsLX(1)
n@G#`̄q1

5Gi j
0 am0

i (dm`dj2x0
j dm`d0) and n@G#`̃q15b i j

0 (d0
i `dj2x0

j d0
i `d02Gl0

i dl`dj1x0
j Gl0

i dl

`d0), where we have setam0
i to be the coefficient ofLX(1)

G in Proposition III.5 andb i j
0 the

coefficient ofLX G in Proposition III.4. It can be easily seen that, if the sum of these express
is zero, then, allam0

i and allb i j
0 have to be zero.

QED
Moreover, the correspondences~II.9! suggest the following.
Theorem III.3: Let X be an infinitesimal space–time symmetry. Then, the following equ

lence holds.

~1! LX(1)
V50⇔~2! LX(2)

E50.

Proof: Expression~II.6! yields LX(2)
E5LX(2)

¹@g#`̄q11¹@g#`̄LX(1)
q11¹@g#`̃q1 . In

analogy to the proof of Theorem III.2 this yields the equivalence between the conditionLX(2)
E

50 and the two conditionsLX G50, LX(1)
¹@g#50. Clearly, LX(1)

¹@g#50 is equivalent to
LX(1)

g50. Thus, Theorem III.2 and Theorem III.1 yield the result.
QED

Let us additionally consider thatV is closed. Eventually, we add an example of a dist
guished nonholonomic infinitesimal symmetry ofV.

Proposition III.6: The dynamical connectiong is a nonholonomic (scaled) infinitesimal sym
metry of the cosymplectic manifold(J1E,V,dt), i.e., Lg V50 and Lg dt50.

Proof: This follows directly from Cartan’s formula usingi g V50,i g dt51 and the closure of
V.

QED
We observe that this proposition is essentially the standard result for the Reeb vector fi

any cosymplectic structure applied to our particular case.
But we can even say more aboutg.
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Theorem III.4: There is exactly one second order connectiong̃ such thatL g̃ V50. Namely,
g̃5g.

Proof: Let g̃ be a second order connection such thatL g̃V50. This implies that there exists
local function f : J1E→R such thati g̃V5d f . Using i g V50, we geti g̃2g V5d f . Let us setc
ªg̃2g; c is valued intoT* ^ T* ^ VE, and has coordinate expressionc5c00

i u0
^ ] i

0, with c00
i

ªg̃00
i 2g00

i : J1E→R. We have to show that a local functionf only exists ifc50. Calculating in
coordinates usingc0iªGi j

0 c00
i one gets the following system of equalities]0f 52c0ix0

i , ] i f

5c0i , ] i
0f 50. This system implies thatc50. Thus,g̃5g.

QED

C. Noether symmetries

Let us consider a closed dynamical phase 2-formV. The next proposition relates infinitesima
symmetries ofV to conserved quantities.

Lemma III.3: Let Y: J1E→TJ1E be an infinitesimal symmetry ofV. Then, the 1-form iY V is
closed, and any local potential function fof i Y V is a conserved quantity.

Proof: LY V50 is locally equivalent to the closure ofi Y V. Hence, there is a local functio
f such thatd f5 i Y V. Therefore,g. f 5d f(g)5 i Y V(g)5 i Y i g V50.

QED
Symmetries of Poincare´–Cartan forms. Let us consider a local Poincare´–Cartan formQ.

Clearly, any infinitesimal symmetryY: J1E→TJ1E of Q is an infinitesimal symmetry ofV
5dQ.

Now, we can formulate the following~Noether! theorem which relates holonomic infinites
mal symmetries ofQ to conserved quantities.

Theorem III.5: Let X be an infinitesimal space–time symmetry which is a holonomic infi
tesimal symmetry of a Poincare´–Cartan formQ. Then, on the domain ofQ, i X(1)

V is exact and
fª2 i X Q is a potential, hence, a conserved quantity.

Remark III.1:If an observero is a~scaled! infinitesimal symmetry ofQ, then the Hamiltonian
H@o# turns out to be the associated conserved quantity.

Symmetries of Lagrangians. LetL be the Lagrangian corresponding to a Poincare´–Cartan
form Q and letP be the corresponding momentum. The natural correspondence~II.10! indicates
the following theorem.

Theorem III.6: Let X be an infinitesimal space–time symmetry. Then, the following equ
lence holds

~1! LX(1)
Q50⇔~2! LX(1)

L50.

Proof: Both directions can be proved in analogy to the proof of the equivalenceLX(1)
G

50 ⇔ LX(1)
g50.

QED
Theorem III.6 yields immediately another formulation of the~Noether! Theorem III.5. This

version may be more popular to the physicist.
Corollary III.1: Let X be an infinitesimal space–time symmetry which, additionally, is

holonomic infinitesimal symmetry ofL. Then, on the domain ofQ, a conserved quantity is give
by

fª2~X4P1X4L!.
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D. Momentum map in CCG theory

Let us suppose a closed dynamical phase 2-formV and a left actionF̂: G3J1E→J1E of a

groupG of symmetries of the cosymplectic structure (J1E,V,dt). That is,F̂g* V5V andF̂g* dt
5dt for all gPG. Let g be the associated Lie algebra. Hence,L]F̂(j) V50 andL]F̂(j) dt50 for
all jPg.

We would like to define amomentum mapin our setting by analogy with the standa
symplectic and cosymplectic literature12,14,17,18and references therein. However, the scaling of
time form dt requires the incorporation of a time unit in a momentum map.

Lemma III.3 shows that any vector fieldY of J1E is an infinitesimal symmetry ofV if and
only if there exists a~local! function f such thati Y V5d f . Clearly,f is not unique; eachf of this
type is a conserved quantity.

Analogously, we can easily see that the following lemma holds
Lemma III.4: Let Y be any vector field of J1E. Then, Y is an infinitesimal symmetry of dt

and only if iY dt is a constant cPT̄.
Hence, by Lemma III.3 and Lemma III.4, we can associate to any infinitesimal symm

]F̂(j) of V and of dt the ~unique! constantdt(]F̂(j)) and a conserved quantityf j , which is
determined up to an additive constantcPR. In the following we denote byCo(J1E) the vector
space of conserved quantities.

Definition III.1: A ~local! mapJ

J: g→Co~J1E!3T̄: j°~Jj ,tj!,

whereJj is a potential ofi ]F̂(j) V andtjª i ]F̂(j) dt for all jPg, is said to be amomentum map

for the actionF̂.
Clearly, for an action of symmetries for whichi ]F̂(j) dt50, we get a standard momentum ma

for canonical actions in the sense of Ref. 17.
Remark III.2:The momentum mapJ is locally defined, in general. But if we assume furth

hypotheses on space–time or on the Lie algebrag, then there exists a global momentum map.
course, a globalJ always exists ifH1(E)5$0%. A detailed list of other hypotheses under whichJ
is globally defined is given in Ref. 18; they are the same as in our case.

On the other hand, given a time scalet, it is possible to associate to any functionf of J1E a
distinguished vector field ofJ1E, namely, thet-Hamiltonian lift of f. The following theorem
holds.

Theorem III.7: Let J be a momentum map for the actionF̂ and let Ht@Jj# be the
t-Hamiltonian lift of Jj with respect to an arbitrary time scalet.

Then, the following equivalence holds

]F̂~j!5Ht@Jj# ⇔ t5tj .

Proof: By recalling thatg.Jj50 we obtain thati Ht[Jj] V5dJj2^g.Jj ,dt&5dJj . Hence, by
observing that two vector fieldsX, Y: J1E→TJ1E are equal if and only ifi X dt5 i Y dt and i X V
5 i Y V, we obtain the result.

QED
This theorem shows, why we have included the time scaletj in the definition of momentum

map.
It is obvious that we want to know if the map that associates to a pair (Jj ,tj) its

t-Hamiltonian lift H(Jj ,tj)ªHtj
@Jj# is a homomorphism of Lie algebras. Therefore, we defi

the following bracket for pairs inCo(J1E)3T̄.
Definition III.2: The bracket$( f ,t), (g,s)%ª(0,$ f , g%) is said to be thePoisson bracket of

pairs.
QED
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Then we can prove the following theorem.
Theorem III.8: The map H is a homomorphism of Lie algebras between pairs (f ,t)

PCo(J1E)3T̄, with respect to the Poisson bracket of pairs, and vector fieldsHt@ f # of J1E, with
respect to the standard Lie bracket.

Proof: We have to show that@H( f ,t),H(g,s)#5H(0,$ f ,g%). We use the equalities
i [Ht[ f ],Hs[g]] dt5@LHt[ f ] ,i Hs[g] # dt5LHt[ f ] s2 i Hs[g] dt50 and i [Ht[ f ],Hs[g]] V5@LHt[ f ] ,
i Hs[g] # V5d iHt[ f ] i Hs[g] V1 i Ht[ f ] LHs[g] V2 i Hs[g] LHt[ f ] V5d$ f ,g%.

On the other hand, the definition ofH0@$ f ,g%# yields i H0[ $ f ,g%] dt50 and i H0[ $ f ,g%] V

5d$ f ,g%.
QED

Let us recall that thet-Hamiltonian lift of a functionf : J1E→R is projectable on a vecto
field X of E if and only if f is a special quadratic function and the second fiber derivative off ~with
respect to the velocities! is equal to the time scalet. Thus, Theorem III.7 yields the following
theorem that relates the functionJj to the time scaletj .

Corollary III.2: Let F̂ be projectable on a left actionF: G3E→E. Then, any momentum

map forF̂ takes values into the space of quantizable function and the second fiber derivativej

is equal to the constant time scaletj5dt(F̂(j)).
Thus, in this case, each functionJj encodes all information of the pair (Jj ,tj). Hence, in this

case we call a mapJ: g→Co(J1E): j→J(j)ªJj momentum map, denoted by the same sym
J.

Now let us consider a Poincare´–Cartan formQ. Furthermore, let us suppose thatF̂ is
holonomic, i.e.,F̂5F (1) whereF is a left action ofG on E and, additionally, we suppose thatF
preservesQ. Then the following holds.

Theorem III.9: There exists a momentum map on the domain ofQ. Namely, the map

Jj5]F~j!4P1]F~j!4L. ~III.13!

Let (ep) be a basis ofg, and j5jpep . Then, the coordinate expression is

Jj5jp~~]pf i2x0
i ]pf0! ] i

0L1]pf0 L !.

Given an observer o, the momentum map can be expressed in terms of the observed
tonian H@o# and the observed momentumP@o# by

Jj5]F~j!4P@o#1]F~j!4H@o#. ~III.14!

Proof: The first expression follows simply from the contact splitting ofQ and Theorem III.5.
The observer dependent expression ofJ follows simply from the splitting ofQ through the
observer.

The coordinate expression]f(j)5jp]pf0]01jp]pf i] i with respect to a basis (ep) yields
the second expression.

QED
Remark III.3:There is a connection between the momentum of a Lagrangian and the mo

tum map. In fact, letG be a group of vertical holonomic symmetries ofQ, i.e., i ]F(j) dt50. Then
we have the expression

Jj5]f~j!4P[P~]f~j!!,

so the momentum map coincides with the momentum of the Lagrangian.
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E. Examples

Before we give some examples of applications of the above results, we show how the
metric objects incorporate the physical information in the general model for the covariant cla
mechanics.

Namely, one chooses a spacelike metricG. The existence of such a metric is assured by
possibility of a length measurement at any instant of time. Moreover, a gravitational fie
assumed to be a space–time connectionK\ and an electromagnetic field is assumed to be a sc
2-form f : E→(L1/2

^ M1/2) ^ L2T* E of space–time. Given a chargeqPQ, it is convenient to
introduce the normalized formFª(q/m) f : E→L2T* E.

The gravitational connectionK\ yields the gravitational objectsG\, g\, andV\ through the
correspondences discussed in the above section:K↔G@K#↔g@G# andG↔V@G,G#.

The first field equations for the gravitational and the electromagnetic field are assumed
dV\50 anddF50.

There is a natural way to incorporate the electromagnetic field in the gravitational object
can start by considering a natural ‘‘minimal coupling’’23,26

VªV\1 1
2 F, ~III.15!

where the factor12 has been chosen just in order to obtain standard normalization. Then the
total objects are obtained by means of the correspondences.K↔G@K#↔g@G# andG↔V@G,G#.
The coefficients ofK turn out to beKh

i
k5K\

h
i
k , K0

i
k5K\

0
i
k1(q/2m)Fi

k and K0
i
05K\

0
i
0

1(q/m)Fi
0 .

This yields thatdt`Vn5dt`(V\)n: J1E→T^ LnT* J1E is a ~scaled! volume form ofJ1E
and thatdV50. Therefore, the phase spaceJ1E together with the total dynamical phase 2-formV
and the time formdt turns out to be a~scaled! cosymplectic manifold.12–14 The total dynamical
connectiong turns out to be the~scaled! Reeb vector field for this cosymplectic structure sin
i g V50 andi g dt51.

It is interesting to interpret the formV through an observero. We will suppose the observe
to be complete, for the sake of simplicity. We recall thatG yields the familyk of Riemannian
connections of the fibres ofE→T, with coordinate expressionk5dk

^ (]k1kk
i
h ẋh ]̇ i), where

kk
i
h are the usual Christoffel symbols related toG. Let us introduce the 2-formV@k#ªn@k#

`̄ idVE . Then, it can be seen that the splittingE.T3P induces the following splittings:

V\5V@k#1 1
2F

\, F522 dt`E1B,

whereF\
ª2o* V\, E: T3P→T* ^ T* P andB: T3P→`

2

T* P.
We sayE to be theelectric fieldandB to be themagnetic field.
With respect to a complete observer, the formV@k# is just the standard time-depende

symplectic form onTP induced by the natural symplectic form onT* P via the metric isomor-
phism. Hence, the formV@k#1B is just thecharged~or deformed! ~time-dependent! symplectic
structure.18 In our setting, we have something more: there is the electric fieldE and the termF\

which is a 2-form on space–time~asF) but is induced by the gravitational connection.
Remark III.4:The above considerations show that in CCG theory the dynamics is inco

rated into the cosymplectic form. In symplectic mechanics one has to postulate the HamiltonH
besidesthe symplectic formv0 on the phase spaceM . On the other hand, such a structure yiel
naturally the cosymplectic manifold (R3M ,v02dH`dt,dt).12 h

Now, we apply the machinery developed in the above section to analyze three grou
symmetries acting in simple cases.

Example III.1:We suppose the space–timeE to be an affine space with affine projectiont. In
this caseVE.E3S, whereSªkerDt. So, we assume an Euclidean scaled metricg on S.

Let us consider the vertical action
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S3E→E: ~v,e0!°~e01v !.

Let K\ be the natural flat connection onE andF50. Then, any Poincare´–Cartan form exists
globally andS0 is a group of symmetries of aQ. The momentum mapJ is just the standard linea
momentum.

In fact, Q is invariant with respect to spacelike translations. Of course, the Lie algebraS0

is S0 and we have the momentum map

J: S0→C`~J1E,R!: v°J~v ![P~v !,

where, by definition,P5VEL, with coordinate expressionP0(v)5v i Gi j x0
j ~see Remark III.3!.

QED
Example III.2:Assume the same space–time and fields as in the above example, and a

additionally thatE.T3P, i.e., assume a complete observero. Then, we can consider the natur
action

T̄3~T3P!→T3P: ~v,~t,p!!°~v1t,p!.

It turns out thatT̄ is a group of symmetries ofQ, i.e., o is a ~scaled! infinitesimal symmetry
of Q, and the momentum mapJ is just the~observed! kinetic energyH@o#.

In fact, Q is as in the above example, hence it is invariant with respect to time transla

because the metric does not depend on time. Of course, the Lie algebra ofT̄ is T̄ and we have the
momentum map

J: T̄→Co~J1E!: j°J~j![j4~o4Q!.

Obviously,J5H@o#.
QED

Example III.3:Now, we suppose our space–time to beT3SO(g), whereg is the metric of the
above space–time. The manifoldT3SO(g) is interpreted as the configuration space for t
relative configurations of a rigid body with respect to the center of mass~see Refs. 7 and 18 for a
more detailed account!.

We assume theinertia tensor Ias the scaled vertical metric. Consider the action

SO~g!3~T3SO~g!!→T3SO~g!: ~A,~t,B!!°~t,AB!.

Let K\ be the natural flat connection onT3SO(g) and F50. Then, SO(g) is a group of
symmetries ofQ and a momentum mapJ is just the angular momentum.

In fact, as in the previous examples,Q reduces to the kinetic energy of particles with resp
to the center of mass. This is obviously invariant with respect orthogonal transformations7 We
have the momentum map

J: so~ga!→Co~T3T^ TSO~g!!: v°Jv[v* 4P,

where, by definition,P5VEL, with the coordinate expressionP5I i j x0
j ďi . A simple computation

shows that
– v* : SO(g)→TSO(g): r °v(r );
– v* 4P(v)5I (v(r ),v)5v(r 3v).
The Lie algebra of SO(ga) is so(ga), but the Hodge star isomorphism yields a natural L

algebra isomorphism so(ga).L21
^ Sa . The isomorphism carries the Lie bracket of so(ga) into

the cross product. In this way, ifvPso(ga) and v̄PL21
^ Sa is the corresponding element, w

can equivalently write
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J: L21
^ Sa→Co~T3T^ TSO~g!!: v̄°Jv̄[I ~r 3v,v!,

wherevPT* ^ TRa[J1(T3Ra). This proves the last part of the statement. QE

IV. CONCLUSIONS

The use of natural bijective correspondences between distinguished objects in CCG
provided us relations between symmetries of these objects. In particular, we saw that the
nomic infinitesimal symmetries of the cosymplectic structure yield the holonomic infinites
symmetries of all physical objects and of the dynamics, and conversely.

The momentum map of CCG theory has a surprising feature, due to covariance. Nam
values turn out to be ‘quantizable functions’. This feature is not present in general symplec
cosymplectic momentum maps. It seems that covariance naturally implements a classical an
of Groenwald–van Hove theorem.37

Besides their importance in covariant classical mechanics, the above results constitute t
fundamental step towards a research about symmetries in covariant quantum mechanics. T
be our next goal.
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Ornstein–Uhlenbeck–Cauchy process
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We combine earlier investigations of linear systems subject to Le´vy fluctuations
with recent attempts to give meaning to so-called Le´vy flights in external force
fields. We give a complete construction of the Ornstein–Uhlenbeck–Cauchy pro-
cess as a fully computable paradigm example of Doob’s stable noise-supported
Ornstein–Uhlenbeck process. Despite the nonexistence of all moments, we deter-
mine local characteristics~forward drift! of the process, generators of forward and
backward dynamics, and relevant~pseudodifferential! evolution equations. The in-
duced nonstationary spatial process is proved to be Markovian and quite apart from
its inherent discontinuity defines an associated velocity process in a probabilistic
sense. ©2000 American Institute of Physics.@S0022-2488~00!02410-5#

I. INTRODUCTION

Presently, we observe a continually growing recognition of the profound role~ubiquity1!
played by non-Gaussian Le´vy distributions~probability laws! in both a consistent probabilisti
interpretation of various experimental data and in a stochastic modeling of physical pheno
followed by numerical and realistic experimentation attempts to verify~or rather falsify! proba-
bilistic hypotheses.

Generically, Le´vy’s probability laws appear in the context of anomalous diffusions~mostly
subdiffusions that are modeled in terms of continuous random walks2!. On the other hand, unde
the name of Le´vy flights,2,3 we encounter stochastic jump-type processes which are expli
associated with those distributions. That, in turn, allows one to model quite a variety of tran
processes, cf. Refs. 2 and 3, which are either regarded as~non!typical phenomena of nonequilib
rium statistical physics or as manifestations of a complex nonlinear dynamics with signatu
chaos, yielding an enhanced diffusion, in particular.

We focus our attention on Le´vy flights which were considered by the present authors
alternative~non-Gaussian! candidates for models of primordial noise in Refs. 4 and 5.

Generically, the variance and higher cumulants of those processes are infinite~nonexistent!.
There is also a physically more singular subclass of such processes for which even th
moment~mean value! is nonexistent. Thus we need to relax the limitations of the standard Ga
ian paradigm: Here we face a fundamental problem of establishing other means~than variances
and mean values! to characterize statistical properties of Le´vy processes.

Specifically, if a habitual statistical analysis is performed on any experimentally availab
of frequency data, there is no obvious method to extract reliable information about tend
~local mean values! of the random dynamics. Nonexistence of mean values and higher mom
may also be interpreted as the nonexistence of observable~e.g., mean, like drifts or local currents!
regularities of the dynamics. Moreover, the jump-type processes usually admit arbitrarily
jumps ~with no lower bound! and finite, but arbitrarily large jump sizes~with no upper bound!.
Any computer simulation utilizes both the lower~coarse graining! and upper bound on the jum
size,6–8 and any experimental data collection involves such limitations as well. Mathematic

a!Electronic mail: pgar@magda.iz.wsp.zgora.pl
68430022-2488/2000/41(10)/6843/18/$17.00 © 2000 American Institute of Physics
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that puts us in the framework of standard jump processes for which the central limit theor
known to hold true in its Gaussian version~even if we account for the abnormally slow conve
gence to a Gaussian, in view of long tails of the probability distribution6!. Therefore, there is no
clear-cut procedures allowing one to attribute an unambiguous statistical interpretation in te
Lévy processes to given phenomenological data. This is in drastic contrast to a traditional G
ian modeling. Mere scaling arguments, reflecting the self-similiar patterns of sample path
insufficient as well.

Although no realistic formulation of a fluctuation–dissipation theorem is possible in that
~nonexistence of variances!, we can give meaning to a theory of Le´vy flights in external force
fields3,5 under a simplifying assumption that force fields define linear processes with Le´vy fluc-
tuations. The corresponding velocity processes were introduced as linear systems with Le´vy fluc-
tuations in Ref. 9~see also Ref. 10!.

In the present paper, we shall give a complete construction of the related jump-type stoc
process, together with a detailed characterization of the dynamics of induced spatial dis
ments.

Our strategy is thus substantially different from that typically followed in the curr
literature.3 For example, the configuration space Langevin equation,

dx~ t !

dt
5

F~x!

mg
1h~ t !, ~1!

wherem is the mass of transported particle,g stands for the friction constant, andh represents any
conceivable generalization of the white noise that employs Le´vy stable statistics,3 corroborates a
tacit assumption that some kind of standard Smoluchowski projection~the large friction limit,
normally employed in the Brownian motion context11! from the phase space to spatial on
dynamics is possible. This is certainly not realizable in the non-Gaussian Le´vy case.

Another delicate question is to settle possible physical origins of the Le´vy ~as opposed to
Wiener! noise. That issue seems to be conceptually easier to handle on the velocity/mom
space level. However, another problem is immediate: In the case of Brownian motion~Ornstein–
Uhlenbeck process! spatial trajectories were by construction differentiable to give meaning to
velocity concept~even though accelerations were nonexistent anyway, somewhat conflicting
the naive but widely spread usage of the white-noise-supported Langevin equation as the
Newton law analog!. The consequent exploitation of Le´vy processes with their intrinsic discont
nuities seems to set an unresolvable obstacle in this~velocity notion! respect.

We shall demonstrate that this is not literally the case. For example, we can prove th
spatial random variablex(t) of the Ornstein–Uhlenbeck–Cauchy process cannot possess d
tives in the sense of standard mathematical analysis, nonetheless this process has derivat
weaker, probabilistic sense. Hence, it is legitimate to interpretu(t) as a velocity analog attribute
to the instantaneous~random! location x(t), though this notion is more distant from classic
intuition than the velocity variable of the standard Ornstein–Uhlenbeck process~not differen-
tiable, hence not yielding any analog of a Newtonian acceleration!.

Our analysis departs from a generalization of the Ornstein–Uhlenbeck process due to D12

where a symmetric Le´vy ~stable! noise was assumed to take the place of the standard Wi
noise. A complete description of a concrete, computable in full detail Ornstein–Uhlenb
Cauchy process~with a familiar Lorentzian as a probability law for velocity displacements! is our
principal goal in the present paper. In addition, we shall pay attention to intrinsic complicatio
the random dynamics by investigating a standard chain of its possible features~ordered with
respect to the complication level!: ergodicity, mixing, and exactness.
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II. LANGEVIN EQUATION WITH A LINAR „HARMONIC… FORCE AND CAUCHY NOISE

The starting point for Ornstein and Uhlenbeck13,14 was the dissipative Langevin equation

du

dt
52lu~ t !1A~ t !, ~2!

where u(t) is a random variable describing the velocity of a particle,l.0 is a dissipation
constant, andA(t) is another random variable whose probabilistic features are determined b
probability distribution ofu(t), which is assumed to satisfy a concrete law whent→`. Because
u(t) may have no time derivative, Eq.~2! was soon replaced by another one, namely

du~ t !52lu~ t !dt1dB~ t !, u~0!5u0 , ~3!

which received a rigorous interpretation within the framework of stochastic analysis.12 In the case
when the probability distribution ofu(t), t→`, is the Maxwell one,B(t) must be a Gaussian
process, and formula~3! leads to the classical Ornstein–Uhlenbeck process.

Here, we discuss properties of the processu(t), and the corresponding process of displa
mentsx(t), in the case whereB 5(B(t)) t>0 is the Cauchy process, that is whenB satisfies the
following conditions:
~a! B has independent increments, i.e., givent1, ¯ ,tn , the differencesB(t2)2B(t1), B(t3)
2B(t2), . . . , B(tn)2B(tn21) are mutually independent random variables,
~b! B has stationary increments, i.e., the probability distribution ofB(t1t)—B(t) is independent
of t,
~c! B is continuous in probability, that is limt→s B(t)5B(s) in probability,
~d! the characteristic function ofB is given by

E@eipB(t)#5e2tc(p),

wherec(p)5s2upu.
All the above-mentioned requirements form a mathematically consistent definition o

Markovian jump-type process in question, e.g., Cauchy process. Notice that a suitable mo
tion of condition~d! @set c(p)5(s2/2) p2 in the exponent; we refer to the general form of t
Lévy–Khintchine formula# would leave us with the familiar Wiener process.

From a physical point of view, solutions of induced partial~here, pseudo! differential equa-
tions are most important, and those incorporate transition probability densities and densities
process.

Notice that the process of displacements is determined byu(t) in the standard way,

x~ t !5x~0!1E
0

t

u~t!dt, x~0!5x0 . ~4!

Hence, we should be able to derive relevant densities and transition densities not only f
velocity process but also for the induced spatial process. Additionally, if we wish to interpretu(t)
as a genuine velocity field for the process of spatial displacementsx(t) @the mere formal attribu-
tion of the velocity name to our random variableu(t) is highly misleading, in view of an apparen
discontinuity of sample paths#, a careful analysis of differentiability properties~in what sense ?! of
x(t) is here necessary.

By integrating Eq.~2! we obtain that fort>s,

u~ t !5e2l(t2s)u~s!1e2ltE
s

t

elt dB~t!. ~5!

The integration of~3! yields
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x~ t !5x~s!1E
s

tFe2l(t2s)u~s!1e2ltE
s

t

elb dB~b!Gdt

5x~s!1
12e2l(t2s)

l
u~s!2E

s

t

dtS e2lt

l D 8E
s

t

elb dB~b!.

Integrating the last summand by parts and using the double integration formula involv
derivative with respect to the interior integral, cf.~3.12! in Ref. 12, we get

E
s

t

dtS k
e2lt

l D 8E
s

t

elb dB~b!5
e2lt

l E
s

t

elt dB~t!2
1

l E
s

t

dB~t!.

Hence,

x~ t !5x~s!1
1-e2l(t2s)

l
u~s!1E

s

t 12e2l(t2t)

l
dB~t!, ~6!

which mimics~is identical with respect to the form! a fairly traditional expression for a spatia
random variable of the standard Ornstein–Uhlenbeck process~with Wiener increments instead o
Cauchy increments in the last summand!.

III. PROBABILITY DENSITIES AND TRANSITION PROBABILITY DENSITIES FOR u „t …
AND x „t …

There are a number of~equivalent! procedures to deduce a probability density of the proc
u(t) from the Cauchy increments statistics, see Refs. 3 and 9. We shall follow a direct pro
listic route.

In order to simplify the notation we writeP@X5x# for the density of the probability distri-
bution of a random variableX, that isP@XPG#5*G P@X5x#dx for G,R.

Suppose thatf is a continuously differentiable function such thatf (t)>0, and let X
5*s

t f (t)dB(t). Terms of this functional form are encountered in formulas~4!–~6!.
The random variableX is the limit of the following sum:

(
k50

n21

f ~tk!@B~tk11!2B~tk!#, ~7!

wheres5t0,t1, ¯ ,tn5t is the partition of the interval@s,t#. Because the processB has
independent increments, the probability density of~7! is the convolution of densities of its sum
mands which, since the process has stationary increments, are equal to

1

p f ~tk!

s2~tk112tk!

S x

f ~tk!
D 2

1s4~tk112tk!
2

5
1

p

s2f ~tk!Dtk

x21~s2f ~tk!Dtk!
2 .

Because the Fourier transform maps the convolution to multiplication and

S 1

p

s2f ~tk!Dtk

x21~s2f ~tk!Dtk!
2D ∧

~p!5e2s2upu f (tk)Dtk,

we get
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PF S (
k50

n21

f ~tk!@B~tk11!2B~tk!# D 5xG
5S )

k50

n21

e2s2upu f (tk)ntkD ∨

~x!5S expS 2s2upu (
k50

n21

f ~tk!ntkD D ∨

~x!,

where f ∧ and f ∨ denote the Fourier transform and its inverse, respectively. By taking the
n→` we obtain

P@X5x#5S expS 2s2upu E
s

t

f ~t!dt D D ∨

~x!

and so the general formula

P@X5x#5
1

p

s2*s
t f ~t!dt

x21~s2*s
t f ~t!dt!2 ~8!

is valid. We shall exploit Eq.~8! repeatedly in the following.
Remark 1:An apparent generalization of the previous observation is posssible. Assum

B(t) is a Lévy stable process with the characteristic function

c~p, t !5exp~2s2tupua!, 0,a<2.

Then, there holds

PF E
s

t

f ~t!dB~t!5xG5S expF2s2S E
s

t

f a~t!dt D upuaG D ∨

~x!.

Presently we shall use formula~8! to calculate transition probability densities of process
u(t) andx(t).

Let f (t)5e2l(t2t). Then, by Eq.~5!,

P@u~ t !5uuu~s!5v#5
1

p

s2~ t2s!

~u2ve2l(t2s)!21s4~ t2s!
, ~9!

wheres2(t2s)5(s2/l) (12e2l(t2s)), see, e.g., Ref. 9.
Sinceu(0)5u0 , the probability density ofu(t) is given by

P@u~ t !5u#5
1

p

s2~ t !

~u2u0e2lt!21s4~ t !
. ~10!

We now turn to the processx(t). Sinceu(s) is independent ofB(t) for all t>s,12 it is also
independent of the integral*s

t f (t)dB(t). Therefore, the probability distribution of the sum

12e2l(t2s)

l
u~s!1E

s

t 12e2l(t2t)

l
dB~t!

is the convolution of its ingredients.
Let

f ~t!5
12e2l(t2t)

l
.

Because of
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E
s

t

f ~t!dt5
1

l2 ~e2l(t2s)211l~ t2s!!,

by formula ~8! there holds

PF E
s

t 12e2l(t2t)

l
dB~t!5xG5

1

p

S s

l D 2

~e2l(t2s)211l~ t2s!!

x21S s

l D 4

~e2l(t2s)211l~ t2s!!2

. ~11!

On the other hand, by~10!, we have

PF12e2l(t2s)

l
u~s!5uG5

1

p

s2~s!a~ t2s!

~u2u0e2lsa~ t2s!!21s4~s!a2~ t2s!
, ~12!

where

a~ t2s!5
12e2l(t2s)

l
.

The Fourier transforms of~11! and ~12! are equal to

expF2S s

l D 2

~e2l(t2s)211l~ t2s!!upuG ~13!

and

exp@2s2~s!a~ t2s!upu#exp@2 iu0e2lsa~ t2s!p#, ~14!

respectively.
Because of

S s

l D 2

~e2l(t2s)211l~ t2s!!1s2~s!a~ t2s!5S s

l D 2

~e2lt2e2ls1l~ t2s!!,

the mulitiplication of transforms~13! and~14!, followed by taking the inverse Fourier transform
the result, gives us a transition probability density of the spatial process

P@x~ t !5yux~s!5x#5p~y, tux, s!5
1

p

g~ t, s!

~y2x2u0h~ t, s!!21g2~ t, s!
, ~15!

where

g~ t, s!5S s

l D 2

~e2lt2e2ls1l~ t2s!!

and

h~ t, s!5
e2ls2e2lt

l
.

Finally, becausex(0)5x0 , the probability density of the processx(t) is given by
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P@x~ t !5x#5
1

p

S s

l D 2

~e2lt211lt !

S x2x02u0

12e2lt

l D 2

1S s

l D 4

~e2lt211lt !2

. ~16!

Compare, e.g., the corresponding formula for the displacements of the standard~Wiener noise-
supported! Ornstein–Uhlenbeck process.11

IV. PROPERTIES OF THE PROCESS u„t …

Consideration of the previous sections may leave us with the impression that a construc
the Ornstein–Uhlenbeck process supported by Cauchy noise is in fact complete. We have
not only Itô-type stochastic differential equations that are amenable to direct com
simulations,8,7 but also explicit expressions for probability densities and transition probab
densities for both processes:u(t) andx(t). In the case of Markov processes such data are kn
to specify the process uniquely.15

However, some alarm bells need to be switched on at this point. The standard~stationary!
Ornstein–Uhlenbeck velocity process is Markovian~in the Gaussian case the Ornstein–Uhlenbe
process is theonly continuous in probability stationary Markov process16!, but the induced~inte-
grated! spatial process is not Markovian. Using an explicit expression for the transition proba
density it is easy to verify that the Chapman–Kolmogorov identity does not hold true. There
Markov property is normally attributed to a two-component, phase-space version of the Orn
Uhlenbeck process.11 In the case of the Ornstein–Uhlenbeck–Cauchy process the situati
somewhat different.

A. Markovianess and stochastic continuity

First of all let us notice thatu(t) is a time-homogeneous~but not stationary! Markov process.
Markov property is clear from the construction since the Chapman–Kolmogorov identity ca
verified by inspection and it is a classic observation that non-negative and normalized fun
which obey the Chapman–Kolmogorov equation are necessarily Markovian transition prob
ties.

Since the probability density~10! of the process depends explicitly on time, our processu(t)
is not stationary.

Remark 2:This needs to be contrasted with the standard~Gaussian and stationary! Ornstein–
Uhlenbeck process features where the transition probability density is time homogeneous
the density of the process does not depend on time at all. Indeed~we consider one spatial dimen
sion and utilize dimensional units! the transition density

p~y,tux,s!5~g/2pD$12exp@22g~ t2s!#%!21/2 expS 2
g$x2y exp@2g~ t2s!#%2

2D$12exp@22g~ t2s!#% D
with s,t, has an invariant densityr(x)5(g/2pD)21/2 exp(2gx2/2D). The drift of the process
readsb(x)52gx and p solves the Fokker–Planck~second Kolmogorov! equation] tp5Dnxp
2¹x(bp).

Now, we shall demonstrate an important property~mentioned before in connection with th
Ornstein–Uhlenbeck process! of the so-called stochastic continuity, which is a necessary co
tion to give a stochastic process an unambigous status.15,17,18Namely, we need to show that fo
any e.0 the following equation is satisfied:

lim
t→s

P@ uu~ t !2u~s!u>e#50. ~17!

This equation is equivalent to
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lim
t→0

E
uu2vu>e

pt~uuv !du50. ~18!

Because

E
uu2vu>e

pt~uuv !du512
1

p Farctan
e1v~12e2lt!

s2~ t !
1arctan

e2v~12e2lt!

s2~ t ! G
and remembering thats2(t)5(s2/l) (12e2lt), the stochastic continuity property does follow

It is perhaps not useless to emphasize that in typical Gaussian process investigations, s
tic continuity of the process is a necessary~but still insufficient! condition for the process to hav
continuous sample paths. Hence it is always explictly mentioned in the context of diffu
processes.15 The Cauchy noise-supported process is surely not diffusive and its trajectorie
discontinuous~jump-type! paths.4,5

B. Local moments in the Cauchy case: Forward drift—the existence issue

The nonexistence of moments of the probability measure in case of the Cauchy proc
another source of difficulties, since the standard local characteristics of the diffusion-type p
like the drift and the diffusion function~or coefficient! seem to be excluded in the present cas

However, for the considered Ornstein–Uhlenbeck–Cauchy process, the notion of the fo
drift of the process proves to make sense~!!. We shall first discuss the drift issue for the proce
u(t).

Let us start with the following definition. Supposep(y, tux, s),t>s is a Markov transition
function and letXt be the associated Markov process. Guided by the analogy with diffu
processes we say that the processXt has a drift~in fact, forward drift! if the following limit,

lim
t→s

1

t2s Euy2xu<e
~y2x!p~y, tux, s!dy, ~19!

does not depend on the choice ofe.0. If so, then its value depending only on (x, s) we denote by
b(x, s) and call it the drift coefficient.

Clearly, if p is homogeneous in time, then the drift coefficient depends only on the variabx.
Let us emphasize that in the above-mentioned definition we do not require the processXt to have
finite moments.

We claim that the jump-type Markov processu(t) has a~forward! drift which readsb(v)
52lv.

At first we calculate the indefinite integral

I 5
1

p E ~u2v !
s2~ t !du

~u2ve2lt!21s4~ t !
.

Substitutingz5u2ve2lt, we rewrite that integral as

s2~ t !

p E zdz

z21s4~ t !
1

v
p

~e2lt21!E s2~ t0dz

z21s4~ t !

5
s2~ t !

2p
log~z21s4~ t !!1

v
p

~e2lt21!arctanS z

s2~ t ! D .

Hence,

I 5
s2~ t !

2p
log@~u2ve2lt!21s4~ t !#1

v
p

~e2lt21!arctanFu2ve2lt

s2~ t ! G
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and consequently the limit

lim
t→0

1

t
I uu5v2e

u5v1e5 lim
t→0

1

t

s2~ t !

2p
~ log@~v1e2ve2lt!21s4~ t !#2 log@~v2e2ve2lt!21s4~ t !# !

1 lim
t→0

1

t

v
p

~e2lt21!S arctanFv1e2ve2lt

s2~ t ! G2arctanFv2e2ve2lt

s2~ t ! G D
502l

v
p S p

2
1

p

2 D52lv

exists and ise independent. This is the forward drift of the processu(t), which proves a consis
tency of the derived transition probability density with the stochastic differential equation~5!.

To our knowledge, such a consistency check has never been performed before in disc
of Lévy flights and anomalous diffusion processes.

On the other hand, it is well known that for Markovian diffusion processes all local cha
teristics of motion~conditional expectation values that yield drifts and variances! are derivable
from transition probability densities, supplemented~if needed! by the density of the process, c
Ref. 18. We have demonstrated that, in the non-Gaussian context, the nonexistence of m
does not necessarily imply the nonexistence of local characteristics~drifts! of the process.

As a consequence, once a formal definition is adopted of a stochastic differential eq
whose deterministic driving term~functionally unrestricted drift! is subject to perturbations b
Lévy flights, the process may still possess local characteristics~forward drift! that are in turn
derivable by means of its transition density. Our derivation in the Cauchy noise case is limi
linear functions of random variables~linear systems9,3!. Possible generalizations to stochas
differential equations with driving terms represented by nonlinear and possibly time-depe
functions need to be carefully examined.

This is an uncomfortable situation, since a formal computer experimentation may not in
any inconsistency of the formalism. Even worse, the uncommented visualization may effec
convey misleading or entirely wrong messages if uncritically accepted.~The rigorous existence
theorems available in the mathematical literature pertain to linear systems as well,19,20 and extend
to perturbations by general Le´vy processes.!

C. Markov generators and Kolmogorov „Fokker–Planck-type … equations

Once densities and transition probability densities have been obtained from the first prin
we can invert the problem~that is a commonly shared viewpoint in the physics-oriented resea!
and ask for differential~evolution! equations obeyed by them. The Fokker–Planck equation i
obvious example in the case of Markovian diffusion processes, while various forms of the M
equation were adopted to extend the standard jump-processes~Poisson or more generally—poin
processes! framework to more singular step or jump-type ones.

In the case of unperturbed~free! Lévy processes basically all interesting~covering stable laws
of probability! evolution equations were classified by means of Fourier transf
techniques.9,21,3,22,5 A disregarded point was that in the case of Markov processes a s
~Fokker–Planck- or Master-equation-type! evolution equation does not characterize the proc
uniquely. Here, both forward and backward evolution equations need to be involved, cf. Re
and 18. Except for Refs. 9 and 3 no attempt was made to investigate such equations for
ministically driven Lévy systems.

To elucidate that issue, we shall next consider the generator of a Markov transition fun
pt(yux) for the Cauchy-perturbed process~cf. Sec. IV B!.

Let us recall that it is defined by
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~L f !~x!5 lim
t→0

1

t F E
2`

`

pt~yux! f ~y!dy2 f ~x!G , ~20!

where the domain of definition consists of all functionsf PC0(R), whose limit on the right-hand
side in ~19! exists uniformly with respect to the variablex.

It is worth noting that when the transition function is stochastically continuous~see Sec.
IV B !, then the corresponding semigroupTt in C0(R) defined by

~Tt f !~x!5E
2`

`

pt~yux! f ~y!dy ~21!

is strongly continuous, and so its generatorL is densely defined.
In such a case we can also define an adjoint semigroupTt* acting on the space of~probability!

densitiesL1(R, dx),

~Tt* r!~u!5E
2`

`

pt~uuv !r~v !dv. ~22!

Its generator we denote byL* .
Arguments of the present section involve a little bit of a mathematical formalism to sta

conformity with the classic work of Feller and Dynkin on evolution equations for Markov p
cesses, cf. Refs. 5 and 18.

SupposeL is the generator of the semigroup associated with the processu(t) and letL* be its
adjoint.

We wish to demonstrate that

L5L01b¹ ~23!

and

L* 5L02¹~b • !, ~24!

whereL0 is the generator of the Cauchy processB ~we have used an explicit notationL05u¹u in
Refs. 4 and 5, see also Ref. 3! andb(v)52lv.

To this end, we first observe that forpt(uuv) given by formula~9! the associated semigrou
Tt mapsC0(R) to C0(R). Sincept(uuv) is stochastically continuous,Tt is strongly continuous.

Next, we calculate the Fourier transform of Eq.~20!,

~L f !∧~p!5 lim
t→0

1

t F E
2`

` E
2`

` 1

p

s2~ t !

~u2ve2lt!21s4~ t !
f ~u!e2 ipvdu dv2 f̂ ~p!G .

Substitutingz5ve2lt2u, dv5elt dz, we obtain

~L f !∧~p!5 lim
t→0

1

t FeltE
2`

`

dz
1

p
exp~2 izeltp!

s2~ t !

z21s4~ t ! E2`

`

du exp~2 iueltp! f ~u!2 f̂ ~p!G
5 lim

t→0

1

t
@elt exp~2s2~ t !elt upu! f̂ ~eltp!2 f̂ ~p!#

5 lim
t→0

1

t
@elt exp~2s2~ t !eltupu!21# f̂ ~eltp!1 lim

t→0

1

t
@ f̂ ~eltp!2 f̂ ~p!#

52s2upu f̂ ~p!1l f̂ ~p!1lp f̂8~p!.
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By taking the inverse Fourier transform and using the identity

~p f̂8!∨~v !5
1

2p E
2`

`

eipvp f̂8~p!dp

52
1

2p E
2`

`

~eipvp!8 f̂ ~p!dp

52 f ~v !2 iv~p f̂ !∨~v !52 f ~v !2v f 8~v !,

we arrive at

L f ~v !5L0f ~v !2lv f 8~v !,

whereL052s2u¹u.
Hence,L5L01b¹.
Because

L* ~r!~u!5 lim
t→0

1

t F E
2`

`

pt~uuv !r~v !dv2r~u!G ,
by calculations similar to those previously presented we obtain

L* ~r!~u!5L0r~u!2¹~b~u!r~u!!.

That ends the demonstration.
As a consequence, sinceTt : C0(R)→C0(R) is strongly continuous, almost all paths of th

processu(t) arecadlag, that is they are continuous from the right and have finite left-hand lim
~see Chap. II, Sec. 4 in Ref. 17, Vol. II!. There follows also from Eqs.~23! and ~24! that the
transition probability function of the processu(t) satisfies the backward equation

]pt~uuv !

]t
5L0pt~uu• !~v !1b~v !¹vpt~uuv ! ~25!

and the forward equation~the Fokker–Planck equation analog!

]pt~uuv !

]t
5L0pt~•uv !~u!2¹u@b~u!pt~uuv !#. ~26!

For definitions see, e.g., Chap. 15, Sec. 4 in Ref. 16.
It is trivial to check by inspection that the transition probability function of the~free! Cauchy

process obeys both equations withb(u) set equal identically 0.

D. Asymptotics: Ergodicity, mixing, and exactness

We have at hand an explicit expression for the density of the processu(t). One of the efficient
ways to investigate the complexity of the involved random dynamics is not necessarily via a
recourse to sample paths, but rather via studying asymptotic properties of probability densit
Ref. 23.

Let us consider the asymptotic properties of the processu(t). By direct calculations we check
that the density

r0~u!5
1

p

s2~`!

u21s4~`!
5

1

p

s2/l

u21s4/l2
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is stationary with respect to the dual semigroupTt* . Therefore, irrespective of its initial probabi
ity distribution, P@u(`)5u#5r0(u).

Remark 3:Normally, if we get a convergence of a density in the asymptotic (t→`) regime to
a unique density, we say about an asymptotic stability. In the case when for every initial d
we get a set spanned by a finite number of densities, we say about an asymptotic periodic
may also have a situation where every initial density is dispersed under the action of a M
operator. This is related to the concept of sweeping.

Our knowledge of the explicit formula of the transition probability density for the semigr
Tt* allows us to examine its ergodic properties in a more detailed way. For example, a poin
convergence of the Cauchy process transition density to the stationary Cauchy probability d
was investigated in Ref. 9.

Let us recall~see Ref. 23 for the definition and more details! that a Markov semigroupTt* is
mixing, if for any densityr, Tt* r tends to a stationary density in a weak sense, and exact, if
limit holds in theL1 norm.

Hence exactness is a stronger property and implies mixing, ergodicity of the dynamics
a straightforward consequence.

~It might be worth noting that strong mixing properties of the standard Ornstein–Uhlen
velocity fields were discussed and visualized by computer simulations in Ref. 24. The poin
convergence of the probability density of the process to its stationary limit was established i
25.!

The dynamics induced by Cauchy noise~and other stable noises, cf. Ref. 26! shows a higher
level of complications and is not only mixing, but also exact. We shall provide a demonstrati
this property in the spirit of Ref. 23, whose arguments allow one to infer that the stan
Ornstein–Uhlenbeck process is exact.

In fact, what we claim is thatTt* is exact~hence both mixing and ergodic!.
Sincer0 is a stationary density we have to show that

lim
t→`

ir t2r0i150, ~27!

wherer t(u)5*pt(uuv)r(v)dv and r(v) is an arbitrary initial density. To this end we need
auxiliary lemma which comprises the most technical segment of the paper.

Lemma:For t→`, ipt(•uv)2r0i1→0 uniformly in v on compact sets.
Proof: We shall show that;NPN;e.0't0.0 such that

;t.t0;vP@2N, N#ipt~•uv !2r0i1,e.

Let us begin from

ipt~•uv !2r0i15
1

p E
2`

` U s2~ t !

~u2ve2lt!21s4~ t !
2

s2~`!

u21s4~`!
Udu

<
1

p E
2`

` U us2~ t !2s2~`!u
~u2ve2lt!21s4~ t !

du1
s2~`!

p E
2`

` U 1

~u2ve2lt!21s4~ t !

2
1

u21s4~ t !Udu1
s2~`!

p E
2`

` U 1

u21s4~ t !
2

1

u21s4~`!
Udu

5
s2~`!2s2~ t !

s2~ t !
1

s2~`!

p E
2`

` uu22~u2ve2lt!2u
@~u2ve2lt!21s4~ t !#@u21s4~ t !#

du

3
s2~`!@s4~`!2s4~ t !#

p E
2`

` du

@u21s4~ t !#@u21s4~`!#
.
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The first summand, denoted byI 1 , equalse2lt/(12e2lt) and so is less thane/3 for all t
.t1 , provided

t15
1

l
log S 3

e
11D .

For t> log 2/l we haves4(t)> 1
4 s4(`) and so the third summand, denoted byI 3 , can be

estimated as follows:

I 3<
s2~`!

p
@s2~`!1s2~ t !#@s2~`!2s2~ t !#E

2`

` du

Fu21S s2~`!

2
D 2G2

<
2s6~`!e2lt

p
•

4p

s6~`!
58e2lt.

Therefore, for anyt.t35max((1/l)log 2, (1/l)log(24/e)) there holdsI 3<e/3.
Finally, we estimate the second summand, denoted byI 2 . At first let us notice that

I 25
s2~`!

p E
2`

` uvue2ltu2u2ve2ltu
@~u2ve2lt!21s4~ t !#@u21s4~ t !#

du

58uvue2lt
s2~`!

p E
2`

` uxudx

@~x2ve2lt!214s4~ t !#@~x1ve2lt!214s4~ t !#
,

wherex52u2ve2lt.
Hence, for all t>t45(1/l)log(11N/2s2(`)) there holds uvu2e22lt<4s4(t) for all v

P@2N, N#, and so

I 2<8e2lt
s2~`!

p E
2`

` uxudx

x41~4s4~ t !!2 5
1

s2~`!

e2lt

~12e2lt!2 .

Therefore,I 2, e/3 for all t.t25max(t4, t5), where t5 is determined by 3e2lt55s2(`)(1
2e2lt5)2e. Thus ipt(•uv)2r0i1,e for all t.t05max(t1, t2, t3), which ends the proof of the
lemma. h

Now, we are ready to adddress the exactness issue forTt* .
We observe that

ir t2r0i15E
2`

` U E
2`

`

pt~uuv !r~v !dv2r0~u!Udu

5E
2`

` U E
2`

`

~pt~uuv !2r0~u!!r~v !dvUdu

<E
2`

`

ipt~•uv !2r0i1r~v !dv

<E
-N

N

ipt~•uv !2r0i1r~v !dv12E
[ 2N, N] c

r~v !dv,

where@2N, N#c denotes the complement of the interval@2N, N#.
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Let us chooseN such that the second integral in the above is less thane/4, and next, in
conjunction with the Lemma, we chooset0 such that for allt.t0 there holdsipt(•uv)2r0i1

,e/2 for all vP@2N, N#.
Then

E
2N

N

ipt~•uv !-r0i1r~v !dv<
e

2

and soir t2r0i1, e, which completes the exactness demonstration forTt* .
Remark 4:In our consideration of the exactness issue, the stationary Ornstein–Uhlenb

Cauchy process has been employed. This process is a direct Le´vy stable analog of the standar
Gaussian Ornstein–Uhlenbeck process. There is, however, an important difference.20 In the
Gaussian case all stationary Markov processes are Ornstein–Uhlenbeck~which in turn is unique!.
In particular, the standard process coincides with its reverse~fully anticipating! version. It turns
out that in the Cauchy case there exist at least two different stationary Markov processes, si
reverse one does not coincide with the forward~nonanticipating! one. This means that the so
called statistical inversion of the Markovian dynamics~cf. a discussion and references in th
closing section of Ref. 27!, in the case of stable Le´vy processes, makes a distinction between
‘‘time arrow’’ direction. See, e.g., the time reversal and time adjointness problems encounte
Refs. 4 and 5.

We could as well consider Eq.~1! with a nondissipativel,0 factor. However, then the
asymptotic properties of the semigroupTt* change in an essential way. Indeed, since now
transition probability density can be written as

pt~uuv !5
1

p

s2

ulu ~eulut21!

~u2veulut!21S s2

ulu ~eulut21! D 2

then for anyNPN and any densityr there holds

lim
t→`

E
2N

N

pt~uuv !r~v !dv50

In consequenceTt* is sweeping.23 It means thatTt* has no stationary density and, in consequen
there is no probability law at all for thet→` limit of the processu(t).

V. PROPERTIES OF THE PROCESS x„t …

A. Markovianess and forward drift

In the case of the classic Ornstein–Uhlenbeck process, it is well known that the s
random variable does not represent a Markov process.

A little bit surprisingly, in the present~Cauchy noise! case, we can prove thatx(t) is a Markov
process which is@like the previousu(t)# stochastically continuous. Moreover, while being
discontinuous process, nonetheless it has a forward drift equal tob(s)5u0e2ls.

To show Markov property it suffices to check the Chapman–Kolmogorov equation fo
transition function given by Eq.~15!. That immediately follows due to the additivity properties
the functionsg(t, s) andh(t, s) which enter the formula forp(y, tux, s),

g~ t, t8!1g~ t8, s!5g~ t, s!,

h~ t, t8!1h~ t8, s!5h~ t, s!.
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The stochastic continuity can be shown by a direct verification of formula~18! which, in the
nonstationary case, reads

lim
t→s

E
uy2xu>e

p~y, tux, s!dy50.

Also, by direct calculations we check that the limit

lim
t→s

1

t2s F E
uy2xu>e

~y2x!p~y, tux, s!dyG
does not depend on the chosene cutoff, and equalsu0e2ls.

Remark 5:It is worth pointing out that the Markov property of the pure spatial processx(t) is
a distinguishing feature of the Cauchy noise. It does not hold for othera-stable Lévy processes, in
particular for the Gaussian one~the standard Ornstein–Uhlenbeck process!. The reason for this
exception is rooted in the particularly simple form of the probability distribution of the pro
*s

t f (t)dB(t) whena51, see, e.g., our Remark 1.
In contrast to the velocity process our spatial process is no longer time homogeneous.

inhomogeneous case, instead of a one-parameter semigroup we have a two-parameter fa
operatorsTt,s defined by

~Tt,sf !~x!5E
2`

`

p~y, tux, s! f ~y!dy, ~28!

which satisfy the composition ruleTt,t8Tt8,s5Tt,s .
Therefore, we can introduce a time-dependent generator by the following formula:

~M ~s! f !~x!5 lim
t→s

1

t2s F E
2`

`

p~y, tux, s! f ~y!dy2 f ~x!G . ~29!

In analogy with our previous considerations, we can readily identify an explicit form of
generator M~s!. Namely, let us assume thatp(y, tux, s) is the transition function of the proces
x(t) andTt,s are operators associated with this function. Then

M ~s!52s2~s!u¹u1b~s!¹, ~30!

wheres2(s) is as in~8! andb(s)5u0e2ls.
Because the major steps of the demonstration are essentially the same as in the cas

processu(t), we skip them here.
Furthermore, let us notice that in view of lims→` M (s)5(s2/l) u¹u so, for larget ~i.e.,

asymptotically! the processx(t) converges to the Cauchy process with the transition func
given by

pt~yux!5
1

p

ts2/l

~y2x!21t2s4/l2 .

Hence, the dissipation constantl.0 does the job ‘‘as usual,’’ though with no recourse to t
standard Maxwell–Boltzmann notion of thermal equilibrium and fluctuation–dissipation t
rems.

B. Sample paths features

Let us turn to a brief discussion of the properties of sample paths of the processx(t). @We
remember that sample paths of the jump-type processu(t) werecadlag.#
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In his seminal paper,12 Doob proved that the displacements of the standard Ornst
Uhlenbeck process satisfy

lim
t→`

xOU~ t !2xOU~0!

t
50 ~31!

almost surely, i.e., the above-mentioned limit holds for almost all sample paths~with probability
1!. This is interpreted as an ergodic theorem applied to the velocity process to give the stro
of large numbers,12 and at the same time as a statement about the~sample! path of a single
particle.

In the final remark on p. 369, he also concluded that Eq.~31! also holds true in the case whe
the noiseB is a stable process with the characteristica>1. Hence, it holds true for the Cauch
process as well.

However, this conjecture appears to be wrong, in view of the estimates we present
following.

Because

P@ ux~ t !2x~0!u.et#5E
uxu.e

1

p

g~ t, 0!dx

~x2u0h~ t, 0!!21g2~ t, 0!

512
1

p Farctan
et1u0h~ t, 0!

g~ t, 0!
1arctan

et2u0h~ t, 0!

g~ t, 0! G ,
we have

lim
t→`

PF ux~ t !2x~0!u
t

.eG512
2

p
arctan

el

s2 .0.

Therefore,@x(t)2x(0)#/t does not tend to zero even in probability.
This means that sample paths of the processx(t) diverge to infinity faster than timet ~up to

dimensional constants!.
Remark 6:~i! We can generalize slightly the discussion and allow the parameterl to depend

on time,

du~ t !52l~ t !u~ t !dt1dB~ t !,

where l(t) is a continuous function. Then, by integrating the above-mentioned equation
obtain

u~ t !5b~ t, s!u~s!1E
s

t

b~ t, t!dB~t!,

whereb(t, s)5exp@2*s
tl(t)dt#. By invoking our previous arguments it is easy to find the pro

ability distribution and transition function for the new processu(t) ~and the new process o
displacements!.

We can also consider ann-dimensional situation, whenBW (t) is anRn-valued Cauchy process
and the Langevin equation~1! is replaced by the following one:

duW ~ t !52AuW ~ t !dt1dBW ~ t !, ~32!

whereA now denotes ann3n matrix with real coefficients. The existence of the solution for~32!
in a general setting ofH-valued processes,H being a real and separable Hilbert space, w
established in Ref. 19.
~ii ! Sample paths of the processx(t) are alsocadlag.
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C. Interpreting u „t … as a velocity variable for x „t …: Limitations

Finally, we shall discuss the relation between the process of velocitiesu(t) and the process o
displacementsx(t). In the Ornstein–Uhlenbeck case the processuOU(t) is continuous in the mean
square, that is

lim
h→0

E@ uuOU~ t1h!2uOU~ t !u2#50.

This follows from the continuity of its covariance function

~ t1 , t2!→E@uOU~ t1!uOU~ t2!#5s2e2lut12t2u.

Therefore,xOU(t) exists as a limit in mean square of the corresponding Riemann s
Moreover, since sample paths ofuOU(t) are continuous, the integral exists also almost surely
they both coincide. HencexOU(t) is not only mean square differentiable but is also differentia
in the sense of conventional mathematical analysis and its derivative isuOU(t).

For the Cauchy processB(t) the situation is different. Because the moments ofx(t) do not
exist, x(t) is not even continuous in mean square. Moreover, since its sample paths a
continuous, they have no derivatives either.

However,x(t) hasa velocity fieldu(t) in a probabilistic sense.
Indeed, becauseu(t) is stochastically continuous, forh→0 there holds

x~ t1h!2x~ t !

h
5

1

h Et

t1h

u~t!dt→u~ t !

in probability, compare, e.g., Eq.~17!.
This demonstrates that our naming~a priori! of u(t) the velocity random variable can still b

maintained to a certain extent once we pass to the induced spatial variable and try to rec
built-in information about the velocity process. This feature is slightly amusing and some
counterintuitive, since both the Cauchy noise-supported velocity process and the induced p
of spatial displacements are discontinuous with probability 1. Anyway, the notion of veloci
the standard Ornstein–Uhlenbeck process has its own limitations as well: Its nondifferenti
and thus the nonexistence of accelerations is not resolved but merely bypassed by invok
white-noise calculus.
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The frequency expansion formula for the one-dimensional Fokker–Planck equation
derived in a previous paper is generalized to an expansion formula for arbitrary
powers of the Green’s function. Based on this expansion, the small-frequency be-
havior of the Green’s function is studied for the cases where the potentialV(x)
tends to infinity at bothx→1` and x→2`. © 2000 American Institute of
Physics.@S0022-2488~00!03210-2#

I. INTRODUCTION

The one-variable Fokker–Planck equation describing the diffusion process in an ex
potentialV(x) has the form

]

]t
P~x;t !5

]2

]x2 P~x;t !1
]

]x FdV~x!

dx
P~x;t !G . ~1.1!

We define the Green’s functionG(x,x8;t) as the solution of~1.1! with the initial condition
G(x,x8;t50)5d(x2x8). We consider its Fourier transform,

G~x,x8;v![E
0

`

eivtG~x,x8;t !dt, ~1.2!

wherev is the frequency. The long-time behavior of the Green’s function can be known from
small-v behavior ofG(x,x8;v). Let k denote the square root ofiv:

k2[ iv, Im k>0. ~1.3!

It proves convenient to defineg(x,x8;k) by

G~x,x8;v![
i

2k
e2V(x)g~x,x8;k!. ~1.4!

In this paper, we shall study the small-k behavior ofg(x,x8;k).
The Fokker–Planck equation~1.1! is equivalent to the Schro¨dinger equation,

i
]

]t
c52

]2

]x2 c1VS~x!c, ~1.5!

where

VS~x!5
1

4 S dV~x!

dx D 2

2
1

2

d2V~x!

dx2 . ~1.6!

a!Electronic mail: toru.miyazawa@gakushuin.ac.jp
68610022-2488/2000/41(10)/6861/18/$17.00 © 2000 American Institute of Physics
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Therefore, the Green’s function of Eq.~1.1! plays an important role not only in nonequilibrium
problems but also in quantum mechanics. The small-k expansion ofg(x,x8;k) gives a low-energy
expansion of the Green’s function in quantum-mechanical problems.

We assume thatV(x) either tends to a finite value sufficiently rapidly or goes to infin
sufficiently rapidly atx→6`. Specifically, we assume thatV(x) satisfies one of the following
three conditions:

V~`!5finite, U E
a

`

xm@V~x!2V~`!#dxU,`, ~1.7a!

V~`!51`, U E
a

`

xme2V(x)dxU,`, ~1.7b!

V~`!52`, U E
a

`

xmeV(x)dxU,`, ~1.7c!

for any positive integerm and finitea. ~See Appendix B for details.! Similarly, for the behavior
at x→2`, it is assumed that one of the following three conditions hold:

V~2`!5finite, U E
2`

a

xm @V~x!2V~2`!#dxU,`, ~1.8a!

V~2`!51`, U E
2`

a

xme2V(x)dxU,`, ~1.8b!

V~2`!52`, U E
2`

a

xmeV(x)dxU,`. ~1.8c!

Considering both~1.7! and ~1.8!, there are nine cases in all, as listed in Table I.
At small v ~or smallk!, the Green’s function behaves differently according to the behavio

V(x) at x→6`. For the nine cases of Table I, it can be shown thatg(x,x8;k) behaves as

g5p01 ikp11~ ik!2p21¯ , cases~i!,~ii !, and ~ ii 8!, ~1.9a!

g5 ikp11~ ik!2p21~ ik!3p31¯ , cases~iii ! and ~ iii 8!, ~1.9b!

g5
1

ik
p211 ikp11~ ik!3p31¯ , case~iv!, ~1.9c!

g5 ikp11~ ik!3p31~ ik!5p51¯ , cases~v!, ~v8! and ~vi!, ~1.9d!

wherepn are independent ofk. A method for calculating the coefficientspn of ~1.9! was discussed
in Ref. 1. In this method we deal with, instead ofV(x), the truncated potential,

TABLE I. The nine cases for the behavior of the potentialV(x) at infinity.

V(1`)5finite V(1`)51` V(1`)52`

V(2`)5finite ~i! ~ii ! ~iii !
V(2`)51` (ii 8) ~iv! ~v!
V(2`)52` (iii 8) (v8) ~vi!
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V̄~x![H W, x.z,

V~x!, z>x>z8,

W8, z8.x,

~1.10!

with new parametersz, z8, W, andW8. Let Ḡ(x,x8;z,z8;W,W8) denote the Green’s function o
Eq. ~1.1! with V(x) replaced byV̄(x). The original Green’s functionG is obtained by taking the
limit of Ḡ:

G~x,x8;v!5 lim
z→1`
z8→2`

lim
W→V(1`)
W8→V(2`)

Ḡ~x,x8;z,z8;W,W8;v!. ~1.11!

Corresponding to~1.4!, we defineḡ by

Ḡ~x,x8;z,z8;W,W8;v![
i

2k
e2V(x)ḡ~x,x8;z,z8;W,W8;k!. ~1.12!

From ~1.11! we have

g~x,x8!5 lim
z→1`
z8→2`

lim
W→V(1`)
W8→V(2`)

ḡ~x,x8;z,z8;W,W8!. ~1.13!

~Here and hereafter we omit the argumentk in g and ḡ.! The functionḡ can be expressed as
power series in terms ofk as

ḡ5 p̄01 ik p̄11~ ik!2p̄21~ ik!3p̄31¯ , ~1.14!

and the coefficientsp̄n can be obtained as functionals of the potentialV(x). The explicit expres-
sion of p̄n , which was derived in Ref. 1, will be reviewed in the next section.

For cases~i!, ~ii !, ~ii 8!, ~iii !, ~iii 8!, ~v!, and~v8!, we may obtain the power series expansion
g by taking the limit of~1.14! term by term. This gives~1.9a!, ~1.9b!, or ~1.9d!, with

pn5 lim
z→1`
z8→2`

lim
W→V(1`)
W8→V(2`)

p̄n . ~1.15!

@In general, the two limits in~1.15! cannot be exchanged; we must first letW→V(1`), W8
→V(2`), and thenz→1`, z8→2`. See also Appendix B.# In cases~iii ! and ~iii 8!, the
zeroth-order coefficientp0 vanishes identically. In cases~v! and ~v8!, Eq. ~1.15! givespn50 for
all even numbersn.

However, this method is not directly applicable to cases~iv! and~vi!. In these two cases, w
cannot obtain the expansion ofg by simply taking the limit of~1.14!. In case~iv!, the expansion
of g actually has the form~1.9c!, which, unlike~1.14!, begins with the 1/k term. So it is obvious
that pn in ~1.9c! cannot be obtained by~1.15!. Indeed, p̄0 becomes infinite when we le
W→1` andW8→1`.

In case~vi!, the coefficientp̄0 vanishes in the limitW→2` andW8→2`. This is consistent
with the actual behavior ofg, which is given by~1.9d!. However, in this limitp̄1 does not have
a definite value, andp̄2 becomes infinite. In this case, unlike in cases~v! and~v8!, the expression
~1.9d! cannot be obtained as a limit of~1.14!.

This paper is a sequel to Ref. 1.~The relevant result of Ref. 1 is summarized in the ne
section, so that this paper is readable on its own.! Here we generalize~1.14! to an expansion
formula for arbitrary powers ofḡ; namely,

ḡn5 p̄0
(n)1 ik p̄1

(n)1~ ik!2p̄2
(n)1~ ik!3p̄3

(n)1¯ , ~1.16!
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wheren is an arbitrary number. We shall derive a simple expression of the coefficientsp̄n
(n) for any

ordern. As it turns out, this generalized expansion formula enables us to deal with cases~iv! and
~vi!. Using ~1.16! we shall study the small-k behavior of the Green’s function in these cases, a
calculate the expansion coefficientspn of ~1.9c! and ~1.9d!.

II. k-EXPANSION OF ḡ

In this section, we review the expansion formula derived in Ref. 1. First we need to
some definitions. We write

@s1 ,s2 ,...,sn#x1

x2[E ¯E
x1<y1<y2<¯<yn<x2

dy1¯dyn expF(
i 51

n

siV~yi !G , ~2.1!

where thesi are either11 or 21. We define the differential operators

Ĵ1
(n)[eWS n

2
1

]

]WD , Ĵ2
(n)[e2WS n

2
2

]

]WD , ~2.2!

wheren is an arbitrary parameter. These operators act on functions ofW. We also define similar
operators that act on functions ofW8 from the right:

ĴQ 18
(n)[S n

2
1

]Q

]W8
D eW8, ĴQ 28

(n)[S n

2
2

]Q

]W8
D e2W8. ~2.3!

Here]Q /]W8 denotes leftward differentiation; that is to say,h(W8) (]Q /]W8) 5 (]/]W8) h(W8) for
any h(W8). Using ~2.1!, ~2.2!, and~2.3!, we define the ‘‘evolution operators’’ as

U (n)~x2 ,x1!5 (
n50

`

~ ik!n (
$si561%

@s1 ,...,sn#x1

x2 Ĵ2sn

(n)
¯ Ĵ2s1

(n) , ~2.4a!

UQ 8(n)~x2 ,x1!5 (
n50

`

~ ik!n (
$si561%

@s1 ,...,sn#x1

x2 ĴQ 2sn
8 (n)

¯ ĴQ 2s1
8 (n) , ~2.4b!

whereĴ2si

(n) and ĴQ 2si
8 (n) stand forĴ7

(n) and ĴQ 78
(n) for si561. In each of Eqs.~2.4!, the term of order

n50 is the identity operator.@In such expressions as~2.4!, the quantity@s1 ,...,sn#x1

x2 for n50

should be interpreted as unity. Similarly,Ĵ2sn

(n)
¯ Ĵ2s1

(n) ~or ĴQ 2sn
8 (n)

¯ ĴQ 2s1
8 (n)! for n50 should be taken

as the identity operator. There is no sum over$si% whenn50.#
It was shown in Ref. 1 that the functionḡ defined by~1.12! can be expressed as

ḡ~x,x8;z,z8;W,W8!5U (0)~z,x!eW/2U (1)~x,x8!
1

cosh@~W2W8!/2#
eW8/2 UQ 8(0)~x8,z8!

5U (0)~z,x!eW/2
1

cosh@~W2W8!/2#
UQ 8(1)~x,x8!eW8/2 UQ 8(0)~x8,z8!.

~2.5!

Here the operatorU (0)(z,x) acts not only oneW/2 but on everything up to 1/cosh@(W2W8)/2#. The
same is true forUQ 8 (0)(x8,z8). Substituting~2.4! into ~2.5!, we obtain2
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ḡ5 (
n1 ,n2 ,n350

`

(
$ai ,bi ,ci561%

~ ik!n11n21n3C(1)~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

3@a1 ,...,an1
#z8

x8@b1 ,...,bn2
#x8

x
@c1 ,...,cn3

#x
z , ~2.6!

where3

C(1)~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

[ Ĵ2cn3

(0)
¯ Ĵ2c1

(0) eW/2Ĵ2bn2

(1)
¯ Ĵ2b1

(1) 1

cosh@~W2W8!/2#
eW8/2 ĴQ 2an1

8(0)
¯ ĴQ 2a1

8(0)

5 Ĵ2cn3

(0)
¯ Ĵ2c1

(0) eW/2
1

cosh@~W2W8!/2#
ĴQ 2bn2

8 (1)
¯ ĴQ 2b1

8 (1)eW8/2 ĴQ 2an1

8 (0)
¯ ĴQ 2a1

8 (0) . ~2.7!

The coefficientsp̄n in Eq. ~1.14! are given by

p̄n5 (
n11n21n35n

(
$ai ,bi ,ci561%

C(1)~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

3@a1 ,...,an1
#z8

x8 @b1 ,...,bn2
#x8

x
@c1 ,...,cn3

#x
z . ~2.8!

III. GENERALIZATION OF THE EXPANSION FORMULA

Here we show that Eq.~2.5! can be generalized as

@ ḡ~x,x8;z,z8;W,W8!#n5U (0)~z,x!enW/2U (n)~x,x8! S 1

cosh@~W2W8!/2# D
n

enW8/2 UQ 8(0)~x8,z8!

5U (0)~z,x!enW/2S 1

cosh@~W2W8!/2# D
n

UQ 8(n)~x,x8!enW8/2 UQ 8(0)~x8,z8!,

~3.1!

wheren is an arbitrary number. Substituting~2.4! into ~3.1! yields

ḡn5 (
n1 ,n2 ,n350

`

(
$ai ,bi ,ci561%

~ ik!n11n21n3 C(n)~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

3@a1 ,...,an1
#z8

x8 @b1 ,...,bn2
#x8

x
@c1 ,...,cn3

#x
z , ~3.2!

where

C(n)~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

[ Ĵ2cn3

(0)
¯ Ĵ2c1

(0) enW/2 Ĵ2bn2

(n)
¯ Ĵ2b1

(n) S 1

cosh@~W2W8!/2# D
n

enW8/2 ĴQ 2an1

8 (0)
¯ ĴQ 2a1

8 (0)

5 Ĵ2cn3

(0)
¯ Ĵ2c1

(0) enW/2S 1

cosh@~W2W8!/2# D
n

ĴQ 2bn2

8(n)
¯ ĴQ 2b1

8 (n)enW8/2 ĴQ 2an1

8(0)
¯ ĴQ 2a1

8 (0) . ~3.3!

The expansion coefficientsp̄n
(n) in ~1.16! are obtained as
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p̄n
(n)5 (

n11n21n35n
(

$ai ,bi ,ci561%
C(n)~a1 ,...,an1

;b1 ,...,bn2
;c1 ,...,cn3

!

3@a1 ,...,an1
#z8

x8@b1 ,...,bn2
#x8

x
@c1 ,...,cn3

#x
z . ~3.4!

Now let us prove~3.1!. We define

t̄~x,x8;W,W8![U (1)~x,x8!
1

cosh@~W2W8!/2#
5

1

cosh@~W2W8!/2#
UQ 8(1)~x,x8!. ~3.5!

@The proof of the last equation of~3.5! is given in Ref. 1.# From ~2.5! and ~3.5! we have

ḡ~x,x8;z,z8;W,W8!5U (0)~z,x!eW/2t̄~x,x8;W,W8!eW8/2UQ 8(0)~x8,z8!. ~3.6!

We can derive from~2.4! and ~2.1! the differential equations

]

]x2
U (n)~x2 ,x1!5 ik~e2V(x2)Ĵ1

(n)1eV(x2)Ĵ2
(n)!U (n)~x2 ,x1!

5 ikFe2V(x2)1WS n

2
1

]

]WD1eV(x2)2WS n

2
2

]

]WD GU (n)~x2 ,x1!, ~3.7a!

]

]x1
UQ 8(n)~x2 ,x1!5 ikUQ 8(n)~x2 ,x1!~e2V(x1)ĴQ 18

(n)1eV(x1)ĴQ 28
(n)!

5 ikUQ 8(n)~x2 ,x1!F S n

2
1

]Q

]W8
D e2V(x1)1W81S n

2
2

]Q

]W8
D eV(x1)2W8G .

~3.7b!

The initial conditions for Eqs.~3.7! are

U (n)~x25x1!51, UQ 8(n)~x25x1!51, ~3.8!

where the ‘‘1’’ on the right hand sides stands for the identity operator. From~3.5! it is obvious that
t̄ satisfies the same differential equations asU (1) andUQ 8(1):

]

]x
t̄~x,x8;W,W8!5 ikFe2V(x)1WS 1

2
1

]

]WD1eV(x)2WS 1

2
2

]

]WD G t̄~x,x8;W,W8!, ~3.9a!

]

]x8
t̄~x,x8;W,W8!5 ikt̄~x,x8;W,W8!F S 1

2
1

]Q

]W8
D e2V(x8)1W81S 1

2
2

]Q

]W8
D eV(x8)2W8G .

~3.9b!

From ~3.9! it follows that, for arbitraryn,

]

]x
t̄n5 ikFe2V(x)1WS n

2
1

]

]WD1eV(x)2WS n

2
2

]

]WD G t̄n, ~3.10a!

]

]x8
t̄n5 ikt̄nF S n

2
1

]Q

]W8
D e2V(x8)1W81S n

2
2

]Q

]W8
D eV(x8)2W8G . ~3.10b!

These are the same equations as~3.7!, which are satisfied byU (n) andUQ 8 (n). From~3.5! and~3.8!
we have
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t̄~x5x8!5
1

cosh@~W2W8!/2#
, @ t̄~x5x8!#n5S 1

cosh@~W2W8!/2# D
n

. ~3.11!

The solution of~3.10! with the initial condition~3.11! can be expressed as

@ t̄~x,x8;W,W8!#n5U (n)~x,x8!S 1

cosh@~W2W8!/2# D
n

5S 1

cosh@~W2W8!/2# D
n

UQ 8(n)~x,x8!.

~3.12!

Similarly, from ~3.6! and ~3.7! we can see thatḡ(x,x8;z,z8;W,W8) satisfies

]

]z
ḡ5 ikFe2V(z)1W

]

]W
2eV(z)2W

]

]WG ḡ, ~3.13a!

]

]z8
ḡ5 ikḡF ]Q

]W8
e2V(z8)1W82

]Q

]W8
eV(z8)2W8G . ~3.13b!

From ~3.13! it follows that ḡn with arbitraryn also satisfies the same equations:

]

]z
ḡn5 ikFe2V(x)1W

]

]W
2eV(x)2W

]

]WG ḡn, ~3.14a!

]

]z8
ḡn5 ikḡnF ]Q

]W
e2V(x)1W82

]Q

]W
eV(x)2W8G . ~3.14b!

From ~3.6! and ~3.8! we find

ḡ~z5x,z85x8!5eW/2t̄~x,x8!eW8/2, ~3.15!

and hence

@ ḡ~z5x,z85x8!#n5enW/2@ t̄~x,x8!#nenW8/2. ~3.16!

The functionḡn is uniquely determined as the solution of Eqs.~3.14! with the initial condition
~3.16!. Equations~3.14! mean that@ ḡ(x,x8;z,z8;W,W8)#n, as a function ofz andz8, satisfies the
same differential equations asU (0)(z,x) andUQ 8(0)(x8,z8). Taking account of the initial condition
~3.16!, we may conclude that

@ ḡ~x,x8;z,z8;W,W8!#n5U (0)~z,x!enW/2@ t̄~x,x8;W,W8!#nenW8/2UQ 8(0)~x8,z8!. ~3.17!

Indeed, it is obvious that~3.17! satisfies both~3.14! and~3.16!. Substituting~3.12! into ~3.17!, we
obtain ~3.1!.

IV. SMALL- k BEHAVIOR OF THE GREEN’S FUNCTION IN CASE „IV…

Settingn521 in ~3.2! gives the expansion of the reciprocal of the Green’s function. We h

1/ḡ5 p̄0
(21)1 ik p̄1

(21)1~ ik!2p̄2
(21)1~ ik!3p̄3

(21)1¯ , ~4.1!

where
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p̄n
(21)5 (

n11n21n35n
(

$ai ,bi ,ci561%
C(21)~a1 ,...,an1

;b1 ,...,bn2
;c1 ,...,cn3

!

3@a1 ,...,an1
#z8

x8@b1 ,...,bn2
#x8

x
@c1 ,...,cn3

#x
z , ~4.2!

C(21)~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

5 1
2Ĵ2cn3

(0)
¯ Ĵ2c1

(0) e2W/2Ĵ2bn2

(21)
¯ Ĵ2b1

(21)~eW/2e2W81e2W/2!ĴQ 2an1

8 (0)
¯ ĴQ 2a1

8 (0)

5 1
2Ĵ2cn3

(0)
¯ Ĵ2c1

(0) ~e2WeW8/21e2W8/2! ĴQ 2bn2

8 (21)
¯ ĴQ 2b1

8 (21)e2W8/2ĴQ 2an1

8 (0)
¯ ĴQ 2a1

8 (0) . ~4.3!

As shown in Appendix C, we can calculate~4.3! as

C(21)~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

55
e2(11Sci )WA1~$ci%!/2, case~A!,

e2(11Sai )W8A2~$ai%!/2, case ~B!,

21/2, case~C!,

2e2(11Sci )W2(11Sai )W8A1~$ci%!A2~$ai%!/2, case ~D!,

~e2W1e2W8!/2, case ~E!,

0, otherwise,

~4.4!

with

A1~$ci%![S )
i 51

n3

ci D )
i 51

n321 S 11(
j 51

i

cj D , A2~$ai%![S )
i 51

n1

ai D )
i 51

n121 S 11 (
j 5 i 11

n1

aj D , ~4.5!

where the cases~A!–~E! stand for

case ~A!: n2 even, bj5~21! j , n150,

case ~B!: n2 even, bj5~21! j 11, n350,

case ~C!: n2 odd, bj5~21! j , n15n350,

case ~D!: n2 odd, bj5~21! j 11,

case ~E!: n15n25n350.

In ~4.4!, the sums(ci and(ai stand for( i 51
n3 ci and( i 51

n1 ai , respectively.
Let us write out explicitly the first few terms of the expansion. We use the shorthand no

@a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
#[@a1 ,...,an1

#z8
x8@b1 ,...,bn2

#x8
x

@c1 ,...,cn3
#x

z . ~4.6!

For n150 we write

@ ;b1 ,...,bn2
;c1 ,...,cn3

#[@b1 ,...,bn2
#x8

x
@c1 ,...,cn3

#x
z , ~4.7!

and similarly forn250 or n350. We also write ‘‘1 ’’ or ‘‘ 2 ’’ in place of ‘‘ 11’’ or ‘‘ 21’’ for
simplicity. For example,@ ;1;12# stands for@1#x8

x
@12#x

z5@11#x8
x

@11,21#x
z . Then ~4.2!

reads as
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2p̄0
(21)5e2W1e2W8, ~4.8a!

2p̄1
(21)52@2;;#2@ ;2;#2@ ;;2#1e22W8@1;;#1e2W2W8@ ;1;#1e22W@ ;;1#, ~4.8b!

2p̄2
(21)5e2W8~@ ;12;#1@ ;1;2#22@12;;# !1e2W~@ ;21;#1@2;1;#22@ ;;12# !

12e23W8@11;;#2e2W22W8@1;1;#2e22W2W8@ ;1;1#12e23W@ ;;11#,

~4.8c!

2p̄3
(21)52@2;12;#2@2;1;2#2@ ;212;#2@ ;21;2#12@221;;#12@ ;;122#

1e22W8~@1;12;#1@1;1;2#22@121;;#26@211;;# !12e2W2W8~@21;1;#

1@ ;1;12# !1e22W~@ ;21;1#1@2;1;1#22@ ;;121#26@ ;;112# !

16e24W8@111;;#22e2W23W8@11;1;#2e22W22W8@1;1;1#

22e23W2W8@ ;1;11#16e24W@ ;;111#. ~4.8d!

Now let us consider a potential belonging to case~iv!. To obtaing from ḡ, it is necessary to
take the limitW→1` andW8→1`. For this purpose, we can make use of the expansion~4.1!.
From ~4.5! it is obvious thatA1($ci%) vanishes if 11( j 51

n321cj<0. So we have 11( j 51
n3 cj>0

when A1($ci%)Þ0, and, similarly, 11( i 51
n1 aj>0 whenA2($ai%)Þ0. Therefore, as can be see

from ~4.4!, the quantityC(21) remains finite when we letW→1` andW8→1`, and so we can
safely take this limit in~4.1!. Letting W,W8→1`, z→1`, andz8→2` in ~4.1!, we obtain

1/g5 ikq11~ ik!3q31~ ik!5q51¯ , ~4.9!

where

qn[ lim
z→1`
z8→2`

lim
W→`
W8→`

p̄n
(21) . ~4.10!

It is easy to see thatC(21) vanishes in the limitW,W8→1` when n11n21n3 is an even
number, so thatqn50 for all even numbersn. From ~4.4! we have

qn5 (
n11n21n35n

(
$ai ,bi ,ci561%

A~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

3@a1 ,...,an1
#2`

x8 @b1 ,...,bn2
#x8

x
@c1 ,...,cn3

#x
` , ~4.11!

with

A~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
![5

A1~$ci%!/2, case~A8!,

A2~$ai%!/2, case~B8!,

21/2, case~C8!,

2A1~$ci%!A2~$ai%!/2, case~D8!,

0, otherwise,

~4.12!

where the four cases are

case ~A8!: n2 even, bj5~21! j , n150, ( i 51
n3 ci521,
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case ~B8!: n2 even, bj5~21! j 11, n350, ( i 51
n1 ai521,

case ~C8!: n2 odd, bj5~21! j , n15n350,

case ~D8!: n2 odd, bj5~21! j 11, ( i 51
n3 ci5( i 51

n1 ai521.

Now $ci% and$ai% are restricted by the conditions( i 51
n3 ci521 and( i 51

n1 ai521, unlessn350 or
n150. So we can rewrite~4.5! as

A1~$ci%!5S )
i 51

n3

ci D )
i 51

n321 S (
j 5 i 11

n3

cj D S (
i 51

n3

ci521D , ~4.13a!

A2~$ai%!5S )
i 51

n1

ai D )
i 51

n121 S (
j 51

i

aj D S (
i 51

n1

ai521D . ~4.13b!

Explicitly, ~4.11! reads as

q152 1
2 ~@2#2`

x8 1@2#x8
x

1@2#x
`!52 1

2 @2#2`
` , ~4.14a!

q352 1
2 ~@212#x8

x
1@2#2`

x8 @12#x8
x

1@21#x8
x

@2#x
`

1@2#2`
x8 @1#x8

x
@2#x

`!1@221#2`
x8 1@122#x

` , ~4.14b!

and so on.
The right hand sides of Eqs.~4.13! vanish, respectively, unless

(
j 5 i 11

n3

cj,0, for any 0< i ,n3 , ~4.15a!

(
j 51

i

aj,0, for any 0, i<n1 . ~4.15b!

As shown in Appendix B, the integrals@c1 ,...,cn3
#x

` are convergent for$ci% satisfying~4.15a!, if

the potential satisfies the condition~1.7b!. Similarly, the integrals@a1 ,...,an1
#2`

x8 are convergent if
~4.15b! and~1.8b! are satisfied. Therefore, all the coefficientsqn given by~4.11! are finite as long
as the potential satisfies~1.7b! and~1.8b!. From~4.9! we can obtain the small-k expansion ofg as

g5
1

ik
p211 ikp11~ ik!3p31~ ik!5p51¯ , ~4.16!

where

p215
1

q1
, p152

q3

q1
2 , p35

2q1q51q3
2

q1
3 , etc. ~4.17!

V. CASE „VI…

Next let us consider case~vi!. Now we need to letW→2` andW8→2` in order to obtain
g from ḡ. However, it is impossible to take this limit in~4.1!, or even~1.16! with any value ofn.
We must resort to a more indirect method to deal with this case.

Let ḡ8 be the quantity obtained fromḡ by replacing the potentialV by 2V. In other words,
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ḡ8~x,x8;z,z8;W,W8!5 (
n1 ,n2 ,n350

`

(
$ai ,bi ,ci561%

~ ik!n11n21n3

3C(1)~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

3@2a1 ,...,2an1
#z8

x8@2b1 ,...,2bn2
#x8

x
@2c1 ,...,2cn3

#x
z ~5.1!

@see Eq.~2.6!#, with the coefficientsC(1) given by ~2.7!. From ~2.4!, ~2.2!, and~2.3! we can see
that the operatorsU (n) andUQ 8(n) are invariant under the replacement

V~x!→2V~x!, W→2W, W8→2W8. ~5.2!

From ~3.5! it is obvious thatt̄(x,x8;z,z8;W,W8) is also invariant under~5.2!. Therefore, applying
the replacement~5.2! to ~3.6! yields

ḡ8~x,x8;z,z8;2W,2W8!5U (0)~z,x!e2W/2t̄~x,x8;W,W8!e2W8/2UQ 8(0)~x8,z8!. ~5.3!

Let us define4

r̂ l
1~x2 ,x1 ;W![U (0)~x2 ,x1!eW, r̂ r

2~x2 ,x1 ;W8![eW8UQ 8(0)~x2 ,x1!, ~5.4!

and

R̂l
1~x2 ,x1![r̂ l

1~x2 ,x1 ;2`!, R̂r
2~x2 ,x1![r̂ r

2~x2 ,x1 ;2`!. ~5.5!

Then we have, for arbitraryn,

U (0)~x2 ,x1! enW5@ r̂ l
1~x2 ,x1 ;W!#n, enW8UQ 8(0)~x2 ,x1!5@ r̂ r

2~x2 ,x1 ;W8!#n, ~5.6!

which can be proved in the same way as we did for~3.12!. From ~5.6! it follows that

U (0)~x2 ,x1!@eWh~W!#5 r̂ l
1~x2 ,x1 ;W!U (0)~x2 ,x1!h~W!, ~5.7a!

@h~W8!eW8#UQ 8(0)~x2 ,x1!5h~W8!UQ 8(0)~x2 ,x1!r̂ r
2~x2 ,x1 ;W8!, ~5.7b!

whereh is an arbitrary function.@These relations can be derived by expandingh(W) in powers of
eW, and using~5.6!.# Substituting~2.4! into ~5.4!, we may explicitly write

r̂ l
1~x2 ,x1 ;W!5 (

n50

`

~ ik!n (
$si561%

@s1 ,...,sn#x1

x2~ Ĵ2sn

(0)
¯ Ĵ2s1

(0) eW!, ~5.8a!

r̂ r
2~x2 ,x1 ;W8!5 (

n50

`

~ ik!n (
$si561%

@s1 ,...,sn#x1

x2 ~eW8ĴQ 2sn
8(0)

¯ ĴQ 2s1
8(0)!. ~5.8b!

As shown in Appendix A, we have

Ĵ2sn

(0)
¯ Ĵ2s1

(0) eW52S )
i 51

n

si D F )
i 51

n21 S 211(
j 51

i

sj D GexpF S 12(
i 51

n

si DWG , ~5.9a!

eW8ĴQ 2sn
8(0)

¯ ĴQ 2s1
8(0)52S )

i 51

n

si D F )
i 51

n21 S 211 (
j 5 i 11

n

sj D GexpF S 12(
i 51

n

si DW8G . ~5.9b!
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From ~5.9! we can see that settingW52` in r̂ l
1 is equivalent to imposing the restrictio

( i 51
n si51 on the second sum in~5.8a!. Similarly, R̂r

2 is obtained from~5.8b! with the same
restriction. Therefore,

R̂l
1~x2 ,x1!5 (

n50

`

~ ik!n (
$si561%
Ssi51

@s1 ,...,sn#x1

x2~ Ĵ2sn

(0)
¯ Ĵ2s1

(0) eW!, ~5.10a!

R̂r
2~x2 ,x1!5 (

n50

`

~ ik!n (
$si561%
Ssi51

@s1 ,...,sn#x1

x2~eW8ĴQ 2sn
8(0)

¯ ĴQ 2s1
8(0)!. ~5.10b!

In order to satisfy the condition( i 51
n si51, the numbern must be odd. So the first sum in Eq

~5.10! is in effect the sum over odd numbersn.
Using ~5.7!, we can rewrite~3.6! as

ḡ~x,x8;z,z8;W,W8!5U (0)~z,x!eWe2W/2t̄~x,x8;W,W8!e2W8/2eW8UQ 8(0)~x8,z8!

5 r̂ l
1~z,x;W!U (0)~z,x!e2W/2t̄~x,x8;W,W8!e2W8/2UQ 8(0)~x8,z8!r̂ r

2~x8,z8;W8!,

~5.11!

and from~5.3! we have

ḡ~x,x8;z,z8;W,W8!5 r̂ l
1~z,x;W!ḡ8~x,x8;z,z8;2W,2W8!r̂ r

2~x8,z8;W8!. ~5.12!

Letting W,W8→2` andz→1`, z8→2` in ~5.12!, we obtain

g~x,x8!5R̂l
1~`,x!g8~x,x8!R̂r

2~x8,2`!, ~5.13!

where

g8~x,x8![ḡ8~x,x8;1`,2`;1`,1`!. ~5.14!

SinceV(x) belongs to case~vi!, the inverted potential2V(x) belongs to case~iv!. Therefore, the
expansion ofg8(x,x8) is obtained from the result of the previous section by replacingV with 2V.
Namely, from~4.16!, ~4.17!, and~4.11! we have

g8~x,x8!5
1

ik
p218 1 ikp181~ ik!3p381~ ik!5p581¯ , ~5.15!

with

p218 5
1

q18
, p1852

q38

q81
2 , p385

2q18q581q83
2

q81
3 , etc., ~5.16!

qn85 (
n11n21n35n

(
$ai ,bi ,ci561%

A~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

3@2a1 ,...,2an1
#2`

x8 @2b1 ,...,2bn2
#x8

x
@2c1 ,...,2cn3

#x
` , ~5.17!

whereA is given by~4.12!. The quantitiesR̂l
1 and R̂r

2 are expanded as

R̂l
1~`,x!5 ik l 11~ ik!3l 31~ ik!5l 51¯ , ~5.18a!
                                                                                                                



6873J. Math. Phys., Vol. 41, No. 10, October 2000 Low-energy expansion formula for Fokker–Planck eq.

                    
R̂r
2~x8,2`!5 ikr 11~ ik!3r 31~ ik!5r 51¯ , ~5.18b!

where, as can be seen from~5.10! and ~5.9!,

l n52 (
$si561%
Ssi51

@s1 ,...,sn#x
`S )

i 51

n

si D )
i 51

n21 S (
j 5 i 11

n

sj D , ~5.19a!

r n52 (
$si561%
Ssi51

@s1 ,...,sn#2`
x8 S )

i 51

n

si D )
i 51

n21 S (
j 51

i

sj D . ~5.19b!

From ~5.13!, ~5.15!, and~5.18! we obtain the small-k expansion ofg as

g5 ikp11~ ik!3p31~ ik!5p51¯ , ~5.20!

where

pn5 (
n11n21n35n

l n1
pn2
8 r n3

. ~5.21!

The sum in~5.21! is over n151,3,5,..., n351,3,5,..., andn2521,1,3,..., with the restriction
n11n21n35n. All the coefficientspn8 , l n , andr n are finite as long as the potentialV(x) satisfies
~1.7c! and ~1.8c!. ~See the discussion in Appendix B.! Hence it is obvious that Eq.~5.21! gives
finite pn .

VI. REMARKS

In cases~iv! and ~vi!, we know from the standard eigenfunction expansion method5 that
G(x,x8;t) can be expressed as

G~x,x8;t !5eV(x8)(
m

fm~x!fm~x8!e2lmt, ~6.1!

where lm are the eigenvalues of the Fokker–Planck operator, andfm are the corresponding
eigenfunctions normalized as*2`

` eV(x)@fm(x)#2 dx51. In case~iv! the sum in~6.1! begins with
m50, where

l050, f0~x!5
1

AN
e2V(x) S N[E

2`

`

e2V(x)dxD . ~6.2!

All other lm (m51,2,3,...) arepositive real numbers. From~6.1! we have

g~x,x8;k!5
22

Nik
22ikeV(x)1V(x8) (

m51

`
fm~x!fm~x8!

lm1~ ik!2 . ~6.3!

Hence the coefficientspn in ~1.9c! can be written as

p2152
2

N
, p2 j 1152eV(x)1V(x8) (

m51

` S 21

lm
D j 11

fm~x!fm~x8! ~ j >0!. ~6.4!
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We can readily see that the lowest order coefficientp21 given by ~4.17! and ~4.14a! is indeed
equal to22/N. By comparing~6.4! with ~4.17! for the higher order coefficients, we can gain
information about the eigenvalues and eigenfunctions. The eigenvalues correspond to the p
g(k), and so they are obtained as the zeros of~4.9!.

In case~vi! the sum in~6.1! begins withm51, and all the eigenvalues are positive. Therefo
the first term on the right hand side of~6.3! does not appear in this case. This agrees with
expression~5.20!. It is well known that the Fokker–Planck operator with the inverted poten
2V(x) is related to the original Fokker–Planck operator by a supersymmetry transforma6

The eigenvaluesl1 ,l2 ,l3 ,..., for apotentialV(x) in case~vi! are the same as the eigenvalues
the inverted potential2V(x), which belongs to case~iv!. We can see this from the relation~5.13!.
The eigenvalues for the inverted potential correspond to the poles ofg8(k). AlthoughR̂l

1(k) and
R̂r

2(k) themselves may have poles, these poles turn out to be the zeros ofg8(k). ~We omit the
proof here, but it is not difficult to show this.! Therefore,~5.13! implies that the poles ofg are the
same as those ofg8, except for the one atk50. @Since R̂l

1(k)R̂r
2(k) behaves ask2 near the

origin, the pole ofg8(k) at k50 does not correspond to a pole ofg~k!.#

APPENDIX A: FORMULAS FOR EXPLICIT CALCULATIONS

For n50, we can write~2.2! as

Ĵ2si

(0) 5~2si ! e2siW
]

]W
. ~A1!

So we have

Ĵ2sn

(0)
¯ Ĵ2s1

(0) e2mW5s1mĴ2sn

(0)
¯ Ĵ2s2

(0) e2(m1s1)W

5s1s2m~m1s1!Ĵ2sn

(0)
¯ Ĵ2s3

(0) e2(m1s11s2)W

5¯

5mS )
i 51

n

si D F )
i 51

n21 S m1(
j 51

i

sj D GexpF2S m1(
i 51

n

si DWG , ~A2a!

and, similarly,

e2mW8 ĴQ 2sn
8(0)

¯ ĴQ 2s1
8(0)5mS )

i 51

n

si D F )
i 51

n21 S m1 (
j 5 i 11

n

sj D GexpF2S m1(
i 51

n

si DW8G . ~A2b!

~When n51, the factor P i 51
n21(•••) should be understood as unity.! In particular, for m5

2( i 51
n si we have

Ĵ2sn

(0)
¯ Ĵ2s1

(0) e(Ssi )W5~21!nS (
i 51

n

si D S )
i 51

n

si D )
i 51

n21 S (
j 5 i 11

n

sj D , ~A3a!

e(Ssi )W8ĴQ 2sn
8(0)

¯ ĴQ 2s1
8(0)5~21!nS (

i 51

n

si D S )
i 51

n

si D )
i 51

n21 S (
j 51

i

sj D . ~A3b!

Note that the right hand side of~A2b! is obtained from that of~A2a! by the replacemen
$s1 ,s2 ,...,sn%→$sn ,sn21 ,...,s1%, with W→W8.
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APPENDIX B: CONDITIONS ON THE BEHAVIOR OF V„x … AT INIFNITY

The conditions~1.7! come from the requirement that the coefficientsp̄i @Eq. ~2.8!# remain
finite as W→V(1`) and z→1`, as we shall now show. Let us first consider the ca
V(1`)5finite. In this case, all the integrals@c1 ,...,cn3

#x
z that appear in~2.8! become infinite as

z→`. However, such infinities can be canceled between the terms withcn3
511 andcn3

521.
As shown in Ref. 1, the coefficientsC(1) have the property

C(1)~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn321 ,11!

52e22WC(1)~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn321 ,21!, ~B1a!

C(1)~11,a2 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

52e22W8C(1)~21,a2 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!, ~B1b!

for n3Þ0 andn1Þ0, respectively. Therefore, forn3Þ0, we can put together the two terms in E
~2.8! with cn3

511 andcn3
521 as

C(1)~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn321 ,11!@a1 ,...,an1
#z8

x8@b1 ,...,bn2
#x8

x
@c1 ,...,cn321 ,11#x

z

1C(1)~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn321 ,21!

3@a1 ,...,an1
#z8

x8@b1 ,...,bn2
#x8

x
@c1 ,...,cn321 ,21#x

z

5C(1)~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn321 ,21!

3@a1 ,...,an1
#z8

x8@b1 ,...,bn2
#x8

x e2W~eW@c1 ,...,cn321 ,21#x
z2e2W@c1 ,...,cn321 ,11#x

z!.

~B2!

The integrals concerning$ci% can be combined as

eW@c1 ,...,cn321 ,21#x
z2e2W@c1 ,...,cn321 ,11#x

z

52E ¯E
x<y1<¯<yn3

<z
expS (

i 51

n321

ciV~yi !D sinh@W2V~yn3
!#dy1¯dyn3

. ~B3!

Let h be the maximum value ofV(y) for x<y,`. Then we have the upper limit of~B3! as

eW@c1 ,...,cn321 ,21#x
z2e2W@c1 ,...,cn321 ,11#x

z

<2e(n321)hE ¯E
x<y1<¯<yn3

<z
sinh@W2V~yn3

!#dy1¯dyn3

52e(n321)h
1

~n321!! Ex

z

~yn3
2x!n321sinh@W2V~yn3

!#dyn3
. ~B4!

Since sinhx.x for small x, this integral remains finite asW→V(`) andz→` if

U E
a

`

yn321@V~`!2V~y!#dyU,`, ~B5!
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wherea is an arbitrary finite value. In each term on the right hand side of~2.8!, we haven3<n
sincen5n11n21n3 . So we can see that limz→`limW→V(`)p̄n (nÞ0) is finite if

U E
a

`

xn21@V~`!2V~x!#dxU,`. ~B6!

~It is obvious thatp̄0 is finite in this limit.! Therefore, all thep̄n are finite asW→V(`) and z
→` if ~1.7a! is satisfied for all positive integersm.

We next turn to the caseV(`)51`. We may rewrite the last expression of~2.7! as

C(1)~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!

5 Ĵ2cn3

(0)
¯ Ĵ2c1

(0) eW/2
1

cosh@~W2W8!/2#
¯

52Ĵ2cn3

(0)
¯ Ĵ2c1

(0) eW8/2F (
m50

`

~21!mem(W82W)G¯ , ~B7!

where the ‘‘̄ ’’ at the end of the expression stands for the operators acting onW8. Substituting
~A2! into ~B7!, we find thatC(1) vanishes in the limitW→1` if ( i 51

n3 ci>0. If ( i 51
n3 ci,0, only

the term withm52( i 51
n3 ci in ~B7! survives asW→1`:

C(1)~a1 ,...,an1
;b1 ,...,bn2

;c1 ,...,cn3
!uW51`

52Ĵ2cn3

(0)
¯ Ĵ2c1

(0) eW8/2~21!2Scie(2Sci )(W82W)
¯

52~21!n32SciS (
i 51

n3

ci D S )
i 51

n3

ci D F )
i 51

n321 S (
j 5 i 11

n3

cj D Ge(2Sci11/2)W8
¯ , ~B8!

where we have used~A3a!. Since( j 51
n3 cj,0 andcj561, the factor)((cj ) in ~B8! vanishes

unless

(
j 5 i 11

n3

cj,0, for any 0< i ,n3 . ~B9!

Therefore,C(1)(...;...;c1 ,...,cn3
)uW51` (n3Þ0) vanishes unless~B9! is satisfied. In particular,

~B9! impliescn3
521 ~and alsocn321521 for n3>2!. To simplify the discussion, let us assum

thatV(y) is monotonously increasing in the interval (x,`). ~The extension to more general cas
is straightforward.! For $c1 ,...,cn3

% (n3Þ0) satisfying~B9!, we have

@c1 ,...,cn3
#x

z5E ¯E
x<y1<¯<yn3

<z
dy1¯dyn3

ec1V(y1)1¯1cn321V(yn321)e2V(yn3
)

<E ¯E
x<y1<¯<yn3

<z
dy1¯dyn3

eV(y1)2V(y2)1V(y3)2¯2V(yn321)e2V(yn3
)

<E ¯E
x<y1<¯<yn3

<z
dy1¯dyn3

e2V(yn3
)

5
1

~n321!! Ex

z

~yn3
2x!n321e2V(yn3

)dyn3
, ~B10a!

for n3 odd, and
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@c1 ,...,cn3
#x

z<E ¯E
x<y1<¯<yn3

<z
dy1¯dyn3

e2V(y1)1V(y2)2V(y3)1¯2V(yn321)e2V(yn3
)

<e2V(x)E ¯E
x<y1<¯<yn3

<z
dy1¯dyn3

e2V(yn3
)

5
e2V(x)

~n321!! Ex

z

~yn3
2x!n321e2V(yn3

)dyn3
, ~B10b!

for n3 even. Therefore, for$ci% satisfying~B9!, the quantity@c1 ,...,cn3
#x

` is finite if

U E
a

`

yn321e2V(y)dyU,`. ~B11!

This means that limz→`limW→`p̄n is finite if

U E
a

`

xn21e2V(x)dxU,`, ~B12!

and so all thep̄n are finite if ~1.7b! is satisfied for all positive integersm.
The caseV(`)52` can be treated in much the same way. Just like~B9!, we find that

C(1)(...;...;c1 ,...,cn3
)uW52` vanishes unless

(
j 5 i 11

n3

cj.0, for any 0< i ,n3 . ~B13!

And we can see that limz→` limW→2`p̄n is finite if

U E
a

`

xn21eV(x)dxU,`. ~B14!

Analogous consideration for the behavior atx→2` leads to the conditions~1.8!. All the
coefficientsp̄n are finite in the limitW8→V(2`) andz8→2` ~with W andz kept finite! if one
of ~1.8! is satisfied. However, if bothV(1`) andV(2`) are infinite, it is not guaranteed thatp̄n

remains finite when we let bothW→V(1`) andW8→V(2`), even if both~1.7! and ~1.8! are
satisfied.

APPENDIX C: DERIVATION OF „4.4…

The definition~2.2! with n521 reads as

Ĵ1
(21)[eWS 2

1

2
1

]

]WD , Ĵ2
(21)[e2WS 2

1

2
2

]

]WD . ~C1!

So we have

Ĵ1
(21)eW/250, Ĵ1

(21)e2W/252eW/2,

Ĵ2
(21)eW/252e2W/2, Ĵ2

(21)e2W/250. ~C2!

From ~C2! it follows that
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Ĵ2bn2

(21)
¯ Ĵ2b1

(21)eW/25H eW/2, if n2 even, bj5~21! j 11,

2e2W/2, if n2 odd, bj5~21! j 11,

0, otherwise,

~C3a!

Ĵ2bn2

(21)
¯ Ĵ2b1

(21)e2W/25H e2W/2, if n2 even, bj5~21! j ,

2eW/2, if n2 odd, bj5~21! j ,

0, otherwise.

~C3b!

Namely, the expressions~C3! vanish unless

$b1 ,b2 ,b3 ,b4 ,...%5$11,21,11,21,...% or $b1 ,b2 ,b3 ,b4 ,...%5$21,11,21,11,...%.

Hence we have

e2W/2Ĵ2bn2

(21)
¯ Ĵ2b1

(21)~eW/2e2W81e2W/2!

55
e2W1e2W8, if n250,

e2W, if n2 even ~Þ0!, bj5~21! j ,

e2W8, if n2 even ~Þ0!, bj5~21! j 11,

21, if n2 odd, bj5~21! j ,

2e2W2W8, if n2 odd, bj5~21! j 11,

0, otherwise.

~C4!

Inserting~C4! in ~4.3!, and using~A2!, we obtain~4.4!.

1T. Miyazawa, J. Math. Phys.40, 838 ~1999!.
2For a different approach to this result, see T. Miyazawa, J. Phys. A33, 191 ~2000!.
3This C(1) is denoted asC in Ref. 1.
4Here we are following the notation of T. Miyazawa, J. Math. Phys.39, 2035~1998!. The meaning of the quantitiesr̂ l

1 ,
r̂ r

2 , R̂l
1 , andR̂r

2 is discussed in this reference.
5H. Risken,The Fokker-Planck Equation~Springer-Verlag, Berlin, 1984!.
6E. Witten, Nucl. Phys. B185, 513 ~1981!; M. Bernstein and L. S. Brown, Phys. Rev. Lett.52, 1933~1984!.
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A class of Liouville-integrable Hamiltonian systems
with two degrees of freedom

Raymond G. McLenaghana) and Roman G. Smirnovb)

Department of Applied Mathematics, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

~Received 29 November 1999; accepted for publication 20 June 2000!

A class of two-dimensional Liouville-integrable Hamiltonian systems is studied.
Separability of the corresponding Hamilton–Jacobi equation for these systems is
shown to be equivalent to other fundamental properties of Hamiltonian systems,
such as the existence of the Lax and bi-Hamiltonian representations of certain fixed
types. Applications to physical models, including the Calogero–Moser model, an
integrable case of the He´non-Heiles potential and the nonperiodic Toda lattice are
presented. ©2000 American Institute of Physics.@S0022-2488~00!01110-5#

I. INTRODUCTION

The Hamiltonian systems with two degrees of freedom constitute perhaps the most know
well studied class of Liouville-integrable Hamiltonian systems for which complete integrabili
guaranteed by the mere existence of one additional first integral of motion, different from
Hamiltonian function. These systems are defined by the generic Hamiltonian

H0~q,p!5 1
2 gi j ~q!pipj1V~q!, i , j 51,2, ~1!

where gi j is the inverse of the corresponding metric tensorg, V(q) the potential and (q,p)
5(q1,q2,p1 ,p2) are the physical position-momenta coordinates—have been extensively st
and classified, for instance, according to the existence of different systems of coordinates in
the corresponding Hamilton–Jacobi equation separates, thus leading to complete integrab
the system~1! ~see Refs. 1 and 2!. However, it is hardly possible to analyze fully a gene
Hamiltonian system~1! from the point of view of Liouville-integrability, namely, to present all o
the conditions ongi j andV(q) that would guarantee complete integrability. We remark that
Hamiltonian system defined by the Hamiltonian function~1! is canonical, which means that th
corresponding Hamiltonian vector fieldXH takes the form

XH0
5@P0 ,H0#, ~2!

where P05( i 51
2 ] i`] i . Here and below, unless otherwise indicated,] i5]/]qi , ] i5]/]pi , i

51,2, . . . and@ , ] denotes the Schouten bracket3 of two contravariant quantities which genera
izes the usual Lie bracket of two vector fields. The classical Hamilton–Jacobi theory stems
this canonical form of the Hamilton equation. Thus, for the Hamiltonian systems with two de
of freedom~1! the time independent Hamilton–Jacobi equation

H0~q1,q2;p1 ,p2!5E, pi5] iW, i 51,2 ~3!

that provides a solution to~2! corresponds to the canonical form ofP0. It is well known that a
complete integral of~3! is a solutionW5W(q1,q2;c1 ,c2) such that det(]2W/]qi]ci)2325” 0. It is
usually sought in the form

a!Electronic mail: rgmclena@uwaterloo.ca
b!Electronic mail: rsmirnov@uwaterloo.ca
68790022-2488/2000/41(10)/6879/11/$17.00 © 2000 American Institute of Physics
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W5W1~q1;c1 ,c2!1W2~q2;c1 ,c2! ~4!

providing additive separation of~3!. For more details see, for example, Ref. 4.
It is also well known that the existence of orthogonal separable coordinates in this c

equivalent to the existence of a second first integral of motion for the system~1! quadratic in
momenta:

F~q,p!5K̃ i j ~q!pipj1U~q!, i , j 51,2, ~5!

whereK̃ i j is the inverse of the corresponding Killing tensor. Separability of the Hamilton-Ja
equation of~1! can be characterized by the Benenti condition2 on the Killing tensorK̃ and the
potential functionV of ~1!:

d~K̃dV!50, ~6!

whereK̃5K̃g21. Alternatively, in the case of Euclidean space (R2,d), wheregi j 5d i j , separa-
bility can be described by various partial differential equations involvingV and corresponding to
different separable webs~see Ref. 1!. They comprise all together the so-called Bertran
Darboux–Wittaker theorem.1,2 They easily follow from~6! taking into account the general form o
a Killing tensorKi j (q),i , j 51,2 in the space (R2,d):

K115A12aq21g~q2!2,

K225B12bq11g~q1!2, ~7!

K125C2aq12bq22gq1q2.

The six constantsA,B, . . . ,g obviously represent the dimension of the space of Killing tensor
(R2,d).

In general, the Hamiltonian system~1! defined in the Riemannian space (R2,d), or, the
corresponding Hamilton–Jacobi equation~3! to be precise, can be separated in polar, ellipt
hyperbolic, parabolic or Cartesian coordinates, depending on the properties of the Killing
~5!–~7!.4 Thus, the case whenK̃5X^ X, where X5ai1bj , a,bPR and (i,j ) are the unitary
vectors of the coordinatesq1,q2 corresponds to the following separability condition on the pot
tial V of ~1!:

~a22b2!]1]2V5ab~]2
2V2]1

2V!50, ~8!

that can be easily derived from~6! and~7! ~see Ref. 2 for more details!. It corresponds to the cas
whenA, B, andC 5” 0 anda5b5g50 in ~7!.

We shall concentrate our attention on this condition and establish a connection betwe
Hamilton–Jacobi method of separation of variables in this case and other approaches to Li
integrability, such as the bi-Hamiltonian method and the method of the Lax pairs. This resea
prompted by the fact that integrability of a number of physical models has been studied by v
methods, which, as it turns out, are equivalent. For example, the first integrable case
Hénon–Heiles model was first shown to be solvable by the method of separation of variabl
in other words, it was demonstrated that the corresponding Hamilton–Jacobi equation c
separated in Cartesian coordinates different from the original ones.5 Alternatively, it has been
shown that this particular integrable system admits a bi-Hamiltonian representation defined
constant Poisson bi-vectors,6,7 yet another approach, through the Lax pairs, was employed in
8 to show its complete integrability. We shall demonstrate that all of these properties in this
are equivalent and describe a general class of two-dimensional Hamiltonian system th
includes, in particular, the Calogero–Moser model, isotropic harmonic oscillator and the n
riodic Toda lattice. This is the subject of the considerations that follow.
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II. MAIN RESULT

Consider a two-dimensional Hamiltonian system defined with respect to the canonical P
bi-vectorP0 by the Hamiltonian functionH0:

H05 1
2 p1

21 1
2 p2

21V~q!, ~9!

where, as before,q5(q1,q2). Thus the metric in this case is Euclidean. Suppose the potentV
satisfies the hyperbolic equation~8! which implies that the system~9! is separable in some
Cartiesian coordinates that can bedifferent from (q1,q2). We note first that the standard subs
tution from the elementary theory of partial differential equations,

q̃15q1 cosa1q2 sin a, q̃252q1 sin a1q2 cosa ~10!

transforms~8! for a5p/4 into the wave equation

]̃1
2V5 ]̃2

2V, ~11!

where differentiation is with respect toq̃1 andq̃2. It is important to note that this elementary poi
transformation, or more generally any point transformation:q̃i5q̃i(q), p̃i5]qk/]q̃ipk , is canoni-
cal for anya, namely, it preserves the canonical Poisson bi-vector which implies that we ar
in the framework of the classical Hamilton–Jacobi theory~that is, it is possible to consider th
corresponding Hamilton—Jacobi equation, etc.!. Therefore without loss of generality we ca
consider the wave equation~11! as the condition onV corresponding to separability in Cartesia
coordinates. A general solution of~11! is f (q12q2)1g(q11q2), where f and g are arbitrary
functions:f ,gPC2(R). This form ofV immediately suggests the appropriate change of variab

q̃151/A2~q12q2!, q̃251/A2~q11q2!, ~12!

which will lead to separation of the corresponding Hamilton–Jacobi equation and hence,
solution of the Hamiltonian system by quadratures.

It appears, as the following theorem states, that the condition~11! is also equivalent to othe
important properties of the Hamiltonian system~9!.

Theorem 1: Let a Hamiltonian system with two degrees of freedom be defined by the H
tonian function (9). Then the following statements are equivalent.

(1) The Hamiltonian vector field corresponding to (9) admits the bi-Hamiltonian represe
tion defined by the constant Poisson bi-vectors P05( i 51

2 ] i`] i , and P15( i , j 51
2 ] i`] j , iÞ j :

XH0 ,H1
5@P0 ,H0#5@P1 ,H1#, ~13!

and thus is Liouville integrable.
(2) V satisfies the wave equation (11).
(3) The dynamics of (9) can be described by the Lax equation Lt85@L,M # (here @L,M #

5LM2ML), where the matrices L and M constitute the following Lax pair:

L5S L1 0

0 L2
D , M5S M1 0

0 M2
D , ~14!

where
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Li5S 1/A2~p17p2! 2~q17q2!

f i~q17q2!

q17q2
21/A2~p17p2!D , i 51,2 ~15!

and

Mi5
1

2~q17q2! S 0 0

d

dt S p17p2

A2
D 22~p17p2!D , i 51,2 ~16!

for some f1 , f 2PC1(R).
Proof: The scheme of the proof is the following: (1)⇒(2)⇒(3)⇒(1).
~1! ⇒ ~2!. Let the Hamiltonian system defined by~9! admits a second Hamiltonian represe

tation with respect to the Poisson bi-vectorP15( i , j 51
2 ] i`] j , i , j 51,2, i 5” j . Then, obviously, the

flow of XH0 ,H1
preserves bothP0 andP1:

LXH0 ,H1
~P0!5LXH0 ,H1

~P1!50,

where LXH0 ,H1
( • )5@XH0 ,H1

, • ] denotes Lie derivation along the vector fieldXH0 ,H1
. Now,

taking into account thatXH0 ,H1
5p1]11p2]22]1V]12]2V]2, we compute

05LXH0 ,H1
~P1!5~]1

2V2]2
2V!]1`]2

and the implication follows.
~2! ⇒ ~3! Assume the potential functionV of ~9! satisfies Eq.~11!. Then the Hamiltonian

function H transforms into the following form:H051/2p1
211/2p2

2 1 f 1(q12q2)1 f 2(q11q2),
f 1 , f 2PC1(R). The corresponding Hamiltonian vector fieldXH can be expressed as

XH0
5p1]11p2]22]1~ f 11 f 2!]11]1~ f 12 f 2!]2. ~17!

It is easy to check that a second first integralF can be taken in the following form.F5p1p2

2 f 1(q12q2)1 f 2(q11q2). Then we have

H07F5 1
2 ~p17p2!212 f i~q17q2!5const, i 51,2. ~18!

We are now in the position to apply the Fairbanks theorem9 by rewriting the equations~18! as
follows:

H06F5Vi
21UiWi5const, i 51,2, ~19!

whereVi51/A2(p17p2), Ui52(q17q2), andWi5 f i(q
17q2)/(q17q2), i 51,2. Hence for the

matrices

Li5S Vi Ui

Wi 2Vi
D , i 51,2

the corresponding characteristic polynomials are det(Li2l i I )5l i
22(UiWi1Vi

2), i 51,2 with the
following eigenvectors:

fl i
5S 1

mi
D , mi5

l i1Vi

Ui
, i 51,2.
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Therefore by the Fairbanks theorem9 the matrix

M5S M1 0

0 M2
D , where Mi ,i 51,2

are as in~16! satisfies the matrix equation

Lt85@L,M # ~5LM2ML !, ~20!

where

L5S L1 0

0 L2
D .

Direct substitution shows that Eq.~20! describes the dynamics of~9!. Moreover, the matrices
Mi ,i 51,2 are such thatMi5d/dt (Pi)Pi

21 , where

Pi5S 1 1

mi~l i ,q,p! mi~2l i ,q,p!
D .

Hence we conclude thatL(t) andL(0) are unitary equivalent and so the matrix equation~20! is
indeed a Lax representation of the Hamiltonian system~9! satisfying~11!, as desired.

~3! ⇒ ~1!. Assume~3!. Consider the eigenvalues of the matrix

L5S L1 0

0 L2
D ,

whereL1 andL2 are as in~15!. Then the characteristic polynomial ofL reads

P~l!5~l22 1
2 ~p12p2!222 f 1~q12q2!! ~l22 1

2 ~p11p2!222 f 2~q11q2!!.

By assumption the eigenvalues are dynamically invariant with respect to the flow of~9!. Therefore
the functionsH0521/2(l1,2

2 2l3,4
2 ) andH151/2(l1,2

2 1l3,4
2 ) are first integrals of~9! given by

H051/2~l1,2
2 1l3,4

2 !51/2~p1
21p2

2!1 f 1~q12q2!1 f 2~q11q2!,

H1521/2~l1,2
2 2l3,4

2 !5p1p22 f 1~q12q2!1 f 2~q11q2!, ~21!

wherel1,2
2 5l1

25l2
2 , l3,4

2 5l3
25l4

2, andl1 ,l2 , l3 ,l4 are the eigenvalues ofL.
Having derived the formulas~21! and ~17!, we easily reconstruct the corresponding Poiss

bi-vectorsP0 and P1 satisfying ~13!: P05( i 51
2 ] i`] i , and P15( i , j 51

2 ] i`] j , i 5” j . Hence the
pairs P0 ,H0 and P1 ,H1 constitute the bi-Hamiltonian representation of~9! of the desired form
~13!. This completes the proof. h

We remark that the bi-Hamiltonian representation~13! defined by the constant Poisson b
vectorsP05( i 51

2 ] i`] i , and P15( i , j 51
2 ] i`] j , i 5” j provides a second first integral (H1) and

thus guarantees complete integrability of~9!. However, it does not give much extra information
the framework of the bi-Hamiltonian theory. In fact, the corresponding recursion operatA
ªP1P0

21 in this case is defined by a constant matrix. Therefore it follows that its eigenvalue
trivial, and consequently one cannot construct a nontrivial Abelian Lie subalgebra of symm
of the Hamiltonian vector field XH0 ,H1

in the conventional way:
AXH0 ,H1

,A2XH0 ,H1
, . . . ,AnXH0 ,H1

, . . . , etc. This difficulty becomes even more evident if w
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consider a Hamiltonian system of higher dimension. For instance, it is easy to check th
nonperiodic, three-dimensional Toda lattice defined by the Hamiltonian functionH0:

H05
1

2 (
i 51

3

pi
21eq12q2

2eq22q3
~22!

admits the bi-Hamiltonian representation

XH0 ,H1
5@P0 ,H0#5@P1 ,H1#, ~23!

with the following constant Poisson bi-vectors:

P05( i 51
3 ] i`] i , and P15

1

2 (
i , j 51
i 5” j

3

] i`] j2
1

2 (
i 51

3

] i`] i

and the second Hamiltonian function

H15 (
i , j 51
i 5” j

3

pipj2~eq12q2
2eq22q3

!.

The recursion operatorA5P1P0
21 is trivial ~constant! again, hence it is impossible to reconstru

a third nontrivial functionally independent first integral out ofA and thus, to confirm Liouville
integrability.

We also remark that it can happen that either of the new coordinates in the transformatio~10!
is ignorable~cyclic!, in which case the dynamics of~9! will be described appropriately via eithe
L1 ,M1 or L2 ,M2 of Eq. ~15!, corresponding to the nonignorable coordinate. We shall pre
examples of this case in Sec. III.

III. APPLICATIONS

In this section we consider three examples of the two-dimensional Hamiltonian system
can be treated in the framework of Theorem 1. We skip the obvious example of the iso
harmonic oscillator defined by the Hamiltonian

HHO5 1
2 p1

21 1
2 p2

21v~~q1!21~q2!2!, ~24!

since the corresponding Hamilton–Jacobi equation immediately separates in the given po
momenta coordinates (q1,q2,p1 ,p2). However, we note that Theorem 1 is indeed applicab
namely, that the system possesses the properties~2! and ~3!.

~1! The Calogero–Moser model. The corresponding HamiltonianHCM0 takes the form

HCM05
1

2
p1

21
1

2
p2

21
1

~q12q2!2
~25!

in position-momenta coordinates. The potential of~25! obviously satisfies the condition~11!.
Hence the system possesses the properties~1!–~3! stated in Theorem 1. The condition~11! yields
immediate separation of variables of the corresponding Hamilton–Jacobi equation in th
Cartesian variables~12!. In these variables the Hamilton–Jacobi equation has the form

1

2
@~ ]̃1W!21~ ]̃2W!2#1

2

~ q̃1!2
5E, ~26!
                                                                                                                



nd
le
is

n

f
sily

in
s

6885J. Math. Phys., Vol. 41, No. 10, October 2000 Liouville-integrable Hamiltonian systems

                    
whereE denotes the total energy. Now, puttingW5W1(q̃1)1W2(q̃2), we arrive at

1

2
~W18!21

2

~ q̃1!2
5E2

1

2
a2,

1

2
~W28!25

1

2
a2, ~27!

wherea is the separation constant. Integrating~27!, we obtain

W52Et1signuq̃1uF11
2

AA
arctanS 2

AA
D G1aq̃2, ~28!

where A52E(q̃1)22a2(q̃1)224. To derive the solutions we consider the equations]W/]E
5c1 and]W/]a5c2, yielding

2t1signuq̃1u
~ q̃1!2AA

A14
5c1 , q22signuq̃1u

a~ q̃1!2AA

A14
5c2 .

Finally, we obtain

q̃15A~c11t !2~2E2a2!214

2E2a2
, q̃25a~ t1c1!1c2 . ~29!

We note that 2E2a2.0. Transforming the expressions~29! to the original coordinatesq1 andq2,
we get

q1~ t !5A~c11t !2~2E2a2!214

4E22a2
11/A2~a~ t1c1!1c2!,

~30!

q2~ t !52A~c11t !2~2E2a2!214

4E22a2
11/A2~a~ t1c1!1c2!.

We note further that the constantsc1 and c2 can be easily eliminated by appropriate time a
space transformations. Therefore the constantsE anda represent the dimension of the integrab
submanifold of the Liouville-integrable flow of~25!, which is not compact in this case. Which
a manifestation of the fact that the total energy~Hamiltonian! is positive in this case.10

Furthermore, in view of Theorem 1 the system~25! admits the bi-Hamiltonian representatio
~13! with the second HamiltonianHCM15p1p221/(q12q2)2.

Finally, taking into account the formulas~15! and ~16! and the fact that the coordinate o
separationq̃2 in ~10! is ignorable~cyclic!, the corresponding Lax representation can be ea
derived:

L5S 1/A2~p12p2! 2~q12q2!

~q12q2!23 21/A2~p12p2!
D ,

M5
1

2~q12q2! S 0 0

d

dt S p12p2

A2
D 22~p12p2!D .

~31!

We note that the Lax representation~31! differs from the classical Lax representation derived
Ref. 11 by Moser for the general Calogero–Moser system withn degrees of freedom and i
apparently new.
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~2! The Hénon–Heiles potential.This system is given in its general form by the Hamiltoni
function

HHH05 1
2 ~p1

21p2
21C~q1!21D~q2!2!1Aq1~q2!22 1

3 B~q1!3 ~32!

for some constantsA,B,C, andD. There are three integrable cases corresponding to the follow
relations between the constantsA,B,C and D: ~1! A/B521 C5D, ~2! A/B521/6, C,D are
arbitrary,~3! A/B521/16,D516C.

Consider the first integrable case:

HHH105 1
2 ~p1

21p2
21C~q1!21C~q2!2!1Aq1~q2!21 1

3 A~q1!3. ~33!

The potential part of~33! satisfies the condition~11!. Thus we can conclude that the Hamiltonia
system~33! also possesses the properties~13! and ~15!–~16!, namely, it is bi-Hamiltonian as in
~13!6,7 with the second Hamiltonian function given by

HHH115p1p21Cq1q21A~q1!2q21 1
3 A~q2!3.

Taking into account that there is no ignorable~cyclic! coordinate in this case, the Lax represe
tation that corresponds to the point transformation~12! is given by the 434 matrices~14!, where

Li5S 1/A2~p17p2! 2~q17q2!

C~q17q2!1 1
3 A~q17q2!2 21/A2~p17p2!

D , i 51,2, ~34!

Mi5
1

2~q17q2! S 0 0

d

dt S p17p2

A2
D 22~p17p2!D , i 51,2. ~35!

We note that a modified version of the Fairbanks theorem was employed by Ravosonet al. in Ref.
8 to derive the Lax representation for the three integrable cases described above. The Lax
sentation found in Ref. 8 for the first integrable case~33! differs from~34! and~35! in the matrices
Mi , i 51,2.

The Hamilton–Jacobi equation of the system~33! separates under the canonical change
coordinates~12!. Indeed, after the transformation the Hamiltonian~33! takes the form

HHH10~ q̃,p̃!5
1

2
~ p̃1

21 p̃2
21C~ q̃1!21C~ q̃2!2!1

1

3A2
A~~ q̃1!22~ q̃2!2!.

The corresponding Hamilton–Jacobi equation

1

2
@~ ]̃1W!21~ ]̃2W!2#1

1

2
C~ q̃1!21

1

2
C~ q̃2!21

1

3A2
A~~ q̃1!32~ q̃2!3!5E

separates under the usual assumptionW5W1(q̃1)1W2(q̃2):

1

2
~W18!21

1

2
C~ q̃1!21

1

3A2
A~ q̃1!35a,

1

2
~W28!21

1

2
C~ q̃2!21

1

3A2
A~ q̃2!35E2a.

~36!
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Now the functionsW1 andW2 can be evaluated accordingly:

W15EA2a2C~ q̃1!22
A2

3
A~ q̃1!3 dq̃1, ~37!

W25EA2E22a2C~ q̃2!22
A2

3
A~ q̃2!3 dq̃2. ~38!

At this stage, in view of the nontriviality of the expressions~37! and~38!, it is possible to evaluate
the quantities]W1 /]a, ]W2 /]E, and]W2 /]a directly without obtaining the complete integra
W5W11W2. This obviously leads to the elliptic integrals of the first kind which implies that
functionsq1(t) and q2(t) are expressable in terms of Jacobi’s elliptic functions. For the e
solutions see Aizawa and Saito.5

~3! The Toda lattice.This system with two degrees of freedom, which describes the motio
two particles located on a line with an exponential interaction, has the following Hamiltonia

HT 05 1
2 p1

21 1
2 p2

21eq12q2
~39!

with the potential of the type~11!. Thus, in view of Theorem 1 the system admits the
Hamiltonian representation~13! with the second Hamiltonian functionHT15p1p22eq12q2

, which
is nothing but the so-called He´non’s first integral of the system~39!. Separability of the corre-
sponding Hamilton-Jacobi equation was exhibited in Ref. 12 and the solutions of the equati
motion were found to be

q1~ t !51/2 ln@~E21/2a2!~12tanh2~~ t1c1!AE21/2a2!!#

11/A2a~ t1c1!11/A2c2 ,

q2~ t !521/2 ln@~E21/2a2!~12tanh2~~ t1c1!AE21/2a2!!#

11/A2a~ t1c1!11/A2c2 . ~40!

The constantsE,a,c1, andc2 have the same meaning as those in Example 1. The Lax repre
tation ~16!–~15! in this case is given by

L5S 1/A2~p12p2! 2~q12q2!

eq12q2

q12q2
21/A2~p12p2!D ,

M5
1

2~q12q2! S 0 0

d

dt S p12p2

A2
D 22~p12p2!D ,

~41!

due to the fact that there is one ignorable~cyclic! coordinate as in Example 1. The present form
the Lax representation is different from the one derived by Flaschka in Ref. 13.

In conclusion we note that in Examples 1 and 3 it is also possible to derive the equatio
motion ~30! and ~40! by making use of the fact thatq̃2 5 1/A2(q11q2) is ignorable~cyclic!
coordinate. Indeed, the Hamiltonian systems can be reduced to one-dimensional systems
lows from dp̃2 /dt52]H/]q̃2 that H is independent of the variableq̃2. Thereforep̃2 is constant
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with respect tot. Hence, we obtainq̃25at1q̃0
2 and then solve the corresponding equations forp̃1

leading to the formulas forq̃1(t). After changing back to the original coordinatesq1 andq2 we
arrive at the formulas~30! and ~40!.

IV. CONCLUDING REMARKS

In this paper we have demonstrated that for a class of two-dimensional Liouville-integ
Hamiltonian systems the existence of a point transformation to a Cartesian orthogonal sep
coordinates is equivalent to the existence of the bi-Hamiltonian and Lax representations
types ~13! and ~14!, respectively. New Lax representations for the Calogero–Moser model
nonperiodic Toda lattice have been found. For the former two-dimensional Hamiltonian s
the exact formulas~30! for the corresponding trajectories have been derived.

We note that the combined rotation~10! and ~12! of the initial variables (q1,q2) by p/2
corresponds to the diagonalization of the Killing tensorK̃ i j , i , j 51,2 of the quadratic first integra
~5!. In this case the Killing tensor has two distinct eigenvalues that illustrates the Benenti cri
of orthogonal separation of variables.2 Clearly, it is also shows that there is onlyone point
transformation up to a rotation bykp/2, kPZ to the Cartesian coordinates in which the cor
sponding Hamilton–Jacobi equation separates.

In addition to the one considered, there are other separable webs for the systems~9!, that
correspond to various combinations of the constantsA,B, . . . ,g in ~7!. Thus, it is natural to think
in the direction of generalizing Theorem 1 to other systems of separable coordinates~polar,
elliptic–hyperbolic and parabolic! as well. However, these cases are more complicated in
sense of finding equivalent bi-Hamiltonian representations. For example, it is known tha
every two-dimensional Liouville-integrable system admits the bi-Hamiltonian representation~13!,
whereP1 is nonconstant in the given coordinates. This is the fact that led to the introduction o
concept of quasi-bi-Hamiltonian systems~QBHS!. The situation is even more complicated in t
nonorthogonal case, namely when a Liouville-integrable Hamiltonian system has a secon
integral that is not quadratic in the momenta. The separability of such systems often involv
techniques of algebraic geometry that yield separable coordinates not related to the origina
dinates via a point transformation~see, for example, Ref. 8!.

Another possible direction for generalization of Theorem 1 is in considering PDE’s in
variables. For instance, we recall that Miller and Rubel14 have classified the separable solutionsC
of the PDE’s in the formD2C5 f (C,x1 ,x2), whereD2 is the Laplace–Beltrami operator on
two-dimensional Riemannian or pseudo-Riemannian space. Here separability mean
C(x1 ,x2)5f(A(x1)1B(x2)) for single variable functionsf,A, andB such thatf8A8B85” 0.
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Equivalence classes of perturbations in cosmologies
of Bianchi types I and V: Propagation and constraint
equations
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This is the third in a series of papers@J. Math. Phys.40, 3978 ~1999!; 40, 3995
~1999!#, the overall objective of which is the demonstration that a set of 26 gauge-
invariant variables, denoted collectively byD and referred to as the complete set of
basic variables, can be used to describe the equivalence classes of perturbations in
a Bianchi type I or type V universe filled with a nonbarotropic perfect fluid. The
object here is the derivation of a full system of propagation and constraint equa-
tions for these basic variables. We show that the constraint equations, which in-
volve only the spatial derivatives ofD, are preserved in time along the unperturbed
fluid flow lines, i.e., that the time derivative of each constraint equation is identi-
cally satisfied as a consequence of the other equations that hold. Let us put things
another way. What we prove is the statement that if the constraints in our system
are satisfied at one time and the evolution equations are satisfied at all times, then
the constraints are satisfied at all times. A further important point is simply this.
When the linearized field equations of Einstein’s gravity theory are re-expressed in
a manifestly gauge-invariant form, an open set of equations is obtained forD since
there are too many unknowns. Thus this set must be suitably closed by means of
accurate ‘‘closure’’ relations. In order to find them, we observe that the definition
of basic gauge-invariant variables gives rise to additional geometrical identities
from which an exact method of closure can be determined. Our formalism turns out
to be especially appropriate for handling the linearized perturbations in a Bianchi
type V universe model where the standard approaches conceptually break down.
© 2000 American Institute of Physics.@S0022-2488~00!02810-3#

I. INTRODUCTION

In Banach’s two papers,1,2 26 gauge-invariant variables were defined that characterize
almost-Bianchi type I or type V universe filled with a nonbarotropic perfect fluid. One can t
of these basic variables, denoted collectively byD, as having at least two aspects. First,D provides
an explicit ~i.e., analytical! representation of the equivalence class of perturbations. In fact,
equivalence class is uniquely determined fromD and vice versa.1 Second, any gauge-invarian
quantity with respect to a Bianchi type I or type V background model is obtainable linearly
the basic variablesD through purely local~i.e., algebraic and differential! operations.2 Earlier
work by Tomita and Den,3 Den,4,5 and Noh and Hwang6,7 on the Bardeen nonlocal approach8 and
by Dunsby9 on the Ellis–Bruni covariant method10 also formulated the theory of perturbations

a!Electronic mail: zbanach@ippt.gov.pl
b!Electronic mail: spiekar@ippt.gov.pl
68900022-2488/2000/41(10)/6890/16/$17.00 © 2000 American Institute of Physics
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anisotropic space-times. However, since most of this work makes heavy use of a ‘‘plane
expansion,’’ the resulting algorithms appear to be meaningful only in the case of a spatial
anisotropic universe~Bianchi type I space–times!. Moreover, to the best of our knowledge, the
existed no adequate and sufficiently flexible analysis either of the notion of an equivalence c
perturbations or a complete set of basic gauge-invariant variables. Explicit forms forD, valid for
an almost-Bianchi type I or type V universe, help to gain new insights. More precisely
construction ofD gives rise to a significant enlargment of the class of gauge-invariant quan
admitted by the theory. Because of this, the method based onD not only generalizes the covarian
formalism of Ellis and Bruni,10 but also explains in a fully covariant and gauge-invariant man
what Bardeen’s major paper8 is about. As to the details, Banach1,2 has already studied thes
matters and presented practically all advantages of his approach over the usual ones.

We wish to emphasize that Banach’s discussion of the gauge problem was purely geom
i.e., it proceeded essentially independently of the linearized field equations of Einstein’s g
theory. However, there are several instances in which these equations must be taken into a
For example, it would be of great interest to obtain a full set of quasi-linear, partial differe
equations for the determination ofD. So far this has not been achieved. Consequently, the m
purpose of this paper is to give a careful explanation of how the linearized field equatio
Einstein’s gravity theory relate to the propagation and constraint equations governing g
invariant variablesD. As we shall soon see, many~but not all! of our results forD are purely
geometrical algebrodifferential identities, so that, if the infinitesimal perturbations in an a
tropic model universe are not necessarily assumed to satisfy the linearized field equations~2.14!
and~2.19! of Ref. 1, these identities still apply. This important fact allows us to define the no
of a complete set of basic gauge-invariant variables intrinsically, i.e., without explicitly or im
itly invoking gauge-dependent quantities. Nevertheless, as mentioned earlier, the set o
variablesD should obey some additional algebrodifferential requirements in order for perturb
theory, containing the geometrical identities as an unavoidable part, to be useful for describ
evolution ofD, since the geometrical identities are not in themselves a deterministic set of
tions as there are too many unknowns. Here we elaborate on the aforementioned require
namely, Eqs.~2.14! and ~2.19! of Ref. 1, with a view to demonstrating their usefulness in
derivation of a deterministic set of equations forD. Evidently, for geometrical identities and th
set of equations, a clear distinction must be drawn between the propagation equations~involving
the time derivatives ofD! and the constraint equations~involving only the spatial derivatives o
D!. An important issue arising is the consistency of these equations. So we verify that the
straint equations are preserved in time along the unperturbed fluid flow lines: that is that th
derivative of each constraint equation is identically satisfied as a consequence of the othe
tions that hold.

It is of some value to be a little more specific about this issue. The essential point, fo
purposes, is the statement that if the constraints~3.4a!–~3.4c! and~4.1a!–~4.1c! are satisfied at one
time and the condition~4.1d! and the evolution equations~3.4d!–~3.4i! and ~4.1e!–~4.1g! are
satisfied at all times, then the constraints~3.4a!–~3.4c! and~4.1a!–~4.1c! are satisfied at all times
As a matter of fact, this is a statement about the uniqueness of the zero solution of the prop
equations for the ‘‘constraint quantities’’~i.e., those whose vanishing constitutes the constrain!.
What we observe is that if these quantities vanish at a given time, their time derivatives
vanish at that time. Precisely speaking, this is much less than the statement above. Ho
without entering into the mathematical subtleties to be discussed in detail in a separate
inspection shows that the propagation equations for the constraint quantities are just or
differential equations~ODE!. This is, for instance, the case for Eqs.~3.8! and~4.3!. Since they are
all ODE, in order to complete the proof, it is enough to explicitly observe this and subsequ
quote a standard uniqueness theorem for~linear! ODE. In the interesting case~not encountered
here! when the propagation equations for the constraint quantities are partial differential equ
~PDE!, things are more complicated, since then some kind of hyperbolicity is needed in ord
get uniqueness.

Using the ‘‘gauge ready method,’’11 Noh and Hwang6,7 were able to prove that the perturb
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tional quantities in certain gauge conditions can be equivalently considered as gauge-in
ones. There exist several such fundamental gauge conditions, each of which completely fi
gauge transformation properties. Approaches of this type are particularly suitable for handli
equivalence classes of perturbations in a Bianchi type I universe, but become meaningles
Bianchi type V background model is the theme of interest because a Fourier decomposi
applied at the outset of the analysis. The usual way of avoiding this decomposition is to u
covariant formalism of Ellis and Bruni.10 For further details, one should consult the paper
Dunsby.9 However, as noted already in Refs. 1 and 2, this alternative formalism is not w
satisfactory in that it does not include large classes of gauge-invariant variables, and
conceptually breaks down when an explicit description of the equivalence classes of perturb
is required. These evident difficulties with the systematic formulation of a theory, together
the absence of a complete set of equations in gauge-invariant variables, suggest that it is
priate to embark on a general program of Banach1,2 and Banach and Piekarski.12,13 Clearly,
because of the mathematical complexity of almost-Bianchi type I or type V universe model
full analytical realization of this program is not possible. However, we expect that the num
methods which are needed for such models should benefit from the reference point whi
results provide.

Here we proceed as follows. Section II presents a set of differential equations in g
dependent variables. Section III is devoted to obtaining the geometrical identities forD. Section
IV shows how the equations governing linearized perturbations look when re-expresse
manifestly gauge-invariant form. Section V is for discussion and conclusion.

The notation we use is the same as that given by Banach. Consequently, we presup
knowledge of the basic definitions and concepts of Refs. 1 and 2.

II. PERTURBATION EQUATIONS IN GAUGE-DEPENDENT QUANTITIES

A. Basic definitions and an explicit form of equations

We have seen in Sec. II B of Ref. 1 that, after specifying the background solutionF0 for a
nonbarotropic perfect fluid, the infinitesimal perturbation ofF0 , namelyW, consists of the con-
travariant metric perturbations$Q,Qa,D,Fab%, the velocity perturbations$V,Va%, and the nor-
malized number density and temperature perturbations$M ,K%:

Wª$Q,Qa,D,Fab,V,Va,M ,K%. ~2.1!

The objectsFab, Qa, andVa are irreducible in the following sense:Fab is a spatial and sym-
metric trace-free two-tensor andQa andVa are spatial vectors. Given the background metricqab

and the unperturbed fluid four-velocitywa, we thus have

waFab50, Fab5Fba, qabFab50, ~2.2a!

waQa50, waVa50. ~2.2b!

By using the artifice of one-parameter families of exact solutions to Einstein’s field equation
the equation of balance of number density,1,14 it is possible to obtain a linear equation forW, i.e.,
an equation that can be expressed in the form

Y~W!50, ~2.3!

whereY is a linear differential space-time operator acting onW.
Before carefully describingY, we have to define a few mathematical quantities. Therefor

is assumed that¹a is the covariant derivative based upon the background metricqab . We use the
standard kinematical decomposition of¹a . More explicitly, adot denotes the covariant derivativ
along the unperturbed fluid flow lines and aslashcorresponds to the three-dimensional covari
derivative defined by totally projecting the covariant derivative¹a orthogonal towa. For any
spatial tensor, we set
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Äa¯
ª~Ȧa¯!•, Ȧa¯

ubª~Ȧa¯! ub , ~2.4a!

Aa¯
ubmª~Aa¯

ub! um . ~2.4b!

As usual, parentheses enclosing indices will denote symmetrization and square bracke
denote antisymmetrization. Now, ifAab is a spatial two-tensor, then angular brackets inA^ab& will
represent the symmetric and trace-free part ofAab:

A^ab&
ª

1
2 ~Aab1Aba!2 1

3 ~gmnAmn!gab. ~2.5!

Here gab is the projection tensor into the tangent three-spaces orthogonal towa (gabªqab

1wawb⇒gab5qab1wawb).
In the case of a nonbarotropic perfect fluid,15,16 we have observed that the energy densitye

and the pressurep can be expressible as single-valued, differentiable functions of the nu
densityn and the temperatureT:

e5e~n,T!, p5p~n,T!. ~2.6!

Let n0 be a background value ofn and suppose thatT0 is a background value ofT (T0.0). With
this notation in mind, it is convenient to introduce the following abbreviations:

e0ªe~n0 ,T0!, p0ªp~n0 ,T0!, ~2.7a!

eMª
]e0

]n0
, eTª

]e0

]T0
, ~2.7b!

pMª
]p0

]n0
, pTª

]p0

]T0
, ~2.7c!

Eªn0eMM1T0eTK, ~2.7d!

Pªn0pMM1T0pTK. ~2.7e!

For essentially obvious reasons, we refer toe0 as the background value ofe and to p0 as the
background value ofp. Moreover, employing the definitions ofM andK @see Eq.~2.13b! in Ref.
1#, the formulas~2.7a!–~2.7e! bring out the meaning ofE as an infinitesimal perturbation ofe0

and the meaning ofP as an infinitesimal perturbation ofp0 .
Having made these preparatory remarks, we wish now to provide an explicit form ofY(W)

50. The fundamental perturbation equations forW are obtained by conventionally linearizin
Einstein’s field equations and the equation of balance of number density.14,17 It may be noted that
if the unperturbed solution

F0ª$qab,wa,n0 ,T0% ~2.8!

is consistent with the background space-time geometry, which is that of a Bianchi type I o
V space–time,18,19 then a set of equations completely equivalent to a knowledge ofY(W)50 is
given by

6HḊ2
3k

~R1!2 ~Q12D !1~e01L!Q12HQa
ua2da

bQb
ua2dabḞab1Fab

uab22gabD uab52E,

~2.9a!
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6D̈118HḊ2
6k

~R1!2 D13HQ̇12Q̇a
ua14HQa

ua1da
bQb

ua

1gabQuab13dabḞab1Fab
uab22gabD uab13FL2p02

k

~R1!2GQ53P, ~2.9b!

Ḟab
ub22gabḊ ub2gabdmnFmn

ub13dabD ub22dm
[aFb]m

ub2 1
2 ~2Hgab2dab!Qub

2da
bumFbm2

1

2
~gabQm

ubm2gbmQa
ubm!52

2k

~R1!2 Qa1~e01p0!~Qa1Va!, ~2.9c!

F̈ab13HḞab1
2k

~R1!2 Fab1S 3Ḋ1
1

2
Q̇1Qm

umDdab12dm
^a~db&

nFmn2Fb&ndm
n!

1gm^aQ̇b&
um22~dm^a2Hgm^a!Qb&

um1dm
^agb&nQm

un12dab
um Qm2gm^agb&n

3~D umn2 1
2 Qumn!2gn^adb&

munQm5gmnFab
umn22gn^aFb&m

umn , ~2.9d!

Ṁ23Ḋ1Va
ua50, ~2.9e!

whereL, H, anddab are, respectively, the cosmological constant, the average rate of expa
(Hª

1
3 ¹awa), and the background shear tensor. The quantityk/(R1)2 appearing in Eqs.~2.9a!–

~2.9d! acquires a special significance: it is directly related to the Ricci scalar of the unpert
three-dimensional surfaces (k50,21). See, for example, the discussion in Sec. III of Ref. 1.
an appropriate choice of units, the value ofk can be made to be 0 or21. The corresponding
solutions for the background metricqab represent, respectively, a Bianchi type I space–time
a Bianchi type V space–time. Ifk50, some terms are not present in Eqs.~2.9a!–~2.9d!, since then
k/(R1)250, da

bum50, anddab
um50. We adopt the summation convention whereby a repe

index implies summation over all values of that index. Greek indices are raised and lowered
qab andqab (qamqmb5da

b).
According to their origin, Eqs.~2.9a!–~2.9d! follow from applying the linearization procedur

to Einstein’s field equations (Rab2 1
2 Rm

mgab1Lgab5Tab) and Eq.~2.9e! is obtained by linear-
izing the equation of balance of number density@(nua) ;a50#. In order to complete the specifi
cation of perturbation equations, we must also linearize the energy-momentum conservation
tion (Tab

;b50). This implies that

Ė13H~E1P!2~e01p0!~3Ḋ2Va
ua!50 ~2.10a!

and

Q̇a1V̇a1S H1
ṗ0

e01p0
D ~Qa1Va!1da

b ~Qb1Vb!1gabS 1

2
Qub1

1

e01p0
PubD50.

~2.10b!

Clearly, if W is constrained to satisfy Eqs.~2.9a!–~2.9d!, these additional requirements forW are
automatically fulfilled because the covariant divergence of the left-hand side of

Rab2 1
2 Rm

m gab1Lgab5Tab ~2.11!

vanishes identically andTab
;b50 is a consequence of Eq.~2.11!.

Equations~2.9! and ~2.10! will be of interest to us subsequently~see Sec. IV A!.
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B. Gauge in linear perturbation theory

Let W be the set whose elements are arbitrary, linear perturbations ofF0 ; thusWPW andW
is not necessarily assumed to satisfy the equationY(W)50. Given the Lie derivativeLvF0 of F0

with respect to a vector fieldv5vm(]/]xm) on the space–time manifoldX, we denote byLvF0

the quantity obtained by decomposingLvF0 into parts parallel to and perpendicular towa. It
follows from Eqs.~4.5! and~4.6! of Ref. 1 that we can computeLvF0 if we know LvF0 andF0 ,
and vice versa. The setWL consisting ofLvF0 for all vector fieldsv on X may be considered a
the subspace ofW. In linear perturbation theory, the object of most physical interest is not just
perturbationWPW, but a whole equivalence class of all perturbationsW8PW that are equivalent
to W: two infinitesimal perturbationsWPW and W8PW are said to be equivalent ifW82W
equalsLvF0 for somev. The equivalence class ofWPW is denoted@W# and is called the
gauge-invariant perturbationassociated withW. In this way, we verify that the gauge-invarian
perturbations are elements ofW/WL , thequotient spaceof W by WL .

Clearly,W satisfies Eqs.~2.9a!–~2.9e! if and only if W1LvF0 does. Thus the solutions of th
linearized field equations can be unique only up to an ‘‘infinitesimal diffeomorphism,’’17 and the
conditionY(W)50 is in essence an additional restrictive condition for@W#PW/WL . In order to
obtain a definite member of@W#, one makes use of the axiom of choice.20 According to this
axiom, sinceW/WL is a space of nonempty equivalence classes of perturbations, there
function f on W/WL such that for every@W#PW/WL , f (@W#)P@W#. From the viewpoint of set
theory, a choice of gauge within the framework of a linear approximation involves two i
related things:~i! it gives an explanation of how the subsetZ of W is to be identified so thatZ
consists of one and only one element from each equivalence class inW/WL ; ~ii ! it introduces a
bijectivemappingf :W/WL→Z by the requirement thatf (@W#) is an element of@W#.

Our main purpose in repeating these simple, and in substance well-known consideration
facilitate an understanding of another important aspect of the gauge problem. Namely,$W
(•,e); ePI % were defined to be a one-parameter family of infinitesimal perturbationsW(•,e) of
F0 which has the property thatW(x,e) depends continuously and differentiably onePI for an
open intervalIª(2d,d) of R, d.0, and eachxPX, then it seems to us that the followin
criterion, while probably far from exhausting all possible features of the mappingf : W/WL

→Z, at least provides us with one such feature, whatever the explicit or implicit assumptio
down in it occur: For every continuous and differentiable curvee°W(•,e) in W, the infinitesi-
mal perturbationf (@W(•,e)#) of F0 is a continuous and differentiable function ofePI . Regarded
not as a sufficient, but merely as a necessary, condition of smoothness, this criterion is in
ment with classical ideas about the meaning of gauge.

After choosing a satisfactory specific gauge, i.e., after describing completely the mappf :
W/WL→Z above, the requirements~2.9a!–~2.9e! for @W#PW/WL become a system of partia
differential equations forWPZ. These equations are deterministic because the local existenc
uniqueness of solutions can be demonstrated for ‘‘arbitrary’’ initial data.21 The gauge ready
method of Noh and Hwang6,7 starts with the full perturbation equations without fixing any gau
The gauge will be chosen depending on how much the gauge choice leads to the best
understand the problem at hand.11,22 If we consider an almost-Bianchi type I universe, Eq
~2.9a!–~2.9d! simplify enormously; we can then setk50 anddabum50. Due to the spatial homo
geneity of the background model, the spatial gauge transformation does not play an importa
We easily find a unique set of gauge conditions which completely characterize the spatial
transformation property. These will fixqa

ªga
mvm. Next, to determineqª2wmvm and hence

v5va(]/]xa) in LvF0 , Noh and Hwang6,7 used several temporal gauge conditions. An arbitr
perturbational quantity in such gauge conditions has a unique corresponding gauge-invarian
bination of variables and thus is equivalently a gauge-invariant one.

In Refs. 6 and 7, before presenting the existence of gauge fixings, a complex separati
made ofWPW into scalar, vector, and tensor parts. It is use of this separation that enables
construct the mappingf : W/WL→Z explicitly. However, as noted already by Ellis an
Matravers,23 that separation is nonlocally defined24 and is in effect dependent on the backgrou
chosen. For example, the Bardeen formalism8 and the gauge ready method of Noh and Hwang6,7
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do not provide an explicable, mathematical framework for obtaining the mappingf : W/WL

→Z, unless supplemented by the extra conditiondabum50 that restricts the space–time geome
to Robertson–Walker universe models (dab50) or Bianchi type I cosmologies~dabÞ0 and
dabum50!. Consequently, in more general cases—such as almost-Bianchi type V universe m
~k521 anddabumÞ0!—we expect that the basic concepts, notions, and ideas are qualita
different,12,13 since an infinitesimal perturbation of the gravitational field cannot be written
linear combination of perturbations associated with individual spatial harmonics.

What these observations really entail, and why they are important, will be discussed in
III and IV.

III. GEOMETRICAL IDENTITIES FOR THE BASIC GAUGE-INVARIANT VARIABLES

A. Preliminaries

A systematic way of explicitly specifying the equivalence classes of perturbations is obt
by proceeding in the manner described in Sec. IV B of Ref. 1. First, we note that the g
invariant quantityĀ(x,W) is such alinear and local algebropartial differential operation onW
that, for each space–time pointx and each vector fieldv on X, the ‘‘gauge mode’’ perturbation
LvF0 of F0 can be added toW without the need of replacingĀ(x,W) by Ā(x,W1LvF0):

Ā~x,W!5Ā~x,W1LvF0!. ~3.1!

Because of this, the value ofĀ(•,W8) at xPX is independent of the choice ofW8P@W# and the
objectsA(x,@W#)ªĀ(x,W) define a ‘‘function’’ @W#°A(•,@W#) on the quotient spaceW/WL .
Here the most important examples ofx°A(x,@W#), which actually work and which provide th
mathematically simplest characterization of@W#PW/WL , are given by1

Dª$x,G,V,S,Va,Vab,Sab,Qp,Qq
pq ,V r

pq%. ~3.2!

According to Eqs.~4.8!–~4.14! of Ref. 1, we may view the sets$x,G,V,S% and$Qp,Qq
pq ,V r

pq% as
consisting ofscalargauge-invariant variables. Moreover, the gauge-invariant quantitiesVa, Vab,
andSab are, respectively, a spatial vector, a spatial symmetric two-tensor, and a spatial sym
trace-free two-tensor. Now, sincex vanishes identically,1 this gauge-invariant quantity will not be
significant to us in considering linearization about the universe models of Bianchi types I a
Latin indicesp, q, r , ... always take the values 1, 2, and 3. We do not adopt the Einstein
mation convention for repeated Latin indices inQq

pq . As a matter of notation and in accord wit
Banach’s usage of the variablesQq

pq and V r
pq ,1 we have the conditionpÞq for Qq

pq and the
conditionspÞq, rÞp, andrÞq for V r

pq ; also,V r
pq5V r

qp . It will be possible to formally include
these conditions by defining the new gauge-invariant variablesY r

pq andD r
pq as follows:~i! Y r

pq is
Qq

pq if r 5qÞp and is 0 otherwise and~ii ! D r
pq is V r

pq if pÞqÞrÞp and is 0 otherwise.
Similarly, we can extend the definition of scalar gauge-invariant quantitiesQp (p51,2,3) by
setting Qpq

ªQp if p5q and Qpq
ª0 if pÞq. Our basic reasons for using the trip

$Qpq,Y r
pq ,D r

pq% are twofold. First, it contains the same information as the triple$Qp,Qq
pq ,V r

pq%.
Second, it simplifies the presentation of the propagation and constraint equations forD ~see Secs.
III B and IV A !.

For eachWPW, consider the setw̄(•,W)ªD. Since w̄(•,W)5w̄(•,W1LvF0), the ele-
ments of this set are gauge-invariant variables. Clearly, it may be supposed that the o
w(@W#)ªw̄(•,W), WPW, define a function on the quotient spaceW/WL . Let D be a space
consisting ofw(@W#) for all @W#PW/WL . In accordance with what Banach said in Sec. IV C
Ref. 1, the linear mappingw: W/WL→D given by@W#°w(@W#) satisfies anatural conditionfor
the existence of a ‘‘coordinate system’’ onW/WL . Thus, for eachDPD there is just one@W#
PW/WL such thatD5w(@W#), and the mappingw: W/WL→D is one-to-one and on. Put some
what differently, one can introduce the inverse ofw, namely, w21: D→W/WL , by setting
w21(w(@W#))5@W#.
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The point of this discussion is that instead of concentrating on the definition ofZ,W and f :
W/WL→Z, with the unavoidable limitation that implies, we can directly construct a bijectionw:
W/WL→D in which the intersection ofD and W has no elements (DùW5B). For almost-
Bianchi type I universe models, it is of course possible to determineZ and f and thus to interpret
f +w21 as a one-to-one correspondence betweenD and Z. This is a precise statement of th
intuitively clear contention that the formalisms based uponf andw appear on an equal footing. I
fact, since the setsZ andD are equipotent~have the same cardinality!,25 we can choose either on
to suit the problem at hand. However, even if one does find a satisfactory specific gauge, th
at least two reasons for replacing (Z, f ) by (D,w). First, the construction of (D,w) is valid
independent of any harmonic analysis. Second, the dependence ofw̄(•,W) on WPW is local in
the following sense:1 the mappingx°W(x) is allowed to enter the definition ofw̄(x,W) only
throughW(x) and the covariant ‘‘space–time’’ derivatives ofW up to orderr (r<2) evaluated
at a pointxPX. On the contrary, as we have already pointed out, the transformationf is nonlo-
cally defined.

To complete our analysis of (W/WL ,D,w), note that the spaceD and the mappingw are not
uniquely determined. Once the existence ofw: W/WL→D is granted, we can obtain an infinit
number of ‘‘coordinate systems’’ onW/WL by making an infinite number of linear and local
invertible algebropartial differential operations onD. The pair (D,w) will be chosen depending on
the consequent mathematical simplification of the problem. A general study of alternative g
invariant variables and their physical interpretation are presented in Ref. 2. There, because
sometimes confusing statements in the literature, nontrivial and detailed comparisons with
work on linear perturbations in anisotropic background models are also made.

B. An intrinsic definition of the space D

As pointed out above, a functionw̄(•,•) from W to D is a linear map which assigns to eac
WPW an elementw̄(•,W)PD. The mathematical details of the construction ofw̄(•,•) are given
in Sec. IV B of Ref. 1@see especially Eqs.~4.8!, ~4.11!, and~4.15!#. It follows from this construc-
tion thatw̄(•,W) vanishes if and only ifW is a trivial, ‘‘gauge mode’’ perturbation ofF0 , i.e., if
and only if W equalsLvF0 for somev. Then w(@W#) is effectively w̄(•,W), and D can be
identified with the range set ofw̄(•,•). We call these statements the indirect definition ofD. In
another definition which is called the intrinsic definition, the spaceD can be obtained by deriving
a full system of the geometrical identities forD and without making any explicit or implicit
reference to the gauge-dependent perturbationsWPW and the mappingw̄(•,•): W→D.

To be specific about the calculation performed, and by way of digression, we will assum
the eigenframe$ l p

m% of dab and the objectsl m
p dual tol p

m have exactly the same meaning as in S
III of Ref. 1. Also, let us introduce the notation:

l pa
ªgabl b

p , l ap
ª l pa, ~3.3a!

l p+ l qªgabl p
al q

b , l p+ l q
ªgabl a

pl b
q , ~3.3b!

gW +QW ª(
p51

3

@~ l p
ml p

ngmn!Qp#. ~3.3c!

We use this convenient notation in Eqs.~3.4a!–~3.4i! below. Elementary inspection shows th
gW +QW is a scalar gauge-invariant variable.

As our presentation makes manifest,D is a function ofW. Symbolically, this function takes
the formD5w̄(•,W). Now, when we consider the manner in whichD depends onW @see Eqs.
~4.8! and ~4.11! in Banach’s paper1#, a nontrivial interpretation ofD5w̄(•,W) in terms of the
quasilinear, partial differential equations forD naturally arises. It is, of course, essential that t
be the case if linear perturbation theory is to avoid troubling questions associated with the
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of gauge, since gauge-dependent quantities, such as the infinitesimal perturbationW of F0 , have
physical meaning only to the extent that, in a particular gauge, they can be identified with g
independent quantities either exactly or approximately.8,11

Given all these preparatory remarks, it is only a matter of labor to prove that even ifY(W)
Þ0, the gauge-invariant variables inDPD automatically satisfy the following identities:

S ub
ab 5 1

6 gabSub , ~3.4a!

l s
aD r ua

pq 12l a
n l r

bl sub
a Dn

pq5~ l r
aYs

qp! ua12l n
al s

bl aub
p Y r

qn24l r
ml s

bl nub
a l a

(pQq)n
um14l a

pl s
bl m

q l r
n~d b

a g l
m

2g b
a d l

m !gnsSls ~s5pÞqÞrÞp, p not summed!, ~3.4b!

1

2
~ l s

aY r ua
pq 2 l r

aYs ua
qp !1 l a

q l r
bl s

mH l n
ng b

a F l num
m Ym

np1
2k

~R1!2 gmnQnpG2 l nub
a Qnp

umJ
2 l a

pl s
bl r

mH l n
ng b

a F l num
m Ym

nq1
2k

~R1!2 gmnQnqG2 l nub
a Qnq

umJ
1 l s

m~ l r
al n

bl aub
p Qnq! um2 l r

m~ l s
al n

bl aub
q Qnp! um12l a

pl b
q l r

ml s
n@~1/6! ~ga

ndb
m2da

ngb
m!S

1~gnsdb
m2dnsgb

m! Ssa2~gmsda
n2dmsga

n!Ssb#50

~s5pÞq5r , p andq not summed!, ~3.4c!

Q̇pq15HQpq12l a
pl r

bda
b Q rq5 l a

pl b
qVab ~q5p, p not summed!, ~3.4d!

Ḋ r
pq15HD r

pq5~ l r
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q Vbm! ua12~ l r+ l s! l a

(pl b
q)~ l m

n l m
b dam2 l nal m

mdb
m!Dn

sm22l s
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a l b
(pD r

q)s

~pÞqÞrÞp!, ~3.4e!

Ẏ r
pq15HY r

pq12l a
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bda
bY r

sq52 l r
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q l sua
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q Vbm
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1 l s
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p Qsq

~r 5qÞp, q not summed!, ~3.4f!
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2
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bQpq
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2
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aYq
pq! ua1
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~3.4g!
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pl b

q$Ṡab12HSab24dm
^aSb&m2 1

3 dabS2 1
6 @4l r um
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ml s

nQ rs
umn1~ l r

mYs
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2gmn~gW +QW ! umn#gab2 1
4 gamgbn~gW +QW ! umn1 1
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b ~ l s

nQ rs
un1Ys
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4 gab Qpq

uab2
1

2
l pa~ l r

bQqr
uba1Y r ua

qr !2
1

2
l pa
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~R1!2 Qpq
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l a
pl b

q@Ṡab12HSab2dm
(aSb)m2 1

4 gamgbn~gW +QW ! umn#

5 1
4 l ra @D r

pq1Y r
(pq)# ua2 1

4 l a(pY r ua
q)r 2 1

4 l r um
m l a(p@Ds

q)r l a
s 12 Q ub

q)s l s
bl a

r #

2 l r
bl a(p@ 1

2 Qq)r
uba2Ys

q)r l bua
s 1 1

4 Ds ub
q)r l a

s #1 1
4 l a(p

uaY r
q)r1 1

2 ~ l r+ l s!l sum
m D r

pq ~qÞp!.

~3.4i!

Here the parentheses enclosing italic indices denote symmetrization, so, for example,Y r
(pq)

ª

1
2 (Y r

pq1Y r
qp). As to l pun

m andl mun
p , by using the notation of Ref. 1, it is easy to verify that the

quantities are the spatially totally projected covariant derivatives ofl p
m and l m

p . Another observa-
tion is also in order. Because of the definitions of Sec. III A, we may interpretQp, Qpq, Y r

pq , and
D r

pq as thescalar gauge-invariant variables. Mathematically speaking, this means that the lo
case Latin indicesare not tensor indices. Nevertheless, in writing Eqs.~3.4a!–~3.4i!, we have
adopted the summation convention for such indices: if an italic index appears twice in the
term, once as a subscript and once as a superscript, the sign( will be omitted. Note that Eq.~3.4b!
is valid if and only if s5p, pÞq, pÞr , andqÞr . However, although indicess andp take the
same numerical values (s5p), we do not replace the symbols by the symbolp in order to
emphasize that the summation convention does not apply top whenp appears twice in Eq.~3.4b!.
Similar remarks hold for Eqs.~3.4c!, ~3.4d!, ~3.4f!, and ~3.4h!. Evidently, if k50, we have the
conditionsk/(R1)250, dabum50, l pun

m 50, and l mun
p 50. Thus it is clear that, in this case, man

terms do not appear in Eqs.~3.4! and this fact simplifies the analysis of these equations.
We verify that Eq.~3.4d! is equivalent to Eq.~4.14b! of Ref. 1. Moreover, on use of the

definition

Sabmn
ª2 1

3 Sgm[agb]n22gm[aSb]n12gn[aSb]m ~3.5!

which can be rearranged to the form~4.8e! given in Banach’s paper,1 there will follow the
differential equation forSabmn in place of Eq.~3.4a! for S andSab:

gmlgnsSabls
ut1gtlgmsSabls

un1gnlgtsSabls
um50. ~3.6!

Banach1 has already noted that if only Eq.~3.4d! and the algebraic conditions

x50, ~3.7a!

wmVm50, wmVma50, Vab5Vba, ~3.7b!

wmSma50, gmnSmn50, Sab5Sba, ~3.7c!

V r
pq5V r

qp ~3.7d!

are considered, then the total number of independent, not identically vanishing, ‘‘scalar func
in D is 26. One should use the number 26 under this understanding in the analysis of the
of Ref. 1. On the other hand, such an understanding is not enough for us to character
properties ofD completely, since they are also described in terms of Eqs.~3.4a!–~3.4c! and
~3.4e!–~3.4i! which must be solved before the true number of independent components ofD is
calculated.

Let us summarize the situation. First, it is worth pointing out that even in the case
Y(W)Þ0, Eqs.~3.4a!–~3.4i! are automatically fulfilled as a consequence of the fact thatD equals
w̄(•,W). Because of this, we call these equations thegeometrical identitiesfor D. They are valid
independent of the linearized field equations of Sec. II A. As regards theintrinsic definitionof D,
this amounts to sayingD belongs toD if and only if D is constrained to satisfy Eqs.~3.4a!–~3.4i!.
Once we completely specifyDPD, there is a unique@W#PW/WL such thatD5w(@W#). Equa-
tions ~3.4a!–~3.4i! form a full system of the geometrical identities forD. Not everyD will, of
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course, obey these equations. Thus, in order to set up a spaceD for our model, we must isolate
those that do. Keeping this remark in mind, one can now prove without difficulty thatD represents
@W#PW/WL via @W#5w21(D) if and only if the system of quasilinear, partial differenti
equations~3.4a!–~3.4i! is obeyed. Under these circumstances, the quantitiesx, G, V, S, Va, Vab,
Sab, Qp, Qq

pq , andV r
pq in D define a complete set of basic gauge-invariant variables.

C. Consistency of the geometrical identities

Note that, just as in the case of the so-called quasi-Maxwellian approach to linear pertur
theory,9,10,26the full set of geometrical identitities forD consists of two structurally different parts
the propagation equations~3.4d!–~3.4i! ~involving time derivatives of the basic gauge-invaria
variables! and the constraint equations~3.4a!–~3.4c! ~involving only their spatial derivatives!. An
important issue arising is the consistency of these equations. In order to prove that the
equations~3.4a!–~3.4i! are consistent, it must be shown that the constraint equations~3.4a!–~3.4c!
are preserved in time along the fluid flow lines. Consider, for example, the constraint eq
~3.4a!, say C1. One can take the time derivative of this equation and then, using the commu
relations for time and space derivatives where necessary, substitute for all the time deriv
occurring from the propagation equations~3.4g!–~3.4i!. The result will be a new constraint equa
tion, say C2, because all the time derivatives have been eliminated. Now, it may be that
identically satisfied. Then the constraint C1 is preserved in time. On the other hand, C2 co
a genuinely new equation. In this case, by taking the time derivative of C2, one obtains a f
constraint equation C3. This in turn may be identically satisfied, or may be a further cons
equation that has to be satisfied in a nontrivial way. If too many nontrivial constraints arise i
way, one will have proved that the set of Eqs.~3.4a!–~3.4i! is inconsistent.

However, once the basic gauge-invariant variables are obtained from Eqs.~4.8! and~4.11! of
Ref. 1 andD is identified withw̄(•,W), the geometrical identities are automatically obeyed, a
vice versa. The vice versa means that any solution forD of Eqs. ~3.4a!–~3.4i! is expressible as
D5w̄(•,W). Thus though Eqs.~3.4a!–~3.4i! are not, as they stand, a relation betweenD andW,
they can naturally be so interpreted. In the light of these observations, the set of geom
identitities above is bothcompleteand consistent: that is, the time derivative of each constrai
equation is identically satisfied as a consequence of the other equations that hold. For the
lar constraint equation~3.4a!, we find, from the relations~3.4g!–~3.4i!, that

~Sab
ub2 1

6 gabSub!•523H~Sab
ub2 1

6 gabSub!, ~3.8!

so this equation is preserved in time. Indeed, what is remarkable about this kind of situation
the propagation equations for the constraint quantitiesCa

ªSab
ub2 1

6 gabSub are just ODE (Ċa

523HCa). Setting Cp
ª l a

pCa, we find from Ċa523HCa, l̇ a
p52Hl a

p2db
al b

p , and Ca

5 l p
aCp that

Ċp52Ap
qCq, ~3.9!

whereAp
qª l a

pl q
b(4Hga

b1da
b). For pÞq, this definition ofAp

q implies Ap
q50. One possible

way to determine the evolution ofCp ~and henceCa! is simply to integrate Eq.~3.9! from the time
t0 to the timet. It follows that, if Aª@Ap

q# is the 3-matrix andC(t0) is the initial value of a
3-vectorCª(Cp), it will always be possible to obtain a formula of the form

C~ t !5expF2E
t0

t

A~t!dtGC~ t0!. ~3.10!

Consequently, if the constraintsCp50 are satisfied at one time and the evolution equati
~3.4g!–~3.4i! are satisfied at all times, then the constraintsCp50 are satisfied at all times, as
should be. Similarly, we can check the consistency of Eqs.~3.4b! and~3.4c!, since the propagation
equations for the corresponding constraint quantities are again ODE.
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However, there is indeed one minor technical problem that should be mentioned. In or
examine the plausibility of all this, we must first show that Eqs.~3.4b! and~3.4c! are preserved in
time and then,using these results, derive Eq.~3.9! for Cp. This order of analyzing the propagatio
equations for the constraint quantities, while mathematically unavoidable, does not mak
substantial difference to our considerations above. In other words, the basic conclusion t
constraints~3.4a!–~3.4c! are satisfied at all times if they are satisfied at one time and the evolu
equations~3.4d!–~3.4i! are satisfied at all times comes through essentially unscathed. By w
digression, here we are certainly not requiring thatDPD obeys Eqs.~4.1! below or thatWPW is
such thatY(W)50.

Now, the most important observation should be quite clear: if a set of initial data is found
satisfies the required initial conditions~the set of constraint equations!, these conditions will hold
at all later times. This is, of course, known to be a property of the full Einstein equations, be
of the contracted Bianchi identitities and the conservation of energy and momentum.26,27 The
linearized field equations derived here and in Sec. IV A are consistent in that they preserv
property.

IV. PERTURBATION EQUATIONS IN GAUGE-INVARIANT VARIABLES

A. An explicit form of equations and the question of closure

The object now is to derive the further propagation and constraint equations obeyedD.
Their derivation will be possible because the following theorem holds.

Theorem: In linear perturbation theory, every quasilinear, partial differential equation foW
is gauge invariant and can be written in a manifestly gauge-invariant form.

Sketch of the proof:Within the framework here set up, the general equation governing in
tesimal perturbations is given by Lop(W)50, where Lop is a linear differential space–tim
operator acting onW. As noted already, the solutions of the linearized field equations are un
only up to an ‘‘infinitesimal diffeomorphism,’’ and clearlyW satisfies the condition Lop(W)
50 if and only if W1LvF0 does. Combining this property of Lop(W) with the obvious fact that
Lop(W)50 for W50, we easily conclude that Lop(LvFv)50. Thus Lop(W1LvF0)5Lop(W)
and Lop(W) is a gauge-invariant quantity. This conclusion is valid even in the case w
Y(W)Þ0, i.e., whenW does not satisfy Eqs.~2.9a!–~2.9e!. Hence, to complete the proof,
suffices to show that there exists a linear local operator Lop(gi) such that Lop(W) equals
Lop(gi)(D). However, since the quantity Lop(W) is gauge invariant, the existence of Lop(gi)(D)
follows naturally from an analysis of the results in Banach’s paper.2 According to these results
any gauge-invariant quantity with respect to a Bianchi type I or type V background mod
obtainable linearly from the basic variablesD through purely local~i.e., algebraic and differential!
operations.

Given the above theorem, it should be clear what Eqs.~2.9! and ~2.10! really are: these are
basic gauge-invariant equations which may be re-expressed in a manifestly gauge-invarian
Indeed, after a fair amount of algebra, using the definition ofD,1 we find that

gW +QW 50, ~4.1a!

Fe01L2
3k

~R1!2GV1
1

3 S Va
ua2

1

2H
da

bVb
uaD2

1

4
~dW +QW !2

1

2
S5

1

2
T0eTG, ~4.1b!

Yq
pq1 l q

aQpq
ua2

3

2
l qua
a Qpq5 l a

pH 1

3H
~gabVm

ubm2gbmVa
ubm!22~dab22Hgab!V ub

1
2

3H Fe01p02
2k

~R1!2GVaJ , ~4.1c!
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Vab522H 1

H F S p01
k

~R1!2 2L DV1
2

9 S 12
3ṗ0

2ė0
DVm

um1
1

18H
dm

nVn
um

2
1

3~e01p0!
T0pT gmnG umn2

1

4
~dW +QW !1

1

6
S2

1

2
T0pTG Gdab22Sab

2
1

3H F2 dm^a2S 11
3ṗ0

ė0
DHgm^aGVb&

um1
2

3H
~dab

um2gn^adb&
mun!Vm

1
1

e01p0
T0pTgm^agb&nG umnJ , ~4.1d!

HV̇1FL2p02
k

~R1!2GV1
1

9 S 11
3ṗ0

ė0
DVa

ua2
1

18H
da

b Vb
ua

1
1

3~e01p0!
T0pT gabG uab1

1

4
~dW +QW !2

1

6
S52

1

2
T0pTG, ~4.1e!

V̇a1S H2
Ḣ

H
DVa1d b

a Vb13Hgab V ub5
1

e01p0
~3HT0pTgabG ub2 ṗ0Va!, ~4.1f!

~T0eTG!•13HT0 ~eT1pT!G50, ~4.1g!

where

dW +QW ª l p
ml q

n dmnQpq. ~4.2!

Again, in writing these propagation and constraint equations forD, we have adopted the summa
tion convention for repeated italic and greek indices. At this point, it is obvious that we
returned to the results of Sec. II A but are freed from the reliance on the infinitesimal perturb
W. With regard to their origins, Eqs.~4.1a!–~4.1g! can be interpreted as the gauge-invaria
versions of Eqs.~2.9e!, ~2.9a!, ~2.9c!, ~2.9d!, ~2.9b!, ~2.10b!, and ~2.10a!, respectively. The for-

mula ~4.1d! is interesting in that, due to the absence ofV̇ab in Eqs. ~3.4! and ~4.1!, it will be
possible to extractVab from G, V, S, Va, Sab, andQp in a unique way. Thus this formula, whic
gives a zero value for the spatial trace ofVab (gabVab50), is not a constraint equation. The
conclusion is as follows: without encountering any internal contradiction, we can always as
the validity of Eq.~4.1d! at all space–time points.

Mathematically, from the viewpoint of this discussion, the unknowns in Eqs.~4.1e!–~4.1g! are
G, V, andVa. However, these evolution equations form an open set, since they are coupled
propagation equations forS and Qp which in turn are coupled to the propagation equations
Sab, Qq

pq , andV r
pq . For this reason, the aforementioned set of equations must be suitably c

by means of accurate ‘‘closure’’ relations. The only satisfactory~i.e., exact! way of closing the
open hierarchy of evolution equations~4.1e!–~4.1g! is to use the geometrical identities of Se
III B, namely, Eqs.~3.4d!–~3.4i!. We will further examine the closure problem when the constra
equations~3.4a!–~3.4c! and ~4.1a!–~4.1c! are analyzed below.

B. Comments on the constraint equations

Although the condition~4.1d! and the propagation equations~3.4d!–~3.4i! and ~4.1e!–~4.1g!
form a closed set of equations, as elementary inspection shows, we still have to check t
constraint equations~4.1a!–~4.1c! are consistent with these equations. That is to say we der
the conditions~4.1a!–~4.1c! from Eqs.~2.9e!, ~2.9a!, and~2.9c! by observing thatD was defined
as in Ref. 1. We now have to verify that the solution that the propagation equations~3.4d!–~3.4i!
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and ~4.1e!–~4.1g! give rise to does indeed have this property. To do this, first differentiategW +QW

with respect to time and then substitute forQ̇pq from the geometrical identity~3.4d!. This gives an
equation of the form

~gW +QW !•5gabVab2H~gW +QW !. ~4.3!

SincegW +QW can be set equal to zero at the initial time andgab Vab vanishes at all times@see Eqs.
~4.1a! and ~4.1d!#, one can use the above formula for (gW +QW )• to show thatgW +QW will vanish
everywhere if it is zero on the initial Cauchy surface. Applying the similar procedurefirst to the
constraint~4.1c! andthento the constraint~4.1b!, we find, using the propagation equations forD,
that these two constraints are also preserved in time. This is exactly the same result as in t
of Eqs. ~3.4a!–~3.4c!, so that the full set of linear equations derived here and in Sec. I
consistent. Mathematically, in order to see how the propagation equations for the constrain
tities reduce to ODE, we must propose a specific way of numerical ordering of Eqs.~3.4a!–~3.4c!
and~4.1a!–~4.1c!. This may seem an odd thing to do, but it is perfectly legitimate. However, s
all these matters are not altogether trivial or immediate, they will be treated in a separate

To sum up, the constraint equations~3.4a!–~3.4c! and~4.1a!–~4.1c!, the condition~4.1d!, and
the propagation equations~3.4d!–~3.4i! and ~4.1e!–~4.1g! provide a completegauge-invariant
framework for studying the time development of infinitesimal perturbations in an almost-Bia
type I or type V universe filled with a nonbarotropic perfect fluid. This analysis also pres
strong hints that an explicit description of the equivalence classes of perturbations by meanD
may be deeply involved in any fundamental conceptual derivation of the closed set of evo
equations.

V. FINAL REMARKS

Given the viewpoint adopted here and in Refs. 1 and 2, the other way to formulat
mathematical theory of cosmological perturbations is to use gauge-independent harmonic
tudes, such as, for example, in the important work by Bardeen8,28 that carefully examined the
changes in amplitudes as the gauge is varied, and hence identified linear combinations o
amplitudes that are gauge independent. The Bardeen line of analysis was completed succ
by Tomita and Den,3 Den,4,5 Noh and Hwang,6,7 Hwang,11 Hwang and Noh,29 and Noh30,31for the
special cases of a fixed background Robertson–Walker space–time (k50,61) and an almost-
Bianchi type I universe model (k50). An alternative gauge-invariant method of Ellis and Brun10

uses a covariant 113 splitting of space–time to define covariant and gauge-invariant tens
variables with a clear physical meaning; this has also been developed in depth to study gro
inhomogeneities and cosmic background radiation anisotropies. References 9, 26, and 3
selection of the more important comprehensive treatments. In the authors’ opinion, it is far
to use one of these three gauge-invariant approaches—namely, the coordinate-based n
method of Bardeen,8 the covariant geometric theory of Ellis and Bruni,10 or the new formalism of
Banach1,2 and Banach and Piekarski12,13 for an explicit description of the equivalence classes
perturbations—than a gauge-dependent one. Whether this is done or not, one of the crucial
of application of general relativity to cosmology is being fully aware of this problem, and tack
it in a clear and unambiguous way. See Ellis’ major paper33 for a further motivation for these
statements.

In concluding this series of papers,1,2 it may be useful to point out some of the advantages
our method over the usual approaches.8,10Most important among these are~i! the unified treatment
of linear perturbations in cosmologies of Bianchi types I and V,~ii ! the systematic introduction o
concepts independent of any harmonic analysis,~iii ! the precise definition of a complete set
basic gauge-invariant variables, and~iv! the natural derivation of the closed hierarchy of prop
gation and constraint equations. LetE be the set consisting of covariant and gauge-invari
tensorial variables.2 Within the framework of a geometric formalism of Ellis and Bruni,10 these
variables are exact and meaningful in any space–time but are such that their values in the
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ground vanish. The covariant and gauge-invariant tensorial variables can be easily identi
perturbing a Robertson–Walker universe model, and the covariant extension to a homog
anisotropic Bianchi type I or type V space–time is also very straightforward. The issue of h
obtain the tractable differential equations forE has been raised and discussed in the literature~see,
in particular, the paper by Dunsby9!, although it seems clear that a generalization of the defini
and meaning of the usual notion of a gauge-invariant variable will be essential for this issue
resolved.12,13As noted already in Ref. 2, since the acceptance ofE as a basic object in place ofD
would involve the sacrifice of some information originally contained inD, if we try to compute the
time and space derivatives ofE, the resulting propagation and constraint equations will form
openset. The method of this and the companion papers1,2 resulted from a detailed investigation o
a broader class of gauge-invariant variables. Initially, the motivation was to develop a syste
procedure for representing the equivalence classes of perturbations. This program was star
a consideration of perturbations in homogeneous, isotropic cosmological models.34,35 Later, ap-
propriate procedures were developed for constructingD for a background de Sitter space–time13

and a Bianchi type I or type V universe model.1,2 The success in solving this large number
diverse examples and in closing the aforementioned, open set of equations may be take
indication of the usefulness of our approach.

Of course, for any serious calculations, the final development will of necessity be num
because of the number of basic gauge-invariant variables involved and the complexity o
interactions. As a matter of fact, except for some particularly simple situations@e.g., the back-
ground spatial curvature is negligible~Bianchi type I space–times!, the metric is axially symmet-
ric in both the background and the perturbed model, the ratio of pressure to energy den
independent of time, etc.#, we may be no longer able to analyze the propagation and cons
equations analytically. Thus a numerical approach to Eqs.~3.4! and ~4.1! would obviously be
welcome. One of our hopes is that our results may stimulate and encourage such a se
analogy with the case of the much simpler problem in the Noh–Hwang model,6 where the nu-
merical methods were successfully developed.30,31
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Isotropization of two-component fluids
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We consider the problem of late-time isotropization in spatially homogeneous but
anisotropic cosmological models when the source of the gravitational field consists
of two noninteracting perfect fluids—one tilted and one nontilted. In particular, we
study irrotational Bianchi type V models. By introducing appropriate dimensionless
variables, a full global understanding of the state space of the gravitational field
equations becomes possible. The issue of isotropization can then be addressed in a
simple fashion. We also discuss implications for the cosmic ‘‘no-hair’’ theorem for
Bianchi models when part of the source is a tilted fluid. ©2000 American Insti-
tute of Physics.@S0022-2488~00!02110-1#

I. INTRODUCTION

Since the Bianchi models were introduced into cosmology,1,2 they have been the most studie
generalizations of the spatially homogeneous and isotropic Friedmann–Lemaıˆtre ~FL! models. The
Bianchi models are spatially homogeneous but anisotropic, and thus well suited for studyi
effects of anisotropic expansion on the evolution of the universe. The complexity of a Bi
model is determined by its three-dimensional symmetry groupG3 , in conjunction with the chosen
matter model. Since the present universe seems to be very well described by a FL model, o
interest is models that can be ‘‘close to a FL model’’ at late times. In this paper we will restric
consideration to models that may approach the open FL model at late times. Within the c
Bianchi models, only models of Bianchi type V and VIIh can possibly have this behavior~see
Collins and Hawking3!. This follows since the open FL metric admits aG3 of these particular
Bianchi types. Here we will focus on the type V models. The notion of a model approaching
model at late times is often referred to as late-time isotropization.

As regards the matter description, most studies of Bianchi cosmologies use nontilted b
pic perfect fluids with a linear equation of state. The book by Wainwright and Ellis4 is basically
devoted to such models. In the so-called nontilted models, the fluid four-velocity is ortho
to the orbits of the isometry groupG3 . Models in which the four-velocity of the fluid
is not orthogonal to the group orbits are referred to as tilted, and were introduce
King and Ellis.5 These models have been studied by, for example, Collins and Ellis,5 Hewitt
and Wainwright,6 and Harnett.7 Since the nontilted models are a subset of the tilted models,
latter can be viewed as simple generalizations of the former. Another generalization of no
models is achieved by allowing the source of the gravitational field to be a combinatio
two noninteracting, nontilted perfect fluids. Since these models can take into account b
radiation-dominated as well as a matter-dominated epoch of the universe, they may be con
as more physically relevant than single-fluid models. The qualitative behavior of two-fluid m
were studied by Coley and Wainwright8 who showed that the models are dominated at early tim

a!Electronic mail: goliath@physto.se
b!Electronic mail: ulfn@physto.se
69060022-2488/2000/41(10)/6906/12/$17.00 © 2000 American Institute of Physics
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by the stiffer fluid, and at late times by the softer fluid. This is the expected behavior of a uni
filled with radiation and dust.

The next step is to allow one of the fluids in a two-fluid model to be tilted, and subseque
to let both fluids be tilted. Since the dynamics of models containing tilted fluids is more diffi
to analyze than that of nontilted models, we will consider the combination of one nontilted
one tilted fluid. The nontilted fluid is by definition irrotational, but tilted fluids can rotate.
chose, however, to consider the subset of irrotational tilted fluids~for a discussion of genera
single-fluid Bianchi type V models, see Harnett7!. We are thus focusing on the subclass of irr
tational Bianchi type V models. Both fluids are assumed to satisfy linear barotropic equatio
state,

po5~go21!mo , ~1.1a!

pt5~g t21!m t , ~1.1b!

wherepo,t are the pressures of the fluids,mo,t the energy densities, andgo,t are constants tha
satisfy 0<go,t<2 with goÞg t . We exclude, however, the specific values 2/3 and 2 since t
models behave qualitatively different. The indiceso and t refer to the orthogonal and the tilte
fluid, respectively, and will be used throughout the paper. We will also assume that the e
densities are non-negative, i.e.,

mo>0, ~1.2a!

m t>0. ~1.2b!

To discuss isotropization in detail, we need a well-defined notion of when a model is ‘‘c
to a FL model.’’ For models with a single nontilted fluid, a vanishing fluid shear defines th
models~see, for example, Sec. 2.4 in Ref. 4!. It is, however, not sufficient to demand that the flu
shear itself should approach zero at late times, since this will occur inany single-fluid Bianchi
model, irrespectively of whether the model isotropizes or not. As realized already by Kristia
Sachs,9 the appropriate quantity to consider is the dimensionless ratio formed by normalizin
fluid shear with the fluid expansion, the so-called dimensionless shear. It measures the dyn
importance of the shear compared to the expansion of the fluid. Since there are now two
present, the notion of isotropization at late times needs to be generalized as follows. We s
a two-fluid model isotropizes at late times if the dimensionless shear ofboth fluids vanish in this
limit. This issue was partially addressed by Goliath and Ellis,10 who considered models with
tilted fluid and a nonzero cosmological constant. Such models are contained within the m
studied in this paper if we setgo equal to zero. We will comment on aspects of the behavio
these models that were not addressed in Ref. 10. In general, vanishing dimensionless she
sufficient for a model to isotropize, since models can be Weyl-dominated in the future, as
case for Bianchi type VII0 and Bianchi type VIII models.11 However, for Bianchi type V this is no
the case.7

The plan of the paper is as follows. In Sec. II, the field equations are rewritten as a first
system of autonomous ordinary differential equations. Reduced dimensionless variables a
introduced leading to a compact state space. In Sec. III we perform a local analysis of the s
of equations. In Sec. IV, Bianchi type I and type V models with two orthogonal fluids are stu
while the locally rotationally symmetric type V models are considered in Sec. V. The questi
isotropization is discussed in detail. We end with a discussion in Sec. VI. In Appendix A
kinematical properties of both fluids are given. The relationship to the variables used in Re
discussed in Appendix B. We use units such thatc58pG51. Orthonormal frame indices ar
denoted by latin lettersa, b, ... .
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II. THE GRAVITATIONAL FIELD EQUATIONS

The line element for the irrotational Bianchi type V models can be written

ds252dt21D1~ t !2 dx21e22x@D2~ t !2 dy21D3~ t !2 dz2# ~2.1!

~see, for example, Ellis and MacCallum12!. In the models we consider there are two preferr
timelike congruences. First we have the congruence associated with the normal to the
symmetry surfaces, which is also, by definition, the congruence of the four-velocity of the
tilted fluid, uo

a . The time variablet in ~2.1! is chosen so that the normal to the symmetry surfa
is ]/]t. The other preferred congruence is that of the tilted fluid. The specific form of the
element, Eq.~2.1!, guarantees that this fluid is irrotational. Hence, the four-velocity of this fl
ut

a , is constrained by the field equations to be of a particular form, and can convenien
parametrized in terms of the so-calledtilt variable v according to

ut
a5G~1,v,0,0!, G5~12v2!21/2, ~2.2!

where the valuev50 corresponds to a nontilted fluid. The energy-momentum tensor of each
is

To
ab5@gouo

auo
b1~go21!hab#mo , ~2.3a!

Tt
ab5@g tut

aut
b1~g t21!hab#m t . ~2.3b!

The assumption that the two fluids are noninteracting leads to equations of motion of the f

¹aTo
ab505¹aTt

ab . ~2.4!

We choose to parametrize the gravitational field using the expansion,u, and the nonvanishing
components of the shear-tensors6 , of the normal congruence~and thus of the nontilted fluid!.
They are given by

u5
d

dt
ln~D1D2D3!, s152

1

2

d

dt
lnS D1

2

D2D3
D , s25

)

2

d

dt
lnS D2

D3
D . ~2.5!

The expansion and shear of the tilted fluid can be written as functions of these variable
Appendix A. The gravitational field equations,

Gab5To
ab1Tt

ab , ~2.6!

and the equations of motion of the fluids, Eq.~2.4!, become
Evolution equations.

u̇52 1
3 u22 2

3 ~s1
2 1s2

2 !2 1
2 ~3go22!mo2

1

2

~3g t22!1~22g t!v
2

11~g t21!v2 mn , ~2.7a!

ṡ152~u22vB1!s1 , ~2.7b!

ṡ252us2 , ~2.7c!

Ḃ152 1
3 ~u22s1!B1 , ~2.7d!

v̇5
v~12v2!

3@12~g t21!v2#
@2s11~3g t24!u26~g t21!B1v#, ~2.7e!
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ṁo52goumo . ~2.7f!

Constraint equation.

05g tvmn12~11~g t21!v2!B1s1 . ~2.7g!

Defining equation formn .

3mn5u22s1
2 2s2

2 29B1
223mo , ~2.7h!

where we have introduced

B15D1
21, ~2.8a!

mn5
11~g t21!v2

12v2 m t , ~2.8b!

and a dot denotes differentiation with respect tot.
From the form of Eq.~2.7h!, it is now clear why our choice of variables is a good one. T

assumption in Eq.~1.2!, in conjunction with Eq.~2.7h! and Eq.~2.8b!, implies thatu cannot
change sign. Therefore we can, without loss of generality, assume thatu>0, i.e., we restrict
ourselves to expanding models. From Eq.~2.7h! it also follows thatu is a dominant quantity. We
then introduce bounded dimensionless ‘‘u-normalized’’ variables for which the system of equ
tions ~2.7!, is reduced as far as possible, and for which the state space is compact. These va
are defined by

S65
s6

u
, A5

3B1

u
, Vo5

3mo

u2 , Vn5
3mn

u2 . ~2.9!

The subsequent introduction of a dimensionless time variablet, which satisfies

dt

dt
5

u

3
, ~2.10!

leads to a decoupling of theu equation, which can be written in the form

u852~11q!u, q5222A22
3~22go!

2
Vo2

3~22g t!1~5g t26!v2

2@11~g t21!v2#
Vn , ~2.11!

where the prime denotes differentiation with respect tot. The parameterq is the deceleration
parameter associated with the normal congruence and the nontilted fluid. The remaining eq
can now be written in dimensionless form as follows.

Evolution equations.

S18 52~22q22Av !S1 , ~2.12a!

S28 52~22q!S2 , ~2.12b!

A85~q12S1!A, ~2.12c!

v85
v~12v2!

12~g t21!v2 @2S113g t2422~g t21!Av#, ~2.12d!

Vo85@2q2~3go22!#Vo . ~2.12e!
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Constraint equation.

05g tvVn12@11~g t21!v2#AS1 . ~2.12f!

Defining equation forVn .

Vn512S1
2 2S2

2 2A22Vo . ~2.12g!

The set of equations~2.12! shows that the irrotational Bianchi type V models with o
orthogonal and one tilted fluid is governed by a system of five autonomous ordinary differ
equations subject to one constraint. The dimension of the state space is thus four. The set~2.12! is
invariant under the discrete transformations

~S1 ,S2 ,A,v,Vo!→~S1 ,S2 ,2A,2v,Vo!,

~S1 ,S2 ,A,v,Vo!→~S1 ,2S2 ,A,v,Vo!, ~2.13!

so we can, without loss of generality, restrict ourselves to the invariant set defined byA>0 and
S2>0. The variablesS1 , S2 , A, v, andVo therefore satisfy 0<S1

2 ,S2 ,A,v2,Vo<1. There is
a number of important subsets of Eqs.~2.12!:

~i! The three-dimensional subset defined byv50, which describes a Bianchi type V univers
with two nontilted fluids. This case is thus included in the general study of Coley
Wainwright.8 We will, however, consider these models in Sec. IV for the purpose
comparison with the models where one fluid is tilted. The subsetv50 also contains
Bianchi type I models and the open FL model as special cases.

~ii ! The three-dimensional subsetS250, which corresponds to locally rotationally symmetr
~LRS! models~see, for example, Ref. 13!. This subset turns out to be very important for t
evolution of the general irrotational type V models and will be considered in detail in
V.

The next step in the analysis is to consider the equilibrium points of Eq.~2.12!. This is done
in the next section.

TABLE I. Equilibrium points for the irrotational Bianchi type V models with one orthogonal and one tilted perfect fl
Unless indicated, all equilibrium points and sets are in the physical part of state space for 0<go,t,2, go,tÞ2/3.

S1 S2 A v Vo Restrictions

Ft
0 0 0 0 0 0

Fo
0 0 0 0 0 1

M0 0 0 1 0 0
K0 S1

2 1S2
2 51 0 0 0

M̃ 0 0 1
3gt24

2~gt21!
0 6

5,g t,2

C6
2

1
2(3g t24) 6

1
2 3A3(22g t)(3g t22) 0 v 0

Fo
v 0 0 0 v 1 g t5

4
3

Fo
6 0 0 061 1

M 6 0 0 1 61 0
K6 S1

2 1S2
2 51 0 61 0

H 211A 0 A 1 0
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III. QUALITATIVE ANALYSIS

In Table I, we present the equilibrium points of the system~2.12!. The corresponding eigen
values are given in Table II. Since the constraint, Eq.~2.12f!, cannot be solved globally in an
analytic way, it will be treated locally~see, for example, Ref. 6!.

Some of the equilibrium points correspond to exact solutions of the field equations
example, the equilibrium pointsFt

0 andFo
0 correspond to flat FL models in which the tilted flu

and the nontilted fluid is dominant, respectively~the ‘‘tilted’’ fluid is in fact nontilted atFt
0 since

v50, but we refer to it as the tilted fluid for simplicity!. The pointM0 is the Milne model, while
the equilibrium setK0 corresponds to Kasner-type models. The pointM̃ corresponds to flat spac
and coincides withM0 for g t54/3. We also note the appearance of the equilibrium setFo

v for the
specific valueg t5

4
3. It is associated with a line bifurcation that transfers stability between

equilibrium pointsFo
6 andFo

0. The pointsC6 correspond to particular Kasner solutions. There
also a number of equilibrium points for which the tilt is extreme (v251). Whether these equi
librium points correspond to exact Bianchi solutions or not seems to be an open questio~see
comment on p. 4245 in Ref. 6!. We note that the constraint, Eq.~2.12f!, is degenerate (“G
50) at the pointFo

0, allowing all five eigenvector directions to be physical at this point.

IV. TWO ORTHOGONAL FLUIDS

Settingv50 in the constraint Eq.~2.12f!, implies eitherA50, S1Þ0 ~Bianchi type I models!
or S150, AÞ0 ~Bianchi type V models!. Without loss of generality we can assume thatg t

.go . The boundary subsets of the state space for these two classes of models are given
two invariant submanifoldsVo50 andVn50, which describe the corresponding one-fluid mo
els. The dynamics of the Bianchi I state space is shown in Fig. 1, while the dynamics of the
V models are shown in Fig. 2.

For type I models there are two sources. The equilibrium pointFt
0 gives rise to a single orbi

ending atFo
0. It corresponds to a flat Friedmann model with two orthogonal fluids. The o

source is the equilibrium setK0, of which each point is associated with a one-parameter se
orbits. Therefore this equilibrium set describes the generic behavior at early times. The
attractor of these orbits is the pointFo

0. Thus, from Eqs.~A3! and ~A9!, all orthogonal two-fluid
Bianchi type I models isotropize.

TABLE II. Eigenvalues for the equilibrium points of the irrotational Bianchi type V models, with one orthogonal and
tilted perfect fluid.

Eigenvalues Elim.

Ft
0

2
3
2 (22g t) 2

3
2 (22g t)

1
2 (3g t22) 3(g t2go) v

Fo
0

2
3
2 (22go) 2

3
2 (22go) 1

2 (3go22) 3g t24 23(g t2go) —

M0 22 2(3g t22) 3g t24 2(3go22) S1

K0 0 3(22g t) 2S113g t24 3(22go) A

M̃ 22
2

22gt

gt21
2

~3gt24!~5gt26!

~gt21!~9gt210!

2(3go22) S1

C6 3(22g t) 0 0 3(22go) A
Fo

v
2

3
2 (22go) 2

3
2 (22go) 1

2 (3go22) 0 Vo

Fo
6

2
3
2 (22go) 2

3
2 (22go) 1

2 (3go22)
2

2~3gt24!

22gt

Vo

M 1 22 0 2 2(3go22) S1

M 2 22 24
2

2~5gt26!

22gt

2(3go22) S1

K6 2(11S1) 0
2

2

22gt
@2S11~3gt24!#

3(22go) A

H 0 22(11S1) 2(122S1) 2(4S113go22) A
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For type V models there are three sources. The equilibrium pointFt
0 is associated with a

one-parameter set of orbits~characterized byS250!, which corresponds to open Friedman
models with two orthogonal fluids. They all end at the equilibrium pointM0. The other two
sources are the two equilibrium points belonging to the setK0 with S2561. Both of these are
associated with two-parameter sets of orbits, and thus describe the generic early-time be

FIG. 1. The state space of two-fluid orthogonal Bianchi type I models with the choiceg t.go . The bottom and the
‘‘dome’’ correspond to one-fluid models.

FIG. 2. The state space of two-fluid orthogonal Bianchi type V models with the choiceg t.go . The bottom and ‘‘dome’’
correspond to type V one-fluid models.
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They are further attracted toM0. Consequently, from Eqs.~A3! and~A9!, all orthogonal two-fluid
Bianchi type V models isotropize.

From the analysis of the orthogonal two-fluid models, it is clear that the generic behav
described by equilibrium points associated with two-parameter sets. Thus, in what follows, w
focus on such equilibrium points. Note that the variablex of Coley and Wainwright8 ~see Appen-
dix B! is a monotone function when both the fluids are orthogonal. This is no longer the case
one of the fluids is tilted.

V. BIANCHI TYPE V LRS MODELS WITH ONE TILTED AND ONE ORTHOGONAL FLUID

As Bianchi type I models do not allow the combination of one nontilted and one tilted flu
a source due to the constraint Eq.~2.12f!, we focus on the Bianchi type V models. SinceVo ,
Vn.0 imply q,2 by Eq.~2.11!, the evolution equation forS2 implies thatS2 is a monotone
decreasing function along all orbits withS2>0 andVo , Vn.0. This fact significantly restricts
the evolution at late times. It implies that limt→` S250, for all orbits withVo , Vn.0. This can

FIG. 3. The state space of Bianchi type V LRS models when with 2/3,go,g t<6/5.

FIG. 4. The state space of Bianchi type V LRS models submanifold wheng t.go with 2/3,go,4/3 and 6/5,g t,4/3.
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be proven along the lines used to prove the similar statement for tilted single-fluid model
Ref. 6. The asymptotic behavior ast→` is thus contained in the three-dimensional invariant
S250 corresponding to the LRS models.

The three Kasner circlesK0 and K6 each reduce to two equilibrium points in the LR
submanifold, namely points for whichS1561. We denote these equilibrium pointsK6

0 , K6
1 ,

andK6
2 , where the subscript distinguishes between the two signs ofS1 . The equilibrium points

for which v andS1 have the same sign~collectively denotedK6
6! are not located on the boundar

of the interior of the LRS submanifold. Consequently, we do not need to consider them
studying the dynamics.

The state space for the LRS submanifold with 2/3,go,g t,2 is presented in Figs. 3–6. Th
effect of changing the equation-of-state parameters so thatgo.g t is that the flow along the orbi
betweenFo

0 andFt
0 is reversed. Similarly, 0<go,2/3 results in a stability change along the orb

from the equilibrium pointsFo* to M* , where* P$0,1,2%. Note that the special casego50

FIG. 5. The state space of Bianchi type V LRS models wheng t54/3 and 2/3,go,4/3.

FIG. 6. The state space of Bianchi type V LRS models wheng t.go with 2/3,go,2 and 4/3,g t,2.
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corresponds to a cosmological constant. Consequently, the LRS state space for 0<go,2/3 is
contained in Figs. 9–11 of Ref. 10. Finally, if 0<g t,2/3 the flow changes along the orbitsFt

0

2M0 andK1
0 2K1

2 .
The sources and sinks for various equations of state are summarized in Table III. The

pization properties, which can be found from Eqs.~A3! and~A6!, are also listed. Forg t,6/5, all
models isotropize. Forgo.2/3, 6/5,g t,4/3 there is a class of solutions of nonzero measure
does not isotropize, namely the class of solutions associated withM 2. For go.2/3, g t54/3, all
models isotropize. Forg t.4/3 no models isotropize. Note that the physically interesting com
nation of one dust fluid and one radiation fluidalways isotropizes, regardless of which fluid i
tilted.

When go,2/3, g t.4/3, the future attractors areFo
6 . Solutions corresponding to orbits ap

proaching these equilibrium points do not isotropize, see Table III, even though the final sta
inflationary in the sense that the deceleration parameter associated with the normal cong
q5 1

2 (3go22) is negative. Thus, in some sense it seems to be misleading to refer to sol
corresponding to orbits approaching these equilibrium points as ‘‘asymptotically Friedmann
els,’’ although the solutions corresponding to the points themselves are Friedmann mod
particular, for the case of a cosmological constantgo50, the solutions corresponding toFo

6 are de
Sitter models.10 This is consistent with the cosmic ‘‘no-hair’’ theorem for Bianchi models14

However, the theorem does not guarantee that the tilt tends to zero, as pointed out b
chaudhuri and Modak.15 From our analysis, it is clear that this cautionary note is crucial for th
models. As the tilted fluid doesnot become orthogonal at late times, the expansion-normal
shear of the tilted fluid does not vanish at late times. This stresses the point made in Ref.
one should be cautious about the isotropization of tilted models. As seen in Table III, this is i
the generic behavior for models with 0<go,2/3 andg t>4/3.

For general irrotational Bianchi type V models, there is noa priori reason thatS t2→0 when
S t1→0. However, this is indeed the case for the equilibrium points in question, as can be
from Eq. ~A8!, noting thatS2→0. Thus, the analysis of isotropization for the LRS submanif
holds for the general class of models as well.

VI. DISCUSSION

In this paper we have continued the study of irrotational Bianchi type V cosmologies,
the dynamical systems approach initiated by Hewitt and Wainwright6 and Coley and Wainwright.8

The source of the gravitational field has been taken to be two noninteracting fluids, one orth
and one tilted. Such models can describe a universe where one of the fluids models the co
tion of radiation to the energy density of the universe, and the other the matter content.

TABLE III. Sources and sinks for the Bianchi type V LRS models with two fluids.

Sources

0<g t,2/3 K1
2 ,H

2/3,g t,2 K1
0 ,H

Sinks

0<go,2/3 2/3,go,2

0<g t,2/3 Ft
o(g t,go) All isotropize Ft

0 All isotropize

Fo
0(g t.go)

2/3,g t,6/5 Fo
0 All isotropize M 0 All isotropize

6/5,g t,4/3 Fo
0 All isotropize M 0, M 2 M 0 isotropize

g t54/3 Fo
v None isotropize~except forv50! M0, M 2 All isotropize

4/3,g t,2 Fo
6 None isotropize M̃ , M 2 None isotropize
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We have found that, although the orthogonal two-fluid models isotropize, this is not n
sarily the case when one of the fluids is tilted. Thus, depending on the equation-of-state para
go andg t , it is possible to find cases for which all or a subset of the solutions are anisotrop
the future. In particular, there are models which are inflationary, but do not isotropize. How
we emphasize that the cases of dust plus radiation always isotropize.

It should be stressed that the relevant quantities when determining whether the she
away are shear quantities normalized with respect to the expansion associated with each
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APPENDIX A: FLUID PROPERTIES

Here we present the kinematical properties of the two fluids in terms of the variables u
parametrize the gravitational field. For the nontilted fluid we have

Fluid expansion.

uo5u. ~A1!

Fluid shear.

so
25s1

2 1s2
2 . ~A2!

The dimensionless shearSo of the nontilted fluid is thus

So
25

so
2

uo
2 5S1

2 1S2
2 . ~A3!

The fluid properties of the tilted fluid are as follows.
Fluid expansion.

u t5
1

A12v2 F3u26vB11v2~2s12u!

3@12~g t21!v2# G5
1

A12v2 F322vA1v2~2S121!

3@12~g t21!v2# Gu. ~A4!

Fluid shear.

s t
25

1

12v2 Fs1
2 1s2

2 2B1v~2s12B1v !2
2vv̇

12v2 ~s12B1v !1
v2v̇2

~12v2!2G . ~A5!

The dimensionless shearS t of the tilted fluid can be written as

S t
25

s t
2

u t
2 5S t1

2 1S t2
2 , ~A6!

where

S t15211
3~11S12vA!@12~g t21!v2#

322vA1~2S121!v2 , ~A7!

S t25
3@12~g t21!v2#S2

322vA1~2S121!v2 , ~A8!
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@see Eqs.~A3!, ~A4!, and~A6! in Ref. 6#. Note that when both fluids are orthogonal (v50), Eq.
~A6! reduces to

S t
25S1

2 1S2
2 . ~A9!

APPENDIX B: THE VARIABLE x

In their study of two orthogonal fluids, Coley and Wainwright8 introduced the following
variable instead ofV0 :

xª
mo2m t

mo1m t
5

Vo2V t

Vo1V t
. ~B1!

The evolution equation forx becomes

x852
~12x2!

11~g t21!v2 $3go@11~g t21!v2#2g t@31v222v~A1vS1!#%. ~B2!

For the submanifoldv50 corresponding to two orthogonal fluids, the above equation simplifie

x852 1
2 ~12x2!~go2g t!. ~B3!
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Applications of harmonic morphisms to gravity
M. T. Mustafaa)

Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology,
Topi-23460, N.W.F.P., Pakistan

~Received 20 August 1999; accepted for publication 13 April 2000!

We introduce the notion ofgravity coupled to a horizontally conformal submersion
as a modification of the well-known concept ofgravity coupled to a harmonic map,
thus obtaining a coupled gravity system with a more geometric flavor. By using
integral techniques we determine the necessary conditions for coupling and cosmo-
logical constants. Finally, in the context of higher dimensional gravitation theory,
we show that harmonic morphisms provide a naturalansatzto triggerspontaneous
splitting and reduction of the gravity system coupled to a harmonic map on (4
1D) (D>1) dimensional space–times. ©2000 American Institute of Physics.
@S0022-2488~00!03110-8#

I. INTRODUCTION

Our purpose in this article is to analyze a coupled gravity system with a stronger geom
flavor. The idea of coupling horizontally conformal maps with gravity has a twofold advan
Along with carrying ample geometric information, the horizontally conformal maps are natu
related to the existing model of gravity systems coupled with a harmonic map.

Harmonic maps, introduced by Eells–Sampson in Ref. 1, are smooth mapsf which extremize
a naturally associated energy integral,E(f), with respect to smooth variations off.

The main tool for our investigation of gravity equations are harmonic morphisms which
smooth mapsf:(Mm,g)→(Nn,h) between Riemannian/semi-Riemannian manifolds preser
germs of harmonic functions, i.e., iff is a real-valued harmonic function on an open setV#N
then the compositionf +f is harmonic onf21(V)#M . Due to a characterization obtained b
Fuglede2,3 and Ishihara,4 harmonic morphisms can be viewed as a subclass of harmonic m
Precisely, these are the harmonic maps which are horizontally~weakly! conformal.

The interplay between gravity and harmonic maps was formally initiated when Baird–E5

introduced the stress–energy tensor of a harmonic map as a variational principle and De
et al.6 coupled the Einstein’s field equations to harmonic maps through a common varia
integral.

Here we introduce the idea of studying the Einstein’s equations by coupling them to ho
tally conformal submersions. This is done by exploiting the properties of the stress–energy
associated to a horizontally conformal submersionf. The stress-energy tensor being divergen
free~due to Einstein’s equations! forces the mapf to be a harmonic morphism. Hence the integ
methods for harmonic morphisms can be applied to investigate the necessary conditions
cosmological constant as well as on the coupling constant of the coupled system.

The basic recipe in the study of higher dimensional gravitation theory is to assume a
product structure on the ground state and then obtain a spontaneous compactification and
ting between internal and external spaces. However, in general, there is no systematic
doing so. One of thespontaneous compactification mechanismswas proposed in Omero–Percacc7

and GellMann–Zweibach.8 Their method is to start with a global product structure and then uti
a suitable scalar field in the form of a non–linear sigma model to achieve a dimensionally re
system. On the other hand, McInnes in Ref. 9 has proposed inducing general geometric sp
not necessarily a global product, to interpret an internal/external dichotomy of the ground

a!Regular Associate of The AS-ICTP. Electronic mail: mustafa@giki.edu.pk
69180022-2488/2000/41(10)/6918/12/$17.00 © 2000 American Institute of Physics
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Employing harmonic morphisms we present aspontaneous splitting mechanism, for a gravity
system coupled to a harmonic map, which generalizes the compactification mechanism of
and implements general split structures as proposed in Ref. 9. In particular, we show th
induction of a local product structure on the ground state, via a harmonic morphism, lead
reduced solution of the equations of motion of the gravity system coupled to a harmonic m

The plan of the paper is as follows. Beginning with an introduction to harmonic morphi
horizontally~weakly! conformal maps in Sec. II, we explain the coupled gravity system in Sec
In the next two Sections we present the necessary conditions to construct such a coupled
on compact Riemannian manifolds and certain semi-Riemannian manifolds. Section VI is de
to a discussion of the splitting and reduction mechanism, of a gravity system coupled to
monic map, triggered by a harmonic morphism.

II. HARMONIC MAPS, HORIZONTAL CONFORMALITY AND HARMONIC MORPHISMS

Let f:M→N be a smooth map andf* denote the differential map. Then the quadratic fo

¹̃f* is called thesecond fundamental formof f, given by

¹̃f* ~X,Y!5¹X
f* TNY2df~¹X

MY!, X,YPC~TM!.

From a physicist’s point of view, the notion of harmonic maps can be described in the follo
way.

Let a smooth mapf:(Mm,g)→(Nn,h) represent a scalar field onM . Consider the Lagrang
ian Lfield5Lf formulated from the energy density off, i.e.,

Lfield5Lf5e~f!5 1
2 idfi25 1

2 gabfa
i fb

j hi j .

A stationary pointf of the variational principle toLf , for any compactV,M , is called har-
monic. In other words the solutionf of

dLfield

df
5

dLf

df
50,

whered denotes the functional derivative, is harmonic. The Euler Lagrange equations ofLf with
respect to smooth variations off were calculated by Eells–Sampson in Ref. 1 and lead to
following equivalent definitions of a harmonic map.

Definition 2.1 (Ref. 1):Let f:(Mm,g)→(Nn,h) be a map between semi-Riemannian ma
folds. f is called aharmonic mapif and only if any of the following equivalent conditions i
satisfied:

~1! f is a stationary point ofLf ;
~2! t(f)5trace ¹̃f* 50;
~3! t i(f)5gab$fab

i 2MGab
c fc

i 1NG jk
i fa

j fb
k%52DMf i1gabNG jk

i fa
j fb

k50 where fa
i 5]f i /]xa,

fab
i 5]2f i /]xa]xb and i 51, . . . ,n.

Being solutions to the Euler Lagrange equations ofLf , harmonic maps satisfy a conservatio
law, i.e., there exists a stress–energy tensor associated toLf which is divergence free.

Definition 2.2 (Ref. 5):Given a smooth mapf:(Mm,g)→(Nn,h). The symmetric tensorSf

5e(f)g2f* h is called thestress–energy tensorof f.
Baird–Eells5 showed thatdiv Sf52^t(f),df& and henceSf satisfies the following proper

ties.
Proposition 2.3 (Ref. 5):

~1! If f:(Mm,g)→(Nn,h) is harmonic thendiv Sf50.
~2! If f:(Mm,g)→(Nn,h) is a differentiable submersion anddiv Sf50 thenf is harmonic.
~3! traceSf5(m22)e(f) for any mapf:(Mm,g)→(Nn,h).
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A detailed account of the theory of harmonic maps can be found in Refs. 10, 11, 12.
The notions of horizontally conformal maps and harmonic morphisms were formally i

duced independently by Fuglede2 and Ishihara.4 In a sense, the former can be thought of as
generalization of the concept of Riemannian submersions and the latter can be viewed as a
class of harmonic maps. Here we present the basic definitions, and refer to Refs. 2, 13, 14
the fundamental results and properties. An updated list of a harmonic morphisms bibliograp
be found on the internet by linking to Ref. 16.

For a smooth mapf:Mm→Nn, let Cf5$xPM urankf* x
,n% and let M* denote the set

M \Cf . For eachxPM* , the vertical andhorizontalspaces are defined byTx
VM5Kerf* x

and

Tx
HM5(Kerf* x

)'. The spacesTx
VM andTx

HM define smooth distributions onM* , respectively,
called vertical distributionV and horizontal distributionH.

Definition 2.4:A smooth mapf:(Mm,g)→(Nn,h) between Riemannian manifolds is calle
horizontally (weakly) conformalif f* 50 on Cf and the restriction off to M* is a conformal
submersion, i.e., for eachxPM* , the differentialf* x

:Tx
HM→Tf(x)N is conformal and surjec-

tive. This means that there exists a functionl:M* →R1 such that

h„f* ~X!,f* ~Y!…5l2g~X,Y! ;X,YPTx
HM .

By settingl50 onCf , we can extendl:M→R0
1 to a continuous function onM such thatl2

is smooth. The functionl:M→R0
1 is termed asdilation of the mapf.

The notion of horizontally~weakly! conformal maps can be extended to the semi-Rieman
case with a slight modification.

Definition 2.5:A C1 mapf:(Mm,g)→(Nn,h) between semi-Riemannian manifolds is call
nondegenerateif Tx

VM or equivalentlyTx
HM is nondegenerate for eachxPM .

Definition 2.6 (Ref. 3):A C1 mapf:(Mm,g)→(Nn,h) between semi-Riemannian manifold
is calledhorizontally (weakly) conformalif, for any xPM with f* x

Þ0 andTx
VM nondegenerate

the restriction off* x
to Tx

HM is a conformal submersion in the sense that there exists s
l(x)P(R\0) such that

h„f* ~X!,f* ~Y!…5l~x!g~X,Y!, ;X,YPTx
HM .

Moreover, at a degenerate pointx, Tx
HM,Tx

VM .
The extended functionl:M→R, by putting l(x)50 if f* x

50 or Tx
VM is degenerate, is

calleddilation of f. It is important to notice that in the semi-Riemannian case the dilationl can
take negative values. Clearly, the submersiveness off makes it a nondegenerate map. Mo
details on horizontally~weakly! conformal maps, including degenerate maps, between s
Riemannian manifolds, can be found in Refs. 3, 14.

Harmonic morphisms are maps which preserve the Laplace equation in the following s
Definition 2.7:A C2 mapf:Mm→Nn between semi-Riemannian manifolds is called ahar-

monic morphismif, for every real-valued functionf which is harmonic on an open subsetV of N
with f21(V) nonempty,f +f is a real-valued harmonic function onf21(V),M .

These are related to harmonic maps and horizontally~weakly! conformal maps via the char
acterization, obtained in Refs. 2, 3, 4.f:M→N is a harmonic morphism if and only if it is
harmonic and horizontally (weakly) conformal.

For the sake of completeness, we list some of the basic properties of nondegenerate ha
morphismsf:M→N ~see Refs. 2, 3 for details!:

• The composition of harmonic morphisms is a harmonic morphism.
• If dim M,dimN thenf is constant.
• If dim M5dimN52 then harmonic morphisms are just weakly conformal maps.
• If dim M5dimN>3 then harmonic morphisms are conformal mappings with constan

lation.
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Although the characterization of harmonic morphisms says that these may be viewe
subclass of harmonic maps, it is important to notice that in certain cases harmonic morphism
properties which are exactlydual to the properties of harmonic maps; see the explanation
Wood in Ref. 17.

III. HORIZONTALLY CONFORMAL MAPS COUPLED TO GRAVITY

The use of harmonic maps as models of physical phenomena was proposed by Misner
18. Details of further work done in this direction can be found in the survey by Sanchez19 In
particular, De Alfaroet al. Ref. 6, p. 538 considered the idea of coupling harmonic maps
gravity system through a common variational principle. This idea and the relation of horizo
~weakly! conformal maps with harmonic maps provides the motivation for the notion of coup
horizontally ~weakly! conformal maps to gravity.

A. Coupling without the cosmological constant

Let f:(Mm,g)→(Nn,h) be a smooth map between~semi!-Riemannian manifolds. Consider
common LagrangianL(g,f) for the map~or field! f coupled to gravity given as

L~g,f!5Lgrav~g!2gLfield~g,f!, ~3.1!

whereLgrav5RM, Lfield5Lf5e(f), g is the coupling constant, andRM is the scalar curvature o
M .

Then the stationary points ofL(g,f) with respect to smooth variations ofg andf, on any
compactV,M , are given by

dLgrav

dg
2g

dLfield

dg
50, ~3.2!

dLfield

df
50. ~3.3!

Calculating the Euler–Lagrange equations, one obtains the following.
Proposition 3.1: Letf:(Mm,g)→(Nn,h) be a map, between (semi)-Riemannian manifo

coupled to gravity via the Lagrangian in Eq. (3.1). Then the Euler–Lagrange equations with
respect to smooth variations off and g are

Rab
M 2 1

2 RMgab5g~Sf!ab , ~3.4!

trace¹ df50, ~3.5!

where Sf is the stress–energy tensor associated to the mapf.
Since the mapf is harmonic andg satisfies the Einstein’s field equations, the above sys

of equations is usually termed as the gravity system coupled to a harmonic map.
In view of above and Proposition 2.3 we consider the following modified coupled syste
Definition 3.2:Let M , N be ~semi!-Riemannian manifolds. We say that ahorizontally con-

formal submersionf:(Mm,g)→(Nn,h) (m.n>2) is coupled to gravityif f andg satisfy

Rab
M 2 1

2 RMgab5g~Sf!ab , ~3.6!

whereg is the coupling constant,Sf is the stress-energy tensor off andRab
M are components o

the Ricci tensor ofM .
The coupled gravity system enjoys the following basic properties.
Proposition 3.3: Let M be a (semi)-Riemannian manifold and N a Riemannian manifo

f:(Mm,g)→(Nn,h) (m.n>2) is a horizontally conformal submersion coupled to gravity th
                                                                                                                



th

ilar

-

f

ld N
ity

s of

n

d of

pact

6922 J. Math. Phys., Vol. 41, No. 10, October 2000 M. T. Mustafa

                    
~1! f is a harmonic morphism;
~2! The following system of equations is satisfied:

RicM52gf* h and trace¹df50; ~3.7!
~3! rank(RicM)5rank(df)5n;
~4! VPC(V) if and only if RicM(V,V)50;
~5! For XPC(H), RicM(X,X)50 if and only if g50 and RicM(X,X).0(,0) if and only if

g,0 (.0), respectively;

whereRicM is the Ricci tensor of M and C(V), C(H) denote the vector spaces of the smoo
sections of the distributionsV, H, respectively.

Proof: Part 1 follows from the fact thatSf is divergence free, which makesf harmonic. Now
taking trace of Eq.~3.6! gives Eq.~3.7!. The remaining parts follow from Parts 1,2. h

B. Coupling with the cosmological constant

In the presence of a cosmological constantL, the coupled system can be described in a sim
manner. By consideringLgrav5RM1L in Eq. ~3.1!, we arrive at the following definition.

Definition 3.4:Let M , N be ~semi!-Riemannian manifolds. We say that ahorizontally con-
formal submersionf:(Mm,g)→(Nn,h) (m.n>2) is coupled to gravity with cosmological con
stantL if f andg satisfy

Rab
M 2 1

2 RMgab1Lgab5g~Sf!ab ,

whereg is the coupling constant,Sf is the stress–energy tensor off, andRab
M are components o

the Ricci tensor ofM .
Analogous to Proposition 3.3 we obtain the following.
Propositon 3.5: Consider a (semi)-Riemannian manifold M and a Riemannian manifo.

Let f:(Mm,g)→(Nn,h) (m.n>2) be a horizontally conformal submersion coupled to grav
with cosmological constantLÞ0. Then:

~1! f is a harmonic morphism.
~2! The following system of equations is satisfied:

RicM52gf* h1
2

m22
Lg and trace¹ df50. ~3.8!

~3! If VPC(V) thenRicM(V,V)Þ0,

whereRicM is the Ricci tensor of M and C(V) denotes the vector space of the smooth section
the distributionV.

IV. COUPLING ON COMPACT RIEMANNIAN MANIFOLDS

Throughout this section we will assumeMm and Nn to be compact orientable Riemannia
manifolds without boundary.

First notice that a constantf or g50 or Rab
M 5@2/(m22)# Lgab for LÞ0 (L50) give a

trivial solution to the coupled gravity system defined in Definition 3.4~Definition 3.2!, respec-
tively. Furthermore, in general, there will be obstructions to the construction of the kin
coupled gravity system defined in Sec. III.

This section is devoted to obtain the necessary conditions on the coupling constantg in order
to have a nontrivial coupling of gravity to a horizontally conformal submersion on a com
Riemannian manifold.
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Theorem 4.1:Let f:(Mm,g)→(Nn,h) (m.n>2) be a nonconstant horizontally conforma
submersion coupled to gravity (without cosmological constant). Then the coupling constantg must
satisfy

g>2
RN

n
,

whereRN is the scalar curvature of N.
Proof: If l denotes the dilation off then Eq.~3.7! combined with the Weitzenbo¨ck formula

of harmonic morphisms Ref. 20, Proposition 2.1 and Ref. 21 implies

2
n

2
Dl25i¹ dfi22l4$ng1RN%. ~4.1!

Suppose, on the contrary, thatg,2 RN/n. Then the integration of Eq.~4.1! and an employmen
of the standard Bochner type argument forces each term on the right hand side of Eq.~4.1! to be
zero. In particular,l50, i.e.,f is a constant map; a contradiction. Henceg>2 RN/n. h

For instance, we see that the negative scalar curvature of the target manifold obstru
coupling via a negative coupling constant.

Corollary 4.2: Letf:(Mm,g)→(Nn,h) (m.n>3) be a nonconstant horizontally conforma
submersion coupled to gravity (without a cosmological constant). Then there exists a metrih on
Nn such that the coupling constantg is positive andRaa

M <0 for a51, . . . ,m. In fact Raa
M 50 for

ea vertical andRi i
M,0 for ei horizontal.

Proof: From Ref. 22, Corollary 5.4 there exists a metric on every compact Rieman
manifoldNn (n>3) with constant negative scalar curvature. Therefore,g is positive from above.
The rest follows from Proposition 3.3. h

If the target manifold is a Riemann surface we can deduce the following result in a si
manner.

Corollary 4.3: Let N2 be a compact Riemann surface of genus>1. If a nonconstant horizon-
tally conformal submersionf:(Mm,g)→(N2,h) (m.2) is coupled to gravity (without a cosmo
logical constant) then the coupling constantg is positive andRaa

M <0 for a51, . . . ,m.
The cosmological constantL was introduced in Einstein’s field equations as a variant of

original Einstein’s equations~with L50). Its vanishing, positivity, negativity or size may hav
significant physical effects. For the coupled system, given by Definition 3.4, we prove the
existence of positive cosmological constant subject to a suitable coupling.

Theorem 4.4:Let f:(Mm,g)→(Nn,h) (m.n>2) be a nonconstant horizontally conforma
submersion coupled to gravity (with cosmological constantL!. Then one of the following can
occur.

~1! The coupling constantg.2 RN/n.
~2! Either the cosmological constantL is negative or the Einstein’s field equations at the classi

level are achieved, i.e., L50.

Proof: The coupling equations~3.8! along with the Weitzenbo¨ck formula of harmonic mor-
phisms Ref. 20, Proposition 2.1 imply that

2
n

2
Dl25i“ dfi21

2n

m22
Ll22l4$ng1RN%. ~4.2!

Now an argument similar to Theorem 4.1 completes the proof. h

Hence a suitable coupling constant may be chosen either to obtain Einstein’s equation
out a cosmological constant or with a negative cosmological constant. However this mig
always be possible, as we show that positively curved compact domains obstruct such a ch
coupling constant.
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Corollary 4.5: For coupling a horizontally conformal submersionf with gravity on a com-
pact Riemannian manifold Mm of Rab

M .0, the coupling constantg must be chosen asg.
2 RN/n whereRN is the scalar curvature of the n-dimensional target manifold of the fieldf.

Proof: Let (ea)a5n11
m be an orthonormal basis of the vertical space atxPM . SinceRicM

.0 we have from Eq.~3.8!,

RMuV5 (
a5n11

m

gaaRaa
M 5

2~m2n!

m22
L.0.

From Theorem 4.4 this is possible only ifg.2 RN/n. h

V. COUPLING ON SEMI-RIEMANNIAN MANIFOLDS

Lorentzian manifolds provide a natural model for representing the universe. Our purpo
this section is to investigate the gravity system coupled to horizontally conformal maps on o
of physical interest, i.e., on semi-Riemannian manifolds.

The main mathematical tool required to carry out our analysis is a Weitzenbo¨ck formula~WF!
for harmonic morphisms from semi-Riemannian manifolds.

Proposition 5.1 (WF for harmonic morphisms from semi-Riemannian manifolds):
f:(Mm,g)→(Nn,h) be a submersive harmonic morphism from a semi-Riemannian manifold
Riemannian manifold, with dilationl. Thenl>0 and

2
n

2
Dl5i¹ dfi21lRMuH2l2RN, ~5.1!

where

RMuH5(
i 51

n

gii Ri i
M

and (ei) i 51
n , (ea)a5n11

m are local orthonormal frames forH, V, respectively, so that(ea)a51
m is a

local orthonormal frame for TM.
Proof: By taking the Laplacian on functions as

2D f 5trace¹ d f5 (
a51

m

gaag~¹ea

M grad f ,ea!,

we easily get the semi-Riemannian version of Ref. 11, Proposition 3.3, i.e., iff is harmonic then

2
1

2
Didfi25i¹ dfi21 (

a51

m

gaag~df•RicM ea ,df•ea!2 (
a,b51

m

gaagbbh~RN~df•ea ,df

•eb!df•ea ,df•eb!. ~5.2!

SinceN is Riemannian, we see that the horizontal conformality and submersiveness off imply
that the fibers are semi-Riemannian submanifolds and the horizontal distribution is spac
Hence,l>0 and for eachxPM there exists an orthonormal basis (ei8) i 51

n of Tf(x)N, for non-
constantf such that

df~ei !5Alei8 ~l.0!, i 51, . . . ,n,

df~ea!50, a5n11, . . . ,m,

and
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h„df~X!,df~Y!…5lg~X,Y!, ;X,YPTx
HM .

Now using the characterization of harmonic morphisms and above relations in Eq.~5.2! we have
the proof. h

For the applications of Weitzenbo¨ck formula we consider a particular coupled gravity syst
and present the necessary conditions on the coupling constant in order to have a nontrivia
tion.

Let M be a semi-Riemannian manifold andM̃ , N be compact Riemannian manifolds. L
p:(M ,g)→(M̃ ,g̃) be a harmonic morphism with dilationl51 andf̃:(M̃ ,g̃)→(N,h) be a hori-
zontally conformal submersion.

Corollary 5.2: Assumep, f̃ as above. Consider a horizontally conformal submersionf5f̃
+p:(Mm,g)→(Nn,h) (m.n>2) coupled to gravity on the semi-Riemannian manifold M. Then
either the coupled system has a trivial solution, i.e., f is constant and g is Ricci-flat org>
2 RN/n.

Proof: f being coupled to gravity is a harmonic morphism and hence due to the Weitzen¨ck
formula above we obtain

2
n

2
Dl5i¹ dfi22l2$ng1RN%.

If l̃ denotes the dilation off̃ then it can be checked thatDl5D̃l̃2 whereD̃ denotes the Laplacian
with respect to the metricg̃. Now integrating over the compact Riemannian manifoldM without
a boundary and following the reasoning similar to the proof of Theorem 4.1 completes the prh

In particular, consider a semi-Riemannian productM3M̃ such thatM is semi-Riemannian
and M̃ is Riemannian. Thenp:M3M̃→M̃ is a harmonic morphism with dilationl51 and the
above result can be applied to such semi-Riemannian product manifolds. The reader is refe
Ref. 23 for examples of Lorentzian product manifolds or globally hyperbolic spacetimes.

Next we see that it is~at least mathematically! plausible to add a negative cosmologic
constant to the coupled system@Eq. ~3.6!# which is coupled viag<2RN, provided the fieldf
does not have non-negatively curved totally geodesic fibers. For instance, a horizontally con
submersionf with totally geodesic anti-de Sitter fibers could be a candidate for this purpos

Corollary 5.3: Takep, f̃ as explained above. Suppose thatf5f̃+p:Mm→Nn is a noncon-
stant horizontally conformal submersion coupled with gravity on the semi-Riemannian manif
the presence of a cosmological constantL. If the coupling constantg<2 RN/n then either we
obtain Einstein’s field equations without a cosmological constant or the cosmological const
negative.

Proof: Follows from employing the Weitzenbo¨ck formula of Proposition 5.1 and the argume
in the proof of Theorem 4.4. h

The readers are referred to Ref. 24 for the equivalence of the existence of harmonic
phismsf and f̃, if f5f̃+p as above.

VI. SPONTANEOUS SPLITTING AND REDUCTION VIA HARMONIC MORPHISMS

In this section we present that the coupling of a harmonic morphism to gravity on
1D)-dimensional Lorentzian manifold simultaneously triggers aspontaneous compactificationas
well as aspontaneous splittingunder suitable conditions~see below!.

A. Motivation

Much of the work on higher-dimensional gravitation theory is based on the assumptio
the (41D)-dimensional ground state can be modeled as a global productM43M̃D whereM4 is
a Lorentzian manifold andM̃D is a compact Riemannian manifold. On the other hand, star
with a Lorentzian manifoldM41D one can pose a question: Can a global product splitting
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M41D be achieved via dynamics of a suitable model onM41D? The problem of achieving suc
splitting was termed in Ref. 9 as aspontaneous splitting problem. While addressing the sponta
neous splitting problem in Ref. 9, McInnes also proposed that one could possibly go beyo
usual globally product ground state models to include local products, warped products an
bundles of various kinds. This is the first motivating factor of the work presented in this se

GellMann–Zweibach in Ref. 8 discussed the spacetime compactification using a genera
linear sigma model. They proposed a compactification scheme triggered by a scalar secto
form of a nonlinear sigma model. The solutions of the equations of motion of the gravity co
to the nonlinear sigma modelf on M43BD were found to bef(x,y)5y. Further,M4 was forced
to be Ricci-flat and hence could be taken to be a Minkowski space.

B. Spontaneous splitting and reduction

The strong geometric features of harmonic morphisms can be used to trigger a ki
spontaneous compactification along with induction of a split structure. Our purpose in this s
is to exploit these geometric properties to show the following.

Harmonic morphisms provide a natural ansatz, for a gravity system coupled to a harm
map, to generalize the spontaneous compactification mechanism of Ref. 8 and at the same
complete the spontaneous splitting mechanism for some of the general ground state sp
proposed in Ref. 9.

Let f:(M41D,g)→(ND,h) be a smooth submersive map from a Lorentzian manifold t
compact Riemannian manifold. Consider the Lagrangian

L5RM2
g

2
idfi2. ~6.1!

Then the equations of motion are

Rab
M 52g~f* h!ab , for a,b51, . . . ,41D and trace¹ df50. ~6.2!

We takef to be a nonconstant harmonic morphism~with dilation l! as our ansatz for spontaneou
splitting. Sincef is submersive the fibersF are semi-Riemannian submanifolds and we have

Rab
M 50, for a,b51, . . . ,4; ~6.3!

Ri j
M52glhi j , for i , j 55, . . . ,41D ~l.0!; ~6.4!

where (ea)a51
4 is a local orthonormal frame for the vertical distribution whose integral manifo

are the fibersF and (ei) i 55
41D is a local orthonormal frame for the horizontal distribution~not

necessarily integrable!.
If the Lorentzian manifoldM has constant scalar curvaturek then from the abovek

52gDl and henceg52 k/Dl solves Eq.~6.4!. If we assume further that the fibresF are totally
geodesic then from Eq.~6.3!,

Rab
F 50, for a,b51, . . . ,4.

Finally, we have achieved a reduction, via a harmonic morphism, without the employment
global product structure of the ground state. Precisely, the following Theorem is proved.

Theorem 6.1:Let M41D be a Lorentzian manifold of constant scalar curvaturek and ND be
a compact Riemannian manifold. Takingf:(M41D,g)→(ND,h) to be a nonconstant submersiv
harmonic morphism with totally geodesic fibersF provides the following reduced solution to th
Lagrangian in Eq. (6.1):

Rab
F 50, for a,b51, . . . ,4, i.e., the fibers are Ricci-flat Lorentzian manifolds;
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Ri j
M5

k

D
hi j , f or i , j 55, . . . ,41D;

wherel is the dilation off, (ea)a51
4 and (ei) i 55

41D are local orthonormal frames for vertical and
horizontal distributions induced byf.

Theorem 6.1 can be applied to achieve spontaneous reduction on a local product groun
whose local product structure is induced from the dynamics of the harmonic morphism~taken as
an ansatz!. If M41D admits a totally geodesic horizontally conformal map then the horizontal
vertical distributions are integrable as well as totally geodesic, therefore,M41D is a local product
of the integral manifolds of horizontal and vertical distributions. Hence, takingf as totally geo-
desic horizontally conformal provides an ansatz for the solution of Einstein’s equations onM41D

with a local product structure.
In order to recover the known solutions of Ref. 8 we give a particular case of Theorem
Corollary 6.2: Letf:(M41D,g)→(ND,h) be a totally geodesic horizontally conformal ma

from a Lorentzian manifold to a compact Riemannian manifold. If the horizontal manifolds
Einstein withRi j

H5c(gH) i j thenf provides the following reduced solution to the Lagrangian
Eq. (6.1):

Rab
F 50, for a,b51, . . . ,4, i.e., the fibers are Ricci-flat Lorentzian manifolds;

Ri j
H5chi j , f or i , j 55, . . . ,41D;

whereRab
F and Ri j

H are components of the Ricci curvatures of the fibers and horizontal subm
folds, respectively.

Remark 6.3 (consistency with results of Ref. 8):TakingM41D5M43M̃D, ND5M̃D, f as the
projectionf:M43M̃D→M̃D, c.0 in Corollary 6.2 and adjusting the constants we obtain
solutions of Ref. 8.

Next, we show that harmonic morphisms can also be employed to trigger spontaneou
ting in the presence of a cosmological constantLÞ0. However, in this case, the fibers natura
cannot be Ricci-flat but may be de Sitter or anti-de Sitter~depending on the sign ofL!.

Suppose that a cosmological constantLÞ0 is introduced in the Lagrangian equation~6.1!,
i.e.,

L5R1L2
g

2
idfi2, ~6.5!

then the equations of motion become

Rab
M 52g~f* h!ab1

2

21D
Lgab , for a,b51, . . . ,41D and trace¹ df50. ~6.6!

If f is a nonconstant submersive harmonic morphism with totally geodesic fibers then the fiF
are semi-Riemannian submanifolds and the equations of motion are reduced to~as in the proof of
Theorem 6.1!

Rab
F 5

2

21D
Lgab , for a,b51, . . . ,4, ~6.7!

Ri j
M52glhi j 1

2

21D
Lgi j , for i , j 55, . . . ,41D, ~6.8!
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where (ea)a51
4 is a local orthonormal frame for the vertical distribution whose integral manifo

are the fibersF and (ei) i 55
41D is a local orthonormal frame for the horizontal distribution~not

necessarily integrable!. Thus we are able to show the following.
Theorem 6.4: Consider the Lagrangian [Eq. (6.5)] on a Lorentzian manifold of const

scalar curvaturek with f a field from (M41D,g) to a compact Riemannian manifold(ND,h).
Then the ansatzf, a submersive harmonic morphism with totally geodesic fibers, provid
reduced solution to the equations of motion given as

Rab
F 5

2

21D
Lgab , f or a,b51, . . . ,4, ~6.9!

Ri j
M52glhi j 1

2

21D
Lgi j , f or i , j 55, . . . ,41D, ~6.10!

and g, L are determined by the following relation:

k5
2~41D !

21D
L2glD. ~6.11!

VII. CONCLUSION

We have presented a gravity system, coupled to a horizontally conformal submersion, h
stronger geometric features. Using differential geometric techniques we have shown that a s
coupling constant may be chosen either to obtain Einstein’s equations without cosmologica
stant or with a negative cosmological constant.

One of the ingredients in studying higher-dimensional gravitation systems is to assum
the ground state is a global product and then a spontaneous compactification process is con
We have succeeded in applying harmonic morphisms to simultaneously trigger a sponta
compactification as well as a spontaneous splitting of the ground state. The main feature
approach is that general geometric structures, not necessarily global products, can be ind
ground state models.

Finally, we remark that it may be interesting to employ harmonic morphisms for investig
other higher-dimensional field theories, for instance Kaluza–Klein theory, String theory.
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Solutions of the spherically symmetric SU „2…
Einstein–Yang–Mills equations defined in the far field

Arthur G. Wasserman
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109

~Received 14 March 2000; accepted for publication 20 June 2000!

It is shown analytically that every static, spherically symmetric solution to the
Einstein–Yang–Mills equations with SU~2! gauge group that is defined in the far
field has finite ADM mass. Moreover, there can be at most two horizons for such
solutions. The three types of solutions possible, Bartnik–McKinnon particle-like
solutions, Reissner–Nordstro¨m-type solutions, and black hole solutions having
only one horizon are distinguished by the behavior of the metric coefficients at the
origin. © 2000 American Institute of Physics.@S0022-2488~00!00810-0#

I. INTRODUCTION

The Einstein–Yang–Mills equations with SU~2! gauge group, derived in Ref. 1 for stati
spherically symmetric solutions in the magnetic ansatz, give a classical~nonquantum mechanical!
description of gravity coupled to a nuclear force modeled by a Yang–Mills field. The unkno
of the equations are the metric and the connection. We may write the metric as

ds252A~r !B~r !22 dt21A~r !21 dr21r 2~du21sin2 u df2!,

and the Yang–Mills curvature 2-form as

F5w8t1dr∧du1w8t2dr∧~sinu df!2~12w2!t3 du∧~sinu df!.

Here A(r ) B(r )22, A(r )21, and w(r ) denote the unknown metric and connection coefficien
respectively, prime denotes the derivative with respect tor, the Schwarzschild coordinate, an
$t1 ,t2 ,t3% form a basis for su~2!, the Lie algebra of SU~2!.

The EYM equations in this framework form a system of three ordinary differential equat

rA81~112w82!A512W2/r 2, ~1.1!

r 2Aw91rC~r !w81wW50, ~1.2!

rB8/B52w82, ~1.3!

where we setW512w2 andC(r )512A2W2/r 2.
Much effort has gone into studying this system of equations—hundreds of papers ha

peared. See Ref. 2 for an extensive bibliography. Much of the effort has been directed to
proving the existence of solutions of various types: particle-like solutions cf. Refs. 1, 3–6,
hole solutions cf. Refs. 7–12. Reissner–Nordstro¨m-type solutions cf. Ref. 13, ‘‘bag of gold’’
solutions cf. Ref. 6.

There have also been results concerning the uniqueness of solutions. For example, it is
in Ref. 6 that particle-like solutions are classified by nodal class. Also, it is shown in Ref. 14
any ~static, spherically symmetric! solution to the EYM equations that is defined in the far fie
and is regular, that is,A(r ).0 for r ..1, is either a particle-like solution, a black hole solutio
or a Reissner–Nordstro¨m-type solution, that is, a solution that hasA(r ).1 for somer. @A solution
~A,w,B! is said to be defined in the far field if there is ar 0.0 such that for allr .r 0 the functions
are defined and differentiable and Eqs.~1.1!–~1.3! are satisfied.#
69300022-2488/2000/41(10)/6930/7/$17.00 © 2000 American Institute of Physics
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In this paper we consider static, spherically symmetric solutions to the SU~2! EYM equations
that are defined in the far field.

Note: since Eqs.~1.1! and ~1.2! do not involveB we need only discussw and A in what
follows; Eq. ~1.3! can always be solved forB.

The first objective is to answer a question posed in Ref. 15, are all solutions to Eqs.~1.1! and
~1.2! that are defined in the far field regular solutions? That is, if a solution~w,A! to ~1.1! and~1.2!
is defined forr .r 0 , is A(r ).0 for r ..1? The answer, given by Theorem 9, is yes. It is sho
that any solution to Eqs.~1.1! and~1.2! that is defined in the far field has finite ADM mass;16 in
particular,A(r ).0 for larger. Thus, any solution defined in the far field is asymptotically fl
space–time.

It was shown in Ref. 15 that any regular solution to the EYM equations that is defined i
far field is actually defined for allr .0. Combining this result with Theorem 9 quoted above
can say that any solution to the EYM equations that is defined in the far field is actually de
for all r .0; we then ask about the behavior of the solution nearr 50.

If a solution is defined in the far field andA(r ).0 for all r .0 then the solution must be
either a particle-like solution or a Reissner–Nordstro¨m-type solution with a naked singularity a
the origin.14 What can we say about solutions if there is a horizon, that is, ifA(r)50 for somer?
For example, can there be horizons within horizons? Are there solutions defined for allr>0 that
satisfy particle-like initial conditions atr 50 and haveA.0 in the far field but for whichA has
two or more zeros?

It was shown in Ref. 15 that the zeros ofA are isolated and can only accumulate atr 50;
moreover, there are at most two zeros ofA for r .1. It was shown in Ref. 17 that 0 isnot an
accumulation point for the zeros ofA. In Sec. III we give a very simple argument for a sharp
result: we show thatA can have at most two zeros. This answers another question posed in
15. Moreover, ifA has two zeros then it must be a Reissner–Nordstro¨m-type solution with a
singularity at the origin~Proposition 22!. There can also be solutions for whichA has exactly one
zero and for these solutions we show that either limr→0 A(r )5` or lim infr→0 A(r )52` ~Theo-
rem 20!. This confirms a conjecture of Ref. 15.

We thus have a trichotomy: for solutions defined in the far field the behavior of the solu
at r 50 can be of three types:~a! limr→0 A(r )51; ~b! limr→0 A(r )5`; or ~c! lim inf r→0 A(r )
52` ~Theorem 23!.

Solutions of type~a! must be Bartnik–McKinnon particle-like solutions; see Proposition
and Theorem 3.7 of Ref. 14. Solutions of type~b! must be Reissner–Nordstro¨m-type solutions; see
Theorem 6.3.13 The classic Schwarzschild solution,w(r )[61, A(r )5122M /r , is of type~c!.

Solutions of type~c! with nontrivial gauge field have not been shown to exist; Reissn
Nordström-type solutions with nontrivial gauge field have only been proved to exist when the
a naked singularity.13 There is some numerical evidence for the existence of Reissner–Nords¨m-
type solutions for whichA has two zeros.18–20 See also Ref. 2, p. 49. On the other hand, for a
r.0 there exists a countable number of solutions to the EYM equations~1.1!–~1.3! defined in the
far field, distinguished by nodal class, and having horizonr.6,12 By the results of Ref. 15 such
solutions are defined for allr .0, have nontrivial gauge field and the metric coefficientA has one
or two zeros. Thus, there must exist solutions to Eqs.~1.1!–~1.3! with nontrivial gauge field of
type ~b! or type ~c! quite possibly both types of solutions occur.

The paper is organized as follows: in Sec. II it is shown that for any solution to~1.1! and~1.2!
defined in the far fieldA can have at most two zeros. In Sec. III it is shown that for any solu
to ~1.1! and~1.2! defined in the far fieldA must be positive for larger. In Sec. IV solutions having
horizons are discussed and the trichotomy theorem is presented.

The author thanks Piotr Bizon for helpful comments.

II. ZEROS OF A

In this section we show that if (w(r ),A(r )) is any solution to the SU~2! EYM equations that
is defined in the far field, that is, for allr .r 0 for somer 0 , thenA(r ) has at most two zeroes.
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Definition: For any solution ~w,A! of the EYM Eqs. ~1.1! and ~1.2! we set
L(r )511A(112w82)2W2/r 2.

Note 0:We can also writeL5rA812A(112w82). It follows from ~1.1! and ~1.2! that the
function L satisfies the equationrL 8(r )5L(122w82)12(W2/r 22A).

Proposition 1:If L(r 1)50 thenL8(r 1).0.
Proof: If L(r 1)50 thenr 1L8(r 1)52(W2/r 1

22A) which is clearly positive ifA,0. If A>0
we useL50 to write W2/r 1

22A5112Aw82.0.
Corollary 2: If L(r 1)50 thenL(r ).0 for r .r 1 andL(r ),0 for r ,r 1 ; hence,L(r )50 can

have at most one solution.
Corollary 3: If A(t)50 andA8(t),0 thenA(r ).0 for all r ,t.
Proof: By Note 0, L(t)5tA8(t),0. If A(r )50 for somer ,t, let s be the largest such

r ,t with A(r )50. Since A(r ).0 for r near t, r ,t, we have A8(s)>0 and hence,
L(s)5sA8(s)>0. But by Proposition 1,L(r ),0 for all r ,t which is a contradiction.

Corollary 4: If A(s)50 andA8(s).0 thenA(r ).0 for all r .s.
Proof: By Note 0,L(s)5sA8(s).0. If A(r )50 for somer .s, let t be the smallest such

r .s with A(r )50. Since A(r ).0 for r near s, r .s, we have A8(t)<0 and hence,
L(t)5tA8(t)<0. But by Proposition 1,L(r ).0 for all r .s which is a contradiction.

Corollary 5: If A(g)505A8(g) thenA(r ).0 for all 0,rÞg.
Proof: We first show that ifA(g)505A8(g) thenA9(g).0. Differentiating Eq.~1.1! at g

givesgA9(g)52W2/g314wWw8/g2. It follows easily from Eq.~1.1! that 12W2/g250 since
A(g)50, A8(g)50; from Eq. ~1.2! we get w(g)50 since A(g)50, C(r )50, thus
gA9(g)52/g.0. In particular,A(r ).0 for r nearg, rÞg.

By Note 0,L(g)5gA8(g)50 sinceA(g)50. If A(r )50 for somer .g, let t be the smallest
such r .s with A(r )50. SinceA(r ).0 for r near g, r .g, we haveA8(t)<0 and hence,
L(t)<0. But by Proposition 1,L(r ).0 for all r .g which is a contradiction.

If A(r )50 for somer ,g, a symmetric argument produces as,g with L(s)>0, another
contradiction.

Theorem 6: If ~w,A! is a solution to the Eqs.~1.1! and~1.2! defined for 0<r 1,r ,r 2 thenA
has at most two zeroes.

Proof: If A(g)505A8(g) for some r 1,g,r 2 then A(r ).0 for all rÞg, r 1,r ,r 2 by
Corollary 5 and hence,A has only one zero. Otherwise, ifA(s)50 and A8(s).0 for some
r 1,s,r 2 then by Corollary 4,A(r ).0 for all r .s so any zero ofA must occur forr ,s.
Symmetrically, ifA(t)50 andA8(t),0 for somer 1,t,s andt is the largest suchr then by
Corollary 3,A(r ).0 for all r ,t. ThusA can have at most two zeroes.

Remark 7:The theorem actually shows a bit more, namely, ifA has two zeroes att ands say,
with A8(s).0 andA8(t),0 thent,s. Thus, for example, there do not exist local solutions
Eqs.~1.1! and~1.2! that are negative forr near 0, then positive for an interval ofr then negative.

Remark 8:It follows from Ref. 21 that the only solution to Eqs.~1.1! and~1.2! defined in the
far field havingA(g)505A8(g) for someg andA(r ).0 for larger is the extreme Reissner
Nordström solution given byw(r )[0, A(r )5(r 21)2/r 2.

III. FARFIELD BEHAVIOR

In this section we show that any solution to Eqs.~1.1! and~1.2! that is defined in the far field
hasA(r ).0 for largerr. Such solutions were dubbed ‘‘regular’’ in Ref. 14. An important cor
lary is that any solution to the spherically symmetric SU~2! Einstein–Yang–Mills equations de
fined in the far field has finite ADM mass. Lemmas 12 and 13 were announced earlier.15

Theorem 9: If ~w,A! is a solution to Eqs.~1.1! and ~1.2! defined in the far field then
A(r ).0 for larger.

Proof: Assume throughout this section that~w,A! is a solution to equations~1.1! and ~1.2!
defined in the far field withA(r ),0 for larger; we will derive a contradiction.

The proof requires a number of lemmas.
Lemma 10: L(r ).0 for larger; in particular, 12W2/r 2.0, C(r ).0, and22Aw82,1.
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Proof: We calculater (L1A)85222A22w82L. If L,0 andA,0 thenr (L1A)8>2 and
hence,L1A.0 for large r. ThusL.2A.0 for large r. Next, since 11A(112w82)2W2/r 2

.0 it follows that 12W2/r 2.2A(112w82)>0. Also, C(r )512W2/r 22A.12W2/r 2.0.
The last assertion follows from 112Aw82.W2/r 22A>0.

Lemma 11:lim inf r→` 12(W2/r 2)50.
Proof: By Lemma 10 we have 12(W2/r 2).0 for larger. Suppose lim infr→` 12(W2/r 2)

52h.0. Then for large r, 12W2/r 2.h. Note that (rA)8512W2/r 22(112w82)A>1
2W2/r 2>h so rA.0 for somer. That is a contradiction.

Lemma 12:The projection of the orbit (w,w8) in thew–w8 plane cannot remain in the secon
or fourth quadrant Q2 or Q4 for allr .r 2 .

Proof: In Q2 and Q4ww8,0 sow2 is decreasing; hence, lim infr→` 12(W2/r 2)51 contra-
dicting Lemma 11.

Lemma 13:The projection of the orbit (w,w8) in the w–w8 plane cannot remain in the firs
or third quadrant Q1 or Q3 for allr .r 2 .

Proof: In Q1 we have

r ~A1Aw8!8522Aw822A2
2Aw83

r
112

W2

r 2 2
wW

r
.12

W2

r 2 2
wW

r
.

Now 12W2/r 2>0 by Lemma 10 and hencew,Ar 11. In the interval 0<w<Ar 11 the ~ab-
stract! function of w, 12(W2/r 2)2(wW/r ).1/4 so r (A1Aw8)8>12(W2/r 2)2(wW/r ).1/4
and thusA(11w8).0 for largerr. But w8.0 in Q1 and henceA.0 which is a contradiction.
Thus the orbit must leave Q1.

In Q3 we use

r ~A2Aw8!8512Aw832A2
2Aw82

r
112

W2

r 2 1
wW

r
.12

W2

r 2 1
wW

r
;

the rest of the argument proceeds mutatis mutandis.
Lemmas 12 and 13 show thatA,0 implies that the projection of the orbit (w,w8) in the

w–w8 plane must rotate; Eq.~1.2! shows that the rotation must be about~1, 0! or ~21, 0! or both.
Lemma 11 shows that the size of the loops is unbounded.

Lemma 14:lim supr→` 12(W2/r 2)51.
Proof: It is clearly sufficient to show that for anyr 0 there is anr .r 0 with 12W2/r 251.
By Lemma 11 there is anr 1.r 0 such that 12W2/r 1

2,1/2 say, i.e.,w221.r /2..1. Sup-
pose that (w(r 1),w8(r 1)) is in Q1 ~respectively, Q3!. By Lemma 13 the orbit must exit to Q4
~respectively, Q2!. Then, by Lemma 12, the orbit must leave Q4~respectively, Q2!; that can only
happen ifw2,1 and the orbit exits to Q1~respectively, Q3! or w50 and the orbit exits to Q3
~respectively, Q1!. In either case, there is anr with w(r )251, i.e., 12W2/r 251.

Note that (rA)8512W2/r 222w82A>12W2/r 2.0 by Lemma 10 so limr→` rA exists and
limr→` rA<0. Henceforth, we assume there is anM.0 and r 0 such that L(r ).0,
rA(r ).2M for r .r 0 .

To prove Theorem 9 we will show that* r 0

r 112(W2/r 2)dr.M for somer 1 and hence,

r 1A~r 1!.r 0A~r 0!1E
r 0

r 1
12~W2/r 2!dr.2M1M50.

Using Lemmas 10 and 14 we note that there are sequencesn,xn,yn,zn such that
12W2/xn

251, 12W2/yn
252/3, 12W2/zn

251/3, and w8(r )Þ0 for xn,r ,zn . Note that

w(xn)251, w(yn)2511A1
3yn'A 1

3ynw(zn)2511A2
3zn'A 2

3zn . In particular, w(r )<Ar for

xn,r ,zn andw(zn)2w(yn).A4 2
3Azn2A4 1

3Ayn'0.144Azn.
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Now * r 0

` 12(W2/r 2)dr.(n51
` *xn

zn12(W2/r 2)dr since 12W2/r 2.0 by Lemma 10 so to fin-

ish the proof of Theorem 9 it is clearly sufficient to show*xn

zn12(W2/r 2)dr is uniformly bounded

away from 0, that is*xn

zn12(W2/r 2)dr.h.0, whereh is independent ofn.

Now, for xn,r ,zn , we have 12W2/r 2>1/3 so *xn

zn12(W2/r 2)dr.*xn

zn 1
3dr5(zn2xn)/3.

Thus, it is sufficient to showzn2xn is uniformly bounded away from 0. Clearly, ifzn2xn.1 for
all n we are done so assumezn2xn,1. Assume also for definiteness thatw8(r ).0 for
xn,r ,zn ; the argument is similar ifw8(r ),0. Now w(xn)51, w(yn)'Ayn/), so
w(yn)2w(xn)'Ayn/A4 3. Hence,

zn2xn.yn2xn5
w~yn!2w~xn!

w8~z!8
'

Ayn

3w8~z!

for some intermediatez, xn,z,yn . We now complete the proof of Theorem 9 by showing th
w8(r )/Ar is bounded forxn<r<yn . Sincezn2xn,1 andxn..1 it follows that@w8(z)#/Ayn is
bounded forxn<r<yn .

Lemma 15:If w8(a)2>625a for somea,zn and xn.2M then w8(r )2>625r for all a<r
<zn .

Proof: Let h(r )5w8(r )22625r ; thenh(a)>0. We show thath(r )50 impliesh8(r ).0 and
thus,h can never become negative. SinceC(r )>1/3 andw(r )<Ar for a <r<zn we have from
Eq. ~1.2!, h8(r )uh(r )5052w8(r )w9(r )262552w8(r )$rC(r )w81wW%/(2r 2A)2625>2w8(r )
3$rw8/32r 3/2%/(2r 2A)2625>50r 1/2$8r 3/22r 3/2%/(2r 2A)2625>350r /M2625 where we
have used2W,r ,w2,r ,2rA,M . Thus,h8(r )uh(r )50.0 if r .2M .

Lemma 16: w8(r )2,625r for xn,r ,yn .
Proof: Supposew8(a)2>625a for somea,zn , then by Lemma 15w8(r )2.625r for all a

<r<zn . We now apply the estimate onw8 to Eq. ~1.2!. First, rC(r )w8.25r 3/2/3.22wW.
Hence, 2r 2Aw95(r 2rA2W2/r )w81wW>rC(r )w8/2>rw8/6 for all a<r<zn . Thus, by
Lemma 10,

w9

w82 >
rw8

3r 2~22Aw82!
>

w8

3r
.

Integrating the left-hand side of the inequality froma to zn yields

E
a

zn w9

w82 dr5
21

w8~zn!
1

1

w8~a!
<

1

w8~a!
.

Integrating the right-hand side of the inequality froma to zn yields

E
a

zn w8

3r
dr.E

yn

zn w8

3r
dr'E

yn

zn w8

3zn
dr5

w~zn!2w~yn!

3zn
'

A4 2
3Azn2A4 1

3Ayn

3zn
'

0.048

Azn

.

Thus, 1/w8(a).0.048/Azn or w8(a)2,435zn'435a contradicting the assumption tha
w8(a)2>625a. The proof of Theorem 9 is now complete.

Corollary 17: Any solution to Eqs.~1.1! and~1.2! that is defined in the far field is defined fo
all r .0. The ADM mass of the solution is finite andA(r )'122m/r for r ..1 wherem is the
ADM mass. Moreover, either the gauge fieldw[0 or limr→` w251.

Proof: Since the solution is regular@A(r ).0 for r ..1# by Theorem 9 we may invoke th
results of Ref. 14.
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IV. TRICHOTOMY THEOREM

In this section we first consider solutions of~1.1! and~1.2! defined in the far field withA(r )
having exactly one zero. IfA has one zero, sayA(r)50, then eitherA8(r)50 or A8(r).0;
A8(r),0 is not possible by Theorem 9.

If A(r)50, A8(r)50 then since we know by Theorem 9 thatA(r ).0 for r ..1 the
solution must be the extreme Reissner–Nordstro¨m solution21 ~see Remark 8!; since
A(r )5(r 21)2/r 2, limr→01 A(r )51`.

We now consider the other case,A(r)50, A8(r).0 for somer.0. Thus A(r ),0 for
r ,r.

By Note 0,L(r)5rA8(r).0 in this case.
Proposition 18:If A8(r).0 there is ab,r such thatL(r ),0 for all r ,b.
Proof: We will first assumeL(r ).0 for all r<r and derive a contradiction. We hav

rA85L22A(11w82).22A and hence, (r 2A)8.0. Hence, if r 1,r 2,r, A(r 1)
,(r 2

2/r 1
2)A(r 2) so limr 1→01 A(r 1)52`. Since L(r ),11A we have a contradiction. Thus

L(b)50 for someb,r andL(r ),0 for all r ,b by Proposition 1.
Proposition 19:limr→01 L(r )52`.
Proof: We calculater (L1A)85222A22w82L. If L,0 andA,0 thenr (L1A)8>2 and

hence, by integrating, limr→01 L1A52`. SinceL,11A we have 2L,11L1A and hence the
result.

Theorem 20: If ~w, A! is a solution to Eqs.~1.1! and ~1.2! defined in the far field and for
which A has exactly one zero then either limr→0A(r )5` or lim infr→01 A(r )52`.

Proof: If A8(r)50 then we have seen that limr→01 A(r )51`. If A8(r).0 we wish to
show that lim infr→01 A(r )52`. We assume 0.A(r ).M for r near 0 and derive a contradic
tion. First note thatrA8(r ),21 for all r ,r 1 is not possible; a simple integration shows th
A(r ).0 for somer ,r 1 . Similarly, rA8(r ).1 for all r ,r 2 is not possible; again, a simpl
integration shows that limr→01 A(r )52`. Thus, given anyr 1.0 we must haveurA8(r )u,1 for
somer ,r 1 .

We complete the proof of the theorem with the following lemma.
Lemma 21:If 1>rA8(r )>21, A(r ).M , andr !1 thenr 2A9(r )<22.
Proof of theorem using Lemma 21:The lemma shows that if21<r 1A8(r 1)<1 for some

r 1.0 then, by integrating the inequalityr 2A9(r )<22, there is an r 2,r 1 such that
r 2A8(r 2).1. Moreover, ifrA8(r )51 for somer ,r 2 then r (rA8(r ))85r 2A9(r )1rA8(r )<22
11,0 so rA8(r ).1 for all r ,r 2 . As noted above,rA8(r ).1 for all r ,r 2 is not possible so
that completes the contradiction and hence, the proof of the theorem.

Proof of Lemma 21:By Proposition 19,2L..1 for r ,,1; so 22Aw821W2/r 2..1
since 11A is bounded. SinceurA8(r )u,1 and 11A is bounded, Eq.~1.1! says that
22Aw82'W2/r 2, hence, 22Aw82..1 and W2/r 2..1. Also, since A is bounded and
22Aw82..1 we see thatw82..1. We then compute

r 2A9~r !54Aw841S 212A22
W2

r 2 Dw8218w
W

r
w812A2214

W2

r 2 .

We have 2(W2/r 2)w8214(W2/r 2),,0 since w82..1. Also, @212A2(W2/r 2)#w82

18w(W/r )w8,,0 sinceW2/r 2..uwW/r u andw82..uw8u. The remaining terms are all nega
tive and hence,r 2A9(r ),22.

Note: we are not able to prove that limitA52` reflecting the fact thatA oscillates near
r 50, cf. Refs. 17–20.

We now examine the behavior of solutions~w, A! of Eqs. ~1.1! and ~1.2! defined in the far
field for which A has two zeros att ands say, withA8(s).0 andA8(t),0.

Proposition 22:A solution ~w, A! to Eqs.~1.1! and ~1.2! defined in the far field for whichA
has two zeros is a Reissner–Nordstro¨m-type solution.

Proof: By Remark 7,t,s and henceA(r ).0 for r near 0. It was shown in Ref. 14 that an
solution to~1.1! and ~1.2! that is defined in a neighborhood ofr 50 and that hasA(r ).0 near
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r 50 is either a Reissner–Nordstro¨m-type solution or a Bartnik–McKinnon particle-like solution
Thus, it is sufficient to show that~w, A! is not a Bartnikon. As observed in Corollary 3
L(t),0 and henceL(r ),0 for all r ,t by Lemma 10. But a Bartnik–McKinnon particle-lik
solution hasL(0)52 since A(0)51, w8(0)50, w2(0)51. Thus, the solution cannot be
Bartnik–McKinnon particle-like solution and must be a Reissner–Nordstro¨m-type solution.

Note that the singularity atr 50 is inside the horizon atr 5r.t.0.
We now have the trichotomy theorem.
Theorem 23: Any solution of Eqs.~1.1! and ~1.2! defined in the far field is defined for a

r .0 and has finite ADM mass. Moreover, either limr→01 A(r )51 and the solution is particle
like, limr→01 A(r )51` and the solution is Reissner–Nordstro¨m-type, or lim infr→01 A(r )5
2`.

Proof: If A(r ).0 for all r .0 then by the results of Ref. 14 mentioned above the solutio
either a Bartnik–McKinnon particle-like solution for which limr→01 A(r )51 or a Reissner–
Nordström-type solution for which limr→01 A(r )51`.13 If A has one zero, then limr→01 A(r )
51` or lim infr→01 A(r )52` by Theorem 20. Finally, ifA has two zeros then the solution
a Reissner–Nordstro¨m-type solution by Proposition 22 and hence, limr→01 A(r )51`. By Theo-
rems 6 and 9 there are no other cases to consider.
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Spectral decomposition and resolvent kernel for a magnetic Laplacian inCn are
given. As an application we obtain the corresponding Schro¨dinger propagator and
wave kernel. ©2000 American Institute of Physics.@S0022-2488~00!02809-7#

I. INTRODUCTION

In this paper we will be concerned with the magnetic Laplacian inCn:

D̃52(
j 51

n
]2

]zj ] z̄j
1(

j 51

n

z̄j

]

] z̄j
,

with D(D̃)5C0
`(Cn,C), the space ofC-valuedC`-functions with a compact support inCn as its

natural regular domain in the weighted Hilbert spaceH5L2(Cn,e2uzu2 dn) endowed with the
Hermitian scalar product̂f ,g&H5*Cnf (z)g(z)e2uzu2 dn(z). Here, dn(z) denotes the Lebesgu
measure inCn5R2n anduzu25^z,z& the usual Euclidean norm square. The operatorD̃ is obtained
from the Schro¨dinger operator with a uniform magnetic field~of length one! given by

H̃5
21

4 (
j 51

n S S ]

]xj
1A21yj D 2

1S ]

]yj
2A21xj D 2D ,

defined on the Hilbert spaceL2(R2n,dn). Precisely, we haveQ+(H̃2n/2)+Q215D̃, whereQ is
the unitary map fromL2(R2n,dn) into H defined byQ f5e(1/2)uzu2f . In Ref. 1, the authors have
obtained explicit formulas for reproducing kernel of eigen-spaces ofD̃ in the Hilbert spaceH.
Actually, some general spectral properties ofD̃ in H are well known. Namely,D̃ is an essentially
self-adjoint operator inH. The spectrum ofD̃ is the set$m,mPZ1% of eigenvalues with infinite
multiplicities.

The purpose of the present paper is to endow theL2 spectral theory of the operatorD̃ with
fundamental tools as its spectral decomposition and resolvent kernel. As an application, we
the corresponding Schro¨dinger propagator and wave kernel.

The paper is organized as follows. In Sec. II, we give the spectral decomposition ofD̃. In Sec.
III, we deal with the resolvent operator. In Sec. IV, we give some applications of the obta
explicit formula for the resolvent kernel ofD̃.

II. SPECTRAL DECOMPOSITION

Let us fix some notations. Forp,qPZ1 , let H(p,q) denote the space of restrictions to th
sphereS2n215$vPCn,uvu51% of Euclidean harmonic polynomialsh(z) on Cn which are ho-
mogenous of degreep in z and the degreeq in z̄. The dimensiond(n,p,q) of H(p,q) is as
follows. Forn52,3,..., we have

a!Electronic mail: naskour@caramail.com
b!Electroinc mail: mouayn@caramail.com
69370022-2488/2000/41(10)/6937/7/$17.00 © 2000 American Institute of Physics
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d~n,p,q!5
~p1q21!~p1n22!! ~q1n22!!

p!q! ~n21!! ~n22!!
,

and for n51, we make the conventionpq50; then d(1,p,q)51; see Ref. 2, p. 401. For
complex numberm, we denote byAm

2 (Cn) the space of eigenfunctionsf of D̃ with m as eigenvalue
and such thatf belongs toH. That is, Am

2 (Cn)5$ f PC`(Cn);D̃ f 5m f and^ f , f &H,1`%. The
concrete description of this eigenspaceAm

2 (Cn) is given by the following theorem.
Theorem 2.1„Ref. 1…: Let mPC. Then we have the following.

(i) For mÞ0,1,2,...,the space Am
2 (Cn) is trivial;

(ii) If m PZ1 , then a complex-valued function f belongs to Am
2 (Cn) if and only if it can be

expanded in the form

f ~z!5 (
p>0

0<q<m

F~2m1q,n1p1q;r 2!r p1qap,q .hp,q~v!inC`~Cn!, z5rv, uvu51, r .0,

where F(a,b;x) the confluent hypergeometric function, hp,q5$hp,q
j %1< j <d(n,p,q) an orthonormal

basis of H(p,q) and ap,qPCd(n,p,q) are such that

(
p>0

0<q<m

g~n,m,p,q!uap,qu2,1`,

with

g~n,m,p,q!5 1
2~m2q!! ~p1q1n21!!G~n1p1q!G~n1p1m!21

and

i f i25 (
p>0

0<q<m

g~n,m,p,q!uap,quCd~n,p,q)
2

,1`.

Remark 2.1:For m50, the spaceA0
2(Cn) turns out to be the realization by harmonic functio

with respect toD̃ of the classical Bargmann space, whose elements are the holomorphic fun
f in Cn with *Cnu f (z)u2e2uzu2 dn(z),1`.

Proposition 2.1: (i)D̃ is an unbounded essentially self-adjoint operator in the Hilbert sp

L2(Cn,e2uzu2dn). (ii) The operatorD̃ admits a spectral decomposition.
Proof: It is easy to see thatD̃ is an unbounded symmetric operator and as a consequence~i!

in Theorem 2.1, we have Ker (D̃6 i )5$0%. Thus,~i! is proved. The assertion~ii ! results from the
general spectral theory for unbounded self-adjoint operators.

Theorem 2.2: The spectral decomposition of the operatorD̃ is given by the family$El ,l
PR% of integral operators on L2(Cn,e2uzu2 dn):

El f ~z!5p2nE
Cn

e^z,w&L @l#
n ~ uz2wu2! f ~w!e2uwu2 dn~w!,

if l>0 (@l#5the greatest integer not exceedingl and Lj
n(x) denotes the Laguerre polynomia!

and El f (z)50 for l,0.
Proof: First, we recall that the Hilbert spaceH has a decomposition onto an orthogonal su

of the eigenspaces„Am
2 (Cn)…mPZ1

~cf. Ref. 1, Prop. 4.1!. We denote byPm the projection operator

from H into Am
2 (Cn). Then, for f PH, we havePmf (z)5*CnKm(z,w) f (w)e2uwu2 dn(w), z

PCn whereKm(z,w) is the reproducing kernel of the eigenspaceAm
2 (Cn) given in terms of the

Laguerre polynomial byKm(z,w)5p2ne^z,w&Lm
n21(uz2wu2), z, wPCn ~see Ref. 1, Theorem 3.1!.
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Now, for a l real number, letGl be the subspace ofH defined byGl5 % 0<m<@l#Am
2 (Cn) if l

>0 and Gl5$0% if l,0. Letting El denote the projection operator fromH onto the closed
subspaceGl , it is not difficult to see that the family$El ,lPR% constitutes the spectral decom
position of the magnetic LaplacianD̃. Explicitly, for l>0, we have

El f ~z!5 (
0<m<@l#

Pmf ~z!

5 (
0<m<@l#

E
Cn

Km~z,w! f ~w!e2uwu2 dn~w!

5E
CnS (

0<m<@l#
Km~z,w! D f ~w!e2uwu2 dn~w!.

Using the following identity on the Laguerre polynomials:

(
m50

k

Lm
a ~x!5Lk

a11~x!

~see Ref. 4, p. 249!, we get that

(
0<m<@l#

Km~z,w!5p2ne(z,w)L @l#
n ~ uz2wu2!.

Therefore,

El f ~z!5p2nE
Cn

e^z,w&L @l#
n ~ uz2wu2! f ~w!e2uwu2 dn~w!.

For l,0, it is easy to see thatEl50. h

III. THE RESOLVENT OPERATOR

Let us fix some notations. ByF(a,c;x) we denote the confluent hypergeometric functi
given by the series

F~a,c;x!5
G~c!

G~a! (j 50

1`
G~a1 j !

G~c1 j !

xj

j !
.

We denote byG(a,c;x) the function defined by

G~a,c;x!5
G~12c!

G~a2c11!
F~a,c;x!1

G~c21!

G~a!
x12cF~a2c11,22c;x!

~see Ref. 4, p. 264!.
Theorem 3.1: Let zPC\Z1 . Then, the resolvent operator R(z)5(z2D̃)21 is the integral

operator on L2„Cn,e2uzu2 dn(z)… given by

R~z! f ~z!52p2nG~2z!E
Cn

e^z,w&G~2z,n,uz2wu2! f ~w!e2uwu2 dn~w!, zPCn.

Proof: By the spectral theorem~cf. Ref. 3, p. 134! for unbounded self-adjoint operators, th
resolvent operatorR(z)5(z2D̃)21 is connected to the spectral decomposition$El , lPR% as
follows:
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^R~z! f ,g&H5E
0

1` 1

z2l
d^El f ,g&H , f ,gPH, and zPC\R.

An integration by parts in the sense of Stieljes gives

^R~z! f ,g&H5E
0

1` 21

~z2l!2 ^El f ,g&Hdl.

Using Theorem 2.2, we obtain that

^R~z! f ,g&H5K E
Cn

R~z,z,w! f ~w!e2uwu2 dn~w!,gL
H

,

with

R~z,z,w!52p2ne^z,w&S (
k50

` Lk
n~ uz2wu2!

z2k
2 (

k50

` Lk
n~ uz2wu2!

z212k D
2p2ne^z,w&

„Sn~z,uz2wu2!2Sn~z21,uz2wu2!…,

where

Sn~j,x!5 (
k50

1` Lk
n~x!

j2k
,xPC,jPC\Z1 .

Now, to compute the sumSn(j,x) we begin by writing it in terms of the Laguerre polynomial
order zero thanks to the identity

Lk
n~x!5~21!n

dn

dxn „Ln1k~x!…

~see Ref. 4, p. 240!. Precisely, we have

Sn~j,x!5~21!nS d

dxD
nS (

k50

`
Lk1n~x!

j2k D
5~21!n11S d

dxD
nS (

j 50

1`
L j~x!

j 2~n1j!D ,

which must be interpreted in the distributional sense. Next, using the identity

1

j 2~n1j!
5E

0

1`

e2~ j 2n2j!t dt,Re~j!,2n,

we can writeSn(j,x) as

Sn~j,x!5~21!n11S d

dxD
nS (

j 50

1` E
0

1`

e2~ j 2n2j!tL j~x!dtD ,Re~j!,2n

5~21!n11S d

dxD
nS E

0

1`S (
j 50

1`

e2 j tL j~x!D et~j1n! dtD .

By the use of the generating function of the Laguerre polynomials, we obtain
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Sn~j,x!5~21!n11S d

dxD
nS E

0

1`

~12e2t!21 expS xe2t

e2t21Det~j1n! dtD
5~21!n11S d

dxD
nS E

0

1

~12s!21 expS 2
xs

12sD s2j2n21 dsD .

Now, by the identity

G~a,c;x!5
~b2a!c2a

G~a!
exE

a

b

expS 2
~b2a!x

b2t D ~ t2a!a21~b2t !2c dt

~cf. Ref. 4, p. 277! in which we seta50, b51, a52j2n andc51, we get

Sn~j,x!5~21!n11S d

dxD
n

„G~2j2n!G~2j2n,1;x!….

Hence, the resolvent kernel can be expressed as

R~z,z,w!5p2ne^z,w&~21!nF dn

dxn „G~2z2n!G~2z2n,1;x!…

2
dn

dxn „G~2z112n!G~2z112n,1;x!…G
x5uz2wu2

.

Finally, using the following two identities:

dn

dxn G~a,c;x!5~21!n
G~a1n!

G~a!
G~a1n,c1n;x!

and

G~a,c;x!5G~a,c21;x!1aG~a11,c;x!

~see Ref. 4, p. 265!, we arrive at the expression

R~z,z,w!52p2ne^z,w&G~2z!G~2z,n;uz2wu2!,z,wPCn,

which can be extended meromorphically for allzPC\Z1 . h

IV. SOME APPLICATIONS

In this section, we give some applications of the obtained explicit formula for the reso
kernel of the magnetic LaplacianD̃.

Proposition 4.1: LetC(t,z) be the solution of the following Schro¨dinger equation associated

to D̃:

i ] tC~ t,z!5D̃C~ t,z!,C~0,z!5w~z!PC0
`~Cn!, ~ t,z!PR3Cn.

ThenC(t,z) is given by the integral formula

C~ t,z!5E
Cn

T~ t,z,w!w~w!e2uwu2 dn~w!,

where
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T~ t,z,w!52
e^z,w&

2pn11 E
s2 i`

s1 i`

etzG~ i z!G~ i z,n,uz2wu2!dz,tPR,z,wPCn and s.0.

Proof: It is easy to see that the above Schro¨dinger equation is solved byC(t,z)

5e2 i t D̃w(z). Recalling the definition of the function of an operator~cf. Ref. 3, p. 68!, we have
that

^e2 i t D̃w,f&H5E
0

1`

e2 i tld^Elw,f&H ,fPH.

Writing the functione2 i tl as an inverse Laplace transform as

e2 i tl5
1

2p E
s2 i`

s1 i` etz

i z2l
dz, s.0,

we get

^e2 i t D̃w,f&H5
1

2p E
s2 i`

s1 i`

etzS E
0

1` 1

i z2l
d^Elw,f&HD dz.

On the other hand, the connection between the spectral family$El ,lPR% and the resolvent
operatorD̃ leads to the equality

E
0

1` 1

i z2l
d^El w,f&H5^R~2 i z!w,f&H ,z¹ iZ1 ,

and then

^e2 i t D̃w,f&H5
1

2p E
s2 i`

s1 i`

etz^R~2 i z!w,f&Hdz,

from which we get that

C~ t,z!5e2 i t D̃w~z!5E
Cn

T~ t,z,w!w~w!e2uwu2 dn~w!,

where

T~ t,z,w!52
e^z,w&

2pn11 E
s2 i`

s1 i`

etzG~ i z!G~ i z,n,uz2wu2!dz,s.0.

Proposition 4.2: Let U(t,z) be the solution of the wave Cauchy problem associated toD̃:

~] t
21D̃ !U~ t,z!50,~ t,z!P~0,1`!3Cn,

U~0,z!50 and ] tU~0,z!5w~z!,wPC0
`~Cn!.

Then, U(t,z) is given by the integral formula

U~ t,z!5E
Cn

W~ t,z,w!w~w!e2uwu2 dn~w!,

where
                                                                                                                



an

s as

uatiq,
at

ical

6943J. Math. Phys., Vol. 41, No. 10, October 2000 Spectral decomposition and resolvent kernel

                    
W~ t,z,w!5
e^z,w&

2ipn11 E
s2 i`

s1 i`

etzG~z2!G~z2,n,uz2wu2!dz,s.0.

Proof: It is not difficult to see that the operator-valued function ofD̃ given by U(t)

5sintAD̃/AD̃ solves the above wave Cauchy problem in the sense that the solutionU(t,z) is
obtained byU(t,z)5„U(t)w…(z). Also, by the definition of the function of an operator, we c
write

^U~ t !w,c&H5E
0

1` sintAl

Al
d^Elw,c&H ,cPH.

Writing the function sintAl/Al as an inverse Laplace transform as

sintAl

Al
5

1

2ip E
s2 i`

s1 i` etz

l1z2 dz,s.0,

we get

^U~ t !w,c&H5
1

2ip E
s2 i`

s1 i`

etzS E
0

1` 1

l1z2 d^Elw,c&HD dz.

Using the same argument as in the proof of Proposition 4.1, we obtain

^U~ t !w,c&H5
21

2ip E
s2 i`

s1 i`

etz^R~2z2!w,c&Hdz,s.0,

from which we deduce that

U~ t,z!5„U~ t !w…~z!5E
Cn

W~ t,z,w!w~w!e2uwu2 dn~w!,

where

W~ t,z,w!5
e^z,w&

2ipn11 E
s2 i`

s1 i`

etzG~z2!G~z2,n,uz2wu2!dz,s.0.

Remark 4.1:It should be noted that we can expand the above wave kernel into a serie

W~ t,z,w!5p2ne^z,w& (
m>0

sintAm

Am
Lm

n21~ uz2wu2!.

The latter was mentioned in Ref. 1 as a remark.
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Statistical Lorentzian geometry and the closeness
of Lorentzian manifolds

Luca Bombellia)

Department of Physics and Astronomy, University of Mississippi, Oxford, Mississippi 38677

~Received 28 January 2000; accepted for publication 13 June 2000!

I introduce a family of closeness functions between causal Lorentzian geometries
of finite volume and arbitrary underlying topology. When points are randomly
scattered in a Lorentzian manifold, with uniform density according to the volume
element, some information on the topology and metric is encoded in the partial
order that the causal structure induces among those points; one can then define
closeness between Lorentzian geometries by comparing the sets of probabilities
they give for obtaining the same posets. If the density of points is finite, one gets a
pseudo-distance, which only compares the manifolds down to a finite volume scale,
as illustrated here by a fully worked out example of two two-dimensional manifolds
of different topology; if the density is allowed to become infinite, a true distance
can be defined on the space of all Lorentzian geometries. The introductory and
concluding sections include some remarks on the motivation for this definition and
its applications to quantum gravity. ©2000 American Institute of Physics.
@S0022-2488~00!00110-9#

I. INTRODUCTION

The purpose of this paper is to propose a definition of closeness between Lorentzian
etries, where by Lorentzian geometry I mean a diffeomorphism equivalence classG5$(M ,g)% of
manifolds with Lorentzian metrics. More specifically, I will first define a pseudo-distance func
dn(G,G8) of two geometriesG5$(M ,g)% andG85$(M 8,g8)% with finite volumesVM andVM8 ,
depending on an integern, such that wheneverdn(G,G8) is small, the two geometries are close
large volume scales compared toVM /n andVM8 /n, up to a global scale transformation; most
the paper is devoted to this pseudo-distance and its properties, but I will also extend the de
to a distance functiondl(G,G8) depending on a length parameterl. Notice that the geometries in
question can be based on two entirely different manifoldsM andM 8.

There are various contexts in which such a definition is useful, but the ones that motivate
work are mostly related to quantum gravity. There is a growing amount of evidence, ini
suggested by analogies with other theories and simple consistency arguments but incre
supported by more rigorous results, that the structure of space–time at the smallest scales~of the
order of or smaller than the Planck volumel P

4 5(G\/c3)2—just for this equation,G stands for
Newton’s gravitational constant! differs significantly from that of the four-dimensional, topolog
cally flat differentiable manifold we use as a model in ordinary physics.1–3 Very many different
proposals exist for what to replace this manifold with; I will mention only a few of them here
examples of situations in which one needs to talk about the closeness of Lorentzian geom

If one assumes that large quantum fluctuations of the metric on small scales will be asso
with fluctuations in the topology itself, but differentiable manifolds are still valid models for
geometry, one is led to the notion ofspace–time foam,4–6 a bubbling topological magma in whic
topological entities like geons and wormholes fluctuate into and out of existence. Space–tim
quantum superposition of differentiable manifolds of different topology, and the ones that
tribute most to the classical spacetime we see are such that each topological fluctuation o

a!Electronic mail: luca@phy.olemiss.edu
69440022-2488/2000/41(10)/6944/15/$17.00 © 2000 American Institute of Physics
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on the average one Planck volume; at larger scales they are all thought to be close to eac
and essentially indistinguishable from a topologically flat manifold.

On the other hand, there are hints that the very notion of manifolds and continuity may
to be abandoned for models that describe spacetime at Planck scales. In thecausal setproposal,
spacetime is considered as a locally finite partially ordered set;7–12 if the elements are thought o
as events, occupying on the average one Planck volume each, the partial order is interpr
giving the causal relations between them. Inspin foamtype proposals, the basic structure is al
that of a graph, but with extra variables attached to the edges and vertices.13–18 In either case, the
continuum and the rest of the Lorentzian manifold structure we see at large scales emer
thermodynamic limit, much like the description of a gas by thermodynamic quantities su
pressure and temperature emerges at large scales. Part of the reason why this limit exists
even though there are infinitely many Lorentzian manifolds which can smoothly interpolat
tween the elements of a given discrete set, they are all supposedly indistinguishable at scale
than l P

4 .
A definition of closeness between Lorentzian metrics on the same manifoldM, in the form of

a scale dependent functiondl(g,g8), has already been given in Ref. 19~the main idea can also b
found in Ref. 20!. However, that definition is not diffeomorphism invariant, in the sense that,f
is a diffeomorphism ofM, in generaldl(g,g8)Þdl(g,f* g8). In principle, given such adl one
can construct an invariant one,19 but in this casedl is difficult to work with; and, more impor-
tantly, it is not defined for metrics on different manifolds. My goal here is to set up a defin
that is applicable to any two Lorentzian manifolds, analogously to the one given for Riema
geometries by Gromov using geometrical concepts21 or by Seriu using spectral techniques22

Unfortunately, the ideas behind those distances rely heavily on the positive-definite nature
metrics; the one I use here comes instead from causal set theory;G andG8 are close if, when we
distribute the same number of points at random with uniform density in~one representative of!
each of them, the probability of obtaining any given induced partial order among those po
about the same in the two cases. A few of the ideas that led to this work appeared earli
different form in Ref. 23.

The use of uniform distributions of points is what makes the definition diffeomorph
invariant, by not requiring us to identify points in the two manifolds; we are comparing instea
two geometries by independently sampling them, Montecarlo style, which brings a probab
aspect into the definition. Therefore, I begin in Sec. II by briefly reviewing the definition and s
properties of a uniform random distribution of points in a manifold, with respect to a given vo
element. For simplicity, I will assume that all manifolds (M ,g) have a finite total volumeVM

5*MdDxA2g, whereD is the dimension ofM. If the manifolds have no closed timelike curve
eachn-point sprinkling is endowed with a partial order by the causal structure on the man
and defines an element of the setCn of all partially ordered sets~posets! on n points. The idea then
is to definedn(G,G8) by comparing the two probabilities onCn corresponding toG andG8. The
rest of the section is devoted to constructing a procedure for calculating those probab
Section III contains the definition of the family of pseudo-distances and a derivation of some
properties, and Sec. IV is an example in which calculations are carried out in detail. In Sec
introduce a family of distances, which uses sprinklings of arbitrarily high numbers of points
discussion is kept at a general level, independently of any applications, but the concluding S
contains additional remarks on applications of this work as well as open issues.

Finally, a few words concerning notation and terminology. Poset elements are denot
p,q,...; manifold points byx,y,...; by thepastor future of a pointx in a Lorentzian manifold, I
will mean its chronological past or futureI 7(x) ~this convention is adopted mainly for the sake
definiteness, since most of our considerations will depend just on the volume of those set
their intersections and unions, which for well-behaved geometries would be the same if I ha
instead causal pasts/futures or their closures!; and the relationshipyPI 1(x), or xPI 2(y), will be
indicated byx,y. Finally, P’s will stand for probabilities,P̃’s for probability densities,C’s for
posets,C’s for sets of posets,VR or V(R) for the volume of the regionR,M , andR\R85$xux
PR,x¹R8% for the difference between sets.
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II. RANDOM POINT DISTRIBUTIONS AND PARTIALLY ORDERED SETS

This section contains the elements that will go into the definition of the closeness meas
begin with a summary of the few notions we will need regarding uniform distributions of poin
a manifold, and then discuss how to obtain probabilities for different resulting partial order

Given any manifoldM with a volume element, in particular one with a metric~which at this
point could be Riemannian or Lorentzian, possibly even degenerate—but not everywhere,
getVM50!!, such that the total volumeVM is finite, we can define a random process of sprinkl
points uniformly by stating that, each time a point is chosen inM, the probability density that a
particularx be picked is

P̃M~xuA2g!5
1

VM
A2g~x!, ~1!

in any coordinate system; equivalently, the probability thatx fall in any given measurable regio
R,M ~such as any interval or any finite union or intersection of such sets24! is

PM~xPR!5E
R
P̃M~xuA2g!dDx5

VR

VM
. ~2!

If the process is repeatedn times, we get a uniform, random sprinkling of points with densityr
ªn/VM , or, if we forget the order they came in, an unlabeledn-point distribution; these are th
events we are interested in, and for which we will calculate probabilities.

One of the probabilities one uses most often in such cases is the one for exactlyk points out
of n to fall insideR ~without specifying which ones!. This probability follows a binomial distri-
bution,

P~k,Run,M !5S n
kD)

i 51

k

P~xiPR! )
j 5k11

n

P~xjPM \R!5S n
kD S VR

VM
D kS 12

VR

VM
D n2k

, ~3!

which, asVM andn become very large, withr5const, approaches a Poisson distribution,

P~k,Run,M !'
e2rVR~rVR!k

k!
. ~4!

This last equation justifies the namePoisson distributionthat is often used for the sets of poin
used in this paper, and corresponds to the infinite volume situation. The fact that in tha
P(k,Run,M ) can be written in the~exact! form ~4!, where onlyr appears and notn or VM ,
indicates that it may be possible to generalize the definitions and results of this paper to i
volumes, although in that case we do not have the probability density~1! available, which is what
we would use to carry out an actual sprinkling, e.g., in a computer simulation.

When we randomly sprinklen points inM, the volume elementA2g determines statistically
where they will fall; given their positions, the causal structureĝ determines then the caus
relations between them. From now on, all metrics will have Lorentzian signature and satis
past and future distinguishing condition~see, e.g., Refs. 25 and 26!. In particular, this implies the
causality condition~no closed causal curves!, which guarantees that a partial order is induced
each sprinkling, defining ann-element posetCPCn ; the slightly stronger distinguishing conditio
implies that ‘‘there are no almost closed causal curves,’’ in a specific sense which gives
additional benefits, as I will discuss below. Different geometriesG5$(M ,g)% and G8
5$(M 8,g8)% will then in general give different probabilitiesPn(CuG) andPn(CuG8) of obtaining
eachCPCn , which we may compare as a way to determine how close the geometries them
are. It is therefore important to have a general procedure available for calculating, in princi
least, the probabilitiesPn(CuG).
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Let us start by fixing our notation. WhileCn is the set of unlabeled posetsC on n elements,C̄n

will denote the set of labeledn-element posetsC̄, andSn(M ) the set ofn-point sprinklingss
5(x1 ,...,xn) in M. ~One may argue that the labelling of the points should not be important;
considering sprinklings to be orderedn-tuples of points here for convenience.! As already stated,
our random events aren-point sprinklingss obtained as a result of a random process with unifo
density. The volume elementA2g on M induces a probability density onSn(M ); since the points
are independently sprinkled, this can be obtained from products of single point probability d
ties ~1!,27

P̃M~x1 ,...,xnuA2g!5)
i 51

n

P̃M~xi uA2g!5
1

VM
n )

i 51

n

A2g~xi !. ~5!

If the space–time (M ,g) has no closed timelike curves, i.e., satisfies the chronology condition
relationx1,x2 induced by the conformal structureĝ on M is a partial order, so the sprinklings
becomes a labeled posetC̄ª$pi upi,pj iff xi,xj in s%, i.e., we get a mapF ĝ :Sn(M )→C̄n

given by s°C̄. This map is many-to-one, and the inverse image of anyC̄ is the setS
5F ĝ

21(C̄),Sn(M ) of all sprinklings with the same induced labeled partial order. This set
nonzero measure inSn(M ); in fact, its probability is

PS~SuA2g!5E
S
P̃M~x1 ,...,xnuA2g!dDx1¯dDxn , ~6!

whereS is specified by conditions on the relations between the sprinkled points giving, for
xi , a regionMi,M it can fall into in order to have the right relations with the previous
sprinkledxj with j , i , according toC̄. Thus, the probability~6! is of the form

PS~SuA2g!5
1

VM
n )

i 51

n E
Mi ~x1 ,...,xi 21 ;C̄!

A2g~xi !d
Dxi . ~7!

This expression gives the probability that the sprinkling give rise to a labeled posetC̄; we will see
below how to specify theMi explicitly.

What we really want to find is the probability that the sprinkling give rise to anunlabeled
posetC. EachC can be labeled inn! ways, but in general some of these labelings are indis
guishable in terms of the order relation; more specifically, the number of permutations of ele
of C that give the sameC̄ is the number of automorphisms ofC, uAut(C)u ~this number is a
property ofC, independent of the specificC̄ chosen!, and we get that eachCPCn can be obtained
from n!/ uAut(C)u different labeledC̄’s, so the probability we are looking for is

Pn~CuG!ª
n!

uAut~C!u
1

VM
n )

i 51

n E
Mi ~x1 ,...,xi 21 ;C̄!

A2g~xi !d
Dxi , ~8!

whereC̄ is an arbitrary labeling ofC.
Suppose a given labelingC̄5$pi% of C has been chosen to carry out the sprinkling. T

means that, in order for the$xi% to be a realization ofC̄, eachxi must be in the future of thexj ’s
such thatpi.pj , among the previously sprinkled ones, in the past of the ones such thpi

,pj , and spacelike related to the remaining ones. In other words, whilex1 can be anywhere
M1(C̄)5M , pointsxi with i .1 must fall in the regions
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Mi~x1 ,...,xi 21 ;C̄!5 ù
j , i

M i j ~xj ,C̄!, Mi j ~xj ,C̄!5H I j
1 if pi.pj

I j
2 if pi,pj

M \I j otherwise,

~9!

where for futures and pasts I use the abbreviationsI i
6
ªI 6(xi) and I iªI i

2øI i
1 . The most con-

venient labelingC̄ to use in each case may vary. It is often a good choice to pick one compa
with the partial order onC, in the sense that ifpi,pj then i , j , which can always be done~in
fact, it just means ‘‘start labeling from the bottom and work your way up,’’ and the choic
almost never unique!; this has the advantage that, to reproduce the partial order onC̄, no xi needs
to be in the past of any of the previously sprinkledxj ’s with j , i , which eliminates the secon
case in~9!.

This completes the prescription for calculating the probabilities to be used in the clos
function. In practice, the dependence of eachMi on the pointsx1 ,...,xi 21 makes the probability
very difficult to calculate analytically, and one would normally use other means such as com
methods, except for very simple situations like the one in Sec. IV.

III. THE PSEUDO-DISTANCE

In this section, I will take the point of view that geometriesG can be identified with the set
of probabilities$Pn(CuG)uCPCn%, with a degree of approximation that improves asn increases.
The task of defining a pseudo-distance betweenG and G8 is then reduced to that of defining
distance between their respective sets of probabilities. I will do so, and then consider
properties of the resulting pseudo-distance.

Various functions can be used as distances between sets of numbers; some simple
handle would be thel 1-type distancedn

(1)(G,G8)5 1
2 (CPCn

uPn(CuG)2Pn(CuG8)u, the Euclidean
distance, or simply the ‘‘sup’’ distance, but in view of the interpretation of the number
probabilities, I will use instead the statistical distance introduced by Wootters28 in the context of
rays in Hilbert space, which is proportional to the number of statistically distinguishable,
appropriate sense, intermediate probability sets between the two sets being compared. Let
define, for any two geometries,

dn~G,G8!ª
2

p
arccosF (

CPCn

APn~C/G!APn~C/G8!G . ~10!

Geometrically, the fact that(CPCn
Pn(CuG)51 means thatAPn(CuG) can be interpreted as th

coordinates of a point on the unit sphere, identifying a direction in probability spaceRuCnu, and
dn(G,G8) is then proportional to the angle defined by the two corresponding directions; n
that, because all coordinates are non-negative, that angle is at mostp/2, so with this definition
dn(G,G8) is at most equal to 1.

Clearly,dn(G,G8) is not positive-definite. For eachn, the numberuCnu of posets that can be
made out of then sprinkled points, although very large, is finite; thus, the value ofdn(G,G8)
depends on a finite number of parameters, and cannot capture all of the information conta
the geometries. This means thatdn cannot be an actual distance function in the infini
dimensional space of Lorentzian geometries. One possibility would be to take the limitn→`; this
may indeed give a distance, but it may be a trivial one, as I discuss below, and we shall co
a better alternative in Sec. V. However, even for finiten, two geometries for whichdn(G,G8)
50 are close when probed at scales larger than the mean point spacing, and this is what w
need in some applications.

Let us consider the other extreme situation,dn(G,G8)51. For finiten, this can happen only
for highly degenerate geometries, since it requires that the argument of the arccos function~10!
be zero, in other words that there be noCPCn for which both Pn(CuG) and Pn(CuG8) are
nonvanishing, i.e., which can be embedded in both geometries. One of the possibleC’s is always
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the totally orderedn-element poset~a chain!, so one of the geometries~say,G! must assign zero
probability to pairs of timelike related points; inG, the light cones of all points must hav
degenerated away to lines. Another possible poset is the totally disconnected one~an antichain!, so
one of the geometries~necessarily the other one,G8! must assign zero probability to pairs o
spacelike related points;G8 has the wide open light cones of the infinite speed of light limit, o
a one-dimensional timelike line. No posetCPCn other than those two can be embedded in eit
geometry. We conclude that the inequalitydn(G,G8)<1 cannot be saturated other than as
degenerate limit of sequences of geometries of the type just described.

In the limit n→`, however, the situation may change. We know from continuum results
the topology, differentiable, and conformal structures of a past and future distinguishing Lo
zian geometry can be recovered just from the knowledge of the causal relations betweenall pairs
of points29,30and that, if one considers instead pairs of points in a sequence of uniform sprink
of increasing density, the same is true in the limitn→`, with the added bonus that the volum
element can be recovered as well, up to a global factor;20,31 thus, in that limit, sequences of pose
$Cn%, where eachCn has n elements and is a subposet of the next one,Cn,Cn11 , can be
embedded at most in a single geometryG. This means that

;GÞG8, lim
n→`

Pn~CnuG!Pn~CnuG8!50 ;$Cn%. ~11!

In fact, it is also true that each individual probabilityPn(CnuG) or Pn(CnuG8) tends to zero as
n→`. But the number of terms in the summation in~10! grows very fast withn ~faster than
exponentially32!, and the limiting value ofdn(G,G8) for GÞG8 depends on the rate of approac
to zero of these probabilities. It is possible thatd`(G,G8)51 for all GÞG8 @in terms of the
discussion above, many posets may be embeddable in bothG andG8, but the limit is 1 because
all products of probabilities in~11! go to zero fast enough#; in this cased` would be a distance
but a trivial, not very useful one.

We will see whatd`(G,G8) can be replaced by later in the paper, and return now to ex
ining properties ofdn with finite n. In addition to its much greater ease of computation,
functiondn(G,G8) is also made interesting by the following reasonable conjectures:~i! In a sense,
for large enoughn, it is ‘‘almost a distance,’’ or ‘‘positive-definite up to differences on sm
scales;’’~ii ! For any subset of geometries labeled by a finite numberN of parameters~analogous
to the ‘‘minisuperspaces’’ used for spatial geometries!, there is a finiten such thatdn is a true
distance function on this set, and~iii ! For any two arbitrary~distinguishing, finite-volume! differ-
ent geometriesG and G8 there is a finiten such thatdn(G,G8).0, with dn(G,G8)→1 as n
→`.

To start with, I will prove the intuitively obvious, and nice property of the closeness mea
that it is a monotonically increasing function ofn,

;G,G8 dn~G,G8!<dn11~G,G8!. ~12!

To prove this inequality, consider the process of sprinklingn11 points in a geometryG as an
n-point sprinkling, followed by the choice of one more point. Then, the probability of the firn
points yielding any givenCPCn is a sum over probabilities for differentC8PCn11 obtained when
the extra point is added,

Pn~CuG!5 (
C8PCn11

f C,C8Pn11~C8uG!, f C,C8ª
1

n11 S C8
C D , ~13!

where f C,C8 is the fraction ofn-element subsets ofC8 that are isomorphic toC, which can be

expressed in terms of the number (C
C8) of ways of picking ann-element subset ofC8 that is

isomorphic toC ~this number may be called ‘‘C8 chooseC,’’ and I will use the convention that it
vanishes ifC is not a subposet ofC8!; notice that it is clear from the definition that(CPCn

f C,C8
51, for anyC8. Then, we can write
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dn~G,G8!5
2

p
arccosF(

C
A(

C8
f C,C8Pn11~C8uG!A(

C9
f C,C9Pn11~C9uG8!G , ~14!

where it is understood thatCPCn andC8, C9PCn11 . For eachC, the corresponding term in th
summation in~14! is of the formA(( iai)(( jbj ) where allai andbj are non-negative, for which
the general inequality,

AS (
i

ai D S (
j

bj D>(
i

Aaibi ~15!

holds. To prove this inequality, we can square the two sides, which gives( i( jaibj and
( i( jAaibiAajbj , respectively; the terms withi 5 j are equal; separate the other ones in pa
aibj1ajbi and 2AaibiAajbj , respectively, and square them; since we always haveai

2bj
2

12aiajbibj1aj
2bi

2>4aiajbibj , ~15! follows. Applying this to~14! gives

dn~G,G8!<
2

p
arccosF(C (

C8
A~ f C,C8!

2Pn11~C8uG!Pn11~C8uG8!G
5

2

p
arccosF(

C8
S (

C
f C,C8DAPn11~C8uG!Pn11~C8uG8!G

5dn11~G,G8!. ~16!

As a consequence of the proof, we also see that

dn~C,C8!5dn11~C,C8! iff dn11~C,C8!50, ~17!

since the inequality in~16! can only be saturated if~15! is, and this will happen only if for alli and
j, aibj5ajbi , which in terms of our probabilities reduces toPn11(C8uG)5Pn11(C8uG8). As a
by-product, we also obtain the equality~13!, which may be useful for calculatingPn(CuG), or one
of the Pn11(C8uG)’s if the others are known.

IV. A SIMPLE EXAMPLE

As an illustration of the definition ofdn(G,G8) and the procedure for calculatingPn(CuG)
introduced in Sec. II, we consider a very simple example, which already involves two
parameter families of geometries with different underlying manifolds: a finite-size rectan
portion of two-dimensional Minkowski space, with line element ds252dt21dx2 and topology
M.R2, Gg5$(M ,h)%, and a similar one obtained after a spatial identification, with the same
element and topologyM 8.R3S1, Gd5$(M 8,h)%. I will first introduce each geometry an
calculate the simplest probabilities,P2(CuGg) andP2(CuGd8), then use these to findd2(Gg ,Gd8);
the results will give us an indication of features and limitations ofd2 , and we will then see how
to overcome these limitations by calculating theP3’s and usingd3(Gg ,Gd8).

The geometryGg is the rectangleMª$xu0<x<a,0<t<b% in two-dimensional Minkowski
space. Since the probabilities we are looking for are invariant under a global rescaling, they
depend on the volumeVM5ab, but only on the aspect ratiogªb/a. For n52, C2 has two
elements, the connected two-element posetd

l
d

and the disconnected oned d; we must calculate the
integrals in~8! for these two posets.

To get the connected posetd

l
d

in a two-point sprinkling with the ‘‘bottom-up’’ labeling, we
needx2 to fall in the future ofx1 , or M2(x1 ,C̄)5M21(x1 ,C̄)5I 1

1 , and~8! becomes
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~18!

wherex15(x,t), and the volumeV(I 1(x,t)) is (b2t)2, with correction terms that are needed f
some values of (x,t) ~see Fig. 1!,

V~ I 1
1!5~b2t !22

~b2t2x!2

2
u~x,b and t,b2x!

2
~b2t2a1x!2

2
u~x.a2b and t,b2a1x!. ~19!

~The step functionu equals 1 if its argument is true, 0 otherwise.! If we assume thatg>1, so that
x,b andx.a2b are always satisfied,~18! gives

~20!

To get the disconnected posetd d we need the points to be causally unrelated,M2(x1 ,C̄)
5M \I 1 , so ~8! becomes

~21!

where instead of doing another integral I have usedP2~
d

l
d
uGg)1P2(d duGg)51.

For the caseb,a, we can now either integrate~19! again, or use simple symmetry consi
erations. If we flip the rectangle by exchanginga↔b, the manifold transforms according t
Gg↔G1/g ; if we take the two sprinkled pointsx1 and x2 along, the posets are also turned in
each other,dl

d
↔d d. Thus,

FIG. 1. The geometryGg . The drawing shows the caseb,a, or g,1, with a sprinkled pointx1 and its future light cone.

For this particular point,V(I 1(x1))5(b2t)22
1
2 @(b2t)2(a1x)#2, where the area of the small triangle with dash

edges in the upper right-hand corner must be subtracted, sincea2x,b2t.
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~22!

The geometryGg8 is the cylinderM 8 one obtains applying the spatial identification (t,0)
;(t,a) to the rectangle inGg , with the same line element; again, the probabilities only depen
the aspect ratiogªb/a. Similar calculations to the ones leading to~20! and ~21!, but now
integrating

V~ I 18
1!5~b2t !22~b2t2 1

2 a!2u~ t,b2 1
2 a! ~23!

~see Fig. 2! over M 8, give

~24!

for g> 1
2, and

~25!

for g< 1
2, whenV(I 18

1) is just (b2t)2; we cannot use a trick like the one in~22! here, but this
probability is the easiest one to calculate anyway.

If we now use the definition~10! to calculate

~26!

FIG. 2. The geometryGg8 . The drawing shows the caseb.a/2, or g.
1
2, with a sprinkled pointx1 and its future light

cone. For this particular point,V(I 1(x1))5(b2t)22(b2t2a/2)2, where the area of the two small triangles with dash
edges must be subtracted, sinceb2t.a/2. Any two points whosex coordinates differ bya are identified; in particular, the
two outer vertical dashed lines are to be identified with each other.
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where the two geometries are characterized by the same parameter valueg, we get the function
plotted in Fig. 3, which goes to zero as the aspect ratiog→0 or `, and the difference between th
two manifolds becomes immaterial because all pairs (x1 ,x2) are spacelike or timelike related
respectively, in both geometries; butd2(Gg ,Gg8) is not zero for any nondegenerate cases. Ho
ever, if we used2 for geometries with different parameter values, we find that, for example,

~27!

i.e., for eachg there is ad such thatd2(Gg ,Gd8) vanishes; with two sprinkled points, the sing
available parameterP2~

d

l
d
uG) cannot distinguish all geometries in this example. We will now

that this can be done using three points.
What we need to show is that, for all values of the parameters, among the eleme

C35$ d d d, d
d

l
d
,dVd

d , öd
d d

, z
d

d

d %, there is at least one which is embeddable inG and G8 with different
probabilities; because of property~12!, we actually only need to do this for the parameter valu
for which d2(Gg ,Gd8)50. Let us consider the three-element poset for which the probabilities
easiest to calculate, the linear orderz

d

d

d @linear orders are always the easiest ones, becauseMi j (xj ,C̄)
reduces just toI j

1 andMi(x1 ,...,xi 21 ;C̄) to I i 21
1 in ~9!, if C̄ is the ‘‘bottom-up’’ labeling#. The

calculations again proceed along the lines of those for~20! but are somewhat longer, since we no
have to evaluate

~28!

I will restrict myself to the caseg< 1
2, where by explicitly integrating~28! one gets

~29!

Whend5g2 1
4 g2, a simple calculation gives

~30!

which does not vanish forg< 1
2, sod3(Gg ,Gd8)Þ0 as expected. The two families of geometri

are different enough that the induced order on a random three-element subset will pick o
difference. The other three-point probabilitiesP3(CuG) can be found without too much additiona

FIG. 3. Plot of d2(Gg ,Gg8) as a function ofg, for 0,g,5; for g.5, the function decreases monotonically, a
approaches zero asg→`.
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effort. I will now show how to do this, since the information those probabilities capture abou
geometries is interesting in its own right, and because this will illustrate the use of some
general relationships introduced above, as well as one new relationship and possible symm

Suppose we want to calculate the values of the probabilitiesP3( d d duG), P3~ d
d

l
d
uG),

P3~
dVd

d uG), P3~ öd
d d

uG), andP3~ z
d

d

duG) for some geometryG, for which we already know the value
of P2(d duG) andP2~

d

l
d
uG); this includes having calculatedV(I i

1) for everyxiPM , as in~19!, or
some other similar integral. It would be to our advantage to use as many relationships as p
among theP3(CuG)’s. One is always given by the identity

(
CPC3

P3~CuG!51, ~31!

and two more are always given by

~32!

~33!

arising from~13!. Notice however that only two of the three relationships~31!–~33! are indepen-
dent, since~13! already impliesSC8PS;Cn11

Pn11(C8uG)51 if one uses validPn’s and f C,C8’s
satisfyingSCPCn

Pn(CuG)51 andSCPCn
f C,C851. An additional relationship, not as simple a

~32!–~33! but still useful, can be found by considering probabilities for subsets ofC3 rather than

just singleP3(CuG)’s. Since the outcomesdVd

d and z
d

d

d are mutually exclusive,

~34!

which means that

~35!

where I have used the fact that, in a ‘‘bottom-up’’ labeling, the condition for obtainingdVd

d or z
d

d

d is
simply that bothx2 andx3 be in the future ofx1 . Finally, if G was time reversal invariant~theGg

andGd8 in our example both are!, we would get an additional relationship,

~36!

We have found four relationships among theP2(CuG)’s; if they hold, only one probability need
to be calculated by direct application of~8!. Also, in specific cases, it may be possible to use ot
symmetries ofG to derive relationships of other types; for example, the one I used in the tric
~22! involving different parameter values.

In our example, we start by calculating the integral in~35! using ~19!; if g, 1
2,

E
M

d2x~V~ I 1~x,t !!!25E
0

a

dxE
0

b

dt~b2t !41E
0

b

dxE
0

b2x

dtF ~b2t2x!4

4
2~2t !2~b2t2x!2G

1E
a2b

a

dxE
0

b2a1x

dtF ~b2t2a1x!4

4
2~b2t !2~c2t2a1x!2G

5 1
5 ab52 17

180 b6, ~37!
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where one of the cross terms in the square of~19! does not contribute because in this case

intervalsx,b andx.a2b do not overlap; then, usingP3~ z
d

d

duG) from ~29!, we findP3( dVd

duG), and

from ~36! we find P3(öd
d d

uG); with these,~32! gives P3~ d
d

l
d
uG), and ~33! gives P3~ d d duG).

Analogous calculations can be done forG8, starting with

E
M

d2x1~V~ I i
1!!25E

0

a

dxE
0

b

dt~b2t !45 1
5 ab5. ~38!

To conclude, the full sets of probabilities we have calculated forg, 1
2, are

for two-point sprinklings, and

for three-point sprinklings. The corresponding ones forg. 1
2 can be similarly calculated with the

formalism described above.

V. THE DISTANCE FUNCTION

We can now extend the definition of the closeness function to a distance. Only the defi
and a few comments will be given here; a more extensive study of its properties is left for f
work. From the previous discussion, it should be clear that in this case we need to let the n
of points sprinkled in each manifold go to infinity, so that we probe its structure at arbitrarily s
scales. Also, it is not sufficient to letn→` in dn(G,G8), both because the resulting distance m
be trivial, and because, like alldn’s, it would not distinguish between different values of the to
volumesVM and VM8 . Each random event considered in previous sections was the choicen
points in each manifold; sincen was the same for both manifolds, the outcomes gave us
information on their total volumes. We can overcome this limitation in the distance by letting
random event consist in the choice of bothn and the location of the points, and this will give m
an opportunity to mention one feature of the closeness functions that had not explicitly com
until now.

Consider two geometriesG5$(M ,g)% and G85$(M 8,g8)%, as before. We will draw the
number of pointsn to be sprinkled in each manifold from Poisson distributions, whose means
be proportional to the respective volumes, and will thus in general be different, the relatio
between the two means being given by the point densities they correspond to. However, t
manifolds may be of different dimensions,D and D8 respectively, in which case it would b
meaningless to require the two volume densities of points to be equal; what we can req
equality of the ‘‘mean point spacings,’’ i.e., that the volume densitiesr and r8 satisfy (r)1/D

5(r8)1/D85 l 21. ~For example, in quantum gravity applications, we can think ofl as being the
Planck lengthl P , and the issue of different dimensionalities is relevant for higher-dimensi
theories such as the Kaluza–Klein ones—for a recent review, see Ref. 33—where we migh
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to compare a macroscopic four-dimensional manifold4M to a D-dimensional fundamental on
which is, at least locally, considered to be a product of the typeDM.4M3D24M , with D24M of
volume l P

D24.!
To define the distance function, choose a positive mean point spacingl around which most of

the contribution to the distance will come from; sprinkle points inG and G8 by first choosing,
each time, the number of points according to Poisson distributions

Pm~n!5
e2mmn

n!
, Pm8~n!5

e2m8m8n

n!
, ~39!

respectively, wheremªVM / l D andm8ªVM8 / l D8, and distribute in~M,g! and (M 8,g8) the cho-
sen numbers of points uniformly at random; the probabilities of obtaining any given posC
PCn as a result are now, respectively,

Pl~n,CuG!5Pm~n!Pn~CuG!, Pl~n,CuG8!5Pm8~n!Pn~CuG8!; ~40!

finally, compare these probabilities by extending~10! to

dl~G,G8!ª
2

p
arccosF (

n50

`

(
CPCn

APl~n,CuG!APl~n,CuG8!G
5

2

p
arccosF (

n50

` SAPm~n!Pm8~n! (
CPCn

APn~CuG!Pn~CuG8! D G . ~41!

Here, I am assuming we have defined the probabilitiesPn(CuG) for the sets of one-elemen
posets,C15$"%, and zero-element posets,C05$B%; if we set P1("uG)51, consistently with the
general definition, and adopt the convention thatP0(BuG)51, the argument of the arccos func
tion can be written as

Ae2me2m81Amm8e2me2m1
1 (

n52

` SAPm~n!Pm8~n! (
CPCn

APn~CuG!Pn~CuG8! D . ~42!

Expressions~41! and ~42! are clearly well-defined; the rapid decrease ofPm(n) and Pm8(n)
for large n makes them finite, and the fact that they are probabilities implies that~41! actually
gives a number between 0 and 1, for the same reason as the pseudo-distance~10! did. To examine
these two extreme situations, consider~42!. This expression vanishes only in the largem or m8
limit ~l→0, or at least one of the volumes→`!, so that the first two terms vanish, and if th
contribution from alln>2 vanishes; this may imply that the conformal structures have the
generacies described earlier in Sec. III fordn(G,G8), at least if the manifolds have equal volume
but in any case we can already see thatdl(G,G)51 only in situations obtained as limits of one
of the type under consideration.

The more interesting situation is whendl(G,G8)50. We can see from~41! that this implies
Pn(CuG)5Pn(CuG8) for all n andC, since for alln the summation overCPCn must equal 1, and
Pm(n)5Pm8(n) for all n, since the sum overn also must give 1. The latter conditions obvious
mean thatVM5VM8 , and the former set impliesG5G8; the sketch of a proof goes as follow
When we sprinkle an increasing number of points in a manifold, we build a sequence of p
$Cn%nPN , with Cn,Cn11 for all n. In the limit n→`, we obtain the direct limit of this sequenc
Cvªøn51

` Cn , and the equality of allPn(CuG)5Pn(CuG8) turns into the equality of appropri
ately defined probabilitiesP`(CuG) and P`(CuG8) on C` . Now, if we apply a completion
procedure toCv , analogous to the Dedekind cut construction of real numbers from rational o
we get the points of the original manifold together with their causal relations and the confo
factor, i.e., we get back the geometryG.20,31But if the two probabilitiesP`(CuG) andP`(CuG8)
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are equal, and the completion of infinite posets drawn from them gives respectivelyG and G8,
with probability one, it must be thatG5G8, and thusdl is positive-definite.

VI. CONCLUDING REMARKS

To measure the closeness of Lorentzian geometries, I have introduced a family of pseu
tancesdn(G,G8) and a family of distancesdl(G,G8) on the space of all past and future disti
guishing Lorentzian geometries of finite volume. The main idea was to sprinkle points unifo
at random inG andG8, and use the resulting probabilitiesPn(CuG) as the basic ingredients fo
the functions; in this paper, those probabilities were combined using one specific distance b
probability measures, but others are known and may be more suitable in some application
closeness functions presented here, together with other possible such functions based on t
probabilities, are the only nontrivial diffeomorphism-invariant ones on this space that I am a
of.

A number of interesting questions arise about the statistical approach to Lorentzian geo
discussed here. Even before their use in the closeness functions, the probabilitiesPn(CuG) are
interesting in themselves, as a complete set of invariants~together with the volume! of finite
volume, distinguishing Lorentzian geometries. It would be worth while to study the typ
information about the manifold that those different invariants contain; for example, how
encode dimensionality, how they are affected by conformal transformations as opposed to c
in the conformal structure, or how one can tell ‘‘localized’’ changes from ‘‘global’’ changes
manifold from their effect on thePn(CuG). Possible starting points in answering these questi
may consist in examining examples along the lines of the one in Sec. IV but in which diff
parameters are varied, e.g., comparing a two-dimensional and a three-dimensional mani
modifying one by a conformal transformation; and studying analytically the effect of small v
tions g°g1dg.

The answer to questions of the above type may then allow us to word in a more precis
statements like ‘‘geometries for whichdn(G,G8) is small are close down to the scaleVM /n; ’’
understand how the topology induced by thedn’s anddl ’s on the space of Lorentzian geometri
relates to previously studied ones;34 and place bounds on the value ofdn(G,G8) when the actual
value cannot be calculated, for example through bounds on the probabilitiesPn due to the non-
embeddability of someC’s in a geometry, such asC’s that require higher dimensions. The infini
density limit and the properties ofdl need to be understood better than what is sketched in Se
and the limit in which the ‘‘regulator’’l is taken to zero is a potentially useful one. It would al
be useful to extend the present work to a definition of closeness that applies to infinite v
manifolds, as mentioned in Sec. II; in that case, one may need to introduce a quasi-local e
in the definition, and use finite size subsets of sprinklings of densityr.

On the physical side, this work may be related to definitions of approximate solution
Einstein’s equation,35–37 and space–times with approximate symmetries,38 which have been con
sidered for various reasons, including their relevance to the issue of gravitational entropy a
smoothing problem in cosmology.39 These problems, in addition to the motivation coming fro
quantum gravity, make it an interesting issue to study properties ofPn(CuG), by analytical
methods or numerical simulations.
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On crossed product of algebras
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The concept of a crossed tensor product of algebras is studied from a few points of
view. Some related constructions are considered. Crossed enveloping algebras and
their representations are discussed. Applications to the noncommutative geometry
and particle systems with generalized statistics are indicated. ©2000 American
Institute of Physics.@S0022-2488~00!01910-1#

I. INTRODUCTION

The notion of a crossed product of Hopf algebras is well-known.1 It is also known that there
is an algebra analogue for such a product called a crossed~braided! product of algebras. It has
been used in several constructions in the area of the noncommutative geometry, quantum
and braided categories. For example this product in braided categories has been studied int
by Majid.2–5 It is interesting that there is a more general notion of a crossed product of alg
without the notion of the braided categories. Namely, ifA andB are two unital and associativ
algebras over a fieldk, then such a product is formed by a bigger algebraW. This algebra contains
algebrasA andB as subalgebras in such a way thatW is generated as an algebra just byA and
B. This product is called in general a crossed~or a twisted! tensor product and it has been recen
studied on an abstract algebraic level by Van Daele and Van Keer,6 by Čap, Schichl, and
Vanžura.7 An application of such a product in the area ofC* -algebras has been considered
Woronowicz.8 A crossed tensor product has been also used by Zakrzewski9 in the study of
quantum Lorentz and Poincare´ groups. An interesting approach for the study of noncommuta
de Rham complexes has been developed by Manin.10 It is based on the notion of the so-calle
skew product of algebras. A similar concept corresponding to the algebra of differential form
a full matrix bialgebra has been developed by Sudbery.11 According to his construction suc
algebra is a skew product of an algebra of functions and an algebra of differential forms
constant coefficients. It is obvious that such a skew product provides an example of a c
tensor product. A related subject has been also considered by Wambst.12 One can see that in
general an algebra of differential operators acting onA can be described as a crossed produc
the algebra and an algebra of vector fields corresponding to an arbitrary noncommutative
ential calculus.13–16

In the present paper we study the concept of a crossed tensor product of algebras from
different points of view: module theory, Hopf algebras, free product of algebras, and some
structions related to the noncommutative geometry. Our considerations are motivated
application to the construction of the so-called crossed enveloping algebras and their repr
tions. Note that Wick algebras considered previously in the study of deformed commu
relations17 are particular examples of crossed enveloping algebras. Such algebras have als
important in the study of systems with generalized quantum statistics.18–20

The paper is organized as follows. We recall the definition of the crossed product in the
II. The corresponding module structures are considered in this section. The relation betwe
product and the smash product or the semisimple product of Hopf algebras is given. The c
tion with the free product of algebras is studied in Sec. III. The construction of twisted produ
free algebras is described in detail in the Sec. IV. Ideals in the twisted products and corresp
quotient constructions are studied in Sec. V. Consistency conditions for such constructio
described as consequences of axioms for the twisted product. Some examples are given. In
69590022-2488/2000/41(10)/6959/17/$17.00 © 2000 American Institute of Physics
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representations of the twisted tensor product are considered. Crossed enveloping algeb
described as a twisted tensor product of a pair of conjugated algebras. Representations of
enveloping algebras are also considered. As an example the Fock space representatio
system with generalized statistics is given.

II. PRELIMINARIES

In this articlek is a field of complex~or real! numbers. All objects considered here are first
all k-vector spaces. All maps are assumed to bek-linear maps. The tensor product^ means^ k .
In what follows, algebra means associative unitalk-algebra and homomorphisms are assumed
be unital. If A is an algebra thenAop denotes algebra with the opposite multiplication:a•opa8
5a8a. For comultiplicationD we shall use a shorthand Sweedler~sigma! notationD(a)5S iai8
^ ai9[a(1)

^ a(2) ~with S i omitted!. Likewise, throughout the paper we will use the Sweedler ty
notation for a twisting map~see below! t:B^ A→A^ B: i.e., we will write t(b^ a)[a(1)

^ b(2) ; again the summation is assumed here but not written explicitly.
Let A and B be two unital and associative algebras overk. The multiplication in these

algebras is denoted bymA and mB , respectively. Let us recall briefly the concept of a cross
product of algebras.7

Definition: An associative algebraW equipped with two injective algebra homomorphism
i A :A�W and iB :B�W such that the canonical linear mapF:A^ kB→W defined by

F~a^ b!ªmW+~ i A^ i B!~a^ b! ~1!

is a linear isomorphism is said to be a crossed (twisted) product ofA andB. The above definition
means that the crossed product of algebrasA andB is a bigger algebraW which contain these two
algebras as subalgebras in such a way thatW is generated byA andB. In particular as a linear
space the algebraW is isomorphic toA^ B. The definition is given up to the isomorphism o
algebras. As an example, we can consider the standard tensor product of algebras with m
cation given by the formula (a^ b)(a8^ b8)ªaa8^ bb8 for a^ b, a8^ b8PA^ B. For our pur-
poses here, we shall denote byA^ cB an algebra being the standard tensor product of two alge
A andB. One will see in a moment that this example does not exhaust all possible cases.

First, let us study module structures on the above crossed product of algebras. IfA andB are
algebras, then an arbitrary linear spaceM is said to be a~A, B!-bimodule ifM is left A-module
and rightB-module and both structures commute, i.e.,

~a•m!•b5a•~m•b!, aPA,bPB,mPM. ~2!

We identify A-bimodule with ~A, A!-bimodule. Observe that the tensor productA^ B has a
canonical leftA-module and rightB-module structure defined by

a•~a8^ b!ªaa8^ b, ~a^ b!•b8ªa^ bb8, ~3!

respectively. This means thatA^ B inherits a~A, B!-bimodule structure in a natural way. The~B,
A!-bimodule structure onA^ B is a problem. We use the concept of module cross16 for the study
of this problem. Lett:B^ A→A^ B be a linear mapping, then we define the left, right, a
two-sided universal lift oft as mappings

ut:A^ B^ A→A^ B, ut~a^ b^ a8!ªa8•t~b^ a!,

tu:B^ A^ B→A^ B, tu~b8^ a^ b!ªt~b^ a!•b8, ~4!

utu:B^ A^ B^ A→A^ B, utu~b8^ a^ b^ a8!ªa8•t~b^ a!•b8,

respectively.
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Lemma: A mappingt:B^ A→A^ B defined onA^ B a structure of: (i) a rightA-module, (ii)
left B-module, (iii)~A, B!-bimodule, if and only if the corresponding universal liftut, tu, or utu

is the algebra homomorphism

~ i ! utPalg~Aop,Endk~A^ B!!,

~ i i ! tuPalg~B,Endk~A^ B!!, ~5!

~ i i i ! utuPalg~B^ cAop,Endk~A^ B!!,

respectively.
Proof: Let M be a leftB-module. For eachbPB defineLbPEndkM by Lb(m)ªb•m. Then

L:B→EndkM is an algebra homomorphism. Similarly, rightA-module structures onM are in
one-to-one correspondence with leftAop structures onM. Now ~iii ! is obvious, since any~B,
A!-bimodule structure is in fact, due to commutativity~2!, a left B^ cAop structure. h

Definition: A ~A, B!-bimoduleW which is at the same time a~B, A!-bimodule, A-bimodule
and B-bimodule is said to be a crossed~A, B!-bimodule.

Theorem: There is a one to one correspondence between crossed~A, B!-bimodule structure
on A^ B and linear mappingst:B^ A→A^ B satisfying the following relations:

t~1^ a!5a^ 1, ~6a!

t+~mB^ idA!5~ idA^ mB!+~t ^ idB!+~ idB^ t!, ~6b!

and

t~b^ 1!51^ b, ~7a!

t+~ idB^ mA!5~mA^ idB!+~ idA^ t!+~t ^ idA!. ~7b!

Proof: The leftA-module and a rightB-module acting onA^ B is given by formulas~3!. We
define a rightA-module and a leftB-module action onA^ B by formulas

~a^ b!•a8ªa8t~b^ a!5ut~a^ b^ a8!,

b8•~a^ b!ªt~b^ a!b85tu~b8^ a^ b!, ~8!

respectively. h

Definition: A k-linear mappingt:B^ A→A^ B satisfying condition (6) is called a lef
B-module cross. Similarly, if relation (7) is satisfied, thent is called a rightA-module cross. The
mapt is said to be an algebra cross if it is both a leftB-and right A-module cross.

It is obvious that the standard twist~switch! t:B^ A→A^ B defined byt(b^ a)ªa^ b
satisfies all conditions for the cross. It give rise to the standard tensor product of algebA
^ cB. The second example is a graded algebra version of the previous one. It is provided
following graded twist:

t~b^ a!ª~21!mna^ b, ~9!

whereaPA, bPB are homogeneous elements of graded algebrasA and B of gradem and n,
respectively. Lett:B^ A→A^ B be an algebra cross, then according to the last theorem t
exists a structure of a crossed~A, B!-bimodule onA^ B. This structure will be denoted by
A’tB.

Lemma: LetW be a crossed~A, B!-bimodule. Assume that the algebraA as k-submodule
universally generatesW as a leftA-module and similarlyB generatesW as a rightB-module.
Then there exists the unique algebra crosst:B^ A→A^ B such thatW5A’tB.
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Proof: We denote byF:A^ tB→W the mapping which is a leftA-module and a right
B-module isomorphism. We definet(b^ a)ªF21(ba). h

Theorem: There is one to one correspondence between algebra crosst:B^ A→A^ B and
crossed productW of algebrasA and B.

Proof: Let us assume that the algebraW is a universally generated crossed product of algeb
A andB. We define a linear mappingtW :B^ A→A^ B by the following formula:

tW~b^ a!ª@mW+~ i A^ i B!#21~ba!. ~10!

It can be deduced that the above mapping is an algebra cross. Moreover, the mapmW+( i A^ i B) is
an algebra isomorphism ofA’tB onto W. Conversely, lett:B^ A→A^ B be an algebra cross
then the tensor productA^ B of algebrasA and B equipped with the multiplicationmt :(A
^ B) ^ (A^ B)→A^ B defined by the formula

mtª~mA^ mB!+~ idA^ t ^ idB! ~11!

is associative.6,7 In this case both relations~7b! and ~6b! can be written equivalently by

t+~mB^ mA!5mt+~t ^ t!+~ idB^ t ^ idA!. ~12!

It is easy to see thatA^ B equipped with the above multiplication is a crossed product of alge
A andB. The inclusioni A and i B are defined as follows:

i A~a!ªa^ 1, i B~b!ª1^ b. ~13!

h

Observe that the multiplication~11! in the crossed productA’tB of algebrasA andB can be
given in the following form:

~a8^ b!~a^ b8!5a8a~1! ^ b~2!b8, ~14!

where, as already mentioned, the Sweedler type notation for the crosst has been used, i.e.,

t~b^ a!ªa~1! ^ b~2! . ~15!

In particular, we have the relations

~a^ 1!~1^ b!5a^ b, ~1^ b!~a^ 1!5a~1! ^ b~2! . ~16!

It is interesting that elements of the algebraA’tB can be ordered in such a way that all eleme
of the algebraB are to the right and elements of the algebraA are to the left. Such ordering is sai
to be Wick ordering.

As we already mentioned before, the crossed product related to the standard twist is kn
the tensor product of algebras. If we use the graded twist, then we obtain the graded tensor
of graded algebras. In the general case, however, an algebra cross is not so simple. The c
tion of all possible crossed products for a given pair of algebrasA, B is a problem. It is difficult
to describe a general method for an arbitrary pair of algebras. Hence we restrict our atten
some particular classes of algebras.

Let B be a bialgebra. This means that there is an algebra homomorphismD:B→B^ B and the
counit e. We have here the following well-known conditions: the coassociativity

~ id^ D!+D5~D ^ id!+D, ~17!

and two relations for the counit,

~e ^ id!+D51^ id, ~ id^ e!+D5 id^ 1. ~18!
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An algebraA is said to be a leftB-module algebra if there is an actionx:B^A→A such that

bx~aa8!5~b~1!xa!~b~2!xa8!,

1xa5a. ~19!

We have the following:
Lemma: If A is a left B-module algebra, then there is an algebra crosst:B^ A→A^ B

defined by the relation

t~b^ a!5~b~1!xa! ^ b~2!, ~20!

for aPA and bPB.
Proof: We shall show that two conditions,~7!, ~6! for the cross~20! are satisfied. For the

left-hand side of the first relation~7! we calculate

@t+~ idB^ mA!#~b^ a^ a8!5@b~1!xm~a^ a8! ^ b~2!#5m@~b~1!xa! ^ ~b~2!xa8!# ^ b~3!,

where (id̂ D)+D(b)5b(1)
^ b(2)

^ b(3) and the coassociativity condition have been used. For
right-hand side we obtain

@~mA^ idB!+~ idA^ t!+~t ^ idA!#~b^ a^ a8!5m@~b~1!xa! ^ ~b~2!xa8!# ^ b~3!.

The second relation~6! can be calculated in a similar way. h

If t is the cross defined by formula~20!, then the multiplication in the corresponding cross
productA’tB is given by

~a^ b!~a8^ b8!5a~b~1!xa8! ^ b~2!b8. ~21!

We can see, in this case, that the crossed productA’tB is exactly the so-called smash produ
AB, see Refs. 21, 1. If in additionA andB are endowed with a Hopf algebra structure, then
corresponding crossed product is the semisimple product of Hopf algebras introduc
Molnar.22

Let A andB be a dual pair of Hopf algebras.23 This means that we have a bilinear pairin
^.,.&:B^ A→k such that

^D~b!,a^ a8&5^b,aa8&, ^bb8,a&5^b^ b8,D~a!&. ~22!

Observe that there is a left action of the algebraB on A,

bxa5^b,a~2!&a~1!. ~23!

One can prove that the algebraA is a ~left! B-module algebra and the mappingt:B^ A→A
^ B defined by

t~b^ a![a~1! ^ b~2!ªb~1!xa^ b~2!5^b~1!,a~2!&a~1!
^ b~2! ~24!

is a cross. This is an interesting point that the corresponding crossed productA’tB contains all
information about noncommutative differential operators24 on A. It means that we can forget th
Hopf algebra structures inA andB and restrict our attention to the algebra structure only. In
case we obtain the so-called crossed product of algebras.7
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III. FREE PRODUCT OF ALGEBRAS

Let A and B be two unital associative algebras over a fieldk. Then there is an algebra o
polynomials containing elements of these two algebras. This algebra is said to be a free pro
algebrasA andB.25 Namely, we have here

Definition: An (algebraic) free product of algebrasA andB is the algebraA* B formed by all
formal finite sums of monomials of the form a1* b1* a2*¯ or b1* a1* b2*¯ , where aiPA, bi

PB, i 51,2,... are nonscalar elements. In other wordsA* B is the algebra generated by tw
algebrasA and B with no relations except for the identification of unit element, i.e., 1A51B
51. One can see that this free product of algebras is commutative and associative,

A* B5B* A, ~A* B!* C5A* ~B* C!. ~25!

Moreover, ifA1 is a subalgebra ofA andB1 is a subalgebra ofB, thenA1* B1 is a subalgebra of
A* B. In particular, the algebrasA andB are subalgebras ofA* B. It is known that the product
A* B possesses the following universal property:

Lemma: For every pair of algebra maps u:A→C and v:B→C there exists one and only on
algebra map w such that u5w+ j A and v5w+ j B or in other words the following diagram,

~26!

commutes. Here, j A (resp. j B) denotes the natural inclusion ofA (resp. B) into A* B. Note that w
is onto if and only ifC is generated by images u(A) and v(B).

Proof: The proof can be immediately seen if one defines

w~ ...b* a...!5...v~b!u~a!... .
h

Let us consider a simple example of an algebraic free product.
Example:Let U and W be two k-vector space. Then the tensor algebra over the direct

U % W is a free product of tensors algebrasTU andTW, i.e., we have the relation

T~U % W!5TU* TW.

Let us consider the free product of maps.
Definition: Let f:A→B and g:C→D be two algebra maps. Then a mapping f* g:A* B

→C* D defined by

f * g~ ...b* a...!5...g~b!* f ~a!... ~27!

for aPA and bPB, is called a free product of f and g.
We have the following simple lemma.

Lemma: The map f* g is injective (resp. surjective) if and only if the maps f and g are injec
(resp. subjective).

Now we are going to study ideals in the free product of algebras. It is interesting that in
productA* B of algebrasA andB may exists an idealJ such that the quotient (A* B)/J can be
also expressed as a free product of certain algebras.

Lemma: Let IA and IB be ideals in algebrasA and B, respectively. Then
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J~ I A ,I B!ªI A* B1A* I B ~28!

forms an ideal in the free productA* B such that

A* B/J~ I A ,I B!5~A/I A!* ~B/I B!. ~29!

Proof: Let pA :A→A/I A and pB :B→B/I B be canonical projections, i.e.,I AªkerpA and
I BªkerpB . It is obvious that the free productpA* pB :A* B→(A/I A)* (B/I B) is surjective and
(A/I A)* (B/I B)5(A* B)/ker(pA* pB). One can see that ker(pA* pB)5ker(pA)* B
1A* ker(pB)5J(I A ,I B). h

The idealJ(I A ,I B) from the above lemma is calleda free idealin A* B generated byI A and
I B .

If A andB are twok-algebras andt:B^ A→A^ B is a cross, then the crossed productA’tB
of these algebras can be given by their free product modulo certain ideal. More precisely, w
here the following

Lemma: For the crossed productA’tB of algebrasA and B we have the formula

A’tB5~A* B!/I t , ~30!

where It is an ideal generated by the relation

I t5gen$b* a2a~1!* b~2!% ~31!

for aPA, bPB and t(b^ a)ªa(1)^ b(2) .
Proof: We use the universality of the free product. IfC[A’tB, then u[ i A ,v[ i B , and

there exist unique morphismw[ i A* i B such thati A5w+ j A and i B5w+ j B . Observe thatw is a
morphism fromA* B to A’tB, and his kernel is equal to the idealI t . h

IV. CROSSED PRODUCT OF FREE ALGEBRAS

Let A andB are graded algebras. This means that we have the following decompositio

A5 %
k50

`

Ak, B5 %
k50

`

Bk, ~32!

whereA0>B0>k. Let t:B^ A→A^ B be an arbitrary algebra cross. Then the algebra crosst can
be given by the relation

t5 %
k,l 50

`

tk,l , ~33!

wheretk,l is the restriction of the algebra crosst to the spaceBk
^ Al ,(k,l 51,2,...). In such a way

the algebra crosst can be reduced by a set of mappings$t i , j :Bi
^ Aj→A^ B%. Observe that we

always have

t0,0[ id, tk,0~Bk
^ 1!ª1^ Bk, t0,m~1^ Am!ªAm

^ 1. ~34!

We have here the following problem: Find the conditions under which alltk,l for k,l .1 can be
constructed starting fromt1,1. The mappingt1,1 is given as an initial data for such constructio
We restrict our attention to certain particular cases. Let us consider the crossed product
algebras in details. LetA be a free algebra generated byx1,...,xm and letB be a free algebra
generated byy1,...,yn. We identify these free algebrasA, B with tensor algebrasTE and TF,
respectively, whereE is a linear span of generatorsx1,...,xm of A and F is a linear span of
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y1,...,yn. This means thatA1[E,Ak[E^ k, and similarly forB. Note thatE andF are said to be
generating spaces for algebrasA andB, respectively. Let us consider the structure of the cros
product of free algebrasTE andTF in more details.

Remark: Lett1,1:F ^ E→E^ F be a linear mapping, then there is a unique algebra cro
t:TF^ TE→TE^ TF such thattuF ^ E5t1,1. Indeed, ift1,1:F ^ E→E^ F is a linear mapping,
then we can introduce a set of mappings$t i , j :F ^ i

^ E^ j→TE^ TF% as follows: Obviouslyt0,0

[ id, tk,0(F
^ k

^ 1)ª1^ F ^ k, and t0,m(1^ E^ m)ªE^ m
^ 1. Then the algebra crosst can be

defined by the relations~6! and ~33!. For example

t2,15~t1,1^ id !+~ id ^ t1,1!. ~35!

Similarly

t1,25~ id ^ t1,1!+~t1,1^ id !. ~36!

We can calculatetk,l for arbitraryk, l in a similar way. Let us consider this case in more deta
Definition: LetA and B be two graded algebras. An algebra crosst is said to be homoge

neous if the image oftk,l lies in Al
^ Bk for all k,l 51,2,... . It is obvious that he homogeneo

cross can be determined uniquely by a set of linear mappingstk,l :Bk
^ Al→Al

^ Bk such that

tk,l 1m+~ idA^ mA!5~mA^ idB!+~ idA^ tk,m!+~tk,l ^ idA!,

tk1 l ,m+~mB^ idA!5~ idA^ mB!+~tk,m^ idB!+~ idB^ t l ,m!. ~37!

for arbitrary integersk,l ,m.0.
Consider two free algebrasAªTE andBªTF with their natural gradings. Choose a bas

x1,...,xm in E and a basisy1,...,yn in F. Now, the linear operatort1,1[t̂:F ^ E→E^ F can be
expressed by

t̂~yi
^ xj !5 t̂kl

i j xk
^ yl , ~38!

its matrix elementst̂kl
i j . Let us calculate all componentstk,l :F ^ k

^ E^ l→E^ l
^ F ^ k for this cross.

Obviously fork51 and arbitraryl .1 we obtain the mapt1,l :F ^ E^ l→E^ l
^ F, where

t1,lª t̂ l
~ l !+...+ t̂ l

~1! , ~39!

and t̂ l
( i ) :El

( i )→El
( i 11) , El

( i )
ªE^ ...^ E^ F ^ E^ ...^ E( l 11-factors,F on the i th place, 1< i

< l ) is given by the relation

wheret̂ is on thei th place. One verifies that

t̂ l
~ i !+ t̂ l

~ j !5 t̂ l
~ j !+ t̂ l

~ i !

if u i 2 j u>2. For arbitraryk>1 andl>1 we obtain the maptk,l :F ^ k
^ E^ l→E^ l

^ F ^ k, where

tk,lª~t1,l !
~1!+...+~t1,l !

~k!, ~40!

where (t1,l)
( i ) is defined in similar way liket̂ l

( i ) . In this way we obtain the result:
Lemma: Let TE and TF be free algebras andt̂ be a linear operator defined on generators

these algebras by the relation (38), then there is a homogeneous algebra crosst:TF^ TE
→TE^ TF which is given by the relations (39) and (40).
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Proof: We must prove that for the mapt defined by relations~39! and~40! the identities~37!
hold true. Observe that we havemA(a^ a8)[a^ a8 for aPE^ l ,a8PE^ m and similarly formB ,
i.e. mA andmB act as identity operators in this case. Therefore, the relations~37! can be rewritten
in a simpler form

tk,l 1m5~ idTE^ tk,m!+~tk,l ^ idTE!,
~41!

tk1 l ,m5~tk,m^ idTF!+~ idTF^ t l ,m!.

After substituting the definition~40! of the mapstk,l into ~41! and some calculations we obtain o
result. h

We have here the following
Theorem: Let t:TF^ TE→TE^ TF be an arbitrary cross. Then for the correspondin

crossed product we have the following relation

TE’tTF5T~E% F !/I t , ~42!

where

I tªgen$b^ a2a~1! ^ b~2!% ~43!

is an ideal in T(E% F). If the crosst is homogeneous, then

I tª5gen$yi
^ xj2 t̃kl

i j xl
^ yk%. ~44!

Proof: According to the last Lemma of the previous Section for the crossed product we
the relation

TE’tTF5~TF* TF!/I t5T~E% F !/I t .
h

Now it is obvious that in the study of noncommutative de Rham complexes and nonco
tative calculi with partial derivatives there are several examples of algebras which can b
scribed as algebra crossed product.10,12,15,26–30

If the operatort̂ is given by the diagonal matrixt̂kl
i j
ªt i j d l

idk
j ,t i j Pk\$0%, then we obtain a

simple example of cross for free algebras, namely the so called color cross

t~yi
^ xj !5t i j xj

^ yi . ~45!

If we assume thatk[C” and t i j [q,qPC” \$0%, then we obtain theq-cross.

V. IDEALS IN CROSSED PRODUCT

Let us assume thatA’tB andA8’t8B are crossed product of algebrasA, B andA8,B8 with
respect to a crosst andt8, respectively. It is natural to define a morphism of such two cros
products of algebras as a map which transform the first crossed product in the second on

Definition: An algebra morphism h:A’tB→A8’t8B8 is said to be a crossed product alge
bra morphism if there exist two algebra morphisms: hA :A→A8 and hB :B→B8 such that h
5hA^ hB .

The above definition means that the crossed product algebra morphismh:A’tB→A8’t8B is
described as a pair of algebra homomorphismshA :A→A8 and hB :B→B8. Observe that in the
opposite case when we have an arbitrary pair of algebra homomorphisms, then their tensor
is not a crossed product algebra morphism, however, there is the following lemma:

Lemma: Let hA :A→A8 and hB :B→B8 be two algebra morphisms. Then h5hA^ hB is a
crossed product algebra morphism if and only if we have the relation
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~hA^ hB!+t5t8+~hB^ hA!, ~46!

or in other words the following diagram commutes

~47!

We introduce the notion of ideals in crossed product of algebras. LetA’tB be a crossed produc
of algebrasA andB with respect to a crosst, then we have the following:

Definition: A two-sided ideal J inA’tB is said to be a crossed ideal inA’tB if the quotient
mapp:A’tB→(A’tB)/J is a morphism of crossed products of algebras.

The above definition means that the factor algebra (A’tB)/J, whereJ is a crossed ideal mus
be a crossed product of certain algebrasA8, B8 with respect to a certain new crosst8. Thus we
must have the relation

~A’tB!/J>A8’t8B8. ~48!

Let us consider this problem in more detail. Ifp:A’tB→(A’tB)/J is a subjective morphism o
a crossed product of algebras, then there is a pair of surjective algebra homomorphismspA :A
→A8 and pB :B→B8. Observe that these mappings are in fact quotient ones. This mean
A8[A/I A , and B8[B/I B where I A ~the kernel ofpA) is a two-sided ideal inA and I B is a
two-sided one inB. One can see that there is a crosst8:B/I B^ A/I A→A/I A^ B/I B such that the
following diagram is commutative:

~49!

In this way we obtain the following:
Lemma: If J is a crossed ideal in the crossed productA’tB, then there is a pair of ideals

(I A ,I B) in algebrasA andB, respectively and the crosst8:B/I B^ A/I A→A/I A^ B/I B such that
we have relation (48).

It is interesting to investigate the opposite statement. For a given ideal (I A ,I B) in A andB,
respectively, find a corresponding ideal inA’tB. First, we consider a particular case when one
the ideals in the above pair is trivial.

Definition: A two-sided ideal IA in the algebraA such that IA^ B is a crossed ideal in the
algebraW[A’tB is said to be a leftt-ideal in A. Observe that we have the following criterion

Lemma: An ideal IA in A is a left t-ideal in A’tB if and only if

t~B^ I A!,I A^ B. ~50!

Proof: It can be easily seen, that condition~50! is equivalent to the fact thatJªI A^ B is a
two-sided ideal inA’tB. Therefore, one has to prove that~50! implies thatJ is a crossed ideal a
well. Indeed: the vector space quotient (A^ B)/J is isomorphic toA/I A^ B. SinceJ is an ideal,
the projection mappA^ idB :A’tB→A/I A^ B, wherepA(a)5@a# and @a#PA/I A denotes the
equivalence class ofaPA, is an algebra map. In particular,pA^ idB((1^ b)(a^ 1))5(@1# ^ b)
^ (@a# ^ 1)5@a(1)# ^ b(2) . This means thatt8(@a# ^ b)ª@a(1)# ^ b(2) is a new twist converting
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A/I A^ B into a crossed product algebra. Moreover, the following diagram

~51!

must commute. The formula~50! gives the condition for the commutativity of the above d
gram. h

It follows immediately from the proof of the previous lemma that we have
Lemma: If IA is a left t-ideal in the algebraA, then there is a new crosst8:B^ A/I A

→A/I A^ B such that the quotient algebra(A’tB)/(I A^ B) is isomorphic to the crossed produc
A/I A’t8B.

This lemma means that for a leftt-ideal I A in A we have the relation

~A’tB!/~ I A^ B!>A/I A’t8B. ~52!

This algebra is said to be a left factor of the crossed productA’tB.
We can define a rightt-ideal I B in B in a similar way. It is easy to see that for this ideal w

have similar results as for the leftt-ideal. In this way we obtain a right factor of the cross
productA’tB as the following quotient:

~A’tB!/~A^ I B!>A’t8B/I B . ~53!

A two-sided idealJIA ,IBªI A^ B1A^ I B in A’tB, whereI A is a left t-ideal in A and I B is a
right t-ideal in B, is said to be a crossed ideal generated byI A ,I B .

Theorem: If JIA ,IB is a crossed ideal in the algebraA’tB generated byt-ideals IA ,I B , then

there is a new crosst8:B/I B^ A/I A→A/I A^ B/I B such that the quotient algebra(A’tB)/JIA ,IB
is isomorphic to the crossed product ofA/I A and B/I B .

The quotient algebra (A’tB)/JIAIB is said to be a factor of the crossed productA’tB with
respect tot-ideals (I A ,I B).

Definition: LetA’tB be a crossed product of algebrasA andB with respect to a given cros

t:B^ A→A^ B. If there exist a pair of algebrasÃ, B̃ and a crosst̃:B̃^ Ã→Ã^ B̃ such that the

productA’tB is an image ofÃ^ t̃B̃ under certain surjective morphism h5(hA ,hB) of crossed
products, i.e., the following diagram:

~54!

is commutative, thenÃ^ t̃B̃ is said to be a cover crossed product forA’tB.
Lemma: Assume thatA and B are algebras with presentationAªTE/I A and BªTF/I B . If

t̃:TF^ TE→TE^ TF is a cross, then the corresponding crossed product TE’ t̃TF is cover for a
productA’tB with certain crosst:B^ A→A^ B if and only if the ideal IA is a left t̃-ideal in TF
and IB is a right t̃-ideal in TF.

Lemma: LetA’tB be a crossed product of algebrasA and B with presentationA
ªTE/I A andBªTF/I B , respectively. If the crossed product TE’ t̃TF is a cover for the product
A’tB, then we have the relation

A’tB[T~E% F !/I , ~55!

where I is the ideal in the tensor algebra T(E% F) of the form
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I[I 11I 21I t̃ , ~56!

I 1ª^I A&T(E% F) is an ideal in T(E% F) generated by thet̃-ideal IA ; similarly I2ª^I B&T(E% F) ,
and It̃ is an ideal in T(E% F) defined by the relation

I t̃ª^v ^ u2 t̃~v ^ u!&T~E% F ! , ~57!

for every uPE andvPF.
Lemma: Assume that E, F are two linear spaces and R:E^ E→E^ E, S:F ^ F→F ^ F are

two linear operators. LetA andB be two quadratic algebras generated by E and F. It means
we have the quotients

AªTE/I R , BªTF/I S , ~58!

where ideals are given by the quadratic relations

I R5^ id2R&TE , I S5^ id2S&TF .

Assume further, that a homogeneous crosst̃:TF^ TE→TE^ TF is induced by a linear operato
C:F ^ E→E^ F. Then there is a crosst:B^ A→A^ B and the corresponding crossed produ
A’tB if and only if we have the following relations:

~ id^ C!+~C^ id!+~ id2~ id^ R!!5~ id2~R^ id!!+~ id^ C!+~C^ id!,

~C^ id!+~ id^ C!+~ id2~S^ id!!5~ id2~ id^ S!!+~C^ id!+~ id^ C!. ~59!

Moreover,

T~E% F !/I >TE/I R’tTF/I S , ~60!

where I is an ideal of the form

I[I 11I 21I C , ~61!

I 1ª^I R&T(E% F) , I 2ª^I S&T(E% F) , and IC is an ideal given by the relation

I Cª^v ^ u2C~v ^ u!&T~E% F ! , ~62!

for every uPE andvPF.
Proof: One checks that~59! are equivalent to thet̃-ideal conditions~50! for I R and I S ,

respectively. h

Lemma: Let R, C and S be three linear operators like in the previous lemma. If

~R^ id!~ id^ C!~C^ id!5~ id^ C!~C^ id!~ id^ R!,

~ id^ S!~C^ id!~ id^ C!5~C^ id!~ id^ C!~S^ id!, ~63!

then the conditions~59! are satisfied.
Let us consider an example of an algebra crossed product. It is well-known that the no

mutative differential calculi with partial derivatives on the quantum plane is determined b
R-matrix satisfying the following braid relation:

R~1!R~2!R~1!5R~2!R~1!R~2!, ~64!

and the Hecke condition

~R2q!~R1q21!50, ~65!
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whereqPk\$0%.

HereR1 meansR^ idE and analogouslyR2
ª idE^ R. The noncommutative coordinate algebra a

the corresponding partial derivatives algebra can be expressed as the following quotieA
ªTE/I A andBªTE8/I B , where idealsI A and I B are generated by the quadratic relations

I Aª^ id2q21R&TE , I Bª^ id2q21Rt&TE8 ,

Rt is the transpose ofR andE8 is the algebraic dual ofE. It follows from the previous lemma and
Wess–Zumino consistency conditions,31 that there is a crosstR and the corresponding crosse
productW(R)ªA’tR

B. In this case we must replaceR by q21R, Sªq21Rt, andCªqR. The
Hecke relation solves a linear Wess–Zumino consistency condition~see also Refs. 14–16 in thi
context!. Observe thatW(R) is just the quantum Weyl algebra considered previously by
aquinto and Zhang.32

VI. CROSSED ENVELOPINGS AND REPRESENTATIONS

The notion of* -algebras is well-known. As associative algebraA is said to be a*-algebra if
we have the following relations for the*-operation:

~ab!* 5b* a* , a** 5a, ~aa!* 5āa* , ~66!

wherea,b,a* ,b* PA,aPC” ,ā is a complex conjugated toa. In this section we assume thatk

[C” is the field of complex numbers. It is obvious that not every algebra is a*-algebra. Observe
that if A is a * -algebra, then the*-operation can be described in two equivalent ways: as
involutive antiisomorphism ofA or an involutive isomorphism betweenA andĀop. If A is not a
* -algebra, then it is interesting to describe all possible* -algebra extensions of it. We introduc
here the concept of conjugated algebras and crossed enveloping algebras for this goal.

Definition: If A is an arbitrary associative algebra, then an algebraB is said to be conjugated
to A if there is an antilinear antiisomorphism (in the complex case)(2)!:A→B such that

~ab!!5b!a!, ~aa!!5āa!, ~67!

where a,bPA and a!,b! are their images under the isomorphism(2)!.
The inverse isomorphismB→A will be denoted by the same symbol, i.e.,

~a!!!5a. ~68!

If A is an algebra, then the conjugated algebra will be denoted byA!. It follows immediately from
the definition that for a given algebraA the conjugate algebraA! always exists. The algebraA!

as a vector space is isomorphic to the complex conjugate spaceĀ, and as an algebra—to th
opposite oneAop, i.e., A[Āop, ~in the real case it coincides with the opposite algebraAop).
Consider a crossed productWt(A)ªA’tA! of an algebra with its conjugate. We can try
define the natural* -operation inWt(A) by the relation

~a^ b!!*ªb^ a! ~69!

for a,bPA. Then the following holds
Lemma: The algebraWt(A) is a * -algebra if and only if

~t~b!
^ a!!* 5t~a!

^ b! ~70!

for any a,bPA.
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Proof: One needs the property@(1^ b!)(a^ 1)#* 5(1^ a!)(b^ 1) or

b~2! ^ a~1!
! 5b~1! ^ a~2!

! ,

which is equivalent to the relation~70!. h

An algebra crosst:A!
^ A→A^ A! satisfying the relation~70! is called a!-cross.

Definition: If t:A!
^ A→A^ A! is a !-cross, then the crossed product,

Wt~A!ªA’tA!, ~71!

is called a crossed enveloping algebra ofA with respect tot.
Note that the switchs(b!

^ a)ªa^ b! satisfies~70!. It implies that crossed enveloping alge
bra generalizes the concept of enveloping algebras for associative algebra.33

From now on, we assume that every algebra cross considered below is a!-cross. We shall also
identify our two ‘‘star’’-operations and use the symbol ‘‘!’’ for both of them.

Let us consider the crossed enveloping algebraWt(A), whereA[TE is a free algebra and
the generating spaceE is a ~finite or infinite dimensional! complex Hilbert space equipped with a
orthonormal basis$xi : i 51,...,N%, andt is an arbitrary cross. Note that similar algebras have b
studied previously by a few authors.34,35Observe that the conjugated algebraA! can be identified
with the tensor algebraTE!, whereE! is the complex conjugation space. The pairing (.u.):E!

^ E→C” and the corresponding scalar product is given by

gE~x! i
^ xj ![~x! i uxj !5^xi uxj&ªd i j . ~72!

Let t̂:E!
^ E→E^ E! be a linear and Hermitian operator with matrix elements

t̂~x! i
^ xj !5St̂kl

i j xk
^ x! l , ~73!

then the quotient

W~ t̂ !5T~E% E!!/I t̂ , ~74!

where the idealI t̂ is given by the relation

I t̂ªgen$x! i
^ xj2St̂kl

i j xk
^ x! l2~x! i uxj !%, ~75!

is said to be Hermitian Wick algebra.17

Theorem: (Joørgensen, Schmitt, and Werner)17 The Hermitian Wick algebraW( t̂) is isomor-
phic to the crossed enveloping algebraWt(TE) of TE with respect to the (nonhomogeneou
cross generated byt̂1gE .

Proof: It has been shown in Ref. 17 that the Wick ordered monomials form a basis inW( t̂).
In our language it means thatW( t̂) as a vector space is isomorphic toTE^ TE* . Moreover,TE
and TE* are subalgebras inW( t̂). This implies thatW( t̂) is a crossed product, i.e.,W( t̂)
>TE’tTE* for a certain crosst. Since t̂ is Hermitian operator and̂u& is Hermitian scalar
product thenI t̂ is !-ideal ~i.e., I t̂

* ,I t̂). As a consequence, the crosst is !-cross. h

Let A be an algebra with the presentationAªTE/I A , then for the algebraA! we have the
presentationA!

ªTE!/I A
! . Observe that ifI A is a left t-ideal thenI A

! is automatically a right
t-ideal ~remember thatt is a !-cross!. Then there is a crosst8:A!

^ A→A^ A! and the corre-
sponding crossed enveloping algebraWt8(A)5A’t8A!.

Let H be ak-vector space. We denote byL(H) the algebra of linear operators acting onH. Let
A andB be two arbitraryk-algebras andt:B^ A→A^ B be a cross.

Theorem: Let pA andpB be representations of the algebrasA andB in L(H), respectively.
If the condition,

pB~b!pA~a!5pA~a~1!!pB~b~2!!, ~76!
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holds for all aPA,bPB, then there exist unique representationp of the crossed productA’tB
in L(H) such thatpuA5pA and puB5pB .

Proof: The representationp:A’tB→L(H) is defined by

p~a^ b!ªpA~a!pB~b!. ~77!

h

This theorem allows us to introduce the following definition:
Definition: The representationp from the above theorem is said to be a crossed produc

representationspA and pB and it is denoted bypA’tpB .
It is not difficult to prove the converse:

Theorem: If p is a representation of the crossed productA’tB of algebrasA and B in H,
then there exist representationspA and pB of A and B, respectively, such that

p5pA’tpB . ~78!

Proof: RepresentationspA andpB are defined by the formulas

pA~a!ªp~a^ 1!, pB~b!ªp~1^ b!. ~79!

h

Let us consider representations of crossed enveloping algebras. For a given representatip:A
→L(H) of A in a Hilbert spaceH one can define a conjugate representationp1(a!)ªp(a)1 of
the algebraA!, where1 stands for the Hermitian conjugation inL(H). Thus we have

Theorem: Let W[A’tA! be a crossed enveloping algebra. Ifp:A→L(H) is a represen-
tation in a Hilbert space H, such that

p~b!1p~a!5p~a~1!!p~b~2!!
1, ~80!

then there is a unique Hermitian or!-representationpW :W→L(H) such that

pW5p’tp1 . ~81!

Conversely, any Hermitian representation ofpW in a Hilbert space has the form (81).
Proof: It is a direct consequence of two proceeding theorems. One also easily verifie

Hermiticity condition:pW(w!)5pW(w)1 for wPW. h

As an example, we outline the Fock space representation construction of a cross enve
algebraWt(A)[A’tA!. For this purpose we assume thatA is a pre-Hilbert space with an
unitary scalar product̂u&. Its completion will be denoted byH. In this case we have at our dispos
a canonical representation~the quantization! P acting on the algebraA by means of the left~or
right! multiplications inA. For x, f PA it writes

P~x! fªx f . ~82!

The operatorsP(x) are, in general, unbounded operators inH. Thus,

^P1~x!! f ug&[^P~x!1 f ug&5^ f uP~x!g&. ~83!

Note that the relations~80! are said to be acommutation relationif they are satisfied for a given
~Hermitian! scalar product̂u& on A. A proper definition of the action of the operatorsP(x)1 on
the whole algebraA can be a problem. In case it can be solved, it leads to the canonical~Fock
type! Hermitian representationPW[P’tP1 of the cross enveloping algebraWt(A) on A.
If the algebraA has generators$xi% i 51,...,N , we use the notation

P~xi ![ai
1 , P1~xi !![ai . ~84!
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It is customary to call them creation and annihilation operators. Thus the commutation rel
play a role of the compatibility conditions relatingai

1 , t, and^u&, sinceai are Hermitian conjugate
to ai

1 . For nonfree algebraai
1’s have to satisfy a set of generating relations of the algebraA.

These give rise to the supplementary commutation relations.
For the ground stateu0&[1PA and annihilation operators we usually assume

^0u0&50, ai u0&50. ~85!

If the actionP admits nondegenerate, positive definite~pre-! Hermitian scalar product such tha
the annihilation operators are well defined and the creation and annihilation operators sati
commutation relations~80! together with~85!, then we say that we have the well-defined Fo
representation for a crossed enveloping algebra. In this way a system with generalized st
can be described as a representation of crossed enveloping algebras.20

Note added in proof.After completing the paper, an interesting article~G. Fiore, H. Steinacker
and J. Wess: ‘‘Unbraiding the braided tensor product,’’ math.QA/0007174! has appeared. It give
the criterion for the braided tensor product of two module algebras to be decoupled into or
tensor product and provides many examples of such construction. We believe that this co
tion can be also extended to our more general case.
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Differential geometry of GL p,q„1z1…
Salih Çelika)

Yildiz Technical University, Department of Mathematics, 80270 Sisli, Istanbul, Turkey
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We introduce a construction of the differential calculus on the quantum supergroup
GLp,q(1u1). We obtain two differential calculi, respectively, associated with the
left and the right Cartan–Maurer one-forms. We also obtain the quantum superal-
gebra of GLp,q(1u1). Although all of the structures we obtain are derived without
an R matrix, they nevertheless can be expressed using anR matrix. © 2000
American Institute of Physics.@S0022-2488~99!04910-5#

I. INTRODUCTION

In the last few years, the theory of quantum~super-! groups1 has occurred as a natura
generalization of the notion of Lie groups. In other words, quantum~super-! groups are particular
deformations of Lie~super-! groups. They are algebraic structures depending on one~or more!
continuous parameterq. We have a standard Lie~super-! group for a particular value of the
deformation parameter. Quantum~super-! groups present the examples of~graded! Hopf algebras.
They have found application in diverse areas of physics and mathematics.2

Quantum~super-! groups can be realized on a quantum~super-! space in which coordinate
are noncommuting.3 Recently the differential calculus on noncommutative~super-! space has been
intensively studied both by mathematicians and mathematical physicists. There is much act
differential geometry on quantum groups. Throughout the recent development of differentia
culus on the quantum groups two principal concepts are readily seen. First of them, formula
Woronowicz,4 is known as bicovariant differential calculus on the quantum groups. Ano
concept, introduced by Woronowicz5 and Schirmacheret al.6 proceeds from the requirement of
calculus only. There are many papers in this field7 ~and references therein!. We shall consider the
second concept.

The differential calculus on the quantum supergroups involves functions on the super
differentials, and differential forms. In Ref. 8 a right-invariant differential calculus on the quantu
supergroup GLq(1u1) has been constructed in a different way, which may be considered a
alternative to the approach proposed earlier by Schmidkeet al.9 It is necessary to point out that i
the work of Ref. 8, the generating elements of Grq(1u1)10 have been interpreted as differentials
coordinate functions on the quantum supergroup GLq(1u1) ~T̂5dRT, in the Ref. 8 notation!.
Therefore, the relations of Grq(1u1) have been used in the beginning. In this work, we sh
construct a left-~right-! invariant differential calculus on the two parametric quantum supergr
GLp,q(1u1). All the relations will be obtained via some direct calculations, and it will be sho
that all relations can be rederived using theR-matrix approach. The differential structure obtain
turns out to be a differential~graded! algebra.

Let us briefly discuss the content of the paper. In the second section the basic notations
Hopf algebra structure on the quantum supergroup GLp,q(1u1) are introduced. In the third sectio
we shall obtain the commutation relations for the group parameters~the matrix elements! and their
differentials, so we have a left differential algebra. We show that the obtained left~right! differ-
ential algebra~extended algebra! has a Hopf algebra structure. We also describe the quan
algebra for the left vector fields~superalgebra generators! for GLp,q(1u1) and derive the commu
tation relations between the group parameters and the algebra generators. In the following
we propose a right differential calculus on the GLp,q(1u1) and we again obtain the quantu

a!Electronic mail: celik@yildiz.edu.tr
69760022-2488/2000/41(10)/6976/19/$17.00 © 2000 American Institute of Physics
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superalgebra of GLp,q(1u1). In the next section we show that the found results can be written
help of a matrixR̂. The classical limitp,q→1 of the left ~right! differential calculus gives the
undeformed differential calculus.

II. REVIEW OF GLp,q„1z1…

Elementary properties of quantum supergroup GLp,q(1u1) are described in Ref. 11. We sta
briefly the properties we are going to need in this work.

The quantum supergroup GLp,q(1u1) is defined by the matrices of the form

T5S a

g

b

d D 5~Tj
i !, ~1!

where the matrix elements satisfy the following commutation relations:3,11

ab5qba, db5qbd,

ag5pga, dg5pgd,
~2!

bg1pq21gb50, b2505g2,

ad5da1~p2q21!gb.

Let us denote the algebra generated by the elementsa, b, g, d with the relations~2! by A. We
know that the algebraA is a ~graded! Hopf algebra with the following co-structures:

~1! The usual coproduct,

D:A→A^ A, D~Tj
i !5Tk

i
^ Tj

k ; ~3!

~2! the counit,

e:A→C, e~Tj
i !5d j

i ; ~4!

~3! the coinverse~antipode! S:A→A,

S~T!5S a211a21bd21ga21 2a21bd21

2d21ga21 d211d21ga21bd21D . ~5!

It is not difficult to verify the following properties of the costructures:

~D ^ id!+D5~ id^ D!+D, ~6a!

m+~e ^ id!+D5m8+~ id^ e!+D, ~6b!

m+~S^ id!+D5e5m+~ id^ S!+D, ~6c!

where id denotes the identity mapping,m:C^ A→A, m8:A^ C→A are the canonical isomor
phisms, defined bym(k^ a)5ka5m8(a^ k), ;aPA. ;kPC and m is the multiplication map
m:A^ A→A, m(a^ b)5ab.

The multiplication inA^ A follows the rule

~A^ B!~C^ D !5~21!p~B!p~C!AC^ BC, ~7!

wherep(X) is thez2 grade ofX, i.e., p(X)50 for even variables andp(X)51 for odd variables.
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III. LEFT DIFFERENTIAL CALCULUS ON GL p,q„1z1…

In this section, we shall build up the left-invariant differential calculus on the quantum su
group GLp,q(1u1). The differential calculus on the quantum supergroups involves functions o

supergroup, differentials, and differential forms. It is necessary to point out that, to obtai
needed commutation relations for the differential calculus, we shall not use any specific as
tions. They will be found from natural ways.

A. Left differential algebra

We first note the properties of the left exterior differential. We can introduce the left ext
differential dL to be aC-linear operator that is nilpotent and obeys the graded Leibniz rule:

dL
250, ~8a!

and

dL~ f g!5~ f g! d
←

L5 f ~dLg!1~21!p~g!~dL f !g, ~8b!

wheref andg are functions of the group parameters.
We have seen, in the previous section, thatA is an associative algebra generated by the ma

elements of~1! with the relations~2!. A differential algebra onA is a z2-graded associative
algebraGL equipped with a linear operatordL given ~8!. Also, the algebraGL has to be generate
by AødLA.

First, we wish to obtain the relations between the matrix elements ofT in ~1! and their
differentials. To do this, we shall use the method of Ref. 8. So we denote byAab the algebra
generated by the elementsa andb with the relations

ab5qba, b250. ~9!

If we consider a possible set of commutation relations between generators ofAab anddLAdLadLb

of the form

a dLa5A1 dLa a,

a dLb5F11dLb a1F12dLa b,
~10!

b dLa5F21dLa b1F22dLb a,

b dLb5B1 dLb b,

then we can determine the coefficientsA1, B1, and Fi j in terms of the complex deformatio
parametersp,q. To determine them we use the consistency of calculus~see, for details, Ref. 8!.
Continuing in this way, we can obtain the other relations. The final result is given by

dLa a5pqadLa,

dLa b52qb dLa1~12pq!a dLb,

dLa g52pg dLa1~12pq!a dLg,

dLa d5d dLa1~q212p!@qp21b dLg2g dLb1~p212q!a dLd#,

dLb a5pa dLb, dLb g5pq21g dLb1~p2q21!a dLd,
~11!

dLb b5b dLb, dLb d5q21d dLb1~p21q2121!b dLd,
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dLg a5qa dLg, dLg b5qp21b dLg1~p212q!a dLd,

dLg g5g dLg, dLg d5p21d dLg1~p21q2121!g dLd,

dLd a5a dLd, dLd b52p21b dLd,

dLd g52q21g dLd, dLd d5p21q21d dLd.

Note that, for each possible set of the form~10! the emerged equation systems admit,
course, at least two solutions. In other words, the relationsAab2dLAab appearing in Eqs.~11! are
not unique. For example, the equation

F12F22505~F112qA1!F22,

which follows from the consistency of calculus, admits two solutions. Here, we chooseF2250.
We also note that the coefficientsA1 and D1 ~from d dLd5D1 dLd d! are, essentially, undeter
mined. However, we have taken them asA15p21q21 and D15A1

21, since these lead to th
standardR matrix @see Eq.~69!#.

To find the commutation relations between differentials, we apply the exterior differentidL

on the relations~11! and use the nilpotency ofdL . Then it is easy to see that

dLa dLb5p21 dLb dLa, dLd dLb5p21 dLb dLd,

dLa dLg5q21dLg dLa, dLd dLg5q21 dLg dLd,
~12!

dLa dLd52dLd dLa, ~dLa!2505~dLd!2,

dLb dLg5pq21 dLg dLb1~p2q21!dLd dLa.

These relations are the relations of Grp,q(1u1) in Ref. 12, wherea5dLa, b5dLb, etc.
Thus, we have constructed the differential algebraGL5AødLA of the algebra generated b

the matrix elements of any matrix in GLp,q(1u1).

B. Hopf algebra structure on GL

We first note that consistency of a differential calculus with commutation relations~1! means
that the algebraG is a graded associative algebra generated by the set$a,...,d,dLa,...,dLd%. So,
it is sufficient to only describe the action of comaps on the subset$dLa,...,dLd% which is defined
in Ref. 13.

We consider a mapfR :GL→GL ^ A, such that

fR+dL5~dL ^ id!+D. ~13a!

Thus, we have

fR~dLa!5dLa^ a1dLb ^ g,

fR~dLb!5dLb ^ d1dLa^ b,
~14a!

fR~dLg!5dLg ^ a1dLd^ g,

fR~dLd!5dLd^ d1dLg ^ b.

We now define a mapDR as follows:

DR~u1 dLv11dLv2 u2!5D~u1!fR~dLv1!1fR~dLv2!D~u2!. ~15!
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Then it can be checked that the mapDR leaves invariant the relations~11! and~12!. One can also
check that the following identities are satisfied:

~DR^ id!+DR5~ id^ D!+DR , ~ id^ e!+DR5 id. ~16a!

But we do not have a coproduct for the differential algebra because the mapfR does not give an
analog for the derivation property~8b!, yet. So we consider another mapfL :GL→A^ GL , such
that

fL+dL5~t ^ dL!+D, ~13b!

wheret:GL→GL is the linear map of degree zero, which givest(a)5(21)p(a)a. The action of
fL on the generatorsdLa, dLb, dLg, anddLd as follows:

fL~dLa!5a^ dLa2b ^ dLg,

fL~dLb!5a^ dLb2b ^ dLd,
~14b!

fL~dLg!52g ^ dLa1d^ dLg,

fL~dLd!5d^ dLd2g ^ dLb.

We define a mapDL with, again,~15! by replacingL with R. The mapDL also leaves invariant the
relations~11! and ~12!, and the following identities are satisfied:

~ id^ DL!+DL5~D ^ id!+DL , ~e ^ id!+DL5 id. ~16b!

Let us define the mapD̂ as

D̂5DL1DR , ~17!

which will allow us to define the coproduct of the differential algebra. We denote the restricti
D̂ to the algebraA by D and the extension ofD to the differential algebraGL by D̂. It is possible
to interpret the expression

D̂uA5D, ~18!

as the definition ofD̂ on the matrix elements and~17! as the definition ofD̂ on differentials.
Note that it is not difficult to verify the following identities:

~DL ^ id!+DR5~ id^ DR!+DL , ~19a!

and for alluPA,

~t ^ dL!+D~u!5DL~dLu!, ~dL ^ id!+D~u!5DR~dLu!. ~19b!

Note that the coproduct can be interpreted as a~left and right! coaction of the quantum supergrou
GLp,q(1u1) on the differential forms, since the extended algebraGL is interpreted as an algebra o
differential forms on GLp,q(1u1).

Now let us return to the Hopf algebra structure ofGL . If we define a counitê for the
differential algebra as

ê+dL5dL+e50 ~20!

and
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êuA5e, euG5 ê, ~21!

we have

ê~dLa!5 ê~dLb!5 ê~dLg!5 ê~dLd!50, ~22!

where

ê~u1 dLv11dLv2 u2!5e~u1!ê~dLv1!1 ê~dLv2!e~u2!. ~23!

Here we used the fact thatdL(1)50.
The next step is to obtain a coinverseŜ. For this, it suffices to defineŜ such that

Ŝ+dL5dL+S ~24!

and

ŜuA5S, SuG5Ŝ, ~25!

where

Ŝ~u1 dLv11dLv2 u2!5Ŝ~dLv1!S~u1!1S~u2!Ŝ~dLv2!. ~26!

Thus the action ofŜ on the generatorsdLa, dLb, dLg, anddLd is as follows:

Ŝ~dLa!5~2A dLa1B dLg!A2~A dLb2B dLd!C,

Ŝ~dLb!5~2A dLa1B dLg!A2~A dLb2B dLd!D,
~27!

Ŝ~dLg!5~C dLa2D dLg!A1~C dLb2D dLd!C,

Ŝ~dLd!5~C dLa2D dLg!B1~C dLb2D dLd!D.

Note that it is easy to check thatê and Ŝ leave invariant the relations~11! and ~12!. Conse-
quently, we can say that the structure (GL ,D̂,ê,Ŝ) is a graded Hopf algebra.

C. The left Cartan–Maurer one-forms in GL

As in analogy with the left-invariant one-forms on a Lie group in classical differential ge
etry, one can construct the matrix-valued one-formVL , where

VL5S u1 u1

u2 u2
D 5T21 dLT. ~28!

Each element ofVL is left invariant. For, ifT8 is any fixed element of GLp,q(1u1), the left
translation byT8 is given by

T→T8T,

while

~T8T!21dL~T8T!5T21 dLT.

This allows us to make explicit calculations in many important groups.
If we set
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T215S A B

C DD , ~29!

as the superinverse@see Eq.~5!# of TPGLp,q(1u1), we write the matrix elements~left one-forms!
of VL as follows:

u15A dLa1B dLg, u15A dLb1B dLd,
~30!

u25D dLd1C dLb, u25C dLa1D dLg.

In this section, we wish to obtain the commutation relations between the generators ofA and
one-forms, and so the relations between one-forms. For this reason, we need the comm
relations of the matrix elements ofT andT21. Some calculations give the commutation relatio
between them as follows:

aA5pqAa112pq, dA5Ad,

aD5Da, dD5pqDd112pq,

aB5qBa, dB5qBd,

aC5pCa, dC5pCd,
~31!

bA5qAb, gA5pAg,

bD5q Db, gD5p Dg,

bB5Bb, gB52pqBg,

bC52pqCb, gC5Cg.

Using these relations, we now find the commutation relations of the matrix entries ofT with
those ofVL :

u1a5pqau11~pq21!bu2 ,

u1b52bu11~12pq!au12p21q21~pq21!2bu2 ,

u1g52pqgu11~12pq!du2 ,

u1d5du11~pq21!gu11p21q21~pq21!2 du2 ,

u1a5pau11~p2q21!bu2 ,

u1b5q21bu1 , u1d5q21du1 ,
~32!

u1g5pgu11~p2q21!du2 ,

u2a5qau2 , u2g5qgu2 ,

u2b5p21 bu21~p212q!au2 ,

u2d5p21 du21~p212q!gu2 ,

u2a5au2 , u2b52p21q21bu2,

u2g52gu2 , u2d5p21q21 du2 .
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To obtain commutation relations among the left Cartan–Maurer one-forms, we shall us
commutation relations of the matrix elements ofT21 with the differentials of the matrix element
of T which are given in the following:

dLa A5p21q21A dLa1~p21q2121!@B dLg2C dLb1~pq21!D dLd#,

dLa b52p21B dLa1~q2p21!D dLb,

dLa C52q21C dLa1~p2q21!D dLg,

dLa D5D dLa,

dLb A5p21A dLb1~p212q!B dLd,

dLb B5qp21B dLb, dLb D5qD dLb,
~33!

dLb C5C dLb1~12pq!D dLd,

dLg A5q21A dLg1~q212p!C dLd,

dLg B5B dLg1~12pq!D dLd,

dLg C5pq21C dLg, dLg D5pD dLg,

dLd A5A dLd, dLd B52qB dLd,

dLd C52pC dLd, dLd D5pqD dLd.

Using these relations, we obtain the commutation relations of the left Cartan–Maurer
with the differentials of the matrix elements ofT as follows:

u1 dLa52dLa u11~12p21q21!dLb u2 , u1 dLd52dLd u1 ,

u1 dLb5dLb u1 , u1 dLg5dLg u11~p21q2121!dLd u2 ,

u1 dLa5q21 dLa u11~p2q21!dLb~u12u2!, u1 dLb5p dLb u1 ,

u1 dLd5p dLd u1 , u1dLg5p dLg u11~p2q21!dLd~u12u2!,

u2 dLa5p21 dLa u2 , u2 dLb5p21 dLb u2 , ~34!

u2 dLg5p21 dLg u2 , u2 dLd5p21 dLd u2 ,

u2 dLa52dLa u21~12p21q21!dLb u2 ,

u2 dLg5dLg u21~p21q2121!dLd u2 ,

u2 dLb5dLb u2 , u2 dLd52dLd u2 .

We now obtain the commutation relations of the left Cartan–Maurer forms,

u1u15pqu1u11~12pq!u2u1 , u1u25u2u1 ,

u1u25pqu2u11~12pq!u2u2 , u2u25u2u2 ,
~35!

u1
25~pq21!u2u1 , u2

250,

u1u25pqu2u1 , u1u21u2u15~pq21!u2u1 .
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Note that one can check that the action ofdL on ~32! and also~34!, ~35! is consistent. These
relations allow us to evaluate the superalgebra of GLp,q(1u1) via the generators of Lie algebr
related to the left one-forms.

D. Quantum superalgebra

The commutation relations of Cartan–Maurer forms allow us to construct the algebra
generators. To obtain the quantum superalgebra of the algebra generators, using~30! we first write
the left Cartan–Maurer forms as

dLa5au11bu2 , dLb5au11bu2 ,

dLd5du21gu1 , dLg5gu11du2 . ~36!

The left differentialdL can then the expressed in the form

dL5T1
Lu11T2

Lu21“1
L u11“2

L u2 . ~37a!

HereT1
L , T2

L , and¹6
L are the quantum algebra generators. We now shall obtain the commu

relations of these generators. To do this, let us consider an arbitrary functionf of the matrix
elements ofT and write Eq.~37a! as follows:

dL f 5~ f Ti
L!u i1~ f“ i

L!ui , ~37b!

where

u iP$u1 ,u2%, uiP$u1 ,u2%, “ i
LP$“2

L ,“1
L %.

Using the nilpotency of the left exterior differentialdL , one has

~ f Ti
L!dLu i1~ f“ i

L!dLui5~ f Ti
L!~Tj

Lu j1“ j
Luj !u i2~ f“ i

L!~Tj
Lu j1“ j

Luj !ui . ~38!

So we need the four two-forms. To obtain these, using the nilpotency of the left differentiadL ,
we can writedLVL of the form

dLVL5VLs3VLs3 , s35S 1 0

0 21D . ~39!

In terms of the two-forms, these become

dLu15u1
22u1u2 , dLu15u1u12u1u2 ,

~40!
dLu25u2

22u2u1 , dLu25u2u22u2u1 .

We can now write down the Cartan–Maurer equations in our case,

S dLu1 dLu1

dLu2 dLu2
D 5S 2u2u1 2~u12u2!u1

p21q21~u12u2!u2 2u2u1
D . ~41!

Using the Cartan–Maurer equations we find the following commutation relations for the qua
superalgebra:
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@T1
L ,“1

L #52“1
L 1~12pq!T1

L
“1

L ,

@T2
L ,“1

L #5“1
L 2~12pq!T1

L
“1

L ,

@T1
L ,“2

L #5“2
L 2~12pq!“2

L T1
L ,

~42!
@T2

L ,“2
L #52“2

L 1~12pq!“2
L T1

L ,

“1
L
“2

L 1pq“2
L ¹1

L 5T1
L1T2

L1~12pq!T1
L~T1

L2T2
L!,

@T1
L ,T2

L#50, ~“6
L !250,

or with new generatorsXL5T1
L1T2

L andYL5T1
L2T2

L ,

@XL,“6
L #50, @XL,YL#50, ~“6

L !250,

@YL,“1
L #522“1

L 1~12pq!~XL1YL!“1
L ,

~43!
@YL,“2

L #52“2
L 2~12pq!“2

L ~XL1YL!,

“1
L
“2

L 1pq“2
L
“1

L 5XL1
12pq

2
~XL1YL!YL.

We also note that the commutation relations~42! of the algebra generators should be cons
tent with monomials of the matrix elements ofT. To proceed, we must evaluate the commutat
relations between the generators of algebra and the matrix elements ofT. The commutation
relations of the generators with the matrix elements can be extracted from the Leibniz rule

dL~ f a!5~ f a! d
←

L5 f ~dLa!1~dL f !a⇒a~Ti
Lu i1“ i

Lui !5dLa1~Ti
Lu i1“ i

Lui !a, ~44!

etc. This yields

aT1
L5a1pqT1

La, a“1
L 5p “1

L a,

aT2
L5T2

La1~p2q21!“1
L b,

a“2
L 5b1q “2

L a1~pq21!T1
Lb,

bT1
L5T1

Lb, b“2
L 52p21

“2
L b,

bT2
L5b1p21q21T2

Lb1~q2p21!@“2
L a1~p2q21!T1

Lb#,

b“1
L 5a2q21

“1
L b1~pq21!T1

La,
~45!

gT1
L5g1pqT1

Lg, g“1
L 52p “1

L g,

gT2
L5T2

Lg1~q212p!“1
L d,

g“2
L 5d2q “2

L g1~pq21!T1
Ld,

dT1
L5T1

Ld, d“2
L 5p21

“2
L d,

dT2
L5d1p21q21T2

Ld1~q2p21!@~p2q21!T1
Ld2“2

L g#,

d“1
L 5g1q21

“1
L d1~pq21!T1

Lg.
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Notice that these commutation relations must be consistent. In fact, for example, it is e
see that the nilpotency of“6

L is consistent with

~“1
L !2a5p22a~“1

L !2, ~“2
L !2a5q22a~“2

L !2.

Similarly, one can check the other relations.

IV. RIGHT DIFFERENTIAL CALCULUS ON GL p,q„1z1…

In this section, we shall build up the right-invariant differential calculus on the quan
supergroup GLp,q(1u1).

A. Right differential algebra

We first note that the properties of the right exterior differential. The basic differential op
tor dR that is linear and satisfies the standard properties as follows: the nilpotency,

dR
250; ~46a!

and the graded Leibniz rule,

dR~ f g!5~dRf !g1~21!p~ f ! f ~dRg!, ~46b!

wheref andg are functions of the group parameters.
In analogy with previous sections, let us begin obtaining the commutation relations o

group parameters with their differentials. Using the method of Sec. III A, we obtain the com
tation relations between the generators ofA and their right differentials~the generators ofdRA! as
follows:

a dRa5pq dRa a, a dRb5q dRb a1~pq21!dRa b,

a dRg5p dRg a1~pq21!dRa g,

a dRd5dRd a1~p2q21!@dRg b2qp21 dRb g1~q2p21!dRa d#,

b dRa52p dRa b, b dRb5dRb b,

b dRg5pq21 dRg b1~p2q21!dRa d,

b dRd52q21 dRd b1~12p21q21!dRb d, ~47!

g dRa52q dRa g, g dRg5dRg g,

g dRb5qp21 dRb g1~p212q!dRa d,

g dRd52p21 dRd g1~12p21q21!dRg d,

d dRa5dRa d, d dRb5p21 dRb d,

d dRg5q21 dRg d, d dRd5p21q21 dRd d.

To find the commutation relations between differentials, we apply the exterior differentiadR

on the relations~47! and use the nilpotency ofdR . They are the same with~12!, as expected.
Thus, we have constructed the right differential algebraGR5AødRA of the algebra gener

ated by the matrix elements of any matrix in GLp,q(1u1). Again, the structure (GR ,D̂,ê,Ŝ) is a
graded Hopf algebra provided that subscriptR was replaced withL in Sec. III B.
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B. The right Cartan–Maurer one-forms in GR

As in analogy with the right-invariant one-forms on a Lie group in classical differen
geometry, one can construct the matrix-valued one-formVR , where

VR5dRT T21. ~48!

Then we write the matrix elements~right one-forms! of VR as follows:

w15dRa A1dRb C, v15dRa B1dRb D,
~49!

w25dRg B1dRd D, v25dRg A1dRd C.

The commutation relations of the matrix elements ofT andT21 are given by~31!. Using~31!,
we now find the commutation relations of the matrix entries ofT with those ofVR :

aw15pqw1a, av15qv1a,

av25pv2a1~p2q21!w1g,

aw25w2a1pq21~q2p21!2w1a1~p21q2121!v1g,

bw152pqw1b, bv15qv1b,

bv25pv2b1~p2q21!w1d,

bw252w2b2pq21~q2p21!2w1b1~12p21q21!v1d, ~50!

gw152w1g, gv15p21v1g1~p212q!w1a,

gv25q21v2g, gw252p21q21w2g1~12p21q21!v2a,

dw15w1d, dv25q21v2d,

dv15p21v1d1~p212q!w1b,

dw25p21q21w2d1~p21q2121!v2b.

To obtain the commutation relations among the right Cartan–Maurer one-forms, we u
commutation relations of the matrix elements ofT21 with the differentials of the matrix element
of T, which are given in the following:

A dRa5p21q21 dRa A, A dRd5dRd A,

A dRb5q21 dRb A, A dRg5p21 dRgA,

D dRa5dRa D,

D dRd5pq dRd D1~12pq!@dRb C2dRg B1~12p21q21!dRa A#,

D dRb5p dRbD1~p2q21!dRa B,
~51!

D dRg5q dRg D1~p2p21!dRa C,

B dRa52q21 dRa B, B dRg5dRg B1~p21q2121!dRa A,
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B dRb5pq21 dRb B, B dRd52p dRd B1~q212p!dRb A,

C dRa52p21 dRa C, C dRb5dRb C1~12p21q21!dRa A,

C dRg5qp21 dRg C, C dRd52q dRd C1~p212q!dRg A.

Using these relations, we obtain the commutation relations of the right Cartan–Maurer
with the differentials of the matrix elements ofT as follows:

w1 dRa52dRa w1 , w1dRg5dRg w1 ,

w1 dRb5dRb w11~12p21q21!dRa v1 ,

w1 dRd52dRd w11~p21q2121!dRg v1 ,

v1 dRa5q21 dRa v1 , v1dRb5q21 dRb v1 ,

v1 dRg5q21 dRg v1 , v1 dRd5q21 dRd v1 ,

v2 dRa5q dRa v2 , v2 dRg5q dRg v2 , ~52!

v2 dRb5q dRbv21~q2p21!dRa~w22w1!,

v2 dRd5q dRd v21~q2p21!dRg w1 ,

w2 dRa52dRa w2 , w2 dRb5dRb w21~12p21q21!dRa v1 ,

w2 dRg5dRg w21p21q21~pq21!2 dRg w1 ,

w2 dRd52pq dRd w21~pq21!dRd w11p21q21~pq21!2 dRg v1 .

We now obtain the commutation relations of the right Cartan–Maurer forms,

w1v15v1w1 , v1w25pqw2v11~12pq!v1w1 ,

w1v25v2w1 , w2v25pqv2w21~12pq!w1v2 ,
~53!

w1
250, w2

25~12pq!v2v1 ,

v1v25pqv2v1 , w1w21w2w15~12pq!v2v1 .

Note that one can check that the action ofdR on ~50!, ~52!, and also~53! is consistent. These
relations allow us to evaluate the Lie algebra of GLp,q(1u1) by relating the generators of the Li
algebra to the right one-forms.

C. Quantum superalgebra

The commutation relations of Cartan–Maurer forms allow us to construct the algebra
generators. To obtain the quantum superalgebra of the algebra generators, we first wr
Cartan–Maurer forms as

dRa5w1a1v1g, dRb5w1b1v1d,
~54!

dRd5w2d1v2b, dRg5w2g1v2a.

The differentialdR can then be expressed in the form
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dR5w1T11w2T21v1“11v2“2 . ~55!

HereT1 , T2 , and“6 are the quantum algebra generators. We now shall obtain the commu
relations of these generators. Considering an arbitrary functionf of the matrix elements ofT and
using the nilpotency of the exterior differentialdR , one has

~dRwi !Ti f 1~dRv i !“ i f 5wi dRTi f 2v idR“ i f , ~56!

where

wiP$w1 ,w2%, v iP$v1 ,v2%, “ iP$“1 ,“2%.

So we need the four two-forms. To obtain these, using the nilpotency of the differentialdR , we
can writedRVR of the form

dRVR5s3VRs3VR , s35S 1 0

0 21D . ~57!

In terms of the two-forms, these become

dRw15w1
22v1v2 , dRv15w1v12v1w2 ,

~58!
dRw25w2

22v2v1 , dRv25w2v22v2w1 .

We can now write down the Cartan–Maurer equations in our case,

S dRw1 dRv1

dRv2 dRw2
D 5S 2v1v2 pq~w12w2!v1

2~w12w2!v2 2v1v2
D . ~59!

Using the Cartan–Maurer equations, we find the following commutation relations for the qua
superalgebra:

@T1 ,“1#52pq“11~pq21!T2“1 ,

@T2 ,“1#5pq“12~pq21!T2“1 ,

@T1 ,“2#5pq“22~pq21!“2T2 ,
~60!

@T2 ,“2#52pq“21~pq21!“2T2 ,

@T1 ,T2#50, ¹6
2 50,

“2“11p21q21
“1“25T11T21~p21q2121!~T2

21T1T2!,

or with new generatorsX5T11T2 andY5T12T2 ,

@X,“6#50, @X,Y#50, ¹6
2 50,

@Y,“1#522pq“11~pq21!~X2Y!“1 ,
~61!

@Y,“2#52pq“22~pq21!“2~X2Y!,

“1“21pq“2“15pqX1
12pq

2
~X22XY!.
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The commutation relations~60! of the algebra generators should be consistent with mono
als of the matrix elements ofT. To do this, we evaluate the commutation relations between
generators of algebra and the matrix elements ofT. The commutation relations of the generato
with the matrix elements can be extracted from the Leibniz rule:

dR~a f !5~dRa! f 1a~dRf !⇒~wiTi1v i“ i !a5dRa1a~wiTi1v i“ i !, ~62!

etc. This yields

T1a5a1pqaT11~p2q21!@~q2p21!aT21g“2#,

T1b5b1pqbT11~p2q21!@~q2p21!bT22d“2#,

T1g5gT11~p212q!a“1 ,

T1d5dT11~p212q!b“1 ,

T2a5aT2 , T2g5g1p21q21gT2 ,

T2b5bT2 , T2d5d1p21q21dT2 ,
~63!

“1a5g1qa“11~p21q2121!gT2 ,

“1b5d2qb“11~p21q2121!dT2 ,

“1g52p21g“1 , “1d5p21 d“1 ,

“2a5pa“2 , “2b52pb“2 ,

“2g5a2q21g“21~p21q2121!aT2 ,

“2d5b1q21 d“21~p21q2121!bT2 .

Notice that these commutation relations must be consistent. In fact, for example, it is e
see that the nilpotency of¹

6
is consistent with

¹2
2 a5p2a¹2

2 , ¹1
2 a5q2a¹1

2 .

Similarly, one can check the other relations.

V. R-MATRIX APPROACH

In this section we wish to obtain the relations~11!, ~12!, ~32!, ~34!, and~35! with the help of
a matrix R̂ that acts on the square tensor space of the supergroup. Of course, the matrixR̂ is a
solution of the quantum~graded! braided group equation.

We first consider the quantum superplane and its dual.3 The quantum superplaneAp is gen-
erated by coordinatesx andu, and the commutation rules

xu5pux, u250. ~64!

The quantum~dual! superplaneAq* is generated by coordinatesw and y, and the commutation
rules,

w250, wy5q21yw. ~65!
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We demand that relations~64!, ~65! are preserved under the action ofT, as a linear transformation
on the quantum superplane and its dual:

T:Ap→Ap , T:Aq* →Aq* . ~66!

Let X5(x,u) t and X̂5(w,y) t. Then, as a consequence of~66! the pointsTX and TX̂ should
belong toAp andAq* , respectively, which give the relations~2!.

Similarly, let us consider linear transformationsdLT with the following properties:

dLT:Ap→Aq* , dLT:Aq* →Ap . ~67!

Then the points (dLT)X and (dLT)X̂ should belong toAq* and Ap , respectively. This case i
equivalent to~12!.

Note that the relations~64! can be written as follows:

X^ X5q21R̂X^ X, ~68!

where

R̂5S q 0 0 0

0 q2p21 1 0

0 qp21 0 0

0 0 0 2p21

D . ~69!

We can also write mixed relations between the component ofX and X̂ as follows:

~21!p~X!X^ X̂5pR̂X̂^ X, ~70!

whereX̂5dLX.
Using~66! together with~68! and~70!, we now derive anew the quantum supergroup relati

~2! from the equation

R̂T1T25T1T2R̂, ~71!

where, in usual grading tensor notation,T15T^ I andT25I ^ T. Similarly, using~70!, we obtain
the following equation:

T1dL~T2!5qp21R̂21dLT1T28R̂
21, T85~21!p~T!T, ~72a!

which is equivalent to the relations~11!. Note that

dL~T2!52~dLT!2 . ~73!

So, the equation~72a! can be written as

T1~dLT!252qp21R̂21 dLT1 T28R̂
21. ~72b!

Applying the left exterior differentialdL on both sides of~72!, one has

dLT1@dL~T2!#85qp21R̂21 dLT1 dL~T28!R̂21, ~74!

which gives the relations~12!. TakingdLT5TVL and using~72!, one obtains

V1T2852pq21T2R̂V2R̂, ~75!
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which gives the relations~34!. Finally, from ~74! we find that

V1@dL~T2!#85dL~T2!R̂V28R̂
21, ~76!

and from~76!,

R̂V2R̂V2852qp21V2R̂V28R̂
21. ~77!

These equations are equivalent to~34! and~35!, respectively. Similar formulas can be also deriv
for the right commutation relations.

VI. CONCLUSION

To conclude, we introduce here commutation relations between the group paramete
their partial derivatives and thus illustrate the connection between the relations in Sec. III D
Sec. IV C, and the relations that will now be obtained.

To proceed, let us first obtain the relations of the group parameters with their partial d
tives. We know that the right exterior differentialdR can be expressed of the form

dRf 5~dRa ]a1dRb ]b1dRg ]g1dRd ]d! f . ~78!

Then, replacingf with af, etc., we obtain the following commutation relations:

]aa511pqa]a1~pq21!@~12p21q21!d]d1b]b1g]g#,

]ab5pb]a1~q212p!d]g ,

]ag5qg]a1~q2p21!d]b , ]ad5d]a ,

]ba5qa]b1~p212q!g]d , ]bd5p21d]b ,

]bb512b]b1~p21q2121!d]d , ]bg52qp21g]b , ~79!

]ga5pa]g1~p2q21!b]d , ]gb52pq21b]g ,

]gg512g]g1~p21q2121!d]d , ]gd5q21d]g ,

]da5a]d , ]db5q21b]d ,

]dg5p21g]d , ]dd511p21q21d]d .

We thus find the commutation relations between the derivatives. These relations can be o
by using the nilpotency of the right exterior differentialdR and they have the form

]a]b5p21]b]a , ]d]b5p21]b]d ,

]a]g5q21]g]a , ]d]g5q21]g]d ,
~80!

]b]g52pq21]g]b , ]b
2505]g

2,

]a]d5]d]a1~p2q21!]g]b .

The ~graded! Hopf algebra structure for] is given by
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D~]a!5]a^ ]a1]b ^ ]g , D~]b!5]a^ ]b1]b ^ ]d ,

D~]d!5]d^ ]d1]g ^ ]b , D~]g!5]g ^ ]a1]d^ ]g ,

e~]a!515e~]d!, e~]b!505e~]g!, ~81!

S~]a!5]a
211]a

21]b]d
21]g]a

21, S~]b!52]a
21]b]d

21,

S~]d!5]d
211]d

21]g]a
21]b]d

21, S~]g!52]d
21]g]a

21,

provided that the formal inverses]a
21 and]d

21 exist. However, these comaps do not leave inva
ant the relations~79!.

We know, from Sec. IV C that the right exterior differentialdR can be expressed in the form
~55!, which we repeat here,

dRf 5~w1T11v1“11v2“21w2T2! f . ~82!

Considering~78! together~82!, and using~54!, one has

T15a]a1b]b , “15g]a1d]b ,
~83!

T25d]d1g]g , “25a]g1b]d .

Using the relations~79!, ~80!, one can check that the relations of the generators in~83! coincide
with ~60!. It can also be verified that, the action of the generators in~83! on the group parameter
coincide with~63!.

Above, we noted that the right exterior differential must be placed before the right deriva
With a similar consideration, we can say that the left exterior differential must be placed aft
left derivatives:

dL f 5 f ~]a
L dLa1]b

L dLb1]g
L dLg1]d

L dLd!. ~84!

Replacingf with fa, etc., we get the following relations:

a ]a
La511pq ]a

La, a]d
L5]d

La,

a]b
L5p ]b

La, a]g
L5q ]g

La,

b]a
L5q ]a

L b, b]b
L512]b

Lb1~pq21!]a
La,

b]g
L52qp21 ]g

Lb, b]d
L5p21 ]d

Lb1~q2p21!]g
La,

g]a
L5p ]a

Lg, g]g
L512]g

Lg1~pq21!]a
La, ~85!

g]b
L52pq21 ]b

Lg, g]d
L5q21]d

Lg1~q212p!]b
La,

d]a
L5]a

Ld, d]b
L5q21]b

Ld1~p2q21!]a
Lg,

d]g
L5p21 ]g

Ld1~p212q!]a
Lb,

d]d
L511p21q21 ]d

Ld1~12p21q21!@~12pq!]a
La1]b

Lb1]g
Lg#.

The commutation relations between the left derivatives are the same with~80!.
Finally, expressing the left exterior differential of the form~37b! and comparing~84! with

~36!, we have
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T1
L5]a

La1]g
Lg, ¹1

L 5]b
La1]d

Lg,
~86!

T2
L5]b

Lb1]d
Ld, ¹2

L 5]a
Lb1]g

Ld.

Using these with~85!, one can check the relations~42! and ~45!.

VII. DISCUSSION

The starting point of the present paper is to evaluate the~p,q!-commutation relations of the
matrix elements with their differentials. Later, using these relations, the~p,q!-commutation rela-
tions of the matrix elements with the Cartan–Maurer forms are obtained without any fu
assumptions. The commutation relations of the Cartan–Maurer forms are not obtained by
the ~p,q!-commutation relations of the matrix elements with the Cartan–Maurer forms, i.e
obtain the desired commutation relations we have not applied the exterior differentiald on the
relations of the matrix elements with the Cartan–Maurer forms. Applying the exterior differe
d on the relations of the matrix elements to the Cartan–Maurer forms, gives the required o
In this work we have derived the~p,q!-commutation relations between the matrix elements
their differentials without considering anR matrix at first. However, we later showed that the
relations can also be derived using anR matrix.
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Mechanics in space and counterspace
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The completely dual approach to Clifford algebra is used to enlarge the concept of
the projective split and to develop a new geometric representation for the Pauli
algebra~space and counterspace!, for the momenta~planelike vectors!, and for the
phase space. The Pauli algebra appears in this context as the phase space extende
by time~scalar! and energy~pseudoscalar!. Lagrangian and Hamiltonian mechanics
are embedded into the dual framework of space and counterspace. Several ex-
amples illustrate the new techniques. The dual approach to mechanics provides a
new possibility to interpret symplectic geometry. ©2000 American Institute of
Physics.@S0022-2488~00!00210-3#

I. INTRODUCTION

The completely dual approach to geometric algebra1—a notion used synonymously for ‘‘Clif-
ford Algebra’’ throughout this article—reflects the classical duality of projective geometry
thus provides the appropriate instrument to investigate the role played by the projective pri
of duality in physics.

In this article we develop a formulation of classical mechanics2,3 in a completely dual frame-
work, i.e., in space and counterspace. This new embedding of classical mechanics is in acc
with its basic principles and seems to fit very well in every detail. Central mechanical con
such as ‘‘phase space’’ or ‘‘symplectic metric’’ obtain a remarkably simple and beautiful geo
ric meaning in the dual approach to mechanics.

After a short review of the completely dual approach to geometric algebra~Sec. II! and the
projective interpretation of the Dirac algebra~Sec. III!, the projective split4,5 is embedded into the
twofold structure of the completely dual approach in Sec. IV. The enlarged concept of the
jective split is used in Secs. V and VI. First a novel pictorial representation for the Pauli alg
is developed and related to what has been called space and counterspace. Then we intro
representation of momenta by planelike vectors and get a new pictorial interpretation of the
space. The Pauli algebra appears in this context as a phase space extended by time~scalar! and
energy~pseudoscalar!. Section VII discusses the relation between one-forms and planelike
tors. Lagrangian and Hamiltonian mechanics are formulated in the new framework of spac
counterspace in Secs. VIII and IX, respectively. Then-body system with potential forces, th
independent body motion, the harmonic oscillator, and the Kepler motion demonstrate the
of the dual approach to mechanics. Section X deals with canonical transformations and pro
new interpretation for symplectic geometry. In particular, the geometric representation o
symplectic metric reveals the intercept theorem of elementary geometry.

Hestenes and Pappas formulated Hamiltonian mechanics in terms of geometric calc
Refs. 6 and 7.

II. THE COMPLETELY DUAL APPROACH TO GEOMETRIC ALGEBRA

In this section we review some definitions and results of the completely dual approa
geometric algebra developed in Ref. 1.

a!Electronic mail: oliver.conradt@unibas.ch
69950022-2488/2000/41(10)/6995/34/$17.00 © 2000 American Institute of Physics
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A real 2n-dimensional geometric algebraGn is generated through continued geometric mu
plication out of the basis vectorsPi , i P$1,2, . . . ,n%, of a realn-dimensional vector spaceV. The
geometric algebraGn can then be decomposed into a sum of direct subspaces,

Gn5Gn
0

% Gn
1

% Gn
2

% •••% Gn
n22

% Gn
n21

% Gn
n , ~1!

where the dimensions are distributed according to dimGn
k5(k

n) andGn
1 equals then-dimensional

vector spaceV from which the whole algebra was generated. A generic elementM of the geo-
metric algebra is called amultivectorand decomposes into a sum ofhomogeneousmultivectors,

M5^M &01^M &11^M &21•••1^M &n221^M &n211^M &n . ~2!

^M &k is called ak-vectoror avector of grade kand belongs to the subspaceGn
k . Thescalar ^M &0

is proportional to the one-element1 of the geometric product and thepseudoscalar̂ M &n is
proportional toIªP1P2•••Pn21Pn .

The geometric productAB of an r-vectorA and ans-vectorB decomposes into the sum

Ar̄Bs̄5^Ar̄Bs̄& ur 2su1^Ar̄Bs̄& ur 2su121 . . . 1^Ar̄Bs̄&Dn(r 1s) ~3!

with the index-function

Dn~ i !5H i , 0< i<n

2n2 i , n< i<2n.
~4!

The inner productA•B and theouter productA`B is defined in terms of the geometric produ
by

Ar̄•Bs̄ª^Ar̄Bs̄& ur 2su , ~5a!

Ar̄`Bs̄ªH ^Ar̄Bs̄& r 1s , 0<r 1s<n

0, n,r 1s<2n.
~5b!

With the concept of thedual Ã of a multivectorA,

ÃªAI215A•I21, ~6!

the dual geometric product* is defined by

A* Bª~ÃB̃!;. ~7!

It is a second geometric product8 in Gn in the sense that it generates the whole geometric alg
from the (n21) vectors of then-dimensional vector spaceGn

n21 . With respect to the *-product
the pseudoscalarI21 plays the role of the one-element and the scalar1 appears to be a pseudo
scalar. Thus, it becomes necessary to distinguish between the ‘‘left’’ and the ‘‘right’’ approa
geometric algebra. Depending on which geometric product is taken as the original one, we
the geometric algebra, its subspaces, and the multivectors with a plus or a minus sign. A pl
as an upper index indicates that the geometric algebraGn

1 is generated out of the vectorsPi
1 of the

vector spaceGn
11 . The original geometric product is denoted by juxtaposition in this case

minus sign as an upper index indicates that the geometric algebraGn
2 is generated out of the

vectors Pi
2[^Pi

1(I1)21&1
2 of the vector spaceGn

12[Gn
(n21)1 . In the minus approach the

*-product is chosen as the original geometric product. Since the plus-minus notation a
provides two possibilities to write down a homogeneous multivector,^M &k

1[^M &n2k
2 , it seems to

complicate the presentation unnecessarily. But only on the base of the completely dual ap
to geometric algebra and its plus-minus notation is it possible to introduce and express th
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cepts of a planelike vector and of space and counterspace in an algebraic formulation. We w
always apply the plus–minus notation rigorously. If plus and minus signs are absent, the
nations and statements hold for both signs or it is clear from the context which approach is c

The geometric algebrasGn
1 andGn

2 are isomorphic to each other in two ways:

c: Gn
2→Gn

1

Ak̄
2

°^Ak̄
2

&n2k
1 , ~8a!

f: Gn
2→Gn

1

A2°^A2* ~I2!21&1. ~8b!

With respect toc each multivector and subspace appears in two different grades. With resp
f each grade is represented by two different homogeneous multivectors and subspaces.

The completely dual approach immediately leads to a second inner and a second outer
defined in terms of the *-product by

Ar̄
2

+Bs̄
2
ª^Ar̄

2* Bs̄
2

& ur 2su
2 , ~9a!

Ar̄
2~Bs̄

2
ªH ^Ar̄

2* Bs̄
2

& r 1s
2 , 0<r 1s<n

0, n,r 1s<2n.
~9b!

Table I reviews the six different products from the vantage point of the plus and the m
approach.

III. THE PROJECTIVE INTERPRETATION OF THE DIRAC ALGEBRA

A basis for the 16-dimensional Dirac algebra can be generated from the four basis one-v
gm

1 , mP$0,1,2,3%, satisfying

gm
1
•gn

15hmn1
15diag~1222 !1. ~10!

With particular notations for the two-vectors,

l i
1[s i

1
ªg i

1g0
1 , l i 13

1 [S i
1
ªs i

1~I1!21, i P$1,2,3%, ~11!

and a new notation for the three-vectors,

Gm
1
ªgm

1~I1!21, ~12!

the full basis for the Dirac algebra9 G1,3
1 in the plus approach becomes

11, $gm
1%, $s i

1 ,S i
1%, $Gm

1%, I1. ~13!

In the minus approach we start with the four basis one-vectorsGm
2
ª^Gm

1&1
2 satisfying

Gm
2+Gn

25^Gm
2* Gn

2&0
25^gm

1gn
1~I1!21&4

15hmn1
25diag~1222 !2 ~14!

TABLE I. Products inGn .

~Juxtaposition! * • + ` ~

Gn
1 Original Dual Original Dual Progressive Regressive

Gn
2 Dual Original Dual Original Regressive Progressive
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and arrive at a full basis for the Dirac algebraG1,3
2 which translates into the plus basis~13!

according to

12
ª^~I1!21&0

25^2I1&0
2 ,

Gm
2
ª^Gm

1&1
2 ,

S i
2
ªG i

2* G0
25^S i

1&2
2 ,

~15!
s i

2
ªS i

2* ~I2!215^2s i
1&2

2 ,

gm
2
ªGm

2* ~I2!215^2gm
1&3

2 ,

I2
ªG0

2* G1
2* G2

2* G3
25^11&4

2 .

The projective interpretation of homogeneous multivectors is unique to within a scale fa10

and leads—in the case of the geometric algebraG4—to points, lines, linear complexes,11,12 and
planes in space. Table II reviews the projective interpretation of homogeneous multivectors
geometric algebraG4 with respect to both approaches. In order to facilitate orientation in the s
of pointsG4

11[^G4
32&1, in the space of linear complexes and linesG4

21[^G4
22&1, and in the space

of planesG4
31[^G4

12&1 we introduce a projective coordinate system in space.1,12 It is fixed by the
choice of either the five pointsrg0

1 , rg1
1 , rg2

1 , rg3
1 , andr(g0

11g1
11g2

11g3
1) or the five

planesrG0
2 , rG1

2 , rG2
2 , rG3

2 , andr(G0
21G1

21G2
21G3

2). A generic pointq5rqmgm is rep-
resented by the homogeneous coordinatesr(q0 ,q1 ,q2 ,q3) and the projective point-coordinate
(q1 /q0 , q2 /q0 , q3 /q0). Equivalently a generic planep5rpmGm is represented by the homoge
neous coordinatesr(p0 ,p1 ,p2 ,p3) and the projective plane-coordinates (p1 /p0 , p2 /p0 , p3 /p0).
See Fig. 1.

The particular choice of the signature~10! or ~14! leads to the so-called fundamental quadra
surface. The polarity

f ~X!ªXI21 ~16!

maps planes to points, points to planes, and linear complexes to linear complexes. It is an
lution, f 2(X)52X, and singles out invariant point–plane pairsq1̄

1
1^ f (q1̄

1)&3 and p3̄
2

1^ f (p3̄
2)&1:

f ~q1̄
1

1^ f ~q1̄
1

!&3!52q1̄
1

1^ f ~q1̄
1

!&3 , ~17a!

TABLE II. Projective interpretation for the homogeneous multivectors of the geometric algebraG4.

G4
1 Space G4

2

r11 rI2

rq1̄
1

5q0
1g0

11q1
1g1

1

1q2
1g2

11q3
1g3

1J Point Hrq3̄
2

5q0
2g0

21q1
2g1

2

1q2
2g2

21q3
2g3

2

rx2̄
1

5x1
1s1

11x2
1s2

11x3
1s

3

1x4
1S1

11x5
1S2

11x6
1S3

1J Linear complex (Refs. 11,12)

or a line
Hrx2̄

2
5x1

2s1
21x2

2s2
21x2s3

2

1x4
2S1

21x5
2S2

21x6
2S3

2

rp3̄
1

5p0
1G0

11p1
1G1

1

1p2
1G2

11p3
1G3

1J Plane Hrp1̄
2

5p0
2G0

21p1
2G1

2

1p2
2G2

21p3
2G3

2

rI1 r12
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f ~p3̄
2

1^ f ~p3̄
2

!&1!52p3̄
2

1^ f ~p3̄
2

!&1 . ~17b!

The fundamental surface is defined as the set of all incident13 point–plane pairs,

f ~q1̄
1

!`q1̄
1

50, f ~q1̄
1

!~q1̄
1

50, ~18a!

f ~p3̄
2

!`p3̄
2

50, f ~p3̄
2

!~p3̄
2

50. ~18b!

Using the signature of the Dirac algebra we get an oval quadratic surface in point and
coordinates, respectively:

~q0
1!22~q1

1!22~q2
1!22~q3

1!250, ~19a!

~p0
2!22~p1

2!22~p2
2!22~p3

2!250. ~19b!

IV. PROJECTIVE SPLITS

The significance of the projective split in physics4 and geometry5 has been worked out by
Hestenes in the last 33 years. His approach is completed in Ref. 14. We will enlarge the c
of the projective split by embedding it into the twofold structure of the completely dual appro

FIG. 1. Projective coordinate system in space. The projective point-coordinates are indicated along thex axis (s1

5g1g0), they axis (s25g2g0), and thez axis (s35g3g0). G0 represents the plane at infinity in the space of points. T
projective plane coordinates are indicated around thex axis (S15g2g3), the y axis (S25g3g1), and thez axis (S3

5g1g2), and are put on a gray background.g0 represents the point at infinity in the space of planes. The projective p
coordinates ofE andP are (1,1,1)1 and (26,27,26)1, respectively. The projective plane coordinates ofh andp are

(1,1,1)1 and (
1
5,

1
15,

1
5)1, respectively. This figure refers to the plus approach only.
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The projective split of a geometric algebraGn11 (dim Gn1152n11) with respect to a one-
vectorA, A2Þ0, is defined by two successive linear mappings and results in the geometric a
Gn (dim Gn52n). The geometric algebraGn11 can be decomposed into a direct sum by separa
even and odd homogeneous multivectors.

Gn11
even

ªGn11
0

% Gn11
2

% •••, dim Gn11
even52n, ~20a!

Gn11
odd

ªGn11
1

% Gn11
3

% •••, dim Gn11
odd 52n. ~20b!

The first mapping projectsGn11 onto Gn11
even:

PA :Gn11→Gn11
even,

~21!

Xl̄ °H Xl̄ , l 52k

Xl̄ A5^X•A& l 211^X`A& l 11 , l 52k11.

PA is a projection,PA
25PA . It divides the odd subspaces into multivectors commuting

anticommuting with respect toA, and distributes them among the directly subsequent even
spaces. The second mapping identifiesGn11

even with the geometric algebraGn :

iA :Gn11
even→Gn ,

X2k5X2kA
21A5~X2k•A21!A1~X2k`A21!A

~22!
5~X2k•A21!`A1~X2k`A21!•A

°^~X2k•A21!`A&2k211^~X2k`A21!•A&2k .

We will now show step by step thatiA(Gn11
even) can be identified as the geometric algebraGn , if the

geometric product inGn is induced fromGn11.
~i! iA is a one-to-one correspondence.
~ii ! The split ofGn11

2k into Gn
2k211Gn

2k is well defined.
Let B15A21, B2, . . . , Bn11 be an orthogonal basis inGn11

1 . The set of all 2k-blades~Ref.
15, p. 34! formed byB1 and by 2k21 basis vectors from the rest of the basis provides a basis

^Gn11
2k &2k21ª$~X2k•A21!`AuX2kPGn11

2k %. ~23!

Its dimension is

dim^Gn11
2k &2k215S n

2k21D . ~24!

The set of all 2k-blades generated from the basis vectorsBi except forB1 provides a basis for

^Gn11
2k &2kª$~X2k`A21!•AuX2kPGn11

2k %. ~25!

Its dimension is

dim^Gn11
2k &2k5S n

2kD . ~26!

It follows that

dim^Gn11
2k &2k215dim Gn

2k21 , dim^Gn11
2k &2k5dim Gn

2k . ~27!
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~iii ! The geometric product inGn11
even ~or Gn11) can be identified with the geometric product

Gn ,

@~X2̄•A21!`A#25@~X2̄•A21!`A#•@~X2̄•A21!`A#PGn11
0 . ~28!

~i!, ~ii !, and~iii ! allow us to identifyGn11
even with Gn . Thus, the projective split

pA~Gn11!ªiA~PA~Gn11!! ~29!

maps the geometric algebraGn11 onto the geometric algebraGn , covering the latter twice. An
even homogeneous multivectorX2kPGn11 and the odd multivector̂ X2k•A21&2k211^X2k

`A21&2k11PGn11, or an odd homogeneous multivectorX2k11PGn11 and the even multivecto
^X2k11•A&2k1^X2k11`A&2k12PGn11, respectively, have the same picture,

pA~X2k!5pA~^X2k•A21&2k211^X2k`A21&2k11!

5^~X2k•A21!`A&2k211^~X2k`A21!•A&2k. ~30a!

pA~X2k11!5pA~^X2k11•A&2k1^X2k11`A&2k12!

5^X2k11•A&2k1^X2k11`A&2k11. ~30b!

The completely dual approach enables us to perform the projective split twice: inGn11
1 with

respect to a one-vectorA1 , and inGn11
2 with respect to a one-vectorA1

2 . In general these splits
are different. If (n11) is an odd number, the even parts ofGn11

1 and Gn11
2 complement each

other,

Gn11
even1

% ^Gn11
even2&15Gn11

1 , ^Gn11
even1&2

% Gn11
even25Gn11

2 . ~31!

This explains why the projections splitspA1(Gn11
1 ) andpA2(Gn11

2 ) live in two different subspaces
of Gn11. If ( n11) is an even number, the plus and minus splits can be identified by relatin
splitting vectors according to

A2
ª^A1~I1!21&1

2 . ~32!

To prove this assertion we compare the corresponding projective splits of homogeneous mu
tors in both approaches. The argumentXl̄

1 of the projective splits is taken to be the same in bo
approaches. The projection~21! changes the sign in the case of odd homogeneous multivec

PA1~Xl̄
1

!5~21! lPA2~Xl̄
1

!, ~33!

and the sign of the identification~22! depends on the signature and the dimension of the geom
algebraGn11,

iA1~Xl̄
1

!52I2iA2~Xl̄
1

!52~21! [(n11)n]/2~21!qiA2~Xl̄
1

!. ~34!

Altogether we can identify both splits up to a sign alternating according to the grade o
homogeneous multivectors,

pA1~Xl̄
1

!5~21! l 11I2pA2~Xl̄
1

!. ~35!

Let us apply the projective split to the Dirac algebraG1,3 with respect to the timelike vecto
g0

1 in the plus approach, and with respect to its dualG0
2 in the minus approach. If the argumen

are required to be equal, the coefficients of one-, two-, and three-vectors with respect to th
basis~13! and to the minus basis~15! are related as follows:
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^qm
2gm

2&1
15qm

1gm
1⇒qm

252qm
1 , ~36a!

^xi
2s i

21xi 13
2 S i

2&2
15xi

1s i
11xi 13

1 S i
1⇒xi

252xi
1 , xi 13

2 5xi 13
1 , ~36b!

^pm
2Gm

2&3
15pm

1Gm
1⇒pm

25pm
1 . ~36c!

The projective splits of one-, two-, and three-vectors,

pg
0
1~q1̄

1
!5ig

0
1~q1̄

1
g0

1!5ig
0
1~q0

1111qi
1s i

1!5^q0
111&01^qi

1s i
1&1,

~37a!
pG 0̄

~q1̄
1

!5pG0
~q3̄!5iG0

~q3̄* G0!5iG0
~q0I2qis i !52^q0

111&02^qi
1s i

1&1 ,

pg
0
1~x2̄

1
!5ig

0
1~x2̄

1
~g0

1!21g0
1!5^xi

1s i
1&11^xi 13

1 S i
1&2 ,

~37b!

pG0
~x2̄

1
!5pG0

~x2̄!5iG0
~x2̄* ~G0!1* G0!5iG0

~xī s i1xi 13S i !5^xi
1s i

1&11^xi 13
1 S i

1&2

pg
0
1~p3̄

1
!5ig

0
1~p3̄

1
g0

1!5ig
0
1^p0

1I12pi
1S i

1!5^p0
1I1&32^pi

1S i
1&2 ,

~37c!
pG

0
2~p3̄

1
!5pG

0
2~p1̄

2
!5iG

0
2~p1̄

2* G0
2!5iG

0
2~p0

1122pi
2S i

2!52~p0
1I1&31^pi

1S i
1&2,

confirm the relation~35! between the plus and the minus approaches. A basis for the new e
dimensional spaceG3 is provided by

11, $s i
1%, $S i

1%, I1, ~38a!

I2, $s i
2%, $S i

2%, 12, ~38b!

where the signature turns out to be Euclidean,

s i
1
•s j

15d i j 1
1, S i

2+S j
25d i j 1

2. ~39!

In summary, the projective split of the Dirac algebraG1,3 with respect tog0
1 in the plus approach

and with respect toG0
2 in the minus approach leads to the Pauli algebraG3,0

1 andG3,0
2 , respectively.

V. SPACE AND COUNTERSPACE

The usual geometric representation of the homogeneous multivectors of the Pauli algebG3,0

is shown in Fig. 2 and discussed in detail in Chap. 1 of Ref. 15. Using the completely
approach and the projective split we are going to develop a new geometric representation fo
and three-vectors of the Pauli algebraG3,0

1 .
The projective split of a one-vectorrq15qm

1gm
1PG1,3

11 with respect tog0
1 is

FIG. 2. The hitherto usual geometric representation of the homogeneous multivectors of the Pauli algebra
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pg
0
1~rq1!5^rq1

•g0
1&01^rq1`g0

1&15^q0
111&01^qi

1s i
1&1 . ~40!

g0
1 represents a point in the projective spaceG1,3

1 and—as described in Sec. II—with our choice
projective coordinates it is just the origin (0,0,0). A generic pointrq15qm

1gm
1PG1,3

11 can be
decomposed into the sum of the origin and a point lying in the plane at infinityG0

1 :

rq15^q0
1g0

1&11^qi
1g i

1&1 . ~41!

rq1 lies in the connecting line of̂q0
1g0

1&1 and ^qi
1g i

1&1, and the projective split divides thi
point into the scalarq0

111 and thepointlike vectorq1
ªqi

1s i
1 . The lengthof q1 is defined by

uq1uªA~q1
1!21~q2

1!21~q3
1!2, ~42!

and its direction is determined by the lineq1`g0
1 . We call q1 a pointlike vector because i

points from the origin to the point with point coordinates (q1
1 ,q2

1 ,q3
1). The exact transition from

the homogeneous coordinatesrq1 to the respective pointlike position vectorq1 is determined in
terms of the projective split~40! by

q15
q1`g0

1

q1
•g0

1
. ~43!

See p. 75 of Ref. 5.
In the dual approach the projective split of a one-vectorrp25pm

2Gm
2PG1,3

12 with respect to
G0

2 is

pG
0
2~rp2!5^rp2+G0

2&01^rp2~G0
2&15^p0

212&01^pi
2S i

2&1 . ~44!

G0
2 represents a plane in the projective spaceG1,3

12 with projective plane coordinates (0,0,0).
generic planerp25pm

2Gm
2PG1,3

12 can be decomposed into the sum of the origin and a pl
passing through the point at infinityg0

2 :

rp25^p0
2G0

2&11^pi
2G i

2&1 . ~45!

rp2 passes through the intersecting line of^p0
2G0

2&1 and ^pi
2G i

2&1, and the projective split
divides this plane into the scalarp0

212 and theplanelikevectorp2
ªpi

2S i
2 . The turn of p2 is

defined by

up2uªA~p1
2!21~p2

2!21~p3
2!2. ~46!

‘‘Turn’’ is the dual notion to length or distance between two points and measures the ‘‘an
between two planes with a parabolic~Ref. 16, p. 32ff! measure. The axis ofp2—the dual notion
to the direction ofq1—is determined by the linep2~G0

2 . See Fig. 3. We callp2 a planelike
vector because it turns the planeG0

2 into the plane with plane coordinates (p1
2 ,p2

2 ,p3
2). The exact

transition from the homogeneous coordinatesrq2 to the respective planelike position vectorp2 is
determined in terms of the projective split~44! by

p25
rp2~G0

2

p2+G0
2

. ~47!

Two-vectorsrx5xis i1xi 13S iPG1,3
2 are decomposed into the sum of the linexis i passing

through the origing0
1 and the linexi 13S i lying in the origin G0

2 . The projective split~with
respect tog0

1 or G0
2) distributes the addends among the pointlike vectors,^xis i&1

1 , and the
planelike vectors,̂xi 13S i&1

2 . Thus, a generic multivector of the Pauli algebra~Fig. 4!,
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M 15a1111q1̄
1

1p2̄
1

1b1I1, ~48a!

M 25a2I21q2̄
2

1p1̄
2

1b212, ~48b!

decomposes into two different types of numbers, a pointlike vectorq and a planelike vectorp.
The anglea between two pointlike vectorsq ando is defined by

cosa5
q•o

uquuou
. ~49!

q ando are orthogonal if and only ifq•o50. The angleb between two planelike vectorsp andr
is defined by

cosb5
p+r

upuur u
. ~50!

p and r are orthogonal if and only ifp+r50. A pointlike vectorq and a planelike vectorp are
defined to be orthogonal if

p15l1q1~I1!1 ~51a!

or

FIG. 3. Geometric representation ofp2.

FIG. 4. A geometric representation of the homogeneous multivectors of the Pauli algebra which is totally symmetr
respect to projective duality.
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q5lp* ~I!1, ~51b!

wherel1 andl2 are real numbers. The end point ofq coincides with the end plane ofp if and
only if

q`p5~I1!1 ~52a!

or

q~p5~I!1. ~52b!

See Appendix A.
The vector spacesG3,0

11 andG3,0
12 are embedded into theprojectiveDirac algebraG1,3 in terms

of the projective split by Eqs.~43! and ~47!. This embedding enables us to study the mut
position of the vector spacesG3,0

11 and G3,0
12 , i.e., it is possible to decide whether there ex

~end!planesp passing through a given~end!point q or whether there exist pointsq lying in a given
planep. Consider the pointg0PG1,3 representing the origin

~0,0,0!5
g0`g0

g0•g0
~53!

of the vector spaceG3,0
11 and the planeG0PG1,3 representing the origin

~0,0,0!5
G0~G0

G0+G0
~54!

of the vector spaceG3,0
12 . Any pointqPG1,3 lying in the planeG0 is not defined in the vector spac

G3,0
11 , because the denominator of Eq.~43! vanishes,

q•g050. ~55!

G0 represents the infinitely distant plane ofG3,0
11 , i.e., its points do not belong toG3,0

11 . Any plane
pPG1,3 passing through the pointg0 is not defined in the vector spaceG3,0

12 , because the denomi
nator of Eq.~47! vanishes,

p+G050. ~56!

g0 represents the infinitely distant point ofG3,0
12 , i.e., its planes do not belong toG3,0

12 . The
incidence equations~52! represent the planep of pointsq, if p is fixed andq variable. The same
incidence equations represent the bundleq of planesp, if q is fixed andp variable. The accom-
panying coordinate equations read in both cases

q1p11q2p21q3p351. ~57!

Equations~52! and~57! do not describe planes passing through the origin ofG3,0
11 and they do not

describe points lying in the origin ofG3,0
12 . ~The projective incidence relations13 include these

cases.!
In theprojectiveinterpretation of a geometric algebra, the terms ‘‘space’’ and ‘‘counterspa

denote the plus and minus approaches to the geometric algebraGn respectively. In themetric
interpretation of the Pauli algebra, we refer with the term ‘‘space’’ to the first partG3,0

01
% G3,0

11 of
the Pauli algebra and with the term ‘‘counterspace’’ to the second partG3,0

12
% G3,0

02 of the Pauli
algebra. The relation between space and counterspace in the metric interpretation is given
dual approach to the Pauli algebraG3,0. Sometimes we will refer with the term ‘‘space’’ only t
the space of all pointsG3,0

11 and with the term ‘‘counterspace’’ only to the space of all planesG3,0
12 .
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VI. PHASE SPACE

This section introduces the representation of momenta by planelike vectors and a new c
of how the Pauli algebra can be defined as an enlarged phase space.

First we fix a special choice for the spacelike vectorsg i
1 in the projective spaceG1,3

1 by
putting them onto thereal17 plane at infinity in such a way that the pointlike vectorss i

1PG3,0
1

form an orthonormal system as shown in Fig. 5. In this caseG0PG1,3 represents the real plane
infinity in the plus approachand the origin in the minus approach. A planelike vectorp2 starting
in G0

2 and turning around the axis ofp2 into the end plane (p1
2 ,p2

2 ,p3
2) is only partially visible,

i.e., we can draw only the end plane (p1
2 ,p2

2 ,p3
2). The axis andG0

2 stay invisible since they lie
in, or represent, the real plane at infinity. If the turn ofp2 is changed according top25ln2,
wheren2 is a planelike vector with turnun2u51, we obtain a set of parallel end planes pass
through the same axis~the axis ofn2) in the infinitely distant plane. See Fig. 5. For a fre
planelike vectorp2 the starting plane, the end plane, and its axis are visible and can be dra
shown in Fig. 3 or 4. We refer to the Pauli algebra with this special choice for the spac
vectorsg i

1PG1,3
11 as thespecific Euclidean–Polar-Euclidean interpretation.18

The dual approach enables us to identify a one-vectorrq1 from the projective spaceG1,3
1 with

the relativistic four-component vector (ct,x,y,z),

rq15qm
1gm

15ctg0
11xg1

11yg2
11zg3

1 , ~58!

and a one-vectorrp2PG1,3
2 with the relativistic four-component vector (E/c ,px ,py ,pz),

rp25pm
2Gm

25
E

c
G0

21pxG1
21pyG2

21pzG3
2 . ~59!

Since the homogeneous coordinates ofrq1PG1,3
11 and rp2PG1,3

12 are fixed only up to the rea
factorr, rq1, andrp2 represent a set of relativistic time–space and energy–momentum ve
respectively. The projective point coordinates show that the pointrq1 represents the velocitybW

ª(x/t ,y/t , z/t). Following Gschwind19 we call the projective plane coordinateskW

ª(px /E ,py /E , pz /E) of the planerp2 reciprocal velocity.

FIG. 5. Illustration of the specific Euclidean-Polar-Euclidean interpretation of the Pauli algebra. The coordinates o
and planes are reciprocal to each other:px51/x, py51/y, pz51/z.
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The projective split ofqm
1gm

1 with respect tog0
1 separates the time and space componen

q1g0
1°ct111~xs1

11ys2
11zs3

1!, ~60!

and is called a space–time split.4,5 In the dual approach the projective split ofpm
2Gm

2 with respect
to G0

2 separates the energy and momentum components,

p2* G0
2°

E

c
121~pxS1

21pyS2
21pzS3

2!, ~61!

and may be referred to as energy–momentum split. Taking~60! and~61! together we obtain a new
physical interpretation for a generic multivector~48! of the Pauli algebra. The number^M &0

1

represents time, a pointlike vectorq1 represents a position, a planelike vectorp2 represents a
momentum, and the number^M &0

2 represents energy:

M5^time&1^position&1^momentum&1^energy&. ~62!

The pictorial representation of a momentump2 by a planelike vector needs some explanatio
The starting plane ofp2 is the plane at infinity. Only the end plane ofp2 is visible. We replace
the usual pictorial representation of a momentum by a pointlike vectorpW 5pis i

1 with the end
plane of

p25^pW ~I1!21&2 ~63!

standing perpendicular to the pointlike vector. The end plane determines the axis ofp2 in the
infinitely distant plane. The absolute value of the momentum in the ‘‘old’’ representatio
replaced with the turn ofp2. See Fig. 6.

The identifications~58! and ~59! lead to a new geometric representation of the phase sp

G3,0
11

% G3,0
12 , ~64!

where a pointlike vector represents the position and a planelike vector represents the mom
of the generic phase space vectorq11p2. The Pauli algebraG3,0 appears, thus, as an enlarg
phase space.

FIG. 6. The pictorial representation of a momentum by a pointlike vectorpW is replaced with a planelike vectorp. The end

plane ofp is perpendicular topW , and the absolute value ofpW equals the turn ofp, i.e., upW u5upu51/distance between the
planep and the origin of space.
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There are of course other physically relevant interpretations for the homogeneous multiv
of the Pauli algebra.̂M &0

1 may represent an angle and^M &0
2 an angular momentum. The velocit

q̇1 and the forceṗ2 are represented by pointlike and planelike vectors, respectively.

VII. ONE-FORMS AND PLANELIKE VECTORS

Paragraph 2.5 of Ref. 20 introduces the concept of differential forms, in particular the co
of a one-form viewed as a family of equally spaced planes. The momentumpW is represented by the
one-form

sp~vW !ªpW •vW , ~65!

compare Eq.~2.14! of Ref. 20. The geometric meaning of a one-formsp applied to a pointlike
vectorvW is the number of planes the vectorvW pierces in the one-formsp .

The recently published book on geometric mechanics by Talman21 develops the representatio
of covariant vectors22 as pairs of planes~paragraph 2.2 of Ref. 21!. The equation of a plane in a
three-dimensional Euclidean vector space in terms of the point (x,y,z),

ax1by1cz5d, ~66!

provides the coordinates for a plane (a/d , b/d , c/d). But: ‘‘The analogy between plane coord
nates (a,b,c) and point coordinates (x,y,z) is not quite perfect. For example, it takes the spe
fication of a definite valued in the equation of the plane to pick out a definite plane, while it ta
three values, say the (x0 ,y0 ,z0) coordinates of the tail, to pick out a particular vector.’’~Ref. 21,
p. 38f!

This remark by Talman leads us to the central advantage of the concept of space and
terspace. Equations~43! and~47! show aperfectanalogy between point and plane coordinates
the context of space and counterspace. This result is essentially based on the embedding
G3,0

11 and counterspaceG3,0
12 into the projective Dirac algebraG1,3. We therefore need the dua

approach to mechanics to maintain the analogy between point and plane coordinates. Com
Eq. ~66! with Eq. ~57! we also understand why Talman has to assume a fourth valued for the
plane coordinates.d is needed to include planes passing through the infinitely distant pointg0 of
counterspace. This implies the transition from projective or vector space plane coordina
homogeneous plane coordinates. The transition does not break the symmetry between pl
ordinates and point coordinates, because point coordinates would require a fourth value to
points lying in the infinitely distant planeG0 of space, too.

In principle, the pictorial representation of a covariant vector as a pair of planes is the sa
the pictorial representation of a planelike vector. The difference to Ref. 21 lies in the contex
the space where all the covariant vectors live in. Planelike vectors are viewed as eleme
counterspaceG3,0

12 . It is, thus, possible to regard anyvisible plane~not passing throughg0) as a
planelike vector whose starting plane coincides with the origin of counterspace. This is th
vantage of the concept of a planelike vector. One could argue, for example, the restrict
counterspace to planes not passing throughg0 would limit the possibilities to represent moment
But this is not the case, because a planelike vector with one plane passing throughg0 has an
infinitely large turn, i.e., the ‘‘vector’’ is not well defined.

Combining Eqs.~63! and ~65! planelike vectors are related one-to-one to one-forms,

sp~vW !5pW •vW 52p̃•vW 52~p`vW !;, ~67!

with the pointlike vectorvW 5v is i . Thus, from an algebraic point of view, the concepts o
one-form and a planelike vector are equivalent. There is also a connection between the vis
tion of one-forms and the visualization of planelike vectors. Both use planes standing perpe
lar to the usual pointlike momentum vectorpW . But in the case of one-forms, the family of equal
distant planes unnecessarily overloads the illustration and, in addition, does not reflect the
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Euclidean metric23 of the space of all planes whereas the concept of a planelike vector obt
from the completely dual approach to geometric algebra simplifies and improves the geo
illustration of a one-form.

Since there is an algebraic equivalence between one-forms and planelike vectors in th
of Eq. ~67!, one could wonder if the concept of cotangent space, where the one-forms live in
the concept of counterspace, where the planelike vectors live in, were the same. The co
space is attached to a pointx of a manifold and its one-forms map the tangent vectors attache
x to the real numbers. Space and counterspace in the metric interpretation are embedded
projective Dirac algebra. There is no pointx to which counterspace as a whole would be attach
Rather we can speak of the distinguishedplaneG0PG1,3 representing the origin of counterspac
We therefore cannot identify counterspace with cotangent space.

VIII. LAGRANGIAN MECHANICS

From now on we use the fact that the even subalgebra of the Dirac algebra may be ide
with the Pauli algebra—the geometric products, but not the inner and outer products, are th
in both spaces—and work inG1,3

even if not stated otherwise.
According to the physical interpretation~62! of a generic multivector in the Pauli algebra, th

Lagrangian function for a mechanical system withf 53n degrees of freedom becomes a pseu
scalar L(q,q̇,t)5^L(q,q̇,t)&45L8(q,q̇,t)I21 and depends on the variablesq

5$q1
i (t)s i ,q2

i (t)s i , . . . ,qn
i (t)s i%, q̇, and t5^t&0. The set of Euler–Lagrange differential equ

tions in Cartesian coordinates,

d

dt
] q̇k

L2]qk
L50, kP$1, . . . ,n%, ~68!

is obtained from the Hamiltonian variational principle discussed in Appendix C, using the de
tives

]qk
ªs i

]

]qk
i
, ] q̇k

ªs i
]

]q̇k
i
. ~69!

The canonical momentum defined by

pkª] q̇k
L5

]L8

]q̇k
i

S i ~70!

turns out to be a bivector in the Pauli algebra.
The Lagrangian functionL(q,q̇,t) is unique up to a gauge transformation

L̂~q,q̇,t !5L~q,q̇,t !1
d

dt
M ~q,t !, ~71!

whereM (q,t)5^M (q,t)&4 is an arbitrary function of the coordinatesq and the timet.
The n-body system with potential forces.As an example we taken nonrotating bodies with

potential forces. The Lagrangian of this system is
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L~q,q̇,t !5T2U5S 1

2 (
k51

n

(
i 51

3

~ q̇k
i !2mk82U8~q,t !D I21

5
1

2 (
k51

n

q̇k
2mk2U~q,t !, ~72!

with U5^U&45U8I21 and q̇k5q̇k
i s i . The massmkªmk8I

21 becomes a pseudoscalar in the du
approach to mechanics. The equations of motion are

ṗk5q̈kmk52]qk
U. ~73!

IX. HAMILTONIAN MECHANICS

The Hamiltonian functionH(q,p,t)5^H(q,p,t)&4 , p5$p1
i (t)S i ,p2

i (t)S i , . . . ,pn
i (t)S i%, is

defined as the Legendre transform of the LagrangianL(q,q̇,t),

H~q,p,t !5 (
k51

n

pk`q̇k2L~q,q̇,t !. ~74!

The Legendre transformation is discussed in appendix D. In the context of the transformatio~74!,
Eqs.~D5! represents just the set of Hamiltonian differential equations,

ṗk52]qk
H, kP$1, . . . ,n%, ~75a!

q̇k5]pk
H, ~75b!

with the derivatives

]qk
ªs i

]

]qk
i
, ]pk

ªS i
]

]pk
i
. ~76!

There are two ways to write the Hamiltonian equations in a compact form,

ẋk52¹̄k H~x,t !, ~77a!

ẋ̄k5¹k H~x,t !, ~77b!

thereby using the phase space vectorxk , its reciprocal conjugatex̄k ~Appendix B!, the set of all
position and momentum vectorsxªqøp, the differential operator¹, and its reciprocal conjugate

¹̄,

¹kªs i
]

]qk
i

1S i
]

]pk
i
, ¹̄kªs i

]

]qk
i

1S i

]

]pk
i
. ~78!

Examples: (i) Independent body motion.The LagrangianL5 1
2q̇

2m of a body in free motion
with massm5^m&45m8I21 determines the canonical momentum

p5] q̇L5q̇m. ~79!

With the translational velocity of the body
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q̇5p m215
p I

m8
5

p

m
, ~80!

we obtain the Hamiltonian function

H5p`q̇2L5
1

2

p2

m
~81!

and the equations of motion

ṗ52]qH50, q̇5]pH5
p

m
. ~82!

The momentum represented by the planep(t)5p0 stays constant, and the position of the bo
travels along a strait lineq(t)5 (p/m) t1q0.

(ii) Harmonic oscillator.The Lagrangian

L5
1

2
q̇2m2

1

2 (
i 51

3

ki~qi !2 ~83!

of a generic three-dimensional harmonic oscillator with direction dependent spring constaki

5^ki&45v i
2m leads to the Hamiltonian function

H5
1

2

p2

m
1

1

2 (
i 51

3

ki~qi !2 ~84!

and the Hamiltonian differential equations

ṗ52]qH52(
i 51

3

kiq
is i , q̇5]pH5

p

m
. ~85!

The general solutions consist of three independent oscillations,

q~ t !5(
i 51

3

q0
i cos~v i t1f i !s i , p~ t !5q̇m52m8(

i 51

3

v iq0
i sin~v i t1f i !S i . ~86!

In the case of three equal spring constants,k15k25k3, the general solutions~86! reduce to a
one-dimensional harmonic oscillator. The positionq(t) oscillates betweenqmin andqmax without
crossing the originG0 of the momenta and the momentump(t) oscillates betweenpmin andpmax

without crossing the origing0 of the positions. See Fig. 7.

FIG. 7. One-dimensional harmonic oscillator. The diagram was computed using the solutions~86! with an angular
frequency ofv51/2, a phase angle off52p/2, an amplitude ofq052 and a mass ofm5I21/3.
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Figures 8–10 show two examples of a two-dimensional harmonic oscillator. If the phase
is embedded into space and counterspace in the dual approach to mechanics, the full pha
curve divides into a momentum trajectoryk1 and a position trajectoryk2. The momentum trajec-
tory specifies the absolute value~turn! and the direction of the momentump(t) for each timet.
The end plane ofp(t) is tangent to the surfacek1. Its tangent line is represented by the axis of t
force ṗ(t) and fixes the momentary change in direction of the momentump(t). The well-known
position trajectoryk2 specifies the positionsq(t) of the oscillating mass for each timet. The
velocity q̇(t) is tangent to the curvek2 in the end point ofq(t). There is always a well defined
relationship between the trajectoriesk1 and k2: For each timet the end plane ofp(t) and the
velocity q̇(t) are orthogonal.

The same also holds for a generic three-dimensional harmonic oscillator except th
position trajectory is not restricted to a field~plane!, and the momentum trajectory is not restrict
to a bundle~point!.

This example demonstrates how the dual approach to mechanics enables a full, exact
every detail reasonable pictorial representation of the phase space curve for any physical m
system.

FIG. 8. Two-dimensional harmonic oscillator. The diagram was computed using the solutions~86! with amplitudesq0
1

5q0
251, q0

350; with angular frequenciesv151, v252; with phase anglesf15f252p/2; and with a mass ofm
5I21. The numbers in normalface indicate the space distance and the numbers in boldface the counterspace dista
the zero point or zero plane, respectively. See also Fig. 9.

FIG. 9. The same two-dimensional harmonic oscillator as in Fig. 8 seen from another point of view.
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(iii) Kepler motion.Two bodies of massm1 andm2 move under the influence of their mutu
gravitational attraction

V~ uq12q2u![V~r !52
a

r
5g

m1m2

r
. ~87!

The Lagrangian of this system is expressed in Cartesian coordinatesq1 andq2, or in the center of
mass coordinatemqc.m.ªm1q11m2q2, with the total massmªm11m2, the relative coordinate
qªq12q2, and the reduced massmªm1m2 /m, by

L5 1
2 m1q̇1

21 1
2 m2q̇2

22V~ uq12q2u! ~88a!

5 1
2 mq̇cm

2 1 1
2 mq̇22V~ uqu!5L (1)~ q̇c.m.,qc.m.!1L (2)~ q̇,q!, ~88b!

i.e., we can decompose it into the independent body motion of the center of mass and the
motion where all the dynamics is included. As usual, we drop the term of the independent
motion and change to cylinder coordinatesq5rew @cf. ~C7!#,

L (2)5 1
2 m ṙ 21 1

2 mr 2ẇ22V~r !. ~89!

Using the canonical momenta

pr5] ṙL5m ṙe, ~90a!

l 5]ẇL5mr 2ẇ, ~90b!

the Hamiltonian reads

H5
1

2

pr
2

m
1

1

2

l 2

r 2m
1V~r !. ~91!

The Hamiltonian equations of motion,

]pr
H5

pr

m
5 ṙe, ~92a!

FIG. 10. Two-dimensional harmonic oscillator. The diagram was computed using the solutions~86! with amplitudesq0
1

51, q0
252, q0

350; with angular frequenciesv15v252; with phase anglesf150, f252p/2; and with a mass ofm
5I21/3.
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] lH5
l

r 2m
5ẇ, ~92b!

] rH5eS 2
l 2

mr 3
1

a

r 2D 52ṗr , ~92c!

]wH5052 l̇ , ~92d!

determine the radiusr and its time-derivativeṙ in terms of the anglew by

r ~w!5
k

@11« cos~w!#
, ṙ ~w!5

k« sin~w! ẇ~w!

@11« cos~w!#2
, ~93!

with the parameters

kª
l 2

ma
, «ªA11

2Hl 2

ma2
. ~94!

Using the orthogonal momentum and its time derivative

p'~w!5
l

r ~w!
e' , ~95a!

ṗ'~w!52
l ṙ ~w! ẇ~w!

@r ~w!#2
e'2

l ẇ~w!

r ~w!
e, ~95b!

e'ª2sin w s11cosw s2 , ~95c!

the complete momentum and force are expressed in terms of the anglew by

p~w!5pr~w!1p'~w!5m ṙ ~w!e1
l

r ~w!
e' , ~96a!

ṗ~w!5ṗr~w!1ṗ'~w!52
1

@r ~w!#2
~ae1 l ṙ ~w! ẇ~w!e'!. ~96b!

The position and the velocity read in terms of the anglew,

q~w!5r ~w!e, ~97a!

q̇~w!5 ṙ ~w!e1r ~w!ẇ~w!e' . ~97b!

The position trajectories of the harmonic oscillator in Fig. 10 and the Kepler motion in Fig
both represent an ellipse. But the dynamics of the Kepler motion is different from the dynam
a harmonic oscillator. The different momentum trajectories show this fact very clearly.

X. CANONICAL TRANSFORMATIONS

In this section different aspects of canonical transformations are embedded into the
approach to mechanics. As a consequence, a new possibility to interpret symplectic ge
emerges.24 For example, the geometric meaning of the skew-symmetric symplectic metric is
the intercept theorem of elementary geometry.
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A. Generating functions

Canonical transformations are diffeomorphisms of the phase space variablex, the timet, and
the energyH preserving the structure of the Hamiltonian equations~75!. Thus, an invertible map

f : G1,3
even→G1,3

even,

wªt1x1H°Wª f ~w![^ f ~ t !&01^ f ~x,t !&21^ f ~H,t !&4

5^t&01^X&21^Ĥ&45t1^P1Q&21Ĥ ~98!

represents a canonical transformation if and only if the Hamilton equations,

Ṗk52]Qk
Ĥ, kP$1, . . . ,n%, ~99a!

Q̇k5]Pk
Ĥ, ~99b!

hold whenever the Hamilton equations~75! hold. This will be the case if the correspondin
Lagrangian functions differ only by a total time differential,

(
k51

n

q̇k`pk2H~p,q,t !5 (
k51

n

Q̇k`Pk2Ĥ~P,Q,t !1
d

dt
M , ~100!

whereM depends on the old as well as on the new positions and/or momenta. There ar
possibilities to generate canonical transformations by a generating functionM. All of them are
connected by Legendre transformations. In detail we have the following.

~A! M (q,Q,t)[f(q,Q,t),

d

dt
f~q,Q,t !5 (

k51

n

q̇k•]qk
f~q,Q,t !1 (

k51

n

Q̇k•]Qk
f~q,Q,t !1

]f~q,Q,t !

]t
, ~101!

pk5]qk
f, Pk52]Qk

f, Ĥ5H1
]f

]t
. ~102!

~B! M (q,P,t)[S(q,P,t)2(k51
n Qk(q,P,t)`Pk ,

FIG. 11. Kepler motion. The diagram was computed using the solutions~96! and ~97! with massm50.4, angular
momentuml 50.8, coupling constanta50.7, and energyH520.07. The numbers in normalface indicate the spa
distance and the numbers in boldface the counterspace distance from the zero point or zero plane, respectively.
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~Lf!~Q!52S (
k51

n

Qk`Pk1f D 5:2S~q,P,t !, ~103!

pk5]qk
S, Qk5]Pk

S, Ĥ5H1
]S

]t
. ~104!

~C! M (Q,p,t)[U(Q,p,t)1(k51
n qk(Q,p,t)`pk ,

~Lf!~q!52S 2 (
k51

n

qk`pk1f D 5:2U~Q,p,t !, ~105!

qk52]pk
U, Pk52]Qk

U, Ĥ5H1
]U

]t
. ~106!

~D! M (P,p,t)[V(P,p,t)2(k51
n Qk(P,p,t)`Pk1(k51

n qk(P,p,t)`pk ,

~LS!~q!52S 2 (
k51

n

qk`pk1 (
k51

n

Qk`Pk1f D 5:2V~P,p,t !, ~107!

qk52]pk
V, Qk5]Pk

V, Ĥ5H1
]V

]t
. ~108!

Equations~102!, ~104!, ~106!, and ~108! express the transformation laws for the phase sp
vectors and the Hamiltonian in terms of the generating functionsf, S, U, andV.

B. Symplectic functions and symplectic differentials

The total time derivative of any invertible diffeomorphismW5 f (w) of the type ~98! is
expressed in terms of the chain rule by

d

dt
W5^ẇ]w& f ~w! ~109!

with the multivector derivative

]w5
]

]t
1s i

]

]qi
1S i

]

]pi
1I

]

]H8
~H5H8I21!. ~110!

This suggests defining thedifferential f of f at w by

f~a!uw[f1~a!uwª^a]w& f ~w! ~111a!

and three differentials atw, related by reciprocal conjugation~Appendix B!,

f2~a!uwª^a]w& f ~w!5f~a!, ~111b!

f3~a!uwª^ā]w& f ~w!5f~ ā!, ~111c!

f4~a!uwª^ā]w& f ~w!5f~ ā!. ~111d!

The fi are linear functions of the multivector variableaPG1,3
even. If f is a canonical transformation

its differential f(a) satisfies the relations
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f~^a&4!5^a&4 , ;^a&4PG1,3
4 , ~112!

and

@ f~x!,f~y!#5@x,y# ~113!

with the skew-symmetricsymplecticmetric

@x,y#ªx` ȳ52@y,x#, ;x,yPG1,3
2 . ~114!

The eigenvalue equation~112! follows from the transformation law for the Hamiltonian functio
e.g., Eq.~102!,

f~^a&4!5f~a8I21!5a8
]Ĥ

]H8
5a8I215^a&4 . ~115!

Relation ~113! is obtained from the transformation laws~102!, ~104!, ~106!, and ~108! for the
phase space vectors. See Appendix E 1.

The set of all linear functionsg on the phase space

g:G1,3
2 →G1,3

2 ~116!

leaving the symplectic metric~113! invariant, forms thesymplectic groupSp(3n,R). 3n indicates
the number of independent position components or independent momentum components.R stands
for the real coefficients used in the algebra. We callgPSp(3n,R) a symplectic function. The
product in Sp(3n,R) is given by the composition of mappings. To verify the group structure of
symplectic functions, we explicitly show the following.

~1! The product in Sp(3n,R) is well defined. Ifg and h are symplectic functions, then th
linear functionv(x)ªh(g(x)) also represents a symplectic function,

@v~x!,v~y!#5@g~x!,g~y!#5@x,y#. ~117a!

~2! The composition of symplectic functions is associative.
~3! The identity functioni(x)ªx clearly represents a symplectic function.
~4! The inverseg21 of a symplectic functiong is expressed in terms of the duality mappin

and the adjoint functionḡ by

g21~x!ª2ḡ~ x̃!I21. ~117b!

See Appendix E 2.
From the differentials~111a! to ~111d! only the differentialf of the canonical transformation

and f4 represent symplectic functions.
Any transformationf of the form ~98! turns out to be canonical, if its differential~111a!

satisfies the conditions~112! and~113!. To prove this, we first need some preparation. The rela
differentials~111b!–~111d! satisfy the eigenvalue equations

f2~a!5f~a!5ā52a, ~118a!

f3~a!5f~ ā!5ā52a, ~118b!

f4~a!5f~ ā!5a, ~118c!

for any pseudoscalara5^a&4 if the eigenvalue condition~112! holds. Integrating the eigenvalu
condition ~112! we get
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Ĥ5 f ~H,t !5H1F~ t !, ~119!

where F may depend on the new as well as on the old phase space variables besidest. The

differential f relates the bivector derivative¹ with respect tox with the bivector derivative¹̂ with
respect toX,

¹5 l i l i•¹5 l i~ l i•¹X!•¹̂5 l i~ l i•]wf ~w!!•¹̂5 l i f~ l i !•¹̂5 l i l i•f~¹̂ !5f~¹̂ !. ~120a!

In a similar wayf2 , f3, andf4 relate the derivatives as follows,

f2~ ¹̂̄ !5¹, ~120b!

f3~¹̂ !5¹̄, ~120c!

f4~ ¹̂̄ !5¹̄. ~120d!

If a5^a&2 andb5^b&2 represent bivectors, the identity of

~ ¹̂̄a` x̄!`f~b!5~ ¹̂̄a` x̄!`~b•¹X!5~b•¹!~X̄• ¹̂̄ !~a` x̄!5~b•¹!~a` x̄!

5ai 13bi l i
2I215a`b̄5@a,b# ;a,bPG1,3

2 ~121!

leads to a second expression for the differential besides the formula~111a! or ~E1!, respectively,

f~a!5 ¹̂̄a` x̄, aPG1,3
2 . ~122!

Using this, from the equation

~a•¹!
]X

]t
5

]

]t
~a•¹!X5

]

]t
¹̂̄~a` x̄!5 ¹̂̄~a` ẋ̄!5 ¹̂̄~a`~¹H !!5 ¹̂̄^a¹H&4

5 ¹̂̄~a•¹!H5 ¹̂̄~a•¹!~Ĥ2F~ t !!52 ¹̂̄~a•¹!F~ t !52~a•¹!¹̂̄F~ t ! ~123!

we obtain an expression for the partial time derivative of the phase space vectorX in terms of the
phase space derivative of the functionF(t),

]X

]t
52 ¹̂̄F~ t !. ~124!

We are now ready to prove the above-asserted statement:

dX

dt
5~ ẋ•¹! f ~x,t !1

] f ~x,t !

]t
5f@ ẋ#1

]X

]t
52f@¹̄H#1

]X

]t

52f@ f4 f̄4
21~¹̄ !•H#1

]X

]t
52f@ f4

21~¹̄ !•f4~H !#1
]X

]t

52f@ ¹̂̄•~Ĥ2F~ t !!#1
]X

]t
52f@ f21f~ ¹̂̄ !•~Ĥ2F~ t !!#1

]X

]t
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52f@ f~ ¹̂̄ !•f21~Ĥ2F~ t !!#1
]X

]t
52 ¹̂̄•~Ĥ2F~ t !!1

]X

]t

52 ¹̂̄~Ĥ2F~ t !!2 ¹̂̄F~ t !52 ¹̂̄Ĥ. ~125!

Since this equation is of the form~77a!, we conclude that Eqs.~112! and~113! represent necessar
and sufficient conditions for a transformation of the form~98! to be canonical.

C. Liouville’s theorem

The solutionsX(t;t0 ,y) of the Hamiltonian functionH(X,t;t0) may be considered as
function of the boundary variablesy and t0. We define the corresponding transformation on
even subalgebra of the Dirac algebra by

f: G1,3
even→G1,3

even,
~126!

wªt01y1H°Wªf t~w![^f t~ t0!&01^f t~y,t0!&21^f t~H,t0!&4

5^t&01^X&21^Ĥ&4

5t1X~ t;t0 ,y!1^H1F~ t !&4 .

f represents thephase flow. The differential f of f at w obviously satisfies the eigenvalu
condition~112!. Using Eq.~123!, the partial time derivative of the symplectic brackets is found
vanish,

]

]t
@ f~a!,f~b!#5a•¹Ẋ`b•¹X̄1a•¹X`b•¹ Ẋ̄

52~a•¹!~b•¹!~ ¹̂̄•X̄!F~ t !1~a•¹!~b•¹!~¹̂•X!F~ t !

50, ~127!

i.e., the differential of the phase flow preserves the symplectic brackets,

@ f~a!,f~b!#5@a•¹x,b•¹ x̄#5@a,b#. ~128!

Liouville’s theorem asserts a unit determinant for the differential of the phase flow. This is
equivalent to Eq.~128!, because the determinant of a symplectic function always is 1~Appendix
E 2!.

D. Symplectic geometry

To get an impression of what symplectic functions do, we review some facts of symp
geometry. The symplectic metric between points and between planes is zero, respectively

@q1 ,q2#50, ;qk5qk
i s iPG1,3

2 , ~129a!

@p1 ,p2#50, ;pk5pk
i S iPG1,3

2 . ~129b!

The only nonzero distances appear between points and planes. Thus, the symplectic metric
as a distance between space and counterspace. A planep and a pointq are incident, if and only if
the symplectic distance isI21,

@p,q#52@q,p#5I21. ~130!
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To compute the symplectic distance of a pointq and a planep we putp on the left-hand side and
q on the right-hand side of the symplectic brackets. For a generic, but nonzero point–planep
andq there is always a multiple ofq,

q8ª
q

l
, ~131!

in such a way that the planep and the pointq8 are incident,

@p,q#5l@p,q8#5lI21. ~132!

On the other hand, it is also possible to find a multiple ofp,

p8ª
p

m
, ~133!

in such a way that the pointq and the planep8 are incident,

@p,q#5m@p8,q#5mI21. ~134!

Equations~132! and ~134! show that the factors ofp andq are equal,

m5l. ~135!

The symplectic metric@p,q#5aI21 between a planep and a pointq represents a distance in th
sense thatp is incident with the multipleq/a of q and thatq is incident with the multiplep/a of
p, i.e., the symplectic metric is just an algebraic formulation of the intercept theorem from
ementary geometry. See Fig. 12. If the planep is fixed, the set of all pointsq8 with the same
symplectic distance as a given pointq forms a plane passing throughq and being parallel top. If
the pointq is fixed, the set of all planesp8 with the same symplectic distance as a given planp
forms a point lying inq and being centered25—the dual notion to parallel planes—with respect
q. See Fig. 13.

FIG. 12. Symplectic distance between a pointq and a planep. The numbers along the horizontal axis indicate the sp
distance, while those along the vertical axis indicate the counterspace distance.
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A symplectic transformationf preserves the incidence of positions~or velocities! q and mo-
menta~or forces! p, as well as the symplectic distance between nonincident point–plane pa
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APPENDIX A: INCIDENCE RELATIONS IN SPACE AND COUNTERSPACE

The projective pointq5g01qig i and the projective planep5G01piG i are split with respect
to g0 or G0, respectively, into the vectorsq, p and two numbers. The end pointq lies in the end
planep, or the end planep passes through the end pointq, if and only if q ~with q051) andp
~with p051) behave likewise. Thus, from the projective incidence relations13

05~g01qig i !`~G01piG i !5I212qipiI21, ~A1!

we obtain the incidence relations forq andp:

q1`p15~I1!21 or q2~p25~I2!21. ~A2!

APPENDIX B: RECIPROCAL VECTORS AND DERIVATIVES

Let $Pi% be a not necessarily orthonormal basis for the vector spaceV. The reciprocal frame
or basis$Pi% of V is defined by

Pi
•Pj5d j

i . ~B1!

If x5xi Pi is a vector fromV, then thereciprocal conjugated vector x¯ is defined in terms of the
reciprocal frame by

x̄ªxi Pi . ~B2!

As an example we take the phase space vectorxªq1p5qis i1piS i The reciprocal conjugated
vector is

x̄5q̄1p̄5qis i1piS i5qis i2piS i . ~B3!

The derivative¹ with respect tox5xi Pi usually is defined in terms of the reciprocal frame b

¹5Pi
]

]xi
, ~B4!

FIG. 13. All points of the planep8 have the same symplectic distance fromp asq has~left-hand side!. All planes of the
bundleq8 have the same symplectic distance fromq asp has~right-hand side!.
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and the reciprocal conjugated derivative by

¹̄5Pi

]

]xi
. ~B5!

APPENDIX C: EULER–LAGRANGE EQUATIONS

Each mechanical system withf degrees of freedomq5$q1(t),q2(t), . . . ,qf(t)% is related to a
Lagrangian function

L~q,q̇,t !5^L~q,q̇,t !&4 ~C1!

with partial derivatives with respect to the variablesq, q̇, andt existing at least up to the secon
order. The physical curvesfk(t), k51, . . . ,f with the boundary conditionsfk(t1)5ak and
fk(t2)5bk minimize the action

I @q#ªE
t1

t2
dt L~q,q̇,t !. ~C2!

Let qk(t,a)5fk(t)1ahk(t) be the deviations from the physical curves with fixed bounda
hk(t1)50 andhk(t2)50. To minimize the action integralI @q(t,a)# we differentiate with respec
to a,

d

da
I @q~ t,a!#U

a50

5E
t1

t2
dt (

k51

f H ]L

]qk

dqk

da
1

]L

]q̇k

dq̇k

da J U
a50

5E
t1

t2
dt (

k51

f H ]L

]qk
hk~ t !1

]L

]q̇k

ḣk~ t !J U
a50

5E
t1

t2
dt (

k51

f H S ]L

]qk
2

d

dt

]L

]q̇k
D hk~ t !J U

a50

50, ~C3!

set the expression obtained equal to zero, and find the Euler–Lagrange equations in their
nent form,

d

dt

]L

]q̇k

2
]L

]qk
50, kP$1, . . . ,f %. ~C4!

Depending on the choice of coordinates, the Euler–Lagrange equations may be formulat
more compact form.

1. Cartesian coordinates

In Cartesian coordinates

qk5(
i 51

3

qk
i s i , kP$1, . . . ,n%, ~C5!

with f 53n degrees of freedom and the bivector derivatives
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]qk
ª(

i 51

3

s i
]

]qk
i
, ] q̇k

ª(
i 51

3

s i
]

]q̇k
i
, ~C6a!

they read

d

dt
] q̇k

L2]qk
L50, kP$1, . . . ,n%. ~C6b!

2. Cylinder coordinates

In cylinder coordinates

qkªr kek1zks3 , ~C7!

ekªcoswk s11sin wk s2 , ek•ek51,

the derivatives and Euler–Lagrange equations are

] rk
ªek

]

]r k
1s3

]

]zk
, ]wk

ª

]

]wk
, ~C8a!

] ṙk
ªek

]

] ṙ k

1s3
]

] żk

, ]ẇk
ª

]

]ẇk

, ~C8b!

d

dt
] ṙk

L2] rk
L50,

d

dt
]ẇk

L2]wk
L50. ~C8c!

3. Spherical coordinates

In spherical coordinates

qkªr kek , ~C9!

ekªsin uk coswk s11sin uk sin wk s21cosuk s3 , ek•ek51,

the derivatives and Euler–Lagrange equations are

] rk
ªek

]

]r k
, ]wk

ª

]

]wk
, ]uk

ª

]

]uk
, ~C10a!

] ṙk
ªek

]

] ṙ k

, ]ẇk
ª

]

]ẇk

, ]u̇k
ª

]

]u̇k

, ~C10b!

d

dt
] ṙk

L2] rk
L50,

d

dt
]ẇk

L2]wk
L50,

d

dt
]u̇k

L2]uk
L50. ~C10c!

APPENDIX D: LEGENDRE TRANSFORMATION

Let F(q1 , . . . ,qf ;u1 , . . . ,um)5^F(q;u)&4 be a function off scalar-valued coordinatesq
5$q1 , . . . ,qf% and m scalar-valued coordinatesu5$u1 , . . . ,um%, twice continuously differen-
tiable in qk , and

detS ]2F

]qk]qj
DÞ0, k, j P$1, . . . ,f %. ~D1!
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The equations

pkª]qk
F~q1 , . . . ,qn ;u1 , . . . ,um!5

]F8

]qk
I215pk8I

21 ~D2!

can then be resolved for theqk ,

qk5fk~p1 , . . . ,pn ;u1 , . . . ,um!. ~D3!

The Legendre transformLF of the functionF defined by

G~p1 , . . . ,pn ;u1 , . . . ,um!ªLF5 (
k51

f

pk8fkI
212F~f1 , . . . ,fn ;u1 , . . . ,um! ~D4!

obeys the set of differential equations,

]pk
G5I

]G

]pk8
5qk1pj8

]f j

]pk8
2

]F8

]qj

]f j

]pk
5qk , j ,kP$1, . . . ,f % ~D5a!

]G

]uj
52

]F

]uj
, j P$1, . . . ,m%. ~D5b!

Applying the Legendre transformation toG we recoverF,

LG5L~LF !5 (
k51

f

qkpk8I
212S (

k51

f

qkpk8I
212F D 5F. ~D6!

1. Cartesian coordinates

In Cartesian coordinates~C5! the n5 f /3 positionsqk , kP$1, . . . ,n%, represent vectors, an
the canonical momenta represent bivectors in the Pauli algebra,

pkª]qk
F~q1 , . . . ,qn ;u1 , . . . ,um!5s i

]F8

]qk
i
I215pk

i S i . ~D7!

The Legendre transform ofF is

G5LF5 (
k51

n

pk`qk2F, ~D8!

and the differential equations~D5a! are replaced by

]pk
G5S i

]G

]pk
i

5qk . ~D9!

2. Cylinder coordinates

In cylinder coordinates~C7! the positions depend on the radiusr k , the anglewk , and thez
component of the Cartesian vector. We thus get momenta~bivectors! and angular momenta~pseu-
doscalars!,

pkª] rk
F5

]F8

]r k
ẽk1

]F8

]zk
S35~pr !k ẽk1~pz!k S3 , ~D10a!
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l kª]wk
F5

]F8

]wk
I215 l k8 I21. ~D10b!

The Legendre transform ofF is

G5LF5 (
k51

n

~pk`qk1 l k wk!2F, ~D11!

and the differential equations~D5a! turn into

]pk
G5qk , ] l k

G5wk , ~D12!

with the derivatives

]pk
ª2ẽk

]

]~pr !k
1S3

]

]~pz!k
, ] l k

ªI
]

] l k8
. ~D13!

3. Spherical coordinates

In spherical coordinates~C9! the positions depend on the radiusr k , the anglewk , and the
angleuk . We thus get momenta~bivectors! and angular momenta~pseudoscalars!,

pkª] rk
F5

]F8

]r k
ẽk5~pr !k ẽk , ~D14a!

~ l w!kª]wk
F5

]F8

]wk
I215~ l w!k8 I21, ~D14b!

~ l u!kª]uk
F5

]F8

]uk
I215~ l u!k8 I21. ~D14c!

The Legendre transform ofF is

G5LF5 (
k51

n

@pk`qk1~ l w!k wk1~ l u!k uk#2F, ~D15!

and the differential equations~D5a! turn into

]pk
G5qk , ] ( l w)k

G5wk , ] ( l u)k
G5uk , ~D16!

with the derivatives

]pk
ª2ẽk

]

]~pr !k
, ] ( l w)k

ªI
]

]~ l w!k8
, ] ( l u)k

ªI
]

]~ l u!k8
. ~D17!

APPENDIX E: SYMPLECTIC METRIC

1. Differentials of canonical transformations

If a5^a&2 is a bivector, we can simplify the differential~111a!,

f~a!5a•¹ f ~w!5a•¹ f ~x,t !, ~E1!
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thereby using the fact thatĤ(X,t), XªQøP, does not depend on the old phase space varia
x. The linear mappings of the basis vectors fromG1,3

2 are

f~ l i !5
]Xm

]xi
l m . ~E2!

Using the transformation laws~102! and ~104!,

sk•¹~Q1P!5
]

]qk
~]PS2]Qf!5]P~sk•~]qS8!!I212]Q~sk•~]qf8!!I21

5 ¹̂̄~sk•p̃!I2152 ¹̂̄pkI
2152 l j

2 ]pk

]Xj
l j 13 , ~E3a!

and the transformation laws~106! and ~108!,

Sk•¹~Q1P!5
]

]pk13
~]PV2]QU !5]P~Sk•~]pV8!!I212]Q~Sk•~]pU8!!I21

52 ¹̂̄~Sk•q̃!I215 ¹̂̄qk13I
215 l j

2 ]qk13

]Xj
l j 13 , ~E3b!

we obtain a second expression for the mappings of the basis vectorsl i ,

f~ l k!52 l k
2¹̂̄xk13I

2152 l k
2l j

2 ]xk13

]Xj
l j 13 , ~E4!

and the mapping of a generic bivectora,

f~a!52 ¹̂̄akl k
2xk13I

215 ¹̂̄a` x̄ ~E5!

with the bivector derivative with respect to the new phase space variables

¹̂ªs i
]

]Qi
1S i

]

]Pi
. ~E6!

The symplectic brackets follow from equations~E4! and ~E2!:

@ f~a!,f~b!#5akbi@ f~ l k!,f~ l i !#

52akbi l k
2l j

2 ]xk13

]Xj

]Xm

]xi
l m
2 ~ l j 13` l m!

52akbi l k
2dk13,iI

215akbkl k13
2 I215a`b̄5@a,b#. ~E7!

Thus, we have shown that the differentials of canonical transformations preserve the sym
metric.

2. Symplectic functions

The determinant of a symplectic function
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f:G1,3
2 →G1,3

2 ,
~E8!

x°f~x!5xiai j l j

is 1,

Kª(
p

sign~p!@ f~ l p(1)!,f~ l p(2)!#@ f~ l p(3)!,f~ l p(4)!#@ f~ l p(5)!,f~ l p(6)!#

5(
p

sign~p!@ l p(1) ,l p(2)#@ l p(3) ,l p(4)#@ l p(5) ,l p(6)#

5248I21, ~E9a!

K5(
p

sign~p!@ f~ l p(1)!,f~ l p(2)!#@ f~ l p(3)!,f~ l p(4)!#@ f~ l p(5)!,f~ l p(6)!#

5 (
j 1 , . . . ,j 6

(
p

sign~p!ap(1) j 1
. . . ap(6) j 6

@ l j 1
,l j 2

#@ l j 3
,l j 4

#@ l j 5
,l j 5

#

5det~ f!(
p8

sign~p8!@ l p8(1) ,l p8(2)#@ l p8(3) ,l p8(4)#@ l p8(5) ,l p8(6)#

5248det~ f!I21. ~E9b!

The inverse@see Eq.~2.15! of Ref. 5# of a symplectic functionf,

f21~x!52 f̄~ x̃!I21, ~E10!

is again symplectic, because the duality mapping is a symplectic function,

@ x̃,ỹ#5@x,y#, ~E11!

and the adjointf is also symplectic,

@ f~x!,f~y!#5@ f~x!I21,f~y!I21#5@ f~ f~x!I21!,f~ f~y!I21!#5@ x̃,ỹ#5@x,y#. ~E12!
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Exact solutions of the generalized Lane–Emden equation
Hubert Goennera)

Institute of Theoretical Physics, University of Go¨ttingen, D-37073 Go¨ttingen, Germany

Peter Havas
Department of Physics, Temple University, Philadelphia, Pennsylvania 19122
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A generalized Lane–Emden equation with indices (a,b,n,n) is discussed, which
reduces to the Lane–Emden equation proper fora52, b51, n51. General prop-
erties of the set of solutions of this equation are derived, and exact solutions are
given. These include a singular solution without free integration constant for arbi-
trary n and for particular relations betweenn, n, anda. Among the two-parameter
solutions nonequivalent families of solutions of the same equation are obtained.
© 2000 American Institute of Physics.@S0022-2488~00!03510-6#

I. INTRODUCTION

In the study of stellar structure an important model considers the star as a gaseous sp
thermodynamic and hydrostatic equilibrium with a certain equation of state. In particular,
polytropic equation of state, theLane–Emden equationarises

x
d2y~x!

dx2 12
dy~x!

dx
1xy~x!n50, ~1!

proposed by Lane1 and studied in detail by Emden.2 In this context, the physically interestin
range ofn is 0<n<5. Fowler3,4 considered a generalization of Eq.~1!, called Emden–Fowler5 ~or
Fowler–Emden! equation, where the last term is replaced byxnyn. Since Emden’s book astro
physicists have been involved with numerical integration and tabulation,6 or with a perturbative
solution of Eq.~1! or the Emden–Fowler equation.7–9 Recently, methods for an analytical ap
proximation by a power series as well as nonperturbative approaches have been develop10–13

Also, singularsolutions, i.e., those without free integration constants were discussed.14 It has been
repeatedly claimed that only forn51,2, and 5 the solutions of the Lane–Emden equation could
given in closed form.14–17 Usually, for n55, only a one-parameter family of solutions is pr
sented. In application to stellar models, the boundary conditionsy(0)51,dy/dx ux5050 are taken.

As the Lane–Emden equation appears also in other context, e.g., in the case of radi
cooling, self-gravitating gas clouds,18 in the mean-field treatment of a phase transition in criti
adsorption19 or in the modeling of clusters of galaxies20,21 we will not consider boundary condi
tions in this paper.

For anisothermalgaseous sphere, Emden studied also the equation

x
d2y~x!

dx2 12
dy~x!

dx
1xeny50. ~2!

In the following we shall be concerned with the more general equation, called by usgener-
alized Lane–Emden equation~of the first kind!.

a!Electronic mail: goenner@theorie.physik.uni-goettingen.de
70290022-2488/2000/41(10)/7029/14/$17.00 © 2000 American Institute of Physics
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x
d2y~x!

dx2 1a
dy~x!

dx
1bxn~y~x!!n50, ~3!

wherea,b,n,n are real.~Occasionally, the equation

x@d2y~x!/dx2# 1a @dy~x!/dx# 1bxn~sgn y!~ uy~x!u!n50, ~4!

is considered.41,51! We assumebÞ0; then, as shown in Sec. II, it can be scaled to61. There is
also ageneralized Lane–Emden equation~of the second kind!

x
d2y~x!

dx2 1a
dy~x!

dx
1bxneny50. ~5!

In ~5!, n can be scaled to61 as well. In the following, only~3! will be further discussed. Fo
a5N21, n51, Eq.~3! may be interpreted as the Lane–Emden equationin N-dimensional space.
~The casesN51, 2, 3 represent slabs, sheets and balls of matter, respectively.6!

Depending on the values of the constantsa,b,n,n, ~3! reduces to theThomas–Fermi
equation22 and its generalization,23 or to the one-dimensional equation of motion of a Newton
particle with a force depending on a power of the distance plus, possibly, a frictional force, a
some extension of Emden’s equation considered by mathematicians.24 Equation~3! is also en-
countered when spherically symmetric solutions of the Einstein field equations for perfect
matter with shear25 or without26,27 are to be won@cf. also H. Stra¨nsch, Diplomarbeit, Jena 198
~unpublished!#. Equation~4!, for a50,n51, is sometimes referred to asPoisson–Boltzmann–
Emdenequation.28

Our own interest in Eq.~3! arose from the fact that a number of special cases of this equa
appear in the discussion of spherically symmetric space–times with constant Ricci scalar.29

From a mathematical point of view the generalized Emden equation with ind
(a,b,n,(2n1a11)/(a21), whereaÞ1, is of special interest. As shown in Sec. II, it permits
rational transformation mapping Eq.~3! into itself with unchanged indices.

In Sec. III we first present a singular solution of~3! not depending on any integration consta
for essentially all values of the indices. Solutions with one constant of integration are then
sented for arbitraryn and various particular relations betweenn, n anda. Finally, solutions with
two constants of integration for several such classes are derived. For two of these,n can take an
infinity of values. For a third one, only some values ofn were found for which the orbit equatio
of a Newtonian particle in a central force field can be integrated in terms of elliptic or eleme
functions,30 even though this orbit equation is not a particular case of Eq.~3!.

For n50,1 Eq. ~3! is linear and can be solved by standard methods. These two case
therefore relegated to Appendix A.

II. TRANSFORMATION OF THE GENERALIZED EMDEN EQUATION AND
FUNDAMENTAL PROPERTIES OF THE SOLUTIONS

We now study transformationsx→ x̄, y→ ȳ of the independent and dependent variables wh
keep Eq.~3! forminvariantwhile changing the indices: (a,b,n,n)→(ā,b̄,n̄,n̄). By ascale trans-
formation x5m x̄, y5l ȳ we obtain

b̄5bln21mn11, ā5a, n̄5n, n̄5n. ~6!

Thus anyb.0(,0) can be scaled to11(21); however, we will generally not make use of th
possibility.

From Eq.~3! one obtains immediately a generalization of Chandrasekhar’s homology
rems@An infinitesimal version for Emden’s equation~1! may be found in Ref. 31, Sec. 3.2, p
52–54!.#:

Lemma 1:If y(x) satisfies Eq.~3!, so doesv (n11)/(12n)y(vx), nÞ1(v5const).
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Therefore, a solution depending on two free parametersc1 ,c2 must satisfy the functiona
equation

v~n11!/~12n!y~vx,c1 ,c2!5y~x, f ~c1 ,v!,g~c2 ,v!! ~7!

with f (c1 ,1)5c1 ,g(c2 ,1)5c2 . The only transformationsy5y(x,z(x)) which keep the general
ized Emden equation forminvariant are

y5x12az~xb! ~6a!

and

y5z~xb!, ~6b!

respectively~cf. Appendix B!. The first one requires

ā511b21~12a!, b̄5b22b,

n̄5b21@n1~12a!~n21!112b#, n̄5n, ~7a!

while the second one leads to

ā511b21~a21!, b̄5b22b,

n̄5b21~n112b!, n̄5n. ~7b!

Consequently, by choosing

b5a21 ~8a!

and

b512a, ~8b!

respectively, we can obtainā50 in both cases unlessa51. The first of these transformations

y5x12az~xa21!, ~9a!

is a generalization of Kelvin’s transformation14 for the Lane–Emden equation and reduces Eq.~3!
to

d2z

dr2 1b~a21!22r~n11!/~a21! 2n21zn50, rªxa21. ~10a!

The second transformation

y5z~x12a!, ~9b!

reduces Eq.~3! to

d2z

dr̃2 1b~a21!22r̃ ~n12a21!/~12a!zn50, r̃ªx12a. ~10b!

Moreover, we can infer from Eq.~7a! that b521 leads toā5a,b̄5b, while only for n
5 (2n1a11)/(a21) n̄5n will result. The corresponding transformation is an automorphism
the set of all solutions of Eq.~3! provided that
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n5
2n1a11

a21
, aÞ1. ~11!

In this case, the quantityF(x,y)ªy2xa21 is conserved undery5x12az, r5x21. Geometrically
speaking, the set of curvesF(x,y)5const. is mapped into itself. Thus we have

Lemma 2:If y(x) solves the generalized Emden equation with indices (a,b,n,n) with a
Þ1, then x12ay(x21) solves the corresponding equation with indices (a,b,n(a21)2a21
2n,n). The set of solutions of the generalized Emden equation with indices (a,b,n,(2n11
1a)/(a21) is mapped into itself.
From Eq.~6b! with b521, we obtain

Lemma 3: If y(x) solves the generalized Emden equation with indices (a,b,n,n) then
y(1/x,22a,2(n12),n) is also a solution.

If Emden’s transformation2

x5est, y5x~n11!/~12n!z~ t !, nÞ1, ~12!

with arbitrary constants is applied to Eq.~3! we obtain

d2z

dt2
1s~12n!21@2n1a111n~12a!#

dz

dt
1s2bzn

1s2~12n!22~n11!@n1a1n~12a!#z50. ~13!

For n5 (2n1a11)/(a21) , aÞ1 as well as fora51,n521,nÞ1 this reduces to

d2z

dt2
2

s2

4
~12a!2z1bs2zn50. ~14!

Equations~13! and ~14! are of the form of the one-dimensional Newtonian equation fo
particle in a harmonic oscillator force field with an additional nonlinear force term@and, for Eq.
~13!, a frictional force#. For n53, Eq. ~14! has been dealt with on a textbook level~Ref. 15, pp.
207–209!. With an added inhomogeneous force term~periodic external field!, the casen53 has
received attention as an example for dynamical systems with limit cycle and chaotic beh
including the Lorenz model.32–34 If the cubic nonlinearity is written as;uzu2z, ~14! appears as a
consequence of a nonlinear Schro¨dinger equation describing a mono-inductance transmis
line,35 or of a dielectric superlattice with nonlinear impurity.36 From ~3! with n51, Dixon and
Tuszynski37 arrive at an equation of the form~13! with an extra term;z2, and list some solutions

From Eqs.~7a! and~7b! it follows immediately that in the exceptional casea51, n521 Eq.
~3! maintains the values of all parameters exceptb; the transformation~6a! reduces to~6b!.

III. EXACT SOLUTIONS OF THE GENERALIZED EMDEN EQUATION

~i! Singular and one-parameter solutions
In addition to the trivial solutiony50, a solution of Eq.~3! without a free integration
constant is given by

y~x!5H~n11!@~a21!n2n2a#

b~12n!2 J1/~n21!

x~n11!/~12n!, nÞ1, ~15!

where b(n11)@(a21)n2n2a#.0 must be assumed fory to be real except if 1/(n
21) is the ratio of an even and an odd integer. For the Lane–Emden equation prop
meansn23.0. Furthermore, in generaln521 andn5a(n21)2n are excluded. For
a52, the solution~15! is given in Ref. 38 p. 560. Forn50, the solution~15! reduces to the
last term of~A2!.
For special values ofn the following one-parameter solutions can be readily verified:
                                                                                                                



y

ns for
-

7033J. Math. Phys., Vol. 41, No. 10, October 2000 The generalized Lane–Emden equation

                    
~a! n5n(a21)1a22, aÞ1, nÞ61

y~x!5x12aH6U12n

12aUS2 b

2~11n!D
1/2

xa211BJ 2/~12n!

, ~16!

whereBÞ0 is an arbitrary constant. Herein, the exact solution of Eq.~1! belonging ton
51 is contained.

~b! n5122a, aÞ1, nÞ61

y~x!5H6U12n

12aUS2 b

2~11n!D
1/2

x12a1BJ 2/~12n!

. ~17!

This solution follows from Eq.~16! and Lemma 3, withB as above.
~c! 2n5n(a21)2a21, aÞ1, nÞ1

y~x!5Fxn11

B
1

bB

~a21!~a1n!G
~12a!/~n11!

, ~18!

with B as above. Forn50, the solutions~16!–~18! reduce to special cases of~A1!. The
solution of Eq.~1! belonging ton55 belongs into this class. Expression~18! can be written
equivalently

y~x!5F~11n!~12a!2

8b G2 1/~12n!

x~n11!/~12n!cosh2/~12n!F ~12a!~12n!

4
ln x1BG, ~19a!

if b(11n).0, and

y~x!5F~11n!~12a!2

28b G21/~12n!

x~n11!/~12n!sinh2/~12n!F ~12a!~12n!

4
ln x1BG, ~19b!

if b(11n),0. The last equation can be expressed in terms of the Weierstrass function`(x)
as

y~x!5F2~n12!
~12a!2

4b G1/2(n11)H 2
1

3
1`F ~n11!

u12au
2

ln x1c,g2,g3GJ1/2(n11)

, ~19c!

with g254/3,g3528/27. Rosenau39 showed the integrability of the cases~a! and ~c! and
also gave the expression~18!.

~d! For the special casea51, nÞ61 of the casen521 excluded above, a solution is given b

y~x!5H2 2~11n!

b~12n!2J1/~n21!

~6 ln x1C!2/~12n!, ~20!

with an arbitrary constantC. For n50, this reduces to a special case of~A4!.

~ii ! Two-parameter solutions

~a! n5n(a21)1a22, aÞ1. In this case~10a! reduces to

d2z

dr21b~a21!22zn50. ~21!

With a suitable transformation this can be written in the form of Eq.~C1! of Appendix C. As
discussed there, that equation can be solved in terms of elliptic or elementary functio
particular values ofn. Equations~C7! and ~C8! imply the following independent possibili
ties:
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n56
2

p
21 p integer, ~22a!

n5
3

p
21 p integer and not a multiple of three, ~22b!

n56
4

p
21 p odd integer, ~22c!

n56
6

p
21 p odd integer, not a multiple of three, ~22d!

n56
8

p
21 p odd integer, ~22e!

n56
12

p
21 p odd integer, not a multiple of three. ~22f!

The only restriction imposed is that for any value of one of the integration constants ch
only such values ofn are allowed which will not make the expression under the square
in Eq. ~C5! negative definite.
The integral~C6! is pseudo-elliptic in the case~22a!, i.e., it then reduces to elementa
functions.
The method used inC which leads to Eqs.~22a! to ~22f! is not exhaustive. In particular, th
general form of hyperelliptic integrals which are reducible to elliptic ones is not kno
Therefore, further progress concerning values ofn other than those given above can
expected.
As also shown inC, for n521, a solution proportional to the error function is obtained
As an illustration of the solutions obtainable by the method of Appendix C we integrat
casesn52 andn53 explicitly. Forn52,n53a24,aÞ1, we obtain

y~x!526b21~12a!2c1
2x12a`~c1x

a211c2,0,g3!, ~23!

where c1 ,c2 ,g3 are arbitrary constants. By the homogeneity property of the Weiers
function,g3 can be normed. Forn53, n54a25, aÞ1, Eq. ~2! is solved by

y~x!5uc1uu12au~22b21!1/2x2a`1/2~c3xa211c2 ,g2 ,0!, ~24!

~b! n5122a, aÞ1
In this case, Eq.~21! follows from Eq.~10b!. Thus the same cases~22! can be solved as fo
~a! above. The form of the solutions follows from those of case~a! by Lemma 2.

~c! n521, a51, nÞ1
In this case, Eq.~13! reduces to the form~C1!. Thus the same cases~22! can be solved as fo
~a! above. The excluded casen51 is linear and is solved by~A6! for b,0

y5c1x
A2b1c2x2A2b, ~25!

~d! 2n5n(a21)2a21.

For suitable real values ofs and b ~14! reduces to Eq.~D1! of Appendix D, with «521.
Nevertheless, we found it convenient to include the case«511 in our discussion since it corre
sponds to the Newtonian orbit equation for central forces.30 For the latter case the values ofn, for
which the solutions are expressible in terms of elliptic or elementary functions are know
shown in Appendix D, the same values ofn appear in our case«521

n527,25,23,22,2 5
3,2

1
2,2

1
3,0,13,

1
21,2,3,5. ~26!

In the following we give some illustrative examples for which the integration has been ca
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out. If z(t) with t5 ln x satisfies Eq.~14!, Eq. ~3! is solved byy(x)5x(12a)/2z(ln x), where the
factor x(12a)/2 corresponds to one of the curvesF(x,y)[y2xa215const preserved by the sym
metry transformationy5x12az,r5x21. Explicitly, we have forn52

z~ t !5b21~12a!22F1

8
26`S 6

t

u12au
1c2 ,g2 ,g3D G , ~27!

whereg25 1
96 (12a)2@(12a)22 1

2# andc2 ,g3 are all arbitrary constants.
Similarly, for n53 we have

z~ t !5c1F2«/31«`S 6
u12au

2
t1c2 ,g2 ,g3D G21/2

, ~28!

whereg25 4
318c1

2b(12a)22, g352 8
272

8
3 «c1

2b(12a)22,«251.
Furthermore,

z~ t !5H 2
1

2
b21~12a!2J 1/2F2

1

3
1`S 6

u12au
2

t1c2 ,g2 ,g3D G1/2

, ~29!

whereg352 1
3, g21 4

27 andc2 andg2 are arbitrary constants is a genuine two-parameter solu
of Eq. ~14! not equivalent to~28!. In ~25! b50 is permitted, while in~24! it is not. In the case
n53, we can also express the solutions~28! and~29! by Jacobian elliptic functions~cf. Appendix
E!.

For n55 a solution of Eq.~14! is

z~ t !5c1F2
«

3
1«`S 6

u12au
2

t1c2 ,g2 ,g3D G21/2

, ~30!

with g25 4
3, g352 8

271
16
3 bc1

4(12a)22, «251.

IV. DISCUSSION

In this paper, a set ofexactsolutions of the generalized Lane–Emden equation~of first kind!
has been provided which seems to extend what is known in the literature.~e.g. in Ref. 40 only
solutions forn50,1,5, anda50,1,2 are given.! The equation appears in many distinct fields
physics, from astronomy, mechanics, general relativity and other relativistic theories of grav
to kinetic theory, atomic physics and quantum mechanics. Also, in connection with further p
cal applications and mathematical studies, various extensions of the Lane–Emden or E
Fowler equations are used. The equation

d

dx Fa~x!
dy

dxG1b~x!yn50, ~31!

equivalent to

d2y

dx2 1q~x!ym50, ~32!

is termedgeneralized,41–43or modified44,45Emden–Fowler equation. Equation~31! arises in cross-
field diffusion in plasmas.46 However, by some Russian authors this name is given47 either to

d2y

dx2 2aq~x!ymS dy

dxD
l

50, ~33!
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or to its special subcasea•q(x)5xn used in connection with cosmological models in high
dimensions,48 and which reduces to~3! only for l 50.

In a study of a~hypothetical! intermediate force in astrophysics~fifth force!,49,50other ‘‘modi-
fied’’ or ‘‘generalized’’ Lane–Emden equations appear as subcases of an equation even
general than~31!

d

dx Fa~x!
dy

dxG1F~x,y~x!!50, ~34!

and which, for certain parameter values, reduce to our Eq.~3!. @In the special formF(x,y(x))
5dF(x,y(x)) ~33! was studied by Feix and Lewis.51# Equation~33! also contains as a subcase
‘‘modified Lane–Emden equation with an additional force’’ appearing in a scalar-tensor th
with torsion52 differing from Eq.~3!.

Strong mathematical results on global existence of solutions and their asymptotic proper
~4! and the following equation—also named Emden equation

x
d2y~x!

dx2 12
dy~x!

dx
1 l •x21y~x!1xy~x!n50, ~35!

wherel is an arbitrary constant were presented in Ref. 53. In fact, forn53,5,~35! is a special case
of equations arising from the cubic or quintic nonlinear Schroedinger-equation and solved in
54 and 55 for special cases.

To have exact solutions of the nonlinear equation~3! is helpful for the checking of compute
codes for itsnumericalsolution. By presenting the complete list of solutions known to us we m
also help in avoiding the continuous rederivation of solutions of~3!. The solutions found here
cover a large but limited range of values for the parametersa, n andn in ~3!, a range which is
connected to transformations in the parameter space. In particular, nonequivalent two-par
solutions have been obtained. For theoriginal Emden equation, except for such two-parame
solutions, no new solutions have been derived. In a separate note, symmetry transformation~3!
will be discussed by one of us.
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APPENDIX A: SOLUTIONS OF THE LINEAR EQUATIONS

~i! n50
The two-parameter solution of Eq.~3! is given by

y~x!5c11c2x
12a2b~11n!21~n1a!21xn11, ~A1!

if aÞ1, nÞ21, nÞa, by
y~x!5c11c2 ln x2b~n11!22xn11, ~A2!

if a51, nÞ21, by
y~x!5c11c2x

12a1b~12a!21ln x, ~A3!

if aÞ1, n521, by

y~x!5c11c2 ln x2 1
2 b~ln x!2, ~A4!

if a51, n521, and by

y~x!5c11c2~12a!21x12a1
b

a21
x12a ln x, ~A5!

if n52aÞ21.
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~ii ! n51.

Here, Eq.~2! reduces to a subcase of the Bessel equation ifnÞ21. The general solution can
be constructed from~cf. Ref. 30! integration constants

y~x!5x(12a)/2ZpS 2b1/2

un11u
x~n11!/2D , p5U12a

11nU. ~A6!

For n521, Eq. ~2! reduces to Euler‘s equation, which has the solutions38

y~x!5Cx(~12a!/2 1A~~12a!/2!22b)1Dx5~12a!/2 2A~~12a!/2!22b),

b.S 12a

2 D 2

. ~A7!

APPENDIX B: TRANSFORMATION OF THE GENERALIZED EMDEN EQUATION

The transformation of Eq.~3! by y5xa ln z(r), r5xb leads to

r2
d2z

dr2 1b22@a2112a1b#r
dz

dr
1b22a~a1a21!z1bb22rb21[n1a(n21)11]zn50.

~B1!

For a5 (11n)/(12n) , b512a22(11n)/(12n) , nÞ1, this reduces to

r2
d2z

dr2 1~11n!
~a21!~12n!111n

@~12a!~12n!22~11n!#2 zn50. ~B2!

This equation is of interest because

z~r!5@6u31nu~2 1
2 d~11n!1/2!1Br~12n!/~31n!#2/~12n!, ~B3!

with arbitrary constantB is a one-parameter solution of the nonlinear equation discussed in
38

r2
d2z

dr2 12
11n

~31n!2 z1dzn50. ~B4!

APPENDIX C: THE CASE 2 nÄn „aÀ1…¿aÀ2; aÅ1

We wish to find solutions of the equation

d2z

dr2 1tzn50, t561, ~C1!

which are expressible in terms of elementary and elliptic functions. Multiplying this equatio
dz/dr and integrating we obtain fornÞ21

1

2 S dz

dr D 2

52t
zn11

n11
1

C

n11
, ~C2!

whereC is a constant of integration, or

dr5dzYA2t
2zn11

n11
1

2C

n11
. ~C3!
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We now put

z5gp, dz5pgp21dg, ~C4!

wherep is a ~positive or negative! integer. Substituting this in Eq.~C3! yields

dr5
pgp21dg

A2
2t

n11
@g(n11)p2tC#

. ~C5!

Now any integral of the form

I 5E R@g,Aa0g41a1g31a2g21a3g1a4#dg, ~C6!

where R is a rational function ofg and of the square root is expressible linearly in terms
elementary functions and of the normal elliptic functions of the first, second, and third kind56,57

Furthermore, a number of hyperelliptic integrals, i.e., integrals of the form~C6!, but with poly-
nomials of order higher than four under the square root, reduce to combinations of elementa
elliptic functions for particular values of the coefficients of the various powers of the polyno
Examples are given in Sec. 575–598 of Ref. 57.

It is obvious that Eq.~C5! yields an integral of the required form if

~n11!p511,62,13,64, ~C7!

where the6 is not related tot but results from the possibility of extracting appropriate fact
from the square root. It also follows~by a trivial rescaling ofg! from the integrals 576.04, 577.04
578.04, 584.04, 585.04, and 575.15, respectively, of Ref. 57, that for

~n11!p566,

~n11!p568 ~tC.0!, ~C8!

~n11!p5612 ~tC,0!,

the hyperelliptic integrals resulting from~C5! reduce to elliptic ones.@Remarks similar to those
made above apply to the signs in Eq.~C8!.#

If n521, integration of Eq.~C1! yields

dr5
dz

A22t lnz12C
. ~C9!

Putting

y5AC2t ln z, ~C10!

we obtain

dr52t21/2etCe2ty2
dy. ~C11!
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APPENDIX D: THE CASE 2 nÄn „aÀ1…ÀaÀ1, aÅ1

We wish to find solutions of the equation

d2z

dr2 1«z1tzn50, ~D1!

where« and t can independently take the values11 and21. For «51,n53 this is Duffing’s
equation without the driving force.
Proceeding as in Appendix C, we obtain instead of Eq.~C2!

1

2

dw2

dz
1«z1tzn50, w~z!ª

dz

dr
. ~D2!

If nÞ1, integration yields

1

2
w252

1

2
«z22t

zn11

n11
1

D

2
, ~D3!

whereD is a constant of integration, or

dr5
dz

A2«z22
2t

n11
zn111D

. ~D4!

The substitution~C4! yields

dr5
pgp21dg

A2«g2p2
2t

n11
g(n11)p1D

, ~D5!

or equivalently

dr5
pg21dg

A2«2
2t

n11
g(n21)p1Dg22p

. ~D6!

For the integrals resulting from these two expressions to be of the form~C6! it is necessary eithe
that

S n11

2 D 61

561,
4

3
,
3

2
,62,13,14, ~D7!

or that

S 12n

2 D 61

561,
4

3
,
3

2
,62,13,14, ~D8!

where the6 signs on the right-hand-side~discussed in Appendix C! and in the exponent are
independent of each other as well as of« andt. This yields
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n527,25,23,22,25/3,2
1

2
,2

1

3
, 0,

1

3
,
1

2
,1,

5

3
,2,3,5,7. ~D9!

However, unlike the case considered in Appendix C, this does not assure us that suitablep exist
for which the exponents have the values appropriate for~C6!. @It should be noted that for~D6! p
does not have to be integer.# It can be easily verified that no suchp exists forn55/3,7, and thus
the only values ofn which yield elliptic integrals are those given in Eq.~26! of Sec. III. Of these,
as can be readily verified, a number of subcases actually lead to pseudoelliptic integrals.

We now have to consider those hyperelliptic integrals which might be reducible to el
ones. A study of Secs. 576–689 of Ref. 57 shows that the only cases for which Eqs.~D5! and~D6!
could yield such integrals are

S n11

2 D 61

562 ~D10!

and

S 12n

2 D 61

562, ~D11!

respectively, which imply only such values ofn which are already contained in~26!.
As noted before, the case«511 corresponds to the orbit equation of a Newtonian part

under the action of a central force.30 The question treated in this Appendix has been discusse
Ref. 57 in detail for integraln; the results agree with Eq.~26! of Sec. III. ~It should be noted tha
the n of Ref. 57 corresponds to2n22 in our notation.! For the cases not included in~D9! we
have obtained two-parameter solutions up to a quadrature, i.e.,

r5E dz

A2«z22
2t

n11
zn111D

. ~D12!

Similarly, for the casen521 excluded above, we would obtain

1

2
w252

1

2
«z21t ln z1

D

2
, ~D13!

instead of~D3!, and thus

r5E dz

A2«z212t ln z1D
, ~D14!

instead of~D10!.

APPENDIX E: TWO-PARAMETER SOLUTIONS OF EQ. „14… FOR nÄ3 IN TERMS OF
JACOBIAN ELLIPTIC FUNCTIONS

In place of Eq.~14! we could consider four equations in order to accomodate all possibil
of the signs of the coefficientsa2 and b2. The notation of Glaisher for the Jacobian ellipt
functions is used.58 We discuss in detail only

d2z

dt2
1a2z1b2z350. ~E1!
                                                                                                                



iptic
chro

7041J. Math. Phys., Vol. 41, No. 10, October 2000 The generalized Lane–Emden equation

                    
If z(t,a,b) solves Eq.~E1!, 6z(c1t1c2 ,a/c1 ,b/c1) also solves~E1!. Thus from the following
solutions we can construct solutions with two integration parameters

z521/2kb21cn~ t,k!, k56S 12a2

2 D 1/2

, uau,1, ~E2a!

z521/2b21dn~ t,k!, k56~21a2!1/2, ~E2b!

z5@2~11a2!#1/2b21cs~ t,k!, k56~21a2!1/2, ~E2c!

z5221/2~12a4!1/2b22sd~ t,k!, k56S 12a2

2 D 1/2

uau,1. ~E2d!

Similarly, for the other equations

d2z

dt2
1a2z2b2z350, ~E3!

d2z

dt2
2a2z1b2z350, ~E4!

and

d2z

dt2
2a2z2b2z350 ~E5!

solutions of the type~E2! can be easily constructed by help of the number of independent ell
functions. Some of the solutions given in the discussion of a cubic and quintic nonlinear S¨-
dinger equation will fall into this class~cf. Ref. 54!. Likewise, in a study of the Lorenz system
leading to Duffing’s equation, solutions in terms of elliptic functions were given~cf. Ref. 59!.

We also note that Eqs.~E3! and ~E4! have the singular solutions

z56UabU. ~E6!

In Ref. 54 this solution appears as a subcase. A one-parameter solution for Eq.~E3! is

z521/2ab21 sin21~at1c!, ~E7!

and similarly for Eq.~E4!

z521/2ab21 cosh21~at1c!, ~E8!

and for Eq.~E6!

z521/2b21 sinh21~at1c!. ~E9!
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On second quantization of quantum groups
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We construct a deformation of the function algebra on the quantum group SLq(2)
into a trialgebra in the sense of Crane and Frenkel. We show that this naturally acts
on the trialgebraic deformation of the Manin plane, previously introduced by the
authors. Alternatively, one can view it as acting on the trialgebraic deformation of
the fermionic Manin plane. We prove that the trialgebraic deformation of SLq(2)
defines a 22C* -category, a structure as needed for the superselection structure of
massive two-dimensional quantum field theories. Besides this, we investigate an-
other approach to trialgebra deformations of a bialgebra as a deformation of a Fock
space construction over the bialgebra. ©2000 American Institute of Physics.
@S0022-2488~00!01010-0#

I. INTRODUCTION

The notion of a trialgebra, i.e., an algebraic structure with two products and a copr
joined in a compatible way — was suggested in Ref. 1 and conjectured to be relevant f
construction of four-dimensional topological quantum field theories. More precisely we hav
following definition for a trialgebra.

Definition 1: A trialgebra(A,* ,D,•) with * and • products on A andD a coproduct on A is
given if both (A,* ,D) and (A,•,D) are bialgebras and the following compatibility conditio
between the products is satisfied for arbitrary elements a,b,c,dPA:

~a* b!•~c* d!5~a•c!* ~b•d!.

Remark:There is no notion of unital trialgebra, i.e., we cannot introduce units for* and• and
link them with the obvious compatibility. If we would do this, an Eckmann–Hilton-type argum
would immediately trivialize the trialgebra in the sense that it would make* and• identical and
commutative.

Remark:The definition of a trialgebra shows that there is basically only a requiremen
expressions which contain an even number of generators. This makes it very natural to gen
the concept to partially defined* products~an example being a bialgebra and the interpretat
of • as the tensor product where* is extended in the usual way which automatically satisfies
compatibility of the products!. We call such structurestrialgebroids~in analogy to groupoids and
Hopf algebroids!. The important point is that in all the motivating cases for studying trialgeb
one has to represent them to get a Hopf~or bialgebra! category and then represent this once ag
to get a 22C* -category~see below!. In the case of trialgebroids, one gets a functorial counter
of a Hopf algebroid in the first case but a 22C* -category structure is also reached in the seco
step~remember that the Doplicher–Roberts theorem also generalizes straightforward from
pact groups to compact groupoids — see Ref. 2 — without changing the general algebraic
ture of the representation categories occurring!. Observe also that a trialgebroid uniquely det

a!Electronic mail: grosse@doppler.thp.univie.ac.at. Part of project P11783-PHY of the Fonds zur Fo¨rderung der wissen-
schaftlichen Forschung in O¨ sterreich.

b!Electronic mail: schles@math.uni-wuppertal.de
70430022-2488/2000/41(10)/7043/18/$17.00 © 2000 American Institute of Physics
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mines a trialgebra generated from it by simply adding the missing products in a free constru
From the structural requirements in the definition of a trialgebra and from the nature o
examples it suggests itself that maybe the trialgebroid generalization is just the natural set
applications. All the examples we will deal with in this paper are, indeed, trialgebroids.

Studying representations of the associative algebra structure ofA with respect to one of the
two products, one easily sees that the other product andD induce a functorial structure on th
category of such representations ofA. While — as in the case of bialgebras —D leads to a tensor
product on the representations, the second product induces a functorial coproduct on the c
of representations, turning it into a bialgebra category as introduced in Ref. 1. A special c
bialgebra categories where there is even the functorial counterpart of a Hopf algebra str
given was conjectured in Ref. 1 to lead to four-dimensional topological quantum field the
which was confirmed by the work in Ref. 3. There is therefore an obvious interest in ‘‘tr
trialgebras, i.e., trialgebras which are noncocommutative and noncommutative in both pro
Some additional motivations for the study of trialgebras are given in Ref. 4. Besides this, w
see in this paper that trialgebras are capable to define structures similar to fusion algebr
they might be of interest for local quantum field theories which necessarily have to be ma
two-dimensional models because the superselection structure of three-dimensional and co
two-dimensional theories is determined by Hopf algebras~see Ref. 5! while for four or more
dimensions the Doplicher–Roberts theorem restricts the possible symmetry structure to co
groups.

In Ref. 4 we introduced a trialgebraic deformation of the function algebraFq(C2) of the
Manin plane which for the convenience of the reader we shortly review in Sec. II of this p
While the Manin plane is only a bialgebra it would be of special interest to deform the fun
algebra of a quantum group since this leads to special antipodal trialgebroids which have
categories as representation categories. In Sec. III, we construct an example for this ca
trialgebraic deformation of the function algebra on the quantum group SLq(2). Weshow that this
naturally acts on the trialgebraic deformation of the Manin plane.

In Sec. IV we study a trialgebraic deformation of the fermionic Manin plane~also called the
exterior algebra of the Manin plane! and show that the deformation of SLq(2) can alternatively be
viewed as acting on it. Section V contains some remarks on representations. In Sec. VI we
that our deformation of SLq(2) defines a 22C* -category as needed for the fusion algebra
massive two-dimensional theories. Sections VII and VIII present another approach to trialg
deformations of bialgebras, namely, by deforming a Fock space construction over the bia
We do this for the Manin plane, for SLq(2) and for the — possibly physically most interesting
case of Uq(sl2). We show, again, that a natural action of the deformation of SLq(2) on the one of
the Manin plane exists. We also show that the Fock space deformations of Uq(sl2), and of SLq(2)
and the function algebra deformation of SLq(2) are related by dual pairings. Finally, in Sec. IX w
consider the structure of trialgebroids on the level ofR matrices and derive a matrix equation fro
the compatibility of the two products. Throughout this paper we assume that the reader is fa
with the theory of quantum groups~for introductions we refer, e.g., to Refs. 6 and 7!. Concerning
notation and terminology we largely keep to the conventions introduced in Ref. 7. Especiallq

denotes theq-deformed binomials.

II. DEFORMATION OF THE MANIN PLANE

Denote byFq(C2) the function algebra on the Manin plane with deformation parameteq.
More precisely, letq5eh. ThenFq(C2) is defined as the algebra of formal power series inh with
values inC @x,y# whereC @x,y# is the complex associative algebra with generatorsx,y modulo the
condition

xy5q yx.

For q51 this is, of course, the algebra of polynomial functions on the complex two-dimens
space. So,Fq(C2) can be imagined as describing a deformation of the complex two-dimens
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plane. For simplicity, we will forget about the structure of formal power series and will iden
Fq(C2) with C @x,y#. For the considerations we present, this does not cause any harm an
reader can easily reconstruct the setting in terms of power series if desired.

Let

Gnm5xn*̃ ym

for n, mPN where*̃ denotes the product of the Manin plane~and exponents refer to this product!.

TheGnm form a vector space basis ofFq(C2). Let Ĝnm be the characteristic functions on theGnm ,
i.e., those complex valued linear functions onFq(C2) which are defined by

Ĝnm~Gn8m8!5dnn8 ,dmm8 .

Define

DĜnm~Gn1m1
,Gn2m2

!5Ĝnm~Gn1m1*̃ Gn2m2
!.

The property

x*̃ y5q y*̃ x

leads to

DĜnm5(
i 50

n

(
j 50

m
1

qj (n2 i )
~ Ĝ i j ^ Ĝn2 i ,m2 j !. ~1!

Similarly, defining

~ Ĝn1m1* Ĝn2m2
!~Gnm!5~ Ĝn1m1

^ Ĝn2m2
!~D̃~Gnm!!

for the coproductD̃ of the Manin plane, defined by

D̃x5x^ x,

D̃y5y^ 11x^ y

one gets

Ĝn1m1* Ĝn2m2
5 f m1

~q!dn1 ,n21m2
Ĝn2 ,m11m2

, ~2!

where thef n(q) are straightforward to calculate complex valued functions including factorsq
and theq-deformed binomials~see Ref. 7!.

Denote by• the symmetric tensor product of theĜnm and byF(Fq(C2)) what we call the

polynomial algebra on the Manin plane, i.e., the algebra generated by* and• from theĜnm with
the obvious compatibility relations. Here, the• product is supposed to be commutative.~Observe
that * extends — by compatibility — only to the multiplication ofn particle states withn particle
states but not ton particle states withm particle states fornÞm. This is why the partially defined
structure is the most natural one in our example.!

One checks by calculation that keepingD and * as given by~1! and ~2! and replacing
commutativity of• by

Ĝn1m1
•Ĝn2m2

5pm12m2Ĝn2m2
•Ĝn1m1

~3!
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defines a noncocommutative and totally noncommutative~i.e., noncommutative in both products!
trialgebroid which we denote byFp(Fq(C2)) for pPC. At first sight it may be astonishing that th

exponent ofp in ~3! is independent of the first variable of theĜnm . This is due to the asymmetr
of the coproduct on the Manin plane.

III. DEFORMING SLq„2…

Let Fq(SL(2)) be thefunction algebra on the quantum group SLq(2) with deformation
parameterq. More detailed,Fq(SL(2)) is the complex associative algebra with generato
a,b,c,d satisfying

ab5qba, ac5qca, bd5qdb, cd5qdc,

bc5cb,

and

ad2qbc5da2
1

q
bc51.

With

Ci jk5aibjck

and

D jkl5bjckdl

one proves that$Ci jk ,D jkl u j ,k,l PN,i PN\$0%% gives a vector space basis ofFq(SL(2)) ~see. e.g.,
Ref. 7!.

Denoting, again, the product and coproduct ofFq(SL(2)) by *̃ and D̃, respectively, one
calculates

Ci 1 j 1k1*̃ D j 2k2l 2
5 (

m50

l 2

f 1~q!Ci 12 l 2 , j 11 j 21m,k11k21m ~4!

for i 1. l 2 and

Ci 1 j 1k1*̃ D j 2k2l 2
5 (

m50

i 1

f 2~q!D j 11 j 21m,k11k21m,l 22 i 1
~5!

for i 1< l 2 @where the coefficientsf 1(q), f 2(q) indicate straightforward to calculate expressio
depending onq which we do not make explicit since they are of no relevance for the cons
ations below#. The difference between the two formulas arises by using eitherad511qbc or
da511(1/q) bc to eliminate eithera or d from the expressions.

For the coproductsD̃(Ci jk) and D̃(D jkl) the calculation is slightly more complicated. Let

h̃~Ci jk !5 (
a50
rest

i

(
b50
rest

j

(
g50
rest

k

(
m50
rest

k2g

(
n50
rest

g

(
t50
rest

j 2b2g

f 3~q!

3@~Ca1b1g2k,i 1 j 2a2b1m,g1m ^ Ca1b1g2 j ,b1n1t,i 1k2a2g1n1t!#, ~6!

where the notation ‘‘rest’’ indicates that the sums are restricted to those terms in which
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ad511qbc

can be applied in both factors of the tensor product andf 3(q) denotes, again, a straightforward
to-calculate expression containing factors ofq andq-binomials~which we do not spell out in detai
since by the fact that it is abelian it is not relevant for the calculation to follow!. We denote by

h̃2(Ci jk), h̃3(Ci jk), h̃4(Ci jk) the corresponding expression to~6!, containing the terms of the
sum, where

da511
1

q
bc

has to be used instead in the first, second, respectively, both factors of the tensor product@compare
to the duality between~4! and~5!; here we get four instead of two different formulas because
the tensor product and the different combinatorially possible combinations#. In conclusion, we get

D̃~Ci jk !5h̃1~Ci jk !1h̃2~Ci jk !1h̃3~Ci jk !1h̃4~Ci jk !. ~7!

We leave the similar case ofD̃(D jkl) to the reader.

Let Ĉi jk and D̂ jkl be the characteristic functions on theCi jk andD jkl , respectively, i.e., we
define them as those linear functions satisfying

Ĉi jk~Ci 8 j 8k8!5d i i 8d j j 8dkk8 , Ĉi jk~D j 8k8 l 8!50

and

D̂ jkl~Ci 8 j 8k8!50, D̂ jkl~D j 8k8 l 8!5d j j 8dkk8d l l 8 .

We introduce

DĈi jk~Ci 1 j 1k1
,D j 2k2l 2

!5Ĉi jk~Ci 1 j 1k1*̃ D j 2k2l 2
!

~and similarly for the other possible combinations ofC . . . andD . . . ). It follows from ~4! and
~5! that

DĈi jk5 (
i 1 , j 1 ,k1

(
m50

i 1- i

f 4~q!S i 12 i
m D Ĉi 1 j 1k1

^ D̂ j 2 j 12m,k2k12m,i 12 i , ~8!

wheref 4(q) subsumes theq factors andq-binomials appearing. Again, we leave the calculation

DD̂ jkl to the reader. With

~Ĉi 1 j 1k1* Ĉi 2 j 2k2
!~Ci jk !5~Ĉi 1 j 1k1

^ Ĉi 2 j 2k2
!~D̃Ci jk !

~and correspondingly for the remaining cases!, formula ~7! implies a sum of four factors for

Ĉi 1 j 1k1* Ĉi 2 j 2k2
where the first one can be written as

(
a,b,g,m,n

f 5~q!dk1 ,g1m dk2 ,i 22 i 11 j 11 j 22g2m Ĉi 21 j 12g2m,a1b1g2 i 2 ,a1b1g2 i 1
~9!

with f 5(q) containing, again, the monomials inq and q-binomial coefficients. The terms

h̃2(Ci jk), h̃3(Ci jk), h̃4(Ci jk) induce similar terms forĈi 1 j 1k1* Ĉi 2 j 2k2
. There are similar formu-

las for the other possible multiplications ofĈ . . . andD̂ . . . factors. Formula~9! can, obviously,
be rewritten as
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(
a

dk2 ,i 22 i 11 j 11 j 22k1
Ĉi 21 j 12k1 ,a2 i 2 ,a2 i 1

.

Denote byF(Fq(SL(2))) what we call the polynomial algebra on the quantum group SLq(2)

which is the algebra generated by* and the symmetric tensor product• of theĈi jk andD̂ jkl ~with
the obvious relations, so, again, with partially defined* product!. We now want to deform
F(Fq(SL(2))) into a noncocommutative and totally noncommutative trialgebr
Fp(Fq(SL(2))) with deformation parameterpPC. We keep, againD and* as given by~8! and
~9! and turn• into a noncommutative product satisfying

Ĉi 1 j 1k1
•Ĉi 2 j 2k2

5pj 22 j 11k12k2 Ĉi 2 j 2k2
•Ĉi 1 j 1k1

, ~10!

D̂ j 1k1l 1
•D̂ j 2k2l 2

5pj 22 j 11k12k2D̂ j 2k2l 2
•D̂ j 1k1l 1

, ~11!

and

Ĉi 1 j 1k1
•D̂ j 2k2l 2

5pj 22 j 11k12k2 D̂ j 2k2l 2
•Ĉi 1 j 1k1

. ~12!

Observe that thej andk index are taken with opposite sign relative to each other. Only in this
the compatibility with the coproduct — which is given by

D~Ĉi 1 j 1k1
•Ĉi 2 j 2k2

!5D~Ĉi 1 j 1k1
!•D~Ĉi 2 j 2k2

! ~13!

and the corresponding formulas — can be satisfied. But one verifies that with~10!, ~11!, and~12!,
commuting the factors on both sides of~13! and the analogous equations corresponding to~11!
and ~12! is consistent.

For the consistency check of the two products we take the case

~Ĉi 1 j 1k1* Ĉi 2 j 2k2
!•~Ĉi 3 j 3k3* Ĉi 4 j 4k4

!5~Ĉi 1 j 1k1
•Ĉi 3 j 3k3

!* ~Ĉi 2 j 2k2
•Ĉi 4 j 4k4

! ~14!

as an example~the other cases are, once again, similar!. Commuting the• products on both sides
of ~14!, the resulting powers ofp have to agree. A straightforward calculation using~10! shows
that by independence of thei index, this is indeed the case. So, the deformation formulas~10!,
~11!, and~12! give a noncocommutative and totally noncommutative trialgebroid.

In the rest of this section, we consider the question of an action ofFp(Fq(SL(2))) on the
deformed Manin planeFp(Fq(C2)). In the classical case, SL~2! acts by linear transformations o
C2. This action

SL~2! ^ C2→C2

induces a coaction

F~C2!→F~SL~2!! ^ F~C2!

which remains as an undeformed coaction

Fq~C2!→Fq~SL~2!! ^ Fq~C2!

even forqÞ1. It is given by

x°a^ x1b^ y, y°c^ x1d^ y, ~15!

and continuation as an algebra homomorphism, withx,y the generators ofFq(C2) anda,b,c,d the
generators ofFq(SL(2)).
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Remark:Observe once again that mathematically~15! gives a coaction and not an actio
which is decisive for our considerations below. The usual parlance that the quantum group Sq(2)
acts on the Manin plane points to the fact that the image ofFq(C2) under~15! satisfies the axioms
of the function algebra on the Manin plane, again.

Denote the map given by~15! by m. It induces an action

F~Fq~SL~2!!! ^ F~Fq~C2!!→F~Fq~C2!!

of F(Fq(SL(2))) onF(Fq(C2)) which is defined as

~Ĉi jkl . Ĝnm!~Gn8m8!5~Ĉi jkl ^ Ĝnm!~m~Gn8m8!! ~16!

and continuation in both theĜnm and theĈi jkl as an algebra homomorphism. Here, we writeĈi jkl

to unify the Ĉi jk and D̂ jkl , i.e., eitheri 50 or l 50 in Ĉi jkl ~and similarly for Ci jkl ). This is
convenient since the formulas appearing in the rest of this section allow for a unified treatm
this form.

One calculates that

m~Gn8m8!5 (
a50

n8

(
b50

m8 S n8
a D

q21
S m8

b D
q21

q2b(n82a)Ca,n82a,b,m82b ^ Ga1b,n81m82a2b . ~17!

Inserting~17! into ~16! leads to

Ĉi jkl . Ĝnm5
1

qk j S i 1 j
i D

q21
S k1 l

k D
q21

dn,i 1kdm, j 1 l Ĝ i 1 j ,k1 l . ~18!

We could use~18! in the deformed casepÞ1, too, to define an action ofFp(Fq(SL(2))) on
Fp(Fq(C2)) if this is consistent with the deformation. To check this, observe that

~Ĉi 1 j 1k1l 1
•Ĉi 2 j 2k2l 2

!•Ĝnm5~Ĉi 1 j 1k1l 1
.Ĝnm!•~Ĉi 2 j 2k2l 2

.Ĝnm!

leads with~18! to the requirement that

Ĉi 1 j 1k1l 1
•Ĉi 2 j 2k2l 2

5pk12k21 l 12 l 2 Ĉi 2 j 2k2l 2
•Ĉi 1 j 1k1l 1

~19!

which using~18! can be rewritten as

Ĉi 1 j 1k1l 1
•Ĉi 2 j 2k2l 2

5pk12k21 j 22 j 1Ĉi 2 j 2k2l 2
•Ĉi 1 j 1k1l 1

~20!

and this is just the deformation given by~10!, ~11!, and~12!.
As the reader will have observed, there is an asymmetry ofFp(Fq(C2)) with respect to the

two variables ofĜnm which — as we remarked already in the foregoing section — is due to

asymmetry of the coproductD̃ of the Manin plane inx and y. Now, one easily proves tha

alternativelyD̃8 defined by

D̃8~x!5x^ 11x^ y, D̃8~y!5y^ y

can be used as a coproduct which is compatible with the multiplicative structure of the M
plane. We denote the resulting bialgebra byF q8(C

2) and call it thedual Manin plane. With Gnm8

the obvious vector space basis ofF q8(C
2) andĜnm8 their characteristic functions, one proves alo

the lines sketched in Sec. II that
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Ĝn1m1
8 •Ĝn2m2

8 5pn12n2Ĝn2m2
8 •Ĝn1m1

8

constitutes a consistent trialgebraic deformationFp(F q8(C
2)) of the dual Manin plane.

Using ~18!, again, one verifies thatFp(Fq(SL(2))) naturally acts onF1/p(F q8(C
2)). In the

next section we will see thatFp(Fq(SL(2))) also acts naturally on the fermionic version of th
Manin plane.

IV. FERMIONIC MANIN PLANE

The fermionic Manin planeLq(C2) ~also called the exterior algebra on the Manin plane! is the
complex associative algebra with generatorsj andh satisfying

jh52
1

q
h j

and

j25h250.

A coproductD̃ can be introduced by

D̃j5j ^ 11j ^ h, D̃h5h ^ h.

Remark:We prefer to use this coproduct for the fermionic Manin plane and to regard the
which is formally identical with the one on the Manin plane as belonging to a ‘‘dual fermio
Manin plane.’’ The reason is that this convention fits nicely with the action ofFp(Fq(SL(2))).

With

Vnm5jnhm

the set$Vnmu0<n,m<1% constitutes a vector space basis ofLq(C2). So, in contrast to the usua

~bosonic! case,Lq(C2) is a finite dimensional vector space. Denote byV̂nm the dual basis of the
Vnm . Proceeding completely analogous to Sec. II, we can introduce a trialgebroidF(Lq(C2))
with commutative product• and

V̂n1m1* V̂n2m2
5 f m1S 2

1

qD dn1 ,n21m2
V̂n2 ,m11m2

and

DV̂nm5(
i 50

n

(
j 50

m

~2q! j (n2 i )V̂ i j ^ V̂n2 i ,m2 j ,

where we formally defineV̂nm50 if either n>2 or m>2. It follows that

V̂n1m1
•V̂n2m2

5pn12n2 V̂n2m2
•V̂n1m1

~21!

gives a consistent deformation ofF(Lq(C2)) into a noncocommutative and totally noncommu
tive trialgebroid which we denote byFp(Lq(C2)).

Now, let Fp(Fq(SL(2))) act onF1/p(Lq(C2)) where the action is given by

Ĉi jkl .V̂nm5~2q!k jS i 1 j
i D

q21
S k1 l

k D
q21

dn,i 1kdm, j 1 l V̂ i 1 j ,k1 l , ~22!
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where againV̂ . . . is formally zero if the index constraint is violated. The reason that~22! is —
modulo exchange ofq against@21/q)] — formally identical to~18! is that SLq(2) acts on the
fermionic Manin plane, too, by

j°a^ j1b^ h, h°c^ j1d^ h.

One verifies that~22! implies the correct formula

Ĉi 1 j 1k1l 1
•Ĉi 2 j 2k2l 2

5pj 12 j 21k22k1Ĉi 2 j 2k2l 2
•Ĉi 1k1 j 1l 1

and therefore the action defined above is consistent.

V. SOME REMARKS ON REPRESENTATIONS

Definition 2: We call a trialgebra(A,* ,D,•) antipodal if (A,* ,D) carries the structure of a
Hopf algebra and the antipode and counit are algebra morphisms in the• product.

Lemma 1: Let(A,* ,D,•) be an antipodal trialgebra with(A,* ,D,h,e,S) a Hopf algebra.
Then the category of representations of(A,* ,D,•) with respect to the associative algebra stru
ture of the• product has the structure of a Hopf category in the sense of Ref. 1.

Proof: The definition of tensor product and functorial coproduct on the representatio
clear. The functorial counterparts of the antipode, unit and counit are defined as~where we write
% for representations andaPA for an element of the trialgebra!:

~Ŝ% !~a!5%~S~a!!†

~with † denoting the adjoint operator!,

1̂~a!5e~a!

and

ê%5%~1!.

The functorial unit 1ˆ gives a one-dimensional representation sincee is an algebra homomorphism
with respect to the• product.

One checks that in this way the category of representations carries the functorial coun
of a Hopf algebra structure.

h

Remarks:

~i! Obviously, we get a similar structure on the category of finite dimensional representa

~ii ! For the category of finite dimensional representations,ê takes values in finite dimensiona
operators. We can view this as taking values in the operators on the universal in
dimensional separable Hilbert space. So, we see a close connection between li
structure~here, the Hopf algebra structure! to the level of categories and noncommutati
geometrylike approaches.

Hopf categories were conjectured to be suitable starting points for the construction of
dimensional topological quantum field theories in Ref. 1 which was confirmed by the wo
Ref. 3.

Lemma 2:Fp(Fq(SL(2))) defines an antipodal trialgebra.

Proof: Let S̃, 1̃ and ẽ be the antipode, unit and counit ofFq(SL(2))), respectively. Forp
51, we define~with xPFq(SL(2))):
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~S~Ĉi jkl !!~x!5Ĉi jkl ~S̃x!, ~23!

1~x!5 ẽ~x!, ~24!

e~Ĉi jkl !5Ĉi jkl ~ 1̃!. ~25!

Sinceẽ5( i ,l 50
` Ĉi ,0,0,l , 1 as defined by~24! is strictly not an element ofF(Fq(C2)) but it can

be included by applying an obvious closure operation. This is whyF(Fq(C2)) is not in itself
antipodal but defines an antipodal trialgebra in a canonical way by applying this closure ope
plus the free construction generating a trialgebra from a trialgebroid, mentioned at the beg
@as one checks from~23!–~25! by calculation#. Sande are extended by the requirement that th
be algebra homomorphisms in• to the whole trialgebra.

One straightforwardly calculates structural expressions in theĈi jkl for ~23!, ~24!, and ~25!
which do not involvexPFq(SL(2)). Since these are compatible with thep-deformed• product,
too, Fp(Fq(SL(2))) defines an antipodal trialgebra for allpPC.

h

We get a representation ofFp(Fq(SL(2))) with respect to the• product for any representa
tion of Fp(Fq(C2)) with respect to the second index~see Ref. 4!. Let Ap,i( i PN) denote the
elements of such a representation ofFp(Fq(C2)) with respect to the second index for parame
valuepPC. Then

Ĉi jkl °Bi jkl

with

Bi jkl 5Ap21,i ^ Ap21, j ^ Ap,k^ Ap,l

gives a• representation ofFp(Fq(SL(2))).

VI. A FUSION ALGEBRA LIKE STRUCTURE FROM Fp„Fq„SL„2………

Fusion algebras — as defining the superselection structure of quantum field theories
closely connected to the notion of a monoidalC* -category~see, e.g., Refs. 5 and 8!. In principle,
a C* -category is just a category where the homomorphism classes carry the structure of B
spaces, composition is bilinear and there is a* -operation given as a contravariant functor acti
as the identity on objects, satisfying theC* -property.C* -categories naturally arise as the categ
ries of representations of Hopf algebras. While the Doplicher–Roberts theorem shows that
and more dimensions the superselection structure of a local quantum field theory is alwa
scribed by a compact group, three-dimensional and two dimensional conformal~i.e., all masses
vanishing! theories have certain quantum groups as the most general case~see Ref. 5!. For
massive two-dimensional theories it is known~see Refs. 5, 9, 8, and 10! that Hopf algebras and th
framework of monoidalC* -categories are not sufficient to describe the superselection struc
appearing but one has to generalize to so called 22C* - categories. A 22C* -category~see Ref.
8 for the details of the notion! is defined as a 2-category~an algebraic structure with objects
morphisms, and 2-morphisms, the latter being arrows between two parallel morphisms, i.e
phisms having the same domain and codomain, which has compositions for both types o
phisms and the obvious compatibilities between these! where for two fixed objects the morphism
and 2-morphisms constitute aC* -category~and the compositions satisfy the corresponding l
earity conditions, again!. A 22C* -category can be imagined as the generalization of a mono
C* -category to the case of a partially defined monoidal structure. Physically, the reason f
appearance of 22C* -categories in massive two-dimensional models is that inequivalent v
appear in these theories.
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There is, of course, a corresponding notion of morphism ofC* -categories~which is, basically,
a functor which is compatible with the linear structure and intertwines with the* -operation! which
has a straightforward extension to the partially defined case of a 22C* -category~see the literature
cited above!. We will speak of a morphism of 22C* -categories in this case. Using this notion, w
can introduce the following definition.

Definition 3: A monoidal22C* -categoryC is a 22C* -category together with a tenso
product 2-functor̂ such that^ turns C into a weak monoidal 2-category and̂ is compatible
with the22C* -category structure in the sense that it is a morphism of22C* -categories.

Now, we have the following result.
Lemma 3: Every antipodal trialgebra canonically determines a monoidal22C* -category.
Proof: As we have seen in the foregoing section, an antipodal trialgebra defines a

category. So it remains to show that a Hopf category determines a monoidal 22C* -category.
One considers unitary representations of the Hopf category on finite dimensional 2-H

spaces as introduced in Ref. 2~for the notion of 2-vector space, see also Refs. 1 and 11!. One
verifies that such representations constitute a weak monoidal 2-category. One now uses t
lemma for 2-Hilbert spaces of Ref. 2 to show by calculation that we get the structu
C* -categories on the categories of 1-morphisms and that composition is compatible wit
structure. Hence, we get a 22C* -category. The 22C* -category morphism property of the wea
monoidal structure follows in a similar way.

h

In conclusion, an antipodal trialgebra defines a 22C* -category — as needed for massiv
two-dimensional quantum field theories, in general — but with an additional multiplicative s
ture ~which can be understood as a kind of symmetry acting on the 22C* -category!.

Remark:Of course, some additional technical conditions are needed to give really a f
algebra from a monoidalC* -category. One can check straightforward that the 2-categorical
logs of these are satisfied for the monoidal 22C* -category generated from an antipodal trialgeb
with the exception of semi-simplicity. To give this one would supposedly need to app
2-categorical version of the quotient construction given in Ref. 5.

We would like to stress that the above results seem to indicate that trialgebras might be
general feature of massive two-dimensional quantum field theories. For our examp
Fp(Fq(SL(2))) this means that this should belong to a massive model which forp51 reduces to
a conformal model corresponding to an SLq(2) symmetry. This shows thatp and q — not
necessarily identical — roots of unity should be the physically most interesting case~for pn

51,nPN, we suspect that the number of inequivalent vacua is determined as a function ofn) and
that a trialgebraic deformation of the dual Uq(sl2) quantum algebra might be the physically mo
convenient description.

VII. FOCK SPACE DEFORMATIONS

In the preceding sections we have always discussed trialgebraic deformations in the s
deformations of a kind of polynomial algebra over quantum groups or bialgebras. From th
that we use partially defined* products, it is clear that we can also describe our deformation

considering a ‘‘dual’’ bialgebraĤ ~which is given e.g., by theĜnm or theĈi jkl ) and extending*
andD in the usual way to the Fock space

ĤF
ª%

n50

`

Ĥ ^ s
n
,

where^ s denotes the symmetrized tensor product. One defines

• 5 ^ s
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and then deforms to a ‘‘p-symmetrized’’ tensor product. Obviously, this procedure can also

applied toH itself instead of first passing toĤ. This is what we are going to consider in th
section.

Let us start with the function algebraFq(C2) over the Manin plane, again~i.e., we now use*̃
and D̃ instead of* andD). Remember that

Gn1m1 *̃ Gn2m2
5

1

qm1n2
Gn11n2 ,m11m2

~26!

and

D̃~Gnm!5(
j 50

m

f j~q!~Gn1m2 j , j ^ Gn,m2 j !. ~27!

Denoting^ s by •, again, and using the Ansatz

Gn1m1
•Gn2m2

5v~n1 ,m1 ,n2 ,m2!Gn2m2
•Gn1m1

~28!

with a complex valued functionv, one verifies that

D̃~Gn1m1
•Gn2m2

!5D̃~Gn1m1
!•D̃~Gn2m2

!

implies the compatibility requirement

v~n1 ,m1 ,n2 ,m2!5v~n11m12 j 1 , j 1 ,n21m22 j 2 , j 2!v~n1 ,m12 j 1 ,n2 ,m22 j 2!, ~29!

where the right-hand side has to be independent ofj 1 and j 2 . This is satisfied for

v~n1 ,m1 ,n2 ,m2!5ea m11b m2

for a,bPC. But antisymmetry ofv implies b52a, i.e.,

v~n1 ,m1 ,n2 ,m2!5pm12m2 ~30!

for pPC. One verifies that~30! is also compatible with

~Gn1m1
•Gn2m2

! *̃ ~Gn3m3
•Gn4m4

!5~Gn1m1 *̃ Gn3m3
!•~Gn2m2 *̃ Gn4m4

#.

So, Eq.~30! constitutes a trialgebraic deformation of the Fock space overFq(C2) which we denote
by F p,q

F (C2) ~and call it the Fock space deformation of the Manin plane!.
We next construct a Fock space deformation of Uq(sl2). SinceFq(SL(2)) has atrialgebraic

deformation in the dual polynomial algebra setting and SLq(2) and Uq(sl2) are dually paired, we
already expect a Fock space deformation of Uq(sl2) to exist. We will verify that this is indeed the
case, now.

What we will actually consider is a variant of Uq(sl2) which is often denoted by Uˇ
q(sl2) in the

literature~see Ref. 7!. It has a coproduct with a slightly higher symmetry than Uq(sl2) and we
choose this version for convenience. Uˇ

q(sl2) is defined as the complex unital algebra with ge
eratorsX1,X2,K,K21 subject to the relations

KK215K21K51, KX1K215q X1, K X2K215q21 X2,

and
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@X1,X2#5
K22K22

q2q21
.

The coproduct is given by

D~K !5K ^ K

and

D~X6!5X6
^ K1K21

^ X6.

Define

Fi jk5Ki~X1! j~X2!k.

The set$Fi jk u i PZ, j ,kPN0% constitutes a basis of Uˇ
q(sl2) ~see Ref. 7!. Denoting the product of

Ǔq(sl2) by * , again, one calculates that

Fi 1 j 1k1* Fi 2 j 2k2
5q(k12 j 1) i 2Fi 11 i 2 , j 11 j 2 ,k11k2

1q(k12 j 1) i 2g~q,K !Fi 11 i 2 , j 11 j 221,k11k221 , ~31!

whereg(q,K) denotes a function ofq,K,K21, where we have suppressed its dependence on
the index entries in the notation.

Similarly, one calculates that

D~Fi jk !5 (
m50

j

(
n50

k

f 6~q!Fi 2 j 2k1m1n,m,n ^ Fi 1m1n, j 2m,k2n , ~32!

where f 6(q) summarizes, once again, factors ofq andq-binomials.
Consider a deformation of

•5 ^ s

with

Fi 1 j 1k1
•Fi 2 j 2k2

5v~ i 1 , j 1 ,k1 ,i 2 , j 2 ,k2!Fi 2 j 2k2
•Fi 1 j 1k1

andv a complex valued function. Using Eq.~32!,

D~Fi 1 j 1k1
•Fi 2 j 2k2

!5D~Fi 1 j 1k1
!•D~Fi 2 j 2k2

!

implies thatv is independent of the first and fourth variable and additive in the remaining
ones, i.e.,

v~ i 1 , j 1 ,k1 ,i 2 , j 2 ,k2!5ea1 j 11b1k11a2 j 21b2k2

and antisymmetry ofv leads to

a252a1 , b252b1 .

So,

v~ i 1 , j 1 ,k1 ,i 2 , j 2 ,k2!5ea( j 12 j 2)1b(k12k2)

with a,bPC.
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Using Eq.~31!, the compatibility condition

~Fi 1 j 1k1
•Fi 2 j 2k2

!* ~Fi 3 j 3k3
•Fi 4 j 4k4

!5~Fi 1 j 1k1* Fi 3 j 3k3
!•~Fi 2 j 2k2* Fi 4 j 4k4

!

leads tob52a and therefore to

v~ i 1 , j 1 ,k1 ,i 2 , j 2 ,k2!5pj 12 j 22k11k2. ~33!

Equation~33! gives the desired Fock space deformation of Uq(sl2). Observe that in the spirit o
quantum groups, Uˇ

q(sl2) is the dual description to SLq(2) of ‘‘the same quantum object.’’
We will investigate the question of dualities in more detail, now. We first observe that

is a Fock space deformation of SLq(2), too. Indeed, one verifies that for*̃ andD̃ as given above
and

Ci 1 j 1k1l 1
•Ci 2 j 2k2l 2

5v~ i 1 , j 1 ,k1 ,l 1 ,i 2 , j 2 ,k2 ,l 2!Ci 2 j 2k2l 2
•Ci 1 j 1k1l 1

~where we, again, write a unified symbolCi jkl for the Ci jk and D jkl) the two compatibility
conditions one has to apply onv lead to independence of thei and l variables and to relative
opposite sign of thej andk variables. In summary, one calculatesv to be the form

v~ i 1 , j 1 ,k1 ,l 1 ,i 2 , j 2 ,k2 ,l 2!5pj 12 j 21k12k2 ~34!

with pPC.
The classical dual pairing between Uˇ

q(sl2) and SLq(2) is given by~see Ref. 7!

^K,a&5q2 1/2, ^K,d&5q1/2, ^X1,c& 5 ^X2,d& 51,

and zero, otherwise. It follows~see Ref. 7! that

^Km~X1!n~X2! l ,ds cr bt& Þ0 ~35!

only if 0<n2r 5 l 2t<s, and

^Km~X1!n~X2! l ,as cr bt& Þ0 ~36!

only if n2r 5 l 2t50. We make the following Ansatz for a dual pairing of the Fock spa
deformations Uˇ p,q

F (sl2) andF p,q
F (SL(2)) of Ǔq(sl2) andFq(SL(2)), respectively.

Let

^Fi 1 j 1k1
•Fi 2 , j 2 ,k2

,Ci 3 j 3k3l 3
•Ci 4 j 4k4l 4

&5^Fi 1 j 1k1
,Ci 3 j 3k3l 3

&^Fi 2 , j 2 ,k2
,Ci 4 j 4k4l 4

&. ~37!

Denoting the deformation functions of Uˇ
p,q
F (sl2) andF p,q

F (SL(2)) by vF andvC , respectively,
Eq. ~37! implies the consistency conditions

vF~Fi 1 j 1k1
,Fi 2 j 2k2

!vC~Ci 3 j 3k3l 3
,Ci 4 j 4k4l 4

!51

or

^Fi 1 j 1k1
,Ci 3 j 3k3l 3

&50

or

^Fi 2 j 2k2
,Ci 4 j 4k4l 4

&50
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on these functions. By the nature of the deformations~33! and ~34!, one can reduce~35! to the
casen2r 5 l 2t50, too, when considering the consistency conditions. But then the consis
conditions are satisfied if one pairs Uˇ

p,q
F (sl2) with F p21,q

F (SL(2)).
Lemma 4: Equation (37) defines a dual pairing betweenǓp,q

F (SL2) andF p21,q
F (SL(2)) which

is nondegenerate if the dual pairing betweenǓq(sl2) and Fq(SL(2)) is (i.e., for q not a root of
unity). By a dual pairing we mean a dual pairing of the* products and coproducts, here, no
involving the• products.

Proof: Bilinearity and nondegeneracy are clear from the definition. The pairing propertie
satisfied as a consequence of the compatibility relations of a trialgebra.

h

Remark:One could also try to dualize the whole structure of a trialgebra, i.e., the copro
and both products. This leads to what we call acotrialgebra, namely, an algebraic structure wit
a product and two coproducts joined in a compatible way.

Lemma 5:

^Ĉi 1 j 1k1l 1
,Ci 2 j 2k2l 2

&5d i 1i 2
d j 1 j 2

dk1k2
d l 1l 2

defines a nondegenerate dual pairing betweenFp(Fq(SL(2))) and F p,q
F (SL(2)).

Proof: Nondegeneracy is clear from the definition of the pairing and the pairing prope
follow from the definition of * and D for Fp(Fq(SL(2))). We only have to check for the
consistency requirement following from

^Ĉi 1 j 1k1l 1
•Ĉi 2 j 2k2l 2

,Ci 3 j 3k3l 3
•Ci 4 j 4k4l 4

&5^Ĉi 1 j 1k1l 1
,Ci 3 j 3k3l 3

&^Ĉi 2 j 2k2l 2
,Ci 4 j 4k4l 4

& ~38!

which reads as@where we denote the deformation functions ofFp(Fq(SL(2))) andF p,q
F (SL(2))

by v Ĉ andvC , respectively#

v Ĉ~ j 1 ,k1 , j 2 ,k2!vC~ j 1 ,k1 , j 2 ,k2!51

which is obviously satisfied.
h

So, in the spirit of quantum group theory, we could say thatFp(Fq(SL(2))), F p,q
F (SL(2)),

and Ǔp,q
F (sl2) all describe one and the same ‘‘quantum object.’’

VIII. THE ACTION ON THE MANIN PLANE

In this section, we consider the question of an action of the Fock space deformation of Sq(2)
on the Fock space deformation of the Manin plane. As in the case of SLq(2) and the Manin
plane — and in contrast to the situation in the polynomial algebralike setting — this will str
speaking be a coaction. The usual action of SLq(2) on the Manin plane leads to

Gnm°~a^ x1b^ y!m*̃ ~c^ x1d^ y!m,

i.e.,

Gnm°(
r 50

n

(
s50

m

g rs~q!Cr ,n2r ,s,n2s^ G r 1s,n1m2r 2s , ~39!

where theg rs(q) are straightforward to calculate complex valued functions, containing facto
q andq deformed binomials. Denoting the deformation functions ofF p,q

F (SL(2)) andF p,q
F (C2) by

vc andvG , respectively, Eq.~39! implies the following consistency condition onvc andvG if
~39! is used to define an action ofF p,q

F (SL(2)) onF p,q
F (C2):
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vG~m1 ,m2!5vc~n12r 1 ,s1 ,n22r 2 ,s2!vG~n11m12r 12s1 ,n21m22r 22s2! ~40!

independent ofr 1 ,s1 ,r 2 ,s2 . With the deformations given by~30! and ~33!, this implies

pm12m25pm12m2 p2(n12n22r 11r 22s11s2)

which is, obviously, not satisfied in general. So, we do not get an action ofF p,q
F (SL(2)) on

F p,q
F (C2). But we observe that~40! is satisfied if we use Eq.~39! to define an action of

F p,q
F (SL(2)) onF p21,q

F (C2). So, we have the following lemma.
Lemma 6: The classical action ofSLq(2) on the Manin plane defines via Eq. (39) an actio

of F p,q
F (SL(2)) on F p21,q

F (C2).
h

IX. R MATRIX

Let us return to the case of Fock space deformations of SLq(2). The information on the

q-deformed product*̃ of SLq(2) can be encoded into the equation

Rq T1T25T2T1Rq , ~41!

whereT5(c d
a b) and

T15T^ 1, T251^ T,

andRq is a 434 matrix called theR matrix. On the other hand, one can show that the informa
on thep-deformed• product is completely contained in the following table:

1•a 5 a•1

1•b 5 p21 b•1

1•c 5 p c•1

1•d 5 d•1

a•b 5 p21 b•a

a•c 5 p c•a

a•d 5 d•a

b•c 5 p2 c•b

b•d 5 p d•b

c•d 5 p21 d•c

where 1 denotes the unit element with respect to*̃ which isnot a unit element with respect to th
• product, as we remarked above. So with respect to the• product, we have five generators. L

T̃5S a b 0

c d 0

0 0 1
D

and

T̃15T̃^ 1 T̃251^ T̃.

Lemma 7: We have
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RpT̃1T̃25T̃2T̃1Rp ~42!

for

Rp5S 1 0 0

0 p 0

0 0 p
D ^ S 1 0 0

0 p21 0

0 0 1
D

and Rp solves the Yang–Baxter equation.
Proof: By calculation.

h

Extending the matrixRq by a suitable attachment of the identity on five-dimensional spac

a 939 matrix R̃q , we can reformulate Eq.~41! as an action onT̃, too

R̃qT̃1T̃25T̃2T̃1R̃q . ~43!

So, we can encode the separate information of the two products into two Yang–Baxter m

Rp andR̃q . This is not astonishing since a trialgebra is simply defined as two bialgebras link
the compatibility constraint of the two products. The most interesting question is therefore
kind of relation the compatibility constraint of the two products induces on the level ofR matrices.
This question is answered by the following lemma.

Lemma 8: The compatibility relation of the two products implies the equation

@R̃q
13

^ R̃q
24,Rp

12
^ Rp

34#50, ~44!

where the upper indices indicate as usual in which components of the four fold tensor produ
matrix acts and the square brackets denote the commutator.

Proof: Direct consequence of the compatibility relation.
h

Equation~44! is interesting since it gives a matrix equation for trialgebraic deformations
quantum group. Observe that not only our Fock space deformations from above but also
complicated deformations which cannot be expressed by a complex valued deformation fu
v have to show up in~44!. In summary~44! is a matrix equation for a 81381 matrix@in the case
of SLq(2) but ~44! is generally valid for deformations of quantum groups# which commutes with

R̃q
13

^ R̃q
24 and factors asRp

12
^ Rp

34 through a Yang–Baxter 939 matrix Rp .
In physical terms, the Yang–Baxter matrixRq can be seen as belonging to an integra

one-dimensional spin system. So, a pairRp R̃q of such matrices which are linked by Eq.~44! can
be imagined as a plane of spins where in the horizontal direction we have chains of spi

scribed as an integrable system byR̃q while in the vertical direction we have, again, chains
spins but described as an integrable system byRp . Equation ~44! means that the total two
dimensional system does not only have integrable one-dimensional subsystems but the tw
grability conditions — for horizontal and vertical directions — are linked by a compatib
requirement. It remains to be seen if Eq.~44! can be extended to a compatibility condition for th
Hamiltonians of the one-dimensional subsystems and if such an approach can lead to a sati
integrability condition for two-dimensional spin systems.

X. CONCLUSION

We have seen in this paper that the approach to trialgebraic deformations of bialgebras
we started to investigate in Ref. 4 can be continued to the case of quantum groups. Besid
we have seen that the structures arising this way may be of interest not only for the constr
of Hopf categories but also in low dimensional quantum field theory.
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Future work will concern the generalization of our approach to other quantum groups a
more complex deformations.

We should remark that the deformations derived, here, should be considered as toy m
which show the general workings and possibilities of trialgebraic deformations. Physically, d
mations which cannot simply be expressed by a complex valued deformation function wou
the most interesting ones. Obviously, there remains much work to be done. We consider this
just as a starting point for future investigations on the nature of trialgebras, a mathematical
the possible physical importance of which starts to become more and more clear.
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Linear stability analysis for the multikink solution
of the sine-Hilbert equation

Yoshimasa Matsunoa)

Department of Applied Science, Faculty of Engineering, Yamaguchi University,
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The linear stability analysis is performed for the multikink solution of the sine-
Hilbert ~sH! equation. We first solve the eigenvalue problem of the sH equation
linearized about the multikink solution and then establish the completeness relation
among the eigenfunctions. This relation enables us to solve the initial value prob-
lem of the linearized sH equation, proving the stability of the solution against
infinitesimal perturbations. As an application of the completeness relation, we de-
velop a direct multikink perturbation theory while employing the method of mul-
tiple time scales. We derive the evolution equations that describe the slow change
of the kink parameters, as well as a nonsecular expression for the first-order cor-
rection to the multikink solution. A novelty of the present analysis is that the proof
of the completeness relation is done by purely algebraic means with the help of the
classical theory of algebraic equations. ©2000 American Institute of Physics.
@S0022-2488~00!01410-9#

I. INTRODUCTION

The sine-Hilbert~sH! equation is a novel integrodifferential nonlinear evolution equat
~NEE! associated with a matrix spectral problem.1 In the original form of the sH equation, i
consists of the following system of integrodifferential equations:

ut5vHv, v t5uHv. ~1.1!

Here,u5u(x,t) andv5v(x,t) are scalar functions, the integral operatorH is the Hilbert trans-
form defined by

Hv~x,t !5
1

p
PE

2`

` v~y,t !

y2x
dy, ~1.2!

~the symbolP stands for the Cauchy principal value! and the subscriptt appended tou and v
denotes partial differentiation with respect to the time variablet. If we impose the boundary
conditionsu(6`,t)51 and v(6`,t)50, the above system of equations can be reduced
single equation. In fact, it follows from~1.1! and the boundary conditions thatu22v251, which
allows us to introduce a real functionu5u(x,t) according to the relationsu5cosu and v
5 i sinu. Substitution of these relations into~1.1! yields a single equation foru asu t5H sinu. If
we operateH on both sides of this equation and use the operator identityH252I ~I: identity
operator!, we arrive at the sH equation,

Hu t52sinu. ~1.3!

a!Electronic mail: matsuno@po.cc.yamaguchi-u.ac.jp
70610022-2488/2000/41(10)/7061/18/$17.00 © 2000 American Institute of Physics
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The sH equation is a remarkable NEE since it is an example of a class of NEEs whic
purely integral in the space variablex. It shares many properties common to the complet
integrable NEEs. Actually, it exhibits infinity of conservation laws,1 kink,2–4 and periodic5 solu-
tions and Ba¨cklund transformation,6 formulation as a Riemann–Hilbert scattering problem,7,8 and
so on. One remarkable feature of the sH equation is that it can be linearized by means
appropriate dependent variable transformation. This fact enabled us to construct mu
solution2–4 as well as periodic solutions5 in a very simple way. As for other topics concerning t
sH and related equations, one may refer to Refs. 9 and 10. Although the sH equatio
mathematical model equation, we can find an interesting reduction by introducing the a
u(x,t)5c(j)(j5x1ct,c:const). It then turns out that Eq.~1.1! reduces tocHcj52sinc. This
equation has been known as a model of dislocations11,12 in crystals first proposed by Peierls whe
c represents the relative atomic displacement.

A large number of studies have been devoted to the stability problem of various typ
solitary waves. However, most of them are concerned with a single solitary wave solution.13 An
exception is a work on the linear stability of the multisoliton solution of the Benjamin–Ono~BO!
equation.14,15 The present paper provides not only another remarkable example concernin
stability of the multikink solution but also offers a novel methodology to prove the stability.
main technique employed here is purely algebraic and it does not rely on the sophisticated m
like the inverse scattering transform~IST!. In fact, we use the Hermite theorem and the proper
of the Bezout matrix, both of which have been developed in the search of the distribution
zeros of algebraic equations. We first solve the eigenvalue problem for the sH equation line
about the multikink solution and show that the eigenfunctions corresponding to both conti
and discrete spectra constitute a complete set. It turns out from this result that the mu
solution is stable against infinitesimal perturbations. Once the stability of the multikink solu
is established, we have a direct multikink perturbation theory. In particular, we can hand
first-order solution beyond the adiabatic approximation while employing the completeness
tion. This paper is organized as follows. In Sec. II, we summarize the exact method of solut
the sH equation as well as the properties of the multikink solution. In particular, the intera
process of the 2-kink solution will be described in some detail because it exhibits the ess
features common to all the multikink solutions. In Sec. III, we solve the sH equation linea
about the multikink solution analytically and calculate various inner products among the e
functions. We also construct the orthonormal bases from the eigenfunctions following the sta
procedure. In Sec. IV, we establish the completeness relation among the orthonormal bas
proof will be done with the help of the classical theory of algebraic equations. Using the
pleteness relation thus obtained, we are able to solve the initial value problem of the lineariz
equation and as a result we establish the stability characteristics of the multikink solution. I
V, we develop a direct multikink perturbation theory without recourse to the IST. The meth
multiple time scales is used to derive the evolution equations describing the slow change
kink parameters and the nonsecular first-order correction to the multikink solution. The com
ness relation is a main tool to solve the first-order equation as in the case of the multis
perturbation theory for the BO equation.15–17 Section VI is devoted to concluding remarks.

II. PROPERTIES OF THE MULTIKINK SOLUTION

In this section, we shall briefly summarize the properties of the multikink solution of the
equation in a form relevant to the following stability analysis. The exact method of solution
here is the bilinear transformation method.18,19

A. Linearization

We first introduce the dependent variable transformation

u~x,t !5 i ln
f * ~x,t !

f ~x,t !
, f ~x,t !5)

j 51

N

@x2xj~ t !#, ~2.1!
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where xj are complex function oft whose imaginary parts are all positive, i.e., Imxj(t).0
(j51,2,...,N) and the asterisk superscript appended tof denotes the complex conjugate. We fir
note a key relationHu t52(ln f* f )t which stems from the fact thatf t / f ( f t* / f * ) is an analytic
function in the lower ~upper!-half complex plane, so thatH( f t / f )52 i f t / f (H( f t* / f * )
5 i f t* / f * ). Substituting~2.1! into Eq. ~1.1! and taking account of this relation, one obtains t
following bilinear equation forf and f * ,

~ f * f ! t5
21

2i
~ f * 22 f 2!. ~2.2!

Furthermore, we modify the above equation as

f * F f t2
1

2i
~ f 2 f * !G1 f F f t* 1

1

2i
~ f * 2 f !G50, ~2.3!

and find that Eq.~2.3! is satisfied identically if the followinglinear differential equation holds for
f,

f t5
1

2i
~ f 2 f * !. ~2.4!

Note that one may add a term of the formik f ~k, real parameter! on the right-hand side of~2.4!.
The nonzerok will yield periodic solutions of the sH equation.5 However, the periodic case is no
discussed and considered elsewhere. In view of the form off given by ~2.1!, we can expressf in
powers ofx as

f ~x,t !5(
j 50

N

~21! j sjx
N2 j , s051, sj5sj~ t ! ~ j 51,2,...,N!, ~2.5!

wheresj are the elementary symmetric functions ofx1 ,x2 ,...,xN given by

s15(
j 51

N

xj , s25(
j ,k

N

xjxk ,..., sN5)
j 51

N

xj . ~2.6!

If we introduce~2.5! into ~2.4! and compare the coefficients of like powers ofxN2 j on both sided,
we obtain the evolution equation forsj ,

dsj

dt
5

1

2i
~sj2sj* !, ~ j 51,2,...,N!. ~2.7!

This decoupled system of linear ordinary differential equations forsj is immediately integrated to
yield the solution

sj5aj t1bj1 ia j , ~ j 51,2,...,N!, ~2.8!

whereaj andbj are real parameters. In the process of linearization, we have used the cond
Im xj.0 (j51,2,...,N). To satisfy these conditions, however, various restrictions must be imp
on aj andbj . This will be discussed in Sec. IV.

B. Kink solutions

The solution~2.1! with ~2.5! and~2.8! may be called theN-kink solution by analogy with kink
solutions of the sine-Gordon equation. It may be observed by rewriting~2.1! in the form u
5 i ln(f* /f )52 tan21(Im f/Ref ). In the simplest case ofN51, one obtains from~2.1!, ~2.5!, and
~2.8! the 1-kink solution,
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u522 tan21S a1

x2a1t2b1
D , ~a1.0!. ~2.9!

The x derivative of~2.9! now gives a pulselike solution of the form,

ux5
2a1

~x2a1t2b1!21a1
2 . ~2.10!

It is interesting to observe that the propagation velocity of the pulse is inversely proportional
amplitude, so that a tall pulse propagates more slowly than a small pulse unlike the behavior
usual soliton which propagates with a velocity proportional to its amplitude. We shall cal
pulse represented by~2.9! as a 1-kink solution for convenience.

The generalN-kink solution can be constructed in a similar way. It takes the follow
form:2–4

u522 tan21Fa1) j 51
N21~x2a j !

) j 51
N ~x2b j !

G , ~2.11!

wherea j ( j 51,2,...,N21) andb j ( j 51,2,...,N) are real and simple zeros of the algebraic eq
tions

(
j 51

N

~21! jajx
N2 j50, ~2.12a!

(
j 50

N

~21! j~aj t1bj !x
N2 j50, ~a050,b051!, ~2.12b!

respectively. Note thatb j are functions oft but a j are constants depending only on the parame
aj ( j 51,2,...,N). According to the Hermite theorem20,21 in the theory of classical algebraic equ
tions, if Imxj(t).0 (j51,2,...,N), then these zeros are different and alternate among themse
More precisely, the following inequality holds:

b1,a1,¯,bN21,aN21,bN . ~2.13!

Another interesting property concerning the zerosb j comes from the relation~2.13!. To see this,
we recall from~2.12b! that b j satisfies the algebraic equation Ref(bj ,t)50. Differentiating this
equation witht, one obtains

db j~ t !

dt
52

Im f ~b j ,t !

Ref x~b j ,t !
, ~ j 51,2,...,N!. ~2.14!

We can show that the derivativesdb j /dt are all positive. This statement will be found to b
equivalent to a proposition that the Bezout matrix introduced later@see~4.5! and~4.6! in Sec. IV#
is positive definite. Hence,b j ( j 51,2,...,N) turn out to be increasing functions oft. In view of
~2.13! as well asa j5const (j51,2,...,N21), we conclude that whent tends to infinity,b j ap-
proaches toa j indefinitely for j 51,2,...,N21, whereasbN tends to infinity. This observation wil
suggest the form of the large time asymptotic ofux , as just described below.

A convenient form ofux in studying the interaction process of the kinks is given by diff
entiating~2.1! with x as

ux5(
j 51

N
2Imxj

~x2Rexj !
21~ Im xj !

2 , ~2.15!
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which represents a superposition ofN interacting kinks. One can see thatux is always positive for
all real values ofx and t since Imxj(t).0 (j51,2,...,N). This is an interesting property of th
N-kink solution. Now, the asymptotic form ofux for large t is represented as2–4

ux;
2a1

~x2a1t2b11a2 /a1!21a1
2 12p (

j 51

N21

d~x2a j !, ~2.16!

whered(x2a j ) is Dirac’s delta function. It consists of a pulse with the same profile as the 1-
solution~2.10! but with a phase shift2a2 /a1 and a train ofN21 pulses with the delta function
profiles whose positions are fixed in space. The most significant feature of the asymptotic be
of the N-kink solution is thatN21 pulses blow up in the limit of infinite time. The detail of th
interaction process of the 2-kink solution has been clarified completely.3,10 Since the essentia
features of the interaction process are observed in the 2-kink solution, it will be worthwh
describe it in some detail. There exist two types of the interaction process according to the
condition. In Fig. 1, the perspective view of the 2-kink solution is drawn for two kinds of in
conditions. We plotu[ux instead ofu. In accordance with~2.15!, the initial condition foru may
be specified as

u5ux~x,0!5(
j 51

2
2ã j

~x2b̃ j !
21ã j

2
, ~2.17!

where ã j and b̃ j are arbitrary real parameters which are expressed in terms ofaj and bj as a1

5ã11ã2 , a25ã1b̃21ã2b̃1 , b15b̃11b̃2 , b25b̃1b̃22ã1ã2 . Hence,~2.17! represents a superpo
sition of two pulses where thej th pulse has the amplitude 2/ãj and the positionb̃ j . In Fig. 1~a!,
the parameters are chosen asã1512.0, ã251.0, b̃15220.0, b̃250. In this case, two kinks
coalesce into a single pulse at the instant of the collision~t51.30 in the present case! where the
distance between two zerosx1(t) andx2(t) in the complex plane becomes minimum. After th
the small kink moves quickly to the right direction while the large kink is decelerated an
amplitude grows indefinitely and blows up at the positionx5a2 /a1521.53. Figure 1~b! shows
the second type of the interaction process where the parameters are the same as those o
case exceptã158.0. In this case, two kinks never coalesce at the instant of the colli
(t51.73). The behavior of two kinks after the collision is similar to that for the first case.

III. EIGENFUNCTIONS OF THE LINEARIZED sH EQUATION

In this section, we shall solve the eigenvalue problem for the sH equation linearized abo
N-kink solution. We write it in the form

Hf t52cosu f, f5f~x,t !, ~3.1!

whereu is given explicitly by~2.1!, ~2.5!, and~2.8!. Here, we shall first seek particular solution
of ~3.1! under the following two classes of boundary conditions:~i! f6;e6 i (lx1t), uxu→`, ~ii !
f→0, uxu→`, wherel is a positive parameter. Cases~i! and ~ii ! correspond to the asymptoti
forms of the eigenfunctions for the continuous and discrete spectra, respectively. To s
condition~i!, we have used the fact that whenuxu→`, u52np(n50,61,62,...) since cosu51 in
this limit, so that Eq.~3.1! reduces toHf t52f, giving the solutions shown in case~i!. After
constructing appropriate eigenfunctions, we establish the orthogonality relations among th

A. Construction of eigenfunctions

1. Eigenfunctions for the continuous spectrum

In order to construct solutions for the continuous spectrum@i.e., case~i!#, we decomposef
into the form
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f~x,t !5f1~x,t !1f2~x,t !, ~3.2!

wheref1(f2) is an analytic function in the upper~lower!-half complex plane and then requir
that bothf1 and f2 satisfy Eq.~3.1!. The appropriate boundary condition forf1(f2) is f1

;ei (lx1t)(f2;e2 i (lx1t)) asuxu→` sincel.0. The solutions forf6 satisfying these conditions
have a simple structure. Indeed, they read as

FIG. 1. Perspective view of the 2-kink solution of the sH equation for two kinds of initial conditions.~a! The solution has
one local maximum at the instant of the collision,t51.30. ~b! The solution has two local maxima at the instant of t
collision, t51.73.
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f1~x,t,l!5ei ~lx1t !
f ~x,t !

f * ~x,t !
, ~3.3a!

f2~x,t,l!5e2 i ~lx1t !
f * ~x,t !

f ~x,t !
. ~3.3b!

One can check these solutions by direct substitution of~3.3! into Eq. ~3.1! while employing the
relationsHf656 if6 which follow from the analytical property off6. Note that the depen
dence of the spectral parameterl on f6 is extremely simple sincef and f * are independent ofl.

2. Eigenfunctions for the discrete spectrum

Next, we seek solutions of Eq.~3.1! subject to the boundary conditionf→0 asuxu→`. The
method for constructing solutions for the discrete spectrum is well-known in the direct mult
ton perturbation theory.15–17,22In fact, taking account of the fact that theN-kink solution~2.1! with
~2.5! and~2.8! is parametrized by the 2N parametersaj andbj ( j 51,2,...,N), we differentiate Eq.
~1.1! with respect to these and obtain

HS ]u

]aj
D

t

52cosu
]u

]aj
, ~ j 51,2,...,N!, ~3.4a!

HS ]u

]bj
D

t

52cosu
]u

]bj
, ~ j 51,2,...,N!. ~3.4b!

Obviously, both]u/]aj and]u/]bj are solutions of Eq.~3.1! satisfying the boundary condition
Using the explicit form off given by ~2.5! with ~2.8!, these solutions are represented as

f j[~21! j
]u

]aj
52

Ref

f * f
xN2 j22t

Im f

f * f
xN2 j , ~ j 51,2,...,N!, ~3.5a!

gj[~21! j
]u

]bj
522

Im f

f * f
xN2 j , ~ j 51,2,...,N!, ~3.5b!

where the factor (21) j has been multiplied for later convenience. Note thatf j contains a termtgj

which grows linearly in time. If we differentiate Eq.~1.3! with respect tox and compare the resu
with Eq. ~3.1!, we find thatux satisfies the linearized sH equation~3.1!. This fact makes it possible
to expandux in terms of the eigenfunctions~3.5!. In fact, we can show that

ux5(
j 51

N

~21! j 21~N112 j !~aj 21f j1bj 21gj !. ~3.6!

B. Orthogonality relations

Here, we establish the orthogonality relations among eigenfunctions constructed in A
respect to the inner product^ f (x,t)ug(x,t)&[*2`

` f (x,t)g(x,t)dx. In the following analysis, we
consider various inner products att50 so that the time variable will be omitted. We write dow
the final results,

^f1~x,l!uf2~x,m!&52pd~l2m!, ~3.7a!

^f1~x,l!uf1~x,m!&5^f2~x,l!uf2~x,m!&50, ~3.7b!

^f6~x,l!u f j~x!&5^f6~x,l!ugj~x!&50, ~ j 51,2,...,N!, ~3.7c!
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^ f j~x!u f k~x!&52E
2`

` x2N2 j 2k

f * f
dx[ajk , ~ j ,k51,2,...,N!, ~3.7d!

^gj~x!ugk~x!&52E
2`

` x2N2 j 2k

f * f
dx[bjk , ~ j ,k51,2,...,N!, ~3.7e!

^ f j~x!ugk~x!&50, ~ j ,k51,2,...,N!. ~3.7f!

All the above relations are derived quite easily by using Cauchy’s integral theorem wit
analytical property off and f * , i.e., 1/f (1/f * ) is analytic in Imx,0 (Imx.0). For example, the
relations ~3.7c! are derived as follows: Using~3.3a! and ~3.5a!, one obtainŝ f1(x,l)u f j (x)&
5*2`

` eilxxN2 j ( f 1 f * )/ f * 2dx. Since the integrand is analytic in Imx.0 and vanishes like
2x2 je2l Im x whenx→` (Im x.0), we can enclose the integral path along the large semicirc
the upper-half complex plane. Invoking Cauchy’s theorem, one finds that this inner produ
comes zero. It is worth remarking that relations~3.7a!–~3.7c! and ~3.7e! also hold for arbitraryt
as confirmed by direct calculation using Eqs.~2.2!, ~3.3!, and ~3.5!. In other words, these inne
products are independent oft.

C. Orthonormal bases

As seen from~3.7d!, any two members of the set of functionsf j ( j 51,2,...,N) are not
orthogonal. However, sincef j are linearly independent, one can constitute an orthonorma

$ f̂ 1 , f̂ 2 ,...,f̂ N% following the Gram–Schmidt orthogonalization process. To show thatf j are lin-
early independent, letg j ( j 51,...,N) be arbitrary real numbers and define anN3N symmetric
matrix A whose elements are given by~3.7d!, i.e., A5(ajk). Then

(
j ,k51

N

ajkg jgk52E
2`

` ~( j 51
N g j x

N2 j !2

f * f
dx.0. ~3.8!

This relation implies that the matrixA is positive definite, proving the linear independence off j .
According to the standard theory of linear algebra,23 there exists anN3N triangular matrixP with
elementspjk (pjk50 for j ,k andpj j Þ0 for j 51,2,...,N). Under these conditions, the matrixA
has a decomposition

A5PtP, ~3.9!

wheretP is the transposed matrix ofP. The elements ofP are determined uniquely if we impos
the conditions pj j .0 ( j 51,2,...,N). Let f and f̂ be column vectors with elementsf
5 t( f 1 , f 2 ,...,f N) and f̂5 t( f̂ 1 , f̂ 2 ,...,f̂ N), respectively. Then, we can expressf as a linear combi-
nation of f̂ as

f5Pf̂, ~3.10!

with f̂ j being an orthonormal system

^ f̂ j~x!u f̂ k~x!&5d jk , ~ j ,k51,2,...,N!, ~3.11!

whered jk is Kronecker’s delta, i.e.,d jk51 when j 5k and d jk50 when j Þk. It follows from
~3.10! that f̂5P21f sinceP ia a regular matrix by~3.9! @or (detP)25detAÞ0#, the inverse matrix
P21 exists. The similar argument holds forgj . The expressions corresponding to~3.9!, ~3.10!, and
~3.11! are given, respectively, by

B5PtP, ~3.12!
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g5Pĝ, ~3.13!

^ĝ j~x!uĝk~x!&5d jk , ~ j ,k51,2,...,N!, ~3.14!

whereB is anN3N matrix with elementsbjk , g5 t(g1 ,g2 ,...,gN) andĝ5 t(ĝ1 ,ĝ2 ,...,ĝN). Note
that the decomposition~3.12! is exactly the same as~3.9! sinceajk5bjk by ~3.7d! and ~3.7e!. In
view of the relations~3.7f!, ~3.10!, and~3.13! the bases$ f̂ j% and$ĝ j% are orthogonal to each othe
i.e., ^ f̂ j (x)uĝk(x)&50 for j ,k51,2,...,N. In addition, these bases are also orthogonal tof6.

IV. COMPLETENESS RELATION AND STABILITY ANALYSIS

In this section, we show that the eigenfunctions constructed in Sec. III constitute a com
set. The goal is to prove the following completeness relation:

E
0

`

@f1~x,l!f2~y,l!1f2~x,l!f1~y,l!#dl12p(
j 51

N

$ f̂ j~x! f̂ j~y!1ĝ j~x!ĝ j~y!%

52pd~x2y!. ~4.1!

Here,f6 are given by~3.3! and f̂ j and ĝ j are orthonormal bases defined, respectively, by~3.11!
and ~3.14!. Then, we use~4.1! to solve the initial value problem of the linearized sH equat
~3.1!. Finally, we demonstrate that theN-kink solution under consideration is stable against
finitesimal perturbations.

A. Completeness relation

We shall first prove the following alternative form of the completeness relation;

E
0

`

@f1~x,l!f2~y,l!1f2~x,l!f1~y,l!#dl1 (
j ,k51

N

djk$ f j~x! f k~y!1gj~x!gk~y!%

52pd~x2y!, ~4.2!

where djk is the ~j,k! element of the Bezout matrix defined below. We start our analysis
calculating the integral

I[E
0

`

@f1~x,l!f2~y,l!1f2~x,l!f1~y,l!#dl. ~4.3!

Substituting~3.3! into ~4.3! and using the formulas liml→1` Pe6l(x2y)/(x2y)56p id(x2y),
one can evaluate the integral inl and obtainsI 5I 11I 2 , where

I 152pd~x2y!, ~4.4a!

I 25 i
1

x2y

1

u f ~x! f ~y!u2 @ f 2~x! f * 2~y!2 f * 2~x! f 2~y!#

5 i
f ~x! f * ~y!2 f * ~x! f ~y!

x2y F Ref ~x!

f * ~x! f ~x!

Ref ~y!

f * ~y! f ~y!
1

Im f ~x!

f * ~x! f ~x!

Im f ~y!

f * ~y! f ~y!G . ~4.4b!

At this stage, it is appropriate to introduce the Bezout matrixD5(djk) associated with the
polynomialsf and f * . It may be defined by the relation20,21

2
i

2

f ~x! f * ~y!2 f * ~x! f ~y!

x2y
5 (

j ,k51

N

djkxN2 j yN2k. ~4.5!
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The Bezout matrix introduced here is a real and symmetric matrix. Indeed, one can calcula
elementsdjk explicitly by substituting~2.5! and~2.8! into ~4.5! and comparing the coefficients o
xN2 j yN2k on both sides. They read as

djk5~21! j 1k21(
l 50

j 21

~albj 1k2 l 212aj 1k2 l 21bl !, ~ j ,k51,2,...,N!, ~4.6!

where we have assumedal5bl50 for l .N. As for various properties of the Bezout matrix, on
may consult Ref. 21.

Now, multiplying yN2n/ f * (y) f (y) on both sides of~4.5! and integrating overy, we obtain

2
i

2
PE

2`

` yN2n

x2y F f ~x!

f ~y!
2

f * ~x!

f * ~y!Gdy5
1

2 (
j ,k51

N

djkaknx
N2 j , ~4.7!

where we have used the definition ofajk given by ~3.7d!. The left-hand side of~4.7! may be
rewritten in terms of the Hilbert transform as2(p i /2)@2 f (x)H(xN2n/ f )1 f * (x)H(xN2n/ f * )#.
SincexN2n/ f (x) is an analytic function in Imx,0 and behaves likex2n(n>1) whenuxu→`, we
obtain H(xN2n/ f )52 ixN2n/ f (x). The complex conjugate of this relation givesH(xN2n/ f * )
5 ixN2n/ f * (x). Substituting these into~4.7!, we arrive at the key identity

(
j ,k51

N

djkaknx
N2 j52pxN2n, ~n51,2,...,N!. ~4.8!

Since this relation must hold for arbitraryx, one can see that it is equivalent to the relati
(k51

N ankdk j5(k51
N djkakn52pdn j by taking account of the obvious relationsan j5ajn and djk

5dk j . In terms of the matricesD andA, these expressions can be written compactly as

AD5DA52pI N , ~ I N :N3N unit matrix!. ~4.9!

It immediately follows from~3.7d!, ~3.7e!, and~4.9! that

BD5DB52pI N . ~4.10!

The above two relations imply that

A5B52pD21. ~4.11!

Hence, the matrix elementsajk andbjk are obtained simply if we calculate the inverse matrix
D whose elements are given by~4.6!. Another method to derive the expressions ofajk andbjk is
to evaluate the integrals in~3.7d! and ~3.7e! directly by employing Cauchy’s residue theorem
However, this procedure is found to be quite formidable whenN becomes large.

Next, we substitute~4.5! into ~4.4b! and use the definition off j andgj @see~3.5!# to obtain

I 252 (
j ,k51

N

djk$ f j~x! f k~y!1gj~x!gk~y!%[2~ tf~x!•Df~y!1 tg~x!•Dg~y!!. ~4.12!

Relation~4.2! now follows from ~4.3!, ~4.4!, and~4.12!. In order to derive~4.1!, we change the
bases$ f j ,gj% according to the transformations~3.10! and ~3.13!. Performing this procedure in
~4.12!, I 2 becomes

I 252 t f̂~x!• tPDPf̂~y!2 tĝ~x!• tPDPĝ~y!. ~4.13!

However, on account of relations~3.9!, ~3.12!, and~4.9!,
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tPDP5P21PtPDP5P21ADP52pI N , ~4.14!

and hence~4.13! is simplified as

I 2522p~ t f̂~x!• f̂~y!1 tĝ~x!•ĝ~y!!522p (
j ,k51

N

$ f̂ j~x! f̂ j~y!1ĝ j~x!ĝ j~y!%. ~4.15!

On substituting~4.15! into ~4.2!, one finally obtains~4.1!.
In concluding this subsection, we have to discuss on the complex polynomial functf

introduced in~2.1! since all the results derived so far depend crucially on the analytical prop
of f. The most important assumption imposed onf is that all the zeros off lie in the upper-half
complex plane@see~2.1!#. Thanks to the Hermite theorem,20,21we see that the condition forf (x,0)
is satisfied only when the Bezout matrixD5(djk) given by ~4.6! is positive definite. As is
well-known,23 the latter statement is equivalent to requiring the followingN conditions for the
principal minors of the matrixD:

D ~ j ![detS d11 d12 ¯ d1 j

d21 d22 ¯ d2 j

] ] � ]

dj 1 dj 2 ¯ dj j

D .0, ~ j 51,2,...,N!. ~4.16!

These conditions also assure that the inverse matrixD21 is positive definite. In view of relation
~4.9!, it implies thatA is positive definite as well, which is consistent with relation~3.8!. The next
step is to prove that all the zeros off (x,t) lie in Im x.0. For this purpose, it is sufficient to chec
that the Bezout matrix associated withf (x,t) and f * (x,t) is positive definite. The matrix element
of the corresponding Bezout matrix are readily obtained if we replacebj by bj1aj t ( j
51,2,...,N) as seen from~2.5! and ~2.8!. However, it is obvious from~4.6! that the matrix
elementsdjk are unchanged by this manipulation. Hence, we can conclude that the cond
Im xj(t).0 are always satisfied provided that they hold att50. Below, we shall write the condi
tions ~4.16! in the case ofN52 andN53 explicitly together with the matrix elements ofA and
P.
~1! N52,

D ~1!5a1.0, D ~2!5a1~a2b12a1b2!2a2
2.0, ~4.17a!

a1152p~a2b12a1b2!/D ~2!, a1252pa2 /D ~2!, a2252pa1 /D ~2!, ~4.17b!

p115Aa11, p215a2A2p/$~a2b12a1b2!D ~2!%, p225A2p/~a2b12a1b2!. ~4.17c!

~2! N53,

D ~1!5a1.0, D ~2!5a1~a2b12a1b2!2a2
2.0,

D ~3!5~a2
21a1

2b22a1a2b1!a2b31~a1a2b12a1
2b22a2

2!a3b21~2a1b21a2b12a1b1
2!a3

2

2a1
3b3

22a3
31~2a1b123a2!a1a3b3.0, ~4.18a!

a1152p$2~a3b12a1b3!21~a2b12a1b21a3!~a3b22a2b3!%/D ~3!, ~4.18b!

a1252p$a3~a3b12a1b3!1a2~a2b32a3b2!%/D ~3!, ~4.18c!

a135a2252p$2a3
21a1~a3b22a2b3!%/D ~3!, ~4.18d!
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a2352p$a2a31a1~a1b32a3b1!%/D ~3!, ~4.18e!

a3352p$a1a32a2
22a1~a1b22a2b1!%/D ~3!, ~4.18f!

p115Aa11, p215
a12

Aa11

, p2252pAa3b22a2b3

a11D
~3! ,

p315
a13

Aa11

, p325
2p~a1b32a3b1!

Aa11~a3b22a2b3!D ~3!
, p335

A2p

Aa3b22a2b3

. ~4.18g!

B. Stability analysis

We are now in a position to study the stability problem of theN-kink solution. Using the
completeness relation, we can solve the initial value problem of the linearized sH equation~3.1!
and which provides an information on the development of perturbations imposed on the
solution at an initial time. Indeed, letf0 be the initial value off. Then, its temporal evolution is
found to be as follows:

f~x,t !5E
0

`

@f̂2~l!f1~x,t,l!1f̂1~l!f2~x,t,l!#dl1(
j 51

N

@f̂ j f̂ j~x,t !1ĉ j ĝ j~x,t !#,

~4.19!

where

f̂ j~x,t !5 (
k51

N

~P21! jk f k~x,t !, ~ j 51,2,...,N!, ~4.20a!

ĝ j~x,t !5 (
k51

N

~P21! jkgk~x,t !, ~ j 51,2,...,N!, ~420b!

and the expansion coefficients are determined from the initial value by

f̂6~l!5
1

2p
^f6~x,0,l!uf0~x!&, ~4.21a!

f̂ j5^ f̂ j~x,0!uf0~x!&, ~ j 51,2,...,N!, ~4.21b!

ĉ j5^ĝ j~x,0!uf0~x!&, ~ j 51,2,...,N!. ~4.21c!

In order to analyze the stability characteristics of theN-kink solution, one must investigate th
asymptotic behavior off for large t, which we shall now discuss. The continuous spectr
represented by the integral in~4.19! develops into an oscillating wave train whose amplitude
finite as confirmed by~2.5!, ~2.8!, and ~3.3!. Hence, its temporal behavior is stable. As for t
discrete spectrum corresponding to the sum in~4.19!, on the other hand, only thef̂ j ( j
51,2,...,N) develop a secular term proportional tot. It can be verified by inspecting~3.5!, ~3.10!,
and~3.13!. This type of secularity always occurs in the stability analysis of solitary waves.13 One
can remove it by simply shifting the phase of the kink. Hence, it would not cause real so
instabilities. In the present case, it follows from~3.5! that the secular term is proportional togj

(5(21) j]u/]bj ). Thus, shiftingbj slightly, one can remove the secular instability. In this sen
theN-kink solution is stable against infinitesimal perturbations. The situation just described h
quite similar to that encountered in the stability analysis of theN-soliton solution of the BO
equation.14,15
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V. DIRECT MULTIKINK PERTURBATION THEORY

In this section, we consider the perturbed sH equation of the form,

Hu t1sinu5eR@u#, ~5.1!

whereeR@u# represents the perturbation ande is a small positive parameter that measures
magnitude of the perturbation. The addition of the perturbation may enable us to preve
blowup of solutions and hence the sH equation may become a more realistic model equatio
the physical point of view. We have already investigated the solution of Eq.~5.1! with R@u#
52ux .24 It turns out that this model equation also permits linearization and is solved exactl
various interesting properties of the solutions have been demonstrated. Here, we shall so
~5.1! by means of a direct multikink perturbation theory using the method of multiple time sc
It will be shown that the completeness relation establishes in Sec. IV will play a central ro
evaluating the first-order correction~or radiation! to the multikink solution.

A. Method of multiple scales

We now look for a solution of Eq.~5.1! in the form of the perturbation expansion

u5u01eu1¯ . ~5.2!

In the following analysis, we restrict our consideration to the first two terms in the above e
sion. The appropriate initial condition for the present initial value problem is

u05uN , u150, at t50, ~5.3!

whereuN is the N-kink solution given by~2.1! with ~2.5! and ~2.8!. As is well-known, a naive
substitution of~5.2! into Eq. ~5.1! would yield secular terms in the correction termu1 . One can
remedy this phenomenon by employing the method of multiple time scales. In accordance w
spirit of the method, we introduce the two different time scales by

t05t, t15et, ~5.4!

and assume under the action of a perturbation that the kink parametersaj andj j are modulated
slowly with the time scalet1 according to

aj5aj~ t1!, j j5
1

e E0

t1
aj~ t18!dt181bj~ t1!, ~ j 51,2,...,N!. ~5.5!

We then rewrite the time derivative as

]

]t
5

]

]t0
1e

]

]t1
, ~5.6!

substitute~5.2! and ~5.6! into Eq. ~5.1! and equate the like powers ofe on both sides. The
lowest-order equation is satisfied automatically by theN-kink solution, i.e., u0

5uN(x;a1 ,...,aN ,j1 ,...,jN). Note in this expression thatuN does not depend explicitly ont0 ,
but depends ont1 through the kink parameters. The first-order equation becomes

Lu15R1 , ~5.7a!

whereL is a linear operator defined by

Lu15Hu1,t0
1(

j 51

N

ajHS ]u1

]j j
D1cosu0u1 , ~5.7b!
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andR1 is a source term

R15R@u0#2(
j 51

N S aj ,t1
HS ]u0

]aj
D1bj ,t1

HS ]u0

]j j
D D . ~5.7c!

B. Completeness relation

The core of the present perturbation method is to solve~5.7! by employing the completenes
relation~4.1!. Before doing this, it will be appropriate to change the bases. One reason is th
eigenfunctionsf j develop a secular term proportional tot as seen from~3.5a!. To carry out this
procedure, we note that theN-kink solution is parametrized by the 2N parameters asuN

5uN(x;a1 ,...,aN ,j1 ,...,jN). DifferentiatinguN by aj andj j , we can construct the new expan
sion bases in place of~3.5!,

F j~x,t ![~21! j
]uN

]aj
52

Ref ~x,t !

f * ~x,t ! f ~x,t !
xN2 j , ~ j 51,2,...,N!, ~5.8a!

Gj~x,t ![~21! j
]uN

]j j
522

Im f ~x,t !

f * ~x,t ! f ~x,t !
xN2 j , ~ j 51,2,...,N!, ~5.8b!

where the variablet stands for (t0 ,t1). We use this notation only for simplicity. The basisf6

corresponding to the continuous spectrum, on the other hand, remains unchanged@see~3.3!#. The
orthogonality relations among these functions take exactly the same forms as those given b~3.7!,
where we only replacef j andgj by F j andGj , respectively.

The completeness relation corresponding to~4.1! now reads in the form

E
0

`

@f1~x,t,l!f2~y,t,l!1f2~x,t,l!f1~y,t,l!#dl

12p(
j 51

N

$F̂ j~x,t !F̂ j~y,t !1Ĝj~x,t !Ĝj~y,t !%52pd~x2y!. ~5.9!

Here

F̂5P21F, Ĝ5P21G, ~5.10a!

F5 t~F1 ,F2 ,...,FN!, G5 t~G1 ,G2 ,...,GN!, ~5.10b!

F̂5 t~ F̂1 ,F̂2 ,...,F̂N!, Ĝ5 t~Ĝ1 ,Ĝ2 ,...,ĜN!. ~5.10c!

We recall that the matrixP5(pjk) is determined by~3.9! since in the present case, the matr
elementsajk andbjk defined, respectively, by~3.7d! and~3.7e! with f (x,t) and f * (x,t) instead of
f (x,0) andf * (x,0), respectively, are independent oft as confirmed by using~2.2!. The basesF̂ j

andĜj are orthonormal and also they are orthogonal tof6, i.e.,

^f6~x,t,l!uF̂ j~x,t !&50, ^f6~x,t,l!uĜj~x,t !&50, ^F̂ j~x,t !uF̂k~x,t !&5d jk ,
~5.11!

^Ĝj~x,t !uĜk~x,t !&5d jk , ^F̂ j~x,t !uĜk~x,t !&50, ~ j ,k51,2,...,N!.

The new expansion bases introduced in~5.9! satisfy the following equations:

HF̂ j5Ĝj , HĜj52F̂ j , ~ j 51,2,...,N!, ~5.12!
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Lf650, LF̂ j5F̂ j , LĜj50, ~ j 51,2,...,N!. ~5.13!

Relations ~5.12! hold in view of ~5.10! and the relationsHF j5Gj and HGj52F j ( j
51,2,...,N) which follow from the analytical property off. To derive Eq.~5.13!, one first notes
from ~3.5! and~5.8! that f j5F j1t0Gj andgj5Gj ( j 51,2,...,N). Substituting these relations int
the equationsLf j5Lgj50 ( j 51,2,...,N) and using~5.10! and~5.12!, one obtains the second an
third equations in~5.13!, whereas the first equation is obvious.

C. Expansion of u1 and R1

If we use the completeness relation~5.9!, we can expand the first-order solutionu1 and the
source termR1 in terms of the new bases$f6,F̂ j ,Ĝj% as follows:

u1~x,t !5E
0

`

@û1
2~ t,l!f1~x,t,l!1 û1

1~ t,l!f2~x,t,l!#dl

1(
j 51

N

@ û1,j~ t !F̂ j~x,t !1x̂1,j~ t !Ĝj~x,t !#, ~5.14!

R1~x,t !5E
0

`

@R̂1
2~ t,l!f1~x,t,l!1R̂1

1~ t,l!f2~x,t,l!#dl

1(
j 51

N

@R̂1,j~ t !F̂ j~x,t !1Ŝ1,j~ t !Ĝj~x,t !#. ~5.15!

Here, the expansion coefficients are given by

û1
6~ t,l!5

1

2p
^f6~x,t,l!uu1~x,t !&, ~5.16a!

û1,j~ t !5^F̂ j~x,t !uu1~x,t !&, ~ j 51,2,...,N!, ~5.16b!

x̂1,j~ t !5^Ĝj~x,t !uu1~x,t !&, ~ j 51,2,...,N!, ~5.16c!

R̂1
6~ t,l!5

1

2p
^f6~x,t,l!uR1~x,t !&, ~5.17a!

R̂1,j~ t !5^F̂ j~x,t !uR1~x,t !&, ~ j 51,2,...,N!, ~5.17b!

Ŝ1,j~ t !5^Ĝj~x,t !uR1~x,t !&, ~ j 51,2,...,N!. ~5.17c!

D. Time evolution of the expansion coefficients

Let us now derive the evolution equations for the expansion coefficients. Introducing~5.14!
and ~5.15! into ~5.7!, using the evolution equations~5.13! for F̂ j and Ĝj and comparing the
coefficients off6, F̂ j , andĜj , we obtain the evolution equations for the expansion coefficie

]û1
6

]t0
57 iR̂i

6 , ~ j 51,2,...,N!, ~5.18a!

2
]x̂1,j

]t0
1 û1,j5R̂1,j , ~ j 51,2,...,N!, ~5.18b!
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]û1,j

]t0
5Ŝ1,j , ~ j 51,2,...,N!. ~5.18c!

Before solving~5.18!, it is convenient to simplify the right-hand side of~5.18!. This can be
accomplished as follows. First, using~5.8! and~5.10!, we rewrite~5.7c! in terms of the expansion
basesF̂ j andĜj as

R15R@u0#2(
j 51

N

~21! j~aj ,t1
HF j1bj ,t1

HGj !5R@u0#2 (
j ,k51

N

~21! j~aj ,t1
pjkĜk2bj ,t1

pjkF̂k!.

~5.19!

It is now straightforward by substituting~5.19! into ~5.17! and using the orthogonality relation
~5.11! to derive the desired relations

R̂1
6~ t,l!5

1

2p
^f6~x,t,l!uR@u0#&, ~5.20a!

R̂1,j~ t !5 (
k51

N

~21!kpk jbk,t1
1^F̂ j~x,t !uR@u0#&, ~ j 51,2,...,N!, ~5.20b!

Ŝ1,j~x,t !52 (
k51

N

~21!kpk jak,t1
1^Ĝj~x,t !uR@u0#&, ~ j 51,2,...,N!. ~5.20c!

E. Solution to the first-order equation

1. Secularity conditions

We first solve~5.18b! and~5.18c!. When the perturbationR does not depend explicitly on th
fast time t0 , the quantitiesR̂1,j and Ŝ1,j given, respectively, by~5.20b! and ~5.20c! are also
independent oft0 . In view of this fact, we can integrate Eqs.~5.18b! and~5.18c! immediately and
find that the coefficientsû1,j andx̂1,j develop singularities of ordert0 andt0

2, respectively, unless
the following secular conditions are imposed:

R̂1,j5Ŝ1,j50, ~ j 51,2,...,N!. ~5.21!

These 2N conditions determine completely the time evolution ofaj and bj @or j j by ~5.5!#. In
terms of the original time variables, the final results are written as follows:

daj

dt
5~21! je(

k51

N

~P21!k j^Ĝk~x,t !uR@u0#&, ~ j 51,2,...,N!, ~5.22a!

dj j

dt
5aj2~21! je(

k51

N

~P21!k j^F̂k~x,t !uR@u0#&, ~ j 51,2,...,N!. ~5.22b!

2. First-order solution

In accordance with the initial condition~5.3!, one can setû1
6(0)50, û1,j (0)5x̂1,j (0)50 ( j

51,2,...,N), which combined with~5.21!, yields the solution of~5.18b! and ~5.18c!,

û1,j~ t !5x̂1,j~ t !50, ~ j 51,2,...,N!, ~5.23!

and ~5.18a! is integrated to give the solution
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û1
6~ t,l!57

i

2p E
0

t0
^f6~x,t08 ,l!uR@u0#&dt08 . ~5.24!

The first-order solution immediately follows from~5.14! and ~5.23! as

u1~x,t !5E
0

`

@û1
2~ t,l!f1~x,t,l!1 û1

1~ t,l!f2~x,t,l!#dl. ~5.25!

Thus, one can see that the discrete spectrum does not contribute to the first-order solution

F. Example

In concluding this section, it will be instructive for the purpose of understanding the ess
of the perturbation theory developed so far to perform an explicit calculation. We take the
turbation of the formR@u#52ux since in this case, Eq.~5.1! can be solved exactly24 and hence
it serves to check all the results derived by the present perturbation theory.

Using the relations~3.5!, ~3.6!, ~5.8!, and~5.10!, we first rewrite the perturbationR@u# in the
form,

R@u#5 (
k,l 51

N

~21!k~N112k!~ak21pklF̂ l1jk21pklĜl !. ~5.26!

Substituting~5.26! into ~5.24! and using~5.11!, one finds^f6(x,t,l)uR@u0#&50 and henceu1

50 by ~5.24! and ~5.25!. Thus, the first-order correction vanishes identically. The evolu
equations foraj andj j are derived from~5.11!, ~5.22!, and~5.26! and they read as

daj

dt
5e~N112 j !j j 21 , ~ j 51,2,...,N!, ~5.27a!

dj j

dt
5aj2e~N112 j !aj 21 , ~ j 51,2,...,N!. ~5.27b!

In terms of the complex variablessj5j j1 ia j , the above equations can be recast into a sin
equation forsj ,

dsj

dt
5

1

2i
~sj2sj* !1 i e~N112 j !sj 21 , ~ j 51,2,...,N!. ~5.28!

Note that Eqs.~5.28! reduce to Eqs.~2.7! in the absence of the perturbation. Equations~5.28!
coincide perfectly with the corresponding equations24 obtained analytically by direct linearization
In the special case ofN51, Eqs.~5.27! become

da

dt
5e,

dj

dt
5a, ~5.29!

which are integrated immediately to give the solutions

a5a01et, j5j01a0t1 1
2et2, ~5.30!

where a0 and j0 are initial values ofa and j, respectively. The present perturbation theo
reproduces the exact solutions within the approximation up to ordere.
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VI. CONCLUDING REMARKS

In this paper, we solved the initial value problem of the linearized sH equation and prove
linear stability of the multikink solution. The essential part in the proof lies in establishing
completeness relation among the eigenfunctions of the linearized sH equation. The eigenfu
constructed here correspond to the squared eigenfunctions25,26 which appear in the inverse sca
tering formalism of the soliton equations. The analysis developed in the present paper is
simple in the sense that it is purely algebraic and does not rely on the IST but use the cl
theory of algebraic equations mainly due to Hermite. We have already obtained the similar
pleteness relation in studying the linear stability analysis for the multisoliton solution of the
equation.14,15 Although the completeness relation in the BO multisoliton case also has bee
rived by purely algebraic means, it consists of proving several complicated algebraic iden
This fact would come from the difference of the structure between the soliton and kink solu

An important application of the completeness relation is given to a direct perturbation th
for the multikink solutions, as demonstrated in Sec. V. This approach is more direct and
parent. It is an interesting problem to develop the multikink perturbation based on the IS
comparison with the present theory.
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Representations of quantum toroidal algebra
Uq„sl n¿1,tor … „nÐ2…
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By the method of Chari and Pressley, representations of the quantum toroidal
algebraUq(sln11,tor) (n>2) are studied. ©2000 American Institute of Physics.
@S0022-2488~00!02509-3#

I. INTRODUCTION

After the work of Drinfeld on finite dimensional representations of Yangian,1 Chari, and
Pressley studied finite dimensional representations of the quantum affine algebra in a se
papers. Among their results, those related to our work are as follows. In Refs. 2–4, irred
finite dimensional representations were proven to be characterized by Drinfeld polynomials
the Yangian case. Moreover they showed that the existence ofR matrices5,6 acting on their tensor
products was proven by utilizing the Drinfeld polynomials associated to the tensor produc
Ref. 7, possibleUq8(sln11̂) module structures on irreducible finite dimensionalUq(sln11) mod-
ules were shown to be only those via the homomorphismsUq8(sln11̂)→Uq(gln11) by Jimbo.8

Moreover in Refs. 9–11, minimal affinizations of representations of quantum groups of non
type were studied.

In this paper, we apply their method to highest weight representations of the quantum to
algebraUq,k(sln11,tor) ~k is the parameter contained in the algebra!.12,13 Many of the results
obtained by Chari and Pressley forUq8(sln11̂) (n>2) can be generalized to our case almo
verbatim. In this analysis, we use the automorphism of the the quantum toroidal algebra ob
in Ref. 14. Our main results are the proofs of the following facts:~i! some class of irreducible
highest weight representations of the quantum toroidal algebra are characterized by D
polynomials,~ii ! there exist solutions of the Yang–Baxter equation which depend on a spe
parameter and act on the tensor product of irreducible highest weight representations chara
by Drinfeld polynomials,~iii ! no toroidal action can be defined on integrable highest we
representations ofUq(sln11̂) with level .1, ~iv! if the parameterk is not equal toq6(n11), then
toroidal module structures can be defined on irreducible integrable highest weight represen
of Uq(gln11̂) with level c.1 if and only if k5q6(n1112c). Moreover, these structures are tho
via the homomorphisms from the quantum toroidal algebra to a completion ofUq(gln11̂).15 Note
that our result clarifies the relation between the level 1 representation of the quantum to
algebra in Ref. 16 and the one in Refs. 17 and 18.

II. PRELIMINARIES

A. Root data

Throughout this paper, we fix a complex numberq which is transcendental overQ and an
integern>2. For l>1, let (ai j

( l ))0< i , j < l be the Cartan matrix of typeAl
(1) and setai j 5ai j

(n) .
Seth5Ch0%¯% Chn% Cd, and leta i andL i (0< i<n) be the elements ofh* determined

by

^hi ,a j&5ai j , ^d,a j&51, ^hi ,L j&5d i j , ^d,L j&50. ~2.1!
70790022-2488/2000/41(10)/7079/20/$17.00 © 2000 American Institute of Physics
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We setd5( i 50
n a i , Q5(0< i<nZa i andQ15(0< i<nZ>0a i . We define a partial order< onh*

by m<l if and only if l2mPQ1.

B. Definition of the quantum toroidal algebras Uk and Ũk

1. Quantum toroidal algebra U q„sl n¿1,tor …

Uq(sln11,tor) ~Refs. 12 and 13! is the C algebra defined by generato
xi ,k

6 , hi ,r , ki
61 , C61, D61, andj61 (0< i<n, kPZ, r PZ2$0%) and relations:

j61 central, j61j7151, ~2.2!

D61D7151, Dki5kiD, ~2.3!

Dxi ,k
6 D215q61xi ,k

6 , Dhi ,rD
215hi ,r , ~2.4!

C61 central, ki
61ki

715C61C7151, ~2.5!

@ki ,kj #5@ki ,hj ,r #50, ~2.6!

j i j
r @hi ,r ,hj ,s#5d r 1s,0

@rai j #

r

Cr2C2r

q2q21 , ~2.7!

kixj ,k
6 ki

215q6ai j xj ,k
6 , ~2.8!

j i j
r @hi ,r ,xj ,k

6 #56
@rai j #

r
C(r 7ur u)/ 2xj ,r 1k

6 , ~2.9!

@xi ,k
1 ,xj ,l

2 #5
d i j

q2q21 ~C2 lf i ,k1 l
(2) 2C2kf i ,k1 l

(1) !, ~2.10!

@xi ,k11
6 ,xi ,l

6 #q621@xi ,l 11
6 ,xi ,k

6 #q6250, ~2.11!

if ai j 50, @xi ,k
6 ,xj ,l

6 #50, ~2.12!

if ai j 521,

j i j @xi ,k11
6 ,xj ,l

6 #q711@xj ,l 11
6 ,xi ,k

6 #q7150, ~2.13!

xi ,k1

6 xi ,k2

6 xj ,l
6 2@2#xi ,k1

6 xj ,l
6 xi ,k2

6 1xj ,l
6 xi ,k1

6 xi ,k2

6 1~k1↔k2!50. ~2.14!

Heref i ,7r
(6) (r>0) is expressed in terms ofki

61 andhi ,r ’s by

(
r>0

f i ,7r
(6) z6r5ki

71 expS 7~q2q21!(
r .0

hi ,7rz
6r D , ~2.15!

@m#5 (qm2q2m)/(q2q21) , @x,y#p5xy2pyx andj i j 51 (i , j )Þ(n,0), (0,n), jn05j0n
215j.

Remark:The elementsC2r /2hi ,r correspond to thehi ,r in the standard notation.
We also need theC algebra defined by the same generators asUq(sln11,tor) (D61 replaced by

D̃61) and relations~2.2!, ~2.5!–~2.14!, and

D̃61D̃7151, D̃ki5kiD̃, ~2.16!
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D̃xi ,k6d i0

6 D̃215q(n11)k61xi ,k6d i0

6 , D̃hi ,r D̃
215q(n11)rhi ,r . ~2.17!

We shall denoteUq(sln11,tor) and the algebra just defined above byU andŨ, respectively. For
kPC3, setUk5U/^j2k&. Let U k

6 ~respectively,U k
0) be the subalgebra ofUk generated by the

xi ,k
6 ~respectively, thef i ,7r

(6) , C61, andD61). We also needŨk and Ũk
6 defined similarly. For

later convenience, for any integeri we definexi ,k
6 , hi ,rPUk ~or Ũk) by

xi 1(n11)s,k
6 5k2skxi ,k

6 , hi 1(n11)s,r5k2srhi ,r ~0< i<n,sPZ!. ~2.18!

We let Uk8 ~respectivelyŨk8) signify the subalgebra ofUk ~respectively,Ũk) generated by
xi ,k

6 , hi ,r , ki
61, andC61 (0< i<n, kPZ, r PZ\$0%). As is easily shown, these two subalg

bras are isomorphic and their defining relations are~2.5!–~2.14! with j5k. We shall identify
these two subalgebras.

Seta i85a i (1< i<n) anda085d82(1< i<na i . By assigning

6a i1kd8 ~respectively, 6a i81kd! to xi ,k
6 ,

rd8 ~respectively, rd! to hi ,r ,

0 to ki
61 ,C61,D61 ~respectively, D̃61!,

Uk ~respectively,Ũk) is given a structure ofQ% Zd8 graded algebras. We denote its (a,ld8)
homogeneous component byUk,a,ld8 ~respectivelyŨk,a,ld8). We setUk,a,ld8

8 5Uk,a,ld8ùUk8 and

defineŨk,a,ld8
8 similarly. Then clearlyUk,b1kd,ld8

8 5Ũk,b1 ld,kd8
8 (bPQ̄) whereQ̄5(1< i<nZa i .

Set Uk,a5( lUk,a,ld8 and Ũk,a5( l Ũk,a,ld8 (aPQ). Then Uk,a coincides with the weight
space ofUk defined by

Uk,a5$xPUkukixki
215q^hi ,a&x,0< i<n,Dx D215q^d,a&% ~2.19!

andŨk,a coincides with the weight space ofŨk defined in the same manner withD replaced byD̃.

2. Quantum affine algebra U q„sl l¿1
ˆ

…

Uq(sll 11̂) (1< l<n) ~Ref. 1! is defined to be the C algebra generated b
xi ,k

6 , hi ,r , ki
61 , C61, and D̃61 (1< i< l , kPZ, r PZ\$0%) with relations ~2.5!–~2.14!,

~2.16!, and

D̃xi ,k
6 D̃215q( l 11)k61xi ,k

6 , D̃hi ,r D̃
215q( l 11)rhi ,r , ~2.20!

where the subscriptsi , j are between 1 andl . This algebra is known to be described by gene
tors xi

6 , t i
61 (0< i< l ), D61 and relations5,6

D61D7151, Dti5t iD, Dxi
6D215q61xi

6 , ~2.21!

t i
61t i

7151, t i t j5t j t i , ~2.22!

t ixj
6t i

215q6ai j
( l )

xj
6 , ~2.23!

@xi
1 ,xj

2#5
d i j

q2q21 ~ t i2t i
21!, ~2.24!
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(
s50

rª12ai j
( l )

~21!s~xi
6!(s)xj

6~xi
6!(r 2s)50 ~ iÞ j !, ~2.25!

where (xi
6)(m)5(xi

6)m/@m#@m21#¯@1#. We shall choose a correspondence of
generators19,20 such that

xi
65xi ,0

6 , t i5ki ~1< i< l !, t0¯t l5C, D5D̃, ~2.26!

x0
15C~k1¯kl !

21@¯@x1,1
2 ,x2,0

2 #q ,...,xl ,0
2 #q , ~2.27!

x0
25@xl ,0

1 ,...,@x2,0
1 ,x1,21

1 #q21¯#q21k1¯klC
21. ~2.28!

Let Uq8(sll 11̂) be the subalgebra ofUq(sll 11̂) generated byxi ,k
6 , hi ,r , ki

61, and C61 (1
< i< l , kPZ, r PZ\$0%). The defining relations are~2.5!–~2.14! where the subscriptsi , j are
between 1 andl . This algebra is also known to be described by generatorsxi

6 , t i
61 (0< i< l )

similarly to Uq(sll 11̂).
We shall writeU ~respectively,U8) for Uq(sln11̂) @respectively,Uq8(sln11̂)#. We define the

weight spaceUa (aPQ) of U in a similar way toŨk,a .
Finally let Uq(sln11) be the sublagebra ofU8 generated byxi ,0

6 , ki
61 (1< i<n).

C. Isomorphisms of Uk and Ũk

1. (Anti)automorphisms

We need the automorphismr0 of U8 and antiautomorphismss, h of U determined by

r0 : xi
6°~21!d i0xi

6 , t i°t i , ~2.29!

s : xi
6°xi

6 , t i°t i
21 , D°D21, ~2.30!

h : xi ,k
6 °xi ,2k

6 , hi ,r°2Crhi ,2r , ki°ki
21 ,

C°C, D̃°D̃ )
1< i<n

ki
2 i (n112 i ) . ~2.31!

Since s and h preserve the subalgebraU8, they define antiautomorphisms ofU8, which we
denote by the same letterss andh.

We also need the automorphismsXj (0< j <n11), Yj (1< j <n11), t, g, and xa (a
PC3) of Uk such that

Xj : xi ,k
6 °k6d i0d j ,n11~21! j d i j̄ xi ,k7d i j̄

6 , hi ,r°hi ,r , ki°C2d i j̄ ki ,

C°C, D°D, ~2.32!

Yj : xi ,k
6 °k6d i0d j ,n11~21! j d i j̄ 2( j 21)d i , j 21xi ,k7d i j̄ 6d i , j 21

6 , hi ,r°hi ,r ,

ki°C2d i j̄ 1d i , j 21ki , C°C, D°D, ~2.33!

t : xi ,k
6 °xi 11,k

6 , hi ,r°hi 11,r , ki°ki 11 ,

C°C, D°D, ~2.34!

g : xi ,k
6 °~21!kxi ,k

6 , hi ,r°~21!rhi ,r , ki°ki ,
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C°C, D°D, ~2.35!

xa : xi ,k
6 °a(n11)k61xi ,k

6 , hi ,r°a(n11)rhi ,r , ki°ki ,

C°C, D°D. ~2.36!

Here 0< i<n, and ī denotes the integer between 0 andn which is equal toi modn11. We set
Q5gt.

We define automorphismsỸj (1< j <n11), t̃, andg̃ of Ũk so that they map the generato
other thanD̃61 asYj , t, andg do, and sendD̃ to D̃K j (Ck0¯kn) j , D̃K1

21(Ck0¯kn)n11, andD̃,
respectively. HereK j5)1< l , j kl

2 l) j < l<nkl
n112 l . We setQ̃5g̃ t̃.

Let n̄a (aPC3) be the automorphism ofŨ such that

xi ,k62d i0

6 °a(n11)k61xi ,k62d i0

6 , hi ,r°a(n11)rhi ,r , ki°ki ,

C°C, D̃°D̃, j°j. ~2.37!

This map induces an automorphism ofŨk , which we denote byña . We let z̃a (aPC3) signify
the automorphism ofŨk determined by

xi ,k
6 °a61xi ,k

6 , hi ,r°hi ,r , ki°ki , C°C, D̃°D̃. ~2.38!

Finally let fe0 ,...,en ,e (e i ,e561) be the automorphism ofUk such that

xi ,k
1 °e ixi ,k

1 , xi ,k
2 °ekxi ,k

2 , hi ,r°e (r 2ur u)/2hi ,r ,
~2.39!

ki°e iki , C°eC, D°D,

andv the isomorphismUk→U k21 determined by

xi ,k
6 °xn112 i ,k

6 , hi ,r°hn112 i ,r , ki°kn112 i ~0< i<n!,

C°C, D°D. ~2.40!

2. Isomorphisms c and p

Let h : U→Uk andv : U8→Uk be the homomorphisms defined by

xi
6°xi ,0

6 , t i°ki , D°D ~0< i<n! ~2.41!

and

xi ,k
6 °xi ,k

6 , hi ,r°hi ,r , ki°ki , C°C ~1< i<n!, ~2.42!

respectively. Define homomorphismsh̃ : U8→Ũk and ṽ : U→Ũk similarly.
Later we need the following proposition.
Proposition 1: (1) There exist isomorphismsc : Uk→Ũk and p : Uk→Ũk determined by

cv5h̃, ch5 ṽhs and ph5 ṽ, pvhs5h̃,

respectively.
(2) The isomorphismsc and p satisfy

c~Uk,b1kd,ld8!5Ũk,b2kd,ld8 and p~Uk,b1kd,ld8!5Ũk,b1kd,2 ld8 ~bPQ̄!.
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~3! The isomorphismc satisfiescQYn115Ỹ1
21Q̃c.

Proof: SinceUk8(5Ũk8) is isomorphic to the quotient of the algebra considered in Ref. 14
the ideal generated byj2k, the results there prove the existence of the isomorphismf : Uk8

→Ũk8 determined by

f ~v~x!!5h̃~x!, f ~h~x!!5 ṽ~h~s~x!!! ~xPU8!. ~2.43!

Moreover they show that this isomorphismf satisfies

f +~Q+Yn11!uU
k8
5~Ỹ1

21+Q̃!u Ũ
k8
+ f . ~2.44!

Thanks to~2.43! and (hs)(Ub1kd)5Ub2kd (bPQ̄), we can easily show that

f ~Uk,b1kd,ld8
8 !5Ũk,b2kd,ld8

8 .

Hencef can be extended to a homomorphismc : Uk→Ũk by setting

c~D !5D̃21 )
1< i<n

ki
i (n112 i ) .

It is easy to check that this mapc has the desired properties.
The claims forp can be proven similarly by consideringf 21 : Uk8→Ũk8 . h

Corollary 1: Setc85cXn11
21 . Then the isomorphismsc8 and p satisfy

(1) c8xa5 z̃ac8 and pxa5 ñap.
(2) c8(Uk,b1kd)5Ũk,b2kd and p(Uk,b1kd)5Ũk,b1kd (bPQ̄).
(3) c8Q5Ỹ1

21Q̃c8.
Proof: The first two claims follow from the second part of the proposition sin

Xn11
21 (Uk,b1kd,ld8)5Uk,b1kd,(k1 l )d8 . The last claim follows from the third part of the propositio

sinceYj 115X j
21Xj 11 andQXj5Xj 11Q (0< j <n). h

Note that

c8~ki !5ki ~1< i<n!, c8~k0¯kn!5k0¯knC21,
~2.45!

c8~C!5k0¯kn , c8~D !5D̃21 )
1< i<n

ki
i (n112 i ) ,

and

p~ki !5ki ~1< i<n!, p~k0¯kn!5C,

p~C!5~k0¯kn!21, p~D !5D̃. ~2.46!

3. Homomorphisms ı i and ı I

For each 0< i<n, let i i : Uq8(sl2̂)→Uk be the homomorphism determined by

xi ,k
6 °xi ,k

6 , hi ,r°hi ,r , ki°ki , C→C ~kPZ,r PZ\$0%! ~2.47!

and letUi8 signify its image. ForI 5$ i 11,i 12,...,i 1n% ( i PZ), seti I5t iv : U8→Uk and denote
its image byUI8 . We also setQI ,15( i PIZ>0a ī .
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D. Uk modules

1. Miscellaneous notations

Here we collect some miscellaneous notations aboutUk modules.
~i! We regard aUk module as aU ~respectively,U8) module via the maph ~respectivelyi I)

and we sometimes call it aUh ~respectively,UI8) module.
~ii ! We say that theU module structure on aU moduleV can be extended to aUk module

structure if theUh module structure obtained from the latter structure coincides with the for
~iii ! We regard aŨk module as aUk module via the mapp.
~iv! For a representation~r,V! of Uk and an endmorphismf of Uk , we shall letV f denote the

vector spaceV endowed with aUk module structure via the mapr+f.

2. Tensor product of U k modules

In the following, we shall consider tensor product representations ofU8 via the comultipli-
cationD0 : U8→U8^ U8 defined by

D0~xi
1!5xi

1
^ 11t i ^ xi

1 , D0~xi
2!5xi

2
^ t i

2111^ xi
2 ,

~2.48!
D0~ t i !5t i ^ t i ~0< i<n!.

We shall also consider tensor product representations ofUk via the comultiplicationD : Uk

→Uk ^ Uk defined by

D5~c821
^ c821!+D1+c8, ~2.49!

whereD1 : Ũk→Ũk ^ Ũk is the the comultiplication such that

D1~C!5C^ C, D1~D̃ !5D̃ ^ D̃,

D1~f i ,2r
(1) !5 (

k1 l 5r
f i ,2k

(1)
^ C2kf i ,2 l

(1) , D1~f i ,r
(2)!5 (

k1 l 5r
Clf i ,k

(2)
^ f i ,l

(2) ,

~2.50!

D1~xi ,k
1 !5xi ,k

1
^ 11(

r>0
Ck2rf i ,r

(2)
^ xi ,k2r

1 ,

D1~xi ,k
2 !51^ xi ,k

2 1(
r>0

xi ,k1r
2

^ Ck1rf i ,2r
(1) .

Thanks to Corollary 1~2!, the comultiplicationD is well defined on the tensor product of th
representations that we shall consider in the following, though the elements of the imageD
contain infinite sums.

Note that by~2.45! the following holds:

D~x!5x^ x ~x5ki ,0< i<n,C,D !. ~2.51!

Note also that Corollary 1~1! gives

~xa^ xa!+D5D+xa ~2.52!

since (z̃a^ z̃a)+D15D1+ z̃a .
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III. HIGHEST WEIGHT Uk MODULE

A. Highest weight Uk module

Following Chari and Pressley, we introduce highest weightUk modules.
By definition, a nonzero vectorv1 in aUk module is a highest weight vector of highest weig

(l,w,C0) wherelPh* , w5(w i ,7r
(6) )0< i<n,r>0 (w i ,0

(6)5q7^hi ,l&, w i ,7r
(6) PC) andC0PC3 if it sat-

isfies

xi ,k
1 v150, f i ,7r

(6) v15w i ,7r
(6) v1 , Dv15q^d,l&v1 , Cv15C0v1 . ~3.1!

We call a Uk moule V highest weight if it is generated by such a vectorv1 . Since Uk

5U k
2U k

0U k
1 , a highest weightUk moduleV satisfiesV5U k

2v1 and it admits a weight spac
decomposition

V5 % aPQ1
Vl2a , ~3.2!

Vm5$wPVukiw5q^hi ,m&w,0< i<n,Dw5q^d,m&w%. ~3.3!

Remark:The weightm of a Uk moduleV is not uniquely specified by theq^hi ,m& andq^d,m&.
But if V is highest weight, or ifV is irreducible and admits a weight space decomposition, we
and shall choose the weights so that they belong tol1Q for somel.

In this paper, we shall consider a highest weightUk moduleV satisfying the following two
conditions~* !:

~i! for any m, dimVm,`,
~ii ! for any m and i P$0,1,...,n%, Vm1ka i

50 if uku@0.

Clearly the tensor product of highest weightUk modules satisfying conditions~* ! satisfies condi-
tions ~* !.

A Uk moduleV is called of type1 if C acts as 1 on it, it admits a weight space decomposit
and the eigenvalues of theki belong toqZ. Suppose thatV is a highest weightUk module with
highest weight vectorv1 satisfying conditions~* !. Then sinceUi8v1 is a finite dimensional
Uq8(sl2̂) module,kiv15e iq

miv1 andCv15ev1 for somemiPZ>0 ande i , eP$1,21% ~Ref. 2,
proof of Proposition 3.2! so thatV fe0 ,...,en ,e is of type1. Therefore we can see that it is sufficie
to considerUk modules of type1 for our purpose.

From here to the end of the paper, we shall consider onlyUk modules of type1. If ( l,w,C0)
is the highest weight of a highest weightUk module of type1 satisfying conditions~* !, thenl can
and shall be chosen to be a dominant integral weight ofsln11̂. Moreover sinceC051, we shall
simply write ~l,w! for highest weight~l,w,1!.

The following proposition gives a condition for an irreducibleUk module to be a highes
weight module satisfying conditions~* !.

Proposition 2: Suppose thatV is an irreducibleUk module. ThenV is a highest weightUk

module satisfying conditions~* ! if and only if as a Uh module it satisfies the following condition:

~i! V is a direct sum of integrable highest weight modules,
~ii ! each weight space ofV is finite dimensional,
~iii ! the set of weights ofV has a maximal element.

Proof: The ‘‘only if’’ part is immediate since any weight ofV is less than or equal to th
highest weight and the second condition of~* ! implies thatV is integrable as aUh module.

We show the ‘‘if’’ part. Let l denote a maximal element of the set of weights ofV andv1

PVl a simultaneous eigenvector of thef i ,r
(6) . Since thexi ,k

1 annihilateVl , v1 is a highest weight
vector and generatesV. SoV is highest weight.

By the condition~i! and the preceding argument, for any weightm and anyi , (kVm1ka i
is a

direct sum of irreducible finite dimensionalUq(sl2) i modules andVm1ka i
50 if k@0. @Here
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Uq(sl2) i is the subalgebra ofUh generated byxi ,0
6 and ki

61 .# ThereforeV satisfies conditions
~* !. h

SetM(k,l,w)5Uk /I, whereI is the left ideal ofUk generated byxi ,k
1 , f i ,7r

(6) 2w i ,7r
(6) , D

2q^d,l&, and C21 (0< i<n, kPZ, r PZ>0). This is a highest weightUk module of highest
weight ~l,w!. Let V(k,l,w) be the quotient ofM(k,l,w) by its maximal submodule. Then thi
is the unique irreducible highest weightUk module of highest weight~l,w! up to isomorphism.

By V(k,l,P) (P5(P0 ,...,Pn)), we denoteV(k,l,w) such that ther iª^hi ,l& are non-
negative integers and there exist polynomialsPi(u) with constant term 1 of degreer i (0< i
<n) such that

(
m>0

w i ,7m
(6) u7m5qr iPi~q22u!/Pi~u!. ~3.4!

Here the right-hand side should be considered as a Laurent expansion aroundu5` ~respectively,
0! for w (1) ~respectively,w (2)). We shall call the polynomialsPi Drinfeld polynomials.

Our main result in this section is the following:
Theorem 1: (1) An irreducible highest weightUk module satisfies conditions (* ) if and only

if it is isomorphic to one of theV(k,l,P).
(2) Let va be a highest weight vector ofV(k,l (a),P(a)) (a51,2). Thenv1^ v2 is a highest

weight vector ofV(k,l (1),P(1)) ^ V(k,l (2),P(2)) and the Drinfeld polynomials associated to it a
(Pi

(1)Pi
(2))0< i<n .

To prove the second part of this theorem, we need the following result, which will als
used in the next section.

For I 5$ i 11,i 12,...,i 1n% (0< i<n), set V I
(a)5 % mPQI ,1

V(k,l (a),P(a))l(a)2m (a51,2)
and (V (1)

^ V (2)) I5 % mPQI ,1
(V(k,l (1),P(1)) ^ V(k,l (2),P(2)))l(1)1l(2)2m . Then as a vector

space, (V (1)
^ V (2)) I5V I

(1)
^ V I

(2) ~see Refs. 9 and 10!. Its UI8 module structure is described by
Proposition 3: Let I, V I

(a) , etc., be as above andV I
(1)

^ IV I
(2) denote the vector spaceV I

(1)

^ V I
(2) given another UI8 module structure via the comultiplicationD0 . Then the identity map

(V (1)
^ V (2)) I→V I

(1)
^ IV I

(2) is an isomorphism of UI8 modules.
The proofs of Theorem 1 and Proposition 3 are given in the following section.

B. Proofs of theorem 1 and proposition 3

Before giving the proofs, we introduce some notations. LetVl(w) denote the irreducible
highest weight module ofUq8(sll 11̂) of type 1 of highest weightw5(w i ,7r

(6) )1< i< l ,r>0 originally
defined in the same manner as above in Refs. 2 and 3. In particular, we letV(P) signify Vn(w) if
w is related to Drinfeld polynomialsP5(P1 ,...,Pn) as above.

Now we can give the following proof.
Proof of Theorem 1:The first assertion immediately follows from the following two lemm

and proposition. These lemmas are proven as in Ref. 4, Sec. 5 and Ref. 10 with a slight m
cation.

Lemma 1: Suppose thatV is a highest weightUk module with highest weight vectorv1 . Then
dimUi8v1,` (0< i<n) if and only if V satisfies conditions~* !.

Lemma 2: (1) Letv1 be a highest weight vector ofV(k,l,w). For 0< i<n, set w i

5(w i ,7r
(6) ) r>0 . Then Ui8v1 is isomorphic to V1(w i) as a Uq8(sl2̂) module.

(2) Let v1 be a highest weight vector ofV(k,l,P). For P5(Pi)0< i<n , define polynomials
Pj ( j PZ) by Pi 1(n11)s(u)5Pi(u/ks) (0< i<n,sPZ). For I 5$ i 11,i 12,...,i 1n% ( i PZ),
setPI5(Pi 11 ,Pi 12 ,...,Pi 1n) andVI5UI8v1 . ThenVI is isomorphic to V(PI) as a U8 module.

Proposition 4 (Ref. 2): The Uq8(sl2̂) module V1(w) is finite dimensional if and only if there
exists a polynomial P with constant term1 such that

(
m>0

w7m
(6)u7m5qdeg PP~q22u!/P~u!. ~3.5!
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Here the right-hand side should be considered as in (3.4).
The second assertion of the theorem follows from Lemma 2~2! and Proposition 3 above, an

the following proposition.
Proposition 5 (Ref. 3): Letva be a highest weight vector of V(P(a)) (a51,2). Then v1

^ v2 is a highest weight vector of V(P(1)) ^ V(P(2)) and the Drinfeld polynomials associated to
are (Pi

(1)Pi
(2))1< i<n .

To complete the proof of Theorem 1, we give the following proof.
Proof of Proposition 3:We shall show the case 1< i<n. The proof of the casei 50 is

similar. First we show that the mapc8i I sends as follows:

xj
6°xj 1 i ,0

6 t j°kj 1 i ~1< j Þn112 i<n!,

xn112 i
6 °x0,71

6 , tn112 i°C21k0 ,
~3.6!

x0
6°xi ,61

6 , t0°Cki .

To prove this, it is sufficent to show that

c8i I5Ỹ1
21

¯Ỹi
21Q̃i h̃r0

i . ~3.7!

From Corollary 1~3! andQ̃Ỹj5Ỹj 11Q̃, we obtain

c8Qiv5Ỹ1
21

¯Ỹi
21Q̃ic8v.

This is equivalent to~3.7! thanks toQiv5t ivr0
i , Xn11v5v and the first equality of Proposition

1 ~1!.
The proposition is equivalent to

~c821
^ c821!+D1+c8+i I~x!u(V (1)^ V (2)) I

5~i I ^ i I !+D0~x!

~x5xj
6 ,t j

61 ,0< j <n!. ~3.8!

Since

Xj ,k
6
ªc821~xj ,k

6 !PUk,6(a j 2d j 0d)2kd , F j ,7r
(6)

ªc821~f j ,7r
(6) !PUk,6rd , ~3.9!

F j,2r
(1) (r .0, 0< j <n) annihilatesV I

(a) (a51,2) and so doesXj ,k
1 if 1< j Þ i<n andk<21, or

j 50 andk<22, or j 5 i andk<0. From this, Eq.~3.6! and the definition ofD1 , we obtain~3.8!.
We explain the casex5x0

1 in detail. In this case,

~c821
^ c821!+D1+c8+i I~x0

1!5Xi ,1
1

^ 11(
l>0

F i ,l
(2)C812 l

^ Xi ,12 l
1 ,

whereC85c821(C). When restricted to (V (1)
^ V (2)) I , the l .0 terms in the sum do not con

tribute. So the action coincides with (i I ^ i I)+D0(x0
1) sincec8i I(x0

1)5xi ,1
1 andc8i I(t0)5Cki .h

IV. R MATRIX

A. R matrix

For aPC3, we setV(k,l,P)a5V(k,l,P)xa. Note thatV(k,l,P)a is a highest weight mod-
ule with the same highest weight vector asV(k,l,P) and that the Drinfeld polynomials corre
sponding to this module arePa5(Pi

a)0< i<n wherePi
a(u)5Pi(a

n11u).
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In this section, we letV (a) signify V(k,l (a),P(a)) andva denote a highest weight vector o
V (a) (a51,2,3). For a vector spacesV andW, we shall callf (x) a HomC(V,W) valued rational
function if f (a) with aPC is an element of HomC(V,W) and for anyvPV anduPW* ^u, f (x)v&
is the rational function.

Our main result in this section is the following.
Theorem 2: (1) There exists a uniqueHomC(V (a)

^ V (b),V (b)
^ V (a)) valued rational func-

tion R (a,b)(x) such thatR (a,b)(a):V b
(a)

^ V ab
(b)→V ab

(b)
^ V b

(a) is a homomorphism (respectively
isomorphism) sendingva ^ vb to vb ^ va if R (a,b)(x) does not have a pole at x5a ~respectively,
if the tensor productV b

(a)
^ V ab

(b) is irreducible!.
(2) TheR (a,b)(x) satisfy the Yang–Baxter equation

~ I 3^ R (1,2)~a!!~R (1,3)~ab! ^ I 2!~ I 1^ R (2,3)~b!!

5~R (2,3)~b! ^ I 1!~ I 2^ R (1,3)~ab!!~R (1,2)~a! ^ I 3!,

where Ia5 idV (a).
This theorem and Proposition 3 immediately give the following.
Proposition 6: We use the notations in Proposition 3. For I5$ i ,i 11,...,i 1n% (0< i<n), set

R I
(a,b)(x)5R (a,b)(x)uV

I
(a)

^ V
I
(b). ThenR I

(a,b)(a):(V b
(a)) I ^ I(V ab

(b)) I→(V ab
(b)) I ^ I(V b

(a)) I is a ho-

momorphism of UI8 modules.
This proposition clarifies the relation between ourR matrices and those obtained from th

quantum groupUq8(sln11̂).5,6

The proof of Theorem 2 is given in the next section.

B. Proof of theorem 2

To prove Theorem 2, we need the followng two propositions.
Proposition 7: IfV (1)

^ V (2) is irreducible, then it is isomorphic toV (2)
^ V (1).

Proposition 8: The tensor productV a1

(1)
^ V a2

(2) is irreducible if the ratio a2 /a1 does not belong

to a countable set.
The first proposition follows from Theorem 1~2! as in Ref. 2. To prove the second propositi

we need Lemmas 3 and 4 below.
Lemma 3: LetA k

1 and A k
2 be the subalgebras ofUk generated by xi ,k

1 , xi ,l
2 Clki

21 , hi ,r

(0< i<n, k>0, l .0, r .0) and xi ,k
1 kiC

k, xi ,l
2 , hi ,r (0< i<n, k,0, l<0, r ,0), respec-

tively. ThenA k
6,c821(Ũk

6).
Proof: We shall show the caseA k

1 . The proof of the caseA k
2 is similar.

The elementsxi ,k
1 and xi ,l

2 Clki
21 , hi ,r (1< i<n, k>0, l .0, r .0) of U8 belong to its

subalgebra generated byxi
1 (0< i<n).19 Therefore, sincec8v5h̃, we obtain

xi ,k
1 ,xi ,l

2 Clki
21 ,hi ,rPc821~ Ũk

1! ~1< i<n,k>0,l .0,r .0!. ~4.1!

Thanks to Corollary 1~3!, the automorphismQ preservesc821(Ũk
1). Hence the above inclusion

holds also fori 50. This proves the claim. h

Lemma 4: SetV5V(k,l,P). Let v1 be a highest weight vector ofV andm a weight ofV less
than l. Then for mPZ and e561, the following hold:

~1! $wPV muxi ,k
1 w50,; i ,ek.m%50.

~2! the weight spaceVm is spanned by the vectors xi 1 ,k1

2
¯xi s ,ks

2 v1 (( ja i j
5l11l22m, ekj

.m).

To prove this lemma, we need the following.
Lemma 5: For each i(0< i<n), there exists XiPAutCV(k,l,w) which satisfies

Xi~x.v !5Xi~x!,Xi~v ! ~xPUk ,vPV~k,l,w!! ~4.2!

and sends a highest weight vector to itself.
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Proof: Clearly V(k,l,w)Xi is isomorphic toV(k,l,w) and a highest weight vector of th
former is that of the latter. Therefore the isomorphismV(k,l,w)→V(k,l,w)Xi is the desired
map. h

Proof of Lemma 4:
We shall prove the casee51 of the first part. The casee521 and the second part can b

proven similarly.
For l PZ, set

V~ l !5$wPV muxi ,k
1 w50,; i ,k. l %.

ThenV( l 21),V( l ) and (X0¯Xn)(V( l ))5V( l 21). Since theXi are automorphisms of vecto
spaces and theV( l ) are finite dimensional, we getV( l )5V( l 21). So we find that

V~m!5ù lV~ l !5$wPV muxi ,k
1 w50,; i ,kPZ%.

The right-hand side is 0. For, if not, this space contains a highest weight vector since it is inv
under the action of thef i ,r

(6) ~see Ref. 2!. This contradicts the irreducibility ofV. h

Now we can give the following proof.
Proof of Proposition 8 (cf. Ref. 21):
Thanks to~2.52!, (xb^ xab)+D5(x1^ xa)+D+xb . Therefore without loss of generality w

can assume thata151.
If the tensor productV 1

(1)
^ V a

(2) is reducible, then it is not generated byv1^ v2 or it contains
a highest weight vector with weight less thanl (1)1l (2). Therefore, to prove the proposition, w
only have to show that for each weightm,l (1)1l (2) the following two facts hold ifa does not
belong to a finite set.

~i! the weight space (V 1
(1)

^ V a
(2))m is spanned by the vectorsxi 1 ,k1

2
¯xi s ,ks

2 (v1^ v2) (( ja i j

5l11l22m, kjPZ),
~ii ! Mm,aª$wP(V 1

(1)
^ V a

(2))mua2u(k,0)((n11)k11)xi ,k
1 w50,; i ,kPZ% vanishes. Hereu(•) is

a step function.
The second claim follows if we show thatMm,050. Letr (a) : Uk→EndV (a) denote the action

of Uk on V (a) (a51,2). Thanks to Lemma 3, the definition ofD and the first equality of
Corollary 1~1!, we find thatxi ,k

1 (k>0) anda2(n11)k21xi ,k
1 kiC

k (k,0) act on the tensor prod
uct V 1

(1)
^ V a

(2) as

r (1)~xi ,k
1 ! ^ 11O~a! and 1̂ r (2)~xi ,k

1 kiC
k!1O~a!,

respectively. Therefore

Mm,05$wP~V (1)
^ V (2)!mu~r (1)~xi ,k

1 ! ^ 1!w50,; i ,k>0, ~1^ r (2)~xi ,k
1 kiC

k!!w50,; i ,k,0%.

It is easy to show that this vanishes, using Lemma 4~1!. This completes the proof of the secon
claim.

The first claim can be proven similarly, using Lemma 4~2!. h

Now we are in a position to give the
Proof of Theorem 2:~1! We can assume thatb51 as in the proof of Proposition 8. Since th

proof of the uniqueness is easy, we show only the existence.
Let m be a weight ofV (a)

^ V (b) and (w1 ,...,wm) a basis of the weight space (V (a)

^ V (b))m . Set

wIK~a!5xi 1 ,k1

2
¯xi s ,ks

2 ~va ^ vb!P~V 1
(a)

^ V a
(b)!m ,

wIK8 ~a!5xi 1 ,k1

2
¯xi s ,ks

2 ~vb ^ va!P~V a
(b)

^ V 1
(a)!m ,
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where I 5( i 1 ,...,i s), K5(k1 ,...,ks) (( ja i j
5l (a)1l (b)2m, kjPZ). Then wIK(a) is a linear

combination of thewi with Laurent polynomials ina as coefficients. Moreover ifa0¹S
ª$auV 1

(a)
^ V a

(b) is reducible%, the weight space (V 1
(a)

^ V a0

(b))m is spanned by the vector

wIK(a0). Therefore it is easy to see that the basis vectorswi are written as

wi5(
j 51

m

r i j ~a!wI jK j
~a! ~1< i<m,a¹Ta0 ,m!,

where ther i j (x) are rational functions ofx which do not have a pole atx5a0 and Ta0 ,m

5$au some r i j (x) has a pole atx5a%.
Define a HomC((V (a)

^ V (b))m ,(V (b)
^ V (a))m) valued rational functionRa0 ,m(x) by

Ra0 ,m~a!:wi°(
j 51

m

r i j ~a!wI jK j
8 ~a! ~1< i<m!

and set Ra0
(x)5(mRa0 ,m(x). Further we set Ta0

5ømTa0 ,m and Ja0

5$auRa0
(x) has a pole atx5a%. Note thata0¹Ta0

.Ja0
, soa0¹Ja0

.
We shall show thatRa0

(x) is independent ofa0 and has the properties stated in the claim

If a¹SøTa0
, then, by the definition ofRa0

(x), Ra0
(a) : V 1

(a)
^ V a

(b)→V a
(b)

^ V 1
(a) is the

isomorphism sendingva ^ vb to vb ^ va , the existence of which is guaranteed by Proposition
Therefore if a1¹S and a does not belong to the countable setSøTa0

øTa1
, then Ra1

(a)
5Ra0

(a). Hence we find thatRa1
(x)5Ra0

(x) andJa0
5Ja1

,S.

Now we have only to show that ifa¹Ja0
, thenRa0

(a) : V 1
(a)

^ V a
(b)→V a

(b)
^ V 1

(a) is a homo-
morphism. By the preceding argument, we know that ifa¹SøTa0

thenRa0
(a) commutes with

the actions ofUk ~]!. Since the matrix elements~relative to a certain basis! of the actions ofUk on
V 1

(a)
^ V a

(b) andV a
(b)

^ V 1
(a) are Laurent polynomials ina, ~]! holds also fora¹Ja0

.
~2! This can be proven by the standard argument. See, for example, Ref. 22. h

V. Uk MODULE STRUCTURE ON V„l… AND W„l…

A. Uk module structure on V„l… and W„l…

Hereafter we letl denote a nonzero dominant integral weight ofsln11̂, and set r i

5^hi ,l&, J5$ i u0< i<n,r i.0%, L5the cardinality ofJ, and c5( i 50
n r i . Further we letV(l)

signify the irreducible highest weightU module of highest weightl.
Define polynomials P(r ,a;u) (r PZ>0 , aPC3) by P(r ,a;u)5)k51

r (12aqr 1122ku).
Later we need considerV(k,l,P) such thatPi(u)5P(r i ,ai ;u), i PJ. For suchV(k,l,P), we
define r i and ai ( i PZ) by r i5r ī and aj 1(n11)s5aj /ks if j PJ, 50 if j ¹J (sPZ), respec-
tively.

In the remaining part of the paper, we shall study some class of irreducible highest weigUk

modules. To explain our motivation, we prove the following lemma.
Lemma 6: Letm5(mr) r .0 denote a family of non-negative integers such that mr50 if r

@0. For 1<N<`, set

WN~l!5 % m8 VS l2S (
r .0

rmr D d D ,

where% 8 denotes the sum overm5(mr) such that mr50 if r PNZ.0 ~no restriction if N5`).
Further setk05qn11. Then for any highest weightUk moduleV of highest weight~l,w! satisfying
conditions(* ), the following hold as a Uh module:

(1) WN(l),V if kk0 or k/k0 is a primitive Nth root of unity.
(2) W`(l),V if neither kk0 nor k/k0 is a root of unity.
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Proof: ~1! Set

br5(
i 50

n
k r@ ir #1@~n112 i !r #

@~n11!r #
p21~hi ,r !PUk ~rÞ0!.

Then since@p(br),ṽ(U8)#50, we find that

@br ,Uh8#50, Dbr5q(n11)rbrD,

@br ,bs#5d r 1s,0

@r #2

r @~n11!r #

~k0¯kn!r2~k0¯kn!2r

q2q21 ~k0
r 1k0

2r2k r2k2r !,

whereUh85h(U8).
Set bm5) r .0b

2r
mr and letv1 be a highest weight vector ofV. If m satisfies the condition

stated in the definition ofWN(l), then thanks to the above equalities it is easy to check thatbmv1

is a highest weight vector of highest weightl2(( r .0rmr)d of the integrableUh moduleV. Since
the sum(8Uhbmv1 is direct, we obtain the assertion.

~2! The claim can be proven similarly to~1!. h

Note thatV(l)5W1(l). We shall writeW(l) for W`(l).
This lemma motivates us to study the problem of whichV(k,l,P) satisfies the following

condition (** ):

V~k,l,P!5H V~l! if k5k0 or 1/k0 ,

WN~l! if kk0 ork/k0 is a primitive Nth root of unity~N>2!,

W~l! if neither kk0 nor k/k0 is a root of unity.

This problem would correspond to that of finding small representations ofU8 ~Ref. 7! if for any
k andl there exists aP such thatV(k,l,P) satisfies condition (** ). Unfortunately, as we shal
see later, suchP exists only fork5(k0q2c)61 except in the casec51. So our analysis can find
only a part of small representations, if any, in the casec>2. But in this case we can determin
possibleUk modules strucures onV(l) for any k and those onW(l) for kÞk0

61. For that
purpose, instead of condition (** ), we shall investigate the problem of whichV(k,l,P) satisfies
the following necessary condition (*** ) for V(k,l,P) to satisfy (** ):

V~k,l,P!5H V~l! if k5k0 or 1/k0 ,

V~l! % V~l2d! % % l8<l22dV~l8! % Nl8 for some Nl8>0 otherwise.

First we consider the casec51. Note that the Drinfeld polynomials corresponding
V(k,L i ,P) are Pj (u)512d i j au (0< j <n) for someaPC3. Therefore these representatio
are fundamental in the terminology of Ref. 3.

In this case, the following proposition holds.
Proposition 9: In the case c51, any V(k,l,P) satisfies condition(** ).
Proof: In Ref. 16, theU module structure onW(l) @respectively,V(l)# is shown to be

extended to aUk module structure in the casekÞk0
61 ~respectivelyk5k0

61). @Recall our con-
vention in Sec. II D. 1~iii !.# Moreover, using the free field representation in Ref. 16, it is eas
check thatW(l)5 % bmV(l) in the casekÞk0

61 in the notation of the proof of Lemma 6.
Suppose thatkk0 or k/k0 is a primitiveNth root of unity (N>2). In this case, as is easil

shown,bNr (r PZ) commutes withUk8 , so theUk module strucuture onW(l)5 % bmV(l) in-
duces aUk module strucuture onW(l)/( rbNrW(l).WN(l). By applying Lemma 6 to the
submodule ofWN(l) generated by a nonzero vector of weightl, we find thatWN(l) is irreduc-
ible. Therefore Proposition 2 and Theorem 1 imply thatWN(l) is isomorphic toV(k,l,P) for
someP. The claim follows from this and the remark just before the proposition.

For otherk, the claim can be proven similarly. h
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Next we turn to the casec>2. First we prove the following proposition@see Ref. 15 for the
definition of ~a completion of! Uq(gln11̂), which is not important in this paper#.

Proposition 10: (1) For eache561, there exists a one-parameter family of homomorphis

ga
(e) (aPC3) from Ũ to a completion of Uq(gln11̂) which sendsj to (k0C2)e and satisfies

gab
(e)5ga

(e)+ n̄b .
(2) For each aPC3, the map ga

(e) gives the vector space W(l) a U(k0q2c)e module structure,

which we denote by W((k0q2c)e,l,a). These structures satisfy W((k0q2c)e,l,a)
5V((k0q2c)e,l,Pa) for someP.

Proof: ~1! The claim follows from Ref. 15.
~2! On W(l), an action of the completion ofUq(gln11̂) can be defined. So the first ha

follows from ~1!.
As in the proof of Proposition 9, we find thatW((k0q2c)e,l,a) is isomorphic to

V((k0q2c)e,l,P) for some P. By Corollary 1~1!, W((k0q2c)e,l,ab)5W((k0q2c)e,l,a)xb.
Hence we obtain the second half of the claim. h

Our main result in this section is the following theorem.
Theorem 3: Suppose that c>2. Then
(1) V(k,l,P) satisfies condition(*** ) if and only if Pi(u)5Pi(r i ,ai ;u) for some ai ( i

PJ) and

k5k0q2c and ai /aj5qr i12( i ,k, j r k1r j 1 j 2 i

for any pair ( i , j )PZ3Z such that i, j , i 1n and ri ,r j.0,

or

k51/k0q2c and ai /aj5q2(r i12( i ,k, j r k1r j 1 j 2 i )

for any pair ( i , j )PZ3Z such that i, j , i 1n and ri ,r j.0.

(2) For k5(k0q2c)61, theUk module structures onV(k,l,P) satisfying condition(*** ) are
only those in Proposition10 ~2!.

Remark:In most cases, the condition fork in ~1! follows from the condition for theai . ~See
the proof below.!

Corollary 2: Suppose that c>2. Then the following hold.
(1) The U module structure on V(l) cannot be extended to aUk module structure.
(2) Assume thatkÞk0

61. Then the U module structure on W(l) can be extended to aUk

module structure if and only ifk5k0q2c or 1/k0q2c. Moreover theseUk module structures are
those in Proposition 10 (2).

The proof of Theorem 3 and Corollary 2 is given in the next section.

B. Proof of Theorem 3 and Corollary 2

First, assuming the ‘‘only if’’ part of Theorem 3~1!, we give the following.
Proof of the ‘‘if’’ part of Theorem 3~1!, Theorem 3~2!, and Corollary 2.
The ‘‘only if’’ part of Theorem 3 ~1! implies that for k5(k0q2c)61 at most one one-

parameter family ofUk modulesV(k,l,Pa) (aPC3) satisfies (*** ). Therefore the ‘‘if’’ part of
Theorem 3~1! and Theorem 3~2! follow from Proposition 10~2!.

Corollary 2 ~1! and the ‘‘if’’ part of Corollary 2 ~2! immediately follow from Theorem 3.
Suppose that theU module strucure onW(l) can be extended to aUk module structure (k

Þk0
61). Let W be the submodule of theUk moduleW(l) generated by a nonzero vector of weig

l andV the quotient ofW by a maximal submodule. Then by Proposition 2 and TheoremV
.V(k,l,P) for someP, and by Lemma 6V satisfies (*** ). Therefore by Theorem 3, we fin
that k5k0q2c or 1/k0q2c. This completes the proof of Corollary 2~2!. h

Next, using
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Proposition 11 (Ref. 7): The U8 module V(P) is irreducible as a Uq(sln11) module if and
only if Pi(u)5Pi(r i ,ai ;u) for some ri and ai (1< i<n), and

ai /aj5qr i12 (
i ,k, j

r k1r j 1 j 2 i

for any pair ( i , j ) such that1< i , j <n and ri ,r j.0,

or

ai /aj5q2(r i12( i ,k, j r k1r j 1 j 2 i )

for any pair ( i , j ) such that1< i , j <n and ri ,r j.0

we give the following proof.
Proof of the ‘‘only if’’ part of Theorem 3.
First we introduce some notations which will also be used in the Appendix. ForV(k,l,P)

such thatPi(u)5P(r i ,ai ;u) ( i PJ), we seta5(ai) i PZ and let V(k,l,a) signify V(k,l,P).
Further we set

mb~k,l,a!5dimV~k,l,a!l2b2 V~l!l2b ~bPQ1!. ~5.1!

Let v1 be a highest weight vector ofV(k,l,P). By Lemma 2 ~2!, UI8v1.V(PI) for I
5$ i 11,i 12,...,i 1n% ( i PZ). Suppose thatV(k,l,P) satisfies condition (*** ). ThenUI8v1 is
irreducible as aUI8 module sinceUI8v15 % mPQI ,1

V(l)l2m . Therefore Proposition 11 implie
that Pi(u)5Pi(r i ,ai ;u) for someai ( i PJ) and

ai /aj5qe(r i12( i ,k, j r k1r j 1 j 2 i ) ~5.2!

for any pair (i , j )PZ3Z such thati , j , i 1n andr i ,r j.0. Heree51 or 21 depending on each
pair (i , j ).

If L>4, or L53 and there does not existi PZ such thatr i , r i 61.0, then thanks to Propo
sition 11 it is easy to see thate in ~5.2! takes the same value for any pair (i , j ). Therefore we get

k5
ai

aj
•

aj

ai 1n11
5~k0q2c!e

by consideringi , j such thati 11, j , i 1n and r i ,r j.0.
Otherwise the ‘‘only if’’ part of Theorem 3 follows from the following lemma, since

mb~k,l,a!5dimV~l2d!(l2d)2(b2d)<1

if V(k,l,a) satisfies condition (*** ), kÞk0
61 andb5d, d1a i .

Lemma 7: Suppose that L51 andc>2, or L52, or L53 and there exists iPZ such that
r i , r i 61.0. Then for eachk and a that satisfy (5.2) but not the conditions stated in Theorem

(i) there existsbPQ1 such that mb(k,l,a)>1 if k5k0
61,

(ii) there existsbP$d%ø$d1a i%0< i<n such that mb(k,l,a)>2 if kÞk0
61.

We leave the proof of this lemma to the appendix.

APPENDIX: PROOF OF LEMMA 7

1. Proof of Lemma 7

In this appendix, we use the notations in the proof of the ‘‘only if’’ part of Theorem
Without loss of generality, we assume that^d,l&50.
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We need to consider the four cases below. In each case, the lemma follows from the cl~s!
stated just after it. Note that in cases 3 and 4, ife in ~5.2! is shown to take the same value for an
pair (i , j ), we getk5(k0q2c)e as in the proof in the main text, sok anda satisfy the condition
stated in Theorem 3.

Case 1: L51.
~a! If c>2, then for 0< i<n

md1a i
~k,cL i ,a!>H 2 if kÞk0

61 ,~k0q2c!61,

1 if k5k0
61.

Case 2: L52 and there existsi PZ such thatr i , r i 11.0.
~b! If ai /ai 115qe(r i1r i 1111), then

md~k,l,a!>H 0 if k5k0
2e ,

1 if k5k0
e or ~k0q2c!e,

2 otherwise.

~c! If ai /ai 115qe(r i1r i 1111) andk5k0
2e , then

~c1! md1a ī
~k,l,a!>1 if r i>2,

~c2! md1a i 11
~k,l,a!>1 if r i 11>2,

~c3! md1a ī 1a i 11
~k,l,a!>1 if r i5r i 1151.

Case 3: L52 and there does not existi PZ such thatr i , r i 11.0. In this case, we leti , j
denote integers such thatr i , r j.0, i 11, j , i 1n.

~d! Suppose that

ai /aj5q2e(r i1r j 1 j 2 i ), aj /ai 1n115qe(r i1r j 1 i 2 j 1n11).

Thenk5qe(n1122( j 2 i )) andmd(k,l,a)>2.
Case 4: L53 and there existsi PZ such thatr i , r i 61.0.
~e! Suppose that

ai 21 /ai5qe(r i 211r i11), ai /ai 115qe(r i1r i 1111), ai 11 /ai 1n5q2e(r i 211r i 111n21).

Thenk5(k0q2(r i2n11))e and

md~k,l,a!>H 1 if r i5n21,

2 if r iÞn21.

These claims are proved by tedious but straightforward calculations. So in the next secti
give the proof only for claim~a!.

2. Proof of claim „a…

To simplify notations, we set

x2~ l ,m!5xl ,0
2
¯xm,0

2 ,
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x2~k; l ,m!5H xk,0
2 x2~k21,l !x2~k11,m! for l ,k,m or l .k.m,

x2~m,l ! for k5m,

x2~ l ,m! for k5 l .

We also identifyUhv1,V(k,l,a) with V(l).
By using the isomorphismst and v, we can see that claim~a! follows from the following

lemma.
Lemma A.1: Ifl5r 0L0 (r 0>2), then inV(k,l,a) the following hold.
(1) The vectors x2(k;1,n)(x0,0

2 )2v1 , x0,0
2 x2(k;1,n)x0,0

2 v1 (1<k<n) form a basis of
V(l)l2d2a0

.

(2) The two vectors x0,61
2 x2(1,n)x0,0

2 v1 and the above basis vectors are linearly independ
if kÞk0

61, (k0q2c)61.
(3) The vector x0,1

2 x2(1,n)x0,0
2 v1 and the above basis vectors are linearly independent ik

5k0 .
To prove Lemma A.1, we need the following two lemmas.
Lemma A.2: In the case n>3, the following equalities hold inV(k,l,a) (l5r 0L0 ,r 0>1):

~1! x0,k
2 v15~a0qr 021!kx0,0

2 v1 , h0,rv15~a0q21!r
@rr 0#

r
v1 ,

~2! xi ,k
2 xi 21,0

2 •••x1,0
2 ~x0,0

2 !mv15~a0qr 01 i 21!kx2~ i ,1!~x0,0
2 !mv1 ~1< i<n21,m51,2!,

xi ,k
2 xi 11,0

2 •••xn,0
2 ~x0,0

2 !mv15~a0qr 01n2 i /k!kx2~ i ,n!~x0,0
2 !mv1 ~2< i<n,m51,2!,

~3! x0,61
2 x1,0

2 xn,0
2 x0,0

2 v15a6x0,0
2 x1,0

2 xn,0
2 x0,0

2 v11b6x1,0
2 xn,0

2 ~x0,0
2 !2v1 ,

x0,61
2 xn,0

2 x0,0
2 v15g6x0,0

2 xn,0
2 x0,0

2 v1 ,

where

a65~a0qr 011!61, b657
q2q21

@2#
~a0qr 021!61, g65~a0qr 023!61.

Proof: ~1! The first equality follows from Lemma 2~1! and Ref. 2, Proposition 4.2. Th
second equality immediately follows from the definition of the Drinfeld polynomialP0 .

~2! The second equality follows from the first one by using the isomorphismv. The general
case of the first equality follows from thek51 case by applyingXi

61 ~see Lemma 5! repeatedly.
So we only have to show thek51 case of the first equality. The casem51 follows from ~1! and
the relation@xj ,1

2 ,xj 21,0
2 #q1@xj 21,1

2 ,xj ,0
2 #q50. The casem52 can be shown similarly if the equa

ity x1,1
2 (x0,0

2 )2v15a0qr 0x1,0
2 (x0,0

2 )2v1 holds. This equality can be easily verified as in~3!.
~3! By Lemma 2~2! and Proposition 11, we can see that the left-hand sides are express

a linear combination of the terms appearing on the right-hand sides. Applying thexi ,k
1 to these

linear relations, it is easy to determine the coefficients. h

Lemma A.3: InV(k,l,a) (l5r 0L0 ,r 0>1), the following hold:
(1) The vectors x2(k;1,n)x0,0

2 v1 (1<k<n) form a basis of V(l)l2d .
(2) The vector x1,1

2 x2(2,n)x0,0
2 v1 and the above basis vectors are linearly independent ik

Þk0
61.
(3) For anyk, the following equality holds:

~~a0qr 0!21x1,1
2 1a0qr 01n21/k x1,21

2 2~11qn21/k!x1,0
2 !x2~2,n!x0,0

2 v150.

(4) If k5k0 , the following equality holds:
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~x1,61
2 2~a0qr 0!61x1,0

2 !x2~2,n!x0,0
2 v150.

Proof: The first claim is easily checked. The second claim is proven as in the proof of Le
A.1 below. The remaining claims are proved by showing that thexi ,k

1 annihilate the left-hand side
as Ref. 11, Lemma 3.6. h

Now we can give the following proof.
Proof of Lemma A.1.
~1! This part is easy.
~2! For simplicity, we prove the casen>4. Suppose that the following linear relation hold

among the vectorsx0,61
2 x2(1,n)x0,0

2 v1 and the basis vectors ofV(l)l2d2a0
:

~ax0,1
2 1bx0,21

2 1cx0,0
2 !x2~1,n!x0,0

2 v11dx2~1,n!~x0,0
2 !2v1

1 (
k52

n

i kx0,0
2 x2~k;1,n!x0,0

2 v11 (
k52

n

j kx
2~k;1,n!~x0,0

2 !2v150. ~A1!

Apply xi ,0
1 (1< i<n) andxn,1

1 to this relation. Then, using Lemma A.2, we find that the coe
cients must satisfy

ag11bg21c1@3#d1 i 2 /@2#1@2# j 250, ~A2!

i k211@2# i k1 i k1150, j k211@2# j k1 j k1150 ~2<k<n21!, ~A3!

i n1 i n21 /@2#1@3# j n1@2# j n2150, ~A4!

q~qn21k11!i n1 i n211q@2#~qnk1@2# ! j n1@2#2 j n2150, ~A5!

where

i 15aa11ba21c, j 15ab11bb21d.

Applying x0,0
1 to ~A1!, we find that the following equality holds:

~Ax1,1
2 1Bx1,21

2 1Cx1,0
2 !x2~2,n!x0,0

2 v11 (
k52

n

I kx
2~k;1,n!x0,0

2 v150, ~A6!

where

A5aqr 0, B5bq2r 0, I k5@r 0# i k1@2#@r 021# j k ~2<k<n!,

C5c@r 0#1@r 021#~@2#d1aa0qr 0221bq22r 0/a0!.

Assume thatkÞk0
61. Then Lemma A.3~2!, ~3!, and the above equality yield the equations

B5Aa0
2q2r 01n21/k, C52Ba0qr 0~11qn21/k!, I k50 ~2<k<n!. ~A7!

Solving ~A3! for i k and j k (2<k<n21), we get

xk5~21!k21
@n2k#

@n21#
x11~21!n2k

@k21#

@n21#
xn ~x5 i , j !.
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Substituting these into the remaining equations, we obtain seven equations for six unk
a, b, c, d, i n , and j n @sinceI 25I n50 implies I k50 (3<k<n21) after the substitution#. It
is straightforward to show that this system of homogeneous linear equations has no non
solution unlessk5(k0q2r 0)61. This completes the proof.

~3! In this case, using Lemma A.3.~1! and~4! instead of~2! and~3!, we can prove the claim
as in Lemma A.3.~2!. h
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We prove that the spectrum of Maxwell operator, (B,E)
°(2rot(E),a(x)rot(b(x)B)), with non-negative and periodic functionsa(x) and
b(x), is absolutely continuous. ©2000 American Institute of Physics.
@S0022-2488~00!00610-1#

I. INTRODUCTION AND MAIN RESULT

The propagation of waves in photonic crystals is subject to many interests in physics, a
mathematics, and mathematical physics, see for example, the introduction and the bibliogra
Refs. 1 and 2. These waves are governed by the Maxwell equations in a periodic media~see Ref.
1!, which can be written as follows:

]

]t
B~ t,x!52rot~E~ t,x!!,

]

]t
E~ t,x!5a~x!rot~b~x!B~ t,x!!, ~I.1!

div~B~ t,x!!50, divS 1

a~x!
E~ t,x! D50,

if

rot~u~x!!5S ]

]x2
u32

]

]x3
u2 ,

]

]x3
u12

]

]x1
u3 ,

]

]x1
u22

]

]x2
u1D

is the rotational of the vector fieldu of R3, and

div~u!5(
j 51

3
]

]xj
uj

its divergent.
a andb are non-negative functions which areG-periodic,

a~x2c!5a~x!, b~x2c!5b~x!;cPG, ;xPR3; ~I.2!

a~x!.0 and b~x!.0,

G is a lattice inR3,G5$c5( j 51
3 njej ;n5(n1 ,n2 ,n3)PZ3% with $e1 ,e2 ,e3% a basis ofR3.

E denotes the electrical field,B the magnetic field, 1/a the dielectric constant, and 1/b the
magnetic permeability.

The Maxwell equations can be written in the following form:

a!Electronic mail: morame@math.univ-nantes.fr
70990022-2488/2000/41(10)/7099/10/$17.00 © 2000 American Institute of Physics
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]

]t
C5 iM ~x,D !C, DC15D.S 1

a~x!
C2D50, ~I.3!

if C5(C1,C2)5(B,E), @we denoteDu52 i div(u) for uPL2(R3;C3)#. M (x,D) is the Max-
well operator, which is a 636 system of differential operators of order one,

M ~x,D !5S 0 iRot~D !

2 ia~x!Rot~D !b~x! 0 D , ~I.4!

with

Rot~j!5 iS 0 2j3 j2

j3 0 2j1

2j2 j1 0
D , D52 i S ]

]x1
,

]

]x2
,

]

]x3
D .

When a(x),b(x)PC1(R3), it is easy to see that the Maxwell operatorM (x,D) is essentially
self-adjoint on

H5Lb
2~R3;C3! % L1/a

2 ~R3;C3! ~I.5!

@Lw
2 (R3)5L2(R3;w(x)dx), if w(x) is a density,w.0 anddx is the usual Lebesgue measure#.

If we denote byM1(x,D) the unique self-adjoint operator onH which is an extension of
M (x,D) from the regular vector fields with compact supportC0

`(R3;C3) % C0
`(R3;C3), then

M1(x,D) has zero as an eigenvalue of infinite multiplicity@this comes from the nonellipticity o
the M (x,D) as a differential operator#.

We deal with the Maxwell operator, we still denote byM (x,D), which is the restriction of
M1(x,D) on the closure of its rangeH15R(M1(x,D)). H1 is a closed subspace ofH and its
orthogonal subspace is the kernel ofM1(x,D),H25Ker(M1(x,D)):

H5Lb
2~R3;C3! % L1/a

2 ~R3;C3!5H1% H2 ,

H15H ~u,v !PLb
2~R3;C3! % L1/a

2 ~R3;C3!, Du5DS 1

a
v D50J , ~I.6!

H25$~u,v !PLb
2~R3;C3! % L1/a

2 ~R3;C3!; Rot~D !~bu!5Rot~D !~v !50%.

The domain ofM (x,D) is the intersection ofH1 and the Sobolev space of order one

D~M ~x,D !!5H1ù~W1~R3;C3! % W1~R3;C3!!

5H ~u,v !PW1~R3;C3! % W1~R3;C3!; D.u5DS 1

a
v D50J , ~I.7!

andM (x,D) is a self-adjoint operator onH1 . Moreover, ifa an b are inC`(R3), thenM (x,D)
can be seen as a 434 elliptic pseudodifferential system, in the meaning of Ref. 3.

The solution of the Maxwell equations is given by

C t5~Bt ,Et!5eitM (x,D)C0 ,

if C0PH1 .
Our main result is the following.
Theorem I.1: Under the assumptions (I.2) and if

a,bPC`~R3!, ~I.8!
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then the Maxwell operator M(x,D) with domain (I.7) is a self-adjoint operator on the Hilbe
spaceH1 defined in (I.6), and its spectrum is purely absolutely continuous.

To prove Theorem~I.1! we need to consider the Maxwell operator as a component o
elliptic differential operator of Dirac type.

Let us consider the Hilbert space

H5~Lb
2~R3;C3! % Lb

2~R3!! % ~L1/a
2 ~R3;C3! % La

2~R3!! ~I.9!

and the isometrical injection

J: H°H, J~u,v !5~u,0,v,0!, ~I.10!

;(u,v)PH5Lb
2(R3;C3) % L1/a

2 (R3;C3).
Let us define the 838 systems of differential operators

P1~x,D !5JM~x,D !J!,
~I.11!

P2~x,D !~u, f ,v,g!52 i S 1

b~x!
¹~a~x!b~x!g!,a~x!divS 1

a~x!
v D ,¹~a~x!b~x! f !,b~x!div~u! D ,

;(u, f ,v,g)PW1(R3;C3) % W1(R3) % W1(R3;C3) % W1(R3), and P(x,D)5P1(x,D)1P2(x,D),
then

P~x,D !~u, f ,v,g!52 i S 2rot~v !1
1

b~x!
¹~a~x!b~x!g!,a~x!divS 1

a~x!
v D ,a~x!rot~b~x!u!

1¹~a~x!b~x! f !,b~x!div~u! D , ~I.12!

;(u, f ,v,g)PW1(R3;C3) % W1(R3) % W1(R3;C3) % W1(R3).
P(x,D) is an elliptic differential 838 system, which is self-adjoint onH @with domain the

Sobolev spaceW1(R3;C8)]. P(x,D) is of Dirac type,~the square is a Laplace operator on so
Hermitian bundle plus a first order differential operator!:

P2~x,D !~u, f ,v,g!5~Q1~x,D !u,q1~x,D ! f ,Q2~x,D !v,q2~x,D !g!, ~I.13!

;(u, f ,v,g)PW2(R3;C3) % W2(R3) % W2(R3;C3) % W2(R3).
Q1(x,D) andQ2(x,D) are 333 elliptic differential systems of order 2, which are self-adjo

operators, on, respectively,Lb
2(R3;C3) andL1/a

2 (R3;C3) @with domainW2(R3;C3)#:

Q1~x,D !u5Rot~D !@a~x!Rot~D !b~x!u#1
1

b~x!
D@a~x!b2~x!Du#, ~I.14!

Q2~x,D !u5a~x!Rot@b~x!Rotu#1DFa2~x!b~x!DS 1

a~x!
uD G ,

;uPW1(R3;C3); (D52 i¹).
q1(x,D) and q2(x,D) are elliptic differential operators of order 2, and they are self-adjo

on, respectively,Lb
2(R3) andLa

2(R3) @with domainW2(R3)#:

q1~x,D ! f 5a~x!DF 1

a~x!
D~a~x!b~x! f !G ,

and
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q2~x,D ! f 5b~x!DF 1

b~x!
D~a~x!b~x! f !G , ; f PW2~R3!. ~I.15!

It comes from the the isometry of the injectionJ that P1(x,D) is a self-adjoint operator on
H1 , if its domain is

D~P1~x,D !!5H ~u,0,v,0!PW1~R3;C3! % W1~R3!

% W1~R3;C3! % W1~R3!; Du5DS 1

a~x!
v D50J , ~I.16!

H1 is the closed subspace ofH,

H15J~H1!5H ~u,0,v,0!PLb
2~R3;C3!

% Lb
2~R3! % L1/a

2 ~R3;C3! % La
2~R3!; Du5DS 1

a~x!
v D50J . ~I.17!

In the same way, one can see easily thatP2(x,D) is a self-adjoint operator on the orthogon
complement ofH1 , H2 , with domain

D~P2~x,D !!5$~u, f ,v,g!PW1~R3;C3! % W1~R3! % W1~R3;C3! % W1~R3!;Rot~D !~b~x!u!

5Rot~D !v50%. ~I.18!

H2 can be written

H25H 1
'5$~u, f ,v,g!PLb

2~R3;C3! % Lb
2~R3! % L1/a

2 ~R3;C3! % La
2~R3!;Rot~D !~b~x!u!

5Rot~D !v50%. ~I.19!

So P(x,D)5P1(x,D) % P2(x,D) and P1(x,D) is unitarily equivalent to the Maxwell operato
M (x,D). Then we have the following proposition.

Proposition I.2: Under the assumptions of Theorem (I.1), the spectrum of Maxwell ope
M (x,D) is included in the spectrum of the Dirac-type operator P(x,D) defined by (I.12). More
precisely

ssc~M ~x,D !!,ssc~P~x,D !! and sp~M ~x,D !!,sp~P~x,D !!. ~I.20!

For an operatorQ, s(Q), sd(Q), sac(Q), ssc(Q), and sp(Q) denote its spectrum, discret
spectrum, absolutely continuous spectrum, singular continuous spectrum, and the point sp

Theorem~I.1! comes from Proposition~I.2! and the following theorem.
Theorem I.3: Under the assumptions of Theorem (I.1), the spectrum of the Dirac-type

erator P(x,D) defined by (I.12) is absolutely continuous.
Consequently the operators Q1(x,D), Q2(x,D), q1(x,D), and q2(x,D) defined in (I.14) and

(I.15) have only absolutely continuous spectrum.
Remark I.4: The assumption (I.8) can be weakened to a, bPC3(R3), following our proof.
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Remark I.5: For any dimension n, if G is a lattice ofRn and if a(x), b(x), and k(x) are
G-periodic functions onRn, such that a(x), b(x) PC`(Rn;#0,1`@) and k(x) is a real and
bounded potential, k(x)PL`(Rn), then the Schro¨dinger operator q(x,D) defined by q(x,D) f
5D@a(x)D(b(x) f )#1k(x) f , ; f PW2(Rn), is self-adjoint on Lb

2(Rn).
It comes easily from our proof that q(x,D) has only absolutely continuous spectrum.
Remark I.6. In dimension two, we must take care of the modifications of the operators:

Rot~D !u5S ]

]x2
u3 ,2

]

]x1
u3 ,

]

]x1
u22

]

]x2
u1D ,

Du52 i F ]

]x1
u11

]

]x2
u2G , D f 52 i S ]

]x1
f ,

]

]x2
f ,0D , ;uPW1~R2;C3!, ; f PW1~R2!.

The square of the equivalent of Maxwell operator, defined as in (I.4)~with j350), becomes
of diagonal type:

M2~x,D !C5~L1~x,D !ũ,q1~x,D !u3 ,L2~x,D !ṽ,q2~x,D !v3!,

;C5(u,v)PW1(R2;C3) % W1(R2;C3), if ũ5(u1 ,u2) and ṽ5(v1 ,v2),
q1(x,D) f 5D@a(x)D(b(x) f )# and q2(x,D) f 5a(x)D@b(x)D f #, so by Remark (I.5)

q1(x,D) and q2(x,D) have only absolutely continuous spectrum@as self-adjoint operator on
Lb

2(R2) and, respectively, on L1/a
2 (R2)#.

The operator L1(x,D)5(L1
1(x,D),L1

2(x,D)) is defined as follows:

L1
1~x,D !w52

]

]x2
Fa~x!S ]

]x2
~b~x!w1!2

]

]x1
~b~x!w2! D G ,

L1
2~x,D !w5

]

]x1
Fa~x!S ]

]x2
~b~x!w1!2

]

]x1
~b~x!w2! D G ,

;wPD(L1(x,D))5W2(R2;C2)ùH1
1 ,

H1
15$wPL2~R2;C2!; div~w!50%.

In the same way L2(x,D)5(L2
1(x,D),L2

2(x,D)), if

L2
1~x,D !w52a~x!

]

]x2
Fb~x!S ]

]x2
w12

]

]x1
w2D G

and

L2
2~x,D !w5a~x!

]

]x1
Fb~x!S ]

]x2
w12

]

]x1
w2D G ,

;wPD(L2(x,D))5W2(R2;C2)ùH1
2 ,

H1
25H wPL2~R2;C2!; divS 1

a~x!
wD50J .

Theorem (I.1) is valid for M(x,D), so L1(x,D) and L2(x,D) are self-adjoint operators, on
respectively, the Hilbert spaceH1

1 and H1
2 , and their spectrums are absolutely continuous.
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II. PROOFS

Proof of the essential self-adjointness. As M (x,D) with domainC0
`(R3) % C0

`(R3) is a sym-
metric operator on the Hilbert spaceH, we must check thatM !C56 iC
has no nonzero solution, orM (x,D)C56 iC, in the distributions sense, has no nonzero solut
in H.

If C5(u,v)PH is such thatM (x,D)C56 iC, in the distributions sense, then

div~u!5div~@1/a~x!#v !50

in L2(R3).
But vPL3(R3;C3), rot(v)56uPL2(R3;C3) and

div~v !5
1

a~x!
~¹a~x!!vPL2~R3!,

so vPW1(R3;C3).
In the same way uPL3(R3;C3), rot(u)57@1/(a(x)b(x))# v21/b(x) (¹b(x))

3uPL2(R3;C3) and div(u)50PL2(R3), souPW1(R3;C3).
But M (x,D) with domain W1(R3;C3) % W1(R3;C3) is a symetric operator onH, so

M (x,D)F56 iF has only F50 as a solution inW1(R3;C3) % W1(R3;C3), then C5(u,v)
5(0,0).

The previous proof shows easily that, ifC5(u,v)PH is suchM (x,D)CPH and div(u)
5div@(1/a(x)) v#50, thenCPW1(R3;C3) % W1(R3;C3).

As for the proof of Maxwell operator, it is easy to show thatP2(x,D) is essentially self-
adjoint onH and, if F5(u, f ,v,g)PH is such thatP2(x,D)FPH and rot(b(x)u)5rot(v)50
thenFPW1(R3;C8).

So P2(x,D) with domain given by~I.18! is a self-adjoint operator onH2 .
Proof of Proposition (I.2). The ellipticity of P(x,D) ensure thatP(x,D) with domain

W1(R3;C8) is self-adjoint onH, which is the closure ofP(x,D) with initial domainC0
`(R3;C8).

It is easy to see that zero is not an eigenvalue ofP(x,D), soH5R(P(x,D)). More precisely, for
everyFPH, there exists a sequence (F j )5(P(x,D)C j ), C jPC0

`(R3;C8), such that (F j ) con-
verges in H to F. But P1(x,D)C jPH1 , P2(x,D)C jPH2 , and P1(x,D)P2(x,D)C
5P2(x,D)P1(x,D)C50, ;CPW2(R3;C8).

So P1(x,D)C j and P2(x,D)C j are orthogonal inH for every integerj , then F5F1

1F2, with F1 the limit in H of (P1(x,D)C j ) andF2 the one of (P2(x,D)C j ). It is easy to see
that the decomposition

F5F11F2, F1PH15P1~x,D !~W1~R3;C8!!,
~II.1!

F2PH25P2~x,D !~W1~R3;C8!!,

is unique, so the sumH5H1% H2 is orthogonal.
Moreover, if FPW1(R3;C8), then F1,F2PW1(R3;C8). To be convinced, consider th

equivalent norm onW1(R3;C8), iCi25iP(x,D)CiH
2 1iCiH

2 , for anyCPW1(R3;C8), and use
thatP3(x,D)(C0

`(R3;C8)) is dense inH to see thatP(x,D)(C0
`(R3;C8)) is dense inW1(R3;C8).

We have proved that

P~x,D !5P1~x,D ! % P2~x,D !:

@W1~R3;C8!ùH1# % @W1~R3;C8!ùH2#°H1% H2 , ~II.2!

the last sum is orthogonal, thePk(x,D) are self-adjoint onHk , so Proposition~I.2! follows from
~II.2! and the unitary equivalence betweenM (x,D) andP1(x,D).
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Proof of Theorem (I.3). For any differentialn3n systemS(x,D)5( uau<mAa(x)Da on R3,
with G-periodic n3n matricesAa(x), and for anyQPC3, we will consider the differentialn
3n system on the torusT35R3/G, S(x,D2Q)5( uau<mAa(x)(D2Q)a.

Then the ellipticity ofP(x,D2Q), ensure that, with domainW1(T3;C8), P(x,D2Q) is a
closed operator on the Hilbert spaceH(T3),

H~T3!5Lb
2~T3;C3! % Lb

2~T3! % L1/a
2 ~T3;C3! % La

2~T3!. ~II.3!

Its adjoint isP(x,D2Q̄), so P(x,D2u) is self-adjoint for anyuPR3.
But P(x,D2Q) is of compact resolvent, so its spectrum is discrete~for any QPC3).
The Floquet theory~see Refs. 4 or 5!, enables to see that the spectrum ofP(x,D) is composed

of the bands formed by the eigenvalues ofP(x,D2u) whenu varies inR3.
For any fixeduPR3 andvPS2 (S2 denotes the two-dimensional unit sphere!, for z varying

in C, the eigenvalues ofP(x,D2u2zv) can be labeled such that they become analytical inz in
a neighborhood of the real line~see Ref. 4 for the particular case of Laplace operator!.

Then, as for Theorem 2.1 of Ref. 6, the Floquet theory and an argument due to Thoma7 and
generalized by Reed and Simon,4 lead to the following.

Lemma II.1: The singular continuous spectrum of P(x,D) is empty:

ssc~P~x,D !!5B.

mPR is an eigenvalue of P(x,D) iff m is an eigenvalue of P(x,D2Q), ;QPC3.
It remains to prove thatP(x,D) has no eigenvalue, or equivalently thatP(x,D2Q) has no

Q-independent eigenvalue.
By Ref. 7 or Ref. 4, we know the existence ofuPR3, vPS2 and a constantC.0 such that

i~D2u2 ilv!2f iL2(T3)>l
1

C
i f iL2(T3) , ; f PW1~T3!, l.C. ~II.4!

Suppose nowm is an eigenvalue ofP(x,D), then, using Lemma~II.1!, we get thatm is an
eigenvalue ofP(x,D2u2 ilv) for any reall. Let Fl be an associated eigenvector of unit nor

P~x,D2u2 ilv!Fl5mFl and iFliH(T3)51. ~II.5!

The ellipticity of P(x,D2u2 ilv) ensure thatFlPW3(T3;C8), @in fact FlPC`(T3;C8) with
the hypothesis~I.8!, see, for example, Ref. 3#, so for k51 or k52, Pk(x,D2u2 ilv)(P(x,D
2u2 ilv)Fl)5 Pk

2(x,D2u2 ilv)Fl5mPk(x,D2u2 ilv)Fl.
Let us prove that eitherP1(x,D2u2 ilv)FlÞ0 or P2(x,D2u2 ilv)FlÞ0.
Suppose thatP1(x,D2u2 ilv)Fl5P2(x,D2u2 ilv)Fl50. @In this casem50 and we

know thatm50 cannot be an eigenvalue ofP(x,D), but to make easier our proof, we will prov
it again in a different manner.#

If Fl5(ul, f l,vl,gl), with ul, vlPW3(T3;C3), f l, glPW3(T3;C), then

Rot~D2u2 ilv!vl5Rot~D2u2 ilv!~b~x!ul!

5~D2u2 ilv!~a~x!b~x!gl!

5~D2u2 ilv!~a~x!b~x! f l!50

and (D2u2 ilv)(@1/a(x)# vl)5(D2u2 ilv)(ul)50; so if ~II.4! is satisfiedf l5gl50.
Let 13 denotes the 333 identity matrix and let us remind the formulas,;wPW2(T3;C3),

~D2u2 ilv!213w5Rot
2 ~D2u2 ilv!w1~D2u2 ilv!@~D2u2 ilv!w#, ~II.6!

~D2u2 ilv!.Rot~D2u2 ilv!w50
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andRot(D2u2 ilv)@(D2u2 ilv)w#50.

As Rot(D2u2 ilv)(b(x)ul)50, if l is large enough, then, by~II.4! and~II.6!, we can write

b~x!ul5~D2u2 ilv!hl, ~II.7!

hl5s(D2u2 ilv)@(D2u2 ilv).(b(x)ul)#, if s(D2u2 ilv) is the inverse of (D2u
2 ilv)2.

But b(x)ulPW3(T3;C3), thenhlPW4(T3;C).
As (D2u2 ilv)ul50, then~II.7! entails

~D2u2 ilv!2hl1 i
1

b~x!
~¹b~x!!@~D2u2 ilv!hl#

5Ab~x!F ~D2u2 ilv!2S 1

Ab~x!
hlD 1S D

1

Ab~x!
D hlG50. ~II.8!

If l is large enough~II.4! and ~II.8! lead tohl50 and thenul50.
In the same wayRot(D2u2 ilv)vl50, leads to

vl5~D2u2 ilv!kl, ~II.9!

kl5s(D2u2 ilv)@(D2u2 ilv)vl# ~if l is large enough!, and (D2u2 ilv)(@1/a(x)# vl)
50 entails

~D2u2 ilv!2kl1 i
1

a~x!
~¹a~x!!@~D2u2 ilv!kl#

5Aa~x!F ~D2u2 ilv!2S 1

Aa~x!
klD 1S D

1

Aa~x!
D klG50, ~II.10!

this last equation will givekl50 and thenvl50 @if l is large enough, thanks to~II.4!#.
We have proved that, ifl is large enough, then eitherP1(x,D2u2 ilv)FlÞ0 or P2(x,D

2u2 ilv)FlÞ0. So equivalently to~II.5!, we can suppose that, either

P~x,D2u2 ilv!Fl5P1~x,D2u2 ilv!Fl5mFl, iFliH(T3)51,
~II.11!

Fl5~ul,0,vl,0!, ul, vlPW2~T3;C3! and ~D2u2 ilv!ul5~D2u2 ilv!S 1

a~x!
vlD50

or

P~x,D2u2 ilv!Fl5P2~x,D2u2 ilv!Fl5mFl, iFliH(T3)51,
~II.12!

Fl5~ul, f l,vl,gl!, ul, vlPW2~T3;C3!, f l,glPW2~T3!

and Rot(D2u2 ilv)(b(x)ul)5Rot(D2u2 ilv)vl50. ~It comes from this proof that, ifl is
large enough thenmÞ0.)

~1! Suppose~II.11!.
For anywPW2(T3;C3),

Rot~D2u2 ilv!@a~x!Rot~D2u2 ilv!b~x!w#5a~x!b~x!Rot
2 ~D2u2 ilv!w1~¹~a~x!b~x!!!

3Rot~D2u2 ilv!w1 ia~x!@~D2u

2 ilv!w#~¹b~x!! ~II.13!
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2 i @a~x!~¹b~x!!~D2u2 ilv!#w1V~x!w

with V(x) the 333 matrix,

~Vi j ~x!!1< i , j <352div~a~x!~¹b~x!!!131~]/]xj ~a~x!]/]xi b~x!!!1< i , j <3 .

When using~II.13!, the Eqs.~II.11! lead to

a~x!b~x!~D2u2 ilv!213ul5a~x!b~x!Rot
2 ~D2u2 ilv!ul

5m2ul2~¹~a~x!b~x!!!3Rot~D2u2 ilv!ul

1 i @a~x!~¹b~x!!~D2u2 ilv!#ul1V~x!ul ~II.14!

and then, using that

Ab~x! F ~D2Q!2f 2 i
1

b~x!
~¹b~x!!~D2Q! f G5~D2Q!2~Ab~x! f !1~D~Ab~x!!! f ,

we get

~D2u2 ilv!213~Ab~x!ul!52~D~Ab~x!!!ul1
1

a~x!

1

Ab~x!
$m2ul2~¹~a~x!b~x!!!

3Rot~D2u2 ilv!ul1V~x!ul%. ~II.15!

Using ~II.11! again we get

~D2u2 ilv!213~Ab~x!ul!52~D~Ab~x!!!ul1
1

a~x!

1

Ab~x!
H m2ul2~¹~a~x!b~x!!!

3F im
1

a~x!b~x!
vl2

1

b~x!
~¹b~x!!3ulG1V~x!ulJ . ~II.16!

The estimate~II.4!, the Eqs.~II.11! and the equality~II.16! entail the existence of a constantC1

.0 such that

iuliL2(T3)<C1

1

l
, ;l.C1~11umu!. ~II.17!

In the same way the equations from~II.11!, a(x)Rot(D2u2 ilv)(b(x)Rot(D2u
2 ilv)vl)5m2vl,

and

~D2u2 ilv! S 1

a~x!
vlD50,

lead to the equivalent equation to~II.15!

~D2u2 ilv!213S 1

Aa~x!
vlD 52~D~Aa~x!!!

vl

a~x!
1

1

Aa~x!

1

b~x! H m2
vl

a~x!
2~¹~a~x!b~x!!!

3Rot~D2u2 ilv!
vl

a~x!
1W~x!

vl

a~x!J , ~II.18!
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W(x) is defined asV(x) interchanginga(x) andb(x).
Equations~II.11! and ~II.18! ensure the equivalent estimate to~II.17!, for some constantC2

.0,

ivliL2(T3)<C2

1

l
, ;l.C2~11umu!. ~II.19!

But ~II.11! gives the existence of a constantC3 such that

iuliL2(T3)
2

1ivliL2(T3)
2 >

1

C3
, ;l.C3 , ~II.20!

then, ifl is large enough~II.17! coupled with~II.19!, and~II.20! are contradictory, so~II.11! is not
accurate.

~2! Suppose~II.12!.
From ~II.12! we get

a~x!~D2u2 ilv!F 1

a~x!
~D2u2 ilv!~a~x!b~x! f l!G5m2f l, ~II.21!

or equivalently, using the formula

~D2Q!2f 1 i @1/a~x!# ~¹a~x!!~D2Q! f 5Aa~x!F ~D2Q!2S 1

Aa~x!
f D 1S DS 1

Aa~x!
D D f G ,

that

~D2u2 ilv!2~Aa~x!b~x! f l!5
1

Aa~x!
m2f l2S DS 1

Aa~x!
D D a~x!b~x! f l. ~II.22!

We also have

b~x!~D2u2 ilv!F 1

b~x!
~D2u2 ilv!~a~x!b~x!gl!G5m2gl ~II.23!

which is equivalent to

~D2u2 ilv!2~a~x!Ab~x!gl!5m2
1

Ab~x!
gl2S DS 1

Ab~x!
D D a~x!b~x!gl. ~II.24!

Applying again~II.4!, to the equalities~II.22! and~II.24!, leads tof l5gl50, and then by~II.12!
ul5vl50, soFl50.

We have proved that, for any fixed realm, if ~II.4! is satisfied, for any largel, m cannot be an
eigenvalue ofP(x,D2u2 ilv), then by Lemma~II.1! m is not an eigenvalue ofP(x,D), so
sp(P(x,D))5B, using again the same lemma, we get Theorem~I.3!.
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An infinite product of the forma05Pm51
` @1/(12am)#, 0,a,1 was introduced

by Euler in a famous theorem of number theory. A generalized form of this infinite

product is used to define a sequencean[Pm50
mÞn

`
@1/(12am2n)#, which is shown to

have many interesting properties. Thean coefficients are in fact the partial-fraction
expansion coefficients associated with the characteristic function of a first-order
Markov process driven by an uncorrelated sequence of random variates with expo-
nential density. Thean coefficients are recursively calculated froma0 , and mono-
tonically converge to zeroO(an2

). The sum of the sequence is equal to 1, and the
alternating sum is equal toa0

2(a)/a0(a2). A more remarkable property is that the
an sequence is orthogonal to all exponentially increasing sequences of the form
a2kn, wherek is a positive integer. Various other expressions are also derived for
the moments ofana2kn, k>0. Thez-transform of thean sequence is shown to be
characterized by an infinite set of zerosam on the real axis and an essential singu-
larity at the origin. @S0022-2488~00!03010-3#

I. INTRODUCTION

Let 0,a,1 and define the infinite product

a0~a![
1

12a

1

12a2

1

12a3 ¯5 )
m51

`
1

12am . ~1!

A famous theorem of Euler in number theory1 holds that this quantity is the generating function
the sequencep(n) that counts the number of partitions of the integern:

a0~x!511 (
n51

`

p~n!xn, ~2!

where, for example withn54, the partitions are enumerated as

~4!5~311!5~212!5~21111!5~1111111!, ~3!

andp(4)55.
First consider the generalization ofa0(a) to the functional

a0~a,s!5 )
m50

`
1

12ams
, ~4!

such thata0(a)5a0(a,a) for s5a. Then write the partial fraction expansion of~4! as a function
of s,

a!Electronic mail: drrm@bell-labs.com
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a0~a,s!5 (
n50

`
an

12ans
, ~5!

where the coefficients are calculated as

an5 )
m50
mÞn

`
1

12am2n . ~6!

It follows that for s5a, a0(a) can be written as

a05 (
n51

`
an21

12an . ~7!

Thean sequence is the subject of this paper, and its various interesting properties will be d
and discussed in the following sections.

One motivation for the study of this sequence is that thean coefficients emerge as th
partial-fraction expansion coefficients of the characteristic function associated with a certai
of random sequence, as explained in the following. LetX be a random variable with the standa
exponential probability density

f X~x!5e2x, x>0, ~8!

and associated characteristic function

FX~v!5E$eivX%5
1

12 iv
, ~9!

where i[A21. Now suppose that such a sequence of independent, identically distributed
ables,Xk is used to form the first-order Markov process

Yk5aYk211Xk5Xk1aXk211a2Xk221¯ . ~10!

This process can be interpreted as the output of a single-pole recursive digital filter driven
uncorrelated sequence of random variates with exponential density.

Since each random variable in the input sequence of~10! is independent, the characterist
function of the output is the infinite product of characteristic functions associated with each
Thus, from~4! and ~5!,

FY~v!5a0~a,iv!5 )
m50

`
1

12 iamv
5 (

n50

`
an

12 ianv
, ~11!

where thean’s are defined by~6!. The probability density ofY is determined by inverse Fourie
transformation of~11!, giving

f Y~y!5 (
n50

`

ana2ne2a2ny, ~12!

which is a special case of the general gamma, or general Erlang, distribution used in q
theory, reliability theory, and psychology.2

Another interesting connection to physics can be made by expressing the ratio

a0~a2!

a0
2~a!

5 )
m51

`
12am

11am 5 (
n52`

`

~21!nan2
, ~13!
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where the rightmost equality is derived using Jacobi’s identity.1 This expression relates to Kol
mogorov’s distribution of the maximum deviation of the empiric distribution and also to Jac
theta functions, which crop up in the theory of heat.3

II. COMPUTATION OF a0

Straightforward calculation ofa0 can be accomplished by truncating~1! to an appropriate
number of terms for any desired accuracy. However, for values ofa'1, convergence will be very
slow. In this case, an alternative formulation is possible, again due to Euler, that conv
O(an2

) and is expressed1

1

a0
5 (

n52`

`

~21!nan~3n11!/2. ~14!

However, even though in theory this sequence converges faster than the direct from~1!, it is not
numerically well conditioned, as it involves the subtraction of large numbers.

An alternative means of accurately calculatinga0 using only a few terms can be derived fro
the theory of Dedekind’s eta function.4 The Dedekind eta function, which is related to the d
criminant function, is defined as

h~t!5eipt/12)
n51

`

~12ei2pnt!. ~15!

Therefore, in the notation of this paper,

a0~a!5
a1/24

hS loga

i2p D . ~16!

A theorem of eta functions states that4

h~21/t!5A2 i th~t!. ~17!

Therefore, making the substitutiont5(loga)/(i2p) in ~17! and using~16! expresses

a0~a!5A2 loga

2p
~ae24p2 /log a!1/24a0~e4p2/log a!. ~18!

It can be readily appreciated that fora.e22p'0.001 867, the argument ofa0 on the right-hand
side of~18! will be less thana, thereby providing a more efficient means for calculatinga0 in this
regime. In fact, fora.0.1,a0 on the right-hand side of~18! is approximately equal to 1, to within
7 decimal places; for smaller values ofa a few terms will suffice to accurately calculatea0 either
directly or using~18!. Table I lists values ofa0 that were calculated for several values ofa using
this method.

In computinga0 , it is useful to know that the ratio in~13! can be expressed as

a0~a2!

a0
2~a!

5u4~0,a!, ~19!

where

u4~u,q![ (
n52`

`

~21!nqn2
ei2nu ~20!
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is one of the classic theta functions. Values ofu4 are also listed in Table I for several values ofa.
It is also possible to define a companion series

bn5 )
m50
mÞn

`
1

11am2n , ~21!

so that the ratiob0 /a0 also equates to~13! and ~19!. It may be possible to exploit the propertie
of thebn sequence and relate it to thean series through the theory of theta functions, although
such relationship is immediately obvious.

The Euler producta0 can also be expressed as5

a05a1/24~2kk8!1/6Ap/K~k!, ~22!

where

K~k!5E
0

` dx

A~12x2!~12k2x2!
~23!

is the complete elliptic integral of the first kind, and the modulusk is implicitly calculated from the
nome

q5Aa5e2pK/K8, ~24!

whereK8(k)[K(k8) andk8[A12k2 is the complementary modulus. A table of the ratioK8/K
as a function of the modulusk can be found in Ref. 6.

III. PROPERTIES OF an

It is easy to see that the expression~6! for the general term of thean series can be recursivel
calculated froma0 as follows:

an5
1

12a2n an21

52
an

12an an21 ~25a!

5
an~n11!/2~21!n

~12a!~12a2!¯~12an!
a0 . ~25b!

TABLE I. Calculated values ofa0 andu4 as a function ofa.

a a0(a) u4(0,a)

0.00 1.000 000 000e100 1.000 000 000e200
0.01 1.010 203 051e100 9.800 000 197e201
0.10 1.123 582 755e100 8.001 999 974e201
0.25 1.452 353 643e100 5.078 048 709e201
0.50 3.462 746 622e100 1.211 242 079e201
0.75 6.432 920 554e101 1.245 309 434e203
0.90 7.775 642 000e105 7.373 527 015e210
0.98 1.300 598 062e134 2.267 563 186e252
0.99 4.815 109 434e169 8.459 274 425e2106
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Thus, thean sequence alternates in sign, and for sufficiently largen, is monotonically decreasing
in magnitude,

uanu,uan21u, n.21/log2 a, ~26!

converging in the limit as

an ——→
n→`

~21!nan~n11!/2a0
2. ~27!

In fact, it can be noted from~1! and ~25b! that the sequence magnitude is also bounded as

uanu,an~n11!/2a0
2. ~28!

One property of thean sequence has already been noted in~5!, by which the sequence
constitutes the partial-fraction expansion coefficients of the infinite producta0(a,s). Other prop-
erties can be determined from the generating function ofan which is defined as

F~x!5 (
n50

`

anxn, ~29a!

and is expressed alternatively as

F~x!5a0 )
m51

`

~12amx! ~29b!

using Euler’s expansion.7 A detailed study of the generating function is presented in the Appen
However, most of the properties ofan can be directly deduced from the above relationship.

One immediate consequence of~29! with x51 is that thean sequence sums to unity:

(
n50

`

an51. ~30!

This property also follows from the fact that the characteristic functionFY(0)51 in ~11!, since a
probability density function has unit area.

Another property is determined from~29! by settingx521 and utilizing~13! and~19!, which
expresses the alternating sum of thean coefficients as

(
n50

`

~21!nan5
a0

2~a!

a0~a2!
5

1

u4~0,a!
. ~31!

A more remarkable property that follows from~29! is that thean sequence is orthogonal to a
exponentially increasing sequences of the forma2kn, wherek is a positive integer. This propert
is written as

(
n50

`

ana2kn50, k>1. ~32!

Differentiation of ~29! shows that

(
n51

`

nana2n521, ~33!

and more generally, as shown in the Appendix,
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(
n51

`

nana2kn52
a0

ak21
, k>1 ~34a!

5
~12a!~12a2!¯~12ak21!

ak~k21!/2~21!k , k.1. ~34b!

In addition, fork50,

(
n51

`

nan52 (
n51

`
an

12an , ~35a!

which is known as Lambert’s series.8 An alternative form known as Clausen’s series can
obtained by writing~35a! as a double sum, making the change in indexk5m2n and summing
over the diagonals, giving8

(
n51

`

nan52 (
n51

`
11an

12an an2
. ~35b!

This form is preferred over~35a! for numerical calculations, due to its fasterO(an2
) convergence.

Higher-order derivatives of the generating function, as discussed in the Appendix, lead
additional moment identities:

(
n51

`

n~n21!ana2kn52
a0

ak21
(
n51
nÞk

`
an2k

12an2k , k>1, ~36!

(
n51

`

n~n21!~n22!ana2kn523
a0

ak21
(
n51
nÞk

`
an2k

12an2k (
m51
mÞn
mÞk

`
am2k

12am2k , k>1, ~37!

and in general,

(
n51

`
n!

~n2p!!
ana2kn5~21!pp

a0

ak21
(

n151
n1Þk

`
an12k

12an12k (
n251
n2Þn1
n2Þk

`
an22k

12an22k ¯

¯ (
np2151
np21Þn1

¯

np21Þk

`
anp212k

12anp212k , k>1. ~38!

In ~36!, the sum can be expressed as Clausen’s series~35b! plus a finite sum. However, fo
higher-order moments, no easy way has yet been found to obtainO(an2

) convergence for the
composite sum.

For k50, the above identities become

(
n51

`

n~n21!an5 (
n51

`
an

12an (
m51
mÞn

`
am

12am , ~39!
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(
n51

`

n~n21!~n22!an52 (
n51

`
an

12an (
m51
mÞn

`
am

12am (
l 51
lÞm
lÞn

`
a l

12a l , ~40!

(
n51

`
n!

~n2p!!
an5~21!p (

n151

`
an1

12an1 (
n251
n2Þn1

`
an2

12an2
¯ (

np51
npÞn1

¯

npÞnp21

`
anp

12anp
. ~41!

IV. z-TRANSFORM OF an

Thez-transform of thean sequence is closely related to the generating function, being de
as

A~z![ (
n50

`

anz2n5F~z21!. ~42a!

From ~29!, this transform is expressed alternatively as

A~z!5a0 )
m51

`
z2am

z
. ~42b!

Thus, A(z) is characterized by the infinite set of zerosam on the real axis and an essenti
singularity at the origin.

The frequency response of the sequence is defined as the value ofA(z) on the unit circle,

A~eiv!5 (
n50

`

ane2 inv, uvu<p. ~43!

This response has a dc (v50) value given by~30! asA(1)51, and monotonically increases to
maximum value atv5p, which can be written from~31! as

FIG. 1. Frequency response ofan sequence.
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A~21!5
a0

2~a!

a0~a2!
5

1

u4~0,a!
. ~44!

Thus, the frequency response of thean sequence is like that of a monotonic high-pass filter. Fig
1 shows a plot of the magnitude and phase of this frequency response as a function of norm
frequencyf 5v/(2p) for several values ofa.

V. CONCLUSIONS

In this paper, a sequence has been defined that is a generalization of an infinite produca0(a)
that Euler introduced as the generating function of the partition-counting sequence, with<a
<1 a parameter. The terms of this sequencean are in fact the partial-fraction expansion coef
cients associated with the characteristic function of a first-order Markov process driven
uncorrelated sequence of random variates with exponential density.

A relationship was established betweena0 and the Dedekind eta function which leads to
efficient method for accurately calculatinga0 for all values ofa using only a few terms. It was
also shown that the ratioa0(a2)/a0

2(a)5u4(0,a), which is one of the classic theta functions.
relationship betweena0 and elliptic integrals was also pointed out.

The an coefficients are recursively calculated froma0 , and monotonically converge to zer
O(an2

). The sum of the sequence is equal to 1, and the alternating sum is equ
a0

2(a)/a0(a2)51/u4(0,a). A more remarkable property is that thean sequence is orthogonal t
all exponentially increasing sequences of the forma2kn, wherek is a positive integer. Various
other expressions were also derived for the moments ofana2kn, k>0, as special cases obtaine
from derivatives of the generating function. An analysis of the generating function ofan is
developed separately in the Appendix, where the zeros, extrema, growth rate, and derivati
examined.

The z-transform of thean sequence was shown to be characterized by an infinite set of z
am on the real axis and an essential singularity at the origin. Evaluation of thez-transform on the
unit circle results in a high-pass response, being equal to unity at zero frequency, and incr
monotonically to a maximum value at the folding frequency.

A companion seriesbn can be defined by changing the2 sign to a1 sign in the definition of
an , and it was shown thatb0 /a05u4(0,a). It may also be possible to exploit the properties of t
bn sequence and relate it to thean series through the theory of theta functions, although no s
relationship is immediately obvious.

ACKNOWLEDGMENT

The author thanks Andrew Odlyzko for pointing out the connection to the Dedekind
function which leads to a much more efficient method for calculatinga0 .

APPENDIX: GENERATING FUNCTION OF an

The generating function of thean sequence is written

F~x!5 (
n50

`

anxn, ~A1a!

which is expressed alternatively using~25! with Euler’s expansion7 as

F~x!5a0 )
m51

`

~12amx!. ~A1b!

This function bears a certain resemblance to the so-called ‘‘basic hypergeometric functio
Andrews and Askey,9 but apparently cannot be explicitly expressed as such.
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1. Zeros

It is obvious from~A1! that F(0)5a0 , and from the definition ofa0 , F(1)51. A more
interesting property stems from~A1b! which shows that the zeros of the generating function fo
a geometric sequence:

F~a2k!50, k>1. ~A2!

2. Extrema

The first derivative of the generating function is written

F8~x!5 (
n51

`

nanxn21. ~A3!

As will be shown later in subsection 4, the sign of the derivative alternates at successive ze
F, and therefore, local extrema ofF will occur between the zeros. As an example, calculations
a50.25 show that the zeros ofF are located at valuesx54, 16, 64, ... with extrema intersperse
at the values listed in Table II.

It is seen from the values in Table II that the generating function grows rapidly for increa
values ofx. Therefore, a means for calculating the asymptotic growth rate of the gener
function will now be developed.

3. Growth rate

From ~26!, the coefficient values are noted to ultimately decrease withn, whereas the value o
xn increases. Thus, the value of the summand in~A1a! will increase in magnitude up to a max
mum for some value ofn, and then will decrease. The value ofn for which the summand reache
a maximum magnitude can be determined by equating successive differences as

anxn2an21xn215anxn2an11xn11

or

an11x25an21 .

Substituting~25a! then shows that the value ofn that most nearly satisfies this condition is th
nearest integer to the value

log @~11a!/21A~12a!2/41ax2#

log 1/a
——→

x→`

n0[
logx

log 1/a
2

1

2
. ~A4!

Therefore, the most significant values of the summand occur for index values close ton0 , which
increases with the value of logx according to~A4!. Thus, for large values ofx, Eq. ~27! will form
a good approximation to the coefficients and substitution into~A1a! shows that

TABLE II. Calculated extrema of the generating function fora50.25.

x F(x)

9.57477 26.571 110 279e201
45.0332 6.219 913 148e100
196.320 22.872 464 058e102
828.277 5.773 625 358e104
3435.50 24.868 415 504e107
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F~x! ——→
x→`

a0
2 (

n50

`

~21!nqn21nxn, ~A5a!

whereq2[a. By converting the summand to a common baseq, completing the square of th
exponent, and appending the vanishingly small terms for negative index values,~A5a! can be
written in the more suggestive form

F~x! ——→
x→`

F̃~x![a0
2q2n0

2

(
n52`

`

~21!nq~n2n0!2
, ~A5b!

wheren0 is the asymptotic value in~A4!. This expression reveals that the asymptotic genera
function is comprised of an exponentially decaying factor and an infinite sum that is periodic
n0 . The infinite sum is maximized forn050, 2, 4, ..., is equal to zero forn051/2, 3/2, 5/2, ..., and
is minimized at the negative value of the maximum forn051, 3, 5, ... .

The asymptotic generating function can also be expressed as

F̃~x!5a0
2u4~ in0 logq,q!, ~A5c!

where

u4~u,q![ (
n52`

`

~21!nqn2
ei2nu ~A6a!

is one of the classical theta functions. An alternative form of theu4 function can be obtained usin
the Poisson sum formula, giving10,11

u4~u,q!5A2p/ logq (
n52`

`

q$@p~n11/2!2u#/ log q%2
, ~A6b!

which converges faster than~A6a! for q.e2p'0.0432. Accordingly, the asymptotic generatin
function ~A5! can be written alternatively as

F̃~x!52a0
2A2p/ logqq2n0

2

(
n50

`

q@p~n11/2!/ log q#2
cos@~2n11!pn0#. ~A7!

This form makes the previously noted cyclic behavior explicit as a Fourier series of odd c
harmonics. It can be noted that the ratio of the third harmonic to fundamental~ratio of cosine
coefficients forn51 to n50! is numerically equal toe2p2/(log q), which is less than 1% forq
.0.014 (a.0.00020). Therefore, for many cases of interest, the asymptotic generating fun
is essentially a pure cosine term with little harmonic distortion.

Having established the asymptotic growth rate of the generating function, it is now possi
define the normalized function

G~y![
a~y21/2!2/2

a0
2u4~0,Aa!

F~a2y!, ~A8!

where

y[
logx

log 1/a
. ~A9!

From ~A1!, this normalized generating function can then be expressed as
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G~y!5
a~y21/2!2/2

a0u4~0,Aa!
)
m51

`

~12am2y!. ~A10!

A plot of ~A10! is shown in Fig. 2 fora50.25. As can be seen, the asymptotic behavio
very nearly a perfect sinusoid, as predicted from~A7!, with unity amplitude and zero crossings
positive integer values ofy. The maximum value

G~0!5
a1/8

a0
2u4~0,Aa!

~A11!

occurs fory50, and the function decays monotonically to zero for negative values ofy. This
interesting function exhibits a kind of ‘‘one-sided’’ periodicity that may have important theore
properties as well as practical applications.

4. Derivatives Õmoments

The derivatives of the generating function of course have the property that when evalua
x50 yield the coefficients of the sequence

F ~n!~0!5n!an . ~A12!

The first derivative of the generating function is written as

F8~x!5 (
n51

`

nanxn21 ~A13a!

52a0(
n51

`

an )
m51
mÞn

`

~12amx!. ~A13b!

Higher-order derivatives of the generating function can be recursively calculated in the follo
manner. Combining~A1b! and ~A13b! expresses the first derivative as

F8~x!52F~x! (
n51

`
an

12anx
. ~A13c!

FIG. 2. Normalized generating function ofan .
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From ~A1b! and ~6!, it is seen that

F~x!

12akx
——→
x→a2k

a0 )
m51
mÞk

`

~12am2k!5
a0

ak21
, k>1. ~A14!

Therefore, substituting this result along with property~A2! into ~A13c! gives

F8~a2k!52
a0

ak21
ak, k>1, ~A15!

which together with~A13a! proves~34!. Also, for k50, substitution ofx51 into ~A13c! together
with ~30! gives

F8~1!52 (
n51

`
an

12an , ~A16!

which leads to~35a! directly. Similar calculations will now be obtained for higher-order deriv
tives.

Differentiating ~A13c! and rearranging the sums expresses the second derivative as

F9~x!5F~x! (
n51

`
an

12anx (
m51
mÞn

`
am

12amx
. ~A17!

Again, making use of~A14! gives

F9~a2k!52
a0

ak21
a2k (

n51
nÞk

`
an2k

12an2k , k>1 ~A18!

and

F9~1!5 (
n51

`
an

12an (
m51
mÞn

`
am

12am . ~A19!

In like manner, the third derivative is expressed as

F-~x!52F~x! (
n51

`
an

12anx (
m51
mÞn

`
am

12amx (
l 51
lÞm
lÞn

`
a l

12a lx
. ~A20!

F-~a2k!523
a0

ak21
a3k (

n51
nÞk

`
an2k

12an2k (
m51
mÞn
mÞk

`
am2k

12am2k , k>1, ~A21!

and

F-~1!52 (
n51

`
an

12an (
m51
mÞn

`
am

12am (
l 51
lÞm
lÞn

`
a l

12a l . ~A22!

It can be easily shown by deduction that proceeding as above results in the general exp
for the pth derivative,
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F ~p!~x!5~21!pF~x! (
n151

`
an1

12an1x (
n251
n2Þn1

`
an2

12an2x
¯ (

np51
npÞn1

¯

npÞnp21

`
anp

12anpx
, ~A23!

and in particular,

F ~p!~a2k!5~21!pp
a0

ak21
apk (

n151
n1Þk

`
an12k

12an12k (
n251
n2Þn1
n2Þk

`
an22k

12an22k ¯ (
np2151
np21Þn1

¯

np21Þk

`
anp212k

12anp212k , k>1

~A24!

and

F ~p!~1!5~21!p (
n151

`
an1

12an1 (
n251
n2Þn1

`
an2

12an2
¯ (

np51
npÞn1

¯

npÞnp21

`
anp

12anp
. ~A25!

Equating derivatives of~A1a! to the above expressions then directly proves the mom
relationships stated in the main text of this paper.
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Connes duality in pseudo-Riemannian geometry
G. N. Parfionov and Roman R. Zapatrina)

A. A. Friedmann Laboratory for Theoretical Physics,
SPb UEF, Griboyedova 30-32, 191023, St. Petersburg, Russia

~Received 4 May 1999; accepted for publication 20 May 1999!

The Connes formula giving the dual description for the distance between points of
a Riemannian manifold is extended to the Lorentzian case. It resulted that its
validity essentially depends on the global structure of space–time. The duality
principle classifying space–times is introduced. The algebraic account of the theory
is suggested as a framework for quantization along the lines proposed by Connes.
© 2000 American Institute of Physics.@S0022-2488~00!01402-X#

I. INTRODUCTION

The mathematical account of general relativity is based on the Lorentzian geometry b
model of space–time. As any model, it needs identification for a physicist in terms of meas
values. In this paper we focus on evaluations of intervals between events, considering the
of scalar fields as measurable entities.

This work was anticipated by the Connes distance formula for Riemannian manifolds

Dist~x,y!5supf PF$ f ~y!2 f ~x!%,

where the supremum is taken over the classF of all smooth functions whose gradient does n
exceed 1.

This formula gives rise to a new paradigm in the account of differential geometry being
sound from the physicist’s point of view as it expresses the distance through the values of
fields on the manifold. Our goal was to investigate to what extent this formula is applicab
Lorentzian manifolds.

Our first observation was that even in the Minkowskian space this formula is no longer
in its literal form. The reason is that the Cauchy inequality on which the Connes formula is
does not hold in the Minkowskian space. In Sec. III, following Connes’ guidelines we mana
obtain anevaluationrather than theexpressionfor the distance. In ‘‘good’’ cases, in particular, i
the Minkowski space–time, this evaluation is exact and gives an analog of the Connes for

The attempt to generalize it to arbitrary Lorentzian manifolds resulted in the buildin
counterexamples which show the drastic difference between the Riemannian and Lorentzian
folds. In Sec. IV theduality principle is introduced in order to point out the class of Lorentzi
manifolds being as ‘‘good’’ as the Riemannian ones. It turned out that one can find a ‘‘
space–time even among those conformally equivalent to the Minkowskian one~an example is
provided in Sec. IV!.

The Connes duality principle plays an important role in the framework of the so-c
‘‘spectral paradigm’’ in the account of noncommutative differential geometry.1 However, the
correspondence principle for this theory is corroborated on Riemannian~rather than Lorentzian!
manifolds. To overcome this discrepancy, in Sec. V we suggest a way to introduce noncom
Lorentzian geometry.

a!Electronic mail: gudrs@mail.ru
71220022-2488/2000/41(10)/7122/7/$17.00 © 2000 American Institute of Physics
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II. CONNES FORMULA

Both the Riemannian distance and Lorentzian interval are based on calculation of the
integral:

E
g
Ads2,

which is always referred to a pair of points. The distances~respectively, intervals! as functions of
two points are obtained as external values of this integral over all appropriate curves conn
the two points.

There is a remarkable duality to evaluate this integral suggested by Connes for the Rie
ian case. We consider it in more detail.

For any two pointsx,y of a Riemannian manifoldM connected by a smooth curveg the
following evaluation of values of any smooth fuctionf through its lengthl ~g! takes place:

f ~y!2 f ~x!<sup
M

u¹ f u•l ~g! ~1!

based on the Cauchy inequality:

~¹ f ,ġ !<u¹ f u•uġu. ~2!

So, the distancer(x,y) between the points of the manifold satisfies the following inequal

r~x,y!>sup
f PF

~ f ~y!2 f ~x!!,

whereF is the class of all functions whose gradient does not exceed 1:

F5$ f :u¹ f u<1%.

It was shown by Connes2 that, as a matter of fact, no curves are needed to determine
distance: It can be obtained directly as

r~x,y!5 sup
u¹ f u<1

~ f ~y!2 f ~x!!. ~3!

The physical meaning of this result is the following: We can evaluate the distance betwe
points measuring the difference of potentials of a scalar field whose intensity is not too hig
the following duality principle takes place in Riemannian geometry:

sup~ f ~y!2 f ~x!!5 inf l ~g!.

Note that this formula is valid even for nonconnected spaces: In this case both sides
above-mentioned equality are equal1`, if we assume, as usual, the infinite value of the infimu
when the ranging set is void.

The following question arises: Can we write down a similar evaluation for the Lorent
case?

III. DUALITY INEQUALITY IN LORENTZIAN GEOMETRY

The Cauchy inequality~2! from which the Riemannian duality principle was derived is
longer valid in the Lorentzian case. Instead, we have the following:

~¹ f ,ġ !2>~¹ f !2
•~ ġ !2, ~4!

where both¹ f ,ġ are non-spacelike:
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~¹ f !2>0, ~ ġ !2>0.

If under these circumstances we also have (¹ f ,ġ)>0, the inequality~4! reduces to

~¹ f ,ġ !>u¹ f u•uġu.

Now let x,y be two points of a Lorentzian manifoldM such that there is a causal curveg
going fromx to y. Then for any global time functionf on M we immediately obtain the analog o
the inequality~1!,

f ~y!2 f ~x!> inf
M

u¹ f u•l ~g!.

Now introduce the classF~M! of test functions satisfying the following condition:

F~M!5$ f u f is a global time function and~¹ f !2>1. ~5!

Then the Lorentzian intervall (x,y)5sup*gAds2 betweenx andy can be evaluated as follows:

f ~y!2 f ~x!> l ~g!,

provided the classF of test functions~5! is not empty. Introducing the value

L~x,y!5 inf
f PF

~ f ~y!2 f ~x!! ~6!

we obtain the followingduality inequality:

l ~x,y!<L~x,y!. ~7!

It is worth mentioning that this inequality is still meaningful when the pointsx,y cannot be
connected by a causal curve. In this case the supremuml (x,y) is taken over the empty set o
curves and its value is, as usual, taken to be2`, that is why inequality~7! trivially holds.

As an example, let us thoroughly describe this construction in the case whenM is the
Minkowskian space–time. The following proposition holds:

Proposition:The duality inequality~7! becomes equality in the Minkowskian space–time

;a,bPM, L~a,b!5 l ~a,b!. ~8!

Proof: Assume with no loss of generality thata50. If b is in the future cone ofa50, then
l 5(b,b) is realized on the segment@0,b#. The value ofL is achieved on the functionf (x)
5(b,x)/A(b,b). Let b be a future-directed isotropic vector, thenl 50. For anye such that 0
,e,1 consider the function

f e~x!5
~~12e!b1ev,x!

Ae~12e!~b,v !
,

wherev is a vector defining the time orientation. The direct calculation shows that (¹ f )2>1 and
(¹ f ,v)>0, that is,f ePF. In the meantimef (b)5Ae(v,b)/(12e) which can be made arbitrarily
close to zero by appropriate choice ofe.

Now let the pointb be beyond the future cone of the point 0, therefore they can be sepa
by a spacelike hyperplanef k(x)5(k,x)50 and choose the vectork to be future directed. Then
f k(b),0. Since f lk(b)5l f kPM, the infimum is2`. In the meantimel (0,b)52` as well
since there are no future-directed nonspacelike curves connecting 0 withb. h
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Remark: Note that if we borrow the definition ofl (a,b) from Ref. 3, namely, assum
l (a,b)50 for b¹J1(a), then the equality~8! will not hold even in the Minkowskian space: Th
was the reason for us to introduce the definition~6!.

Consider one more example. LetM5S13R3 be a Minkowskian cylinder whereS1 is the
time axis. In this case any two pointsx,yPM can be connected by an arbitrary long timeli
curve, thereforel (x,y)51`. In the meantime the classF~M! of test functions is empty~since
there is no global time functions!, and thereforeL(x,y)51`. So we see that even in thi
‘‘pathological’’ case equality~8! still holds.

Note that the classF~M! of test functions~5! itself characterizes space–times. In general
F~M! is not empty, the space–timeM is chronological@it follows immediately from thatF~M!
consisting of global time functions#.

Now we may inquire if all Lorentzian manifolds are as ‘‘good’’ as Minkowskian? In Sec.
we show that the answer is no.

IV. DUALITY PRINCIPLE

A Lorentzian manifoldM is said to satisfy theduality principle if for any of its pointsx,y

L~x,y!5 l ~x,y!.

This feature of manifolds is global, however, not hereditary: If we take an open subse
‘‘good’’ manifold it may happen that it will no longer enjoy the duality principle, which
illustrated by the following example: In Sec. III we have proved the duality inequality~7! which
is always true in any Lorentzian manifold. However, unlike the case of Riemannian space
inequality may be strict, which is corroborated by the following example.

Let M be a Minkowskian plane from which a closed segment connecting the points~1,21!
and ~21,1! is cut out~Fig. 1!.

Consider two pointsa5(22.0) andb5(2,0). They cannot be linked by a timelike curve
M, thereforel (a,b)52`. Meanwhile the classF~M! is not empty: It contains at least th
restrictions of all test functions defined on the whole Minkowskian plane, thusL(a,b),1`. Let
us prove that the valueL(a,b) is finite, supposing the opposite. IfL(a,b) would be equal to2`,
a functionf PF(M) should exist for whichf (b), f (a). Consider the behavior of the level linel b

of f passing through the pointb. Being spacelike, it cannot enter the cone (2`,t,b;uxu<ut
2bu) which contains the pointa. On the other hand, pointa must lie in the causal future con
J1( l b), which is not the case. So,L(a,b)Þ l (a,b).

We introduced the duality principle to specify the notion of ‘‘good’’ space–time. Cont
plating the above-mentioned examples may lead us to an erroneous conclusion that the rea
the duality principle to be broken is when the space–time manifold is not simply connected
next example4 shows that there are manifolds which are simply connected, geodesically co
admit global chronology but do not enjoy the duality principle.

Let M be a right semiplane (2`,t,1`;0,x,1`) with the metric tensor conformally
equivalent to the Minkowskian one. It is defined in coordinatest,x as follows:

FIG. 1. The duality principle is broken for this manifold.
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gik5
1

x S 1 0

0 21D . ~9!

This example illustrates the problems related to the dual evaluations: It shows that the
tence of a global time function does not guarantee the classF to be nonempty. The space–timeM
evidently admits global time functions such as, for instance,f (t,x)5t. However, the following
proposition can be proved.

Proposition:The class of test functions on the manifold~9! is empty.
Proof: Suppose there is a functionf (x,t) satisfying ~5! and consider two valuesA,B (A

,B) of the functionf. The appropriate lines of constant level off are the graphs of function
tA(x),tB(x). Since the derivativef t.0, we havetA(x),tB(x). These functions are differentiabl
and their derivatives are bounded:tA8 , tB8<1 ~because these lines are always spacelike!, therefore
they have limits whenx→0. Let us show that these limits are equal.

Consider the differenceB2A and evaluate it:

B2A5 f ~ tB~x!,x!2 f ~ tA~x!,x!5E
tA~x!

tB~x!

f t~ t,x!dt>
1

Ax
•~ tB~x!2tA~x!!,

where the first factor 1/Ax is directly obtained from the condition (¹ f )2>1/x. So, the limit of
tB(x)2tA(x) is to be equal 0. Since the valuesA,B were taken arbitrary, we conclude that all th
lines of levels of the global time functionf come together to a certain point. Therefore these li
~being spacelike! cannot cover all the manifoldM. h

This proposition shows that the spaceM with the metric~9! does not support duality prin
ciple: we can take two pointsa,b on a timelike geodesic and calculate the intervall (a,b), while
L(a,b)51`.

V. ALGEBRAIC ASPECTS AND QUANTIZATION

Let us study the dual evaluations from the algebraic point of view. It was pointed ou
Geroch5 that the geometrical framework of general relativity can be reformulated in a pu
algebraic way. Recall the basic ingredients of Geroch’s approach.

The starting object is the algebraA5C `(M), then the vector fields onM are the derivations
of A, that is, the linear mappingsv:A→A satisfying the Leibniz rule:

v~a•b!5av•b1va•b.

Denote byV the set of vector fields onM ~5 derivations ofA!. It is possible to develop tenso
calculus along these lines: Like in differential geometry, tensors are appropriate polylinear
on V. In particular, the metric tensor can be introduced in purely algebraic terms.

The Geroch viewpoint is in a sense ‘‘pointless:’’6 It contains no points givenab initio.
However the points are immediately restored as one-dimensional representations ofA. For any
xPM the appropriate representationx̂ reads:

x̂~a!5a~x!, aPA.

Now let M be a Riemannian manifold. If we then decide to calculate the distance bet
two representationx,y in a ‘‘traditional’’ way we have to introduce such a cumbersome objec
continuous curve in the space of representations. The crucial point of the result of Connes~3! is
that we can stay in the algebraic environment:

r~x,y!5sup
f eF

~ f ~y!2 f ~x!!
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and the problem now reduces to an algebraic description of the classF of suitable ‘‘test elements’’
f of the algebraA.

However, the initial Connes’ suggestion still refers to points:F5$aPAu;mPMu¹a(m)
u<1%. Connes’ intention was to build a quantized theory which could incorporate noncomm
tive algebras as well. For that, the construction ofspectral triplewas suggested.1

A spectral triple~A,H,D! is given by an involutive algebra of operatorsA in a Hilbert space
H and a self-adjoint operatorD with compact resolvent inH such that the commutator@D,a# is
bounded for anyaPA ~note thatD is not required to be an element ofA!.

Then for any pair~x,y! of states~5 non-negative linear functionals! on A the distanced(x,y)
betweenx andy may be introduced:

d~x,y!5$ux~a!2y~a!u:aPF%

with the following class of ‘‘test elements’’ of the algebraA:

F5$aPA:i@D,a#i<1%. ~10!

The suggested construction supports the correspondence principle with the Riemann
ometry. Namely, we form the spectral triple withA5C`(M), H5L2(M,S)—the Hilbert space
of square integrable sections of the irreducible spinor bundle overM andD is the Dirac operator
associated with the Levi-Civita` connection onM.7 Thend(x,y) recovers the Riemannian distanc
on M ~see, e.g., Ref. 1!.

Comparing the definition~10! of the classF with that used in Sec. II:F5$aPAu;m
PMu¹a(m)u<1% we see that the operatorD is an algebraic substitute of the gradient. Followi
Refs. 7 and 8 the gradient condition~10! can be written in terms of the Laplace operator taki
into account that

~¹ f !25 1
2D~ f 2!2 f D f ,

which restores the metric onM according to the Connes’ duality principle~3! for Riemannian
manifolds. However this condition is still checked at every point ofM.

We suggest an equivalent algebraic reformulation of~10! with no reference to points. Startin
from the notion of the spectrum of an element of algebra:9

spec~a!5$lPCua2l•1 is not invertible%

and taking into account that the spectrum of the multiplication operator coincides with the do
of the multiplicator we reformulate the Connes’ conditionf PF as

spec~12~¹ f !2! is non-negative. ~11!

Within this framework, to pass to the Lorentzian case, we simply substitute the Laplacin

by the D’Alembertianh, and the spectral condition~11! is changed to

spec~~h f !221! is non-negative,

which makes it possible to recover the Lorentzian interval provided the duality principle ho
So we see that the notion of spectral triple is well applicable to develop quantized Loren

geometry along the lines of Connes’ theory.
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8J. Fröhlich, K. Gawedzki, and A. Recknagel, ‘‘Supersymmetric quantum theory and~non-commutative! differential
geometry,’’ Commun. Math. Phys.193, 527–594~1998!.
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Superconformal symmetry in three dimensions
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Three-dimensionalN-extended superconformal symmetry is studied within the su-
perspace formalism. A superconformal Killing equation is derived and its solutions
are classified in terms of supertranslations, dilations, Lorentz transformations,
R-symmetry transformations and special superconformal transformations. A super-
conformal group is then identified with a supermatrix group, OSp(Nu2,R), as ex-
pected from the analysis on simple Lie superalgebras. In general, due to the invari-
ance under supertranslations and special superconformal transformations,
superconformally invariant n-point functions reduce to one unspecified
(n22)-point function which must transform homogeneously under the remaining
rigid transformations, i.e., dilations, Lorentz transformations, andR-symmetry
transformations. After constructing building blocks for superconformal correlators,
we are able to identify all the superconformal invariants and obtain the general
form of n-point functions. Superconformally covariant differential operators are
also discussed. ©2000 American Institute of Physics.@S0022-2488~00!02610-4#

I. INTRODUCTION AND SUMMARY

Based on the classification of simple Lie superalgebras,1 Nahm analyzed all possible supe
conformal algebras.2 According to Ref. 2, not all space–time dimensions allow the correspon
supersymmetry algebra to be extended to a superconformal algebra contrary to the ordina
formal symmetry. The standard supersymmetry algebra admits an extension to a superco
algebra only ifd<6. Namely, the highest dimension admitting superconformal algebra is six
in d53, 4, 5, 6 dimensions the bosonic part of the superconformal algebra has the form

LC% LR , ~1.1!

whereLC is the Lie algebra of the conformal group andLR is aR-symmetry algebra acting on th
superspace Grassmann variables.

Explicitly for Minkowskian space–time,

d53, o~2,3! % o~N!,

d54, H o~2,4! % u~N!, NÞ4

o~2,4! % su~4!,
~1.2!

d55, o~2,5! % su~2!,

d56, o~2,6! % sp~N!,

whereN or the number appearing in theR-symmetry part is related to the number of sup
charges.

a!Electronic mail: jhp@kias.re.kr
71290022-2488/2000/41(10)/7129/33/$17.00 © 2000 American Institute of Physics
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On six-dimensional Minkowskian space–time it is possible to define Weyl spinors of opp
chiralities and so the general six-dimensional supersymmetry may be denoted by two nu

(N,Ñ), whereN andÑ are the numbers of chiral and antichiral supercharges. TheR-symmetry

group is then Sp(N)3Sp(Ñ). The analysis of Nahm shows that to admit a superconfor

algebra eitherN or Ñ should be zero. Although both~1,1! and ~2,0! supersymmetry give riseN
54 four-dimensional supersymmetry after dimensional reduction, only~2,0! supersymmetry theo
ries can be superconformal.3 On five-dimensional Minkowskian space–time Nahm’s analy
seems to imply a certain restriction on the number of supercharges as the corresp
R-symmetry algebra is to be su~2!.

The above-mentioned analysis is essentially based on the classification of simple Lie
algebras and identification of the bosonic part with the usual space–time conformal sym
rather than Poincare´ symmetry, since the former forms a simple group, while the latter does
This approach does not rely on any definition of superconformal transformations on super

The present paper deals with superconformal symmetry in three dimensions and lies
same framework as our sequent work on superconformal symmetry in other dimensiod
54, 6.4–6 Namely we analyze superconformal symmetry directly in terms of coordinate tran
mations on superspace. We first define the superconformal group on superspace and de
superconformal Killing equation. Its general solutions are identified in terms of supertransla
dilations, Lorentz transformations,R-symmetry transformations, and special superconfor
transformations. Based on the explicit form of the solutions the superconformal group is ind
dently identified to agree with Nahm’s analysis and some representations are obtained.

Specifically, in Ref. 4 we identified a four-dimensionalNÞ4 extended superconformal grou
with a supermatrix group, SU(2,2uN), having dimensions (151N 2u8N), while for N54 case we
pointed out that an equivalence relation must be imposed on the supermatrix group and
four-dimensionalN54 superconformal group is isomorphic to a quotient group of the supe
trix group. In fact,N54 superconformal group is a semi-direct product of U~1! and a simple Lie
supergroup containing SU~4!. The U~1! factor can be removed by imposing a tracelessness
dition on the supermatrix group so that the dimension reduces from (31u32) to (30u32) and the
R-symmetry group shrinks from U~4! to Nahm’s result, SU~4!. @Similarly if a five-dimensional
superconformal group is not simple, this will be a way out from the puzzling restriction on
number of supercharges in five-dimensional superconformal theories, as the corresp
R-symmetry group can be bigger than Nahm’s result, SU~2!. However this is at the level o
speculation at present.# In Ref. 6 by solving the superconformal Killing equation we show that
six-dimensional (N,0) superconformal group is identified with a supermatrix group, OSp(2,6uN),

having dimensions (281N(2N11)u16N), while for (N,Ñ), N,Ñ.0 supersymmetry, we veri
fied that although dilations may be introduced, there exist no special superconformal trans
tions as expected from Nahm’s result.

The main advantage of our formalism is that it enables us to write a general expressi
two-point, three-point, andn-point correlation functions of quasiprimary superfields which tra
form simply under superconformal transformations. In Refs. 4–6 we explicitly constructed b
ing blocks for superconformal correlators in four and six dimensions, and proved that
building blocks actually generate the general form of correlation functions. In general, due
invariance under supertranslations and special superconformal transformations,n-point functions
reduce to one unspecified (n22)-point function, which must transform homogeneously under
rigid transformations only—dilations, Lorentz transformations, andR-symmetry transformations.4

This feature of superconformally invariant correlation functions is universal for any space–
dimension if there exists a well-defined superinversion in the corresponding dimension,
superinversion plays a crucial role in its proof. For the nonsupersymmetric case, contr
superinversion, the inversion map is defined of the same form irrespective of the space
dimension. Hence,n-point functions reduce to one unspecified (n22)-point function in any
dimension, which transform homogeneously under dilations and Lorentz transformations.

The formalism is powerful for applications whenever there exist off-shell superfield form
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tions for superconformal theories, and such formulations are known in four dimensionsN
51, 2, 37–11 and in three-dimensions forN51, 2, 3, 4.12–19 In fact within the formalism, Osborn
elaborated the analysis ofN51 superconformal symmetry for four-dimensional quantum fi
theories,20 and recently Kuzenko and Theisen determined the general structure of two- and
point functions of the supercurrent and the flavor current ofN52 superconformal field theories.21

A common result contained in Refs. 20 and 21 is that the three-point functions of the cons
supercurrents in bothN51 andN52 superconformal theories allow two linearly independe
structures. Hence there exist two numerical coefficients which can be calculated in specifi
turbation theories using supergraph techniques.

The contents of the present paper are as follows. In Sec. II we review supersymmetry in
dimensions. In particular, we verify that supersymmetry algebra withN Dirac supercharges is
equivalent to 2N-extended Majorana supersymmetry algebra, so that in the present pap
considerN-extended Majorana superconformal symmetry with an arbitrary natural number,N.

In Sec. III, we first define the three-dimensionalN-extended superconformal group in terms
coordinate transformations on superspace as a generalization of the definition of ordinary c
mal transformations. We then derive a superconformal Killing equation, which is a necessa
sufficient condition for a supercoordinate transformation to be superconformal. The genera
tions are identified in terms of supertranslations, dilations, Lorentz transformations,R-symmetry
transformations, and special superconformal transformations, whereR-symmetry is given by
O(N) as in Eq.~1.2!. We also present a definition of superinversion in three dimensions thr
which supertranslations and special superconformal transformations are dual to each oth
three-dimensionalN-extended superconformal group is then identified with a supermatrix gr
OSp(Nu2,R), having dimensions (101 1

2N(N21)u4N), as expected from the analysis on simp
Lie superalgebras.2,22

In Sec. IV, we obtain an explicit formula for the finite nonlinear superconformal transfor
tions of the supercoordinates,z, parametrizing superspace and discuss several representatio
the superconformal group. We also construct matrix or vector valued functions depending o
or three points in superspace which transform covariantly under superconformal transform
For two points,z1 andz2 , we find a matrix,I (z1 ,z2), which transforms covariantly like a produc
of two tensors atz1 and z2 . For three points,z1 ,z2 ,z3 , we find ‘‘tangent’’ vectors,Zi , which
transform homogeneously atzi , i 51, 2, 3. These variables serve as building blocks of obtain
two-point, three-point, and generaln-point correlation functions later.

In Sec. V, we discuss the superconformal invariance of correlation functions for quasipr
superfields and exhibit general forms of two-point, three-point, andn-point functions. Explicit
formulas for two-point functions of superfields in various cases are given. We also identify a
superconformal invariants.

In Sec. VI, superconformally covariant differential operators are discussed. The conditio
superfields, which are formed by the action of spinor derivatives on quasiprimary superfie
remain quasiprimary are obtained. In general, the action of differential operator on quasipr
fields generates an anomalous term under superconformal transformations. However, with
able choice of scale dimension, we show that the anomalous term may be canceled. We reg
analysis as a necessary step to write superconformally invariant actions on superspace
kinetic terms in such theories may consist of superfields formed by the action of spinor deriv
on quasiprimary superfields.

In the Appendix, the explicit form of superconformal algebra and a method of solving
superconformal Killing equation are exhibited.

II. PRELIMINARY

A. Gamma Matrices

With the three-dimensional Minkowskian metric,hmn5diag(11,21,21), the 232 gamma
matrices,gm, m50, 1, 2, satisfy
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gmgn5hmn1 i emnrgr . ~2.1!

The hermiticity condition is

g0gmg05gm†. ~2.2!

The charge conjugation matrix,e, satisfies23

egme2152gmt,
~2.3!

e t52e, e†5e21.

To emphasize the antisymmetric property of the 232 charge conjugation matrix in three dime
sions we adopt the symbol,e, instead of the conventional one,C.

gm forms a basis for 232 traceless matrices with the completeness relation

gma
bgm

g
d52da

ddb
g2da

bdg
d . ~2.4!

B. Three-dimensional superspace

The three-dimensional supersymmetry algebra has the standard form withPm5(H,2P),

$Q ia,Q̄j b%52d i
jg

ma
bPm ,

~2.5!
@Pm ,Pn#5@Pm ,Q ia#5@Pm ,Q̄ia#5$Q ia,Q j b%5$Q̄ia ,Q̄j b%50,

where 1<a<2, 1< i<N andQ i ,Q̄j satisfy

Q̄i5Q i†g0. ~2.6!

Now we define for 1<a<2N, 1< i , j <N,

Qa5S 1

&
~Q i1e21Q̄i

t!

i
1

&
~Q j2e21Q̄j

t !
D , ~2.7!

and

Q̄a[Qa†g05S 1

&
~Q̄i2Q i te!,2 i

1

&
~Q̄j1Q j te!D . ~2.8!

Qa,Q̄b satisfy the Majorana condition

Q̄a5Qa†g052Qate,
~2.9!

Qa5e21Q̄a
t .

With this notation we note that the three-dimensionalN-extended supersymmetry algebra~2.5! is
equivalent to the 2N-extended Majorana supersymmetry algebra

$Qaa,Q̄bb%52da
bgma

bPm ,
~2.10!

@Pm ,Pn#5@Pm ,Qaa#50.
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This can be generalized by replacing 2N with an arbitrary natural number,N, and hence
N-extended Majorana supersymmetry algebra.

Pm , Qaa, 1<a<N generate a supergroup, GT , with parameters,zM5(xm,uaa), which are
coordinates on superspace. The general element of GT is written in terms of these coordinates

g~z!5ei (x•P1Q̄aua). ~2.11!

Corresponding to Eq.~2.9!, ua also satisfies the Majorana condition

ūa5ua†g052uate, ~2.12!

so that

Q̄aua5 ūaQa, g~z!†5g~z!215g~2z!. ~2.13!

The Baker–Campbell–Haussdorff formula with the supersymmetry algebra~2.10! gives

g~z1!g~z2!5g~z3!, ~2.14!

where

x3
m5x1

m1x2
m1 i ū1agmu2

a , u3
a5u1

a1u2
a . ~2.15!

Letting z1→2z2 we may get the supertranslation invariant one forms,eM5(em,duaa), where

em~z!5dxm2 i ūagm dua. ~2.16!

The exterior derivative, d, on superspace is defined as

d[dzM
]

]zM 5eMDM5em]m2duaaDaa , ~2.17!

whereDM5(]m ,2Daa) are covariant derivatives

]m5
]

]xm , Daa52
]

]uaa 1 i ~ ūagm!a

]

]xm . ~2.18!

We also define

D̄aa5e21abDab5
]

]ūaa

2 i ~gmua!a
]

]xm
, ~2.19!

satisfying the anticommutator relations

$D̄aa,Dbb%52ida
bgma

b]m . ~2.20!

Under an arbitrary superspace coordinate transformation,z→z8, eM andDM transform as

eM~z8!5eN~z!R N
M~z!, DM8 5R 21

M
N~z!DN , ~2.21!

so that the exterior derivative is left invariant,

eM~z!DM5eM~z8!DM8 , ~2.22!

whereR M
N(z) is a (312N)3(312N) supermatrix of the form
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R M
N~z!5S Rm

n~z! ]mu8bb

2Baa
m ~z! 2Daau8bb

D , ~2.23!

with

Rm
n~z!5

]x8n

]xm 2 i ūa8g
n

]u8a

]xm , ~2.24!

Baa
m ~z!5Daax8m1 i ūb8g

mDaau8b. ~2.25!

For Majorana spinors it is useful to note from Eqs.~2.2!, ~2.3!, ~A3! that

«̄ara5 r̄a«a, ~2.26a!

ra«̄a1«ar̄a1 r̄a«a 150, ~2.26b!

r̄agm1gm2
¯gmn«a5~21!n«̄agmn

¯gm2gm1ra, ~2.26c!

~ r̄agm1gm2
¯gmn«a!* 5 «̄agmn

¯gm2gm1ra. ~2.26d!

In particular,

uaūa52 1
2ūaua 1. ~2.27!

III. SUPERCONFORMAL SYMMETRY IN THREE DIMENSIONS

In this section we first define the three-dimensional superconformal group on superspa
then discuss its superconformal Killing equation along with the solutions.

A. Superconformal group and Killing equation

The superconformal group is defined here as a group of superspace coordinate trans

tions,z→
g

z8, that preserve the infinitesimal supersymmetric interval length,e25hmnemen, up to a
local scale factor, so that

e2~z!→e2~z8!5V2~z;g!e2~z!, ~3.1!

whereV(z;g) is a local scale factor.
This requiresBaa

m (z)50,

Daax8m1 i ūb8g
mDaau8b50 ~3.2!

and

em~z8!5en~z!Rn
m~z;g!, ~3.3!

Rm
l ~z;g!Rn

r~z;g!hlr5V2~z;g!hmn , detR~z;g!5V3~z;g!. ~3.4!

HenceR M
N in Eq. ~2.23! is of the form

R M
N~z;g!5S Rm

n ~z;g! ]mu8bb

0 2Daau8bb
D . ~3.5!
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We will get a more explicit form ofR M
N later in Eq.~4.40!.

Infinitesimally z8.z1dz, Eq. ~3.2! gives

Daahm52i ~ l̄agm!a , ~3.6!

or equivalently

D̄aahm522i ~gmla!a, ~3.7!

where we define

la5dua, l̄a5dūa ,
~3.8!

hm5dxm2 i ūagmdua.

Infinitesimally from Eq.~2.24! Rm
n is of the form

Rm
n.dm

n 1]mhn, ~3.9!

so that condition~3.4! reduces to the ordinary conformal Killing equation

]mhn1]nhm}hmn . ~3.10!

We note that Eq.~3.10! follows from Eq.~3.6!. Using the anticommutator relation forDaa ~2.20!
we get from Eqs.~3.6!, ~3.7!, and~A1!

da
b]nhm5 1

2~D̄aa~ l̄bgmgn!a2~gngmDbala!a!, ~3.11!

and hence

da
b~]mhn1]nhm!5~D̄aal̄ba2Dbalaa!hmn , ~3.12!

which implies Eq.~3.10!. Thus Eq.~3.6! or Eq. ~3.7! is a necessary and sufficient condition for
supercoordinate transformation to be superconformal.

From Eqs.~3.6! and ~3.7! laa,l̄aa are given by

laa5 i 1
6D̄

abha
b , l̄aa52 i 1

6Dabhb
a , ~3.13!

where

ha
b5hmgm

a
b . ~3.14!

Substituting these expressions back into Eqs.~3.6! and ~3.7! gives, using Eqs.~2.1! and ~2.4!,

Daahm52 i 1
2e

m
nlDabhnglb

a ,

~3.15!
D̄aahm5 i 1

2e
m

nlgla bD̄abhn,

or equivalently

Daahb
g5 2

3da
bDadhd

g2 1
3d

b
gDadhd

a ,
~3.16!

D̄aahb
g5 2

3d
a

gD̄adhb
d2 1

3d
b

gD̄adha
d .
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Equation ~3.15! or Eq. ~3.16! may therefore be regarded as the fundamental superconfo
Killing equation and its solutions give the generators of extended superconformal transform
in three dimensions. The general solution is

hm~z!52x•b xm2~x22 1
4~ ūaua!2!bm1em

nlxnblūaua22r̄ax2gmua1wm
nxn

1 1
4e

m
nlwnlūaua1lxm1 i t a

būbgmua12i «̄agmua1am, ~3.17!

wheream,bm,l,wmn52wnm are real,«a,ra satisfy the Majorana condition~2.9!, and tPso(N)
satisfying

t†5t t52t. ~3.18!

We also set

x5xmgm , x65x6 i 1
2ūaua 1. ~3.19!

Equation~3.17! gives

la5x1b•gua2 ix1ra12~ r̄bua!ub1~w1 1
2l!ua2ubtb

a1«a ~3.20!

satisfying the Majorana condition

l̄a5la†g052late, ~3.21!

where we put

w5 1
4wmngmgn. ~3.22!

A method of obtaining solution~3.17! is demonstrated in Appendix B.
For later use it is worth noting that

g0wg052w†, ewe2152wt. ~3.23!

B. Extended superconformal transformations

In summary, the generators of superconformal transformations in three dimensions act
the three-dimensional superspace,R3u2N, with coordinates,zM5(xm,uaa), can be classified as
follows

~1! Supertranslations,a,«:

dxm5am2 i ūagm«a, dua5«a. ~3.24!

This is consistent with Eq.~2.15!.
~2! Dilations,l:

dxm5lxm, dua5 1
2lua. ~3.25!

~3! Lorentz transformations,w:

dxm5wm
nxn, dua5wua. ~3.26!

~4! R-symmetry transformations,t:

dxm50, dua52ubtb
a, ~3.27!

wheretPso(N) of dimension1
2N(N21).
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~5! Special superconformal transformations,b,r:

dxm52x•b xm2~x21 1
4~ ūaua!2!bm2 r̄ax1gmua,

~3.28!
dua5x1b•gua2 ix1ra12~ r̄bua!ub.

As we consider infinitesimal transformations we obtain SO(N) asR-symmetry group. How-
ever finitely R-symmetry group can be extended to O(N), which leaves the supertranslatio
invariant one-form~2.16! invariant manifestly.

C. Superinversion

In three dimensions we define superinversion,zM→
i s

z8M5(x8m,u8aa)PR3u2N, by

x68 52x6
21, u8a5 ix1

21ua. ~3.29!

As a consistency check we note from x1x25(x21 1
4( ūaua)2) 1 that

ūa85u8a†g052u8ate, x18 2x28 5 i ūa8u8a1. ~3.30!

It is easy to verify that superinversion is idempotent

i s
251. ~3.31!

Using

e~z!5em~z!gm5dx112iduaūa , ~3.32!

we get under superinversion

e~z8!5x1
21e~z!x2

21. ~3.33!

and hence

e2~z8!5V2~z; i s!e
2~z!, V~z; i s!5

1

x21 1
4 ~ ūaua!2

. ~3.34!

Equation.~3.33! can be rewritten as

em~z8!5en~z!Rn
m~z; i s!, Rn

m~z; i s!5 1
2tr~gnx2

21gmx1
21!. ~3.35!

Explicitly,

Rn
m~z; i s!5

1

~x21 1
4 ~ ūaua!2!2

~2xnxm2~x22 1
4~ ūaua!2!dn

m2en
mlxlūaua!. ~3.36!

Note that

gnRn
m~z; i s!5x2

21gmx1
21, Rn

m~z; i s!gm5x1
21gnx2

21. ~3.37!

If we consider a transformation,z ——→
i s + g + i s

z8, whereg is a three-dimensional superconform
transformation, then we get
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hm~z!52x•axm2~x22 1
4~ ūaua!2!am1em

nlxnalūaua22«̄ax2gmua1wn
mxn

1 1
4e

m
nlwnlūaua2lxm1 i t a

būbgmua12i r̄agmua1bm. ~3.38!

Hence, under superinversion, the superconformal transformations are related by

K[S am

bm

«a

ra

l
wm

n

ta
b

D → S bm

am

ra

«a

2l
wm

n

ta
b

D . ~3.39!

In particular, special superconformal transformations~3.28! can be obtained by

z ——→
i s + ~b,r! + i s

z8, ~3.40!

where (b,r) is a supertranslation.

D. Superconformal algebra

The generator of infinitesimal superconformal transformations,L, is given by

L5hm]m2laaDaa . ~3.41!

If we write the commutator of two generators,L1 ,L2 , as

@L2 ,L1#5L35h3
m]m2l3

aaDaa , ~3.42!

thenh3
m , l3

aa are given by

h3
m5h2

n]nh1
m2h1

n]nh2
m12i l̄1agml2

a ,
~3.43!

l3
a5L2l1

a2L1l2
a ,

andh3
m , l3

a satisfy Eq.~3.7!, verifying the closure of the Lie algebra.
Explicitly with Eqs. ~3.17! and ~3.20! we get

a3
m5w1n

m a2
n1l1a2

m1 i «̄1agm«2
a2~1↔2!,

«3
a5w1«2

a1 1
2l1«2

a2 ia2•gr1
a2«2

bt1b
a2~1↔2!,

l352a2•b122r̄1a«2
a2~1↔2!,

w3
mn5w1l

m w2
ln12~a2

mb1
n2a2

nb1
m!12r̄1ag [mgn]«2

a2~1↔2!, ~3.44!

b3
m5w1n

m b2
n2l1b2

m1 i r̄1agmr2
a2~1↔2!,

r3
a5w1r2

a2 1
2l1r2

a2 ib2•g«1
a2r2

bt1b
a2~1↔2!,

t3a
b5~ t1t2!a

b12~ r̄2a«1
b2 «̄1ar2

b!2~1↔2!.
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From Eq.~3.44! we can read off the explicit forms of three-dimensional superconformal algeb
exhibited in Appendix C.

If we define a (412N)3(412N) supermatrix,M , as

M5S w1 1
2l ia•g &«b

ib•g w2 1
2l &rb

2& r̄a 2& «̄a ta
b
D , ~3.45!

then relation~3.44! agrees with the matrix commutator

@M1 ,M2#5M3 . ~3.46!

In general,M can be defined as a~4,2N! supermatrix subject to

BMB2152M†, B5S 0 g0 0

g0 0 0

0 0 1
D , ~3.47a!

CMC2152Mt, C5S 0 e 0

e 0 0

0 0 1
D . ~3.47b!

The supermatrix of the form~3.45! is the general solution of these two equations.
The 434 matrix appearing inM ,

S w1 1
2l ia•g

ib•g w2 1
2l

D , ~3.48!

corresponds to a generator of SO(2,3)>Sp(2,R) as demonstrated in Appendix D. Thus, th
N-extended Majorana superconformal group in three dimensions may be identified with th
permatrix group generated by supermatrices of the formM ~3.45!, which is OSp(Nu2,R)[GS

having dimensions (101 1
2N(N21)u4N).

IV. COSET REALIZATION OF TRANSFORMATIONS

In this section, we first obtain an explicit formula for the finite nonlinear superconfor
transformations of the supercoordinates and discuss several representations of the superco
group. We then construct matrix or vector valued functions depending on two or three poi
superspace which transform covariantly under superconformal transformations. These va
serve as building blocks of obtaining two-point, three-point, and generaln-point correlation func-
tions later.

A. Superspace as a coset

To obtain an explicit formula for the finite nonlinear superconformal transformations, we
identify the superspace,R3u2N, as a coset, GS /G0 , where G0,GS is the subgroup generated b
matrices,M0 , of the form~3.45! with am50,«a50 and depending on parametersbm, ra, l, wmn ,
ta

b. The group of supertranslations,GT , parametrized by coordinates,zMPR3u2N, has been de-
fined by general elements as in Eq.~2.11! with the group property given by eqs.~2.14! and~2.15!.
Now we may represent it by supermatrices
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GT~z!5expS 0 ix &ub

0 0 0

0 2& ūa 0
D 5S 1 ix2 &ub

0 1 0

0 2& ūa da
b
D . ~4.1!

Note GT(z)215GT(2z) and the subscript,T, denotes supertranslations.
In general an element of GS can be uniquely decomposed asGTG0

21. Thus for any element

G(g)PGS we may define a superconformal transformation,z→
g

z8, and an associated eleme
G0(z;g)PG0 by

G~g!21GT~z!G0~z;g!5GT~z8!. ~4.2!

If G(g)PGT then clearlyG0(z;g)51. Infinitesimally Eq.~4.2! becomes

dGT~z!5MGT~z!2GT~z!M̂0~z!, ~4.3!

whereM is given by Eq.~3.45! andM̂0(z), the generator of G0 , has the form

M̂0~z!5S ŵ~z!1 1
2l̂~z! 0 0

ib•g ŵ~z!2 1
2l̂~z! & r̂b~z!

2&rC a~z! 0 t̂ a
b~z!

D . ~4.4!

The components depending onz are given by

ŵ~z!1 1
2l̂~z!5w1 1

2l1x1b•g12uar̄a ,

ŵ~z!2 1
2l̂~z!5w2 1

2l2b•gx222raūa ,

l̂~z!5l12x•b22ūara,
~4.5!

r̂a~z!5ra1 ib•gua,

rC a~z!5 r̄a2 i ūab•g5~ r̂a~z!!†g052 r̂a~z! te,

t̂ a
b~z!5ta

b12i ūab•gub12ūarb22r̄aub.

ŵ(z) can be also written asŵ(z)5 1
4ŵmn(z)gmgn with

ŵmn~z!5wmn12~xmbn2xnbm!1emnl~blūaua12i r̄aglua!. ~4.6!

Writing dGT(z)5LGT(z) we may verify thatL is identical to Eq.~3.41!.
The definitions~4.5! can be summarized by

Daalbb~z!52 1
2da

bda
bl̂~z!2da

bŵb
a~z!1da

b t̂ a
b~z!, ~4.7a!

]nhm~z!5ŵmn~z!1hmnl̂~z!, ~4.7b!

and they give

@Daa ,L#52DaalbbDbb5~ 1
2da

bda
bl̂~z!1da

bŵb
a~z!2da

b t̂ a
b~z!!Dbb . ~4.8!

For later use we note
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Daaŵmn~z!52~rC a~z!g [mgn] !a ,

Daal̂~z!52rC aa~z!, ~4.9!

Daa t̂ b
c~z!52~dabd

cd2da
cdb

d!rC da .

The above-mentioned analysis can be simplified by reducingG0(z;g). To achieve this we let

Z05S 0 0

1 0

0 1
D , ~4.10!

and then

M0Z05Z0H0 , H05S w2 1
2l &rb

0 ta
b D . ~4.11!

Now if we define

Z~z![GT~z!Z05S ix2 &ub

1 0

2& ūa da
b
D , ~4.12!

thenZ(z) transforms under infinitesimal superconformal transformations as

dZ~z!5LZ~z!5MZ~z!2Z~z!H~z!, ~4.13!

whereH(z) is given by

M̂0~z!Z05Z0H~z!, H~z!5S ŵ~z!2 1
2l̂~z! & r̂b~z!

0 t̂ a
b~z!

D . ~4.14!

From Eqs.~3.42! and ~3.46! considering

@L2 ,L1#Z~z!5L3Z~z!, ~4.15!

we get

H3~z!5L2H1~z!2L1H2~z!1@H1~z!,H2~z!#, ~4.16!

which gives separate equations forŵ, l̂, r̂, and t̂ a
b, thusl̂35L2l̂12L1l̂2 , etc.

As a conjugate ofZ(z) we defineZ̄(z) by

Z̄~z!5S g0 0

0 1DZ~z!†B5S e21 0

0 1DZ~z! tC5S 1 2 ix1 2&ub

0 & ūa da
b D . ~4.17!

This satisfies

Z̄~z!5Z̄~0!GT~z!21, ~4.18!

and corresponding to Eq.~4.13! we have

dZ̄~z!5LZ̄~z!5H̄~z!Z̄~z!2Z̄~z!M , ~4.19!
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where

H̄~z!5S ŵ~z!1 1
2l̂~z! 0

2&rC a~z! t̂ a
b~z!

D . ~4.20!

B. Finite transformations

Finite superconformal transformations can be obtained by exponentiation of infinite

transformations. To obtain a superconformal transformation,z→
g

z8, we therefore solve the differ
ential equation

d

dt
zt

M5L M~zt!, z05z, z15z8, ~4.21!

where, withL given in Eq.~3.41!, L M(z) is defined by

L5L M~z!]M . ~4.22!

From Eq.~4.13! we get

d

dt
Z~zt!5MZ~zt!2Z~zt!H~zt!, ~4.23!

which integrates to

Z~zt!5etMZ~z!K~z,t !, ~4.24!

whereK(z,t) satisfies

d

dt
K~z,t !52K~z,t !H~zt!, K~z,0!5S 1 0

0 1D . ~4.25!

Hence fort51 with K(z,1)[K(z;g), z→
g

z8, Eq. ~4.24! becomes

Z~z8!5G~g!21Z~z!K~z;g!, G~g!215eM. ~4.26!

G0(z;g) in Eq. ~4.2! is related toK(z;g) from Eq. ~4.26! by

G0~z;g!Z05Z0K~z;g!. ~4.27!

In generalK(z;g) is of the form

K~z;g!5S V~z;g!~1/2!L~z;g! &Sb~z;g!

0 Ua
b~z;g!

D , ~4.28!

whereV(z;g) is identical to the local scale factor in Eq.~3.1!, U(z;g)PSO(N)

U215U†5Ut, detU51, ~4.29!

andL(z;g) satisfies

detL~z;g!51, ~4.30a!

L21~z;g!5e21L~z;g! te5g0L~z;g!†g0. ~4.30b!
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From Eq.~4.26! Z̄(z) transforms as

Z̄~z8!5K̄~z;g!Z̄~z!G~g!, ~4.31!

where

K̄~z;g!5S g0 0

0 1DK~z!†S g0 0

0 1D
5S e21 0

0 1DK~z! tS e 0

0 1D
5S V~z;g!1/2L21~z;g! 0

&S̄a~z;g! U21
a

b~z;g!
D . ~4.32!

If we define for superinversion,z→
i s

z8, ~3.29!

G~ i s!
215S e 0 0

0 e 0

0 0 1
D , K~z; i s!5S 2 i ~ex2!21 & ix1

21ub

0 Va
b~z!

D , ~4.33!

with

Va
b~z!5da

b12i ūax1
21ub, ~4.34!

an analogous formula to Eq.~4.26! can be obtained for superinversion

G~ i s!
21Z~z!K~z; i s!5S 1 0

2 ix18
t & ūa8

t

&u8bt db
a

D 5Z̄~z8! t. ~4.35!

Similarly we have

K̄~z; i s!Z̄~z!G~ i s!5Z~z8! t, ~4.36!

where

K̄~z; i s!5S i ex1
21 0

2& i ūax2
21 V21

a
b~z!

D . ~4.37!

Note that

V21~z!5V†5V~z! t5V~2z!5122i ūx2
21u, ~4.38a!

uaVa
b~z!5x2x1

21ub, Va
b~z!ūb5 ūax1

21x2 , ~4.38b!

Rm
n~z;g!gn5V~z;g!L21~z;g!gmL~z;g!, ~4.38c!

gnRn
m~z;g!5V~z;g!L~z;g!gmL21~z;g!, ~4.38d!

whereRm
n(z;g) is identical to definition~3.3!. We may normalizeRm

n(z;g) as
                                                                                                                



of the

7144 J. Math. Phys., Vol. 41, No. 10, October 2000 Jeong-Hyuck Park

                    
R̂m
n~z;g!5V~z;g!21Rm

n~z;g!5 1
2tr~gmL~z;g!gnL21~z;g!!PSO~1,2!. ~4.39!

C. Representations

Based on the results in Sec. IV B, it is easy to show that the matrix,R M
N(z;g), given in Eq.

~3.5! is of the form

R M
N~z;g!5S V~z;g!R̂m

n~z;g! iV~z;g!1/2~L21~z;g!gmSb~z;g!!b

0 V~z;g!1/2L21b
a~z;g!Ua

b~z;g!
D . ~4.40!

SinceR M
N(z;g) is a representation of the three-dimensional superconformal group, each

following also forms a representation of the group, though it is not a faithful representation

V~z;g!PD, R̂~z;g!PSO~1,2!,
~4.41!

L~z;g!, U~z;g!PO~N!,

where D is the one-dimensional group of dilations.

Under the successive superconformal transformations,g9:z→
g

z8→
g8

z9, they satisfy

L~z;g!L~z8;g8!5L~z;g9!, ~4.42!

and so on.

D. Functions of two points

In this section, we construct matrix valued functions depending on two points,z1 andz2 , in
superspace which transform covariantly like a product of two tensors atz1 and z2 under super-
conformal transformations.

If F(z) is defined forzPR3u2N by

F~z!5Z̄~0!GT~z!Z~0!5S ix2 &ub

2& ūa da
b D , ~4.43!

thenF(z) satisfies

F~2z!5S g0 0

0 1DF~z!†S g0 0

0 1D 5S e21 0

0 1DF~z! tS e 0

0 1D 5S 2 ix1 2&ub

& ūa da
b D ,

~4.44!

and the superdeterminant ofF(z) is given by

sdetF~z!52det x15x21 1
4~ ūaua!2 . ~4.45!

We also note

S 1 0

2 i& ūax2
21 1D F~z!S 1 i&x2

21ub

0 1
D 5S ix2 0

0 Va
b~2z!

D , ~4.46!

whereVa
b(2z) is identical to Eq.~4.38a! and from Eqs.~4.45! and ~4.46! it is evident that

detV~z!51. ~4.47!

Hence, with Eq.~4.38a!, V(z)PSO(N).
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Now with the supersymmetric interval forR3u2N defined by

GT~z2!21GT~z1!5GT~z12!, z12
M5~x12

m ,u12
a ,ū12a!52z21

M ,
~4.48!

x12
m 5x1

m2x2
m2 i ū2agmu1

a , u12
a 5u1

a2u2
a ,

we may write

Z̄~z2!Z~z1!5F~z12!5S ix122 &u12
b

2& ū12a da
b D , ~4.49!

and

sdetF~z12!5x12
2 1 1

4~ ū12au12
a !2, detV~z12!51, ~4.50!

where

x1225x122x2122iu2
aū1a5x122 i 1

2ū12au12
a 1,

~4.51!
x1215x112x2212iu1

aū2a5x121 i 1
2ū12au12

a 1.

From Eqs.~4.26! and ~4.31! F(z12) transforms as

F~z128 !5K̄~z2 ;g!F~z12!K~z1 ;g!. ~4.52!

Explicitly with Eqs. ~4.28! and ~4.32! we get the transformation rules for x1268 andu128
a ,

x1228 5V~z1 ;g!1/2V~z2 ;g!1/2L21~z2 ;g!x122L~z1 ;g!,
~4.53a!

x1218 5V~z1 ;g!1/2V~z2 ;g!1/2L21~z1 ;g!x121L~z2 ;g!,

u128
a5V~z1 ;g!1/2L21~z1 ;g!~u12

b Ub
a~z2 ;g!1 ix121S2

a!,
~4.53b!

u218
a5V~z2 ;g!1/2L21~z2 ;g!~u21

b Ub
a~z1 ;g!2 ix122S1

a!.

In particular

x128
21 1

4~ ū12a8 u128
a!25V~z1 ;g!V~z2 ;g!~x12

2 1 1
4~ ū12au12

a !2!. ~4.54!

From Eqs.~4.38d! and ~4.53a! tr(gmx122gnx121) transforms covariantly as

tr~gmx1228 gnx1218 !5tr~glx122grx121!Rl
m~z2 ;g!Rr

n~z1 ;g!. ~4.55!

From Eq.~4.53b! we get

S 1 2 i&x122
21 u12

c

0 da
c DK~z1 ;g!S 1 i&x122821u128

b

0 dd
b D 5S V~z1 ;g!1/2L~z1 ;g! 0

0 U~z1 ;g!
D ,

~4.56a!

S 1 0

2 i& ū12a8 x122821 da
cD K̄~z2 ;g!S 1 0

i& ū12dx122
21 dd

bD 5S V~z2 ;g!1/2L21~z2 ;g! 0

0 U21~z2 ;g!
D .

~4.56b!
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Using this and Eq.~4.46! we can rederive Eq.~4.53a! and obtain

V~z128 !5U21~z1 ;g!V~z12!U~z2 ;g! ,
~4.57!

V~z218 !5U21~z2 ;g!V~z21!U~z1 ;g!.

E. Functions of three points

In this section, for three points,z1 ,z2 ,z3 in superspace, we construct ‘‘tangent’’ vectors,Zi ,
which transform homogeneously atzi , i 51, 2, 3.

With z21→
i s

(z21)8,z31→
i s

(z31)8, we defineZ 1
M5(X1

m ,Q1
a)PR3u2N by

GT~~z31!8!21GT~~z21!8!5GT~Z1!. ~4.58!

Explicit expressions forZ 1
M can be obtained by calculating

Z̄~~z31!8!Z~~z21!8!5F~Z1!5S iX12 &Q1
b

2&Q̄1a da
b D . ~4.59!

We get

X125x311
21 x232x212

21 ,
~4.60!

Q1
a5 i ~x211

21 u21
a 2x311

21 u31
a !, Q̄1a52 i ~ ū21ax212

21 2 ū31ax312
21 !.

Using

x2325x2122x31122iu31
a ū21a , ~4.61!

one can assure

X115g0X12
† g052e21X12

t e5x211
21 x231x312

21 ,

X112X12522iQ1
aQ̄1a5 i Q̄1aQ1

a1. ~4.62!

From Eq.~4.53! under superconformal transformations,z→
g

z8, X16 ,Q1
a , Q̄1a transform as

X168 5V~z1 ;g!21L21~z1 ;g!X16L~z1 ;g! , ~4.63a!

Q18
a5V~z1 ;g!2 1/2L21~z1 ;g!Q1

bUb
a~z1 ;g! , ~4.63b!

Q̄1a8 5V~z1 ;g!2 1/2U21
a

b~z1 ;g!Q̄1bL~z1 ;g!, ~4.63c!

so that

X18
m5V~z1 ;g!21X1

nR̂n
m~z1 ;g!. ~4.64!

ThusZ1 transforms homogeneously atz1 , as ‘‘tangent’’ vectors do.
Equation~4.63! can be summarized as

F~Z 18!5S V~z1 ;g!2 1/2L21~z1g! 0

0 U21~z1 ;g!
DF~Z1!S V~z1 ;g!2 1/2L~z1g! 0

0 U~z1 ;g!
D .

~4.65!
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Direct calculation using Eq.~4.38b! shows that

V~Z1!5V~z12!V~z23!V~z31!. ~4.66!

Similarly for Rm
n(z; i s) given in Eq.~3.35! we obtain from Eqs.~3.37! and ~4.60!

R~Z1 ; i s!5~x12
2 1 1

4~ ū12au12
a !2!2~x31

2 1 1
4~ ū31au31

a !2!2R~z12; i s!R~z23; i s!R~z31; i s!. ~4.67!

From Eqs.~4.55! and ~4.57! Va
b(Z1),Rm

n(Z1 ; i s) transform homogeneously atz1 under super-

conformal transformation,z→
g

z8,

V~Z 18!5U21~z1 ;g!V~Z1!U~z1 ;g!, ~4.68a!

R~Z 18 ; i s!5V~z1 ;g!2R21~z1 ;g!R~Z1 ; i s!R~z1 ;g!. ~4.68b!

It is useful to note

det X1652X1
22 1

4~Q̄1aQ1
a!252

x23
2 1 1

4~ ū23au23
a !2

~x12
2 1 1

4~ ū12au12
a !2!~x31

2 1 1
4~ ū31au31

a !2!
. ~4.69!

By taking cyclic permutations ofz1 ,z2 ,z3 in Eq. ~4.60! we may defineZ2 ,Z3 . We find
Z2 ,Z3 are related toZ1 as

X̃2252x211X11x121 , Q̃2
a5 ix211Q1

bVb
a~z12!, ~4.70a!

X325x312
21 X1̃1x132

21 , Q3
a5 ix312

21 Q̃1
bVb

a~z13! , ~4.70b!

whereZ̃5(X̃,Q̃) is defined by superinversion,Z→
i s

Z̃.

V. SUPERCONFORMAL INVARIANCE OF CORRELATION FUNCTIONS

In this section we discuss the superconformal invariance of correlation functions for q
primary superfields and exhibit general forms of two-point, three-point, andn-point functions
without proof, as the proof is essentially identical to those in our earlier work.4,5

A. Quasiprimary superfields

We first assume that there exist quasiprimary superfields,C I(z), which under the supercon

formal transformation,z→
g

z8, transform as

C I→C8I , C8I~z8!5CJ~z!DJ
I ~z;g!. ~5.1!

D(z;g) obeys the group property so that under the successive superconformal transform

g9:z→
g

z8→
g8

z9, it satisfies

D~z;g!D~z8;g8!5D~z;g9!, ~5.2!

and hence

D~z;g!215D~z8;g21!. ~5.3!

We choose hereD(z;g) to be a representation of SO(1,2)3O(N)3D, which is a subgroup of the
stability group atz50, and so we decompose the spin index,I , of superfields into the SO(1,2
index,r, and O(N) index, r , asC I[Cr

r . Now DJ
I(z;g) is factorized as
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DJ
I~z;g!5Dr

s~L~z;g!!Dr
s~U~z;g!!V~z;g!2h, ~5.4!

whereDr
s(L), Dr

s(U) are representations of SO(1,2) and O(N), respectively, whileh is the
scale dimension ofCr

r .
Infinitesimally,

dCr
r~z!52~L1hl̂~z!!Cr

r~z!2Cs
r~z!~sa

b!s
rŵb

a~z!2Cr
s~z! 1

2~sab!s
r t̂ ab~z! , ~5.5!

where t̂ ab(z)5dact̂ c
b(z), andsa

b , sab satisfy

@sa
b ,sg

d#5da
dsg

b2db
gsa

d ,
~5.6!

@sab ,scd#52hacsbd1hadsbc1hbcsad2hbdsac .

sab is the generator of O(N), while sa
b is connected to the generator of SO(1,2),smn , through

smn[ 1
2s

a
b~g [mgn] !

b
a , sa

b52 1
2smn~g [mgn] !a

b ,

@smn ,slr#52hmlsnr1hmrsnl1hnlsmr2hnrsml , ~5.7!

sa
bŵb

a~z!5 1
2smnŵmn~z!.

From Eqs.~4.15! and ~4.16! using Eq.~5.6! we have

d3Cr
r5@d2 ,d1#Cr

r . ~5.8!

It is useful to consider the conjugate superfield ofCr
r , C̄r

r(z), which transforms as

C̄8r
r~z8!5V~z;g!2hDr

s~L21~z;g!!Dr
s~U21~z;g!!C̄s

s~z!. ~5.9!

Superconformal invariance for a generaln-point function requires

^C1
8I 1~z1!C2

8I 2~z2!¯Cn
8I n~zn!&5^C1

I 1~z1!C2
I 2~z2!¯Cn

I n~zn!&. ~5.10!

B. Two-point correlation functions

The solution for the two-point function of the quasiprimary superfields,Cr
r ,C̄r

r , has the
general form

^C̄r
r~z1!Cs

s~z2!&5CC

I r
s~ x̂121!I r

s~V~z12!!

~x12
2 1 1

4~ ū12au12
a !2!h

, ~5.11!

where we put

x̂1215
x121

~x12
2 1 1

4~ ū12au12
a !2!1/2

, ~5.12!

and I r
s(x̂121), I r

s(V(z12)) are tensors transforming covariantly according to the appropriate
resentations of SO(1,2), O(N) which are formed by decomposition of tensor products
x̂121 , V(z12). Under superconformal transformations,I r

s(x̂121) and I r
s(V(z12)) satisfy, from

Eqs.~4.53a! and ~4.57!,

D~L21~z1 ;g!!I ~ x̂121!D~L~z2 ;g!!5I ~ x̂1218 !, ~5.13a!
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D~U21~z1 ;g!!I ~V~z12!!D~U~z2 ;g!!5I ~V~z128 !!. ~5.13b!

As examples, we first consider real scalar, spinorial, and gauge superfi
S(z), fa(z), f̄a(z), za(z), za(z). They satisfy

S~z!5S~z!* ,

f̄a~z!5e21abfb~z!5~g0f~z!†!a, ~5.14!

za~z!5za~z!* 5za~z!,

and transform as

S8~z8!5V~z;g!2hS~z!,

fa8 ~z8!5V~z;g!2hfb~z!Lb
a~z;g!,

f̄8a~z8!5V~z;g!2hL21a
b~z;g!f̄b~z!, ~5.15!

z8a~z8!5V~z;g!2hzb~z!Ub
a~z;g!,

za8~z8!5V~z;g!2hU21
a

b~z;g!zb~z!.

The two-point functions of them are

^S~z1!S~z2!&5CS

1

~x12
2 1 1

4~ ū12au12
a !2!h

, ~5.16!

^f̄a~z1!fb~z2!&5 iCf

~x121!a
b

~x12
2 1 1

4~ ū12au12
a !2!h1 1/2

, ~5.17!

^za~z1!zb~z2!&5Cz

Va
b~z12!

~x12
2 1 1

4~ ū12au12
a !2!h

. ~5.18!

Note that to have nonvanishing two-point correlation functions, the scale dimensions,h, of the
two fields must be equal.

For a real vector superfield,Jm(z), where the representation of SO(1,2) is given byR̂m
n(z;g),

we have

^Jm~z1!Jn~z2!&5CV

I mn~z12!

~x12
2 1 1

4~ ū12au12
a !2!h

, ~5.19!

where

I mn~z!5R̂mn~z; i s!5 1
2tr~gmx̂1gnx̂2!. ~5.20!

From Eq.~3.37! we note

I mn~z!5I nm~2z!, I mn~z!I ln~z!5dm
l . ~5.21!

If we define
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Ja
b~z!5Jm~z!~gm!a

b , ~5.22!

then from Eqs.~2.4! and ~5.19! and

Dav~z1!~x121!a
b52idv

aū12ab ,

Dav~z1!~x122!a
b52i ~dv

aū12ab2da
bū12av!, ~5.23!

Dav~z1!~x12
2 1 1

4~ ū12au12
a !2!52i ~ ū12ax122!a ,

we get

Daa~z1!^Ja
b~z1!Jn~z2!&52iCV~22h!

~ ū12agnx122!b

~x12
2 1 1

4~ ū12au12
a !2!h11

. ~5.24!

Hence^Ja
b(z1)Jn(z2)& is conserved ifh52,

Daa~z1!^Ja
b~z1!Jn~z2!&50 if h52. ~5.25!

The anticommutator relation forDaa ~2.20! also implies

]

]x1
m ^Jm~z1!Jn~z2!&50 if h52. ~5.26!

This agrees with the nonsupersymmetric general result that two-point correlation functi
vector field ind-dimensional conformal theory is conserved if the scale dimension isd21.24

C. Three-point correlation functions

The solution for the three-point correlation function of the quasiprimary superfields,Cr
r , has

the general form

^C1r
r~z1!C2s

s~z2!C3t
t~z3!&5

Hr
r
s8

s8
t8

t8~Z1!I s8
s~ x̂121!I t8

t~ x̂131!I s8
s~V~z12!!I t8

t~V~z13!!

~x12
2 1 1

4~ ū12au12
a !2!h2~x13

2 1 1
4~ ū13au13

a !2!h3

,

~5.27!

whereZ 1
M5(X1

m ,Q1
a)PR3u2N is given by Eq.~4.58!.

Superconformal invariance~5.10! is now equivalent to

Hr8
r
s8

s
t8

t~Z!Dr8
r~L !Ds8

s~L !Dt8
t~L !5Hr

r
s

s
t
t~Z 8!,

~5.28a!
Z8 M5~XnR̂n

m~L !, L21Qa!,

Hr
r 8

s
s8

t
t8~Z!Dr 8

r~U !Ds8
s~U !Dt8

t~U !5Hr
r
s

s
t
t~Z 9!,

~5.28b!
Z 9M5~Xm, QbUb

a!,

Hr
r
s

s
t
t~Z!5lh21h32h1Hr

r
s

s
t
t~Z-!,

~5.28c!
Z -M5~lXm, l1/2Qa! ,

whereUPO(N), lPR, and the 232 matrix,L, satisfies
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L215g0L†g05e21Lte, detL51,

R̂n
m~L !5 1

2tr~gnLgmL21!. ~5.29!

In general there are a finite number of linearly independent solutions of Eq.~5.28!, and this
number can be considerably reduced by taking into account the symmetry properties, sup
conservations, and the superfield constraints.5,20,21

D. n -point correlation functions—in general

The solution forn-point correlation functions of the quasiprimary superfields,Cr
r , has the

general form

^C1r1

r 1~z1!¯Cnrn

r n~zn!&5Hr1

r 1
r

28
r 28¯r

n8
r n8~Z1(1) ,...,Z1(n22)!)

k52

n I rk8rk
~ x̂1k1!I r

k8
r k~V~z1k!!

~x1k
2 1 1

4~ ū1kau1k
a !2!hk

,

~5.30!

where, in a similar fashion to Eq.~4.58!, with zk1→
i s

zk1̃ , k>2, Z1(1) ,...,Z1(n22) are given by

GT~zn1̃
21GT~zj 1̃5GT~Z1( j 21)!, j 52,3,...,n21. ~5.31!

We note that all of them are ‘‘tangent’’ vectors atz1 .
Superconformal invariance~5.10! is equivalent to

Hr
18
r 1
¯r

n8
r n~Z(1) ,...,Z(n22)!)

k51

n

Drk8rk
~L !5Hr1

r 1
¯rn

r n~Z (1)8 ,...,Z (n22)8 !,

~5.32a!
Z ( j )8M5~X( j )

n R̂n
m~L !, L21Q ( j )

a !,

Hr1

r 18¯rn

r n8~Z(1) ,...,Z(n22)!)
k51

n

Dr
k8
r k~U !5Hr1

r 1...rn

r n~Z (1)9 ,...,Z (n22)9 !,

~5.32b!
Z( j )9M5~X( j )

m , Q ( j )
b Ub

a!,

Hr1

r 1
¯rn

r n~Z(1) ,¯,Z(n22)!5l2h11h21¯1hnHr1

r 1
¯rn

r n~Z (1)- ,...,Z (n22)- !,

~5.32c!
Z( j )-M5~lX( j )

m , l1/2Q ( j )
a ! .

Thus n-point functions reduce to one unspecified (n22)-point function which must transform
homogeneously under the rigid transformations, SO(1,2)3O(N)3D.

From

X1( j 21)15xj 11
21 xjn1xn12

21 , X1( j 21)25xn11
21 xjn2xj 12

21 , ~5.33!

we get

X( l ,m)1[X1(l 21)12X1(m21)212iQ1(l 21)
a Q̄1(m21)a5xl11

21 xlm1xm12
21 , ~5.34!

and hence

det X( l ,m)652
xlm

2 1 1
4~ ū lmau lm

a !2

~x1l
2 1 1

4~ ū1lau1l
a !2!~x1m

2 1 1
4~ ū1mau1m

a !2!
. ~5.35!
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Now if we define

D lm52
1

2~n21!~n22! (i 51

n

h i1
1

2~n22!
~h l1hm!, ~5.36!

then using the following identity which holds for any matrix,Slm , and number,l,

S )
lÞm

~Slm!D lmD S )
k52

n

~S1kSk1!2 1/2hkD 5l2 1/2(2h11h21•••1hn) )
2< lÞm

S lSlm

Sl1S1m
D D lm

, ~5.37!

we can rewrite then-point correlation functions~5.30! as

^C1r1

r 1~z1!¯Cnrn

r n~zn!&5
Kr1

r 1
r

28
r 28¯r

n8
r n8~Z1(1) ,...,Z1(n22)!Pk52

n I rk8rk
~ x̂1k1!I r

k8
r k~V~z1k!!

P lÞm~xlm
2 1 1

4~ ū lmau lm
a !2!D lm

,

~5.38!

where

Kr1

r 1
¯rn

r n~Z1(1) ,...,Z1(n22)!5Hr1

r 1
¯rn

r n~Z1(1) ,...,Z1(n22)! )
2< lÞm

~2det X( l ,m)6!D lm.

~5.39!

Note the difference in Eq.~5.30! and ~5.38!, namely the denominator in the latter is written in
democratic fashion.

Superconformal invariance~5.32! is equivalent to

Kr
18
r 18¯r

n8
r n8~Z(1) ,...,Z(n22)!)

k51

n

Drk8rk
~L !Dr

k8
r k~U !5Kr1

r 1
¯rn

r n~Z (1)8 ,...,Z (n22)8 !,

~5.40!
Z ( j )8M5~ lX( j )

n R̂n
m~L !, l1/2L21Q ( j )

b Ub
a! .

In particular,K is invariant under dilations contrary toH.

E. Superconformal invariants

In the case of correlation functions of quasiprimary scalar superfields, Eqs.~5.10!, ~5.38!, and
~5.40! imply thatK(Z1(1) ,...,Z1(n22)) is a function of the superconformal invariants and furth
more that all of the superconformal invariants can be generated by contracting the indi
Z 1( j )

M 5(X1( j )
m ,Q1( j )

aa ) to make them SO(1,2)3O(N)3D invariant according to the recipe b
Weyl.25 To do so we first normalizeZ1( j )

m as

Ẑ1( j )
m 5~X̂1( j )

m ,Q̂1( j )
a !,

~5.41!

X̂1( j )
m 5

X1( j )
m

~X1(1)
2 !1/2, Q̂1( j )

a 5
Q1( j )

a

~X1(1)
2 !1/4.

By virtue of Eqs.~A.3a! and ~A7! all the SO(1,2)3O(N)3D invariants or three-dimensiona
superconformal invariants are

X̂1( j )•X̂1(k) , QC 1( j )aX̂1(k)•gQ̂1(l )
a , QC 1( j )aQ̂1(k)

b QC 1(l )bQ̂1(m)
a , QC 1( j )aQ̂1(k)

a . ~5.42!

In particular, from Eq.~5.35! we note that they produce cross-ratio type invariants dependin
four points,zr ,zs ,zt ,zu , the nonsupersymmetric of which are well known, see, e.g., Ref. 26
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~xrs
2 1 1

4~ ū rsau rs
a !2!~xtu

2 1 1
4~ ū tuau tu

a !2!

~xru
2 1 1

4~ ū ruau ru
a !2!~xts

2 1 1
4~ ū tsau ts

a !2!
. ~5.43!

If we restrict theR-symmetry group to be SO(N) instead of O(N) then the followings are
also superconformal invariants in the case of evenN, according to Weyl25

ea1
b1
¯

aN/2
bN/2)j 51

N
2

Tja j

bj , Tja j

bj5QC 1( j 1)aj
Q̂1( j 2)

bj

or

QC 1( j 1)aj
X̂1( j 2)•gQ̂1( j 3)

bj , ~5.44!

which we may call pseudoinvariants.

VI. SUPERCONFORMALLY COVARIANT OPERATORS

In general, acting on a quasiprimary superfield,Cr
r(z), with the spinor derivative,Daa , does

not lead to a quasiprimary field~for conformally covariant differential operators in nonsupersy
metric theories, see, e.g., Refs. 27 and 28!. For a superfield,Cr

r , from Eqs.~4.8!, ~4.9!, and~5.5!
we have

DaadCr
r52~L1~h1 1

2!l̂ !DaaCr
r2DabCr

r ŵb
a2DaaCs

r~sb
gŵg

b!s
r

2DbaCr
r t̂ b

a2DaaCr
s1

2~sbct̂
bc!s

r12rC bb~CYbb
aa!r

r , ~6.1!

whereYbb
aa is given by

Ybb
aa52sb

adb
a1db

asb
a2hdb

adb
a . ~6.2!

To ensure thatDaaCr
r is quasiprimary it is necessary that the terms proportional torC vanish and

this can be achieved by restrictingDaaCr
r to an irreducible representation of SO(1,2)3O(N) and

choosing a particular value ofh so thatCY50. The change of the scale dimension,h→h1 1
2, in

Eq. ~6.1! is also apparent from Eq.~2.21!

Daa5V~z;g!1/2L21b
a~z;g!Ua

b~z;g!Dbb8 . ~6.3!

As an illustration we consider tensorial fields,Ca1¯ama1¯an
, which transform as

dCa1¯ama1¯an
52~L1hl̂!Ca1¯ama1¯an

2 (
p51

m

Ca1¯b¯ama1¯an
t̂ b

ap

2 (
q51

n

Ca1¯ama1¯b¯an
ŵb

aq
. ~6.4!

Note that spinorial indices and gauge indices,a, a may be raised or lowered bye21ab, eab , dab,
dab .

For Ca1¯ama1¯an
we have
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~CYb
b

aa!a1¯ama1¯an
52~h1 1

2n!dbad
b

aCa1¯ama1¯an

1db
a (

p51

m

~daap
Ca1¯b¯ama1¯an

2dbap
Ca1¯a¯ama1¯an

!

1dba(
q51

n

db
aq

Ca1¯ama1¯a¯an
. ~6.5!

In particular, Eq.~6.5! shows that the following are quasiprimary

D [b(bCa1¯am]a1¯an) if h5m1 1
2n, ~6.6a!

D [bubuCa1¯am]
b if h5m2 3

2, ~6.6b!

where~ !, @ # denote the usual symmetrization, antisymmetrization of the indices, respectively
obviously Eq.~6.6! is nontrivial if 1<m11<N. Note that due to the term containingdaap

in Eq.
~6.5! one should antisymmetrize the gauge indices.

Now we consider the case where more than one spinor derivative,Daa , act on a quasiprimary
superfield. In this case, it is useful to note

D [a[aDb]b]50, ~6.7!

and

DaarC bb52 idab~eb•g!ab . ~6.8!

From Eq.~6.5! one can derive

D [b1(b1
¯Dblb l

dCa1¯am]a1¯an)

52l ~2h1m1 1
2n1 3

4~ l 21!!rC [b1(b1
Db2b2

¯Dblb l
Ca1¯am]a1¯an)

1homogeneous terms. ~6.9!

Hence the following is quasi-primary:

D [b1(b1
¯Dblb l

Ca1¯am]a1¯an) if h5m1 1
2n1 3

4~ l 21!. ~6.10!
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APPENDIX A: USEFUL EQUATIONS

Some useful identities relevant to the present paper are

1
2tr~gmgn!5hmn, ~A1a!

gmgngr5hmngr2hmrgn1hnrgm1 i emnr, ~A1b!

2 i 1
2e

mnrgngr5gm, ~A1c!

emnkelrk5dm
ldn

r2dm
rdn

l , ~A2a!

emnkelnk52dm
l , ~A2b!
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emnk5emnk , ~A2c!

r«̄52 1
2~ «̄gmrgm1 «̄r1!, ~A3a!

e21«̄ tr te52 1
2~ «̄gmrgm2 «̄r1!. ~A3b!

For Majorana spinors,

Daaubb52da
bda

b, Daaūbb5dabeab , ~A4a!

D̄aaubb52dabe21ab, D̄aaūbb5da
bda

b , ~A4b!

Daaūbub52ūaa , ~A4c!

Daax1
b

g52ida
būag , ~A4d!

Daax2
b

g52i ~da
būag2db

gūaa!, ~A4e!

g0x6g05x7
† , ~A5a!

ex6e2152x7
t , ~A5b!

det x15det x252x22 1
4~ ūaua!2, ~A5c!

da
ddb

g2da
gdb

d5eabe21gd, ~A6!

ūgmu8c̄gmc8522ūc8c̄u82 ūu8c̄c8, ~A7a!

em1¯md
en1¯nd

5 (
p51

d!

sign~p!dm1np1
¯dmdnpd

p: permutations, ~A7b!

em1¯md
x(1)

m1
¯x(d)

md 56Ae i 1¯ i dx(1)•x( i 1)¯x(d)•x( i d). ~A7c!

APPENDIX B: SOLUTION OF SUPERCONFORMAL KILLING EQUATION

From the well-known solution of the ordinary conformal Killing equation~3.10!,26 we may
write the general solution of the superconformal Killing equation~3.15! as

hm~z!52x•b~u!xm2~x22 1
4~ ūaua!2!bm~u!1em

nlxnbl~u!ūaua1wm
n~u!xn

1 1
4e

m
nlwnl~u!ūaua1l~u!xm1am~u!. ~B1!

Substituting this expression into Eq.~3.15! leads to three independent equations correspondin
the second, first, and zeroth order inx. Considering the quadratic terms or the coefficients
xrxl , we get

hmrDaabl~u!1hmlDaabr~u!2hrlDaabm~u!

52 i 1
2e

m
nkgkb

a~hnrDaabl~u!1hnlDaabr~u!2hrlDaabn~u!!. ~B2!

Contracting this withhrl gives

Daabm~u!52 i 1
2e

m
nkgkb

aDabbn~u!, ~B3!
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while contraction withhml leads to

Daabr~u!5 i 1
3e

r
nkgkb

aDabbn~u!. ~B4!

Thus

Daabm~u!50, ~B5!

bm(u) is constant. Straightforward calculation shows that 2x•bxm2(x22 1
4( ūaua)2)bm

1em
nlxnblūaua is a solution of the superconformal Killing equation~3.15!.
Now the linear inx terms become

Daa~emnkvk~u!1hmnl~u!!5 i 1
2Dab~hmnv~u!•g2vm~u!gn2emn

kl~u!gk!b
a , ~B6!

wherevk(u) is the dual form ofwmn(u),

vk5 1
2e

k
mnwmn, wmn5emnkvk . ~B7!

Contracting Eq.~B6! with hmn gives

Daal~u!5 i 1
3Dabvb

a~u!, vb
a~u!5vm~u!gm

b
a . ~B8!

Substituting this back into Eq.~B6! leads to

055emnrDaavr~u!2 ihmnDabvb
a~u!14iD abvm~u!gnb

a2 iD abvn~u!gmb
a . ~B9!

Contraction withek
mn shows thatvm(u) satisfies the superconformal Killing equation~3.15!,

Daavk~u!52 i 1
2e

k
mnDabvm~u!gnb

a . ~B10!

Equations~B8! and~B10! are actually equivalent to Eq.~B6!, since from Eq.~B10! successively

Daavk~u!gra
b5 i 1

2e
krmDabvm~u!1 1

2h
krDaava

b~u!2 1
2Daavr~u!gka

b ,

Daav (k~u!gr)a
b5 1

3h
krDaava

b~u!,
~B11!

Daav [k~u!gr]a
b5 i ekrmDabvm~u!,

Daavk~u!gra
b5 i ekrmDabvm~u!1 1

3h
krDaava

b~u!,

and the last expression makes Eq.~B9! hold.
To solve Eq.~B10! we first note from

Daavb
g~u!5 2

3da
bDadvd

g~u!2 1
3d

b
gDadvd

a~u!, ~B12!

that

DbbDaavg
d~u!52 2

3da
gDavDbbvv

d~u!1 1
3d

g
dDavDbbvv

a~u!

5 4
9da

gDbvDabvv
d~u!2 2

9da
gDbvDadvv

b~u!

2 2
9d

g
dDbvDabvv

a~u!1 1
9d

g
dDbvDaavv

b~u!. ~B13!

Contraction withdg
b gives

DbgDaavb
d~u!52DbgDadvb

a~u!, ~B14!
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so that Eq.~B13! becomes

DbbDaavg
d~u!5 2

3da
gDbvDabvv

d~u!2 1
3d

g
dDbvDabvv

a~u!, ~B15!

which is in fact equivalent to Eq.~B13!.
From Eq.~B15! andDbbDaavg

d(u)52DaaDbbvg
d(u) we get

2da
gDbvDabvv

d~u!12db
gDavDbavv

d~u!5dg
d~DavDbavv

b~u!1DbvDabvv
a~u!!.

~B16!

Contracting withdg
a gives

3DbvDabvv
d~u!522DavDbbvv

d~u!1DavDbdvv
b~u!. ~B17!

Hence from Eq.~B14! we can put

DbvDaavv
b5Gab~u!eab ,

~B18!
Gab~u!5 1

2DbbDaa~v~u!e21!ba52Gba~u!,

so that Eq.~B15! becomes with Eq.~A6!

DbbDaavg
d~u!5 1

3~2da
gebd2ebadg

d!Gab~u!. ~B19!

Thus

DcgGab~u!5 1
2DbbDaaDcg~v~u!e21!ba5 1

2DbgGca~u!50. ~B20!

ThereforeGab(u) is independent ofu and v(u) is at most quadratic inu. From Eq.~B19! we get

DbbDagvg
d~u!5ebdGab . ~B21!

Integrating this gives

Dagvg
a~u!56i ~ ta

būba1 r̄aa!, ~B22!

where 6i t a
b5Gab so that

t t52t, ~B23!

and the spinor,r̄aa , appears as a constant of integration. Now Eq.~B12! becomes with Eq.~2.4!

Daavb
g~u!52i ~ ta

būbgm1 r̄agm!agm
b

g . ~B24!

Integrating this gives

vm~u!5 i t a
būbgmua12i r̄agmua1vm. ~B25!

Equation~B8! becomes

Daal~u!522ta
būba22r̄aa , ~B26!

so that

DbbDaal~u!52 i 1
3Gabeab . ~B27!

However fromDbbDaal(u)1DaaDbbl(u)50 we noteGab50. Hence
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wmn~u!5 r̄a~gmgn2gngm!ua1wmn, ~B28a!

l~u!522r̄aua1l. ~B28b!

With these expressions straightforward calculation shows thatwm
n(u)xn1 1

4e
m

nlwnl(u) ūaua

1l(u)xm is a solution of the superconformal Killing equation~3.15!.
The remaining terms are

Daaam~u!52 i 1
2e

m
lrDabal~u!grb

a , ~B29!

the general solution of which we already obtained. From Eq.~B25!,

am~u!5 i t a
būbgmua12i «̄agmua1am. ~B30!

For am(u) to be realt must be anti-Hermitian and hence with Eq.~B23! tPo(N).
All together, we obtain the general solution of the superconformal Killing equation~3.17!.

APPENDIX C: BASIS FOR SUPERCONFORMAL ALGEBRA

We write the superconformal generators in general as

K•P5amPm1 «̄aQa1lD1 1
2w

mnMmn1bmKm1 r̄aSa1 1
2t

abAab , ~C1!

for

K5~am,bm,«a,ra,l,wmn,ta
b!, ~C2a!

P5~Pm ,Km ,Qa,Sa,D,Mmn ,Aa
b!, ~C2b!

where we puttab5dactc
b and theR-symmetry generators,Aab5Aa

cdcb , satisfy the o(N) condi-
tion, A†5At52A.

The superconformal algebra can now be obtained by imposing

@K1•P,K2•P#52 iK3•P, ~C3!

whereK3 is given by Eq.~3.44!. From this expression, we can read off the following superco
formal algebra.

~1! Poincare´ algebra:

@Pm ,Pn#50, @Mmn ,Pl#5 i ~hmlPn2hnlPm!,
~C4!

@Mmn ,Mlr#5 i ~hmlM nr2hmrM nl2hnlMmr1hnrMml!.

~2! Supersymmetry algebra:

$Qaa,Q̄bb%52da
bgma

bPm ,

@Mmn ,Qa#5 i 1
2g [mgn]Q

a, ~C5!

@Pm ,Qaa#50.

~3! Special superconformal algebra:

@Km ,Kn#50, @Mmn ,Kl#5 i ~hmlKn2hnlKm!,

$Saa,S̄bb%52da
bgma

bKm ,
~C6!
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@Mmn ,Sa#5 i 1
2g [mgn]S

a,

@Km ,Saa#50.

~4! Cross terms between (P,Q) and (K,S):

@Pm ,Kn#52i ~Mmn1hmnD !,

@Pm ,Sa#52gmQa,
~C7!

@Km ,Qa#52gmSa,

$Qaa,S̄bb%52 ida
b~2da

bD1~g [mgn] !a
bMmn!12ida

bAa
b .

~5! Dilations:

@D,Pm#52 iPm , @D,Km#5 iK m ,

@D,Qa#52 i 1
2Q

a, @D,Sa#5 i 1
2S

a, ~C8!

@D,D#5@D,Mmn#5@D,Aa
b#50.

~6! R-symmetry, o(N):

@Aab ,Acd#5 i ~dacAbd2dadAbc2dbcAad1dbdAac!,

@Aab ,Qc#5 i ~da
cdbd2db

cdad!Q
d,

~C9!
@Aab ,Sc#5 i ~da

cdbd2db
cdad!S

d,

@Aa
b,Pm#5@Aa

b,Km#5@Aa
b,Mmn#50.

APPENDIX D: REALIZATION OF SO „2,3…·Sp„2,R… STRUCTURE IN M

We exhibit explicitly the relation of the three-dimensional conformal group to SO(
>Sp(2,R) by introducing five-dimensional gamma matrices,GA, A50,1,...,4,

Gm5S gm 0

0 2gmD , G35S 0 i

i 0D , S45S 0 i

2 i 0D . ~D1!

They satisfy withGAB5diag(11,21,21,21,11),

GAGB1GBGA52GAB, ~D2!

and

S 0 g0

g0 0 DGAS 0 g0

g0 0 D 52GA†, S 0 e

e 0DGAS 0 e21

e21 0 D 5GAt. ~D3!

For the supermatrix,M , given in Eq.~3.45!, we may now express the 434 part in terms of
GAB[ 1

4@GA,GB# as

m[S w1 1
2l ia•g

ib•g w2 1
2l

D 5 1
2wABGAB, ~D4!
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wherew34, wm3 , wm4 are given by

w345l, wm35am2bm , wm45am1bm . ~D5!

GAB generates the Lie algebra of SO(2,3),

@GAB,GCD#52GACGBD1GADGBC1GBCGAD2GBDGAC. ~D6!

In general,m can be defined as a 434 matrix subject to two conditions

bm1m†b50, b5S 0 g0

g0 0 D , ~D7a!

cm1mtc50, c5S 0 e

e 0D . ~D7b!

To show SO(2,3)>Sp(2,R) we take, without loss of generality,g05 i e ande to be real. Now
if we define

m̃5pmp21, p5S 1 0

0 e D , ~D8!

then from

p215p†5pt, pcp215S 0 1

21 0D 5 j , ~D9!

we note that Eq.~D7! is equivalent to the sp(2,R) condition

m̃* 5m̃, jm̃1m̃t j 50. ~D10!

1V. Kac, ‘‘A sketch of Lie superalgebra theory,’’ Commun. Math. Phys.53, 31 ~1977!.
2W. Nahm, ‘‘Supersymmetries and their representations,’’ Nucl. Phys. B135, 149 ~1978!.
3N. Seiberg, ‘‘Notes on Theories with 16 Supercharges,’’ Proceedings of The Trieste Spring School, 1997;~unpublished!
hep-th/9705117.

4J.-H. Park, ‘‘Superconformal symmetry and correlation functions,’’ Nucl. Phys. B559, 455 ~1999!; hep-th/9903230.
5J.-H. Park, ‘‘N51 superconformal symmetry in four dimensions,’’ Int. J. Mod. Phys. A13, 1743 ~1998!; hep-th/
9703191.

6J.-H. Park, ‘‘Superconformal symmetry in six-dimensions and its reduction to four,’’ Nucl. Phys. B539, 599 ~1999!;
hep-th/9807186.

7M. Sohnius, ‘‘Introducing supersymmetry,’’ Phys. Rep.128, 39 ~1985!.
8J. Wess and J. Bagger,Supersymmetry and Supergravity, 2nd ed.~Princeton University Press, Princeton, 1991!.
9I. L. Buchbinder and S. M. Kuzenko,Ideas and Methods of Supersymmetry and Supergravity or a Walk Thro
Superspace~IOP, Bristol, 1995!.

10P. West,Introduction to Supersymmetry and Supergravity~World Scientific, Singapore, 1990!.
11A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky, and E. Sokatchev, ‘‘Unconstrained off-shellN53 supersymmetric

Yang–Mills theory,’’ Class. Quantum Grav.2, 155 ~1985!.
12S. Gates, M. Grisaru, M. Rocˇek, and W. Siegel,Superspace, or One Thousand and One Lessons in Supersym

~Benjamin/Cummins, Reading, MA, 1983!.
13C. Lee, K. Lee, and E. Weinberg, ‘‘Supersymmetry and self-dual Chern–Simons systems,’’ Phys. Lett. B243, 105

~1990!.
14E. A. Ivanov, ‘‘Chern–Simons matter systems with manifestN52 supersymmetry,’’ Phys. Lett. B268, 203 ~1991!.
15S. Gates, Jr. and H. Nishino, ‘‘Remarks onN52 supersymmetric Chern–Simons theories,’’ Phys. Lett. B281, 72

~1992!.
16H. Nishino and S. Gates, Jr., ‘‘Chern–Simons theories with supersymmetries in three-dimensions,’’ Int. J. Mod. P

8, 3371~1993!.
17E. Sokatchev, ‘‘Off-shell Supersingletons,’’ Class. Quantum Grav.6, 93 ~1989!.
18B. Zupnik, ‘‘Harmonic superspaces for three-dimensional theories,’’ presented at Supersymmetries and quantu

metries, Dubna, 22–26 July, 1997~unpublished!, hep-th/9804167.
                                                                                                                



B

.

Phys.

v.

antum

7161J. Math. Phys., Vol. 41, No. 10, October 2000 Superconformal symmetry in three dimensions

                    
19B. Zupnik, ‘‘Harmonic superpotentials and symmetries in gauge theories with eight supercharges,’’ Nucl. Phys.554,
365 ~1999!; hep-th/9902038.

20H. Osborn, ‘‘N51 superconformal symmetry in four dimensional quantum field theory,’’ Ann. Phys.~Leipzig! 272, 243
~1999!; hep-th/9808041.

21S. M. Kuzenko and S. Theisen, ‘‘Correlation functions of conserved currents inN52 superconformal theory,’’ Class
Quantum Grav.17, 665 ~2000!; hep-th/9907107.

22A. Van Proeyen, ‘‘Tools for supersymmetry,’’ hep-th/9910030, Lectures in the Spring school Caˇlimǎneşti, Romania,
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This paper is concerned with the one-dimensional stationary linear Wigner equa-
tion, a kinetic formulation of quantum mechanics. Specifically, we analyze the
well-posedness of the boundary value problem on a slab of the phase space with
given inflow data for a discrete-velocity model. We find that the problem is
uniquely solvable if zero is not a discrete velocity. Otherwise one obtains a
differential-algebraic equation of index 2 and, hence, the inflow data make the
system overdetermined. ©2000 American Institute of Physics.
@S0022-2488~00!00112-2#

I. INTRODUCTION

The so-called Wigner distribution function was introduced as a method for reformul
quantum mechanics in classical phase space1 (R6N for a generalN-particle system; however we
consider here only systems which are one dimensional and described by a mean, or self-con
field, so our phase space isR2).

The ~real-valued! Wigner function,w(x,v,t) with xPR,vPR, andtPR1 is a quasiprobabil-
ity distribution; it is not, in general, positive but its marginal distribution, the configuration-sp
density

n~x,t !5E
R
w~x,v,t !dv ~1.1!

is indeed non-negative and, in fact, corresponds exactly with the correct quantum-mech
expression for the density. For an arbitrary quasiprobability distributionw(x,v) to be a~physical!
Wigner function, it has to correspond to a positive trace class operator, the density matrix~cf. Ref.
2!.

Wigner showed in Ref. 1 thatw obeys a kinetic~quasitransport! equation, the so-called
Wigner equation

wt1vwx2Q@V#w50, ~1.2a!

with the pseudodifferential operator

Q@V#5 i FVS x1
]v

2i D2VS x2
]v

2i D G , ~1.2b!

a!Electronic mail: arnold@num.uni-sb.de
b!Electronic mail: lange@mi.uni-koeln.de
c!Electronic mail: zweifel@vt.edu
71670022-2488/2000/41(11)/7167/14/$17.00 © 2000 American Institute of Physics
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where we have set Planck’s constant\51. Alternatively,Q@V# can~formally! be expressed as
convolution operator inv:

~Q@V#w!~x,v !5a~x,v !* vw~x,v !, ~1.3!

with

a~x,v !5A8

p
Im@e2ivx~FV!~2v !#, ~1.4!

andF denotes the Fourier transform. These two definitions ofQ@V# coincide under some regu
larity and decay assumptions onV ~cf. Ref. 3!.

In ~1.2b! V represents the~real-valued! system potential. It may either be specifiedab initio
~the linear case! or may be a self-consistent potential which depends on the densityn @Eq. ~1.1!#
~the nonlinear case!. In a typical situationV obeys a Poisson equation and one speaks of
Wigner–Poisson system. However, in this paper only the linear stationary Wigner equat
studied. Furthermore, as suggested by the title of the paper, we are interested in the sta
equation.

In the last several decades many physicists have used the Wigner formalism for qu
scattering theory;4,5 for computing virial coefficients;4 ‘‘squeezed states;’’6 and for Hartree–Fock
calculations.7 When considered on the whole space, i.e.,xPR, the Wigner approach is equivalen
to ‘‘ordinary’’ quantum mechanics. On finite~spatial! domains, however, it is tricky for three
reasons: First, the potential appearing inQ@V# must still be known in the whole space, hereRx .
Second, it is not clear how to formulate adequate boundary conditions~BCs!.8 Third, it is usually
unknown if the Wigner functionw(x,v) on a bounded domain corresponds to a positive den
matrix operator that gives rise to a non-negative densityn(x).

For the past 15 years physicists, engineers, and mathematicians have been using
equation models to simulate the electron transport in submicron semiconductor devices~see, e.g.,
Refs. 9 and 10!. In these numerical simulations physicists9,11 have mostly used so-calledinflow
boundary conditionsfor the Wigner equation. These classical transport-theoretical BCs give
sonable results even for quantum models, if they are applied ‘‘far enough away’’ from the
source of quantum effects~e.g., tunneling barriers!. Assuming the boundaries are in the on
dimensional model atx50 andx5L one specifies the distribution flowinginto a medium through
the boundary~either in the stationary or the time-dependent case!:

w~0,v !5 f 1~v !, v.0,
~1.5!

w~L,v !5 f 2~v !, v,0.

In Refs. 12 and 13absorbing boundary conditionshave been devised for the Wigner equation
a refinement of inflow BCs. They account for the coupling of the incoming and outgoing d
bution at the boundary in quantum kinetic models.

We remark that both of these BCs break the strict correspondence between the Wign
Schrödinger–Heisenberg formulations of quantum mechanics. Hence, it is not easy to judge
resulting Wigner function isphysicalin the sense of corresponding to a positive density matrix
would, for example, be desirable to find conditions on the prescribed inflow dataf 1, f 2 which
guarantee that the resulting Wigner function~when extended to the whole space! is physical.

For the time-dependentWigner equation with inflow conditions, well-posedness has b
studied for the linear14 and nonlinear15 cases.~See also Ref. 16, which studies inflow in th
classical limit, and Ref. 17, where a strategy for coupling classical and quantum regim
discussed.! One study has been made of the stationary Wigner equation with inflow conditio18

a rather involved technical method was used to construct a solution.
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The quantity of interest to engineers is the stationary current as a function of applied vo
the so-calledI –V curve. This explains our interest in the stationary problem. Our objective
is to show unique solvability of the stationary boundary value problem~BVP!

vwx2Q@V#w50, 0,x,L, vPR, ~1.6!

subject to the BCs~1.5!. In Ref. 11 Frensley analyzed a full discretization~upwind finite differ-
ences! of this stationary Wigner equation with inflow BCs, and there is numerical evidence
the problem is well-posed. A mathematical proof, however, has not yet been given.

At first glance~1.6! looks like a classical transport problem of the form

T fx2A f50, 0,x,L,

for f (x) in some Hilbert space, andT]x is the usual transport operator. For classical linear19 and
nonlinear20,21 transport problems with inflow conditions, a great deal is known. In typical ap
cations and in most of the mathematical analysisA is a positive Fredholm operator, modeling th
interaction of the ‘‘transport’’ particles with the medium in which they are diffusing. In~1.6!,
however,2Q@V# describes the time-reversible interaction of the electrons with the system
tential. Since it is skew-symmetric onL2(Rv), standard techniques of generalized transport the
~see, e.g., Refs. 22 and 23! cannot be applied to the BVP of the Wigner equation, even in the lin
case.

At this point it is in order to compare~1.6! with its classical counterpart, the BVP for th
stationary Liouville equation:

vwx2Vxwv50, 0,x,L, vPR. ~1.7!

Potential wells inside the domain (0,L) give rise to closed particle trajectories, and hence
solution of~1.7! with inflow BCs~1.5! is in general not unique~see Ref. 17 for the linear problem
and Ref. 24 for the nonlinear case!. The quantum picture is, however, different: Since bound st
cannot be compactly supported, it is possible to ‘‘control’’ them through the inflow data.

The model we adopt in this paper, aside from being one dimensional and linear, is
discrete velocity. This may be considered either a preliminary step toward the analysis
continuous-velocity model or an end in itself, since for numerics the velocity has to be discr
in any event~see Sec. II!. In Sec. III we prove the well-posedness of the BVP problem for
discrete-velocity case, and discuss generalizations to the continuous-velocity case when in
a cutoff for small velocities. Finally, in Sec. IV we find that the problem is not well-posedv
50 is included in the set of discrete velocities.

II. VELOCITY DISCRETIZATION OF THE WIGNER EQUATION

In Secs. III and IV we shall analyze the well-posedness of discrete velocity analogs of~1.6!.
In this section, we therefore discuss an example of how to obtain such a velocity semidisc
tion. In Refs. 25 and 26 a spectral-collocation method~in velocity! of the time-dependent Wigne
equation was studied. In order to obtain a simple discretization ofQ@V#, the Wigner function is
there approximated by a finite linear combination of trigonometric polynomials~in v), since they
are ~generalized! eigenfunctions ofQ@V#:

Q@V#eihv5dV~x,h!eihv, ~2.1!

where

dV~x,h!5 i FVS x1
h

2 D2VS x2
h

2 D G
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is the symbol ofQ@V# @see ~1.2b!#. Here we present a generalization of these technique
infinitely many equidistant, discrete velocities.

The vector functionw(x)5(wj (x), j PZ)T denotes thediscrete velocity Wigner function,
wherewj (x) is considered as an approximation tow(x,v j ). Here, we choose the discrete veloc
ties asv j5@( j 2 1

2)p#/h0 , j PZ, where h0.0 will be defined later on. With this choice w
‘‘skip’’ the discrete velocityv50, as this would create analytical problems for the resulting B
~Secs. III and IV!.

In the sequel we considerw(x) as the sequence of the Fourier coefficients of the veloc
transformed function

ŵ~x,h!5(
j PZ

wj~x!e2 iv jh, 2h0<h<h0 , 0<x<L, ~2.2!

and conversely:

wj~x!5
1

2h0
E

2h0

h0
ŵ~x,h!eihv jdh, j PZ. ~2.3!

Obviously ŵ(x,.)PL2(2h0 ,h0) iff w(x)P l 2(Z). h0 gives the finite support~bandwidth! of
ŵ(x,h). In order to evaluateQ@V# we extendŵ by 0 from L2(2h0 ,h0) to L2(Rh). This
corresponds to a trigonometric interpolation ofw(x) on Rv :

w̃~x,v !ª
1

2h0
E

2h0

h0
ŵ~x,h!eihvdh, vPR, ~2.4!

and we havew̃(x,v j )5wj (x). This functionw̃(x,v) is considered as a smooth approximation
w(x,v). Sincew(x)P l 2(Z), this implies w̃(x,.)PL2(Rv)ùC` and all v derivatives decay a
infinity:

~]v
nw̃!~x,v !→0 for uvu→`, nPN0 .

Using ~2.1! and ~2.4! we calculate

~Q@V#w̃!~x,v !5
1

2h0
E

2h0

h0
dV~x,h!ŵ~x,h!eihv dh. ~2.5!

If VPL`(R) ~which is the typical situation in semiconductor applications! we have
Q@V#w̃(x,.)PL2(Rv) with

i~Q@V#w̃!~x,.!i2<2iVi`iw̃~x,.!i2 . ~2.6!

When finally inserting~2.2! into ~2.5! we get the desired discretization ofQ@V# for fixed x
P@0,L#:

A~x!: l 2~Z!→ l 2~Z!,
~2.7!

~A~x!w! j5
1

2h0
E

2h0

h0
dV~x,h!F (

kPZ
wke

ih(v j 2vk)Gdh.

For VPL`(R) we haveA(x)PB( l 2(Z)) with

iA~x!i<2iVi` . ~2.8!

We now proceed with aformal calculation to represent~2.7! as a discrete convolution@similar
to the convolution representation~1.3! of Q@V##:
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~A~x!w! j5(
kPZ

wkaj 2k~x!, j PZ, ~2.9a!

with

aj~x!5
1

2h0
E

2h0

h0
dV~x,h!expS ip j h

h0
Ddh. ~2.9b!

We remark that~2.9! is equivalent to~2.7! only under restrictive assumptions on the potentialV.
For the analysis of the discretized BVP in Sec. III we shall needA(x)PB( l 2(Z)). In the convo-
lution form ~2.9!, the boundedness ofA(x) follows, e.g., if (aj , j PZ)P l 1. But for an arbitrary
potential VPL` the Fourier coefficients (aj ) are usually not inl 1. Sufficient conditions for
Fourier coefficients to bel 1 are listed, for example, in Sec. I.6 of Ref. 27.

III. WELL-POSEDNESS OF THE BOUNDARY VALUE PROBLEM

In this section we analyze the well-posedness of the discrete velocity analog of~1.6!. The
vector functionw(x)5(wj (x), j PJ) still denotes thediscrete velocity Wigner function. The dis-
crete velocitiesv jPR are assumed to be strictly increasing, i.e.,v j,v j 11 , and the index setJ,Z
might be finite or countably infinite. In the sequel we also assumev j.0 for j .0 ~i.e., j PJ1

ªJùN), andv j,0 for j ,0 @i.e., j PJ2
ªJù(2N)]; we setv050, and generally assume in th

section that 0¹J. Note that, due to these assumptions onv j , the discrete velocities canno
accumulate at zero; this fact will be important for our subsequent analysis.

Our stationarydiscrete velocity Wigner equationhence reads as

Twx2A~x!w50, 0,x,L, ~3.1!

subject to the inflow BCs

wj~0!5 f j , j PJ1, wj~L !5 f j , j PJ2, ~3.2!

with a given sequencef5( f j , j PJ). Here,T5diag(vj)jPJ is the diagonal matrix of the discret
velocities, and the real-valued matrixA(x) is an appropriate semidiscretization~in v) of the
operatorQ@V# for a given potentialV; often the matrixA(x)5(ajk(x)) j ,kPJ will be a Toeplitz
matrix @whereajk(x)5aj 2k(x)#, at least for an equidistant velocity discretization~see Sec. 2 of
Ref. 26!.

In the sequel we shall assume that the matricesA(x) (0<x<L) are skew-symmetric, reflect
ing the skew-symmetry ofQ@V#. This is the key structural property that guarantees the un
solvability of the two-point BVP~3.1! and~3.2!. If the discrete velocityv050 is included in our
model ~i.e., if 0PJ) then ~3.1!, ~3.2! is a differential-algebraic boundary value problem~DAE-
BVP! which behaves very differently from the BVP for an ordinary differential equation. He
in this section we will assume 0¹J, and we discuss the zero velocity case in Sec. IV. Poss
degeneracies when including zero as a discrete velocity in kinetic boundary value problem
already observed before: cf. Refs. 28 and 29, where stationary solutions to the discrete v
Boltzmann equation were analyzed.

We analyze the BVP~3.1!, ~3.2! in the real Hilbert spaceHª l 2(J) with the natural inner
product

^w,y&5(
j PJ

wjyj .

H may be decomposed asH5H1
% H2 whereH6

ª l 2(J6). We denote byQ6 the restrictions of
H onto H6, i.e., Q6w5w6 for any w5(w1,w2),w6PH6. Let P6 denote the projections
defined byP1wª(w1,0),P2wª(0,w2); the embeddingsE6:H6→H are defined byE1w1
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ª(w1,0),E2w2
ª(0,w2). One has the relationsP65E6Q6. We setDªT21, D being the

diagonal operator diag(1/v j ). Due to our assumptions on thev j we haveDPB(H) ~the bounded
linear operators onH).

We assumeA to be an operator inL1((0,L),B(H)) such thatA(x) is skew-symmetric for all
xP@0,L#. By a mild solutionof the BVP~3.1!, ~3.2! we mean a functionwPW1,1((0,L),H) such
that

w~x!5w01E
0

x

DA~x8!w~x8!dx8 ~3.3!

is valid on @0,L# @wherew05w(0)# and such that~3.2! is fulfilled, i.e.,

w1~0!5f1, w2~L !5f2, ~3.4!

where f5(f1,f2) is given. By aclassical solutionof the BVP ~3.1!, ~3.2! we mean a function
wPC1(@0,L#,H) satisfying

wx2DA~x!w50 ~3.5!

on @0,L# such that~3.4! is fulfilled.
We decompose a given skew-symmetricAPL1((0,L),B(H)) as

A~x!5S A11 A12

A21 A22D 52A* ~x!, ~3.6!

with A11
ªQ1AE1PB(H1),A12

ªQ1AE2PB(H2,H1),A21
ªQ2AE1PB(H1,H2),A22

ªQ2AE2PB(H2). Also, one has

D5S D1 0

0 D2D , uDu5S D1 0

0 2D2D , ~3.7!

where D6
ªdiag(1/v j ) j PJ6. We get uDu>0 in the Hilbert space sense, i.e.,^uDuw,w&>0 for

everywPH.
Crucial for our analysis is the following transformation of the BVP~3.1!, ~3.2!: We introduce

a vectorz by w5:AuDuz, andzPH implies wPH. Then the transformed problem has the for

zx2B~x!z50, 0,x,L, ~3.8!

z1~0!5AuDu21f15..g1, z2~L !5AuDu21f25..g2, ~3.9!

whereg5(g1,g2) are the transformed inflow data, and we shall assumegPH. The operatorB is
defined asB(x)ªAuDu21DA(x)AuDu, and the assumptions onA imply BPL1((0,L),B(H))
sinceAuDuPB(H). We may writeB(x) in the form

B~x!5S AD1A11~x!AD1 AD1A12~x!A2D2

2A2D2A21~x!AD1 2A2D2A22~x!A2D2D . ~3.10!

Hence we havêAw,w8&5^sign(D)Bz,z8& for all z5AuDu21w andz85AuDu21w8PH, and~3.6!
gives

B11~x!52B11~x!* , B22~x!52B22~x!* , B12~x!5B21~x!* . ~3.11!

Our next goal is to reformulate the BVP~3.8!, ~3.9! as an initial value problem~IVP! together with
an operator equation to calculate the outflow data in terms of the given inflow data. To this e
us consider the IVP
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zx2B~x!z50, 0,x,L, ~3.8!

z~0!5z0PH. ~3.12!

Lemma 3.1: If BPL1((0,L),B(H)) then the IVP~3.8!, ~3.12! has a unique mild solutionz
PW1,1((0,L),H), and there exists a unique strongly continuous propaga
U(x,x8)PB(H);0<x,x8<L. It satisfies

F8~x!2B~x!F~x!50, G8~x!1G~x!B~x!50, F* 8~x!2F* ~x!B* ~x!50 ~3.13!

almost everywhere on(0,L), where

F~x!ªU~x,0!, G~x!ªF21~x!5U~0,x!,

and F(0)5G(0)5F* (0)5I .
Proof: The result follows by a simple extension of the first theorems of Sec. 5.1 of Ref

The identities~3.13! follow easily from the mild version of the differential equation and t
definition of F(x) andG(x). j

We are now in the position to reformulate the BVP~3.8!, ~3.9! using the propagatorU of the
IVP ~3.8!, ~3.12!. Since theinflow dataz1(0)5g1, z2(L)5g2 are given we can get the solutio
of the BVP ~3.8!, ~3.9! by

z~x!5U~x,0!S g1

h2 D5U~x,L !S h1

g2 D , 0<x<L, ~3.14!

if the a priorily unknownoutflow dataz2(0)5h2, z1(L)5h1 could be determined. The idea
to calculateh1 from ~3.14! by eliminatingh2. The vectorsh6 satisfy

S h1

0 D5P1U~L,0!S g1

h2 D , S 0
h2 D5P2U~0,L !S h1

g2 D . ~3.15!

From ~3.15! one gets by insertion~using the notation from Lemma 3.1!

S h1

0 D5P1F~L !F S g1

0 D1P2G~L !S h1

g2 D G , ~3.16!

and when solving forh1,

@ I 2P1F~L !P2G~L !P1#S h1

0 D5P1F~L !F S g1

0 D1P2G~L !S 0
g2 D G5 l ~g!. ~3.17!

In ~3.17! the right-hand sidel (g) is datum. IntroducingKª@ I 2P1F(L)P2G(L)P1# one gets
from ~3.16! an operator equation forh1, namely

@ I 2K#S h1

0 D5 l ~g!. ~3.18!

If ~3.18! is uniquely solvable then, by inserting the solutionh1 into the second equation of~3.15!,
one can determineh2. And one then gets the unique solutionz(x) of the BVP ~3.8!, ~3.9! by
either formula of~3.14!. Thus, our goal is to show that~3.18! is uniquely solvable inH.

One can write

K5S 0 F~L !12

0 0 D S 0 0

G~L !21 0D 5S F~L !12G~L !21 0

0 0D . ~3.19!
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The unique solvability of Eq.~3.18! is now implied in the following lemma, which exhibits th
main structural property of our problem.

Lemma 3.2: If BPL1((0,L),B(H)) then K<0 ~in the Hilbert space sense!.
Proof: Define the matrix operatorG̃(x) on H by

G̃~x!ªS G~x!11 2G~x!12

2G~x!21 G~x!22 D , 0,x,L. ~3.20!

By using ~3.11! and ~3.13! one sees that the operator differential equationG̃8(x)2G̃(x)B* (x)
50 is satisfied a.e. on (0,L) which is the same equation that is fulfilled byF* (x) @see~3.13!#;
sinceG̃(0)5F* (0)5I holds,G̃(x)5F* (x) follows a.e. on (0,L). SinceF(x) @and henceF* (x)#
and G(x) @and henceG̃(x)# are strongly continuous inx on @0,L# this implies thatG̃(x)
5F* (x) for all xP@0,L#. Thus, we see that

G~L !2152G̃~L !2152~F* ~L !!2152~F~L !12!* .

This in turn implies

K115F~L !12G~L !2152F~L !12~F~L !12!* <0.
j

From Lemma 3.2 we immediately deduce
Theorem 3.3:Assume0¹J, g5(g1,g2)PH, and let A(x)PB(H) be skew-symmetric for al

xP@0,L#. Then one has:

(a) If APL1((0,L),B(H)) the BVP~3.8!, ~3.9! has a unique mild solutionzPW1,1((0,L),H).
(b) If A(x) is strongly continuous in x on@0,L# and uniformly bounded in the norm of B(H) on

@0,L#, then the solution from (a) is a classical solution, i.e., zPC1(@0,L#,H).

Proof: The assumptions onA imply that BPL1((0,L),B(H)). Lemma 3.2 and the self
adjointness of the bounded operatorK imply that I 2K is invertible with a bounded inverse; thi
shows the unique solvability of the BVP.

To prove~b! we only have to show that a mild solutionzPL1((0,L),H) is in C1(@0,L#,H).
Sincez is in W1,1((0,L),H) it is also inC(@0,L#,H). Since

z~x!5z01E
0

x

B~x8!z~x8!dx8 ~3.21!

is satisfied on@0,L#, it is enough to show that the mappingx→B(x)z(x)5..u(x) is in C(@0,L#,H).
Let xP@0,L# be fixed, and letxn→x ~for n→`), then it follows that forn→` we haveu(x)
2u(xn)5@B(x)2B(xn)#z(x)1B(xn)@z(x)2z(xn)#→0 sinceB(x) is strongly continuous and
uniformly bounded, andz is continuous. j

With the transformationw5AuDuz Theorem 3.3 immediately translates into a result for o
original BVP ~3.1!, ~3.2!. We remark thatzPH iff wPH̃ª l 2(J;uv j u). Hereuv j u denotes a weight
function, i.e., we endowH̃ with the inner product

^^w,y&&5(
j PJ

uv j uwjyj

@if T5diag(vj)jPJ is bounded, then the Hilbert spacesH and H̃ coincide and the two norms ar
equivalent#. Such weighted spaces are typical for kinetic BVPs@see Refs. 31 and 13, wher
L2(Rv ;uvu) is the appropriate space for the~nondiscrete! boundary data#.
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Proposition 3.4: Assume0¹J, f5(f1,f2)PH̃, and let A(x)PB(H) be skew-symmetric fo
all xP@0,L#. Then one has:

(a) If APL1((0,L),B(H)) the BVP~3.1!, ~3.2! has a unique mild solutionwPW1,1((0,L),H̃).
Also, TwxPL1((0,L),H).

(b) If A(x) is strongly continuous in x on@0,L# and uniformly bounded in the norm of B(H) on

@0,L#, then the solution from (a) is a classical solution, i.e., wPC1(@0,L#,H̃). Also, Twx

PC(@0,L#,H).

Proof: The assertions onTwx follow from H̃,H and the discretized Wigner equation~3.1!.j
We shall now outline an alternative well-posedness proof for the BVP~3.1!, ~3.2!. This

approach complements the above result as it will require different assumptions onf andA. This
strategy was suggested by the anonymous referee and it is more closely related to know
niques in generalized transport theory.23,32

We now consider the BVP~3.1!, ~3.4! for wPXªL2((0,L)3Rv ;dx dm), wheredm is a
positive Radon measure satisfyingm$0%50. In our discrete-velocity case we have

dm5(
j PJ

d~v2v j !, ~3.22!

with v j,v j 11 and 0¹J. We adopt here a notation that equally applies to discrete and contin
velocities, as we shall comment on the latter case at the end of this section.A(x) is either the
pseudo-differential operatorQ@V# ~in the continuous velocity case wheredm5dv) or its velocity
discretization. In either case we shall assume thatA(x) is skew-symmetric and

APL`~~0,L !,B~L2~Rv ;dm!!!,

and henceAPB(X).
In this second approach we shall assume inflow boundary data

~ f 1, f 2!PYªL2~Rv ; min~1,uvu!dm!,

which is the appropriate space for the boundary traces: by Theorem 3 of Ref. 31,f 6PY can be
‘‘lifted’’ to a function f (x,v) with f , v f xPX. Hence, the inhomogeneous BVP~3.1!, ~3.4! and the
following BVP for yPX are equivalent as far as existence and uniqueness is concerned:

vyx2A~x!y5g~x,v !, ~3.23a!

with homogeneous boundary conditions

y1~0!50, y2~L !50. ~3.23b!

Here we sety5w2 f andg5A(x) f 2v f xPX.
The free-streaming operatorL5v]x of ~3.23a! is defined on

D~L !5$yPXuvyxPX,y1~0!50,y2~L !50%.

L generates onX a C0 semigroup of contractions. 0¹s(L) iff v50 does not belong to the set o
velocities~i.e., m$uvu,«%50 for some«.0). In the discrete velocity case we assumed 0¹J and
henceL is invertible. Therefore~3.23! is equivalent to

y2L21~A~x!y!5L21g~x,v !, ~3.24!

with the BCs~3.23b!.
Lemma 3.5: L21 is compact on X iff the discrete velocities$v j , j PJ% do not accumulate in

Rv . (Such an accumulation would anyhow not be relevant in practical cases.)
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Proof: For yPX we have

~L21y!~x,v j !55
1

uv j u
E

0

x

y~j,v j ! dj, j .0

1

uv j u
E

x

L

y~j,v j !dj, j ,0.

~3.25!

In the case of finitely many velocitiesL21 is clearly compact. For infinitely many velocitie
without an accumulation point we decomposeL21:

L215PṽL211~ I 2Pṽ!L21, ~3.26!

wherePṽ is the projection fromL2(Rv ;dm) onto the~finitely many! velocitiesuv j u, ṽ. The first
summand of~3.26! is compact. The norm of the second summand is bounded byṽ21 and can thus
be made arbitrarily small by choosingṽ large enough. Hence,L21 andL21A are compact.

If the discrete velocities$v j% accumulate~e.g., asj→`), L21 is not compact: Consider th
bounded squence$yn,nPN% with yn(x,v j )5d j

n ~const inx), which does not have a converge
subsequence. j

With this result we have the second well-posedness result for the BVP~3.1!, ~3.4!:
Theorem 3.6:Assume that the velocities$v j , j PJ% do not accumulate inRv and that0¹J.

Let A(x) be skew-symmetric for all xP@0,L# and let APL`((0,L),B(L2(Rv ;dm))), and
( f 1, f 2)PY. Then, ~3.1!, ~3.4! has a unique solution wPX. Also, vwxPX.

Proof: Due to Lemma 3.5 the Fredholm alternative applies to~3.24! and any solutionyPX of
~3.24! also satisfiesyPD(L). It remains to show that the homogeneous version of~3.23! ~i.e.,
with g50) admits only the trivial solutiony50.

We multiply ~3.23a! by y and integrate over (0,L)3Rv to obtain

05E
0

LE
R
v~y~x,v !2!xdm dx5E

0

`

v~y~L,v !!2dm2E
2`

0

v~y~0,v !!2dm,

where we first used the skew-symmetry ofA(x) and then the BCs~3.23b!. This impliesy2(0)
50 and y1(L)50. Using the initial conditiony(0,v j )50,j PJ or z(0)50 for the IVP ~3.8!
implies z[0 andy[0. j

We finish this section with some remarks:

~1! The motivation for the assumptions onA(x) stem directly from the continuous velocity cas
There the pseudodifferential operatorA(x)5Q@V#(x) in the Wigner equation has the explic
form

A~x!w5iF 21$@V~x1./2!2V~x2./2!#Fw%

for wPL2(Rv) whereh→V(x6h/2) is a multiplication operator in the dual Fourier variab
h; F denotes the Fourier transform in thev variable.

AssumingVPL`(Rx) one sees thatA(x)PB(L2(Rv)) and iA(x)i<2iVi` . If the given
potential decays sufficiently at infinity,A(x) even regularizes:

iA~x!iL2(Rv)→H1(Rv)<Ci~11uxu!Vi` , ~3.27!

with some constantC that is independent of 0,x,L.
Furthermore, using Lebesgue’s dominated convergence theorem it is easy to see thaA(x)

is strongly continuous on@0,L#. If the potentialV is discontinuous at~at least! one pointin
@0,L#, thenA(x) is discontinuous for everyxP@0,L# in the uniform operator topology; this i
easily seen, e.g., for a step potential modeling tunneling in semiconductor devices.

~2! Theorem 3.3 equally applies for the continuous-velocity case when one uses avelocity cutoff
in the stationary Wigner equation in the vicinity of zero. For example, it applies to
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following modification of~1.6!:

z~v!wx2Q@V#w50,

with a cutoff functionz(v)5v for uvu.«.0 anduz(v)u>« elsewhere. Then,T2151/z(v) is
again a bounded operator onL2(Rv).

This velocity truncation is rather a technical restriction that could~possibly! be overcome in
the future. We remark that such a cutoff for small velocities is frequently encountere
stationary kinetic problems: cf. Ref. 33, for example, where the steady Boltzmann equa
studied.

Lemma 3.5 doesnot carry over to the continuous-velocity case, sinceL21 is then not
compact. However, if the potentialV decays such that (11uxu)V(x)PL`(Rx), compactness
in velocity direction~and hence a result analogous to Theorem 3.6! can be obtained from a
decomposion similar to~3.26!:

1

z~v!
A~x!5Pṽ

1

z~v!
A~x!1~I2Pṽ!

1

z~v!
A~x!.

Here, the first operator on the right-hand side is compact due to the compact imbe
H1(2 ṽ,ṽ)→L2(2 ṽ,ṽ) @cf. ~3.27!#, and the second operator can be made arbitrarily sm

~3! Our method and Theorem 3.3 apply also to symmetric velocity discretizations of the Liou
equation~1.7!, showing that the discretized version of the inflow BVP~1.7!, ~1.5! is uniquely
solvable. In the limit of continuous velocities, however, it is clear that no propagatorU(x,x8)
~cf. Lemma 3.1! can exist because of the characteristics intersecting thex axis ~unlessV
5const).

Similarly, the second approach~Theorem 3.6! would not work either for the classical cas
asA(x)5Vx]v is then unbounded.

~4! The original problem~1.6!—the stationary Wigner equation with continuous velocities—s
poses additional analytical problems since hereT21A(x) is unbounded onL2(Rv). This case
will eventually be treated in a forthcoming paper. To this end~3.18! with K<0 seems to be
the crucial structural property, since it is independent of« in the above cutoff functionz.

IV. ZERO AS A DISCRETE VELOCITY

In this section we shall analyze the discrete velocity Wigner equation

Twx2A~x!w50, 0,x,L, ~4.1!

for w(x)5(wj (x), j PJ)T in the case 0PJ. Again we prescribe inflow BCs

w1~0!5f1,
~4.2!

w2~L !5f2.

The model now includes the discrete velocityv050, hence~4.1! is a linear differential-algebraic
equation~DAE, see, e.g., Refs. 34 and 35!. Frensley already mentioned in Ref. 11 that one sho
‘‘avoid’’ this zero velocity in the numerical discretization of the stationary Wigner equation o
slab. In this section we shall analyze the algebraic reasons for it. To illustrate the pro
encountered here, we will first consider an example of dimensionmªuJu53 with a constant
matrix A:

Example 4.1:

Twx2S 0 2a1,0 2a1,21

a1,0 0 2a0,21

a1,21 a0,21 0
D w50, 0,x,L, ~4.3!
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with T5diag(v1,0,v21), w5(w1 ,w0 ,w21)T, and the BCs

w1~0!5 f 1 , w21~L !5 f 21 . ~4.4!

In order to avoid trivialities we assume thata1,0,a0,21Þ0.
As the second row of~4.3!—the algebraic constraint—does not involvew0 , one has to

differentiate algebraic constraints twice in order to express (w0)x as a function ofw. Hence, the
indexof ~4.3! is 2.

The constant-coefficient DAE~4.3! is calledtractable34 or solvable35 if the determinant

det~lT2A!5l~v1a0,21
2 1v21a1,0

2 ! ~4.5!

does not vanish identically forlPC. First we consider the casev1a0,21
2 1v21a1,0

2 Þ0. Then~4.3!
is easily seen to be equivalent to

~w1!x50,

a0,21w215a1,0w1 ,

a0,21w05a1,21w1 .

And, obviously, only one BC can be specified for~4.3! in this case.
In the nontractable case, i.e., forv1a0,21

2 1v21a1,0
2 50, the three rows of~4.3! are linearly

dependent~after differentiating the second row!. Hence, there are more than countably ma
solutions to the BVP~4.3!, ~4.4! in this case:

w1~x!5 f 1 expS 2
a1,21a1,0

v1a0,21
D2

a1,0

v1
E

0

x

w0~x8!expS 2
a1,21a1,0

v1a0,21
(x2x8) Ddx8,

w21~x!5
a1,0

a0,21
w1~x!,

andw0 is arbitrary up to the constraintw21(L)5 f 21 .
We summarize the situation of Example 3.1 in
Proposition 4.2: For any matrices T and A of the above structure, the DAE~4.3! is not

well-posed if two independent BCs~4.4! are prescribed.
We now turn to the general situation~4.1!, ~4.2!. To avoid technical difficulties, we confin

ourselves to the finite dimensional case (m,`) and we assumeA(x) to be sufficiently smooth in
xP@0,L#.

In the sequel we shall assume that~4.1! is solvable~see Sec. 2.4.1 of Ref. 35 for the definitio
in the variable coefficient case!. Otherwise~4.1! would not have a solutionw(x),0,x,L that is
uniquely determined by fixing the solutionw(x0) at one pointx0 .

In the variable coefficient case there is no simple characterization of solvability@like det(lT
2A)Ó0 for constant coefficients#, but we can give a sufficient criterion. First, we remark that~4.1!
can be written inHessenberg form of size 2, i.e.,

S I m21 0

0 0D wx2S Ã11~x! Ã12~x!

Ã21~x! 0
D w50, 0,x,L,

if the constraint

Ã21~x!Ã12~x!52(
j Þ0

aj 0
2 ~x!

v j
Þ0 ;xP@0,L# ~4.6!
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is satisfied. Here,Ã21(x) and Ã12(x) are, respectively, 13(m21) and (m21)31 matrices.
Propsition 4.3 (Sec. 2.4.2 of Ref. 35): If~4.1! is in Hessenberg form of size 2, then it

solvable and has index 2.
A simple calculation gives

det~lT2A~x!!5lm22S (
j Þ0

aj 0
2 ~x!

v j
D )

j Þ0
v j1 lower order terms~ in l!

@see~4.5!#. Hence, the Hessenberg condition~4.6! also implies the local~in x! regularity of the
matrix pencillT2A(x).

Next we discuss the index of the DAE~4.1!. SinceT is constant inx, it has constant rank, an
the differentiation procedure~of the algebraic constraint! can be used to define the index of~4.1!,
i.e., the minimum number of differentiations necessary to expresswx explicitly as a continuous
function of w andx ~see Sec. 2.4.1 of Ref. 35!. In ~4.1! the algebraic constraint has the form

(
j PJ

a0,j~x!wj50. ~4.7!

Sincea0,0(x)[0, ~4.1! has an indexk>2 ~if it is solvable!. The index can indeed exceed 2~e.g.,
for m54, the index 4 is possible!.

Since the differentiation procedure works for~4.1! it can be further shown~see Sec. 2.4.2 o
Ref. 35! that ~4.1! is ~analytically! equivalent to a decoupled system instandard canonical form:

S I m2s 0

0 N~x!
D yx2S C~x! 0

0 I s
D y50, 0,x,L, ~4.8!

wherew5R(x)y is a change of coordinates with a smooth, nonsingular matrixR(x), and we
partition y5(y1,y2)

T. N(x) is a strictly lower triangular, square matrix of sizes>k with nilpo-
tencyk. One easily verifies that the second equation of~4.8!,

N~x!~y2!x2y250

only has the trivial solutiony2(x)[0, and hence, no BCs may be specified fory2. A necessary
condition for the unique solvability of the first equation of~4.8! is to specifym2s BCs.

We therefore conclude that onlym2s(<m2k<m22) BCs may be prescribed for~4.8! or,
equivalently,~4.1!. Them21 BCs ~4.2! hence make the system overdetermined.

We summarize in
Theorem 4.4: (a) If the DAE (4.1) is not solvable (in the sense of Sec. 2.4.1 of Ref.

solutions of (4.1), (4.2) cannot be unique.
(b) If the DAE (4.1) is solvable, the BCs (4.2) are overdetermined and hence make the B

general) unsolvable.
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Quantum stochastic differential equations have been used to describe the dynamics
of an atom interacting with the electromagnetic field via absorption/emission pro-
cesses. Here, by using the full quantum stochastic Schro¨dinger equation proposed
by Hudson and Parthasarathy, we show that such models can be generalized to
include other processes into the interaction. In the case of a two-level atom we
construct a model on the basis of some physical requirements, the main being a
balance equation on the fluxes of the ingoing and outgoing photons; in this model
the atom-field interaction turns out to be due either to absorption/emission pro-
cesses either to direct scattering processes, which simulate the interaction due to
virtual transitions to the levels which have been eliminated from the description. To
see the effects of the new terms, we consider both direct and heterodyne detection
of the fluorescence light emitted by an atom stimulated by a monochromatic co-
herent laser and we deduce from these two detection schemes the expressions of the
total, elastic and inelastic electromagnetic cross sections and the spectral distribu-
tion of the fluorescence light. The total cross section, as a function of the frequency
of the stimulating laser, can present not only a Lorentzian shape, but the full variety
of Fano profiles; intensity dependent widths and shifts are obtained. The fluores-
cence spectrum can present complicated shapes, according to the values of the
various parameters; when the direct scattering is not important the usual symmetric
triplet structure of the Mollow spectrum appears~for high intensity of the stimu-
lating laser!, while a strong contribution of the direct scattering process can distort
such a triplet structure or can even make it to disappear. ©2000 American Insti-
tute of Physics.@S0022-2488~00!01310-4#

I. INTRODUCTION

Quantum stochastic calculus~QSC!,1–4 a noncommutative analog of the classical Ito’s s
chastic calculus, revealed to be a powerful tool to construct mathematical models of qu
optical systems3,5–12 and to develop a theory of photon detection.13–16 Just at the beginning o
QSC, Hudson and Parthasarathy proposed a quantum stochastic Schro¨dinger equation for quantum
open systems.1,4 Such an equation has found applications in quantum optics, but not in its
generality.3,6,15 It has been used to give, at least approximately, the dynamics of photoem
sources such as an atom absorbing and emitting light, or matter in an optical cavity,
exchanges light with the surrounding free space. But in these cases the possibility of intro

a!Electronic mail: barchielli@mate.polimi.it
b!Electronic mail: Lupieri@mi.infn.it
71810022-2488/2000/41(11)/7181/25/$17.00 © 2000 American Institute of Physics
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the so called gauge~or number! process in the dynamical equation has not been conside
roughly speaking, the gauge process is a quadratic expression in the field operators whi
serves the number of quanta, but changes their wave functions.

Let us recall the Hudson–Parthasarathy equation; this is just to fix our notations and to
the role of the gauge process in such an equation, while for the proper mathematical defi
and the rules of QSC we refer to the book by Parthasarathy.4 We denote byF5F(X) the Boson
Fock space over the ‘‘one-particle space’’X5Z^ L2(R1).L2(R1 ;Z), whereZ is another sepa-
rable complex Hilbert space; we shall see in Sec. III how to chooseZ. Let $ei , i>1% be a c.o.n.s.
in Z and let us denote byAi(t), Ai

†(t), L i j (t) the annihilation, creation, and gauge~or number!
processes associated with such a c.o.n.s.; we can write formallyAj (t)5*0

t aj (s) ds, Aj
†(t)

5*0
t aj

†(s) ds, L i j (t)5*0
t ai

†(s)aj (s) ds, whereaj (t), aj
†(t) are usual Bose fields, satisfying th

canonical commutation rules. LetH be a separable complex Hilbert space~the system space! and
let Ri , i>1, Si j , i , j >1, H be bounded operators inH such thatH†5H, ( iRi

†Ri is strongly
convergent to a bounded operator, and( i , jSi j ^ uei&^ej u5SPU(H^ Z) ~unitary operators inH
^ Z); we set also

K5H2
i

2 (
j

Rj
†Rj . ~1.1!

Then ~see Ref. 4, Theorem 27.8, p. 228! there exists a unique unitary operator-valued adap
processU(t) satisfyingU(0)51 and

dU~ t !5H(
j

Rj dAj
†~ t !1(

i , j
~Si j 2d i j !dL i j ~ t !2(

i , j
Ri

†Si j dAj~ t !2 iK dtJ U~ t !. ~1.2!

The Bose fields introduced here represent a good approximation of the electromagnet
in the so calledquasi–mono-chromatic paraxial approximation.17,15 Now, F is interpreted as the
Hilbert space of the electromagnetic field;Aj

†(t) creates a photon with stateej in the time interval
@0,t#, Aj (t) annihilates it,L j j (t) is the self-adjoint operator representing the number of phot
with stateej in the time interval@0,t#. The operatorU(t) can represent the evolution operator f
a compound system~say an atom plus the electromagnetic field!, in the interaction picture with
respect to the free dynamics of the field.

In this paper we study the possibility of using the full Hudson–Parthasarathy equation
phenomenological model for the simplest photoemissive source, namely a two-level atom
lated by a laser. When the gauge process is included@Si j Þd i j in Eq. ~1.2!#, the scattering of the
light by the atom is described not only through the absorption/emission channel, but also th
another process which can be called ‘‘direct scattering.’’ The rough idea is that, even
absorption/emission process would be forbidden, some scattering of light would remain, due
response of the atom as a whole. For instance, in a perturbative development in Feynman
scattering processes would be generated also by virtual transitions starting and ending in
the two states left in the description, but involving as intermediate states other ones, which
been eliminated in the final description. When the atom is approximated by a two-level syste
introduction of an interaction term which preserves the number of photons could simulate
tering processes involving such virtual transitions.

In order to describe a two-level atom, we takeH5C2, but, then, we have freedom in th
choice of the atomic operatorsH, Ri , Si j . Interesting enough, it is possible to show that physi
requirements fix the model; this is done in Sec. II, Propositions 2 and 3. We assume~a! the
existence of a ground state to which the atom decays by emitting at most one photon when i
stimulated,~b! a balance equation@Eq. ~2.19!# saying that in any time interval@0,t# the mean
number of outgoing photons plus the mean number of photons stored in the atom is equa
mean number of ingoing photons. This suffices to determine the structure of the atomic op
@Eqs.~2.15! and ~2.20!#.
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In Sec. III, as a preliminary step to study the physical consequences of the model, we
the master equation which gives the time evolution of the reduced atomic density matrix a
study the large-time behavior of its solutions. The case of a spherically symmetric atom stim
by monochromatic coherent light is considered.

In Sec. IV we study the differential~with respect to the angle! and total cross sections for th
scattering of laser light by the atom, as a function of the frequency of the stimulating laser; i
section such cross sections are obtained from the direct detection scheme, when a photo
receives directly the light emitted by the atom. The resulting line shapes are very interestin
instance, the dependence of the total cross section on the frequency of the stimulating la
present not only a Lorentzian shape, but the full variety of Fano profiles18 ~see also Ref. 19, pp
61–63!; these shapes are typical of the interference among various channels, here the abs
emission channel and the direct scattering. In any case, there is a strong variation of the
section forv ~the frequency of the laser! aroundv0 ~proper frequency of the atom! plus an
intensity dependent shift, shift which has received various names in the literature; a very s
tive one islamp shift, a name suggested by Kastler.20 Also the width of the resonance and th
whole line shape are intensity dependent. Some preliminary results on the total cross sectio
reported in Ref. 21.

To study the spectral distribution of the light emitted by the atom, the ‘‘balanced hetero
detection scheme’’ is adopted, corresponding to a situation in which the emitted light is ma
beat with an intense laser field before the photocounting. This is discussed in Sec. V, whe
the properties of the power of the output current of this detection scheme are studied~Propositions
4 and 5!; this power is the sum of three terms, an elastic, an inelastic and a white noise c
bution, which are shown to be separately positive. Let us observe that the two detection sc
direct and heterodyne, when applied to calculate the same quantity~the total cross section!, give
the same results, so showing the consistency of the two approaches.

In Sec. VI the spectrum of the fluorescence light is calculated. According to the values
various parameters, a well resolved triplet structure can appear~the Mollow22 spectrum!, but also
it can be distorted and made asymmetric by the presence of the new terms. Experiments
essentially the triplet structure; some asymmetry has been found and its origin has been at
to various causes. The presence of the new terms introduced in this paper could give a mo
treating such an asymmetry.

II. THE MODEL AND THE BALANCE EQUATION FOR THE NUMBER OF PHOTONS

Let us start by recalling some further notions about QSC and the Fock spaceF5F(X).4 A
vector f in X is a function fromR1 into Z; we denote byf j (t)5^ej u f (t)& the components of a
vector f (t) in Z with respect the c.o.n.s.$ei , i>1%. The Fock spaceF is spanned by the expo
nential vectorsE( f ), whose components in the 0,1,...,k,... particle spaces are

E~ f !5~1,f ,~2! !21/2f ^ f ,...,~k! !21/2f ^ k,...!, ~2.1!

f PX; by normalization we get the coherent vectors

e~ f !5exp~2 1
2 i f i2!E~ f !. ~2.2!

In particular the vectore(0)[E(0) is the Fock vacuum.
For the annihilation, creation and gauge processes we have

Aj~ t !E~ f !5E
0

t

f j~s! ds E~ f !,

^E~g!uAj
†~ t !E~ f !&5E

0

t

gj~s! dŝ E~g!uE~ f !&,
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^E~g!uL i j ~ t !E~ f !&5E
0

t

gi~s! f j~s! dŝ E~g!uE~ f !&.

In QSC, integrals of ‘‘Ito type’’ with respect todAj (t), dAj
†(t), dL i j (t) are defined. The main

practical rules to manipulate ‘‘Ito differentials’’ are the facts thatdAj (t), dAj
†(t), dL i j (t) com-

mute with anything containing the fields only up to timet and that the products of the fundamen
differentials satisfy

dAj~ t ! dAi
†~ t !5d j i dt, dAj~ t !dLki~ t !5d jk dAi~ t !,

dL j i ~ t !dAk
†~ t !5d ik dAj

†~ t ! , dL j i ~ t !dL lk~ t !5d i l dL jk~ t !, ~2.3!

dAi
†~ t !dAj~ t !5dLki~ t !dAj~ t !5dAk

†~ t !dL j i ~ t !50;

all the products ofdAj (t), dAj
†(t) or dL i j (t) with dt vanish.

We can start now the construction of the model. First of all we need to describe the s
lating laser~coherent light, not necessarily monochromatic!; this means to choose as initial sta
C(j, f )PH^ F a generic state for the atom and a coherent vector for the field,15 i.e.

C~j, f !5j ^ e~ f !, jPH[C2, iji51, f PL2~R1 ;Z!. ~2.4!

Then, the atomic reduced statistical operatorr(t;j, f ) is defined by the partial trace over th
Fock space

r~ t;j, f !5TrF$U~ t !uC~j, f !&^C~j, f !uU~ t !†%. ~2.5!

Moreover, if we introduce the observable ‘‘total number of photons in the time interval@0,t# ’’

N~ t !5(
j

L j j ~ t !, ~2.6!

then, the quantity

^N~ t !& f5^U~ t !C~j, f !uN~ t ! U~ t !C~j, f !& ~2.7!

represents the mean number of outgoing photons up to timet, while

^N~ t !& f
05^C~j, f !uN~ t ! C~j, f !&5E

0

t

i f ~s!i2 ds ~2.8!

is the mean number of ingoing photons up to timet;15 we can also say that Eq.~2.8! gives the
mean number of ingoing photons entering the system in the time interval@0,t# and that Eq.~2.7!
gives the mean number of outgoing photons leaving the system in the same time interval.

Proposition 1: The reduced statistical operatorr(t;j, f ) satisfies the master equation

d

dt
r~ t;j, f !5L~ f ~ t !!@r~ t;j, f !#, ~2.9!

where

L~ f ~ t !!@r#52 i @H~ f ~ t !!,r#1
1

2 (
j

~@Rj~ f ~ t !!r,Rj~ f ~ t !!†#1@Rj~ f ~ t !!,rRj~ f ~ t !!†# !,

~2.10a!
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Rj~ f ~ t !!5Rj1(
i

Sji f i~ t !, ~2.10b!

H~ f ~ t !!5H2
i

2 (
i j

~Rj
†Sji f i~ t !2 f i~ t !Sji

† Rj !; ~2.10c!

moreover, we have

^N~ t !& f5E
0

t

TrHH(
j

Rj~ f ~s!!†Rj~ f ~s!!r~s;j, f !J ds. ~2.11!

Proof: By using the rules of QSC, it is possible to differentiatêN(t)& f and
^U(t)C(j, f )uaU(t)C(j, f )&, wherea is a generic system operator. Then, one gets the result
recalling that the increments of the field operators commute withU(t) and thatdAj (t)C(j, f )
5 f j (t)dt C(j, f ) and by using the definition ofr(t;j, f ) given in Eq.~2.5!. A detailed derivation
of the master equation in the casef 50 can be found in Ref. 4. h

In order to formulate physical requirements, let us start by considering the case wh
photon is injected into the system, i.e.,f 50. In these conditions it is natural to ask that the at
can emit at most one photon; moreover, we require the existence of a unique equilibrium
which we denote byrg ~it will be the ground state!. We take as canonical basis$u1&, u2&% in H
an orthonormal basis which diagonalizesrg , so that we can write

rg5pP11~12p!P2 ~2.12!

for somep in @0,1#, whereP6 are the orthogonal projections over the vectorsu6&. We shall use
also the Pauli matrices

sz5S 1 0

0 21D , sy5S 0 2 i

i 0 D , s15S 0 1

0 0D , s25S 0 0

1 0D ,

by which the two orthogonal projectionsP6 can be written asP15 1
2 (11sz)5s1s2 , P2

5 1
2 (12sz)5s2s1 .

Proposition 2: We require

^N~ t !& f 50<1, ;j, ;t, ~2.13a!

r~ t;j,0! ——→
t→1`

rg , ;j. ~2.13b!

Then, apart from an exchange of roles between the two statesu1& and u2&, we obtain

rg5P2 , ~2.14!

H5 1
2 v0sz , v0PR, ~2.15a!

Rj5^ej ua&s2 , aPZ,aÞ0. ~2.15b!

Vice versa, Eqs. (2.15) imply Eqs. (2.13) and (2.14).
Proof: By Eqs.~2.11! and~2.13a!, ^N(t)& f is a bounded and nondecreasing function oft, so

limt→1`^N(t)& f exists; then, Eqs.~2.11! and ~2.13b! give ( jTrH$Rj
†Rjrg%50. By the cyclic

property of the trace and the positivity ofrg and of RjrgRj
† , we get that this condition is

equivalent toRjrg50, ; j .
Now, let us setRj5xj11yjsz1zjs11a js2 ~every operator onC2 can be written in this

way!. Then, Eq.~2.12! and Rjrg50 give p(xj1yj )50, (12p)(xj2yj )50, (12p)zj50, pa j
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50. For pP(0,1) this system of equations givesRj50, which is not acceptable because in th
case the equilibrium state is not unique. Forp50 we getxj5yj andzj50; we need also

(
j

ua j u2Þ0 ~2.16!

to have decay to an equilibrium state. We do not consider the casep51, because it is analogou
to the previous one, apart from the exchange ofu1& and u2&. Therefore we have Eq.~2.14! and

Rj5a js21b j P1 , ~2.17!

with b j52xj ; by the convergence of( jRj
†Rj , the complex numbersa j andb j can be seen as th

components of two vectorsa andb in Z.
Equations~2.9! and~2.13b! give L(0)@rg#50; by Eqs.~2.10!, ~2.14!, and~2.17! this condi-

tion reduces to@H,rg#50. BecauseH is self-adjoint and defined up to a constant, we obtain
~2.15a!.

Finally, let us choosej5u1&. By using the relation( jRj
†Rj5(iai21ibi2)P1 and by dif-

ferentiating ^N(t)& f 50 two times, we obtain (d2/dt2)^N(t)& f 501iai2(d/dt)^N(t)& f 5050, to-
gether with the initial conditionŝ N(0)& f 5050, (d/dt)^N(0)& f 505iai21ibi2. This gives

^N(t)& f 505(11 (ibi2/iai2))(12e2iai2t); then, condition~2.13a! impliesb50 and Eqs.~2.16!
and ~2.17! give Eq.~2.15b!.

The last statement of the proposition follows by direct computations. h

Let us stress that the rotating-wave approximation (s2 coupled to the photon creation oper
tor ands1 coupled to the annihilation one! is implied by conditions~2.13!.

Now we have to find some physical restrictions on the possible forms of the operaS
PU(H^ Z). In Ref. 21, the casef (t)5l(t)[exp(2ivt)u(T2t)l is considered, whereu(x) is the
usual step function andlPZ; for T→1`, l(t) represents a monochromatic coherent wa
Then, in Ref. 21 we asked

lim
t→1`

lim
T→1`

^N~ t !&l

^N~ t !&l
0 51, ;lPZ, ;v, ~2.18!

which is a form of flux conservation in the mean: if the possible physical processes are abso
emission of single photons and direct scattering without change of atomic state, for large tim
mean number of injected photons^N(t)&l

05ili t should be equal to the mean number of outgo
photons^N(t)&l .

The same restrictions onS are obtained by requiring a balance equation on the numbe
photons: the mean number of outgoing photons up to timet plus the mean number of photon
stored in the atom must be equal to the mean number of ingoing photons.

Proposition 3: Under assumptions (2.15), the balance equation

^N~ t !& f1
1
2 TrH$sz@r~ t;j, f !2r~0;j, f !#%5^N~ t !& f

0 ~2.19!

holds;t, ;j, ; f if and only if one has

S5P1 ^ S11P2 ^ S2, S6PU~Z!. ~2.20!

Proof: Any bounded operator onH^ Z, like S, can always be decomposed as

S5P1 ^ S11P2 ^ S21s1 ^ F11s2 ^ F2, ~2.21!

whereS6, F6 are bounded linear operators onZ; the unitarity ofS implies some simple relation
amongS6, F6.
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By using Eqs.~2.9!, ~2.10!, ~2.15!, we compute the time derivative of TrH$szr(t;j, f )%.
Then, we insert Eq.~2.10b! into Eq. ~2.11! and, by using also Eq.~2.21!, we get

^N~ t !& f2^N~ t !& f
01 1

2 TrH$sz@r~ t;j, f !2r~0;j, f !#%

5E
0

t

dsTrH$@ iF1 f ~s!i2P22iF2 f ~s!i2P11^S1 f ~s!uF1 f ~s!&s1

1^F1 f ~s!uS1 f ~s!&s2#r~s;j, f !%.

By the arbitrariness oft, f , and j, condition ~2.19! is equivalent toF650 and Eq.~2.20! is
proved; the unitarity ofS6 follows from the unitarity ofS. h

We can interpret Eq.~2.20! by saying thatS1 (S2) represents the scattering matrix when t
atom is frozen in the stateu1& ~u2&!.

From now on we assume Eqs.~2.4!, ~2.15!, ~2.20! to hold and, always for physical reason
we take

v0.0. ~2.22!

In order to have an atom stimulated by a monochromatic coherent wave we take

f ~ t !5l~ t ![e2 ivtu~T2t !l, lPZ, v.0. ~2.23!

The step functionu is defined byu(x)51 for x>0 andu(x)50 for x,0, so thatl(t) represents
a monochromatic wave forT→1`.

Quantities likev0 , a, S6 are phenomenological parameters, or, better, they have t
computed from some more fundamental theory, such as some approximation to quantum e
dynamics. The whole model is meaningful only forv not too ‘‘far’’ from v0 andv0 must include
the Lamb shifts. In the final results one can admit a slightv-dependence in the direct scatterin
matricesS6.

III. THE MASTER EQUATION

In this section we study the master equation~2.9! and the long time behavior of the atom; th
relations~2.4!, ~2.15!, ~2.20!, ~2.22!, ~2.23! hold.

First of all, by inserting the expression~2.23! into the master equation~2.10! and by setting

rl~ t !5 lim
T→1`

expH i

2
sz~b1vt !J r~ t;j,l!expH 2

i

2
sz~b1vt !J , ~3.1!

b5arg$2^S2lua&%, ~3.2!

we obtain the new master equation

d

dt
rl~ t !5Ll@rl~ t !# ~3.3!

with the time independent Liouvillian

Ll@r#52 i @Hl ,r#1
1

2 (
j

~@L jr,L j
†#1@L j ,rL j

†# !, ~3.4a!

Hl5 1
2 ~v02v!sz2

1
2 u^auS2l&usy , L j5D~ej !1l j , ~3.4b!

D~h!5e2 ib^hua&s21^hu~S121!l&P11^hu~S221!l&P2 , ~3.4c!
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The general master equation for a two-level system is studied in Ref. 23; in the followin
shall use similar techniques, apart from a different parametrization of the statistical ope
which turns out to be more convenient in our case. For the computation of the fluores
spectrum in Sec. V, we shall have to solve the master equation~3.3! also when the initial condition
is not a statistical operator. If

s5S s11 s12

s21 s22
D

is a generic 232 matrix, we obtain

eLlt@s#5S d1~ t ! d2~ t !

d3~ t ! ~s111s22!2d1~ t !
D , ~3.5!

where

d~ t ![S d1~ t !
d2~ t !
d3~ t !

D ~3.6!

is solution of

d

dt
d~ t !52iai2G d~ t !1~s111s22!iai2w, d~0!5S s11

s12

s21

D , ~3.7!

with

w5
V

2 S 0
1
1
D , ~3.8a!

G5S 1 2V/2 2V/2

V2z b 0

V2 z̄ 0 b̄
D , ~3.8b!

V52u^ãuS2l̃&u, b5
k2

2
2 i S z̃2

V

2
Im z D , ~3.8c!

k2511iDSl̃i2, z5eib^ãuDSl̃&, ~3.8d!

z5~v2v0!/iai2, z̃5z2Im^S1l̃uP'S2l̃&, ~3.8e!

DS5S12S2, l̃5
l

iai , ã5
a

iai , Pa5uã&^ãu, P'512Pa . ~3.8f!

Moreover, we have

detG5 z̃21G2/4, ~3.9!

with

G25~k22V Rez!21V2~k2111iP'DSl̃i2!. ~3.10!
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Note thatG2 is always strictly positive. The quantityV can be interpreted as a distorted Ra
frequency;z is the detuning with respect to the atomic frequency, whilez̃ is again a detuning, bu
with respect to an intensity dependent frequency. All the quantities are expressed in units
natural line widthiai2.

The equilibrium state for the master equation~3.3! is given by

lim
t→1`

rl~ t !5req
l 5S u v

v̄ 12uD , ~3.11!

whereu andv are computed by equating to zero the time derivative in Eq.~3.7!; then, we obtain
(u,v̄,v)5(G21w)†, i.e.,

u5
k2V2/4

z̃21G2/4
, v5

V/2

z̃21G2/4 S k2

2
1 iy D , y5 z̃1

V

2
Im z. ~3.12!

Spherically symmetric atom stimulated by a collimated laser.
We end this section by particularizing our model to the case of aspherically symmetric atom

stimulated by awell collimated laser.
In the approximations we are considering,17,15 the fields behave as mono-dimensional wav

so that a change of position is equivalent to a change of time and vice versa. If we
polarization, the spaceZ has to contain only the degrees of freedom linked to the direction
propagation,24 so that we can take

Z5L2~Y,sinu du df!, Y5$0<u<p, 0<f,2p%; ~3.13!

the angular coordinates~u,f! represent the direction of propagation. Now, a vectorf in the
one-particle space X can be identified with a function f (u,f,t) such that
*0

1`dt*0
p du sinu*0

2p dfuf(u,f,t)u2,1`.
In order to describe a laser beam propagating along the directionu50, we have to take

l̃5heidl0 , h.0, dP@0,2p!, l0~u,f!5
1[0,Du]~u!

DuA2p~12cosDu!
, ~3.14!

where 1[0,Du] (u)51 for 0<u<Du, 1[0,Du] (u)50 elsewhere; in all the physical quantities th
limit Du↓0 will be taken. Note that the power of the laser\vili25\viai2h2/(Du)2 diverges
for Du↓0, because we need a nonvanishing atom-field interaction in the limit.

Let us denote byYlm(u,f) the spherical harmonic functions; then, the spherical symmetr
the atom requires

ã~u,f!5Y00~u,f!51/A4p, ~3.15!

S65(
lm

e2id l
6

uYlm&^Ylmu, ~3.16!

where the quantitiesd l
1 andd l

2 are the phase shifts for the direct scattering in the up and d
atomic states, respectively. Let us note that we have

lim
Du↓0

^Ylmul0&5dm,0
1
2 A2l 11, ~3.17a!

lim
Du↓0

^Ylmu~S621!l0&5dm,0iA2l 11eid l
6

sind l
6 . ~3.17b!

First of all, from Eqs.~3.8c!, ~3.15!–~3.17a!, we obtain
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V5h, ~3.18!

so that we can useV as the parameter measuring the laser intensity. Then, we set

g6~u!5 lim
Du↓0

~~S621!l0!~u,f!5 i(
l 50

`
2l 11

A4p
eid l

6

sind l
6Pl~cosu!, ~3.19a!

Dg5g12g2 , s5d0
12d0

2 , ~3.19b!

«52
1

4 (
l 51

`

~2l 11!sin 2~d l
12d l

2!. ~3.19c!

We have used the fact thatYl0(u,f)5A(2l 11)/4pPl(cosu), where the functionsPl(j) are the
Legendre polynomials. In order thatg6 and« be finite, we have to require

(
l 50

`

~2l 11!sin2 d l
6,1`, (

l 50

`

~2l 11!usin 2~d l
12d l

2!u,1`; ~3.20!

then, we have

Dg~u!5 i
ei (d0

1
1d0

2)

A4p
sins1~P'Dg!~u!, ~3.21a!

iDgi25sin2 s1iP'Dgi2, ~3.21b!

ig6i25(
l 50

`

~2l 11!sin2 d l
6 . ~3.21c!

Now, for the various dynamical parameters introduced before, we obtain

b5p2d22d0
2 , b5

k2

2
2 i S z̃1

V2

4
sin 2sD , ~3.22a!

z52 iVeis sins, k2511V2iDgi2, ~3.22b!

z̃5z2V2«, y5 z̃2
V2

4
sin 2s, ~3.22c!

G25~11V2iP'Dgi2!21V2~11k21V2iP'Dgi2!. ~3.22d!

No direct scattering.The usual model of a two-level atom, with only absorption/emission
no direct scattering, is characterized byS651, so that the previous quantities reduce to

g650, s50, b5p2d, k251, G25112V2, z̃5y5z, ~3.23!

G5S 1 2V/2 2V/2

V 1
2 2 iz 0

V 0 1
2 1 iz

D . ~3.24!
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IV. DIRECT DETECTION AND TOTAL CROSS SECTION

By the so-called direct detection scheme, in which a photocounter receives directly so
the light emitted by the atom, it is possible to measure the intensity of the light~or to count the
photons! propagating in a small solid angleDY around some direction, which we take differe
from the directionu50 of the incoming beam. The observable ‘‘number of photons inDY up to
time t ’’ is represented by

N~ t;DY!5(
i , j

^ei u1DY ej& L i j ~ t !, ~4.1!

where 1DY(u,f)51 for (u,f)PDY and 1DY(u,f)50 elsewhere. The fact that the direction
detection is different from the beam direction is expressed by

1DYl50. ~4.2!

The number operators~4.1! commute for every choice of the times and this is true also in
Heisenberg picture. This means that the operatorsN(t;DY), t>0, can be jointly diagonalized an
the joint probability law obtained; in other terms the observable number of photons can be
tinuously measured and, once the initial state is fixed, a~classical! stochastic process can b
obtained from the continuously observed operatorsN(t;DY). All statistical properties of this
process can be obtained by means of the technique of the characteristic functional15 or by trans-
forming the quantum stochastic equations into classical ones.16

However, to obtain the cross section we do not need the full theory of measurement
tinuous in time, but only mean values, which are given by the usual quantum expectations.
the mean number of outgoing photons up to timet per unit of solid angle around~u,f! is given by

^n~u,f;t !&5
1

uDYu ^U~ t !C~j,l!uN~ t;DY!U~ t !C~j,l!&, ~4.3!

whereC, l(t), l are given by Eqs.~2.4!, ~2.23!, ~3.14! and uDYu5**DY sinu du df; the limits
T→1`, Du↓0, DY↓$(u,f)% are understood. To compute^n(u,f;t)& we differentiate Eq.~4.3!
by using the rules of QSC, we use Eq.~4.2! and then we apply the transformation~3.1!; the final
result is

^n~u,f;t !&5E
0

t

Tr$D~u,f!†D~u,f!rl~s!%ds, ~4.4!

where

D~u,f!5(
j

ej~u,f!D~ej !5e2 ib
iai

A4p
s21eidViai@g1~u!P11g2~u!P2#. ~4.5!

By definition the angular-differential cross sections~u,f! is proportional to the outgoing flux
per unit of solid anglê n(u,f;t)&/t divided by the incoming flux̂ C(j,l)uN(t)C(j,l)&/t
[ili2 for t→1`, i.e.,

s~u,f!5
A0

ili2 lim
t→1`

1

t
^n~u,f;t !&, ~4.6!

where A0 is a kinematical factor to be determined and with dimensions of an area andili2

5iai2h2/(Du)2. To determineA0 let us consider the cross section for direct photon scattering
the up or down atomic state, for which the Bohr–Peierls–Placzek formula~or optical theorem!
gives s(u,f)5uq(u)u2, sTOT52(2pc/v) Im q(0); the total cross section is the integral of th
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differential one on the whole solid angle. In our case we have to takea50 in order to have only
direct scattering; from Eq.~4.6! we gets(u,f)5A0u((S621)l)(u,f)u2/ili2 and, by the unitar-
ity of S6,

sTOT5
A0

ili2 i~S621!li252
2A0ApDu

ili Im ie2 id~~S621!l!~0,0!.

Then, we must haveq(u)52 iAA0Dug6(u) and, by imposing the optical theorem, we getA0

5(2pc/v)2 @1/p(Du)2#. In this derivation ofA0 we have not taken into account the polarizati
degrees of freedom; if they are taken into account and the cross section for not polarized
considered, a 3/2 extra factor is obtained~see Ref. 19, pp. 532–533!. Therefore, the complete
definition of the angular-differential cross section for not polarized light is

s~u,f!5
6pc2

v2h2iai2 lim
t→1`

1

t
^n~u,f;t !&. ~4.7!

By using Eqs.~4.4! and ~4.5! and recalling thatrl(t)→req
l , where the equilibrium state is

given by Eqs.~3.11! and ~3.12!, we obtain from Eq.~4.7!

s~u,f!5
6pc2

v2h2iai2Tr$D~u,f!†D~u,f!req
l % ~4.8a!

5
6pc2

v2 H ug2~u!u21
k2

4z̃21G2 F 1

4p
1V2~ ug1~u!u22ug2~u!u2!G

2
2

Ap~4z̃21G2!
ReFe22id0

2

g2~u!S k2

2
2 iy D G J . ~4.8b!

Let us note that the angular dependence ins~u,f! is entirely due tog6(u) and, so, to the presenc
of the L-term in Eq.~1.2!.

By integratings~u,f! over the angles, we obtain the total cross section, which turns out t

v2

6pc2 sTOT5

~ z̃ sind0
22 1

2 cosd0
2!21

V2

4
A

z̃21G2/4
1iP'g2i2

z̃21B/4

z̃21G2/4
, ~4.9a!

A5sin2 d0
11k2ig1i21iP'Dgi2@11V2~11iP'Dgi2!sin2 d0

2#, ~4.9b!

B5~11V21V2iP'Dgi2!~11V2iP'Dgi2![G22V2k2. ~4.9c!

According to the values of the various coefficients different line shapes appear, whic
known as Fano profiles~see Ref. 19, pp. 61–63!. These shapes are typical of the interferen
among various channels, when one of them has an amplitude with a pole near the real axi
complex energy plane@see also Eq.~4.11! below#; in our case the channels are direct scattering
the up state, direct scattering in the down state and fluorescence. Some plots of (v2/6pc2)sTOT

are given in the bottom part of Fig. 1 as functions of the detuningz, the other parameters are give
in the caption of Fig. 1; the same figure contains plots of elastic and inelastic cross sections,
will be discussed in Sec. VI.

Whichever the line shape, there is a strong variation of the cross section forv aroundv0

1iai2V2« @see Eqs.~3.22c! and ~3.8e!#. The quantityiai2V2« is an intensity dependent shif
the lamp shift.20 Note that in our two-level system the lamp shift is not vanishing only if the t
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states respond differently to direct scattering; moreover, only the contributions different fro
s-wave ones do matter. Let us stress that also the widthG of the resonance and the whole lin
shape are intensity dependent.

No direct scattering. Let us also note that when the direct scattering is negligible, i.e., w
Eqs.~3.23! hold, Eqs.~4.9! reduce to

sTOT5
6pc2

v2

1/4

z21~112V2!/4
. ~4.10!

For a laser with negligible intensity, i.e., whenV↓0, Eq. ~4.10! reduces to the cross section fo
resonant scattering, given in Ref. 19, pp. 530–533; forV.0, we have a power broadening of th
resonance line, which maintains a Lorentzian shape.25 Two plots of~4.10! are given in the top par
of Fig. 1.

By comparing the general case~4.9! with the usual one~4.10!, we see that the main differ
ences are that in the general case we have lamp shift, asymmetric line shape and bigge
broadening.

Low intensity laser. For V50, Eqs.~4.8b! and ~4.9! reduce to

v2

6pc2 s~u,f!5Ug2~u!2
ie2id0

2

A4p~2z1 i !
U2

, ~4.11!

v2

6pc2 sTOT5iP'g2i21
~2z sind0

22cosd0
2!2

4z211
. ~4.12!

FIG. 1. v2/6pc2 3 the integral cross sections as functions of the detuningz for V2510, 28. In ~a! and ~b!: d0
650,

iP'g6i25iP'Dgi250, «50. In ~c! and ~d!: d0
1520.03, d0

250.13, iP'g6i250.005, iP'Dgi250.02, «520.001.
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V. HETERODYNE DETECTION

A way to obtain the spectrum of the stimulated atom is by means ofbalanced heterodyne
detection; in such a scheme the light emitted by the atom is made to interfere with the light
strong monochromatic laser~the local oscillator! and then detected by a couple of photocounter26

A mathematical description of such a detection scheme has been given inside the the
continuous measurements;15,27 the output current of the detector is represented by the operat

I ~n,h;t !5E
0

t

F~ t2s! j ~n,h;ds!, ~5.1!

whereF(t) is the detector response function, say

F~ t !5k1A g

4p
expS 2

g

2
t D , g.0, ~5.2!

k1Þ0 has the dimensions of a current,j is essentially a field quadrature

j ~n,h;ds!5eins dAh~s!1h.c., dAh~ t !5(
j

^huej&dAj~ t !, ~5.3!

n is the frequency of the local oscillator andhPZ, ihi51; h contains information on the
localization of the detector, say

h~u8,f8!5
q

AuDYu
1DY~u8,f8!, ~5.4!

whereDY is again the small solid angle around~u,f! introduced in the previous section andq is
a phase factor,qPC, uqu51. From the canonical commutation relations for the fields one ha

@ I ~n1 ,h1 ;t1!,I ~n2 ,h2 ;t2!#5^h1uh2&E
0

min$t1 ,t2%
F~ t12s!F~ t22s!ei (n12n2)s ds2c.c.;

so, I (n1 ,h1 ;t1) and I (n2 ,h2 ;t2) are compatible observables for any choice of the times eithe
n15n2 andh15h2 either if ^h1uh2&50; the same holds in the Heisenberg picture. Under the s
conditions also thej ’s commute. As in the case of the direct detection, a theory of continu
observation ofI (n,h;t), t>0, can be developed;15,16 again to obtain the spectrum and the cro
sections we do not need the full theory, but only the second moment ofI . In the following for the
quantum expectation of any operatorB we shall use the notation

^B&l
T5^U~T!C~j,l!uBU~T!C~j,l!&. ~5.5!

In the long run the output mean power is given by

P~n,h!5 lim
T→1`

k2

T E
0

T

^~ I ~n,h;t !!2&l
T dt; ~5.6!

k2.0 has the dimensions of a resistance, it is independent ofn, but it can depend on the othe
features of the detection apparatus. In this sectionl(t) is given by Eq.~2.23!; the limit case~3.14!
will be considered in the next one. As a function ofn, P(n,h) gives thepower spectrumobserved
in the ‘‘channelh; ’’ in the case of the choice~5.4! it is the spectrum observed around the directi
~u,f!. Proposition 4 connects the power to quantum expectations of normal ordered produ
field operators and gives a sum rule which relatesP(n,h) to ili2; let us note that\vili2 is the
total power of the input monochromatic statel(t) ~2.23!. Proposition 5 identifies an elastic and a
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inelastic contribution to the power and reduces the computation ofP(n,h) to the solution of the
master equation~3.3!. In the expressions~5.7! and ~5.11! of the power a termk/(4p) appears,
independent ofn; it is a white noise contribution due to the detection scheme, coming out m
ematically from the canonical commutation relations for the fields and known as ‘‘shot no
For the use of QSC in the computation of the spectrum of a two-level atom see also Ref.

Proposition 4: The mean power P(n,h) can be expressed as

P~n,h!5
k

4p
1 lim

T→1`

k

2pT H K E0

T

dAh
†~ t !E

0

t

dAh~s!e2[ ~g/2! 1 in]( t2s)L
l

T

1c.c.J , ~5.7!

where k5k1
2k2: Eq. (5.7) holds almost everywhere inn.

We have also

E
2`

1`FP~n,h!2
k

4pGdn5 lim
T→1`

k

T
^Lhh~T!&l

T , ~5.8!

whereLhh(T)5( i j ^ei uh&L i j (T)^huej&; moreover, for any c.o.n.s.$hj% in Z, the following sum
rule holds:

(
j
E

2`

1`FP~n,hj !2
k

4pGdn5kili2. ~5.9!

Proof: By inserting Eqs.~5.1! and ~5.2! into the definition~5.6! and by changing order o
integration, one gets

P~n,h!5 lim
T→1`

k

4pT K E
0

TE
0

T

~e2 ~g/2! ut2su2e2g(T2 @~ t1s!/2#)! j ~n,h;dt! j ~n,h;ds!L
l

T

.

The term containing the factor exp@2g(T2 @(t1s)/2#)# vanishes forT→1` and one obtains

P~n,h!5 lim
T→1`

k

4pT K E
0

TE
0

T

e2 ~g/2! ut2su j ~n,h;dt! j ~n,h;ds!L
l

T

.

By using the canonical commutation relations and normal ordering, we have

P~n,h!2
k

4p
5 lim

T→1`

k

2pT K E
tP(0,T)

E
sP(0,t)

e2(g/2)(t2s): j ~n,h;dt! j ~n,h;ds!:L
l

T

5 lim
T→1`

k

2pT K E
tP(0,T)

E
sP(0,t)

e2(g/2)(t2s)

3$e2 in(t2s) dAh
†~ t !dAh~s!1ein(t1s) dAh~ t !dAh~s!%L

l

T

1c.c.

The factor exp@in(t1s)#, when integrated overn from n1 to n2 , gives rise to$exp@in2(t1s)#
2exp@in1(t1s)#%/$i(t1s)%, which is not singular fort.0 ands.0; then, the integral containing
this factor vanishes forT→1` and Eq.~5.7! is proved.

Equation~5.7! can be rewritten as

P~n,h!2
k

2p
5 lim

T→1`

k

T
^X~T,n!&l

T , ~5.10!
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X~T,n!5
1

2p E
0

T

dAh
†~ t !E

0

T

dAh~s!expF2
g

2
ut2su2 in~ t2s!G .

For anyg, f PZ^ L2(R1), we have

E
2`

1`

dn^E~g!uX~T,n!E~ f !&5
exp~^gu f &!

2p E
2`

1`

dnE
0

T

dtE
0

T

ds^g~ t !uh&^hu f ~s!&

3expF2
g

2
ut2su2 in~ t2s!G

5E
0

T

dt^g~ t !uh&^hu f ~ t !&exp~^gu f &!

5^E~g!uLhh~T!E~ f !&.

So, by integrating Eq.~5.10! over n we obtain Eq.~5.8!. By Eqs.~2.6!, ~2.7!, ~5.8!, we obtain

(
j
E

2`

1`FP~n,hj !2
k

4pGdn5 lim
T→1`

k

T
^N~T!&l

T .

Finally, by Eqs.~2.19!, ~2.8!, ~2.23!, the sum rule~5.9! is obtained. h

Proposition 5: The mean power can be decomposed as the sum of three positive contrib

P~n,h!5
k

4p
1Pel~n,h!1Pinel~n,h!, ~5.11!

where

Pel~n,h!5kud~h!1^hul&u2
1

p

g/2

~n2v!21g2/4
, ~5.12!

Pinel~n,h!5
k

2p E
0

1`

dt expF2S g

2
1 i ~n2v! D t GTr$DD~h!†~eLlt@DD~h!req

l #!%1c.c.,

~5.13!

DD~h!5D~h!2d~h!, d~h!5Tr$D~h!req
l %, ~5.14!

and D(h) is given by Eq. (3.4c).
Proof: Let us start from Eq.~5.7!. We can write

^dAh
†~ t !dAh~s!&l

T5^C~j,l!uU~T!† dAh
†~ t !U~T!U~T!† dAh~s!U~T!C~j,l!&

with T.t.s. By the rules of QSC~see the ‘‘output fields’’ in Ref. 15, Sec. III!, we obtain

U~T!† dAh~ t !U~T!5U~ t !†H ^hua&s2dt1(
j

~^huS1ej&P11^huS2ej&P2!dAj~ t !J U~ t !.

By using this result we can write
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K E
0

T

dAh
†~ t !E

0

t

dAh~s!e2[ ~g/2! 1 in]( t2s)L
l

T

5E
0

T

dtE
0

t

ds e2[ ~g/2! 1 i (n2v)]( t2s)

3^e~ i /2!szbC~j,l!uŨ~ t !†L~h!†Ũ~ t !Ũ~s!†L~h!Ũ~s!e~ i /2! szbC~j,l!&, ~5.15!

whereL(h)5D(h)1^hul& and Ũ(t)5e( i /2) sz(b1vt)U(t)e2 ( i /2) szb.
By the quantum regression theorem, which holds for a dynamics likeŨ(t),29 we have

^e~ i /2! szbC~j,l!uŨ~ t !†L~h!†Ũ~ t !Ũ~s!†L~h!Ũ~s!e~ i /2! szbC~j,l!&

5Tr$L~h!†eLl(t2s)@L~h!eLls@r0##%,

wherer05exp@(i/2) szb#uj&^juexp@2 (i/2) szb#. By recalling that limt→1`eLlt@r#5req
l for any

stater, we obtain

lim
T→1`

k

2pT K E
0

T

dAh
†~ t !E

0

t

dAh~s!e2[ ~g/2! 1 in]( t2s)L
l

T

5
k

2p E
0

1`

dt e2[ ~g/2! 1 i (n2v)] t Tr$L~h!† eLlt@L~h!req
l #%. ~5.16!

By insertingL(h)5DD(h)1d(h)1^hul& into Eq. ~5.16! and this equation into Eq.~5.7!, we
obtain the decomposition~5.11!–~5.13!.

The positivity ofk/(4p) and Pel(n,h) is apparent from their definitions, while to prove th
positivity of Pinel(n,h) requires some transformations. By repeating in the reverse order the
from Eq. ~5.15! to Eq. ~5.16!, we obtain from Eq.~5.13!

Pinel~n,h!5 lim
T→1`

1

T E
0

T

dtE
0

t

ds e2 ~g/2! ut2su^f~ t !uf~s!&

1 lim
T→1`

1

T E
0

T

dtE
0

t

ds e2 ~g/2! ut2su^f~s!uf~ t !&,

where

f~ t !5A k

2p
ei (n2v)t Ũ~ t !†DD~h!Ũ~ t !e~ i /2! szbC~j,l!.

By exchanging the order of integration and the names of the variabless andt in the second term,
we get

Pinel~n,h!5 lim
T→1`

1

T E
0

T

dtE
0

T

ds e2 ~g/2! ut2su^f~ t !uf~s!&,

which is positive because exp@2 (g/2) utu# is a positive–definite function. h

Notice that in the decomposition~5.11! the termk/(4p), independent ofn, is apparently a
white noise contribution to the power, interpreted as shot noise;Pel(n,h) is the elastic contribu-
tion, as one sees from Eq.~5.12! which givesPel(n,h)}d(n2v) for g↓0; finally, Pinel(n,h) is
the inelastic contribution@from Eq. ~5.13! one can see that nod term develops forg↓0#.
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To simplify the notations it is useful to introduce the ‘‘reduced’’ frequencyx and the ‘‘re-
duced’’ instrumental widthg̃

x5
n2v

iai2 , g̃5
g

iai2 . ~5.17!

Then, from Eqs.~5.12!, ~5.14!, ~3.4c!, ~3.11!, we obtain

Pel~n,h!5kua~h!1^hul̃&u2
g̃/~2p!

x21g̃2/4
, ~5.18!

a~h!5^hu~S221!l̃&1^huDSl̃&u1e2 ib^huã&v. ~5.19!

The inelastic contribution can be computed by using the result~3.5! about the general solution o
the master equation; we obtain

Pinel~n,h!5
k

2p
c~h!†

1

G1 g̃/2 1 ix
p~h!1c.c., ~5.20!

c~h!5S ^huDSl̃&
0

e2 ib^huã&
D , ~5.21!

p1~h!5@^huDSl̃&~12u!2e2 ib^huã&v#u, ~5.22a!

p2~h!5@^huDSl̃&~12u!2e2 ib^huã&v#v, ~5.22b!

p3~h!5e2 ib^huã&~u2uvu2!2^huDSl̃&uv̄. ~5.22c!

VI. CROSS SECTIONS AND FLUORESCENCE SPECTRUM

Let us consider now the case of the spherically symmetric atom, stimulated by a well
mated laser beam, for which Eqs.~3.14!–~3.22! hold. We also assume that the detector span
small solid angle, so thath is given by Eq.~5.4! with DY↓$(u,f)%, uDYu.sinu du df. Moreover,
we assume that the transmitted wave does not reach the detector, i.e.,u.0 and so

^hul&50. ~6.1!

Then, the contributions to the power per unit of solid angle are

Pel~n;u,f!5
1

uDYu
Pel~n,h!, Pinel~n;u,f!5

1

uDYu
Pinel~n,h!, ~6.2!

where the limitDY↓$(u,f)% is understood. The quantities~6.2! can be computed from Eqs
~5.18!–~5.22!, by using Eqs.~3.14!–~3.22!; the condition~6.1! affects only the elastic part~5.18!,
where^hul̃&50 has to be used.

In the following we give explicit expressions for the elastic and inelastic cross sect
which, by their meaning, are simply proportional to the quantities~6.2!:

sel~n;u,f!5B0Pel~n;u,f!, s inel~n;u,f!5B0Pinel~n;u,f!. ~6.3!

To fix the constant of proportionality, let us observe that we must have consistency betwe
cross sections~6.3!, obtained from the heterodyne detection scheme, and the cross sections(u,f)
~4.7!, obtained from the direct detection scheme, i.e., we must have
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E
2`

1`

@sel~n;u,f!1s inel~n;u,f!#dn5s~u,f!. ~6.4!

To impose this condition is possible because from Eqs.~5.8!, ~6.2!, ~4.1!, ~4.3!, ~4.7!, we get

E
2`

1`

@Pel~n;u,f!1Pinel~n;u,f!#dn5 lim
t→1`

k

t
^n~u,f;t&5

h2kiai2v2

6pc2 s~u,f!, ~6.5!

so that Eq.~6.4! holds by takingB056pc2/(h2kiai2v2).
By explicitly computingPel(n;u,f) andPinel(n;u,f) we obtain

sel~n;u,f!5
3c2uâ~u!u2

iai2v2

g̃

x21g̃2/4
, ~6.6!

s inel~n;u,f!5
3c2V2

iai2v2
ĉ~u!†

1

G̃1 ix
p̂~u!1c.c., ~6.7!

where

â~u!5g2~u!1Dg~u!
V2k2

4z̃21G2 2e2id0
2 k212iy

A4p~4z̃21G2!
, ~6.8!

G̃5M21S G1
g̃

2DM , M5S V 0 0

0 1 0

0 0 2V2
D , ~6.9a!

ĉ~u!5S Dg~u!

0

e2id0
2

/A4p
D , ~6.9b!

p̂1~u!5
k2m~u!

4z̃21G2 , p̂2~u!5
~k212iy !m~u!

4z̃21G2 , ~6.9c!

p̂3~u!5
1

~4z̃21G2!2 H e2id0
2

A4p
@ iDgi2~4y21k4!12k2y sin 2s12k4 cos2 s#

1Dg~u!k2~k222iy !J , ~6.9d!

m~u!5Dg~u!S 12
V2k2

4z̃21G2D1e2id0
2 k212iy

A4p~4z̃21G2!
. ~6.9e!

Finally, let us introduce the integral cross sections

sel~n!5E
0

p

du sinuE
0

2p

df sel~n;u,f!, ~6.10a!

sel5E
2`

1`

sel~n!dn, ~6.10b!
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s inel~n!5E
0

p

du sinuE
0

2p

df s inel~n;u,f!, ~6.10c!

s inel5E
2`

1`

s inel~n!dn; ~6.10d!

the relation~6.4! gives

sel1s inel5sTOT , ~6.11!

wheresTOT is given by Eqs.~4.9!.
From Eqs.~6.6!, ~6.8!, ~6.10a!, ~6.10b! we obtain

sel~n!5sel

g̃/~2piai2!

x21g̃2/4
, ~6.12!

v2

6pc2 sel5
1

~4z̃21G2!2 iP'@~4z̃21B!g21V2k2g1#i2

1Ue2 id0
2

sind0
21

V2k2eis sins22y1 ik2

4z̃21G2 U2

, ~6.13!

while from Eqs.~6.7!, ~6.9b!–~6.9e!, ~6.10c!, ~6.10d! we obtain

v2

6pc2 s inel5
V2~11k2!E~y!

~4z̃21G2!2 , ~6.14!

E~y!5~2y sins1k2 coss!21iP'Dgi2~4y21k4!; ~6.15!

one can check that the relation~6.11! holds true.
Let us recall thatiai2 is the natural line width,V2 is proportional to the laser intensity,z is

the reduced detuning, to which also the parametersz̃ andy are linked,

z5~v2v0!/iai2, z̃5z2V2«, y5 z̃2
V2

4
sin 2s,

V2iai2« is the intensity dependent shift,x and g̃ are the reduced frequency and the reduc
instrumental width, respectively,

x5
n2v

iai2 , g̃5
g

iai2 .

The various quantities entering all these equations are given by Eqs.~3.19!, ~3.21!, ~3.22!, ~4.9c!;
let us note thats, d0

6 , iP'g6i2, iP'Dgi2 are parameters linked to theS6 scattering matrices
satisfying

uiP'g1i2iP'g2iu<iP'Dgi<iP'g1i1iP'g2i .

Let us recall that the usual model with only the absorption/emission process correspo
d0

650, iP'g6i25iP'Dgi250, «50, z5 z̃5y; in this casesTOT is given by Eq.~4.10!, while
Eqs.~6.13! and ~6.14! reduce to

v2

6pc2 sel5
4z211

~4z21112V2!2 ,
v2

6pc2 s inel5
2V2

~4z21112V2!2 . ~6.16!
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In this case the cross sections are symmetric inz and

lim
z→6`

v2

6pc2 sTOT5 lim
z→6`

v2

6pc2 sel50.

As an example, in Fig. 1 we plot (v2/6pc2) sTOT , (v2/6pc2) s inel , (v2/6pc2) sel as func-
tions of the detuningz in the two casesV2510, 28. In the top part of the figure we give the pl
in the usual case, i.e.,d0

650, iP'g6i250, «50, while in the bottom part we give a case wi
direct scattering withd0

1520.03, d0
250.13, iP'g6i250.005, iP'Dgi250.02, «520.001. In

the last case, note the strong asymmetry inz of the cross sections and the fact that

lim
z→6`

v2

6pc2 sTOT5 lim
z→6`

v2

6pc2 sel5iP'g2i21sin2 d0
2 ,

which is about 0.0218 with our parameters.
To analyze and to plot the spectrum it is preferable to have adimensional quantities

different normalization; so, we introduce the normalized inelastic spectrum

S inel~x!5
v2iai2

6pc2 s inel~n! ~6.17!

and the total one

STOT~x!5
v2sel

6pc2

g̃/~2p!

x21~ g̃/2!2 1S inel~x!, ~6.18!

where the normalization we have chosen is such that

E
2`

1`

STOT~x! dx5
v2

6pc2 sTOT . ~6.19!

The explicit expression of the inelastic spectrum is obtained from Eqs.~6.7!, ~6.9!, ~6.10c!,
~6.17!:

S inel~x!5
V2

2p~4z̃21G2!2 S ĉ8†
1

G̃1 ix
p̂81iP'Dgi2ĉ9†

1

G̃1 ix
p̂91c.c.D , ~6.20!

where

ĉ85S ieis sins
0
1

D , ĉ95S 1
0
0
D , ~6.21!

p̂185k2m8, p̂285~k212iy !m8, p̂385E~y!1k2~2y sins1k2 coss!eis, ~6.22a!

m85k212iy1 i ~4z̃21B!eis sins, ~6.22b!

p̂195k2~4z̃21B!, p̂295~k212iy !~4z̃21B!, p̂395k2~k222iy !, ~6.22c!

G̃5S 11g̃/2 21/2 V2/2

V2eis coss b1g̃/2 0

2e2 is coss 0 b̄1g̃/2
D . ~6.23!
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By direct computations we can get the inverse of the matrixG̃1 ix. We can write

1

G̃1 ix
5

1

det~G̃1 ix !
D~x!, ~6.24!

where

det~G̃1 ix !5S 11
g̃

2
1 ix D F S k21g̃

2
1 ix D 2

1S z̃1
V2

4
sin 2sD 2G

1
V2

2 F ~k21g̃12ix !cos2 s2S z̃1
V2

4
sin 2sD sin 2sG , ~6.25!

D11~x!5S k21g̃

2
1 ix D 2

1S z̃1
V2

4
sin 2sD 2

, ~6.26a!

D12~x!5
1

2 Fk21g̃

2
1 i S x1 z̃1

V2

4
sin 2sD G , ~6.26b!

D13~x!52
V2

2 Fk21g̃

2
1 i S x2 z̃2

V2

4
sin 2sD G , ~6.26c!

D31~x!5e2 is cossFk21g̃

2
1 i S x2 z̃2

V2

4
sin 2sD G , ~6.26d!

D32~x!5 1
2 e2 is coss, ~6.26e!

D33~x!5S 11
g̃

2
1 ix D Fk21g̃

2
1 i S x2 z̃2

V2

4
sin 2sD G1

V2

2
eis coss. ~6.26f!

The matrix elementsD2 j (x) are not needed in formula~6.20!.
One can check that the inelastic spectrum is asymmetric, but it is invariant under the

formation:x→2x, s→2s, z̃→2 z̃.
The expression for the inelastic spectrum becomes significantly simpler in the usua

(g650) and when the intensity of the stimulating laser is low.
The case g650. Let us consider the usual model, when the direct scattering terms are

ligible, i.e.,g650 @see also Eqs.~3.23!#; in this case the integral cross sections are given by E
~6.16! and, with some computations, the inelastic spectrum is obtained from Eqs.~6.20!–~6.26!:

S inel~x!5
4V2p~x!

pq~x!~4z21112V2!2 , ~6.27a!

p~x!5~21g̃ !@~11g̃ !212V214z2#@~21g̃ !212V214x2#

12g̃@2~2x22V2!21~21g̃ !2~2x21V2!#, ~6.27b!

q~x!5$~21g̃ !@~11g̃ !214z2#14~11g̃ !V224~413g̃ !x2%2

14x2~3g̃218g̃1514z214V224x2!2. ~6.27c!

Now the inelastic spectrum is invariant either under the transformationx→2x either under the
transformationz→2z.
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If we put alsog̃50, which means that the instrumental width is negligible, then one can c
that the fluorescence spectrumSTOT(x), given by Eqs.~6.18!, ~6.16!, ~6.27!, coincides exactly
~apart from the different normalization! with the spectrum computed by Mollow@see Ref. 22, Eq.
~4.15!#. Equations~6.27! are essentially the convolution of the inelastic part of the Mollow sp
trum with a Lorentzian of widthg̃.

If also z50 ~no detuning!, the eigenvalues ofG̃ can be computed and, by using them, t
denominator in Eq.~6.27! can be factorized. In the caseV2<1/16, G̃ has real eigenvalues an
S inel(x) has a single peak inx50, while forV2.1/16 two complex eigenvalues appear; therefo
S inel(x) has a three-peaked structure forV2 sufficiently larger than 1/16. ForV very large Eqs.
~6.27! give three peaks inn.v2Viai2, n5v5v0 , n.v1Viai2 with height ratio 1: (3
12g̃)/(11g̃) :1 and widths3

2 iai21g, iai21g, 3
2 iai21g ~see Ref. 22 or Ref. 19, pp. 387

423–426, 437–441 for the caseg50).
Low intensity laser.From Eq.~6.14! we see that the inelastic cross section vanishes in

limit of vanishing intensity of the laser; however, the first correction, proportional toV2, presents
some interesting aspects. We have immediately

v2

6pc2 s inel.
2V2E0~z!

~4z211!2 , ~6.28!

E0~z!5E~y!uV505~2z sins1coss!21iP'Dgi2~4z211!. ~6.29!

The computation of the spectrum is straightforward, but long; the final result is that for smallV we
have

S inel~x!.
V2

2p F iP'Dgi2~11g̃ !

z211/4
1

g̃~2z sins1coss!2

4~z211/4!2 G
3F 1

4~x1z!21~11g̃ !2 1
1

4~x2z!21~11g̃ !2G
1

2V2~2z sins1coss!2@z21~11g̃ !2/4#

p~z211/4!2@4~x1z!21~11g̃ !2#@4~x2z!21~11g̃ !2#
. ~6.30!

In this case the inelastic spectrum is invariant either under the transformationx→2x either under
the transformations→2s andz→2z.

The usual case (g650) was already discussed by Mollow@see Ref. 22, Eq.~4.30!# for g̃
50 and can be obtained from Eqs.~6.27! by letting V2 vanish or from Eq.~6.30! by taking s
50 and iP'Dgi50. In the Mollow case, foruDvu sufficiently large, the inelastic spectrum
presents two peaks~see also Ref. 19, pp. 106–108, 386!. The structure given by Eq.~6.30! is
similar also forsÞ0, iP'DgiÞ0: again two symmetric peaks appear foruDvu sufficiently large.

Numerical computations.In the general case the total spectrum is given by Eqs.~6.18!,
~6.20!–~6.26!; the analytic expression is involved, but plots can be easily obtained by nume
computations. According to the values of the various parameters, a well resolved triplet str
can appear, but also single-maximum structures can be shown. With the choice of parame
Figs. 1~c! and 1~d! and with an instrumental widthg̃50.6, the on resonance spectrum forV2

510, 18, 28, 40 is given in Fig. 2~solid lines!; the dashed lines give the Mollow spectrum for t
same values ofV2 andg̃. The parameters in Fig. 2 have been chosen in such a way that a t
structure appears, not too different from the usual one, but with a well visible asymmetry
frequencyx. Experiments25,30–33 confirm essentially the triplet structure; some asymmetry
been found, whose origin has been attributed to various causes. In this connection it has al
observed that calculations for multilevel atoms indicate some asymmetry.32 Indeed, the introduc-
tion in our model of the interaction term containing the gauge process simulates the prese
other levels and the virtual transitions to them.
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FIG. 2. Total spectrum as a function of the frequencyx for z50, g̃50.6, andV2510, 18, 28, 40; solid line:d0
1

520.03, d0
250.13, iP'g6i250.005, iP'Dgi250.02, e520.001; dashed line:d0

650, iP'g6i25iP'Dgi250,
e50.

FIG. 3. Total spectrum as a function of the frequencyx for V2528, g̃50.6, andz524, 22, 3, 6; solid line:d0
1

520.03, d0
250.13, iP'g6i250.005, iP'Dgi250.02, e520.001; dashed line:d0

650, iP'g6i25iP'Dgi250,
e50.
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Finally, in Fig. 3 we show some out of resonance spectra~detuningsz524,22, 3, 6) for
V2528 and the other parameters as in Figs. 1~c!, 1~d!, and 2~solid lines!; again, the dashed line
give the Mollow spectrum. Now, a strong difference from the usual case is shown, consisten
the strong asymmetry inz shown by the total and the elastic cross sections in the lower pa
Fig. 1.

1R. L. Hudson and K. R. Parthasarathy, Commun. Math. Phys.93, 301 ~1984!.
2C. W. Gardiner and M. J. Collet, Phys. Rev. A31, 3761~1985!.
3C. W. Gardiner,Quantum Noise~Springer, Berlin, 1991!.
4K. R. Parthasarathy,An Introduction to Quantum Stochastic Calculus~Birkhäuser, Basel, 1992!.
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Nonlocal regularization for non-Abelian gauge theories
for arbitrary gauge parameter

Anirban Basu and Satish D. Joglekar
Department of Physics, Indian Institute of Technology, Kanpur, Kanpur 208016, India
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We study the nonlocal regularization for the non-Abelian gauge theories for an
arbitrary value of the gauge parameterj. We show that the procedure for the
nonlocalization of field theories established earlier by the original authors, when
applied in that form to the Faddeev–Popov effective action in a linear gauge cannot
lead to aj-independent result for the observables. We then show that an alternate
procedure which is simpler can be used and that it leads to theS-matrix elements
~where they exist! independent ofj. © 2000 American Institute of Physics.
@S0022-2488~00!02511-1#

I. INTRODUCTION

Local quantum field theories are plagued with infinities and need regularization to mak
process of renormalization mathematically well defined. Many regularizations have been pro
over the last 50 years, dimensional regularization being one used widest due to its effectiv1

While dimensional regularization is useful in a wide class of quantum field theories, it cann
used directly in supersymmetric field theories. A number of regularizations have been pro
over the last decade that can be used in supersymmetric field theories.2,3 Nonlocal regularization
is one of them.2,4,5

Nonlocal regularization proposed by Moffat and Evanset al.2 has been extensively studied.4–6

Renormalization procedure has been established up to two loop order5 in scalar theories. The
scheme has found an elegant and neat formulation in Ref. 4 which has shown how non
regularized field theories can be constructed from a local QFT in a systematic fashion.
importantly, it has been established that local/global symmetries can be preserved in their n
form and the WT identities of local QFT’s derivable from local symmetries such as g
invariance/BRS symmetry find their natural nonlocal extensions. This has been done f
Abelian gauge theories to all orders7 and for non-Abelian gauge theories in Feynman gauge4 up to
one loop order~limited only by the existence of measure beyond one loop!.

Nonlocally regularized theories have also found other equally useful interpretations.4,8 Non-
locally regularized theories contain in them a large mass parameterL. It has been shown~wher-
ever the measure factor exists! that these theories are unitary even with a finiteL. Discussions of
causality and renormalization group have also been carried out.4,5 Thus it has been suggested8,9,10

such nonlocally regularized theories with a finiteL can themselves be looked upon as va
physical theories~rather than a regularization for whichL→` must be taken!. The parameterL
has been interpreted in two ways:~a! as a signal of an underlying space–time granularity;~b! as
the mass scale beyond which the physical theory must be replaced by another, more funda
theory. We may regard view~a! as a mathematically convenient way of embodying space–t
granularity in QFT’s in a way that is physically consistent. In view~b!, we may regard the
non-local QFT as an effective field theory that may have been derived from a more fundam
theory beyond the scaleL. Thus, for example, we regard nonlocal standard model as the effe
theory of fundamental processes at present energies, in which a signature of physics
standard model and the scale at which the SM should break down are both implicit in the scL.
An attempt to put lower bound using~g-2! of the muon has been made in Ref. 8.

The setting of such nonlocal QFT’s has also been used to understand renormalization p
72060022-2488/2000/41(11)/7206/14/$17.00 © 2000 American Institute of Physics
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in a mathematically rigorous way.10 A way to put an upper bound onL has also been
suggested.9,10

Nonlocal regularization has also found use in the discussion of higher loop anomalies
formulation.11

In view of the above, it seems valuable to study these formulations further. One of the fe
of linear gauges in local gauge theories is the availability of a free parameterj ~gauge parameter!
which helps in verifying the gauge independence of physical results.j-independence of physica
results in spontaneously broken gauge theories has also been used to establish the cance
contributions from the unphysical poles to the cutting equations in SBGT.12

It is therefore desirable that we have a formulation of nonlocal non-Abelian gauge the
valid for an arbitraryj. Now, a well laid-out procedure for the nonlocalization of field theories
been presented in Refs. 4 and 5. We found however that when we applied this procedure
spontaneously broken theory~SM! in Rj gauges and calculated the~g-2! for the muon8 we found
a j-dependent result.13 This motivated us to look into the question of nonlocal formulation
unbroken non-Abelian gauge theories and of spontaneously broken chiral Abelian
theories.14 In the present work, we concern ourselves with the former.

We now discuss the plan of our work. In Sec. II, we summarize the results on the non
quantum field theories of Refs. 2, 4, and 5. In Sec. III, we adopt the procedure outlined in R
for nonlocalization for arbitraryj and evaluatej(dW/dj)uj51 for this case. We obtain a term i
j(dW/dj)uj51 that can contribute to on-shell physical processes and which cannot be can
by a j-dependent measure. In Sec. IV, we suggest an alternate way of constructing no
unbroken gauge theories for an arbitraryj and establish the WT identity satisfied by the physi
Green’s functionj(dW/dj)uJ5Jphy

of Eq. ~4.15!. This equation is analogous to that in the loc
case; and should lead to thej-independence of physical quantities that are free of infrared di
gences.

II. REVIEW OF KNOWN RESULTS

A. Nonlocal regularization

Let us briefly review the method of nonlocal regularization as proposed in Refs. 4 and
f i stand for a generic, not necessarily scalar, field and let us assume that the local action
written as a standard free part plus an interaction

S@f#5F@f#1I @f#, ~2.1!

where

F@f#5
1

2 E dDx f i~x!Fi j f j~x!. ~2.2!

Here, F is the kinetic energy operator for the fieldf, and I @f# is the interaction term. For
unbroken gauge theories,S@f# would be the BRS gauge fixed action andf i would include both
the fields of the invariant action and the ghosts introduced in the process of fixing the gau

From the kinetic energy operatorF, let us define a nonlocal smearing operatorE and a shadow
kinetic operatorO21 as15

E5expF F
2L2G ~2.3!

and

O5
E221

F . ~2.4!
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Further, the smeared field is defined as

f̂5E21f. ~2.5!

For every fieldf, an auxiliary fieldc of the same type is introduced. Then, the auxiliary action
defined to be

S@f,c#5F@f̂#2A@c#1I @f1c#, ~2.6!

where

A@c#5 1
2 E dDx c i~x!Oi j

21c j~x!. ~2.7!

The action for the nonlocalized theoryŜ@f# is defined to be

Ŝ@f#5S@f,c@f##, ~2.8!

wherec@f# is a solution of the classical shadow field equation

dS@f,c#

dc i
50. ~2.9!

Quantization is carried out in the path integral formulation. The quantization rule is

^T* ~O@f#!&E5E @Df#m@f#O@f̂#eiŜ@f#. ~2.10!

HereO is any operator taken as a functional of fields.m@f# is the measure factor defined such th
@Df#m@f# is invariant under the nonlocal generalization of the local symmetry. For nonloca
non-Abelian gauge theories, this measure factor can be nontrivial and has been evaluated u
loop.4 For the Abelian gauge theories, the measure factor is known to all orders.7

The nonlocalized Feynman rules are simple extensions of the local ones. The vertic
unchanged but every leg can connect either to a smeared propagator

iE2

F1 i e
52 iE

1

` dt

L2 eFt/L2
~2.11!

or to a shadow propagator

i ~12E2!

F 52 iO52 iE
0

1 dt

L2 eFt/L2
. ~2.12!

Diagramatically, they will be represented as
the smeared or ‘‘unbarred’’ propagator

the shadow or ‘‘barred’’ propagator
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The shadow propagator lacks a pole and so carries no quanta. Thus, the following poi
to be noted.

~i! All external lines must be unbarred.
~ii ! The symmetry factor for any diagram is computed without distinguishing between b

and unbarred lines.
~iii ! The loop integrations are well defined in the Euclidean space because of the expo

damping factors coming from propagators within loops.
~iv! Internal lines can be smeared or barred. However, loops containing only the shadow

are forbidden.
~v! Tree order Green’s functions are unchanged except for external line factors which are

on shell. This follows because every internal line of a tree graph can be either barr
unbarred. Hence, it is the sum of both these that which enters, which gives the
propagator.

B. Theorems regarding nonlocal regularized actions

Before discussing the nonlocal BRS symmetries, let us consider a few theorems conc
classical solutions of the Euler–Lagrange equations associated with the local actionS@f#, the
auxiliary actionS@f,c# and the nonlocalizedŜ@f# action.

Theorem A.1: The shadow fields can be expressed as follows:

c i@f#52S E221

E2 D
i j

f j1Oi j

dŜ@f#

df j
. ~2.13!

Theorem A.2: If f i and c i obey the Euler–Lagrange equations ofS@f,c# then x i5f i

1c i obeys the Euler–Lagrange equations ofS@x#.
Theorem A.3: If x i obeys the Euler–Lagrange equations ofS@x#, then the fields

f i5Ei j
2 x j ,

~2.14!
c i5~12E2! i j x j

obey the Euler–Lagrange equations ofS@f,c#.
Let us also consider another set of theorems concerning classical symmetries ofS@x#

S@f,c#, andŜ@f#:
Theorem B.1: If S@f# is invariant under the infinitesimal transformation

df i5Ti@f#,

then the following transformation is a symmetry ofS@f,c#:

Df i5Ei j
2 Tj@f1c#,

~2.15!
Dc i5~12E2! i j Tj@f1c#.

Theorem B.3„Ref. 16…: If S@f# is invariant underdf i5Ti@f#, thenŜ@f# is invariant under

d̂f i5Ei j
2 Tj@f1c@f##. ~2.16!

Theorem B.4: The following transformation generates a symmetry ofS@f,c#:
                                                                                                                



n-

sults.

will

-

etry

7210 J. Math. Phys., Vol. 41, No. 11, November 2000 A. Basu and S. D. Joglekar

                    
Df i5Ai j @f,c#H dS@f,c#

df j
2

dS@f,c#

dc j
J ,

~2.17!

Dc i52Ai j @f,c#H dS@f,c#

df j
2

dS@f,c#

dc j
J ,

providedAi j @f,c#52Aji @f,c#. This symmetry is a trivial symmetry without a dynamical co
tent.

Df i can also be cast in the simple form

Df i5Ai j @f,c#Ejk
22Okl

21@~12E2! lmfm2Elm
2 cm#. ~2.18!

An important special case is given by the choice

Ail @f,c#5Mi j OjkEkl
2 ,

where

@Mi j ,Fi j #50 and Mi j 52M ji .

We next review the nonlocal BRS symmetries of the Yang–Mills theory using the above re

C. Nonlocal regularization of Yang–Mills theory in the Feynman gauge

Finally, let us consider the nonlocal regularization of Yang–Mills theories. First, we
study the results obtained in the Feynman gauge.

The Feynman gauge local BRS Lagrangian is

LBRS52 1
2 ]mAn

a]mAan2]mh̄a]mha1g fabc]mh̄aAbmhc1g fabc]mAn
aAbmAcn

2
g2

4
f abcf cdeAm

a An
bAdmAen. ~2.19!

Thus, the gluon and the ghost kinetic energy operators areFab
mn5dabh

mn]2 and Fab52dab]
2,

respectively.17

Let us denote the auxiliary fields ofAm
a andha by Bm

a andca, respectively. Thus the nonlo
calized BRS action is

Ŝ@A,h,h̄#5E d4xH 2
1

2
]mÂn

a]mÂan2
1

2
Bm

a O21Bam2]mĥ̄a]mĥa1caO21caJ
1I @A1B,h1c,h̄1c̄#. ~2.20!

The local BRS Yang–Mills action in the Feynman gauge has the following BRS symm
transformations:

dAm
a 5~]mha2g fabcAm

b hc!d§,

dha52
g

2
f abchbhcd§, ~2.21!

dh̄a52]mAamd§,

whered§ is a constant anticommutingC number.
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Given the local symmetry transformations for the fields, one can easily write down
nonlocal counterparts:

d̂Am
a 5E2@]m~ha1ca!2g fabc~Am

b 1Bm
b !~hc1cc!#d§,

d̂ha52
g

2
f abcE2~hb1cb!~hc1cc!d§, ~2.22!

d̂h̄a52E2]m~Aam1Bam!d§,

where

E5e]2/2L2
.

In Ref. 4, it was found that it is convenient to construct a modified nonlocal BRS symm
transformation by adding a trivial symmetry transformation to the kind~2.18!. This was so as
noted in Ref. 4 since it yielded a variation ofc̄ proportional to].A. Put alternatively, we find tha
these new transformations of Ref. 4 have two useful properties~i! ].dA is directly reducible in
terms of the ghost action,~ii ! WT identities so formulated allow an easy evaluation ofj(]W/]j).
The measure factor is defined with respect to the latter transformations. They are

d̂Am
a 5@]mha2g fabcE2~Am

b 1Bm
b !~hc1cc!#d§,

d̂ha52
g

2
f abcE2~hb1cb!~hc1cc!d§, ~2.23!

d̂h̄a52]mAamd§.

The measure factor4 is

ln~m@A.h,h̄# !52
g2

2
f acdf bcdE dDxAmaMAb

m1O~g3!, ~2.24!

where

M5
1

2DpD/2 E
0

1

dt
LD22

~t11!D/2 expS t

t11

]2

L2D F 2

t11
2~D21!12~D22!

t

t11G .
III. DIFFICULTY WITH THE METHOD OF NONLOCAL REGULARIZATION FOR AN
ARBITRARY j

The above method of regularization works correctly in the Feynman gaugej51. The regu-
lator operators are simple and calculations have been performed in this gauge with relative4,8

When this procedure of taking the entire quadratic formF which enters the regulator operators
used, the regulators arej-dependent and complicated. This, of course, is not a serious objecti
the use of this procedure in Refs. 4 and 5, we find that the procedure in fact leads to WT ide
which imply that theS-matrix elements, where they exist, are notj-independent even in one loo
order. In this section, we demonstrate it and then suggest, in the next section, an alternate
regularization which is at once simpler and leads to a WT identity which formally implies
j-independence of theS-matrix.

An Abelian special case of this has already been applied to QED.7 Originally we derived the
motivation for this work from the following observation in the context of the SM~where physical
S-matrix elements generally exist!. We had foundj-dependence of the muon anomalous magn
moment in the SM in Ref. 8 when we follow the procedure of Refs. 4 and 5 as applied t
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spontaneously broken~local! theory for theRj gauges.13 The discussion given here in this wor
has also been extended14 to the spontaneously brokenU(1) chiral model where a simila
j-dependence of a physical quantity has been demonstrated. The procedure, formulated
Sec. IV has been applied there to this case; with formalj-independence established.14

We now consider the nonlocal action for an arbitraryj. Here, we will generalize~following
Refs. 4 and 5!, for an arbitraryj, the appropriate nonlocal action. We express

Ŝj5Ŝ1DŜ, ~3.1!

where

Ŝ5E d4xS 2
1

2
]mÂn

a]mÂan2]mĥ̄a]mĥa2
1

2
Bm

a OA
21abmnBn

b1c̄aOh
21abcb1 interaction termsD

~3.2!

and

DŜ5
1

2 S 12
1

j D E d4x~].Âa!2. ~3.3!

We note that asL→`, Ŝ reduces to the local action of the Feynman gauge. Note, now, tha
smeared gauge fieldÂ has been constructed using the full~j dependent! quadratic formF

Âm5EAmn
21 An5~e2F/2L2

!mnAn ~3.4!

and the ghost fieldsĥ andhC have been smeared using their respective quadratic forms

ĥ5Eh
21h, hC 5Eh

21h̄, Eh5e2]2/2L2
, ~3.5!

where it should be noted thatEh is independent ofj.
We shall now proceed to evaluatej(]W/]j)uj51 for the above nonlocal theory. We note th

the j dependence ofW comes from~i! the explicit j dependence ofDŜ, ~ii ! the implicit j

dependence ofEA in Â, ~iii ! the explicitj dependence ofO21 in the B-field kinetic energy term,
and ~iv! the implicit j dependence of auxiliary fieldsB, c, c̄, and ~v! finally from the measure
m~j!. Of these, contribution~iv! vanishes since the auxiliary fields satisfy

dS

dcU
c5c@f#

50.

The first contribution reads

I5 K K i

2j E d4x~].Âa!2L L 5 K K i

2j E d4x ].AaER
22].AaL L ~3.6!

@with ER
225e(]2/Lj)#.

The implicit j dependence ofÂ in DS contributes

~ IIA !52
i ~12j!

2 K K E d4x
]

]j
~].Âa!2L L ~3.7!

52
i ~12j!

2L2j2 K K E d4x~].Âa!e2]2/2L2j]2~].Aa!L L ~3.8!

and it vanishes atj51.
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The contribution from the implicit dependence onj of Â andO21 in theB-field kinetic terms
can be computed straightforwardly. The result reads

~ III !52
i

2L2j K K E d4x~].Âa!e2]2/2L2j]2~].Aa!L L
1

i

2j K K E d4x~].Ba!
1

12e2]2/L2j
~].Ba!L L

2
i

2L2j2 K K E d4x~].Ba!e2]2/L2j]2S 1

12e2]2/L2jD 2

~].Ba!L L . ~3.9!

The (].Aa)2 type terms in I and III combine to give

i

2j E d4x~]Aa!ER
22F12

]2

L2j G~]Aa!. ~3.10!

At j51, these can be simplified using the identity~A5! in Appendix A derived using the BRS WT
identity. We note that as far as Green’s functions with external gauge fields are concerned,
set terms;^^P(j)h̄a(dS/dh̄a)&& to zero as shown in III of Appendix A. We are then left wit

2
i

2 E d4x ER
22F12

]2

L2jG].Aa~x!h̄a~x!E d4y Jbm~]mhb2g fbcdE2~Am
c 1Bm

c !~hd1cd!!.

~3.11!

Next we simplify the (].Ba)2 type terms using the relation

~].Ba!5
e]2/L2j

L2 F ]
dŜj

dAa2
e]2/L2j

j
]2~].Aa!G . ~3.12!

We note that these terms together simplify to yield

j
]W

]j
5

i

2j E d4xK K ].
dŜj

dAa P̂1~j!].
dŜj

dAaL L 2
i

j E d4xK K ].
dŜj

dAa P̂2~j!].AaL L
1

i

2j E d4x^^].AaP̂3~j!].Aa&&, ~3.13!

where

P̂1~j!5 P̂~j!
e2]2/L2j

L4 ,

P̂2~j!5 P̂~j!
e3]2/L2j

L4 ,

P̂3~j!5 P̂~j!
e4]2/L2j

j2

]2

L2

]2

L2 ,

P̂~j!5
1

12e2]2/L2j F12
]2

12e2]2/L2j

e2]2/L2j

L2j G .
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The terms in~3.13! involving P̂3(j) can be simplified as those in~3.10! above and adds up to
a term of the same form as~3.11!. The second term on the right-hand side in~3.13! can be
simplified using~A8!. The residual term in~A8! can be simplified using~A5! as done earlier.
Equation~3.13! can be further simplified atj51 as done in~A10!–~A12!.

Combining all contributions together we find

j
]W

]j U
j51,x5x50

5 K K 2
i

2 E d4xH ER
22S 12

]2

L2D1 P̂3~1!12ig2NP̂2~1!MJ ].Aa~x!h̄a~x!

3E d4y Jbm~y!$]mhb2g fbcdEA
2~Am

c 1Bm
c !~hd1cd!%L L 1^^F&&

1measure contribution, ~3.14!

where the Jacobian termF reads

F5
3g2N

4 F E d4k

~2p!4 f ~k2!k2G E d4p

~2p!4 Aa~p!.Aa~2p!, ~3.15!

where

f ~k2!5F11
k2ek2/L2

L2~12ek2/L2
!
G 1

12ek2/L2

e22k2/L2

L4 . ~3.16!

For arriving at the measure contribution, unlike other contributions, we need the form o
nonlocal BRS transformations for an arbitraryj. These are reproduced in Appendix B. We no
that the nonlocal BRS and the trivial transformations do not anymore add up to a form whe
following two desirable properties convenient for formulating WT identities hold.

~i! dAm involves the same combination that is involved in the ghost Lagrangian~ii ! dh̄
involves only ].A. If we definem~j! with respect to either~A! nonlocal BRS of~B1! or ~B!
resultant nonlocal BRS of~B3!, we have verified that the measure contribution to~3.14! cannot
cancel the Jacobian contribution of~3.15!. This cancellation has to be valid in the regulariz
theory ~i.e., for any finiteL! and we, in particular, draw attention to the fact that^^j(]m/]j)&&
contains operators that have arbitrary order derivatives ofA while F does not.@Note the form of
m in ~2.24! for j51.#

Finally, we elaborate upon a shortcoming of the Feynman gauge treatment itself. As
rated in Sec. II C, the Lagrangian one starts with@of ~2.19!# is actually for the case when th
unrenormalized parameterj051. When one loop renormalization is carried out, the Lagrang
when expressed in terms of renormalized fields, now does not retain its form of~2.19!. So when
we try to extend the treatment to two loops, we have the necessity for the treatment for ar
j even in this case. This, as presented here, cannot be done along the lines of this sectio

IV. AN ALTERNATE WAY OF REGULARIZATION THAT PRESERVES j INDEPENDENCE

In this section, we shall present a way of regularization that is at once simpler and leads
identities that would imply thej independence of theS-matrix elements~where they exist!. We
shall construct the relevant nonlocal BRS transformation that leads to the simpler form of th
identity. A similar regularization has already been applied to QED.7

We recall that the local action of the non-Abelian gauge theory with an arbitraryj. It is
expressed as

Sj5SF1DS, ~4.1!

whereSF is the Feynman gauge local action.
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We introduce the smeared field operators that depend only on the quadratic form iSF .
Hence, we have for an arbitraryj,

Â8m5~EF
21!mnAn5e]2/2L2

Am , ~4.2a!

ĥ85EF
21h5e]2/2L2

h. ~4.2b!

We noteEF5Eh here.
We write down the nonlocal action following the same rules as those in Ref. 4 otherwi
Explicitly,

Sj85SF81DS8 ~4.3!

with

SF8 @A8,h8,h̄8#5E d4xH 2
1

2
]mAn8

a]mA8an2
1

2
Bm8

aO21B8am2]mh̄8a]mh8a1c̄8aO21c8aJ
1I @A81B8,h81c8,h̄81c̄8# ~4.4!

and

DS5
1

2 S 12
1

j D E d4x~].A8a!2. ~4.5!

We note that in~4.4! the kinetic term for the auxiliary fieldB involvesO5(EF
221)/FF that isj

independent. We further note that the form of the relations between auxiliary fields (B8,c8,c̄8)
andA8,h8,h̄8 is the same as in the Feynman gauge asDŜ does not contribute to these relations18

Now, consider the change in the effective actionSj under a field transformation

dŜj5dS@f,c@f##5dS@f,c#uc5c@f# . ~4.6!

Thus

dŜj5Fdf
dS
df

1dc
dS
dcG

c5c@f#

. ~4.7!

The second term vanishes by the defining relation forc.
Thus

dŜj85df
dŜF8

df
1df

dDŜ8

df
. ~4.8!

Now consider the nonlocal BRS transformations of the Feynman gauge nonlocal action:

d̂Am
a 5EF

2@]m~h1c!a2g fabc~A1B!m
b ~h1c!c#d§, ~4.9a!

d̂ha52
g

2
f abcEh

2~h1c!b~h1c!cd§, ~4.9b!

d̂h̄a52Eh
2~].Aa1].Ba!d§. ~4.9c!
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We know that sinceŜF@f,c@f## is exactly of the same form as in the Feynman gauge, i
invariant under the Feynman gauge nonlocal BRS transformations of~4.9!. On the other hand, we
find by explicit calculation

d~DŜ!5S 12
1

j D E d4x@E2~].Aa!#
dŜj

dha d§. ~4.10!

This change inDŜ can be canceled by an additional change

d̂8h̄a5S 12
1

j D E2~].Aa!d§. ~4.11!

In addition, we also note the dynamically irrelevant symmetries mentioned in Theorem B
reads

d̂0Am
a 5@~12E2!]mha2E2]mca#d§, ~4.12a!

d̂0ha50, ~4.12b!

d̂0h̄a5FE2~].Ba!2
1

j
~12E2!].AaGd§. ~4.12c!

This is an invariance ofŜj follows from Theorem B4 and has been verified by explicit evaluati
We add the transformations of~4.9!, ~4.11!, and ~4.12! to obtain the final nonlocal BRS

symmetry of the nonlocalized action for an arbitraryj. It reads, for an arbitraryj:

d̂Am
a 5@]mha2g fabcE2~A1B!m

b ~h1c!c#d§, ~4.13a!

d̂ha52
g

2
f abcE2~h1c!b~h1c!cd§, ~4.13b!

d̂h̄a52
1

j
].Aad§. ~4.13c!

This now leads to the nonlocal BRS WT identity valid for an arbitraryj of ~A4!. We note here that
as the Jacobian for the nonlocal transformation~4.13! is j-independent by construction,m can be
taken to be independent ofj.

We now obtain the value ofj(dW/dj)ux5x̄50 , for an arbitraryj, in this formulation. We note
the j dependence now entirely comes from the explicitj dependence ofDŜ; since the regulators
E,O21 are independent ofj. We, thus, have

j
]W

]j
5

i

2j K K E d4x ].AaEF
22].AaL L . ~4.14!

The above can be effectively simplified using~A5! ~which now holds for an arbitraryj!, ~A6! and
~A9! to lead to

j
]W

]j U
J5Jphy ,x5x̄50

5 K K 2
i

2 E d4x@EF
22].Aa~x!#ha~x!

3E d4y Jbm~y!$]mhb~y!2g fbcdE2~A1B!m
c ~h1c!d%L L . ~4.15!

The above WT identity is the key to thej-independence ofS-matrix elements~or quantities
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derived from them! wherever they exist. We note that in such cases, the discussio
j-independence should run entirely parallel to that in Ref. 19. One can adopt a limiting proc
of carrying out renormalization at an off-shell pointp252m2 and then take the limitm2→0 in
the final result. We expect that when a similar regularization applied in the SBGT, the res
WT identity similar to~4.15! will lead to thej-independence of theS-matrix elements that exist

APPENDIX A

In this appendix, we shall derive the auxiliary equations needed in simplifyingj(]W/]j). We
consider the field transformation, possibly nonlocal~e infinitesimal andf stands collectively for
A, h, andh̄)

f→f1eF@f# ~A1!

in the field variables inW@J,x,x̄ # to obtain the generalized equation of motion:

K K E d4xH i(
i

Fi@f#
dŜj

df i
1(

i
JiFi@f#1F1(

i
Fi

d

df i
ln mJ L L 50. ~A2!

Here,S iJiFi@f# collectively denotes the source terms andeF stands for the Jacobian~minus one!
for the field transformation~A1! viz.,

F5E d4x
dF@f#

df~y!
U

x5y

. ~A3!

Note that the measure factorm in Feynman gauge has been chosen so that the last two terms o
right-hand side of~A2! vanish for the~modified! nonlocal BRS transformations of~4.13!. Thus, as
a special case, we have the BRS nonlocal WT identity resulting from the surviving second te
~A2!,

K K E d4x@Jamd̂Am
a 1x̄ad̂ha1 d̂h̄a xa# L L 50. ~A4!

Let P(j) be any arbitrary differential operator that may depend onj but not on the fields. We
operate byEA

22P(j)]ad/dJpa(y)d/dxc(y) on ~A4! and putx505x̄ to obtain

2 i
1

j K K @P~j!EA
22].Ap].Ac#2P~j!h̄c

dS

dh̄pL L
5 K K E d4z Jmb~z!@]mhb2g fbcdEA

2@~A1B!m
c~h1j!d##~z!EA

22P~j!].Ap~x!h̄c~x!L L .

~A5!

Further we note that the term of the form̂̂*d4x ]mJm(x)G@f#&& does not contribute to Green’
function with external gauge boson lines with the physical polarization vectors sincee.k50.

We express this by saying

K K E d4x ]mJm~x!G@f# L L U
phy

50. ~A6!

~In using the subscript ‘phy’ we do not necessarily imply mass shell limit however.!
We shall need a set of results derivable from~A2!.
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~I! We letF@f# be linear in the fields. ThenF is field independent and can be dropped wh
evaluatingj(]/]j) of n-point Green’s functions.

~II ! With Fm
a @f#5]mP̂2(j)].Aa ~for dAm) andFh5F h̄50, we then obtain

K K E d4xH i ].Aa~x!P̂2~j!].
dŜj

dAa 1Fm
a @A#

d

dAm
a ln m1 iJm

a ~x!]mP̂2~j!].Aa~x!J L L 50.

~A7!

The measure factor atj51 has been evaluated in@K1# and is given by~2.24!. Using it, we obtain,
at j51 and withJ5Jphy,

K K E d4xF i ].AaP̂2~j!].
dŜj

dAa2g2f acdf bcdFa
m@A#MAbm~x!G L L U

phy

50. ~A8!

~III ! We let FA505Fh and F h̄
a5P(j)h̄a which is a linear transformation. Noting thatm

does not depend onh̄ and ~I! above, we obtain that atj51 andx5x̄50,

K K E d4x P~j!h̄a
dŜj

dh̄a~x!
L L 50. ~A9!

~IV ! Finally, we letFm
a @f#5]mP̂1(j)].@dŜj /dAa(x)#. For physical sources, we find

iK K E d4x ].
dŜj

dAa P̂1~j!].
dŜj

dAaL L U
J5Jphy

52K KF1
d

dAm
a ln mFm

a L L . ~A10!

For j51, we find that the term coming from the measure equals

E d4x g2NK K ].
dŜj

dAa P̂1~j!M].AaL L 1O~g3!. ~A11!

This can be reduced further by using~A8! to obtain

K K d ln m

dAm
a Fm

a L L U
j51,J5Jphy

5O~g4!. ~A12!

APPENDIX B

In this appendix, we shall write down the nonlocal BRS transformations for the case
arbitraryj following the general formalism of Ref. 4. We have, for the gauge fields,

Fmn5hmn]22S 12
1

j D ]m]n

for the Euclidean formulationhmn5diag(21,21,21,21).
We define

~EA!mn5~eF/2L2
!mn . ~B1!

We note]m(EA)mn5e2(]2/2L2j)]n[EA
0]n .

For the ghost case, we continue to defineEh5e2(]2/2L2)ÞEA
0.

Then the nonlocal BRS transformations read
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d̂Am
a 5~EA

2!m
n@]n~ha1ca!2g fabc~An

b1Bn
b!~hc1cc!#d§,

d̂ha52
g

2
f abcEh

2~hb1cb!~hc1cc!d§, ~B2!

d̂h̄a52Eh
2]m~Aam1Bam!

d§

j
.

The trivial transformations, on the other hand, read

d̂0Am
a5r@~12En

2!]mha2Eh
2]mca#d§,

d̂0ha50, ~B3!

d̂0h̄a5r@EA
02~].Ba!2~12EA

02!].Aa#d§,

wherer is any constant. We note that in the first of~B2! EA appears ind̂Am
a , while in the first of

~B3! ‘Eh’ appears ind̂0Am
a . In the case ofj51, Eh5EA5EA

0. Then withr51, the first of~B2!

and~B3! added together lead tod̂8A which contains the same combination of terms present in
ghost Lagrangian and this leads to the simplification in the expression forj(]W/]j). This no
longer happens forjÞ1. Similarly, the last of~B2! and~B3! now contain different regulatorsEh

2

andEA
02, respectively. So, even withr51/j, they do not lead to the cancellation of].B terms.

Moreover, note that the value ofr needed in the first of~B3! needed for a ‘near’ cancellation o
unwanted terms does not agree with the value ofr in the last of~B3! for a near cancellation of].B
terms. As a result of this, forjÞ1, we do not have the simplified treatment of Ref. 4 available
the standard treatment. This holds, even if we try to modify~B2!.

We could define measurem~j! with respect to~B2!1~B3! with eitherr51 or r51/j and, in
either case, we find thatm~j! must contain terms that cannot cancel the termF of ~3.15!.
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A semiclassical non-Hamiltonian model of a spontaneous collapse of unstable
quantum system is given. The time evolution of the system becomes non-
Hamiltonian at random instants of transition of pure states to reduced ones,
h°Ch, given by a contractionC. The counting trajectories are assumed to satisfy
the Poisson law. A unitary dilation of the concractive stochastic dynamics is found.
In particular, in the limit of frequent detection corresponding to the large number
limit we obtain the Itoˆ –Schrödinger stochastic unitary evolution for the pure state
of unstable quantum system providing a new stochastic version of the quantum
Zeno effect. ©2000 American Institute of Physics.@S0022-2488~00!00211-5#

I. INTRODUCTION AND SUMMARY

The decay process is by its nature discontinuous and takes place at random instants
Nevertheless, some authors succeeded in describing quantum unstable systems by con
‘‘smoothed’’ time evolution of unstable systems in the dynamical semigroup approach.

The use of one parameter contracting semigroup in a Hilbert space1–4 for the description of
the dynamics of unstable quantum systemS generalizes the law of exponential decay saying t
the number of particles in a given state which have not decayed up tot is an exponential function
of time; n(t)5n(0)exp@2lt#, l.0 t>0. Let H be a Hilbert space ofS, let c(0)PH denotes an
initial ~pure! state ofS. It is assumed that for anyt>0 the state ofS is given by formula

c~ t !5V~ t !c~0!, ~1.1!

where the family$V(t), t>0% of bounded operators onH satisfies the following conditions:~a!
iV(t)i<1, t>0, ~b! V(0)5I , ~c! V(t11t2)5V(t1)V(t2),t1 ,t2>0, ~d! the map t°V(t) is
strongly continuous.

The state~1.1! is normalized to the probabilityp(t)5ic(t)i of finding the system undecaye
at t, moreoverp(t) monotonically decreases as the semigroup is contracting.

By virtue of Sz-Nagy theorem5 there is a unitary dilation of the dynamicsV(t) on the Hilbert
spaceK5H% K, whereK denotes the Hilbert space of the products of the decay.

Let us assume that the decay of the state of the unstable quantum systemS is represented by
completely positive mapI:T(H)→T(H) of the form6

Ir~ t !5Cr~ t !C* , C* C<I , ~1.2!

a!Electronic mail: przemek@phys.uni.torun.pl
72200022-2488/2000/41(11)/7220/14/$17.00 © 2000 American Institute of Physics
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whereI is the identity operator inH, the Hilbert space ofS. Then the time evolution of the mixed
state of the system in question is given by strongly continuous contracting semigroup wi
generator of the form7,8

drl~ t !

dt
52 i @H,rl~ t !#1l~I2I !rl~ t !, ~1.3!

whereH denotes the hamiltonian of the unstable quantum systemS, andl.0 is the decay ratio.
The mixed staterl(t) satisfying the dynamical evolution equation~1.3! is normalized to the
survival probability Trrl(t) for which

d

dt
Tr rl~ t !5Tr@~C* C2I !rl~ t !#<0. ~1.4!

In Sec. II we give a semiclassical non-Hamiltonian model of spontaneous collapse
unstable quantum system. The Hamiltonian time-evolution of the system becomes
Hamiltonian at random instants of transitionsh°Ch of pure states to reduced ones, given by
contractionC. It is assumed that the counting trajectories, consisted of instants of occurren
the collapse, are distributed according to the Poisson law. We find the time-development
classical state propagatorVt in H in the form of Itô stochastic equation with respect to th
classical Poisson process. Consequently, we obtain nonmixing Itoˆ stochastic equations for pur
~resp. mixed! states of the unstable quantum systemS. It is shown that the averaged density mat
corresponding to the statistical mixture of collapsed states satisfies Eq.~1.3!. Assuming that each
collapseh°Ch slightly changes the state ofS (I 2C5l21R with boundedR satisfying for large
l the conditionR* R<l(R1R* )) we find the contracting semigroup equation resulting from
stochastic dynamics in the large number limitl→`.

In Sec. III we give the quantum stochastic representationV̂t of the classical stochastic propa
gator Vt in H as an operator-valued process in the Hilbert spaceH^ F, where
F5F1(L2(R1)) is the Bose Fock space over the single-particle space of square-integrable
plex functions onR1 . To this end we employ the generating functional method described in
section.

As a unitary dilation of a causal contractive cocycleVt in H cannot in general be obtaine
from a causal unitary stochastic cocycleUt in the same Hilbert spaceH, it is impossible to find a
Hamiltonian semiclassical dynamics giving the contractive stochastic dynamics of the un
quantum system as the reduced one. Therefore, we consider the unitary dilation of the cont
C in an extended Hilbert spaceH^ C2, the latter can be interpreted as the Hilbert space
‘‘quantum meter’’ detecting the death or life of the unstable particle. The unitary dilation o
contractive stochastic cocycleVt , cf. Ref. 9, is then realized as a causal unitary cocycleUt in a
Hilbert tensor productH^ F• , whereF•5F1(C2

^ L2(R1)), the Bose Fock space over one pa
ticle spaceC2

^ L2(R1), Sec. IV. We consider two cases of the unitary dilation~4.1! S of C in
H^ C2: ~a! with S in the form of Hermitian block-matrix~4.3! and ~4.4!, ~b! non-Hermitian
unitary block matrix~4.22!. In case~a! we find the quantum stochastic differential equati
~QSDE! for the unitary evolution inH^ F• with respect to the quantum stochastic Poisson ma
process of intensityl. In case~b! we find the limit ~asl→`) of the unitary evolution using the
generating functional method described in Sec. III. The limiting unitary evolution inH^ F• has
the form of the diffusion QSDE with respect to the field momentum process being qua
stochastic representation of the standard Wiener processwt in the Fock space of the representati
of the Poisson process. Hence, we obtain~in the representation in which the momentum proces
diagonal! that the dilation of the weakly random contractive process with the ratel→` is
described by the Itoˆ-Schrödinger equation for the pure state~in H) of the unstable system. Th
obtained result provides a newstochasticversion of thequantum Zeno effect,10,11 the limiting
dynamics becomes reversible as the reductions of decaying amplitude can be compensate
field fluctuations.
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However, while in this paper we do not stress the problem of the Markovian dynamics
continuously observed~in time! quantum system~the state of which undergoes the collapse!, we
would like to mention that this important problem of quantum mechanics has been solved
framework of quantum stochastic calculus, cf. Refs. 12–17 and the literature quoted there

II. A STOCHASTIC MODEL FOR AN UNSTABLE QUANTUM SYSTEM

Now we define a stochastic phenomenological model of spontaneous collapse of an u
quantum system. It is described as a semiclassical non-Hamiltonian system with a Hilbert spH
of pure quantum stateshPH, together with a classical probability space of sequen
v5$t1 ,t2 ,...%,R1 of the random time instantst1,t2,... of some events~reductions, transi-
tions!, which can demolish eventually the quantum system. We shall assume that the seq
vPV area priori distributed according to the Poisson law, given for eachtPR1 by the ‘‘input’’
probability measurePt

l on the measurable subsets of finite subsequencesv t5vù@0,t) as

Pt
l~dv!5lne2ltdt1dt2•••••dtnt(v) . ~2.1!

Herent(v)5uv tu is the random number of the events up to timet, l>0 is the intensity of the
stationary Poisson processt°nt , i.e., the average number of the events per unit of time. T
probability of n events, on each interval@r ,r 1t), is given by the Poissonian distribution

pt
l~n!5E

r<t1,¯

E
,tn,t1r

Pt
l~dv!5

~lt !n

n!
e2lt, ~2.2!

independently ofr PR1 .
Each eventtPv results in an instantaneous change~collapse! h°Ch of the state of the

quantum system, mapping a normalized statehPH,ihi25^huh&51 to the reduced stateCh
with the survival probabilityiChi2<1. This change satisfies quantum superposition principle
it is described by a linear contractionC:H→H, C* C<I . The caseC* C5I of isometric C
corresponds to a stable~in the positive direction of time! quantum stochastic evolution, with th
survival probability one for each statehPH.

If we assume that the quantum system between the reductions is conservative and
tonian, then the nonmixing stochastic evolutionh°x t(v) of the initial quantum normalized state
h to the pure statesx t(v)PH is defined by the measurable mapsx t :V→H as

x t5Vth, ~2.3!

where

Vt~v!5eiH (tnt(v)2t)C¯eiH (t12t2)Ce2 iHt 15Vt~ t1 ,¯ ,tn!. ~2.4!

Here$e2 iHt ,tPR1% is a strongly continuous group of unitary operators with a selfadjoint gen
tor H ~the Hamiltonian of the quantum system in the units\51), and for eacht,` the product
~2.4! is finite asnt(v),` with probability one. Hence, the stochastic propagatorVt(v) is well-
defined as a contraction inH, giving for eachvPV the monotonically decreasing probability o
the unstable particle at the timet,

ix t~v!i25^Vt~v!huVt~v!h&<ix r~v!i2<1, ;r P@0,t !. ~2.5!

Thus, the survival probabilityqt(v)5ix t(v)i2 is obtained as a positive decreasing stocha
process with the initial valueq0(v)51. Its expectation gives a deterministic monotonically d
creasing process of the averaged survival probability

ql~ t !5E qt~v!Pt
l~dv!<ql~r !<1, ;r P@0,t !. ~2.6!
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The stochastic processqt(v) defines quantuma posterioristates6,13 of the nondemolished quan
tum system by

h t~v!5x t~v!/ix t~v!i , ;v:qt~v!Þ0, ~2.7!

and the output statistics of the finite sequencesv t,@0,t). The latter is given together with th
probability of the survival event of the quantum system at the timet by the output probability
measureQt

l(dv)5qt(v)Pt
l(dv), normalized to the probabilityql(t). The averaged density

matrix

rl~ t !5E r t~v!Pt
l~dv!5E h t~v!h t~v!* Qt

l~dv!, ~2.8!

corresponding to the statistical mixture of the collapsed states

r t~v!5x t~v!x t~v!* , ~2.9!

by the timet satisfies Eq.~1.3!

drl~ t !

dt
52 i @H,rl~ t !#1l~Crl~ t !C* 2rl~ t !!, rl~0!5hh* . ~2.10!

Indeed, this equation can be resolved by the Dyson–von Neumann series7

rl~ t !5 (
n50

`

lnE
0<t1,¯

E
,tn,t

Vt~ t1 ,...,tn!sVt~ t1 ,...,tn!* e2ltdt1 ...dtn , ~2.11!

which for s5hh* is the mean value of the stochastic density matrixr t(v) with respect to the
Poisson probability measure~2.2!. Thus, the averaged dynamicss°rl(t) for the unstable system
is continuous, contractive

d

dt
Trrl~ t !5Tr@~C* C2I !rl~ t !#<0,

being normalized to the survival probabilityql(t)5Tr rl(t), and mixing.
However, the nonmixing stochastic dynamics

s°r t~v!5Vt~v!sVt~v!* , ~2.12!

which can be studied in terms of Hilbert space propagatorsVt(v):H→H is discontinuous and
cannot be defined by a differential evolution equation in an ordinary sense. Indeed, the sto
propagatorVt(v) is strongly right discontinuous at the points of the collapsetPv, but it has
strong limits at eachtPR. It is strongly continuous from the left, satisfying the usual Schro¨dinger
equation in terms of the left differentialsd2Vt5Vt2Vt2dt52 iHVt . However, the Schro¨dinger
equation does not recover the stochastic propagatorVt but only its nonstochastic unitary pa
e2 iHt .

The proper differential equation forVt can be written as the stochastic equation in Itoˆ sense

dVt~v!1 iHVt~v!dt5~C2I !Vt~v!dnt~v!, V0~v!5I . ~2.13!

HeredVt is forward or symmetric or any other increment ofVt but not the backward differentia
d2Vt for which d2nt(v)5nt(v)2nt2dt(v)50 for all vPV (dnt(v)5uvù@ t2dt,t)u is zero as
soon asdt,tn112tn for n5nt(v)).

To be definite, we shall always assume thatdVt ~and, respectively,dnt) is the forward
differentialVt1dt2Vt anddnt(v)5uvù@ t,t1dt)u is either zero~if t¹v) or one~if tPv)) for a
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sufficiently smalldt (dt,tn112tn for n5nt(v)). Thus the stochastic equation~2.13! coincides
with the Schro¨dinger equation at when there is no collapse,t¹v, anddVt(v)5(C2I )Vt(v) at
the points of collapse corresponding to the reductionVt10(v)5CVt(v) at tPv anddt→0. One
can prove that the stochastic equation~2.13! has only one solution,~2.4!. From ~2.13! and ~2.3!
one obtains the stochastic equation for the pure statex t

dx t~v!52 iHx t~v!dt1~C2I !x t~v!dnt~v!, x0~v!5h. ~2.14!

The stochastic density matrix~2.9! can also be obtained by iterations as the unique solution to
stochastic differential equation

dr t52 i @H,r t#dt1~Cr tC* 2r t!dnt , r0~v!5s. ~2.15!

Note, that this equation coinciding with the von Neumann equation,dr t /dt52 i @H,r t# at t¹v
and with dr t5Cr tC* 2r t at the points of the collapser t10(v)5Cr t(v)C* ,tPv, can be de-
rived from the stochastic equation~2.14!. Indeed, by virtue of the Itoˆ differentiation formula
applied to the productx tx t* :

d~x tx t* !5dx t•x t* 1x t•dx t* 1dx t•dx t* , ~2.16!

and the Itoˆ multiplication table

~dt!250, ~dnt!
25dnt , dntdt505dtdnt , ~2.17!

one easily obtains~2.15!. Then, the averaged mixing equation forr t
l is obtained from~2.15! by

formal replacementdnt with ldt corresponding to the averaged numbernt
l5lt for the Poisson

process with the intensityl.
The strongly continuous nonmixing evolution

r~ t !5e2Ktse2K* t, ~2.18!

with

K5 iH 1l~ I 2C!, ~2.19!

corresponding to Eq.~1.3! follows from ~2.15! in the large number limitl→` of the stochastic
evolution under the condition that each collapseh°Ch only slightly changes the state of th
unstable system such thath2Ch is inversely proportional tol. Indeed, substituting in Eqs.~2.13!
and~2.15! I 2C by l21R, whereR satisfies the conditionR* R<l(R1R* ) for largel, we obtain

dVt~v!1~Rl21dnt~v!1 iHdt !Vt~v!50. ~2.20!

As in the large number limitl21nt(v) converges tot with probability one, this dynamics be
comes nonstochastic, satisfying the ordinary differential equation

d

dt
V~ t !1KV~ t !50, V~0!5I , ~2.21!

for V(t)5 liml→` Vt5Vt
0 with K5 iH 1R. It has a unique strongly continuous solution e2Kt,

which is a semigroup of contractions asK1K* 5R1R* >0. The corresponding nonmixing equa
tion

d

dt
r~ t !1Kr~ t !1r~ t !K* 50 ~2.22!
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for nonstochastic density matrixr(t)5V(t)sV* (t) can be obtained in the limitl→` from
~2.10!, or directly from Itôequation~2.15! with C5I 2l21R. This is not surprising as the larg
number limit coincides with its average, thus becoming nonmixing in this limit.

III. A GENERATING FUNCTIONAL METHOD AND QUANTUM STOCHASTIC
REPRESENTATION

A very convenient method of treating stochastic equations is based on studying the
sponding generating functional equations. The generating functional for a causal stochast
cessx t(v) obtained by solving a stochastic equation with respect to the Poisson process
intensityl is defined as the averaged productx t

f5x t« t
f ,

x̆ t~ f !5^x t
f&ªE x t~v!« t

f~v!Pt
l~dv!, ~3.1!

where « t
f(v) is the stochastic exponent for the martingale processmt5nt2lt, satisfying the

stochastic equation

l1/2d« t
f~v!5 f ~ t !« t

f~v!dmt~v!, «0
f ~v!51. ~3.2!

Here f (t) is a nonstochastic complex locally integrable test function such thatu11l21/2f (t)u
<1 for all t. The solution to this stochastic equation can be written as

« t
f~v!5expF2l1/2E

0

t

f ~r !drG )
r Pv t

~11l21/2f ~r !!, ~3.3!

wherev t5vù@0,t). The inverse transformx̆ t°x t can be written in terms of the series of iterat
stochastic integrals

E l2utu/2w~t!dmtª(
n50

`

l2n/2E
0<r 1,¯

E
,r n,`

w~r 1 ,...,r n!dmr 1
¯dmr n

, ~3.4!

as x t(v)5*l2utu/2x̃ t(t)dmt , where x̃ t(r 1 ,...,r n) are the functional derivatives ofx̆ t( f ) with
respect tof (r 1), f (r 2),...,f (r n)

x̃ t~r 1 ,...,r n!5dnx̃ t~ f !/d f ~r 1!...d f ~r n!u f 50 . ~3.5!

In particular, the stochastic exponent« t
g has the exponential generating functional

«̆ t
g~ f !5E « t

f~v!« t
g~v!Pt

l~dv!5e*0
t g(r ) f (r )dr, ~3.6!

such that«̆ t
g( f )5 «̆ t

f(g). Indeed, it follows from the multiplication formula for stochastic exp
nents

« t
f« t

g5« t
fuge*0

t g(r ) f (r )dr, ~3.7!

where

fug5 f 1l21/2f g1g ~3.8!

and^« t
fug&51 as it is easily seen in the explicit representation~3.3!. Note that« t

g can be written
in the form of the multiple integral~3.4! as« t

g5«gt
                                                                                                                



t

n

7226 J. Math. Phys., Vol. 41, No. 11, November 2000 V. P. Belavkin and P. Staszewski

                    
«g5 (
n50

`

l2n/2E
0<r 1,¯

E
,r n,`

g~r 1!¯g~r n!dmr 1
¯dmr n

, ~3.9!

where gt(r )5g(r ), r ,t and gt(r )50, r>t. This follows from «̆ t
g( f )5 «̆gt( f ), where

«̆g( f )5exp$*0
`g(r)f(r)dr% corresponds to the kernel

«̃g~r 1 ,...,r n!5g~r 1!¯g~r n!. ~3.10!

Note, that the Hilbert spaceLP
2 (V) of complex random functionsx(v) with *Vux(v)u2P(dv)

,` is isomorphic to the Fock space of their transformsx̃ with respect to the scalar product

~wux̃ !5 (
n50

` E
0<r 1,¯

E
,r n,`

w̄~r 1 ,...,r n!x̃~r 1 ,...,r n!dr1¯drn . ~3.11!

Thus, the generating functional~3.1! can be written in terms of the scalar product~3.11! as
follows:

x̆ t~ ḡ!5~ «̃ t
gux̃ t!5E

t,[ t,0)
«̃ t

ḡ~t!x̃ t~t!dt, ~3.12!

for the tilde transform~3.10! of ~3.9! and x̃ t .
Let us now obtain a differential equation for the generating functionalx̆ t of the stochastic

process x t , satisfying the Eq. ~2.14!. By differentiating the pointwise produc
x t

f(v)5x t(v)« t
f(v) we obtain the stochastic equation

dx t
f1~l1/2f ~ t !1 iH !x t

fdt5~C~11l21/2f ~ t !!2I !x t
fdnt , ~3.13!

from ~2.14! and ~3.2! by applying the Itoˆ formula

d~x t« t
f !5dx t•« t

f1x t•d« t
f1dx t•d« t

f

5@~C2I !dnt2 iHdt1l21/2f ~ t !dmt1~C2I !l21/2f ~ t !dnt#x t
f . ~3.14!

Thus, the generating functionalx̆ t( f )5^x t
f& satisfies the ordinary differential equation

d

dt
x̆ t1 iH x̆ t5~C2I !~l21/2f ~ t !11!lx̆ t , ~3.15!

with the initial condition x̆0( f )5h for all f . The incrementdnt is replaced in~3.15! by its
averagê dnt&5ldt because it does not depend onx t . The solution to this equation can be writte

in terms of time ordered exponentsx̆ t5exp
←

@2*0
t Kl(r)dr#h as follows:

x̆ t5 (
n50

`

~21!nE
0<r 1,¯

E
,r n,t

Kl~r n!¯Kl~r 1!hdr1¯drn , ~3.16!

where

Kl~r !5l~ I 2C!~ I 1l21/2f ~r !!1 iH . ~3.17!

Thus, the tilde transformx̃ t of the stochastic functionx t is given by

x̃ t~r 1 ,...,r n!5e(r n2r )K~C2I !¯e(r 12r 2)K~C2I !e2r 1Kh, ~3.18!

whereK is given by formula~2.19!.
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It is particularly simple to obtain the large number limit in terms of the generating functio
one has x̆ t( f )→e2Kth as l→` under the condition l(I 2C)→R, since obviously
Kl(t)→R1 iH .

It is well known18 that the classical stochastic Poisson processnt(v) has a quantum field
representationNt5n̂t in the Bosonic Fock spaceF over the single quantum spaceL2(R1) of
square-integrable complex functions onR1 in terms of the basic quantum stochastic processe
numberL t , creationAt* , and annihilationAt on the interval@0,t). Let us also find the corre
sponding quantum stochastic representation for the stochastic processx t satisfying the Eq.~2.14!.

RealizingF as the space of square-integrable summable functionsw of the finite, ordered
sequencest5(r 1 ,...,r n),r 1,¯,r n ,

iwi25 (
n50

` E
0<r 1,¯

E
,r n,`

uw~r 1 ,...,r n!u2dr1¯drn,`, ~3.19!

we can represent the canonical operator processesAt , At* , L t as

Atw~t!5E
0

t

ẇ~t,r !dr, At* w~t!5(
r Pt

w~t\r !, L tw~t!5utuw~t!. ~3.20!

Herent5ut tu is the length of a subsequencet1 ,...,tnt
,t of the sequencet with tnt11

>t, t\r is the
subsequence without an elementr Pt, andẇ(t,r )5w(ttr ), wherettr is the ordered sequenc
with an additional elementr ¹t.

Now, one can define the operator-valued representationMt5m̂t of the stochastic processe
mt5nt2lt by the sum

Mt5L t1Al~At1At* !. ~3.21!

Any regular quantum stochastic processXt which is adapted with respect to the family of com
muting selfadjoint operators$Mt ,tPR1% in F is given by the series of iterated integrals

Xtª(
n50

`

l2n/2E
0<r 1,¯

E
,r n,t

x̃~r 1 ,...,r n!dMr 1
¯dMr n

. ~3.22!

The mapx̃ t°Xt is one-to-one because the kernelx̃ t in ~3.22! is uniquely defined as the imag
X̆tªXtw0 of Xt5*x̃(t)dMt on the vacuum statew0(t)5d0

utu (w0 is equal to zero ifn5utuÞ0
and is equal to one ift5O” ). If the kernelx̂ t is given by the functional derivatives~3.5! of the
functional x̆ t , ~3.22! can be formally written as the normally ordered causal expres
Xt5:x̆ t(l

21Ṁ ): of the quantum fieldf̂ 5l21Ṁ t , whereṀ is the generalized time derivative o
~3.21!. The composition of the mapx̆ t°Xt with the mapx t°x̆ t in ~3.1! defines an operato
representationx t°Xt called the quantum stochastic representation of the processx t . In particu-
lar, the Wick exponent

Wt
g5E

t,[0,t)
)
r Pt

~g~r !/l1/2!dMt5 «̂ t
g , ~3.23!

defined as the unique solution to the operator differential equation

l1/2dWt
f5 f ~ t !Wt

fdMt , W0
f 51̂, ~3.24!

in terms of forward differentialsdMt5Mt1dt2Mt , is the quantum stochastic integral represe
tation ~3.3! of the solution to the stochastic differential equation~3.2! with the tilde transform
«̃ t

f(t)5Wt
fw0 . It has the operator multiplication
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Wt
fWt

g5Wt
fug expH E

0

t

f ~r !g~r !drJ , ~3.25!

representing the stochastic multiplication~3.6!, and can be formally written as the normally o
dered exponent ofl21/2*0

t g(r )dM(r ) having the Wick symbol~3.6!. From this it follows that

~Wt
gw0uXtw0!5~Wt

gw0uXtw0!5^«̃ t
gux̃ t&5x̆ t~ ḡ!, ~3.26!

wherex̆ t is the generating functional of a causal stochastic process with the tilde transformx̃ t .
Thus the generating functional (Xt

f)5(w0uXt
fw0), defined for the operator integralXt5x̂ t as the

vacuum expectation of the commuting productsXt
f5XtWt

f , coincides with the generating func
tional for the classical stochastic process~3.4!. This also proves the statistical equivalence of
classical processx t and the quantum processXt5x̂ t , having the kernelx̃ t5X̆t as the tilde
transform ofx t .

Now, we can define a quantum stochastic representationV̂t of classical stochastic propagato
Vt(v) in H as an operator-valued process acting in the Hilbert productH^ F by the quantum
stochastic differential equation

dV̂t1 iHV̂tdt5~C2I !V̂tdNt , V̂05I ^ 1̂, ~3.27!

where the operatorsH andC act in H^ F asH ^ 1̂ andC^ 1̂, andNt5Mt1lt1̂.
The tilde transformṼt(t) of Vt(v) is the kernel for the processV̂t , and the generating

functional V̆t coincides with the vacuum conditional expectationV̆t( f )5F0* V̂t
fF0 for

V̂t
f5V̂t(I ^ Wt

f), given by the isometryF0h5h ^ w0 of the Hilbert spaceH to H^ F. It satisfies
the ordinary differential equation~3.15! for eachhPH as x̆ t5V̆th

d

dt
V̆t1 iHV̆t5~C2I !~l21/2f ~ t !11!lV̆t , ~3.28!

with the initial conditionV̆0( f )5I for all f .

IV. A UNITARY DILATION OF THE CONTRACTIVE STOCHASTIC DYNAMICS

A unitary dilation of a causal contractive cocycleVt(v) in H ~Ref. 9, cf. also Ref. 19! cannot
in general be obtained from a causal unitary stochastic cocycleUt(v

0,v1) in the same Hilbert
spaceH by fixing v05v and averaging over additional degrees of randomnessv1PV1. ~This is
not correct unless like in our paper only classical randomness is considered.! Even a single
contractionC might not be represented as a classical mean(kSklk of a random unitariesSk with
some probabilitieslk>0, (klk51. This makes it impossible to find a Hamiltonian semiclassi
dynamics giving the contractive stochastic dynamics of an unstable quantum system as a r
a reduced description. However, it can be obtained from a unitary operatorS in an extended
Hilbert spaceH^ K as a block-matrix element

C5~ I ^ e!* S~ I ^ e0!, iei515ie0i . ~4.1!

Such a dilation describes the contractionC by the probability amplitudes

^h ^ euS~h0^ e0!&5^huCh0&, ~4.2!

of the unitary transitionsh0^ e0→h ^ e in H^ K, given by the fixed unital vectorse0 ,ePK, as
the probability amplitudes of the contractive transitionsh0→h. The unitary dilationS of the
contractionC can always be built in the Hilbert spaceH% H with the help of two dimensiona
spaceK5C2 by realizingS as a Hermitian block-matrix
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S5S S0
0 S1

0

S0
1 S1

1D , S0
0* 5S0

0 , S0
1* 5S1

0 , S1
0* 5S0

1 , S1
1* 5S1

1, ~4.3!

with the transition elementsS0
15C, S1

05C* and

S0
052~ I 2C* C!1/2, S1

15~ I 2CC* !1/2. ~4.4!

The unitarityS215S* of ~4.2! simply follows from CS0
01S1

1C50, S0
0C* 1C* S1

150. We can
interpret the unit basic vectorse0 ,e1PK as the eigenstates of a quantum meter detecting the d
or life of the unstable particle, correspondingly. In the caseCC* 5I of coisometricC the unitary
operatorS describes a transition of the input particle-meter statesh ^ e0 , e05(d0

k) to a superpo-
sition of the alive statesh15Ch, corresponding to the vectore15(d1

k), and the dead state
h052h', whereh'5h2h u is the orthogonal projection toh u5C* Ch. But the alive states
h ^ e1 transit only to the statesC* h ^ e0 corresponding to the exiting of the particle from th
detector. Thus, for realization~4.2! with the input ‘‘vacuum’’ vectore0 , the output vectore in
~4.1! is the vectore1 corresponding to the detection of the unstable particle. The described un
dilation of the contractionC suggests a unitary dilation of the contractive stochastic cocycleVt in
the quantum-mechanical sense. It should be given by a causal unitary cocycleUt in a Hilbert
tensor productH^ F• with respect to a free evolution unitary groupTt in the additional spaceF•

of an external quantum field, such that

Ft* ~v!UtF0x5Vt~v!x~v!, ;tPR1 , vPV. ~4.5!

Here (Ft) t>0 are isometriesH^ L2(V,Pl)→H^ F• given asFt(h ^ «g)5h ^ w t
g by a correspon-

dence«g°w t
g of the exponential test functions~3.9! of the Hilbert subspacesL2(V,Pl) and their

representationsw t
gPF• such that

iw t
gi25E u«g~v!u2Pl~dv!5iw0

gi2, ;tPR1 . ~4.6!

As follows from Ref. 9, a good candidate forF• is the Bosonic Fock space over the tensor prod
K^ L2(R1) of two dimensionalK5C2 and the space of square-integrable functions onR1 such
that F• is the Hilbert productF0^ F1 of two copies of the Fock spaceF isometric to the proba-
bilistic spaceL2(V,Pl) for the Poisson process onR1 . RealizingF• as the space of square
integrable tensor-functionsw(t)PK ^ utu of the finite sequencest5$r 1 ,...,r n%,R1 ,
r 1,r 2,¯,r n , we shall define the isometriesFt by the tilde transform~3.10! of «g

PL2(V,Pl) as

Ft~h ^ «g!~t!5h ^ «̃g~t t!e
^ ut tu ^ «̃g~t [ t!e0

^ ut [ tu , ~4.7!

where e,e0PK are unital 2-vectors, andut tu5tù@0,t), t [ t5tù@ t,`). The adjoint transform
Ft* :H^ F•→H^ L2(V,Pl) can be written as x t(v)5Ft* (v)(h ^ w) in terms of h
^ (e^ utuuw(t)), wheree^ utu5e^ ut tu ^ e0

^ ut [ tu , as the stochastic multiple integral

x t~v!5h ^ E l2utu/2~e^ utuuw~t!!dmt . ~4.8!

Here we used the canonical decompositionF•5F•t ^ F•[ t to the Fock spaces over the orthogon
subspaces of square-integrable vector functionsf •5( f k) on @0,t) and @ t,`), respectively.
The tensor multipliers F•t are increasingly embedded intoF• as F•t,F•s;s.t by
F•t{w t°w t ^ w0

t , wherew0
t (t)5d0

ut [ tu is the vacuum normalized function of the spaceF[ t .
The Hilbert spaceHt5LH

2 (V,Pt
l) of H-valued stochastic causal functionsx t(v) with the

finite covariance
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ix ti25E ix t~v!i2Pt
l~dv!5i x̃ ti2,`, ~4.9!

is causally represented by the initial isometryF0 in the spaceH^ F•t and thus inH^ F• by the
tilde transformF0x t5(I ^ e0

^ )x̃ t , wheree0
^ is the embedding ofFt into F•t

~ I ^ e0
^ !~h ^ w t!5h ^ w te0

^ , w te0
^~t!5w t~t!e0

^ utu , ~4.10!

given by the tensor powers of the unit vectore0PC2. This representation is an isometry,

iF0x ti25i~ I ^ e0
^ !x̃ ti25ix ti2, ~4.11!

due to the unitarity of the tilde transformx°x̃. The adjoint co-isometryF0* :H^ F•→H^ F
maps the localized kernelsc tPH^ F•t to the stochastic causal functionsx t(v)5F0* (v)c t given
as the stochastic multiple integrals~3.4! with the kernelsx̃ t5(I ^ e0

^ )* c t :

x̃ t~r 1 ,...,r n!5~ I ^ e0
^ n!* c t~r 1 ,...,r n!. ~4.12!

Now we can describe the Markov quantum stochastic model of the unitary dilation~4.2!,
which has been found in Ref. 9 for the general CP flowsf t

g over the algebraB(H) of all bounded
operators inH.

Let us assume that the contractionC is dilated as in~4.1! to a unitary operatorS in H^ K,
say, of the form~4.2! and takee05(d0

k), e5(d1
k)[e1 . We shall define the unitary evolutionUt

in H^ F• by the quantum stochastic differential equation~QSDE! in the sense of Ref. 18 as

dUt1 iHU tdt5~Sk
i 2Idk

i !UtdNi
k~ t !, U05I ^ 1̂, ~4.13!

whereNk
i (t) is the quantum stochastic Poisson matrix process of intensityl given by the canoni-

cal integrators inF as

Nk
i ~ t !5Lk

i ~ t !1Al~L2
i ~ t !dk

01d0
i Lk

1~ t !!1ld0
i dk

0t1̂. ~4.14!

In the eigenrepresentation of the number processN5N0
01N1

1 of total quantum number, the unitar
solution to~4.1! can be written similarly to~2.4! as

Ut~v!k1¯kn

i 1¯ i n 5Skn

i n ~ t2tn!•••••Sk1

i 1 ~ t22t1!e2 iHt 1, ~4.15!

whereSk
i (t)5e2 iHtSk

i , n5nt(v), andv5$t1 ,t2 ,...% are the counting points for the total numb
processN up to t with the finite numbersnt(v)5uvù@0,t)u. We shall also define the isometrie
Ft as (I ^ Jt)F0 , whereJt is a partial isometry given by the solution to QSDE

dJt5~ee0* 2d!k
i JtdNi

k~ t !, J051̂, ~4.16!

wheree5e1 if the unitary matrixS is taken in the form~4.3! and ~4.4!. Equation~4.16! has the
explicit solution

Jt~v!5~ee0* ! ^ uv tu ^ I ^ uv [ tu, ~4.17!

wherev tøv [ t has a finitev t5vù@0,t). Note that the family of orthoprojectorsI t5JtJt* , that is

I t~v!5~ee* ! ^ uv tu ^ I ^ uv [ tu, ~4.18!

satisfying

dIt5~ee* 2d!k
i I tdNi

k~ t !, I 05I ^ 1̂, ~4.19!
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is decreasing,I t<I r , ;t>r PR1 , describing the survival events for the detection of an unsta
quantum particle by the timetPR1 . Obviously, Ut dilates the stochastic evolution asVt(v)
5Ut(v)0¯0

1¯1 coincides with~2.4! if C5S0
1. Hence, the unitary evolutionUtc0 of the initial state

c05F0x with any xPH^ L2(V,Pl) defines the amplitudec t5(I ^ Jt* )Utc0 normalized to the
averaged survival probability~2.6!

ic ti25^Utc0u~ I ^ I t!Utc0&5iFt* UtF0xi25iVtxi25ql~ t !. ~4.20!

Here we used the adaptedness of the solutionUt in the sense

Ut~h ^ e0
^«g!~t!5Ut~h ^ e0

^«g~t t! ^ e0
^ ut [ tu«g~t [ t!, ~4.21!

due to which (I ^ Jt* )UtF05Ft* UtF0 .
Let us also prove the dilation formula~4.5! using the generating functional method describ

in the Sec. III, and find the limit of the unitary evolution asl→` andC5I 2l21R. To do so it
is more convenient to use another dilation, given bye5e0 and Eq.~4.13! with non-Hermitian
unitary block matrix

S5S C ~ I 2CC* !1/2

2~ I 2C* C!1/2 C* D , e5S 1
0D5e0 . ~4.22!

We should find an equation for the coherent matrix elements

Ut~ ḡ•, f •!5~g^ uUt f
^ !/expH E

0

`

~g•~r !u f •~r !!drJ , ~4.23!

and compare it with Eq.~3.28! for V̆t(ḡu f )5Vt(ḡ, f ), where

Vt~ ḡ, f !5E « ḡ~v!Vt~v!« f~v!Pl~dv!/expH E
0

`

ḡ~r ! f ~r !drJ
5E « t

ḡ~v!Vt~v!«̄ t
f~v!Pt

l~dv!/expH E
0

`

ḡ~r ! f ~r !drJ
5V̆t~ ḡu f !.

Here we used the multiplication formula~3.7! and the independence of« t
ḡu fVt and« [ t

ḡu f , where
« [ t

f 5« f [ t ( f [ t(r )5 f (r ) if r>t, f [ t(r )50 if r ,t).
The equation forUt(ḡ

•, f •) can be obtained by the substitution of the independent increm
dNi

k(t) for the number process~4.14! into ~4.13! by their coherent matrix elements

~ f k~ t !gi~ t !1l1/2~d0
kgi~ t !1 f k~ t !d i

0!1ld0
kd i

0!dt1̂,

wheregi5ḡi . Thus we obtain the ordinary differential equation

d

dt
Ut~ ḡ•, f •!1 iHU t~ ḡ•, f •!5@gi~ t !~S2Id!k

i f k~ t !1l1/2~gi~ t !~S2Id!0
i 1~S2Id!k

0f k~ t !!

1~S0
02I !l#Ut~ ḡ•, f •!. ~4.24!

If gi5d i
0ḡ, f k5d0

k f corresponding to the embeddingsg•5ge0 , f •5 f e0 , this equation indeed
coincides with Eq.~3.28!
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d

dt
Vt~ ḡ, f !1 iHVt~ ḡ, f !5@ ḡ~ t !~C2I ! f ~ t !1l1/2~ ḡ~ t !~C2I !1~C2I ! f ~ t !!1~C2I !l#Vt~ ḡ, f !

5~C2I !~l21/2~gu f !~ t !11!lVt~ ḡ, f !.

HereVt(ḡ, f )5Ut(ḡd0
• , f d0

• ) as

^juVt~ ḡ, f !h&5^F0~j ^ «g!uUtF0~h ^ « f !&expH 2E
0

`

ḡ~r ! f ~r !drJ 5^juUt~ ḡe0 , f e0!h&,

in the caseFt5F0 corresponding toe5e0 .
Now, substitutingC by I 2l21R in ~4.22! and taking into account that

S5S I 0

0 I D 1l21/2S 0 ~R1R* !1/2

2~R1R* !1/2 0 D 2l21S R 0

0 R* D 1O~l23/2!, ~4.25!

let us find the limiting Eq.~4.24! asl→`. The right hand side of~4.24! up to the term of the
orderl21/2 is written then as

~O~l21/2!1~R1R* !1/2f 1~ t !2g1~ t !~R1R* !1/22R!Ut~ ḡ•, f •!,

giving to the equation

d

dt
Ut

0~ ḡ•, f •!1~R1 iH !Ut
0~ ḡ•, f •!5~R1R* !1/2Ut

0~ ḡ•, f •!~ f 1~ t !2ḡ1~ t !!, ~4.26!

for the limiting Ut
0(ḡ•, f •)5 liml→`Ut(ḡ

•, f •). Equation~4.26! corresponds to the diffusion QSD

dUt
01~R1 iH !Ut

0dt5~R1R* !1/2Ut
0~dL2

1 2dL1
1!, U0

05I ^ 1̂, ~4.27!

for the limiting unitary Markovian evolution, dilating the limiting nonstochastic contractive e
lution ~2.21! for Vt

05 liml→`Vt . It is driven by the momentum process

Pt5 i 21~L2
1 2L1

1!~ t !5ŵt , ~4.28!

which is the quantum stochastic representation of the standard Wiener processwt in the Fock
spaceF1 , the copy of the original Fock spaceF0 for the representationN0

05n̂t of the Poisson
processnt(v).

Thus, the quantum stochastic unitary evolution for the unstable particle dilating the proc
weakly random contractionsC5I 2l21R due to frequent detection of the particle at rando
times with the ratel→` becomes classically stochastic. The time-evolution of its pure sta
described by the Itoˆ –Schrödinger equation

dc t
01~R1 iH !c t

0dt5 i ~R1R* !1/2c t
0dwt , ~4.29!

for c t
0(v1)5Ut

0(v1)h. Herev1 is an elementary event of the standard Wiener probability sp
(V1 ,P1), H5H* is a selfadjoint operator, andR1R* >0 is the rate operator for the contractio
semigroup e2Kt, K5R1 iH .

Equation~4.29! provides a new dynamical formulation of the quantum Zeno effect.10,11 The
limiting dynamics becomes reversible~invertible! as the reductions of the increasing rate a
decreasing amplitude can be compensated by field fluctuations given by the momentum p
Let us stress that the large number limit~4.29! of the unitary dilation of the contractive stochast
dynamics remains stochastic. To our knowledge, the stochastic dynamics has not been obta
far, in a similar context.
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‘‘Composite particles’’ and the eigenstates of
Calogero–Sutherland and Ruijsenaars–Schneider

M. C. Bergèrea)

Service de Physique The´orique, CEA-Saclay F-91191 Gif sur Yvette cedex, France

~Received 9 August 1999; accepted for publication 23 February 2000!

We establish a one-to-one correspondence between the ‘‘composite particles’’ with
N particles and the Young tableaux with at mostN rows. We apply this correspon-
dence to the models of Calogero–Sutherland and Ruijsenaars–Schneider and we
obtain a momentum space representation of the ‘‘composite particles’’ in terms of
creation operators attached to the Young tableaux. Using the technique of bosoniza-
tion, we obtain a position space representation of the ‘‘composite particles’’ in
terms of products of vertex operators. In the special case where the ‘‘composite
particles’’ are bosons and if we add one extra quasiparticle or quasihole, we con-
struct the ground state wave functions corresponding to the Jain seriesn
5p/(2np61) of the fractional quantum Hall effect. ©2000 American Institute
of Physics.@S0022-2488~00!04307-3#

I. INTRODUCTION

In a recent publication,1 we introduced the concept of ‘‘composite particles’’ as a quasig
metric construction that distributesN5pm1r (0,r<m) particles over a set ofd states. The
particles are decomposed intop groups ofm particles each called ‘‘composite particles,’’ and t
remainingr particles are called uncomplete ‘‘composite particles.’’

The rule that distributes theN particles over thed states are such that the number of possi
configurations is

Cd1N212 lE@~N21!/m#
N , ~1!

whereE(x) means the integer part ofx and wherel>0 andm.0 are two integers. We note tha
if l 50 we obtain the statistic for the bosons, and ifl 5m51 we have the statistic for the fermion
When the numberN of particles is large, the function integer part inE@(N21)/m# becomes
diluted and the number of configurations is given by Haldane’s formula,2

Cd1~12g!~N21!
N , ~2!

where the fractiong5 l /m. In that sense, the ‘‘composite particles’’ reproduce the fractio
statistic introduced by Haldane and extend it naturally for any finiteN and finited; in addition, it
gives a geometrical interpretation of this statistic.

A ‘‘composite particle’’ ~Fig. 1! is a set ofm particles andd> l states with the constraint tha
the (l 21) bottom states are empty and thel th state~from the bottom! has at least one particle. W
define an uncomplete ‘‘composite particle’’ as a set of 0,r<m particles with no constraint on th
empty states.

The main constraint in this construction is that a nonempty state is entirely included ins
‘‘composite particle.’’ The configurations where a nonempty state should be split into two
secutive ‘‘composite particles’’ are forbidden~Fig. 1!.

a!Electronic mail: bergere@spht.saclay.cea.fr
72340022-2488/2000/41(11)/7234/18/$17.00 © 2000 American Institute of Physics
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The partition function for the ‘‘composite particles’’ when all the states have the same en
E has been calculated somewhere else;3 we reproduced the well-known result4–8 for the average
number of particles per state in the thermodynamic limit,

n~y,g!5
1

W~y,g!1g
, ~3!

wherey5exp(2E/kT) and where the functionW(y,g) satisfies the equation

@W~y,g!#g@11W~y,g!#12g5y21. ~4!

When the states have a linear distribution of energy so that the statei contributes to the partition
function by a factor

xi 21y5exp@2„E1~ i 21!v…/kT#, ~5!

we proved in Ref. 3 that the partition function, in the thermodynamic limit (d→`,x→1), is

Z;expS d

ln j21 E
jy

y du

u
ln†11W21~u,g!‡D , ~6!

where x5j1/d and where the above integral is transformed in the literature9–12 into a Rogers
dilogarithm function. In Ref. 3, we transformed the partition function into a larged expansion and
consequently, we determined the finited-size corrections to~6!. These results show essentially th
our construction of the ‘‘composite particles’’ reproduces perfectly well previous result

FIG. 1. ‘‘composite particles.’’
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Hikami9 ~effective central charge for ag-on gas with a fractional exclusion statistic!, by van
Elburg and Schoutens10 ~quasiparticles in fractional quantum Hall effect edge theories!, by Ke-
dem, Klassen, McCoy, and Melzer11 in the context of conformal field theory. This partitio
function is called the ‘‘universal chiral partition function for exclusion statistic’’ by Berkovit
and McCoy.12

Since we believe that our definition of ‘‘composite particles’’ is the basic construction
generates a fractional statistic, it seems necessary to establish the link between ‘‘compos
ticles’’ and the eigenstates of the Hamiltonian for the models of Calogero–Sutherland5,13 and
Ruijsenaars–Schneider,14 which are known to satisfy the fractional statistic. It is our purpose
this publication to establish this correspondence and to study some of its consequences. F
complete knowledge of the eigenfunctions of these two models, we have been able to cons
momentum space representation of the ‘‘composite particles’’ in terms of creation operato
tached to the corresponding Young tableaux; also, using the well-known bosonization pro
in terms of products of vertex operators, we have defined a position space representation
‘‘composite particles.’’

As an application, we have constructed the ground state wave functions for the electro
quasiparticle, and the quasihole in a fractional quantum Hall effect. To achieve this goal, we
the vertex operator formalism to the case where thep ‘‘composite particles’’ are bosons and mad
of m ~even! quasiparticles while the uncomplete ‘‘composite particle’’ is either a quasiparticl
a quasihole (r 51). When we have only one ‘‘composite particle’’ (p51) we obtain for the
ground state wave function the Laughlin wave function;15 more generally, forp ‘‘composite
particles,’’ we obtain the ground state wave function as the product of a boson wave functio
satisfies the discreteZp symmetry times the usual fermionic wave function for the extra quasi
ticle or quasihole. The corresponding filling factor defined as the number of ‘‘composite parti
divided by the total number of quasiparticles minus the total number of quasiholes (n5p/N6)
becomes, in this special case wherem52n is even,

n5
p

2np61
. ~7!

This filling factor defines the Jain series16 that characterize in the fractional quantum Hall effe
most of the different plateaus in the Hall resistance.

In Sec. II, we establish a one-to-one correspondence between the configurations of the
posite particles’’ withN particles and the Young tableaux with, at most,N rows. Each particle
corresponds to one row of the Young tableau; the length of the row is the difference betwe
‘‘momentum’’ that labels the state where the particle is located in the given configuration an
‘‘momentum’’ that labels the state where this same particle is located in the ground state.

Then, in order to construct the link with the models of Calogero–Sutherland~Ruijsenaars–
Schneider!, we introduce the notion of shifted momentum~which is a consequence of the the
modynamic Bethe Ansatz17!, where the ‘‘momentum’’ of the particles inside a given ‘‘compos
particle’’ are successively shifted by 0,l /m,2l /m,...,(m21)l /m. As a result, we obtain the mo
mentum~rapidities! for the eigenstates of the Hamiltonian that describes the model of Calog
Sutherland~Ruijsenaars–Schneider! up to a global shift that comes from the labelling conventi
of the momenta in the Fermi sea.

This correspondence being established, we remind in Sec. III, the formalism of bosoni
that has been developed by many authors18 and that is based on the algebra of the vertex opera

V~z!5eAbQ expS (
n.0

A12tn

12qn

an
1

n
znD zAba0 expS 2 (

n.0
A12tn

12qn

an

n
z2nD , ~8!

wheret5qb, where the operatorsan andan
1 satisfy the commutation relations

@an ,an8
1

#5ndn,n8 , ~9!
                                                                                                                



ge-
ex
el of
ck
gero–

n-

x. The

for the

’ The

on
site

osite

x

ganize

s

ic
ole,

ber of
em.

m
t

7237J. Math. Phys., Vol. 41, No. 11, November 2000 ‘‘Composite particles’’ and Calogeros’ models

                    
and where the operatorsa0 andQ satisfy

@a0 ,Q#51, ~10!

all other commutators being nul. In~8!, t andq are two parameters that characterize the homo
neous, symmetric Macdonald polynomials19 of several variables. The product of these vert
operators at different values ofz generates the wave functions for the eigenstates of the mod
Ruijsenaars–Schneider. In the limitt5qb andq→1, the Macdonald polynomials become the Ja
polynomials and we generate the wave functions for the eigenstates of the model of Calo
Sutherland.

The product of several vertex operatorsV1(z) @where1 means the exponential term contai
ing the creation operatorsan

1 in ~8!# taken in different positions~around a circle of lengthL! can
be expanded in terms of Macdonald polynomials attached to all possible Young tableau
coefficients of these polynomials are, for each Young tableaul, a combination of the creation
operatorsan

1 that we callal
1(q,t). Then, the statesal

1(q,t)uVN&, whereuVN& is the vacuum state
for N particles, define an orthonormal basis that is a momentum space representation
‘‘composite particles.’’

In Sec. IV, we propose a position space representation for the ‘‘composite particles.’
normal order product:V(z1)•••V(zN): which consists in writing all creation operators~including
Q! at the left of all annihilation operators~including a0! provide a position space representati
for a set of different particles in different positions. Here, we want to define a ‘‘compo
particle’’ in a complexified positionz with all its constituent particles in the same positionz;
moreover, we wish to introduce a duality relation between the quasihole and the ‘‘comp
particles’’ ~see Ref. 10!. To achieve this property, we define shifted positionsqiz for the N
quasiparticles and quasiholes; then, if we chooset5qN, we obtain the property that the verte
operator for the ‘‘composite particles’’ is the dual~q↔t and a change of sign! of the vertex
operator for the quasihole. Now, the characteristic feature that tells that the quasiparticles or
themselves intop ‘‘composite particles’’ is that these develop a discreteZp symmetry. This
symmetry can be achieved using a formalism developed by Uglov,20 which consists in taking the
limit q→exp(2ip/p).

In the special case wherem52n is even~in that case the ‘‘composite particles’’ are boson!
and where there is a unique quasiparticle or quasihole (r 51) in the uncomplete ‘‘composite
particle,’’ we obtain forp51, the Laughlin ground state wave function,

^VN6
~z1!VN6

~z2!&5~z12z2!2n61, ~11!

corresponding to a filling factorn51/(2n61). More generally, for anyp, we obtain for the
ground state wave function the product of aZp-invariant bosonic wave function times a fermion
wave function with power61 depending whether we have one extra quasiparticle or quasih

^VN6
~z1!VN6

~z2!&5~z1
p2z2

p!2n~z12z2!61, ~12!

and corresponding to a filling factorn5p/(2np61).
These results seem to be appropriate to describe a physic that is sensible to the num

‘‘composite particles’’ rather than to the number of the individual particles that constitute th

II. YOUNG TABLEAUX AND ‘‘COMPOSITE PARTICLES’’

Let us remind the reader that theN particles are distributed overp ‘‘composite particles’’
containingm particles each, and one extra uncomplete ‘‘composite particles’’ containingr par-
ticles (0,r<m) so thatN5pm1r . The states of the (p11) ‘‘composite particles’’ are labeled
from top equal to 1 to bottom equal tod; for each ‘‘composite particle’’ we label the states fro
top equal to 1 to bottom equal tod, so thatSk51

p11dk5d. To each statei we attach a momentum tha
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is simply (i 21) and that runs from 0 to (d21). We label the particles from top to bottom an
from left to right ~on a same state! by an integerj that runs from 1 toN.

In this section, we wish to show that for a given set of integersl and m, and for a given
number of statesd, there exists a one-to-one correspondence between the possible configu
of N particles into ‘‘composite particles’’ and the Young tableaux with, at most,N rows and with
the length of the first rowl1<d2pl21.

The ground state~Fig. 2! is the unique configuration withd5pl11; if d>pl11, the ground
state is characterized by the fact that the momentum of the particlej is equal tokj

05 lE@( j
21)/m#. To the ground state, we naturally associate the empty Young tableau where the len
the rows are all null,

l j50, j 51,...,N . ~13!

Now, to a given configuration of particles in ‘‘composite particles’’ we associate a Young tab
in the following way: to any particlej of the configuration, we associate a row of the You
tableau with lengthlN2 j 11 that is the difference between the momentum ofj in the given
configuration and the momentum ofj in the ground state configuration. If there arer i particles on
the same statei, it corresponds tor i rows with the same length in the Young tableau. The You
tableau may be partitionned from the bottom intop blocks ofm rows each corresponding to eac
‘‘composite particle,’’ and an extra block ofr rows at the top of the tableau corresponding to
uncomplete ‘‘composite particle.’’ It may be noted that the length of the upper row of a g
block is equal to the length of the lower row of the next block up~if the corresponding state i
nonempty!; we also note that the length of the first row of the Young tableau isl15kN2pl,
wherekN is the momentum of theNth particle. We give an illustration of the corresponden
between ‘‘composite particles’’ and Young tableaux in Fig. 3. Of course, this corresponde
crucially dependent on the values of the integersl andm; in Fig. 4, we show how a given Young
tableau corresponds to different configurations for different choices of~l, m!.

FIG. 2. Ground state forp ‘‘composite particles’’~1 one uncomplete! andN5pm1r particles.
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We now introduce the shifted momenta as a consequence of the so-called Bethe Ansa
applies to the Calogero–Sutherland and Ruijsenaars–Schneider models. The Bethe Ansa
tions are of the type

e2ip k̃r5)
sÞr

S~ks̃2kr̃ !. ~14!

If we take the logarithm on both sides of~14!, we get

kr̃5kr1(
sÞr

Q~ks̃2kr̃ !, ~15!

where thekr ’s are integers that may be used to label the eigenstates and where the phas
Q( k̃) are

Q~ k̃!5
1

2ip
ln S~ k̃!. ~16!

In Calogero–Sutherland and Ruijsenaars–Schneider models, we have

Q~ks̃2kr̃ !5
l

m
, if s,r ,

50, if s>r . ~17!

Consequently, to a particlej inside a given ‘‘composite particle’’ we attach a shifted momentu
which is

kj̃5kj1q
l

m
, ~18!

wherekj is the momentum that labels the states andq50,1,...,m21 is the number of particles tha
are on the left~same state! and abovej, inside the corresponding ‘‘composite particle.’’ If w
introduce the corresponding momentumkj

0 of the particle in the ground state, we obtain

kj̃5lN2 j 111S mES j 21

m D1qD l

m
5lN2 j 111~ j 21!

l

m
. ~19!

FIG. 3. Correspondence between ‘‘composite particles’’ and Young tableaux for~Fig. 1!, m53 l 52.
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In order to make the correspondence with the usual momenta in the model of Calo
Sutherland, we still have to perform a global shift over all momenta equal to2@(N21)/2#
3( l /m) because the Fermi sea~the ground state for the fermionsl 5m51! used to have moment
that runs from2(N21)/2 to 1(N21)/2 and not from 0 toN21. We obtain the characteristi
expression for the Calogero–Sutherland momenta,

kj̃5lN2 j 111S j 2
N11

2 Db, ~20!

where the Calogero–Sutherland coupling constant isb5 l /m.
The same organization applies identically to the relativistic model of Ruijsenaars–Schn

with the single difference that the momenta are sh(kj̃ ), wherekj̃ are the shifted rapidities.

III. THE STATES FOR ‘‘COMPOSITE PARTICLES’’ AND VERTEX OPERATORS

We wish to use our complete knowledge of the eigenstates of the Calogero–Sutherla
Ruijsenaars–Schneider Hamiltonian to construct the space of states for the ‘‘composite part
The technique used here is the description of the eigenstates from the bosonization proced
from the corresponding vertex operators.

We first remind the reader of the description of the eigenstates in the model of Calo
Sutherland. We introduce the complex variables

FIG. 4. Two different configurations~m53, l 52! and ~m52, l 53! for the same Young tableau.
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zi5expS 2ip

L
xi D , ~21!

wherexi is the circular coordinates of the particlei along the circle of lengthL. The ground state
is represented by the function

D~z!5)
i , j

~zi2zj !
b, ~22!

whereb is the coupling constant in the Hamiltonian. Using the technique of bosonization
above function can be represented in the following way: we introduce the vertex operators

V~z!5eAbQ expS Ab (
n.0

an
1

n
znD zAba0 expS 2Ab (

n.0

an

n
z2nD , ~23!

where the creation operatorsan
1 and the annihilation operatorsan satisfy the commutation rela

tions

@an ,am
1#5ndn,m , ~24!

and where the operatorsa0 andQ satisfy

@a0 ,Q#51, ~25!

all other commutators being null.
We define the normal product

:V~z1!¯V~zN!: ~26!

as the product of the exponential operators where all exponentials for creation operators~including
Q! are written at the left of all exponentials for annihilation operators~includinga0!. Clearly, we
have

V~z1!¯V~zN!5)
i , j

~zi2zj !
b:V~z1!¯V~zN!:. ~27!

We define a vacuum stateuV& such that the action of all the annihilation operators uponuV& gives
zero,

anuV&50, n>0. ~28!

Now, the action of the operator exp(AbQ) ensures the charge conservation in the vacuum ex
tation values and defines a vacuum state forN particles as

eNAbQuV&5uV~NAb!&. ~29!

As a result of the above definitions, the ground state wave function is found to be

^V~NAb!uV~z1!¯V~zN!uV&5)
i , j

~zi2zj !
b, ~30!

and we naturally associate the vacuum stateuV(NAb)&, with b5 l /m, to the configuration of
‘‘composite particles’’ that describes the ground state~Fig. 2!.

The wave functions for the excited states of the Calogero–Sutherland Hamiltonian are
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Jl~zi ,b!)
i , j

~zi2zj !
b, ~31!

whereJl(zi ,b) is the symmetric, homogeneous Jack polynomial19 attached to the Young tableau
l that describes the momenta of the corresponding excited state. Now, in the bosonization
dure,

:V~z1!¯V~zN!:uV&5expFAb (
n.0

an
1

n S (
i 51

N

zi
nD G uV~NAb!&, ~32!

can be expanded in terms of Jack polynomials; this expansion defines a set of orthogona
al

1(b)uV(NAb)& such that

:V~z1!¯V~zN!:uV&5(
l

ANl~b!Jl~zi ,b!al
1~b!uV~NAb!&, ~33!

whereNl(b) is a normalization. As a consequence, the wave functions for excited states~31! may
be written as

1

ANl~b!
^V~NAb!ual~b!V~z1!¯V~zN!uV&. ~34!

From the facts that the configurations for ‘‘composite particles’’ are in a one-to-one c
spondence with the Young tableaux that describe the eigenstates of the Calogero–Sut
Hamiltonian, we may conclude that the orthogonal basisal

1(b)uV(NAb)& defines a representa
tion of the configurations for the ‘‘composite particles.’’ This representation is a momentum s
representation; the adjoint representation in the complexified position space is obtained fro
primary fieldsV(z) and their products.

The property that the statesal
1uV(NAb)& form an orthonormal basis is nontrivial. Another s

of symmetric, homogeneous polynomials that has this remarkable property is the set of
donald’s polynomials19 Ml(zi ,q,t). These polynomials depend of two parametersq and t5qb

and are generated from the vertex operators

:V~z1!¯V~zN!:uV&5(
l

ANl~q,t !Ml~zi ,q,t !al
1~q,t !uV~NAb!&, ~35!

whereNl(q,t) is a normalization. The vertex operators in~35! are defined as

V~z!5eAbQ expS (
n.0

A12tn

12qn

an
1

n
znD zAba0 expS 2 (

n.0
A12tn

12qn

an

n
z2nD . ~36!

In ~36!, the commutation relations between creation and annihilation operators are the sam
~24!–~25!. In the case wheret andq are real, the wave function for the ground state may be fo
as

^V~NAb!uV~z1!¯V~zN!uV&5)
i , j

S zj

zi
;qD

`

S t
zj

zi
;qD

`

)
j 51

N

zj
~N2 j !b , ~37!

where
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~x;q!n5 )
i 50

n21

~12qix!. ~38!

Let us make the following remark: ift5qk, kPN1 , and if q is real, then

^V~NAb!uV~z1!¯V~zN!uV&5)
i , j

)
r 50

k21

~zi2qrzj !, ~39!

and especially ifq→1, we getP i , j (zi2zj )
k.

When t andq are real, the wave functions for the excited states are obtained from

1

ANl~q,t !
^V~NAb!ual~q,t !V~z1!¯V~zN!uV&5Ml~zi ,q,t !)

i , j

S zj

zi
;qD

`

S t
zj

zi
;qD

`

)
j 51

N

zj
~N2 j !b .

~40!

For this system again, we may conclude that the orthonormal basisal
1(q,t)uV(NAb)& is a

momentum space representation of the configurations for the ‘‘composite particles.’’ The pr
fields V(z) and their products form an adjoint representation in the complexified position sp

IV. REPRESENTATION OF ‘‘COMPOSITE PARTICLES’’ IN POSITION SPACE FOR LÄ1

In this section, we wish to find a representation in position space forN5pm1r (0,r<m)
particles insidep ‘‘composite particles’’~1 one uncomplete!, the whole thing being defined at th
complexified coordinatez. In order to construct this representation, we use the vertex oper
introduced in Sec. III. Then, we apply and extend our results to the case whereN5pm61 with m
even and interpret the theory as a possible theory for the edge states of the quantum Hall e
filling factor n5p/(pm61).

We follow in our construction a similar approach as the one proposed in Ref. 10 by
Elburg and Schoutens. The quasihole with charge2e/N.0 and the electron with chargee,0 are
defined as mutually dual quasiparticles. More precisely, in the Calogero–Sutherland model
ity means the exchangeAb→21/Ab and has for consequence on the wave functions of
excited states that the Young tableauxl attached to the Jack polynomials are transformed intl̃
symmetric ofl with respect to its diagonal.

The authors of Ref. 10 consider mainly the case where the filling factor isn51/m; in Ap-
pendix A, they ‘‘briefly describe a quasiparticle formulation of the composite edge theories
responding to the filling fractionsn5p/(pm11) of the Jain series.’’ They consider that a co
venient basis should be one ‘‘which separates a single charged mode from a set of (p21) neutral
modes, the latter being governed by ansu(p)̂1 affine Kac–Moody symmetry.’’ This program i
achieved below@and extended to the case where the filling factor isn5p/(pm21)# by perform-
ing the limit introduced by Uglov:20 q→exp(2ip/p) in the model of Ruijsenaars–Schneider.

The electron is a ‘‘composite particles’’ built fromp bosonic ‘‘composite particles,’’ each
containingm ~even! quasiparticles1one extra quasiparticle@for n5p/(pm11)# or quasihole@for
n5p/(pm21)# as the uncomplete ‘‘composite particle’’ (r 51); while the electrons have
fermionic behavior in the exchange of their positions, the quasiparticles, and the quasiholes
in this exchange a behavior typical of a fractional statistic.

We define the vertex operators for the quasiholeh and the quasiparticlep as

Vh~z!5e2~1/Ab!Q expS 2 (
n.0

enxn
1/2~q,t !

an
1

n
znD •z2~1/Ab!a0 expS (

n.0
enxn

1/2~q,t !
an

n
z2nD ,

~41!
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Vp~z!5e~1/Ab!Q expS (
n.0

enxn
1/2~q,t !

an
1

n
znD •z2~1/Ab!a0 expS 2 (

n.0
enxn

1/2~q,t !
an

n
z2nD ,

~42!

wheret5qb, and

xn~q,t !5Uqn/22q2n/2

tn/22t2n/2 U. ~43!

The symbolen defines the determination of the square roots whenuqu5utu51. We chooseen

5ei (p/2)dn, wheredn50 or 1 depending on whether (qn/22q2n/2)/(tn/22t2n/2) is .0 or ,0. The
consequence of this choice is that

@enxn
1/2~q,t !#25

qn/22q2n/2

tn/22t2n/2 . ~44!

This choice is done in order to avoid absolute valuesu u and to preserve the analiticity inq and
t when summing overn in the calculation of the product of vertex operators.

The duality property can be implemented in the theory of Ruijsenaars–Schneider by sh
the variablez→qiz and by taking the product overi, as we show below. We define the verte
operators for a set ofN15pm1r quasiparticles and for a set ofpm quasiparticles andr quasi-
holes; we defineN25pm2r .0. By definition,

VN1
~z!5:Vp~q2~N121!/2z!Vp~q2~N123!/2z!¯Vp~q~N121!/2z!:, ~45!

VN2
~z!5:Vp~q2~N221!/2z!¯Vp~q~N121!/2z!Vh~q~N121!/2z!¯Vh~q~N211!/2z!:. ~46!

If we choose, respectively,t5qN6, that is,b5N6, we get

VN6~z!5eAbQ expS (
n.0

en
21xn

1/2~ t,q!
an

1

n
znD zAba0 expS 2 (

n.0
en

21xn
1/2~ t,q!

an

n
z2nD . ~47!

Clearly, theN6 quasiparticles are described by a vertex operator that is dual to the vertex op
for the quasihole. From~47!, we obtain the ground state wave functions,

^V~2AN6!uVN6
~z1!VN6

~z2!uV&5 )
k52~N621!/2

~N621!/2

~z12qkz2!, ~48!

where the sum overk is step one, allk’s are integers ifN is odd and are half-integers ifN is even.
The duality property gives

K VS AN62
1

AN6
D UVN6

~z1!Vh6
~z2!uV&5~z12z2!21 ~49!

while

K VS AN61
1

AN6
D UVN6

~z1!Vp6
~z2!uV&5~z12z2!. ~50!

If the quasiparticles and the quasiholes are not organized in ‘‘composite particles’’ we
take the limitq→1, and we obtain
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Vh6
~z!5e2~1/AN6!Q expS 2

1

AN6

(
n.0

an
1

n
znD z2~1/AN6!a0 expS 1

AN6

(
n.0

an

n
z2nD , ~51!

Vp6
~z!5e~1/AN6!Q expS 1

AN6

(
n.0

an
1

n
znD z~1/AN6!a0 expS 2

1

AN6

(
n.0

an

n
z2nD , ~52!

VN6
~z!5eAN6Q expS AN6 (

n.0

an
1

n
znD zAN6a0 expS 2AN6 (

n.0

an

n
z2nD . ~53!

By choosingt5qN6, the vertex operators for the quasiholes and for the quasiparticles becomN6

dependent so that they know that they belong to a set ofN1 quasiparticles or a set ofpm
quasiparticles andr quasiholes; in the limitq→1, ther quasiholes simply destroyr quasiparticles.
If 0 ,r<m, the vertex operatorsVN1

(z) provide a description of the ‘‘uncomplete compos
particles’’ alone, that is, forN1<m or p50. If we assign toVh6

(z) a charge11, the operator
Vp6

(z) has a charge21 and the operatorVN6
(z) has a charge2N6 .

We obtain the following operator products:

Vp6
~z1!Vp6

~z2!5~z12z2!1/N6:Vp6
~z1!Vp6

~z2!:, ~54!

VN6
~z1!VN6

~z2!5~z12z2!N6:VN6
~z1!VN6

~z2!:, ~55!

VN6
~z1!Vp6

~z2!5~z12z2!:VN6
~z1!Vp6

~z2!:, ~56!

and the ground state wave functions for theN1 quasiparticles or thepm quasiparticles and ther
quasiholes are

^V~2AN6!uVN6
~z1!VN6

~z2!uV&5~z12z2!N6. ~57!

This wave function has a zero of orderN6 at z15z2 ~x15x2 on the circle! that isN6 times the
vanishing property for one particle (N651).

Now, in the general case where thepm quasiparticles organize themselves inp ‘‘composite
particles’’ of m quasiparticles each, we must implement the fact that thep ‘‘composite particles’’
have an extra symmetryZp . This can be achieved using a formalism due to Uglov20 and that
consists in taking the limitq→exp(2ip/p) in ~41!, ~42!, and ~47! together witht5qN6. In this
limit we have in~48! a reorganization of the product overk by groupingm times a product ofp
quantities, times~or divided by! a product ofr quantities:

^V~2AN6!uVN6
~z1!VN6

~z2!uV&5~z1
p1~2 !N6z2

p!mF )
k52~r 21!/2

~r 21!/2

„z12~2 !mqkz2…G61

. ~58!

This is the ground state wave function for a ‘‘composite particle’’ ofN1 quasiparticles or ofpm
quasiparticles andr quasiholes (N25pm2r ).

We now decompose the vertex operators inp different modes: one charged mode andp
21) neutral modes. We write

en
21xn

1/2~qN6,q!→ek
21AN6, if n5kp, kPZ, ~59!

whereek5ei (p/2)dk with dk50 or 1 whether (N21)k is even or odd, and

en
21xn

1/2~qN6,q!5ek,s
21xs

1/2~q6r ,q!, if n5kp1s, s51,...,p21, kPZ, ~60!

whereek,s5ei (p/2)@(N621)k1ms1d6,s# with d6,s50 or 1 whether
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(q6rs/22q7rs/2)/(qs/22q2s/2) is .0 or ,0. We obtain the vertex operatorsVp6
(z) and

VN6
(z) as products ofp independent vertex operators,

VN6
~z!5..V6,0~zp!)

s51

p21

V6,s~zp!:, ~61!

Vp6
~z!5..V6,08 ~zp!)

s51

p21

V6,s8 ~zp!:, ~62!

with

V6,0~z!5eAN6 /pQ̄ expSAN6

p (
k.0

ek
21

Ak
1

k
zkD •zAN6 /pA0 expS 2AN6

p (
k.0

ek
21 Ak

k
z2kD ,

~63!

V6,s~z!5expS xs
1/2~q6r ,q!

Ap
(
k>0

ek,s
21

Ak1s/p
1

k1s/p
zk1s/pD

•expS 2
xs

1/2~q6r ,q!

Ap
(
k>0

ek,s
21 Ak1s/p

k1s/p
z2~k1s/p!D , ~64!

V6,08 ~z!5e~1/ApN6!Q̄ expS 1

ApN6

(
k>0

ek

Ak
1

k
zkD •z~1/ApN6!A0 expS 2

1

ApN6

(
k>0

ek

Ak

k
z2kD ,

~65!

V6,s8 ~z!5expS xs
1/2~q,q6r !

Ap
(
k>0

ek,s

Ak1s/p
1

k1s/p
zk1s/pD

•expS 2
xs

1/2~q,q6r !

Ap
(
k>0

ek,s

Ak1s/p

k1s/p
z2~k1s/p!D . ~66!

In ~63!–~66! we defined the creation and annihilation operatorsAk1s/p , Ak1s/p
1 , andQ̄ as

akp1s5ApAk1s/p , ~67!

akp1s
1 5ApAk1s/p

1 , ~68!

Q5
1

Ap
Q̄, ~69!

so that

@Ak1s/p ,Ak81s8/p
1

#5~k1s/p!dk,k8ds,s8 , ~70!

@A0 ,Q̄#51. ~71!

It is clear that the operatorsV6,s(z) andV6,s8(z8) @as well asV6,s8 (z) andV6,s8
8 (z8)# commute

for sÞs8. The operatorV6,0(z) has a charge1N6 if the operatorV6,08 (z) has a charge11. The
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remaining (p21) operatorsV6,s(z) @or V6,s8 (z)# are neutral. It is interesting to note thatVN6
(z)

andVp6
(z) in ~61! and ~62! are really functions ofzp; this will be commented on later.

From ~63! and ~65!, we successively obtain for the charged mode

V6,0~z1!V6,0~z2!5„z11~2 !N6z2…
N6 /p:V6,0~z1!V6,0~z2!:, ~72!

V6,08 ~z1!V6,08 ~z2!5„z11~2 !N6z2…
1/pN6:V6,08 ~z1!V6,08 ~z2!:, ~73!

V6,0~z1!V6,08 ~z2!5~z12z2!1/p:V6,0~z1!V6,08 ~z2!:. ~74!

Similarly, using the relation

(
k>0

xk1s/p

k1s/p
52 (

u50

p21

q2us ln@12qux1/p#, s50,...,p21, ~75!

whereq5exp(2ip/p), we obtain for all the neutral modes,

W6~z!5 )
s51

p21

V6,s~z!, W68 ~z!5 )
s51

p21

V6,s8 ~z!, ~76!

the relations

W6~z1!W6~z2!5~z11~2 !N6z2!7r /pF )
k52~r 21!/2

~r 21!/2

„z1
1/p2~2 !mqkz2

1/p
…G61

•:W6~z1!W6~z2!:,

~77!

W68 ~z1!W68 ~z2!5„z11~2 !N6z2)71/pr )
k52~r 21!/2

~r 21!/2

)
u50

p21

@z1
1/p2~2 !mqk1uz2

1/p#6rr ~u!

•:W68 ~z1!W68 ~z2!:, ~78!

where

r r~u!5
1

p (
s50

p21

q2us

sin2S ps

p D
sin2S prs

p D ~79!

and

W6~z1!W68 ~z2!5
@z1

1/p2z2
1/p#

~z12z1!1/p :W6~z1!W68 ~z2!:. ~80!

We now specify the special case whereN65pm61 ~m even! and justify the application to
the fractional quantum Hall effect with filling factorn5p/(pm61). Hopefully, the above result
simplify greatly atr 51 sincer1(u)5du,0 . The vertex operator for the electron is defined as

VN6
~z!5..eApm61/pf0~zp!1~e6

21/Ap!(s51
p21fs~zp!:. ~81!

The vertex operator for the quasiparticle is defined as

Vp6
~z!5..eA1/p~pm61!f0~zp!1~e6 /Ap!(s51

p21fs~zp!:. ~82!
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The vertex operator for the quasihole is defined as

Vh6
~z!5..e2A1/p~pm61!f0~zp!2~e6 /Ap!(s51

p21fs~zp!:, ~83!

wheree65ei (p/2)d6 with d150 andd251. In ~81!–~83!, f0(z)5f0
1(z)1f0

2(z), with

f0
1~z!5Q̄1 (

k.0

Ak
1

k
zk, f0

2~z!5A0 ln z2 (
k.0

Ak

k
z2k, ~84!

so that

@f0
2~z1!,f0

1~z2!#5 ln~z12z2!. ~85!

Similarly, fs(z)5fs
1(z)1fs

2(z) with

fs
1~z!5 (

k>0

Ak1s/p

k1s/p
z~k1s/p!, s51,...,p21,

~86!

fs
2~z!52 (

k>0

Ak1s/p

k1s/p
z2~k1s/p!, s51,...,p21,

so that

@fs
2~z1!,fs8

1
~z2!#5ds,s8(

u50

p21

q2us lnF12quS z2

z1
D 1/pG , ~87!

and, consequently,

F (
s51

p21

fs
2~z1!, (

s851

p21

fs8
1

~z2!G5 lnF @z1
1/p2z2

1/p#p

~z12z2!
G . ~88!

We obtain the ground state wave functions for the electrons, the quasiparticles, an
quasiholes as

^V~2AN6!uVN6~z1!VN6~z2!uV&5~z1
p2z2

p!m~z12z2!61. ~89!

We note that atp51, we obtain the so-called Laughlin wave function,

K VS 2

AN6
D UVp6~z1!Vp6~z2!uV&5~z1

p2z2
p!7m/pm61~z12z2!61, ~90!

K VS AN61
1

AN6
D UVN6~z1!Vp6~z2!uV&5~z12z2!, ~91!

K VS AN62
1

AN6
D UVN6~z1!Vh6~z2!uV&5~z12z2!21. ~92!

The electron wave function is antisymmetric in the exchangez1↔z2 while the quasiparticle
and the quasihole behave in this exchange according to the fractional statistic described
exchange angle,
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u

p
5612

6m

pm61
. ~93!

If we define

m85
7m

pm61
, ~94!

we have the relation

pm8615
1

pm61
~95!

which is another manifestation of the duality between the electron and the quasihole. If the
of the electron ise, then the charge of the quasiparticle ise* 5e/N65e/(pm61)56e(1
2mn), where we introduce the filling ration5p/N65p/(pm61). TheU(1) charge comes from
the field f0(z) while the (p21) remaining modesfs(z) are neutral. The charged sector
described by a Calogero–Sutherland model withb51/n; the neutral sectors are described
Calogero–Sutherland models withb51/6p and without the zero mode~the termsQ̄ andA0!.

Let us mention here that we concentrated on the ground state wave function for two
‘‘composite particles,’’ but the expansion of the products of vertex operators may provid
wave functions for the various excited states and for several set of ‘‘composite particle
different complexified coordinateszi .

Let us close this section by trying to understand the relation between the fieldsfs(z), s
50,...,p21 and thep fields usually introduced in the Luttinger liquid in order to describe the e
states of the quantum Hall effect. According to Wen,21

Sedge5
1

4p E dt dx (
I ,J51

p

@KIJ ] tw Ĩ ]xw J̃2VIJ ]xw Ĩ ]xw J̃#, ~96!

whereV is a positive definite matrix which describes the velocity of the edge excitations,
where thep3p matrix KIJ5m1d I ,J . The kinetic part of the Lagrangian disappears in the Ham
tonian,

Hedge5
1

4p E dt dx (
I ,J51

p

VIJ ]xw Ĩ ]xw J̃. ~97!

However, the kinetic part of the Lagrangian is responsible for the canonical quantization
system. The matrixKIJ is cyclic with eigenvaluesl05pm11 andls51, s51,...,p21. We may
diagonalize the kinetic part by Fourier transforming it,

w Ĩ5
1

p (
s50

p21

q2sIws , ~98!

with q5exp(2ip/p). The kinetic part of the Lagrangian becomes

L5
pm11

p
] tw0 ]xw01

1

p (
s51

p21

] tws ]xwp2s , ~99!

so that the conjugate momenta are

p05
pm11

p
]xw0 , ps5

1

p
]xwp2s . ~100!
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The equal time commutators,

@ws~x,0!,ps8~y,0!#5 ids,s8d~x2y!, ~101!

give

@w0~x,0!,w0~y,0!#52
i

2

p

pm11
e~x,y!,

~102!

@ws~x,0!,ws8~y,0!#52
i

2
ds11s8,0 p e~x,y!,

or, equivalently,

@cs~x,0!,cs8~y,0!#5 ipds1s8,0 e~x2y!, ~103!

with

c0~x,t !5 iA2pApm11

p
w0~x,t !,

~104!

cs~x,t !5 iA2pA1

p
ws~x,t !, s51,...,p21.

If we split cs(x,0) into annihilation and creation parts and the distributione(x2y) accordingly,
we get

@cs
2~x,0!,cs8

1
~y,0!#5ds1s8,0 ln~e2ip~x/L !2e2ip~y/L !!, ~105!

whereL is a regulator and2L/2<x2y<L/2.
For s5s850, the commutator~105! is the same than the commutator~85!. Consequently, the

fieldsf0(z) andcs(x,0) are unitarily equivalent. The main difference between Wen’s theory
our results is that the fieldscs(x,0) are equally charged@as can be seen from~105!# for s
50,...,p21, while our fieldsfs(z) are neutral fors51,...,p21. One way of recovering one
charged field andp21 neutral fields from Wen’s fieldscs(x,0) should be to distinguish in thei
Fourier decomposition and in the decomposition of

e~x2y!5
1

ip F (
nÞ0

1

n
e2ipn@~x2y!/L#12ip

x2y

L G , ~106!

the various modesn5kp andn5kp1s, s51,...,p21, but this is exactly what we have done.
In Refs. 22–23, the authors introduce an extra transformationz→z1/p, which is suggested by

the fact that the vertex operatorsVN6
(z), Vp6

(z), andVh6
(z), in ~81!–~83! are functions ofzp.

As a consequence, the wave functions~and the Greens functions! become multivalued; however
this transformation allows a reinterpretation of the results in terms of twisted conformal
theory.24 In this method the fieldsfs(z) are introduced by hands using the properties of confor
field theory; in our method the fields come naturally from Calogero–Sutherland and Ruijsen
Schneider theory via the specific limitq→exp(2ip/p), which fits perfectly well the idea of ‘‘com-
posite particles.’’ In Ref. 23, the authors conclude that ‘‘any non-null wave function can be w
as cluster ofp one-electrons fields;’’ clearly, our approach runs the other way round, from ‘‘c
posite particles’’ to conformal field theory.
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Fractional statistic
M. C. Bergère
CEA/Saclay, SPht, Orme des Merisiers, F-91191 Gif Yvette Cedex, France

~Received 2 August 1999; accepted for publication 2 May 2000!

We improve Haldane’s formula which gives the number of configurations forN
particles ond states in a fractional statistic defined by the couplingg5 l /m. Al-
though nothing is changed in the thermodynamic limit, the new formula makes
sense for finiteN5pm1r with the p integer and 0,r<m. A geometrical inter-
pretation of fractional statistic is given in terms of ‘‘composite particles.’’ ©2000
American Institute of Physics.@S0022-2488~00!01309-8#

I. INTRODUCTION

Fractional statistic was proposed by Haldane1 as a generalization of Fermi–Dirac statist
where Pauli exclusion principle is replaced by a more general exclusion principle;g states are
needed to add one more particle to the system. Clearly,g50 or 1 corresponds respectively t
bosons or fermions statistics; however, this new statistic is not restricted to integer values ofg. For
instance, ifg51/m, the exclusion principle tells thatm particles can be added to the system on
single state. More generally, ifg5 l /m the fractional statistic means thatl states are needed to ad
m particles to the system. Of course, this interpretation makes sense for a large number of p
and states~thermodynamic limit!; however, a microscopic interpretation is difficult to realize a
for instance, we would like to understand what happens if we add one more particle only
system since in that case an additional fractional number of states is meaningless. In
Polychronakos tried to answer this question by arranging the states on a one-dimensiona
lattice with the restriction that any two particles be at leastg sites apart (g integer!; although this
modifies the combinatoric in the microscopic regime, it gives back Haldane’s statistic in
thermodynamic limit. Unfortunately, his proposition together with the assumption of factoriz
ity of the partition function lead necessarily to negative weights for some configurations~this fact
was also observed before by Nayak and Wilczek3 for g51/2). Later on, Chaturvedi and
Srinivasan4 showed that the fractional statistic was not compatible with the factorizability of
partition function. Forg51/2 and for an odd number of particles, they calculated the pos
fractional weight for any configuration. More recently Murthy and Shankar5 explained that all
configurations were nota priori allowed in the fractional statistic and they determine the c
straints which define the possible configurations. For sake of symmetrization over all confi
tions these constraints can be forgotten at the price of introducing positive fractional weights
calculated these weights forg51/2 with an odd number of particles~in agreement with the result
of Ref. 4! and forg51/3 with a number of particlesN53p11.

In this publication, we improve Haldane’s formula which gives the number of possible
figurations forN particles overd states without changing its thermodynamic limit; then, we g
a geometrical interpretation of fractional statistic for any number of particles and states
geometrical interpretation generalizes to allg5 l /m, to all number of particlesN and to all number
of statesd, the constraints of Ref. 5 over the allowed configurations. Finally, by symmetriza
over the configurations, we calculate the fractional weights in full generality.

Given a set of states with energye i and chemical potentialm, we define the variables

xi5exp~2b~e i2m!!, ~1!

whereb is the inverse temperature 1/T. Then, the partition function for the bosonic statistic is
72520022-2488/2000/41(11)/7252/11/$17.00 © 2000 American Institute of Physics

                                                                                                                



s

qual

ura-
r of

7253J. Math. Phys., Vol. 41, No. 11, November 2000 Fractional statistic

                    
Z~x1 , . . . ,xd!5)
i 51

d
1

12xi
5(

$pi %
x1

p1 . . . xd
pd, ~2!

where we sum over all integerspi>0. If all energies are equal, the partition function become

Z~x!5
1

~12x!d
5 (

N50

`

Cd1N21
N xN, ~3!

whereCd1N21
N is the number of configurations forN particles andd states. Similarly, the partition

function for the fermionic statistic is

Z~x1 , . . . ,xd!5)
i 51

d

~11xi !5 (
$pi50,1%

x1
p1

• • • xd
pd ~4!

and with equal energies we get

Z~x!5~11x!d5 (
N50

`

Cd
NxN. ~5!

Now, the partition function for Haldane’s fractional statistic when all energies are e
(e i5e;xi5x) is defined as

Z~x!5 (
N50

`

Gd
N~g!xN, ~6!

whereg is a rationall /m and where the number of configurations forN particles ond states is
given by

Gd
N~g!5Cd1(12g)(N21)

N . ~7!

The above statistic interpoles between the bosonic statistic (g50) and the fermionic statistic
(g51). Of course,Gd

N(g) must be an integer number since it represents a number of config
tions. However, wheng5 l /m, the above formula has a meaning only if we restrict the numbe
particles to be of the form

N5pm11 ~8!

(p integer! because of the factorial function included in theC symbol ~an analytic continuation
using the EulerG function is wrong since it gives a fractional number of configurations!. Usually,
this statistic is understood in the largeN and larged case~thermodynamic limit! where we define
the average number of particles per state as

n5 lim d→`
N̄

d
, ~9!

where N̄ is defined as the extremum overN of @Gd
N(g)xN# ~in this calculation, lg(N!)

;N lg(N/e)for largeN). It is found that

n5
1

W~x,g!1g
,

1

g
, ~10!

whereW(x,g) is a positive quantity which satisfies the equation6–9
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Wg~11W!12g5
1

x
. ~11!

At small temperature (T→0) and whene,m the quantityW→0 so that the average number
particles per energy leveln→ 1/g.

One purpose of this contribution is to generalize Haldane’s fractional statistic to all num
of particles

N5pm1r , 0,r<m. ~12!

In the next section, we give a geometrical interpretation to the fractional statistic for anyN and any
d and we prove that the corresponding number of possible configurations for a giveng5 l /m is
given by the following function:

Fd
N~ l ,m!5Cd1N212 lE(~N21/m!)

N , ~13!

where the function ‘‘integer part’’ is such thatE((N21/m))5p.
This fractional statistic gives the bosonic statistic forl 50, the fermionic statistic forl 5m

51 and Haldane’s fractional statistic forN5pm11. Of course, forN large, the effect of the
function ‘‘integer part ’’disappears and we get back the average number of particles per stan as
given by ~10! and Ouvry’s equation~11!. It is interesting to note that forg51, we obtain the
fermionic statistic only ifl 5m51, but we obtain different statistics ifl 5m5k although they all
coincide in the thermodynamic limit.

The general idea for the geometrical interpretation is to take seriously for any finite numb
particlesN, an organization containingp ‘‘composite particles’’~set of m particles and at leas
( l 21) empty states! plus one uncomplete ‘‘composite particle’’ containingr particles and any
number of empty states. When we symmetrize this picture over all states, we obtain a stat
(p11) ‘‘composite particles’’ with fractional weights for each configuration. Let us try to cla
this point.

In the bosonic statistics with states of different energye i , the partition function may be
written as~2! where we sum over all possible monomialsx1

p1 . . . xd
pd with weight 1 for all mono-

mials. In the fermionic statistic, the monomials are such thatpi50, 1 for all i 51, . . . ,d so that
the weight for a given monomial is 1 or 0 accordingly. Of course, for these two statistics
partition functionZ(x1 , . . . ,xd) is symmetric in the variablesxi , and is factorizable as

Z~x1 , . . . ,xd!5)
i 51

d

Z~xi !. ~14!

It is now known4,5 that for the fractional statistic, the partition function is not factorizab
After Chaturvedi and Srinivasan, we write

Z~x1 , . . . ,xd!5(
$pi %

f ~p1 , . . . ,pd!x1
p1 . . . xd

pd , ~15!

where the weightsf (p1 , . . . ,pd) are >0 and symmetric. Since we generate in~15! symmetric
polynomials, we may introduce the set of homogeneous symmetric polynomials

Ml~x!5( x1
l1

• • • xd
ld ~16!

attached to a given Young tableaul and where the sum runs over all distinct permutations
(l1 , . . . ,ld). The surfaceulu of the Young tableau represents the numberN of particles. Then
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Z~x1 , . . . ,xd!5(
l

f lMl~x!. ~17!

For the bosonic statisticf l51 for all l and for the fermionic statisticf l51 for l5$1N% and
0 otherwise. For the fractional statistic, the weightsf l are fractional.

These weights have been determined forg51/2 andN52m11 by Chaturvedi and Srini-
vasan; they were also obtained forg51/2,1/3 andN52p11,3p11, respectively, by Murthy and
Shankar who mentioned the existence of an algorithm to calculatef l for arbitrary g51/m and
N5pm11.

In Sec. II, we give a geometrical interpretation of the fractional statistic which leads t
intermediate nonsymmetric partition function and we calculateFd

N(g) for this construction. In Sec
III, we symmetrize the result of Sec. II and calculate the corresponding weightsf l .

II. GEOMETRICAL CONSTRUCTION OF THE INTERMEDIATE UNSYMMETRIC
PARTITION FUNCTION

Let us give ourselfd states which can be drawn from the top first level to the bottomdth level.
Let us give ourselfN5pm1r (0,r<m) particles to be placed on thed states in the following
way:

We define a ‘‘composite particle’’ as a set ofm particles andd> l states with the constrain
that the (l 21) bottom states are empty and thel th state~from the bottom! has at least one particle
We define an uncomplete ‘‘composite particle’’ as a set of 0,r<m particles with no constrain
on the empty states. The situation is described in Fig. 1 with (p11) ‘‘composite particles,’’ the
uncomplete one being placed at the bottom. Clearly, the main constraint in this construction
a nonempty state is entirely included inside a ‘‘composite particle’’ and cannot be splitted
several ‘‘composite particles’’~as shown in Fig. 2!.

We now calculate the number of possible configurations for a given choice ofN,d,l ,m. We
first consider the uncomplete ‘‘composite particle’’ withr particles ondp11 states. Sincer<m
and since the empty states have no constraint, the uncomplete ‘‘composite particle’’ sati
bosonic statistic and the number of possible configurations is

Cdp111r 21
r . ~18!

We now consider a ‘‘composite particle;’’ once the (l 21) empty bottom states are fixed, w
have a bosonic statistic form particles ond2( l 21) states but we have to subtract the number
configurations where there is no particle on thel th state. The number of possible configuratio
for a ‘‘composite particle’’ is

Cd2 l 1m
m 2Cd2 l 1m21

m 5Cd2 l 1m21
m21 . ~19!

Consequently, givenp ‘‘composite particles’’ withd i states satisfying

d i> l , i 51, . . . ,p, ~20!

and given one uncomplete ‘‘composite particle’’ withdp11 states satisfying

dp11>1, ~21!

such that the total number of states is

(
i 51

p11

d i5d. ~22!

Then, the total number of possible configurations is
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Fd
N~ l ,m!5(

$d i %
Cdp111r 21

r )
i 51

p

Cd i2 l 1m21
m21 , ~23!

where we sum over alld i ’s defined above. To perform this sum, we proceed as usual. We d
the functional

F~z1 , . . . ,zp11!5(
$d i %

Cdp111r 21
r zp11

dp1121 )
i 51

p

Cd i2 l 1m21
m21 zi

d i2 l , ~24!

where the sums over the variablesd i satisfy ~20!, ~21! and run to`. We get

F~z1, . . . ,zp11!5
1

~12zp11!r 11)i 51

p
1

~12zi !
m

. ~25!

FIG. 1. p ‘‘composite particles’’ form53, l 52.
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If we choose all variableszi5z, we get

(
d5pl11

`

Fd
N~ l ,m!zd2pl215

1

~12z!N11
5 (

n50

`

CN1n
N zn. ~26!

By identification inz and becausep5E((N21/m)) we proved that the above organization of t
particles in ‘‘composite particles’’ leads to a statistic defined by

Fd
N~ l ,m!5Cd1N212 lE(~N21/m!)

N . ~27!

We now construct the partition function forN particles. To each statei we associate a variabl
xi( i 51, . . . ,d). Then, each allowed configuration defines a monomialx1

p1 . . . xd
pd, wherepi is the

occupation number of the statei. The above geometrical construction means that the part
function is

ZN~x1 , . . . ,xd!5 (
$pi %PL

x1
p1

• • • xd
pd. ~28!

The setL of possiblepi ’s is defined by three constraints,
(1°)

(
i 51

d

pi5N, ~29!

(2°) let

p i5(
j < i

pj i 51, . . . ,d, ~30!

then,

$m,2m, . . . ,pm%#$p i%, ~31!

whereN5pm1r (0,r<m).
(3°) we consider the indices (i 1 , . . . ,i p) such thatp i q

5qm, then

pi q115pi q125 • • • 5pi q1 l 2150, q51, . . . ,p. ~32!

FIG. 2. Forbidden configuration form53.
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We proved above that the number of monomials defined byL is Fd
N( l ,m).

The partition function in~28! is an intermediate partition function which is nonsymmetric
the variablesx1 , . . . ,xd . A nonsymmetric partition function does not seem to contradict
principle of thermodynamic; however, we may have to deal with physical systems where sy
trization is needed without changing the total number of configurations. Then, fractional we
is a consequence of the symmetrization procedure described in next section. Before closi
section, let us make two remarks.

(1°) We are now in position to answer the question: how many states do we need if w
one particle to the system? Let us consider a system withN5pm11 particles and (l 21)p empty
states. Adding one more particle does not necessarily change the number of states as it co
partly the uncomplete ‘‘composite particle’’~from r 51 to r 52). Adding (m21) particles does
not necessarily change the number of states for the same reason. Now, ifN5pm1m, adding one
more particle takesl extra states: (l 21) empty states to form the new ‘‘composite particle’’ an
one more state to receive the added particle. Altogether, addingm particles toN particles takes at
leastl extra states.

(2°) In the thermodynamic limit whenN and d→` and in the zero temperature limitT
→0, the average occupation number per staten→1/g5m/ l . This situation occurs only when a
‘‘composite particles’’ have (l 21) empty states and one state withm particles.

III. FRACTIONAL WEIGHTS

We wish to transform the partition function~28! into the symmetric form

ZN~x1 , . . . ,xd!5 (
$l,ulu5N%

f l Ml~x1 , . . . ,xd!, ~33!

where the symmetric polynomialMl(x1 , . . . ,xd) is defined in~16! and in such a way that the tota
number of configurations forN particles ond states is unchanged,

ZN~1, . . . ,1!5Fd
N~ l ,m!. ~34!

Clearly, the weightsf l are the ratio between the number of monomials ofMl which belong
to L ~defined in Sec. II! and the total number of monomials inMl . This last number is known to
be

Ml~1, . . . ,1!5
d!

q0!q1!q2! . . . qm!
5Cd

q0@q1 , . . . ,qm#, ~35!

whereqi is the number of rows of lengthi in l ~that is the number of states withi particles!, and
where the symbol@q1 , . . . ,qm# is

@q1 , . . . ,qm#5
~( i 51

m qi !!

) i 51
m qi !

. ~36!

The numbersqi satisfy two relations,

(
i 50

m

qi5d, ~37!

(
i 51

m

i qi5N. ~38!

The problem of finding how many monomials ofMl are inL is much more elaborate and
treated in the Appendix. Let us simply describe the result,
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f l5
@ t1 , . . . ,tK(m)#) i 51

p Cm i
Fn f 0

@q1 , . . . ,qm#
, ~39!

where f 0 is related to the statistic of the empty states,

f 05
Cq0

( l 21)p

Cd
( l 21)p

5
Cd2( l 21)p

q02( l 21)p

Cd
q0

. ~40!

In ~39!, the integerst i , Cm i
, andFn are independent of the empty states so that we may de

them in a system wherel 51 andq050. In that case, each ‘‘composite particle’’i defines a Young
tableaum i ; for each Young tableau, we define the set of integersr 1 , . . . ,r m corresponding to the
number of rows with length 1,. . . ,m ~that is the number of states with 1,. . . ,m particles! and
satisfying

(
i 51

m

ir i5m. ~41!

Then,

Cm i
5@r 1 , . . . ,r m#. ~42!

Similarly, the uncomplete ‘‘composite particle’’ defines a Young tableaun such that the corre-
sponding multiplicitiess1 , . . . ,sr satisfy

(
i 51

r

isi5r . ~43!

Then,

Fn5@s1 , . . . ,sr #. ~44!

Finally, we denote byK(m) the number of Young tableaux of surfacem and byt1 , . . . ,tK(m) the
multiplicities in the chosen set$m1 , . . . ,mp,(n if r 5m)%. These multiplicities satisfy

(
i 51

K(m)

t i5ES N

mD . ~45!

Then, a combinatorial factor@ t1 , . . . ,tK(m)# is generated in~39! when we symmetrize over th
‘‘composite particles’’~and eventually over the uncomplete one ifr 5m).

We now calculate the weightsf l by application of the formula~39! to four simple examples
(1°) The caseN<m:
In this case,p50 so thatf 051. Also, we haveE(N/m)50 or 1 so that@ t1, . . . ,tK(m)#51.

Finally, si5qi (qr 115•••5qm50) so that@s1 , . . . ,sr #5@q1 , . . . ,qm#. Consequently, allf l

51 and we are in a bosonic situation.
(2°) The casem51:
In this case, there exists only one possible Young tableau so that@r 1#5@s1#5@q1#5@ t1#

51. In that case,f l5 f 0 depends only of the statistic of the empty states.
(3°) The casem52:
In this case, we have two Young tableaux satisfying@0,1#5@2,0#51; clearly, @s1 ,s2#51

whetherr 51 or 2. The total number of Young tableaux@0,1# is given byt25q2 so that@ t1 ,t2#

5CE(N/2)
q2 . Consequently,
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f l5
CE(N/2)

q2 f 0

Cq11q2

q2
. ~46!

If l 5r 51, we obtain the results of Refs. 4 and 5.
~4°) The casem53:
In this case, we have three Young tableaux satisfying@0,0,1#5@3,0,0#51 and@1,1,0#52. On

the other hand,@s1 ,s2 ,s3#51 for r 51 or 2. The total number of tableaux@0,0,1# is t35q3 , the
total number of tableaux@1,1,0# is t25q2 if r 51 or 3, while it is t25q221 if r 52 and
@s1 ,s2#5@0,1#. Consequently,

f l5
@E~N/3!2q22q31h,q22h,q3#2q22h f 0

@q1 ,q2 ,q3#
, ~47!

whereh51 if r 52 and@s1 ,s2#5@0,1# and 0 otherwise. Again, forl 5r 51, we obtain the result
of Ref. 5.
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APPENDIX

We now calculate the number of monomials ofMl(x1 , . . . ,xd) which are generated by th
geometrical construction of Sec. II, that is, the number of monomials which belong toL defined
in ~29!–~32!.

The generating functional for at mostm particles on one state can be written as

F~a,x!5a01a1x1 . . . 1amxm. ~A1!

More generally, the generating functional for at mostm particles per state overd states is

)
i 51

d

F~a,xi !5 (
lP[d* m]

al1
. . . ald

Ml~x1 , . . . ,xd!, ~A2!

where we sum over all Young tableauxl inside the rectangle@d * m#.
At this stage, we find useful to introduce the multiplicitiessi which is the number of rows o

length i in l; these multiplicities satisfy

(
i 50

m

si5d, ~A3!

(
i 51

m

isi5ulu. ~A4!

Then,

)
i 51

d

F~a,xi !5 (
lP[d* m]

)
i 50

m

a i
si Ml~x1 , . . . ,xd!. ~A5!

The generating functional which gives the number of monomials is
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@F~a,x!#d5 (
lP[d* m]

@s0 , . . . ,sm# )
i 50

m

a i
si xulu, ~A6!

where the symbol@s0 , . . . ,sm#5Ml(1d) is given in ~36!.
In the following, we introduce a generating functional for each ‘‘composite particle’’ and

for the uncomplete ‘‘composite particle.’’ To simplify the writing, we define the generating fu
tional F(a,x) which takes into account any number of states

F~a,x!5 (
d50

`

@F~a,x!#dyd5
1

12F~a,x!y
, ~A7!

and we find convenient to expand it under the form,

F~a,x!5 (
n50

`
~a1x1•••1amxm!nyn

~12a0y!n11
, ~A8!

so that the empty states get separated from the others. In order to describe ther particles of the
uncomplete ‘‘composite particle,’’ we must collect in~A8! all terms inxr . We get

F r~a!5 (
$n,unu5r %

@s1 , . . . ,sr #)
i 51

m

a i
si

yn(n)

~12a0y!n(n)11
, ~A9!

where we sum over the Young tableauxn with multiplicities si satisfying

(
i 51

r

isi5r , ~A10!

(
i 51

r

si5n~n!. ~A11!

An expansion iny of ~A9! gives for the term inyd the same result as~A6! restricted toulu5r . We
now describe the ‘‘composite particle’’ from the generating functional

a0
l 21 ~a1x1 . . . 1amxm! @F~a,x!#d2 l yd ~A12!

which takes into account the specific structure of the ‘‘composite particle.’’ After summation
d from l to `, we obtain the corresponding functional

C~a,x!5
a0

l 21~a1x1 •••1amxm! yl

12F~a,x! y
~A13!

which may also be expanded as

C~a,x!5 (
n50

` a0
l 21~a1x1•••1amxm!n11yn1 l

~12a0y!n11
. ~A14!

Consequently, the ‘‘composite particle’’ withm particles has for generating functional

Cm~a!5a0
l 21 (

$m,umu5m%
@r 1 , . . . ,r m#)

i 51

m

a i
r i

yn(m)1 l 21

~12a0y!n(m)
, ~A15!

where we sum over the Young tableauxm with multiplicities r i satisfying
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(
i 51

m

ir i5m, ~A16!

(
i 51

m

r i5n~m!. ~A17!

The generating functional forp ‘‘composite particles’’ and one uncomplete ‘‘composite pa
ticle’’ with r particles is given by

Cm
p ~a!F r~a!5a0

( l 21)p (
$m1 ,..,mp ,n%

Fn )
i 51

p

Cm i )i 51

m

a i
qi

yd2q01p( l 21)

~12a0y!d2q011
, ~A18!

whereCm i
5@r 1 , . . . ,r m# for the Young tableaum i ,Fn5@s1 , . . . ,sr #for the Young tableaun and

where theqi ’s are defined in~37!,~38!. If we develop~A18! in powers ofy to get the term inyd,
whered is the total number of states, we obtain for the total number of monomials correspo
to the chosen set of Young tableaux$m1 , . . . ,mp ,n%,

Cd2( l 21)p
q02( l 21)p (

$m1 , . . . ,mp ,n%
Fn )

i 51

p

Cm i . ~A19!

Finally, any permutation of the tableauxm i ~and eventuallyn if r 5m) contributes as well to the
monomials ofMl(x1 , . . . ,xd) which belong toL; these permutations generate a combinato
factor equal to@ t1 , . . . ,tK(m)#, whereK(m) is the number of Young Tableaux with surfacem and
the integerst i are their multiplicities~satisfying ~45!! in the chosen set$m1 , . . . ,mp ,(n if
r 5m)%. This ends the calculation off l as given in~39!.
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Superheating field for the Ginzburg–Landau equations
in the case of a large bounded interval
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We study the asymptotic behavior of the local superheating field for a film of width
2d in the regimek small, kd large, wherek is the Ginzburg–Landau parameter.
This gives a mathematical justification for the introduction of the semi-infinite
model as a good approximation for this regime. ©2000 American Institute of
Physics.@S0022-2488~00!03310-7#

I. INTRODUCTION

This paper is devoted to the study of the superheating field for a superconducting film
mitted to an exterior magnetic field. According to the characteristick of the material, the thicknes
of the film and the intensity or direction of the exterior magnetic field, the film can be in diffe
states, in particular in the normal state or in the superconducting state. A state is a physica
it is stable or metastable. These stable or metastable states are characterized by the globa
minima of a functional, denoted byDGh( f ,A), called the Ginzburg–Landau functional, wit
respect to a wave functionf and to the inner magnetic potentielA. This functional is invariant by
change of gauge. We shall recall its definition later in a particular context.

When the exterior magnetic field is parallel to the surface of the film, a modelizatio
Ginzburg and Landau1 ~see also Ref. 2! reduces the problem to a one-dimensional problem on
interval @2d,d# whered is proportional to the thickness of the film and where the wave func
f is supposed to be real. A particular choice of the gauge gives an inner magnetic potentiel
has only one nonzero component, denoted also byA, and defined on@2d,d#.

The GL functional is then defined by

~ f ,A!°DGh~ f ,A!5E
2d

d F1

2
f 42 f 21k22f 821 f 2A21~A82h!2Gdx.

When the width of the film is large~in the sense thatkd is large!, a slighty different modelization
is considered, which was first introduced by Ginzburg3 and which is usually called the superco
ducting half-space.

The main objective of this paper is to justify this last model in the study of the superhe
field whenk tends to 0 or to1`, in the regime whenkd is large. For this purpose, and as w
done for the superconducting half-space model, we restrict the problem to the research osym-
metric solutions. By symmetric solutions we mean solutions (f ,A) such thatf is even andA odd.
Hence, we reduce the study to the interval ]2d,0@ and then to ]0,d@ by a translation~the edge of
the film is then in 0!. A reduced Ginzburg–Landau functional,«d , is then defined by

«d~ f ,A!5E
0

dF1

2
f 42 f 21k22f 821 f 2A21~A82h!2Gdx, ~1.1!

a!Electronic mail: Catherine.Bolley@ec-nantes.fr
b!Francoise.Foucher@ec-nauter.fr
c!Bernard.Helffer@math.u-psud.fr
72630022-2488/2000/41(11)/7263/27/$17.00 © 2000 American Institute of Physics
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for the pairs (f ,A) of (H1(#0,d@))2 such thatA(d)50.
For (k,d,h)P(#0,1`@)3, the equations expressing the necessary conditions to have m

of «d( f ,A) are called Ginzburg–Landau equations. They are denoted by (GL)d
s and are given by:

~GL!d
s 5

~1! 2k22f 92 f 1 f 31A2f 50 on ]0,d[

~2! 2A91 f 2A50 on ]0,d[

~3! f 8~0!50, f 8~d!50

~4! A8~0!5h, A~d!50

~1.2!

with ( f ,A)P(H2(#0,d@))2.
Let us remark that such a pair (f ,A) solution of (GL)d

S is in (C`(@0,d#))2.
For getting formally the limiting problem on the interval@0,1`@ , we put d51` in the

definition of the GL functional after a renormalization obtained by adding the term (1
22h2)d ~see

Refs. 4 or 5!. We then get

e`~ f ,A!5E
0

1`F1

2
~12 f 2!21k22f 821 f 2A21A82Gdx12hA~0!, ~1.3!

defined for (f ,A)PH`5$( f ,A); (12 f )PH1(#0,̀ @),APH1(#0,̀ @)%. The corresponding
Ginzburg–Landau equations are then

~GL!` H 2k22f 92 f 1 f 31A2f 50 on ]0,1`[
2A91 f 2A50 on ]0,1`[
f 8~0!50,
A8~0!5h

, ~1.4!

with (12 f ,A)P(H2(#0,1`@))2.
The main object of these notes concerns the asymptotic behavior of thesuperheating fieldof

the problem (GL)d
s , ask tends to 0, in the contextkd→`. We recall~see Ref. 6! that, in the case

of the half-space@0,1`@ , it was defined as

hsh~k,1`!5sup$h.0;'~ f ,A! solution of ~GL!` , with ~12 f ,A!P~H2~ ]0,1`[ !!2%.

Let us remark that, in this problem, every solution (f ,A) of the GL equations (GL)̀ has the
property thatf is strictly positive~see Ref. 7!; the solution (f ,A) will then be saidpositive. But,
it is no more the case when the interval is bounded~see Ref. 8, for solutions with no constant sig
in the limiting caseh50). In the case of a bounded interval, we then define the superheating
in restriction to positive solutions, as

hsh,1~k,d!5sup$h.0;'~ f ,A!P~H2~ #0,d@ !!2 solution of ~GL!d
s with f .0%.

But, we shall often restrict ourselves to solutions such thatf >r, for some fixedrP]0,1], and
then define

hsh,r~k,d!5sup$h.0;'~ f ,A!P~H2~ #0,d@ !!2 solution of ~GL!d
s with f >r%.

In the following, we shall generally write (f ,A;h) for a solution of the GL equations associated
the valueh of the parameter.

In Ref. 4 ~Theorem 5.1!, we have proved the existence of a finite superheating field for
case of a bounded interval and, in Ref. 5, for the case of the interval ]0,1`@ .

For each fixedd, we have proved, in Ref. 8, that the model (GL)d
s tends, whenk tends to 0,

to a model wheref is constant. And, ford ~fixed! large enough, this limiting problem admits a
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superheating field the valuehsh(d)5 1
5d

1/2( 27
5 )1/4 ~see Dugnoille Ref. 9, and Ref. 4 Theorem 5

for a proof, and Ref. 10 for numerical computations!. This model was introduced in Ref. 11; it i
studied in Ref. 12.

We consider here another regime where the pairs (k,d) satisfy the conditionsk small andkd
large, and this leads to a very different result which is close to those of the half-space mo

Let us first recall some useful results on the half-space model.
In Ref. 13, De Gennes obtained heuristically for (GL)` , an approximation of the set of the pai
(h, f (0)) for which there exists a solution. It is given by

h2;
&

k
f ~0!2

•~12 f ~0!2!.

~See also Refs. 14 and 15 for this problem, and Ref. 16 for a study of another approximate m!
We have justified these computations in Ref. 5 whenf (0)>r for somer.0. Note that this
condition is not only technical and that other phenomena appear asf (0) tend to 0.

We have established, for the half-space model, the following asymptotic theorem
Theorem 1.1:There existk0.0 and C.0 such that, for allkP]0,k0]

Uk~hsh~k,1`!!22
&

4 U<Ck1/2. ~1.5!

The upper bound forkh2 is proved in Ref. 5~Theorem 3.4!, and the lower bound in Ref. 4
~Theorem 8.1!.

We also recall~see Ref. 17! that the GL functional«` is not bounded from below whenh
.221/2, so that a solution of (GL)̀, for such values ofh, cannot be a global minimum for th
functional.

In order to extend these results to the model (GL)d
s in a regime wherekd is large, we consider

two points:

~1! Estimates onhsh,r(k,d): this is done througha priori estimates on the solutions, the max
mum principle and Agmon estimates. We localize the pairs (f 0 ,h) such that (f ,A;h) is a
solution of (GL)d

s with f (0)5 f 0 ,
~2! Existence of solutions: We construct a subsolution on the interval@0,d#.

We prove, in particular, the following result:

Theorem 1.2: Let rP]0,1@ and h.0. There exist constants C.0, k1.0 and d1.0 such
that, for (k,d) satisfying the conditions:

~i! d>d1 ,
~ii ! 0,k<k1 ,
~iii ! kd>k2h,

and for any solution( f ,A;h) of the Ginzburg–Landau system (1.2) in]0,d@ , satisfyingf ~0!>r,
we have:

ukh22& f ~0!2
•~12 f ~0!2!u<Ck1/2. ~1.6!

We also get the existence of a local superheating field, whenk is small and get, withr possibly
depending onk, the following theorem.

Theorem 1.3:For anyaP]0,1/2@ and anyh.a, there exist constantsk0.0 and C.0 such
that, for (k,d) such thatkP]0,k0] and kd>k2h, and for r5ka

Uk~hsh,r~k,d!!22
&U<Ck1/22a. ~1.7!

4

                                                                                                                



e

7266 J. Math. Phys., Vol. 41, No. 11, November 2000 Bolley, Foucher, and Helffer

                    
This shows that in this regimehsh,r(k,d)'hsh(k,`).
The plan of this article is as follows:

In Sec. II, we recall some general results on the (GL)d
s equations.

We give in Sec. III some upper and lower bounds for the superheating field~for anyk.0 and
d.0).
Then, we show in Sec. IV the exponential decay~asd→1`) for A8(d) ~which corresponds
to a measure of the rate of the Meissner effect, because the pointd is here associated to th
middle of the initial film! and for (12 f (d)) in Sec. V.
Estimates forkh2 for (GL)d

s when f (0)>r.0 are given in Sec. VI.
The existence of a solution withh near (21/4/2)(1/Ak) and f (0)>r is proved in Sec. VII.

II. GENERAL PROPERTIES OF THE GINZBURG–LANDAU EQUATIONS

We first recall one useful version of the maximum principle~cf. Ref. 18!.
Lemma 2.1: Let C be a bounded function on]0,d@ (with d.0) such that

C~x!.0, ;xP]0,d@ ,

and let uPC2(@0,d#) be a function such that

H 2u91Cu<0 on ]0,d[

H u8~0!>0, u~d!<0
or

u~0!<0, u8~d!<0

. ~2.1!

Then:

u<0 on @0,d#.

Let us also recall~see, for example, Ref. 4!:

Proposition 2.2: Let(k,d)P]0,1`@3#0,1`@ . For any solution( f ,A;h) of (GL)d
s , we have

~a!

uf~x!u<1, ;xP@0,d#, ~2.2!
~b! the function A is strictly increasing on the interval. Moreover we have:

0<A8~x!<h, ;xP@0,d#, ~2.3!
~c! if f is positive, then f is strictly increasing on@0,d#,
~d!

h
sinh~d2x!

coshd
<2A~x!<h~d2x!, ;xP@0,d#. ~2.4!

We can improve~2.4! with the following lemma:
Lemma 2.3: Let(k,d,h,r)P(#0,1`@)4.

If f is such that:0,r< f <1, then the solution A of (1.2)(2,4) satisfies:

h
sinh~d2x!

cosh~d!
<2A~x!<

h

r
•

sinh~r~d2x!!

cosh~rd!
, ;xP@0,d#. ~2.5!

Proof: It is sufficient to apply the maximum principle~Lemma 2.1! to u5A02A whereA0 is
the solution of
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H 2A091r2A050 on ]0,d[

A08~0!5h, A0~d!50
.

We then get thatu<0 on @0,d#. The lemma follows.
If we follow the study for the semi-infinite model in Ref. 5, we need estimates onf 8. We shall

use the energy conservation for a symmetric solution (f ,A;h) given by

f ~x!2A~x!21 1
2 ~12 f ~x!2!22k22f 8~x!22A8~x!25 1

2 ~12 f ~d!2!22A8~d!2. ~2.6!

As was done ford51` ~similar arguments are given by Chapman19!, we write the conservation
of the energy in the form

~A8~x!2 f ~x!A~x!!•~A8~x!1 f ~x!A~x!!

5S 1

&
~12 f ~x!2!2k21f 8~x!D •S 1

&
~12 f ~x!2!1k21f 8~x!D 1A8~d!22

1

2
~12 f ~d!2!2,

~2.7!

and study the sign of the different terms.
The following proposition gives the sign ofA81 f A:
Proposition 2.4: Let(k,d)P]0,1`@2. For any solution( f ,A;h) of (GL)d

s with f positive, we
have

0,2A~x! f ~x!<A8~x! ;xP@0,d#. ~2.8!

Proof: We shall prove, in fact, that, if (f ,A;h) is a solution of (GL)d
s with f positive, then

2A~x! f ~x!<A8~x!tanh~~d2x! f ~x!!<A8~x!, ;xP@0,d#.

For anyaP]0,d@ , we compare, in@a,d#, the solutionA which satisfies

H APC2~@a,d# !

2A9~x!1 f ~x!2A~x!50 on ]a,d[

A8~a!5ha , A~d!50

,

with the solutionAa of

H AaPC2~@a,d# !

2Aa91 f ~a!2Aa50 on ]a,d[,

Aa8 ~a!5ha Aa~d!50

which can be explicitly computed as

Aa~x!52
A8~a!

f ~a!

sinh~~d2x! f ~a!!

cosh~~d2a! f ~a!!
, for xP@a,d#.

Applying Lemma 2.1 withC(x)5( f (a))2 andu5Aa2A in the interval ]a,d@ ( f is increasing!,
we get, for any (a,x) satisfying 0<a<x<d

2A~x!<
A8~a!

f ~a!

sinh~~d2x! f ~a!!

cosh~~d2a! f ~a!!
,

and in particular, whenx5a
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2A~a!<
A8~a!

f ~a!
tanh~~d2a! f ~a!!.

The proposition follows~see also Ref. 20!.
However, we cannot deduce from~2.7! an inequality forf 8 as we did in the cased51` due

to the presence of the constantA8(d)22 1
2(12 f (d)2)2. In the case of the unbounded interval, w

used thatA8(x)22 1
2(12 f (x)2)2 tends to 0 asx tends to1`.

We can nevertheless obtain
Proposition 2.5: Let(k,d)P]0,1`@2. For any solution( f ,A;h) of (GL)d

s with f positive, we
have:

k21f 8~x!<
1

&
~12 f ~x!2!1A8~d!, ;xP@0,d# ~2.9!

and

1

&
~12 f ~x!2!<k21f 8~x!1A8~x!1

1

&
~12 f ~d!2!, ;xP@0,d#. ~2.10!

Proof: From the energy conservation law~2.6! and using~2.8!, we get on one hand

k22f 8~x!2< 1
2 ~12 f ~x!2!21A8~d!21~ f ~x!2A~x!22A8~x!2!,

< 1
2 ~12 f ~x!2!21A8~d!2,

from which, sincef 8>0, A8>0, 12 f >0, we deduce~2.9!.
On the other hand, we get:

1
2 ~12 f ~x!2!2<k22f 8~x!21A8~x!21 1

2 ~12 f ~d!2!2,

from which we deduce~2.10! by using also thatf 8>0, A8>0 and 12 f >0.
Remark 2.6: Corollary 5.5 will give an improvment of (2.9) by using (2.7) when the additi

condition A8(d)22 1
2(12 f (d)2)2<0 is fulfilled (see Proposition 5.3).

III. UPPER AND LOWER BOUNDS FOR THE SUPERHEATING FIELD „FOR ANY k AND
d …

We begin our study of the superheating field by giving upper and lower bounds forh in the
general case whenk andd are any positive parameters.

A. Upper bounds

Proposition 3.1: For anyk.0 and any d.0, for any solution( f ,A;h) of (GL)d
s with f.0,

we have:

h2<&k21~12 f ~0!2! f ~0!21~5&16A8~d!!h f~0!21

1S 1

&
k2112dD ~12 f ~d!2!1~2d11!A8~d!2. ~3.1!

This first result is interesting, because the termsd(12 f (d)2) anddA8(d) are expected to tend to
0, asd tends to1`. A detailed study of these terms will be presented in the following secti

Proof of the proposition:The starting point will be, using (1.2)(2) and (1.2)(4)
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h25A8~0!2

522E
0

d

A8~ t !A9~ t !dt1A8~d!2

522E
0

d

A8~ t ! f ~ t !2A~ t !dt1A8~d!2. ~3.2!

Since2A f<A8 on @0,d# @from ~2.8!#, we obtain the first inequality

h2<2E
0

d

A8~ t !2f ~ t !dt1A8~d!2. ~3.3!

Then, using the conservation of the energy~2.6!, we write

E
0

d

A8~ t !2f ~ t !dt5E
0

d

f ~ t !3A~ t !2dt1
1

2E0

d

f ~ t !~12 f ~ t !2!2dt

2k22E
0

d

f ~ t ! f 8~ t !2dt1S A8~d!22
1

2
~12 f ~d!2!2D E

0

d

f ~ t !dt. ~3.4!

Now, from the Ginzburg–Landau equation (1.2)(1) , we get

E
0

d

f ~ t !3A~ t !2dt5k22E
0

d

f ~ t !2f 9~ t !dt1E
0

d

f ~ t !3~12 f ~ t !2!dt,

which gives, after an integration by part

E
0

d

f ~ t !3A~ t !2 dt522k22E
0

d

f ~ t ! f 8~ t !2dt1E
0

d

f ~ t !3~12 f ~ t !2!dt. ~3.5!

Combining~3.4! and ~3.5!, this leads to

E
0

d

A8~ t !2f ~ t !dt5
1

2E0

d

f ~ t !~12 f ~ t !4!dt23k22E
0

d

f ~ t ! f 8~ t !2dt

1S A8~d!22
1

2
~12 f ~d!2!2D E

0

d

f ~ t !dt, ~3.6!

which, combined now with~3.3!, and using also that 0, f <1, gives

h2<E
0

d

f ~ t !~12 f ~ t !4!dt26k22E
0

d

f ~ t ! f 8~ t !2dt12dA8~d!21A8~d!2. ~3.7!

For the first term of the right-hand-side, we get, using~2.10! and 0, f <1

E
0

d

f ~ t !~12 f ~ t !4!dt<&k21E
0

d

f ~ t !~11 f ~ t !2! f 8~ t !dt

1&E
0

d

f ~ t !~11 f ~ t !2!A8~ t !dt1~12 f ~d!2!E
0

d

f ~ t !~11 f ~ t !2!dt

<&k21E
0

d

f ~ t !~11 f ~ t !2! f 8~ t !dt12&E
0

d

A8~ t !dt12d~12 f ~d!2!,
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whence, after integration

E
0

d

f ~ t !~12 f ~ t !4!dt<
k21

2&
~ f ~d!22 f ~0!2!•~21 f ~0!21 f ~d!2!

22&A~0!12d~12 f ~d!2!. ~3.8!

For the second term of the right-hand-side of~3.7!, we get, using~2.10! in the form of a lower
bound fork21f 8

k22E
0

d

f ~ t ! f 8~ t !2dt>
k21

&
E

0

d

~ f ~d!22 f ~ t !2! f ~ t ! f 8~ t !dt

2k21E
0

d

A8~ t ! f ~ t ! f 8~ t !dt.

But, on one hand, we have

E
0

d

~ f ~d!22 f ~ t !2! f ~ t ! f 8~ t !dt5 1
4 ~ f ~d!22 f ~0!2!2.

On the other hand, with the upper bound~2.9! of k21f 8

k21E
0

d

A8~ t ! f ~ t ! f 8~ t !dt<E
0

d

A8~ t ! f ~ t !S 1

&
~12 f ~ t !2!1A8~d!D dt

<E
0

d

A8~ t !S 1

&
1A8~d!D dt, ~3.9!

which gives

k21E
0

d

A8~ t ! f ~ t ! f 8~ t !dt<S 1

&
1A8~d!D ~2A~0!!. ~3.10!

Hence, we have for the second term of the right-hand-side of~3.7!

k22E
0

d

f ~ t !~ f 8~ t !!2dt>
k21

4&
~ f ~d!22 f ~0!2!21S 1

&
1A8~d!D A~0!. ~3.11!

Combining~3.7!, ~3.8!, and~3.11!, we obtain

h2<
k21

&
~ f ~d!22 f ~0!2!~12 f ~d!212 f ~0!2!2~5&16A8~d!!A~0!

12d~12 f ~d!2!1~2d11!A8~d!2,

and finally

h2<&k21~12 f ~0!2!• f ~0!22~5&16A8~d!!•A~0!

1S 1

&
k2112dD ~12 f ~d!2!1~2d11!•A8~d!2, ~3.12!
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by using thatf 2<1.
Finally, using~2.8! at x50, we deduce~3.1!.
This result leads us to look for estimates onf (d) and A8(d) in the contextkd→` and k

→0. This will be done in Secs. IV and V.

B. Lower bounds

Let us now give a lower bound forh.
Proposition 3.2: For anyk.0 and any d.0, for any solution( f ,A;h) of (GL)d

s with f.0,
we have:

h2>&k21~12 f ~0!2! f ~0!2

2&k21~12 f ~d!2!2~2k2112&d!A8~d!. ~3.13!

Proof: The starting point is again~3.2! and we use now~2.8! as a lower bound forA8. It
comes

h2>2E
0

d

f ~ t !3A~ t !2dt1A8~d!2. ~3.14!

Using ~3.5! and taking offA8(d)2 ~which is positive and expected to be small whend→`), we
derive:

h2>24k21E
0

d

f ~ t ! f 8~ t !~k21f 8~ t !!dt12E
0

d

f ~ t !3~12 f ~ t !2!dt. ~3.15!

Taking~2.9! as an upper bound for (k21f 8) in the first term of the right-side and as a lower bou
for (12 f 2) in the second term, we obtain

h2>22&k21E
0

d

f ~ t ! f 8~ t !~12 f ~ t !2!dt24k21A8~d!E
0

d

f ~ t ! f 8~ t !dt

12&k21E
0

d

f ~ t !3f 8~ t !dt22&A8~d!E
0

d

f ~ t !3dt.

So, after integration, we get:

h2>&k21~~12 f ~0!2! f ~0!22~12 f ~d!2! f ~d!2!

22k21A8~d!~ f ~d!22 f ~0!2!22&A8~d!E
0

d

f ~ t !3dt,

from which we deduce~3.13!, by using again that 0, f <1.
As in the case of the upper bounds, we see that we shall also need estimates forf (d) and

A8(d) in order to control the lower bound ofh2 whenkd→` andk→0.

IV. MEISSNER EFFECT

We intend to prove thatdA8(d) tends to 0 whend tends to1`. We first consider the secon
equation of (GL)d

s and look at what can be obtained when applying the maximum principle.
look for an upper bound forA8(d), but let us first look for a lower bound, which is easier. W
shall then discuss why it is more difficult to use these technics for an upper bound.
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A. Lower bounds

Proposition 4.1: For anyk.0 and any d.0, for any solution( f ,A;h) of (GL)d
s with f.0,

we have

A8~d!>
h

cosh~d f~d!!
. ~4.1!

Proof: Differentiating Eq.(1.2)(2) of (GL)d
s , we get thatS5A8 satisfies

2S91 f 2S52 f f 8~2A!. ~4.2!

We deduce using (1.2)(4) that S satisfies

H SPC2~@0,d# !

2S91 f 2S>0 on ]0,d[

S~0!5h, S8~d!50

.

We introduce the solutionS0 of

H S0PC2~@0,d# !

2S091 f ~d!2S050 on ]0,d[

S0~0!5h, S08~d!50

,

which is

S0~x!5h
cosh~~d2x! f ~d!!

cosh~d f~d!!
,

and apply the maximum principle~Lemma 2.1! to u5S02S. We getu<0, so thatA8 satisfies:

A8~x!>h
cosh~~d2x! f ~d!!

cosh~d f~d!!
, ;xP@0,d#.

The inequality~4.1! follows with x5d.
Remark 4.2: When applying the same idea for getting an upper bound, we deduce from

and (4.2) that

2S91~ f 222 f 8!S<0.

But, we cannot apply a maximum principle because we have no precise estimate on f8 (we only
have the estimates given by (2.9) and (2.10), which depend on A8(d) and f(d)) and we conse-
quently do not know anything about the sign of f222 f 8.

B. Upper bounds

We now replace the maximum principle argument by an Agmon’s type estimate.22 Estimates
of this type are usually well known. We refer for example to Refs. 23 and 24, in the semicla
context and to Ref. 6 in a context close to what is proved here. One interest of this approach
the constants are rather explicit.

We obtain by this way the following upperbound forA8(d) which measures the Meissne
effect.

Proposition 4.3: Let(k,d,g)P]0,1`@3#1,1`@3#0,1@ .
For any solution( f ,A;h) of (GL)d

s with f.0, then we have
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;xP@0,d#, A8~x!<
&h

A~12g! f ~0!
exp~2g1/2f ~0!x! ~4.3!

and

;xP@0,d#, 2A~x!<
&h

A~12g! f ~0!3
exp~2g1/2f ~0!x!. ~4.4!

Moreover, for anyrP]0,1] and for any( f ,A;h) solution of(GL)d
s such that f>r

A8~d!<
&h

A~12g!r
exp~2g1/2rd!. ~4.5!

Proof: We start again from (1.2)(2) and get thatS(x)5A8(x) is a solution of a second orde
equation~actually the London equation!

2
d

dx S 1

f 2

dS

dxD1S50 on ]0,d@ , ~4.6!

with initial conditions

S~0!5h, S8~d!50. ~4.7!

If we compare with Eq.~4.2! obtained in the proof of the preceding proposition, we note that n
the function A does not appear any more. Our purpose is to control the norm of the
x°exp(f(x))S(x) in H1(#0,d@), wheref is the function defined by

;xP@0,d#, f~x!5g1/2f ~0!x. ~4.8!

As in the study of the decay for solutions of the Schro¨dinger operator, in the spirit ofS. Agmon,
we write the following identity@obtained from the Eq.~4.6!#:

2E
0

dS S8

f 2 D 8
~ t !S~ t !exp~2f~ t !!dt1E

0

d

S~ t !2 exp~2f~ t !!dt50.

We integrate by part the first integral. We obtain

2FS8S

f 2 exp~2f!G
0

d

1E
0

dS 1

f ~ t !2 ~S~ t !exp~f~ t !!!82

1S 12
f~ t !82

f ~ t !2 D ~S~ t !exp~f~ t !!!2Ddt50. ~4.9!

From ~4.7!, ~4.8!, and (1.2)(2) , we get

FS8~ t !S~ t !

f ~ t !2 exp~2f~ t !!G
0

d

52
hS8~0!

f ~0!2 52
hA9~0!

f ~0!2 52hA~0!.

Moreover, becausef > f (0), thefunction f satisfies

S 12
f~x!82

f ~x!2 D>12g.0, ;xP@0,d#,
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and, asf satisfies 0, f <1, we have also

f ~x!22>12g, ;xP@0,d#.

We then get from~4.9! that

iSexpfiH1(]0,d[)
2 <2

hA~0!

~12g!
, ~4.10!

and then, since2A(0) f (0)<h from ~2.8!

iSexpfiH1(]0,d[)
2 <

h2

~12g! f ~0!
. ~4.11!

Now, by the continuous injection ofH1(#0,d@) into L`(@0,d#), there exists a constantc0 such that

iuiL`(]0,d[)<c0iuiH1(]0,d[) , ;uPH1~ #0,d@ !.

The constantc0 can actually be chosend-independent, ford>1. The following estimate is optima
at least as far as the principal term whent tends to1` is concerned

~12exp~22d!!21/2<c0<S 11
1

dD 1/2

, for d.0. ~4.12!

Let us give a proof of~4.12! which was indicated to one of us~C. B.! by F. Murat.
For the upper bound, we consider the functionu2, with uPH1(#0,d@). We have

;x,yP~0,d!, u~x!25u~y!21E
y

x

2u~ t !u8~ t !dt,

then

;x,yP~0,d!, u~x!2<u~y!21E
0

d

2uu~ t !u8~ t !udt,

and using Cauchy–Schwarz and Young inequalities

u~x!2<u~y!21E
0

d

~u~ t !21u8~ t !2!dt.

Integrating on@0,d# with respect toy gives:

;xP~0,d!, u~x!2<S 11
1

dD iuiL2(]0,d[)
2

1iu8iL2(]0,d[)
2 .

For the lower bound, we choose the particular functionu(x)5exp(2x), defined on@0,d#. We get

c0
2>

1

12exp~22d!
,

and then~4.12!.
Applying these results in~4.11!, we get

A8~x!<
c0h

A~12g! f ~0!
exp~2f~x!!, ;xP@0,d#, ~4.13!
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with c05(11 (1/d))1/2. The estimate~4.3! follows, by takingx5d and d>1. We also deduce
~4.5! under the condition thatf (0)>r.0.
From ~4.13!, using~2.8! and the fact thatf is increasing, we also deduce the upper bound~4.4! for
(2A).

Remark 4.4: The estimates of Proposition 2.2 are not optimal, (we know that A8(0)5h) but
they have the advantage to be universal. We can however improve (4.3) when d is large. Due
(4.12) the proof gives, indeed, that for any«.0, there exists d0 such that for d>d0 and for any
solution (f ,A;h)

A8~x!<
~11«!h

A~12g! f ~0!
exp~2g1/2f ~0!x!, ;xP@0,d#. ~4.14!

V. ESTIMATES FOR „1Àf „d …2
…

Let us now establish estimates for (12 f (d)2).

A. Weak estimates

We first get rather weak estimates by starting from the GL equation (1.2)(1) . Integrating
between 0 andd, we obtain

E
0

d

f ~ t !~12 f ~ t !2!dt5E
0

d

f ~ t !A~ t !2dt.

Using thatf is increasing, we get on one hand

d f~0!~12 f ~d!2!<E
0

d

f ~ t !~12 f ~ t !2!dt.

On the other hand, we have, from~2.8!

E
0

d

f ~ t !A~ t !2dt<
A~0!2

2
<

h2

2 f ~0!2 .

From these two inequalities, we obtain the following upperbound for (12 f (d)2):
Proposition 5.1: For any(k,d)P(#0,1`@)2, for any solution( f ,A;h) of (GL)d

s with f.0,
we have

12 f ~d!2<
h2

2d f~0!3 . ~5.1!

This result is not sufficient to controlh from ~3.1!. We will give later a stronger result whenk
<1 andd>1.

Now, by using Eq.(1.2!~1! and following the proof of Lemma 4.2 in Ref. 21, we obtain
lower bound for (12 f (d)2):

Proposition 5.2: For any (k,d)P(]0,1`@)2 and for any solution (f,A;h) of (GL)d
s with f

.0, we have

12 f ~d!>
12 f ~0!

cosh~&kd!
, ~5.2!

and consequently
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12 f ~d!2>
12 f ~0!

cosh~&kd!
. ~5.3!

Proof: This is an application of the maximum principle.
Because 0, f <1, Eq. (1.2)(1) implies that

f 9~x!>22k2~12 f ~x!! ;xP]0,d@ .

Let us introduce the functionv512 f . It satisfies

H vPC2~@0,d# !

2v912k2v>0 on ] 0,d[

v8~0!50, v8~d!50

.

We shall comparev with the solutiong of

H gPC2~@0,d# !

2g912k2g50 on ] 0,d[,

g~0!5v~0!, g8~d!50

which is given by:

g~x!5
v~0!

cosh~&kd!
cosh~&k~d2x!!, ;xP@0,d#.

Applying the maximum principle~Lemma 2.1! to u5g2v, we then obtain thatu<0, or 12 f
>g. Whenx5d, we get, in particular,~5.2!, and using that 0, f (d)<1, we deduce~5.3!.

This result has several corollaries whend is large, but the control will only be uniform fo
solutions of the GL equations (GL)d

s such that 0,r< f (0)<r8,1. First of all:
Proposition 5.3: Let0,r,r8,1; then, there existk0 and d0.0 such that, for d>d0 and

k<k0 , for any solution( f ,A;h) of (GL)d
s with 0,r< f (0)<r8,1, we have:

A8~d!22 1
2 ~12 f ~d!2!2<0. ~5.4!

Proof of Proposition 5.3:We compare the upperbound for (A8(d))2 given by ~4.3! and the
lower bound~5.3! for (12 f (d)2), but we need a suitable upper bound forh2.

Such an upper bound forh2 was given in Ref. 4@relation~4.16!#. Let us recall this estimate in
the context of the symmetric solutions:

Lemma 5.4: For any«.0, there exists a constant C(«), such that, for d>C(«) and for
( f ,A;h) solution of(GL)d

s with f.0

h2<
~21«!d

~ f ~0!!2 .

In the proof of Ref. 4, it was wrongly written~due to a misprint! that this relation comes from a
estimate of the right-hand-side of~4.10!, instead of~4.11!. For getting the paper clearer, we pref
to give here the proof of the inequality.

Proof of Lemma 5.4:Let (f ,A;h) a solution of (GL)d
s with f .0 andh.0. Then from the first

Ginzburg–Landau equation

2k22E
0

d

f 9~ t ! f ~ t !dt1E
0

d

@2 f ~ t !21 f ~ t !41A~ t !2f ~ t !2#dt50.
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Using the boundary conditions (1.2)(3) on f , we get:

k22E
0

d

~ f 8~ t !!2dt1E
0

d

f ~ t !4dt1E
0

d

A~ t !2f ~ t !2dt5E
0

d

f ~ t !2dt,

then

E
0

d

A~ t !2f ~ t !2dt<E
0

d

f ~ t !2dt<d.

Now, becausef .0, it satisfiesf > f (0).0, so that:

E
0

d

A~ t !2dt<
d

f ~0!2 . ~5.5!

For a lower bound for*0
dA(t)2dt, we use~2.4! and get

E
0

d

A~ t !2dt>
h2

cosh2d E0

d

sinh2~d2t !dt

>
~sinh~2d!22d!h2

4 cosh2 d
5

h2

2
~12O~d exp~22d!!!.

This gives, combined with~5.5!

h2<
2d

f ~0!2 ~11O~d exp~22d!!!, ~5.6!

and then the lemma.
End of the proof of Proposition 5.3:Let us come back to~5.4!. Relations~4.13! and~5.6! give

that for d large enough

A8~d!2<
2c0

2d

~12g! f ~0!3 ~11O~d exp~22d!!!•exp~22g1/2f ~0!d!.

Therefore, using~5.3!, for getting~5.4!, it is sufficient to know, that for a given constantC.0, the
inequality

Cd

~12g! f ~0!3 exp~22g1/2f ~0!d!,
~12 f ~0!!2

2 cosh2~&kd!
,

is satisfied fork<k0 . But, this relation is equivalent to:

Cd exp~22~g1/2f ~0!2&k!d!,~12g! f ~0!3~12 f ~0!!2,

which will be true forr< f (0)<r8, k<k0 andd>d0 , whenk0 is small andd0 large enough.
A consequence of Proposition 5.3 is the following improvement of~2.9!:
Corollary 5.5: Let0,r,r8,1, then, there existsk0 and d0.0 such that, for d>d0 and

k<k0 , for any solution( f ,A;h) of (GL)d
s with 0,r< f (0)<r8,1, we have

;xP@0,d#, k21f 8~x!<
1

&
~12 f 2~x!!. ~5.7!

Proof: The proof comes from~2.7!, ~2.8! and Proposition 5.3.
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B. Agmon estimates for „1Àf „d …2
…

We now want to prove, using Agmon estimates, the exponential smallness of (12 f (d)2) as
d→` ~see also Ref. 25!. The maximum principle gives us a lower bound for (12 f (d)2), but
what is the most important is the upper bound. We follow a technique introduced in a s
context in Ref. 8~Lemma 8.1.1! ~in the case without magnetic field!. The new point is the
presence of the termf (t)A(t)2. We shall prove

Proposition 5.6: For any d>1, k<1, gP]0,1@ and for any solution( f ,A;h) of (GL)d
s with

f .0:

12 f ~d!2<
4

~12g! f ~0!5/2hd1/2exp~2g1/2f ~0!kd!. ~5.8!

In particular, when f(0)>r.0, we have

12 f ~d!2<
4

~12g!
r25/2hd1/2exp~2g1/2rkd!. ~5.9!

Proof: Let us start again from the first (GL)d
s equation (1.2)(1) . We write that the function

v512 f satisfies an equation that we write in the form of a Schro¨dinger equation:

2k22v91Vv5W on ]0,d@ , ~5.10!

with

V5~12v !~22v !, ~5.11!

W5A2~12v !. ~5.12!

We note that

V> f ~0!2 on ]0,d@ . ~5.13!

We consider the phasef given by~4.8!. We then multiply the equation~5.10! by v exp(2kf) and
integrate on@0,d#. We get

2E
0

d

k22v~ t !9v~ t ! exp~2kf~ t !!dt1E
0

d

V~ t !v~ t !2 exp~2kf~ t !!dt

5E
0

d

W~ t !v~ t ! exp~2kf~ t !!dt.

An integration by parts in the first integral, using thatv8(0)5v8(d)50, gives

k22E
0

d

~v~ t !exp~kf~ t !!!82dt1E
0

d

~V~ t !2f~ t !82!~v~ t !exp~kf~ t !!!2dt

5E
0

d

W~ t !v~ t ! exp~2kf~ t !!dt. ~5.14!

For the right-hand-side of~5.14!, we use that

Wv exp~2kf!5v~12v !A2 exp~2kf!<A2 exp~2kf! on @0,d#.

We recall that we got an upperbound for (2A) in ~4.4!, when d>1. This gives, under the
additionnal condition thatk<1, the inequality
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A2 exp~2kf!<
c0

2h2

~12g! f ~0!3 .

Now, the expression~4.8! of f and the lower bound~5.13! on V imply, for the left-hand-side of
~5.14!

V2f82>~12g! f ~0!2.

Using that, fork<1

k22>~12g! f ~0!2,

we deduce from~5.14! that

~12g! f ~0!2iv exp~kf!iH1(]0,d[)
2 <

c0
2h2

~12g! f ~0!3 d.

We now apply the Sobolev inequality in the same way as in the proof of Proposition 4.3 an
get

v~x!exp~kf~x!!<
c0

2

~12g! f ~0!5/2hd1/2, ;xP@0,d#.

This gives forf

12 f ~x!<
c0

2

~12g! f ~0!5/2hd1/2exp~2kf~x!!, ;xP@0,d#.

Whenx5d, we obtain, withc05& ~see 4.12!

12 f ~d!<
2

~12g! f ~0!5/2hd1/2exp~2g1/2f ~0!kd!. ~5.15!

Finally, writing

12 f ~d!2<2~12 f ~d!!,

we get Proposition 5.6.
Using now Lemma 5.4, we get ford large:
Corollary 5.7: Let r.0; for any constantgP]0,1@ , there exists d0.0 such that, for d

>d0 , k<1, and for any solution( f ,A;h) of (GL)d
s with f>r.0:

12 f ~d!2<
8

~12g!
r27/2d exp~2g1/2rkd!. ~5.16!

Remark 5.8: This last result shows that the conditionlimx→1` f (x)51 in (GL)` is natural in
the regime whenkd is large and f>r.0.

VI. LOCAL SUPERHEATING FIELD

Combining the upper bound~4.5! for A8(d) and the upper bound~5.9! for (12 f (d)2) in ~3.1!
and ~3.13! with g51/4, and denoting byC some universal constant, we get the following es
mates for the superheating:

Proposition 6.1: For any d>1, 0,k<1, r.0 and for any solution( f ,A;h) of (GL)d
s with

f .0, such that f(0)>r.0, we have
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kh2<&~12 f ~0!2! f ~0!21hM1~k,d,r!1h2M2~k,d,r!, ~6.1!

where

M1~k,d,r!55&r21k1
16

3 S 1

&
12kdD r25/2d1/2expS 2

1

2
rkdD , ~6.2!

M2~k,d,r!5
12&

)
r23/2k expS 2

1

2
rdD1

8~2d11!

3
r21k exp~2rd!, ~6.3!

and

kh2>&~12 f ~0!2! f ~0!22hM3~k,d,r!, ~6.4!

where

M3~k,d,r!5
16&

3
r25/2d1/2expS 2

1

2
rkdD

1
8&

3
~11&kd!r21/2expS 2

1

2
rdD . ~6.5!

Note that the conditionsd>1 andk<1 are not attached to critical values ofd andk; they can be
replaced byd>d0 and 0,k<k0 for some positive constantsd0 andk0 .

We study the asymptotic behavior of the superheating field whenk is small andkd large. If
we now consider pairs (k,d) such thatk→0 and kd>k2h for some h.0, the constants
M1(k,d,r), M2(k,d,r) andM3(k,d,r) will tend to zero whenk→0.

Let us transform~6.1! and ~6.4! for getting new estimates for the superheating field, wh
depend onk, h, andr. Using first the uniqualitykd>k2h, we obtain, fork<k1 :

0,M1~k,d,r!<Cr21k1Cr25/2k2(113h)/2 exp~2 1
2 rk2h!, ~6.6!

0,M2~k,d,r!<Cr23/2k exp~2 1
2 rk2h21!, ~6.7!

0,M3~k,d,r!<Cr25/2k2(1/21h) exp~2 1
2 rk2h!, ~6.8!

where the constantsC are independant ofk, h, andr.
Then, combining~6.1! and ~6.4!, we get the following results:
Proposition 6.2: For anyh.0, there exist constants C andk1 such that, for any(k,d,r)

such thatk<k1 , kd>k2h and 0,r,1, for any solution( f ,A;h) of (GL)d
s such that f(0)

>r, we have:

kh2<&~12 f ~0!2! f ~0!2

1C~r21k1/21r27/2k2(113h)/2 exp~2 1
2 rk2h!! ~6.9!

and

kh2>&~12 f ~0!2! f ~0!22Cr25/2k2(11h) exp~2 1
2 rk2h!. ~6.10!

We finally deduce Theorem 1.2.
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We have localized, in the regimek small, kd large, the values ofh for which there exists a
superconducting solution, in a neighborhood of the values given by De Gennes’s approxim
But our estimates are done under the condition thatf (0)>r.0.

We can however improve our previous result by obtaining a good estimate forh, also when
r'ka for a,1/2. We get, indeed:

Proposition 6.3: For anyaP]0,1/2@ , and for anyh.a, there exist constants C, k1 such
that for any (k,d) such thatk<k1 , kd>k2h, for any solution( f ,A;h) of (GL)d

s such that
f (0)>ka, we have:

kh2<&~12 f ~0!2! f ~0!21Ck1/22a ~6.11!

and

kh2>&~12 f ~0!2! f ~0!22Ck212h25a/2 exp~2 1
2k

a2h!. ~6.12!

In particular,
Corollary 6.4: For anyaP]0,1/2@ , and for anyh.a, there exist C.0 andk1.0 such that,

for (k,d) such thatkP]0,k1] and kd>k2h, the following properties are true:

~i! For any h.0 such that there exists a solution( f ,A;h) of (GL)d
s with f>ka, then

kh2<
&

4
1Ck1/22a.

~ii !

k~hsh,r~k,d!!2<
&

4
1Ck1/22a, with r5ka.

We shall prove, in Sec. VII, under the same conditions on (k,d), the existence of a solution
( f ,A;h) of (GL)d

s for h near&/4. This will give an inverse inequality for a local superheati
field limited to thef ’s such thatf >r.

VII. EXISTENCE OF SOLUTIONS FOR „GL…d
s WHEN h IS CLOSE TO THE LOCAL

SUPERHEATING FIELD

In Sec. VI, we have given necessary estimates for the superheating field,hsh(k,d), when the
thickness 2d of the film is large in the sense thatkd>k2h for someh.0. In this section, we give
the following lower bound forhsh(k,d).

Theorem 7.1: Let h.0 and «P]0,1@ . There exist constantsk0.0 and C̄0 such that for
(k,d) satisfyingk<k0 and kd>k2h:

k~hsh~k,d!!2>22 3/2~11C̄0k12«!. ~7.1!

Remark 7,2: With more computations, one can prove that the result is still true withk instead
of k12«.

We have proved in Ref. 8, that the existence of asymmetric positivesolution for the
Ginzburg–Landau equations on ]2d,d@ ~for some fixedk, d, and h) is a consequence of th
existence of suitable supersolutions and subsolutions. If we restrict as before the problem
half interval ]0,d@ by symmetry with an exchange of the boundaries 0 andd, whenhÞ0, this
solution is then a triple (f ,A;h) where f is a strictly positive function satisfying 0,fI < f <f̄ on
@0,d# and whereB5A/h is obtained as the unique functionB satisfying:

H 2B91 f 2B50 in ]0,d[
B8~0!51, B~d!50
BPH2~ ]0,d[ !

. ~7.2!
                                                                                                                



f a

sitive
n

urg–

s

e

n
(1

is

7282 J. Math. Phys., Vol. 41, No. 11, November 2000 Bolley, Foucher, and Helffer

                    
A triple (fI ,A;h) is called asubsolutionfor the equations (GL)d
s if:

~i! A5hB(fI ) whereB(fI ) is the unique solution of~7.2! with fI instead off , and if
~ii ! fI satisfies

H2k22f9I1~211f2
I1h2B~fI !2!fI <0 in ]0,d[

f8I ~0!50, f8I ~d!50
fI PH2~ #0,d@ !

. ~7.3!

However, we shall say more briefly thatfI is a subsolution for(GL)d
s . By definition, a superso-

lution f̄ will satisfy the inverse inequality in~7.3!. The existence of asymmetric positivesolution
for the Ginzburg–Landau equations on ]2d,d@ is then a consequence of the existence o
supersolutionf̄ and of a subsolutionfI satisfying 0,fI <f̄ in @2d,d#.

We remark thatf̄[1 is a supersolution, so that we have just to construct a bounded, po
subsolutionfI for getting the existence of a solution (f ,A) with f positive, but because a solutio
of the GL equations is always bounded by 1 (f <1) with f ,1 when f Ó1, the subsolutionfI has
to satisfyfI ,1.

In Ref. 4, we have used this method for proving the existence of a solution of the Ginzb
Laudau (GL)̀ on the unbounded interval@0,1`@ . When

k1/2h5223/41C0k,

whereC0 is smaller than some negative constant, the function

fI ~x![tanhS k

&
x1xh,kD 1221/2k2h2~11C1k!exp~2~&2C2k!x!, ~7.4!

defined forxP@0,1`@ , was proved, in Ref. 4~Lemma 8.2!, to be a subsolution for the equation
(GL)` for a suitable choice ofC1 andC2 .
The constantxh,k was determined by the conditionf8I (0)50.

The first term, tanh((k/&)x1xh,k) in ~7.4!, is actually a solution on ]0,1`@ of the problem
without magnetic field, that is

H 2k22f 091~211 f 0
2! f 050 in ]0,1`[

~12 f 0!PH2~x#0,1`@!
.

It satisfies in particular limx→1` f 0(x)51.
This problem is obtained as a first approximation of a positive solutionf of (GL)`(1), by

writing an expansion off ~and also ofA andh) in powers ofk with the scalingy5kx. These
expansions are used, in particular, in the construction of matched asymptotic expansions~see Refs.
7, 27–29!.

In the case of a bounded interval@0,d#, we add, for largex, an exponentially small term to th
preceding subsolution, for getting a new functionfI which satisfies the Neumann condition atx
5d. For preserving the Neumann condition atx50, we consider a cutoff function vanishing o
some interval@0,a#, and for a control of the new term we consider a dilation of the type
1O(k)) of the main term. Let us then prove the following lemma:

Lemma 7.3: Leth.0 and«P]0,1@ . There exist constants C0̄ andk0.0 such that for(k,d)
satisfying0,k<k0 , kd>k2h, and h such that

h2522 3/2~11C̄0k12«!, ~7.5!

then, the equation Ginzburg–Landau (GL)d
s admits a positive subsolution. This subsolution

given, for a suitable constant C1 by:
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fI ~x!5tanhS k

&
~11C1k12«!x1xk,hD

1221/2k2h2~11C1k12«!exp~2&x!1ld,k,h exp~2&k~d2x!!JS x

dD , ~7.6!

where the constant xk,h and ld,k,h are determined by the conditions

f8I ~0!50, f8I ~d!50.

The functionJ is an increasing C`-cut-off function such that:

J~y!5U0 if y< 1
2 ,

1 if y> 3
4

.

The proof will work for constants (C1 ,C̄0) satisfying the conditions

H C1,0

C̄0,2C122
. ~7.7!

A sufficient condition forC̄0 is C̄0,22.
Proof of the lemma:Let us introducen512«,

f 1̃5tanhS k

&
~11C1kn!x1xk,hD ,

f 2̃5fI 2f 1̃,

f15f 1̃1221/2k2h2~11C1kn!exp~2&x!,

f25fI 2f15ld,k,h exp~2&k~d2x!!JS x

dD ,

and

zk,h5exp~22xk,h!.

Step 1:estimates forxk,h , zk,h , andld,k,h .
The constantxk,h is such thatf8I (0)50; so it satisfies

~12tanh2~xk,h!!221/2kh250.

Now, becauseh satisfies~7.5!, we get

tanh~xk,h!5
1

&
2223/2C̄0kn1O~k2n!, ~7.8!

so that

zk,h5~322& !•~11&C̄0kn1O~k2n!!. ~7.9!

The constantld,k,h is such thatf8I (d)50, so that
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ld,k,h52
f18I ~d!

&k
,

which is clearly negative, becausef1I is increasing.
Therefore:

ld,k,h522~11C1kn!
zk,h exp~2&kd~11C1kn!!

~11zk,h exp~2&kd~11C1kn!!!2

1221/2kh2~11C1kn!exp~2&d!. ~7.10!

Consequently, there exists a constantk0 such that fork<k0 andkd large, we get, using~7.5!

ld,k,h522~11C1kn!zk,h• exp~2&~11C1kn!kd!

•~11O~exp~2&kd~11C1kn!!!!. ~7.11!

We have in particular:

ld,k,h5O~exp~2&~12O~kn!!kd!!, with ld,k,h,0.

Step 2:Lower and upper bounds forfI .
Step 2.1:Upper bound forfI .

For d large, the coefficientld,k,h is negative and then also the functionf2I . Therefore,

;xP@0,d#, fI ~x!<f1I ~x!.

But, the functionf1I is increasing whenk,1 andC1,0 ~it is sufficient to computef18I ; see also
Lemma 8.3 in Ref. 4!.
We then get

;xP@0,d#, fI ~x!<f1I ~d!,1, ~7.12!

and then, forkd>k2h with k small enough and forxP@0,d#

fI ~x!<122zk,h exp~2&kd~11C1kn!!~11O~exp~2&~12O~kn!!kd!!!. ~7.13!

Step 2.2:Lower bound forfI :
We have;

;xP@0,d/2#, fI ~x!>f1I ~0!,

becausef2I50 on this interval andf1I is increasing.
On @d/2,d#, we remark, using again thatf1I is increasing andf2I decreasing, that:

fI ~x!>f1I ~d/2!1f2I ~d!

5122zk,h exp~2221/2kd~11C1kn!!•S 11OS expS 2
kd

2 D D D ,

which is near 1 forkd large. Therefore, forkd>k2h andk small, we have, for anyxP@0,d#

fI ~x!>f1I ~0!,

with
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f1I ~0!5tanh~xk,h!1221/2k2h2~11C1kn!.

Using ~7.5! and ~7.8!, we get fork small andxP@0,d#,

fI ~x!>fI ~0!5221/22223/2C̄0kn1O~k1k2n!. ~7.14!

Step 2.3:Upper bound forf8I andf9I .
We have:

f8I ~x!5221/2k ~11C1kn! cosh22~221/2k~11C1kn!x1xk,h!

2k2h2~11C1kn! exp~2&x!

1k ld,k,h exp~2&k~d2x!!S& JS x

dD1
1

kd
J8S x

dD D ,

with ld,k,h,0, C1,0, J>0 andJ8>0. The two last terms are then negative fork small and
kd large so that

f8I ~x!<221/2k cosh22~221/2k~11C1kn!x1xk,h!.

We deduce that forkd>k2h andk small, we have

; xP@0,d#, 2O~k!<f8I ~x!<221/2k. ~7.15!

Now, by differentiating once againfI we get, fork small andkd large

; xP@0,d#, 2O~k2!<f9I ~x!<221k 1O~k11n!. ~7.16!

Step 3:Upper bound forB(fI )2.
We shall need accurate estimates forB(fI )2 fI . For this purpose, we do not proceed as in R

4 where we compared the functionY5B(f1I ) f1I
1/2 with a solution of an equation close to th

satisfied byY. Following Ref. 29, we split here the interval@0,d# into two intervals, and write
different upper bound forB(fI ) on each of these intervals.
We first remark that~2.5! implies that

2 h B~fI !~x!<
h

fI ~0!
exp~2fI ~0!x! ;xP@0,d#, ~7.17!

so that

;xP@0,d#, h2 B~fI !2~x!•fI ~x!<
h2

~fI ~0!!2 exp~2 2 fI ~0! x!•fI ~x!.

Step 3.1:Upper bound on@0,k2«#.
For kd>k2h andk small, we haved/2>k2h21.k2«. But from Step 2,fI is increasing on

@0,d/2#; it is then also increasing on@0,k2«#. Therefore,

fI ~x!<fI ~0!1xf8I ~j!,

for somejP]0,x@ and, from~7.15!, f8I (j)<221/2k.
Using also~7.14!, we get forxP@0,k2«#,

h2 ~B~fI !!2~x! fI ~x!<21/2h2 exp~22fI ~0! x!•~11C2̄ kn1O~k!!, ~7.18!
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with

C2̄5221 C0̄11. ~7.19!

Step 3.2:Upper bound on@k2«,d#.
Now, for xP@k2 «,d#, we get from~7.13! and ~7.14!:

h2 ~B~fI !!2~x! fI ~x!<2 h2exp~22fI ~0! x!•~11O~kn!!. ~7.20!

Step 4:We prove thatfI is a subsolution.

Using the splitting offI into fI 5f 1̃1f 2̃ and get:

2 k22 f9I 1~211f2
I1h2 B~fI !2! fI

5~2 C1kn1C1
2k2n!•tanh~221/2k~11C1kn!x1xk,h!

•~12tanh2~221/2k~11C1kn!x1xk,h!!

2 21/2h2~11C1kn!exp~2&x!

1 uld,k,huexp~2&k~d2x!!•F2 JS x

dD1
23/2

kd
J8S x

dD1
1

~kd!2 J9S x

dD G
1 f 2̃•~211f2

I1fI f 1̃1f 1̃
2!

1h2B~fI !2fI . ~7.21!

We have to prove that this quantity is negative whenk is small andC1,0.
Step 4.1:Let us first consider the interval@0,k2 «#.

Let us consider the twoh2-terms, that is the sum:

L5h2B~fI !2fI 2 21/2h2~11C1kn!exp~2&x!.

For theh2B(fI )2fI term, we use~7.18! and ~7.19!.
Comparing, the two exponentials exp(2&x) and exp(22fI (0)x), we remark that theh2-terms

can be taken off under the condition&<2fI (0), that is, using~7.14! under the condition

C0̄,0. ~7.22!

The sumL will be negative under the condition

C2̄,C1⇔C0̄,2C122, ~7.23!

whereC2̄ is defined in~7.19!.
Strict inequalities give that the result is still true if we addO(h2kn1a) terms, witha.0 and

in particular the term

f 2̃•~211f2
I1fI f 1̃1f 1̃

2!5O~f 2̃!5O~k2h2!•exp~2&x!.

We also remark thatJ50 on @0,k2 «# and eliminate the first term by using the conditionC1

,0. We thus get the result.
Step 4.2:Let us now consider the interval@k2 «,d#.

For theh2 B(fI )2 fI term, we now use~7.20! and we get:

2 k22 f9I 1~211f2
I1h2 B~fI !2! fI
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<~2C1kn1O~k2n!!•zk,h•exp~2&k~11C1kn!x!

2&h2 ~11O~k2!!•exp~2&x!

1uld,k,hu•exp~2&k~d2x!!•JS x

dD
•~12zd,k,h exp~221/2kd~11C1kn!!1O~exp~223/2kd!!!

1uld,k,hu exp~2&k~d2x!!•F23/2

kd
J8S x

dD1
1

~kd!2 J9S x

dD G
12 h2 ~11O~kn!!•exp~22fI ~0!x!.

The C1kn-term will control the last terms fork small, as soon asC1,0 ~without any more
assumption onn!. We have indeed, forxP@k2 «,d#:

2C1knzk,h exp~2&k~11C1kn!x!12 h2
•exp~22fI ~0!x!

112 zk,h uld,k,hu exp~221/2kd~11C1kn!!•exp~2&k~d2x!!•JS x

dD
<2kn exp~2&k~11C1kn!x!•S C1 zk,h 112zk,h

2 k2nexpS 2
A2

2
kdD

1223/2k212nexp~2~2fI ~0!2&k!k2 «!D ,

which will be negative forC1,0 andk small enough~with the same control for theJ8 and the
J9-term!.

We then get the lemma under conditions~7.22! and ~7.23!.
Corollary 7.4: Let h.0 and «P]0,1@ . There exist constants C0̄ and k0.0 such that for

(k,d) satisfying0,k<k0 , kd>k2h, and for h such that h2<223/2k21(11C0̄k12«), there
exists a solution for the equations(GL)d

s with f>221/21O(k12«).
Proof: Lemma 7.3 gives the existence of a solution (f ,A;h) such that

f >221/21O~k12«! and kh25223/2~11C0̄k12«!.

We then use Lemma 23 in Ref. 8, which first gives that the set

$h.0;'~ f ,A;h! solution for ~GL!d
s s.t. f .0, f even%

is an interval@0,Hd), and secondly that if (f ,A;h) is a solution of (GL)d
s with h.0, then, for any

h̄P]0,h@ , there exists a solution (f̄ ,Ā;h̄) of (GL)d
s such that f̄ > f . Theorem 7.1 follows and

consequently Theorem 1.3.

VIII. CONCLUSION

We have proved in this paper, that fork small andkd large enough, the Ginzburg–Landa
problem is closed to the problem on@0,1`@ if we restrict ourselves to solutions withf >r.0.
We have got, in particular, the existence of a local superheating field for (GL)d

s , which is near the
global superheating field for (GL)` whenkd>k2h tends to1`.
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The study of the bifurcating solutions starting from normal solutions for the problem on@0,d#
has shown that the situation is completely different whenf is near 0. We proved, in particular, tha
the bifurcation appears forh5O(k), whereas numerical computations show thath tends to 221/2,
when f (0) tends to 0, for the problem on@0,1`@ . We hope to prove this result in a further pape

However, our conjecture is that this local superheating field is a global one. More prec
let us formulate the following conjecture:

Conjecture 8.1:~whenk is small!:
For any h.0, there existk0.0 and d0.0 such that for(k,d) satisfying the conditions:

~i! d>d0 ,
~ii ! k<k0 ,
~iii ! kd>k2h for some strictly positiveh,

then, for any«.0, there existsk1(«) such that if hsh,1(k,d) is the supremum over the pair
( f ,A) such that( f ,A;h) is a solution of the Ginzburg–Landau system in]0, d@ with the boundary
conditions

f 8~0!50, A8~0!5h, f 8~d!50, A~d!50,

and satisfying f(x).0 for xP@0,d#, we have, for0,k<k1(«)

uAkhsh,1~k,d!2Akhsh~k,`!u<«. ~8.1!

Here we recall that we have proved in Ref. 5, with Ref. 7, that

lim
k→0

khsh~k,`!25223/4.

What is mathematically missing for a complete proof is to eliminate the conditionf (0)>r in
Theorem 1.3.

ACKNOWLEDGMENTS

We would like to thank P. Del Castillo for useful ideas in the construction of a subsolu
and the first author thanks also F. Murat for interesting discussions around the subject.

1V. L. Ginzburg and L. D. Landau, ‘‘On the theory of superconductivity,’’ Zh. Eksperim. i Teor. Fiz.20, 1064–1082
~1950!; L. D. Landau,English Translation Men of Physics, edited by D. Ter Haar~Pergamon, Oxford, 1965!, pp.
138–167.

2D. Saint James, G. Sarma, and E. J. Thomas,Type II Superconductivity~Pergamon, New York, 1969!.
3V. L. Ginzburg, ‘‘On the theory of superconductivity’’ Nuovo Cimento2, 1234~1955!.
4C. Bolley and B. Helffer, ‘‘Rigorous results for the Ginzburg–Landau equations associated to a superconducting
the weakk-limit,’’ Rev. Math. Phys.8, 43–83~1996!.

5C. Bolley and B. Helffer, ‘‘Proof of the De Gennes formula for the superheating field in the weakk limit,’’ Ann. Inst.
Henri Poincare´ 14, 597–613~1997!.

6C. Bolley and B. Helffer, ‘‘An application of semi-classical analysis to the asymptotic study of the supercooling fi
a superconducting material,’’ Ann. Inst. Henri Poincare´, Phys. Theor.58, 169–233~1993!.

7C. Bolley and B. Helffer, ‘‘The Ginzburg–Landau equations in a semi-infinite superconducting film in the largek limit,’’
Europ. J. Appl. Math.8, 347–367~1997!.

8C. Bolley and B. Helffer, ‘‘Rigorous results on the Ginzburg–Landau models in a film submitted to an exterior pa
magnetic field. Part II,’’ Nonlinear Studies3, 1–32~1996!.

9B. Dugnoille, ‘‘Etude the´orique et nume´rique des proprie´tés magne´tiques des couches minces supraconductrices de
1 et dek faible.’’ Thèse, Mons~1978!.
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Geometric models of „d¿1…-dimensional relativistic
rotating oscillators
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The West University of Timis¸oara, V. Pârvan Ave. 4, RO-1900 Timis¸oara, Romania
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Geometric models of quantum relativistic rotating oscillators in arbitrary dimen-
sions are defined on backgrounds with deformed anti-de Sitter metrics. It is shown
that these models are analytically solvable, deriving the formulas of the energy
levels and corresponding normalized energy eigenfunctions. An important property
is that all these models have the same nonrelativistic limit, namely the usual har-
monic oscillator. ©2000 American Institute of Physics.
@S0022-2488~00!01511-5#

In general relativity the anti-de Sitter~AdS! space–time is one of the most important a
interesting structures since the AdS/conformal field theory-correspondence1 was discovered. It is
known that, because of the high symmetry of AdS, the free motion of the scalar classi
quantum particles on this background has special features. There is a local chart with a m2

able to reproduce the classical motion of an isotropic nonrelativistic harmonic oscillator~NRHO!.
In other respects, the energy levels of the quantum modes given by the Klein–Gordon equat
equidistant.3 Thus the geometric models of free test classical or quantum particles on AdS
grounds represent the relativistic correspondent of the NRHO.

Two years ago, we generalized this ideal model of a relativistic oscillator~RO! to new
families of models of RO in~111! and ~311! dimensions.4,5 In general, the metrics of thes
models are deformations of some AdS or de Sitter metrics that produce oscillations and a s
relativistic rotation effect in the case of the~311!-dimensional models.5 However, what is inter-
esting here is that all these models lead to the NRHO in the nonrelativistic limit calculated
special relativity. We have studied in detail the~111! ~Ref. 4! models finding that there are tw
kinds of quantum RO with different properties, namely Po¨schl–Teller-type models~with de-
formed AdS metrics! and, respectively, Rosen–Morse-type models~with deformed de Sitter
metrics!.6 Moreover, we have shown that all the~111!-dimensional Po¨schl–Teller-type ROs have
similar properties and the same so~1,2! dynamical algebra.7 The next step might be the study o
the algebras of the~311! RO for which we have obtained only the energy spectra and the w
functions up to normalization factors.5 Fortunately, the space dimension of the model is
determinant for solving the Klein–Gordon equation. This means that these models can be a
cally solved in any dimensions like the AdS one.8 Thus we have the opportunity to complete
solve the problem of the quantum modes of rotating RO in arbitrary dimensions and then t
the study of their dynamical algebras.

Our aim is to present here only the method of solving the Po¨schl–Teller-type models in~d11!
dimensions. Our main objective is to derive the formula of the energy levels and to fin
normalized energy eigenfunctions in spherical coordinates~and natural units with\5c51).
Moreover, we show that, like in~311! dimensions, the rotation of these~d11! RO is a pure
relativistic effect that vanishes in the nonrelativistic limit~in the sense of special relativity! where
all these models lead to the (d11)-dimensional NRHO.

From the theory of the~311! RO we understand that the background of any (d11) RO must
be static and spherically symmetric~central!.4 Therefore, the backgrounds of our~d11! RO must
have central static charts with generalized spherical coordinates,r ,u1 , . . . ,ud21, commonly re-
lated with the Cartesian onesx[(x1,x2, . . . ,xd).9 Here it is convenient to choose the radi
coordinate such thatgrr 52g00 since then the radial scalar product is simpler.7 Starting with these
72900022-2488/2000/41(11)/7290/4/$17.00 © 2000 American Institute of Physics
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options, we define the metrics of our (d11)-dimensional Po¨schl–Teller-type RO as one
parameterdeformationsof the AdS metric given by the line elements

ds25S 11
1

e2
tan2v̂r D ~dt22dr2!2

1

v̂2
tan2v̂r du2, ~1!

where we denotev̂5e v, eP@0,̀ ), and

du25du1
21sin2u1 du2

2•••1sin2u1 sin2u2•••sin2ud22 dud21
2 ~2!

is the usual line element on the sphereSd21. The deformation parametere determines the geom
etry of the background whilev remains fixed. It is clear that fore51 we obtain just the AdS
metric ~with the hyperboloid radiusR51/v).8 An interesting case is that ofe→0 when the line
element,

ds25~11v2r 2!~dt22dr2!2r 2 du2 , ~3!

defines a background where the relativistic quantum motion is similar to that of NRHO.
model will be called thenormal RO. In general, the radial domain of any RO isDr5@0,p/2v̂)
which means that the whole space domain isD5Dr3Sd21. For the models withe5” 0 the time
might satisfy the conditiontP@2p/v̂,p/v̂) as in the AdS case but here we consider t
tP(2`,`) which corresponds to the universal covering space-times of the original backgro

In our models the oscillating test particle is described by a scalar quantum fieldf of massM,
minimally coupled with the gravitational field. Its quantum modes are given by the parti
solutions of the Klein–Gordon equation

1

Ag
]m~Ag gmn]nf!1M2f50 , g5udet~gmn!u . ~4!

These may be either square integrable functions or distributions onD. In both cases they must b
orthogonal~in usual or generalized sense! with respect to the relativistic scalar product10

^f,f8&5 i E
D

ddx Ag g00f* ]J0f8 . ~5!

The spherical variables of Eq.~4! can be separated by using generalized spherical harmo
Yl (l)

d21(x/r ). These are normalized eigenfunctions of the angular Laplace operator,9

2DSYl (l)
d21~x/r !5 l ~ l 1d22! Yl (l)

d21~x/r ! , ~6!

corresponding to eigenvalues depending on theangular quantum numberl which takes only
integer values, 0,1,2, . . ., selected by the boundary conditions on the sphereSd21.9 The notation
(l) stands for a collection of quantum numbers giving the multiplicity of these eigenvalues9

g l5~2l 1d22!
~ l 1d23!!

l ! ~d22!!
. ~7!

We start with~positive frequency! particular solutions of energyE,

fE,l (l)
(1) ~ t,x!;~cotv̂r !~d21!/2 RE,l~r ! Yl (l)

d21~x/r ! e2 iEt . ~8!

Then, after a few manipulations, we find the radial equation
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F2
1

v̂2

d2

dr2
1

2s~2s21!

sin2v̂r
1

2p~2p21!

cos2v̂r
GRE,l5n2RE,l , ~9!

where

2s~2s21!5S l 1
d

2
21D 2

2
1

4
, 2p~2p21!5

M2

v̂2e2
1

d221

4
, ~10!

and

n25
E2

v̂2
2S 12

1

e2D FM2

v̂2
2 l ~ l 1d22!G . ~11!

This equation gives radial functions,

RE,l~r !;sin2sv̂rcos2pv̂rF S s1p2
n

2
,s1p1

n

2
,2s1

1

2
,sin2v̂r D , ~12!

expressed in terms of Gauss hypergeometric functions11 depending on the real parameterss, p, and
n. The radial functions~12! have good physical meaning only when the functionsF are polyno-
mials selected by a suitable quantization condition since otherwise these are strongly diverg
r→p/2v̂. Therefore, we introduce the radial quantum numbernr ~Ref. 12! and impose the
quantization condition

n52~nr1s1p! , nr50,1,2, . . . . ~13!

In addition, we choose the boundary conditions of theregular modes given by the positive
solutions of Eq.~10!, i.e., 2s5 l 1(d21)/2 and 2p5k2(d21)/2, where we denote

k5A M2

v̂2e2
1

d2

4
1

d

2
. ~14!

This new parameter which concentrates all the other ones can be used as the main param
RO, like in the case of the~111! models wherek was just the weight of the irreducible represe
tations of the so~1,2! dynamical algebra.7

The last step is to define the main quantum number,n52nr1 l , which takes the values
0,1,2,. . . , giving the energy levels

En,l
2 5v̂2~k1n!21v̂2~e221!Fk~k2d!2

1

e2
l ~ l 1d22!G . ~15!

If n is even thenl 50,2,4,. . . ,n while for oddn we havel 51,3,5,. . . ,n. In both cases the degre
of degeneracy of the levelEn,l is given by~7!. The last term of~15! is just the rotator-like term
that gives the behavior of rotating oscillator. Obviously, this does not contribute in the AdS
whene51. On the other hand, we observe that the rotation effect vanishes in the nonrelat
limit since the rotator-like term decreases as 1/c2 whenc→` ~in usual units!. Now it remains only
to express~12! in terms of Jacobi polynomials and to normalize them to unity with respect to~5!.
The final result is

fn,l (l)
(1) ~ t,x!5Nn,l sinl v̂rcoskv̂rPnr

( l 1 d/2 21, k2 d/2)~cos2v̂r ! Yl (l)
d21~x/r ! e2 iEn,l t, ~16!

where
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Nn,l5F v̂d

En,l

nr ! ~2nr1k1 l !G~nr1k1 l !

GS nr1 l 1
d

2DGS nr1k112
d

2D G
1/2

. ~17!

Particularly, fore51 we recover the result we have recently obtained in the AdS case.8

According to the above result, we can say that in the models withe5” 0 the particles have the
same space behavior. However, the situation is different fore→0. It is not difficult to show that
in this limit, whenk increases asM /ve2, we obtain the energy levels of the normal RO

lim
e→0

En,l
2 5E° n,l

2 5M212vM S n1
d

2D1v2 l ~ l 1d22!, ~18!

which have their specific rotator-like terms~of the order 1/c2). The corresponding energy eigen
functions can be expressed in terms of Laguerre polynomials as

lim
e→0

fn,l (l)
(1) ~ t,x!5f° n,l (l)

(1) ~ t,x!5F ~vM ! l 1 d/2

E° n,l

nr !

GS nr1 l 1
d

2D G 1/2

r l

3e2vMr 2/2 Lnr

l 1 d/221~vM r 2!Yl (l)
d21~x/r !e2 iE̊n,l t. ~19!

It is remarkable that these wave functions coincide to those of NRHO up to the factor 1/A2E̊n,l

which appears since the definition of the relativistic scalar product is different from that o
nonrelativistic one. Moreover, one can verify that in the nonrelativistic limit, forc→` and very
small nonrelativistic energiesẼ5E2Mc2 ~in usual units!, the energy levels~18! become just
those of the NRHO, i.e.,Ẽn5v(n1d/2). Therefore, the nonrelativistic limit of the normal osc
lator is the NRHO.

On the other hand, we observe that the nonrelativistic limit of any RO can be calculated
first e→0 and thenc→`. This means that any RO with an arbitrarye has the same nonrelativisti
limit as the normal RO. Thus we can conclude that all the models of rotating RO studied her
to the ~d11!-dimensional NRHO in the nonrelativistic limit calculated as in special relativity
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A simple algebraic derivation of the covariant anomaly
and Schwinger term

C. Ekstranda)

Department of Theoretical Physics, Royal Institute of Technology,
S-100 44 Stockholm, Sweden
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An expression for the curvature of the ‘‘covariant’’ determinant line bundle is
given in even-dimensional space–time. The usefulness is guaranteed by its predic-
tion of the covariant anomaly and Schwinger term. It allows a parallel derivation of
the consistent anomaly and Schwinger term, and their covariant counterparts, which
clarifies the similarities and differences between them. ©2000 American Institute
of Physics.@S0022-2488~99!01010-5#

I. INTRODUCTION

Although the consistent and covariant~chiral! anomaly have many similar features, they a
differ in many ways. For example, the consistent anomaly is commonly derived from a var
of the effective action while the covariant anomaly often is determined by the covariant cu
defined from the consistent current by addition of a local term.1

Despite the differences, we will show that it is anyway possible to treat the consisten
covariant formalism from a common setting. One advantage of doing so is that the origin o
differences will be illuminated. Further, it allows as simple an algebraic derivation of the cova
anomaly as for the consistent anomaly. For the Schwinger terms2–6 this is also true. The result
turn out to agree with the ones found in the literature, see, for example Refs. 1,7 and 8 f
covariant anomaly and Refs. 9–11 for the covariant Schwinger term.

Following Fujikawa,7 the covariant anomaly can be obtained from an effective action tha
been renormalized covariantly, contrary to the renormalization leading to the consistent an
see Ref. 12, for instance. This suggests that the covariant anomaly can be obtained fr
transgression of the curvature on a ‘‘covariant’’ determinant line bundle. We will show tha
indeed is possible. The justification of our choice of line bundle is given by the prediction o
covariant Schwinger term as well.

The paper is organized as follows. To set notations and explain basic ideas, the con
anomaly and Schwinger term will be derived and considered in Sec. II. In Sec. III a pa
treatment will be performed for the covariant anomaly and Schwinger term. In these two se
we deal with the Yang–Mills theory and explicit results for lower dimensions will be given in
IV. To explain the modification to other kinds of anomalies and Schwinger terms, the ca
diffeomorphisms will also be considered in this section.

II. DERIVATION AND INTERPRETATION OF THE CONSISTENT ANOMALY AND
SCHWINGER TERM

Let M denote the space–time. It is assumed to be a compact oriented (2n22)-dimensional
Riemannian spin manifold without a boundary. Consider the principal bundleP5P(M ,G), where
the gauge groupG is assumed to be a compact semisimple Lie group. For simplicity, only the
whenP is trivial will be considered. Gauge potentials are connections onP and can be considere
as local one-formsA on M with values in LieG. Gauge transformations are automorphisms oP
that project to the identity map onM. They can be considered as local functionsg on M, taking

a!Electronic mail: ce@theophys.kth.se
72940022-2488/2000/41(11)/7294/10/$17.00 © 2000 American Institute of Physics
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values inG and obeying suitable gluing properties. There is a free action of the group of~base-
point preserving! gauge transformationG on the affine space of gauge potentialsA, given by

A°A•g5g21Ag1g21 dg, APA, gPG, ~1!

where d is the exterior derivative inM. This action induces a fiber bundle structurep:A
→A/G. Further, to eachAPA there is associated a Dirac operator]”A :G(M ,S1

^ E)
→G(M ,S1

^ E), whereS6 are the positive and negative chirality part of the spin bundle oveM
andE is an associated bundle toP. In local coordinates:

]”A5 (
m51

2n

gm~]m1Gm1Am!S 11g5

2 D . ~2!

They satisfy the covariance relation]”A•g5g21 ]”Ag.
The ~exponent of the! effective action can be described as a section of a determinant

bundleL over A. Associated with the Quillen metric inL is a natural curvatureF2 . It has been
calculated in Ref. 13:

F2~ F̂n!5E
m

P~ F̂n!~2n22,2! . ~3!

The bigrading~i,j! means the part in the expansion of the expression that is ani-form onM and a
j-form onA. P denotes a symmetric-invariant polynomial14 ~for example, the symmetrized trace
the fiber ofE! and F̂5(d1dA)Â1Â2, wheredA is the exterior differential inA and Â(h,t)
5A(h)1a(t)(p), where (h,t)PTpP3TAA and a is a connection onA→A/G. An explicit
example is given byaA5(DA* DA)21DA* , where DA :Lie G→TAA is defined by DAX

5(d/dt)u t50A•exp(tX) andDA* is its adjoint; see Ref. 15. The closed formP(F̂n) on M3A can
be written as a coboundary:

P~ F̂n!5~d1dA!v2n21~Â,F̂ !, ~4!

where

v2n21~Â,F̂ !5nE
0

1

dt P~Â,F̂ t
n21!, F̂ t5tF̂1~ t22t !Â2. ~5!

This implies that

E
M

P~ F̂n!~2n22,2!5dAE
M

v2n21~Â,F̂ !~2n22,1! . ~6!

Let i A(g)ªA•g and defineī A :P3G→P3A by ī A5 idP3 i A . The form ī A* Â is often denoted by
A1v, where v is called the ghost. Thus, if suppressing the embeddingī A , we see that the
restriction of Â to vertical vectors inA→A/G is equal toA1v. When restricting to vertical
directions and acting on local forms~i.e., polynomials inA, F, v, anddv!, dA becomes the BRS
operatord defined as in Ref. 16:

dA52dv2@A,v#,

dv52v2,
~7!

@d,d#50,
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d250.

Graded commutators with respect to the bigrading have been used here and will be used th
out the paper. Using the ‘‘Russian formula,’’

~d1d!~A1v !1~A1v !25F, ~8!

the restriction ofv2n21(Â,F̂)(2n22,1) to vertical vectors becomes, after straightforward compu
tions,

v2n22
1 ~A,v !ªv2n21„A1v,~d1d!~A1v !1~A1v !2

…~2n22,1!

5v2n21~A1v,F !~2n22,1!;n~n21!E
0

1

dt~12t !P~dv,A,Ft
n22!, ~9!

which is recognized as the~nonintegrated! consistent anomaly; see, for instance, Ref. 14. T
notation; means that we have equality only up to exact forms onM ~such forms do not contribute
when integrating overM!. The bigrading that has been used here is with respect to the form d
in M and the ghost degree, respectively.

Before going into a discussion concerning the meaning of the derivation above, we
explain how the consistent Schwinger term can be obtained. For this, we assume thatM has a
nonempty boundary]M , which will be interpreted as the physical space. We will consider
correspondence of Eq.~3! in this case. The operator]”A will then induce self-adjoint Dirac opera
tors]”A

] on the]M that have to be restricted to certain boundary conditions. This is in analog t
case when considering the index theorem for manifolds with boundary, or the correspo
family index theorem. According to Ref. 17, Eq.~3! now becomes:

F2~ F̂n!5E
M

P~ F̂n!~2n22,2!1ĥ. ~10!

The ĥ form accounts for the boundary conditions while the first term is independent of these
important to remember that Eq.~10! does not hold over all ofA, but only on a subsetUl5$A
PA;l¹spec(]”A

] )%. Assume that the (2n23)-dimensional manifold]M has the same propertie
asM and consider the spaceA] of gauge potentials on]M , the corresponding groupG] of gauge
transformations, the BRS operatord] and the ghostv]. M is assumed to be of the ‘‘product type
in a collar neighborhood]M3@0,1# of the boundary. Letq:A]→A be a map that extends a gaug
potential on the boundary to the whole manifoldM such thatq(A])u]M3$1%5A0 , whereA0 is a
fixed connection on]M3$1%.]M . If Eq. ~10! is restricted toq(Ul

] ) and pulled-backed byq, we
obtain

q* ~F2uq~U
l
] !!5q* E

M
P~ F̂n!~2n22,2!1q* ~ ĥuq~U

l
] !!, ~11!

where F̂5q(F]) so that F̂u]M5F]. From the construction ofĥ it is clear thatq* (ĥuq(U
l
] ))

vanishes when evaluated at vertical vectors inA]→A]/G]. Thus,

~q* F2uq~U
l
] !!ver.5q* S E

M
„~d1dA!v2n21~Â,F̂ !…~2n22,2!D

ver.

5E
]M

v2n21~A]1v],F]!~2n23,2!1q* d]E
M

v2n21~A1v,F !~2n22,1! . ~12!

Straightforward computations of the integrand in the first term on the right-hand side give
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v2n23
2 ~A],v]!ªv2n21~A]1v],F]!~2n23,2!

;H P~v],d]v]!, n52,

n~n21!~n22!

2 E
0

1

dt~12t !2P„~d]v]!2,A],~Ft
]!n23

…, n>3,
~13!

which is recognized as the~nonintegrated! consistent Schwinger term; see, for example, Ref.
The second term on the right-hand side in Eq.~12! turns out to only contribute to the consiste
Schwinger term with a coboundary. Thus, the consistent Schwinger term is equal to the cur
of q* (Lq(U

l
] )) evaluated in vertical directions. This agrees with the result of Ref. 18, where it

shown thatq* (Lq(U
l
] )) can be identified with the vacuum line bundle.

The rest of this section will be spent on a discussion concerning the cohomologica
geometrical meaning of the consistent anomaly and Schwinger term. We start with the an
and notice that:d*Mv2n22

1 50⇔F2,ver.50⇔ there exists an action ofG on L that projects to the
action of G on A. Indeed, these statements are all true sinceF2,ver.50 is a consequence of th
Russian formula@this in turn is a consequence of the covariance property satisfied by the
operator in~2!#. The existence of an action ofG on L makes it possible to consider the line bund
L/G→A/G. Many authors prefer to work withL/G, however, we will restrict to considerL since
it is only onA that a parallel treatment can be made for the covariant anomaly. The Wess–Z
consistency conditiond*Mv2n22

1 50 implies that*Mv2n22
1 is a representative of an eleme

@*Mv2n22
1 #dPH loc.

1 (Lie G), where the cohomology classesH loc.
k (Lie G) are defined by the BRS

operatord with a domain consisting of theM integral of local forms containing ak number of
ghosts. Recall that the consistent anomaly was obtained by writingF2 asdA of a 1-form onA,
which when restricted to vertical directions could be identified with theM integral of a local form
with 1 ghost:*Mv2n22

1 . This procedure induces a map:

F2°F E
M

v2n22
1 G

d

PH loc.
1 ~Lie G!, ~14!

which maps the curvature ofL to the cohomology class of the consistent anomaly. We will re
to this map as the transgression map. By an abuse of language we will sometimes al
F2°*Mv2n22

1 the transgression map, keeping in mind that it is only well defined up to cobo
aries. One advantage of working onA/G is now clear: SinceF2,ver.50, the push-forwardp* F2

can be constructed. It is the curvature onL/G. In terms of it, transgression induces a homom
phism fromH2(A/G) to H loc.

1 (Lie G) according to

@p* F2#→F E
M

v2n22
1 G

d

. ~15!

As we will see in the next section, a corresponding homomorphism does not exist for the cov
anomaly.

There is a bijective correspondence between connections“ on L and connection 1-formsAL3

on L3 ~5L\s0 , wheres0 is the zero section ofL!. It is given by the claim that“s5s* AL3 ^ s
should hold for any locally defined sections of L3. From this it is seen that the curvatureF2

locally can be written asdA„(“s8)/s8…, wheres8 is a locally defined nonvanishing section of th
line bundle L with connection“. Equation ~6! then implies that*Mv2n21(Â,F̂)5“s8/s8
1dAb, for some functionb on A. A change of sections5s8 exp(b) gives

E
M

v2n21~Â,F̂ !5
“s

s
. ~16!
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Thus, the consistent anomaly is given by the 1-form (“ver.s)/s identified with a local form with
one ghost. Notice that a change of sections95s exp(bloc.), whereb loc. is a a local form with no
ghosts, gives a change in the consistent anomaly by a coboundarydb loc. and leaves therefore th
cohomology class of the consistent anomaly unchanged. Conversely, it is clear that for
change in the representative of the cohomology class, it is possible to multiplys with the exponent
of a local form so that~16! still holds. A sections is said to be LieG equivariant if“ver.,XA

s

5s, ;XPLie G, whereXA5(d/dt)u t50A•exp(tX). Thus, the cohomology class of the consiste
anomaly is the obstruction in LieG equivariance for a certain locally defined nonvanishing sec
s of the line bundleL, with connection“.

A corresponding analysis for the consistent Schwinger term will now be performed. I
easily be checked that the cocycle relationd]*]Mv2n23

2 50 is fulfilled. This is a consequence o
the Russian formula. Thus, the consistent Schwinger term defines an element inH loc.

2 (Lie G]). It is
easy to generalize the transgression map, defined in~14!, to a map,

F3°F E
]M

v2n23
2 G

d]

PH loc.
2 ~Lie G]!, ~17!

with

F35E
]M

P„~ F̂]!n
…~2n23,3!5dA]E

]M
v~Â,F̂ !~2n23,2! . ~18!

Similar to the case for the consistent anomaly, this induces a homomorphism fromH3(A]/G]) to
H loc.

2 (Lie G]) that maps@p* F3# to the right-hand side of~17!. Observe that the cocycle relation
equivalent withF3,ver.50.

The consistent Schwinger term was obtained by writingF2 as a space–time~without bound-
ary! integral of a form and considering the corresponding expression when space–time
boundary. This gives an expression containing two terms; see Eq.~10!. The first term is the one
obtained if we naively let space–time have a boundary in the formula forF2 . The second term
accounts for the boundary conditions that the induced Dirac operators on the boundary h
fulfill. Since the integrand in the first term only depends on the intrinsic properties ofM, we will
refer to this term as the ‘‘intrinsic part.’’ Thus, the consistent Schwinger term is obtaine
replacing the boundaryless space–time in the formula forF2 with a space–time with a boundary
keeping only the intrinsic part, pull-back byq and restricting to vertical vectors. Remember th
F2 is the curvature onL, the line bundle on which the effective action is described by a sec
Since the second term in~11! vanishes when restricted to vertical vectors, the consis
Schwinger term is, in fact, equal to the curvature of a locally defined line bundle overA].
However, this interpretation will not be used in this paper since there is no correspondence o
the covariant Schwinger term, as will be explained in the next section.

III. DERIVATION AND INTERPRETATION OF THE COVARIANT ANOMALY AND
SCHWINGER TERM

In the previous section we reviewed the result that the nonintegrated consistent anoma
Schwinger term are given by the parts in the expansion of

v2n21„A1v,~d1d!~A1v !1~A1v !2
…, ~19!

which is linear and quadratic in the ghost, respectively. To be consistent with earlier notati
should, of course, replaceA with A], d with d], v with v], and d with d], for the consistent
Schwinger term. A close inspection of the consistent anomaly and Schwinger term reveals t
breakdown of gauge invariance depends on the appearance of the BRS operatord in this expres-
sion. This makes it plausible that the covariant anomaly and Schwinger term can be deriv
                                                                                                                



, for
term,

parts

of the

resent
winger
variant
the

ct; see

undle

e

nt

can be
aly. In
e, on
tion in

7299J. Math. Phys., Vol. 41, No. 11, November 2000 A simple algebraic derivation

                    
naively droppingd. These obstructions have been obtained in many different ways; see
example, Refs. 1,7 for the covariant anomaly and Refs. 9–11 for the covariant Schwinger
and they all agree with the result

ṽ2n22
1 ~A,v !;np~v,Fn21!, ~20!

for the covariant anomaly and

ṽ2n23
2 ~A],v]!;

n~n21!

2
P„v],2d]A],~F]!n22

…, ~21!

for the covariant Schwinger term.
Theorem 1: The nonintegrated covariant anomaly and Schwinger term are given by the

in the expansion of

v2n21„A1v,d~A1v !1~A1v !2
…, ~22!

which is linear respective quadratic in the ghost. (To have consistent notation with the rest
paper, replace A with A], and so on, for the covariant Schwinger term.)

The theorem can be proven by explicit computations and comparison with~20! and ~21!.
Since the computations for the covariant Schwinger term are the most difficult ones, we p
them in the Appendix. Compact expressions containing both the covariant anomaly and Sch
term have earlier been obtained in Refs. 19 and 20. Observe that the fact that the co
Schwinger term is the part of~22! that is quadratic in the ghost is not in agreement with
corresponding formula obtained in Ref. 19. The incorrect equation~31! in Ref. 19 is, however,
only due to a computational error and everything else in this reference seems to be corre
Ref. 21 for details.

That Theorem 1 is true implies that the covariant anomaly can be obtained from a line b
L̃ defined asL, but with curvatureF̃2 such that the covariant correspondence ofv(Â,F̂) in Eq. ~4!
is a form that restricts tov2n21„A1v,d(A1v)1(A1v)2

… at vertical directions. It is easy to se
that such a construction is possible, for example,A affine implies that the integral ofF̃2 over a
subset ofA without a boundary is zero, which guarantees the existence of a line bundleL̃ with
curvatureF̃2 . An explicit example is given by

F̃25dAE
M

v2n21~Â,dÂ1Â2!~2n22,1! . ~23!

We define the cohomology class@*Mṽ2n22
1 # of the covariant anomaly to be*Mṽ2n22

1 modulo
dv, wherev is a local form. Then, transgression gives the map

F̃2°F E
M

ṽ2n22
1 G , ~24!

which maps the curvature ofL̃ to the covariant anomaly. Consider the following equivale
relations:d*Mṽ2n22

1 Þ0⇔F̃2,ver.Þ0⇔ there does not exists an action ofG on L̃ that projects to
the action ofG onA. That they are true follows from the fact thatddṽ2n22

1 is not identical to zero,
as is easy to check. This means that@*Mṽ2n22

1 #, in contrary to@*Mv2n22
1 #, does not define any

cohomology class@¯#d . Also, it implies that is not possible to work onA/G for the covariant
anomaly. However, it is easy to see that the cohomology class of the covariant anomaly
interpreted geometrically in a corresponding way to what was done for the consistent anom
fact, the considerations in the previous section go through word by word if putting an overtild
all objects that appears. Thus, the cohomology class of the covariant anomaly is the obstruc
Lie G equivariance for a certain local nonvanishing sections̃ of L̃, with connection“̃.
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Theorem 1 also implies that the covariant Schwinger term can be obtained in a similar w
the consistent Schwinger term was derived: First, writeF̃2 as the integral overM of a form, a
covariant correspondence of Eq.~3!. Then, consider the expression forF̃2 obtained by naively
replacingM with a manifold with a boundary in Eq.~3!. After pull-back byq and restriction to
vertical directions, the covariant Schwinger term is obtained. Notice that when these step
performed for the consistent case, we saw that the Schwinger term was equal to a curvatur
gauge directions for a line bundle. This comes from Eq.~11! and the fact that theq pull-back of
ĥ vanishes at gauge directions. In the covariant case, there is no direct correspondence
family index theorem and Eq.~11!. Especially, the covariant Schwinger term cannot be interpre
as the curvature of a line bundle~if it could, it would satisfy the cocycle relation, which is no
true!.

Transgression gives the map:

F̃3°F E
]M

ṽ2n23
2 G , ~25!

whereF̃3 is given by

F̃35dA]E
]M

v2n21„Â
],d]Â]1~Â]!2

…~2n23,2! , ~26!

for example. The notation@¯# is the equivalence relation defined so that two representatives
equal if and only if they differ byd]v, for some local formv. It is easy to check thatd]d]ṽ2n23

2

is not identical to zero forn>3. It implies that the covariant Schwinger term@*]Mṽ2n23
2 #, n

>3, does not obey the cocycle relation and does therefore not define any cohomology cla
respect tod]. This fact is equivalent with the fact thatF̃3,ver.Þ0, n>3. This means that it is no
possible to work onA/G here either. Notice thatn52 is an exception whered]d]ṽ1

250 and
d]*]Mṽ1

250⇔F̃3,ver.50 are true.
There is a natural normalization factor for the consistent anomaly and Schwinger given

claim thatp* F2 andp* F3 should obey the so-called integrality condition. That means that
integral ofp* F2 over any closed surface inA/G is equal to an integer~or sometimes, an intege
times a constant factor!, and corresponding forp* F3 and a closed volume inA/G. Since it is not
possible to work onA/G for the covariant anomaly and Schwinger term~for n>3! it is not as easy
to find the correct normalization factor in this case. We choose to define the normalization
for the covariant anomaly and Schwinger term simply by dropping the BRS operator i
formula ~19! for their consistent counterparts, normalized by the integrality condition.

Fujikawa7 showed that the covariant anomaly can be obtained as the obstruction inG equi-
variance for some determinant ‘‘function.’’ The determinant ‘‘function’’ he used was a ga
covariant renormalized effective action. A correct mathematical interpretation would be to
Fujikawa’s determinant as a section of a line bundle that to some perspective is covariant
we obtain the same result as Fujikawa, this motivates us to use the name ‘‘covariant’’ determ
line bundle forL̃. As mentioned in the Introduction, the final justification for the name is tha
predicts the covariant Schwinger term as well. That is, we get the same result as in Refs.
where the covariant Schwinger term was obtained from a renormalization of the commuta
covariant ‘‘Gauss law operators.’’ With the latter we mean the ordinary~consistent! Gauss law
operators with the consistent current replaced with the covariant current.

IV. LOW-DIMENSIONAL COVARIANT SCHWINGER TERMS FOR YANG–MILLS AND
DIFFEOMORPHISMS

Here we write down explicit expressions for the covariant Yang–Mills and diffeomorph
Schwinger term in one- and three-dimensional space for the case when the principal bundP is
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trivial. For simplicity, we will start with the case of Yang–Mills. Assume thus thatP(•) is the
symmetrized trace times the factorc52p( i /2p)n/n! and consider Eq.~21! for n52 andn53:

E
]M

ṽ1
2~A],v]!5

1

4p E
]M

tr~v] d]A]!,

~27!

E
]M

ṽ3
2~A],v]!5

i

16p2 E
]M

tr„~v]F]1F]v]!d]A]
….

We will now consider these expressions when]M is an Euclidean space and all forms a
functions have compact support therein. Evaluated on infinitesimal gauge transformationX],
Y]PLie G], it gives

E
R
ṽ1

2~A],v]!~X],Y]!52
1

2p E
R

tr~X]]xY
]1@X],Y]#Ax

]!dx,

E
R3

ṽ3
2~A],v]!~X],Y]!52

i

8p2 E
R3

tr„~X] ] iY
]2Y] ] iX

]1@X],Y]#Ai
]1X]Ai

]Y]

2Y]Ai
]X]!~] jAk

]1Aj
]Ak

]!e i jk…d
3x, ~28!

whereA]5Ax
] dx, A]5(k51

3 Ak
] dxk ande i jk is the antisymmetric tensor withe12351. This can be

compared with the corresponding formulas for the consistent case:

E
R
v1

2~A],v]!~X],Y]!52
1

2p E
R

tr~X] ]xY
]!dx,

~29!

E
R3

v3
2~A],v]!~X],Y]!52

i

24p2 E
R3

tr~„~] iX
]!] jY

]2~] iY
]!] jX

]
…Ak

]e i jk !d3x.

It is known1 that the structure of the diffeomorphism anomaly is similar to the gauge anom
The same is true also for the Schwinger term. The only thing that differs is the interpretation
objects in the formulas. For example, the spaceA of gauge connectionsA should be replaced by
the space of Christoffel connectionsG. For a vectorj generating a diffeomorphism, the ghost
locally given byvm

l 5]mjl. Thus, also in this case, the formulas for the consistent and cova
anomaly and Schwinger term are given by Eq.~9!, ~13!, ~20!, and~21!. We will make this explicit
by calculating the covariant Schwinger term in one-three- and five-dimensional space. Th
evant formula to use is Eq.~21! with P(•)52pÂ(•), whereÂ(•) is theA-roof function appearing
in the index theorem. It is not to be confused with the potentialÂ considered before. It is define
by

Â~R]!5det1/2S iR]/4p

sinh~ iR]/4p! D
511S 1

4p D 2 1

12
tr~R]!21S 1

4p D 4S 1

288
„tr~R]!2

…

21
1

360
tr~R]!4D1¯ , ~30!

whereR] is the Riemannian curvature on]M ; see, for instance Ref. 12. Forn52 we obtain

E
]M

ṽ1
2~G],v]!52E

]M
P~v],d]G]!52

1

96p E
]M

v] d]G]. ~31!

For n53,
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E
]M

ṽ3
2~G],v]!50, ~32!

and forn54,

E
]M

ṽ5
2~G],v]!5E

]M
P„v],d]G],~R]!2

…

52S 1

4p D 3 1

1152E]M
~ tr~v] d]G]!tr„~R]!2

…1tr~v]R]!tr~R]d]G]!!

2S 1

4p D 3 1

6480E]M
tr„v]~R]!2 d]G]1v]R]~d]G]!R]1v]~d]G]!~R]!2).

~33!

ACKNOWLEDGMENTS

I thank J. Mickelsson for drawing my attention to covariant Schwinger terms and fo
remarks on a preliminary version of the paper.

APPENDIX: CALCULATING THE COVARIANT SCHWINGER TERM

Here we will give the details of the calculations needed to prove Theorem 1 for the case
covariant Schwinger term. Equation~5! gives

v2n21„A
]1v],d]~A]1v]!1~A]1v]!2

…~2n23,2!

5nE
0

1

dt P~A]1v],„td]~A]1v]!1t2~A]1v]!2
…

n21!~2n23,2!

5
n~n21!

2 E
0

1

dt„2P~v],t Dt
]v],~Ft

]!n22
…12P„A],t2~v]!2,~Ft

]!n22
…

1~n22!P„A],t Dt
]v],t Dt

]v],~Ft
]!n23

…!, ~A1!

whereDt
]
ªd]1t@A],•# and the commutator is graded. UsingDt

]Ft
]50 and making a ‘‘partial

integration’’ with respect to the operatorDt
] leads to the following relation for the last term:

~n22!P„A],t Dt
]v],t Dt

]v],~Ft
]!n23

…;~n22!P„tv],t Dt
]v],Dt

]A],~Ft
]!n23

…

2~n22!P„A],t~Dt
]!2v],v],~Ft

]!n23
…. ~A2!

The identities (Dt
])2v]5@Ft

] ,v]# and (d/dt)Dt
]v]5@A],v]# applied to the last term in this ex

pression gives

~n22!P„A],t2~Dt
]!2v],v],~Ft

]!n23
…52P„A],t2~v]!2,~Ft

]!n22
…2PS d

dt
Dt

]v],t2v],~Ft
]!n22D .

(A3)

When putting it all together we obtain the final result:
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v2n21„A
]1v],d]~A]1v]!1~A]1v]!2

…~2n23,2!

;
n~n21!

2 E
0

1

dtS 2P„v],t Dt
]v],~Ft

]!n22
…1PS d

dt
Dt

]v],t2v],~Ft
]!n22D

1~n22!P~ tv],t Dt
]v],Dt

]A],~Ft
]!n23! D

5
n~n21!

2 E
0

1

dt
d

dt
P„tv],t Dt

]v],~Ft
]!n22

…

5
n~n21!

2
P„v],2d]A],~F]!n22

…. ~A4!
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Superspace formulation of general massive gauge
theories and geometric interpretation of mass-dependent
Becchi–Rouet–Stora–Tyutin symmetries
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A superspace formulation is proposed for theosp(1,2)-covariant Lagrangian quan-
tization of general massive gauge theories. The superalgebraosp(1,2) is consid-
ered as subalgebra of the superalgebrasl(1,2);osp(2,2) which may be considered
as the algebra of generators of the conformal group in a superspace with two
anticommuting coordinates. The mass-dependent~anti!Becchi–Rouet–Stora–
Tyutin symmetries of proper solutions of the quantum master equations in the
osp~1,2!-covariant formalism are realized in that superspace as invariance under
translations combined with mass-dependent special conformal transformations. The
Sp(2) symmetry—in particular the ghost number conservation—and the new ghost
number conservation are realized in the superspace as invariance under symplectic
rotations and dilatations, respectively. The new ghost number conservation is gen-
erally broken by the choice of a gauge. The transformations of the gauge fields and
the full set of necessarily required~anti!ghost and auxiliary fields under the super-
algebrasl(1,2) are determined both for irreducible and first-stage reducible theo-
ries with closed gauge algebra. ©2000 American Institute of Physics.
@S0022-2488~00!00310-8#

I. INTRODUCTION

After the realization that the effective Lagrangian of non-Abelian gauge theories is inva
with respect to Becchi–Rouet–Stora–Tyutin~BRST!1 as well as anti-BRST transformations,2 it
has been recognized that this invariance can be used as a fundamental principle in the cons
of covariantly quantized gauge theories~for a modern introduction see Ref. 3!. In particular, a
superfield formulation of quantized pure Yang–Mills theories by Bonora and Tonin provid
convenient framework for describing the extended BRST symmetries.4 In this framework the
extended BRST symmetries are realized as translations in a superspace along additional a
muting coordinates~for a more recent approach, we refer to Ref. 5 and references therein!.

A Sp(2)-covariant superfield description of Lagrangian quantization of general gauge
ries, which is applicable irrespective of whether the theories are irreducible or reducible
whether the gauge algebra is closed or open, has been given in Ref. 6. A corresponding su
formulation of the quantization procedure in the Hamiltonian approach for theories with first-
constraints has been given in Ref. 7.

Recently, theSp(2)-quantization of Batalin, Lavrov, and Tyutin has been extended
formalism which is based on the orthosymplectic superalgebraosp(1,2)8 and which can be ap
plied to massivegauge theories. This is achieved by incorporating into the extended BRST t
formationsm-dependent terms in such a way that them-extended~anti!BRST symmetry of the
quantum actionWm is preserved. In that approachWm is required to satisfy the generalize

a!Electronic mail: geyer@itp.uni-leipzig.de
73040022-2488/2000/41(11)/7304/29/$17.00 © 2000 American Institute of Physics
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quantum master equations ofm-extended BRST symmetry and, in addition, ofSp(2) symmetry,

1
2~Wm ,Wm!a1Vm

a Wm5 i\DaWm⇔D̄aexp$Wm%50, ~I.1!

1
2$Wm ,Wm%a1VaWm5 i\DaWm⇔D̄aexp$Wm%50, ~I.2!

respectively, whose generating~second-order! differential operators

D̄m
a [Da1~ i /\!Vm

a ~a51,2!, ~I.3!

D̄a[Da1~ i /\!Va ~a50,61!, ~1.4!

form a superalgebra isomorphic toosp(1,2) @the definitions of the~anti!brackets and the operator
D̄m

a and D̄a are given in the following#.
The incorporation of mass terms into the actionWm is necessary at least intermediately in t

renormalization scheme of Bogoliubov, Parasiuk, Hepp, Zimmermann, and Lowen
~BPHZL!.9 An essential ingredient to deal with massless theories in that scheme consists
introduction of a regularizing massm5(s21)M for any massless field and performing ultraviol
as well as infrared subtractions thereby avoiding spurious infrared singularities in the lis
→1. By using such an infrared regularization—without violating the extended BR
symmetries—theosp(1,2)-superalgebra appears necessarily.

Moreover, the BPHZL renormalization scheme is probably the mathematical best founde
in order to formulate the quantum master equations on the level of algebraic renormali
theory and to properly compute higher-loop anomalies.10 The reason is the following: The onl
quantity that remains undefined in the above-mentioned approaches of quantizing genera
theories is the right-hand side of the quantum master equations~that problem already occurs in th
Batalin–Vilkovisky field–antifield formalism!. At the classical level, the extended BRST inva
ance in theosp(1,2)-approach is expressed by the classical master equations1

2(Sm ,Sm)a

1Vm
a Sm50, whereSm is the lowest order approximation in\ of Wm . On the quantum level

formal manipulations modify the classical master equations into Eq.~I.1!. When applied to the
local functionalWm the operationDaWm leads to the ill-defined expressiond(0). Well-defined
expressions for the regularized operatorsDa are proposed at one-loop level in Ref. 11 within t
context of Pauli–Villars regularization and at higher order in Ref. 12 for nonlocal regulariza
However, by means of the BPHZL renormalization scheme, which bypasses any ultraviolet
larizations, the right-hand side of the quantum master equations can be defined by using Z
manns’s normal products to any order of perturbation theory.10

The purpose of the present paper is to reveal the geometrical content o
osp(1,2)-covariant Lagrangian quantization, which amounts to understanding the geom
meaning of them-dependent part of the extended BRST transformations. For that reaso
theory will be described in terms of super~anti!fields. Our approach is based on the idea
consideringosp(1,2) as a subsuperalgebra of the superalgebrasl(1,2). The latter algebra, bein
isomorphic toosp(2,2), contains four bosonic generatorsVa andV, which form the Lie algebra
sl(2)% u(1), andfour ~nilpotent! fermionic generatorsV1

a andV2
a . The even part ofosp(1,2) is

the algebrasl(2) generating the special linear transformations, but due to their isomorphism
algebrasp(2) we will speak about symplectic transformations. The eigenvalues of the gene
Va for a50 define the ghost numbers, whereas the eigenvalues of the generatorV define what in
Ref. 13 was called the ‘‘new ghost number.’’ The generatorsV1

a andV2
a have opposite new ghos

numbers, ngh(V6
a )561, respectively. But, introducing a massm which formally will be attrib-

uted also by a new ghost number, ngh(m)51, they can be combined into two fermionic generato
Vm

a 5V1
a 1 1

2m
2V2

a of the superalgebraosp(1,2). FormÞ0 these generatorsVm
a are neither nil-

potent nor do they anticommutate among themselves.
The key observation that allows for a geometric interpretation of the superalgebrasl(1,2) is

due to Baulieu, Siegel, and Zwiebach,14 which in a quite different context of string theory gave
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description ofsl(1,2) as the algebra generating conformal transformations in a two-dimens
superspace. Hence, the generatorsV1

a ,V2
a ,Vab5(sa)abVa and V of the superalgebrasl(1,2),

with (sa)ab generating the fundamental representation ofsl(2), may beconsidered as generato
of translationsiPa, special conformal transformationsiK a, symplectic rotationsiM ab, and dila-
tations2 iD , respectively, in superspace. This leads immediatly to a ‘‘natural’’ geometric for
lation of theosp(1,2) quantization procedure: In a superspace description the invariance oWm

underm-extended BRST transformations, generated byVm
a 5V1

a 1 1
2m

2V2
a , corresponds to trans

lations combined withm-dependent special conformal transformations, and its invariance u
Sp(2)-transformations, generated byVa , corresponds to symplectic rotations. Furthermore, so
tions Sm of the classical master equations1

2(Sm ,Sm)a1Vm
a Sm50 and$Sm ,Sm%a1VaSm50 with

vanishing new ghost number, ngh(Sm)50, correspond to solutions in the superspace being inv
ant under dilatations, generated byV.

The paper is organized as follows. In Sec. II we briefly review some basic definitions
properties ofL-stage reducible gauge theories and we introduce the corresponding configu
space of fields and antifields. Furthermore, the~anti!commutation relations of the superalgeb
sl(1,2) are defined and an explicit realization in terms of linear differential operators acting o
antifields are given. In Sec. III the superalgebrasl(1,2) is realized as the algebra of the conform
group in superspace where the usual space–time is extended by two extra anticommuting
natesua. Moreover, we give a superspace representation of the algebrasl(1,2) acting linearly on
the super~anti!fields. In Sec. IV theosp(1,2)-covariant superfield quantization rules for gene
gauge theories are formulated. Besides, it is shown that proper solutions of the classical
equations can be constructed being invariant underosp(1,2)% u(1), where the additionalu(1)
symmetry is related to the new ghost number conservation; however, this symmetry is brok
choosing a gauge. Section V is devoted to studying the~in!dependence of general Green’s fun
tions on the choice of the gauge. In theosp(1,2) approach it is proven that mass terms gener
destroy gauge independence; however, this gauge dependence disappears in the limitm50. In
Sec. VI we constructosp(1,2)% u(1) symmetric proper solutions of the classical master eq
tions. Moreover, the problem of how to determine the transformations of the gauge fields a
full set of the necessary~anti!ghost and auxiliary fields under the superalgebrasl(1,2) is solved
both for irreducible and first-stage reducible theories with closed algebra.

Throughout this paper we have used the condensed notation introduced by DeWitt15 and
conventions adopted in Ref. 8; if not specified otherwise, derivatives with respect to the su
tifields F̄A(u) and the superspace coordinatesua are the~usual! left ones and that with respect t
the superfieldsFA(u) areright ones. Left derivatives with respect toFA(u) and right derivatives
with respect toua are labeled by the subscriptsL andR, respectively; e.g.,dL /dFA(u) (]R /]ua)
denotes the left~right! derivative with respect to the superfieldsFA(u) ~the superspace coordinate
ua).

II. REALIZATION OF sl „1,2… IN TERMS OF ANTIFIELDS

A. General gauge theories

Before going into the main subject of this section let us briefly introduce the basic defin
of general gauge theories and the corresponding configuration space of fields and antifield

A set of gauge~as well as matter! fields Ai with Grassmann paritiese(Ai)5e i will be
considered whose classical actionScl(A) is invariant under the gauge transformations

dAi5Ra0

i ja0, a051, . . . ,n0 , Scl,iRa0

i 50. ~II.1!

Here,ja0 are the parameters of these transformations andRa0

i (A) are the gauge generators havin

Grassmann paritye(ja0)5ea0
ande(Ra0

i )5e i1ea0
, respectively; by definitionX, j5dX/dAj .

For general gauge theoriesthe algebra of generators has the following form:13
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Ra0 , j
i Rb0

j 2~21!ea0
eb0Rb0 , j

i Ra0

j 52Rg0

i Fa0b0

g0 2Ma0b0

i j Scl, j , ~II.2!

whereFa0b0

g0 (A) are the field-dependent structure functions and the matrixMa0b0

i j (A) is graded

antisymmetric with respect to (i j ) and (a0b0). The gauge algebra is said to beclosedif Ma0b0

i j

50, otherwise it is calledopen. Moreover, Eq.~II.2! defines a Lie algebra if the algebra is clos
and theFa0b0

g0 do not depend onAi .

If the set of generatorsRa0

i are linearlyindependentthen the theory is calledirreducible.16 On

the other hand, if the generatorsRa0

i are not independent, i.e., if on-shell certain relations e

among them, then, according to the following characterization, the theory under considera
calledL-stagereducible:17

There exists a chain of field-dependent on-shell zero-modesZas

as21(A),

Ra0

i Za1

a05Scl, jKa1

j i , Ka1

i j 52~21!e ie jKa1

j i ,

Zas21

as22Zas

as215Scl, jKas

j as22, as51, . . . ,ns , s52, . . . ,L,

where the stageL of reducibility is defined by the lowest values for which the matrixZaL

aL21(A)

is no longer degenerated. TheZas

as21 are the on-shell zero modes forZas21

as22 with e(Zas

as21)

5eas21
1eas

. In the following, if not stated otherwise, we assumes to take on the valuess
50, . . . ,L, thereby including also the case of irreducible theories.

The whole space of fieldsfA and antifieldsf̄A ,fAa* ,hA together with their Grassman
parities~modulo 2! is characterized by the following sets:13,8

fA5~Ai ,Basua1•••as,Casua0•••as,s50, . . .L !, e~fA![eA5~e i ,eas
1s,eas

1s11!,

f̄A5~Āi ,B̄asua1•••as
,C̄asua0•••as

,s50, . . .L !, e~f̄A!5eA ,

fAa* 5~Aia* ,Basaua1•••as
* ,Casaua0•••as

* ,s50, . . .L !, e~fAa* !5eA11,

hA5~Di ,Easua1•••as
,Fasua0•••as

,s50, . . .L !, e~hA!5eA ,

respectively. Here, the pyramids of auxiliary fieldsBasua1•••as and ~anti!ghostsCasua0•••as are
Sp(2)-tensors of ranks and s11, respectively, being completelysymmetricwith respect to the
‘‘internal’’ Sp(2)-indices ai51,2, (i 50,1, . . . ,s); similarly for the antifieldsf̄A ,fAa* , and
sourceshA . The independent indexa51,2 which counts the two components of aSp(2)-spinor
will be called ‘‘external.’’ The totally symmetrizedSp(2)-tensors are irreducible and have ma
mal Sp(2)-spin. Raising and lowering ofSp(2)-indices is obtained by the invariant tensor

eab5S 0 1

21 0D , eacecb5db
a .

B. The superalgebra sl „1,2…

The main goal of this section is to determine the action of the generators of the supera
sl(1,2) on the antifieldsf̄A , fAa* , andhA . Let us now introduce that algebra.

The even part ofsl(1,2);sl(2,1) is the Lie algebrasl(2)% u(1). We denote byVa , (a
50,6) the ~real! generators ofSL(2) and byV the generator ofU(1). The oddpart of sl(1,2)
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contains two~nilpotent! SL(2)-spinors,V6
a , with spin 1

2 and Weyl weighta(V6
a )561, respec-

tively. Spin and Weyl weight ofV6
a are defined through their behavior under the action of

generatorsVa andV, respectively.18

The ~anti!commutation relations of the superalgebrasl(1,2) are19

@V,Va#50, @V,V1
a #5V1

a , @V,V2
a #52V2

a ,

@Va ,Vb#5eab
gVg , @Va ,V1

a #5V1
b ~sa!b

a , @Va ,V2
a #5V2

b ~sa!b
a , ~II.3!

$V1
a ,V1

b %50, $V2
a ,V2

b %50, $V1
a ,V2

b %52~sa!abVa2eabV,

where theSp(2)-indices are raised or lowered according to

~sa!ab5eac~sa!c
b5~sa! c

a ecb5eac~sa!cde
db,

~sa!a
b52~sa! a

b , ~sa!ab5~sa!ba.

The matricessa(a50,6) generate the~real! Lie algebrasl(2) being isomorphic tosp(2):

~sa!a
c~sb!c

b5gabda
b1 1

2eabg~sg!a
b , ~sa!a

b5gab~sb!a
b ,

~II.4!

gab5S 1 0 0

0 0 2

0 2 0
D , gagggb5db

a ,

whereeabg is the totally antisymmetric tensor,e01251. For the generatorssa we may choose
the representation (s0)a

b5t3 and (s6)a
b52 1

2(t16 i t2), with ta (a51,2,3) being the Paul
matrices.

Let us now rewrite thesl(1,2)-algebra in two equivalent forms, both of which are of physi
relevance in the following. First, introducing another basisVab of the SL(2)-generators, namely

Vab5~sa!abVa , ~II.5!

and making use of the equalities

~sa!ab~sa!d
c52ec$add

b% , eab
g ~sa!ab~sb!cd52e$c$a~sg!b%d%,

where the curly braces$ % indicate symmetrization of indices, the~anti!commutation relations of
sl(1,2) read

@V,Vab#50, @V,V1
a #5V1

a , @V,V2
a #52V2

a ,

@Vab,Vcd#52e$c$aVb%d%, @Vab,V1
c #52ec$aV1

b% , @Vab,V2
c #52ec$aV2

b% , ~II.6!

$V1
a ,V1

b %50, $V2
a ,V2

b %50, $V1
a ,V2

b %52Vab2eabV.

In that form the superalgebrasl(1,2) may be given a geometric interpretation as the algebra o
conformal group in a two-dimensional superspace having two anticommuting coordinate~see
Sec. III below!.

Second, we remark that within the field–antifield formalism not the en
sl(1,2)-superalgebra will be of physical relevance, since not any of their generators define
metry operations of the quantum action—only some combinations of them forming an ortho
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plectic superalgebraosp(1,2) generate symmetries~see Sec. IV below!. Therefore, with respect to
this let us notice the isomorphism betweensl(1,2) andosp(2,2) by introducing the following two
combinations ofV1

a andV2
a ,

O1
a [V1

a 1 1
2V2

a , O2
a [V1

a 2 1
2V2

a .

Then for the~anti!commutation relations of the superalgebraosp(2,2) we obtain

@V,Va#50, @V,O1
a #5O2

a , @V,O2
a #5O1

a ,

@Va ,Vb#5eab
gVg , @Va ,O1

a #5O1
b ~sa!b

a , @Va ,O2
a #5O2

b ~sa!b
a ,

$O1
a ,O1

b %52~sa!abVa , $O2
a ,O2

b %5~sa!abVa , $O1
a ,O2

b %52eabV.

Here, (Va ,O1
a ) as well as (Va ,O2

a ) obey two differentosp(1,2)-superalgebras with (V,O2
a ) as

well as (V,O1
a ) forming an irreducible tensor of these algebras, respectively, either of t

transforming according to the same representation. Notice that bothO1
a and O2

a are neither
nilpotent nor do they anticommute among themselves.

C. Representation of sl „1,2… on the antifields

Now, let us give an explicitlinear realization of the generators of the superalgebra~II.3! by
their action on the antifieldsf̄A , fAa* and the sourceshA ~a nonlinear realization on the fieldsfA

will be given in Sec. IV!,

V1
a f̄A5eabfAb* , V2

a f̄A50,

V1
a fAb* 52db

ahA , V2
a fAb* 5f̄B~~sa! b

a ~sa! A
B 2db

aḡA
B!, ~II.7!

V1
a hA50, V2

a hA5fBb* ~~sa!ab~sa! A
B 2eab~ ḡA

B12dA
B!!,

Vaf̄A5f̄B~sa! A
B , Vf̄A5f̄BḡA

B ,

VafAb* 5fBb* ~sa! A
B 1fAa* ~sa! b

a , VfAb* 5fBb* ~ ḡA
B1dA

B!, ~II.8!

VahA5hB~sa! A
B , VhA5hB~ ḡA

B12dA
B!

~for a componentwise notation see the Appendix!. In Eqs.~II.7! and~II.8! we introduced two kinds
of matrices which deserve some explanation. The matrices (sa) A

B are generalizeds-matrices
acting only on internalSp(2)-indices of the~anti!fields, for example,

f̄B~sa! A
B 5S 0,(

r 51

s

B̄asua1•••ar 21aar 11•••as
~sa! ar

a ,(
r 50

s

C̄asua0•••ar 21aar 11•••as
~sa! ar

a D ;

their general definition is given by

~sa! A
B [H das

bs~s11!~sa! a
b Sa1•••asb

b1•••bsa for A5asua1•••as ,B5bsub1•••bs

das

bs~s12!~sa! a
b Sa0•••asb

b0•••bsa for A5asua0•••as ,B5bsub0•••bs

0 otherwise,

~II.9!

where the symmetrizerSa •••a b
b0•••bsa is defined as
0 s
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Sa0•••asb
b0•••bsa[

1

~s12!!

]

]Xa0
•••

]

]Xas

]

]Xb
XaXbs

•••Xb0,

Xa being independent bosonic variables. These operators, obeyingSc0•••csd
b0•••bsaSa0•••asb

c0•••csd5Sa0•••asb
b0•••bsa ,

possess the additional properties

Sa0•••asb
b0•••bsa5

1

s12 S (
r 50

s

da0

br Sa1•••asb
b0•••br 21br 11•••bsa1

1

s11 (
r 50

s

da0

a db
brSa1•••as

b0•••br 21br 11•••bsD ,

Sa0•••as

b0•••bs5
1

s11 (
r 50

s

da0

br Sa1•••as

b0•••br 21br 11•••bs.

Furthermore,ḡA
B5a(f̄A)dA

B are arbitrary diagonal matrices whose entriesa(f̄A), in general,
may be any~real! numbers. By definition, cf. Eq.~II.8!, a(f̄A) is the~up to now arbitrary! Weyl
weight of the antifieldsf̄. @This arbitrariness may be traced back to fact that these representa
of sl(1,2) are not completely reducible, cf. Ref. 19#. Taking advantage of that freedom we may fi
a(f̄A) by relating it to the Weyl weighta(fA) of the fieldsfA—which is uniquely determined by
means of the quantum master equations at the lowest order of\ ~see Secs. IV and VI below!—
according to

ḡA
B1gA

B12dA
B50,

i.e.,

a~f̄A!1a~fA!1250, ~II.10!

where gA
B5a(fA)dA

B is the analogous~diagonal! matrix in the sl(1,2)-representations of th
fields.20

These matricesgA
B are given by

gA
B[H das

bs~s12!da1

b1
•••das

bs for A5asua1•••as ,B5bsub1•••bs

das

bs~s11!da0

b0
•••das

bs for A5asua0•••as ,B5bsub0•••bs

0 otherwise.

~II.11!

From their entries one may read off the Weyl weighta(fA) of the fieldsfA, namely

a~fA!5~0,s12,s11!, ~II.12!

and, through Eq.~II.10!, the Weyl weights of the antifieldsf̄A ,fAa* , andhA ,

a~f̄A!52a~fA!22, a~fAa* !52a~fA!21, a~hA!52a~fA!. ~II.13!

In order to prove that the transformations~II.7! and ~II.8! obey thesl(1,2)-superalgebra one
needs the basic properties~II.4! of the matricessa and the following two equalities:

eacdd
b1ebcdd

a52~sa!ab~sa! d
c ,

~sa!ab~~sa! e
c d f

d1de
c~sa! f

d !5~sa!ab~~sa! e
d d f

c1de
d~sa! f

c !,

which can be proven by means of the following relations:
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eabdd
c1ebcdd

a1ecadd
b50, eab~de

cd f
d2de

dd f
c!5ecd~de

ad f
b2de

bd f
a!.

III. SUPERSPACE REPRESENTATIONS OF THE ALGEBRA sl „1,2…

This section is devoted to a geometric interpretation of the superalgebrasl(1,2) as given by
Eq. ~II.6!. This opens the possibility to formulate the quantization of general gauge theor
terms of super~anti!fields over a two-dimensional superspace.

A. Representations of sl „1,2… in superspace

In Ref. 14 it was pointed out that the generators of the~real! algebraosp(1,1u2);sl(1,2)
acquire a clear geometric meaning if they are interpreted as generators of transformat
superspace. This is obtained by redefining the generators ofsl(1,2) as follows:

V1
a [2 iPa, V2

a [2 iK a, Vab[2 iM ab, V[ iD . ~III.1!

Then, the~anti!commutation relations resulting from~II.6! can be interpreted as algebra of th
conformal group in twoanticommutingdimensions with metric tensoreab:

@D,Mab#50, @D,Pa#52 iPa, @D,Ka#5 iK a,

@Mab,Mcd#52 i e$c$aMb%d%, @Mab,Pc#52 i ec$aPb%, @Mab,Kc#52 i ec$aKb%, ~III.2!

$Pa,Pb%50, $Ka,Kb%50, $Pa,Kb%5 i ~eabD2Mab!,

with Pa, Ka, Mab, andD being the generators of translations, special conformal transformat
~symplectic! rotations and dilatations, respectively. The superspace which we encounter h
obtained by extending the usual space–time to include two extra anticommuting coordinatua.
Raising and lowering ofSp(2)-indices are defined by the rulesua5eabub and ua5eabu

b; the
square ofua and the derivative with respect to it are defined byu2[ 1

2eabu
bua and ]2/]u2

[ 1
2e

ab]2/]ub]ua.
The representation of the algebra~III.2! in that superspace is given by

Pa5 i
]

]ua
, ~III.3!

Ka52iu2
]

]ua
2ub~Sab2 i eabD!, ~III.4!

Mab52 i S ua
]

]ub
1ub

]

]ua
D1Sab, ~III.5!

D5 iua

]

]ua
2 iD, ~III.6!

whereSab andD constitute the basis of some finite-dimensional representation of the algeb
the ‘‘little group,’’ i.e., the stabilizer subgroup of that conformal group,

@Sab,Scd#52e$c$aSb%d%, @D,Sab#50.

Obviously, the corresponding representation of the algebra~II.6! is obtained by a change of th
SL(2)-generators analogous to~II.5!, Sab5 i (sa)abSa , with Sa being related to the matrix
representation of theVa’s and satisfying

@Sa ,Sb#5eab
gSg , @D,Sa#50. ~III.7!
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The corresponding representation of the generators~III.1! in the superspace are

V1
a 5

]

]ua
, ~III.8!

V2
a 52u2

]

]ua
2ub~~sa!abSa2eabD!, ~III.9!

Va5ua~sa! b
a ]

]ub
1Sa , ~III.10!

V52ua

]

]ua
1D. ~III.11!

B. Representation of sl „1,2… on super „anti …fields

Now, having revealed the geometrical content of the generators ofsl(1,2) we are able to
formulate the transformations~II.7! and~II.8! in superspace. LetFA(u), e(FA(u))[eA , be a set
of superfields with the restrictionFA(u)uu505fA. It admits the following general expansion
terms of component fields:

FA~u!5fA1pAaua2lAu2,
d

dFA~u!
5

d

dfA
u22ua

d

dpAa
2

d

dlA
~III.12!

~remember that, according to the general convention, derivatives with respect to the fiel
defined as acting from theright!. With each superfieldFA(u) a superantifieldF̄A(u) is associated
having thesameGrassmann parity,e(F̄A(u))5eA ,

F̄A~u!5f̄A2uafAa* 2u2hA ,
d

dF̄A~u!
5u2

d

df̄A

1
d

dfAa*
ua2

d

dhA
. ~III.13!

According to~III.12! and ~III.13! for the expressions of the derivatives it holds

dFA~u!

dFB~ ū !
5

dF̄B~u!

dF̄A~ ū !
5dB

Ad2~u2 ū !,

with

d2~u2 ū ![~u2 ū !2.

Then, by the help ofF̄A(u) the sl(1,2)-transformations~II.7! and ~II.8! may be written in the
following compact form:

V1
a F̄A~u!5

]F̄A~u!

]ua
, ~III.14!

V2
a F̄A~u!52u2

]F̄A~u!

]ua
2ub~~sa!abSa2eabD!F̄A~u!, ~III.15!

VaF̄A~u!52H ua~sa! b
a ]F̄A~u!

]ub
1SaF̄A~u!J , ~III.16!
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VF̄A~u!52H 2ua

]F̄A~u!

]ua
1DF̄A~u!J ~III.17!

with

SaF̄A~u!52F̄B~u!~sa! A
B , DF̄A~u!52F̄B~u!ḡ A

B . ~III.18!

Some care has to be taken in order to get the correct signs in these equations. First, in o
attain that the transformations laws~III.14!–~III.17! are compatible with the superalgebra~II.6! it
is necessary to take into account an extra minus sign on the right-hand side of~III.16! and~III.17!
@cf. Eqs.~III.10! and~III.11!#. Since the matricesSa generate an irreducible representation of t
symplectic group, by virtue of~III.7!, 2D must be a number which, by definition, agrees with t
Weyl weight of the superantifields@observea(u)51 in accordance with Eq.~II.13!#. Second, let
us emphasize that the minus sign on the right-hand side of the first relation~III.18! is crucial: A
further transformation in~III.16! does not act on the numerical matricesSa but directly onF̄A(u);
this reverses the factors on the right-hand side against those on the left one and the minus
therefore necessary to retain the multiplication law of the conformal group.

Collecting the results obtained up to now the representation of the generators ofsl(1,2) by
differential operators on the superspace reads

V1
a 5E d2u

]F̄A~u!

]ua

d

dF̄A~u!
, ~III.19!

V2
a 5E d2u H 2u2

]F̄A~u!

]ua
1ubF̄B~u!~~sa!ab~sa! A

B 2eabḡA
B!J d

dF̄A~u!
, ~III.20!

Va5E d2u H 2ua~sa! b
a ]F̄A~u!

]ub
1F̄B~u!~sa! A

B J d

dF̄A~u!
, ~III.21!

V5E d2u H ua

]F̄A~u!

]ua
1F̄B~u!ḡA

BJ d

dF̄A~u!
, ~III.22!

where the integration overua is given by

E d2u50, E d2u ua50, E d2u uaub5eab.

Making use of the expansions~III.13! for F̄A(u) andd/dF̄A(u) and performing in Eqs.~III.19!–
~III.22! the u integration it is easily verified that the resulting expressions forV6

a , Va , and V

generate exactly the transformations~II.7! and ~II.8! of the component fields ofF̄A(u).
Furthermore, let us also give a superspace representation ofsl(1,2) in terms ofFA(u). The

corresponding generatorsU6
a , Ua , andU being defined asright derivatives—in contrast toV6

a ,
Va , andV, which are defined asleft ones—obey the following~anti!commutation relations@cf.
Eqs.~II.3!#:

@U,Ua#50, @U,U1
a #52U1

a , @U,U2
a #5U2

a ,

@Ua ,Ub#52eab
gUg , @Ua ,U1

a #52U1
b ~sa!b

a , @Ua ,U2
a #52U2

b ~sa!b
a , ~III.23!

$U1
a ,U1

b %50, $U2
a ,U2

b %50, $U1
a ,U2

b %5~sa!abUa1eabU.
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If we replace in Eqs.~III.19!–~III.22! the superantifieldF̄A(u) by FA(u), the left derivatives
dL /dF̄A(u) by the right derivativesdR /dFA(u), and reverse the order of all the factors, then
the representations we are looking for we obtain

U1
a 5E d2u

d

dFA~u!

]RFA~u!

]ua
, ~III.24!

U2
a 5E d2u

d

dFA~u!
H 2u2

]RFA~u!

]ua
1~~sa!ab~sa! B

A 1eabgB
A!FB~u!ubJ , ~III.25!

Ua5E d2u
d

dFA~u!
H 2

]RFA~u!

]ub
~sa!b

aua1~sa! B
A FB~u!J , ~III.26!

U5E d2u
d

dFA~u!
H ]RFA~u!

]ua
ua1gB

AFB~u!J . ~III.27!

In addition, we have replacedḡA
B by the ~diagonal! matrix gA

B5a(fA)dA
B , whose entriesa(fA)

are given by Eq.~II.12!.
Making use of the expansions~III.13! for FA(u) and d/dFA(u) and integrating in Eqs.

~III.24!–~III.27! over ua for the components ofFA(u) one obtains the~linear! transformations

fAU1
a 5pAa, fAU2

a 50,

pAbU1
a 52eablA, pAbU2

a 5~~sa!ab~sa! B
A 1eabgB

A!fB, ~III.28!

lAU1
a 50, lAU2

a 5~~sa! b
a ~sa! B

A 1db
a~gB

A12dB
A!!pBb,

fAUa5~sa! B
A fB, fAU5gB

AfB,

pAaUa5~sa! B
A pBa1~sa! b

a pAb, pAaU5~gB
A1dB

A!pBa, ~III.29!

lAUa5~sa! B
A lB, lAU5~gB

A12dB
A!lB,

which define the explicit realization ofsl(1,2) on the superfield analogous to Eqs.~II.7! and~II.8!.
By a simple straightforward calculation it is verified that the transformations~III.28! and ~III.29!
indeed satisfy thesl(1,2)-superalgebra~III.23!.

IV. QUANTUM MASTER EQUATIONS

The superspace representation ofsl(1,2) obtained in Sec. III enables one to attack the pr
lem of superfield quantization of general gauge theories. A superfield version for
Sp(2)-covariant Lagrangian quantization was proposed in Ref. 6. In that approach the qu
actionW(FA(u),F̄A(u)) is required to be invariant under the~anti!BRST transformations which
in superspace, are realized as translations along the coordinatesua.

In order to proceed further in the development of that formalism one may attempt to
include special conformal transformations, symplectic rotations, and dilatations by imposin
ditional symmetry requirements. Such an extension is possible, but only for one of the
osp(1,2)-subalgebras ofosp(2,2);sl(1,2). Indeed, for a superfield description of th
osp(1,2)-covariant quantization procedure introduced in Ref. 8 one needs both translatio
well as special conformal transformations and symplectic rotations. In that approach the tr
tions are combined with the special conformal transformations by means of a mass paramm
leading tom-dependent~anti!BRST transformations. The invariance under symplectic transfor
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tions ensures the ghost number conservation of the corresponding quantum
Wm(FA(u),F̄A(u)). In addition, the dilatations may be used to ensure the new ghost nu
conservation ofWm(FA(u),F̄A(u)) at the lowest order of\.

A. Sp „2…-covariant superfield quantization

To begin with, we briefly review theSp(2)-covariant superfield quantization.6 Let us intro-
duce the antisymplectic differential operators

D̄a5Da1~ i /\!Va, Va[V1
a , ~IV.1!

with the translationsV1
a given by Eq.~III.19! and the nilpotent~second-order! differential opera-

tors Da given by

Da5E d2u
]2dL

]u2dFA~u!
ua

d

dF̄A~u!
5~21!eA

dL

dfA

d

dfAa*
. ~IV.2!

Let us remark, that this definition ofDa by projecting out fromdL /dFA(u) only the first com-
ponent agrees with the initial definition in Ref. 13 but differs from that in Ref. 6. In our opin
the definition~IV.2! seems to be much better adapted to the present aim than that of Ref. 6
a change of the definition ofDa, like in the triplectic quantization,21 also requires a change of th
definition ofVa—but then the geometric meaning ofVa would be lost. The operatorsD̄a, Da, and
Va possess the important properties of nilpotency and~relative! anticommutativity,

$D̄a,D̄b%50⇔$Da,Db%50, $Va,Vb%50, $Da,Vb%50.

The basic object of the superfield quantization is the quantum actionW(FA(u),F̄A(u)),
which is required to be a solution of the quantum master equation

D̄a exp$~ i /\!W%50⇔ 1
2~W,W!a1VaW5 i\DaW, ~IV.3!

where the superantibrackets (F,G)a are defined by

~F,G!a5~21!eAE d2u H ]2dF

]u2dFA~u!
ua

dG

dF̄A~u!
2~21!(e(F)11)(e(G)11)~F↔G!J .

~IV.4!

The solution of~IV.3! is sought of as a power series in Planck’s constant\,

W5S1 (
n51

`

\nWn .

Furthermore, two requirements—the nondegeneracy ofS and the correctness of the classic
limit—have to be imposed. The first one is translated into the requirement thatS should be a
propersolution of the classical master equation, i.e., the Hessian of second derivatives ofSshould
be of maximal rank at the stationary points, and the second one means thatS should satisfy the
usual boundary condition, namely thatS coincides with the classical actionScl(A) if all the
antifields are put equal to zero.

To remove the gauge degeneracy of the actionS, one introduces the operator

Û~F !5exp$~\/ i !T̂~F !%

with
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T̂~F !5 1
2eab$D̄

b,@D̄a,F#%,

F5F(FA(u)) being an arbitrary bosonic gauge fixing functional. Then, the gauge fixed qua
actionWext(F

A(u),F̄A(u)), defined by

exp$~ i /\!Wext%5Û~F ! exp$~ i /\!W%, ~IV.5!

is also a solution of the quantum master equations~IV.3!.

B. osp „1,2…-covariant superfield quantization

Let us now give the superfield description of theosp(1,2)-covariant quantization.8 In that
approach the antisymplectic differential operators~IV.1! are replaced by

D̄m
a 5Da1~ i /\!Vm

a , Vm
a [V1

a 1 1
2m

2V2
a , ~IV.6!

with the special conformal operatorsV2
a given by Eq.~III.20!. Here, the mass parameterm having

Weyl weight a(m)51 is introduced becauseV1
a and V2

a have different mass dimensions~and
opposite Weyl weighta(V6

a )561). In addition, one introduces the differential operators

D̄a5Da1~ i /\!Va , ~IV.7!

with the symplectic rotationsVa given by Eq.~III.21! and the~second-order! differential operators
Da being defined by

Da5~21!eA11E d2u u2~sa!B
A ]2dL

]u2dFA~u!

d

dF̄B~u!
5~21!eA~sa!B

A dL

dfA

d

dhB
.

As long asmÞ0 the operatorsD̄m
a are neither nilpotent nor do they anticommute among the

selves; instead, together with the operatorsD̄a they generate a superalgebra isomorphic
osp(1,2):

@Va ,Vb#5eab
gVg , @D̄a ,D̄b#5~ i /\!eab

gD̄g ,

@Va ,Vm
a #5Vm

b ~sa!b
a , @D̄a ,D̄m

a #5~ i /\!D̄m
b ~sa!b

a , ~IV.8!

$Vm
a ,Vm

b %52m2~sa!abVa , $D̄m
a ,D̄m

b %52~ i /\!m2~sa!abD̄a .

The m-dependentquantum actionWm(FA(u),F̄A(u)) is required to obey them-extended
generalized quantum master equations

D̄m
a exp$~ i /\!Wm%50⇔ 1

2~Wm ,Wm!a1Vm
a Wm5 i\DaWm, ~IV.9!

which ensure~anti!BRST invariance, and the generating equations ofSp(2)-invariance:

D̄a exp$~ i /\!Wm%50⇔ 1
2$Wm ,Wm%a1VaWm5 i\DaWm , ~IV.10!

where the curly superbraces$F,G%a are defined by

$F,G%a52E d2u H u2
]2dF

]u2dFA~u!

dG

dF̄B~u!
~sa!B

A1~21!e(F)e(G)~F↔G!J . ~IV.11!

The gauge fixed quantum actionWm,ext(F
A(u),F̄A(u)) is introduced according to
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exp$~ i /\!Wm,ext%5Ûm~F ! exp$~ i /\!Wm%, ~IV.12!

where the operatorÛm(F) has to be choosen as8

Ûm~F !5exp$~\/ i !T̂m~F !%

with

T̂m~F !5 1
2eab$D̄m

b ,@D̄m
a ,F#%1~ i /\!2m2F,

F5F(FA(u)) being the gauge fixing functional. With these definitions one establishes the
lowing two relations:

@D̄m
a ,T̂m~F !#5 1

2~ i /\!~sa! b
a @D̄m

b ,@D̄a ,F##,

@D̄a ,T̂m~F !#5 1
2eab$D̄m

b ,@D̄m
a ,@D̄a ,F##%1~ i /\!2m2@D̄a ,F#.

RestrictingF(FA(u)) to be aSp(2)-scalar by imposing the condition@D̄a ,F#Wm50 it can be
verified ~see Ref. 8! that the commutators@D̄m

a ,Ûm(F)# and @D̄a ,Ûm(F)#, if applied on
exp$( i /\)Wm%, vanish on the subspace ofadmissibleactionsWm . These actions are determine
by the condition

E d2u u2H dWm

dF̄A~u!
1FA~u!J 50⇔ dWm

dhA
5fA, ~IV.13!

i.e., depending onlylinearly on hA . This condition ensures that the gauge fixed quantum ac
Wm,ext also satisfies the quantum master equations~IV.9! and~IV.10!. Then, by virtue of~IV.13!,
the restriction@D̄a ,F#Wm50 becomes

@D̄a ,F#Wm50⇒E d2u u2
]2dF

]u2dFA~u!
FB~u!~sa!B

A1VaF50,

which expresses theSp(2)-invariance ofF. Furthermore, the quantum master equations~IV.10!
simplify into

D̄aexp$~ i /\!Wm%50⇒E d2u u2
]2dWm

]u2dFA~u!
FB~u!~sa!B

A1VaWm50, ~IV.14!

since thesa-matrices are traceless.
Equation ~IV.14! for a50 expresses the ghost number conservation of the actionWm ,

gh(Wm)50. Thereby the ghost numbers of the fields and antifields are given by

gh~fA!52S 0,(
r 51

s

~21!ar,(
r 50

s

~21!ar D ,

where

ar51,2,

gh~f̄A!52gh~fA!, gh~fAa* !52gh~fA!1~21!a, gh~hA!52gh~fA!.
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C. New ghost number conservation

In Ref. 13 also a so-called new ghost number was ascribed to all fields and antifields
solutions of theclassicalmaster equations in the following way:

ngh~fA!5~0,s12,s11!,

ngh~f̄A!52ngh~fA!22, ngh~fAa* !52ngh~fA!21, ngh~hA!52ngh~fA!.

According to these definitions we also have ngh(ua)521. In comparison with Eqs.~II.12! and
~II.13! it follows that the new ghost number agrees with the Weyl weight of the fields
antifields, i.e.,

ngh~fA!5a~fA!, ngh~pAa!5a~pAa!, ngh~lA!5a~lA!,

ngh~f̄A!5a~f̄A!, ngh~fAa* !5a~fAa* !, ngh~hA!5a~hA!.

In order to clarify how in our approach both numbers are related to each other let us intr
the following differential operator:

D̄m5D1~ i /\!Vm , Vm[V1m
]

]m
, ~IV.15!

with the dilatationsV given by Eq.~III.22! and the~second-order! differential operatorD defined
by

D5~21!eA11E d2u u2gB
A ]2dL

]u2dFA~u!

d

dF̄B~u!
5~21!eAgB

A dL

dfA

d

dhB
.

The new operatorD̄m together with the generating operatorsD̄m
a andD̄a form an extension of the

osp(1,2)-superalgebra being isomorphic toosp(1,2)% u(1) where, in addition to the~anti!com-
mutation relations~IV.8!, the following relations hold true:

@Vm ,Vm#50, @D̄m ,D̄m#50,

@Vm ,Va#50, @D̄m ,D̄a#50, ~IV.16!

@Vm ,Vm
a #5Vm

a , @D̄m ,D̄m
a #5~ i /\!D̄m

a .

Let us assume now that solutionsWm of the quantum master equations~IV.10! and ~IV.11!
can be constructed which also satisfy the following equation:

D̄m exp$~ i /\!Wm%50⇔ 1
2$Wm ,Wm%1VmWm5 i\DmWm ~IV.17!

with the following abbreviation:

$F,G%52E d2u H u2
]2dF

]u2dFA~u!

dG

dF̄B~u!
gB

A1~21!e(F)e(G)~F↔G!J . ~IV.18!

Notice, that$F,G% doesnot define a new superbraces sincegB
A5dB

Aa(fA) is a diagonal
matrix. Taking into account the restriction~IV.13! the additional master equation~IV.17!, at the
lowest order of\, simplifies according to
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E d2u u2
]2dSm

]u2dFA~u!
FB~u!gB

A1VmSm50. ~IV.19!

Obviously, the matrixgA
B is uniquely determined by solving the quantum master equations~IV.9!

and ~IV.10! at the lowest order of\, together with Eq.~IV.19!. The matrixḡA
B , which enters in

Vm , is fixed by the requirement~II.10!. Equation~IV.19! expresses the conservation of the ne
ghost number ofSm in the casemÞ0, i.e., ngh(Sm)50. Thereby, we have formally ascribed als
a new ghost number, respectively, Weyl weight to the mass parameterm, namely, according to the
definition ofVm , ngh(m)51, respectively,a(m)51. This already has been used in the definiti
of Vm

a , Eq. ~IV.6!.
Let us emphasize that Eq.~IV.17! is quite formal since its right-hand side, for the sam

reasons as explained in Sec. I, is not well defined. Therefore, we restricted ourselves in~IV.19! to
the lowest order approximation. In order to express the new ghost number conservation to
orders—which is, of course, only possible as long as the dilatation invariance in superspace
broken by radiative corrections—this requires a sensitive definition of the expressionDmWm on
the right-hand side of Eq.~IV.17!, e.g., by means of the methods described in Refs. 10–12.

Independently, by introducing a gauge the gauge-fixed quantum action~IV.12! breaks the new
ghost number conservation. Namely, because of

@Dm ,T̂m~F !#5 1
2eab$D̄m

b ,@D̄m
a ,@Dm ,F#12F#%1~ i /\!2m2~@Dm ,F#12F !,

the action~IV.12! is only a solution of~IV.19! iff

@Dm ,F#Wm522F⇒E d2u u2
]2dF

]u2dFA~u!
FB~u!gB

A1VmF522F,

where the second equation follows from the first one by taking into account the condition~IV.13!.
On the other hand, the expression on the left-hand side~modulo the signum ofF), can never be
negative, sinceF depends only onFA which has positive Weyl weight,

sgn~F !H E d2u u2
]2dF

]u2dFA~u!
FB~u!gB

A1VmFJ >0.

This proves that the new ghost number conservation is broken through gauge fixing.

V. GENERATING FUNCTIONALS AND GAUGE „IN…DEPENDENCE

Next, we turn to the question of gauge~in!dependence of the generating functionals
Green’s functions.13,8

A. Sp „2…-covariant approach

In discussing this question it is convenient to study first the symmetry properties o
vacuum functionalZ(0) defined as

Z~0!5E dFA~u! dF̄A~u! r~F̄A~u!!exp$~ i /\!~Wext1SX!%. ~V.1!

Here,r(F̄A(u)) is a density having the form of ad functional,

r~F̄A~u!!5dS E d2u F̄A~u! D , ~V.2!

andSX is given by
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SX5E d2u F̄A~u!FA~u!. ~V.3!

The termSX can be cast into the~anti!BRST-invariant form

SX5 1
2eab~Vb~VaX2XUa!1~VaX2XUa!Ub!, X[2E d2u u2F̄A~u!FA~u!,

with Va[V1
a andUa[U1

a , whose action onF̄A(u) andFA(u) are defined in Eqs.~III.19! and
~III.24!, respectively, satisfying$Va,Vb%50 and$Ua,Ub%50. Let us combine the action ofVa

andUa on an arbitrary functionalY according to

LaY[VaY2~21!e(Y)YUa, $La,Lb%50,

then the operatorsLa are nilpotent and anticommuting.
Inserting into expression~V.1! the relation~IV.5! and integrating by parts this gives

Z~0!5E dFA~u! dF̄A~u!r~F̄A~u!!exp$~ i /\!~W1SX1SF!% ~V.4!

with the following expression forSF :

SF52E d2uH dF

dFA~u!

]2FA~u!

]u2
1 1

2eabE d2ū
]FA~u!

]ua

d2F

dFA~u!dFB~ ū !

]FB~ ū !

]ūb
J . ~V.5!

This may also be cast into the~anti!BRST invariant form

SF5 1
2eabFUbUa.

Then, by virtue ofLaSX50 andLaSF50, it can be checked that the integrand of the vacu
functional~V.4! is invariant under the following global~anti!BRST transformations@thereby, one
has to make use of Eq.~IV.7!#:

dFA~u!5FA~u!Uama , dF̄A~u!5maVaF̄A~u!1ma~W,F̄A~u!!a, ~V.6!

wherema , e(ma)51, is aSp(2)-doublet of constant anticommuting parameters. Here, we h
taken into account that the densityr(F̄A(u))5d(hA) is invariant under the transformations~V.6!.
These transformations realize the~anti!BRST symmetry in the superfield approach to quant
gauge theory.

The invariance ofZ(0) under the transformations~V.6! permits one to study the questio
whetherZ(0) is independent of the choice of the gauge. Indeed, let us change the gauge
functionalF→F1dF. Then, the gauge-fixing termSF changes according to

SF→SF1dF5SF1SdF , SdF5 1
2eab~dF !UbUa. ~V.7!

Now, we perform in the vacuum functional~V.4! the transformations~V.6! and choose the pa
rametersma as follows:

ma52~ i /\! 1
2eab~dF !Ub.

Thereby we induce the factor exp(maUa) in the integration measure. Combining its exponent w
SF leads to

SF→SF1~\/ i !maUa5SF2 1
2eab~dF !UbUa5SF2SdF .
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By comparison with~V.7! this proves that the vacuum functional and, therefore, also theS-matrix
is independent of the choice of the gauge.

B. osp „1,2…-covariant approach

In this approach the vacuum functionalZm(0), which depends on the additional mass para
eterm, is defined as

Zm~0!5E dFA~u! dF̄A~u!r~F̄A~u!!exp$~ i /\!~Wm,ext1Sm,X!%, ~V.8!

with

Sm,X5SX1m2E d2u u2F̄A~u!gB
AFB~u!, ~V.9!

whereSX again is given by Eq.~V.3!. The termSm,X can be rewritten as

Sm,X5 1
2eab~Vm

b ~Vm
a X2XUm

a !1~Vm
a X2XUm

a !Um
b !1m2X, VaX1XUa50,

with (Vm
a [V1

a 1 1
2m

2V2
a ,Va) and (Um

a [U1
a 1 1

2m
2U2

a ,Ua) obeying the following
osp(1,2)-superalgebras:

@Va ,Vb#5eab
gVg , @Ua ,Ub#52eab

gUg ,

@Va ,Vm
a #5Vm

b ~sa!b
a , @Ua ,Um

a #52Um
b ~sa!b

a , ~V.10!

$Vm
a ,Vm

b %52m2~sa!abVa , $Um
a ,Um

b %5m2~sa!abUa ,

respectively; the action of (V6
a ,Va) and (U6

a ,Ua) on F̄A(u) and FA(u) are defined by Eqs
~III.20!–~III.22! and ~III.25!–~III.27!, respectively.

Inserting into expression~V.8! the relation~IV.12! and integrating by parts this yields

Zm~0!5E dFA~u! dF̄A~u! r~F̄A~u!!exp$~ i /\!~Wm1Sm,X1Sm,F!%, ~V.11!

with

Sm,F5SF2 1
2m

2E d2u u2
]2dF

]u2dFA~u!
gB

AFB~u!,

whereSF is given by Eq.~V.5!. The gauge-fixing termSm,F can be rewritten as

Sm,F5 1
2eabFUm

b Um
a 1m2F.

Let us now introduce the differential operators

Lm
a Y[Vm

a Y2~21!e(Y)YUm
a , LaY[VaY1YUa ,

which, by virtue of relations~V.10!, satisfy theosp(1,2)-superalgebra

@La ,Lb#5eab
gLg , @La ,Lm

a #5Lm
b ~sa!b

a , $Lm
a ,Lm

b %52m2~sa!abLa .

By using this algebra, after tedious but straightforward computations, one verifies the follo
relations:
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Lm
c ~ 1

2eabLm
b Lm

a 1m2!5 1
2m

2~sa! d
c Lm

d La , @La , 1
2eabLm

b Lm
a 1m2#50.

Therefore, it holdsLm
a Sm,X50 andLaSm,F50, sinceX andF areSp(2)-invariant. BecauseWm

exhibits the sameh-dependence as2Sm,X , Eqs.~IV.13!, ~V.3!, and~V.9!, Wm1Sm,X is indepen-
dent of hA and, hence, the integration overF̄A with the densityr(F̄A(u))5d(hA) yields a
constant factor which is equal to one.

We assert now that the integrand in~V.11! is invariant under the following global transfor
mations@thereby, one has to make use of Eqs.~IV.9! and ~IV.10!, respectively#:

dFA~u!5FA~u!Um
a ma , dF̄A~u!5maVm

a F̄A~u!1ma~Wm ,F̄A~u!!a, ~V.12!

dFA~u!5FA~u!Uama, dF̄A~u!5maVaF̄A~u!1ma$Wm ,F̄A~u!%a , ~V.13!

wherema , e(ma)51, andma, e(ma)50, are constant anticommuting, respectively, commut
parameters. Notice that in the present caser(F̄A(u)) is not invariant under the transformation
~V.12!. The transformations~V.12! and ~V.13! realize the m-extended ~anti!BRST- and
Sp(2)-symmetry, respectively.

Next, we study the question whether the mass-dependent terms inZm(0) violate the indepen-
dence on the choice of the gauge. Proceeding as in the previous case, by changing the gaug
functionalF→F1dF the gauge-fixing term changes according to

Sm,F→Sm,F1dF5Sm,F1Sm,dF , Sm,dF5 1
2eab~dF !Um

b Um
a 1m2dF. ~V.14!

Now, carrying out in~V.11! the transformations~V.12!, we choose

ma52~ i /\! 1
2eab~dF !Um

b ,

which leads to

Sm,F→Sm,F1~\/ i !maUm
a 5Sm,F2 1

2eab~dF !Um
b Um

a 5Sm,F2Sm,dF1m2dF.

By comparison with~V.14! we observe that the mass termm2F violates the independence o
Zm(0) on the choice of the gauge. One may try to compensate this undesired termm2dF by means
of an additional change of variables using the transformations~V.13!. But this change should no
destroy the form of the action arrived at the previous stage. However, such additional chan
variables lead to a Berezinian which is equal to one becausesa are traceless. Thus, the unwant
term could never be compensated.

VI. IRREDUCIBLE AND FIRST-STAGE REDUCIBLE MASSIVE THEORIES WITH
CLOSED ALGEBRA

In the preceeding sections we gave a general framework of quantizing massive genera
theories by introducing on the space of superfields and superantifields a set of differential
tors which obey the superalgebrasl(1,2). Thereby, we extended our previous work8 on
osp(1,2)-covariant quantization where we already considered the case of irreducible and
stage reducible gauge theories with closed algebra. In order to illustrate our present appro
us study how the construction of these theories is extended now.~Thereby we also simplify some
of our former calculations.!

A. Generic form of the dependence on the antifields

Our aim here is to construct a proper solutionSm of the classicalmaster equations

1
2~Sm ,Sm!a1Vm

a Sm50, 1
2$Sm ,Sm%a1VaSm50, 1

2$Sm ,Sm%1VmSm50, ~VI.1!
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which are obtained from the quantum master equations~IV.9!, ~IV.10!, and~IV.17! at the lowest
order approximation of\. Let us rewrite more explicitly the braces in Eq.~VI.1! using their
definitions, Eqs.~IV.4!, ~IV.11!, and~IV.18!,

dSm

dfA

dSm

dfAa*
1Vm

a Sm50,
dSm

dfA

dSm

dhB
~sa!B

A1VaSm50,
dSm

dfA

dSm

dhB
gA

B1VmSm50,

~VI.2!

with Vm
a [V1

a 1 1
2m

2V2
a andVm[V1m]/]m, where the action ofV6

a , Va andV on the antifields
is given by@see Eqs.~II.7! and ~II.8!#

V1
a 5eabfAb*

d

df̄A

2hA

d

dfAa*
,

V2
a 5f̄B~~sa! b

a ~sa! A
B 2db

aḡA
B!

d

dfAb*
1fBb* ~~sa!ab~sa! A

B 2eab~ ḡA
B12dA

B!!
d

dhA
,

Va5f̄B~sa! A
B d

df̄A

1~fBb* ~sa! A
B 1fAa* ~sa! b

a !
d

dfAb*
1hB~sa! A

B d

dhA
,

V5f̄BḡA
B d

df̄A

1fBb* ~ ḡA
B1dA

B!
d

dfAb*
1hB~ ḡA

B12dA
B!

d

dhA
.

The symmetry properties~VI.2! of Sm may also be expressed by the following equations:

sm
a Sm50, daSm50, dmSm50, ~VI.3!

with sm
a [s1

a 1 1
2m

2s2
a anddm[d1m]/]m, where the operatorss6

a , da andd are required to fulfill
the sl(1,2)-superalgebra:

@d,da#50, @d,s1
a #5s1

a , @d,s2
a #52s2

a ,

@da ,db#5eab
gdg , @da ,s1

a #5s1
b ~sa!b

a , @da ,s2
a #5s2

b ~sa!b
a , ~VI.4!

$s1
a ,s1

b %50, $s2
a ,s2

b %50, $s1
a ,s2

b %52~sa!abda2eabd.

Indeed, let us restrict our consideration to solutionsSm being linear with respect to the antifields
Let us remark that proper solutions of the classical master equations for theories with closed
algebra and vanishing new ghost number depend only linearly on the antifields.16 Such solutions
can be written in the form8

Sm5Scl1~ 1
2eabsm

b sm
a 1m2!X, ~VI.5!

whereX is assumed to be aSp(2)-scalar~in fact the only one we are able to build up linear in t
antifields! and, in accordance with the requirement~II.10!, to have Weyl weighta(X)5a(f̄A)
1a(fA)522,

X5f̄AfA

with

daX50, dmX522X. ~VI.6!
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Then, by making use of theosp(1,2)% u(1)-superalgebra of these symmetry operators,

@dm ,dm#50, @dm ,da#50, @dm ,sm
a #5sm

a ,

@da ,db#5eab
gdg , @da ,sm

a #5sm
b ~sa!b

a , $sm
a ,sm

b %52m2~sa!abda ,

one establishes the following relations:

sm
c ~ 1

2eabsm
b sm

a 1m2!5 1
2m

2~sa! d
c sm

d da ,

da~ 1
2eabsm

b sm
a 1m2!5~ 1

2eabsm
b sm

a 1m2!da ,

dm~ 1
2eabsm

b sm
a 1m2!5~ 1

2eabsm
b sm

a 1m2!~dm12!.

From these relations, by virtue of~VI.6!, it follows that the ansatz~VI.5! for Sm really obeys the
symmetry requirements~VI.3!. Thereby, it has to be taken into account that for the classical ac
Scl(A) it holds thatsm

a Scl(A)50 as well asdaScl(A)50 anddmScl(A)50.
In order to convince ourselves that Eq.~VI.3! can be cast into the form~VI.2! let us decom-

posesm
a , da , anddm into a component acting on the fields and another one acting on the anti

as follows:

sm
a 5~sm

a fA!
dL

dfA
1Vm

a , da5~dafA!
dL

dfA
1Va , dm5~dmfA!

dL

dfA
1Vm . ~VI.7!

The assumptions~VI.6! are satisfied if the action ofda anddm on fA is defined as

dafA5fB~sa!B
A , dmfA5fBgB

A .

Then from~VI.5! one gets forSm the expression

Sm5Scl1~hA1 1
2m

2ḡA
Bf̄B!fA2~sm

a fA!fAa* 1f̄A~ 1
2eabsm

b sm
a 1m2!fA

with ḡA
B52gA

B22dA
B . Now, performing in ~VI.3! the replacementssm

a fA52dRSm /dfAa* ,
dafA5dSm /dhB(sa)B

A , anddmfA5dSm /dhBgB
A it is easily seen that both symmetry requir

ments, Eqs.~VI.2! and~VI.3!, are equivalent to each other. Thus, we are left with the exercis
determine the action of thesl(1,2)-superalgebra~VI.4! on the components of the fieldsfA.
Thereby, we restrict ourselves to the cases of irreducible and first-stage reducible theorie
closed gauge algebra.

B. Explicit realization of sl „1,2… on the fields: Irreducible gauge theories

For irreducible theories with a closed algebra, because ofMa0b0

i j 50, the algebra of the gen

erators, Eq.~II.2!, reduces to

Ra0 , j
i Rb0

j 2Rb0 , j
i Ra0

j 52Rg0

i Fa0b0

g0 , ~VI.8!

where for the sake of simplicity we assume throughout this section and Sec. VI C that theAi are
bosonicfields. This algebra defines the structure tensorsFa0b0

g0 . In general, the restrictions im

posed by the Jacobi identity lead to additional equations with new structure tensors. But
simple case under consideration it leads only to the following relation among the tensorsFa0b0

g0

and the generatorsRa0

i :
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Fh0a0

d0 Fb0g0

h0 2Ra0

i Fb0g0 ,i
d0 1cyclic perm~a0 ,b0 ,g0!50. ~VI.9!

In order to construct the proper solutionSm5Scl1( 1
2eabsm

b sm
a 1m2)X, Eq. ~VI.5!, for X one

has to chooseX5ĀiA
i1B̄a0

Ba01C̄aaCa0a. The sl(1,2)-transformations of the antifieldsĀi ,

B̄a0
, andC̄a0a , already has been given~see the Appendix!. The correspondingnonlinearrealiza-

tion of thesl(1,2) in terms of the fieldsAi , Ba0, andCa0a reads as follows.
~1! Translations:

s1
a Ai5Ra0

i Ca0a,

s1
a Ca0b5eabBa02Fb0g0

a0 Cb0aCg0b, ~VI.10!

s1
a Ba05 1

2Fb0g0

a0 Bb0Cg0a1 1
12ecd~Fh0b0

a0 Fg0d0

h0 12Rb0

i Fg0d0 ,i
a0 !Cg0aCd0cCb0d.

~2! Special conformal transformations:

s2
a Ai0,

s2
a Ca0b50, ~VI.11!

s2
a Ba0522Ca0a.

~3! Symplectic rotations:

daAi50,

daCa0b5Ca0a~sa!a
b , ~VI.12!

daBa050.

~4! Dilatations:

dAi50,

dCa0b5Ca0b, ~VI.13!

dBa052Ba0.

By making use of Eqs.~VI.8! and~VI.9! it is a simple exercise to prove that the transformatio
~VI.10!–~VI.13! actually obey thesl(1,2)-superalgebra~VI.4!. Let us remark that the nonlinearit
of the translations, Eq.~VI.10!, is due to the fact that the componentspAa andla of the superfield
FA(u) have been eliminated from the theory by integrating them out in Eq.~V.11!.

C. Explicit realization of sl „1,2… on the fields: First-stage reducible gauge theories

Now let us consider first-stage reducible theories. In that case, due to the condition o
stage reducibility,

Ra0

i Za1

a050, ~VI.14!

there are independent zero-modesZa1

a0 of the generatorsRa0

i . Their presence does not modify th

gauge algebra
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Ra0 , j
i Rb0

j 2Rb0 , j
i Ra0

j 52Rg0

i Fa0b0

g0 , ~VI.15!

but it influences the solutions of the Jacobi identity which appears from the relation

Rd0

j ~Fh0a0

d0 Fb0g0

h0 2Ra0

i Fb0g0 ,i
d0 1cyclic perm~a0 ,b0 ,g0!!50. ~VI.16!

In addition, new equations and structure tensors occur. One of these gauge structure rela
the reducibility condition~VI.14! itself. In order to derive the others we proceed as follows.

First, let us cast the Jacobi identity~VI.16! into a more practical form. Owing to~VI.14! the
expression in parentheses must be proportional to the zero-modesZa1

d0 ,

Fh0a0

d0 Fb0g0

h0 2Ra0

i Fb0g0 ,i
d0 1cyclic perm~a0 ,b0 ,g0!53Za1

d0Ha0b0g0

a1 , ~VI.17!

whereHa0b0g0

a1 (A) are new structure tensors being totally antisymmetric with respect to the

cesa0 , b0 , g0 and depending, in general, on the gauge fieldsAi .
Next, we derive an expression for the combinationZa1 , j

a0 Rb0

j . Multiplying ~VI.15! by Za1

a0 and

using the relationRa0 , j
i Za1

a052Ra0

i Za1 , j
a0 , which follows from~VI.14!, we obtain

Ra0

i ~Za1 , j
a0 Rb0

j 1Fb0g0

a0 Za1

g0!50.

Again, this may be solved by introducing additional structure tensorsGb0a1

g1 (A),

Za1 , j
a0 Rb0

j 1Fb0g0

a0 Za1

g052Zg1

a0Gb0a1

g1 , ~VI.18!

thus defining a new structure equation for first-stage reducible theories. Multiplying this equ
by Zb1

b0 and taking into account~VI.14!,

Fb0g0

a0 Za1

g0Zb1

b052Zg1

a0Zb1

b0Gb0a1

g1 ,

we obtain the useful equality

Zb1

a0Ga0a1

g1 52Za1

a0Ga0b1

g1 . ~VI.19!

Moreover, we are able to establish two further gauge structure relations for the first
reducible case showing thatHa0b0g0

a1 andGa0b1

a1 are not independent of each other. The first o

reads

~Gb0g1

a1 Gg0b1

g1 1Rb0

i Gg0b1 ,i
a1 1antisym~b0↔g0!!1Ga0b1

a1 Fb0g0

a0 13Zb1

a0Ha0b0g0

a1 50.

~VI.20!

In order to verify this relation we multiply the Jacobi identity~VI.17! with Zb1

a0. By virtue of

Ra0

i Zb1

a050 this yields

~Fh0a0

d0 Zb1

a0!Fb0g0

h0 1Fh0b0

d0 ~Fg0a0

h0 Zb1

a0!2Fh0g0

d0 ~Fb0a0

h0 Zb1

a0!2Rb0

i ~Fg0a0 ,i
d0 Zb1

a0!

1Rg0

i ~Fb0a0 ,i
d0 Zb1

a0!2Za1

d0~3Zb1

a0Ha0b0g0

a1 !50.

After replacing all terms of the formFh a
d0 Zb

a0 according to~VI.18! this gives

0 0 1
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Zb1 ,i
d0 ~Ra0

i Fb0g0

a0 !1Za1

d0~Ga0b1

a1 Fb0g0

a0 13Zb1

a0Ha0b0g0

a1 !1$Rb0

i ~Fg0a0 ,i
d0 Zb1

a02Fa0g0

d0 Zb1 ,i
a0 !

2~Fa0g0

d0 Za1

a0!Gb0b1

a1 1antisym~b0↔g0!%50,

and, using the same relation once more,

Zb1 ,i
d0 ~Ra0

i Fb0g0

a0 !1Za1

d0~Ga0b1

a1 Fb0g0

a0 13Zb1

a0Ha0b0g0

a1 !1$Rb0

i ~~Fg0a0

d0 Zb1

a0! ,i1Za1 ,i
d0 Gg0b1

a1 !

1Za1

d0Gb0g1

a1 Gg0b1

g1 1antisym~b0↔g0!%50.

Here, the expression in the curly braces can be rewritten as

Zb1 ,i
d0 ~Ra0

i Fb0g0

a0 !1Za1

d0~Ga0b1

a1 Fb0g0

a0 13Zb1

a0Ha0b0g0

a1 !1$Rb0

i ~Fg0a0

d0 Zb1

a01Za1

d0Gg0b1

a1 ! ,i

1Za1

d0~Gg1b0

a1 Gg0b1

g1 1Rg0

i Gb0b1 ,i
a1 !1antisym~b0↔g0!%50

and furthermore, once again using relation~VI.18!,

Zb1 ,i
d0 ~Ra0

i Fb0g0

a0 !1Za1

d0~Ga0b1

a1 Fb0g0

a0 13Zb1

a0Ha0b0g0

a1 !2$Rb0

i ~Zb1 , j
d0 Rg0

j ! ,i2Za1

d0~Gb0g1

a1 Gg0b1

g1

1Rg0

i Gb0b1 ,i
a1 !1antisym~b0↔g0!%50. ~VI.21!

This equation, since the algebra~VI.15! is closed,

Zb1 ,i
d0 ~Ra0

i Fb0g0

a0 !5Zb1 ,i
d0 ~Rb0

j Rg0 , j
i 2Rg0

j Rb0 , j
i !5Rb0

i ~Zb1 , j
d0 Rg0

j ! ,i2Rg0

i ~Zb1 , j
d0 Rb0

j ! ,i ,

leads immediately to the gauge structure relation~VI.20!.
The second gauge structure relation, which can also be derived by means of the

identity, is given by

~Hh0a0b0

a1 Fg0d0

h0 2Hh0d0a0

a1 Fb0g0

h0 1cyclic perm~a0 ,b0 ,g0!!1$Rd0

i Ha0b0g0 ,i
a1 2Gd0b1

a1 Ha0b0g0

b1

1antisym~d0↔~a0 ,b0 ,g0!!%50, ~VI.22!

where the left-hand side is a totally antisymmetric expression with respect to (a0 ,b0 ,g0 ,d0).
In order to prove that this relation is satisfied we consider the following identity:

$~~Za1

l0Hh0a0b0

a1 !Fg0d0

h0 1cyclic perm~a0 ,b0 ,g0!!12Rd0

i ~Za1

l0Ha0b0g0

a1 ! ,i12Fd0h0

l0 ~Za1

h0Ha0b0g0

a1 !%

1antisym~d0↔~a0 ,b0 ,g0!![0,

which can be verified by a direct calculation replacing the termsZa1

l0Ha0b0g0

a1 by the help of the

Jacobi identity~VI.17!. Taking into account~VI.18! one obtains

Za1

l0$~Hh0a0b0

a1 Fg0d0

h0 1cyclic perm~a0 ,b0 ,g0!!12Rd0

i Ha0b0g0 ,i
a1 22Gb1d0

a1 Ha0b0g0

b1 %

1antisym~d0↔~a0 ,b0 ,g0!!50.

After factoring out the zero-modesZa
l0 and using the identity
1
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~Hh0a0b0

a1 Fg0d0

h0 1cyclic perm~a0 ,b0 ,g0!!1antisym~d0↔~a0 ,b0 ,g0!!

[2~Hh0a0b0

a1 Fg0d0

h0 2Hh0d0a0

a1 Fb0g0

h0 1cyclic perm~a0 ,b0 ,g0!!,

this equation acquires the form~VI.22!. Relations~VI.13!–~VI.22! are the key equations in orde
to derive thesl(1,2)-transformations of the fields for the first-stage reducible case.

In order to construct the proper solutionSm5Scl1( 1
2eabsm

b sm
a 1m2)X in that case one has t

choose X5ĀiA
i1B̄a0

Ba01B̄a1aBa1a1C̄a0aCa0a1C̄a1abC
a1ab. A realization of the

sl(1,2)-transformations of the antifieldsĀi , B̄a0
, B̄a1a , C̄a0a , andC̄a1ab already has been give

~see the Appendix!. The corresponding nonlinear realization of thesl(1,2) in terms of the fields
Ai , Ba0, Ba1a, Ca0a, andCa1ab are the following.

~1! Translations:

s1
a Ai5Ra0

i Ca0a,

s1
a Ca0b5Za1

a0Ca1ab1eabBa02Fb0g0

a0 Cb0aCg0b,

s1
a Ba05Za1

a0Ba1a1 1
2Fb0g0

a0 ~Bb0Cg0a2ecdZa1

b0Ca1acCg0d!

1 1
12ecd~Fh0b0

a0 Fg0d0

h0 12Rb0

i Fg0d0 ,i
a0 !Cg0aCd0cCb0d, ~VI.23!

s1
a Ca1bc52eacBa1b2eabBa1c1Ga0b1

a1 Ca0aCb1bc2 1
2Ha0b0g0

a1 Ca0aCb0bCg0c,

s1
a Ba1b5Ga0b1

a1 ~Ca0aBb1b2 1
2ecdZg1

a0Cg1acCb1bd!2 1
2Ha0b0g0

a1 Ba0Cb0aCg0c

1 1
4ecdHa0b0g0

a1 Zb1

a0~3Cb0aCb1bcCg0d1Cb0bCb1acCg0d!

1 1
8ecd~Gd0b1

a1 Ha0b0g0

b1 2Rd0

i Ha0b0g0 ,i
a1 !Cg0aCb0bCa0cCd0d

2 1
16ecdHh0a0b0

a1 Fg0d0

h0 ~Cg0aCb0b1Cg0bCb0a!Ca0cCd0d.

~2! Special conformal transformations:

s2
a Ai50,

s2
a Ca0b50,

s2
a Ba0522Ca0a, ~VI.24!

s2
a Ca1bc50,

s2
a Ba1b52Ca1ab.

~3! Symplectic rotations:

daAi50,

daCa0b5Ca0a~sa!a
b ,

daBa050, ~VI.25!
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daCa1bc5Ca1ac~sa!a
b1Ca1ba~sa!a

c ,

daBa1b5Ba1a~sa!a
b .

~4! Dilatations:

dAi50,

dCa0b5Ca0b,

dBa052Ba0, ~VI.26!

dCa1bc52Ca1bc,

dBa1b53Ba1b.

By making use of Eqs.~VI.13!–~VI.22! after somewhat involved and tedious algebraic mani
lations it can be proven that the transformations~VI.23!–~VI.26! really obey the
sl(1,2)-superalgebra~VI.4!. For some details of this work we refer to Ref. 8 where simi
calculations were performed for theosp(1,2)-superalgebra.

Continuing in the same way, analogous considerations can be made for higher stage re
theories. But then, more and more new gauge structure tensors with increasing numbers of
and additional gauge structure relations appear which makes a study of these theories qui
plicated.

VII. CONCLUDING REMARKS

In this paper we have revealed the geometrical content of theosp(1,2)-covariant Lagrangian
quantization of general massive gauge theories. A natural geometric formulation of that qua
tion procedure is obtained by consideringosp(1,2) as subsuperalgebra ofsl(1,2), which is con-
sidered as the algebra of generators of conformal transformations in two anticommuting d
sions. It is shown that proper solutions of the classical master equations can be constructe
invariant underosp(1,2)% u(1). Them-dependent extended BRST symmetry is realized in
perspace as translations combined withm-dependent special conformal transformations. T
sl(2)% u(1) symmetry is realized in superspace as symplectic rotations and dilatations, re
tively. By the choice of a gauge thesl(2)% u(1) symmetry is broken down tosl(2);sp(2). In
principle, by formal manipulations it is also possible to construct proper solutions of the c
sponding quantum master equations. However, in doing so a serious problem is to pro
sensible definition of the variousD operators of the quantum master equations, which do not m
sense when applied to local functionals. In this paper we have not addressed such proble
related questions as the use of explicit regularizations and renormalizations schemes a
discussion of the role of anomalies.
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APPENDIX: COMPONENTWISE NOTATION OF THE sl „1,2… TRANSFORMATIONS OF
THE ANTIFIELDS

In componentwise notation the linear transformations~II.7! generated byV1
a andV2

a read as
follows:

V1
a Āi5eabAib* ,
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V1
a Aib* 52db

aDi ,

V1
a Di50,

V1
a B̄asua1•••as

5eabBasbua1•••as
* ,

V1
a Basbua1•••as

* 52db
aEasua1•••as

,

V1
a Easua1•••as

50,

V1
a C̄asua0•••as

5eabCasbua0•••as
* ,

V1
a Casbua0•••as

* 52db
aFasua0•••as

,

V1
a Fasua0•••as

50

and

V2
a Āi50,

V2
a Aib* 52db

aĀi ,

V2
a Di50,

V2
a B̄asua1•••as

50,

V2
a Basbua1•••as

* 52db
aS B̄asua1•••as

1(
r 51

s

dar

a B̄asua1•••ar 21bar 11•••asD ,

V2
a Easua1•••as

52eabS ~s12!Basbua1•••as
2(

r 51

s

Basar ua1•••ar 21bar 11•••as
* D ,

V2
a C̄asua0•••as

50,

V2
a Casbua0•••as

* 52db
aS C̄asua0•••as

1(
r 50

s

dar

a C̄asua0•••ar 21bar 11•••asD ,

V2
a Fasua0•••as

52eabS ~s11!Casbua0•••as
2(

r 50

s

Casar ua0•••ar 21bar 11•••as
* D ,

where the definitions~II.9! and~II.11! have to be taken into account. For the transformations~II.8!
generated byVa andV one gets

VaĀi50,

VaAib* 5Aia* ~sa! b
a ,

VaDi50,
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VaB̄asua1•••as
5(

r 51

s

B̄asua1•••ar 21aar 11•••as
~sa! ar

a ,

VaBasbua1•••as
* 5Basaua1•••as

* ~sa! b
a 1(

r 51

s

Basbua1•••ar 21aar 11•••as
* ~sa! ar

a ,

VaEasua1•••as
5(

r 51

s

Easua1•••ar 21aar 11•••as
~sa! ar

a ,

VaC̄asua0•••as
5(

r 50

s

C̄asua0•••ar 21aar 11•••as
~sa! ar

a ,

VaCasbua0•••as
* 5Casaua0•••as

* ~sa! b
a 1(

r 50

s

Casbua0•••ar 21aar 11•••as
* ~sa! ar

a ,

VaFasua0•••as
5(

r 50

s

Fasua0•••ar 21aar 11•••as
~sa! ar

a

and

VĀi522Āi ,

VAib* 523Aib* ,

VDi524Di ,

VB̄asua1•••as
52~s14!B̄asua1•••as

,

VBasua1•••as
* 52~s15!Basua1•••as

* ,

VEasua0•••as
52~s16!Easua0•••as

,

VC̄asua0•••as
52~s13!C̄asua1•••as

,

VCasua0•••as
* 52~s14!Casua0•••as

* ,

VFasua0•••as
52~s15!Fasua0•••as

.

By an explicit calculation it can be verified that the generatorsV6
a , Va , and V obey the

sl(1,2)-superalgebra~II.3!.
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For a dynamical system defined by a singular Lagrangian, canonical Noether sym-
metries are characterized in terms of their commutation relations with the evolution
operators of Lagrangian and Hamiltonian formalisms. Separate characterizations
are given in phase space, in velocity space, and through an evolution operator that
links both spaces. ©2000 American Institute of Physics.
@S0022-2488~00!01710-2#

I. INTRODUCTION

Most physical theories implement the dynamics as a result of the application of a varia
principle, that is, by means of a Lagrangian. Among the dynamical symmetries of these the
that is, transformations that map solutions of the equations of motion into solutions, we can
out the Noether symmetries, that is, the continuous transformations that leave the
invariant—except for boundary terms. In addition, if we aim to move the description of
dynamics from the tangent bundle~velocity space! TQ of its configuration spaceQ to the cotan-
gent bundle~phase space! T* Q, other distinctions can be raised as to whether the symm
transformation in velocity space is projectable to phase space and, in the affirmative case, w
the transformation in phase space is canonical. We will consider time-independent Lagrangi
it is the usual case in physical theories, but we will allow to deal with time-dependent functio
cover also gauge symmetries~symmetries depending upon arbitrary functions of time, or spa
time variables in field theory!; then we will useR3TQ andR3T* Q instead of TQ and T* Q.

The infinitesimal symmetries of an ordinary dynamical system are characterized by a pr
of commutativity: essentially, that the time evolution operator commutes with the operato
generates the symmetry. Let us state with more detail this result, which is standard for th
with no gauge freedom, using differential-geometric language. LetX be the vector field that
governs the dynamics~the time evolution! of some system on a given manifoldM ~M can be, for
instance,R3TQ or R3T* Q for some configuration manifoldQ; R parametrizes the independe
variable—the time!. For an open intervalI ,R, a pathg:I→M is a solution to the dynamics i
ġ5X+g. Let a vector fieldV be a candidate for a symmetry of the dynamics defined byX. Then
the flow of V ~a local one-parameter group of diffeomorphisms! transforms solutions into solu
tions if and only ifX is V-invariant, that is to say,

LVX5@V,X#50, ~1!

a!Electronic mail: xgracia@mat.upc.es
b!Electronic mail: pons@ecm.ub.es
73330022-2488/2000/41(11)/7333/19/$17.00 © 2000 American Institute of Physics
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whereLV stands for the Lie derivative. This is an immediate consequence of the well-known
that @V,X#50 iff their flows commute.1–3

Our aim in this paper is to obtain some generalized versions of this result. More precisel
purpose is to study how the canonical Noether transformations implement this commut
requirement in the general case of gauge theories~those derived from singular Lagrangians!.
Instead of providing with new procedures to determine symmetries, we give alternative wa
characterize them, associated with a specific property of commutativity. Recall that the va
of the Lagrangian under a Noether symmetry is a total derivative; this statement is far
expressing any kind of commutativity. We will discover however that one can characteriz
nonical Noether symmetries through commutativity properties; in this way, we give a new
spective, with a geometrical flavor, to identify the Noether symmetries of a dynamical sy
This approach can be applied in particular to gauge theories, where it can be used as a dir
as to whether a given transformation is a Noether symmetry.

Since many dynamical systems—and, among them, those describing the funda
interactions—have room for gauge freedom, we will assume in our framework that the Lagra
may be singular. To be more concrete, we will consider theories described by time-indepe
first-order Lagrangians whose Hessian matrix with respect to the velocities may be singu
this case the conversion from tangent space language to phase space language has some
ties: there are constraints in the formalism, the dynamics has some degree of arbitrarine
This is nothing but the framework first studied by Dirac to deal with gauge theories or,
generally, constrained systems.4–9 The regular case is recovered when no Hamiltonian constra
occur.

Throughout the paper we will only consider continuous symmetries. Among them, how
we distinguish the Noether symmetries? The distinction comes in part from the following fa
Noether symmetry has an associated conserved quantity, and this conserved quantity con
the information to reconstruct the symmetry.1 This fact characterizes a Noether symmetry
regular Lagrangians~those with regular Hessian matrix!, but not in the general case of gaug
theories that we are also addressing: there are symmetries with conserved quantities that
Noether.

Let us distinguish clearly the singular case from the regular one. In the regular case we
that:

~i! there is a one-to-one correspondence between Noether symmetries and conserved
ties;

~ii ! when formulated in phase space, the conserved quantities become the generators,
the Poisson bracket, of the Noether symmetries, therefore, Noether symmetries are c
cal transformations.

Instead, in the case including gauge theories, we can list a very different set of assertions

~a! There can be conserved quantities in phase space that do not generate symmetrie
~b! There can be conserved quantities in phase space that generate symmetries that

Noether.
~c! There can be nontrivial Noether symmetries whose conserved quantity in velocity sp

identically vanishing.
~d! There can be Noether transformations in tangent space that are not projectable to

space~but the conserved quantity is always projectable!.
~e! It remains true that, regardless as to whether the Noether symmetry is projectable or

phase space, it can be always reconstructed through the Poisson bracket by using the co
quantity in phase space. In other words, the conserved quantity still encodes all the informa
reconstruct the symmetry.

~f! When the Noether symmetry is projectable to phase space, it is also true that such
metry is always a canonical transformation that is generated by a conserved quantity. We ca
a symmetry a canonical Noether transformation.
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Let us briefly comment on these assertions.
To prove~a! it suffices to realize that any second class constraint is a conserved quantit

does not generate a symmetry: it takes the motions out of the constraint surface.
Statement~b! is a consequence of the fact that the conserved quantitiesGH that generate

canonical Noether transformations satisfy stricter conditions@K•GH50, see Eq.~26! in Sec. III#
than the ones required to generate dynamical symmetry transformations in phase space~K•GH

5quadratic constraints, see Ref. 10!; this is illustrated at the end of the second example in S
IV.

The occurrence of~c! is studied in Ref. 11, and it happens when the number of indepen
primary Lagrangian constraints is less than the number of independent primary Hamiltonia
straints; the simplest example is given by the free relativistic particle, that does not have La
ian constraints.

An example of statement~d! is provided, in any time-independent gauge theory, by
Noether symmetry associated with time translations: the variationdq5q̇ is not projectable to
phase space, whereas its conserved quantity, the energy, projects to the Hamiltonian functi
projectability of the conserved quantity associated with any Noether transformation was noti
Ref. 12. On the other hand, special situations may often arise when studying the projectab
the gauge transformations, as for example the nonexistence of Hamiltonian gauge generat
certain model possessing Lagrangian gauge transformations,13 and the loss of covariance of th
Hamiltonian gauge transformations for a particle model admitting a Lorentz covariant H
tonian formulation.14

Statement~e! is explained in Refs. 13 and 15, where several examples can be found. Fi
assertion~f! is proven in Ref. 16.

From these considerations, we see that it is important to characterize the conserved qua
because they already encode the transformation. This is the usual procedure when one c
Noether symmetries. In this paper we propose a shift of emphasis: instead of focusing
conserved quantities, we will be interested in properties of the transformations themselve
will show the relevance of commutation properties in order to characterize Noether symmetr
this sense, from a theoretical viewpoint we will enlarge the list of properties above; fro
practical viewpoint we will provide with new instruments to check whether a given transform
is a Noether symmetry.

We organize the paper as follows. The basic notations and some preliminary results are
in Sec. II. Section III is mainly devoted to the study of Noether transformations that are pro
able to phase space; these transformations are given different characterizations in terms
mutation relations involving the evolution operators of the Hamiltonian and the Lagrangian
malisms. Section IV contains some examples illustrating these results, and Sec. V is dev
conclusions.

II. NOTATION AND PRELIMINARY RESULTS

We consider a configuration spaceQ, with velocity space the tangent bundle TQ, and a
~time-independent, first-order! Lagrangian functionL(q,q̇) defined on it. The fiber derivative ofL
defines the Legendre’s transformation, which is a map from velocity space to phase
FL:TQ→T* Q, locally defined by

FL~q,q̇!5~q,p̂!,

where we have introduced the momentap̂5 ]L/]q̇—we will suppress most indices.
Given a functionh(q,p) in phase space, its pull-back~through the Legendre’s transformatio

FL! is the functionFL* (h) in velocity space obtained by substituting the momenta by th
Lagrangian expression:FL* (h)(q,q̇)5h(q,p̂). A function f (q,q̇) in velocity space is called
FL-projectable—or, simply, projectable—if it is the pull-back of a certain functionh(q,p).
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We shall always assume that the Legendre’s transformationFL has constant rank; this
amounts to say that the fiber Hessian ofL, which is locally described by the Hessian matrix wi
respect to the velocities

W5
]2L

]q̇]q̇
,

has constant rank. Notice that gauge symmetries can only exist when this rank is not maxim
is the case we are interested in.

Let gm (m51,...,p0) be a basis of the null vectors ofW; then the necessary and sufficie
condition for a functionf (q,q̇) in TQ to be ~locally! projectable to T* Q is

Gm• f 50, ~2!

for eachm, where the vector fieldsGmªgm (]/]q̇) indeed span a basis of the kernel of the tang
map T(FL).

Under the same assumption about the constant rank, the imageP0 of the Legendre’s map can
be locally taken as the submanifold of phase space described by the vanishing ofp0 primary
Hamiltonian constraintsfm , linearly independent at each point ofP0 . So they satisfy
FL* (fm)50 by definition. Then the basisgm can be taken as6

gmªFL* S ]fm

]p D . ~3!

Though our Lagrangian is time-independent, we will need to consider time-dependent
tions. The adjunction of thet-variable where needed will not cause any problem. The tim
derivative operator acting on a functionf (t,q,q̇) is

d

dt
5

]

]t
1q̇

]

]q
1q̈

]

]q̇
,

with the accelerationq̈ as an independent variable~this involves the tangent bundle of secon
order, T2Q!. Then the Euler–Lagrange equations can be written

@L# (q,q̇,q̈)50,

where we have defined

@L#ª
]L

]q
2

dp̂

dt
5a2q̈W, ~4!

with a5 ]L/]q 2q̇(]2L/]q]q̇). The primary Lagrangian constraints arise from it,

xmªagm5@L#gm , ~5!

though they are not necessarily independent; their vanishing defines a subsetV1,TQ.
As a matter of notation, it is usual to writef '

M
0 to mean thatf (x)50 for all xPM ~Dirac’s

weak equality!; for instancefm'
P0

0 andxm'
V1

0.

In a gauge theory the dynamics either in Lagrangian or Hamiltonian formalisms has a c
degree of arbitrariness. One can introduce a useful differential operatorK connecting the Lagrang
ian and Hamiltonian formalisms, that has no ambiguity at all, and that still represent
dynamics.6 It can be defined as a vector field along the Legendre’s transformationFL,17 and, as
a differential operator, it gives the time evolution of a functionh in R3T* Q as a functionK•h
in R3TQ by
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K•hªFL* S ]h

]t D1FL* S ]h

]qD q̇1FL* S ]h

]pD ]L

]q
. ~6!

The operatorK is directly determined by the Lagrangian by just taking partial derivatives. Inst
the determination of the dynamics either in tangent space or in phase space requires more i
computations. In this sense,K is the simplest among the evolution operators, and this will turn
to be advantageous in order to characterize the Noether symmetry transformations by w
commutativity properties. The operatorK is especially valuable in the study of singul
Lagrangians. For instance, all the Lagrangian constraints are obtained by applying it to the H
tonian constraints,18 and the Lagrangian and Hamiltonian dynamics can be described geom
cally by using this operator.17 The operatorK will be instrumental in obtaining some of the resu
of the next section.

It will prove very convenient to present two other equivalent expressions for the operatK ,
to be used in the next section. The first one is

K•h5
d

dt
FL* ~h!1@L# FL* S ]h

]pD , ~7!

whose proof is direct by using the chain rule.13 A direct consequence of this equation and de
nition ~5! is another expression for the primary Lagrangian constraints:

xm5K•fm . ~8!

The second expression relatesK with the Hamiltonian evolution:6

K•h5FL* S ]h

]t D1FL* $h,H%1(
m

FL* $h,fm%vm. ~9!

HereH is any Hamiltonian function~its pull-back to TQ is the Lagrangian energy; it is defined u
to primary Hamiltonian constraints!. And thevm(q,q̇) are functions uniquely determined by th
equality when one takesh5qi ; these functions are not projectable, and indeed

Gn•vm5dn
m . ~10!

A consequence of~9! is a test of projectability for the functionK•h:

Gm•~K•h!5FL* $h,fm%, ~11!

so K•h is projectable iff h is a first-class function with respect to the primary Hamiltoni
constraint submanifoldP0 .

The Lagrangian time-evolution differential operator can be expressed6 as

XL5X0
L1hmGm , ~12!

where thehm are in principle arbitrary functions that express the gauge freedom of the t
evolution operator andX0

L is a vector field in velocity space

X0
L5

]

]t
1q̇i

]

]qi 1ai~q,q̇!
]

]q̇i . ~13!

The accelerationsai in X0
L may be determined by the formalism, with some arbitrariness owin

the gauge freedom, and we do not need here their explicit expression, which is given in6 The
nature of this operator has been recently discussed in Refs. 19, 20. In view of application w
need to know its relationship with the operatorK :18
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K•h5X0
L
•FL* ~h!1xm

]vm

]q̇
FL* S ]h

]pD . ~14!

III. CANONICAL NOETHER TRANSFORMATIONS FOR GAUGE THEORIES

Now we are ready to study the symmetries in Lagrangian and Hamiltonian formalism
commutation relations between these symmetries and the dynamics. The case of gauge
will lead to modified versions of Eq.~1! that account for the existence of constraints and
ambiguity of the dynamics due to gauge freedom.

Let us consider an infinitesimal Noether transformationdLq(t,q,q̇) in configuration space
that is to say, the variation ofL is a total time-derivative. Then a conserved quantityGL arises:

@L# id
Lqi1

dGL

dt
50. ~15!

As we have recalled in the introduction, the conserved quantity is always projectable12 to a
function GH(t,q,p) in phase space,GL5FL* (GH). This is proved by extracting the coefficien
of the accelerationq̈ from Eq. ~15! and then saturating the result with the null vectorsgm of the
Hessian matrixW, thus obtainingGm•GL50.

Notice that there is some arbitrariness inGH: nothing changes if we add to it a linea
combination of the primary Hamiltonian constraints becauseFL* (fm)50 identically.

In this paper we will consider the case where the transformation itself is projectable to
space, that is,

dLq5FL* ~dHq!, ~16!

for a certaindHq(t,q,p). Notice that there is also an arbitrariness in the determination ofdHq
because of the existence of Hamiltonian constraints.

Using GH anddH, the Noether condition may be written

@L# iFL* ~dHqi !1
dFL* GH

dt
50,

from which, by extracting the coefficient ofq̈, one obtainsWFL* (dHq2 ]GH/]p)50. From this
equation, and using the null vectors of the Hessian, it is easy to redefineGH and dHq
conveniently—using the primary Hamiltonian constraints—in order to obtain16

dHqi5
]GH

]pi
5$qi ,GH%. ~17!

In other words:a projectable Noether transformation is canonically generated in phase space. On
this basis we are ready to generalize Eq.~1! to the case of projectable Noether symmetr
associated with singular Lagrangian dynamics. First we will give a characterization in p
space, next we will give a characterization using the operatorK , and finally we will give a
characterization in velocity space.

A. Characterization in phase space

Now we wish to study the Noether transformations in phase space. The dynamics of
theories, as examples of constrained systems in the Dirac sense, exhibit a certain am
arbitrariness in order to account for the gauge—unphysical—degrees of freedom. A typica
lution operator in phase space will be

XH'
]

]t
1$2,H%1lm$2,fm%, ~18!
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where' ~Dirac’s weak equality! is here an equality up to primary Hamiltonian constraints, a
lm are a set of arbitrary Lagrange multipliers. As a matter of fact, these Lagrange multiplie
determined as functions in tangent space just by applying~18! to the configuration variables
yielding lm5vm(q,q̇)—see~9!.

Notice that the weak equality in~18! makes the definition ofXH consistent with any redefi
nition of the basis of primary constraints. However, this is not the final form of the dynamics
get the final dynamics we must perform a stabilization algorithm:5–7,21,22 consistency require-
ments, that is, the tangency ofXH to the surface of constraints, may lead to new constraints
also to the determination of some of the Lagrangian multipliers as functions in phase spac

Notice that for any values we can give to the Lagrangian multipliers, the last piece in~18! may
be written as$2,phc%, where phc stands for an arbitrary linear combination of the prima
Hamiltonian constraints,

XH'
]

]t
1$2,H%1$2,phc%. ~19!

Let us consider the infinitesimal transformation generated by a vector fieldVH in T* Q, that is
to say,dHh5VH

•h—an infinitesimal parameter may be understood here. The condition thaVH

be a symmetry of the dynamics is no longer characterized by the strong condition of com
tivity @VH,XH#50. We may venture that the appropriate characterization is that the infinites
variation ofXH produced byVH,

dXH5LVHXH5@VH,XH#,

is of the type$2,phc%, in order that the transformed vector field is again of the type~19!. So, the
characterization will read

@VH,XH#'$2,phc%. ~20!

Since Eq.~19! does not express the final form of the dynamics, we could produce more re
versions of~20!. But, in the case of a Noether transformation, the invariance of the actio
required not only on-shell but also off-shell, therefore the dynamics as given by~19! is the right
one to be used.

Now let us prove that, whenVH generates a canonical transformation, relation~20! is exactly
the characterization of a projectable Noether transformation. We can writeVH as

VH5$2,GH% ~21!

for some functionGH, so thatdHh5$h,GH%. To eliminate the weak equalities in~19!, XH can be
written as

XH5
]

]t
1$2,H%1$2,phc%1fmZm

for some arbitrary vector fieldsZm. Then, taking into account that

@XH,VH#'$2,XH~GH!1phc%2VH~fm!Zm,

the requirement~20! becomes

VH~fm!5phc, XH~GH!5phc1 f ~ t !,

where f (t) is an unknown function of time. Notice thatGH can be redefined byGH→GH

2* f (t)dt, since this does not change Eq.~21!, and hence we have
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VH~fm!5phc, XH~GH!5phc; ~22!

but since the functionslm in the definition ofXH ~18! are arbitrary, the second equation in~22!
splits into

]GH

]t
1$GH,H%5phc, ~23!

and

$GH,fm%5phc. ~24!

Notice that~24! is just the first equation in~22!.
It was proven in Ref. 16 that given a Noether transformation there exists a functionGH,

whose pullback to velocity space is the standard conserved quantityGL, satisfying these condi-
tions ~23! and~24!; and conversely, that these conditions ensure that the transformation gen
by GH through~17! and ~16! is a Noether symmetry. What we have then obtained is a refor
lation of ~23! and ~24! as commutativity conditions. To be more specific, we have proved
following result:

Theorem 1: An infinitesimal transformation in phase space is a canonical Noether trans
mation if and only if its vector fieldVH satisfies

@VH,XH#'$2,phc%, LVHV50, ~25!

whereXH is defined by~19! and V is the symplectic form in phase space.
~The contents of the second condition in~25! is thatVH generates canonical transformation!

B. Characterization using the evolution operator K

Now we will show an alternative characterization of Noether transformations in phase
that makes use of a special evolution operator that connects the phase space picture w
velocity space picture. Gauge systems derived from a variational principle exhibit evolution v
fields, either in the Lagrangian formulation or in the Hamiltonian one, that contain some arb
ness, because of the gauge freedom. But one can also consider a third evolution opera
unlike the previous ones, is fully deterministic.6 This is the operatorK of Sec. II.

Using the operatorK , the Noether conditions~23! and ~24! get the simpler form16

K•GH50. ~26!

Our scope is to present these Noether conditions in a new form, combining Hamiltonia
Lagrangian transformations and involving commutations with both the pull-back operation an
evolution operatorK . This method has the advantage of its simplicity because, as we said
operatorK has none of the arbitrariness that plague the evolution vector fields in velocity s
and phase space. In this sense, the commutation properties involvingK will be the easiest ones to
be used as a test of Noether symmetry. In order to do so, we will prepare some preliminary r

First let us consider two infinitesimal transformations~leaving time invariant!, dH in phase
space, anddL in velocity space. In principle, they are unrelated, and do not necessarily des
symmetries. For a functionh(t,q,p) the variation is computed in terms ofdHq anddHp as

dHh~ t,q,p!5
]h

]q
dHq1

]h

]p
dHp,

and similarly for a functionf (t,q,q̇):
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dL f ~ t,q,q̇!5
] f

]q
dLq1

] f

]q̇
dLq̇.

Using these relations, the definitions ofFL andK , and the chain rule, a straightforward comp
tation shows that

dLFL* ~h!2FL* ~dHh!5
]ĥ

]q
~dLq2dHq̂!1

]ĥ

]p
~dLp̂2dHp̂!, ~27!

dL~K•h!2K•dHh5S K•

]h

]qD ~dLq2dHq̂!1S K•

]h

]pD ~dLp̂2dHp̂!1
]ĥ

]q
~dLq̇2K•dHq!

1
]ĥ

]p
~dL~K•p!2K•dHp!, ~28!

where we have writtenĥ for FL* (h) to simplify the notation. As a consequence, we have:
Theorem 2: A necessary and sufficient condition in order that

dL~K•h!2K•dHh50

for each function h, is that the transformationsdL, dH be related by

dLq5dHq̂ ~29a!

dLq̇5K•dHq ~29b!

dLp̂5dHp̂ ~29c!

dL~K•p!5K•dHp. ~29d!

Moreover, then one also hasdLFL* (h)2FL* (dHh)50.
To prove the first assertion, one only has to take appropriate values forh: taking h5qi or

h5pi leads to the vanishing of the last two terms in~28!; takingh5(qi)2/2 leads to the vanishing
of the first term; finally, takingh5qipi ~not summed! does the rest.

In view of this, the last assertion is a direct consequence of~27!.
From now on we suppose that the infinitesimal transformation in phase space is canonic

let GH(t,q,p) a generating function for it~determined up to a function of time!:

dHq5$q,GH%5
]GH

]p
, dHp5$p,GH%52

]GH

]q
. ~30!

We will need to know the partial derivatives ofK•h. A direct calculation from the definition
~6! yields

]~K•h!

]q
5K•

]h

]q
1

]2L

]q]q

]ĥ

]p
1

]2L

]q]q̇ S K•

]h

]pD , ~31!

]~K•h!

]q̇
5

]ĥ

]q
1

]2L

]q̇]q

]ĥ

]p
1

]2L

]q̇]q̇ S K•

]h

]pD . ~32!

These relations applied toh5GH yield
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]~K•GH!

]q
52K•dHp1

]2L

]q]q
dHq̂1

]2L

]q]q̇
~K•dHq!, ~33!

]~K•GH!

]q̇
52dHp̂1

]2L

]q̇]q
dHq̂1

]2L

]q̇]q̇
~K•dHq!. ~34!

Now let us writedL f for f 5K•p5 ]L/]q and for f 5 p̂5 ]L/]q̇. We obtain the identities

05dL~K•p!2
]2L

]q]q
dLq2

]2L

]q]q̇
dLq̇,

05dLp̂2
]2L

]q̇]q
dLq2

]2L

]q̇]q̇
dLq̇.

Using these relations, Eqs.~33! and ~34! become

]~K•GH!

]q
5dL~K•p!2K•dHp1

]2L

]q]q
~dHq̂2dLq!1

]2L

]q]q̇
~K•dHq2dLq̇!, ~35!

]~K•GH!

]q̇
5dLp̂2dHp̂1

]2L

]q̇]q
~dHq̂2dLq!1

]2L

]q̇]q̇
~K•dHq2dLq̇!. ~36!

So far we have not made any assumption on the relationship betweendH anddL, but from the
preceding equations the following result is clear:

Theorem 3: Let GH(t,q,p) be the generator of an infinitesimal transformationdH in phase
space (30). If we define an infinitesimal transformationdL in velocity space by

dLqªFL* ~dHq!, dLq̇ªK•dHq, ~37!

then we have

]~K•GH!

]q
5dLK•p2K•dHp, ~38!

]~K•GH!

]q̇
5dLFL* ~p!2FL* ~dHp!. ~39!

Under the assumptions of the theorem, we can rewrite the commutation relations~27!, ~28! as

dLFL* ~h!2FL* ~dHh!5
]ĥ

]p

]

]q̇
~K•GH!, ~40!

dL~K•h!2K•dHh5S K•

]h

]pD ]

]q̇
~K•GH!1

]ĥ

]p

]

]q
~K•GH!. ~41!

The final step is to relate these relations with the condition~26!, K•GH50, that characterizes
the generators of projectable Noether transformations:

Theorem 4: Let dH be a canonical transformation in phase space, and letdL be defined as in
(37). Then the following statements are equivalent:

(1) The commutation relationdL(K•h)2K•dHh50 holds for each function h(t,q,p);
(2) dH is a Noether transformation in phase space.
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To prove that the first condition implies the second one, notice that, using Theorems 2
if GH is a generator ofdH, K•GH is a function of time,f (t). Redefinition ofGH to GH2* f (t)
makesK•GH50, therefore, according to~26!, dH is a Noether transformation in phase space. T
converse is a direct consequence of~26! and Theorem 3.

Let us finally remark that we could have defined, instead of~37!,

d̄LqªFL* ~dHq!, d̄Lq̇ª
d

dt
d̄Lq. ~42!

Here the Lagrangian transformation ofq is the pull-back of the Hamiltonian one, whereas t
transformation of the velocity is the natural prolongation of the transformation of the pos
This is the usual way to define the transformations of the velocities out of the transformatio
the positions. Notice that, using Eq.~7!,

d̄Lq̇i5dLq̇i2@L# j FL* S ]dHqi

]pj
D ,

so both transformations coincide when applied to solutions of the Euler–Lagrange equation~they
coincide ‘‘on-shell’’!. With d̄L instead ofdL Eqs. ~38! and ~39! acquire an additional term tha
vanishes on-shell. ThereforedL as defined in Theorem 3 is more appropriate in order to give a
characterization of a Noether transformation through commutation relations. Nevertheless,d̄L

that, when applied to the Lagrangian, gives a total derivative. Indeed, from~15!, one has

d̄LL5
d

dt
FL* ~pdHq2GH!.

C. Characterization in velocity space

To obtain a characterization in velocity space we first need to formulate the dynamics
vector field inR3TQ. The time evolution in a gauge theory is not unique until the gauge free
has been removed—by way of some gauge fixing, for example. This is reflected in the ambi
that are present in the Lagrangian time-evolution differential operator, which we recall from
II:

XL5X01hmGm , X05
]

]t
1q̇i

]

]qi 1ai~q,q̇!
]

]q̇i .

Notice that projectable quantities have, according to~2!, a well-defined unambiguous time
derivative under this dynamics. The requirement of tangency ofXL to the primary Lagrangian
constraint submanifold, defined byxm'0 ~5!, may lead to new constraints and to the determi
tion of some of the functionshm. At this point, new tangency requirements may occur. This is
Dirac’s method in the Lagrangian formalism.6

Our aim is to give a tangent space characterization of a Noether transformationdLq(t;q,q̇)
that satisfies the property of being projectable to phase space, that is,dLq is the pullback of a
canonical Noether transformationdHq, dLq5FL* (dHq). Notice at this point that we have tw
natural ways to define the dynamical time derivativedLq̇ in R3TQ. Either bydLq̇ªK•dHq as in
the preceding subsection, or bydLq̇ªXL

•dLq5X0•dLq. According to ~14!, both definitions
coincide only on the primary Lagrangian constraints submanifold. Consistency with the prec
subsection invites us to choose the definitiondLq̇ªK•dHq, and this is what we will do. So we
take

VL5FL* $q,GH%
]

]q
1K•$q,GH%

]

]q̇
. ~43!
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We will use the results of the preceding subsection for Noether transformations, in part

K•dHh5dL~K•h! ~44!

and its consequence

FL* ~dHh!5dLFL* ~h!, ~45!

for any functionh on R3T* Q.
Notice from these relations that

VL
•FL* ~h!5FL* $h,GH%:

the action ofVL on a projectable function is a projectable function, that is,VL is a projectable
vector field—indeed it projects toVH5$2,GH%.

Equation~44!, and the fact that the primary Lagrangian constraints~plc! can be obtained as
xm5K•fm , allow to compute

VL
•xm5dLxm5dL~K•fm!5K•~dHfm!5K•$fm ,GH%,

but, according to~24!,

$fm ,GH%5Dm
n fn , ~46!

for some functionsDm
n . Therefore

VL
•xm5dLxm5FL* ~Dm

n !xn ,

that is,VL is tangent to the primary Lagrangian constraints surfaceV1 , VL(plc)5plc.
Now let us use~14! and ~44! to write

VL~X0•FL* ~h!!1VLS xm

]vm

]q̇
FL* S ]h

]pD D5X0•FL* ~dHh!1xm

]vm

]q̇
FL* S ]dHh

]p D .

The second piece in the right side is just a combination ofplc, and so it is the second piece in th
left side because of the tangency ofVL to theplc surface. Therefore

VL~X0•FL* ~h!!2X0•FL* ~dHh!5plc,

or, using~45!,

@VL,X0#~FL* h!5plc. ~47!

This result means that the commutator@VL,X0# is, on theplc surface, a combination of the
vector fields in the kernel of T(FL), that is,

@VL,X0#5plc1amGm , ~48!

for some functionsam.
We need a second piece of information: the commutator@VL,Gm#. Let us apply it to a

configuration variableq. SinceGm•q50 and Gm•dLq5Gm•FL* (dHq)50, we get@VL,Gm#•q
50. When applied toq̇,

@VL,Gm#•q̇5VLgm2GmVL~ q̇!5VLgm2Gm•~K•dHq!,

where in the last step we have used the definitionVL
•q̇5K•dHq. Taking into account the defi

nition ~3! and the property~11!, we get
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@VL,Gm#•q̇5VL~FL* $q,fm%!2FL* $dHq,fm% ~49!

5FL* ~dH$q,fm%2$dHq,fm%!5FL* $q,dHfm%. ~50!

We can use again~46!, dHfm5$fm ,GH%5Dm
n fn . Then,

@VL,Gm#•q̇5FL* $q,Dm
n fm%5~FL* Dm

n !gn ,

and therefore

@VL,Gm#5~FL* Dm
n !Gn , ~51!

which agrees with the fact thatVL is projectable.
Putting together~48! and ~51!, we obtain that the vector fieldVL satisfies

@VL,XL#5plc1bmGm , ~52!

for some functionsbm(t;q,q̇).
So we have proved the following result:
Theorem 5: Suppose that GH(t,q,p) generates a canonical Noether transformation, and

VL be the vector field defined by it according to (43). ThenVL is a projectable vector field tha
projects to $2,GH%, it is tangent to the primary Lagrangian constraint submanifold, and
commutation with the dynamics satisfies (52).

This result is analogous to that of Sec. III A. Here and there the commutator of the gen
of the transformation with the evolution vector field gives as a result a term which is proport
to the arbitrary piece in the dynamics. Have we reached a necessary and sufficient condit
VL to be a generator of a projectable Noether transformation? The answer in general is
negative. Let us be more specific and consider a vector fieldVL, defined in~43!, such that~a! it
projects to$2,GH%, ~b! is tangent to the primary lagrangian constraint submanifold, and~c!
satisfies~52!. Then, using Eqs.~40! and ~41! one arrives at

]

]q̇
~K•GH!50,

]

]q
~K•GH!5plc, ~53!

whereas the right conditions for$2,GH% to generate a Noether transformation in phase spac
which implies thatVL generates a Noether transformation in tangent space—are, according
discussion in the preceding section,

]

]q̇
~K•GH!50,

]

]q
~K•GH!50, ~54!

which is more restrictive than~53!. However, in most cases of interest, theplc do not restrict the
configuration variables alone, and then~53! and ~54! are equivalent. This is the case indeed
many physical applications of gauge systems, as in string theory, Yang–Mills theory, or g
relativity. In such cases we have arrived at a characterization of the vector fieldVL for it to
generate a Noether transformation.

The case where theplc do restrict the configuration variables is rather unusual, and it migh
considered as an unfortunate choice of the configuration space—some comments on this is
be found in Ref. 8. The second example in the following section, though formal and wit
physical interest, exhibits this feature; in this case, conditions~53! are not sufficient forVL to
generate a Noether transformation.

Let us finally recall that the action of the vector fieldVL, associated to a projectable Noeth
transformation, on the LagrangianL does not give in general a total derivative. The transforma
that indeed gives a total derivative isd̄L—see the end of Sec. III B.
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D. The algebra of projectable Noether symmetries

Consider a canonical Noether symmetry generated byGH. The projectability of~43!,

VL5FL* $q,GH%
]

]q
1K•$q,GH%

]

]q̇
,

to the canonical generator of Noether symmetries,

VH5$2,GH%,

allows to obtain some results concerning the algebra of the vector fields associated to proj
Noether symmetries. IfV1

L and V2
L are two such vector fields associated with the canon

generating functionsG1
H andG2

H , then it is straightforward to show that the commutator@V1
L ,V2

L#
projects to$2,$G2

H ,G1
H%%, that is,

@V1
L ,V2

L#•FL* ~h!5$h,$G2
H ,G1

H%%.

In the particular case that the set of independent canonical generatorsGi span a Lie algebra

$Gi
H ,Gj

H%5Ci j
k Gk

H , ~55!

with Ci j
k constants, then their associated vector fieldsV i

L in tangent space satisfy the same L
algebra structure,

@V i
L ,V j

L#5Ci j
k Vk

L .

In the case that the quantities in~55! are not constants but functions of the variables~this is the
case of a ‘‘soft’’ algebra generating a ‘‘quasigroup’’!,23 this last equality does not hold, but w
still have the opportunity to get—up to pieces linear in the primary constraints—the stru
functions in phase space by Lagrangian methods. This goes as follows. Consider~55! for some
functionsCi j

k . Consider also the pull-back to tangent space of the canonical generating func
Gi

L5FL* (Gi
H). Then

V j
L
•Gi

L5V j
L
•FL* ~Gi

H!5FL* ~d j
HGi

H!5FL* $Gi
H ,Gj

H%5FL* ~Ci j
k Gk

H!5FL* ~Ci j
k !Gk

L .
~56!

That is, we can retrieve—up to primary constraints—the structure functions of the canonical
generators by simply computing the variations under the vector fieldsVL of the Noether conserved
quantities in tangent space. This method has been implicitly used in a series of papers24–26 that
analyze the relationship between the Lagrangian and Hamiltonian descriptions of the gauge
structure for generally covariant theories.

IV. SOME EXAMPLES

Example 1: Let us consider the Lagrangian

L5
1

2
e2vẋ21

1

2
evm2,

which describes a free particle in Minkowski’s space–time. A standard analysis yields the
menta (p,p) of the variables (x,v), a Hamiltonian function, and a primary Hamiltonian co
straint:

p̂5e2vẋ, p̂50, H5
1

2
ev~p22m2!, f05p.
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The stabilization algorithm yields a secondary Hamiltonian constraint

f15$f0,H%52H.

The evolution operatorK is given by

K•h5FL*
]h

]t
1 ẋFL*

]h

]x
1v̇ FL*

]h

]v
1x FL*

]h

]p
,

where we have denoted byx the primary Lagrangian constraint

xªK•f05
1

2
~evm22e2vẋ2!.

It is clear that the projectable functions are those not depending onv̇, and indeed the kernel o
T(FL) is spanned by

G5
]

]v̇
.

Notice therefore thatx is a projectable constraint, and so

x5FL* ~f1!,

whereas

K•f15v̇x,

which is not a new constraint. Finally, we give the Euler–Lagrange equations

@L#x5e2v~v̇ ẋ2 ẍ!, @L#v5x.

At the first stage of the stabilization algorithm the Hamiltonian evolution operator is

XH5
]

]t
1evp

]

]x
2

1

2
ev~p22m2!

]

]p
1l

]

]v
1pZ,

where the functionl and the vector fieldZ are arbitrary.
Now let us study the gauge transformations. From the general theory, a gauge genera

the form GH5 «̇G01«G1 , where« is an arbitrary function of time and the functionsGi are
determined such thatK•GH50.10 G0 is a first-class primary Hamiltonian constraint, which in th
example turns out to bee2vp. The result is

GH5e2v~ «̇f02«f1!.

Its associated infinitesimal transformation is given by the vector field

VH5«p
]

]x
1 «̇e2v

]

]v
1 «̇e2vp

]

]p
.

Let us check the quasiinvariance ofXH:

@VH,XH#5~e2v~2 «̈1l«̇!1VH
•l!

]

]v
1pS e2v~2 «̈1l«̇!

]

]p
1@VH,Z#1e2v«̇ZD ,

which is weakly$2,phc%.
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The vector fieldVL of ~43! is

VL5e2vS «x
]

]x
1 «̇

]

]v
1 «̇ ẋ

]

] ẋ
1~ «̇v̇2 «̈e2v!

]

]v̇ D .

A direct computation then shows that, as differential operators,

VL+K2K +VH50.

Finally let us consider the Lagrangian dynamical vector field,

XL5
]

]t
1 ẋ

]

]x
1v̇

]

]v
1v̇ ẋ

]

] ẋ
1h

]

]v̇
,

whereh is an arbitrary function. Then we obtain

@VL,XL#5e2v~2 «̂12«̈v̇2 «̇v̇21 «̇e2vh1VL
•h!

]

]v̇
,

which is proportional toG.
Moreover, bearing in mind the remarks at the end of Sec. III B, we can define the Lagra

transformation of the velocities as the time-derivatives of the transformation of the positions
obtaining a slightly different vector fieldV̄L; indeed,

V̄L5VL2«@L#x

]

] ẋ
.

Then the Noether condition can be checked for this transformation:

V̄L
•L5

d

dt
~«e2vL !.

Example 2: Here we show that, in general, the conditions stated by Theorem 5 are
sufficient forVL to define a Noether transformation. Let us consider

L5
1

2
ẋ22

1

2
y2.

The momenta (px ,py) of the variables (x,y), a Hamiltonian function and a primary Hamiltonia
constraint are

p̂x5 ẋ, p̂y50, H5
1

2
px

21
1

2
y2, f05py .

The stabilization algorithm yields a secondary Hamiltonian constraint

f15$f0,H%52y.

The evolution operatorK is given by

K•h5FL*
]h

]t
1 ẋ FL*

]h

]x
1 ẏ FL*

]h

]y
2y FL*

]h

]py
.

Notice that there are a primary Lagrangian constraint and a secondary one,
                                                                                                                



r

te

s
s,

7349J. Math. Phys., Vol. 41, No. 11, November 2000 Noether symmetries, commutativity properties

                    
x152y, x252 ẏ.

The projectable functions are those not depending onẏ, and the kernel of T(FL) is spanned
by

G5
]

] ẏ
.

The Euler–Lagrange equations are

@L#x52 ẍ, @L#y52y,

and so the Lagrangian evolution operator may be taken as

X0
L5 ẋ

]

]x
1 ẏ

]

]y
.

Let us consider the function

GH5pyy,

whose associated infinitesimal transformation is the vector field in phase space

VH5y
]

]y
2py

]

]py
,

and defines the vector field in tangent space

VL5y
]

]y
1 ẏ

]

] ẏ
.

It is easily checked thatVL projects toVH. It is clear thatVL
•x15x1, and so it is tangent to the

primary Lagrangian constraint submanifold. And also we have@VL,X0
L#50.

In spite of satisfying these three conditions of Theorem 5,VL is not a projectable Noethe
transformation. We can see this in several ways. On the one hand,K•GH52y2, which is not zero
~notice, however, that since this is a primary Lagrangian constraint thenGH corresponds to a
nonprojectable Noether transformation, see Refs. 13 and 15!. On the other hand, we can compu

~VL+K2K +VH!•h522y
]ĥ

]py
,

which is not zero. Finally, using the transformationV̄L as before, we have

V̄L
•L52y2,

which is not a total derivative.
Finally, we use this example to illustrate item~b! in the list of properties of gauge theorie

given in the introduction. Take the conserved quantityGH5px1pyy in phase space. It generate
through Poisson bracket, an infinitesimal symmetry transformationdH whose pull-back to velocity
space isdLx51, dLy5y; this givesdLL52y2, which is not a total derivative and thusdL is not
a Noether symmetry.
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V. CONCLUSIONS

In this paper we have introduced some characterizations of Noether symmetries base
some specific properties of commutativity with the dynamics. This presentation entails a s
focus with respect to the standard introductions to Noether symmetries.

To our knowledge, the only characterization of Noether symmetries in gauge theorie
relying on properties of the conserved quantity, is the invariance of the action under these
formations. Our contribution is a new characterization of such symmetries which is set up
realm of dynamics, either Lagrangian or Hamiltonian. This study concerns those Noether sy
tries that are projectable to phase space~what we call canonical Noether transformations!.

For canonical Noether symmetries we obtain a characterization in phase space that
generalizes the results that hold for regular~not gauge! theories. We also provide an alternativ
characterization by using the unambiguous evolution operator that connects the formulati
phase space and in tangent space; this new characterization is very appropriate becaus
simplicity, since it is set up with the only use of the Lagrangian function and its partial derivat
Finally, we give a characterization in velocity space applicable to most dynamical theories
physical contents.

In summary, we give an answer to the question of extending the property of commutat
the Noether symmetry with the dynamics, as expressed by Eq.~1!, to singular Lagrangians. Thi
answer is presented as three characterizations that may serve as a useful test of Noether s
for gauge theories with reference neither to the action nor to the conserved quantity.
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Characterizations of the canonical phase observable
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In this paper we investigate various properties of phase observables which could
serve to determine the canonical phase observable among the family of all phase
observables. We also show that any contractive weighted shift operator defines a
unique phase observable, and we characterize phase observables that give the mos
accurate phase distribution in coherent states in the classical limit. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!01211-1#

I. INTRODUCTION

Quantum phase observables are defined as the normalized positive operator measure
are covariant under the shifts generated by the number operator. The structure of such obse
has completely been determined~Ref. 1, Theorem 6.1, p. 184, Ref. 2!, and they can be represente
by the so-called phase matrices which are positive semidefinite infinite-dimensional matrice
the diagonal elements equal to one. In this paper we study various properties of phase obse
paying special attention to the canonical phase observable, which is the one determined
polar decomposition of the lowering operator.

Section II gives the basic notations and definitions and it produces some examples
phase observables. In Sec. III we show that a phase observable is uniquely determined by
moment operator, which is not a common property of positive operator measures. The main
of Sec. IV is Theorem 4.1, which states that any contractive weighted shift operator defi
unique phase observable. Using this theorem we see that the canonical phase obser
uniquely associated with the polar decomposition of any weighted shift operator. Section V
onstrates that the canonical phase observable is essentially the only phase observable
generates number shifts. Section VI deals with various measures of uncertainty of phase d
tions. Since neither variance nor cyclic variance are good measures of uncertainty of a prob
measure on the unit circle, we adopt here the notion of minimum variance as the meas
uncertainty of a phase distribution. We also investigate the connections between the qu
estimation theory and the minimum variance approach. Finally, Theorem 7.1 of Sec. VII ch
terizes phase observables for which the phase distribution in a coherent state is concentra
point in the classical limit. The canonical phase observable and the phase space phase obs
fit in the scope of this theorem showing that they behave ‘‘correctly’’ in the classical limit. Fo
high amplitude coherent states the canonical phase observable gives smaller minimum v
than the phase space phase observables.

II. PHASE OBSERVABLES AND PHASE MATRICES

In this section we express the phase observables in terms of the phase matrices and
some examples of such matrices. For that we need a few notations which we shall introduc

Let C, R, Z, andZ1 denote the sets of complex numbers, real numbers, integers, and po
integers, respectively, and putN5Z1ø$0%. Let H denote a complex separable infinit
dimensional Hilbert space, with the inner product^•u•&, and letL(H) denote the set of bounde
operators onH. For any two unit vectorsc,wPH, we let uc&^wu denote the linear rank-on

a!Electronic mail: pekka.lahti@utu.fi
b!Electronic mail: juhpello@utu.fi
73520022-2488/2000/41(11)/7352/30/$17.00 © 2000 American Institute of Physics
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operatorH{h°^wuh&cPH. Let $un&PHunPN% be an orthonormal basis ofH, and let N
5(n50

` nun&^nu be the self-adjoint operator with the domainD(N)5$cPHu(n50
` n2u^nuc&u2

,`%. We call N the number operator associated with the basis$un&unPN%, and we writeR(u)
ªeiuN for the associated unitary operator withuPR. Let B@0,2p) denote thes-algebra of the
Borel subsets of the interval@0,2p). We say that a positive normalized operator meas
E:B@0,2p)→L(H) is aphase observableif it is covariant under the shifts generated byN, that is,
if R(u)E(X)R(u)* 5E(X1u), XPB@0,2p), uPR, where X1uª$xP@0,2p)u(x2u)
(mod 2p)PX%. For APL(H) we may writeA5(n,m50

` ^nuAum&un&^mu, with the understanding
that in the double summation the summation order is irrelevant and the series converge
weak operator topology.

Let E:B@0,2p)→L(H) be a phase observable. Then for anyXPB@0,2p),

E~X!5 (
n,m50

`

cn,m

1

2p E
X
ei (n2m)u duun&^mu, ~1!

where$cn,m u n,mPN%,C, with

cn,n51, nPN, ~2!

and

(
n,m50

k

cn,mun&^mu>O, kPN. ~3!

Conversely, any family of complex numbers$cn,mPC u n,mPN% which has the properties~2! and
~3!, defines a unique phase observable of the form~1! ~see Ref. 2!.

Every phase observableE has a unique infinite dimensionalphase matrix(cn,m)n,mPN which
completely characterizesE. Indeed, condition~3! can be written in the form~see Ref. 3, Theorem
2.18, p. 54 or Ref. 4, Theorem 1.17, p. 72!:

Uck1 ,k1
ck1 ,k2 ... ck1 ,ks

ck2 ,k1
ck2 ,k2 ... ck2 ,ks

A A � A

cks ,k1
cks ,k2 ... cks ,ks

U>0

for all sPZ1, $k1 ,k2 , . . . ,ks%,N, andk1,k2, . . . ,ks , that is, all the principal minors of the
phase matrix (cn,m)n,mPN are non-negative. From~2! and ~3! it follows that cn,m5cm,n and
ucn,mu<1 for all n,mPN. We always let (cn,m)n,mPN denote the phase matrix of an arbitra
phase observableE.

We give now some examples of phase matrices. LetjP@21,1#, and define, for eachn,m
PN,

cn,m
j

ªH 1 when n2m is even, or n5m

j when n2m is odd.

The principal minors of the matrix (cn,m
j )n,mPN are 1, 12j2, and 0, so that (cn,m

j )n,mPN is a phase
matrix. Let Ej be the associated phase observable. We callEj a chessboard phase observabl.
One sees immediately thatE2j5R(p)EjR(p)* for all jP@21,1#. If j51 we say thatE1 is the
canonical phase observable:

E1~X!5 (
n,m50

`
1

2p E
X
ei (n2m)u duun&^mu, XPB@0,2p!.
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The matrix (dn,m)n,mPN defines the trivial phase observable: Etriv(X)5I (1/2p) *X du, X
PB@0,2p). Other examples of phase observables arephase space phase observables, that is, the
phase observables which are obtained as the polar coordinate angle margins of the phas
observables defined weakly by the following integral:

Eus&~X!ª
1

2p E
X
E

0

`

D~ teiu!us&^suD~ teiu!* dt2 du, XPB@0,2p!, sPN.

Here D(z)ªeza* 2 z̄a, zPC, is the unitary shift operator, andaª(n50
` An11un&^n11u is the

lowering operator associated with the basis$un&unPN%. Since for alltP@0,̀ ) anduP@0,2p),

^suD~ teiu!* un&5ei (s2n)u~21!max$0,s2n%A~min$n,s%!!

~max$n,s%!!
e2t2/2t us2nuLmin$n,s%

us2nu ~ t2!,

the matrix elements of the phase matrix ofEus& are

cn,m
us&

ª~21!max$0,s2n%1max$0,s2m%A ~min$n,s%!! ~min$m,s%!!

~max$n,s%!! ~max$m,s%!!

3E
0

`

e2xx(us2nu1us2mu)/2Lmin$n,s%
us2nu ~x!Lmin$m,s%

us2mu ~x!dx

for all n,m,sPN, whereLk
a(x)5( l 50

k (21)l(k2 l
k1a)xl / l !, kPN, a>0, is the associated Laguerr

polynomial.2

Finally, consider a unitary transformationUª(n50
` ei ynun&^nu, ynP@0,2p), nPN, and letE

be a phase observable with the phase matrix (cn,m)n,mPN . Then

EU~X!ªUE~X!U* , XPB@0,2p!,

defines a phase observable with the phase matrix (cn,m
U )n,mPN , wherecn,m

U 5cn,mei (yn2ym), n,m
PN. Let Ẽ be a phase observable with the phase matrix (c̃n,m)n,mPN for which uc̃n,mu51, that is,
c̃n,m5eian,m, an,m5arg(c̃n,m)P@0,2p), n,mPN, m.n. The principal minors of (c̃n,m)n,mPN are
non-negative from where it follows that

U 1 c̃k1 ,k2
c̃k1 ,k3

c̃k1 ,k2
1 c̃k2 ,k3

c̃k1 ,k3
c̃k2 ,k3

1
U52212 cos~ak1 ,k2

1ak2 ,k3
2ak1 ,k3

!>0

for all k1 ,k2 ,k3PN, k1,k2,k3 . From this it follows that

ak1 ,k3
5ak1 ,k2

1ak2 ,k3
~mod 2p!.

Thus,

c̃n,m5 )
k5n

m21

c̃k,k11 , ~4!

for all n,mPN andn,m. If we defineŨª(n50
` ei ỹnun&^nu, with

ỹnª2 (
k50

n21

ak,k11~mod 2p!,
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for all nPZ1 and ỹ0ª0, we get

Ẽ5E1,Ũ . ~5!

Other examples of physically relevant phase matrices have been constructed by Wisem
Killip in the scheme of adaptive phase measurements.5

III. MOMENT OPERATORS OF PHASE OBSERVABLES

Let E: B@0,2p)→L(H) be a positive normalized operator measure, and letEc,w denote the
complex measureB@0,2p){X°Ec,w(X)ª^cuE(X)w&PC. The moment operators E(k) of the
operator measureE are defined weakly as

^cuE(k)w&ªE
0

2p

uk dEc,w~u!, kPN, c,wPH.

They are bounded self-adjoint operators and they determine the operator measureE uniquely. We
note that, in general,E(k)Þ(E(1))k, kPN.

Similarly, thekth cyclic moment operatorof E is defined as the operatorVE
(k) ,

^cuVE
(k)w&ªE

0

2p

eiku dEc,w~u!, kPZ, c,wPH. ~6!

The operatorsVE
(k) , kPZ, are contractions, that is,iVE

(k)ci<ici for all cPH, and they deter-
mine uniquely the measureE. Also, in general,VE

(k)Þ(VE
(1))k.

Assume now thatE is a phase observable and letkPN. Then

E(k)5 (
n,m50

`

cn,m

1

2p E
0

2p

ukei (n2m)u duun&^mu,

and thus, for instance,

cn,m5^nuE(1)um& i ~n2m!, nÞm,

which shows thatthe phase observable E is uniquely determined by its first moment operator(1).
This shows that one may consider the operatorE(1) as thephase operatorof the phase observabl
E. Conversely, ifA is any bounded self-adjoint operator such that the matrix (an,m)n,mPN , with
an,nª^nuAun&/p51 andan,mª^nuAum& i (n2m) for all nÞm, is a phase matrix~i.e., positive
semidefinite!, then A is the phase operator of the phase observa
X°(n,m50

` an,m(2p)21*X ei (n2m)u duun&^mu.
Similarly the cyclic moment operators are now easily determined to be

VE
(k)5~VE

(2k)!* 5 (
n50

`

cn,n1kun&^n1ku, kPN,

and thuscn,m5^nuVE
(m2n)um& for all n,mPN. Therefore,the phase observable E is unique

determined by its cyclic moment operators VE
(k) associated with positive integers k.

In the following sections we need more general moment operators of a phase observaE.
They are thea-shifted moment operators, defined~weakly! as

E(k),a
ª (

n,m50

`

cn,m

1

2p E
a2p

a1p

ukei (n2m)u duun&^mu,
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which are bounded self-adjoint operators for allkPN and aPR. Now, E(k)5E(k),p for all k
PN, whereas

VE
(k)5VE

(k),a
ª (

n,m50

`

cn,m

1

2p E
a2p

a1p

eikuei (n2m)u duun&^mu

for all kPZ and aPR, showing thata-shifted kth cyclic moment operator is thekth cyclic
moment operator. For future use, we calculate the first and the seconda-shifted moment operator
for any aPR:

E(1),a5aI 1 (
nÞm50

`

cn,m

i

m2n
ei (n2m)(a2p)un&^mu5aI 1R~a!E(1),0R~a!* ,

~7!

E(2),a5S a21
p2

3 D I 12 (
nÞm50

`

cn,mF a i

m2n
1

1

~m2n!2Gei (n2m)(a2p)un&^mu

5S p2

3
2a2D I 12aE(1),a12 (

nÞm50

`

cn,m

ei (n2m)(a2p)

~m2n!2 un&^mu.

IV. PHASE OBSERVABLES AND WEIGHTED SHIFT OPERATORS

A number of investigations have been devoted to the search for bounded self-adjoint
and sine operators as solutions of the commutation relations~see, e.g., Refs. 6–9!

@C,N#5 iS, ~8!

@S,N#52 iC. ~9!

DenotingVªC1 iS, so that

C5 1
2 ~V1V* !,

S5
1

2i
~V2V* !,

it follows from ~8! and ~9! that

@V,N#5V. ~10!

Assuming that the number basis$un&unPN% is contained in the domain of the commutator@V,N#,
thenV5(n,m50

` ^nuVum&un&^mu reduces to

V5 (
n50

`

^nuVun11&un&^n11u.

This is a weighted~unilateral! shift operator. DenotinĝnuVun11&5: f (n), nPN, we write V
[Vf5(n50

` f (n)un&^n11u. SinceVf is bounded, sup$u f (n)u unPN%5iVf i,`. It is easy to see
that Vf is a contraction if and only ifu f (n)u<1, nPN. In this case the spectra of the cosine a
sine operatorsCfª

1
2(Vf1Vf* ) and Sfª(1/2i ) (Vf2Vf* ) are contained in the interval@21,1#

~see, the Chain Sequence Theorem of Ref. 8, p. 1680!.
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A. Phase observables associated with contractive weighted shift operators

The next theorem characterizes weighted~unilateral! shift operatorsVf which are contrac-
tions. This result could also be derived from Theorem 2.2 of Ref. 10, but we give here a
proof.

Theorem 4.1: If a weighted shift operatorVf5(n50
` f (n)un&^n11u is a contraction then

there is a unique phase observableEf :B@0,2p)→L(H) for which

VEf

(k)5Vf
k ~11!

for all kPN.
Proof: Assume thatVf is a contraction, that is,u f (n)u<1, nPN. Define a matrix (cn,m

f )n,mPN
as follows: for allnPN, kPZ1,

cn,n1k
f

ª)
l 50

k21

f ~n1 l !, ~12!

cn1k,n
f

ªcn,n1k
f , andcn,n

f
ª1. Thus,ucn,m

f u<1, n,mPN, and

cn,m
f 5cn,k

f ck,m
f ~13!

for all n,m,kPN, n<k<m. To show that (cn,m
f )n,mPN is a phase matrix we have to calculate t

principal minors of (cn,m
f )n,mPN and show that they are non-negative. The proof is by induct

First we calculate the two-dimensional case:

U 1 ck1 ,k2

f

ck1 ,k2

f 1
U512uck1 ,k2

f u2>0, nPN.

Assume then that for fixedsP$2,3,4, . . .% and for arbitrary$k1 ,k2 , . . . ,ks%,N, k1,k2, ¯

,ks ,

U 1 ck1 ,k2

f
... ck1 ,ks

f

ck1 ,k2

f 1 . . . ck2 ,ks

f

A A � A

ck1 ,ks

f ck2 ,ks

f . . . 1

U5)
l 51

s21

@12uckl ,kl 11

f u2#>0.

Using ~13! it now follows that for all$k1 ,k2 , . . . ,ks11%,N, k1,k2, ¯ ,ks11 ,
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U 1 ck1 ,k2

f
... ck1 ,ks11

f

ck1 ,k2

f 1 . . . ck2 ,ks11

f

A A � A

ck1 ,ks11

f ck2 ,ks11

f . . . 1

U
5U12uck1 ,k2

f u2 ck1 ,k2

f 2ck1 ,k2

f
... ck1 ,ks11

f 2ck1 ,k2

f ck2 ,ks11

f

ck1 ,k2

f 1 . . . ck2 ,ks11

f

A A � A

ck1 ,ks11

f ck2 ,ks11

f . . . 1

U
5~12uck1 ,k2

f u2!)
l 51

s21

@12uckl 11 ,kl 12

f u2#>0.

Thus, by induction, (cn,m
f )n,mPN is a phase matrix. The phase observable defined by it is

Ef~X!ª (
n,m50

`

cn,m
f 1

2p E
X
ei (n2m)u duun&^mu, XPB@0,2p!.

Then for allkPZ1,

E
0

2p

eiku dEf~u!5 (
n50

`

cn,n1k
f un&^n1ku5 (

n50

`

)
l 50

k21

cn1 l ,n1 l 11
f un&^n1ku5S E

0

2p

eiu dEf~u! D k

.

The uniqueness ofEf follows from the fact that cyclic moment operators of a phase observ
associated with positive integers determines it uniquely. h

In the context of the above-mentioned theorem, it is clear that for allkPZ1, (Vf* )k

5VEf

(2k) , and that the sine and cosine operators satisfy the usual equations:

Sf5E
0

2p

sinu dEf~u!,

Cf5E
0

2p

cosu dEf~u!.

Following Ref. 10 we say that a phase observableE is strongif it satisfies Eq.~11!. Not all phase
observables are strong. For example, the phase space phase observableEu0& is not strong since it
has the matrix elementsc0,1

u0&5Ap/2 , c1,2
u0&5 3

4Ap/2, andc0,2
u0&51/&, for which c0,2

u0&Þc0,1
u0&c1,2

u0& . The
chessboard phase observableEj is strong if and only ifj561. On the other hand, for each pha
observableE, with the phase matrix (cn,m)n,mPN , VE

(1) is a contractive weighted shift operato
Thus, there is a strong phase observableEf for which VEf

(k)5(VE
(1))k, kPN. The phase matrix

(cn,m
f )n,mPN of Ef is given by Eq.~12! with f (n)5cn,n11 , nPN.

B. Phase observables associated with the polar decomposition of weighted shift
operators

The phase observable associated with the polar decomposition of the lowering operata is
the canonical phase observableE1 . Indeed,a5VE1

(1)AN. We proceed to show how the canonic
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and the trivial phase observables are related to an arbitrary weighted~unilateral! shift operator.
Consider the polar decomposition of the operatorVf5(n50

` f (n)un&^n11u where f is any map
from N to C:

Vf5Wf uVf u,

where

uVf u5AVf* Vf5 (
n50

`

u f ~n!uun11&^n11u

and

Wf5 (
n50

f (n)Þ0

`

ei arg f (n)un&^n11u.

The partial isometryWf is a contractive weighted shift operator. Thus, by Theorem 4.1,Wf
k

5V
Ẽf

(k)
, kPN, for a unique phase observableẼf , with the phase matrix (c̃n,m

f )n,mPN , where, for

all nPN, kPZ1,

c̃n,n1k
f

ªH expS i (
l 50

k21

argf ~n1 l !D when f ~n1 l !Þ0 for all l P$0,1,. . . ,k21%

0 otherwise.

Define a unitary transformationU fªu0&^0u1(n51
` exp(i(k51

n fk21)un&^nu, where fn

ªargf(n) when f (n)Þ0 andfnª0 otherwise, so that

Wf ,U f
ªU fWfU f* 5 (

n50
f (n)Þ0

`

un&^n11u,

and

Vf ,U f
ªU fVfU f* 5 (

n50

`

u f ~n!uun&^n11u.

Thus, uVf ,U f
u5uVf u and Vf ,U f

5Wf ,U f
uVf ,U f

u. It is clear that we can define a phase observa

Ẽf ,U f
5U fẼfU f* whose phase matrix consists of the following elements:

c̃n,n1k
f ,U f

ªH 1 when f ~n1 l !Þ0 for all l P$0,1,. . . ,k21%

0 otherwise,

wherenPN andkPZ1. We represent this phase observableẼf ,U f
as a sum of positive operato

measures acting on orthogonal subspaces ofH. Let Nnª$0,1,2,. . . ,n%, nPN, and define two sets
Aª$nPNu f (n)Þ0% and Bª$nPNu f (n)50%. If A5B then Ẽf ,U f

5Etriv . Assume thatAÞB.
We define two functions N→Nø$`%: a(0)ªminA, b(0)ªminB\Na(0) , a(n)
ªmin A\Nb(n21) , andb(n)ªminB\Na(n) for all nPZ1. Notice that minBª`. If a(n),` for
all nPN we put Mª`. If this is not the case we defineMªmax$nPNua(n),`%. Let Pk

ª(n5a(k)
b(k)21un&^nu, kPNM , andPªI 2(k50

M Pk . Then we can write
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Ẽf ,U f
5 (

k50

M

PkE1Pk1PEtrivP.

If B5B we getẼf ,U f
5E1 .

V. PHASE OBSERVABLES WHICH GENERATE NUMBER SHIFTS

The canonical phase observableE1 generates the number shifts:VE1

(k)un1k&5un& and

VE1

(2k)un&5un1k& for all n,kPN. The downwards shifts form a semigroupN. SinceE1 is strong,

the mapN{k°VE1

(k)PL(H) is a ~nonunitary! representation ofN. Now one may ask if there is

any other phase observable which generates number shifts.
Let E be a phase observable with the phase matrix (cn,m)n,mPN . If E is strong, then the map

N{k°VE
(k)PL(H), is a representation ofN. The covariance ofN under the shifts generated b

E gives

VE
(k)un1k&^n1ku~VE

(k)!* 5un&^nu, n,kPN.

But this means thatucn,n1ku2un&^nu5un&^nu, n,kPN, and, thus,ucn,mu51, for all n,mPN. From
~4! and ~5! it follows that E is strong, and

E5E1,U ,

where

U5u0&^0u1 (
n51

`

expS 2 i (
k50

n21

argck,k11D un&^nu

is unitary.The canonical phase observable is thus essentially the only phase observable
generates number shifts.

VI. VARIOUS MEASURES OF UNCERTAINTY AND ASSOCIATED MEAN VALUES OF A
PHASE DISTRIBUTION

Many investigations have been devoted to finding appropriate measures of uncertain
phase distribution~for an overview, see Ref. 11!. In this section we analyze some measures
uncertainty and the associated mean values of a phase distribution.

A. Expectation, noise, and variance

Let E be a phase observable andT a state, that is, a positive trace-one operator. The
(E,T) defines a probability measure

pT
E~X!ªtr~TE~X!!, XPB@0,2p!,

which has the form

pT
E~X!5 (

n,m50

`

Tm,ncn,m

1

2p E
X
ei (n2m)u du, XPB@0,2p!,

whereTm,nª^muTun& for all m,nPN.
The expectation value of this measure is

Exp~E,T!ªE
0

2p

ud pT
E~u!,
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and its variance is

Var~E,T!ªE
0

2p

@u2Exp~E,T!#2dpT
E~u!5tr~TE(2)!2tr~TE(1)!2.

Notice that the expectation value gives the absolute minimum to the function

R{a°E
0

2p

~u2a!2dpT
E~u!P@0,̀ !,

that is, Var(E,T),*0
2p(u2a)2dpT

E(u) for all aPR, aÞExp(E,T).
Due to the covariance of a phase observable the expectation value of the probability m

pT
E does not appear to be a good mean value~in the arithmetic sense! as the simple example~Ref.

12! clearly demonstrates. Also thea-shifted expectation value tr(TE(1),a) depends, in general, o
the parameteraP@0,2p).

1. Noise of a phase observable

Using the noise operatorSEªE(2)2(E(1))2 of a phase observableE we may write the vari-
ance of the probability measurepT

E in the form

Var~E,T!5tr~T~E(1)!2!2tr~TE(1)!21tr~TSE!.

SinceSE>O it is natural to ask whether phase observables can be ordered by their noise
tors. From~7! one gets

SE5
p2

3
I 2 (

n50

` F (k50
kÞn

` ucn,ku2

~n2k!2G un&^nu1 (
nÞm50

` F 2cn,m

~n2m!2 1 (
k50
kÞn
kÞm

`
cn,kck,m

~n2k!~k2m!G un&^mu.

Thus,

^nuSEun&5
p2

3
2 (

k50
kÞn

` ucn,ku2

~k2n!2 5
p2

3
2(

l 51

` ucn,n1 l u2

l 2 2(
l 51

n ucn,n2 l u2

l 2 , nPN.

Since 0<ucn,mu<1, n,mPN,

(
l 51

` ucn,n1 l u2

l 2 <(
l 51

`
1

l 2 5
p2

6
,

and

(
l 51

n ucn,n2 l u2

l 2 <(
l 51

n
1

l 2 .

We get

p2

6
2(

l 51

n
1

l 2 <^nuSEun&<
p2

3
.

The noise operatorSE1,U
of a phase observableE1,U , with U5(n50

` ei ynun&^nu, ynP@0,2p), n

PN, gives^nuSE1,U
un&5 p2/62( l 51

n 1/l 2, whereas for the trivial phase observableEtriv one gets

^nuSEtriv
un&5 p2/3 for all nPN. Thus,
                                                                                                                



l phase

in the

f
single

7362 J. Math. Phys., Vol. 41, No. 11, November 2000 P. Lahti and J.-P. Pellonpää

                    
^nuSE1,U
un&<^nuSEun&<^nuSEtriv

un&, nPN.

On the other hand, ifc53u0&12u1&12u2&1u3&1u4&1u5&1u6&, then

^cu~SEtriv
2SE1

!c&5 7
2 p2234 2707

3600'20.2,0.

This shows that there is no operator order between the noises of the canonical and the trivia
observables.

Although the probability measurepun&
E is uniformly distributed on the interval@0,2p) for all

phase observablesE, we can compare the noise operators of different phase observables
number statesun&, nPN. The phase observableE1,U , U5(n50

` ei ynun&^nu, ynP@0,2p), nPN,
gives the smallest noise in any stateun&. Also, limn→`^nuSE1,U

un&50 showing that the noise o
E1,U approaches zero in the classical limit, that is, when the average number of photons in a
mode approaches infinity.

2. Variance of a phase probability distribution

Let E be a phase observable and consider the vector states

c6ª
1

&
~ u0&6u1&), c25R~p!c1 .

For them

Var~E,c6!5 4
3 p272p Im~c0,1!62 Re~c0,1!2@p7Im~c0,1!#

2. ~14!

If c0,1PR then Eq.~14! gets a simpler form:

Var~E,c6!5
p2

3
62c0,1. ~15!

This allows us to compare the variances of different phase observables~with c0,1PR) in the states
c6 . For the phase space observablesEus& one gets

c0,1
us&5

GS s1
1

2D
2s!

5
~2s21!!Ap

s! ~s21!!4s , sPZ1,

and

c0,1
u0&5

GS 1

2D
2

5
Ap

2
.

Thus,

c0,1
us11&5

2s11

2s12
c0,1

us& , sPN,

which shows that

1.c0,1
us&.c0,1

us11&.0, sPN.

Together with~15! this gives for allsPN,
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Var~E1 ,c1!.Var~Eus& ,c1!.Var~Eus11& ,c1!.Var~Etriv ,c1!,

and

Var~E1 ,c2!,Var~Eus& ,c2!,Var~Eus11& ,c2!,Var~Etriv ,c2!.

We conclude that the notion of variance of a phase distribution does not define an ordering
phase observables.

B. Cyclic expectation and cyclic variance

If the probability measurepT
E is interpreted to be a measure on a unit circle, it is natural to

the argument of the cyclic expectation value arg(C exp(E,T)), where

C exp~E,T!ªE
0

2p

eiu dpT
E~u!,

as a mean value of the probability measurepT
E . The cyclic expectation value is related to th

cyclic variance like the expectation value is related to the variance. Indeed, the cyclic varian13,14

Cvar~E,T!ªE
0

2p

ueiu2C exp~E,T!u2dpT
E~u!512uC exp~E,T!u2,

gives the absolute minimum to the function

C{m°E
0

2p

ueiu2mu2dpT
E~u!P@0,̀ !,

that is, Cvar(E,T),*0
2pueiu2mu2dpT

E(u) for all mPC, mÞCexp(E,T). SinceVE
(1)5VE

(1),a for all
aPR, the cyclic expectation value ofpT

E does not depend on the integration interval. A sim
example~Ref. 16! shows, however, that the cyclic expectation value may give intuitively wr
mean values.

Note that for any phase observableE and a unit vectorcPH,

Cvar~E,c!512U(
n50

`

^n11uc&^cun&cn,n11U2

>12S (
n50

`

u^n11uc&^cun&u D 2

5Cvar~E1,U ,c!,

which means thatE1,U , with U5(n50
` ei arĝ nuc&un&^nu, minimizes the cyclic variance Cvar(E,c)

~Ref. 1, p. 180!.
Remark 6.1:Let E be a phase observable andcPH a unit vector. From~7! one gets

Var~E,c!5
p2

3
12 (

nÞm

`
1

~m2n!2 cn,m^muc&^cun&2S i (
nÞm

`
1

m2n
cn,m^muc&^cun& D 2

<
p2

3
12 (

nÞm

`
1

~m2n!2 u^muc&^cun&u5Var~E1,U ,c!.

ThusE5E1,U , with U5(n50
` ei arĝ nuc&un&^nu, maximizes the variance Var(E,c).

C. Minimum variance of a phase probability distribution

In this section we define the minimum variance of a phase probability distribution and
as a measure of uncertainty of a phase distribution. The minimum variance has been introdu
Lévy in Ref. 17 and it has also been studied in Ref. 18.
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1. Phase probability density functions

Let g:R→@0,̀ # be a 2p-periodic density function, that is,g(u12p)5g(u) for du-almost
all uPR and (2p)21*0

2p g(u)du51, so that

B@0,2p!{X°
1

2p E
X
g~u!duP@0,1#

is a phase probability measure. For allaPR define thea-shifted expectation valueand the
a-shifted varianceof g as follows:

Expa~g!ª
1

2p E
a2p

a1p

ug~u!du5a1Exp0~ga!, ~16!

Vara~g!ª
1

2p E
a2p

a1p

~u2a!2g~u!du5Var0~ga!, ~17!

wherega(u)ªg(u1a) for all a, uPR. Its easy to see that Expa12p(g)5Expa(g)12p and
Vara12p(g)5Vara(g) for all aPR, and thus we can always assume thataP@0,2p) in ~16! and
~17!. Define theminimum~a-shifted! varianceof g as follows:

VAR~g!ª infH 1

2p E
b2p

b1p

~u2a!2g~u!du U a,bPRJ .

~The reader should not confuse this notion with ‘‘the minimum phase variance’’ used, for inst
in Ref. 5.! Since the mapsa°Vara(g) andb°(2p)21*b2p

b1p@u2Expb(g)#2g(u)du are continu-
ous functions from@0,2p# to @0,̀ ), it follows that

VAR~g!5min$Vara~g! u aP@0,2p!%

5minH 1

2p E
b2p

b1p

@u2Expb~g!#2g~u!du U bP@0,2p!J PF0,
p2

3 G .
We choose the minimum variance ofg as the measure of uncertainty of a phase probab
distributiong. If Varg(g)5VAR(g) for somegP@0,2p), we say thatg is acovariant expectation
value of g. There is always at least one covariant expectation value ofg. Next we study the
minimization problem ofa-shifted variance Vara(g).

The functionR{a°Vara(g)P@0,̀ ) is continuously differentiable~at any point! and

d

da
Vara~g!52@a2Expa~g!#, aPR.

Thus, if g is a covariant expectation value ofg then

Expg~g!5g.

If

Expa~g!5a ~18!

has a solutiona5gPR then anyg1k2p, kPZ, is also a solution. Thus, we can always assu
that gP@0,2p), and we see that this equation iscovariantunder 2p-shifts. Equation~18! always
has a solution since@0,2p#{a°Exp0(ga)P@2p,p# is continuous and*0

2p Exp0(ga)da50. If
there is a pointgP@0,2p) for which gg(2u)5gg(u) for du-almost alluP(0,p# theng andg
1p (mod 2p) are solutions of~18!. We say thatg andg1p arereflection symmetric pointsof g.
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Assume thatg is continuous at the pointg1p. Hence

d2 Vara~g!

da2 U
a5g

52@12g~g1p!# ~19!

anda° d2Vara(g)/da2 is continuous atg. Now it follows from ~19! that g is a local minimum
point of Vara(g) wheng(g1p),1. This means that the value of the probability density funct
g at the opposite pointg1p of g is smaller than the value of the uniform distributiongunif . If
g(g1p).1 then g gives a local maximum to Vara(g). This is the case, for example, whe
g(u)5h(u)ª3p22u2 for all uP@2p,p). Equation~18! has then only two solutions, namely,
and p, and h is continuous at any point. Sinceh(0)50,1 and h(p)53.1 we see that
VAR(h)5p2/105Varp(h),Vara(h),Var0(h)53p2/5 for all aP@0,2p)\$0,p%. Thus,p is the
only covariant expectation value ofh ~Fig. 1!.

2. Phase observables and a-shifted variances

Using Theorem 4.2.1 of Ref. 19 the probability measurepT
E of a phase observableE in a state

T may be written in the form

pT
E~X!5 (

k52`

`
1

2p E
X
eiku du tr~TVE

(2k)!ª lim
n→`

(
k52n

n
1

2p E
X
eiku du tr~TVE

(2k)!

for all XPB@0,2p). The cyclic moments tr(TVE
(2k)) are the Fourier–Stieltjes coefficients ofpT

E ,
and

utr~TVE
(2k)!u<tr~T!iVE

(2k)i5 sup
nPN

$ucn,n1ku%<1

for all kPZ. SincepT
E is absolutely continuous with respect to the Lebesgue measure, it fol

from the Radon–Nikody´m theorem that

pT
E~X!5

1

2p E
X
gT

E~u!du, XPB@0,2p!,

wheregT
E is a 2p-periodic density function. Indeed,

FIG. 1. The functionh(u) has been plotted to demonstrate thatp is an intuitively correct expectation value and that t
integration interval@0,2p) gives the smallesta-shifted variance.
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gT
E~u!5 (

k52`

`

tr~TVE
(2k)!eiku

ª lim
r→12

(
k52`

`

tr~TVE
(2k)!r ukueiku

5112(
k51

`

utr~TVE
(k)!ucos~ku2arg~ tr~TVE

(k)!!!

for du-almost alluPR ~see, e.g., Ref. 20, Fatou’s Theorem, p. 34!. If

(
n,m50

`

uTn,mcn,mu,` ~20!

thengT
E is bounded and continuous, and we can writegT

E(u)5(n,m50
` Tm,ncn,mei (n2m)u for all u

PR. If (n,m50
` ucn,mu,` then condition~20! is fulfilled for any stateT since uTn,mu<1 for all

n,mPN. Also if E is an arbitrary phase observable andT is a state for which(n,m50
` uTn,mu,`

then~20! holds. On the other hand, it is obvious that an arbitrarypT
E does not satisfy Eq.~20!. For

example, ifE is the canonical phaseE1 andT5uz&^zu, wherezª(A6/p)(n51
` n21un&, then~20!

is not true andgz
E1(0)5` showing thatgz

E1 is not bounded and continuous.
From now on we simply write Expa(E,T), Vara(E,T), and VAR(E,T) instead of Expa(gT

E),
Vara(gT

E), and VAR(gT
E), respectively.

Since Expa(E,T)5tr(TE(1),a), using~7!, one can write Eq.~18! in the form

tr~TE(1),a!5a, aP@0,2p!. ~21!

Using ~7! and

u2a52 i (
k52`
kÞ0

`
~21!k

k
eik(a2u)52(

k51

`
~21!k

k
sin~k~a2u!!,

~u2a!25
p2

3
12 (

k52`
kÞ0

`
~21!k

k2 eik(a2u)5
p2

3
14(

k51

`
~21!k

k2 cos~k~a2u!!,

for all uP(a2p,a1p), we see that~21! is equivalent to

05 i (
nÞm50

`
~21!n1m

m2n
Tm,ncn,mei (n2m)a

52 i (
k52`
kÞ0

` tr~TVE
(2k)!

k
eik(a1p)

52(
k51

` utr~TVE
(k)!u

k
sin~k~a1p!2arg~ tr~TVE

(k)!!!, aP@0,2p!, ~22!

and thea-shifted variance ofgT
E is
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Vara~E,T!5tr~TR~a!E(2),0R~a!* !

5
p2

3
12 (

nÞm50

`
~21!n1m

~m2n!2 cn,mTm,nei (n2m)a

5
p2

3
12 (

k52`
kÞ0

` tr~TVE
(2k)!

k2 eik(a1p)

5
p2

3
14(

k51

` utr~TVE
(k)!u

k2 cos~k~a1p!2arg~ tr~TVE
(k)!!!. ~23!

Suppose thatgP@0,2p) is a solution of~21! and gT
E is continuous at the pointg1p. If

gT
E(g1p),1, that is, if

(
k51

`

utr~TVE
(k)!ucos~k~g1p!2arg~ tr~TVE

(k)!!!,0, ~24!

then Varg(E,T) is a local minimum of Vara(E,T).
Example 6.2:If cn,mTm,n50 for all nÞm then gT

E(u)5gunif(u)ª1 for all uPR. Since
(2p)21*a2p

a1pugunif(u)du5a it follows that everyaP@0,2p) is a solution of ~18!. Now all
a-shifted variances arep2/3 and, thus, VAR(gunif)5p2/3, and everyaP@0,2p) is a covariant
expectation value ofgunif . Thus the uniform distributiongunif has the largest possible minimum
variance. This is the case, for example, whenE is arbitary andT5(n51

` lnun&^nu, whereln

>0, nPZ1, and(n51
` ln51. This confirms the fact that phase is totally random in a mixture

number states.
Example 6.3:Consider next the case whencs,tTs,tÞ0 for only a single pairs,tPN, s.t. For

example, define the phase observable

Ê~X!ª
1

2p E
X
duI 1z

1

2p E
X
ei (s2t)u duus&^tu1 z̄

1

2p E
X
ei (t2s)u duut&^su, XPB@0,2p!,

wheres.tPN, zPC, anduzu<1. Let T be a state. Now

gT
Ê~u!5112uzTs,tucos~~s2t !u2argTs,t1argz!, uPR.

Equation~22! is now of the form

uzTs,tusin~~s2t !a2argTs,t1argz!50. ~25!

If zTs,t50 this example reduces to Example 6.2. Assume thatzTs,tÞ0. In this case Eq.~25! has
2(s2t) solutions in@0,2p), namely,

ak5
argTs,t2argz

s2t
1

kp

s2t
~mod 2p!,

wherekPN2(s2t)21 . SincegT
Ê is continuous inR it follows from ~24! that the condition forak to

be a covariant expectation value reduces to the form

cos~~s2t !~ak1p!2argTs,t1argz!5~21!s1t1k,0.

From ~23! we get
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Varak
~Ê,T!5

p2

3
14

~21!s1t1k

~s2t !2 uzTs,tu, kPN2(s2t)21 . ~26!

If s1t1k is odd this isp2/324uzTs,tu/(s2t)2. Thus, there ares– t solutions which minimize the

a-shifted variance, that is,s2t covariant expectation values ofpT
Ê . Now

VAR~Ê,T!5
p2

3
24

uzTs,tu
~s2t !2 .

A similar example arises with an arbitary phase observableE and a vector state

kªd1us&1d2ut&,

wheresÞtPN, d1 ,d2PC, and ud1u21ud2u251, whencs,td1d2Þ0. In this casez and Ts,t are
replaced by cs,t and d1d2 , respectively, and the minimum variance VAR(E,k)5p2/3
24ucs,tu ud1d2u/(s2t)2. Thus, any phase observableE1,U , U5(n50

` ei ynun&^nu, ynP@0,2p), n
PN, gives the minimum to VAR(E,k) in the vector statek, sinceucs,tu<15ucs,t

1,Uu ~Fig. 2!.
Remark 6.4:The results of Sec. VI A 2 can be explained by using Example 6.3: Choos

51, t50, andk5c6 . If c0,1.0 then Eq.~25! has two solutions, namely, 0 andp. If k5c2 then
the solution p is the covariant expectation value and the minimum variance VAR(E,c2)
5Varp(E,c2)5Var(E,c2). If k5c1 then 0 is the covariant expectation value a
VAR(E,c1)5Var0(E,c1),Var(E,c1). In this case variance gives the reverse ordering to
phase space phase observables than the minimum variance does. Note that VAR(E,c1)
5VAR(E,c2)5p2/322uc0,1u for an arbitrary phase observableE.

3. Quantum estimation theory

In this section we investigate the connections between the quantum estimation theor~see,
e.g., Refs. 1 and 21! and the minimum variance approach in view of the quantum phase prob

Let T be a state andT(g)ªR(g)TR(g)* , gP@0,2p), a phase shifted state. In the quantu
estimation theory of the phase parameter one seeks for a phase observableE which would mini-
mize the average error

E
0

2p

W~u2g!dpT(g)
E ~u!5

1

2p E
2p

p

W~u!gT
E~u!du, ~27!

FIG. 2. Two density functionsgc1

E1(u)511cosu ~solid line! andgc2

E1(u)511cos 2u ~dashed line! have been plotted. The

states arec1ª(u0&1u1&)/& andc2ª(u0&1u2&)/&. The only covariant expectation value ofgc1

E1 is 0, and the covariant

expection values ofgc2

E1 arep/2 and 3p/2. Also VAR(E1 ,c1)5p2/322,VAR(E1 ,c2)5p2/321/2.
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for a given error functionW:R→R, which is 2p-periodic and for whichW(u)>W(0) for all u
PR. It is shown in Ref. 22~see also Ref. 1, p. 186! that if T5uc&^cu and if W is even and
continuous such that

E
0

2p

W~u!cosku du<0, kPZ1,

thenE1,U , with U5(n50
` ei arĝ nuc&un&^nu, minimizes the average error~27!. The proof of this fact

is simple. Indeed, since nowW is of the form

W~u!5w02 (
k51

`

wk cosku ~28!

for all uPR, wherewk>0, kPZ1, w0PR, and(k50
` wk,`, one gets

E
0

2p

W~u2g!dpT(g)
E ~u!5w02 (

k51

`

wk Rê cuVE
(k)uc&. ~29!

Since

u^cuVE
(k)uc&u5U(

n50

`

cn,n1k^cun&^n1kuc&U< (
n50

`

u^cun&^n1kuc&u5^cuVE1,U

(k) uc&

it then follows thatE1,U minimizes~29!. We turn now to compare the minimum variance approa
to the quantum phase estimation theory.

Let E be a phase observable andcPH a unit vector. From~17! one gets for alla, g
P@0,2p),

Vara~E,R~g!c!5
1

2p E
2p

p

u2gR(g2a)c
E ~u!du.

Comparing this equation with~27! we see that ifg is a covariant expectation value ofpR(g)c
E then

the measure of uncertainty ofpR(g)c
E reduces to the error integral, that is,

VAR~E,R~g!c!5Varg~E,R~g!c!5
1

2p E
2p

p

u2gc
E~u!du

with the error functionW(u)5u2, uP@2p,p). If the error functionW is of the form~28! then
E1,U minimizes the average error~27!. But now

u25
p2

3
14(

k51

`
~21!k

k2 cosku, uP~2p,p!,

which is not of the form~28!. Indeed, for alluP(2p,p),

u25puuu2h~u!,

puuu5
p2

2
24(

k51

`
1

~2k21!2 cos~2k21!u,

h~u!ª2u21puuu5
p2

6
24(

k51

`
1

~2k!2 cos~2k!u,
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wherepuuu andh(u) are of the form~28!. Thus,E1,U minimizes the average errors of the err
functionspuuu andh(u), but not~necessarily! the average error of the error functionu2, which is
the difference of the functionspuuu andh(u). This is quite natural, since

~1! we do not know whether VAR(E,R(g)c)5Varg(E,R(g)c) for an arbitrary phase observab
E, that is, whether Varg(E,R(g)c) is a correct measure of uncertainty, and

~2! although VAR(E,R(g)c)5Varg(E,R(g)c) for somephase observables, this equation do
not hold forall phase observables.

In the rest of this section we study conditions forg to be a covariant expectation value
pT(g)

E . For a phase shifted stateT(g) and a phase observableE Eq. ~22! can be written in the form

(
nÞm50

`
~21!n1m

m2n
ucn,mu uTn,muei [arg cn,m2argTn,m1(n2m)(a2g)]50, aP@0,2p!. ~30!

Suppose that for a given stateT we can choose a phase observableE for which

argcn,m5argTn,m~modp!, n,mPN. ~31!

For example, consider the case where (cn,m)n,mPN,R. If Tn,mPR for all n,mPN then ~31!
holds. Also, ifT5uc&^cu andE is replaced byEU , with U5(n50

` ei arĝ nuc&un&^nu, then again~31!
holds.

Suppose that~31! holds. Now Eq.~30! has at least two solutions, namely,a5g and a5g
1p (mod 2p). Also tr(TVE

(k))PR and

tr~T~g!VE
(k)!5eikg tr~TVE

(k)!, kPN,

and, thus,

gT(g)
E ~u!5112(

k51

`

tr~TVE
(k)!cosk~u2g!, uPR.

The pointsg and g1p are reflection symmetric points of the density functiongT(g)
E , and it

follows from ~23! that

Varg~E,T~g!!5
p2

3
14(

k51

`
~21!k

k2 tr~TVE
(k)!,

~32!

Varg1p~E,T~g!!5
p2

3
14(

k51

`
1

k2tr~TVE
(k)!.

Suppose next that

argcn,m5argTn,m , n,mPN. ~33!

Now tr(TVE
(k))5(n50

` uTn,n1kcn,n1ku>0, kPN, and the pointg is an absolute maximum point o
gT(g)

E , that is,gT(g)
E (u)<gT(g)

E (g) for du-almost alluPR. Also, it follows from ~32! that

Varg~E,T~g!!5Varg1p~E,T~g!!.
p2

3
>VAR~E,T~g!!

if
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cn,mTn,m5H ucn,mTn,mu when n2m is even, or n5m

0 when n2m is odd,

and cn,mTn,mÞ0 for somenÞm. This is the case, for example, whenE5E1 and T5uc&^cu
wherec5(u0&1u2&)/&.

Let I be a directed set and suppose that (Ti) i PI is any net of states for which~31! holds.
Suppose also that

lim
i PI

tr~TiVE
(k)!51, kPZ1.

It follows from ~32! that 0<VAR(E,Ti(g))<Varg(E,Ti(g))→0, and, thus,g tends to a covari-
ant expectation value. Since

lim
i PI

tr~Ti~g!VE
(2k)!5e2 ikg, kPZ,

it follows that the limit probability measure limi PI pTi (g)
E is then concentrated at the pointg @see,

e.g., Ref. 23, Lemma 4~c!, p. 475 and Ref. 24 Theorem 26.3, p. 303, Exercise 26.21, p. 307#. This
means that ifgÞ0 then

lim
i PI

pTi (g)
E ~g2e,g1e!51, 0,e<min$g,2p2g%,

and if g50 then

lim
i PI

pTi (g)
E @0,e!51, 0,e<2p,

and for any continuous functionf :@0,2p#→R,

lim
i PI

1

2p E
0

2p

f ~u!gTi (g)
E ~u!du5 f ~g!.

ThusgTi (g)
E tends to a 2p-periodic Dirac delta distributiond2p ~multiplied by 2p!, that is, we can

formally write for all uPR,

lim
i PI

gTi (g)
E ~u!52pd2p~u2g!5 (

k52`

`

eik(u2g)
ª2p lim

r→12

pr~u2g!

where

pr~x!ª
1

2p (
k52`

`

r ukueikx5
1

2p

12r 2

11r 222r cosx
, xPR

is the Poisson kernel~see, e.g., Ref. 23, Lemma, p. 590!. Then, for example, thekth a-shifted
moment ofgTi (g)

E approach togk for all kPZ andaPR for which ua2gu<p.

Example 6.5:For all jPC, uju,1, g5argj, let

fjªA12uju2(
n50

`

jnun&5R~g!f uju .
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Now fj is an eigenvector of the operatorVE1

(1) associated with the eigenvaluej. The operatorVE1

(1)

has no other eigenvalues but it has also a continuous spectrum which is the unit circle
complex plane. The generalized eigenvectors~antilinear forms lin$un&unPN%→C) associated with
the elements of the continuous spectrum are of the form

(
n50

`

eingun&, gP@0,2p!.

Since(n51
` nxn5x/(12x)2 for all xPR, uxu,1, it follows thatfj is in the domain ofN and

^fjuNfj&5
uju2

12uju2
.

Therefore limuju→12^fjuNfj&5`, which shows thatuju→12 is the classical limit. The behavio
of the probability measurepfj

E1 in this limit can now be determined. For alljPC, uju,1, g

5argj, we get

gfj

E1~u!5
12uju2

11uju222ujucos~u2g!
52ppuju~u2g!, uPR,

which is the Poisson kernel~multiplied by 2p!. This shows that in the classical limit of increasin
number the probability measurepfj

E1 tends to the probability distribution concentrated at the po

g ~Ref. 23, Lemma, p. 590!.

VII. PHASE DISTRIBUTIONS IN COHERENT STATES

Let zPC, r 5uzu, andg5argz, and consider the coherent state

uz&ªD~z!u0&5e2r 2/2(
n50

`
r neing

An!
un&5R~g!D~r !u0&5R~g!ur &.

Since (n50
` (r n/An!) ,`, we have(n,m50

` u^nuz&^zum&u,`, which shows that condition~20!
holds for any coherent state phase distributionpuz&

E . Hence the probability density functionguz&
E is

bounded and continuous. The next theorem characterizes phase observables for whichguz&
E (u)

→2pd2p(u2g) in the classical limit̂ zuNuz&5r 2→`.
Theorem 7.1: The probability measure limr→` puz&

E is concentrated at the pointg, and thus
formally limr→` guz&

E (u)52pd2p(u2g) for all uPR, if and only if limn→`cn,n1k51 for all k
PZ1.

Proof: First we begin with the following observation: Ifr→` then

guz&
E ~u!→2pd2p~u2g!, uPR,

if and only if

^r uVE
(k)ur &→1, kPZ1

~see Sec. VI C 3!. Since

^r uVE
(k)ur &<iVE

(k)i5 sup
nPN

$ucn,n1ku%,

it is necessary for̂ r uVE
(k)ur &→1, r→`, that supnPN$ucn,n1ku%51. Obviously, supnPN$ucn,n1ku%

51 when limn→` cn,n1k51 for all kPZ1.
Let us next define a non-negative continuous function for allr P@0,̀ ):
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f r~x!ª
r x

AG~x11!
, xP@0,̀ !,

whereG is the gamma function. The functionf r has one maximum peak in@0,̀ ). This follows
from the fact that (df r /dx) (x)50 when

ln r 25c~x11!ª
G8~x11!

G~x11!
,

wherec is the psi function~which is monotonically increasing and continuous in@1,̀ )), and from
the fact that

d2f r

dx2 ~xr !52
1

2
f r~xr !c8~xr11!,0,

for xrP@0,̀ ) for which c(xr11)5 ln r2, sincec8(x).0, xP@1,̀ ). Sincec(x)5 ln x2 1/(2x)
1O(x22) it follows that

xr5r 22 1
2 1O~r 22!.

When r→`, e2r 2/2f r(x)→0 for all xP@0,̀ ). Thus, using Stirling’s formulaG(x11)
5A2pxxxe2x(11O(x21)), one gets

f r~x!;
1

A4 2p
ehr (x), x→`,

wherehr(x)ªx ln r2(x/211/4)lnx1x/2, xP(0,̀ ). Using the Taylor series ofhr in x5r 22 1
2, we

get

hr~x!;
1

2
r 22

1

2
ln r 2

1

4r 2 S x2r 21
1

2D 2

, r→`.

Thus,

e2r 2/2f r~x!;
1

A4 2pAr
e2(x2r 211/2)2/(4r 2), r→`.

For any phase observableE we have

^r uVE
(k)ur &5 (

n50

`

cn,n1ke
2r 2

f r~n! f r~n1k!, kPZ1. ~34!

Thus, we see that

u^r uVE
(k)ur &u<^r uVE1

(k)ur &5 (
n50

`

e2r 2
f r~n! f r~n1k!, ~35!

whereE1 is the canonical phase observable. Whenr→`,
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^r uVE1

(k)ur &;
1

A2pr
E

0

`

e2[(x2r 211/2)21(x1k2r 211/2)2]/(4r 2)dx

5
1

2
e2k2/(8r 2)F11erfS r

&
2

k11

2&r
D G→1. ~36!

One sees immediately from~34! to ~36! that limr→`^r uVE
(k)ur &51 if and only if limn→` cn,n1k

51 for all kPZ1. This completes the proof. h

Note that for a rotated phase observableER(l) , lP@0,2p), guz&
ER(l)(u)→2pd2p(u2g1l)

when r→` if and only if limn→` cn,n1k51.
Remark 7.2:Lerner, Huang, and Walters8 suggest that for the unilateral shift operatorVf

5(n50
` f (n)un&^n11u the condition limn→` f (n)51 should be chosen, since

~Cf
21Sf

2!un&5 1
2 @ f ~n21!21 f ~n!2#un&, nPZ1,

and limn→`@ f (n21)21 f (n)2#/251. So the cosine and sine operators seem to satisfy the f
tional relation cos2 x1sin2 x51, xPR, in the classical limitn→N. Also if f (n) approaches unity
monotonically with increasingn and f (n)Þ0 for all nPN then the spectra ofCf andSf contain
every point on the interval (21,1). In the case of Theorem 7.1,Vf5VE

(1) for some phase observ
ableE and f (n)5cn,n11 for all nPN.

A. Chessboard phase observables in coherent states

For a chessboard phase observableEj one has

cn,n12l 11
j 5j

for all n,l PN. Thus, by Theorem 7.1,guz&
Ej(u)→2pd2p(u2g) for r→` if and only if j51. Since

E215E1,R(p) it follows thatguz&
E21(u)→2pd2p(u2g1p) whenr→`. Thus,E1 andE21 are the

only chessboard phase observables which give the most accurate phase probability distrib
the classical limit.

Consider next the canonical phaseE1 . Now for all uP@g2p,g1p),

guz&
E1~u!5 (

n,m50

`

^muD~z!u0&^0uD~z!* un&ei (n2m)u

5 (
n50

`

e2r 2/2
r n

An!
ein(u2g) (

m50

`

e2r 2/2
r m

Am!
e2 im(u2g)

;U 1

A4 2pAr
E

0

`

e2(x2r 211/2)2/(4r 2)1 ix(u2g)dxU2

for large r

;2A2prU E
2`

` 1

A2p~&r !
expH 2

1

2 Fx2~r 221/2!

&r
G 2J exp@ ix~u2g!#dxU2

52A2pr uei (r 221/2)(u2g)2r 2(u2g)2
u252pA2

p
re22r 2(u2g)2

. ~37!

Define hr
E1(u2g)ªA(2/p)re22r 2(u2g)2

. Since for allr P(0,̀ ) the functionx°hr
E1(x) is con-

tinuous inR and*2`
` hr

E1(x)dx51 it follows that

guz&
E1~u!;2phr

E1~u2g!→2pd~u2g!, r→`. ~38!
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Indeed, from~37! we get again thatguz&
E1(u)→2pd2p(u2g) when r→`.

We may ask how bigr must be in order for the approximationguz&
E1(u);2phr

E1(u2g) to be

good enough. One measure of the closeness ofguz&
E1(u) and 2phr

E1(u2g) is the difference of the

norms of guz&
E1(u) and 2phr

E1(u2g), that is, how much the integral ofhr
E1 over the interval

@g2p,g1p) differs from 1. Now, for example,

E
g2p

g1p

hr
E1~u2g!du5erf~&pr !P~0.99,1!

when r>1/2 ~Fig. 3!.

B. Phase space phase observables in coherent states

Let Eus& , sPN, be a phase space phase observable. Since for allkPZ1 ~see the Appendix!

lim
n→`

cn,n1k
us& 51,

it follows from Theorem 7.1 thatguz&
Eus&(u)→2pd2p(u2g) when r→`. Now, sinceL0

s[1, s
PN, we get

guz&
Eus&~u!5E

0

`

^zuD~ teiu!us&^suD~ teiu!* uz&dt2

5E
0

`

u^suD~ teiu2reig!* u0&u2dt2

5
1

s! E0

`

e2uteiu2reigu2uteiu2reigu2s dt2

5
2

s!
e2r 2 sin2(u2g)E

0

`

e2[ t2r cos(u2g)] 2
$@ t2r cos~u2g!#21r 2 sin2~u2g!%st dt

5
1

s!
e2r 2 sin2(u2g)H E

2r cos(u2g)

`

e2u2
@u21r 2 sin2~u2g!#s2u du

FIG. 3. The picture illustrates the difference ofgur &
E1(u) ~solid line! and 2phr

E1(u) ~dashed line! for r 51/2.
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12r cos~u2g!E
2r cos(u2g)

`

e2u2
@u21r 2 sin2~u2g!#sduJ

5
1

s! Er 2

`

e2vvs dv1
1

s!
e2r 2 sin2(u2g)2r cos~u2g!

3 (
k50

s S s
kD @r 2 sin2~u2g!#s2kE

2r cos(u2g)

`

e2u2
u2k du

→H ` when u5g12pk,kPZ

0 otherwiseuPR.
~39!

Hence, we can use the following approximations in~39! when r→`: cos(u2g)'1 and
sin(u2g)'u2g whenu'g. Thus, if u'g and r→`,

guz&
Eus&~u!;2phr

Eus&~u2g!

ª2p
1

ps!
e2r 2(u2g)2

r (
k50

s S s
kD @r 2~u2g!2#s2kE

2`

`

e2u2
u2k du→2pd~u2g!, ~40!

since for allr P(0,̀ ) andsPN the functionhr
Eus& is continuous and*2`

` hr
Eus&(x)dx51. Hence, we

get againguz&
Eus&(u)→2pd2p(u2g) for all sPN when r→`.

Similarly as before, we adopt*g2p
g1p hr

Eus&(u2g)du as the measure of the goodness of t

approximationguz&
Eus&(u);2phr

Eus&(u2g). Now for all sPN and r>0,

FIG. 4. The functionsgur &
E1 ~solid line!, gur &

Eu0& ~broken line!, gur &
Eu1& ~dashed line!, andgur &

Eu2& ~plotted line! have been plotted for
r 51. One can easily see that whens increases the density functiongur &

Eus& gets a wider shape. Indeed, as shown in t
Appendix, if s→` then the probabilitypuz&

Eus&(X) tends to (2p)21*X du for all XPB@0,2p), zPC, and, thus,guz&
Eus&(u)

→1 for all uPR.
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E
g2p

g1p

hr
Eus&~u2g!du512es~r !

where

es~r !ª
1

p (
k50

s
G~k11/2!G~s2k11/2,p2r 2!

k! ~s2k!!

is a positive monotonically decreasing error function andG(a,x)5*x
` e2tta21dt for all a.0 and

xPR. Thus, if sPN is fixed, then for eache.0 there is anR>0 such thates(r )<e for all r
>R. In Figs. 4 and 5 we see the behavior of the functiongur &

Eus& under the chance ofs and r .

C. The minimum variance of the canonical phase and phase space phase observables
in a coherent state

Since (cn,m
us& )n,mPN,R for all sPN, condition~31! holds for each phase space phase obse

ableEus& in a coherent state. Also~33! holds for the canonical phaseE1 in a coherent state. Thus
we know thatg5argz is a solution of~21! andg tends to a covariant expectation value whenr
5uzu→`. Also, since

guz&
Eus&~g1p!5

1

s!
@G~s11,r 2!2rG~s11/2,r 2!#P~0,1!

for all zPC, zÞ0, sPN, it follows that g gives a local minimum to Vara(Eus& ,uz&), a
P@0,2p). If r 50 thenuz&5u0& andgu0&

Eus&(g1p)51. Thus we can use the following approxim
tions whenr is large:

FIG. 5. The functionsgur 55&
Eu4& ~solid line! andgur 510&

Eu4& ~dashed line! have been plotted. The functiongur &
Eu4& gets sharper with

increasingr . This is due to the fact thatgur &
Eu4&(u)→2pd2p(u) for all uPR when r→`.
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VAR~E1 ,uz&);Varg~E1 ,uz&);E
2`

`

x2hr
E1~x!dx5

1

4

1

r 2 ,

VAR~Eus& ,uz&);Varg~Eus& ,uz&);E
2`

`

x2hr
Eus&~x!dx5

s11

2

1

r 2 , sPN.

Hence

VAR~E1 ,uz&),VAR~Eus& ,uz&),VAR~Eus11& ,uz&)

for all sPN when r is large. Finally, we give some numerical values of Varg(Eus& ,uz&) and
(s11)/2r 22:

s r Varg(Eus& ,uz&) (s11)/2r 22 Difference

0 1 0.759 2 0.5 234%
0 5 0.020 42 0.02 22%
0 10 0.005 025 0.005 20.5%
1 1 1.424 1 230%
1 5 0.041 30 0.04 23%
1 10 0.010 08 0.01 20.8%

VIII. SUMMARY

To conclude this article we collect here the main properties of the canonical phase obse
E1 .

~1! Any phase observableE for which ucn,mu51 for all n,mPN is strong and unitarily equiviva-
lent to E1 ~Sec. II!.

~2! E1 is essentially the only strong chessboard phase observable~Sec. IV A!.
~3! E1 is uniquely associated with the polar decomposition of any weighted shift operator~Sec.

IV B !.
~4! E1 is essentially the only phase observable which generates number shifts~Sec. V!.
~5! The phase observableE1,U gives the minimum cyclic variance and the maximum variance

a vector state whenU is properly chosen, and it also minimizes the error integrals of suit
error functions~Secs. VI B and VI C 3!.

~6! E1 minimizes both the minimum variance in a vector stated1us&1d2ut& and the noise in a
number stateun& ~Example 6.3 and Sec. VI A 1!.

~7! The probability measure ofE1 in a coherent state is concentrated at the point in the clas
limit ~Sec. VII A!.

~8! For the high amplitude coherent states the canonical phase observable gives smaller m
variance than the phase space phase observables~Sec. VII C!.
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APPENDIX

In this Appendix we show some properties of the phase space phase observablesEus& . Since
~see, e.g., Ref. 25, Eqs.~8.970~1!!, ~7.414~3!!, and~7.414~11!!#!
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cn,m
us& 5~21!max$0,s2n%1max$0,s2m%A ~min$n,s%!! ~min$m,s%!!

~max$n,s%!! ~max$m,s%!!

3E
0

`

e2xx(us2nu1us2mu)/2Lmin$n,s%
us2nu ~x!Lmin$m,s%

us2mu ~x!dx, n,m,sPN,

Lk
a~x!5(

l 50

k

~21! l S k1a
k2 l D xl

l !
,

E
0

`

e2xxaL j
a~x!Lk

a~x!dx5
G~a1k11!

k!
d j ,k ,

E
0

`

e2xxgLk
a~x!dx5

G~g11!G~a2g1k!

k!G~a2g!
, j ,kPN, a,g>0,

G~x11!;A2pxxxe2x, x→` ~Stirling’s formula!

andG(x) is continuous at any pointx.0, it follows that for anyn,m,k,sPN,

cn,m
us& →dn,m , s→`, ~A1!

cn,m
us& →0, n→`, ~A2!

cn,n1k
us& →1, n→`. ~A3!

For example, whenn>sPN, kPZ1,

cn,n1k
us& 5

s!

An! ~n1k!!
E

0

`

e2xxn1k/22sLs
n2s~x!Ls

n1k2s~x!dx

;
s!

n! E0

`

e2xxn2sLs
n2s~x!Ls

n2s~x!dx51, n→`.

Also one sees that

cn,m
us& 50 ~A4!

for all n,mPN for which n1m52s, 2(s21), . . . , 2.From ~A1! one gets

lim
s→`

^nuEus&~X!um&5dn,m~2p!21E
X
du

for all n,mPN andXPB@0,2p), from which it follows that

w-lim
s→`

Eus&~X!5Etriv~X!, XPB@0,2p!,

since for all XPB@0,2p) the operator sequence$Eus&(X)%s50
` is bounded by norm, that is

iEus&(X)i<1, sPN.
Finally, we calculate numerically few principal submatrices (cn,m

us& )n,mPM , M5$0,1,2,3,4,5%,
to demonstrate the behavior of the matrix elementscn,m

us& as given in Eqs.~A1!–~A4!:
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~cn,m
u0& !n,mPM'S 1 0.89 0.71 0.54 0.41 0.30

0.89 1 0.94 0.82 0.68 0.55

0.71 0.94 1 0.96 0.87 0.75

0.54 0.82 0.96 1 0.97 0.89

0.41 0.68 0.87 0.97 1 0.98

0.30 0.55 0.75 0.89 0.98 1

D ,

~cn,m
u1& !n,mPM'S 1 0.44 0 20.27 20.41 20.46

0.44 1 0.78 0.41 0.07 20.18

0 0.78 1 0.86 0.58 0.27

20.27 0.41 0.86 1 0.90 0.67

20.41 0.07 0.58 0.90 1 0.92

20.46 20.18 0.26 0.67 0.92 1

D ,

~cn,m
u2& !n,mPM'S 1 0.33 0 20.07 0 0.11

0.33 1 0.51 0 20.29 20.37

0 0.51 1 0.74 0.29 20.09

20.07 0 0.74 1 0.82 0.45

0 20.29 0.29 0.82 1 0.86

0.11 20.37 20.09 0.45 0.86 1

D ,

~cn,m
u3& !n,mPM'S 1 0.28 0 20.03 0 0.02

0.28 1 0.41 0 20.09 0

0 0.41 1 0.54 0 20.29

20.03 0 0.54 1 0.72 0.22

0 20.09 0 0.72 1 0.79

0.02 0 20.29 0.22 0.79 1

D ,

~cn,m
u4& !n,mPM'S 1 0.24 0 20.02 0 0.01

0.24 1 0.35 0 20.05 0

0 0.35 1 0.45 0 20.11

20.02 0 0.45 1 0.56 0

0 20.05 0 0.56 1 0.71

0.01 0 20.11 0 0.71 1

D ,

~cn,m
u5& !n,mPM'S 1 0.22 0 20.01 0 0.00

0.22 1 0.32 0 20.03 0

0 0.32 1 0.40 0 20.07

20.01 0 0.40 1 0.48 0

0 20.03 0 0.48 1 0.57

0.00 0 20.07 0 0.57 1

D .
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14J.-M. Lévy-Leblond, ‘‘Who is afraid of nonhermitian operators? A quantum description of angle and phase,’’ Ann.

~Paris! 101, 319–341~1976!. This article should already have been quoted in our previous paper~Ref. 2! since it gives
convincing physical arguments to break the~still existing! dogma of assigning a Hermitian~self-adjoint! operator to
every physical quantity, and it outlines the representation of some quantities, like phase, as a non-Hermitian
obtained as an operator integral~Ref. 15! of an appropriate function with respect to a positive operator measure. In
way it gives, for instance, the first cyclic moment of the canonical phase observable.
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On the SU „2… Kepler problem
Péter Lévaya)
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H-1521 Budapest, Hungary
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Using the idea that the symmetry generators commuting with a Landau-like Hamil-
tonian containing non-Abelian gauge fields will be matrix-valued differential op-
erators, we reconsider the eigenvalue problem of the five-dimensional~5-D! Kepler
problem on a SU~2! instanton background. We quickly reproduce the result of
Pletyukhov and Tolkachev@J. Math. Phys.40, 93–100~1999!#, obtained for the
energy spectrum. The eigenstates can be expressed in terms of the SU~2! monopole
harmonics. The relevance of the theory of induced representations for solving simi-
lar problems is emphasized. ©2000 American Institute of Physics.
@S0022-2488~00!01105-1#

I. INTRODUCTION

In a recent paper Pletyukhov and Tolkachev1 considered the problem of calculating the ener
spectrum of the Hamiltonian describing the five-dimensional~5-D! Kepler problem on a SU~2!
instanton background. This is the higher-dimensional analog of the dyogen atom. In obt
their result they used ideas based on the dynamical symmetry approach, after relating this p
to the one of the 8-D harmonic oscillator. Our aim in the present paper is to produce an alter
derivation of their result that is more geometric in origin and amenable for various generaliza

II. AN ALTERNATIVE SOLUTION TO THE SU „2… KEPLER PROBLEM

Our starting point is the eigenvalue problem,

Hf5S 1

2
pmpm2

a

RDf5«f, ~1!

of the 5-D Kepler problem in a SU~2! instanton background. Herepm[2 i (]m2 iAm) with Am

5Am
a Ta ,

Aa5Am
a drm5

1

R~R1r 5!
~2r 4 dra1r a dr42eabcr

bdrc!, a,b,c51,2,3, ~2!

wherer m, m51,...,5 are Cartesian coordinates onR52$0%, satisfyingR25r mr m , andTa are the
Hermitian generators of the SU~2! algebra. SinceT2 commutes with the Hamiltonian of Eq.~1!,
this operator takes the sharp valueI (I 11) on f, whereI is the isospin of the particle.

Without the gauge potential the Hamiltonian has a SO(5) symmetry, meaning that the
eratorsGmn52 i (r m]n2r n]m) of spin (5).so~5! commute withH. The key observation is tha
we still have a SO~5! symmetry in the presence of our SU~2! instanton, however, theGmn

generator has to be modified appropriately. The new matrix-valued spin~5! generators have the
form Gmn

(I ) 5Gmn1Wmn
a Ta , where theWmn

a are some appropriate functions. They can be written
the form2

a!Electronic mail: levay@phy.bme.hu
73820022-2488/2000/41(11)/7382/4/$17.00 © 2000 American Institute of Physics
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Gmn
~ I !5r mpn2r npm2R2Fmn , ~3!

whereF5 1
2 Fmn drm`drn5dA2 iA`A. Moreover, they have the property

G~ I !2
[

1

2
Gmn

~ I !G~ I !mn
5R2pmpm1

1

2
R4FmnFmn1

1

R2

d

dR
R4

d

dR
. ~4!

Straightforward calculation shows thatFmnFmn54T2/R4 ~for a painless derivation of this for th
I 5 1

2 case see also Ref. 3!; hence we have the result

pmpm52
1

R4

d

dR
R4

d

dR
1

G~ I !2
22T2

R2 . ~5!

The operatorG(I )2
is the quadratic Casimir of spin~5! in a special representation whose nature w

be clarified later. It is depending merely on the angular variables of the four sphereS4. Hence, it
is convenient to use the separation ansatzf(R)5F(R)Y(R̂). The eigenvalue problem ofG(I )2

was solved by Yang;2 here we merely recapitulate his results. The irreducible representatio
Spin~5! regarding as the covering group of SO~5! can be labeled by two integers~p, q! so that
p>q>0. The eigenvalue of the quadratic Casimir on such representations is1

2 p21 1
2 q212p

1q. In particular, the eigenvalue ofG(I )2
is also of this form. However, we also have to clari

what the allowed values are for~p, q!. According to Yang the allowed values are singled out
the constraintp5q12I ; hence the irreducible representations occurring in the~reducible! repre-
sentation generated by the operators of Eq.~3! are of the form (q12I ,q), q>0. Moreover, in Ref.
2, the eigenfunctionsY(R̂) called the SU~2! monopole harmonics were also determined.

Using these results we can calculate the eigenvalue of the operatorG(I )2
22T2 occurring in

Eq. ~5! on the SU~2! monopole harmonics. The result is

1
2 ~q12I !21 1

2 q212~q12I !1q22I ~ I 11!5 j ~ j 13!2I ~ I 11!, where j [q1I . ~6!

Here q50,1,2,...; hencej 5I , I 11,... . Now, by introducing the functionf (R)[R2F(R) the
radial Schro¨dinger equation can be written in the form

S d2

dR22
j ~ j 13!2I ~ I 11!12

R2 12S «1
a

RD D f ~R!50. ~7!

This equation is formally the same as the radial equation for the 3-D Kepler problem.@There,
instead ofj ( j 13)2I (I 11)12, l ( l 11) stands, wherel is the usual angular momentum.# Since
we are interested in bound states, let us write«52u«u. The indicial equation iss(s21)5 j ( j
13)2I (I 11)12, with the root corresponding to a regular solution beings5 1

2

1A 9
41 j ( j 13)2I (I 11)[ 1

21g. Introducing the variablej52R/R0 andl5a/(2u«uR0), where
R051/A2u«u we obtain the equation

S d2

dj22
1

4
1

1/42g2

j2 1
l

j D f ~j!50, ~8!

which is Whittaker’s equation. The solution regular at the origin is Whittaker’s functionWl,g(j)
that can be expressed in terms of the confluent hypergeometric function as4

Wl,g~j!5j1/21ge2j/2F~ 1
21g2l,112g,j!. ~9!

Regularity enforces the hypergeometric function to reduce to a polynomial of finite order; thi
only be achieved if121g2l52n, wheren50,1,2,... . This quantization condition yields
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«nqI52
a2/2

„n1 1
21A 9

41 j ~ j 13!2I ~ I 11!…2
, j 5q1I , ~10!

which is just the result of Ref. 1, where now the relationship of the variablej to the Spin~5! label
q was also clarified. We must stress, however, that our treatment unlike Ref. 1 also giv
eigenfunctions of the 5-D SU~2! Kepler problem. Indeed, the total wave function can be written

f~R!5Nn,q,I

1

R2 S 2R

R0
D g11/2

e2R/R0F~2n,2g11,2R/R0!Y~R̂!, ~11!

where the angular part of the wave function is given by the SU~2! monopole harmonicsY(R̂)
explicitly given in Ref. 2, andNn,q,I is a normalization factor that can be determined.

Finally we would like to comment on the general structure of Landau-like Hamilton
1
2 (1/Ag)pa(Aggabpb) on coset spacesG/H of which the four sphereS4.Spin~5!/Spin~4! is a
special case. We assume thatG is semisimple andH is compact. Herea, b are indices for the loca
coordinates onG/H ~not to be confused with the Cartesian indicesm, n!, andgab is the metric on
G/H induced by the Cartan Killing metric onG. pa contains a non-AbelianH-valued gauge field.
In our case Spin(4).SU~2!3SU~2!. The gauge group is SU~2!3SU~2!, and the gauge field is the
Spin~5! symmetric one. Labeling the representations of Spin~4! by the two SU~2! labels ~a, b!,

wherea,b50,1
2,1,32,..., for ~I, 0! we get the usual instanton with isospinI.

It was shown in Ref. 5 that the usual symmetry generators ofG, being the Killing vectors
generating the left action onG/H, have to be modified when theH-gauge fields are present. Suc
modified generators were shown to be the generators of theinduced representationfor G induced
by the subgroupH. Moreover, it was also shown that the operator1

2 (1/Agpa(Aggabpb) can be
written in the form1

2 „C(G)2C(H)…, whereC(G) is the quadratic Casimir in theinducedrepre-
sentation andC(H) is the quadratic Casimir in the matrix representation fixing theinducing
representation.

In our case, choosing the representation for Spin~4! as the (I ,0) one means that the si
generators of spin~4! arranged in the antisymmetric matrixSm̂n̂ with m̂,n̂51,2,3,4 have compo-
nentsSab5eabcTc and S4a5Ta . Hence, the quadratic Casimir in the inducing representatio
C„Spin~4!…5 1

2 Sm̂,n̂Sm̂,n̂52T2. Moreover, recalling thatC„Spin~5!…5G(I )2
is just the quadratic

Casimir for Spin~5! in the representation induced by the~I, 0! matrix representation of Spin~4!, we
can quickly realize that Eq.~5! on S4(R51) fits into this scheme. Indeed, had we recalled th
results we would have started our investigations with Eq.~5! immediately.

Another very useful aspect of these deep results is that now we can quickly reprodu
constraintp5q12I of Yang. The first observation is that the induced representation is gene
reducible. The question is then the following: What are the irreps occurring in the induced
sentation? The key result is Frobenius reciprocity theorem.~For a clear presentation of such issu
for physicists see Ref. 6.! Frobenius reciprocity states that the irreps occurring in theinduced
representation ofG are the ones that contain theinducingrepresentation ofH after restricting them
to this subgroup. Now our Spin~5! representations are of the form~p, q! with p>q>0, and we
have to single out the ones that contain the representation~I, 0! when restricting them to Spin~4!.
For this we have to know the decomposition of Spin~5! with respect to Spin~4!. The result is2

~p,q!55 % S r 1t

2
,
r 2t

2 D
4

, ~12!

where r 5(p2q)/2, (p2q)/211,...,(p1q)/2 and t5(q2p)/2, (q2p)/211,...,(p2q)/2. We
would like to find ~I, 0! in the direct sum of Eq.~12!. This means that we must haver 5t5I .
Looking at the list of possible values forr 5t we merely have the choicer 5t5I 5(p2q)/2,
which is just the constraint of Yang. The reader can appreciate the simplicity of the derivat
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this result after once having been bogged down in the algebraic morass of the usual deriva
given in Ref. 2. The use of Frobenius reciprocity can be useful for the quick determination
energy spectrum of Hamiltonians related to coset-space models.
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Exact solution of the quantum Calogero–Gaudin system
and of its q deformation

Fabio Musso and Orlando Ragniscoa)

Dipartimento di Fisica, Universita` di Roma TRE, Via Vasca Navale 84,
00146 Roma, Italy

~Received 15 December 1999; accepted for publication 12 May 2000!

A complete set of commuting observables for the Calogero–Gaudin system is
diagonalized, and the explicit form of the corresponding eigenvalues and eigen-
functions is derived. We use a purely algebraic procedure exploiting the coalgebra
invariance of the model; with the proper technical modifications this procedure can
be applied to theq-deformed version of the model, which is then also exactly
solved. © 2000 American Institute of Physics.@S0022-2488~00!03910-4#

I. INTRODUCTION

In a number of recent papers1–3 it has been pointed out that coalgebras provide a simple
general mechanism to construct integrable Hamiltonian systems with an arbitrary numbeN of
degrees of freedom. Moreover, as it relies upon the existence of a coassociative homomo
called ‘‘coproduct’’ or ‘‘comultiplication,’’ from an algebraA to the tensor productA^ A, this
procedure works both in the standard ‘‘Lie-algebra’’ setting and in the so-called ‘‘q-Lie-algebra’’
setting.

In Refs. 1 and 2 the authors dealt mainly with classical Hamiltonian systems, where th
algebra, or itsq deformation, is realized in terms of Poisson brackets, but they have stresse
the same results, ‘‘mutatis mutandis,’’ do hold for quantum systems as well. To avoid any po
source of misunderstanding, from now on when using the word ‘‘quantum’’ we will refer to
‘‘canonical’’ Dirac quantization, while in the context of ‘‘quantum groups’’ or ‘‘quantum alg
bras’’ we will use the word ‘‘deformed.’’

The scope of this paper is to build up and solve a concrete example of a quantum inte
system arising in the coalgebra setting, namely a quantum version of the Calogero–Gaudi~CG!
system,4–6 both in the undeformed and in the deformed case.

Our starting point will be the Calogero–Van Diejen paper,4 where three integrable quantum
Hamiltonians related to CG have been considered. It turns out that the relevant results
formulated on pure algebraic grounds, without resorting to a specific realization: The w
derivation will then be carried out in an abstract setting, holding for any infinite-dimens
representation; the Calogero–Van Diejen realization is recovered as a special case.

Accordingly, in Sec. II we construct the complete set of commuting observables for one
Calogero–Van Diejen Hamiltonians and solve the associated spectral problem.

In Sec. III, we turn to thedeformedquantum system, and derive the spectrum and the com
eigenfunctions for the corresponding set of observables. On the way, we are naturally
introduce what we have called ‘‘z-harmonic polynomials’’~or ‘‘ q-harmonic polynomials,’’ or
‘‘deformed harmonic polynomials’’!; to the best of our knowledge, they are new mathemat
objects, defined as polynomial solutions of a suitably deformed version of theN-dimensional
Laplacian.

In Sec. IV, we mention some closely related open problems which, in our opinion, de
further investigation.

To speed up the presentation of the results, most of the details of the calculations f
undeformed~respectively,deformed! case are confined in Appendix A~respectively, Appendix B!.

a!Also at: I.N.F.N.-Sezione di Roma TRE, Roma, Italy; electronic mail: ragnisco@hamilton.fis.uniroma3.it
73860022-2488/2000/41(11)/7386/16/$17.00 © 2000 American Institute of Physics
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II. THE QUANTUM UNDEFORMED CASE

A. Calogero–Van Diejen results

In Ref. 4 the authors discuss three different quantum versions of the classical CG, ass
with the Hamiltonian function:7

H5 (
j ,k51

N

pj pk@l1m cos~qj2qk!#. ~1!

We will study the one which is associated with the Hamiltonian operator

Ĥ5l P̂21
m

4
B̂1B̂,

P̂5(
j 51

N

p̂j , p̂ j5
\

i

]

]q̂ j
,

B̂5(
j 51

N

b̂j
2, b̂ j5expS 2 i

q̂ j

2 DA2p̂ j .

The Hilbert space chosen by Calogero and Van Diejen is the subspaceH(1) generated by

H EmW ~qW !5expS i (
j 51

N

mjqj D imW PNNJ ~2!

with inner product

~f,c!5E
0

2p

dq1¯E
0

2p

dqNf* ~qW !c~qW !.

The domain of our operators will be the~linear! variety, everywhere dense inH(1), of C`

functions with Fourier components of non-negative frequency, periodic of period 2p in all vari-
ables together with their derivatives. The choice ofH(1) is an admissible one, as it is an invaria
subspace for all the commuting observables. As@bj ,bk

†#5\d jk , we may use~in units \51! the
following representation, related by a similaritynonunitarytransformation to the original one:

bj
†→xj , bj→

]

]xj
~3!

in which Ĥ becomes

ĤD5
1

4
~lN̂ 21mr 2¹2!, N̂5(

j 51

N

N̂j5(
j 51

N

xj

]

]xj
,

r 25(
j 51

N

xj
2, ¹25(

j 51

N
]2

]xj
2 .

Of course in the representation~3! the operatorb† is no longer the Hermitian conjugate tob, so
that the Hamiltonian itself is no longer Hermitian: however, in Ref. 4 the representation~3! has
only been used as an intermediate technical step to derive the solutions, which at the end ar
in the original variables, thus restoring Hermiticity.

The basis elements corresponding to~2! in representation~3! are the monomials:
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FmW ~xW !5
x1

2m1

A2m1!

x2
2m2

A2m2!
¯

xN
2mN

A2mN!
, mW PNN. ~4!

We observe that the vacuumu0& is given in both representations by a constant. Acting iterativ
on u0& with the single-particle creation operator we obtain

~bj
†! l u0&5cxj

l ↔cAl ! exp~ iq j l /2!. ~5!

Formula~5! defines the~nonunitary! operatorT̂ intertwining between the two representations.
Calogero and Van Diejen have obtained the eigenvalues and eigenfunctions of the H

tonian in representation~3!:

ĤDfk,m~xW !5Ekmfk,m~xW !,

where

~1! fk,m(xW )5r 2(k2m)H2m(xW )(k>m),H2m being an even harmonic polynomial of degree 2m in N
variables, and

~2! Ekm5lk21m@k(k1N/221)k2m(m1N/221)#.

The degeneracy of each eigenvalue is equal to the number of even independent harmon
nomials of degree 2m, i.e.,

S N221m
m D , N>2. ~6!

Clearly, in the original representation the eigenvalues are the same, while the eigenfunction
we denote byCk,m(qW ), can be easily obtained fromfk,m(xW ) through formula~5!. Indeed, as
fk,m(xW ) is an even homogeneous polynomial of degreek, it can be written in the form

fk,m~xW !5 (
l 1 ,...,l N50

l 11¯1 l N5k

k

c~mW , lW !)
j 51

N

xj
2l j u0&,

where the coefficientsc(mW , lW) are determined by the particular choice for the basis of the harm
polynomials. Accordingly we have

Ck,m~qW !5 (
l 1 ,...,l N50

l 11¯1 l N5k

k

c~mW , lW !S )
j 51

N

~2l j !! D 1/2

expS i (
j 51

N

l jqj D .

B. Integrability of the Calogero–Van Diejen system

Complete integrability of Calogero–Van Diejen system can be proved using an alge
method to construct the integrals of motion. This method, first introduced by Karimipour8 while
dealing with integrability of~1!, was subsequently been cast in a more general setting in Re
and 2. The basic idea is the following: Suppose one is given a Poisson~respectively, Lie! algebra
g realized by means of analytic functions of canonical phase space variables~p,q! @respective of
canonical quantum operators (p̂,q̂)# with CasimirCPU(g), and a coassociative linear mappin
D:U(g)→U(g) ^ U(g) ~denoted as coproduct! such thatD is a Poisson~respectively, Lie! ho-
momorphism:

@D~a!,D~b!#U~g! ^ U~g!5D~@a,b#U~g!!.
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It has been shown1,2 that coassociativity allows one to construct fromD in an unambiguous way
subsequent homomorphisms,

D~2!
ªD, D~3!:U~g!→U~g! ^ 3,..., D~N!:U~g!→U~g! ^ N.

Thus, we can associate with our algebra~or betterco-algebra! a classical~respectively, quan-
tum! integrable system withN degrees of freedom, whose Hamiltonian is an arbitrary~analytic!
function of theNth coproduct of the generators and the remainingN21 integrals of motion are
provided byD (m)(C),m52,...,N. Of course, if the Hamiltonian turns out to be functionally depe
dent upon the partial CasimirsD (m)(C), a further independent integral of motion is provided f
instance byD (N)(X), X being any of the generators. Incidentally, we notice here that Karimip
stuck on the particular case where the coproduct is the one related to the usual Hopf-a
structure defined on a universal enveloping algebra, namely:

D~X!5X^ 111^ X ;XPg.

Consider now the following sl~2! realization in terms ofb, b†,

X̂35 1
2~b†b1bb†!, X̂15

~b†!2

2
, X̂252

b2

2
. ~7!

The quantum Casimir operators read

Ĉm5
~X̂m

3 !2

2
1$X̂m

1 ,X̂m
2%,

where, for a moment, we have used the notationX̂m
i 5D (m)(X̂i), Ĉm5D (m)( Ĉ).

The Hamiltonian can now be written as

Ĥ5
1

4 S l

2
1m D ~X̂N

3 !22
m

2
ĈN1

1

32
l.

So we have the following complete set ofN independent commuting operators:

$Ĉ2 ,...,ĈN ,Ĥ%. ~8!

C. Solution to the spectral problem

In this section we will determine the spectrum for the complete set of commuting observ

$D~N!~X3!,D~2!~ Ĉ!,...,D~N!~ Ĉ!%. ~9!

As we said in Sec. I, we will work, as far as possible, in a pure algebraic setting. Accordingl
will suppose thatX̂1,X̂2,X̂3, are Hilbert space operators providing an infinite-dimensional re
sentation of sl~2!. Moreover, we will assume that the Hermitian operatorX̂3 is bounded from
below, i.e., there exists a stateu0& ~called the ‘‘lowest weight vector’’! such that

X3u0&5lminu0&,

wherelmin is the minimum in the spectrum ofX3.
From sl~2! commutation relations it follows that

X2u0&50.
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Due to the specific form of the coproduct, the lowest weight vector forD (n)(X3) will be
simply the tensor product of the lowest weight vectors for the single particle operatorsX( i )

3 :

As in the one-particle case commutation relations imply that, for eachn, the state

belongs to the kernel of the operatorD (n)(X2):

~10!

We will call

the ‘‘ground state’’ of the system. It might well happen that the kernel ofX2 is not one dimen-
sional, implying that the different single particle spaces could be built up out of different gr
states: This more general case has been thoroughly investigated in Ref. 9.

Starting from the ground state, we will define the Hilbert space of the problem as the
generated by the basis:

~11!

It is straightforward to see that substituting representation~7! in the generators, one obtain
exactly the Hilbert space defined by Calogero and Van Diejen.

The ground state turns out to be an eigenstate ofall the Casimirs. In fact, writing them in the
form

D~n!~C!5
D~n!~X3!2

2
2D~n!~X3!1D~n!~X1!D~n!~X2!

and using~10!, we obtain:

~12!

Now we are ready to prove the following proposition:
Proposition 1: The eigenfunctions of the complete set (9) of commuting observables are

form:

fk,m,s5@D~N!~X1!#k2mHs
~2m! , ~13!

where Hs
(2m) is an ‘‘ s-particle harmonic polynomial,’’ i.e., it satisfies
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D~s!~X2!Hs
~2m!50. ~14!

The harmonic polynomials are generated through the recursive formula:

Hs
~2m!5S (

i 50

m2m8

an,s,m,m8~X~s!
1 !m2m82 i@D~s21!~X1!# i D Hs8

2m8 ,

m51,2,..., s52,...,N, m8,m,s8,s, ~15!

~16!

where the constant ai ,s,m,m8 must be chosen in such a way that (14) holds.
In formula ~15! we used the following notation:

Proof: First of all we compute the commutator:

@D~n!~X3!,~X~s!
1 !m2m8@D~s21!~X1!# i # for n>s.

Now we writeD (n)(X3) in the form:

from which it follows:

@D~n!~X3!,~X~s!
1 !m2m82 i@D~s21!~X1!# i #

5~X~s!
1 !m2m82 i@D~s21!~X3!,@D~s21!~X1!# i #1@X~s!

3 ,~X~s!
1 !m2m82 i #D~s21!~X1! i

52i ~X~s!
1 !m2m82 i@D~s21!~X1!# i12~m2m82 i !~X~s!

1 !m2m82 i@D~s21!~X1!# i

52~m2m8!~X~s!
1 !m2m82 i@D~s21!~X1!# i .

If we act with D (N)(X3) on an harmonic polynomial and repeatedly use this last formula
obtain

D~n!~X3!Hs
~2m!5~2m1ln

min!Hs
~2m! .

In particular, since@D (N)(X3),D (N)(X1)#52D (N)(X1), it follows that the functionsfk,m,s

~13! are eigenfunctions of the operatorD (N)(X3) with eigenvalues given by

lk5~2k1lN
min!.

Now we turn our attention to the remaining integrals of motions,

$D~2!~ Ĉ!,...,D~N!~ Ĉ!%.

First of all we note that from the homomorphism property of the coproduct it follows that
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D~n!~C!fk,m,s5D~n!~C!D~N!~X1!Hs
~2m!5D~N!~X1!D~n!~C!Hs

~2m! , n52,...,N.

Hence we must worry only about the action of the partial Casimirs on the harmonic polynom
To this end we compute

D~n!~C!Hs
~2m!5D~n!~C!S (

i 50

m2m8

ai ,s,m,m8~X~s!
1 !m2m82 i@D~s21!~X1!# iHs8

2m8D .

We distinguish two cases: Ifn>s, then condition~14! implies

D~n!~C!Hs
~2m!5S D~n!~X3!2

2
2D~n!~X3! DHs

~2m!5S ~2m1ln
min!2

2
2~2m1ln

min! DHs
~2m! .

Conversely, ifn,s then the Casimir operatorD (n)(C) obviously commutes with the operato
X(s)

1 ; on the other hand, from the homomorphism property of the coproduct it follows th
commutes with the operatorD (s21)(X1) as well, so thatD (n)(C) acts directly on the harmonic

polynomialHs8
(2m8) ,

D~n!~C!Hs
~2m!5 (

i 50

m2m8

ai ,s,m,m8~X~s!
1 !m2m82 i@D~s21!~X1!# iD~n!~C!Hs8

~2m8! .

Now we have again two possibilities: Ifn>s8 then we just showed thatHs8
(2m8) is eigenfunc-

tion of D (n)(C), henceHs
(2m) is an eigenfunction as well.

If n,s, then we will have

D~n!~C!Hs8
~2m8!

5 (
i 50

m82m9

ai ,s,m8,m9~X~s!
1 !m82m92 i@D~s21!~X1!# iD~n!~C!Hs9

~2m9! .

We can iterate the above-mentioned procedure until we reach the ground stateH0
(0) or an

harmonic polynomialHs( i )
(2m( i )) such thatn>s( i ). In both cases we know that it is eigenfunction

the operatorD (n)(C). Hence Proposition 1 is proved. h

Condition ~14! implies the following recurrence relation for the coefficientsai ,s,m,m8 :

ai 1152
~m2m82 i !@lmin1m2m82 i 21#

~ i 11!@~s21!lmin1 i 12m8#
ai , i 50,...,m2m821, ~17!

where for simplicity the labelss,m,m8 have been omitted. Equation~17! can be easily ‘‘solved,’’
yielding the following closed formula for the coefficientsal ,s,m,m8 :

al5~21! l S m2m8
l D G~lmin1m2m8!

G~lmin1m2m82 l !

G~~s21!lmin12~m821!!

G~~s21!lmin12~m821!1 l !
a0 . ~18!

These results can be readily specialized to the realization~3! used by Calogero and Van Diejen
First of all we note that the sl~2! generators are expressed by

x15
x2

2
, X252

1

2

]2

]x2 , X35
x

2

]

]x
1

1

4
,

and the corresponding coproducts by

D~n!~X1!5
1

2 (
i 51

n

xi
2,
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D~n!~X2!52
1

2 (
i 51

n
]2

]xi
2 ,

D~n!~X3!5
n

4
1

1

2 (
i 51

n

xi

]

]xi
.

It follows that the ground state in this case is given simply by a constant that can be c
to be 1, with eigenvalueln

min5n/4. The polynomials~15! are really harmonic~this is where the
terminology comes from! and are given by the recursive formula:

H0
~0!51,

Hs
~2m!5S (

i 50

m2m8

ai ,s,m,m8r ~s21!
2i xs

2~m2m82 i D Hs8
~2m8! ,

s852,...,s21, m851,...,m21, s53,...,N, m52,3,4,... .

Actually, they form a basis in the space of harmonic polynomials.

III. THE QUANTUM DEFORMED CASE

In Ref. 1 it has been shown how to associate with a Poisson–Hopf~Lie–Hopf! algebra a
classical~quantum! integrable system and how to extend this procedure toq algebras. In fact,q
algebras are obtained by Poisson–Hopf algebras through a process of deformation that pr
their Poisson–Hopf structure. It is therefore possible to associate withq algebras integrable sys
tems that are deformed version of the ones associated with the original algebra. Our aim
analyze the deformed version of the quantum system discussed in sec. I. The algebra to wh
system is associated is U~sl~2!!. The q deformation of U~sl~2!!, denoted by Uq~sl~2!!, is well
known from the literature~see, e.g., Ref. 10!. The generators satisfy the following commutatio
relations:

@X̃3,X̃1#52X̃1, @X̃3,X̃2#522X̃2, @X̃,X̃2#5
sinh~zX̃3!

sinhz
, ~19!

and an admissible coproduct is defined by

D~X̃3!5X̃3
^ 111^ X̃3,

D~X̃1!5X̃1
^ expS zX̃3

2
D 1expS 2zX̃3

2
D ^ X̃1,

D~X̃2!5X̃2
^ expS zX̃3

2
D 1expS 2zX̃3

2
D ^ X̃2

~we prefer to usez5 ln q as the deformation parameter!. We are going to realize this algebra
terms of the operatorsb and b† introduced in Sec. II, in such a way that the relation (X̃1)†

52X̃2 will hold whenever it does in the nondeformed case. We will see in a moment tha
condition guarantees the Hermiticity of the deformed Casimirs~22!.

A natural choice is to put

X̃35
bb†1b†b

2
,
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X̃15 f ~z,X̃321!
~b†!2

2
, ~20!

X̃252
b2

2
f ~z,X̃321!,

f (z,X̃3) being an analytic function of theX̃3 variable with a parametric dependence onz. The
realization~20! amounts to setting to21/2 the value of the one-body undeformed Casimir co
sistently with the ‘‘bosonic’’ realization~7!.

Imposing that these generators satisfy the commutation relations~19! we obtain a functional
equation forf (z,X̃3) ~see Appendix B!, a solution of which is given by

f ~z,X̃3!5A4 sinh2@zX̃3/2#1sinh2 z

@~X̃3!211#sinh2 z
. ~21!

We observe that, assuming the form~21! for f (z,X̃3), we need invertibility of (X̃321)211 in
~20!, and this condition is always verified ifX̃3 is Hermitian.

The Casimir operator for this algebra is given by

C̃z5
1

sinh2 z H sinh2Fz~X̃311!

2
G1sinh2Fz~X̃321!

2
G J 1X̃1X̃21X̃2X̃1. ~22!

It is easy to show that in the limitz→0 we recover sl~2! generators and Casimir.
Having the coproduct and the Casimir, we can define an integrable quantum system

HamiltonianH̃5D (N)( C̃z) and integrals of motion given byD (N)(X̃3), D (m)( C̃z), m52,...,N21
that is theq deformation~actually thez deformation! of the one treated in Sec. I, moreover, we c
easily solve the associated spectral problem.

Indeed, using the commutation relations~19!, the n-body Casimir can be written in the fol
lowing way:

D~n!~ C̃z!52S sinh@z~D~n!~X̃3!21!/2#

sinhz
D 2

12D~n!~X̃1!D~n!~X̃2!.

The crucial point is that, as in the undeformed case, the Casimir is the sum of a function
coproduct of theX̃3 generator plus the termD (n)(X̃1)D (n)(X̃2). This allows us to use the sam
procedure as in Sec. I to construct the eigenfunctions for the complete set of commuting o
ables:

$D~N!~X̃2!,D~2!~ C̃z!,...,D
~N!~ C̃z!%. ~23!

We consider the same Hilbert space as defined in Sec. I. The lowest weight vector~u0&! and its
eigenvalue (lmin) for the operatorX̃3 are the same as forX3 since it is unchanged under defo
mation. Since the coproduct for theX̃3 generator is itself unchanged, the lowest weight vector
the operatorD (n)(X̃3) will be again given by

which will be denoted again as the ‘‘ground state’’ of the system. From commutation rela
~19! it follows that even in this case the ground state belongs to the kernel of the ope
D (n)(X̃2), n52,...,N.
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We have the following proposition:
Proposition 2: The eigenfunctions of the complete set (23) of commuting observables

the form

f̃k,m,s5@D~N!~X̃1!#k2mH̃s
~2m! ,

where H̃s
(2m) is an ‘‘ s-particle deformed harmonic polynomial,’’ i.e., it satisfies

D~s!~X̃2!H̃s
~2m!50. ~24!

These deformed harmonic polynomials are generated through the recursive formula

H̃s
~2m!5S (

i 50

m2m8

ai ,s,m,m8~z!~X̃~s!
1 !m2m82 i@D~s21!~X̃1!# i D H̃s8

~2m8! ,

m51,2,..., s52,...,N, m8,m,s8,s ~25!

where the functions ai ,s,m,m8(z) must be chosen in such a way that (24) holds.
In proposition 2 we used the following notation:

The proof of this proposition proceeds in the same way as in the undeformed case, with
minor changes. The eigenvalues of the partial Casimirs corresponding to the ground st
defined by

On the other hand, on a generic excited state, corresponding to a deformed harmonic poly
H̃s

(2m) we have~for n>s!

D~n!~ C̃z!H̃s
~2m!52S sinh@z~2m1ln

min21!/2#

sinhz D 2

H̃s
~2m! .

The recurrence relation for the coefficientsai ,s,m,m8(z) is given by

ai 11~z!52ai~z!expS z

2
@2~m81 i 21!1~s22!lmin# D

3
sinh@z~lmin1m2m82 i 21!#sinh@z~m2m82 i !#

sinh@z~2m81lmin~s21!1 i !#sinh@z~ i 11!#
,
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which is manifestly thez-deformedversion of the recurrence relation~17!. It can be written in
closed form in terms of the ‘‘Trigonometric Gamma Function’’ G recently introduced by
Rujisenaars,11 or, equivalently, by using the perhaps more familiar notation in terms ofq-shifted
factorials, which yields

al~q!5~2 ! la0qd
~q2a;q2! l 11~q2b;q2! l 11

~q2g;q2! l 11~q2;q2! l 11

with

d52m1lminS 3

2
s21D1m8211

l ~ l 11!

2
, a511m82m2lmin , b5m82m, g52m.

IV. CONCLUDING REMARKS

As is well known, the Calogero–Gaudin system is superintegrable, both at the classical
the quantum level. An algebraic explanation for that property has been recently propos
Ballesteroset al.,12 in the context of the ‘‘two-photon algebra.’’ An alternative interpretation rel
on the fact that the ‘‘two-body Casimirs’’C2

( i j )
ª(D (2)(C)) i , j , which ~Poisson! commute with

D (N)(C), are actually the squares of the generators of SO(N); this readily entails that the quantitie

I j5(
kÞ j

C2
~ i j !

l j2lk
, k51,...,N, (

k
I k50

commute in pairs for any choice of the~distinct! numbers$l j%.
Incidentally, we recall that the quantum system characterized by$D (N)(C),I j% has been ex-

tensively studied in the recent past for finite dimensional representations of sl~2!5,6,13 through
Bethe ansatz and/or quantum inverse scattering method; for an infinite-dimensional represe
a complete solution has been given in Ref. 9.

We claim that the superintegrability can be naturally explained in the coalgebra co
Indeed, by simply changing the labels of the single-particle states, one can construct an alte
set ofN21 integrals of motion in involution, sayC28 ,...,CN218 , D (N)(C), whereCk8 is again thek
coproduct of the Casimir, however defined in terms of thelast k spaces, namelyN,N21,N2k
11. Then, by adding theN coproduct of one generator to one family, and theN coproduct of
another generator to the ‘‘alternative’’ family, one gets maximal superintegrability. Moreover
most important, this simple observation clearly entails that superintegrabilityis preservedby
q-algebra deformation.

An open issue is the solution of the spectral problem for the quantum deformed CG mo
a finite-dimensional representation of slq(2). Work is inprogress on that, and we expect to get t
results shortly: Indeed, due to its purely algebraic nature, the approach we have followed he
be applied with the proper technical modifications to the finite-dimensional case as well.
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APPENDIX A

In this appendix we want to show that the set of eigenfunctionsfk,m,s ~13! form a basis with
respect to the Hilbert space of the problem.

To this aim we give the following proposition
Proposition 3: The total number of polynomials Hs

(2m) (15) of fixed degree with s52,...,N is
given by
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h~2m!N5S N221m
m D . ~A1!

Proof: If s52 we can apply our recursive formula~15! to the stateH0
(0) so that we can

construct only one harmonic polynomial for each value ofm, i.e., h(2m,2)51. For s53 andm
fixed, the recursive formula~15! can be applied either toH0

(0) or to a two particle harmonic
polynomial withm8,m, so that

h~2m,3!511 (
i 151

m21

1.

Following this line of reasoning it is clear that, givenm, for a generics we have

h~2m,s!511 (
i s2251

m21 S 11 (
i s2351

i s22 S¯S 11 (
i 251

i 3 S 11 (
i 151

i 2

1D D¯ D D
511 (

i s2251

m21

11 (
i s2251

m21

(
i s2351

i s22

11¯1 (
i s2251

m21

¯ (
i 151

i 2

1.

We want now to prove that, fors.2, it holds that

(
i s2251

m21

¯ (
i 151

i 2

15
~s1m24!!

~s22!! ~m22!!
.

We use induction. Fors53 the claim is trivial. Assuming the claim to hold fors21, for s we have

(
i s2251

m21

¯ (
i 151

i 2

15 (
i s2251

m21
~s1 i s2224!!

~s23!! ~ i s2221!!
.

From Ref. 14 we know that

(
k51

n
~k1m!!

~k21!!
5

1

~m12!

~n1m11!!

~n21!!
. ~A2!

In our case it means

(
i s2251

m21
~s1 i s2224!!

~s23!! ~ i s2221!!
5

1

~s23!! (
i s2251

m21
@~s24!1 i s22!]!

~ i s2221!!

5
1

~s23!!

1

~s22!

~s1m24!!

~m22!!

5
1

~s22!!

~s1m24!!

~m22!!
,

which proves our claim.
We can writeh(2m,s) in the form:

h~2m,s!5(
i 52

s
~ i 1m24!!

~ i 22!! ~m22!!

so that the total number of harmonic polynomials of degree 2m in N variables is given by
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h~2m!N5(
s52

N

(
i 52

s
~ i 1m24!!

~ i 22!! ~m22!!
.

Rescaling the indices and repeatedly using~A2!, we have

h~2m!N5(
s52

N

(
i 52

s
~ i 1m24!!

~ i 22!! ~m22!!

5 (
s51

N21

(
i 51

s
~ i 1m23!!

~ i 21!! ~m22!!

5 (
s51

N21
1

~m21!!

~s1m22!!

~s21!!

5
~m1N22!!

~m!! ~N22!!
,

which proves the proposition. h

We now want to show that our eigenfunctions form a basis for the Hilbert space o
problem. We recall that the Hilbert space was generated by the monomials~11!. We can decom-
pose this space as the direct sum of the spaces of homogeneous polynomials of degreem for m
50,...,̀ that we denote withPm

(N) . A basis inPm
(N) is obviously given by the monomials

ni50,...,m i51,...,N (
i 51

N

ni5m.

It follows that the dimension ofPm
(N) space is given by

dim Pm
~N!5S N1m21

m D . ~A3!

We claim that this is also the number of the eigenfunctionsfk,m,s of the form:

fk,m,s5@D~N!~X1!#k2mHs
~2m! . ~A4!

In fact, givenk, the number of harmonic polynomials is given by

~N1k22!!

k! ~N22!!
.

Hence the total number of polynomials of the form~A4! is given by

1

~N22!! (
k50

m
~N1k22!!

k!
.

Again using~A2! we have that
                                                                                                                



e
a

7399J. Math. Phys., Vol. 41, No. 11, November 2000 Exact solution of the Calogero–Gaudin system

                    
1

~N22!! (
k50

m
~N1k22!!

k!
5

1

~N22!! (
k51

m11
~N1k23!!

~k21!!

5
1

~N22!!

1

~N21!

~N1m21!!

m!

5dim P2m
~N! ,

which proves our claim.

APPENDIX B

In this appendix we derive in detail formula~21!. First of all we observe that with the choic
~20! the first two commutation rules in~19! are automatically satisfied, while the third gives us
functional equation forf (z,X̃3). We pose for brevity

x5
~b†!2

2
, y52

b2

2
, @x,y#5X̃3.

So that

X̃15 f ~z,X̃321!x, X̃25y f~z,X̃321!.

The commutator betweenX̃1 and X̃2 is hence given by

@X̃1,X̃2#5 f ~z,X̃321!y@x, f ~z,X̃321!#1 f 2~z,X̃321!X̃31@ f ~z,X̃321!,y# f ~z,X̃321!x.
~B1!

The commutator betweenx, y and whatever analytic functionf (X̃3) is given by

@ f ~X̃3!,x#5@ f ~X̃3!2 f ~X̃322!#x, ~B2!

@ f ~X̃3!,y#5@ f ~X̃3!2 f ~X̃312!#y. ~B3!

Using Eqs.~B2! and ~B3! formula ~B1! becomes

@X̃1,X̃2#5 f 2~x,X̃321!X̃31@ f 2~z,X̃321!2 f 2~z,X̃311!#yx.

The productyx as a function ofX̃3 reads

yx52 1
4@~X̃311!211# j .

So, finally, we have

@X̃1,X̃2#5 1
4$ f 2~z,X̃311!@~X̃311!211#2 f 2~z,X̃321!@~X̃321!211#%. ~B4!

Imposing

F~z,X̃3!5 f 2~z,X̃3!@~X̃3!211# ~B5!

Eq. ~B4! becomes

@X̃1,X̃2#5 1
4@F~z,X̃311!2F~z,X̃321!#.

The requirement
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@X̃1,X̃2#5
sinh~zX̃3!

sinhz

entails the following functional equation forF(z,X̃3):

1

4
@F~z,X̃311!2F~z,X̃321!#5

sinh~zX̃3!

sinhz
. ~B6!

A solution of ~B6! is given by

F~z,X̃3!5
2 cosh~zX̃3!

sinh2 z
1r~z!, ~B7!

wherer(z) is an arbitrary function ofz.
If we now substitute~B7! in ~B5! we obtain an algebraic equation forf (z,X̃3):

2 cosh~zX̃3!

sinh2 z
1r~z!5 f 2~z,X̃3!@~X̃3!211#.

This is an underdetermined equation, but we have yet to require that in the limitz→0 the
generatorsX̃3,X̃1,X̃2 must reproduce the nondeformed ones~7!. This means

lim
z→0

f ~z,X̃3!51,

so that

r~z!z→0;2
2

z2 11.

A handy choice forr(z) that possesses this behavior is given by

r~z!52
2

sinh2 z
11

from which it follows

F~z,X̃3!5
4 sinh2~zX̃3/2!

sinh2 z
115 f 2~z,X̃3!@~X̃3!211#,

which yields formula~21!.
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In the jet bundle description of field theories~multisymplectic models, in particu-
lar!, there are several choices for the multimomentum bundle where the covariant
Hamiltonian formalism takes place. As a consequence, several proposals for this
formalism can be stated, and, on each one of them, the differentiable structures
needed for setting the formalism are obtained in different ways. In this work we
make an accurate study of some of these Hamiltonian formalisms, showing their
equivalence. In particular, the geometrical structures~canonical or not! needed for
the Hamiltonian formalism, are introduced and compared, and the derivation of
Hamiltonian field equations from the corresponding variational principle is shown
in detail. Furthermore, the Hamiltonian formalism of systems described by La-
grangians is performed, both for the hyper-regular and almost-regular cases. Fi-
nally, the role of connections in the construction of Hamiltonian field theories is
clarified. © 2000 American Institute of Physics.@S0022-2488~00!03410-1#
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1. INTRODUCTION

The application of techniques of differential geometry to the study of physical theories
been revealed as a very suitable method for better understanding many features of these t
In particular, the geometric description of classical field theories is an area of increasing in

The standard geometrical techniques used for the covariant Lagrangian description o

order field theories, involve first order jet bundlesJ1E→
p1

E→
p

M and their canonical structure
~see, for instance, Ref. 1, and references quoted therein!. Nevertheless, for the covariant Hami
tonian formalism of these theories the situation is rather different, and there are different kin
geometrical descriptions for this formalism. For instance, we can find models such as
described in Refs. 2–4, which usek-symplectic forms, or in Refs. 5–8, where the essential ge
metric structure are thek-cosymplectic forms, or also as in Refs. 9–11, where use is made
polysymplectic forms~in fact, k-symplectic,k-cosymplectic and polysymplectic structures a
essentially equivalent objects!. In this work, we consider only themultisymplecticmodels,12–18

and depending on the choice of themultimomentum phase spacethere are different ones. In fac

~1! There are some models where the multimomentum phase space is taken to beMp
[L1

mT* E, the bundle ofm-forms onE ~m being the dimension ofM! vanishing by the action
of two p-vertical vector fields. This choice is made in works such as Refs. 19–21,
refinement of the techniques previously given in Refs. 22–24~see also Refs. 25 and 26!.

~2! The multimomentum phase spaceJ1p* [L1
mT* E/L0

mT* E ~whereL0
mT* E is the bundle of

p-semibasicm-forms inE! has been studied in Ref. 27 and used, later on, in Refs. 10, 28
29 for the analysis of different aspects of Hamiltonian field theories.

~3! Finally, in Refs. 30–36 the basic choice is the bundleP[p* TM ^ V* (p) ^ p* LmT* M
@hereV* (p) denotes the dual bundle of thep-vertical subbundleV(p) of TE# which, in turn,
is canonically related toJ1E* [p* TM ^ T* E^ p* LmT* M .

Although in Ref. 26~and later papers by these authors!, a covariant Hamiltonian formalism is
constructed inMp, in most of the works, this multimomentum bundle is not really used in or
to establish a Hamiltonian formalism onMp, but just for defining canonical differential struc
tures which, translated toJ1E and J1p* , are used for setting the Lagrangian and Hamilton
formalisms, respectively. The choice ofJ1p* or P as multimomentum phase space allows us
state covariant Hamiltonian formalisms for field theories. Nevertheless, none of them ha
nonical structures, so the Hamiltonian forms of the Hamiltonian formalism must be obtained
the canonical forms of themulticotangent bundleLmT* E. This is done by using sections of th
projectionMp→J1p* , ~or J1E* →P! which are calledHamiltonian sections,27 or the so-called
Hamiltonian densities.32,34 To our knowledge, a rigorous analysis comparing these formulat
and their equivalence has not been done. The aim of this work is to carry out a comparative
of some of these Hamiltonian formulations, establishing the equivalence between them. In
case, the geometrical structures needed for setting the field equations in the Hamiltonian f
ism are introduced, as well as the correspondingLegendre mapswhen the multimomentum
bundles are related to a Lagrangian system.

The question of whether the use of connections in the bundlep: E→M is needed for the
construction of the covariant formalisms in field theories is studied. It was analyzed for the
time in Ref. 27, where a connection was used to defineHamiltonian densitiesin the Hamiltonian
formalism, and in Ref. 1 for the case of thedensity of Lagrangian energyin the Lagrangian
formalism. In this work we make a deeper analysis on the role played by connections
construction of Hamiltonian systems.

An obvious subject of interest is the statement of theHamiltonian field equations. In all the
multisymplectic models field equations are obtained by characterizing the critical sections
are solutions of the problem by means of the multisymplectic form.37,1,38,39This characterization
can be derived from a variational principle: the so-calledHamilton principle in the Lagrangian
formalism andHamilton-Jacobiprinciple in the Hamiltonian one. Nevertheless, this aspect of
theory is overlooked in many papers. We give an accurate derivation of the Hamiltonian equ
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starting from the Hamilton-Jacobi principle, and the role played by connections in the statem
covariant Hamiltonian equations is discussed.

An important kind of Hamiltonian systems are those which are the Hamiltonian counterp
Lagrangian systems. The construction of such systems starting from the Lagrangian forma
carried out by using aLegendre mapassociated with theLagrangian densityand the correspond
ing multimomentum bundle. This problem has been studied by different authors in the~hyper-!
regular case~see, for instance, Refs. 27, 40!, and in thesingular ~almost-regular! case.32,29,34In
this work we review some of these constructions, developing new methods, and giving a u
perspective of all of them.

The structure of the work is as follows.
Section 2 is devoted to a review of the main features of the Lagrangian formalism of

theories, and afterwards the definition of the different multimomentum bundles for the H
tonian formalism, as well as the construction and characterization of the canonical forms
which some of them are endowed. Furthermore, when these multimomentum bundles are
with a Lagrangian system, the corresponding Legendre maps are introduced for both the~hyper!-
regular and thealmost-regularcases.

In Sec. 3, we undertake the construction ofHamiltonian systemsin the multimomentum
bundleP. As a first step, we will define theHamiltonian formswhich allow us to set the field
equations in an intrinsic way. SinceP has no canonical geometric form, we must use the canon
forms with whichMp and J1E* are endowed. Ways of constructing Hamiltonian systems
studied and compared, and in this multimomentum bundle we make a careful deduction
Hamiltonian equations from the variational principle. In addition, the Hamiltonian forma
associated to a Lagrangian system is developed, both for the hyper-regular and almost-
cases. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is prov~for
the hyper-regular case!.

The construction ofHamiltonian systemsin the multimomentum bundleJ1p* is stated and
analyzed in Sec. 4, following the same pattern as in the above section, and proving the equiv
between the formalisms developed for both multimomentum bundles.

As typical examples, time-dependent mechanics and the electromagnetic field are analy~in
this context! in Sec. 5.

An appendix describing the basic geometrical structures in first-order jet bundles is inc
All manifolds are real, paracompact, connected andC`. All maps areC`. Sum over crossed

repeated indices is understood. Throughout this paperp: E→M will be a fiber bundle~dim M
5m, dimE5N1m!, whereM is an oriented manifold with volume formvPVm(M ), andp1:
J1E→E will be the jet bundle of local sections ofp. The mapp̄15p+p1: J1E→M defines
another structure of differentiable bundle. We denote byV(p̄1) the vertical bundle associated wit
p̄1, that is,V(p̄1)5KerTp̄1, and byXV(p̄1)(J1E) the corresponding sections or vertical vect
fields. Finally, (xn,yA,vn

A) ~with n51,...,m; A51,...,N! will be natural local systems of coordi
nates inJ1E adapted to the bundlep: E→M , and such thatv5dx1 `...`dxm[dmx.

2. GEOMETRICAL BACKGROUND OF THE LAGRANGIAN AND HAMILTONIAN
FORMALISMS

2.1. Lagrangian systems

From the Lagrangian point of view, afirst-order classical field theoryis described by its
configuration bundlep: E→M , and aLagrangian densitywhich is a p̄1-semibasicm-form on
J1E ~see the appendix for notation and terminology!. A Lagrangian density is usually written a
L5L(p̄1* v), where LPC`(J1E) is the Lagrangian functionassociated withL and v. The
Poincaré-Cartan m and(m11)-formsassociated with the Lagrangian densityL are defined using
the vertical endomorphismV of the bundleJ1E:

QLª i ~V!L1L[uL1LPVm~J1E!, VLª2dQLPVm11~J1E!.
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In a natural chart inJ1E we have

QL5
]L

]vn
A dyA`dm21xn2S ]L

]vn
A vn

A2LDdmx,

VL52
]2L

]vh
B]vn

A dvh
B`dyA`dm21xn2

]2L

]yB]vn
A dyB`dyA`dm21xn

1
]2L

]vh
B]vn

A vn
Advh

B`dmx1S ]2L

]yB]vn
A vn

A2
]L

]yB 1
]2L

]xn]vn
BDdyB`dmx,

wheredm21xn5 i (]/]xn)]mx. ~See, for instance, Refs. 41, 1, 38, 39, 42, and 40, for details.! Then
a Lagrangian systemis a couple (J1E,VL).

As we can see, the factorEL[(]L/]vn
A)vn

A2L appears in the local expression of th
Poincare´–Cartan (m11)-form, and it is recognized as the classical expression of theLagrangian
energyassociated with the Lagrangian functionL. In fact, the existence of such a function as
global object, and by extension adensity of Lagrangian energy, is closely related to the existenc
of a connection in the bundlep: E→M , in the same way that happens in nonautonom
mechanics.43 As shown in Ref. 1, we can define the density of Lagrangian energy using
vertical endomorphisms inJ1E. In fact, given a connection¹ in p: E→M , we can identify
V* (p) as a sub-bundle ofT* E. Then the operationS¹2V makes sense, whereS andV are the
vertical endomorphismsof the bundleJ1E, and S¹ denotes the action ofS followed by the
injection of V* (p) in T* E induced by¹ ~see the appendix!.

Definition 1: Let(J1E,VL) be a Lagrangian system and¹ a connection in the bundlep: E
→M . Thedensity of Lagrangian energyassociated with the Lagrangian densityL and the con-
nection¹ is given by

EL
¹5 i ~S¹2V!dL2L5 i ~S¹!dL2QL[QL

¹2QL .

It is a p̄1-vertical m-form in J1E. Hence, we can writeEL
¹5EL

¹(p̄1* v), where EL
¹PC`(J1E) is

the Lagrangian energy functionassociated withL, ¹, and v.
Remark:
Note that every connection¹ in p: E→M allows us to split the Poincare´–Cartan forms as

QL5QL
¹2EL

¹ , VL52dQL
¹1dEL

¹[VL
¹1dEL

¹ .

Using natural systems of coordinates, andGn
A being the component functions of the conne

tion, we have the following local expressions:

EL
¹5S ]L

]vn
A ~vn

A2Gn
A!2LDdmx, EL

¹5
]L

]vn
A ~vn

A2Gn
A!2L.

Observe also that if we take a local connection withGn
A50, then the Lagrangian energy associat

with this natural connection has the classical local expression given above.
A variational problem can be posed from the Lagrangian densityL, which is called the

Hamilton principleof the Lagrangian formalism: the states of the field are the sections ofp which
are critical for the functionalL : Gc(M ,E)→R defined by

L ~f!ªE
M

~ j 1f!* L for every fPGc~M ,E!,

whereGc(M ,E) is the set of compact supported sections ofp. These~compact-supported! critical
sections can be characterized in several equivalent ways. In fact~see Refs. 1, 38, 28, and 40!.
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Theorem 1: The critical sections of the Hamilton’s principle are sectionsf: M→E whose
canonical liftings j1f: M→J1E satisfy the following equivalent conditions.

~1! d/dtu t50*M( j 1f t)* L50, beingf t5s t+f, where$s t% denotes a local one-parameter grou
of anyp-vertical vector field ZPX(E).

~2! *M( j 1f)* L( j 1Z)L50, for every ZPXV(p)(E).
~3! *M( j 1f)* L( j 1Z)QL50, for every ZPXV(p)(E).
~4! ( j 1f)* i ( j 1Z)VL50, for every ZPXV(p)(E).
~5! ( j 1f)* i (X)VL50, for every XPX(J1E).
~6! The coordinates off satisfy the Euler–Lagrange equations:

]L/]yAu j 1f2(]/]xn])L/]vn
Au j 1f50 (for A51,...,N).

2.2. Multimomentum bundles and Legendre maps

~See Ref. 44 for a more detailed study of all these constructions.!

Let ȳPJ1E, with ȳ°
p1

y°
p

x. We have thatTȳJy
1E5Vȳp

1 is canonically isomorphic to
Tx* M ^ Vyp, by means of the directional derivatives; thereforeV(p1)5p̄1* T* M
^ J1Ep1* V(p). Moreover, if D,TJ1E denotes the subbundle of total derivatives@which in a
system of natural coordinates inJ1E, is generated by$(]/]xn)1vn

A(]/]yA)%#, we have that
p1* TE5p1* V(p) % D with TyEu ȳ5Vypu ȳ% Dȳ ~see Ref. 40 for details!. Hence there is a natura
projections:p1* TE→p1* V(p) and its dual injections* :p1* V* (p)→p1* T* E and so we can
consider the projection

Id^ s:p̄1* T* M ^ p1* TE→p̄1* T* M ^ p1* V~p!5V~p1!.

In a natural chart (xn,yA) adapted to the bundlep: E→M , the local expression of this
mapping is

sS S ]

]xnD
y
U

ȳ
D 52vn

A~ ȳ!S ]

]yAD
y
U

ȳ

, sS S ]

]yAD
y
U

ȳ
D 5S ]

]yAD
y
U

ȳ

and, if $zA% is the dual basis of$]/]yA% in V* (p), we have thats* (zA)5dyA2vn
A dxn.

Now let (J1E,VL) be a Lagrangian system, and consider the restrictionLy : Jy
1E

→LmTx* M . Its differential map atȳPJy
1E is

DȳLy : TȳJy
1E→TLy~ ȳ!L

mTx* M

~which, bearing in mind thatLmTx* M is a vector space, it is just the vertical differential ofL!.
Thus, using the defined projections, we have

Definition 2: (1) The bundle (over E)

J1E*ªp* TM ^ ET* E^ Ep* LmT* M

is called thegeneralized multimomentum bundleassociated with the bundlep: E→M . We denote

the natural projections byr̂1: J1E* →E and r̂̄1
ªp+ r̂1: J1E* →M .

(2) Thegeneralized Legendre mapassociated with a Lagrangian densityL is the C`-map
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FL̂: J1E → J1E*

ȳ ° DȳLy+~ Id^ s! ȳ .

~We have departed a little from the notation in this definition, becauses acts onp1* TE, and
not onTE. Then, givenȳPJ1E, the right way consists in takingTyE and lifting it to ȳ.!

Natural coordinates inJ1E* will be denoted by (xn,yA,pn
h ,pA

n ), and for everyyPJ1E* , with

y→
r̂1

y→
p

x, we have

y5
]

]xnU
y

^ ~ph
n ~y!dxh1pA

n ~y!dyA!y^ dmxuy

and the local expression of the generalized Legendre map is

FL̂* xn5xn, FL̂* yA5yA, FL̂* ph
n 52vh

A ]L

]vn
A , FL̂* pA

n 5
]L

]vn
A . ~1!

Now, let ȳPJ1E with ȳ°
p1

y°
p

x. We define the mapLy :Jy
1E→LmTx* M asLyªLuJ

y
1E . It is

a C`-map of the affine spaceJy
1E, modeled onTx* M ^ Vy(p), with values onLmTx* M . Then, the

tangent mapTȳLy allows us to construct the following diagram~where the vertical arrows ar
canonical isomorphisms given by the directional derivatives!

TȳJy
1E ——→

TȳLy

TLy~ ỹ!L
mTx* M

. l l .

Tx* M ^ Vyp ——→
T̃ȳLy

LmTx* M

.

Hence, taking into account these identifications, we have thatT̄ȳLy is an element ofTxM
^ Vy* (p) ^ LmTx* M , and so, bearing in mind the analogy with classical mechanics, we defi

Definition 3: (1) The bundle (over E)

Pªp* TM ^ EV* ~p! ^ Ep* LmT* M

is called thereduced multimomentum bundleassociated with the bundlep:E→M . We denote the
natural projections byr1:P→E and r̃1

ªp+r1:P→M .
(2) Thereduced Legendre mapassociated with a Lagrangian densityL is the C`-map

FL : J1E → P

ȳ ° T̃ỹLy .

Natural coordinates inP are denoted by (xn,yA,pA
n ), and for everyỹPP with ỹ→

p1

y→
p

x,

ỹ5pA
n ~ ỹ!

]

]xn ^ zA
^ dmxuy .

~We have departed from the notation by denoting the momentum coordinates inP andJ1E* with
the same symbol, pA8

n . This departure will be repeated frequently throughout the work.!
The local expression of the reduced Legendre map is
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FL* xn5xn, FL* yA5yA, FL* pA
n 5

]L

]vn
A . ~2!

If we recall that J1E*ªp* TM ^ T* E^ p* LmT* M , then the natural projectionT* E
→V* (p) @which is the transpose of the natural injectionV(p)�TE# induces another one

d: J1E* →P.

Proposition 1: The natural mapd is onto, and FL5d+FL̂.
Furthermore, we can introduce the following map.
Definition 4: Thecanonical contraction inJ1E* is the map

i: J1E* [p* TM ^ T* E^ p* LmT* M→LmT* E

defined as follows:i(y)ªak`p* i (uk)b, for everyy5uk^ ak
^ bPJ1E* .

In a chart of natural coordinates inJ1E* , we have that

i~y!5~ph
n ~y!dxh1pA

n ~y!dyA!y` i S ]

]xnDdmxuy5~pn
n~y!dmx1pA

n ~y!dyA`dm21xn!y ~3!

~let us recall that pn
n denotes(n51

m pn
n!.

For everyyPE, we have that

i~J1E* !y5$gPLmTy* E; i ~u1!i ~u2!g50, u1 ,u2PVy~p!%[L1
mTy* E.

We will denote i0 : J1E* →i(J1E* )5L1
mT* E5øyPE$(y,a);aPL1

mTy* E% the restriction ofi
onto its image.

Definition 5: (1) The bundle (over E)

MpªL1
mT* E

will be called theextended multimomentum bundleassociated with the bundlep: E→M . We

denote the natural projections byt̂1: Mp→E and t̄̂1: Mp→M .
(2) The~first! extended Legendre mapassociated with a Lagrangian densityL is the C`-map

FL̂ªi0+FL̂.

The ~second! extended Legendre mapis the C`-mapFL: J1E→Mp given by

FL̃5FL̂1p* L.

Natural coordinates inMp are denoted by (xn,yA,p,pA
n ), and for everyyPJ1E* we have

i:y[~xn,yA,pA
n ,pn

h!° ŷ[~xn,yA,pA
n ,p5pn

n!.

The local expressions of the extended Legendre maps are
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FL̂* xn5xn, FL̂* yA5yA, FL̂* pA
n 5

]L

]vn
A , FL̂* p52vn

A ]L

]vn
A ,

~4!

FL̃* xn5xn, FL̃* yA5yA, FL̃* pA
n 5

]L

]vn
A , FL̃* p5L2vn

A ]L

]vn
A .

Remarks:
It can be proved27,44 that Mp[L1

mT* E is canonically isomorphic to Aff(J1E,LmT* M ).
It is interesting to point out that, asQL anduL can be thought of asm-forms onJ1E along the

projectionp1: J1E→E, the extended Legendre maps can be defined as

~FL̂~ ȳ!!~Z1 ,...,Zm!5~uL! ȳ~ Z̄1 ,...,Z̄m!,

~FL̃~ ȳ!!~Z1 ,...,Zm!5~QL! ȳ~ Z̄1 ,...,Z̄m!,

whereȳPJ1E, Z1 ,...,ZmPTp1( ȳ)E, andZ̄1 ,...,Z̄mPTȳJ
1E are such thatTȳp

1Z̄n5Zn . In addi-
tion, the~second! extended Legendre map can also be defined as the ‘‘first order vertical T
approximation toL.’’ 27,21

For the construction of the last multimomentum bundle, observe that the sections o
bundlep* LmT* M→E are thep-semibasicm-forms onE; therefore we introduce the notatio
L0

mT* E[p* LmT* M , and then
Definition 6: (1) The bundle (over E)

J1p*ªL1
mT* E/L0

mT* E[Mp/L0
mT* E

will be called therestricted multimomentum bundleassociated with the bundlep: E→M . We
denote the natural projections byt1: J1p* →E and t̄1

ªp+t1: J1p* →M .
(2) The restricted Legendre map associatedwith a Lagrangian densityL is the C`-map

FLªm+FL̂5m+FL̃,

wherem:Mp→J1p* is the natural projection.
Natural coordinates inJ1p* will also be denoted as (xn,yA,pA

n ). As is evident in this system
the local expression of the restricted Legendre map is

FL* xn5xn, FL* yA5yA, FL* pA
n 5

]L

]vn
A . ~5!

Theorem 2: The multimomentum bundle J1p* and P are canonically diffeomorphic as
vector bundles over E, and denoting this diffeomorphism byC: J1p* →P, therefore FL
5FL+C.

Proof: Consider the diagram
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We have that the mapsm+i0 andd are sobrejective, linear on the fibers, and restrict to the iden
on the base. On the other hand, for everyyPE, we have that kerdy5ker(m+i0)y ~as can be shown
from the corresponding expressions in coordinates!. Hence we conclude thatJ1p* and P are
canonically isomorphic as vector bundles overE.

~See Ref. 44 for another version of this proof, and an explicit construction ofC.! j

P andJ1p* are fiber bundles overE, thenC is a fiber-diffeomorphism~it is the identity on
the base!, whose local expression in natural coordinates inJ1p* andP is

C* xn5xn, C* yA5yA , C* pA
n 5pA

n ~;n,A!.

2.3. Canonical forms

As is known,13 the multicotangent bundleLmT* E is endowed with canonical forms:Q
PVm(LmT* E) and the multisymplectic formVª2dQPVm11(LmT* E). Then

Definition 7: Thecanonicalm and(m11) formsof J1E* are

Q̂5i* QPVm~J1E* !, V̂ª2dQ̂5i* VPVm11~J1E* !.

On the other hand, observe thatMp[L1
mT* E is a sub-bundle of the multicotangent bund

LmT* E. Let

l: L1
mT* E�LmT* E

be the natural imbedding~hencel+i05i!. Then:
Definition 8: Thecanonicalm and(m11) formsof Mp @multimomentum Liouvillem and

(m11) forms ofMp# are

•Qªl* QPVm~Mp!, V52dQ5l* VPVm11~Mp!.

Remarks:Of course,Q̂5i0* Q andV̂5i0* V.
V is 1-nondegenerate, and hence~Mp,V) is a multisymplectic manifold. The canonica

forms Q̂ andQ can also be characterized as follows~see Ref. 44!:

Q̂ is the onlym-form in J1E* , such that ifyPJ1E* , andX1 ,...,XmPTyJ
1E* , then

Q̂~y;X1 ,...,Xm!5i~y!@Tyr̂
1~X1!,...,Tyr̂

1~Xm!#.

In turn, considering the natural projectionk̂1:L1
mT* E→E, then

Q~~y,a!;X1 ,...,Xm!ªa~y;T~y,a!k̂
1~X1!,...,T~y,a!k̂

1~Xm!!

for every (y,a)PL1
mT* E ~whereyPE andaPL1

mTy* E!, andXiPX(L1
mT* E).

Bearing in mind the following diagram

we observe that the mapi0 :J1E* →Mp is a form along the projectionr̂1:J1E* →E. Then:

Lemma 1:Q̂5i0* Q5 r̂1* i0 .
Proof: Let yPJ1E* , andX1 ,...,XmPTyJ

1E* . We have
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i0* Q~y;X1 ,...,Xm!5Q~i0~y!;Tyi0~X1!,...,Tyi0~Xm!!

5i0~y!@Ty~ t̂1+i0!~X1!,...,Ty~ t̂1+i0!~Xm!#

5i0~y!~Tyr̂
1~X1!,...,Tyr

1~Xm!!

5~ r̂1* i !~y;X1 ,...,Xm!.

j

In natural coordinates inJ1E* andMp, the local expressions of these forms are

Q̂5ph
hdmx1pA

n dyA`dm21xn , V̂52dph
h`dmx2dpA

n `dyA`dm21xn ,

Q5pdmx1pA
n dyA`dm21xn , V52dp`dmx2dpA

n `dyA`dm21xn .

Proposition 2: Let(J1E,VL) be a Lagrangian system. Let FL̂ be the generalized Legendr

map, andFL̂ and FL the extended Legendre maps. Then

FL̂* Q̂5QL2L5uL , FL̂* V̂5VL2dL52duL ,

FL̂* Q5QL2L5uL , FL̂* V5VL2dL52duL ,

FL̃* Q5QL , FL̃* V5VL .

2.4. Regular and singular systems

Definition 9: Let(J1E,VL) be a Lagrangian system.
(1) (J1E,VL) is said to be aregularor nondegenerate Lagrangian systemif FL, and hence,

FL are local diffeomorphisms. As a particular case, (J1E,VL) is said to be ahyper-regular
Lagrangian systemif FL, and hence FL, are global diffeomorphisms.

(2) Elsewhere(J1E,VL) is said to be asingularor degenerate Lagrangian system.
The matrix of the tangent mapsFL* andFL* in a natural coordinate system is

S Id 0 0

0 Id 0

]2L

]xn]vm
A

]2L

]yB]vm
A

]2L

]vn
B]vm

A
D , ~6!

where the submatrix (]2L/]vn
B]vm

A) is the partial Hessian matrixof L. Then, the regularity
condition is equivalent to demanding that this matrix is regular everywhere inJ1E. This fact
establishes the relation to the concept of regularity given in an equivalent way by saying
Lagrangian system (J1E,VL) is regular ifVL is 1-nondegenerate.~See also Ref. 27 for a differen
definition of this concept.!

Proposition 3:~See Refs. 44 and 29.! Let (J1E,VL) be a hyper-regular Lagrangian system
Then

(1) FL̂(J1E) is a m2-codimensional imbedded submanifolds of J1E* , which is transverse to the
projectiond.

(2) FL̂(J1E) and FL̃(J1E) are 1-codimensional imbedded submanifolds ofMp, which are
transverse to the projectionm.

(3) The manifolds J1p* , FL̂(J1E), FL̃(J1E), FL̂(J1E), and P are diffeomorphic. Hence, FL̂,
FL̂, andFL̃ are diffeomorphisms on their images; and the mapsm, restricted toFL̂(J1E) or

to FL̃(J1E), and i0 and d, restricted to FL̂(J1E), are also diffeomorphisms.
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In this way we have the following diagram:

~7!

where the mapm8: Mp→Mp is defined by the relation

m8ªFL̃+FL21+m

and it satisfies thatm+m85m. Observe also that the restrictionm08: FL̂(J1E),Mp

→FL̃(J1E),Mp, is a diffeomorphism, which is also defined by the relationFL̃5m08+FL̃.
For dealing with singular Lagrangians, we must assume minimal ‘‘regularity’’ conditio

Hence we introduce the following terminology.
Definition 10: A singular Lagrangian system(J1E,VL) is said to bealmost-regularif:

(1) PªFL(J1E) and PªFL(J1E) are closed submanifolds of J1p* and P, respectively. (We
will denote the corresponding imbeddings by0 : P�J1p* and ê0 : P�P).

(2) FL, and hence FL, are submersions onto their images (with connected fibers).
(3) For every ȳPJ1E, the fibersFL21(FL( ȳ)) and hence FL21(FL( ȳ)) are connected sub

manifolds of J1E.

~This definition is equivalent to that in Ref. 29, but slightly different from that in Refs. 32
34.!

Let (J1E,VL) be an almost-regular Lagrangian system. Denote

P̂ªFL̂~J1E!, P̃ªFL̃~J1E!, P̂ªFL̂~J1E!.

Let ̂0 P̂�Mp, ̃0 : P̂�Mp, ê̂0 : P̂�J1E* be the canonical inclusions, and

m̂: P̂→P, m̃: P̃→P, î0 : P̂→P̂, d̂: P̂→P, C0 : P̂→P

the restrictions of the mapsm, i0 , d and the diffeomorphismC, respectively. Finally, define the
restriction mappings

FL0 : J1E→P, FL̃0 : J1E→P̃, FL̂0 : J1E→P̂, FL̂0 : J1E→ P̂, FL0 : J1E→P.

Proposition 4:~See Refs. 44, 29, and 45.! Let (J1E,VL) be an almost-regular Lagrangian
system. Then:

(1) The mapsC0 and m̃ are diffeomorphisms.
(2) For every ȳPJ1E,
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FL̃0
21~FL̃0~ ỹ!!5FL0

21~FL0~ ỹ!!5FL0
21~FL0~ ỹ!!. ~8!

(3) P̃ and P̂ are submanifolds ofMp, P̂ is a submanifold of J1E* , and ̃0 : P̃�Mp, ̂0 :
P̂�Mp, ̂0 : P̂�J1E* are imbeddings.

(4) The restriction mappingsFL̃0 , FL̂0 and FL̂0 are submersions with connected fibers.
Thus we have the diagram

~9!

wherem̂8: P̂→P̃ is defined by the relationm̂8ªm̄21+m̂.
The maps m̂ and m̂8 are not diffeomorphisms in general, since rankFL̂0>rankFL̃0

5rankFL0 , as is evident from the analysis of the corresponding Jacobian matrices.
Proposition 5: Let(J1E,VL) be an almost-regular Lagrangian system. Then:

kerFL* 5kerFL* 5kerFL̃* 5kerVLùXV~p1!~J1E!.

Proof: The first two equalities are immediate, sincePªFL(J1E), PªFL(J1E), and P̃
ªFL(J1E) are diffeomorphic.

For the last equality, asFL, FL, andFL̃ are the identity on the basisE of the bundlep1:
J1E→E, first we have that

kerFL* 5kerFL* 5kerFL̃* ,XV~p1!~J1E!

~and this relation holds also for the other Legendre maps!. Then, for everyXPkerFL̃ we have

i ~X!VL5 i ~X!~FL̃* V!5FL̃* @ i ~FL̃* X!V#50

and hence

kerFL̃* 5kerFL* 5kerFL* ,kerVLùXV~p1!~J1E!.

Conversely, if XPXV(p1)(J1E), in a natural system of coordinates inJ1E we have X
5 f n

B]/]vn
B , and if, in addition,XPkerVL , we obtain

05 i ~X!VL52
]2L

]vh
B]vn

A f h
B dyA`dm21xn1

]2L

]vh
B]vn

A vn
Af h

B dmx

this is equivalent to demanding thatf h
B]2L/]vh

B]vn
A50, and this is the condition which characte

izes locally the vector fields belonging to kerFL* 5kerFL* 5kerFL̃* @see~6!#. j
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3. HAMILTONIAN FORMALISM IN THE REDUCED MULTIMOMENTUM BUNDLE P

3.1. Hamiltonian systems

~Compare this presentation with Refs. 32, 33, and 34.!
The more standard way for constructing Hamiltonian systems inP consists in using section

of the projectiond, and it is similar to that developed in Ref. 27 for the Hamiltonian formalism
J1p* ~which we will review later!. Thus

Definition 11: Consider the bundler̄1: P→M .
(1) A section hd : P→J1E* of the projectiond is called aHamiltonian sectionof d.
(2) The differentiable forms

Qhd
ªhd* Q̂5~i0+hd!* Q, Vhd

ª2dQhd
5hd* V̂5~i0+hd!* V

are called theHamilton–Cartanm and (m11) forms of P associated with the Hamiltonian
section hd .

(3) The couple(P,Vhd
) is said to be aHamiltonian system.

Using charts of natural coordinates inP andJ1E* , a Hamiltonian section is specified by a s
of local functionsHn

hPC`(U),U,P, such that

hd~xn,yA,pA
n ![~xn,yA,pn

h52Hn
h~xg,yB,pB

g !,pA
n !. ~10!

Then, the local expressions of these Hamilton–Cartan forms are

Qhd
5pA

n dyA`dm21xn2Hhd
dmx,

~11!
Vhd

52dpA
n `dyA`dm21xn1dHhd

`dmx,

whereHhd
[Hn

n is a local Hamiltonian functionassociated with the Hamiltonian sectionhd .
As i0 is a submersion, we can state the following.
Definition 12: There is a natural equivalence relation in the set of Hamiltonian sectionsd,

which is defined as follows: two Hamiltonian sections hd
1,hd

2 are equivalentif i0+hd
15i0+hd

2. We
denote by$hd% the equivalence classes of this relation.

Remarks:
Of course, Hamiltonian sections belonging to the same equivalence class give the

Hamilton–Cartan forms, and hence the same Hamiltonian system.
Observe that all the Hamiltonian sections of the same equivalence class have the sam

Hamiltonian functionHhd
[Hn

n ~in the same open setU,P!.
There is a relation between sections ofm and ofd. In fact:
Proposition 6: There is a bijective correspondence between the set of sections of the p

tion m: Mp→J1p* and the set of equivalence classes of sections of the projectiond: J1E*
→P.

Proof: In fact, this correspondence is established by the commutativity of the follow
diagram:

that is, a sectionhm :J1p* →Mp and a class$hd%:P→J1E* are in correspondence if, and on
if,

hm5i0+hd+C for every hdP$hd%
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and this correspondence is one-to-one. j

Now we can study the structure of the set of Hamilton–Cartan forms, and hence of H
tonian systems. So, for every Hamiltonian sectionhd of d, consider the diagram

Lemma 2: Let hd
1,hd

2: P→J1E* be two Hamiltonian sections ofd, then:

(1) hd
1* Q̂2hd

2* Q̂5(i0+hd
1)* Q2(i0+hd

2)* Q5r1* (i0+hd
12i0+hd

2).
(2) r1* (i0+hd

12i0+hd
2) is a r̄1-semibasic form inP.

Proof:
~1! For every Hamiltonian sectionhd , the mapi0+hd is a form along the mapr̂1+hd5r1.

Therefore, following the same pattern as in Lemma 1, we obtain that

~i0+hd!* Q5r1* ~i0+hd!

and hence the result is immediate.
~2! As C+m+i05d, for every sectionhd we have thatC+m+i0+hd5IdP , then m+(i0+hd

1

2i0+hd
2)50P , and therefore Im(i0+hd

12i0+hd
2)Pkerm5Lm

0 T* E ~that is, ther̄1 semibasic forms in
P!.

j

From the local expressions~3! and ~10!, for every ỹPU,P, we have

~i0+hd
12i0+hd

2!~ ỹ!5~Hhd
12Hhd

2!~ ỹ!dmxu ȳ

which is the local expression~at ȳ! of a r̄1-semibasic form inP. In addition, this is also the loca
expression of the form

~i0+hd
1!* Q2~i0+hd

2!* Q5Qhd
12Qhd

2[H. ~12!

Definition 13: Ar̄1-semibasic formHPVm(P) is said to be aHamiltonian densityin P.
It can be written asH5H( r̄1* v), where HPC`(P) is the global Hamiltonian function

associated withH and v.
In this way, we have proved that two Hamiltonian systems generated by two Hamilto

sections ofd belonging to different equivalence classes, are related by means of a Hamilt
density. We can state this result as follows:

Theorem 3: The set of Hamilton–Cartan m-forms associated with Hamiltonian sections ofd is
an affine space modelled on the set of Hamiltonian densities inP.

Remark:
If ( P,Vhd

) is a Hamiltonian system, taking into account~12! we have that every Hamiltonian

sectionhd8 ~such thathd8¹$hd%! allows us to split globally the Hamilton–Cartan forms as
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Qhd
5Qhd8

2H, Vhd
5Vhd8

1dH. ~13!

If ( xn,yA,pA
n ) is a natural system of coordinates inP, such thatr̄1* v5dmx, andHhd8

(xn,yA,pA
n )

is the local Hamiltonian function associated with the Hamiltonian sectionhd8 , and H
5H(xn,yA,pA

n )dmx, then

Qhd
5pA

n dyA`dm21xn2~H1Hhd8
!dmx,

~14!
Vhd

52dpA
n `dyA`dm21xn1d~H1Hhd8

!`dmx.

If Hhd
is the local Hamiltonian function associated with the Hamiltonian sectionhd , we have the

relation H5Hhd
2Hhd8

~in an open setU!. Hence, taking this into account, the local expressio

~11! and ~14! are really the same thing.

3.2. Hamiltonian sections, Hamiltonian densities and connections

In order to obtain a Hamiltonian density using two Hamiltonian sections, it is usual for on
them to be a linear section induced by a connection. This is a natural procedure for dif
reasons. For instance, when we construct the Hamiltonian formalism associated with a Lagr
system, the Hamiltonian density must be related with the density of Lagrangian energy and,
last is defined by using a connection, this same connection must be used for construct
related Hamiltonian density~see Secs. 3.4 and 3.6!.

Next, we are going to show how to define the linear Hamiltonian section induced
connection. Hence, suppose that a connection¹ has been chosen inp: E→M . It allows us to
identify V* (p) as a subbundle ofT* E. So, if v¹* :V* (p)→T* E is the dual injection of the
vertical projectionv¹ induced by¹. Then:

Definition 14: The linear Hamiltonian section ofd induced by the connection¹ is the map

hd
¹ : P → p* TM ^ T* E^ p* LmT* MªJ1E*

uk^ ak
^ b ° uk^ v¹* ~ak! ^ b

that is,hd
¹
ªIdp* TM ^ v¹* ^ Idp* LmT* M .

Remark:
Two linear sectionshd

¹1 and hd
¹2 induced by two different connections¹1 and ¹2 cannot

belong to the same equivalence class of Hamiltonian sections, as can be proved compari
coordinate expressions.

If Q̂ is the canonicalm-form in J1E* , the forms

Qhd
¹ª~i0+hd

¹!* Q5hd
¹* QPVm~P!, Vhd

¹ª2dQhd
¹5hd

¹* VPVm11~P! ~15!

are theHamilton–Cartan m and m11 forms ofP associated with¹.
Remark:
It can be proved44 that the Hamilton–Cartanm-form associated with a connection¹ is the

unique formQhd
¹PVm(P) such that, ifỹPP andw1 ,...,wmPTỹP, then

Qhd
¹~ ỹ;w1 ,...,wm!ª~i0+hd

¹!~ ỹ!~r1~ ỹ!;Tỹr
1~w1!,...,Tỹr

1~wm!!

5@r1* ~i0+hd
¹!#~ ỹ;w1 ,...,wm! ~16!

that is,Qhd
¹5r1* (i0+hd

¹).
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If ( xn,yA,pA
n ) is a system of natural coordinates inP, and ỹ5pA

n ( ỹ)(]/]xn) ^ zA
^ dmxPP,

taking into account the local expression ofv¹* which, for a connection

¹5dxn
^ S ]

]xn 1Gn
A ]

]yAD ,

is v¹* (zA)5dyA2Gn
A dxn, we have that

hd
¹~ ỹ!5hd

¹S pA
n ~ ỹ!

]

]xn ^ zA
^ dmxur1~ ỹ!D5pA

n ~ ỹ!
]

]xn ^ ~dyA2Gh
A dxh! ^ dmxur1~ ỹ!

~ i0+hd
¹!~ ỹ!5pA

n ~ ỹ!~dyA`dm21xn2Gn
Admx!ur1~ ỹ! .

Observe thati0 restricted to the image ofhd
¹ is injective. Therefore

Qhd
¹5pA

n ~dyA2Gh
A dxh!`dm21xn5pA

n dyA`dm21xn2pA
n Gn

A dmx

~17!
Vhd

¹52dpA
n `dyA`dm21xn1Gn

A dpA
n `dmx1pA

n dGn
A`dmx.

Now, given a connection¹ and a Hamiltonian sectionhd , from Lemma 2 we have that

r1* ~i0+hd
¹2i0+hd!5~i0+hd

¹!* Q2~i0+hd!* Q5Qhd
¹2Qhd

5hd
¹* Q̂2hd

¹* Q̂ªHhd

¹

is a r̄1-semibasicm-form in P. It is usually written asHhd

¹ 5Hhd

¹ ( r̄1* v), where Hhd

¹ PC`(P) is

the global Hamiltonian functionassociated withHhd

¹ andv.

Therefore, given a Hamiltonian system (P,Vhd
), taking into account~13!, we have that every

connection¹ in p: E→M allows us to split globally the Hamilton–Cartan forms as

Qhd
5Qhd

¹2Hhd

¹ , Vhd
52dQhd

5Vhd
¹1dHhd

¹ . ~18!

In a natural system of coordinates inP, such that r̄1* v5dmx, we write Hhd

¹

5Hhd

¹ (xn,yA,pA
n )dmx, and

Qhd
5pA

n dyA`dm21xn2~Hhd

¹ 1pA
n Gn

A!dmx,

~19!
Vhd

52dpA
n `dyA`dm21xn1d~Hhd

¹ 1pA
n !`dmx.

Proposition 7: A couple($hd%,¹) in P is equivalent to a couple~H, ¹! (that is, given a
connection¹, classes of Hamiltonian sections ofd and Hamiltonian densities inP are in one-to-
one correspondence).

Proof: Given a connection inp: E→M , we have just seen that all the Hamiltonian sectio
belonging to the same equivalence class$hd% define a unique Hamiltonian densityHhd

¹ and, hence,

the same Hamilton–Cartan forms.
Conversely, given a Hamiltonian densityH and a connection¹, we can construct an equiva

lence class of Hamiltonian sections$hd% ~which leads to the same Hamilton–Cartan forms!, since,
asH: P→Mp takes values inr̄̂1* LmT* M , we have a mapi0+hd

¹2H: P→Mp. From the local
expression of this map, it is easy to prove that there exists a local sectionhd of d, such that
i0+hd5i0+hd

¹2H. Then, using a partition of unity we can construct a global section fulfilling
condition, and hence a family of sections$hd% defined by the relationi0+hd5i0+hd

¹2H.
j

As a direct consequence of this proposition, we have another way of obtaining a Hamilt
system, which consists in giving a couple~H, ¹!. In fact
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Proposition 8: Let¹ be a connection inp: E→M , andH a Hamiltonian density. There exis
a unique class$hd% of Hamiltonian sections ofd such that

Qhd
5Qhd

¹2H, Vhd
52dQhd

5Vhd
¹1dH.

Remark:
If p: F→M is a trivial bundle, then there is a natural connection~the trivial one!. So, in this

case, there is a bijective correspondence between Hamiltonian systems and Hamiltonian de
This is the situation in classical non-autonomous mechanics46,47,43

3.3. Variational principle and field equations

Now we can establish the field equations for Hamiltonian systems. First we need to intr
the notion ofprolongationof diffeomorphisms and vector fields fromE to P.

Definition 15: LetF: E→E be a diffeomorphism ofp-fiber bundles andFM : M→M the
induced diffeomorphism in M. Theprolongation ofF to P is the diffeomorphism j1* F: P→P

defined by j1* Fª(FM)* ^ F* 21
^ `

m

FM*
21.

Proposition 9: LetF: E→E be a diffeomorphism of fiber bundles, FM : M→M its restriction
to M and j1* F its prolongation toP. Then

(1) r1+ j 1* F5F+r1, r̄1+ j 1* F5FM+ r̄1.
(2) If C: E→E is another fiber bundle diffeomorphism, then

j 1* ~C+F!5 j 1* C+ j 1* F.

(3) j1* F is a diffeomorphism ofr1-bundles andr̄1-bundles, and( j 1* F)215 j 1* F21.
Definition 16: Let ZPX(E) be ap-projectable vector field. Theprolongationof Z toP is the

vector field j1* Z whose local one-parameter group of diffeomorphisms are the extensions$ j 1* s t%
of the local one-parameter group of diffeomorphisms$s t% of Z.

Now we can state the following.
Definition 17: Let~P, Vhd

! be a Hamiltonian system. LetGc(M ,P) be the set of compact

supported sections ofr̄1, and cPGc(M ,P). Consider the map

H: Gc~M ,P! → R

c ° E
M

c* Qhd
.

The variational problemfor this Hamiltonian system is the search of the critical (or stationa
sectins of the functionalH, with respect to the variations ofc given byc t5 j 1* s t+c, where$s t%
is a local one-parameter group of every ZPXV(p)(E) (the module ofp-vertical vector fields in E).

d

dtU
t50

E
M

c t* Qhd
50.

This is the so-calledHamilton–Jacobi principleof the Hamiltonian formalism.
Theorem 4. Let~P, Vhd

! be a Hamiltonian system. The following assertions on a sectio

cPGc(M ,P) are equivalent:
(1) c is a critical section for the variational problem posed byQhd

.
(2) *Mc* L( j 1* Z)Qhd

50, f or every ZPXV(p)(E).
(3) c* i ( j 1* Z)Vhd

50, f or every ZPXV(p)(E).
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(4) c* i (X)Vhd
50, f or every XPX(P).

(5) If (U;xn,yA,pA
n ) is a natural system of coordinates inP, then c5(xnyA(xh),pA

n (xh)) in U
satisfies the system of equations

]yA

]xnU
c

5
]Hhd

]pA
n U

c

,
]pA

n

]xnU
c

52
]Hhd

]yA U
c

~20!

which are known as theHamilton–De Donder–Weyl equationsof the Hamiltonian formalism.
Proof: (1⇔2) If ZPXV(p) ~E! ands t is a one-parameter local group ofZ, we have

d

dtU
t50

E
M

~ j 1* s t+c!* Qhd
5 lim

t→0

1

t S E
M

~ j 1* si+c!* Qhd
2E

M
c* QhdD

5 lim
t→0

1

t S E
M

c* ~ j 1* s t!* Qhd
2E

M
c* QhdD

5 lim
t→0

1

t S E
M

c* @~ j 1s t!* Qhd
2Qhd

# D 5E
M

c* L~ j 1Z!Qhd

and the results follow immediately.
(2⇔3) Taking into account that

L~ j 1* Z!Qhd
5di~ j 1* Z!Qhd

1 i ~ j 1* Z!dQhd
5di~ j 1* Z!Qhd

2 i ~ j 1* Z!Vhd

we obtain that

E
M

c* L~ j 1* Z!Qhd
5E

M
c* di~ j 1* Z!Qhd

2E
M

c* i ~ j 1* Z!Vhd

and, asc has compact support, using Stoke’s theorem we have

E
M

c* di~ j 1* Z!Qhd
5E

M
dc* i ~ j 1* Z!Qhd

50

hence*Mc* L( j 1* Z)Qhd
50 @for everyZPXV(p)(E)# if, and only if, *Mc* i ( j 1* Z)Vhd

50, and,
according to the fundamental theorem of variational calculus, this is equivalent to

c* i ~ j 1* Z!Vhd
50.

(3⇔5) Suppose thatc is a section verifying thatc* i ( j 1* Z)Vhd
50, for every

ZPXV(p)(E). In a natural chart in P, if Z5bA(]/]yA), then j 1* Z5bA(]/]yA)
2pB

n (]bB/]yA)(]/]pA
n ). Taking into account the local expression ofVhd

given in ~11!, we have

i ~ j 1* Z!Vhd
5bAS dpA

n `dm21xn1
]Hhd

]yA dmxD 1pB
n

]bB

]yA S dyA`dm21xn2
]Hhd

]pA
n dpA

n `dmxD .

As c5(xn, f A(xh),gA
n (xh)) is a section ofr̄1, then on the points of the image ofc we haveyA

5 f A(xh),pA
n 5gA

n (xh), and we obtain
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05c* i ~ j 1* Z!Vhd

5bAS ]gA
n

]xn
1

]Hhd

]yA D dmx1gC
n S ]bC

]yA

] f A

]xn
2

]bC

]yA

]Hhd

]pA
n D dmx

5FbAS ]gA
n

]xn 1
]Hhd

]yA D 1gC
n

]bC

]yA S ] f A

]xn2
]Hhd

]pA
n D Gdmx

and, as this holds for everyZPXV(p)(E), this is equivalent to demanding that

bAS ]gA
n

]xn 1
]Hhd

]yA D 1gC
n

]bC

]yA S ] f A

]xn2
]Hhd

]pA
n D 50

for everybA(xn,yA). Therefore

bAS ]gA
n

]xn 1
]Hhd

]yA D 50, gC
n

]bC

]yA S ] f A

]xn2
]Hhd

]pA
n D 50.

From the first equalities we obtain the first group of the Hamiltonian equations. For the s
ones, let (W;xn,yA,pA

n ) a natural chart,U5 r̄1(W), andc a critical section. Then, for everyxPU
we have

gC
n ~x!

]bC

]yAU
~x, f A~x!!

S ] f A

]xn2
]Hhd

]pA
n D U

c~x!

50

but, as there are critical sections passing through every point inW, we obtain that

]bC

]yAU
~x, f A~x!!

S ] f A

]xn2
]Hhd

]pA
n D U

c~x!

50 ~ for every B,n!.

Now we can choosebB such that]bB/]yA takes arbitrary values, and then

] f A

]xn2
]Hhd

]pA
n 50

which is the second group of the Hamiltonian equations. The converse is trivial.
(4⇔5) Suppose thatc is a section verifying thatc* i (X)Vhd

50, for everyXPX(P). If X

5an(]/]xn)1bA(]/]yA)1gA
n (]/]pA

n ), taking into account~11!, we have

i ~X!Vhd
5~21!hahS dpA

n `dyA`dm22xhn2
]Hhd

]pA
n dpA

n `dm21xhD
1bAS dpA

n `dm21xn1
]Hhd

]yA dmxD 1gA
n S 2dyA`dm21xn1

]Hhd

]pA
n dpA

n `dmxD
but asc5(xn, f A(xh),gA

n (xh)) is a section ofr̄1, then on the points of the image ofc we have
yA5 f A(xh), pA

n 5gA
n (xh), and
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05c* i ~X!Vhd

5~21!h1nahS ] f A

]xn2
]Hhd

]pA
n D ]gA

n

]xh dmx1bAS ]gA
n

]xn
1

]Hhd

]yA D dmx1gA
n S 2

] f A

]xn
1

]Hhd

]pA
n D dmx

and, as this holds for everyXPX(P), we obtain the Hamilton–De Donder–Weyl equations. T
converse is trivial.

j

Remark:
In relation to Eqs.~20!, it is important to point out that they are not covariant, since

Hamiltonian functionHhd
is defined only locally, and hence it is not intrinsically defined.

In order to write a set of covariant Hamiltonian equations we must use a global Hamilto
function, which can be obtained by introducing another Hamiltonian sectionhd8 , with hd8¹$hd%
~as we have seen in Sec. 3.1!. It is usual to take the section induced by a connection¹ in p: E
→M , and hence we have the splitting given in~18! for the formVhd

. Then, if Gh
B are the local

component functions of¹ in U,P, starting from the local expression~19!, and following the
same pattern as in the proof of the last item, we obtain for a critical sec
c5(xn,yA(xh),pA

n (xh)) in U the covariantHamiltonian equations:

]yA

]xnU
c

5S ]Hhd

¹

]pA
n 1Gn

AD U
c

,
]pA

n

]xnU
c

52S ]Hhd

¹

]yA 1ph
B

]Gh
B

]yA D U
c

.

Observe that, as Hhd

¹ 5Hhd
2pA

n Gn
A ~on each open setU,P, whereHhd

is the corresponding loca

Hamiltonian function!, then from these last equations we recover the Hamilton–De Donder–W
equations.~See Ref. 27 for comments on this subject.!

3.4. Hamiltonian system associated with a hyper-regular Lagrangian system

It is evident that different choices of equivalence classes of Hamiltonian sections ofd lead to
different Hamiltonian systems inP. The question now is how to associate~if possible! a Hamil-
tonian system with a Lagrangian system. The answer to this question is closely related
regularity of the Lagrangian system.

First, let (J1E,VL) be a hyper-regular Lagrangian system. Then:
Lemma 3: For every section hd : P→J1E* of d, the relation

hmªm8+i0+hd+C

defines a unique section ofm, which is justhm5FL̃+FL21.
Proof: We have the diagram
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~21!

Then, taking into account the commutativity of this diagram, we have

hm5m8+i0+hd+C5FL̃+FL21+m+i0+hd+C

5FL̂+FL21+C21+C5FL̂+FL21.

So hm is independent ofhd . j

Remarks:

This result is to be expected, sinceFL̃(J1E) is a 1-codimensional submanifold ofMp,
transverse to the projectionm, and hence it defines a section hm of m. This is just the natural
section used in Refs. 27 and 29 for associating a Hamiltonian system to a hyper-regular La
ian one~see Sec. 4.2!.

Observe that a natural sectionhd of d can be selected by making

hdªFL̂+FL21

or, what is equivalent, its associated class can be defined by

i0+hdªFL̂+FL21 for every hdP$hd%.

Observe that this section hd is just the inverse ofd restricted toFL̂(J1E), and thati0+hd is a
diffeomorphism, for everyhdP$hd%.

Definition 18: Given a section hd :P→J1E* of d, we define the Hamilton–Cartan forms

Qhd
ª~m8+i0+hd!* Q, Vhd

ª~m8+i0+hd!* V.

Proposition 10: The Hamilton–Carton forms are independent of the section hd , and

FL* Qhd
5QL , FL* Vhd

5VL . ~22!

Then, (P,Vhd
) is the (unique) Hamiltonian system which is associated with the hyper-reg

Lagrangian system(J1E,VL).
Proof: The independence of the sectionhd is a consequence of Lemma 3. Then, taking in

account the commutativity of diagram~21!, and Proposition 2, for every sectionhd , we have

FL* Qhd
5FL* ~m8+i0+hd!* Q5~m8+i0+hd+FL!* Q5FL̃* Q5QL
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and the same result follows forVhd
. j

Using charts of natural coordinates inP and J1E* , and the expression~1! and ~2! of the
Legendre maps, we have that the natural Hamiltonian section hd5FL̂+FL21 has associated th
local Hamiltonian function

Hhd
~xn,yA,pA

n !5FL21* S vn
A ]L

]vn
A2LD 5pA

n FL21* vn
A2FL21* L ~23!

and for the Hamilton–Cartan forms:

Qhd
5pA

n dyA`dm21xn2~pA
n FL21* vn

A2FL21* L!dmx,

Vhd
52dpA

n `dyA`dm21xn1d~pA
n FL21* vn

A2FL21* L!`dmx.

There is another way of obtaining this Hamiltonian system. In fact, suppose that a conn
¹ is given inp: E→M , and lethd

¹ : P→J1E* be the induced linear section ofd. If we have used
¹ for constructing the associated density of Lagrangian energyEL

¹PVm(J1E) ~see Definition 1!,
the key is to define a Hamiltonian densityH¹PVm(P) which is FL-related withEL

¹ . We can
make this construction in two ways.

Proposition 11: (1) The m-form FL* Qhd
¹2QL is p̄1-semibasic and

FL* Qhd
¹2QL5EL

¹ . ~24!

(2) There exists a unique Hamiltonian densityH¹PVm(P) such that

FL* H¹5FL* Qhd
¹2QL5EL

¹ . ~25!

Let H¹5H¹( r̄1* v), with H¹PC`(P). Then, H¹ and H¹ are called theHamiltonian densityand
the Hamiltonian functionassociated with the Lagrangian system, the connection¹ and v.

(3) The Hamilton–Cartan forms of Definition 18 split as

Qhd
5Qhd

¹2H¹, Vhd
52dQhd

5Vhd
¹1dH¹. ~26!

Proof:
~1! Once again, it suffices to see it in a natural local system (xn,yA,vn

A). Then, if L
5Ldmx, taking into account the corresponding local expressions we have that

FL* Qhd
¹2QL5S ]L

]vn
A ~vn

A2Gn
A!2LDdmx

and the result holds. The last part follows, recalling the local expression of the density o
grangian energy. Thus this form isp̄1-semibasic.

~2! It is immediate, asFL is a diffeomorphism.
~3! From ~24! and ~25! we obtain that

FL* ~Qhd
¹2H¹!5FL* Qhd

¹2FL* Qhd
¹1QL5QL5FL* Qhd

and thereforeFL* Vhd
5VL too. Then, the result follows becauseFL is a diffeomorphism.

j

Remark:
Notice that the item 1 holds even ifFL is not a diffeomorphism.

In a system of natural coordinates we have
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H¹~xn,yA,pA
n !5pA

n ~FL21* vn
A2Gn

A!2FL21* L

and thusFL* H¹5EL
¹ .

An alternative way is to obtain this Hamiltonian density using only Hamiltonian section
Proposition 12: Consider the Hamiltonian sectionhd5FL̂+FL21, and a connection¹. Then

we have that

~i0+hd
¹!* Q2~m8+i0+hd!* Q5H¹

and hence the splitting (26) holds.
Proof: We have the following diagram:

Observe thatm8+i0+hd5FL̃+FL21. Therefore, taking into account Definition 7, Proposition
~15! and ~25!, we have

~i0+hd
¹!* Q2~m8+i0+hd!* Q5Qhd

¹2~FL21!* FL̃* Q5Qhd
¹2~FL21!* QL5H¹.

Then the result for the splittings of the Hamilton–Cartan forms follows straightforwardly.
j

Remark:
Note that the use of both extended Legendre maps is necessary for obtaining the Hami

density in this way.
As a final remark, all the results stated in Sec. 3.3 in relation to the variational principle

the characterization of critical sections are true. In particular, field equations are the Hamilto
Donder–Weyl equations~20!, where the local Hamiltonian functionHhd

is given by~23!.

3.5. Hamiltonian system associated with an almost-regular Lagrangian system

Now, let (J1E,VL) be an almost-regular Lagrangian system. Bearing in mind diagram~9!,
first observe that the submanifoldê0 :P�P, is a fiber bundle overE ~andM!, and the correspond
ing projections will be denotedk0

1:P→E and k̄0
1:P→M , satisfying thatk1+ê05k0

1 and k̄1+ê0

5k̄0
1.
Proposition 13: The Lagrangian formsQL and VL , are FL-projectable.
Proof: By Proposition 5, we have that kerFL* 5kerVLùXV(p1)(J1E). Then, for everyX

PkerFL* we have thati (X)QL50, sinceQL is a p1-semibasicm-form, and in the same way
L(X)QL50. ThereforeQL is FL-projectable.

As a trivial consequence of this fact,i (X)VL50, andL(X)VL50, and thereforeVL is also
FL-projectable.

j

Definition 19: Given a section hˆ
d :P→ P̂ of d̂, we define the Hamilton–Carton forms
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Q ĥd

0
ª~ ễ0+m̂8+ î0+ĥd!* Q, V ĥd

0
ª~ ễ0+m̃8+ î0+ĥd!* V.

Proposition 14: The Hamilton–Cartan formsQ
ĥd

0
and V

ĥd

0
are independent of the section hˆ

d

of d̂, and

FL0* Q
ĥd

0
5QL , FL0* V

ĥd

0
5VL . ~27!

Then(P,P,V
ĥd

0
) is the unique Hamiltonian system associated with the almost-regular Lagr

ian system(J1E,VL).
Proof: We have the following diagram:

Then, taking into account the commutativity of this diagram, and Proposition 2, for every se
ĥd of d̂ we have that

FL0* Q
ĥd

0
5FL0* ~ ̃0+m̂8+ î0+ĥd!* Q5~ ̃0+m̂8+ î0+ĥd+FL0!* Q5~ ̃0+FL̃0!* Q5FL̃* Q5QL

and the same result follows forV ĥd

0 . j

Remarks:

Following the terminology of the sections above, we have that all the sectionsĥd belong to the
same equivalence class.

In the particular situation that rankFL̂05rankFL0̂, we have thatî0 is a diffeomorphism and,
as the fibers ofd̂ are also the fibers ofî0 , then so isd̂. In this case there is only one mapĥd ,
which is justd̂21.

As in the hyper-regular case, we can construct this Hamiltonian system using a conne
Thus, let¹ be connection inp:E→M , andhd

¹ :P→J1E* the induced linear section ofd. Let
EL

¹PVm(J1E) be the density of Lagrangian energy associated with¹ ~see Definition 1!. Then
Proposition 15: (1) The density of Lagrangian energyEL

¹ is FL-projectable.
(2) Thep̄1-semibasic m-form FL* Qhd

¹2QL is FL-projectable and denotingQhd
¹

0
5 j 0* Qhd

¹,

we have

EL
¹5FL* Qhd

¹2QL5FL0* Qhd
¹

0
2QL .

(3) There exists a uniquer̄0
1-semibasic formH0

¹PVm(P), such that

FL0* H0
¹5EL

¹ .
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Let H0
¹5H0

¹( r̄0
1* v), with H0

¹PC`(P). ThenH0
¹ and H0

¹ are called theHamiltonian densityand
the Hamiltonian functionassociated with the Lagrangian system, the connection¹ and v. Obvi-
ously we have that FL0* H0

¹5EL
¹ .

(4) The Hamilton–Cartan forms of Definition 19 split as

Q
ĥd

0
5ê0* Qhd

¹2H0
¹5Qhd

¹
0

2H0
¹ ,

~28!

V
ĥd

0
52dQ

ĥd

0
5ê0* Vhd

¹1dH0
¹5Vhd

¹
0

1dH0
¹ .

Proof:
~1! As EL

¹5EL
¹(p̄1* v), it suffices to prove that the Lagrangian energyEL

¹ is FL-projectable.
Then, for everyXPkerFL* , using natural coordinates we have

L~X!EL
¹5LS f h

B ]

]vh
BD S ]L

]vn
A ~vn

A2Gn
A!2LD

5 f h
B ]2L

]vh
B]vn

A ~vn
A2Gn

A!1 f h
B ]L

]vn
A dB

Adn
h2 f h

B ]L

]vh
B 50,

thereforeEL
¹ is FL-projectable, and so isEL

¹ .
~2! It is immediate, taking into account thatQL is FL-projectable, and the first item o

Proposition 11.
~3! The existence is assured sinceEL

¹ is FL-projectable, and the uniqueness becauseFL0 is a
submersion.

Next we prove thatH0
¹ is r̄0

1-semibasic. AsFL0 is a submersion, for everyyPJ1E and
ũPVFL0(y)( r̄0

1), there existuPTy(J
1E) such thatũ5TyFL0(u) and, in addition,uPVy(p̄

1)
because

Typ̄
1~u!5~TFL0~ ȳ!r̄0

1+TyFL0!~u!5TFL0~ ȳ!r̄0
1~ ũ!50.

Furthermore,EL
¹ is p̄1-semibasic, and hence

05 i ~u!@EL
¹~ ỹ!#5 i ~u!@~FL0* H0

¹!~y!#5~FL0!FL0~ ỹ!
* @ i ~ ũ!~H0

¹~FL0~ ỹ!!#

then, for everyyPJ1E and ũPVFL0( ỹ)( r̄0
1) we havei (ũ)(H0

¹(FL0( ỹ))Pker(FL0)FL0( ȳ)
* 5$0%,

sinceFL0 is a submersion. SoH0
¹ is r̄0

1-semibasic.
~4! Taking into account items~3! and ~2!, we obtain

FL0* ~Qhd
¹

0
2H0

¹!5FL0* Qhd
¹

0
2FL0* H0

¹5FL0* Qhd
¹

0
2EL

¹5QL5FL0* Q
ĥd

0

and thereforeVL5FL0* V
ĥd

0
too. Then the result follows becauseFL is a submersion.

j

We can construct the above Hamiltonian density in an alternative way, as follows.
Proposition 16: Let hˆ d : P→ P̂ be a section ofd̂, and¹ a connection. Then, hd

¹ induces a map

ĥd
¹ : P→ P̂ defined by the relationê̂0+ĥd

¹5hd
¹+ê0 . Therefore

~ ̂0+ î+ĥd
¹!* Q2~ ̃0+m̃8+ î0+ĥd!* Q5H0

¹

and hence the splitting (28) holds.
                                                                                                                



tain the

n 17

As in

7427J. Math. Phys., Vol. 41, No. 11, November 2000 First-order field theories

                    
Proof: We have the following diagram:

Taking into account the commutativity of this diagram, we have that every sectionĥd of d̂ satisfies
that

m̂8+ î0+ĥd+FL05FL̃0 .

Then, bearing in mind the second item of Proposition 15 and~27!, we have that

FL0* @~ ̂0+ î0+ĥd
¹!* Q2~ ̂0+m̂8+ î0+ĥd!* Q#5~ ̂0+ î0+ĥd

¹+FL0!* Q2~ ̃0+m̂8+ î0+ĥd+FL0!* Q

5~i0+ ê̂0+ĥd
¹+FL0!* Q2~ ̃0+m̂8+ î0+ĥd+FL0!* Q

5~i0+hd
¹+ê0+FL0!* Q2~ ̃0+FL̃0!* Q

5~ê0+FL0!* Qhd
¹2~ ̃0+FL̃0!* Q

5FL* Qhd
¹2FL* Q5EL

¹1QL2QL5EL
¹

and the result follows as a consequence of the third item of Proposition 15.
The statement for the splittings ofQ

ĥd

0
andV

ĥd

0
is immediate.

j

Note that, once again, the use of both extended Legendre maps is necessary to ob
Hamiltonian density in this way.

Finally, in the almost-regular case, the Hamilton–Jacobi variational principle of Definitio
is stated in the same way, now using sections ofr̄0

1: P→M , and the formQ
ĥd

0
. So we look for

sections c0PGc(M ,P) which are stationary with respect to the variations given byc0t

5s t+c0 , where$s t% is a local one-parameter group of anyr̄0
1-vertical vector fieldZPX(P), such

that

d

dtU
t50

E
M

c0t* Q
ĥd

0
50.

Then these critical sections will be characterized by the condition~analogous to Theorem 4!

c0* i ~X̃0!V
ĥd

0
50 for every X̃0PX~P!. ~29!

3.6. Equivalence between the Lagrangian and Hamiltonian formalisms

One expects that both the Lagrangian and Hamiltonian formalism must be equivalent.
mechanics, this equivalence can be proved by using the~reduced! Legendre map.
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First, using the Legendre map, we can lift sections ofp from E to P as follows:
Definition 20: Let(J1E,VL) be a hyper-regular Lagrangian system, FL the induced Leg-

endre transformation, f: M→E a section ofp and j1f: M→J1E its canonical prolongation to
J1E. TheLagrangian prolongationof f to P is the section

j 1* fªFL+ j 1f: M→P.

If (J1E,VL) is an almost-regular Lagrangian system, theLagrangian prolongationof a sectionf:
M→E to P is

j 0
1* fªFL0+ j 21f: M→P.

Theorem 5: ~Equivalence theorem for sections.! Let (J1E,VL) and(P,Vhd
) be the Lagrang-

ian and Hamiltonian descriptions of a hyper-regular system.
If a sectionfPGc(M ,E) is a solution of the Lagrangian variational problem (Hamilto

principle) then the sectionc[ j 1* fªFL+ j 1fPGc(M ,P) is a solution of the Hamiltonian varia-
tional problem (Hamilton–Jacobi principle).

Conversely, if a sectioncPGc(M ,P) is a solution of the Hamiltonian variational problem
then the sectionf[r1+cPGc(M ,E) is a solution of the Lagrangian variational problem.

Proof: Bearing in mind the diagram

~30!

If f is a solution of the Lagrangian variational problem then (j 1f)* i (X)VL50, for every
XPX(J1E) ~Theorem 1!; therefore, asFL is a local diffeomorphism,

05~ j 1f!* i ~X!VL5~ j 1f!* i ~X!~FL* Vhd
!

5~ j 1f!* FL* ~ i ~FL
*
21X!Vhd

!5~FL+ j 1f!* ~ i ~X8!Vhd
!,

which holds for everyX8PX(P) and thus, by Theorem 4,c[FL+ j 1f is a solution of the
Hamiltonian variational problem.~This proof holds also for the almost-regular case.!

Conversely, letcPGc(M ,P) be a solution of the Hamiltonian variational problem. Revers
the above reasoning we obtain that (FL21+c)* i (X)VL50, for everyXPX(J1E), and hence
s[FL21+cPGc(M ,J1E) is a critical section for the Lagrangian variational problem. Then,
we are in the hyper-regular case,s must be a holonomic section,48,28,40s5 j 1f, and since~30! is
commutative,f5r1+cPGc(M ,E), necessarily. j

Remarks:
Observe that every sectionc: M→P which is solution of the Hamilton–Jacobi variation

principle is necessarily a Lagrangian prolongation of a sectionf: M→E.
In the almost-regular case, iff is a critical section of the Lagrangian problem, thenc

5FL+ j 1f is a critical section of the Hamiltonian problem. Furthermore,FL: j 1f(M )
→FL( j 1f(M )) is a diffeomorfism because sections ofp̄1 are transversal to the fibers ofFL.
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As critical sections are integral manifolds of multivector fields48,49 or, what is equivalent,
Ehresmann connections,28,45,40then critical sections through different points in the same fibe
FL have the same image byFL.

On the other hand, we can prove the equivalence between the Lagrangian and Hami
formalisms from the variational point of view. First, we need the following lemma.

Lemma 4: LetbPVm(J1E) and fPC`(J1E). For every differentiable sectionf: U,M
→E, the following conditions are equivalent:

~1! ( j 1f)* @ f (p̄1* v)#5( j 1f)* b.
~2! * j 1f f (p̄1* v)5* j 1fb.

Proof: Trivially (1⇒2).
Conversely, if we suppose~1! is not true, then there exists one sectionf: U,M→E with

( j 1f)* @ f (p̄1* v)2b#Þ0 and hence there isxPU and a closed neighborhoodV of x in U such
that, takingg: V→E with g5fuV , then* j 1g@ f (p̄1* v)2b#Þ0, so~2! is false. j

Now, let¹ be a connection inp: E→M , and letEL
¹5EL

¹(p̄1* v) be the density of Lagrangian
energy associated with¹ andL. Then

Theorem 6: The Lagrangian energy function is the unique function in J1E verifying the
following condition: for every sectionf: U,M→E,

~ j 1f!* @EL
¹~p̄1* v!#5~ j 1f!* ~FL* Qhd

¹2L!.

Proof: ~Uniqueness.! Let f and g be two functions verifying this condition. Obviousl
( j 1f)* @( f 2g)(p̄1* v)#50, but 05( j 1f)* @( f 2g)(p̄1* v)#5( f 2g)( j 1f(x))(p̄1* v), for ev-
ery xPU. Hence, (f 2g)( j 1f(x))50, and this impliesf 2g50, because every point inJ1E is in
the image of some sectionj 1f.

~Existence!: From ~24! we obtain

~ j 1f!* ~FL* Qhd
¹2L!5~ j 1f!* @QL1EL

¹~p̄1* v!2L#

5~ j 1f!* @ i ~V!dL1L1EL
¹~p̄1* v!2L#5~ j 1f!* @EL

¹~p̄1* v!#

since (j 1f)* ( i (V)dL)50 ~as can be proved by using expressions in coordinates!. So, the energy
function introduced in Definition 1 satisfies this condition.

j

And this result leads to the following consequence.
Theorem 7: Let (J1E,VL) and (P,Vhd

) be the Lagrangian and Hamiltonian descriptions

a hyper-regular system. Then, the Hamilton variational principle of the Lagrangian formalism
the Hamilton–Jacobi variational principle of the Hamiltonian formalisms are equivalent. That
for every sectionfPGc(M ,E) we have that

E
j 1f

L5E
j 1* f

Qhd
.

Proof: The standpoint is the relation stated in Theorem 6 which, by Lemma 4, is equivale

E
j 1f

EL
¹~p̄1* v!5E

j 1f
~FL* Qhd

¹2L!

therefore, from this equality, and using~24! and ~22!, we obtain

E
j 1f

L5E
j 1f

@FL* Qhd
¹2EL

¹~p̄1* v!#5E
j 1f

QL5E
j 1f

FL* Qhd
5E

FL+ j 1f
Qhd

5E
j 1* f

Qhd
.

j

                                                                                                                



n the

,
regular
3.1 for

e

th

7430 J. Math. Phys., Vol. 41, No. 11, November 2000 Echeverria-Enriquez et al.

                    
It is important to remark the essential role played by the Lagrangian energy function i
proof of this equivalence.

~The above results are generalizations of others in nonautonomous mechanics.43!

4. HAMILTONIAN FORMALISM IN THE RESTRICTED MULTIMOMENTUM BUNDLE
J 1p* . RELATION WITH THE FORMALISM IN P

4.1. Hamiltonian systems

The construction of the Hamiltonian formalism inJ1p* is posed, for the first time, in Ref. 27
and the particular case of Hamiltonian systems associated with hyper-regular and almost-
systems is stated in Ref. 29. The procedure is essentially similar to that developed in Sec.
P. Next we sketch this construction, relating it with the above one inP. As we have proved the
existence of the canonical diffeomorphismC: P→J1p* , we can use it to prove the equivalenc
between the Hamiltonian formalisms inP andJ1p* .

Definition 21: Consider the bundlet̄1: J1p* →M .
(1) A section hm : J1p* →Mp of the projectionm is called aHamiltonian sectionof m.
(2) The differentiable forms

Qhm
ªhm* Q, Vhm

ª2dQhm
5hm* V

are called theHamilton–Cartanm and(m11) formsof J1p* associated with the Hamiltonian
section hm .

(3) The couple(J1p* ,Vhm
) is said to be a Hamiltonian system.

In a local chart of natural coordinates, a Hamiltonian section is specified by alocal Hamil-
tonian function Hhm

PC`(U), U,J1p* , such that Hhm
(xn,yA,pA

n )[(xn,yA,p

52Hhm
(xg,yB,pB

h),pA
n ). The local expressions of the Hamilton–Cartan forms associated withHm

are similar to~11!, but changingHhd
by Hhm

, and pA
n by pA

n .

For Hamiltonian sections ofm, we have a similar result to that in Lemma 2, and so, ifhm
1 , hm

2

are two sections ofm, then

Qh
m
1 2Qh

m
2 5hm

1* Q2hm
2* Q5t1* ~hm

1 2hm
2 ![H ~31!

is a t̄1-semibasicm-form in J1p* .
Definition 22: A t̄1-semibasic formHPVm(J1p* ) is said to be aHamiltonian densityin

J1p* .
It can be written asH5H( t̄1* v), whereHPC`(J1p* ) is theglobal Hamiltonian function

associated withH and v.
If ~31! holds, then the relation between the global Hamiltonian function H associated wiH,

and the local Hamiltonian functionsHh
m
1 , Hh

m
2 associated withhm

1 andhm
2 is H5Hh

m
1 2Hh

m
2 ~in an

open setU!.
In this way we have the analogous result as in Theorem 3.
Theorem 8: The set of Hamilton–Cartan m-forms associated with Hamiltonian sections ofm

is an affine space modelled on the set of Hamiltonian densities in J1p* .
Hence, if (J1p* ,Vhm

) is a Hamiltonian system, we have that every Hamiltonian sectionhm8

Þhm allows us to split globally the Hamilton–Cartan forms as

Qhm
5Qh

m8
2H, Vhm

5Vh
m8
1dH.

The local expressions of these splittings are similar to~14!, but changingHhd8
by Hh

m8
, and pA

n by

pA
n .
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Now, if we have a connection¹ in p: E→M , it induces a linear sectionhd
¹ : P→J1E* of d,

and hence there exists another linear sectionhm
¹ : J1p* →Mp of m given by hm

¹+C215i0+hd
¹

~see Ref. 27 for an alternative definition!. Then, if Q is the canonicalm-form in Vm(Mp), the
forms

Qh
m
¹ªhm

¹* QPVm~J1p* !, Vh
m
¹ª2dQh

m
¹PVm11~J1p* !

are theHamilton–Cartan m and(m11) forms of J1p* associated with the connection¹. Of
course, a characterization ofQh

m
¹ can be stated in the same way as in~16!. The local expression o

these Hamilton–Cartan forms associated with¹ is similar to ~17!.
Therefore, given a connection¹ and a Hamiltonian sectionhm , from the above results we

have that

t1* ~hm
¹2hm!5hm

¹* Q2hm* Q5Qh
m
¹2Qhm

ªHhm

¹

is a Hamiltonian density inJ1p* , which is written as Hhm

¹ 5Hhm

¹ ( t̄1* v), where Hhm

¹

PC`(J1p* ) is theglobal Hamiltonian functionassociated withHhm

¹ andv. Then, the Hamilton–

Cartan forms associated withhm split as

Qhm
5Qh

m
¹2Hhm

¹ , Vhm
5Vh

m
¹1dHhm

¹ .

The local expressions of these splittings are similar to~19!, but changing Hhd

¹ by Hhm

¹ , and pA
n by

pA
n .

If, conversely, we take a connection¹ and a Hamiltonian densityH, then makinghm
¹2H we

obtain a Hamiltonian sectionhm , sinceH: J1p* →Mp takes values inp* LmT* M . Hence
Proposition 17: A couple(hm ,¹) in J1p* is equivalent to a couple~H, ¹! (that is, given a

connection¹, Hamiltonian sections ofm and Hamiltonian densities in J1p* are in one-to-one
correspondence).

Bearing in mind this last result, we have another way of obtaining a Hamiltonian sys
which consists in giving a couple~H, ¹!. In fact

Proposition 18: Let¹ be a connection inp: E→M , and H a Hamiltonian density. There
exists a unique Hamiltonian section hm of m such that

Qhm
5Qh

m
¹2H, Vhm

52dQhm
5Vh

m
¹1dH. ~32!

Concerning field equations, observe that diffeomorphisms inE ~and hence vector fields inE!
can be lifted toJ1p* , for instance, lifting them toP ~see Definitions 15 and 16!, and translating
them toJ1p* using the diffeomorphismC. Hence, for a Hamiltonian system (J1p* ,Vhm

), we
can set the Hamilton–Jacobi variational principle as in Definition 17~but with the formVhm

instead ofVhd
!, and state the same results and comments as in Theorem 4.

Hamiltonian systems inP andJ1p* are equivalent. In fact, as a first result we have
Proposition 19: Let¹ be a connection inp: E→M , andH andH Hamiltonian densities inP

and J1p* , respectively, such thatC* H5H. Then

C* Vh
m
¹5Vhd

¹, C* Vhm
5Vhd

.

Proof: The proof is based in the following fact:

Qh
m
¹5hm

¹* Q5~i0+hd
¹+C!* Q5C* ~i0+hd

¹!* Q5C* Qhd
¹

and the result is immediate. j
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And therefore, as a direct consequence of Propositions 6 and 19, we can set the r
between the Hamiltonian systems inP andJ1p* .

Theorem 9: Every Hamiltonian system(P,Vhd
) is equivalent to a Hamiltonian system

(J1p* ,Vhm
), and conversely.

At this point, we can study the relation between the set of connections¹ in the bundle
p: E→M , and the sets of linear~Hamiltonian! sections of the projectionsm: Mp→J1p* and
d: J1E* →P.

Theorem 10:The map¹°hm
¹ is a bijective affine map between the set of connections in

bundlep: E→M and the set of linear (Hamiltonian) sections of the projectionm: Mp→J1p* or,
what is equivalent, the set of linear (Hamiltonian) sections of the projectiond: J1E* →P.

Proof: Let the projectionm: LmT* E→L1
mT* E/L0

mT* E, and the set of linear sections ofm

G~m!ª$l PL~J1p* ,L1
mT* E!,m+l 5IdJ1p* %

which is an affine bundle modeled on the vector bundle

~J1p* !* ^ L0
mT* E.~p* TM ^ V* ~p! ^ p* LmT* M !* ^ L0

mT* E

5p* T* M ^ V~p! ^ p* LmTM ^ L0
mT* E.p* T* M ^ V~p!.

But this last bundle is just the vector bundle on which the affine bundle of the connection
in p: E→M is modeled. Then the result follows.

Finally, the equivalence with the set of linear~Hamiltonian! sections of the projectiond:
J1E* →P is proved by taking into account that every linear section ofd is associated with a
connection¹, since this linear section defines a linear map fromV* (p) to T* E, and hence a
projectionTE→V(p) ~that is, a connection!.

j

4.2. Hamiltonian system associated with a hyper-regular Lagrangian system

The procedure is analogous to that in Sec. 3.4@see also diagram~7!#. Let (J1E,VL) be a
hyper-regular Lagrangian system, then

Definition 23: Let hm : J1p* →Mp be the section ofm given by

hmªFL̃+FL21

which is a diffeomorphism connecting J1p* andFL̃(J1E) @observe that it is just the inverse ofm

restricted toFL̃(J1E)#. We define the Hamilton–Cartan forms

Qhm
ªhm* Q, Vhm

ªhm* V.

Proposition 20: The Hamilton–Cartan forms satisfy that

FL* Qhm
5QL , FL* Vhm

5VL .

Then(J1p* ,Vhm
) is the (unique) Hamiltonian system associated with the hyper-regular Lagr

ian system(J1E,VL).
Proof: We have the diagram
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Taking into account the commutativity of this diagram, and Proposition 2, we have

FL* Qhm
5FL* hm* Q5FL̃* Q5QL

and the same result follows forVhd
.

Using charts of natural coordinates inJ1p* andMp, and the expression~5! of the Legendre
map, we obtain that the local Hamiltonian functionHhm

representing this Hamiltonian section

Hhm
~xn,yA,pA

n !5FL21* S vn
A ]L

]vn
A2LD 5pA

n FL21* vn
A2FL21* L ~33!

and the local expressions of the corresponding Hamilton–Cartan forms are

Qhm
5pA

n dyA`dm21xn2~pA
n FL21* vn

A2FL21* L!dmx,

Vhm
52dpA

n `dyA`dm21xn1d~pA
n FL21* vn

A2FL21* L!`dmx.

We can construct this Hamiltonian system using connections. Thus, if¹ is a connection inp:
E→M , and hm

¹ is the linear Hamiltonian section ofm associated with¹, following the same
pattern as in Proposition 11, we can prove:

Proposition 21: (1) The m-formFL* Qh
m
¹2QL is p̄1-semibasic and

FL* Qh
m
¹2QL5EL

¹ .

(2) There exists a unique Hamiltonian densityH¹PVm(J1p* ) such that

FL* H¹5FL* Qh
m
¹2QL5EL

¹ . ~34!

Then there exists a function H¹PC`(J1p* ) such thatH¹5H¹( t̄1* v).
H¹ and H¹ are called the Hamiltonian density and the Hamiltonian function associated with
Lagrangian system, the connection¹ and v.

(3) The Hamilton–Cartan forms of Definition 23 split as

Qhm
5Qh

m
¹2H¹5Qh

m
¹2H¹,

~35!
Vhm

52dQhm
5Vh

m
¹1dH¹.

We can obtain this Hamiltonian density using only Hamiltonian sections. In fact
Proposition 22: (1) Consider the Hamiltonian sectionhmªFL̃+FL21, and a connection¹.

Then we have

hm
¹Q2hm* Q5H¹

and hence the splitting (35) holds.
Proof: We have the diagram

The first item is a consequence of the third item of Proposition 3. For the second item, takin
account Definition 8 and~32!, Proposition 2, and~34!, we have
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hm
¹* Q2hm* Q5Qh

m
¹2~FL21!* FL̃* Q5Qh

m
¹2~FL21!* QL5H¹.

Then the result for the Hamilton–Cartan forms follows immediately.
j

Of course, all the results stated in Sec. 3.3 concerning the variational principle an
characterization of critical sections are true, and the local Hamiltonian functionHhm

appearing in
the Hamilton–De Donder–Weyl equations is given by~33!.

Finally, the equivalence between the Hamiltonian formalisms~in P and J1p* ! associated
with a hyper-regular Lagrangian system, and between the Lagrangian formalism and the
tonian formalism inJ1p* is given by the following.

Theorem 11: Let (J1E,VL) be a hyper-regular Lagrangian system. Then

C* Qhd
5Qhm

, C* Vhd
5Vhm

and hence its associated Hamiltonian systems(P,Vhd
) and (J1p* ,Vhm

) are equivalent.
Proof: It is immediate. Observe also that the sections hm and hd are equivalent, by the

commutativity of diagram~7!. j

Observe that, asFL is a diffeomorphism, we also have thatC* H¹5H¹.

4.3. Hamiltonian system associated with an almost-regular Lagrangian system

The procedure is analogous to that in Sec. 3.5@see also diagram~9!#. Now, (J1E,VL) is an
almost-regular Lagrangian system, and the submanifold0 : P�J1p* , is a fiber bundle overE
~andM!. The corresponding projections will be denoted byt0

1: P→E and t̄0
1: P→M , satisfying

that t1+05t0
1 and t̄1+05 t̄0

1.
Taking into account Proposition 5, and following the same pattern as in Propositions 1

can prove that the Lagrangian formsQL andVL areFL-projectable, and then
Definition 24: Given the diffeomorphism h˜

m5m̃21, we define the Hamilton–Cartan forms

Q
h̃m

0
5~ ̃0+h̃m!* Q, V

h̃m

0
5~ ̃0+h̃m!* V.

Proposition 23: The Hamilton–Cartan forms satisfy that

FL0* Q
h̃m

0
5QL , FL0* V

h̃m

0
5VL .

Then(J1p* ,P,V
h̃m

0
) is the (unique) Hamiltonian system associated with the almost-regular

grangian system(J1E,VL).
Proof: In fact, taking into account the commutativity of diagram~9!, and Proposition 2, we

have

FL0* Q
h̃m

0
5FL0* ~ ̃0+h̃m!* Q5~ ̃0+h̃m+FL0!* Q5~ ̃0+FL̃0!* Q5FL̃* Q5QL

and the same result follows forVhm

0 .

j

We can construct this Hamiltonian system using a connection. Thus, let¹ be a connection in
p:E→M , andhm

¹ :1p* →Mp the induced linear section ofm. Let EL
¹PVm(J1E) be the density

of Lagrangian energy associated with¹. Then, as in Proposition 15 we can prove:
Proposition 24: (1) Thep̄1-semibasic m-form FL* Qh

m
¹2QL is FL-projectable and, if

Qh¹
0

50* Qh
m
¹, then
m
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EL
¹5FL* Qh

m
¹2QL5FL0* Qh

m
¹

0
2QL .

(2) There exists a uniquet̄0
1-semibasic formH0

¹PVm(P), such thatFL0* H0
¹5EL

¹ . Then,

there is a function H0
¹PC`(P) such thatH0

¹5H0
¹( t̄0

1* v). Obviously we have thatFL0* H0
¹

5EL
¹ . H0

¹ and H0
¹ are called theHamiltonian densityand theHamiltonian functionassociated

with the Lagrangian system, the connection¹ and v.
(3) The Hamilton–Cartan forms of Definition 24 split as

Q
h̃m

0
50* Qh

m
¹2H0

¹5Qh
m
¹

0
2H0

¹ ,

~36!
V

h̃m

0
52dQ

h̃m

0
50* Vh

m
¹1dH0

¹5Vh
m
¹

0
1dH0

¹ .

We can obtain this Hamiltonian system in the following equivalent way.
Proposition 25: Consider the map h˜

m , and a connection¹. Then hm
¹ induces a map h˜

m
¹ :

P→P̃, defined by the relatioñ0+h̃m
¹5hm

¹+0 . Therefore

~ ̃0+h̃0
¹!* Q2~ ̃0+h̃d!* Q5H0

¹

and hence the splitting (36) holds.
Proof: We have the diagram

The first part of the statement is a consequence of the fact thatm̃ is a diffeomorphism. For the
second part, taking into account the commutativity of this diagram, and bearing in mind th
item of Proposition 24 and Proposition 2, we have

FL0* H0
¹5FL0* @~ ̃0+h̃0

¹Q2~ ̃0+h̃d!* Q#5FL0* Qh
m
¹

0
2FL0* h̃m* 0* Q

5FL0* Qh
m
¹

0
2FL̃Q5EL

¹1QL2QL5EL
¹

and the result follows as a consequence of the above Proposition. The last statement is imm
j

Of course, the result stated in~29! concerning to the variational principle and the charact
ization of critical sections holds in the same way.

Finally, the equivalence between the Hamiltonian formalisms~in P and J1p* ! associated
with an almost-regular Lagrangian system, and between the Lagrangian formalism and the
tonian formalism inJ1p* is given by the following.

Theorem 12: Let (J1E,VL) be an almost-regular Lagrangian system. Then

C0* Q
ĥd

0
5Q

h̃m

0
, C0* V

ĥd

0
5V

h̃m

0

and hence its associated Hamiltonian systems(P,P,V
ĥd

0
) and (J1p* ,P,V

h̃m

0
) are equivalent.

Proof: First, we have the following relation:

Qh
m
¹

0
50* Qh

m
¹50* C* Qhd

¹5~C+0!* Qhd
¹5~ê0+C0!* Qhd

¹5C0* ê0* Qhd
¹5C0* Qhd

¹
0

.
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Furthermore, asFL05C0+FL0 , we have that

EL
¹5FL0* H0

¹5FL0* H0
¹5~C0+FL0!* H0

¹5FL0* C0* H0
¹⇔C0* H0

¹5H0
¹

sinceFL0 is a submersion.~In the same wayC0* H0
¹5H0

¹ .! Therefore,C0* Q
ĥd

0
5Q

h̃m

0
, and hence

C0* V
ĥd

0
5V

h̃m

0
.

Observe also that the sectionh̃m of m and the family of sectionsĥd of d ~given in Proposition
16! are equivalent, by the commutativity of diagram~9!.

j

5. EXAMPLES

5.1. Nonautonomous mechanics

The jet bundle description of time-dependent mechanical systems~see, for instance, Refs. 4
and 50! takesM5R, andE5R3Q, whereQ is a N-dimensional manifold~and thusp: R3Q
→R is a trivial bundle!. Then J1E5R3TQ. Natural adapted coordinates are denoted
(t,qi ,v i). Lagrangian densities are writtenL5L dt, whereLPC`(R3TQ) is a time-dependent
Lagrangian function.

Next we will identify the different multimomentum bundles. First observe that, asTM
.R3R, we obtain

LmT* M[L1T* M.R3R* .

Therefore we have
Generalized multimomentum bundle:Observe that

p* TM5p* ~R3R!.~R3Q!3R~R3R!.R3Q3R,

T* E5T* ~R3Q!5T* R3T* Q,

p* LmT* M.R3Q3R* .Q3T* R,

and hence

J1E*ªp* TM3ET* E3Ep* LmT* M

5~R3Q3R!3 ~R3Q!~T* R3T* Q!3 ~R3Q!~Q3T* R!

.~R3Q3R!3 ~R3Q!~T* R3T* Q!3 ~R3Q!~~R3Q!3R* !.T* R3T* Q.T* ~R3Q!.

Notice that dimJ1E* 52N12.
Reduced multimomentum bundle:As V* (p)5R3T* Q, we have that

Pªp* TM3EV* ~p!3Ep* LmT* M

5~R3Q3R!3 ~R3Q!~R3T* Q!3 ~R3Q!~Q3T* R!

.~R3Q3R!3 ~R3Q!~T* R3T* Q!3 ~R3Q!~~R3Q!3R!.R3T* Q

and dimP52N11.
Extended multimomentum bundle:Now we have

MpªL1
mT* E[L1

1T* E.T* E.T* ~R3Q!.T* R3T* Q

with dimMp52N12.
Restricted multimomentum bundle:Observe thatL0

mT* E[L0
1T* E5(R3Q)3R* and then
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J1p*ªMp/L0
mT* E.~T* R3T* Q!/~R3Q3R* !.R3T* Q

with dimJ1p* 52N11.
Comments:
It is interesting to point out that in the Hamiltonian formalism of nonautonomous mecha

P.R3T* Q andJ1p* .R3T* Q make the canonical diffeomorphism between the general
and the extended multimomentum bundle evident. They correspond to the so-calledextended
momentum phase spaceof the symplectic formulationof time-dependent systems.47,51,52 As a
consequence, the generalized and the~first! extended Legendre maps are really the same.

The case ofsingular (almost-regular) time-dependent mechanical systemshas been exten
sively studied in this context in Refs. 46 and 53.

5.2. Electromagnetic field „with fixed background …

In this caseM is space-time endowed with a semi-Riemannian metricg, E5T* M is a vector
bundle overM, andp: T* M→M denotes the natural projection. Sections ofp are the so-called
electromagnetic potentials. Using the linear connection associated with the metricg, one assures
that J1E→T* M is a vector bundle and, sinceVE5p* T* M , we have J1E5p* T* M
^ Ep* T* M .

Let f: M→T* M be a section ofp. Then j 1f: M→p* T* M3p* T* M is just j 1f5Tf
~observe thatj 1f is a metric tensor onM!. Now, consideringȳPJ1E, andf: M→T* M being a
representative ofȳ; we have that the Lagrangian density is

L5 1
4 idfi2 dVg ,

wherei i denotes the norm induced by the metricg on the 2-forms onM, anddVg is the volume
element associated with the metricg. Observe thatdf is the skew-symmetric part of the matri
giving Tf or, in other words, the skew-symmetric part of the metricTf on M.

For simplifying calculations, we takeM5R3 and the metric is2 1 1. ThenE5R33R3 and

J1E5~R33R3!3~R33R3* !

with dimJ1E515. Coordinates inJ1E are usually denoted (xn,Aj ,vn
j ), with n, j 50,1,2. The

coordinates (A1,A2) constitute the vector potential andA0 is the scalar potential. Then, locall
f5fhdxh, and thereforej 1f5(]fh /]xn)dxn

^ dxh. It is usual to writef in the form A
5d j nAj dxn anddA5d j hvn

j dxh`dxn ~d j h is theKronecker’s delta!. Then, in natural coordinate
we have the following expression for the Lagrangian function:

L5 1
4 @~v1

22v1
2!2~v0

22v2
0!22~v0

12v1
0!2#.

Obviously, this is a singular Lagrangian, since its Hessian matrix

]2L
]vn

i ]vh
j 5

1

2 1
0 0 0 0 0 0 0 0 0

0 21 0 1 0 0 0 0 0

0 0 21 0 0 0 1 0 0

0 1 0 21 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 21 0

0 0 1 0 0 0 21 0 0

0 0 0 0 0 21 0 1 0

0 0 0 0 0 0 0 0 0

2
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is singular~its rank is equal to 3!.
Next we study the several Legendre maps associated with this system. As we know,

them leave the coordinates (xn,Aj ) invariant, thus we will write the relations only for the mult
momentum coordinates.

Generalized Legendre map:The generalized multimomentum bundle is

J1E* 5~R33R3* !3~R3
^ ~R3

^ R3* ! ^ L3R3* !.

From ~1! we have

FL̂* p0
050, FL̂* p1

052 1
2 ~v0

12v1
0!, FL̂* p2

052 1
2 ~v0

22v2
0!,

FL̂* p0
15 1

2 ~v0
12v1

0!, FL̂* p1
150, FL̂* p2

152 1
2 ~v2

12v1
2!,

FL̂* p0
25 1

2 ~v0
22v2

0!, FL̂* p1
25 1

2 ~v2
12v1

2!, FL̂* p2
250,

and for the additional multimomentum coordinates@ph
n in ~1!#

FL̂* p̂0
05 1

2 ~v0
1~v0

12v1
0!1v0

2~v0
22v2

0!!, FL̂* p̂1
05 1

2 ~v1
1~v0

12v1
0!1v1

2~v0
22v2

0!!,

FL̂* p̂2
05 1

2 ~v2
1~v0

12v1
0!1v2

2~v0
22v2

0!!, FL̂* p̂0
152 1

2 ~v0
0~v0

12v1
0!1v0

2~v2
12v1

2!!,

FL̂* p̂1
152 1

2 ~v1
0~v0

12v1
0!1v1

2~v2
12v1

2!!, FL̂* p̂2
152 1

2 ~v2
0~v0

12v1
0!1v2

2~v2
12v1

2!!,

FL̂* p̂0
252 1

2 ~v0
0~v0

22v2
0!2v0

1~v2
12v1

2!!, FL̂* p̂1
252 1

2 ~v1
0~v0

22v2
0!2v1

1~v2
12v1

2!!,

FL̂* p̂2
252 1

2 ~v2
0~v0

22v2
0!2v2

1~v2
12v1

2!!.

We have the Hamiltonian constraints

ĵ1[p0
050, ĵ2[p1

150, ĵ3[p2
250,

ĵ4[p1
01p0

150, ĵ5[p2
01p0

250, ĵ6[p2
11p1

250,

and the additional ones

ĵ7[p0
2p1

2~ p̂0
01p̂1

122~ p̂0
1!2!)1~p0

2!2p̂0
11~p1

2!2p̂1
01p0

1~p1
2p̂1

22p0
2p̂0

2!50,

ĵ8[p0
1p1

2~ p̂0
01p̂2

222~ p̂0
2!2!)1~p0

1!2p̂0
21~p1

2!2p̂2
01p0

2~p1
2p̂2

12p0
1p̂0

1!50,

ĵ9[p0
1p0

2~ p̂1
12p̂2

222~ p̂1
2!2!)1~p0

2!2p̂2
12~p0

1!2p̂1
21p1

2~p0
2p̂2

02p0
1p̂1

0!50,

which define locally the submanifoldP̂ in J1E* .
Observe that dimP̂5dimJ1E, as rankFL̂* is maximal. Then, taking into account the com

mutativity of diagram~9!, we can conclude that, for this system, the degeneracy is on the fibe
the projectiond.

Reduced Legendre map:The reduced multimomentum bundle is

P5~R33R3* !3~R3
^ R3

^ L3R3* !.

For the reduced Legendre map, from~2! we obtain
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FL* p0
050, FL* p1

052 1
2 ~v0

12v1
0!, FL* p0

252 1
2 ~v0

22v2
0!,

FL* p0
15 1

2 ~v0
12v1

0!, FL* p1
150, FL* p2

152 1
2 ~v2

12v1
2!,

FL* p0
25 1

2 ~v0
22v2

0!, FL* p2
25 1

2 ~v2
12v1

2!, FL* p2
250

~FL is a submersion onto its image, and hence the system is almost-regular!.
Now we have the Hamiltonian constraints

j1[p0
050, j2[p1

150, j3[p2
250,

j4[p1
01p0

150, j5[p2
01p0

250, j6[p2
11p1

250,

which define locally the submanifoldP in P. Observe that, as these constraints are condition
skew-symmetry, we have that

P5FL~J1E!5p* ~A~R3! ^ L3~R3* !!,

whereA(R3) denotes the bundle whose sections are the 2-contravariant skew-symmetric
fields onR3. Note also thatP̂ is not diffeomorphic toP.

First extended Legendre map:The extended multimomentum bundle is

Mp5~R33R3* !3L1
3~R33R3* !.

From ~4! we obtain that

FL̂* p0
050, FL̂* p1

052 1
2 ~v0

12v1
0!, FL̂* p2

052 1
2 ~v0

22v2
0!,

FL̂* p0
15 1

2 ~v0
12v1

0!, FL̂* p1
150, FL̂* p2

152 1
2 ~v2

12v1
2!,

FL̂* p0
25 1

2 ~v0
22v2

0!, FL̂* p1
25 1

2 ~v2
12v1

2!, FL̂* p2
250,

and the additional relation

FL̂* p5 1
2 @~v2

12v1
2!22~v0

22v2
0!2

2 ~v0
12v1

0!2#[22L.

The corresponding Hamiltonian constraints are

x̂1[p0
050, x̂2[p1

150, x̂3[p2
250,

x̂4[p1
01p0

150, x̂5[p2
01p0

250, x̂6[p2
11p1

250,

and the additional one

x̂7[p12~p1
2!222~p0

2!222~p0
1!250.

All of them define locally the submanifoldP̂ in Mp.
Second extended Legendre map:From ~4! we obtain that

FL̃* p0
050, FL̃* p1

052 1
2 ~v0

12v1
0!, FL̃* p2

052 1
2 ~v0

22v2
0!,

FL̃p0
15 1

2 ~v0
12v1

0!, FL̃* p1
150, FL̃* p2

152 1
2 ~v2

12v1
2!,

FL̃* p0
25 1

2 ~v0
22v2

0!, FL̃* p1
25 1

2 ~v2
12v1

2!, FL̃* p2
250,
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and the additional relation

FL̃* p52 1
4 @~v2

12v1
2!22~v0

22v2
0!22~v0

12v1
0!2#[2L

and the Hamiltonian constraints are now

x̃1[p0
050, x̃2[p1

150, x̃3[p2
250,

x̃4[p1
01p0

150, x̃5[p2
01p0

250, x̃6[p2
11p1

250,

and the additional one

x̃7[p1~p1
2!222~p0

2!22~p0
1!250.

All of them define locally the submanifoldP̃ in Mp. Note that the last constraint identifies th
extra coordinatep with the Hamiltonian function which, for this system, isH52 1

4 ((p1
2)2

2(p0
2)22(p0

1)2).
Restricted Legendre map:The restricted multimomentum bundle is

J1p* 5~R33R3* !3@L1
3~R33R3* !/L0

3~R33R3* !#.

From ~5! we obtain

FL* p0
050, FL* p1

052 1
2 ~v0

12v1
0!, FL* p2

052 1
2 ~v0

22v2
0!,

FL* p0
15 1

2 ~v0
12v1

0!, FL* p1
150, FL* p2

152 1
2 ~v2

12v1
2!,

FL* p0
25 1

2 ~v0
22v2

0!, FL* p1
25 1

2 ~v2
12v1

2!, FL* p2
250.

Hence we obtain the following set of Hamiltonian constraints:

x1[p0
050, x2[p1

150, x3[p2
250,

x4[p1
01p0

150, x5[p2
01p0

250, x6[p2
11p1

250,

which define locally the submanifoldP in J1p* .
Observe that, for this example,

rankFL* 5rankFL̂* 5rankFL̃* 5rankFL*

and the submanifoldsP, P, P̂, andP̃ are, in fact, diffeomorphic.

6. CONCLUSIONS

We have studied the Hamiltonian formalism for first-order classical field theories in
context of multisymplectic manifolds, taking different choices of multimomentum bundle
phase spaces, in particular the bundlesP andJ1p* .

First we have reviewed the construction of these and other auxiliary multimomentum bu
~J1E* andMp!, as well as the definition of suitable Legendre maps when all these bundle
thought of, in a certain sense, as the dual bundles of a Lagrangian system (J1E,VL). The key
result is the existence of a canonical diffeomorphism betweenP andJ1p* ~see Sec. 2.2!.

In order to state the Hamiltonian formalism onP and J1p* , some additional geometric
element is needed for obtaining theHamilton–Cartan formsfrom the canonical forms whichJ1E*
andMp are endowed with. In particular, we can take sections of the projectionsd:J1E* →P and
m: Mp→J1p* ~which are calledHamiltonian sections, and are the elements carrying the ‘‘phys
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cal’’ information in this construction!, which allows us to pull-back the canonical forms fro
J1E* andMp to P andJ1p* , respectively. These are the Hamilton–Cartan forms which de
the Hamiltonian system. Hamiltonian sections are associated withlocal Hamiltonian functions,
which appear explicitly in the local expression of the corresponding Hamilton–Cartan forms~see
Secs. 3.1 and 4.1!.

A relevant result is that different choices of Hamiltonian sections ofd may lead to the same
Hamilton–Cartan forms inP, and this allows us to establish an equivalence relation in the s
sections of the projectiond. Then, using the diffeomorphismC betweenP andJ1p* , it is proved
that there is a one-to-one correspondence between sections ofm and classes of equivalent sectio
of d. Therefore, the Hamilton–Cartan forms inP andJ1p* areC-related and hence, Hamiltonia
systems inP andJ1p* are equivalent~see Secs. 3.1 and 4.1!. Furthermore, another one-to-on
correspondence exists between the set of connections in the bundleE→M , and the set of linear
sections of the respective projectionsd andm ~see Secs. 3.2 and 4.1!.

The difference between two Hamilton–Cartanm-forms defined by Hamiltonian sections is
semibasicm-form which is called aHamiltonian density. Hence the set of Hamiltonian–Carta
forms can be thought of as an affine space modelled on the module of Hamiltonian densiti
a particular case, Given a connection,~classes of! Hamiltonian sections and Hamiltonian densiti
are in one-to-one correspondence. As a consequence of this fact, a Hamiltonian system can
constructed starting from a Hamiltonian density and a connection~see Secs. 3.2 and 4.1!.

The field equations of the Hamiltonian formalism can be derived from the so-c
Hamilton–Jacobi variational principle. Different but equivalent ways of characterizing the critic
sections by means of the Hamilton–Cartan forms are shown. In particular, in natural coord
of the multimomentum bundlesP or J1p* , these sections are obtained as solutions of a lo
system of first-order partial differential equations, which are known as theHamilton–De Donder–
Weyl equations. Nevertheless, as the Hamiltonian function appearing in the local expression
Hamilton–Cartan form is local, these equations are not covariant. Then, for obtaining a
covariant equations, we must introduce a Hamiltonian density, and so a global Hamiltonian
tion ~see Sec. 3.3!.

The question of associating a Hamiltonian system to a Lagrangian one is also analyze
in thehyper-regularand thealmost-regularcases. We can define this Hamiltonian system in th
equivalent ways~see Secs. 3.4, 3.5, 4.2, and 4.3!. In particular,

~a! Using a natural Hamiltonian section, which is defined using the Legendre maps
obtaining the Hamilton–Cartan forms. These forms are related to the Poincare´–Cartan forms of
the Lagrangian formalism, through the Legendre map.

~b! Using a connection, thedensity of Lagrangian energyof the Lagrangian formalism can b
defined. Then, we construct a Hamiltonian density as the only semibasicm-form which is related
to it by means of the suitable Legendre map.

~c! This last Hamiltonian density can be obtained from a connection and the above n
Hamiltonian section. In this case, the extended Legendre maps must also be used, and in
lar, for the construction in the reduced multimomentum bundleP, both extended Legendre map
are needed~in the hyper-regular and in the almost-regular cases!. This fact would justify the
introduction of two extended Legendre maps.

As an additional result, in the hyper-regular case, the equivalence between the Lagrang
the Hamiltonian formalism is proved from a double point of view: showing the equivale
between the sections solution of the Lagrangian and Hamiltonian problems, and provin
equivalence of the Lagrangian and Hamiltonian variational principles. This equivalence is
partially proved in the almost-regular case~see Sec. 3.6!.
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APPENDIX: GEOMETRICAL STRUCTURES IN FIRST-ORDER JET BUNDLES

~See Refs. 1, 38 and 40.!
Let p:E→M be a fiber bundle~dim M5m, dimE5N1m!, andp1:J1E→E the 1-jet bundle

of local sections ofp, which is also a differentiable bundle onM with projection p̄15p. If
(xn,yA) ~with n51,...,m; A51,...,N! is a local system of coordinates adapted to the bun
p:E→M , then we denote by (xn,yA,vn

A) the local system of coordinates induced inJ1E.
Let f:M→E be a section ofp, xPM andy5f(x). Thevertical differentialof the sectionf

at the pointyPE is the map

dy
vf: TyE → Vy~p!

u ° u2Ty~f+p!u.

Then, consideringȳPJ1E with ȳ°
p1

y°
p

x andūPTȳJ
1E. Thestructure canonical 1-formof J1E,

denoted byu, is defined by

u~ ȳ;ū!ª~dy
vf!~Tȳp

1~ ū!!,

wheref is a representative ofȳ. Its expression in a natural local system isu5(dyA2vn
A dxn)

^ (]/]yA). u is an element ofV1(J1E) ^ J1EG(J1E,p1* V(p)); then it can be thought of as
C`(J1E)-linear mapu:G(J1E,p1* V(p))* →V1(J1E).

Consider the canonical isomorphismSȳ :Tp̄1( ȳ)
* M ^ Vp1( ȳ)(p)→Vȳ(p

1) which consists in as-
sociating to an elementa ^ vPTp̄1( ȳ)

* M ^ Vp1( ȳ)(p) the directional derivative inȳ with respect to
a ^ v. Taking into account thata ^ v acts inJy

1E by translation, we have

Sȳ~a ^ v !ªDa ^ v~ ȳ!: f ° lim
t→0

f ~ ȳ1t~a ^ v !!2 f ~ ȳ!

t

for f PC`(Jy
1E). Then we have the following isomorphism ofC`(J1E)-modules:

S: G~J1E,p̄1* T* M ^ p1* V~p!!→G~J1E,V~p1!!

which is called thevertical endomorphismS. @G(A,B) denotes the set of sections of the projecti
A→B#. Notice thatSPG(J1E,(p1* V(p))* ^ p̄1* TM) @where all the tensor products are o
C`(J1E)#. Then, anothervertical endomorphismV arises from the natural contraction between t
factor G(J1E,(p1* V(p))* ) of S and the factorG(J1E,p1* V(p)) of u:

V5 i ~S!uPV1~J1E! ^ G~J1E,V~p1! ^ p̄1* TM!,

so it is a morphism

V: G~J1E,V* ~p1! ^ p̄1* T* M !→V1~J1E!

S can also be thought of as a morphism

S: G~J1E,V* ~p1! ^ p̄1* T* M !→G~J1E,~p̄1* V~p!!* !.

As every connection¹ on p:E→M gives an injection¹v:G(J1E,(p̄1* V(p))* )�V1(J1E), then
it makes sense to define

S¹
ª¹v+S: G~J1E,V* ~p1! ^ p̄1* T* M !→V1~J1E!.

As a consequence of the foregoing, the operationS¹2V is meaningful.
In a natural system of coordinates the local expressions of all these elements are
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S5zA
^

]

]vn
A ^

]

]xn ,

V5~dyA2vn
A dxn! ^

]

]vh
A ^

]

]xh ,

S¹5~dyA2Gn
A dxn! ^

]

]vh
A ^

]

]xh ,

where $zA% is the local basis ofG(J1E,p1* V(p))* which is dual of$]/]yA%, and Gn
A are the

component functions of the connection¹.
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Kinetic foundation of extended irreversible
thermodynamics

M. Chen
Vanier College, 821 St. Croix Avenue, St. Laurent, Quebec H4L 3X9, Canada
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In this paper we investigate the kinetic foundation of extended irreversible thermo-
dynamics via the moment method. First we consider the construct of the 1-particle
distribution functionf in terms of its moments by maximizing the entropy density
function. We then projectf from its L2 space onto the local thermodynamic vari-
ablesz5(z1,...,zN) in the thermodynamic base spaceB̂N . Thus instead of the
Boltzmann equation we consider a set of evolution equations ofz in B̂N . Second,
we formulate the laws of thermodynamics governing the variablez in B̂N . These
laws exhibit an intrinsic geometric structure of thermodynamics in the setting of
contact geometry. Finally, as an illustration, we discuss the evolution equations for
the bulk pressurePb , heat fluxQ, and the symmetric traceless tensorpJ corre-
sponding to the viscous and heat conduction irreversible processes. These equations
can be formulated as an abstract inhomogeneous hyperbolic evolution equation. By
employing theC0 semigroup technique, we discuss the solution of the evolution
equation and its asymptotic behavior. We show that thermodynamic stability con-
dition of the system implies asymptotic dynamical stability of the solution and vice
versa. © 2000 American Institute of Physics.@S0022-2488~00!00711-8#

I. INTRODUCTION

A rigorous derivation of nonlinear irreversible thermodynamics@extended irreversible ther
modynamics~EIT!# has been a challenging problem in the past.1 Several different approaches t
this problem have been proposed so far, particularly, the Grad’s moment method2 and the modi-
fied moment method by Eu.3 However, a complete theory on this subject is still lacking. Rece
Grmela and Jou4 proposed an interesting theory based on the concept of two levels of descri
where kinetic theory is described by the nonlinear Onsager–Casimir equation5 in the fast time
scale, while time evolution of the thermodynamic variables, such as the hydrodynamic equ
are described in a slow time scale. It is well known in probability theory that there is an inti
relation between the probability density function and its moments. From this point of view
moment method appears to be an appropriate setting for EIT in terms of the Boltzmann eq
The main objective of this paper is to examine the kinetic foundation of EIT in terms of
moment method. First we construct the 1-particle distribution function in terms of its momen
maximizing the entropy density function according to its definition in kinetic theory. The m
mization procedure is carried out under the constraints given by the definitions of the therm
namic variablesz ~moments off !. The evolution equations ofz can be obtained from the Boltz
mann equation. If we retain the definitions of entropy density function and entropy cu
function in kinetic theory, then by the dynamical equations ofz we can obtain an equatio
analogous to the entropy balance equation. Next we formulate the thermodynamic laws gov
the thermodynamic variablesz. Subsequently we obtain a thermodynamic entropy balance e
tion. This equation is identical to the one obtained in kinetic theory. Since the dynamical equ
of z play an important role in the formulation of EIT, particularly the solvability of these equat
and their asymptotic behaviors, finally we consider the dynamical equations of the fluxes pro
74450022-2488/2000/41(11)/7445/13/$17.00 © 2000 American Institute of Physics
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by Jou, Casas-Vazquez, and Lebon in their celebrated theory of EIT.1 So far, the asymptotic
behavior of these fluxes and their dynamical stability have not been investigated in the lite

Consider a system of molecules inr components contained in a region ofR3 with volumeV,
where no chemical reactions take place. Letf a be the one-particle distribution function of mo
lecular speciesa at space–time (r ,t) with molecular velocityva . The Boltzmann equation for the
system can be written as

] t f a1va•¹ f a5(
b

C~ f a , f b!, ~1!

whereC( f a , f b) is the Boltzmann collision integral.
Let A be a function of (r ,va ,t). For convenience we introduce the notation

^A&5E A~r ,va ,t !dva .

Traditionally the entropy densitys, entropy currentJs , and entropy productions, respectively,
are defined by

rs~r ,t !52(
a

^ f a~ ln f a21!&, ~2!

Js~r ,t !52(
a

^caf a~ ln f a21!&, ~3!

s~r ,t !52(
a,b

^C~ f a , f b!ln f b&. ~4!

Here we have set the Boltzmann constantk51. In ~2!–~4!, r5(ara with ra as the number
density of speciesa, ca5va2u is the pecular velocity, andu is the hydrodynamic velocity.

By ~1!–~4! we can easily obtain the following results:

rdts1“"Js2s52(
a

K F] t f a1va•¹ f a2(
b

C~ f a , f b!G ln f aL ,

s>0; dt5] t1u"“. ~5!

It is evident that the entropy balance equationrdts1“"Js2s50 is valid only if f a satisfies the
Boltzmann equation. The entropy balance equation together with the conditions>0 are usually
considered as the statistical expression of the second law of thermodynamics. So fars, Js , ands
are functions of (r ,t). In order to study irreversible thermodynamics,s, Js , and s must be
expressed as functions of the thermodynamic variables. Thus we define

ra5^maf a&, ca5rar21, ~6!

ru5(
a

^mavaf a&, ~7!

re5(
a

K 1

2
maca•caf aL , ~8!

rf̂a,i
(n)5fa,i

(n)5^ f aha,i
(n)&. ~9!
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Hereca is the molar fraction of speciesa, e is the internal energy density, and$ha,i
(n)% is a set of

tensor Hermite polynomials constructed by Eu.3 Note thatha,i
(n) ,i 5( i 1 ,i 2 , . . . ,i n), 1< i k<3, is a

tensor of ordern as well as a polynomial ofca of degreen. Furthermore,ha,i
(n) is a linear

combination of the tensor Hermite polynomialsHa,i
(m) , m<n, constructed by Grad.2 For example,

ha
(0)51, ha,i

(1)5maca , ha,i
(2)5maca•ca2 1

3 Tr~ca•ca! Î ,

and so on, whereT is the local thermodynamic temperature, andÎ is the unit second order tenso
In addition,$ha,i

(n)% also satisfies the orthogonality condition as$Ha,i
(m)%.

In ~9!, $fa,i
(n)% represents the set of nonconserved variables. For simplicity hereafter we

the tensor indexi and denoteha,i
(n)5ha

(n) and f̂a,i
(n)5f̂a

(n) . Thus Ja5f̂a
(1) is the mass flux,pJ a

5f̂a
(2) is the traceless symmetric stress tensor, andQa5^ f a

1
2 ma@ca•ca25T#ca& is the heat flux

obtained by taking the contraction of the third order tensorf̂a
(3) , etc. We callf̂a

(n) the generalized
fluxes.

By the Boltzmann equation~1! we can obtain the dynamical equations for the conser
variablesr, ca , e, u as well as the nonconserved variablesf̂a

(n) ,

dtr52r“"u, ~10!

rdtca52“"Ja , ~11!

rdtu52¹•PJ , PJ5pJ1~pb1p! Î , ~12!

rdte52¹•Q2pJ :@“u# (2)2pb¹•u2p¹•u, Q5(
a

Qa , ~13!

rdtf̂a
(n)52¹•Ca

(n11)1Za
(n)1La

(n) , ~14!

wherepb is the bulk pressure,p is the hydrostatic pressure,@¹u# (2) is the traceless symmetric pa
of ¹u, and

Ca
(n11)5^ f acaha

(n)&, La
(n)5(

b
^C~ f a , f b!ha

(n)&, Za
(n)5^ f a~] t1ca•¹!ha

(n)&.

Notice thatCa
(n11) is the flux off̂a

(n) . For lower order values ifn, the detailed expressions ofZa
(n)

andLa
(n) can be found in Ref. 3.

It can be proven that the Boltzmann equation~1! is equivalent to the set of dynamical equ
tions ~10!–~14!.6 According to the theories in probability, the one-particle distribution functionf a

can be constructed from its moments$r,ca ,e,f̂a
( i ) ;a51,2,...,r ,i 51,2,...,`%. Thus instead of the

Boltzmann equation~1! we need only consider the dynamical equations for the moments off a .

II. RELATIONSHIP BETWEEN f a AND ITS MOMENTS

We now determine the structure off a in terms of its moments by maximizing the entrop
density function~2! under the constraints~6!–~9!. Let

H~ f 1 ,...,f r !52(
a

^ f a~ ln f a21!&1l1Fr2(
a

^maf a&G1l2Fru2(
a

^mavaf a&G
1l3Fre2(

a
K 1

2
maca•caf aL G1(

a,i
la

( i )@rf̂a
( i )2^ f aha

( i )&#.
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Setting (]H/] f a) 50 for a51,2,. . . ,r , we obtain

ln f a52l1ma2l2mava2l3~ 1
2 maca•ca!2(

i
la

( i )ha
( i ) .

First, l1 , l2 , l3 can be determined by~6!, ~7!, and~8! if we set

r5(
a

^maf a&5(
a

^maf a
(0)&,

ru5(
a

^mavaf a&5(
a

^mavaf a
(0)&,

re5
3

2 (
a

naT5(
a

K 1

2
maca•caf aL 5(

a
K 1

2
maca•caf a

(0)L
with f a

(0) as the local equilibrium distribution function off a . Hencef a can be written as

f a5 f a
(0) expH 2T21(

i
la

( i )ha
( i )1T21Dm̄aJ , ~15!

whereDm̄a5ma(ma2ma
0), ma is the chemical potential of speciesa, andma

0 is the local equi-
librium value ofma .

Equation~15! was first suggested by Eu3 based on heuristic arguments. Note thatf a may not
be integrable. In order to overcome this difficulty we introduce a term2«(ca•ca)n in ~15! as
follows:

f a5 lim
n→`
«→0

f a
(0) expH 2T21(

i
la

( i )ha
( i )1T21Dm̄a2«~ca•ca!nJ . ~16a!

Here« is an infinitesimal real number. The inclusion of the term«(ca•ca)n ensures the integra
bility of f a over the velocity spaceca . Otherwise it has no physical significance in the subsequ
discussions. Now by expanding the exponential term in a power series, and employing the a
theorem of tensor Hermite polynomials in conjunction with the orthogonality conditions of$ha

(n)%,
we can obtain approximate solutions forla

( i ) from constraint~9!. It should be noted thatla
( i ) is a

nonlinear function ofr, ca , e, and f̂a
( i ) . In addition, the norm ofla

( i ) , ila
i i5@*drla

( i )
•la

( i )#1/2

must be bounded andila
i i→0 sufficiently rapidly asi increases so that the series in~16a! is

convergent in norm.7 Equations~10!–~14! form an open system of infinite hierarchy of equation
From a practical point of view, some closure relation must be imposed on the system s
Ca

(n11) can be approximated by the lower order moments. Henceforth we assumeCa
(n11)

5Ĉa
(n) , whereĈa

(n) is a tensor function of orderm<n. This closure relation in turn implies th
projection off a given by~16a! ontoz5$e,v,ca ,f̂a

( i ) ;a51,2,...,r ; i 51,2,...,n%5(z1,z2,...,zN) in
the thermodynamic spaceB̂N . We can takeN as large as necessary depending on the system u
consideration.

Let

ga
n5 f a

0 expH 2T21(
i 50

n

la
( i )ha

( i )1T21Dm̄a2«~ca•ca!nJ . ~16b!

In view of ~2!, ~3!, and ~16b!, we now define the entropy densitycn and entropy currentJn ,
respectively, by
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rcn52(
a

^ f a~ ln ga
n21!&, Jn52(

a
f aca^ ln ga

n21&.

Then

Tcn5e1pv2(
a

maca1(
a,i

Xa
( i )
•f̂a

( i )1O~«!, ~17!

Jn5T21(
a

FQa2maJa1(
i

Xa
( i )
•Ca

( i 11)G1O~«!, ~18!

where we have setla
( i )5Xa

( i ) .
Now the diffusion flows as well as the higher order tensorial flowsCa

( i ) can also contribute to
the heat flux. Thus we define

Qc5Q2(
a

maJa1(
a,i

Xa
( i )
•Ca

( i 11) ~19!

as the generalized heat flux. ThereforeQc is the net heat flux across the surface enclosing a lo
system with centerr and volume elementdr at any instant of time. In analogy withma we callXa

( i )

the generalized potential conjugate tof̂a
( i ) .

With ~18! and the dynamical equations~10!–~14! we can obtain the following equation:

T21rH dte1pdtv2(
a

madtca1(
a,i

Xa
( i )
•dtf̂a

( i )J 1¹•~QcT
21!5Sd1O~«!, ~20!

where

Sd52T21H Qc•¹ ln T1pJ•@¹u# (2)1pb¹•u1(
a

Ja•¹ma2(
a,i

Ca
( i )
•~¹•Xa

( i )!J
1T21(

a,i
Xa

( i )@Za
( i )1La

( i )#1O~«!. ~21!

From now on we drop the termO(«) in ~17!–~21! since it contains no physical significanc
Notice that¹ ln T, @¹u# (2), ¹ma , and¹•Xa

( i ) are the thermodynamic forces forQc ,pJ ,Ja , and
Ca

( i ) , respectively. ThusSd can be considered as the rate of dissipative energy.
By ~4! and ~16a! the kinetic entropy productions can be expressed as

s5T21(
a,i

Xa
( i )La

( i ) .

Comparing with~21! it is evident thats is contained inSd . However, under some approximation
Sd can be reduced tos, for example, in the theory proposed by Jouet al.,1 or in the linearized
Boltzmann equation.

In the next section we formulate the thermodynamic laws governing the thermodyn
variablesz. We show that~20! indeed is the thermodynamic entopy balance equation andSd is
the thermodynamic entropy production.

III. THERMODYNAMIC LAWS

The local conservation law of the internal energy given by~13! can be rewritten as

rdte52“•Q2pJ :@“u# (2)2rpdtv. ~138!
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The second term on the right-hand side of~138! represents the rate of dissipative energy due
viscous process, and the term2pdtv represents the rate of work due to change of volume. I
evident that~138! does not include contributions of work as well as contributions of dissipa
energy due to diffusion process and the higher order tensorial fluxes. Therefore we must co
~13! in conjunction with~10!, ~11!, and~14!. To this end, we multiply~10! by p, ~11! by ma , and
sum overa, ~14! by Xa

( i ) , and sum overa andi . Adding these results to~13! yields the following
equation equivalent to~13!:

rH dte1pdtv2(
a

madtca1(
a,i

Xa
( i )dtf̂a

( i )J 52“•Qc1Sc , ~22!

where

Sc52H ~pJ1pbÎ !•¹u1(
a

Ja•¹ma2(
a,i

Ca
( i 11)

•~¹•Xa
( i )!J 1(

a,i
Xa

( i )
•~Za

( i )1La
( i )!. ~23!

Define the local rate of change of heat per unit massdtq by

rdtq52¹•Qc ,

and the local rate of dissipative energy by

rdtqd5Sc .

Then ~23! becomes

de5dw1dq1dqd , ~24!

where

dw52pdv1(
a

madca2(
a,i

Xa
( i )df̂a

( i ) ~25!

represents the infinitesimal work. Thus~24! is the local form of the first law of thermodynamic
which governs the relationship among internal energy density, work, heat, and dissipative e
It should be remarked that the expressions appearing in~24! are infinitesimal changes, particularly
d q anddqd are not differential forms.

Next we define the global thermodynamic variables (E,V,Na ,Fa
( i )) by

~E,V,maNa ,Fa
( i )!5E r~e,v,ca ,f̂a

( i )!dr .

Supposef is a function of (r ,t). Let F(t)5*r f (r ,t)dr . Then

dF

dt
5E @] t~r f !1¹•~ur f !#dr5E ~rdt f !dr .

Definep* , ma* , (Xa
( i ))* as well asdQ/dt anddQd /dt, respectively, by

E p~rdtv !dr5p*
dV

dt
,

E ma~rdtca!dr5ma*
dNa

dt
,
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E Xa
( i )~rdtf̂a

( i )!dr5~Xa
( i )!*

dFa
( i )

dt
,

and,

dQ

dt
5E ~rdtq!dr ,

dQd

dt
5E ~rdtqd!dr5E Scdr .

With these definitions~24! becomes

dE5dW1dQ1dQd, ~26!

where

dW52p* dV1(
a

ma* dNa2(
a,i

~Xa
( i )!* dFa

( i ) .

Equation~26! is the first law in global form. With an abuse of notation we definedW as the
work 1-form. Denotex5$E,V,Na ,Fa

( i ) :a51,2,...,r ; i 51,2,...,n% by x5(x1,x2, . . . ,xN). Let u
P@a,b# be an emperical temperature that can be employed to measure the hotness or the c
of a thermodynamic system. The thermodynamic state of a nonequilibrium system can
scribed by (x,u). Set (p* ,2ma* ,(Xa

( i ))* )5(w2 ,w3 ,...,wN) wherewj5wj (x,u) is assumed to be
a C1 function of (x,u). The work 1-formdW can be rewritten as

dW52p* dV1(
a

ma* dNa2(
a,i

~Xa
( i )!* dFa

( i )52(
j >2

wj~x,u!dxj52wjdxj .

Let V5dE2dW be a 1-form in the vector spaceL(B) of differential forms inB with
coordinate coverx5(x1,...,xN). We now formulate the second law in global form as

V`dV50, ~27a!

DQd>0. ~27b!

Note that the inaccessibility condition~27a! ~or Frobenius integrability condition! is equivalent to
the condition8

dV50 for V50. ~28!

On the other hand,DQd represents the change of dissipative energy associated with irreve
processes. We assume thatDQd is semipositive definite and vanishes only at thermodyna
equilibrium. By ~26!, ~27a!, and ~27b! we can prove Kelvin’s principle as well as Clausiu
principle.9 Thus ~27b! is essential in the formulation of the second law.

SinceV`dV50 is equivalent to the conditiondV50 for V50, next we solve the Pfaffian
equationV50 under the conditiondV50, i.e.,] jwk5]kwj for j ,k>2 anduP@a,b#. Thus there
exists aC2 function H defined onB3@a,b# such thatwj52] jH. Let u(x,u)52]uH. Then
V5d(x12H)2udu, and dV52du`du. Now that V`dV52d(x12H)`du`du50, x1

2H must be a function ofu andu. Let x12H5h(u,u). ThenV5dh2udu.
Consider two thermodynamic systems whose thermodynamic states are described by (x1 ,u1)

and (x2 ,u2). Suppose these two systems are in contact with each other without interactio
tween them. After a short period of time the individual system (xi ,u i), i 51,2, and the combined
system (x1 ,u1 ,x2 ,u2) have the same temperatureu. By assumptionV5V11V2 . Hence

dh~u~u1 ,u2!,u!2udu5dh~u1 ,u!1dh~u2 ,u!2~u11u2!du.
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This equation can be solved by setting

u5u11u2 and h~u,u!5h~u1 ,u!1h~u2 ,u!,

whenceh(u,u)5a(u)u, wherea(u) is an arbitrary function ofu. We choosea(u). 0 for all
uP@a,b#.

The Pfaffian equationV5d(a(u)u)2udu50 has a family of integral curves given by

u5ca21~u!expS E a21~u!du D ,

wherec is an arbitrary constant. In order to obtain an integral surface forV50, we considerc as
a new independent variablec5c. Then

u5ca21~u!expS E a21~u!du D5g~u!c,

g~u!5a21~u!expS E a21~u!du D .

It is evident thata(u)g(u)5exp(*a21(u)du) is a monotonically increasing function ofu. There-
fore we define the thermodynamic temperatureT* by

T* ~u!5a~u!g~u!5expS E a21~u!du D . ~29!

But a(u)u5T* (u)c, thus

V5d~T* ~u!c!2udu5T* dc.

If we identify c with the thermodynamic entropyS, then

dS5~T* !21H dE1p* dV2(
a

ma* dNa1(
a,i

~Xa
( i )!* dFa

( i )J ~30!

is the Gibbs 1-form. Thus we have the following:
Proposition 1:Suppose there is no interaction between two thermodynamic systems

they are in contact with each other. Further assume that the individual system as well
combined system, satisfy the inaccessibility conditionV i`dV I50, i 51,2 andV`dV50, where
V5V11V2 . Then there exists a thermodynamic temperatureT* and an entropy functionS
defined onB such thatV5T* dS, wheredS is given by~30!.

Sinceudu5SdT* , thus

dH5dE2T* dS2SdT* 52SdT* 2wjdxj . ~31!

ThereforeH can be identified with the Helmholtz potential function. Finally we remark that
choice ofa(u) as a positive function is guaranteed by Darboux theorem sinceV has rank 2 and
class 2.10

The second law in local form can be formulated as

j`dj50, Sc>0,

wherej5de1pdv2(amadca1(a,iXa
( i )df̂a

( i ) . The Gibbs 1-form in local formulation become
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ds5T21Fde1pdv2(
a

madca1(
a,i

Xa
( i )df̂a

( i )G . ~32!

HereT is the local thermodynamic temperature such thatT* dS5*T(rdts)dr .
In view of ~32!, ~22! can be recast as

rdts5T21~2¹•Qc!1T21Sc52¹•~QcT
21!2T21Qc•¹ ln T1T21Sc

or

rdts1¹•~QcT
21!5Sd ~33!

with Sd52T21Qc•¹ ln T1T21Sc . Therefore~33! is the thermodynamic entropy balance equ
tion identical to~20!, s5cn is the thermodynamic entropy density given by~17!, andSd is the
thermodynamic entropy production.

Notice that we have assumedSd>0 in accordance with~27b!. This assumption is essential i
the proof of Kelvin’s principle and Clausius’ principle. Furthermore, both~20! and ~33! are
independent of the number of moments included in the formulation. We obtain~20! from kinetic
theory, whereas~33! is obtained from thermodynamic considerations. Thus we have establis
kinetic foundation of EIT. Since the kinetic entropy balance equation~5! and the conditions
>0 cannot be guaranteed for approximate solutions of the Boltzmann equation, we aband
definition of s given by ~4! and replace it bySd given by ~33!.

IV. EVOLUTION EQUATIONS OF Pb , Q, AND pI

In Sec. II we constructed the 1-particle distribution functionf a by maximizing the entropy
density function, thereby establishing the one-to-one correspondence betweenf a and its moments.
The time evolution of these moments are described by~10!–~14!. By the definitions of the entropy
density function and entropy current function in kinetic theory together with the dynamical e
tions of the moments, we obtained the kinetic entropy balance equation~20!. In Sec. III we
formulated the thermodynamic laws governing the dynamical equations of the moments. S
quently we obtained the thermodynamic entropy balance equation which is identical to~20! in
kinetic theory. Since the dynamical equations of the moments play a vital role in the formu
of EIT, in this section we investigate the model equations of the bulk pressurepb , heat fluxQ, and
the traceless symmetric stress tensorpJ proposed by Jou, Casas-Vazquez, and Lebon. Particul
we are interested in the existence of solutions, their asymptotic behavior as well as the dyn
stability of these equations. Hence we consider the following:

] tpb5$2~u"“ !pb1t0
21b8jT¹•Q2t0

21p%2t0
21j“"u, ~34!

] tQ5$2~u"“ !Q1t1
21b8lT2¹pb1t1

21blT2¹•pJ2t1
21Q%2lt1

21¹T, ~35!

] tpJ5$2~u"“ !pJ1t2
212hT@¹Q# (2)2t2

21pJ %22ht2
21@¹u# (2), ~36!

wheret0 , t1 , t2 are the relaxation times ofpb , Q, andp̂, respectively,j, l, h are the coefficients
of bulk viscosity, thermal conductivity, and shear viscosity, respectively, andb, b8 are constants.

Equations~34!–~36! can be obtained from~14! for a system of molecules consisting of
single component. Furthermore, by~33! the entropy production can be written asSd

5(zT)21pb
21(lT2)21Q•Q1(2hT)21pJ•pJ . In the theory proposed by Jouet al., the thermody-

namic state is described by~e, v, pb , Q, pJ ! that satisfies~13!, ~10!, ~12!, and~34!–~36!. These
equations form a closed system of partial differential equations. So far this set of equation
been applied extensively to investigate various concrete problems in EIT.1 In this section we study
the asymptotic behavior of~34!–~36!, since this problem has not yet been discussed in the lit
ture.
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Let x5(pb ,Q,pJ ) andX5L2(V)3(L2(V))33(L2(V))5, whereV is a bounded region inR3

with smooth boundary]V. Then~34!–~36! can be rewritten as an abstract inhomogeneous hy
bolic evolution equation

] tx5A~ t !x1 f ~ t !, x~0!5x0PD~A~ t !!, ~37!

where f :t→X is given by f (t)5(2jt0
21

“"u,2lt1
21¹T,22ht2

21@¹u# (2)), and

A~ t !x5F 2~u"“ !pb1b8t0
21jT¹•Q2t0

21pb

2~u"“ !Q1b8t1
21lT2¹pb1bt1

21lT2¹•pJ2t1
21Q

2~u"“ !pJ12bt2
21hT@¹Q# (2)2t2

21pJ
G ~38!

with the domain ofA(t) as

Y5D~A~ t !!5Ŵ2
1~V!3@Ŵ2

1~V!#33@Ŵ2
1~V!#5

5$x5~pb ,Q,pJ !PXu] i pb ,] iQj ,] ip i , jPL2~V! ; i , j 51,2,3, andx50 on ]V%.

Then Ȳ5X, andY is dense inX. Next we define an inner product^ , & and normi•i in X by

^x,x8&5E $~zT!21t0pb
21~lT2!21t1Q•Q1~2hT!21t2pJ•pJ %dr , x,x8PX,

ixi25^x,x&.

In the ensuing discussions we consideru andT as input functions and solve~38! in terms off (t)
outside the regions of phase transitions or shock waves. First we need some assumptions

~ i! u^] ix,] j x&u<O~ ixi4!,

~ ii ! E ~zT!21t0uu"“~pb
2!udr<a supuuu ipbi2,

E ~lT2!21t1uu"“„Q"Q…udr<a supuuu iQi2,

E ~2hT!21t2uu"“~pJ•pJ !udr<a supuuu ipJ i2, a,1,

~ iii ! u^pb ,“"Q&u<k* ipbi2, u^Q,“pb1“•pJ &u<k* iQi2,

u^pJ ,@¹Q# (2)&u<k* ipJ i2, k* ,1.

With these assumptions and laborious calculations we can obtain the following results:
~a! Let t5Max$t0 , t1 , t2%. Supposek1512at supuuu.0. Then^x,A(t)x&<2k1t21ixi2

and,^x,@vI 2A(t)#x&>0 for v<2k1t21.
~b! Let b* 5max(b,b8), a* 5max$supujTu,supulT2u,supu2hTu%, tm5Min$t0 ,t1 ,t2%, and

k8512 (t2/tm) a supuuu22(t2/tm) b* a* k* . Define Ã(t)5I 2l̃A(t), l̃.0. Supposek8.0
and terms ofO(ixi4) are neglected. TheniÃ(t)xi2>(11kt21l̃)2ixi2, wherek is chosen such
that k2,k8 andk ,12 (a/2) t supuuu. Notice that assumption~iii ! will not be required, andk8

becomesk8512at supuuu if t0't1't25t. Since iÂ(t)xi>(j1kt21)ixi with j5l̃21 and
Â(t)5jI 2A(t). ThereforeA(t) is a dissipative operator. FurthermoreÂ(t) has a bounded in-
verseJj5(jI 2A(t))215R(j,A(t)) such thatiR(j,A(t))i5iJji<(j1kt21)21.
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~c! By ~b!, the domain ofJj is X, and JjPB(X,X). Thus Jj is a bounded operator. Thi
implies thatJj is a closed operator. ConsequentlyA(t) is also a closed operator. Similarly we ca
show thatA(t) is bounded.

As a consequence of~a!–~c!, the following proposition is well known in the literature:11

Proposition 2:Suppose assumptions~i!–~iii ! as well as the conditions in~a!, ~b! are satisfied.
Then A(t) is an infinitesimal generator of aC0 semigroupSt(s),s> 0, such thatiSt(s)i
<exp(2kt21s), and St(s)Y,Y. Further, $A(t)% is a stable family of operators with stabilit
constantv52kt21, andY is A(t)-admissible.

Let U(t,s) be a two-parameter evolution system for 0<s<t< t̄ satisfying the following
conditions:

~i! U(t,t)5I ~identity!, U(t,r )U(r ,s)5U(t,s), 0<s<t< t̄ ,
~ii ! (t,s)→U(t,s) is continuous in the uniform operator topology,
~iii ! ] tU(t,s)5A(t)U(t,s), ]sU(t,s)52U(t,s)A(s).

Formally U(t,s) can be expressed asU(t,s)5exp(*s
tA(r)dr). Now that$A(t)% is a stable family,

Y is A(t)-admissible, andA(t) is bounded fromY into X, such that,t→A(t) is continuous in the
B(Y,X) norm, it can be proved12 that there exists a unique evolution systemU(t,s), 0<s<t

< t̄ on X satisfying

~1! iU(t,s)i<exp(v(t2s)), v52kt21,
~2! ] t

1U(t,s)u u t5s5A(s)u, uPY,
~3! ]sU(t,s)u52U(t,s)A(s)u, uPY,

where the derivative from the right in~2! and the derivative in~3! are in the strong sense inX. It
is evident thatU(t,s)Y,Y. If U(t,s)x is continuous inY, and f PC(@s, t̄ #, Y), then the inho-
mogeneous initial value problem

] tx5A~ t !x1 f ~ t !, x~s!5xsPY, ~39!

has a uniqueY-valued solution13 given by

x~ t !5U~ t,s!xs1E
s

t

U~ t,r ! f ~r !dr. ~40!

The first term on the right-hand side of~40! is a transient solution, which is due to the initi
condition and decays exponentially. The second term represents the response to the input f

Next we consider the asymptotic behavior ofx(t). By ~40! we have

ix~ t !i<exp~v~ t2s!! ixsi1E
s

t

exp~v~ t2r !! i f ~r !idr,

and

i] tx~ t !i<iA~ t !i H exp~v~ t2s!! ixsi1E
s

t

exp~v~ t2r !! i f ~r !i drJ 1i f ~ t !i .

As A(t) is bounded, limt→`ix(t)i5 limt→`i] tx(t)i50 provided limt→` i f (t)i50.
Proposition 3:Suppose the assumptions in Proposition 2 are satisfied. Furthermore, a

thatU(t,s) x is continuous inY, f PC( @s, t̄ #,Y), and limt→` i f (t)i50. Then the inhomogeneou
initial value problem~39! has a uniqueY-valued solution given by~40! with the asymptotic
behavior limt→` ix(t)i5 limt→` i] tx(t)i50.
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Finally we consider the relationship between thermodynamic stability and dynamic stabi
the solution of~39!. Note that the entropy balance Eq.~33! for the model Eqs.~34!–~36! can be
written as1

rdts1¹•~QcT
21!5Sd ,

where

Qc5Q1b8pbQ1bQ•pJ ,

Sd5
1

zT
pb

21
1

lT2 Q"Q1
1

2hT
pJ :pJ .

Hence

dS

dt
5E rdtsdr5E Sddr5Jd>0.

According toSd , Jd consists of three functionally independent terms,J15*(zT)21pb
2dr , J2

5*(lT2)21Q"Qdr , andJ35*(2hT)21pJ•pJdr . These are the entropy productions attributa
to the nonconserved fluxespb , Q, andpJ , respectively. Now thermodynamic stability conductio
requires thatd2S/dt2 5 dJd /dt <0. Thus dJ1 /dt <0, dJ2 /dt <0, and dJ3 /dt <0. By the
definition of ixi2 we haved/dt ixi2<0. Let V(x)5ixi2. ThenV is a Lyapunov function. But
f (t)50 at thermodynamic equilibrium, wherex50. Thereforex50 is an equilibrium point of
~39!, which is asymptotically stable.

Proposition 4: If the system described by~34!–~36! is thermodynamically stable, then th
equilibrium point of~39! is dynamically asymptotically stable, and vice versa.

V. CONCLUSION

According to the theories in probability the probability density function can be determine
its moments. In this paper we consider the kinetic foundation of extended irreversible therm
namics via the moment method. First we construct the one-particle distribution functionf a in
terms of its moments by maximizing the entropy density function~2! under the constraints~6!–
~9!. We then projectf a from its L2 space onto the finite dimensional thermodynamic spaceB̂N

with coordinate coverz5(z1,...,zN). These are the local thermodynamic variables. Thus ins
of the Boltzmann equation~1! we have the set of evolution Eqs.~10!–~14! for z. Next we
formulate the thermodynamic laws inB̂N governing the thermodynamic variables. It is interest
to note that the entropy production in kinetic theory is now replaced by the dissipative e
associated with irreversible processes. As a consequence we have the generalized entropy
Eq. ~33!. Finally we consider the evolution equations forpb , Q, andpJ proposed by Jou, Casas
Vazquez, and Lebon. These equations can be recast as an abstract inhomogeneous hy
evolution equation. By employing theC0 semigroup method we discuss the existence of
solution and its asymptotic behavior. We show that thermodynamic stability condition o
system is equivalent to the dynamical asymptotic stability of the solution.
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Kadanoff–Baym equations and non-Markovian Boltzmann
equation in generalized T-matrix approximation

D. Semkat, D. Kremp, and M. Bonitza)

Universität Rostock, Fachbereich Physik, Universita¨tsplatz 3, D-18051 Rostock, Germany

~Received 7 January 2000; accepted for publication 24 February 2000!

A recently developed method@Semkatet al., Phys. Rev. E59, 1557~1999!; Kremp
et al., in Progress in Nonequilibrium Green’s Functions~World Scientific, Sin-
gapore, 2000!, p. 34# for incorporating initial binary correlations into the
Kadanoff–Baym equations~KBE! is used to derive a generalized T-matrix approxi-
mation for the self-energies. It is shown that the T-matrix obtains additional con-
tributions arising from initial correlations. Using these results and taking the time-
diagonal limit of the KBE, a generalized quantum kinetic equation in binary
collision approximation is derived. This equation is a far-reaching generalization of
Boltzmann-type kinetic equations: It self-consistently includes memory effects~re-
tardation, off-shell T-matrices! as well as many-particle effects~damping, in-
medium T-matrices! and spin-statistics effects~Pauli-blocking!. © 2000 Ameri-
can Institute of Physics.@S0022-2488~00!01908-3#

I. INTRODUCTION

Nonequilibrium properties of many-particle systems have traditionally been describe
kinetic equations of the Boltzmann-type. Despite their fundamental character, these equ
have well-known principal shortcomings, e.g.,~i! the short-time behavior (t,tcor—the correlation
time! cannot be described correctly,~ii ! the kinetic or the quasiparticle energy is conserved inst
of the total~sum of kinetic and potential! energy,~iii ! no bound states are contained, and~iv! in the
long-time limit, they yield the equilibrium distribution and thermodynamics of ideal particles

An important generalization are the well-known Kadanoff–Baym equations derived
Kadanoff and Baym,3 and Keldysh.4 However, the original KBE contain no contribution from
initial correlations. Therefore, the KBE are unable to describe the initial stage of the evo
(t0<t<tcor) and the influence of initial correlations which can be important for ultrafast re
ation processes.

To include initial correlations into the KBE, various methods have been used, inclu
analytical continuation of the equilibrium KBE to real times3,5–8 and perturbation theory with
initial correlations.5,9,10 A convincing solution has been presented by Danielewicz,5 who devel-
oped a perturbation theory for a general initial state and derived generalized KBE which tak
account arbitrary initial correlations. Finally, a straightforward and very intuitive method w
does not make use of perturbation theory but uses the equations of motion for the G
functions instead, has been developed in Refs. 1 and 2. While perturbative approaches
stricted to situations where the coupling is weak, our method is valid for arbitrary cou
strength. In particular, it allows to consider systems with strong coupling, such as Cou
systems at low temperatures and/or high density~e.g., metals and dense plasmas! and nuclear
matter, and to include bound states. In Sec. II we briefly recall the main ideas of our method
this, Sec. III is devoted to the application of our approach to the T-matrix approximation. In
IV we derive a non-Markovian Boltzmann equation in binary collision approximation.

a!Electronic mail: Michael.Bonitz@physik.uni-rostock.de
74580022-2488/2000/41(11)/7458/10/$17.00 © 2000 American Institute of Physics
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II. INITIAL CORRELATIONS IN THE KADANOFF–BAYM EQUATIONS

Starting point of our approach is the first equation of the Martin–Schwinger hierarchy11

~Sac2Uac!Gcb5dab6 i\ Vad,ceGce,bd , ~1!

with

Sac5S i\
]

]ta
1

\2¹a
2

2ma
D dac , ~2!

together with an initial condition forGce,bd

Gce,bdu tc5te5tb5td5t0
5Gcb~ t0!Ged~ t0!6Gcd~ t0!Geb~ t0!1Cce,bd~ t0!. ~3!

Summation/integration over repeated indices is implied. Here,C denotes initial binary correlation
in the system, andU is an external potential. The self-energy is defined by

SacGcb56 i\ Vad,ceGce,bd56 i\ Vad,ceH GcbGed6
dGcb

dUde
J . ~4!

Considering Eq.~4! in the limit t5t8→t0 , we get explicitly

E d t̄ Sac~ t0 , t̄ !Gcb~ t̄ ,t0!56 i\ Vad,ce$Gcb~ t0!Ged~ t0!6Gcd~ t0!Geb~ t0!1Cce,bd~ t0!%. ~5!

Since the time integration is performed along the Keldysh-Schwinger contour, only time
contributions ofS survive on the lhs~left-hand side!. The last term on the rhs shows that the
must exist, in addition to the Hartree–Fock contributions~first two terms!, another time-local part
which is related to initial correlations. That means, the self-energy has the structure (Ŝ denotes the
self-energy in the adjoint equation!

Sab5Sab
HF1Sab

C 1Sab
IN , ~6!

Ŝab5Sab
HF1Sab

C 1Ŝab
IN , ~7!

with the time-local terms~here, we give the time arguments explicitly!

Sab
IN ~ t,t8!5Sab

IN ~ t,t0!d~ t02t8!, ~8!

Ŝab
IN ~ t,t8!5Ŝab

IN ~ t0 ,t8!d~ t2t0!. ~9!

The further steps aim at the determination of these initial correlation terms and are ske
here, for details, we refer to Refs. 1 and 2. Inserting~4! into ~1!, one obtains a Dyson–Schwinge
equation fort,t8.t0

~Sac2Uac2Sac!Gcb5dab , ~10!

which can be cast into the formGac
21Gcb5dab . Functional differentiation of this equation wit

respect to the external potentialU yields a Bethe–Salpeter equation fordG/dU. Performing the
same steps for the adjoint equation to~1! as well, a solution fordG/dU, which incorporates initial
binary correlations, is obtained

dGab

dUdc
5GadGcb1Gae

d@Se f
C 1Se f

IN1Ŝe f
IN#

dUdc
Gf b6GaeGc fCe f,ghGgbGhd , ~11!
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whereC has the time structure

Cab,cd~ tatb ,tctd!5Cab,cd~ t0!d~ ta2t0!d~ tb2t0!d~ tc2t0!d~ td2t0!. ~12!

III. GENERALIZED T-MATRIX APPROXIMATION

In the previous section we have obtained a formal decoupling of the Martin–Schw
hierarchy by introduction of the self-energy. Furthermore, our approach shows, that initial
lations can, in principle, be straightforwardly included into this quantity. The next step on the
to a quantum kinetic equation is to choose a suitable approximation for the self-energy. Amo
standard schemes are the random phase approximation~RPA!, describing dynamical screening
and the T-matrix~or binary collision! approximation. The determination ofS in these schemes
without inclusion of initial correlations is well-known. For example, the T-matrix approxima
leads to a non-Markovian Boltzmann equation. In Ref. 12, this equation has been derived
the density operator technique. The nonequilibrium Green’s functions approach, however,
the possibility to derive two-time quantum kinetic equations with their well-known advant
~e.g., they fully include the kinetic and spectral one-particle properties!. One-time equations are
obtained by taking the time-diagonal limit of the two-time equations in a much simpler way
within the density operator technique.

In the following, we will use the nonequilibrium Green’s functions theory to derive a ge
alization of the usual T-matrix approximation, which includes initial binary correlations.

According to Eqs.~4! and ~11!, the self-energy is determined by the functional equations13

Sab56 i\ Vad,ceH dcbGed6debGcd1Gc fGegCf g,bhGhd6Gc f

d@S f b1Ŝ f b
IN#

dUde
J , ~13!

Ŝab56 i\H daeGcd6dacGde1GdgCag, f hGf cGhe6
d@Ŝa f1Sa f

IN#

dUed
Gf cJ Vce,bd , ~14!

Sab
IN 56 i\ Vad,ceH Gc fGegCf g,bhGhd6Gc f

dS f b
IN

dUde
J , ~15!

Ŝab
IN 56 i\H GdgCag, f hGf cGhe6

dŜa f
IN

dUed
Gf cJ Vce,bd . ~16!

Notice especially that, due to the structure of the self-energy, the arguments of the func
derivative in the equations forS and Ŝ are the same in both cases

S1Ŝ IN5Ŝ1S IN5SC1S IN1Ŝ IN5S̃. ~17!

We now introduce an effective two-particle potentialJ by

dS̃ab

dUcd
5

dS̃ab

dGe f

dGe f

dUcd
56 i\ Ja f,be

dGe f

dUcd
, ~18!

and define a generalized T-matrix16

Tab,cd5Jab,cd6 i\ Jae,c fGf gGheTgb,hd6Jae,c fGf gGheCgb,hd . ~19!
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In terms of Feynman diagrams, Eq.~19! reads~the shaded block denotes the initial correlationC)

Comparing Eq.~19! with the solution~11! for dG/dU, one obtains the relation

dS̃ab

dUcd
56 i\ GdeTae,b fGf c . ~20!

So we could identifyT with the correlated part of the two-particle function without the bare ini
correlationC. The equation for the self-energy now takes the form

Sab56 i\ Vad,ce$dcbGed6debGcd1Gc fGegCf g,bhGhd1 i\ Gc fGegTf g,bhGhd%. ~21!

Functional differentiation of this equation yields a relation forJ, which depends onT and on the
quantity dŜ IN/dG[6 i\ F. Inserting this relation into Eq.~19!, and evaluating the functiona
derivativedŜ IN/dG, one arrives at two coupled equations forT andF, where self-energies andJ
have been eliminated. Keeping only the ladder-type terms, these equations can be written

Tab,cd5Vab,cd1Fab,cd1Vab,e fGegGf hCgh,cd1 i\ Vab,e fGegGf hTgh,cd , ~22!

Fab,cd5Cab,e fGegGf hVgh,cd1 i\ Fab,e fGegGf hVgh,cd . ~23!

Equations~22! and ~23! can be solved easily~see the Appendix!, yielding an explicit expression
for T

Tab,cd5Tab,cd1 i\ Tab,e fGegGf hCgh,i j GikGjl Tkl,cd1Tab,e fGegGf hCgh,cd1Cab,e fGegGf hTgh,cd ,

~24!

or, in terms of Feynman diagrams

Here,T denotes the well-known ‘‘ladder T-matrix’’ which obeys

Tab,cd5Vab,cd1 i\ Vab,e fGegGf hTgh,cd , ~25!

The systems~22! and~23! can be regarded as a generalization of the usual T-matrix equation~25!,
where Eq.~24! shows explicitly the corrections which are due to initial correlations.

If we now insert Eq.~24! into the equation for the self-energy~21!, we obtainS in T-matrix
~binary collision! approximation
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Sac56 i\ Tab,cdGdb6 i\ Tab,e fGegGf hCgh,cdGdb6~ i\!2 Tab,e fGegGf hCgh,i j GikGjl Tkl,cdGdb ,

~26!

and analogouslyŜ

Ŝac56 i\ Tab,cdGdb6 i\ Cab,e fGegGf hTgh,cdGdb6~ i\!2 Tab,e fGegGf hCgh,i j GikGjl Tkl,cdGdb ,

~27!

Comparing these results with the predicted structure of the self-energies, Eqs.~6! and~8!, the
time-local contributions are identified as

Sac
IN56 i\ Tab,e fGegGf hCgh,cdGdb , ~28!

Ŝac
IN56 i\ Cab,e fGegGf hTgh,cdGdb , ~29!

or, diagrammatically

Interestingly, the correlation partSC of the self-energy contains an initial correlation contributio
too

Sac
C 56 i\ Tab,cdGdb6~ i\!2 Tab,e fGegGf hCgh,i j GikGjl Tkl,cdGdb , ~30!

and, again in diagrams

With Eqs.~26!–~30! we have found a generalization of the T-matrix approximation. In additio
the usual ladder term, the self-energies contain explicitly contributions of initial correlations

All relations derived so far are valid on the Keldysh–Schwinger contour. In order to obtai
Kadanoff–Baym equations and kinetic equations for the Wigner function, it is now necess
specify the position of the time arguments of Green’s functions on the contour. Then we o
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from the Dyson equation~10! the well-known Kadanoff–Baym equations for the correlati
functionsg: ~in the following, small letters denote quantities on the physical time axis, and
time arguments will be shown explicitly!

E d t̄$sac~ t, t̄ !2sac
HF~ t, t̄ !%gcb

: ~ t̄ ,t8!5 E
t0

t

d t̄$sac
. ~ t, t̄ !2sac

, ~ t, t̄ !%gcb
: ~ t̄ ,t8!1E

t0

t8
sac

: ~ t, t̄ !

3$gcb
, ~ t̄ ,t8!2gcb

. ~ t̄ ,t8!%, ~31!

E d t̄ gac
: ~ t, t̄ !$scb

† ~ t̄ ,t8!2scb
HF~ t̄ ,t8!%5 E

t0

t

d t̄$gac
. ~ t, t̄ !2gac

, ~ t, t̄ !%ŝcb
: ~ t̄ ,t8!1E

t0

t8
gac

: ~ t, t̄ !

3$ŝcb
, ~ t̄ ,t8!2ŝcb

. ~ t̄ ,t8!%. ~32!

The self-energies read in T-matrix approximation

sac
: ~ t,t8!56 i\ tab,cd

: ~ t,t8!gdb
" ~ t8,t !6 i\ tab,cd

C;IN ~ t,t8!gdb
" ~ t8,t !6 i\ tab,cd

IN ~ t,t8!gdb
A ~ t0 ,t !,

~33!

ŝac
: ~ t,t8!56 i\ tab,cd

: ~ t,t8!gdb
" ~ t8,t !6 i\ tab,cd

C;IN ~ t,t8!gdb
" ~ t8,t !6 i\ t̂ ab,cd

IN ~ t,t8!gdb
R ~ t8,t0!,

~34!

sac
HF~ t,t8!56 i\ ~vab,cd6vab,dc!gdb

: ~ t,t8!d~ t2t8!, ~35!

where the initial correlation contributions are given by

tab,cd
IN ~ t,t8!5E d t̄ tab,e f

R ~ t, t̄ !G e f,gh
R ~ t̄ ,t0!cgh,cd~ t0!d~ t02t8!, ~36!

t̂ ab,cd
IN ~ t,t8!5E d t̄ cab,e f~ t0!G e f,gh

A ~ t0 , t̄ !tgh,cd
A ~ t̄ ,t8!d~ t02t !, ~37!

tab,cd
C;IN ~ t,t8!5 i\E d t̄ d t̄̄ tab,e f

R ~ t, t̄ !G e f,gh
R ~ t̄ ,t0!cgh,i j ~ t0!G i j ,kl

A ~ t0 , t̄̄ !tkl,cd
A ~ t̄̄ ,t8!, ~38!

while the greater–less and the retarded–advanced T-matrices obey the equations

tab,cd
: ~ t,t8!5 i\E d t̄ vab,e fG̃e f,gh

R ~ t, t̄ !tgh,cd
: ~ t̄ ,t8!1 i\E d t̄ vab,e fG e f,gh

: ~ t, t̄ !tgh,cd
A ~ t̄ ,t8!,

~39!

tab,cd
R/A ~ t,t8!5vab,cdd~ t2t8!1 i\E d t̄ vab,e fG̃e f,gh

R/A ~ t, t̄ !tgh,cd
R/A ~ t̄ ,t8!, ~40!

where we introduced the abbreviations

G e f,gh
R/A ~ t,t8!5geg

R/A~ t,t8!gf h
R/A~ t,t8!, G e f,gh

: ~ t,t8!5geg
: ~ t,t8!gf h

: ~ t,t8!, ~41!

G̃e f,gh
R/A ~ t,t8!56Q@6~ t2t8!#$G e f,gh

. ~ t,t8!2G e f,gh
, ~ t,t8!%. ~42!

A further important relation is the optical theorem, which follows from Eqs.~39! and ~40!:

tab,cd
: ~ t,t8!5 i\E d t̄ d t̄̄ tab,e f

R ~ t, t̄ !G e f,gh
: ~ t̄ , t̄̄ !tgh,cd

A ~ t̄̄ ,t8!. ~43!
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Equations~31!–~43! represent the Kadanoff–Baym equations in the generalized binary c
sion approximation. Here, the T-matrix contains contributions which are due to initial bi
correlations. These additional terms can be separated from the ‘‘usual’’ T-matrix, and, in pa
lar, do not influence the structure of the Lippmann–Schwinger equation~40!.

IV. NON-MARKOVIAN BOLTZMANN EQUATION

In the previous section, we presented a far-reaching generalization of the usual T-
approximation by incorporating initial correlations. This way, the Kadanoff–Baym equations
become sufficiently general to describe the evolution of a many-particle system on arbitrar
scales, in particular on ultrashort times after an excitation. Their solutions, the two-time co
tion functions, contain a tremendous amount of information on the statistical and dyna
properties of a strongly correlated many-particle system, fully including damping~lifetime! of the
one and two-particle states.14 However, in many cases the information contained in the Wig
distribution is sufficient. Therefore, in the following, we will derive an equation for this funct
i.e., a kinetic equation in a narrow sense.

For this purpose, we consider the Kadanoff–Baym equations@Eqs.~31! and~32!# in the limit
of equal timest5t8 and subtract them from each other. The result is an equation for the d
bution function which reads, in momentum representation~we consider a homogeneous syste
without external forces!

]

]t
f ~p,t !56E

t0

t

d t̄ $s.~p,t, t̄ !g,~p, t̄ ,t !2s,~p,t, t̄ !g.~p, t̄ ,t !

1g,~p,t, t̄ !ŝ.~p, t̄ ,t !2g.~p,t, t̄ !ŝ,~p, t̄ ,t !%

5I ~p,t !1I IC~p,t !. ~44!

This so-called time-diagonal equation is a very general representation of a kinetic equatio
rhs describes the influence of collisions as well as initial correlations on the Wigner distrib
and is, in principle, determined by the exact self-energy and the two-time correlation funct

In order to obtain a closed kinetic equation, two major tasks remain:~i! An approximation for
the self-energies has to be chosen, and~ii ! the reconstruction problem, i.e., the determination
g: as a functional of the Wigner distribution, has to be solved. The first task has already
dealt with in the previous section, with the result being the generalized T-matrix approxim
given by Eqs.~33!–~43!. Let us now consider the reconstruction problem. In order to obtain
functional relationg:5g:@ f #, we use the generalized Kadanoff–Baym ansatz~GKBA! proposed
by Lipavskýet al.15

g:~p,t,t8!56$gR~p,t,t8! f :~p,t8!2 f :~p,t !gA~p,t,t8!%, ~45!

with f ,5 f and f .516 f . For the productsG : then follows:

G 12
:~ t,t8!5G 12

R ~ t,t8!F12
:~ t8!1F12

:~ t !G 12
A ~ t,t8!, ~46!

where we used the abbreviationsF12
: 5 f :(p1) f :(p2) andG125G(p1 ,p2). From Eq.~46! follow

relations between the functionsG R/A and G̃R/A which were defined in Eqs.~41! and ~42!

G̃12
R ~ t,t8!5G 12

R ~ t,t8!N12~ t8!, ~47!

G̃12
A ~ t,t8!52N12~ t !G 12

A ~ t,t8!, ~48!

where we introduced the Pauli blocking factorN12516 f (p1)6 f (p2).
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Now we insert the self-energies in T-matrix approximation, Eqs.~33!–~38!, into the time
diagonal equation@Eq. ~44!#, replacingt: with the help of the optical theorem~43! andG : by
means of the reconstruction ansatz~46!. The result is the collision integralI

I ~p1 ,t !5~ i\!2E dp2

~2p\!3

dp̄1

~2p\!3

dp̄2

~2p\!3E d t̄ d t̄̄ d t̄̄̄

3$tR~p1p2 t,p̄1p̄2 t̄ !Ḡ12
R ~ t̄ , t̄̄ !tA~ p̄1p̄2 t̄̄,p1p2 t̄̄̄ !G 12

A ~ t̄̄̄ ,t !@ F̄12
. ~ t̄̄ !F12

, ~ t̄̄̄ !2F̄12
, ~ t̄̄ !F12

. ~ t̄̄̄ !#

1tR~p1p2 t,p̄1p̄2 t̄ !Ḡ12
A ~ t̄ , t̄̄ !tA~ p̄1p̄2 t̄̄,p1p2 t̄̄̄ !G 12

A ~ t̄̄̄ ,t !@ F̄12
. ~ t̄ !F12

, ~ t̄̄̄ !2F̄12
, ~ t̄ !F12

. ~ t̄̄̄ !#

2 G 12
R ~ t, t̄ !tR~p1p2 t̄,p̄1p̄2 t̄̄ !Ḡ12

A ~ t̄̄ , t̄̄̄ !tA~ p̄1p̄2 t̄̄̄,p1p2 t !@F12
. ~ t̄ !F̄12

, ~ t̄̄ !2F12
, ~ t̄ !F̄12

. ~ t̄̄ !#

2 G 12
R ~ t, t̄ !tR~p1p2 t̄,p̄1p̄2 t̄̄ !Ḡ12

R ~ t̄̄ , t̄̄̄ !tA~ p̄1p̄2 t̄̄̄,p1p2 t !@F12
. ~ t̄ !F̄12

, ~ t̄̄̄ !2F12
, ~ t̄ !F̄12

. ~ t̄̄̄ !#%,

~49!

with Ḡ12
R/A5G R/A(p̄1 ,p̄2) and tR/A(p1p2 t,p̄1p̄2 t̄)5^p1p2utR/A(t, t̄ )up̄1p̄2&, and the collision inte-

gral arising from initial correlationsI IC

I IC~p1 ,t !5 i\E dp2

~2p\!3

dp̄1

~2p\!3

dp̄2

~2p\!3E d t̄$tR~p1p2 t,p̄1p̄2 t̄ !K~ p̄1p̄2 t̄,p1p2 t !

2K~p1p2 t,p̄1p̄2 t̄ !tA~ p̄1p̄2 t̄,p1p2 t !%

2~ i\!2E dp2

~2p\!3

dp̄1

~2p\!3

dp̄2

~2p\!3

dp̄̄1

~2p\!3

dp̄̄2

~2p\!3

3E d t̄ d t̄̄ d t̄̄̄$tR~p1p2 t,p̄1p̄2 t̄ !K~ p̄1p̄2 t̄,p̄̄1p̄̄2 t̄̄ !tA~ p̄̄1p̄̄2 t̄̄,p1p2 t̄̄̄ !N12~ t̄̄̄ !G 12
A ~ t̄̄̄ ,t !

1G 12
R ~ t, t̄ !N12~ t̄ !tR~p1p2 t̄,p̄1p̄2 t̄̄ !K~ p̄1p̄2 t̄̄,p̄̄1p̄̄2 t̄̄̄ !tA~ p̄̄1p̄̄2 t̄̄̄,p1p2 t !%, ~50!

with

K~p1p2 t,p̄1p̄2 t̄ !5G 12
R ~ t,t0!c~p1p2 ,p̄1p̄2 ;t0!Ḡ12

A ~ t0 , t̄ !. ~51!

With Eqs.~44!, ~49!, and~50! we have obtained a very general quantum kinetic equation.
character of its approximations goes far beyond that of the usual Boltzmann equation. The
sion integralI (p1 ,t) was derived without any approximation with respect to the times and
fully includes retardation and memory effects which is usually referred to as non-Marko
behavior. Many-particle effects, as for instance self-energy and damping,14 and spin statistics
effects~Pauli blocking! are included. So far, no restriction has been introduced with respect t
retarded and advanced propagatorsG R/A. In principle, they are to be determined self-consisten
from their KBE which follow easily from Eq.~10!. However, to avoid this essential complicatio
in most cases approximations are used. For example, in the quasiparticle approximatio
propagators are given explicitly by

G 12
R/A~ t,t8!5

1

~ i\!2
Q@6~ t2t8!#e2 i /\[E121 iG12]( t2t8), ~52!

with E125(p1
2/2m) 1 (p2

2/2m) 1Res1
R1Res2

R andG125Im s1
R1Im s2

R .
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Furthermore, the retarded and advanced T-matrices are many-particle generalizations
familiar T-matrices of quantum scattering theory. They have to be determined from
Lippmann–Schwinger equation~40! which reads in momentum representation

tR/A~p1p2 t,p18p28 t8!5v~p12p18!~2p\!3d~p11p22p182p28!d~ t2t8!

1 i\E dp̄1

~2p\!3

dp̄2

~2p\!3E d t̄ v~p12p̄1!~2p\!3d~p11p22p̄12p̄2!

3G̃R/A~ p̄1 ,p̄2 ;t, t̄ !tR/A~ p̄1p̄2 t̄,p18p28 t8!. ~53!

The collision integralI IC(p1 ,t) contains the terms arising from binary correlations, existing
the system initially. It should be stressed explicitly that the structure of these contributio
completely general and does not depend on parameters characterizing the system, such as
strength or degree of degeneracy. Furthermore, the inclusion of initial correlations does n
pend on their actual form, i.e., the form of the functionc. The damping of the two-particle
propagators leads to a decay of this collision term, i.e., the initial correlations die out on a
scale which is determined by the one-particle damping rates.14

Finally, we want to remark here that our result for the non-Markovian Boltzmann equati
in agreement with the result derived within the framework of the density operator techniqu
Ref. 12.
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APPENDIX: SOLUTION OF THE GENERALIZED T-MATRIX EQUATIONS

We rewrite Eqs.~22! and ~23!, which contain the ladder-type terms of the generaliz
T-matrix ~19!

Tab,cd5Vab,cd1Fab,cd1Vab,e fGegGf hCgh,cd1 i\ Vab,e fGegGf hTgh,cd , ~A1!

Fab,cd5Cab,e fGegGf hVgh,cd1 i\ Fab,e fGegGf hVgh,cd . ~A2!

Due to the structure of Eq.~A1!, T can be split into three parts

Tab,cd5T ab,cd
(A) 1T ab,cd

(B) 1T ab,cd
(C) , ~A3!

T ab,cd
(A) 5Vab,cd1 i\ Vab,e fGegGf hT gh,cd

(A) , ~A4!

T ab,cd
(B) 5Vab,e fGegGf hCgh,cd1 i\ Vab,e fGegGf hT gh,cd

(B) , ~A5!

T ab,cd
(C) 5Fab,cd1 i\ Vab,e fGegGf hT gh,cd

(C) . ~A6!

Obviously, Eq.~A4! coincides with the well-known ladder equation of the T-matrix approxim
tion. Thus, we can identifyT (A) with the usual T-matrixT. The ladder equation~A4! now serves
as a basis for the solution of~A5! and ~A6!. If one assumes forT (B) the form

T ab,cd
(B) 5Tab,e fGegGf hCgh,cd , ~A7!

Eq. ~A5! is valid if ~A4! holds. In order to determineT (C), Eq. ~A2! has to be considered. Thi
equation is fulfilled ifF is of the structure
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Fab,cd5Cab,e fGegGf hTgh,cd , ~A8!

if the adjoint equation to~A4! is valid. Due to the symmetry properties ofT, Eq. ~A4! and its
adjoint are equivalent. Inserting~A8! into Eq. ~A6! and assumingT (C) to be of the structure

T ab,cd
(C) 5Cab,e fGegGf hTgh,cd1 i\ Tab,e fGegGf hCgh,i j GikGjl Tkl,cd , ~A9!

Eq. ~A6! is fulfilled, again under the assumption~A4!. Collecting all parts together,T can be
represented as

Tab,cd5Tab,cd1 i\ Tab,e fGegGf hCgh,i j GikGjl Tkl,cd1Tab,e fGegGf hCgh,cd1Cab,e fGegGf hTgh,cd ,

~A10!

together with the equation for the well-known ‘‘ladder T-matrix’’

Tab,cd5Vab,cd1 i\ Vab,e fGegGf hTgh,cd . ~A11!
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Putting an edge to the Poisson bracket
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We consider a general formalism for treating a Hamiltonian~canonical! field theory
with a spatial boundary. In this formalism essentially all functionals are differen-
tiable from the very beginning and hence no improvement terms are needed. We
introduce a new Poisson bracket which differs from the usual ‘‘bulk’’ Poisson
bracket with a boundary term and show that the Jacobi identity is satisfied. The
result is geometrized on an abstract world volume manifold. The method is suitable
for studying systems with a spatial edge like the ones often considered in Chern–
Simons theory and General Relativity. Finally, we discuss how the boundary terms
may be related to the time ordering when quantizing. ©2000 American Institute
of Physics.@S0022-2488~00!00708-8#

I. INTRODUCTION

Seen in the light of the renewed interest for theories where the edge plays a prominent r
Maldacena’s Conjecture,1 Carlip’s and Strominger’s different approaches for the microsco
counting of states on the~inner or outer! edge of the world,2 ’t Hooft’s and Susskind’s principle of
holography,3 but also Chern–Simon theories4 and General Relativity5,6 in general, there is strik-
ingly few papers devoted to develop the general formalism for Hamiltonian~canonical! field
theory in the presence of a spatial boundary. Here we are thinking of the fact that the
equal-time Poisson bracket,

$F~ t !,G~ t !%(0)[E
S
ddx

dF~ t !

dfA~x,t !
vAB

dG~ t !

dfB~x,t !
, ~I.1!

fails to satisfy the Jacobi identity,

(
cycl.F,G,H

$F~ t !,$G~ t !,H~ t !%%50, ~I.2!

when spaceS has a boundary]SÞ0”, at least if we apply the usual Euler–Lagrange formula for
functional derivatives in~I.1!. ~We shall show below how to ensure the differentiability of t
functionals by using the notion ofhigher functional derivatives, so that the above violation is
fully legitimate problem to raise.! The failure of the Jacobi identity can be seen even in the m
simple toy examples which have a nontrivial boundary. An equivalent manifestation of this f
that functional derivatives cease to commute when a spatial boundary is present.7

The most common example of the above phenomenon is the usuald-dimensional flat space
S5Rd. Here the spatial infinityuxu5` constitute a boundary for the space. This statement ca
made precise by a so-called one-point compactification.

An often used cure is to impose conditions on the dynamical fieldsfA(x,t) at the boundary
which are consistent with the time-evolution. However, that approach may exclude inter
topological questions, such as solitonic field configurations. Our main goal in this paper is
how far we can getwithout imposing boundary conditions.

a!Electronic mail: bering@nbi.dk
74680022-2488/2000/41(11)/7468/33/$17.00 © 2000 American Institute of Physics
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On the other hand, to calm the reader who perhaps finds these facts strange, let us m
that if ‘‘there is no boundary’’~for instance, think of a torus, or equivalently periodic bounda
conditions, or even vanishing boundary conditions!, integrations by part inside the spatial integr
does not produce boundary contributions, and the Jacobi identity for the above ‘‘bulk’’ Po
bracket can be demonstrated after some straightforward manipulations.

The paper is organized as follows: In Sec. I B, we present a new Poisson bracket. Ther
we give some further introductional remarks about differentiability and improvement term
Sec. II we give a manifest formulation of the new Poisson bracket, discuss the higher E
Lagrange derivatives and develop a generator method~Sec. III! which in particular is suitable of
handling the arithmetic manipulations involved in the proof of the Jacobi identity. The proof
is postponed to Appendix B. After that we turn to the questions that naturally arise with
existence of the new Poisson Bracket. Can it be given a geometrically covariant form~Sec. IV!?
How does the boundary affect the Hamiltonian dynamics~Sec. VI!? To answer the last question
we have included a technical section~Sec. V! to explain some supplementary formalism. Final
we discuss the role of time order in connection with boundary terms~Sec. VII!.

A. Notation

The fA(x,t), A51,...,2N, denote the~bosonic! coordinate and momenta fields of the pha
space.~Generalizations to fermionic variables are straightforward.! The nondegenerate symplect
structurevAB is for simplicity taken to be ultra-local and constant. This vast simplification is
most interesting case for applications and already contain as we shall see an interesting s
worth analyzing by itself. Needless to say that a general field transformationf→f8 will violate
such an assumption. A manifestly covariant formalism under general field transformation is
the scope of the present work. Also we assume, to avoid technicalities, that thed-dimensional
spaceS can be covered by a single coordinate patch with a flat measure.~We shall relax these
assumptions in Sec. IV.! Furthermore, in agreement with the spirit of the Hamiltonian~canonical!
formalism, we shall assume that the functionalsF(t) do not contain time derivatives (] t)

kfA(x,t)
of the dynamical field variablesfA(x,t). So if one for instance is interested in a~total! time
derivativeG(t)5] t

kF(t), whereF(t) contains no time derivatives, one should studyF(t) instead
of G(t), etc. Finally, we assume that there is no temporal boundaries. This being said, timet plays
no active role, and we can suppress the time variablet in what follows.

B. New Poisson bracket

As mentioned in the Introduction the bulk Poisson bracket~I.1! does not satisfy the Jacob
identity. @A purist would perhaps then claim that~I.1! does not qualify for being called a Poisso
bracket at all! However, we shall continue to call it a Poisson bracket.# Knowing that the failure
of the Poisson bracket~I.1! is at most a total derivative term, it is natural to speculate whether
can add a boundary contributionB(F,G) to this bulk Poisson bracket,

$F,G%5$F,G% (0)1B~F,G!, ~I.3!

so that the Jacobi identity is satisfied even in the presence of a boundary. In fact, this is s
find that the following boundary term:

B~F,G!5 (
kÞ0

E
S
ddx]kF dF

dfA(k)~x!
vAB

dG

dfB~x!G2~F↔G!, ~I.4!

does the job. We have employed a multi-index notation: For instance the index

k5~k1 ,...,kd!PN0
d\$~0,...,0!%, N0[$0,1,2,...%, ~I.5!

runs over thed-dimensional non-negative integers~except the origo!, and
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]k5]1
k1...]d

kd , ] i[
]

]xi . ~I.6!

~The main features of the construction are already present in the dimensiond51 case. A first-time
reader will not miss the essential points by treating the multi-indexk as an integer, i.e., letting
d51.! More importantly, in a perhaps conceptionally dangerous—but in practice conveni
notation, the

dF

dfA(k)~x!
, kPN0

d , ~I.7!

denote thehigher functional derivatives ofF of orderk. Here

dF

dfA(k50)~x!
[

dF

dfA~x!
~I.8!

is the usual functional derivative. In general, the higher functional derivatives are requir
satisfy

dF5E
S
ddx(

k50

`

]kF dF

dfA(k)~x!
dfA~x!G , ~I.9!

for arbitrary infinitesimal variationsfA(x)→fA(x)1dfA(x). In particular, the variations
dfA(x) are not restricted at the boundary.

A quick estimate shows that if the entries contain spatial derivatives] if
A(x) of the dynamical

field variablesfA(x) to orderN, then the full Poisson Bracket~I.3! contains spatial derivatives u
to order 3N. Hence the algebraAN50 of functionals with no spatial derivatives closes on the n
Poisson bracket. However, physical interesting theories usually have functionals with upN
51 spatial derivative, i.e., they belong to the classAN51 . This classAN51 of functionals does not
close on the new nor on the bulk Poisson bracket, and this is the main reason why we ar
into summing over the index lattice~I.5!.

The idea of adding surface contribution is far from new. In a seminal work Regge
Teitelboim5 emphasized the importancy of having a boundary term in the action of cano
general relativity. However, they did strangely enough not add surface contributions to the P
bracket. Lewis, Marsden, Mongomery and Ratiu8 considered a truncated version of~I.4! where
only the terms withuku51 are present. Because they did not add theuku.1 terms, they needed to
impose additional boundary conditions to ensure the Jacobi identity. The first successful atte
remedy this was conducted in 1993 by Soloviev.9 In our notation, his solution@Ref. 9 formula
~3.4!# reads as

$F,G%5 (
k,l 50

` E
S
ddx]k1 lF dF

dfA(k)~x!
vAB

dG

dfB( l )~x!G . ~I.10!

It is easy see that his bracket is different from our solution~I.4!. It would be interesting to know
whether his bracket supports a manifest formulation~see Sec. II B!, or more generally, if it is
independent of the representative for the higher functional derivatives. After the first prepr
this paper appeared, Soloviev has made a comparison10 of the two solutions~I.4! and ~I.10!. We
shall in this paper concentrate fully on the solution~I.4!.

C. Review of differentiability and improvement terms

The classical point of view5 on the problem with the Jacobi identity has been to view this
not so much a problem of the Poisson bracket itself, but rather that functional derivativ
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general in the case of a nontrivial boundary]SÞ0” are ill-defined when the functional, sayF,
depends on the spatial derivatives] if

A(x) of the dynamical field variablesfA(x). In this case
there does not always exist functionsf A(x), such that the change in the functionalF is fully
described by

dF5E
S
ddx fA~x!dfA~x!, ~I.11!

for an arbitrary infinitesimal variationdfA(x). @Of course in the affirmative case, we usually c
f A(x) the functional derivatives ofF.#

Example: Consider an intervalS5@a,b# and the toy functional

F5E
a

b

dx]2f~x!5]f~x!ux5a
x5b . ~I.12!

The variationdF can be identically rewritten as

dF5E
S
„dS~x,b!2dS~x,a!…]df~x!. ~I.13!

To bringdF of the form (I.11), one is tempted to do an integration by parts. But this does not
us, partly because of the total derivative term does not vanish on the boundary. (Rememb
we do not want to impose boundary conditions on the fieldf; cf. the Introduction.) In fact, it is not
a priori clear what should be meant (viewed separately) by any of the232 terms arising from
such an integration by part. So the traditional functional derivative is ill-defined. These difficu
should be compared with the ease that the same variationdF is described by the higher functiona
derivatives (I.9),

dF

df (k)~x!
5dk

2 . ~I.14!

This is the general picture: A traditional functional derivative is often ill-defined or have a
singular behavior at the boundary.@And at this point we have not even touched the problems
building up the Poisson bracket~I.1! out of two highly singular functional derivatives, i.e., mu
tiplying two delta distributions together, both of which typically have support on the bound
We should also mention that authors for such reasons often additionally require the func
derivativesf A in Eq. ~I.11! to be continuous functions.# In any case, this makes the tradition
definition ~I.11! not very suitable for systems with a boundary.

Let us mention an important algebraA0 of functionals, thatare differentiable in this tradi-
tional sense~I.11!, namely those functionals that do not depend on the spatial derivatives] if

A(x)
of the dynamical field variablesfA(x). They form an algebra under the Poisson bracket.@In this
algebraA0 the bulk Poisson bracket~I.1! and the full Poisson bracket~I.3! coincide.#

The traditional cure in case of an ill-defined derivative, is to improve the functionalF F impr

with a boundary term, a so-called improvement term, so that the derivative becomes smoo
well-defined. The drawback is of course that we are then studying a different functional tha
originally started out with! Typically, one meets the following preparation of an observable in
literature: A functionf (x)5 f „]kf(x),x… is smeared with a ‘‘test function’’h(x) into a functional
of the typeF@h#5*Sddx f(x)h(x). It is then improved toF@h# F impr@h#PA0 so that it belongs
to the above mentioned classA0 by recasting all the spatial derivatives to hit the test function

We will bypass all this, i.e., the bottle-neck of~I.11!, by using more functions~the higher
functional derivatives! in the description of an arbitrary variationdF. The format of~I.9! is so
broad that it essentially covers all interesting functionals, which do not contain time-deriva
cf. the discussion in Sec. I A.@One could of course give meaning to differentiation of a functio
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with temporal derivatives simply by brute force extending the multi-indexk in ~I.9! from d
dimensions tod11 dimensions. Although relevant for so-called covariant formulations~covariant
in the sense that time and space are treated on equal footing!, this is not in the line of the
Hamiltonian theories, and hence not something we will pursue in this paper.#

II. GENERAL FORMALISM

A. Partial derivatives of a functional

Let us describe the higher partial derivatives of a functionalF. ~They are not to be confuse
with the usual higher partial derivatives of a function, although they are related.! In fact, they are
objects, given the suggestive notation

]F

]fA(k)~x!
, ~II.1!

that satisfies

dF5E
S
ddx(

k50

`
]F

]fA(k)~x!
]kdfA~x!, ~II.2!

for arbitrary variationsdfA(x). If this notation~II.1! in the future leads to ambiguities, we wi
specify whether we mean partial differentiation wrt a function or a functional. Usually the co
will exclude one of the possibilities. In fact, in this article we will often use the notation

PA(k) f ~x![
] f ~x!

]fA(k)~x!
~II.3!

for the usual~higher! partial derivative for a functionf (x)5 f „]kf(x),x….

B. Manifest formulation

The set of the higher functional~and the partial! derivatives may not be uniquely defined, s
one may worry that the full Poisson bracket given by~I.3! and~I.4! depends on the choice of th
representatives for the higher functional derivatives. The answer is that it is independen
follows from the manifest formulation given below.

We begin by giving a more useful definition of the~usual! functional derivatives~I.8! than the
traditional definition, cf. Eq.~I.11!. The differentialdF5dF@f,df# of F is assumed to split

dF5dF1]F ~II.4!

into a bulk integral,

dF5dF@f,df#5E
S
ddx

dF

dfA~x!
dfA~x!, ~II.5!

and a boundary integral,

]F5]F@f,df#5(
i 51

d E
S
ddx] i F̂A

i dfA~x!, ~II.6!

where F̂A
i in general can be differential operators acting ondfA. That the integral~II.6! is a

boundary integral is justified by the divergence theorem. If we furthermore require the~usual!
functional derivative to be a continuous function, this function together with the above spilt~II.4!
are uniquely defined.@We stress that the uniqueness of the~usual! functional derivative is jeop-
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ardized if for instance it contains a delta distribution with support on the boundary. This is
out by requiring continuity. See also the uniqueness discussion in the next section.#

The bulk Poisson bracket$•,•%(0) is now well-defined by Eq.~I.1!, and the full Poisson
bracket, Eq.~I.3!, differs from this by a boundary term,

B~F,G!5]F@f,df5$f,G%(0)#2~F↔G!. ~II.7!

At this point the reader can merely takedf5$f,G%(0) as being a convenient short hand notati
for

dfA~x!5vAB
dG

dfB~x!
. ~II.8!

There are two obvious ansatzes for the differential operatorF̂A
i . Either with the spatial derivatives

ordered to the right of some coefficient functions~also called the normal order ofx and ]!, or
vice-versa. In the former case,

F̂A
i 5 (

k50

`
] iF

]fA(k) ]k, ~II.9!

we call the coefficient functions for the higher partial vector derivatives. The name ‘‘vec
refers to thei -index. In the latter case,

F̂A
i 5 (

k50

`

]k
d iF

dfA(k) , ~II.10!

the coefficient functions are called the higher functional vector derivatives.

C. Uniqueness of the higher derivatives

Up to now, we have only characterized the higher functional~partial, vector! derivatives of a
functionalF in a descriptive manner. The question of existence yields rather mild conditions
we shall not be concerned about. The issue of uniqueness is a much more interesting quest
ambiguity in the choice is most clearly displayed via the higher partial vector derivatives.

Uniqueness Theorem:Assume that there is given a sequence of continuous functions fA and
f (k)A

i that all vanish identically with the exception of a finite number and such that for an arbit
variation df,

0[E
S
ddx fA~x!dfA~x!1(

i 51

d E
S
ddx] i (

k50

`

f A(k)
i ~x!]kdfA~x!. ~II.11!

Then fA[0 in the entire spaceS and the (higher) partial vector derivatives fA(k)
i are tangential

to the boundary]S. In detail,

;xP]S: fWA(k)~x![„f A(k)
1 ~x!,...,f A(k)

d ~x!…PTx~]S!. ~II.12!

That the first functionf A[0 vanishes is just a restatement of the uniqueness of the~usual!
functional derivative, while the boundary condition reflects that the higher partial vector de
tives may be modified with a vector field that does not locally carry a boundary flux.

D. Relations among the different kinds of higher derivatives

In order to get an idea of how ambiguous the other variational discriptions are, let us
some maps between the mentioned choices of the higher functional~partial, vector! derivatives.
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We start with a bijective correspondence between the two scalar definitions~I.9! and~II.2! of the
higher derivatives. If there is given a sequence of the higher partial derivatives satisfyin
definition ~II.2!, then

dF

dfA(k)~x!
5 (

m>k
S m

k D ~2]!m2k
]F

]fA(m)~x!
, S m

k D5S m1

k1
D ...S md

kd
D , ~II.13!

satisfies the definition~I.9!. On the other hand, starting from the point of view of the high
functional derivatives, we get a solution to the higher partial derivatives by

]F

]fA(k)~x!
5 (

m>k
S m

k D ]m2k
dF

dfA(m)~x!
. ~II.14!

The variational descriptions~I.9! and ~II.2! coincides because of thex-pointwise identity,

(
k50

`
]F

]fA(k)~x!
]kdfA~x!5 (

k50

`

]kF dF

dfA(k)~x!
dfA~x!G . ~II.15!

For a proof, see the equation~A2! in the Appendix. Similarly, one may transform bijective
between the two vectorial definitions by use of the corresponding relations

d iF

dfA(k)~x!
5 (

m>k
S m

k D ~2]!m2k
] iF

]fA(m)~x!
,

] iF

]fA(k)~x!
5 (

m>k
S m

k D ]m2k
d iF

dfA(m)~x!
.

~II.16!

Not surprisingly, as the vectorial definitions~II.9! and~II.10! carry the most indices, they have th
greatest flexibility in representing a solutions. We may convert from the higher vector t
higher scalar derivatives via the formulas~for kÞ0!

]F

]fA(k)~x!
5 (

i PI (k)

] iF

]fA(k2ei )~x!
1(

i 51

d

] i

] iF

]fA(k)~x!
,

dF

dfA(k)~x!
5 (

i PI (k)

d iF

dfA(k2ei )~x!
.

~II.17!

Here ei[(0,...,0,1,0,...,0) is thei ’ th unit vector in the index lattice andI (k)[$ i 51,...,duki

Þ0%. Going from the higher scalar to the higher vector derivatives is not unique. A natural c
is for the functional derivatives are

d iF

dfA(k)~x!
5

1

uI ~k1ei !u
dF

dfA(k1ei )~x!
. ~II.18!

We leave out the corresponding relation between the partial derivatives to carry on with our
application: Local field theories.

E. Local field theory

Let us restrict ourselves to local field theories, i.e., all functionals can be expressed
integral,

F5E
S
ddx f~x!, f ~x![ f „]kf~x!,x…, ~II.19!
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wherek runs over afinite subset ofN0
d . Note that we have allowed for explicitx-dependence in

f . It essentially costs no extra work, and it becomes important later on. We shall postpo
analysis of functionals that depends on external space-points to a later section~Sec. V!, partly
because it would be notational inconvenient to address those now.

As mentioned before the~higher! partial derivatives ofF need not be unique. Our strategy w
be to ‘‘lower’’ the definition from the level of integrals to the level of integralkernels. In other
words, this means that if a functional has different integral kernel representations, this may l
different definitions of the higher derivatives. For instance, at the case at hand, i.e., of alocal
functional ~II.19! with a given integral kernelf , there is one natural candidate:

]F

]fA(k)~x!
5PA(k) f ~x!, ~II.20!

that fits the relation~II.2!. So strictly speaking, the~higher! partial derivatives are really~higher!
partial derivatives of the kernels, although we will not indicate this explicitly in the notation. In
same fashion the distinguished candidate for the functional derivatives becomes the higher
Lagrange derivatives:

dF

dfA(k)~x!
5EA(k) f ~x![ (

m>k
S m

k D ~2]!m2kPA(m) f ~x!. ~II.21!

For a mathematical textbook on a higher Euler–Lagrange derivative, see for instance Olve~Ref.
11 pp. 365–367!. Note that them-summation in~II.21! terminates after finite many terms in ca
of a local functional, so that we do not have to worry about convergence of the sum. Let us s
use~II.20! @and~II.21!# as the working definitions for the local functionals. After all, our prima
goal is to prove the Jacobi identity for the full Poisson Bracket, and this does not depend
choice of the representatives for the higher derivatives. It is evident from the natural so
~II.20! @and ~II.21!# of the ~higher! derivatives, that in practice all the local functionals that o
encounters in physics are differentiable.

F. Ultra-local Poisson bracket

Having restricted ourselves to the ultra-local case, let us for each pair of local function

F5E
S
ddx f~x! and G5E

S
ddxg~x!, ~II.22!

define anx-pointwise version,

$ f ,g%~x![$ f ,g%(0)~x!1B~ f ,g!~x!, ~II.23!

of the Poisson bracket,

$F,G%5E
S
ddx$ f ,g%~x!5$F,G%(0)1B~F,G!. ~II.24!

Namely, define

$ f ,g%(0)~x![EA(0)f ~x!vABEB(0)g~x!,

B~ f ,g!~x![(
kÞ0

]k@EA(k) f ~x!vABEB(0)g~x!#2~ f↔g!. ~II.25!

This means that the fullx-pointwise Poisson bracket reads as
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$ f ,g%~x!5 (
k50

`

]k@EA(k) f ~x!vABEB(0)g~x!#2
1

2
$ f ,g%(0)~x!2~ f↔g!

5 (
k50

`

PA(k) f ~x!vAB]kEB(0)g~x!2
1

2
$ f ,g% (0)~x!2~ f↔g!. ~II.26!

The last equality in~II.26! follows from Eq. ~II.15!. We can now conduct our analys
x-pointwisely. In Sec. III we shall suppress the space pointxPS.

III. GENERATOR METHODS

A. Heisenberg algebra

Due to the quite heavy combinatorics involved in the proof of the Jacobi identity, it is u
to map the above problem into a simpler and in fact well-studied object, namely the Heise
algebra. Although the actual proof is presented in the Appendix, we find the central idea,
perhaps not entirely original, is quite important, so we will present it here. For a recent expo
of Fock space methods for variational systems, see also Ref. 12.

Let us study the interplay between the partial and the spatial derivatives. The higher
derivativesPA(k) commute among each other, but they do not commute with the~total! spatial
derivatives,

] i[fA(k1ei )PA(k)1] i
explicit , ~III.1!

whereei[(0,...,0,1,0,...,0) is thei ’ th unit vector in the index lattice. More precisely, we hav

PA(k)]
n5 (

m50

min(k,n) S n
mD ]n2mPA(k2m) . ~III.2!

The main idea is to simulate this complicated disentanglement formula with the help of a H
berg algebra. Let us introduce abstract~bosonic! algebra elementsYA

i that obey the following
Heisenberg algebra commutator relations:

@YA
i ,] j #5d j

i , @YA
i ,YB

j #50, @] i ,] j #50. ~III.3!

The third equation is not a definition, but is a well-known consequence of~III.1!. It is a remarkable
fact that we can mimick the noncommuting behavior of formula~III.2! by formally writing the
higher partial derivatives as a product,

PA(k)[PA

YA
k

k!
, ~III.4!

of theYA
i algebra elements and what is basically reduced to be a passive spectator in what f

namely

PA[
]

]fA . ~III.5!

We takePA to commute with everything:

@PA ,YB
i #50, @PA ,] i #50, @PA ,PB#50. ~III.6!

Above we have adapted the following multi-index conventions:

YA
k 5~YA

1 !k1...~YA
d !kd, k! 5k1!...kd!. ~III.7!
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That the Heisenberg algebra~III.3! with the formal assignment~III.4! really reproduces~III.2! is
proven in Appendix A; see Eq.~A1!. The proof becomes very simple once we adapt the gene
techniques of the next section.

B. Generator methods

As a second computational improvement, it is useful to hide the integer indices inside g
ating functions which depend on continuous parametersqi , i.e., we shall sum up in a generalize
Fourier series. We implement this program for the~higher! partial and the~higher! Euler–
Lagrange derivatives, respectively, as follows:

PA~q![PA(k)q
k5PAeqYA,

~III.8!

EA~q![EA(k)q
k5 :exp@~q2]!YA#PA : 5expF2]

]

]qGPA~q!.

From now on we will implicitly imply summation over repeated multi-indiceskPN0
d . In fact, we

may view the multi-indices sums as running over the entired-dimensional integer latticekPZd by
simply declaring that objects like

YA
k , ]k, PA(k) , EA(k) , ~III.9!

are zero ifk is outside the original non-negatived-dimensional quadrantN0
d . The next-to-last

equality in ~III.8! follows from the mere definition of the~higher! Euler–Lagrange derivative
~II.21!, once we have declared the following normal ordering prescription:

:YA
i ] j : 5 :] jYA

i : 5] jYA
i . ~III.10!

C. Fourier transform

As a third computational improvement, let us Fourier transform the variablesqi to variables
yi ,

PA~y![E ddqe2qyPA~q!5PAd~YA2y!,

~III.11!

EA~y![E ddqe2qyEA~q!5e2]yPA~y!5PAd~YA!e2]y.

With the theory developed so far, we have reached the second objective of this paper@the first
objective being to give the form of the full Poisson bracket~I.3!#, namely achieved a formalism
that is capable of giving a short proof of the Jacobi identity. For the proof itself, see Append
Note that because the Poisson bracket is independent of the actual choice of representative
higher functional~partial! derivatives, it implies no limitation that we use the natural choice~II.21!
and ~II.20!. We will now turn to the question of geometrizing the Poisson bracket.

IV. ABSTRACT MANIFOLDS

In this section we formulate the results obtained so far in a geometrically covariant m
independent of the choice of coordinates. More precisely, the construction is generalized
d-dimensional subsetS#Rd ~where the space and the chart are identified! to an abstract
d-dimensional manifoldS with spatial covariant derivativesDi and a d-dimensional volume
densityr. In other words, the spatial derivatives] i are replaced by covariant derivatives~let us
indicate this in an oversimplified way asDi5] i1G i ,! and the trivial measureddx is replaced by
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r ddx. We will assume thatDi5Di(x) and r5r(x) do not depend on the dynamical field
fA(x,t) nor on timet. We donot assume that the volume density is covariantly preserved,
that Dir[(] i2G ik

k )r50.
In passing from derivatives] i to covariant derivativesDi , we face the main complication

compared to the flat case. In general, the spatial covariant derivatives do not commute, wh
curvature is nonvanishing. We have

@Di ,D j #5@Di
explicit ,D j

explicit#, ~IV.1!

where the~total! covariant derivativeDi is given as

Di5fA( i 1K)PA(K)1Di
explicit . ~IV.2!

The index structure of the first term in~IV.2! will be explained below. In the general case
nonvanishing curvature, one can proceed by declaring that the functionals of the theory dep
orderedtuples of covariant derivativesfA(K)(x)5DKfA(x) of the dynamical fieldsfA(x), rather
than onlyunorderedsets of derivativesfA(k)(x). An ordered tupleK is of the form

K5~k1 ,...,kuKu!P$1,...,d%3...3$1,...,d%, ~IV.3!

whered is the space dimension, i.e., the dimension ofS. We have given a resume´ of the calculus
of ordered tuples in Appendix C. All formulas carries over to the curved case in essential
same format. However, there are some notable differences that we now stress. The descri
the higher derivatives~II.2!, ~I.9!, ~II.13! and ~II.14! are replaced with

dF5E
S
r~x!ddx (

K50”

`
]F

]fA(K)~x!
DKdfA~x!5E

S
r~x!ddx (

K50”

`

DKF dF

dfA(K)~x!
dfA~x!G ,

dF

dfA(K)~x!
[ (

MfK
~2D !Mt4Kt ]F

]fA(M )~x!
, ~IV.4!

]F

]fA(K)~x!
5 (

MfK
DM4K

dF

dfA(M )~x!
.

For details concerning the notation in~IV.4!, see definitions in Appendix C1. The~higher! func-
tional and partial derivatives inherit tensor properties, ifF is covariant. So the formulas ar
covariant. The bulk and the boundary term of the Poisson bracket reads as

$F,G%(0)5E
S
r~x!ddx

dF

dfA~x!
vAB

dG

dfB~x!
,

B~F,G!5 (
KÞ0”

E
S
r~x!ddxDKF dF

dfA(K)~x!
vAB

dG

dfB~x!G2~F↔G!. ~IV.5!

Note the apparent asymmetry between the two last formulas in~IV.4! with a transpositiont of the
order of covariant derivatives in the third equation. As a rule of thumb one may say that the s
derivatives (2])k in the flat metric formulation becomes (2D)Kt

in the covariant formulation.
This generic feature carries over to the generator formalism~III.8!:

PA~q![PA(K)q
K5PAeq•YA5expFD•

]

]qGEA~q!,
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EA~q![EA(K)q
K5expF ~2D ! t

•

]

]qGPA~q!. ~IV.6!

Let us note that theqi ’s ~besides commuting with everything else! doesnot commute among
themselves. More precisely, they are freely generated. This is necessary in order not
information about the operator ordering when passing to the generating functions. Also the F
transformqi→yi , cf. Sec. III C, can be given sense in the noncommutative case.

The replacement of the disentanglement formula~III.2! becomes

PA(K)D
N5 (

M50”

M<K,MdN

DN4MPA(2M1K) . ~IV.7!

We are able to define contravariant elementsYA(K) , such that

PA(K)[PA

YA(K)

uKu!
. ~IV.8!

The Heisenberg algebra~III.3! is traded for

@YA(K) ,Di #5uKuYA(2 i 1K) . ~IV.9!

Remarkably, even in this noncommutative case, the exponentiated version can be recast
following simple form:

eq•YeD•y5e(q1D)•yeq•Y. ~IV.10!

We shall have more to say about this construction at the end of Appendix C. The main point
the proof of the covariant Jacobi identity can be demonstrated in almost exactly the same
in the flat metric case; cf. Appendix D.

Note that for nonzero curvature@Di ,D j #f
A(x,t)Þ0, the actual field valuefA(x,t) is appar-

ently not well-defined, i.e., if one tries to sum up the change infA(x,t) along a closed loop, one
obtains a nonzero result. This is worse than a global obstruction. Perhaps it should be c
local obstruction.~A similar situation occurs, say, in bosonic string theory with the Polya
action when the worldsheet metric has a nonzero curvature. This also leads to problems in
assigning values to the target space fields.! The problem seems less formidable in the context
the Feynman path integral, where we only assign field values along one path at a time. Bu
genuine challenge for the operator formalism. One way of making sense out of this would
declare the decendent fieldsfA(K)(x,t) to be independent fields living in a noncommutati
jet-bundle. In any case, we feel that it would be too hastya priori to draw conclusions in genera
and we leave it to the future to appropriately implement nonzero curvature in specific ph
theories.

V. SUPPLEMENTARY FORMALISM

Until now, we have only discussed functionalsF with no external space dependence, i.e.,
space-variables are integrated out. However for physical applications, we would like to co
manipulations directly on the integral kernels rather than the integrals. For instance, to give
to the fundamental equal-time relations,

$fA~x,t !,fB~y,t !%5vAB~x,y!5vABdS~x,y!. ~V.1!

The plan for the rest of this article are the following.
~1! To treat the Dirac delta distributions~and the derivatives thereof! in the presence of a

boundary. Distributions is a vast subject in their own right, and we will here only give a heu
treatment.
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~2! To extend the definition of the higher functional derivatives to more general types of
functionals.

~3! To analyze the implications for the Hamiltonian dynamics.

While parts of this section is standard material, it is reviewed for continuity and to
notation.

A. Embedded approach

Having a geometrically covariant formulation at our disposal enables us to reduce the d
sion to a single chart. We can slice up space in smaller regions; thereby producing unph
double-sided boundaries~unphysical domain-walls!, and we can hence consider space within su
a smaller regionS covered by a single chart. The local geometric data about the physical spS
is stored in the volume densityr and the covariant derivativesDi .

Furthermore, we will assume thatS takes place inside aboundedregion of the chartRd, i.e.,
that it can be placed inside a large ball inRd. Note that we are not placing any restriction on t
distances in the physical spaceS; only on the distances in the chart. Or perhaps we should say
following: in the choice of the chart. For instance, if spaceS5Rd is the ordinary flat space, on
should map flat space into a bounded regionS̃ of the chartRd using a nontrivialr andDi . In this
case the spatial infinity is truly the boundary of the regionS̃. The perspective will be that of a
typical Penrose diagram: ‘‘There is always room for something beyond spatial infinity.’’
motivation for the above assumption is deeply founded in the theory of distributions; cf. be

This being said, we will adapt the usual practice of identifying the spaceS#Rd with a region
of the chart.

B. Regularized characteristic functions

Let us consider the characteristic function,

1S~x!5H 1, if xPS

0, otherwise
, ~V.2!

for the spaceS#Rd as a limit of a smooth functionxe(x), where 0,xe(x)→1S(x) for e
→01. We regardxe5xe(x) as independent of the dynamical fieldsfA(x) and as a scalar unde
coordinate changesx→x8. The actual implementation of the regularizationxe(x) should not
matter, so one might as well choose a convenient form. One could for instance do as follow
dS(x) denote the signed distance fromx to the boundary]S#Rd as measured in the chartRd.
The signed distancedS(x).0 is positive if xPS° belongs to the interior and it is negativ
dS(x),0 if xP„(Rd\S)°… belongs to the exterior. Then we could implementxe(x) as

xe~x!5S 11expF2
dS~x!

e G D 21

. ~V.3!

~This looks horrible in other coordinates, so a geometrically minded reader might prefer to
stitute the chartRd with an abstract unphysical embedding manifold. We shall not explore
point of view further in this paper.!

Next, we extendr and Di smoothly~and arbitrarily! to the unphysical sectorRd\S. It may
happen thatr or Di themselves are singular at the boundary]S. In that case one should consid
smooth regularized functionsre or Di

e , that in the limit e→0 reproducesr and Di . Then an
integral overS should be though of as a limit,

E
S
r~x!ddx f~x!5 lim

e→0
E xe~x!re~x!ddx fe~x!, ~V.4!
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where the integrandf (x) also should be smoothly~and arbitrarily! extended to the unphysica
sectorRd\S. @In case of more than one region,xe(x) should be a differentiable partition of th
unity.# From now on we will not write nor question the limite→0, but merely take for granted
that thise-prescription makes sense.

C. Dirac delta distributions

Throughout the paper, the Dirac delta distributiond(x2z) refers to the fullRd-chart, while
dS(x,z) refers to the physical spaceS. The physical Dirac delta distributiondS(x,z) is charac-
terized by the property

;h:E
S3S

r~x!ddxr~z!ddzh~x,z!dS~x,z!5E
S
r~x!ddxh~x,x!. ~V.5!

We can realize the physical Dirac delta distributiondS(x,z) in terms of the unphysical Dirac delt
distributiond(x2z) as

dS~x,z!5
d~x2z!

xe~x!r~x!
. ~V.6!

The main idea behind demanding thatS should occupy aboundedregion of the chartRd, is that
we can then perform formal integrations by part on the unphysical Dirac delta distributiond(x
2z). This is so because we can consider all test functions as having a bounded support
chartRd. ‘‘Test functions’’ should here be read in the broad sense of the word that in parti
includes functionsf „f (K)(x),x… of the dynamical fieldsfA(K)(x).

On the other hand, integration by part of the physical Dirac delta distributiondS(x,z) will in
general lead to boundary contributions at the physical boundary]S. The detailed form can be
inferred from the above relation~V.6!. The benefit of this procedure is that we do not have
postulate peculiar rules for the physical delta distribution. They may simply be derived from~V.6!.

The above is the key observation in our analysis of distributions. Mathematicians have a
~and presumably for good reasons! considered test functions inRd as having compact support. W
observe that if spaceS, which itself could be unbounded, fills a bounded region of the chartRd,
we can without touching the above principle, still probe boundary issues at the physical bou
]S.

From ~V.4! and~V.6! it also becomes clear that the study of a nontrivial boundary]S and the
study of a nontrivial volume densityr are intimately related. With the spatial integration inte
preted as~V.4!, we may define the adjointDi

† of Di by formal integration by part in the chartRd.
It becomes

Di
†52

1

xer
DW ixer~• !. ~V.7!

~The arrow overDi indicates that the derivativeDi actsall the way to the right.!

D. Space of functionals

Consider now a function depending on variablesz(1) ,...,z(r ) ,

f ~z(1) ,...,z(r )!5 f ~DK(1)f~z(1)!,z(1) ,...,DK(r )f~z(r )!,z(r )!, ~V.8!

whereK (1) ,...,K (r ) are multi-indices. For convenience we shall often use the compact not
z[(z(1) ,...,z(r )) if there is several space pointsz( i ) . We shall restrict ourselves to the spaceA of
functionalsF that can be expressed as as-fold multiple integral overS,
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F~z!5E
S3¯3S

r ddz(1) ...r ddz(s) f ~z!, ~V.9!

for somesPN. ~It is implicitly understood that thez( i )’s which are integrated out on the righ
hand side, do not enter the argument list on the left hand side.! Furthermore, this spaceA is a
C-vector space. It is stable under multiplication whenever defined.~Recall that the product o
distributions need not be well-defined.! It is closed under integrating out external variables,
identifying external variables, sayz( i )5z( j ) . We shall see below that it is also closed under
full Poisson bracket.

E. Suitable form of functional

Consider a local functionalF(z)5*ddx(1)¯ddx(r ) f (x,z) with external dependencez. The
typical integrandf (x,z) consists of the following.

~1! The Dirac delta distributionsd(x2y) anddS(x,y); The regularized characteristic func
tions xe

p(x) in some powerpPR.
~2! Smooth test functions with bounded support. This in particular includes smooth func

g(f (K)(x),x) of the dynamical fieldsfA(K)(x) and the smooth volume densityr(x).
~3! DerivativesDi acting on the various factors of the integrand mentioned under po

~1!–~2!.

The above listed objects appears in two versions.

~A! An externaltype, if it depends on nonintegrated external variables.
~B! An internal type, if it ~at least partially! depends on integrated internal variables.

An integral ~kernel! is declared to be onsuitableform if all internal derivatives (B3) act on
type B2 objects. In other words that the more singular type (B1) objects are not hit by the th
internal derivatives (B3).

A functional ~kernel! f (x,z) is not well-defined if one cannot obtain a suitable form by pu
algebraic manipulations. In practice, this means

• after formal internal integration by parts;

• after use of the Leibnitz rule and linearity;

• after use of the identity„g(x)2g(y)…d(x2y)50;

• and after use of the identity (D (x)1D (y))d(x2y)50,

for the ~partially! internal variables.
Just from the freedom to perform a formal integration by parts on the internal differenti

(B3) ~or choosing not to do so, respectively!, there is 2n ways of writing down a functional, where
n is the number of internal differentiations (B3). In practice, in all interesting functionals, eve
internal variablexi appear at least once in the argument list of an internal singular object~i.e., of
typeB1!. As a consequence, in these cases, at most one of the above mentioned 2n choices leads
to a suitable form.

Needless to say that if one also integrates out the externalz-variablesF(z) without yielding
enough room for the smearing type 2 objects, the result may not be well-defined.

F. Higher partial derivatives

Consider a functionalF(z)PA in the algebraA. Assume that the functional~kernel! is of a
suitable form. Let us now define the higher partial derivatives as

]F~z!

]fA(K)~x!
[E

Ss
r ddz(1)¯r ddz(s)(

i 51

r

dS~x,z( i )!PA(K)
(z( i )) f ~z!. ~V.10!
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In case of afunction,

F~z!5F~DKf~z!,z!; ~V.11!

this reduces to

]F~z!

]fA~x!
5(

i 51

r

dS~x,z( i )!PA(K)
(z( i ))F~z!. ~V.12!

We can formally extend the application range of the above equation~V.12! to include functionals
F(z) as well, by implicitly assuming that the internal delta distributions automatically are pl
inside the integration symbol. Then~V.12! becomes a convenient shorthand notation for~V.10!.

G. Higher functional derivatives

The general definition~IV.4! for a functional of suitable form yields

dF~z!

dfA(K)~x!
5EA(K)

(x) (
i 51

r

@dS~x,z( i )!F~z(1) ,...,z( i 21) ,x,z( i 11) ,...!#

5(
i 51

r

(
MfK

~2D (x)!
Mt4Kt

dS~x,z( i )!PA(M )
(z( i )) F~z!. ~V.13!

The above derivatives of a delta distribution may be resolved in two different ways.
~1! By inner evaluation: The derivatives leave the delta distributiondS(x,z( i )) via thez( i )-leg.

If there are enough internal integrations inside the functionalF, one may resolve the delta distr
butions by integration, thereby prolonging the derivative to an object inside the functionalF. If all
terms are to be resolved this way, this means that all thez-variables have to be internal.

~2! By outer evaluation: The derivatives leave the delta distributiondS(x,z( i )) via thex-leg.
We await an external integration over thex-variable to evaluate the derivative of the delta dist
bution by formal integration by parts. Let us stress the fact, that if one relies on the latter m
for the dS(x,z( i )) term in ~V.13! with the z( i ) being an internal variable for theF(z) functional,
then thex-integrated version is not on a suitable form as it stands.

This distinction is important if one is to conduct further partial differentiations wrt dynam
fieldsfA(x) on the functional~kernel!. However, if no further differentiations are performed, t
two methods yields the same result.

As the most important example, we mention

]fB~y!

]fA~x!
5

dfB~y!

dfA~x!
5dA

BdS~x,y!. ~V.14!

Note that the above definitions~V.12! and~V.13! guarantee the linearity and the Leibnitz’ rule
the ~higher! partial and functional derivatives. We also find that two~higher! partial derivatives
commute. One may show in the case of a vanishing boundary]S50” , that the usual functiona
derivatives commute. In the case of a nontrivial boundary]SÞ0” , the higher functional deriva-
tives ~as well as the usual functional derivatives! do not commute in general.

H. Induced functional derivative

Finally, one may define an induced functional derivative from the perspective of the em
ding manifold, i.e., the chartRd:

dF~z!5E ddx
d@xe~x!r~x!F~z!#

dfA~x!
dfA~x!, ~V.15!
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for an arbitrary variationdfA(x). This is so becauseS#Rd is bounded inside the chartRd, so
integration by parts yields no boundary contributions atuxu5`. The induced functional derivative
makes sense, even though there appears coinciding space points, becausexe(x)r(x) does not
depend on the dynamical fieldsfA(x). We can write it constructively as

d@xe~x!r~x!F~z!#

dfA~x!
5(

i 51

r

(
Mf0”

~2D (x)!
Mt

d~x2z( i )!PA(M )
(z( i )) F~z!. ~V.16!

It is related to the higher functional derivatives via

d@xe~x!r~x!F~z!#

dfA~x!
5~2D (x)!

Mt
„xe~x!r~x!…

dF~z!

dfA(M )~x!
. ~V.17!

This induced functional derivative has the remarkable property of commuting with the s
derivatives,

Di
(z( j ))

d@xe~x!r~x!F~z!#

dfA~x!
5

d@xe~x!r~x!Di
(z( j ))F~z!#

dfA~x!
. ~V.18!

This should be compared with the corresponding behavior of the usual functional derivativ

2Di
†(z( j ))

dF~z!

dfA~x!
5

d@Di
(z( j ))F~z!#

dfA~x!
. ~V.19!

The induced functional derivative satisfies the Leibnitz rule and it commutes with integratio

E
S
rddz( i )

d@xe~x!r~x!F~z!#

dfA~x!
5

d@xe~x!r~x!*Srddz( i )F~z!#

dfA~x!
. ~V.20!

I. Annihilation principle

As mentioned before, integration without smearing can produce ill-defined terms. Howe
can be very cumbersome toa priori discard all the bad terms of an expression. We shall there
formally allow ill-defined terms to appear by giving a prescription that consistently identify t
and put them to zero. This is done by defining a little more restrictive version of the a
so-called suitable form.Notation: For simplicity, we will assume from now on that the covaria
derivatives commute, i.e., that the curvature vanishes. Assume further from now on th
volume densityr is covariantly preserved, Dir50. A typical functional~kernel! consists of the
following.

~1! Dirac delta distributionsd(x2y).
~2! Regularized characteristic functionsxe(x). @Integral powersxe

n(x), n>2 should be con-
sidered as ann-fold product of elementaryxe(x).#

~3! Negative powersxe
2p(x), p>0, of the regularized characteristic function.

~4! Smooth test functions with bounded support. This includes smooth func
g(f (K)(x),x) of the dynamical fieldsfA(K)(x) and the smooth volume densityr(x).

~5! DerivativesDi acting on various factors of the integrand mentioned under points~1!–~4!.

We may assume by use of the Leibnitz rule and breaking the integralF(z) into several terms
if necessary, that all derivatives (A51B5) only act on one elementary object under points~1!, ~2!
and~4!. @Here the lettersA andB refers to the notation introduced in Sec. V E, while the numb
~1!–~5! are those defined above in this section.#
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A functionalF(z) of the above atomic type is declared to be identical to zero if one canno
algebraic means, cf. above, obtain a form where all internal derivatives (B5) acts on type (B4)
objects.~Or in other words, the more singular type of objectsB12B3 are not hit by the deriva-
tives.!

VI. HAMILTONIAN EDGE DYNAMICS

In this section we discuss implications of the full Poisson bracket for the Hamiltonian dy
ics. We first have to extend the definition~IV.5! of the full Poisson bracket to more gener
functionals with external dependence. As a first principle for writing down the more ge
Poisson bracket, we shall demand that integrations*Srddz( i ) commute with the Poisson bracke
$•,•%, that is

E
S
r ddz( i )$F~z!,G~w!%5H E

S
rddz( i )F~z!,G~w!J . ~VI.1!

This principle leads naturally~modulo the action of the annihilation principle! to what we shall
call thesolid Poisson bracket. We shall later see that it can be recasted into a so-calledfloating
Poisson bracket, that~at a superficial level! takes a different shape on different types of functio
als. However, one may show by applying the annihilation principle that no actual difference
place.

A. Solid Poisson bracket

Using the extrapolation of the formulas in the previous sections, the full Poisson br
becomes

$F~z!,G~w!%5$F~z!,G~w!%(0)1B~F~z!,G~w!!, ~VI.2!

where

$F~z!,G~w!%(0)5E
S
r~x!ddx

dF~z!

dfA~x!
vAB

dG~w!

dfB~x!

5E
S3S

r~x!ddxr~y!ddy
dF~z!

dfA~x!
vAB~x,y!

dG~w!

dfB~y!
,

B~F~z!,G~w!!5 (
KÞ0”

E
S
r~x!ddxD(x)

K F dF~z!

dfA(K)~x!
vAB

dG~w!

dfB~x!G2„F~z!↔G~w!…

5 (
KÞ0”

E
S
r~x!ddxF ~D (x)

† !Kt ]F~z!

]fA(K)~x!GvAB
dG~w!

dfB~x!
2„F~z!↔G~w!….

~VI.3!

Alternatively, we may write the full Poisson bracket as

$F~z!,G~w!%5E
S3S

r~x!ddxr~y!ddy
]F~z!

]fA(M )~x!
vA(M )B(N)~x,y!

]G~w!

]fB(N)~y!
, ~VI.4!

where the symplectic kernelvA(M )B(N)(x,y) reads as
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vA(M )B(N)~x,y!5vAB@2~2D (x)
† !M~2D (y)

† !N1~2D (x)
† !M~D (x)

† !Nt
1~2D (y)

† !N~D (y)
† !Mt

#dS~x,y!

5vAB@2~2D (x)
† !M~2D (y)

† !N1~2D (x)
† !MD (y)

N 1D (x)
M ~2D (y)

† !N#dS~x,y!. ~VI.5!

In the case where~at least! one of theM andN are 0”, the symplectic kernel can neatly be writte
as

M50”~N50”⇒vA(M )B(N)~x,y!5vABD (x)
M D (y)

N dS~x,y!. ~VI.6!

Note, on the other hand, that the caseM50”~N50” is also the maximal case to make full sense o
of the expressionD (x)

M D (y)
N dS(x,y) without employing the annihilation principle. Beyond th

case, i.e., ifMÞ0”`NÞ0”, there is no escape ways left open for thexe
21-function ~via formal

integrations by parts of the derivatives!. It is sandwiched inside the delta distribution betwe
derivatives. It should be merged with axe-function outside, whose mere existence on the ot
hand prohibits that a suitable~and hence a well-defined! form can be reached by means
integration by parts.

B. Hamilton equations of motion

Consider the Hamilton equations of motion,

d

dt
F~z!52$H,F~z!%1

]

]t
F~z!. ~VI.7!

Let the Poisson bracket be the solid Poisson bracket~VI.3!. And H5*Sr(x)ddxH(x) be a local
Hamiltonian. Then the Hamilton equations of motion for the fundamental fields read as

d

dt
fA5$fA,H%5

vAB

xe
EB(0)~xeH!. ~VI.8!

We also get

d

dt
fA(K)5$fA(K),H%5

vAB

xe
~DKEB(0)~xeH!2@DK,xe#EB(0)H!. ~VI.9!

On the other hand, a spatial differentiation of~VI.8! yields

DK
d

dt
fA5DK$fA,H%5vABDK

1

xe
EB(0)~xeH!. ~VI.10!

Superficially, the spatial differentiations do not commute with the time derivatives; com
~VI.9! and ~VI.10!. But we shall see that this is an illusion. First of all, it is easy to local
potential problems to the boundary]S. Away from the boundary, the two expressions~VI.9! and
~VI.10! fully agree. However, being interested in the boundary dynamics, this does not
satisfy us. Let us check that they also agree on the boundary. Clearly, the expressions are
at the boundary, so the only way to extract meaningful information is to prepare both the e
sions with a general test functionhA(x). It is not difficult to see that the annihilation principl
sweeps away any differences between the two smeared expressions:

E
S
r~x!ddxhA~x!F d

dt
,DKGfA~x!50. ~VI.11!
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C. Floating Poisson bracket

The floating Poisson bracket is defined via the induced functional derivatives,

$F~z!,G~w!%5E
S
r ddxxe

21~x!
d@xe~x!F~z!#

dfA~x!
vABxe

21~x!
d@xe~x!G~w!#

dfB~x!

5E
S
r ddx

~2D !Mt
xe~x!

xe~x!

dF~z!

dfA(M )~x!
vAB

~2D !Nt
xe~x!

xe~x!

dG~w!

dfB(N)~x!

5E
S3S

r ddxr ddy
]F~z!

]fA(M )~x!
@D (x)

M D (y)
N dS~x,y!#vAB

]G~w!

]fB(N)~y!
. ~VI.12!

In the second equality, we used the identity~V.17!. Let us check that the floating Poisson brack
~VI.12! becomes the full Poisson bracket~IV.5!, by use of the annihilation principle whenF and
G are both local functionals with no external dependence. This is perhaps best seen fro
second right hand side of~VI.12!. The idea is now to obtain a restrictive suitable form by recas
all the derivatives onto smooth objects. In the case at hand, the higher functional derivativ
both smooth functions ofx. One may deduce that the required form can only be obtained for te
(M ,N) when at least one of the indicesM , N are 0”. This reproduces precisely the full Poisso
bracket~IV.5!. Technically speaking, for more general functionalsF(z) and G(w), the above
truncation takes place on parts of the functionals where both functionals are evaluated by th
method. If at least one of them is evaluated by the outer method, then no truncation is carr
~although a truncation may take place at a later integration!. This is particular the case for two
functionsF(z) andG(w).

The advantage of the floating formulation is at least two-fold: First of all, the full Pois
bracket can be written in a more compact manner. The second reason is that the floating P
bracket manifestly commutes with the spatial derivatives; cf.~V.18!. This is quite useful. For
instance, consider as previously, the Hamilton equations of motions, but this time with the flo
bracket as the Poisson bracket. We get as before,

d

dt
fA5$fA,H%5

vAB

xe
EB(0)~xeH!. ~VI.13!

However, this time the spatial derivatives commute manifestly with the time evolution,

F d

dt
,DKGfA5$fA(K),H%2DK$fA,H%50. ~VI.14!

At the end of the day, it always boils down to the full Poisson bracket~IV.5!, when all the
variables are integrated out~and the annihilation principle applied!. We voluntarily throw in a lot
of formal zeros in the floating Poisson bracket dressed up in the above ‘‘divergent-look
disguise. This gambit enables us to write the full Poisson bracket in a very compact mann

As perhaps the most important point, let us note that the Hamilton equations of mo
~VI.13! follows from extremizing, in the sense of~V.15!, the following natural action:

S5E dtE
S
r ddxF1

2
fA~x,t !vABḟA~x,t !2H~x,t !G . ~VI.15!

One may define a more general floatinga-bracket, fora>1, where
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$F~z!,G~w!%(a)5E
S
r ddxxe

21~x!
d@xe

a~x!F~z!#

dfA~x!
vABxe

21~x!
d@xe

a~x!G~w!#

dfB~x!

5E
S
r ddx

~2D !Mt
xe

a~x!

xe~x!

dF~z!

dfA(M )~x!
vAB

~2D !Nt
xe

a~x!

xe~x!

dG~w!

dfB(N)~x!
.

~VI.16!

In this paper, we will merely view the floating (a.1)-brackets as a curiosity, which neverthele
has some relevance when addressing time-order issues; see Sec. VII. It coincides in th
sector with the above floating (a51)-bracket. And it satisfies the Jacobi identity. We give
independent proof of the important thea51 case in Appendix E, and leave the general casa
.1 to the reader. Thea-factor slows down thee-convergence process, but viewed as an isola
issue, it does not jeopardize the convergence.

VII. TIME ORDER AND QUANTIZATION

One might suspect that the boundary terms are related to the time-order prescriptions. W
give some heuristic arguments which point in that direction. Consider first the following to
ordered, antisymmetric and transitive time-order prescription for two spacetime points (x(1) ,t (1))
and (x(2) ,t (2)) in unphysical space–timeRd3R,

~x(1) ,t (1)!a~x(2) ,t (2)!⇔~x(1) ,x(2)PS`t (1),t (2)!~~x(1)¹S`x(2)PS!

~„x(1) ,x(2)¹S`udS~x(1)!u.udS~x(2)!u…. ~VII.1!

This prescription has as a consequence, that the boundary]S is assigned to the infinite past, s
there effectively is no spatial boundary.~In a similar manner, one may link it with the infinit
future.! As we shall see below, the equal-time relation; plays a crucial role, so let us define
properly:

~x(1) ,t (1)!;~x(2) ,t (2)!⇔~x(1) ,x(2)PS`t (1)5t (2)!~„x(1) ,x(2)¹S`udS~x(1)!u5udS~x(2)!u….
~VII.2!

We can now give the time-order prescriptionTS for n operatorsF̂ ( i )5F̂ ( i )(x( i ) ,t ( i )), where
i 51,...,n,

TS@ F̂ (n)¯F̂ (1)#5F̂
„p(n)…¯F̂

„p(1)… ~VII.3!

wherepPSn is the unique permutation$1,...,n%→$1,...,n%, that satisfies

~x(n) ,t (n)!f¯f~x(1) ,t (1)!,

; i 51,...,n21:p~ i 11!,p~ i !⇒~x
„p( i 11)… ,t „p( i 11)…!;” ~x

„p( i )… ,t „p( i )…!. ~VII.4!

Let us now consider an equal-time slicet5t (0) , i.e., in the traditional sense of the word ‘‘equa
time,’’ as we did in the previous sections. We shall suppress the time coordinate in the follo
We have

TS@ F̂~x!,Ĝ~y!#5@1S~x!1S~y!11$0%„udS~x(1)!u

2udS~x(2)!u…„121S~x!…„121S~y!…#@ F̂~x!,Ĝ~y!#

'1S~x!1S~y!@ F̂~x!,Ĝ~y!#. ~VII.5!
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In the wavy equality', we neglected a contribution from a spatial hypersurface of dimensiod
21, and hence of Lebesgue measure zero. Let us regularize this as

TS
b@ F̂~x!,Ĝ~y!#5xe

b~x!xe
b~x!@ F̂~x!,Ĝ~y!#, ~VII.6!

for some positive powerb.0. When time ordering the spatial derivatives we get

D (x)
M D (y)

N TS
b@ F̂~x!,Ĝ~y!#5

1

xe
b~x!

1

xe
b~y!

TS
b@D (x)

M
„xe

b~x!F̂~x!…,D (y)
N
„xe

b~y!Ĝ~y!!].

~VII.7!

~This equation should be understood as follows: On the left hand side the time orderTS
b is

everywhere present while we form the quotient of differences for the derivativeDi . In particular,
it is present before we actually take the infinitesimal limit to produce the derivativesDi . On the
right hand side the time orderTS

b does not recognize how the spatial derivatives earlier w
produced.TS

b only sees the result: an operator depending on one space point.! This should be
compared to the corresponding property of the floating (a.1)-Poisson bracket,

D (x)
M D (y)

N $F̂~x!,Ĝ~y!%(a)5
1

xe
a21~x!

1

xe
a21~y!

$D (x)
M
„xe

a21~x!F̂~x!…,D (y)
N
„xe

a21~y!Ĝ~y!…% (a) .

~VII.8!

This carries some evidence, that we should translate the floating (a.1)-Poisson bracket into the
commutator with the above perculiar time-order prescription, withb5a21:

1

i\
TS

b5a21@ F̂~x!,Ĝ~y!#↔$F~x!,G~y!%(a) . ~VII.9!

Although the exact value ofa.1 should be taken with a grain of salt, let us compare this beha
with the behavior of the floating (a51)-Poisson bracket:

D (x)
M D (y)

N $F~x!,G~y!%5$D (x)
M F~x!,D (y)

N G~y!%. ~VII.10!

This corresponds to the commutator with the usual time-order prescription. It is also interes
compare with the corresponding property of the bulk Poisson bracket, cf.~V.19!, although it of
course does not satisfy the Jacobi identity and is therefore not expected to play any leading
the level of quantization:

1

xe~x!

1

xe~y!
D (x)

M D (y)
N $xe~x!F~x!,xe~y!G~y!% (0)5$D (x)

M F~x!,D (y)
N G~y!%(0) . ~VII.11!

So we have here presented two physically different, but both consistent, time orderings
governed by the floating (a.1)-Poisson bracket, but with some of the ‘‘equal-time’’ surfac
wrapped up along the boundary]S. And another system governed by the floating (a51)-Poisson
bracket with the boundary]S being a true spatial boundary for the system. Although the ab
analysis clearly may be criticized wrt~1! the order of various limits taken,~2! the omission of the
role played by the annihilation principle, and~3! it disregards of further ordering issues~like an
*-product!, it tends to confirm the importancy of the boundary terms of the Poisson bracket
that they should not be discarded in a full treatment of a quantum field theory with a s
boundary.
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VIII. CONCLUSIONS

In this article we have
• Reviewed the higher functional derivatives and the extended notion of differentiabili

functionals.
• Shown a new way to add a boundary contribution to the usual ‘‘bulk’’ Poisson bracke

that the Jacobi identity is satisfied.
• Given a manifest formulation of this new Poisson bracket.
• Geometrized the Poisson bracket to an abstract world volume manifold.
• Reviewed an embedded framework to treat Dirac delta distributionsdS(x,y) in the presence

of a boundary]S.
• Introduced an annihilation principle and a floating Poisson bracket.
• Given an action principle for Hamiltonian systems with a spatial boundaries.
• Discussed the relation between the boundary terms in the Poisson bracket and the ch

time order in a heuristic manner.
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APPENDIX A: VARIOUS IDENTITIES

First of all, let us prove that the Heisenberg algebra reproduces the algebra~III.2! of partial
and spatial derivatives. This follows from

(
k,n>0

qkyn

n!
PA(k)]

n5PAeqYe]y

5PAe]yeqYe[qY,]y]

5e]yPA~q!eqy

5 (
m>0

(
k,n>m

~qy!m

m!

~]y!n2m

~n2m!!
PA(k2m)q

k2m

5 (
k,n>0

qkyn

n! (
m50

min(k,n) S n
mD ]n2mPA(k2m) . ~A1!

Next, let us check the identity~II.15!. The proof goes as follows:

]k@EA(k) f dfA#5expF] ]

]qG@EA~q! f dfA#q50

5E ddye]y@EA~y! f dfA#

5E ddye]yEA~y! f e]y dfA

5E ddyPA~y! f e]y dfA

5PA~q! f expF ]
]Q

]q
GdfAU

q50

5PA(k) f ]
kdfA. ~A2!
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Let us note the following consequences of the Heisenberg algebra:

e]yPA~yA!5PA~yA1y!e]y,

EA~yA!5EA~yA1y!e]y,

EA~yA!EB~yB!5EA~yA1yB!PB~yB!5PB~2yA!EA~yA1yB!. ~A3!

Similary, we mention

EA~yA!e]y5EA~yA2y!, or equivalently EA(k)]
n5EA(k2n) . ~A4!

It is worth pointing out the casek50, nÞ0, which in words says that the usualk50 Euler–
Lagrange derivative of a total derivative term is identically zero. This is hardly surprising.
note that the usualk50 Euler–Lagrange operator in this language reads as

EA(k50)f 5EA~q50! f 5E ddyEA~y! f . ~A5!

APPENDIX B: PROOF OF THE JACOBI IDENTITY „COMMUTATIVE CASE …

With the above machinary working, we can give a hopefully readable proof of the Ja
identity. Consider three functionsf , g and h. Using the fact that the usual Euler–Lagran
derivative cannot ‘‘feel’’ a total derivative term, we have

$ f ,$g,h%%5PA(a) f v
AB]aEB(0)$g,h%(0)1]bEA(0)f v

ABPB(b)@]dEC(0)gvCDPD(d)h

1PC(c)gvCD]cED(0)h2$g,h% (0)#2EA(0)f v
ABEB(0)$g,h% (0)

5T1~ f ,g,h!1T2~ f ,g,h!1T3~ f ,g,h!2T4~ f ,g,h!2T5~ f ,g,h!2~g↔h!, ~B1!

where we have introduced a shorthand notation for the following five terms:

T1~ f ,g,h![PA(a) f v
AB]a~2]!b@PB(b)EC(0)gvCDED(0)h#,

T2~ f ,g,h![]bEA(0)f v
ABPB(b)PC(c)gvCD]cED(0)h,

T3~ f ,g,h![]bEA(0) f vABPB(b) ]dEC(0)gvCDPD(d) , ~B2!

T4~ f ,g,h![]bEA(0) f vABPB(b)EC(0)gvCDED(0)

T5~ f ,g,h![EA(0)f v
AB~2]!b@PB(b)EC(0)gvCDED(0)h#.

The Jacobi identity, containing 30Ti-terms, now follows from the fact that

T2~ f ,g,h!5T2~h,g, f !, T1~ f ,g,h!5T3~h,g, f !, T4~ f ,g,h!5T5~h,g, f !. ~B3!

The first equation is trivial and the next two equations follows by rewriting in terms of Fou
transforms,
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T1~ f ,g,h!5PA~qA! f vAB expF ]S ]Q

]qA
2

]

]qB
D G @PB~qB!EC~qC!gvCDED~qD!h#uq50

5E d4dyPA~yA! f vABe](yA2yB)@PB~yB!EC~yC!gvCDED~yD!h#

5E d4dyPA~yA! f vABe](yA2yB)@e2]yCPB~yB1yC!PC~yC!gvCDED~yD!h#

5E d4dyPA~yA! f vABe](yA2yB)PB~yB!PC~yC!gvCDe](yA1yC2yB)ED~yD!h,

T3~ f ,g,h!5expF] ]

]qB
GEA~qA! f vABPB~qB!expF] ]

]qD
GEC~qC!gvCDPD~qD!huq50

5E d4dye]yBEA~yA! f vABPB~yB!e]yDEC~yC!gvCDPD~yD!h

5E d4dye]yBEA~yA! f vABe](yD2yC)PB~yB1yC2yD!PC~yC!gvCDPD~yD!h

5E d4dye](yB1yD2yC)EA~yA! f vABe](yD2yC)PB~yB!PC~yC!gvCDPD~yD!h,

~B4!

T4~ f ,g,h!5expF] ]

]qB
GEA~qA! f vABPB~qB!EC~qC!gvCDED~qD!huq50

5E d4dye]yBEA~yA! f vABPB~yB!EC~yC!gvCDED~yD!h

5E d4dye]yBEA~yA! f vABe2]yCPB~yB1yC!PC~yC!gvCDED~yD!h

5E d4dye](yB2yC)EA~yA! f vABe2]yCPB~yB!PC~yC!gvCDED~yD!h,

T5~ f ,g,h!5EA~qA! f vAB expF2]
]

]qB
G@PB~qB!EC~qC!gvCDED~qD!h#uq50

5E d4dyEA~qA! f vABe2]yB@PB~yB!EC~yC!gvCDED~yD!h#

5E d4dyEA~qA! f vABe2]yB@e2]yCPB~yB1yC!PC~yC!gvCDED~yD!h#

5E d4dyEA~qA! f vABe2]yBPB~yB!PC~yC!gvCDe](yC2yB)ED~yD!h.

We have used the following shorthand notation for the integration measure:

d4dy[ddyAddyBddyCddyD , ~B5!

and we have performed the following change of integration variables:
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S yA8

yB8

yC8

yD8

D 5S 1 0 0 0

0 1 1 *
0 0 1 0

0 0 0 1

D S yA

yB

yC

yD

D , ~B6!

which has a Jacobian equal to 1. h

APPENDIX C: CALCULUS OF WORDS

To be self-contained, we will here give a short treatment of the calculus with ordered in
structure, merely giving the main definitions and formulas.

1. Words

An ordered tupleK ~or a positive word! takes the form

K5~k1 ,...,kuKu!P$1,...,d% uKu. ~C1!

Here we have employed ad-letter alphabet$1,...,d% and uKuPN0 denotes thelengthof K. The
transposedword is Kt5(kuKu ,...,k1). We define the~noncommutative, associative! sum of two
tuplesK5(k1 ,...,kuKu) andL5( l 1 ,...,l uLu) as the concatenation,

K1L[~k1 ,...,kuKu ,l 1 ,...,l uLu!. ~C2!

Obviously, the empty index set 0” is the neutral element. Formally, we can define negative wo
2K52(kuKu)2¯2(k1). Moreover2(K1L)52L2K. We define a left subtraction2K1L as
the unique solution toK1(2K1L)5L. If the left subtraction2K1L is a positive word, we say
that K<L. Clearly, (K1L) t5Lt1Kt.

There exists another partial order between two arbitrary positive wordsK and L. Namely,
define thatK preceed~or is equal to! L, written KdL, if we can obtainK from L by deleting
some~possible no or all! elements inL. Said in a mathematical precise manner, there exis
~strongly! increasing index functionp:$1,...,uKu%→$1,...,uLu%, called an~order preserving! em-
bedding, such that

k15 l p(1) ,...,kuKu5 l p(uKu) , p~1!,¯,p~ uKu!. ~C3!

In the affirmative case, we define the subtractionL4K as the tuple of deleted entries. Mor
precisely, in this case there exists a unique~strongly! increasing index function, called the compl
mentary embedding,

pc:$1,...,uLu2uKu%→$1,....,uLu%, ~C4!

such that the images ofp andpc are disjoint, i.e.,

p~$1,...,uKu%!ùpc~$1,...,uLu2uKu%!50” , pc~1!,...,pc~ uLu2uKu!. ~C5!

Then the subtractionL4K is defined as

L4K5~ l pc(1) ,...,l pc(uLu2uKu)!. ~C6!

We stress that the embeddingp is not necessary unique. ThereforeL4K depends on the embed
ding p. For instance, in the entanglement formula~IV.7!, one should sum over all possibl
embeddings. A closed expression for the degeneracyd(KdL) of imbeddingsp is not known to

the author. By definitiond(0”dL)51. Note thatKd
p

L implies L4Kd
pc

L. In the affirmative case
the pairK andL4K is called13 an unshuffleof L. There exist 2uLu unshuffles ofL. Furthermore,
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~L4K ! t5Lt4Kt,

KdLdN⇒N2L5~N4K !4~L4K !. ~C7!

A shuffle K#M of two positive wordsK andM is defined as the opposite of an unshuffle in t
sense that it is a solutionX to X4K5M . Clearly, the number of shuffles for fixedK andM is
(

uM u
uKu1uM u). The number of solutionsX to L4X5M for fixed positiveM , L with MdL is d(M

dL).

2. Alphabets of operators

A d-letter alphabet of operators~or more generally, of associative abstract algebra eleme!,
is just d operatorsA5(A1 ,...,Ad). The sum and the product~i.e., usually the operator compos
tion! of two alphabets are defined letterwise,

A1B5~A11B1 ,...,Ad1Bd!, AB5~A1B1 ,...,AdBd!, ~C8!

respectively.

3. Words of operators

If we have an alphabet of operatorsA5(A1 ,...,Ad) we can form words of operators,

AK5Ak1
...AkuKu

. ~C9!

We invoke the convention thatAK5A(Kt) denotes the transposed word. The empty word oper
A0”51 is the identity. Operators for nonpositive words, i.e., for words containing negative le
are declared to be zero. Concatenation leads to a noncommutative product,

ANAM5AN1M, ~C10!

between words~andANAM5AM1N for the transposed!. It coincides with the letterwise multipli-
cation. But this is not the only associative product of words. Shuffling leads to a commu
*-product,

AK

uKu! *
AL

uLu!
5 (

N5K#L

AN

uNu!
, ~AK* 15AK!, ~C11!

where the sum is over possible shufflesK#L. The definition of the*-product is extended by
C-bilinearity. The concatenation product and the*-product coincide for commutative alphabet
The following binomial relation is a consequence of the special features of unshuffles, cf.~C8! and
~C9!,

@Ai ,Bj #50⇒~A1B!N5 (
M50”

MdN

AMBN4M. ~C12!

We can also define a noncommutative, associative sum by the following binomial express

~A#B!N

uNu!
5 (

K,Lf0”

K1L5N
AK

uKu!
BL

uLu!
. ~C13!

This sum ‘‘#’’ and the usual sum ‘‘1’’ do not coincide in general, not even for commutativ
alphabets. But see the equation~C22! below for a further relationship.

Note that the definition~C11! makes no use of the algebra multiplication. It only need
vector space with a basis of vectorsAK indexed by wordsK. The definition of the #-sum~C13!
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needs an algebra of wordsAK, but it is irrelevant whetherAK is a composite object of more
elementary letters or not. The same remark could be made about formulas~C10! and ~C12!, that
in the minimalistic interpretation becomes definitions. Even in the case where there ex
letterwise algebra multiplication, we will often use the binomial formula~C12!, also known as a
convolution, which makes sense even for mutually noncommuting alphabets.

We have that2(A#B)5(2A)#(2B) and

~AN! t5A(Nt)

~BN! t5B(Nt)J ⇒@~A#B!N# t5~B#A!(Nt). ~C14!

Sometimes we will also need to define (At#B)N/uNu! [(K,Lf0”
K1L5N (A(Kt)/uKu!)(BL/uLu!), etc.

4. Functions of operators

For an analytic functionf (x)5(n50
` anxn, we definef (A)5(N50”

` auNuA
N. In particular, the

exponential of an alphabet is

exp~A!5 (
N50”

`
AN

uNu!
. ~C15!

We have that

@Ai ,Aj #50⇒exp~A!5exp~A1!...exp~Ad!,
~C16!

@Ai ,Bj #50⇒exp~A1B!5exp~A!exp~B!.

Also, we have the important orthogonality relation,

„~2A! t1A…N[ (
M50”

MdN

~2A!(Mt)AN4M5dN,0”[0N. ~C17!

This property leads to the vital relationeAe2A51 even for a noncommutative alphabet. Similar
we have„(2A) t#A…N50N.

In practice, we only usef (AB) for a product of two alphabets.~Dummy indices usually come
in pairs.! It is convenient to define a ‘‘dot product’’ notation,

f ~A•B!5 (
N50”

`

auNuA
NB(Nt), ~C18!

implementing a transposition of one of the alphabets. Alsof „(2A) t
•B…[ f „(2A)B…. We have the

following inversion relation for the concatenation product:

@Ai ,Bj #50⇒exp@~2A!•B#exp~A•B!51. ~C19!

This should be compared with the inversion relation for the the mixed case of an implicitly w
concatenation product and a*-product,

@Ai ,Bj #50⇒exp@~2A! t
•B#* B exp~A•B!51. ~C20!

We have the following distributive laws:
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@Ai ,Bj #50
@Ai ,Cj #50
@Bi ,Cj #50

J ⇒H exp@~2A! t
•~B#C!#5exp~~2A! t

•B!exp~~2A! t
•C!

exp@A•~B#C!#5exp~A•C!exp~A•B!

exp@~A1B!•C#5exp~A•C!* C exp~B•C!

5exp~B•C!* C exp~A•C!

. ~C21!

Note the reversed order in the second equation. The sum ‘‘#’’ and the usual sum ‘‘1’’ coincide
loosely speaking on average. More precisely,

@Ai ,Aj #50⇒exp@A•~B#C!#5exp@A•~B1C!#. ~C22!

5. Trace and Fourier analysis

We define a trace on the vector space of words, which is constructed from two mu
commuting freely generated alphabetsA andB:

E ddAddBe(2A) t
•B* B ANBM[Tr~ANBM !5uNu!dM

N , ~C23!

and extend byC-bilinarity. As the first equality suggests, we will sometimes use a sugge
notation for the trace borrowed from the Fourier analysis in the usual commutative case. O
take this analogy quite far. We do not give any meaning to the position of the measureddAddB,
i.e., it is taken to commute with everything. A theoretically perhaps more convenient form

E ddAddB exp@~2A2A8! t
•~B#B8!#51. ~C24!

From here it follows trivially that the integration measureddAddB is translation invariant unde
A→A1A8, B→B#B8 ~but not underB→B8#B! !.

6. Differentiation of words

Consider the differential alphabet (]/]A) 5(]/]A1 ,...,]/]Ad) of freely generated associativ
algebra elementsAi . Let us define differentiation at the level of words~i.e., not letterwise!, as

1

uKu!
]

]AK @AL#5 (
p:KdL

AL4
p

K, S ]

]A0” @1#51D , ~C25!

where the sum is over possible embeddingsp. Extend the definition byC-bilinarity. One of the
main motivations behind this definition is to implement the Taylor formula,

@Ai ,Bj #50⇒expFB•
]

]AG f ~A!5 f ~B1A!. ~C26!

The composition of derivatives is described by the*-product,

1

uKu!
]

]AK

1

uLu!
]

]AL 5 (
N5K#L

1

uNu!
]

]AN [
1

uKu!
]

]AK *
1

uLu!
]

]AL . ~C27!

As a consequence, the derivatives are associative and commutative wrt composition. The
the following properties:

@Ai ,Bj #50⇒expF ~2B! t
•

]

]AGexpFB•
]

]AG51,
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@Ai ,Cj #50
@Bi ,Cj #50J ⇒expF ~B1C!•

]

]AG5expFB•
]

]AGexpFC•

]

]AG . ~C28!

We can of course implement the concatenation product for the differential. However, in pra
calculations it plays no role. The derivatives~C25! do not satisfy the Leibnitz’ rule.

There are other kinds of differential alphabets. In our case, we have the covariant deriv
Di that act on words (2Y)K according to

@Di ,~2Y!K#5H uKu~2Y!2( i )1K , if ~ i !<K,

0, otherwise.
~C29!

@One can consider the words (2Y)K as originating from an associative algebra alpha
(2Y1,...,2Yd) that behaves nonassociatively wrt theDi ’s, but it is unnecessary.# The covariant
derivatives satisfies Leibnitz’ rule on functions:

DK~ f g!5 (
M50”

MdK

DM f DK4Mg. ~C30!

This can be recast into the Taylor-like formeD•y( f g)5eD•yf * y eD•yg.

APPENDIX D: PROOF OF THE JACOBI IDENTITY „NONCOMMUTATIVE CASE …

We have

$ f ,$g,h%%5PA(A) f v
ABDAEB(0)$g,h%(0)1DBEA(0)f v

ABPB(B)@DDEC(0)gvCDPD(D)h

1PC(C)gvCDDCED(0)h2$g,h%(0)#2EA(0)f v
ABEB(0)$g,h%(0)

5T1~ f ,g,h!1T2~ f ,g,h!1T3~ f ,g,h!2T4~ f ,g,h!2T5~ f ,g,h!2~g↔h!, ~D1!

where we have introduced a shorthand notation for the following five terms:

T1~ f ,g,h![PA(A) f v
ABDA~2D !Bt

@PB(B)EC(0)gvCDED(0)h#,

T2~ f ,g,h![DBEA(0)f v
ABPB(B)PC(C)gvCDDCED(0)h,

T3~ f ,g,h![DBEA(0)f v
ABPB(B)D

DEC(0)gvCDPD(D) , ~D2!

T4~ f ,g,h![DBEA(0)f v
ABPB(B)EC(0)gvCDED(0) ,

T5~ f ,g,h![EA(0)f v
AB~2D !Bt

@PB(B)EC(0)gvCDED(0)h#.

Here we have chosen to use the same index symbolA, B, C and D to label the indices of the
fields f and the words. It should not lead to any ambiguities, and it hopefully becomes eas
grasp the index structure. The Jacobi identity, containing 30Ti-terms, now follows from the fact
that

T2~ f ,g,h!5T2~h,g, f !,T1~ f ,g,h!5T3~h,g, f !,T4~ f ,g,h!5T5~h,g, f !. ~D3!

The first equation is trivial and the next two equations follows by rewriting in terms of Fou
transforms,
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T1~ f ,g,h!5PAf vABexpFD•

]Q

]qA
GexpF ~2D ! t

•

]

]qB
G@PBECgvCDEDh#uq50

5TrDCBAPAf vABeD•yAe(2D) t
•yB@PBe(2D) t

•yCPCgvCDEDh#

5TrDCBAPAf vABeD•yAe(2D) t
•yB@e(2D2qB) t

•yCPBPCgvCDEDh#

5TrDCB8APAf vABeD•yAe(2D) t
•yB8PBPCgvCDeD•yAe(2D) t

•yB8eD•yCEDh,

T3~ f ,g,h!5expFD•

]

]qB
GEAf vABPB expFD•

]

]qD
GECgvCDPDhuq50

5TrDCAeD•yBEAf vABTrBPBeD•yDe(2D) t
•yCPCgvCDPDh

5TrDCAeD•yBEAf vABTrBe(D1qB)•yDe(2D2qB) t
•yCPBPCgvCDPDh

5TrDCAeD•yDe(2D) t
•yCeD•yB8EAf vABTrB8e

D•yDe(2D) t
•yCPBPCgvCDPDh,

T4~ f ,g,h!5expFD•

]

]qB
GEAf vABPBECgvCDEDhuq50

5TrDCAeD•yBEAf vABTrBPBe(2D) t
•yCPCgvCDEDh

5TrDCAeD•yBEAf vABTrBe(2D2qB) t
•yCPBPCgvCDEDh

5TrDCAe(2D) t
•yCeD•yB8EAf vABTrB8e

(2D) t
•yCPBPCgvCDEDh,

T5~ f ,g,h!5EAf vABexpF ~2D ! t
•

]

]qB
G@PBECgvCDEDh#uq50

5TrDCBAEAf vABe(2D) t
•yB@PBe(2D) t

•yCPCgvCDEDh#

5TrDCBAEAf vABe(2D) t
•yB@e(2D2qB) t

•yCPBPCgvCDEDh#

5TrDCB8AEAf vABe(2D) t
•yB8PBPCgvCDe(2D) t

•yB8eD•yCEDh. ~D4!

We have suppressed*-products among they-variables, and shortenPA5PA(qA), PB

5PB(qB),...,EA5EA(qA), etc. The trace can be written more suggestively as

TrDCBA5E d4dqd4dye(2qD) t
•yDe(2qC) t

•yCe(2qB) t
•yBe(2qA) t

•yA. ~D5!

We have performed the following type of translation of the integration variables:

yB85yB#yC or yB85yB#~2yD! t#yC . ~D6!

Note that after the shift of integration variables they-alphabets do no longer mutually commut
However, one may convince oneself that the integrations can unwind, and we can consi
declare them to mutually commute also in the new variables. Finally to prove~D3!, one should
relabel dummy variablesABCD→DCBA. h

APPENDIX E: PROOF OF THE JACOBI IDENTITY „FLOATING TYPE …

We now turn to the proof of the Jacobi identity for the floating Poisson bracket; cf.
~VI.12!. Consider the local functionals of Sec. II E. We assume thatDir50. Suppressing the
integrations, we have
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$ f ,$g,h%%5
EA(0)~xe f !

xe
vABEB(0)FEC(0)~xeg!vCD

ED(0)~xeh!

xe
G5T~ f ,g,h!2~g↔h!, ~E1!

where

T~ f ,g,h![
EA(0)~xe f !

xe
vAB~2D !BtFPB(B)EC(0)~xeg!vCD

ED(0)~xeh!

xe
G

5
EA~xe f !

xe
vAB expF ~2D ! t

•

]

]qB
GFPBEC~xeg!vCD

ED~xeh!

xe
GU

q50

;TrDCAe~1/2! D•yB
EA~xe f !

xe
vABTrBe~1/2!(2D) t

•yBFPBe(2D) t
•yCPC~xeg!vCD

ED~xeh!

xe
G

5TrDCAe~1/2! D•yB
EA~xe f !

xe
vABTrBe~1/2!(2D) t

•yB

3Fe(2D2qB) t
•yCPBPC~xeg!vCD

ED~xeh!

xe
G

5TrDCAe~1/2!(2D) t
•yCe~1/2! D•yB8

EA~xe f !

xe
vAB

3TrB8e
~1/2!(2D) t

•yB8e~1/2! D•yCFe(2D) t
•yCPBPC~xeg!vCD

ED~xeh!

xe
G

5TrDCBAe~1/2!(2D) t
•yCe~1/2! D•yB

EA~xe f !

xe
vABe~1/2!(2D) t

•yBe~1/2!(2D) t
•yCPBPC~xeg!vCD

3e~1/2!(2D) t
•yBe~1/2! D•yC

ED~xeh!

xe

;T~h,g, f !. ~E2!

The ; indicates that the equality holds up to total derivative terms. They are unphysical
living far away from the bounded physical regionS, and therefore vanishing. In the last step w
substitutedyB85yB#yC . The annihilation principle will not change the fact that the Jacobi iden
is fulfilled, because all annihilated terms appear in pairs with opposite sign. h

Let us now turn to more general functionalsF(u), G(v) andH(w). We have

$F~u!,$G~v !,H~w!%%5E r~x!ddxr~y!ddyFB~x!
d

dfB~x! Fxe~x!
d@xe~y!G~v !#

dfC~y!
HC~y!G

5E r~x!ddxr~y!ddyT~F,G,H !2„G~v !↔H~w!…. ~E3!

Here we have applied the following shorthand notation:

FB~x!5
d@xe~x!F~u!#

dfA~x!

vAB

xe~x!
, HC~y!5

vCD

xe~y!

d@xe~y!H~w!#

dfD~y!
, ~E4!

and
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T~F,G,H ![FB~x!~2D (x)!
BtFxe~x!

]

]fB(B)~x!

d@xe~y!G~v !#

dfC~y! GHC~y!

5FB~x!~2D (x)!
BtFxe~x!

]

]fB(B)~x! (j 51

r

~2D (y)!
Ct d~y2v ( j )!

r~y!
PC(C)

(v( j ))G~v !GHC~y!

5T1~F,G,H !1T2~F,G,H !, ~E5!

where the last equality will be explained below. We distinguish between the so-calledinner
j -terms j 51,...,s, where the spatialD (y)-differentiation are applied on thePC-derivatives of the
G-functional before the partial derivativePB , and on the other hand the so-calledouter j-terms,
where the order is the opposite. For each innerj -term, we may write G(v)
5*r(v ( j ))d

dv ( j )gj (v). Together, the diagonal piece of innerj -terms becomes

T1~F,G,H ![FB~x!F ~2D (x)!
Bt

(
j 51

s
d~x2v ( j )!

r~x!
PB(B)

(v( j ))~2D (v( j ))
!Ct

PC(C)
(v( j ))gj~v ! uv( j )5yGHC~y!

5FB~x!F ~2D (x)!
Bt

(
j 51

s
d~x2y!

r~y!
PB(B)

(v( j ))~2D (v( j ))
!Ct

PC(C)
(v( j ))gj~v ! uv( j )5yGHC~y!.

~E6!

The y-integration may be explicitly performed in the diagonalT1-term:

E r~y!ddyT1~F,G,H !5FB~x!~2D (x)!
BtF (

j 51

s

PB(B)
(v( j ))~2D (v( j ))

!Ct
PC(C)

(v( j ))gj~v ! uv( j )5x
HC~x!G .

~E7!

It may now be treated similarly to the local case discussed in Eq.~E2!. The rest of the terms
appearing in~E5! can be organized so that they are manifestly symmetric inF andH, and hence
do not effectively contribute to the Jacobi identity:

T2~F,G,H ![FB~x!F ~2D (x)!
Bt

~2D (y)!
Ct

( 8
i , j

d~x2v ( i )!

r~x!

d~y2v ( j )!

r~y!
PB(B)

(v( i ))PC(C)
(v( j ))G~v !GHC~y!.

~E8!

~The prime 8 indicates that the above inner diagonalj -terms should not be included in th
T2-sum.! h
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The ~211!-dimensional modified Kadomtsev–Petviashvili equation is decomposed
into two known~111!-dimensional soliton equations. A Darboux transformation of
the two known~111!-dimensional soliton equations is derived with the help of a
gauge transformation of the spectral problem. As an application, explicit solutions
of the two ~111!-dimensional soliton equations and two new explicit solutions of
the ~211!-dimensional modified Kadomtsev–Petviashvili equation are obtained.
© 2000 American Institute of Physics.@S0022-2488~00!02209-X#

It is well known that solving multidimensional soliton equations is very difficult. In gene
one always decomposes the complicated problems into several simple problems, which are
to treat. Based on this idea, one has introduced a nonlinearization approach of Lax pairs,1–3 from
which solutions of~111!-dimensional soliton equations are reduced to solving compatible o
nary differential equations. Recently, there are attempts to apply this idea to Lax pairs and a
Lax pairs in order to decompose~211!-dimensional soliton equations into~111!-dimensional
integrable systems.4–6 Very recently, a systematic approach was developed to get alge
geometric solutions of some~211!-dimensional soliton equations with the help of th
decomposition.7,8 This can be realized through three steps:

~i! The ~211!-dimensional soliton equations are decomposed into the~111!-dimensional soli-
ton equations, which are in turn separated into solvable ordinary differential equatio

~ii ! The Abel–Jacobi coordinates are suitably introduced to straighten out the correspo
flows.

~iii ! Inversion into the original coordinates to give algebro-geometric solutions of the~211!-
dimensional soliton equations.

In this article, a direct method is proposed to decompose the~211!-dimensional modified
Kadomtsev–Petviashvili~mKP! equation9

qt5
1
8 ~qxxx26q2qx16qx]x

21qy13]x
21qyy! ~1!

into two known ~111!-dimensional soliton equations. Here the decomposition only depend
the two nontrivial soliton equations in the same hierarchy but does not depend on their Lax
It is very interesting that two kinds of solutions for the~211!-dimensional mKP equation~1! are
presented by solutions of the~111!-dimensional soliton equations. A Darboux transformat
~DT!10–13,22 for the two ~111!-dimensional soliton equations is derived by means of a ga
transformation of the associated spectral problem, from which explicit solutions of the two~111!-
dimensional soliton equations and two new explicit solutions of the~211!-dimensional mKP
equation~1! are obtained.

Let us consider the~111!-dimensional soliton equations14
75010022-2488/2000/41(11)/7501/9/$17.00 © 2000 American Institute of Physics
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uy5uxx1
1
2 vxx14uux1~uv !x ,

~2!
vy52vxx14~uv !x13vvx ,

and

ut5
1
2 uxxx1~ 3

2 uxv1 3
2 uvx13uux1 3

4 vvx13u2v12u31 3
4 uv2!x ,

~3!

v t5
1
2 vxxx1~23uvx2 3

2 vvx16u2v16uv21 5
4 v3!x .

A well-known fact is that Eqs.~2! and ~3! are compatible since the flows determined by th
commute. We assume that (u,v) is a solution of Eqs.~2! and ~3!, and introduce a functionq by

q5 1
2 v. ~4!

Using Eqs.~2! and ~3!, a direct calculation gives (]21]5]]2151,]5]/]x)

qy52qxx14~uq!x16qqx , ]21qy52qx14uq13q2,

]21qyy2qxxx18qqxx16qx
2236q2qx528uqxx28uxqx132uuxq116u2qx156uqqx132q2ux ,

~5!
qx]

21qy23q2qx1qx
254uqqx ,

qt2
1
2 qxxx215q2qx13qx

213qqxx523uqxx23qxux112uuxq16u2qx112q2ux124uqqx .

From the above expressions, we have thatq satisfies the mKP equation~1!. Now we introduce
another functionq1 by

q152u1v. ~6!

In a similar way, one can prove thatq1 also satisfies the mKP equation~1! ~see also Ref. 15!.
Hence we have immediately the assertion.

Proposition 1:Let (u,v) be a solution of the~111!-dimensional soliton equations~2! and~3!.
Thenq andq1 determined by Eqs.~4! and ~6! are two solutions of the~211!-dimensional mKP
equation~1!.

Proof: It has been proved in the previous paragraph thatq determined by Eq.~4! is a solution
of mKP equation. Here we shall prove thatq1 determined by Eq.~6! is also a solution of the mKP
equation. As a matter of fact, a direct calculation gives, by using Eqs.~6!, ~2! and ~3!, that

]21q1y52ux14u21 3
2 v216uv,

]21q1yy2q1xxx516uuxx18ux
214uxvx18uxxv132u2ux156uvux

132u2vx118v2ux136uvvx19v2vx , ~7!

q1x]
21q1y54ux

212uxvx1ux~8u213v2112uv !1vx~4u21 3
2 v216uv !,

q1
2q1x52ux~4u21v214uv !1vx~4u21v214uv !,

~8!

q1t2
1
2 q1xxx5~6uux13uxv14u3112u2v1 15

2 uv21 5
4 v3!x .

From the above equalities, we have
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1
8 ~23q1xxx26q1

2q1x16q1x]
21q1y13]21q1yy!5~6uux13uxv14u3112u2v1 15

2 uv21 5
4 v3!x ,

which together with Eq.~8! yields the~211!-dimensional mKP equation~1!. The proof is com-
pleted.

Equation~2! has the Lax representation

fx5Uf, U5S u2l lv

21 l2uD , ~9!

fy5V(1)f, V(1)5S V11
(1) V12

(1)

V21
(1) 2V11

(1)D , ~10!

with

V11
(1)522l22lv12u21uv1ux1 1

2 vx ,

V12
(1)52l2v1l~2uv1v22vx!, ~11!

V21
(1)522l22u2v,

in which the spectral problem~9! can be changed into the spectral problems in Refs. 16 an
through certain gauge transformations. And the Lax representation of Eq.~3! is the spectral
problem~9! and the auxiliary problem

f t5V(2)f, V(2)5S V11
(2) V12

(2)

V21
(2) 2V11

(2)D , ~12!

where

V11
(2)522l32l2v1l~ 1

2 vx2 3
4 v222uv !1 1

2 uxx13uux1 3
4 vvx13u2v12u31 3

4 uv21 3
2 ~uv !x ,

V12
(2)52l3v1l2~2uv1v22vx!1l~ 1

2 vxx2
3
2 vvx2uxv22uvx13uv212u2v1 3

4 v3!, ~13!

V21
(2)522l22l~2u1v !2ux23uv22u22 3

4 v2.

In the following, we shall construct a DT of the spectral problem~9!. Let w5(w1 ,w2)T and
c5(c1 ,c2)T be two basic solutions of the spectral problem~9! and use (w,c) to define a
232 matrix T by

T5S A1~l1A0! lA1B1

1
2 ~A12A1

21! A1
21~l1l1l2A0

21!D ~14!

with

A05
l1l2~a12a2!

l2a22l1a1
, B15

l12l2

l2a22l1a1
,

~15!

A1
25

a12a212a1a2~l12l2!

a12a2
, a j5

w2~l j !2g jc2~l j !

w1~l j !2g jc1~l j !
, j 51,2,
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where parametersl j andg j (l1Þl2 ,g1Þg2) are suitably chosen such that all the denominat
in Eqs.~14! and ~15! are not zero. From Eqs.~14! and ~15! we have

detT5~l2l1!~l2l2!. ~16!

Now we introduce a gauge transformation

f̂5Tf, ~17!

which transforms the spectral problem~9! into a spectral problem off̂ in l5” l j ( j 51,2) as
follows:

f̂x5Ûf̂, ~18!

where

Û5~Tx1TU!T21. ~19!

It turns out thatl5l j ( j 51,2) are removable isolated singularities ofÛ. Thus we can defineÛ
for all l by analytic continuation.

Proposition 2:The matrixÛ determined by Eq.~19! has the same form asU:

Û5S û2l l v̂

21 l2û
D , ~20!

where the transformation formulas from the old potentialsu andv into new ones are given by

û5u1]xlnA0A1 , v̂5vA1
212A1

2B1 . ~21!

The transformation~17! and ~21!: (f;u,v)→(f̂;û,v̂) is a DT of the spectral problem~9!.
Proof: Let T215T* /detT and

~Tx1TU!T* 5S f 11~l! f 12~l!

f 21~l! f 22~l!
D . ~22!

It is easy to see thatf 11(l), f 22(l) or l21f 12(l), f 21(l) are cubic polynomials inl or quadratic
polynomials inl, respectively. By using Eqs.~9! and ~15!, we obtain

a jx52112~l j2u!a j2l jva j
2 , ~23!

A1~l j1A0!52l ja jA1B1 , j 51,2,
~24!

1
2 ~A12A1

21!52a jA1
21~l j1l1l2A0

21!.

Resorting to Eqs.~23! and ~24!, it can be verified thatl j ( j 51,2) are roots off k j(l),k, j 51,2.
Therefore, we have from Eq.~22! that

~Tx1TU!T* 5~detT!P~l!, ~25!

with

P~l!5S p11
(1)l1p11

(0) lp12
(1)

p21
(0) p22

(1)l1p22
(0)D ,
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wherepk j
( l ) are independent ofl. Equation~25! can be written as

Tx1TU5P~l!T. ~26!

Equating the coefficients ofl2, l0, andl, we find

p11
(1)521, p22

(1)51, p12
(1)5vA1

212A1
2B15 v̂,

~27!
p11

(0)52p22
(0)5u1]xlnA0A15û, p21

(0)521,

A1x5~ û2u!A11A1B11 1
2v̂~A12A1

21!,

~28!
~A1B1!x5~ û1u!A1B11l1l2v̂A0

21A1
212vA0A1 .

Equation~28! will be used later. The proof is thus completed.
Let the two solutionsw andc of Eq. ~9! satisfy Eq.~10! as well. Differentiatingf̂5Tf with

respect toy yields

f̂y5V̂(1)f̂, V̂(1)5~Ty1TV(1)!T21. ~29!

Then we can prove the following assertion.
Proposition 3:The matrix V̂(1) defined by the second expression of Eq.~29! has the same

form as V(1), in which the old potentialsu and v are mapped into new potentialsû and v̂
according to the same DT~21!.

Proof: Let T215T* /detT and

~Ty1TV(1)!T* 5S g11~l! g12~l!

g21~l! g22~l!
D . ~30!

A direct calculation shows thatg11(l) andg22(l) are fourth-order polynomials inl, l21g12(l)
andg21(l) are cubic polynomials inl. By virtue of Eqs.~10! and ~15!, we have

a jy5V21
(1)~l j !22a jV11

(1)~l j !2a j
2V12

(1)~l j !, j 51,2. ~31!

With the help of Eqs.~24! and ~31!, we can verify thatl j ( j 51,2) are roots ofgik( i ,k51,2).
Therefore, we arrive at

~Ty1TV(1)!T* 5~detT!Q~l!

with

Q~l!5S q11
(2)l21q11

(1)l1q11
(0) l~q12

(2)l1q12
(1)!

q21
(1)l1q21

(0) q22
(2)l21q22

(1)l1q22
(0)D ,

that is,

Ty1TV(1)5Q~l!T. ~32!

By comparing the coefficients ofl3,...,l0 in ~32!, we get

q11
(2)52q22

(2)522, q12
(2)52~vA1

212A1
2B1!52v̂,

~33!
q11

(1)52 v̂, q21
(1)522, q22

(1)5 v̂,
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q12
(1)5 v̂~A1

2B122l1l2A0
21!1A1

2~2uv1v22vx!1vA1
2~2A01B1!, ~34!

q21
(0)52 1

2 v~A1
21A1

22!22uA1
2212A01B1~12A1

2!22l1l2A0
21A1

22 , ~35!

q11
(0)52q22

(0)52u21uv1ux1 1
2 vx1]ylnA0A1 . ~36!

By using Eqs.~21! and ~28!, we have

v̂x22ûv̂2 v̂25~vx22uv2v2!A1
22vA1

2~2A01B1!2 v̂~A1
2B122l1l2A0

21!, ~37!

which together with Eq.~34! implies

q12
(1)52ûv̂1 v̂22 v̂x .

Resorting to Eqs.~15! and ~23!, we have

]xlnA052 1
2 ~A1

221!v2A1
2B1 , ~38!

A1x52u~A12A1
21!2 1

4 v~2A12A1
32A1

21!2A0A11l1l2A0
21A1

211 1
2 A1B1~A1

221!, ~39!

which gives

]xlnA0A15u~A1
2221!1 1

4 v~A1
222A1

2!2A01l1l2A0
21A1

222 1
2 B1~A1

211!. ~40!

Noticing Eqs.~21! and ~39!, we get

2û1 v̂52u12]xlnA0A11vA1
212A1

2B1

5 1
2 v~A1

21A1
22!12uA1

2222A012l1l2A0
21A1

221B1~A1
221!

52q21
(0) . ~41!

By using Eqs.~31!, ~15!, ~21!, and~36!, we can verify that

q11
(0)52q22

(0)52û21ûv̂1ûx1 1
2v̂x . ~42!

This completes the proof.
Assume that the two solutionsw andc of Eqs. ~9! and ~10! satisfy also Eq.~12!. Then, by

differentiatingf̂5Tf with respect tot, we have

f̂ t5V̂(2)f̂, V̂(2)5~Tt1TV(2)!T21. ~43!

In a way similar to the proof of Proposition 3, We can then verify the following fact.
Proposition 4:The matrix V̂(2) defined by the second expression of Eq.~43! has the same

form asV(2), in which the old potentialsu andv are mapped into new potentialsû andv̂ with the
help of the same DT~21!.

According to propositions 2–4, the transformation~17! and~21! transforms the two Lax pairs
~9!, ~10! and ~9!, ~12!, into other two Lax pairs of the same type~18!, ~29! and ~18!, ~43!.
Therefore, both of the Lax pairs,~9!, ~10! and ~18!, ~29!, lead to the same soliton equation~2!.
And the Lax pairs,~9!, ~12! and~18!, ~43!, give the same soliton equation~3!. The transformation
~21! is also called a DT of the soliton equations~2! and ~3!. We get immediately the following
assertion.
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Proposition 5:Let (u,v) be a solution of the~111!-dimensional soliton equations~2! and~3!.
Then~i! the function (û,v̂) determined by the DT~21! is a new solution of equations~2! and~3!;
and ~ii ! the functions

q̂5 1
2v̂, q̂152û1 v̂, ~44!

are two new solutions of the~211!-dimensional mKP equation~1!.
In what follows, we shall apply the Darboux transformation to give explicit solutions of

~111!-dimensional soliton equations~2! and ~3!, and two new explicit solutions of the~211!-
dimensional mKP equation~1!. Substituting the trivial solutions,u5v50, of Eqs.~2! and~3! into
Eqs.~9!–~13!, two real basic solutionsw,c for Eqs.~9!, ~10! and ~12! are chosen as

w5S 1

1

2l
D e2lx22l2y22l3t,

~45!

c5S 1

1

2l
D e2lx22l2y22l3t1S 0

h1
D elx12l2y12l3t,

with the constanth15” 0. Noticing Eq.~15!, we have

a j5
1

2l j
2

h1g j

12g j
e2wj , j 51,2, ~46!

A05
a11b1e2w11c1e2w2

b2e2w11c2e2w2
,

A1
25

b1e2w11b2e2w21b3e2(w11w2)

r11r2e2w11r3e2w2
, ~47!

B15
1

d1e2w11d2e2w2
,

with

wj5l j x12l j
2y12l j

3t, j 51,2,

a15 1
2 ~12g1!~12g2!~l22l1!, b152h1g1l1l2~12g2!,

b25h1g1l1~12g2!, c15h1g2l1l2~12g1!,

c252h1g2l2~12g1!, b152h1g1l1
2~g221!,

b252h1g2l2
2~12g1!, b354h1

2g1g2l1l2~l12l2!,

r15~12g1!~12g2!~l22l1!, r2522h1g1l1l2~12g2!,

r352h1g2l1l2~12g1!,
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d15
h1g1l1

~12g1!~l12l2!
, d25

2h1g2l2

~12g2!~l12l2!
.

Therefore, explicit solutions of the~111!-dimensional soliton equations~2! and ~3! are obtained
with the help of DT~21!:

û5]xln
a11b1e2w11c1e2w2

b2e2w11c2e2w2
1

1

2
]xln

b1e2w11b2e2w21b3e2(w11w2)

r11r2e2w11r3e2w2
,

~48!

FIG. 1. q̂ of t50 with g1520.5,g250.5,l150.3,l251.2, and h151.

FIG. 2. q̂1 of t50 with g1520.5,g250.5,l150.4,l251.5, and h151.
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v̂5
2~b1e2w11b2e2w21b3e2(w11w2)!

~r11r2e2w11r3e2w2!~d1e2w11d2e2w2!
.

By using Eq.~44!, we arrive at two new explicit solutions of the~211!-dimensional mKP equa
tion ~1!:

q̂5
b1e2w11b2e2w21b3e2(w11w2)

~r11r2e2w11r3e2w2!~d1e2w11d2e2w2!
, ~49!

q̂152]xln
a11b1e2w11c1e2w2

b2e2w11c2e2w2
1]xln

b1e2w11b2e2w21b3e2(w11w2)

r11r2e2w11r3e2w2

1
2~b1e2w11b2e2w21b3e2(w11w2)!

~r11r2e2w11r3e2w2!~d1e2w11d2e2w2!
~50!

~see Figs. 1 and 2!, which are not same as those in Refs. 18–21. Further, if explicit solutions~48!
are taken as the new starting point, we can make Darboux transformation once again by E~21!
and engender another new solutions of the~111!-dimensional soliton equations~2! and ~3! and
the ~211!-dimensional mKP equation~1!. This process can be done continually and usually it c
yield a series of their explicit solutions.
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Families of metrics geodesically equivalent to the analogs
of the Poisson sphere
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The metric of the Poisson sphere can be obtained as a result of reduction from the
kinetic energy of the free motion of a rigid body. It is proved that the metric of the
Poisson sphere admits nontrivial one-parameter family of metrics that have the
same geodesic lines. In the present paper we prove that the Clebsch case of motion
of the rigid body and the case of the free motion of a rigid body in Minkowski
space lead~after reduction! to Riemannian metrics that also admit nontrivial geo-
desical equivalence. A new integrability criterion of geodesical equivalence is
proved. © 2000 American Institute of Physics.@S0022-2488~00!00111-0#

I. INTRODUCTION

Let g be a Riemannian metric on the manifoldMn.
Definition 1: The (pseudo)Riemannian metrics g and g¯are calledgeodesically equivalentiff

they have the same geodesics (considered as unparametrized curves).
If the geodesically equivalent metricsg and ḡ are not proportional, i.e.,gÞconst ḡ, then we

say that the metrics arenontrivially geodesically equivalent. We say that the~pseudo!Riemannian
metric g admits nontrivial geodesical equivalenceif there exists a~pseudo!Riemannian metricḡ
such thatg and ḡ are nontrivially geodesically equivalent.

The metric of the Poisson sphere can be obtained as a result of reduction from the
energy of the free motion of a rigid body. It is proved in Ref. 1 that the metric of the Poi
sphere admits one-parameter family of nontrivially geodesically equivalent metrics. In the p
paper we prove that the Clebsch case of motion of the rigid body and the case of the free
of a rigid body in Minkowski space lead~after reduction! to Riemannian metrics that also adm
nontrivial geodesical equivalence. The main tool that we use in the paper is Theorem 1 wh
an analogue of the integrability criterion proved in Ref. 2 and the theorem proved in Refs.
4. All these theorems are multidimensional generalizations of the classical one proved by Di~see
Refs. 5 and 6!.

Denote byG(E) the space of the smooth sections of the vector bundleE→M . We can assign
to any operator APG(Hom(TM,TM)) a decomposition of the manifold Mn

5S(A)t i 51
n M i(A), whereM i(A) denotes the set ofstable point of type i, i.e., the set of points

xPMn such that the operatorA(y)PHom(TyM ,TyM )) has exactlyi distinct eigenvalues for
every y from an open neighborhood of the pointx. Denote byM(A) the set of stable points
t i 51

n M i(A). The closed setS(M ) is calledset of singular points. It can easily be seen thatS is
nowhere dense.

Theorem 1: The Riemannian metric g admits nontrivial geodesical equivalence if and on
there exists a self-adjoint with respect to the metric g nondegenerate on Mn operator A
PG(Hom(TM,TM)) (AÞconst1) such that the next two conditions are satisfied:

(a) the eigenspaces of A are integrable onM(A),
(b) the one-parameter family of functions on TM

a!Electronic mail: topalov@math.bas.bg
75100022-2488/2000/41(11)/7510/11/$17.00 © 2000 American Institute of Physics
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Ic~j!5
def

det~A1c1!g~~A1c1!21j,j!, c is a parameter, ~1!

are in involution with respect to the symplectic structurevg5
def

FLg* v, where FLg :TM→T* M is
the Legendre transformation corresponding to the Riemannian metric g andv is the canonical
symplectic structure on T* M .

If a self-adjoint operator A satisfies conditions (a) and (b), then the (pseudo)Riemannian m
given by the formula

gc~j,j!5
def 1

det~A1c1!
g~~A1c1!21j,j!, ~2!

are geodesically equivalent to g. Conversely, if there exists a metric g¯ such that g and ḡare
geodesically equivalent, then the operator

Aj
i ~g,ḡ!5

defUdetḡ

detgU
1/n11

ḡiaga j , ~3!

satisfies conditions (a) and (b).
By definition, the operatorA is nondegenerate on Mn if det AÞ0 on Mn.
Remark 1: Suppose that the operator A5A(g,ḡ) is derived from a pair of geodesicall

equivalent metrics g and g¯[see formula (3)]; then the formula

I a,b~g,ḡ!~j!5
def

det~aA1b1!g~~aA1b1!21j,j!, ~4!

gives a family of pairwise commuting integrals of the geodesic flow of the metric g.
The next proposition establishes a natural duality between two classes of geodesically e

lent metrics on the manifold.
Proposition 1: Suppose that the Riemannian metric g admits nontrivial geodesical eq

lence and let A be the corresponding operator (given by Theorem 1); then the family of qua
forms

U detA

det~A1c1!
U2

~FLg
21!* I c , ~5!

are geodesically equivalent to the metric g¯(2)5
def

(1/detA) gA and the family of quadratic forms

U 1

det~A1c1!
U2

~FLg
21!* I c , ~6!

are geodesically equivalent to the Riemannian metric g. The family Ic is given by formula (1).
Remark 2: It can be easily seen that@ ḡ(2)#215@(FLg

21)* I c#uc50 , where @ ḡ(2)#21

5
def

(FLḡ(2)
21 )* ḡ(2).

Remark 3: In the examples that we consider, the family given by formula (5) gives a cl
metrics geodesically equivalent to the analogs of the Poisson sphere. The family given by f
(6) gives a class of metrics geodesically equivalent to some metrics which are invariant und
standard group action on the corresponding homogeneous space.

Example 1: Let us consider the Euler case of free motion of a rigid body about a fixed

The kinetic energy of the body is T5
def

1
2(I 1v1

21I 2v2
21I 3v3

2). In classical terms the quantityv¢
5(v1 ,v2 ,v3) is the angular velocity of the body and Ii are the principal moments of inertia o

the body. Let us fix a basis(E1 ,E2 ,E3) of the algebraso(3) (E15
def

E322E23,E25
def

E132E31,E3
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5
def

E212E12), @Ei ,Ej #5e i jkEk . The left translations of the frame(E1 ,E2 ,E3) on SO(3) give an
identification of the bundles TSO(3)>SO(3)3so(3). In another therms, v i are the coordinates
of the velocity of the body as element of the tangent bundle TSO(3)>SO(3)3so(3) and the
kinetic energy T is a left-invariant metric on the groupSO(3). The absolute momentum M

5
def

I 1
2v1

21I 2
2v2

21I 3
2v3

2 is a first integral of the motion of the rigid body. Let us consider t

one-parameter family of first integrals Ic5
def

cT1M . Applying the Legendre transformation corre
sponding to the metric T onSO(3) we obtain that H5 1

2((M1
2/I 1) 1 (M2

2/I 2) 1(M3
2/I 3)) and

M5M1
21M2

21M3
2. Remark here that the functions h5

def
1
2((m1

2/I 1) 1 (m2
2/I 2) 1(m3

2/I 3)) and m

5
def

m1
21m2

21m3
2 (mi5

def
^p,Ei&, pPso(3)* ) are in involution with respect to the standard Lie

Poisson bracket onso(3)* . Let us consider the left action of the circle S15$t mod 2p% on SO(3)
given by the formula g°exp(tE3)g. The action induce a natural symplectic action on T* SO(3)
that preserves the functions T and M. The reduced system supplied with the reduced metri
called Poisson sphere. We will make the reduction described above using Eulerian a
$(u,f,c)% as coordinates onSO(3).

Suppose for simplicity that I15I 251 and I351/r . In Eulerian angles the kinetic energy of th

body is T5 (I 1/2) (sin2 uḟ21u̇2)1(I3/2) (cosuḟ1ċ)2. The fundamental vector field correspondin

to the left action described above is]/]f. The corresponding Noether integral is F5
def

]T/]ḟ

5(I 1 sin2 u1I3 cos2 u)ḟ1I3 cosuċ. Let us consider the submanifold Q5
def

$F50%. The surfaceB
5
def

$(u,f50,c; u̇,I 3 cosu/(I1 sin2 u1I3 cos2 u),ċ)% gives a section of the bundle S1\Q. The restric-

tions of T and M onB coincide with the reduced kinetic energy T˜ and the reduced second integra

M̃ respectively. A direct calculation shows that

T̃5
1

2 S dc2

r 1tan22 u
1du2D , ~7!

M̃5
1

sin2 u

1

~r 1 tan22 u!2 dc21du2. ~8!

Let us consider the operator A5
def

(2,2/(sin2 u(r1tan22 u))). It can be easily seen thatdet(A
1c)T̃(A1c)215Ĩ c , where Ĩc is the reduction of the one-parameter family of integrals Ic5cT
1M . Therefore, we can apply Proposition 1. Applying the Legendre transformation corresp

ing to the metric T˜ we obtain that M̃5 (1/sin2 u) pc
21pu

2 . This function is the Legandre transfor
mation of the metric ds25sin2 udc21du2 which is the standard metric of the sphere. As a res
we obtain families of metrics nontrivially geodesically equivalent to the metric of the Poi

sphere T˜ and the standard metric on the sphere S2.
The paper is organized as follows.
In Sec. II we prove Proposition 2 which describes a situation when a family of pair

commuting with respect to the Lie–Poisson bracket quadratic forms ong* (g* denotes the dua
space to a Lie algebrag! gives after reduction families of geodesically equivalent metrics.

In Sec. III we obtain families of metrics geodesically equivalent to the analogs of the Po
sphere that appear considering the free motion of a rigid body in Minkowski space an
Clebsch case of motion of the rigid body.

In Sec. IV we prove the integrability criterion given by Theorem 1 and the statemen
Proposition 1.

II. PRELIMINARY REMARKS

We use a variant of a well-known construction of obtaining families of pairwise commu
functions on homogeneous spaces. Refs. 7–10. Suppose that the Lie groupG acts on the manifold
                                                                                                                



l
-

on

n
r

d

s

t

ula

a

ons

e

to

7513J. Math. Phys., Vol. 41, No. 11, November 2000 Families of metrics geodesically

                    
Mn. Let us fix a basis (e1 ,...,em) of the corresponding Lie algebrag. Consider the functions

Pi5
def

2^p,Xi(p(p))&PC`(T* M ), wherep:T* M→M is the natural projection onM , pPT* M

andXi ( i 51, . . . ,m) are the fundamental vector fieldsXi(x)5
def

(d/dt) u t50@exp(tei)+x#. It can easily
be checked~in the case of left action! that @Xi ,Xj #52ci j

k Xk , whereci j
k denote the structura

constants of the Lie algebrag. Therefore,$Pi ,Pj%5ci j
k Pk , where$,% denotes the canonical Pois

son structure onT* M . Denote bym the moment mapm(p)5
def

(P1(p),...,Pm(p)), m:T* M
→g* .

Remark 4: Suppose that G/K>Mn is a homogeneous space. Let F be a smooth function
the dual spaceg* to the Lie algebrag of the group G. Denote byF the right-invariant function
on T* G obtained from the right translations of F. It is obvious that the right action of K on G
induces a symplectic action on T* G that preserves the functionF; then the symplectic reductio
of F on Mn corresponding to the symplectic action of K on T* G and zero values of the Neothe
integrals coincides withm* F.

Lemma 1: If the functions F,HPC`(g* ) are in involution with respect to the standar
Lie–Poisson bracket ong* , then the functionsm* F andm* H are in involution with respect to the
canonical Poisson structure on T* M . If F PC`(g* ) is polynomial of degree k, then m* F is
polynomial in momenta of the same degree.

The statement of the lemma is obvious.
Using Theorem 1, we get the following corollary.
Proposition 2: Consider a family of quadratic forms Ql(m)5(k50

n21lkQk(m) (mPg* ), which
are in involution with respect to the Lie–Poisson bracket ong* . Suppose that the form
m* Q0 , . . . ,m* Qn21 are linearly independent at some point x0PM and let the formm* Qn21 be
definite. Suppose in addition that there is an open dense subset U,M such that

~m* Ql!~p!5r ~l,p~p!!R~l,p!1c~l!~S~l,p!!2, pPT* U, ~9!

where r5r (l,p(p))PC`(R3U) is a unitary polynomial inl of degree n that has n differen
real rootsl i5l i(x) ( i 51, . . . ,n) on U, cPC`(R), c(l i(x))Þ0 (xPU), and the polynomial in
the impulses p functions R and S are supposed to be smooth on(R\N)3T* U, where N is a finite
set andl iPR\N ( i 51, . . . ,n); then
(a) the quadratic formm* Qn21 admits non-trivial geodesical equivalence given by the form

ḡn21~l!5S 1

r~l!D
2

m*Ql ; ~10!

(b) the quadratic formm* Q0 admits non-trivial geodesical equivalence given by the formul

ḡ0~l!5Sr~0!

r~l!D
2

m*Ql . ~11!

Proof of Proposition 2:Using Lemma 1 we obtain that the quadratic in momenta functi
m* Ql are in involution with respect to the standard symplectic structure onT* Mn. It follows
from Ref. 11 ~see Proposition 1.1.1.! that the setK where the formsm* Q0 , . . . ,m* Qn21 are

linearly independent is open and dense inM . Therefore, the setL5
def

KùU is also open and dens
in M . Formula~9! shows that the forms are simultaneously diagonalizable onL. Moreover, it is
clear that the points fromL have neighborhoods where the familym* Ql has the form

ql5det~A2l1!g~~A2l1!21j,j!, jPTM, ~12!

where (FLg
21)* (g)5m* Qn21 and (FLg

21)* (ql)5m* Ql . Therefore, the quadratic form
m* Qn21 admits ~on L) nontrivial geodesical equivalence given by formula~2!. Observing that
det(A2l1)56r (x,l) we see that formula~10! gives a class of metrics geodesically equivalent
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m* Qn21 . Remark that if two~smooth!metrics are geodesically equivalent on a dense subset,
they are geodesically equivalent everywhere. This proves the first item of the proposition
second item follows from Proposition 1. Proposition 2 is proved.

III. RIGID BODIES AND GEODESIC EQUIVALENCE

A. The Euler case

Let us consider the quadratic formHb5
def

(0< i , j <n (Xi j
2 /(bibj )) PC`(so(n11)* ), where

Xi j 5
def

Ei j 2Eji ( i , j ) form a basis of the Lie algebra so(n11), biÞbj ( iÞ j ), biÞ0.

Consider the family of metricsTb,c5
def

( i , j @(ci2cj ) /(bi2bj )# Xi j*
2, ciÞcj ( iÞ j ), that cor-

responds to thenormal series of sectional operators~see Ref. 10!. We identify the Lie algebra
so(n11) with the dual space using the Killing form. The Hamiltonian systemsẋ5ad¹xTb,c

x are
completely integrable (¹xf denotes the gradient of the functionf calculated with respect to th
Killing form on so(n11)). If bi ( i 50, . . . ,n) are fixed, then the corresponding integrals can
taken independent ofci ( i 50, . . . ,n) @we can take, for example, the integrals obtained from
shift argument method~see Ref. 10!#. Therefore, the formsTb,c (b is fixed! are in involution with
respect to the Lie–Poisson bracket. Finally, takingci51/(bi2l) ~l is a real parameter!, we obtain
a family of pairwise commuting functions on so(n11)*

Ql5
def

)
k50

n

~bk2l!H(
i , j

Xi j
2

~bi2l!~bj2l!J . ~13!

We have

Q05~Pk50
n bk!(

i , j

Xi j
2

bibj
~14!

and

Qn215~21!n11~Pk50
n bk!(

i , j
Xi j

2 . ~15!

The formQ0 coincide~up to multiplication on a constant! with Hb andQn21 coincide with the
Killing form on so(n11).

Consider the standard left action of the group SO(n11) onRn11 supplied with the Euclidean

metric dgE
25

def
dx0

21¯1dxn
2 . This action gives an action on the unit sphereSn.

It can easily be checked~see Ref. 11! that

m* Ql5)
k50

n

~bk2l!H S (
i 50

n xi
2

bi2l D S (
i 50

n ] i
2

bi2l D 2S (
i 50

n
xi] i

bi2l D 2J , ~16!

where] i denotes the partial derivative]/]xi . The next theorems follow from Proposition 2.
Theorem 2: The Riemannian metricm* Qn21 admits nontrivial geodesical equivalence give

by the formula

ḡn21~l!5S (
i 50

n xi
2

bi2l D 21S (
i 50

n pi
2

bi2l D 2S (
i 50

n xi
2

bi2l D 22S (
i 50

n
xipi

bi2l D 2

. ~17!

Theorem 3: The metricm* Q0 admits nontrivial geodesical equivalence given by the form
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ḡ0~l!5S (
i 50

n xi
2

bi
D 2

ḡn21~l!. ~18!

Remark 5: We identify the cotangent bundle to the unit sphere T* Sn with the subset

H (
i 50

n

xi
251,(

i 50

n

xipi50J�T* Rn11. ~19!

The embedding is symplectic.

B. The Clebsch case

Consider the multidimensional analog of the Clebsch case obtained by A. M. Perelom
Ref. 12. The corresponding systems are Hamiltonian with respect to the standard Lie–P
bracket on the dual space of the Lie algebrae(n). The Hamiltonians are given by the formula

Hb,c5
def

(
1< i , j <n

ci2cj

bi2bj
Xi j

2 1(
i 51

n
ci2cn11

bn11
Yi

2 , ~20!

wherebiÞbj ( iÞ j ), bn11Þ0 andXi j 5
def

Ei j 2Eji ( i , j ), Yi5
def

Ein11 form a basis ofe(n). If b is
fixed, then the HamiltoniansHb,c are completely integrable and the family of integrals can
taken independent ofci ~see Ref. 10!. Therefore, the functionsHb,c (b is fixed! are in involution
with respect to the Lie–Poisson bracket one(n)* . Taking ci51/(bi2l) ( i 51, . . . ,n), cn11

50 andbn1151, we obtain a family of pairwise commuting quadratic forms

Ql5
def

)
k51

n

~bk2l!H(
i , j

Xi j
2

~bi2l!~bj2l!
2(

i 51

n Yi
2

bi2lJ . ~21!

Consider the standard left action of the group of Euclidean transformationsE(n) on Rn

supplied with the Euclidean metricgE . Let us take the one-parameter family of pairwise co
muting functions one(n)* given by formula~21!. We have

m* Ql5)
k51

n

~bk2l!H S (
i 51

n xi
2

bi2l
21D S (

i 51

n ] i
2

bi2l D 2S (
i 51

n
xi] i

bi2l D 2J . ~22!

Applying Proposition 2 we obtain the next theorems.
Theorem 4: The Riemannian metricm* Qn21 admits nontrivial geodesical equivalence give

by the formula

ḡn21~l!5S (
i 51

n xi
2

bi2l
21D 21S (

i 51

n pi
2

bi2l D 2S (
i 51

n xi
2

bi2l
21D 22S (

i 51

n
xipi

bi2l D 2

. ~23!

Theorem 5: The metricm* Q0 admits nontrivial geodesical equivalence given by the form

ḡ0~l!5S (
i 51

n xi
2

bi
21D 2

ḡn21~l!. ~24!

C. The motion of the rigid body in Minkowski space

Let us consider the standard left action of the group SO(1,n) of Lorentz transformations on

Rn11 supplied with the standard Lorentz metricdgL
25

def
2dx0

21dx1
21¯1dxn

2 . The restriction of
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dgL
2 to the component$2x0

21x1
21¯1xn

2521,x0.0% of the hyperboloid of two sheets is iso
morphic to the hyperbolic spaceHn. Therefore, we have a left action of the group onHn

Consider the one-parameter family of quadratic forms

Ql5
def

)
k50

n

~bk2l!H 2(
i 51

n Yi
2

~b02l!~bi2l!
1(

i , j

Xi j
2

~bi2l!~bj2l!J , ~25!

whereYi5
def

E0i1Ei0 andXi j 5
def

Ei j 2Eji form a basis of the Lie algebra so(1,n) andb0.¯.bn

are real constants. It can be checked that they are in involution with respect to the sta
Lie–Poisson bracket on so(1,n) ~see Ref. 11!. We have

Qn215~21!n11S )
k50

n

bkD H 2(
i 51

n

Yi
21(

i , j
Xi j

2 J ~26!

and

Q05S )
k50

n

bkD H 2(
i 51

n Yi
2

b0bi
1(

i , j

Xi j
2

bibj
J . ~27!

It can be checked~see Ref. 11! that

m* Ql5)
k50

n

~bk2l!H S 2
x0

2

b02l
1(

i 51

n xi
2

bi2l D S 2
]0

2

b02l
1(

i 51

n ] i
2

bi2l D 2S (
i 50

n
xi] i

bi2l D 2J .

~28!

Applying Proposition 2 we obtain the next theorems.
Theorem 6: The Riemannian metricm* Qn21 admits nontrivial geodesical equivalence give

by the formula

ḡn21~l!5S 2
x0

2

b02l
1(

i 51

n xi
2

bi2l D 21S 2
p0

2

b02l
1(

i 51

n pi
2

bi2l D
2S 2

x0
2

b02l
1(

i 51

n xi
2

bi2l D 22S (
i 50

n
xipi

bi2l D 2

. ~29!

Theorem 7: The metricm* Q0 admits nontrivial geodesical equivalence given by the form

ḡ0~l!5S 2
x0

2

b0
1(

i 51

n xi
2

bi
D 2

ḡn21~l!. ~30!

Remark 6: We identify the cotangent bundle to the hyperboloid T* Hn with the subset

H x0
22(

i 51

n

xi
251, x0p02(

i 51

n

xipi50J�T* Rn11. ~31!

The embedding is symplectic.
Remark 7: As a result we obtain a family of metrics nontrivially geodesically equivalent t

hyperbolic spaceHn.

IV. INTEGRABILITY CRITERION

Proof of Theorem 1:Suppose that the Riemannian metricg admits nontrivial geodesica
equivalence, i.e., there exists a~pseudo!Riemannian metricḡ such that the metricsg and ḡ are
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nontrivially geodesically equivalent. Let us consider the operatorA5A(g,ḡ) given by formula
~3!. It is easy to see thatA is a self-adjoint operator with respect to the both metrics andḡ(j,j)
5 (1/detA) g(A21j,j). In Refs. 1 and 2~Appendix 2! was proved that the~pseudo!Riemannian
metrics from the family

gc~j,j!5
def 1

det~A1c1!
g~~A1c1!21j,j!, ~32!

are geodesically equivalent tog. Let us prove that the family of functions given by formula~1! are
pairwise commuting integrals of the geodesic flow of the metricg. It is sufficient to prove this
locally, i.e., in a small neighborhoodV of an arbitrary pointx0PM . Therefore, we can takec0

PR such thatA1c0.0 ~on V). Formula~32! shows that the Riemannian metricsg andgc0
are

geodesically equivalent. It is proved in Ref. 1 that the family of functions

I a~g,gc0
!5

def

det~B1a1!g~B1a1!21, ~33!

whereB5
def

A(g,gc0
), are pairwise commuting integrals of the geodesic flow of the metricg. It

follows from Levi-Civita’s theorem see Refs. 1, 2, and 6 that the eigenspaces ofB are integrable
on VùM(B). A direct calculation shows thatB5A(g,ḡ)1c0 and I a(g,gc0

)5I c01a(g,ḡ). The
conditions~a! and ~b! are proved.

Conversely, assume that the conditions~a! and ~b! are satisfied. It follows from our assump
tion that any two functions from the one-parameter family

I c~j,j!5
def

det~A1c1!g~~A1c1!21j,j!, ~34!

are in involution. Suppose that the pointx0PMn is stable of typem (0<m<n), i.e., x0

PM m(A). Therefore, there is an open neighborhoodU(x0) of the point such that the operatorA
has exactlym<n distinct eigenvaluesf1(x),f2(x),¯,fm(x). The corresponding eigenspa
ces give a natural splittingTU>W1%¯% Wm , dimWk5 l k . Let Xka (k51,...,m;a51,...,l k) be
an orthonormal frame onU such thatA(Xka)5fkXka , Wk5Span(Xk1 ,...,Xklk

). Making the
Legendre transformation corresponding to the Riemannian metricg we obtain

I c5F~c!H 1

f11c
A11¯1

1

fm1c
AmJ , ~35!

whereF(c)5
def

(f11c) l 1
¯(fm1c) l m, Ak5

def
(a51

l k Vka
2 andVka5

def
^p,Xka&,pPT* u.

First of all, let us consider the casem51. We obtain thatA5f1. Hence,I c5(f1c)n21g is
the one-parameter family of first integrals of the geodesic flow of the metricg. It gives 0
[$g,I c%5(n21)(f1c)n22$g,f%. Hence, $g,f%[0. This yields that f5const and A
5const1. This contradicts to the assumption thatAÞconst1.

Further we will suppose thatm>2. Let us takem distinct real numbersc1 ,...,cm such that

ciÞ2f j ( i , j 51,...,m) on U(x0). We obtainm integralsI k5
def

I ck
in involution such that

5
1

F1
I 15

1

f11c1
A11¯1

1

fm1c1
Am ,

A

1

Fm
I m5

1

f11cm
A11¯1

1

fm1cm
Am .
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Lemma 2: Suppose that B5
def

(1/(ci1f j ))m3m ; then

detB5

)
i . j

~f i2f j !)
i . j

~ci2cj !

)
i j

~ci1f j !

. ~36!

This lemma can be easily proved. Denote byBlk the elements of the inverse matrixB21. We have

Blk5~21! l 1k

)
i . j

i , j Þ l

~f i2f j ! )
i . j

i , j Þk

~ci2cj !

)
iÞ l
j Þk

~f i1cj !

)
i j

~f i1cj !

)
i . j

~f i2f j !)
i . j

~ci2cj !

~37!

5~21! l 1k
1

P l

1

Ck

)
i j

~f i1cj !

)
iÞ l
j Þk

~f i1cj !

, ~38!

where P l5
def

(fm2f l)¯(f l 112f l)(f l2f l 21)¯(f l2f1) and Ck5
def

(cm2ck)¯(ck112ck)(ck

2ck21)¯(ck2c1). Therefore,

Al5(
k

~21! l 1k
1

P l

1

Ck S )
i j

~f i1cj !

)
iÞ l
j Þk

~f i1cj !

1

FkD I k

5(
k

~21! l 1k
1

P l

1

Ck

~f l1c1!¯~f l1ck21!~f l1ck11!¯~f l1cm!

~f11ck!
l 121~f21ck!

l 221
¯~fm1ck!

l m21 I k .

Hence

Ap5
def Ap

~fp1c1!¯~fp1cm21!
PpCm@~f11cm! l 121

¯~fm1cm! l m21#

5(
k

~21!p1k
Cm

Ck
S f11cm

f11ck
D l 121

¯S fm1cm

fm1ck
D l m21 fp1cm

fp1ck
I k

5(
k

~21!p1k
Cm

Ck
S f11cm

f11ck
D l 121

¯S fp1cm

fp1ck
D l p

¯S fm1cm

fm1ck
D l m21

I k

5(
k

apkI k . ~39!

We are going to prove that

~1! fk5const, if dimWk.1,
~2! LXpa

fq50 (pÞq), if dimWq51.
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Lemma 3: Suppose thatl1 ,...,ld are different numbers and denote byG the open setG

5
def

$(z1,...,zd)uziÞzj ( iÞ j ) and ziÞ2l j%; then the mapping F:(z1 ,...,zd)°(F1 ,...,Fd),

F:Rd(Cd)\G→Rd(Cd), where Fk5
def

(z11lk)
a1(z21lk)

a2
¯(zd1lk)

ad and ak>1, is a finite
sheeted covering over its image.

Proof: It follows from Lemma 2 that:

detS ]~F1 ,...,Fd!

]~z1 ,...,zd! D5S)
k

akD)
kl

~zk1l l !
ak21)

i . j
~zi2zj !)

i . j
~l i2l j !Þ0, ~40!

on G. Q.E.D.
It follows from ~39! and the variant of the Sta¨ckel–Painleve´ theorem proved in Ref. 2 tha

LXqa
apk50 (qÞp) ~see the second part of Proposition 1 proved in Ref. 2!. Without loss of

generality we can suppose thatl 1> l 2>¯> l m . If l 151, then aqk5(21)q1k @Cm /Ck#@(fq

1cm)/(fq1ck)#. Hence,LXp1
fq50 (pÞq). Suppose thatl 1.1. Denote bys the maximal

natural numberm>s>1 such thatl s.1. Observing that (f i1ck)/(f i1cm) 5(ck2cm)(1/(ck

2cm) 1 1/(f i1cm)) and applying Lemma 3 to the coefficientsapk (k51, . . . ,s) of the first two
equations of ~39! we obtain that fk5const (k51,...,s). Therefore, a(s1 l )15const((fs1l

1cm)/(fs1l1c1)) ( l 51, . . . ,m2s). It gives that the functionsfs1 l ( l 51, . . . ,m2s) satisfy con-
ditions ~1! and ~2!.

It follows from ~39! and the variant of the Sta¨ckel–Painleve´ theorem that there is a cha

$( x̄1 , . . . ,x̄m)%, x̄k5
def

(xk1 , . . . ,xklk
), given in a neighborhood of the pointx0 , such thatAk

5Ak( x̄i ,p̄k), wherepka are the conjugate impulses. Therefore,Ak5(1/Pk) Qk( x̄k ,p̄k). By defi-
nition, g5A11¯1Am . Hence,

g5
Q1~ x̄1 ,p̄1!

P1
1¯1

Qm~ x̄m ,p̄m!

Pm
. ~41!

Therefore,

dg25P1G1~ x̄1 ,dx̄1!1¯1PmGm~ x̄m ,dx̄m!, ~42!

whereGk are quadratic forms. Let us consider the metricḡ5
def

(1/detA) gA21. We have

dḡ25r1P1G1~ x̄1 ,dx̄1!1¯1rmPmGm~ x̄m ,dx̄m!, ~43!

wheref i5
def

1/f1 ¯ fm1/f i . It follows from the Levi-Civita’s theorem that, in the considere
chart, the metricsg and ḡ are geodesically equivalent. Finally, the statement of the theo
follows form the fact that the metricḡ is globally defined onMn and the set of stable pointsM
is everywhere dense inMn ~see Ref. 4!. Theorem 1 is proved.

Proof of Proposition 1:Assume that the conditions of the proposition are satisfied. It follo

from formula~2! that the metricsg andḡ5
def

(1/detA) gA21 are geodesically equivalent. Therefor

the metricsg(2)5
def

gA2 and ḡ(2)5
def

ḡA2 are also geodesically equivalent~see Refs. 1 and 13!. We
have

~FLḡ(2)
21

!* ~ I a,b~ ḡ(2),g(2)!!5uaA211bu~aA211b!21~ ḡ(2)!21

5
ua1bAu

uAu ~a1bA!21A21ḡ21

5ua1bAu~a1bA!21g21

5~FLg
21!* ~ I b,a~g,ḡ!!.
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Now, the statement of the proposition follows from formula~2!. Proposition 1 is proved.
Remark 8: It can be easily seen that Theorem 1 and Proposition 1 still hold in the ca

simultaneously diagonalizable (overR) (pseudo)Riemannian metrics. The corresponding opera
A must be supposed to be self-adjoint with respect to the metric g and diagonalizable oveR.
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Adjoint operators and perturbation theory of black holes
R. Cartas-Fuentevilla
University of Chicago, Enrico Fermi Institute, Chicago, Illinois 60637
and Instituto de Fı´sica, Universidad Auto´noma de Puebla, Apartado Postal J-48,
72570 Puebla, Puebla, Mexico

~Received 18 October 1999; accepted for publication 20 March 2000!

We present a new approach for finding conservation laws in the perturbation theory
of black holes which applies for the more general cases of non-Hermitian equations
governing the perturbations. The approach is based on a general result which es-
tablishes that a covariantly conserved current can be obtained from a solution of
any system of homogeneous linear differential equations and a solution of the
adjoint system. It is shown that the results obtained from the present approach
become essentially the same~with some differences! to those obtained by means of
the traditional methods in the simplest black hole geometry corresponding to the
Schwarzschild space–time. The future applications of our approach for studying
the perturbations of black hole space–times in string theory is discussed. ©2000
American Institute of Physics.@S0022-2488~00!00311-X#

I. INTRODUCTION

The problem we consider here is in many ways an old one: the scattering of test field
black hole background. Several methods for solving this problem have been applied: wav
chanical scattering, semiclassical methods, etc. These methods treat the scattering of m
waves from black holes in a manner completely analogous to the Schro¨dinger scattering of matte
waves in an effective potential. More specifically, in the scheme of the classical Einstein–Ma
theory, after separation of harmonic time and angular dependence, the coupled gravitation
electromagnetic perturbations of the Reissner–Nordstro¨m black hole~which contains the pertur
bations of the Schwarzschild black hole as a special case! can be described in terms of solution
of a Schro¨dinger-type equation~see Ref. 1 and references therein!. The special properties of suc
an equation are widely known, but we shall discuss them briefly for clarifying our aims. Be
all, this equation is Hermitian~self-adjoint!, which is directly connected with the constancy of t
Wronskian of two solutions, which in turn, permits to establish a conservation relation bet
incoming energy flux from infinity, the flux back out to infinity, and the energy crossing
horizon of the black hole~see Ref. 1 and references therein!. However, when one considers th
general~coupled! perturbations of some solutions in the framework of the modern theories su
string theories involving nonminimally coupled scalar fields, the field perturbations appear
governed by non-Hermitian systems,2 and in this manner the above ideas for Hermitian syste
are no longer applied. The purpose of this work is to demonstrate that similar conser
relations can be obtained for any non-Hermitian equation systems using the concept of the
of a linear operator; the Hermitian case becomes only a particular one. These results are of
for understanding scattering phenomena in the setting of modern theories, and possibly in
areas of physics. However, in the present work we shall apply our approach to the simples
hole space–time, the Schwarzschild solution, mainly for two reasons: first, for demonstratin
the present approach gives essentially the same well-known results~however, see Ref. 1! in the
perturbation theory for that solution; second, for clarifying our basic ideas in the simplest c

The plan of this article is as follows. Section II presents the general relationship bet
adjoint operators and covariantly conserved currents. The corresponding currents for the g
tional and electromagnetic perturbations of the Schwarzschild solution and their separati
harmonic time and angular dependence are also given in this section. The asymptotic solu
the spatial infinity and at the horizon for the non-Hermitian equations governing the perturb
are discussed in Sec. III. In Sec. IV we calculate the field perturbations, fluxes of energy
75210022-2488/2000/41(11)/7521/8/$17.00 © 2000 American Institute of Physics
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using the results of the previous sections, the conservation relations are established. Furth
the energy reflection and transmission coefficients are discussed. Finally, in Sec. V we disc
conclusions and the future applications of our present approach.

II. ADJOINT OPERATORS AND CONSERVED CURRENTS

In Refs. 3, 4 it has been shown that there exists a conserved current associated w
system of homogeneous linear partial differential equations that can be written in terms
self-adjoint operator. This result is limited for a self-adjoint system, for which the correspon
conserved current depends on a pair of solutions admitted by such a system. However, as w
see below, there exists a more general possibility that extends for systems of equations wh
not necessarily self-adjoint. The demonstration is very easy, following the basic idea of Refs

In accordance with Wald’s definition,5,6 if E corresponds to a linear partial differential oper
tor @such as the non-Hermitian operators governing the potentialscG andcE in Eqs.~2! and ~7!
below# which mapsm-index tensor fields inton-index tensor fields, then, the adjoint operator
E, denoted byE †, is that linear partial differential operator mappingn-index tensor fields into
m-index tensor fields such that

grs...@E~ f mn...!#rs...2@E †~grs...!#mn...f mn...5¹mJm, ~1!

whereJm is some vector field.
From Eq.~1! we can see that this definition automatically guarantees that, if the fieldf is a

solution of the linear systemE( f )50 andg a solution of the adjoint systemE †(g)50, thenJm is
a covariantly conserved current~which depends on the fieldsf andg). This fact means that for
any homogeneous equation system, one can always construct a conserved current tak
account the adjoint system. This general result contains the self-adjoint case as a particu
The physical meaning of such a conserved current will depend on each particular case.

With this result, our purpose is to reach the same physical conclusions reached in R
starting directly from non-Hermitian Eqs.~2! and~14! ~without invoking the Hermitian equivalen
system~21! of that reference!. These equations represent the type of systems of equations tha
can obtain for describing the perturbations of the exact solutions in the modern theories, bu
however, do not appear to take the form of a Hermitian system.

In the following, the formulas and notation of Ref. 1 will be used extensively.

A. Gravitational perturbations

As it is well-known, gravitational perturbations of Schwarzschild solution can be describ
terms of the scalar potentialcG satisfying

O G
† ~cG!5@~D12g1m!~D13r!2~ d̄22b̄ !~d14b!23C2#cG50, ~2!

which can be obtained from Eqs.~2! and ~4! of Ref. 1. Equation~2! corresponds to the adjoin
system of the decoupled equation satisfied by the perturbed Weyl spinorC0

B according to Wald’s
method:5

OG~C0
B!5@~D25r!~D22g1m!2~d22b!~ d̄14b̄ !23C2#C0

B50, ~3!

in this manner, from Eqs.~1!–~3! and considering that the tetrad componentsD, D, d, andd̄ are
defined byl m]m , nm]m , mm]m , m̄m]m , respectively, and that they act on scalar fields, we h
the following continuity equation:

¹m@C0
B@nm~D13r!cG2m̄m~d14b!cG#1cG@mm~ d̄14b̄ !C0

B2 l m~D24g1m!C0
B##50.

~4!
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In order to separate the time and angular dependence, we consider the expressions~6! and~41!
of Ref. 1 forcG andC0

B in terms of the harmonic time and the spin-weighted spherical harmo
and we obtain

] r@x~C0
B] rcg2cg] rC0

B!22~] rx!cgC0
B#50, ~5!

wherex5r 222Mr . We have used the expressions~3a! and~4! of Ref. 1 for the background spin
coefficients and the tetrad and preserved the same symbol forC0

B as describing its radial depen
dence,cg is the corresponding one forcG . Therefore, Eq.~5! implies that there exists a conserve
quantity which will be denoted byKG :

x~C0
B] rcg2cg] rC0

B!22~] rx!cgC0
B[KG . ~6!

B. Electromagnetic perturbations

Similarly, the electromagnetic perturbations are described in terms of the scalar potentcE

which satisfies1

O E
†~cE!5@~D1r!~D12g1m!2~d14b!~ d̄22b̄ !26C2#cE50, ~7!

and its adjoint system for the component of perturbed electromagnetic fieldw0
B :

OE~w0
B!5@~D24g1m!~D23r!2~ d̄14b̄ !~d22b!26C2#w0

B50, ~8!

and following the same procedure employed in the gravitational case we obtain the corresp
continuity equation:

¹m@w0
B@ l m~D12g1m!cE2mm~ d̄22b̄ !cE#1cE@m̄m~d22b!w0

B2nm~D23r!w0
B##50. ~9!

After the separation of the time and angular dependences@see Eqs.~15! and~42! of Ref. 1!, Eq.~9!
yields a conserved quantity for electromagnetic perturbations:

@x~ce] rw0
B2w0

B] rce!1~] rx!cew0
B#[KE , ~10!

wherew0
B has been preserved as describing its radial dependence andce corresponds to that fo

cE . SinceC0
B appearing in Eq.~4! is invariant under the ordinary gauge transformations of

metric perturbations,1 the current itself has the same invariance property; something similar oc
with w0

B appearing in Eq.~9! and the corresponding current, as opposed to the currents constr
by means of the approaches of Refs. 7, 8 and Refs. 3, 4. SimilarlyC0

B andw0
B are independent on

the perturbed tetrad gauge freedom~see Ref. 9 and references therein!. These properties are
important whenKG andKE are evaluated.

On the other hand, the covariantly conserved currents given in Eqs.~4! and~9! depend on the
background field and on the solutions admitted by the corresponding original system a
adjoint system. However, by noting thatC0

B(w0
B) in Eqs.~4!–~6! ~Eqs.~9! and~10!! is defined in

terms of derivatives ofc̄G (c̄E) according to Eqs.~41! and~42! of Ref. 1, our conserved current
depend actually on a single complex solution of the corresponding equation for the potent

For establishing our conservation relation for the field perturbations, the idea is to evalua
constantsKG andKE at the two asymptotic regions, the spatial infinity, and the horizon, and
the physical meaning of these constants will be clarified. With this purpose, in the next secti
asymptotic forms of the potentialscG andcE at those regions will be determined, since all t
quantities of interest are defined in terms of them.
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III. ASYMPTOTIC EXPANSIONS

A. At the spatial infinity

SincecG has spin weight22, we seek solutions of Eq.~2! of the form1

cG5cg~r !e2 ivt
22Yjm~u,w!. ~11!

After substituting~11! into Eq.~2!, one gets a linear ordinary differential equation forcg(r ). Such
a system has essentially the same form of Eq.~2! just making the substitutionsD, D, and (d̄
22b̄)(d14b) by 2(x/2r 2)D* , D, and (2h2/2r 2), respectively~see Eqs.~8! and~9! of Ref. 1!.

We assume the following general expression for the asymptotic solution ofcg(r ) at the
spatial infinity@in fact, this is essentially the same asymptotic form forcg as obtained from Eqs
~6!, ~23!, and~44! of Ref. 1; see also the paragraph after Eqs.~43! of same reference#:

cg→(
n

Anr ne2 ivr
* 1(

m
Bmr meivr

* , ~12!

An andBm are ~complex! constant coefficients. Of course, the summations in Eq.~12! start with
the leading terms. Substituting~12! into Eq. ~2! we obtain

cg→Ar21e2 ivr
* 1~Br31B2r 21B1r 1B01B21r 21!eivr

* , ~13!

where only the leading term of the forme2 ivr
* is displayed~we have omitted the subindices i

the coefficients for the leading terms for simplicity!, since it is the only one involved in the
calculations below. For the terms of the formeivr

* , it is neccesary to consider the asympto
series up to the fifth term, since this term gives the leading contribution for the outgoing mo
C0

B @this is very easy to see, sinceC0
B(r )5D 4cg , it is straightforward to demonstrate tha

D 4r meivr
* 5(m23)(m22)(m21)mrm24eivr

* , and then the leading contribution comes fro
the termm521. This fact is related with the so called ‘‘peeling property.’’#,1 which will be
important for evaluating the constantKG . Equation~2!, besides setting the leading terms, give
recurrencerelation for theAs and another for theBs. In particular, we can find that

B215
B

96v4 Uh2

2
~h212!16ivr 1U2

, ~14!

which will be the only relation that we shall need for our purpose. In a fully similar way we
obtain, from Eq.~7!, the following asymptotic form ofce corresponding to electromagnet
perturbations:

ce→ar21e2 ivr
* 1~br1b01b21r 21!eivr

* , ~15!

wherea andb are the constant coefficients for the leading terms and

b2152
b

8v2 ~h212!2. ~16!

B. At the horizon

For the asymptotic expansions of the ingoing modes at the horizon, it is convenient to
duce the new radial variable

y[r 2r 1 , r 152M ~horizon of the black hole!, ~17!
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and then to perform an expansion of Eqs.~2! and~7! at the leading order in 1/y, in a similar way
to that performed at the leading orders inr in the previous section. We have for the gravitation
case that

cg→Cy2e2 ivr
* , ~18!

and

ce→cye2 ivr
* , ~19!

for the electromagnetic one;C andc are constant coefficients.

IV. CONSERVATION RELATIONS AND REFLECTION AND TRANSMISSION
COEFFICIENTS FOR THE ENERGY

The relevant quantities for wave amplitudes and energy fluxes can be obtained directly
our potentialscG andcE ~without involving the functionsX2k , Y2k , andZk of Ref. 1! by noting
from Eqs.~41! and ~42! of Ref. 1 that

C0
B5@D 4cg~r !#e2 ivt

22Yjm ,
~20!

C4
B5

h2~h212!

4r 4 cg~r !e2 ivt
2Yjm2

3iM v

r 4 cg~r ! eivt
22Yjm,

for gravitational waves, and

w0
B5@D 2ce~r !#e2 ivt

21Yjm ,
~21!

w2
B5

~h212!

2r 2 ce~r !e2 ivt
1Yjm ,

for electromagnetic waves.
In this manner, from Eqs.~13!, ~15!, ~20!, and~21! one finds that at the spatial infinity,

1

4
rC0

B→F4v4Ae2 iv(t1r
*

)1
6B21

r 4 e2 iv(t2r
*

)G 22Yjm ,

rC4
B→ h2~h212!

4
Be2 iv(t2r

*
)
2Yjm23iM vB̄eiv(t2r

*
)
22Yjm,

~22!
1

2
rw0

B→F22v2ae2 iv(t1r
*

)1
b21

r 2 e2 iv(t2r
*

)G 21Yjm ,

rw2
B→ ~h212!

2
be2 iv(t2r

*
)
1Yjm .

Similarly, from Eqs.~17!–~19!, ~20!, and~21! one finds that, at the horizon,

y2C0
B→4ivCr1~12 ivr 1!u112ivr 1u2e2 iv(t1r

*
)
22Yjm ,

~23!
yw0

B→22ivcr1~122ivr 1!e2 iv(t1r
*

)
21Yjm .
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Note that at level of the quantities of Eqs.~22! and~23! for the waves amplitudes, the descriptio
is essentially the same as given by the quantities of Eqs.~47! and~48! of Ref. 1; in fact, making
a comparison with those quantities we can find relations between the corresponding coeffi

4v2A52@h2~h212!612iM v#A2
(6) ,

B

4v2 52B2
(6) ,

2va5 ih~h212!A1
(6) ,

~24!
b52ivhB1

(6) ,

r 1~12 ivr 1!~122ivr 1!C5 1
2 @h2~h212!612iM v#D2

(6) ,

r 1~122ivr 1!c5h~h212!D1
(6) .

On the other hand, from the fact that, in particularKGur
*

→1`5KGur
*

→2` ~see Eq.~6! and the
paragraph at the end of Sec. II!, from Eqs.~13!, ~18!, first of Eqs.~22! and ~23! one finds that

~3BB2122v4uAu2!52
r 1

2

2
u11 ivr 1u2u112ivr 1u2uCu2, ~25!

where B21 is given in Eq.~14!. Similarly, from Eqs.~10!, ~15!, ~19!, third of Eqs.~22!, and
second of Eqs.~23!, one finds that, in the electromagnetic case,

2~2v2uau21bb21!5r 1
2 u112ivr 1u2ucu2, ~26!

whereb21 is given in Eq.~16!.
Furthermore, using the~limiting! formulas given in Eqs.~51!–~53!, and~56! in Ref. 1 and our

expressions~22! and ~23!, we find that

dEin
grav/dt5

4v6

p
uAu2,

dEin
em/dt5

2v4

p
uau2,

^dEout
grav/dt&5

1

64pv2 @h4~h212!21144M2v2uBu2,

~27!

dEout
em/dt5

~h212!2

8p
ubu2,

dEhole
grav/dt5

v2

p
r 1

2 u11 ivr 1u2u112ivr 1u2uCu2,

dEhole
em /dt5

v2

2p
r 1

2 u112ivr 1u2ucu2.

Thus, from Eqs.~25!–~27! we obtain that
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dEin
grav/dt5^dEout

grav/dt&1dEhole
grav/dt,

~28!
dEin

em/dt5dEout
em/dt1dEhole

em /dt,

which show explicity that the energy carried by the gravitational or the electromagnetic per
tions is conserved. We point out that, the ‘‘conservation relations’’~25! and~26! ~such as those in
Ref. 1! can be properly interpreted as expressions of the conservation of energy only aft
energy fluxes~27! are derived. In this manner, the original continuity equations~4! and ~9! for
non-Hermitian systems lead, finally, to a conserved quantity, the energy for the field perturba
Furthermore, from expressions~27! one finds that

^dEout
grav/dt&

dEin
grav/dt

5
@h4~h212!21144M2v2#

256v8

uBu2

uAu2
5

uB2
(6)u2

uA2
(6)u2

,

dEhole
grav/dt

dEin
grav/dt

5
r 1

2 u11 ivr 1u2u112ivr 1u2

4v4

uCu2

uAu2 5
uD2

(6)u2

uA2
(6)u2

,

~29!
dEout

em/dt

dEin
em/dt

5
~h212!2

16v4

ubu2

uau2 5
uB1u2

uA1u2
,

dEhole
em /dt

dEin
em/dt

5
r 1

2 u112ivr 1u2

4v2

ucu2

uau2
5

uD1u2

uA1u2
,

where the second equalities follow from the relations~24!. Thus, our energy reflection and tran
mission coefficients for the field perturbations coincide with those in Ref. 1 given in terms o
reflection and transmission coefficients for the potential barriers appearing in the Schro¨dinger-type
equations. However, it is worth pointing out that, in the present approach, the existence of
‘‘effective potential barriers’’ has not been mentioned explicity. Furthermore, in this appro
there exists, in general, only one reflection or transmission coefficient for each field perturb
avoiding the ‘‘redundance’’ which appears in the traditional approach because of the existe
various potential barriers.

The polarization changes of the field perturbations are analyzed at the level of Eqs.~47! and
~48! in Ref. 1, therefore, the conclusions of that reference are also valid in our present app
~see paragraph after Eq.~23!!.

V. CONCLUDING REMARKS

In conclusion, we have demonstrated that one can obtain essentially the same physical
starting from amanifiestlynon-Hermitian system, to those obtained from the traditional appro
via ~Hermitian! Schrödinger-type equations. This suggests that a fully similar analysis ca
performed in the perturbations of exact solutions in the setting of the modern theories, whe
pointed out in Sec. I, non-Hermitian systems appear, in particular those solutions correspon
black holes in string theory, for which some results analogous to those traditionally know
classical black holes have not yet been established. Works along these lines are in progr
will be the subject of forthcoming communications.

On the other hand, although the result on the existence of conserved currents in Sec
been established assuming only tensor fields and the presence of a single equation, such
can be extented in a direct way to equations involving spinor fields, matrix fields, and the pre
of more than one field.6 The possible applications of this very general result in the theo
involving gravity and matter fields~and other areas of physics! are open questions.
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Schwarzschild perturbations die in time
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Smooth perturbations of Schwarzschild black holes whose initial data has compact
support outside the horizon are shown to die in time along the trajectory of the
asymptotically timelike Killing vectorta. A gravitational or other zero-rest-mass
perturbation of a Schwarzschild black hole can be expressed in terms of radial
derivatives of a scalar fieldF that satisfies a wave equation with positive potential.
A theorem due to Wilcox is used to show that the pointwise limit ast→6` of F
and all its derivatives vanishes. This result strengthens previous work that bounds
the perturbation in time. ©2000 American Institute of Physics.
@S0022-2488~00!01408-0#

I. INTRODUCTION

The fact that Schwarzschild black holes are stable has essentially been known since
veshwara’s 1970 paper,1 proving the stability of outgoing modes. Outgoing modes die expon
tially in time; but one expects, from the analysis of Price2 and subsequent work, that perturbatio
will die in time in accord with the power-lawt22l 22 that arises from backscatter off th
asymptotic curvature. Consequently, the modes are not likely to be complete for initial dat
describe generic perturbations of a black-hole geometry. It is nevertheless easy to prove s
of Schwarzschild black holes in a mode-independent way, once one casts the perturbe
equations in the form of a wave equation with a positive-definite potential:

~] t
21A!F50, ~1.1!

where

A52]x
21V.0. ~1.2!

This was initially done by Regge and Wheeler3 for axial perturbations, perturbations whose b
havior under parity is opposite to that ofYlm . Axial tensors belonging to anl,m representation of
the rotation group change sign under reflection in the origin whenl is even, while polar tensors
like the scalarsYlm , change sign whenl is odd. Zerilli4 first obtained the form~1.1! for polar
perturbations. Subsequently, Bardeen and Press,5 using the Newman–Penrose formalism, fou
that the same wave equation for the spin62 components of the Weyl tensor described both ax
and polar perturbation, and the relation between the various equations was obtained by
drasekhar~see Ref. 6 for a detailed review!.

For the scalar wave equation,

V5~122m/r !„2m/r 31 l ~ l 11!/r 2
…, ~1.3!

a!Electronic mail: friedman@uwm.edu
75290022-2488/2000/41(11)/7529/6/$17.00 © 2000 American Institute of Physics
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where r is the usual Schwarzschild radial coordinate, and we have denoted byx the tortoise
coordinatex[r * :

x5r 12m log~r /2m21!. ~1.4!

Gravitational perturbations6 are described, for axial parity, by the Regge–Wheeler potential,

V5S 12
2m

r D F l ~ l 11!

r 2 2
6m

r 3 G , ~1.5!

and, for polar parity, by the Zerilli potential,

V5
2~122m/r !

~n13m/r !2 Fn2~n11!

r 2 1
3mn2

r 3 1
9m2n

r 4 1
9m3

r 5 G , ~1.6!

with n5 1
2( l 21)(l 12). ~In fact, a symmetry between axial and polar perturbations means tha

can write both axial and polar parity metric and Riemann tensor perturbations in terms of a
F satisfying the same equation—for example, the wave equation with the Regge–Wheeler
tial. And electromagnetic waves have a similar description.! Only values ofl>2 are present for
gravitational perturbations that leave mass and angular momentum of the black hole unch
The potentials are consequently positive definite, and they fall off asx22 asx→` ande2uxu/2m as
x→2`. In each case,t in Eq. ~1.1! is the usual Schwarzschild time, and] tF5ta¹aF, with ta

the asymptotically timelike Killing vector.
Equation~1.1! immediately implies stability of Schwarzschild black holes in the sense tha

energy norm is bounded in time:7

Eperturbation,Einitial , ~1.7!

becauseV.0. That is, from the integral

E
S
] tF~] t

21A!F dx50, ~1.8!

over an asymptotically null hypersurfaceS, one finds a positive-definite energy can only decre
in time, with positive energy radiated to infinity and to the horizon:

05^] tFu] t
21AuF&5] tE~F!1positive definite flux atH1 and I1, ~1.9!

where

E~F!5 1
2^] tFu] tF&1 1

2^]xFu]xF&1 1
2^FuVuF&. ~1.10!

The energy normE is proportional to the energy of the perturbation associated with the time
Killing vector on the background spacetime outside the horizon.8

Wald9 and Kay and Wald10 obtained a sharper result, showing thatF is itself bounded in time
~E bounded does not implyF bounded!.

We strengthen this, showing thatF and all its derivatives die off in time. The still stronge
result, that the falloff is given for eachl by the Price power law, is still to be proven, as is t
extension of the present result to perturbations that are asymptotically regular but do no
compact support.

Some of the ideas involved in this work appear in an earlier paper by Beig.11

II. SCHWARZSCHILD PERTURBATIONS DIE IN TIME

Theorem: Let F be a solution to~1.1! with initial data

f 5F0 g5] tF0 , ~2.1!

in C0
`(R). Then
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lim
t→`

u] r
m] t

nFu50, all m,n, ~2.2!

where the limit is along the trajectory of the asymptotically timelike Killing vectorta.

A. Preliminaries

Denote byHm(R), themth Sobolev space, with normi•im , given in terms of theL2-normi•i
by

iuim5F (
0<uau<m

iDaui2G1/2

. ~2.3!

Denote byx I the characteristic function on an open intervalI ,R:

x I~x!5H 1, xPI ,

0, x¹I .
~2.4!

Let H be a self-adjoint operator onL2(R), and denote byHac the subspace on which the spectr
measure ofH is absolutely continuous.

Wilcox’s theorem usesH compactness~relative compactness!. An operatorT on a Hilbert
spaceH with D(H),D(T) is said to beH compact iffT is compact as a map fromD(H), with
norm i f iH5i f i21iHfi2, to H with norm i•i.

Lemma 1 (Wilcox):Suppose the mapg°x Ig is H compact, and letf PHac. Then, for every
finite interval I,

lim
t→6`

ie2 iHt f iL2~ I !50. ~2.5!

~This is Theorem 2.3 of Ref. 12. Wilcox uses closed intervals~closed balls inRn!; but conver-
gence in theL2 norm does not distinguish between closed and open intervals, and the conc
is true for an open interval if it is true for its closure. It is more convenient to use open inte
here, because they are needed for the compact embedding theorem below.!

The time evolution ofF is given in terms of initial data,f 5F0 , g5] tF0 , by

F~ t !5cos~A1/2t ! f 1A1/2sin~A1/2t !g. ~2.6!

The properties of the solution rely on properties ofA1/2 and A21/2 previously discussed in the
literature~e.g., Refs. 11, 13, 9, 14 and 10!. These are summarized inLemma 2below, in which
only the explicit domains ofA andA1/2 do not appear to have been previously mentioned. Den
by D(T) the domain of an operatorT.

Lemma 2: The operatorsA,A1,2,A21/2 are self-adjoint onL2(R) with domains D(A)
5H2(R), D(A1/2)5H1(R), andD(A21/2).C0

`(R).
Proof of Lemma 2:The operatorsA052d2/dx2 and A0

1/2 are self-adjoint withD(A0)
5H2(R) andD(A0

1/2)5H1(R) ~Ref. 15, p. 253!. BecauseV is a symmetric, bounded operator o
L2(R), the Kato–Rellich theorem~see, e.g., Ref. 16, Theorem X.12! implies thatA is self-adjoint
on D(A0)5H2(R).

BecauseA and A0 are strictly positive,D(A)5D(A0)5H2(R) is a core forA1/2 and A0
1/2

~Ref. 14, Proposition A4.6!. For f PH2(R),

iA1/2f i25^A1/2f uA1/2f &5^ f uA f&5^ f uA0 f &1^ f uV f&5^A0
1/2f uA0

1/2f &1^V1/2f uV1/2f &,

implying

iA1/2f i>iA0
1/2f i , ~2.7!

and
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iA1/2f i>iV1/2f i . ~2.8!

Similarly, with s5supx V(x), A0
1/21s1/2 is ~again by Kato–Rellich! self-adjoint with domain

H1(R); and

i~A0
1/21s1/2! f i>iA1/2f i . ~2.9!

From the first of these three inequalities it follows thatD(A1/2),D(A0
1/2) and from the third that

D(A0
1/21s1/2),D(A1/2) ~Ref. 14, Proposition A4.10!. ThusD(A1/2)5H1(R).
Finally, from inequality~2.8! andD(A)5H2(R),D(V), we haveD(V21/2),D(A21/2); and

the inclusionC0
`(R),D(V21/2) completes the proof. h

B. Proof of theorem

The solutionF to (] t
21A)F50, with real initial dataf 5F0 , g5] tF0 , is the real part of the

solutionC to

i ] tC5A1/2C, ~2.10!

with initial data

C05 f 1 iA21/2g. ~2.11!

The main part of the proof will be to show that, for initial dataf ,A21/2gPH1(R),

lim
t→`

C~ t,x!50. ~2.12!

We show as follows thatA1/2 satisfies Wilcox’s compactness condition, that the mapf °x I f
is A1/2 compact. We have

iA1/2uniL2~R!1iuniL2~R!>iA0
1/2uniL2~R!1iuniL2~R!5iuniH1~R! . ~2.13!

But a compact Sobolev embedding theorem~Ref. 15, Vol. 4, Theorem XIII.74! states that
H1(I )→L2(R) is compact; thusf °x I f is A1/2 compact. Wilcox’s lemma then implies for an
initial data forC in Hac, that

lim
t→`

iC~ t !iL2~ I !50; ~2.14!

andF5ReC satisfies

lim
t→`

iF~ t !iL2~ I !50. ~2.15!

Now by Lemma 5.1 of Dimock13 ~i.e., by the Agmon–Kato–Kuroda theorem! A has an
absolutely continuous spectrum. Because the functionx1/2 is analytic on a domain inC that
includess(A)\$0%5R1 , and the spectral measure of$0% is 0, A1/2 has an absolutely continuou
spectrum;17 that is, its domain isHac. Thus, Eq.~2.15! holds for any initial data forC in
D(A1/2)5H1(R). Equivalently, it holds for initial dataf,g, with f PH1(R) andA21/2gPH1(R).

We can extend the result to arbitrary derivatives ofF by observing that, ifF is smooth and
satisfies the perturbation equation~1.1!, then] t

nF satisfies~1.1!. That is, initial dataf,g for F that,
for eachm, is in Hm(R) yields a solution for which~with n.2!

i] t
nFi15iA ] t

n22Fi1<Ki] t
n22Fi3 , ~2.16!

whence
                                                                                                                



t
val,

was
PHY

7533J. Math. Phys., Vol. 41, No. 11, November 2000 Schwarzschild perturbations die in time

                    
i] t
2nFi1<K8i f i2n11 , ~2.17!

i] t
2n11Fi1<K8igi2n11 . ~2.18!

Because] t
2nF thus has initial data inH1(R), it satisfies

lim
t→`

i] t
2nF~ t !iL2~ I !50. ~2.19!

Using the scalar wave equation, we have

i] t
2F~ t !iL2~ I !>i]x

2F~ t !iL2~ I !2sup
I

uVuiFi ;

by Eqs.~2.15! and ~2.19!,

lim
t→`

i]x
2F~ t !iL2~ I !50; ~2.20!

and, repeating the argument for successive time derivatives gives, for evenx derivatives,

lim
t→`

i]x
2nF~ t !iL2~ I !50.

The Sobolev interpolation theorem~Ref. 18 Theorem 4.14! extends this limit to arbitraryx de-
rivatives: Let Ĩ be an open interval containingI, and letu be a smooth function with compac
support onĨ that coincides withF on I. Because the equation above holds for any infinite inter
it holds for I replaced byĨ.

i]x
kFiL2~ I !,i]x

kuiL2~ Ĩ ! ,

and by the interpolation theorem, for all positive integersk,2n,

i]x
kuiL2~ Ĩ !,Ki]x

2nuiL2~ Ĩ !1KiuiL2~ Ĩ ! .

Thus, for allk,

lim
t→`

i]x
kF~ t !iL2~ I !50. ~2.21!

Finally, from supI u f u<Ki f iH1(I ) , the theorem follows. h
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On the Lewis metric
J. Gariel,a) G. Marcilhacy, and N. O. Santosb)
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We revisit Lewis solution giving a mechanical interpretation to its field equations.
The structure of the equations that the metric coefficients satisfy can be associated
to the motion of a classical particle in a central field. ©2000 American Institute
of Physics.@S0022-2488~00!01708-4#

I. INTRODUCTION

The stationary cylindrically symmetric vacuum solutions of Einstein’s field equations
known as the Lewis metric.1 In its usual form it is presented with four parameters2 which,
according to its real or complex character, is called Weyl or Lewis class metric. These para
have been interpreted physically for different source configurations3,4 and according to gyroscopi
effects.5 The extension of this solution to include the cosmological constant has been obtain
Krasinski6 and Santos,7 while the interpretation of the parameters has been analyzed by Mac
lum and Santos.8

Much attention has been given recently to the Lewis solution because of its possible rele
to string theory; the study of topological defects; the relatively simple approach to rot
sources; and the intrinsical fact that this solution differs strongly from the corresponding Ne
ian result as compared to the number of parameters, in the Newtonian theory there is one
eter while in Einstein theory, in its usual form, there are four.

Here we present a simple deduction of Lewis metric, where we do not need to con
complex parameters to obtain the so-called Lewis class. We give too a mechanical interpr
of the field equations, which permits us to better understand the role of the four paramete

II. FIELD EQUATIONS

The general stationary cylindrically symmetric vacuum solution of the Einstein equation
Lewis metric, can be written as

ds252 f dt212kdtdf1em~dr21dz2!1 ldf2, ~1!

wheref ,l ,k, andm are functions ofr only. The field equations~see Appendix A in Ref. 3! become

f 92
f 8

r
52

f

r 2
~ f 8l 81k82!, ~2!

l 92
l 8

r
52

l

r 2
~ f 8l 81k82!, ~3!

k92
k8

r
52

k

r 2
~ f 8l 81k82!, ~4!

a!Electronic mail: jegar@gcr.jussieu.fr
b!Also at Laborato´rio de Astrofı́sica e Radioastronomia Centro Regional Sul de Pesquisas Espaciais - INPE/MCT C

Universitária, 97105-900 Santa Maria RS, Brazil. Electronic mail: nos@conex.com.br
75350022-2488/2000/41(11)/7535/9/$17.00 © 2000 American Institute of Physics
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m852
1

2r
~ f 8l 81k82!, ~5!

with

f l 1k25r 2, ~6!

where the prime stands for differentiation with respect tor. The solution of~2!–~5! is usually
presented as2

f 5ar12n2
c2r 11n

an2
, ~7!

l 5
r 2

f
2V2f , ~8!

k52V f , ~9!

em5r (n221)/2, ~10!

where

V5b1
cr11n

an f
, ~11!

and the four constantsa,b,c, andn being real, which means restricting the solution to the W
class. If they are complex, the solution belongs to the Lewis class. The differential equations@Eqs.
~2!–~4!# only involve f ,l , andk, which means that once this set solved, we havem after integra-
tion of ~5!. Hence the set of equations to be solved is~2!–~4! where we centralize our study.

For simplification reasons we define three new functionsF,L, andK,

f 5rF ~r !, l 5rL ~r !, k5rK ~r !, ~12!

hence~6! becomes

FL1K251. ~13!

We can rewrite solutions~7!–~10! using ~12! as a linear combination of functionsr n and r 2n

F5ar2n2
g2

a
r n, ~14!

L52ab2r 2n1
~12bg!2

a
r n, ~15!

K52abr2n2
g~12bg!

a
r n, ~16!

with

g5
c

n
. ~17!
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III. LINEAR DEPENDENCE BETWEEN f ,l , AND k

From the field equations~2!–~4! with ~12! we obtain

LF92FL952
1

r
~LF82FL8!, ~18!

FK92KF952
1

r
~FK82KF8!, ~19!

KL92LK952
1

r
~KL82LK8!, ~20!

allowing us to integrate them, giving

LK82KL85
C1

r
, ~21!

KF82FK85
C2

r
, ~22!

FL82LF85
C3

r
, ~23!

whereC1 ,C2, andC3 are integration constants. A simple way of integrating systems~21!–~23! is
to use an analogy to classical mechanics which allows to give a kinematical interpretation. In
to do this we make a coordinate transformation

r 5et, ~24!

transforming sets~21!–~23! into

LK!2KL!5C1 , ~25!

KF!2FK!5C2 , ~26!

FL!2LF!5C3 , ~27!

where the star denotes differentiation with respect tot. Now we build a three-dimensional spac
with orthogonal axesF(t),L(t),K(t), and in this space relations~25!–~27! describe that the
vectorangular momentumassociated to a particleM with position coordinates(F,L,K) is con-
stant, wheret plays the role equivalent to the parametertime. Themotionof the particleM in the
space (F,L,K) takes place in a plane surfaceP perpendicular to the constantvector C
5(C1 ,C2 ,C3). The structure of the coupled equations@Eqs.~25!–~27!# imply that

C1F1C2L1C3K50, ~28!

which means that the position vectorOM is orthogonal to the angular momentum vectorC, being
this situation the same as a classical particle moving in a central force field. BesidesO belongs to
the planeP. Rewriting ~28! like

K5aL1bF, ~29!

where
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a52
C2

C3
, b52

C1

C3
, ~30!

we have (21,a,b) as the components of the normal to the planeP. With the definition~12!, we
can also obviously write~29! like

k5a l 1b f . ~31!

which shows the linear dependence betweenf ,l , and k. Following our classical kinematica
analogy, the solution~12! describe thetrajectoryof the particleM, which is the intersection of the
plane surfaceP ~29! with the hyperbolic paraboloid defined by~13!. This intersection produces
conic section and the trajectory depends only upon two constants,a andb.

We need only one function, sayK(r ), which allows in principle to determine the two other
sayF(r ) andL(r ), from ~13! and ~29!. Each function satisfies a second-order differential eq
tion, implying that it depends upon two arbitrary constants which are theinitial conditionsof the
motion in our kinematical interpretation wheret(r ), via ~24!, plays the role of time. Theseinitial
conditionsfor the time t correspond to the limiting conditions on the potential for the variablr.
Each solution (F,L,K) depends upon four arbitrary constants, which is the case for Lewis s
tion, but through our analysis they form two groups of two constants. The constants of th
group,a andb, which define the plane trajectory, are linked to the parameters of the conic, o
hand, and, on the other hand, to the structure of the coupling equations@Eqs.~25!–~27!#. We can
call them thestructure constants. The second group of two constants is linked to the parame
equation of motion of the trajectory. We can obtain the relationship of the parameters appea
~7!–~10! with these two groups of constants, which is

a5
g

2bg21
, b5

b~12bg!

2bg21
, ~32!

with bgÞ1/2. Whenbg51/2, we havea52g andb50. Then this solution corresponds to th
case presented in Sec. IV A 3 b. Hence the group of constants (a,b) corresponds to (b,g) de-
scribing the stationarity of the space–time, and, as a consequence, the second group of c
is (a,n) describing the staticity.

IV. SOLUTIONS

We have first to solve the algebraic equations@Eqs.~13! and ~29!#. We observe that in~29!
F,L, andK have a symmetrical role, which is not the case forK in ~13! where it looks playing a
particular role. For this reason we chooseK as a known function, and we deduceF and L as
functions ofK, and we obtain

F5
K7AD

2b
, bÞ0, ~33!

L5
K6AD

2a
, aÞ0, ~34!

where

D[~114ab!K224ab. ~35!

These solutions exist forD>0, which is always the case. Hence, for a givenK, we have two
solutions, (F2 ,L1 ,K) and (F1 ,L2 ,K), where the subscripts refer to the chosen sign in
right-hand-side of~33! and ~34!. Now we have to determineK. Since, after~33! and ~34!, F and
L are functions ofK we have
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F8L85
dF

dK

dL

dK
K82. ~36!

Substituting~12! into ~3! and considering~36! we obtain

K9

K8
1

1

r
5

1

2

D8

D
. ~37!

Integrating~38! we obtain

rK 85k1AD, ~38!

and integrating once more

k1 ln r 5E dK

AD
1k2 , ~39!

wherek1 andk2 are two integrating constants, linked to the limiting conditions of the potentiaK
and its derivative. They are associated, respectively, ton and a. The constantn arises from the
gradient of the potential, producing the Newtonian mass per unit length, whilea arises from the
potential itself, producing a topological defect.3

In order to explicitly integrate~39!, we distinguish different cases according to the sign od
defined by

d[114ab. ~40!

A. d Ì0

From ~32! we have

d5~2bg21!22. ~41!

This case corresponds to the Weyl class of the Lewis metric,3 which can be subclassified in th
following three subcases.

1. ab Ì0

For the parameters~32! we have

ab5
bg~12bg!

~122bg!2
, ~42!

hence for this case 0,bg,1. Then we obtain from~39!

K52S ab

d D 1/2

cosh~ ln Y!, ~43!

where

Y[k1Ad ln~r /r 0!, ~44!

and from this solution,~15! and ~32! we have

k15
n

Ad
, r 05F a

g~12bg!G
1/n

. ~45!
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From ~44!, we obtain from~33! and ~34!,

F5S a

b D 1/2S 1

Ad
coshY7sinh Y D , ~46!

L5S b

a D 1/2S 1

Ad
coshY6sinh Y D . ~47!

The solution given in~14!–~16! corresponds to (F2 ,L1 ,K).

2. abË0

From ~40! we have for this case2ab,1/4, and for the Lewis parameters, with~42! we have
bg,0 or bg.1. Hence the integration of~39! produces

K52S 2
ab

d D 1/2

sinh Y, ~48!

whereY is given by~44!, and for this solution we have from~33! and ~34!,

F5S 2
a

b D 1/2S 1

Ad
sinh Y7coshY D , ~49!

L5S 2
b

a D 1/2S 1

Ad
sinh Y6coshY D . ~50!

3. abÄ0

From the integration of~39! we have

K5S r

r 0
D k1

. ~51!

Now for determiningF andL we can no longer use~33! and~34!, but instead~13! and~29! have
to be used, producing three different cases, which follow.

a. Casea50 and bÞ0. We have

F5
1

b S r

r 0
D k1

, ~52!

L5bF S r

r 0
D 2k1

2S r

r 0
D k1G . ~53!

b. Caseb50 and aÞ0. We have

F5aF S r

r 0
D 2k1

2S r

r 0
D k1G , ~54!

L5
1

b S r

r 0
D k1

. ~55!

c. Casea5b50. This last case givesK50 and,
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F5
1

L
5S r

r 0
D 2k1

, ~56!

which is the static Levi-Civita solution.

B. dË0

In this case the Lewis solution~14!–~16! and~32! cannot be considered with real paramete
However, if the parameters are complex, as given in Ref. 4, we obtain from~32!

a5
a1

21b1
2

2~a1a21b1b2!
, ~57!

b52
a1

21b1
2

2~a1a21b1b2!
, ~58!

giving

d52~a1a21b1b2!22,0. ~59!

Hence this case fits on the Lewis class. We remark that in our method we did not nee
introduction of any complex parameter. The integration of~39! now becomes

K52S ab

d D 1/2

sin Y, ~60!

and from~33! and ~34!

F5S 2
a

b D 1/2S 1

A2d
sin Y7cosY D , ~61!

L5S 2
b

a D 1/2S 1

A2d
sin Y6cosY D , ~62!

which agrees with the Lewis solution revisited by van Stockum.9

C. dÄ0

For this case we have

ab52 1
4 , ~63!

and the integration of~39! gives

K5k1 ln
r

r 0
, ~64!

producing from~33! and ~34!

F5
1

2b S k1 ln
r

r 0
71D , ~65!

L5
1

2a S k1 ln
r

r 0
61D . ~66!
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This case constitutes a third class of solutions, different from the class of Weyl or Lewis. C
authors9,10 have introduced this type of solutions while matching it to an interior solution9 and
have presented it as a limit of the classes of Weyl and Lewis.4,10 Here we present the solution a
coming, on its own, directly from the field equations, without the consideration of any limits o
other two classes. The different character of this third class is confirmed from the Cartan s
which show that it is of Petrov type 2, while the classes of Weyl and Lewis are of Petrov ty

In order to conclude the kinematical interpretation given in Sec. III, we can formulate
trajectory equation, which is the conic discussed after~31!, by using~13! and~29!. We write the
equation in the newcoordinatesystem (F1 ,L1 ,K1), where the axisK1 is orthogonal to the plane
P, obtained by a frame transformation defined by

u15~a,b,a21b2!, u25~2b,a,0!, u35~a,b,21!. ~67!

If ( F,L,K) are thecoordinatesin the old frame, then in the new frame (u1 ,u2 ,u3) it becomes
(F1 ,L1 ,K1) such that

F5aF11bL11bK1 , ~68!

L52bF11aL11aK1 , ~69!

K5~a21b2!L12K1 . ~70!

The planeP has the new equationK150, and the new equation for the conic in this plane is

AF1
21BF1L11CL1

251, ~71!

with

A[2ab, B[a22b2, C[~a21b2!21ab. ~72!

A simple way for studying qualitatively the nature of this conic is by considering the foll
ing form of ~71!:

1

4C
~4AC2B2!F1

21
1

4C
~BF112CL1!251. ~73!

SupposingC.0, then~73! is the equation of an ellipse if 4AC2B2.0, and of a hyperbole if
4AC2B2,0. From~72! we have

4AC2B252~a21b2!~114ab!52~a21b2!d, ~74!

and we reobtain thed defined by~40!. The sign ofd conditioned the existence of three classes
solutions given in Secs. IV A–IV C. When the conic is a hyperbole, beingd.0, the solutions
belong to the Weyl class; while the conic is an ellipse, beingd,0, the solutions belong to the
Lewis class. Ifd50, ~73! gives two straight line equations

B

2C
F11L1561, ~75!

which correspond to the logarithmic type solutions found in Sec. IV C.
Now if we supposeC,0, then 4AC2B2 cannot be.0, henced is always.0 and the only

possible solution is a hyperbole.
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V. CONCLUSION

The field equations for a cylindrically symmetric stationary space–time with poten
(F,L,K) given by~18!–~20! produce two relations between them, one is a quadratic relation~13!
and the other a linear relation~29!. In the space created by the orthogonal coordinate a
(F,L,K) these relations represent a plane surface and a hyperbolic paraboloid surface,
tively. The intersection of these two surfaces is, in general, a conic which depends upo
constants (a,b) ~30! which we callstructure constantsof the equations.

Furthermore, a parametric representation~by taking the parameter as the radial variabler ) of
the conic can be deduced depending upon two other constants (k1 ,k2) ~39! fixed by the limiting
conditions of anyone of the three potentials and its first derivatives, respectively.

The constants (a,b) are associated to the parameters (b,g5c/n) of the Lewis solution given
in its usual forms~7!–~10!, and (k1 ,k2) to the (n,a) parameters. Hence the first set of consta
describe the stationarity of space–time, while the second its staticity. The rotation paramb
produces a topological defect,c is produced by the vorticity of the source,a produces too a
topological defect but due to the staticity of the source, andn is proportional to the Newtonian
mass per unit length of the source.3

We found by this method a simple and natural classification of the solutions of the va
field equations for a cylindrically symmetric stationary spacetime without the need of using
plex parameters as it is usually done.
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Measuring multipole moments of Weyl metrics by means
of gyroscopes

L. Herreraa) and J. L. Hernández Pastora
Area de Fı´sica Teo´rica, Facultad de Ciencias, Universidad de Salamanca,
37008 Salamanca, Espan˜a

~Received 3 July 2000; accepted for publication 4 August 2000!

Using the technique of Rindler and Perlick we calculate the total precession per
revolution of a gyroscope circumventing the source of Weyl metrics. We establish
thereby a link between the multipole moments of the source and an ‘‘observable’’
quantity. Special attention deserves the case of theg-metric. As an extension of this
result we also present the corresponding expressions for some stationary space–
times. © 2000 American Institute of Physics.@S0022-2488~00!00612-5#

I. INTRODUCTION

Weyl exterior solutions to Einstein equations1 represent all possible static axially symmetr
space–times in the context of general relativity. They may be represented as series expan
suitable defined relativistic multipole moments.2 Therefore, any of the Weyl metrics are, in prin
ciple, characterized by a specific combination of such multipoles. One way to provide the ph
content to those solutions consists in establishing a link between their multipole momen
quantities measured from well defined and physically reasonable experiments. It is our purp
this work to establish such a link, by calculating the total precession per revolution of gyros
circumventing the symmetry axis. By doing so, the multipole moments of different Weyl me
become ‘‘measurable’’ in the sense that they are expressed through quantities obtained fro
defined and physically reasonable experiments~we are of course not discussing about the act
technical feasibility of such experiments!. These results illustrate further the usefulness of gy
scopes in the study of gravitational phenomena.3,4

All calculations are carried out using the method proposed by Rindler and Perlick,5 a brief
resume of which is given in the next section, together with the notation and the specification
space–time under consideration.

In Sec. III we obtain, for a selection of Weyl metrics, the precession per revolution relati
the original frame of a gyroscope rotating around the axis of symmetry. For the sake of gen
we present in Sec. IV some results concerning stationary metrics. Finally, the results are dis
in the last section.

II. THE SPACE–TIME AND THE RINDLER–PERLICK METHOD

A. The Weyl metrics

Static axysymmetric solutions to Einstein equations are given by the Weyl metric,1

ds252e2Cdt21e22C@e2G~dr21dz2!1r2 df2#, ~1!

where metric functions have to satisfy

a!Also at UCV, Caracas, Venezuela. Electronic mail: lherrera@gugu.usal.es
75440022-2488/2000/41(11)/7544/12/$17.00 © 2000 American Institute of Physics
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C ,rr1r21C ,r1C ,zz50 ~2!

and

G ,r5r~C ,r
2 2C ,z

2 !; G ,z52rC ,rC ,z . ~3!

Observe that~2! is just the Laplace equation forC ~in the Euclidean space!, and furthermore
it represents the integrability condition for~3!, implying that for any ‘‘ Newtonian’’ potential we
have a specific Weyl metric, a well known result.

The general solution of the Laplace equation~2! for the functionC, presenting an asymptoti
cally flat behavior, results in

C5 (
n50

`
an

r n11 Pn~cosu!, ~4!

where r 5(r21z2)1/2, cosu5z/r are Weyl spherical coordinates andPn(cosu) are Legendre
Polynomyals. The coefficientsan are arbitrary real constants which have been named in
literature ‘‘Weyl moments,’’ although they cannot be identified as relativistic multipole mom
in spite of the formal similarity between expression~4! and the Newtonian potential. Then, Eq
~3! are solved to give functionG in terms of Weyl moments as follows:1

G5 (
n,k50

`
~n11!~k11!

n1k12

anak

r n1k12 ~Pn11Pk112PnPk!. ~5!

Another interesting way of writting the solution~4! was obtained by Erez–Rosen6 and
Quevedo,7 integrating Eqs.~2!, ~3! in prolate spheroidal coordinates, which are defined as follo

x5
r 11r 2

2s
, y5

r 12r 2

2s
,

~6!
r 6[@r21~z6s!2#1/2, x>1, 21<y<1,

wheres is an arbitrary constant which will be identified later with the Schwarzschild’s mass
inverse relation between both families of coordinates is given by

r25s2~x221!~12y2!, z5sxy. ~7!

The prolate coordinatex represents a radial coordinate, whereas the other coordinatey represents
the cosine function of the polar angle.

In these prolate spheroidal coordinates the Weyl metric is given by

ds252e2C dt21s2e22CFe2G~x22y2!S dx2

x221
1

dy2

12y2D1~x221!~12y2!df2G . ~8!

Then, the corresponding equations that the metric functionsG andC have to satisfy, can be
solved to obtain forC,

C5 (
n50

`

~21!n11qnQn~x!Pn~y!, ~9!

Qn(y) being Legendre functions of the second kind andqn a set of arbitrary constants.
Both sets of coefficients,an andqn , characterize any Weyl metric.7 Nevertheless these con

stants do not give us physical information about the metric since they do not represent the
multipole moments of the source. That is not the case for the relativistic multipole mom
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defined by Geroch,8 Hansen9 and Thorne,10 which, as it is known, characterize completely a
uniquely, at least in the neighborhood of infinity, every asymptotically flat and stationary vac
solution11,12 providing at the same time a physical description of the corresponding solution

An algorithm to calculate the Geroch multipole moments was developed by F
Hoenselaers and Perjes13 ~FHP!. By applying such a method, the resulting multipole moments
the solution are expressed in terms of the Weyl moments. Similar results are obtained fro
Thorne’s definition, using harmonic coordinates. The structure of the obtained relation be
coefficientsan and these relativistic moments allows us to express the Weyl moments as a
bination of the Geroch relativistic moments. For instance, the first coefficients result in

a052M0 , ~10!

a252 1
3 M0

32M2 , ~11!

a452 1
5 M0

52 8
7 M0

2M2 , ~12!

where only massive multipole moments (Mn) appear since the metrics are considered to pos
equatorial symmetry. Obviously, the general relation between Weyl moments and relat
multipole moments are not known. Nevertheless, choosing some specific multipole momen
possible to obtain the whole set of Weyl moments needed to define a solution containin
required multipole structure. Thus, for example, one of us2 obtained the relativistic vacuum solu
tion corresponding to an object consisting exclusively of mass and a quadrupole momen
metric will be treated later in our analysis.

B. The Rindler–Perlick method

This method consists in transforming the angular coordinatef by

f5f81vt, ~13!

wherev is a constant. Then the original frame is replaced by a rotating frame. The transfo
metric is written in a canonical form~we have slightly changed the original notation in Ref. 5
avoid confusion with our notation!,

ds252e2F~dt2v i dxi !21hi j dxi dxj , ~14!

with latin indexes running from 1 to 3 andF, v i andhi j depend on the spatial coordinatexi only
~we are omitting primes!. Then, it may be shown that the four accelerationAm and the rotation
three vectorV i of the congruence of world linesxi5constant are given by5

Am5~0,F ,i !, ~15!

V i5 1
2 eF~dethmn!

21/2e i jkvk, j , ~16!

where the comma denotes a partial derivative. It is clear from the above that ifF ,i50, then
particles at rest in the rotating frame follow a circular geodesic. On the other hand, sinV i

describes the rate of rotation with respect to the proper time at any point at rest in the ro
frame, relative to the compass of inertia, then2V i describes the rotation of the compass of iner
~the gyroscope! with respect to the rotating frame. Applying~13! to the original frame of~1!
written in Weyl’s spherical coordinates, i.e.,

ds252 f dt21 f 21@e2G~dr21r 9du2!1r 2sin2 u df2#, ~17!

we cast~17! into the canonical form~14! where
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e2F5 f 2v2f 21r 2sin2 u, ~18!

v i5e22F~0,0,v f 21r 2sin2 u!, ~19!

hrr 5 f 21e2G, ~20!

huu5r 2f 21e2G, ~21!

hff5e22Fr 2sin2 u, ~22!

with f [e2C. If we take into account the condition for circular geodesics, it results in

v25
f 2~ f ,r1 f ,u!

2r f sinu~sinu1r cosu!2r 2 sin2 u~ f ,r1 f ,u!
. ~23!

If we consider circular geodesics in the equatorial plane, then the parameterv turns out to be

v5
f ,r

1/2f

~2r f 2r 2f ,r !
1/2. ~24!

C. Rate of precession

The expression for the rate of precessionV[(V iV jhi j )
1/2 results in

V5
f 1/2e2Gv@~ f ,u sinu2 f cosu!21sin2 u~r f ,r2 f !2#1/2

f 22v2r 2 sin2 u
. ~25!

Taking into account only circular geodesics in the equatorial plane, then we get from~24! and
~25!,

V5
1

2 S f ,r

f D 1/2e2G

r 1/2 ~2 f 2r f ,r !
1/2. ~26!

According to the meaning ofV given above, it is clear that the orientation of the gyrosco
moving around the axis of symmetry, after one revolution, changes by

Df852V Dt, ~27!

whereDt is the proper time interval corresponding to one period. Then from the canonical
of the metric~14!,

Df8522p
VeF

v
, ~28!

as measured in the rotating frame. In the original system we have

Df52pS 12
VeF

v D . ~29!

This quantityDf, calculated over one revolution around a circular orbit for the Weyl metr
results in

Df52pS 12
e2Gv@~ f ,u sinu2 f cosu!21sin2 u~r f ,r2 f !2#1/2

@ f 22v2r 2 sin2 u#1/2 D . ~30!
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And considering a circular geodesic in the equatorial plane we have

Df52pS 12
&

2
e2G f 21@~ f 2r f ,r !~2 f 2r f ,r !#

1/2D . ~31!

In terms of the metric functionC we have

V5
1

r 1/2e2GeCC ,r
1/2~12rC ,r !

1/2, ~32!

Df52p„12e2G~12rC ,r !
1/2~122rC ,r !

1/2
…. ~33!

Since the metric functionsC andG are known for any Weyl solution, we can obtain both t
rate of precessionV andDf, using~4! and~5!, in terms of the Weyl moments of the solution. U
to orderO(r 25) we have the following result:

V511
5

2
a0

1

r
1

19

8
a0

2 1

r 2 1S 107

48
a0

32
11

4
a2D 1

r 3 1S 457

384
a0

42
31

8
a2a02

1

4
a1

2D 1

r 4 1O~r 25!, ~34!

Df52pF2
3

2
a0

1

r
2

3

8
a0

2 1

r 2 2S 15

16
a0

32
9

4
a2D 1

r 3 2S 3

8
a0a21

29

128
a0

4D 1

r 4 1O~r 25!G . ~35!

Now, making use of the fact that the Weyl moments are some combination of the mul
moments~12! we can obtain the above quantities in term of the relativistic massive momentMn

as follows:

V512
5

2
M0

1

r
1

19

8
M0

2 1

r 2 1S 11

4
M22

151

48
M0

3D 1

r 3

2S 3

128
M0

41
31

8
M2M01

1

4
M1

2D 1

r 4 1O~r 25!, ~36!

Df52pF3

2
M0

1

r
2

3

8
M0

2 1

r 2 2S 9

4
M22

3

16
M0

3D 1

r 3 1S 3

8
M0M21

45

128
M0

4D 1

r 4G . ~37!

In the next section we shall specialize Eqs.~36! and ~37! to some specific solutions.

III. SOME EXAMPLES OF WEYL SOLUTIONS

A. Curzon metric

This solution of the Weyl’s family14 corresponds to a functionC with only the first Weyl
moment. Taking all the coefficientsan equal to zero, excepta0 , then we have theDf in terms of
the unique parameter of this metric,

Df52pF2
3

2
a0

1

r
2

3

8
a0

2 1

r 2 2
15

16
a0

3 1

r 3 2S 3

8
a0a21

29

128
a0

4D 1

r 4G . ~38!

This expression is exactly the expansion in power series of the inverse radial coordinate
quantityDf, for this solution, with metric functionsC5 a0 /r andG52 a0

2/2r 2,

Df52pF12
1

r
ea0

2/2r 2A~r 1a0!~r 12a0!G . ~39!
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B. Erez–Rosen solution

In prolate spheroidal coordinates, this metric is given by the metric functionC of the form

C52q0Q0~x!P0~y!1q2Q2~x!P2~y!, ~40!

with q051. The first term corresponds to the Schwarzschild metric, and so, this metric pos
two parameters which represent the mass and the quadrupole moment. The relation betwee
moments and the coefficientsqn of the functionC is known,15 and therefore it is possible to us
expression~35! to obtain an expansion ofDf. Another way to proceed is to use the express
~37! with the relativistic multipole moments involved, knowing that the mass and quadru
moment of this metric are, respectively,

M05s, ~41!

M25 2
15 s3q2 , ~42!

wheres is the Schwarzschild’s mass. The result is the following:

Df52pF2
3

2
l1

3

8
l21S 3

10
q22

3

16Dl32S 1

20
q21

45

128Dl41S 51

560
q22

69

256Dl51O~l6!G ,
~43!

wherel[ s/r .
Df for a circular geodesic orbit in the equatorial plane expressed in prolate spheroidal

dinates results in

Df52pF12e2GS Dx~C!2x

2Dx~C!2xD 1/2S 114
Dx~C!

x2 ~Dx~C!2x! D 1/2G , ~44!

with Dx(C)[(x221)C ,x .
So, using~40! and the corresponding functionG, it turns out to be

Df52pS 12e2G
&

4x
A1/2~A22x!1/2D , ~45!

where

A[423q2x3 ln S x21

x11D26q2x222x13q2x ln S x21

x11D14q2 . ~46!

If we takeq250 then the Schwarzschild expression is obtained forDf, i.e.,

Df52pF12Ax22

x11G , ~47!

or using the radial Schwarzschild coordinater̂ 5s(x11)5s1Ar 21s2, it takes the well known
form

Df52pF12A12
3s

r̂ G . ~48!
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The expression~45! can be written in Weyl coordinates as a power series in radial coo
nates. Doing so one obtains the same result that putting the multipole moments~42! into the
general expression~37! for Df.

Another useful expression, for the discussion below, results if one expands~45! in a power
series of the parameterq2 . The order zero of the expansion corresponds to the Schwarzschild

Df52p@12A~A11l22l!~A11l222l!#, ~49!

and the orderq2 gives the next contribution toDf, which reads as

1

8

1

A~x221!~12x!~22x!

3F lnS x21

x11D ~9x4118x3136x245x2!164284x1 lnS x221

x2 D ~24x28x2216!G . ~50!

C. Monopole–quadrupole solution

This is an exact solution of the static and axysymmetric Einstein vacuum equations whi
written as a series in a parameterq representing the dimensionless quadrupolar moment of
solution. The first term in the expansion~order zero in the parameterq! corresponds to Schwar
zschild, whereas the whole series describes a solution which only posseses a mass and qu
moment.2 The expression for the metric functionC is the following:

C5 (
a50

`

qaCqa, ~51!

Cqa52 (
k50

a21

bk~a!F Pk
1

~x1y!k11 1~21!k
Pk

2

~x2y!k11G2 (
k50

a

qk~a!Q2k~x!P2k~y!, ~52!

where thebk(a) andqk(a) are well defined coeffcients,2 andP6 are Legendre polynomials with
argumentsPn((xy61)/(x6y)).

Considering the first two terms in the expansion, one obtains a new exact solution wit
parameters representing the mass and quadrupole moment. The extent to which this me
scribes the field of a compact body very close to a spherical mass is discussed in Ref. 2. H
want to calculateDf corresponding to this metric and to compare the result with that obtaine
the Erez–Rosen metric.

The parameterq gives directly the value of the quadrupole moment and, therefore, we o
Df from ~37! with the valuesM05s and M25qs3. The expression forDf in prolate coordi-
nates results to be

Df52pS 12e2G
&

24x5 B1/2~B212x5!1/2D , ~53!

where

B[Ax412x2~10x225x3215q!, ~54!

andq25(15/2)q.
Expanding in the power series ofq, in order to compare with Erez–Rosen, we obtain ag

for the order zero of the expansion the Schwarzschild term, and the orderq gives the next
contribution to theDf, which is
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5

32

1

A~x22!~x11!x2~x21!

3F lnS x21

x11D ~78x519x61192x32279x4!118x51156x41436x22552x311042168xG .
~55!

D. g-metric or Zipoy–Vorhees metric

This metric deserves special attention, since the singular structure of its ‘‘Newtonian’’ p
tial C is the same as that of the Schwarzschild solution~a line segment!. The metric functions
defining this solution of Weyl’s family are the following:16–18

C5
g

2
lnS x21

x11D , ~56!

G5
g2

2
lnS x221

x22y2D . ~57!

As it is known the valueg51 yields the Schwarzschild solution. The two first massive multip
moments of this metric, mass and quadrupole moment are

M05gs, ~58!

M25g~12g2!
s3

3
. ~59!

From ~59! it follows thatg.1 (g,1) correspond to oblate~prolate! sources. Putting these value
into expression~37!, we obtain

Df52pF3

2
gl2

3

8
g2l22

3

4
gS 12

5

4
g2Dl31

1

8
g2S 11

29

16
g2Dl4G . ~60!

Equivalently, this last result forDf can be obtained by expanding in power series ofl the
expression derived from~44! using ~57!, which is

Df52pS 12xg221A~x2g!~x22g!

~x221!g2 D , ~61!

or in terms ofl,

Df52p@12~A11l2!g221A~A11l22gl!~A11l222gl!#; ~62!

this expression can be compared with the more familiar one written in terms of the Schwarz
radial coordinater̂ ,

Df52pF12~12L!g221A~12L2gL!~12L22gL!

~122L!g2 G , ~63!

whereL[ s/ r̂ .
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E. Two stationary examples

An approximate solution of stationary Einstein vacuum field equations was obtained in
19 by means of an expansion of the Ernst potential in power series of the parameJ
[ i (J/M2), whereJ is the total angular momentum andM is the mass. This metric with two
parameters was constructed in order to obtain a solution which possesses, up to the con
order inJ, mass and angular momentum in its multipolar structure.

Let us now calculateDf for this metric and contrast the result with the expression obtai
from the Kerr metric. The metric functions of the former~hereafter referred to as MJ! are

f 5
x21

x11
1

2x j2

~x11!2 F43x2215x4212

16x3 2
15

32

~x421!

x2 lnS x21

x11D G , ~64!

W522
y

x~x11!2 j , ~65!

whereE[ f 1 iW is the Ernst potential andj [ J/M2. The other metric functions, in the equatori
plane, are

vf52sF S 1

x11D1 lnS x21

x D j G1O~ j 3!, ~66!

G5
1

2
lnS x221

x2 D1O~ j 2!. ~67!

As can be seen from above, the first correction to Schwarzschild appears at orderj in W, and
so, since we want to compare with Kerr, we will calculateDf up to orderj .

Since in both Kerr and MJ, the original lattice rotates with respect to a compass of in
then a gyroscope fixed at radiusR in the original lattice precesses with respect to neighbor
points, in each case, at a rate given by

VKerr5
as

R3S 12
2s

R D , ~68!

VMJ5
j

sx~x21!~x11!2 , ~69!

beingR the Boyer–Lindquist radial coordinate. Then, within the proper timeDt5A2g00Dt the
original lattice changes its orientation with respect to neighboring points by

D̂fKerr52
as

R3SA12
2s

R
D Dt, ~70!

D̂fMJ52
j

sx~x21!1/2~x11!3/2Dt. ~71!

Considering now a gyroscope orbiting in a circular geodesic, then from the conditionF ,R

50 we obtain for the angular velocity,
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vKerr5S a1AR3

s D 21

, ~72!

vMJ5
1

s~x11!3/21 j
1

x~x11!3 F2112x ln S x

x21D G . ~73!

Making use of the Rindler–Perlick method one can easily obtain the total precessio
revolutionDf, with respect to the original lattice, of a gyroscope carried along a circular geo
in the equatorial plane. For MJ the result is

Df52pF12Ax22

x11
1

1

x~x11!~x22!1/2 j G , ~74!

whereas for Kerr, we recover the well known expression

Df52pF12A12
3s

R
12aA s

R3G . ~75!

As we are calculatingDf for the MJ solution up to orderj we will handle the last expressio
up to ordera ~which is equivalent to consider small values ofa/R!, and so we obtain the Schif
precession term,

Df52pF12A12
3s

R
2

a

R
As

RS 12
3s

R D 21/2G , ~76!

and the expression~74! for MJ turns out to be in Boyer–Lindquist coordinates,

Df52pF 12A12
3s

R
1

s

R

a

R
As

R

1

S 12
s

RD S 12
3s

R D 1/2G ~77!

~where the definition ofj and the fact thata is the the angular momentum per mass unit, ha
been used!. As can be seen from expressions~76! and ~77! the contribution tonf from the
angular momentum for MJ is less than the Schiff precession term for Kerr, sinces/R is eventually
small.

If that is so, we can expand both expressions in power series ofs/R and keeping only the
orderO(s/R)3/2, to obtain

Df'
3ps

R
22p

a

R
As

R
23p

as

R2As

R
, ~78!

for the Kerr metric. And for MJ,

Df'
3ps

R
12p

as

R2As

R
. ~79!

Observe thatDf as given by~75! and ~74! represents the precession of the gyroscope w
respect to the neighboring points of the original lattice and not with respect to a compass of i
If the precession of the orbiting gyroscope is wanted with respect to a fixed gyroscope, the~75!
and ~74! have to be reduced by the values~71!, ~70!, respectively.

For a coordinate timeDt52p/v, the D̂f of the original lattice itself results from~71! and
~73!, to be
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D̂fKerr522p
a

R
As

RS 11
s

RD , ~80!

D̂fMJ522p
a

R
As

RS 112
s

RD . ~81!

As can be seen, the order of magnitude of these quantities is the same, and so, one o
from ~78! and ~79! that, whether one compares the precession with respect to a fixed point
neighboring points of the original lattice,Df is larger for Kerr than for the MJ solution. As i
follows from ~78! and~79! the ratio of nonspherical contributions toDf, of both metrics, is of the
orders/R. More important is the fact that they have different signs.

IV. CONCLUSIONS

We have established a relationship between the total precession per revolution of a gyr
circumventing the source and the relativistic multipole moments describing the space–time
result allows for ‘‘measuring’’~in principle! the multipole moments~at least the first ones! of a
given source. Indeed, by displaying an array of gyroscopes along the radial coordinate, c
venting the source, we obtain the curveDf5Df(r ), which leads to the values of the coefficien
in ~37! by adjusting parameters.

Second, our results open the possibility to compare different axysymmetric solutions in
of an ‘‘observable’’ quantity (Df), and thereby to decide what space–time is actually ‘‘in plac

Thus, for example, considering a neutron star~N-S! as a nonrotating source of the Erez
Rosen metric, we can use expressions~50! and ~55! to evaluate the first contribution~and domi-
nant, sinceq;1.831024, assuming for the N-S the same eccentricity of the sun! to theDf due
to the quadrupole moment. Typical values for a N-S are a mass like the sun and a radius of4 m.
So, we obtain for the contribution of the quadrupole momentDf;931023q32p for Erez–
Rosen, andDf;2731023q32p for MQ solution, i.e., they are of the same order but differe
sign.

In the case of the earth, the large value ofq (;2331015) renders the expansion in the pow
series ofq useless. Instead of that we may expand in the power series ofl which is now very
small. We obtain in this case that the contribution toDf of the quadrupole moment is;22.5
310212 for both metrics. If we consider a N-S as a nonrotating source of theg-metric, then, with
the values given above and beingg50.9997, theDf is ; p/2. The different behavior of Wey
metrics with respect to theDf, is also applicable to stationary metrics. In the two examp
examined above we see how differently are both contributions from the rotation of the sou

The relevance of the conclusions above becomes intelligible if we recall the absenc
Birkhoff-type theorem for axysymetric solutions to Einstein equations.

Finally we would like to make some additional comments on theg-metric. Because of~59! it
results that

g5
1

A113q
, ~82!

and therefore any possible source for theg-metric should satisfy the constraintq.21/3. Thus, for
example, neither the Earth nor the Sun~considered as nonrotating axysymmetric bodies! could
serve as sources of theg-metric, since the corresponding values ofq are, approximately,23
31015 for the Earth and293105 for the Sun.20
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Kerr and Schwarzschild black-holes in three-dimensional
relativity

Dipak K. Sen
Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3, Canada

~Received 31 May 2000; accepted for publication 25 July 2000!

We consider the Kerr and Schwarzschild black-hole space–times in the framework
of a three-dimensional formulation of relativistic kinematics and field dynamics, in
which local physical observers are represented by non-singular vector fields of
bounded length in a three-dimensional pseudo-Riemannian space. A space–time is
represented by a pair of 3-metric and a fundamental 3-vector field satisfying a set of
basic equations, each solution of which determines uniquely a solution of the
vacuum Einstein field equations. It is shown that the only spherically symmetric
solution of our basic equations leads to the Schwarzschild space–time, thereby
proving a version of Birkoff’s theorem in this formalism. The Schwarzschild hori-
zon and the Kerr stationary limit are both related to the upper bound of the length
of the corresponding physical 3-vector fields. An example of a solution of the
vacuum Einstein field equations shows that nonstationary space–times can also be
formulated in this three-dimensional relativity. ©2000 American Institute of
Physics.@S0022-2488~00!00911-7#

I. INTRODUCTION

In a series of previous papers1–3 we proposed a new formulation of both relativistic kinem
ics and field dynamics in an entirely three-dimensional space. The basic idea is to represe
physical observers by nonsingular three-dimensional local vector fields and the dynamics of
cal fields byflowsof a vector field which are 1-parameter local groups of local smooth trans
mations of the 3-space. The flow parameter plays the role of local ‘‘time’’ for each phy
observer and the Lie derivative replaces the ‘‘time’’ derivative.

We first give a brief review of the basic concepts and the kinematic part of our formalis
definition of relative velocity function between two observers and a set of inertial observers
naturally to so-calledgeneralizedLorentz matrix functions with certain generalized properties

We introduce next our basic equations for a space–time represented by a pair~g, X! of a
3-metricg and a fundamental 3-vector fieldX on a 3-manifoldM3. We then demonstrate~Theo-
rem 1! that every solution of our basic equations determines uniquely a solution of the va
Einstein field equations.

As the first example, we show that the most general spherically symmetric solution o
basic equations leads essentially to the Schwartzschild space–time, thereby proving Bi
theorem in this formalism.

Theorem 2~converse of Theorem 1! shows that every solution of the vacuum Einstein fie
equations which has a special form in a Gaussian normal coordinate system, can be
according to Theorem 1 from a pair~g, X! satisfying our equations. The Kerr metric~as well as the
Schwartzschild! is such an example. We obtain explicit expressions for the 3-metric and
3-vector field which satisfies our equations and generate the Kerr 4-metric.

The Kerr stationary limit and the Schwartzschild horizon can be interpreted as the limit w
the length of the corresponding fundamental vector field reaches its upper bound.

Finally, we give an example of a 3-metricg ~of indefinitesignature! and a 3-vector fieldX
which generates a Kasner-type~nonstatic! solution of the vacuum Einstein field equations.

The present formalism is not equivalent to the well-known (311) ADM theory. Here the
75560022-2488/2000/41(11)/7556/17/$17.00 © 2000 American Institute of Physics
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3-manifold (M3,g) is, in general, not a spacelike submanifold of a four-dimensional Lore
manifold satisfying the Einstein field equations, as our last example shows.

II. THE THREE-DIMENSIONAL FORMALISM AND GENERALIZED LORENTZ MATRICES

Let (M3,g) be a three-dimensional spaceM3 with a pseudo-Riemannian metricg. By an
observer~or a particle path! we usually mean a regular smooth curve inM3. Since to every such
curve c one can associate alocal vector fieldC such thatc is an integral curve ofC,4 we shall
regard the set of allnonsingular vector fieldson M3 as the set of allobserver fieldsor in short, just
observersin M3. By a physicalobserver we shall mean a nonsingular vector fieldX such that

0,g~X,X!,1. ~1!

The relative velocitybetween a pair of physical observersX, Y is assumed to be given by

V~X,Y!5F12
1

@F~X,Y!#2G1/2

F~X,Y!5
12g~X,Y!

@12g~X,Y!#1/2@12g~Y,Y!#1/2.

~2!

Note thatV(X,Y) is a function onM3. Two observersX, Y are said to beinertially equivalent if
V(X,Y) is a constant function onM3.

Let c:I→M3,l°c(l) be a particle path andC any representative corresponding vector fie
associated with it such thatc is an integral curve ofC. For a physical particle path 0,g(C,C)
,1 on c(I ).

Definition: The time interval of c relative to an observer X, denoted byDtX , is given by the
following integral overI:

DtX5E
I
F~X,C!dl. ~3!

Consider now twoinertially equivalentobserversX andY, such thatV(X,Y)5v5const. Then
F(X,Y)5(12v2)21/2[g. Let c be an integral curve ofX, i.e., X5C. Then from~2!, F(X,C)
5F(C,C)51 andV(C,C)50, so thatDtX5* Idl[Dl.

Relative to the observerY, however, the time interval ofc is given by

DtY5E
I
F~Y,C!dl5E

I
F~Y,X!dl5E

I
gdl5gDl ~4!

so thatDtY5gDtX , which is the Lorentz time-dilation formula.
We now consider the problem of constructing a class of inertial observers starting fr

representative physical observer; in other words, given a physical observeru, the problem of
constructing an observerw such thatu andw are inertially equivalent. In some local coordina
system (xi), since u is a physical observer, we haveg(u,u)5gikuiuk5uiu

i,1, where ui

5gikuk.
Let

gu5@12g~u,u!#21/2, Au5~gu21!/g~u,u! ~5!

and let us define the 434 matrix functionsL̃l
m(u), m,l50,1,2,3 as follows~In what follows the

Latin indicesi , j ,k,51,2,3 and the Greek indicesa,b,g,50,1,2,3.):

L̃0
0~u!5gu , L̃k

0~u!5guuk L̃0
k~u!5guuk, L̃ j

k~u!5d j
k1Auukuj . ~6!
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Note that in~6! uj differ from uk by the lowering of indices bygjk and also thatL̃l
m arefunctions

on M. These ‘‘generalized Lorentz matrices’’L̃l
m(u) are easily seen to satisfy the followin

‘‘generalized’’ properties

gikL̃0
i L̃0

k5~ L̃0
0!21, gmnL̃0

mL̃i
n5L̃0

0L̃ i
0, gmnL̃i

mL̃ j
n5L̃ i

0L̃ j
01gi j , ~7!

and when (M3,g)5(R3,d), that is, when (M3,g) is the Euclidean spaceR3 with the Euclidean
metric gik5d ik , L̃l

m(u) reduces to the usual Lorentz matrixLl
m(u) with the pure boost given by

u5(u1,u2,u3).
Let v be another vector field whereg(v,v),1. We now define a vector fieldw by

wi5
L̃0

i ~u!1L̃k
i ~u!vk

L̃0
0~u!1L̃k

0~u!vk
. ~8!

Then it follows thatg(w,w),1, so thatw represents also a physical observer.
Using the ‘‘generalized’’ properties~7! one now shows that the relative velocity functio

V(u,w) as given by~2! satisfies@V(u,w)#25g(v,v).

III. THREE-DIMENSIONAL FIELD EQUATIONS AND RELATIONSHIP WITH EINSTEIN
EQUATIONS

In classical field theory the dynamics of a field is usually described by a set of evol
equations~together possibly with some constraint equations! in some space–time manifold. W
shall now demonstrate that in many cases the dynamics can also be described in a purel
dimensional setting without the necessity of introducing explicitly a time-coordinate. Inste
the time coordinate and time-dependent quantities, the temporal evolution is provided b
‘‘flow’’ of a three-dimensional vector field representing a fundamental observer.

The starting point of our dynamical theory would be a set of differential equations f
3-metricg and a fundamental 3-vector fieldX on aM3. Let X5Xi(x)]/]xi be a vector field onM3

~in some local coordinate system (xi)), andh5LXg, the Lie-derivative ofg with respect toX. So
that

h5hikdxi
^ dxk, where hik5~LXg! ik .

Let

f ,i , f ; i[Partial and Covariant derivative off , respectively;

Rik[Ricci-tensor of the 3-metricgik ;

R[Ricci-scalar of the 3-metricgik .

Then our basic equations are

hi ; l
l 2~glkhlk! ,i50, ~9!

2 1
2R1 1

8~glmhlm!~gikhik!2 1
8~gil hik!~gkmhlm!50, ~10!

Rik2 1
2~LXh! ik2 1

4~glmhlm!hik1 1
2~glmhil !hkm50. ~11!

We regard Eqs.~9!–~11! as a set of differential equations for both the 3-metric g and t
three-dimensional vector field X on M3. Every solution~g, X! of ~9!–~11! determines uniquely a
solution of the vacuum Einstein field equations as follows.
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The integral curves ofX determines a flowwt , which are local 1-parameter group of loc
diffeomorphisms5 of M3. Thus, for each value of the flow parametert,wt defines a point trans
formation, x° x̃5wt(x) with w0(x)5x. The flow transformed metricg̃5w̃t(g) is given by
g̃ik(t,x̃)5(]xl /] x̃i)(]xm/] x̃k)glm(x), and is thust-dependent.

Theorem 1: Let (gik ;Xi) be a solution of (9)–(11) and g̃ik(t,x̃) the t-dependent metric
transformed by the flowwt of X. Then the four-dimensional metric,

ds252dt21g̃ik~t,x̃!dx̃idx̃k ~12!

is a solution of the vacuum Einstein equations in a Gaussian normal coordinate system( x̃0

5t,x̃i).
Proof: Let

K[any tensor field;

w̃t~K ![the flow transformed tensor fieldK;

LXK[the Lie-derivative ofK with respect toX.

Then one has5

w̃t~LXK !5
]

]t
~w̃t~K !!. ~13!

Therefore, by applyingw̃t to Eqs.~9!–~11! one can replace the Lie-derivatives ofgik in ~9!–~11!
by the derivatives ofg̃ik(t,x̃i) with respect tot, and obtain

~ g̃klg̃ik,0! ; l2~ g̃lkg̃lk,0! ,i50, ~14!

2 1
2R̃1 1

8g̃
lmg̃lm,0g̃

ikg̃ik,02
1
8g̃

i l g̃kmg̃ik,0g̃lm,050, ~15!

R̃ik2 1
2g̃ik,002

1
4g̃

lmg̃lm,0g̃ik,01
1
2g̃

lmg̃il ,0g̃km,050. ~16!

@Here, R̃ik ,R̃ and the covariant derivatives are all relative to the 3-metricg̃ik(t,x̃i), and
g̃ik,0 ,g̃ik,00, the first and second partial derivatives ofg̃ik with respect tot.# These are precisely th
vacuum Einstein field equations for the metric~12! in the Gaussian normal coordinate syste
( x̃05t,x̃i).6 Q.E.D.

Note that the signature of the 4-metric~12! would depend on the signature of the 3-metricg̃ik .
Thust may or may not be the physical time coordinate.

If in ~9!–~11! X50 or if X is a Killing vector field of g then h5LXg50. So that~9! is
identically satisfied, and~11! implies thatRik50, which in turn implies thatRi jkl 50 ~sinceM3 is
three-dimensional!, that is,M3 is flat with metricg5d. So (X50, g5d) and ~X Killing, g5d)
are both solutions of~9!–~11!. These aretrivial flat-space solutions.

IV. SPHERICALLY SYMMETRIC SOLUTIONS

As the first example of a nontrivial flat 3-space solution of~9!–~11! consider a genera
spherically symmetric 3-metricg and a spherically symmetric vector fieldX in coordinates (x1

5r, x25u, x35f),

g5gikdxidxk5 f ~r!2dr21r2~du21sin2 udf2!

X5Xi
]

]xi 5a~r!
]

]r
.

~17!
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Substituting~17! in ~9!–~11! we obtain the following ordinary differential equations for th
unknown functionsf (r) and a(r). ~These were obtained using a computer program written
MAPLE for ~9!–~11!; see Appendix A!,

4
S d

dr
f ~r! Da~r!

f ~r!r
50, ~18!

4

2S d

dr
f ~r! D r1~ f ~r!!32 f ~r!12rS d

dr
f ~r! D ~a~r!!2~ f ~r!!2

r2~ f ~r!!3

14

2r~ f ~r!!3S d

dr
a~r! Da~r!1~a~r!!2~ f ~r!!3

r2~ f ~r!!3 50, ~19!

2

2
d

dr
f ~r!1~ f ~r!!2S d2

dr2 f ~r! D ~a~r!!2r13S d

dr
f ~r! Da~r!~ f ~r!!2S d

dr
a~r! D r

f ~r!r

2

a~r!~ f ~r!!3S d2

dr2 a~r! D r1~ f ~r!!3S d

dr
a~r! D 2

r

f ~r!r

2

2S d

dr
f ~r! D ~a~r!!2~ f ~r!!212~ f ~r!!3S d

dr
a~r! Da~r!

f ~r!r
50, ~20!

2

S d

dr
f ~r! D r1~ f ~r!!32 f ~r!1~a~r!!2~ f ~r!!3

~ f ~r!!3

2

2r~ f ~r!!3S d

dr
a~r! Da~r!1rS d

dr
f ~r! D ~a~r!!2~ f ~r!!2

~ f ~r!!3 50, ~21!

@Eq. ~21!# ~sin~u!!2. ~22!

Equation~18! implies that, for nontriviala(r), f (r)5const. ~which we set equal to one!.
Equation~19! then becomes

2S d

dr
a~r! D a~r!

r
1

a~r!2

r2 50 ~23!

whose solution isa(r)5k/r1/2, k5const. The remaining equations~20!–~22! are then identically
satisfied.

Thus the flat 3-metric,

g5dr21r2~du21sin2 udf2!

and the vector fieldX5kr2~1/2!
]

]r

~24!

is the only solution of Eqs.~18!–~22!.
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V. THE SCHWARZSCHILD SOLUTION

We now wish to derive the space–time 4-metric which corresponds to our solution~24!,
according to Theorem 1, by transforming the 3-metricg by the flow of the vector fieldX. In order
to calculate the flow ofX it is convenient to transformX first to a simpler form by a simple chang

of coordinates. For example, the transformation (r,u,f)°(R,u,f), wherer5( 3
2kR)2/3 trans-

forms the metric as well as the vector field in~24!, into

g5k2~ 3
2kR!2~2/3!dR21~ 3

2kR!4/3~du21sin2 udf2!

X5
]

]R
.

~25!

It is clear from the invariant form of Eqs.~9!–~11!, that a change of coordinates provid
another solution of the metric and the vector field. It can also be checked directly that~25! is
indeed a solution of~9!–~11!. And, of course, the metric in~25! is still flat.

The flow wt of X is given by:wt :R°R̃5R1t, u° ũ5u, f°f̃5f. Therefore, according
to Theorem 1,~25! corresponds to thespace–time 4-metric@in Gaussian normal coordinate

(t,R̃,ũ,f̃)#,

ds252dt21k2@ 3
2k~R̃2t!#2~2/3!dR̃21@ 3

2k~R̃2t!#4/3~dũ21sin2 ũdf̃2!. ~26!

That ~26! is a solution of the vacuum Einstein field equations can also be checked directly. I
~26! is theSchwarzschildsolution in so calledLemaitre coordinates,7,8 if we takek5(2m)1/2.

This can be seen by considering the following transformation:

~t,R̃,ũ,f̃ !°~ t,r ,u,f!,

where

t52S r

2mD 1/2

12m logUAr 2A2m

Ar 1A2m
U2t5t~r ,t !

R̃5 2
3r

3/2~2m!2~1/2!1t5R̃~r ,t !

ũ5u, f̃5f

~27!

with the inversetransformation,

~ t,r ,u,f!°~t,R̃,ũ,f̃ !,

where

r 5~2m!1/3@ 3
2~R̃2t!#2/35r ~R̃,t!,

t52S r

2mD 1/2

12m logUAr 2A2m

Ar 1A2m
U2t5t~R̃,t!

u5 ũ, f5f̃.

~28!

~27! or ~28! transforms~26! into the Schwarzschild metric,
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ds252S 12
2m

r Ddt21S 12
2m

r D 21

dr21r 2~du21sin2 udf2!. ~29!

Incidentally, we have thus proved a version of Birkoff’s Theorem in our formalism, nam
that the only spherically symmetric solution of~9!–~11! leads to the Schwarzschild space–time.

One might think that if~X, g! is a solution of~9!–~11! then adding a Killing vector field ofg
to X would again give us another solution. In fact, one has the following proposition.

Proposition 1:Let ~X, g! be a solution and X0 a Killing vector field of g. Then(X1X0 ,g) is
also a solution provided@X,X0#50.

Proof: Let X̃5X1X0 . Then LX̃g5LXg and LX̃(LX̃g)5LX(LXg)1LX0
(LXg). Now

@LX0
,LX#5L@X0 ,X# . Hence@X0 ,X#50 implies thatLX0

(LXg)5LX(LX0
g)50, and therefore, we

have alsoLX̃(LX̃g)5LX(LXg). Q.E.D.
However, this does not generate a new space–time 4-metric in view of the following C

lary.
Proposition 2: ~X, g! and (X1X0 ,g), where @X,X0#50, generate equivalent space–time

4-metrics.
Proof: SinceX commutes withX0 , the flow ofX1X0 is a composition~as maps! of the flow

of X and the flow ofX0 . SinceX0 is Killing, the flow of X0 has no effect on the metricg.
Therefore, the effect of the flow ofX1X0 on g is the same as that ofX. Q.E.D.

For example, consider the solution~24! together with the two Killing vectorsX0 andX1 of the
3-metric,

g: ds25dr21r2~du21sin2 udf2!,

X5~2m/r!1/2
]

]r
,

X05sinf
]

]u
1cotu cosf

]

]f
,

X15sinu cosf
]

]r
1~cosu cosf/r!

]

]u
2~cosecu sinf/r!

]

]f
.

Here the Killing vector fieldX0 corresponds to rotational isometry whereasX1 corresponds to
translational isometry.@X,X0#50, but @X,X1#Þ0. (X1X0 ,g) is again a solution, but (X
1X1 ,g) is not. The 4-metrics corresponding to~X, g! and (X1X0 ,g) are equivalent.

Our definition of aphysical observerwas that of a vector fieldX on (M3,g) such that 0
,g(X,X),1. Note that the vector fieldX5@2m/r#1/2(]/]r) in ~24! therefore ceases to bephysi-
cal when r<2m or whenR< 4

3m, even thoughX has amathematicalsingularity only atr50.
r52m is of course the Schwarzschild horizon corresponding tor 52m in Schwarzschild coordi-
nates (t,r ,u,f).

VI. FROM SPACE–TIME 4-METRIC TO 3-METRIC AND 3-VECTOR FIELD

There exists aconverse to Theorem 1.
Theorem 2: Suppose a space–time 4-metric solution of the vacuum Einstein field equatio

has the form

ds252dt21g̃ik~t,x̃i !dx̃idx̃k

in the Gaussian normal coordinates(t,x̃i), where g̃ik(t,x̃i) is the transformedt-dependent metric
by the flowwt of some 3-vector field X acting on a 3-metric gik(xi). Then(gik ,X) is a solution of
Eqs. (9)–(11).
                                                                                                                



ns

tric
qua-
ld
Kerr

to
nents

7563J. Math. Phys., Vol. 41, No. 11, November 2000 Kerr and Schwarzschild black-holes

                    
Proof: By assumptiong̃5w̃t(g) satisfies Eqs.~14!–~16!. Again from ~13! one has

w̃t~LXK !ut505
]

]t
~w̃t~K !!ut50 .

Sincew̃05Identity, ~14!–~16! implies ~9!–~11!. Q.E.D
Corollary: In particular, if a space–time 4-metric solution of the vacuum Einstein equatio

has the form,

ds252dt21g̃ik~ x̃12t,x̃2,x̃3!dx̃idx̃k ~30!

in the Gaussian normal coordinates(t,x̃i), then@gik5g̃ik(x1,x2,x3),X51(]/]x1)# is a solution
of ~9!–~11!.

This is because the flow ofX51]/]x1 is simply wt :x1° x̃15x11t,x2° x̃25x2,x3° x̃3

5x3.
As an example of Theorem 2 we shall now illustrate how to obtain the equivalent 3-meg

and 3-vector fieldX from a space–time 4-metric which satisfies the vacuum Einstein field e
tions and which has the specific form given by~30!. The first example will be the Schwarzschi
black-hole metric and the procedure below will be helpful when we consider next the
black-hole in our three-dimensional formalism.

Consider the Schwarzschild metricgx in coordinatesx5@x1,x2,x3,x4#,

gx5S x12

x1222mx1
0 0 0

0 x12 0 0

0 0 x12 sin2 x2 0

0 0 0 211
2m

x1

D ~31!

and, in anticipation of~28!, make a coordinate transformation of the form

@x1,x2,x3,x4#°@y1,y2,y3,y4#,

x15F~y12y4!, x25y2, x35y3, x45H~F~y12y4!!2y4, ~32!

where the functionsF and H would be determined by imposing suitable conditions in order
bring the metric into the appropriate form. Then the transformed 4-metric compo
gyab (a,b51,2,3,4) are~see Appendix B!

gy1152~D~F !~y12y4!!2@2~F~y12y4!!21~D~H !~F~y12y4!!!2~F~y12y4!!2

24~D~H !~F~y12y4!!!2mF~y12y4!14~D~H !~F~y12y4!!!2m2#/

F~y12y4!~F~y12y4!22m!, ~33!

gy1250, ~34!

gy1350, ~35!

gy225F~y12y4!2, ~36!

gy2350, ~37!

gy335~F~y12y4!!2~sin~y2!!2, ~38!
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gy145D~F !~y12y4!@2D~F !~y12y4!~F~y12y4!!21~D~H !~F~y12y4!!!2D~F !~y12y4!

3~F~y12y4!!224~D~H !~F~y12y4!!!2D~F !~y12y4!mF~y12y4!14~D~H !

3~F~y12y4!!!2D~F !~y12y4!m21D~H !~F~y12y4!!~F~y12y4!!224D~H !

3~F~y12y4!!mF~y12y4!14D~H !~F~y12y4!!m2#/F~y12y4!~F~y12y4!22m!,

~39!

gy2450, ~40!

gy3450, ~41!

gy4452@2~D~F !~y12y4!!2~F~y12y4!!21~D~H !~F~y12y4!!!2~D~F !~y12y4!!2~F~y1

2y4!!224~D~H !~F~y12y4!!!2~D~F !~y12y4!!2mF~y12y4!14~D~H !~F~y1

2y4!!!2~D~F !~y12y4!!2m212D~H !~F~y12y4!!D~F !~y12y4!~F~y12y4!!2

28D~H !~F~y12y4!!D~F !~y12y4!mF~y12y4!18D~H !~F~y12y4!!D~F !~y1

2y4!m21~F~y12y4!!224mF~y12y4!14m2#/F~y12y4!~F~y12y4!22m!, ~42!

whereD is the derivative operator.
To reduce it to the appropriate Gaussian normal form we need to impose the condition

gy1450, ~43!

gy44521. ~44!

One can solve~43!–~44! for the derivativesD(F),D(H) in terms ofF(y12y4) to obtain

D~F !~y12y4!5&A m

F~y12y4!
, ~45!

D~H !~F~y12y4!!5&A m

F~y12y4! S 122
m

F~y12y4! D
21

. ~46!

Substituting~45!–~46! back into~33!–~42! we obtain the desired Gaussian normal form for t
Schwarzschild metric@providedF andH satisfy ~45!–~46!#,

gy145gy245gy3450, gy44521

gy1152
m

F~y12y4!

gy125gy135gy2350

gy225~F~y12y4!!2

gy335~F~y12y4!!2~sin~y2!!2.

~47!

According to the Corollary of Theorem 2 the above 4-metric is generated by the 3-metgz
in coordinatesz5@z1,z2,z3# ~one simply replacesy12y4 by z1,y2 by z2 andy3 by z3),

gz5S 2m/F~z1! 0 0

0 F~z1!2 0

0 0 F~z1!2~sin~z2!!2
D ~48!
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and the 3-vector field,

Xz51
]

]z1
. ~49!

One can now easily solve~45! to find thatF(z1)5((3/2)(2m)1/2z1)2/3 ~apart from a con-
stant!, and thus recover essentially~25!.

However, we do not need to solve~45! explicitly for F(z1) in order to obtain~24!. We simply
make a sort ofinversetransformation of the coordinates@z1,z2,z3# back to the original coordi-
nates. In other words, a transformation

@z1,z2,z3#°@w1,w2,w3#

z15F21~w1!, z25w2, z35w3,
~50!

where z15F21(w1) is the inverse function ofw15F(z1), so thatF(F21(w1))5w1 and
dF21/dw151/(dF/dz1)51/(2m/w1)1/2 from ~45!. Under ~50!, ~48!–~49! is therefore trans-
formed into

gw1152mS dF21

dw1 D 2Y F~F21~w1!!51

gw125gw135gw2350

gw225F~F21~w1!!25w12

gw335F~F21~w1!!2~sin~w2!!25w12~sin~w2!!2,

~51!

Xw5S 1Y S dF21

dw1 D D ]

]w1
5~2m/w1!1/2

]

]w1
, ~52!

which is essentially~24!.

VII. THE KERR SOLUTION

As a second example of Theorem 2 we shall now demonstrate that the axially symm
stationary Kerr solution of the vacuum Einstein equations can also be brought into the appro
Gaussian normal form by a procedure similar to the one outlined in the previous section, an
can also be formulated in terms of a 3-metric and a 3-vector field on a 3-manifold. Consid
Kerr metric in Boyer–Lindquist coordinates@x1,x2,x3,x4#,

gx115
x121a2~cos~x2!!2

x1222mx11a2

gx125gx135gx235gx145gx2450

gx225x121a2~cos~x2!!2

gx335
~~x121a2!22~x1222mx11a2!a2~sin~x2!!2!~sin~x2!!2

x121a2~cos~x2!!2

gx34522
amx1~sin~x2!!2

x121a2~cos~x2!!2

gx4452112
mx1

x121a2~cos~x2!!2

~53!

and make a coordinate transformation of the form,
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@x1,x2,x3,x4#°@y1,y2,y3,y4#

x15F~y12y4,y2!,x25y2,x35K~y12y4,y2!1y3

x45H~F~y12y4,y2!!2y4.

~54!

We choose the unknown functionF, K, H in such a way that the following conditions are satisfi
for the transformed metric components.~The expressions for the transformed metric compone
are too long to reproduce here; see Appendix B.!

gy145gy245gy3450, gy44521. ~55!

These equations can now be solved for the following derivatives ofF, K, H, in terms ofF(y1
2y4) to give

D@1#~F !~y12y4,y2!5
&Am jAm~y12y4,y2!a21~F~y12y4,y2!!3

~F~y12y4,y2!!21a2~cos~y2!!2 , ~56!

D@1#~K !~y12y4,y2!52amF~y12y4,y2!/@~~F~y12y4,y2!!21a2~cos~y2!!2!

3~~F~y12y4,y2!!222mF~y12y4,y2!1a2!#, ~57!

D~H !~F~y12y4,y2!!5
&AmAF~y12y4,y2!a21~F~y12y4,y2!!3

~F~y12y4,y2!!222mF~y12y4,y2!1a2 . ~58!

HereD@1#(F),D@1#(K) are the first partial derivatives ofF, K with respect to the first argumen
y12y4, respectively. Note that there are no conditions on the first partial derivatives ofF, K with
respect to the second argumenty2.

The above conditions~56!–~58! are not only necessary but also sufficient for~55! to hold. In
principle, therefore, one can solve~56! for F(y12y4,y2) and then~57!–~58! to determine
K(y12y4,y2), H(F(y12y4,y2)). Unfortunately,~56! cannot be integratedexplicitly as it in-
volves elliptic integrals.

Let us assume the above conditions~56!–~58!. The components ofgy then have the appro
priate Gaussian normal form given by~30!. They depend on functions of (y12y4,y2) andy2
only. Therefore, according to theCorollary of Theorem 2, gyis generated by the 3-metricgz in
coordinates@z1,z2,z3# @where one replacesy12y4 by z1,y2 by z2 andy3 by z3 in gyik( i ,k
51,2,3) to getgzik# and the 3-vector field,

Xz51
]

]z1
~59!

gzik( i ,k51,2,3) contain onlyF(z1,z2),K(z1,z2) and their first partial derivatives.
To obtain an explicit form of the 3-metric we make an ‘‘inverse’’ transformation of

coordinates@z1,z2,z3# ~analogous to the Schwarzschild case! back to the ‘‘original’’ coordinates
as follows:

@z1,z2,z3#°@w1,w2,w3#
z15F21~w1,w2!, z25w2, z35w32K~F21~w1,w2!,w2!, ~60!

whereF21 is the inverse function ofw15F(z1,z2) with respect to the first variable, that is,
F(F21(w1,w2),w2)5w1.

Under ~60! the vector fieldXz is transformed into

Xw5F1Y ]F21

]w1
~w1,w2!G ]

]w1
1@D@1#~K !~F21~w1,w2!,w2!#

]

]w3
. ~61!
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The transformed componentsgwik containF(F21(w1,w2),w2) and only the following de-
rivatives:

]F21

]w1
~w1,w2!,

]F21

]w2
~w1,w2!,

D@1#~K !~F21~w1,w2!,w2!,D@1#~F !~F21~w1,w2!,w2!,D@2#~F !~F21~w1,w2!,w2!.

These can be expressedexplicitly in terms ofw1,w2 as follows. From~56! and ~57! we have

F~F21~w1,w2!,w2!5w1, ~62!

D@1#~K !~F21~w1,w2!,w2!5
]K

]z1
52

amw1

~w121a2~cos~w2!!2!~w121a222mw1!
, ~63!

]F21

]w1
~w1,w2!51Y ]F

]z1
51/2

~w121a2~cos~w2!!2!&

AmAm1~w121a2!
. ~64!

Now, from ~56!, by integrating once

]w1

]z1
5
&AmAw1~w121a2!

w121a2~cos~w2!!2 ,

we have

z15
1

~2m!1/2E w121a2~cos~w2!!2

Aw1~w121a2!
dw1,

apart from a function ofw2, which we set equal to zero. Therefore,

]z1

]w2
52

2a2 sin~w2!cos~w2!

~2m!1/2 E dw1

Aw1~w121a2!

or

]F21

]w2
~w1,w2!52

2a2 sin~w2!cos~w2!

~2m!1/2 EL~w1!, ~65!

where EL(w1) is a standard elliptic integral. And, again from~56!,

D@1#~F !~F21~w1,w2!,w2!5
]F

]z1
5
&AmAw1~w121a2!

w121a2~cos~w2!!2 . ~66!

To calculateD@2#(F)(F21(w1,w2),w2)5]F/]z2, we differentiate both sides of~62! with re-
spect tow2, to get

05
]w1

]w2
5

]F

]z1

]F21

]w2 ~w1,w2!1
]F

]z2

]z2

]w2

5F&AmAw1~w121a2!

w121a2~cos~w2!!2 GF2
a2 sin~w2!cos~w2!EL~w1!&

Am
G1

]F

]z2
1

so that
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D@2#~F !~F21~w1,w2!,w2!52
a2 sin~w2!cos~w2!EL~w1!Aw1~w121a2!

w121a2~cos~w2!!2 . ~67!

Finally, the explicit expressions for the 3-metric gw and the 3-vector field Xw, which gen
the Kerr solution, are

gw115
w121a2~cos~w2!!2

w121a222mw1
22

mw1~w121a2!~w121a2~cos~w2!!222mw1!

~w121a2~cos~w2!!2!~w121a222mw1!2 , ~68!

gw125gw2350, ~69!

gw13522
a~sin~w2!!2&m3/2w1Aw131a2w1

~w121a2~cos~w2!!2!~w121a222mw1!
, ~70!

gw225w121a2~cos~w2!!2, ~71!

gw335S w121a222mw112
mw1~w121a2!

w121a2~cos~w2!!2D ~sin~w2!!2, ~72!

Xw5F&AmAm131a2w1

w121a2~cos~w2!!2G ]

]w1
1F2

amw1

~w121a2~cos~w2!!2!~w121a222mw1!G ]

]w3
.

~73!

One can now verify~see Appendix A! that the above~g,X! is indeed a solution of Eqs.~9!–~11!.
Note that,~68!–~73! reduce to the Schwarzschild case~51!–~52! whena→0. Whenm→0, we

obtain

gw5S w121a2~cos~w2!!2

w121a2 0 0

0 w121a2~cos~w2!!2 0

0 0 ~w121a2!~sin~w2!!2

D , ~74!

Xw50. ~75!

The above 3-metric~74! is flat, and therefore~74!–~75! is equivalent to the flat space-time.
If aÞ0, the 3-metric~68!–~72! is not flat, in contrast to~51!, the 3-metric in the Schwarzs

child case. Its scalar curvature is given by

Rw5
2a2mw1~3~cos~w2!!221!

w121a2~cos~w2!!2 ~76!

and the 3-vector fieldXw in ~73! has the length

g~X,X!5gw~Xw,Xw!5
2mw1

w121a2~cos~w2!!2 . ~77!

ThusX ceases to be ‘‘physical’’ when g(X,X)51, i.e.,

2mw1

w121a2~cos~w2!!2 51 ~78!

which corresponds to the so-calledstationary limitof the Kerr black-hole.
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VIII. CONCLUSION

The Kerr and Schwarzschild black-hole space–times can thus be formulated in term
3-metric and a 3-vector field acting on a 3-manifold. One may think that only static~or stationary!
space–times can be formulated in this manner. The next example shows that this is not th

The flat 3-metricds25d ikdxidxk and the vector fieldX52l ix
i(]/]xi) is a solution of~9!–

~11!, provided

l11l21l350, l1
21l2

21l3
250, ~79!

which is possible only if, either alll i are zero or some of thel i arecomplex. Let us entertain the
possibility that some of thel i are complex. An obvious solution of~79! is l15p1 iq, l25p
2 iq, l35r with p52(r /2), q5r ()/2), wherer is real number. The flow generated by th
vector fieldX is nowxi° x̃i5e2l itxi ~no summation!. According to Theorem 1 the correspondin
complex4-metric is then

ds252dt21e2l1t~dx̃1!21e2l2t~dx̃2!21e2l3t~dx̃3!2, ~80!

which is related to the so-called~real! Kasner9 solution.
We now make acomplexcoordinate transformation:x̃i° x̄i to obtain areal metric as follows:

x̃15~a1 ib !1/2x̄11~c1 id !1/2x̄2,

x̃25~a2 ib !1/2x̄11~c2 id !1/2x̄2, ~81!

x̃35 i x̄3.

Herea, b, c, dare anyreal numbers subject to the conditionD5Im@(a1ib)1/2(c2 id)1/2#Þ0.
We now have areal 4-metric ḡab containing 5real parametersa, b, c, d, r,

ḡ1152e2r t~a cos~r)t!2b sin~r)t!!

ḡ2252e2r t~c cos~r)t!2d sin~r)t!!

ḡ1252e2r t~A cos~r)t!2B sin~r)t!!

ḡ3352e2r t, ḡ00521,

~82!

whereA5Re@(a1ib)1/2(c1 id)1/2#, B5Im@(a1ib)1/2(c1 id)1/2#.
The signature of~82! is Lorentzian:~2212! or ~2122!; but x̄05t here isnot the physical

time coordinate. A direct computaion of the Riemann tensor shows that the metric isnot a flat
space–time.

A special case of~82! is given bya51, b5c50, d51 with A5B51/&, D521/&,

ḡ1152e2r t cos~r)t!

ḡ22522e2r t sin~r)t!

ḡ125&e2r t~cos~r)t!2sin~r)t!!

ḡ3352e2r t, ḡ00521.

~83!

That this is a solution can also be checked by direct calculation. The metric~83! has three
Killing vector fields]/] x̄i( i 51,2,3). However, since bothḡ11, ḡ22 change sign witht ~as well as
r!, the metric is static for certain value oft and nonstatic for other values.

The metric~82! is generated by
3-metric:ds252a(dx̄1)212c(dx̄2)214Adx̄1dx̄22(dx̄3)2.
Vector field:
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X̄5S ~2qC2pD!x̄12q~c21d2!1/2x̄2

D D ]

] x̄1 1S q~a21b2!1/2x̄11~qC2pD!x̄2

D D ]

] x̄22rx̄3
]

] x̄3 ,

~84!

whereC5Re@(a1ib)1/2(c2 id)1/2#.
Similarly, ~83! is generated by:
3-metric:ds252(dx̄1)212&dx̄1dx̄22(dx̄3)2

Vector field:

X̄5r S 1

2
~)11!x̄11A3

2
x̄2D ]

] x̄12r SA3

2
x̄11

1

2
~)21!x̄2D ]

] x̄22rx̄3
]

] x̄3 .

It should be noted that the above 3-metrics must have indefinitesignaturesif the correspond-
ing 4-metrics are to beLorentzian.

Every solution (M3,g,X) of ~9!–~11! describes in some sense a physical space–time
‘‘perceived’’ by a fundamentalobserverX, living in a three-dimensional space; (M3,g) ‘‘ap-
pears’’ toX as a four-dimensional space–time.

Despite apparent similarity with the well-known (311) ADM theory, the present formalism
is not equivalent to it. Here the 3-manifold (M3,g) is not, in general, a spacelike submanifold
a four-dimensional Lorentz manifold satisfying the Einstein field equations, as the above ex
shows. However, in special cases the present formalism would provide aninvariant ~and global!
formulation of ADM theory.

The topology and geometry of 3-manifolds~as opposed to 4-manifolds! are still not com-
pletely understood. It is possible that complete knowledge of the nature and classificat
singularities of vector fields on 3-manifolds may provide a satisfactory understanding of pa
and fields in this formalism.

APPENDIX A

The following program written in MAPLE~V, Release 4 or 5! computes the left-hand sides o
Eqs.~9!–~11!, given a 3-metricg and 3-vector fieldX. It can thus be used to verify if a given~g,
X! is a solution of~9!–~11! or not.

with (tensor):
# Specify coordinates
coords ª[w1,w2,w3]:
# Specify metric
gªarray(symmetric,sparse,1...3,1...3):

g[1,1] ª(w1 ˆ 2+aˆ 2*cos(w2) ˆ 2)/(w1 ˆ 21aˆ 2−2*mw1)−
2*m*w1* (w1 ˆ 2+aˆ 2) * (w1 ˆ 2+aˆ 2*cos(w2) ˆ 2−2*m*w1)/
((w1 ˆ 2+aˆ 2*cos(w2) ˆ 2) * ((w1 ˆ 2+aˆ 2−2*m*w1) ˆ 2)):
g[1,3] ª−a*sin(w2) ˆ 2* (2 *m)ˆ (3/2) *w1* ((w1 ˆ 3+aˆ 2*w1)) ˆ (1/2)/
((w1 ˆ 2+aˆ 2*cos(w2) ˆ 2) * (w1 ˆ 2+aˆ 2−2*m*w1)):
g[2,2] ªw1ˆ 2+aˆ 2*cos(w2 !ˆ2:
g[3,3] ª(w1 ˆ 2+aˆ 2−2*m*w1+2*m*w1* (w1 ˆ 2+aˆ 2)/
(w1 ˆ 2+aˆ 2*cos(w2) ˆ 2)) * (sin(w2 !!ˆ2:

metric ªcreate([−1,−1],eval(g)):
displayGR(cov –metric,metric);
# Specify Vector field
Xªcreate([1],array([

(2 *m)ˆ (1/2) * (w1 ˆ 3+aˆ 2*w1) ˆ (1/2)/(w1 ˆ 2+aˆ 2*cos(w2) ˆ 2),
0,2 *a*m*w1/((w1 ˆ 2+aˆ 2*cos(w2) ˆ 2) * (w1 ˆ 2+aˆ 2−2*m*w1))]));

# eval (X [compts]);
# Compute its 1st and 2nd Lie derivatives
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hªLie –diff(metric,X,coords): N ªLie –diff(h,X,coords):
# Simplify
# ‘tensor/simp’ ªproc(x) simplify (x, trig) end:
# Compute Curvature, Ricci tensors etc.
tensorsGR(coords,metric,contra –metric,det –met,C1,C2,Rm,Rc,R,G,C):
# Compute the other tensors and scalars
Mªprod(contra –metric,h,[2,2]): S ªcontract(M,[1,2]):
Tªprod(M,M,[1,2],[2,1]): E ªprod(M,h,[1,2]):
Fªcov –diff(M,coords,C2):
Qªcontract(F,[1,3]): P ªcov –diff(S,coords,C2):
# Express eqn as matrices
Aªevalm(Q[compts]−P[compts]):
Bªevalm ~22*R[compts]+(1/2) * (S[compts] ˆ 2−T[compts] !! :
Cªevalm(Rc[compts]−(1/2) *N[compts]

−(1/4) *S[compts] *h[compts]+(1/2) *E[compts]):
# Evaluate A, B, C
A1ªsimplify(A[1]): A2 ªsimplify(A[2]): A3 ªsimplify(A[3]):
B0ªsimplify(B):
C11ªsimplify(C[1,1]): C22 ªsimplify(C[2,2]):
C33ªsimplify(C[3,3]):
C12ªsimplify(C[1,2]): C13 ªsimplify(C[1,3]):
C23ªsimplify(C[2,3]):
A1ªA1; A2 ªA2;A3 ªA3; B0 ªB0;
C11ªC11; C22 ªC22; C33 ªC33; C12 ªC12; C13 ªC13; C23 ªC23;

Here Ai ( i 51,2,3), B0, Cik ( i ,k51,2,3) are the left-hand sides of Eqs.~9!, ~10!, and ~11!,
respectively.

For example, the output of the above program~after about 8–10 min, depending on th
machine! turns out to be

A1ª0

A2ª0

A3ª0

B0ª0

C11ª0

C22ª0

C33ª0

C12ª0

C13ª0

C23ª0

APPENDIX B

The following simple program written in MAPLE was used extensively to calculate
simplify the expressions of the various transformed metrics in both three and four dimen
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Some of the expressions run to several pages.

with (tensor):
# Specify coordinates
coordsx ª[x1,x2,x3,x4]; coordsy ª[y1,y2,y3,y4];
# Specify coordinate transformation
Fª(x,y) →F(x,y): K ª(x,y) →K(x,y): H ªx→H(x):
xtoy ª[x1=F(y1−y4,y2),x2=y2,x3=K(y1−y4,y2)+y3,
x4=H(F(y1−y4,y2))−y4];

# Specify metric in x-coordinates
gªarray(symmetric,1...4,1..4):
f ªx1ˆ2+aˆ2 *cos (x2)ˆ2: G ªx1ˆ2−2 *m*x1+aˆ2:

g[1,1] ªf/G: g[1,2] ª0:g[1,3] ª0:g[1,4] ª0:
g[2,2] ªf:g[2,3] ª0:g[2,4] ª0:
g[3,3] ª((x1ˆ2+aˆ2)ˆ2−G *aˆ2 *sin(x2)ˆ2) *sin(x2)ˆ2/f:
g[3,4] ª−2*a*m*x1 *sin(x2)ˆ2/f: g[4,4] ª−(1−2 *m*x1/f):
gxªcreate([−1,−1],eval(g)):
gx11 ªg[1,1]; gx12 ªg[1,2];
gx13 ªg[1,3]; gx14 ªg[1,4]; gx22 ªg[2,2]; gx23 ªg[2,3];
gx33 ªg[3,3]; gx34 ªg[3,4]; gx44 ªg[4,4];
# Compute Jacobians
jacobian (coordsy, xtoy, yJx, xJy):
op (yJx): op (xJy):
# Compute metric in y-coordinates
gyªtransform(gx,xtoy,yJx,xJy):
gy14 ªsimplify(gy[compts][1,4]); gy24 ªsimplify(gy[compts][2,4]);
gy34 ªsimplify(gy[compts][3,4]); gy44 ªsimplify(gy[compts][4,4]);
gy11 ªsimplify(gy[compts][1,1]); gy12 ªsimplify(gy[compts][1,2]);
gy13 ªsimplify(gy[compts][1,3]); gy22 ªsimplify(gy[compts][2,2]);
gy23 ªsimplify(gy[compts][2,3]); gy33 ªsimplify(gy[compts][3,3]);

1D. K. Sen, J. Math. Phys.31, 1145–1151~1990!.
2D. K. Sen, Class. Quantum Grav.12, 553–577~1995!.
3D. K. Sen, Gravitation & Cosmology4, 226–230~1998!.
4S. Helgason,Differential Geometry and Symmetric Spaces~Academic, New York, 1972!.
5S. Kobyashi and K. Nomizu,Foundations of Differential Geometry~Interscience, New York, 1983!, Vol. 1.
6J. L. Synge,Relativity, The General Theory~North–Holland, Amsterdam, 1966!, p. 38.
7G. Lemaitre, Ann. Soc. Sci. Bruxelles I A.53, 51 ~1933!.
8H. F. Goenner,Einführung in Die Spezielle und Allgemeine Relativita¨tstheorie~Spektrum Akademischer Verlag, Hei
delberg, Berlin, 1996!, pp. 285–286.

9E. Kasner, Am. J. Math.43, 217 ~1921!.
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Symmetries of Bianchi I space–times
Michael Tsamparlis and Pantelis S. Apostolopoulos
Department of Physics, Section of Astrophysics-Astronomy-Mechanics,
University of Athens, Zografos 15783, Athens, Greece

~Received 21 December 1999; accepted for publication 20 June 2000!

All diagonal proper Bianchi I space–times are determined which admit certain
important symmetries. It is shown that for Homothetic motions, Conformal motions
and Kinematic Self-Similarities the resulting space–times are defined explicitly in
terms of a set of parameters, whereas Affine Collineations, Ricci Collineations, and
Curvature Collineations, if they are admitted, they determine the metric modulo
certain algebraic conditions. In all cases the symmetry vectors are explicitly com-
puted. The physical and the geometrical consequences of the results are discussed
and a new anisotropic fluid, physically valid solution which admits a proper con-
formal Killing vector, is given. ©2000 American Institute of Physics.
@S0022-2488~00!01510-3#

I. INTRODUCTION

Collineations are geometrical symmetries which are defined by the general relation,

LjF5L, ~1!

whereF is any of the quantitiesgab ,Gbc
a ,Rab ,Rbcd

a and geometric objects constructed by the
and L is a tensor with the same index symmetries asF. Some of the well known~and most
important! types of collineations are: Conformal Killing vector~CKV! ja defined by the require-
mentLjgab52cgab and reducing to a Killing vector~KV ! whenc50, to a Homothetic vector
field ~HVF! whenc5const. and to a Special Conformal Killing vector~SCKV! whenc ;ab50. A
proper Affine Conformal vector~ACV! is defined by the requirementLjgab52cgab12Hab ,
whereHab;c50, c ;abÞ0 and reduces to an Affine Vector~AV ! when c ,a50 and to a Specia
Affine Conformal vector~SACV! whenc ;ab50. A curvature Collineation~CC! is defined by the
requirementLjRbcd

a 50 and finally a Ricci Collineation~RC! is defined by the requiremen
LjRab50.

Collineations other than motions~KVs! can be considered as non-Noetherian symmetries
can be associated with constants of motion and, up to the level of CKVs, they can be u
simplify the metric.1 For example AVs are related to conserved quantities2 ~a result used to
integrate the geodesics in FRW space–times!, RCs are related to the conservation of partic
number in FRW space–times3 and the existence of CCs implies conservation laws for null e
tromagnetic fields.4

The set of~smooth! collineations of a space–time can be related with an inclusion rela
leading to a treelike inclusion diagram4 which shows their relative hierarchy. A collineation of
given type is proper if it does not belong to any of the subtypes in this diagram. In order to
a collineation to a particular conservation law and its associated constant~s! of motion the prop-
erness of the collineation must first be assured.

A different type of symmetry we shall discuss, which is of a kinematic nature, is the K
matic Self Similarity ~KSS!. It is defined by the requirements5,6 Ljua5aua , Ljhab52dhab ,
whereua is the four velocity of the fluid,hab5gab1uaub (uaua521) is the projection tenso
normal toua anda,d are constants. A KSS reduces to a HVF whena5dÞ0 and to a KV when
a5d50. The KSS are characterized by the scale independent ratioa/d, which is known as the
similarity index. Whena50 the KSS is of type zero~zeroth kind! and whend50 it is of type
75730022-2488/2000/41(11)/7573/16/$17.00 © 2000 American Institute of Physics

                                                                                                                



self-
eties.
hows
ns, they

its an
elike

two of
nt

ric
e-

acelike

does,
tions
n the
pper

Bianchi

have
d in the
d by
e.

ficult.
ferred
ns and
ntial

pace–
sor is
s.
metric
f con-

w that,
admit

times
HVF,

lts and

i I

7574 J. Math. Phys., Vol. 41, No. 11, November 2000 M. Tsamparlis and P. S. Apostolopoulos

                    
infinite. Kinematic self-similarity should be regarded as the relativistic generalization of
similarity of Newtonian physics rather than the generalization of the space–time homoth
From the physical point of view the detailed study of cosmological models admitting KSS s
that they can represent asymptotic states of more general models or, under certain conditio
are asymptotic to an exact homothetic solution.7,8

A diagonal Bianchi I space–time is a spatially homogeneous space–time which adm
Abelian group of isometriesG3, acting on spacelike hypersurfaces, generated by the spac
KVs j15]x ,j25]y ,j35]z . In synchronous coordinates the metric is

ds252dt21Am
2 ~ t !~dxm!2, ~2!

where the metric functionsA1(t),A2(t),A3(t) are functions of the time coordinate only~Greek
indices take the space values 1,2,3 and Latin indices the space–time values 0,1,2,3). When
the functionsAm(t) are equal~e.g.,A25A3) the Bianchi I space–times reduce to the importa
class of plane symmetric space–times~a special class of the Locally Rotational Symmet
space–times9,10! which admit aG4 group of isometries acting multiply transitively on the spac
like hypersurfaces of homogeneity generated by the vectorsj1 ,j2 ,j3 , and j45x2]32x3]2. In
this paper we are interested only inproper diagonalBianchi I space–times~which in the follow-
ing will be referred for convenience simply as Bianchi I space–times!, hence all metric functions
are assumed to be different and the dimension of the group of isometries acting on the sp
hypersurfaces is three.

A general Bianchi I space–time does not admit a given collineation. The demand that it
acts like a ‘‘selection rule’’ by selecting those Bianchi I space–times whose metric func
Am(t) satisfy a certain set of differential equations or algebraic conditions depending o
collineation. These conditions do not necessarily have a solution. For example Coley and Tu11

have determined all space–times admitting an ACV. It is easy to check that no(proper) Bianchi
I space–time belongs to these space–times. In fact it can be shown that the demand that a
I space–time admits an ACV leads to the conditionsA3(t)5const. andA1(t)5A2(t), i.e., the
plane symmetric case.

Although Bianchi I space–times are important in the study of anisotropies and they
served as the basis for this study, it appears that their collineations have not been considere
literature. For example even at the level of proper conformal symmetries, the CKV foun
Maartens and Mellin12 is a CKV in an LRS space–time and not in a Bianchi I space–tim
Perhaps this is due to the fact that the direct solution of the collineation equations is dif
However there are many general results due to Hall and his co-workers—which will be re
subsequently as they are required—which make possible the determination of the collineatio
the corresponding Bianchi I space–times that admit them without solving any difficult differe
equations.

In Sec. II we determine all Bianchi I space–times which admit~proper or not! CKVs. We
show that the only Bianchi I space–times which admit a proper HVF are the Kasner-type s
times. In Sec. III we study the smooth RCs and show that, provided that the Ricci ten
nondegenerate, there are four families of~proper! Bianchi I space–times admitting smooth RC
The metrics of these families are determined up to a set of algebraic conditions among the
functions whereas the corresponding collineation vectors are computed in terms of a set o
stant parameters. In Sec. IV we study the smooth CCs of Bianchi I space–times and sho
assuming the nondegeneracy of the Ricci tensor, there are no Bianchi I space–times which
proper CCs. In Sec. V we consider the KSS symmetry and determine all Bianchi I space–
which admit a KSS. A particular result which generalizes the previous result concerning the
is that the only Bianchi I space–times admitting a proper KSS~of the second kind! are the
Kasner-type space–times. In Sec. VI we discuss the physical implications of these resu
examine the compatibility of the physical assumptions on the type of the matter~perfect fluid,
electromagnetic field, etc.! with the various types of symmetry. An apparently new Bianch
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viscous fluid solution is found, with nonzero bulk viscous stress. The model begins with a
bang and isotropizes at late times tending to a Robertson–Walker model~de Sitter Universe!.

II. CONFORMAL SYMMETRIES

To determine the Bianchi I space–times which admit CKVs we use the theorem
Defrise-Carter13–15which has been reconsidered and improved by Hall and Steele.16,17This Theo-
rem concerns the reduction of the conformal algebraG of a metric, to the Killing/Homothetic
algebra of a~globally defined! conformally related metric. Hall has shown that it is not alwa
possible to find a conformal scaling as required by Defrise-Carter, but Hall and Steele show
the local result can be regained if one imposes at each space–time point the restrictio~a!
space–time has the same Petrov-type and~b! the dimension ofG is constant. However, if the
Petrov type is I,D,II at a point these restrictions are not necessary. By a direct computation
Weyl tensor of the general Bianchi I metric~1! we find that the Petrov-type is either I~or its
degeneracy type D which corresponds to the LRS case which we ignore in this paper! or type O
~conformally flat! ~in fact all Bianchi type space–times of class A are Petrov-type I or
specializations18!. This means that we have two cases to consider, i.e., conformally flat
nonconformally flat space–times.

A. Bianchi I space–times of Petrov type I

It is known that the maximum dimension of the conformal algebra of space–times of P
type I or II is four.16 Hence the Bianchi I space–time admits at most oneproper CKV Y ~the
properness is assured provided thatY0Þ0) and consequently the four-dimensional conform
algebraG45$j1 ,j2 ,j3 ,Y%. From the Defrise-Carter theorem it follows that there exists a smo
function U(xa) such thatG4 restricts to a Lie algebra of KVs for the metricdŝ25U2(xa)ds2.
Because the vectors$j1 ,j2 ,j3% are KVs for both metrics we deduce thatU(xa)5U(t) and the
type of space–time~i.e., Bianchi I! is retained. Hence the problem of determining the CKVs
Bianchi I space–times is reduced to the determination of the extra KV.

AssumingY5Yt(xi)]t1Ym(xi)]m , wheret[L(t)5*U(t)dt Jacobi identities and Killing
equations imply the relations

Y5]t1ax]x1by]y1cz]z , ~3!

Â1~t!5U~t!A1~t!5e2at, Â2~t!5U~t!A2~t!5e2bt, Â3~t!5U~t!A3~t!5e2ct ~4!

whereaÞbÞc are integration constants such that at least two are nonzero~otherwise space–time
reduces to an LRS space–time!. The commutators of the extra KVY with the standard KVsjm are

@j1 ,Y#5aj1 ,@j2 ,Y#5bj2 ,@j3 ,Y#5cj3 .

In conclusion we have the following result:
All Bianchi I metrics which admit a CKV are(aÞbÞc)

ds252dt21A1
2~ t !@dx21e2(a2b)L(t)dy21e2(a2c)L(t)dz2#, ~5!

where

A1~ t !5
1

U~ t !
e2a*U(t)dt. ~6!

The CKV is given by

Y5
1

U~ t !
] t1ax]x1by]y1cz]z ~7!
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and has conformal factor

f~Y!5a1
1

U~ t !
@ lnuA1~ t !u# ,t . ~8!

In terms of the time coordinatet this metric is:

ds25
1

U2~t!
@2dt21e22atdx21e22btdy21e22ctdz2#. ~9!

It is now easy to determine all Bianchi I space–times which admit~one! proper HVF. Indeed
settingf(Y)5const. (Þ0) and using~8! we find U(t)5 1/ft from which it follows19 ~ignoring
some unimportant integration constants!

Proposition 1: The only Bianchi I space–times which admit proper HVF are the Kasner-typ
space–times given by(aÞbÞc)

ds252dt21t2@~f2a!/f#dx21t2@~f2b!/f#dy21t2@~f2c!/f#dz2. ~10!

The HVF is

YÄft] t1ax]x1by]y1cz]z ~11!

and has homothetic factorf.
We remark that the same result can be recovered from the reduction of the proper RCs

will be determined in Sec. III.

B. Bianchi I space–times of Petrov type O

The necessary and sufficient condition for conformal flatness is the vanishing of the
tensorCabcd. By solving directly the equationsCabcd50 it can be shown that there exist only tw
families of conformally flat Bianchi I metrics~we ignore the case of the Friedmann–Robertso
Walker space–time! given by

ds1
25A3

2~t!dsRT
2 , ~12!

ds2
25A3

2~t!dsART
2 . ~13!

The metrics dsRT
2 ,dsART

2 have been found previously by Rebouc¸as–Tiomno20 and
Rebouc¸as–Teixeira,21 respectively and are 113 ~globally! decomposable space–times who
3-spaces are spaces of constant curvature. In synchronous coordinates they are

dsRT
2 5dz22dt21cos2S t

aDdy21sin2S t

aDdx2, ~14!

dsART
2 5dz22dt21cosh2S t

aDdy21sinh2S t

aDdx2, ~15!

where dt5 dt/A3(t). Each metric admits 15 CKVs which can be determined using stan
techniques.22 In concise notation these vectors are~we ignore the KVsjm which constitute theG3)
(k50,1,2,3 anda50,1,2):
                                                                                                                



a KV

ne has
lts

h

7577J. Math. Phys., Vol. 41, No. 11, November 2000 Symmetries of Bianchi I space–times

                    
KVs,

jk145$s6~y,a!@dk
0c1~x,a!1dk

1s1~x,a!#1c6~y,a!@dk
2c1~x,a!1dk

3s1~x,a!#%]t

1
s7~t,a!

c7~t,a!
$c6~y,a!@dk

0c1~x,a!1dk
1s1~x,a!#6s6~y,a!@dk

2c1~x,a!1dk
3s1~x,a!#%]y

2
c7~t,a!

s7~t,a!
$s6~y,a!@dk

0s1~x,a!1dk
1c1~x,a!#1c6~y,a!@dk

2s1~x,a!1dk
3c1~x,a!#%]x ,

~16!

CKVs,

X(k)a56a2Bk,a , X(k)357a2Bk,3 , ~17!

f~X(k)!5Bk , ~18!

X(k14)a56a2Gk,a , X(k14)357a2Gk,3 , ~19!

f~X(k14)!5Gk , ~20!

where

Bk5c7~t,a!$c6~y,a!@s7~z,a!,c7~z,a!#,s6~y,a!@s7~z,a!,c7~z,a!#% ~21!

Gk5s7~t,a!$c1~x,a!@s7~z,a!,c7~z,a!#,s1~x,a!@s7~z,a!,c7~z,a!#%, ~22!

and the following conventions have been used:

~1! the upper sign corresponds to RT space–time and the lower sign to ART space–time;
~2! the functionss7(w,a),c7(w,a) are defined as follows:

~c1~w,a!,c2~w,a!!5S coshS w

a D ,cosS w

a D D , ~23!

~s1~w,a!,s2~w,a!!5S sinhS w

a D ,sinS w

a D D . ~24!

The Bianchi I metrics~12!, ~13! have the same CKVs with conformal factorsc(jk14)
5jk14(ln A3) and c(XA)5XA(ln A3)1f(XA) (A51,2,. . . ,8). It follows that conformally flat
Bianchi I space–times do not admit HVFs. Furthermore if we enforce them to admit an extr
they reduce to the RT and the ART space–times which admit seven KVs.

III. RICCI COLLINEATIONS

A RC XÄXa]a is defined by the condition

LXRab5Rab,cX
c1RacX,b

c 1RbcX,a
c 50. ~25!

For RCs there do not exist theorems of equal power to the Theorem of Defrise-Carter and o
to solve directly the differential equations~25!. However there do exist some general resu
available which are due to Hall and are summarized in the following statement:23

If the Ricci tensor is of rank 4, at every point of the space–time manifold, then the smoot
(C2 is enough) RCs form a Lie algebra of smooth vector fields whose dimension is<10 andÞ9.
This Lie algebra contains the proper RCs and their degeneracies.
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It has been pointed out by Hall and co-workers that the assumption on the order of the
tensor is important. Indeed let us assume that the order of the Ricci tensor of a Bianchi I s
time is 3. Then due to the fact that the Ricci tensor in Bianchi I space–times is diagonal one
components must vanish, theR1150 say. This is equivalent toRabj1

b50, wherej15]x . Consider
the vector fieldX15 f (xa)]x , wheref (xa) is an arbitrary~but smooth! function of its arguments.
It is easy to show thatLX1

Rab50 so thatX1 is a Ricci collineation. Due to the arbitrariness of th
function f (xa) these Bianchi I space–times admit infinitely many smooth RCs a result that
not help us in any useful or significant way in their study.

In the following we consider smooth RCs and we assume thatRab is nondegenerate
(detRabÞ0). Equation~25! gives the following set of 10 differential equations~no summation
over the indicesm,n,r51,2,3;mÞnÞr):

@00# R00,0X
012R00X,0

0 50, ~26!

@0m# R00X,m
0 1RmmX,0

m50, ~27!

@mm# Rmm,0X
012RmmX,m

m 50, ~28!

@mn# RmmX,n
m 1RnnX,m

n 50, ~29!

where a comma denotes partial differentiation w.r.t. following index coordinate. For conven
we setR00[R0 ,Rmm[Rm . Equation~26! is solved immediately to give

X05
m~xb!

AuR0u
, ~30!

wherem(xb) is a smooth function of the spatial coordinates. Using~30! we rewrite the remaining
Eqs.~27!–~29! in the form

X,0
m52e0

AuR0u
Rm

m,m , ~31!

X,m
m 52

~ lnuRmu! ,0

2AuR0u
m, ~32!

RmX,n
m 1RnX,m

n 50, ~33!

wheremÞn ande0 is the sign of the componentR0.
Differentiating Eq.~33! w.r.t. xr we obtain

RmX,nr
m 1RnX,mr

n 50. ~34!

Rewriting ~33! for the indicesm,r, differentiating w.r.t.xn and subtracting from~34! we obtain

RnX,mr
n 2RrX,nm

r 50. ~35!

Writing ~33! for the indicesn,r, differentiating w.r.t.xm and adding to~35! (RmÞ0) we get

X,mr
n 50 ~mÞnÞr!. ~36!

Differentiating ~31! w.r.t. xm and ~32! w.r.t. x0 we find
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Rm

AuR0u
F ~ lnuRmu! ,0

2AuR0u
G

,0

5am , ~37!

m,mm5e0amm, ~38!

wheream are arbitrary constants.
Equations~31!–~33! and ~36!–~38! constitute a set of differential equations in the variab

(Rm ,Xm,m), which can be solved in terms ofR0 and some integration constants. These consta
are constrained by a set of algebraic equations involving the spatial components of the Ricci
and essentially determine the dimension of the algebra of the RCs.

TABLE I. The table contains the complete set of solutions of the Ricci Collineation equations. The solutions are sp
in terms ofR0 and some integration constants together with the algebraic constraints~if any! which Rm must satisfy. The
second column contains the spatial components of the Ricci tensor, the third the functionm(xa), the fourth column the
constraints on the integration constants, and the last column the number of proper RCs. The indicesm,n,r51,2,3, m
ÞnÞr, A,B52,3 AÞB and there is no summation over repeated indices. The functionsc«(x3,a),s«(x3,a) are given in
~23!, ~24!, ande35sign(R3).

Case Rm m(xa) Constraints No. of proper RCs

A1 RmBn
m1RnBm

n 50 0 none 3

A2 Rm5Cme*2cmAuR0udx0 d
cmÞcn

Dm5Bm
n 50

1

A3
Rm5Cme*2cmAuR0udx0

RrBn
r1RnBr

n50
d

cr5cnÞcm

Dm5Bm
n 50

2

A4
Rm5Cme*2cmAuR0udx0

RrBn
r1RnBr

n50 (
m51,2,3

Dmxm1d cm5cn 7

B1
R1,050

RA5CAe*2cAAuR0udx0 d
cAÞcB

DA5LA
B50

1

B2

R1,050

RA5CAe*2cAAuR0udx0

RALB
A1RBLA

B50
(

A52,3
DAxA1d cA5cB 4

Ca1

R1,05R2,050
R1b2

11R2b1
250

R35e3C3
2 cosh2F~e3a!1/2*AuR0udt

C3
G

b1s«S x3,
1

Aue0au
D

1b2c«S x3,
1

Aue0au
D

e3a.0
«5sign(e0a)

3

Ca2

R1 ,R2 same asC1

R35e3C3
2 sinh2Fu~e3a!u1/2*AuR0udt

C3
G same asC1 e3a,0 3

Ca3

R1 ,R2 same asC1

R35e3C3
2 cos2Fu~e3a!u1/2*AuR0udt

C3
G same asC1 e3a,0 3

Ca4
R1 ,R2 same asC1

R352e3a(*AuR0udt)2

m1(x3)x11m2(x3)x21m3(x3)
ma5ga

1s«Aue0aux3

1ga
2c«Aue0aux3

«5sign(e0a) 7

Cb
R1 ,R2 same asC1

R35C3e*2c3AuR0udt D3x31d c3Þ0 3

D
R1,05R2,05R3,050
RmBn

m1RnBm
n 50 (

m51,2,3
Dmxm1d none 7
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The complete set of the solutions consists of five main cases which are summarized in
I together with the corresponding algebraic constraints and the dimension of the resulting a

To find the RCs we note that in all cases the componentX0 is given by ~30! and it is
determined in terms of the functionm(xa). Concerning the spatial components these are obta
from the following formulas taking into consideration the fourth column of Table I.

Case A:

XI
m5cmH 2d•xm2xm (

nÞm
Dnxn2

Dm

2 F ~xm!22 (
nÞm

S Cm

Cn
D ~xn!22

e0

cm
2 Rm

G J 1 (
nÞm

Bn
mxn.

~39!

Case B(A52,3):

XII
A5cAH 2d•xA2xADBxB2

DA

2 F ~xA!22S CA

CB
D ~xB!22

e0

cA
2RA

G J 1LB
AxB ~40!

andXII
150.

Case Ca:

XIII
1 52

e0m,1

R1
E AuR0udt1b2

1x2, XIII
2 52

e0m,2

R2
E AuR0udt1b1

2x1, ~41!

XIII
3 52

e0m,3

2aAuR0u
~ lnuR3u! ,t . ~42!

Case Cb:

XIV
1 5b2

1x2, XIV
2 5b1

2x1, ~43!

XIV
3 5

e0D3

2c3R3
2c3FD3

~x3!2

2
1d•x3G . ~44!

Case D:

XV
m5 (

nÞm
bn

mxn1 f m~x0!, ~45!

where

f m~x0!52
Dm

Rm
E AuR0udx0. ~46!

We collect the above results in the following:
Proposition 2: The proper smooth RCs in Bianchi I space–times can be considered in fou

sets depending on the constancy of the spatial Ricci tensor components. The first set (case
Rm,0Þ0 for all m51,2,3) contains three families of smooth RCs consisting of either one, tw
seven RCs defined by the vectorXI given by (39). The second set (case B with one Rm,050)
consists of two families of one and four RCs defined by the vectorXII given by (40). The third se
(case C with two Rm,050) consists of five families with three, three, three, seven, and three
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given by the vector fieldsXIII ,XIV defined in (41)–(42), (43)–(44). Finally the last set (case D al
Rm,050) contains one family of seven RCs given by the vector fieldXV defined in (45) and (46).
In each family of RCs the spatial Ricci tensor components are given in terms of the time c
nent R0 and the coefficients of the vector fields are constrained with the spatial components
Ricci tensor via algebraic conditions.

We note that RCs do not fix the metric up to a set of constants as the CKVs~and the lower
symmetries! do but instead they impose algebraic conditions on the metric functions. Th
general one should expect many families of Bianchi I space–times admitting RCs.

IV. CURVATURE COLLINEATIONS

Curvature collineations are necessarily Ricci Collineations and one is possible to dete
them from the results of the last section. The easiest way to do this would appear to use al
computing algorithms24 and compute directly the Lie derivative of the curvature tensor for
RCs found in the last section. However this is not so obvious because although we know t
we do not know the metric functions. Hence, in general, one expects to arrive at a syst
differential equations among the metric functionsAm(t) whose solution will give the answer.

However a study of the relevant literature shows that there are enough general results
allow one to determine the CCs without solving any differential equations. The CCs have ma
the pathologies of RCs. For example for any positive integerk there are CCs which areCk but not
Ck11. Furthermore they may form an infinite dimensional vector space which is not a Lie alg
under the usual Lie bracket operation. However if one considers theC` CCs only~losing in that
case the ones that are not smooth! then they do form a Lie algebra which is a subalgebra of
~smooth! RCs algebra.25,26

For the determination of CCs in Bianchi I space–times it is enough to use the following r
from an early work of Hall:27

If the curvature components are such that at every point of a space–time M the only solution
of the equation Rabcdk

d50 is kd50 then every CC on M is a HVF.
Let us assume that in a Bianchi I space–time the equationRabcdk

d50 has a solutionka

Þ0. Then it follows that equationRabk
d50 admits a nonvanishing solution which is impossib

becauseRab is nondegenerate. Hence according to the above statement allC` CC in Bianchi I
space–times are HVFs or, equivalentlythere are no Bianchi I space–times (with nondegenerat
Ricci tensor) which admit proper CCs.

V. KINEMATIC SELF-SIMILARITIES

As it has been mentioned in the Introduction, kinematic self-similarities are not geom
symmetries~i.e., collineations!. They are kinematic symmetries/constraints which involve
4-velocity of the fluid ~or in empty space–times a timelike unit vector field! defined by the
conditions

LXua5aua , LXhab52dhab , ~47!

wherehab5gab1uaub projects normally toua anda,d are constants.
Kinematic self-similarities have been studied by Sintes28 who determined all LRS perfect fluid

space–times which admit a KSS. Our aim in this section is to determine the KSS of~proper!
Bianchi I metrics without any restriction on the type of the fluid except that we assume tha
fluid 4-velocity is orthogonal to the group orbits, i.e.,ua5d0

a . This assumption enforces th
commutator of a KSSX with the three KVsjm to be a KV.29 Hence we write:

@jm ,X#5X,m
a ]a5am

n jn , ~48!

wheream
n are constants. Integrating we find

X05X0~ t ! and Xm5an
mxn1 f m~ t !, ~49!
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where f m(t) are arbitrary smooth functions of their argument. The first of Eqs.~47! gives

X05at1b,

whereb is an integration constant and~without loss of generality! f m(t)5const.50. The second
equation of~47! gives the following conditions among the metric functions:

an
m~Am!21am

n ~An!250, ~50!

am
m1~at1b!

d~ ln Am!

dt
5d, ~51!

wheremÞn. Equation~50! means that, in order to avoid the plane symmetric case, we must
an

m50 for mÞn. Therefore we have the following conclusion (am
m[am):

Proposition 3: The Bianchi I space–times whose metric functions satisfy the relation(ameR)

am1~at1b!
d~ ln Am!

dt
5d ~52!

admit the proper KSS,

X5~at1b!] t1a1x]x1a2y]y1a3z]z . ~53!

In view of Eq. ~52! we have two distinct cases to consider, namely,a50 ~type zero! and a
Þ0.

Casea50 (dÞ0):
For b50, Eq.~52! is trivially satisfied, i.e.,all Bianchi I space–times admit the (zeroth kind

KSS,

Z5d~x]x1y]y1z]z!. ~54!

For bÞ0 we have

Am~ t !5e@~d2am! /b# t. ~55!

It is easy to show that in this case space–time admits the KV,

Y5] t1
a12d

b
x]x1

a22d

b
y]y1

a32d

b
z]z ~56!

and becomes homogeneous.@The KV ~56! can also be found from the reduction of the results
Sec. II#.

CaseaÞ0:
In this case the solution of~52! is

Am~ t !5~at1b!@~d2am! /a# ~57!

and leads to the conclusion that:
The only Bianchi I space–times with comoving fluid which admit a KSS of the second k

are the Kasner type space–times.
We note that the Bianchi I space–times with metric functions given by Eq.~57! also admit the

HVF,

a] t1~a1a12d!x]x1~a1a22d!y]y1~a1a32d!z]z ~58!

with homothetic factora ~see Sec. II!.
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VI. DISCUSSION

Working with purely geometric methods we have succeeded to determine all~proper and
diagonal! Bianchi I space–times which admit certain~and the most important! collineations. In
many cases the explicit form of the metrics has been given~CKVs, HVFs, KSS!, in others the
metrics are defined up to a set of conditions on the metric functions~RCs! and finally it has been
shown that there are not Bianchi I space–times which admit CCs and ACVs. In all case
collineation vector has been determined~whenever it exists!.

In order to establish the physical significance of these general geometrical results we a
the following questions for each type of collineation:

~1! Are there any Bianchi I metrics among the ones selected by one of the collineations c
ered, which satisfy the energy conditions, so that they can be used as potential spac
metrics?

~2! If there are, are the known Bianchi I solutions among these solutions?

In the following we take the cosmological constantL50.

A. The case of CKVs

Of interest is only the nonconformally flat metrics~5! @or ~9!# which admit the CKV~7! with
conformal factor~8!.

One general result is that the CKV is inheriting, that is, the fluid flow lines are prese
under Lie transport along the CKV.30

Concerning the dynamical results we consider three main cases: perfect fluids, no
Einstein–Maxwell solutions, and imperfect fluid solutions~the case of null Einstein–Maxwel
field31 is excluded because the Segre´-type of Bianchi I space–times is@1,111# or degeneracies o
this type!.

1. Perfect fluid solutions

In this case the Segre´ type of space–time is@1,(111)# and all spatial eigenvalueslm are equal.
Moreoverlm5Gm

m , whereGab is the Einstein tensor. Consideringl25l3 and using~9! we find
U5 1/Bt whereB5 (a1b1c)/2. Finally replacingU(t) in the line element~5! we find that the
resulting space–time is a Kasner-type space–time and the CKV reduces to a HVF in agre
with the general result thatorthogonal spatially homogeneous perfect fluid space–times do not
admit any inheriting proper CKV.30 Most of the known Bianchi I solutions concern perfect flu
solutions.32 None of these solutions admit a CKV.

2. Einstein Maxwell solutions

For these fields the Segre´-type of the Einstein tensor is@(1,1)(11)#, hencel25l3 and l0

5l1. The first equality implies again that the metric reduces to a Kasner-type metric and i
to a vacuum solution@because if we force a Kasner type metric to represent a~necessarily
non-null! Einstein–Maxwell field it reduces to a vacuum solution#.

Proposition 4: There do not exist Bianchi I (non-null) Einstein–Maxwell space–times which
admit a CKV or a HVF.

The two Bianchi I solutions with electromagnetic field found by Datta33 and by Rosen34 do
not admit a CKV or a HVF.

3. Anisotropic fluid solutions

The above results indicate that the Bianchi I metrics~5! can represent only anisotropic flui
space–times. Recently anisotropic fluid Bianchi I cosmological models have been invest
extensively using a dynamical system approach and the truncated Israel–Stewart theory
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versible thermodynamics. It has been found that in these models, anisotropic stress leads to
which violate the weak energy condition, thus they are unphysical or they lead to the creat
a periodic orbit.35–40

In order to find one such solution which will be physically viable we consider the follow
two restrictions:

~1! c50; and
~2! the algebraic type of matter~equivalently Einstein! tensor is@(1,1)11#.

Settingl05l3 we obtain the condition

2~ ln M ! ,tt22@~ ln M ! ,t#
21b21a250, ~59!

whose solution is

M ~t!5
1

sinhkt
,

1

coshkt
, ~60!

where k25(a21b2)/2. We keep the solutionM (t)5 1/sinhkt because the other violates a
energy conditions. This givesU(t)5sinhkt or U(t)5sinh21 kt and finally we obtain the metric

ds252dt21sinh2@~k2a!/k#
kt

2
cosh2@~k1a!/k#

kt

2
dx2

1sinh2@~k2b!/k#
kt

2
cosh2@~k1b!/k#

kt

2
dy21sinh2 ktdz2. ~61!

This new Bianchi I space–time describes a viscous fluid and satisfies the weak and the do
energy conditions~a description of these energy conditions in terms of the eigenvalues o
stress-energy tensor is given in the Appendix! providedab.0 andka,0. The strong energy
condition is violated. It also admits the proper CKVX5sinhkt]t1ax]x1by]y with conformal
factor f(X)5k coshkt.

To study the physics of the new solution we consider the stress-energy tensorTab and using
the standard Eckart theory we write

Tab5muaub1~ p̄2zu!hab22hsab , ~62!

wherez,h>0 are the bulk and the shear viscosity coefficients andp̄ is the isotropic pressure in
the absence of dissipate processes, i.e.,z50 ~equilibrium state!. It is easy to show that vanishin
of z together with a linear barotropic equation of statep̄5(g21)m ~wheregP@1,2#) lead to the
conditiona52b, which violates the weak energy condition (ab,0). Thus we restrict our study
to the case wherezÞ0 which is of cosmological interest. For example inflation driven by
viscous fluid necessarily involves bulk viscous stress.41,42 Moreover cosmological models whic
include viscosity can be used in an attempt to interpret the observed highly isotropic m
distribution.43 In fact it has been shown that viscosity plays a significant role in the isotropisa
of the cosmological models.44

Using standard methods we find for the kinematic and the dynamic variables of the m

m5
3k2 cosh2 kt22k~b1a!coshkt1ab

sinh2 kt
,

z5
1

u Fm1 p̄1
2k~a1b!coshkt22~k21ab!

3 sinh2 kt
G , ~63!
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u5
3k coshkt2~b1a!

sinhkt
,

s115
~b22a!

6
sinh~k22a!/k

kt

2
cosh~k12a!/k

kt

2
,

s225
~a22b!

6
sinh~k22b!/k

kt

2
cosh~k12b!/k

kt

2
, ~64!

s335
~a1b!

6
sinhkt,

s25
a22ab1b2

3 sinh2 kt
, ~65!

where 2s25sabs
ab and

h5
a1b

2 sinhkt
2k cothkt. ~66!

The explicit computation of the bulk viscosityz requires the adoption of a specific equation
state in order to guarantee thatz is positive definite. However the simple choicea1b.0 andk

,0 ensures thatz>0 ~sinceu,0) andh.0 provided thatp̄<peff[ p̄2zu.
Concerning the asymptotic behavior of the model we have limt→` s50 provided thatk,0

and the model isotropizes at late times. Furthermore limt→` u523k, limt→` R512k2, (m
1peff) t→`50 hence the model corresponds to the flat FRW space–time, i.e., the de Sitte
verse. This also follows directly from the metric~61! if we consider the limitt→`. In this limit
the CKV X degenerates to a KV. In addition using~63! it can be shown that there is a cosm
logical singularity of Kasner type at afinite time in the past, i.e., there is at5t0 at which the
energy density vanishes, whereas the initial singularity occurs att50.

B. The case of Ricci collineations

There are four families of Bianchi I space–times which admit RCs and furthermore
metric in these families is fixed only up to a set of algebraic conditions. Due to this generali
are obliged to consider again special cases and the best choice is perfect fluid solutions.

The algebraic type of the Ricci tensor for a perfect fluid is@1,(111)# which implies the
condition

R11

A1
2

5
R22

A2
2

5
R33

A3
2

. ~67!

This immediately excludes the last three families~B,Ca,Cb,D! of Table I and we are left with
family A only. From the first column of Table I we readRm5Cme*2cmAuR0udt hence,~67! implies

C1

C2
e2(c12c2)*AuR0udt5

A1
2

A2
2

and
C1

C3
e2(c12c3)*AuR0udt5

A1
2

A3
2

. ~68!

In order to avoid the FRW metric (A1}A2}A3) and the plane symmetric metric~e.g.,A1}A2) we
demandc1Þc2Þc3. Then from the third column of Table I we have that only case A2 survives
and furthermoreDm5bn

m50. Setting the constantd51 we find from~39!,
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X5
1

AR00

]02c1x1]12c2x2]22c3x3]3 . ~69!

We conclude that all perfect fluid Bianchi I space–times which satisfy~68! admit a RC of the form
~69!.

As far as we aware all existing perfect fluid solutions in Bianchi I space–times con
perfect fluids with a linear barotropic equation of statep5(g21)m (gP@1,2#). In order to
compare these solutions with the above perfect fluid solutions we assume that the later also
a linear barotropic equation of state. Then from the field equations we obtain:

Rab5mF ~22g!

2
gab1guaubG . ~70!

~The valueg52 is excluded because then the Ricci tensor becomes degenerated.! The 00 con-
servation equation gives

m ,t1gmu50, ~71!

where u5u;a
a is the expansion of the fluid. Introducing the scale factor or ‘‘mean radius’’S3

5A1A2A3 we find u5(ln S3),t and the solution of Eq.~71! is

m5
M

S3g
, ~72!

whereM5 constant. Using~68!, ~70!, and~72! we find:

m5
const.

t2
. ~73!

Combining this with~67! and~68! we findA1}tp,A2}tq,A3}t r i.e., the resulting Bianchi space
time is a Kasner-type space–time which is a contradiction because a Kasner-type space–tim
a perfect fluid leads to stiff matter,32 i.e., g52. Thus we have proved:

Proposition 5: All perfect fluid Bianchi I space–times whose metric functions satisfy conditi
(68) admit a RC of the form (69). In addition perfect fluid Bianchi I space–times with linear
barotropic equation of state do not admit proper RCs.

Finally it should be pointed that although spatially homogeneous perfect fluid space–
must satisfy a barotropic equation of statep5p(m) this equation need not necessarily be line
However it was proven recently that the asymptotic behavior of such models is similar to the
of a linear barotropic equation of state.42
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APPENDIX

It is well known that Bianchi I space–times have zero heat flux and the 4-velocityua is an
eigenvector of the energy momentum tensor. Consequently the only possible algebraic Seg´-type
of their energy momentum tensor is@1,111# and its degeneracies.45–47 Furthermore, for this type
of energy momentum tensors it has been shown that the energy conditions take the fol
form:48,49
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Weak energy condition:

2l0>0 and 2l01la>0. ~A1!

Dominant energy condition:

2l0>0 and ulau<2l0 . ~A2!

Strong energy condition:

2l0>0 and 2l01(
a

la>0, ~A3!

wherel0 is the eigenvalue of the timelike eigenvector andla are the eigenvalues of the spaceli
eigenvectors.
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The triple sum formulas for 9 j coefficients
of SU „2… and u q„2…

Sigitas Ališauskasa)
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Seven different triple sum formulas for 9j coefficients of the quantum algebra
uq(2) are derived, using for these purposes the usual expansion ofq-9 j coeffi-
cients in terms ofq-6 j coefficients and recently derived summation formula of
twisted q-factorial series~resembling the very well-poised basic hypergeometric

5f4 series! as a q-generalization of Dougall’s summation formula of the very
well-poised hypergeometric4F3(21) series. This way forq51 Rosengren’s sec-
ond proof of the SU~1,1! case is adapted for the SU~2! case to derive the known
triple sum formula of Ališauskas and Jucys, as well as six new independent triple
sum formulas for the Wigner 9j coefficients of the angular momentum theory. The
mutual rearrangement possibilities of the derived triple sum formulas by means of
the Chu–Vandermonde summation formulas are considered and applied to derive
several versions of double sum formulas for the stretchedq-9 j coefficients, which
give new rearrangement and summation formulas of special Kampe´ de Fériet func-
tions and theirq-generalizations. ©2000 American Institute of Physics.
@S0022-2488~00!01111-7#

I. INTRODUCTION

The Wigner 9j coefficients (9j -symbols! arise as the recoupling coefficients of the fo
irreducible representations~irreps! of the SU~2! group and play the important roles in the quantu
mechanical angular momentum theory.1–5 There are many known expressions for 9j coefficients
as multiple series. Nevertheless, the most compact formula~however, which do not represent an
symmetry of 9j -symbol! was derived originally by Alisˇauskas and Jucys6 as a triple sum series, in
frames of resolution of the multiplicity-free~semistretched! coupling problem6,7 for the states of
irreducible representations of the Sp~4! @SO~5!# group restricted to SU~2!3SU~2!. In Ref. 3 it was
also proved after tedious rearrangement of the fourfold sum8 in frames of the usual angula
momentum@SU~2! representation theory# technique, by means of the Chu–Vandermonde sum
tion formulas. Different computational,9–12 polynomial,13,14 rearrangement,15–20 specification,21,22

and other23 aspects of this triple sum series were considered. Its analytical continuation wa
adapted24 for the isoscalar factors of the Clebsch–Gordan~CG! coefficients of the Lorentz or
SL(2,C) group.

Recently Rosengren25–27 proposed two new proofs of the triple sum formula for 9j coeffi-
cients of SU~1,1!. His first proof25,26 was based on the use of the explicit coupling kernels in
su(1,1) algebra, rather then in thesu(2) algebra, when in the second case26,27 the usual expansion
~cf. Refs. 1–4! of 9 j coefficients of SU~1,1! in terms of 6j coefficients was rearranged using th
appropriate expressions for the Racah coefficients in terms of the terminating balanced hyp
metric 4F3(1) series and Dougall’s summation formula28 of the very well-poised4F3(21) series
@which, in other words, corresponds to the factorial sum weighted with factor (2j 11)#.

For the quantum algebrauq(2), the expansion of theq-9 j coefficients in terms ofq-6 j
coefficients was generalized by Nomura29–32 and Smirnovet al.33 The corresponding summatio

a!Electronic mail: sigal@itpa.lt
75890022-2488/2000/41(11)/7589/22/$17.00 © 2000 American Institute of Physics
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formula of the twistedq-factorial series@generalizing Dougall’s summation formula and rese
bling ~but not equivalent with! the very well-poised basic hypergeometric5f4 series, depending
on 3 parameters# needed for our purpose was derived by Alisˇauskas,34 when the twisted very
well-poisedq-factorial series, resembling the basic hypergeometric7f6 series~depending on 5
parameters! appear in a new approach35 to the Clebsch–Gordan coefficients ofuq(2).

The main purpose of the present paper is to derive the all independent expressions w
triple sums for theq-9 j and usual 9j coefficients, eliminating the cumbersome factorial su
weighted with factors@2 j 11# or (2j 11) from the compositions of theq-6 j or usual 6j coeffi-
cients expanded in different forms. In Sec. II, the appropriate expressions for the 6j coefficients of
SU~2! anduq(2) are presented, as well as the rearranged expansions of 9j coefficients ofuq(2) in
terms of 6j coefficients, allowing to generalize Rosengren’s27 approach with help of the new
summation formulas, weighted with factor@2 j 11# ~see Appendix A!. In Sec. III, seven different
triple sum formulas for 9j coefficients ofuq(2) are derived, their summation intervals and oth
properties are compared. Forq51 they turn either to known expression of Alisˇauskas and Jucys,6

or to six new triple sum formulas for 9j coefficients of SU~2!. In Sec. IV, the mutual rearrange
ment possibilities of new expressions by means of the Chu–Vandermonde summation fo
~see Appendix B! are considered. Particularly, several versions~of different classes! of the double
sum formulas for the stretched 9j coefficients ofuq(2) and SU~2! are derived, which enable to ge
new relations and summation formulas~presented in Appendix C! for special Kampe´ de Fériet
functions36 and theirq-generalizations~cf. Refs. 16 and 17!.

II. PRELIMINARIES

A. Expressions for the 6 j coefficients of SU „2… and u q„2…

The appropriate for our purpose expressions for the 6j ~Racah! coefficients of SU~2! ~with the
different or coinciding signs of summation parameters in 3 numeratorq-factorial arguments! were
derived originally by Bandzaitiset al.37 ~see also Refs. 3 and 8!, when Smirnovet al.38,39 red-
erived them for the Racah coefficients ofuq(2). These two expressions, each in two differe
versions, may be written as follows:

H a b e

d c fJ
q

5
¹@ac f#¹@db f#

¹@abe#¹@dce# (z

~21!a1b1c1d1z@c1 f 2a1z#!

@z#! @a1c2 f 2z#! @b1d2 f 2z#!

3
@b1 f 2d1z#! @a1d1e2 f 2z#!

@e1 f 2a2d1z#! @2 f 1z11#!
~2.1a!

5
¹@ac f#¹@db f#

¹@abe#¹@dce# (z

~21!b1c1e1 f 1z@c1d2e1z#!

@z#! @c2d1e2z#! @b1e2a2z#!

3
@a1b2e1z#! @2e2z#!

@a1d2e2 f 1z#! @a1d2e1 f 1z11#!
~2.1b!

and

H a b e

d c fJ
q

(8)

5
¹@eab#¹@ f bd#

¹@ecd#¹@ f ac# (
z

~21!b1c1e1 f 1z@2b2z#!

@z#! @b1e2a2z#! @b1 f 2d2z#!

3
@b1e1 f 2c2z#! @b1c1e1 f 2z11#!

@a1b1e2z11#! @b1d1 f 2z11#!
, ~2.2a!
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5
¹@eab#¹@ f bd#

¹@ecd#¹@ f ac# (
z

~21!b1e2a1z@a1b2e1z#!

@z#! @b1e2a2z#! @a2e1 f 2d1z#!

3
@a2c1 f 1z#! @a1c1 f 1z11#!

@2a1z11#! @a1d2e1 f 1z11#!
, ~2.2b!

where¹@abc# is asymmetric triangle coefficient,

¹@abc#5S @a1b2c#! @a2b1c#! @a1b1c11#!

@b1c2a#! D 1/2

, ~2.3!

and Eqs.~2.2a!–~2.2b! are less effective than~2.1a! and ~2.1b!. Here and in what follows
@x#, @x#!, (a/q)n and @ r

n#q are, respectively, theq-numbers,q-factorials,q-Pochhammer sym-
bols, andq-binomial coefficients,

@x#5~qx2q2x!/~q2q21!, @x#! 5@x#@x21# ¯ @2#@1#, ~2.4!

~auq!n5 )
k50

n21

@a1k#, @1#! 5@0#! 5~auq!051, ~2.5!

Fn

r G
q

5
@n#!qn(n2r )

@r #! @n2r #!
, ~2.6!

where ~2.4! and ~2.5! are invariant under substitutionq↔q21 and turn into usual integersx,
factorialsx! and binomial coefficients (r

n) for q51.
We see that each parameterb, c, or e appears only twice in the factorial arguments under

summation sign in~2.1a!, as well as parametersb, c, or f in ~2.1b! @which is obtained after some
change of summation parameter in~2.1a!#. Similarly each parametera, c, or d appears only
twice in the factorial arguments under the summation sign in~2.2a!, as well as parametersb, c,
or d in ~2.2b!. Otherwise, each parametera or d appears four times in the factorial argumen
under the summation sign in~2.1a! and ~2.1b!, as well as parameterse or f in ~2.2a! and ~2.2b!
and all the parameters in the most symmetric1,2 ~Racah40! and the remaining expressions for 6j
andq-6 j coefficients,3,8,38,39which include only usual symmetric triangle coefficientsD@abc# in
the numerator and denominator before the summation sign. Note that some triangular con
restrict the summation intervals in~2.1a! and~2.2a!, or they are represented by definite differenc
of factorial arguments in numerator and denominator, for example, (c1 f 2a1z)2(e1 f 2a
2d1z)>0 in ~2.1a!, or (b1d1 f 2z11)2(b1e1 f 2c2z)21>0 in ~2.2a!.

B. Rearrangement of expansions for q -9j coefficients

We use here the definition of theq-9 j coefficients ofuq(2) introduced by Nomura29,32 in
contrast with definition by Smirnovet al.,33 when the substitutionq→q21 is necessary. Thes
coefficients (q-9 j symbols! may be extracted from the recoupling-braiding coefficients of
states of four irreps and are invariant under even permutations of their rows or columns and
transposition of 333 array~interchange of their rows and columns!,

H a b e

c d f

h k g
J

q

5H e a b

f c d

g h k
J

q

5H c d f

h k g

a b e
J

q

5H a c h

b d k

e f g
J

q

5etc. ~2.7!

Taking into account the braiding, in the case of odd permutations of their rows or column
q-9 j coefficients obey29,32
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H a b e

c d f

h k g
J

q

5AH b a e

d c f

k h g
J

q21

5AH c d f

a b e

h k g
J

q21

5etc., ~2.8!

where

A5~21!a1b1c1d1e1 f 1g1h1kqZdeh1Zbcg1Za f k

and

Zdeh52d~d11!2e~e11!2h~h11!.

Let us consider some different versions of expansions29,32,33of q-9 j coefficients ofuq(2),
written after applying some symmetries ofq-6 j coefficients,

H a b e

c d f

h k g
J

q

5(
j

~21!2 jqZdeh2 j ( j 11)@2 j 11#H a c h

k g j J
q
H k j c

f d bJ
q
H a g j

f b eJ
q

~2.9a!

5(
j

~21!2 jqZdeh2 j ( j 11)@2 j 11#H k g h

a c j J
q
H j b f

d c kJ
q

(8)H f b j

a g eJ
q

~2.9b!

5(
j

~21!2 jqZdeh2 j ( j 11)@2 j 11#H h c a

j g kJ
q

(8)H k j c

f d bJ
q
H j g a

e b fJ
q

(8)

~2.9c!

5(
j

~21!2 jqZdeh2 j ( j 11)[2 j 11]H a j g

k h cJ
q
H j b f

d c kJ
q

(8)H f j b

a e gJ
q

~2.9d!

5(
j

~21!2 jqZdeh2 j ( j 11)@2 j 11#H a c h

k g j J
q
H k j c

f d bJ
q
H b e a

g j f J
q

(8)

~2.9e!

5(
j

~21!2 jqZdeh2 j ( j 11)@2 j 11#H g j a

c h kJ
q

(8)H j b f

d c kJ
q

(8)H a g j

f b eJ
q

~2.9f!

5(
j

~21!2 jqZdeh2 j ( j 11)@2 j 11#

3H g j a

c h kJ
q

(8)H j b f

d c kJ
q

(8)H b e a

g j f J
q

(8)

, ~2.9g!

where the summation parametersj are restricted by the triangular conditions,

max~ ua2gu,u f 2bu,uk2cu!< j <min~a1g,b1 f ,c1k!. ~2.10!
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When we use expressions~2.1a! or ~2.1b! for nonprimedq-6 j coefficients and expressions~2.2a!
or ~2.2b! for primed q-6 j coefficients, the asymmetric triangle coefficients depending on
summation parameterj are distributed in their numerators and denominators in expansions~2.9a!,
~2.9b!, and~2.9e!–~2.9g! as follows:

¹@ag j#¹@kc j#

1
3

¹@ f b j #

¹@kc j#
3

1

¹@ag j#¹@ f b j #
, ~2.11a!

when in expansions~2.9c! and ~2.9d! as follows:

¹@kc j#

¹@ag j#
3

¹@ f b j #

¹@kc j#
3

¹@ag j#

¹@ f b j #
. ~2.11b!

Particularly, they cancel if we express all but the firstq-6 j coefficients in~2.9a! by means of
~2.1a!, as well as the first and the lastq-6 j coefficients in~2.9b! and ~2.9d!, the secondq-6 j
coefficient in~2.9c!, and the first twoq-6 j coefficients in~2.9e!, when the remaining~primed!

q-6 j coefficients$ ...
...%q

(8) in ~2.9b!–~2.9e! are expressed by means of~2.2a! and the firstq-6 j
coefficient of~2.9a! by means of~2.1b!. It is expedient to use the inverse order of summation@with
substituted byz→a1c2 f 2z parameters in~2.1a!# for the secondq-6 j coefficients in~2.9a!,
~2.9c!, ~2.9e!, and the first and lastq-6 j coefficients in~2.9d!, with j appearing in the uppe
middle position of the corresponding 6j -symbol.

Now the summation formulas~A2! or ~A1! of the twisted very well-poisedq-factorial series34

~see Appendix A! may be used in~2.9a! or in ~2.9b! and ~2.9c!, respectively, if the summation
parametersj are restricted naturally by the non-negative integer values of the denominator
rial arguments,

max~a2g,u f 2bu,k2c!< j <min~a1g,c1k!, ~2.12a!

max~ f 2b,a2g!< j <min~a1g,b1 f ,c1k!, ~2.12b!

max~b2 f ,k2c!< j <min~a1g,c1k!, ~2.12c!

respectively. In~2.9d! and ~2.9e!, parametersj are, respectively, restricted by the natural limit

max~ ua2gu, f 2b,c2k!< j <b1 f , ~2.12d!

max~k2c,b2 f !< j <min~a1g,c1k!. ~2.12e!

In these two last cases, the summation formulas~A2! and ~A3!, respectively, may be used.
However, the formal summation intervals~2.12a!–~2.12e! may exceed the interval~2.10!,

determined by triangular conditions. Of course, separate 6j coefficients with spoiled triangula
conditions in~2.9a!–~2.9e! vanish, but such vanishing is not evident for the corresponding p
q-factorial sums of the type~2.1a! or ~2.2a!. We need to consider each case separately,
example, whenj 5b1 f 11,b1 f 12, . . . @i.e., for b1 f , j <min(a1g,c1k)#, or max(g2a,c2k)
.j>max(a2g,uf2bu,k2c), the second or the first sum of the type~2.1a! or ~2.1b! in expansion of
~2.9a! turns41 into 0, in accordance with Karlsson’s summation formula,42,43 or its q-version,44,45

(
s

~21!sq(n2m21)s

@s#! @n2s#! )
j 51

m

@Aj2s#5dm,nq2n(n11)/21(
j 51

m

Aj , ~2.13!

wherem<n are integers@cf. applications of~2.13! for the multiplicity-free isoscalar factors43,45of
SU(n) anduq(n)#.
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III. NEW EXPRESSIONS FOR 9j COEFFICIENTS OF SU„2… AND Uq„2…

A. Expressions with the full triangle restrictions of summation intervals

Hence, using the expansions~2.9a!–~2.9e!, alternative expressions forq-6 j coefficients, and
summation formulas~A1!–~A3!, at first we obtained five different expressions forq-9 j coeffi-
cients,

H a b e

c d f

h k g
J

q

5~21!c1h2a
¹@abe#¹@ f eg#¹@kbd#

¹@ach#¹@ f cd#¹@kgh#

3q( f 1h2e2k)(a1d2e1k11)2(a2e1 f )(a2e1 f 11)1Zdeh

3 (
z1 ,z2 ,z3

~21!z11z21z3@g2h1k1z1#! @a1c2h1z1#!

@z1#! @g1h2k2z1#! @c2a1h2z1#!

3
@2h2z1#! @2d2z2#! @c2d1 f 1z2#!

@z2#! @d2b1k2z2#! @c1d2 f 2z2#! @b1d1k2z211#!

3
@b1e2a1z3#! @e2 f 1g1z3#!q2z1(a1d2e1k2z22z311)

@z3#! @a1b2e2z3#! @ f 1g2e2z3#! @2e1z311#!

3
qz2(e2 f 2h1k1z3)1z3(a2d1 f 2h)@a1d2e1k2z22z3#!

@a2d1 f 2h1z11z2#! @e2 f 2h1k1z11z3#!
~3.1a!

5~21!e2 f 2h1k
¹@abe#¹@ f eg#¹@kbd#

¹@ach#¹@ f cd#¹@kgh#

3q(b1e2a)(e2 f 2h1k)2(a2e1 f 11)(a2e1 f )1Zdeh

3 (
z1 ,z2 ,z3

~21!z11z2@a1c2h1z1#! @g2h1k1z1#!

@z1#! @c1h2a2z1#! @g1h2k2z1#! @z2#!

3
@2h2z1#! @2b2z2#! @b2c1 f 1k2z2#!

@b2d1k2z2#! @b1d1k2z211#! @z3#! @a1b2e2z3#!

3
@b1c1 f 1k2z211#! @b1e2a1z3#! @e2 f 1g1z3#!

@ f 1g2e2z3#! @2e1z311#! @e1k2 f 2h1z11z3#!

3
qz1(b1e2a2z21z3)1z3(a1b1 f 2h1k2z211)2z2(e1k2 f 2h)

@b1e2a2z21z3#! @a1b1 f 2h1k1z12z211#!
~3.1b!

5~21!c2d1 f
¹@ach#¹@ f eg#¹@kbd#

¹@abe#¹@ f cd#¹@kgh#

3q(c2d1 f )(a1g)2(d2 f 1k)(c1k11)1Zdeh

3 (
z1 ,z2 ,z3

~21!z11z3@a1c2g1k2z1#! @a1c1g1k2z111#!

@z1#! @a1c2h2z1#! @a1c1h2z111#! @z2#!

3
@2c2z1#! @2d2z2#! @c2d1 f 1z2#!

@d2b1k2z2#! @c1d2 f 2z2#! @b1d1k2z211#! @z3#!

3
@a2b1 f 1g2z3#! @a1b1 f 1g2z311#! @2g2z3#!

@ f 1g2e2z3#! @e1 f 1g2z311#! @c2d1 f 2z11z2#!
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3
q2z1(a2d1 f 1g2k1z22z3)1z2(a1c1g1k2z311)2z3(c2d1 f )

@a2d1 f 1g2k1z22z3#! @a1c1g1k2z12z311#!
~3.1c!

5~21!b2a1 f 2g
¹@ach#¹@ f eg#¹@kbd#

¹@abe#¹@ f cd#¹@kgh#

3q2(a1h2k11)(a1b2e)2(e1 f 2a)(b1 f 11)1Zdeh

3 (
z1 ,z2 ,z3

~21!z11z21z3@2h2z1#! @g2h1k1z1#!

@z1#! @a2c1h2z1#! @g1h2k2z1#! @a1c1h2z111#!

3
@2b2z2#! @b2c1 f 1k2z2#! @b1c1 f 1k2z211#!

@z2#! @b2d1k2z2#! @b1d1k2z211#!

3
@2e2z3#! @a1b2e1z3#!qz1(a1b2e2z21z3)1z2(e1 f 1h2k2z311)

@z3#! @e1 f 2g2z3#! @b2a1e2z3#! @e1 f 1g2z311#!

3
qz3(b2a1 f 1h1k)@e1 f 2k1h2z12z3#!

@b1 f 2h1k2a1z12z2#! @a1b2e2z21z3#!
~3.1d!

5~21!c2b1e2g1k
¹@abe#¹@ f eg#¹@kbd#

¹@ach#¹@ f cd#¹@khg#

3qZdeh2(a2b2h1 f 1k)(a1b1e12)1( f 2b)( f 2b11)1(d2b1k)(e1 f 1h2k11)

3 (
z1 ,z2 ,z3

@k1g2h1z1#! @a1c2h1z1#! @2h2z1#!

@z1#! @g1h2k2z1#! @c2a1h2z1#!

3
~21!z21z3@2d2z2#! @c2d1 f 1z2#! @2e2z3#!

@z2#! @d2b1k2z2#! @c1d2 f 2z2#! @b1d1k2z211#!

3
qz3(a2d1 f 2h1z11z2)2z2(e1 f 1h2k2z111)2z1(a1d1e1k12)

@z3#! @a2b1e2z3#! @e1 f 2g2z3#! @e1 f 1g2z311#!

3
@a1d1e1k2z22z311#! @e1 f 1h2k2z12z3#!

@a1b1e2z311#! @a2d1 f 2h1z11z2#!
. ~3.1e!

Expression~3.1a! for q51 is equivalent to the known triple sum formula6 for 9 j coefficients of
SU~2!. The numerator–denominator distributions of factorials, depending on the summatio
rametersz1 , z2 , z3 , are different in all expressions~3.1a!–~3.1e!. All the terms in the last sum
of ~3.1b!, in the second sum of~3.1c!, and in the first sum of~3.1e! are of the same sign. Th
separate sums correspond to the finite basic hypergeometric series,

p11FpFa1 ,a2 , . . . ,ap11

b1 , . . . ,bp
;q,xG5(

k

~a1uq!k~a2uq!k¯~ap11uq!k

~b1uq!k¯~bpuq!k~1uq!k
xk, ~3.2!

with p53,x5q6(c11), c5( i 51
p11a i2( j 51

p b j , as defined~with a minor correction! by Álvarez-
Nodarse and Smirnov,35 instead of the standard basic hypergeometric functionsp11fp ~see Gasper
and Rahman44!. Parametersc521 andx51 for the balanced basic hypergeometric series, wh
appear in expressions forq-6 j coefficients.38,39

The intervals for summation parameterszi ( i 51,2,3) are mainly restricted by six@in ~3.1a!
and~3.1e!#, five @in ~3.1b! and~3.1d!#, or four @in ~3.1c!# triangle linear combinations of the typ
a1b2c, respectively. As result of their vanishing we may write 23 different expressions~as
double sums! for the stretched 9j coefficients as compositions of4F3@¯ ;q,x# and3F2@¯ ;q,x#
series@with latter in 10 cases corresponding to the Clebsch–Gordan coefficients29,45–47of uq(2)#.
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Although Minton’s summation formulas~see Ref. 44! may be used~12 times! for separate alter-
nating sums in~3.1a!–~3.1e!, satisfying special conditions, in the case of some stretched trian
@e.g., ford5b1k or e5b2a in Eq. ~3.1a!#, but the expressions obtained are equivalent to so
derived previously~although using the different triple sum expressions!. In contrast with Eq.
~32.13! of Ref. 3 and itsq-generalization45 @appearing, e.g., in context of the stretched isofact
of uq(3)#, which are expressed as compositions of two generic3F2@¯ ;q,x# series, they are les
symmetric and more complicated. Although these3F2@¯ ;q,x# series in all 23 new expression
may be rearranged into other forms separately@cf. Refs. 3, 39, 44# in such ways that the doubl
sums turn into compositions of two generic3F2@¯ ;q,x# series, we use more universal approa
in Sec. IV.

The different versions of the doubly stretchedq-9 j coefficients with single sums in expres
sions@mainly as generalizations of Eqs.~32.15!, ~32.17!, ~32.17a!, ~32.18!, and~32.20! of Ref. 3#
may be obtained straightforwardly from~3.1a!–~3.1e! with fixed couples of summation param
eters.

Additional restrictions forzi6zj in generic expressions~3.1a!–~3.1e! may be represented a
some couples of triangle linear combinations. No formula does represent any usual symm
9 j -symbol, but expressions~3.1a!–~3.1e! are mutually related by some ‘‘mirror reflection’’ (j
→2 j 21) symmetries.3,8

B. Expressions with the partial triangle restrictions of summation intervals

Summation formulas~A2! and ~A3! also may be used, when the first~primed! q-6 j coeffi-
cients in~2.9f! and~2.9g! are expressed by means of~2.2b! and remaining~primed or non primed!
ones by means of~2.2a! or ~2.1a!, respectively. It is impossible to get the definite summat
interval for j when expressing all threeq-6 j coefficients by means of primedq-6 j coefficients
~2.2a! or ~2.2b! with the numerator–denominator distribution of the type~2.11b!. Hence we derive
in addition two more triple sum expressions forq-9 j coefficients,

H a b e

c d f

h k g
J

q

5~21!a1c2h
¹@abe#¹@ f eg#¹@kbd#

¹@ach#¹@ f cd#¹@kgh#
qZdeh2(a1b1 f 2g)( f 1g2e11)2(g2a)(g2a11)

3 (
z1 ,z2 ,z3

~21!z11z21z3@g2h1k1z1#! @g1h1k1z111#!

@z1#! @g1k2a2c1z1#! @c1g1k2a1z111#!

3
@2b2z2#! @b1 f 1k2c2z2#! @b1 f 1k1c2z211#!

@2g1z111#! @z2#! @b1k2d2z2#! @b1d1k2z211#!

3
@b1e2a1z3#! @e2 f 1g1z3#!q2z1(b1e2a2z21z3)

@z3#! @a1b2e2z3#! @ f 1g2e2z3#! @2e1z311#!

3
qz2( f 1g2e2z311)1z3(a1b1 f 2g)@ f 1g2e1z12z3#!

@a1b1 f 2g2z12z2#! @b1e2a2z21z3#!
~3.3a!

5~21!a1c2h2e2 f 1g
¹@abe#¹@ f eg#¹@kbd#

¹@ach#¹@ f cd#¹@kgh#

3qZdeh2(a1b1 f 2g)(e1 f 1g12)2(g2a)(g2a11)

3 (
z1 ,z2 ,z3

~21!z11z3@g2h1k1z1#! @g1h1k1z111#!

@z1#! @g1k2a2c1z1#! @c1g1k2a1z111#!

3
@2b2z2#! @b1 f 1k2c2z2#! @b1 f 1k1c2z211#!

@2g1z111#! @z2#! @b1k2d2z2#! @b1d1k2z211#!
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3
@2e2z3#!qz1(a2b1e1z22z311)1z2(e1 f 1g2z312)1z3(a1b1 f 2g)

@z3#! @a2b1e2z3#! @e1 f 2g2z3#! @a1b1e2z311#!

3
@e1 f 1g1z12z311#! @a2b1e1z22z3#!

@e1 f 1g2z311#! @a1b1 f 2g2z12z2#!
. ~3.3b!

Here the summation intervals forz2 andz3 are restricted by one or two triangle conditions, b
z11z2 restricted only both together by some couples of triangular linear combinations. In
cases we may write 6 more expressions for the stretchedq-9 j coefficients as double sums
including 5 new compositions of generic4F3@¯ ;q,x# and3F2@¯ ;q,x# series, but only in 4 of
these expressions all the summation intervals are restricted by some triangle conditions.
remaining cases some couples of triangular linear combinations appear.

IV. REARRANGEMENT OF THE TRIPLE SUM EXPRESSIONS FOR q-9j COEFFICIENTS
AND STRETCHED q-9j COEFFICIENTS

A. Search for other rearrangement of the triple sum expressions

We may identify such three blocks~quintuplets! of factorials under the summation sign
numerators and denominators of each expression~3.1a!–~3.1e!, which may be expanded using th
Chu–Vandermonde summation formulas,3,39,44 given in Appendix B. For example, expressio
~3.1a!, ~3.1b!, and~3.1d! may be expanded as follows:

H a b e

c d f

h k g
J

q

5~21!c1h2a
¹@abe#¹@ f eg#¹@kbd#

¹@ach#¹@ f cd#¹@kgh#
q( f 1h2e2k)(a1d2e1k11)2(a2e1 f )(a2e1 f 11)

3q2(g1h2k)( f 1g2e)2(c2a1h)(c1d2 f )1(b1e2a11)(d2b1k)1Zdeh

3 (
z1 ,z2 ,z3 ,s1 ,s2 ,s3

q2z1(a2c2g1k11)2z2(b2c1 f 2k11)1z3(a2b1 f 1g)@2h2z1#! @2d2z2#!

@z1#! @z2#! @z3#! @2e1z311#! @s1#! @s2#! @s3#!

3
~21!z11z21z31s11s21s3qs1(a1d2e1k2z22z3)@b1e2a1z31s1#!

@d2b1k2z22s1#! @2b1s111#! @g1h2k2z12s2#!

3
q2s2(e2 f 2h1k1z11z311)2s3(a2d1 f 2h1z11z211)@2g2s2#! @2c2s3#!

@ f 1g2e2z32s2#! @c2a1h2z12s3#! @c1d2 f 2z22s3#!
~4.1a!

5~21!e2 f 2h1k
¹@abe#¹@ f eg#¹@kbd#

¹@ach#¹@ f cd#¹@kgh#
q(c1h2a)(b2c1 f 1k11)

3q(b1e2a)(e2 f 2h1k)2( f 1g2e)(g1h2k)2(a2e1 f 11)(a2e1 f )1Zdeh

3 (
z1 ,z2 ,z3

~21!z11z2q2z1(a2c2g1k11)2z2(b1c2 f 1k)1z3(a1b1 f 1g)@2h2z1#!

@z1#! @b2d1k2z2#! @b1d1k2z211#! @z3#! @2e1z311#!

3 (
s1 ,s2 ,s3

~21!s11s2q2s1(b1e2a2z21z311)2s2(e2 f 2h1k1z11z311)@2b2s1#! @2g2s2#!

@s1#! @z22s1#! @a1b2e2z32s1#! @s2#! @g1h2k2z12s2#!

3
q2s3(a1b1 f 2h1k1z12z212)@2c2s3#! @b2c1 f 1k2z21s3#!

@ f 1g2e2z32s2#! @s3#! @c1h2a2z12s3#!
~4.1b!
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5~21!b2c1 f 2g1hq(k2c21)(a1b1 f 2g)1(a2g)(b1 f 11)1(e1 f 2g)(a2b2 f 1g11)

3q(a2c1h)(c2a1g1k12)1Zdeh
¹@ach#¹@ f eg#¹@kbd#

¹@abe#¹@ f cd#¹@kgh#

3 (
z1 ,z2 ,z3

q2z1(c2a1g1k12)1z2(c2b1 f 2k11)2z3(a2b2 f 1g11)@2h2z1#!

@z1#! @b2d1k2z2#! @b1d1k2z211#! @z3#!

3 (
s1 ,s2 ,s3

~21!z21z31s11s21s3@2e2z3#! @2b2s1#!

@s1#! @z22s1#! @b2a1e2z32s1#! @s2#! @e1 f 2g2z32s2#!

3q2s1(a1b2e2z21z311)2s2(k2e2 f 2h1z11z3)2s3(b1 f 2h1k2a1z12z211)

3
@g2h1k1z11s2#! @b1c1 f 1k2z21s311#!

@2g1s211#! @s3#! @a2c1h2z12s3#! @2c1s311#!
. ~4.1c!

The summations overs1 , s2 , s3 give original expressions~3.1a!, ~3.1b!, and ~3.1d!, when the
summations of~4.1a!, overz1 , z2 , z3 give another expression forq-9 j coefficient, equivalent to
~3.1a! after transpositions of two last rows and two last columns,

H a b e

c d f

h k g
J

q

5H a e b

h g k

c f d
J

q

. ~4.2a!

Otherwise, the summations of~4.1b! over z1 ,z2 ,z3 give expression, equivalent to~3.1e!, after
changing the summation parameters and taking into account the same relation~4.2a!, as well as
the summations of~4.1c! overz1 ,z2 ,z3 give expression, equivalent to~3.1c!, again after change o
summation parameters and use of relation

H a b e

c d f

h k g
J

q

5H f d c

e b a

g k h
J

q

. ~4.2b!

Hence only three from these expressions forq-9 j coefficients are independent with respect
elementary rearrangements.

The quintuplet expansion by means of the Chu–Vandermonde summation formulas of e
sions ~3.3a! or ~3.3b! leads to vanishing of the summation limit forz1 and, therefore, it is not
helpful for the rearrangement ofq-9 j coefficients.

B. Different expressions for the stretched q -9j coefficients

In the stretched cases, e.g., fork5g1h in ~4.1a! and ~4.1b!, or for c5a1h in ~4.1c! some
couples of parameterszi andsj are fixed and summation overzl andsl ~where i , j , l is some
permutation of 1, 2, 3! is possible, using the Chu–Vandermonde formulas~see Appendix B!.
Hence we may derive 14 versions of expressions~from which at least 13 are independent! for the
stretchedq-9 j coefficients as double sums over parameterszj andsi ~where further the subscript
of the summation parameters will be omitted! as compositions of the both generic3F2@¯ ;q,x#
series. For example, from~4.1a! and ~4.1b! with a5c1h andz15s350, from ~4.1a! with k5h
1g and z15s250 or with e5 f 1g and z35s250, and from~4.1c! with c5a1h and z15s3

50 @using some symmetries~2.7! of the q-9 j coefficients and, in the last case, some change
summation parameter# we obtain, respectively, the following expressions:
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H a b e

c d f

h k e1 f
J

q

5S @2e#! @2 f #!

@2g11#! D 1/2¹@ghk#¹@bdk#¹@cah#

¹@eab#¹@ f cd#
q(h2b2c2e)(b1c1 f 2k)12bc1Ze f hk

3(
s,z

~21!s1z@a2c1h1s#! @k2b1d1z#!

@s#! @a1c2h2s#! @b2c2e1h1s#! @2h1s11#!

3
qs(b1c1 f 2k2z)1z(b1c1e2h)@h2g1k1s1z#!

@z#! @b1d2k2z#! @k2b1c2 f 1z#! @2k1z11#!
~4.3a!

5~21!b2a1 f 1h2kS @2e#! @2 f #!

@2g11#! D 1/2¹@ghk#¹@bdk#¹@cah#

¹@eab#¹@ f cd#

3q(b1c2 f )(k2g2h)1k(g1h11)22 f h1Zbc f1Zghk

3(
s,z

~21!s@2h2s#! @e1h2b1c2s#! @k2b1d1z#!

@s#! @c1h2a2s#! @a1c1h2s11#! @g1h2k2s2z#!

3
qs(b1c1 f 2k2z)1z(b1c1e1h11)

@z#! @b1d2k2z#! @c2b2 f 1k1z#! @2k1z11#!
~4.3b!

5~21!d1 f 2cS @2e#! @2 f #!

@2g11#! D 1/2 ¹@cah#¹@ghk#

¹@ f cd#¹@eab#¹@bdk#

3q(b2c1e1h11)(g2h1k)2(e1k)(e1k11)1Zbcg

3(
s,z

~21!s1z@a2c1h1s#! @b1c1e2h2s#!

@s#! @a1c2h2s#! @2h1s11#! @g2h1k2s2z#!

3
qs(c2b1 f 1k2z)2z(b2c2e1h11)@b1d2k1z#! @2k2z#!

@z#! @d1k2b2z#! @b1c2 f 2k1z#!
~4.3c!

5q2a f2(a1b2e)(a1d1 f 2h)1ZbdghS @2e#! @2 f #!

@2g11#! D 1/2 ¹@ghk#¹@dbk#

¹@hac#¹@ f cd#¹@eab#

3(
z,s

~21!a1c2h1s1z@2b2z#! @b1d2g1h2z#!

@z#! @b1d2k2z#! @b1d1k2z11#! @s#!

3
qz(a1d1 f 2h2s)2s(g1h2b2d11)@2a2s#! @h2a1c1s#!

@a1b2e2z2s#! @a1c2h2s#! @d2a2 f 1h1s#!
~4.3d!

5qk(2 f 22b1k21)1(g2h1k)(a1b2 f 2h2k)1Zcdeh

3S @2e#! @2 f #!

@2g11#! D 1/2¹@ghk#¹@kbd#¹@ach#

¹@ f cd#¹@eab#

3(
s,z

~21!c2d1e2g1zq2s(a1b1e1z11)2z(h2g1k)

@s#! @g2h1k2s#! @a1c2h2s#! @2h1s11#!

3
@c1h2a1s#! @b1d2k1z#! @b1e2a1z#!

@z#! @d1k2b2z#! @b2a2 f 1h2k1s1z#! @2b1z11#!
. ~4.3e!

Expression~4.3a! is invariant with respect to simultaneous permutations of the two first colu
and rows of the stretchedq-9 j coefficients in accordance with~2.8! and is related to the particula
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case of Eqs.~26!–~27! of Ref. 6, that appeared in context of the stretched isoscalar factors o
Sp~4! or SO~5! group restricted to SU~2!3SU~2!, but ~4.3b! and~4.3e! are more convenient, sinc
separate sums are not alternating.

The linear combinations of parametersa1b2e, d2b1k, and c1d2 f restrict the both
summation parameters in expressions~4.3b!, ~4.3c!, and~4.3d!–~4.3e!, respectively, for theq-9 j
coefficients with the couples of adjacent consecutive stretched triangles@cf. Eq.~32.21! of Ref. 3#.
Otherwise, the summation of expression~4.3a! for g1h2k50, or g2h1k50 is nontrivial, as
well as Eq.~4.3b! for g2h1k50, Eq. ~4.3c! for a1b2e50, or g1h2k50, and Eqs.~4.3d!–
~4.3e! for g1h2k50.

The both separate sums only in Eqs.~4.3a! and ~4.3d! correspond to the CG coefficients o
uq(2).29,46,47Hence the sum overz in ~4.3d! @as well as the sum overs in ~4.3b!# may be included
@using Eq.~5.17! of Ref. 47# into the Clebsch–Gordan coefficients ofuq(2), reexpressed by
means of Eq.~41a! of Ref. 46 ~with changed summation parameters! and the following expres-
sions for the stretchedq-9 j coefficients may be derived,

H a b e

c d f

h k e1 f
J

q

5~21!a1b1c1d2h2k
~@2e#! @2 f #! @g1h2k#! @g1h1k11#! !1/2

~@2g11#! @2k11# !1/2¹@hac#¹@ f cd#¹@eab#

3q2a f2(a1b2e)(a1d1 f 2h)1b(g2h)1(b1d2k)(b1d1k11)/21Zbdgh

3(
m

~21!a2e1mq2m(g1h11)
@a1e2m#! @c2e1h1m#!

@a2e1m#! @c1e2h2m#!

3S @d1g2h2m#! @b1m#!

@d2g1h1m#! @b2m#! D
1/2F d b k

g2h2m m g2hG
q

~4.4a!

5
~@2e#! @2 f #! @h1k2g#! @g2h1k#! @g1h2k#! @g1h1k11#! !1/2

~@2g11#! !1/2¹@hac#¹@ f cd#¹@eab#¹@kbd#

3q(b1d2k)(a1b1 f 2h1k11)2(a1b2e)(a1d1 f 2h)12a f1Zbdgh

3(
s,z

~21!a1b1c1d2h2k1s1zq2s(g1h2k11)2z(g2h1k11)

@s#! @a1c2h2s#! @z#! @b1d2k2z#!

3
@2a2s#! @c1h2a1s#! @2d2z#! @b2d1k1z#!

@d2a2 f 1h1s2z#! @a2d2e1k2s1z#!
~4.4b!

5S @2e#! @2 f #! @a2b1e#! @a1b2e#!

@2g11#! @e2a1b#! @a1b1e11#! D
1/2¹@ghk#¹@bdk#

¹@ f cd#¹@ach#

3q(c1d2 f )(a1b2e11)2(a1b1e11)(b1d2k)12ed1Zacgk

3(
s,z

@2c2s#! @a2c1h1s#! @k2b1d1z#!

@s#! @c1h2a2s#! @z#! @b1d2k2z#! @2k1z11#!

3
~21!c1k2b2 f 1sq2s(a1b2e11)1z(a1b1e11)

@c2b2 f 1k1z2s#! @a2c1g2k2z1s#!
. ~4.4c!

Expression~4.4b! satisfies symmetry relation~2.8! for permutations of the two first columns o
rows of the stretchedq-9 j coefficient and is aq-generalization of standard formula~32.13! of Ref.
3 for the stretched 9j coefficients. The linear combinations of parametersa1b2e or c1d2 f
restrict the both summation parameters in expression~4.4b!, wheng1h2k or c1d2 f restrict the
summation limits in expression~4.4c!. Hence expressions~4.4b! and ~4.4c! for these cases o
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adjacent consecutive stretched triangles also turn into single terms, when forg1h2k50, or g
2h1k50 in ~4.4c! the separate summations may be performed using consequently Karls
~2.13! and Chu–Vandermonde~see Appendix B! summation formulas@as well as fora1b2e
50 in ~4.4c!#. Note that the Chu–Vandermonde or Karlsson summation formulas are need
the last summation of 11 doubly stretched cases of triple sum expressions~3.1a!–~3.1e!, e.g., in
~3.1a! for k5g1h5b2d, or in ~3.1d! for g5e1 f 5k2h.

For the diverging adjacent stretched triangles, e.g., withe5b2a5g2k, summation param-
eters in~4.4c! are dependent and the doubly stretchedq-9 j coefficients may be expressed as sing
sums with the alternating terms@cf. Eq. ~32.18! of Ref. 3#, when using Eq.~3.1a! for c5 f 2d
5a2h an equivalent formula may be written directly. Again, for the merging adjacent stret
triangles, e.g., withg5h1k5e1 f , the doubly stretchedq-9 j coefficients may be expressed
single sums with the fixed sign of all terms@cf. Eq. ~32.20! of Ref. 3# by means of formula~4.4b!
@as well as forb5d1k5a1e by means of Eq.~3.1e!, in contrast with the remaining formulas o
this paper#. These single sums in the both cases are related to the generic4F3@¯ ;q,x# series.

The q-9 j coefficients with the both stretched triangles appearing in the different layer
rows of theq-9 j -symbol are related to generic3F2@¯ ;q,x# series. In the case of two paralle
stretched triangles@e.g., forh5a1c in ~4.3a! or ~4.4b!# they are proportional@cf. Eq. ~32.15a! of
Ref. 3# to the CG coefficients ofuq(2) ~see Refs. 29, 46, and 47!, with appearing two different
types of expressions. Otherwise, specialq-9 j coefficients with two antiparallel stretched triangl
may be expressed in four different forms@see ~4.3b! for a5c1h, or ~4.3c! for b5d1k as
generalizations of Eqs.~32.17a! and ~32.17! of Ref. 3, as well as Eq.~3.1c! for h5a1c andb
5d1k, or Eq.~3.1e! for b5d1k andg5e1 f # and correspond to the CG coefficients ofuq(1,1),
with the expressions including either the alternating terms@with diverse distribution of summation
parameter signs in two numeratorq-factorial arguments, in analogy with CG coefficients
uq(2)#, or the fixed sign terms~with one or three numeratorq-factorial arguments!. Note, that
expressions for the triply stretchedq-9 j coefficients with the three mutually antiparallel stretch
triangles@e.g.,~4.3a! or ~4.4c! for a5c1h andd5b1k# are not summable.

Expression related to~4.4a! may be derived@in contrast with the intermediate version o
~4.4c!# also from expansion32,33@cf. Ref. 48 in the SU~2! case# of theq-9 j coefficients in terms of
the Clebsch–Gordan coefficients ofuq(2) @cf. Eq. ~3.12! of Ref. 32# which in the stretched cas
with h5a1c ~and with extreme CG coefficient for couplinga3c→h in the r.h.s. equal to 1! may
be written as follows:

H a b e

c d f

a1c k g
J

q21

5
q2Ze f hk

~@2e11#@2 f 11#@2h11#@2k11# !1/2H Fh k g

h g2h gG
q
J 21

3(
m

Fa b e

a m2a mG
q

F e f g

m g2m gG
q

Fc d f

c g2m2c g2mG
q

3F b d k

m2a g2m2c g2hG
q

~Rcb!cm2a
cm2a , ~4.5!

where

~Rcb!cm2a
cm2a5q2c(m2a)

is a diagonal extreme element of triangular braidingR-matrix and all the CG coefficients with
exception of the last one may be expressed without sum. The summation over non-di
elements ofR-matrix can be escaped only in special stretched case~4.5!.

Both expressions~4.4b! and ~4.4c! correspond toq-generalizations of the Kampe´ de Fériet36

function F1:1
1:2, which is defined as follows:
                                                                                                                



tural

d

-

veral

ntro-

7602 J. Math. Phys., Vol. 41, No. 11, November 2000 Sigitas Ališauskas

                    
6FC:D
A:BF ~a!

~c!

:
~b!

~d!

;
~b8!

~d8!

;x,y;qG
5(

s,t

`
) j 51

A ~aj uq!s1t

) j 51
C ~cj uq!s1t

) j 51
B ~bj uq!s~bj8uq! t

) j 51
D ~dj uq!s~dj8uq! t

x6sy6(122d)t

@s#! @ t#!
q6(A2C)st, ~4.6!

with special parameters

x5qp11, p5( j 51
A aj1( j 51

B bj2( j 51
C cj2( j 51

D dj ,

y5qp811, p85( j 51
A aj1( j 51

B bj82( j 51
C cj2( j 51

D dj8 ,

d5dAC

for A1B5C1D11 and uA2Cu<1. Of course, series~4.6! turn into usual Kampe´ de Fériet
function FC:D

A:B @¯ ;1,1# for q51. Unfortunately, the standard definition16,17

FC:D
A:BF ~a!

~g!

:
~b!

~d!

;
~b8!

~d8!

;x,y;qG ~4.7!

~cf. Refs. 16 and 17! in terms of the asymmetricq-factorials44

~a;q!n5~12a!~12aq!¯~12aqn21!, n51,2,. . . ,

derived after substitution

q→q1/2, @n#!→~q;q!n~q21/22q1/2!2nq2n(n11)/4,
~4.8!

~auq!n→~qa;q!n~q21/22q1/2!2nq2n(2a1n21)/4,

may be not convenient in the double sums that appear in~4.4b! and~4.4c!, since argumentsx and
y do not turn intoq both together, but turn either intoq andq2p8 or into q2p andq, respectively.

Furthermore, theq51 versions of Eqs.~4.3a!–~4.3e! correspond to the Kampe´ de Fériet36

functionsF0:2
1:2 or @after reversing the order of summations, associated with spoiling some na

restrictions for both summation parameters in~4.3b!–~4.3d!# to F1:1
0:3 ~cf. Refs. 16 and 17!. Oth-

erwise, in the genericqÞ1 case they can be expressed in terms of our~4.6! as2F0:2
1:2@¯ ;x,y,q#

or 1F1:1
0:3@¯ ;x,y;q#, but only1FC:D

A:B @¯ ;x,y,q# is equivalent to someFC:D
A:B @¯ ;q,q;q# and for

2FC:D
A:B @¯ ;x,y,q# with AÞC the factorsqmn, spoiling standard definition ofFC:D

A:B functions,
cannot be eliminated in the new expansion@cf. Eq. ~9! of Ref. 16#, unless transitionq→q21 is
performed preliminary.

Special rearrangement and summation formulas of the doubleq-factorial series and relate
Kampéde Fériet36 functions are given in Appendix C.

V. CONCLUDING REMARKS

Using Dougall’s summation formula28 of the very well-poised4F3(21) series and its gener
alization for theq-factorial series we derived six new~independent! triple sum expressions for 9j
coefficients of SU~2! and seven independent triple sum expressions forq-9 j coefficients of the
quantum algebrauq(2). Rearrangement technique of the multiple sum expressions give se
classes of double sum expressions for the stretched 9j coefficients of SU~2! anduq(2), related to
the Kampe´ de Fériet functions. Hence the new multiple basic hypergeometric series are i
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duced. Further, we intend to use Dougall’s summation formula28 of the very well-poised5F4(1)
series and the transformation formula34 of the very well-poised6F5(21) series, in order to
eliminate the factorial sums weighted with factor (2j 11) or the very well-poised series in th
traditional expressions of the 12j coefficients of SU~2! of both kinds2,3 in terms of 6j coefficients,
and especially in the stretched and doubly stretched 12j coefficients of the both kinds.

APPENDIX A: GENERALIZATIONS OF DOUGALL’S 4F3„À1… SUMMATION FORMULA
FOR TWISTED q-FACTORIAL SERIES

We present here 3 summation formulas of the twisted very well-poisedq-factorial series, as
generalizations of Dougall’s summation formula~2.3.4.8! of Ref. 28 of the very well-poised

4F3(21) series. Particularly, equation

(
j

~21!p11 j 11qj ( j 11)2p1(p111)@2 j 11#@ j 2p121#!

@p11 j 11#! @p22 j #! @p21 j 11#! @p32 j #! @p31 j 11#!

5
q2(p11p211)(p11p311)

@p11p211#! @p11p311#! @p21p311#!
~A1!

~valid when the summation parameterj is restricted naturally by the non-negative integer valu
of the denominator factorial arguments! was derived by Alisˇauskas.34 Note that the very well-
poised6F5(21) and7F6(1) series appear in context of the Clebsch–Gordan and 6j coefficients
of SU~2! as presented in Ref. 49~see also Ref. 3!, as well as theirq-analogs in the CG~cf. Ref.
35! and 6j coefficients~cf. Ref. 50! of uq(2). The summation formula~A1! is obtained after
cancelling some factorials in the numerator and denominator.

Two other summation formulas,

(
j

qj ( j 11)2p1(p111)@2 j 11#@ j 2p121#! @ j 2p321#!

@p11 j 11#! @p22 j #! @p21 j 11#! @p31 j 11#!

5
q2(p11p211)(p11p311)@2p12p322#!

@p11p211#! @p21p311#!
~A2!

and

(
j

~21!p22 jqj ( j 11)@2 j 11#@ j 2p121#! @ j 2p321#! @2p32 j 22#!

@p11 j 11#! @p22 j #! @p21 j 11#!

5
qp1(p111)2(p11p211)(p11p311)

@p11p211#!
@2p12p322#! @2p22p322#!, ~A3!

correspond to the analytical continuation of~A1!.

APPENDIX B: CHU–VANDERMONDE SUMMATION FORMULAS

We present here the Chu–Vandermonde–Gauss–Heine summation formulas,3,39,44

(
s

qs(a1b1c)

@s#! @b2s#! @c2s#! @a1s#!
5

qbc@a1b1c#!

@b#! @c#! @a1b#! @a1c#!
, ~B1a!

(
s

~21!sqs(b1c2a21)@a2s#!

@s#! @b2s#! @c2s#!
5qbc

@a2b#! @a2c#!

@b#! @c#! @a2b2c#!
~B1b!

for a>b,c,
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(
s

~21!sqs(b2a1c21)@a2s#!

@s#! @b2s#! @c2s#!
5~21!cqbc

@a2c#! @b2a1c21#!

@c#! @b#! @b2a21#!
~B1c!

for b.a>c, and

(
s

qs(a1b2c12)
@a2s#! @b1s#!

@s#! @c2s#!
5q(b11)c

@a2c#! @b#! @a1b11#!

@c#! @a1b2c11#!
, ~B1d!

valid for finite q-factorial series and needed for rearrangements of Sec. IV.

APPENDIX C: REARRANGEMENT FORMULAS OF SOME DOUBLE SUMS AND KAMPE´

de FÉRIET FUNCTIONS

Comparing the double finiteq-factorial series that appear in the most symmetric expres
~4.4b! for the stretchedq-9 j coefficients with its counterparts in Eqs.~4.4c! and ~4.3a!–~4.3e!,
respectively, and using single non-negative integersa, b, c, d, m, n, e2a, f 2b ~as the
parameters restricting summation intervals in different situations! instead of the triangular linea
combinations of angular momenta~after changing some summation parameters!, the following
rearrangement formulas may be written:

(
s,z

~21!s1z
qs(b1c1e2m2n11)2z(a1d1 f 2m2n11)@c1s#! @e2s#! @d1z#! @ f 2z#!

@s#! @a2s#! @z#! @b2z#! @n2s2z#! @m2a2b1s1z#!
~C1a!

5
@e2a#! @a1c2m#! @d#! @d1 f 11#!

@a#! @m1n2a2b#! (
s,z

@c1s#! @e2s#! @ f 2z#!

@s#! @e2a2s#! @z#! @b2z#!

3
~21!n1sqn(b1c11)2s(m11)2z(a1b1c1d2m11)

@d1 f 112z#! @n2s2z#! @a1c2m2n1s1z#!
~C1b!

5qa(c1e2n11)1bn
@d#! @d1 f 11#! @e2a#! @c1e11#!

@m1n2a2b#!

3(
s,z

~21!a1s1zq2s(e2n1z)2z(b1d2m)@a1c2s#! @ f 2z#! @m1n2s2z#!

@s#! @a2s#! @m2s#! @c1e112s#! @z#! @b2z#! @n2z#! @d1 f 112z#!

~C1c!

5qn(c11)2b(b1d2m)2(b1e2a)(c1e2n11)
@d#! @d1 f 11#! @e2a#! @c1e11#!

@m1n2a2b#!

3(
s,z

~21!a1e1n1s@c1e2a2s#! @c1e2m2s#! @ f 2b1z#!

@s#! @e2a2s#! @c1e112s#! @b1c1e2m2n2s2z#!

3
qs(b1e2n2z)1z(b1c1d1e2m11)

@z#! @b2z#! @n2b1z#! @d1 f 2b111z#!
~C1d!

5qa(c11)2n(a1d2m)
@e2a#! @c1e11#! @ f 2b#!

@b#! @m1n2a2b#! (
s,z

~21!s1zqs(e2z)2z(m2a11)

@z#! @n2z#! @ f 2b2n1z#!

3
@ f 2n1z#! @d1n2z#! @c1s#! @a1b1d2m2s#!

@s#! @a2s#! @c1e2a111s#! @a1b1d2m2s2z#!
~C1e!
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5qa(c1e2m2n)2b(d1 f 2n11)
@ f 2b#! @d1 f 11#!

@m1n2a2b#! (
z,s

~21!a1b1s1z
@e2a1s#!

@s#! @a2s#!

3
@a1c2s#! @b1d2z#! @m1n2a2z#!qz(a1 f 2n2s)2s(c1e2m2n11)

@n2a1s#! @z#! @b2z#! @d1 f 112z#! @m2s2z#!
~C1f!

5qa(a1c1d11)2n(a1d11)1(a1b2 f )(b2m)
@c#! @d#! @ f 2b#! @d1 f 11#! @c1e11#!

@b#! @m1n2a2b#!

3(
s,z

~21!b2 f 1n1zq2s(a1b1c1d2m1z11)2z(m1n2a2b)

@s#! @a2s#! @a1d1 f 2m2n2s#! @c1e2a1s11#!

3
@e2a1s#! @b1z#! @b1d2m1z#!

@z#! @ f 2b2z#! @b2a2 f 1n1s1z#! @b1d1z11#!
. ~C1g!

We have only single terms in~C1a!, ~C1b!, and~C1e! for n50, as well as in~C1a! and~C1f! for
m50. The bizarre restrictionsb1c1e2m2n>0 for ~C1b! and ~C1d! and a1d1 f 2m2n
>0 for ~C1e! and ~C1g! also correspond to some triangular conditions with remaining dou
series summable for their limit values. Otherwise, restrictionsc1e2m>0 in ~C1d!, a1b1d
2m>0 in ~C1e!, or d1 f 2m>0 in ~C1g! correspond to some sums of triangular conditions.

Using above derived expressions for the stretchedq-9 j coefficients, we may write in the
notations~4.6! the following rearrangement formulas for theq-generalizations of special Kamp´
de Fériet functionsF1:1

0:3, F1:1
0:3, andF1:1

1:2:

1F1:1
0:3F 2 b1 , b2 , 2m b18 , b28 , 2n

: ; ;xa ,ya ;q

b11b18 d d8
G ~C2a!

52F0:2
1:2F 12b12b182m2n 2m2d11,2m 2d82n11,2n

: ; ;xb ,yb ;q

2 12b12m,12b22m 12b182n,12b282n
G

3~21!m1nqm(b22b182d2m11)1n(b282b12d82m2n11)
~b1uq!m~b2uq!m~b18uq!n~b28uq!n

~duq!m~d8uq!n~b11b18uq!(m1n)

~C2b!

52F0:2
1:2F b22b12b182n11 b22d11,b2 12d82n, 2n

: ; ;xc ,yc ;q

2 b21m11,b22b111 12b182n,12b282n
G

3~21!b181b21d1m21qn(b282d8)1b2(d1m2b221)1b18(2b11b1812n21)

3
~b28uq!n~d2b2uq!(2d2m)

~d8uq!n~m11uq!(2d2m)
Fb12b221

2b182n G
q
F2b12b18

2b1
G

q

21

~C2c!
                                                                                                                



7606 J. Math. Phys., Vol. 41, No. 11, November 2000 Sigitas Ališauskas

                    
51F1:1
0:3F 2 b12b281d81n,b2 ,2m d82b28 ,b18 ,d81n

: ; ;xd ,yd ;q

d82b281b11b181n d d8
G

3~21!b18q2b18(b282d82n)
~d82b281b11b181nuq!(2b

18)

~2b111uq!(2b
18)

~C2d!

51F1:1
0:3F 2 b18,12d2m,2m d82b28,12b12b182m2n,2n

: ; ;xe ,ye ;q

12b12m2n b22d2m11 12b282n
G

3qm(b22b1821)1n(b181b282d8)
~12b12m2nuq!(2b

18)~d2b2uq!m~b28uq!n

~2b111uq!(2b
18)~duq!m~d8uq!n

~C2e!

52F0:2
1:2F b1 d2b22m b28 , 2n

: ; ;xf ,yf ;q

2 12b182m,d b282d82n11,b11b181m
G

3qm(b121)1nb28
~b18uq!m~d82b28uq!n

~b11b18uq!m~d8uq!n
~C2f!

51F1:1
1:2F b18 12d2m, 2m d82b28 , 2n

: ; ;xg ,yg ;q

12b12m2n b22d2m11 d8
G

3qm(b22b18)1b18n
~d2b2uq!m~2b12m2n11uq!(2b

18)

~duq!m~2b111uq!(2b
18)

~C2g!

52F1:1
1:2F b18 b22d11,12d2m b28 ,2n

: ; ;xh ,yh ;q

b11b182d11 b22d2m11 d8
G

3qb18(d21)1mb2

~d2b2uq!m~d2b1uq!(2b
18)

~duq!m~2b111uq!(2b
18)

~C2h!

51F1:1
1:2F b22b12b182n11 b22d11,m11 12d82n,2n

: ; ;xh ,yh ;q

b22b182d2n12 b21m11 12b282n
G

3~21!b181b21d1m21qb2(2b182b21d1m21)2b18(b1821)1n(b282d8)12(b22b12b182n11)(b22b182d11)

3
~b28uq!n~d2b2uq!(2d2m)

~d8uq!n~m11uq!(2d2m)
F b12d
b11b182b21n21G

q
F2b12b18

2b1
G

q

21

~C2i!
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52F1:1
0:3F 2 b1 , b28 , 2n b18 , b2 , 2m

: ; ;xj ,yj ;q

b1 1b18 b282d82n11 b22d2m11
G

3qmb21nb28
~d2b2uq!m~b282d82n11uq!n

~duq!m~2n2d811uq!n
~C2j!

51F0:2
1:2F b22b12b182n11 d82b28 ,2n b22d11,m11

: ; ;xk ,yk ;q

2 d2b12n,12b282n b21m11,b22b182d12
G

3~21!b181b21d1m11q2(b22b12b182n11)(b22b182d11)2b2(b22d2m11)1n(b282d8)1b18(2b22b1811)

3
~b28uq!n~d2b2uq!(2d2m)

~d8uq!n~m11uq!(2d2m)
F b11n2d
b22b182d11G

q
F2b12b18

2b1
G

q

21

, ~C2k!

where

xa5qb22b182d2m11 and ya5qb282b12d82n11,

xb5qb22b182d2m2n11 and yb5qb282b12d82m2n11,

xc5qb22b182d2m2n11 and yc5qb22b11b282d82n11,

xd5qb22b182d2m11 and yd5q2b111,

xe5qb11b182b21n and ye5qd82b18,

xf5qb11b182b2 and yf5qd82b182m,

xg5qb11b182b21n and yg5qb11b182b281m,

xh5q2b111 and yh5qd2d82b11b282n,

xj5qd82b18 and yj5qd2b1,

and

xk5qd82d1b22b1811 and yk5q2n2b111,

respectively, where only parametersm,n,2b1 ,2b18 are apparently correlated with some triang
lar conditions. Special Kampe´ de Fériet functions~C2a! and~C2b! correspond, respectively, to th
inverse and direct sums in~4.3a!, when function~C2c! corresponds to the direct sum in~4.3b!,
function ~C2d! corresponds to the inverse sum in~4.3c!, and functions~C2e! and ~C2f! corre-
spond, respectively, to the inverse and direct sums in~4.3d!. Further, functions~C2g!, ~C2h!, and
~C2i! correspond, respectively, to the sums that appeared in~4.4b! and~4.4c!, as well as in~C1a!
and ~C1b!. The two last functions~C2j! and ~C2k! are derived from~C2a! and the direct sum in
~4.3c!, respectively, after using the symmetry of1F1:1

1:2 function in ~C2g! with fixed b1 and b18
under interchange of two sets,
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b2 ,m,d,d8 and b28 ,n,b282d82n11, b22d2m11,

together with transition to2F1:1
1:2 andq→q21.

Finiteness of the Kampe´ de Fériet series~C2a! is ensured either by the non-negative integ
values ofm andn, or by the nonpositive integer values ofb1 andb18 , or by some of their couples
~m and 2b18 , or 2b1 and n). The both summation parameters are also restricted by the
negative integer values ofm and n in series~C2b!, ~C2e!–~C2g!, and ~C2j!, as well as by the
non-negative values ofm and2b18 in series~C2a! and~C2d!, or by the non-negative values ofn
and d2b221 in series~C2c!, ~C2h!, ~C2i!, and ~C2k!. Furthermore, the parameterb18 with the
nonpositive integer values restricts the double series in~C2h! and~C2i!, as well as separate serie
in ~C2a!, ~C2e!, and ~C2j!. Series~C2f! are finite for the non-positive integer values of sing
parameterb1 , as well as~C2c!, ~C2i!, and ~C2k! for the non-positive integer values ofb22b1

2b182n11. Hence, special Kampe´ de Fériet functions~C2a!–~C2k! are summable forb150, or
b1850, or b22b12b182n1150 ~i.e., for c5b12b185b22n11) and, taking into account the
symmetry of ~C2a! with respect to the interchange of two sets,b1 ,b2 ,2m;d and b18 ,b28 ,
2n;d8, for b282b182b12m1150 ~i.e., for c5b12b185b282m11). The subscripts of the
q-Pochhammer symbols in the proportionality coefficients are accepted as non-negative in
when they perform the restricting role or correspond to definite non-negative linear combin
of 9 j parameters. Otherwise, for the negative integer subscripts (2n) the following substitution
may be used:

~a1nuq!(2n)

~b1nuq!(2n)
→ ~buq!n

~auq!n
.

Hence in theq51 case up to 5 or 6 parameters may be complex in the rearrangement for
~C2a!–~C2j! of special Kampe´ de Fériet series, with exception of~C2c!, ~C2i!, and~C2k!. In these
three cases, which ensure the summability of the remaining series forb12b185b282m11, onlyb28
andd8 definitely may be taken the complex numbers. Extension problem to infinite series is
since it is impossible to ensure the non-negative values of the all denominator argumentsF1:1

0:3

series~C2a!–~C2k! in the standard situation of the SU~2! stretched 9j coefficients, with exception
of special Kampe´ de Fériet series~with rather complicate parameters and proportionality coe
cient!, which could be written instead of~C1g!.

Using the substitution~4.8! and different strategy for each mutual relation, we may transfo
the double finite series~C2a!, ~C2d!, ~C2e!, ~C2g!–~C2i!, and~C2k! into standard functionsFC:D

A:B ,
with partial cancelling of theq-phases of the proportionality coefficients. Preliminary in the

situations onlyqb28 and qd8 can always be replaced by the complex numbers. Analogically,
double finite series~C2b!, ~C2c!, and ~C2f!–~C2j! may be transformed into standard functio
FC:D

A:B after substituting7→6 in the superscripts of7FC:D
A:B series andq21→q in the correspond-

ing q-phases.
Note, that the summable Kampe´ de Fériet seriesF1:1

0:3 ~that appeared in Refs. 16 and 1!
cannot be embedded into above presented versions ofF1:1

0:3 series, or be derived from the expre
sions of the stretched 9j coefficients given in Sec. IV. Actually, expansion~4.1a! does not sim-
plify under conditiona1b2e50, but the6F1:1

0:3 series16,17 appear from expression~3.1a! in the
doubly stretched case witha1b2e50 andg5k1h, when 9j coefficients are proportional to th
Clebsch–Gordan coefficients. In this particular case of expression~3.1a!, we may also identify
quintuplet of factorials under the summation sign in the numerator and denominator and ree
it using the Chu–Vandermonde summation formulas given in Appendix B. As result of
alternative summations we obtain a3F2@¯ ;q,x# series, which is completely summable fork
5b1d.

Special cases of6F0:2
1:2 functions should be mentioned in context of the double sums~with 7

independent parameters! that appear in the extremeuq(3) canonical seed isofactors34,51 and as
definite matrix elements of theuq(3) algebra~see Sec. V of Ref. 34! and are related to som
q-factorial series resembling the very well-poised9f8 basic hypergeometric series@which for q
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51 are equivalent to the very well-poised8F7(21) classical hypergeometric series#. Further, the
extreme denominator~normalization! functions of theuq(3) and SU~3! canonical tensor operator
~with 5 independent parameters! may be expressed in terms of6F1:2

1:3 functions@cf. Eqs.~5.9c! and
~5.9d! of Ref. 34, or Eqs.~3.7! and~3.14! of Ref. 52#, or in terms of6F2:1

2:2 functions@see Eq.~2.8!
and Sec. II of Ref. 53, taking into account the definite controversies of theq-extension from the
classical SU~3! case#. Besides, the summation possibilities for these special Kampe´ de Fériet
functions are elementary.
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Generating-function method for tensor products
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Montréal, Québec H3G 1M8, Canada

P. Mathieua)
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This is the first of two articles devoted to a exposition of the generating-function
method for computing fusion rules in affine Lie algebras. The present paper is
entirely devoted to the study of the tensor-product~infinite-level! limit of fusions
rules. We start by reviewing Sharp’s character method. An alternative approach to
the construction of tensor-product generating functions is then presented which
overcomes most of the technical difficulties associated with the character method. It
is based on the reformulation of the problem of calculating tensor products in terms
of the solution of a set of linear and homogeneous Diophantine equations whose
elementary solutions represent ‘‘elementary couplings.’’ Grobner bases provide a
tool for generating the complete set of relations between elementary couplings and,
most importantly, as an algorithm for specifying a complete, compatible set of
‘‘forbidden couplings.’’ © 2000 American Institute of Physics.
@S0022-2488~00!04408-X#

I. INTRODUCTION

A. Orientation

Fusion rules yield the number of independent couplings between three given primary fie
conformal field theories. We are interested in fusion rules in unitary conformal field theorie
have a Lie group symmetry, that is, those whose generating spectrum algebra is an affi
algebra at integer level. These are the Wess–Zumino–Witten models.1,2 Primary fields in these
cases are in 1-1 correspondence with the integrable representations of the appropriate af
algebra at levelk. Denote this set byP1

(k) and a primary field by the corresponding affine weig

l̂. Fusion coefficientsN
l̂m̂

(k) n̂
are defined by the product

l̂3m̂5 (
n̂PP1

~k!
N

l̂m̂

~k! n̂
n̂. ~1.1!

~For a review of conformal field theory and in particular fusion rules, see Ref. 3; to a large e
we follow the notation of this reference.!

In the infinite-level limit and for fields with finite conformal dimensions, the purely affi
condition on weight integrability is relaxed and the primary fields are solely characterized by
finite part, required to be an integrable weight of the corresponding finite Lie algebra. Reca
a finite weightl is characterized by its expansion coefficients in terms of the fundamental we
v i

a!Electronic mail: pmathieu@phy.ulaval.ca
76110022-2488/2000/41(11)/7611/29/$17.00 © 2000 American Institute of Physics
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l5(
i 51

r

l iv i5~l i ,...,l r !, ~1.2!

wherer is the rank of the algebra. The numbersl i ’s are the Dynkin labels. The set of weights wi
non-negative Dynkin labels~the integrable weights! is denoted byP1 .

In the infinite-level limit the fusion coefficients reduce to tensor-product coefficients

lim
k→`

N
l̂m̂

~k! n̂
5Nlm

n ~1.3!

whereNlm
n is defined by

l ^ m5 (
nPP1

Nlm
nn. ~1.4!

By abuse of notation, we use the same symbol for the highest weight and the highest-
representation. Notice that

Nlm
n5Nlmn* , ~1.5!

wheren* denotes the highest weight of the representation conjugate to that ofn. Equivalently,
Nlmn* gives the multiplicity of the scalar representation in the triple productl ^ m ^ n* .

A tensor-product generating function codes the information for all the tensor products
given algebra in a single function defined by

G~L,M ,N!5 (
l,m,nPP1

Nlm
nLlMmNn, ~1.6!

whereLl5L1
l1
¯Lr

lr and similarly forMm and Nn. G can generally be expressed as a sim
closed function of its variables. For instance, for su~2!, it reads

G~L,M ,N!5
1

~12LM !~12LN!~12MN!
. ~1.7!

An example of basic global information that can be deduced from a generating function
integrality as well as the positivity of the tensor-product coefficients. More importantly, from
point of view, is that in the context of fusion rules, the construction of the simplest gener
functions led to the discovery of the notion of threshold levels.4 Moreover, as shown in the sequ
paper, setting up a fusion generating function is a way to obtain explicit expressions for
threshold levels. Our new approach to fusion-rule generating functions, which originates fro
generalization of techniques developed in the present paper on tensor products, leads to a
new concept, that of a fusion basis.

B. Overview of the paper

The present article is organized as follows. We start by explaining in detail the construct
tensor-product generating functions for finite Lie algebras. The first construction which is
sented is the character method developed by Sharp and his collaborators~Sec. II!.

Although it is conceptually very simple, the character method is limited by its inhe
computational difficulties: The disproportion between the simplicity of the resulting form of
generating function and the intermediate calculations is enormous. This motivates our alte
approach to the construction of tensor-product generating function. It is based on the reform
of the problem of calculating tensor products in terms of the solution of a set of linear
homogeneous Diophantine equations~cf. Sec. III!. The elementary solutions of these Diophanti
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equations represent elementary couplings. For sp~4!, the use of the Berenstein–Zelevinsky i
equalities to obtain the elementary couplings and their relations~cf. the analysis of Sec. VI! is
new.

The key difficulty is finding the numerous relations that exist in general between the ele
tary solutions. From the Diophantine-equation point of view, the decomposition of a solution
not be unique because different sums of elementary solutions could yield the same result. T
this problem we first ‘‘exponentiate’’ it: Given a solutiona5(a1 ,...,ak) to our system of linear
Diophantine equations, we introduce formal variablesX1 ,...,Xk and consider the monomia
X1

a1
¯Xk

ak. The linear span,R, of all such monomials is a ‘‘model’’ for the generating function f
the solutions to the original set of linear Diophantine equations~see Sec. V!, since the Poincare´
series ofR is the required generating function. This series can be calculated using Grobner
methods.

For su(N) there is a remarkable graphical construction for computing tensor product m
plicities, the famous Berenstein–Zelevinsky triangles. These are introduced in Sec. VI. W
discuss the analogous construction for sp~4!, whose diagrammatic representation is new. But
main interest of these re-formulations is that it yields a simple and systematic way of obtainin
elementary couplings from the construction of a vector basis. Thus we get a new way o
structing the corresponding generating functions.

II. GENERATING-FUNCTION FOR TENSOR PRODUCTS: THE CHARACTER METHOD

A. The character method for the construction of the tensor-product generating
function: the su „2… case

The method developed by Sharp and collaborators for constructing generating functio
tensor products is based on manipulations of the character generating functions.5 Although simple
in principle, these manipulations become rather cumbersome as the rank of the algebra
creased. To illustrate the method, we will work in complete detail the simplest example, the~2!
case.

The first step is the derivation of the character generating function. The Weyl cha
formula for a general algebra of rankr and a highest-weight representationl is

xl5
jl1r

jr
, ~2.1!

wherer is the finite Weyl vector,r5S i 51
r v i , and where the characteristic functionj is defined

as

jl1r5 (
wPW

e~w!ew~l1r!, ~2.2!

wheree(w) is the signature of the Weyl reflectionw andW is the Weyl group.
For su~2!, W contains two elements: 1,s1 . With

x5ev1, ~2.3!

the su~2! characteristic functionj for the representation of highest weightmv1[(m) is

xm112x2m21. ~2.4!

The character reads then

xm5
xm112x2m21

x2x21 5
xm2x2m22

12x22 5xm1xm221¯1x2m. ~2.5!
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The character generating functionxL is obtained by multiplying the above expression byLm

whereL is a dummy variable, and summing over all positive values ofm

xL~x!5(
0

`

Lmxm

5
1

x2x21 (
0

`

Lm~xm112x2m21!

5
1

12x22 S 1

12Lx
2

x22

12Lx21D5
1

~12Lx!~12Lx21!
. ~2.6!

We should point out here that in all generating functions in this paper, expressions of the
1/(12a) should be formally expanded in positive powers ofa. So for example, 1/(12Lx21)
511Lx211L2x221¯ . By construction, the character of the highest weight~m! can be recov-
ered from the power expansion ofxL as the coefficient of the termLm. The characteristic gener
ating functionjL is defined by

xL~x!5
jL

j0
, ~2.7!

and it reads

jL~x!5
x2x21

~12Lx!~12Lx21!
5

x

12Lx
2

x21

12Lx21 , ~2.8!

the last form being the one that results directly from~2.5!.
The tensor product of two highest-weight representations can be obtained from the prod

the corresponding characters:

xmxn5(
l

Nmn
lx l . ~2.9!

This information can be extracted from the product of the corresponding generating function
are thus led to consider the productxL(x)xM(x). To simplify the analysis of the resulting expre
sion, notice that the information concerning the representations occurring in the tensor pro
coded in the leading term of the character, i.e., the termxm11. To insure that every positive powe
of x singles out a highest-weight representation, we can multiply both sides byj0 . To read off
these terms, we can focus on the terms with strictly positive powers ofx in the product
xL(x)xM(x)j0(x). If we require the Dynkin label of the representations~and not their shifted
value!, it is more convenient to divide byx before doing the projection, now restricted to th
non-negative powers ofx. The truncation of an expression by its negative powers ofx will be
denoted by the MacMahon symbol6 V, defined by

V
>

x

(
2`

`

cnxn5 (
n>0

cnxn. ~2.10!

When there is no ambiguity concerning the variable in terms of which the projection is defin
is omitted from theV symbol.

We are thus interested in the projection of the following expression:
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xL~x!xM~x!j0~x!x215xL~x!jM~x!x21

5
1

~12Lx!~12Lx21! S 1

12Mx
2

x22

12Mx21D . ~2.11!

For these manipulations, we use systematically the following simple identities:

1

~12Ax!~12Bx21!
5

1

~12AB! S 1

12Ax
1

Bx21

12Bx21D
5

1

~12AB! S Ax

12Ax
1

1

12Bx21D
5

1

~12AB! S 1

12Ax
1

1

12Bx2121D . ~2.12!

There are two terms to analyze. The first is

1

~12Lx!~12Lx21!~12Mx!
5

1

~12Lx!~12LM ! S 1

12Mx
1

Lx21

12Lx21D . ~2.13!

The first part is not affected by the projection and the second can be written as

Lx21

~12Lx!~12LM !~12Lx21!
5

Lx21

~12LM !~12L2! S Lx

12Lx
1

1

12Lx21D . ~2.14!

The second term of this expression contains only negative powers ofx and can thus be ignored an
the first part is unaffected by the projection. We have thus, for the first term of~2.11!

V
>

1

~12Lx!~12Lx21!~12Mx!
5

1

~12Lx!~12LM ! S 1

12Mx
1

L2

12L2D . ~2.15!

The projection of the second term of~2.11! is

V
>

x22

~12Lx!~12Lx21!~12Mx21!
5V

>

x22

~12Lx21!~12LM ! S 1

12Lx
1

Mx21

12Mx21D
5V

>

x22

~12Lx21!~12LM !~12Lx!

5V
>

x22

~12LM !~12L2! S Lx

12Lx
1

1

12Lx21D
5V

>

Lx21

~12LM !~12L2!~12Lx!

5
Lx21

~12LM !~12L2!S 1

12Lx
21D

5
L2

~12LM !~12L2!~12Lx!
. ~2.16!

Subtracting~2.16! from ~2.15!, we find that
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V
>

xL~x!jM~x!x215
1

~12LM !~12Lx!~12Mx!
. ~2.17!

Replacingx by N, we thus get

Gsu~2!~L,M ,N!5
1

~12LM !~12LN!~12MN!
. ~2.18!

B. The abstract setting: Poincare ´ series, elementary couplings and relations; defining
a model

As we shall see it is frequently useful have a model,R, for a generating functionG(X1 ,...,Xk)
such as~2.18!. By this we mean a commutativeQ-algebra with an identity, graded byNk,
(N5$0,1,2,3,...%)

R5 % aPNkRa , RaRb#Ra1b , ~2.19!

and such that its Poincare´ series~also frequently called Hilbert series!

F~R!5 (
aPNk

dimQ~Ra!Xa,

satisfies

F~R!5G~X1 ,...,Xk!. ~2.20!

For example, for~2.18!, with X15L, X25M , X35N, we can takeR5Q@E1 ,E2 ,E3#, which is
the polynomial ring generated by the formal variablesE1 ,E2 ,E3 ~in fact all our examplesR is
either a subring or quotient of a polynomial ring! with the grading ofE1 , E2 andE3 being~1,1,0!,
~1,0,1!, and~0,1,1!. The homogeneous subspaces are spanned byE1

aE2
bE3

c , a,b,cPN with grade
(a1b,a1c,b1c) and so

F~R!5 (
~a,b,c!PN3

X1
a1bX2

a1cX3
b1c5Gsu~2!~X1 ,X2 ,X3!, ~2.21!

as required.
If R is generated by elementsE1 ,...,Es and is a model for a generating functionG for tensor

products~or fusion products! then we callE1 ,...,Es a set of elementary couplings forG.
It should perhaps be stressed thata priori the variablesX1 ,...,Xk andE1 ,...,Es are unrelated.

We shall refer to theE’s asmodel variablesand theX’s asgrading variables. If the grading vector
of Ei is a i ,i 51,...,s then there is an associated monomial in the grading variables:Xa i

, for which
we will use the notationg(Ei). For example in the above example we haveg(E1)5X1

1X2
1X3

0

5LM . However, to avoid tedious repetition when writing down generating functions we
often write, for example, 1/(12E1) rather than 1/(12g(E1)). In all such cases where mode
variables appear in a generating function they should be replaced by the corresponding mo
in the grading variables.

In the case of tensor products we use the notation ‘‘E:g(E):product’’ to denote a set o
elementary couplings with their exponentiated grading and the corresponding term in the
product. So in the example above we would write:

E1 :LM : ~1! ^ ~1!.~0!,

E2 :LN: ~1! ^ ~0!.~1!, ~2.22!
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E3 :MN: ~0! ^ ~1!.~1!.

Having made the distinction between grading and model variables, it should be note
there are cases where we can identify the model as a ring generated by monomials in the
variables. So in the above example we coulddefine E15LM , E25LN andE35MN and take the
model for our generating function to be the subring ofQ@L,M ,N# generated byE1 , E2 , andE3 .
However, it is not always desirable, or even possible, to make this identification.

We close this section with two examples of how models for the su~2! character generating
function can be constructed.

The first method, which has been exploited by Sharpet al. ~see Ref. 5! to construct characte
generating functions, amounts to finding an algebraR which is a module for the Lie algebra su~2!
and such that, as an su~2! module,R is isomorphic to% i>1Vi whereVi is the irreducible su~2!
module of dimensioni.

In this case we can takeR5Q@p,q# with the generators of su~2! being given by differential
operators

h5p
]

]p
2q

]

]q
, x25q

]

]p
, x15p

]

]q
. ~2.23!

The su~2! highest-weight vectors arepi ,i>0 and a basis of the irreducible submodule of dime
sion i is just given by the monomials of degreei in p and q. We can giveR an N3 grading by
taking the degree ofp to be~1,1,0! and ofq to be~1,0,1!. Here the first grading index specifies th
representation while the other two refer to a particular weight. AsR5Q@p,q# the Poincare´ func-
tion for R is

1

~12p!~12q!
,

with the understanding, as explained above, thatp andq should be replaced by the correspondi
expression in terms of the grading variables. Let us denote these grading variables herL
~which exponentiates the representation index! andx,y ~exponentially related to the weights!. The
Poincare´ function reads then

1

~12Lx!~12Ly!
. ~2.24!

Another way of constructing a model for the weight generating function, which makes
natural theN3 grading, is to observe that the complete set SU~2! weight vectors of finite dimen-
sional irreducible su~2! modules are in 1-1 correspondence with one-rowed Young tableaux. I
Young tableau hasc boxes filled witha 1’s andb 2’s then there is a constraint

a1b2c50, a,b,c>0, ~2.25!

and so the solutions to this linear Diophantine equation are in 1-1 correspondence wi
complete set of SU~2! weight vectors. Thus to find a model for the weight generating functio
is sufficient to find a model for the solutions to~2.25!. It is not difficult to see that every solution
to this equation is a linear combination~with non-negative coefficients! of the two fundamental
solutions: (a,b,c)5(1,0,1) and (a,b,c)5(0,1,1). LetR be the subring ofQ@A,B,C# generated
by the monomialsE15AC, E25BC. Considering the exponents of the monomialsE1 andE2 ,
we see that the monomials inR correspond to the solutions of~2.25! and hence taking the natura
grading onR ensures that the Poincare´ series ofR is the generating function for the solutions
~2.25! and hence is the required generating function. In this example there are no relatio
tweenE1 andE2 and soR is isomorphic to the polynomial ring in two variables~as expected! and
so the Poincare´ function is once again~with A→x,B→y,C→L) given by ~2.24!.
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C. Multiple su „2… tensor products

In order to illustrate the occurrence of linear relations between elementary couplings, co
the problem of finding the multiplicity of a given representationz in the triple productl ^ m
^ n. In terms of character generating functions, this amounts to considering the pr
xL(x)xM(x)xN(x).xP(x), or equivalently,xL(x)xM(x)jN(x)x21.jP(x)x21. The left side is
then projected onto positive powers ofx. We are thus led to consider

V
>

1

~12Lx!~12Lx21!~12Mx!~12Mx21! S 1

12Nx
2

x22

12Nx21D . ~2.26!

The projection of each term is worked out as previously and the resulting expression is fou
be, withx replaced byP

G~L,M ,N,P!5
12LMNP

~12LP!~12M P!~12NP!~12LM !~12LN!~12MN!
. ~2.27!

This is the sought for generating function. Here we would like to have a model with six ele
tary couplings corresponding to the terms in the denominator of the generating function

E1 :LM : ~1! ^ ~1! ^ ~0!.~0!,

E2 :LN: ~1! ^ ~0! ^ ~1!.~0!,

E3 :LP: ~1! ^ ~0! ^ ~0!.~1!,
~2.28!

E4 :MN: ~0! ^ ~1! ^ ~1!.~0!,

E5 :M P: ~0! ^ ~1! ^ ~0!.~1!,

E6 :NP: ~0! ^ ~0! ^ ~1!.~1!,

and there must be a linear relation~in this context, such a relation is often called asyzygyin the
physics literature—see in particular Ref. 5 and related works! between the following products
~signaled by a term in the numerator! which has gradingLMNP:

E1E6 , E2E5 , E3E4. ~2.29!

It is not difficult to see that a model is given byQ@e1 ,e2 ,e3 ,e4 ,e5 ,e6#/I whereEi5ei1I ,i
51,...,6 andI 5(ae1e61be2e51ce3e4) is the ideal generated by the polynomialae1e61be2e5

1ce3e4 for any choice ofa,b,cPQ not all zero.
The elements ofR have the formm1I with mPQ@e1 ,...,e6#. However, there is no canonica

way of choosing the representativesm. Take, for example, the casea5b5c51. ~Usually we will
construct a model for our generating function as explained above and this construction will fi
values ofa, b, andc.! In R we haveE1E652(E2E51E3E4) and so we can take as a basis forR
the set of~equivalences classes of! monomials which do not contain the productE1E6 . In this
case we say that we have chosen to makeE1E6 a forbidden product. Similarly we can forbid th
productsE2E5 or E3E4 . As we shall see later, the choice of forbidden products corresponds
choice ofterm ordering.

Before leaving this example, we would like to rework it from a different point of view, as
illustration of the ‘‘composition’’ technique of generating functions. LetG(L,M ,R) describe the
tensor product corresponding toxLxM.xR and similarly let G(Q,N,P) correspond to
xQxN.xP . We are interested the productxL(x)xM(x)xN(x).xP(x), but treated from the prod
uct of the two generating functionsG. We thus want to enforce the constraintR5Q in the product
G(L,M ,R)G(Q,N,P). The idea—which is used in the references in Ref. 5 mainly in relation w
                                                                                                                



t by

tensor-

7619J. Math. Phys., Vol. 41, No. 11, November 2000 Generating-function method for tensor products

                    
the construction of generating functions for branching functions—is to multiply this produc
(12Q21R21)21 and, in the expansion in powers ofR andQ, keep only terms of order zero in
both variables: With an obvious notation we have

V
5

R

V
5

Q

G~L,M ,R!G~Q,N,P!
1

12Q21R21 5V
5

R

V
5

Q

(
n

An~L,M !Rn(
m

Bm~N,P!Qm(
l

R2l Q2l

5(
p

Ap~L,M !Bp~L,M !, ~2.30!

which is manifestly equivalent to considering

V
5

x

G~L,M ,x!G~x21,N,P!. ~2.31!

With the explicit expressions for the generating functions, we have thus

V
5

x 1

~12Lx!~12Mx!~12LM !

1

~12Px21!~12Nx21!~12NP!
. ~2.32!

A brief and by now standard analysis yields directly the generating function~2.27!.

D. The sp „4… case

As a final example, consider the sp~4! case. With thexi5ev i, i 51,2, the characteristic
function is found to be

j~m,n!5x1
m11x2

n112x1
2m21x2

m1n122x1
n1m15x2

2n21

1x1
m12n13x2

2m2n221x1
2m22n23x2

n1m12

2x1
m11x2

2m2n222x1
2m22n23x2

n1x1
2m21x2

2n21, ~2.33!

and the characteristic generating function is

jL1 ,L2
5

1

~12L1x1!~12L1x1x2
21!~12L2x2

21!~12L2x1
22x2!

3S 11L2

~12L2x1
2x2

21!~12L2x2
21!

1
~11L2!L1x1

~12L1x1!~12L2x1
2x2

21!

1
L1x1

21x2

~12L1x1!~12L1x1
21x2!

D . ~2.34!

From this we construct the character generating function and then we can proceed to the
product generating function. This is again extremely cumbersome. The result is Ref. 7

Gsp~4!~L1 ,L2 ,M1 ,M2 ,N1 ,N2!

5@~12M1N1!~12L1N1!~12L1M1!~12M2N2!~12L2N2!~12L2M2!#21

3S 1

~12L2M1N1!~12L2M1
2N2!

1
L2M2N1

2

~12L2M1N1!~12L2M2N1
2!

1
L1

3M2
2N1N2

~12L1M2N1!~12L1
2M2N2!

1
L1M2N1

~12L1M2N1!~12L2M2N1
2!

1
L1

2M2N2

~12L1M1N2!~12L1
2M2N2!

1
L1M1N2

~12L1M1N2!~12L2M1
2N2!

D . ~2.35!
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From this expression, we read off the following list of elementary couplings~recall that the first
variable is a model variable and then we write the corresponding monomial in the grading
ables!:

A1 :M1N1 , A2 :L1N1 , A3 :L1M1 ,

B1 :M2N2 , B2 :L2N2 , B3 :L2M2 ,
~2.36!

C1 :L2M1N1 , C2 :L1M2N1 , C3 :L1M1N2 ,

D1 :L1
2M2N2 , D2 :L2M1

2N2 , D3 :L2M2N1
2.

However, not all the products of the model variables can be linearly independent: There are
relations between

CiCj , AkDk , and AiAjBk ,

DiD j , Ak
2BiBj , and BkCk

2, ~2.37!

CiDi , AjBkCk , and AkBjCj ,

for i,j,k a cyclic permutation of 1, 2, 3 and repeated indices are not summed.~It is plain that the
three sets of products found to be linearly related must have the same Dynkin labels.! A specific
form of the generating function, as expressed in terms of the elementary couplings, amoun
specific choice of a set of forbidden couplings among those that are related by a linear rel

III. TENSOR-PRODUCT DESCRIPTIONS

A. The need for a tensor-product description

It is clear that one major technical complication of the character method is that it starts
fundamental a level, namely the character of the separate representations. One natural
proceed is to start from a combinatorial description of the tensor-product rules. Such a desc
already takes into account the action of the Weyl group and encodes the various subtraction
singular vectors.

But how do we make the connection with the generating-function approach? The key is t
a combinatorial description which can be expressed as a set of linear Diophantine inequ
Given this set of inequalities, there is an algorithm, again due to MacMahon, for construc
generating function.~This is an adaptation of a method developed by Elliot8 for the analysis of
linear Diophantine equalities and for this reason the algorithm is often referred to as the E
MacMahon method. For a detailed discussion of the algorithm, see in particular Vol. 2 Sec
of Ref. 6.! This method is conceptually similar to the character method, except that the st
point is substantially closer to the end result. See Sec. VII C for a slight generalization o
algorithm.

Although the description of tensor products via linear Diophantine equations is a more
cient route to finding the generating function than the character one, complications associ
the V projections remain a source of technical difficulty that severely limits the practical a
cability of the method.

A more powerful approach to our problem is to use the techniques of computational alg
We start with a description of the tensor-product multiplicities as solutions to linear Diopha
inequalities. Efficient algorithms exists for finding the fundamental solutions to these inequal9

From these we find directly a model for the generating function using Grobner basis techn
~This is roughly the inverse of MacMahon’s method which was originally conceived as a
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nique to generate the elementary couplings and their linear relations through the construc
the generating function. Here, the elementary couplings and their relations are first obtain
used as the input for the construction of the generating function.!

IV. THE LR RULE „su „N……

For su(N) tensor products there is a particularly convenient description based on Littlew
Richardson tableaux supplemented by the stretched-product operation~defined below!.10

Integrable weights in su(N) can be represented by tableaux: the weight (l1 ,l2 ,...,lN21) is
associated to a left justified tableau ofN21 rows withl11l21...1lN21 boxes in the first row,
l21l31¯1lN21 boxes in the second row, etc. Equivalently, the tableau hasl1 columns of 1
box, l2 columns of 2 boxes, etc. The scalar representation has no boxes, or equivalentl
number of columns ofN boxes.

The Littlewood–Richardson rule is a simple combinatorial description of the tensor produ
two su(N) representationsl ^ m. The second tableau~m! is filled with numbers as follows: The
first row with 1’s, the second row with 2’s, etc. All the boxes with a 1 are then added to the fir
tableau according to following restrictions:

~1! the resulting tableau must be regular: The number of boxes in a given row must be sma
equal to the number of boxes in the row immediately above;

~2! the resulting tableau must not contain two boxes marked by 1 in the same column. A
boxes marked by a 2 are then added to the resulting tableaux according to the above two
~where 1 is replaced by 2! and the further restriction:

~3! in counting from right to left and top to bottom, the number of 1’s must always be great
equal to the number of 2’s.

The process is repeated with the boxes marked by a 3,4,...,N21, with the additional rule that the
number ofi’s must always be greater or equal to the number ofi 11’s when counted from right
to left and top to bottom. The resulting Littlewood–Richardson~LR! tableaux are the Young
tableaux of the irreducible representations occurring in the decomposition.

These rules can be rephrased in an algebraic way as follows.10 Defineni j to be the number of
boxesi that appear in the LR tableau in the rowj. The LR conditions read

l j 211 (
i 51

k21

ni j 212(
i 51

k

ni j >0, 1<k, j <N ~4.1!

and

(
j 5 i

k

ni 21 j 212(
j 5 i

k

ni j >0, 2< i<k<N, and i<N21. ~4.2!

The weightm of the second tableau and the weightn of the resulting LR tableau are, respective
given by

(
j 5 i

N

ni j 5 (
j 5 i

N21

m j , i 51,2,...,N21,

n j2l j1 (
i 51

N21

ni j 115 (
i 51

min~ j ,N21!

ni j , j 51,2,...,N21. ~4.3!

Hence, given three weightsl, m, and n, the number of non-negative integers solutions$ni j %
satisfying the above conditions gives the multiplicityNlm

n of n in the tensor productl ^ m.
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The combined equations@Eqs. ~4.1! and ~4.2!# constitute a set of linear and homogeneo
inequalities. As described in Ref. 11, the Hilbert basis theorem guarantees that every soluti
be expanded in terms of the elementary solutions of these inequalities.

We can construct a model for the solutions of Eqs.~4.1! and~4.2! by introducing new formal
variablesAi ,1< i<t wheret is the total number of variables in~4.1! and ~4.2!. Then the subring
of Q@Ai ;1< i<t# generated by the monomialsAa with a a solution of~4.1! and~4.2! provides the
required model. This ringR will be generated by a finite set of monomialsEj 1< j <s which we
call elementary couplings corresponding to the elementary solutions of~4.1! and~4.2!. ThusR is
isomorphic toQ@e1 ,...,es#/I under the mappingf:ei→Ei whereI is some ideal. Each element o
I corresponds, via the mapf, to a relation between the elementary couplings.

In the case of LR tableaux, there is a nice pictorial representation of the modelR. Consider the
set of formal linear combinations of LR tableaux with rational coefficients. It is given a
structure by defining thestretched productof two LR tableaux~denoted by•! to be the tableau
obtained by fusing the two tableaux and reordering the numbers in each row in increasing o10

More algebraically, if we denote the empty boxes of a LR tableau by a 0, so that

n0 j5 (
i 5 j

N21

l i , j 51,2,...,N21 ~4.4!

we can characterize completely a tableau by the data$ni j % with now i>0. It is clear the set of
numbers$ni j % with i>0, or equivalently,$l i ,ni j % with i>1, is a complete set of variables for th
description of the tensor products. Then, the tableau obtained by the stretched product
tableaux$ni j % and$ni j8 % is simply described by the numbers$ni j 1ni j8 %. Here is a simple example

~4.5!

This ring of tableaux is isomorphic to the modelR constructed above and we do not disti
guish between them. Thus we specify a set of elementary couplings~i.e., a set of generators ofR!
as a set of elementary LR Tableaux.

A. Example: The su „2… case

The complete set of inequalities for su~2! variables$l1 ,n11,n12% is simply

l1>n12, n11>0, n12>0. ~4.6!

The other weights are fixed by

m15n111n12, n15l11n112n12. ~4.7!

By inspection, the elementary solutions of this set of inequalities are

~l1 ,n11,n12!5~1,0,1!, ~1,0,0!, ~0,1,0!, ~4.8!

which correspond respectively toE1 ,E2 ,E3 in ~2.22!. These correspond to the following LR
tableaux:

~4.9!
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It is also manifest that there are no linear relations between these couplings. The gen
function is thus simply

Gsu~2!5
1

~12E1!~12E2!~12E3!
. ~4.10!

B. Example: Multiple tensor products in the su „2… case

Consider the problem of finding the multiplicity of the representationz in the triple product
l ^ m ^ n.z. As a first step, the LR rule applies as before: withn111n125m1 , we havel1

>n12. After the first product, we re-apply the LR rule with nowl1 replaced byl11n112n12 and
ni j replaced bymi j with m111m125n1 . The LR givesl11n112n12>m12. The two inequalities
for the su~2! quadruple product are then

l1>n12, l11n112n12>m12, ni j >0, mi j >0. ~4.11!

The elementary solutions are then, in the order: Name of the coupling, corresponding D
labels and the five-vector (l1 ,n11,n12,m11,m12),:

E1 :~1! ^ ~1! ^ ~0!.~0! ~1,0,1,0,0!,

E2 :~1! ^ ~0! ^ ~1!.~0! ~1,0,0,0,1!,

E3 :~1! ^ ~0! ^ ~0!.~1! ~1,0,0,0,0!,
~4.12!

E4 :~0! ^ ~1! ^ ~1!.~0! ~0,1,0,0,1!,

E5 :~0! ^ ~1! ^ ~0!.~1! ~0,1,0,0,0!

E6 :~0! ^ ~0! ^ ~1!.~1! ~0,0,0,1,0!.

The linear relation, whose existence was signalled by the character method, is

E3E45E2E5 :~1,1,0,0,1!, ÞE1E6 :~1,0,1,1,0!. ~4.13!

Choosing to forbid the productE3E4 , the generating function can be written in the form

G5
12E3E4

~12E1!~12E2!~12E3!~12E4!~12E5!~12E6!
5S )

i 51,2,5,6

1

12Ei
D S 1

12E3
1

E4

12E4
D .

~4.14!

The latter form makes manifest the absence ofE3E4 .
We could represent the elementary couplings in terms of tableaux, where the boxes w

refers to them tableau and those with 2’s originate from then tableau.~Warning: the resulting
tableaux describing the four-products are not necessarily LR tableaux.! Hence,n1 j gives the
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number of 1’s in rowj of the composed tableau whilem1k gives the number of 2’s in rowk. The
elementary tableaux are

~4.15!

~4.16!

C. Example: The su „4… case

The su~4! LR conditions are:

l1>n12, n11>n22,

l2>n13, n111n12>n221n23,

l21n12>n131n23, n111n121n13>n221n231n24,
~4.17!

l3>n14, n22>n33,

l31n13>n141n24, n221n23>n331n34,

l31n131n23>n141n241n34.

The tensor-product elementary couplings are

~4.18!

~4.19!

The Dynkin-label transcription of the elementary couplings reads
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A1 :~0,0,0! ^ ~0,0,1!.~0,0,1!, D18 :~0,1,0! ^ ~1,0,0!.~0,0,1!,

A2 :~0,0,1! ^ ~1,0,0!.~0,0,0!, D28 :~1,0,0! ^ ~1,0,0!.~0,1,0!,

A3 :~1,0,0! ^ ~0,0,0!.~1,0,0!, D38 :~1,0,0! ^ ~0,1,0!.~0,0,1!,

B1 :~0,0,0! ^ ~0,1,0!.~0,1,0!, D1 :~0,1,0! ^ ~0,0,1!.~1,0,0!,

B2 :~0,1,0! ^ ~0,1,0!.~0,0,0!, D2 :~0,0,1! ^ ~0,0,1!.~0,1,0!, ~4.20!

B3 :~0,1,0! ^ ~0,0,0!.~0,1,0!, D3 :~0,0,1! ^ ~0,1,0!.~1,0,0!,

C1 :~0,0,0! ^ ~1,0,0!.~1,0,0!, E1 :~1,0,1! ^ ~0,1,0!.~0,1,0!,

C2 :~1,0,0! ^ ~0,0,1!.~0,0,0!, E2 :~0,1,0! ^ ~0,1,0!.~1,0,1!,

C3 :~0,0,1! ^ ~0,0,0!.~0,0,1!, E3 :~0,1,0! ^ ~1,0,1!.~0,1,0!.

For su~4! there are 15 relations10,12

D j8Dk5CiEi , D jDk85BiCjCk , EiEj5BkDkDk8 ,

DiEi5CjBkDk , Di8Ei5BjD j8Ck , ~4.21!

with i,j,k a cyclic permutation of 1, 2, 3.
To construct the generating function, we need to select forbidden couplings. It turns ou

when there are more that one relation, complications may arise. We must ensure that the s
forbidden couplings are complete, which means that no further~usually higher-order! relations are
required for a unique decomposition of a given coupling. A technique that is tailor-mad
dealing with problems of that type is that of Grobner bases. This will be introduced in the
section. At this point, we simply indicate a complete choice of forbidden couplings, na
$EiEj ,Di8Ei ,DiEi ,D jDi8 ,D j8Di%. This yields then a model for the generating function, wh
then reads10,12

Gsu~4!5S )
i 51

3

Ãi B̃i C̃i D ~D̃18D̃28D̃381E1Ẽ1D̃28D̃381D3D̃3D̃38Ẽ11D2D̃2D̃3Ẽ11D1D̃1D̃2D̃3

1E3Ẽ3D̃1D̃21D18D̃18D̃1Ẽ31D28E3D̃28Ẽ3D̃181E2Ẽ2D̃18D̃38

1E2D1Ẽ2D̃1D̃181E2D3Ẽ2D̃3D̃381D1D3E2D̃1D̃3Ẽ21D2D28D̃2D̃28Ẽ1

1D2D28E3D̃2D̃28Ẽ3! ~4.22!

where

M̃ i5~12Mi !
21. ~4.23!

V. DIOPHANTINE INEQUALITIES: ELEMENTARY COUPLINGS, RELATIONS, AND
GROBNER BASES

We introduce the idea of the Grobner basis via a simple example~see also Ref. 13!. Suppose
R is a model for a generating function, whereR5Q@x,y,z,t#/I andI 5(xy2t,zy2t) is the ideal
generated byxy2t andzy2t, with anN2 grading given by~1,0!, ~0,1!, ~1,0!, and~1,1! for x, y,

z, and t. Writing x̄5x1I and similarly for the other variables, we have inR that x̄ȳ5 t̄ and z̄ȳ
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5 t̄. These two expressions give twore-write rules: xy°t andzy°t. These rules can be used
simplify any monomial. The aim is to find a re-write rule which, when iterated, produces un
representatives for the classes ofI. If this is the case, then a vector space basis ofR would consist
of terms of the formm1I with m a monomial which is not divisible by any of the left-hand sid
of the rewrite rules.

In the example above, if we had ‘‘good’’ rewrite rules then a basis forR would be represented
by monomials not containingxy or zy, i.e., monomials of the form eitheryatb or xazbtc. The
generating function which counts these monomials is

1

~12AB! S B

12B
1

1

~12A!2D . ~5.1!

The exponent ofA carries the first grading index andB the second.
However, this generating function is not correct. It contains the term 2A2B corresponding to

the monomialsxt andzt. But the polynomialz(xy2t)2x(zy2t)5xt2zt is also inI and hence in
R we havex̄ t̄ 5 z̄t̄ and so the space of grade~2,1! has dimension 1 rather than 2. This problem c
also be seen as a problem with the re-write rules. If we start withxyz then we can use the firs
re-write rule:xyz°tz or the second:xyz°xt. We cannot apply any further re-write rules and
this set of re-write rules does not produce a unique representative. The solution is to inclu
rule xt°zt. This gives a set of three rules:xy°t, zy°t, andxt°zt. It turns out that this is a
good set and so a basis forR is given by~the classes of! monomials of the formyatb, xazb, and
zatb which gives the generating function

1

~12AB!~12B!
1

A

~12A!2 1
A

~12A!~12AB!
. ~5.2!

The set of good generators,xy2t, zy2t, xt2zt we have found forI is known as aGrobner
basis.14

The general procedure for constructing a Grobner basis given a set of generating polyn
is as follows. First choose aterm ordering, which is an ordering on monomials with the proper
that any chainm1.m2.••• has finite length. For example, we can order the variables byx.y
.z.t and then order all monomials by the corresponding lexicographic~dictionary! order, for
example:x2y.xyz.y3. For each generator of our idealI, select the monomial which is highes
with respect to the given term ordering. This is then the term which appears on the left
re-write rule. The lexicographic ordering gives the first two re-write rules of our example:xy°t
andzy°t. Next, for each pair of leading terms and the lowest common multiple and simpl
in the two possible ways. In this case there is only one pair of leading terms and the l
common multiple isxyzwhich simplifies toxt andyt. Continue to apply the re-write rules until th
terms do not simplify further. If the resulting pair of terms are the same, then proceed to th
pair of leading terms, otherwise add a new re-write rule. In this case we addxt°yt. Proceed until
no pair of leading terms gives a new rule. This is the case for the rules we now have. For ex
the two rulesxy°t andxt°zt appear to give a new rule by simplifyingxyt to both t2 andyzt.
However, the second term can be further reduced tot2 and so no new rule is required.

This algorithm for computing Grobner bases is known as Buchberger’s14 algorithm. Improve-
ments on this basic algorithm mean that it is now feasible to find Grobner bases for quite larg
of generating polynomials.~The web pages of the computer-algebra information network at
address http://cand.can.nl/CAIN contain information about many of the programs currently
able.!

Although it is not clear from this example, Grobner bases are a very versatile tool for
forming explicit calculations. We end this section with an illustrative example relevant to
discussion of tensor-product generating functions.

Consider a set of linear Diophantine equations
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Ma50, a>0, ~5.3!

with M an integer matrix anda a vector of non-negative integers. We would like to construc
generating function for the solutions to this set of equations

(
a

xa. ~5.4!

A nontrivial example is given by the Diophantine equations that describe a 333 magic square:

S a b c

d e f

g h i
D , ~5.5!

with non-negative entries and equal row and column sums. The magic square condition~the sum
of each row and each column is the same, say equal tot! gives the following set of equations:

a1b1c5t, a1d1g5t,

d1e1 f 5t, b1e1h5t, ~5.6!

g1h1 i 5t, c1 f 1 i 5t.

With a standing for the column vector with entries~a,b,c,d,e,f,g,h,i,t!, the matrixM reads

M5S 1 1 1 0 0 0 0 0 0 21

0 0 0 1 1 1 0 0 0 21

0 0 0 0 0 0 1 1 1 21

1 0 0 1 0 0 1 0 0 21

0 1 0 0 1 0 0 1 0 21

0 0 1 0 0 1 0 0 1 21

D . ~5.7!

There is a straightforward algorithm for finding the basic set of solutions9 which yields:

a15~0,0,1,0,1,0,1,0,0,1!, a45~1,0,0,0,0,1,0,1,0,1!,

a25~0,1,0,0,0,1,1,0,0,1!, a55~0,1,0,1,0,0,0,0,1,1!, ~5.8!

a35~0,0,1,1,0,0,0,1,0,1!, a65~1,0,0,0,1,0,0,0,1,1,!.

We shall useA,B,...,Tto denote the ‘‘grading variables’’ of this example so that the expon
of A carries the value ofa and so on. A model for the generating function is given by the sub
S of Q@A,B,C,D,E,F,G,H,I ,T# generated by monomials corresponding to the six elemen
solutions

E15CEGT, E25BFGT, E35CDHT,

E45AFHT, E55BDIT, E65AEIT. ~5.9!

The monomials inS correspond to magic squares. For example,E1
2E4E65A2C2E3FG2HIT4

PS corresponds to a square with row and column sums equal to 4
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S 2 0 2

0 3 1

2 1 1
D . ~5.10!

Note that in this example it is convenient to construct our model as a subring of the ring of gr
variables. Thus each elementary couplingEi is actually equal to the corresponding monomial
the grading variables.

However, there are relations between these generators and so it is not immediately cle
to construct the Poincare´ series for S. What we require is an isomorphism ofS with R
5Q@e1 ,...,e6#/I such thatei°Ei , i 51,...,6 and such that we have a Grobner basis of the ideI
~the ‘‘ideal of relations’’!.

Fortunately, such an isomorphism is easily constructed using Grobner-basis methods
duce the ringQ@A,B,C,D,E,F,G,H,I ,T,e1 ,...,e6# with the lexicographic ordering

A.B.C.D.E.F.G.H.I .T.e1.¯.e6 . ~5.11!

Let J be the ideal generated byE12e1 ,...,E62e6 . This is not necessarily a Grobner basis w
respect to this term ordering. LetG be the Grobner basis forJ with the given ordering. Then it can
be shown14 that GùQ@e1 ,...,e6# is a Grobner basis for the ideal of relationsI which we require.
In this caseG is quite large, but its intersection withQ@e1 ,...,e6# is e1e4e52e2e3e6 . The corre-
sponding relation inR is E1E4E52E2E3E6 and these two terms do indeed give the same ma
square, so that indeed we have found a relation between the generators ofR. The Poincare´ series
for Q@e1 ,...,e6#/I is easily computed

1

~12E2!~12E3!~12E6! S 1

~12E1!~12E4!
1

E5

~12E1!~12E5!
1

E4E5

~12E4!~12E5! D .

~5.12!

VI. BERENSTEIN–ZELEVINSKY TRIANGLES

A. Generalities

The previous examples make clear the usefulness of a re-expression of the tensor-p
calculation in terms of Diophantine inequalities. The Littlewood–Richardson algorithm yie
set of such inequalities only for su(N). Fortunately, Berenstein and Zelevinsky15 have expressed
the solution of the multiplicity of a given tensor product as a counting problem for the numb
integral points in a convex polytope. For a given algebra, the polytope is formulated in term
characteristic set of inequalities. For su(N), these reduce to the LR set of inequalities. For
other classical algebras, except sp~4!, the proposed set of inequalities is a conjecture.

B. BZ triangles for sp „4…

The combinatorial description of tensor products for sp~4! is not as simple as in the su(N)
case: a standard LR product must be supplemented by a division operation and modifi
rules.16 Given the BZ set of inequalities, the natural way to proceed, as just mentioned,
interpret these as the appropriate inequalities for the description of the tensor products.
inequalities are as follows:

l1>p, m1>q,

l2>r 1/2, m1>q1r 12r 2 ,

l2>r 1/21q2p, m1>p1r 12r 2 , ~6.1!

l2>r 2/21q2p, m2>r 2/2,
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n15r 22r 122p1l11m1 , n25p2q2r 21l21m2 .

~Our notation is different from that used in Ref. 15: the relation isr 15m1 , r 25m2 , p5m12, q
5m12

† .) The sp~4! tensor product coefficientNlmn is thus given by the number of solutions of th
above system withr 1 ,r 2P2N andp,qPN ~N being the set of nonnegative integers!.

A proper set of variables for a complete description of a particular tensor-product coupl
thus $l1 ,l2 ,m1 ,m2 ,r 1 ,r 2 ,p,q%. We give the list of elementary couplings, adding to each c
pling the corresponding four-vector@r 1 ,r 2 ,p,q#:

A1 :~0,0! ^ ~1,0!.~1,0! @0,0,0,0#,

A2 :~1,0! ^ ~0,0!.~1,0! @0,0,0,0#,

A3 :~1,0! ^ ~1,0!.~0,0! @0,0,1,1#,

B1 :~0,0! ^ ~0,1!.~0,1! @0,0,0,0#,

B2 :~0,1! ^ ~0,0!.~0,1! @0,0,0,0#,

B3 :~0,1! ^ ~0,1!.~0,0! @2,2,0,0#,
~6.2!

C1 :~0,1! ^ ~1,0!.~1,0! @0,0,0,1#,

C2 :~1,0! ^ ~0,1!.~1,0! @0,2,1,0#,

C3 :~1,0! ^ ~1,0!.~0,1! @0,0,1,0#,

D1 :~2,0! ^ ~0,1!.~0,1! @0,2,2,0#,

D2 :~0,1! ^ ~2,0!.~0,1! @2,0,0,0#,

D3 :~0,1! ^ ~0,1!.~2,0! @0,2,0,0#.

The unspecified linear relations mentioned in~2.37! can now be obtained. To find thos
products that are equal in the current situation we need only compare their corresponding
four-vectors@r 1 ,r 2 ,p,q# ~which are additive in products of couplings!. We thus find for instance
that

C1C25A3D3 :@0,2,1,1#, ÞA1A2B3 :@2,2,0,0#. ~6.3!

Proceeding in this way for the other cases, we find the following complete list of relations:

C1C25A3D3 , C2C35A1D1 , C3C15A1A3B2 ,

D1D25B3C3
2, D2D35A1

2B2B3 , D1D35B2C2
2, ~6.4!

C1D15A3B2C2 , C2D25A1B3C3 , C3D35A1B2C2 .

The use of the BZ inequalities to find the elementary couplings and their relations is n
~An off-shoot of our construction is that it provides an indirect proof of the validity of the
inequalities since we recover from it the result of Ref. 7 derived from the character method!

A possible choice of forbidden products is the one given in Ref. 7

$CiCj ,DiD j ,CiDi%, ~6.5!

with i, j 51,2,3 andiÞ j . It leads to the generating function
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Gsp~4!5S )
i 51

3

Ãi B̃i D ~C̃1D̃21D3C̃1D̃31C2D1C̃2D̃11C2C̃2D̃31D1C̃3D̃11C3C̃3D̃2!.

~6.6!

Of course, by modifying the ordering in the Grobner basis, we can get other choices of forb
couplings. Here is another set of forbidden couplings that can be obta
$DiD j ,CiDi ,A1D1 ,A3D3 ,A1A3B2%. The corresponding generating function reads

Gsp~4!5B̃1B̃2B̃3F S )
i 51

3

Ãi D C̃i~12A1A3B2!1D3D̃3Ã1Ã2C̃1C̃2

1D1D̃1Ã2Ã3C̃2C̃31D2D̃2Ã1Ã2Ã3C̃1C̃3~12A1A3B2!G . ~6.7!

These two generating functions are equivalent when rewritten in terms of the grading var
that is, in terms of Dynkin labels. However, they originate from two distinct models. The se
one turns out to be well adapted to the fusion extension.

VII. A VECTOR BASIS APPROACH TO THE CONSTRUCTION OF GENERATING
FUNCTIONS

In this section, we present a simple and systematic way of generating by hand all the e
tary solutions of a set of linear homogeneous inequalities starting from the well-known con
tion of a vector basis. The first step amounts to reformulate the system of inequalities in te
equalities. We then look for the elementary independent solutions by relaxing the positivi
quirement. In other words, we construct the vector basis. In a final step, we find the minimal
combinations of these vector basis elements that yield positive solutions. This will also prov
illustration of MacMahon’s projection technique. The result of this projection is the desired te
product generating function. Hence, this approach turns out to be a new way of constructi
tensor-product generating functions.~This generic method, referred to as being novel for ten
products, is certainly well-known in general: it is discussed in the first reference of Ref. 11!

A. Graphical representations as BZ triangles for su „N…

Consider the direct transformation of the LR inequalities to equalities by introducin
appropriate number of new non-negative integer variables. Consider first the su~2! case, for which
there is a single inequality:l1>n12. We transform this into an equality by introducing th
non-negative integera defined by

l15n121a. ~7.1!

The expression forn1 becomes thenn15l11n112n125a1n11. Sincem15n111n12, we are led
naturally to a triangle representation of the tensor product:

l ^ m.n↔
a

n12 n11
. ~7.2!

We read off the Dynkin label of thel representation from the sum of the two integers that fo
the left side of the triangle, that of them representation from the bottom of the triangle and then1

label is the sum of the two integers that form the right side. A more uniform notation amoun
settinga5m12 andn115 l 12, in terms of which the triangle looks quite symmetrical

m12

n12 l 12
, ~7.3!

with
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l15m121n12, m15n121 l 12, n15m121 l 12. ~7.4!

These numbersm12 and l 12 plays the role ofn12 in the permuted versions of the tensor produ
The triangle combinatorial reformulation of the tensor product problem is as follows: the nu
of triangles that can be formed from non-negative integersn12, m12, and l 12 that add up to the
Dynkin labels of the representations under study according to the above relations gives th
tiplicity of the triple couplingl ^ m.n, or equivalently, the multiplicity of the scalar represen
tion in the productl ^ m ^ n.(0) @since for su~2!, n* 5n].

The situation for su~3! is somewhat more complicated. The transformation of the LR inequ
ties ~4.1! and ~4.2! into equalities in this case takes the form

l15n121a, n115n221d,

l25n131b, n111n125n221n231e, ~7.5!

l21n125n131n231c.

The expression for the other weights becomes

m15n131e, m25n221n23,

n15a1d, n25n221c. ~7.6!

Since there are two expressions for bothn11 andl2 , there follows the compatibility relations

n121d5n231e, n231c5b1n12. ~7.7!

By adding these two relations, we find

c1d5b1e. ~7.8!

Again we are led naturally to a triangle representation: withz5n* this reads

a
n12 d

b c
n13 e n23 n22

. ~7.9!

We read the Dynkin labels from the sides of the triangles, froml1 to z2 in an anti-clockwise
rotation starting from the top of the triangle, exactly as for su~2!, except that here there are tw
labels on each sides. Notice that the compatibility conditions amounts to the equality of the
of the extremal points of the three pairs of opposite sides of the hexagon obtained by dropp
three corners of the triangle.

Again a more symmetrical notation is:

a5m13, b5m23, c5m12, d5 l 23, e5 l 12, n225 l 13, ~7.10!

in terms of which the triangle reads

m13

n12 l 23

m23 m12

n13 l 12 n23 l 13

, ~7.11!

with labels fixed by
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l15m131n12, l25m231n13,

m15n131 l 12, m25n231 l 13, ~7.12!

z15 l 131m12, z25 l 231m13.

The hexagon conditions read

n121m235n231m12,

l 121m235 l 231m12, ~7.13!

l 121n235 l 231n12.

In terms of triangles, the problem of finding the multiplicity of the su~3! tensor productl ^ m
^ z.0 boils down to enumerating the number of triangles made with non-negative integer
form a bipartition of the Dynkin labels and that satisfy the above three hexagon relations.@For the
su(N) generalization, see Ref. 17.#

Here is the rationale for the labellingni j , mi j , l i j from the triangle point of view.18 If ei are
orthonormal vectors inRN, then the positive roots of su(N) can be represented in the formei

2ej , 1< i , j <N. The triangle encodes three sums of positive roots

m1z2l* 5(
i , j

l i j ~ei2ej !,

z1l2m* 5(
i , j

mi j ~ei2ej !, ~7.14!

l1m2z* 5(
i , j

ni j ~ei2ej !.

The hexagon relations are simply the consistency conditions for these three expansions. C
the variablesni j that appear in the above relations are exactly theni j that appear in the LR
tableaux for the productl ^ m.z* 5n.

B. From a vector basis to the generating function: The su „3… case

Given the transcription of inequalities into equalities, we can easily extract the correspo
basis vectors. This is the starting point of a new method for constructing the tensor-pr
generating functions. To keep things concrete, we focus on the su~3! case. The goal is to first ge
a vector basis and then to project it to get the elementary couplings. The generating functi
direct result of this procedure.

The equality version of the LR inequalities are~7.12! and~7.13!; they underlie the construc
tion of the BZ triangle~7.11!. The last hexagon condition of~7.13! is the difference of the
previous two so it is not an independent relations. We thus have a total of 15 varia
l1 ,...,z2 ,l 12,...,n23 and eight equations. The number of independent variables is thus s
These will be chosen to bem13, m23, l 13, l 23, n12, n13, n23. The dependent variables are fixe
as follows:

l15m131n12, l25m231n13,

m15n131n121 l 232n23, m25n231 l 13,
~7.15!

z15n121m231 l 132n23, z25 l 231m13,
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l 125n121 l 232n23, m125n121m232n23.

We now look for the elementary solutions of this system~without invoking the constraint that al
the above dependent variables should be necessarily positive!. The sought basis vectors are o
tained by setting one of the variablem13,...,n23 to 1 and all other set equal to zero.

This produces~in order! the trianglesE2 , E5 , E6 , E3 , E7 , E4 , andZ1 displayed below

E2 :~1,0!~0,0!~0,1!

1
0 0
0 0

0 0 0 0

E3 :~0,0!~1,0!~0,1!

0
0 1
0 0

0 1 0 0

E4 :~0,1!~1,0!~0,0!

0
0 0
0 0

1 0 0 0

E5 :~0,1!~0,0!~1,0!

0
0 0
1 1

0 0 0 0

E6 :~0,0!~0,1!~1,0!

0
0 0
0 0

0 0 0 1

E7 :~1,0!~1,0!~1,0!

0
1 0
0 1

0 1 0 0

Z1 :~0,0!~21,1!~21,0!

0
0 0

0 21
0 21 1 0

. ~7.16!

These are all genuine BZ triangles except forZ1 which has some negative entries. However, at t
level, there are no relations between these elementary solutions~the basis vectors are indepe
dent!, hence the decomposition of any solution in terms of these seven basic ones is uniq
solutions are then freely generated from the following function:

G5
1

~12E2!~12E3!~12E4!~12E5!~12E6!~12E7!~12Z1!
. ~7.17!

To recover the generating function for all tensor products from the above expression, we n
project out terms that lead to triangles with negative entries. To achieve this, we introduc
grading variables associated to the above couplings@compare the above triangles with the gene
form given in ~7.11!#

E2 :M13, E3 :L12L23, E4 :N13,

E3 :M12M23, E6 :L13, E7 :L12M12N12, ~7.18!

Z1 :L12
21M12

21N23.

Our generating function follows from the projection of the above functionG, re-expressed in
terms of the grading variables, to positive powers ofL12 andM12. Equivalently, one can re-scal
L12 by x andM12 by y and project to positive powers ofx andy and setx5y51 in the result. This
is equivalent to the rescaling

E3→xE3 , E5→yE5 , E7→xyE7 , Z1→x21y21Z1 . ~7.19!

We are thus led to consider
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V
>

x

V
>

y

G~E2 ,xE3 ,...,x21y21Z1!. ~7.20!

Keeping only those terms which depend explicitly uponx or y, we have then

V
>

x

V
>

y 1

~12xE3!~12yE5!~12xyE7!~12x21y21Z1!

5V
>

x

V
>

y 1

~12xE3!~12yE5!~12E7Z1!S 1

12xyE7
1

x21y21Z1

12x21y21Z1
D . ~7.21!

No more work is needed for the first term. For the second one, we have

V
>

x

V
>

y x21y21Z1

~12xE3!~12E7Z1!~12x21Z1E5! S yE5

12yE5
1

1

12x21y21Z1
D

5V
>

x x21E5Z1

~12E5!~12E7Z1!~12xE3!~12x21Z1E5!

5V
>

x x21E5Z1

~12E5!~12E7Z1!~12E3E5Z1! S xE3

12xE3
1

1

12x21Z1E5
D

5
E3E5Z1

~12E5!~12E7Z1!~12E3E5Z1!~12E3!
. ~7.22!

We then introduce the following two new elementary couplings:

E15E7Z1 , E85E3E5Z1 . ~7.23!

Collecting the two terms resulting from the projection, we end up with

Gsu~3!5S )
i 51

8

Ẽi D ~12E7E8!, ~7.24!

which is indeed the su~3! tensor-product generating function.
It is worth pointing out that the Elliot–MacMahon algorithm that has been presented he

a method distinct from the vector basis, can be reinterpreted in a way that makes the tw
proaches equivalent. This is done in Sec. III of the first reference of Ref. 11. There, the elem
solutions are not obtained as above by setting successively one dependent variables equal
the others equal to 0, but in reading them off directly from the columns of the 837 matrix of the
matrix version of Eq.~7.15!

1
1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 1 0 1 21 0 1

0 0 0 0 1 1 0

0 1 1 0 21 1 0

1 0 0 0 0 0 1

0 1 0 0 21 0 1

0 1 1 0 21 0 0

2 S
m13

n12

m23

n13

n23

l 13

l 23

D 5S l1

l2

m1

m2

z1

z2

l 12

m12

D .
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The exponentiated version of the columns gives the elementary solutions written below. This
to the so-called ‘‘crude’’ generating function that is then projected onto the positive solution
the usual method.

C. General aspects of the vector basis construction

In general, of course, the fundamental solutions to the linear system may have nonin
values of the variables. However, the corresponding terms in the generating function c
eliminated by rationalizing all the denominator terms and then keeping only those terms
numerator that have integral exponents. This suggests the following modification of MacMa
algorithm:

Consider the system of equations

Mx50, xPNk, ~7.25!

where M is a matrix of ranks. We thus havek variables ands relations between them. Th
dimension of the vector basis is thusk2s. We will denote the independent~free! variables asxi ,
i 51,...,k2s and the remaining ones asx̃ j , j 51,...,s. To find a generating function for the solu
tions of this system:

~1! First construct a basis inQk for the solutions ofMx50 by settingxi51 with all otherxj zero
( j 51,...,k2s, j Þ i ). Denote byx̃ j

(1) the value of the dependent variablex̃ j evaluated atx1

51 with all otherxi zero. The basis then reads

e15~1,0,0...,0;$x̃ j
~1!% !,

e25~0,1,0...,0;$x̃ j
~2!% !,

~7.26!
¯ ,

ek2s5~0,0,0,...,1;$x̃ j
~k2s!% !.

By construction, thee i ’s are linearly independent. However, notice that in general thex̃ j
( i )

might be rational.
~2! From the form of thee i ’s, it follows that any solution to~7.25! can be written as( icie i with

ci non-negative integers. In particular this means that every solution to~7.25! corresponds to
a term in the generating function

G~X!5
1

~12Xe1!~12Xe2!¯~12Xes!
, ~7.27!

whereX1 ,...,Xk are grading variables.
~3! G(x) may contain negative or fractional exponents due to the occurrence ofx̃ j

( i ) in the expo-
nents. These are eliminated by first using MacMahon’s algorithm to eliminate any neg
exponents and then rationalizing denominators and keeping only terms with integral
nents in the numerators.

The result is the generating function for the solutions to~7.25!. This algorithm, however, doe
not seem to be optimal in all case.

D. Multiple su „2… products from the vector basis construction

A simple and different application of the formalism just developed is furnished by the ana
of su~2! quadruple tensor products. This application is different in that it does not rely on
triangle description and as such, its formulation is less direct. This does not mean, howeve
there are no diagrammatic representations for the quadrupole product. In fact, having a
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inequalities, we can transform them into equalities, as it is done below, and from them se
diagrammatic representation. In the present case, it would correspond to two adjacent su~2! tri-
angles, one upside down, with their adjacent sides forced to be equal. However, our analy
not rely on such a description. It will serve as a preparation the somewhat more complicated~4!
example treated in the following section.

The Diophantine description of this problem has been presented in Sec. IV B. It is bas
the two inequalities~4.11! which are readily transformed into equalities by the introduction of t
non-negative integersa1 , a2

l15n121a1 , l11n112n125m121a2 . ~7.28!

However, this system does not contain any reference to the variablem11 and for this reason we
introduce the further constraintm11>0 which calls for a new non-negative integer variable

m115a3 . ~7.29!

We have thus a total of eight variables:$l1 ,n11,n12,m11,m12,a1 ,a2 ,a3% and three equations
There are thus five independent variables, chosen to be$a1 ,a2 ,a3 ,n12,m12%. The basis vectors
with components ordered as follows:

~a1 ,a2 ,a3 ,n12,m12;l1 ,n11,m11!, ~7.30!

are obtained by successively setting equal to 1 one of$a1 ,a2 ,a3 ,n12,m12% and the others equal to
0. These basis vectors together with their exponentiated version written in terms of appro
grading variables read

~1,0,0,0,0;1,21,0! :L1N11
21A1 ,

~0,1,0,0,0;0,1,0! :N11A2 ,

~0,0,1,0,0;0,0,1! :M11A3 , ~7.31!

~0,0,0,1,0;1,0,0! :L1N12,

~0,0,0,0,1;0,1,0! :N11M12.

The desired generating function is obtained from the projection to positive powers ofN11 of the
function

1

~12L1N11
21A1!~12N11A2!~12L1N12!~12N11M12!~12M11A3!

. ~7.32!

The projection operation is done by the familiar method and the result, after setting allAi51 is

G5
12L1N11M12

~12L1N12!~12L1M12!~12L1!~12N11M12!~12N11!~12M11!
, ~7.33!

from which we read of the six elementary couplingsE1 ,...,E6 ~in the order where they appear i
the denominator! given in ~4.12! and the relationE3E45E2E5 . The above function is exactly th
one derived in Sec. IV B.

E. sp „4… diamonds and the vector basis derivation of the generating function

The system of inequalities~6.1! pertaining to sp~4! can be transformed into a system
equations in the standard way: by settingr 1/25s1 andr 2/25s2 and introducing the non-negativ
integersai , we get19
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l15p1a1 , n25a41a8 ,

l25s11a2 , a21p5a31q,

m15q1a5 , a31s15a41s2 , ~7.34!

m25s21a8 , a512s25a612s1 ,

n15a11a7 , a61q5a71p.

This leads to a diamond-type graphical representation of the tensor product that has the ad
over the one presented in Ref. 15 of being linear in that the sum of two diamonds is a
diamond. This is illustrated in Fig. 1.

In Fig. 1, all data pertaining to the first~second! Dynkin label appears at the left~right!.
Dotted lines relate to those two points that compose the label indicated beside it. Opposit
tinuous lines are constrained to be equal, with the length of a line being defined as the sum
extremal points except for the lines delimited by the points (a6 ,s1) and (a5 ,s2) where the point
si is counted twice~the little bar besidess1 ands2 being a reminder of this!. Explicitly, for those
lines, we have thus the constrainta612s15a512s2 . Given a triple sp~4! product, the number of
such diamonds that can be drawn with non-negative entries yields the multiplicity of the pro
For instance, the two diamonds that describe the triple coupling(1,1)^ (1,1)^ (2,0) are shown in
Fig. 2.

The dimension of the vector basis is eight~18 variables and 10 equations, the last fo
equations above being linearly independent!. As our free variables we choose the s
$s1 ,s2 ,p,q,a1 ,a3 ,a6 ,a8%. The eight basis vectors in terms of grading variables are

E1 :L2M1
2N2A4A5

2S1 , E2 :M1
22M2N2

21A4
21A5

22S2 ,

E3 :L1L2
21N1

21A2
21A7

21P, E4 :L2M1N1A2A7Q,

FIG. 1. Diamond for sp~4! and a generic tensor product.
~7.35!
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E5 :L1N1A1 , E6 :L2N2A2A3A4 ,

E7 :M1N1A5A6A7 , E8 :M2N2A8 .

The generating function is obtained by first projecting of the functionP(12Ei)
21 to positive

FIG. 2. The two diamonds describing the sp~4! tensor product~1,1!^~1,1!^~2,0!.
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powers for each grading variables and then by setting all grading variables equal to 1 exc
Li , Mi , Ni ’s. The sp~4! elementary couplings are simple products of theEi ’s ~the followingA1,2,3

should not be confused with the above grading variables!

A15E7 , A25E5 , A35E3E4 ,

B15E8 , B25E6 , B35E1E2 ,
~7.36!

C15E4 ,C25E2E3E6E7
2, C35E1E3E7 ,

D15E2E3
2E6

2E7
2, D25E1 , D35E2E6E7

2.

The complete list of sp~4! elementary couplings~6.2! is thus recovered.

VIII. CONCLUSION

As was stressed in the Introduction, the main purpose of this work is to prepare the grou
the analysis of fusion rules, which is the subject of a sequel paper.20 In this paper, we have
reviewed the existing techniques for computing tensor-product generating functions and pre
a comparative assessment of their virtues and limitations. We also focused on a model form
linking generating functions to Poincare´ series, an idea first introduced in Ref. 11 and extende
Ref. 10. Our contribution has been to rephrase this program more explicitly, clarify some
and to exemplify the procedure with many examples, some of which are new. An extended v
of this article is available on the Los Alamos server.21
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This is the second of two articles devoted to an exposition of the generating-
function method for computing fusion rules in affine Lie algebras. The present
paper focuses on fusion rules, using the machinery developed for tensor products in
the companion article. Although the Kac–Walton algorithm provides a method for
constructing a fusion generating function from the corresponding tensor-product
generating function, we describe a more powerful approach which starts by first
defining the set of fusion elementary couplings from a natural extension of the set
of tensor-product elementary couplings. A set of inequalities involving the level are
derived from this set using Farkas’ lemma. These inequalities, taken in conjunction
with the inequalities defining the tensor products, define what we call thefusion
basis. Given this basis, the machinery of our previous paper may be applied to
construct the fusion generating function. New generating functions for sp̂~4! and
sû~4!, together with a closed form expression for their threshold levels are pre-
sented. ©2000 American Institute of Physics.@S0022-2488~00!04508-4#

I. INTRODUCTION

The basic definition of a fusion coefficient is that it gives the number of independent
plings between three different fields in conformal field theory~cf. also the introduction of Ref. 1
for a review of conformal field theory, and in particular fusion rules, see Ref. 2!. Even in theories
with a Lie group symmetry, the so-called Wess–Zumino–Witten~WZW! models, an intrinsic
conformal-field theoretical characterization is unavoidable. This is manifest in formulas fo
fusion coefficients: The most fundamental one is the Verlinde formula,3 that expresses a fusio
coefficient in terms of modularS matrix elements

N
l̂m̂

~k!n̂
5 (

ŝPP1
k

Sl̂ŝSm̂ŝSn̂ŝ
*

S0ŝ
. ~1.1!

Here we use notation appropriate to a WZW model in which primary fields are in one-to
correspondence with the integrable representations of the spectrum-generating affine alge
fixed level k ~this set is denoted byP1

k ) and 0 stands for the basic representation, whose fi
projection is the scalar representation. Fields are not distinguished from their representation
The matrixS specifies the linear modular transformation properties of the characters of th
mary fields among themselves. Up to a constant fixed by unitarity, it takes the form

Sl̂m̂; (
wPW

e~w!expS 2
2p i

k1g
~w~l1r!,m1r! D , ~1.2!

a!Electronic mail: pmathieu@phy.ulaval.ca
76400022-2488/2000/41(11)/7640/35/$17.00 © 2000 American Institute of Physics
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whereg stands for the dual Coxeter number of the algebra under consideration,r is the Weyl
vector,l is the finite projection of the affine weightl̂, andW is the finite Weyl group.

The remarkable fact that the ratio of twoSmatrix elements is a finite character evaluated a
special point yields a close relation between fusion and tensor-product coefficients. Indeed
the finite character and its evaluation read

xl5
(wPWe~w!ew~l1r!

(wPWe~w!ewr and xl~j!5
(wPWe~w!e~w~l1r!,j!

(wPWe~w!e~wr,j! , ~1.3!

we observe that

xl~j!5
Sl̂,ŝ

S0,ŝ
with j5

22p i

k1g
~s1r!. ~1.4!

This leads to the Kac–Walton formula which relates the fusion and the tensor-product coeffi
The Verlinde formula does not make manifest the basic integrality property of the fu

coefficients. TheSmatrix elements being in general complex numbers, it is not even clear a
sight that the fusion coefficients are real~this follows from the unitarity property ofS!. The
integrality is ensured by the Kac–Walton formula, but in this case the positivity is not man

It is mainly with the aim of displaying manifestly non-negative formulas for fusion rules
we have looked for fusion generating functions.4 Although the construction of explicit generatin
functions has an intrinsic interest, we regard the unraveling of the concept ofthreshold level—
reviewed below—as being the most important outcome of this analysis. It leads to a com
characterization of fusion coefficients in terms of the corresponding tensor-product coeffi
and a set of threshold levels.

As a result, the interest has shifted from the construction of fusion generating functions
search for threshold-level computing techniques. For sû(N), N52,3,4, it has been found that th
threshold level is coded in a simple way in the Berenstein–Zelevinsky triangles5 ~cf. also Sec.
VII A of Ref. 1! describing the various distinct couplings of a tensor product.6,7 However, these
formulas are difficult to generalize to larger values ofN. Moreover, this approach, based on
diagrammatic description of the tensor product, is limited to the sû(N) algebras.

The aim of the present paper is to apply the machinery developed in Ref. 1 to these pro
We find new generating functions for sp̂~4! and sû~4!, together with a closed form expression f
their threshold levels. More importantly, we introduce the concept offusion basis, that is, the set
of linear and homogeneous Diophantine inequalities that describes completely the fusion r

The article is organized as follows. In Sec. II, after introducing some notation, we pres
brief review of fusion rules and show, with the example of sû~2!, how tensor-product generatin
functions and the Kac–Walton algorithm can be used to construct fusion-rule generating
tions. A more powerful approach to the problem is then elaborated in Sec. III. It relies o
conjectural existence of a linear and homogeneous set of inequalities that provides a co
description of fusion rules. Given a set of fusion elementary couplings, Farkas’ lemma is the
as a technique to extract the underlying inequalities. This is what we call afusion basis, i.e., the
basis in terms of which these fusion elementary couplings are the elementary solutions. A
plete analysis of the sû~3!, sp̂~4!, and sû~4! cases is presented in Secs. 4–6, respectively. In
three cases, the general expression for the threshold levels is obtained explicitly. Various
ments~based on Giambelli-type formula and level-rank duality! supporting our results are pre
sented in Appendix A. In Appendix B, we recall previous conjectures and clarify their relatio
those formulated here.

II. FUSION RULES

Let ĝ be the affine Lie algebra corresponding to the finite Lie algebrag. Quantities with hats
generally refers toĝ. The fundamental weights ofĝ are denoted byv̂ i , i 50,1,...,r , wherer is the
rank of g. An affine weight may be written as
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l̂5(
i 50

r

l iv̂ i5@l0 ,l1 ,...,l r #. ~2.1!

If the Dynkin labelsl i are nonnegative, the weightl̂ is the highest weight of an integrabl
representation ofĝ at levelk, with k defined by

k5(
i 50

r

l iai
∨ . ~2.2!

The ai
∨ are the co-marks:a0

∨51, and the remainingai
∨ are the coefficients of expansion of th

longest root ofg in terms of the simple co-roots. The set of such weights is denotedP1
k .

To the affine weightl̂, we associate a weightl of the finite algebrag

l5(
i 51

r

l iv i5~l1 ,...,l r !, ~2.3!

wherev i for ( i 51,...,r ) are the fundamental weights ofg. l̂ is thus uniquely fixed froml andk.
The set of integrable finite weights is writtenP1 .

In the conformal field-theory context, fusion rules yield the number of independent coup
between three given primary fields. Here we are interested in fusion rules in WZW mod8,9

whose generating spectrum algebra is an affine Lie algebra at integer level.
Denote the multiplicity of the representationn̂ in the fusion rulel̂3m̂ by

l̂3m̂5 (
n̂PP1

k
N

l̂m̂

~k!n̂
n̂, ~2.4!

and denote byNlm
n the multiplicity of the representationn in the tensor productl ^ m

l ^ m5 (
nPP1

N lm
n n, ~2.5!

where by abuse of notation, we use the same symbol for the highest weight and the highest
representation. The precise relation between tensor-product and fusion-rule coefficients is g
the Kac–Walton formula10–12

N
l̂m̂

~k!n̂
5 (

jPP1

wPŴ,w• ĵ5 n̂PP1
k

N lm
j e~w!, ~2.6!

w is an element of the affine Weyl groupŴ, of signe(w), and the dot indicates the shifted actio

w•l̂5w~ l̂1 r̂ !2 r̂, r̂5(
i 50

r

v̂ i . ~2.7!

The Kac-Walton formula can be transformed into a simple algorithm: One first calculate
tensor product of the corresponding finite weights and then extends every weight to its
version at the appropriate value ofk and shift-reflects back to the integrable affine sector th
weights which have negative zeroth Dynkin label. Weights that cannot be shift-reflected
integrable sector are ignored~for example, this is the case for those which have zeroth Dyn
label equal to21!.

The affine extension of the weights that occur in the tensor product may not be integra
level k but are integrable at level 2k. If we divide the weight space into domains that are map
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into each other by the application of the affine Weyl reflections, then the affine reflections w
contribute to the Kac–Walton algorithm, apart from the identity, are those corresponding
domains next to the fundamental alcove and which lies in theP1 cone. This is a crucial property
of the Kac–Walton algorithm for its application to the construction of fusion-rule genera
functions. Let us denote byŴf this finite subset of the affine Weyl group that need to be con
ered. For instance, the elements ofŴf for the lowest rank algebras are

sû~2!:Ŵf5$ id,s0%,

sû~3!:Ŵf5$ id,s0 ,s1s0 ,s2s0%,

sû~4!:Ŵf5$ id,s0 ,s1s0 ,s3s0 ,s2s1s0 ,s2s3s0 ,s1s3s0 ,s0s1s3s0%, ~2.8!

sp̂~4!:Ŵf5$ id,s0 ,s1s0 ,s0s1s0%,

Ĝ2 :Ŵf5$ id,s0 ,s1s0 ,s2s0 ,s0s2s1s0%,

where si denotes the reflection with respect to the roota i . This set of elementsw can be
characterized as follows: These are the elementsw of the affine Weyl group that satisfy th
requirement

w$2a0
∨1a1

∨1¯1a r
∨ ,a1

∨ ,...,a r
∨%PD1

∨ , ~2.9!

whereD1
∨ stands for the set of positive real co-roots of the affine algebra under consideratio

r stands for its rank. This condition is adapted from Ref. 13 as further analyzed in Ref. 14
Note also that~2.6! may be rewritten as

n̂PP1
k :N

l̂m̂

~k!n̂
5 (

wPŴf
21,w• n̂PP1

N lm
w• n̂e~w!, ~2.10!

where it is understood thatw• n̂ stands for its finite part since it is an index of the tensor-prod
coefficient. This allows us to study in isolation the contribution of a single weight in the fus
For instance, for sû~2! that reads

N
l̂m̂

~k!n̂
5N lm

n 2N lm
s0• n̂

5N l1m1

n1 2N l1m1

2k122n1. ~2.11!

Here is an illustrative example of the Kac–Walton algorithm that will also serve to introd
the key notion of threshold level. Take the following sp~4! tensor product: (1,1)̂ (1,1). Its
decomposition reads

~1,1! ^ ~1,1!5~0,0! % ~0,1! % 2~2,0! % ~0,2! % ~0,3! % 2~2,1! % ~2,2! % ~4,0!. ~2.12!

The sp~4! comarks are all equal to one so that the affine extension of a weight~m,n! at levelk is
@k2m2n,m,n#. At level 2, the weights~0, 3! and~2, 1! are ignored~they haven0521) and the
remaining nonintegrable weights are@22, 2, 2# and @22, 4, 0#. Since the zeroth simple root i
â05@2,22,0#, we haves0•@22,2,2#5@0,0,2# and s0•@22,4,0#5@0,2,0#, so that the resulting
fusion is

@0,1,1#3@0,1,1#5@2,0,0# % @1,0,1# % @0,2,0#. ~2.13!

In the above example, we see that the weights~0, 0!, ~0, 1!, ~2, 0! appear first at level 2. It is
easily checked that they reappear at every levelk>2. We then say that theirthreshold level,
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usually denoted byk0 , is 2. The threshold level is thus the smallest value ofk such that the fusion

coefficientN
l̂m̂

(k) n̂
is nonzero. If we indicate the threshold level by a subindex, by considering

extension of the above tensor product at different levels, we find

~1,1! ^ ~1,1!5~0,0!2% ~0,1!2% ~2,0!2% ~2,0!3% ~0,2!3% ~0,3!3% 2~2,1!3% ~2,2!4% ~4,0!4 .
~2.14!

To read off a fusion at fixed levelk, we only keep terms with index not greater thank. The concept
of threshold level was first introduced in Ref. 4. It can be shown~cf. Ref. 6! that the existence o
a threshold level is a consequence the depth rule of Gepner and Witten.9 The notion of threshold
level implies directly that

N
l̂m̂

~k!n̂
<N

l̂m̂

~k11!n̂
and lim

k→`

N
l̂m̂

~k!n̂
5N lm

n . ~2.15!

To the triplet~l, m, n! there correspondsN lm
n distinct couplings, henceN lm

n values ofk0 ,
one for each distinct coupling. Let us denote these byk0

( i ) , i 51,...,N lm
n , implementing in this

notation the natural orderingk0
( i )<k0

( i 11) . Then

N
l̂m̂

~k!n̂
5H max~ i ! if k>k0

~ i ! and N lm
n Þ0

0 if k,k0
~1! or N lm

n 50
. ~2.16!

Further variations on the idea of threshold level are presented in Ref. 15.
Let us finally note that the fusion coefficients are invariant under the following action o

outer-automorphism group:10

N
Al̂,A8m̂

~k!AA8n̂
5N

l̂m̂

~k!n̂
, ~2.17!

whereA,A8 are two arbitrary elements of the outer-automorphism group.
For example, for sp̂~4!, the nontrivial outer-automorphisma exchanges the zeroth and seco

root, or equivalently, it acts on weights asa@l0 ,l1 ,l2#5@l2 ,l1 ,l0#. Acting on the fusion~2.13!
as

a@0,1,1#3a@0,1,1#5@1,1,0#3@1,1,0#5@2,0,0# % @1,0,1# % @0,2,0#, ~2.18!

which is easily checked from the tensor product

~1,0! ^ ~1,0!5~0,0! % ~0,1! % ~2,0!, ~2.19!

which is nontruncated at level 2. Other fusions at level 2 can be obtained from~2.13! by acting on
the weights as follows:

a@0,1,1#3@0,1,1#5@1,1,0#3@0,1,1#

5a@2,0,0# % a@1,0,1# % a@0,2,0#

5@0,0,2# % @1,0,1# % @0,2,0#. ~2.20!

The algorithm underlying the Kac–Walton formula suggests a simple road to the constru
of fusion-rule generating functions, that is by starting from the tensor-product calculation
keeping track of the level and taking into account the action of the affine Weyl group.
illustrate the method for the simple sû~2! case. Recall that the su~2! tensor-product generatin
function reads

Gsu~2!~L,M ,N!5
1

~12LM !~12LN!~12MN!
. ~2.21!
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We start with the generating function

F~d,L,M ,N!5
1

~12d!~12LM !~12LN!~12MN!
. ~2.22!

This is just the generating function for su~2! tensor products divided by (12d). The exponent of
d will be identified with the level. We will proceed to the generating function for sû~2! fusion rules
by modifying ~2.22!. First note that at levelk we need only consider the products of su~2!
representations~a! with a<k. The generating function~2.22! includes products of representation
which violate this condition. To keep terms of the formdkLa with a<k introduce a dummy
variablex ~using MacMahon’s notation—cf. Ref. 1!

V
5

x 1

~12x21!
F~dx,Lx21,M ,N!. ~2.23!

This first convertsdkLa to x2m1k2adkLa, with m>0 and then keeps terms of degree zero inx
which corresponds to keeping the terms ofF(d,L,M ,N) with a<k as required. This yields

1

~12d!~12dLM!~12dLN!~12MN!
. ~2.24!

Repeating this procedure withL replaced byM yields

G~d,L,M ,N!5
12d2LMN2

~12d!~12dLM!~12dLN!~12dMN!~12dLMN2!
. ~2.25!

This is still a generating function for tensor products, but with the size of the represen
Dynkin labels restricted to be less than or equal to the level.

To take into account the affine Weyl group, consider a term in the expansion of the gene
function which containsdkNc. If c>k11 then this representation is reflected back into
fundamental region of the affine Weyl group:c°c22(c2k21)52c12k12 or
dkNc°dkN2k2c12. Since this is a reflection, the corresponding character must be subtract
principle other affine Weyl transformations might be necessary to obtain a weight in the f
mental domain, but, as discussed earlier, for sû~2! one reflection suffices. At the level of gene
ating functions the effect is to replace

G~d,L,M ,N!°G~d,L,M ,N!2N2G~dN2,L,M ,N21!. ~2.26!

Note that the new generating function contains terms with negative powers ofN and also terms
with c.k. To obtain the final function we projected out the required terms as above. Alth
this calculation is somewhat long~the verification here was done on a computer!, the final result
is very simple

Gsû~2!5
1

~12d!~12dLM!~12dLN!~12dMN!
. ~2.27!

This has first been written down in Ref. 4. There are thus four elementary couplings:

Ê0 :d: ~0! ^ ~0!.~0!1 , Ê2 :dLN:~1! ^ ~0!.~1!1 ,

Ê1 :dLM:~1! ^ ~1!.~0!1 , Ê3 :dMN:~0! ^ ~1!.~1!1

. ~2.28!

As explained above, subscripts indicate thethreshold level.
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The notion of a model was discussed in Ref. 1. A model for this generating functio
Q@Ê0 ,Ê1 ,Ê2 ,Ê3# with the gradings ofÊ0 ,...,Ê3 respectively given by~1,0,0,0!, ~1,1,1,0!,
~1,1,0,1!, and ~1,0,1,1! for the orderingX05d, X15L, X25M , X35N. As for the finite su~2!
case, there are no relations between the elementary couplings.

The generalization of the above calculation to other affine Lie algebras is straightfor
Starting from the tensor-product generating function augmented by the factor 1/(12d), whered
keeps track of the level, one first enforces the integrability requirement of the first two we
~those that are fused together!; one then implements all the affine reflections of the setŴf on the
third weight and projects the alternating sum onto the integrable sector. However, even thou
strategy is clear, the computations become rapidly very complicated.

To bypass this difficulty, we have argued~cf. Ref. 1, Sec. III! that the use of a direct descrip
tion of tensor products in terms of a system of inequalities@e.g., the Littlewood–Richardson~LR!
inequalities underlying their combinatorial description for calculating tensor products—cf. R
Sec. IV# simplifies the general procedure to a very large extent in addition to allowing us to
powerful algebraic results. We now look for a similar procedure here. However, this pro
faces an immediate difficulty since even for su(N), a combinatorial description of fusion rules
not known. Our method is instead to find an independent route leading to the elementar
plings. Indeed, the elementary couplings are really what we need in order to apply our Gr
basis machinery. Quite remarkably, it turns out that once elementary couplings are found, t
a method that allows us to reconstruct the underlying system of Diophantine inequalities.

III. FUSION-RULE ELEMENTARY COUPLINGS

The construction of this section depends upon the following:
Fundamental conjecture:There exists a fusion basis, that is, a set linear and homogen

inequalities involvingk and containing as a subset, a tensor-product basis.
For instance, the LR basis is a set linear and homogeneous inequalities. Every solution

expanded in terms of the elementary solutions of these inequalities. For sû(N), the conjecture
amounts to the existence of a set of additional inequalities involving the levelk that provide the
proper truncation describing the fusion rules. The relation of this conjecture to the conje
presented in Ref. 4 is discussed in the Appendix B.

Note that homogeneity is the key property which allows us to reconstruct the fusion
from a set of fusion elementary couplings using Farkas’ Lemma. This condition does not n
sarily hold, for example we have found that the Lie superalgebra osp~1,2! does not have a homo
geneous basis.

Given homogeneity and Farkas’ lemma, the problem is reduced to finding a set of f
elementary couplings. The Kac–Walton algorithm is one possible approach, but a rather d
one. Instead, we will introduce a simpler approach based on the outer-automorphism
Unfortunately, it relies on another conjecture.

Let us start from the set of tensor-product elementary couplings$Ei ,i PI % for some setI fixed
by the algebra under study. For eachEi , we calculate the threshold levelk0(Ei). This information
specifies the affine extension ofEi . The affine extension of a tensor-product elementary coup
is necessarily a fusion-rule elementary coupling given our hypothesis that the fusion basi
tains, as a subsystem, the set of inequalities that describe tensor products. Denoting by a
affine extension of a tensor-product elementary coupling

Êi5dk0~Ei !Ei , ~3.1!

we have then a partial set of fusion elementary couplings with the set$Êi ,i PI %. Our conjecture
is that the missing fusion elementary couplings can all be generated by the action of the
automorphism group whenever this group is nontrivial:
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The outer-automorphism completeness conjecture:The complete set of elementary couplin

$Êi ,i PJ% for a setJ.I can be generated by the action of the outer-automorphism group o
set$Êi ,i PI %, i.e., the full set is contained in$AÊi%

$Êi ,i PJ%,$AÊi ,i PI %. ~3.2!

The action of the outer-automorphism group on a coupling is defined as follows. Let the
weights in the coupling be$l̂,m̂; n̂% wheren̂,l̂3m̂, then

A$l̂,m̂; n̂%5$Al̂,A8m̂;AA8n̂%, ~3.3!

whereA,A8 are arbitrary elements of the outer-automorphism group; the conjectured com
ness requires the consideration of all possible pairs (A,A8).

It should be stressed that we do not suppose that the action ofA on an elementary coupling
will necessarily produce another elementary coupling. Indeed, the resulting coupling could
product of elementary couplings. What is conjectured here is that all fusion elementary cou
can be generated in this way.

If the outer-automorphism group is trivial, we expect that there will be a single extra ele
tary coupling, the one associated to the scalar coupling:Ê0 .

As a simple example consider sû~2!. Start with the elementary couplingE1 :(1)^ (1).(0). It
is easy to show that this coupling arises at level 1. This is thus the value of its threshold leve
corresponding fusion is@0,1#3@0,1#.@1,0#. We now consider all possible actions of the oute
automorphims group on it. Since this group is of order 2, there are four possible choices f
pair

~A,A8!P$~a,a!,~1,1!,~1,a!,~a,1!%, ~3.4!

with a@l0 ,l1#5@l1 ,l0#. This generates~in order! the following set of four elementary coupling
found previously@cf. Eq. ~2.28!#:

Ê0 :d: @1,0#3@1,0#.@1,0#, Ê2 :dLN:@0,1#3@1,0#.@0,1#,

Ê1 :dLM:@0,1#3@0,1#.@1,0#, Ê3 :dMN:@1,0#3@0,1#.@0,1#.
~3.5!

Let us then suppose that we have a complete set of fusion elementary couplings which
elementary solutions of set of linear and homogeneous inequalities that we are looking
standard theorem in the theory of linear Diophantine equations~cf. Ref. 16! states that every
non-negative integer solution of a given set of homogeneous Diophantine inequalities f
variablesxi @e.g., for su(N), these are the$l i ,ni j %] can be generated from a non-negative co
bination of the fundamental solutions. Hence, given the set of elementary couplings$Êi%, any
coupling can be decomposed~may be not uniquely! in the formP i Êi

ai. Let the grading variables

representing thexi be denoted byXi . To the expression ofg(Êi) corresponds a vectore i of
componentse i j , which is the vector form of the elementary solutions of the Diophantine e
tions. In other words

Êi :g~Êi !5)
j

Xj
e i j . ~3.6!

Reading off a particular coupling means that we are interested in a specific set of non-ne
integers$xi% given by

(
i

aie i j 5xj , ~3.7!
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in terms of non-negative integersai . We are thus looking for the existence conditions for suc
coupling. This is related to Farkas’ lemma.17,18 The standard, rational, form of the lemma is~cf.
Ref. 17, corollary 7.1d!:

Farkas’ lemma:Let V anm3n matrix with rational entries and letxPQm. Then there exists
a>0, aPQn such thatVa5x if and only if for all uPQm, uTV>0 impliesuTx>0.

We can relate this to our problem in the following way. First note that the condition tha
all uPQm, uTV>0 implies uTx>0 is equivalent to the condition that for alluPZm, uTV>0
implies uTx>0. Necessity is clear and sufficiency follows since ifuPQm and uTV>0 thenu
5cu8 with cPQ, c.0 andu8PZm. Thenu8TV>0, sou8Tx>0 and multiplying byc gives the
required inequality.

Now consider the inequalities

uTV>0, uPZm. ~3.8!

By writing ui5wi2v i , wi ,v iPN, i 51¯m, we obtain a new system of linear Diophantin
inequalities. It is not difficult to see that every solution to~3.8! can be obtained from a solution t
this new system. Moreover, the new system of linear Diophantine inequalities has a finite
fundamental solutions. These give rise to a set of fundamental solutions to~3.8! such that every
solution to~3.8! is a linear combination of these fundamental solutions with non-negative int
coefficients. Call these fundamental solutionssi , i 51,¯,k. Thus the condition that for allu
PZm, uTV>0 impliesuTx>0 is equivalent to the conditionsi

Tx>0, i 51,¯,k.
Putting all this together we obtain the following variation of Farkas’ lemma:
Lemma:Let V be anm3n matrix with rational entries and letxPQm. Then there existsa

>0, aPQn such thatVa5x if and only if si
Tx>0, i 51,¯,k wheresi , i 51,¯,k are a funda-

mental set of solutions of the systemuTV>0, uPZm.
We can reformulate this Lemma over the integers in a form which is more convenient fo

application:
Proposition A: SupposeVPMm,n(N) and let xPNm, aPNn. Then Va5x if and only if

ui
Tx5a i

Ta, i 51,¯,k whereui ,a i ,i 51,¯,k are a fundamental set of solutions of the syst
uTV5aT, uPZm, aPNn.

To show this, suppose thatVa5x and thatuTV5aT with uPZm, aPNn. ThenuTx5uTVa
5aTa. In particular this is true for the fundamental solutions.

Conversely, supposeui
Tx5a i

Ta for every fundamental solution. ThenuTx5aTa for everyu
PZm, aPNn such thatuTV5aT. SinceVPMm,n(N), one set of solutions touTV5aT, uPZm,
aPNn is given by takingu to be a suitable unit vector andaT to be a row ofV which givesVa5x
as required.

To link the lemma to the situation presented above, we note that the entriesVi j of the matrix
V are given here by the numberse j i appearing in~3.6!. Our analogue of the relationVa5x
describes a generic coupling and our goal is to find the defining system of inequalities unde
the existence of this coupling. The equalitiesui

Tx5a i
T, ai51,¯,k imply that x satisfiesui

Tx
>0, i 51,¯,k sincea i anda are non-negative. In general these inequalities have solutions w
are not solutions of the former equalities for anya. For example ifV5(2), then Va5x is 2a
5x which is also the equality obtained from the second part of the Proposition A. Thusx is a
non-negative even integer. But the corresponding inequality isx>0. However, we have found tha
for the particular systems we consider, this does not happen—as can be easily verified b
puting the fundamental set of solutions to the inequalitiesui

Tx>0, i 51,¯,k and verifying that
they are the columns ofV.

As a simple illustration of this construction, let us work out the example of sû~2!. We use the
LR variables$k,l1 ,n11,n12% and the corresponding grading variables$d,L1 ,N11,N12% in terms of
which the elementary couplings and the corresponding vectors are

Ê0 :d, e05~1,0,0,0!,
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Ê1 :dL1N12, e15~1,1,0,1!,

Ê2 :dL1 , e25~1,1,0,0!,
~3.9!

Ê3 :dN11, e35~1,0,1,0!.

For future reference, we display the LR tableaux of the corresponding tensor-product elem
couplings

~3.10!

To the fusion elementary couplings, we associate the vectorse j which form the matrixV with
componentsVi j 5e j i

V5S 1 1 1 1

0 1 1 0

0 0 0 1

0 1 0 0

D , ~3.11!

and so we have the matrix equation

Va5x. ~3.12!

This equation describes a general fusion coupling. We now want to unravel the underlying s
of inequalities. For this, we use Proposition A, i.e., we find the fundamental solutions ofuTV
>0. This is first transformed into a set of equalitiesuTV5aT by introducing new non-negative
parametersa i :

u05a0 , u01u15a2 ,

u01u11u35a1 , u01u25a3 . ~3.13!

We next apply the vector-basis arguments~see Sec. VII of Ref. 1!. Let us choose thea i as our
independent variables.~This example is somewhat misleading due to its simplicity: in general
all the a i can be taken as the independent variables.! The dependent variables read then

u05a0 , u25a32a0 ,

u15a22a0 , u35a12a2 . ~3.14!

The four basis vectors are obtained by setting successively onea i equal to 1 and all the other
equal to 0. These vectors are written asei and their entries are

ei5~u0~a i51!, u1~a i51!, u2~a i51!, u3~a i51!;a0 ,a1 ,a2 ,a3!. ~3.15!

With i 50,1,2,3, we find

e05~1,21,21,0;1,0,0,0!, e35~0,0,1,0;0,0,0,1!,

e15~0,0,0,1;0,1,0,0!, e25~0,1,0,21;0,0,1,0!. ~3.16!
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Theseei are manifestly linearly independent and they are non-negative expressions in thea i . In
other words, their grading re-transcription of the above vectors~with Ui and Ai denoting the
grading variables ofui anda i , respectively! reads

E05U0U1
21U2

21A0 , E25U1U3
21A2,

E15U3A1 , E35U2A3 . ~3.17!

Here we see that allEi contain positive powers of theAi @this is not generic and it reflects th
simplicity of the su~2! case#. Hence, all solutions are generated freely from the non-nega
powers of theEi .

The corresponding linear system of Proposition A ise xT5aT with x5(k,l1 ,n11,n12) and
a5(a1 ,a2 ,a3 ,a4) non-negative integers

k2l12n115a1 , l12n125a3 ,

n125a2 , n115a4 , ~3.18!

which are equivalent to the inequalities

k>l11n11, l1>n12,

n12>0, n11>0. ~3.19!

The last three conditions define the LR basis. The first one is the additional fusion constra
In general, we will work the elementary solutionsei in their exponential versionEi to keep the

notation more compact and it should be clear that the~in!equalities can be read off as easily at th
level.

The construction of the sû~2! generating function is now straightforward: since there are
relations between the elementary couplings, the generating function is simply~2.27!, that is

Gsû~2!5)
i 50

3
1

~12Êi !
. ~3.20!

From thek-inequality of the sû~2! fusion basis, we read off the threshold level of a coupli
ask05l11n11, that is

k05~l11m11n1!/2. ~3.21!

The threshold level is also nicely coded in the LR tableaux: all elementary couplings
threshold level 1 and they all have a single column. We can then write directly that

k05#columns5l11n11, ~3.22!

and we recover the previous result. For an su~2! LR tableau, it is clear that the number of colum
is given by this expression. More generally, for su(N), it is simple to check that the number o
columns is simply

#columns5~l1m1n,vN21!5 (
i 51

N21

l i1n11, ~3.23!

wherevN21 is theN21th fundamental weight.
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IV. THE GENERATING FUNCTION FOR sû „3… FUSION RULES

The su~3! tensor-product elementary couplings are:

~4.1!

Using the Kac–Walton formula, the threshold level ofE1 is 1 and the corresponding fusio
reads

Ê1 : @0,1,0#3@0,0,1#.@1,0,0#. ~4.2!

Acting on Ê1 with (an,am;an1m) n,m50,1,2 yields the elementary couplings

Ê0 : @1,0,0#3@1,0,0#.@1,0,0#: d ~1,0,0,0,0,0,0,0!,

Ê1 : @0,1,0#3@0,0,1#.@1,0,0#: dL1N12N23 ~1,1,0,0,1,0,0,1!,

Ê2 : @0,1,0#3@1,0,0#.@0,1,0#: dL1 ~1,1,0,0,0,0,0,0!,

Ê3 : @1,0,0#3@0,1,0#.@0,1,0#: dN11 ~1,0,0,1,0,0,0,0!,

Ê4 : @0,0,1#3@0,1,0#.@1,0,0#: dL2N13 ~1,0,1,0,0,1,0,0!, ~4.3!

Ê5 : @0,0,1#3@1,0,0#.@0,0,1#: dL2 ~1,0,1,0,0,0,0,0!,

Ê6 : @1,0,0#3@0,0,1#.@0,0,1#: dN11N22 ~1,0,0,1,0,0,1,0!,

Ê7 : @0,1,0#3@0,1,0#.@0,0,1#: dL1N12 ~1,1,0,0,1,0,0,0!,

Ê8 : @0,0,1#3@0,0,1#.@0,1,0#: dL2N11N23 ~1,0,1,1,0,0,0,1!.

The last column is the vectore i with entries (k,l1 ,l2 ,n11,n12,n13,n22,n23). By this procedure,
we have thus recovered the affine extension of the eight tensor-product elementary couplin
found an extra elementary coupling:Ê0 .

To derive the fusion basis, we proceed as in the su~2! case. The set of variables here is

~x0 ,x1 ,...,x7!5~k,l1 ,l2 ,n11,n12,n13,n22,n23!, ~4.4!

and the matrixV ~with columns written in the orderÊ0 ,...,Ê8) reads
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V51
1 1 1 1 1 1 1 1 1

0 1 1 0 0 0 0 1 0

0 0 0 0 1 1 0 0 1

0 0 0 1 0 0 1 0 1

0 1 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1

2 . ~4.5!

The reformulation ofuTV>0 in terms of equalities by the introduction of appropriate nonnega
parameters reads

u05a0 , u01u25a5 ,

u01u11u41u75a1 , u01u31u65a6 ,

u01u15a2 , u01u11u45a7 ~4.6!

u01u35a3 , u01u21u31u75a8 ,

u01u21u55a4 .

We have 17 variables and nine equations, hence eight free variables. Let us choose them t
a i except fora5 . Solving for the dependent variables leads to

u05a0 , u552a01a11a31a42a72a8 ,

u152a01a2 , u652a31a6 ,

u252a12a31a71a8 , u75a12a7 , ~4.7!

u352a01a3 , a55a02a12a31a71a8 ,

u452a21a7 .

The basis vectorsei of this system are obtained by setting one of thea j51 and all the others
equal to 0~with the understanding thea5 is excluded from this list of free variables!. It appears
more natural here to express them in their exponentiated version since a projection will be
to extract the non-negative fundamental solutions. Denote byUi the grading variable associated
ui and byAi those associated toa i , the exponential form of the basis vectors reads

E0 :U0U1
21U3

21U5
21A0A5 , E4 :U5A4 ,

E1 :U2
21U5U7A1A5

21, E5 :U6A6 ,
~4.8!

E2 :U1U4
21A2 , E6U2U4U5

21U7
21A5A7 ,

E3 :U2
21U3U5U6

21A3A5
21, E7 :U2U5

21A5A8 .
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To get the corresponding non-negative couplings, i.e., terms containing only non-negative p
of the Ai , we must keep only the non-negative powers of theEi . But this is not sufficient since
negative powers ofA5 can appear: we need to project the free generators of the non-negatEi

powers

)
i 50

7
1

12Ei
, ~4.9!

to non-negativeA5 powers, using, say the MacMahon algorithm~cf. theV projection described in
Sec. III of Ref. 1!. After the projection, all the variablesAi are set equal to 1. Here however, it
fairly easy to find out by inspection those non-negative combinations of theEi that have non-
negativeA5 terms. These are

E0 ,E2 ,E4 ,E5 ,E6 ,E7 , ~4.10!

together with

E0E1 :U0U1
21U2

21U3
21U7A0A1 , E1E7 :U7A1A8 ,

E0E3 :U0U1
21U2

21U6
21A0A3 , E3E6 :U3U4U6

21U7
21A3A7 , ~4.11!

E1E6 :U4A1A7 , E3E7 :U3U6
21A3A8 .

At this point, we set allAi51. We have thus 12 elementary non-negative solutions and
corresponding inequalities are

l1>n12, l2>n13, l21n12>n131n23,

n11>n22, n111n12>n221n23,
~4.12!

andni j >0 ~except forn11>0 which is implied by the others!, which are the LR conditions for
su~3!. There are also three inequalities involvingk

k2l12l2>n22,

k2l12l2>n112n23, ~4.13!

k2l1>n131n11.

The set of inequalities~4.12! and ~4.13! represents the sû~3! fusion basis.
Before we leave the analysis of the sû~3! case, let us return to the set of equations~4.7!. The

next to last equality gives a relation between differenta i . Actually this relation signals a relation
between different sums of columns ofV. In other words, this signals a relation between produ
of elementary couplings. Indeed, to link this equality of~4.7! with such a relation, we recall tha
the labeling of thea i is that of the elementary couplings, which are the columns ofV. Hence, the
sought for relation is simply the product form of the equality witha i°Êi

a11a31a55a01a71a8°Ê1Ê3Ê55Ê0Ê7Ê8 . ~4.14!

As there is only one relation, it is easy to find the generating function. ForbiddingÊ1Ê3Ê5 ,
we get4
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G15S )
i 50

iÞ1,3,5

8

~12Êi !
21D S 1

~12Ê1!~12Ê5!
1

Ê3

~12Ê3!~12Ê1!
1

Ê3Ê5

~12Ê5!~12Ê3!
D .

~4.15!

If instead, we decide to forbidÊ0Ê7Ê8 , we would have

G85S )
i 50

iÞ0,7,8

8

~12Êi !
21D S 1

~12Ê0!~12Ê7!
1

Ê8

~12Ê7!~12Ê8!
1

Ê0Ê8

~12Ê8!~12Ê0!
D ,

~4.16!

and simple manipulations show thatG15G8. An independent proof of this generating function
presented in Appendix A.

Given the fusion basis, we can write down directly the threshold level to be

k05max~l11l21n112n23,l11l21n22,l11n111n13!. ~4.17!

This can also be extracted from the generating function as follows. A generic term of thê~3!

generating function is (Ê05d)

daÊ1
aÊ2

bÊ3
cÊ4

dÊ5
eÊ6

f Ê7
gÊ8

h , ~4.18!

with eithera50, c50, or e50. In all cases the threshold level is simply

k05a1b1c1d1e1 f 1g1h. ~4.19!

In terms of the grading variablesLi andNi j , the above generic term becomes

da1k0L1
a1b1gL2

d1e1hN11
c1 f 1hN12

a1gN13
d N22

f N23
a1h . ~4.20!

From this expression we read off the relation between theni j and the variablesa,...,h. In each
three cases~where one ofa,c,e is zero!, we can then solve for the sumk05a1b1c1d1e1 f
1g1h. We find

a50: k05l11l21n112n23,

c50: k05l11l21n22, ~4.21!

e50: k05l11n111n13.

This leads to the compact expression~4.17! for the sû~3! threshold level. This is easily checked
be equivalent to the formula given in Refs. 6 and 7 in terms of BZ triangle data~cf. Sec. VII A of
Ref. 1!

k05max$m131m11m2 ,n131n11n2 ,l 131l11l2%. ~4.22!

An explicit formula for the sû~3! fusion coefficients is written down in Ref. 19.
Notice that the threshold level is also simply encoded in the LR tableaux. Indeed,

elementary couplings has threshold level 1 and it corresponds to the number of columns exc
E8 . This leads directly to the following formula for the threshold level of a general LR table

~4.23!
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that is,k0 is the number of columns minus the total number ofE8 that we can take out of the
tableau while preserving its LR character. Consider for instance

~4.24!

After the subtraction of oneE8 , the resulting tableau is not a LR tableau: counting from righ
left, we find that an2 precedes the firstn1 . Therefore, noE8 can be removed andk0 is given by
the number of columns which is 4.

V. THE sp̂ „4… GENERATING FUNCTION

We first recall some results obtained in Ref. 1. The appropriate basis for the descript
sp~4! tensor products reads20

l1>p, m1>q,

l2>r 1/2, m1>q1r 12r 2 ,

l2>r 1/21q2p, m1>p1r 12r 2 , ~5.1!

l2>r 2/21q2p, m2>r 2/2,

n15r 22r 122p1l11m1 , n25p2q2r 22r 21l21m2 ,

together withp,qPN andr iP2N for i 51,2. A proper set of variables for a complete descript
of a particular tensor-product coupling is thus

$l1 ,l2 ,m1 ,m2 ,r 1 ,r 2 ,p,q%, ~5.2!

~notice the absence of then i Dynkin labels!. Let the corresponding grading variables be

$L1 ,L2 ,M1 ,M2 ,R1 ,R2 ,P,Q%. ~5.3!

The list of elementary coupling with their grading description is:

A1 :~0,0! ^ ~1,0!.~1,0! M1 ,

A2 :~1,0! ^ ~0,0!.~1,0! L1 ,

A3 :~1,0! ^ ~1,0!.~0,0! L1M1PQ,

B1 :~0,0! ^ ~0,1!.~0,1! M2 ,

B2 :~0,1! ^ ~0,0!.~0,1! L2 ,

B3 :~0,1! ^ ~0,1!.~0,0! L2M2R1
2R2

2,
~5.4!

C1 :~0,1! ^ ~1,0!.~1,0! L2M1Q,

C2 :~1,0! ^ ~0,1!.~1,0! L1M2R2
2P,

C3 :~1,0! ^ ~1,0!.~0,1! L1M1P,

D1 :~2,0! ^ ~0,1!.~0,1! L1
2M2R2

2P2,

D2 :~0,1! ^ ~2,0!.~0,1! L2M1
2R1

2,

D3 :~0,1! ^ ~0,1!.~2,0! L2M2R2
2.
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The relation between elementary couplings are generated by

C1C25A3D3 , C2C35A1D1 , C3C15A1A3B2

D1D25B3C3
2, D2D35A1

2B2B3 , D1D35B2C2
2,

C1D15A3B2C2 , C2D25A1B3C3 , C3D35A1B2C2.

~5.5!

To find the fusion elementary couplings, we start by computing the threshold level ofA1 by
the Kac–Walton formula. It is found to be 1. The corresponding level-1 fusion, denotedÂ1 , is
thus

@1,0,0#3@0,1,0#.@0,1,0#. ~5.6!

We can act on it with the four pairs

~A,A8!5$~1,1!,~a,a!,~a,1!,~1,a!%. ~5.7!

We obtain in this way two copies ofÂ1 and two copies ofĈ1 , the level-1 extension ofC1 .
Similarly, A2 , andA3 are found to have level 1 and this implies the same result forC2 ,C3 . B1 is
also found to have threshold level 1. Acting on it with the above sequence of outer automorp
leads successively toB1 ,B2 ,B3 , and a new coupling,Ê0

Ê0 : @1,0,0#3@1,0,0#.@1,0,0#. ~5.8!

Finally, D1 , D2 , andD3 have threshold level 2 and they are all fixed with respect to the actio
the outer-automorphism group. The set$Âi ,B̂i ,Ĉi ,D̂ i ,Ê0% is thus our candidate complete set
fusion elementary couplings, whose explicit expression in terms of grading variables is read
their tensor-product relative with the addition of appropriate factors ofd.

Having obtained the fusion elementary couplings, we now work out the corresponding f
basis. Introduce the set of variables

~x0 ,x1 ,...,x8!5~k,l1 ,l2 ,m1 ,m2 ,r 1 ,r 2 ,p,q!. ~5.9!

This fixes the ordering of the rows ofV. The matrixV is built from the columns which form the
different elementary couplings in the orderÊ0 ,Â1 ,...,D̂3 :

V51
1 1 1 1 1 1 1 1 1 1 2 2 2

0 0 1 1 0 0 0 0 1 1 2 0 0

0 0 0 0 0 1 1 1 0 0 0 1 1

0 1 0 1 0 0 0 1 0 1 0 2 0

0 0 0 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 2 0 0 0 0 2 0

0 0 0 0 0 0 2 0 2 0 2 0 2

0 0 0 1 0 0 0 0 1 1 2 0 0

0 0 0 1 0 0 0 1 0 0 0 0 0

2 . ~5.10!

The transcription of the inequalitiesuTV>0 into the equalitiesuTV5aT takes the following form

u05a0 , u01u21u31u85a7 ,

u01u35a1 , u01u11u412u61u75a8 ,
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u01u15a2 , u01u11u31u75a9 ,

u01u11u31u71u85a3 , 2u012u11u412u612u75a10, ~5.11!

u01u45a4 , 2u01u212u312u55a11,

u01u25a5 , 2u01u21u412u65a12,

u01u21u412u512u65a6 .

Solving for the dependent variablesui , a j , i 50,...,8 andj 56,7,8,9 gives

u05a0 , u75 1
2 ~a022a21a51a102a12!,

u152a01a2 , u85 1
2 ~a022a112a32a52a101a12!,

u252a01a5 , a6522a12a51a111a12,

u352a01a1 , a75 1
2 ~2a012a31a52a101a12!, ~5.12!

u452a01a4 , a85 1
2 ~2a02a51a101a12!,

u55 1
2 ~a022a12a51a11!, a95 1

2 ~2a012a11a51a102a12!,

u65 1
2 ~2a42a51a12!.

As usual, the basis vectorsei of this system are obtained by setting one of thea i51 and all the
others equal to 0, excludinga6 ,...,a9 . We will give their exponentiated version, where as befo
we denote byUi the grading variable associated toui and byAi those associated toa i

E0 :U0U1
21U2

21U3
21U4

21U5
1/2U7

1/2U8
1/2A0A7

1/2A8
21/2A9

21/2,

E1 :U3U5
21U8

21A1A6
22A9 ,

E2 :U1U7
21A2 ,

E3 :U8A3A7 ,

E4 :U4U6
21/2A4 , ~5.13!

E5 :U2U5
21/2U6

21/2U7
1/2U8

21/2A5A6
21A7

1/2A8
21/2A9

1/2,

E6 :U7
1/2U8

21/2A7
21/2A8

1/2A9
1/2A10,

E7 :U5
1/2A6A11,

E8 :U6
1/2U7

21/2U8
1/2A6A7

1/2A8
1/2A9

21/2A12.

Next we keep only those combinations of theEi that contain only non-negative integer powers
the Ai . This projection is not so simple to work out by inspection. We thus need to use a
systematic procedure:

Consider a general expansion of the formP i(12Ei)
21 and in a generic term of the form

P iEi

e i8, let us collect the number ofAi factors~denote byai their exponents!. Of course we are
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only interested in thoseAi that appear with negative powers, namelyi 56,7,8,9. Their powers can
be read off from theAi in ~5.13! and this yields the following expressions

a6522e182e581e781e88>0,

2a752e0812e381e582e582e681e88>0,
~5.14!

2a852e082e581e681e8>0,

2a952e0812e181e581e682e88>0.

@These equations should be compared with the next to last four of~5.12!, with a i→e i8 , i<5 and
a i→ei 248 for i>10.] We then look for the elementary solutions of this system of inequali
There are 4 elementary solutions withe08Þ0. Their grading reformulation reads

E0E1E6E8
2, E0E1E7E8 , E0E5E6E8 , E0E3E6 . ~5.15!

Denote their vector-reformulation respectively asei with i 50,1,2,3, then the conditionseix>0
yield, in the above order

k>l11l21m21r 1/22r 2 ,

k>l11l21m22r 2/2,
~5.16!

k>l11m11m22p,

k>l11l21m11m22p2q2r 1/2.

The other elementary solutions are

E2 , E3 , E4 , E7 , E5E8 , E6 ,E8 , E1E8
2, E1E7

2.

E3E6
2, E5E6E7 , E5E6

2E8 , E1E6
2E8 , E1E6E7E8 , ~5.17!

and the resulting inequalities reproduce the whole set of Berenstein–Zelevinsky~BZ! inequalities
~5.1! with the positivity requirement onr i , p and q ~together withm1>q1 1

2 (r 12r 2) which is
implied by the other ones!.

Let us return to the next to last four equations in~5.12!. As mentioned in connection to th
sû~3! case, they indicate the ‘‘basic relations:’’ The correspondence between thea i and the
elementary couplings being fixed by the ordering of the columns ofV ~e.g., a3°Â3 and
a7°Ĉ1). The relations correspond then, respectively, to

Â1
2B̂2B̂35D̂2D̂3 , Ê0Ĉ1

2D̂15Â3
2B̂2D̂3 ,

Ê0B̂2Ĉ2
25D̂1D̂3 , Ê0Ĉ3

2D̂35Â1
2B̂2D̂1.

~5.18!

The first and third relations appear in the list~5.5!. All other linear relations in the set~5.5! can be
obtained from products of the above four, allowing for the cancellations of common factors
instance, consider the product of the left factors of the second and third relations; equatin
with the product of the right factors yields

Ê0
2B̂2Ĉ1

2Ĉ2
2D̂15Â3

2B̂2D̂1D̂3
2. ~5.19!

Cancelling theB̂2D̂1 terms and taking the square root gives
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Ê0Ĉ1Ĉ25Â3D̂3 , ~5.20!

which is the affine extension of the relationC1C25A3D3 . All other linear relations can be
obtained in a similar way.

We can write the sp̂~4! generating function in the compact form

G5Ē0B̄1B̄2B̄3@Ā1Ā2Ā3C̄1C̄2C̄3~12Â1Â3B̂2!1D̂1D̄1Ā2Ā3C̄2C̄31D̂3D̄3Ā1Ā2C̄1C̄2

1D̂2D̄2Ā1Ā2Ā3C̄1C̄3~12Â1Ā3B̂2!#, ~5.21!

whereQ̄ is defined as

Q̄5
1

12Q̂
. ~5.22!

This can be re-expressed under a manifestly positive form as follows

G5Ē0Ā1Ā2B̄1B̄2B̄3C̄1C̄2C̄31Ē0Â3Ā2Ā3B̄1B̄2B̄3C̄1C̄2C̄31Ē0Â1Â3Ā1Ā2Ā3B̄1B̄3C̄1C̄2C̄3

1Ē0D̂1Ā2Â3B̄1B̄2B̄3C̄2C̄3D̄11Ē0D̂3Ā1Ā2B̄1B̄2B̄3C̄1C̄2D̄31Ē0D̂2Ā1Ā2B̄1B̄2B̄3C̄1C̄3D̄2

1Ē0Â3D̂2Ā2Ā3B̄1B̄2B̄3C̄1C̄3D̄21Ē0Â1Â3D̂2Ā1Ā2Ā3B̄1B̄3C̄1C̄3D̄2 . ~5.23!

We should stress that this is essentially a new result. A generating function for sp̂~4! fusion rules
was given in Ref. 21; the approach, however, wasad hocand the result was not related to an
known basis.

As before the information concerning the threshold level that can be deduced from the
basis inequalities~5.16! can also be obtained directly from the generating function. A generic t
of the sp̂~4! generating function~5.23! reads

daÂ1
aÂ2

bÂ3
cB̂1

dB̂2
eB̂3

f Ĉ1
gĈ2

hĈ3
i D̂1

j D̂2
kD̂3

l . ~5.24!

Its threshold level is~since all these factors have a single power ofd except for the threeD̂ i

5d2Di):

k05a1b1c1d1e1 f 1g1h1 i 12 j 12k12l . ~5.25!

Now express the elementary couplings in terms of dummy varia
$L1 ,L2 ,M1 ,M2 ,R1 ,R2 ,P,Q% whose exponent are the BZ basis data, respectiv
$l1 ,l2 ,m1 ,m2 ,r 1 ,r 2 ,p,q%

A15M1 , A25L1 , A35L1M1PQ,

B15M2 , B25L2 , B35L2M2R1
2R2

2,

C15L2M1Q, C25L1M2R2
2P, C35L1M1P,

D15L1
2M2R2

2P2, D25L2M1
2R1

2, D35L2M2R2
2.

~5.26!

Next, consider each term of the generating function~5.23! and solve fork0 in terms of the basis
variables. Surprisingly there are only four different formulas fork0 . The expressions correspond
ing to the different terms of~5.23! are

terms 1,5,6: k05l11l21m11m22p2q2r 1/2,

terms 3,8: k05l11m11m22p,

~5.27!
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terms 7: k05l11l21m21r 1/22r 2 ,

terms 2,4: k05l11l21m22r 2/2.

Therefore, the threshold formula is the maximum value of these four values or equivalentl

k05l11l21m11m22min~p1q1r 1/2,l21p,m12r 1/21r 2 ,m11r 2/2!. ~5.28!

Notice that by rewritingk>k0 , we recover from~5.27! the four inequalities~5.16!.
The system of inequalities~5.1! can be transformed into a system of equations by set

r 1/25s1 and r 2/25s2 and introducing the integersai ~cf. Sec. VIII E of Ref. 1!

l15p1a1 , n25a41a8 ,

l25s11a2 , a21p5a31q,

m15q1a5 , a31s15a41s2 ,

m25s21a8 , a512s25a612s1 ,

n15a11a7 , a61q5a71p.

~5.29!

As shown in Ref. 1, this leads to the following diamond-type graphical representation of the t
product:

Dotted lines relate those two points that compose the label indicated beside it and op
continuous lines are constrained to be equal, with the length of a line being defined as the
its extremal points except for the lines delimited by the points (a6 ,s1) and (a5 ,s2) where the
point si is counted twice~the little bar besidess1 ands2 being a reminder of this particularity!. For
those lines, the constraint readsa612s15a512s2 . Given a triple sp~4! product, the number of
such diamonds that can be drawn with only non-negative entries gives its multiplicity.

In terms of these data, the expression for the threshold level~5.27! look somewhat more
symmetrical: the four expressions in~5.27! correspond respectively to the following terms:

k05a11a81max$a41a71s1 ,a51q1s2 ,a41q1s1 ,a41q1s2%. ~5.30!
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VI. THE sû „4… GENERATING FUNCTION

Written directly in terms of LR tableaux, the su~4! elementary solutions are

~6.1!

and

~6.2!

The relations are22,23

D j8Dk5CiEi , D jDk85BiCjCk , EiEj5BkDkDk8 ,

DiEi5CjBkDk , Di8Ei5BjD j8Ck,
~6.3!

with i, j, k a cyclic permutation of 1, 2, 3.
Consider now the construction of the set of fusion elementary couplings using o

automorphism completeness. Start withA1 :(0,0,0)̂ (0,0,1).(0,0,1), this has threshold level 1
Acting on it with

~A,A8!5~an,am!, n,m50,1,2,3, ~6.4!

where

a@l0 ,l1l2 ,l3#5@l3 ,l0l1 ,l2#, ~6.5!

we generate the affine extension of the whole setAi ,Bi ,Ci ,Di ,Di8 , which thus all have threshold
level 1, together with the scalar couplingÊ05@1,0,0,0#3@1,0,0,0#.@1,0,0,0#. Finally, the affine
extension ofE1 arises first at level 2:@0,1,0,1#3@1,0,1,0#.@1,0,1,0#. The three weights in this
coupling are fixed under the action ofA5a2. Hence, we need only to consider

~A,A8!5$~1,1!,~a,a!,~a,1!,~1,a!%, ~6.6!

and this leads, respectively, toÊ1 ,Ê2 ,Ê3 , which all havek052 and a new elementary couplin
F̂5@0,1,0,1#3@0,1,0,1#.@0,1,0,1# ~first discovered in Ref. 7!. Notice that at the level of tensor
products,F̂ is a composite productC1C2C3 . But if it were still composite for fusions, it would
necessarily have level 3 sincek0(C1C2C3)53. This is the reason whyF̂ must be regarded as
new elementary coupling.

The whole set of fusion elementary couplings is

Â15@1,0,0,0#3@0,0,0,1#.@0,0,0,1#, D̂185@0,0,1,0#3@0,1,0,0#.@0,0,0,1#,

Â25@0,0,0,1#3@0,1,0,0#.@1,0,0,0#, D̂285@0,1,0,0#3@0,1,0,0#.@0,0,1,0#,

Â35@0,1,0,0#3@1,0,0,0#.@0,1,0,0#, D̂385@0,1,0,0#3@0,0,1,0#.@0,0,0,1#,
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B̂15@1,0,0,0#3@0,0,1,0#.@0,0,1,0#, D̂15@0,0,1,0#3@0,0,0,1#.@0,1,0,0#,

B̂25@0,0,1,0#3@0,0,1,0#.@1,0,0,0#, D̂25@0,0,0,1#3@0,0,0,1#.@0,0,1,0#, ~6.7!

B̂35@0,0,1,0#3@1,0,0,0#.@0,0,1,0#, D̂35@0,0,0,1#3@0,0,1,0#.@0,1,0,0#,

Ĉ15@1,0,0,0#3@0,1,0,0#.@0,1,0,0#, Ê15@0,1,0,1#3@1,0,1,0#.@1,0,1,0#,

Ĉ25@0,1,0,0#3@0,0,0,1#.@1,0,0,0#, Ê25@1,0,1,0#3@1,0,1,0#.@0,1,0,1#,

Ĉ35@0,0,0,1#3@1,0,0,0#.@0,0,0,1#, Ê35@1,0,1,0#3@0,1,0,1#.@1,0,1,0#,

together with two couplings that have no elementary finite relative:

Ê05@1,0,0,0#3@1,0,0,0#.@1,0,0,0#, F̂5@0,1,0,1#3@0,1,0,1#.@0,1,0,1#. ~6.8!

The tensor-product relations are modified by the appropriate insertions ofd or Ê0 factors in
order to put them at the same threshold level

Ê0D̂ j8D̂k5Ĉi Êi , Ê0D̂ j D̂k85B̂i Ĉj Ĉk , Êi Êj5Ê0B̂kD̂kD̂k8 ,

D̂ i Êi5Ĉj B̂kD̂k , D̂ i8Êi5B̂j D̂ j8Ĉk , Ê0F̂5Ĉ1Ĉ2Ĉ3,
~6.9!

with i, j, k a cyclic permutation of 1, 2, 3.
To get the sû~4! basis, we first write down theV matrix, whose columns are the vectori

transcription of the fusion elementary couplings written in terms of the grading variables
column ordering corresponds toÊ0 ,Âi ,B̂i ,Ĉi ,D̂ i8 ,D̂ i ,Êi ,F̂ with i 51,2,3. The rows are labele
by the LR variables (k,l1 ,l2 ,l3 ,n11,n12,n13,n14,n22,n23,n24,n33,n34). The matrixV is thus

V5

¨

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1

0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1

0 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 1 1

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1

©
.

~6.10!

With u5(u0 ,...,u12), the equationsuTV>0 can be transformed into equalities by introducing t
variablesa i

u05a0 , u01u21u65a10,

u01u41u81u115a1 , u01u11u55a11,
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u01u31u75a2 , u01u11u51u95a12,

u01u15a3 , u01u21u41u91u125a13,

u01u41u85a4 , u01u31u41u81u125a14,
~6.11!

u01u21u61u105a5 , u01u31u41u105a15,

u01u25a6 , 2u01u11u31u51u105a16,

u01u45a7 , 2u01u21u41u95a17,

u01u11u51u91u125a8 , 2u01u21u41u61u81u125a18,

u01u35a9 , 2u01u11u31u41u51u91u125a19.

We have 13 free variables; let us choose them to be thea i for i 50,...,12. Solving for the
dependent variables leads to

u05a0 , u552a31a11, u105a52a10,

u152a01a3 , u652a61a10, u115a12a4 ,

u252a01a6 , u75a22a9 , u125a82a12,

u352a01a9 , u85a42a7 ,

u452a01a7 , u952a111a12,

~6.12!

together with

a1352a01a61a71a82a11, a175a61a72a111a12,

a1452a01a41a81a92a12, a185a41a81a102a12,
~6.13!

a1552a01a51a71a92a10, a1952a01a71a81a9 ,

a165a51a92a101a11.

Now, by setting successivelya i51 for i 50,...,12 and the others equal to 0, we generate
following set of basis vectors:

E05dN11
21L1

21L2
21L3

21A0A13
21A14

21A15
21A19

21, E65N13
21L2A6A13A17,

E15N33A1 , E75N11N22
21L2A7A13A15A17A19,

E25N14A2 , E85N34A8A13A14A18A19,

E35N12
21L1A3 , E95N14

21L3A9A14A15A16A19,

E45N22
21N33A4A14A18, E105N13N24

21A10A15
21A16

21A18,

E55N24A5A15A16, E115N12N23
21A11A13

21A11A13
21A16A17

21,

E125N23N34
21A12A14

21A17A18
21.

~6.14!

We must now look for those combinations that contain only non-negative powers of theAi .
Since eachEi contains at least one positive power ofAi , these must be obtained from positiv
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combinations of theEj . To find them, it is convenient to proceed as in the analysis of sp̂~4!.

Denote byai the number ofAi factors in a general termPE
i

e i8 of the free expansion of theEi in
non-negative powers we get@equivalently, we can read off theAi from ~6.14!#

a1352e081e681e781e882e118 , a175e681e782e118 1e128 ,

a1452e081e481e881e982e128 , a185e481e881e108 2e128 ,
~6.15!

a1552e081e581e781e982e108 , a1952e081e781e881e98 ,

a165e581e982e108 1e118 .

These relations are to be compared with~6.13!. We thus look for elementary solutions of th
systemai>0 for e i8 non-negative integers.

The full list of composites that involveE0—these are those that generatek-dependent
constraints—is

E0E4E7 , E0E8E9 , E0E6E9 , E0E9E8 , E0E7E9 , E0E5E8 ,

E0E7E8E11, E0E7E9E12, E0E7E9E10, E0E5E8E12E4 , E0
2E7E8E9.

~6.16!

The constraints are (Ei specifies the vectorej such that the inequality isejx>0)

E0E4E7 : k>l11l21l31n33,

E0E8E9 : k>l11l21n111n142n34,

E0E6E9 : k>l11n111n131n14,

E0E7E8 : k>l11l21l31n222n34,

E0E7E9 : k>l11l21n141n22,
~6.17!

E0E5E8 : k>l11l21l31n112n242n34,

E0E7E8E11: k>l11l21l32n121n221n232n34,

E0E7E9E10: k>l11l21n142n131n221n24,

E0E8E9E12: k>l11l21n111n142n23,

E0
2E7E8E9 : 2k>2l112l21l31n141n221n112n34.

When these inequalities are re-expressed in terms of BZ triangle data, they reproduce the th
formula presented in Ref. 7.

The E0-independent elementary solutions, namely

E1 , E2 , E3 , E4 , E5 , E6 , E7 , E8 , E9 ,

E6E11, E4E12, E7E11, E8E12, E9E10, E5E10, ~6.18!

E8E11E12, E9E10E12, E7E10E11,

yield the standard LR inequalities
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l1>n12, n11>n22,

l2>n13, n111n12>n221n23,

l21n12>n131n23, n111n121n13>n221n231n24,
~6.19!

l3>n14, n22>n33,

l31n13>n141n24, n221n23>n331n34,

l31n131n23>n141n241n34,

andni j >0, except forn11>0 andn22>0 which are implied by the above equations.
As in the sp̂~4! case, we can check that the relations~6.13! code the ‘‘basic linear relations’

of the model. Indeed, the seven relations read from~6.13! are

Ê0D̂1D̂285B̂3Ĉ1Ĉ2 , Ê1D̂185B̂2Ĉ3D̂28 ,

Ê0D̂2D̂385B̂1Ĉ2Ĉ3 , Ê2D̂285B̂3Ĉ1D̂38 ,

Ê0D̂3D̂185B̂2Ĉ1Ĉ3 , Ê3D̂385B̂1Ĉ3D̂18 ,

Ê0F̂5Ĉ1Ĉ2Ĉ3,

~6.20!

and these are the generators of all the sû~4! linear relations.
In order to construct the sû~4! generating function, we must choose a term ordering. We

the ordering as follows:

$L1 ,L2 ,L3 ,N11,N12,N13,N14,N22,N23,N24,N33,N34,d,

Ê1 ,Ê2 ,Ê3 ,B̂1 ,B̂2 ,B̂3 ,Ĉ1 ,Ĉ2 ,Ĉ3 ,Â1 ,Â2 ,Â3 ,D̂1 ,D̂2 ,D̂3 ,D̂18 ,D̂28 ,D̂38 ,Ê0 ,F̂%. ~6.21!

Grobner basis methods yield the forbidden products

$Êi Êj ,D̂ i8Êi ,D̂ i Êi ,Ĉi Êi ,B̂i Ĉj Ĉk ,B̂2Ĉ3D̂1D̂28 ,B̂1Ĉ3D̂1D̂28 ,B̂1Ĉ2D̂3D̂18 ,

Ê0B̂1D̂1D̂3D̂18D̂28 ,F̂Êi ,F̂B̂i ,Ĉ1Ĉ2Ĉ3 ,F̂Ĉ1Ĉ2Ĉ3%. ~6.22!

The different terms of the generating function are fully specified by their denominator~the nu-
merators are introduced to avoid over-counting!
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Ê0Â1Â2Â3D̂1D̂2D̂3D̂18D̂28D̂38Ĉ1Ĉ2F̂, Ê0Â1Â2Â3B̂2B̂3Ĉ2Ĉ3D̂2D̂3D̂28D̂38Ê1F̂,

Ê0Â1Â2Â3B̂1B̂2B̂3Ĉ2D̂1D̂2D̂18D̂28Ê3F̂, Ê0Â1Â2Â3B̂1B̂2B̂3Ĉ1D̂1D̂2D̂18D̂28Ê3F̂,

Ê0Â1Â2Â3B̂2Ĉ1Ĉ2D̂1D̂2D̂3D̂18D̂28D̂38 , Ê0Â1Â2Â3B̂1B̂2Ĉ1Ĉ2D̂1D̂2D̂18D̂28D̂38 ,

Ê0Â1Â2Â3B̂1B̂2Ĉ1Ĉ2D̂1D̂2D̂3D̂28D̂38 , Ê0Â1Â2Â3B̂3Ĉ1Ĉ3D̂1D̂2D̂3D̂18D̂28D̂38 ,

Ê0Â1Â2Â3B̂1B̂3Ĉ1Ĉ3D̂2D̂3D̂18D̂28D̂38 , Ê0Â1Â2Â3B̂1B̂3Ĉ1Ĉ3D̂1D̂2D̂18D̂28D̂38 ,

Ê0Â1Â2Â3B̂1B̂3Ĉ1Ĉ3D̂1D̂2D̂3D̂28D̂38 , Ê0Â1Â2Â3B̂1B̂3Ĉ1Ĉ3D̂1D̂2D̂3D̂18D̂38 ,

Â1Â2Â3B̂1B̂3Ĉ1Ĉ3D̂1D̂2D̂3D̂18D̂28D̂38 , Â1Â2Â3B̂1B̂2B̂3Ĉ1D̂1D̂2D̂3D̂18D̂28D̂38 ,

Ê0Â1Â2Â3B̂2B̂3Ĉ1D̂1D̂2D̂3D̂18D̂28D̂38 , Ê0Â1Â2Â3B̂1B̂2B̂3Ĉ1D̂2D̂3D̂18D̂28D̂38 ,

Ê0Â1Â2Â3B̂1B̂2B̂3Ĉ1D̂1D̂2D̂18D̂28D̂38 , Ê0Â1Â2Â3B̂1B̂2B̂3Ĉ1D̂1D̂2D̂3D̂28D̂38 ,

Ê0Â1Â2Â3B̂1B̂2B̂3Ĉ1D̂1D̂2D̂3D̂18D̂38.

~6.23!

Finally, note that the expression of threshold levels in terms of tableau data, that
analogue of the sû~2,3! formulas written previously is clearly

k05#columns2max$#D11#D21#D31#C1C2C3%, ~6.24!

since theDi8s have level 1 but two columns andC1C2C3 has level 2 and three columns~corre-
sponding to theF̂ fusion coupling!.

VII. CONCLUSION AND OPEN PROBLEMS

We have obtained the fusion generating function for sû~3,4! and sp̂~4! using the conjectura
existence of a fusion basis. In the sû~3! case a first-principle derivation~presented in Appendix A!
provides an independent proof of the results, thus a partial confirmation of the conjectures
correctness of the underlying fusion basis. Moreover, different tests of the sp̂~4! and sû~4! gener-
ating functions, presented in Appendix A, also support our conjectures and the fusion
constructions.En passant, we point out that the search for the complete sû(N) level-rank sym-
metric function introduced in Appendix A is a quest that deserves further studies.

Although the theme of this paper is the construction of fusion generating functions, our
important result is the unraveling of the fusion basis concept, for which we have provided co
examples. The main open problem is to find a fundamental and Lie algebraic way of derivi
fusion basis~analogous to the Berenstein–Zelevinsky conjectures20!. We observe that the numb
of k-type inequalities increases rather quickly with the rank of the algebra: 1 for sû~2!, 3 for sû~3!,
4 for sp̂~4!, and 10 for sû~4!. More specifically we would like to find arguments to justify t
homogeneity property~on the other hand, the linearity appears to be a generic property, a
consequence of the Kac–Walton algorithm!.

With regard to the automorphism completeness conjecture we note that for simplicity~and
because the discussion is to a large extent devoted to sû(N) for which the outer-automorphism
group is rather large! we have focused on the outer-automorphism group as the essential sy
try. It is natural to extend the conjecture to the full symmetry group of fusion coeffici
However, we should stress that the outer-automorphism conjecture is just a convenient too
conjecture~or its natural extension to the full fusion symmetry group! turns out to be wrong, ther
are other avenues that could yield the complete set of fusion elementary couplings.

In the present work, the only information on fusion data that has been extracted, out
fusion basis or the fusion generating function, is the expression for the threshold level in te
the basis variables. But there are certainly more data that can be lifted. For example, given
product with multiplicitym, to which there correspondm values of the threshold levels, we cou
ask for the expression, in terms of the Dynkin labels, of the minimum and maximum valuesk0 .
It is easy to write down some explicit expressions for particular fusion coefficients.
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The reformulation of the problem of computing fusion rules in terms of a fusion basis so
in principle, the quest for a combinatorial method since it reduces a fusion computation to s
inequalities. But we expect that we have not found an optimal solution to the quest for an ef
combinatorial description.
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APPENDIX A: INDEPENDENT VERIFICATIONS OF THE FUSION GENERATING
FUNCTIONS

The sû~3! fusion generating function is not presented here for the first time; it appe
originally in Ref. 4. A sketch of its proof was presented in Ref. 24 without details. In this se
we present a complete proof of the sû~3! generating function for fusion rules; in addition, w
describe some independent checks confirming the validity of the sû~4! and sp̂~4! fusion generating
functions given in Secs. VI C and VII C. The first check that we present uses Giambelli
formulas. These can be viewed as equalities of corresponding expressions in the characte
Since the sû(n) and sp̂(n) fusion rings are quotients of the classical character rings~see Ref. 25
and references therein!, these formulas continue to hold for fusion products. For sû~4!, we present
another non-trivial check based on a level-rank duality argument.

1. Determinantal formula and the ‘‘composition’’ method: deriving the su „3…
generating function for tensor products

The Giambelli formula, or more generally, determinantal formulas which give expression
group characters as determinants, provide another method for calculating fusion generatin
tions in terms of simpler generating functions. This uses the technique of ‘‘composition
generating functions described previously in Sec. II C of Ref. 1.

The su~3! Giambelli formula expresses a general representation in terms of a differen
products of representations with a single nonzero Dynkin label, i.e.,

~l1 ,l2!5~l11l2,0! ^ ~l2,0!2~l11l211,0! ^ ~l221,0!. ~A1!

This can be rewritten in determinantal form as follows:

~l1 ,l2!5detS ~l11l2,0! ~l221,0!

~l11l211,0! ~l2,0!
D . ~A2!

Consider first the generating functionG1(L1 ,L2 ,M1 ,R1 ,R2) which is the generating function
for products of the form: (l1 ,l2) ^ (m1,0). Its explicit form is

G15
1

~12L1N1!~12L2N2!~12L2M1!~12M1N1!~12L1M1N2!
. ~A3!

It is obtained by settingM250 in the complete tensor-product generating function~cf. Sec. II E in
Ref. 1!. Our point here is not to re-deriveG1 from first principles but simply to show how we ca
reconstruct the complete generating function out of the partial information contained inG1 . In the
fusion case, we will indicate how the analogue ofG1 can be obtained, preventing the argume
from being circular.

From two copies ofG1 we form the composite generating functionG2 :

G2~L1 ,L2 ,M1 ,M2 ,N1 ,N2!5V
5

R

G1~L1 ,L2 ,M1 ,R1 ,R2!G1~R1
21,R2

21,M2 ,N1 ,N2!, ~A4!
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which is the generating function for products of the form

~l1 ,l2! ^ ~m1,0! ^ ~m2,0!. ~A5!

Note that the generating function for products

~l1 ,l2! ^ ~m111,0! ^ ~m221,0!, ~A6!

is M2M1
21G2 and so, by~A1!, the generating function for products (l1 ,l2) ^ (m1 ,m2) is

G35 V
>

M1

~G22M2M1
21G2!. ~A7!

The coefficient ofM1
m1M2

m2 is the multiplicity of the representation with Dynkin labels (m1

2m2 ,m2) in the product

~l1 ,l2! ^ @~m1,0! ^ ~m2,0!2~m111,0! ^ ~m221,0!#. ~A8!

To change to variables which carry the Dynkin labels we make the substitutionM2°M2M1
21, so

thatM1 now carries the first Dynkin label. This introduces negative powers ofM1 , corresponding
to products~A8! with m1,m2 , which are not required. So we must keep only non-negative de
terms in M1 to obtain the final generating function. Denote the resulting expression
G4(L1 ,L2 ,M1 ,M2 ,N1 ,N2); it reads

G45
~12L1L2M1M2N1N2!

~12L1N1!~12L1M2!~12L2M1!~12L2N2!

3
1

~12M2N2!~12M1N1!~12L1M1N2!~12L2M2N1!
, ~A9!

which is the usual form of the su~3! generating function~cf. Sec. II E 2.5 of Ref. 1!.

2. Extension of the determinantal formula methods to fusion rules: the su ̂„3… case

The starting point for the derivation of the sû~3! fusion generating function is the generatin
function for fusions of the form

@k2l12l2 ,l1 ,l2#3@k2m1 ,m1,0#. ~A10!

These fusions are known explicitly and the information on their fusion coefficients can be lift
the following generating function26

F1~d,L1 ,L2 ,M1 ,N1 ,N2!

5
1

~12d!~12dL1N1!~12dL2N2!~12dL2M1!~12dM1N1!~12dL1M1N2!
. ~A11!

As explained in the previous subsection, the generating function for products

@k2l12l2 ,l1 ,l2#3@k2m12m2 ,m1,0#3@k2m2 ,m2,0#, ~A12!

is given by

F2~d,L1 ,L2 ,M1 ,M2 ,N1 ,N2!5V
5

z

V
5

R

F1~z21d,L1 ,L2 ,M1 ,R1
21,R2

21!F1~z,R1 ,R2 ,M2 ,N1 ,N2!.

~A13!
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Here the variablez is introduced in order to keep the level fixed in the composition. By
determinantal formula, the generating function is essentially

F3~d,L1 ,L2 ,M1 ,M2 ,N1 ,N2!5 V
>

M1

~F22M2M1
21F2!, ~A14!

except that the coefficient ofM1
m1M2

m2 is the multiplicity of (m12m2 ,m2). Thus the final gener-
ating function is

F45 V
>

M1

F3~d,L1 ,L2 ,M1 ,M2M1
21,N1 ,N2!. ~A15!

This reproduces the generating function given in Ref. 4 and re-derived above.

3. Determinantal formula methods applied to the sp ̂„4… and sû „4… cases

In principle, the above procedure can be used to calculate the fusion rule generating fun
for sû~4! and sp̂~4!. Unfortunately, the intermediate expressions are too large to be manag
even when manipulated with computer assistance. However, it is possible to calculate the s
ization of these generating functions with all but one variable, the level-grading variable, set
to 1. For example, in the above calculation for sû~3! we could have setL15L25N15N251 at the
start of the calculation since they are not needed at any intermediate steps. Similarly we c
M25M1

21 at the last step which has the effect of settingM251 in the final generating function
If we set all variables equal to 1, except the one that keeps track of the level, then the re
generating functionG(d) counts the number of independent couplings at each level. The sû~4! and
sp̂~4! specialized generating functions have been calculated in this way and the results are

Gsû~4!~d!5
d614d5113d4116d3113d214d11

~12d!12~12d2!
, ~A16!

and

Gsp̂~4!~d!5
d412d315d212d11

~12d!9~11d!
. ~A17!

These expressions agree with the specialization of the generating functions found in Secs.
VII; this thus provides a very strong independent verification of these results. In particul
corroborates the closure of our set of fusion elementary couplings.

Although we will not present the details of this derivation, we would like to draw attentio
some technical issues. There are potentially two problems which could arise in using the
minantal expansions. The first problem is that the determinant may contain terms which hav
higher than the initial representation. For example in sû~3! at level 1 the determinantal expansio
of the representation~0,1! is

~0,1!5detS ~1,0! ~0,0!

~2,0! ~1,0!
D . ~A18!

The representation~2, 0! is integrable only at level 2 and greater. However it can be shown, u
the modification rules of Ref. 24, that all such terms in the determinant vanish identically i
sp̂(2n) and sû(n) fusion rings. Thus, when computing with the determinantal expansions
given level, we need only consider terms corresponding to representations which exist
level.

The second complication which can arise is in a sense the converse of the first. The
representations which occur only at levels strictly greater thank, but which have determinanta
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expansions which contain products which are defined at levelk. This does not occur for the su(n)
determinants. However for sp~4! this problem can happen. The determinant formula for sp~4! is

~l1 ,l2!5detS ~l11l2,0! ~l221,0!

~l11l211,0!1~l11l221,0! ~l2,0!1~l222,0!
D . ~A19!

Take for instance the representation~0, 2! which does not exist for level 1. However, the dete
minant formula yields

~0,2!5~2,0! ^ ~2,0!2~3,0! ^ ~1,0!2~1,0! ^ ~1,0!1~2,0! ^ ~0,0!. ~A20!

The only product which is defined at level 1 is (1,0)^ (1,0)5(0,1). Thus the above determina
yields the followingmodification rule: (0,2)52(0,1) for sp̂~4! at level 1~see Ref. 24 for more
details!. Therefore, before converting the exponent ofM1 into a Dynkin label, we must ensure tha
it is less than or equal to the exponent ofd. This can be achieved by replacingM1 by M1y21 and
d by dy and then projecting onto non-negative powers ofy and finally settingy51.

4. Duality

As described in Ref. 24 and references therein, there is a duality between fusion rul
sû(n) at level k and fusion rules for sû(k) at level n. This duality is somewhat involved whe
using standard Young tableaux. However, it can be clearly seen using contravariant tableau
duality can be used to provide a very nice nontrivial check of the sû~4! generating function.

As discussed above, if all the grading variables in the sû~4! fusion generating function are se
equal to 1, except for the one associated to the level, we obtain~A16!. However, in order to use
a duality argument to compare this expression with other generating functions, it needs
modifications. Duality maps Young tableaux to conjugate Young tableaux. For example, sû~3! at
level 4 has

~A21!

as a possible tableau and this maps to

~A22!

in sû~4! at level 3. In other words we have to include in the generating functions the t
corresponding to tableaux which have columns of lengthn in sû(n). If Fn(d,L1 ,...) stands for the
original sû(n) fusion generating function, then the procedure for incorporating tableaux
mented by columns of lengthn—while maintaining the first row smaller or equal tok—amounts
to calculate

gn~d![
]2

]x]y
xyFn~dxy,x21L1 ,x21L2 ,...,y21M1 ,y21M2 ,...,N1 ,N2 ,...!ux5y51 . ~A23!

The effect of this operation is to multiply

dkL1
l1L2

l2
¯M1

m1M2
m2
¯N1

n1N2
n2 by ~k2l12l2¯11!~k2m12m2¯11!, ~A24!
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~A25!

that is, it should be counted four times. Doing this and setting all Dynkin-grading variables
to 1 leads to the following generating functions:

g05
1

12d
, g15

11d

~12d!3 , g25
113d1d2

~12d!6 , g35
d416d3110d216d11

~12d!10 ,

g45
d10113d9178d81257d71513d61642d51513d41257d3178d2113d11

~12d!12~12d2!3 . ~A26!

The first two functions above correspond to the limiting algebras sû~0! and sû~1!. For sû~0!, there
is only the trivial representation and it occurs at any level. Therefore, there is a single coup
every level and there are no correction factors:g0(d)5(kd

k. The functiong1 can be constructed
by duality. We start with the generating function for sû(k) fusions at level 1. At level 1, we can
ignore all relations between the elementary couplings; moreover, we can keep track only o
elementary couplings that occur at level 1: these are the various products involving the fund
tal and the scalar representations. The truncated generating function then reads

1

~12d!) i@~12dLiNi !~12dMiNi !#) i j ~12dLiM jNi 1 j !
, ~A27!

where in the last series of term, the summation is defined modulok with the understanding tha
Nk51. In this function, we replaced→dxy,Li→Li /x,Mi→Mi /y, multiply the result byxy,
differentiate with respect tox,y,d and setx5y5Li5Mi5Ni51, d50 ~to keep only the linear
term in d!. This gives (k11)2. Hence we have

g1~d!5 (
k51

`

~k11!2dk5
11d

~12d!3 . ~A28!

These functionsgn(d) display very nice properties:

~1! the factor (12d) occurs to the power (n12)(n11)/2 in the denominator;
~2! the numerator polynomialpn(d) satisfiespn(1/d)ddeg(pn)5pn(d);
~3! pn(d) has positive coefficients;
~4! the difference between the degree of the numerator and denominator is 2n.

The mere fact thatg4(d) shares the generic properties of the previousgn functions is sup-
porting evidence for the correctness of the sû~4! generating function.

The Taylor expansions of thegn(d) functions read:

g0~d!511d1d21d31d41d51¯ ,

g1~d!5114d19d2116d3125d4136d51¯ ,

g2~d!5119d140d21125d31315d41686d51¯ , ~A29!

g3~d!51116d1125d21656d312646d418832d51¯ ,
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g4~d!51125d1315d212646d3116720d4185212d51¯ ,

from which duality ~i.e., horizontal versus vertical! is completely manifest.~We stress that the
‘‘built-in duality’’ for obtaining g1 concerns only the second row and the second column.! In
particular the first 4 terms 1, 25, 315, and 2646 of the sû~4! function match the coefficients of th
5th column. This again provides independent evidence for the correctness of the sû~4! fusion
generating function out of which the functiong4 has been constructed. In particular, this is
decisive test of the necessity of the extra elementary couplingF̂ and an evidence for the absen
of further additional elementary couplings.

From the above functionsgn(d) we can construct the sum

f ~r ,d!5g0~d!1g1~d!r 1g2~d!r 21g3~d!r 31¯ , ~A30!

wherer is the grading variable associated to the rank11 @i.e., its exponent is the value ofn for
sû(n)]. It satisfiesf (r ,d)5 f (d,r ) by duality. We speculate that other symmetry properties mi
be used to provide an explicit formula forf (r ,d).

We can illustrate this dual symmetry in a particular example. Consider the functiong̃n(d) that
counts the number of couplings of the representation@k21,1,0,0,...,0# with anything in sû(n) at
level k. Since the Young tableau of~1, 0, 0,..., 0! is invariant under a duality transformatio
exchangingk andn, by summing up the resulting functions multiplied byr n, one should produce
an expressionf̃ (r ,d) symmetric in the interchange ofr andd. The functiong̃n(d) is calculated as
follows in terms of the original sû(n) fusion generating functionFn :

g̃n~d![
]2

]M1]x
xFn~dx,x21L1 ,x21L2 ,...,M1,1,...,1,1̄ !ux5y51,M150,L15¯51 . ~A31!

As explained above, the differentiation with respect tox is required in order to take into accoun
all contributing Young diagrams associated to the first representation~l!. The second representa
tion being fixed to be~1, 0, 0,..., 0!, does not require an adjusting multiplication factor. Setting
variable M150, after having differentiated with respect to it, simply serves to select the
linear in M1 . Since the representation~1, 0, 0,..., 0! does not exist for sû~0!, g̃0(d)50. The
function g̃1(d) is found by duality as explained previously. The first few sû(n) functionsg̃n(d)
are found to be:

g̃1~d!5
2d2d2

~12d!2 , g̃2~d!5
3d2d2

~12d!3 ,

g̃3~d!5
4d2d2

~12d!4 , g̃4~d!5
5d2d2

~12d!5 . ~A32!

Fortunately, the general pattern is clear: the expression ofg̃n is easily guessed to be

g̃n~d!5
~n11!d2d2

~12d!n11 n>1. ~A33!

From this exact form ofgn(d), we can write down readily the exact expression for the sum

f̃ ~r ,d!5 (
n51

`

g̃n~d!r n5
dr~22d2r !

~12d2r !2 . ~A34!

The result is manifestly invariant under the duality transformation that interchangesr andd.
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APPENDIX B: STATUS OF PREVIOUS CONJECTURES

In this Appendix, we would like to clarify the relation between the present work and
previous ones and state precisely in what sense our previous conjectures are either embodie
present reformulation of the problem or have been proved.

A general approach to the construction of generating functions for fusion rules was pro
in Ref. 4. It was based on the following two conjectures:

~1! Every coupling is characterized by a threshold levelk0 . The multiplicity of a triple product at
level k is given by the number of couplings with threshold levels<k.

~2! There is a choice of forbidden couplings such that the threshold level of a coupling is the
of the threshold levels of its components.

As already mentioned, it can be shown6 that conjecture 1 is a consequence a sharpe
formulation of the depth rule.26 This leaves us with a single conjecture which we rename:
Conjecture I: There is a choice of forbidden couplings such that the threshold level of a cou
is obtained from the sum of the threshold levels of the elementary couplings that appear
decomposition.

In the formulation of conjecture I, the element of ‘‘choice’’ refers to the fact that both side
a tensor-product relation do not always have the same threshold level and which one is ta
the forbidden coupling makes a difference in the generating function for fusion rules. Wit
notion of a set of elementary fusion couplings, which includes the scalar one~this is a new feature
of the present work!, all relations acquire equal threshold levels and this choice becomes im
terial. This suggests the following modification of conjecture I:
Conjecture I8: The threshold level of a fusion coupling is read off from its decomposition into
elementary fusion couplings.

A interesting aspect of this reformulation of the conjecture is that it embodies an observ
that was presented as a conjecture in Ref. 7, namely that the level is always minimized.
precisely, in the choice of forbidden couplings, we should always forbid the one with a h
threshold level. This ‘‘minimal level’’ prescription is automatically taken into consideration h
since the relations have identical levels. If one of the products appears in the relation with a
Ê0 , it means that the product without thisÊ0 factor occurs at a lower level and it is not forbidde
For instance, the relationÊ1Ê3Ê55Ê0Ê7Ê8 indicates that the couplingÊ7Ê8 appears at level 2. In
the tensor-product relationE1E3E55E7E8 , we have thus effectively forbid the higher-level ter
of the relation.

Once the notion of fusion elementary couplings in terms of which every coupling ca
decomposed~conjectureI 8) is introduced, this naturally calls for a reinterpretation in terms o
fusion basis. It is indeed plain that our conjecture~and the mere existence of threshold level! boils
down the fundamental conjecture presented in the text, that is, the existence of a fusion b

1L. Bégin, C. Cummins, and P. Mathieu, Generating-function method for tensor products, J. Math. Phys.41, 7611~2000!.
2P. Di Francesco, P. Mathieu, and D. Se´néchal,Conformal Field Theory~Springer-Verlag, New York, 1997!.
3E. Verlinde, Nucl. Phys. B300, 389 ~1988!.
4C. J. Cummins, P. Mathieu, and M. A. Walton, Phys. Lett. B254, 390 ~1991!.
5A. D. Berenstein and A. Z. Zelevinsky, J. Algebraic Combinat.1, 7 ~1992!.
6A. N. Kirillov, P. Mathieu, D. Se´néchal, and M. Walton, Nucl. Phys. B391, 651 ~1993!.
7L. Bégin, A. N. Kirillov, P. Mathieu, and M. Walton, Lett. Math. Phys.28, 257 ~1993!.
8V. G. Knizhnik and A. B. Zamolodchikov, Nucl. Phys. B247, 83 ~1984!.
9D. Gepner and E. Witten, Nucl. Phys. B278, 493 ~1986!.

10M. A. Walton, Nucl. Phys. B340, 777 ~1990!; Phys. Lett. B241, 365 ~1990!.
11V. G. Kac, Infinite Dimensional Lie Algebras, 3rd ed.~Cambridge University Press, Cambridge, 1990!, Exercise 13.35.
12P. Furlan, A. Ganchev, and V. B. Petkova, Nucl. Phys. B343, 205 ~1990!; J. Fuchs and P. van Driel,ibid. 346, 632

~1990!.
13V. Kac and M. Wakimoto,Adv. Ser. Math. Phys.~World Scientific, Singapore, 1988!, Vol. 7, p. 138.
14P. Mathieu and M. A. Walton, Nucl. Phys. B553, 533 ~1999!.
15M. Walton, Can. J. Phys.72, 527 ~1994!.
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Motivated by the problem of the dynamics of point-particles in high post-
Newtonian~e.g., 3PN! approximations of general relativity, we consider a certain
class of functions which are smooth except at some isolated points around which
they admit a power-like singular expansion. We review the concepts of~i! Had-
amard ‘‘partie finie’’ of such functions at the location of singular points,~ii ! the
partie finie of their divergent integral. We present and investigate different expres-
sions, useful in applications, for the latter partie finie. To each singular function, we
associate a partie-finie~Pf! pseudo-function. The multiplication of pseudo-
functions is defined by the ordinary~pointwise! product. We construct a delta-
pseudo-function on the class of singular functions, which reduces to the usual
notion of Dirac distribution when applied on smooth functions with compact sup-
port. We introduce and analyze a new derivative operator acting on pseudo-
functions, and generalizing, in this context, the Schwartz distributional derivative.
This operator is uniquely defined up to an arbitrary numerical constant. Time de-
rivatives and partial derivatives with respect to the singular points are also inves-
tigated. In the course of the paper, all the formulas needed in the application to the
physical problem are derived. ©2000 American Institute of Physics.
@S0022-2488~00!03710-5#

I. INTRODUCTION

The Hadamard regularization,1,2 based on the concept of finite part~‘‘partie finie’’ ! of a
singular function or a divergent integral, plays an important role in several branches of M
ematical Physics~see Refs. 3–6 for reviews!. Typically one deals with functions admitting som
nonintegrable singularities on a discrete set of isolated points located at finite distances fro
origin. The regularization consists of assigningby definitiona value for the function at the locatio
of one of the singular points, and for the~generally divergent! integral of that function. The
definition may not be fully deterministic, as the Hadamard partie finie depends in general on
arbitrary constants. The Hadamard regularization is one among several other po
regularizations.4

A motivation for investigating the properties of a regularization comes from the phy
problem of the gravitational interaction of compact bodies in general relativity. As it is hopele
find a sufficiently general exact solution of this problem, we resort to successive post-New
approximations~limit c→1`!. Within the post-Newtonian framework, it makes sense to mo
compact objects like black holes by point-like particles. This is possible at the price of introd
a regularization, in order to cure the divergencies due to the infinite self-field of the point-ma
However, general relativity is a nonlinear theory and, if we want to go to high post-Newto

a!Electronic mail: Luc.Blanchet@obspm.fr
76750022-2488/2000/41(11)/7675/40/$17.00 © 2000 American Institute of Physics
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approximations, involving high nonlinear terms, the process of regularization must be car
defined. In particular, it turns out that, from the third-post-Newtonian approximation~3PN or
1/c6!, the problem becomes complicated enough that a rather sophisticated version of th
amard regularization, including a theory of generalized functions, is required. By contrast, a
form of the Hadamard regularization, using merely the concept of partie finie of sin
functions,7–13 is sufficient to treat the problem up to the 2PN order. Furthermore, we know tha
answer provided by the Hadamard regularization up to the 2PN order is correct, in the sen
the field of the two bodies matches the inner field generated by two black holes,14 and the result
for the equations of motion can be recovered without the need of any regularization from
putations valid for extended nonsingular objects.15,16 Conforted by these observations we syste
atically investigate in this paper the Hadamard regularization as well as a theory of asso
generalized functions, in a form which can be directly applied to the study of the dynamics o
point-like particles at the 3PN order.17 ~We therefore restrict our attention to two singular poin
however most of the results of the paper can be generalized to any number of points.! Notice that
this problem enjoys a direct relevance to the future gravitational-wave experiments LIGO
VIRGO, which should be able to detect the radiation from black-hole and/or neutron-star bi
which a precision compatible with the 3PN approximation.18

Consider the classF of functions onR3 that are smooth except at two isolated singularitie
and 2, around which they admit some power-like singular expansions. The Hadamard part
(F)1 of FPF at the location of singularity 1, as reviewed in Sec. II, is defined by the average
spatial directions of the finite-part coefficient in the expansion ofF around 1. On the other hand
the Hadamard partie finie Pf*d3xF of the divergent integral ofF, we will review in Sec. III, is
obtained from the removal to the integral of the divergent part arising when two regular
volumes surrounding the singularities shrink to zero. Both concepts of partie finie are c
related. Notably, the partie-finie integral of a gradient is equal to the sum of the parties fini~in
the former sense! of the surface integrals surrounding the singularities, in the limit of vanish
areas. In Sec. IV we investivage several alternative expressions of the Hadamard partie
integrals, some of them based on a finite part defined by means of an analytic continuation p
~see Ref. 2 for a relation between partie finie and analytic continuation!. In our terminology, we
adopt the name ‘‘partie finie’’ for the specific definitions due to Hadamard, and speak of a ‘‘
part’’ when referring to other definitions, based for instance on analytic continuation. In Sec.
focus to the case~important in applications! of the partie finie of a Poisson integral ofFPF.

To any FPF, we associate in Sec. VI a generalized function, or partie-finie ‘‘pseu
function’’ PfF, which is a linear form onF defined for anyGPF by the duality bracket
^PfF,G&5Pf*d3xFG. When restricted to the setD of smooth functions with compact support th
pseudo-function PfF is a distribution in the sense of Schwartz2 ~see also Refs. 19–21 for mor
details about generalized functions and distributions!, i.e., a linear form which is continuous wit
respect to the Schwartz topology.~However, we do not attempt here to introduce a topology onF;
we simply define the set of algebraic and differential rules, needed in applications, tha
satisfied by the pseudo-functions onF.! The product of pseudo-functions coincides with t
ordinary ~‘‘pointwise’’ ! product used in physics, namely PfF.PfG5Pf(FG). An important par-
ticular case is the pseudo-function Pfd1 obtained~in Sec. VI! from the pseudo-function associate
with the Riesz delta-function,22 and that satisfies;GPF, ^Pfd1 ,G&5(G)1 . The ‘‘Dirac pseudo-
function’’ Pfd1 plays in the present context the same role as plays the Dirac measure in dis
tion theory. We introduce also more complicated objects such as Pf(Fd1). In Secs. VII and VIII
we show how to construct a derivative operator onF, generalizing for this class of function th
standard distributional derivative operator onD and satisfying basically the so-called rule
integration by parts, namely;F,GPF, ^] i(PfF),G&52^] i(PfG),F&. In addition we require that
the derivative reduces to the ‘‘ordinary’’ derivative for functions that are bounded in a neigh
hood of the singular points, and that the rule of commutation of derivatives holds. We find tha
derivative operator is uniquely defined modulo a dependence on an arbitrary numerical co
~see Theorem 4 in Sec. VIII!. It represents a natural notion of derivative within the context
Hadamard regularization of the functions inF. However, it does not satisfy in general the Leibn
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rule for the derivative of a product~in agreement with a theorem of Schwartz23!. See Colombeau24

for a multiplication of distributions and associated distributional derivative satisfying the Le
rule. Further, we obtain the rules obeyed by the new derivative operator when acting on p
functions such as Pf(Fd1) in Sec. VII, and we investigate the associated Laplacian operato
Sec. VIII. Finally, in Sec. IX, we consider the case of partial derivatives with respect to
singular points 1 and 2, as well as the time derivative when both singular points depend o
~i.e., represent the trajectories of real particules!. Within this approach, the latter distributiona
derivative constitutes an important tool when studying the problem of the gravitational dyna
of point-particles at the 3PN order.17

Notation:N, Z, R andC are the usual sets of non-negative integers, integers, real number
complex numbers;R1* is the set of strictly positive real numberss.0; R3 is the usual three-
dimensional space endowed with the Euclidean normuxu5(x1

21x2
21x3

2)1/2; Cp(V) is the set of
p-times continuously differentiable functions on the open setV (p<1`); L loc

1 (V) is the set of
locally integrable functions onV; theo andO symbols for remainders have their standard me
ing; distances between the field pointx and the source pointsy1 and y2 are denoted byr 15ux
2y1u andr 25ux2y2u; unit directions aren15(x2y1)/r 1 andn25(x2y2)/r 2 ; dV1 anddV2 are
the solid angle elements associated withn1 and n2 ; r 125uy12y2u; B1(s) andB2(s) denote the
closed spherical balls of radiuss centered ony1 andy2 ; ] i5]/]xi , 1] i5]/]y1

i , 2] i5]/]y2
i ; L

5 i 1i 2¯ i l is a multi-index with lengthl ; n1
L5n1

i 1
¯n1

i l and]L5] i 1
¯] i l

; the symmetric-trace-free

~STF! projection is denoted byn̂1
L5STF(n1

L); ( i j )5 ( i j 1 j i )/2 and @ i j #5 ( i j 2 j i )/2 ; 1↔2
means the same expression but corresponding to the point 2; for clearer reading, we use l
labels 1 and 2 when the quantity appears within the text, like for the partial derivatives1] i and2] i

or the coefficients1f a and 2f b , and labels placed underneath the quantity when it appears i
equation; iff means if and only if.

II. HADAMARD PARTIE FINIE

A. A class of singular functions

All over this paper we consider the class of functions of a ‘‘field’’ pointxPR3 that are
singular at the location of two ‘‘source’’ pointsy1 andy2 around which they admit some singula
expansions.

Definition 1: A real function F(x) on R3 is said to belong to the class of functionsF iff:
(i) F is smooth onR3 deprived fromy1 and y2 , i.e., FPC`(R32$y1 ,y2%).
(ii) There exists an ordered family of indices(ai) i PN with aiPR, and a family of coefficients

1f ai
, such that

;NPN, F~x!5(
i 50

i N

r 1
ai f

1
ai

~n1!1R
1

N~x!. ~2.1!

Here r15ux2y1u and n15(x2y1)/r 1 ; i N satisfies a0,a1,¯,ai N
<N,ai N11 ; and the

‘‘remainder’’ is

R
1

N~x!5o~r 1
N!, when r 1→0. ~2.2!

(iii) Idem with indices(bi) i PN , coefficients2f bi
, remainder2RN , r 1↔r 2 andn1↔n2 .

In addition to Definition 1, we always assume that the functionsFPF decrease sufficiently
fast at infinity~whenuxu→`! so that all integrals we meet are convergent at infinity. Thus, w
discussing the integral*d3xF, we suppose implicitly thatF5o(uxu23) at infinity @or sometimes
F5O(uxu232e) wheree.0#, so that the possible divergencies come only from the bounds a
singular points y1,2. Similarly, when considering the integral*d3xFG, we supposeFG
5o(uxu23), but for instance we allowF to blow up at infinity, sayF5O(uxu), if we know thatG
decreases rapidly, e.g.,G5o(uxu24); in the case of *d3x] iF, we generally assumeF
5o(uxu22). @Clearly, from Definition 1 the ordinary productFG of two functions ofF is again a
function of F; and similarly the ordinary gradient] iFPF.#
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An important assumption in Definition 1 is that the powers ofr 1 in the expansion ofF when
r 1→0 ~and similarly whenr 2→0) are bounded from below, i.e.,a0<ai where the most ‘‘diver-
gent’’ power of r 1 , which clearly depends onF, is a05a0(F). Thus the part of the expansio
which diverges whenr 1→0 is composed of a finite number of terms. Notice also that we h
excluded in Definition 1 the possible appearance of logarithms ofr 1 ~or r 2! in the expansion ofF.
See Sellier5 for a more general study in the case where some arbitrary powers of logarithm
present. We will discuss the occurrence of logarithms in Sec. V, when dealing with the Po
integral ofF. At last, we point out that the coefficients1f a ~and similarly2f b) do not depend only
on n1 , but also they do on the source pointsy1 and y2 , so that in principle we should write

1f a(n1 ;y1 ,y2); however, for simplicity’s sake we omit writing the dependence on the so
points. The coefficients could also depend on other variables such as the velocitiesv1 andv2 of the
source points, but the velocities do not participate in the process of regularization and c
ignored for the moment~we will return to this question in Section IX when considering the tim
dependence ofF!.

Once the classF has been defined, we shall often write in this paper the expansions ofF when
r 1,2→0 in the simplified forms

F~x!5 (
a0<a<N

r 1
af

1
a~n1!1o~r 1

N! when r 1→0, ~2.3a!

F~x!5 (
b0<b<N

r 2
bf

2
b~n2!1o~r 2

N! when r 2→0, ~2.3b!

by which we really mean the expansions in Definition 1, i.e., in particular where the indica
P(ai) i PN andbP(bi) i PN , and area priori real. However, most of the time~in applications!, it is
sufficient to assume that the powers ofr 1,2 are relative integersa,bPZ. We can then write the
expansionr 1→0 in the form

F5 (
k50

k0

1/r 1
~11k! f

1
212k1 (

k50

N

r 1
k f

1
k1o~r 1

N!, ~2.4!

wherek05212a0 . In the following we shall sometimes derive the results in the simpler c
where the powersPZ, being always undertood that the generalization to the case of real po
is straightforward. Finally, it is worth noting that the assumption~i! in Definition 1, thatF is C`

outside$y1 ,y2%, can often be relaxed to allow some functions to have integrable singularities
example is the functionx→1/ux2x8u encountered in Sec. V, depending on a fixed ‘‘spectato
point x8 distinct fromy1 andy2 . To treat such objects, we introduce a larger class of functio
Floc .

Definition 2: F(x) is said to belong to the class of functionsFloc iff:
(i8) F is locally integrable onR3 deprived fromy1 and y2 , i.e., FPL loc

1 (R32$y1 ,y2%).
~ii !–~iii ! in Definition 1 hold.
For simplicity, in the following, we shall derive most of the results for functions belongin

the classF ~even if the generalization toFloc is trivial!; Floc will be employed only occasionally

B. Partie finie of a singular function

The first notion of Hadamard partie finie is that of a singular function at the very locatio
one of its singular points.

Definition 3: Given FPF we define the Hadamard partie finie of F at the pointy1 to be

~F !15E dV1

4p
f
1

0~n1!, ~2.5!
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where dV15dV(n1) denotes the solid angle element of originy1 and directionn1 .
In words, the partie finie ofF at point 1 is defined by the angular average, with respect to

unit directionn1 , of the coefficient of the zeroth power ofr 1 in the expansion ofF near 1~and
similarly for the point 2!. There is a nonzero partie finie only if the family of indices (ai) i PN in
Definition 1 contains the value 0, i.e.,' i 0 such thatai 0

50. The latter definition applied to the
productFG of two functions inF yields

~FG!15 (
a0(F)<a<2a0(G)

E dV1

4p
f
1

ag
1

2a , ~2.6!

where1f a and1ga are the coefficients in the expansions ofF andG whenr 1→0 ~the summation
overa is always finite!. From ~2.6! it is clear that the Hadamard partie finie is not ‘‘distributive
with respect to the multiplication, in the sense that

~FG!1Þ~F !1~G!1 in general. ~2.7!

The partie finie picks up the angular average of1f 0(n1), namely the scalar orl 50 piece in the
spherical-harmonics expansion (Ylm), or, equivalently, in the expansion on the basis of symme
and trace-free~STF! products of unit vectorsn15(n1

i ). For any l PN, we denote byL
5 i 1i 2¯ i l a multi-index composed ofl indices, and similarlyL215 i 1i 2¯ i l 21 , P5 j 1 j 2¯ j p . In
general we do not need to specify the carrier indexi or j , so a tensor withl upper indices is
denotedTL, and for instance the scalar formed by contraction with another tensorUL of the same
type is written asS5TLUL5Ti 1¯ i lUi 1¯ i l, where we omit writing thel summations over thel
indicesi k51,2,3. We denote a product ofl components of the unit vectorn1

i by n1
L5n1

i 1
¯n1

i l, and
the STF projection of that product byn̂1

L[STF(n1
L): e.g., n̂1

i j 5n1
i n1

j 2 1
3d

i j , n̂1
i jk5n1

i n1
j n1

k

2 1
5(n1

i d jk1n1
j dki1n1

kd i j ). More generally, we denote byT̂L the STF projection ofTL; that is,T̂L

is symmetric, and satisfiesd i l 21i l
T̂i l 21i l L2250 ~see Ref. 25 and Appendix A of Ref. 26 for

compendium of formulas using the STF formalism!. The coefficients1f a of the expansion ofF
admit the STF decomposition

f
1

a~n1!5(
l 50

1`

n1
L f̂

1
a
L , ~2.8!

where the1 f̂ a
L’s are constant STF tensors, given by the inverse formula:

f̂
1

a
L5

~2l 11!!!

l ! E dV1

4p
n̂1

L f
1

a~n1!. ~2.9!

In STF notation, the Hadamard partie finie ofF at 1 reads simply as

~F !15 f̂
1

0 , ~2.10!

where1 f̂ a denotes the first term in the expansion~2.8!.
Lemma 1: The partie finie at 1 of the gradient] iF (as defined outside the singularities) of an

function FPF satisfies

~] iF !153S n1
i

r 1
F D

1

. ~2.11!

This Lemma is particularly useful as it permits replacing systematically the differential opera] i

by thealgebraicone 3(n1
i /r 1) when working under the partie-finie sign (̄)1 .
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Proof: The expansion whenr 1→0 of the gradient is readily obtained from the expansion oF
itself as

] iF5(
a

r 1
a21@a n1

i f
1

a1d1
i f
1

a#, ~2.12!

~with over-simplified notation for the sum!, where the operatord1
i is defined asr 1] i when applied

on a function of the sole unit vectorn1 . Hence, explicitly,d1
i 5(d i j 2n1

i j )(]/]n1
j ). This operator

is evidently transverse ton1 : n1
i d1

i 50, and we get, from the decomposition~2.8!,

d1
i f

1
a5(

l 50

1`

l ~n1
L21 f̂

1
a
iL 212n1

iL f̂
1

a
L!. ~2.13!

Thus, by averaging over angles,

E dV1

4p
d1

i f
1

a5
2

3
f̂
1

a
i 52E dV1

4p
n1

i f
1

a . ~2.14!

We readily deduce that the partie finie of the gradient~2.12! is given by

~] iF !153E dV1

4p
n1

i f
1

15 f̂
1

1
i ~QED!. ~2.15!

As an example of the application of Lemma 1, we can write, using an operation by
(r 1

3] iF)15@] i(r 1
3F)2] i(r 1

3)F#15@3n1
i r 1

2F2] i(r 1
3)F#1 , from which it follows that

~r 1
3] iF !150. ~2.16!

Another consequence of Lemma 1, resulting from two operations by parts, is (r 1
2 DF)1

5@3n1
i r 1 ] iF2] i(r 1

2)] iF#15(n1
i r 1] iF)15@3F2] i(n1

i r 1)F#1 ~where the LaplacianD5] i] i),
hence the identity

~r 1
2 DF !150. ~2.17!

By the same method we obtain also

~] i j F !15S 15n1
i j 23d i j

r 1
2 F D

1

52~ f̂
1

2
i j 1d i j f̂

1
2!, ~2.18!

the right-hand side of the last equality being expressed in terms of the STF tensors parame
~2.8!. Tracing out the previous formula, we find

~DF !15S 6

r 1
2 F D

1

56 f̂
1

2 . ~2.19!

Finally, let us quote the general formula for the partie finie of thel th derivative ]LF
5] i 1

¯] i l
F:

~]LF !15 l ! (
k50

@ l /2#

d (2K f̂
1

l
L22K) . ~2.20!
                                                                                                                



s
ym-

e

never

s

y
ar

t

as

tside
a

the

es

7681J. Math. Phys., Vol. 41, No. 11, November 2000 Hadamard regularization

                    
Here, @ l /2# denotes the integer part ofl /2 , d2K is the product of Kronecker symbol
d i 1i 2d i 3i 4...d i 2k21i 2k, and1 f̂ l

L22K51 f̂ l
i 2k11¯ i l ; the parentheses around the indices denote the s

metrization. One may define the ‘‘regular’’ part of the functionF near the singularity 1 as th
formal Taylor expansion whenr 1→0 obtained using~2.20!. Thus,

F1
reg[(

l 50

1`
1

l !
r 1

l n1
L~]LF !15(

l 50

1`

r 1
l (

k50

[ l /2]

n1
L22K f̂

1
l
L22K . ~2.21!

III. PARTIE-FINIE INTEGRALS

A. The partie finie of a divergent integral

The second notion of Hadamard partie finie is that of the integral*d3xF(x), whereFPF.
This integral is generally divergent because of the presence of the singular pointsy1 andy2 ~recall
that we always assume that the function decreases sufficiently rapidly at infinity so that we
have any divergency coming from the integration bounduxu→1`). Consider first the domainR3

deprived from two spherical ballsB1(s) andB2(s) of radiuss, centered on the two singularitie
y1 , y2 : B1(s)5$x; r 1<s% and B2(s)5$x;r 2<s%. We assume thats is small enough, i.e.,s
,r 12/2 wherer 125uy12y2u, so that the two balls do not intersect. Fors.0 the integral over this
domain, sayI (s)5*R3\B1(s)øB2(s)d

3xF, is well-defined and generally tends to infinity whens

→0. Thanks to the expansions~assumed in Definition 1! of F near the singularities, we easil
compute the part ofI (s) that blows up whens→0; we find that this divergent part is given, ne
each singularity, by a finite sum of strictly negative powers ofs ~a polynomial of 1/s in general!
plus a term involving the logarithm ofs. By subtracting fromI (s) the corresponding divergen
part, we get a term that possesses a finite limit whens→0; the Hadamard partie finie1 is defined
as this limit. Associated with the logarithm ofs, there arises an ambiguity which can be viewed
the freedom in the re-definition of the unit system we employ to measure the lengths. In fact it is
convenient to introduce two constant length scaless1 and s2 , one per singularity, in order to
a-dimensionalize the logarithms as ln(s/s1) and ln(s/s2).

Definition 4: For any FPF integrable in a neighborhood ofuxu51`, we define the Had-
amard partie finie of the divergent integral*d3xF as

Pfs1 ,s2
E d3xF5 lim

s→0
H ER3\B1(s)øB2(s)

d3xF1 (
a13,0

sa13

a13 E dV1f
1

a1 lnS s

s1
D E dV1f

1
2311↔2J ,

~3.1!

where1↔2 means the same previous two terms but concerning the singularity 2.
This notion of partie finie can be extended to functions which are locally integrable ou

the singularities, i.e.,FPFloc ~see Definition 2!. In ~3.1! the divergent terms are composed of
sum overa such thata13,0 as well as a logarithmic term, by which we really mean, using
more detailed notation of Definition 1,

(
i 50

i l21
sai13

ai13 E dV1f
1

ai
1d23,ai l

lnS s

s1
D E dV1f

1
ai l

11↔2,

wherei l is such thata0,a1,¯,ai l21,23<ai l
~the sum is always finite!; we have introduced

a Kronecker symbold23,ai l
to recall that the logarithm is present only if the family of indic

(ai) i PN contains the integer23 ~i.e., ai l
523). The divergent terms in~3.1! can also be ex-

pressed by means of the partie finie defined by~2.5!. Indeed, they read as

4pF (
a13,0

sa13

a13 S F

r 1
aD

1

1 lnS s

s1
D ~r 1

3F !1G11↔2
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@coming back to the less detailed notation of~3.1!#.
The partie-finie integral~3.1! depends intrinsically on the two arbitrary constantss1 and s2

introduced above. There is another way to interpret these constants besides the necessity
into account the dimension ofs, which is discussed by Sellier in Ref. 5. With this point of vie
we initially define the partie finie using two arbitrarily shaped volumesV1 andV2 instead of the
two spherical ballsB1 andB2 . Consider for instance the two volumesV15$x; r 1<sr1(n1)% and
V25$x; r 2<sr2(n2)%, wheresPR1* measures the size of the volumes and the two functionsr1

andr2 describe their shape~the ballsB1 andB2 corresponding simply tor1 andr2[1!. Here, we
assume for simplicity that the volumes remain isometric to themselves whens varies. Then, the
partie finie is defined as the limit of the integral overR3\V1øV2 to which we subtract the
corresponding divergent terms whens→0, without adding any normalizing constant to the log
rithms. In this way, we find that the alternative definition is equivalent to our definition~3.1!
provided thats1 ands2 are related to theshapesof the regularizing volumesV1 andV2 through the
formula

lns1E dV1f
1

235E dV1f
1

23lnr1 ~3.2!

~and similarly for s2!. The arbitrariness on the two original regularizing volumes is there
encoded into the two~and only two! constantss1 ands2 . A closely related way to interpret them
is linked to the necessity to allow the change of the integration variablex in the integral*d3xF.
Such an operation modifies the size and shape of the regularizing volumes, thus the ballsB1 and
B2 are in general transformed into some new volumesV1 andV2 ; so, according to the previou
argument, the freedom of choosing the integration variable reflects out in the freedom of ch
two arbitrary constantss1 ands2 . ~In this paper we shall assume thats1 ands2 are fixed once and
for all.!

An alternative expression of the Hadamard partie finie is often useful because it doe
involve the limits→0, but is written with the help of afinite parameters8PR1* . Consider some
s8 such that 0,s,s8, and next, split the integral overR3\B1(s)øB2(s) into the sum of the
integral over R3\B1(s8)øB2(s8) and the two integrals over the ring-shaped doma
B1(s8)\B1(s) andB1(s8)\B1(s). If s,s8!1 we can substitute, respectively, into the ring-shap
integrals the expansions ofF whenr 1→0 andr 2→0 @see~2.3!#. The terms that are divergent i
s cancel out, so we can apply the limits→0 ~with fixed s8!. This yields the following expression
for the partie finie:;NPN,

Pfs1 ,s2
E d3xF5E

R3\B1(s8)øB2(s8)
d3xF1 (

a13<N
a13Þ0

s8a13

a13 E dV1f
1

a1 lnS s8

s1
D E dV1f

1
23

11↔21o~s8N13!, ~3.3!

which is valid for an arbitrary fixeds8. Of course, up to any given finite orderN the second
member of~3.3! depends ons8, but in the formal limitN→1`, this dependence disappears an
in fine, the partie finie is independent ofs8.

B. Partie-finie integral of a gradient

A fundamental feature of the Hadamard partie finie of a divergent integral is that the int
of a gradient] iF is a priori not zero, since the surface integrals surrounding the two singular
become infinite when the surface areas shrink to zero, and may possess a finite part.

Theorem 1: For any FPF the partie finie of the gradient of F is given by

PfE d3x] iF524p~n1
i r 1

2F !111↔2, ~3.4!
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where the singular value at point 1 is defined by~2.5!.
In the case of a regular function, the result is always zero from the simple fact that the s

areas tend to zero—cf. the factorr 1
2 in the right side of~3.4!. However, forFPF, the factorr 1

2 is
in general compensated by a divergent term in the expansion ofF, possibly producing a finite
contribution.

Proof: We apply~3.1! to the case of the gradient] iF, using the expansion of] iF when r 1

→0 as given by~2.12!. The expression of the divergent terms is simplified with the help of
identity ~2.14!, which shows notably that the logarithms and associated constantss1,2 disappear.
This leads to

lim
s→0

H ER3\B1(s)øB2(s)
d3x] iF1 (

a12,0
sa12E dV1n1

i f
1

a11↔2J . ~3.5!

Next, the first term inside the braces is transformed via the Gauss theorem into two s
integrals atr 15s andr 25s, where we can replaceF by the corresponding expansions aroundy1

andy2 , respectively. We get

lim
s→0

H 2(
a

sa12E dV1n1
i f

1
a1 (

a12,0
sa12E dV1n1

i f
1

aJ 52E dV1n1
i f

1
22

~and similarly when 1↔2!; QED.
From Theorem 1 it results that the correct formula for ‘‘integrating by parts’’ under the

Pf is

PfE d3xF] iG52PfE d3xG] iF24p~n1
i r 1

2FG!124p~n2
i r 2

2FG!2 . ~3.6!

Note also that the partie-finie integrals of a double derivative as well as a Laplacian are giv

PfE d3x] i j F54p~r 1~d i j 22n1
i j !F !111↔2, ~3.7a!

PfE d3xDF54p~r 1F !111↔2. ~3.7b!

C. Parties finies and the Riesz delta-function

The Riesz delta-function22 plays an important role in the context of Hadamard parties fin
It is defined for any«PR1* by «d(x)5@«(12«)/4p# uxu«23; when«→0, it tends, in the usua
sense of distribution theory, towards the Dirac measure in three dimensions—i.e., lim«→0«d5d,
as can be seen from the easily checked property thatD(uxu«21)524p«d(x). The point for our
purpose is that when defined with respect to one of the singularities, the Riesz delta-fu
belongs toF. Thus, let us set,;«PR1* ,

«d1~x![«d~x2y1!5
«~12«!

4p
r 1

«23PF ~3.8!

~and idem for 2!. Now we can apply to«d1(x) the previous definitions for parties finies. I
particular, from Definition 3, we see that«d1 has no partie finie at 1 when« is small enough:
(«d1)150. From Definition 4, we have the following.

Lemma 2: For any FPF, we have

lim
«→0

PfE d3x«d1F5~F !1 , ~3.9!
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where the value of F at point 1 is given by the prescription~2.5!.
Proof: For «.0 we evaluate the finite part of the integral for the product«d1FPF using the

specific form~3.3! of the partie finie defined in terms of a given finites8. The expansions of«d1F
when r 1,2 tend to zero are readily determined to be

«d1F5
«~12«!

4p (
a

r 1
a1«23f

1
a~n1! for r 1→0, ~3.10a!

«d1F5
«~12«!

4p (
l>0

~2 ! l

l !
]
1

Lr 12
«23(

b
r 2

b1 ln2
L f

2
b~n2!, for r 2→0. ~3.10b!

In the second equation we used the Taylor expansionr 1
«235( l>0 @(2) l / l ! # r 2

l n2
L

1]Lr 12
«23 when

r 2→0, with the notationn2
L5n2

i 1
¯n2

i l and 1]L51] i 1
¯1] i l

. Hence, we can write the partie-fini
integral in the form (;NPN; with fixed s8 such that 0,s8,1!,

E
R3\B1(s8)øB2(s8)

d3x«d1F1
«~12«!

4p (
a1«<N

s8a1«

a1« E dV1f
1

a

1
«~12«!

4p (
l>0

~2 ! l

l !
]
1

Lr 12
«23F (

b1 l 13<N
andÞ0

s8b1 l 13

b1 l 13 E dV2n2
L f

2
b

1 lnS s8

s2
D E dV2n2

L f
2

2 l 23G1o~s8N!.

Here, we have discarded the term with ln(s8/s1) by choosing«.0 to be so small that all denomi
natorsa1« differ from zero. Since«d1 tends towards the Dirac measure when«→0, the integral
overR3\B1(s8)øB2(s8) goes to zero. Because of the factor« present in the numerators, so do th
other terms when«→0, except for those whose denominators involve a compensating«. Now, the
only term having the required property corresponds toa50 in the previous expression. Therefor
taking the limit«→0 ~with fixed s8!, we get

lim
«→0

PfE d3x«d1F5E dV1

4p
f
1

0~n1!1o~s8N!,

and this being true for anyN, we conclude

lim
«→0

PfE d3x«d1F5E dV1

4p
f
1

0~n1!5~F !1 ~QED!.

As we can infer from Lemma 2, the Riesz delta-function«d1 should constitute in the limit
«→0 an appropriate extension of the notion of Dirac distribution to the framework of pa
finies of singular functions inF. The precise definition of a ‘‘partie-finie Dirac function’’ nece
sitates the introduction of the space of linear forms onF and will be investigated in Sec. VI~see
Definition 7!.

IV. ALTERNATIVE FORMS OF THE PARTIE FINIE

A. Partie finie based on analytic continuation

Practically speaking, the Hadamard partie-finie integral in the form given by~3.1! is rather
difficult to evaluate, because it involves an integration over the complicated vo
R3\B1(s)øB2(s). Fortunately, there exist several alternative expressions of the Hadamard
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finie, which are much better suited for practical computations. The first one is based on a d
analytic continuation, with two complex parametersa, bPC, of the integral

I a,b5E d3xS r 1

s1
D aS r 2

s2
D b

F, ~4.1!

where the constantss1 and s2 are the same as those introduced within the definition~3.1!. The
point for our purpose is that the integral~4.1! does range over the complete setR3. First of all, we
propose to check thatI a,b is defined by analytic continuation in a neighborhood of the origina
505b in C2, except at the origin itself where it generically admits a simple pole ina or b or
both. We start by splittingI a,b into three contribution:1I a,b extending over the ballB1(s) of
radiuss surrounding 1,2I a,b extending over the ballB2(s) surrounding 2, and3I a,b extending
over the restR3\B1(s)øB2(s). The integral1I a,b is initially convergent forR(a).2a023 and
any b, wherea0 is the most singular power ofr 1 in the expansion ofF neary1 ; similarly, 2I a,b

exists only ifR(b).2b023 and anya (b0 is the analogous toa0 that relates toy2!, and3I a,b

exists if R(a1b),e, wheree.0 is such thatF5O(uxu232e) when uxu→1`. As the third
contribution3I a,b is clearly defined in a neighborhood of the origin, including the origin itself,
consider simply the part1I a,b ~the same reasoning applies to2I a,b!. Within the integrand, we
replace the productr 2

bF by its expansion in the neighborhood ofy1 ~using a Taylor expansion fo
r 2

b!, and find that the dependence onb occurs through some everywhere well-defined quant
namely1]Lr 12

b . After performing the angular integration overdV1 , we obtain a remaining radia
integral consisting of a sum of terms of the type*0

sdr1r 1
a1a1 l 125sa1a1 l 13/(a1a1 l 13), that

clearly admit a unique analytic continuation onC\Z; hence our statement~a simple pole at the
origin arises whena52 l 23!.

Theorem 2: For any function FPF that is summable at infinity, the Hadamard partie finie
the integral is given by

Pfs1 ,s2
E d3xF5FPa→0

b→0E d3xS r 1

s1
D aS r 2

s2
D b

F5FPb→0
a→0E d3xS r 1

s1
D aS r 2

s2
D b

F, ~4.2!

where FPa→0
b→0

means taking the finite parts in the Laurent expansions whena→0 and b→0
successively.

The proof of Theorem 2 is relegated to the Appendix. Notice our convention regardin
notation: while ‘‘Pf’’ always stands for the Partie finie of an integral in the specific sens
Hadamard,1 we refer to ‘‘FP’’ as the Finite Part or zeroth-order coefficient in the Laurent exp
sion with respect to some complex parameter~a, bPC, or BPC as in the next subsection!. We see
from Theorem 2 that the partie finie Pf can be viewed as a finite part FP andvice versa. The link
between analytic continuation and Hadamard partie finie is pointed out by Schwartz.2 More pre-
cisely, Theorem 2 says how to calculate the Hadamard partie finie; the procedure consist~i!
performing the Laurent expansion ofI a,b when a→0 while b remains afixed ~‘‘spectator’’!
nonzero complex number, i.e.,

I a,b5 (
p5pmin

1`

apI (p),b ,

wherepPZ and where the coefficientsI (p),b depend onb; ~ii ! achieving the Laurent expansion o
the zeroth-a-power coefficientI (0),b whenb→0, i.e.,

I (0),b5 (
q5qmin

1`

bqI (0,q) ,
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to finally arrive at the zeroth-b-power coefficientI (0,0) . Indeed, we find that the same result can
obtained by proceeding the other way around, first expanding aroundb50 with a fixeda, then
expanding the coefficientsI a,(0) neara50. Thus,

FPb→0$FPa→0I a,b%5I (0,0)5FPa→0$FPb→0I a,b%. ~4.3!

We emphasize that the definition~3.1! of the partie finie yields unambiguously the resultI (0,0) ,
which corresponds to takingindependentlythe two limitsa→0 andb→0 ~the limiting process
does not allow for instance to keepa5b). The final valueI (0,0) is the same as the one given b
the regularization adopted by Jaranowski and Scha¨fer12 ~see their Appendix B.2!.

In practice the expression~4.2! is used in connection with the Riesz formula,22 valid for any
g, dPC except at some isolated poles,

E d3xr 1
gr 2

d5p3/2

GS g13

2 DGS d13

2 DGS 2
g1d13

2 D
GS 2

g

2DGS 2
d

2DGS g1d16

2 D r 12
g1d13, ~4.4!

with r 125uy12y2u; here,G denotes the Eulerian function. According to Theorem 2, the form
~4.4! permits computing the partie finie of any integral of a product between powers ofr 1 andr 2 .
Consider the~not so trivial! case of the integral ofr 1

23r 2
23, which is divergent at both points 1 an

2. From the Riesz formula, withg5a23 andd5b23, we have

I a,b5p3/2

GS a

2 DGS b

2 DGS 2
a1b23

2 D
GS 2

a23

2 DGS 2
b23

2 DGS a1b

2 D
r 12

a1b23

s1
as2

b .

We compute the Laurent expansion whena→0 with fixed bPC and obtain a simple pole ina
followed by ab-dependent finite part given by

I (0),b5p3/2
G~1!

G~ 3
2!

r 12
b23

s2
b F 2

b
1C~1!2CS 11

b

2 D1CS 3

2D2CS 3

2
2

b

2 D12 lnS r 12

s1
D G ,

with C(z)5(d/dz) ln G(z). This finite part itself includes a simple pole inb, and then we obtain
the corresponding finite part whenb→0 as

I (0,0)5
p3/2

r 12
3

G~1!

G~ 3
2!

F2lnS r 12

s1
D12 lnS r 12

s2
D G .

At last, Theorem 2 tells us that

Pfs1 ,s2
E d3x

r 1
3r 2

3 5
4p

r 12
3 F lnS r 12

s1
D1 lnS r 12

s2
D G . ~4.5!

Some more complicated integrals will be obtained in the next subsection.
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B. Partie finie based on angular integration

The idea is to compute the partie-finie integral by performing an angular integration, follo
by the integration over some radial variable. In a first stage, consider an integral that diver
the point 1, but converges at the point 2. According to~3.1!, we need to compute it over th
domainR3\B1(s); so it is natural to change the integration variablex to r1[x2y1 , carry on the
angular integration overdV15dV(n1), and then, the radial integration overr 15ur1u varying
from s to infinity, i.e.,

E
R3\B1(s)

d3xF5E
r 1.s

d3r1F5E
s

1`

dr1r 1
2E dV1F. ~4.6!

In the more general case where the integral is simultaneously divergent at the two points 1
this methodstricto sensuis no longer valid since the radial integration in~4.6! becomes divergen
when r 15r 12. Yet, still it is advantageous to dispose of a mean to change the variablex into r1

in order to obtain a convenient radial integration~even at the price of breaking the symmet
between the points 1 and 2!. We shall derive here two Propositions, based on this idea, wh
implementation in practical computations constitutes a very efficient mean to determine the
finie, without anya priori restriction on the form of integrand as in the application of the Ri
formula ~4.4!.

As a matter of fact, in the first proposition, the computation of a partie-finie integral with
singularities 1 and 2 boils down to the computation of a partie-finie integral with singularity 1
a finite-part integral~FP! whose singularity is located at infinity:r 1[ux2y1u→1` ~so to speak,
the singularity 2 is ‘‘rejected’’ to infinity!.

Proposition 1: For any function F in the classF we can write:

Pfs1 ,s2
E d3xF5Pfs1H FPB→0E d3r1S r 1

s2
D BFF2 (

b13<0
r 2

bf
2

bG J , ~4.7!

where the2f b’s denote the coefficients of the expansion of F near r250.
In other words, in order to compute the partie finie one can~i! ‘‘regularize’’ F around the

point 2 by subtracting out from it the terms yielding a divergence at 2, i.e.,

F̃2[F2 (
b13<0

r 2
bf

2
b , ~4.8!

and~ii ! compute the integral of the regularizedF̃2 using the partie finie around 1 and the finite pa
when B→0 to deal with the divergency at infinity. Notice that the latter divergency has b
introduced simply because of the term corresponding tob523 in ~4.8! if nonzero. By the finite
part whenB→0 we mean the zeroth-order coefficient in the Laurent expansion of the ana
continuation with respect to the parameterBPC. The analytic continuation is straightforwardl
defined from the domain of the complex planeR(B).0 in which the integral converges a
infinity.

Proof: We consider two open domainsD1 and D2 that are supposed to be disjoine
D1ùD25B, complementary inR3, i.e. D1øD2̄5R3, and such thaty1PD1 andy2PD2 . From
Definition 4, the partie-finie integral overD2 reads as~for small enoughs!

PfE
D 2

d3xF5 lim
s→0

H ED2\B2(s)
d3xF1 (

b13,0

sb13

b13 E dV2f
2

b1 lnS s

s2
D E dV2f

2
23J .

Now, two short computations reveal that
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(
b13,0

E
R3\B2(s)

d3xr 2
bf

2
b52 (

b13,0

sb13

b13 E dV2f
2

b , ~4.9a!

FPB→0E
R3\B2(s)

d3xS uxu
s2

D B 1

r 2
3 f

2
2352 lnS s

s2
D E dV2f

2
23 . ~4.9b!

Furthermore, since the integral appearing in~4.9a! is convergent at infinity, one can add witho
harm the same finite part operation whenB→0 as in~4.9b!. Thus, the integral overD2 may be
re-written as

lim
s→0

H ED2\B2(s)
d3xF2 (

b13<0
FPB→0E

R3\B2(s)
d3xS uxu

s2
D B

r 2
bf

2
bJ

5 lim
s→0

H FPB→0ED2\B2(s)
d3xS uxu

s2
D B

F̃22 (
b13<0

FPB→0ED 1

d3xS uxu
s2

D B

r 2
bf

2
bJ

5 lim
s→0

H FPB→0ED 2

d3xS uxu
s2

D B

F̃22 (
b13<0

FPB→0ED1\B1(s)
d3xS uxu

s2
D B

r 2
bf

2
bJ .

We have used the facts that the integral ofF converges at infinity~first equality! and the integral
of F̃2 converges at the singularity 2~second equality!. Adding up the other contribution extendin
over D1 , we readily obtain the complete partie finie as

lim
s→0

H FPB→0E
R3\B1(s)

d3xS uxu
s2

D B

F̃21 (
a13,0

sa13

a13 E dV1f
1

a1 lnS s

s1
D E dV1f

1
23J .

Since the coefficients1f a , for a<23, are those of the expansion whenr 1→0 of F as well as of
F̃2 , we recognize in the expression above the partie finie~with respect to 1 only! of the integral
of the regularized functionF̃2 . Hence the intermediate expression

Pfs1 ,s2
E d3xF5Pfs1H FPB→0E d3xS uxu

s2
D B

F̃2J . ~4.10!

To establish the proposition it remains to change variablex into r1 . At that point, we must be
careful, because under this change of variable the regularization factoruxuB changes itself in a
complicated way. Fortunately, we can limit ourselves to the case whereB is infinitesimal, since
we shall take the finite part afterwards, makingB→0. We substitute touxuB in the right side of
~4.10! its equivalent expression in terms ofr1 and where we expand whenB→0, i.e.,

uxuB5r 1
BeBln(uxu/r 1)5r 1

BH 11
B

2
lnF112

n1 .y1

r 1
1

y1
2

r 1
2G1O~B2!J , ~4.11!

wheren1 .y1 denotes the usual scalar product onR3 ~andy1
25y1 .y1). Now, the dominant term in

the latter expansion amounts simply to replacinguxuB by r 1
B , which would yield precisely the

result ~4.7! we want to prove; but we have still to show that all the extra terms in the expan
~4.11!, which carry at least a factorB in front, do not contribute to the final result, i.e., that

FPB→0FB

2 E1`

d3r1S r 1

s2
D B

lnF112
n1 .y1

r 1
1

y1
2

r 1
2G F̃21O~B2!G50. ~4.12!

Because of the factorB in front, the only possible contribution to the finite part forB→0 occurs
when the integral develops a pole atB50 due to the behavior of the integrand at infinity (r 1→
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1`). Hence, as indicated in~4.12!, the value of the integral depends only on the bound at infin
@this is also why we did not write a Pfs1

symbol in ~4.12!: the partie finie deals with the boun
r 150, which is irrelevant to this case#. In order to evaluate the pole, we replace the integrand
its expansion whenr 1→1`. We know thatF behaves aso(1/uxu3) at a maximumuxu→1` to
ensure the convergence of the integral ofF at infinity, so we haveF5o(1/r 1

3) when r 1→1`.
Now, from the defining expression~4.8! of F̃2 , we obtain

F̃252
1

r 1
3 f

2
23~n1!1oS 1

r 1
3D , when r 1→1`, ~4.13!

after making the replacements ofr 2 and n2 by r 1 and n1 which are permitted because we a
working at the dominant order whenr 1→1`. On the other hand, we have ln@112@(n1 .y1)/r 1#
1 y1

2/r 1
2#52@(n1 .y1)/r 1# 1O1/r 1

2). So that the integral to be computed~as concerns the only
relevant bound at infinity! reads as

E1`

d3r1r 1
BlnF112

n1 .y1

r 1
1

y1
2

r 1
2G F̃2522E1`

dr1r 1
B22H E dV1n1 .y1f

2
23~n1!1o~r 1

0!J .

This integral cannot generate a pole atB50 since such a pole could come only from a rad
integral of the type*1`dr1 r 1

B21 ~after the angular integration has been performed!. Repeating the
same reasoning to any higher orders inB, we prove the equation~4.12! as well as Proposition 1

In practice, Proposition 1 is used with the integration with respect ton1 , followed by the
integration overr 1 varying from 0 (Pfs1

takes care of this bound! to infinity ~where FPB→0 does
the work!; Proposition 1 justifies this process even when the original integral is divergent atboth
singularities. The result of the angular integration depends on where the field point is lo
either inside the ballB1(r 12) centered ony1 and of radiusr 12 ~the point 2 lies on the surface of thi
ball!, or in the complementary domainR3\B1(r 12). Therefore, a natural splitting of the integr
~4.7! is

Pfs1 ,s2
E d3xF5Pfs1

E
B1(r 12)

d3r1F̃21FPB→0E
R3\B1(r 12)

d3r1S r 1

s2
D B

F̃2 , ~4.14!

taking into account the fact that the partie finie Pfs1
applies only to the inner integral, ove

B1(r 12), and the finite part FPB→0 only to the outer one, overR3\B1(r 12). To be more specific, the
angular integral ofF̃2 defines two angular-average functionsĨ 2(r 1) and J̃2(r 1) depending on
whetherx is in B1(r 12) or its complement:

E dV1

4p
F̃25H Ĩ 2~r 1!, when r 1<r 12,

J̃2~r 1!, when r 1.r 12.
~4.15!

The functionsĨ 2 andJ̃2 depend also explicitly on the source pointsy1 andy2 . @As an example, in
the caseF̃25r 2 , we find Ĩ 25r 121 r 1

2/3r 12 and J̃25r 11 r 12
2 /3r 1 .# Now, knowing Ĩ 2 and J̃2 , we

can achieve the radial integration according to the formula

Pfs1 ,s2
E d3xF54pPfs1

E
0

r 12
dr1r 1

2 Ĩ 214pFPB→0E
r 12

1`

dr1S r 1

s2
D B

r 1
2J̃2 . ~4.16!

The first term in~4.16! is quite simple to handle in practice, whereas the second one is
difficult because it requiresa priori the knowledge of a closed-form expression for the integra
r 1

B12J̃2 , valid for any B such thatR(B).0. Obtaining this may not be feasible ifF is too
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complicated; in this event, we should use a different form of the integral at infinity. The se
proposition, which provides the appropriate form, constitutes, perhaps, the most powerful w
compute the partie finie in rather complicated applications.

Proposition 2: The partie finie of the integral of FPF (if convergent at infinity) reads as:

Pfs1 ,s2
E d3xF54pPfs1

E
0

r 12
dr1r 1

2 Ĩ 2~r 1!14pE
r 12

1`

dr1F r 1
2J̃2~r 1!1

1

r 1
~r 2

3F !2G
14p~r 2

3F !2 lnS r 12

s2
D ~4.17!

(and similarly by interchange of 1 and 2).
Proof: Consider the angular average of the expansion ofF̃2 when r 1→1` which has been

determined in~4.13!. We get

J̃2[E dV1

4p
F̃252

1

r 1
3 ~r 2

3F !21oS 1

r 1
3D , ~4.18!

where the coefficient of the dominant term is made of a Hadamard partie finie at point 2. L
subtract and add toJ̃2 inside the second integral in~4.16! the previous dominant term at infinity
In this way, we may re-write it as the sum of a convergent integral at infinity on one han
which we can then remove the finite part prescription, and a simple extra integral on the
hand. Namely,

E
r 12

1`

dr1F r 1
2J̃21

1

r 1
~r 2

3F !2G2~r 2
3F !2FPB→0E

r 12

1` dr1

r 1
S r 1

s2
D B

.

The extra integral is finally computed in a simple way as

FPB→0E
r 12

1` dr1

r 1
S r 1

s2
D B

5FPB→0F2
1

B S r 12

s2
D BG52 lnS r 12

s2
D ,

where we used the properties of the analytic continuation. Q
Thanks to Proposition 2 we are now able to compute many integrals which could n

deduced from the Riesz formula~4.4!, unlike for ~4.5!. For instance,

Pfs1 ,s2
E d3x

r 1
3r 2

3~r 11r 2!
5

4p

r 12
4 F lnS r 12

s1
D1 lnS r 12

s2
D2

8

3
ln 21

2

3G , ~4.19a!

Pfs1 ,s2
E d3x

r 1
3r 2

3~r 11r 21r 12!
5

2p

r 12
4 F lnS r 12

s1
D1 lnS r 12

s2
D1

p2

3
24G . ~4.19b!

The result for the integral~4.19b! is in agreement with the one that follows from a recent gen
alization of the Riesz formula to include arbitrary powers ofr 11r 21r 12, which has been obtaine
by Jaranowski and Scha¨fer ~see Appendix B.2 in Ref. 12!. In any case, the dependence of t
partie-finie integral on the two constantss1 ands2 is given by

Pfs1 ,s2
E d3xF54p~r 1

3F !1lnS r 12

s1
D14p~r 2

3F !2lnS r 12

s2
D1terms independent ofs1 ,s2 .

~4.20!
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V. PARTIE FINIE OF POISSON INTEGRALS

In this section we investigate the main properties of the partie finie of Poisson integra
singular functions in the classF. We have in view the application to the post-Newtonian mot
of particles in general relativity, since the post-Newtonian iteration proceeds typically thr
Poisson~or Poisson-type! integrals. Consider a fixed~‘‘spectator’’! point x8PR3 and, for each
value ofx8, define the functionSx8(x)5F(x)/ux2x8u whereFPF. Clearly, for any givenx8, the
function Sx8 belongs to the classFloc , introduced in Sec. II, Definition 2. In addition, when th
spectator pointx8 coincides with the singular pointy1 ~and similarly fory2), we haveSy1

PF.
Since~as already mentioned! Definition 4 can be extended to functions in the classFloc , we can
consider the partie-finie integral

P~x8!52
1

4p
PfE d3xSx8~x!52

1

4p
PfE d3x

ux2x8u
F~x!. ~5.1!

This is, indeed, what we shall call the ‘‘Poisson’’ integral ofF. In particular, when the spectato
point x8 is equal toy1 , we shall write

P~y1!52
1

4p
PfE d3xSy1

~x!52
1

4p
PfE d3x

r 1
F~x!. ~5.2!

The Poisson integral is not continuous at the singular pointy1 becauseP(x8), when initially
defined forx8Þ5y1 , admits an expansion that is singular whenx8 tends toy1 . In the present
Section, our aim is to understand the limit relation of the integralP(x8) when r 18[ux82y1u→0,
and to connect it with the ‘‘regularized’’ integralP(y1) given by ~5.2!. In particular, we shall
show that the ‘‘partie finie’’~in an extended Hadamard’s sense! of P(x8) at x85y1 is related in a
precise way toP(y1). Let us make clear straight away thatP(x8), as a function ofx8 different
from y1 ~and y2), does not belong to the classF as the Poisson integral typically generat
logarithms in the expansion whenr 18→0. In particular, the coefficient of zeroth power ofr 18 in the
latter expansion containsa priori a lnr18 term, and its partie finie in the sense of Definition 3 is
fact not finite at all, because of the presence of this formally infinite constant lnr1852`. A
possible way to deal with this problem, followed by Sellier in Ref. 5, is toexcludethe lnr18 ~and
any higher power of lnr18) from the definition of the partie finie. On the other hand, in applicatio
to the physical problem, the constant lnr18 can be viewed as a ‘‘renormalization’’ constant, whic
is better to keep as it appears all the way through the calculation. Therefore, we simply in
here the renormalization constant lnr18 into the definition; but, for simplicity’s sake, we stick to th
name of ‘‘partie finie’’ in this case~although the lnr18 makes it formally infinite!. Thus, for a
function like P admitting a logarithmic expansion:

;NPN, P~x8!5 (
a<N
p50,1

r 18
a~ ln r 18!pf

1
a,p~n18!1o~r 18

N!, when r 18→0, ~5.3!

we define the Hadamard partie finie ofP at 1 by

~P!15E dV18

4p
@ f

1
0,0~n18!1 f

1
0,1~n18!ln r 18#. ~5.4!

Theorem 3: The Hadamard partie finie at 1 (in the previous sense) of the Poisson integr
any FPF reads as

~P!152
1

4p
Pfs1 ,s2

E d3x

r 1
F~x!1F lnS r 18

s1
D 21G~r 1

2F !1 , ~5.5!
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with r185ux82y1u. Furthermore the constants s1 cancel each other from the two terms in the rig
side of (5.5) (so the partie finie depends on the two constantsln r18 and ln s2).

In other words, the partie finie of the Poisson integral at 1 is equal to the regularized in
P(y1), obtained from the replacementx8→y1 inside the integrand ofP(x8), augmented by a term
associated with the presence of the~infinite! constant lnr18 .

Proof: The fact that the constantss1 cancel out~so s1 is ‘‘replaced’’ by r 18) is a trivial
consequence of the dependence of the partie finie ons1 ands2 determined in~4.20!. For our proof,
we need the explicit expressions of the objectsP(x8), whenx8 is different fromy1 andy2 , and
P(y1), following from Definition 4. Forx8Þy1 and r 15ux2y1u→0, we have the expansion

Sx8~x!5(
l>0

~2 ! l

l !
]L8S 1

r 18
D(

a
r 1

a1 ln1
L f

1
a~n1! ~5.6!

~and idem 1↔2!, wherer 185ux82y1u, ]L8 being the multi-spatial derivative acting onx8. From
~3.1!, we get the expression~for x8Þy1 andy2!

P~x8!52
1

4p
lim
s→0

H ER3\B1(s)øB2(s)

d3x

ux2x8u
F

1(
l>0

~2 ! l

l !
]L8S 1

r 18
D F (

a1 l 13,0

sa1 l 13

a1 l 13 E dV1n1
L f

1
a

1 lnS s

s1
D E dV1n1

L f
1

232 l G11↔2J . ~5.7!

Applying the recipe~5.4!, we start by computing the angular integral overn185(x82y1)/r 18 ~for a
fixed r 18! of P(x8) in the form given by~5.7!, and consider the limitr 18→0 afterwards. Sinces is
fated to tend to zero first, one can chooses,r 18 , and as we are ultimately interested in the lim
r 18→0, we also assumer 18,r 12. To compute the angular average of the divergent terms in~5.7!,
we make use of the identities

E dV18

4p
]L8S 1

r 18
D 5

d0l

r 18
, ~5.8a!

E dV18

4p
]L8S 1

r 28
D 5]LS 1

r 12
D ~5.8b!

~whered0l denotes the Kronecker symbol!. On the other hand, the relevant formula to treat
integral on the right side of~5.7! is

E dV18

4p

1

ux2x8u
5H 1

r 18
~ if r 1,r 18!,

1

r 1
~ if r 18,r 1!.

~5.9!

We split this integral into three other ones, the first of them extending over the ‘‘exterior’’ dom
R3\B1(r 18)øB2(r 18), and the two remaining ones over the ring-shaped regionsB1(r 18)\B1(s) and
B2(r 18)\B2(s). Hence
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E dV18

4p
P~x8!52

1

4p
lim
s→0

H ER3\B1(r 18)øB2(r 18)

d3x

r 1
F1

1

r 18
E

B1(r 18)\B1(s)
d3xF1E

B2(r 18)\B2(s)

d3x

r 1
F

1
1

r 18
F (

a13,0

sa13

a13 E dV1f
1

a1 lnS s

s1
D E dV1f

1
23G1(

l>0

~2 ! l

l !
]LS 1

r 12
D

3F (
b1 l 13,0

sb1 l 13

b1 l 13 E dV2n2
L f

2
b1 lnS s

s2
D E dV2n2

L f
2

232 l G J . ~5.10!

Next, supposing thatr 18 is small enough, we may replaceF in the second and third terms by it
own expansions around 1 and 2, respectively. We find that the divergent terms ins cancel out, so
we are allowed to apply the limits→0. This yields

E dV18

4p
P~x8!52

1

4p H E
R3\B1~r 18!øB2~r 18!

d3x

r 1
F

1
1

r 18
F (

a13,0

r 18
a13

a13 E dV1f
1

a1 lnS r 18

s1
D E dV1f

1
231r 18E dV1f

1
22G

1(
l>0

~2 ! l

l !
]LS 1

r 12
D F (

b1 l 13,0

r 18
b1 l 13

b1 l 13 E dV2n2
L f

2
b1 lnS r 18

s2
D E dV2n2

L f
2

232 l G
1o~r 18

0!J ~5.11!

~the remainder dies out whenr 18→0!. Under the latter form we recognize most of the term
composing the integralP(y1). Indeed, we have, respectively, whenr 1→0 andr 2→0,

Sy1
~x!5(

a
r

1

a21f
1

a~n1!, ~5.12a!

Sy1
~x!5(

l>0

~2 ! l

l !
]LS 1

r 12
D(

b
r

2

b1 ln2
L f

2
b~n2!. ~5.12b!

Now, using the form~3.3! of the partie finie with the change of notations85r 18 , we find

P~y1!52
1

4p H E
R3\B1(r 18)øB2(r 18)

d3x

r 1
F1 (

a12,0

r 18
a12

a12 E dV1f
1

a1 lnS r 18

s1
D E dV1f

1
22

1(
l>0

~2 ! l

l !
]LS 1

r 12
D F (

b1 l 13,0

r 18
b1 l 13

b1 l 13 E dV2n2
L f

2
b1 lnS r 18

s2
D E dV2n2

L f
2

232 l G1o~r 18
0!J .

~5.13!

We finally evaluate the difference between~5.11! and ~5.13! and look for the partie finie in the
sense of~5.4! ~i.e., keeping the lnr18 term!. We obtain

~P!12P~y1!5F lnS r 18

s1
D 21G E dV1

4p
f
1

22 ~QED!. ~5.14!

The same type of result can be proved for the partie finie of the ‘‘twice-iterated’’ Poi
integral defined by
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Q~x8!52
1

4p
PfE d3xux2x8uF~x!. ~5.15!

We find, analogously to~5.5!, that

~Q!152
1

4p
PfE d3xr 1F~x!1F lnS r 18

s1
D 1

1

2G~r 1
4F !1. ~5.16!

For the parties finies of thegradientsof the Poisson and twice-iterated Poisson integrals, we

~] i P!152
1

4p
PfE d3x

n1
i

r 1
2 F~x!1 lnS r 18

s1
D ~n1

i r 1F !1 , ~5.17a!

~] iQ!15
1

4p
PfE d3xn1

i F~x!2F lnS r 18

s1
D 2

1

2G~n1
i r 1

3F !1 . ~5.17b!

Those results are proved in the same way as in Theorem 3~with similar cancellations of the
constantss1!.

VI. PARTIE-FINIE PSEUDO-FUNCTIONS

A. A class of pseudo-functions

The concept of Hadamard partie finie of the divergent integral of functionsFPF yields a
natural definition of a class of pseudo-functions PfF ~‘‘partie finie’’ of F!, namely linear forms on
a subset ofF, of the typeGPF→^PfF,G&PR, where the result of the action of PfF on G is
denoted using a duality bracket^,&.

Definition 5: For any function FPF we define the pseudo-functionPfF as the linear func-
tional which associates to any GPF, such that FG5o(uxu23) when uxu→1`, the partie-finie
integral of the product FG, i.e.,

^PfF,G&5PfE d3xFG, ~6.1!

where the partie-finie integral is defined by (3.1).
As we can see, the pseudo-function PfF is not a linear form onF itself but on the subset o

F such that the integral converges at infinity. For simplicity’s sake we will always say
statements like~6.1! are valid ;GPF, without mentioning this restriction. Note also that th
partie-finie integral depends on the two constantss1 , s2PR1* , and so is the pseudo-functio
which should indeed be denoted Pfs1 ,s2

F. In our simplified notation we omit indicatings1 ands2 .
An evident property of the duality bracket is its ‘‘symmetry’’ by exchanging the roles of

two slots of the bracket, namely,

;~F,G!PF 2, ^PfF,G&5^PfG,F&. ~6.2!

Also evident are the properties

^PfF,GH&5^PfG,FH&5^Pf~FG!,H&5^Pf~FGH!,1&.

In the following we generally do not distinguish between the two slots in^,&. Accordingly we
definethe object

^F,PfG&[^PfG,F&.
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Even more, we allow for a bracket in which the two slots are filled with pseudo-functions. T
we write

^PfF,PfG&[^PfF,G&5^PfG,F&,

which constitutes merely thedefinitionof the new object̂ PfF,PfG&.
We denote byF8 the set of pseudo-functions PfF, whenF describes the classF, introduced

by Definition 5: F85$PfF;FPF%. Later we shall extend the definition ofF8 to include the
‘‘limits’’ of some pseudo-functions. Roughly, the setF8 plays a role analogous to the setD8 in
distribution theory,2 which is dual to the classD of functions which are bothC`(R3) ~about which
we are concerned here! and zero outside a compact subset ofR3. In distribution theory the setD
is endowed with the Schwartz topology: a sequence (wn)nPN of elements ofD converges to zero
if and only if ~i! 'n0PN and a compactK of R3 such that;n>n0 , supp(wn),K, and~ii ! for any
multi-index L5 i 1i 2¯ i l , ]Lwn converges uniformly to zero.D8 is the set of linear forms onD
that are continuous with respect to that topology. In this paper we shall not attempt to de
topology on the classF, and shall limit ourselves~having in view the physical application! to the
definition of the algebraic and differential rules obeyed by the pseudo-functions ofF8. However
we can state the following.

Lemma 3: The pseudo-functions ofF8, when restricted to the setD of C`(R3) functions with
compact support, are distributions in the sense of Schwartz:

PfF uDPD8. ~6.3!

Proof: All we need to check is that the pseudo-function PfF uD is continuous with respect to th
Schwartz topology.2 Consider a sequencewnPD tending to zero in the sense recalled abo
Applying the partie-finie integral in the form~3.3!, we get (;s8!1 and;NPN!

^PfF uD,wn&5E
R3\B1~s8!øB2~s8!

d3xFwn

1(
l>0

1

l !
]Lwn~y1!F (

a1 l 13<N
andÞ0

s8a1 l 13

a1 l 13 E dV1n1
L f

1
a1 lnS s8

s1
D E dV1n1

L f 12 l 23G
11↔21o~s8N!.

Sincewn and all its derivatives]Lwn tend uniformly towards zero in a given compactK, clearly
so does the sequence of real numbers^PfF uD,wn&, which shows that PfF uD is indeed continuous

~QED!.
Definition 6: The product (‘‘.’’) of FPF and of PfGPF8, and the product of two pseudo

functionsPfF and PfG, are defined as

F•PfG[PfF•PfG[Pf~FG!PF8. ~6.4!

In particular F•PfG5G•PfF.
In the following, we will remove the dot indicating the product and write indifferently

FPfG5GPfF5Pf~FG!5PfFPfG5FGPf1. ~6.5!

Notice that from the symmetry of the duality bracket we have,;HPF,

^GPfF,H&5PfE d3xFGH5^PfF,GH&. ~6.6!
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Therefore, when applied to the restriction of pseudo-functions toD, the product of Definition 6
agrees with the product of a distribution and a functioncPC`(R3), i.e.,

;wPD, ^cPfF uD,w&5^PfF uD,cw&. ~6.7!

B. A Dirac delta-pseudo-function

Consider, for«PR1* , the Riesz delta-function«d1 that we introduced in~3.8!. Since«d1

PF we can associate to it the pseudo-function Pf«d1 . Now, Lemma 2@see~3.9!# can be re-stated
by means of the duality bracket as

lim
«→0

^Pf«d1 ,F&5~F !1 . ~6.8!

This motivates the following definition.
Definition 7: We define the pseudo-functionPfd1 by

;FPF, ^Pfd1 ,F&5~F !1 . ~6.9!

We then extend the definition of the setF8 to include this pseudo-function:Pfd1PF8.
Obviously Pfd1 can be viewed as the ‘‘limit’’@but we have not defined a topology onF# of

the pseudo-functions Pf«d1 when«→0. The restriction of Pfd1 to D is identical to the usual Dirac
measure,

Pfd1uD
5d1[d~x2y1!, ~6.10!

so that the pseudo-function Pfd1 appears as a natural generalization of the Dirac measure in
context of Hadamard parties finies. In the following, we shall do as ifd1 would belong to the
original class of functionsF, writing, for instance,

^PfF,d1&[^Pfd1 ,F&5~F !1 . ~6.11!

Of course, this equation constitutes in fact the definition of the bracket^PfF,d1&.
Definition 8: For any FPF the pseudo-functionPf(Fd1) is defined, consistently with th

product ~6.4!, by

;GPF, ^Pf~Fd1!,G&5~FG!1 . ~6.12!

We include intoF8 all the pseudo-functions of this type: Pf(Fd1)PF8 (that is, we consider
Fnew8 5F81Fd11Fd2 ; and we henceforth drop the ‘‘new’’).

Notice that an immediate consequence of the ‘‘nondistributivity’’ of the Hadamard p
finie, namely (FG)1Þ5(F)1(G)1 , is the fact that

Pf~Fd1!Þ~F !1Pfd1 . ~6.13!

As an example, we have (r 1)150; but Pf(r 1d1) is not zero, sincêPf(r 1d1),1/r 1&51 for instance.
The pseudo-function Pf(Fd1) represents the product of a delta-function with a function tha
singular on its own support, whereas this product is ill-defined in the standard distribution th
However, this object, as seen as a distribution, i.e., when restricted to the classD of smooth
functions with compact support, does exist in the standard theory. Using the Taylor expa
when r 1→0 of anywPD, that is( l>0 (1/l !) r 1

l n1
L]Lw(y1), we obtain

^Pf~Fd1! uD, w&5~Fw!15(
l>0

1

l !
]Lw~y1!E dV1

4p
n1

L f
1

2 l , ~6.14!
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where1f 2 l denotes the coefficient of 1/r 1
l in the expansion ofF whenr 1→0. Notice that the sum

in ~6.14! is always finite becausel<2a0 , wherea05a0(F) is the smallest exponent ofr 1 in the
expansion ofF ~see Definition 1!. From~6.14! we derive immediately the ‘‘intrinsic’’ form of the
distribution Pf(Fd1) uD, that is,

Pf~Fd1! uD5(
l>0

~2 ! l

l !
]Ld1E dV1

4p
n1

L f
1

2 l5(
l>0

~2 ! l

l !
~r 1

l n1
LF !1]Ld1 , ~6.15!

where]Ld1 denotes thel th partial derivative of the Dirac measure~and where the sums are finite!.
We have, for instance,

PfS d1

r 1
2 D

uD

5
1

6
Dd1 . ~6.16!

Note also that the distribution Pf(Fd1) uD can be recovered, quite naturally, from the Laplac
~in the ordinary distributional sense! of the bracket corresponding to the ‘‘Poisson’’ integral
Pf(Fd1), i.e., formed by Pf(Fd1) acting on the functionx→1/ux2x8u. For any givenx8, this
function belongs toFloc and we are still allowed to consider such a bracket~see also Sec. V!. Thus
we define

G~x8!52
1

4p K Pf~Fd1!,
1

ux2x8u L 52
1

4p S F~x!

ux2x8u D
1

. ~6.17!

For x8 different from the singularityy1 , we find, using the Taylor expansion of 1/ux2x8u around
y1 ,

G~x8!52
1

4p (
l>0

~2 ! l

l !
~r 1

l n1
LF !1]L8S 1

r 18
D . ~6.18!

Clearly the functionG, if considered as a function of the variablex8, belongs toF. Now, we see
from ~6.15! that the ‘‘ordinary’’ Laplacian ofG(x8) is precisely equal to Pf(Fd1) uD, namely,

D8G8uD5(
l>0

~2 ! l

l !
~r 1

l n1
LF !1]L8d185Pf~F8d18! uD. ~6.19!

Let us point out thatG has no partie finie at the point 1: (G)150; so, in order to compute its
partie finie at 1, we are not allowed to replace formallyx8 by y1 inside the defining expressio
~6.17!:

0524p~G!1Þ K Pf~Fd1!,
1

r 1
L 5S F

r 1
D

1

5 f̂
1

1 . ~6.20!

@The functionG(x8) is not continuous at 1, as we can easily see from its singular expan
~6.18!.#

Finally let us mention how to give a sense to a pseudo-function that would be associate
the square of the delta-function.;«.0, we have«d1

2PF, and hence, we can consider the part
finie integral of«d1

2F. In the limit «→0 we get

lim
«→0

^Pf«d1
2,F&5 lim

«→0
PfE d3x«d1

2F50, ~6.21!
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essentially because we have a square«2 in factor which kills any divergencies arising from th
integral. Therefore Pfd1

2 is ~defined to be! identically zero. More generally,

;FPF, Pf~Fd1
2!50, ~6.22!

and we shall not hesitate to write such identities as

^Pfd1 ,Fd1&5^d1 ,Pf~Fd1!&5^Pf~Fd1
2!,1&50. ~6.23!

Note also that

Pf~Fd1d2!50. ~6.24!

VII. DERIVATIVE OF PSEUDO-FUNCTIONS

A. A derivative operator on F
From now on we shall generally suppose, in order to simplify the presentation, that the p

of r 1 and r 2 in the expansions ofFPF around the two singularities are positive or negat
integers (PZ). Our aim is to define an appropriate partial derivative operator acting on
pseudo-functions of the type PfF. First of all, we know~Lemma 3! that the restriction of PfF to
D is a distribution in the ordinary sense, so we already have at our disposal the derivative op
of distribution theory,2 which is uniquely determined — as well as any higher-order derivative
by the requirement

;wPD, ^] i~PfF uD!,w&52^PfF uD,] iw&. ~7.1!

It is clear from viewing PfF uD as an integral operator acting onw, that ~7.1! corresponds to a rule
of ‘‘integration by part’’ in which the ‘‘all-integrated’’~surface! term vanishes. In particular th
‘‘integral of a gradient’’ is zero. This motivates the following definition.

Definition 9: A partial derivative operator] i acting on pseudo-functions ofF8 is said to
satisfy the rule of integration by parts iff

;F,GPF, ^] i~PfF !,G&52^] i~PfG!,F&. ~7.2!

Notice the symmetry between the two slots of the duality bracket in~7.2!. As an immediate
consequence, for a derivative operator satisfying this rule, we have

;FPF, ^] i~PfF !,F&50. ~7.3!

Furthermore, if we assume] i(Pf1)50 in addition to Definition 9, then

;FPF, ^] i~PfF !,1&50. ~7.4!

Of course, both~7.3! and~7.4! correspond to the intuitive idea that the integral of a gradient~in a
‘‘distributional-extended’’ sense! should be zero.

Proposition 3: The most general derivative operator onF8 satisfying the rule of integration
by parts~7.2! reads as

] i~PfF !5Pf~] iF !1Di@F#PF8, ~7.5!

where Pf(] iF) represents the ‘‘ordinary’’ derivative, and where the ‘‘distributional’’ term
Di@F#5Hi@F#1Di

part@F# is the sum of the general solution of the homogeneous equation, i
linear functional Hi@F# such that

;F,GPF, ^Hi@F#,G&1^Hi@G#,F&50, ~7.6!
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and of the particular solution defined by

Di
part@F#54p PfS n1

i F1

2
r 1f

1
211 (

k>0

1

r 1
k f

1
222kGd111↔2D . ~7.7!

When applied on anyGPF, the particular solution reads as

^Di
part@F#,G&5E dV1n1

i F1

2
f
1

21g
1

211 (
k>0

f
1

222kg
1

kG11↔2. ~7.8!

Proof: We replace the form~7.5! of the derivative operator into the rule~7.2! and find

^Di@F#,G&1^Di@G#,F&52^Pf~] iF !,G&2^Pf~] iG!,F&.

The right-hand side can be readily re-written as the partie-finie integral of a gradient,

^Di@F#,G&1^Di@G#,F&52PfE d3x] i~FG!. ~7.9!

Now we know from~3.4! that the integral of a gradient is equal to the partie finie of the surf
integrals around the singularities when the surface areas shrink to zero; thus

^Di@F#,G&1^Di@G#,F&54p~n1
i r 1

2FG!111↔2.

We replace into the right sideF andG by their expansions around 1, and after an easy calcula
we arrive at

^Di@F#,G&1^Di@G#,F&5E dV1n1
i F f

1
21g

1
211 (

k>0
~ f

1
222kg

1
k1 f

1
kg

1
222k!G11↔2.

~7.10!

It is clear that the particular solution given by~7.7! or ~7.8! solves the latter equation. As
consequence, the most general solution is simply obtained by adding the general solution
homogeneous equation, i.e.,~7.10! with zero on the right side, which is precisely a Hi@F# satis-
fying the ‘‘anti-symmetry’’ propertŷ Hi@F#,G&1^Hi@G#,F&50. QED.

As we see from Proposition 3, the rule of integration by parts does not permit, unlike i
case of distribution theory@see~7.1!#, to fully specify the derivative operator. Obviously, we mu
supplement the rule by another statement indicating the cases for which the new derivative
reduce to the ‘‘ordinary’’ one, i.e., when we should have] i(PfF)5Pf(] iF). Clearly, we would
like to recover the ordinary derivative in the cases where the function is ‘‘not too much singu
In the following, we shall require essentially that our derivative reduces to the ordinary one
the functionF is boundednear the singularities@in addition belonging toC`(R32$y1,2%)#, in the
sense that there exists a neighborhoodN containing the two singularitiesy1 andy2 and a constant
MPR1* such thatxPN⇒uF(x)u<M . Let us refer to the coefficients of the negative powers
r 1 and r 2 in the expansions ofF, i.e., the1f 212k’s and 2f 212k’s wherekPN, as thesingular
coefficients ofF ~recall that we assumed that the powers ofr 1 and r 2 are integers!. Clearly, a
function is bounded near the singularities if and only if all its singular coefficients vanish.
means that we shall require that the distributional term Di@F#, which is a linear functional of the
coefficients in the expansions ofF, should depend only on the singular coefficients1f 212k and

2f 212k of F. This is already the case of our particular solution Di
part@F# in ~7.7!. We now look for

the most general possible Hi@F# depending on the1f 212k’s ~and 1↔2!.
All the singular coefficients admit some spherical-harmonics or equivalently STF expan

of the type~2.8!–~2.9!, with STF-tensorial coefficients1 f̂ 212k
L @whereL5 i 1¯ i l ; see~2.8! for

definition#, so we are led to requiring that Hi@F# be the most general~linear! functional of the STF
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tensors1 f̂ 212k
L and 1↔2. Moreover, we demand that Hi@F#, like Di

part@F#, is proportional to the
Dirac pseudo-function Pfd1 ~as we shall see, the gradient of Pfd1 is itself proportional to Pfd1 so
there is no loss of generality!. Now, we have also to take into account the fact that the dim
sionality of Hi@F# should be compatible with the one of Pf(] iF). EndowingR3 with a unit of
length to measure the space coordinates, the Dirac pseudo-function Pfd1 takes the dimension o
the inverse cube of a length, and Hi@F# the dimension ofF divided by this length~in physical
applications, we do not want to introduce any special physical scale!. We conclude that Hi@F#
must be of the general form

Hi@F#5 (
k>0

(
l 50

1`

Pf~@ak,l n̂1
iL f̂

1
212k
iL 1bk,ln1

L f̂
1

212k
iL #r 1

12kd1!11↔2, ~7.11!

where theak,l ’s and bk,l ’s denote some purely constant numerical coefficients~and where, as
usual, the sum overk is finite!. Applying this Hi@F# on anyG we readily obtain

^Hi@F#,G&5 (
k>0

(
l 50

1`
l !

~2l 11!!! F l 11

2l 13
ak,l f̂

1
212k
L ĝ

1
211k
iL 1bk,l f̂

1
212k
iL ĝ

1
211k
L G11↔2.

~7.12!

At last we must impose the anti-symmetry condition~7.6!. For anyG whose all singular coeffi-
cients vanish we havêHi@G#,F&50; then, the anti-symmetry condition tells us that~7.12! should
be identically zero for any suchG and anyF. Therefore, we must haveak,l50 and bk,l50
wheneverk>1, so we are left with only the coefficientsa0,l andb0,l , and the condition~7.6! now
implies

05(
l 50

1`
l !

~2l 11!!! S l 11

2l 13
a0,l1b0,l D @ f̂

1
21
L ĝ

1
21
iL 1 f̂

1
21
iL ĝ

1
21
L #11↔2,

which can clearly be satisfied only if~and only if!, @( l 11)/(2l 13)# a0,l1b0,l50. Thus, posing
a l[a0,l , we have just proved the following.

Lemma 4: The most generalHi@F# that vanishes for any bounded function FPF and pos-
sesses the correct dimension depends only on (the STF-harmonics of) the singular coef

1f 21 and 2f 21 and is given by

Hi@F#5(
l 50

1`

a lPfS F n̂1
iL f̂

1
21
L 2

l 11

2l 13
n1

L f̂
1

21
iL G r 1d1D 11↔2, ~7.13!

where thea l ’s form a countable set of arbitrary numerical coefficients.
@The angular dependence of the first term in~7.13! is expressed by means of the STF tens

n̂1
iL .# Equivalently we have

^Hi@F#,G&5(
l 50

1`

a l

~ l 11!!

~2l 13!!!
@ f̂

1
21
L ĝ

1
21
iL 2 f̂

1
21
iL ĝ

1
21
L #11↔2. ~7.14!

This expression is anti-symmetric in the exchangeF↔G as required.
To sum up, we have obtained the most general derivative operator] i(PfF)5Pf(] iF)

1Di@F# that satisfies the rule of integration by parts and depends only on the singular coeffi
of F. The distributional term Di@F# is the sum of a ‘‘particular’’ solution fully specified by~7.7!
or ~7.8!, and of a ‘‘homogeneous’’ solution given by~7.13! or ~7.14! in terms of an infinite set of
arbitrary numerical coefficientsa lPR ~and l PN!. In Sec. VIII we shall see how one can redu
the arbitrariness of the definition of the derivative to only one single coefficientKPR.
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B. Some properties of the derivative

At this stage, one can already investigate some properties of the distributional termi@F#
5Di

part@F#1Hi@F#, using the fact that the yet un-specified^Hi@F#,G& depends only on1f 21 and

1g21 ~and 1↔2!. Let us first check that the derivative operator, when restricted to the smooth
compact-support functions ofD, reduces to the distributional derivative of distribution theor2

This must actually be true since the fundamental property~7.1! of the distributional derivative is
a particular case of our rule of integration by parts, and because the derivative ofwPD reduces to
the ordinary one. However, it is instructive to verify directly this fact using the expression~7.7!.
Applying Di@F# on wPD and using the Taylor expansion ofw around 1: w
5(k>0 (1/k!) r 1

kn1
K(]Kw)(y1), we obtain

^Di@F#,w&5 (
k>0

1

k!
~]Kw!~y1!E dV1n1

i n1
K f

1
222k11↔2.

Hence the intrinsic expression of the distributional terms onD,

Di@F# uD5 (
k>0

~2 !k

k!
]Kd1E dV1n1

i n1
K f

1
222k11↔2, ~7.15!

which agrees with the distributional part of the derivative of a function with tempered singula
in distribution theory. For example, we can write

DiF 1

r 1
3G

uD

52
4p

3
] id1 . ~7.16!

However, when acting on functions of the full setF, the derivative generally leads to prop
erties which have no equivalent in distributional theory. For instance, although the distribu
derivative of 1/r 1

2 reduces onD to the ordinary derivative, i.e., Di@1/r 1
2# uD50, onF it does not:

] i S Pf
1

r 1
2D 5PfS 22

n1
i

r 1
3 14pn1

i d1D . ~7.17!

For the distributional derivative of 1/r 1
3 on F we find

] i S Pf
1

r 1
3D 5PfS 23

n1
i

r 1
4 14p

n1
i

r 1
d1D . ~7.18!

The expression of the distributional term is apparently different from the corresponding
~7.16! in distribution theory. However we shall see after learning how to differentiate the D
pseudo-function Pfd1 that the distributional term Di@1/r 1

3# takes in fact the same form onF as on
D @see~7.28! below#.

We come now to an important point. In this paper we have defined a ‘‘pointwise’’ produ
pseudo-functions~see Definition 6!, which reduces to the ordinary product in all the cases wh
the functions are regular enough. For instance, it coincides with the ordinary product foC`

functions, or even continuous or locally integrable functions~adopting the classFloc!. Next, we
introduced a derivative operator that acts merely as the ordinary derivative for a large cl
not-too-singular functions~those which are bounded near the singularities, see Proposition 3!. In
particular, the derivative is equal to the ordinary one when the functions areC1 at the location of
the two singularities. However, we know from a theorem of Schwartz23 that it is impossible to
define a multiplication for distributions having the previous properties and such that the dis
tional derivation satisfies the standard formula for the derivation of a product~Leibniz’s rule!. In
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agreement with that theorem, we find that the derivative operator defined by~7.5!–~7.7! does not
obey in general the Leibniz rule, whereas it does satisfy it by definition in an ‘‘integrated se
namely,

^] i@Pf~FG!#,1&505^] i~PfF !G1F] i~PfG!,1&. ~7.19!

However it does not satisfy the Leibniz rule in a ‘‘local sense,’’ i.e., we have, generically for
functionsF,GPF,

] i@Pf~FG!#2] i~PfF !G2F] i~PfG!Þ0. ~7.20!

This means that,a priori,

^] i@Pf~FG!#,H&2^] i~PfF !,GH&2^] i~PfG!,FH&Þ0, ~7.21!

or, equivalently, since the Leibniz rule is satisfied by the ordinary derivative,

^Di@FG#,H&2^Di@F#,GH&2^Di@G#,FH&Þ0. ~7.22!

Actually, in accordance with the theorem in Ref. 23,~7.20! must be true even when the pseud
function is regarded as a distribution onD. To check this, let us compute the left side of~7.22! in
the case where Di is the particular solution Di

part defined by~7.7!, and whereH is equal to some
wPD. We employ the Taylor expansion ofw around 1 and 2, and, strictly following the definitio
of the distributional term in~7.7!, we arrive at

@Di
part@FG#2FDi

part@G#2GDi
part@F## uD5 (

k>1

~2 !k

k!
]Kd1E dV1n1

i n1
KF1

2
f
1

21g
1

212k1
1

2
f
1

212kg
1

21

2(
j 50

k

f
1

212 jg
1

j 2k21G11↔2. ~7.23!

The right side of~7.23! equals (2p/3) ] id1 in the case whereF5 1/r 1 andG5 1/r 1
2 for instance.

It is not possible to add a homogeneous solution of the form~7.13! so as to always get zero. As th
result ~7.23! depends only on the singular coefficients ofF andG, we recover the Leibniz rule
wheneverF or G is bounded near the singularities. Besides, we can verify directly on~7.23! that
the Leibniz rule is indeed true in an integrated sense, since the integral overR3 of ~7.23! picks up
only the term withk50 which gives no contribution.

C. Derivative of the Dirac pseudo-function

In this subsection we compute the distributional term^Di@F#,G& given by the sum of~7.8!
and ~7.14! assuming that eitherF or G is equal to the Riesz delta-function«d15@«(«
21)/4p# r 1

«23 for some small«.0. ~We come back for a moment to Definition 1 in which th
powers ofr 1 andr 2 in the expansions ofF or G are real.! We notice first that the terms dependin
on the singular coefficients1f 21 and1g21 are present only when the exponent21 belongs to both
families of indices (ai) i PN corresponding toF and G ~remind Definition 1!. This means that,
choosing« to be different from 2, these terms will not contribute to the present calculation, a
particular that the homogeneous part^Hi@F#,G& will always give zero, provided that eitherF or
G is equal to«d1 . From the expression~7.8! we get

^Di@«d1#,G&5«~12«!E dV1

4p
n1

i g
1

12« , ~7.24a!
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^Di@F#,«d1&5«~12«!(
l>0

~2 ! l

l !
]
1

Lr 12
«23E dV2

4p
n2

iL f
2

222 l . ~7.24b!

Furthermore, by choosing« smaller than the spacing between some exponentsai of G ~specifi-
cally «,12ai 1

with ai 1
is such thatai 1

,1<ai 111) we can arrange for having1g12«50 so that
~7.24a! becomes identically zero. Anyway, in the limit«→0 we come up formally with both
relations^Di@d1#,G&50 and^Di@F#,d1&50. The former tells us that the distributional derivati
of Pfd1 reduces to the ordinary one, i.e.,

] i~Pfd1!5Pf~] id1!. ~7.25!

The latter@that we already knew from~6.23!# shows via the rule of integration by parts that t
action of] i(Pfd1) over any functionFPF is equal to minus the action of Pfd1 over the derivative
] iF.

Definition 10: The derivative of the Dirac pseudo-functionPfd1 is defined by

;FPF, ^] i~Pfd1!,F&52^Pfd1 ,] iF&[2~] iF !1 . ~7.26!

We can summarize the properties of the derivative of the Dirac pseudo-function by writin
successive identities,

^] i~Pfd1!,F&5^Pf~] id1!,F&52^Pfd1 ,] iF&52~] iF !1 ,

as well as similar identities obtained by exchanging the roles ofF andd1 ,

^] i~PfF !,d1&5^Pf~] iF !,d1&52^PfF,] id1&5~] iF !1 .

Lemma 5: The intrinsic form of the derivative of the Dirac pseudo-function is

] i~Pfd1!52PfS 3
n1

i

r 1
d1D . ~7.27!

The proof is evident from using the identity~2.11!. The form~7.27! @with ~7.25!# is quite useful in
practice; for instance, it permits us to re-write the derivative of the pseudo-function Pf(1/r 1

3) as
computed in~7.18! into the form

] i S Pf
1

r 1
3D 5PfS 23

n1
i

r 1
4 2

4p

3
] id1D , ~7.28!

where the distributional term takes the same form as in the distribution theory@compare with
~7.16!#.

The preceding definition and lemma are easily extended to the case of the pseudo-fu
Pf(Fd1). The derivative of these objects is defined by the mean of the relation

^] i@Pf~Fd1!#,G&52^Pf~Fd1!,] iG&52~F] iG!1 . ~7.29!

Then, from the identity~2.11!, we readily get the intrinsic form

] i@Pf~Fd1!#5PfF r 1
3] i S F

r 1
3D d1G . ~7.30!

Notice the interesting particular case,

] i@Pf~r 1
3d1!#50, ~7.31!
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which is also an immediate consequence of~2.16!. Finally, let us mention that the Leibniz rul
happens to hold in the special case where one of the pseudo-functions is of the type Pf(Gd1), i.e.,

] i@PfF.Pf~Gd1!#5] i~PfF !.Pf~Gd1!1PfF.] i@Pf~Gd1!# ~7.32!

~the verification is straightforward!.

VIII. MULTIPLE DERIVATIVES

A. General construction

From Proposition 3 we can give a meaning to

^] i~PfF !,G&5PfE d3x] iFG1^Di@F#,G&, ~8.1!

which will be also denoted̂ ] i(PfF),PfG&. We now define the more complicated obje
^] i(PfF),] j (PfG)&. Since the distributional term Di@F# has the form Pf(Hd1) plus 1↔2, and
because~6.22!–~6.24! entail such identities aŝPf(Gd1),Pf(Hd1)&505^Pf(Gd1),Pf(Hd2)&, we
deduce that the duality bracket applied on any two distributional terms is always zero:

;F,GPF, ^Di@F#,Dj@G#&50. ~8.2!

When constructing the bracket^] i(PfF),] j (PfG)& we shall meet a product of two distributiona
terms which gives zero by~8.2!, and we shall be left only with the ordinary part as well as the t
cross terms involving one distributional term. Therefore,

^] i~PfF !,] j~PfG!&5PfE d3x] iF ] jG1^Di@F#,] jG&1^Dj@G#,] iF&. ~8.3!

@The ordinary part can equivalently be written as

PfE d3x] iF ] jG5^Pf~] iF !,Pf~] jG!&5^Pf~] iF !,] jG&5^] iF,Pf~] jG!&.]

We now intend to introduce the second-order derivative operator. The generalization t
l th-order derivative is straightforward and will be stated without proof. By extending the ru
integration by parts presented in Definition 9, we are led, quite naturally, to require that

;F,GPF, ^] i j ~PfF !,G&52^] j~PfF !,] i~PfG!&, ~8.4!

where the object̂] j (PfF),] i(PfG)& has just been given in~8.3!. For the moment, we are carefu
at distinguishing the order of the indicesi and j . Let us look for the expression of the distribu
tional term Di j @F# corresponding to the double derivative, viz.,

] i j ~PfF !5Pf~] i j F !1Di j @F#, ~8.5!

in terms of the single-derivative term Di@F#. Inserting~8.5! into the required property~8.4! we
arrive immediately at

^Di j @F#,G&52PfE d3x] i~] jFG!2^Dj@F#,] iG&2^Di@G#,] jF&.

Next recall the formula~7.9! which tells us that any partie-finie integral of a gradient is the s
of two distributional contributions. Using this property we obtain the simple result

^Di j @F#,G&5^Di@] jF#,G&2^Dj@F#,] iG&5^Di@] jF#,G&1^] iDj@F#,G&. ~8.6!
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The formula~7.29! allowed us to obtain the second equality; so the intrinsic form of the sec
order distributional term is obtained as

Di j @F#5Di@] jF#1] iDj@F#. ~8.7!

This result is easily extendible to any multiple derivatives, demanding that, to any orderl ,

^] i 1i 2¯ i l
~PfF !,G&52^] i 2¯ i l

~PfF !,] i 1
~PfG!&, ~8.8!

where the right side is obtained in a way similar to~8.3!. We can even impose the more gene
rule of integration by parts, that forany k51,...,l ,

^] i 1i 2¯ i l
~PfF !,G&5~2 !k^] i k11i k12¯ i l

~PfF !,] i ki k21¯ i 1
~PfG!&. ~8.9!

Then the following is proved by induction overl .
Proposition 4: If a multi-derivative operator,

] i 1i 2¯ i l
~PfF !5Pf~] i 1i 2¯ i l

F !1Di 1i 2¯ i l
@F#, ~8.10!

satisfies the rule of integration by parts (8.8) or (8.9), then thelth-order distributional term
Di 1i 2¯ i l

@F# is given in terms of the first-orderDi k
@F# ’s by

Di 1i 2¯ i l
@F#5 (

k51

l

] i 1¯ i k21
Di k

@] i k11¯ i l
F#. ~8.11!

Recall that this result is valid for any distributional derivative of the form given by Propositio
i.e., Di@F#5Di

part@F#1Hi@F#. Therefore, the rule of integration by parts has permitted us
construct uniquely all higher-order derivatives from a given choice of first-order derivative Di@F#,
i.e., from a given choice of ‘‘homogeneous’’ solution Hi@F#. Notice thata priori this construction
does not yield some commuting multi-derivatives~i.e., the Schwarz lemma is not valid in genera!,
because evidently the right side of the formula~8.11! is not necessarily symmetric in all it
indices. However, as a central result of this paper, we shall show now that it is possible to fi
initial H i@F# such that the derivatives do commute to any order.

Theorem 4: The most general derivative operator] i(PfF)5Pf(] iF)1Di@F# such that
(i) the distributional termDi@F# depends only on the singular coefficients of F,
(ii) all multi-derivatives satisfy the rule of integration by parts,
(iii) all multi-derivatives commute (i.e., theDi 1i 2¯ i l

@F# ’s are symmetric in i1i 2¯ i l!, is given by

Di@F#54p(
l 50

1`

PfS Cl@n1
iL f̂

1
21
L 2n1

L f̂
1

21
iL #r 1d11 (

k>0

n1
iL

r 1
k f̂

1
222k
L d1D 11↔2, ~8.12!

where the coefficients Cl5( l 11)$K1( j 51
l @1/( j 11)#% depend on an arbitrary constant K.

~Actually the theorem states that the derivative operator dependsa priori on two different
constantsK1 and K2 for each of the two singularities. In the following we shall assume
simplicity that the constants are the same, so that the way to differentiate does not disti
between the different singularities.! Notice that Di@F# differs from the particular solution Di

part@F#
given by ~7.7! only in the terms depending on the ‘‘least singular’’ coefficients1f 21 and2f 21 .

Proof: According to the assumptions~i! and ~ii ! we already know~see Proposition 3 and
Lemma 4! that the distributional term must be of the form Di@F#5Di

part@F#1Hi@F#, where the
particular solution is given explicitly by~7.7!, and where the homogeneous term takes the fo
~7.13! depending on a set of arbitrary coefficientsa l . Furthermore, we know from Proposition
that all higher-order derivatives are generated from the first-order one in the way specifi
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~8.11!. It only remains to show that the coefficientsa l can becomputedin order that the assump
tion ~iii ! of the commutation of derivatives be fulfilled, and that the derivative is given by~8.12!.

What we want then is to impose the symmetry of Di j @F# in i j . We compute the anti-
symmetric projection@ i j #[ ( i j 2 j i )/2 of the second-order distributional term associated with
particular solution~7.7!,

D[ i j ]
part@F#5D[ i

part@] j ]F#1] [ iDj ]
part@F#. ~8.13!

The first term is readily obtained from~2.12! which tells us that theath coefficient in the
r 1-expansion of the gradient is1f a(] jF)5(a11)n1

j
1f a111d1

j
1f a11 . On the other hand, the sec

ond term in~8.13! comes directly from using the formula~7.30!. It follows that the anti-symmetric
projection depends only on the expansion coefficients1f 0 , 1f 21 and 1↔2 through the simple
formula,

D[ i j ]
part@F#52pPf~n1

[ i@r 1d1
j ] f

1
01d1

j ] f
1

21#d1!11↔2, ~8.14!

or, using the relation~2.13! for the operatord1
j ,

D[ i j ]
part@F#52p(

l 50

1`

~ l 11!Pf~n1
L[ i@r 1 f̂

1
0
j ]L1 f

1
21
j ]L#d1!11↔2. ~8.15!

Note that by applying this on anyG, we get

^D[ i j ]
part@F#,G&522p(

l 50

1`
~ l 11!~ l 11!!

~2l 13!!!
~ f̂

1
0
L[ i ĝ

1
21
j ]L1 f̂

1
21
L[ i ĝ

1
0
j ]L!11↔2.

Next, we add the homogeneous solution. By performing a computation similar as the previo
~but a bit more involved! we find, based on the expression~7.13!,

H[ i j ]@F#5(
l 50

1`
l 11

2l 13
@~ l 12!a l2~ l 11!a l 11#Pf~n1

[ i@r 1 f̂
1

0
j ]L1 f

1
21
j ]L#d1!11↔2. ~8.16!

Remarkably, H[ i j ]@F# takes exactly the same form as~8.15!. Hence, we are able to determine
relation to be satisfied by the looked-for coefficientsa l for any l in order that the noncommuting
part ~8.15! associated to the particular solution be cancelled out by that of the homogeneou
; l , (l 12)a l2( l 11)a l 11522p(2l 13). Given any initial value fora0 the solution reads as

a l5~ l 11!Fa012p(
j 51

l S 1

j
1

1

j 11D G522p14p~ l 11!FK1(
j 51

l
1

j 11G , ~8.17!

in which we have introduced the new arbitrary constantK5 a0/4p 1 1/2. Inserting~8.17! back
into the expression for Di@F# leads to the announced result~8.12!. At last, we find that for any
choice of the constantK the second-derivative operator commutes, i.e.,

D[ i j ]@F#5H[ i j ]@F#1D[ i j ]
part@F#50. ~8.18!

Let us verify from ~8.18! that all higher-order multi-derivative operators commute as well,
Di 1i 2¯ i l

@F# given by the formula~8.11! is symmetric in all its indices. This is easily proved b
induction overl . Suppose that to the (l 21)th order Di 1i 2¯ i l 21

@F# is symmetric, and re-write the
formula ~8.11! into both forms,

Di 1i 2¯ i l
@F#5Di 1

@] i 2¯ i l
F#1] i 1

Di 2¯ i l
@F#5Di 1¯ i l 21

@] i l
F#1] i 1¯ i l 21

Di l
@F#.
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Clearly, Di 1¯ i l
@F# is symmetric with respect to bothi 1¯ i l 21 and i 2¯ i l , so must be symmetric

in all its indices~the symmetry with respect to the first and last indices being a consequence
other symmetries!. QED.

We should mention that the dependence upon the arbitrary constantK of the derivative
operator defined by Theorem 4 is

Di@F# uK
54pK(

l 50

1`

~ l 11!Pf~@n1
iL f̂

1
21
L 2n1

L f̂
1

21
iL #r 1d1!11↔2, ~8.19!

which can also be cast into the more interesting form

Di@F# uK
524pK] i@Pf~r 1

2f
1

21d1!#11↔2. ~8.20!

We see that the ‘‘ambiguity’’ linked with the constantK when deriving the pseudo-function PfF
is related to an ambiguity resulting from the addition of the term24pKPf(r 1

2
1f 21d1)11↔2 to

PfF. In a sense, one can also view the constantK as a measure of how much the distribution
derivative of the pseudo-function Pf(1/r 1) differs from the ordinary one, i.e.,

DiF 1

r 1
G54pKPf~n1

i r 1d1!. ~8.21!

Indeed, for functions which are more singular than a simple 1/r 1 , there is no dependence on th
constantK; see, e.g.,~7.17!–~7.18!.

B. The Laplacian operator

Let us compute the second-derivative of Pf(1/r 1) using the formula Di j @1/r 1#5Di@2n1
j /r 1

2#
1] iDj@1/r 1#. The first term is obtained directly from the definition~8.12!, and the second term i
computed with the help of the formula~7.30! applied on~8.21!. As a result, we get

Di j F 1

r 1
G52

4p

3
Pf~@d i j 13~3K11!n̂1

i j #d1!, ~8.22!

wheren̂1
i j 5n1

i n1
j 2 (1/3)d i j . Evidently ~because of the trace-freen̂1

i j !, when we restrict ourselve
to smooth functions of the setD, we recover the usual formula of distributional theory,

Di j F 1

r 1
G

uD

52
4p

3
d i j d1 . ~8.23!

Since the dependence overK in ~8.22! drops out when taking the trace over the indicesi j , we
have Di i @1/r 1#524pPfd1 ~even on the setF!. This means that the Laplacian of 1/r 1 on F takes
the same form as the well-known formula of distribution theory:

DS Pf
1

r 1
D524pPfd1 . ~8.24!

We infer from the rule of integration by parts that

K D~PfF !,
1

r 1
L 5 K DS Pf

1

r 1
D ,F L 524p~F !1 , ~8.25!
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which can be phrased by saying that the Poisson integral of the Laplacian of a singular fun
as evaluated at a singular point, is equal to the partie finie of the function at that point.
generally, the Laplacian acting on any pseudo-function inF8 is defined by

D~PfF !5Pf~DF !1Di i @F#, ~8.26!

where the distributional term is given by

Di i @F#5] iDi@F#1Di@] iF#. ~8.27!

Proposition 5: Under the hypothesis of Theorem 4 the distributional term associated with
Laplacian operator reads as

Di i @F#54p(
l 50

1`

PfS ~ l 11!Cl 21n1
L@ f̂

1
21
L 1r 1 f̂

1
0
L#d12 (

k>0
~2k11!

n1
L

r 1
k f̂

1
212k
L d1D 11↔2.

~8.28!

The proof is straightforward and will not be detailed. Note that the dependence onK occurs only
for functions owing some nonzero coefficients1f 21 or 1f 0 , or 1↔2; for instance,

Di i @n1
j #58pKPf~n1

i r 1d1!,

Di i @n1
j /r 1#58p~K2 1

2!Pf~n1
i d1!.

But, for more singular functions like 1/r 1
3, we have

DS Pf
1

r 1
3D 5PfS 6

r 1
52

20p

r 1
2 d1D . ~8.29!

Lemma 6: The Laplacian of the pseudo-functionPf(Fd1) is given by

D@Pf~Fd1!#5PfS r 1
3DF F

r 1
3Gd1D . ~8.30!

The proof is similar to the one of the formula~7.30!. Two immediate particular applications ar

D~Pfd1!5PfS 6

r 1
2 d1D , ~8.31a!

D@Pf~r 1
2d1!#50, ~8.31b!

which can also be deduced, respectively, from~2.19! and ~2.17!. @~8.31a! is in agreement with
~6.16!.# Let us add that

DFPfS r 1

2
d1D G5PfS d1

r 1
D . ~8.32!

In practice, Lemma 6 may be used to determine some solutions of Poisson equations ‘‘in the
of distributions’’ onF. For instance combining~8.31a! with the formula~8.29!, we can write

DFPfS 1

r 1
3 1

10p

3
d1D G5PfS 6

r 1
5D , ~8.33!

which provides a solution of the Poisson equation with source Pf(6/r 1
5) in the sense of these

distributions. Such a solution is by no means unique, since, from Lemma 6, one can add to
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‘‘homogeneous’’ solution of the form Pf(Hhomd1) where Hhom is the product ofr 1
3 with an

arbitrary solution of the Laplace equation. Notice that~8.33! as it stands is well-defined in distri
bution theory and so takes the same form when restricted toD (Dd1 is meaningful on this set!.
However,

DFPfS 1

r 1
2 16pr 1d1D G5PfS 2

r 1
4D ~8.34!

has no equivalent in distribution theory.

IX. TIME DERIVATIVE AND PARTIAL DERIVATIVES

The functionsFPF depend on the field pointx and on the two singular source pointsy1 and
y2 . We shall now consider the situation where the two source points represent the trajecto
actual particles, and therefore depend on timet. We assume that the two trajectoriesy1(t) and
y2(t) are smooth, that isy1 , y2PC`(R). In general~e.g., in the application to the problem o
motion of point-particles! the functionF will also depend on time through the two velocitie
v1(t)5dy1(t)/dt andv2(t)5dy2(t)/dt. We suppose thatF is a smooth functional ofv1 andv2 .
Therefore, in this section,F is supposed to take the form

F5F„x,t;y1~ t !,y2~ t !…PF. ~9.1!

We want to investigate the partial derivatives~in a distributional sense! of the pseudo-function
PfF with respect to the source pointsy1 andy2 , as well as the derivative of PfF with respect to
time t. Obviously, the partial derivatives1] i[]/]y1 and 1↔2 are closely related to the tim
derivative] t[]/]t on account of the fact that

] tF5Ḟ1v1
i ]

1
iF1v2

i ]
2

iF ~9.2!

~in the ordinary sense!, whereḞ denotes the contribution of the time-derivative due to the dep
dence over the velocities, i.e.,Ḟ5a1

i ]F/]v1
i 1a2

i ]F/]v2
i (a1

i and a2
i denoting the two accelera

tions!. In applications it is frequent thatF depends on the trajectories only through the t
distances to the field pointr15x2y1 and r25x2y2 ; in that case,

] iF1]
1

iF1]
2

iF50. ~9.3!

The general function~9.1! does not necessarily satisfy the latter identity. However, let us g
from ~9.3! the result for the distributional terms1Di@F# ~and 1↔2! associated with the partia
derivative1] i acting on the pseudo-function PfF. Since we have supposed that the dependenc
F on the velocities is smooth, the distributional terms will depend only on that part of the fun
which becomes singular whenr 1→0, and so, because as far as the singular part is concerned
function behaves like~9.3!, the distributional terms1Di@F# and2Di@F# should satisfy

Di@F#1D
1

i@F#1D
2

i@F#50. ~9.4!

Now, from Theorem 4, we know that Di@F# can be naturally split into two parts associate
respectively, with the singularities 1 and 2. Therefore, we expect that the correct distribu
term 1Di@F# is equal tominusthat part of Di@F# which corresponds to 1. Namely, using~8.12!,

D
1

i@F#524p(
l 50

1`

PfS Cl@n1
iL f̂

1
21
L 2n1

L f̂
1

21
iL #r 1d11 (

k>0

n1
iL

r 1
k f̂

1
222k
L d1D ~9.5!
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~and idem for 2!. This expectation is confirmed by the following definition and proposition.
Definition 11: The partial derivative1] i (and 1↔2 ) acting on pseudo-functions is said t

satisfy the rule of integration by parts iff

;F,GPF, ^]
1

i~PfF !,G&1^]
1

i~PfG!,F&5]
1

i@^PfF,G&#. ~9.6!

Similarly, the time derivative] t is said to satisfy the rule of integration by parts iff

^] t~PfF !,G&1^] t~PfG!,F&5
d

dt
@^PfF,G&#. ~9.7!

Notice that^PfF,G&5Pf*d3xFG is a function of the source pointsy1(t) andy2(t), as well ast
independently if eitherF or G depends on the velocities. The time derivative in the right side
~9.7! means the total time derivative we get by taking into account both the variablet occurring
throughy1(t) and y1(t), and the independentt coming from the velocities. Let us now state
result analogous to Theorem 4, whose proof will not be given since it represents a simple
tation of the one of that theorem.

Proposition 6: Under the hypothesis of Theorem 4 the partial derivative with respect ty1

(and idem with1↔2 ) is determined as

]
1

i~PfF !5Pf~]
1

iF !1D
1

i@F#, ~9.8!

where1Di@F# is given by (9.5). And the time derivative is determined as

] t~PfF !5Pf~] tF !1Dt@F#, ~9.9!

whereDt@F# is given by

Dt@F#5v1
i D

1
i@F#1v2

i D
2

i@F#. ~9.10!

Higher-order derivatives are constructed as in Sec. VIII. We find, for instance,

]
1

i j ~PfF !5Pf~]
1

i j F !1D
1

i@]
1

jF#1]
1

iD
1

j@F#, ~9.11!

Idem for the second-order time derivative, which reads as

] t
2~PfF !5Pf~] t

2F !1Dt@] tF#1] tDt@F#, ~9.12!

where] tF is given by~9.2! and Dt@F# is defined in~9.10!. Furthermore the mixing up of deriva
tives of different type is allowed, and proceeds in the expected way. For example,

]
1

i]
2

j~PfF !5Pf~]
1

i]
2

jF !1D
1

i@]
2

jF#1]
1

iD
2

j@F#. ~9.13!

Another example is

] t] i j ~PfF !5Pf~] t] i j F !1Dt@] i j F#1] tDi@] jF#1] t] iDj@F#. ~9.14!
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APPENDIX: PROOF OF THEOREM 2

Basically the proof establishes the legitimacy of commuting some discrete series with
grals. ConsiderFPF. We start by evaluating the integrals

FPb→0
a→0EB1(s)

d3x (
a<23

S r 1

s1
D aS r 2

s2
D b

r 1
af

1
a~n1! ~A1a!

and

FPa→0
b→0EB1(s)

d3x (
a<23

S r 1

s1
D aS r 2

s2
D b

r 1
af

1
a~n1!, ~A1b!

where the1f a’s are the coefficients of the expansion ofF whenr 1→0, and whereB1(s) is the ball
centered ony1 and of radiussPR1* ~chosen to bes,r 12!. From the definition of the classF the
sums overa in ~A1! are finite. When the real part ofb is such that 0<R(b)<1, the integrand of
~A1a! is majored by

S r 1

s1
D R(a)S r 2

s2
D R(b)

(
a<23

r 1
au f

1
a~n1!u<S r 1

s1
D R(a)

maxS 1,
r 2

s2
D (

a<23
r 1

au f
1

a~n1!u,

which can be integrated onB1(s). Thus the theorem of dominated convergence of an integral
be applied, with the result that

FPb→0
a→0EB1(s)

d3x (
a<23

S r 1

s1
D aS r 2

s2
D b

r 1
af

1
a5FPa→0EB1(s)

d3x (
a<23

S r 1

s1
D a

r 1
af

1
a

5 (
a13,0

sa13

a13 E dV1f
1

a1 lnS s

s1
D E dV1f

1
23 .

The second integral is more difficult to compute because the limita→0 does not commute with
the integration sign. We must expandr 2

b as a power series ofr 1 . ;r 1,r 12,

r 2
b5r 12

b S 112n1•n12

r 1

r 12
1

r 1
2

r 12
2 D b/2

5r 12
b (

l 50

1`

Cl
2b/2~2n1•n12!S r 1

r 12
D l

, ~A2!

where n125(y12y2)/r 12, and whereCl
l(t) denotes the Gegenbauer polynomial, which is

definition the coefficient ofxl in the power-series expansion of the function (122tx1x2)2l when
x→0 ~with l, tPC!. See, e.g., Morse and Feshbach,27 p. 602. WhentPR and is such thatutu
<1 ~as is the case here sincet52n1•n12!, we can obtain a majoration of the Gegenbau
polynomial. From the formula~cf. Gradshteyn and Ryzhik,28 p. 1030!

Cl
l~cosu!5 (

k,h>0
k1h5 l

G~l1k!G~l1h!

k!h! @G~l!#2 cos@~k2h!u#,

we find that; lÞ0, uCl
l(cosu)u is always less than

(
k,h>0
k1h5 l

~ ulu1k21!~ ulu1k22!¯ulu~ ulu1h21!~ ulu1h22!¯ulu
k!h!

5Cl
ulu~1!.
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Therefore the series( l uCl
2b/2(2n1•n12))(r 1 /r 12)

l u is bounded by (122r 1 /r 121r 1
2/r 12

2 ) ubu/2, and
thus admits a limit. Thus~A2! converges absolutely and@whenR(a) is large enough# the signs*
and( can be interchanged:

E
B1(s)

d3x (
a13<0

S r 1

s1
D aS r 2

s2
D b

r 1
af

1
a5S r 12

s2
D b

(
l 50

1`

(
a13<0

E
B1(s)

d3x
r 1

a1a1 l

s1
ar 12

l f
1

aCl
2b/2 ,

whereCl
2b/2[Cl

2b/2(2n1•n12). We obtain the two terms

S r 12

s2
D b

(
l 50

1`

(
a13<0

a1 l 13Þ0

sa1a1 l 13

s1
ar 12

l ~a1a1 l 13!
E dV1f

1
aCl

2b/2

1S r 12

s2
D b

(
l 50

finite sum

1`
1

a S s

s1
D a 1

r 12
l E dV1f

1
2 l 23Cl

2b/2 .

The finite part whena→0 of the second term reads simply as

S r 12

s2
D b

lnS s

s1
D(

l 50

1`
1

r 12
l E dV1f

1
2 l 23Cl

2b/2 . ~A3!

On the other hand, in order to treat the first term, we must justify the commutation of the finit
with the infinite sum. Consider the series

(
l 50

1`
1

a1a1 l 13 S s

r 12
D lE dV1f

1
aCl

2b/2 .

For a in a disk of the complex plane centered on 0 and of radiuse ~with 0,e,1!, we can bound
the generic term of that series~for large enoughl ! by

1

ua1 l 13u2e S s

r 12
D lU E dV1f

1
aCl

2b/2U,
which is independent ofa, and whose corresponding series inl converges. Therefore we can app
the limit a→0 through the summation overl and deduce

lim
a→0

H S r 12

s2
D b

(
l 50

1`

(
a13<0

a1 l 13Þ0

sa1a1 l 13

s1
ar 12

l ~a1a1 l 13!
E dV1f

1
aCl

2b/2J
5S r 12

s2
D b

(
a13<0

sa13 (
l 50

a1 l 13Þ0

1`
1

a1 l 13 S s

r 12
D lE dV1f

1
aCl

2b/2 . ~A4!

Next we apply the finite part Pfb→0 to the sum of~A3! and~A4!, which involves finding the limit
whenb→0 of the series

(
l 50

a1 l 13Þ0

1`
1

a1 l 13 S s

r 12
D lE dV1f

1
aCl

2b/2 . ~A5!

In any case the absolute value of the quantity under the sign( is smaller than
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S s

r 12
D l

Cl
ubu/2~1!E dV1u f

1
au.

Furthermore we know thatCl
l(1)5G(2l1 l )/@ l !G(2l)#. For lÞ50, Cl

ulu(1)5(2ulu1 l 21)
3(2ulu1 l 22)¯(2ulu)/ l ! is manifestly an increasing function ofulu, and, forl 50, C0

ulu(1)51 is
constant. From this we infer that; l and for b in the disk centered on 0 and of radiuse,
Cl

ubu/2(1)<Cl
e/2(1) holds, which leads to theb-independent bound

S s

r 12
D l

Cl
e/2~1!E dV1u f

1
au,

which is manifestly the general term of a convergent series. Therefore the series~A5! possesses a
limit when b→0 which is simply obtained by settingb50 under the sign(. Using Cl

0(cosu)
5dl0 we find this limit to be 0 ifa523 and

1

a13 E dV1f
1

a , ~A6!

if aÞ523. Gathering the results~A3!–~A4! and ~A6!, we arrive at

(
a13,0

sa13

a13 E dV1f
1

a1 lnS s

s1
D E dV1f

1
235FPa→0

b→0EB1(s)
d3x (

a13<0
S r 1

s1
D aS r 2

s2
D b

r 1
af

1
a

5FPb→0
a→0EB1(s)

d3x (
a13<0

S r 1

s1
D aS r 2

s2
D b

r 1
af

1
a , ~A7!

from which we can now easily prove the equivalence with the Hadamard partie finie. Like i
proof of Proposition 1 we consider two open domainsD1 andD2 , disjoined and complementar
in R3, and such thatB1(s),D1 andB2(s),D2 . We can write

E
D 1

d3xS r 1

s1
D aS r 2

s2
D b

F5E
D1\B1(s)

d3xS r 1

s1
D aS r 2

s2
D b

F1E
B1(s)

d3xS r 1

s1
D aS r 2

s2
D b

F, ~A8!

where each of the objects is defined by complex analytic continuation in a neighborhooda

5b50 @the proof similar to the one after~4.1!#. Like in ~4.8! we associate toF the functionF̃1

representing its ‘‘regularization’’ around the point 1,

F̃15F2 (
a13<0

r 1
af

1
a , ~A9!

and we re-write the right side of~A8! as

E
D1\B1(s)

d3xS r 1

s1
D aS r 2

s2
D b

F1E
B1(s)

d3xS r 1

s1
D aS r 2

s2
D b

F̃11E
B1(s)

d3xS r 1

s1
D aS r 2

s2
D b

(
a13<0

r 1
af

1
a .

Of these three terms, the first two are well-defined whena andb tend to zero, hence their finite
parts are simply obtained by posinga505b. On the other hand we have proved previously th
the finite parts Pfa→0

b→0
and Pfb→0

a→0
of the third term are equal and we have found their comm

value to be given by~A7!. This shows immediately that
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FPa→0
b→0ED 1

d3xS r 1

s1
D aS r 2

s2
D b

F5E
D1\B1(s)

d3xF1E
B1(s)

d3xF̃1

1 (
a13,0

sa13

a13 E dV1f
1

a1 lnS s

s1
D E dV1f

1
23 ~A10!

~and idemwith Pfb→0
a→0

!. We recognize on the right side of~A10! the Hadamard partie finie of th
integral. Indeed the second term clearly admits an expansion in positive powers ofs,

;NPN, E
B1(s)

d3xF̃15 (
0,a13<N

sa13

a13 E dV1f
1

a1o~sN!, ~A11!

so we recover exactly the partie-finie integral overD1 in the form given by~3.3!. QED.
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Tensor product of principal unitary representations
of quantum Lorentz group and Askey–Wilson polynomials
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We study the tensor product of principal unitary representations of the quantum
Lorentz group, prove a decomposition theorem, and compute the associated inter-
twiners. We show that these intertwiners can be expressed in terms of complex
continuations of 6j symbols ofUq~su~2!!. These intertwiners are expressed in terms
of q-Racah polynomials and Askey–Wilson polynomials. The orthogonality of
these intertwiners imply some relation mixing these two families of polynomials.
The simplest of these relations is the orthogonality of Askey–Wilson polynomials.
© 2000 American Institute of Physics.@S0022-2488~00!02010-7#

I. INTRODUCTION

In a previous paper~Ref. 1! we pursued the work of Podles–Woronowicz2 and Pusz:3 There
it was shown that the unitary representations ofUq(sl(2,C)R) can be nicely expressed in terms
one variable complex continuation of 6j symbols ofUq~su~2!!. Using this result we were able t
construct the characters of these unitary representations and prove a Plancherel theoremL2

functions. One has to work in the category ofC* multiplier Hopf algebras2,4 in order to handle
functional analysis problems.

Let G be the complex Lie group SL(2,C) and denote by$Pl,lP 1
2Z3R% the set of principal

unitary representations ofG. The Plancherel measure is given byP(l)dl5 1
2(m

21r2)dr, where
l5(m,r) andPl is equivalent toP2l. Naimark5 has shown the following decomposition the
rem:

P
~m,r!

^ P
~m8,r8!

5 %

m9PJm,m8

E %

dr9 P
~m9,r9!

,

whereJm,m85$mP 1
2Z,m1m81m9PZ%. The aim of the present article is to prove the quant

analog of this theorem and to give explicit formulas for the Clebsch–Gordan coefficients a
ated with this decomposition.

Let us also denote by$Pl,lP 1
2Z3#2p/\,p/\] %, where q5e2\ and \PR1* the set of

principal representations ofUq(sl(2,C)R). The representationPl is a unitary representation o
Uq(sl(2,C)R) with domainVl . We have shown in Ref. 1 that these representations can be
structed using complex continuation in one variable~namelyr! of 6 j of Uq~su~2!!. Let us denote
by 6j (1) the complex continuation of these coefficients to distinguish them from the 6j of finite

a!Electronic mail: buffenoi@lpm.univ-montp2.fr
b!Also at Laboratoire du CNRS UMR 5825.
c!Electronic mail: roche@math.mit.edu; on leave from CPT Ecole Polytechnique, Laboratoire Propre du CNRS U
91128 Palaiseau, Cedex, France.
77150022-2488/2000/41(11)/7715/37/$17.00 © 2000 American Institute of Physics
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dimensional representations ofUq~su~2!!, which will be denoted by 6j (0). We have shown that
the Plancherel measure isP(l)dl5(q2q21)2(\/4p)@m1 ir#@m2 ir#dr wherel5(m,r).

In Sec. II we recall definitions and properties of 6j (0) and 6j (1). We then introduce~Defi-
nition 2! and study the basic properties of complex continuations, in three independent cont
spins, of 6j symbols that we call 6j (3). We review the main theorems of harmonic analysis
SLq(2,C)R which are needed in the sequel.

In Sec. III we study the space of intertwinersFl9
ll8 :Vl ^ Vl8→Vl9 . We give, in Proposition

10 and Theorem 1, an expression for them in terms of 6j (1) and 6j (3). Even in the classical case

such a simple expression ofFl9
ll8 was not known. We can define an intertwiner, denotedF̂, from

Vl ^ Vl8 to * % dl9 Vl9 , by associating to eachuPVl ^ Vl8 the mapl9°Fl9
ll8(u)N(l,l8,l9),

whereN is function ofl, l8,l9. It remains to show that we can computeN(l,l8,l9) in such a

way thatF̂ is an isometry. This cannot easily be obtained from the definition of theFl9
ll8 in terms

of 6 j (3) and 6j (1) because it amounts to proving nontrivial identities mixing 6j (3) and 6j (1)
~these identities are written in Proposition 14!.

Rather than proving these identities directly, we use another construction of the intertw
using the quantum analog of the operator* dh(g)Pl(g) ^ Pl8(g) ^ Pl9(g21) wheredh is the

Haar measure. We call these operatorsYl9
ll8 , and their definition is contained in Theorem 2. The

operators naturally exhibit nice orthogonality properties. By using the relations~Proposition 11!

between the operatorsYl9
ll8 and theFl9

ll8 we are able to compute the normalization fac
N(l,l8,l9), whose square is computed in Proposition 12. This is the content of Sec. IV.

In Sec. V we show that with this choice of normalizationF̂ is an isometry~Theorem 3!. We

then show thatFl9
ll8 is expressed in terms ofq-Racah polynomials and Askey–Wilson polyn

mials ~Theorem 5!. As a result, this last property implies nontrivial identities which mixq-Racah
polynomials and Askey–Wilson polynomials~Proposition 14!.

It is important to keep in mind the following hierarchy of complex continuations ofj
symbols ofUq~su~2!!:

~1! 6 j (0) are defined as being Racah coefficients~i.e., recoupling coefficients! of finite dimen-
sional representations ofUq~su~2!!.

~2! 6 j (1) are building blocks of matrix elements of unitary representations ofUq~sl~2,C)R). They
are matrix elements of the universal shifted cocycle6 and are equivalent to the fusion matrix o
Ref. 7.

~3! 6 j (3), as wewill show, are building blocks of the Clebsch–Gordan coefficients associ
with the tensor product of principal representations ofUq~sl~2,C)R). For the moment there is
no real understanding of these 6j (3) in terms of the fusion matrix or as matrix elements
some universal element.

There also exists a final level of this hierarchy, called 6j (6), where the six spins are arbitrar
complex numbers. They are the building blocks of the Racah coefficients of principal repre
tions of Uq~sl~2,C)R). Their expressions in terms of basic hypergeometric functions, as we
their properties, will be given in Ref. 8.

II. DEFINITION AND PROPERTIES OF VARIOUS CONTINUATIONS OF 6 j SYMBOLS OF
Uq„su „2……

Let us first recall some notations and results of Ref. 1 which will be used throughou
work. The reader is also invited to read the first subsection of the appendix of the present
for definitions of basic hypergeometric functions.

A. Intertwiners and 6 j „0… of Uq„su „2……

Let q5e2\ with \PR1* , Uq~su~2!! is the star Hopf algebra generated byq6H,J~6! with the
defining relations:
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qHJ~6 !q2H5q61J~6 !, @J~1 !,J~2 !#5
q2H2q22H

q2q21 , ~J~6 !!* 5q71J~7 !,

~1!
D~J~6 !!5q2H

^ J~6 !1J~6 !
^ qH, D~q6H!5q6H

^ q6H, ~qH!* 5qH.

This Hopf algebra is a ribbon quasitriangular Hopf algebra, with a universalR-matrix denotedR.
We will define as usualR(1)5R, R(2)5R21

21 andm5q2H.
In the rest of this article we will denote Irr(Uq(su(2))) the set of allequivalence classes o

finite dimensional irreducible unitary representations with Sp(qH)PR1. They are completely

classified by a half-integerK and we will denote byp
K

the representation of spinK. The tensor
product of elements of Irr(Uq(su(2))) iscompletely reducible in elements of Irr(Uq(su(2))). Let

us defineV
K

as the vector space, of dimensiondK52K11, associated with the representation

spinK. Let (e
K

m)m52K¯K be an orthonormal basis ofV
K

such thate
K

m is of weightqm for the action

of qH. The central ribbon element that we choose is such thatp
K

(v)5vKid, where vK

5e2ipKq22K(K11). Note that we have included a sign in order to satisfy relation~5!.
Let us introduce the following notation:;I ,J,KP 1

2Z
1,;mP 1

2Z, we define

Y~ I ,J,K !
~0! 5H 1 if I 1J2K, J1K2I , K1I 2JPZ1

0 otherwise,
~2!

Y~ I ,m!
~1! 5H 1 if I 1m, I 2mPZ1

0 otherwise.
~3!

Let us now recall some properties about braiding matrices, 3j and 6j symbols of the finite
dimensional representations ofUq(su(2)). Wewill always refer to conventions as well as explic

expressions given in Ref. 1, see also Refs. 9–11. The grouplike elementm
K

, the square root of the

ribbon elementvK
1/2, the quantum Weyl elementw

K

, the braiding matricesR
IJ

(6), and the Clebsch–
Gordan coefficients satisfy the following relations:

(
m,n

S r

L
U I J

m nD S m n

I J
UK
p D 5Y~ I ,J,K !

~0! dK,Ldp
r Y~K,p!

~1! ,

~4!

(
K,p

S m n

I J
UK
p D S p

K
U I J

i j D 5d i
md j

nY~ I ,m!
~1! Y~J,n!

~1! ,

(
k,l

S p

K
U I J

k l DR
JI

~6 !
j i
lk5S v I

1/2vJ
1/2

vK
1/2 D 61S p

K
UJ I

j i D , ~5!

(
i 8 j 8m

S k

C
UA B

i 8 j 8
D R

AD
~6 !

im
i 8 l R

BD
~6 !

jn
j 8m5(

p
R

CD
~6 !

pn
kl S p

C
UA B

i j D , ~6!

(
a8

v I
1/2w

I

aa8S a8 b

I J
UK
k D 5eip~J2K !S @dK#

@dJ#
D 1/2S b

J
U I K

a k D 5(
k8

v I
1/2w

K

k8kS b k8

J K
U I

aD ,
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(
i 8k8

w
J

ii 8R
JI

j i 8
~6 !lk8w

J
k8k5R

IJ
~7 !

k j
i l , vJ(

k
w
J

ikw
J

k j5d j
i Y~J, j !

~1! , ~7!

S 0

0
U I J

a bD 5
d I ,Jw

J

abe
ipJ

A@dI #
, vJ(

b
w
J

abw
J

kb5e2ipJm
J

k
a , @dK#5(

a
m
K

a
a , ~8!

S k

C
UA B

i j D 5S i j

A B
UC
k D PR. ~9!

The Clebsch–Gordan coefficients also satisfy11

S k

C
UA B

i j D ~q!5S 2k

C
U B A

2 j 2 i D ~q!5~21!A1B2CS 2k

C
U A B

2 i 2 j D ~q21!. ~10!

Let us now recall basic facts about 6j (0) that we will use extensively in our work. 6j (0) of
Uq~su~2!! are defined as follows:

H A B

C F
UE

DJ
~0!

dF,Hdn
pY~H,p!

~1! 5 (
i , j ,k,l ,m

S m

E
UA B

i j D S p

H
UE C

m kD S j k

B C
UD

l D S i l

A D
UF
n D .

The properties of the Clebsch–Gordan coefficients, recalled previously, imply the follo
relations on 6j (0):

H A B

C D
UE
FJ

~0!

5H B A

D C
UE
FJ

~0!

5H C D

A B
UE
FJ

~0!

5H A D

C B
UF
EJ

~0!

~symmetries!, ~11!

H A C

B E
UF

DJ
~0!

5eip~C2F1E2D !S @dF#@dD#

@dC#@dE# D
1/2H A F

B D
UC
EJ

~0!

~Racah–Wigner!, ~12!

(
C

H A B

G H
UC

I J
~0!

H A B

G H
UC
J J

~0!

5d I ,JY~A,H,I !
~0! Y~B,G,I !

~0! ~orthogonality!, ~13!

(
C

H A B

H G
UC

I J
~0!

H A B

G H
UC
J J

~0!

S vJ
1/2v I

1/2vC
1/2

vG
1/2vH

1/2vA
1/2vB

1/2D 61

5H A G

B H
U I

JJ
~0!

, ~14!

(
A

H D F

I G
UA
J J

~0!

H D F

E B
UA
CJ

~0!

H E A

G H
UB

I J
~0!

5H E F

J H
UC

I J
~0!

H D C

H G
UB
J J

~0!

. ~15!

Relation~14! is called the ‘‘Racah relation,’’ whereas relation~15! is usually referred to as the
‘‘Pentagonal equation’’ or the ‘‘Biedenharn–Elliot’’ equation. Relations~14! and ~15! imply the
Yang–Baxter equation on 6j (0), also called the ‘‘hexagonal relation.’’

Explicit expressions, as well as special values for low spins, of 6j (0) symbols are given in
Ref. 1, but we want to add here the following asymptotic formulas which will be of importanc
the rest of this paper~for details see Ref. 11!:

lim
K→1`

H A B

K K1m1n
U C

K1nJ
~0!

5eip~A1B2C!S m1n

C
UA B

m nD , ~16!
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lim‘
K→1`

H A K1n11n2

D K
UK1n2

K1n18
J

~0!

S vK1n2

1/2 vK1n
18

1/2

vK
1/2vK1n11n2

1/2 D 61

dn11n2 ,n
181n

28
5 R

AD

~6 !n1n2

n18n28. ~17!

B. Definitions and properties of continuation of quantum 6 j symbols

In order to understand the problem of continuation of quantum 6j symbols the reader is
invited to read the appendix of Ref. 1, where definitions, proofs, as well as references on 6j (1) are
given.

Let us give a definition which is essential in order to describe the complex continuatio
quantum 6j symbols~the notations are explained in the Appendix of the present work!.

Definition 1: Let X5$(T,U,V,X,Y,Z)PC6,(2T,T1U2V,T1V2U,T1Y2Z,T1Z2Y)
PN5%. We define for any(T,U,V,X,Y,Z)PX,

NS T U

X Y
UV
ZD 5eip~T1Y2Z!q~T1Y2Z!~U2T1Y2X11!1~V1Y2X!~T1V2U !n1~dZ!n1~dV!

3
~U2T1X2Y11!`v~Y;V,X!v~T;Y,Z!v~T;V,U !

~T2U1X1Y11!`~2T11!`~1!`v~U;X,Z!
,

~18!

H H T U

X Y
UV
ZJ J 5NS T U

X Y
UV
ZD 4F3FU2V2T U1V2T11 Z2Y2T 2Z2Y2T21

22T 2Y2X2T1U U1X2Y2T11 G .
It is important to understand that for (T,U,V,X,Y,Z)PX,

NS T U

X Y
UV
ZD and H H T U

X Y
UV
ZJ J

are both square roots of rational functions in the variablesq2T,q2U,q2V,q2X,q2Y,q2Z. This is a
simple consequence of the fact that the hypergeometric series is of terminating type.

We have been very cautious with the determination of the signs. This annoying pro
already appeared in the case of 6j (0) but can be handled quite easily. This problem is streng
ened in the case of 6j (1) and 6j (3) because in that case we really have to take square roo
complex numbers. This is the reason why we introduced a particular square root, denotedn`(x)
of the Eulerian product (x)` for xPC.

It will sometimes be useful to have the explicit value of the 6j symbols when one of the spin
is equal to 0 or12. From the last definition we easily get

;A,B,CPC,H H 0 C

A B
UC
BJ J 51, ~19!

H H 1
2 C1 1

2

A B
U C

B1 1
2
J J 5

n1~B1C2A11!n1~A1B1C12!

n1~2C12!n1~2B11!
,

H H 1
2 C1 1

2

A B
U C

B2 1
2
J J 52

n1~A1B2C!n1~A1C2B11!

n1~2C12!n1~2B11!
qC1B2A11,

~20!

H H 1
2 C2 1

2

A B
U C

B1 1
2
J J 5

n1~A1C2B!n1~A1B2C11!

n1~2C!n1~2B11!
qC1B2A,
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H H 1
2 C2 1

2

A B
U C

B2 1
2
J J 5

n1~A1B1C11!n1~C1B2A!

n1~2C!n1~2B11!
.

The usual 6j (0) symbols whose properties were described in Sec. II A and denoted

H A B

D E
UC
F J

~0!

,

whereA,B,C,D,E,FP 1
2Z

1, are given by

H A B

D E
UC
F J

~0!

5H H A B

D E
UC
F J J Y~A,B,C!

~0! Y~A,E,F !
~0! Y~D,B,F !

~0! Y~D,E,C!
~0! . ~21!

This expression can easily be obtained from the usual expressions~Refs. 9 and 10! using the
inversion relation and the Sears identities~A2!, ~A10! recalled in the Appendix.

In the previous formula, and in the following ones, we will make a distinction between
first part of the right-hand side, which is called ‘‘explicit value,’’ and the second part, produc
Y functions and called ‘‘selection rules.’’

In order to describe properties of continuation of 6j symbols, we will make in the sequel
convenient abuse of notation, which greatly simplifies formulas.

If X1PC is fixed, if k is a positive integer andf :Ck11→C is a function, a series of the typ
(X2 ,X3 ,...,Xk11

f (X1 ,X2 ,...,Xk11) will always be defined as

(
X2 ,X3 ,...,Xk11

f ~X1 ,X2 ,...,Xk11!5 (
n1 ,n2 ,...,nkP

1
2Z

f ~X1 ,X11n1 ,...,X11nk!. ~22!

Note that we will only use the notationX0 ,X1 to denote a couple of complex numbers su
that X052X̄121, andX02X1P 1

2Z ~this notation will be explained in the next part!.
Let us define the involutive endomorphism of the complex line:;XPC, X°XI 52X21, as

we will see it is important to understand the action of this symmetry on the 6j symbols.
In Refs. 12 and 1 two types of 6j (1) symbols were defined. The first type is a family

numbers denoted

H A B

X1 X2
U C

X3
J

~1!

,

and the second one is denoted

H A X2

B X1
UX3

X4
J

~1!

,

where both are defined forA,B,CP 1
2Z

1,; i , j P$1,...,4%,XiPC2 1
2Z

1,Xi2XjP
1
2Z.

Their explicit expressions are given by

H A B

X1 X2
U C

X3
J

~1!

5H H A B

X1 X2
U C

X3
J J Y~A,X22X3!

~1! Y~B,X12X3!
~1! Y~C,X12X2!

~1! Y~A,B,C!
~0! ,

~23!

H A X2

B X1
UX3

X4
J

~1!

5H H A X2

B X1
UX3

X4
J J Y~A,X22X3!

~1! Y~A,X12X4!
~1! Y~B,X12X3!

~1! Y~B,X22X4!
~1! .
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These formulas deserve some remarks, concerning the very word ‘‘continuation.’’ The ex
value of the 6j (1) is a regular function when theXi approach half-integer values, but the selecti
rules appears to be different, i.e., the support of the continuated 6j (1) are larger than that of the
6 j (0) symbols. Nethertheless, for fixedI, JP 1

2Z
1, and for a sufficiently large half-integerK we

haveY(I ,J)
(1) 5Y(I ,K,J1K)

(0) . It is in this sense that the term ‘‘continuation’’ to complex spins has b
used.

From arguments developed in Refs. 12 and 1, we can check different polynomial ide
which are the continuation of the properties satisfied by the 6j (0). Rather than being exhaustiv
we will just mention some of them which will be important in our present work:

Proposition 1:

H A B

X1 X2
U C

X3
J

~1!

5H B A

X2 X1
U C

X3
J

~1!

5~eipq!~X12X31A2C!
n1~dC!n1~dX3

!

n1~dA!n1~dX1
! H C B

X3 X2
U A

X1
J

~1!

,

H A X2

B X1
UX3

X4
J

~1!

5H A X1

B X2
UX4

X3
J

~1!

5H B X1

A X2
UX3

X4
J

~1!

5~eipq!~X12X31X22X4!
n1~dX4

!n1~dX3
!

n1~dX2
!n1~dX1

! H A X3

B X4
UX2

X1
J

~1!

, ~24!

(
C

H A B

X1 X2
U C

X3
J

~1!

H A B

X1 X2
U C

X4
J

~1!

5dX3 ,X4
Y~A,X22X3!

~1! Y~B,X12X3!
~1! , ~25!

(
X3

H A B

X1 X2
U C

X3
J

~1!

H A B

X1 X2
U C

X3
J

~1!

5dC,DY~A,B,C!
~0! Y~C,X12X2!

~1! , ~26!

(
X3

H A X2

B X1
UX3

X4
J

~1!

H A X2

B X1
UX3

X5
J

~1!

5dX4 ,X5
Y~A,X12X4!

~1! Y~B,X22X4!
~1! , ~27!

(
C

H A B

X2 X1
U C

X3
J

~1!

H A B

X1 X2
U C

X4
J

~1!
S vX4

1/2vX3

1/2vC
1/2

vX1

1/2vX2

1/2vA
1/2vB

1/2D 61

5H A X1

B X2
UX3

X4
J

~1!

, ~28!

(
A

H D F

X3 X1
U A

X4
J

~1!

H D F

E B
UA
CJ

~0!

H E A

X1 X2
U B

X3
J

~1!

5H E F

X4 X2
U C

X3
J

~1!

H D C

X2 X1
U B

X4
J

~1!

,

~29!

(
X6

H C X1

D X6
UX4

X2
J

~1!

H C X2

A X5
UX6

X3
J

~1!

H A D

X4 X5
U B

X6
J

~1!

5H C X1

B X5
UX4

X3
J

~1!

H A D

X1 X3
U B

X2
J

~1!

,

~30!

(
X5

H B A

X2 X1
U P

X5
J

~1!

H A Q

X4 X5
UM

X2
J

~1!

H B M

X4 X1
U N

X5
J

~1!

5H B A

Q N
U P

M J
~0!

H P Q

X4 X1
U N

X2
J

~1!

,

~31!
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(
M

H A P

X4 X3
UM

X2
J

~1!

H A P

B N
UM
C J

~0!

H B M

X4 X1
U N

X3
J

~1!
S vP

1/2vX3

1/2

vM
1/2vX2

1/2D 61

5(
X5

H B P

X4 X5
U C

X2
J

~1!

H A X2

B X1
UX3

X5
J

~1!

H A C

X4 X1
U N

X5
J

~1!
S vC

1/2vX1

1/2

vN
1/2vX5

1/2D 61

. ~32!

It is important to stress that all sums in the previous formulas are finite sums because
selection rules entering into the definitions of 6j (1).

We also have the following symmetry:
Proposition 2:

H A B

X1I X2I
U C

X3I
J

~1!

5H A B

X1 X2
U C

X3
J

~1!

~21!A1B2C. ~33!

Proof: From the Sears identity and the inversion relation~A10!, ~A2! we easily obtain the
following relation:

H A B

X1I X2I
U C

X3I
J

~1!

5H A B

X1 X2
U C

X3
J

~1!

f ~A,B,C,X1 ,X1 ,X3!,

where

f ~A,B,C,X1 ,X1 ,X3!5~21!2A
w~A1X21X3,2A11!w~C1X11X2,2C11!

w~2X311,1!w~B1X11X3,2B11!
.

Using the explicit expression off(a,n) for nPZ explained in the Appendix, we conclude th
f 5(21)A1B2C. h

In order to obtain neat expressions for the Clebsch–Gordan coefficients of principal rep
tations of the quantum Lorentz group, it is necessary to introduce a new level in this hierarc
continuations of 6j symbols.

Definition 2: We will define6 j (3) symbols to be the family of numbers denoted

H A X1

Z1 Y1
UX2

Y2
J

~3!

where AP 1
2Z

1, X1 ,X2 ,Y1 ,Y2 ,Z1PC2 1
2Z

1, X12X2P 1
2Z, Y12Y2P 1

2Z and defined by

H A X1

Z1 Y1
UX2

Y2
J

~3!

5H H A X1

Z1 Y1
UX2

Y2
J J Y~A,X12X2!

~1! Y~A,Y12Y2!
~1! . ~34!

These 6j (3) satisfy properties which will be used in the rest of the paper and which
continuation of the identities satisfied by 6j (0) and 6j (1). We preferred giving combinatoria
proofs of these properties rather than continuation arguments, in order to prepare the 6j (6) case.
Here again, the sums are finite, which is a consequence of the selection rules in the defin
6 j (3). Note that these 6j (3) satisfy other relations, which will be explained in Sec. V, as
consequence of the study of the tensor product of principal representations of the quantum L
group.

Proposition 3: The following symmetry properties are satisfied:
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H A X1

Z1 Y1
UX2

Y2
J

~3!

5H A Y1

Z1 X1
UY2

X2
J

~3!

5~eipq!~X12X21Y12Y2!
n1~dX2

!n1~dY2
!

n1~dX1
!n1~dY1

! H A X2

Z1 Y2
UX1

Y1
J

~3!

. ~35!

Proof: Simple use of the Sears identity~A10!. h

Proposition 4: We also have a discrete orthogonality property

(
X2

H A X1

Z1 Y1
UX2

Y2
J

~3!

H A X1

Z1 Y1
UX2

Y3
J

~3!

5dY2 ,Y3
Y~A,Y12Y2!

~1! . ~36!

Proof: This is equivalent to the orthogonality of theq-Racah polynomials~see the Appendix
for notations@Eq. ~A13!# and Refs. 13 and 14 for proofs!:

(
x50

N

w~R!~x;a,b,c,d!pn
~R!~m~x!;a,b,c,d!pm

~R!~m~x!;a,b,c,d!5dn,mhn
~R!~a,b,c,d!, ~37!

because

NS T X1

Z1 Y1
UX2

Y2
D 2

5
w~R!~x;a,b,c,d!

hn
~R!~a,b,c,d!

,

and

4F3FX12X22T X11X22T11 Y22Y12T 2Y22Y12T21

22T 2Y12Z12T1X1 X11Z12Y12T11 G
5pn

~R!~m~x!;a,b,c,d!,

with

n5T1X22X1 , x5T1Y12Y2 , N52T, a5q24T22, b5q4X112,

c5q2~Z11X12Y12T!, d5q22~Z11Y11X11T12!. ~38!

h

These 6j (3) symbols satisfy the pentagonal relations:
Proposition 5:

(
C

H A B

Y3 Y2
U C

Y1
J

~1!

H B A

X1 X2
U C

X3
J

~1!

H C X1

Z1 Y3
UX2

Y2
J

~3!

5H A X1

Z1 Y1
UX3

Y2
J

~3!

H B X3

Z1 Y3
UX2

Y1
J

~3!

, ~39!

(
X3

H B X2

Z1 Y3
UX3

Y1
J

~3!

H A X1

B X3
UX2

X4
J

~1!

H A X4

Y3 Z1
UX3

Z2
J

~3!

5H A X1

Y1 Z1
UX2

Z2
J

~3!

H B X1

Z2 Y3
UX4

Y1
J

~3!

. ~40!

Proof: These identities are simply proved by induction onA. Indeed, forA50 these identities
are trivial and forA5 1

2 they are easily checked on the exact expression of the 6j (3) using the
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finite difference equations verified by basic hypergeometric functions. The induction easil
lows from the use of orthogonality and pentagonal equations on 6j (1). h

Finally, we have a Racah relation:
Proposition 6:

(
Y2

H A Y1

Z2 X1
UY2

X2
J

~3!

H A Z2

X1 Y1
UZ1

Y2
J

~3!
S vY2

1/2vZ1

1/2vX2

1/2

vZ2

1/2vY1

1/2vX1

1/2vA
1/2D 61

5H A X1

Y1 Z2
UX2

Z1
J

~3!

. ~41!

Proof: It can be proved by continuation arguments from the 6j (1) case. h

We can prove other identities, which will be useful in the following sections, and which
direct consequences of the previous ones.

Proposition 7: The following pentagonal equations are satisfied:

(
X2

H C X1

Y1 Z3
UX2

Z2
J

~3!

H A C

X1 X3
U B

X2
J

~1!

H A X2

Y1 Z1
UX3

Z3
J

~3!

5H B X1

Y1 Z1
UX3

Z2
J

~3!

H C A

Z1 Z2
U B

Z3
J

~1!

, ~42!

(
Z2

H A X4

Y1 Z1
UX2

Z2
J

~3!

H B X1

Z2 Y1
UX4

Y2
J

~3!

H A X1

Y2 Z1
UX3

Z2
J

~3!

5H A X1

B X2
UX3

X4
J

~1!

H B X3

Z1 Y1
UX2

Y2
J

~3!

.

~43!

Proof: It is obtained from the pentagonal relations~39! and~40! and the discrete orthogonalit
relation ~36!. h

We also have the hexagonal equation:
Proposition 8:

(
C

vC
1/2vY2

1/2

vB
1/2vY1

1/2 H C Y3

Z1 X1
UY1

X2
J

~3!

H A B

Y3 Y1
U C

Y2
J

~1!

H A B

X1 X2
U C

X3
J

~1!

5(
Z2

vX2

1/2vZ2

1/2

vX3

1/2vZ1

1/2 H A X3

Y3 Z1
UX2

Z2
J

~3!

H A Y2

X1 Z1
UY1

Z2
J

~3!

H B X1

Z2 Y3
UX3

Y2
J

~3!

. ~44!

Proof: It is obtained by applying successively~41!, ~39!, ~43!, and~41!. h

Finally the action of the automorphism of the complex line is given as follows:
Proposition 9:

H A X1I

Z1I Y1I
UX2I

Y2I
J

~3!

5H A X1

Z1 Y1
UX2

Y2
J

~3!

g~A,X1 ,X2 ,Z1 ,Y1 ,Y2!~21!Y12Y21X12X2, ~45!

where g is a fourth root of unit whose expression is

g5
w~2Y21X11Z1 ,X12X21Y12Y2!w~X11Y21Z111,X12X21Y22Y1!w~X11Y22Z1 ,X12X21Y22Y1!

w~2Y211,1!w~2X211,1!w~Y21Y12A,22A21!w~X11X22A,22A21!w~Y21Z12X1 ,Y22Y11X22X1!
.

~46!

Proof: It is proved using the inversion relation and the Sears identity. Using the ex
expression forw(a,n) with n integer, we obtain thatg is a fourth root of unit, but there is no
simpler formula forg. h
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C. Quantum Lorentz group, principal unitary representations, and harmonic analysis

We will recall in this section fundamental results onUq(sl(2,C)R) and on the harmonic
analysis~Ref. 1! on SLq(2,C)R .

Uq~sl(2,C)R) by definition is the quantum double ofUq~su~2!!. As a result we can write
Uq~sl~2,C)R)5Uq~su~2!!^ Uq~su~2!!* as a vector space, whereUq~su~2!!* denotes the restricted
dual of Uq~su~2!!, i.e., the Hopf algebra spanned by the matrix elements of representations
tained in Irr(Uq~su~2!!!.

A basis ofUq~su~2!!* is the set of matrix elements of irreducible representations ofUq~su~2!!,

which we will denote byg
B

j
i ,BP 1

2Z
1, i , j 52B,...,B.

It can be shown thatUq~su~2!!* is isomorphic, as a star Hopf algebra, to the quantum en
oping algebraUq~an~2!! where an~2! is the Lie algebra of traceless complex upper triangula
32 matrices with real diagonal.

Uq~su~2!! being a factorizable Hopf algebra, it is possible to give a nice generating fami

Uq~su~2!!. Let us introduce, for eachI P 1
2Z

1 the elementsL
I

(6)PEnd(CdI) ^ Uq(su(2))defined by

L
I

(6)5(p
I

^ id)(R(6)). The matrix elements ofL
I

(6) when I describes1
2Z

1 span the vector spac
Uq~su~2!!.

The star Hopf algebra structure onUq~sl~2,C)R) is described in detail in Ref. 1. Let us simp
recall that we have

L
I

~6 !
j
i L

J
~6 !

l
k5 (

Kmn
S i k

I J
UK
mD L

K
~6 !

n
mS n

K
U I J

j l D , R
IJ

12L
I

1
~1 !L

J

2
~2 !5L

J

2
~2 !L

I

1
~1 !R

IJ

12, ~47!

g
I

j
i g

J

l
k5 (

Kmn
S i k

I J
UK
mD g

K

n
mS n

K
U I J

j l D , R
IJ

12
~6 !L

I

1
~6 !g

J

25g
J

2L
I

1
~6 !R

IJ

12
~6 ! , ~48!

D~L
I

~6 !
b
a!5(

c
L
I

~6 !
b
c

^ L
I

~6 !
c
a , D~g

I

b
a!5(

c
g
I

b
c

^ g
I

c
a , ~49!

~L
I

~6 !
b
a!!5S21~L

I
~7 !

a
b!, ~g

I

b
a!!5S21~g

I

a
b!. ~50!

The center ofUq~sl~2,C)R) is a polynomial algebra in two variablesV1 ,V2 and we haveV6

5tr( m
1/2

21 L
1/2

(7)21 g
1/2

).
Principal unitary representations ofUq~sl~2,C)R) have been classified in Ref. 3, and the fo

lowing description is given in Ref. 1. They are labeled by a couple of complex num
(X0 ,X1)PS, where S5$(X0 ,X1)PC2/2X0115(m1 ir),2X1115(2m1 ir),mP 1

2Z,rP#
2p/\,p/\] %. For (X0 ,X1)PS we will often denotemX5X02X1 , irX5X01X111.

Let us denote by P
(X0X1)

the principal representation associated with (X0 ,X1) andV(X0X1) the
associatedUq~sl~2,C)R) module.V(X0X1) is a Harisch–Chandra module and we haveV(X0X1)

5 % C,C2umxuPNVC as aUq~su~2!! module. In terms of the basis$e
C

r(X0X1)5e
C

r , CP 1
2Z

1, r 5

2C,...,C% of the moduleV(X0X1), the action of the generators ofUq~sl~2,C)R) is given by

L
B

~6 !
j
i e
C

r5(
n

e
C

n R
BC

~6 !
j r
in , ~51!
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g
B

j
i e
C

r5 (
DEpx

e
E

pS p i

E B
UD

x D S x

D
UB C

j r DLEC
BD~X0X1!, ~52!

where the complex numbersLEC
BD(X0X1) have to verify certain constraints explained in the A

pendix. It is a fundamental result that these coefficients can be expressed in terms of 6j (1) as
follows:

LAD
BC~X0X1!5(

X2
H B C

X0 X1
U A

X2
J

~1!

H B C

X0 X1
U D

X2
J

~1!

vX2

vX1

vA
1/4vD

1/4

vB
1/2vC

1/2, ~53!

5(
X2

H B C

X1 X0
U A

X2
J

~1!

H B C

X1 X0
U D

X2
J

~1!

vX0

vX2

vB
1/2vC

1/2

vA
1/4vD

1/4. ~54!

The action of the center on the moduleV(X0X1) is such thatP (x0x1)(V6)5v6id where v1

5q2X0111q22X021, v25q2X1111q22X121.
We can endowV(X0X1) with a structure of pre-Hilbert space by defining the Hermitian fo

^• , •& such that the basis$e
C

r(X0X1),CP 1
2Z

1,r 52C,...,C% of V(X0X1) is orthonormal.

The representation P
(X0X0)

is unitary in the sense that;v,wPV(X0X1), ;aPUq~sl~2,C)R),
^a* v,w&5^v,aw&, this last property being equivalent to the relation:LAD

BC(X1X0)
5LAD

BC(X0X1).
We will denote byH(X0X1) the separable Hilbert space, completion ofV(X0X1) which

Hilbertian basis is$e
C

r(X0X1),CP 1
2Z

1,r 52C,...,C%.
The automorphism of the complex line is now playing a key role because of the follo

important result: The principal representations associated with (X0 ,X1) and (X0 ,X1) are unitary
equivalent.

Let us now recall some basic facts about the algebra of functions on SLq(2,C)R.2,4,1 We will
use the notations of Ref. 1. The space of compact supported functions on the quantum L
group, denoted Func~SLq(2,C)R) is, by definition, Fun~SUq(2)8) ^ ( % I P1/2Z1End(CdI)). This is a
C* algebra without unit. It contains the dense*-subalgebra1 Funcc~SLq(2,C)R)5Pol~SUq(2)8)
^ ( % I P1/2Z1End(CdI)) which is a multiplier Hopf algebra,15 and which can be understood as bei
the quantization of the algebra generated by polynomials functions on SU~2! and compact sup-
ported functions on AN~2!.

(k
C

n
m

^ E
D

q
p)C,D,m,n,p,q is a vector basis of Funcc~SLq(2,C)R) which is defined, for example, by

duality from the generators of the enveloping algebra:

^L
A

~6 !
j
i
^ g

B

l
k ,k

C

n
m

^ E
D

q
p&5 R

AC
~6 !

jn
imdB,Ddq

kd l
p . ~55!

We can describe completely the structure of the multiplier Hopf algebra in this basis;

k
A

j
i
^ E

B

l
k
•k

C

n
m

^ E
D

q
p5(

Frs
S i m

A C
UF
r D S s

F
UA C

j n D d l
pdB,Dk

F

s
r
^ E

B

q
k ,

D~k
A

j
i
^ E

B

l
k!5F23

21S (
C,D,m,

p,q,r ,s

S q s

C D
UB

l D S k

B
UC D

p r D k
A

m
i

^ E
C

q
p

^ k
A

j
m

^ E
D

s
r D F23, ~56!
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e~k
A

j
i
^ E

B

l
k!5d j

i dB,0 , ~k
A

j
i
^ E

B

l
k!!5S21~k

A

i
j ! ^ E

B

k
l with F12

215 (
J,x,y

E
J

y
x

^ S21~k
J

x
y!.

The space of right and left invariant linear forms~also called Haar measures! on Func~SLq(2,C)R)
is a vector space of dimension one and we will pick one elementh, which is defined by

h~k
A

j
i
^ E

B

l
m!5dA,0~m

B
21! l

m@dB#. ~57!

Using the L2 norm, iaiL25h(a* a)1/2, we can complete the space Func~SLq(2,C)R) into the
Hilbert space ofL2 functions on the quantum Lorentz group, denotedL2~SLq(2,C)R).

Funcc~SLq(2,C)R) is a multiplier Hopf algebra with basis (ua)5((k
C

n
m

^ E
D

q
p)C,D,m,n,p,q). The

restricted dual of Funcc~SLq(2,C)R), denotedŨq~slq(2,C)R), is the vector space spanned by t

dual basis (ua)5(X
C

m
n

^ g
D

p
q). It is also, by duality, a multiplier Hopf algebra andUq~sl~2,C)R) is

included as an algebra in the multiplier algebra ofŨq~sl~2,C)R). If P is the principal representatio
of Uq~sl~2,C)R), acting onV(Z0Z1), it is possible1 to associate to it a unique representationP̃ of

Ũq~sl~2,C)R), acting onV(Z0Z1), such thatP̃(X
C

m
n )(e

D

r)5dC,Dd r
ne

D

m .
We define for allc element of Funcc~SLq(2,C)R), the operatorP(c)5(a P̃(ua)h(uac). It

is easy to show thatP~c! is of finite rank.
If f is a function onS, we will sometimes writef (mX ,rX) instead off (X0X1). The Plancherel

formula can be written as

;cPFuncc~SLq~2,C!R!, iciL2
2

5E dP~X0X1!tr~ P

~X0X1!

~m21! P

~X0X1!

~c! P

~X0X1!

~c!†!,

where we have denoted

E dP~X0X1! f ~X0X1!5 (
mP1/2Z

E
2p/\

p/\

dr P~m,r! f ~m,r!

with

P~m,r!5
\

2p
~q2q21!2@m1 ir#@m2 ir#.

The proof of this theorem is purely combinatorial and uses as a central tool the follo
identity on Fourier coefficients of the Laurent polynomialsLAA

BC :

E dP~X0X1!LAA
BC~X0X1!5dB,0dA,C@dA#. ~58!

A Plancherel theorem forL2 functions has been proved.1 It follows easily from the previous
result and from the following lemma, which will be useful later on

Lemma 1: The only function f:S→C satisfying the following conditions:
(1) ;mP 1

2Z,;rP] 2p/\,p/\], f (m,r)5 f (2m,2r),
(2) ;mP 1

2Z, f (m,•) is an L2 function on] 2p/\,p/\],
(3) 'm0P 1

2N,;m,umu.m0 , f (m,•)50,
(4) 'A,DP 1

2Z
1ù@ um0u,1`@ ,;B,CP 1

2Z
1,*dP(X0X1) f (X0X1)LAD

BC(X0X1)50,

is the nul-function.
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III. INTERTWINERS ASSOCIATED WITH UNITARY REPRESENTATIONS OF THE
QUANTUM LORENTZ GROUP

The aim of this section is to give explicit formulas of the intertwiners between the repre

tation P ^ P
(X0X1)(Y0Y1)

and the representationP
(Z0Z1)

, in terms of complex continuations of 6j symbols
of Uq(su(2)).

Proposition 10: LetF (Z0Z1)
(X0X1)(Y0Y1) : V(X0X1) ^ V(Y0Y1)→V(Z0Z1) be aUq(sl(2,C)R) inter-

twiner. We necessarily have

F
~Z0Z1!

~X0X1!~Y0Y1!
~e

A

i~X0X1! ^ e
B

j~Y0Y1!!5(
C,k

e
C

k~Z0Z1!S k

C
UA B

i j D FX0X1 Y0Y1

A B
U C

Z0Z1
G ,

~59!

where the coefficientsFX0X1 Y0Y1

A B
U C

Z0Z1
G ,

called ‘‘reduced elements,’’ are complex numbers.
Inversely such a map defines an intertwiner if and only if the following conditions on

reduced elements are satisfied:;A,B,CP 1
2Z

1, Y(A,B,C)
(0) 5Y(A,mX)

(1) 5Y(B,mY)
(1) 51,

(
QRSP

FX0X1 Y0Y1

R P
U T

Z0Z1
GLRA

US~X0X1!LPB
UQ~Y0Y1!H R P

U W
UT

QJ
~0!

H B U

R W
UQ
SJ

~0!

3H U A

B W
US

CJ
~0!

5FX0X1 Y0Y1

A B
U C

Z0Z1
GLTC

UW~Z0Z1!. ~60!

Proof: The necessary condition comes from the fact that~59! is equivalent to the property tha
F (Z0Z1)

(X0X1)(Y0Y1) is an intertwiner ofUq(su(2)) module. Such a map is an intertwiner ofUq(an(2))

module, if moreover,

F
~Z0Z1!

~X0X1!~Y0Y1!
~D~g

U

n
m!~e

A

i~X0X1! ^ e
B

j~Y0Y1!!!5g
U

n
mF

~Z0Z1!

~X0X1!~Y0Y1!
~e

A

i~X0X1! ^ e
B

j~Y0Y1!!.

This last condition can be rewritten as~60! using~52!, ~25!, and~11!. This concludes the proof.h

Remark:A very important point is thatF (Z0Z1)
(X0X1)(Y0Y1)

maps the algebraic tensor product of t

two domainsV(X0X1) ^ V(Y0Y1) to V(Z0Z1). As a result the sum~59! is finite. It can be seen
that there are no nonzero intertwiners fromV(Z0Z1) to the algebraic tensor productV(X0X1)
^ V(Y0Y1).

Lemma 2: The space ofUq(sl(2,C)R) intertwiners from the module V(X0X1) ^ V(Y0Y1) to the
module V(Z0Z1) is of dimension 0 or 1.

Proof: An elementary proof is obtained by analyzing the rank of the system of linear e
tions ~60!. Using the isomorphism of module betweenV(X0X1) and V(X0 ,X1), we can always
assume thatmX ,mY ,mZ are non-negative. It is easy to show that we can always assume
mZ<mX1mY . If not, we use the fact that the space of intertwiners fromV(X0X1) ^ V(Y0Y1) to
V(Z0Z1) is in one to one correspondence with the space of intertwiners fromV(Z0Z1)
^ V(X̄0X̄1) to V(Y0Y1) to exchangemY andmZ . This one to one correspondence easily follo
from the isomorphismV(X0X1)* 'V̄(X0X1)'V(X̄0X̄1) and where we denoted byV(X0X1)* the
restricted dual of the Harisch–Chandra moduleV(X0X1).
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This system of linear equations is equivalent to the subsystem where we have choU

5 1
2, becauseUq(an(2)) isgenerated as an algebra byg

U

n
m whereU5 1

2. This system is therefore

equivalent to the following one:;s,tP$ 1
2,2

1
2%,

(
e,s,m,tP$21/2,1/2%

F X0X1 Y0Y1

A1n1r B1e1m
UC1s1t

Z0Z1
GL~A1n1r! A

~1/2! ~A1n!~X0X1!L~B1e1m! B
~1/2! ~B1e! ~Y0Y1!

3H 1
2 B1e1m

A1n1r C1s
U B1e

C1s1tJ
~0!

H 1
2 B

C1s A1n1r
UB1e

A1nJ
~0!

3H 1
2 A

B C1s
UA1n

C J
~0!

5FX0X1 Y0Y1

A B
U C

Z0Z1
GL~C1s1t!C

~1/2!~C1s! ~Z0Z1!. ~61!

We will denote byS(s,t) this system of equations.
It is easy to show that the systemS(2 1

2,2
1
2) completely determines the reduced elements

the point ~A, B, C! in terms of the reduced element of the points (A8,B8,C21) with A85A

1e, B85B1n with e, nP$ 1
2,2

1
2%. Therefore the rank of the system is less than the rank of

vectors which components are the reduced elements at the points (A,B,mZ).

Let D5$(A,B)P( 1
2Z

1)2,Y(A,B,mZ)
(0) 51%, P5$(A,B)P( 1

2Z
1)2,A2mXPN%, Q5$(A,B)

P 1
2(Z

1)2,B2mYPN%. DùPùQ is the intersection of a lattice with a convex set whose bound
consists in three segments and two half-lines. In the case wheremZ<mX1mY one of these
segments degenerates to the pointp5(mX ,mY). It is easy to show, by a direct computation, th

the systemS( 1
2,2

1
2) andS(2 1

2,
1
2) are independent. As a result we can take linear combination

these two systems to have linear combinations of reduced elements at (A,B,mZ) involving only
eight points and not nine. It is easy to show that the use of both of these systems det
uniquely the reduced elements at the point (A,B,mZ) in terms of the reduced elements at the po
p,p1(1,0),p1(0,1),p1(1,1). As a result the system is of rank less than four. But the redu
elements at the pointp,p1(1,0),p1(0,1),p1(1,1) are solutions of three systems of linear equ

tions which can be shown to be independent:S( 1
2,2

1
2) at (mX ,mY ,mZ), S(2 1

2,
1
2) at

(mX ,mY ,mZ), andS( 1
2,

1
2) at (mX ,mY ,mZ21). As a result the rank of the system is of dimensi

less than one. h

Theorem 1: Assume that the numbersrX , rY , rZ and eXrX1eYrY1eZrZ with eX ,eY ,eZ

P$21,1% are nonzero. The space ofUq(sl(2,C)R) intertwiners from the module V(X0X1)
^ V(Y0Y1) to the module V(Z0Z1) is of dimension 0 if and only if mX1mY1mZ¹Z. If mX

1mY1mZPZ it is a one-dimensional space which admits a nonzero element, whose re
element, given in terms of6 j (1) and 6 j (3), is

FX0X1 Y0Y1

R P
U T

Z0Z1
G5(

X2
H T Z1

Y0 X0
UZ0

X2
J

~3!

H T P

X1 X0
U R

X2
J

~1!

3H P Y1

Z1 X2
UY0

X1
J

~3!

vP
1/4vT

1/4vX0

1/4vX1

1/4@dP#1/2

vR
1/4vX2

1/2eipP . ~62!

We will denote byF (Z0Z1)
(X0X1)(Y0Y1)

the associated intertwining operator.

The reduced elements satisfy the condition:

;C,C2umZuPN,'A,BP 1
2Z

1,FX0X1 Y0Y1

A B
U C

Z0Z1
GÞ0.
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Proof: We have assumed thatrX , rY , rZ and eXrX1eYrY1eZrZ with eX ,eY ,eZP$21,1%
are nonzero in order that all the 6j (1) and 6j (3) are well defined in expression~62!. But this
condition can nevertheless be removed by normalizing the reduced elements by a fu
F(Z0Z1 ,Y0Y1 ,Z0Z1) which removes the singularities of this expression.

Using only polynomial identities on continuation of 6j , we will show that the left-hand side
of ~60! and the right-hand side of~60! are equal if we take the ansatz~62! for the reduced element

The left-hand side of~60!5

e2 ipPA@dP# (
QRSPX2X3Y2

vP
1/2vT

1/4vA
1/4vB

1/4vX0

1/4vX3
vY2

vUvX2

1/2vS
1/2vQ

1/2vX1

3/4vY1

H T Z1

Y0 X0
UZ0

X2
J

~3!

H T P

X1 X0
U R

X2
J

~1!

3H P Y1

Z1 X2
UY0

X1
J

~3!

H U S

X0 X1
U R

X3
J

~1!

H U S

X0 X1
U A

X3
J

~1!

H R P

U W
UT

QJ
~0!

H B U

R W
UQ
SJ

~0!

3H U A

B W
US

VJ
~0!

H U Q

Y0 Y1
U P

Y2
J

~1!

H U Q

Y0 Y1
U B

Y2
J

~1!

.

We apply first the pentagonal identity~31! to the second and sixth 6j , then the pentagonal identit
~31! to the fourth and the seventh 6j , and finally we realize the sum onR by applying the
orthogonality~25!, to obtain

5e2 ipPA@dP# (
QSPX2X3Y2X2

vP
1/2vT

1/4vA
1/4vB

1/4vX0

1/4vX3
vY2

vUvX2

1/2vS
1/2vQ

1/2vX1

3/4vY1

H T Z1

Y0 X0
UZ0

X2
J

~3!

H U P

X1 X4
U Q

X2
J

~0!

3H P Y1

Z1 X2
UY0

X1
J

~3!

H U W

X0 X2
U T

X4
J

~0!

H U S

X0 X1
U A

X3
J

~1!

H B U

X1 X4
U Q

X3
J

~1!

H B W

X0 X3
U S

X4
J

~1!

3H U A

B W
US

VJ
~0!

H U Q

Y0 Y1
U P

Y2
J

~1!

H U Q

Y0 Y1
U B

Y2
J

~1!

.

Now we apply the symetries~24! and~35! and transform the sum overP of the second, the third
and the ninth 6j using the hexagonal identity~44!, to obtain

5e2 ipQA@dQ# (
QSZ3X2X3Y2X4

vT
1/4vA

1/4vB
1/4vX0

1/4vX3
vY2

1/2vZ3

1/2

vUvX4

1/2vS
1/2vZ1

1/2vX1

3/4vY1

1/2 H T Z1

Y0 X0
UZ0

X2
J

~3!

H U X4

Y0 Z1
UX2

Z3
J

~3!

3H U Y2

X1 Z1
UY1

Z3
J

~3!

H U W

X0 X2
U T

X4
J

~0!

H U S

X0 X1
U A

X3
J

~1!

H B U

X1 X4
U Q

X3
J

~1!

H B W

X0 X3
U S

X4
J

~1!

3H U A

B W
US

VJ
~0!

H Q X1

Z3 Y0
UX4

Y2
J

~3!

H U Q

Y0 Y1
U B

Y2
J

~1!

~eipq!~X41Y12X12Y0!
n1~dX1

!n1~dY0
!

n1~dX4
!n1~dY1

!
.

We realize the sum overQ of the sixth, ninth, and tenth 6j using the pentagonal identity~39! and
symmetries~24!, the sum overX2 of the first, second, and fourth 6j using the pentagonal identit
~39!, and transform the sum overSof the fifth, seventh, and eighth 6j according to the hexagona
identity ~32! to obtain
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5e2pBA@dB# (
Z3X5X3Y2X4

vT
1/4vV

1/2vB
1/4vX0

1/4vX3

1/2vY2

1/2vZ3

1/2

vW
1/2vA

1/4vUvX5

1/2vZ1

1/2vX1

1/4vY1

1/2 H U Y2

X1 Z1
UY1

Z3
J

~3!

H U X1

Z3 Y1
UX3

Y2
J

~3!

3H B X3

Z3 Y0
UX4

Y1
J

~3!

H W X0

Y0 Z3
UX4

Z0
J

~3!

H U W

Z0 Z1
U T

Z3
J

~1!

H U X1

B X4
UX3

X5
J

~1!

H B V

X0 X1
U A

X5
J

~1!

3H U W

X0 X5
U V

X4
J

~1!

~eipq!~X412Y12X12Y02Y2!
n1~dX1

!n1~dY0
!n1~dY2

!

n1~dX4
!n1~dY1

!2 .

Then, we realize the sum overY2 of the first and second 6j by using the Racah identity~41! and
symmetries~35! to find

5e2 ipBA@dB# (
Z3X5X3X4

vT
1/4vV

1/2vZ3
vB

1/4vX0

1/4vX1

1/4

vU
1/2vA

1/4vZ1
vW

1/2vX5

1/2 H U X1

Y1 Z3
UX3

Z1
J

~3!

H B X3

Z3 Y0
UX4

Y1
J

~3!

3H W X0

Y0 Z3
UX4

Z0
J

~3!

H U W

Z0 Z1
U T

Z3
J

~1!

H U X1

B X4
UX3

X5
J

~1!

H B V

X0 X1
U A

X5
J

~1!

H U W

X0 X5
U V

X4
J

~1!

3~eipq!~X41Y11Z12X12Y02Z3!
n1~dX1

!n1~dY0
!n1~dZ3

!

n1~dX4
!n1~dY1

!n1~dZ1
!

.

Now, we realize the sum overX3 of the first, second, and fifth 6j by using the pentagonal identit
~40! and symmetries~35! to find

5e2 ipBA@dB# (
Z3X5X4

vT
1/4vV

1/2vZ3
vB

1/4vX0

1/4vX1

1/4

vU
1/2vA

1/4vZ1
vW

1/2vX5

1/2 H U X4

Y0 Z1
UX5

Z3
J

~3!

H B X5

Z1 Y1
UX1

Y0
J

~3!

3H W X0

Y0 Z3
UX4

Z0
J

~3!

H U W

Z0 Z1
U T

Z3
J

~1!

H B V

X0 X1
U A

X5
J

~1!

H U W

X0 X5
U V

X4
J

~1!

.

Finally we realize the sum overX4 of the first, third, and sixth 6j using the pentagona
equation~42! to conclude

5e2 ipBA@dB#(
X5

vV
1/4vB

1/4vX0

1/4vX1

1/4

vA
1/4vX5

1/2 H V X0

Z0 Z1
UX5

Z0
J

~3!

H B V

X0 X1
U A

X5
J

~1!

H B X5

Z1 Y1
UX1

Y0
J

~3!

3(
Z3

vT
1/4vV

1/4vZ3

vU
1/2vW

1/2vZ1

H U W

Z0 Z1
U T

Z3
J

~1!

H W U

Z1 Z0
U V

Z3
J

~1!

5the right-hand side of~60!.

This concludes the proof that the expression of the reduced elements defines an intertwi
erator.

Let us now prove the final part of the theorem. Let us fixC such that (C2umZu)PN and
assume that

;A,B, FX0X1 Y0Y1

A B
U C

Z0Z1
G50.

In this event, by multiplying the reduced element by
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H C B

X1 X0
U A

X3
J

~1!

,

and summing overA, we would obtain, after the use of the orthogonality relation
6 j (1),;B,;X2 ,

H C Z1

Y0 X0
UZ0

X2
J

~3!

H B Y1

Z1 X2
UY0

X1
J

~3!

50.

But from the orthogonality relation on 6j (3),

'X2 Y H C Z1

Y0 X0
UZ0

X2
J

~3!

Þ0.

As a result we obtain that

H B Y1

Z1 X2
UY0

X1
J

~3!

50

for all B subject to the selection rules. From the behavior of

H B Y1

Z1 X2
UY0

X1
J

~3!

when B is large @see Eq.~A15!#, we obtain a contradiction. As a result the statement of
theorem holds true and implies in particular that the intertwiner is nonzero. h

IV. ALTERNATIVE CONSTRUCTION OF INTERTWINERS IN TERMS OF THE QUANTUM
HAAR MEASURE

Let us define the linear mapF̂@X0X1 ,Y0Y1#:V(X0X1) ^ V(Y0Y1)→* %d(Z0Z1)H(Z0Z1)

where ;wPV(X0X1) ^ V(Y0Y1) F̂@X0X1 ,Y0Y1#(w) is the family of functions defined by

F̂@X0X1 ,Y0Y1#(w)(Z0Z1)5N(Z0Z1)
(X0X1)(Y0Y1)

F (Z0Z1)
(X0X1)(Y0Y1)

(w), andN(Z0Z1)
(X0X1)(Y0Y1)

are complex num-

bers depending onX0 ,X1 ,Y0 ,Y1 ,Z0 ,Z1 .

We want to findN such thatF̂@X0X1 ,Y0Y1# is an isometry. As explained in Sec. I, this is
delicate problem which requires another description of the space of intertwiners, where this
etry property is a direct consequence of Plancherel theorem.

Theorem 2: Let lPV(X0X1),l 8PV(Y0Y1),v9PV(Z0Z1), the following operator is well de-
fined, and is an intertwiner of theUq(sl(2,C)R) module:

Y
~Z0Z1!

~X0X1!~Y0Y1!
@ l ,l 8;v9#:V~X0X1! ^ V~Y0Y1!→V~Z0Z1!,

Y
~Z0Z1!

~X0X1!~Y0Y1!
@ l ,l 8;v9#5(

IJK
P

~Z0Z1!

~uK!†uv9&^ l ^ l 8u P

~X0X1!

~uI ! ^ P

~Y0Y1!

~uJ!h~uIuJuK!.

Its matrix elements satisfy the relation:
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(
IJK

P

~X0X1!

A,i
A8,i 8~uI ! P

~Y0Y1!

B, j
B8, j 8~uJ! P

~Z0Z1!

C8,k8
†C,k

~uK!h~uIuJuK!

5(
v

S k

C
UA B

i j Dm
C

k8
v S i 8 j 8

A8 B8
UC8

v D F A8 B8

X0X1 Y0Y1

A B
U C8

Z0Z1

C
G

with

F A8 B8

X0X1 Y0Y1

A B
U C8

Z0Z1

C
G5 (

KLMN

@dN#@dK#

@dC#@dC8#
LA8A

KL
~X0X1!LB8B

KM
~Y0Y1!LC8C

KN
~Z1Z0!

3H K A

B N
UL

CJ
~0!

H A8 B8

K N
UC8

M J
~0!

H B K

A8 N
UM

L J
~0!

. ~63!

This infinite series converges absolutely and uniformly inrX ,rY ,rZ . Its square is a continuous
function ofrX ,rY ,rZ .

Proof: We will use the convention of summation of repeated up and low small indices,

(
IJK

P

~X0X1!

A,i
A8,i 8~uI ! P

~X0X1!

B, j
B8, j 8~uJ! P

~X0X1!

C8,k8
C,k

~uK!h~uIuJuK!

5 (
KLK8MK9N

LA8A
KL

~X0X1!S r s

A8 K
UL

t D S t

L
UK A

u i DLB8B
K8M

~Y0Y1!S a b

B8 K8
UM

c D
3S c

M
UK8 B

d j DLC8C
K9N

~Z1Z0!S n

N
UC9 K9

m p D
3S l k

K9 C
UN
n D w

C8

qk8~ w
C8

21!moh~ k
A8

r
i 8^ E

K

s
u k

B8

a
j 8^ E

K8

b
d k

C8

o
q

^ E
K9

l
p!

5 (
KLMN

e2ipK@dK#

@dC8#
LA8A

KL
~X0X1!LB8B

KM
~Y0Y1!LC8C

KN
~Z1Z0!S r s

A8 K
UL

t D S t

L
UK A

u i D
3S a p

B8 K
UM

c D S c

M
UK B

s j D S n

N
UC8 K

m pD S l k

K C
UN
n D

3S m

C8
UA8 B8

r a D ~m
K

21! l
uS i 8 j 8

A8 B8
UC8

v D m
C8

k8
v

after the use of formulas~57! and ~8!

5 (
KLMN

e2ipK@dK#

@dC8#
LA8A

KL
~X0X1!LB8B

KM
~Y0Y1!LC8C

KN
~Z1Z0!H A8 B8

K N
UC8

M J
~0!

S r s

A8 K
UL

t D
3S t

L
UK A

u i D S n

N
UA8 M

r c D S c

M
UK B

s j D S l k

K C
UN
n D ~m

K
21! l

uS i 8 j 8

A8 B8
UC8

v D m
C8

k8
v

5 (
KLMN

e2ipK@dK#

@dC8#
LA8A

KL
~X0X1!LB8B

KM
~Y0Y1!LC8C

KN
~Z1Z0!H A8 B8

K N
UC8

M J
~0!

H B K

A8 N
UM

L J
~0!
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3S t

L
UK A

u i D S n

N
UL B

t j D S l k

K C
UN
n D ~m

K
21! l

uS i 8 j 8

A8 B8
UC8

v D m
C8

k8
v

after having used twice the formula~11!

5 (
KLMN

e2ipK@dK#

@dC8#
LA8A

KL
~X0X1!LB8B

KM
~Y0Y1!LC8C

KN
~Z1Z0!H A8 B8

K N
UC8

M J
~0!

H B K

A8 N
UM

L J
~0!

3
e2ip~N2C!@dN#

@dC# S l t

K L
UA

i D S n

N
UL B

t j D S k

C
UK N

l n D ~m
K

21! l
uS i 8 j 8

A8 B8
UC8

v D m
C8

k8
v

5 right-hand side of~63!,

where we have used formulas~7! and ~11! to conclude.
This proof holds true as soon as we have shown that these series are absolutely conv

Proof of the convergence of the last series can be obtained using asymptotic properties of
cientsLAD

BC , as well as asymptotic properties of 6j (0). Indeed, using the selection rules of 6j (0),
we know that in the four sums

(
Klmn

@dK1n#@dK#

@dC#@dC8#
LA8A

KK1 l
~X0X1!LB8B

KK1m
~Y0Y1!LC8C

KK1n
~Z1Z0!H K A

B K1n
UK1 l

C J
~0!

3H A8 B8

K K1n
U C8

K1mJ
~0!

H B K

A8 K1n
UK1m

K1 l J
~0!

, ~64!

for a fixed K, the range of the sum overl, m, n is finite and fixed byu l u<min(A,A8), umu
<min(B,B8), unu<min(C,C8), u l 2nu<B, un2mu<A8. Thus, in order to show the absolute co
vergence of this series, it is sufficient to bound the general term inK by a geometric series. Thi
can be proved using the behavior of the coefficientsLAD

KK1 l when K is large, derived in the
Appendix. Precisely, using~A21! and ~16! and ~17!, we have the following property
; l ,m,n,A,B,C,A8,B8,C8P 1

2Z, there existQ, Q8PR, such that;rX ,rY ,rZP] 2p/\,p/\]:

;K,U@dK1n#@dK#

@dC#@dC8#
LA8A

K K1 l
~X0X1!LB8B

K K1m
~Y0Y1!LC8C

K K1n
~Z1Z0!U<QK3q2K,

~65!

;K,U H K A

B K1n
UK1 l

C J
~0!

H A8 B8

K K1n
U C8

K1mJ
~0!

H B K

A8 K1n
UK1m

K1 l J
~0!
U<Q8.

The series is therefore absolutely convergent and uniformly convergent inrX ,rY ,rZ . From this
last result and using the property thatN(A)(q2X111,mX)N(D)(q2X111,mX)21LAD

BC(X0X1) is a con-
tinuous function ofrX , the square of the matrix coefficients of the operatorY (Z0Z1)

(X0X1)(Y0Y1)
are

continuous functions of the three variablesrX ,rY ,rZ . Note that in the case whereA5A8, B
5B8, C5C8 expression~63! is itself a continuous function ofrX ,rY ,rZ .

We still have to show that the linear mapY (Z0Z1)
(X0X1)(Y0Y1)

@ l ,l 8;v9# is an intertwiner. We have

Y
~Z0Z1!

~X0X1!~Y0Y1!
@ l ,l 8,v9#5(

IJK
P

~Z0Z1!

~uK!†uv9&^ l ^ l 8u P

~X0X1!

~uI ! ^ P

~Y0Y1!

~uJ!h~uIuJuK!

5(
IJK

P

~Z0Z1!

~S21~uK!!uv9&^ l ^ l 8u P

~X0X1!

~uI ! ^ P

~Y0Y1!

~uJ!h~uIuJuK!.
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Using the identity verified by any Haar measure on a co-quasitriangular Hopf algebraA,16,17

h~ab!5(
~a!

h~ba~2!!^m,a~1!&^m,a~3!&, ;a,bPA, ~66!

and simple transformations using properties of the antipode and of the grouplike elementm, we
obtain thatY (Z0Z1)

(X0X1)(Y0Y1)
@ l ,l 8;v9# is related to the operator:

J
~Z0Z1!

~X0X1!~Y0Y1!
@ l ,l 8,v9#;V~X0X1! ^ V~Y0Y1!→V~Z0Z1!,

~67!

J
~Z0Z1!

~X0X1!~Y0Y1!
@ l ,l 8;v9#5(

IJK
P

~Z0Z1!

~S~uK!m!uv9&^ l ^ l 8u P

~X0X1!

~uI ! ^ P

~Y0Y1!

~uJ!h~uKuIuJ!,

as follows:

Y
~Z0Z1!

~X0X1!~Y0Y1!
@ l ,l 8;v9#5SC,rJ~Z0Z1!

~X0X1!~Y0Y1!
@ l ,l 8;er

C

#^mer

CC

,v9&.

As a result it is equivalent to show thatJ (Z0Z1)
(X0X1)(Y0Y1)

@ l ,l 8;v9# is an intertwiner operator. This

is a simple consequence of the absolute convergence of the series and of the right invarianc
Haar measure. h

The following proposition gives the link between intertwiners constructed using the
measure and the reduced elements.

Proposition 11: There exists a real numberM(Z0Z1)
(X0X1)(Y0Y1)

such that

F A8 B8

X0X1 Y0Y1

A B
U C8

Z0Z1

C
G5M

~Z0Z1!

~X0X1!~Y0Y1!FX0X1 Y0Y1

A B
U C

Z0Z1
GFX0X1 Y0Y1

A8 B8
U C8

Z0Z1
G .

~68!

Proof: The operatorJ (Z0Z1)
(X0X1)(Y0Y1)

@ l ,l 8;v9# being an intertwiner, theorem 1 ensures the ex

tence of a complex number l( l ,l 8;v9) such that: J (Z0Z1)
(X0X1)(Y0Y1)

@ l ,l 8;v9#

5l( l ,l 8;v9)F (Z0Z1)
(X0X1)(Y0Y1)

. We will denoteP5P (X0X1), P85P (Y0Y1), P95P (Z0Z1) and we have

the following sequence of equalities:

l~ l ,l 8;v9!^ l 9uFP9
PP8uv ^ v8&

5(
IJK

^v9uP9~~S~eI !m!* !u l 9&^v ^ v8uP~eJ* ! ^ P8~eK* !u l ^ l 8&h~eIeJeK!

5(
IJK

^v9uP9~mS21~eI* !!u l 9&^v ^ v8uP~eJ* ! ^ P8~eK* !u l ^ l 8&h(eK* eJ* eI* )

5(
IJK

^v9uP9~mS2I~eI !!u l 9&^v ^ v8uP~eJ! ^ P8~eK!u l ^ l 8&h~S21~eK!S21~eJ!S
21~eI !!

5(
IJK

^v9uP9~S~eI !m!u l 9&^v ^ v8uP~eJ! ^ P8~eK!u l ^ l 8&h~eIeJeK!

5l~v,v8; l 9!^v9uFP9
PP8u l ^ l 8&.
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As a result

l~v,v8; l 9!5MP8
PP8^ l 9uFP9

PP8uv ^ v8&,

from which we get

(
IJK

^ l 9uP9~S~eI !m!uv9&^ l uP~eJ!uv&^ l 8uP8~eK!uv8&h~eIeJeK!

5MP9
PP8^ l 9uFP9

PP8uv ^ v8&^v9uFP9
PP8u l ^ l 8&. ~69!

Using the relation between the operatorJ (Z0Z1)
(X0X1)(Y0Y1)

@ l ,l 8;v9# andY (Z0Z1)
(X0X1)(Y0Y1)

@ l ,l 8;v9# we ob-

tain the announced result. h

In order to make a precise connection, later on, between matrix elements ofF̂@X0X1 ,Y0Y1#
and Askey–Wilson polynomials we need an explicit formula forM.

Proposition 12: The normalization factorM(Z0Z1)
(X0X1)(Y0Y1)

is a positive number and is given b

the following expression:

M
~Z0Z1!

~X0X1!~Y0Y1!

5U q2~X02X11Y02Y11Z02Z1!~12q2!~1!`
2

n1~2X011!2n1~2Y011!2n1~2Z011!2U
3

uj~2X111!j~2Y111!j~2Z111!u
uj~X11Y12Z111!j~X12Y11Z111!j~Y11Z12X111!j~X11Y11Z112!u

,

~70!

where we have defined the functionj, by j(z)5(z)`(12z)` .
Proof: We will identify certain asymptotics of the left-hand side and the right-hand sid

~68! in order to compute the normalizationM(Z0Z1)
(X0X1)(Y0Y1) . Let us first find the behavior of

f ~T!5F P1T P

X0X1 Y0Y1

P1T P
U T

Z0Z1

T
G

when

T→1`, P5Y02Y1.0. ~71!

It can be seen from the properties~16!, ~17!, and~A23!, that the unique leading term in th
explicit expression

f ~T!5 (
KlMn

@dT1n#@dK#

@dT#2 LP1T
K P1T1 l~X0X1!LK

P
M~Y0Y1!LK

T
T1n~Z1Z0!

3H K P1T

P T1n
UP1T1 l

T J
0
H K P

P1T T1n
UM

T J
~0!

H P K

P1T T1n
U M

P1T1 l J
~0!

is the term corresponding tol 5n50. The behavior whenT→1` of f (T) is therefore given by
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f ~T!;q2T~12q2!(
KM

@dK#S 2P

M
UK P

0 2PD S 2P 0

P K
U M

2PDLK
P

M~Y0Y1!.

The series on the right-hand side can be exactly computed using formula~A24! proved in the
Appendix. We finally obtain, forP5Y02Y1.0:

F P1T P

X0X1 Y0Y1

P1T P
U T

Z0Z1

T
G;T→1`q2T~12q2!

\@duY02Y1u#

2pP~Y0Y1!
. ~72!

From the fact that the right-hand side of the last expression is positive, and that the right-han
of ~68! is in this situation a modulus square we obtain thatM(Z0Z1)

(X0X1)(Y0Y1) is a positive number. Let

us now compute the behavior of the right-hand side of~68! for T→1`, P5mY ~this computation
has been done for 0<mY , but for mY,0 a similar proof can be done!. In the Appendix, we have
proved the following result:

F X0X1 Y0Y1

T1Y02Y1 Y02Y1
U T

Z0Z1
G

;e2 ip2Tq2T~Y01Y1! expF ipS X02X1

2 D Gq2Z0Z1A@dY02Y1
#n1~2X111!n1~2Z011!

3
w~2X0 ,P1T1X02X1!w~Z11X12Y1 ,Z12Z01X12X01Y02Y1!

w~Z01Z1 ,T!

3
n`~Y01X02Z011!n`~Y01X01Z012!n`~Y02X02Z0!n`~Y01Z02X011!

q~3/2!X0
2
1~1/2!X02~1/2!Z0

2
1~1/2!Z0~1!`n`~2Y111!n`~2Y011!

3
n`~Y11X12Z111!n`~Y11X11Z112!n`~Y12X12Z1!n`~Y11Z12X111!

q2~3/2!X1
2
2~1/2!X12~1/2!Z1

2
2~1/2!Z1n`~2X011!n`~22X0!n`~Z01Z111!n`~2Z02Z1!

.

~73!

From ~68!, and after elementary algebraic relations onq-factorials, we finally get the announce
expression forM(Z0Z1)

(X0X1)(Y0Y1) . h

The formula ~68! is an identity where the left-hand side is a complicated series, and
right-hand side is the infinite product~M!, multiplied by square roots of rational fractions. Let
give an example of this formula in its simplest case, which is achieved whenA5A85B5B8
5C5C850. We necessarily havemX5mY5mZ50, i.e.,X05X1 , Y05Y1 , Z05Z1 . In this case
we can computeM(Z0Z1)

(X0X1)(Y0Y1) directly. Indeed:

F 0 0

X0X1 Y0Y1

0 0
U 0

Z0Z1

0
G5(

B
@dB#2L0

BB~X0X1!L0
BB~Y0Y1!L0

BB~Z0Z1!. ~74!

Using the identity

L0
BB~X0X0!5

@~2X011!~2B11!#

@2X011#@2B11#
,

the formula~Exercise 12 of Ref. 18!
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4(
n51

1`

qn
sin~2nz!

12q2n 5
u48~z,t!

u4~z,t!
, ~75!

whereq5e2\5eipt, and the Jacobi’s fundamental formulas~Ref. 18, 21.22!:

2u4~x8!u4~y8!u4~z8!u4~w8!5(
j 51

4

~21!d j ,2u j~x!u j~y!u j~z!u j~w!, ~76!

where 2w852w1x1y1z ~and circular permutation to definex8,y8,z8!, we obtain that the
series~74! is equal to

~12q2!q23/4~1!`
3 u1~2lx!u1~2ly!u1~2lz!~sin~2lx!sin~2ly!sin~2lz!!21

8u4~lx1ly1lz!u4~2lx1ly1lz!u4~lx2ly1lz!u4~lx1ly2lz!
, ~77!

where we have chosen

2X0115 i
4lx

\
, 2Y0115 i

4ly

\
, 2Z0115 i

4lz

\
, and u j ,~ j 51,...,4!

are the usual theta functions, as defined in Ref. 18. Note that this expression is exac
coefficientM(Z0Z0)

(X0X0)(Y0Y0) , once we have expressed the theta functions in term of infinite prod

However such a simple derivation ofM(Z0Z1)
(X0X1)(Y0Y1) does not generalize so easily to the case wh

mX ,mY ,mZ are nonzero.
Formula~77! is the quantum deformation of a formula first found in Ref. 19.
Remark:We will need in Sec. V the following identity, which can be easily proved using~70!.

M(Z0Z1)
(X0X1)(Y0Y1)

, can also be written as

M
~Z0Z1!

~X0X1!~Y0Y1!

5c13
qZ023Z11Y023Y11X023X123~1!`

2 ~12q2!

n1~2X011!n1~22X121!n1~2Y011!n1~22Y121!n1~2Z011!n1~22Z121!

3
j~2X111,2Y111,2Z111!

j~Y11X12Z111,X11Z12Y111,Y11Z12X111,X11Y11Z112!
, ~78!

where we have denotedj(a1 ,...,an)5Pk51
n j(ak) and wherec1 is the fourth root of unit given

by

c15
w~2Y1,2Y222Y021!3~cycl. perm. onX,Y,Z!)

w~Y11X12Z111,Y12Y01X12X02Z01Z1!3~cycl. perm. onX,Y,Z!3w~Y11X11Z112,Y12Y01X12X01Z12Z0!
.

V. DECOMPOSITION THEOREM OF THE TENSOR PRODUCT OF PRINCIPAL
REPRESENTATIONS AND ASKEY–WILSON POLYNOMIALS

A. Decomposition theorem of the tensor product of principal representations

Let us now prove that, choosingN(Z0Z1)
(X0X1)(Y0Y1)

5(M(Z0Z1)
(X0X1)(Y0Y1))1/2.0, F̂@X0X1 ,Y0Y1# is an

isometry.

Theorem 3: F̂@X0X1 ,Y0Y1#:V(X0X1) ^ V(Y0Y1)→* %d(Z0Z1)H(Z0Z1) is an isometry. This
is a direct consequence of the following identity:
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;CP
1

2
Z1,E dP~Z0Z1!F A8 B8

X0X1 Y0Y1

A B
U C

Z0Z1

C
G5dA,A8dB,B8Y~A,X02X1!

~1! Y~B,Y02Y1!
~1! . ~79!

Proof: V(X0X1) ^ V(Y0Y1) is a Uq~su~2!! module, let us denote by (V(X0X1)

^ V(Y0Y1)) @C# its isotypic component of spinC. From the definition ofF̂@X0X1 ,Y0Y1# and the

choice N5(M(Z0Z1)
(X0X1)(Y0Y1)

)1/2, it is simple to show that the restriction ofF̂@X0X1 ,Y0Y1# to

(V(X0X1) ^ V(Y0Y1)) @C# is an isometry if and only if~79! is satisfied for thisC. We already
proved that

F A8 B8

X0X1 Y0Y1

A B
U C

Z0Z1

C
G

is a piecewise continuous function ofrZ , as a result it is integrable, and using formula~63! and
the uniform convergence properties of this series, we can invert the integral and the sum:

left-hand side of~79!

5 (
KLMN

@dN#@dK#

@dC#2 LA8A
KL

~X0X1!LB8B
KM

~Y0Y1!E dP~Z0Z1!LA8A
KN

~Z1Z0!

3H K A

B N
UL

CJ
~0!

H A8 B8

K N
UC

M J
~0!

H B K

A8 N
UM

L J
~0!

.

Using the Plancherel formula~58!, we obtain that this series is equal to

5dA,A8dB,B8LAA
0A~X0X1!LBB

0B~Y0Y1!H 0 A

B C
UA
CJ

~0!

H A B

0 C
UC
BJ

~0!

H B 0

A C
UB
AJ

~0!

5right-hand side of~79!.
h

F̂@X0X1 ,Y0Y1# being an isometry from V(X0X1) ^ V(Y0Y1) to the Hilbert space
* %d(Z0Z1)H(Z0Z1), there exists a unique isometryF#@X0X1 ,Y0Y1# from the tensor product o
Hilbert space H(X0X1) ^ H(Y0Y1) to * % d(Z0Z1)H(Z0Z1) which restriction to V(X0X1)

^ V(Y0Y1) gives backF̂@X0X1 ,Y0Y1#.
Theorem 4: F#@X0X1 ,Y0Y1#:H(X0X1) ^ H(Y0Y1)→* % d(Z0Z1)H(Z0Z1) is an invertible

isometry of Hilbert space.
Proof: It is trivial that F#@X0X1 ,Y0Y1# is an isometry, as a result it is injective. We therefo

have only to show thatF#@X0X1 ,Y0Y1# is surjective. The proof goes along the same lines as
proof of the surjectivity of the Fourier transform in Ref. 1. It is sufficient to show thaE
5F]@X0X1 ,Y0Y1#(V(X0X1) ^ V(Y0Y1)) is dense in* % d(Z0Z1)H(Z0Z1), which is equivalent
to show that E'5$0%. Let f P* % d(Z0Z1)H(Z0Z1), and assume that̂ f ,F@X0X1 ,Y0Y1#

3(e
A

i(X0X1) ^ e
B

j (Y0Y1))&50,;A,B,i , j . This in particular implies that

^ f ,F@X0X1 ,Y0Y1#~D~a!~e
A

i~X0X1! ^ e
B

j~Y0Y1!!!&50 ~80!
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for any elementa in the center ofUq(sl(2,C))R . As a result, by takinga5V1
p V2

r and using the
property thatF (Z0Z1)

(X0X1)(Y0Y1) is an intertwiner, we get the identity:;p,r PN,;A,B,CP 1
2Z

1, ;k

52C,...,C,

E d~Z0Z1!^ f ue
C

k~Z0Z1!&v1~Z0Z1!pv2~Z0Z1!rg~X0X1 ,Y0 ,Y1 ,Z0 ,Z1!50, ~81!

where

g~X0X1 ,Y0 ,Y1 ,Z0 ,Z1!5FX0X1 Y0Y1

A B
U C

Z0Z1
GN~Z0Z1!

~X0X1!~Y0Y1! .

ugu2 being a continuous function inrZ ,^ f ue
C

k&g is anL2 function in the variablerZ . We can now
apply the argument of the proof of Plancherel formula in Ref. 1 and conclude that the s

equations~81! for all p,r implies that̂ f ue
C

k&g50 as aL2 function. From theorem 1, we can alway
find for everyC, a coupleA,Bsuch thatgÞ0. From the explicit form ofg we know that the zeroes

of g considered as arZ function are finite, we obtain that^ f ue
C

k&50, which impliesf 50. h

B. R-matrix in the tensor product of infinite dimensional representations

In this section we will compute theR-matrix in the tensor product of two irreducible infinit

dimensional representations (P
(X0X1)

^ P
(Y0Y1)

).

We will in particular show that the expression of

~ P

~X0X1!

^ P

~Y0Y1!

!~R!

is an operator which domain contains all the vectors of the forme
A

m(X0X1) ^ e
B

n(Y0Y1), and more
precisely we have the following proposition:

Proposition 13: The expression of the R matrix ofUq(sl(2,C)R) represented on V(X0X1)
^ V(Y0Y1) is given by the following action:

~ P

~X0 X1!

^ P

~Y0Y1!

!~R!~e
B

m^ e
C

n!5(
DF

e
B

j ^ e
E

pS p j

F B
UD

x D S x

D
UB C

m nDLFC
BD~X0X1!. ~82!

In particular this expression is a finite sum although the universal formula forR is an infinite
sum.

Proof: The elementL
A

are multipliers ofŨq(sl(2,C)R) and we have the trivial relationL
A

(6)
j
i

5(B
% R

AB

jl
ikX

B

k
l . TheR matrix of Uq(sl(2,C)R) is written as:R5(A X

A

j
i
^ 1^ 1^ g

A

i
j . From the expres-

sion of a representationP̃ of Ũq(sl(2,C)R), associated with (X0 ,X1) a straightforward computa
tion of the representation of theR-matrix gives the formula of the statement. h

Remark:This situation is in sharp contrast with the case of SUq(1,1) for q real. The structure
of Hopf algebra onUq(su(1,1)) is the same asUq(su(2)), theonly difference is in the definition
                                                                                                                



y
s

n.

n-

onal

7741J. Math. Phys., Vol. 41, No. 11, November 2000 Tensor product

                    
of the star structure:Jz
!5Jz , J1

! 52J2 J2
! 52J1 . It is easy to classify the irreducible unitar

representations, the principal unitary representation ofU~su~1, 1!! being now easily quantized a
follows:

Jz•em5mem , J1•em5@m2t1e#em11 , J2•em52@m1t1e#em11 ,

where as usualeP$0,1
2%, t5 in2 1

2, nPR, andem is an orthonormal basis of the representatio

The universalR-matrix is still formally defined byR5q2Jz^ Jze
q21
(q2q21)(qJz J1 ^ J2q2Jz)

. It is easy to
see that (p ^ p8)(R)(em^ en8) has no meaning in thel 2 sense except in the trivial case whereq
51. Indeed a straightforward computation shows that a formal expansion of (p ^ p8)(R)(em

^ en8) gives (p ^ p8)(R)(em^ en8)5(p50
1` ap(em1p^ en2p8 ) with ap;(q2q21)gq22p21ap1b for

0,q,1 with gÞ0.

C. Connection with Askey–Wilson polynomials

In the sequel, we will show that we can reexpress

N
~Z0Z1!

~X0X1! ~Y0Y1!FX0X1 Y0Y1

A B
U C

Z0Z1
G

in terms ofq-Racah polynomials and Askey–Wilson polynomials, and that the relation~79! is an
orthogonality property mixingq-Racah polynomials and Askey–Wilson polynomials in a no
trivial way.

Lemma 3: The following three identities are satisfied:

~1! FX0X1 Y0Y1

A B
U C

Z0Z1
G5c2FX1 X0 Y1 Y0

A B
U C

Z1 Z0
G ,

~2! FX1 X0 Y1 Y0

A B
U C

Z1 Z0
G5c3FX1X0 Y1Y0

A B
U C

Z1Z0
G , ~83!

~3! FX1X0 Y1Y0

A B
U C

Z1Z0
G5e2 ipBA@dB#(

X2
H T Z1

Y0 X0
UZ0

X2
J

~3!

H C B

X1 X0
U A

X2
J

~1!

3H B Y1

Z1 X2
UY0

X1
J

~3!

vA
1/4vX2

1/2

vB
1/4vC

1/4vX0

1/4vX1

1/4,

wherec25eip(B1C1mX1A), and c3 is such that

c1c2c35eip~mX1mY2mZ!w~2X111,21!w~2Y111,21!w~2Z111,21! .

Proof: The identity~1! follows from a very simple computation. Identity~2! follows from the
use of propositions~2! and ~9!. Identity ~3! is a direct consequence of a Racah and a pentag
equation on 6j (3) symbols.

Using these identities Theorem~3! can be reformulated as follows:
Proposition 14:
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E d~Z0Z1!G
~Z0Z1!

~X0X1!~Y0Y1!H A Z1

Y0 X0
UZ0

X2
J

~3!

H A Z1

Y0 X0
UZ0

X3
J

~3!

H B Y1

Z1 X2
UY0

X1
J

~3!

3H C Y1

Z1 X3
UY0

X1
J

~3!

5dX2 ,X3
dB,CY~A,X02X2!

~1! Y~B,X12X3!
~1! Y~B,Y02Y1!

~1! ~84!

with

G
~Z0Z1!

~X0X1!~Y0Y1!
5

q2Z022Z112Y022Y1~1!`
2 ~12q2!@dB#

~2X111!1~2Y011!1~2Z011!1

3
j~2X111,2Y111,2Z111!

j~Y11X12Z111,X11Z12Y111,Y11Z12X111,X11Y11Z112!
.

~85!

Proof: Straightforward using a Racah–Wigner symmetry on 6j (3) and an orthogonality re
lation on 6j (1) symbols.

Theorem 5: Using the notations (A14) we have

AP~Z0Z1!

\
AG

~Z0Z1!

~X0X1!~Y0Y1!H B Y1

Z1 X2
UY0

X1
J

~3!

5Aw~AW!~z;a,b,c,d!

hn
~AW!~a,b,c,d!

pn
~AW!~t~z!;a,b,c,d!,

~86!

with n5B1Y02Y1 , a5q2X112Y113, b5q2Y122X111, c5q2X222Y011, d5q22Y022X221, 2z
52Z111.

Proof: Using two Sears transformations we can turn the parameters of the hypergeo
functions of the left-hand side into those of the right-hand side. Checking now the identity~86! is
therefore reduced to straightforward but tedious manipulations onn` functions. h

Note that the relation~84! whenA50 reduces to the identity:

E dpzP~0,rz!G~Z0Z0!

~X0X1!~Y0Y1!H B Y1

Z0 X0
UY0

X1
J

~3!

H C Y1

Z0 X0
UY0

X1
J

~3!

5dB,C , ~87!

which is exactly, using~86!, the orthogonality condition on Askey–Wilson polynomials for t
family of parametersn5B1Y02Y1 , a5q2X112Y113, b5q2Y122X111, c5q2X022Y011, d
5q22Y022X021, 2z52Z011

Although one would suspect that relation~84! can be proved for anyA by disentangling the
sum overmZ and the integration overrZ , we have not been able to prove it in this way.

VI. CONCLUSION

In this work we have given exact formulas for the Clebsch-Gordan coefficients of the t
product of two principal unitary representations of the quantum Lorentz group. We have
explicit expressions of the intertwiners in terms ofq-Racah polynomials and Askey–Wilso
polynomials. A consequence of this relation is the proof of proposition~14!, which contains in its
simplest case the proof of orthogonality of Askey–Wilson polynomials. One should generaliz
work to obtain explicit expressions for intertwiners of two representations in the set of prin
and complementary series. This should as well give nontrivial relations on orthogonal poly
als.

A very interesting question is the generalization to other quantization of complex semis
Lie algebras. In the classical case the structure of the tensor product of two principal repre
tions is known20 and there also exists polynomials in several variables generalizing Askey–W
polynomials.21
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Results8 which are nevertheless at hand are the construction of 6j (6) in terms of non termi-
nating basic hypergeometric functions, the study of their properties and their understand
matrix elements of fusion matrices. Using these 6j (6), wewill directly obtain expressions for the
6 j of the principal representations of the quantum Lorentz group as well as very intere
pentagonal equations satisfied by them.8

APPENDIX

1. Formulas on basic hypergeometric functions

In the sequel we shall frequently use the following notations:

;xPC,;kPN,

@x#5
qx2q2x

q2q21 , dx52x11, @x#k5 )
n51

k

@x1n21#, @k#! 5@1#k ,

vx
1/45expS i

p

2
xDq2~1/2!x~x11!.

In this article, the square root of a complex number is defined by

;xPC,Ax5Auxu expS i
Arg~x!

2 D ,

where

x5uxuei Arg~x!,Arg~x!P] 2p,p], ~A1!

and for all complex numberz with nonzero imaginary part, we definee(z)5sign(Im(z)).
We will define the following basic functions:;a,b,gPC,;nPZ:

~a!`5~q2a,q2!`5)
k50

1`

~12q2a12k!, ~a!n5
~a!`

~a1n!`
,

n`~a!5)
k50

1`

A12q2a12k, nn~a!5
n`~a!

n`~a1n!
,

v~a;b,g!5
n`~a1b1g12!n`~a1b2g11!n`~a2b1g11!

n`~2a1b1g11!
.

The q-factorials satisfy the following relations:;aPC,;nPZ,

~a!2n~12a!n5~21!nq22na1n~n11! ~ inversion relation!, ~A2!

lim
a→1`

~a!n51, ~a!n;a→2`~21!nq2na1n~n21!. ~A3!

In order to control the signs of the expressions in our article, we are led to introduc
following functionsw:C3 1

2Z→C, defined by

w~a,n!5
n`~a2n11!n`~n2a!

n`~a11!n`~2a!
q2na1~1/2!n~n21!,;aPC,;nP 1

2Z. ~A4!

This functionw satisfies the two following relations:
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w~a,n!w~a2n,p!5w~a,n1p! ,;aPC,;n,pP 1
2Z, ~A5!

w~a,n!
2

w~a,p!
2 5~21!n2p,;aPC,;n,pP 1

2Z,~n2p!PZ. ~A6!

The last equation implies in particular thatw (a,n)
2 5(21)n, ;aPC,;nPZ. Note that whenn is

half an odd integer,w (a,n) is not a fourth root of unity.
With our choice of square root, we have the more precise results:

w~a,n!5expS 2 i
p

2
ne~qa! D ,;nPZ,;aPC, ~A7!

uw~211 ir,n!u25eip~p11/21e~qir!!w~ ir,2p!
2 ,;n,pP 1

21Z,;rPR. ~A8!

We will also make extensive use of the following basic hypergeometric functions, asso
with complex numbersa0 ,...,an ,b1 ,...,bn and defined by

;ZPC, n11FnFa0 a1¯an

b1¯bn ;ZG5 (
k50

1`
P i 50

n ~a i !k

~1!kP i 51
n ~b i !k

q2kZ,

n13Wn12~a0 ;a1 ,...,an ;Z!5 (
k50

1`
~12q2a014k!

~12q2a0!

P i 50
n ~a i !k

~1!kP i 51
n ~11a02a i !k

q2kZ.

In an expression involvingn11Fn or n11Wn , if Z is not specified it will mean thatZ51.
Let us recall some properties of basic hypergeometric functions which are proved for ex

in Ref. 23:

2F1Fa0 a1 ,

b1 ;b12a02a1
G5

~b12a0!`~b12a1!`

~b1!`~b12a02a1!`
, ~A9!

4F3F2n a1 a2 a3

b1 b2 b3
G5

4F3F2n a1 b12a2 b12a3

b1 12n1a12b2 12n1a12b3
G

q22na1~b22a1!n
21~b32a1!n

21~b2!n~b3!n
. ~A10!

when 11a11a21a35n1b11b21b3 , ~A11!

6W5~a0 ;a1 ,a2 ,2n;11n1a02a12a2!5
~11a0!n~11a02a12a2!n

~11a02a1!n~11a02a2!n
. ~A12!

Relation~A9! is called the Heine formula, relation~A10! is the Sears identity.
Let us now recall the definitions ofq-Racah polynomialspn

(R) , of theq-Racah discrete mea
surew(R), and of the square of the norm of these polynomials:13,14

;xPC,;a,b,g,dPC,m~x!5q22x1q2x1212g12d,

pn
~R!~m~x!;q2a,q2b,q2g,q2d!54F3F2n n111a1b 2x g1d1x11

a11 b1d11 g11 G ,
~A13!

w~R!~x;q2a,q2b,q2g,q2d!5
~g1d11,a11,b1d11,g11!x~12q2~2x1g1d11!!

q2x~a1b11!~1,g1d112a,g2b11,d11!x~12q2~g1d11!!
,
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hn
~R!~q2a,q2b,q2g,q2d!5

q2n~g1d11!~12q2~a1b11!!~1,b11,a2d11,a1b2g11!n

~12q2~2n1a1b11!!~a1b11,a11,b1d11,g11!n

3
~g1d12,g2a2b,d2a,2b!`

~g1d2a11,g2b11,d11,2a2b21!`
.

The definition of Askey–Wilson polynomialspn
(AW) , of the Askey–Wilson measurew(AW) and of

the square of norm of these polynomials is22

;zPC,;a,b,g,dPC,t~z!5 1
2~q2z1q22z!,

pn
~AW!~t~z!;q2a,q2b,q2g,q2d!

q22na~a1b,a1g,a1d!n
54F3F2n n1a1b1g1d21 a1z a2z

a1b a1g a1d G ,
~A14!

w~AW!~z;q2a,q2b,q2g,q2d!5
~2z,22z!`

~a1z,a2z,b1z,b2z,g1z,g2z,d1z,d2z!`
,

hn
~AW!~q2a,q2b,q2g,q2d!5

~a1b1n!`
21~n11!`

21~a1b1g1d12n!`~a1b1g1d1n21!n

~a1g1n,a1d1n,b1g1n,b1d1n,g1d1n!`
.

2. Asymptotics of intertwiners

Our aim is to compute the behavior of

F X0X1 Y0Y1

P1T P
U T

Z0Z1
G

@see~62! for the explicit expression# for P5Y02Y1>0,T→1`. The sum onX2 being finite, we
can work term by term.
The asymptotics of

H T P

X1 X0
UP1T

X2
J

~1!

is very easy to obtain because, after a Racah–Wigner symmetry~24!, the hypergeometric part o
the result tends to one whenT is large. The behavior is therefore given by

H T P

X1 X0
UP1T

X2
J

~1!

;
w~X01X22T,P1X22X1!n1~2X211!v~P;X1 ,X2!

q1/2~P23X22X121!~P1X22X1!n`~2P11!n`~1!
.

The behavior of

H T Z1

Y0 X0
UZ0

X2
J

~3!

requires more attention, but can be achieved using the following computation.
By using first the Sears identity~A10!, and then taking the limit whenT goes to infinity, we

easily conclude using the Heine summation formula~A9!:
                                                                                                                



of
m over

7746 J. Math. Phys., Vol. 41, No. 11, November 2000 E. Buffenoir and Ph. Roche

                    
~Z11Y02X02T11!`4F3FZ12Z02T Z11Z02T11 X22X02T 2X22X02T21

22T 2X02Y02T1Z1 Z11Y02X02T11 G
~Z01Y02X011,Y02X02Z0,2Z112!`

5

~2T11!`4F3FZ12Z02T Z11Z02T11 Z12X22Y0 X21Z12Y011

2Z112 2X02Y02T1Z1 Z11X02Y02T11 G
~T1Y02Z12X0 ,T1Z11Z012,Z11T2Z011!`

;T→1`2F1FZ12X22Y0 X21Z12Y011

2Z112 ;2Y011G
;T→1`

~Z11Y01X212,Z11Y02X211!`

~2Y011,2Z112!`
.

This gives us the following behavior:

H T Z1

Y0 X0
UZ0

X2
J

~3!

;eip~T1X02X2!q22TY0

w~X01X22T,2T!w~Z01Z12T,2T!v~Y0 ;X2 ,Z1!v~Y0 ;X0 ,Z0!

q~Z12Z0!~X01Z02Y0!1~X22X0!~Z11X02Y011!~1,2Y011!`

3
n1~2X211!n1~2Z011!~Y02X02Z0 ,X01Z02Y011!`

n`~2X02X2!n`~X01X211!n`~2Z02Z1!n`~Z01Z111!
. ~A15!

The expression of

H P Y1

Z1 X2
UY0

X1
J

~3!

being drastically simplified forP5Y02Y1 , there is no problem anymore to obtain the behavior
the whole expression, except that in order to have a simple answer, we have to take the su
X2 . Precisely, denotinga52X112Y122Y011, m52Y022Y1 , k5Y02Y11X22X1 we al-
ready have obtained the following behavior whenT→1`:

F X0X1 Y0Y1

T1Y02Y1 Y02Y1
U T

Z0Z1
G

;q2T~Y01Y1! expF ipS X02X1

2 D Gq2Z0Z1A@dY02Y1
#n1~2X111!n1~2Z011!

3
w~2X0 ,P1T1X02X1!w~Z11X12Y1 ,Z12Z01X12X01Y02Y1!

w~Z01Z1 ,T!

3
n`~Y01X02Z011!n`~Y01X01Z012!n`~Y02X02Z0!n`~Y01Z02X011!

q~3/2!X0
2
1~1/2!X02~1/2!Z0

2
1~1/2!Z0~1!`n`~2Y111!n`~2Y011!

3
n`~Y11X12Z111!n`~Y11X11Z112!n`~Y12X12Z1!n`~Y11Z12X111!

q2~3/2!X1
2
2~1/2!X12~1/2!Z1

2
2~1/2!Z1n`~2X011!n`~22X0!n`~Z01Z111!n`~2Z02Z1!

3A,

where
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A5
1

~11a!m
(

k

~12q2a14k!~a!k~2m!k

~12q2a!~1!k~a1m11!k
q2k212k~m1a!.

Using formula~A12! and taking in it the limit wherea1 ,a2→2`, we obtain thatA51. This
gives the behavior of

F X0X1 Y0Y1

T1Y02Y1 Y02Y1
U T

Z0Z1
G

whenT goes to infinity.

3. Formulas on coefficients LAD
BC

„X0X1…

Let us recall some properties of the coefficientsLAD
BC(X0X1) which were proved in Ref. 1. We

will say that the coefficientsLAD
BC are off-diagonal ifAÞD and diagonal ifA5D ~in the latter case

we will use the notationLA
BC5LAA

BC!. The coefficientsLA
BC are said to be on the boundary ifB

1C5A, A1B5C, or A1C5B. The coefficients LAD
BC(X0X1) are proportional to

Y(A,B,C)
(0) Y(D,B,C)

(0) Y(A,X02X1)
(1) Y(D,X02X1)

(1) , so they vanish according to these selection rules. The

lowing relation holds true~it is in fact equivalent to the property thatP (X0X1) is a representation
of Uq(an~2!)!:

LFG
ACLGH

BD5(
KU

eip~G1U !~ @dU#@dG# !1/2LFH
KU

eip~C1D !~ @dC#@dD# !1/2 H B C

A D
UU
GJ

~0!

H F A

B U
UC
KJ

~0!

H A B

H U
UK
DJ

~0!

.

~A16!

As a result, by takingF5H in this expression, the off-diagonal coefficients are obtained
to a sign, from the diagonal coefficients.

These diagonal coefficients can be computed in various ways. They satisfy the follo
system of linear equations:

;~A,B,C!P 1
2Z

13 1
2Z

13 1
2Z

1* /B1A2C,B1C2A,A1C2BPN*
@A1B1C11#

@2A11#
L A

B C

1
@A1C2B11#

@2A11#
L A

B21 C2
@C1B2A21#

@2A11#
L A

B21 C211
@B1A2C11#

@2A11#
L A

B C21

5
@A1B2C21#

@2A21#
L A21

B21 C1
@A1C2B21#

@2A21#
L A21

B C211
@A1B1C21#

@2A21#
L A21

B21 C21

2
@C1B2A11#

@2A21#
LA21

B C ,

as well as;A,B,CP 1
2Z

1/Y(A,B,C)
(0) 51,

@B1C2A11#@A1B1C12#q6~C2B!L A
B11/2 C11/2

2@A1C2B#@A1B2C11#q7~C1B11!L A
B11/2 C21/2

1@A1C1B11#@B1C2A#q7~C2B!L A
B21/2 C21/2

2@A1B2C#@A1C2B11#q6~C1B11!L A
B21/2 C11/2

5v6@2C11#@2B11#L A
B C , ~A17!

where we have denotedv15q2X0111q22X021, v25q2X1111q22X121.
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These two linear systems have a unique normalized solution. The value of the dia
coefficients on the boundary have the following simple expression:

LB1C
B C~X0X1!5 (

k52B

B q22k~X01X111!S B1C1X02X1

B1k D
q

S B1C2X01X1

B2k D
q

~21!2BS 2B12C

2B D
q

, ~A18!

L A
B A1B~X0X1!5 (

k52B

B q22k~X01X111!S A1X02X11B2k

B2k D
q

S A2X01X11B1k

B1k D
q

S 2A12B11

2B D
q

5
vX0

vX1

L A
A1B B~X1X0!. ~A19!

Different explicit formulas for the coefficientsLAD
BC can be obtained, the fundamental one

expressed in terms of 6j (1) ~53!. This last expression can be simplified, using the unive
shifted cocycle associated with 6j (1), and weget:

LAD
BC~X0 ,X1!5 (

s1s2

vA
1/4

vD
1/4

N~D !~q2X111,mX!

N~A!~q2X111,mX!
S mX

A
U C B

s2 s1
D q22is1rXS s1 s2

B C
U D

mX
D

~A20!

whereN(A)(q2X11,s) are normalization factors, given in Ref. 1, which values will not be use
in our paper. This last expression is simpler than~53! in many aspects: it is a sum of a product
basic hypergeometric of 3-2 type rather than 4-3 type, and moreover it explicitly shows thaLA

BC

are Laurent polynomials inqirX.
Remark:From the system of constraints satisfied by the coefficientsLAD

BC , it is easy to show
that (LAD

BC)2 is a Laurent polynomials in both variablesq2X011,q2X111.
The constraint systems described before, as well as explicit expressions, allow us to

most of the asymptotic properties of these coefficients when some of the variables are lar
Proposition 15: The coefficientsLAD

BC satisfy the following inequality:

;A,DP 1
2Z

1,;RP 1
2Z,;mP 1

2Z,'C,B.0,;rPR,;B.B,uLA D
B B1R~m,r!u<CBq2B. ~A21!

Proof: The proof is divided in two steps. We first show this inequality whenA5D, by a direct
computation. Then we use the system~A16! and an induction argument to show this inequal
whenAÞD. We can always assume thatR>0, because the other case is deduced from this
and the identity~A19!. Using the relation~A20!, we haveuLA

BB1R(m,r)u<( ju( j ,m2 j ;B),

where u~ j ,k;B!5US m

A
UB1R B

j k D S 2m

A
UB1R B

2 j 2kD U.
Using formula~4! of Ref. 11, Sec. 14.3.5, we easily obtain that

uu~ j ,m2 j ;B!u
q~A2R!~2B1R1A11!

5
@2A#! @2A11#! @A1B2 j #! @B1A1 j #! @2B1R2A#!F~ j ,m2 j ;B!F~2 j , j 2m;B!

@A1R#! @A2R#! @A1m#! @A2m#! @B1m2 j #! @B2m1 j #! @2B1R1A11#!
,
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where

F~ j ,m2 j ;B!53F2Fm2A 22B2R2A21 R2A

2B2A1 j 22A G .
Using the fact that 22B2A2R<2B2A1 j <R2A, we can chooseC1 such that
; j ,;B,uF( j ,m2 j ;B)u<C1q22Bn(m) wheren(m)5 inf(A2m,A2R). As a result, there exists
constantC1 such that

; j ,B, u~ j ,m2 j ;B!<C1q2B~A2R2n~m!2n~2m!!2uB1 j u~A1m!2uB2 j u~A2m!22B~2A11!.

From this, and the various inequalities betweenB,j,m,R, it is easy to show that we can findC2

such that

uLA
BB1R~m,r!u<C2~2B12R11!q2B. ~A22!

We can now prove this bound for the nondiagonal case using an induction argumentuA
2Du. Indeed from~A16!,

uLA~D11!
B~B1R!L~D11!D

~1/2!~D11/2!u<(
KU

~@dU#@dD11# !1/2uLAD
KUu

~@dB1R#@dD11/2# !1/2 U H 1
2 B1R

A D1 1
2

U U

D11J
~0!

H A B

1
2 U

UB1R

K J
~0!

3H B 1
2

D U
U K

D1 1
2
J

~0!

U .

Note that, due to theY functions, the previous sums contain at most four terms:U5B1R6 1
2,

K5B6 1
2. From the asymptotics property~A22! whenB goes to1`, and the induction hypothesis

we obtain that there exists a constantC3 , with ;B, ;r, uLA(D11)
B(B1R)(m,r)L (D11)D

(1/2)(D11/2)(m,r)u
<C3Bq2B. From the explicit formulas of the coefficientsL (D11)D

(1/2)(D11/2)(m,r), in Ref. 1, there
existsC4.0 such that;rPR, ;B, uL (D11)D

(1/2)(D11/2)(m,r),u.C4 , as a result we get that the indu
tion hypothesis is also true forA, D11. h

We will also need the following asymptotics:
Proposition 16: The coefficientsLA

BC own the following asymptotic behavior:

;BP 1
2Z

1,;RP 1
2Z,B6RPN,;~X0X1!PS,'CPR,

L K
B K1R;K→1`q2KuRuCY~B,R!

~1! with ~C51 when R50!. ~A23!

Proof: We use formula~A20! to expressLK
BK1R . The asymptotic whenK is large is easily

obtained using the formula~1! of Ref. 11, Sec. 14.3.5. The details are left to the reader and
easily obtain the statement of the proposition. h

In Sec. V we will need the following identity on the following series of weighted diago
coefficients:

Proposition 17: If P.0 the following series is absolutely and uniformly convergent inrX and
we have

(
KM

@dK#S s2P

M
UK P

s 2PD S 2P s

P K
U M

s2PDLP
KM~X0X1!5

\@dP#q22isrXeipsdmX ,P

2pP~X0X1!
.

When P50 we still have
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(
K

@dK#LP
KK~X0X1!5

\@dP#dmX ,P

2pP~X0X1!
. ~A24!

Proof: When P50, we see from~A20! that L0
KK(X0X1) is nonzero only whenmX50. The

seriesSK@dK#L0
KK(X0X1) is in this case very simple to compute because

L0
KK~X0X1!5

@~2X011!~2K11!#

@2X011#@2K11#
,

and we obtain the announced statement. Note that in this case the series is not uniformly c
gent and is even divergent atrZ50. WhenP.0 we will first show that the series is absolute
and uniformly convergent. Using the analog of the Van Der Waerden formula for 3j ,11 as well as
relation ~10! we can chooseC1 such that

US s2P

K1R
UK P

s 2PD S 2P s

P K
UK1R

s2PD U
5U @dK1R#@2P#! @2K1R2P#! @K1R1P2s#! @K1s#!

@P2R#! @R1P#! @2K1R1P11#! @K1R2P1s#! @K2s#!U
<C1q2KP.

UsingLP
KK1R(X0X1)<C2 Kq2K, we obtain that the series is absolutely and uniformly converg

Using ~A16!, ~58!, ~7! and ~A20! we have

E dP~X0X1!S (
KM

@dK#S s2P

M
UK P

s 2PD S 2P s

P K
U M

s2PDLP
KM~X0X1! DLP

AC~X0X1!

5(
KM

@dK#S s2P

M
UK P

s 2PD S 2P s

P K
U M

s2PD E dP~X0X1!LP
KM~X0X1!LP

AC~X0X1!

5(
KM

@dK#S s2P

M
UK P

s 2PD S 2P s

P K
U M

s2PD(
JU

~@2U11#@2P11# !1/2

~@2C11#@2M11# !1/2eip~C1M2P2U !

3H K C

A M
UU
PJ

~0!

H P A

K U
UC
J J

~0!

H A K

P U
U J

M J
~0!

•E dP~X0X1!LP
JU~X0X1!

5(
KM

@dK#S s2P

M
UK P

s 2PD S 2P s

P K
U M

s2PD e2ipAdA,K

@dP#

@dA# H A C

A M
UP
PJ

~0!

5(
M

@dM#S P2s s

M A
UP
PD S P

P
UA M

s P2s
D H A C

A M
UP
PJ

~0!

5(
M

@dM#H A C

A M
UP
PJ

~0!

\

2p E
2p/\

p/\

drq2isrLP
AM~P,r!.

Then we use the relation

(
M

@dM#H A C

A M
UP
PJ LP

AM~X0X1!5e22ipA@dP#LP
AC~X1X0!,

which has been proved in Ref. 1 and which is the key point to prove unitarity of the represen
and the relation
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E
2p/\

p/\

dr q2isrLP
AC~2P,r!5E

2p/\

p/\

dr q22isrLP
AC~P,r!, ~A25!

which is proved using twice~A20!, ~7!, and~58!. Combining these two steps, we obtain

E dP~X0X1!S (
KM

@dK#S s2P

M
UK P

s 2PD S 2P s

P K
U M

s2PDLP
KM~X0X1! DLP

AC~X0X1!

5E dP~X0X1!
\e2ips@dP#q22s~X01X111!dX02X1 ,P

2pP~X0X1!
LP

AC~X0X1!.

Finally using Lemma 1 we conclude this proof. h
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An explicit realization of thenormalizedGel’fand–~Weyl!–Zetlin ~GWZ! basis for
Uq(sl(3)) in terms of polynomial functions in three variables~real or complex! is
given. The construction uses two different realizations of theUq(sl(3)) unnormal-
ized GWZ basis which were given previously, and whose transformation properties
were not known. It turns out that finding these properties enables us to find the
~GWZ-dependent! proportionality constant between these two realizations. The
scalar product is also fixed by this in both unnormalized realizations, and then, by
normalization, the normalized GWZ states are obtained. As by-products new sum-
mation formulas are obtained which seem new also forq51. The main new for-
mula is a double sum which is given in terms of the proportionality constant
mentioned above. This double sum can be written as single sum over aq23F2

hypergeometric function, or as aq-hypergeometric function of two variables.
© 2000 American Institute of Physics.@S0022-2488~00!00511-9#

I. INTRODUCTION

This paper is the natural development of the papers1,2 on the construction and applications
holomorphic representations ofUq(sl(n)) in terms of polynomial bases. In the first paper Biede
harn and two of the present authors gave the construction of arbitrary lowest weight~holomorphic!
representations ofUq(sl(n)) in terms of polynomials ofn(n21)/2 ~real or complex! variables,
most explicitly forn53, on which the generators ofUq(sl(n)) act asq-difference operators. In
the second paper the results of Ref. 1 were extended by giving two polynomial realizations
unnormalized Gel’fand–~Weyl!–Zetlin ~GWZ! basis.3,4 It is well-known that the GWZ basis is
very useful in physical applications mainly for providing the explicit matrix elements of the ir
of U(n), cf., e.g., Refs. 4–6, and many references therein. In particular, for SU~3! it is important
that this basis diagonalizes the operators which~in some applications! are identified as those o

isospin Î 2, third component of isospinÎ z , and hyperchargeŶ. With the advent of quantum

a!Permanent address: Bulgarian Academy of Sciences, Institute of Nuclear Research and Nuclear Energy, 72 Tsa
Chaussee, 1784 Sofia, Bulgaria.

b!Electronic mail: Truini@ge.infn.it
77520022-2488/2000/41(11)/7752/17/$17.00 © 2000 American Institute of Physics
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groups,7,8 the GWZ pattern was adapted to the quantum groupsUq(gl(n)) and Uq(sl(n)), cf.
Refs. 5, 9–14. The GWZ pattern was extended also to the inhomogeneous unitary group In)15

and itsq-deformation.16

In spite of much development until Ref. 2 there was no explicit realization of the GWZ s
as polynomial functions of real or complex variables even in the classical situation (q51). ~GWZ
states as polynomial functions of boson creation operators were given in Ref. 4,~see also Ref. 5!,
but there is no clear relation to our constructions, cf. more explicit comment in Ref. 2.! In fact, in
Ref. 2 were giventwo independent realizations of the unnormalized GWZ states. The first
ization, which here we call ‘‘operatorial,’’ starts with the use a result of Refs. 10 and 13,
correspondence between the abstract GWZ states and monomials in theq-deformed enveloping
algebraUq(G2) of the lowering generators. These monomials produce polynomials inUq(G1) by
acting on the monomial inUq(G1) representing the highest weight vector. Finally in the lat
expressions the explicitq-difference realization of the raising generators~from Ref. 1! were
substituted to produce the GWZ polynomial basis when acting on the function 1~which represents
the lowest weight vector!. The second realization of the GWZ polynomial basis, which here
call ‘‘hypergeometric,’’ was found by the explicit diagonalization of the operatorsÎ 2, Î z ,Ŷ, in the
same realization asq-difference operators. The GWZ eigenvectors were written in terms
q-hypergeometric polynomials in the three variables. Finally in Ref. 2 a scalar product was con
structed~adapting the Shapovalov form! using which was proven the orthogonality of the GW
polynomials. This result, however, was not very explicit since the orthogonality proof used
realizations and the scalar product involved the unknown constant relating the polynomials
two realizations.~This constant depends on the GWZ state in consideration.! That is why in Ref.
2 only the unnormalized GWZ polynomials could be given.

The main task of the present paper is to produce explicit normalized GWZ polynomials
achieve this by first showing that the missing proportionality constant may be found by use
transformation properties of the unnormalized GWZ states. The point is that these are two
pendent calculations. For the operatorial realization we use only the commutation ru
Uq(sl(3)), while for the hypergeometric realization we use only the explicit realization
Uq(sl(3)) in terms of q-difference operators and the action of the latter operators on
q-hypergeometric functions which enter the expressions of the unnormalized hypergeo
GWZ states. This procedure finally gives an explicit expression for the unknown constant us
additional input the values of the constant for lowest and highest weight states~the latter values
are calculated directly!. Thus, the norms of the unnormalized GWZ states is given explicitly,
this produces, by normalization, the normalized GWZ states. Finally we find the transform
rules of the normalized GWZ states and show that they are uniquely fixed~up to phase factors!
and reproduce the standard transformation rules which until now were written wi
derivation—forq51 in Refs. 3 and 4, and forqÞ1 in Ref. 16.

Solving the outstanding problem of the normalized GWZ states has also a very nice ap
tion beyond representation theory. The point is that for part of the GWZ states the m
constant was known in Ref. 2 in terms of a double sum, which we were not able to sum exp
Thus, the independent knowledge of the missing constant gives rise to a new summation fo
which seems new also in the classical caseq51. We give several expressions for this double su
one of which is a sum over aq23F2 hypergeometric function, another is aq-hypergeometric
function of two variables.

The paper is organized as follows. The next Section contains the preliminaries. In Sec.
derive the transformation rules of the two realizations and using these find the missing p
tionality constant. In Sec. IV we employ the resulting scalar product to give explicitly the
malized GWZ states and to find their transformation properties. Section V contains our
summation formulas. There are also two Appendixes.

II. PRELIMINARIES

The quantum algebraUq(sl(n)) is defined as the associative algebra overC with Chevalley
generatorsXj

6 , H j , j 51,...,n21, and with relations7,8
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@H j ,Hk#50, @H j ,Xk
6#56ajkXk

6 , @Xj
1 ,Xk

2#5d jk@H j #q , ~2.1a!

~Xj
6!2Xk

62@2#qXj
6Xk

6Xj
61Xk

6~Xj
6!250, u j 2ku51

@Xj
6 ,Xk

6#50, u j 2ku.1, ~2.1b!

where @x#q5(qx/22q2x/2)/(q1/22q21/2) is the basicq-number notation and it is used also fo
diagonal operatorsH replacingx, (ajk)5(2(a j ,ak)/(a j ,a j )), j, k51,2,...,n21, is the Cartan
matrix of G5sl(n). The elementsH j span the Cartan subalgebraH, while the elementsXj

6

generate the subalgebrasG6 in the triangular decompositionG5G1
% H% G2. We shall use also

the Cartan–Weyl basis consisting of raising Cartan–Weyl generatorsEjk , ( j ,k), and lowering
Cartan–Weyl generatorsEk j , ( j ,k). Thus, for the Chevalley generators we have

Xj
15Ej , j 11 , Xj

25Ej 11,j , ~2.2!

while the remaining Cartan–Weyl generators forn53 are8,17

E135E12E232q1/2E23E12, E315E32E212q21/2E21E32. ~2.3!

We recall the representations ofUq(sl(n)) constructed in Ref. 1, restricting ton53. The
representations are given in terms of three variables~real or complex! x,y,z. We use the numbe
~homogeneity! operatorNt for the coordinatet, so that Ntt

m5mtm, Ntw50, wÞt, and the
q-difference operatorsDt , which admit a general definition on a larger domain than polynomi
but on polynomials are well defined as follows:

Dt5
1

t
@Nt#q . ~2.4!

The representations ofUq(sl(3)) arecharacterized by two complex parametersr 1 ,r 2PC, and are
given explicitly by Ref. 1

G3~E12!5x@r 12Nx#qq1/4~Nz2Ny!1zDyq
1/4~r 122Nx!, ~2.5a!

G3~E21!5Dxq
1/4~Nz2Ny!1yDzq

1/4~r 122Nx!, ~2.5b!

G3~H1!52Nx2r 11Nz2Ny , ~2.5c!

G3~H2!52Ny2r 21Nz2Nx , ~2.5d!

G3~E32!5Dyq
1/4Nx, ~2.5e!

G3~E23!5y@r 21Nx2Nz2Ny#qq21/4Nx2zDxq
21/4~2r 2r 11Nx2Nz2Ny11!, ~2.5f!

wherer[r 11r 2 . If we apply ~2.5! to the function 1 we get

G3~Ejk!150, j .k, ~2.6a!

G3~Hk!152r k , ~2.6b!

i.e., we obtain a lowest weight module with lowest weight vector 1 and lowest weightL such that
L(Hk)52r k . All states are given by powers ofx,y,z, i.e., the basis is generated byxjzkyl with
j ,k,l PZ1 .

In the present paper we consider the case when bothr 1 ,r 2PZ1 . The irreducible subrepre
sentation is finite-dimensional of dimension:
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dr 1 ,r 2
5 1

2~r 111!~r 211!~r 12!. ~2.7!

This recovers the complete list of the finite dimensional holomorphic irreps ofUq(sl(3)) and
SL~3!, and by default, also the complete list of the finite dimensional unitary irreps ofUq(su(3))
and SU~3! ~we assume thatq is not a nontrivial root of 1!.

Next we recall our notation for the GWZ pattern in the SU~3! finite-dimensional UIR fixed by
the two nonnegative integersr 1 ,r 2

~m!5S r r 1 0

m12 m22

m11

D , ~2.8!

where the inbetweenness conditions hold

r>m12>r 1 , m11>m22>0. ~2.9!

For further use we record the patterns corresponding to the highest weight state~h.w.s.! and to the
lowest weight state~l.w.s.!

~h.w.s.!5S r r 1 0

r r 1

r
D , ~2.10a!

~ l.w.s.!5S r r 1 0

r 1 0

0
D . ~2.10b!

Finally we introduce the generalizedq-hypergeometric functions which we shall use~for m
5n1151,2,3!

mFn
q~a1 ,...,am ;b1 ,...,bn ;z!8 (

sPZ1

~a1!s
q
¯~am!s

q

~b1!s
q
¯~bn!s

q@s#q!
zs, bi¹Z2 , ~2.11!

and (n)s
q is theq-Pochhammer symbol

~n!s
q8@n1s21#q@n1s22#q¯@n#q5

Gq~n1s!

Gq~n!
. ~2.12!

Note that~2.12! ensures that~2.11! is a polynomial if at least one of theai is a nonpositive integer
In more detail, leta* be the biggest among the nonpositive integerai . Then the summation is
truncated ats52a* . Moreover, in this case any of thebi can be a nonpositive integer, provide
it is strictly smaller thana* .

III. ACTION ON THE UNNORMALIZED GWZ BASES AND RELATIONS BETWEEN THEM

A. Action on the operatorial basis

Here we consider the action of the Chevalley generatorsXj
6 , j 51,2, ofUq(sl(3)) on the two

realizations of the unnormalized GWZ basis introduced in Ref. 2. After deriving the actio
shall use it in order to find the proportionality constant between the two realizations.

In this subsection we consider the operatorial GWZ basis. Let us denote by 1ˆ the lowest
weight state of some realization of theUq(sl(3)) finite-dimensional representation with param
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etersr 1 ,r 2 . Then (E13)
r 1̂ is the highest weight state of the same representation.2 Further we used

a result from Refs. 10 and 13. Namely, ifÎ 2 is the highest weight state in some realization of t
same representation then the operator

~E21!
m122m11C̃r 2m12~E32!

r 12m22Î 2 ~3.1!

~where C̃5E31@H111#1E21E32q
2(H111)/2), corresponds to the GWZ state with pattern~m!.

Combining the above we concluded that the following state:

f̃~m!8~E21!
m122m11C̃r 2m12~E32!

r 12m22~E13!
r 1̂, ~3.2a!

represents the GWZ state with pattern~m! in the same representation. It differs from the GW
state by some normalization constant which depends also on~m!. Using the commutation relation

and the fact thatEi j 1̂50 for i . j , we can rewrite the above as:

f̃~m!5~21!r 12m22q1/2~m222r 1!~m2221!@r #q! @r 2m2211#q! @r 2m12#q!

3 (
t50

r 2m12

(
uPZ1

~21! tS m122m111t
u D

q

qt/2~r 12m122m22!1u/2~u22m222m121m111r 11t !

@ t#q! @m222t#q! @m122m22111t#q!

3
@ t1r 12m22#q! @m121m222m112u#q!

@m112m122m221r 11u#q! @m121m222r 12u#q!

3~E23!
u~E13!

m121m222r 12u~E12!
m112m122m221r 11u1̂. ~3.2b!

The derivation of the above formula is given in Appendix A. Note that the range of summati
u is finite and is determined by the factorials according to the convention: 1/@2n#q! 51/Gq(1
2n)50 for nPN. Note that~3.2a! and~3.2b! were given as formulas~18a! and~18b! in Ref. 2,
however,~3.2b! differs from ~18b! by an overall multiplicative constant.

The first new result of the present paper is the explicit calculation of the action o
Chevalley generators onf̃ (m) . We have

X1
1f̃~m!5@m122m11#q@m112m2211#qf̃~m12 ,m1111,m22! , ~3.3a!

X1
2f̃~m!5f̃~m12 ,m1121,m22! , ~3.3b!

X2
1f̃~m!5

@r 2m12#q@m122r 111#q@m1212#q

@m122m2211#q
f̃~m1211,m11 ,m22!

1
@r 2m2211#q@r 12m22#q@m2211#q

@m122m2211#q
f̃~m12 ,m11 ,m2211! , ~3.3c!

X2
2f̃~m!5

@m122m11#q

@m122m2211#q
f̃~m1221,m11m22!1

@m112m2211#q

@m122m2211#q
f̃~m12 ,m11 ,m2221! . ~3.3d!

In these calculations we use only~3.2a! and abstract algebra: the commutation relatio
between the Chevalley generatorsH j ,Xj

6 , j 51,2, the definitions ofC̃ andE13, and the fact that

1̂ is the lowest weight vector.
Further, as in Ref. 2 we shall use also the realization ofUq(sl(3)) given in ~2.5! to obtain a

polynomial in the variablesx,y,zcorresponding to the GWZ pattern~m!. For this we define

f~m!~x,y,z!8~G3~E21!!m122m11~G3~C̃!!r 2m12~G3~E32!!r 12m22~G3~E13!!r1. ~3.4!
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For this quantity will hold the same formula~3.3! we derived above—this follows just becauseG3

is a representation. On the other hand we should stress that this quantity is a polynomial
variablesx,y,z. We give two examples which we shall use below—of h.w.s.@cf. ~40! of Ref. 2# and
l.w.s.

f~h.w.s.!5~G3~E13!!r15~21!r 1q1/4r 1~22r 1!@r #q!xr 1yr 1zr 2r 131F0
qS 2r 1 ;q1/4~r 12r 22!

z

xyD ,

~3.5a!

f~ l.w.s.!5~G3~E21!!r 1~G3~C̃!!r 2r 1~G3~E32!!r 1~G3~E13!!r1

5~21!r 1qr 1/2
@r #q! @r 11#q! @r 2r 1#q! @r 1#q!

@r 111#q
. ~3.5b!

B. Action on the hypergeometric basis

Next we find the action on the realization of the unnormalized GWZ states via hypergeom
functions@cf. ~36! of Ref. 2, correcting a misprint#,

c~m!~x,y,z!5
xm112yk

Gq~r 12m1111! 1F0
qS 2m22;q1/4~m222m1222!

z

xyD
32F1

qS m222m11,r 12m12;r 12m1111;q1/4~m121m22!
z

xyD ,

k[m121m222r 1 . ~3.6!

Our second result in this paper is the following action of the generators:

G3~X1
1!c~m!5q21/4kc~m12 ,m1111 ,m22! , ~3.7a!

G3~X1
2!c~m!5q1/4k@m122m1111#q@m112m22#qc~m12 ,m1121,m22! , ~3.7b!

G3~X2
1!c~m!5b1

1c~m1211,m11 ,m22!1b2
1c~m12 ,m11 ,m2211! , ~3.7c!

G3~X2
2!c~m!5b1

2c~m1221,m11 ,m22!1b2
2c~m12 ,m11 ,m2221!), ~3.7d!

where

b1
15q21/4m11

@r 2m12#q@m122m1111#q

@m122m2211#q
, ~3.8a!

b2
15q21/4m11

@r 2m2211#q@m112m22#q

@m122m2211#q
, ~3.8b!

b1
25q1/4m11

@m122r 1#q@m1211#q

@m122m2211#q
, ~3.8c!

b2
25q1/4m11

@r 12m2211#q@m22#q

@m122m2211#q
. ~3.8d!

We derive this action using only the explicit realization ofG3(•) given in ~2.5! and using some
relations betweenq-hypergeometric functions which are given in Appendix B.
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For later reference we also record the h.w.s. and l.w.s. in this realization@cf. ~38! of Ref. 2,
correcting a misprint#

c~h.w.s.![c~r ,r ,r 1!5q1/4~r 22r 1
2
!@r 2r 1#q!xr 1yr 1zr 2r 11F0

qS 2r 1 ;q1/4~r 12r 22!
z

xyD , ~3.9a!

c~ l.w.s.![c~r 1,0,0!5
1

@r 1#q!
. ~3.9b!

C. Derivation of the proportionality constant between the two realizations

Now we use the action on the two unnormalized polynomial realizations of the GWZ s
f (m) andc (m) in order to derive the proportionality constant between them. We set

f~m!5N~m!c~m! . ~3.10!

Before proceeding we note the two cases in which we already know this constant

N~h.w.s!5~21!r 1q1/4~2r 12r 2!
@r #q!

@r 2r 1#q!
, ~3.11a!

N~ l.w.s!5~21!r 1qr 1/2
@r #q! @r 11#q! @r 2r 1#q! ~@r 1#q! !2

@r 111#q
, ~3.11b!

where~3.11a! is obtained by using~3.5a! and~3.9a!, while ~3.11b! is obtained by using~3.5b! and
~3.9b!.

The idea is as follows~on the example ofX1
2): On one hand we have:

G3~X1
2!f~m!5f~m12 ,m1121,m22!5N~m12 ,m1121,m22!c~m12 ,m1121,m22! . ~3.12!

On the other hand@using ~3.7b!#:

G3~X1
2!f~m!5N~m!X1

2c~m!5N~m!q
1/4k@m122m1111#q@m112m22#qc~m12 ,m1121,m22! .

~3.13!

If m11.m22 comparing~3.12! and ~3.13! we get a relation expressingN(m) in terms of
N(m12 ,m1121,m22)

. Besides the above there are five more relations, expressingN(m) throughN(m8)

with m11→m1111, m12→m1261, m22→m2261. Thus, altogether we have three relations wh
decreasemi j , and three relations which increasemi j , each relation affecting only a singlemi j

N~m!5q21/4k
1

@m122m1111#q@m112m22#q
N~m12 ,m1121,m22! , ~3.14a!

N~m!5q21/4m11
@m122m11#q

@m122r 1#q@m1211#q
N~m1221,m11 ,m22! , ~3.14b!

N~m!5q21/4m11
@m112m2211#q

@r 12m2211#q@m22#q
N~m12 ,m11 ,m2221! , ~3.14c!

N~m!5q1/4k@m122m11#q@m112m2211#qN~m12 ,m1111,m22! , ~3.14d!

N~m!5q1/4m11
@m122r 111#q@m1212#q

@m122m1111#q
N~m1211,m11 ,m22! , ~3.14e!
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N~m!5q1/4m11
@r 12m22#q@m2211#q

@m112m22#q
N~m12 ,m11 ,m2211! . ~3.14f!

Now, we use relation~3.14c! until on the right-hand-side~RHS! we getN(m12 ,m11,0) , then we
use~3.14a! until on the RHS we getN(m12,0,0) , finally we use~3.14b! until on the RHS we get
N(r 1,0,0)5N(l.w.s.) , i.e., we get

N~m!5q21/4m11k
@r 111#q@r 12m22#q! @m122m11#q!

@r 1#q! @m122r 1#q! @m112m22#q! @m1211#q! @m22#q!
N~ l.w.s.! , ~3.15!

and using~3.11b! we finally obtain

N~m!5~21!r 1q1/4~2r 12m11~m121m222r 1!!@r #q! @r 11#q! @r 2r 1#q! @r 1#q!

3
@r 12m22#q! @m122m11#q!

@m122r 1#q! @m112m22#q! @m1211#q! @m22#q!
. ~3.16!

From ~3.16! follows also:

N~h.w.s.!5q21/4r 2 @r 111#q

~@r 1#q! @r 2r 1#q! !2@r 11#q!
N~ l.w.s.! , ~3.17!

which is consistent with~3.11!.
For a check of consistency we use the three relations~3.14d!, ~3.14e!, and ~3.14f! which

increasemi j to obtainN(m) throughN(h.w.s.)—first ~3.14e! to getN(r ,m11 ,m22)
, then~3.14d! to get

N(r ,r ,m22)
, finally, ~3.14f! to getN(r ,r ,r 1) , i.e.,

N~m!5q1/4~r 22m11k!
@r 11#q! @r 1#q! ~@r 2r 1#q! !2@r 12m22#q! @m122m11#q!

@m122r 1#q! @m112m22#q! @m1211#q! @m22#q!
N~h.w.s.! . ~3.18!

For m5 l.w.s. we get exactly~3.17!, while for m5h.w.s. we have 151.

IV. SCALAR PRODUCT AND NORMALIZED GWZ STATES

First we recall the scalar product for the GWZ states which was introduced in Ref. 2. Fo
an adaptation of the so-called Shapovalov form18 was used. This is a bilinearC-valued form on
Verma modules. The Verma moduleVL of lowest weightLPH* is the lowest weight module
such thatVL5Uq(G1) ^ v0 , whereG1 is the subalgebra of the raising generatorsEjk , j ,k, and
v0 is the lowest vector such that

Ejkv050, j .k,

Hkv05L~Hk!v0 . ~4.1!

The states in a Verma module correspond to the monomials of the Poincare´–Birkhoff–Witt basis
of Uq(G1), namely

ulk j[plk j ^ v0 ,

plk j[~E23!
l~E13!

k~E12!
j , l ,k, j PZ1 . ~4.2!

Further, for simplicity we omit the sign̂ , i.e., we write:ulk j5plk jv0 or u5pv0 for short. We
need also the involutive antiautomorphism ofUq(G) such that

v~Hk!5Hk , v~Ejk!5Ek j , v~q!5q21. ~4.3!
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Using the above conjugation the Shapovalov form was defined as follows:2

~u,u8!5~pv0 ,p8,v0![~v0 ,v~p!p8v0!5~v~p8!pv0 ,v0!,

u5pv0 , u85p8v0 , p,p8PUq~G1!, u,u8PVL, ~4.4!

supplemented by the normalization condition (v0 ,v0)51. More explicitly from~4.4! we have

~ulk j ,ul 8k8 j 8!5~plk j ,v0 ,pl 8k8 j 8v0!5~v0 ,v~plk j !pl 8k8 j 8v0!5~v~pl 8k8 j 8!plk jv0 ,v0! ~4.5a!

5~v0 ,~E21!
j~E31!

k~E32!
l~E23!

l 8~E13!
k8~E12!

j 8v0! ~4.5b!

5~~E21!
j 8~E31!

k8~E32!
l 8~E23!

l~E13!
k~E12!

jv0 ,v0! . ~4.5c!

Note that subspaces with different weights are orthogonal w.r.t. to this form

~ulk j ,ul 8k8 j 8!;dk1 l ,k81 l 81dk1 j ,k81 j 8 . ~4.6!

To show~4.6! one uses~4.5b! whenk1 l .k81 l 8 and/ork1 j .k81 j 8, while ~4.5c! is used when
k1 l ,k81 l 8 and/ork1 j ,k81 j 8.

The next step is to recall that the lowest weight module with lowest weight vector 1ˆ and
lowest weightL such thatL(Hk)52r k is canonically obtained as a factor module of the Ver
module with the same lowest weight. The Shapovalov form is inherited by the lowest w

module, and we shall use the same notation only replacingv0 with 1̂. Further a realization of the
Shapovalov form using the polynomial representationG3 was given in Ref. 2 by the following
bilinear form @instead of~4.4!#:

~u,u8! f5~p1̂,p81̂! f[~G3~v~p!!G3~p8!1!ux5y5z50 , ~4.7!

or more explicitly

~ulk j ,ul 8k8 j 8!5~plk j 1̂,pl 8k8 j 81̂! f5~G3~v~plk j !!G3~pl 8k8 j 8!1!ux5y5x505~ p̂lk jv l 8k8 j 8!ux5y5z50 ,

p̂lk j[G3~v~plk j !!5~G3~E21!! j~G3~E31!!k~G3~E32!! l ,

v lk j[G3~plk j !1. ~4.8!

Clearly, whenk1 l .k81 l 8 and/ork1 j .k81 j 8 we havep̂lk jv l 8k8 j 850. Whenk1 l ,k81 l 8 and
k1 j ,k81 j 8 the expressionp̂lk jv l 8k8 j 8 is not zero but a homogeneous polynomial ofx, y, zwhich
vanishes after the substitutionx5y5z50. Finally, whenk1 l 5k81 l 8 and k1 l 5k81 j 8 the
expressionp̂lk jv l 8k8 j 8 is a numerical one coinciding with (ulk j ,ul 8k8 j 8).

Further~4.8! is simplified by settingx5y5z50 in p̂lk j from the very beginning, namely, b
replacingp̂lk j with

p̃lk j[~G̃3~E21!! j~ G̃3~E31!!k~ G̃3~E32!! l ,

G̃3~E21![Dxq
1/4~Nz2Ny!,

~4.9!
G̃3~E32!5Dyq

1/4Nx5G3~E32!,

G̃3~E31![Dzq
1/4~r 12Nx12Ny!5G3~E31!.

Note that this operation affects onlyG3(E21) and it is easy to check that
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~ulk j ,ul 8k8 j 8! f[~ p̃lk jv l 8k8 j 8!ux5y5z50 . ~4.10!

Further we note that

p̃lk j5q1/4~~ l 2k!Nx1~2k2 j !Ny1 jNz1 j l 1k1k~r 12 j !!~Dx!
j~Dz!

k~Dy! l . ~4.11!

Using the above formalism in Ref. 2 was proved the following result~which we correct now
by an overall multiplicative constant!

~f~m! ,f~m8!!p5~p~m!1̂,p~m8!1̂! f5dm11 ,m
118

dm12 ,m
128

dm22 ,m
228

~21!r 1q1/4~m11k22r 1!

3
@r #q! @r 2m12#q! @r 2m2211#q!

@m122m2211#q
N~m! . ~4.12!

The appearance of the constantN(m) in ~4.12! is due to the fact that in the derivationf (m8) was
substituted withN(m)c (m8) .

We use~4.5!, ~4.8!, and~4.12! to define a scalar product by considering the conjugationv as
an antilinear one. Then we actually restrict to the real formUq(su~3!) andq is restricted to be a
phaseuqu51. Further we suppose thatq is not a nontrivial root of unity.

In Ref. 2 it was not possible to make further progress since the constantN(m) was not known.
Now that we know the constantN(m) we can fix the scalar product completely, i.e., we have

~f~m! ,f~m8!!p5dm11 ,m
118

dm12 ,m
128

dm22 ,m
228

~@r #q! !2@r 11#q!) @r 2r 1#q! @r 1#q!

3
@r 2m12#q! @r 2m2211#q! @m122m11#q! @r 12m22#q!

@m122r 1#q! @m112m22#q! @m1211#q! @m22#q! @m122m2211#q
, ~4.13!

or in terms ofc (m)

~c~m! ,c~m8!!5
1

uN~m!u2
~f~m! ,f~m8!!p5dm11 ,m

118
dm12 ,m

128
dm22 ,m

228

3
@r 2m12#q! @r 2m2211#q!

@r 11#q! @r 2r 1#q! @r 1#q! @m122m2211#q

3
@m122r 1#q! @m112m22#q! @m1211#q! @m22#q!

@r 12m22#q! @m122m11#q!
. ~4.14!

Further, we can complete the program of Ref. 2 of finding explicit polynomial realization
the normalized GWZ states. We set

f̂~m!8
f~m!

A~f~m! ,f~m!!p

5
1

Nf~m!
~G3~E21!!m122m11~G3~C̃!!r 2m12~G3~E32!!r 12m22~G3~E13!!r1,

Nf~m!8A~f~m! ,f~m!!p

5@r #q!A@r 11#q! @r 2r 1#q! @r 1#q! @r 2m12#q! @r 2m2211#q! @m122m11#q! @r 12m22#q!

@m122r 1#q! @m112m22#q! @m1211#q! @m22#q! @m122m2211#q
.

~4.15!

Analogously, we set
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ĉ~m!8
c~m

A~c~m!,c~m!
!

5
1

Nc~m!

xm11ym121m222r 1

Gq~r 12m1111! 1F0
qS 2m22;q1/4~m222m1222!

z

xyD
32F1

qS m222m11,r 12m12;r 12m1111;q1/4~m121m22!
z

xyD ,

Nc~m!8A~c~m! ,c~m!

5Nf~m!/uN~m!u

5A@r 2m12#q! @r 2m2211#q! @m122r 1#q! @m112m22#q! @m1211#q! @m22#q!

@r 11#q! @r 2r 1#q! @r 1#q! @m122m2211#q@r 12m22#q! @m122m11#q!
. ~4.16!

Note the analogue of~3.10!

f̂~m!5
N~m!

uN~m!u
ĉ~m!5~21!r 1q1/4~2r 12m11~m121m222r 1!!ĉ~m! . ~4.17!

Finally, we calculate the action of the Chevalley generators on our normalized GWZ s
We get

X1
1f̂~m!5A@m122m11#q@m112m2211#qf̂~m12 ,m1111,m22! , ~4.18a!

X1
2f̂~m!5A@m122m1111#q@m112m22#qf̂~m12 ,m1121,m22

, ~4.18b!

X2
1f̂~m!5a1

1f̂~m1211,m11 ,m22!1a2
1f̂~m12 ,m11 ,m2211! , ~4.18c!

X2
2f̂~m!5a1

2f̂~m1221,m11 ,m22!1a2
2f̂~m12 ,m11 ,m2221! , ~4.18d!

H1f̂~m!5~2m112m122m22!f̂~m! , ~4.18e!

H2f̂~m!5~2~m121m22!2m112r 2r 1!f̂~m! , ~4.18f!

a1
15A@r 2m12#q@m122r 111#q@m1212#q@m122m1111#q

@m122m2211#q@m122m2212#q
, ~4.19a!

a2
15A@r 2m2211#q@r 12m22#q@m2211#q@m112m22#q

@m122m22#q@m122m2211#q
, ~4.19b!

a1
25A@r 2m1211#q@m122r 1#q@m1211#q@m122m11#q

@m122m22#q@m122m2211#q
, ~4.19c!

a2
25A@r 2m2212#q@r 12m2211#q@m22#q@m112m2211#q

@m122m2211#q@m122m2212#q
, ~4.19d!

where we have included also the action of the Cartan generators, which of course is the sa
normalized and for unnormalized GWZ states.

We note now that in~4.18a!–~4.18d! we have recovered the standard transformation ru
which until now were written without derivation—forq51 in Refs. 3 and 4, and forqÞ1 in Ref.
16. In fact, since the only restriction on the transformation rules were the commutation relati
Uq(sl(3)) later it was shown,19 that this restriction was very weak and one can generalize
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above formulas by replacing the square roots, i.e., the powers 1/2, in the matrix eleme
~4.18a!–~4.18d! by the powers 0 and 1. There is no such freedom in our case. The only fre
we have is in phase factors, like the one relatingf̂ (m) andĉ

„m…
. Indeed, the transformation rule

for ĉ
„m…

are the same as~4.18a!–~4.18d! except for theq¯ factors which are the same as in~3.7!
and ~3.8!.

V. SUMMATION FORMULAS

In this section we derive summation formulas using formula~3.16! for the constantN
„m…

and
another independent expression forN

„m…
. To find the latter we first use formula~11! from Ref. 2

~G3~E23!
lG3~E13!

kG3~E12!
j1! uz505~21!kq1/4$~ j 12r 22k12!k2 l ~ j 1k!%

3
Gq~r 111!

Gq~r 12 j 2k11!

Gq~r 21 j 11!

Gq~r 21 j 2 l 11!
xj 1kyl 1k. ~5.1!

Note that the RHS of~5.1! is equal to zero whenj 1k>r 111 ~because of theGq(r 12 j 2k
11) in the denominator!. We use this formula to find the polynomialf

„m…
at z50

~f~m!! uz505N~m!
1

xm11ym121m222r 1

Gq~r 12m1111!
, ~5.2a!

N~m!
1 5~21!m12q1/2~~1/2m112m121r !~m121m222r 1!1~12m22!m12!

@r #q! @r 112m22#q! @r 2m12#q! @r 1#q!

@r 1m112m122m22#q!

3 (
t50

r 2m12

(
uPZ1

~21! t1uS m122m111t
u D

q

qt/2~r 12m122m22!1u/2~ t1m122r 21!@r 12m221t#q!

@ t#q! @m222t#q! @m122m22111t#q!

3
@r 1m112m122m221u#q! @m121m222m112u#q!

@r 11m112m122m221u#q! @m121m222r 12u#q!
, r 1>m11. ~5.2b!

Note that (f
„m…

) ux5050 whenr 1,m11. Next we note the value ofc
„m…

at z50 @using ~3.6!#

~c~m!! uz505
xm11ym121m222r 1

Gq~r 12m1111!
. ~5.3!

Now we compare~3.10!, ~5.2a!, and~5.3!, and conclude that

N~m!5N~m!
1 , r 1>m11. ~5.4!

From the latter using~5.2b! and ~3.16! we get the following summation formula:
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(
t50

r 2m12

(
uPZ1

~21! t1uS m122m111t
u D

q

qt/2~r 12m122m22!1u/2~ t1m122r 21!

@ t#q! @m222t#q! @m122m22111t#q!

3
@r 12m221t#q! @r 1m112m122m221u#q! @m121m222m112u#q!

@r 11m112m122m221u#q! @m121m222r 12u#q!

5
@r 1m112m122m22#q! @r 12m22#q! @m121m222m11#q!

@m12112m22#q! @m121m222r 1#q! @m22#q!

3 (
t50

r 2m12 qt/2~r 12m122m22!

Gq~r 11m112m122m2211!

~2m22! t
q~r 12m2211! t

q

@ t#q! ~m122m2212! t
q 33F2

q~r 1m112m122m22

11,r 12m122m22,m112m122t;r 11m112m122m2211,m112m122m22;q1/2~ t1m122r 21!!

5~21!m121r 1q1/2~r 11~m111r 2m12!~r 12m122m22!1m12~m2221!!

3
@r 11#q! @r 2r 1#q! @r 1m112m122m22#q! @r 12m22#q! @m122m11#q!

@r 112m22#q! @r 2m12#q! @m122r 1#q! @m112m22#q! @m22#q!
. ~5.5!

In order to show better the properties of the above formula, we will rewrite it in represent
independent parameters:

r 5b12b2211m11N,

r 15b12b221,

m125b12b2211m1 , ~5.6!

m115b11m11m221,

m225m2 ,

the inverse change of parameters being

b15r 12m121m112m2211,

b25m112m122m22,

m15m122r 1 , ~5.7!

m25m22,

N5r 2m12.

Now we rewrite~5.5! in the new variables using alsoq-Pochhammer symbols and the3F2
q

q-hypergeometric function

1

Gq~b1! (t50

N

q2t/2~m11m2!
~2m2! t

q~b12b22m2! t
q

~b12b21m12m211! t
q~1! t

q 33F2
q~2~m11m2!,b11m11N,b21m2

2t;b1 ,b2 ;q1/2~ t2N21!

5~21!m11m2q21/2~m11b11N!1m2~m21b21N!1m1m2!

3
~b12b21m111!N

q ~m111!N
q

~b12b21m12m211!N
q ~1!N

q

~1!m11m2

q

@b11m121#q! ~b2!m2

q . ~5.8!
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For the better comparison with the literature onq-summation formulas we rewrite our formul
in the notation of Ref. 20. We shall use the definition~1.2.15! for the q-shifted factorial

~a;q!n5H 1, n50

~12a!~12aq!¯~12aqn21!, n51,2,...
, ~5.9!

and ~1.2.22! for the basic hypergeometric series

rfs~a1 ,...,ar ;b1 ,...,bs ;q,z!5 (
n50

`
~a1 ;q!n¯~ar ;q!n

~q;q!n~b1 ;q!n¯~bs ;q!n
@~21!nq~2

n
!#11s2rzn. ~5.10!

For completeness we mention also the relation between ourq-Pochhammer symbol and the not
tion of Ref. 20

~a!n
q5~2l!2nq2~n21!n/4q2na/2~qa;q!n , l[q1/22q21/2. ~5.11!

Now our summation formulas~5.5! or ~5.8! can be rewritten as~whenb1.0)

(
t50

N

qt
~q2m2;q! t~qb12b22m2;q! t

~qb12b21m12m211;q! t~q;q! t
33f2~q2~m11m2!,qb11m11N,qb21m22t;qb1,qb2;q;qt2N!

5~21!m11m2q21/2~m11m2!~m11m21112N!

3
~qb12b21m111;q!N~qm111;q!N

~qb12b21m12m211;q!N~q;q!N

~q;q!m11m2

~qb1;q!m1
~qb2;q!m2

. ~5.12!

This new summation formula seems unknown also for the classical caseq51. Partial cases
can be found in the literature. For instance, the caseN50, i.e.,m125r , reduces to aq-Karlsson–
Minton Formula, cf.~1.9.8! of Ref. 20

3f2~q2~m11m2!,qb11m1,qb21m2;qb1,qb2;q;1!

5~21!m11m2q21/2~m11m2!~m11m211!
~q;q!m11m2

~qb1;q!m1
~qb2;q!m2

. ~5.13!

It corresponds to a 0-balanced3f2 .20

Finally, we note that the left-hand-side~LHS! of our summation formula~5.12! can be written
in terms of the followingq-hypergeometric function of two variables

F l ;m;n
a;b;c;dS a1 ,...,aa ;b1 ,...,bb ;g1 ,...,gc ;d1¯dd ;q;x,y

l1 ,...,l l ;m1 ,...,mm ;n1 ,...,nn ; ; i , j ,k D
5 (

t,u50

`

q~1/2!i t ~ t21!1~1/2! ju~u21!1ktu

3
)s51

a ~as ;q! t1u)s51
b ~bs ;q! t)s51

c ~gs ;q!u

)s51
l ~ls ;q! t1u)s51

m ~ms ;q! t)s51
n ~ns ;q!u

)
s51

d

~ds ;q!u2t

xt

~q;q! t

yu

~q;q!u
.

~5.14!

This definition is modelled on Ref. 21, cf. p. 349. Since the latter does not cover case
differences of summation indices in the Pochhammers we extend the definition with such
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Some simpler examples can be found in Ref. 22. It is not necessary to add terms of this type
denominator, because the latter can be transformed to numerator terms~plus rearrangement of th
other parameters which does not affect the definition! with the relation:

~a;q!2n5
~2a!2nq~n11!n/2

~q/a;q!n
. ~5.15!

Using this definition the LHS of~5.12! may be rewritten as

F0;1;2
0;3;2;1S 2;b1 ,b2 ,b3 ;g1 ,g2 ;d1 ;q;2qb21m2,q2N

2;m1 ;n1 ,n2 ; ;21,0,1 D , ~5.16!

where

b15q2m2, b25qb12b22m2, b35q12b22m2,

g15q2~m11m2!, g25qb11m11N, d15qb21m2, ~5.17!

m15qb12b21m12m211;n15qb1, n25qb2.

In the transition from~5.12! to ~5.16! we made use of the following relation:

~qa2t;q!u5~21! tq2t~ t21!/21~a21!t~q12a;q! t~qa;q!u2t . ~5.18!
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APPENDIX A: DERIVATION OF FORMULA „3.2b…

The derivation of formula~3.2b! from formula ~3.2a! proceeds as follows. First we note th
if w is such that

H1w5h1w, ~A1!

then it follows:

C̃pw5(
t50

p
1

@ t#q!
~@p2t11#q! t~@h1122p1t#q!p2tq

2t~h111!/2E21
t E32

t E31
p2tw. ~A2!

We apply this forw5E32
r 12m22E13

r 1̂, whenh15r 1m222r 1 . Then we use consecutively

E31E325q21/2E32E31, ~A3!

E31
n E13

r 1̂5@n#q!
@r #q!

@r 2n#a!
E13

r 2n1̂, n,r , ~A4!

E32
l E13

k 1̂5~21! l
@k#q!

@k2 l #q!
ql ~r 211!/2E12

l E13
k2 l 1̂, l ,k, ~A5!

E12E135q21/2E13E12, ~A6!
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E21
n E13

k E12
j 1̂5(

s50

n

asE23
s E13

k2sE12
j 2n1s1̂, ~A7!

as5q2sr1/2qs jqs~s2n!/2S n
sD

q
S k
sD

q
S j
n2sD

q
S r 12 j 1n2s

n2s D
q
~@n2s#q! !2@s#q!

ending up with~3.2b!.

APPENDIX B: SOME RELATIONS BETWEEN q-HYPERGEOMETRIC FUNCTIONS

Here we give some relations used in the derivation of~3.7! and ~3.8!. Most used was the
formula

1F0
q~d,q1/2aj!5~12q1/2~a6d61!j !1F0

q~d11,q1/2~a61!j !, ~B1!

which is a special case of

1F0
q~2x,q1/2aj!1F0

q~2y,q1/2gj!51F0
q~2~x1y!,q1/2~a6y!j !

when a2g57~x1y!;x,y>0. ~B2!

Other formulas which were used are

2F1
q~a,b,c,q1/2~b61!j !52F1

q~a11,b,c,q1/2bj!2j
@b#q

@c#q
q1/2~b7a!

2F1
q~a11,b11,c11,q1/2bj!,

~B3!

2F1
q~a,b,c;q1/2bj!5

@c2a#q

@c2a2b#q
q61/2b

2F1
q~a21,b,c,q1/2~b61!j !

2
@b#q

@c2a2b#q
q61/2~c2a!~12q1/2~b7~c2a2b21!!j !2F1

q~a,b

11,c,q1/2~b61!j !, ~B4!

@a21#q2F1
q~a,b,c;q1/2bj!5@c21#qq61/2~a2c!

2F1
q~a21,b,c21,q1/2bj!

1@a2c#qq61/2~12c!
2F1

q~a21,b,c,q1/2~b71!j !, ~B5!

@c#q2F1
q~a,b,c;q1/2bj!5@c2b#qq61/2b

2F1
q~a11,b,c11,q1/2bj!1@b#qq61/2~b2c!

3~12q1/2~b7~a1b2c11!!j !2F1
q~a11,b11,c11,q1/2~b71!j !,

~B6a!

@c#q2F1
q~a,b,c;q1/2bj!5@c2b#qq61/2b

2F1
q~a11,b,c11,q1/2~b62!j !1@b#qq61/2~b2c!~1

2q1/2~b7~2a1b2c21!!j !2F1
q~a11,b11,c11,q1/2~b61!j !, ~B6b!

@a#q~12q1/2~b6~a1b2c11!!j !2F1
q~a11,b,c,q1/2~b61!j !

5@c2a#qq61/2~2a2c!
2F1

q~a21,b,c,q1/2~b61!j !

1~@2a2c#qq61/2~a2c!1@b2a#qq1/2~b6~a2c11!!j !2F1
q~a,b,c;q1/2bj!, ~B7!

2F1
q~a,b,c,q1/2~b12!j !5q2a

2F1
q~a,b,c;q1/2bj!1~12q2a!2F1

q~a11,b,c,q1/2~b11!j !.
~B8!
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It is interesting to note, that the last equality@which is obtained from~B3! and ~B6!# for q51
becomes just the trivial identity 151, while the rest of exhibited relations have well known lim
in this case.
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Integrable evolution systems based on Gerdjikov–Ivanov
equations, bi-Hamiltonian structure, finite-dimensional
integrable systems and N-fold Darboux transformation

Engui Fana)

Institute of Mathematics, Fudan University, Shanghai 200433, People’s Republic of China

~Received 1 May 2000; accepted for publication 24 July 2000!

A spectral problem and the associated Gerdjikov–Ivanov~GI! hierarchy of nonlin-
ear evolution equations is presented. As a reduction, the well-known GI equation of
derivative nonlinear Schro¨dinger equations is obtained. It is shown that the GI
hierarchy is integrable in a Liouville sense and possesses bi-Hamiltonian structure.
Moreover, the spectral problem can be nonlinearized as a finite dimensional com-
pletely integrable system under the Bargmann constraint between the potentials and
the eigenfunctions. In particular, an explicitN-fold Darboux transformation for the
GI equation is constructed with the help of a gauge transformation of spectral
problems and a reduction technique. Some explicit solitonlike solutions of the GI
equation are given by applying its Darboux transformation. ©2000 American
Institute of Physics.@S0022-2488~00!01611-X#

I. INTRODUCTION

It is an important task in soliton theory to find new integrable systems such as those co
ing with well-known physical meaning equations. The demonstration of a bi-Hamiltonian stru
for a system of partial differential equations is a direct and elegant method of proving its com
integrability.1–5 If a set of partial differential equations can be formulated as a Hamiltonian sy
in two distinct but compatible ways, then by a theorem of Magri,1 they give rise to an infinite
sequence of conserved Hamiltonians which are in involution with respect to either one of
two symplectic structures. Recently, two other effective approaches that produce in
dimensional and finite-dimensional integrable Hamiltonian systems, respectively, also hav
developed. The first one is the trace identity,6 which is powerful for constructing infinite-
dimensional Liouville integrable Hamiltonian systems. Starting from a properly spectral prob
many integrable hierarchies and their Hamiltonian structure~e.g., AKNS, TC, TA, BPT, Yang!
have been obtained by applying this method.6,7 The second one is called nonlinearizatio
technique,8,9 which is also proved to be a powerful tool for obtaining new finite-dimensio
integrable Hamiltonian systems from various soliton hierarchies. Under the Bargmann or
mann constraints between the potentials and the eigenvalues which play a central role
process of nonlinearization, the eigenvalue problem is nonlinearized as a finite dimensiona
pletely integrable system. The list covered the eigenvalue problems associated with the
known soliton hierarchies such as the KdV, AKNS, Jaulent–Miodek, Kaup–Newell exam
etc.9–11 Another important application of this method is that the solution of the soliton equa
associated with an eigenvalue problem is reduced to solving the compatible system of no
ordinary differential equations.9–12Later, this approach was developed further as a general me
to treat the higher-order constraints and to obtain the associated infinitely many hierarch
finite-dimensional integrable Hamiltonian systems.13,14

It is well known that among the various approaches followed to study the behavior of
linear partial differential equations~PDEs!, Darboux transformation~DT! has been proved to b
one of the most fruitful algorithmic procedures to get explicit solutions of PDEs.15,16The first and

a!Electronic mail: faneg@fudan.edu.cn
77690022-2488/2000/41(11)/7769/14/$17.00 © 2000 American Institute of Physics
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successive DT of trivial solutions are called single solitons and multisolitons, respectively
key for constructing DT is to expose a kind of covariant properties that corresponding sp
problems possess. There are many tricks for getting explicit solutions to various soliton equ
including the KdV equation, Davey–Stewartson equation, self-dual Yang–Mills equa
etc.15–24 In Refs. 17 and 18, a systematic method is presented to directly construct an e
formula for N-fold DT of AKNS hierarchy. ThisN-fold DT formula can be interpreted as
nonlinear superposition of single DT. Moreover, the solutions of any systems in AKNS hiera
is reduced to solving a linear algebraic system, which is very suitable for generating multis
solutions by symbolic computation on a computer.

The nonlinear Schro¨dinger ~NLS! equation is one of the most generic soliton equations,
which arises from a wide variety of fields, such as quantum field theory, weakly nonlinea
persive water waves and nonlinear optics.25–28 To study the effect of higher order perturbation
various modifications and generalizations of the NLS equations have been proposed and
for these years. Among them, there are three celebrated derivative nonlinear Schro¨dinger~DNLS!
equations, which are the Kaup–Newell equations29

iqt1qxx1 i ~ uqu2q!x50,

the Chen–Lee–Liu equations30,31

iqt1qxx1 i uqu2qx50,

and Gerdjikov–Ivanov equations32,33

iqt1qxx2 iq2qx* 1 1
2q

3q*
2
50, ~1!

whereq* denotes the complex conjugate ofq. These three equations are usually called DNL
DNLSII, and DNLSIII, respectively. It is found that they may be transformed into each othe
a gauge transformation, and the method of gauge transformation also can be applied to
generalized cases.34–37In recent years, the spectral problem, Hamiltonian structure, Painleve´ prop-
erty, exact solutions, and other properties associated with the Kaup–Newell equation hav
investigated in details.28,29,35,38,39Therefore corresponding results for the GI equation~1! may be
obtained by some gauge transformation@see ~3! below# in principle. However to obtain their
explicit form, we must solve the integrable equation~3!. The integration will become very com
plicated with increase of iterative times, especially in multisoliton solutions. In this paper
study the GI equation~1! with help of a spectral problem

yx5S 2 il22 1
2 iqr lq

lr il21 1
2 iqr

D y, ~2!

whereq andr are two potentials andl is a spectral parameter. This spectral problem is a sim
extension of the Kaup–Newell spectral problem. Since setting

ỹ5S expS 1
2 i E qr dxD 0

0 expS 2 1
2 i E qr dxD D y,

~3!

q̃5q expS i E qr dxD , r̃ 5r expS 2 i E qr dxD ,

and by simple calculation, we know that the spectral problem~2! is equivalent to the standar
Kaup–Newell spectral problem
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ỹx5S 2 il2 lq̃

l r̃ il2D ỹ.

This paper is organized as follows. In the next section, we shall derive a GI hierarchy st
from the spectral problem~2!. The first system in the hierarchy is exactly a coupled GI system
derivative Schro¨dinger equations. It is shown that the GI hierarchy is Liouville integrable, an
bi-Hamiltonian structure is established by trace identity. In Sec. III, through the nonlineariz
of the eigenvalue problem~2!, the finite dimensional completely integrable system in a Liouv
sense is also obtained under the Bargmann constraint between the potential and eigenfunc
Sec. IV Neugebauer’s method is extended to construct aN-fold DT for a coupled GI system with
the help of their Lax pairs, from which the multisoliton solutions of a coupled GI system
reduced to solving two linear algebraic systems. In Sec. V, a Darboux transformation of t
equation~1! is obtained from that of a coupled GI system through a reduction technique. Fu
more, the one- and two-soliton solutions of the GI equation~1! are constructed explicitly by
applying its DT.

II. A GI HIERARCHY AND ITS BI-HAMILTONIAN STRUCTURE

In order to derive a GI hierarchy by using the zero curvature equation, we first solv
adjoint representation of the spectral problem~2!,

Vx5@U,V#5UV2VU,

with

V5S a b

c 2aD 5(
j 50

` S aj bj

cj 2aj
D l2 j ,

and obtain the following recursive formulas:

a2 j 115b2 j5c2 j50,

a2 jx5qc2 j 112rb2 j 1152 1
2 qr~qc2 j 212rb2 j 21!2 1

2 i ~qc2 j 21x1rb2 j 21x!,

b2 j 115 1
2 ib2 j 21x1 iqa2 j2

1
2 qrb2 j 21 ,

c2 j 1152 1
2 ic2 j 21x1 ira 2 j2

1
2 qrc2 j 21 .

Therefore it is easy to deduce that

a0522i , b152q, c152r , a252 iqr ,

b35 iqx , c352 ir x , a45 1
2 ~rqx2qrx!1 1

4 iq2r 2. ~4!

S c2 j 11

b2 j 11
D 5L1L2S c2 j 21

b2 j 21
D , j 51,2, . . . ,

where

L15
1

2 S r ]21r 2 i 1r ]21q

i 1q]21r q]21q D , L25S 0 ]1 iqr

]2 iqr 0 D
are two skew-symmetric operators, that isL1* 52L1 , L2* 52L2 .
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Consider the auxiliary spectral problem

yt5V(n)y, ~5!

where

V(n)5S Dn 0

0 2Dn
D 1(

j 50

n S a2 jl
2(n2 j )12 b2 j 11l2(n2 j )11

c2 j 11l2(n2 j )11 2a2 jl
2(n2 j )12 D .

Then the compatibility condition between~2! and ~5! gives the zero curvature equationUt

2Vx
(n)1@U,V(n)#50, which is equivalent to

2 1
2 i ~qr ! t52 1

2 i ~qtr 1r tq!5Dnx ,

qt5b2n11x1 iqrb2n1112qDn ,

r t5c2n11x2 iqrc2n1122rDn ,

from which, we obtain

Dn52 1
2 i ]21~qc2n11x1rb2n11x!2 1

2 ]21qr~qc2n112rb2n11!

and

S qt

r t
D 5L3L2S c2n11

b2n11
D , ~6!

where

L35S 12 iq]21r 2 iq]21q

ir ]21r 11 ir ]21qD .

Therefore a GI hierarchy of evolution equations is obtained from~4! and ~6!

S qt

r t
D 5~L3L2!S c2n11

b2n11
D

5~L3L2!~L1L2!S c2n21

b2n21
D

5~L3L2!~L1L2!nS 2r

2qD , n51,2, . . . . ~7!

The first system in the hierarchy~7! is a coupled GI system

iqt1qxx2 iq2r x1 1
2 q3r 250,

ir t2r xx1 ir 2qx2 1
2 q2r 350, ~8!

which exactly reduces the well-known GI equation~1! by settingr 52q* . In the following we
will establish the bi-Hamiltonian structure for the hierarchy~7! and show it is integrable in
Liouville’s sense. In order to apply trace identity,6,7 we need to rewrite~7! in another form. We
introduce
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G2 j 115~c2 j 112 ira 2 j ,b2 j 112 iqa2 j !
T.

Noting thata2 j5]21(qc2 j 112rb2 j 11), we have

~c2 j 11 ,b2 j 11!T5L3* G2 j 11 , j >0. ~9!

In this way, the evolution hierarchy~7! can be rewritten in the form

ut5JG2 j 115KG2 j 215JLnG1 , ~10!

where G15(2r ,2q)T, u5(q,r )T, J5L3L2L3* , K5L3L2L1L2L3* , L5L3*
21

L1L2L3* . It is clear
that J andK are two skew-symmetric operators. Following the notation used in Ref. 6, we
Killing–Cartan form^A,B& is tr(AB). Then direct calculation gives

K V,
]U

]q L 5cl2 ira , K V,
]U

]r L 5bl2 iqa,

K V,
]U

]l L 524ial1rb1qc.

By using trace identity, we have

d

du
~24ial1rb1qc!5l2g

]

]l
~lg~cl2 ira ,bl2 iqa!T!.

Substituting

a5 (
n>0

a2nl22n, b5 (
n>0

b2n11l22n21, c5 (
n>0

c2n11l22n21

into the above equation yields

d

du
~24ia2n121rb2n111qc2n11!5~22n1g!G2n11 . ~11!

To fix the g, we letn50 in ~11! and findg50. Therefore we conclude that

G2n115
dH2n

du
, ~12!

where

H052qr, H2n5
4ia2n122rb2n112qc2n11

2n
, n>1.

Combining~10! with ~12! gives the desired bi-Hamiltonian structure of the hierarchy~7!

ut5J
dH2n

du
5K

dH2n22

du
, n51,2, . . . . ~13!

Finally we discuss the integrability of the hierarchy~7! or ~13!. It is crucial to show the
existence of infinite involutive conserved densities. According to the theorem in Ref. 6, we
need to show thatJ andJL are all skew symmetric. SinceJ, K, L1 , andL2 are skew symmetric,
it holds that
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JL5~L3L2L3* !~L3*
21

L1L2L3* !5K52K* 52~L3*
21

L1L2L3* !* ~L3L2L3* !* 52L* J* 5L* J.

So we arrive at the following theorem.
Theorem 1: ~i! The hierarchy~7! is an integrable Hamiltonian system in a Liouville sense.~ii !

The functions$Hm% are conserved densities of the whole hierarchy~7! and they are in involution
in pairs.

Example 1:Since the coupled GI system~8! belongs to the hierarchy~7!, we conclude that it
is Liouville integrable and possess the bi-Hamiltonian structure

ut5J
dH2

du
5K

dH0

du
,

where Hamiltonian functionsH0 andH2 are

H052qr, H25
i ~rqx2qrx!2q2r 2

2
.

The Lax pairs corresponding to the GI system~8! may be given by the spectral problem~2! and
the auxiliary problem

yt5V(1)y, V(1)5S v11 v12

v21 2v11
D , ~14!

with

v11522il42 iqrl21 1
2 ~rqx2qrx!1 1

4iq
2r 2,

v1252ql31 iqxl, v2152rl32 ir xl.

III. A FINITE-DIMENSIONAL INTEGRABLE SYSTEM

Let l j ( j 51, . . . ,N) be N different eigenvalues of Eq.~2!, and (c j ,f j ) be associated eigen
functions. Then the functional gradientl j with respect tou is

dl j

du
5S dl j

dq
,
dl j

dr D T

5g j
21~l jf j

22 ir c jf j ,2l jc j
22 iqc jf j !

T,

whereg j5*(qf j
22rc j

214il jc jf j )dx.
Proposition 1: JandK are Lenard’s pair of operators, this is

K
dl j

du
5l j

2J
dl j

du
. ~15!

Proof: Making use of Eq.~2!, direct verification indicates that

L3*
dl j

du
5l j S f j

2

2c j
2D , ~16!

L1L2S f j
2

2c j
2D 5l j

2S f j
2

2c j
2D . ~17!

Substituting~16! into ~17! and multiplyingL3L2 on both sides of it, then~15! is obtained.
Consider the Bargmann constraint
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G15(
j 51

N

g j

dl j

du
,

that is

q52
^`c,c&

21 i ^c,f&
, r 5

^`f,f&
21 i ^c,f&

, ~18!

wherec5(c1 , . . . ,cN)T,f5(f1 , . . . ,fN)T,`5diag(l1 , . . . ,lN), and^•,•& is the standard in-
ner product inRN. Under the Bargmann constraint~18!, Eq. ~2! is nonlinearized into a finite-
dimensional Hamiltonian system

cx52`2c2
c^`c,c&^`f,f&

~21 i ^c,f&!2
2

`f^`c,c&
21 i ^c,f&

52
]H

]f
, ~19!

fx5`2f1
f^`c,c&^`f,f&

~21 i ^c,f&!2
1

`c^`c,c&
21 i ^c,f&

5
]H

]c
, ~20!

whose Hamiltonian functionH is

H5^`2c,f&1
^`c,c&^`f,f&

2~21 i ^c,f&!
.

The Poisson bracket of two functions in symplectic space (R2N,dc`df) is defined as

~F,G!5(
j 51

N S ]F

]c j

]G

]f j
2

]F

]f j

]G

]c j
D5 K ]F

]c
,
]G

]f L 2 K ]F

]f
,
]G

]c L ,

which is skew symmetric, bilinear and satisfies the Jacobi identity . In particular,F and G are
called involution if (F,G)50. Now we consider the function system

Fm5~21 i ^c,f&!^`2m12c,f&1
1

2 (
j 50

m UP~`2(m2 j )11c,c& ^`2(m2 j )12c,f&

^`2 jc,f& ^`2 j 11f,f&
U, m50,1,. . . .

~21!

Proposition 2:The inner product̂]Fm /]c , ]Fn /]f& is symmetrical aboutm andn, i.e.,

K ]Fm

]c
,
]Fn

]f L 5 K ]Fn

]c
,
]Fm

]f L . ~22!

Proof: Noticing that

]Fm

]c
5 if^`2m12c,f&1~21 i ^c,f&!`2m12f

1(
j 51

m

~^`2(m2 j )11f,f&`2 j 11c2^`2(m2 j )12c,f&`2 jf!, ~23!
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]Fn

]f
5 ic^`2n12c,f&1~21 i ^c,f&!`2n12c

1(
j 51

m

~^`2(n2 j )11c,c&`2 j 11f2^`2(n2 j )12c,f&`2 jc!. ~24!

Through a series of direct calculations, it is easy to see that^]Fm /]c , ]Fn /]f& is the sum of the
symmetrical items aboutm andn. So ~22! is proved.

Proposition 3:The functions defined by~21! are in involution in pair

~Fm ,Fn!50.

Proof: By Proposition 2, we have

~Fm ,Fn!5 K ]Fm

]c
,
]Fn

]f L 2 K ]Fm

]f
,
]Fn

]c L 5 K ]Fn

]c
,
]Fm

]f L 2 K ]Fm

]f
,
]Fn

]c L 50.

Proposition 4:(H ,Fm)50.
Proof: As before, making use of~20!, ~21!, ~23!, and~24! and through direct calculation, w

have

~H,Fm!5 K ]H

]c
,
]Fm

]f L 2 K ]H

]f
,
]Fm

]c L 50.

On the basis of these results, we conclude the following.
Theorem 2: The Hamiltonian system defined by~19! and~20! is completely integrable in the

Liouville sense in the symplectic manifold (R2N,dc`df). The involutive solutions of the GI
hierarchy associated Bargmann system can be further given by the coupled KdV hierarchy10 ~we
omit it here!.

IV. DARBOUX TRANSFORMATION

In this section, we shall construct aN-fold DT for the coupled GI system~8!. The Darboux
transformation is actually a special gauge transformation

ỹ5Ty ~25!

of the solutions of the Lax pairs~2! and ~14!. It is required thatỹ also satisfies the Lax pairs~2!

and ~14! with someŨ and Ṽ(1), i.e.,

ỹx5Ũỹ, Ũ5~Tx1TU!T21, ~26!

ỹt5Ṽ(1)ỹ, Ṽ(1)5~Tt1TV(1)!T21. ~27!

By cross differentiating~26! and ~27!, we get

Ũt2Ṽx
(1)1@Ũ,Ṽ(1)#5T~Ut2Vx

(1)1@U,V(1)# !T21, ~28!

which implies that in order to make Eq.~8! invariant under the gauge transformation~25!, we
should require thatŨ andṼ(1) have the same forms asU andV(1), respectively. At the same tim
the old potentialsq andr in U, V(1) will be mapped into new potentialsq̃ and r̃ in Ũ, Ṽ(1). This
process can be done continually and usually it may yield a series of multisoliton solu
Following the Neugebauer’s scheme,18 we can directly constructN-fold DT for the coupled GI
system~8! as follows.
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Let (f1(x,t,l),f2(x,t,l))T and (c1(x,t,l),c2(x,t,l))T be two basic solutions of the spec
tral problem~2! and~14!, and use them to define two linear algebraic systems forAk , Bk , Ck , and
Dk (0<k<N21):

(
k50

N21

~Ak1a jl jBk!l j
2k52l j

2N , 1< j <2N, ~29!

(
k50

N21

~l jCk1a jDk!l j
2k52a jl j

2N , 1< j <2N, ~30!

with

a j5
f2~l j !2g jc2~l j !

f1~l j !2g jc1~l j !
, 1< j <2N, ~31!

wherel j andg j are some parameters suitably chosen, such that determinants of the coeffi
for ~29! and ~30! are nonzero. HenceAk , Bk , Ck , andDk are uniquely determined by~29! and
~30!. Now we let

T5S A~l! B~l!

C~l! D~l!
D 5Il2N1 (

k50

N21

~Q2k1lQ2k11!l2k, ~32!

which is a (2N)th order polynomial inl with matrix coefficient, and

I 5S 1 0

0 1D , Q2k5S Ak 0

0 Dk
D , Q2k115S 0 Bk

Ck 0 D , 0<k<N21.

From ~29!, ~30!, and~32!, it is easy to see that detT(l) is a (4N)th order polynomial ofl, and
6l j (1< j <2N) are all its roots. Therefore, we have

detT~l!5)
j 51

2N

~l22l j
2!. ~33!

Proposition 5:The matrixŨ determined by~26! has the same form asU, that is,

Ũ5S 2 il22
1

2
i q̃ r̃ lq̃

l r̃ il21
1

2
i q̃ r̃
D ,

where the transformations betweenq, r and q̃, r̃ are given by

q̃5q12iBN21 , r̃ 5r 22iCN21 . ~34!

The transformation~25! and ~34!: (c,q,r )→(c̃,q̃, r̃ ) is a DT of the spectral problem~2!.
Proof: Let T215T* /detT and

~Tx1TU!T* 5S f 11~l! f 12~l!

f 21~l! f 22~l!
D . ~35!

It is easy to see thatf 11(l) and f 22(l) are (4N12)th order polynomials inl, f 12(l) and f 21(l)
are ~4N11!th order polynomials inl.
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On the other hand, making use of~2!,~29!–~31!, we find that

a jx5l j r 2l jqa j
212i~l j

21 1
2 qr!a j ,

A~6l j !57a jB~6l j !,C~6l j !57a jD~6l j !.

From the above equalities, it is easy to verify that all6l j (1< j <2N) are roots off k j(l) (k, j
51,2), which together with~33! implies that f k j(l) may be divided by detT, and thus (Tx

1TU)T21 is a second order polynomial inl with matrix coefficients, that is

Tx1TU5~Ũ2l21Ũ1l1Ũ0!T, ~36!

where the matricesŨ2(x,t), Ũ1(x,t), and Ũ0(x,t) do not depend onl. We denoteU5U2l2

1U1l1U0 with

U25S 2 i 0

0 i D , U15S 0 q

r 0D , U05S 2 1
2iqr 0

0 1
2iqr

D .

Comparing the coefficients ofl2N12, l2N11, andlN in ~36! yields

~2N12!th coeff: Ũ25U2 ,

~2N11!th coeff: Ũ15U11@Q2N21 ,U2#5S 0 q̃

r̃ 0
D ,

~2N!th coeff: Ũ05U01Q2N21U12Ũ1Q2N215S 2 1
2i q̃ r̃ 0

0 1
2i q̃ r̃

D ,

with q̃ and r̃ as in ~34!. The proof is completed.
Next we try to prove thatṼ(1) in ~27! has the same form asV(1) under the transformation~25!

and ~34!.
Proposition 6:The matrixṼ(1) in ~27! has the same form asV(1) under the same transforma

tion ~25! and ~34!.
Proof: In a way similar to Theorem 1, we can prove that (Tt1TV(1))T21 is a fourth order

polynomial inl with matrix coefficients, that is,

Tt1TV(1)5~Ṽ4l41Ṽ3l31Ṽ2l21Ṽ1l1Ṽ0!T.

We write V(1) in the formV(1)5V4l41V3l31V2l21V1l1V0 , with

V45S 22i 0

0 2i D , V35S 0 2q

2r 0 D , V25S 2 iqr 0

0 iqr D ,

V15S 0 iqx

2 ir x 0 D , V05S 1
2~rqx2qrx!1 1

4iq
2r 2 0

0 2 1
2~rqx2qrx!2 1

4iq
2r 2D .

Comparing the coefficients ofl2N1 j ( j 50,1,2,3,4) yields

~2N14!th coeff: Ṽ45V4 ,
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~2N13!th coeff: Ṽ35V31@Q2N21 ,V4#5S 0 2q̃

2r̃ 0
D ,

~2N12!th coeff: Ṽ25V21Q2N21V32Ṽ3Q2N215S 2 i q̃ r̃ 0

0 i q̃ r̃
D ,

~2N11!th coeff: Ṽ15V11Q2N21V22Ṽ2Q2N211~@Q2N23 ,V4#1Q2N22V32Ṽ3Q2N22!,
~37!

~2N!th coeff: Ṽ05V01Q2N23V32Ṽ3Q2N231Q2N22V22Ṽ2Q2N221Q2N21V12Ṽ1Q2N21

5V01Q2N21V12Ṽ1Q2N211 1
2U2Ũ1~@Q2N23 ,V4#1Q2N22V32Ṽ3Q2N22!

2 1
2~@Q2N23 ,V4#1Q2N22V32Ṽ3Q2N22!U2U1 . ~38!

Again comparing the coefficient ofl2N21 in ~36! and noting thatV452U2 , V352U1 , Ṽ3

52Ũ1 , V252U0 , Ṽ252Ũ0 , we find that

@Q2N23 ,V4#1Q2N22V32Ṽ3Q2N22522Q2N21x2Q2N21V21Ṽ2Q2N21 . ~39!

Substituting~39! into ~37! and~38!, direct calculation shows thatṼ1 andṼ0 possess the same form
asV1 andV0 . The theorem is completed.

Propositions 5 and 6 show that the transformation~25! and~34! change the Lax pairs~2! and
~14! into other Lax pairs~26! and ~27! in the same type. Therefore both of the Lax pairs lead
the same coupled GI system~8!. We call the transformation (c,q,r )→(c̃,q̃, r̃ ) a DT of the
coupled GI system~8!.

V. REDUCTION OF DARBOUX TRANSFORMATION AND APPLICATION

In this section theN-fold DT of the GI equation~1! will be obtained from that of a coupled G
system~8! by using a reduction technique. For this purpose we letr 52q* , and choose two
solutions of the Lax pairs~2! and ~14! as

f~l!5~f1~l!,f2~l!!T, c~l!5~2f2* ~l* !,f1* ~l* !!T,

and parameters

l2 j5l2 j 21* , g2 j52g2 j 21*
21

, 1< j <N.

Then it is easy to show thata2 j
2152a2 j 21* , Dk5Ak , Ck52Bk , (0<k<N21). In this way, the

corresponding linear algebraic systems~29! and ~30! are reduced to

(
k50

N21

~Ak1l2 j 21a2 j 21Bk!l2 j 21
2k 52l2 j 21

2N , ~40!

(
k50

N21

~a2 j 21* Ak2l2 j 21* Bk!l2 j 21*
2k

52a2 j 21* l2 j 21*
2N

, 1< j <N, ~41!

and

a2 j 215
f2~l2 j 21!2g2 j 21c2~l2 j 21!

f1~l2 j 21!2g2 j 21c1~l2 j 21!
. ~42!
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Based on these results we have the following theorem.
Theorem 3: Suppose thata2 j 21 (1< j <N) is defined by~42!, andAk , Bk are given by the

linear algebraic system~40! and ~41!. Then solutionq of the GI equation~1! is mapped into its
new solutionq̃ under the DT:

q̃5q12iBN21 . ~43!

TheN-fold DT ~43! presented here has some merits. First, the solutionq̃ in ~43! is N-fold DT
of the solutionq. It can be interpreted as a nonlinear superposition of initial solutionq and
N-soliton solution. It contains all pureN-soliton solutions of the GI equation in a unified form
Second, the solutions of the GI equation are reduced to solving the linear algebraic syste~40!
and ~41!, which is very easy to produce multisoliton solutions of the GI equation by symb
computation on a computer.

In the following, we shall apply the DT~43! to construct explicit solutions of the GI equatio
~1!. We make DT starting from a special solution of Eq.~1!. Substitutingq50 (q5r 50) into the
Lax pairs~2! and ~14!, we find that two basic solutions can be chosen as

f~l!5S exp~2 il2x22il4t !

0 D , c~l!5S 0

exp~ il2x12il4t !
D .

According to~42!, we have

a2 j 2152exp~2il2 j 21
2 x14il2 j 21

4 t1d j1 im j !, 1< j <N, ~44!

whereg2 j 215exp(dj1imj). For simplicity, we shall discuss the two special casesN51 andN
52.

~I! For the caseN51, let l15j11 ih1 (j15” h1). Then solving the linear algebraic syste
~40! and ~41! yields

B05
4i j1h1

~j11 ih1!exp~X11 iY1!1~j12 ih1!exp~2X11 iY1!
,

where

X1524j1h1x216j1h1~j1
22h1

2!t1d1 , Y152~j1
22h1

2!x14~j1
41h1

426j1
2h1

2!t1m1 .
~45!

In this way, a one-soliton solution of the GI equation~1! is obtained with the help of the DT~43!:

q̃52iB0 , ~46!

which is a kind of single-soliton solution.
~II ! For N52, let l15j11 ih1 , l35j21 ih2 (j15” j2). Then we obtain from~44!,

a152exp~X11 iY1!, a352exp~X21 iY2!, ~47!

whereX1 , Y1 are defined by~45! and

X2524j2h2x216j2h2~j2
22h2

2!t1d2 , Y252~j2
22h2

2!x14~j2
41h2

426j2
2h2

2!t1m2 .

Solving the linear algebraic system~40! and ~41! yields

B15
DB1

D
, ~48!
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whereD is the determinant of the coefficients for the linear algebraic system~40! and ~41!, and

DB1
is produced fromD by replacing its fourth column with (2l1

4 ,2l3
4 ,2a1* l1*

4
, 2a3* l3*

4
)T,

that is,

D5U 1 l1a1 l1
2 l1

3a1

1 l3a3 l3
2 l3

3a3

a1* 2l1* l1*
2
a1* 2l1*

3

a3* 2l3* l3*
2
a3* 2l3*

3

U , DB5U 1 l1a1 l1
2 2l1

4

1 l3a3 l3
2 2l3

4

a1* 2l1* l1*
2
a1* 2l1*

4
a1*

a3* 2l3* l3*
2
a3* 2l3*

4
a3*

U .

Therefore another solution of the GI equation~1! is obtained by using the DT~43!:

q̃52iB1 , ~49!

which is a two-soliton solution with multiparameters. The plots are given in Fig. 1.

VI. CONCLUDING REMARKS

By introducing a spectral problem, we have derived a GI hierarchy of nonlinear evol
equations, which contains the well-known GI equation as a special reduction. The bi-Hamilt
structures for the GI hierarchy are established by trace identity. Through nonlinearization
nique, a new finite-dimensional integrable Hamiltonian system~FDIHS! is obtained in an explicit
form. And thus the GI hierarchy is reduced to solving two compatible systems of ordinary d
ential equations, which are completely integrable in a Liouville sense. In addition,N-fold explicit
DT for the GI equation is constructed with the help of a gauge transformation and redu
technique. Starting from trivial solution,N-soliton solutions of GI equation are constructed
applying its DT. In contrast to other systems such as the AKNS hierarchy or the KN hiera
many interesting problems~especially in the aspect of FDIHS! deserve further investigation fo
our GI system. For example, the spectral problem~2! also is nonlinearized into higher orde

FIG. 1. Two-soliton solution~49! with j150.5, j250.3, h150.2, d150.3, d2520.1, m150.6, m2520.2.
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constrained flows by introducing the Jacobi–Ostrogradsky coordinates,13,14 and to factor each
equation in the GI hierarchy into commutingx and tn FDIHS.39 Then the separability of FDIHS
will give rise to the Jacobi inverse problem for the associated soliton hierarchy, which ca
solved in terms of the Riemann theta function by a standard Jacobi inverse technique.14,40 Also,
r-matrix structure41,42 and algebro–geometric solutions43,44 remain open for the GI hierarchy. W
believe that future exploration of these problems will deepen our understanding of the GI h
chy as well as the GI equation.
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By introducing the generalized master function of order up to four together with
corresponding weight function, we have obtained all one-dimensional quasiexactly
solvable second order differential equations. It is shown that these differential
equations have solutions of polynomial type with factorization properties, that is
polynomial solutionsPm(E) can be factorized in terms of polynomialPn11(E) for
m>n11. All known one-dimensional quasiexactly quantum solvable models can
be obtained from these differential equations, where roots of polynomialPn11(E)
are corresponding eigenvalues. ©2000 American Institute of Physics.
@S0022-2488~00!00809-4#

I. INTRODUCTION

During the last decade a remarkable new class of quasiexactly solvable spectral problem
introduced.1–5 These occupy an intermediate position between exactly solvable and unso
models in the sense that exact solution in an algebraized form exists only for a part o
spectrum.

The usual approach to the analysis of quasiexactly solvable systems is an algebraic
which the operator is expressed as a nonlinear combination of generators of a Lie algebra. A
recent development is the work of Bender–Dunne6 where they have shown that the eigenfunctio
of a quasiexactly solvable Schro¨dinger equation is the generating function for a set of orthogo
polynomialsPm(E) in energy variable. It was further shown that, these polynomials satisfy
three-term recursion relation. Also, all polynomials beyond a critical polynomialPm(E) factorize
into the product of polynomialPn11(E) and another arbitrary polynomial.

In this paper we suggest a generalization of Bender–Dunne approach to all possibl
dimensional quasiexactly second-order differential equations.

For this purpose, the successful master function approach of Refs. 7 and 8 to exactly so
models, is generalized to a master function of order up to four which gives all possible
dimensional quasiexactly solvable models, where Bender–Dunne model6 and Heun differential
equation9 are among them.

The paper is organized as follows: In Sec. II we show that we can generalize the
quadratic master function to a master function of at most four order polynomials, then the
general quasiexactly solvable differential operators related to generalized master function
greek53 andk54 are given, respectively.

In Sec. III, expanding their solutions in powers ofx, we get 3-term and 4-term recursio
relations among their coefficeints, where Bender–Dunne factorization follows through imp
the quasiexactly solvability conditions of Sec. II. At the end of this section we list all pos
related quasiexactly solvable differential equations fork53 andk54 in Tables I and II, respec
tively.

Finally in Sec. IV, we derive all possible one-dimensional quasiexactly solvable qua

a!Electronic mail: jafarzadeh@ark.tabrizu.ac.ir
b!Electronic mail: akhtarash@ark.tabrizu.ac.ir
77830022-2488/2000/41(11)/7783/14/$17.00 © 2000 American Institute of Physics
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Hamiltonian from the differential operators of Sec. III, via prescription of Refs. 7 and 8, wher
have listed them at the end of Sec. III, except for those which can given in terms of e
functions. Paper ends with a brief conclusion.

II. QUASIEXACTLY SOLVABLE DIFFERENTIAL EQUATIONS ASSOCIATED WITH
GENERALIZED MASTER FUNCTIONS

By generalizing master function of order up to two7,8 to polynomial of order up tok, together
with the non-negative weight functionW(x), defined at interval (a,b) such that@1/W(x)#
3(d/dx) (A(x)W(x)) to be a polynomial of degree at most (k21), we can define the operato

L5
1

W~x!

d

dx S A~x!W~x!
d

dxD1B~x!, ~2.1!

whereB(x) is a polynomial of order up to (k22). The interval (a,b) is chosen so that, we hav
A(a)W(a)5A(b)W(b)50.

It is straightforward to show that the above defined operatorL is a self-adjoint linear operato
which at most maps a given polynomial of orderm to another polynomial of order (m1k22).
Now, by an appropriate choice ofB(x) and weight functionW(x), the operatorL can have an
invariant subspace of polynomials of order up ton. Then by choosing the set of orthogon
polynomials$f0(x),f1(x),...,fn(x)% defined in the interval (a,b) with respect to the weigh
function W(x):

E
a

b

fm~x!fn~x!W~x!dx50 for m5n ~2.2!

as the base, the matrix elements of the operatorL on this base will have the following block
diagonal form:

Li j 50 if $ i<n and j >n11% or $ i>n11 and j <n%. ~2.3!

Since, according to the well-known theorem of orthogonal polynomials,fn(x) is orthogonal
to any polynomial of order up ton21, therefore, for matrixL we get

L5FM 0

0 NG , ~2.4!

whereM is an (n11)3(n11) matrix with matrix elements

Mi j 5E
a

b

dx W~x!f i~x!L~x!f j~x!, i , j 50,1,2,. . . ,n, ~2.5!

andN is an infinite matrix element defined as above withi , j >n11.
The block diagonal form of the operatorL indicates that by diagonalizing the (n11)3(n

11) matrix M, we can find (n11) eigenvalues of the operatorL together with the related
eigen-functions as linear functions of orthogonal polynomials$f0(x),f1(x),...,fn(x)%.

In order to determine the appropriateB(x) andW(x) for a given generalized master functio
A(x), we Taylor expand those functions:

A~x!5(
i 50

k
A( i )~0!

i !
xi , where A( i )~0!5

diA~x!

dxi U
x50

, ~2.6!

~A~x!W~x!!8

W~x!
5 (

i 50

k21
~~AW!8/W!( i )~0!

i !
xi ,
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where S ~AW!8

W D ( i )

~0!5
di@~A~x!W~x!!8/W~x!#

dxi U
x50

, ~2.7!

B~x!5 (
i 50

k22
B( i )~0!

i !
xi , where B( i )~0!5

diB~x!

dxi U
x50

. ~2.8!

Then, the existence of invariant subspace of the polynomials of ordern of the operatorL leads to
the following linear equation between the coefficients of above Taylor expansions:

2
A( i 12)

~ i 12!!
l ~ l 21!2

@~AW!8/W# ( i 11)

~ i 11!!
l 1

B( i )

i !
50, ~2.9!

where

l 5n, and i 51, 2, . . . , k22,

l 5n21, and i 52, 3, . . . , k22,

. . . , . . . , . . . , . . . , . . . , . . . ,

l 5n2k14, and i 5k23, k22,

l 5n2k13, and i 5k22.

The number of above equations, for a given value ofk, is @(k21)(k22)/2#. If we are to
determine only the unknown functionB(x) without having any further constraint on the weig
functionW(x), then the above@(k21)(k22)#/2 equations should be satisfied with (k22) coef-
ficients of Taylor expansion ofB(x) as the only unknowns, sinceB(0) can be absorbed in th
eigenspectrum operatorL. Therefore, we are left with (k22) unknowns to be determined, whe
the compatibility of Eqs.~2.9! requirek53 at most. On the other hand, if we add the coefficie
of Taylor expansions ofA(x) and (A(x)W(x))8/W(x) to our list of unknowns,@to be determined
by solving Eqs.~2.9!#, then their compatibility conditions require that

3~k21!>
~k21!~k22!

2
, ~2.10!

or k<8, where further investigations show that we can have at mostk54, since fork>5 the
coefficients A(k)(0) and ((AW)8/W)(k21)(0) will vanish. Below we summarize the above
mentioned discussion fork53 andk54, separately.

A. kÄ3

In this case,B(x) is a second order polynomial whereB(1) can be determined by solving Eq
~2.9!:

B(1)5
n

2 S A(3)

3
~n21!1S ~AW!8

W D (2)D , ~2.11!

which is the only unknown in this case.
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B. kÄ4

Again, the solving of Eqs.~2.9! leads to

B(1)5
n

2 S A(3)

3
~n21!1S ~AW!8

W D (2)D , ~2.12!

B(2)52
A(4)

12
n~n21!, ~2.13!

and

S ~AW!8

W D (3)

52
A(4)

2
~n21!. ~2.14!

Here, besides having constraint over second-order polynomialB(x), we have to put further con
straints on the weight functionW(x) given in ~2.14!.

Definitely we can determinen11 eigenspectrum of the operatorL, simply by diagonalizing
the (n11)3(n11) matrix M, since it is a self-adjoint operator in Hilbert space of polynomi
and it has a block diagonal form given in~2.4!.

As we are going to see in the next section, we can determine its eigenspectrum analy
using some recursion relations.

III. RECURSION RELATIONS

In this section we show that the eigenfunctions of the operatorL are a generating function fo
a new set of polynomialsPm(E) where the eigenfunction equation of the operatorL leads to the
recursion relation between these polynomials. Quasiexact solvable constraints~2.9! will lead to
their factorization, that is,Pn1N11(E)5Pn11(E)QN(E) for N>0, where roots of polynomials
Pn11(E) turn out to be the eigenvalues of the operatorL.

To achieve these results, first we expandc(x), the eigenfunction ofL, as

c~x!5 (
m50

`

Pm~E!xm, ~3.1!

where the eigenfunction equation

Lc~x!5Ec~x! ~3.2!

can be expressed as

2A~x! (
m52

`

m~m21!Pm~E!xm222
~A~x!W~x!!8

W~x! (
m51

`

mPm~E!xm211B~x! (
m50

`

Pm~E!xm

5E (
m50

`

Pm~E!xm, ~3.3!

which leads to the following recursion relations for the coefficientsPm(E):
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S A(1)~m11!~m12!1S ~AW!8

W D (0)

~m12! D Pm12~E!1S A(2)

2!
m~m11!

1S ~AW!8

W D (1)

~m11!1ED Pm11~E!1S A(3)

3!
m~m21!1

S ~AW!8

W D (2)

2!
m2B(1)D Pm~E!

1S A(4)

4!
~m21!~m22!1

S ~AW!8

W D (3)

3!
m2

B(2)

2!
D Pm21~E!50. ~3.4!

Below we investigate recursion relations thus obtained fork53 andk54, separately.

A. kÄ3

In this case the 4-term general recursion relation reduce to the following 3-term recu
relation:

S A(1)~m11!~m12!1S ~AW!8

W D (0)

~m12! D Pm12~E!1S A(2)

2!
m~m11!

1S ~AW!8

W D (1)

~m11!1ED Pm11~E!1S A(3)

3!
m~m21!1

S ~AW!8

W D (2)

2!
m2B(1)D Pm~E!

50. ~3.5!

In order to have finite eigenspectrum, that is, quasi-integrable differential equation, the
recursion relation should be truncated for some value ofm5n, which is obviously possible by an
appropriate choice of:

B(1)5
n

2 S A(3)

3
~n21!1S ~AW!8

W D (2)D , ~3.6!

which is in agreement with the result of previous section given in~2.11!.
Using the recursion relation~3.5!, with B(1) given in ~3.6!, we get a factorization of polyno

mial Pn1N11(E) for N>0 in terms ofPn11(E) as follows:

Pn1N11~E!5Pn11~E!QN~E!, N>0, ~3.7!

where by choosing the eigenvaluesE as roots of polynomialPn11(E), all polynomials of order
higher thann will vanish.

In order to determine corresponding eigenfunctions, it is sufficient to evaluatePm(Ei) for
m50, 1, 2, . . . ,n with Ei as roots ofPn11(E), then eigenfunctionc i(x) corresponding to
eigenvalueEi can be written as

c i~x!5 (
m50

n

Pm~Ei !x
m, i 50,1 . . . ,n. ~3.8!

The above eigenfunctions are polynomials of ordern, hence they can have at mostn roots in
the interval (a,b), where, according to the well-known oscillation and comparison theorem
second-order linear differential equation,10 these numbers order the eigenvalues according to
number of roots of corresponding eigenfunctions. Therefore, we can say that the eigenvalu
obtained are the firstn11 eigenvalues of the operatorL.
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Using the recursion relations~3.5!, we can evaluate the polynomialsPm(E) in terms of
P0(E), where we have chosenP0(E)51. We have evaluated the first five polynomials whi
appear in Appendix A.

As an illustration we give the results forA(x)5x andn53 with a51, b50, g521 which
is equivalent to the Bender–Dunne model:

P1~E!52 1
2 E,

P2~E!5211 1
12 E2,

P3~E!5 1
4 E2 1

144E3,

P4~E!5 1
10 2 1

48 E21 1
2880E4.

ObviouslyPm(E) have the parity ofm.
By finding the 4-roots ofP4(E) we determine the corresponding four eigenvalues:

E0527.398 556 194,

E1522.293 766 823,

E252.293 766 823,

E357.398 556 194.

Finally for the coefficientPm(Ei) we get

P0~E0!51, P1~E0!53.699 278 097, P2~E0!53.561 552 813, P3~E0!520.962 769 686,

P0~E1!51, P1~E1!51.146 883 412, P2~E1!520.561 552 135,

P3~E1!520.489 633 738 3,

P0~E2!51, P1~E2!521.146 883 412, P2~E2!520.561 528 13 5,

P3~E2!50.489 633 738 3,

P0~E3!51, P1~E3!523.699 278 097, P2~E3!53.561 552 813, P3~E3!520.962 769 686.

Using the above coefficients we can determine the corresponding eigenfunctions th
formula ~3.8!.

In Table I we give all quasiexactly solvable operators which can be obtained by cho
different generalized master function of order 3. This table contains all possible models
sponding to different choice ofA(x) up to translation and rescaling of variablex. Also by choos-
ing A(x) as a polynomial of up to second order withg50 we lead to the exactly solvable mode
of Refs. 7 and 8.

B. kÄ4

Again in order to truncate the recursion relation~3.4! and to factorize polynomials
Pn1N11(E) in terms ofPn11(E), we should have

B(1)5
n

2 S A(3)

3
~n21!1S ~AW!8

W D (2)D , ~3.9!
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B(2)

2!
5

A(4)

4!
~n21!~n22!1

@~AW!8/W# (3)

3!
n, ~3.10!

and

B(2)

2!
5

A(4)

4!
n~n21!1

@~AW!8/W# (3)

3!
~n11!. ~3.11!

Solving the above equations we get

B(2)52
A(4)

12
n~n21! ~3.12!

and

S ~AW!8

W D (3)

52
A(4)

2
~n21!. ~3.13!

Equations~3.9!, ~3.12!, and~3.13! are the same equations which are required in the reduc
of the operatorL to its block diagonal form.

Again roots of polynomialsPn11(E) will correspond ton11 eigenvalues of the differentia
operatorL with eigenfunctions which can be expressed in terms ofPm(Ei) for m<n, where
polynomials Pm(E) can be obtained from recursion relation by choosingP0(E)51 and
P21(E)50, where we have given the first four polynomials in Appendix B.

In Table II we list all quasiexactly differential operators which can be obtained from
generalized master function of order up to four.

Tables I and II contain all quasiexactly second-order differential equations which ca
obtained from Lie algebraic methods.4 For example we get the Bender–Dunne model6 for the
choice ofA(x)5x andb50, and similarly, we get the Heun differential operator~Fuxian equation
with four regular singular point!,9 for the choice ofA(x)5x(x21)(x2a).

IV. QUASIEXACTLY POTENTIAL ASSOCIATED WITH GENERALIZED MASTER
FUNCTION

As in Refs. 7 and 8, writing

c~ t !5A1/4~x!W1/2~x!f~x!, ~4.1!

with a change of variable (dx/dt) 5AA(x), the eigenvalue equation of the operatorL reduces to
the Schro¨dinger equation:

H~ t !c~ t !5Ec~ t !, ~4.2!

with the same eigenvalueE and c(t) given in ~4.2!, in terms of the eigenfunction ofL, where
H(t)52 (d2/dt2) 1V(t) is the similarity transformation ofL(x) defined as

H~ t !5A1/4~x!W1/2~x!L~x!A21/4~x!W21/2~x! ~4.3!

with

V~ t !52
3

16

Ȧ2~ t !

A2~ t !
2

1

4

Ẇ2~ t !

W2~ t !
1

1

4

Ȧ~ t !Ẇ~ t !

A~ t !W~ t !
1

1

4

Ä~ t !

A~ t !
1

1

2

Ẅ~ t !

W~ t !
1B~ t !. ~4.4!

It is also straightforward to show that
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TABLE I. Quasiexactly differential operators obtained from generalized master function of order up to 4.

A(x)
W(x)

intervals L(x)

x4 xaeb/x31g/x21d/x
2x4

d2

dx2
1~3b12gx

0<x,1` 1dx22(a14)x3)
d

dx
2ndx2n(n21)x2

b,0, 2`,g,1`, 2`,d,1`
a522(n11)

x3(12x) xa(12x)be2g/x2d/x2
x3~x21!

d2

dx2
1~22d1~2d2g!x

0<x<11 1~g2a23!x21~a1b14!x3)
d

dx
b.21, 2`,g,1`, d.0 1n(n1a2g12)x1n(n21)x2

a522(n11)2b

x2(11x2) xa(11x2)beg/x1dtan21(x)
2x2(11x2)

d2

dx2
1(g2(a12)x

0<x,1` 1~g2d!x22~a12b14!x3)
d

dx
2`,b,1`, g,0, 2`,d,1` 1n(d2g)x2n(n21)x2

a522(n1b11)

x2(12x)(a2x) xa(12x)b(a2x)ged/x
x2~x21!~a2x!

d2

dx2
1~ad2~aa1~a11!d

a.1 0<x<11 12a)x2((a11)a1ab1g1d

b.21, 2`,g,1`, d,0 13~a11!)x22~a1b1g14!x3)
d

dx
1n~~a

a522(n11)2b2g 2n14)(a11)1ab1g1d)x2n(n21)x2

x2(12x)2 xa(12x)beg/x1d/(12x)
2x2(12x)2

d2

dx2
1(g2(a12g12)x

0<x<11 1(2a1b1g2d16)x22(a1b14)x3)
d

dx
2`,b,1`, g,0, d,0 2n~12n12a1b1g2d14!x2n~n21!x2

a522~n11!2b

x~a2x!~11x2! xa~a2x!b~11x2!ged tan21x x~x2a!~11x2!
d2

dx2
1~2a~a11!

a.0 0<x<a 1~a1b2a~d22!!x2~a~a12g13!

2`,g,1`, 2`,d,1` 2d)x21~a1b12g14!x3)
d

dx

21,b,22n22g21 1n~a~n1a12g12!2d!x1n~n21!x2

a522~n11!2b22g

x(12x)(a2x)(b2x) xa~12x!b~a2x!g~b2x!d x~x21!~a2x!~b2x!
d2

dx2

1,a,b 0<x<11 1~2ab~a11!1~2~a1b1ab!1ab~a1b!

21,b,2n2g21 1b~a1g!1a~a1d!)x2~~a1b!~a1b13!

`,g,1`, 2`,d,1` 1~a11!d1a1g13)x21~a1b1g14!

a522~n11!2b2g x3)
d

dx
1n~~a1b!~a1b1n12!

1~a11!d1a1g1n12)x1n~n21!x2
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E dt f~ t !H~ t !c~ t !5E
a

b

dx W~x!c~x!L~x!c~x!. ~4.5!

Hence block diagonalization ofL leads to block diagonalization ofH.
As an illustration we give below an example withA(x)5x3, weight function W(x)

5xaeb/x22g/x and interval@0,̀ ), wherea,23 andb, g.0.

TABLE II. Quasiexactly differential operators obtained from generalized master function of order up to 3.

A(x)
W~x!

intervals L(x)

x xaebx1gx2
2x

d2

dx2
2~a111bx

0<x,1`
12gx2)

d

dx
12ngx

a.21, 2`,b,1`, g,0
x2

xaeb/x1gx

2x2
d2

dx2
1~b2~a12!x

0<x,1` 2gx2)
d

dx
1ngx

2`,a,1`, b,0, g,0

x(12x) xa(12x)be2gx
x~x21!

d2

dx2
1~2a21

0<x<11 1~a1b1g12!x

a.21, b.21, 2`,g,1` 2gx2)
d

dx
1ngx

x3
xae2b/x22g/x 2x3

d2

dx2
2~2b1gx

0<x,1` 1~a13!x2)
d

dx
1n~n1a12!x

a,23, b.0, 2`,g,1`

x2(12x) xa~12x!be2g/x x2~x21!
d2

dx2
1~2g1~g2a22!x

0<x<1 1~a1b13!x2)
d

dx

2`,a,1`, b.21, g.0 2n~n1a1b12!x

x(11x2) xa~11x2!beg tan21x 2x~11x2!
d2

dx2
2~a111gx

0<x,1` 1~a12b13!x2)
d

dx

a.21, b,2~a13!/2, 2`,g,1` 1n~n1a12b12!x

x(12x)(a2x) xa~12x!b~a2x!g x~x21!~a2x!
d2

dx2
1~2a~a11!

a.1 0<x<11 1((a11)(a12)1ab1g)x2(a1b

a.21, b.21, 2`,g,1`
1g13)x2)

d

dx
1n~n1a1b1g12!x
                                                                                                                



h can
ns for

7792 J. Math. Phys., Vol. 41, No. 11, November 2000 M. A. Jafarizadeh and S. J. Akhtarshenas

                    
From a change of variabledx/dt5AA(x), we getx(t)54/t2, hence using Eq.~4.4! we have
for potentialV(t):

Vn~ t !5
g

2
~a11!1S 15

4
1a214 na14 a14 n218nD 1

t2
1

1

4 S ab1
1

4
g2D t21

b g

16
t41

b2

64
t6.

~4.6!

Below we give a list of quasiexact solvable potentials, except for those potentials whic
be expressed in terms of elliptic functions, since in this case we get rather long expressio
them:

A~x!5x, x~ t !5
t2

4
,

Vn~ t !5
b

2
~a11!1S a22

1

4D 1

t2
1

1

2 S b2

8
1gS n111

a

2 D D t21
bg

16
t41

g2

64
t6,

A~x!5x2, x~ t !5et,

Vn~ t !5 1
4 ~11a222bg12a22abe2t1b2e22t1g2e2t12~2g12ng1ag!et!,

A~x!5x~12x!, x~ t !5
11sin~ t !

2
,

Vn~ t !5
1

2 S 1ng2ab2b2a1
1

2
~bg2a22b22ag21!1S ag

2
1g1

bg

2
1ng D sin~ t ! D

3
1

2 S a21b22
1

2
1~b22a2!sin~ t ! D 1

cos2~ t !
1

g2

16
cos2~ t !,

A~x!5x3, x~ t !5
4

t2
,

Vn~ t !5
g

2
~a11!1S 15

4
1a214na14a14n218nD 1

t2
1

1

4 S ab1
g2

4 D t21
bg

16
t41

b2

64
t6,

A~x!5x2~12x!, x~ t !512tanh2S t

2D ,

Vn~ t !5S 1

cosh2~ t !21
D S 2S 2n21212na1

a2

2
14n1ab12 a1

ag

4
12nb12b D cosh~ t !

1
1

2 S 2g2

4
2

ag

2
1

1

2
2g1a2b g1

a2

2 D cosh21
ag

4
cosh31

g2

16
cosh4

1S g

2
14n1a b1

3a

2
1b212 b1

3

2
1

a2

4
1

a g

4
1

bg

2
1

g2

16
12nb12n212na D D ,

A~x!5x4, x~ t !5
1

t
,
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Vn~ t !5S d2

4
1g12ng D1~gd13nb13b!t1S 3bd

2
1g2D t213 bgt31

9b2

4
t4,

A~x!5x3~12x!, x~ t !5
4

41t2
,

Vn~ t !52S g

2
1d1bd1

bg

2
1ng D1S b22

1

4D 1

t2
1

1

2 S 2nd1
d2

2
2

b d

2
2d1

g2

8
1

gd

2 D t2

1
d

8 S g

2
1d D t41

d2

64
t6,

A~x!5x2~11x2!, x~ t !5
21

sinh~ t !
,

Vn~ t !5S n1n22
gd

2
1

1

4
12 nb1b1b22~ng1g1b g!sinh~ t ! D

1S d2

4
1bd sinh~ t !2b21

1

4D 1

cosh2~ t !
1

g2

4
cosh2~ t !,

A~x!5x2~12x2!, x~ t !5
1

cosh~ t !
,

Vn~ t !5S 1

cosh2~ t !21
D S S 2g

2
2n2

b

2
1

g2

4
1

d2

4
2

bg

2
2

bd

2
1

gd

2
2

1

2
2nb1

b2

4
2ng2n2D

1S bd

2
1nb2

gd

2
1ng1

g

2
1

1

4
1

b

2
1

bg

2
2

d2

2
1n21

b2

4
1n1

g2

4 D cosh~ t !21S 2g d

2

2nd2d2
g2

2
2

bd

2
1

b2

2 D cosh~ t !1S d1nd1
bd

2
1

gd

2 D cosh3~ t !1
d2

4
cosh4~ t ! D ,
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whereSk is defined as

Sk5expS 22S kt

2
1~ge2t1g1d~et11!! D D , k54,5,...,12.

V. CONCLUSION

As we saw by introducing of master functionA(x) as a polynomial of order at most four, w
could obtain all quasiexactly second-order differential equations. It is shown that the eigen
tion relationLC(x)5EC(x) generates a set of polynomialsPm(E), where these polynomials
satisfy 3-term and 4-term recursion relations for master function of at most three and four, r
tively. Finally the quasiexactly solvability leads to factorization of polynomialsPn1N11(E) for
N>0 in terms ofPn11(E), where by determining the roots ofPn11(E) we can determine firs
n11 eigenvalues of these quasiexactly solvable differential equations.
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APPENDIX A

The first five polynomialsPn(E), for k53.
To abbreviate, we setF ( i )5(AW8/W)( i ),

P1~E!52
E

F (0)
,

P2~E!5
1

2

EF(1)1E21B(1)F (0)

F (0)~A(1)1F (0)!
,

P3~E!5~2A(2)EF(1)2A(2)E22A(2)B(1)F (0)22EF(1)223F (1)E222F (1)B(1)F (0)2E3

23EB(1)F (0)1EF(2)A(1)1EF(2)F (0)22EB(1)A(1)!/~6F (0)~A(1)1F (0)!~2A(1)1F (0)!!,

P4~E!52~23 A(2)2E223 B(1)2F (0)226 B(1)2F (0)A(1)13F (2)B(1)F (0)21A(3)B(1)F (0)2

1A(3)E2F (0)12A(3)E2A(1)28E2B(1) A(1)14E2F (2)F (0)17E2F (2)A(1)26E2B(1)F (0)

26F (1)2B(1)F (0)213A(2)F (1)E229A(2)EF(1)223A(2)2B(1)F (0)23A(2)2EF(1)

24A(2)E326EF(1)3211F (1)2E226F (1)E329A(2) F (1)B(1)F (0)26A(2)EB(1)A(1)

13A(2)EF(2)F (0)13A(2)EF(2)A(1)210A(2)EB(1)F (0)212F (1)EB(1)A(1)

16F (1)EF(2)F (0)19F (1)EF(2)A(1)214F (1)EB(1)F (0)12A(3)B(1)F (0)A(1)

1A(3)EF(1)F (0)12A(3) EF(1)A(1)16F (2)B(1)F (0)A(1)2E4!/~24F (0)~A(1)1F (0)!~2A(1)

1F (0)!~3A(1)1F (0)!!,

P5~E!52~246EA(3)B(1)F (0)A(1)288EF(2)B(1)F (0)A(1)116A(3)EF(2)A(1)F (0)

124EF(2)2A(1)F (0)248F (2)EB(1)A(1)2118EF(2)2A(1)216EF(2)2F (0)2124EB(1)2A(1)2

112A(3)EF(2)A(1)214A(3)EF(2)F (0)2224A(3)EB(1)A(1)2232F (1)A(3)B(1)F (0)A(1)
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260F (1)F (2)B(1)F (0)A(1)150EB(1)2F (0)A(1)225EF(2)B(1)F (0)2213EA(3)B(1)F (0)2

246F (1)A(3)E2A(1)180F (1)E2B(1)A(1)240F (1)E2F (2)F (0)291F (1)E2F (2)A(1)

150F (1)E2B(1)F (0)254A(2)F (1)EF(2)F (0)284A(2)F (1)EF(2)A(1)

1137A(2)F (1)EB(1)F (0)224A(2)A(3)B(1)F (0)A(1)210A(2)A(3)EF(1)F (0)

224A(2)A(3)EF(1)A(1)254A(2)F (2)B(1)F (0)A(1)120F (1)B(1)2F (0)225A(3)E3F (0)

214A(3)E3A(1)120E3B(1)A(1)210E3F (2)F (0)225E3F (2)A(1)110E3B(1)F (0)

115EB(1)2F (0)2166A(2)E2B(1)A(1)233A(2)E2F (2)F (0)263A(2)E2F (2)A(1)

150A(2)E2B(1)F (0)172A(2)F (1)2B(1)F (0)172F (1)2EB(1)A(1)236F (1)2EF(2)F (0)

272F (1)2EF(2)A(1)170F (1)2EB(1)F (0)212A(3)EF(1)2F (0)232A(3)EF(1)2A(1)

148F (1)B(1)2F (0)A(1)224F (1)F (2)B(1)F (0)2212F (1)A(3)B(1)F (0)2217F (1)A(3)E2F (0)

224A(2)F (2)B(1)F (0)2210A(2)A(3)E2F (0)224A(2)A(3)E2A(1)210A(2)A(3)B(1)F (0)2

1108A(2)F (1)EB(1)A(1)110F (1)E4118A(2)3E2127A(2)2E3110A(2)E4124EF(1)4

150F (1)3E2135F (1)2E31E5193A(2)2F (1)E2166A(2)2EF(1)2118A(2)3B(1)F (0)

118A(2)3EF(1)122A(2)B(1)2F (0)2172A(2)EF(1)31127A(2)F (1)2E2165A(2)F (1)E3

124F (1)3B(1)F (0)166A(2)2F (1)B(1)F (0)136A(2)2EB(1)A(1)218A(2)2EF(2)F (0)

218A(2)2EF(2)A(1)163A(2)2EB(1)F (0)148A(2)B(1)2F (0)A(1)!/~120F (0)~A(1)1F (0)!

3~2A(1)1F (0)!~3A(1)1F (0)!~4A(1)1F (0)!!.

APPENDIX B

The first four polynomialsPn(E), for k54:

P1~E!5
E

F (0)
,

P2~E!52
1

2

EF(1)1E22B(1)F (0)

F (0)~A(1)1F (0)!
,

P3~E!5~A(2)EF(1)1A(2)E22A(2)B(1)F (0)12EF(1)213F (1)E222F (1)B(1)F (0)1E31EB(1)F (0)

2EF(2)A(1)2EF(2)F (0)12EB(1)A(1)1B(2)F (0)A(1)1B(2)F (0)2!/~6F (0)~A(1)1F (0)!

3~2A(1)1F (0)!!,

P4~E!52~3A(2)B(2)F (0)21A(3)B(1)F (0)219A(2)EF(1)223A(2)EF(2)A(1)12A(2)EB(1)F (0)

29A(2)F (1)B(1)F (0)22EB(2)F (0)213A(2)B(2)F (0)A(1)16A(2)EB(1)A(1)

23A(2)EF(2)F (0)29F (1)EF(2)A(1)14F (1)EB(1)F (0)23B(1)2F (0)228EB(2)F (0)A(1)

22A(3)EF(1)A(1)2A(3)EF(1)F (0)12A(3)B(1)F (0)A(1)16F (2)B(1)F (0)A(1)
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13EF(3)A(1)F (0)26F (1)EF(2)F (0)13A(2)2E214A(2)E316EF(1)3111F (1)2E2

16F (1)E313A(2)2EF(1)23A(2)2B(1)F (0)113A(2)F (1)E226F (1)2B(1)F (0)

13F (1)B(2)F (0)214E2B(1)F (0)27E2F (2)A(1)24E2F (2)F (0)18E2B(1)A(1)

22A(3)E2A(1)2A(3)E2F (0)13F (2)B(1)F (0)226B(1)2F (0)A(1)12EF(3)A(1)2

1EF(3)F (0)226EB(2)A(1)21E413F (1)B(2)F (0)A(1)112F (1)EB(1)A(1)!/~24F (0)~A(1)

1F (0)!~2A(1)1F (0)!~3A(1)1F (0)!!.
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The G-generalized Hitchin systems and Prym varieties
M. Kjiria)

Centre de Recherches Mathe´matiques, Universite´ de Montréal,
CP 6128 Succursale Centre-ville, Montreal, Quebec H3C 3J7, Canada

~Received 19 January 2000; accepted for publication 2 August 2000!

In this article, we consider the generalized Hitchin systems, introduced by Bottacin
and Markman, for an arbitrary reductive complex groupG; they have the structure
of Lagrangian fibrationsPr→U by generalized Prym varieties over setsU param-
etrizing families of Weyl-invariant curves. TheG-generalized Hitchin systems sat-
isfy a rank two condition and one can find invariant varietiesX which distinguish
these systems. It is then shown that there is a correspondence between these inte-

grable systems and the varietiesX5KS@D# ^ h̃, which are equipped with an ap-
propriate two form with values in the Cartan subalgebrah. © 2000 American
Institute of Physics.@S0022-2488~00!01311-6#

I. INTRODUCTION

The moduli spaces of stable vector bundles over a Riemann surface have been stud
many years from different aspects. In 1987, Hitchin introduced a new way of seeing them,
through the symplectic geometry of their cotangent bundle. Through the article ‘‘Stable bu
and integrable systems,’’1 he proved that there were natural algebraically integrable Hamilto
systems on the cotangent bundle, that is complex integrable systems, such that the joint le
of the Hamiltonians when compactified and desingularized are Abelian varieties, in such
that the linear structure given by the Hamiltonian flow is that of the Abelian variety.

Since then, a lot of work has been done on these systems—called the Hitchin system
many different properties of them have been proven. In 1994 a generalization of these syste
introduced independently by Markman2 and Bottacin,3 which has been a source of considerab
interest.4–7 The question was essentially to try to see if the results obtained for the Hitchin sys
could be generalized.

There are versions of these systems for any reductive complex groupG. One considers the
moduli space of stable pairs (P,f), where P is a G-bundle overS, and f a meromorphic
ad(P)-valued one-form with poles at a divisorD. One would like to know if there is some
invariant that distinguishes these integrable systems.

WhenG5Gl(r ,C), these systems are integrable systems of Jacobians and the questio
studied in Ref. 8 for the Hitchin systems and in Ref. 5 for theGl(r ,C)-generalized systems. On
has a Lagrangian fibrationJ→U of Jacobians, whereU is an open set inCg, a corresponding
family S→U of Riemann surfaces and an Abel mapA:S→J. A first invariant is the rank of the
pull-back A* ~V! of the symplectic form onJ. When the rank is two, that isA* (V)∧A* (V)
50, there is a null foliation of dimensiong21 on S which one can quotient out to obtain
symplectic surfaceQ. The system, at least in a neighborhood of any Lagrangian leaf, is birat
to thegth symmetric product ofQ so that the invariant is first the rank, and second, the surfacQ;
at least locally, these invariants are complete.

Now, what happens ifG is any reductive complex group?
The question was studied in Ref. 9 for the Hitchin systems. The authors have shown th

systems can then be seen as rank-two integrable systems of Prym varieties for a suitably
alized notion of rank, and found an appropriate varietyX equipped with a two-form with values in
the Cartan subalgebrah of g.

a!Electronic mail: kjiri@crm.umontreal.ca
77970022-2488/2000/41(11)/7797/11/$17.00 © 2000 American Institute of Physics
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The aim of this article is to show that those results extend to theG-generalized Hitchin
systems.

In Sec. II, we will summarize the most relevant results for what follows from the article
Hurtubise and Markman, ‘‘Rank two integrable systems of Prym varieties.’’

In Sec. III, we will consider the generalized Hitchin systems, and we will see how to
Higgs pair (P,f), whereP is a G-principal bundle over a Riemann surfaceS andf a meromor-
phic ad(P)-valued one-form with poles at a divisorD, one can associate a spectral curveS lying
in the total spaceX of the vector bundleKS(D) ^ h and anH-bundle overS, h being the Cartan
subalgebra ofg andH the corresponding Lie group; we will see that both the curve and the bu
are invariant under the action of the Weyl groupW.

In Sec. IV, we will see that the local structure of the integrable system is that of a fibr
Pr→U by generalized Prym varieties over a setU parametrizing a family ofW-invariant curves.
These Prym varieties parametrizeW-invariantH-bundles over the spectral curveS. We will then
prove the following theorem:

Theorem 1.1: The G-generalized Hitchin system for an arbitrary reductive group satisfi

rank two condition. The variety associated to it is a blow upKS@D #̃ ^ h of KS@D# ^ h and it comes
equipped with an appropriateh-valued two form.

II. RANK TWO INTEGRABLE SYSTEM OF PRYM VARIETIES

In this section, we will define a rank two condition for integrable systems of Prym vari
and review some results obtained by Hurtubise and Markman in Ref. 9 that will allow us t
later that the generalized Hitchin systems can be viewed as rank two integrable systems o
varieties.

One considers for a fixed finite groupW, a family U of W-invariant curves, and a represe
tation of the group on a finite dimensional latticex5Zv, inducing a representation on the compl
vector spaceV5x ^ zC. One has an action on the JacobiansJu of the curves and so a diagon
action onJu^ Zx. The generalized Prym varieties will be the connected component of the o
of the fixed point set (Ju^ Zx)W.

Let Pr→U be the associated fibration of such Pryms: we will assume thatPr is symplectic
and this fibration is Lagrangian. We will define what it means for this system to have rank tw
see that under some genericity conditions, there will be a (v11)-dimensional complex manifold
X, into which all the curvesSu embed. This variety comes equipped with a generically nondeg
erateV* -valued two formVV .

We will see that under some genericity hypothesis, this induces a 1–1 corresponden
tween rank two integrable systems of Prym varieties and appropriate (v11)-folds X with a (x*
^ C)-valued two form.

This section will be then divided in three parts: a first part where we will fix the notation
will be used and recall some definitions, a second part where we will consider the different
of closed two-forms that we have and define the rank two condition, and a third part in whic
will review the most relevant theorems for the purpose of this paper.

A. Definitions and properties

Let:

~1! W be a finite group which will here be a Weyl group,
~2! x, a freeZ-module of rankv on whichW acts linearly,
~3! V5x ^ ZC, the corresponding complex representation ofW,
~4! U,Cd, an open ball,
~5! s:S→U, a holomorphic submersion whose fiber atuPU is a compact Riemann surfaceSu of

genusg. We suppose thatW acts onS→U, inducing a trivial action onU, so thatW acts on
eachSu . We suppose thatW embeds intoAut(Su).

~6! r:J→U, the corresponding fibration of Jacobians on whichW also acts.
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For each JacobianJu , we considerJu^ Zx which is isomorphic to the Cartesian produ
(Ju)v. Let rx :J^ Zx→U be the associated fiberwise tensor product.

Definition 2.1:We can associate to the group action on (Ju^ Zx)W a generalized Prym variety

Pru5~Ju^ Zx!0
W ,

the connected component of the identity of the fixed point set of the diagonalW-action onJu

^ Zx. Let Pr→U be the corresponding fibration: sinceU is contractible, it is a component of th
fixed point set of theW-action onJ^ Zx.

B. Symplectic structures and rank two systems

We consider the following closed two-forms:

~1! a V* -valued two-formVVPH0(J,(L2T* J) ^ cV* ) on the fibrationJ→U,
~2! an ordinary two-formV on the fibrationJ^ Zx→U,
~3! the restrictionv of V to the fibrationPr→U.

We assume thatVV , V, andv are isotropic on their respective fibrations, as well as on th
zero sections.

Let e1 ,...,ev ande1,...,ev be arbitrary dual basis ofx andx* , respectively.
We have the contractions:

and the tensoring maps:

Proposition 2.2 (Ref. 9):
~a! There is a canonical one to one correspondence between the formsVV and V which is

given by

V5(
i 51

v

~pei !* ~A~ei !VV!, VV5(
i 51

v

@hei
* ~V!# ^ ei ,

whereA is the contraction.
~b! The formVV is invariant with respect to the jointW-action onJ andV* if and only if the

form V is invariant under the diagonal action onJ^ Zx.
~c! There is a canonical one to one correspondence given by restriction betwee

W-invariant formsV and the formsv.
Definition 2.3:Let A be the Abel map, we say that the system has rank two, if

A* ~VV!`A* ~VV!50,

as a section ofL4(T* S) ^ V* ^ V* .
For a basisei of V, let V i be the contraction ofVV with ei . The system has rank two iff

A* ~V i !`A* ~V j !50,
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for all i,j .
If the A* (V i) are nonvanishing, using a theorem of Darboux, we can say that there

functions xi ,yi with nonvanishing differentials such thatA* (V i)5dxi∧dyi . Note that then,
dxi∧dyi∧dxj∧dyj50.

C. Rank two integrable system of Prym varieties and associated „v¿1…-varieties

Genericity assumption A. The pull-backA* (VV) is nowhere vanishing onS and its null-space
is everywhere transverse to the curvesSu .

Note that the rank two condition tells us that the span ofdx1 ,dx2 ... is at most
(v11)-dimensional.

Genericity assumption B. The span of dx1 ,...,dxv ,dy1 ,...,dyv is everywhere
(v11)-dimensional. More invariantly, the null-space ofVV has codimension (v11) everywhere.

Proposition 2.4 (Ref. 9):Locally, under the genericity assumptions A and B, there ex
forms f0 ,f1 ,...,fv on X such thatA* (V i)5f0∧f i .

Genericity assumption B8. The null-space ofVV is of codimension (v11) over a dense open
setO. Over the setO, this null space defines a vector bundle which extends to a globally de
W-invariant subbundle of the tangent bundle. Similarly, the subbundle of the tangent b
defined overO as the kernel off0 extends to all ofS as aW-invariant subbundle of the tangen
bundle.

Theorem 2.5 „Ref. 9…: Let the systemPr→U have rank two, and assume that it satisfi
genericity conditions A and B8. RestrictingU if necessary and quotienting by the null foliation
V,

~i! There is av11-dimensional complex manifoldX into which the curvesSu all embed. It is
equipped with a generically nondegenerateV* -valued two-formsVV . The groupW acts onX,
preservingVV .

~ii ! Let v.2. The manifoldX comes equipped with a codimension 1W-invariant foliation~cut
out by f050!. The form defines a bundle map between the tangent spaces to the leaves, a
tensor product of the conformal bundle to the leaves withV* .

~iii ! X admits aW-invariant fibration to a closed curveS. The quotient curvesSu /W are
sections ofX/W→S. All the quotient curvesSu /W are isomorphic toS.

The following theorem gives us a converse to Theorem 2.5~the appropriate definitions are i
Ref. 9!:

Theorem 2.6„Ref. 9…: Let X be av11-dimensional complex manifold, with a submersio
onto a closed curveS. Let X be equipped with a minimally nondegenerateV* -valued two-form
VV , such that the groupW acts onX, preservingVV and the fibers of the map toS. Assume that
there is a smoothW-invariant curveS0 in X, on whichW acts generically freely with quotientS.
Then, deformingS0 in X, the family of smoothW-invariant curvesSu defines a rank-two inte-
grable system of Prym varieties.

III. THE GENERALIZED HITCHIN SYSTEMS

The motivating example of this work was introduced by Hitchin,1,10 and generalized for
Gl(n) by Bottacin3 and Markman.2 Many authors have been working on those systems, am
them we have Faltings4 and Scognamillo.6,7 In Ref. 9, the authors showed how the results d
scribed in Sec. II could be applied for the case of the Hitchin systems. In Sec. IV, we will see
this work extands to the more general case.

But first, let us recall through this section some facts about those systems. This section
divided in two parts. In Sec. III A we will recall theGl(n)-case and in Sec. III B we will see how
they generalize to an arbitrary reductive groupG.

A. The Gl „n …-case

We first summarize the notation that will be used. Let:

~1! S be a closed Riemann surface of genusg,
                                                                                                                



re is
f a

nse

ely
e

7801J. Math. Phys., Vol. 41, No. 11, November 2000 The G-generalized Hitchin systems

                    
~2! D a positive divisor of degreen on S,
~3! E a vector bundle overS of fixed degreed and rankr,
~4! f a meromorphic End(E)-valued one-form, with poles at the divisorD: fPH0(S,End(E)

^ KS(D)) whereKS is the canonical bundle ofS.

Definition 3.1:A KS(D)-twisted Higgs pair~E, f! is a pair consisting of a vector bundleE
and a sectionfPH0(S,End(E) ^ K(D)).

We consider overS the moduli spacesM(r ,D,d) of stableKS(D)-twisted Higgs pairs~E,
f!. See Refs. 2 and 3. IfD50, we get the case considered by Hitchin in Refs. 1 and 10. The
a Poisson structure on theM(r ,D,d) which can be defined directly or by Poisson reduction o
larger space, the contangent bundle of the moduli space of bundles with level structure atD. See
Refs. 2, 3, and 5.

Definition 3.2:Let E be a vector bundle overS, andD a divisor onE. A D-level structure on
E is an isomorphismhPIsomOD (EuD ,% i 51

r OD!, i.e., a trivialization ofE over D.
Let U(r ,D,d) be the moduli space parametrizing rankr, degreed, d-stable vector bundles

with D-level structure and letGl(r ,D) be the invertibleOD-valued r 3r matrices. There is a
natural action ofGl(r ,D) on U(r ,D,d), simply by modification of the trivializationt, which lifts
to a symplectic action on the cotangent bundleT* U(r ,D,d).

This action has as moment map

m:T* U~r ,D,d!→gl~r ,D !* ,
~3.1!

~e,t,f!°f̂,

wheref̂ is the expression of the polar part off over D in the t-trivialization, andgl(r ,D)* is
identified withgl(r ,D) ^ OD

(KS)uD by a trace-residue pairing.
The quotientT* U(r ,D,d)/Gl(r ,D) is Poisson, and is naturally identified over an open de

set withM(r ,D,d).2 The symplectic leaves are obtained as inverse images underm of coadjoint
orbits.

For each pair~E, f!, we can consider thespectral curve Sof f which lies in the total space
KD of the line bundleK(D) over S. It is cut out by

det~f2zI!50. ~3.2!

Herez represents the tautological section ofp* K(D) over KD , wherep:KD→S is the projec-
tion. If we expand~3.2! in powers ofz, we get

z r1a1z r 211a2z r 221¯1ar50, ~3.3!

where theai5ai(E,f) lie in H0(S,(K(D)) ^ i).
Let di be the dimension ofH0(S,(K(D)) ^ i), and u1,i ,...udi ,i be a basis for

H0(S,(K(D)) ^ i). We can then writeai(E,f) as

ai~E,f!5(
j 51

di

f j ,i~E,f!uj ,i .

This gives functionsf j ,i on M(r ,D,d) which Poisson commute and define a complet
integrable system onM(r ,D,d). Joint level sets of thef j ,i are given by fixing the spectral curv
S, so that the spectral curve mapM(r ,D,d)→~family of spectral curves! defines a Lagrangian
foliation.

The leaf of the Lagrangian foliation atS is a family of line bundles onS. The sheafL
corresponding to~E, f! is defined via the exact sequence of sheaves over the surfaceKD :
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0→E^ KS* ~2D ! ——→
f2zI

E→L→0. ~3.4!

When the spectral curve is smooth,L is a line bundle supported on the spectral curve. For m
details about all this, one can refer to Ref. 5.

Proposition 3.3 (Ref. 8):One can then reconstruct~E, f! from (S,L):

~1! E5p* (L),
~2! f is the map induced onE by multiplication by the tautological sectionz on L.

One can then think of the moduli spaceM(r ,D,d) as the space of pairs~S, L!.
In the following part, we will see that similar results can be obtained if we consider the

general case for arbitrary reductive groupsG. The bundlesE then get replaced by a principa
G-bundleP, and the bundle End(E) gets replaced by ad(P). We will see that to the pair~P, f!,
one can associate a pair consisting of a spectral curve and anH-bundle.

B. The generalized Hitchin systems for general reductive groups

We will keep the same notations as in Sec. III A, adding to them and modifying some of
as follows

~1! G a reductive complex group of rankr with Lie algebrag and Weyl groupW.
~2! P a G-principal bundle overS.
~3! f a meromorphic ad(P)-valued one-form, with poles at the divisorD: fPH0(S,ad(P)

^ KS(D)) whereKS is the canonical bundle ofS.

We now consider the moduli spaceM(G,D,d) of stable Higgs pairs~P, f! of fixed degreed
~in fact d corresponds to an element ofp1(G)!.

Let h be the r-dimensional Cartan subalgebra ofg with corresponding groupH. To any
elementf of g, one can associate the Weyl group orbit of elements which lie in the intersecti
the closure of theG-orbit of f andh. After choosing a trivialization ofP over V,S, one can do
this for f 5f(p), over every pointp of S: one then obtains a Weyl invariant curve overV. This
curve does not depend on the trivialization ofP. Invariantly, overS, one has a Weyl invarian
curveS lying in the total space of the rankr bundleKS@D# ^ h over S.

Let B be a Borel subgroup ofG which containsH. We consider the liftq* P of P to S. It has
a reductionPB to B, such thatq* f lies in ad(PB) ^ K@D#, and the image ofq* f via the map
from ad(PB) ^ K@D# to K@D# ^ h givesS.7

Now since we have a projection fromB to H, we can associate toPB a bundlePH . This
bundle is not Weyl-invariant; it can however be twisted in a standard fashion to give rise
bundleP̃H which is invariant underW.7 So to the pair~P, f! we have associate a pair (S,P̃H).4,7

We are now going to define an integrable system onM(G,D,d). To do so, we need to
specify the ring of Hamiltonians. As in Sec. III A, for each pair~P, f!, we can consider the
spectral curveS of f which lies in the total spaceKD ^ h of the vector bundleK(D) ^ h over S.
It is cut out by

pi~h!5ai~z!,

wherepi forms a homogeneous basis of theW-invariant polynomials onh; theai are then sections
of (KS(D)) ^ deg(pi ) over S. Expressing theai in a basis ofH0(S,(K(D) ^ h) ^ degpi) gives rise to
functions which Poisson commute and define a completely integrable system onM(G,D,d).

One notes that ifPr(S) is the connected component containing the trivial bundle of the se
the W-invariant bundles,P̃H does not necessarily lie inPr(S) but rather in a translate of it.

Let KS@D #̃ ^ h be the blow up of total space of the vector bundleK(D) ^ h overS. In fact, we
blow up at the points of intersection of the spectral curveSand the inverse image inK(D) ^ h of
the divisorD on S.
                                                                                                                



e

n

ef.
ians

sider

this

gian
e will
param-
,
t the
t the

o

g to

7803J. Math. Phys., Vol. 41, No. 11, November 2000 The G-generalized Hitchin systems

                    
Let N be the moduli space consisting of pairs~P, tr!, where:

~1! P is a holomorphic principalG-bundle of degreed,
~2! tr is a trivialization ofP over D.

The cotangent bundleT* N is then the space of triples~P, tr, f!, whereP and tr are as defined
previously andf is a section inH0(S,ad(P) ^ KS(D)).

Proposition 3.4 (Ref. 2):The moment map for the action of the level groupGDª@Aut
( % 1

nOD)#/C* on T* N is given by the polar part off in the trivialization tr.T* N/G is identified
with M(G,D,d). The symplectic leaves are then given by fixing a coadjoint orbitO in the Lie
algebra ofGD and asking that the polar parts off lie in this orbit.

Let M5MO be a symplectic leaf inM(G,D,d). Theorem 3.5 shows that under som
conditions, one can reconstruct the Higgs pair~P, f! from the pair (S,P̃H).

Theorem 3.5„Refs. 1, 4, 7, 10…: Let S8 be anW-invariant deformation ofS in K@D# ^ h fixed
at D, andP̃H a W-invariantH-bundle overS8 lying in Pr(S8). The variety of such pairs (S8,P̃H)
is locally isomorphic toM and the projection (S8,P̃H)→S defines a Lagrangian foliation of a
open subset ofM.

One must note that curves which are deformations ofS in the blow up KS@D #̃ ^ h of
KS@D# ^ h are deformations ofS in KS@D# ^ h fixed atD.

IV. THE G-HITCHIN SYSTEMS AS A RANK TWO INTEGRABLE SYSTEM OF PRYM
VARIETIES

For Gl(n), given the moduli spacesM(r ,D,d) of stable Higgs pairs (E,f), whereE is a
vector bundle overS of fixed degreed and rankr, and f is a meromorphic End(E)-valued
one-form, with poles at the divisorD, we can define a completely integrable system on it. In R
5, it is proved that this system~which can be seen as a rank two integrable system of Jacob!
corresponds to a symmetric product of a symplectic surface.

In this section, we will see following Ref. 9 that in the more general case, once we con
the moduli spacesM(r ,D,d) of stable pairs (P,f), whereP is a holomorphicG-bundle overS
andf is a holomorphic section of ad(P) ^ KS(D), then one has a correspondence between
system~which can be seen as a rank two integrable system of Pryms! and the particular variety

X5KS@D #̃ ^ h.
This section will then be divided in two parts. In the first part, we will describe the Lagran

foliation coming from the integrable system at a generic point of the moduli space. Then w
see that we also have a Lagrangian foliation on the cotangent bundle of the moduli space
eterizing rankr, degreed, d-stable principal bundles withD-level structure. We will relate the two
then using them, we will compute the symplectic form. In the second part, we will see tha
G-Hitchin system is a rank two integrable system of Prym varieties, and we will show tha

varietyX corresponding to it isKS@D #̃ ^ h and compute the formVV that should be associated t
it.

A. Symplectic structure

In this section, we will keep the notation introduced in Sec. III B. We are now goin
compute the form.

Let N be the normal bundle to the curves in the spaceKS@D #̃ ^ h. Corresponding to the
Lagrangian foliation of the Poisson manifoldM(r ,D,d), we have

0→H1~S,O^ h!W→TM→H0~S,N!W→0, ~4.1!

where theW-superscript denotes invariance.
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The deformations of the spectral curve correspond to sections of the normal bundle. Sin

have a naturalh-valued two-form on the total space ofKS@D #̃ ^ h with poles atD, obtained from
the cotangent structure onK, we get a map:

N→K@D# ^ h,

n→v~n,.!

which induced the following isomorphism~see Ref. 11!:

H0~S,N!W.H0~S,KS@D# ^ h!W,

which allow us to write~4.1! as

0→H1~S,O^ h!W→TM→H0~S,KS@D# ^ h!W→0. ~4.2!

We have that the tangent spaces at~S,L! to the leafL in M(r ,D,d) fit into exact sequence:

0→H1~S,O^ h!W→T~L!→H0~S,KS^ h!W→0, ~4.3!

since we are interested in deformations of the spectral curve which have fixed intersectio
p* (D), so that inM(r ,D,d) one is moving along a symplectic leafL.

To split the sequence~4.3!, one can extend the line bundle to a neighborhood ofS, then
getting a way of fixing the bundle while the curve varies. We then have

T~L!5H1~S,O^ h!W
% H0~S,KS^ h!W. ~4.4!

We then define a formVS by using the Serre duality pairing betweenH0(S,KS^ h) and
H1(S,O^ h).

We also have a Lagrangian foliation on the cotangent bundleT* U(r ,D,d) given by the
projection to U(r ,D,d). The tangents to the fibers are given by elements ofH0(S,ad(P)
^ KS(D)) and on the base, deformation of the bundle along with the level structure are giv
first order by elements ofH1(S,ad(P)(2D)). We then have the following exact sequence:

0→H0~S,ad~P! ^ KS~D !!→T~T* U~r ,D,d!!→H1~S,ad~P!~2D !!→0. ~4.5!

We would like to get the following splitting:

T~T* U~r ,D,d!!.H0~S,ad~P! ^ K~D !! % H1~S,ad~P!~2D !!. ~4.6!

To do so, we coverS by n11 open sets,U05S2support (D) and Ui , i 51,..., n disjoint
disks centered at the pointspi of D. Choose trivializations ofP on U0 , and also trivializations on
theUi compatible witht at pi , and letF0,i be the transition functions ofP from Ui to U0 for these
trivializations. Now letV be a subspace of the space of cocycles for ad(P)(2D), mapping
isomorphically toH1(S,ad(P)(2D)). The (P8,t8) near ~P, t! can be obtained from transitio
functionsF0,i exp(v0,i), with (v0,i)5vPV. This defines a parametrization

V→U~r ,D,d!,

and so a symplectic map

V3V* →T* U~r ,D,d!. ~4.7!

We represent a one-parameter family of elements@E(s),t(s),f(s)# of the cotangent spac
T* U(r ,D,d) by (F0,i(s),f0(s),f i(s)), with
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f0~s!5adF0,i ~s!
f i~s!

on the overlapsU0ùUi , and chooseF0,i(0)5F0,i . At t50, the corresponding tangent vectors a
given byv0,i5F0,i

21Ḟ0,i ,ḟ0 ,ḟ i , with

ḟ05F0,i•~@v0,i ,f i #1ḟ i !•F0,i
21.

One can write the Serre duality pairing as

^v,f&5(
i

tr~resi~v0,i•f i !!,

where tr denotes the Killing form.
For any sectionsc i over Ui* define c& PH0(S,End(E) ^ K(D)) by asking that for allw

PV

^w,c& &5(
i

tr~resi~w0,i•c i !. ~4.8!

Applying this to our vectorsḟ i→f i
& defines the splitting~4.6!.

Let (v8,f8),(v9,f9) represent two elements of~4.6!. Using the same computations as tho
made in Ref. 5, we find that the symplectic form with respect to our splitting of~4.4! is given by

VS~~v8,f8!,~v9,f9!!5^v8,f9&2^v9,f8&1^@v8,v9#,f&, ~4.9!

where^ & denotes Serre duality onS.
Theorem 4.1:AssumingS is smooth, we haveVS5VS,reduced.
Proof 1: Let us then take a two-parameter familyA(x,y)5(P,t,f)(x,y) of elements ofT

lying in the inverse image ofL under the quotientU→M, and compute the formVS(Ax ,Ay) on
this family at (x,y)5(0,0). The fact thatS is smooth implies thatf~l! is regular. We can assum
by genericity that the polar parts off are semisimple.

We again cover the base curveS by n11 open setsU05S2support(D), andUi , i 51,...,n
nonintersecting disks around the pointspi in D. We assume that the curvesS(x,y) are unramified
over Ui .

Choose trivializations ofP on theUi compatible witht, and letF0,i be the transition functions
of P for these trivializations.

The Higgs fields are then represented by the Lie algebra valued formsf05AdF0,i
(f i) on the

overlaps. The symplectic form is given by

VS~Ax ,Ay!5(
i

respi
~ tr~~Fi

21Fix!•~f iy!2~Fi
21Fiy!•~f ix!!1~@Fi

21Fix ,Fi
21Fiy#•f!!),

~4.10!

where tr denotes the Killing form andFi5F0,i .
Instead of computingV on S, we can lift it to the spectral curve (p:S→S) and compute

there.
Now, on the spectral curve, we have a reduction to the Borel subgroupB in such a way that

f lies in b. We have the following sequence of groups:

0→N→B→H→0,

whereN is the unipotent subgroup. We then get the corresponding sequence of Lie algebr

0→n→b→h→0.
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We fix a principal nilpotent elemente in n, then any elementhPh has a unique representativ
in b of the forme1h, up to the action of the Weyl group. We then choose a trivialization oP
over U0 such thatf(z)5e1h0(z), zPS; this requires a genericity assumption onP which is
implied by smoothness.

On the diskUi , restricting if necessary, we can conjugate toh, and then writef as hi(z)
Ph. On the overlap ofU0 andUi , we have

hi~z!5F0,i~z!~e1h0~z!!.

F0,iPB can be split asF0,i(z)5F0,i
N (z)F0,i

H (z), F0,i
H PH, F0,i

N PN, and we then get:

Fi
21Fix5~Fi

H!21~Fix
H !1~Fi

H!21~Fi
N!21~Fix

N !21Fi
H . ~4.11!

The second term in~4.11! lies in n, and so gives zero when paired with elements ofh. In
~4.10!, Fi

21Fix and Fi
21Fiy both lies inb, so the commutator lies inn and will then give zero

when paired with elements ofh.
Using this, we can evaluate the symplectic form. We have

^a1 ,b2&S2^a2 ,b1&S5resp@ tr@~h1!x~~Fi
H!21Fiy

H !2~h1!y~~Fi
H!21!Fix

H ##. ~4.12!

Formula~4.12! gives the explicit expression ofVS on H0(S,KS^ h)W
% H1(S,O^ h)W, and so

proves the theorem.
We can then write the moduli space as an integrable system of Prym varieties wit

symplectic formVS defined previously.

B. The G-Hitchin systems as a rank two integrable system of Prym varieties

The local structure of the integrable systems is that of the fibrationPr→U by generalized
Prym varieties over a setU parametrizing a family ofW-invariant curves.

In this part, we will prove the following theorem:
Theorem 4.2:The generalized Hitchin system for an arbitrary reductive group is of rank

at every smooth spectral curve, and the variety associated to it isKS@D #̃ ^ h: it comes equipped
with a h-valued two formVh .

Now, fix a spectral curveS0 and a bundlePH
0 . Let (S,PH) be a nearby point. Choose a

extension ofPH to a neighborhood ofS0 in KS@D# ^ h. We can then write allH-bundles asPH
0

^ PH8 , werePH8 has degree zero and isW-invariant. The curves lie in the total space ofKS@D#
^ h which comes equipped with a meromorphic two-formv with poles atD.

We have previously seen that our symplectic formsVS andVS , whereVS is defined using
the Serre duality betweenH0(S,K ^ h)W andH1(S,O^ h)W are equal onPr . We then get equality
of the correspondingh-valued two-formVV,S andVV,S on the corresponding associated family
Jacobians. SetVV5VV,S .

We then take the pull backA(VV) of this form to the spaceS→U under the Abel map. Let
p0 be the intersection ofSu with a fixed fiberp21(l), wherep: KS@D# ^ h→S, and a fixed Weyl
chamber. We choosep0 to be our base point forSu . Through the Abel map, we associate to
point p away from the branch points in a curveSu , the line bundle corresponding to the divis
p2p0 and averaging under the Weyl group. The projection ofS to S gives uniform coordinates on
all curvesSu and allows us to splitTS asTU% TS away from the branch points ofSu→S. We

identify TS with TSu . On the other hand,TU is in factH0(S,N)W. Let X5KS@D #̃ ^ h be the blow
up of the vector bundleK(D) ^ h over S at the points of intersection of the spectral curveS and
the inverse image inK(D) ^ h of the divisorD on S. The spaceS maps toX, and corresponding
by, there is a map of normal bundles of the curvesSu , which is simply the evaluation map:

H0~S,N!W→NSu
, ~4.13!
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whereNSu
is the normal bundle ofSu in X.

We thus mapTU to the normal bundleNSu
. The symplectic form is obtained by first mappin

vectors inTU to NSu
, then using theh-valued symplectic form onX5KS@D #̃ ^ h to map to

KSu
@D# ^ h, and finally pairing withTSu . In particular, the vectors in the kernel of~4.13! are

isotropic, showing that theh-valued symplectic form onS is lifted from X.
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Lattice sums arising in quasiperiodic Green’s functions for the Helmholtz equation,
over general two-dimensional arrays are investigated. The array sums are related to
those over a single quasiperiodic line of sources, and their difference is be ex-
pressed in terms of exponentially convergent series. It is shown that our expres-
sions can be used to generate the sums pertaining to the case of photonic gap states
associated with complex quasiperiodicity~Bloch! vectors. The accuracy and com-
putational speed of our expressions are illustrated. ©2000 American Institute of
Physics.@S0022-2488~00!00611-3#

I. INTRODUCTION

Lattice sums arise naturally whenever periodic Green’s functions are represented in te
complete sets of nonperiodic base functions. For Laplace’s equation, they have a long hist
discussed by Glasser and Zucker.1 For the Helmholtz equation, after their introduction by v
Ignatowsky,2 they received only sporadic attention, which included an important but overlo
paper by Twersky.3 They have become the subject of more focussed attention in recent yea4–12

as various authors have stressed their advantages in terms of accuracy and speed over pla
representations, in particular cases.

Here, we will discuss the connection between the lattice sums for a grating, a single pe
line of sources with quasiperiodic phases, and for an array constructed from the grati
periodic repetition along an independent axis. Using Fourier techniques modelled on those in
recent work,11,13we will derive rapidly convergent series which, when added to the grating s
generate the array sums. These series have a number of advantages, since they are more
tationally efficient than the previous double series7,8 for array sums, and are also more gener
since they can be used with the complex quasiperiodicity vectors which arise in the stu
photonic gap states. Perhaps most importantly, the relation between grating and array sum
natural connection with the Bloch theorem and its application to the determination of pho
bands.14,15

II. LATTICE SUMS FOR THE GENERAL ARRAY

We consider the general array shown in Fig. 1. It is characterized by basis vectors, in
sian form,ê15(d,0) andê25(j,h), with h.0. The general array vector is

Rmn5mê11nê25~Rmn ,wmn!, ~1!

a!Electronic mail: ross@physics.usyd.edu.au
78080022-2488/2000/41(11)/7808/9/$17.00 © 2000 American Institute of Physics
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using both vector and polar representations@Rmn5iRmni andwmn5arg(Rmn)]. The array sums
for the Helmholtz equation depend on a scalar parameter,k—the wave number, and a vecto
parameter,k0—the Bloch vector or quasiperiodicity vector

k05a0x̂1b0ŷ, ~2!

wherex̂ and ŷ represent the unit vectors along theOx andOy axes, respectively. Thel th order
sum for the array is defined in terms of a superposition of the appropriately phasedl th order
solution of the Helmholtz equation, evaluated at the nodes of the array7,8

Sl
A5 (

(m,n)Þ(0,0)
H l

(1)~kRmn!e
i l wmneik0•Rmn, ~3!

whereH l
(1) represents the Bessel function of the third kind~the Hankel function!.16 This series is

conditionally convergent, but in previous work7,8 we derived absolutely convergent represen
tions for Sl

A . Actually, we can evaluate the array sums using accelerated summation ov
reciprocal array7,8

Sl
AJl 1q~kw!52FHq

(1)~kw!1
i

p (
n51

q
~q2n!!

~n21!! S 2

kwD q22n12Gd l ,0

2 i l 11
4

A (
m,n

S k

Qmn
D q Jl 1q~Qmnw!

Qmn
2 2k2 ei l umn, ~4!

whereQmn5k01Kmn , Qmn5iQmni , umn5arg(Qmn) andKmn are reciprocal array vectors. Also
q is an arbitrary non-negative integer,w is the length of an arbitrary vector inside the primitiv
unit cell, andA represents the area of the unit cell.

We separate the central line (n50) from the other lines in~3!, and call its contributionSl
G .

We obtain

Sl
A5Sl

G1 (
nÞ0

mn (
m52`

`

H l
(1)~kRmn!e

i l wmneima0d, ~5!

FIG. 1. A two-dimensional array constructed from a grating~along thex axis! by periodic repetition along the direction o
ê2 . We also show the fundamental translation vectors (ê1 and ê2) and a centered primitive unit cell~U!.
                                                                                                                



m

lta

rders

7810 J. Math. Phys., Vol. 41, No. 11, November 2000 McPhedran et al.

                    
where

m5eik0•ê25ei (a0j1b0h) ~6!

with b0 being a free parameter. Of course,Sl
G is the l th order grating sum

Sl
G5 (

mÞ0
H l

(1)~kRm0!ei l wm0eima0d, ~7!

evaluable by convenient numerical techniques.3,6,11 Then

Sl
A5Sl

G1 (
nÞ0

mnSl ,n
G , ~8!

with the Sl ,n
G denoting the sum over gratings displaced by multiples ofê2 away from the origin

Sl ,n
G 5 (

m52`

`

H l
(1)~kRmn!e

i l wmneima0d. ~9!

Following Yasumoto and Yashitomi11 and Chew,17 we write

H0
(1)~kr!5

1

p E
2`

` 1

x~a!
ei [ax1x(a)y]da, ~10!

wherek25a21x(a)2, x(a)/k is the direction cosine of an outgoing wave:

x~a!5H Ak22a2, uau<k

iAa22k2, uau.k
, ~11!

andr25x21y2. Furthermore, thel th order solution of the Helmholtz equation is obtained fro
the basic solution~10! using l applications of the raising operator (]/]x1 i ]/]y)/(2k)

H l
(1)~kr!ei l w5

~2 i ! l

pkl E
2`

` 1

x~a!
@a1 i sign~y!x~a!# l ei [ax1x(a)uyu]da, ~12!

with w5arg(x1iy).
Using ~10! and ~12! in ~9!, we find

Sl ,n
G 5

~2 i ! l

pkl E
2`

` 1

x~a!
@a1 i sign~n!x~a!# l ei [naj1x(a)hunu] (

m52`

`

eim(a1a0)d. ~13!

Using Poisson’s summation formula, the series in~13! is represented as a series of de
functions.18 Note that it is the presence of the termm50 in this series for theSl ,n

G which
distinguish them fromSl

G . The series over delta functions is recognized as a sum over the o
p of the gratings parallel toê1 . The pth order is characterized by an angleup , where6

ap5k sinup5a01
2pp

d
, xp5k cosup5Ak22ap

2, ~14!

using the same convention for square roots as in~11!. Hence

Sl ,n
G 5

2

d (
p52`

`

sign~n! l ei l sign(n)up
1

xp
ei [ 2napj1unuxph] . ~15!
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This expression for thel th order sum over thenth displaced grating has been verified by co
parison with the slowly convergent, oscillatory direct sum~9!.

We use~15! in ~5!, breaking the sum overn into n.0 andn,0, and recognizing that the two
sums overn then constitute geometric progressions. We define

Pp5eixph, Qp5eiapj. ~16!

Hence

DSl 5Sl
A2Sl

G5
2

d (
p52`

`
1

xp
F ei l up

m21QpPp
2121

1
~21! l e2 i l up

mQp
21Pp

2121G . ~17!

This represents the difference between thel th array sum and the corresponding sum over
central grating, as an exponentially convergent series.

The quantitiesap in ~16! are real, while thexp are imaginary for all but a finite set o
propagating orders. For largeupu, xp;2p i upu/d, and hence

uPpu21;e2pupu/d, ~18!

ensuring exponential convergence of the series in~17!, irrespective of the value ofumu. Note that
exp(6il up)5(cosup6i sinup)

l increases only algebraically withupu. For largeupu we have

e6 i l up5S xp6 iap

k D l

5~2pupu! l i l F16sign~p!

kd G l

1OS k2l

pl D . ~19!

III. PROPERTIES OF DS l

We illustrate the convergence of~17! in Tables I and II. The exponential nature of th
convergence is quite evident, with the more rapid convergence in the former case~Table I!
stemming from its larger value ofh. In terms of rapidity of evaluation, note that the array sums

TABLE I. Convergence of the series in~17!, for l 52, with the truncation orderpmax, for a rectangular array@ê1

5(1,0), ê25(0,2)#. We have also setd51, l/d50.6, kd52pd/l, u05p/8, a05k sinu0 and b0d50.7 In this case
S2

A50.213 949 518 060 371 i 0.951 685 202 067 73, from~4!, andS2
G520.747 971 523 044 082 i 0.503 119 943 357 94.

pmax DS2 S2
G1DS2

1 0.416 158 057 014 001 i 1.530 019 018 107 51 20.331 813 466 030 081 i 1.026 899 074 749 57
2 0.961 921 040 323 821 i 1.454 805 145 281 76 0.213 949 517 279 731 i 0.951 685 201 923 82
3 0.961 921 041 104 451 i 1.454 805 145 424 47 0.213 949 518 060 371 i 0.951 685 202 066 53
4 0.961 921 041 104 451 i 1.454 805 145 424 47 0.213 949 518 060 371 i 0.951 685 202 066 53

TABLE II. Same as for Table I, but for a hexagonal array@ê15(1,0), ê25(1/2,A3/2)# and l 53. In this caseS3
A

52.130 978 992 793 521 i 5.665 370 683 059 84, from~4!, andS3
G50.251 954 800 673 482 i 0.891 172 305 911 92.

pmax DS3 S3
G1DS3

1 2.113 214 098 577 591 i 5.917 799 975 496 34 2.365 168 899 251 071 i 5.026 627 669 584 43
2 1.879 270 339 208 141 i 6.556 373 866 790 84 2.131 225 139 881 621 i 5.665 201 560 878 93
3 1.879 023 591 659 221 i 6.556 543 405 750 65 2.130 978 392 332 701 i 5.665 371 099 838 73
4 1.879 024 194 571 721 i 6.556 542 987 268 43 2.130 978 995 245 201 i 5.665 370 681 356 51
5 1.879 024 192 108 541 i 6.556 542 988 979 60 2.130 978 992 782 021 i 5.665 370 683 067 69
6 1.879 024 192 119 981 i 6.556 542 988 971 65 2.130 978 992 793 461 i 5.665 370 683 059 73
7 1.879 024 192 119 931 i 6.556 542 988 971 69 2.130 978 992 793 411 i 5.665 370 683 059 77
8 1.879 024 192 119 931 i 6.556 542 988 971 69 2.130 978 992 793 411 i 5.665 370 683 059 77
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~4! are evaluated over a grid of positions in reciprocal lattice, with each point requiring a B
function evaluation. This must be done for each pair (a0 ,b0). By contrast,Sl

G depends only on
a0 , and its evaluation3,5,6,8does not require Bessel functions. TheSl ,n

G depend both ona0 andb0 ,
but their summand depends only on trigonometric functions, and is rapidly convergent. Thu
use of~17! to evaluateSl

A rather than the accelerated reciprocal lattice summation~4! of Ref. 7
results in savings of computational time of an order of magnitude 10 or greater.

The array sumsSl
A depend ona0 andb0 , and have thus far been considered only when b

components ofk0 are real. The grating sumsSl
G do not depend onb0 , and the series on the

right-hand side of~17! converge even whenb0 has an imaginary part~in which caseumu.1 or
um21u.1). Note that~4! is valid only for l .21,7 and so,~17! provides our only numerica
method of evaluating the lattice sums of negative order for complex Bloch vectors.

In Table III we illustrate that Eq.~17! is numerically valid even whenb0 has an imaginary
part. This means that~17! provides a convenient means of evaluating array sums even whenb0 is
complex~as would be required, for example, in the study of gap states in photonic crystals14,15!. It
is interesting that the results of~17! agree with those of~4! for b0 complex, combined with~7!.
This gives us confidence that~4! and ~17! represent analytic continuations ofSl

A into regions
where the definition~3! is no longer valid.

An important question concerning the array sumsSl
A is the relation between positive an

negative ordersl . For the grating sumsSl
G , it is easily shown that:

S2l
G ~a0!5Sl

G~2a0!. ~20!

For the array sumsSl
A , we will consider the case of arrays with left-right symmetry about theOy

axis, so thatj852j gives the same array. This of course includes the square, rectangula
hexagonal arrays.

From ~17!

DS2l 5
2

d (
p52`

`
1

xp
F e2 i l up

m21QpPp
2121

1
~21! l ei l up

mQp
21Pp

2121G . ~21!

We relate these to sums for a primed problem, corresponding to:

j852j, h85h, a0852a0 ,

p852p, up8
8 52up , ap8

8 52ap , xp8
8 5xp . ~22!

Then, if b085b0 , we have that

m85m, Qp8
8 5Qp , Pp8

8 5Pp , ~23!

so that

DS2l ~a0 ,b0!5DSl ~2a0 ,b0!. ~24!

TABLE III. Same as for Table I, but for a Bloch vector having a complex componentb0d5p1 i¸, with ¸50.3. In this
caseS2

A5 i 0.116 250 940 612 27, from~4!, andS2
G520.747 971 523 044 082 i 0.503 119 943 357 94.

pmax DS2 S2
G1DS2

1 0.636 595 360 070 351 i 1.092 875 208 571 42 20.111 376 162 973 731 i 0.589 755 265 213 48
2 0.747 971 523 044 091 i 0.619 370 882 469 30 i 0.116 250 939 111 36
3 0.747 971 523 044 091 i 0.619 370 883 968 95 i 0.116 250 940 611 01
4 0.747 971 523 044 091 i 0.619 370 883 968 95 i 0.116 250 940 611 01
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Combining~20! and ~24! we find the relationship:

S2l
A ~a0 ,b0!5Sl

A~2a0 ,b0!, ~25!

for all arrays left-right symmetric about theOy axis.
If a0 and (2a0) are equivalent~e.g., if a050 or a05p/d) then

S2l
A ~a0 ,b0!5Sl

A~a0 ,b0!. ~26!

We have verified numerically the relation~25! for rectangular and hexagonal arrays and comp
Bloch vectorsk0 , using~17! and ~20!.

A second connection betweenS2l
A andSl

A can be demonstrated for completely general arr
~i.e., without the assumption of left-right symmetry about theOy axis being necessary!. The proof
uses the definition~3! of the array sums, and is thus heuristic if the vectork0 has complex
components. We start by splitting the array sum~3! into two partsSl

A5Sl
J 1 i Sl

Y , corresponding
to the definitionH l (z)5Jl (z)1 iY l (z).16 We have shown4,7,8 thatSl

J 52d l ,0 , for any array, so
that

Sl
A52d l ,01 iSl

Y , ~27!

where

Sl
Y5 (

(m,n)Þ(0,0)
Yl ~kRmn!e

i l wmneik0•Rmn. ~28!

For complexk0 , we writek05k0r1 ik0i , and~28! becomes:

Sl
Y5 (

(m,n)Þ(0,0)
Yl ~kRmn!e

i l wmneik0r•Rmne2k0i•Rmn. ~29!

From ~29! we have

S2l
Y 5 (

(m,n)Þ(0,0)
~21! l Yl ~kRmn!e

2 i l wmneik0r•Rmne2k0i•Rmn. ~30!

Then, we change the summation indicesm→2m, n→2n, and use the relationsR2m,2n5
2Rmn andw2m,2n5p1wmn , to obtain

S2l
Y 5 (

(m,n)Þ(0,0)
Yl ~kRmn!e

2 i l wmne2 ik0r•Rmnek0i•Rmn. ~31!

Finally, a direct comparison of~31! and ~29! gives the relation

S2l
Y ~k0!5Sl

Y~k0!, ~32!

where the superposed bar means complex conjugation. We have verified numerically the r
~32! for arbitrary arrays and complex Bloch vectorsk0 , using the relations~17! and ~20!.

IV. THE ARRAY GREEN’S FUNCTION

An important application of the array sumsSl
A , and also a means of assessing their accura

is to construct the Green’s function7,8

G~r !5
1

4i FH0
(1)~kr !1 (

l 52`

`

Sl
AJl~kr !e2 i l uG , ~33!
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wherer denotes a position vector with polar representation (r ,u). Note that, in cylindrical coor-
dinates, the Green’s function for a grating has precisely the same form~33! but with the array
sumsSl

A replaced by the grating sumsSl
G . Surface/contour plots of the real and imaginary parts

this function are shown in Fig. 2 for a case where the Bloch vectork0 is real.
The accuracy of theSl

A , and of the truncated numerical representation of~33!, may be
assessed by examining the quasiperiodicity conditions

G~r2ê1!eik0•ê12G~r !50, G~r2ê2!eik0•ê22G~r !50, ~34!

for r lying, respectively, on the right and upper sides of the centered parallelogram unit cell o

FIG. 2. Surface/contour plots of the real~top! and imaginary~bottom! parts of the Green’s function for a square arra
whenk0 is real, andd51, l/d50.6, kd52pd/l, u05p/8, a05k sinu0 andb0d50.7. The complete set of color, surfac
and contour plots can be found at http://www.physics.usyd.edu.au/theory/dif/submitted.html.
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1. For the data of Fig. 2, the criteria~34! are satisfied to an absolute accuracy of better than 1026,
with terms between230 and 30 included in~33!. The accuracy is worst at the corners of the u
cell.

Consider next the case of a complex Bloch vector~Fig. 3!, with Re(b0) corresponding to one
side of the Brillouin zone, andIm(b0).0. Comparing Figs. 2 and 3, we see that the Gree
function oscillates along thex axis (a0 real!, but whenb0 acquires an imaginary part, it bot
oscillates and attenuates asy increases. Note the singularity in the real part ofG at r50, in both
plots, which of course is not present in the imaginary parts. The quasiperiodicity~Bloch! condi-
tions ~34! are satisfied to comparable accuracy in the cases of Figs. 2 and 3.

V. CONCLUSIONS

When this work is combined with that of Yashumoto and Yoshitomi,11 the numerical evalu-
ation of grating and array sums is simplified and enhanced in efficiency. Furthermore, it be

FIG. 3. Surface/contour plots of the real~top! and imaginary~bottom! parts of the Green’s function for a square arra
whenk0 is complex, andd51, l/d50.6, kd52pd/l, u05p/8, a05k sinu0 andb0d5p1 i0.65. The complete set o
color, surface and contour plots can be found at http://www.physics.usyd.edu.au/theory/dif/submitted.html.
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possible to evaluate array sums for both propagating and evanescent or gap Bloch states
advantages should spur more widespread applications of array sums in problems of prop
and scattering involving doubly periodic structures.
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Construction of multisymplectic schemes of any finite
order for modified wave equations
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In this paper, we analyze several symplectic discretizations of linear wave equa-
tions with periodic boundary conditions, and show the discretizations are multisym-
plectic of arbitrary finite order for wave equations when the periodic boundary
condition vanishes. ©2000 American Institute of Physics.
@S0022-2488~00!02411-7#

I. INTRODUCTION

The traditional symplectic method1–5 dealing with PDEs are that first to discretize the PDEs
the spatial direction to obtain a finite dimensional Hamiltonian ODEs, then to discretize the
dimensional Hamiltonian ODEs in time by an appropriate symplectic method. The disadvant
this approach is that one has to treat thex- and t-directions in a particular order and that th
formulation is not local unlike the multisymplectic formulation. The theoretical results6 indicated
that the nice features of the multisymplectic structure are that it is a strictly local concept an
it can be formulated as a conservation law involving differential two forms. Thus it is a
natural generalization of the conservation of symplecticity for canonical Hamiltonian system
number of conservative PDEs, such as various wave equations, the nonlinear Schro¨dinger equa-
tion, the Boussinesq equation, the water-wave equation, and the Korteweg-de Vries eq
allow for a multisymplectic formulation. Refs. 7 and 8 showed that it is possible to find m
symplectic methods in a rather general setting similar to the finite dimensional situation. Bu
valuable to show how these schemes perform in practice and how they relate to schemes w
symplectic discretizations of a finite dimensional truncation of PDEs. In this paper, we discus
problem via the wave equation.

This paper is organized in the following way. In the next section, we recall variati
principles forkth order classical field theory.9 In Sec. III, we give a brief description of backwar
error analysis. In Sec. IV, we take the nonlinear wave equations as an example to show t
discrete covariant Hamiltonian formulation is related to the discrete Veselov-type Lagra
formulation which only go to the second order field theory,10,11 and are extended to higher ord
in the present paper. In Sec. V, using the idea of Sec. III, we show that the schemes cons
by Ref. 1 is multisymplectic in the Lagrangian sense, equivalently multisymplectic in sense~2.7!.8

II. VARIATIONAL PRINCIPLES FOR k th ORDER CLASSICAL FIELD THEORY „REF. 9…

Let X be an orientable (n11) dimensional manifold~which in applications is usually space
time! and letpXY :Y→X be a fiber bundle overX. The physical fields will be sections of thi
‘‘covariant configuration bundle.’’

Consider a kth order Lagrangian density, viewed as a fiber-preserving mapL:JkY
→`n11X. JkY denotes thekth jet bundle ofY, and this bundle may be defined inductively b

a!Electronic mail: sunyj@lsec.cc.ac.cn
b!Electronic mail: qmz@lsec.cc.ac.cn
78540022-2488/2000/41(11)/7854/15/$17.00 © 2000 American Institute of Physics
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J1
„¯(J1Y)…. Whenk51, the first jet bundleJ1Y is the appropriate configuration bundle for fir

order theories, i.e., field theories governed by Lagrangians which only depend on the spa
position, the field and the first partial derivatives of the field. It should be clear, however that
of the constructions involving first order field theories may be generalized further to jets okth
order, that are governed by Lagrangians which additionally depend on second partial deriv
of the fields, ...,kth partial derivatives of the fields. Let us be more specific.

Definition 2.1: The kth jet bundle is the affine bundle overJk21Y whose fiber atg
PJk21Yy consists of linear mappingss:TxX→TgJk21Y, satisfying

TpX,Jk21Y
+s5Identity on TxX.

One can define thekth jet prolongation of a sectionw:X→Y, j k(w), as j 1
„¯ j 1(w)…, that is

a mapx°Txj k21(w), wherej k21(w) is regarded as a section ofJk21Y overX. This map defines
a section ofJkY regarded as a bundle overX with j k(w)(x) being a linear map fromTxX into
Tj k21(w)(x)J

k21Y.
If X has local coordinatesxm, m51,2,...,n,0, adapted coordinates onY are yA, A

51,2,...,N, along the fibersYx5pXY
21(x), wherexPX andN are the fiber dimension ofY, j k(w)

can be given by

xm°~xm,wA~xm!,]m1
wA~xm!,...,]mk

]mk21
¯]m1

wA~xm!!,

we shall also use the notationwm1¯mk

A 5]mk
¯]m1

wA for kth partial derivatives.

A section% of JrY→X is said to be s-holonomic, ifps
r+%5 j s(p0

r +%), whereJ0Y5Y, p0

5p.

Given akth order Lagrangian densityL:JkY→`n11(X), where`n11(X) is the bundle of
(n11) forms onX. In coordinates, we write

L~s!5L~xm,yA,ym1

A ,¯ym1¯mk

A !w,

wherew5dx1`¯dxn`dx0. The fundamental geometric structure ofkth order Lagrangian field
theory is the Cartan formuL . But unfortunately ifk.1 andn.0, there is a degree of arbitrarines
in the Cartan form, i.e., there will be different Cartan forms which carry out the same func
The reason for this is to do with the commutativity of repeated partial differentiation. But
always possible to find a unique globally-defined Euler–Lagrange form onJ2kY, in local coordi-
nates, it is given by

(
umu50

k

~21! umu dumu

dxm S ]L

]ym
AD 50,

and a Cartan form forL may be constructed by

uL5~L2pA
m1ym1

A 2¯2pA
m1¯mkym1¯mk

A !w1~pA
n dyA1¯1pA

m1¯mk21n dym1¯mk21

A !`wn ,

where pA
m1¯mk5 ]L/]ym1¯mk

A ,...,pA
m1¯ms5 ]L/]ym1¯ms

A 2 ]pA
m1¯msn/]xn ,¯ ,pA

m15 ]L/]ym1

A

2]pA
m1n/]xn , wn5 i ]/]xnw. VL52duL is the multisymplectic form onJ2k21Y.
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III. THE METHOD OF BACKWARD ERROR ANALYSIS

The method of backward error analysisproposed by several authors12–16 is to interpret the
effect of discretization error as a change in the mathematical equations. The idea is based
assumption that the numerical valueszn are exact values of functionsz(t) that satisfy differential
equations with slightly different right-hand sides, which are assumed to possess asympto
pansions in power ofDt. For simplicity, we consider the linear Hamiltonian system,

ż5J21Kz, ~1!

for ~1! the symplectic Euler centered scheme of orderO(Dt2),

z15z01J21K
z11z0

2
, ~2!

whereK is symmetric matrix,J is an antisymmetric matrix, which, when expanded around
point z1/2, gives

dz1/2

dt
5J21Kz1/21

t2

12
~J21K !3z1/21¯ ,

the numerical solutionz1/2 approximate~1! with an error ofO(Dt2). If we absorb the second erro
term (t2/12) (J21K)3z into an original equation~1!, one can give the modified equation of~1!,

ż5J21Kz2
t2

12
~J21K !3z, ~3!

discretize~3! by the symplectic Euler centered scheme of orderO(Dt2), we can derive the
symplectic scheme ofO(Dt4) order for ~1!. In Sec. V, our work indicates the above idea.

IV. THE MULTISYMPLECTIC SCHEMES BASED ON BRIDGE’S FORMULATION AND ON
MARSDEN’S LAGRANGIAN FORMULATION

In this section, taking the nonlinear wave equationutt2uxx1V8(u)50 as an example, we
discuss the relation between some multisymplectic schemes in a Lagrangian sense17,18 and in
Bridge’s sense.

Proposition 4.1:Upon introducing shifted momentsv i
j 11/25 (ui

j 112ui
j )/Dt , wi 11/2

j 5(ui 11
j

2ui
j )/Dx, the following two discrete versions:

ui
j 1122ui

j1ui
j 21

Dt2 2
ui 11

j 22ui
j1ui 21

j

Dx2 1V8~ui
j !50, ~4!

1

Dt S 2v i
j 1 1/21v i

j 2 1/2

ui
j 112ui

j

0
D 1

1

Dx S wi 1 1/2
j 2wi 2 1/2

j

0
2ui 11

j 1ui
j
D 5S V8~ui

j !

v i
j 11/2

2wi 11/2
j

D , ~5!

are equivalent.
Proposition 4.2:Upon introducing shifted moments,

v i 1 1/2
j 1 1/25

1

Dt
~ui 1 1/2

j 11 2ui 1 1/2
j !, wi 1 1/2

j 1 1/25
1

Dx
~ui 11

j 1 1/22ui
j 1 1/2!,

the following two discrete versions:
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] t
2ui 11

j 12 ] t
2ui

j1] t
2ui 21

j

4 Dt2 2
]x

2ui
j 1112 ]x

2ui
j1]x

2ui
j 21

4 Dx2

1
1

4
„V8~ ūi

j !1V8~ ūi 21
j 21!1V8~ ūi

j 21!1V8~ ūi 21
j !…50, ~6!

1

Dt S 2v i 1 1/2
j 11 1v i 1 1/2

j

ui 1 1/2
j 11 2ui 1 1/2

j

0
D 1

1

Dx S wi 11
j 1 1/22wi

j 1 1/2

0
2ui 11

j 1 1/21ui
j 1 1/2

D 5S V8~ui 11/2
j 11/2!

v i 11/2
j 11/2

2wi 11/2
j 11/2

D , ~7!

are equivalent, where

] t
2ui

j5ui
j 1122ui

j1ui
j 21 , ]x

2ui
j5ui 11

j 22ui
j1ui 21

j , ūi
j5 1

4 ~ui
j1ui

j 111ui 11
j 111ui 11

j !,

ui 1 1/2
j 11 5 1

2 ~ui
j 111ui 11

j 11!, ui 1 1/2
j 1 1/25 1

2 ~ui 1 1/2
j 11 1ui 1 1/2

j !, ui 11
j 1 1/25 1

2 ~ui 11
j 1ui 11

j 11!.

Remark 4.1:~4!, ~6! are provided by discretizing the Lagrangian density,

L:J1Y→`2X, L~u,ut ,ux!5~ 1
2 ut

22 1
2 ux

22V~u!!dx`dt.

Remark 4.2:~7! is a centered Preissman scheme with the discrete multisymplectic cons
tion law,7

dui 1 1/2
j 11 `dv i 1 1/2

j 11 2dui 1 1/2
j `dv i 1 1/2

j

Dt
5

dui 11
j 1 1/2`dwi 11

j 1 1/22dui
j 11/2`dwi

j 1 1/2

Dx
. ~8!

Remark 4.3:~6! has the Lagrangian form of conservation of symplecticity,

~] t
2dui 11

j 12] t
2dui

j1] t
2dui 21

j !`dui
j

4 Dt2 2
~]x

2dui
j 1112]x

2dui
j1]x

2dui
j 21!`dui

j

4 Dx2 1
1

4
„V9~ ūi

j !dūi
j

`dui
j1V9~ ūi 21

j 21!dūi 21
j 21`dui

j1V9~ ūi
j 21!dūi

j 21`dui
j1V9~ ūi 21

j !dūi 21
j `dui

j
…50. ~9!

In fact, using a four point approximation over the rectangle,

Ai j 5@~ i , j !,~ i , j 11!,~ i 11,j !,~ i 11,j 11!#,

one can formulate the discrete Lagrangian density,

L ~ui 11
j 11 ,ui

j 11 ,ui 11
j ,ui

j !5
~ui 1 1/2

j 11 2ui 1 1/2
j !2

2~Dt !2 2
~ui 11

j 1 1/22ui
j 1 1/2!2

2~Dx!2 2V~ ūi
j !,

and the discrete action functional,

S5¯1L ~ui
j ,ui 21

j ,ui
j 21 ,ui 21

j 21!1L ~ui 11
j ,ui

j ,ui 11
j 21 ,ui

j 21!

1L ~ui
j 11 ,ui 21

j 11 ,ui
j ,ui 21

j !1L ~ui 11
j 11 ,ui

j 11 ,ui 11
j ,ui

j !1¯ ,

whereui
j5u( iDx, j Dt), with a corresponding formula for each rectangle in (x,t) space. Define

the four one forms (u1,u2,u3,u4) as being the discrete analog of Cartan formuL for the rectangle
Ai j , namely,

u i , j
1 5D1L~ui 11

j 11 ,ui
j 11 ,ui 11

j ,ui
j !dui 11

j 11 ,

u i , j
2 5D2L~ui 11

j 11 ,ui
j 11 ,ui 11

j ,ui
j !dui

j 11 ,
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u i , j
3 5D3L~ui 11

j 11 ,ui
j 11 ,ui 11

j ,ui
j !dui 11

j ,

u i , j
4 5D4L~ui 11

j 11 ,ui
j 11 ,ui 11

j ,ui
j !dui

j ,

dS can be expressed as

dS5~D1L ~ui
j ,...,ui 21

j 21!1D2L ~ui 11
j ,...,ui

j 21!1D3L ~ui
j 11 ,...,ui 21

j !

1D4L ~ui 11
j 11 ,...,ui

j !!dui
j1D2L ~ui

j ,...,ui 21
j 21!dui 21

j 1D3L ~ui
j ,...,ui 21

j 21!dui
j 21

1¯1D1L ~ui 11
j ,...,ui

j 21!dui 11
j 1D3L ~ui 11

j ,...,ui
j 21!dui 11

j 211¯

1D1L ~ui
j 11 ,...,ui 21

j !dui
j 111D2L ~ui

j 11 ,...,ui 21
j !dui 21

j 111¯

1D1L ~ui 11
j 11 ,...,ui

j !dui 11
j 111D2L ~ui 11

j 11 ,...,ui
j !dui

j 111¯ .

By using Ref. 10,~6! can be provided by the discrete variational principles,

D1L ~ui
j ,ui 21

j ,ui
j 21 ,ui 21

j 21!1D2L ~ui 11
j ,ui

j ,ui 11
j 21 ,ui

j 21!

1D3L ~ui
j 11 ,ui 21

j 11 ,ui
j ,ui 21

j !1D4L ~ui 11
j 11 ,ui

j 11 ,ui 11
j ,ui

j !50,

and the variation of a boundary term gives the Lagrangian form of conservation of symplec

05du i , j
1 1du i , j

2 1du i , j
3 1du i , j 21

1 1du i , j 21
3 1du i , j 21

4 1du i 21,j 21
2 1du i 21,j 21

3

1du i 21,j 21
4 1du i 21,j

1 1du i 21,j
2 1du i 21,j

4 ,

i.e., formula~9!.

V. CONSTRUCTION OF MULTISYMPLECTIC SCHEMES FOR MODIFIED LINEAR WAVE
EQUATION

Wave equationutt5uxx with a periodic boundary condition can be written as two Hamilton
forms:

S ut

v t
D5S 0 I

]2

]x2 0D S u
v D , ~10!

S ut

v t
D5S 0

]

]x

]

]x
0
D S u

v D ; ~11!

the schemes of any finite order accuracy corresponding to the two Hamiltonian forms wer
structed in Ref. 1. In this section, ignoring the boundary condition we discuss these scheme
in a multisymplectic sense.

Proposition 5.1:The numerical discretization of orderO(Dt2s1Dx2m),

ui
j 1122ui

j1ui
j 215tanhS 2s,

Dt

2 D tanhS 2s,
Dt

2
D~2m! D ~ui

j 1112ui
j1ui

j 21!, ~12!

is multisymplectic, where
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tanh
Dt

2
5

Dt

2
2

1

3 S Dt

2 D 3

1
2

15S Dt

2 D 5

2
17

312S Dt

2 D 7

1¯5 (
k51

`

a2k21S Dt

2 D 2k21

,

a2k21522k~22k21!
B2k

~2k!!
, B2k :Bernoulli numbers,

tanhS 2s,
Dt

2
D~2m! D5 (

k51

s

a2k21S Dt

2
D~2m! D 2k21

,

is a 2sth order truncation of tanh„(Dt/2)D(2m)…,

D~2m!5¹1¹2 (
j 50

m21

~21! jb j S Dx2¹1¹2

4 D j

,

whereb j5@( j !) 222 j #/@(2 j 11)!( j 11)# and¹1¹2 are forward and backward difference oper
tors.

Proof: Only prove the casem52, s52; in this case,~12! becomes

ui
j 1122ui

j1ui
j 21

Dt2 5S 12
Dt2

12 D D~4!ui
j 1112D~4!ui

j1D~4!ui
j 21

4

1S 12
Dt2

12 D Dt2

12 S D3~4!ui
j 1112D3~4!ui

j1D3~4!ui
j 21

4 D , ~13!

whereD(4)ui
j5(2ui 12

j 116ui 11
j 230ui

j116ui 21
j 2ui 22

j )/12Dx2. Discretize the Lagrangian den
sity L:J3Y→`2X,

L~ut ,ux ,uxxx!5
1

2 S ut
22S 12

Dt2

12 Dux
22S 12

Dt2

12 D Dt2

12
uxxx

2 Ddx`dt,

by using the central differencing,

ut'
ui

j 112ui
j

Dt
,

ux'
1

2 S a1ui 11
j 14ui

j2a6ui 21
j

2)Dx
1

a1ui 11
j 1114ui

j 112a6ui 21
j 11

2)Dx
D ,

uxxx'
1

2 S a1ui 13
j 1a2ui 12

j 2a3ui 11
j 1184ui

j2a4ui 21
j 1a5ui 22

j 2a6ui 23
j

24)Dx3

1
a1ui 13

j 111a2ui 12
j 112a3ui 11

j 111184ui
j 112a4ui 21

j 111a5ui 22
j 112a6ui 23

j 11

24)Dx3 D ,

wherea152(21)), a2536116), a35126129), a45126229), a5536216), a652
2); the associated discrete variational principle provides the following discrete version o
Euler–Lagrange formula at the grid point (x,t)5( i , j ):

D1L ~ui
j ,...,ui 26

j ,ui
j 11 ,...,ui 26

j 11!1D2L ~ui 11
j ,...,ui 25

j ,ui 11
j 11 ,...,ui 25

j 11!

1¯1D14L ~ui 16
j 21 ,...,ui

j 21 ,...,ui
j !50,
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which gives rise to the discretization scheme~13!.
Remark 5.1:In cases51, m51, ~12! @~5.10! in Ref. 9 when the nonlinear term vanishes# is

multisymplectic, which preserves the Lagrangian form of conservation of symplecticity,

dui
j 11`dui

j2dui
j`dui

j 21

Dt
5

dui 11
j `dui

j2dui
j`dui 21

j

Dx
.

Remark 5.2:From the proof, by discretizing the Lagrangian density of the modified w
equation,

utt5S 12
Dt2

12 Duxx1S 12
Dt2

12 D Dt2

12
uxxxxxx, ~14!

we can derive~13! which preserves the discrete Lagrangian symplectic formulation of~14!.
Remark 5.3:By introducing the transformation,

v i
j 1 1/25

ui
j 112ui

j

Dt
, wi

j 1 1/25

1

2)
„2~21) !ui 11

j 1 1/214ui
j 1 1/22~22) !ui 21

j 1 1/2
…

Dx
,

pi
j 1 1/25

1

2)
„2~22) !wi 11

j 1 1/214wi
j 1 1/22~21) !wi 21

j 1 1/2
…

Dx
,

qi
j 1 1/25

1

2)
„2~21) !pi 11

j 1 1/214pi
j 1 1/22~22) !pi 21

j 1 1/2
…

Dx
,

r i
j 1 1/25

1

2)
„2~22) !qi 11

j 1 1/214qi
j 1 1/22~21) !qi 21

j 1 1/2
…

Dx
,

f i
j 1 1/25

1

2)
„2~21) !r i 11

j 1 1/214r i
j 1 1/22~22) !r i 21

j 1 1/2
…

Dx
.

~13! can be written as
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1

Dt S 2v i
j 1 1/21v i

j 2 1/2

ui
j 112ui

j

0
0
0
0
0

D 1
1

Dx

¨

E1

0

E2

~12a!a
1

2)
~a1qi 11

j 1 1/214qi
j 1 1/22a6qi 21

j 1 1/2!

2~12a!a
1

2)
~2a6pi 11

j 1 1/214pi
j 1 1/21a1pi 21

j 1 1/2!

~12a!a
1

2)
~a1wi 11

j 1 1/214wi
j 1 1/22a6wi 21

j 1 1/2!

2~12a!a
1

2)
~2a6ui 11

j 1 1/214ui
j 1 1/21a12ui 21

j 1 1/2!

©

5S 0
v i

j 1 1/2

2~12a!wi
j 1 1/22~12a!a fi

j 1 1/2

~12a!ari
j 1 1/2

2~12a!aqi
j 1 1/2

~12a!api
j 1 1/2

2~12a!awi
j 1 1/2,

D
which is the discretization of Bridge’s formAzt1Bzx5¹S(z) of ~14!, where z
5(u,ut ,ux ,uxx ,uxxx ,uxxxx,uxxxxx)5(u,v,w,p,q,r , f ), S(z)5 1

2v
22 1

2(12a)w22(12a)a f w
2 1

2(12a)aq21(12a)arp, a5 Dt2/12,

E15~12a!
1

4)
~2a1wi 11

j 1 1/224wi
j 1 1/21a6wi 21

j 1 1/22a1wi 11
j 2 1/224wi

j 2 1/21a6wi 21
j 2 1/2!

1~12a!a
1

4)
~2a1f i 11

j 1 1/224 f i
j 1 1/21a6f i 21

j 1 1/22a1f i 11
j 2 1/224 f i

j 2 1/21a6f i 21
j 2 1/2!,

E252~12a!
1

2)
~2a6ui 11

j 1 1/214ui
j 1 1/21a1ui 21

j 1 1/2!

2~12a!a
1

2)
~2a6r i 11

j 1 1/214r i
j 1 1/21a1r i 21

j 1 1/2!,

A5S 0 21 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

D ,
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B5S 0 0 12a 0 0 0 ~12a!a

0 0 0 0 0 0 0

2~12a! 0 0 0 0 2~12a!a 0

0 0 0 0 ~12a!a 0 0

0 0 0 2~12a!a 0 0 0

0 0 ~12a!a 0 0 0 0

2~12a!a 0 0 0 0 0 0

D .

The corresponding discrete multisymplectic conservation law,

21

Dt S dv i
j 11/2`dui

j 112dv i
j 21/2`dui

j1
1

Dx
~12a!

1

4)
@a1~dwi 11

j 11/2`dui
j

12 dwi
j 1 1/2`dui 21

j 1 1/2!14 dwi
j 1 1/2`dui

j 112a6~dwi 21
j 1 1/2`dui

j12 dwi
j 1 1/2`dui 11

j 1 1/2!

1~a1 dwi 11
j 2 1/214 dwi

j 2 1/22a6 dwi 21
j 2 1/2!`dui

j #1
1

Dx
~12a!a

1

4)
@a1~d fi 11

j 1 1/2`dui
j

12 d fi
j 1 1/2`dui 21

j 1 1/2!14 d fi
j 1 1/2`dui

j 112a6~d fi 21
j 1 1/2`dui

j12 d fi
j 1 1/2`dui 11

j 1 1/2!

1~a1 d fi 11
j 2 1/214 d fi

j 2 1/22a6 d fi 21
j 2 1/2!`dui

j #1
1

Dx
~12a!a

1

2)
@a1~dqi 11

j 1 1/2`dpi
j 1 1/2

2dqi
j 1 1/2`dpi 21

j 1 1/2!2a6~dqi 21
j 1 1/2`dpi

j 1 1/22dqi
j 1 1/2`dpi 11

j 1 1/2!#

1
1

Dx
~12a!a

1

2)
@2a6~dwi

j 1 1/2`dri 11
j 1 1/22dwi 21

j 1 1/2`dri
j 1 1/2!

1a1~dwi
j 1 1/2`dri 21

j 1 1/22dwi 11
j 1 1/2`dri

j 1 1/2!#50,

is equivalent to the discrete Lagrangian symplectic formulation,

S dui
j 1122 dui

j1dui
j 21

Dt2 D `dui
j5S 12

Dt2

12 D 1

4
„D~4!dui

j 1112D~4!dui
j1D~4!dui

j 21
…`dui

j

2S 11
Dt2

12 D 1

4

Dt2

12
„D3~4!dui

j 1112D3~4!dui
j1D3~4!dui

j 21
…

`dui
j ,

where a152(22)), a6521), a5 Dt2/12 , zi
j 11/25 1

2(zi
j1zi

j 11), zi 11/2
j 11/25 1

4(zi
j1zi

j 111zi 11
j

1zi 11
j 11), zi 11/2

j 5 1
2(zi

j1zi 11
j ).

Proposition 5.2:The scheme of orderO(Dt2s1Dx2m),

ui
j 1122ui

j1ui
j 215S tanhS 2s,

Dt

2
¹~2m! D D 2

~ui
j 1112ui

j1ui
j 21!

is multisymplectic, where¹(2m) is the 2mth order central difference operator for]2/]x2,

¹~2m!5¹0 (
j 50

m21

~21! ja j S Dx2¹1¹2

4 D j

,
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a j5@( j !) 222 j #/(2 j 11)! and ¹0 is the central difference operator. In particular, whens52, m
52, this is a scheme of orderO(Dt41Dx4),

ui
j 1122ui

j1ui
j 21

Dt2 5
¹2~4!ui

j 1112¹2~4!ui
j1¹2~4!ui

j 21

4
22

Dt2

12
¹4~4!S ui

j 1112ui
j1ui

j 21

4 D
1S Dt2

12 D 2

¹6~4!S ui
j 1112ui

j1ui
j 21

4 D , ~15!

where¹(4)ui
j5 (2ui 12

j 18ui 11
j 28ui 21

j 1ui 22
j )/12Dx.

Remark 5.4: The proof of proposition 5.2 is similar to proposition 5.1.~15! can be derived by
discretizing the Lagrangian densityL:J3Y→`2X,

L~ut ,ux ,uxx ,uxxx!5 1/2S ut
22ux

22
Dt2

6
uxx

2 2
Dt4

144
uxxx

2 Ddx`dt,

which is the discrete Lagrangian density of the modified wave equation,

utt5uxx2
Dt2

6
uxxxx1

Dt4

144
uxxxxxx. ~16!

~16! has Bridge’s form Azt1Bzx5¹S(z),where z5(u,v,w,p,q,r , f )
5(u,ut ,ux ,uxx ,uxxx ,uxxxx,uxxxxx), S(z)5 1

2v
22 1

2w
22 (Dt2/12)p22(Dt4/228)q21 (Dt2/6) wq

1(Dt4/144)rp2 (Dt4/144) f w,

A5S 0 21 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

D ,

B5

¨

0 0 1 0 2
Dt2

6
0

Dt4

144

0 0 0 0 0 0 0

21 0 0
Dt2

6
0 2

Dt4

144
0

0 0 2
Dt2

6
0

Dt4

144
0 0

Dt2

6
0 0 2

Dt4

144
0 0 0

0 0
Dt4

144
0 0 0 0

2
Dt4

144
0 0 0 0 0 0

©
.

Proposition 5.3:The scheme of orderO(Dt2s1Dx2m),
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ui
j 1222ui

j1ui
j 2252 sinh~2s,Dt !2 sinh„2s,DtD~2m!…ui

j ,

is multisymplectic, where

sinh~Dt !5Dt1
Dt3

3!
1

Dt5

5!
1¯5 (

k51

`
Dt2k21

~2k21!!
,

sinh„2s,DtD~2m!…5 (
k51

s
Dt2k21D2k21~2m!

~2k21!!
,

is a 2sth order truncation of sinh„DtD(2m)…. In particular, whenm52, s52, this is the scheme
of orderO(Dt41Dx4),

ui
j 1222ui

j1ui
j 22

4Dt2 5S 11
Dt2

3! DD~4!ui
j1S 11

Dt2

3! D Dt2

3!
D3~4!ui

j . ~17!

Remark 5.5:~17! can be derived by discretizing the Lagrangian densityL:J3Y→`2X,

L~ut ,ux ,uxxx!5
1

2 S ut
22S 11

Dt2

3! Dux
22S 11

Dt2

3! D Dt2

3!
uxxx

2 Ddx`dt,

which is the discrete Lagrangian density of the modified wave equation,

utt5S 11
Dt2

3! Duxx1S 11
Dt2

3! D Dt2

3!
uxxxxxx. ~18!

~18! has the Bridge’s form Azt1Bzx5¹S(z),where z5(u,v,w,p,q,r , f )
5(u,ut ,ux ,uxx ,uxxx ,uxxxx,uxxxxx), S(z)5 1

2v
22 1

2(11b)w22(11b)b f w2 1
2(11b)bq21(1

1b)brp, b5 Dt2/3!,

A5S 0 21 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

D ,

B5S 0 0 11b 0 0 0 ~11b!b

0 0 0 0 0 0 0

2~11b! 0 0 0 0 2~11b!b 0

0 0 0 0 ~11b!b 0 0

0 0 0 2~11b!b 0 0 0

0 0 ~11b! 0 0 0 0

2~11b!b 0 0 0 0 0 0

D .

Proposition 5.4:The scheme of orderO(Dt2s1Dx2m),

ui
j 1222ui

j1ui
j 225~2sinh„2s,Dt¹~2m!…!2ui

j ,
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is multisymplectic. In particular, whens52, m52, this is a scheme of the orderO(Dt41Dx4),

ui
j 1222ui

j1ui
j 22

4 Dt2 5¹2~4!ui
j1

Dt2

3
¹4~4!ui

j1
Dt4

36
¹6~4!ui

j . ~19!

Remark 5.6:~19! can be derived by discretizing the Lagrangian densityL:J3Y→`2X,

L~ut ,ux ,uxx ,uxxx!5 1/2S ut
22ux

21
Dt2

3
uxx

2 2
Dt4

36
uxxx

2 Ddx`dt,

which is the discrete Lagrangian density of the modified wave equation,

utt5uxx1
Dt2

3
uxxxx1

Dt4

36
uxxxxxx, ~20!

~20! has Bridge’s form Azt1Bzx5¹S(z),where z5(u,v,w,p,q,r , f )
5(u,ut ,ux ,uxx ,uxxx ,uxxxx,uxxxxx), S(z)5 1

2v
22 1

2w
21 (Dt2/6) p22(Dt4/72)q22 Dt2/3wq

1(Dt4/36) rp2 (Dt4/36) f w,

A5S 0 21 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

D ,

B5

¨

0 0 1 0
Dt2

3
0

Dt4

36

0 0 0 0 0 0 0

21 0 0 2
Dt2

3
0 2

Dt4

36
0

0 0
Dt2

3
0

Dt4

36
0 0

2
Dt2

3
0 0 2

Dt4

36
0 0 0

0 0
Dt4

36
0 0 0 0

2
Dt4

36
0 0 0 0 0 0.

©
.

Proposition 5.5:The scheme of orderO(Dt2s1Dx2m),

ui
j 1152 cosh„2s,DtAD~2m!…ui

j2ui
j 21,

is multisymplectic, where cosh„2s,DtAD(2m)… is the 2sth order truncation of cosh„DtAD(2m)…

cosh„2s,DtAD~2m!…5 (
k50

s
„DtAD~2m!…2k

2k!
.

                                                                                                                



he

7866 J. Math. Phys., Vol. 41, No. 11, November 2000 Y. J. Sun and M. Z. Qin

                    
In particular, whenm52, s52, this is a scheme of orderO(Dt41Dx4),

ui
j 1122ui

j1ui
j 21

Dt2 5D~4!ui
j1

Dt2

12
D2~4!ui

j . ~21!

Remark 5.7:~21! can be derived by discretizing the Lagrangian densityL:J2Y→`2(X),

L~ut ,ux ,uxx!5 1/2S ut
22ux

21
Dt2

12
uxx

2 D ,

which is the discrete Lagrangian density of the modified wave equation,

utt5uxx1
Dt2

12
uxxxx, ~22!

~22! has Bridge’s form Azt1Bzx5¹S(z),where z5(u,ut ,ux ,uxx)5(u,v,w,p), S(z)5 1
2v

2

2 1
2w

21 (Dt2/24)p22(Dt2/12)pw,

A5S 0 21 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

D , B51
0 0 1 0

Dt2

12

0 0 0 0 0

21 0 0 2
Dt2

12
0

0 0
Dt2

12
0 0

2
Dt2

12
0 0 0 0

2 .

Remark 5.8:The modified equations~16! „~22!… are similar to the good~bad! Boussinesq
equationsutt5uxx2uxxxx2(u2)xx „utt5uxx1uxxxx2(u2)xx…, but unfortunately~22! is ill-posed.

Consider the periodic boundary condition,~13!, ~17! can be reformulated, respectively, as t
discretization of~10!,

1

Dt S uj2uj 21

v j2v j 21D5S ~v j1v j 21!/22
Dt2

12
v j1v j 21/2

M ~1,4!
~uj1uj 21!/22

Dt2

12
M3~1,4! uj1uj 21/2 D ;

see Ref. 2, Eq.~2.6!,

1

2Dt S uj 112uj 21

v j 112v j 21D5S v j1
Dt2

3!
v j

M ~1,4!uj1
Dt2

3!
M3~1,4!uj

D ;

see Ref. 2, Eq.~3.10!, whereI is ann3n identity matrix,uj5(u1
j ,...,un

j ), v j5(v1
j ,...,vn

j ),
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M ~1,4!n3n :
1

12Dx2 S 230 16 21 0 ¯ 21 16

16 230 16 21 ¯ 0 21

21 16 230 16 21 ¯ 0

¯ ¯ ¯ ¯ ¯ ¯ ¯

21 0 0 ¯ 16 230 16

16 21 0 ¯ 21 16 230

D .

~15!, ~19! can be reformulated, respectively, as the discretization of~11!,

1

Dt S uj2uj 21

v j2v j 21D5S 1/2M ~2,4!~v j1v j 21!2
Dt2

24
M3~2,4!~v j1v j 21!

1/2M ~2,4!~uj1uj 21!2
Dt2

24
M3~2,4!~uj1uj 21!

D ;

see Ref. 2, Eq.~3.12!,

1

2Dt S uj 112uj 21

v j 112v j 21D5S M ~2,4!v j1
Dt2

3!
M3~2,4!v j

M ~2,4!uj1
Dt2

3!
M3~2,4!uj

D ,

whereI is ann3n identity matrix,uj5(u1
j ,...,un

j ), v j5(v1
j ,...,vn

j ),

M ~2,4!n3n :
1

12DxS 0 8 21 0 ¯ 1 28

28 0 8 21 ¯ 0 1

1 28 0 8 21 ¯ 0

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯

21 0 ¯ ¯ 28 0 8

8 21 0 ¯ 1 28 0

D .

Remark 5.9:Consider nonlinear wave equations, upon introducting shifted momenta,

ui
j 112ui

j

Dt
5v i

j 1 1/2,
2~21) !ui 11

j 14ui
j2~22) !ui 21

j

2)Dx
5wi

j ,

the following two schemes forutt5uxx1V8(u):

ui
j 1122ui

j1ui
j 21

Dt2 2D~4!ui
j1V8~ui

j !50, ~23!

1

Dt S 2v i
j 1 1/21v i

j 2 1/2

ui
j 112ui

j

0
D 1

1

2)Dx S 2a1wi 11
j 24wi

j1a6wi 21
j

0
2a6ui 11

j 14ui
j1a1ui 21

j
D 5S V8~ui

j !

v i
j 1 1/2

wi
j

D , ~24!

are equivalent. And the multisymplectic conservation law,
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1

Dt ~dui
j 11`dv j 1 1/22dui

j`dv i
j 2 1/2!

1
1

2)Dx
„2a1~dwi 11

j `dui
j2dwi

j`dui 21
j !1a6~dwi 21

j `dui
j2dwi

j`dui 11
j !…50,

is equivalent to

~dui
j 111dui

j 21!`dui
j

Dt2 2
~2dui 12

j 116dui 11
j 116dui 21

j 2dui 22
j !`dui

j

12Dx2 50.

~23! can be derived by discretizing the Lagrangian densityL:J1Y→`2(X),

L~u,ut ,ux!5 1/2ut
22 1/2ux

22V~u!.

Consider the periodic boundary condition,~23! can be reformulated as

S uj 11

v j 1 1/2D5S uj1Dtv j 1 1/2

v j 2 1/21DtM ~1,4!uj2DtV8~uj ! D ,

whereuj5(u1
j , . . . ,un

j ), v j5(v1
j , . . . ,vn

j ), M (1,4) is ann3n matrix.
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Linear bundles of Lie algebras and their applications
A. B. Yanovskia)
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We consider the algebraic properties of families of Lie brackets, also called linear
bundles of Lie algebras, and especially ones that can be defined over the classical
algebras. Some applications to the theory of the integrable systems are given as
such bundles naturally define compatible Poisson–Lie~Kirillov ! tensors. ©2000
American Institute of Physics.@S0022-2488~00!00912-9#

I. LINEAR BUNDLES OF LIE ALGEBRAS

A. Introduction

Let Mat (n,K )[End (Kn) be the linear space of alln3n matrices over the fieldK . In what
follows K will be one of the classical fields—R or C. We shall consider it as fixed and shall wri
it explicitly only if it is necessary. So we write Mat (n) instead of Mat (n,K ) and so on. The spac
Mat (n) possesses a natural structure of associative algebra and as a consequence a struc
Lie algebra defined by the commutator@X,Y#5XY2YX. Considered as Lie algebra the spa
Mat (n) is then usually denoted by gl(n). However, the structure of the associative algebra o
Mat (n) is not unique; for example, if we fix an elementJPMat (n), then we can define the
product (X+Y)J5XJY and with respect to the new product the vector space Mat (n) is again an
associative algebra. The new associative algebra structure naturally induces a new Lie
structure, defined by the bracket

@X,Y#J5XJY2YJX. ~1!

Thus we obtain a family of Lie brackets, labeled by the elementJ. It is readily seen that we hav
actually a linear space of Lie bracket structures or simply a linear space of Lie brackets. The
construction can be applied even ifX,Y,J are notn3n matrices. Indeed, ifX,YPMat (n,m)—the
linear space ofn3m matrices andJPMat (m,n),—then the expression~1! defines again a linea
space of Lie brackets. According to the common terminology~1! defines a linear bundle of Lie
algebras.

It is difficult to say where the above algebraic structures are used for the first time as th
too simple not to be discovered at the time when the intensive investigations of the Lie alg
started. Recently, however, there appeared some new interest in these structures as their
gation naturally leads to compatible Poisson tensors~compatible Poisson brackets!. The latter
provide an important construction of involutive families of functions and hence completely
grable finite dimensional systems.1 Actually, the well known method of the ‘‘argument shift’’ is
particular case of this construction. The bracket@X,Y#J was used, for example, in Ref. 2 to reve
the bi-Hamiltonian structure of the Euler equations ono(n) where it was called a ‘‘modified’’ Lie
bracket, and to investigate the relation between the Mischenko and Manakov integrals f
n-dimensional rigid body problem~this case is thoroughly studied in Ref. 1 also!.

Our primordial motivation for the investigation of linear bundles of Lie algebras was sim
but was related to infinite dimensional systems. The compatible Poisson tensors naturally a
the theory of infinite dimensional integrable systems having Lax representation. It is know

a!On leave from the Faculty of Mathematics and Informatics, St. Kliment Ohridski University, James Boucher Bo
1164—Sofia, Bulgaria. Electronic mail: yanovski@sergipe.ufs.br
78690022-2488/2000/41(11)/7869/14/$17.00 © 2000 American Institute of Physics
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usually these systems appear in hierarchies and the equations from these hierarchies poss
remarkable properties; let us mention that they all are Hamiltonian and their Hamiltonian
tions are in involution. Moreover, it turns out that the recursion relations via which this hierar
are obtained actually imply that they are Hamiltonian with respect to two different Hamilto
structures, defined by two compatible Poisson tensors. One can remark also that the fact
corresponding Hamiltonian functions are in involution is proved in different approaches explo
almost one and the same mechanism~cf. Refs. 3–13! and that this mechanism is based on t
properties of the compatible Poisson tensors. Thus the existence of compatible Poisson ten
be regarded as the geometric reason for the beautiful Hamiltonian properties of the
hierarchies,3 and is shortly referred to as the bi-Hamiltonian property.

The expression~1! naturally appeared in the description of the Hamiltonian structures for
chiral fields equation hierarchy and the Landau–Lifshitz equation hierarchy of integrable
tions ~cf. Ref. 14! obtained via the polynomial pencil of Lax pairs on the algebrao(4). In Refs.
15 and 16 we have used it to describe the bi-Hamiltonian structures of the above hierarchi
this incited our interest in this topic.

Unfortunately, when the linear bundles of Lie brackets are applied to the theory of the
grable systems there are considered only some of the algebras in the bundle, that is, the
are not considered from a general viewpoint. The monograph book~Ref. 1! is an exception to this
rule, but it seems that there is a lot more to be done. In the present work we shall try to co
the closed bundles of Lie algebras from a general viewpoint.

B. Linear bundles of Lie algebras

In the begining let us give some definitions.
Definition I.1: Let G and V be vector spaces and let for arbitraryvPV be defined a Lie

bracket onG,

~X,Y!→Lv~X,Y![@X,Y#v[adX
v ~Y!, ~2!

which is linear inv. We shall say that(G,V) is a linear bundle of Lie algebras and if V is finit
dimensional we shall call the dimension of V the dimension of the linear bundle(G,V).

The spaceG endowed with the bracketLv shall be denoted byGv . WhenGv coincides with
some classical matrix algebra we shall denote it by the usual notations and the commutator
a commutator without index. In this case we shall denote by the same letter the algebraG and the
underlying vector space. We shall denote bydv the coboundary operator with respect to t
adjoint representation ofGv or with respect to the trivial representation and the operatorsi X and
L X

v 5dvi X1 i Xdv will be defined as usual.17

The fact that foru,vPV the expressionLu1Lv is a Lie bracket entails that forX1 ,X2 ,X3

PG one has the identity

@X1 ,@X2 ,X3#u#v1@X1 ,@X2 ,X3#v#u1cycl~1,2,3!50, ~3!

where cycl(1,2,3) means that one must add to the first two terms expressions obtained from
by cyclic permutation of the indices 1,2,3.

From~3! we derive that ifV is a vector space andLv , vPV is a family of Lie brackets having
the property thatLmv5mLv , this family will be a linear bundle of Lie brackets if and only if th
bracketLw is two-cocycle fordv , that is,

dv~Lw!5dw~Lv!50, v,wPV, ~4!

an important fact mentioned in Ref. 1. For our convenience we shall put the above in a dif
form. In order to do it note that for fixedX the map adX

v can be considered as a one-cocycle for
adjoint representation ofGw for arbitrarywPV. Then a brief calculation shows that~4! is equiva-
lent to the requirement that, for arbitraryv,wPV andXPG,
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dv~adX
w!1dw~adX

v !50. ~5!

As i X(Lw)5adX
w this also implies that~4! is equivalent to

L X
v ~Lw!1L X

w~Lv!50. ~6!

We also remind the reader of the definitions of closed and irreducible linear bundles o
brackets:

Definition I.2: Let(G,V) be a linear bundle of Lie brackets. We say that(G,V) is closed if the
family of bilinear operations Lw , wPV, is closed under the action of the linear operationsadX

v ,
vPV, XPG, where action of the linear operation A on the bilinear operation B is defined
follows:

A~B!~X,Y!5A~B~X,Y!!2B~A~X!,Y!2B~X,A~Y!!, X,YPG. ~7!

Definition I.3: A linear bundle of Lie algebras is called irreducible if there is no prop
common ideal for all the algebrasGv , vPV.

When we have some irreducible algebraic structures one looks for some classificatio
have found a citation about a classification theorem for closed irreducible linear bundles
algebras.~We cite this result according to Ref. 1 where it is given without a proof with a refere
to Ref. 18, where however there is again only an abstract.!

Theorem I.1 „I. L. Cantor and D. E. Persits…: The complete list of irreducible closed linea
bundles of Lie algebras overC is the following:

~i! G5o(n) is the linear space of all skewsymmetric matrices inMat (n) and V5sym(n) is
the linear space of all symmetric matrices inMat (n), with the bracket@X,Y#v5XvY
2YvX.

~ii ! G5sym(n) is the linear space of all symmetric matrices inMat (n), and V5o(n) is the
linear space of all skewsymmetric matrices inMat (n), with the bracket@X,Y#v5XvY
2YvX.

~iii ! G is the linear space of all n3m matrices and V is the linear space of all m3n matrices,
with the bracket@X,Y#v5XvY2YvX.

~iv! G5Vv is the symplectic linear space with symplectic formv, V5Vv, with the bracket
@X,Y#v5v(v,X)Y2v(v,Y)X2v(X,Y)v.

~v! The one-dimensional bundle generated by a simple Lie algebra, that is, G, is a simple Lie
algebra, V5C, with a bracket@X,Y#v5v@X,Y#.

With few exceptions it seems that what was said up to now is all that was known abo
abstract structures, though there are many results about the structure of the Lie algebras
specific bundles~see Ref. 1 and the literature cited therein!. As mentioned, we shall try to revea
some general properties and for this we shall reformulate the definition of the closed linear b

Proposition I.1: A linear bundle of Lie algebras is closed if and only if there exists a
f :G3V3G°V, such that for arbitraryv,wPV, XPG,

L X
w~Lv!5L f (w,X,v) . ~8!

The proof follows from the identities:

L X
w~Lv!~Y,Z!5@dwi X~Lv!1 i Xdw~Lv!#~Y,Z!5dw~adX

v !~Y,Z!52@adX
v ~Lw!#~Y,Z!.

Our principal object now will be the three-linear-functionf (v,X,w). For closed bundles the
equation~6! means that

L ( f (w,X,v)2 f (v,X,w))50, v,wPV, ZPG. ~9!
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Definition I.4: We shall call the bundle(V,G) of Lie algebras regular if the only Abelian
algebra in it isGv50 .

For closed regular bundles~9! means that the functionf (v,X,w) is skewsymmetric with
respect tov andw.

Suppose now thatX,YPGv . From the familiar identity@L X
v ,L Y

v #5L [X,Y] v

v applied toLw we

obtain the following.
Proposition I.2: If the closed bundle(G,V) is regular, every algebraGv possesses a natura

representationG{X°Fv(X)PEnd (V) given by the formula

Fv~X!w5 f ~v,X,w!. ~10!

Consider nowu,vPV and fixedXPG. The operationsL X
u andL X

v being of zeroth order for the
graded module of the skewsymmetric maps, the commutator@L X

u ,L X
v # is also of zeroth order.

Then by straightforward calculations we obtain the following.
Proposition I.3: Let(G,V) be a closed, regular linear bundle of Lie brackets. If for arbitra

u,vPV and XPG there exists the three-linear map

C:V3G3V°V, ~11!

such that for arbitrary wPV we have

@L X
u ,L X

v #Lw5L X
C(u,X,v)Lw , ~12!

then for fixed X the map(u,v)°C(u,X,v) defines a Lie algebra structure on V and

u°FX~u!PEnd~V!,
~13!

FX~u!w5 f ~u,X,w!

is a representation of this algebra.
It is interesting to note that for all the algebras in the list from Theorem I.1 and also fo

algebras from the construction we shall present in the next section the representationFX is
actually an adjoint representation as (u,v)° f (u,X,v) happens to be a Lie bracket. More pr
cisely, we have the following proposition.

Proposition I.4: The following relations hold:

~i! For the bundle (o(n),sym(n)), f (v,X,w)5@v,w#X is the bracket for the bundle
(sym(n),o(n)).

~ii ! For the bundle(sym(n),o(n)), f (v,X,w)5@v,w#X is the bracket for(sym(n),o(n)).
~iii ! For the bundle(Mat (n,m),Mat (m,n)), f (v,X,w)5@v,w#X is the bracket for the bundle

(Mat (m,n),Mat (n,m)).
~iv! For the bundle(Vv,Vv) the function f(v,X,w)5@v,w#X coincides with the original

bracket.
~v! For the trivial case with the bracketv@X,Y# the function f(v,X,w) is identically zero. For

all the listed bundlesC(u,X,v)5 f (u,X,v).

Thus we have revealed an interesting property: if (G,V) is a closed linear bundle of Lie
algebras, then (V,G) also is and one of the structures is induced by the other. We shall cal
propertythe mirror property.

In order to give a more accurate idea of the representationsFv introduced in the above we
note that the representationsFv of o(n)v for v having rankp are equivalent to the representatio

X°CHp
~X!PEnd~sym~n!!,

~14!
CHp

~X!w5HpXw2wXHp
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of o(n)Hp
, and the representationsFv of sym(n)v for v skewsymmetric and having rank 2k are

equivalent to the representations

X°C I k,q
~X!PEnd~o~n!!,

~15!
C I k,q

~X!w5I k,qXw2wXIk,q

of sym(n) I k,q
, (2k1q5n). Here the matricesHp and I k,q written in block-diagonal are equal t

diag(1p ,0) and diag(S2k ,0q), respectively, andS2k has the same form as Eq.~23!.

C. Construction of closed linear bundles of Lie algebras

In this section we shall present a construction of closed bundles of Lie algebras. We b
that it is new and can provide interesting examples.

Consider the space Mat (n). On it there are two natural algebraic structures, induced from
associative algebra structure: the Lie algebra structure, defined by the commutator, and th
ture of commutative algebra, defined by the anticommutatorX1* X2[X1X21X2X1 . To distin-
guish the two structures we denote Mat (n) by gl(n) in the first case and mat(n) in the second.
There exist the following natural maps:

~i! the representation ofgl(n) into End (gl(n)),

X→F~X!:F~X!Y52XtY2YX, ~16!

~ii ! the map of Mat (n) into End (Mat (n)),

X→G~X!:G~X!Y5XtY2YX. ~17!

As F is a representation, it is clear that for fixedS the subspace

GS5$X:F~X!S50%,gl~n! ~18!

is a Lie subalgebra in gl(n). The mapG possess the following interesting property,

G~X1* X2!52F~X1!G~X2!2F~X2!G~X1!, ~19!

and for this reason the space

VS5$J:G~J!S50%,mat~n! ~20!

is subalgebra of the commutative algebra mat(n) containing the unity1n . Let us denote
(X1* X2)Y[X1Y,X21X2YX1 and @X1 ,X2#Y[X1YX22X2YX1 . For Y51n these operations ar
the usual commutator and anticommutator. We have the following.

Proposition I.5: The operations(X1* X2)Y and @X1 ,X2#Y have the properties

@GS ,VS#J,VS , ~GS* VS!J,GS ,

@GS ,GS#J,GS , ~GS* GS!J,VS , ~21!

@VS ,VS#J,GS , ~VS* VS!J,VS ,

for JPVS , and

@GS ,VS#X,GS , ~GS* VS!X,VS ,
~22!

@GS ,GS#X,VS , ~GS* GS!X,GS ,
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@VS ,VS#X,VS , ~VS* VS!X,GS ,

for XPGS .
The proof follows from straightforward calculation.
Corollary I.1: If the matrix S is nondegenerate, thenGSùVS5$0% and the linear space G

5GS% VS is a commutative algebra and a Lie algebra with respect to all the brackets@X,Y#M and
products(X* Y)M for MPG. In particular, (G,G) is a closed linear bundle of Lie algebras.

Corollary I.2: (GS ,VS) is a closed linear bundle of Lie algebras with a bracket@X1 ,X2#J .
The map f introduced in the definition of a closed linear bundle of Lie algebras has the
f (J1 ,Z,J2)5@J1 ,J2#Z and for every fixed Z it endows the space VS with a structure of Lie
algebra, that is(VS ,GS) is a closed bundle of Lie algebras with respect to the bracket@J1 ,J2#Z ,
ZPGS . If J is nondegenerate and if in VS there exists an element K such that K25J21, then the
map h:X°KXK is an isomorphism betweenGS as an algebra with respect to the bracket@X,Y#J

and GS with respect to the usual bracket.
The above corollary shows that for (GS ,VS) we again have the mirror property, but here

origin is more clear.
Even when we restrict ourselves to the bundles of the type (GS ,VS) the class of bundles is

large enough. For example, one readily sees that if we chooseS51n , thenGS5o(n), the orthogo-
nal algebras, for

S5S2n5S 0 1n

21n 0 D Pgl~2n!. ~23!

We obtain the symplectic algebras sp(2n). Thus over all the simple algebras from the seriesBn

5o(2n11), n>2, Cn5sp(2n),n>3, andDn5o(2n), n>4, we can define closed linear bundle
of Lie algebras. Of course, a closed linear bundle of Lie algebras can also be defined
algebraso(3), o(4), o(6) and sp(2),which are not included in the seriesBn , Cn and Dn or
because they are semisimple but not simple@o(4)#, or because they are isomorphic to som
algebras of the complete list of the classical series of simple Lie algebras. The list of the cla
Lie algebras includes, in addition to the algebras cited earlier, the algebrasAn5sl(n11), n.1,
for which it seems that the previous construction cannot be applied.@The algebra sl(4) is isomor
phic too(6) and therefore if there exists a closed linear bundle of Lie algebras ono(6), then the
same is true for sl~4!, so sl~4! is an exception.#

For the algebrao(n), n.2, the definition of the spaceVS , S51n , entails thatJ must be
symmetric, that is,V15sym(n) and for sp(2n) a more scrutinized look shows that (sp(2n),VS2n

)
is isomorphic to (sym(2n),o(2n)).

The construction may be also applied with slight modification to the bun
(Mat(p,q),Mat(q,p)). In order to see it, suppose that

f:X°vXv21 ~24!

is an involutive automorphism of Mat (n) (v251n). Then the space Mat (n) splits into the spaces
Mat1(n) and Mat2(n) corresponding to the eigenvalues11 and21 of f. If now (GS ,VS) is one
of the bundles as constructed earlier, then, as it is immediately seen, the following propo
holds:

Proposition I.6: The pairs of spaces (GSùMat2(n), VSùMat 2(n)) and
(GSùMat 1(n),VSùMat 1(n)) are liner bundles of Lie algebras with respect to the bracke
induced from(GS ,VS).

If we choosen5p1q, S51n , v5diag(1p ,21q), then it is easy to see thatGSùMat 2(n) is
isomorphic to Mat (p,q) andVSùMat 2(n) to Mat (p,q) ~as vector spaces!. It remains to see tha
the bracket structure onGSùMat 2(n) is actually equivalent to@b1 ,b2#s5b1sb22b2sb2 , where
b1 ,b2PMat (p,q) andsPMat (q,p).
                                                                                                                



f
t

of

o

adjoint

ortant
dles

of
e

d
finite
ctures,

for
ing of

ber of
s being
inear
s, it is

ts to

7875J. Math. Phys., Vol. 41, No. 11, November 2000 Linear bundles of Lie algebras

                    
We shall consider now some generic properties of the bundles (GS ,VS). We have seen that i
(G,V) is a linear bundle of Lie algebras, the Lie bracketLv is a two-cocycle for the adjoin
representation defined by the bracket@X,Y#w ~that is, with respect todw!. For the bundles (GS ,VS)
we can say more.

Proposition I.7: For the bundle(GS ,VS) consider the following maps:

aJ :GS→GS ,
~25!

aJ~X!5 1
2 ~JX1XJ!

where JPVS . [One can easily check thataJ(X)PGS so the mapaJ is correctly defined.] Let
J1 ,J2PVS . Then

@dJ2
aJ1

#~X,Y!5@dJ1
aJ2

#~X,Y!5 1
2 @X,Y#J1* J2

. ~26!

Corollary I.3: Consider the bundle(GS ,VS). Then we have the following:

~i! The map(X,Y)→@X,Y#J is a two-coboundary for the adjoint representation ofGS with
respect to the usual bracket.

~ii ! If H 1 ,H2 are two commuting matrices belonging to VS and if H1
21 exists and belongs to

VS , then the map(X,Y)→@X,Y#H2
is a two-coboundary for the adjoint representation

G with respect to the bracket@X,Y#H1
. In particular, if H,H21 belong to VS , the usual

bracket@X,Y# is a two-coboundary for the adjoint representation ofG with respect to the
bracket@X,Y#H .

Proof: Indeed, it is enough to put in~26! J151 andJ25J to obtain the first statement and t
put J15H1 andJ25H1

21H2 to obtain the second.
The corollary shows that actually the new brackets arise as some coboundaries of the

representation for the usual structure onG defined by the commutator.
We believe that the beautiful properties of the above algebraic structures will have imp

applications, but in this article we shall limit ourselves only to the applications of the bun
(GS ,VS) in the construction of compatible Poisson tensors which we introduce in Sec. II.

II. POISSON–LIE TENSORS RELATED TO THE ALGEBRAS GS

As it is well known ~see, for example, Refs. 19 and 20!, Poisson brackets for the algebra
smooth functionsD(M) defined on a smooth manifoldM can be introduced if on it is defined th
Poisson tensor fieldm°PmPHom (Tm* (M),Tm(M)) ~or, simply, a Poisson tensor!. A dynamic
system@a vector fieldX(m)# is Hamiltonian with HamiltonianH if it can be written into a form
X(m)5Pm(dHum), mPM, HPD(M). After the works of Magri~see, for example, Refs. 3 an
9!, it became clear that the geometric mechanism responsible for the integrability of the in
dimensional dynamic systems is strongly related to the existence of compatible Poisson stru
that is,X(m) must be Hamiltonian with respect to different Poisson tensorsP1 ,P2 and they are
such that thatP11P2 is also a Poisson tensor. In this case the sum of the Poisson bracketsP1

andP2 is also a Poisson bracket. A necessary and sufficient condition for this is the vanish
the Schouten bracket@P1 ,P2#S ~see Refs. 7 and 8!.

The same ideas may be applied with success in the finite dimensional case; a num
interesting examples can be found in Ref. 1. The existence of compatible Poisson structure
important for the integration theory, it is natural to look for such objects. It turns out that the l
bundles of Lie algebras naturally define compatible Poisson tensors. In order to see thi
enough to remind the reader that there is a canonical way to equip the dual spaceG* of a Lie
algebraG with Poisson structure, provided one can identify the vector spacesG ** andG. This
structure was discovered by S. Lie,21 and was rediscovered later by several authors. It amoun
the following: LetmPG* . Then
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Tm~G* !5G* , Tm* ~G* !5G ** 5G, ~27!

and one can define Poisson structure overG* through the field of linear maps:

m→KmPHom~G,G* !,
~28!

Km~X!52adX* m, XPG.

The tensorK is called a Poisson–Lie tensor or Kirillov tensor and the Poisson bracket define
it is called a Poisson–Lie bracket, Kirillov bracket, Berezin bracket, etc. We shall call the a
tensor a Poisson–Lie tensor and the corresponding bracket a Poisson–Lie bracket. It
known ~cf. Refs. 22 and 23!, that the Poisson–Lie tensorK can be restricted to the orbits of th
coadjoint action of the corresponding group and on these orbits it becomes nondegenerate
the orbits are endowed with canonical symplectic structure.

If there exists a symmetric nondegenerate bilinear formB(X,Y) overG, invariant with respect
to the adjoint action ofG, one can identify in a canonical wayG* andG and adjoint and coadjoin
action. Then the Poisson–Lie tensor is simplyKm(X)5adX

m , X,mPG. Now we can readily see
that if (GS ,VS) is the closed linear bundle of Lie algebras, defined in Definition I.2 we have
following.

~1! On the dual spaceGS* we can define a family of compatible Poisson–Lie tensors, lab
by JPVS :

q→Aq :Pq
J~X!52~adX

J !* ~q!,
~29!

XPGS , qPGS* .

~2! Suppose the matrix Lie algebraGS can be identified with its dual spaceGS* by the nonde-
generate bilinear form tr (XY). Then onGS there exists the following family of compatibl
Poisson–Lie tensors:

q→Pq
J :Pq

J~X!5~JXq2qXJ!,
~30!

XPGS , qPGS* ;GS , JPVS .

For example, the pairPq
1 ,Pq

J2
, whereJ is a diagonal matrix,J2 is its square and1 is the matrix

unity, was used in Ref. 2 to describe the bi-Hamiltonian structure of the Euler equations o
algebraso(n) ~see also Ref. 1!.

There is another algebraic mechanism often used in the theory of the integrable sy
especially infinite dimensional, in order to obtain compatible Poisson tensors~see, for example,
Ref. 13!. We shall not dwell upon details, but shall give the final receipt, formulated as a pr
sition.

Proposition II.1: Ifg is a two-cocycle for the trivial action ofH on the field of scalarsK , then
on H* three exists the following two-parametric family of compatible Poisson tensors:

m→2c1adX* m2c2g~X,.!, XPH, c1 ,c2PK . ~31!

In the theory of the soliton equations the above construction is usually applied when we co
Poisson tensors of the algebraG@x#, the algebra of the smooth, fast decaying at infinity functio
on the line with values in some finite dimensional semisimple algebraG with Killing form B. In
this case is used the so-called Gel’fand–Fuchs cocycle~see Refs. 10–13!:

g~X,Y!5E
2`

1`

B~X~x!,Y~x!! dx, X,YPG@x#. ~32!
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The Poisson tensor we obtain defines the Hamiltonian structure of the equations whose matU
andV in the Lax representation@]x2U,] t2V#50 lie in the algebra of formal Laurent series inl
with finite principle part and coefficients inG, denoted byG^ @l,l21#. The elements of these
algebras are of the type

Pn5 (
i 52n

`

l iXi , XiPG. ~33!

Recently, however~see Ref. 14!, there appeared Lax pairs for which the matricesU andV lie in
the algebras of the typeG S

pr[(GS^ @l,l21#)pr , wherepr is an element from the vector spac
VS^ @l,l21#, the vector space of Laurent series with finite principle part and coefficients lyin
VS . The elements of these algebras are elements of the typeP̄n5Pnpr , wherePn is as in~33!. A
brief calculation shows that

@Pnpr ,Qmpr #5~@Pn ,Qm#pr
!pr . ~34!

Therefore, we can consider the algebraG S
pr(l) as an algebra having the same underlying spac

GS^ @l,l21# but endowed with different bracket:

~Pn ,Qm!°@Pn ,Qm#pr
. ~35!

As far as we know, the general theory of algebras of this type have not been considered
literature, though as already mentioned in Ref. 14 it is shown that the matricesU andV for the
polynomial pencil of Lax pairs for theO(3) chiral field equations and the Landau–Lifshi
equation are lying in the jet algebrao(4)(l1J). Moreover, it turns out that the algebraic structu
that matters is exactly that, defined by~35!. The importance of this fact, however, was realiz
later, when in Refs. 15 and 16 we considered the bi-Hamiltonian properties of the correspo
hierarchies, constructing compatible Poisson tensors in the lines outlined previously. The c
erations showed that the success to complete the procedure is due to the fact that the
(o(4),sym(4)) turns out to be a very special one. On it one can define a nondegenerate
productinvariant for all the algebras o(4)J .

In the construction~31! we can always add tog a trivial cocycle, that is a cocycle of the typ
db, whereb(X)5^X,m0& andm0 is a constant element fromH* . From the compatible Poisso
tensor theory viewpoint the generalization is not trivial, that is, we obtain a family of compa
Poisson tensors:

m→Pm :Pm~X!52c1adX* m2c2g~X,.!2adX* m0 , XPH, ~36!

ci , i 51,2, being constants. For applications of these structures in the finite dimensional ca
Ref. 1; as for the infinite dimensional situation, it is also used quite often, for example, one
tensors used to define the bi-Hamiltonian structure of the soliton equations in the nonlinear¨-
dinger equation hierarchy is exactly of the typeQm(X)52adX* m0 ~see for example, Ref. 24!.

In relation to the above discussion, it is natural investigating (GS ,VS) and the Poisson–Lie
tensors defined by them to check whether for fixedm0PGS* and J1PVS the skewsymmetric
bilinear form

b@m0 ,J1#~X,Y![^m0 ,@X,Y#J1
&

is a cocycle for the trivial representation of the algebra, defined by the bracket@X,Y#J2
, J2

PVS . Unfortunately, the answer is negative, for ifX1 ,X2 ,X3PGS , we have

dJ2
b@m0 ,J1#~X1 ,X2 ,X3!5^m0 ,@X1 ,X2# [J1 ,J2] X3

&1cycl~1,2,3!, ~37!
                                                                                                                



Hamil-
called

f the
les

ect to

7878 J. Math. Phys., Vol. 41, No. 11, November 2000 A. B. Yanovski

                    
and this expression, though remarkably symmetric with respect toJ1 ,J2 , generally speaking, is
not zero.

III. THE CLEBSH AND THE NEUMANN SYSTEMS VIA NONCLASSICAL BRACKETS

A. The Clebsh system

We shall show now that some finite dimensional dynamic systems can be regarded as
tonian ones with respect to the new Hamiltonian structures. The first of them is the so-
Clebsh system:

ẋ5x3p,
~38!

ṗ5x3Âx,

wherex,pPC3, Â5diag(a1,a2,a3), aiPC,

x5~x1 ,x2 ,x3! t,

Âx5~a1x1 ,a2x2 ,a3x3! t.

Remark III.1: Actually, the Clebsh system is called the system (38) when the vectorsx, p are
real and ai are positive. We prefer to work with the complex numbers to avoid consideration o
real forms of the corresponding algebras, but of course one can easily pass to real variab.

Introducing the ‘‘usual’’ brackets,

$pi ,xj%5d i j , $pi ,pj%5$xi ,xj%50,

one can prove that the Clebsh system is Hamiltonian, with Hamiltonian function:

H5
1

2 (
i 51

3

~pi
21aixi

2!. ~39!

Now we shall show that it is quite natural to consider it as a Hamiltonian system with resp
other brackets.

For x,yPC3 denote

@x#15S 0 x1 x2 0

2x1 0 x3 0

2x2 2x3 0 0

0 0 0 0

D , @y#25S 0 0 0 y3

0 0 0 2y2

0 0 0 y1

2y3 y2 2y1 0

D . ~40!

Consider now the splitting of the algebrao(4) into two subspaces:

o~4!5H 1
% H 2,

~41!
H 15$@x#1: xPC3%, H 25$@y#2: yPC3%.

As these subspaces are the eigenspaces of the involutive automorphismr :X°vXv21 wherev
5diag(1,1,1,21), we have

@H 1,H 1#,H 1, @H 1,H 2#,H 2, @H 2,H 2#,H 1, ~42!

and the spacesH 1,H 2 are orthogonal with respect to any invariant scalar product ono(4) ~with
respect to the usual bracket!. If A is a diagonal matrix, we havevAv215A and, clearly,
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@H 1,H 1#A,H 1, @H 1,H 2#A,H 2, @H 2,H 2#A,H 1. ~43!

Therefore, if we identifyo(4) ando(4)* with respect to the Killing form we have

@adH 1
A

#* ~H 1!,H 1, @adH 1
A

#* ~H 2!,H 2, @adH 2
A

#* ~H 2!,H 1, ~44!

and after some simple calculations we obtain the following.
Proposition III.1: The Clebsh system is equivalent to the system of matrix equations:

d

dt
@p#15A~@x#2!22~@x#2!2A,

~45!

2
d

dt
@x#25A@x#2@p#12@p#1@x#2A5@x#2@p#12@p#1@x#2,

where A5diag(a3,a2,a1,1).
Remark III.2: It is easy to see that A@x#2@p#15@x#2@p#1 and @p#1@x#2A5@p#1@x#2.
If we denotem5@p#11 i @x#2 wherei 5A21 we arrive at the following corollary.
Corollary III.1: The Clebsh system can be written as a system on the coadjoint orbit:

d

dt
m52@adj

A#* m, j52p2~m!, ~46!

for the Lie algebra structure defined by the bracket@X,Y#A5XAY2YAX[adX
A(Y) if we identify

o(4) and o(4)* through the Killing form B(X,Y)52tr (XY). Here byp2 is denoted the projec-
tion ontoH 2 with respect to the splitting (41).

It is easy to see what are the integrals in involution for~45! needed for complete integrability
The first of them is the Hamiltonian:

H15
i

2
tr ~p2~m!p2~m!!5

1

2
~x1

21x2
21x3

2!. ~47!

Next, the ring R of the central functions for the Poisson–Lie bracket defined by@X,Y#A

(A-diagonal and nondegenerate! on o(n) can easily be obtained for the corresponding ring
central functions for the usual Poisson–Lie bracket ono(n). It is generated by

tr @mA21#2l , 2l ,n, ~48!

when n is odd, and if n even, we must add to the above family the function Pf(mA21)
5Adet(mA21). So, in our case, we have the integrals of motion

H252
1

2
~detA!tr ~mA21mA21!5(

i 51

3

aipi
22~a1a2x3

21a1a3x2
21a2a3x1

2! ~49!

and Pf(mA21)5Adet(mA21), which up to a constant multiplier is equal to

H35(
j 51

3

pjxj . ~50!

The integralsH1 ,H2 ,H3 ensure that the Clebsh system is completely integrable. Of course
complete integrability of the Clebsh system, as well as the integrals of motionH1 ,H2 ,H3 , are
well known, but here we have obtained these facts using other brackets, and this illustra
possibilities one has working with different Poisson structures.
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B. The Neumann system

Another example we shall consider is one natural generalization of the Neumann system
Neumann system is the system of ordinary differential equations

ẋi5yi ,

ẏi52aixi1~^Âx,x&2iyi2!xi , ~51!

^x,y&50, ixi251,

whereÂ5diag(a1,a2,...,an), z is a vector with componentszi , ^.,.& is the standard scalar produ
in Rn defining the normi .i and 1< i<n. In vector notation the system will have the form

ẋ5y,

ẏ52Âx1~^Âx,x&2iyi2!x, ~52!

^x,y&50, ixi251.

Here again we shall assume thatx,y are complex and shall writêz,w& for ( i 51
n ziwi and izi2

5( i 51
n zi

2 , which is now a complex number. The reduction to the real case can be perfo
without difficulties.

It is known that the Neumann system can be cast in the form suggested by K. Uhlenb

Ẋ5@P,X#, Ṗ5@X,Â#,

^x,y&50, ixi251, ~53!

X5xxt, P5yxt2xyt.

This permitted T. Ratiu to give an interpretation of the Neumann system as a system
coadjoint orbit for the semidirect product of Lie algebras:o(n)3s(n) @the first one is the algebra
of the skewsymmetricn3n matrices with respect of the commutator ands(n) is the Abelian
algebra whose underlying vector space is the space of the symmetricn3n matrices, see Ref. 25#.
T. Ratiu proved that the orbit is (2n22)-dimensional and found the complete series of integ
in involution.

Consider now the Lie algebra structure defined on the algebrao(n11) by the bracket
@R,S#A5RAS2SAR, where

A5diag~a1 ,a2 ,...,an,1!. ~54!

In what follows we shall write the elements ofo(n11) in block form:

S5S Q z

2zt 0D , ~55!

whereQPo(n) andzPCn. The matrixA has the block form diag(Â,1). In the same manner as i
the case of the algebrao(4) we have the orthogonal splittingo(n11)5G 1

% G 2 ~with respect to
the Killing form! of o(n11) corresponding to the eigenspaces of the involutive automorph
S°VSV:

V5S 1n 0

0 21D . ~56!
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We have

G 15H X: X5S Q 0

0 0D ;QPo~n!J ,

~57!

G 25H X: X5S 0 z

2zt 0D ;zPCnJ .

Naturally, we shall have the relations~42!–~44!, with G 6 insteadH 6.
Next we shall denote the projection of an elementQPo(n11) onto the spacesG 6 or by Q6

or by p6(Q). Let us introduce

S15S P 0

0 0D , S25S 0 x

2xt 0,D , ~58!

whereP is as in~53!. With some simple calculations we prove the following.
Proposition III.2: The Neumann system is equivalent to the system of matrix equations

d

dt
S15A@S2#22@S2#2A,

2
d

dt
S25AS2S12S1S2A, ~59!

^x,y&50, ixi251.

Supposeo(n11) and so* (n11) are identified by the Killing form. Then if we recollect th
coadjoint action for the bracket@X,Y#A and putm5 iS21S1 we shall obtain the following.

Proposition III.3: The Neumann system is equivalent to the system on a coadjoint or
o(n11)* :

dm

dt
52@adj

A#* m, j5p2~m!, ~60!

restricted by the conditions

tr ~p2~m!p2~m!!5tr ~j2!51,
~61!

p1~m!5p1~m!@p2~m!#21@p2~m!#2p1~m!.

It is clear that the system~60! is Hamiltonian and its Hamiltonian function isH
5 ( i /2)tr (p2(m)p2(m)). It is a generalization of the Neumann system and the latter is obta
if we take the general system on the level surfaceS0 corresponding toH5 i /2 and restrict it by the
second condition in~61!. It can be seen that~61! is invariant under the Hamiltonian flow onS0 so
the restriction is possible.

The Neumann system is completely integrable. It is interesting to investigate whethe
‘‘free’’ system is also completely integrable and, if so, to obtain the Neumann system from
general case as a Hamiltonian reduction.

IV. CONCLUSION

We believe that the applications and examples we cited justify the interest in bundles
algebras. As we have seen, even one of the most simple cases,o(4), provides interesting oppor
tunities. We believe also that there can be found other applications save those related wit
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patible Poisson structures. For example, we believe that there exists a possibility to study
mations of Lie algebras as the bundles of Lie algebras give a natural background to go fro
algebra in the bundle to another one in a continuous way. Probably it is interesting to mentio
the Lie algebrao(n11)v for v symmetric and having rankn is equivalent to the Lie algebrae(n)
corresponding to the group of the displacements of the Euclidean spaceRn.
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Erratum: ‘‘Probability amplitude dynamics for a two-level
system’’ †J. Math. Phys. 41, 4330 „2000…‡

John K. Boyd
Lawrence Livermore National Laboratory, P.O. Box 808 L-095, Livermore,
California 94551

~Received 11 September 2000; accepted for publication 12 September 2000!

@S0022-2488~00!02112-5#

There are no mathematical approximations necessary to obtain the rotating wave s
from Eq. ~10!. Thus, obtaining the Appendix A solution from Eq.~10! does not impose a siz
restriction onb. However, with respect to the statement following Eq.~10!, it is necessary forb
to be small in order to derive Eq.~10! from Eq.~9! and consistently avoid high frequencies in t
solution. The complete derivation beginning at Eq.~5! and ending with the Appendix A solution
requiresb!a12.

The rightmost expression in Eq.~28! is correct. A subscript and sign are corrected in t
intermediate expression below,

Qc52 log@sin~~s1s* !/21pc!#2 i E u1ds5 i E sin@~b/a!sin~at!#sin@s1s* 12pc#dt.

~28!

The expression above Eq.~38! should be ‘‘and foraÞ2J0.’’
There are two authors associated with Ref. 45, J. M. Cervero´ and J. D. Lejarreta, J. Math

Phys.40, 1738~1999!.
78830022-2488/2000/41(11)/7883/1/$17.00 © 2000 American Institute of Physics
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The onset of superconductivity in semi-infinite strips
Y. Almoga)

Faculty of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel

~Received 20 March 2000; accepted for publication 30 August 2000!

The existence of a superconducting branch bifurcating from the normal state is
proved in semi-infinite strips. It is proved that the critical magnetic field at which
bifurcation takes place, or the onset field, for a semi-infinite strip is greater than the
onset field for an infinite strip with the same width. In addition we find the loci of
the vortices far away from the corners and show convergence of the bifurcating
modes in long rectangles to those in the semi-infinite strip with the same width.
© 2000 American Institute of Physics.@S0022-2488~00!01112-9#

I. INTRODUCTION

If a superconducting body is placed in a sufficiently strong magnetic field, the body will re
to the normal state. This result, which is known from experiments,1 was recently proved for
bounded domains inR2 andR3.2 If the field is now decreased, there will be a point, depending
the sample’s geometry, at which the material would become superconducting once again.

Apart from infinite domains with no boundaries, the simplest case in which the bifurc
from the normal state to the superconducting one was calculated is the case of a half-plane3 Even
in this simple case the onset field is substantially larger than the onset field on the real4

Furthermore, it was found by Saint-James and de Gennes3 that superconductivity is concentrate
in this case near the boundary. This phenomenon, which appears in the presence of bou
has been termed, therefore, surface superconductivity. As surface superconductivity app
much higher magnetic fields than those at which superconductivity appears in the bulk
material, the bifurcation point is often called the onset of superconductivity. We shall refer t
magnetic field at which the bifurcation takes place as the onset field, and to the bifurcating
as the onset mode.

The significance of Saint-James and de Gennes’ solution3 extends far beyond the simple
one-dimensional example of a half-plane. It was proved, first for films,5 then for disks,6 and finally
for general two-dimensional domains with smooth boundaries,7,8 that as the domain’s scale tend
to infinity the onset field tends to de Gennes’ value. If the boundaries include wedges, the
will be larger than de Gennes’ value.9–11

Most of the above works obtain the onset field and the behavior of the superconducting
parameter near the boundaries. Very few works obtain, however, the structure of the vortice
inside the domain’s interior. Two exceptions are the works of Baumanet al.,6 who found the
solution inside a circular disk, and the works of Kulik12 and Boeck and Chapman,13 who found the
structure of vortices in an infinite strip.

In the present contribution we focus on semi-infinite strips and long rectangles. We lea
future research the numerical calculation of the onset field, which is expected to tend, in the
semi-strip limit, to the onset field for a rectangular wedge. Instead, we shall be interested
superconducting order parameter far away from the corners: its exponential rate of decay,
structure of the vortices. We also prove the existence of the onset field and onset mode
semi-infinite strip, and show that the onset field is greater for a semi-infinite strip than fo
infinite strip with the same width.

a!Electronic mail: almog@math.technion.ac.il
78890022-2488/2000/41(12)/7889/17/$17.00 © 2000 American Institute of Physics
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The Ginzburg–Landau energy functional may be represented in the following dimensio
form,14

E5E S 2ucu21
ucu4

2
1uHu21U1k “c2 iAcU2Ddxdy, ~1.1!

in which C is the ~complex! superconducting order parameter, such thatuCu varies from uCu
50 ~when the material is at a normal state! to uCu51 ~for the purely superconducting state!. The
magnetic vector potential is denoted byA ~the magnetic field is, then, given byH5“3A), and
k is the Ginzburg–Landau parameter which is a material property. Superconductors for
k,1/& are termed type I superconductors, and those for whichk.1/& have been termed typ
II. Note thatE is invariant to the gauge transformation

C→eikuc; A→A1“u. ~1.2!

We look for local minimizers ofE in the semi-infinite stripS5$(x,y)PR2u2 l<x< l ;0
<y%, in the the case where the applied magnetic field is constant and perpendicular to the
The Euler–Lagrange equations associated withE ~the steady state Ginzburg–Landau equatio!
are given by

S i

k
“1AD 2

C5C~12uCu2!, ~1.3a!

2“3~“3A!5
i

2k
~C*“C2C“C* !1uCu2A. ~1.3b!

The natural boundary conditions satisfied on]S for this problem are

S i

k
“1ADc•n̂50, ~1.4a!

H5hẑ. ~1.4b!

As the Ginzburg–Landau equations are gauge-invariant, we may choose the gauge~following
Refs. 15 and 16! A5(0,A(x,y),0). Thus,H5(0,0,H(x,y)) and H5]A/]x. We then linearize
~1.3! near the normal stateC[0, A5hx, to which end we assume the asymptotic expansion

C5e1/2c, ~1.5a!

A5hx1ea, ~1.5b!

h5h(0)1eh(1)1¯ , ~1.5c!

a5a(0)1ea(1)1¯ , ~1.5d!

c5c (0)1ec (1)1¯ . ~1.5e!

Applying the transformations

x15kx, y15ky, h15
h(0)

k
,

the linearized form of~1.3a! becomes@we omit the superscripts 1 and~0! in the following#
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2S ]2c

]x2 1
]2c

]y2 D12ihx
]c

]y
5c2h2x2c. ~1.6!

The boundary condition~1.4a! for the specific gauge we have chosen becomes, after lineariza

cx~6 l ,y!50, ~1.7a!

icy~x,0!1hxc~x,0!50. ~1.7b!

As some of the results we obtain in the next two sections are based on the linear bifur
analysis of the Ginzburg–Landau equations in the infinite strip@2 l ,l #3R, we briefly review
some of the results in Ref. 5. In this case the conditions which should be satisfied on the bo
of the film ~strip! are given by~1.7a!. Some of the solutions of~1.6! together with~1.7a! are
expressible in the form

c~x,y!5F~x!e2 ivy, ~1.8!

whereinF satisfies

F92@~hx2v!221#F50, ~1.9a!

F8~6 l !50. ~1.9b!

The general solution of~1.9a! is

F~x!5C1U~j!1C2U~2j!, ~1.10!

where

j~x,v!5A2

h
~hx2v!, ~1.11!

U(x)[U(a,x) is a parabolic cylinder function~or Whitaker’s function!, anda521/(2h).
Nontrivial solutions to~1.9! exist iff

U8~j~2 l ,v!!U8~2j~ l ,v!!2U8~j~ l ,v!!U8~2j~2 l ,v!!50 ~1.12!

for some real value ofv. Equation~1.12!, thus, implicitly defines a functionh5h( l ,v) ~cf. Ref.
5!. Furthermore, leth1D( l ) be the infimum of the set ofh values inR1 s.t. the normal solution
(c[0, H5h) is a local minimizer ofE. Then,

h1D~ l !5 sup
vPR

h~ l ,v!. ~1.13!

In the next section we derive the asymptotic behavior of solutions of~1.6! and ~1.7! for
y@1. We first prove the following result:

Theorem 1: Any solution of (1.6) and (1.7) for which h.h1D satisfies;e.0

lim
y→`

uc~x,y!ue(Iv02e)y50,

wherev0 is the root of (1.12) with the smallest positive imaginary part(Iv0.0).
Note that the roots of~1.12! depend on the value ofhS , the onset field of~1.6! and~1.7!. Once

hS is found, the exponential rate of decay ofc can be easily deduced from~1.12!.
In the second part of Sec. II we find, after making two mild assumptions on the roots of~1.12!,

the exact asymptotic form ofc for y@1. In Sec. III we prove compactness of the set of solutio
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of ~1.7! in the rectanglesRL5@2 l ,l #3@0,L# for L>L0.0. The compactness proof as well as t
proof of Theorem 1 assume the inequalityhS.h1D . In Sec. IV we prove this inequality by usin
a variational approach, concluding the proof of the following theorem.

Theorem 2: The onset field of (1.6) and (1.7) hS exists and is greater than the one
dimensional onset field h1D .

From the results in Sec. III we may then deduce the existence of at least one onset modS.
We conclude Sec. IV by proving that the onset field inRL , hL tends tohS asL→`. Under the

assumptions made in Sec. II on the roots of~1.12! we also show thathL is strictly greater thanhS .

II. ASYMPTOTIC BEHAVIOR OF SOLUTIONS

In the following we obtain the leading order behavior of solutions of~1.6! in the semi-infinite
strip S satisfying~1.7! on its boundary]S. To this end we first take the Fourier transform of~1.6!
in they direction, i.e., we multiply it by exp$2ivy% and integrate between 0 and̀. Integration by
parts then yields

2ĉ91@~hx2v!221#ĉ5 i ~hx2v!c~x,0!, ~2.1a!

ĉ8~6 l !50, ~2.1b!

where

ĉ~x,v!5E
0

`

e2 ivyc~x,y! dy. ~2.2!

The solution of~2.1a! can be written in the form

ĉ~x,v!5 i E
2 l

l

~hs2v!G~x,s,v!c~s,0! ds, ~2.3!

in which Green’s functionG is given by

G~x,s,v!

5m~h!

35
@U~h!U8~2j~ l !!1U~2h!U8~j~ l !!#@U8~2j~2 l !!U~j!1U8~j~2 l !!U~2j!#

U8~j~2 l !!U8~2j~ l !!2U8~j~ l !!U8~2j~2 l !!
,

x,s,

@U~h!U8~2j~2 l !!1U~2h!U8~j~2 l !!#@U8~2j~ l !!U~j!1U8~j~ l !!U~2j!#

U8~j~2 l !!U8~2j~ l !!2U8~j~ l !!U8~2j~2 l !!
,

x.s,

~2.4!

wherein

m~h!5
G~1/21a!

2Aph
, ~2.5!

j5j(x,v) is given by~1.11!, andh5j(s,v). We note that~2.3! is valid only whenG exists for
all v, i.e., when the denominator in~2.4! does not vanish. The largest value ofh at which the
denominator vanishes, or at which~1.12! is satisfied, for somev5v0 is exactly the onset field o
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the one-dimensional problem, orh1D . Thus, the analysis in the rest of this section is valid only
h values which are greater thanh1D . In Sec. IV we prove that the onset field for the semi-infin
strip S, hS , is indeed greater thanh1D .

In view of ~2.2! the inverse Fourier transform ofĉ is

1

2p
P.V.E

2`

`

eivyĉ~x,v!dv5H c~x,y!, y.0,

1
2 c~x,0!, y50,

0, y,0.

~2.6!

As stated earlier we seek an approximation ofc(x,y) for y@1. We obtain such an approxi
mation by using complex plane methods when evaluating the Fourier integral in~2.6!. Figure 1
displays the path, denoted in the following byC, along which the integration is carried in th
complex plane. We now calculate the integral

E eivyĉ~x,v! dv ~2.7!

along the various parts ofC. We note that that the Fourier transform ofc, ĉ(x,v), need not exist
for all Iv.0. Yet, its analytic continuation, defined by~2.3!, does exist inC, except perhaps for
a finite number of poles, where the denominator in~2.4! vanishes. For real values ofv, for which
~2.2! is valid, it can be shown via integration by parts that

ĉ~x,v!; i
c~x,0!

v
1OS 1

v2D . ~2.8!

It is easy to show that~2.8! remains valid onC1 andC2 as long asĉ(x,v) is analytic in the strip
0<Iv<b. Furthermore,~2.8! remains valid even ifĉ(x,v) possesses a finite number of poles
C. To prove it we just need to subtract the singular terms@which are of the formCk(v2vk)

2nk#.
The remainder would then be analytic inC, and one can substitute its inverse Fourier transfo
into ~2.2!, and obtain~2.8! once again via integration by parts.

By ~2.8!, the integrals along the segmentsC1 andC2 decay in the limitR→`. The integral
on the interval@2R,R# tends, by definition, to~2.6!. To estimate the integral alongCb we utilize
the asymptotic approximations~cf., for instance, Ref. 17!

U~a,z!5H e2z2/4z2a21/2F11
C1~z!

uzu2 G , 0< argz,
3p

4
,

A2p

G~1/21a!
ez2/4~2z!a21/2F11

C3~z!

uzu2 G , 3p

4
, argz<p,

~2.9a!

FIG. 1. The path of integration in the complex plane along which the integral~2.6! is evaluated.
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U8~a,z!5H 2
1

2
e2z2/4z2a11/2F11

C2~z!

uzu2 G , 0< argz,
3p

4
,

2
Ap

2G~1/21a!
ez2/4~2z!a21/2F11

C4~z!

uzu2 G , 3p

4
, argz<p,

~2.9b!

in which Ci(z) ( i 51,2) and their derivatives are bounded in any sector 0< argz,3p/42e for
positivee, and, similarly,Ci(z) ( i 53,4) are bounded in 3p/42e, argz<p. Similar expansions
are satisfied in the lower half-plane. For 3p/42e, argz,3p/42e we have

U~a,z!;Fe2z2/4z2a21/21
A2p

G~1/21a!
ez2/4~2z!a21/2G F11OS 1

uzu2D G , ~2.10a!

U8~a,z!;F2
1

2
e2z2/4z2a11/22

Ap

2G~1/21a!
ez2/4~2z!a21/2GF11OS 1

uzu2D G . ~2.10b!

From the above approximations it can easily be deduced that

G~x,s,R1 ib!;G~x,s,R!F11OS b

RD G , as R→`.

and hence, in view of~2.3!, that

ĉ~x,R1 ib!;ĉ~x,R!F11OS b

RD G , as R→`. ~2.11!

@Note that the above approximation can be obtained directly from~2.8! as well.# Consequently,

U EC b

eivyĉ~x,v! dvU,C~b!e2by. ~2.12!

We conclude that if~1.12! is not satisfied insideC, then

uc~x,y!u,C~b!e2by.

For sufficiently largeb, however,~1.12! is satisfied inside the contourC on a finite set of
points. We demonstrate this fact by calculating the phase change of the left-hand-side of~1.12!
along asymptotically large circles centered on the origin. Utilizing~2.9! and the identity

U~a,x!5
G~ 1

2 2a!

A2p
@e2 ip(a/211/4)U~2a,ix !1eip(a/211/4)U~2a,2 ix !#

we find

log $U8~j~2 l !!U8~2j~ l !!2U8~j~ l !!U8~2j~2 l !!%;H 2lv, u vu,p/2,

22lv, p/2,uargvu,p.
~2.13!

For p/22e,uargvu,p/21e the derivative of the left-hand-side is bounded asR→`, except
perhaps for a countable set of points where~1.12! is satisfied. Consequently,

IF E
uvu5R

d

dv
log $U8~j~2 l !!U8~2j~ l !!2U8~j~ l !!U8~2j~2 l !!%dvG5~8l 2Ce!R,
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whereC is independent ofR. As e can be set to be arbitrarily small, the phase change of
left-hand-side in~1.12! along the circlesuvu5R tends tò asR→`. Therefore, by the argumen
principle ~1.12! is satisfied countably many times inC

Suppose, then, that~1.12! is satisfied on the set$vk
656ak1 igk%k51

N (ak>0) inside the
contour. We note that if~1.12! is satisfied atv5a1 ig, it must be satisfied atv52a1 ig as
well, since the equation is invariant to the transformationv→2v* . Yet, a may be equal to zero
Such indeed is the situation in the one-dimensional case, for which it was proved5 that for
sufficiently smalll only symmetric solutions can exist@and thusv50 in ~1.8!#. We arrange the se
of zeros such thatgk11>gk . Then, since

c~x,y!;2p i (
k51

N

@Res$vk
1 ,ĉ~x,v!eivy%1Res$vk

2 ,ĉ~x,v!eivy%#1O~e2by!, ~2.14!

we have

c~x,y!;O~e2g0y!, ~2.15!

which proves Theorem 1.
Note that~2.14! does not guarantee that lim

y→`
ce(g01e)y5` as the relevant residues ma

vanish. To have the above asymptotic behavior we must have

E
2 l

l

~hx2v0
6!F0

6~x!c~x,0! dxÞ0, ~2.16!

whereF0
1 :@2 l ,l #→C is any solution of~1.9! with h5hS andv5v0

1 (F0
2 is just the same for

v5v0
2). As ~2.16! seems quite plausible, we shall assume it through the rest of this sectio

It is possible to obtain, however, not only the exponential rate of decay ofc asy→`, but also
the exact form of the leading order term in~2.14!. We assume, to this end, thatv0

6 are simple
poles ofĉ(x,v), and that no more than two poles for whichIv5g0 coexist, i.e.,

g0,g1 . ~2.17!

Utilizing ~1.12!, we obtain from~2.14!, ~2.3!, and~2.4!

c~x,y!;Ce2g0y$~Lv
0
1 f !g~x,v0

1!eia0y1~Lv
0
1 f̃ !ḡ~2x,v0

1!e2 ia0y%, ~2.18a!

wherein

g~x,v0
1!5U~j~x,v0

1!!U8~j~ l ,2v0
1!!1U~2j~x,v0

1!!U8~2j~ l ,2v0
1!!, ~2.18b!

Lv
0
1:C@2 l ,l #→C is the functional

Lv
0
1 f 5E

2 l

l

g~s,v0
1!~hs2v0

1! f ~s! ds, ~2.18c!

and

f̃ ~s!5 f̄ ~2s!, ~2.18d!

where f (s)5c(s,0). If ~2.17! is violated ~which we believe to be very unlikely!, it would be
necessary to introduce additional terms in~2.18a! reflecting the additional poles onIv5g0 . It is
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not difficult to show, using~2.9! and~2.10!, that the number of such poles is finite. If one of t
poles is not simple, the corresponding term would be different than~2.18a! but the exact term can
still be obtained. The latter case seems to be improbable as well.

Let c(x,y) be a solution of~1.6! and ~1.7!. Then

f~x,y!5~ac~x,y!1bc̄~2x,y!!, ~2.19!

whereuau5ubu, is a solution as well. Substituting~2.18! into ~2.19! it is not difficult to show that

f~x,y!;e2g0y$C1g~x,v0
1!eia0y1C2ḡ~2x,v0

1!e2 ia0y%, ~2.20!

whereuC1u5uC2u. In this case, if vortices exist, they must be located periodically along the
x50 with spacingp/a0 between them. To prove their existence it suffices to follow the varia
of argf around the boundary of the rectangle@2 l ,l #3@y,y1p/a0#, which is exactly 2p, for
sufficiently largey, by ~2.20!.

Except for the exponential rate of decay,~2.20! bears striking similarities to the classic
periodic solution in an infinite strip,12,13 i.e.,

c~x,y!5aF~x!e2 icy1bF~2x!eicy, ~2.21!

whereF satisfies~1.9!, andc is the positive root of~1.12! at h5h1D . In fact, ~2.18b! is a solution
of ~1.9! for v5v0

1 andh5hS . Kulik12 has demonstrated, by obtaining the solvability conditi
for the next order balance in the expansion~1.5!, that two different types of solutions of the form
~2.21! can exist. The first one, for whichuau5ubu is the symmetric state, and the other one
which eithera or b vanish, is known as the boundary state. Boeck and Chapman13 performed
weakly non-linear stability analysis of both the boundary and the symmetric states. For suffic
largek their results suggest that the symmetric state is the only stable solution.

In view of the above results it appears reasonable to believe that the symmetric solutio
semi-infinite strip would be stable at least in some finite domain in the (k,l ) plane. The equivalen
of the boundary state in an infinite strip13 can be obtained by picking

a5Lv
0
1 f , ~2.22a!

b52Lv
0
1 f̃ ~2.22b!

in ~2.19! to obtain

c;Ce2g0y@ uLv
0
1 f u22uLv

0
1 f̃ u2#g~x,v0

1!eia0y. ~2.23!

If uLv
0
1 f u5uLv

0
1 f̃ u, we havec̄(2x,y);Cc(x,y) asy→` whereuCu51, in which case only the

equivalent of the symmetric state in an infinite strip exists. Equation~2.18! suggests that the
number of independent nontrivial solutions of~1.6! and ~1.7! at h5hS is two. If, however,
uLv

0
1 f u5uLv

0
1 f̃ u, only the symmetric mode seems to exist. Further research is necessary

direction.

III. THE SOLUTION IN LONG RECTANGLES

In this section we prove the following result.
Lemma 1: LetcL(x,y,hL) denote any nontrivial solution of (1.6) in the rectangle RL

5@2 l ,l #3@0,L#, satisfying the boundary conditions

cx
L~6 l ,y!50, ~3.1a!
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icy
L~x,0!1hLxcL~x,0!5 icy

L~x,L !1hLxcL~x,L !50. ~3.1b!

Let fL(x)5cL(x,0) and let i f L(x)i`51. Let hL denote the maximal value of h for which no
trivial solutions to (1.6) together with (3.1) exist. Suppose that'L0 such that

L>L0⇒h1D,h̃<hL,h1 . ~3.2!

Then we have the following.
(a) The set$ f L(x)%L>L0

is compact in C@2 l ,l #.

(b) Let $ f LK
(x)%k50

` , where Lk↑`, be convergent in C@2 l ,l #. Then, cLk
——→

k→`
c pointwise in

S. Furthermore,c is a solution of (1.6) together with (1.7).

The assumed inequality~3.2! will be proved in Lemma 3 in the next section. The existence
the critical fieldshL and their corresponding modescL will be proved in the next section as wel
To prove Lemma 1 we need first the following auxiliary result.

Lemma 2: Denote byD the domain@2 l ,l #3@2 l ,l #3R/@2N,N#3@h0 ,h1#, where N.h1l .
Then, ;(x,s,v,h)PD we have

G~x,s,v,h!5
1

uvu @G1~x,s,v,h!e2uvuux2su1G2~x,s,v,h!e2uvu(2l 2x2s)

1G3~x,s,v,h!e2uvu(2l 1x1s)#, ~3.3a!

v@G~x,s,v,h!2G~x,s,v,h!#5
1

uvu @G4~x,s,v,h!e2uvuux2su1G5~x,s,v,h!e2uvu(2l 2x2s)

1G6~x,s,v,h!e2uvu(2l 1x1s)#, ~3.3b!

in which the Gi ’ s satisfy

sup
(x,s,v,h)PD

1< i<6

uGi~x,s,v,h!u<M , ~3.3c!

sup
(x,s,v,h)PD
1< i<6 ;xÞs

U ]Gi

]x
~x,s,v,h!U<M . ~3.3d!

Proof: Utilizing ~2.9! it is easy to show that in the limitv→`, for x,s and positivev,
G(x,s,v,h) satisfies~3.3a! with

G15uvu
1

2

~v2hs!a21/2

~v2hx!a11/2expH 1

2
h~s22x2!J F11

G̃1~x,s,v,h!

v2 G , ~3.4a!

G25uvu
1

2

~v2hl !2a

~v2hx!a11/2~v2hs!a11/2expH 1

2
h~2l 22s22x2!J F11

G̃2~x,s,v,h!

v2 G , ~3.4b!

G35uvu
1

2

~v1hl !2a

~v2hx!a11/2~v2hs!a11/2expH 1

2
h~2l 22s22x2!J F11

G̃3~x,s,v,h!

v2 G , ~3.4c!

where G̃i( i 51,2,3) and their derivatives with respect tox are bounded inD for x,s and v
>0. As

G~x,s,v,h!5G~s,x,v,h!5G~2x,2s,2v,h!, ~3.5!
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~3.3a! is proved. To prove~3.3b! we simply substitute~3.4! into its left-hand-side. h

We now prove part~a! of Lemma 1. Letx(L)5 2p/L. Upon multiplying~1.6! by e2 inxy we
integrate by parts to obtain, utilizing~3.1a!,

2ĉL91@~hx2nx!221#ĉL52 i ~hx2nx! f L~x!, ~3.6a!

ĉL8~6 l !50, ~3.6b!

where

ĉL~x,nx!5E
0

L

e2 inxycL~x,y! dy. ~3.7!

Note that~3.6a! is exactly~2.1a! with v replaced bynx andc(x,0) by f L(x). Hence,

ĉL~x,nx!52 i E
2 l

l

~hs2nx!G~x,s,nx! f L~s! ds, ~3.8!

and

2
1

2
@cL~x,0!1cL~x,L !#5

1

L
P.V. (

n52`

`

ĉL~x,nx!. ~3.9!

Similarly, multiplying ~1.6! by e2 i (n11/2)xy and integrating by parts we obtain

1

2
f L~x!5

1

L
P.V. (

n52`

`

c̃L~x,~n11/2!x!, ~3.10!

where

c̃L~x,~n11/2!x!5 i E
2 l

l

~hs2~n11/2!x!G~x,s,~n11/2!x!@c~s,0!1c~s,L !# ds. ~3.11!

We first show thaticL(x,0)1cL(x,L)i` is bounded asL→`. By ~2.3! we have~recall that
i f Li`51)

ucL~x,0!1cL~x,L !u<
2

L H (
n52[N/x]

[N/x] E
2 l

l

uG~x,s,nx!uds~hl1N!1 (
n5[N/x] 11

` E
2 l

l

@hluG~x,s,nx!

1G~x,s,2nx!u1nxuG~x,s,nx!2G~x,s,2nx!u# dsJ . ~3.12!

The first integral on the right-hand-side of~3.12! can be estimated using the uniform boundedn
of G(x,s,v,h) for uvu<N, i.e.,

E
2 l

l

uG~x,s,nx!u ds~hl1N!<C. ~3.13!

The second integral can be estimated using Lemma 2,
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E
2 l

l

@hluG~x,s,nx!1G~x,s,2nx!u1nxuG~x,s,nx!2G~x,s,2nx!u# ds

<
C

nx E
2 l

l

@e2nxux2su1e2nx(2l 2x2s)1e2nx(2l 1x1s)# ds<
C

n2x2 . ~3.14!

In the preceding and in the followingC does not necessarily represent the same constant.
however, always independent ofL. Combining~3.12!–~3.14! we obtain

ucL~x,0!1cL~x,L !u<
C

L H (
n52[N/x]

[N/x]

11 (
n5[N/x] 11

`
1

~nx!2J <C. ~3.15!

We now prove equicontinuity of the set$ f L%L>L0
. By ~3.10!, ~3.11!, and~3.15! we have

u f L~x!2 f L~z!u<
C

L H (
n52[N/x 21]

[N/x] E
2 l

l

uG~x,s,~n11/2!x!2G~z,s,~n11/2!x!uds~hl1N!

1 (
n5[N/x f ] 11

` E
2 l

l

@hl$uG~x,s,~n11/2!x!

2G~z,s,~n11/2!x!u1uG~x,s,2~n11/2!x!2G~z,s,2~n11/2!x!u%#

1~n11/2!xu@G~x,s,~n11/2!x!2G~x,s,2~n11/2!x!#

2@G~z,s,~n11/2!x!2G~z,s,2~n11/2!x!#u] dsJ . ~3.16!

The first sum on the right-hand-side is estimated using the uniform boundedness ofGx(x,s,v) for
uvu<N, i.e.,

E
2 l

l

uG~x,s!2G~z,s!u ds~hl1N!<Cux2zu, ~3.17!

@whereG(x,s)[G(x,s,(n11/2)x)]. The second integral is estimated using~3.3!. For instance,

E
2 l

l

hluG~x,s!2G~z,s!u ds<
C

~n11/2!x E
2 l

l

@ uG1~x,s!2G1~z,s!ue2(n11/2)xux2su

1uG2~x,s!2G2~z,s,~n11/2!x!ue2(n11/2)x(2l 2x2s)

1uG3~x,s!2G3~z,s!ue2(n11/2)x(2l 1x1s)# ds

1
C

~n11/2!x E
2 l

l

@ uG1~z,s!uue2(n11/2)xux2su2e2(n11/2)xuz2suu

1uG2~z,s!uue2(n11/2)x(2l 2x2s)2e2(n11/2)x(2l 2z2s)u

1uG3~z,s!uue2(n11/2)x(2l 1x1s)2e2(n11/2)x(2l 1z1s)u# ds. ~3.18!

Utilizing ~3.3c! and ~3.3d! we obtain
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E
2 l

l

hluG~x,s!2G~z,s!u ds<
C

~n11/2!x
ux2zu E

2 l

l

@e2(n11/2)xux2su1e2(n11/2)x(2l 2x2s)

1e2(n11/2)x(2l 1x1s)# ds1
C

~n11/2!x E
2 l

l

@ ue2(n11/2)xux2su

2e2(n11/2)xuz2suu1ue2(n11/2)x(2l 2x2s)2e2(n11/2)x(2l 2z2s)u

1ue2(n11/2)x(2l 1x1s)2e2(n11/2)x(2l 1z1s)u# ds. ~3.19!

The integrals on the right-hand-side can be calculated analytically. For instance,

E
2 l

l

ue2vux2su2e2vuz2suu ds5
1

v
@12e2vux2zu#@21e2v( l 2max(x,z))1e2v( l 1min(x,z))#

1
2

v
@12e2vux2zu/2#2<

C

v
@12e2vux2zu#.

Hence,

E
2 l

l

hluG~x,s!2G~z,s!uds<
C

~n11/2!2x2 ux2zu1
C~12e(n11/2)xux2zu!

~n11/2!2x2 . ~3.20!

All other integrals on the right-hand-side of~3.16! can be bounded in the same manner to obta
combining~3.16!, ~3.17!, and~3.20!,

u f L~x!2 f L~z!u<Cux2zu1
1

L (
n5[N/x] 11

`
C~12e(n11/2)xux2zu!1Cux2zu

~n11/2!2x2 . ~3.21!

For someL0.0,

(
n5[N/x] 11

`
12e2(n11/2)xux2zu

~n11/2!2x2 <CE
N

` 12e2vux2zu

v2 dv

5CF12e2Nux2zu

N
1ux2zu E

N

` e2vux2zu

v
dvG

<Cux2zu~11 logux2zu! ~3.22!

for all L.L0 . Consequently,

u f L~x!2 f L~z!u<Cux2zu~11 logux2zu!, ~3.23!

and, hence, the set$ f L%L>L0
is equicontinuous, and therefore compact.

We now prove part~b! of Lemma 1. By~3.7! we have for 0,y,L

cL~x,y!5
1

L (
n52`

`

ĉ~x,nx!einxy. ~3.24!

Applying the Poisson summation formula we obtain
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cL~x,y!5 (
n52`

`

fL~x,y2nL! ~3.25a!

in which

fL~x,y!5
1

2p
P.V.E

2`

`

eivyĉL~x,v! dv. ~3.25b!

Using the same complex plane techniques which were used to derive~2.15! it is easy to show that
as uyu→`

fL~x,y!;O~e2g0uyu!. ~3.26!

We note that in the limity→2` we have to use a different complex plane path which is
reflection of the path in Fig. 1 with respect to the horizontal axis.

Let Lk↑` as k→`, and let f Lk
be convergent. By~3.2! hLk

is compact, too, and hence w
shall assume it to be convergent~otherwise we choose the right subsequence!. Then,fLk

con-
verges pointwise in the semi-infinite stripS. Denote the limit byf. By ~3.25a! and ~3.26! cLk

→f pointwise. To complete the proof we need yet to show that the various derivatives ocLk

converge to the corresponding derivatives ofc. This can be done by using the Shauder estima
in Ref. 18.

As cLk
is a Cauchy sequence inC(V), whereV is any compact subset ofS, and since~1.6!

together with~1.7! fits into the rather general framework in Ref. 18, by theorem 9.3 therecLk
is

a Cauchy sequence inC2(V). Hence,cLk
→c in C2(V), which completes the proof of Lemma 1

In addition to the convergence ofcLk
to a solution of~1.6! together with~1.7! we have also

demonstrated convergence ofhLk
to one of the critical values ofh for which nontrivial solutions

to ~1.6! together with~1.7! exist. It is not clear, however, if the limit value is indeed the onset fi
hS . Furthermore, the results of Lemma 1 depend all on the boundedness of$hL%L<L0

assumed in
~3.2!. In the next section we prove~3.2! and discuss the possible limit values ofhL .

IV. VARIATIONAL INEQUALITIES

The results we have obtained in the previous sections were based on the assumption
onset fields for a semi-infinite striphS and for sufficiently long rectangleshL are greater thanh1D ,
the onset field for a slab, and are uniformly bounded from above. In the following we prov
existence of these bounds. The proof is based on the estimation of the infimum of the foll
sesquilinear form,

l~h,V!5 inf
cPH1(V,C)
iciL2(V)51

E
V

u~“2 ihxĵ !cu2 dxdy, ~4.1!

whereV may denote any domain inR2 whose boundary is inC2, except perhaps for a finite
number of points. Direct methods of the calculus of variation show that for compact domain
l(h,V) is achieved for some valuecPH1(V,C) ~cf., for instance, Ref. 19!. It is also easy to
show ~cf., for instance, Ref. 6! that, whenl(h,RL)51, there exists a solution of~1.6! together
with ~3.1!. By ~4.1!, l(h,RL) is the principal eigenvalue of the linear operator associated with
above sesquilinear form, i.e.,
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2S ]2c

]x2 1
]2c

]y2 D12ihx
]c

]y
1h2x2c.

Therefore, as the above operator is uniformly elliptic in the bounded rectangleRL , l(h,RL) is a
branch of a holomorphic function ofh, L, and l , and hence must be continuous in all the
variables~cf. section VIII-§ 6.5 in Ref. 20!.

The foregoing discussion founds the basis for the following proof of the inequality~3.2!.
Lemma 3:'L0 s.t. L>L0⇒h1D,h̃<hL,h1,`.
Proof: To prove the upper bound we first show thatl(h,RL)<l(h,R2L). Let c2L be the

minimizer of ~4.1! on R2L . Then,

l~h,R2L!5E
R2L

u~“2 ihxĵ !c2Lu2 dxdy

5E
0<y<L

u~“2 ihxĵ !c2Lu2 dxdy1E
L<y<2L

u~“2 ihxĵ !c2Lu2 dxdy

>l~h,RL!S E
0<y<L

uc2Lu2 dxdy1E
L<y<2L

uc2Lu2 dxdyD
5l~h,RL!. ~4.2!

We then apply the transformation

~x,y!→ 1

Ah
~x,y!

to obtain

l~h,RL!5hl~1,RL
Ah!, ~4.3!

whereRL
a denotes the rectangle@2a l ,a l #3@0,aL#. In a manner similar to that used to show~4.2!

we can easily show

l~1,RL
2!>l~1,RL!

and, hence,

l~1,RL
a!> inf

1<a8<2

l~1,RL
a8! ;a>1. ~4.4!

Combining~4.2!–~4.4!, we obtain

l~h,RL!>h inf
1<a<2

L0<L<2L0

l~1,RL
a! ;L>L0 . ~4.5!

As l(h,RL
a) is a continuous function of bothL anda, the infimum on the right-hand-side of~4.5!

is positive. Hence, if

h.F inf
1<a<2

L0<L<2L0

l~1,RL
a!G21,

l(h,RL) must be greater than 1 and, hence, no solution can exist to~1.6! together with~3.1!,
which proves the upper bound in~4.6!.
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To prove the lower bound we use~4.5! and the continuous dependence ofl on h. Thus, if we
find h̃ such thatl(h̃,RL)<1, thenhL>h̃. We then have to prove the existence ofh̃.h1D for
which l(h̃,RL)<1. Let

c5C~e,d!~ce1df!, ~4.6a!

where

ce5e2eyeicyf ~x! ~4.6b!

and

f52 ie( ic21)yf ~x!~hx2c!. ~4.6c!

In the abovef andc satisfy ~1.9! for h5h1D , i f iL2[ 2 l ,l ]51, d ande are small numbers, and

C252e@11d2eA#21 ~4.6d!

where

A5E
2 l

l

f 2~hx2c!2 dx.0, ~4.6e!

so thaticiL2[S]51.
Let h5h1D . Then, integration by parts yields

I ~h1D ,c,S!5E
S
u~“2 ih1Dxĵ !cu2 dxdy

5C2E
S
u~“2 ih1Dxĵ !ceu2 dxdy

12dC2RH ES
f* F2“

2ce12ih1Dx
]ce

]y
1h1D

2 x2ceG dxdy

1E
]S

f* ~“2 ih1Dxĵ !ce•n̂ dsJ 1d2C2E
S
u~“2 ih1Dxĵ !fu2 dxdy

5C2F 1

2e
2Ad1S 1

2
1

d

11e D e1Bd2G , ~4.7!

whereinB is independent ofe andd. Pickingd5e1/2 we obtain, sinceC2,2e,

I ~h1D ,c,S!<122Ae3/21B̃e2, ~4.8!

where B̃ is independent ofe. Note that the choice~4.6! takes advantage of the fact that th
one-dimensional solutionf (x)eicy does not satisfy the boundary condition ony50.

It is easy to show thatI (h1D ,c,RL)5I (h1D ,c,S)1O(e2eL) and thatI is continuous inh.
Hence for sufficiently largeL and for sufficiently small but positivee and h̃2h1D we have
l(h̃,RL)<I (h̃,c,RL)<1. Hence,hL ~and its corresponding modecL) exists and satisfies~3.2!.h

Note that to prove existence ofhL it is enough to usel(0,RL)50 together with the result o
Giorgi and Philips,2 l(h,V)>C(V)h for h>h0.0, which is valid for any bounded domain inR2

~as well as domains inR3). Lemma 3 is necessary in order to prove both the lower bounh̃
.h1D and to prove uniformity of the upper bound forL>L0 .
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In the previous section we proved that any converging sequence of onset fields$hLk
%k51

` for

the rectangles$RLk
%k51

` tends to a critical field for the semi-infinite stripS, provided thath1D

,h̃<hL for all L0,L. From Lemma 3 together with Lemma 1 it is then clear thathS , the onset
field for S, exists and is greater thanh1D . Theorem 2 is proved.

It is now easy to show thathLk
→hS . In a similar manner to~4.2! we write

l~h,S!5 (
n50

` E
nL<y<(n11)L

u~“2 ihxĵ !cSu2 dxdy.l~h,RL!. ~4.9!

Hence, ash.hL⇒l(h,RL).1, we havehS<hL , which proves that the critical field to which an
converging sequencehLk

tends must be the onset fieldhS . Therefore,hL ——→
L→`

hS .

It is not obvious, however, thathL is strictly greater thanhS . To prove the latter we need th
following result:

Lemma 4: Given the conjecture (2.17), ifv0
1 is a simple pole ofĉ(x,v), and if uLv

0
1 f u

ÞuLv
0
1 f̃ u, then'L0 s.t. L>L0⇒hL.hS .

Proof: In a similar fashion to the proof of the previous lemma we showl(hS ,RL),1. LetcS
denote a solution of~1.6! and~1.7! whoseL2 norm is unity, i.e.,icSiL2(S)51. Integration by parts
yields

I ~hS ,cS ,RL!5
*RL

u~“2 ihSxĵ !cu2 dxdy

icSiL2[RL]
512

*2 l
l ]ucSu2/]y uy5L dx

icSiL2[RL]
. ~4.10!

Let L@1, then pickinga andb as in ~2.23! we obtain

]ucSu2

]y
uy5L;2g0uCu2e22g0y,0. ~4.11!

Thus,l(hS ,RL)<I (hS ,cS ,RL),1 and the lemma is proved. h
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Rigorous relationships among physically relevant quantities of atomic systems
~e.g., kinetic, exchange, and electron–nucleus attraction energies, information en-
tropy! are obtained and numerically analyzed. They are based on the properties of
inverse functions associated to the one-particle density of the system. Some of the
new inequalities are of great accuracy and/or improve similar ones previously
known, and their validity extends to other many-fermion systems and to arbitrary
dimensionality. ©2000 American Institute of Physics.@S0022-2488~00!01512-7#

I. INTRODUCTION

The interest in the description of many properties ofD-dimensionalN-fermion systems in
terms of the one-particle density

r~r ![ (
s i521/2

11/2 E uC~r ,r2 ,...,rN ;s1 ,s2 ,...,sN!u2dDr 2¯dDr N

has increased in the last years, mainly due to the relevant role which plays in a density fun
theory framework.1 Much attention has been paid to the study of some observables, such
radial expectation values,2,3

^r n&[E r nr~r !dDr ~n.2D !

and the mean logarithmic radius,4–6

^ ln r &[E ~ ln r !r~r !dDr

which is the logarithm of the geometric mean of the variable,7 and it is related to the quantitie
^r n& as

^ ln r &5Fd^r n&
dn G

n50

. ~1!

The expectation valueŝr n& are proportional to the moments

mn[E
0

`

r nr~r !dr ~2!

of the spherically-averaged one-particle density

r~r !5
1

VD
E r~r !dVD ,
79060022-2488/2000/41(12)/7906/12/$17.00 © 2000 American Institute of Physics
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whereVD52pD/2/G(D/2) is theD-dimensional solid angle, anddDr 5r D21drdVD . More pre-
cisely, ^r n&5VDmn1D21 , and the normalization is given bŷr 0&51.

For atomic systems, the expectation values^r n& and ^ ln r& have been extensively used
bound and/or estimate other global quantities6,8,9 and the density itself.10–12 Among those quanti-
ties, let us remark the so-called frequency moments of bothr(r ) andr(r ),

vn[E rn~r !dDr , ~3!

v̂n[E rn~r !dDr 5VDE
0

`

r D21rn~r !dr. ~4!

It can be proved thatvn>v̂n for any n>1, andvn<v̂n for 0,n<1. To do that, it is sufficient
to expand the functionF@r(r )#5rn(r ) aroundrn(r ) as

rn~r !5rn~r !1@r~r !2r~r !#nrn21~r !1@r~r !2r~r !#2n~n21!gn21~r !

with g(r )>0 being a function betweenr(r ) and r(r ) for eachr . The last term of the above
equation is non-negative forn>1, and then

rn~r !>rn~r !1@r~r !2r~r !#nrn21~r !

which, after integrating ondDr and taking into account that*r(r )rn21(r )dDr 5*rn(r )dDr ,
provides the desired inequalityvn>v̂n for n>1. Similarly, the relationshipvn<v̂n for 0,n
<1 is obtained.

For many-fermion systems, it is well-known1 that the frequency momentsv4/3 andv5/3 are
related to the local density approximations to the exchange and kinetic energiesK0 and T0 ,
respectively, as

K05
~3N!4/3

4p1/3 v4/3, T05
~3N!5/3p4/3

10
v5/3

and thatv25^r& is the average density. Concerning the radial expectation values^r n&, specially
relevant are those corresponding ton521 andn52 in atomic systems. They are proportional
the electron–nucleus attraction energy~which absolute value will be denoted byEeN! and the
diamagnetic susceptibility, respectively. In this sense, it is worthy to mention that

EeN5ZN^r 21&, ~5!

Z being the nuclear charge of theN-electron atom.
Another physically meaningful quantity is the information entropy of the density and

spherical average,Sr and Ŝr respectively, defined as13

Sr52E r~r !ln r~r !dDr , ~6!

Ŝr52E r~r !ln r~r ! dDr , ~7!

which play a relevant role in an information-theoretic framework as a measure of the deloc
tion of the density. They are related to the frequency moments as

Sr52Fdvn

dn G
n51

,
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Ŝr52Fdv̂n

dn G
n51

.

Consequently with the relationship betweenvn and v̂n , it is easily shown thatSr<Ŝr .
Different upper and lower bounds on the frequency momentsvn ~Ref. 8! and the information

entropySr ~Ref. 6! have been variationally obtained, in terms of radial expectation values a
the mean logarithmic radius.

The aim of this work is to obtain a new set of rigorous relationships among the afore
tioned quantities~i.e., radial expectation values, mean logarithmic radius, frequency moments
information entropy! starting from several known inequalities among them. In doing so, we
study the global properties of a new functionz(t), which is the inverse function of@r(r 1/D)#1/D,
as described in Sec. II. The new general inequalities are obtained and numerically analyzed
III, and some monotonicity properties ofz(t) are studied in Sec. IV. Finally, some concludin
remarks are given.

II. METHOD

Let us consider a rescalingf (r )[ra(r b) of a monotonically decreasing functionr(r ).0, for
arbitrary a,b.0. The decreasing character ofr(r ) induces the same property on the functi
f (r ). Consequently,f (r ) reaches its maximum valuef max5ra(0) at r 50, decreasing to zero asr
goes to infinity. Such a monotonic behavior allows one to consider the well-defined in
function f 21(t), which is also decreasing, and its domain being the interval@0,ra(0)#. Then, the
function z(t)[ f 21(t) assigns the valuer to the abscissat5ra(r b). More clearly,

z@ra~r b!#5r

or, equivalently,

z@ra~r !#5r 1/b.

Let us show now that, for specific values of the parametersa and b, there exists a strong
relationship between different global properties ofr(r ) and z(t), such as moments, frequenc
moments, mean logarithmic radius, and information entropy. We consider the general c
D-dimensional systems, but the three-dimensional one~i.e., D53! will be emphasized.

The momentmn of ordern.21 of the densityr(r ) is given by Eq.~2!, and it is related to the
corresponding radial expectation value as^r n&5VDmn1D21 . ForD53, V354p. Concerning the
inverse functionz(t), the moments

nn[E
0

ra(0)
tnz~ t !dt ~8!

are proportional to its radial expectation values as^tn&5VDnn1D21 , similarly to the case ofr(r ).
We now define the frequency moments ofz(t) by

Qn[VDE
0

ra(0)
tD21zn~ t !dt, ~9!

and its information entropy as

Sz[2E z~ t !ln z~ t !dDt52FdQn

dn G
n51

. ~10!

Let us prove that, fora5b51/D, the moments and the frequency moments ofz(t) are related to
those ofr(r ) as
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nn5
D

~n11!VD
v̂ n11

D
~n.21!, ~11!

and

Qn5nVDmDn215n^r D(n21)& ~n.0!. ~12!

To do that, we perform the change of variablet5ra(r ) in Eq. ~8!, what gives rise to

nn52aE
0

`

r 1/bra(n11)21~r !r8~r !dr.

Integrating by parts this equation, one straightforwardly obtains the expression

nn5
1

b~n11!
E

0

`

r ~1/b! 21ra(n11)~r !dr,

which provides the desired relationship~11! betweennn and v̂ n11
D

by choosinga5b51/D and
taking into account Eq.~3!. Carrying out a similar procedure starting from Eq.~9!, the correspond-
ing relationship~12! betweenQn andmDn21 is also obtained.

From Eq. ~12!, it is observed that the radial expectation values of the charge densit
proportional to the frequency moments ofz(t) in the three-dimensional case as

^r n&5
3

n13
Q11 ~n/3! .

Concerning the information entropy and the geometric mean ofz(t), we only need to remembe
Eqs. ~6! and ~10!–~12! to obtain the following relationships involving the same functionals
r(r ):

^ ln t&52
1

D
~11Ŝr!, ~13!

Sz5212D^ ln r &. ~14!

To have an idea of the functional form ofz(t), let us consider the three-dimensional case co
sponding to the charge density of hydrogen-like atoms with nuclear chargeZ in the ground state,
namely,

r~r !5
Z3

p
e22Zr. ~15!

With the changet[r1/3(r 1/3), this equation transforms into

z~ t !5F 3

2Z
ln

Z

p1/3t G
3

, tP@0,Z/p1/3#. ~16!

Then, the functional form ofz(t) ~at least for hydrogenlike atoms! is (a2b ln t)3.
It is worthy to mention that Eqs.~11! and ~13! are also valid for nonmonotonic densitie

while Eqs.~12! and ~14! transform into inequalities as

Qn<nVDmDn21 ~n>1!, ~17!

Qn>nVDmDn21 ~0,n<1!, ~18!
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Sz>212D^ ln r &. ~19!

To see that, let us consider a density functionr(r ) having local extrema atr 1 ,r 2 ,...,r 2M21 ,
where thekth maximum and minimum are located atr 2k21 andr 2k , respectively~taking r 1[0 if
the first local extrema is a minimum!, and definer 0[0 andr 2M[1`. Then, and following the
same procedure as in Sec. II, let us define the functionszk(t) (k51,...,2M ), each one associate
to the piece ofr(r ) between consecutive extrema@what is allowed due to the monotonic charac
of r(r ) in such subintervals#, with zk(t)[0 out of its subinterval. Now, definez(t):@0,rmax

1/3 #
→@0,̀ ) as

z~ t ![(
k51

2M

~21!kzk~ t !.

Taking into account thatzk(t) is a monotonically increasing function for oddk and decreasing for
evenk, it is observed thatz(t) is monotonically decreasing, even for nonmonotonicr(r ).

For z(t) defined in such a way, it is not difficult to show that Eqs.~11! and~13! also hold. Let
us now prove the inequalities~17!–~19!. In doing so, let us consider thenth frequency moment of
z(t),

Qn[VDE
0

rmax
1/D

tD21F (
k51

2M

~21!kzk~ t !Gn

dt ~20!

as well as the sum

Sn[(
k51

M

@Qn
(2k)2Qn

(2k21)#5nVDE
0

`

r Dn21r~r !dr5nVDmDn21 , ~21!

where

Qn
(k)5~21!kVDF r k21

Dn r~r k21!2r k
Dnr~r k!

D
1nE

r k21

r k
r Dn21r~r !drG ,

is the nth frequency moment ofzk(t). Let us prove thatQn<Sn if n>1, andQn>Sn if 0 ,n
<1. To do that, consider the function

FM~n![F (
k51

2M

~21!kzk~ t !Gn

2 (
k51

2M

~21!k@zk~ t !#n. ~22!

Using induction onM , it can be proved thatFM(n)<0 if n>1 andFM(n)>0 if 0,n<1. This
result, together with Eqs.~20!–~22!, gives rise to the desired inequalities~17! and~18! which, after
taking into account Eq.~10!, provide also the inequality~19!.

In Secs. III and IV, different inequalities involving such kind of quantities are used to ob
a wide new set of relationships among them, and some particular cases corresponding to
systems will be explicitly given and analyzed.

III. APPLICATIONS: GENERAL INEQUALITIES

Let us consider any rigorous relationship involving moments and/or frequency moment
monotonically decreasing function. This is, for instance, the case of ground-state neutral
systems, for which the electron densityr(r ) is known to be monotonically decreasing. So, E
~11!–~12! allow us to replace the involved moments by frequency moments, and conve
Then, a new relationship among the same kind of quantites is obtained, being also valid f
decreasing density. Similarly, inequalities containing the information entropy and/or the
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logarithmic radius give rise to new relationships, by taking into account Eqs.~13!–~14!. In some
cases, the resulting inequalities will be also valid for nonmonotonic densities.

We will center our attention on the following known inequalities:~i! variational upper and
lower bounds onvn in terms of two radial expectation values^r k& and ^r n&, and~ii ! variational
upper bounds on the information entropySr in terms of one radial expectation value and the me
logarithmic radiuŝ ln r&. Carrying out the procedure described above, these inequalities trans
respectively, into~i! a relationship among one radial expectation value and two frequency
ments, and~ii ! a bound onSr in terms of the mean logarithmic radius and one frequency mom
As particular applications, let us remark~i! an accurate inequality among the energiesEeN , K0 ,
andT0 , and~ii ! a relationship involvingSr , ^ ln r& and one ofK0 andT0 .

A. Inequalities involving ˆŠr k
‹,va ,vb‰

In Ref. 8, the following upper and lower bounds on frequency momentsvn , valid for any
D-dimensional density functionr(r ), are variationally obtained in terms of two radial expectat
values:

vn>F1~a,b,n,D !F ^r b&n(a1D)2D

^r a&n(b1D)2DG1/~a2b!

, a.b.2D
n21

n
~23!

for any n.1, and

vn<G~a,b,n,D !@^r a&2n(b1D)1D^r b&n(a1D)2D#1/~a2b!, b,D
12n

n
,a ~24!

for any 0,n,1, and where

F1~a,b,n,D !5
nn~a2b!2n21

H VDBF n~b1D !2D

~a2b!~n21!
,
2n21

n21 G J n21 H @n~b1D !2D#n(b1D)2D

@n~a1D !2D#n(a1D)2DJ 1/~a2b!

~25!

and

G~a,b,n,D !5nn~a2b!2n21H VDBF n~a1D !2D

~a2b!~12n!
,
2n~b1D !1D

~a2b!~12n! G J 12n

3H F 1

2n~b1D !1DG2n(b1D)1DF 1

n~a1D !2DGn(a1D)2DJ 1/~a2b!

. ~26!

Consider Eqs.~23!–~26! applied to the functionz(t), i.e., after making the substitutionsvn

→Qn and $^r a&,^r b&%→$^ta&,^tb&%, and replace the parameters$n,a,b% by k[D(n21), a
[11a/D and b[11b/D. Now, taking into account the identities~11!–~12! connecting mo-
ments and frequency moments ofr(r ) andz(t), upper and lower bounds on^r k& in terms of two
frequency moments ofr(r ) are obtained; the lower ones fork.0,

^r k&>LD~a,b,k!F v̂b
a(D1k)2D

v̂a
b(D1k)2DG1/@D(a2b)#

for any a.b.D/(D1k) andk.0, and the upper ones fork,0

^r k&<UD~a,b,k!@v̂a
D2b(D1k)v̂b

a(D1k)2D#1/@D(a2b)# ~27!

for any a.D/(D1k).b andk,0, and where
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LD~a,b,k!5

S 11
k

D D k/D

@D~a2b!#11 ~2k/D !

H VDBFb~D1k!2D

~a2b!k
,21

D

k G J k/D H @ab~D1k!2aD#b(D1k)2D

@ab~D1k!2bD#a(D1k)2DJ 1/@D(a2b)#

,

and

UD~a,b,k!5

S 11
k

D D k/D

@D~a2b!#11 ~2k/D !H VDBFa~D1k!2D

2k~a2b!
,
D2b~D1k!

2k~a2b! G J 2k/D

$@ab~D1k!2bD#a(D1k)2D@aD2ab~D1k!#D2b(D1k)%1/@D(a2b)# .

~28!

In some cases, and due to the relationship betweenvn andv̂n , the frequency momentsv̂a andv̂b

can be replaced byva and vb , respectively. Such substitution is allowed~i.e., the involved
inequalities are connected appropriately! when, additionally to the conditions ona and b given
above, occurs that~i! b<1<a for the lower bounds, and~ii ! b>1 for the upper bounds.

For many-fermion systems in the three-dimensional case (D53), especially interesting are
the bounds corresponding tok521 ~involving the electron–nucleus attraction energy! and k
52 ~involving the diamagnetic susceptibility! in terms of the frequency moments of order 4/
5/3, and 2~related toK0 , T0 , and^r&, respectively!. Among them, let us remark the inequali
obtained by takingk521, a55/3, andb54/3 in Eqs.~27! and~28!, valid for any atomic system
with nuclear chargeZ,

EeN<~36K0T0!1/3Z,

i.e., a relationship among three energies and the nuclear charge. For neutral atomic syste
1<Z<92, the above inequality presents a high accuracy, which monotonically increases
77% to 93%,~see Fig. 1!, as observed in a Hartree–Fock framework by means of analytical w
functions.14,15

FIG. 1. Electron–nucleus attraction energyEeN and upper bounds in terms of the exchange-correlation (K0) and kinetic
(T0) energies and the nuclear chargeZ, calculated in a Hartree–Fock framework~Refs. 14, 15!. Atomic units~a.u.! are
used.
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B. Inequalities involving ˆSr ,va ,Š ln r‹‰

Let us carry out the same procedure as before, starting from the known variational
bounds on the information entropySr in terms of one radial expectation value^r k& and the mean
logarithmic radiuŝ ln r&, namely6,16

Sr<AD~k,m!1m ln^r k&1~D2km!^ ln r &

for all m.0, k.2D, where

AD~k,m![m1 ln
VDG~m!

ukumm .

This upper bound can be optimized in the parameterm for fixed values of^r k& and ^ ln r&.
However, such an optimization has to be numerically done.

Keeping in mind the relationships~11!, ~13!, and~14!, the previous inequality applied to th
function z(t) gives rise to

@12m~a21!#Ŝr<BD~a,m!1m ln v̂a1D^ ln r &

for any m,a.0, where

BD~a,m![ma1 ln
VDG~m!

Dua21u~ma!m ,

and which is also valid forSr instead ofŜr if m(a21)<1. In such a case, the above inequal
holds forva instead ofv̂a if, additionally, a>1. Then,

Sr<
1

12m~a21!
@BD~a,m!1m ln va1D^ ln r &#, 1<a<11

1

m
. ~29!

Especially interesting are the particular casesa54/3, 5/3 in the three-dimensional case, whi
involve the quantitiesK0 andT0 . It is numerically observed that, for most neutral atoms with
<N<92, the optimal value of the parameterm is around 1 fora54/3 and around 2/3 fora
55/3. For those particular values, Eq.~29! reads as

Sr<C~N!1 3
2 ln K01 9

2 ^ ln r & ~30!

and

Sr<C8~N!1 6
5 ln T01 27

5 ^ ln r &, ~31!

where

C~N!521 ln
8p2

)N2

and

C8~N!521 ln
$9p@2G~2/3!#9%1/5

N2 .

A numerical study of these inequalities within the aforementioned framework is carried out in
2 for all neutral atoms with 1<N<92. Notice that both inequalities are quite accurate. Indeed
accuracy of inequality~30! varies between 89% and 96%, while that of inequality~31! decreases
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from 98% to 52% for increasingN. It is worthy to remark that this accuracy can be improved
choosing the exact optimal value of the free parameterm for each specific atom.

Let us also mention that other relationships involving moments and/or frequency momen
be obtained from known analytical inequalities. In this sense, expressions containing^r 3& would
provide equations on the average density^r&, and the upper bounds6 on Sr in terms of botĥ r &
and ^r 2& give rise to inequalities involvinĝln r&, K0 andT0 , but much more cumbersome.

IV. CONVEXITY OF INVERSE ATOMIC DENSITIES

In addition to the monotonically decreasing character of the charge densityr(r ) for all neutral
atoms with 1<Z<92, higher monotonicity properties have been numerically17–19 studied by
means of analytical Hartree–Fock wave functions.14,15 Among those properties, it is worthy t
mention the charge convexity, i.e., the non-negativity of the second derivativer9(r ) of the charge
density. It is known17,19 that such a property is valid for a great group of atoms (Z5122, 7
215, 33244) of the Periodic Table, while for the rest (Z5326,16232, 45292) convexity is
very weakly violated@i.e., the functionr9(r ) shows up a very small region of negativity#. In Ref.
17, it is shown that the convexity ofr(r ) allows one to improve many different relationship
among radial expectation values and/or other relevant quantities.

As described in Sec. II, the inverse functionz(t) associated withr(r ) is a monotonically
decreasing function. The next step is to study the convexity ofz(t), i.e., the conditionz9(t)>0. If
convexity would be valid for a given system, one should wonder on the improvement o
relationships described in the previous sections when taking into account such a property.
that the convexity of the functionz(t) for the three-dimensional case is equivalent to the conve
of its inverse, i.e., of the functionf (r )5@r(r 1/3)#1/3. Then, it is not difficult to observe that th
condition f 9(r )>0 transforms into

3rr~r !r9~r !26r~r !r8~r !22r @r8~r !#2>0.

There is not ana priori relation between the convex character ofr(r ) andz(t) @i.e., neither the
convexity ofr(r ) implies the convexity ofz(t) nor conversely#.

We have numerically studied the second derivativez9(t) for the charge densityr(r ) of all
neutral atomic systems with nuclear charge 1<Z<92, by means of the analytical Hartree–Fo

FIG. 2. Information entropySr and upper bounds in terms of the nuclear chargeZ, the mean logarithmic radiuŝln r& and
the exchange correlation (K0) and kinetic (T0) energies, respectively, calculated in a Hartree–Fock framework~Refs. 14,
15!. Atomic units are used.
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wave functions of Refs. 14 and 15. It is observed that all the atoms with a nonconvexz(t), i.e.,
Z516, 20, 49292 ~46 atoms!, also have a nonconvexr(r ) ~69 atoms!. Moreover, the nonconvex
ity region ~when exists! of z(t) is very small; its width is typically only 1026– 1025 times the
length of the total support interval@0,r1/3(0)#.

For a convex functionz(t), let us consider the density function given by its second derivat
i.e., z9(t). Its momentsnn

(2) are related to those ofz(t) by

nn
(2)5n~n21!nn22 ~n.1!

and they are proportional to the frequency moments ofr(r ) as

nn
(2)5

nD

VD
v̂ n21

D
~n.1!.

Then, for convexz(t), inequalities involving its moments are improved by considering the qu
tities nn

(2) instead of nn . For illustration, the expressionn2n4>n3
2 ~obtained from Ho¨lder’s

inequality20! which leads to

v̂5/3>
15
16v̂4/3

2

for the three-dimensional case, is improved by the inequalityn4
(2)n6

(2)>n5
(2) , since this gives

v̂5/3>
25
24v̂4/3

2 .

A similar comment can be done for other inequalities involving expectation values of the de

V. UNCERTAINTY-LIKE RELATIONSHIPS

As mentioned in Sec. I, the information entropy of a density is a measure of its degr
delocalization. It means that many-electron systems having a very peaked densityr ~i.e., with the
complete electron cloud almost located around some position! have a very low information en
tropy Sr . And, conversely, systems with a very flat or uniform density~corresponding to a very
delocated electronic cloud! present a high value of their information entropy.

This property provides a different formulation21 of the Heisenberg uncertainty principle i
terms of the information entropies of the one-particle densities in position~r! and momentum~g!
spaces. This principle states the impossibility of having a quantum system highly localized in
complementary spaces simultaneously, and its reformulation in terms of information entrop
given by21

Sr1Sg>3~11 ln p!. ~32!

A similar statement can be done concerning the entropies of the two complementary~in some
sense! densitiesr(r ) andz(t). Attending to the definition ofz(t), it should be also expected som
kind of connection between the entropiesSr and Sz @a peakedr(r ) provide a flatz(t), and
conversely#.

In this section we numerically study the sumSr1Sz for all neutral atoms with nuclear charg
1<Z<92 in a Hartree–Fock framework,14,15and we compare them to the corresponding quan
for hydrogen-like systems with the same nuclear charge. From the well-known expressions
electron density for hydrogenic atoms with nuclear chargeZ ~see Sec. II!, one easily obtains tha

Sr531 ln p23 lnZ ~33!

and
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Sz53C1 ln 82
11

2
13 lnZ, ~34!

where C50.5772... is Euler’s constant. Then, remark that hydrogenic atoms for the su
entropies is constant~i.e., does not depend on the nuclear chargeZ!,

Sr1Sz53C1 ln 8p2 5
2 52.455 818... . ~35!

In Fig. 3, the entropy sumsSr1Sz andSr1Sg are plotted for the aforementioned neutral atom
First, we observe that the sumSr1Sz is always greater for a neutral atom than for the hydroge
one with the same nuclear chargeZ, i.e., Sr1Sz>3C1 ln 8p25/2. This may indicate that this
entropy sum is a good atomic correlation measure. Moreover, we notice that the values of th
through the Periodic Table lie in the interval 2.45<Sr1Sz<3.15, which is much narrower tha
the interval of the corresponding values of the sumSr1Sg . Then, the entropySz @and, conse-
quently with Eq.~14!, the mean logarithmic radiuŝln r&# can also be considered as a measure
the delocalization of the density. We are presently studying the implications of these two o
vations in the physics of many-fermion systems.

VI. SUMMARY

Different density functionals ~e.g., frequency moments, information entropy! of
D-dimensional many-particle systems have been expressed in terms of expectation values~radial
and logarithmic! of a density function with finite support. This connection allows one to ob
many rigorous relationships among those quantities~some of them physically relevant and/o
experimentally accessible! by means of known inequalities of variational type or based on cla
cal integral inequalities. In some cases, the resulting new inequalities are of great accurac
have been even improved by taking into account additional analytic properties~e.g., convexity! of
the densities involved.

FIG. 3. Sums of information entropiesSr1Sg and Sr1Sz , calculated in a Hartree–Fock framework~Refs. 14, 15!.
Atomic units are used.
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Eigenvalues in spectral gaps of the two-dimensional
Pauli operator
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We consider purely magnetic two-dimensional Pauli operatorsH with a spectral
gap, perturbed by a magnetic fieldlBs5ldaW s , l>0. Assuming thatBs and aW s

vanish at infinity, we ask whether eigenvalues will cross the gap asl→`. Fur-
thermore, we give an example of a two-dimensional Pauli operatorH with periodic
magnetic field of zero flux which has at least one spectral gap. ©2000 American
Institute of Physics.@S0022-2488~00!01810-7#

I. INTRODUCTION

In the present paper, we consider two-dimensional Pauli operators

H5S H1 0

0 H2
D ,

where

H65~2 i¹2aW !27B, B5daW 5]1a22]2a1 .

This operator acts in the Hilbert spaceL2(R2) % L2(R2) and describes in the (x1 ,x2)-plane a
particle with spin1 1

2 or 2 1
2 in a magnetic fieldB ~hereB is pointing in thex3-direction!. The

operatorH is positive~see below!. Suppose thatH has a spectral gap (a,b), 0<a,b, which is
also a gap of the essential spectrum ofH. We consider the perturbed operators

H6~l!5~2 i¹2aW 2laW s!
27B7lBs , l>0, ~1!

where Bs5daW s and uBsu,uaW su vanish at infinity. The perturbation is it relatively compact wi
respect toH ~see Lemma 5!. Therefore, the essential spectra ofH6(l) will not change asl varies,
but eigenvalues may appear in the gap. We ask whether this happens: do eigenvalues cross
(a,b) asl→`?

A lot of work has been done to answer this kind of question for Schro¨dinger operators~see
e.g., Refs. 1–5!. Some of the results are as follows: assume that the operator2D1V has a
spectral gap, whereVPL`(Rd) is an electric potential. Let 0<WPL`(Rd) be of compact suppor
andW.0 on a large ball. We consider

2D1V1lW, lPR.

For l→1` a finite number of eigenvalues will cross the gap coming from it below. One m
say that the repulsive effect of the potential barrierlW>0 shifts the energy of functions upward
that ‘‘live’’ inside the support ofW. For l,0 the potential welllW<0 becomes infinitely
attractive, therefore infinitely many eigenvalues will cross the gap coming from it abovel
→2`.

Magnetic perturbations of2D1V in R2 are studied in Ref. 6. The magnetic Schro¨dinger
operator,
79180022-2488/2000/41(12)/7918/14/$17.00 © 2000 American Institute of Physics
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~2 i¹2laW s!
21V, l>0,

is considered whereBs5daW s . The closure of the setV5$xPR2; Bs(x)Þ0% is assumed to be
compact and to contain a large ball. Due to the Avron–Herbst–Simon-bound~see Ref. 7!

u~c,Bsc!u<~c,~2 i¹2aW s!
2c!, cPCc

`~R2!,

the magnetic perturbation is comparable with the electric perturbationlIV , l.0, where IV

denotes the characteristic function onV. ~See also Refs. 8 and 9 where the resolvent of magn
Schrödinger operators is studied for strong magnetic fields.! As expected, the magnetic perturb
tion shifts at least a finite number of eigenvalues in upwards direction through the gapl
→`. ~See Ref. 6, Theorem 1.1.! Viewing H6 as magnetic Schro¨dinger operators with electric
potential7B, it is natural to guess that similar results can be obtained for the two-dimens
Pauli operator. We will show that there are situations where the behavior of the Pauli oper
strikingly different.

Let us illustrate this with an example. Assume that the background fieldB in Eq. ~1! is
constant and positive. It is well known~see Ref. 10! that the spectra ofH1 andH2 consist of the
it Landau-levels$2kB; kPN0% and $2kB; kPN%, respectively. These are eigenvalues of infin
degeneracy. There are infinitely many gaps in the essential spectrum ofH1 andH2 .

Let B25daW s<0 be bounded with compact support. Looking atH1(l), the repulsive effect of
the potential barrier2lBs , and of the magnetic vector potentiallaW s combined should shift a
finite number of eigenvalues from below through each spectral gap (2kB,2(k11)B), kPN0 . But
this cannot be true for the first gap (0, 2B): it follows from the supersymmetry of the two
dimensional Pauli operator that

s~H1~l!!\$0%5s~H2~l!!\$0%

~see Ref. 11!. The spectrum ofH2(l50) lies above 2B. Furthermore, one can show thatH2(l)
has no null space for alll>0 ~see Ref. 12!. As the eigenvalue branches are analytic inl ~see Ref.
13! we conclude that there cannot be eigenvalues in (0,2B)ùs(H2(l)) starting at zero. But, by
the supersymmetry of the two-dimensional Pauli operator the same holds forH1(l). In fact, we
prove that despite the repulsive effect of2lBs andaW s eigenvalues will cross the first gap comin
from it above asl→`!

Before giving the precise statement of this unexpected result we try to explain it. Assum
Bs is radially symmetric. Now we can see explicitly what the null space ofH1(l) looks like. The
eigenfunctions read in polar coordinatesr ,j

ul,m~r ,j!5r m expS 2E
0

r 1

t E0

t

~B1lBs~t!!t dt dtD •eimj, mPN0

~see Ref. 14!. Studying these functions for growingl, one will find that they ‘‘evade’’ the
perturbation, they move away from the support ofBs . But the corresponding eigenvalue stays
zero level. Unlike the case where the spectral gap of the starting operator is produced
periodicity of an electric background potential, these eigenfunctions are not tied to a pe
structure. Our conjecture is that in moving away from the support ofBs these eigenfunctions mak
a place for eigenfunctions of higher energy. We get eigenvalues that cross the gap comin
above.

We will prove the existence of this kind of eigenvalues in the first gap in a slightly m
general situation.

Theorem 1: Let H2 be bounded from below by a constant b.0. Assume that the null spac
of H1 is infinite dimensional. Let Bs5daW s and supposeuBs(x)u,uaW s(x)u→0 for uxu→`. Let
Bs(x),0 for x in a nonempty open setV of R2. Assume further that Bs and B are Lipschitz-
continuous onV. We then have
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~i! The operator H1 (and therefore the Pauli operator H) has the (essential) spectral
(0,b).

~ii ! For all 0,«,b an infinite number of eigenvalues of H6(l) coming from above will cross
the intervall («,b) as l→`.

Part ~i! is immediate by the supersymmetry and the assumptions made onH1 and H2 .
Besides the caseB5const.0 we will give a further example of Pauli operators that fulfill the
assumptions in Sec. IV~example 6!. The proof of part~ii ! follows from Lemma 2~combined with
Lemma 4!, which will also be a useful tool in other situations. It says that the operator (2 i¹
2laW )22lB on a small ball with Dirichlet boundary condition has spectrum exponentially c
to the zero level forl large—provided thatB is positive and Lipschitz-continuous on the ball.

The paper is organized as follows. In Sec. II we give some basic definitions. In Sec. I
consider the Dirichlet Pauli operator on a small ball. The following two sections contain diffe
situations where eigenvalues appear in spectral gaps. We prove Theorem 1 in Sec. IV. F
more, we show that a magnetic fieldBs of compact support with zero flux gives rise to at least o
eigenvalue crossing the gap. Using a different technique we treat the radially symmetric c
Sec. V. Here, we can say more about the behavior of the eigenvalue branches. We assumB
is constant and positive andBs is radially symmetric and of compact support. For*Bs,0 each
gap is crossed by infinitely many eigenvalues that come from above. The eigenvalue br
converge to a Landau-level asl→`. On the other hand, forBs.0 eigenvalues will cross the gap
above 2B coming from below. In Sec. VI we give an example of Pauli operators with spe
gaps. The magnetic field is assumed to be periodic with zero flux.

II. BASIC DEFINITIONS

We define in the usual way the function spacesL2(R2), H 1(R2), Ck(R2) for kPN and
L2(V), Cc

`(V) for V,R2 open. In L2(R2) the scalar product and the norm are denoted
(•,•) andi•i , respectively. InL2(V) we use (•,•)V andi•iV . The spaceH̊1(V) is the Sobolev
space obtained by closingCc

`(V) in the norm (i•i21i¹•i2)1/2 for V,R2 open.
For R.0 andxPR2 we denote the open ball$x8PR2; ux82xu,R% asKR(x). We also write

KR5KR(x) for x5(0,0). We use the notationIV for the characteristic function ofV,R2.
Let A be a self-adjoint operator. We denote asD(A), s(A), and sess(H) the domain, the

spectrum, and the essential spectrum ofA, respectively. IfA8 is another self-adjoint operato
unitarily equivalent toA, we writeA>A8.

For an intervalI ,R let PI(A) be the spectral projection onI . Furthermore, we let

N~ I ,A!ªdim ranPI~A!, EPR,

and N(E,A)5N((2`,E),A) for EPR. Next, we define the Pauli operator. Sometimes it
convenient to consider the operators for spin up and spin down simultaneously. This w
denoted by the signs6 or 7. Let B be bounded andaW PC1(R2;R2) such that

B5daW 5]1a22]2a1 .

In some cases it is advantageous to introduce a ‘‘scalar potential’’f solving 2Df5B and to
define

aW 5~]2f,2]1f!.

Let H aW
1(R2) be the cl osure ofCc

`(R2) in the norm

iuiaW5~ iui21iP1ui21iP2ui2!1/2,

where
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P j52 i ] j2aj for j 51,2.

On H aW
1(R2) we define the~closed! operators

Q65P16 iP2 .

Let H6 be the selfadjoint operators associated with the quadratic formsiQ 6ui2. Formally, we
write

H65~2 i¹2aW !27B.

The vector potential is not uniquely determined by the magnetic field. ForaW andaW 8 such that
daW 5daW 8 there exists a functiongPC2(R2) satisfyingaW 2aW 85¹g ~see Ref. 11!. It follows from

e2 ig~2 i¹2aW !eig5~2 i¹2aW 8!

~‘‘gauge transformation’’! that (2 i¹2aW )27B and (2 i¹2aW 8)27B are unitarily equivalent.
An interesting property of the Pauli operator is the itsupersymmetry, i.e., H65Q6* Q6

5Q7Q7* . One concludes from the supersymmetry that~see Refs. 11 and 15!

s~H1!\$0%5s~H2!\$0%.

Note that there is no supersymmetry in three dimensions or if an additional electric fi
considered. Since we want to use this property, we restrict ourselves to the purely magnet
in R2.

We will also need the Dirichlet Pauli operator on a bounded open setV,R2. We consider the
closed operators

Q6~V!5P16 iP2

on H̊1(V). The Dirichlet operatorsH6(V) are defined as above via the quadratic for
iQ6(V)ui2. Using Rellich’s theorem one shows thatH6(V) have compact resolvent. The spe
tra of H6(V) therefore consist of eigenvalues with finite multiplicity.

III. THE DIRICHLET PAULI OPERATOR ON A SMALL BALL

In this section we consider the Dirichlet Pauli operator on a small ballKR ,

H1~l;KR!5~2 i¹2laW !22lB, ~2!

where 0,R, 1
2 andB5daW is positive onKR . We will show thatH1(l;KR) has spectrum close

to zero level forl large enough.
Lemma 2: Let0,R, 1

2 and B1 ,B2.0 be constants such that

1<
B2

B1
,

122 lnR
7

16 22 lnR
. ~3!

Then there are constants c,a.0 such that for all magnetic fields B5daW in (2) with the property

B1<B~x!<B2 f or uxu<R, ~4!

the following holds:
There are functions ul in the domain of H1(l;KR) such that

iH1~l;KR!uli,c l3/2e2al iuli , ~5!

for l large.
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The proof of Lemma 2 is based on the Aharonov–Casher theorem~see Ref. 11! which
describes the null space of a Pauli operator with magnetic field of compact support. We ta
first zero-eigenstate of the Pauli operator with magnetic fieldlIKR

B. This function will be small
near the boundary ofKR for l large. Mulitiplied with an appropriate cutoff function we obtain a
element of the domain of the Dirichlet operator.

Proof of Lemma 2:Let dªB2 /B1 . Let

f~x!52
1

2p E
KR

ln~ ux2x8u!B~x8! d2x8,

and choose as vector potential

aW 5~]2f,2]1f!.

Let cPCc
`(KR) with 0<c<1 andc(x)51 for uxu< 3

4 R. We define

ul~x!5c~x!exp~lf~x!!.

By construction,ul is in the domain ofH1(l;KR). We calculate

H1~l;KR!ul5S 22il ¹c•S ia22a1

2 ia12a2
D2Dc Dexp~lf!.

For TRªKR\K3R/4 there is a constantC.0 such that

iH1~l;KR!uli
iuli <

Cliexp~lf!iTR

i exp~lf!iK3R/4

.

With B1 ,B2 of ~4! we define foruxu<R and j 51,2,

f j~x!ª2
1

2p E
KR

ln~ ux2x8u!Bj d2x8

5
1

2
Bj S R2

2
2

uxu2

2
2R2 ln RD .

If follows from R, 1
2 that

0,exp~lf1~x!!<exp~lf~x!!<exp~lf2~x!!, uxu<R, l.0.

As exp(lf2(uxu)) is a monotone decreasing function ofuxu we can estimate

iexp~lf2!iTR
<C exp~lf2~ 3

4 R!!

5C expS lB2R2

4 S 7

16
22 lnRD D .

Furthermore

iexp~lf1!iK3/4R

2 5expS lB1R2

2
~122 lnR! D 1

lB1
z~l!,

wherez(l)→2p for l→`. Finally, we can find a constantc.0 such that
                                                                                                                



l the

e

7923J. Math. Phys., Vol. 41, No. 12, December 2000 Eigenvalues in spectral gaps of the two- . . .

                    
iH1~l;KR!uli
iuli <

Cliexp~lf2!iTR

iexp~lf1!iK3/4R

,c l3/2exp~2al!,

where

a52
B1R2

4 S S 7

16
22 lnRD d2~122 lnR! D

is positive by~3!. h

Remark 3:By construction, the functionsul are zero near the boundary ofKR . Extendingul

onR2\KR by zero, the inequality~5! still holds when the Dirichlet operatorH1(l;KR) is replaced
by any operatorH1(l) on R2 with the same magnetic field onKR .

If B is Lipschitz-continuous and positive on an open set it is always possible to fulfil
assumptions of Lemma 2 by choosingR small enough:

Lemma 4: Let B(x) be Lipschitz-continuous and positive on an open nonempty setV,R2.
Then there is a ball KR8(x8),V, R8, 1

2, such that

1<
B2~R8!

B1~R8!
,

122 lnR
7

16 22 lnR
,

where

B2~R8!ª max
xPKR8(x8)

B~x!, B1~R8!ª min
xPKR8(x8)

B~x!.

Proof: For 0,R8 let d(R8)ªB2(R8)/B1(R8). Since B is Lipschitz-continuous, there ar
constantsC.0, R.0 such that

d~R8!21

R8
,C for all 0,R8<R.

As

S 122 lnR8
7

16 22 lnR8
D 21

R8
→`, R8→0,

we see that

d~R8!,
122 lnR8
7

1622 lnR8

for R8 small enough. h

IV. EIGENVALUES IN SPECTRAL GAPS

Let

H5S H1 0

0 H2
D , H65~2 i¹2aW !27B, B5daW ,
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and assume thatH has a spectral gap (a,b), 0<a,b, wherea> inf sess(H). First, we show that
a magnetic perturbation ofH is relatively compact in case the magnetic field and the associ
vector potential vanish at infinity.

Lemma 5: Let Bs5daW s and suppose that Bs(x), uaW s(x)u→0 as uxu→`. Let

H6~l!5~2 i¹2aW 2laW s!
27B7lBs , l>0.

Then the operators(H61 i )212(H6(l)1 i )21 are compact.
Proof: We only consider (H11 i )212(H1(l)1 i )21. Assume that (un)nPN converges

weakly to zero andiuni51 for all n. Definewnª(H11 i )21un . For «.0 let R«.0 such that
uBs(x)u, uaW s(x)u,« for uxu.R« . Let c(x)PCc

`(R2) be 1 foruxu<R« and zero outside the ballKR

for someR.R« . It is easy to see that

i¹~cwn!i , i¹~c~2 i¹2aW !wn!i,C,

for all nPN. By Rellich–Kondrachov,cwn andc(2 i¹2aW )wn converge strongly to zero forn
→`. Using the second resolvent equation we conclude

i~~H1~1!1 i !212~H11 i !21!uni<i~2aW s~2 i¹2aW !2aW s
21Bs!wni

<c•«, n>n0 ,

for suitablen0PN andc.0. h

If Bs is of compact support it is not difficult to find an associated vector potentialaW s that
vanishes at infinity. TakeBs5B01Brad, whereB0 , Brad are also of compact support,B0 has zero
flux andBrad is radially symmetric. We can find a vector potentialaW 0 of compact support such tha
daW 05B0 . The ‘‘radial gauge’’aW rad for Brad can be estimated by

uaW rad~x!u<
C

11uxu
, xPR2

@see Eq.~6! below#. Hence,aW s5aW 01aW rad vanishes at infinity.
Now, we will prove Theorem I.
Proof of Theorem 1:Let mPN. As in the proof of Lemma 4, we findm disjoint small balls

KRj
(xj ),V, j 51, . . . ,m with the following property:
There are a constantL(m).0 and constantsBj 1 ,Bj 2.0 for j 51, . . . ,m such that for all

l.L(m),

Bj 1<S 1

l
B~x!1Bs~x! D<Bj 2 , xPKRj

~xj !,

and

1<
Bj 2

Bj 1
,

122 lnRj

~7/16! 22 lnRj
.

Now, apply Lemma 2 to each of these balls. We getN(«,H2(l))>m for l large. h

We give an example of Pauli operators such that the assumptions of Theorem 1 onH1 and
H2 are fulfilled.

Example 6:Let B be periodic. Assume that the magnetic flux through a period cell is posi
Then forH65(2 i¹2aW )27B we have:

~i! There is a constantb.0 such thatH2>b.
~ii ! The operatorH1 has an infinite dimensional null-space.
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Proof: Let B̃ be the magnetic flux ofB through a period cell. AsB1ªB2B̃ is periodic and
has zero flux, we can find a periodic functionf1 such that2Df15B1 . We defineaW̃ 5 1

2 B̃
(2x2 ,x1) and choose

aW 5~ ã11]2f1 ,ã22]1f1!.

For Q25(2 i ]12a1)2 i (2 i ]22a2) andQ̃25(2 i ]12ã1)2 i (2 i ]22ã2) we calculate

Q2e2f15e2f1Q̃2 .

As Q2* Q25H2 andQ̃2* Q̃25(2 i¹2aW̃ )21B̃>2B̃ ~the operator with constant magnetic fieldB̃!,
we find a constantb.0 such that for alluPD(H2)

~H2u,u!5iQ2ui25ie2f1Q̃2ef1ui2>b iui2.

Part ~ii ! is proven in Ref. 16. h

Using the techniques of Hempel and Levendorskiıˇ ~see Refs. 1, 2, 5! one proves the following
theorem. Again we will need Lemma 2. As we do not want to repeat all the details of
techniques here, we only give a rough sketch of the proof.

Theorem 7: Assume that the Pauli operator H has the (essential) spectral gap(a,b), 0<a
,b. Let Bs5daW s be bounded with compact support, such thatV,ª$xPR2, Bs(x),0% and
V.ª$xPR2, Bs(x).0% contain nonempty open sets ofR2 and let B and Bs be Lipschitz-
continuous on these sets. Furthermore, suppose*Bs50. Let

H6~l!5~2 i¹2aW 2laW s!
27B7lBs , l>0.

Then for each EP(a,b), there is (at least) onelE.0, such that E is an eigenvalue of H1(lE)
and H2(lE).

Sketch of the Proof:We only considerH1 andH1(l). As *Bs50 we can chooseaW s with
compact support.

The first step is to solve the eigenvalue problem on a big ballKn , nPN. Let H1(Kn) and
H1(l;Kn) be the operatorsH1 and H1(l) on Kn with Dirichlet boundary conditions, respec
tively. It is possible that the boundary conditions give rise to eigenvalues ofH1(Kn) in the gap
(a,b). To avoid this problem one introduces the operatorsH̃1(Kn) and H̃1(l;Kn), where

H̃1~Kn!5H1~Kn!1~b2a!cnPncn

and

H̃1~l;Kn!5H1~l;Kn!1cnPncn .

Here Pn5P(a,b)(H1(Kn)) and cnPC` satisfiescn(x)50 for uxu< n/2 and cn(x)51 for uxu
> 5

6 n. One proves that forEP(a8,b8),(a,b),

s~H̃1~Kn!!ù~a8,b8!5B, n.n1 .

As in the proof of Ref. 5, Theorem 1.1, one shows that there are constantsC,R,n2.0 such that
for n.n2

N~E,H̃1~l;Kn!!2N~E,H̃1~Kn!!>N~E,H1~l;KR!!2C.

It is important to note that the right side does not depend onn for n.n2 . Again we use Lemma
2 to prove that there is a constantL0.0 such thatN(E,H1(l;KR))>C11 for l.L0 . There-
fore,
                                                                                                                



in

se

n

ut

o a

r

7926 J. Math. Phys., Vol. 41, No. 12, December 2000 Alexander Besch

                    
N~E,H̃1~l;Kn!!2N~E,H̃1~Kn!!>1 for l.L0 , n.n2 .

It follows that forn.n2 there are valueslnP(0,L0# and functionsunPD(H̃1(ln ;Kn)) such that

H̃1~ln ;Kn! un5Eun .

In the second step one has to prove that (un)—or a subsequence—converges weakly
H 1(R2) to a functionuPD(H1(lE)), whereln→lE for n→`. Finally, one shows

H1~lE! u5Eu.

h

In Theorem 7 it is of great importance that the flux ofBs vanishes. In this case we can choo
a magnetic vector potential that is zero outside the support ofBs . If *BsÞ0 there is no magnetic
vector potentialaW s of compact support. Many technical problems arise between the projectioPn

andaW s ~see Ref. 6, where the magnetic perturbation of a Schro¨dinger operator inR2 is treated and
this kind of problems is solved!.

V. THE RADIALLY SYMMETRIC CASE

In this section we chooseB andBs radially symmetric to get more detailed information abo
the behavior of the eigenvalue branches. The simplest case is to takeB5const. We will prove:

Theorem 8: Let B5const.0. Let Bs be radially symmetric with compact support and

H6~l!5~2 i¹2aW 2laW s!
27B7lBs , l>0.

Then:

~i! For *Bs,0 there are infinitely many eigenvalues of H6(l) crossing each gap
@2Bk,2B(k11)#, kPN0 coming from above. Each eigenvalue branch converges t
Landau-level2Bk, kPN0 asl→`.

~ii ! For Bs>0 there are infinitely many eigenvalues of H6(l) crossing each gap
@2Bk,2B(k11)#, kPN coming from below asl→`.

The ‘‘natural gauge’’ for a radially symmetric magnetic field is the radial gauge. For
5Ax1

21x2
2 we take

aW 5 1
2 B~2x2 ,x1!, aW s5 f s~r !~2x2 ,x1!, ~6!

where

f s~r !5
1

r 2 E
0

r

Bs~t!t dt.

Let Km be themth eigenspace of the angular momentum operatorLz5 i (x2]12x1]2). Separating
H6(l) in polar coordinates leads in the usual way~see Ref. 17, p. 160 and Ref. 5! to the unitary
equivalence

H6~l!> %
mPZ

h6~l,m! ^ I , l>0.

Hereh6(l,m) ^ I operates inL2(R2,dr) ^ Km andh6(l,m) is defined by

h6~l,m!52
d2

dr2 2
1

4r 2 1
1

r 2 m222S 1

2
B1l f s~r ! Dm1S 1

2
B1l f s~r ! D 2

r 27B7lBs~r !
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5..2
d2

dr2 2
1

4r 2 1V6~l,m!.

The operatorsh6(l,m) have compact resolvent~see Ref. 5!.
We first consider part~i! of Theorem 8 and start withh1(l50, m). As

s~H6~l!!5 ø
mPZ

s~h6~l,m!!, l>0

the spectra ofh1(0, m) consist of the Landau-levels 2nB, nPN0 . But there is an importan
difference betweenm>0 andm,0. We have

s~h1~0, m!!5H $2nB; nPN0%, m>0

$2nB; nPN0 , n>2m%, m,0
,

where each value is an eigenvalue of dimension 1@See Ref. 14 and Remark~iii ! in Ref. 7, Sec.
§3#. It follows that

h1~0, m!>2m2B, mPZ, m,0.

The spectra ofh1(0,m) do not begin with the first Landau-level form negative.
Assume that the support ofBs lies in the ballKR whereR.0. Let *Bs,0 andm,0. For

m2 (lFs/2p) PZ one calculates

V1~l,m;r !5V1~0, m2 ~lFs/2p! ;r !, r .R.

Therefore, outside the support ofBs the operatorh1(l,m) ‘‘looks like’’ the unperturbed operator
h1(0, m2 (lFs/2p). For largel the spectrum of the latter starts with the very first Landa
level. Thus we can expect thath1(l,m) has spectrum close to the values 0, 2B, 4B, . . . . Be-
causeh1(0, m)>2m2B we see that eigenvalues cross the gaps between 0 and2m2B in the
spectrum ofh1(l,m) asl is increasing. They converge to a Landau-level forl→`.

Proof of Theorem 8:

~i! Without restriction we assume that the support ofBs lies in K1 . Let mPZ be negative. We
define

mlªm2
lFs

2p
, l.0.

For largel we haveml.0. Let nP@0,2m#ùN0 . We will show that there are normalize
functionsvl,nPD(h1(l,m)) such that

i~h1~l, m!22nB!vl,ni→0, l→`.
This proves part~i! of the theorem forH1(l) ash1(0, m)>2m2B. By supersymmetry,
the same holds forH2(l).
Let

vl,n~r!ªml,n rml1 1/2S (
j 50

n S 2
2

BD n2 j S n
j D r 2 j )

l 5 j

n21

~ml111 l !D expS2 B

4
r2D

where

ml,n5A Bml12n11

G~ml1n11! n! 2ml12n

is a normalization factor; one calculatesivl,ni51. It is easy to see that

SS2 d2

dr22
1

4r21V1~0,ml! D22nBD vl,n~r !50.

Therefore
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i~h1~l,m!22nB!vl,ni5i~V1~l,m!2V1~0,ml!!vl,ni .
As V1(l,m)2V1(0,ml) vanishes outsideK1 we see that

i~h1~l,m!22nB!vl,ni<
Cl2~ml!n

AG~ml1n11! ~2/B!ml
,

whereC.0. The right-hand side converges to zero asl→`.
~ii ! Considerh2(l,m) for mPZ. As in the proof of Ref. 5, Lemma 3.4, one shows that

inf s~h2~l,m!!→`, l→`.

h

VI. PAULI OPERATORS WITH SPECTRAL GAPS

As mentioned above, the spectrum of the two-dimensional Pauli operator with zero e
and nonzero constant magnetic field consists of the Landau-levels and has therefore in
many spectral gaps. In this section we give further examples of purely magnetic Pauli ope
with spectral gaps. Let

H6~l!5~2 i¹2laW !27lB, l.0, ~7!

where the magnetic fieldB5daW is assumed to be periodic with respect to the latticeZ2. Let Q
5@0,1)2 and]Q be the boundary ofQ.

If B>0 andM5$xPR2; B(x)50% is the union of disjoint sets with nonempty simply co
nected interior, one uses the techniques of Hempel and Herbst~see Ref. 8! to prove

i~H2~l!11!212~2DM11!21i→0, l→`.

Here,2DM is the Dirichlet Laplacian onM ~see Ref. 18!. As in Ref. 8, Corollary 3.10, it follows
that the spectrum ofH2(l) has gaps forl large and by the supersymmetry we obtain gaps
H1(l).

If *QB50 neitherH2(l) nor H1(l) converge in resolvent sense to a Dirichlet operat
Nevertheless, in this case there is a itperiodic magnetic vector potentialaW associated withB.
Therefore, it is possible to use Floquet theory. ForuP@0,2p)2 let H6

u (l) denote the operator
H6(l) on L2(Q) with the boudary conditions

u~x1 l j !5eiu ju~x!,
]

]xj
u~x1 l j !5eiu j

]

]xj
u~x!, j 51,2, ~8!

wherel 15(1,0), l 25(0,1). As in Ref. 19 Sec. XIII.16 we have

H6~l!>E
[0,2p)2

%

H6
u ~l!

d2u

~2p!2 .

Assume furthermore thatB is positive in an open neighborhood of the boundary ofQ. Let
b.0. For growingl we expect two things to happen:

~1! Let uP@0,2p)2. The eigenfunctions ofH2
u (l) with eigenvalues in@0,b) will be very small in

a neighborhood of]Q. Therefore, the eigenvalues ofH2
u (l) below b are close to the eigen

values of the Dirichlet operatorH2(l;Q) asl→`.
~2! The number of eigenvalues ofH2(l;Q) in @0,b) is growing forl→`.

We will see that the first effect wins over the second. Therefore, gaps open in the spectr
H2(l) for largel. Again, by supersymmetry the same holds forH1(l).
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Theorem 9: Let the magnetic field B in (7) be Lipschitz-continuous and periodic with res
to the latticeZ2. Let *QB50 and assume that B is positive in an open neighborhood of]Q. Let
0,a,b. Then there is at least one spectral gap of H1(l) and H2(l) inside the interval(a,b)
for l large. Furthermore, we have

sessH6~l!ù@0,a!ÞB. ~9!

Without restriction we may assume that there is ad.0 such thatB(x).1 for dist$x,]Q%
<d. Let

V jªH xPR2; dist$x,]Q%,
j

4
dJ , j 51, . . . ,4.

In the proof of Theorem 9 we need the following lemma:
Lemma 10: Let H6

u (l) and b be as above. Then there are constants c,a.0 such that for all
uP@0,2p)2 and largel the following holds:
Let ul be a normalized eigenfunction of H2

u (l) with eigenvalue ElP(0,b). Then

E
V1ùQ

uulu2<c l e2aAl.

Proof: We assume without restriction thatl.b. Let Q̃5@21,2)2. For x̃PQ̃ there are
uniquely definedxPQ and«1 ,«2P$21,0,1%, such thatx̃5x1«1l 11«2l 2 . We define forx̃PQ̃

ũl~ x̃!5exp~ i ~«1u11«2u2!! ul~x!.

It follows from ~8! that cũlPD(H2(l)) for all cPCc
`(Q̃).

For xPR2 let

B̂~x!ªH B~x!, B~x!>1

1, B~x!,1
.

Let cPCc
`(V4) such thatcuV3

51. Then

~~2 i¹2laW !21lB̂2El!cũl5~~2 i¹2laW !21lB2El!cũl

5~H~l!2El!cũl

522i ~¹c!~2 i¹2laW !ũl2ũlDc

5..Fũl .

By the Feynman–Kac–Itoˆ-formula ~see Ref. 20!, we have

ucũlu5u~~2 i¹2laW !21lB̂2El!21Fũlu

<~2D1l2El!21uFũlu.

Let hPCc
`(V2) such thathuV1

51. Then

huũlu5hucũlu<h~2D1l2El!21uFũlu.

For E.0 let G(x,y,E) be the integral kernel of (2D1E)21 ~see Ref. 17!. One calculates
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G~x,y,l2El!<C1e2Al2Elux2yu/8,

for all l,x,y satisfying (l2El)ux2yu2>2. Therefore,

ihũli<C1e2Al2Eld/32iFũli .

As iFũli<C2(Al11) for C2.0 we obtain

E
V1ùQ

uulu2<c l e2aAl

for suitablec,a.0. h

Corollary 11: Let ElP(0,b) be an eigenvalue of H2
u (l) for l.0 and uP@0,2p)2. Then

dist$El ,s~H2~l;Q!!%<c8l e2a8Al,

where c8,a8.0 are independent ofu and El .
Proof: Let c,a.0 as in Lemma 10. LetcPCc

`(Q) wherec(x)51 for xPQ\V1 . Then

i~H2~l;Q!2El!culiQ<Cle2 a/2Al

with constantC.0. As

iculiQ>12~cl e2aAl!1/2,

we get

i~H2~l;Q!2El!culiQ<c8l e2a8AliculiQ .

The statement follows by the spectral theorem. h

Proof of Theorem 9:It follows from Ref. 21, Proposition 2.3, that

N~~a,b!,H2~l;Q!!<C~l11!

for suitable C.0. Therefore, gaps open in the spectrum ofH2(l) @and H1(l)# inside the
intervall (a,b) asl grows.

There are small ballsKR(x1k) with R.0, xPQ, and kPZ2, such thatB is positive on
KR(x1k) and the assumptions of Lemma 2 are fulfilled. We obtain~9! for H1(l) and with a
similar argument forH2(l). h

Remark 12:Birman and Suslina have shown in Ref. 22, thatH6(l) are absolutely continu-
ous. In connection with our Theorem 9, we get a nontrivial band-gap structure.
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Multipartite generalization of the Schmidt decomposition
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We find a canonical form for pure states of a general multipartite system, in which
the constraints on the coordinates~with respect to a factorizable orthonormal basis!
are simply that certain ones vanish and certain others are real. For identical par-
ticles they are invariant under permutations of the particles. As an application, we
find the dimension of the generic local equivalence class. ©2000 American In-
stitute of Physics.@S0022-2488~00!00512-0#

I. INTRODUCTION

Recently considerable attention1–12 has been devoted to the problem of describing the equ
lence classes of states of a composite quantum system, where two states are regarded as e
if they are related by a unitary transformation which factorizes into separate transformations
component parts~a local unitary transformation!. One approach to this problem is to specify
canonical form for states under local unitary transformations. For pure states of two-part sy
such a canonical form is given by the Schmidt decomposition,

uC&5(
i

a i uf i&uc i&, ~1.1!

where theuf i& are a set of orthogonal states of the first subsystem, theuc i& are a set of orthogona
states of the second subsystem, and thea i are positive real numbers. The stateuC& is thus
expanded in terms of a factorizable basis of two-part states so that the number of nonzer
ficients is minimal. Acı´n et al.1 have shown that there is an expansion of states of three q
which has a similar property. In this paper we will demonstrate such a decomposition for
states of ann-part system, where the dimensions of the individual state spaces are finit
otherwise arbitrary. Then we use this to find the dimension of the generic local equivalence
We will also comment on the relation of this decomposition to other proposed canonical fo

II. THE GENERALIZED SCHMIDT DECOMPOSITION

We first state the generalization of the Schmidt decomposition for a multipartite state in w
all the individual state spaces have the same dimension, since the statement is simple in th

Theorem 1: Let uC& be a state vector in an n-fold tensor product spaceS1^¯^ Sn where
dimS15¯5dimSn5d>2 and n̂ 3. Then for r51,...,n there is a basis$uc i

(r )&: i 51,...,d% of
Sr such that in the expansion

uC&5 (
i 1¯ i n

ci 1¯ i n
uc i 1

(1)&¯uc i n
(n)&, ~2.1!

the coefficients ci 1¯ i n
have the following properties:

a!Electronic mail: hac100@york.ac.uk
b!Electronic mail: ah28@york.ac.uk
c!Electronic mail: as2@york.ac.uk
79320022-2488/2000/41(12)/7932/8/$17.00 © 2000 American Institute of Physics
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(1) cjii ¯ i5ci j i ¯ i5¯5cii¯ i j 50 if 1< i , j <d;
(2) ci 1¯ i n

is real and non-negative if at most one of the ir differs from d;
(3) ucii¯ i u>ucj1¯ j n

u if i< j r ,r 5n, . . . ,n.

The proof is contained in that of the general case, in which the state spaces are allo
have different dimensions. The general form of the theorem is rather more complicated th
above; to state it, we need to define the following sets ofn-tuples.

Let (I 1 ,...,I N) be the set of (n21)-tuples (i 1 ,...,i n21) with 1< i r<dr , excluding those of
the form (i ,...,i ) or (d1 ,...,dr ,i ,...,i ) with dr< i ,dr 11 and 1<r<n22. We order these
(n21)-tuples in lexicographical order, so thatI N5(d1 ,...,dn21). Let D5d1¯dn21 , so that
N5D2dn2111. We defineA to be the set ofn-tuples (i 1 ,...,i n) with ( i 1 ,...,i n21)5I k and
i n5dn211 l where 1<k<min(N,dn2dn21) andk< l<dn2dn21 .

We also define the following sets ofn-tuples:

B15$~d1 ,...,dr 21 , j ,dr 11 ,...,dn21 ,dn21!: 1< j ,dr , 1<r<n22%,

B25$~d1 ,...,dn22 , j ,dn21!:1< j ,dn22%,

B35$~d1 ,...,dn22 , j ,1!:dn22< j <dn21%,

B45$~ i ,i ,...,i !:2< i<d1%ø$~d1 ,...,dr ,i ,...,i !:1<r ,n21, dr, i<dr 11%

ø$~d1 ,...,dn21 ,i !:dn21, i<min~D,dn!%.

ThenA,B1 ,...,B4 are all disjoint. In terms of these sets, the general Schmidt decompos
can be stated as follows.

Theorem 2: Let uC& be a state vector in an n-fold tensor product spaceS1^¯^ Sn where
dimSr5dr , with 2<d1<¯<dn , and n>3. Then for r51,...,n there is a basis$uc i

(r )&:
i 51,...,dr% of Sr such that in the expansion

uC&5 (
i 1¯ i n

ci 1¯ i n
uc i 1

(1)&¯uc i n
(n)&, ~2.2!

the coefficients ci 1¯ i n
have the following properties:

(1) cii¯ i j i i ¯ i50 if 1< i ,d1 and i, j .
(2) cd1¯dr ii¯ i j i i ¯ i50 if dr< i ,dr 11 and i, j , 1<r<n22.
(3) cI50 for every n-tuple index I in the set A.
(4) The coefficients with indices in the sets Bi ( i 51,...,4) are real and non-negative.
(5) For i51,...,dn21 , define

Ri5ucd1¯dri¯iu,

where r is such that dr, i<dr 11 . Then

R1>¯>Rdn21
.

Proof: Consider the real-valued functionu^Cu(uf (1)&¯uf (n)&)u2 defined for unit vectors
uf (r )& lying in the unit sphereS2dr21 in Sr . As (uf (1)&,...,uf (n)&) varies over the compact spac
S2d1213¯3S2dn21, this function attains a maximum at some point (uc1

(1)&,...,uc1
(n)&). Let

$uc i
(r )&: i 51,...,dr% be any orthonormal basis ofSr containinguc1

(r )&, and expanduC& as in the
statement of the theorem. Sinceu^Cu(uc1

(1)&¯uf (r )&¯uc1
(n)&)u2 is stationary atuf (r )&5uc1

(r )& for
variations ofuf (r )& on the unit sphere,

c1¯1 j 1¯15^Cu~ uc1
(1)&¯uc1

(r 21)&uc j
(r )&uc1

(r 11)&¯uc1
(n)&)50, for j .1. ~2.3!
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Next, find the maximum ofu^Cu(uf (1)&¯uf (n)&)u2 asuf (1)&,...,uf (n)& vary over unit vectors
orthogonal touc1

(1)&,...,uc1
(n)&, respectively. Suppose the maximum occurs at (uc2

(1)&,...,uc2
(n)&).

Then, as before, in any expansion ofuC& in terms of orthonormal bases of theSr containinguc1
(r )&

and uc2
(r )& (r 51,...,n), the coefficients will satisfy

c2¯2 j 2¯250, for j .2. ~2.4!

Continuing in this way, we define the basis vectorsuc i
(1)&,...,uc i

(n)& for i 51,...,d121. Then the
last basis vectorucd1

(1)& of S1 is determined up to phase. Next, if the dimensionsdi are not all

equal, we maximizeu^Cu(ucd1

(1)&uf (2)&¯uf (n)&)u2 as uf (2)&,...,uf (n)& vary orthogonally to the

basis vectors already determined, to find basis vectorsucd1

(2)&,...,ucd1

(n)&; then we find

uc i
(2)&,...,uc i

(n)& for i 5d111,...,d221, and henceucd2

(2)&; then uc i
(3)&,...,uc i

(n)& for i 5d2 ,...,

d321; and so on until we haveuc i
(n21)&,uc i

(n)& for i 5dn22 ,...,dn2121. The maximization at
each step implies that the coefficients satisfy~2!.

Now, to fix the lastdn2dn2111 basis elements ofSn , we choose a setI 15( i 1 ,...,i n21) of
n21 indices which is not of the form (i ,...,i ) with 1< i ,d1 or (d1 ,d2 ,...,dr ,i ,i ,...,i ) with
dr< i ,dr 11 ~so that ci 1¯ i n21 j has not yet been set to zero for anyj !, and maximize

u^Cu(uc i 1
(1)&¯uc i n21

(n21)&uf (n)&)u2 with respect to vectorsuf (n)& orthogonal touc1
(n)&,...,ucdn2121

(n) &,
thus finding ucdn21

(n) &; then, choosing a different index setI 25( j 1 ,...,j n21), maximize

u^Cu(uc j 1

(1)&¯uc j n21

(n21)&uf (n)&)u2 with respect to vectorsuf (n)& orthogonal touc1
(n)&,...,ucdn21

(n) &;
and so on until we have either exhausted the possible index setsI 1 ,I 2 ,...,I N or run out of space
in which to vary the vectoruf (n)&. The coefficients will then satisfy~3!.

The reality conditions~4! can be imposed as follows.~By using a basis vectoruc& to fix a
coefficientc we mean changing the phase ofuc& to makec real and non-negative.! First useuc1

(n)&
to fix cd1¯dn211 ; then use ucdn21

(n) & to fix cd1d2¯dn21dn21
; then use uc j

(r )& (r 51,...,n22;

j 51,...,dr21) to fix the coefficients in the setB1 ; then useuc j
(n21)& ( j 51, . . . ,dn2121) to fix

the coefficients inB2 andB3 ; and finally useuc j
(n)& ( j 52,...,min(dn ,D) excluding j 5dn21! to

fix the remaining coefficients inB4 . h

This result can be expressed in terms of active transformations, with respect to fixed
normal bases$uu i

(r )&% of the state spacesSr , as follows. Two statesuC1&,uC2& in S1^¯^ Sn are
said to belocally equivalentif

uC1&5~U1^¯^ Un!uC2&,

whereUr is a unitary transformation acting onSr . Then we have the following.
Theorem 3: For n>3, any state uC&PS1^¯^ Sn is locally equivalent to a state

(ci 1 ...i n
uu i 1

(1)&¯uu i n
(n)& where the coefficients ci 1 ...i n

have the properties 1–5 stated in Theorem 2.

As an example, we note the canonical form for a state of three qubits,

au000&1bu011&1cu101&1du110&1eu111&, ~2.5!

with b,c,d,e real. Acı́n et al.1 have investigated tripartite states using different canonical fo
which, like the canonical form proposed here, have five nonzero coefficients of which fou
real.

We note that for a state expressed in terms of a fixed orthonormal basis$uu i
(r )&% as

uC&5( t i 1¯ i n
uu i 1

(1)&¯uu i n
(n)&,

the coefficients of the basis elementsuc1
(r )&5(ui r

(r )uu i r
(r )& defined in the first step of the above pro

are the solutions of the generalized~nonlinear! ‘‘singular value’’ equations,
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(
i 1¯ i r 21 ,i r 11¯ i n

t i 1¯ i n
ui 1

(1)
¯ui r 21

(r 21)ui r 11

(r 11)
¯ui n

(n)5lui r
(r ), ~2.6!

where the Lagrange multiplierl is such thatulu2 is the maximal value ofu^Cu(uf (1)&¯uf (n)&)u2.
Let us now examine the dimension of the set of canonical forms and deduce the dimens

the generic local equivalence class. First consider the case where all the individual state
have equal dimensiond. The number of zero coefficients in the canonical form, determined
condition 1 of Theorem 1, is12nd(d21) @one for each pair (i , j ) with i , j and for each position
of j #. The number of phases removed by condition 2 isn(d21)11. Hence the number of rea
parameters in the canonical form of Theorem 1 is

2dn2nd~d21!2n~d21!2152dn2n~d221!21.

We have not proved that states with different canonical forms are not locally equivalent
conceivable that the number of parameters could be reduced still further by local transform
However, the difference between the number of parameters in the final canonical form a
dimension of the pure state space must be the dimension of the generic equivalence class
is therefore at leastn(d221)11. But this is the dimension of the group of local unitary transf
mations, which can be identified withSU(d)n3U(1) if we collect together multiples of the
identity in the finalU(1). Since the local equivalence classes are orbits of this group,
dimension cannot be greater than the dimension of the group. Thus we have the following

Corollary 1: If n>3, the generic local equivalence class for a system of n d-state particles
has dimension n(d221)11.

Since a generic orbit has the same dimension as the group, the stabilizer of any state
orbit has dimension zero. This gives the following.

Corollary 2: The generic pure state of a system of more than two equal-spin particles
discrete stabilizer under the action of local unitary transformations.

The stabilizers of states of three qubits (d15d25d352) were studied in Ref. 4. The secon
corollary generalizes Theorem 1 of that paper. This treatment, however, gives no indicat
which exceptional states have enlarged stabilizers. This question is being investigated in a
native approach by one of us~HAC!.

For the general situation we must distinguish between the casesdn<D and dn.D where
D5d1 ...dn21 . In both cases, the number of zero coefficients imposed by conditions 1–
Theorem 2 is

(
i 51

d121

(
s51

n

~ds2 i !1 (
r 51

n22

(
i 5dr

dr 1121

(
s5r 11

n

~ds2 i !

5~d121!(
s51

n

ds1 (
r 51

n22

~dr 112dr ! (
s5r 11

n

ds2nS12 (
r 51

n22

~n2r !~Sr 112Sr !,

whereSr5
1

2
dr~dr21!,

52(
s51

n

ds1 (
r 51

n21

dr
22 (

r 51

n21

Sr2Sn211dndn21

5
1

2 (
r 51

n

dr~dr21!2
1

2
d~d11!, where d5dn2dn21 .

If dn<D, the number of zero coefficients imposed by condition 3 is 1/2d(d11), while the
number of phases removed by condition 4 is
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(
r 51

n

~dr21!11.

Hence the number of real parameters in the above canonical form is

2)
r 51

n

dr2S (
r 51

n

~dr
221!11D ,

which is the difference between the dimension of the state space and the dimension of the
G of local transformations. Thus in this case the dimension of the generic local equivalence
is the same as the dimension ofG, as in Corollary 1.

If dn.D, the number of zero coefficients imposed by condition 3 is

(
k51

N

~d2k11!5N~d11!2
1

2
N~N11!,

giving a total number of zero coefficients determined by conditions 1–3 as

1

2 (
r 51

n

dr~dr21!2
1

2
d~d11!1

1

2
N~2d2N11!5

1

2 (
r 51

n

dr~dr21!2
1

2
D~D21!,

whereD5d2N115dn2D. In this case there are no nonzero coefficientsci 1¯ i n
with i n.D, so

the number of phases removed by condition 4 is reduced byD. Hence the total number o
parameters removed, i.e., the dimension of the orbit, is at least

(
r 51

n

~dr
221!112D25dimG2D2,

whereG5SU(d1)3¯3SU(dn)3U(1).
The fact that there are no nonzero coefficientsci 1¯ i n

with i n.D means that the state i
unaffected by unitary transformations of thenth particle which fix the firstD basis vectors. Thus
the stability group of the state contains at least thisU(D) subgroup, and the dimension of the orb
cannot be greater than dimG2D2. It follows that the dimension of the orbit is exactly this, an
the Lie algebra of the stability group is exactly that ofU(D).

Thus the general versions of Corollaries 1 and 2 are the following.
Corollary 3: In the general n-party system of Theorem 2, where n>3, the generic orbit has

dimension

(
r 51

n

~dr
221!11 i f dn<D,

(
r 51

n

~dr
221!112~dn2D !2 i f dn.D,

where D5d1¯dn21 .
Corollary 4: In the n-party system of Theorem 2, a generic point has a discrete stabilize

the group of local unitary transformations if dn<D; otherwise the stabilizer is locally isomorphi
to the unitary group U(dn2D).
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III. ALTERNATIVE GENERALIZATIONS OF THE SCHMIDT DECOMPOSITION

The canonical form of the previous section is noteworthy for the simplicity of the condit
on the coefficients in the expansion of the state vector in terms of a factorizable orthonormal
certain coefficients are zero, certain others are real. This is likely to make it most use
practice. However, it is perhaps less theoretically appealing than some other generalization
Schmidt decomposition that have been proposed recently. For the sake of completene
review these alternatives here.

For each constituent of the multipartite system, a basis of its individual state space is
mined by its marginal density matrix: this is the basis defined by the conventional Sch
decomposition of the state vector when the multipartite state space is regarded as a bipartit
product, one factor being the state space of the constituent being considered, the other be
tensor product of all the other state spaces. One of us9 and Brun and Cohen2 have proposed tha
the tensor products of these one-particle states provide a natural basis for multipartite stat
resulting coefficientsci 1¯ i n

satisfy

(
i 1 ...i r 21 ,i r 11 ...i n

ci 1¯ i r¯ i n
ci 1¯ i r 21 j r i r 11¯ i n

50 if i rÞ j r ,

for eachr .
Spekkens and Sipe13 have suggested that a canonical state in each equivalence class co

taken to be that which minimizes the Ingarden–Urbanik entropy,

SIU52 (
i 1¯ i n

uci 1¯ i n
u2 log uci 1¯ i n

u2.

They justify this as a generalization of the Schmidt decomposition by showing that the IU en
is minimized by the Schmidt normal form for bipartite states. For more than two constituent
however, little is known about these minima.

To show that all three of these canonical forms are distinct, consider the tripartite state

uC&5
1

2)
~3u000&1u011&1&u111&),

where each constituent system is a qubit~a two-state system! and, as usual, we label the bas
states by the digits 0 and 1 and abbreviate the product basis states asuabc&5uca

(1)&ucb
(2)&ucc

(3)&.
This state is presented in the canonical form of Sec. II; not only does it satisfy the conditio
Theorem 1, but it can be shown~see the Appendix! that it is obtained by the procedure of th
theorem, i.e., the coefficient ofu000& is maximal among states locally equivalent touC&. ~We note
that there is a locally equivalent state with the coefficient ofu000& equal to 1/2; this satisfies
conditions 1 and 2 of Theorem 1, but not condition 3.! By means of a transformation of the firs
qubit with matrix 1/A6 (&21

&11
&11
12&), the stateuC& is locally equivalent to

uF&5
1

2&
„~&11!u000&2~&21!u100&1u011&1u111&…,

which is in the canonical form of Refs. 9 and 2. Neither of these states minimizes the IU en
within their local equivalence class: under the infinitesimal local transformation in which the
states of the first qubit transform byu0&°u0&1eu1&,u1&°u1&2eu0& and the states of the secon
and third qubits are kept fixed, the entropies ofuC& and uF& change by

dSIU~C!52
1

3&
e log 2, dSIU~F!52e log~&11!.
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By minimizing the IU entropy numerically we find in general that a few of the coefficientsci jk

become much smaller than the others without vanishing exactly.
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APPENDIX

We will show that for a state

uC&5au000&1bu011&1cu111&

with uau.1/& , a is the maximal value of the coefficient ofu000& among states locally equivalen
to uC&.

Proof: The equations~2.6! for a stationary value ofu^Cu(uf (1)&uf (2)&uf (3)&)u2 become

āv0w01b̄v1w15lu0, ~A1!

c̄v1w15lu1, ~A2!

āu0w05lv0, ~A3!

b̄u0w11 c̄u1w15lv1, ~A4!

āu0v05lw0, ~A5!

b̄u0v11 c̄u1v15lw1, ~A6!

whereuf (1)&5u0u0&1u1u1&, uf (2)&5v0u0&1v1u1& anduf (3)&5w0u0&1w1u1&. Clearly there is a
solutionl5ā,u5v5w5(1,0). We have to show that any other solution hasulu2,uau2. Using
~A5! and ~A6! to eliminatew0 andw1 , Eqs.~A1! and ~A2! become

~ uau2uv0u21ubu2uv1u22ulu2!u01bc̄uv1u2u150,

b̄cuv1u2u01~ ucu2uv1u22ulu2!u150.

For (u0 ,u1)Þ(0,0), it follows that

F~ ulu2!5ulu42ulu2~ uau21~122uau2!uv1u2!1uau2ucu2uv0u2uv1u250,

sinceuau21ubu21ucu25uv0u21uv1u251. Now

F~ uau2!5uau2uv1u2~2uau2211ucu2uv0u2!,

which is positive ifuau.1/& ~unlessv150!, and the gradient of the quadraticF at ulu25uau2 is
also positive. It follows that the zeros ofF, and therefore any stationary values
u^Cu(uf (1)&uf (2)&uf (3)&)u2 other thanuau2, are less thanuau2. h
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The paper is devoted to the mathematical foundation of quantum tomography using
the theory of square-integrable representations of unimodular Lie groups. ©2000
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I. INTRODUCTION

In quantum mechanics to any physical system there is associated a Hilbert spaceH: the states
are described by positive trace-class trace-one operatorsT on H, the physical quantities by self
adjoint operatorsA onH, and the physical content of the theory is given by the expectation va
Tr (AT). The stateT is completely determined by Tr (QnT) for Qn running on a suitable set$Qn%
of observables and, for arbitrary operatorA, Tr (AT) can be computed in terms of Tr (QnT). In
order to implement this scheme one has to estimate Tr (QnT) experimentally, facing the problem
arising from statistical errors and instrumental noise. Moreover, the number of experiment
servations is clearly finite, whileA andT are operators on an infinite dimensional Hilbert spa
and the set$Qn% is infinite.

The problem of determining the state of a quantum system entered the realm of experi
in the last decade, in the domain of quantum optics. Many authors, see e.g., Refs. 1–4, pr
and used various techniques to reconstruct the density operator of a single mode of the e
magnetic field from the probability distributions of its quadratures. These methods were orig
based on the use of the Radon transform, as in medical tomographic imaging. Due to this a
the namequantum tomographyis currently used to refer to these techniques. Their comm
feature, for a review see Ref. 5, is the use of a set of observables$Qn :nPX%, calledquorum,
parametrized by a spaceX endowed with a probability measurem. The fundamental property o
the quorum is that any observableA can be expressed as anintegral transformon the spaceX,

A5E
X
E@A#~n!dm~n!,

a!Electronic mail: cassinelli@ge.infn.it
b!Electronic mail: dariano@pv.infn.it
c!Electronic mail: devito@unimo.it
d!Electronic mail: levrero@ge.infn.it
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in such a way that, for allnPX, the operatorE@A#(n) is a function ofQn in the sense of the
functional calculus. Then, ifT is the state, one has

Tr ~AT!5E
X3R

s~A!~n,l!v~n,l!dm~n!dl, ~1!

wherel°v(n,l) is the probability density ofQn in the stateT, i.e.,

Tr ~TQn!5E
R
lv~n,l!dl,

andl°s(A)(n,l) is the function defined byE@A#(n) using the functional calculus, i.e.,

Tr ~TE@A#~n!!5E
R
s~A!~n,l!v~n,l!dl

~in the above-mentioned formulas we assumed for simplicity that eachQn has an absolutely
continuous spectrum!. Selecting randomlyQn in the quorum according to the probability measu
m and measuring it, the probability of obtaining a value in the interval (l2 1

2dl,l1 1
2dl) is given

by v(n,l)dm(n)dl. Then, by means of Eq.~1!, the expectation value Tr (AT) can be recon-
structed, by averaging the functions(A) over X3R endowed with the probability measur
v dm dl. We notice that the functions(A), called theestimatorof A, does not depend onT, and
that the same set of data can be used to estimate all the expectation values Tr (AT).

In Refs. 6 and 7 a general method has been proposed to realize a quorum and define esti
in terms of suitable unitary representations of Lie groups~for a self-contained concise expositio
see Refs. 8 and 9!. The present paper is concerned with laying the mathematical foundatio
this method based on the theory of square-integrable representations of unimodular Lie gro
Sec. II we present the mathematical theory and in Sec. III we apply it to two examples
homodyne tomography related to the Weyl–Heisenberg group and the angular momentum
raphy associated with the rotation group.

II. GROUP-DYNAMICAL QUORUM

In this section we define a quorum associated with a square-integrable representation o
group.

Let G be a unimodular connected Lie groupG andK a central closed subgroup. The quotie
spaceH5G/K is a unimodular connected Lie group. We denote byH its Lie algebra, bym11 the
~real! dimension ofH as a vector space, bydv a Lebesgue measure onH; and bydh a Haar
measure onH, uniquely defined up to a positive constant, which will be fixed in the followin

Denote by exp the exponential map fromH to H; we assume that there is an open subsetV of
H such that exp(V) is open inH, its complement has zero measure with respect todh, and exp is
a diffeomorphism fromV onto exp(V). This hypothesis implies that, givenf PL1(H,dh),

E
H

f ~h! dh5DE
H

f ~exp~v !!udet~d~exp!v!uxV~v ! dv, ~2!

whered(exp)v is the differential of the exponential map atvPH, i.e.,

d~exp!v~w!5S d

dt
exp~2v !exp~v1tw! D

t50

wPH,

det (•) is the determinant andD is a positive constant, see, e.g., Theorem 1.14, Chapter I of
10. We normalize the Haar measuredh of H in such a way thatD51.
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Remark 1:The density det (d(exp)v) can be easily computed observing that, ifl1 , . . . ,lm11

are the~possibly repeated! eigenvalues ofd(exp)v , viewed as linear operator onH, then

det~d~exp!v!5
12e2l1

l1
. . .

12e2lm11

lm11
,

with

12e20

0
51,

see, e.g., Theorem 1.7, Chap. I of Ref. 11.
Let U be an irreducible continuous unitary representation ofG. We denote byH the ~complex

separable! Hilbert space where the representation acts and by^•,•& the scalar product onH, linear
in the second argument.

We assume that the representationU is square-integrable moduloK, i.e., there is a nonzero
vectorvPH such that

E
H

u^Uc(h)v,v&u2 dh,`, ~3!

wherec is a section fromH to G, i.e., a measurable mapc:H→G such that

c~eH!5eG ,

p~c~h!!5h, hPH,

with p being the canonical projection fromG to H. Notice that the value of the integral in Eq.~3!
is independent of the choice of the section and that Eq.~3! implies that the function
h°^Uc(h)u,w& is square integrable for allu,wPH.12

We will discuss briefly the meaning and generality of the above-mentioned assumptio
remark 3 in the following.

Remark 2:In many examplesK is trivial, i.e.,K5eG , so thatH5G and Eq.~3! reduces to the
usual notion of square integrability. Nevertheless, there are cases, such as the Weyl–Hei
group, that require the full theory. Moreover, in this framework one can easily consider proje
representations. Indeed, letÛ be a projective representation of a Lie groupĤ with multiplier m.
DefineG as the central extension of the torusK by Ĥ associated withm. ThenK is a central closed
subgroup ofG, H is canonically isomorphic withĤ, and there is a unitary representationU of G
such that

Ûp(g)5Ug , gPG.

Clearly, the fact thatU is square-integrable moduloK is equivalent to the fact thatÛ is a
square-integrable projective representation ofĤ.

If U is square-integrable moduloK, one can prove12 that there is a constantdU.0, calledthe
formal degreeof U, such that, for allu1 ,u2 ,v1 ,v2PH,

E
H

^Uc(h)v1 ,u1& ^Uc(h)v2 ,u2& dh5
1

dU
^u1 ,u2&^v2 ,v1&. ~4!

Using the above-mentioned relation we can represent the Hilbert–Schmidt operators oH as
square integrable functions onH. Indeed, letL 2(H) be the Hilbert space of the Hilbert–Schmi
operators onH with the scalar product
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~A,B!°Tr ~A* B!,

where Tr (•) denotes the trace andA* is the adjoint operator ofA. If u,vPH, let u^ v* be the
operator inL 2(H),

~u^ v* !~w!5^v,w&u, wPH.

Given a sectionc, we defineS(u^ v* ) as the function fromH to C given by

S~u^ v* !~h!5^Uc(h)v,u&, hPH.

From Eq.~4!, it follows thatS(u^ v* ) is square integrable with respect todh and

iS~u^ v* !iL2(H,dh)
2

5
1

dU
iui2ivi25

1

dU
iu^ v* iL 2(H)

2 .

Taking into account that the set$u^ v* :u,vPH% is total in L 2(H), it follows that S is
defined uniquely by continuity onL 2(H) and, if A,BPL 2(H),

Tr ~A* B!5dU^S~A!,S~B!&L2(H,dh) . ~5!

Moreover, ifA is of trace-class, then for almost allhPH,

S~A!~h!5Tr ~Uc(h)21A!. ~6!

Indeed, let

A5(
i

l iei ^ f i*

be the canonical decomposition ofA, where (ei) and (f i) are orthonormal sequences inH, (l i) is
an l 1-sequence, and the series converges in trace-norm and, hence, in the Hilbert–Schmid
SinceS is continuous, then

S~A!5(
i

l iS~ei ^ f i* !,

where the series converges inL2(H,dh). On the other hand, fixedhPH, sinceA is of trace class,
so isUc(h)21A, hence

Tr ~Uc(h)21A!5(
i

^ f i ,Uc(h)21A fi&

5(
i

l i^Uc(h) f i ,ei&

5(
i

l iS~ei ^ f i* !~h!,

where the series converges pointwise. The claim is now clear.
We are now ready to define a quorum associated with the square-integrable~modulo K)

representationU of G.
Let T be a state ofH, i.e., a positive trace-class operator of trace one, andA a Hilbert–

Schmidt operator onH. Taking into account Eqs.~5! and ~6!,
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Tr ~TA!5dU^S~T!,S~A!&L2(H,dh)

5dUE
H

Tr ~Uc(h)21T! S~A!~h! dh,

so that

Tr ~AT!5dUE
H

S~A!~h!Tr ~TUc(h)! dh.

By means of Eq.~2!, the above-mentioned equation becomes

Tr ~AT!5dUE
H
S~A!~expv !Tr ~TUc(expv)!xV~v !udet~d~exp!v!u dv.

Let Sm be the sphere inH. Then, for allnPSm, the map

t°Uc(exp(tn))

is a projective representation ofR. Since all the multipliers ofR are exact, there is a self-adjoin
unbounded operatorQn and a measurable complex functionan with modulo 1 such that, for all
tPR,

Uc(exp(tn))5an~ t !eitQn. ~7!

Using polar coordinates in Eq.~7!, one has that

Tr ~AT!5dU CmE
Sm

dV~n!E
0

`

dt tmS~A!~exp~ tn!!an~ t !

3Tr ~TeitQn!xV~ tn!udet~d~exp! tn!u, ~8!

wheredV is the normalized surface measure on the sphereSm, Cm is the volume ofSm, anddt
is the Lebesgue measure on the real line. The set of self-adjoint operators$Qn :nPSm%, labeled by
the probability space (Sm,dV), is called thequorumdefined by the representationU. We notice
that Eq.~7! definesQn uniquely up to an additive constant, see, also, Remark 4 in the follow

SinceQn is self-adjoint, we can find by the spectral theorem a projection valued mea
E°Pn(E) defined onR such that

Tr ~TQn!5E
R
ld Tr ~TPn~l!!,

whered Tr (TPn(l)) is the positive bounded measure

E°Tr ~TPn~E!!

on R. Using this equation, one obtains

Tr ~AT!5dU CmE
Sm

dV~n!E
0

`

dtE
R
d Tr ~TPn~l!!

3eiltS~A!~exp~ tn!!an~ t !xV~ tn!udet~d~exp! tn!utm. ~9!

In order to obtain a reconstruction formula for Tr (AT), we would like to interchange the integra
in dt and ind Tr (TPn(l)).
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We consider first the case whenS(A), which is only square integrable, is in fact integrab
with respect todh, i.e.,

E
H

uS~A!~h!u dh,`. ~10!

By means of Fubini theorem, this condition implies that, for almost allnPSm, the map
t°S(A)(exp(tn)) is integrable with respect to the measure

dtn5xV~ tn!udet~d~exp! tn!utm dt. ~11!

Then the map fromSm3R to C,

s~A!~n,l!5dU CmE
0

`

eiltS~A!~exp~ tn!!an~ t !xV~ tn!udet~d~exp! tn!utm dt, ~12!

is well-defined and it is called theestimatorof the observableA. We notice that the estimator doe
not depend onT and, given the representationU, can be computed analytically.

Since the measured Tr (TPn(l)) is bounded, by means of Fubini theorem, one can in
change the integrals in Eq.~9! obtaining

Tr ~AT!5E
Sm

dV~n!E
R
d Tr ~TPn~l!!s~A!~n,l!. ~13!

The above-mentioned integral transform is the core of thequantum tomographyand is a concrete
realization of the scheme proposed in Sec. I; cf. Eq.~1!. Indeed,dV(n)d Tr (TPn(l)) is the
probability of obtaining a value in (l2 1

2dl,l1 1
2dl) when one measures the observableQn ,

chosen randomly in the quorum according todV. Moreover, by means of Eq.~13!, the expecta-
tion value Tr (AT) can be reconstructed as average of the estimators(A) over many random
measures of the observablesQn in the quorum.

Remark 3:Equation ~13! is the mathematical justification of quantum tomography and
essentially based on formulas~2! and ~4!. The assumptions on the existence of the setV, the
unimodularity ofG, and the square integrability ofU modulo a central subgroup are sufficient
deduce in a simple way these formulas in a fairly general framework. In particular, they gua
the existence of the mapS that allows one to represent the~Hilbert–Schmidt! operators onH as
~square-integrable! functions on the spaceH. In other words,S defines a family of coherent state
in the space of operators. We stress that the existence of a family of coherent states in th
H is not sufficient to defineS. Indeed, the square integrability of the representation providesa set
of families of coherent states$Ugv:gPG% parametrized by the analyzing vectorv running on a
dense subset ofH.

Furthermore, the physical interpretation of Eq.~13! relies on the fact thatd Tr (TPn(l)) is a
probability measure. This holds since, in Eq.~4!, the formal degree is a number. IfG is not
unimodular and/orK is not central, then the formal degree is replaced by an operator and E~4!
becomes

E
H

^Uc(h)v1 ,u1&^Uc(h)v2 ,u2& dh5^u1 ,u2&^Cv2 ,Cv1&,

whereC is a positive, possibly unbounded, operator onH, see Refs. 13 and 14. The mapS can
be defined in this more general setting, however one deduces that

S~T!~exp~ tn!!5E
R
eitld Tr ~CTPn~l!!.
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If T andC do not commuted Tr (CTPn(l)) is not a probability measure and Eq.~13! loses its
physical meaning.

Remark 4:There is a choice for the section that simplifies the expression of the estim
Indeed, denote byG the Lie algebra ofG; since the differentialdp of p is a surjective linear map
from G onto H, there is an injective linear mapj from H to G such thatdp( j (v))5v for all v
PH. Since exp is a diffeomorphism fromV onto exp(V), there is defined a smooth mapĉ from
exp(V) to G such that

ĉ~exp~v !!5exp~ j ~v !!, vPH.

Clearly ĉ is a section and the relationUĉ(exp(tn))5Uexp(tj(n)) shows that one can always choo
an(t)51 in Eq. ~7!. HenceUĉ(exp(tn))5eitQn.

One can easily prove that, if one changesj ° j 1 l in such a way thatdp( j (v)1 l (v))5v,
then the quorum transforms according toQn°Qn1qnI . However, in most of the cases, there is
natural choice for the mapj, so that the quorumQn is, in fact, defined uniquely by the represe
tation U.

Remark 5:Once the quorum$Qn% is fixed, Eq.~12! is independent of the choice of the sectio
c. Indeed ifc8 is another section, then, for allhPH, c8(h)5k(h)c(h) andk(h)PK. SinceK is
central in G and U is irreducible, thenUk(h)5b(h)I , where b(h) is a complex number of
modulus one. Hence, with obvious notations, for almost allhPH and for all tPR,

S8~A!~h!5b~h!̄S~A!~h!,

an8~ t !5b~h!an~ t !,

so thats(A) is invariant with respect to the changec°c8.
Remark 6:If A is of trace class and satisfies Eq.~10!, then, using Eq.~6!, one obtains a more

explicit formula for the estimator ofA,

s~A!~n,l!5dU CmE
0

`

eiltTr ~Ae2 i tQn!xV~ tn!udet~d~exp! tn!utm dt.

Moreover, in most examples the setV is sufficiently nice so that the mapn°xV(tn) is continuous
for almost alltPR. In this case, if one chooses the sectionĉ as in Remark 4, taking into accoun
that the functiong°Tr (TUg) is continuous@since the ultraweak operator topology is equivale
to the weak operator topology on the unit ball ofL(H)], it follows that the estimators(A) is
continuous onSm3R. This property is important in order to approximate the integral of Eq.~13!
by a finite sum.

Remark 7:We notice that this procedure isunbiasedsince the observablesQn are chosen
randomly and the integral given by Eq.~13! can be approximated by a finite sum
dV(n)d Tr (TPn(l)) is a probability measure. This means that this approach is not affecte
the systematic errors that were present in the first tomographic scheme1,2 due to the cutoff needed
in the inversion of the Radon transform; see Ref. 3.

Remark 8:If H is compact thendh is finite and any irreducible representation is squ
integrable. Since the Hilbert spaceH where the representation acts is finite dimensional,L 2(H)
coincides with the space of all the operators. Moreover, sinceL2(H,dh),L1(H,dh), Eq. ~10!
holds for every operator.

Remark 9:If U is an integrable representation~modulo K), there exists a dense setS in H
such that, ifu,vPS, thenS(u^ v* ) satisfies Eq.~10!.

If condition ~10! does not hold, it may happen that, for a non-negligible set ofnPSm, the map
t°S(A)(exp(tn)) is not integrable with respect to the measuredtn defined by Eq.~11! ~it is only
square integrable!, so that the estimators(A) given by Eq.~12! is not well defined.
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In these cases, in order to define the estimator one has to use a suitable regularization
dure. For example, for a fixedL.0 and allnPSm, lPR, let

sL~A!~n,l!5dU CmE
0

L

eiltS~A!~exp~ tn!!an~ t !xV~ tn!udet~d~exp! tn!utm dt. ~14!

It may be the case that there exists a functions(A) such that

lim
L→`

E
Sm

dV~n!E
R
d Tr ~TPn~l!!sL~A!~n,l!5E

Sm
dV~n!E

R
d Tr ~TPn~l!!s~A!~n,l!.

Then, as an easy consequence of dominated convergence theorem, one has

Tr ~AT!5E
Sm

dV~n!E
R
d Tr ~TPn~l!!s~A!~n,l!.

Analogous regularization procedures could be used to extendS(A) to non-Hilbert–Schmidt op-
erators. Although this problem is physically relevant~many observables of interest are unbound!
it is beyond the scope of the present paper.

III. EXAMPLES

A. The Weyl–Heisenberg group

Let G be the Weyl–Heisenberg group, i.e.,G5R3 with the composition law

~h1 ,a1 ,b1!~h2 ,a2 ,b2!5S h11h21
b1a22a1b2

2
,a11a2 ,b11b2D .

It is known thatG is a connected simply connected nilpotent~hence unimodular! Lie group.
The setK5$(h,0,0):hPR% is clearly a central closed subgroup ofG and the quotient group

H5G/K can be identified with the vector groupR2. One has the following facts.

~1! The canonical projectionp is given byp(h,a,b)5(a,b).
~2! A smooth sectionc is given byc(a,b)5(0,a,b).
~3! A Haar measure onH is the Lebesgue measureda db of R2.
~4! The Lie algebraH of H can be identified withR2 so that the exponential map is the identi

and, for allvPH, det (d(exp)v)51.
~5! The constantD in Eq. ~2! is equal to 1.

It follows that the choiceV5H satisfies the assumptions of Sec. II.
Let U be the representation ofG acting inH5L2(R,dx) as

~U (h,a,b)u!~x!5 l i S h1
ab
2 Deixau~x1b!,

wherexPR,uPL2(R,dx), and (h,a,b)PG. It is known thatU is a unitary continuous irreduc
ible representation ofG, called theSchrödinger representation. It is in fact square-integrable
modulo K and its formal degree isdU51/2p, see for instance Ref. 15. According to Sec. II,
defines a quorum.

In order to make it explicit, we observe that, with the notation of the Sec. II,

Sm5$nFª~cos~F!,sin~F!!:FP@0,2p#%,

m51, C152p, anddV5 dF/2p. Moreover, sincet°Uc(tnF) is a one parameter subgroup, w
have
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Uc(tnF)5eitYF,

whereYF is a self-adjoint operator@in this exampleanF
(t)51]. If u is a Schwartz function, we

have

YFu5cos~F!Qu1sin~F!Pu,

whereQ is the operator of multiplication byx, i.e., the position operator, andP is 2 i times the
weak derivative operator, i.e., the momentum operator. Hence the quorum defined byU is given
by the set of self-adjoint operators

$YF :FP@0,2p#%

labeled by the space@0,2p# with the uniform measuredF/2p.
The above-mentioned quorum has the following property. For eachFP@0,2p#, there is a

unitary operatorWF such that

YF5WFQWF
21 . ~15!

To prove it, givenFP@0,2p#, let f F from G to G,

f F~h,a,b!5~h,cos~F!a2sin~F!b,sin~F!a1cos~F!b!.

One can easily check thatf F is a continuous automorphism of the groupG, so that
g°Ug

f F:5U f F(g) is a unitary irreducible continuous representation ofG and the restriction toK
is the characterh°eih. From the unicity of the Schro¨dinger representation, it follows that ther
exists a unitary operatorWF such that

U f F5WFUWF
21 .

Then

Uc(tnF)5U (0,t,0)
f F 5WFU (0,t,0)WF

21 ,

and Eq.~15! follows by Stone’s theorem.
Now let T be a state ofH. Recalling that the spectral measurePQ of Q is the one given by the

operators of multiplication by characteristic functions, then, by means of Eq.~15!, for each
FP@0,2p# there is aL1(R,dl) function l°v(F,l) such that

Tr ~TPF~E!!5Tr ~WF
21TWFPQ~E!!5E

E
v~F,l!dl,

whereE°PF(E) is the spectral measure associated withYF . The mapv can always be chose
to be measurable as a function on@0,2p#3R and then it is a probability density on@0,2p#3R
with respect to the measure (dF/2p) dl.

Finally, fix a Hilbert–Schmidt operatorA in H such thatS(A) is integrable with respect to
da db. According to Eq.~12!, the estimator ofA is

s~A!~F,l!5E
0

`

tS~A!~ t cos~F!,t sin~F!!eilt dt

for FP@0,2p# andlPR, and the reconstruction formula Eq.~13! is explicitly given by

Tr ~AT!5E
0

2pE
R
s~A!~F,l!v~F,l!

dF

2p
dl.
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The representationU is actually integrable and, if (un) is the basis of eigenvectors of th
number operator, thenS(un^ un1 l* )PL1(H,dh) and one has the explicit formula

s~un^ un1 l* !~F,l!5
~2 i ! l

2l /2
A n!

~n1 l !!
eil FE

0

`

t l 11Ln
l S t2

2 DexpS 2
t2

4
1 ilt Ddt, ~16!

whereLm
k are the associated Laguerre polynomials. The statistical reliability of Eq.~16! has been

verified in Ref. 3.
This example is physically realized by homodyne tomography.5 The quantum system is th

harmonic oscillator representing a single mode of the e.m. field with annihilation and cre
operatorsâ and â†. In terms of such operators, one has the followingdictionary:

Q5
â1â†

A2
,

P5
â2â†

A2i
,

U (h,a,b)5eihe(aâ†2āâ),

YF5A2
â†eiF1âe2 iF

2
5:A2XF ,

where

H e(aâ†2āâ) ; a5
2b1 ia

A2
PCJ

is the so-calleddisplacement groupandXF is the quadrature with phaseFP@0,2p#.
The measuring apparatus is a homodyne detector with tunable phase with respect to th

oscillator. The functionA2v(F,A2l) is the probability density~with respect todl) to obtain the
valuel measuring the quadratureXF , chosen randomly according to the measuredF/2p. More-
over, the explicit form of the estimator ofA, A being of trace class, is

s~A!~F,A2l!5
1

2E0

`

Tr ~Ae2 i t (XF2l)!t dt.

One could consult16 for an example of an experimental realization of the above-mentioned tom
raphic method.

Remark 10:In this example one is able to obtain an estimator also for monomials inâ and
â†.17,6 For example, one has that

s~ â†â!~F,A2l!52l22 1
2 .

B. The group SU „2…

Let SU~2! be the group of the unitary 232 complex matrices with determinant 1. It is
unimodular connected simply connected compact Lie group. The corresponding Lie algebr

su~2!5H i

2
~xs11ys21zs3!:x,y,zPRJ
                                                                                                                



o-

idt

7950 J. Math. Phys., Vol. 41, No. 12, December 2000 Cassinelli et al.

                    
wheres i are the Pauli matrices

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D .

In the following we identify su(2) with R3 using the basis (isk/2)k51
3 . Let V5$(x,y,z)

PR3:A(x21y21z2),2p%; it is known thatV is an open neighborhood of 0 such that the exp
nential map restricted toV is a diffeomorphism fromV onto the open set exp(V) and the comple-
ment of exp(V) is negligible with respect to the Haar measure of SU~2!. Moreover one can check
that

detd~exp!(x,y,z)54

sin2SAx21y21z2

2 D
x21y21z2

.

If we choose the Haar measure on SU~2! in such a way that the constantD in Eq. ~2! is 1 one has
that

E
H

1 dh5E
V
ud~exp!(x,y,z)udx dy dz516p2 ~17!

~usually the Haar measure on compact groups is normalized to 1).
Given j such that 2j PN, let D j be the irreducible representation of SU~2! acting onH

5C2 j 11. Since the group is compact,D j is square integrable and the space of the Hilbert–Schm
operators coincides with the space of all operatorsL(C2 j 11).

Since the measure of SU~2! is normalized according to Eq.~17!, it is well known that the
formal degree isdD j5 (2 j 11)/16p2, see, e.g., Ref. 12.

For all nPS2, defineJn as the hermitian matrix such that

D j~exp~ tn!!5eitJn tPR.

Then, the quorum defined byD j is the set of spin operators$Jn :nPS2% labeled by the spaceS2

with the measuredn/4p, dn being the area element of the sphere. It is known that the~simple!
eigenvalues of eachJn are l52 j ,...,j and there exists a unitary operatorWn , unique up to a
phase, such that

Jn5Wn
21JzWn ,

whereJz5J(0,0,1).
Now let APL(C2 j 11); then, according to Eq.~12! and taking into account thatC254p, the

corresponding estimator is

s~A!~n,l!5
2 j 11

p E
0

2p

eilt Tr ~Ae2 i tJn!sin2S t

2Ddt,

wherenPS2 andl52 j ,...,j . Equation~13! becomes

Tr ~TA!5 (
l52 j

j E
S2

s~A!~n,l!u^Wnel ,TWnel&u2
dn

4p
,

where (el)l52 j
j is a basis of eigenvectors ofJz .
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This example is realized experimentally by a Stern–Gerlach machine. The quantum sys
the spin degree of freedom of an elementary particle with spinj and the number
u^Wnel ,TWnel&u2 is the probability to obtain the valuel measuring the spin along the axisn,
chosen randomly according to the measuredn/4p.
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Simple phase-integral formulas, not involving wave functions, are derived for
quantal matrix elements associated with bound states of a quantal particle in a
smooth single-well potential. In these formulas one uses an arbitrary order of the
phase-integral approximation generated from an unspecified base function.
© 2000 American Institute of Physics.@S0022-2488~00!01711-4#

I. INTRODUCTION

In 1977 N. Fröman and the present author published phase-integral formulas of arbitrary
for the calculation of matrix elements associated with bound states of a quantal particle
smooth single-well potential,1 but the derivation was only based on intuitive arguments. Th
formulas and related formulas for unbound states in single-well potentials, bound states in d
well potentials and Franck–Condon factors have later been used in several publications and
to be capable of giving very accurate results.2–12 The purpose of the present paper is to prove
a more satisfactory way the matrix element formulas associated with bound states of a q
particle in a single-well potential. From these formulas the other formulas can be derived.

The formulas derived in Secs. II and III do not rely on the phase-integral approxima
which is used only in Secs. IV–VII. A short review of this approximation is given in the App
dix.

II. MATRIX ELEMENT EXPRESSED AS A PARAMETER DERIVATIVE OF AN ENERGY
EIGENVALUE ASSOCIATED WITH AN AUXILIARY DIFFERENTIAL EQUATION

Using obvious notations, we consider the Schro¨dinger equation

d2c/dz21~2m/\2!@E2V~z!#c50, ~2.1!

whereV(z) may be the actual physical potential or an effective potential. Thus, if we are
cerned with the radial Schro¨dinger equation,V(z) includes also the centrifugal term. We assum
that V(z) is a smooth single-well potential that is analytic in the region of the complexz-plane
under consideration. The eigenfunctions~real on the realz-axis! of two bound states with the
quantum numbersn andn8 are denoted bycn(z) andcn8(z) and are assumed to be normaliz
such that

E
A

B

@Cn~z!#2dz51, ~2.2a!

E
A

B

@cn8~z!#2dz51, ~2.2b!

whereA and B(.A) are the points where one imposes the boundary conditions that the
function be equal to zero. For a radial problem one has thusA50 andB51`. The two states
have the energiesEn and En8 , and they are associated with classical turning pointstn8 , tn9
(.tn8), and tn8

8 ,tn8
9 (.tn8

8 ). Let f (z) be an analytic function that is regular and real on the r
z-axis. To calculate the matrix element
79520022-2488/2000/41(12)/7952/12/$17.00 © 2000 American Institute of Physics
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^nu f ~z!un8&5E
A

B

cn~z! f ~z!cn8~z!dz, ~2.3!

where the path of integration is along the realz-axis, we deform this path such that on the ne
pathG there is no zero ofcn(z). ~For the harmonic oscillator all zeros of the wave function lie
the realz-axis. By treating the problem of a quantal particle in an unspecified, smooth single
potential with approximately parabolic bottom by means of comparison equation technique
the Schro¨dinger equation for the harmonic oscillator as comparison equation, one can the
show, or at least make it plausible, that in the relevant region of the complexz-plane the wave
function has no zeros outside the real axis also in the more general case.! The pathG is chosen to
proceed fromA, first along the real axis to a point to the left oftn8 , then along a bow in the uppe
half of the complex plane to a point on the real axis to the right oftn9 , and finally from that point
along the real axis toB. We assume that betweenG and the real axis there is no singularity
V(z), but V(z) may have singularities atA andB. We can then rewrite~2.3! as

^nu f ~z!un8&5E
G
@cn~z!#2g~z!dz, ~2.4a!

where

g~z!5 f ~z!cn8~z!/cn~z!. ~2.4b!

The integral in~2.4a! will be calculated as we shall now describe.
Letting k be a real, very small parameter, we consider the auxiliary differential equatio

d2c

dz2 1R~z,E,k!c50, ~2.5a!

where

R~z,E,k!5~2m/\2!@E2V~z!2kg~z!#, ~2.5b!

which agrees with~2.1! whenk50. The analytic functiong(z), which is real on the realz-axis,
may have poles in the regiontn8,z,tn9 of the real axis, butg(z) is regular analytic onG. For
sufficiently small values ofk the potentialV(z)1kg(z) in ~2.5a! along with~2.5b! is assumed to
resemble a single-well potential, except for the possible poles ofg(z). Consider a solution of
~2.5a! along with~2.5b!, with g(z) given by~2.4b!. This solution is analytic onG. Requiring the
solution to be equal to zero atA and atB and the variablez to move on the pathG, we obtain an
eigenvalue problem for the determination of the energy as a functionEn(k) of k. The eigenfunc-
tion cn(z,k) corresponding to the eigenvalueEn(k) satisfies according to~2.5a! and ~2.5b! the
differential equation

d2cn~z,k!

dz2 1~2m/\2!@En~k!2V~z!2kg~z!#cn~z,k!50 ~2.6!

and is assumed to be normalized such that

E
G
@cn~z,k!#2dz51. ~2.7!

Furthermore it is assumed thatcn(z,0)5cn(z) andEn(0)5En . Under the assumption that su
ficiently many partial derivatives ofcn(z,k) with respect toz andk are continuous on thewhole
contourG ~which implies that the partial derivatives with respect toz andk can be interchanged!,
partial differentiation of~2.6! with respect tok yields
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d2

dz2

]cn~z,k!

]k
1

2m

\2 H FdEn~k!

dk
2g~z!Gcn~z,k!1@En~k!2V~z!2kg~z!#

cn~z,k!

]k J 50.

~2.8!

Multiplying ~2.8! by cn(z,k), integrating alongG, and using~2.7!, we obtain

E
G
cn~z,k!

d2

dz2

]cn~z,k!

]k
dz1

2m

\2 H dEn~k!

dk
2E

G
@cn~z,k!#2g~z!dz

1E
G
cn~z,k!@En~k!2V~z!2kg~z!#

]cn~z,k!

]k
dzJ 50. ~2.9!

Sincecn(z,k) is equal to zero at the end points ofG, and the partial derivatives ofcn(z,k) with
respect toz andk are assumed to be continuous to the necessary extent on thewholecontourG,
we obtain by partial integration of the first integral in~2.9!,

E
G
cn~z,k!

d2

dz2

]cn~z,k!

]k
dz52E

G

dcn~z,k!

dz

d

dz

]cn~z,k!

]k
dz, ~2.10!

and then by partial integration of the right-hand member of~2.10!,

E
G
cn~z,k!

d2

dz2

]cn~z,k!

]k
dz5E

G

d2cn~z,k!

dz2

]cn~z,k!

]k
dz, ~2.11!

if @dcn(z,k)/dz#]cn(z,k)/]k tends to zero sufficiently rapidly asz tends to the end points ofG,
which is the case if the phase-integral tends to infinity asz tends to the end points ofG. Using
~2.6!, we can write~2.11! as

E
G
cn~z,k!

d2

dz2

]cn~z,k!

]k
dz52

2m

\2 E
G
cn~z,k!@En~k!2V~z!2kg~z!#

]cn~z,k!

]k
dz.

~2.12!

Inserting~2.12! into ~2.9!, we obtain the formula

E
G
@cn~z,k!#2g~z!dz5dEn~k!/dk, ~2.13!

which is formally the same as the Hellmann–Feynman theorem associated with the diffe
equation~2.5a!, ~2.5b!. That theorem applies, however, to the case when the functiong(z) is
regular analytic on the realz-axis, so that the contour of integrationG can be deformed into a
contour along the realz-axis. In the present context this is, however, in general not possible, s
g(z) has in general poles on the realz-axis. With the aid of~2.13! we obtain from~2.4a!, since
c(z,En(0),0)5cn(z), the exact formula

^nu f ~z!un8&5@dEn~k!/dk#k50 , ~2.14!

which is valid when, for sufficiently small values ofk, the partial derivatives ofcn(z,k), up to the
second order inz and the first order ink, are continuous along thewhole path G, and the
phase-integral tends to infinity asz tends to the end points ofG.

III. CHANGE OF cn„z,k… FOR SMALL VALUES OF k, WHEN z ENCIRCLES THE POLES
OF g „z…

When n50, there are no zeros ofcn(z) on the realz-axis. The functiong(z), defined in
~2.4b!, and hence the coefficient function in the differential equation~2.5a! along with ~2.5b!, is
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therefore regular on the realz-axis whenA,z,B. Every solution of this differential equation i
then single-valued whenz encircles in a full turn the generalized classical turning pointstn8(k) and
tn9(k) associated with the differential equation in question. We shall now investigate to w
extent the single-valuedness remains whenn.0, in which case there aren first-order relevant
zerosz1 ,...,zn of cn(z) on the real axis; see Sec. II.

According to ~2.4b! the pointsz1 ,...,zn are first-order poles ofg(z) and hence first-orde
poles of the coefficient function in the differential equation~2.5a! along with ~2.5b!. There is a
solutionuj (z,k) of this differential equation that is single-valued whenz encircleszj but no other
pole of g(z). Close tozj this solution can be expanded in the power series

uj~z,k!5 (
m51

`

aj ,m~z2zj !
m, aj ,151, aj ,25bjk/2, ~3.1!

where we have made the solution uniquely determined by the requirementaj ,151, andbj is the
residue of (2m/\2)g(z) at z5zj . A linearly independent solution is

ū j~z,k!5uj~z,k!Ez

dz/@uj~z,k!#2. ~3.2!

Close tozj this solution can be expanded in the series

ū j~z,k!5uj~z,k!F2
1

z2zj
1 (

m51

`

ā j ,m~z2zj !
m2kbj ln~z2zj !G

52@11 1
2 kbj~z2zj !1¯#2kbjuj~z,k!ln~z2zj !, ~3.3!

where we have madeū j (z,k) uniquely determined by requiring thatā j ,050.
The solutioncn(z,k) of the differential equation~2.5a! along with ~2.5b! must be a linear

combination of the linearly independent functionsuj (z,k) and ū j (z,k), and hence we can write

cn~z,k!5cj~k!uj~z,k!1 c̄ j~k!ū j~z,k!, ~3.4!

wherecj (k) and c̄ j (k) are certain uniquely determined coefficients. Fork50 every solution of
the differential equation~2.5a! along with ~2.5b! is single valued. Therefore, ask tends to zero,
cj (k) must tend to a constant different from zero, whilec̄ j (k) must tend to zero. From~3.4! along
with ~3.1! and~3.3! it is seen that whenz encircleszj , but none of the other pointsz1 ,...,zn , a full
turn in the negative sense, the changeD jcn(z,k) of cn(z,k) is

D jcn~z,k!52p ikbj c̄j~k!uj~z,k!. ~3.5!

Sincec̄ j (k)→0 ask→0 it follows from ~3.5! that

D jcn~z,k!5oj~k!, ~3.6!

whereoj (k) is a z-dependent quantity with the property thatoj (k)/k tends to zero ask tends to
zero whilez is kept fixed.

According to~3.6!, the changeD1cn(z,k) of cn(z,k) whenz moves from a point on the rea
z-axis, lying to the left of the turning pointtn8 , a full turn around the zeroz1 of cn(z) that lies
closest totn8(k), but not around any other zero ofcn(z), fulfils the relation

D1cn~z,k!5o1~k!. ~3.7a!

If n.1, one finds similarly as above that the changeD2cn(z,k) of cn(z,k) whenz moves from
the new pointz, lying on the real axis to the left oftn8 , a full turn around the zeroz2 of cn(z) that
lies closest toz1 , but not around any other zero ofcn(z), fulfils the relation
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D2cn~z,k!5o2~k!. ~3.7b!

Taking similarly the remaining zeros ofcn(z) into account, and encircling all pointszj in the
same sense, one realizes that the changeDcn(z,k) of cn(z,k) whenz moves from a point, lying
on the realz-axis to the left oftn8 , a full turn around all zerosz1 ,...,zn of cn(z) fulfils the relation

Dcn~z,k!5o1~k!1¯1on~k!. ~3.8!

IV. PHASE-INTEGRAL EXPRESSIONS FOR THE EIGENFUNCTIONS cn„z,k…

The phase-integral approximation generated from an unspecified base function, which w
used in the following, is briefly described in the Appendix.

We consider the auxiliary differential equation~2.5a! along with ~2.5b!, where V(z) is a
smooth single-well potential. To indicate the dependence onE andk we shall now write the base
function asQ(z,E,k), the phase integrand asq(z,E,k), and the phase integral asw(z,E,k)
5*zq(z,E,k)dz, where we do not need to specify the constant lower limit of integration.
complexz-plane is assumed to be cut along the realz-axis between the two relevant generaliz
classical turning pointst8(k) and t9(k) @.t8(k)#, i.e., the two relevant zeros ofQ2(z,E,k) on
the realz-axis. The other zeros and the singularities ofQ2(z,E,k), as well as the singularities o
R(z,E,k), are assumed to lie far away from the classically allowed region betweent8(k) and
t9(k). We chooseQ(z,E,k) to be positive on the upper lip of the cut betweent8(k) and t9(k).
The discussion below, which is valid whether the bottom of the potential is approximately
bolic or not, is based on the general behavior in the complexz-plane of the anti-Stokes lines, i.e
the level lines for the absolute value of exp@iw(z,E,k)#. We exclude a certain region around th
classically allowed part of the realz-axis, i.e., the real axis betweent8(k) and t9(k), and also a
remote region containing the further zeros and the singularities ofQ2(z,E,k) as well as the
singularities ofR(z,E,k), which may possibly exist, and consider a certain band encircling
classically allowed region. There is in this band a regionL to the left in which any pointz can be
reached on a path fromA ~proceeding first along the realz-axis and then in the regionL! along
which the absolute value of exp@2iw(z,E,k)# increases monotonically as one moves fromA to z.
Similarly there is a regionR to the right in which any pointz can be reached on a path fromB
~proceeding first along the realz-axis and then in the regionR! along which the absolute value o
exp@2iw(z,E,k)# increases monotonically as one moves fromB to z. For L and R there is a
common region above as well as below the real axis; see Fig. 1. Using results in Chaps. 4
of Ref. 13, one realizes that, even if the energy does not correspond to a bound state, a solucL

of the differential equation~2.5a! along with ~2.5b! tending to zero asz→A is, except for a
constant factor, in the regionL represented byq21/2(z,E,k)exp@2iw(z,E,k)#, if the classically
forbidden region delimited byA is thick enough. Similarly, a solutioncR tending to zero asz
→B is, except for a constant factor, in the regionR also represented byq21/2(z,E,k)
3exp@2iw(z,E,k)#, if the classically forbidden region delimited byB is thick enough. When the
energy isnot equal to an eigenvalue, the solutionscL and cR are quite different and linearly
independent, but yet they are both approximately proportional to the same phase-integral fu
q21/2(z,E,k)exp@2iw(z,E,k)# in the common parts of the regionsL andR; see Fig. 1. Therefore
the Wronskian ofcL and cR , which is different from zero, sincecL and cR are linearly inde-
pendent, is obviouslynot obtained correctly when one uses the phase-integral expressions fcL

andcR in the common parts of of the regionsL andR, which yields the value zero. The reason
that the absolute errors ofcL andcR are not sufficiently small, although the relative errors ofcL

andcR may be very small compared to unity. The calculation of this Wronskian is importa
connection with the normalization of the wave function14,15 and in problems concerning th
probability density at the origin.16

The eigenfunctioncn(z,k) introduced in Sec. II tends to zero asz→A and also asz→B and
can therefore, except for a normalization factor, approximately be written as

cn~z,k!5q21/2~z,En~k!,k!exp@2 iw~z,En~k!,k!# ~4.1!
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in the whole band consisting of the regionsL andR in Fig. 1.
If the classically forbidden regions of the real axis are sufficiently thick, the normal

eigenfunctions~with the quantum numbersn andn8! of the Schro¨dinger equation~2.1!, which are
positive on the real axis to the left oftn8 and tn8

8 , respectively, are according to Ref. 15 in th
classically forbidden regions and in the whole band consisting of the regionsL and R in Fig. 1
given by the approximate phase-integral formulas

cn~z!5
exp~ ip/4!q21/2~z,En,0!exp@2 iw~z,En,0!#

~*Ln
dz/q~z,En,0!!1/2 , ~4.2a!

w~z,En,0!5E
~ tn8!

z

q~z,En,0!dz, ~4.2b!

cn8~z!5
exp~ ip/4!q21/2~z,En8,0!exp@2 iw~z,En8,0!#

~*Ln8
dz/q~z,En8,0!!1/2 , ~4.3a!

w~z,En8,0!5E
~ t

n8
8 !

z

q~z,En8,0!dz, ~4.3b!

where the short-hand notation explained at the end of the Appendix is used, and whe
contours of integrationLn and Ln8 encircle, in the negative sense, the appropriate genera
classical turning points and the associated zeros of the phase integrand that are mentione
Appendix. The contoursLn andLn8 in ~4.2a! and ~4.3a! can be replaced by a single contourL

FIG. 1. The full-drawn curves in~a!, which refers to the case of a harmonic oscillator, and in~b!, which refers to the case
of a purely quartic oscillator, are anti-Stokes lines, i.e., level lines for the absolute value of exp@iw(z,E,k)#. The dashed lines
are Stokes lines, i.e., level lines for constant phase of exp@iw(z,E,k)#. In ~c!, where there is a cut~wavy line! between the
generalized classical turning points, the regionsL ~indicated by ////! andR ~indicated by\\\\! are shown.
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that encircles~in the negative sense! the two real zeros ofQ2(z,En,0) and the associated zeros
q(z,En,0), as well as the two real zeros ofQ2(z,En8,0) and the associated zeros ofq(z,En8,0),
but does not encircle anyother zero or any singularity of the functionsQ2(z,En,0), q(z,En,0),
andQ2(z,En8,0), q(z,En8,0). The contourL thus encloses the generalized classical turning po
and the associated zeros of the phase integrands corresponding to both of the bound stat
consideration. We also impose the condition that all points onL lie far away from the classically
allowed regions corresponding to the energiesEn andEn8 .

When the part of the pathG, which does not lie on the realz-axis, lies in the band consistin
of the regionsL andR in Fig. 1 far away from the classically allowed~in the generalized sense!
intervals (tn8 ,tn9) and (tn8

8 ,tn8
9 ) of the real axis, one may be tempted to calculate the integral in~2.3!

along the pathG by using forcn(z) andcn8(z) the phase-integral expressions~4.2a! along with
~4.2b! and~4.3a! along with~4.3b!, but this is not possible, for although the relative errors of th
expressions are very small onG, the absolute errors are not sufficiently small; this has b
demonstrated on p. 905 in Ref. 1. The reason why an incorrect result is obtained is that, in
part of the region, in which~4.2a! along with ~4.2b! and ~4.3a! along with ~4.3b! are valid with
small relative errors, the wave function is oscillating rapidly with large amplitude, and when
calculates the integral alongG, it is very dangerous to introduce any approximation in the in
grand.

V. PHASE-INTEGRAL QUANTIZATION CONDITION ASSOCIATED WITH THE
AUXILIARY DIFFERENTIAL EQUATION FOR SMALL VALUES OF k

According to ~4.1! the eigenfunction cn(z,k) is approximately proportional to
q21/2(z,En(k),k)exp@2iw(z,En(k),k)# in the whole band consisting of the regionsL andR in Fig.
1 and is thus multiplied by exp$2i@*Ln

q(z,En(k),k)dz2p#% whenz moves a full turn in the negative

sense aroundtn8(k) and tn9(k). Recalling~3.8!, and that fork50 the quantization condition is

1

2 ELn

q~z,En~0!,0!dz5~n11/2!p, ~5.1!

we therefore obtain the quantization condition*Ln
q(z,En(k),k)dz2p52pn1o(k), i.e.,

1

2 ELn

q~z,En~k!,k!dz5~n11/2!p1o~k!, ~5.2!

where o(k) denotes a quantity with the property thato(k)/k→0 as k→0. If the contour is
deformed, the value ofo(k) is expected to change slightly. From~5.1! and ~5.2! we obtain the
formula

1

k S E
Ln

q~z,En~k!,k!dz2E
Ln

q~z,En~0!,0!dzD 5
o~k!

k
, ~5.3!

which in the limit whenk→0 gives

S ]

]k E
Ln

q~z,En~k!,k!dzD
k50

50. ~5.4!

VI. PHASE-INTEGRAL CALCULATION OF dE n„k…Õd k for kÄ0

The limiting expression~5.4! for the quantization condition for small values ofk can be
written as
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FdEn~k!

dk S ]

]E E
Ln

q~z,E,k!dzD
E5En~k!

1S ]

]k E
Ln

q~z,E,k!dzD
E5En~k!

G
k50

50. ~6.1!

When R(z,E,k)2Q2(z,E,k) is independent ofE and k, we have according to pp. 626–627
Ref. 15, whereQ2(z,E) corresponds toR(z,E,k) in the present paper, the approximate formu

]

]E E
Ln

q~z,E,k!dz5E
Ln

]R~z,E,k!

]E

dz

2q~z,E,k!
, ~6.2a!

]

]k E
Ln

q~z,E,k!dz5E
Ln

]R~z,E,k!

]k

dz

2q~z,E,k!
. ~6.2b!

Recalling~2.5b!, we obtain from~6.1!, ~6.2a!, and~6.2b!,

S dEn~k!

dk D
k50

5

E
Ln

g~z!dz

q~z,En~0!,0!

E
Ln

dz

q~z,En~0!,0!

5

E
L

g~z!dz

q~z,En,0!

E
L

dz

q~z,En,0!

, ~6.3!

where to obtain the last member we have replacedLn by L, as explained below~4.3b!.

VII. PHASE-INTEGRAL FORMULAS FOR Šn zf „z…zn 8‹

According to~2.4b!, ~4.2a! with Ln replaced byL and ~4.3a! with Ln8 replaced byL, we
have

g~z!5 f ~z!
cn8~z!

cn~z!
5 f ~z!

~*Ldz/q~z,En,0!!1/2q1/2~z,En,0!

~*Ldz/q~z,En8,0!!1/2q1/2~z,En8,0!
exp$ i @w~z,En,0!2w~z,En8,0!#%.

~7.1!

To calculatê nu f (z)un8& we insert~6.3! along with~7.1! into ~2.14! and writeq(z,E) instead
of q(z,E,0) andw(z,E) instead ofw(z,E,0). Thus we get the approximate phase-integral form

^nu f ~z!un8&5E
L

f ~z!
exp$ i @w~z,En!2w~z,En8!#%

q1/2~z,En!q1/2~z,En8!
dzY FS E

L

dz

q~z,En! D 1/2S E
L

dz

q~z,En8!
D 1/2G .
~7.2a!

The use of the approximate expression~7.1! for g(z) in the integral in the numerator of~6.3! is
allowed only wheng(z) is not a too large and too rapidly oscillating function ofz on the contour
of integration L. Therefore ~7.2a! is valid provided that the functionf (z)exp$i@w(z,En)
2w(z,En8)#% is not too large and too rapidly oscillating on the contourL. The larger and the more
rapidly oscillating this function is onL, the less accurate is~7.2a! expected to be for a fixed orde
2N11 of the phase-integral approximation.

Interchanging the indicesn andn8, and noting that the matrix element^nu f (z)un8& is sym-
metric with respect to these indices, we obtain from~7.2a! the alternative approximate formula

^nu f ~z!un8&5E
L

f ~z!
exp$2 i @w~z,En!2w~z,En8!#%

q1/2~z,En!q1/2~z,En8!
dzY FS E

L

dz

q~z,En! D 1/2S E
L

dz

q~z,En8!
D 1/2G ,
~7.2b!

which is valid if the functionf (z)exp$2i@w(z,En)2w(z,En8)#% is not too large and too rapidly
oscillating on the contourL. The larger and the more rapidly oscillating this function is onL, the
less accurate is~7.2b! expected to be for a fixed order 2N11 of the phase-integral approximation
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Formula~7.2a! is expected to be more accurate than~7.2b! when, on the contour of integratio
L, the functionf (z)exp$i@w(z,En)2w(z,En8)#% oscillates with smaller amplitude than the functio
f (z)exp$2i@w(z,En)2w(z,En8)#%, which is the case whenEn.En8 if f (z) is not oscillating or only
slowly oscillating onL. The accuracy of both~7.2a! and ~7.2b! is expected to increase slightl
when the quantum numbersn andn8 increase, whilen2n8 is kept fixed. On the other hand, th
accuracy can be expected to decrease whenun2n8u increases.

The importance of choosing the appropriate sign in the functionf (z)exp$6i@w(z,En)
2w(z,En8)#%, occurring in an integrand of the matrix element formula~7.2a! or ~7.2b!, has been
clearly illustrated by calculations on the harmonic oscillator.17 When the appropriate sign i
chosen in the exponential, the oscillations of the integrand in question have small amplitud
they have large amplitudes when the other sign is chosen. For the same relative error
integrand, i.e., for a given order 2N11 of the phase-integral approximation, one therefore obta
a much more accurate value of the matrix element when the appropriate sign is chosen
exponential.

For functionsf (z) such asf (z)5zp or f (z)5exp(ikz), which may become large and rapid
oscillating onL whenp or uku, respectively, becomes large, the accuracy is, in accordance
what has just been said, expected to decrease whenp or uku, respectively, increases. Test calc
lations on the harmonic oscillator17 confirm this assertion.

When ~7.2a! and ~7.2b! are of comparable accuracy, it is reasonable to combine these
formulas to give the following alternative approximate formula:

^nu f ~z!un8&5E
L

f ~z!
cos@w~z,En!2w~z,En8!#

q1/2~z,En!q1/2~z,En8!
dzY FS E

L

dz

q~z,En! D 1/2S E
L

dz

q~z,En8!
D 1/2G .

~7.2c!

Test calculations on the harmonic oscillator and on a hydrogenlike ion17 show that whenn andn8
are large, whileun2n8u is small,~7.2c! may be considerably more accurate than~7.2a! and~7.2b!.
In other situations~7.2c! is, however, not as accurate as the appropriate one of the formulas~7.2a!
or ~7.2b!.

We shall now make some remarks on the restrictive assumption concerning the po
V(z)1kg(z) introduced below~2.5b!. By assumingk to be sufficiently small, we can mak
kg(z) arbitrarily small over as large a part of the contourG as desired. Hence, using simp
physical arguments, we realize that the derivation of~7.2a!, and hence of~7.2b! and~7.2c!, can be
justified even if the potentialV(z)1kg(z) in ~2.5a! along with~2.5b! for kÞ0 does not fulfil the
condition of resembling a single-well potential with strictly bound states.

For the sake of simplicity we have in the present paper assumedEn and En8 to be energy
levels in the same single-well potential. Our results are, however, applicable also whenEn andEn8
are energy levels in different, neighboring single-well potentials. Thus, to mention a part
application, when we consider bound states in different, but neighboring, single-well pote
and putf (z) identically equal to unity, the formulas~7.2a!, ~7.2b! or ~7.2c! can be used for the
calculation of Franck–Condon factors.

Finally we mention that Gustafson and Lindahl18 have presented an efficient method f
numerical calculation of the integrals in the numerator of~7.2a!–~7.2c!.
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APPENDIX: PHASE-INTEGRAL APPROXIMATION GENERATED FROM AN
UNSPECIFIED BASE FUNCTION

For a detailed description of the phase-integral approximation generated from an unsp
base function we refer to Chap. 1 in Ref. 19. A brief presentation is given below.
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Consider the differential equation

d2c/dz21R~z!c50, ~A1!

whereR(z) is an analytic function. We introduce into~A1! a ‘‘small’’ book-keeping parameterl
that is finally put equal to unity. Thus we get the auxiliary differential equation

d2c/dz21@Q2~z!/l21R~z!2Q2~z!#c50, ~A2!

which goes over into~A1! whenl51. The functionQ(z) is the unspecified base function from
which the phase-integral approximation is generated. The auxiliary differential equation~A2! has
two linearly independent solutions of the form

f 1~z!5q21/2~z!exp@1 iw~z!#, ~A3a!

f 2~z!5q21/2~z!exp@2 iw~z!#, ~A3b!

where

w~z!5Ez

q~z!dz. ~A4!

We callw(z) the phase integral andq(z) the phase integrand. The Wronskian of the two solutio
~A3a! and ~A3b! along with ~A4! is

f 1~z!d f2~z!/dz2 f 2~z!d f1~z!/dz522i ~A5!

and is thus constant. This important property does not apply to the higher orders of the Ca20

~JWKB! approximation, where the wholez dependence of the solution appears in the exponent
see subsection 1.2.2 in Ref. 19. Inserting~A3a! with ~A4! or ~A3b! with ~A4! for c into ~A2!, we
obtain

q11/2d2q21/2/dz22q21Q2~z!/l21R~z!2Q2~z!50. ~A6!

Introducing instead ofz the variable

z5Ez

Q~z!dz, ~A7!

we can write~A6! in the form

12S ql

Q~z! D
2

1«0l21S ql

Q~z! D
11/2 d2

dz2 S ql

Q~z! D
21/2

l250, ~A8!

where

«05Q23/2~z!d2Q21/2~z!/dz21R~z!/Q2~z!21. ~A9!

To obtain a formal solution of~A8!, we put

ql/Q~z!5 (
n50

`

Y2nl2n, ~A10!

whereY0 is assumed to be different from zero, andY2n(n50,1,2...) are independent ofl. Insert-
ing the expansion~A10! into ~A8!, expanding the left-hand member in powers ofl, and putting
the coefficient of each power ofl equal to zero, we getY0561 and a recurrence formula, from
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which one can successively obtain the functionsY2 ,Y4 ,Y6 ,..., each one of which can be ex
pressed in terms of«0 and derivatives of«0 with respect toz. Since we have both1 and2 in the
exponents of~A3a! and~A3b!, it is no restriction to chooseY051. The first few functionsY2n are
then

Y051, ~A11a!

Y25 1
2 «0 , ~A11b!

Y452
1

8 S «01
d2«0

dz2 D . ~A11c!

The choice of the unspecified base functionQ(z) shows itself only in the expressions~A7!
and~A9! for z and«0 , while the expressions~A11a!–~A11c! for the functionsY2n do not depend
explicitly on R(z) and the choice of the base functionQ(z). The expressions for the functionsY2n

in terms of«0 and derivatives of«0 with respect toz can therefore be determined once and for
We also remark that at the zeros and poles ofQ2(z) the functionsq(z) andq21/2(z) may have
branch points, whereas the functions«0 , Y2n andq(z)/Q(z) are single valued.

Truncating the infinite series in~A10! at n5N, we obtain

q~z!5Q~z! (
n51

N

Y2nl2n21. ~A12!

Inserting~A12! into ~A3a! and~A3b! along with~A4! and puttingl51, we get, as approximate
but in general very accurate, solutions of the differential equation~A1!, the phase-integral func
tions of the order 2N11, generated from the base functionQ(z). A linear combination of the
functions ~A3a! and ~A3b! thus obtained is an approximate solution of the original differen
equation~A1!. For N.0 the functionq(z) has in general poles at the transition zeros, i.e., at
zeros ofQ2(z), and simple zeros in the neighborhood of each transition zero.21 In the first order
the phase-integral approximation is the same as the usual Carlini20 ~JWKB! approximation if
Q(z)5R1/2(z), but in higher orders it differs in essential respects from the Carlini~JWKB!
approximation of corresponding order; see Ref. 22 and Chap. 1 in Ref. 19.

We would like to choose a generalized classical turning point, i.e., a first-order zero ofQ2(z)
on the real axis, as the fixed lower limit of integration in~A4! and~A7!. Unfortunately this can in
general be done in~A4! only for the first order of the phase-integral approximation, since for
higher-order approximations the integral would usually be divergent. In this situation we re
~A4! and ~A7! by

w~z!5E
~ t !

z

q~z!dz5
1

2 EG t~z!
q~z!dz, ~A13a!

z~z!5E
t

z

q~z!dz, ~A13b!

wheret is the first-order zero ofQ2(z) in question. The integral in the second member of~A13a!
is a short-hand notation, introduced by Fro¨man, Fröman, and Lundborg on pp. 158–161 of Re
23, for the contour integral in the last member of~A13a!, whereG t(z) is a path of integration tha
starts at the point corresponding toz on a Riemann sheet adjacent to the complexz-plane under
consideration, encirclest in the positive or in the negative sense, and ends atz. It is immaterial for
the value of the contour integral whether the path of integration encirclest in the positive or in the
negative sense, but the terminal point must be the pointz in the complexz-plane under consider
ation. In the first order of the phase-integral approximation the contour integral in~A13a! can be
replaced by an ordinary integral fromt to z, i.e.,
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w~z!5E
~ t !

z

q~z!dz5E
t

z

Q~z!dz5z~z!, first-order approximation. ~A14!
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2N. Fröman, Phys. Rev. A17, 493–504~1978!.
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5N. Fröman and P. O. Fro¨man, Ann. Phys.~N.Y.! 163, 215–226~1985!.
6R. Paulsson and N. Fro¨man, Ann. Phys.~N.Y.! 163, 227–244~1985!.
7R. Paulsson, Ann. Phys.~N.Y.! 163, 245–251~1985!.
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Confluent hypergeometric equations and related solvable
potentials in quantum mechanics

J. Negro, L. M. Nieto,a) and O. Rosas-Ortizb)

Departamento de Fı´sica Teo´rica, Universidad de Valladolid, 47011 Valladolid, Spain
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The connection between the Schro¨dinger and confluent hypergeometric equations is
discussed. It is shown that the factorization of the confluent hypergeometric equa-
tion gives a unifying powerful algebraic tool in order to study some quantum
mechanical eigenvalue problems. That description includes the linear and
N-dimensional harmonic oscillators, as well as the Coulomb and Morse potentials.
© 2000 American Institute of Physics.@S0022-2488~00!02912-1#

I. INTRODUCTION

It is a well-known fact that the theoretical study of almost all the physical systems allo
exact solution for the Schro¨dinger equation~e.g., the harmonic oscillator, the hydrogen atom,
Morse, Po¨schl–Teller, Wood–Saxon, Hulthe´n, or Eckart potentials! is reduced to the analysis o
either the hypergeometric or the confluent hypergeometric equations.1 The symmetry properties o
some of these systems have been considered in order to find the connections between t
particular the relationship between Coulomb and spherical harmonic oscillator potentials ha
clearly established.2

In the present work, we are interested in applying exhaustively the factorization metho3 to
the analysis of the confluent hypergeometric equation. In particular, we shall show that, wh
factorization method is used properly, the approach given by Infeld and Hull on anal
solutions4 and Miller’s algebraic technique5 can be embraced in a unified way. This global po
of view will allow us to obtain, quite naturally, many of the properties obeyed by the confl
hypergeometric functions. As a byproduct, we shall study the implications of these propert
the analytical solutions of some interesting physical problems. In general, it is quite rema
that, although these properties appear frequently in solving the Schro¨dinger equation, it is not clea
the role they play in describing the related physical systems. The main objective of this pa
precisely to throw some light on the subject.

The factorization method, originally due to Schro¨dinger,3 was later generalized and used
construct families of new exactly solvable potentials sharing the same spectra as a given
system,6 and it was shown to be equivalent to the supersymmetric treatment of qua
mechanics.7 Group theoretical approaches have also been given in order to construct new e
solvable Hamiltonians with the same spectrum of the spherical oscillator,8 and also to study the
modified Po¨schl–Teller, Natanzon, and Morse potentials.9

Recently, a more general approach, called theintertwining method, has been introduced10,11to
extend these results, proving also its connection with the Darboux–Crum transformation, a
as with other algebraic approaches~see Ref. 11 and references therein!. The intertwining method
will be our main tool and, in essence, it consists in finding a differential operatorA, called
intertwiner, which connects two HamiltoniansH andH̃ by the ruleH̃A5AH, where it is usual to
consider either the operatorH or H̃ as given, and the other one is to be determined by the me
itself. Although most of the works on this topic use finite order intertwiners,10,11,12other types of
operatorsA, related to scaling transformations, have also been considered.13

This paper is organized as follows: in Sec. II we use the intertwining method in ord

a!Electronic mail: luismi@metodos.fam.cie.uva.es
b!On leave of absence from Departamento de Fı´sica, CINVESTAV-IPN, Mexico.
79640022-2488/2000/41(12)/7964/33/$17.00 © 2000 American Institute of Physics
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factorize the confluent hypergeometric equation, including some intertwiners of zero and no
differential order. In Sec. III we analyze the symmetries of the first-order intertwiners obtain
Sec. II, introducing the usefulfree indexoperators and the maximal shape-invariant functio
which form a new basis for describing the solutions of the confluent hypergeometric equ
Section IV is devoted to the analysis of the invariant subspaces of the hypergeometric intertw
defining the annihilation lines and the invariant sectors, which will play a very relevant role i
interpretation of our results. In Sec. V we present the general scheme relating Schro¨dinger equa-
tions to confluent hypergeometric equations by means of our intertwiners~showing that the op-
erators factorizing the confluent hypergeometric equation can be used to factorize the corre
ing Schrödinger equation!, and some physical examples are considered in Sec. VI: the harm
oscillator, the Coulomb potential, and the Morse oscillator. Finally, Sec. VII will end the p
with some remarks and conclusions.

II. INTERTWINING AND FACTORIZATION

Let L (a,c) andL (ã,c̃) be the following second-order differential operators:

L (a,c)[x
d2

dx2 1~c2x!
d

dx
2a, L (ã,c̃)[x

d2

dx2 1~ c̃2x!
d

dx
2ã, ~II.1!

wherea, c, ã andc̃ are free real parameters. The elementsf (a,c;x) of the kernelK(a,c) of L (a,c)

are solutions of the confluent hypergeometric equationL (a,c) f (a,c;x)50 ~the same can be sai
for the parameters with a tilde!. We shall call the operators~II.1! confluent hypergeometric op
erators.

We consider the parametersa andc as given, and we look forã and c̃ such that the inter-
twining relationship

L (ã,c̃)A(a,c)5A(a,c)L (a,c) ~II.2!

holds for a differential operatorA(a,c) to be determined. In that case,A(a,c) is the intertwiner ~or
intertwining operator! of L (a,c) with L (ã,c̃) . In a similar way, the differential operatorB(ã,c̃) such
that

L (a,c)B(ã,c̃)5B(ã,c̃)L (ã,c̃) , ~II.3!

is an intertwiner acting in the opposite direction.
Some comments are necessary. If we considerf (a,c;x)PK(a,c) , from Eq. ~II.2! we have

L (ã,c̃)A(a,c) f (a,c;x)50, thereforeA(a,c) f (a,c;x)PK(ã,c̃) . On the other hand, from~II.3!, we can
also writeB(ã,c̃)g(ã,c̃;x)PK(a,c) . We shall say thatL (ã,c̃) andL (a,c) are intertwined only if both
Eqs. ~II.2! and ~II.3! are satisfied; in that case the pair (A(a,c) ,B(ã,c̃)) will be referred to as an
intertwining couple, and as a consequence, our intertwining approach gives rise to an equiva
relationship within the class of confluent operators$L (a,c) , (a,c)PR2%. Notice that, in fact, we are
working with shape invariantconfluent hypergeometric operators because~II.2! and ~II.3! affect
only the parameters (a,c) or (ã,c̃).

Let us stress that most of the literature concerning the intertwining method includes
adjoint intertwined operatorsL and L̃ which represent the Hamiltonians of physical systems
quantum mechanics.6–9 In those cases, the mathematical properties of the operators allow o
consider the intertwinersA andB as one the adjoint of the other~or the inverse of each other14!.
In such circumstances, it is enough to consider just Eq.~II.2! or ~II.3!, because any of them is
consequence of the other. However, in the present paper noa priori connection betweenA(a,c) and
B(ã,c̃) is assumed, only their general intertwining properties as stated in~II.2! and ~II.3!.

Finally, observe that when~II.2! and~II.3! are satisfied, then the following commutation rul
also hold:

@L (a,c) ,B(ã,c̃)A(a,c)#5@L (ã,c̃) ,A(a,c)B(ã,c̃)#50. ~II.4!
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A. Zero-order intertwining

Let us consider the simplest case for the intertwining operators, i.e., when they are zero
differential operators~functions ofx! A(a,c)[A(a,c;x) andB(ã,c̃)[B(ã,c̃;x). A direct substitu-
tion in ~II.2!–~II.3! gives two solutions:

~ i! H A1~a,c;x!5r 1 ,
B1~ ã,c̃;x!5r 2 ,
ã5a, c̃5c,

~ ii ! H A2~a,c;x!5r 3xc21,
B2~ ã,c̃;x!5r 4xc̃21,
ã5a2c11, c̃522c.

~II.5!

The r i are arbitrary constants such thatr iÞ0, in order to eliminate the null cases. The solution
~i! produces a trivial intertwining ofL (a,c) with itself. Hereafter we shall taker 15r 251, and use
the notationA1(a,c;x)5B1(ã,c̃;x)5I . On the other hand, forcÞ1, the second pair of operator
~ii ! in ~II.5!, intertwiningL (a,c) with L (ã,c̃) and vice versa, represents the simplest nontrivial c
of intertwining couples available for the confluent hypergeometric operators. Henceforth, w
choose r 35r 451. It is straightforward to check thatA2(a,c;x)B2(ã,c̃;x)5I , therefore
B2(ã,c̃;x)5A2(a,c;x)21 and the commutation rules~II.4! are trivially satisfied. We shall often
use for this intertwining couple the simplest notation

~Q(a,c) ,Q(a,c)
21 ![~A2~a,c;x!,B2~ ã,c̃;x!!. ~II.6!

B. First-order intertwining and factorization

Now, let A(a,c) andB(ã,c̃) be the first-order differential operators

A(a,c)5a~x!
d

dx
1b~x!, B(ã,c̃)5g~x!

d

dx
1d~x!. ~II.7!

By substituting~II.1! and~II.7! in ~II.2! we get a second-order differential equation fora(x) and
a first-order differential equation forb(x), whose general solutions are

a~x!5k1x(c2 c̃11)/2,
~II.8!

b~x!5H ~c2 c̃11!~c1 c̃21!

2x
1

2k2

k1x1/21c2 c̃12~ ã2a!21J a~x!

2
,

beingkj integration constants. Ifk150 we recover the zero-order intertwining already consider
The operatorB(ã,c̃) is obtained from the previous expressions by using the symmetry in~II.2! and
~II.3! under the interchangea↔ã, c↔ c̃ ~two different integration constantsk3 ,k4 are needed!.

It is well known that the first-order intertwining approach leads to the usual factorization.10 As
the second-order operatorB(ã,c̃)A(a,c) satisfies~II.4!, it can be written in the formB(ã,c̃)A(a,c)

5pL(a,c)1q, pÞ0, wherep andq do not depend onx. Without loss of generality, we can tak
p51 and then

B(ã,c̃)A(a,c)2q(a,c)5L (a,c) . ~II.9!

By similar arguments the factorization ofL (ã,c̃) is given by the reverse order product

A(a,c)B(ã,c̃)2q(a,c)5L (ã,c̃) . ~II.10!

The meaning of~II.9! and~II.10! is the following: Given the factorization of one of the intertwine
operators, the other one becomes factorized by changing the order of the factors and main
the same factorization constant~in this caseq(a,c)!. Equations~II.7!–~II.10! allow us to fix the
constantski ,i 51, . . . ,4, and to find the corresponding values forã and c̃ in terms of the initial
data (a, c). In fact, the integration constants becomek25k450, k15k3

21, which can be taken
k151. In this way we arrive at the main results of this section.
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Proposition 1: Given(a,c)PR2, for the confluent hypergeometric operator L(a,c) there are
just eight couples of first-order intertwiners$A(a,c)

i ,B(ã,c̃)
i % i 51

8 factorizing it, and eight intertwined
operators denoted by L(ã,c̃)

i , such that Eqs. (II.9) and (II.10) are satisfied,

L (ã,c̃)
i 5A(a,c)

i B(ã,c̃)
i 2q(a,c)

i , i 51,2,. . . ,8.

The explicit expressions are shown in Table I.
Once we have established the explicit form of the above-mentioned intertwiners, the fo

ing property can be easily proved for each couple$A(a,c)
i ,B(ã,c̃)

i % i 51
8 .

Proposition 2: Let A(a,c)5a(x) (d/dx) 1b(x), be a given first-order intertwiner of L(a,c)

with L(ã,c̃) . The intertwining operator B(ã,c̃) , in the opposite direction, is given by

B(ã,c̃)5xc̃2cFa~x!
d

dx
1

c2x

x
a~x!2a8~x!2b~x!G .

C. Weak intertwining

Up to now we have considered only intertwiners which are differential operators of fi
order. In particular, sinceL (a,c) andL (ã,c̃) are second-order differential operators, it was suita
to consider just first-order intertwining operators in order to achieve their factorization. The
of finite higher order intertwining operators can be carried out by following the method deve
in Refs. 10 and 11. In the sequel, we are going to show that, using scaling transformation
also possible to find nonfinite order differential operators intertwiningL (a,c) with L (ã,c̃) .

Let us consider thedilation operatorD(m) defined by its action on functionsg(x) as

D~m!g~x!5g~mx!, mÞ0. ~II.11!

With the help of the basic operational rulesD(m)(d/dx)D21(m)5 (1/m)(d/dx), and
D(m)xD21(m)5mx, the action ofD(m) on the operatorL (a,c) can be expressed as

TABLE I. First-order intertwining ingredients for the confluent hypergeometric operator.

i ã c̃ q(a,c)
i A(a,c)

i B(ã,c̃)
i

1 a c11 a2c d

dx
21 x

d

dx
1c̃21

2 a21 c21 a21
xS d

dx
21D1c21

d

dx
3 a2c 12c a2c

xcS d

dx
21D xc̃

d

dx
4 a2c11 32c a21

xc22FxS d

dx
21D1c21G xc̃22Sx d

dx
1c̃21D

5 a c21 a2c11
x

d

dx
1c21

d

dx
21

6 a11 c11 a d

dx
xS d

dx
21D1c̃21

7 a2c11 12c a
xc

d

dx
xc̃S d

dx
21D

8 a2c12 32c a2c11
xc22Sx d

dx
1c21D xc̃22FxS d

dx
21D1c̃21G
                                                                                                                



er-

lled a
n-

his
ip

7968 J. Math. Phys., Vol. 41, No. 12, December 2000 Negro, Nieto, and Rosas-Ortiz

                    
D~m!L (a,c)5F 1

m S x
d2

dx2 1~c2mx!
d

dx
2am D GD~m!. ~II.12!

Notice that the term in square brackets is nothing but the initial operatorL (a,c) defined in terms of
the new scaled variabley5mx. This scaling operation allows the construction of nontrivial int
twiners by introducing the following nonfinite order differential operatorS(a,c)(m),

S(a,c)~m!ªw~x!D~m!, ~II.13!

wherew(x) is a a smooth function to be determined in the sequel. Making use of Eqs.~II.11! and
~II.12! we get

S(a,c)~m!L (a,c)5
1

m Fx
d2

dx2 1S c2mx2
2xw8~x!

w~x! D d

dx
12xS w8~x!

w~x! D 2

2am2
xw9~x!

w~x!
2x2~c2mx!

w8~x!

w~x! GS(a,c)~m!.

The last expression suggests the introduction of the following relationship:

S(a,c)~m!L (a,c)5
1

m
L (ã,c̃)S(a,c)~m!. ~II.14!

Let us stress that~II.14! relaxes the intertwining condition~II.2! by allowing a constant factorm as
well as by using nonfinite order intertwiners. This is the reason why this equation will be ca
weak intertwining relationship throughout this paper~a similar approach has been recently co
sidered in Ref. 13!.

If Eq. ~II.14! has to be satisfied, thenw(x) is constrained as follows:

c̃2x5c2mx22x
w8~x!

w~x!
, ~II.15!

2ã52am12xFw8~x!

w~x! G2

2x
w9~x!

w~x!
2~c2mx!

w8~x!

w~x!
. ~II.16!

The general solution of~II.15! is w(x)}x(c2 c̃)/2 e(12m)x/2. The arbitrary constant factor will be
henceforward set equal to one. By introducing this result in~II.16! we arrive at the following
system of algebraic equations:

~12m!~11m!50, ~c2 c̃!~22c2 c̃!50, 2~ma2ã!5mc2 c̃, ~II.17!

whose solutions can be classified in terms of the allowed values ofm.
~a! If m51, thenD(11)[I and from~II.17! we get two different options:

~i! ã5a, c̃5c, w(x)51, andS(a,c)
(i) (11)5I .

~ii ! ã5a2c11, c̃522c, w(x)5xc21, and S(a,c)
(ii) (11)5xc215Q(a,c) , where we

have used~II.6!.

Therefore, form511 we recover the intertwining operators already found in Sec. II A. T
is reasonable since by takingm511 in ~II.14! one gets the original intertwining relationsh
~II.2!, and the dilation operatorD(m) becomes the identity.
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~b! A new situation is obtained ifm521. Here we have the following.
~iii ! ã5c2a, c̃5c, and w(x)5ex. Introducing the notationRx5D(21) to represent

the reflectionRxw(x)5w(2x), we have

S(a,c)
(iii) ~21!5ex RxªV(a,c) . ~II.18!

~iv! ã512a, c̃522c, w(x)5xc21 ex, and

S(a,c)
(iv) ~21!5xc21 ex RxªW~a,c!. ~II.19!

The operators found in cases~iii ! and~iv! are not among the operators derived in the previo
sections. They are genuineweak intertwining operators connectingL (a,c) with new intertwined
operatorsL (ã,c̃) in the form:

L (ã,c̃)V(a,c)52V(a,c)L (a,c) , ã5c2a, c̃5c,

L (ã,c̃)W(a,c)52W(a,c)L (a,c) , ã512a, c̃522c.

As V(a,c) and W(a,c) are inversible operators, it is easy to show that theirweak intertwining
couplesare (V(a,c) ,V(a,c)

21 ) and (W(a,c) ,W(a,c)
21 ).

All the relevant information concerning the weak intertwining operators~which includes as a
particular case the zero-order intertwinerQ(a,c)! is summarized in Table II. We shall often refer
all of them asreflection operatorsfor reasons that will be apparent in Sec. III D.

III. CONFLUENT HYPERGEOMETRIC FUNCTIONS

A. Free index operators

Let us start this section by examining some simplifying symmetries appearing in Table
will consider the pairs (a,c) labeling the operatorsA(a,c)

i ~or (ã,c̃) for B(ã,c̃)
i ) not as fixed values,

but as varying parameters on the wholeR2. From this point of view, it turns out that the function
form of the second half of the operators in Table I is a repetition of the first half, up to
interchange of the roles ofA(a,c)

i andB(a,c)
i . To be precise,

A(a,c)
i 14 5B(a,c)

i , B(a,c)
i 14 5A(a,c)

i , ;~a,c!PR2, 1, . . . ,4. ~III.1!

This means that any first-order intertwiner~and any factorization! in Table I can be given in terms
of the four couples$A(a,c)

i ,B(a,c)
i % i 51

4 , where the domain of (a,c) is R2.
Since A(a,c)

i intertwinesL (a,c) with L (ã,c̃) according to~II.2! we can define its ‘‘induced
action’’ on the space of parameters as

A(a,c)
i ~a,c!ª~ ã,c̃!, B(ã,c̃)

i ~ ã,c̃!ª~a,c!, ;~a,c!PR2, i 51, . . . ,4,

where the expressions of (ã,c̃) in terms of (a,c) are already given in Table I. In the same way,
B(a,c)

i intertwinesL (a,c) with L (aI ,cI ) , then we shall write:

B(a,c)
i ~a,c!ª~aI ,cI !, A(aI ,cI )

i ~aI ,cI !ª~a,c!, ;~a,c!PR2, i 51, . . . ,4,

TABLE II. Weak intertwining operators.

Intertwiner Expression ã c̃

Q(a,c) xc21 a2c11 22c
V(a,c) exRx c2a c
W(a,c) xc21exRx 12a 22c
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where the expressions of (aI ,cI ) in terms of (a,c) can be seen in Table III. The eight factorizatio
of the hypergeometric operatorL (a,c) can be now rewritten as follows:

L (a,c)5B(ã,c̃)
i A(a,c)

i 2q(a,c)
i , with ~ ã,c̃!5A(a,c)

i ~a,c!, ~III.2!

L (a,c)5A(aI ,cI )
i B(a,c)

i 2q(aI ,cI )
i , with ~aI ,cI !5B(a,c)

i ~a,c!, ~III.3!

wherei 51,2,3,4. Tables I and III supply the explicit expressions for all the factorization com
nents of the above equations.

Our next step is to investigate the action of the operators$A(a,c)
i ,B(a,c)

i % i 51
4 on the kernels

K(a,c) . From the intertwining relationships we have

A(a,c)
i :K(a,c)→K(ã,c̃) ,

where

~ ã,c̃!5A(a,c)
i ~a,c!, ~III.4!

B(a,c)
i :K(a,c)→K(aI ,cI ) ,

where

~aI ,cI !5B(a,c)
i ~a,c!. ~III.5!

Therefore, we can introduce thefree indexoperators$Ai ,Bi% i 51
4 , acting on any subspaceK(a,c) ,

by

Ai f ~a,c;x!ªA(a,c)
i f ~a,c;x!5g~ ã,c̃;x!, ~III.6!

Bih~a,c;x!ªB(a,c)
i h~a,c;x!5 l ~aI ,cI ;x!. ~III.7!

In order to formalize this idea, let us introduce the following definition.
Definition 1: An operator will be called free index when the image of its action on

subspaceK(a,c) is completely contained in another subspace of the same typeK(a8,c8) .
We can also define the induced action of$Ai ,Bi% i 51

4 on R2 by

Ai ~a,c!ªA(a,c)
i ~a,c!5~ ã,c̃!, ;~a,c!PR2, i 51,2,3,4,

Bi ~a,c!ªB(a,c)
i ~a,c!5~aI ,cI !, ;~a,c!PR2, i 51,2,3,4.

TABLE III. Additional first-order components for the free index operators.

i aI cI q(aI ,cI )
i B(a,c)

i A(aI ,cI )
i

1 a c21 a2c11
x

d

dx
1c21

d

dx
21

2 a11 c11 a d

dx
xS d

dx
21D1cI21

3 a2c11 12c a
xc

d

dx
xcIS d

dx
21D

4 a2c12 32c a2c11
xc22Sx d

dx
1c21D xcI22FxS d

dx
21D1cI21G
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The same development can be done for the three reflection operators$Q(a,c) ,V(a,c) ,W(a,c)% in
Table II, by introducing new operators$Q,V,W% acting on any kernelK(a,c) , and with an induced
action onR2 as given in Table II.

The benefits of the free index operators are especially evident when writing the compo
of any pairX,Y of these operators. For instance, ifY is such thatY(a,c)5(ã,c̃), then the action
of XY on the kernelK(a,c) reads

~XY! f ~a,c;x!ªX(ã,c̃)~Y(a,c) f ~a,c;x!!. ~III.8!

In order to determine the explicit action of the free index operators onK(a,c) , it is enough to
consider a basis ofK(a,c) given by the functions

1F1~a,c;x!, u~a,c;x![x12c
1F1~a2c11,22c;x!, ~III.9!

where it is assumed thatc¹Z ~the general casecPR will be recovered in the following!. The
action of the operators$Ai ,Bi% i 51

4 on that basis is displayed in Table IV. The first four operat
appearing there preserve the type of the function~III.9! on which they act. This is why they wil
be calledtranslation operators. The other four operators will be referred to asmixing operators,
because they change the type of function from1F1(a,c;x) to u(a,c;x) and vice versa. The sam
information concerning the reflection operators$Q,V,W% is given in Table V.

Let us end this section by observing that the reflection operators in Table V allow us to
some fundamental relationships between the basis elements~III.9!. For instance, the action ofV on
the function1F1(a,c;x) can be rewritten as

TABLE IV. Action of the basic intertwining operators on the basis of
K(a,c) .

Operator 1F1(a,c;x) u(a,c;x)

A(a,c)
1 Sa2c

c D 1F1~a,c11;x! (12c)u(a,c11;x)

B(a,c)
1 (c21) 1F1(a,c21;x) Sa2c11

22c Du~a,c21;x!

A(a,c)
2 (c21) 1F1(a21,c21;x) Sa21

22cDu~a21,c21;x!

B(a,c)
2 SacD 1F1~a11,c11,x! (12c)u(a11,c11;x)

A(a,c)
3 Sa2c

c Du~a2c,12c;x! (12c) 1F1(a2c,12c;x)

B(a,c)
3 SacDu~a2c11,12c;x! (12c) 1F1(a2c11,12c;x)

A(a,c)
4 (c21)u(a2c11,32c,x) Sa21

22cD 1F1~a2c11,32c;x!

B(a,c)
4 (c21)u(a2c12,32c;x) Sa2c11

22c D 1F1~a2c12,32c;x!

TABLE V. The action of reflection intertwining operators.

Operator 1F1(a,c;x) u(a,c;x)

Q(a,c)5xc21 u(a112c,22c;x) 1F1(a112c,22c;x)
V(a,c)5exRx 1F1(c2a,c;x) (21)12cu(c2a,c;x)
W(a,c)5xc21exRx u(12a,22c;x) (21)12c

1F1(12a,22c;x)
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1F1~c2a,c;x!5V(a,c)1F1~a,c;x!5ex Rx1F1~a,c;x!5ex
1F1~a,c;2x!,

which is the well-knownKummer’s first formula.15 Therefore, this transformation is recovered
a natural result of our weak intertwining formalism.

B. The algebra of free index operators

The composition of free index operators, as established in~III.8!, generates an associativ
algebra overR. By means of this composition law we can define a Lie algebra structure ins
set of free index operators if:~i! the commutator of any two elements in the set is also a free in
operator, and~ii ! the commutation rule is closed inside such a set. This is an example of a g
Lie algebra representation. It can be easily seen that the sets allowing a Lie algebra imple
tion must include only free index operators with a commutative induced action on theR2 param-
eter space.

In particular, when the superindices labeling the two operators are equal, using~III.2! and
~III.3! we have the following nontrivial commutators:

@Ak,Bk# f ~a,c;x!5$A(aI ,cI )
k B(a,c)

k 2B(ã,c̃)
k A(a,c)

k % f ~a,c;x!5~q(aI ,cI )
k 2q(a,c)

k ! f ~a,c;x!, k51, . . . ,4.
~III.10!

All the ingredients on the right-hand side of Eq.~III.10! can be found in Tables I and III. In
particular, fork51,2, this expression gives

@A1,B1#5@A2,B2#5I . ~III.11!

In addition, the remaining commutators among these four operators can be shown to vanish
we can interpret the two couples (A1,B1) and (A2,B2) as the realizations of two independe
boson algebras. Fork53,4, Eq.~III.10! gives ~see Tables I and III!

@A3,B3#5C, @A4,B4#5C22, ~III.12!

whereC is a diagonal operator defined byC f(a,c;x)5c f(a,c;x). Note that other commutator
between these operators, such as@A3,B4# or @A4,B3#, are not well defined in the sense that t
result is not a free index operator.

Now, according to Table II, the reflection operators obey the following composition rule

Q25V25I , W5QV5~21!12CVQ. ~III.13!

The fact that, in general,Q andV do not commute implies that we cannot define a basis mad
of common eigenfunctions of both operators. This can only be realized on the functions sub
where (21)12c51.

Let us mention that the operators$Ai ,Bi% i 51
2 are related with$Ai ,Bi% i 53

4 by means of the
reflectionQ:

A35QA1, B35QB2, A45QA2, B45QB1. ~III.14!

The operatorQ can also be used to interchange the labelsk51 andk52:

A25QA1Q, B25QB1Q. ~III.15!

From ~III.14! and ~III.15! we conclude that operatorQ allows the construction of all the se
$Ai% i 51

4 by giving only one of them; the same happens for the set$Bi% i 51
4 . Consequently, the firs

couple (A1,B1) together withQ are enough to obtain all the remaining couples.
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C. Maximal shape-invariant functions

From Table IV, it is clear that the functions1F1(a,c;x) and u(a,c;x), which constitute a
basis ofK(a,c) , preserve their form under the action of operators$Ai ,Bi% i 51

2 , while they inter-
change their roles for$Ai ,Bi% i 53

4 . Now, we want to make a change of basis, and find a new t
of functionsU(a,c;x), having the form

U~a,c;x!5a~a,c!1F1~a,c;x!1b~a,c! u~a,c;x!,

such that their image under the action ofall the operators$Ai ,Bi% i 51
4 is given by functions of the

same type. The new set of functions will be calledmaximal shape-invariant functions, and they
must comply with the requirements

A(a,c)
k U~a,c;x!}U~ ã,c̃;x!, k51, . . . ,4, ~III.16!

B(a,c)
k U~a,c;x!}U~aI ,cI ;x!, k51, . . . ,4. ~III.17!

A direct substitution ofk51,2 gives

a~a,c!

b~a,c!
5

G~a!G~22c!

G~c!G~a2c11!
K0 ,

whereK0 is an arbitrary constant independent of (a,c). Now, by imposing the invariance fork
53,4, or equivalently the invariance underQ, we getK0561. Therefore, we have two types o
maximal invariant functionsU1(a,c;x) and U2(a,c;x), which are linearly independent. The
form a basis ofK(a,c) and are explicitly given by

U6~a,c;x!5k6~a,c! F 1F1~a,c;x!

G~a2c11!G~c!
6

u~a,c;x!

G~a!G~22c!G , ~III.18!

wherek6(a,c) are arbitrary constants. Although, in principle, we have consideredc¹Z, both
functions in~III.18! make sense for any real value ofc, provided that a convenient choice of th
coefficentsk6(a,c) is made.

~1! If we choose

k2~a,c!5
p

sinpc
, ~III.19!

the functionU2(a,c;x) corresponds to the second standard solution of the differential equ
L (a,c) f (a,c;x)50, as it was proposed by Tricomi.15 This solution includes a logarithmic term fo
the casesc5nPZ which is obtained just by taking the limitc→n in ~III.18!.16

~2! On the other hand, if we choose

k1~a,c!5 1
2 G~a2 1

2 @c211uc21u# !G~11uc21u!, ~III.20!

then the independent solutionU1(a,c;x) is well behaved for any real value ofc, giving the right
solution forc5nPZ. To be more precise, we have the following result:

lim
c→n

U1~a,c;x!5H u~a,n;x!, nP$0,21,22, . . .%

1F1~a,n;x!, nP$2,3, . . .%

1F1~a,1;x!5u~a,1;x!, n51.

~III.21!

In conclusion, the basis$U6(a,c;x)% of K(a,c) , with the particular selection of the constan
given by Eqs.~III.19! and ~III.20!, is a suitable way to describe the solutions of the conflu
hypergeometric differential equation including the problematicc-integer values. The appearanc
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of the parameters (a,c) in a rather strange combination in Eq.~III.20! will be clarified in Sec.
III D. Let us remark that the functionsU6(a,c;x) are not invariant, in general, under the action
the weak intertwinersV andW, unless the condition (21)c215sinpa/sinp(c2a) is fulfilled.

D. New parametrization labels „a8,c 8…

We are going to see that it is very natural to introduce new labels to describe the function
operators we are dealing with in the present work. In Sec. III C we obtained zero-order inte
ing operatorsQ:K(a,c)→K(a2c11,22c) andV:K(a,c)→K(c2a,c), which were identified as a sort o
reflection operators. Using the terminology already introduced, we see that the induced ac
the operatorsQ and V on the space of parameters (a,c)PR2 is Q(a,c)5(a2c11,22c) and
V(a,c)5(c2a,c). Note that the action ofQ on (a,c) is not homogeneous, but affine. The ne
coordinates (a8,c8) we want to introduce to describe the space of parameters will be chos
such a way that the action ofQ and V on them is the simplest one: linear, homogeneous,
diagonal. We arrive at the following result:

Proposition 3: Let us consider the operators Q and V, which act on the space of paramete
as the following affine transformations

QS a
c
1
D 5S 1 21 1

0 21 2

0 0 1
D S a

c
1
D , VS a

c
1
D 5S 21 1 0

0 1 0

0 0 1
D S a

c
1
D . ~III.22!

It is possible to accomplish a simultaneous diagonalization of them by considering new c
nates a8}2a2c, c8}c21, so that

Q~a8,c8!5~a8,2c8!, V~a8,c8!5~2a8,c8!. ~III.23!

Henceforth we shall use the following choice:

a852a2c, a5 1
2 ~a81c811!,

~III.24!
c85c21, c5c811.

By using these labels, the translation operators look more symmetric:

HA1~a8,c8!5~a821,c811!,
B1~a8,c8!5~a811,c821!, HA2~a8,c8!5~a821,c821!,

B2~a8,c8!5~a811,c811!. ~III.25!

The induced action of the other intertwiners in terms of the new labels is also somewhat si
and involve a kind of reflection on the labelc8:

HA3~a8,c8!5~a821,2c821!,
B3~a8,c8!5~a811,2c821!, HA4~a8,c8!5~a821,2c811!,

B4~a8,c8!5~a811,2c811!. ~III.26!

The explicit form of all the operators with the new labels is

A(a8,c8)
1

5
d

dx
21, B(a8,c8)

1
5x

d

dx
1c8,

A(a8,c8)
2

5xS d

dx
21D1c8, B(a8,c8)

2
5

d

dx
,

~III.27!

A(a8,c8)
3

5xc811S d

dx
21D , B(a8,c8)

3
5xc811

d

dx
,
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A(a8,c8)
4

5xc821FxS d

dx
21D1c8G , B(a8,c8)

4
5xc821S x

d

dx
1c8D .

As for the inversionQ and the operatorW, we have

Q(a8,c8)5xc8, W(a8,c8)5xc8exRx . ~III.28!

From what we have seen, the new parameters (a8,c8) seem more adequate to study the algebr
properties of free index operators; however, the old ones (a,c) can be more useful to know th
boundary behavior of physical solutions. In conclusion, we will keep at hand both sets of p
eters to use the most convenient one, depending on the situation.

IV. INVARIANT SUBSPACES

A. Introduction

Let us see what we mean by invariant subspaces through an example, by considering t
$A1,B1%. If we start from a functionf (a8,c8;x) satisfyingL (a8,c8) f (a8,c8;x)50 ~here we are
using the new labels introduced in Sec. III D!, and we act repeatedly with the operatorsA1 or B1

on it, according to ~III.25! we will get (A1)nf (a8,c8;x)} f (a82n,c81n;x), and
(B1)mf (a8,c8;x)} f (a81m,c82m;x). In that sense, we will say that the set of functions$ f (a8
1s,c82s;x)%s52`

` is an invariant subspace under the action of$A1,B1%. We can associate a
lattice of points,$(a81s,c82s),sPZ%, in the parameter spaceR2 to this set of functions, which
are indeed on a straight line.

This invariant subspace could be bounded if it includes a function, for instanceg(a8,c8;x),
such thatA1g(a8,c8;x)50. In that case we have thatg(a82n,c81n;x)50, nPN, so that now
the invariant subspace is spanned just by$g(a81n,c82n;x)%n50

` , and the lattice will be reduced
to $(a81n,c82n),nPN%. When is this situation going to arise? If we recall that

L (a8,c8)5B1A12q(a8,c8)
1 ,

then A1g(a8,c8;x)50 andL (a8,c8)g(a8,c8;x)50 imply q(a8,c8)
1

50. Reciprocally, we also have
that A1g(a8,c8;x)50 andq(a8,c8)

1
50 imply L (a8,c8)g(a8,c8;x)50.

The same holds for the operatorB1: A function h(a8,c8;x) satisfyingB1h(a8,c8;x)50 will
belong to the kernel ofL (a8,c8)5A1B12q(aI 8,cI 8)

1 if and only if q(aI 8,cI 8)
1

50. Another way to express
the same result forB1 is as follows: let us assume thatA1g(a8,c8;x)50 is satisfied for some
confluent hypergeometric function, that is,q(a8,c8)

1
50; as we also know thatL (a821,c811)

5A1B12q(a8,c8)
1 , we conclude that the equationB1h(a821,c811;x)50 provides an element o

the subspaceK(a821,c811) . Thus, if we have an invariant subspace$g(a81n,c82n;x)%n50
` , with

A1g(a8,c8;x)50, then there will exist another ‘‘complementary’’ invariant subspace$h(a82n
21,c81n11;x)%n50

` , such thatB1h(a821,c811;x)50.

B. Annihilation lines

We shall apply the previously mentioned considerations to the general case. In theR2 plane
with coordinates (a8,c8), we introduce the following notion:

Definition 2: If XkP$Ak,Bk;k51, . . . ,4%, an annihilation line for the operator Xk is the set of
points (a8,c8)PR2 such that the equation

X(a8,c8)
k f ~a8,c8;x!50 ~IV.1!

defines a solution of L(a8,c8) f (a8,c8;x)50. We will use the notation: al@Xk#.
According to~III.2! the annihation line for an operatorAk is given by

q(a8,c8)
k

50, ~IV.2!
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while the annihilation lines ofBk, following ~III.3!, are the solutions of

q(aI 8,cI 8)
k

50, with ~aI 8,cI 8!5B(a8,c8)
k

~a8,c8!. ~IV.3!

Therefore, wheneverAk andBk are translation operators (k51,2), we can see that the corre
sponding annihilation lines al@Ak# and al@Bk# are parallels as it is drawn in Fig. 1@besides each
line it is shown the corresponding annihilation operator; the arrow indicates the sense in whi
translation~III.25! is performed#. The annihilation lines for the remaining operators withk53,4
coincide with the previous ones, as is immediately derived from~III.14!. All this information is
summarized in Table VI.

C. Invariant sectors

Let f (a8,c8;x) satisfy L (a8,c8) f (a8,c8;x)50; we can act onf (a8,c8;x) by means of the
operators$Ak,Bk%k51

2 giving rise to a set of confluent hypergeometric solutionsf (an8 ,cm8 ;x),
where the set of points$(an8 ,cm8 )% constitutes a two-dimensional discrete lattice. This set de
mines an invariant space under the action of$Ak,Bk%k51

2 . The invariant space will not be bounde
except possibly when one of its points lies on an annihilation line. In such a case the annih
line will constitute the boundary of the lattice defining an invariant subspace of functions
most interesting situation arises when one of the lattice points belongs simultaneously t
annihilation lines, leading to the definition of an ‘‘invariant sector’’ bounded by these two li
From Fig. 1, it is clear that there are four such points in the (a8,c8) plane: (21,0), (0,1),
(0,21), and~1,0!, which will be studied separately next.

FIG. 1. Annihilation lines al@Ak# and al@Bk#, and invariant sectors.

TABLE VI. Annihilation line for the intertwining operators.

Annihilation lines Annihilation operators

c85a821 A1, A3

c85a811 B1, B4

c852a811 A2, A4

c852a821 B2, B3
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1. Left invariant sector (LIS)

Consider the point (a8,c8)5(21,0), which is at the intersection of al@B1# and al@B2#. We
look for a confluent hypergeometric function determined by the two conditions

B1f ~21,0;x!5B2f ~21,0;x!50. ~IV.4!

The solution is~up to a constant factor! f (21,0;x)51. From this ‘‘left-corner’’ function we can
get the rest of the confluent hypergeometric solutions filling the left sector of the lattice bou
by the annihilation linesc85a811,c852a821, by succesively applying higher powers ofA1

andA2. In particular, the functions corresponding to points on these lines are

~A1!nf ~21,0;x![ f ~212n,n;x!5~21!n on c852a821,c8>0,

~A2!mf ~21,0;x![ f ~212m,2m;x!5~2x!m on c85a811,c8<0.

We can check the following properties for these functions.
~1! As Q f(21,0;x)5 f (21,0;x) andA1, A2 are related byQ through~III.15! we have that

Q f(a8,c8;x)5 f (a8,2c8;x).
~2! Next we look for an inner product implementing the hermiticity propertiesQ1

5Q, (Ak)152Bk, k51, . . . ,4. Then, we arrive at the following expression, which is well
fined for our function space:

^ f ~a8,c8;x!, f ~a18 ,c18 ;x!&5da8,a
18
dc8,c

18E0

1`

xc8e2xf ~a8,c8;x! f ~a18 ,c18 ;x!dx,`. ~IV.5!

~3! The functions of this sector are maximal shape invariant functions as defined in Sec.

f ~212n2m,n2m;x!}U1~212n2m,n2m;x!, n,mPZ1. ~IV.6!

In this way we have obtained an~highest weight! irreducible representation of the algeb
$A1,B152(A1)1,A2,B252(A2)1,Q% including the involution operatorQ. The support space
generated by the basis functions$ f (212m2n,m2n;x),m,nPZ1% characterized previously wil
be calledleft invariant sector~LIS!, and will be denotedHL .

2. Right invariant sector (RIS)

Consider now the point (a8,c8)5(1,0) at the intersection of al@A1# and al@A2#. The solution
to

A1g~1,0;x!5A2g~1,0;x!50 ~IV.7!

is ~up to a constant factor! the functiong(1,0;x)(x)5ex. From this ‘‘right-corner’’ function we
can get the right sector bounded by the linesc85a821,c852a811 by means ofB1,B2. In
particular the functions corresponding to the points of the lattice on these boundary lines a

~B1!n g~1,0;x!~x![g~11n,2n;x!5xnex on c852a811,c8<0,

~B2!m g~1,0;x!~x![g~11m,m;x!5ex on c85a821,c8>0.

We can easily check the following properties for these functions.
~1! Qg(a8,c8;x)5g(a8,2c8;x), in particularQg(1,0;x)5g(1,0;x).
~2! The inner product can be obtained as we discussed before and is given by

^g~a8,c8;x!,g~a18 ,c18 ;x!&5da8,a
18
dc8,c

18E2`

0

xc8e2xug~a8,c8;x!u2 dx,`.
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With this definition we haveQ15Q, (Ak)152Bk, k51, . . . ,4.
~3! The functions of this sector are also maximal shape invariant functions

g~11n1m,m2n;x!}U1~11n1m,m2n;x!, n,mPZ1. ~IV.8!

Therefore, we have constructed a~lowest weight! irreducible representation of the algeb
$A1,B152(A1)1,A2, B252(A2)1,Q% including the involutionQ, whose support space will b
calledHR .

Let us remark that, if we restrict ourselves to the LIS~or to the RIS!, the following identities
involving the Kummer reflection operatorV, given in Table II, are satisfied:

VA1V52B2, VA2V5B1. ~IV.9!

As a consequence, there exists a relationship between the functions of both sectors:

V f~a8,c8;x![ex Rx f ~a8,c8;x!5g~2a8,c8;x!, ~IV.10!

up to a sign.

3. Upper and lower sectors

If we try to find a set of functions defined on these two sectors in a similar way to
above-described cases, we get no solution at all. For instance, if we consider the upper se
order to find the ‘‘corner’’ function at (a8,c8)5(1,0) we have to solve

B1 h~1,0;x!5A2 h~1,0;x!50, ~IV.11!

which have only the trivial solutionh(1,0;x)50. Hence, there are only the two doubly bound
sectors already mentioned.

D. Invariant lines under mixing operators

We shall comment here on some properties of the two sets of mixing operators$A3,B3% and
$A4,B4%, which are relevant in describing the one-dimensional harmonic oscillator, as w
shown later. Each set constitutes an algebra with commutators~III.12! but, as dicussed in Sec
III B, we must study each of them separately.

Recall that the annihilation lines for these operators were already discussed, and are g
Table VI. On the other hand, each pair$Ak,Bk%, k53,4, has exactly one invariant line on th
(a8,c8) plane:c8521/2 is invariant under$A3,B3%, andc851/2 under$A4,B4% ~they are drawn
in Fig. 1 as dashed lines!. The straight linec8521/2 cuts the annihilation line forB3 on
(21/2,21/2) and that ofA3 on (1/2,21/2); taking into account~III.26!, this means that the point
$(21/22n,21/2)%n50

` and $(1/21n,21/2)%n50
` will form the lattices for two irreducible repre

sentations of$A3,B3%.
Let us consider the irreducible representation based on the functionv(21/2,21/2;x) defined

by

B3vS 2
1

2
,2

1

2
;xD[x1/2

d

d x
vS 2

1

2
,2

1

2
;xD50. ~IV.12!

We can choosev(21/2,1/2;x)51. The other vectors generating the wave functions support s
for this representation are obtained by applyingA3:

vS 2
1

2
2n,2

1

2
;xD[~A3!n vS 2

1

2
,
1

2
;xD5S x1/2

d

d x
2x1/2D n

vS 2
1

2
,2

1

2
;xD .

The functionsv(21/22n,1/2;x) are polynomials of ordern in x1/2. The inner product for this
realization, which has the same form as that one defined in the left invariant sector,
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K vS 2
1

2
2n,2

1

2
;xD ,vS 2

1

2
2n8,2

1

2
;xD L 5dn,n8 E

0

1`

e2xx21/2 uvS 2
1

2
2n,2

1

2
;xD u2 dx,

~IV.13!

is convergent for anyn. It also implements the relation (A3)152B3, as expected.
The representation of$A3,B3% based onv(1/2,21/2;x) is obtained from the previous one wit

the help of the Kummer operatorV. The irreducible representations of$A4,B4%, based on the
fundamental vectorsw(21/2,1/2;x) andw(1/2,1/2;x), can be directly computed from the repr
sentations of$A3,B3% previously studied, by using the reflection operatorQ. The same can be sai
on the respective inner products.

V. SCHRÖDINGER EQUATIONS

A. From confluent hypergeometric to Schro ¨ dinger equations

In this section we shall study the mapping from the confluent hypergeometric equ
L (a,c) f (a,c;x)50 to the time independent Schro¨dinger equation

F2
d2

dy2 1V~y!Gc~y!5Ec~y!, ~V.1!

where we are taking for simplicity 2m/\251. Our main interest here is to apply the results
confluent operators derived in the previous sections to the study of~V.1! for some well-known
solvable physical systems. With this aim, let us consider in~II.1! the transformation of the inde
pendent variablex, as well as the functionf (a,c;x), according to

x→y~x!, f ~a,c;x!5w~a,c;x! c~y~x!!, ~V.2!

where, for shortness, we have omitted the explicit dependence ofy(x) and c(y(x)) on the
parametersa andc. The introduction of~V.2! in L (a,c) f (a,c;x)50 gives a second-order differ
ential equation whose term ind c/d y can be eliminated by choosingw(a,c;x) satisfying the
following equation:

~xy9~x!1~c2x!y8~x!!w~a,c;x!12xy8~x!w8~a,c;x!50, ~V.3!

where the prime will always denote derivative with respect to the involved argument. Up
irrelevant constant factor, the solution is

w~a,c;x!5F ex

xc y8~x!G
1/2

. ~V.4!

Once the condition~V.3! is satisfied, the confluent hypergeometric equation in terms ofc(y) takes
the form

d2 c~y!

d y2 1S 1

y8~x! D
2Fw9~a,c;x!

w~a,c;x!
1S c2x

x D w8~a,c;x!

w~a,c;x!
2

a

xGc~y!50. ~V.5!

By introducting~V.4! into ~V.5! and comparing the result with~V.1! one gets

E2V~y~x!!5F 1

2y8~x!G
2F22

d2 ln y8~x!

dx2 1Fd ln y8~x!

dx G2

1
c~22c!

x2 1
2~c22a!

x
21G .

~V.6!

Therefore, the identification ofE andV(y) in ~V.6! depends exclusively on the specific analytic
realization ofy8(x), i.e., on the function we have taken as the new independent variabley(x).17

By inspecting ~V.6! it is apparent that there are three options:y8(x)}1, y8(x)}x21/2, and
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y8(x)}x21, where the proportionality constants may depend ona andc. As we shall see in the
following, they correspond to the radial Coulomb, radial multidimensional, or one-dimens
harmonic oscillator, and Morse potentials, respectively. The involved values ofa and c will be
related to some relevant quantum numbers of the Schro¨dinger equation.

The functionw given in ~V.4! can be used to relate the inner product in the invariant sec
of confluent hypergeometric functions to that one of the Schro¨dinger wave functions. Let us
assume that the Schro¨dinger inner product for the solutions of~V.1! is

^c,c&5E dy m~y!uc~y!u2, ~V.7!

with m(y) a weight function. Whenm(y)51 we will refer to ~V.7! as the standard Schro¨dinger
product. If we want the confluent inner product~IV.5! to be transformed by means of~V.2! into
~V.7!, the weight should comply with

m~y~x!!y8~x!25x21. ~V.8!

For the three options ofy8(x) mentioned previously we arrive at the following weight function
~i! y8(x)}1→m(y)}1/y,
~ii ! y8(x)}x21/2→m(y)}1,
~iii ! y8(x)}x21→m(y)}ey.

Only for case~ii ! are we lead to a standard Schro¨dinger inner product, which is the only physical
acceptable. Hence, the transformation~V.2! is not unitary for the Morse and Coulomb potentia
This is reasonable because, otherwise, we would conclude that the three potentials, os
Coulomb, and Morse, are connected by a unitary~and local! transformation, and therefore, the
should be considered as physically equivalent, a circumstance that, obviously, is not right
The factors given previously, 1/y for Coulomb andey for Morse, show why their probability
densities are different from that of the oscillator.

Once we know how to connect the confluent hypergeometric equations to a class of S¨-
dinger equations, this will enable us to translate all the mathematical properties studied
previous sections into physical properties within the framework of the stationary Schro¨dinger
wave functions. In the conversion process some properties will lose interest while some othe
play an important role. Some examples will be considered in the next section.

B. Intertwining operators for Schro ¨ dinger equations

Now we shall describe the relationship~V.2! by means of an operatorM defined by

f ~a,c;x! →
M

cs~y!5w21~a,c;x~y!! f ~a,c;x~y!!, ~V.9!

where the labels stands for the dependence on certain Schro¨dinger parameters. Let us introduc
an auxiliary operatorY(a,c) responsible for the change of variablex into y,

Y(a,c) :H x→x~y!,

F~x!→F~y![F~x~y!!.
~V.10!

Note thaty(x), or its inverse functionx(y), may depend ona,c, so that if necessary we will write
y(a,c;x) or x(a,c;y). Then, from~V.9!, we can write the free index operatorM as

M f ~a,c;x!ªM (a,c) f ~a,c;x!, M (a,c)ªY(a,c)+w21~a,c;x!. ~V.11!
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Therefore, by using the intertwining operators of Table IV andM , we can establish the following
commutative diagram:

~V.12!

where the operatorsAs
i andBs̃

i relate Schro¨dinger wave functions with different labelss and s̃:

As
i cs~y!}c s̃~y!, Bs̃

i c s̃~y!}cs~y!. ~V.13!

From diagram~V.12! and expression~V.11! it is clear that

As
i 5MA(a,c)

i M 215Y(ã,c̃)+A s
i +Y(a,c)

21 , ~V.14!

Bs̃
i 5MB(ã,c̃)

i M 215Y(a,c)+B s̃
i
+Y(ã,c̃)

21 , ~V.15!

where

A s
i
ªw21~ ã,c̃;x! A(a,c)

i w~a,c;x!, ~V.16!

B s
i
ªw21~a,c;x! B(ã,c̃)

i w~ ã,c̃;x!. ~V.17!

By taking into account~V.4!, we can find explicit formulas for the operatorsA s
i and B s

i

defined previously. In the case when the intertwinerA(a,c)
i has the formA(a,c)

i 5 f (x)(d/dx)
1g(x) we get for~V.16!

A s
i 5Ay8~ ã,c̃;x!

y8~a,c;x!
x( c̃2c)/2F f ~x!

2 S 12
c

x
2

y9~a,c;x!

y8~a,c;x!
12

d

dxD1g~x!G . ~V.18!

In the same way, ifB(ã,c̃)
i

5 f (x) (d/dx) 1g(x), we will have

B s̃
i 5x(c2 c̃)/2F f ~x!

2 S 12
c̃

x
2

y9~a,c;x!

y8~a,c;x!
12

d

dxD1g~x!GAy8~a,c;x!

y8~ ã,c̃;x!
. ~V.19!

Finally, after substituting in~V.14! and ~V.15!, the general expressions for the first-order int
twining Schrödinger operators are

As
i ~y!5~ x̃8~y!21/2Y(ã,c̃)+Y(a,c)

21 x8~y!1/2!x~y!( c̃2c)/2

3F f ~x~y!!

2 S 12
c

x~y!
1

x9~y!

x8~y!2 1
2

x8~y!

d

dyD1g~x~y!!G ~V.20!

and

Bs̃
i ~y!5x~y!(c2 c̃)/2F f ~x~y!!

2 S 12
c̃

x~y!
1

x9~y!

x8~y!2 1
2

x8~y!

d

dyD1g~x~y!!G
3~x8~y!21/2Y(a,c)+Y(ã,c̃)

21 x̃8~y!1/2!. ~V.21!
                                                                                                                



fluent
ples to
.

atures.
o

nt

e
mo-

f

7982 J. Math. Phys., Vol. 41, No. 12, December 2000 Negro, Nieto, and Rosas-Ortiz

                    
We adopted the shortened notationx(y), and x̃(y) for the inverse functions ofy5y(a,c;x) and
y5y(ã,c̃;x), respectively.

VI. PARTICULAR CASES

In this section we will analyze some physically interesting potentials related to the con
hypergeometric equation where we shall apply the machinery already developed. The exam
be considered are the harmonic oscillator, the Coulomb potential, and the Morse oscillator

A. N-dimensional radial harmonic oscillator

We shall begin by taking in~V.6! the solutiony8(x)5k1
1/2x21/2/2, which leads us toy(x)

5(k1x)1/21l1 , wherek1 ,l1 are constants. Without loss of generality, we can choosel150,
k151, andx,y>0, so that

y~x!5x1/2. ~VI.1!

The potentialV(y), and energyE derived from~V.6! and ~VI.1! are given~up to an arbitrary
common additive constant! in this case by

V~y!5y21
~2c21!~2c23!

4y2 , E52~c22a!. ~VI.2!

With this choice,V(y) can be identified with a harmonic oscillator potential in anN-dimensional
space~the form of the Laplacian can be deduced from Exercices 6.54 on p. 233 of Ref. 18!,

Vosc
N ~y![y21

~2l 1N21!~2l 1N23!

4y2 , ~VI.3!

where the variabley is interpreted as the radius when usingN-spherical coordinates. The labell

denotes the orbital angular momentum, so that its physical values arel 50,1,2, . . . . In this
section we will allow the space dimensionsN52,3,. . . ; the caseN51, which gives the one-
dimensional oscillator, will be considered in the next section because it has some specific fe

OnceN is fixed, each pair of physical parameters (E,l ) can be obtained by means of tw
possible couples (a,c):

~a! H l 5c12N/2,
E52~c122a1!, or ~b! H l 522c22N/2,

E52~c222a2!. ~VI.4!

The eigenfunctions of energyE and angular momentuml are described in terms of the conflue
hypergeometric functions according to~V.4! and ~V.9!

cE,l ~y!5y(2c621)/2e2y2/2 f ~a6 ,c6 ;y2!, ~VI.5!

where

f ~a6 ,c6 ;y2!5b 1F1~a6 ,c6 ;y2!1g u~a6 ,c6 ;y2! ~VI.6!

and (a6 ,c6) are given by any of the choices~VI.4!. Now we will characterize the discret
spectrum and the physical normalized eigenfunctions. We shall limit our discussion for the
ment to the valueN52; the other cases will be considered later on.

1. NÄ2: Spectrum and eigenstates

~a! For the first choice (a1 ,c1), c15l 1151,2,. . . ; if we want a good behavior o
f (a6 ,c6 ;y2) in the boundariesy2→0, y2→1`, then necessarilyg50 anda150,21,22,... .
Therefore, we can write the spectrum in the form
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HEn52n, n51,2,. . . ,
l <n21PZ1, and such that

~n21!2l

2
PZ1. ~VI.7!

The eigenfunction is~up to a normalizing factor!

cn,l ~y!5y(2l 11)/2e2y2/2
1F1S l 2n11

2
,l 11;y2D , ~VI.8!

where we have substituted the subindexEn by n, to shorten the notation.
If we use the parameters (a8,c8) these expressions would be simplified into~we keep on with

N52 dimensions!

l 5c18 , E522a18 . ~VI.9!

The allowed couples of (a18 ,c18 ) describing the spectrum and angular momentum are given by
restrictions:

H a18 52n521,22, . . . ,

c18 5l <2a18 21PZ1,
such that

a18 1c18 11

2
PZ2. ~VI.10!

This set of points is drawn on the (a8,c8) plane in Fig. 2.
~b! Using the second option (a2 ,c2) we havec2512l , and thereforec251,0,21, . . . . In

this case the good behavior is reached only by the second term on the right-hand side of~VI.6!,
provided thata22c211PZ2 @in this respect, recall~III.9!#. Of course, the spectrumEn and its
allowedl values are the same as before. The eigenfunction@which coincides with~VI.8!# is now
expressed as

cn,l ~y!5y(122l )/2 e2y2/2uS 12l 2n

2
,12l ;y2D . ~VI.11!

FIG. 2. The dots indicate the allowed values of (a18 ,c18 ) ~upper sector! and (a28 ,c28 ) ~lower sector! for the two-
dimensional radial harmonic oscillator.
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This option rewritten in terms of the (a8,c8) parameters is

l 52c28 , E522a28 . ~VI.12!

Now, the allowed (a28 ,c28 ) couples associated with physical eigenstates, also shown in Fig. 2

H a28 52n521,22, . . . ,

c28 52l >a28 11PZ2,
such that

a28 2c28 11

2
PZ2. ~VI.13!

2. NÄ2: Intertwining operators and factorization

The physical wave functions$cn,l % were put in correspondence with two sets of conflu
functions by means of~VI.8! and ~VI.11!, which can be denoted by$ f (a18 ,c18 ;x)% and
$ f (a28 ,c28 ;x)%, with the restrictions on the index labels (a68 ,c68 ) aforementioned. The whole se
$ f (a68 ,c68 ;x)% constitutes in fact a basis for the left invariant sector~LIS! spaceHL of Sec. IV C,
as it is also illustrated in Fig. 2. Formally, this correspondence could be extended to a one
map if we define a new set of physical wave functions with ‘‘negative angular momentuml ’’ by
cn,2l (y)ªcn,l (y). This can be realized inN52 dimensions, where we have a symmetry und
the transformationl →2l in the potentialV(y). Physically this symmetry can be implemente
because, ifN52, thenl can represent also the component of the angular momentum alongz
axis, allowing for negative integer values.

As far as for the product~IV.5! defined inHL , by means of the operatorM , it is carried onto
the Schro¨dinger product:

^ f ~a68 ,c68 ;x!, f ~a68 ,c68 ;x!&}E
0

1`

dyucn,l ~y!u. ~VI.14!

In the same way that the functions$ f (a8,c8;x)% of HL were obtained starting from a fundament
function $ f (21,0;x)% by means of the operators$A(a8,c8)

i ,B(a8,c8)
i % i 51

2 , now the wave functions
$cn,l (y)% can be obtained by means of the operators$A(n,l )

i ,B(n,l )
i % i 51

2 acting on the basic stat
c1,0(y)5y1/2e2y2/2 @the labels in ~V.13! in this case stands for the couple (n,l )#. The following
formulas supply the main information:

A(n,l )
1 cn,l }cn11,l 11 , B(n11,l 11)

1 cn11,l 11}cn,l

~VI.15!
A(n,l )

2 cn,l }cn11,l 21 , B(n11,l 21)
2 cn11,l 21}cn,l .

The explicit form of these intertwining operators is easily obtained from~V.20! and ~V.21!,

H A(n,l )
1 ~y!5

1

2 H d

dy
2y2~ l 11/2!

1

yJ ,

B(n11,l 11)
1 ~y!5

1

2 H d

dy
1y1~ l 11/2!

1

yJ ,

~VI.16!

H A(n,l )
2 ~y!5

1

2 H d

dy
2y1~ l 21/2!

1

yJ ,

B(n21,l 11)
2 ~y!5

1

2 H d

dy
1y2~ l 21/2!

1

yJ .

~VI.17!

The algebraic properties of$Ai ,Bi% i 51
2 are preserved, so that the operators~VI.16! and ~VI.17!

constitute a realization of the two independent boson algebras~III.11!. Since the transformationM
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keeps the product, it will also preserve the Hermitian character of the intertwining operators
obvious from~VI.16! and ~VI.17!: (Ai)152Bi , i 51,2. The above-mentioned operators can
used to factorize the stationary Schro¨dinger equations:

d2

dy2 2y22
~2l 11!~2l 21!

4y2 1En54@B(ñ, l̃ )

i
~y!A(n,l )

i ~y!2q(n,l )
i #, i 51,2, ~VI.18!

with q(n,l )
i defined through~III.2!–~III.3! and ~VI.4!:

q(n,l )
1 52 1

2 ~n1l 11!, q(n,l )
2 5 1

2 ~2n1l 21!. ~VI.19!

The transformation byM of the reflection operatorQ is the identity:

Qn,l 5MQ(a,c)M
215I , ~VI.20!

where byM 21 we can take any of its two inverse images. Expression~VI.20! is reasonable since
in the LIS space,HL , Q: f (a8,c8;x)→ f (a8,2c8;x); but as shown previouslyf (a8,c8;x) and
f (a8,2c8;x) go into the samecn,l . In other words, the statement that we can describe in
ways the wave functioncn,l according to~VI.4! is equivalent to relation~VI.20!. As a conse-
quence of~VI.20!, the intertwining operators$A(n,l )

i ,B(n,l )
i % i 53,4 that were constructed from thos

of labelsi 51,2 together withQ @see~III.14!#, will be transformed byM into the same operator
~although in different order! already computed in~VI.16! and ~VI.17!.

The composition of operators involved in~VI.20! must be read in a wide sense; howev
where we extended thecn,l space to negativel ’s, then the transformedQn,l would act as

Qn,l :cn,l →cn,2l . ~VI.21!

This is physically appealing because whenl is interpreted as theLz component of angular
momentum, as mentioned previously, then the action~VI.21! of Q can be realized in the physica
wave function space by a spatial reflection in the two-dimensional plane.

3. Higher N-dimensions

For higher dimensionsN53,4,. . . , thedevelopment is similar to the caseN52 considered
previously. We shall only discuss some qualitative differences. For example, instead of~VI.7!, the
spectrum is now

H En52n, n5
N

2
,
N

2
11, . . . ,

l <n2
N

2
PZ1,

such that

n2l 2
N

2

2
PZ1, ~VI.22!

and the associated (a68 ,c68 )-parameters are given by

H a18 52n52
N

2
, 2

N

2
21, . . . ,

c18 5l 1
N

2
21<2a18 21PZ1,

such that
a18 1c18 11

2
PZ2. ~VI.23!

The region of allowed (a18 ,c18 )-values is bounded by straight lines: from above byc18 52a18
21 and from below byc18 5N/221. The second pair (a28 ,c28 ) describing the same physica
couple (n,l ) is related to the previous one by
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a28 5a18 , c28 52c18 . ~VI.24!

The range of the points (a28 ,c28 ) allowed is limited byc28 5a28 11 andc28 52N/211. It is worth
to discuss separately two cases depending on the even or odd character ofN.

a. N54,6,... . The states$cn,l % constitute a subset of theN52 states$cn8,l 8%: those given
by the conditionsn8>N/2 andl 8<n82N/2. This can be better appreciated in the (a8,c8) plane.
The allowed (a18 ,c18 ) points constitute an upper subsector, while the allowed (a28 ,c28 ) are in a
lower subsector of the LIS points characterized, respectively, by the restrictions

c18 >N/221, c28 <2N/211. ~VI.25!

However, the most important detail, compared with theN52 case, is that the union of bot
subsectors do not fill the whole left invariant sector, as is shown in Fig. 3. This means th
intertwiners$A(n,l )

i ,B(n,l )
i % i 51,2 connect the physical states$cn,l %, but their action also will give

nonphysical states@those in the (a8,c8) plane corresponding to a horizontal strip including thea8
axis inside the LIS#.

b. N53,5,... . The physical values of (n,l ) and (a68 ,c68 ) are also given by~VI.22! and
~VI.23!–~VI.24!, respectively. The main difference in this case is that the physical eigens
cn,l do never coincide with those ofN52. As a consequence the corresponding confluent fu
tions f (a68 ,c68 ;x) do not belong to the LISHL . This means that the action of the intertwinin
operators on a physical wave functioncn,l (y) can lead to nonphysical states with arbitra
negative energies or~for each fixedn energy! to arbitrary largel values. An example can be see
in the (a8,c8) plane of Fig. 4.

FIG. 3. The allowed values of (a18 ,c18 ) ~upper sector! and (a28 ,c28 ) ~lower sector! for the six-dimensional radial harmoni
oscillator.
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B. One-dimensional harmonic oscillator

We shall examine in detail the caseN51,l 50 of potential~VI.3! that corresponds to the
one-dimensional oscillatorVosc(y)5y2. The pair of physical parameters (E,l 50) can be de-
scribed by two (a,c) pairs, obtained by replacing these values in~VI.4!:

~I! H c151/2,
E52~1/222a1!, or ~II ! H c253/2,

E52~3/222a2!. ~VI.26!

The Schro¨dinger eigenfunctioncE(y) is given by~VI.5! and ~VI.6!, once substituted the abov
(a6 ,c6) values.

To begin with, let us take case~I!. A careful analysis of the functions~VI.6! so obtained
shows that they give rise to square integrable physical solutions for

H a152
n

2
, En52~n11/2!, n50,1,2, . . .

cn~y!5e2y2/2U2~2n/2,1/2;y2!.

~VI.27!

When n is even we recover1F1(2n/2,1/2;y2), and whenn is odd we getu(2n/2,1/2;y2).
Similar results hold for case~II !.

In terms of the parameters (a8,c8) we have more symmetric expressions:

~ I8! H c18 521/2,

a18 52~n11/2!,
or ~ II 8! H c28 51/2,

a28 52~n11/2!.
~VI.28!

If we draw these points on the (a8,c8) plane we will obtain two sets of points that were alrea
characterized in Sec. IV D.

FIG. 4. The allowed values of (a18 ,c18 ) ~upper sector! and (a28 ,c28 ) ~lower sector! for the five-dimensional radial
harmonic oscillator.
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For choice (I8) the points are (a18 ,c18 )5(2n21/2,21/2), n50,1,2,... . Their associate
functions ~VI.6! f (2n21/2,21/2;x) originating the square integrable solutions~VI.27! were
denoted byv(2n21/2,21/2;x) in that section. We showed that such functions generated
support space for an irreducible representation of the intertwining couple$A3,B3%. There was also
defined an inner product~IV.13! realizing (A3)152B3.

Let us translate these properties to the wave function spacecn(y). Recall that, according to
Table IV, A(a,c)

3 5xc(d/dx21) andB(a,c)
3 5xc (d/dx). Then, making use of formulas~V.20! and

~V.21! we easily get

An
3~y!5

1

2 S d

dy
2yD , Bn11

3 ~y!5
1

2 S d

dy
1yD . ~VI.29!

The commutator@A3,B3#5c51/2 is preserved, as is evident from~VI.29!. The factorization
L (a,c)5B(ã,c̃)

3 A(a,c)
3 2q(a,c)

3 , taking into account thatq(a,c)
3 5a12c152n/221/2, is rewritten as

d2

dy2 2y22En54H 1

2 S d

dy
1yD 1

2 S d

dy
2yD1

1

2
~n11!J . ~VI.30!

The inner product~IV.13! is transformed byM into one of the Schro¨dinger type^cn ,cn8&
5dn,n8*0

1`ucn(y)u2 dy.
Notice that, in agreement with the constants established in~VI.1!, they-variable range isR1,

y51x1/2. However, if at the very begining we would have considered the choicey52x1/2, then
all the previous development remains valid but now in the rangeyPR2. The eigenfunctions for
these two descriptions can be designated bycn

1(y) or cn
2(y), respectively. We can match bot

kinds of solutions into one defined over the whole real line:

cn~y!5H cn
1~y!, y>0,

cn
2~y!, y<0.

~VI.31!

These are the usual solutions for the one-dimensional oscillator.
A similar development can be done for the case (II8), whenc28 51/2. The relevant confluen

functions, denotedw(21/22n,1/2;x) in Sec. IV D, generate the invariant space for the intertw
ing couple$A4,B4%. Of course, after being transformed byM , we reach the same results as tho
obtained with the other choicec18 521/2.

C. Coulomb potential

Let us considery8(x)5k05constant, ory(x)5k0x ~up to an additive constant that can be s
equal to zero by a translation on the variabley!. By replacingy(x) in ~V.6!, and choosing the
potential to be null aty→`, we get

V~y!5
c~c22!

4y2 2
c22a

2k0y
, E52

1

4k0
2 . ~VI.32!

This potential~VI.32! has the form of theN-dimensional radial Coulomb potential

Vl ~r !52
2

y
1

~2l 1N21!~2l 1N23!

4y2 , ~VI.33!

wherel 50,1,2 . . . is theangular momentum andy>0 is a radial coordinate. To accomplish th
identification we must take
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4k05c22a, E52
4

~c22a!2 , y~a,c;x!5
c22a

4
x. ~VI.34!

As with the oscillator case, hereafter we shall considerN52,3, . . . space dimensions.

1. Spectrum and eigenstates
For every fixed value ofN, there are two pairs of points (a,c) describing the Schro¨dinger

eigenvalue equation with (E,l ) parameters:

~a! H l 5
c12N11

2

E52
4

~c122a1!2

or ~b! H l 5
32c22N

2

E52
4

~c222a2!2 .

~VI.35!

The eigenfunctionscE,l (y) characterized by these parameters are given by~V.2!, where

w21~a6 ,c6 ;x~y!!5k~c622a6!(12c6)/2yc6/2e22y/(c622a6), ~VI.36!

and

f ~a6 ,c6 ;x~y!!5b1F1S a6 ,c6 ;
4y

c622a6
D1guS a6 ,c6 ;

4y

c622a6
D .

Now, we will discuss in some detail the caseN52, the higher dimensions can be analyzed
a similar way to the oscillator case studied in Sec. VI A 3. If we consider the first possibility~a!,
then c152l 11, and the normalization of the wave function implies thatg50 together with
a150,21,22,... . Then, if we introduce the quantum numbern5l 2a1>l , we have the al-
lowed values of (E,l ):

En52
1

~n11/2!2 , n50,1,2,... . ~VI.37!

Using the labeln instead ofEn , the square-integrable eigenfunctions for the eigenvalues~VI.37!
are given, up to a normalization constant, by

cn,l ~y!5yl 11/2e22y/(2n11)
1F1~ l 2n,2l 11,4y/~2n11!!. ~VI.38!

The restrictions on (a1 ,c1) given previously are translated to the parameters (a18 ,c18 ) as fol-
lows:

H c18 52l 50,2,4, . . .

a18 52~2n11!521,23, . . .
such that c18 <2a18 21. ~VI.39!

This set of points is represented in Fig. 5 by the inverted triangles of the upper sector.
With respect to option~b!, the allowed values of (n,l ) are associated with the following pair

(a2 ,c2)5(2l 2n,22l 11), with a22c211PZ2. The eigenfunction~VI.38! for this second
option is rewritten now in the form

cn,l ~y!5y2l 11/2e22y/(2n11)u~2l 2n,22l 11;4y/~2n11!!. ~VI.40!

Using the parametrization (a28 ,c28 ), we have

c28 52c18 , a28 5a18 , with c28 >a28 11. ~VI.41!

These points have also been indicated in Fig. 5~normal triangles of the lower sector!.
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2. Intertwining operators and factorization

For the two-dimensional Coulomb potential each physical normalizable eigenfunctioncn,l (y)
associated with a bounded state with energyEn given in ~VI.37! can be described in two ways b
means of confluent hypergeometric functionsf (a68 ,c68 ;x) as shown in~VI.38! and ~VI.40!, but
making use of the (a8,c8) parametrization. The two kinds of labels (a68 ,c68 ) are related to the
physical quantum numbers (n,l ) through~VI.39! and ~VI.41!. Such a set of confluent function
$ f (a68 ,c68 ;x)% lies inside the LISHL of Sec. IV C. However, they do not fill it: They generate
subspace that will be denotedH L

(2) . This subspace is generated from the ‘‘corner’’ functi
f (21,0;x) ~see Sec. IV C! by the action of second-order intertwining operato
$AiAj ,BiAj ,BiBj% i , j 51,2. The spaceH L

(2) is also invariant under the reflection operatorQ. The
second-order operators quoted previously close the Lie algebrasp(2,R),9 which includes the
subalgebrassu(2) ~whose generators connect eigenstates with the same energy but differenl ’s!
andsu(1,1) ~relating states with the samel but different energiesEn!. Unfortunately, the inner
product already defined inHL does not transform underM into the standard Schro¨dinger product
@as pointed out after Eq.~V.7!#, so that certain Hermiticity properties are not directly preserv

In the following we shall devote to give the second-order operators in the physical sec
wave functionscn,l (y). To simplify the expressions we will introduce a new notation for th
operators,

A11
ªA1A1, B11

ªB1B1,

A12
ªA1A2, B12

ªB1B2,

A22
ªA2A2, B22

ªB2B2, ~VI.42!

C12
ªA1B2, D11

ªB1A1,

C21
ªA2B1, D22

ªB2A2.

FIG. 5. The allowed values of (a18 ,c18 ) ~inverted triangles! and (a28 ,c28 ) ~normal triangles! for the two two-dimensional
Coulomb potential.
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The action of these operators on the statescn,l is, up to constant factors,

HA12:cn,l →cn11,l ,
B12:cn11,l →cn,l , H C12:cn,l →cn,l 11 ,

C21:cn,l 11→cn,l ,

HA11:cn,l →cn11,l 11 ,
B11:cn11,l 11→cn,l , HA22:cn,l →cn11,l 21 ,

B22:cn11,l 21→cn,l ,

D11:cn,l →cn,l , D22:cn,l →cn,l .

The generatorsD11,D22 are diagonal in the eigenfunction basis$cn,l % so that they commute, the
other generators act as lowering and raising operators. The explicit expression for all the s
order operators is given in Table VII.

For the sake of completeness we also give in Table VIII the expressions of the~unphysical!
operators$Ai ,Bi% i 51,2 whose action on the wave function space change the quantum numbern,l
in half-units:

HA1:cn,l →cn11/2,l 11/2,
B1:cn11/2,l 11/2→cn,l , HA2:cn,l →cn11/2,l 21/2,

B2:cn11/2,l 21/2→cn,l . ~VI.43!

D. Morse potential

As a final example, let us consider now the change of variable given byy8(x)5k3 /x, or
y(x)5(k3)ln x1l3. We can choosel350 anda51/k3 , and then

y8~x!5
1

ax
, y~x!5

1

a
ln x, x~y!5eay. ~VI.44!

TABLE VII. Second-order two-dimensional Coulomb intertwining operators.

Bn11,l
12 ~y!5Fy

d

dy
1

2y

2n11
2

2n13

2 GA2n11

2n13
DS 2n13

2n11D
An,l

12 ~y!5DS 2n11

2n13DA2n13

2n11 F2y
d

dy
1

2y

2n11
2

2n11

2 G
Cn,l 11

21 ~y!5
~2l 11!~2n11!

2 F1

2

d

dy
1

2l 11

4y
2

1

2l 11G
Cn,l

12 ~y!5
~2l 11!~2n11!

2 F2
1

2

d

dy
1

2l 11

4y
2

1

2l 11G
Bn11,l 11

11 ~y!5F2
~2l 11!~2n11!14y

4

d

dy
1

2y

2n11
1

~2n11!~2l 11!2

8y
1l 2nGA2n11

2n13
DS 2n13

2n11D
An,l

11 ~y!5DS 2n11

2n13DA2n13

2n11 F ~2l 11!~2n11!14y

4

d

dy
1

2y

2n11
1

~2n11!~2l 11!2

8y
1l 2n21G

Bn11,l 21
22 ~y!5F2

~2l 21!~2n11!24y

4

d

dy
1

2y

2n11
1

~2n11!~2l 21!2

8y
2l 2n21GA2n11

2n13
DS 2n13

2n11D
An,l

22 ~y!5DS 2n11

2n13DA2n13

2n11 F ~2l 21!~2n11!24y

4

d

dy
1

2y

2n11
1

~2n11!~2l 21!2

8y
2l 2nG

Dn,l
11 (y)52n2l 21

Dn,l
22 (y)5l 2n21
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We will assumea.0, hencex>0, and2`,y,1` ~a similar study can be done forx<0, as for
the previous potentials of this section!.

The potential and eigenvalues obtained are

V~y!5S a

2 D 2

~e2ay22~c22a! eay!, E52S a

2
~c21! D 2

. ~VI.45!

The above potential is in the class of Morse potentials,

Vl~y!5S a

2 D 2

~e2ay22l eay!, a.0,l.0. ~VI.46!

The parametera appears always multiplyingy, and plays a secondary role in what follows~if we
set it equal to one, the effect is to divide the eigenvalue equation bya2!.

It is more common in the literature1 to see Morse potentials written in the following wa
V(z)5A(e22az22 e2az). This form can be reached from~VI.46! by a simple change of the
variable y52z1k, with eak5l. However, expression~VI.46! is more suitable to apply the
factorization method, and therefore we shall adopt it hereafter.

1. Spectrum and eigenstates

Once fixeda, the stationary Schro¨dinger equation for the Morse potentials~VI.46!, has two
characteristic parameters:E for the eigenvalue~that we will suppose to be negative, if we restri
to bounded states!, andl specifying the potentialVl . Each pair (l,E), E,0, can be described by
two (a,c) pairs:

H c15
2

a
A2E11>1

l5c122a1,
H c252

2

a
A2E11<1

l5c222a2 .

~VI.47!

The M -transformation,cl,E(y)5w(a,c;x(y))21f (a,c;x(y)), is determined in this case with th
help of

w~a,c;x~y!!215~eay(c21)e2eay
!1/2 ~VI.48!

TABLE VIII. First-order two-dimensional Coulomb intertwining operators.

Bn11/2,l 11/2
1 ~y!5~2n11!1/2Fy1/2

2

d

dy
1

y1/2

2n11
1

l

2y1/2G S 2n11

2n12D 1/2

DS 2n12

2n11D
An,l

1 ~y!5DS 2n11

2n12D S 2n12

2n11D 1/2

~2n11!1/2Fy1/2

2

d

dy
2

y1/2

2n11
2

2l 11

4y1/2 G
Bn11/2,l 21/2

2 ~y!5~2n11!1/2Fy1/2

2

d

dy
1

y1/2

2n11
2

l

2y1/2G S 2n11

2n12D 1/2

DS 2n12

2n11D
An,l

2 ~y!5DS 2n11

2n12D S 2n12

2n11D 1/2

~2n11!1/2Fy1/2

2

d

dy
2

y1/2

2n21
1

2l 11

4y1/2 G
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defined up to a constant factor. For the first optionc1>1, the square integrable solution
f (a,c;x(y)) include only the1F1(a,c;x(y)) term with

Ha152n50,21,22 . . .
c15l22n[nn11 En52

a2

4
nn

252
a2

4
~l22n21!2, nn.0. ~VI.49!

This means that necessarilyl.1 if we want the potential to have at least one bounded state.
critical valuel51 has in this respect a special limiting character. The~unnormalized! bounded
eigenstates are

cl,nn
~y!5~eay(c21)e2eay

!1/2
1F1~2n,l22n;eay!. ~VI.50!

For the second optionc2<1, the square integrable functions having the same eigenva
~VI.49! are given by means ofu(a,c;x(y)) with

a252l1n11, c252l12~n11!, n50,1,2, . . . ~VI.51!

in the form

cl,nn
~y!5Aeay(c21)e2eay

u~2l1n11,2l12~n11!;eay!. ~VI.52!

Let us translate now the above allowed values of (a6 ,c6) into those of (a68 ,c68 ):

H a18 52l ~,21!

c18 5nn ~.0! H a28 52l ~,21!

c28 52nn ~,0!
n50,1,2,... . ~VI.53!

2. Intertwining operators and factorization

Each eigenfunctioncl,nn
(y) for a potentialVl and energyEn52 (a2/4) nn

2 can be described

as always, by means of two confluent functions designed byf (a68 ,c68 ;x), with a68 52l and
c68 56nn . The reflection operatorQ connect these two confluent functions in the following wa
Q: f (a68 ,c68 ;x)→ f (a78 ,c78 ;x). The intertwining operators$Al,n

i ,Bl,n
i % i 51,2 in the wave function

space act as follows:

HAl,n
1 :cl,n→cl11,n11 ,

Bl11,n11
1 :cl11,n11→cl,n , HAl,n

2 :cl,n→cl11,n21 ,

Bl11,n21
2 :cl11,n21→cl,n .

The most interesting case appears when the parameterl is a~positive! integer. For such a situation
the resulting functions$cl,n% connected by the intertwining operators are in~a two-valued! cor-
respondence with the confluent hypergeometric functions generating the LISHL . Remark that all
the functions$cl,n% are square integrable except those labeled byc22n21,0, which correspond to
the zero energy eigenvalue. However, the product defined inHL does not transform underM into
that of the Schro¨dinger equations.

For lÞZ, the action of$Al,n
i ,Bl,n

i % i 51,2 would give, besides the physical states, other n
physical ones with arbitrary~negative! energy.

In Tables IX and X we give the explicit expressions of the first- and second-order intertw
operators for this example.

VII. CONCLUDING REMARKS

In this paper we have applied the intertwining method to confluent hypergeometric oper
As a first consequence of this program we directly get nontrivial zero-order as well as
intertwining operators that can be identified as Kummer operators. Second, the first-order
ential intertwining operators lead to the factorization of the confluent operators and allow o
build a Lie algebra~of free index operators! made of two sets of independent boson operators.
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means of this underlying algebra we can study some properties of the confluent function
instance, we can define maximal shape invariant functionsU6 , which are shown to be very usefu
in the applications. Also, new parameters (a8,c8), more suitable from the algebraic point of view
have been introduced.

On the other hand with the help of this algebra we can define sets of confluent functio
means of the concept of ‘‘annihilation line’’ and, as a consequence, of left and right inva
sectors. Surprisingly enough, such sectors of confluent functions are related to the wave fu
of the physical applications considered afterwards. Although our objective is not a tho
investigation of the properties of confluent hypergeometric functions, it is evident from wha
have presented here that the intertwining method constitutes a simple and direct way to
tently explain many of them.

Part of the present work was devoted to put in contact the previous rather mathem
machinery with the physics of stationary Schro¨dinger equations. The complete solution to th
question is not easy at all,17 but we have been able to establish an operatorM connecting the

TABLE IX. First-order Morse intertwining operators.

Bl11,n11
1 ~y!5

e2ay/2

a

d

dy
1

1

2
eay/21

nn11

2
e2ay/2

Al,n
1 ~y!5

e2ay/2

a

d

dy
2

1

2
eay/22

nn

2
e2ay/2

Bl11,n21
2 ~y!52

nn11

a
e2ay

d

dy
1

~nn11!~nn!

2
e2ay2

l

2

Al,n
2 ~y!5

nn11

a
e2ay

d

dy
1

~nn12!~nn11!

2
e2ay2

l

2

TABLE X. Second-order Morse intertwining operators.

Bl12,n
12 ~y!5

1

a

d

dy
1

1

2
~eay2~l11!!

Al,n
12 ~y!52

1

a

d

dy
1

1

2
~eay2~l11!!

Cl,n12
21 ~y!5

n11

a
e2ay

d

dy
2

l

2
1

~n12!~n11!

2
e2ay

Cl,n
12 ~y!52

n11

a
e2ay

d

dy
2

l

2
1

n~n11!

2
e2ay

Bl12,n12
11 ~y!5

1

a
~~n11!e2ay11!

d

dy
1

1

2
eay1

~n11!~n12!

2
e2ay1

n2l

2

Al,n
11 ~y!52

1

a
~~n11!e2ay11!

d

dy
1

1

2
eay1

~n11!n

2
e2ay1

n2l

2

Bl12,n22
22 ~y!52

1

a
~~n21!e2ay21!

d

dy
1

1

2
eay1

~n21!~n22!

2
e2ay2

n1l

2

Al,n
22 ~y!5

1

a
~~n21!e2ay21!

d

dy
1

1

2
eay1

~n21!n

2
e2ay2

n1l21

2

Dl,n
11 ~y!5n2l

Dl,n
22 ~y!52n21
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confluent operators to three classes of potentials: oscillator, Coulomb, and Morse. Such an
tor acting on the confluent functions belonging to the invariant sectors quoted previously g
the physical wave functions corresponding to bound states. Therefore, at least for the ex
here considered only these sectors are responsible for bounded states in the physical pr
The confluent functions outside the sectors could be related to the continuous spectrum~for the
Coulomb and Morse potentials!, but this interesting question was outside the scope of this pa

The mappingM relating confluent and physical wave functions allows us also to connec
wave functions of bounded states among themselves for the three potentials aforemention
shall present some of them in the following~with N52 for the oscillator and the Coulom
potentials!. In order to set a clear notation, first we write down the energy of the discrete spe
as follows:

EO52nO , EC5
21

~nC11/2!2 , EM52
a2

4
nM

2 ~VII.1!

for the oscillator, Coulomb, and Morse cases, respectively. Making use of an obvious notati
have the following.

~1! Oscillator-Morse:

cM
(nM ,lM)

~y!}e2ay/4cO
(nO ,l O)

~eay/2!, nO5lM , l O5nM . ~VII.2!

~2! Oscillator-Coulomb:

cC
(nC ,l C)

~y!}y1/4cO
(nO ,l O)

~2y1/2/~2nO11!1/2!, nO52nC11,l O52l C . ~VII.3!

For other dimensionsN of the oscillator or Coulomb potentials, the relations remain valid,
with other restrictions on the values of (n,l ). The above formulas~VII.2! and ~VII.3! do not
change the number of nodes but, as mentioned earlier, they do change the local density p
ity, so that we can say that there is a ‘‘mathematical mapping’’ among these three potentia
do not represent a physical equivalence.

The existence of relations connecting the stationary wave functions for the above-men
potentials has been mentioned long ago in the literature, in general usingad hocprocedures.2 On
the other hand, in the algebraic framework, it has been found that the involved ‘‘shift’’
‘‘ladder’’ operators can also be related.19 However, we believe that, up to now, it was lacking
complete exposition of this kind of relations, as well as of the underlying algebraic struc
which is the keystone in the understanding of the subject.

Some new arenas have been opened by the results presented here. In particular, t
lowering and raising operators derived in this paper allow one to consider the construction
associated coherent states. This construction is particularly interesting for the Coulomb po
as recent results have shown.20 Work in this direction is in progress.

ACKNOWLEDGMENTS

This work has been partially supported by DGES projects~Nos. PB94–1115 and PB98–0370!
from Ministerio de Educacio´n y Cultura~Spain!, and also by Junta de Castilla y Leo´n ~CO2/197
and CO2/199!. O.R.O. acknowledges support by CONACyT~Mexico!.
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Matroid theory and Chern–Simons
J. A. Nietoa) and M. C. Marı́n
Facultad de Ciencias Fı´sico-Matema´ticas de la Universidad Auto´noma de Sinaloa,
80010 Culiaca´n Sinaloa, Me´xico

~Received 1 June 2000; accepted for publication 16 August 2000!

It is shown that matroid theory may provide a natural mathematical framework for
a duality symmetries not only for quantum Yang–Mills physics, but also for
M-theory. Our discussion is focused in an action consisting purely of the Chern–
Simons term, but in principle the main ideas can be applied beyond such an action.
In our treatment the theorem due to Thistlethwaite, which gives a relationship
between the Tutte polynomial for graphs and Jones polynomial for alternating
knots and links, plays a central role. Before addressing this question we briefly
mention some important aspects of matroid theory and we point out a connection
between the Fano matroid andD511 supergravity. Our approach also seems to be
related to loop solutions of quantum gravity based in an Ashtekar formalism.
© 2000 American Institute of Physics.@S0022-2488~00!00712-X#

I. INTRODUCTION

In the last few years, duality has been a source of great interest to study nonperturbat
well as perturbative, dynamics of superstrings1 and supersymmetric Yang–Mills.2 In fact, duality
is the key physical concept that relates the five known superstring theories in 911 dimensions
~i.e., nine space and one time!, Type I, Type IIA, Type IIB, Heterotic SO~32! and HeteroticE8

3E8 , which may now be understood as different manifestations of one underlying unique t
called M-theory.3–9 However, dualities are still a mystery and up to now a general understan
of how these dualities arises is missing. Nevertheless, just as the equivalence principle is
principle in general relativity, the recent importance of dualities in gauge field theories and
theories strongly suggest a duality principle as a basic principle in M-theory. In this sense, w
is needed is a mathematical framework to support such a duality principle.

M-theory is defined as a 1011 dimensional theory arising as the strong-coupling limit of ty
IIA string theory. Essentially, M-theory is a nonpertubative theory and in addition to the
superstring theories it describes supermembranes,10 5-branes,11 and D511 supergravity.12 Al-
though the complete M-theory is unknown there are two main proposed routes to construct
is theN5(2,1) superstring theory13 and the other M~atrix!-theory.14 Martinec15 has suggested tha
these two scenarios may, in fact, be closely related. This scenario has been extended16 to include
dualities involving compactifications on timelike circles as well as spacelike circles one
particular, it has been shown that T-duality on a timelike circle takes type IIA theory into a
IIB* theory and type IIB* theory into a type IIA theory and that the strong-coupling limit of ty
IIA * is a theory in 912 dimensional theory, denoted by M* .

More recently, Khoury and Verlinde17 have shed some new light on the old idea of op
closed string duality.18 This duality is of special interest because it emphasizes the idea that c
string dynamics~gravity! is dual to open string dynamics~gauge theory!. Two previous examples
on this direction are matrix theory,14 where gravity arises as an effect of open string quant
fluctuations and Maldacena’s conjecture19 according to which that anti-deSitter supergravity is
some sense dual to supersymmetric gauge theory.

a!Electronic mail: nieto@uas.uasnet.mx
79970022-2488/2000/41(12)/7997/9/$17.00 © 2000 American Institute of Physics
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Thus, just as the tensor theory makes mathematical sense of the postulate of relativit
laws of physics are the same for every observer,’’ we are pursuing the possibility that the
ematical formalism necessary to make sense of a duality principle in M-theory is matroid the20

This theory is a generalization of matrices and graphs and, in contrast, to graphs in which d
can be defined only for planar graphs, it has the remarkable property that duality can be defi
every matroid. Since M~atrix!-theory andN5(2,1) superstrings have had an important succes
describing some essential features of M-theory a natural question is to see whether matroid
is related to these two approaches. As a first step in this direction we may attempt to see if m
theory is linked somehow toD511 supergravity which is a common feature of both formalism
In fact, it has been shown21 that the Fano matroid and its dual are closely related to Engle
compactification22 of D511 supergravity. This result is physically interesting because suc
relation allows the connection between the fundamental Fano matroid or its dual23 and octonions
which, at the same time, are one of the alternative division algebras.24 It is worth mentioning that
some time ago Blencowe and Duff25 raised the question of whether the four forces of nat
correspond to the four division algebras.

In this work, we make further progress on this program. Specifically, we find a rou
incorporate matroid theory in quantum Yang–Mills in the context of Chern–Simons action
mechanism is based on a theorem due to Thistlethwaite26 which connect the Jones polynomial fo
alternating knots with the Tutte polynomial for graphs. Since Witten27 showed that the Jone
polynomial can be understood in three dimensional terms through a Chern–Simons forma
became evident that we have a bridge between graphs and Chern–Simons. In this context
which is the main subject in graphic matroids, can be associated to Chern–Simons in a
ematical natural way. This connection may transfer important theorems from matroid the
fundamental physics. For instance, the theorem due to Whitney20 that if M1 ,..,M p andM18 ,..,M p8
are the components of the matroidsM and M 8, respectively, and ifMi8 is the dual ofMi ( i
51, . . . ,p) thenM 8 is dual ofM and conversely, ifM andM 8 are dual matroids thenMi8 is dual
of Mi may be applied to dual Chern–Simons partition functions. One of our aims in this wo
to explain how this can be done.

The plan of this work is as follows. In Sec. II, we briefly review matroid theory and in Sec
we closely follow Ref. 21 to discuss a connection between matroid theory andD511 supergrav-
ity. In Sec. IV, we study the relation between matroid theory and Witten’s partition function
knots. Finally, in Sec. V, we make some final comments.

II. A BRIEF REVIEW OF MATROID THEORY

In 1935, while working on abstract properties of linear dependence, Whitney20 introduced the
concept of a matroid. In the same year, Birkhoff28 established the connection between sim
matroids~also known as combinatorial geometries29! and geometric lattices. In 1936, Mac Lane30

gave an interpretation of matroids in terms of projective geometry. And an important progr
the subject was given in 1958 by Tutte23 who introduced the concept of homotopy for matroids.
present, there is a large body of information about matroid theory. The reader interested
subject may consult the excellent books on matroid theory by Welsh,31 Lawler32 and Tutte.33 We
also recommend the books of Wilson,34 Kung35 and Ribnikov.36

An interesting feature of matroid theory is that there are many different but equivalent
of defining a matroid. In this respect, it seems appropriate to briefly review Whitney’s20 discovery
of the matroid concept. While working with linear graphs Whitney noticed that for certain m
ces duality had a simple geometrical interpretation quite different than in the case of g
Further, he observed that any subset of columns of a matrix is either linearly independ
linearly dependent and that the following two theorems must hold.

~a! Any subset of an independent set is independent.
~b! If Np andNp11 are independent sets ofp andp11 columns, respectively, thenNp together

with some column ofNp11 forms an independent set ofp11 columns.
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Moreover, he discovered that if these two statements are taken as axioms then the
examples that do not represent any matrix and graph. Thus, he concluded that a system sa
~a! and~b! should be a new one and therefore deserve a new name: He called this kind of s
a matroid.

The definition of a matroid in terms of independent sets has been refined and is now exp
as follows: A matroidM is a pair (E,I), whereE is a nonempty finite set, andI is a nonempty
collection of subsets ofE ~called independent sets! satisfying the following properties:

~I i! any subset of an independent set is independent;
~I ii ! if I andJ are independent sets withI #J, then there is an elemente contained inJ but

not in I , such thatI ø$e% is independent.
A base is defined to be any maximal independent set. By repeatedly using the property~I ii !

it is straightforward to show that any two bases have the same number of elements. A subsE
is said to be dependent if it is not independent. A minimal dependent set is called a c
Contrary to the bases not all circuits of a matroid have the same number of elements.

An alternative definition of a matroid in terms of bases is as follows.
A matroidM is a pair (E,B), whereE is a nonempty finite set andB is a nonempty collection

of subsets ofE ~called bases! satisfying the following properties:
~B i! no base properly contains another base;
~B ii ! if B1 andB2 are bases and ifb is any element ofB1 , then there is an elementg of B2

with the property that (B1-$b%)ø$g% is also a base.
A matroid can also be defined in terms of circuits:
A matroid M is a pair (E,C), whereE is a nonempty finite set, andC is a collection of

nonempty subsets ofE ~called circuits! satisfying the following properties:
~C i! no circuit properly contains another circuit;
~C ii ! if C1 andC2 are two distinct circuits each containing an elementc, then there exists a

circuit in C1øC2 which does not containc.
If we start with any of the three definitions the other two follows as a theorems. For exa

it is possible to prove that~I! implies ~B! and ~C!. In other words, these three definitions a
equivalent. There are other definitions also equivalent to these three, but for the purpose
work it is not necessary to consider them.

Notice that even from the initial structure of a matroid theory we find relations suc
independent–dependent and base-circuit which suggests duality. The dual ofM , denoted byM* ,
is defined as a pair (E,B* ), whereB* is a nonempty collection of subsets ofE formed with the
complements of the bases ofM . An immediate consequence of this definition is that every matr
has a dual and this dual is unique. It also follows that the double-dualM** is equal toM .
Moreover, ifA is a subset ofE, then the size of the largest independent set contained inA is called
the rank ofA and is denoted byr(A). If M5M11M2 andr(M )5r(M1)1r(M2) we shall say
that M is separable. Any maximal nonseparable part ofM is a component ofM . An important
theorem of Whitney20 is that if M1 ,..,M p andM18 ,..,M p8 are the components of the matroidsM
and M 8, respectively, and ifMi8 is the dual ofMi ( i 51, . . . ,p), then M 8 is a dual of M .
Conversely, letM and M 8 be dual matroids, and letM1 ,..,M p be components ofM . Let
M18 ,..,M p8 be the corresponding submatroids ofM 8. ThenM18 ,..,M p8 are the components ofM 8,
andMi8 is a dual ofMi .

III. MATROID THEORY AND SUPERGRAVITY

Among the most important matroids are the binary and regular matroids. A matroid is b
if it is representable over the integers modulo two. Let us clarify this definition. An impor
problem in matroid theory is to see which matroids can be mapped in some set of vecto
vector space over a given field. When such a map exists we are speaking of a coordinatiza~or
representation! of the matroid over the field. Let GF(q) denote a finite field of orderq. Thus, we
can express the definition of a binary matroid as follows: A matroid which has a coordinatiz
over GF~2! is called binary. Furthermore, a matroid which has a coordinatization over every
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is called regular. It turns out that regular matroids play a fundamental role in matroid th
among other things, because they play a similar role as planar graphs in graph theory.34 It is
known that a graph is planar if and only if it contains no subgraph homeomorphic toK5 or K3,3.
The analog of this theorem for matroids was provided by Tutte.23 In fact, Tutte showed that a
matroid is regular if and only if is binary and includes no Fano matroid or the dual of this. In o
to understand this theorem it is necessary to define the Fano matroid. We shall show that th
matroid may be connected with octonions which, in turn, are related to the Englert’s comp
cation ofD511 supergravity.

A Fano matroidF is the matroid defined on the setE5$1,2,3,4,5.6.7% whose bases are a
those subsets ofE with three elements exceptf 15$1,2,4%, f 25$2,3,5%, f 35$3,4,6%, f 4

5$4,5,7%, f 55$5,6,1%, f 65$6,7,2% and f 75$7,1,3%. The circuits of the Fano matroid are pre
cisely these subsets and its complements. It follows that these circuits define the dualF* of the
Fano matroid.

Let us write the setE in the formE5$e1 ,e2 ,e3,e4,e5 ,e6 ,e7%. Thus, the subsets used to defi
the Fano matroid now becomef 15$e1 ,e2 ,e4%, f 25$e2 ,e3 ,e5%, f 35$e3 ,e4 ,e6%, f 4

5$e4 ,e5 ,e7%, f 55$e5 ,e6 ,e1%, f 65$e6 ,e7 ,e2% and f 75$e7 ,e1 ,e3%. The central idea is to iden
tify the quantitiesei , where i 51, . . . ,7, with the octonionic imaginary units. Specifically, w
write an octonionq in the formq5q0e01q1e11q2e21q3e31q4e41q5e51q6e61q7e7 , where
q0 andqi are real numbers. Here,e0 denotes the identity. The product of two octonions can
obtained with the rule

eiej52d i j 1c i j
k ek , ~1!

whered i j is the Kronecker delta andc i jk5c i j
l d lk is the fully antisymmetric structure constant

with i , j ,k51, . . . ,7. Bytaking the fact thatc i jk equals 1 for one of the seven combinationsf i we
may derive all the values ofc i jk .

The octonion~Cayley! algebra is not associative, but alternative. This means that the b
associator of any three imaginary units is

~ei ,ej ,ek!5~eiej !ek2ei~ejek!5w i jkmem , ~2!

wherew i jkl is a fully antisymmetric four index tensor. It turns out thatw i jkl andc i jk are related by
the expression

w i jkl 5~1/3!!e i jklmnrcmnr , ~3!

wheree i jklmnr is the completely antisymmetric Levi-Civita tensor, withe12 . . . 751. It is interest-
ing to note that given the numerical valuesf i for the indices ofcmnr and using~3! we get the other
seven subsets ofE with four elements of the dual Fano matroidF* . For instance, if we takef 1

then we havec124 and ~3! givesw3567 which leads to the circuit subset$3,5,6,7%.
We would like now to relate the above structure to the Englert’s octonionic solution22 of

eleven dimensional supergravity. First, let us introduce the metric

gab5d i j ha
i hb

j , ~4!

whereha
i 5ha

i (xc) is a sieben-bein, witha,b,c51, . . . ,7.Here,xc are a coordinates patch of th
geometrical seven sphereS7. The quantitiesc i jk can now be related to theS7 torsion in the form

Tabc5R0
21c i jkha

i hb
j hc

k , ~5!

whereR0 is theS7 radius. While the quantitiesw i jkl can be identified with the four index gaug
field Fabcd through the formula

Fabcd5R0
21w i jkl ha

i hb
j hc

khd
l . ~6!
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Furthermore, it is possible to prove that the Englert’s 7-dimensional covariant equations are
with the identificationFabcd5lT[abc ,d] , wherel is a constant. Therefore,lTabc5Aabc is the
fully antisymmetric gauge field which is a fundamental object in 2-brane theory.6

It is important to mention that in the Englert’s solution ofD511 supergravity the torsion
satisfies the Cartan–Schouten equations,

TacdTbcd56R0
22gab , ~7!

TeadTdb fTf ce53R0
22Tabc. . ~8!

But as Gursey and Tze37 noted, these equations are mere septad-dressed, i.e., covariant fo
the algebraic identities,

c iklc jkl56d i j , ~9!

c l imcm jncnkl53c i jk , ~10!

respectively. It is worth mentioning that the Englert solution realizes the Riemannian curv
less but torsion-full Cartan-geometries of absolute parallelism onS7.

So, we have shown that the Fano matroid is closely related to octonions which at the
time are an essential part of the Englert’s solution of absolute parallelism onS7 of D511 super-
gravity. The Fano matroid and its dual are the only minimal binary irregular matroids. We k
from the Hurwitz theorem~see Ref. 24! that octonions are one of the alternative division algeb
~the others are the real numbers, the complex numbers and the quaternions!. While among the only
parallelizable spheres we findS7 @the other are the spheresS1 andS3 ~Ref. 38!#. This distinctive
and fundamental role played by the Fano matroid, octonions andS7 in such different areas in
mathematics as combinatorial geometry, algebra and topology, respectively, lead us to belie
the relationship between these three concepts must have a deep significance not only in ma
ics, but also in physics. Of course, it is known that the parallelizability ofS1, S3 andS7 has to do
with the existence of the complex numbers, the quaternions and the octonions, respective~see
Ref. 39!. It is also known that using an algebraic topology called K-theory40 we find that the only
dimensions for division algebras structures on Euclidean spaces are 1, 2, 4 and 8. We can
these remarkable results another fundamental concept in matroid theory; the Fano matroid

IV. MATROID THEORY AND CHERN–SIMONS

Before going into detail, it turns out to be convenient to slightly modify the notation of
previous section. In this section, we shall assume that the Greek indicesa,b, . . .,etc. run from 0 to
3, the indicesi , j , . . . ,etc. run from 0 to 2 and finally the indicesa,b, . . . ,etc. take values in the
rank of a compact Lie GroupG. Further, we shall denote a compact oriented four manifold asM4.

Consider the second Chern class action,

S5
k

16p E
M4

emnabFmn
a Fab

b gab , ~11!

with the curvature given by

Fab
a 5]aAb

a2]bAa
a1Cbc

a Aa
bAb

c . ~12!

Heregab is the Killling–Cartan metric andCbc
a are the completely antisymmetric structure co

stants associated with the compact simple Lie groupG. The action~11! is a total derivative and
leads to the Chern–Simons action,

SCS5
k

4p E
M3H e i jk S Ai

a~] jAk
b2]kAj

b!gab1
2

3
CabcAi

aAj
bAk

cD J , ~13!
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whereM35]M4 is a compact oriented three dimensional manifold. In a differential form nota
~13! can be rewritten as follows:

SCS5
k

2p E
M3

TrS A`dA1
2

3
A`A`AD , ~14!

whereA5Ai
aTa dxi , with Ta the generators of the Lie algebra ofG.

Given a link L with r components and irreducible representationr r of G, one for each
component of the link, Witten27 defines the partition function,

Z~L,k!5E DA exp~ iSCS!)
r 51

n

W~Lr ,r r !, ~15!

whereW(Ci ,r i) is the Wilson line,

W~Lr ,r r !5Trrr
P expS E

Lr

Ai
aTa dxi D . ~16!

Here the symbolP means the path-ordering along the knotsLr .
If we chooseM35S3, G5SU(2) andr r5C2 for all link components then the Witten’

partition function~15! reproduces the Jones polynomial,

Z~L,k!5VL~ t !, ~17!

where

t5e2p i /k. ~18!

HereVL(t) denotes the Jones polynomial satisfying the skein relation:

t21VL1
2tVL2

5S At2
1

At
D VL0

, ~19!

where L1 , L2 and L0 are the standard notations for overcrossing, undercrossing and
crossing.

Now, let us pause about the relation between the knots and the Chern–Simons term an
discuss the Tutte polynomial. To each graphG, we associate a polynomialTG(x,x21) with the
property that ifG is composed solely of isthmus and loops thenTG(x,x21)5xIx2 l , whereI is the
number of isthmuses andl is the number of loops. The polynomialTG satisfies the skein relation

TG5TG 81TG 9 , ~20!

whereG 8 andG 9 are obtained by delating and contracting, respectively, an edge that is nei
loop nor an isthmus ofG.

There is a theorem due to Thistlethwaite26 which assures that ifL is an alternating link and
G(L) the corresponding planar graph then the Jones polynomialVL(t) is equal to the Tutte
polynomialTG(2t,2t21) up to a sign and factor power oft. Specifically, we have

VL~ t !5~2t3/4!w(L)t2(r 2n)/4TG~2t,2t21!, ~21!

wherew(L) is the writhe andr andn are the rank and the nullity ofG, respectively. HereVL(t)
is the Jones polynomial of alternating linkL.

On the other hand, a theorem of Tutte allows us to computeTG(2t,2t21) from the maximal
trees ofG. In fact, Tutte proved that ifB denotes the maximal trees in a graphG, i (B) denotes the
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number of internally active edges inG ande(B) the number the externally active edges inG ~with
respect to a given maximal treeBeB! then the Tutte polynomial is given by the formula

TG~2t,2t21!5( xi (B)x2e(B), ~22!

where the sum is over all elements ofB.
First, note thatB is the collection of bases ofG. If we now remember our definition of matroi

M in terms of bases discussed in Sec. II we note the Tutte polynomialTG(2t,2t21) computed
according to~22! uses the concept of a graphic matroidM (G) defined as the pair (E,B), whereE
is the set of edges ofG. In fact, the elements ofB satisfy the two properties:

~B i! no base properly contains another base;
~B ii ! if B1 andB2 are bases and ifb is any element ofB1 , then there is and elementg of B2

with the property that (B12$b%)ø$g% is also a base;
which identifies aM (G) as a matroid. With this remarkable connection between the Tutte p
nomial and a matroid we have found in fact a connection between the partition functionZ(L,k)
given in ~15! and matroid theory. This is because according to~21! the Tutte polynomialTG
(2t,2t21) are related to the Jones polynomialVL(t) which at the same time according to~17!
are related to the partition functionZ(L,k). Specifically, forM35S3, G5SU(2), r r5C2 for all
alternating link components ofL, we have the relation

Z~L,k!5VL~ t !5~2t3/4!w(L)t2(r 2n)/4TG~2t,2t21!. ~23!

Thus, the matroid (E,B) used to computeTG(2t,2t21) can be associated not only toVL(t), but
also toZ(L,k).

Now that we have at hand this slightly but an important connection between matroid t
and Chern–Simons theory we are able to transfer information from matroid theory to Ch
Simons and conversely from Chern–Simons to matroid theory. Let us discuss two examp
the former possibility.

First of all, it is known that in matroid theory the concept of duality is of fundamen
importance. For example, there is a remarkable theorem that assures that every matroid ha
So, the question arises about what are the implications of this theorem in Chern–Simons f
ism. In order to address this question let us first make a change of notationTG(2t,2t21)
→TM (G)(t) and Z(L,k)→ZM (G)(k). The idea of this notation is to emphasize the connec
between matroid theory, Tutte polynomial and Chern–Simons partition function. Conside
planar dual graphG* of G. In matroid theory we haveM (G* )5M* (G). Therefore, the duality
property of the Tutte polynomial,

TG~2t,2t21!5TG* ~2t21,2t !, ~24!

can be expressed as

TM (G)~ t !5TM* (G)~ t21!, ~25!

and consequently from~23! we discover that for the partition functionZM (G)(k) we should have
the duality property

ZM (G)~k!5ZM* (G)~2k!. ~26!

This duality symmetry for the partition functionZM (G)(k) is not really new, but is already know
in the literature as mirror image symmetry~see, for instance, Ref. 41, and references quoted th!.
However, what seems to be new is the way we had derived it.

As a second example let us first mention another theorem of Whitney:20 If M1 ,..,M p and
M18 ,..,M p8 are the components of the matroidsM andM 8, respectively, and ifMi8 is the dual of
Mi ( i 51, . . . ,p), thenM 8 is a dual ofM . Conversely, letM andM 8 be dual matroids, and le
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M1 ,..,M p be components ofM . Let M18 ,..,M p8 be the corresponding submatroids ofM 8. Then
M18 ,..,M p8 are the components ofM 8, andMi8 is a dual ofMi . Thus, according to~26! we find
that

ZMi (Gi )
~k!5ZM

i8(Gi )
~2k!, ~27!

if and only if

ZM (G)~k!5ZM8(G)~2k!, ~28!

whereGi are the components ofG.

V. COMMENTS

Motivated by a possible duality principle in M-theory we have started to bring informa
from matroid theory to fundamental physics. We now have two good examples which indicat
this task makes sense. In the first example, we have found enough evidence for a con
between the Fano matroid and supergravity inD511. While in the second example, we ha
found a relation between the graphic matroid and the Witten’s partition function for Ch
Simons. This relation is of special importance because it leads us to a duality symmetry
partition functionZM (G)(k). In fact, if there is a duality principle in M-theory we should expect
a have a duality symmetry in the corresponding partition function associated with M-theory

In this work, we have concentrated on the original connection between Chern–Simons
and knots theory. But it is well known that the Chern–Simons formalism and knots connectio
a number of extensions.41 It will be interesting to study such extensions from the point of view
matroid theory. It is also known that Chern–Simons formalism is closely related to conforma
theory and this in turn is closely related to string theory. So, it seems that the present wor
eventually lead to a connection between matroid theory and string theory. In order to achie
goal we need to study the relation between matroids and Chern–Simons using signed gr42

This is because general knots and links~not only alternating! are in a one to one corresponden
with signed planar graphs. This in turn is straightforward connected with Kauffm
polynomials43 which at the same time leads to the Jones polynomials. But, signed graphs le
signed matroids. So, one of our future goals will be to find a connection between signed ma
and string theory. Moreover, matrix Chern–Simons theory44 has a straightforward relation with
the Matrix-model and noncommutative geometry.45 So, a natural extension of the present wo
will be to study the relation between matroid theory and matrix Chern–Simons theory.

An important duality in M-theory is the strong/weak couplingS-duality46 which provides us
with one of the most important techniques to study nonperturbative aspects of gauge field
and string theory. For further work it may also be important to find the relation between the d
symmetry forZM (G)(k) given in ~27! andS-duality.

Besides the possible connection between M~atroid!-theory and M-theory there is anothe
interesting physical application of the present work. This has to do with loop solutions of qua
gravity based on Ashtekar formalism. It is known that the Witten’s partition function provid
solution of the Ashtekar constraints.47 So, the duality symmetries~27! also applies to such solu
tions. In other words, it seems that we have also found a connection between matroid theo
loop solutions of quantum canonical gravity.
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We study the spectral properties of the Schro¨dinger operator with a constant elec-
tric field perturbed by a bounded potential. It is shown that if the derivative of the
potential in the direction of the electric field is smaller at infinity than the electric
field, then the spectrum of the corresponding Stark operator is purely absolutely
continuous. In one dimension, the absolute continuity of the spectrum is implied by
just the boundedness of the derivative of the potential. The sharpness of our crite-
rion for higher dimensions is illustrated by constructing smooth potentials with
bounded partial derivatives for which the corresponding Stark operators have a
dense point spectrum. ©2000 American Institute of Physics.
@S0022-2488~00!03809-3#

I. INTRODUCTION

A. Overview

The Hamiltonian of an electron moving in a constant electric fieldFW and subject to an externa
force given by a potentialV is the Stark operator

H52D2x11V~x!

acting inH5L2(Rd), whered>1 is the dimension, andx1 is the multiplication operator by the
coordinatex1 . It is convenient to regard the potentialV as a perturbation of the Stark operato

H052D2x1 ,

where the electric field is taken asFW 5(21,0,...,0).
The Stark operator is essentially self-adjoint inH and its spectrum is purely absolute

continuous:

sac~H0!5sac~H0!5R,

ssc~H0!5spp~H0!5B.

Our purpose here is to study the stability of that spectral structure under a perturbation
~bounded! potentialV. The stability here means that the perturbed HamiltonianH has a purely
absolutely continuous spectrum up to a discrete set as a singular spectrum.

Perturbations of interest include the Anderson random potentials

V~x!5 (
i PZd

l i~w!u~x2 i !, ~1.1!

a!This work was partially supported by the NSF Grant No. PHY-9971149. Permanent address: Universite´ Paris 7, U.F.R.
de Mathématiques, 2, place Jussieu, 75251 Paris Cedex 05, Electronic mail: sahbani@math.jussieu.fr; j
@princeton.edu
80060022-2488/2000/41(12)/8006/10/$17.00 © 2000 American Institute of Physics
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whereu is the single site potential and$l i(w)% is a collection of i.i.d. random variables. It is we
known that when the electric field is zero the operatorH has only localized states~almost surely
with respect to the disorder! in dimension one. The same is expected in dimension 2. Bu
dimensiond>3 there is a region in which the spectrum is pure point associated to the loca
states, and a region of absolutely continuous spectrum which corresponds to the extended
separated by some energies called the mobility edges~see Refs. 1–4 for a precise discussion
such considerations!.

But in the presence of a nonzero electric field the spectral properties ofH change drastically.
Indeed~see Refs. 5–7! in d51 if V is sufficiently regular~e.g., twice continuously differentiable
bounded with its derivatives! then the spectrum ofH is purely absolutely continuous. In particula
this is true for the Anderson potential~see however Ref. 8!.

This can be explained by the naive physical intuition: because the electron is unifo
accelerated by the electric field, a bounded potential could not affect its propagation an
spectral properties of its Hamiltonian. However, this is not always true, and therefore the ab
continuity of the spectrum of the Stark operator can be partially or completely destroye
‘‘small’’ potential. This has been pointed out by Naboko–Pushnitskii in Ref. 9, where a sm
potentialV has been construced, that satisfies

uV~x!u<
C~x!

~11uxu!1/2, C~x!→` at infinity arbitrarily slowly

and the corresponding HamiltonianH has a dense set of eigenvalues. Notice that the derivativ
Naboko–Pushnitskii’s potential diverges at infinity exactly at the same rate of the functionC(x).
This illustrates the important role of the derivative in the preservation of the absolutely contin
spectrum in the sense explained above.

We also mention the result of Ref. 10 where the one-dimensional Kro˝nig–Penny model with
an electric field is studied. The authors establish a transition from purely continuous spect
a pure point spectrum as the electric field decreases. There are also several results deal
strongly singular potentialsV for which the corresponding operatorH has no absolutely continu
ous spectrum~see Refs. 8 and 11!.

Our first purpose in this paper is to describe a class of bounded potentialsV for which the
corresponding HamiltonianH has an absolutely continuous spectrum with at most a discrete s
singular spectrum. Basically, our class consists of sufficiently regular potential having a sm~at
infinity! derivative in the direction of the electric field. In the one-dimensional case the deriv
does not have to be small but only bounded.

The second goal of our paper is to study the role that the tail of the partial derivative o
potential can play in the occurrence of a~dense! singular spectrum in higher dimension. Indeed,
the case where the dimensiond>2 we construct a smooth potentialV, bounded with its first
partial derivatives and leading to a dense point spectrum forH. Again, we notice here that in
dimension one this cannot happen, which illustrates the dimension effect in the problem.

B. The one-dimensional case

As we already mentioned above, ind51 if V is sufficiently regular then the absolute con
nuity of the spectrum ofH @~Refs. 5–7!# is preserved, while it is partially or completely destroy
if the potential is singular~see Refs. 9–11!. What is then the minimal regularity ofV preserving
the absolute continuity ofH? A partial answer is the following.

Theorem 1: (1) Assume that V is of class BC1 with uniformly continuous first derivative
Then the setsp(H) of eigenvalues of H is discrete.

(2) Suppose that V is smooth in the Zygmund’s sense, i.e.,

E
0

1

sup
xPR

uV~x1«!22V~x!1V~x2«!u
d«

«2,`, ~1.2!
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then H has no singular continuous spectrum.
Remarks:

~1! We proved Theorem 1 in Ref. 12 under a slightly more restrictive assumption onV. This was
reobtained partially by Kiselev in Ref. 13 by using the Gilbert–Pearson method. The
difference is that the result of Ref. 13 does not rule out the possibility to have a sin
spectrum also filling the real axis. The slowly decaying potentials are also studied in Re
which combined with Ref. 9 provides an example of a Stark operator for which dense
spectrum coexist with the absolutely continuous spectrum.

~2! Theorem 1 includes a large class of periodic, quasiperiodic or random potentials, becaus
is no restriction on the bound of the potentialV nor on V8. This is not the case in the
multidimensional case~cf. Theorems 3 and 4!.

Notice that Theorem 1 only ensures the discreteness of the set of eigenvalues ofH but does
not exclude the possibility to have embedded eigenvalues. In fact, we have

Theorem 2: For each real numberl there exist a real-valued potential VPC`(R), such that
V and V8 are bounded andl is an eigenvalue of H.

Theorem 2 is an essential piece in our construction of a smooth and bounded potentia
that H has a dense point spectrum in dimension 2 and more~cf. Theorem 4!. To prove it we use
the ideas of Ref. 9, and the potentialV will be sparse.

C. The multidimensional case

In d.1 there is also important literature on the spectral theory of Stark Hamiltonians~Refs.
14–16 and references therein!. Most of these works assume thatV or “V tend to zero at infinity.
This can be explained partially as follows. Whend51 the derivative of a bounded regula
potential isH0 compact. Which can be lost ind>2 if V or ]1V does not tend to zero at infinity
~see, however, Ref. 16!.

For a functionW we setW1(x)5sup(0,W(x)). Putx5(x1 ,x8) with x85(x2 ,...,xd).
Theorem 3: Assume that V and]1V are bounded and thati(]1V)1i`,1. Then H has no

eigenvalues. If moreover,

E
0

1

sup
xPRd

uV~x11«,x8!22V~x!1V~x12«,x8!u
d«

«2,`, ~1.3!

then H has no singular continuous spectrum.
Remarks:

~1! Actually V does not have to be bounded, we only need thatH defines a self-adjoint operato
in H. This is not true in Theorem 1.

~2! It is not difficult to show that the assumptioni(]1V)1i`,1 can be replaced by only th
smallness at infinity, i.e.,

lim sup
uxu→`

~]1V!1~x!,1.

In which case, the possible singular spectrum thatH can have is discrete, and consists of finite
degenerate eigenvalues.

Examples:
~1! Theorem 3 obviously includes potentialsV such that]1V tends to zero at infinity, but withou

asking thatV itself tends to zero at infinity~see discussion above!.
~2! Let q : Rd→R be a bounded and sufficiently regular function. Then

H5H01q~ax1 ,x8!, aPR
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has a purely absolutely continuous spectrum provided that the scaling constanta is sufficiently
small. This includes a large class of periodic or quasiperiodic potentials. An analogous sta
holds for the Anderson random potential~1.1!.

Let us rephrase the last theorem as follows. If the force induced by the electric field is str
than the force induced by the potential then the spectrum ofH is purely absolutely continuous
This bring us to ask the natural question: What happens when the electric field is weak? W
the following theorem.

Theorem 4: Let l be a fixed real number. Then there exist a real-valued potentia
PC`(Rd) such that V and]1V are bounded and@l,`),spp(H).

According to this theorem, it is not clear whether or not the Anderson model with a w
electric field or a strong disorder in higher dimension has a purely absolutely continuous spe
This should be an interesting question to study.

The paper is organized as follows. In Sec. II we shall describe what we need in our p
Sections III and IV will be devoted to the proofs of Theorems 1 and 3, respectively. In Sec.
prove Theorems 2 and 4.

II. BASIC NOTIONS

Our proofs are based on the conjugate operator method. It is an abstract theory which
that the HamiltonianH has an absolutely continuous spectrum if it has a conjugate operatoA,
i.e., a self-adjoint operator such that the commutator@H,iA# is strictly positive in an adequat
sense. In this section we give a short description of the main points of this theory. For more
concerning the results of this section we refer the reader to Refs. 17–19. LetH,A be two self-
adjoint operators in a Hilbert spaceH. The C0 group associated toA will be denoted by
e2 iAt,tPR. We shall denote byR(z)5(H2z)21 the resolvent ofH for a complex numberz
PC\s(H).

Definition 1: (1) We say that H is of class C1(A) if the map

R{t°e2 iAtR~z!eiAtPB~H!

is strongly of class C1, for some (and so for any) complex zPC\R.
(2) We say that H is A-regular if

E
0

1
ie2 iA«R~z!eiA«22R~z!1eiA«R~z!e2 iA«i

d«

«2 ,`.

Remark that ifH is A-regular thenH is of classC1(A). Assume thatH is of classC1(A).
Then the intersectionD(A)ùD(H) is dense inD(H) equipped with the graph topology assoc
ated to the norm

i f iH5i f i1iH f i .

Moreover, the sesquilinear form defined onD(A)ùD(H) by

^ f ,@H,A#&5^A f ,Hg&2^H f ,Ag&

extends continuously toD(H). Then one can define the open setm̃A(H) of the real pointsl for
which there exist a constanta.0, a compact operatorK in H such that

E~D!@H,iA#E~D!.aE~D!1K, ~2.1!

for some open intervalD containingl. HereE denotes the spectral measure ofH.
Proposition 1: The eigenvalues of H contained inm̃A(H) are all finitely degenerate and

cannot accumulate inm̃A(H).
In particular, the spectrum ofH is purely continuous in
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mA~H !ªm̃A~H !\sp~H !,

wheresp(H) denotes the set of eigenvalues ofH. One can prove easily thatmA(H) is in fact the
set of all real pointsl for which there exist a constanta.0 and an open intervalD{l such that

E~D!@H,iA#E~D!.aE~D!. ~2.2!

We have the following.
Theorem 5: Assume that eiAt leaves invariant the domain D(H) and that H is A-regular.

Then H is purely absolutely continuous inmA(H).
Remarks:

~1! This theorem is proved in Ref. 17, where one can find another version of this theorem in
the invariance of the domain under the action ofeiAt is replaced by the fact thatH has a gap
in its spectrum~which is clearly inadequate for the model considered here!. In Ref. 19 we have
eliminated this condition on the domain without asking the existence of a spectral gap fH,
but we askH to be ~locally! slightly more thanA-regular.

~2! Let us mention that ifH is of classC1(A) and @H,iA# is a bounded operator inH theneiAt

leaves invariant the domain ofH ~see Ref. 20!.

III. PROOF OF THEOREM 1

Using Mourre’s theory described in the last section the proof of Theorem 1 is reduc
prove thatH has a conjugate operator. This section is devoted to that.

~i! By straightforward computations we get

@H0 ,iA#51,

where A52 id/dx is the translation generator. ThenH0 is A-regular @in fact is even of class
C`(A) in the sense that the map of Definition 1 is of classC`], and

mA~H0!5R.

On the other hand,

@V,iA#52V8~x!,

which is obviously bounded inH if and only if V8 is bounded as a function.
To conclude the first part of Theorem 1 we have to prove that the Mourre estimate holds l
on R, i.e., m̃A(H)5R. For this, and according to

E~D!@H,iA#E~D!5E~D!2E~D!V8~x!E~D!, ~3.1!

it is sufficient to prove thatE(D)V8(x)E(D) is a compact operator inH. But this property is a
simple consequence of the following assertion which is proved by Bentoselaet al. in Ref. 7 ~see
also Ref. 21!. If a functionG is uniformly continuous and

lim
r→`

sup
xPR

U1r Ex2r

x1r

G~y!dyU50 ~3.2!

then E(D)G(x)E(D) is a compact operator inH. Clearly if V8 is bounded and uniformly con
tinuous, andV is bounded~which are ensured by our assumptions! then G5V8 satisfies~3.2!.
Then m̃A(H)5R follows from ~3.1! and ~3.2!, and Proposition 1 finishes the proof of part 1
Theorem 1.

~ii ! Let us prove the second part of Theorem 1. According to Theorem 5 and the last p
our proof we must only show thatH is A-regular and thatD(H) is invariant under the action o
eiAt. According to the obvious property
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e2 iA«VeiA«5V~x2«!.

the operatorV is A-regular if and only if the functionV is smooth in Zygmund’s sense, which
exactly our assumption~1.2!. Then the operatorH is A-regular.

The invariance of the domainD(H) under the action ofeiAt follows from the fact that the
commutator@H,iA#512V8 is a bounded operator inH. This finishes the proof of Theorem 1.

IV. PROOF OF THEOREM 3

We shall prove that the self-adjoint operator

A52 i ]x1

is strictly conjugate toH on R. Indeed, we have

@H0 ,iA#51.

In particularH0 is of classC`(A) andA is strictly conjugate toH0 onR, i.e.,mA(H0)5R. On the
other hand, we have

e2 i«AVei«A5V~x12«,x8!.

Then it is clear that the regularity assumptions on the functionV of Theorem 3 ensure thatV is
A-regular, and soH is too ~sinceH0 is!. Moreover, the commutator

@H,iA#512]x1
V

is obviously a bounded operator inH. And so the domain ofH is invariant under the action o
eiAt. It remains to show thatmA(H)5R. But this property follows easily as

@H,iA#512]x1
V>12~]x1

V!1~x!>12i~]x1
V!1i`.0

which is a global and strict Mourre estimate. This finishes the proof of the second part of The
3.

Remarks:
~1! Let us remark that when we only assume that

lim sup
uxu→`

~]x1
V!1),1

we only get a local Mourre estimate:
E~D!@H,iA#E~D!>aE~D!1K,

whereK is a compact operator,a512 lim supuxu→`(]x1
V)1.0 andD is any compact interval.

Which means thatm̃A(H)5R. Thus according to Proposition 1 there is only a discrete se
possible eigenvalues ofH and all these eigenvalues are finitely degenerate.

~2! We also mention the fact that our argument ignores completely if the particle is relativis
nonrelativistic. More precisely, our proof is still valid for any operator of the form

H5h~2i¹!2x11V~x!,
whereh is a divergent continuous function andV are as in Theorem 3. A physical interestin
situation is whenh(x)5A11uxu2. In such a case,H becomes

H5A2D112x11V~x!,
which describes the motion of a charged relativistic particle in a constant electric field.
ever, it is not clear whether or not Theorem 1 is still valid. To do this, we must describ
relative compact operatorV with respect toH05h(P)2x1 .
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V. PROOF OF THEOREM 2 AND 4

A. Proof of Theorem 4

Let us start by proving that Theorem 4 follows easily from Theorem 2 combined with Sim
result.22 Assume thatd52 and that

V~x1 ,x2!5V~x1!1V~x2!.

Then by a separation of variables we decomposeH as follows:

H5H1^ 111^ H2 ~5.1!

acting inL2(R) ^ L2(R), where

H152
d2

dx1
2 2x11V1~x1!, ~5.2!

H252
d2

dx2
2 1V2~x2!. ~5.3!

Let l be a fixed real number. Theorem 2 tells us that there exists a real-valued potentialV1 of class
C` such thatV1 andV18 are bounded and thatl is an eigenvalue ofH1 . On the other hand, le
$l i% i be a sequence of positive numbers. Then there exist~cf. Simon22! a potentialV2 of classC`

such that eachl i is an eigenvalue ofH2 . In particular, if the sequence$l i% i is dense in@0,̀ )
~which we assume from now! then we get that@0,̀ ),spp(H1). But the decomposition~5.1! of H
implies that the numbersl1l i belong to the setsp(H) of the eigenvalues ofH. It follows then
@l,`),spp(H). On the other hand, the potentialV5V11V2 is of class C` and ]1V(x)
5V18(x1) which is clearly bounded. Finally, an obvious induction allows us to do the s
construction for any dimensiond.

B. Proof of Theorem 2

Reduction of the problem. Without loss of generality one can assume thatl50. We recall that
our goal is to construct a real-valued potentialV of classC`(R) such that

~i! V andV8 are bounded and
~ii ! there existuPL2(R) solution of

2u92xu1Vu50.

Let us apply the Liouville transformation by setting forx>1

j5 2
3 x3/2, w~j!5x~j!1/4u~x~j!!.

One can show that~cf. Ref. 9! the problem~ii ! is equivalent to the following.
~ii 8! There exist a functionwPL2((1,̀ ),j22/3dj) solution of

2w91q~j!w5w. ~5.4!

The relation betweenq andV is

q~j!5
V~x~j!!

x~j!
1

5

36j2

or equivalently
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V~x!5xS q~j~x!!2
5

36j~x!2D .

Moreover, it is not difficult to see that ifq of classC`(1,̀ ) such that for each integerm>0

q(m)~j!5O~j21!, j→`

then V will be of classC`(R), suppV,@1,̀ ), and is bounded with its derivative@i.e. ~i! is
satisfied#. Let us mention however thatV9(x)5O(Ax) asx→`.

Remark:
Notice that the Wigner–Von Neuwmann example~cf. Ref. 23! provides a potential satisfying

all of the requirements of the problem~ii 8!. We give, however, another construction which can
extended to construct a potentialV ~bounded with its derivative! for which the one-dimensiona
Stark operator has a discrete sequence of eigenvalues~cf. Theorem 3!. In that case, ifd>2 then
V can be chosen bounded with its partial derivatives and leading to a dense point spectrum
R.

Construction of q. To constructq we apply the Pru¨fer transformation by setting

w5R cosf,

w85R sinf.

Straightforward computations give the equations

R8

R
5

1

2
q sin 2f,

~5.5!

f85211q cos2 f,

or equivalently

R25C expE
1

j

q sin 2f dt,

~5.6!

f85211q cos2 f.

The potentialq will have the form

q~x!5 (
k>1

qkj S j2jk

D D ,

wherejk and qk are two adequate sequences we have to construct, whileD.0 will be chosen
sufficiently small andj PC`((0,1)),j (x)>0,* j (x)51. Assume that

q sin 2f<2 1
2 q,

which is ensured iff(x)'3p/4 on the interval @jk ,jk1D#. ~Remark thatq50 on @jk

1D,jk11#.) Then
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E
1

`

R2
dj

j2/35CE
1

`S expE
1

j

q sin 2f dtD dj

j2/3

<C11C2(
k.0

E
jk

jk11
expS E

1

j

q sin 2f dtD dj

j2/3

<C11C2(
k.0

E
jk

jk11
expS 2

1

2 E1

j

q dtD dj

j2/3

<C11C2(
k.0

@jk112jk#expS 2
1

2 E1

jk
q dtD

<C11C2(
k.0

@jk112jk#exp2S D

2 (
j 51

j 5k

qj D .

Then if

jk112jk5O~1!,
~5.7!

qk5
C

jk
,

whereC is sufficiently large constant, then the right-hand member of the last inequality is
vergent, which means thatw lies in L2((1,̀ ),j22/3dj). Moreover, by construction the potentia
q satisfies

q(m)5O~1/j!, as x→`, ;m>0.

Thus, it is sufficient to construct by induction a sequencejk such thatf(jk)53p/4(modp) and
q(j)5qkj @(j2jk)/D# on the interval@jk ,jk1D#; andq(j)50 on the interval@jk1D,jk11#.

Assume thatjk is constructed, and let us setq(j)50 for j.jk1D. Integrating Eq.~5.6!
betweenjk1D,j, we obtain

f~j!52j1jk1D1f~jk1D!.

Let us choosejk11 as the nearest point on the right-hand side ofjk such thatf(jk11)
53p/4(modp). We also have,

jk112jk5f~jk1D!2f~jk11!2D5O~1!.

Let us integrate~5.6! betweenjk andj<jk1D to obtain

uf~j!2f~jk!u<D1E
jk

j

q dt<D1Dqk .

For D sufficiently small we ensure the fact thatf(j)'3p/4(modp) on @jk ,jk1D#. The con-
struction is now completed.
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Ideal quantum gases in D-dimensional space and
power-law potentials
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We investigate ideal quantum gases inD-dimensional space and confined in a
generic external potential by using the semiclassical approximation. In particular,
we derive density of states, density profiles and critical temperatures for Fermions
and Bosons trapped in isotropic power-law potentials. From such results, one can
easily obtain those of quantum gases in a rigid box and in a harmonic trap. Finally,
we show that the Bose–Einstein condensation can set up in a confining power-law
potential if and only ifD/21D/n.1, whereD is the space dimension andn is the
power-law exponent. ©2000 American Institute of Physics.
@S0022-2488~00!02012-0#

I. INTRODUCTION

For dilute alkali–metal atoms in magnetic or magneto-optical traps at very low tempera
the Bose–Einstein condensation has been achieved1 in 1995 and the Fermi quantum degenerac2

in 1999. These results have renewed the theoretical investigation on Bose and Fermi gase
In the experiments with Bosons, the system is weakly-interacting and the thermodyna

properties depend on thes-wave scattering length~for a review, see Ref. 3!. Nevertheless, by
using Feshback resonances, it is now possible to modify and also switch-off the atom
interaction.4 In the case of Fermions, thes-wave scattering between atoms in the same hyper
state is inhibited due the Pauli principle. It follows that at low temperature the dilute Fermi g
a fixed hyperfine state, is practically ideal.2

In previous papers we analyzed ground-state and vortex properties of Bose condens
different external potentials: harmonic potential,5–10 toroidal potential,11 and double-well
potential.12 Recently, we have also afforded the study of the thermodynamics of interacting
gases in harmonic potential.13,14

In this paper, we investigate the thermal properties of both Bose and Fermi ideal gase
generic confining external potential. All the calculations are performed by assumin
D-dimensional space. Such an assumption is motivated by esthetic criteria but also by
experiments with degenerate gases in systems with reduced or fractal dimension.3 We analyze in
detail the isotropic power-law potential, from which one easily deduces the results of a rigi
and a harmonic trap.

II. CONFINED IDEAL FERMI AND BOSE GASES

Let us consider a confined quantum gas of noninteracting identical Fermions~or Bosons! in
D-dimensional space. In the grand canonical ensemble of equilibrium statistical mechanics15 the
average numberNa of particles in the single-particle stateua& with energyea is given by

Na5
1

eb(ea2m)61
, ~1!

a!Electronic mail: salasnich@mi.infm.it
80160022-2488/2000/41(12)/8016/9/$17.00 © 2000 American Institute of Physics
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where the sign1 (2) is for Fermions~Bosons!, m is the chemical potential andb51/(kT) with
k the Boltzmann constant andT the absolute temperature. In general, given the single-par
function Na , the average total numberN of particles of the system reads

N5(
a

Na . ~2!

This condition fixes the chemical potentialm. Thus,m is a function ofb and N. In the case of
Fermions,m has no limitations and at zero temperaturem is called Fermi energyEF . From the
Fermi energyEF one immediately obtains the Fermi temperatureTF5EF /k. Below the Fermi
temperature, the Fermions begin to fill the lowest available single-particle states in acco
with the Pauli exclusion Principle: one has the Fermi quantum degeneracy.15 In the case of
Bosons,m cannot be higher than the lowest single-particle energy levele0 , i.e., it must bem
,e0 . When m→e0 the functionN0 diverges and consequently alsoN diverges. The physica
meaning is that the lowest single-particle state becomes macroscopically occupied and one
so-called Bose–Einstein condensation~BEC!.15 It is a standard procedure to calculate the co
densed fractionN0 /N and also the BEC transition temperatureTB by studying the nondivergen
quantityN2N0 at m5e0 as a function of the temperature.3,15

In the semiclassical limit, theD-dimensional system is described by a continuum of states15–17

and, instead ofea , one uses the classical single-particle phase-space energye(r ,p), where r
5(r 1 , . . . ,r D) is the position vector andp5(p1 , . . . ,pD) is the linear momentum vector. In thi
way one obtains from Eq.~1! the single-particle phase-space distribution

n~r,p !5
1

eb(e(r,p)2m)61
. ~3!

Note that the accuracy of the semiclassical approximation is expected to be good if the num
particles is large and the energy level spacing is smaller thenkT.15–17Because of the Heisenber
principle, the quantum elementary volume of the single-particle 2D-dimensional phase-space
given by (2p\)D, where\ is the Planck constant.16 It follows that the average numberN of
particles in theD-dimensional space can be written as

N5E dDrdDp

~2p\!D n~r,p !5E dDrn~r !5E dDpn~p!, ~4!

where

n~r !5E dDp

~2p\!D n~r,p ! ~5!

is the spatial distribution, and

n~p!5E dDr

~2p\!D n~r,p ! ~6!

is the momentum distribution. It is important to observe that the total numberN of particle can
also be written as

N5E
0

`

der~e!
1

eb(e2m)61
, ~7!

wherer(e) is the density of states. It can be obtained from the semiclassical formula
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r~e!5E dDrdDp

~2p\!D d~e2e~p,r !!, ~8!

whered(x) is the Dirac delta function.
In the case of Fermions, at zero temperature, i.e., in the limitb→` wherem→EF ~the Fermi

energy!, the phase-space distribution~3! becomes

n~r,p !5Q~EF2e~r,p !!, ~9!

whereQ(x) is the Heaviside step function.15,16

In the case of Bosons, below the BEC transition temperatureTB , Eq. ~3! describes only the
noncondensed thermal cloud. Thus, the semiclassical quantization renormalizes the exa
distribution ~1! that is divergent. Because there is not a unique way to translate wave func
into a phase-space distribution,16 one cannot introduce an exact single-particle phase-space d
bution for the Bose condensate. Nevertheless, the exact spatial distribution of the Bose con
is n0(r )5uC(r )u2, whereC(r ) is called order parameter or macroscopic wave function of
condensate, normalized to the numberN0 of condensed Bosons. For an ideal Bose gas,
functionC(r ) is simply the eigenfunction of the lowest single-particle state of the system. In
paper we do not study the density profiles of the Bose condensed fraction because, for a
teracting gas, their shape is not temperature dependent; only their normalization is a func
temperature. Actually, to calculate the BEC transition temperatureTB and the condensed fractio
N0 /N it is sufficient to study the noncondensed fraction~thermal cloud!. ~For a recent discussion
of the properties of the Bose condensate, see Ref. 3 and also Refs. 5–14.!

III. GASES IN EXTERNAL POTENTIAL

Let us consider the ideal Fermi~Bose! gas in a confining external potentialU(r ) and in a
D-dimensional space. The classical single-particle energy is defined as

e~r,p !5
p2

2m
1U~r !, ~10!

wherep2/(2m) is the kinetic energy andm is the mass of the particle. TheD-dimensional vectors
r5(x1 , . . . ,xD) and p5(p1 , . . . ,pD) are, respectively, the position and momentum of the p
ticle.

First, we note that, by using Eqs.~8! and ~10!, the semiclassical density of states can
approximated as

r~e!5S m

2p\2D D/2 1

GS D

2 D E dDr ~e2U~r !!~D22!/2, ~11!

whereG(n) is the factorial function. Then, we introduce the Fermi and Bose functions.18,19

Definition 1: The Fermi function is given by

f n~z!5
1

G~n!
E

0

`

dy
ze2yyn21

11ze2y ,

and the Bose function is

gn~z!5
1

G~n!
E

0

`

dy
ze2yyn21

12ze2y ,

whereG(n) is the factorial function.
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Remark 1: The Fermi and Bose functions are connected by the relation fn(z)52gn(2z).
For uzu,1 the two functions can be written as

gn~z!5(
i 51

`
zi

i n ,

f n~z!5(
i 51

`

~21! i 11
zi

i n .

One finds also that gn(1)5z(n), wherez(n) is the Riemannz-function.18,19

Now we state two theorems about ideal Fermi and Bose gases in external potential. R
that we work in the semiclassical limit.3,15,16

Theorem 1.1: For an ideal Fermi gas in an external potential U(r ) and D-dimensional
space, the finite temperature spatial distribution is given by

n~r !5
1

lD f D/2~eb(m2U(r ))!,

wherel5(2p\2b/m)1/2 is the thermal length andm is the chemical potential. The zero temper
ture spatial distribution is

n~r !5S m

2p\2D D/2 1

GS D

2
11D ~EF2U~r !!D/2Q~EF2U~r !!,

where EF is the Fermi energy.
Proof: One finds the spatial distribution from Eq.~5! by integrating over momenta Eq.~3!

~with the sign1!. In particular, one has

n~r !5E dDp

~2p\!D

1

eb(p2/2m 1U(r )2m)11

5
1

~2p\2!D

DpD/2

GS D

2
11D E0

`

dp
pD21eb(m2U(r ))e2b(p2/2m)

11eb(m2U(r ))e2b(p2/2m)
,

where DpD/2/G((D/2) 11) is the volume of theD-dimensional unit sphere. Then, with th
position y25b (p2/2m) and using the Fermi functionf D/2(z) with z5eb(m2U(r )), one gets the
finite temperature spatial distribution. Finally, one obtains the zero-temperature result by o
ing that

n~r !5E dDp

~2p\!D QS EF2
p2

2m
2U~r ! D

5
1

~2p\2!D

DpD/2

GS D

2
11D Q~EF2U~r !!E

0

A2m(EF2U(r ))
dp pD21

5
1

~2p\2!D

DpD/2

GS D

2
11D Q~EF2U~r !!

1

D
~A2m~EF2U~r !!D,

where the spatial distribution is taken from Eq.~8!. h
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In the same way, but using the sign2 in Eq. ~3! and the Bose functiongD/2(z) with z
5eb(m2U(r )), one can easily prove also the following theorem.

Theorem 1.2: For an ideal Bose gas in an external potential U(r ), the finite temperature
noncondensed spatial distribution is given by

n~r !5
1

lD gD/2~eb(m2U(r ))!,

wherel5(2p\2b/m)1/2 is the thermal length andm is the chemical potential. h

These two theorems are the generalization, of the formulas for ideal homogenous Fer
Bose gases in a box of volumeV ~for D53, see Ref. 15!. They show that, in the semiclassic
limit, the nonhomogenous results are obtained with the substitutionm→m2U(r ), also called
local density approximation. In particular, withU(r )50, from the previous theorems, one obtai
the Fermi temperatureTF and the Bose temperatureTB for quantum gases in a rigid box, b
imposing the normalization condition~4!. The results are

EF5kTF5S 2p\2

m D FGS D

2
11DnG2/D

and

kTB5S 2p\2

m D S n

zS D

2 D D 2/D

,

wheren5N/V is the homogenous density of particles~again, forD53, see Ref. 15!.
In general, to find the momentum distribution, the Fermi temperature and the Bose tem

ture, it is necessary to specify the external potential. In many experiments with alkali–
atoms, the external trap can be accurately modeled by a harmonic potential.3 More generally, one
can consider power-law potentials, which are important for studying the effects of adia
changes in the trap. The density of states of a quantum gas in the power-law potentiaU(r )
5Arn can be calculated from Eq.~11! and reads

r~e!5S m

2\2D D/2S 1

AD D/m GS D

m
11D

GS D

2
11DGS D

2
1

D

mD e~D/2!1 ~D/m! 21. ~12!

We can now state two theorems about ideal Fermi and Bose gases in isotropic pow
potentials.

Theorem 2.1: Let us consider an ideal Fermi gas in a power-law isotropic potential U(r )
5Arn with r5ur u5(( i 51

D xi
2)1/2. The finite temperature momentum distribution is given by

n~p!5
1

~2\Ap!D

GS D

n
11D

GS D

2
11D S 1

bAD D/n

f D/n~eb(m2 ~p2/2m!)!.

The zero temperature momentum distribution is

n~p!5
1

~2\Ap!D S 1

AD D/nS EF2
p2

2mD D/n

QS EF2
p2

2mD .
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The Fermi energy EF and the Fermi temperature TF are given by

EF5kTF5F S 2\2

m D D/2

AD/n

GS D

2
11D

GS D

n
11D GS D

2
1

D

n
11DNG 1/@~D/2!1 ~D/n!#

,

where N is the number of Fermions in the gas.
Proof: One finds the finite temperature momentum distribution from Eq.~6! and by integrat-

ing over space coordinates the Eq.~3! ~with the sign1!. In particular, one has

n~p!5E dDr

~2p\!D

1

eb(p2/2m) 1Arn2m)11
5

1

~2p\2!D

DpD/2

GS D

2
11D E0

`

dr
r D21eb(m2p2/2m)e2bArn

11eb(m2p2/2m)e2bArn ,

where againDpD/2/G(D/2) 11) is the volume of theD-dimensional unit sphere. Settingy2

5bArn and using the definition of Fermi functionf D/2(z) with z5eb(m2 (p2/2m), one finds the first
formula of the theorem. The zero-temperature results are obtained by observing that

n~p!5E dDr

~2p\!D QS EF2
p2

2m
2U~r ! D

5
1

~2p\2!D

DpD/2

GS D

2
11D QS EF2

p2

2mD E
0

A2 ~1/n!(EF2 p2/2m)1/n

dr r D21

5
1

~2p\2!D

DpD/2

GS D

2
11D QS EF2

p2

2mD 1

D S A2 ~1/n!S EF2
p2

2mD 1/nD D

,

where the momentum distribution is taken from Eq.~9!. The Fermi energyEF and the Fermi
temperatureTF are found from the normalization condition of the zero-temperature momen
distribution. Namely, one finds

N5E dDp
1

~2\Ap!D S 1

AD D/nS EF2
p2

2mD D/n

QS EF2
p2

2mD
5

1

~2\Ap!D S 1

AD D/nE
0

A2mEF
dp pD21S EF2

p2

2mD D/n

.

Settingx5 p2/2m and observing18,19 that

E
0

EF
dx x~D/2! 21~EF2x!D/n5

GS D

2 DGS D

n
11D

GS D

2
1

D

n
11D EF

~D/2! 1 ~D/n! ,

one obtains
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N5S m

2\2D D/2S 1

AD D/n GS D

2 DGS D

n
11D

GS D

2
1

D

n
11D EF

~D/2! 1 ~D/n! .

Finally, by inverting this formula one gets the Fermi energyEF . h

Theorem 2.2: Let us consider an ideal Bose gas in a power-law isotropic potential U(r )
5Arn with r5ur u5(( i 51

D xi
2)1/2. The finite temperature noncondensed momentum distributio

given by

n~p!5
1

~2\Ap!D

GS D

n
11D

GS D

2
11D S 1

bAD D/n

gD/n~eb(m2 p2/2m)! .

The Bose transition temperature TB reads

kTB5F S 2\2

m D D/2

AD/n

GS D

2
11D

GS D

n
11D

1

zS D

2
1

D

n D NG 1/~D/21D/n!

and the condensed fraction is

N0

N
512S T

TB
D ~D/2! 1 ~D/n!

,

where N is the number of bosons in the gas.
Proof: The finite temperature momentum distribution can be found by following the pr

dure used in the proof of the previous theorem: From Eq.~6! and by integrating over spac
coordinates Eq.~3! ~but with the sign2!. It follows that one must use the Bose functiongD/2(z)
with z5eb(m2 (p2/2m)). At the BEC transition temperatureTB , the chemical potentialm is zero and
at m50 the numberN of particles can be analytically determined. One has

N5E dDp
1

~2\Ap!D

GS D

n
11D

GS D

2
11D S 1

bAD D/n

gD/n~e2b ~p2/2m!!

5
1

~2\Ap!D

GS D

n
11D

GS D

2
11D

DpD/2

GS D

2
11D S 1

bAD D/n

(
i 51

`
1

i D/2 E
0

`

dppD21e2 ib ~p2/2m!,

where the Bose function has been written as a power series~see Remark 1!. Setting x
5 ib (p2/2m) and observing18,19 that

E
0

`

dx xD/2e2x5GS D

2
11D ,

and also
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(
i 50

`
1

i ~D/2! 1 ~D/n! 5zS D

2
1

D

n D ,

one obtains

N5~kT!~D/2! 1 ~D/n!S m

2\2D D/2S 1

AD D/n GS D

n
11D zS D

2
1

D

n D
GS D

2
11D .

By inverting the functionN5N(T) one finds the transition temperatureTB . Below TB , a mac-
roscopic numberN0 of particle occupies the single-particle ground-state of the system. It foll
that the previous equation gives the numberN2N0 of noncondensed particles and the conden
fraction isN0 /N512(T/TB)D/21D/n. h

This last theorem generalizes the BEC results obtained withD53 by Bagnato, Pritchard, an
Kleppner.17

It is important to observe that from the two previous theorems one easily derives the th
dynamic properties of quantum gases in harmonic traps and in a rigid box. In fact, by setn
52 andA5mv2r 2/2 one gets the formulas for the Bose and Fermi gases in a harmonic tra~in
the case of an anisotropic harmonic potential,v is the geometric average of the frequencies of
trap!. The results for a rigid box are instead obtained by lettingD/n →0, where the density of
particles per unit length is given byN/VD and VD5DpD/2/G((D/2) 11) is the volume of the
D-dimensional unit sphere.

Finally, one notes that in the formula of the BEC transition temperatureTB it appears the
function z((D/2) 1 (D/n)). Becausez(x),` for x.1 but z(1)5`,17,18 one easily deduces th
following corollary.

Corollary 1: Let us consider an ideal Bose gas in a power-law isotropic potential U(r )
5Arn with r5ur u5(( i 51

D xi
2)1/2. BEC is possible if and only if the following condition is satisfie

D

2
1

D

n
.1,

where D is the space dimension and n is the exponent of the confining power-law potenti. h

This is a remarkable inequality. For example, forD52 one finds the familiar result that ther
is no BEC in a homogenous gas (D/n →0) but BEC is possible in a harmonic trap (n52).
Moreover, one obtains that forD51 BEC is possible with 1,n,2.

IV. CONCLUSIONS

By using the grand canonical ensemble of statistical mechanics and the semiclassical a
mation, we have derived some thermodynamic properties of ideal quantum gases in a g
isotropic power-law confining external potential. We have calculated the density of states, s
and momentum distributions and obtained analytical formulas for the Fermi energy, the
transition temperature, and the Bose condensed fraction. Note that nowadays the spa
momentum density profiles are quantities easily experimentally measured. We have also
that BEC in an isotropic power-law potential is possible if and only ifD/21D/n, whereD is the
space dimension andn is the exponent of the confining power-law potential.

The present investigation is the starting point for future analyses of interacting quantum
in D-dimensional space and generic trapping potential.
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The semiclassical propagator for spin coherent states
Michael Stone and Kee-Su Park
University of Illinois, Department of Physics, 1110 W. Green St., Urbana, Illinois 61801
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We use a continuous-time path integral to obtain the semiclassical propagator for
minimal-spread spin coherent states. We pay particular attention to the ‘‘extra
phase’’ discovered by Solari and Kochetov, and show that this correction is related
to an anomaly in the fluctuation determinant. We show that, once this extra factor
is included, the semiclassical propagator has the correct short time behavior to
O(T2), and demonstrate its consistency under dissection of the path. ©2000
American Institute of Physics.@S0022-2488~00!01412-2#

I. INTRODUCTION

Coherent-state path integrals for spin were introduced by Klauder,1 and by Kuratsuji and
Suzuki.2 Related phase space path integrals were introduced by Jevicki and Papanicolaou,3 and by
Nielsen and Ro¨hrlich.4 For a review, see Refs. 5 and 6. These path integrals have attr
attention in connection with geometric quantization,7 and for providing examples hinting at pos
sible infinite-dimensional extensions of the Duistermat–Heckman theorem8 on conditions for the
exactness of the stationary phase approximation.9,10 Perhaps their most significant practical app
cations, however, have been in computations of spin tunneling in the semiclassical limit. He
spin path-integral formalism gives a good qualitative description of the tunneling process11–13

including the simplest and most vivid picture of the topological quenching of spin tunneling14 that
has recently been seen in the magnetic molecule Fe8.

15 When we require precise quantitativ
results, however, the spin coherent-state path integral runs into problems: A straightforwa
plication of instanton methods to compute the tunnel splitting16,17yields answers that are incorre
beyond the leading exponential order.18 A full derivation of the splitting, including the correc
prefactor, has only recently been provided by Belinicher, Providencia, and Providencia.19 These
authors showed that the continuum limit of the discrete path integral is rather delicate, and i
computation the simplicity of the instanton method is lost. These difficulties have lead to the
path integral acquiring a reputation for being unreliable—or, even worse, being meaningfu
in its discrete-time form.20 Many workers in the field have sought alternatives to path integ
such as discrete WKB methods.21–23

This paper is intended to effect a rehabilitation of the continuous-time spin coherent-stat
integral. We advertise and explain the origin of a previously discovered, but largely unkn
correction to the naive form of the semiclassical propagator. This ‘‘extra phase’’ was obtain
Solari24 as a result of a careful evaluation of the discrete path form of the path integral. It
appears, as a product of a manipulation, apparently carried out for convenience, in a pa
Kochetov.25 We derive it here by pointing out that the functional determinant resulting from
fluctuation integral about the classical path possesses an anomaly. Regulating the determin
manner consistent with the underlying causal structure leads to the extra contribution.

The structure of the paper is as follows: In Sec. II we review spin coherent states bu
highest- or lowest-weight spin-j states. We focus primarily on their holomorphic properties.
section three we review the properties of the classical action that appears in the path integ
spin, stressing the importance of boundary terms in avoiding the overdetermination proble
Sec. IV we compute the gaussian integral over small fluctuations about the classical pat
80250022-2488/2000/41(12)/8025/25/$17.00 © 2000 American Institute of Physics
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obtain the extra-phase correction. In Sec. V we verify that, once the extra contribution is take
account, the semiclassical propagator has the correct short time behavior. This verifica
immediate at first order inT, but the agreement between our expression and the exact res
O(T2) provides a significant test of the correctness of our result. In Sec. VI we check the c
tency of the expression for the propagator under the dissection of the path. We find th
semiclassical propagator doesnot pass this test unless we repartition terms between the expo
and the prefactor. This forces us to regard the large parameter in the semiclassical expan
being j 11/2, rather thanj . As a by-product, this observation resolves the mystery of the diver
normalization factor that appears in most treatments of the semiclassical propagator. Fina
Sec. VII, we compute the semiclassical propagator for the HamiltonianĤ5nJz

2 . We confirm that
our expression obtains the correct leading and next to leading terms in the large-j expansion.

II. SPIN COHERENT STATES

We define a family of spin coherent states26 by

uz&5exp~zĴ1!u j ,2 j &. ~2.1!

These states are not normalized, but have the advantage of being holomorphic in the paramz.
Consequently, matrix elements such as^z8uÔuz& will be holomorphic functions of the variablez,
and antiholomorphic functions of the variablez8.

The inner product of two of these states is

^z8uz&5~11 z̄8z!2 j , ~2.2!

and the left eigenstates^ j ,mu of Ĵ2 and Ĵ3 have coherent-state wave functions,

cm
(1)~z![^ j ,muz&5A 2 j !

~ j 2m!! ~ j 1m!!
zj 1m. ~2.3!

This means that a general element of the spin-j Hilbert space may be represented by a polynom
in z of degreen<2 j .

As with any family of generalized coherent states derived from a unitary irreducible re
sentation of a compact group, Shur’s lemma provides us with an overcompleteness relation
present case this reads

15
2 j 11

p E d2z

~11 z̄z!2 j 12 uz&^zu. ~2.4!

Here 2j 11 appears because it is the dimension of the representation. The symbold2z is shorthand
for dx dy, and the factor 1/(11 z̄z)2 combines with this to make the invariant measure on
coset SU~2!/U~1!. This coset is, of course, the two-sphere,S2, equipped with stereographic coo
dinates. The south pole, corresponding to spin down, is atz50, while the north pole, spin up, is
at z5` –the one-point compactification of the complex plane. The remaining factor in the
sure, 1/(11 z̄z)2 j , serves to normalize the states.

The wave functionscm
(1)(z) are singular at the north pole,z5`. Indeed there is no actual sta

u`& because the phase of this putative limiting state would depend on the direction from whi
approach the point at infinity. We may, however, define a second family of states

uz&25exp~zĴ2!u j , j &, ~2.5!

and form the wave functions,

cm
(2)~z!5^ j ,muz&2 . ~2.6!
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These states and wave functions are well defined in the vicinity of the north pole, but singula
the south pole.

To find the relation betweenc (2)(z) andc (1)(z) we note that the matrix identity

F1 z

0 1GF 0 1

21 0G5F 1 0

z21 1GF2z 0

0 2z21GF1 2z21

0 1 G , ~2.7!

coupled with the faithfulness of the spin-1
2 representation of SU~2!, implies the relation

exp~zĴ1!ŵ5exp~z21Ĵ2!~2z!2Ĵ3 exp~2z21Ĵ1!, ~2.8!

whereŵ5exp(ipĴ2) is the generator of the Weyl group of SU~2!. We also note that

ŵu j , j &5~21!2 j u j ,2 j &, ŵu j ,2 j &5u j , j &. ~2.9!

Thus,

cm
(1)~z!5^ j ,muezĴ1u j ,2 j &

5~21!2 j^ j ,muezĴ1ŵu j , j &

5~21!2 j^ j ,muez21Ĵ2~2z!2Ĵ3e2z21Ĵ1u j , j &

5~21!2 j~2z!2 j^ j ,muez21Ĵ2u j , j &

5z2 jcm
(2)~z21!. ~2.10!

The coherent-state wave functionscm
(1) andcm

(2) may therefore be regarded as composing a sin
global section,cm , of a holomorphic line bundle with transition functionz2 j relating its compo-
nentscm

(1)(z), and cm
(2)(z[1/z) in the two coordinate patches. It is the requirement that

transition function and its inverse be holomorphic and single valued in the overlap of the co
nate patches that forces 2j to be an integer. In the sequel, all coherent states, unless othe
specified, will be drawn from the first family,uz&.

The above construction is an example of the Borel–Weil realization of representatio
compact groups as sections of holomorphic bundles.27 It serves as the paradigm for the mo
general theory of geometric quantization.7,28 Because global analyticity is characteristic of t
minimal-spread coherent states built on highest-~or lowest-! weight states, and also serves~via the
transition function! to specify the Hilbert space, it is a property that should be maintained o
by-order in any approximation scheme.

For physical interpretations we must normalize the coherent states. This we do by multi
them by

N~ z̄,z!5~11 z̄z!2 j . ~2.11!

For example,

N2^zuĴ3uz&5 j
z̄z21

z̄z11
, and N2^zuĴ1uz&5

2 j z̄

z̄z11
. ~2.12!

If we recall the connection between stereographic and spherical polar coordinates,

z5e2 if cot
u

2
, ~2.13!

we see that
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j
z̄z21

z̄z11
5 j cosu, and

2 jz

z̄z11
5 je2 if sinu. ~2.14!

We also note that

N2^zuĴ3
2uz&5 j S j 2

1

2D S z̄z21

z̄z11D 2

1
1

2
j 5 j S j 2

1

2D cos2 u1
j

2
. ~2.15!

Similarly,29

N2^zuĴ1
2uz&5 j S j 2

1

2D sin2 u cos2 f1
j

2
,

N2^zuĴ2
2uz&5 j S j 2

1

2D sin2 u sin2 f1
j

2
. ~2.16!

ThusN2^zuĴ2uz&5 j ( j 11), as it should.
The normalized wave functionsN( z̄,z)cm

(1)(z) have their maximum amplitude on the lines
latitude

uzu25uzmu25
j 1m

j 2m
~2.17!

corresponding to the polar angleum5cos21 m/j. Note that

N2^zmuĴ3uzm&5 j
uzmu221

uzmu211
5m. ~2.18!

The variance, in terms ofm, is given by

~N2^Ĵ3
2&2N4^Ĵ3&

2!5
1

2
j S 12S z̄z21

z̄z11D 2D5
1

2
j ~12cos2 u!. ~2.19!

Since m; j cosu, the normalized wave functions have zonal spreadDu;1/Aj . As j becomes
large the quantum spin becomes more localized, and more classical.

III. SPIN ACTION

We wish to find a semiclassical approximation for the propagator

K~ z̄ f ,z i ,T!5^z f ue2 iĤ Tuz i& ~3.1!

in the form

Kscl~ z̄ f ,z i ,T!5K reduced•exp$Scl~ z̄ f ,z i ,T!%. ~3.2!

HereScl is the action for a classical path going from the pointz5z i to the pointz5z f in time T.
The action functional is expected to be that appearing in the path integral representation
exact propagator. The amplitudeK reduced, thepre-exponential factor, is then given by a gaussia
approximation to the integral over deviations from the classical trajectory. Such a semicla
approximation should be accurate whenj is large.

If a continuous-time path integral is ‘‘derived’’ by insertingN intermediate overcompletenes
relations into~3.1! and taking a formal limitN→`, then we find25
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K~ z̄ f ,z i ,T!5E
z i

z̄ f dm~ z̄,z!exp$S~ z̄~ t !,z~ t !!%, ~3.3!

where the path measuredm is

dm~ z̄~ t !,z~ t !!5 lim
N→`

)
n51

N
2 j 11

p

d2zn

~11 z̄nzn!2 j 12 , ~3.4!

and the actionS( z̄(t),z(t)) is given by

S~ z̄~ t !,z~ t !!5 j $ ln~11 z̄ fz~T!!1 ln~11 z̄~0!z i !%1E
0

TH j
zGz2 z̄ż

11 z̄z
2 iH ~ z̄,z!J dt. ~3.5!

Here the classical Hamiltonian,H( z̄,z), is related to the quantumĤ by

H~ z̄,z!5^zuĤuz&/^zuz&. ~3.6!

The pathsz(t), z̄(t) obey the boundary conditionsz(0)5z i , z̄(T)5 z̄ f , but z̄(0), z(T), being
actually z̄(01e) andz(T2e), are unconstrained, and are to be integrated over.25

When we regardS as the phase-space action for a classical system,30 the explicit boundary
terms, which appear naturally in the discretized path integral, serve to ensure that both th
order Hamilton equations and their boundary conditions are compatible with the action prin
To see this, make a general variation in the trajectory, including variations in the endpoint
find that

dS5
2 jz~T!

11 z̄ fz~T!
d z̄~T!1

2 j z̄~0!

11 z̄~0!z i

dz~0!

1E
0

TH dz~ t !S 2 jzG

~11 z̄z!2
2 i

]H

]z
D 1d z̄~ t !S 2

2 j ż

~11 z̄z!2
2 i

]H

] z̄
D J dt. ~3.7!

There are no boundary contributions proportional tod z̄(0) or dz(T) because of a cancellation o
such terms arising from an integration by parts against those arising from the variation
explicit boundary terms. Equating the variation of the action to zero therefore requires the cla
path to obey the Hamilton equations,

zG5 i
~11 z̄z!2

2 j

]H

]z
, ż52 i

~11 z̄z!2

2 j

]H

] z̄
, ~3.8!

together with boundary conditions that fixz(0)5z i , and z̄(T)5 z̄ f .
The quantitiesz̄(0) andz(T) are not fixed by the boundary conditions, but can be found

solving the equations of motion. If we know the action for the classical path, they can also b
off from the Hamilton–Jacobi equations that follow from~3.7!, viz.,

]Scl

]z̄ f

5
2 jz~T!

11 z̄ fz~T!
,

]Scl

]z i

5
2 j z̄~0!

11 z̄~0!z i

. ~3.9!

In generalz̄(0) will not be the complex conjugate ofz(0)[z i , nor will z(T) be the complex
conjugate ofz̄(T)[z̄ f . This means that if we writez as x1 iy and z̄5x2 iy , then, except in
special cases,x andy are not real numbers.

The Hamilton–Jacobi relations also tell us that
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]Scl

]z̄ i

5
]Scl

]z f
50, ~3.10!

showing thatScl is a holomorphic function ofz i , and an antiholomorphic function ofz f . These
analyticity properties ofScl coincide with those ofK. This is reasonable since expScl is the leading
approximation toK, and we would expect analyticity to be preserved term-by-term in the larj
expansion. Finally,

]Scl

]T
52 iH ~ z̄ f ,z~T!!. ~3.11!

The leading semiclassical approximation is exact when the quantum HamiltonianĤ is an
element of the Lie algebra of SU~2!. For example, ifĤ5v Ĵ3 , then

H~ z̄,z!5N2^zuĤuz&5v j
z̄z21

z̄z11
~3.12!

and

]H

]z
5

2 j v z̄

~11 z̄z!2 ,
]H

] z̄
5

2 j vz

~11 z̄z!2 , ~3.13!

The equations of motion are therefore

zG5 iv z̄, ż52 ivz. ~3.14!

The solutions obeying the appropriate boundary conditions are

z~ t !5e2 ivtz i , z̄~ t !5eiv(t2T)z̄ f , ~3.15!

so

z~T!5e2 ivTz i , z̄~0!5e2 ivTz̄ f . ~3.16!

It will only be in exceptional circumstances thatz(T)5( z̄ f)* or z̄(0)5(z i)* .
Inserting the solutions~3.15! into the action we find

Scl~ z̄ f ,z i ,T!5 j $ ln~11 z̄ fz ie
2 ivT!1 ln~11 z̄ fz ie

2 ivT!%1E
0

TH i j v
2z̄z

11 z̄z
2 i j v

z̄z21

zz11J dt

52 j ln~11 z̄ fz ie
2 ivT!1 i j vT. ~3.17!

This is to be compared with the exact propagator

K5^z f ue2 iĤ Tuz i&5eiv jT~11e2 ivTz̄ fz i !
2 j5expScl . ~3.18!

When the Hamiltonian is a more general element of the enveloping algebra~i.e., a polynomial in
the generators! there will be corrections to this simple result.

IV. FLUCTUATION DETERMINANT

The prefactor in the semiclassical propagator comes from integration over Gaussian fl
tions about the classical trajectory. To evaluate these, we consider the second variation
classical action, holdingz(0)5z i and z̄(T)5 z̄ f fixed. We will write
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S5Scl1dS1 1
2 d2S1¯ , ~4.1!

where

d2S52 i E
0

T 2 j

~11 z̄z!2 ~d z̄ dz!F2 i ] t1A B

B̄ i ] t1AG S dz
d z̄Ddt. ~4.2!

Here,

A5
1

2 S ]

] z̄

~11 z̄z!2

2 j

]H

]z
1

]

]z

~11 z̄z!2

2 j

]H

] z̄ D ,

B5
]

] z̄

~11 z̄z!2

2 j

]H

] z̄
,

B̄5
]

]z

~11 z̄z!2

2 j

]H

]z
. ~4.3!

Whenz(t), z̄(t) are the classical path, thendS50.
On making a change of variables,

dz5~11 z̄z!h,

d z̄5~11 z̄z!h̄, ~4.4!

we see that we have to compute the quadratic path integral

K reduced}E d@h#d@h̄#expH 22i j E
0

T 1

2
~ h̄ h!F2 i ] t1A B

B̄ i ] t1AG S h
h̄ DdtJ . ~4.5!

This path integral is proportional to Det2 1/2D, where the matrix differential operator

D5F2 i ] t1A B

B̄ i ] t1AG52 is3] t1M ~4.6!

is subject to the boundary conditionsh(0)50 andh̄(T)50. ~We will use the symbol ‘‘Det’’ for
functional determinants and ‘‘det’’ to denote the determinant of a finite matrix. Similarly ‘‘T
and ‘‘tr.’’ !

There are several subtleties involved in calculating DetD. The most obvious is that the
boundary conditions imposed onD arenot in the class that make it self adjoint. AlthoughD and
D † are formally the same differential operator, self-adjointness requires, in addition, that
domains of definition coincide.31 It is not hard to see that the only boundary condition onD that
leads to an identical boundary condition forD † is h(0)5eiu0h̄(0) andh(T)5eiuTh̄(T) for some
real anglesu0 , uT . Our h(0)50, h̄(T)50 boundary conditions are not in this class. Indeed
B5B̄50 for example, thenD with our boundary conditions hasno eigenfunctions—never mind
a complete set. The determinant cannot be expressed as an infinite product of eigenvalue
fore. Diagonalizability is not, however, a fundamental requirement for defining a determi
There exists a well-defined Green functionG5D 21, and we should be able to obtain the dete
minant by varying the parameters and using the identityd ln DetD5Tr$D 21dD%, which holds
even if D is not diagonalizable.

A potential pitfall in this approach is that the variationd ln DetD is given by
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d ln DetD5Tr$D 21dD%5E
0

T

tr$G~ t,t !dM %dt, ~4.7!

but the Green functionG(t,t8) is discontinuous att5t8. We might have a different expression fo
the variation depending on whether we choose to evaluateG(t,t) as G(t,t1e) or as G(t,t
2e). The jump inG is, however, proportional tos3 , and tr$s3dM %[0, so we have reason t
hope that there is no actual ambiguity.

If we agree to interpretG(t,t) as 1
2(G(t,t1e)1G(t,t2e)), then the formal calculation is

straightforward,32 and we merely summarize the results.
We begin by defining the matrix

F~ t !5S hT~ t ! h0~ t !

h̄T~ t ! h̄0~ t !
D . ~4.8!

Here the column vector (h0(t), h̄0(t))T is a solution ofDC50 obeying the boundary conditio
h0(0)50, h̄0(0)51, and (hT(t), h̄T(t))T is a solution withhT(T)51, h̄T(T)50. The deter-
minant of F(t) is an analog of the Wronskian and is independent oft. We find that DetD
5C detF, whereC is some constant independent ofH.

Since detF is time independent, we may conveniently evaluate it att5T, where

C21 DetD5U1 h0~T!

0 h̄0~T!
U5h̄0~T!, ~4.9!

or at t50, where

C21 DetD5UhT~0! 0

h̄T~0! 1
U5hT~0!. ~4.10!

By relaxing the conditions thath(T)5h̄(0)51, we may interpret these results in terms of t
variation of the endpoints of the classical trajectory as we vary the initial points. That is,

C21 DetD5S ]h̄~0!

]h̄~T! D
21

5S ]h~T!

]h~0! D
21

, ~4.11!

or, in terms of the original variables,

C21 DetD5
11 z̄~0!z i

11 z̄ fz~T!
S ] z̄~0!

]z̄ f
D 21

5
11 z̄ fz~T!

11 z̄~0!z i
S ]z~T!

]z i
D 21

. ~4.12!

The equivalence of these two expressions for the determinant is not immediately obviou
from the Hamilton–Jacobi relations,

]Scl

]z̄ f

5
2 jz~T!

11 z̄ fz~T!
,

]Scl

]z i

5
2 j z̄~0!

11 z̄~0!z i

, ~4.13!

and the equality of mixed partials ofScl , we obtain

]2Scl

]z i]z̄ f

5
2 j

~11 z̄ fz~T!!2

]z~T!

]z i

5
2 j

~11 z̄~0!z i !
2

] z̄~0!

]z̄ f

. ~4.14!

Both expressions in~4.12! thus reduce to
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C Det21 D5
~11 z̄ fz~T!!~11 z̄~0!z i !

2 j

]2S

]z i]z̄ f

. ~4.15!

Our calculation of the fluctuation determinant suggests, therefore, that

Kscl~ z̄ f ,z i ,T!5
? S ~11 z̄ fz~T!!~11 z̄~0!z i !

2 j
]2Scl

]z i]z̄ f
D 1/2

expScl~ z̄ f ,z i ,T!. ~4.16!

~The proportionality constant is fixed by the requirement that this expression reduces to^z f uz i&
whenT50.!

As indicated by the ‘‘?’’ over the equals sign, there are problems with this expression, a
is not quite correct.

The first problem is that, despite the optimism expressed above, thereis a degree of indeter-
minacy in the calculation of the functional determinant. To see this, make the substitution

h~ t !→eiu(t)h~ t !,

h̄~ t !→e2 iu(t)h̄~ t ! ~4.17!

in the path integral~4.5!. The measure is unchanged, but we replaceD with D̃, whereD̃ is the
matrix operatorD with

A→Ã5A1] tu,

B→B̃5e22iu(t)B,

B̄→B! 5e2iu(t)B̄. ~4.18!

The value of the path integral must be unaltered by this change of integration variables, b
solution to

F2 i ] t1Ã B̃

B! i ] t1Ã
G S h~ t !

h̄~ t ! D50 ~4.19!

with h(0)50, h̄(0)51 is now (e2 i (u(t)2u(0))h0(t),ei (u(t)2u(0))h̄0(t))T. The determinant, as we
have calculated it, is thereforenot invariant, but ends up multiplied bye2 i (u(T)2u(0)). Our expres-
sion for the functional determinant has an ‘‘anomaly’’ therefore.

The anomaly arises because the argument we made about the harmlessness of the dis
ity in G depends on our definingG(t,t) asG(t,t6e) with thesame choice of signin front of the
e in both entries in the trace. If we examine the discrete version of path integral we see that,
contrary, one of the entries should be evaluated with a plus, and one with a minus. Our calc
of the determinant assumed that we could interpretG(t,t) as 1

2 (G(t,t1e)1G(t,t2e)), so our
formula for the determinant is only correct if both terms in tr$s3dM % are separately zero. This wil
only be the case for operatorsD with A[0. Fortunately the discrete path integraldoespermit the
change of variables described above, and we may use this freedom to force the diagonal
Ã, to zero before computing the determinant. The correctly regulated functional determ
therefore differs from its naive value by a multiplicative factor.

Including the correction to the fluctuation determinant, the semiclassical propagator be
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Kscl~ z̄ f ,z i ,T!5S ~11 z̄ fz~T!!~11 z̄~0!z i !

2 j

]2Scl

]z i]z̄ f

D 1/2

expH Scl~ z̄ f ,z i ,T!1
i

2
E

0

T

A~ t !dtJ ,

~4.20!

where

A~ z̄,z!5
1

2 S ]

] z̄

~11 z̄z!2

2 j

]H

]z
1

]

]z

~11 z̄z!2

2 j

]H

] z̄ D , ~4.21!

is the coefficient appearing in~4.3!.
The maneuver of settingÃ to zero before evaluating the fluctuation determinant appe

~although without explanation as to why it was necessary! in the previously cited paper by
Kochetov25 that provided part of the motivation for our present work. Kochetov therefore get
corrected expression~4.20!. It seems, however, that the ‘‘extra phase’’~it is a phase only in the
simplest cases!, (i /2) *0

TA(t)dt, was first obtained by Solari24 from a careful evaluation of the
discrete determinant. Solari also pointed out the necessity of a similar correction in the har
oscillator coherent-state path integral, which has a flat phase space. Kochetov’s discovery
correction seems to have been independent of this earlier work.

Because of the extra phase,~4.20! gives the correct, indeed exact, semiclassical propagato
the caseĤ5v Ĵz , and also for any Hamiltonian consisting of~possibly time dependent! elements
of the Lie algebra of SU~2!.25

V. SHORT TIME ACCURACY

The Solari–Kochetov phase also solves a second problem with~4.16!. In contrast to the
configuration space propagator, which diverges asT21/2, the coherent-state propagat
K(z f ,z i ,T) is analytic inT nearT50. This is because of the finite spread of the coherent-s
wave functions. To first order inT we have

K~ z̄ f ,z i ,T![^z f ue2 iĤ Tuz i&'^z f uz i&2 iT^z f uĤuz i&5^z f uz i&~12 iTH~ z̄ f ,z i !!. ~5.1!

~In the last equality we have exploited analyticity to observe that the off-diagonal^z f uĤuz i&, is
obtained from the diagonal^zuĤuz& by the simple replacementz→z i , z̄→ z̄ f .!

Now, from the Hamilton–Jacobi equation,

]Scl

]T
52 iH ~ z̄ f ,z~T!!, ~5.2!

we have

Scl~ z̄ f ,z i ,T!5Scl~ z̄ f ,z i ,0!2 iTH~ z̄ f ,z i !1O~T2!, ~5.3!

while

Scl~ z̄ f ,z i ,0!52 j ln~11 z̄ fz i !5 ln^z f uz i&. ~5.4!

Thus, in order to get agreement between~4.20! and ~5.1!, the fluctuation determinant must mak
no O(T) contribution to the propagator. A short calculation shows, however, that

~11 z̄ fz~T!!~11 z̄~0!z i !

2 j

]2Scl

]z i]z̄ f

512 iTA~ z̄ f ,z i !1O~T2!. ~5.5!
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Fortunately this contribution is exactly canceled by theO(T) contribution from the Solari–
Kochetov extra phase.

We now ask how well does the semiclassical propagator do at next order in the shor
expansion. In order to provide a systematic grading for the terms, we will regard the Hamilt
Ĥ as beingO( j ). The entire action is then homogeneous of degree one inj . With this assumption,
and by analogy with the usual semiclassical expansion in powers of\, we expect that

K~ z̄ f ,z i ,T!5K reduced• exp$Scl%•F11OS 1

j D G , ~5.6!

whereScl is O( j ), while the prefactor,K reduced, is O( j 0).
At short time the exact coherent-state propagator is certainly of this form. To demonstrat

expand

^z f ue2 iĤ Tuz i&5^z f uz i&2 iT^z f uĤuz i&2
T2

2
^z f uĤ2uz i&1¯ . ~5.7!

Now ^z f uĤuz i&5^z f uz i&H( z̄ f ,z i), but some work is needed to evaluate^z f uĤ2uz i&.
Inserting an overcompleteness integral, we have

^z f uĤ2uz i&5
2 j 11

p E d2z

~11 z̄z!2 j 12 ^z f uĤuz&^zuĤuz i&

5
2 j 11

p E d2z

~11 z̄z!2 j 12 ~11 z̄ fz!2 j~11 z̄z i !
2 jH~ z̄ f ,z!H~ z̄,z i !. ~5.8!

We now perform a steepest descent expansion in the integral over the intermediate stat
obtain the first three terms in its asymptotic expansion in powers of 1/j . This computation is
greatly simplified by using two shortcuts. First we need calculate only the diagonal matrix ele

^zuĤ2uz&. Given this, we may appeal to analyticity and obtain the general matrix elemen
settingz̄→ z̄ f andz→z i . Next we rotate the sphere so as to center the coordinate system o
point z. Thusz→0, and the coordinate system is locally geodetic. In these coordinates the s
point of thez integral is atz5z50, and far fewer terms have to be taken into consideration

To return to the original coordinates, we need to be able to recognize some SO(3).SU(2)
invariant combinations of derivatives and (11 z̄z)2 factors.

One easily establishes that, under the Mo¨bius mapping,

z→z85
az1b

cz1d
, where F a b

c dGPSU~2!, ~5.9!

we have

d2z

~11 z̄z!2 5
d2z8

~11 z̄8z8!2 ~5.10!

together with

~11 z̄z!2
] f ~ z̄,z!

]z

]g~ z̄,z!

] z̄
5~11 z̄8z8!2

] f ~ z̄8,z8!

]z8

]g~ z̄8,z8!

] z̄8
,

~11 z̄z!2
]2f ~ z̄,z!

]z] z̄
5~11 z̄8z8!2

]2f ~ z̄,8z8!

]z8] z̄8
, ~5.11!
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and that the combination

Z5S ]

]z
~11 z̄z!2

]

]z
f D S ]

] z̄
~11 z̄z!2

]

] z̄
gD ~5.12!

is similarly invariant. Thus, when we see the term]zz
2 f ] z̄z̄

2 g appearing in the expansion about th
stationary pointz50, we realize that in the integral for the general matrix element~where the
saddle point is atz5z i , z̄5 z̄ f! we should replace it by~5.12!.

Proceeding in this manner we find

^z f uĤ2uz i&5^z f uz i&H H2~ z̄ f ,z i !1
~11 z̄ fz i !

2

2 j

]H

]z i

]H

]z̄ f

1
1

2

1

~2 j !2 S ]

]z̄ f

~11 z̄ fz i !
2

]H

]z̄ f
D S ]

]z i

~11 z̄ fz i !
2

]H

]z i
D 1OS 1

j
D J . ~5.13!

The three terms in braces in this expression are ofO( j 2), O( j ), and ofO( j 0), respectively.
We may now re-exponentiate~5.13! as

^z f ue2 iĤ Tuz i&5expH ln^z f uz i&2 iTH~ z̄ f ,z i !2
1

2
T2

~11 z̄ fz i !
2

2 j

]H

]z i

]H

]z̄ f

1¯J
3F12

T2

4
•

1

~2 j !2 S ]

]z i

~11 z̄ fz i !
2

]

]z i

H D S ]

]z̄ f

~11 z̄ fz i !
2

]

]z̄ f

H D 1¯G .

~5.14!

Again using the Hamilton–Jacobi equation,

]Scl

]T
52 iH ~ z̄ f ,z~T!!, ~5.15!

and the equation of motion forz(t), we may generate the Taylor series forScl(T). We immedi-
ately verify the term in the exponential is the classical action toO(T2),

Scl5 ln^z f uz i&2 iTH~ z̄ f ,z i !2
1

2
T2

~11 z̄ fz i !
2

2 j

]H

]z i

]H

]z̄ f

1O~T3!. ~5.16!

The expression in the square brackets in~5.14! must be the prefactor, and is manifestlyO( j 0). It
is a little tedious to verify that our formula for the pre-exponential factor, including the Sol
Kochetov correction, reduces to exactly this, but it is so. To collapse the terms, it helps to u
identity,
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~11 z̄z!2
]2

] z̄]z S ~11 z̄z!2
]H

] z̄

]H

]z D
52~11 z̄z!2

]H

] z̄

]H

]z
1S ~11 z̄z!2

]2H

] z̄]zD
2

1~11 z̄z!2
]H

] z̄

]

]z S ~11 z̄z!2
]2H

] z̄]zD
1~11 z̄z!2

]H

]z

]

] z̄ S ~11 z̄z!2
]2H

] z̄]zD1S ]

]z
~11 z̄z!2

]

]z
H D S ]

] z̄
~11 z̄z!2

]

] z̄
H D ,

~5.17!

which is most easily established by noting that all terms are invariant, and, atz50, both sides
reduce to

S ]2

] z̄]z
12D ]H

] z̄

]H

]z
. ~5.18!

The semiclassical expression, therefore, has errors of at mostO( j 21) at short time. Our
expectation is, of course, that it has this degree of accuracy uniformly inT.

VI. CONSISTENCY

A further test of the correctness of~4.20! is to verify its consistency under dissection of th
classical trajectory. The exact propagator must satisfy the sewing condition

K~ z̄ f ,z i ,t11t2!5
2 j 11

p
E d2j

~11 j̄j !2 j 12
K~ z̄ f ,j,t2!K~ j̄,z i ,t1!, ~6.1!

which follows from the definition ofK and the overcompleteness condition~2.4!. The semiclas-
sical approximation toK should obey a similar condition, but with the exact integration over
intermediate states replaced by a suitable stationary phase approximation.

SinceKscl;expScl , we begin with the relationship between the action for the total path f
z i to z f , and the actions for the two segments fromz i to the intermediate pointj, and fromj to
z f . To eliminate the redundant intermediate-point boundary terms we must define

S~ z̄ f ,z i ,t11t2!5S~ z̄ f ,j,t2!1S~ j̄,z i ,t1!22 j ln~11 j̄j !. ~6.2!

We will write this compactly as

Stot5S21S122 j ln~11 j̄j !. ~6.3!

In writing ~6.2! we have tacitly assumed that our chosen startingj of the second path segmen
coincides with the dynamically determined end pointz(t1) of the first path segment, and that th
dynamically determined startingz̄(t1) of the second path segment coincides with our chosenj̄ end
point of the first path segment. This will not generally be the case—but itwill be whenj̄, j obey
the stationary-phase equations,

]Stot

]j
5

]Stot

]j̄
50. ~6.4!

Taking into account the analyticity properties ofS1 andS2 , these are
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05
]S2~ z̄ f ,j!

]j
2

2 j j̄

11 j̄j
,

05
]S1~ j̄,z i !

]j̄
2

2 j j

11 j̄j
. ~6.5!

Comparing~6.5! with the Hamilton–Jacobi equations confirms thatjc5z(t1) and j̄c5 z̄(t1),
wherejc , j̄c is the stationary phase point.

To evaluate the integral over small deviations from the classical stationary phase point,
j5jc1h, j̄5 j̄c1h̄. We expand

Stot5Stotu j̄c ,jc
2

1

2

2 j

~11 j̄cjc!
2
~ h̄, h!F 1 2a

2b 1
G S h

h̄
D , ~6.6!

where

a5
~11 j̄cjc!

2

2 j

]2S1

]j̄c
2

1jc
25

1

2 j
~11 j̄cjc!

]

]j̄c

~11 j̄cjc!
]S1

]j̄c

, ~6.7!

and

b5
~11 j̄cjc!

2

2 j

]2S2

]jc
2 1 j̄c

25
1

2 j
~11 j̄cjc!

]

]jc
~11 j̄cjc!

]S2

]jc
. ~6.8!

~The second equality in these equations uses the stationary phase equations.!
We now put together two semiclassical propagators and perform the Gaussian integra

the deviation from the stationary phase point. Using the semiclassical Solari–Kochetov
~4.20! for the propagators on the right-hand side of Eq.~6.1!, we get~with T5t11t2!,

Kcomb5
2 j 11

p
E d2h

~11 j̄cjc!
2

expH S11S222 j ln~11 j̄cjc!1
i

2
E

0

T

A dt2
1

2
d2SJ

3S ~11 z̄ fz~T!!~11 j̄cjc!

2 j

]2S2

]z̄ f]jc

~11 j̄cjc!~11 z̄~0!z i !

2 j

]2S1

]j̄c]z i

D 1/2

. ~6.9!

Notice that, as with consistency test of the ordinary Feynman path integral,33 the measure and th
prefactors, including the Solari–Kochetov ‘‘extra-phase’’ term, are all being treated as cons
The integration involves only the variation of the classical action

d2S5
2 j

~11 j̄cjc!
2
~ h̄, h!F 1 2a

2b 1
G S h

h̄
D , ~6.10!

and yields, along with other factors, the inverse square-root of the determinant

D5U 1 2a

2b 1
U. ~6.11!

We now use the result, established in the Appendix, that
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]2Stot

]z̄ f]z i

5
~11 j̄cjc!

2

2 j

]2S2

]z̄ f]jc

]2S1

]j̄c]z i

U 1 2a

2b 1
U21

, ~6.12!

to obtain

Kcomb5S 2 j 11

2 j
D S ~11 z̄ fz~T!!~11 z̄~0!z i !

2 j

]2Stot

]z̄ f]z i

D 1/2

expH Stot~ z̄ f ,z i ,T!1
i

2
E

0

T

AdtJ .

~6.13!

The semiclassical approximation therefore reproduces itself except for a niggling factor oj
11)/2j , which is due to a conflict between the normalization of the measure and the 2j appearing
in the exponent.

Although this discrepant factor approaches unity in the large-j limit, it is nonetheless disturb-
ing. Each of the infinitely many Gaussian integrations that constitute the semiclassical ap
mation to the path integral ought to be indistinguishable from our single Gaussian integratio
the intermediate pointj. We should, therefore, be able to dissect the path into arbitrarily m
parts without affecting the final answer. This is not currently so, and, in particular, the lim
large j does not commute with the limit of a large number of intermediate points.

The origin of the discrepancy is not hard to find. In the large-j limit the effective radius of our
spherical phase space becomes large, and, nearz50, the spin-j reproducing-kernel relation

2 j 11

p E d2z

~11 z̄z!2 ~11 z̄z!22 j^z2uz&^zuz1&5^z2uz1&, ~6.14!

or more explicitly,

2 j 11

p E d2z

~11 z̄z!2 ~11 z̄z!22 j~11 z̄2z!2 j~11 z̄z1!2 j5~11 z̄2z1!2 j , ~6.15!

should contract to a suitably scaled version of its flat-phase-space analog,

E d2z

p
e2 z̄zez̄2zez̄z15ez̄2z1. ~6.16!

Because it is a Gaussian integral, the leading stationary phase ‘‘approximation’’ to~6.16! is exact.
If we make the obvious largej estimates

~11 z̄z!22 j;e22 j z̄z, ~11 z̄2z!2 j;e2 j z̄2z, ~11 z̄z1!2 j;e2 j z̄z1, ~6.17!

while regarding the sphere measure (11 z̄z)22 as a prefactor, we do not get exactly

2 j

p E d2z e22 j z̄ze2 j z̄2ze2 j z̄z15e2 j z̄2z1, ~6.18!

but instead (2j 11)/2j times this.
If we keep terms higher order in 1/2j , both those coming from the measure and those fr

going beyond the quadratic approximation to the exponent, they will of course correct the
What we really need, however, is a partitioning of the integral on the LHS of~6.15! such that the
leadingsteepest descent approximation will agree with the RHS. This will happen if we regar
expansion parameter as 2j 11 and not 2j . To see this, break up

I 5
2 j 11

p E d2z

~11 z̄z!2 ~11 z̄z!22 j~11 z̄2z!2 j~11 z̄z1!2 j ~6.19!
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as

I 5
2 j 11

p E d2z

~11 z̄z!2 g21~ z̄,z!e(2 j 11)ln g( z̄,z) ~6.20!

with

g~ z̄,z!5~11 z̄z!21~11 z̄2z!~11 z̄z1!. ~6.21!

The critical point of the function in the exponential is atz̄5 z̄2 , z5z1 , and

g~ z̄2 ,z1!5~11 z̄2z1!, ~6.22!

2
]2 ln g

]z] z̄
U

z̄5 z̄2 ,z5z1

5
1

~11 z̄2z1!2
. ~6.23!

Thus,

I;
2 j 11

p

1

~11 z̄2z1!3
~11 z̄2z1!2 j 11E d2ze2 @2 j 11/(11 z̄2z1)2#( z̄2 z̄2)(z2z1)

5
2 j 11

p
~11 z̄2z1!2 j 22

•

p

2 j 11
~11 z̄2z1!25~11 z̄2z1!2 j . ~6.24!

The leading term of the asymptotic expansion ofI in powers of 1/(2j 11) is therefore exact.
This observation suggests rewriting the semiclassical approximation toK as

Kscl~ z̄ f ,z i ,T!5
1

A2 j 11
S ]2S̃cl

]z̄ f]z i
D 1/2

expH S̃cl~ z̄ f ,z i ,T!1
i

2
E

0

T

QdtJ , ~6.25!

whereS̃cl5(2 j 11)Scl /(2 j ), and

Q5
1

j S ~11 z̄z!2

2

]2H

] z̄]z
1H~ z̄,z! D ~6.26!

is the term required to make~6.25! numerically equal to~4.20!.
With this repartitioning of terms between the exponent and the prefactor we have exac

same classical equations of motion, but now

Kcomb5
2 j̃

p
E d2h

~11 j̄cjc!
2
~11 j̄cjc!expH S̃11S̃22~2 j̃ !ln~11 j̄cjc!2

1

2
d2S̃J

3
1

~2 j̃ !
S ]2S̃2

]z̄ f]jc

]2S̃1

]j̄c]z i

D 1/2

expH i

2
E

0

T

QdtJ , ~6.27!

where

j̃ 5 j 1 1
2 , ~6.28!

and
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d2S̃5
2 j̃

~11 j̄cjc!
2
~ h̄, h!F 1 2ã

2b̃ 1
G S h

h̄
D . ~6.29!

The quantitiesã andb̃ are obtained from Eqs.~6.7! and~6.8! by putting tildes onS1 , S2 , and j .
Note, though, thatã5a, andb̃5b. Note also, that we have inserted a factor of (11 j̄cjc) in the
integral to compensate for the extra factor of (11 j̄j) that was taken from the measure into t
exponential to completeS̃tot . Thus part of both the measure and the prefactor are varied
determining the stationary phase, and get integrated over, while part is regarded as a con

The integration in Eq.~6.27! can be done at once by noting that all equations in the Appen
are unchanged if we put tildes on the actions,j , a, andb everywhere. In particular, the identit
~A9! holds with tildes. We thus obtain

Kcomb5
1

A2 j 11
S ]2S̃tot

]z̄ f]z i
D 1/2

expH S̃tot~ z̄ f ,z i ,T!1
i

2
E

0

T

QdtJ , ~6.30!

all unwanted factors of 2j 11 and (11 j̄cjc), having canceled. Thus, with this form of stationar
phase integration, the propagator reproduces itself exactly.

What this means is that the semiclassical approximation must be tacitly using~6.24! in
making each of the many integrations that go into the Gaussian approximation to the path in
Once we realize this, we see that there is no need for the mysterious divergent normal
factor,N5 limN→`(111/2j )N, that plagues most treatments of the semiclassical spin propag

The appearance ofj 11/2 as the large parameter in the fluctuation integral has been rema
on before by Ercolessiet al.34 and by Funahashiet al.35 The former worry that it is inconsistent t
include fluctuations of the measure in the Gaussian integral without also considering their ef
the saddle point equations. In our case all terms that are being integrated over do appear als
equations determining the saddle point.

Note that the correctionQ vanishes for Larmor precession whereĤ5v Ĵ3 . In this case, as we
have seen earlier,

Scl52 j ln~11 z̄ fz ie
2 ivT!1 i j vT. ~6.31!

S̃ is obtained from this by the substitutionj→ j 1 1
2, so

]2S̃

]z̄ f]z i

5e2 ivT
2 j 11

~11 z̄ fz ie
2 ivT!2

. ~6.32!

Thus,

1

A2 j 11
S ]2S̃

]z̄ f]z i
D 1/2

eS̃( z̄ f ,z i ,T)5e2 ivT/2~11 z̄ fz ie
2 ivT!21~11 z̄ fz ie

2 ivT!2 j 11eiv( j 1
1
2)T

5eivT~11 z̄ fz ie
2 ivT!2 j , ~6.33!

which is the exact answer.

VII. AN EXAMPLE: ĤÄn Ĵ 3
2

As an application of the semiclassical formalism considerĤ5n Ĵ3
2. This Hamiltonian is time

reversal invariant, and we might worry that a hidden shiftj→ j 11/2 would compromise the
Kramers degeneracy expected whenj is the half-integral.
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The classical Hamiltonian corresponding toĤ5n Ĵ3
2 is

H~ z̄,z!5
^zun Ĵ3

2uz&

^zuz&
5nS j S j 2

1

2D S z̄z21

z̄z11D 2

1
1

2
j D . ~7.1!

This should be compared with the ‘‘naive’’ classical Hamiltonian,

Hnaive5n j 2S z̄z21

z̄z11D 2

, ~7.2!

which is what we would get if we simply expressed the classical direction-dependent e
n j 2 cos2 u in terms of the stereographic coordinates onS2.

The Hamiltonian~7.1! leads to the classical equations of motion

zG5 iv~ z̄,z!z̄, ż52 iv~ z̄,z!z, ~7.3!

where, withm5n j ( j 21/2),

v~ z̄,z!5S 2m

j D S z̄z21

z̄z11D . ~7.4!

Since these equations imply the time independence of the productz̄z, v is itself time independen
and the solutions may be written down directly as

z~ t !5e2 ivtz i , z̄~ t !5eiv(t2T)z̄ f . ~7.5!

Herev is to be determined by the self-consistency condition,

v5S 2m

j
D S e2 ivTz̄ fz i21

e2 ivTz̄ fz i11
D . ~7.6!

As we will see below, this equation has an infinite family of solutions. Here, we wish to con
how various quantities scale withj . By demanding that Eqs.~7.3! continue to be meaningful a
j→`, we see that we must havem5O( j ), v5O(1), andn5O(1/j ).

The classical action for the solution~7.5! is

Scl~ z̄ f ,z i ,T!52 j ln~11e2 ivTz̄ fz i !1E
0

TH j S 2ive2 ivTz̄ fz i

11e2 ivTz̄ fz i

D 2 imv2S j

2m
D 2

2
i

2
j nJ dt

52 j ln~11e2 ivTz̄ fz i !1 iTH j v1
j 2

4m
v22

1

2
j nJ . ~7.7!

The apparently cosmetic rewrite in the last line leads to a useful way of looking at the pro
Define

Sv~ z̄ f ,z i ,T!52 j ln~11e2 ivTz̄ fz i !1 iTH j v1
j 2

4m
v2J , ~7.8!

where we regardv as an independent variable. The equation

]Sv~ z̄ f ,z i ,T!

]v
5 iT j H 2

e2 ivTz̄ fz i21

e2 ivTz̄ fz i11
1S j

2m
D vJ ~7.9!
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then shows that the consistency condition onv is equivalent to]Sv /]v50. We can also use
Sv( z̄ f ,z i ,T) to express the second variation ofScl required for the prefactorA. By differentiating
the Jacobi equation~3.9! we have

]2Scl~ z̄ f ,z i ,T!

]z̄ f]z i

5
2 j

~11 z̄ fz~T!!2

]z~T!

]z i

, ~7.10!

and from this we find, with Eq.~7.5!, that

]2Scl~ z̄ f ,z i ,T!

]z̄ f]z i

5
2 j

~11 z̄ fz~T!!2
H e2 ivT1e2 ivTz iS 2 iT

]v

]z i
D J . ~7.11!

We now differentiate the condition]Sv /]v50 with respect toz i . This yields

]2Sv

]z i]v
1

]2Sv

]v2

]v

]z i
50. ~7.12!

Using this result to eliminate (]v/]z i) in Eq. ~7.11!, we find, after a little algebra, that

]2Scl~ z̄ f ,z i ,T!

]z̄ f]z i

5
2 je2 ivT

~11 z̄ fz~T!!2
•

iT j 2

2m
•S ]2Sv

]v2 D 21

. ~7.13!

Substituting Eqs.~7.5!, ~7.7!, and ~7.13! into the basic semiclassical form~4.20! for the
propagator, we obtain

Kscl5(
v

S iT j 2

2m D 1/2S ]2Sv

]v2 D 21/2

expH Sv2
iT

2
~v1 j n!1

i

2 E0

T

A dtJ . ~7.14!

The sum overv is to be performed over all solutions to Eq.~7.6!.
The utility of Sv( z̄ f ,z i ,T) is not hard to understand. We are trying to evaluate

^z f ue2 in Ĵ3
2Tuz i&5 (

m52 j

m5 j

~ z̄ fz i !
j 1m

2 j !

~ j 1m!! ~ j 2m!!
e2 inm2T, ~7.15!

while we already know that

^z f ue2 iv Ĵ3Tuz i&5 (
m52 j

m5 j

~ z̄ fz i !
j 1m

2 j !

~ j 1m!! ~ j 2m!!
e2 ivmT

5~11e2 ivTz̄ fz i !
2 jeiv jT

5expSv0~ z̄ f ,z i ,T!, ~7.16!

where

Sv0~ z̄ f ,z i ,v!52 j ln~11e2 ivTz̄ fz i !1 iT j v. ~7.17!

From the identity,

e2 inm2T5e2 i
p
4 A T

4pn E2`

`

dve2 ivmTeiv2T/4n ~7.18!
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we have the exact relation

^z f ue2 in Ĵ3
2Tuz i&5e2 i ~p/4!A T

4pn E dv^z f ue2 iv Ĵ3uz i&e
i ~v2T/4n!

5e2 i ~p/4!A T

4pn E dv expH Sv0~ z̄ f ,z i ,v!1 i
v2T

4n J
5e2 i ~p/4!A T

4pn E dv expH 2 j ln~11e2 ivTz̄ fz i !1 iTH j v1
v2

4nJ J .

~7.19!

Given the form of the classical action~7.7!, thatm' j 2n, and the occurrence of (]2Sv /]v2)21/2

in the prefactor, it is clear that the semiclassical approximation is attempting a stationary
approximation to this integral overv. That this approximation is indeed indicated can be seen
evaluating (]2Sv /]v2). From Eqs.~7.9! and ~7.6!, we find

]2Sv

]v2 5
iT j 2

2m
2

1

2
jT2S 12

j 2v2

4m2 D , ~7.20!

which scales asj as j→`.
We now write the exponent in Eq.~7.19! asSv2 iT j v2/8m. Since the second term isO( j 0)

as j→`, we may regard it as part of the pre-exponential factor in carrying out the stationary
integral. In this way, we obtain

Kexact'(
v

S iT

2n D 1/2S ]2Sv

]v2 D 21/2

expH Sv2 iT
j v2

8m J . ~7.21!

The pre-exponential factors in the preceding equation agree with those in Eq.~7.14! to terms
of order unity. To see whether the exponents agree, we must discuss the effect of the S
Kochetov phase. We find that

A5
1

2 S ]

] z̄

~11 z̄z!2

2 j

]H

]z
1

]

]z

~11 z̄z!2

2 j

]H

] z̄ D5v1
4m

j

z̄z

~11 z̄z!2 5S v1
m

j D2
j v2

4m
.

~7.22!

The term in parentheses serves to cancel@up to O(1)# the second term in the exponent in E
~7.14!, and thej v2/4m term serves to correctSv as needed in Eq.~7.21!. Thus our semiclassica
formula is indeed accurate up toO(1) as j→`, and we may be confident that spectral propert
~Kramers degeneracy in particular! derived from it by constructing, say, the Green’s function
density of states, will be faithfully given.

Having demonstrated the formal equivalence ofKscl andKexact, we turn to the actual nature o
the solution. Let us first rewrite the self-consistency condition~7.6! as

2i ṽt1 lnS 11ṽ

12ṽ D5 ln a, ~7.23!

whereṽ5 j v/2m, t5mT/ j , anda5 z̄ fz i . In the limit t→`, the left-hand side of~7.23! must
remain finite, suggesting thatṽ;1/t. A development in powers of 1/t shows that we may write

ṽ'2
i

2

ln a

t2 i
2

1

24

~ ln a!3

t4 1O~t25!. ~7.24!
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Since no restriction has been placed on which branch of lna is to be taken, this solution is
infinitely multivalued, as asserted above. To leading order in 1/t, different solutions differ by
additive amountsnp/t, wheren is an integer.

On the other hand, att50, Eq.~7.23! has a unique solution,ṽ5(a21)/(a11). The appar-
ent contradiction with the earlier argument for an infinite number of solutions is resolve
noting that if, ast→0, we allowṽ to diverge as 1/t, the left-hand side of~7.23! again remains
finite. Another development in powers oft reveals that

ṽ'2
i

2

ln~2a!

t
2

2

ln~2a!
2

8i

@ ln~2a!#3 t1¯ , ~7.25!

which is also multivalued on account of the infinitely many branches of ln(2a).
We can gain further insight into the nature of the propagator and the values ofv at the

relevant stationary-phase points by working with initial and final states on the equator o
sphere,z i5eif i, z̄ f5e2 if f . When j is large, the problem should be essentially equivalent t
massive particle constrained to move on a ring of circumference 2p. If we write the Hamiltonian
for the latter asL2/2M , whereL is the orbital angular momentum, andM the mass, we expect th
results for the two problems to be similar withM52n.

We start by considering the propagator for Larmor precession. Employing the leading
j estimate,

2 j !

~ j 1m!! ~ j 2m!!
;

22 j

Ap j
e2m2/ j , ~7.26!

and using the shorthandDf5f f2f i , we may write

^z f ue2 iv Ĵ3uz i&5 (
m52 j

m5 j

~ z̄ fz i !
j 1m

2 j !

~ j 1m!! ~ j 2m!!
e2 ivmT;e2 i j Df

22 j

Ap j
(
m

e2 im(Df1vT)e2m2/ j .

~7.27!

If T@ j 21/2/v, the summand will have widely varying phases over the range ofm values that
contributes to the sum,umu;Aj . By extending the sum overm to infinity and using the Poisson
summation formula~taking care thatm takes half-integer values whenj is half integral!, we find

^z f ue2 iv Ĵ3uz i&'e2 i j Df22 j(
n

e2 ~ j /4!(Df1vT22pn)2
3~21!n, ~7.28!

where the (21)n factor is present only whenj is the half-integral. This form is better suited t
studying the largej limit ~for fixed T). In that case,~7.28!, regarded as a function ofv, is sharply
peaked atv5v̄n5(2pn2Df)/T. These are the angular frequencies that allow uniform pre
sion betweenf i andf f in time T. We now recall that Eq.~7.28! is nothing but exp(Sv0). If we
substitute this form into Eq.~7.19!, and take into account the factor exp$iv2T/4n% in determing the
saddle-point frequencies, we find that they become complex

vn5v̄nS 12
i

nT j D
21

'v̄n1
i v̄n

nT j
. ~7.29!

Not surprisingly, this is just what we found in Eq.~7.24!. The result reflects the fact that, to mov
at the required speed, the Hamiltonian trajectories must move off the equator. There is then
trajectory between the classical end points, and we must exploit the freedom to have traje
wherez̄ fÞz(T)* . When j is large, however, Hamilton’s equations provide large velocitiesclose
to the equator, and the imaginary parts ofv are correspondingly small. Performing the integrati
in Eq. ~7.19!, we find
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^eif f ue2 inTJz
2
ueif i&'22 je2 i j Df

1

~11 i j nT!1/2(
n

e2 ~ j /4!(Df22pn)2/(11 i j nT)3~21!n, ~7.30!

where, again, the last factor is only present whenj is the half-integral. This form should b
compared with that for the massive particle,36

^f f ue2 iL 2T/2Muf i&5
1

~2p iMT !1/2(
n

expS inF1 i
M ~Df22np!2

2T D . ~7.31!

We have incorporated an Aharonov–Bohm phaseF into the result. This phase should bep when
we compare with half-integer spins, and the resulting pairwise degeneracy of the energy le
the particle-on-a-ring analog of Kramers degeneracy.

The similarity between Eqs.~7.30! and~7.31! is evident. Notice howj sets the time scale fo
the crossover between the large-T regime, where the spin behaves essentially as a particle of m
2n on the ring, and the short-time regime where the finite range of the coherent-state
functions cuts off the 1/AT divergence.

Note that we have ignored the difference betweenm/ j 2 andn in the above comparison, sinc
as discussed while showing the equivalence ofKscl andKexact, the error incurred is of order 1/j 2

relative to the leading term in the action. The semiclassical approximation therefore cor
obtains the first two terms in the large-j expansion.

VIII. DISCUSSION

In the previous sections we have used the continuous-time path integral to motivate a
classical approximation to the coherent-state propagator for spinj . Although our derivation of the
semiclassical propagator is purely formal, and the resulting expression must initially have on
status of a conjecture, we have demonstrated its correctness by verifying its short-time accu
O(T2), and checking its consistency under dissection of the path. From these two propert
may conclude that our expression is accurate toO( j 0) uniformly in time.

In our derivation it was necessary to take into account an ‘‘anomaly’’ in the evaluation o
functional determinant of the Jacobi operator. This is the only place where we had to app
details of the discrete version of the path integral. Regulating the determinant in a manne
sistent with the discrete path integral results in a correction to the naive expression fo
prefactor. This correction had been noted before, by Solari24 and by Kochetov,25 but its impor-
tance does not seem to have been widely appreciated.

We have also discussed an example where an infinite number of classical trajectories c
ute to the propagator. Here we again saw how the Solari–Kochetov factor is essential in ob
the correct result.

A calculation of the Solari–Kochetov correction to the tunnel splitting between classi
degenerate spin states will be reported in a separate publication.

Note added in proof.After we had completed this work, we became aware of a pape
Vieira and Sacramento37 that also correctly identifies what we have called the Solari–Koche
phase.
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APPENDIX: COMPOSITION OF PATH-DENSITY FACTORS

In this Appendix we derive~6.12!. We begin by restating the stationary phase conditions~6.5!,

05
]S2~ z̄ f ,j!

]j
2

2 j j̄

11 j̄j
,

05
]S1~ j̄,z i !

]j̄
2

2 j j

11 j̄j
. ~A1!

Consider how the first of these evolves as we varyz̄ f . We find that

05
]

]z̄ f

S ]S2

]jc

2
2 j j̄c

11 j̄cjc

D
5

]2S2

]z̄ f]jc

1
]2S2

]jc
2

]jc

]z̄ f

1
2 j j̄c

2

~11 j̄cjc!
2

]jc

]z̄ f

2
2 j

~11 j̄cjc!
2

]j̄c

]z̄ f

5
]2S2

]z̄ f]jc

1
]jc

]z̄ f

S ]2S2

]jc
2

1
2 j j̄c

2

~11 j̄cjc!
2
D 2

2 j

~11 j̄cjc!
2

]j̄c

]z̄ f

. ~A2!

In the last line, we recognize the expression in parentheses to be 2j b/((11 j̄cjc)
2, whereb is the

coefficient appearing in~6.6!. By differentiating each of the two stationary phase conditions w
respect toz̄ f andz i , we get a total of four such equations. These may be summarized as

S 1 2a

2b 1
D S ]jc

]z i

]jc

]z̄ f

]j̄c

]z i

]j̄c

]z̄ f

D 5
~11 j̄cjc!

2

2 j S ]2S1

]j̄c]z i

0

0
]2S2

]z̄ f]jc

D . ~A3!

Taking determinants, we obtain

U 1 2a

2b 1
UU ]jc

]z i

]jc

]z̄ f

]j̄c

]z i

]j̄c

]z̄ f

U5
~11 j̄cjc!

4

~2 j !2

]2S1

]j̄c]z i

]2S2

]z̄ f]jc

. ~A4!

We now recall that the Gaussian integration in Eq.~6.9! leads to the inverse-square root of th
precisely the first determinant in Eq.~A4!. This equation expresses this determinant in terms of
second derivatives ofS1 andS2 , and the Jacobian](jc ,j̄c)/](z i ,z̄ f). The derivatives ofS1 and
S2 will cancel with the prefactors in Eq.~6.9!, leaving only the Jacobian. We therefore turn to
evaluation, and show that it can be written in terms of the second derivatives ofStot with respect
to z̄ f andz i . We expressStot as

Stot5S21S122 j ln~11 j̄j !, ~A5!
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and take note of the fact that bothjc and j̄c vary as we varyz̄ f andz i . We have

]2Stot

]z̄ f]z i

5
]

]z̄ f

S ]S2

]jc

]jc

]z i

2
2 j j̄c

11 j̄j

]jc

]z i

1
]S1

]j̄c

]j̄c

]z i

1
]S1

]z i

2
2 j jc

11 j̄j

]j̄c

]z i
D

5
]

]z̄ f
S ]jc

]z i
H ]S2

]jc

2
2 j j̄c

11 j̄j
J 1S ]S1

]z i
D

j̄c

1H ]S1

]j̄c

2
2 j jc

11 j̄j
J ]j̄c

]z i
D . ~A6!

The expressions in braces in the last line are the stationary phase conditions, so they are
are their derivatives. Thus,

]2Stot

]z̄ f]z i

5
]

]z̄ f

S ]S1

]z i
D

j̄c

5
]2S1

]j̄c]z i

]j̄c

]z̄ f

. ~A7!

Taking note of the fact that the derivative ofS1 with respect toz i is at fixedj̄c , while we have
useful expressions for the derivative including the variation ofj̄c , we interchange the order o
differentiation, and write

]2Stot

]z̄ f]z i

5
]j̄c

]z̄ f

S ]

]z i
S ]S1

]j̄c
D 2

]2S1

]j̄c
2

]j̄c

]z i
D

5
]j̄c

]z̄ f

]

]z i
S 2 j jc

11 j̄cjc
D 2

]j̄c

]z̄ f

]2S1

]j̄c
2

]j̄c

]z i

5
]j̄c

]z̄ f

]

]z i
S 2 j jc

11 j̄cjc
D 2

]j̄c

]z i

]

]z̄ f
S 2 j jc

11 j̄cjc
D

5
2 j

~11 j̄cjc!
2
S ]j̄c

]z̄ f

]jc

]z i

2
]j̄c

]z i

]jc

]z̄ f

D . ~A8!

In going from the second line to the third, we used one of the equations from~A3!.
Putting this together with~A4! yields

]2Stot

]z̄ f]z i

5
~11 j̄cjc!

2

2 j

]2S2

]z̄ f]jc

]2S1

]j̄c]z i

U 1 2a

2b 1
U21

~A9!

which is identical to Eq.~6.12!.
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We discuss the quantum Lax–Phillips theory of scattering and unstable systems. In
this framework, the decay of an unstable system is described by a semigroup. The
spectrum of the generator of the semigroup corresponds to the singularities of the
Lax–PhillipsS-matrix. In the case of discrete~complex! spectrum of the generator
of the semigroup associated with resonances, the decay law is exactly exponential.
We explain how this profound difference between the quantum Lax–Phillips theory
and the description of unstable systems in the framework of the standard quantum
theory emerges. The states corresponding to these resonances~eigenfunctions of
the generator of the semigroup! lie in the Lax–Phillips Hilbert space, and therefore
all physical properties of the resonant states can be computed. In the special case of
a time-independent potential problem lifted trivially to the quantum Lax–Phillips
theory, we show that the Lax–PhillipsS-matrix is unitarily related to theS-matrix
of standard scattering theory by a unitary transformation parametrized by the spec-
tral variables of the Lax–Phillips theory. Analytic continuation ins has some of
the properties of a method developed some time ago for application to dilation
analytic potentials. We work out an illustrative example of the theory using a
Lee–Friedrichs model, which is generalized to a rank one potential in the Lax–
Phillips Hilbert space. ©2000 American Institute of Physics.
@S0022-2488~00!00411-4#

I. INTRODUCTION

There has been considerable effort in recent years in the development of the theo
framework of Lax and Phillips scattering theory1 for the description of quantum mechanic
systems.2–4 This work was motivated by the requirement that the decay law of a decaying sy
should be exactly exponential if the simple idea that a set of independent unstable systems c
of a population for which each element has a probability, sayG, to decay, per unit time. The
resulting exponential law (}e2Gt) corresponds to an exact semigroup evolution of the state in
underlying Hilbert space, defined as a family of bounded operators on that space satisfyin

Z~ t1!Z~ t2!5Z~ t11t2!, ~1.1!

where t1 , t2>0, andZ(t) may have no inverse. If the decay of an unstable system is to
associated with an irreversible process, then its evolution necessarily has the property~1.1!.5 The
standard model of Wigner and Weisskopf,6 based on the computation of the survival amplitu
A(t) as the scalar product
80500022-2488/2000/41(12)/8050/22/$17.00 © 2000 American Institute of Physics
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A~ t !5~c,e2 iHtc!, ~1.2!

wherec is the initial state of the unstable system andH is the Hamiltonian for the full evolution,
results in a good approximation to an exponential decay law for values oft sufficiently large
~Wigner and Weisskopf6 calculated an atomic linewidth in this way!, but cannot result in a
semigroup.7 @This formula is applied to the transitions induced by interacting fields on states i
Hilbert space of a quantum field theory as well.# Soffer and Weinstein have made very care
estimates in the Wigner–Weisskopf formulation for time-independent systems8 and its extension
to the time-dependent~nonautonomous! case.8,9 It is easy to see~for example, by looking at the
time derivative of the decay transition probability att50) that neither the time-independent n
time-dependent Hamiltonian models lead to semigroup evolution.

When applied to a two-channel system, such as the decay of theK0 meson, one finds that th
poles of the resolvent for the Wigner–Weisskopf evolution of the two channel system resu
nonorthogonal residues that generate interference terms, which make the nonsemigroup p
evident even for times for which the pole approximation is valid,10 a domain in which exponentia
decay for the single channel system is very accurately described by the Wigner–Weisskopf

The Yang–Wu11 parametrization of theK0 decay processes, based on a Gamow-type12 evo-
lution generated by an effective 232 non-Hermitian matrix Hamiltonian, on the other han
results in an evolution that is an exact semigroup. It appears that the phenomenological
etrization of Ref. 11 is indeed consistent to a high degree of accuracy with the experimental
on K-meson decay;13 the effect of the nonorthogonal residues has been estimated to be
enough to be excluded by these experiments.10 These conclusions are independent of the sh
time behavior; the inadequacy of the Wigner–Weisskopf formulation in the usual frame
becomes evident, for the two-channel system, at times for which the pole contributions dom
the decay amplitudes.

The Wigner–Weisskopf model results in nonsemigroup evolution independently of th
namics of the system. Reversible transitions of a quantum mechanical system, such as a
precession of a magnetic moment or tunneling through a potential barrier,14 which are not radia-
tive, could be expected to be well-described by the Wigner–Weisskopf formula.

In order to achieve exact exponential decay, methods of analytic extension of the Wi
Weisskopf model to a generalized space have been studied.15 The generalized states, occurring
the large sector of a Gel’fand triple, are constructed by defining a bilinear form, and analyt
continuing a parameter~energy eigenvalue! in one of the vectors to achieve an exact comp
eigenvalue. Although it is possible to achieve an exact exponential decay in this way, the re
~Banach space! vector has no properties other than to describe this decay law; one cannot co
other properties of the system in this ‘‘state.’’ Identifying some representation of the res
state, it would be of interest, in some applications, to compute, for example, its localiz
properties, its momentum distribution, or its mean spin.

The quantum Lax–Phillips theory,2,3 constructed by embedding the quantum theory into
original Lax–Phillips scattering theory1 ~originally developed for hyperbolic systems, such
acoustic or electromagnetic waves!, describes the resonance as a state in a Hilbert space
therefore it is possible, in principle, to calculate all measurable properties of the system i
state. Moreover, the quantum Lax–Phillips theory provides a framework for understandin
decay of an unstable system as an irreversible process. It appears, in fact, that this frame
categorical for the description of irreversible processes.

It is clearly desirable to construct a theory which admits the exact semigroup property, b
sufficient structure to describe nonsemigroup behavior as well, according to the dynamica
erties of the system. The quantum Lax–Phillips theory contains the latter possibility as we
in this work, we shall restrict ourselves to a study of the semigroup property, associated
irreversible processes.

The scattering theory of Lax and Phillips assumes the existence of a Hilbert spaceH̄ of
physical states in which there are two distinguished orthogonal subspacesD1 andD2 with the
properties
                                                                                                                



es

rms

at

h

maps

rizing

,

8052 J. Math. Phys., Vol. 41, No. 12, December 2000 Strauss, Horwitz, and Eisenberg

                    
U~t!D1,D1 t.0,

U~t!D2,D2 t,0,
~1.3!

ù
t

U~t!D65$0%,

ø
t

U~t!D65H̄,

i.e., the subspacesD6 are stable under the action of the full unitary dynamical evolutionU(t), a
function of the physical laboratory time, for positive and negative timest, respectively; over allt,
the evolution operator generates a dense set inH̄ from eitherD1 or D2 . We shall callD1 the
outgoing subspaceandD2 the incoming subspacewith respect to the groupU(t).

A theorem of Sinai16 then assures thatH̄ can be represented as a family of Hilbert spac
obtained by foliatingH̄ along the real line, which we shall call$t%, in the form of a direct integral

H̄5E
%

Ht , ~1.4!

where the set of auxiliary Hilbert spacesHt are all isomorphic. Representing these spaces in te
of square-integrable functions, we define the norm in the direct integral space~we use Lesbesgue
measure! as

i f i25E
2`

`

dti f tiH
2 , ~1.5!

where f PH̄ represents a vector inH̄ in terms of theL2 function spaceL2(2`,`,H), and f t

PH, theL2 function space representingHt for any t. The Sinai theorem furthermore asserts th
there are representations for which the action of the full evolution groupU(t) on
L2(2`,`,H) is translation byt units. GivenD6 ~the L2 spaces representingD6), there is such
a representation, called theincoming translation representation,1 for which functions inD2 have
support inL2(2`,0,H), and another called theoutgoing translation representation, for which
functions inD1 have support inL2(0,̀ ,H).

Lax and Phillips1 show that there are unitary operatorsW6 , called wave operators, whic
map elements inH̄, respectively, to these representations. They define anS-matrix,

S5W1W2
21, ~1.6!

which connects these representations; it is unitary, commutes with translations, and
L2(2`,0,H) into itself. The singularities of thisS-matrix, in what we shall define as thespectral
representation, correspond to the spectrum of the generator of the exact semigroup characte
the evolution of the unstable system.

With the assumptions stated above on the properties of the subspacesD1 andD2 , Lax and
Phillips1 prove that the family of operators

Z~t![P1U~t!P2 ~t>0!, ~1.7!

whereP6 are projections into the orthogonal complements ofD6 , respectively, is a contractive
continuous, semigroup. This operator annihilates vectors inD6 and carries the space

K5H̄*D1*D2 ~1.8!

into itself, with norm tending to zero for every element inK.
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We see from this construction that the outgoing subspaceD1 is defined, in the outgoing
representation, in terms of support properties~this is also true for the incoming subspace in t
incoming representation!. One can then easily understand that the fundamental difference bet
Lax–Phillips theory and the standard quantum theory lies in this property. The subspace d
the unstable system in the standard theory is usually defined as the eigenstate of an unpe
Hamiltonian, and is not associated with an interval on a line. The subspaces of the Lax–P
theory are associated with intervals~i.e., the positive and negative half-lines in the outgoing a
incoming representations!. To see this, we remark that the operatorP1U(t) is a semigroup. The
product

P1U~t1!P1U~t2!5P1U~t1!@12~12P1!#U~t2!5P1U~t1!U~t2!5P1U~t11t2!;
~1.9!

this follows from the fact thatU(t1) leaves the subspaceD1 invariant.
We now show that the generator of this semigroup is symmetric but not self-adjoint, an

therefore not a group. In the outgoing translation representation,

~P1U~t! f !~s!5u~2s! f ~s2t!, ~1.10!

and therefore

~P1K f !~s!5 iu~2s!
] f

]s
~s2t!ur→01

, ~1.11!

where f (s) is a vector-valued function, andK is the self-adjoint generator associated withU(t).
If we then compute the scalar product of the vector given in~1.10! with a vectorg, we find that

E
2`

`

dsg* ~s!~P1K f !~s!5 id~s!g* ~0! f ~0!1E
2`

`

ds~P1Kg!* ~s! f ~s!. ~1.12!

The generator is therefore not self-adjoint.@It is through this mechanism that the Lax–Phillip
theory provides a description that has the semigroup property for the evolution of an un
system~see also Ref. 3!.# It has, in fact, a family of complex eigenvalues in the upper half-pla
the eigenfunctions are

f m~s!5H emsn, s<0;

0, s.0,

wheren is some vector in the auxiliary space.
The semigroup property of the operatorZ(t) of ~1.7! follows directly from the discussion

given above. It clearly vanishes on the subspaceD2 , and by the stability ofD1 underU(t) for
t>0, it vanishes onD1 as well.1 It is therefore nonzero only on the subspaceK, and on such
vectors, the operatorP2 can be omitted; the semigroup property then follows from what we h
said above.

The existence of a semigroup law for transitions in the framework of the usual qua
mechanical Hilbert space has been shown to be unattainable.7 Flesia and Piron2 found that the
direct integral of quantum mechanical Hilbert spaces can provide a framework for the L
Phillips construction for the quantum theory, resulting in a structure directly analogous t
foliation ~1.4!. In this construction, it appears that4 for the representation in which the free ev
lution is represented by translation on the foliation parameter in Eq.~1.5! ~and for which it is
assumed thatD6 have definite support properties!, the full evolution of the system should be a
integral kernel in order to achieve the connection between the Lax–PhillipsS-matrix and the
semigroup.
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In this work we show that the evolution operator for the physical model for the system m
pointwise, in a representation which we shall call themodel representation, but in another repre-
sentation, corresponding to a different foliation, the necessary conditions for the constructio
nontrivial Lax–Phillips theory can be naturally realized. The natural association of the tim
rameter in the model representation with the foliation asserted by the theorem of Sinai,16 as we
shall show, does not necessarily correspond to the proper embedding of the quantum theo
the Lax–Phillips framework.

If we identify elements in the spaceH̄ with physical states, and identify the subspaceK with
the unstable system, we see that the quantum Lax–Phillips theory provides a framework
description of an unstable system which decays according to a semigroup law. We remar
taking a vectorc0 in K, and evolving it under the action ofU(t), the projection back into the
original state is@it follows from ~1.7! and the stability ofD6 that Z(t)5PKU(t)PK as well#

A~t!5~c0 ,U~t!c0!5~c0 ,PKU~t!PKc0!5~c0 ,Z~t!c0!, ~1.13!

so that the survival amplitude of the Lax–Phillips theory, analogous to that of the Wig
Weisskopf formula~1.2!, has the exact exponential behavior. The difference between this r
and the corresponding expression~1.2! for the Wigner–Weisskopf theory can be accounted for
the fact that there are translation representations forU(t), and that the definition of the subspac
K is related to the support properties along the foliation axis on which these translation
induced.3

Functions in the spaceH̄, representing the elements ofH̄, depend on the variablet as well as
the variables of the auxiliary spaceH. The measure space of this Hilbert space of states is
dimension larger than that of a quantum theory represented in the auxiliary space alone.
fying this additional variable with anobservable~in the sense of a quantum mechanical obse
able! time, we may understand this representation of a state as avirtual history. The collection of
such histories forms a quantum ensemble; the absolute square of the wave function corresp
the probability that the system would be found, as a result of measurement, at timet in a particular
configuration in the auxiliary space~in the state described by this wave function!, i.e., an element
of one of the virtual histories. For example, the expectation value of the position variablex at a
given t is, in the standard interpretation of the auxiliary space as a space of quantum state

^x& t5
~c t ,xc t!

ic ti2 . ~1.14!

The full expectation value in the physical Lax–Phillips state, according to~1.5!, is then4

E dt~c t ,xc t!5E dtic ti2^x& t , ~1.15!

so we see thatic ti2 corresponds to the probability to find a signal which indicates the presen
the system at the timet ~in the same way thatx is interpreted as a dynamical variable in th
quantum theory!.

One may ask, in this framework, which results in a precise semigroup behavior for an un
system, whether such a theory can support as well the description of stable systems or a
which makes a transition following the rule of Wigner and Weisskopf~as, for example, the
adiabatic rotation of an atom with spin in an electromagnetic field!. It is clear that ifD6 span the
whole space, for example, there is no unstable subspace, and one has a scattering theory
the type of resonances that can be associated with unstable systems. We shall treat this su
more detail in a succeeding article.

In the next section, we give a procedure for the construction of the subspacesD6 , and for
defining the representations which realize the Lax–Phillips structure. In this framework, we d
the Lax–PhillipsS-matrix. In Sec. III, we show that this construction results in a Lax–Phil
theory applicable to models in which the underlying dynamics is locally defined in time. We
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out the construction for a Flesia–Piron-type model. In Sec. IV we study the general form o
Lax–PhillipsS-matrix and prove that for pointwise models it is unitarily related to the stand
S-matrix of the usual scattering theory in the auxiliary space. In Sec. V, we work out the sp
example of a generalized Lee–Friedrichs spectral model,17 and show that the model can be chos
so that the condition for the resonance pole is well approximated by the resonance pole co
of the Lee–Friedrichs model of the usual quantum theory. A discussion and conclusions are
in Sec. VI.

II. THE SUBSPACES DÁ, REPRESENTATIONS, AND THE LAX–PHILLIPS S-MATRIX

It follows from the existence of the one-parameter unitary groupU(t) which acts on the
Hilbert spaceH̄ that there is an operatorK which is the generator of dynamical evolution of th
physical states inH̄; we assume that there existwave operatorsV6 which intertwine this dy-
namical operator with an unperturbed dynamical operatorK0 . We shall assume thatK0 has only
absolutely continuous spectrum in~2`,`!.

We begin the development of the quantum Lax–Phillips theory with the construction o
incoming and outgoing translation representations. In this way, we shall construct explicit
foliations described in Sec. I. Thefree spectral representationof K0 is defined by

f^sbuK0ug&5s f^sbug&, ~2.1!

whereug& is an element ofH̄ andb corresponds to the variables~measure space! of the auxiliary
space associated to each value ofs, which, with s, comprise a complete spectral set. The fun
tions f^sbug& may be thought of as a set of functions of the variablesb indexed on the variable
s in a continuous sequence of auxiliary Hilbert spaces isomorphic toH.

We now proceed to define the incoming and outgoing subspacesD6 . To do this, we define
the Fourier transform from representations according to the spectrums to the foliation variablet
of ~1.5!, i.e.,

f^tbug&5E eist
f^sbug&ds. ~2.2!

Clearly,K0 acts as the generator of translations in this representation. We shall say that the
functions f^tbug& are in thefree translation representation.

Let us consider the sets of functions with support in (0,`) and in (2`,0), and call these
subspacesD0

6 . The Fourier transform back to the free spectral representation provides th
sets of Hardy class functions

f^sbug0
6&5E e2 ist

f^tbug0
6&dtPH6 , ~2.3!

for g0
6PD0

6 .
We may now define the subspacesD6 in the Hilbert space of statesH̄. To do this we first

map these Hardy class functions inH̄ to H̄, i.e, we define the subspacesD0
6 by

E (
b

usb& f f^sbug0
6&dsPD0

6 . ~2.4!

We shall assume that there are wave operators which intertwineK0 with the full evolutionK,
i.e., that the limits

lim
r→6`

eiK te2 iK 0t5V6 ~2.5!
                                                                                                                



e
rger

their
ence of

ff in

t of the

p to a
ual
space
nta-
ch the

fine

dure is
, then

-

esult is

-

tral

-

8056 J. Math. Phys., Vol. 41, No. 12, December 2000 Strauss, Horwitz, and Eisenberg

                    
exist on a dense set inH̄. @We emphasize that the operatorK generates evolution of the entir
virtual history, i.e., of elements inH̄, and that these wave operators are defined in this la
space. These operators arenot, in general, the usual wave~intertwining! operators for the per-
turbed and unperturbed Hamiltonians that act in the auxiliary space. The conditions for
existence are, however, closely related to those of the usual wave operators. For the exist
the limit, it is sufficient that fort→6`, iVeiK 0tfi→0 for a dense set inH̄. For a time-
dependent potential which falls off rapidly for largeutu, the time translation induced byK0 can
provide this result. However, for a time-independent potential which has sufficiently fast fallo
space, the evolution generated byK0 ~for example, in the Piron–Flesia form2 K052 i ] t1H0 ,
whereH0 may be identified with the usual quantum mechanical free Hamiltonian!, can also move
the support of a wave packet on space in the same way as for the usual quantum theory, ou
potential region, as the function is translated simultaneously on thet axis. In this case, the
condition for existence of the wave operators coincides with that of the usual theory, and u
unitary operator~to be discussed below!, the wave operators coincide with those of the us
quantum theory. The free evolution may induce a motion of the wave packet in the auxiliary
out of the range of the potential~in the variables of the auxiliary space in the model represe
tion!, as for the usual scattering theory, so that it is possible to construct examples for whi
wave operator exists if the potential falls off sufficiently rapidly.#

The construction ofD6 is then completed with the help of the wave operators. We de
these subspaces by

D15V1D0
1 ,

D25V2D0
2 . ~2.6!

We remark that these subspaces are not produced by the same unitary map. This proce
necessary to realize the Lax–Phillips structure nontrivially; if a single unitary map were used
there would exist a transformation into the space of functions onL2(2`,`,H) which has the
property that all functions with support on the positive half-line represent elements ofD1 , and all
functions with support on the negative half-line represent elements ofD2 in the same represen
tation; the resulting Lax–PhillipsS-matrix would then be trivial. The requirement thatD1 andD2

be orthogonal is not an immediate consequence of our construction; as we shall see, this r
associated with the analyticity of the operator which corresponds to the Lax–PhillipsS-matrix.

In the following, we construct the Lax–PhillipsS-matrix and the Lax–Phillips wave opera
tors.

The wave operators defined by~2.5! intertwineK andK0 , i.e.,

KV65V6K0 ; ~2.7!

we may therefore construct the outgoing~incoming! spectral representations from the free spec
representation. Since

KV6usb& f5V6K0usb& f5sV6usb& f , ~2.8!

we may identify

usb&out
in

5V6usb& f . ~2.9!

The Lax–PhillipsS-matrix is defined as the operator, onH̄, which carries the incoming to out
going translation representations of the evolution operatorK. Supposeg is an element ofH̄; its
incoming spectral representation, according to~2.9!, is

in^sbug&5 f^sbuV2
21g&. ~2.10!
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Let us now act on this function with the Lax–PhillipsS-matrix in the free spectral representatio
and require the result to be theoutgoingrepresenter ofg:

out̂ sbug&5 f^sbuV1
21g&5E ds8(

b8
f^sbuSus8b8& f f^s8b8uV2

21g&, ~2.11!

where S is the Lax–PhillipsS-operator~defined onH̄). Transforming the kernel to the fre
translation representation with the help of~2.2!, i.e.,

f~ tbuSut8b8! f5
1

~2p!2 E dsds8eiste2 is8t8
f^sbuSus8b8& f , ~2.12!

we see that the relation~2.11! becomes, after using Fourier transform in a similar way to transfo
the in and out spectral representations to the corresponding in and out translation represen

out̂ tbug&5 f^tbuV1
21g&5E dt8(

b8
f^tbuSut8b8& f f^t8b8uV2

21g&

5E dt8(
b8

f^tbuSut8b8& f in^t8b8ug&. ~2.13!

Hence the Lax–PhillipsS-matrix is given by

S5$ f^tbuSut8b8& f%, ~2.14!

in free translation representation. It follows from the intertwining property~2.7! that

f^sbuSus8b8& f5d~s2s8!Sbb8~s!. ~2.15!

This result can be expressed in terms of operators onH̄. Let

w2
215$ f^tbuV2

21% ~2.16!

be a map fromH̄ to H̄ in the incoming translation representation, and, similarly,

w1
215$ f^tbuV1

21%, ~2.17!

a map fromH̄ to H̄ in the outgoing translation representation. It then follows from~2.13! that

S5w1
21w2 , ~2.18!

as a kernel on the free translation representation. This kernel is understood to operate
representer of a vectorg in the incoming representation and map it to the representer in
outgoing representation.

We now discuss a class of pointwise physical models, and return in Sec. IV to the constr
of the Lax–PhillipsS-matrix for this class of models.

III. POINTWISE PHYSICAL MODELS

It has been shown by Piron5 that if ~the symbol2 i ] t stands, in this context, for the operat
on H̄ which acts on the family$Ht% as a partial derivative in the foliation parameter! K, 2 i ] t , and
K1 i ] t have a common dense domain on which they are essentially self-adjoint, then there
an operator H, defined as the self-adjoint extension ofK1 i ] t , which is a decomposable operat
on H̄, that is, (Hc) t5Htc t . We therefore have, on this common domain,
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K52 i ] t1H, ~3.1!

corresponding to an evolution which acts pointwise int ~as in the well-known Floquet theory, use
primarily for studying periodic time-dependent problems!. We shall identify the representation i
which this analysis is carried out with what we have called themodel representation.

In this section, we show that physical models of this type, for which the evolution is de
pointwise in time~in the model representation!, which provide a straightforward way of lifting
problems in the framework of the usual quantum theory to the Lax–Phillips structure, satis
requirements imposed by Eisenberg and Horwitz4 on the structure of a nontrivial Lax–Phillip
theory, i.e., that the evolution be represented by a nontrivial kernel in the free translation
sentation.

Consider a class of models for nonrelativistic quantum theory characterized by the sta
Heisenberg equations~context should avoid confusion between the symbol H for the Hamilton
and the designation of the auxiliary Hilbert spaceH!

dx

dt
5 i @H,x#,

dP

dt
5 i @H,p#, ~3.2!

in terms of operators defined on a Hilbert spaceH, where

H5H01V. ~3.3!

In case there is an explicit time-dependence inV5V(t), for example, in a model in which the
interaction that induces instability is turned on at some finite laboratory time, it is often conve
to formally adjoin two new dynamical variables~as done, for example, by Piron5 and Howland18!,
Tm andE, along with an evolution parametert to replace the role of the parametert in ~3.2! (Tm

denotes the time operator in the space in which we construct the dynamical model of the s
such a time operator exists because the spectrum ofE is taken to be~2`,`!!. The evolution
operator may then be considered ‘‘time’’~t!-independent, i.e., we define, as operators on a la
spaceH̄ ~and thus identify H with the decomposable operator in~3.1!!

K5E1H5K01V, ~3.4!

where

K05E1H0, ~3.5!

and

@Tm ,E#5 i . ~3.6!

Then, Eqs.~3.2! become

dx

dt
5 i @K,x#5 i @H,x#,

dp

dt
5 i @K,p#5 i @H,p#, ~3.7!

and

dE

dt
5 i @K,E#5 i @H,E#,
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dTm

dt
5 i @K,Tm#5 i @E,Tm#51. ~3.8!

The first of ~3.8! implies, since H0 is independent oft, that18

dE

dt
52

]V

]t
, ~3.9!

and the last of~3.8! putsTm andt into correspondence, i.e., the expectation value ofTm goes with
t. The evolution of the system is, however, generated by the operator

U~t!5e2 iK t, ~3.10!

corresponding to the Lax–Phillips evolution assumed in~1.3!. The extension we have constructe
~by the inclusion of the operatorsTm andE! enables us to embed the nonrelativistic Heisenb
equations into the Lax–Phillips theory, in a way equivalent to the Flesia–Piron direct integra
conditions that they impose, thatE andK have a common dense domain, results, by means o
Trotter formula, in the conclusion that H acts pointwise in the spectral decomposition ofTm . This
result gives~3.4! a precise meaning. ThatK0 shares this common domain follows from th
requirement thatV be ‘‘small.’’ 19

We shall label the spectral representation of the operatorTm by the subscriptm, so that for
cPH̄,

m^tauK0uc!52 i ] t m^tauc!1m^tauH0uc!, ~3.11!

where$a% corresponds to a complete set in the~auxiliary! Hilbert space associated tot. We shall
assume that H0 has not dependence. We shall assume for the remainder of this section thaV is
diagonal in t, so that

m^tauH0uc!5(
a8

H0
a,a8

m^ta8uc!, ~3.12!

and

m^tauVuc!5(
a8

Va,a8~ t !m^ta8uc!. ~3.13!

We therefore see explicitly that the Hilbert space associated to the action of the operator H m
identified in this case with the auxiliary space of the Lax–Phillips theory, and the larger s
representing the action ofTm andE ~along withH!, with the function spaceH̄ or the abstract spac
H̄ of the Lax–Phillips theory, as in the~direct integral! construction of Flesia and Piron.2

The free spectral representation discussed in Sec. II is constructed by requiring thatK0 , in this
representation, act as multiplication. As in~2.1!, we label this representation with subscriptf, and
require, forcPH̄,

f^sbuK0uc!5s f^sbuc!, ~3.14!

where$b% corresponds to a complete set in the~auxiliary! Hilbert space associated tos, and may
have discrete or continuous values. This relation defines the free spectral representation.

The free translation representation is then given by~2.2!, i.e.,

f^tbuc!5E
2`

`

eist
f^sbuc!ds. ~3.15!
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One obtains, from~3.11!–~3.14!, the relation

m^tauK0usb& f5sm^tausb& f52 i ] t m^tausb& f1(
a8

H0
aa8

m^ta8usb& f . ~3.16!

Making the transformation

m^tausb& f5eist
m
0 ^tausb& f , ~3.17!

the relation~3.16! becomes

i ] t m
0 ^tausb& f5(

s8
H0

aa8
m
0 ^ta8usb& f , ~3.18!

or

m
0 ^tausb& f5(

s8
~e2 iH 0t!aa8

m
0 ^0a8usb& f . ~3.19!

The solution~3.19! of ~3.18! is norm-preserving inH, and thereforem
0 ^tausb& f are not elements

of H̄ ~the integral of the modulus squared overt diverges!. This norm-preserving evolution reflect
the stability of the system under evolution induced byH0 . The factoreist in ~3.17! imbeds
physical states intoH̄. To see this, consider the norm ofm^tauc),

E dt(
a

um^tauc!u25E dsds8dt (
abb8

e2 i ~s2s8!t
m
0 ^tausb& f*

3m
0 ^taus8b8& f f^sbuc!* f^s8b8uc!

5E dtdsds8 (
a...b8

e2 i ~s2s8!t~e2 iH 0t!aa8* ~e2 iH 0t!aa9

3m
0 ^0a8usb& f* m

0 ^0a9us8b8& f f^sbuc!* f^s8b8uc!. ~3.20!

Carrying out the sum overa, the unitary factors cancel, leavingda8,a9 . The t-integration then
forms a factor 2pd(s2s8), permitting a sum ona85a9. We show below that, from the uni
tarity of f^tausb& f , it follows that the indices inm^0ausb& f label orthonormal sets in the aux
iliary spaces attached tot50 ands, for eachs, i.e.,

(
a8

m
0 ^0,a8usb& f* m

0 ^0a8usb8& f5db,b8 ,

and therefore the final integral ons and sum onb can be carried out in~3.20!:

E ds(
b

u f^sbuc!u251.

On the other hand, if~3.19! were to provide the complete representation,

(
a,a8,a9

~e2 iH 0t!aa8* ~e2 iH 0t!aa9
m
0 ^0a8uc!* m

0 ^0a9uc!5(
a8

um
0 ^0a8uc!u2 ~3.21!

is bounded but independent oft; an integral overt would then diverge.
We now remark that since
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f^sbue2 iK 0tuc!5e2 ist
f^sbuc!, ~3.22!

it follows from ~2.2! that

f^tbue2 iK 0tc!5E dseis~ t2t!
f^sbuc!5 f^t2t,buc!, ~3.23!

making explicit the translation induced byK0 in this representation, as is evident from~2.1! ~or the
first of ~3.16!!. It then follows that

f^tbuK0uc!52] t f^tbuc!, ~3.24!

and ~3.16! becomes, in the free translation representation,

m^tauK0ut8b& f5 i ] t8 m^taut8b& f52 i ] t m^taut8b& f1(
a8

H0
aa8

m^ta8ut8b& f , ~3.25!

or

i ~] t1] t8!m^taut8b& f5(
a8

H0
aa8

m^ta8ut8b& f . ~3.26!

It is clear from ~3.26! that the transformation function,m^taut8b& f , from the representation in
which Tm is diagonal,

Tm5E dt(
a

uta&mt m^tau, ~3.27!

to that for which the free time operator

Tf5E dt(
b

utb& f t f^tbu ~3.28!

is diagonal, cannot be a function oft2t8 alone ~in particular, proportional tod(t2t8)), if the
right-hand side of~3.26! is not zero. We see that the existence of a nontrivial relation of the
~3.26!, in which H0 plays a fundamental role, is necessary in order that the free and m
translation representations be distinct.

To find the general solution of~3.26!, let

m^taut8b& f5 f ab~ t1 ,t2!, ~3.29!

where

t65
t86t

2
. ~3.30!

Then,~3.26! becomes

i ] t1
f ab~ t1 ,t2!5(

a8
H0

aa8 f a8b~ t1 ,t2!,

with solution

f ab~ t1 ,t2!5(
a8

~e2 iH 0t1!aa8 f a8b~0,t2!. ~3.31!
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The t1 dependence of this function is determined byH0 ; the t2 dependence is, as can be se
from ~3.26!, completely undetermined by the dynamics of the system, and is at our dispo
therefore follows that

m^tausb& f5(
a8

E dt8eist8~e2 iH 0t1!aa8 f a8b~0,t2!

5 (
a8a9

E dt8eist8~e2 iH 0t!aa9~e2 iH 0~ t82t !/2!)a9a8 f a8b~0,t2!

5 (
a8a9

E d~ t82t !eisteis~ t82t !~e2 iH 0t!aa9~e2 iH 0~ t82t !/2!a9a8 f a8b~0,t2!. ~3.32!

We now define

Uab~s![A2pE dteist~e2 iH 0t/2!aa8 f a8b~0,t/2!, ~3.33!

so that~3.32! becomes

m^tausb& f5
1

A2p
(
a8

eist~e2 iH 0t!aa8Ua8b~s!. ~3.34!

It then follows that

Uab~s!5A2p m^0ausb& f . ~3.35!

The unitarity relations for the transformation functionm^tausb& f imply the unitarity of
Uab(s):

(
a

E dt f^sbuta&m m̂ taus8b8& f

5
1

2p (
aa8a9

E dte2 ist~e2 iH 0t!aa8* Ua8b* ~s!eis8t~e2 iH 0t!aa9Ua9b8

5d~s2s8!(
a

Uab* ~s!Uab8~s!

so that

(
a

Uab* ~s!Uab8~s!5dbb8 . ~3.36!

Moreover,

(
b

E ds m^tausb& f f^sbut8a8&m

5
1

2p (
ba9a-

E dseis~ t2t8!~e2 iH 0t!aa9~e2 iH 0t8!a8a-* Ua9b~s!Ua-b* ~s!

5d~ t2t8!daa8 . ~3.37!

Now, suppose thata, a8 correspond to~generalized! eigenstates ofH0 ; then,~3.37! becomes
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d~ t2t8!daa85
1

2p (
b

E dsei ~s2Ea!te2 i ~s2Ea8!t8Uab~s!Ua8b* ~s!. ~3.38!

Multiplying ~3.38! by e2 int and integrating overt, we obtain

e2 int8daa85e2 i ~n1Ea2Ea8!t8(
b

Uab~s!Ua8b* ~s!us5Es1n ,

for everyn. This relation implies thatEa5Ea8 , so that

aaa85(
b

Uab~s!Ua8b* ~s!. ~3.39!

The transformation functionm^tausb& f5eist
m
0 ^tausb& f constitutes a map from the spectr

family associated withTm , represented by the kets$uta&m% to the spectral representation ofK0 ,
represented by the kets$usb& f%. We can think of this map in two stages, the first from$uta&m% to
a standard frame$ub8&0% ~projection! in the auxiliary space of the free representation, then a m
~lift ! from this to the foliated frames$usb& f% according to

m^tausb& f5(
b8

m^taub8&0 0^b8usb& f , ~3.40!

with the property~3.17! due to the contraction with0^b8usb& f . Then,~3.35! can be written as

Uab~s!5A2p(
b8

m^0aub8&0 0^b8usb& f . ~3.41!

Let us define the unitary map

^aub8&[A2p m^0aub8&0 , ~3.42!

so that

Ub8b~s![0^b8usb& f5(
a

^b8ua&Uab~s! ~3.43!

corresponds to a transformation in ‘‘orientation’’ of the representation from the standard o
the isomorphic auxiliary spaces. The mapUb8b(s) from a standard frame to a frame varying wi
s has the geometric interpretation of a section of a frame bundle, as reflected in~3.40!.

IV. THE S-MATRIX FOR POINTWISE MODELS

In this section we define the Lax–Phillips wave operators for the pointwise models disc
in the previous section, and compute theS-matrix ~based on the intertwining ofK andK0). We
show that the Lax–PhillipsS-matrix is, in this case, simply related to theS-matrix of the usual
scattering problem~based on the intertwining ofH andH0) by the unitary operatorU(s). This
operator acts in a way similar to that of the dilation used by Aguilar and Combes20 ~see also
Simon21! where analytic continuation ins distorts the continuous spectrum of the Hamiltonia
exposing the resonance poles on the first sheet.

We show in the following that the spectrally diagonal operatorSbb8(s) for pointwise models
has the form

Sbb8~s!5Uab* ~s!~Saux!aa8Ua8b8~s!. ~4.1!
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Here,Uab(s) is the operator on the auxiliary space defined by~3.35!, andSaux is theS-matrix of
the usual scattering theory defined byH,H0 in the auxiliary space.

To see this, we study the operatorS in the form

S5V1
21V25 lim

t→`
eiK 0te22iK teiK 0t, ~4.2!

which can be expressed as

S5 lim
e→0

eE
0

`

dte2eteiK 0te22iK teiK 0t

5E
0

`

dtS 2
d

dt
e2etDeiK 0te22iK teiK 0t

512 i E
0

`

dt$eiK 0tVe22iK teiK 0t1eiK 0te22iK tVeiK 0t%e2et. ~4.3!

In the free spectral representation, we therefore have

f^sbuSus8b8& f5d~s2s8!dbb82 i E
0

`

dt f^sbuVei ~s1s822K1 i e!t1ei ~s1s822K1 i e!tVus8b8& f

5d~s2s8!dbb81
1

2 f^sbuVGS s1s8

2
1 i e D1GS s1s8

2
1 i e DVus8b8& f ,

~4.4!

where we use the definitions

G~z!5
1

z2K
, G0~z!5

1

z2K0
. ~4.5!

We now define the operator22

T~z!5V1VG~z!V5V1VG0~z!T~z!, ~4.6!

where we have used the second resolvent equation

G~z!5G0~z!1G0~z!VG~z!5G0~z!1G~z!VG0~z!. ~4.7!

Since

T~z!G0~z!5VG0~z!1VG~z!VG0~z!5VG~z!, ~4.8!

and

G0~z!T~z!5G0~z!V1G0~z!VG~z!V5G~z!V, ~4.9!

it follows that
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f^sbuSus8b8& f5d~s2s8!dbb81
1

2 f^sbuT S s1s8

2
1 i e DG0S s1s8

2
1 i e D

1G0S s1s8

2
1 i e DTS s1s8

2
1 i e D us8b8& f

5d~s2s8!dbb81H 1

s2s81 i e
1

1

s82s1 i eJ
f

^sbuTS s1s8

2
1 i e D us8b8& f

5d~s2s8!$dbb822p i f^sbuT~s1 i e!usb8& f%. ~4.10!

We remark that by this construction, we see thatSbb8(s) is analytic in the upper half planein s.
To complete our demonstration of~4.1!, we expandT(z) ~assuming that the series converge!,

using ~4.6!, as

T5V1VG0~z!V1VG0~z!VG0~z!V1... . ~4.11!

The matrix elements ofT therefore involve

f^sbuVus8b8& f5E dt(
aa8

f^sbuta&mV~ t !aa8
m^ta8us8b8& f . ~4.12!

From ~3.34!, we obtain

f^sbuVus8b8& f5
1

2p (
aa8

E dtei ~s82s!tUab* ~s!VI~ t !aa8Ua8b8~s8!, ~4.13!

whereVI(t) is the interaction picture form forV in the standard scattering theory,

VI
aa8~ t !5 (

a9a-
~eiH 0t!aa9Va9a-~ t !~e2 iH 0t!a-a8. ~4.14!

It is convenient to write~4.13! as an operator-valued kernel on the auxiliary space in the
spectral representation~suppressing the explicit indices of the auxiliary space!, i.e.,

f^suVus8& f5
1

2p E dtei ~s82s!tU†~s!VI~ t !U~s8!. ~4.15!

Since

f^s8uG0~s1 i e!us9& f5
1

s2s81 i e
d~s82s9!,

it follows that

f^suVG0~s1 i e!Vus8& f5E ds9ds- f^suVus9& f f^s9uG0~s1 i e!us-& f f^s-uVus8&

5U†~s!
1

~2p!2 E ds9dt dt8
eis9~ t2t8!

s2s91 i e
e2 isteis8t8VI~ t !VI~ t8!U~s8!.

~4.16!
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Closing the contour in the upper half plane ins9 to include the pole ats95s1 i e requirest
.t8 ~for t,t8, the contour must be closed in the lower half plane and vanishes!; the result, for
t.t8, is 22p iei (s1 i e)(t2t8), so that

f^suVG0~s1 i e!Vus8& f52
i

2p
U†~s!E

2`

`

dtE
2`

t

dt8ei ~s82s!t8VI~ t !VI~ t8!U~s8!.

~4.17!

For s5s8, as enforced by~4.10!, the exponential factor is unity.
To see how the rest of the series goes, we calculate

f^suVG0~s1 i e!VG0~s1 i e!Vus8& f

5
1

~2p!3 U†~s!E dt dt8dt9ds9ds-
ei ~s92s!tei ~s-2s9!t8ei ~s82s-!t9

~s2s91 i e!~s2s-1 i e!

3VI~ t !VI~ t8!VI~ t9!U~s8!, ~4.18!

where the internal factorsU(s9), U(s-) cancel. Now, as above,

E ds9
eis9~ t2t8!

s2s91 i e
522p ieis~ t2t8!, t.t8,

and is otherwise zero. The integral overs- then yields

E ds-
eis-~ t82t9!

s2s-1 i e
522p ieis~ t82t9!, t8.t9,

and is otherwise zero, so we conclude that a nonzero result requirest.t8.t9, and in this case

f^suVG0~s1 i e!VG0~s1 i e!Vus8& f

5
i 2

2p
U†~s!E

2`

`

dtE
2`

t

dt8E
2`

t8
dt9VI~ t !VI~ t8!VI~ t9!U~s8!ei ~s82s!t9; ~4.19!

the last factor again becomes unity under the restrictions5s8. The general result for the serie
is

f^suSus8& f5d~s2s8!U†~s!H 12 i E
2`

`

dtVI~ t !1
~2 i !2

2!
TE

2`

`

dt dt8VI~ t !VI~ t8!

1
~2 i !3

3!
TE

2`

`

dt dt8dt9VI~ t !VI~ t8!VI~ t-!1¯J U~s!, ~4.20!

whereT indicates that the operations must be time-ordered under the integrals. The terms
bracket in~4.20! are the expansion of

Saux5T~e2 i *2`
` VI ~ t !dt!, ~4.21!

so that~4.1! is proven.
We have constructed the incoming and outgoing subspacesD6 in ~2.6!. It is essential for

application of the Lax–Phillips theory that these subspaces be orthogonal, i.e., for evef 1

PD1 , f 2PD2 , that (f 1 , f 2)50. If

f 15V1 f 0
1 ,
                                                                                                                



in
ation;

t is
e for

l
ces

s
se in
the
estab-

he

llips
ime-

8067J. Math. Phys., Vol. 41, No. 12, December 2000 Quantum mechanical resonances

                    
f 25V2 f 0
2 , ~4.22!

mapped from functions inD0
6 , we see that the orthogonality condition is

~ f 1 , f 2!5~ f 0
1 ,V1

21V2 f 0
2!50. ~4.23!

We now show that theS-matrix leaves the support of the functions inD2 in the incoming
representation invariant,1 and therefore the orthogonality condition is satisfied. As shown
~2.11!, theS-matrix in free representation transforms the incoming to the outgoing represent
we may therefore write the scalar product in~4.23! as

~ f 1 , f 2!5(
bb8

E dt dt8~ f 1utb&outf^tbuSut8b8& f in^t8b8u f 2!. ~4.24!

Now,

f^tbuSut8b8& f5E dsds8eiste2 is8t8
f^sbuSus8b8& f

5E dseis~ t2t8!Sbb8~s!5Sbb8~ t2t8!. ~4.25!

The functionS(s)bb8 is analytic in the upper half plane; it may have a null cospace, bu
otherwise regular. Its singularity lies in the lower half plane. To find the nonvanishing valu
Sbb8(t2t8), we must close the contour in the lower half plane. This can only be done ift8.t. For
t8,t, one must close in the upper half plane, and thereS(s) has no singularity, so the integra
vanishes. HenceSbb8(t2t8) takesD2 to D2 in the incoming representation, and the subspa
D1 andD2 are orthogonal.

We finally remark that theS-matrix, in themodelspace, has the form

m^tauSut8a8&m5(
bb8

E dsds8m^tausb& f f^sbuSus8b8& f f^s8b8ut8a8&m

5(
bb8

E dsm^tausb& fU
†ba~s!Saux,aa8Ua8b8~s! f^sb8ut8a8&m

5
1

2p E dseis~ t2t8!~e2 iH 0t!aa9Ua9b~s!U†ba-~s!

3Saux,a-a iv
Ua ivb8~s!U†b8av

~s!~e2 iH 0t8!ava8*

5d~ t2t8!Saux,aa8, ~4.26!

where we have used~3.34! and the fact thatH0 commutes withSaux. In the model space,Saux acts
at a givent, and multiplication byd(t2t8) constitutes the lift of this operator to the Lax–Phillip
theory. This result illustrates the conclusion of Ref. 4, that for a Hamiltonian that is pointwi
t, the Lax–PhillipsS-matrix has no nontrivial analytic structure in the model representation. In
free spectral representation, however, it has the nontrivial analytic structure necessary for
lishing the relation between the singularities ofS(s) and the spectrum of the generator of t
semigroup.

V. THE LEE–FRIEDRICHS MODEL

In this section, we work out a specific illustrative example for application of the Lax–Phi
theory, a model which corresponds, in the Lax–Phillips framework, to the well-known t
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independent soluble model of Friedrichs and Lee.17 We shall study a problem with a
t-independent rank one potential in the Lax–Phillips Hilbert space, constructed in such a wa
the analytic structure of the resolvent is similar to that of the standard Lee–Friedrichs mod

The Lee–Friedrichs model for scattering and resonances,17,23 in the framework of standard
nonrelativistic scattering theory, is characterized by a HamiltonianH5H01V for which H0 has a
bound state with eigenfunctionf and eigenvalueE0 embedded in an absolutely continuous sp
trum on ~0, `!, and for whichV has matrix elements only from the discrete bound state to
generalized eigenfunctions on the continuum. The vanishing of continuum–continuum m
elements corresponds to the assumption, often a good approximation, that there are no fin
interactions.

For the Lax–Phillips Lee–Friedrichs model, we take the operatorV of ~3.4! to have nonva-
nishing matrix elements only between a distinguished vectorwPH̄ and^s, bu. We do not require
that w be an eigenfunction ofK0 since K0 must have absolutely continuous spectrum~as the
generator of translations on the free translation representation!. Since the potential is rank one, th
wave operator~4.2! exists. The relation~4.10! then applies. With our assumption onV, we may
now compute theS operator directly. The matrix element ofT(z) is

f^sbuT~z!usb8& f5 f^sbuVusb8& f1 f^s,buVuw&^wuG~z!uw&^wuVusb8& f , ~5.1!

where we study only the part diagonal ins for use in~4.10!.
We must therefore calculate the reduced resolvent^wuG(z)uw&. To do this, we use the secon

resolvent equation~4.7!:

^wuG~z!uw&5^wuG0~z!uw&H 11E ds(
b

^wuVusb& f f^sbuG~z!uw&J , ~5.2!

where we have taken into account the rank one property ofV. We then shall need an expressio
for f^sbuG(z)uw&. Using again the relation~4.7!, one finds

f^sbuG~z!uw&5 f^sbuw&1E ds8(
b8

f~sbuG0~z!us8b8& f f^s8b8uVuw&^wuG~z!uw&. ~5.3!

Substituting this result into~5.2!, we find

^wuG~z!uw&5^wuG0~z!uw&H 11E ds(
b

^wuVusb& f f^sbuG0~z!uw&

1E dsds8 (
b,b8

^wuVusb& f f^sbuG0~z!us8b8& f f^s8b8uw&^wuG~z!uw&J .

~5.4!

SinceK0 is multiplication bys in the free translation representation,

f^sbuG0~z!us8b8& f5d~s2s8!dbb8

1

z2s
,

and we may therefore write~5.4! as

H ^wuG0~z!uw&212E ds(
b

u^wuVusb& f u2

z2s J ^wuG~z!uw&511E ds(
b

^wuVusb& f f^sbuw&
z2s

,

~5.5!
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from which one may solve for the reduced propagator^wuG(z)uw&. This structure is very similar
to the usual Lee–Friedrichs model. By specializing our example further, we can in fact brin
model into close coincidence with that model. Let us suppose that, forK05E1H0 ,

K0uw&5E dE8~E81m!uE8m&mm̂ E8muw&, ~5.6!

and, furthermore, that the support ofm^E8muw& is very sharp in the neighborhood ofE850.24 We
have takenw to be an eigenfunction of 1̂H0 with eigenvaluem, and with no support on the
continuous spectrum ofH0 ~in the auxiliary space!. Consider the matrix element

f^sbuK0uw&5E dE8~E81m! f^sbuE8m&m m̂ E8muw&5s f^sbuw&. ~5.7!

For the support interval ofDE8!m aroundE850, f^sbuw& is therefore strongly concentrated
s>m. Hence, the reduced free propagator is approximately given by

^wuG0~z!uw&5E ds(
b

u^wusb& f u2

z2s
>

1

z2m E ds(
b

u^wusb& f u25
1

z2m
. ~5.8!

Equation~5.5! then becomes

H z2m2E ds(
b

u^wuVusb& f u2

z2s J ^wuG~z!uw&51, ~5.9!

since the last term on the right reduces, in this approximation, to

E ds(
b

^wuVusb& f f^sbuw&
z2s

>
1

z2m E ds(
b

^wuVusb& f f^sbuw&

5
1

z2m
^wuVuw&50.

The formula~5.9! is precisely of the form of the standard Lee model; substituting this form
into Eq. ~5.1! one obtains the scattering amplitude. TheS-matrix pole then coincides~within the
small width given tô sbuw&! with that of the standard Lee–Friedrichs model if the spectral we
function u^wuVusb& f u2 coincides with that of the usual model~after summing overb!. This result
is similar to that obtained for the relativistic quantum field theoretical Lee–Friedrichs m
where the sharpness of the pole position is determined by the mass width of the initial~unstable!
particle.25

VI. CONCLUSIONS AND DISCUSSION

An exact semigroup evolution law~exponential decay!, corresponding to an irreversible pro
cess, can be achieved within the framework of a microscopic quantum theory if the Hilbert
carries a natural foliation along an axis in its measure space on which the wave function mo
translation, under the full unitary evolution, in a special class of~translation! representations. The
foliation of such a space is assured by a theorem of Sinai16 when there are distinguished incomin
and outgoing subspacesD6 which are stable under forward~backward! unitary evolution. Lax and
Phillips developed a complete theory of such systems for the case of classical hyperbolic~wave!
equations for scattering on a bounded target.1 Flesia and Piron2 showed that the quantum mechan
cal Hilbert space can be extended, by a direct integral construction over the time variable, t
a structure in which the Lax–Phillips theory can be applied. In a succeeding study,4 it was shown
that a necessary condition for a nontrivial Lax–Phillips theory, for which the singularities o
S-matrix in the spectral variable constitute the spectrum of the generator of the semigroup,
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the evolution operator act as a smooth~operator-valued! integral kernel on the time axis in the fre
translation representation. We have shown in this work that apointwise~in t! dynamical evolution
operator in what we have called the model representation, in which the Hamiltonian of a s
and the time variable appear with their usual laboratory interpretation, maps into a smooth
trivial kernel in the free translation representation, and therefore satisfies this necessary con

We have discussed the essential difference between the Lax–Phillips theory and the
lation of the unstable system problem in the conventional framework. The existence of a fo
parameter in the description of a state permits the construction of subspaces in which the re
generator of motion is not self-adjoint, therefore admitting semigroup evolution3 ~see also discus
sion in Ref. 26!.

We have shown that the subspacesD6 may be constructed from the wave operators, int
twining the full and unperturbed Lax–Phillips evolution operators, applied to functions
definite half-line support properties on thet axis. The orthogonality of these subspaces follo
from the analytic properties of theS-matrix.

We have furthermore shown that the Lax–PhillipsS-matrix is equivalent to theS-matrix of the
standard scattering theory~for the pointwise time-dependent case as well! by a unitary transfor-
mation which is parametrized by the Lax–Phillips spectral variable. This unitary transform
arises from the transformation from the model representation to the free spectral represe
~the Fourier transform of the free translation representation!. There is considerable freedom i
choosing such a function, which has the property, upon analytic continuation to the uppe
plane, of bringing theS-matrix to a form in which there is a nontrivial null cospace, correspond
to the eigenvectors of the resonant state~these points are conjugate to the resonant poles in
lower half plane!. Since these vectors lie in the~auxiliary! Hilbert space, they may be used
compute expectation values of the usual dynamical variables, such as position, moment
angular momentum. Such properties are not available for the generalized functions obtained
method of constructing Gel’fand triples15 or the dilation analytic methods.20,21

The work of Lee, Oehme, and Yang11 and Wu and Yang,11 assuming an effective Hamiltonia
analogous to the Wigner–Weisskopf pole approximation in the form of a two-by-two
Hermitian matrix, results in an exact semigroup structure. As has been pointed out,10 deviations
due to a treatment using careful estimates in the Wigner–Weisskopf method, reflecting it
semigroup structure, could be important in regeneration processes; if, however, as the exp
tal results onK-meson decay13 seem to imply, the phenomenological parametrization of Refs
are indeed consistent to a high level of accuracy, an exact semigroup is strongly suggested,
Lax–Phillips theory could provide a useful microscopic theoretical framework.

We gave here an illustration of the method for a one channel nondegenerate Lee–Frie
model17,23 for the underlying dynamics. The illustration was worked out by assuming a rank
potential in the large Lax–Phillips spaceH̄. It is not possible to assume a point eigenval
embedded in the spectrum ofK0 , since it is the generator of translations in the free transla
representation, but the one-dimensional subspace in the domain of the potential can be ch
be an eigenvector of 1̂H0 in the model representation, with very narrow~but continuous!
support in the variableE conjugate tot; this implies a narrow support forf^sbuw& in the free
spectral representation, and the resulting model then has~with an assumption on the spectr
weight function! the same complex pole for theS-matrix as the usual Lee–Friedrichs model. Oth
applications, for example, to the two channel problem~e.g.,K meson decay!, atomic and molecu-
lar and condensed matter physics, will be discussed elsewhere.
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Generalized affine coherent states: A natural framework
for the quantization of metric-like variables
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Affine variables, which have the virtue of preserving the positive-definite character
of matrix-like objects, have been suggested as replacements for the canonical vari-
ables of standard quantization schemes, especially in the context of quantum grav-
ity. We develop the kinematics of such variables, discussing suitable coherent
states, their associated resolution of unity, polarizations, and finally the realization
of the coherent-state overlap function in terms of suitable path-integral formula-
tions. © 2000 American Institute of Physics.@S0022-2488~00!03807-X#

I. INTRODUCTION

It has been suggested that theaffinegroup may have a significant role to play in a quantu
theory of gravity. The~one-dimensional! affine Lie algebra is in some sense the simplest poss
nonabelian Lie algebra; it may be considered to be generated by two self-adjoint operatorsk and
s whose commutation relation reads

@s,k#5 is. ~1!

There exists a representation of~1! in which the spectrum ofs is strictly positive. It has been
noted by Klauder1 that a multidimensional generalization of the algebra~1! exists in whichs is
replaced by a matrix operator corresponding to asymmetric, positive-definite matrix degree
freedom. Such an object is clearly well suited to the description of the spacial part of a m
tensor, and attempts have been made to construct an affine field theory in the context of q
gravity. It has been argued by Isham and Kakas2,3 that an affine algebra arises naturally in
attempt to quantize a nonlinear phase space such as that which exists in general relativi
strong-coupling limit of such a theory of gravity has previously been discussed by Pilati.4–6

The coherent state representation associated with the one-dimensional affine algebra~1! is
fairly well known.7,8 Our present aim is to generalize this analysis to a multidimensional a
algebra. Our discussion is limited largely to kinematics; furthermore, we make no attempt to
a field theory. These questions are considered by Klauder.9

II. THE ONE-DIMENSIONAL AFFINE ALGEBRA AND ITS ASSOCIATED COHERENT
STATES

The algebra in~1! generates a two-parameter Lie group known as theaffine group~also
known as the ‘‘ax1b’ ’ group, with a.0!—the group oftranslations and dilations of the rea
line. The operatorsk ands induce the following transformations:

eiBkse2 iBk5eBs, ~2!

e2 iFskeiFs5k1Fs. ~3!

HereB andF are real parameters.
It is well known that there exist three, faithful, inequivalent, irreducible unitary represe

tions of the affine algebra, characterized, respectively, by the operators posessing positive, nega
80720022-2488/2000/41(12)/8072/11/$17.00 © 2000 American Institute of Physics
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tive, and null spectra.10,11 The positive representation is of particular interest in this article si
the positivity ofs will be generalized to a positive definitematrix degree of freedom~see Sec. V!.
In this representation, the operatorss andk are represented by the following operators:

s5k, ~4!

k5 1
2@uk1ku#, ~5!

with

u52 i
]

]k
, ~6!

where the representation space is the space ofL2 functions on the open interval~0,̀ !, equipped
with the inner product

^fuc&5E
0

`

f~k!* c~k! dk, ~7!

for any two functionsf andc in the space. The operatork acts to generateunitary dilationsin the
representation space:

e2 iBkc~k!5e2B/2c~e2Bk!, ~8!

ie2 iBkuc&i5iuc&i . ~9!

It is important to note thatu, unlike its canonical conjugates, is not self-adjoint in this represen
tation, nor does it possess self-adjoint extensions. Its interpretation as an observable is th
not possible.

We now define a family of unitary operators U(F,B) via

U~F,B!5eiFse2 iBk. ~10!

The composition rule for the operators in~10! is

U~F8,B8! U~F,B!5U~F81e2B8F,B81B!. ~11!

This family of unitary operators may be used to constuct a set of coherent states,

uF,B&5U~F,B!uh&. ~12!

Here uh& is an as yet unspecified normalized fiducial vector in the representation space
coherent states in~12! admit a resolution of unity in the form

N21E
2`

`

dFE
2`

`

dB eBuF,B&^F,Bu51, ~13!

the validity of which hinges on the fiducial vector admissibility criterion

N52pE
0

`

dk k21uh~k!u2,`. ~14!

For a more general discussion regarding coherent states, see Ref. 11.
An example of a normalized admissible fiducial vector is provided by

h1~k!5C1~a,b!kae2bk, ~15!
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wherea andb are positive real coefficients, and the normalization constantC1(a,b) is given by

C1~a,b![
~2b!a11/2

AG~2a11!
. ~16!

It may be verified that this fiducial vector satisfies~14!, with N52pb/a. The associated coheren
state representative of a general vectoruc& in the Hilbert space,̂F,Buc&, exhibits the property tha

F ie2B
]

]F
2b21

]

]B
2b21S a1

1

2D G^F,Buc&50. ~17!

The relation~17! defines a complexpolarization of the relevant function space, and its form
inherited directly from the property of the fiducial vector~15! described by

@s2 ib21k2b21~a1 1
2!#uh&50. ~18!

This property, when rewritten in the form

~s2^s&!uh&5 ib21~k2^k&!uh&, ~19!

where

^s&[^husuh&5b21~a1 1
2!, ~20!

^k&[^hukuh&50, ~21!

reveals that the fiducial vectors in~15! form a continuous family~over the parametersa andb! of
minimum uncertainty states, satisfying equality in the general affine uncertainty relation

^Ds&2^Dk&2>^s&2/4. ~22!

It is straightforward to show that the associated coherent state overlap function is given by

^F8,B8uF,B&5F e2~B81B!/2

~e2B81e2B!/21 i ~F82F !/2b
G 2a11

. ~23!

For future comparison, it is helpful to restate our results in terms of the natural variabG
[eB. The overlap function then takes the form

^F8,G8uF,G&5F G821/2G21/2

~G8211G21!/21 i ~F82F !/2bG2a11

, ~24!

while the resolution of unity may be written as an integral over a suitable flat measure

N21E
2`

`

dFE
0

`

dG uF,G&^F,Gu51. ~25!

The polarization property now appears as

F iG21
]

]F
2b21G

]

]G
2g1G^F,Guc&50, ~26!

where we have introduced

g1[b21~a1 1
2!. ~27!
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III. PATH INTEGRAL FOR 1-D COHERENT STATES

Before building a path integral for the coherent state overlap, we introduce two rel
geometrical objects—thesymplectic potentialand theray metric. Suppose that a set of normalize
vectors$ul&% defines a continuous curve in a Hilbert space, the labell being a continuous rea
parameter along the curve. Then the overlap of two nearby vectorsu l 2dl/2& andu l 1dl/2& may be
expanded as

^ l 1dl/2u l 2dl/2&5exp~ i du2dS2/21¯ !, ~28!

wheredu anddS2 are called, respectively, the symplectic potential and the ray metric.
The expression~28! may be used to expand the overlap of two of the coherent states

~12!,

^F1dF/2,B1dB/2uF2dF/2,B2dB/2&

5exp$2 i ~a1 1
2!b

21eB dF2~a1 1
2!@b22e2B~dF!21~dB!2#%. ~29!

The symplectic potential and the ray metric may now be read off,

du52g1eB dF52g1G dF ~30!

dS25g1@b21e2B~dF!21b~dB!2#5g1@b21G2~dF!21bG22~dG!2#. ~31!

We now introduce a general time-independent Hamiltonian operatorH with ‘‘upper symbol,’’
H(F,G), defined by

H~F,G!5^F,GuHuF,G&, ~32!

and ‘‘lower symbol,’’ h(F,G), defined implicitly by

H5N1
21E

2`

`

dFE
0

`

dG h~F,G!uF,G&^F,Gu, ~33!

and outline the standard construction of the coherent state path integral for the propagato

JT~F9,G9;F8,G8![^F9,G9ue2 iHTuF8,G8&. ~34!

The procedure starts with the insertion ofM resolutions of unity,

JT~F9,G9;F8,G8!5N2ME )
j 51

M

dFj dGj )
k50

M

^Fk11 ,Gk11ue2 i ~T/M11!HuFk ,Gk&, ~35!

where

uF0 ,G0&[uF8,G8&, ~36!

uFM11 ,GM11&[uF9,G9&. ~37!

The M→` limit is then taken. It is customary~though not rigorously justified! at this point to
interchange the order of the limit and the integrations, and to write the integrand in the fo
would take for continuous and differentiable paths. One is then led, with the aid of the symp
potential~30!, to the strictly formal expression

JT~F9,G9;F8,G8!5ME expH i E
0

T

dt@2g1GḞ2H~F,G!#J DF DG, ~38!
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whereM represents a suitable normalization.
An alternative path integral representation may be given using the technique ofcontinuous

time regularization.8 This procedure involves the insertion of an appropriate Wiener measure
the integral, and leads to

JT~F9,G9;F8,G8!5 lim
n→`

MnE expH i E
0

T

dt@2g1GḞ2h~F,G!#J
3expH 2~g1/2n!E

0

T

dt@b21G2Ḟ21bG22Ġ2#J DF DG. ~39!

Note that the lower symbol for the Hamiltonian is involved in this formulation.

IV. A GENERALIZED AFFINE ALGEBRA

We now construct ann-dimensional generalization of~1! via the introduction of the set o
n2,GL(n,R) generatorska

b along with their n(n11)/2 symmetric affine conjugatess jk

(5sk j), satisfying the commutation relations

@ka
b ,k j

k#5 i 1
2~da

kk j
b2d j

bka
k!, ~40!

@s jk ,ka
b#5 i 1

2~d j
bsak1dk

bsa j!, ~41!

@sab ,s jk#50, ~42!

where all the indices take on values from 1 ton. The operatorska
b andsab may be contracted with

sets of constant coefficientsBb
a andFab (5Fba), respectively, and exponentiated to generate

following transformations:

eiBb
aka

b
k j

ke2 iBb
aka

b
5~S21! j

pkp
qSq

k , ~43!

eiBb
aka

b
s jke2 iBb

aka
b
5~S21! j

pspq~S21!k
q , ~44!

eiF absabk j
ke2 iF absab5k j

k1Fkps jp , ~45!

eiF absabs jke2 iF absab5s jk . ~46!

Here the matrixS is defined by

S5e2B/2, ~47!

and clearly we have

detS.0 ~48!

for all values ofB. Observe that~43! and ~44! have the flavor ofcoordinate transformationsof
tensors of the appropriate valences.

V. UNITARY REPRESENTATION FOR THE GENERALIZED AFFINE ALGEBRA

We now construct a unitary representation for the group generated by the generalized
algebra described in Sec. IV. As a representation space we choose the space of square in
functions of a symmetric, positive-definite matrix variablekI [$kab%, endowed with the inner
product definition
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^fuc&5E
1

)
a<b

dkab f~kI !* c~kI !, ~49!

where the ‘‘1’’ as a limit of the integral indicates that the domain of integration extends only o
those regions in which$kab% is positive definite. The algebra may be represented as follows

sab5k~ab! , ~50!

ka
b52 i 1

2@]~bp!k~pa!1k~pa!]
~bp!#52 i @k~ab!]

~bp!1 1
4~n11!da

b#, ~51!

where

k~ab![
1
2~kab1kba!, ~52!

]~ab![ 1
2~]/]kab1]/]kba!. ~53!

It follows from ~51! that

e2 iBq
pkp

q
c~kI !5~detS!~n11!/2e2Bq

pkpr]
qr

c~kI !5~detS!~n11!/2c~SkSTkI S!, ~54!

where

~SkI ST !ab[Sa
pkpqSb

q . ~55!

It may be verified that with the choice of measure in~49!, the operators representings jk andka
b

are self-adjoint and that the representation of the relevant group is thus rendered unitary:

ie2 iBq
pkp

q
uc&i25iuc&i2; ~56!

ie2 iF jks jkuc&i25iuc&i2. ~57!

VI. GENERALIZED AFFINE COHERENT STATES

Following the procedure in Sec. II, we now define a family of unitary operators U(F,S) via

U~F,S!5eiF jks jke2 iBb
aka

b
. ~58!

The composition rule for the operators in~58! is

U~F8,S8! U~F,S!5U~F81S8TFS8,S8S!, ~59!

where

~S8TFS8! jk[Sp8
jFpqSq8

k , ~60!

~S8S!a
b[Sa8

pSp
b . ~61!

This family of unitary operators may be used to construct a set of coherent states

uF,S&[U~F,S!uh&. ~62!

Here uh& is an as yet unspecified normalized fiducial vector in then-dimensional representatio
space.
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A resolution of unity in terms of the coherent states in~62! may be established in the usu
way, namely, by integrating coherent state projection operators weighted with the appro
group invariant measure,

N21E
2`

`

)
j <k

dFjkE
detS.0

)
a,b

dSa
b~detS!2~2n11!uF,S&^F,Su51, ~63!

the validity of which hinges on the fiducial vector admissibility criterion

N[~2p!n~n11!/2E
detS.0

)
a,b

dSa
b~detS!2nuh~SST!u2

5221~2p!n~n11!/2E )
a,b

dSa
budetSu2nuh~SST!u2,`, ~64!

where

~SST!ab[(
p

Sa
pSb

p . ~65!

We now choose as a fiducial vector a natural generalization of the one-dimensional vector i~15!,
that is,

h~kI !5Cn~a,b! det~kI ae2bkI !5Cn~a,b!~detkI !ae2b tr kI , ~66!

wherea andb are positive real coefficients, and the constantCn(a,b) is chosen to be

Cn~a,b!5
~2b!an1n~n11!/4

AKn~2a!
. ~67!

HereKn(2a) is defined by

Kn~2a![E
1

)
a<b

dkab~detkI !2ae2tr kI . ~68!

The integral in~68! may be reduced to a Gaussian integral via a change of variables involvin
replacement

kab5(
p

Qa
pQb

p . ~69!

The result is:

Kn~2a!52n21Vn
21E )

a,b
dQa

budetQu4a11 expF2(
a,b

~Qa
b!2G . ~70!

Here Vn is the group volume of SO(n), which can be expressed as a product of the surf
volumes ofj-spheres12

Vn5)
j 51

n
2p j /2

G~ j /2!
. ~71!
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The change of variables necessary to obtain~70! is used repeatedly throughout this article—w
refer the reader to the appendix for the details. Clearly the existence~convergence! of the integral
expression forKn is manifest in the form~70!. The choice~67! ensures that all the coherent stat
are normalized,

^F,SuF,S&5^huh&51. ~72!

The admissibility of the fiducial vector~66! may be verified by demonstrating the existence of
integral in~64!. Again we refer the reader to the appendix for the change of variables necess
perform this type of integral; the result is

N522n~4pb!n~n11!/2Vn

Kn~2a2~n11!/2!

Kn~2a!
,`. ~73!

The overlap of two coherent states based on the fiducial vector~66! may be expressed as

^F8,S8uF,S&5@Cn~a,b!#2@det~S8S!#~n11!/212aE
1

)
a<b

dkab~detkI !2ae2tr~XkI !, ~74!

where the complex symmetric matrixX is defined by

X[b~S8TS81STS!1 i ~F82F !, ~75!

with

~STS!ab5(
p

Sp
aSp

b , ~76!

~S8TS8!ab5(
p

Sp8
aSp8

b . ~77!

The X-dependence may be extracted from the integral in~74! to leave

^F8,S8uF,S&5@Cn~a,b!#2Fdet~S8S!

detX G ~n11!/212a

Kn~a!

5H det~S8S!

det@~S8TS81STS!/21 i ~F82F !/2b#J
2a1~n11!/2

. ~78!

We appeal to analytic continuation to give the final result in~78! a well-defined meaning.
It will be noticed that the overlap function~78! only depends onS through the symmetric

combinationSTS. It is therefore invariant under a transformation

S→MS, ~79!

whereM is any SO(n) matrix. It is appropriate, then, to view the SO(n) degrees of freedom a
‘‘gauge’’ degrees of freedom and factor them out of the representation. To this end, we de
new symmetric matrix variableG via the relations

Gab[~STS!ab[(
p

Sp
aSp

b , ~80!

GapG
pb[da

b , ~81!

G[$Gab%, ~82!
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and label our coherent states with the parametersF andG. The overlap function~78! then reads

^F8,G8uF,G&5H ~detG8!21/2~detG!21/2

det@~G8211G21!/21 i ~F82F !/2b#J
2a1~n11!/2

. ~83!

The SO(n) variables may be integrated out of the resolution of unity~again, see the appendix fo
a discussion of the required change of variables!, the result being

22nN21VnE )
j <k

dFjkE
1

)
a<b

dGabuF,G&^F,Gu51. ~84!

We note that the removal of the SO(n) degrees of freedom from the representation is o
appropriate if the dynamics in question is governed by a classical Hamiltonian which is a fun
of F andG; this is the point of view we shall take in the remainder of this article. It is, howe
easy in principle to envisage Hamiltonians where spinor-like variables couple directly toS, in
which case it would of course be necessary to retain the labelS.

The polarization property analogous to~26! for the one-dimensional case may be written

H iGap
]

]Fpb 1b21Gap
]

]Gpb2gdb
aJ ^F,Guc&50, ~85!

where we have written

g[b21@~n11!/41a#. ~86!

VII. PATH INTEGRAL FOR THE PROPAGATOR

The procedure in Sec. III may be followed to build a formal path integral expression fo
n-dimensional propagator associated with a general time-independent HamiltonianH with upper
symbol

H~F,G!5^F,GuHuF,G&. ~87!

We first construct the relevant symplectic potential and ray metric. The identity

det~11dA!5etr ln~11dA!5etr~dA2dA2/21¯ !, ~88!

where dA is any infinitesimal matrix, may be used to expand the overlap of two neighbo
coherent states as follows:

^F1dF/2,G1dG/2uF2dF/2,G2dG/2&5ei du2dS2/2, ~89!

where the one-formdu is given by

du52g tr~G dF!, ~90!

and the ray metricdS2 by

dS25g$b tr@G21 dG!2#1b21 tr@~G dF!2#%. ~91!

The propagator may then be written as

JT~F9,G9;F8,G8![^F9,G9ue2 iHTuF8,G8&

5ME )
j <k

DF jk )
a<b

DGab expH i E
0

T

@2g tr~GḞ!2H~F,G!#dtJ , ~92!
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a strictly formal expression to which the remarks immediately preceding~38! again apply.
An alternative representation for the propagator which uses a continuous-time regulari

and the lower symbol is given by

JT~F9,G9;F8,G8!5 lim
n→`

MnE )
j <k

DF jk )
a<b

DGab expH i E
0

T

@2g tr~GḞ!2h~F,G!#dtJ
3expH 2~g/2n!E

0

T

dt $b tr@~G21Ġ!2#1b21 tr@~GḞ!2#%J . ~93!

VIII. CONCLUSION

In this article we have constructed a framework for the quantization of a positive-de
matrix degree of freedom$sab%. Specifically, we have demonstrated that complementing
operatorssab with affineconjugates~40!–~42! leads to a representation in which the spectrum
the matrix operator$sab% is strictly positive definite. Such an approach appears far more sati
tory than the standard use of canonical commutation relations, where the positivity of$sab% can
only be insured by rather artificial means, if at all. As demonstrated, the generalized affine a
leads to a set of group-defined coherent states that have been used to construct two ver
path integral expressions for the propagator. Finally, we suggest that the affine construct
have outlined is well-suited to the quantization of the spacial part of the metric tensor of ge
relativity, a program already initiated in Ref. 9.

APPENDIX: JACOBIAN ASSOCIATED WITH CHANGE OF VARIABLES FROM S TO G

We have repeatedly found it useful to factor out the SO(n) degrees of freedom from a rea
n-dimensional nondegenerate matrix with positive determinantS and display the remaining de
grees of freedom as elements of the matrixG1[STS. We now derive the form of the Jacobia
associated with this change of variables.

We first calculate the Jacobian associated with the polar decomposition ofS. Such a decom-
position may be defined by

S5MT, ~A1!

whereMPSO(n) andT is a positiven-dimensional upper triangular matrix. We first consider t
casen52, writing ~A1! explicitly as

S S1
1 S1

2

S2
1 S2

2D 5S cosu 2sinu

sinu cosu D S T1
1 T1

2

0 T2
2D . ~A2!

It is straightforward to show that in this case,

dS1
1∧dS1

2∧dS2
1∧dS2

25T1
1du∧dT1

1∧dT1
2∧dT2

2. ~A3!

We now generalize~A3! for n.2. It is expeditious to express the SO(n) matrix M as a product of
n(n21)/2,SO(n) matricesRi j 5Ri j (u i j ), n> i . j , each of which represents a rotation about t
ij -axis through an angleu i j :

M5~R21R31¯Rn1!~R32R42¯Rn2!3¯3~R~n21!~n22!Rn~n22!!~Rn~n21!!. ~A4!

It will be noticed thatRn(n21) , whose explicit form is
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Rn~n21!5S 1 0 0 ¯ ¯ 0

0 1 0 ¯ ¯ 0

0 0 1 ¯ ¯ 0

] ] ] �

0 0 0 cosun~n21! 2sinun~n21!

0 0 0 sinun~n21! cosun~n21!

D , ~A5!

only affects the bottom right 232 block of T. It is therefore responsible for the introduction of a
factor T(n21)

(n21) into the Jacobian. Similarly, eachRi j only acts on the bottomj 3 j block of T,
introducing a factorTj

j . Building up the entire Jacobian in this way, we find that

dS1
1∧¯∧dSn

n5~T1
1!n21~T2

2!n22
¯~Tn21

n21!dV∧dT1
1∧¯∧dTn

n ~A6!

wheredV is the invariant measure on SO(n).
Having separated the matrixS into its ‘‘radial’’ part T and ‘‘angular’’ partM, we are now in

a position to make a change of variable fromT to G1 @recall that both of these matrices posses
1/2n(n11) degrees of freedom#:

G15STS5TTT. ~A7!

Inspection of the elements ofG1 quickly reveals the form of the Jacobian associated with th
change of variable:

dG11∧¯∧dGnn52n~T1
1!n~T2

2!n21
¯~Tn21

n21!2~Tn
n!dT1

1∧¯∧dTn
n . ~A8!

Combining~A6! and ~A8!, and noting that detS5detT, we obtain our central result

dV∧dG11∧¯∧dGnn52n~detS!dS1
1∧¯∧dSn

n . ~A9!

We now integrate a general functionf (G) against the measure in~A9!:

E
1

)
a<b

dGab f ~G!52nVn
21E

detS.0
)
a,b

dSa
b~detS! f ~STS!, ~A10!

whereVn is the group volume of SO(n) given in ~71!.12
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A new superconformal mechanics
E. Deotto, G. Furlan, and E. Gozzia)

Dipartimento di Fisica Teorica, Universita` di Trieste, Strada Costiera 11,
P.O. Box 586, Trieste, Italy and INFN, Sezione di Trieste, Trieste, Italy

~Received 22 December 1999; accepted for publication 24 August 2000!

In this paper we propose a new supersymmetric extension of conformal mechanics.
The Grassmannian variables that we introduce are the basis of the forms and of the
vector fields built over the symplectic space of the original system. Our supersym-
metric Hamiltonian itself turns out to have a clear geometrical meaning being the
Lie derivative of the Hamiltonian flow of conformal mechanics. Using superfields
we derive a constraint which gives the exact solution of the supersymmetric system
in a way analogous to the constraint in configuration space which solved the origi-
nal nonsupersymmetric model. Besides the supersymmetric extension of the origi-
nal Hamiltonian, we also provide the extension of the other conformal generators
present in the original system. These extensions also have a supersymmetric char-
acter being the square of some Grassmannian charge. We build the whole superal-
gebra of these charges and analyze their closure. The representation of the even part
of this superalgebra on the odd part turns out to be integer and not spinorial in
character. ©2000 American Institute of Physics.@S0022-2488~00!02612-8#

I. INTRODUCTION

More than 20 years ago a conformally invariant quantum mechanical model was propos
studied in Ref. 1. Recently that model has again attracted some interest in connection with
holes. It has been proven2 in fact that the dynamics of a particle near the horizon of an extre
Reissner–Nordstrøm black hole is governed in its radial motion by the Lagrangian of Ref. 1
can be considered a manifestation at the quantum mechanical level of the correspondence
Gravity on AdS and conformal field theory.3 In this case it is the correspondence AdS2/CFT1.

In 1983/1984 two groups4 independently made a supersymmetric generalization of confo
mechanics. It has been proved recently2 that the motion of a superparticle near an extre
Reissner–Nordstrøm black hole is governed by a ‘‘relativistic’’ generalization of the super
metric conformal mechanics proposed in Ref. 4. So also the supersymmetric version of con
mechanics seems to hold some interest for black-hole physics. For these conformal mode~both
for the original1 and for the supersymmetric one4! a nice geometrical approach was pioneered
Ref. 5.

In this paper we will build a new supersymmetric extension of conformal mechanics.
tailored on a path-integral approach to classical mechanics developed in Ref. 6. The Grassm
variables which appear in this formalism are the basis of the forms7 and vector fields which one
can build over the symplectic space of the original conformal system. The weight in this
integral provides what is known as the Lie derivative7 of the Hamiltonian flow. This Lie derivative
turns out to be supersymmetric.6

The reader may ask what is the difference between our supersymmetric extension and
of Ref. 4 which was tailored on the supersymmetric quantum mechanics of Witten.8 Basically the
authors of Ref. 4 took the original conformal Hamiltonian and added a Grassmannian part in
to make the whole Hamiltonian supersymmetric. Our procedure and extension is differen
more geometrical as will be explained later on in the paper. One difference for example i
while the equations of motion for our bosonic variables are the same as those of the old con

a!Electronic mail: Gozzi@trieste.infn.it
80830022-2488/2000/41(12)/8083/25/$17.00 © 2000 American Institute of Physics
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model,1 the analog equations of Ref. 4 have an extra piece. Another difference is that, once w
the language of superfields, while we have to stick the superfield into the old conformal pote1

the authors of Ref. 4 have to stick it into a potential which isderived from the old conformal
potential.

The paper is organized in the following manner: In Sec. II we give a very brief outlin
conformal mechanics1 and of the supersymmetric extension present in the literature;4 in Sec. III
we put forward our supersymmetric extension and explain its geometrical structure. In the
section we build a whole set of charges connected with our extension and study their alge
detail. In Sec. IV we show that, differently from the superconformal algebra of Ref. 4 wher
even part has a spinorial representation on the odd part, ours is a nonsimple superalgebra
even part has a reducible and integer representation on the odd part. Nevertheless we can
superconformal algebra because we have the charges which result from a combined super
try and conformal transformation. We think that the usual idea9 which says that a superconform
algebra has its even part represented spinorially on the odd one applies only to relativistic s
and not to ours. In Sec. V we provide a superspace version for our model and for the whole
charges. In doing that we find a newuniversalcharge which is always present in our formalism6

even for the nonconformal model. This new charge acts on the variables in such a manne
rescale the overall Lagrangian. This charge is not present in supersymmetric quantum mech4

In Sec. VI, using superfield variables, we provide an exact solution of our model by givi
constraint in superfield space analogous to the one found for configuration space in Ref.
which provided the solution of the original conformal system. We confine some calculation
couple of appendices.

In this paper we do not have applications of our supersymmetric extension of confo
mechanics to black-hole physics. We thought it was worthwhile anyhow to write up these
ematical results because we feel that something deeply geometrical is behind the con
conformal mechanics/black holes or in general the correspondence AdS/CFT. To grasp
geometrical issues it is better to use models where geometry is manifest and beautiful a
believe ours has these features. We leave to others the task of finding possible connection
supersymmetric extension with black holes.

II. CONFORMAL MECHANICS AND ITS SUPERSYMMETRIC EXTENSION

In this section we will briefly review conformal mechanics1 and its standard supersymmetr
extension.4

The Lagrangian proposed in Ref. 1 is

L5
1

2 F q̇22
g

q2G . ~1!

It is easy to prove that this Lagrangian is invariant under the following transformations:

t85
at1b

gt1d
, ~2!

q8~ t8!5
q~ t !

~gt1d!
, ~3!

with ad2bg51, ~4!

which are nothing else than the conformal transformations in 011 dimensions. They are made o
the combinations of the following three transformations:

t85a2t dilations, ~5!
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t85t1b time translations, ~6!

t85
t

gt11
special-conformal transformations. ~7!

The Noether charges associated1 with these three symmetries are

H5
1

2 S p21
g

q2D , ~8!

D5tH2 1
4 ~qp1pq!, ~9!

K5t2H2 1
2 t~qp1pq!1 1

2 q2. ~10!

Using the quantum commutator@q,p#5 i , the algebra of the three Noether charges above is

@H,D#5 iH , ~11!

@K,D#52 iK , ~12!

@H,K#52iD . ~13!

The fact thatD andK do not commute withH does not mean that they are not conserved. In
what is true is that, as theH,D,K mentioned previously are explicitly dependent ont, we have

]D

]t
Þ0,

]K

]t
Þ0, ~14!

dD

dt
5

dK

dt
50. ~15!

As theH,D,K are conserved, their expressions att50, which are10

H05
1

2 Fp21
g

q2G , ~16!

D052 1
4 @qp1pq#, ~17!

K05 1
2 q2, ~18!

satisfy the same algebra as those at timet @see Eqs.~11!–~13!#. This algebra is SO~2,1!, which is
known11 to be isomorphic to the conformal group in 011 dimensions.

Let us now turn to the supersymmetric extension of this model proposed in Ref. 4
Hamiltonian is

HSUSY5
1

2 S p21
g

q2 1
Ag

q2 @c†,c#2D , ~19!

wherec,c† are Grassmannian variables whose anticommutator is@c,c†#151. As one can notice
in HSUSY there is a first bosonic piece which is the conformal Hamiltonian of Eq.~1!, plus a
Grassmannian part. Note that the equations of motion for ‘‘q’’ have an extra piece with respect t
the equations of motion of the old conformal mechanics.1
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To make contact with supersymmetric quantum mechanics8 let us notice thatHSUSY can be
written as

HSUSY5
1
2 @Q,Q†#1 ~20!

5 1
2 S p21S dW

dq D 2

2@c†,c#2

d2W

dq2 D , ~21!

where the supersymmetry charges are

Q5c†S 2 ip1
dW

dq D , ~22!

Q†5cS ip1
dW

dq D , ~23!

andW is the superpotential which, in this case of conformal mechanics, turns out to be

W~q!5Ag logq. ~24!

It is interesting to see what we obtain when we combine a supersymmetric transformation
conformal one generated by the (H,K,D) elements of the SO~2,1! algebra~11!–~13!. We get what
is called asuperconformaltransformation. In order to understand this better we list in Table I a
of eight operators whose algebra is closed and given in Table II. All the commutators no
tained in Table II are zero or derivable from the others by Hermitian conjugation. The sq
brackets@~.!,~.!# in the algebra of Table II aregradedcommutators and from now on we shall n
put on them the subindex1 or 2 as we did before. They are commutators or anticommuta
according to the Grassmannian nature of the operators entering the brackets.

As is well known asuperconformaltransformation is a combination of a supersymme
transformation and a conformal one. We see from the algebra of Table II that the commuta
the supersymmetry generators (Q,Q†) with the three conformal generators (H,K,D) generate a
new operator which isS. Including this new one we generate an algebra which is closed prov
that we introduce the operatorB of Table I. This is the last operator we need.

TABLE I. Eight operators entering the SUSY conformal mechanics of Ref.
4.

H5
1

2 Fp21
g12AgB

q2 G
D52

@q,p#1

4

K5
q2

2

B5
@c†,c#2

2

Q5c†F2 ip1
Ag

q G
Q†5cF ip1

Ag

q G
S5c†q
S†5cq
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III. A NEW SUPERSYMMETRIC EXTENSION OF CONFORMAL MECHANICS

In this section we are going to present a new supersymmetric extension of conformal me
ics. This extension is tailored on a path-integral approach to classical mechanics~CM! developed
in Ref. 6. The idea is to give apath integralfor CM whose operatorial counterpart is the we
known operatorial version of CM as given by theLiouville operator.12 We will be brief here
because more details can be found in Ref. 6.

Let us start with a 2n-dimensional phase spaceM whose coordinates are indicated asfa with
a51,...,2n, i.e., fa5(q1,...,qn;p1,...,pn). Let us write the Hamiltonian of the system asH(f)
and the symplectic matrix asvab. The equations of motion are then

ḟa5vab
]H

]fb . ~25!

We shall put forward, as path integral for CM, one that forces all paths inM to sit on the classica
ones. Theclassicalanalog of the quantum generating functional is

ZCM@J#5NE Dfd̃ @f~ t !2fcl~ t !#expF E Jf dtG , ~26!

wheref are thefaPM, fcl are the solutions of Eq.~25!, J is an external current, andd̃@ .# is a
functional Dirac delta which forces every pathf(t) to sit on a classical onefcl(t). Of course all
possible initial conditions are integrated over in Eq.~26!.

We should now check if the path integral of Eq.~26! leads to the operatorial formulation12 of
CM. To do that let us first rewrite the functional Dirac delta in Eq.~26! as6

d̃@f2fcl#5 d̃ @ḟa2vab]bH#det@db
a] t2vac]c]bH#, ~27!

where we have used the functional analog of the relation

d @ f ~x!#5
d @x2xi #

U ] f

]x U
xi

.

The determinant which appears in Eq.~27! is always positive and so we can drop the modulus s
u.u. The next step is to insert Eq.~27! in Eq. ~26! and write thed̃@ .# as a Fourier transform ove
some new variablesla , i.e.,

TABLE II. Algebra of the operators entering Table I.

@H,D#5 iH @K,D#52 iK @H,K#52iD

@Q,H#50 @Q†,H#50 @Q,D#5
i

2
Q

@Q†,K#5S† @Q,K#52S @Q†,D#5
i

2
Q†

@S,K#50 @S†,K#50 @S,D#52
i

2
S

@S†,D#52
i

2
S† @S,H#52Q @S†,H#5Q†

@Q,Q†#52H @S,S†#52K

@B,S#5S @B,S†#52S†

@Q,S†#5Ag2B12iD @B,Q#5Q @B,Q†#52Q†
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d̃F ḟa2vab
]H

]fbG5E Dla expH i E laF ḟa2vab
]H

]fbGdtJ . ~28!

We then express the determinant det@db
a]t2vac]c]bH# via Grassmannian variablesc̄a ,ca as

det@db
a] t2vac]c]bH#5E DcaDc̄a expH 2E c̄a@db

a] t2vac]c]bH#cb dtJ . ~29!

Inserting the right-hand side of Eqs.~28! and ~29! in Eq. ~27! and then in Eq.~26! we get

ZCM@0#5E DfaDlaDcaDc̄a expF i E dtL̃G , ~30!

whereL̃ is

L̃5la@ḟa2vab]bH#1 i c̄a@db
a] t2vac]c]bH#cb. ~31!

One can easily see that this Lagrangian gives the following equations of motion. Forf andc:

ḟa2vab]bH50, ~32!

@db
a] t2vac]c]bH#cb50. ~33!

One notices immediately the following two things:

~1! L̃ leads to the same Hamiltonian equations forf asH did;
~2! cb transforms under the Hamiltonian vector fieldh[vab]bH]a as aform dfb does.

From the above-mentioned formalism, using some extended Poisson brackets~EPB! defined6

in the space (fa,ca,la ,c̄a), one can get the equations of motion also via a HamiltonianH̃ given
by

H̃5lavab]bH1 i c̄avac~]c]bH !cb. ~34!

The extended Poisson brackets mentioned previously are

$fa,lb%EPB5db
a , $c̄b ,ca%EPB52 idb

a . ~35!

The equations of motion are then given byȦ5$A,H̃%EPB, where A is one of the variables
(fa,ca,la ,c̄a). All the other EPB are zero; in particular$fa,fb%EPB50. This indicates that the
EPB are not the standard Poisson brackets onM which would give$fa,fb%PB5vab.

Equation~30!, being a path integral, one could also introduce the concept ofcommutatoras
Feynman did in the quantum case. If we define the graded commutator of two functionsO1(t) and
O2(t) as the expectation value^¯& under our path integral of some time-splitting combinations
the functions themselves as

^@O1~ t !,O2~ t !#&[ lim
e→0

^O1~ t1e!O2~ t !6O2~ t1e!O1~ t !&, ~36!

then we get from Eq.~30! that the only commutators different from zero among the basic varia
are

^@fa,lb#&5 idb
a , ^@ c̄b ,ca#&5db

a . ~37!
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We immediately notice two things:
~A! there is an isomorphism between the extended Poisson structure~35! and the graded commu

tator structure~37!: $•,
•%EPB→2 i @•,•#;

~B! via the commutator structure~37! one can ‘‘realize’’la and c̄a as

la52 i
]

]fa , c̄a5
]

]ca . ~38!

It is now easy to check that, using Eq.~38!, what we got as weight in Eq.~30! corresponds to
the operatorial version of CM. In fact take for the moment only the bosonic part ofH̃ in Eq. ~34!:

H̃bos5lavab]bH; this one, via Eq.~38!, goes into the operatorĤ̃bos[2 ivab]bH]a , which is
nothing else than the Liouville operator of CM. So we got what we expected. If we had adde
Grassmannian part toH̃bos and inserted the operatorial representation~38! of c̄, we would have
gotten an operator which makes the evolution of functions dependent not only onf but also onc
like F(f,c)5Fa1¯ap

ca1...cap. Remembering that theca transform asdfa @see point~1! below
Eq. ~33!#, we can say that the functionF(f,c) can be put in correspondence withp forms:

F5Fa1¯ap
ca1

¯cap→Fa1¯ap
dfa1∧¯∧dfap. ~39!

So ourH̃ makes the evolution of forms, which means it corresponds to the object known i
literature7 as the Lie derivative of the Hamiltonian flow. Note that we are not talking of forms b
over the space (fa,ca,la ,c̄a) but only of forms over the spaceM whose coordinates are (fa).
Our H̃ is the Lie derivative for this last space. Via our variables it is also possible to build ve
and multivector fields overM and to reproduce the full Cartan calculus. For details we refer
reader to Ref. 6 and for a deeper geometrical understanding of our enlarged space (fa,ca,la ,c̄a)
we invite the interested reader to consult Ref. 13.

The reader may remember that the concept of Lie derivative was mentioned also in Ref~b!.
There, anyhow, the connection between the Lie derivative and Hamiltonian was not as dir
here. Moreover the Lie derivative was not associated with the flow of the conformal potenti
with the flow associated with the superpotential~24!.

The HamiltonianH̃ has variousuniversalsymmetries6 all of which have been studied geo
metrically. The associated charges14 are listed in Table III. Using the correspondence betwe
Grassmannian variables and forms, theQBRS of Table III turns out to be nothing else6 than the
exterior derivative15 on phase space and, as is well known7 it always commutes with any Lie
derivative. TheQg of Table III, or ghost charge, is the form number which is always conserve
the Lie derivative. Similar geometrical meanings can be found6 for the other charges that are liste
in Table III. Of course, linear combinations of them are also conserved and there are two c
nations which deserve our attention. They are the following charges:

TABLE III. Conserved charges generating the symmetries ofH̃.

QBRS5 icala

Q̄BRS5 i c̄avablb

Qg5cac̄a

C5
vabc

acb

2

C̄5
vabc̄ac̄b

2
NH5ca]aH

N̄H5 c̄avab]bH
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QH[QBRS2bNH , Q̄H[Q̄BRS1bN̄H ~40!

~whereb is a dimensionful parameter!, which are true supersymmetry charges because, bes
commuting withH̃, they give16

@QH ,Q̄H#52ibH̃. ~41!

This proves that ourH̃ is supersymmetric. To be precise it is anN52 supersymmetry. One
realizes immediately thatH acts as a sort of superpotential for the supersymmetric Hamilto
H̃. All this basically means that we can obtain a supersymmetric HamiltonianH̃ out of any system
with HamiltonianH and, besides, ourH̃ has a nice geometrical meaning being the Lie derivat
of the Hamiltonian flow generated byH.

We will now build theH̃ of the conformal invariant system given by the Hamiltonian of E
~8!, which means we insert theH of Eq. ~8! into theH̃ of Eq. ~34!. The result is

H̃5lqp1lp

g

q3 1 i c̄qcp23i c̄ pcq
g

q4 , ~42!

where the indices (•)q and (•)p on the variables (l,c,c̄) replace the indices (•)a which appeared
in the general formalism. In fact, as the system is one dimensional, the index ‘‘(•)a’’ can only
indicate the variables ‘‘(p,q)’’ and that is why we use (p,q) as index. The two supersymmetr
charges of Eq.~40! are in this case

QH5QBRS1bS g

q3 cq2pcpD , ~43!

Q̄H5Q̄BRS1bS g

q3 c̄p1pcqD . ~44!

It was one of the central points of the original paper1 on conformal mechanics that th
Hamiltonians of the system could be, besideH0 of Eq. ~16!, alsoD0 or K0 of Eqs.~17! and~18!

or any linear combination of them. In the same manner as we built the Lie-derivativeH̃ associated
with H0 , we can also build the Lie derivatives associated with the flow generated byD0 andK0 .
We just have to insert17 D0 or K0 in place ofH as superpotential in theH̃ of Eq. ~34!. Calling the
associated Lie derivatives asD̃0 andK̃0 , what we get is

D̃05 1
2 @lpp2lqq1 i ~ c̄pcp2 c̄qcq!#, ~45!

K̃052lpq2 i c̄ pcq. ~46!

The construction is best illustrated in Fig. 1.
It is easy to prove that bothD̃0 andK̃0 are supersymmetric. It is possible in fact to introdu

the following charges:

QD5QBRS1g~qcp1pcq!, ~47!

Q̄D5Q̄BRS1g~pc̄p2qc̄q!, ~48!

QK5QBRS2aqcq, ~49!

Q̄K5Q̄BRS2aqc̄p ~50!
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~g anda play the same role asb for H) which close onD̃0 andK̃0 :

@QD ,Q̄D#54igD̃0 , ~51!

@QK ,Q̄K#52iaK̃0 . ~52!

One further point to notice is that the conformal algebra of Eqs.~11!–~13! is now realized, via the
commutators~37! of our formalism, by the (H̃,D̃0 ,K̃0) and not by the old functions (H,D0 ,K0).
In fact, via these new commutators, we get

@H̃,D̃0#5 i H̃, @K̃0 ,D̃0#52 i K̃0 , @H̃,K̃0#52i D̃0 , ~53!

@H,D0#50, @K0 ,D0#50, @H,K0#50. ~54!

Assuming as basic Hamiltonian theH̃ and as supersymmetries the ones generated byQH andQ̄H ,
the next thing to do is to perform the commutators between supersymmetries and con
operators to get the superconformal generators. It is easy to work this out and we get

@QH ,D̃0#5 i ~QH2QBRS!, @Q̄H ,D̃0#5 i ~Q̄H2Q̄BRS!, ~55!

@QH ,K̃0#5
ib

g
~QD2QBRS!, @Q̄H ,K̃0#5

ib

g
~Q̄D2Q̄BRS!. ~56!

From what we have previously we realize immediately the role of theQD andQ̄D : Besides being
the ‘‘square roots’’ ofD̃0 they are also~combined with theQBRS andQ̄BRS) the generators of the
superconformal transformations. It is also a simple calculation to evaluate the commutato
tween the various ‘‘supercharges’’QH , Q̄D , Q̄K , Q̄H , QD , QK :

@QH ,Q̄D#5 ibH̃12igD̃022bgH, @Q̄H ,QD#5 ibH̃12igD̃012bgH, ~57!

@QK ,Q̄D#5 iaK̃012igD̃012agK0 , @Q̄K ,QD#5 iaK̃012igD̃022agK0 , ~58!

@QH ,Q̄K#5 ibH̃1 iaK̃022abD0 , @Q̄H ,QK#5 ibH̃1 iaK̃012abD0 . ~59!

From the right-hand side of these expressions we see that one also needs the old fu
(H,D0 ,K0) in order to close the algebra.

The complete set of operators which close the algebra is listed in Table IV and their al
is given in Table V. All other commutators are zero.18

FIG. 1. The correspondence betweenM andSuperM.
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We notice then for our supersymmetric extension we need 14 charges~see Table IV! in order
for the algebra to close, while in the extension of Ref. 4 one needs only 8 charges~see Table I!.
This is so not only because ours is anN52 supersymmetry~while the one of Ref. 4 is an
N51) but also because of the totally different character of the model.

IV. STUDY OF THE TWO SUPERCONFORMAL ALGEBRAS

A Lie superalgebra9 is an algebra made of evenEn and oddOa generators whose grade
commutators look like:

@Em ,En#5Fmn
p Ep , ~60!

@Em ,Oa#5Gma
b Ob , ~61!

@Oa ,Ob#5Cab
m Em , ~62!

TABLE IV. Operators associated with our superconformalH̃ of Eq. ~42!.

H̃5lqp1lp

g

q3 1 i c̄qcp23i c̄ pcq
g

q4 H5
1

2 S p21
g

q2D
K̃052lpq2 i c̄ pcq K05

1
2 q2

D̃05
1
2 @lpp2lqq1 i ( c̄pcp2 c̄qcq)# D052

1
2 qp

QBRS5 i (lqcq1lpcp) Q̄BRS5 i (lpc̄q2lqc̄p)

QH5QBRS1bS g

q3 cq2pcpD Q̄H5Q̄BRS1bS g

q3 c̄p1pc̄qD
QK5QBRS2aqcq

Q̄K5Q̄BRS2aqc̄p

QD5QBRS1g(qcp1pcq) Q̄D5Q̄BRS1g(pc̄p2qc̄q)

TABLE V. Algebra among the operators of Table IV.

@H̃,D̃0#5 i H̃ @K̃,D̃0#52 i K̃0 @H̃,K̃0#52i D̃0

@QH ,H̃#50 @Q̄H ,H̃#50 @QH ,Q̄H#52ibH̃
@QH ,D̃0#5 i (QH2QBRS) @Q̄H ,D̃0#5 i (Q̄H2Q̄BRS)

@QH ,K̃0#5 ibg21(QD2QBRS) @Q̄H ,K̃0#5 ibg21(Q̄D2Q̄BRS)

@QBRS,H̃#5@Q̄BRS,H̃#50 @QBRS,K̃#5@Q̄BRS,K̃#50 @QBRS,D̃#5@Q̄BRS,D̃#50

@QD ,H̃#522igb21(QH2QBRS) @Q̄D ,H̃#522igb21(Q̄H2Q̄BRS)

@QD ,K̃0#52iga21(QK2QBRS) @Q̄D ,K̃0#52iga21(Q̄K2Q̄BRS)

@QD ,D̃0#50 @Q̄D ,D̃0#50 @QD ,Q̄D#54igD̃0

@QK ,H̃#52 iag21(QD2QBRS) @Q̄K ,H̃#52 iag21(Q̄D2Q̄BRS)

@QK ,D̃0#52 i (QK2QBRS) @Q̄K ,D̃0#52 i (Q̄K2Q̄BRS)

@QK ,K̃0#50 @Q̄K ,K̃0#50 @QK ,Q̄K#52iaK̃0

@QH ,Q̄D#5 ibH̃12igD̃022bgH @Q̄H ,QD#5 ibH̃12igD̃012bgH

@QK ,Q̄D#5 iaK̃012igD̃012agK @Q̄K ,QD#5 iaK̃012igD̃022agK

@QH ,Q̄K#5 ibH̃1 iaK̃022abD @Q̄H ,QK#5 ibH̃1 iaK̃012abD

@QH ,Q̄BRS#5@Q̄H ,QBRS#5 ibH̃ @QK ,Q̄BRS#5@Q̄K ,QBRS#5 iaK̃0

@QD ,Q̄BRS#5@Q̄D ,QBRS#52igD̃0

@Q(¯) ,H#5b21(QBRS2QH) @Q̄(¯) ,H#5b21(Q̄BRS2Q̄H)
@Q(¯) ,D0#5(2g)21(QBRS2QD) @Q̄(¯) ,D0#5(2g)21(Q̄BRS2Q̄D)
@Q(¯) ,K0#5a21(QBRS2QK) @Q̄(¯) ,K0#5a21(Q̄BRS2Q̄K)

@H̃,H#50 @K̃0 ,K0#50 @D̃0 ,D0#50

@H̃,K0#5@H,K̃0#52iD @H̃,D0#5@H,D̃0#5 iH @D̃0 ,K0#5@D0 ,K̃0#5 iK
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and where the structure constantsFmn
p ,Gma

b ,Cab
m satisfy generalized Jacobi identities.

One can interpret the relation~61! as saying that the even part of the algebra has a repre
tation on the odd part. This is clear if we consider the odd part as a vector space and that th
part acts on this vector space via the graded commutators. The structure constantsGm,a

b are then
the matrix elements which characterize the representations.

For superconformal algebras the usual folklore says that the even part of the algebra
conformal subalgebra represented spinorially on the odd part. The reasoning roughly g
follows: The odd part of the algebra must contain the supersymmetry generators which tran
as spinors under the Lorentz group which is a subgroup of the conformal algebra. So it is i
sible that the whole conformal algebra is represented nonspinorially on the odd part.

Actually this line of reasoning is true in a relativistic context in which the supersymmet
a true relativistic supersymmetry and the charges must carry a spinor index due to their nat
our nonrelativistic point particle case instead the charges do not carry any space–time ind
so we do not have as a consequence that necessarily the even part of the algebra is rep
spinorially on the odd part. It can happen but it can also not happen. In this respect we will an
the superalgebras of the two supersymmetric extensions of conformal mechanics seen he
one of Ref. 4 and ours.

Let us start from the one of Ref. 4, which is given in Table I. The conformal subalgebraG0 of
the even part can be organized in an SO~2,1! form as follows:

G0 :5
B15

1

2 FK

a
2aHG

B25D

J35
1

2 FK

a
1aHG ,

wherea is the same parameter introduced in Ref. 1 with dimension of time.
The odd partG1 is

G1 :H Q
Q†

S
S†.

It is easy to work out, using the results of Table II, the action of theG0 on G1 . The result is
summarized in Table VI. As we said before, in order to act with the even part of the algebra
odd part, we have to consider the odd part as a vector space. Let us then introduce the fo
‘‘vectors’’:

uq&[Q1Q†, ~63!

TABLE VI. Action of G0 on G1 for the system of Ref. 4.

@B1,Q#5
1

2a
S @B2,Q#52

i

2
Q @J3,Q#5

1

2a
S

@B1,Q†#52
1

2a
S† @B2,Q†#52

i

2
Q† @J3,Q†#52

1

2a
S†

@B1,S#52
a

2
Q @B2,S#5

i

2
S @J3,S#5

a

2
Q

@B1,S†#5
a

2
Q† @B2,S†#5

i

2
S† @J3,S†#52

a

2
Q†
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up&[S2S†, ~64!

ur &[Q2Q†, ~65!

us&[S1S†; ~66!

they label a four-dimensional vector space. On these vectors we act via the commutato
example:

B1uq&[@B1 ,Q1Q†#. ~67!

It is then immediate to realize from Table VI that the two-dimensional space with b
(uq&,up&) forms a closed space under the action of the even part of the algebra so it ca
two-dimensional representation and the same holds for the space (ur &,us&). We can immediately
check which kind of representation is this: Let us take the Casimir operator of the algebG0

which isC5B1
21B2

22J3
2 and apply it to a state of one of the two two-dimensional representati

Cuq&5@B1 ,@B1 ,Q1Q†##1@B2 ,@B2 ,Q1Q†##2@J3 ,@J3 ,Q1Q†##

52 3
4 ~Q1Q†!

52 3
4 uq&. ~68!

This factor2 3
4 52 1

2 ( 1
2 11) indicates that the (uq&,up&) space carries a spinorial representation

is possible to prove the same for the other space.
Let us now turn the same crank for our supersymmetric extension of conformal mech

Looking at the Table IV of our operators, we can organize the even partG0 as indicated in Table
VII. The left-hand side of this table is the usual SO~2,1! while the right-hand side~RHS! is formed
by three translations~they commute among themselves!. So the overall algebra is the Euclidea
groupE(2,1).

The odd part of our superalgebra is made of 8 operators~see Table IV!, which are listed in
Table VIII. As we did before in Table VI for the model of Ref. 4, we will now evaluate for o
model the action ofG0 on G1 . The result is summarized in Table IX where for simplicity we ha
made the choice:

a[Ab

a
and h[

g

Aab
.

TABLE VII. Even partG0 of the algebra associated with theH̃ of Eq. ~42!.

B15
1

2
SK̃
a

2aH̃D P152D

B25D̃ P25aH2
K

a

J35
1

2
SK̃
a

1aH̃D P05aH1
K

a

TABLE VIII. Odd part G1 of the algebra associated with theH̃ of Eq. ~42!.

QH Q̄H

QK Q̄K

QD Q̄D

QBRS Q̄BRS
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As we have to represent the conformal subalgebra ofG0 ~see Table VII! on the vector space
G1 of Table VIII it is easy to realize from Table IX that the following three vectors:

H uqH&5~QH2QBRS!2~Q̄H2Q̄BRS!,

uqK&5~QK2QBRS!2~Q̄K2Q̄BRS!,

uqD&5h21@~QD2QBRS!2~Q̄D2Q̄BRS!#,

~69!

make an irreducible representation of the conformal subalgebra. In fact, using Table IX, w

¦

B1uqH&52 i
2uqD&,

B2uqH&52 i uqH&,

J3uqH&52 i
2uqD&,

B1uqK&52 i
2uqD&,

B2uqK&5 i uqK&,

J3uqK&5 i
2 uqD&,

B1uqD&52 i ~ uqH&1uqK&!,
B2uqD&50,
J3uqD&5 i ~ uqH&2uqK&!.

~70!

TABLE IX. Algebra representing the action ofG0 of Table VII on G1 of
Table VIII.

@B1,QH#5
i

2h
~QBRS2QD! @B1 ,Q̄H#5

i

2h
~Q̄BRS2Q̄D!

@B1 ,QK#5
i

2h
~QBRS2QD! @B1 ,Q̄K#5

i

2h
~Q̄BRS2Q̄D!

@B1 ,QD#52 ih(QH1QK22QBRS) @B1 ,Q̄D#

52 ih(Q̄H1Q̄K22Q̄BRS)

@B1 ,QBRS#50 @B1 ,Q̄BRS#50

@B2 ,QH#5 i (QBRS2QH) @B2 ,Q̄H#5 i (Q̄BRS2Q̄H)

@B2 ,QK#5 i (QK2QBRS) @B2 ,Q̄K#5 i (Q̄K2Q̄BRS)

@B2 ,QD#50 @B2 ,Q̄D#50
@B2 ,QBRS#50 @B2 ,Q̄BRS#50

@J3,QH#5
i

2h
~QBRS2QD! @J3 ,Q̄H#5

i

2h
~Q̄BRS2Q̄D!

@J3 ,QK#52
i

2h
~QBRS2QD! @J3 ,Q̄K#52

i

2h
~Q̄BRS2Q̄D!

@J3 ,QD#5 ih(QH2QK) @J3 ,Q̄H#5 ih(Q̄H2Q̄K)
@J3 ,QBRS#50 @J3 ,Q̄BRS#50

@P1 ,Q(¯)#5g21(QD2QBRS) @P1 ,Q̄(¯)#52g21(Q̄D2Q̄BRS)

@P2 ,Q(¯)#5g21h(QH2QK) @P2 ,Q̄(¯)#52g21h(Q̄H2Q̄K)
@P0 ,Q(¯)#5g21h(QH1QK22QBRS) @P0 ,Q̄(¯)#

52g21h(Q̄H1Q̄K22Q̄BRS)
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Having three vectors in this representation we presume it is an ‘‘integer’’ spin representatio
to be sure let us apply the Casimir operator on a vector. The Casimir is given, as befor
C5B1

21B2
22J3

2, but we must remember to use asB1 , B2 , andJ3 the operators contained in Tab
VII. It is then easy to check that

CuqH&522uqK&. ~71!

The same we get for the other two vectorsuqK&,uqD&, so the eigenvalue in Eq.~71! is 22
521(111) and this indicates that those vectors make a ‘‘spin’’ 1 representation.

In the same way as before it is easy to prove that these other three vectors:

H uqH̃&5~QH2QBRS!1~Q̄H2Q̄BRS!,

uqK̃&5~QK2QBRS!1~Q̄K2Q̄BRS!,

uqD̃&5~QD2QBRS!1~Q̄D2Q̄BRS!,

~72!

make another irreducible representation of ‘‘spin’’ 1.
Of course, as the vector spaceG1 of Table VIII is eight-dimensional and up to now we hav

used only six vectors to build the two integer representations, we expect that there must b
other representations which can be built using the two remaining vectors. It is in fact so. W
build the following two other vectors:

uqBRS&5QBRS2Q̄BRS, ~73!

uqBRS̃&5QBRS1Q̄BRS, ~74!

and it is easy to see that each of them carry a representation of spin zero:

CuqBRS&5CuqBRS̃&50. ~75!

So we can conclude that our vector spaceG1 carries a reducible representation of the conform
algebra made of two spin one and two spin zero representations.

We wanted to do this analysis in order to underline a further difference between our s
symmetric extension and the one of Ref. 4 whose odd partG1 , as we showed before, carries tw
spin one-half representations.

One last thing to do is to find out to which of the superalgebras classified in the literature
belongs. We will come back to this in the future.

V. SUPERSPACE FORMULATION OF THE MODEL

It is easy and instructive to do a superspace formulation of our model like the authors o
4 did for theirs.

Let us enlarge our ‘‘base space’’ (t) to a superspace (t,u,ū), where (u,ū) are Grassmannian
partners of (t). It is then possible to put all the variables (fa,ca,la ,c̄a) in a single superfieldF
defined as follows:

Fa~ t,u,ū !5fa~ t !1uca~ t !1 ū vabc̄b~ t !1 i ūu vablb~ t !. ~76!

This superfield had already been introduced in Ref. 6. It is a scalar field under the supe
metry transformations of the system. The various factors of ‘‘i ’’ appearing in its definition are due
to the fact that we chose6 the ca,c̄a to be real and theu,ū to be pure imaginary.

It is a simple exercise to find the expansion of any functionF(Fa) of the superfields in terms
of u,ū. For example, choosing as function the HamiltonianH of a system, we get

H~Fa!5H~f!1uNH2 ū N̄H1 iuū H̃, ~77!
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whereNH and N̄H andH̃ are those given in Table III and in Eq.~34!.
From Eq.~77! it is easy to prove that

i E H~F!du dū5H̃. ~78!

Here we immediately notice a crucial difference with the supersymmetric QM model of Ref.
the language of superfields@see Ref. 4~b!# those authors obtain the supersymmetric potentia
their Hamiltonian by inserting the superfield into the superpotential@which is given by Eq.~24!#

and integrating in something likeu,ū, while we get the potential part of our supersymmet
Hamiltonian by inserting the superfield into the normal potential of the conformal mecha
model given in~16!.

The space (fa,ca,la ,c̄a) somehow can be considered as atarget space whosebasespace is
the superspace (t,u,ū). The action of the various charges listed in our Table IV is on the tar
space variables but we can consider it as induced by some transformations on the base spa
collectively indicate the charges acting on (fa,ca,la ,c̄a) asV, we shall indicate the generators o

the corresponding transformations on the base space asV̂. The relation between the two is th
following:

dFa52«V̂Fa, ~79!

where

dFa5@«V,Fa# ~80!

with « the commuting or anticommuting infinitesimal parameter of our transformations19 and
@(•),(•)# the graded commutators of Eq.~37!.

Using the above-mentioned relations it is easy to work out the superspace representa
the operators contained in Table III, they are given in Table X. Via the charges of Table X
immediate to write down also the supersymmetric charges of Eq.~40!:

Q̂H52]u2b ū] t , QC H5]ū1b u] t . ~81!

Their anticommutator gives

@Q̂H ,QC H#522b
]

]t
~82!

from which, comparing Eq.~82! with Eq. ~41!, one gets the superspace representation ofH̃:

Ĥ̃5 i
]

]t
. ~83!

TABLE X. Superspace representation of the operators of Table III.

Q̂BRS52]u

QC BRS5]ū

Q̂g5 ū] ū2u]u

Ĉ5 ū]u

CC 5u]ū

N̂H5 ū] t

NC H5u] t
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Proceeding in the same way, via the relations~79!, ~80!, it is a long but easy procedure to give
superspace representation to the chargesQD ,Q̄D ,QK ,Q̄K of Eqs.~47!–~50!. This long derivation
is contained in Appendix A and the result is

Q̂K52
]

]u
2a vadKdb ū, ~84!

QC K5
]

]ū
1a vadKdb u, ~85!

Q̂D52
]

]u
22g vadDdb ū, ~86!

QC D5
]

]ū
12g vadDdb u, ~87!

where the matricesKdb andDdb are

Kdb5S 1 0

0 0D , Ddb52
1

2 S 0 1

1 0D ~88!

@the repeated indices in Eqs.~84!–~87! are summed#. The matricesKdb and Ddb are 232 just
because the symplectic matrix itselfvab is 232 in our case. The conformal mechanics system
fact has just a pair of phase-space variables (p,q) and the index in thefa-phase space variable
can take only two values to indicate eitherq or p @see the equations of motion~25!#.

From the above-given expressions ofQ̂K ,QC K ,Q̂D ,QC D we see that they have two free indice
This implies@see Eq.~79!# that those operators ‘‘turn’’ the various superfields in the sense
they turn aFq into combinations ofFq and Fp and vice versa. This is something the oth
charges did not do.

Reaching this point, we should stop and think a little bit about this superspace represen
We gave the superspace representation of the various charges (QD ,Q̄D ,QK ,Q̄K) of Eqs. ~47!–
~50! which were linked to theD̃0 ,K̃0 of Eqs. ~45! and ~46!. But these last quantities were bui
using theD0 andK0 , that is theD andK at t50. If we had used, in building theD̃0 ,K̃0 , theD

andK at tÞ0 of Eqs.~9! and~10!, we would have obtained aD̃ and aK̃ different from those of
Eqs.~45! and~46! and which would have had an explicit dependence ont. Consequently also the
associated supersymmetric charges (QD

t ,Q̄D
t ,QK

t ,Q̄K
t ), having extra terms depending ont, would

be different from those of Eqs.~47!–~50!. Being that these charges are different, also their
perspace representations shall be different from those given in Eqs.~84!–~87!. The difference at
the level of superspace is crucial because it involvest, which is part of superspace.

Let us then start this overall process by first building the explicitlyt-dependentD̃ andK̃ from
the following operatorsD andK:

H5H0 , ~89!

D5tH1D0 , ~90!

K5t2H12tD01K0 , ~91!

from which we get

D̃5tH̃1D̃0 , ~92!
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K̃5t2H̃12tD̃01K̃0 . ~93!

It is easy to understand why these relations hold by remembering the manner in which w
the Lie derivatives out of the superpotentials. The explicit form ofD̃ in terms of (fa,ca,la ,c̄a)
can be obtained from~92! once we insert theH̃ and D̃0 whose explicit form we already had i
Eqs.~42! and~45!. The same holds forK̃. Let us now turn to the form of the associated fermion
charges which we will indicate as (QD

t ,QK
t ,Q̄D

t ,Q̄K
t ) where the index ‘‘(•) t’’ is to indicate their

explicit dependence ont. As shown in formula~A1!, the QD and QK can be written using the
chargesND andNK of ~A2! and theQBRS. As it is only theN(¯) and not theQBRS which pull in
quantities likeD,K which may depend explicitly on time, we should only concentrate on
N(¯) . From their definition@see Eq.~A2!#:

ND5ca]aD, NK5ca]aK, ~94!

we see that applying the operatorca]a on both sides of Eqs.~90! and ~91!, we get

ND
t 5tNH1ND , ~95!

NK
t 5t2NH12tND1NK . ~96!

The next step is to write theQD
t and QK

t . As they are given in formula~A1!, using that
equation and~95! and ~96! we get

QD
t 5QBRS22gND

t , ~97!

QK
t 5QBRS2aNK

t . ~98!

In a similar manner, via Eq.~A9! and applying the operatorc̄avab]b to Eqs.~90! and~91!, we get
the Q̄D

t andQ̄K
t :

Q̄D
t 5Q̄BRS12gN̄D

t , ~99!

Q̄K
t 5Q̄BRS1aN̄K

t . ~100!

We shall not write down explicitly the expressions of (QD
t ,QK

t ,Q̄D
t ,Q̄K

t ) in terms of
(fa,ca,la ,c̄a) because we have already in Eqs.~47!–~50! and~A2! and~A9! the expressions o
the various charges (QD ,QK ,Q̄D ,Q̄K ,ND ,NK ,N̄K ,N̄D) which make up, according to Eqs.~97!–
~100!, the new time dependent charges.20 The next step is to obtain the superspace version
(QD

t ,QK
t ,Q̄D

t ,Q̄K
t ). Following a procedure identical to the one explained in detail in the appe

for the time-independent charges it is easy to get them and, via their anticommutators, to
the superspace version of theD̃ andK̃. All these operators are listed in Table XI. In Table XI th
s3 ands2 are the Pauli matrices:

s35S 1 0

0 21D , s25S 0 0

1 0D . ~101!

The reasons for the presence of these two-dimensional matrices have been explained in th
graph following Eq.~88!.

The last three operators listed in Table XI are the superspace version of the old (H,D,K). To
get this representation we used again and again the rules given by Eqs.~79! and ~80!. As their
representation looks quite unusual, we have reported the details of their derivations in App
B.
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We want to conclude this section by presenting a new symmetry of our system, a sym
which is not among those found up to now whose charges we have listed in Table IV.
associated with the following superspace operator:

Q̂S5u
]

]u
1 ū

]

]ū
. ~102!

This operator is very similar to the ghost-chargeQ̂g of Table X but it has a crucial sign difference
Let us apply it on the RHS of Eq.~79! and see which variation it induces on th

(fa,ca,la ,c̄a):

dQS
Fa52«Q̂SFa52«~uca1 ūvabc̄b12i ūuvablb!. ~103!

Comparing the components with the same number ofu and ū on both sides of Eq.~103!, we get

dQS
fa50, ~104!

dQS
ca52«ca, ~105!

dQS
c̄a52« c̄a , ~106!

dQS
la522«la . ~107!

It is easy to check how the Lagrangian of our model@see Eq.~31!# changes under the above
mentioned variations:

dQS
L̃522«L̃. ~108!

TABLE XI. Superspace representation of the time-dependent charges.

Ĥ̃5 i
]

]t

D̂̃5 i t
]

]t
2

i

2
s3

K̂̃5 i t 2
]

]t
2 i ts32 is2

Q̂D
t 52

]

]u
22gūt

]

]t
1gūs3

QC D
t 5

]

]ū
12gut

]

]t
2gus3

Q̂K
t 52

]

]u
2aūt2

]

]t
1at ūs31aūs2

QC K
t 5

]

]ū
1aut2

]

]t
2atus32aus2

Ĥ5 ūu
]

]t

D̂5 ūuS t
]

]t
2

1

2
s3D

K̂5 ūuS t2
]

]t
2ts32s2D
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We can conclude that the transformations induced byQ̂S on the (fa,ca,la ,c̄a) are a sym-
metry of our system. In fact they just rescale the overall Lagrangian so they keep the equat
motion invariant and these qualify them as symmetry transformations. Of course they arenonca-
nonical symmetries because the rescaling of the whole Lagrangian is not a canonical trans
tion in (fa,ca,la ,c̄a). As it is not canonical we cannot find a canonical generator
(fa,ca,la ,c̄a) associated withQ̂S . Note that the above is a symmetry of anyL̃, not necessarily
of the conformal model we have analyzed here. We could ask if this was a symmetry also
susyQM model of Witten8 or at least of the conformal QM of Ref. 4. The answer isNo!, the
technical reason being that in those QM models the analogs of thela variables enter the Lagrang
ian with a quadratic term while in ourL̃ they enter linearly. There is also an important physi
reason why that symmetry was not present in those QM models while it was present in ou
one. The reason is that in QM one cannot rescale the action~as our symmetry does! because there
is the\ setting a scale for the action, while it can be done in CM where no scale is set. The r
may object that our transformation rescales the Lagrangian but not the action

S̃5E L̃ dt ~109!

because one could compensate the rescaling of theL̃ with a rescaling oft. That is not so becaus
our QS transforms only the Grassmannian partners of time (u,ū) and not time itself.

We will come back to this symmetry in the future because it seems to be at the heart
difference between QM and CM.

VI. EXACT SOLUTION OF THE SUPERSYMMETRIC MODEL

The original conformal mechanical model was solved exactly in Eq.~2.35! of Ref. 1. The
solution is given by

q2~ t !52t2H24tD012K0 . ~110!

As (H,D0 ,K0) are constants of motion, once their values are assigned we stick them in Eq.~110!,
and we get a relation between ‘‘q’’ @on the LHS of~110!# and ‘‘t ’’ on the RHS. This is the
solution of the equation of motion with ‘‘initial conditions’’ given by the values we assign to
constants of motion (H,D0 ,K0). The reader may object that we should give only two cons
values @corresponding to the initial conditions (q(0),q̇(0))] and not three. Actually the three
values assigned to (H,D0 ,K0) are not arbitrary because, as was proven in Eq.~2-36! of Ref. 1,
these three quantities are linked by a constraint:

~HK02D0
2!5

g

4
, ~111!

where ‘‘g’’ is the coupling which entered the original Hamiltonian@see Eq.~1! of the present
paper#. Having one constraint among the three constants of motion brings them down to tw

The proof of relation~110! is quite simple. On the RHS, as the (H,D0 ,K0) are constants of
motion, we can replace them with their time-dependent expression (H,D,K) @see Eqs.~89!–~91!#,
which are explicitly:

H5
1

2 S q̇2~ t !1
g

q2~ t ! D , ~112!

D5tH2 1
2 q~ t !q̇~ t !, ~113!

K5t2H2tq~ t !q̇~ t !1 1
2 q2. ~114!
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Inserting these expressions on the RHS of Eq.~110! we get immediately the LHS. From Eqs
~112!–~114! it is also easy to see the relations between the initial conditions (q(0),q̇(0)) and the
constants (H,D0 ,K0); in fact,

H5H~ t50!5
1

2 S q̇2~0!1
g

q2~0! D , ~115!

D5D052 1
2 ~q~0!q̇~0!!, ~116!

K5K05 1
2 q2~0!. ~117!

From the relations above we see that, inverting them, we can express (q(0), q̇(0)) in terms of
(H,D0 ,K0). The constraint~111! is already taken care by the form the (H,D0 ,K0) has in terms
of (q(0), q̇(0)).

What we want to do in this section is to see if a relation analogous to~110! exists also for our
supersymmetric extension or in general if the supersymmetric system can be solved exact
answer isyesand it is based on a very simple trick.

Let us first remember Eq.~78!, which told us howH̃ andH are related:

i E H~F!du dū5H̃. ~118!

The same relation holds forD̃0 and K̃0 with respect toD0 and K0 as is clear from the
explanation given in the paragraph above Eqs.~45! and ~46!:

i E D0~F!du dū5D̃0 , ~119!

i E K0~F!du dū5K̃0 . ~120!

Of course the same kind of relations holds for the explicitly time-dependent quantities of
~90!–~93!:

i E D~F!du dū5D̃, ~121!

i E K~F!du dū5K̃. ~122!

Let us now build the following quantity:

2t2H~F!24tD~F!12K~F!. ~123!

This is functionally the RHS of Eq.~110! with the superfieldFa replacing the normal phase-spa
variablefa. It is then clear that the following relation holds:

~Fq!252t2H~F!24tD~F!12K~F!. ~124!

The reason it holds is because, in the proof of the analogous one inq space@Eq. ~110!#, the only
thing we used was the functional form of the (H,D,K) that was given by Eqs.~112!–~114!. So
that relation holds irrespective of the arguments,f or F, which enter our functions provided tha
the functional form of them remains the same.

Let us first remember the form ofFq which appears21 on the LHS of Eq.~124!:
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Fq~ t,u,ū !5q~ t !1ucq~ t !1 ūvqpc̄p~ t !1 iuūvqplp~ t !. ~125!

Let us then expand inu and ū the LHS and RHS of Eq.~124! and compare the terms with th
same power ofu and ū.

The RHS is

~Fq!25q2~ t !1u@2q~ t !cq~ t !#1 ū@2q~ t !c̄p~ t !#1 ūu@2iq~ t !lp~ t !12cq~ t !c̄p~ t !#. ~126!

The LHS is instead:

2t2H~F!24tD~F!12K~F!52t2H~f!24tD~f!12K~f!1u@2t2NH
t 24tND

t 12NK
t #1

2 ū@2t2N̄H
t 24tN̄D

t 12N̄K
t #1 iuū@2t2H̃24tD̃12K̃#, ~127!

where theNH ,N̄H , ND
t ,NK

t are defined in Table III and in Eqs.~95! and~96!, while theN̄D
t , N̄K

t

are the time-dependent version22 of the operators defined in Eq.~A10!. It is a simple exercise to
show that all these functions (H,D,K,N(¯) ,N̄(¯) ,H̃,K̃,D̃) are conserved and constants of moti
in the enlarged space (fa,ca,la ,c̄a).

If we now compare the RHS of Eqs.~126! and ~127! and equate terms with the same pow
of u and ū, we get~by writing theN and N̄ explicitly!

q2~ t !52t2H~f!24tD~f!12K~f!, ~128!

2q~ t !cq~ t !5F2t2
]H

]fa 24t
]D

]fa 12
]K

]faGca, ~129!

2q~ t !c̄p~ t !5F2t2
]H

]fa 24t
]D

]fa 12
]K

]faGvabc̄b , ~130!

i2q~ t !lp~ t !12cq~ t !c̄p~ t !52 i @2t2H̃24tD̃12K̃#. ~131!

We notice immediately that Eq.~128! is the same as the one of the original paper1 and solves the
motion for ‘‘q. ’’ Given this solution we plug it in Eq.~129! and, as on the RHS we have theN
functions which are constants, once these constants are assigned we get the motion ofcq. Next we
assign three constant values to theN̄ functions which appear on the RHS of Eq.~130!, then we
plug in the solution forq given by Eq.~128! and so we get the trajectory forc̄p . Finally we do the
same in Eq.~131! and get the trajectory oflp .

The solution for the momentum quantities (p,cp,c̄q ,lq) can be obtained via their definition i
terms of the previous variables.

The reader may be puzzled by the fact that in the space (fa,ca,la ,c̄a) we have 8 variables
but we have to give 12 constants of motion: (H,D0 ,K0 ,N(¯) ,N̄(¯) ,H̃,K̃,D̃) to get the solutions
from Eqs.~128! to ~131!. The point is that, like in the case of the standard conformal mechan1

we have constraints among the constants of motion. We already have one constraint and it i
by Eq.~111!. The others can be obtained in the following manner: Let us apply the operatorca]a

on both sides of Eq.~111! and what we get is

NHK01NKH22NDD050, ~132!

which is a constraint for theN functions. Let us now do the same applying on both sides of
~111! the operatorc̄avab]b . What we get is

N̄HK01N̄KH22N̄DD050, ~133!
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which is a constraint among theN̄ functions. Finally let us apply theQBRS on Eq.~133! and we
will get

i H̃K01 i K̃H22iD̃D02N̄HNK2N̄KNH12N̄DND50, ~134!

which is a constraint among theH̃,D̃,K̃.
So we have 4 constraints—~134!, ~133!, ~132!, and~111!, which bring down the constants o

motion to be specified in (fa,ca,la ,c̄a) from 12 to 8 as we expected.

VII. CONCLUSION

In this paper we have provided a new supersymmetric extension of conformal mechanic
have realized that the model is deeply geometrical in the sense that the Grassmannian v
and the supersymmetric Hamiltonian and various other charges are all well-known obje
differential geometry. In this case it is the differential geometry of the manifold and of the fl
associated with the original conformal mechanical model. We feel it was important to unve
geometry because the recently discovered connection between conformal mechanics an
holes or in general the Ads/CFT connection must have deeply geometrical origin.

What remains to be done, from a purely formal point of view, is to extend to our mode
recent analysis carried out in Ref. 23 where it was found that the original conformal mech
model has a Virasoro andw` algebra. We hope to come back to these issues using the
developed in Ref. 24.

Last but not least, in performing this analysis we have discovered also a newuniversal
symmetry also present for the nonconformal model and which, in our opinion, is at the heart
interplay of classical-quantum mechanics.
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APPENDIX A: DETAILS OF THE DERIVATION OF EQS. „84…–„87…

In this appendix we are going to show the detailed calculations leading to Eqs.~84!–~87!. The
reader may have noticed the similarity between the chargeQH ~40! and theQD , QK of Eqs.~47!
and~48!. We say ‘‘similarity’’ because all of them are made of two pieces, the first is theQBRS for
all of them. It is easy to show also that the second pieces can be put in a similar form. Like fQH

the second piece was~see Table III! of the formNH5ca]aH, so it is easy to show that bothQD ,
andQK can be put in the form:

QD5QBRS22g ND , QK5QBRS2a Nk , ~A1!

whereND andNK are, respectively,

ND5ca]aD0 , NK5ca]aK0 ~A2!

with the D0 andK0 given25 by Eqs.~17! and~18!. So all three (NH ,ND ,NK) operators could be
put in the general form:

NX5ca]aX, ~A3!

whereX is eitherH,D0 or K0 . In the case ofD0 andK0 the X is quadratic in the variablesfa:

X5 1
2 Xabf

afb, ~A4!

whereXab is a constant 232 matrix.
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In order to find theN̂X ~that is the superspace version ofNX) we should use Eqs.~79! and~80!

whereV is now our operatorNX . From the expression ofNX we get fordFa(t,u,ū) of Eq. ~80!:

dFa~ t,u,ū !5 ūvab~ «̄]bX!1 i ūuvab~ i «̄cd]d]bX!, ~A5!

where«̄ is the anticommuting parameter associated with the transformation. Given the formX
@see Eq.~A4!#, we get for~A5!

dFa~ t,u,ū !5 ū «̄vabXbd@fd1ucd#. ~A6!

Note that, using superfields, the above expression can be written as

dFa~ t,u,ū !52 «̄vabXbdūFd~ t,u,ū !. ~A7!

So we obtain from Eq.~79! that the superspace expression ofNX is

~N̂X!d
a5vabXbdū. ~A8!

The same kind of analysis we did here for theQD andQK can be done also for theQ̄D andQ̄K .
They can be written as

Q̄D5Q̄BRS12g N̄D , Q̄K5Q̄BRS1a N̄K ~A9!

with

N̄D5 c̄avab]bD, N̄K5 c̄avab]bK ~A10!

and the superspace representation of theN̄X turns out to be

~NC X!b
a5vacXcbu. ~A11!

Remembering the form of theD0 andK0 functions in their classical version@see Eqs.~17! and
~18!# and comparing it with the general form ofX of Eq. ~A4!, we get from Eqs.~A2! and ~A3!
that the matricesXab associated withD andK are26 exactly those of Eq.~88!. So this is what we
wanted to prove.

APPENDIX B: REPRESENTATION OF H,D,K IN SUPERSPACE

In this appendix we will reproduce the calculations which provide the superspace repre
tions of (H,D,K) contained in Table XI. We will start first with the operators at timet50 which
are listed in Eqs.~16!–~18!. Using Eqs.~79! and~80! let us first do the variationsd (H,D,K)F

a. As
(H,D0 ,K0) contain only (fa) their action will affect only thela field contained in the superfield
F:

dHlq5«@H,lq#52 i«
g

q3 , ~B1!

dHlp5«@H,lp#5 i«p, ~B2!

dD0
lq5«@D0 ,lq#52

i

2
«p, ~B3!

dD0
lp5«@D0 ,lp#52

i

2
«q, ~B4!
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dK0
lq5«@K0 ,lq#5 i«q, ~B5!

dK0
lp5«@K0 ,lp#50. ~B6!

Considering that the two superfields are

Fq5q1u cq1 ū c̄p1 i ūulp , ~B7!

Fp5p1u cp2 ū c̄q2 i ūulq , ~B8!

it is very easy to see that theV̂ operators on the RHS of Eqs.~79! can only be the following:

Ĥ5 ūu
]

]t
, ~B9!

D̂052 1
2 ūus3 , ~B10!

K̂052 ūus2 . ~B11!

Next we should pass to the representation of the time-dependent operators which are relate
time-independent ones by Eqs.~89!–~91!. Also for the superspace representation there will be
same relations between the two set of operators, that means:

Ĥ5Ĥ0 , ~B12!

D̂5tĤ1D̂0 , ~B13!

K̂5t2Ĥ12tD̂01K̂0 . ~B14!

Using the above-mentioned relations and the expressions obtained in Eqs.~B8!–~B10!, it is easy
to reproduce the last three operators contained in Table XI.
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The classical Kepler problem and geodesic motion
on spaces of constant curvature
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Glasgow G12 8QQ, Scotland, United Kingdom

~Received 10 May 2000; accepted for publication 19 September 2000!

In this paper we clarify and generalize previous work by Moser and Belbruno
concerning the link between the motions in the classical Kepler problem and geo-
desic motion on spaces of constant curvature. Both problems can be formulated as
Hamiltonian systems and the phase flow in each system is characterized by the
value of the corresponding Hamiltonian and one other parameter~the mass param-
eter in the Kepler problem and the curvature parameter in the geodesic motion
problem!. Using a canonical transformation the Hamiltonian vector field for the
geodesic motion problem is transformed into one which is proportional to that for
the Kepler problem. Within this framework the energy of the Kepler problem is
equal to~minus! the curvature parameter of the constant curvature space and the
mass parameter is given by the value of the Hamiltonian for the geodesic motion
problem. We work with the corresponding family of evolution spaces and present a
unified treatment which is valid for all values of energy continuously. As a result,
there is a correspondence between the constants of motion for both systems and the
Runge–Lenz vector in the Kepler problem arises in a natural way from the isom-
etries of a space of constant curvature. In addition, the canonical nature of the
transformation guarantees that the Poisson bracket Lie algebra of constants of mo-
tion for the classical Kepler problem is identical to that associated with geodesic
motion on spaces of constant curvature. ©2000 American Institute of Physics.
@S0022-2488~00!00201-7#

I. INTRODUCTION

It is well known that the classical Kepler problem is an example of a dynamical system
a ‘‘hidden’’ dynamical symmetry: The system is obviously spherically symmetric but the e
tence of the Runge–Lenz vector means the Lie algebra of constants of motion can be exte
so(4), iso(3), andso(3,1) for negative, zero, and positive energy orbits, respectively. Thus t
is a one-to-one correspondence between the dynamical symmetry algebras of motion in th
sical Kepler problem~with Hamiltonian functionH) and geodesic motion on three-dimension
spaces of constant curvature~with Hamiltonian functionG) for each energy surface~i.e., the
three-sphereS 3 with positive curvature, Euclidean three-spaceE 3 with zero curvature and the
three-hyperboliodH 3 with negative curvature!.

Moser1 addressed the geometrical nature of the energy surface for the Kepler proble
negative values of energy and claims that for a negative constantE, the energy surfaceH5E can
be mapped topologically one to one into the unit tangent bundle of then-dimensional sphereS n

with the north pole excluded. The flow defined by the Kepler problem is mapped into the geo
flow on the punctured sphere after a change of independent variable. This is extend
Belbruno2 to include positive energy orbitsE.0 in the Kepler problem and the three-hyperbolo
H 3 and also for the case withE50 and three-dimensional Euclidean spaceE 3. Osipov3 also

a!Also at: Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canad
b!Also at: Départment des Sciences, Center Universitaire de Luxembourg, 160a av. de la Faı¨encerie, L-1511 Luxembourg
81080022-2488/2000/41(12)/8108/9/$17.00 © 2000 American Institute of Physics
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tackles the case of positive energiesE.0. More recently, Meso´n and Vericat4 have considered the
case of a repulsive field.

In this paper we extend the results of Moser1 and Belbruno2 by introducing a family of
evolution spaces rather than considering a single Kepler problem. We then present a trans
tion allowing us to relate this space ofall classical Kepler problems with distinct mass paramet
a to the space ofall Hamiltonian systems of free particle motion on spaces of constant curv
k. Thus the phase flow in each system is characterized bytwo parameters, the constant ener
H5E ~or G5C) and an additional constanta ~or k). We demonstrate~via a convenient choice o
canonical coordinates! that the phase flows for the two systems can be considered parallel. W
this framework the energy of the Kepler problem is equal to~minus! the curvature parameter o
the constant curvature space and the mass parameter is given by the value of the Hamilto
the geodesic motion problem. The fact that the Hamiltonian vector fields can be considered
parallel ensures the correspondence of the constants of motion for both systems. This resu
the Runge–Lenz vector a ‘‘purely geometrical’’ interpretation in that it arises from isometrie
a three-dimensional manifold associated with the Kepler Hamiltonian system. In addition
canonical nature of the transformation guarantees the correspondence between the Poisson
Lie algebras of constants of motion on the constant energy hypersurfaces of the two system
analysis is valid for all values of energyE continuously and is thus a unified treatment which
independent of the sign of the energy. This is in contrast to the work of Moser1 and Belbruno,2

which dealt with asingleKepler problem and necessitated the use of a different procedure for
sign of energy.

The dynamical features of the Kepler problem can be analyzed using alternative techn
Iwai5 defines a four-dimensional conformal Kepler problem in order to associate the t
dimensional Kepler problem with the four-dimensional harmonic oscillator. The Hamilto
vector fields corresponding to the motion in the four-dimensional conformal Kepler problem
the four-dimensional harmonic oscillator are shown to be parallel on appropriate energy su
and then the four-dimensional conformal Kepler problem is reduced to the three-dimen
Kepler problem. Thus the~negative! energy surface in the three-dimensional Kepler problem
obtained together with the SO(4) symmetry from an appropriate energy surface of the
dimensional harmonic oscillator. Mladenov6 applies this technique to the MIC-Kepler proble
~motion in the dual charged Coulomb field modified by a centrifugal term! and then applies a
geometric quantization scheme to the extended phase space of the MIC-Kepler problem.
min and Sternberg7 show that the Kepler motion can be enlarged to geodesic flow on a cu
Lorentzian five-dimensional manifold. In their work the mass parametera is directly related to a
conjugate momentum coordinate in the cotangent bundle. The advantage of the method de
in the present work is that the dynamical features of the Kepler problem are derived directly
those of a system with thesame dimension. In addition, the features of the classical Kepl
problem have a direct geometrical origin in that they arise from the properties of the geode
a three-dimensional manifold of constant curvature.

There is an extensive amount of material in the literature relating to the geometry o
Kepler problem and we refer the reader to Guillemin and Sternberg7 and Milnor8 for an overview.

We briefly outline some concepts necessary for the description of Hamiltonian systems i
II. In Sec. III we discuss the classical Kepler problem and its symmetries and constants of m
Geodesic motion on constant curvature spaces and canonical transformations of the ass
phase space are considered in Sec. IV. Then in Sec. V we construct a map between th
dynamical systems and clarify their relationship.

II. HAMILTONIAN SYSTEMS

A symplectic manifoldN endowed with a closed nondegenerate symplectic two-formṽ is
denoted (N,ṽ). Let us introduce the 2n coordinates (x1, . . . ,xn, p1 , . . . ,pn). Then the canonica
one-formp̃ on the symplectic manifold (N,ṽ) is defined as

p̃5pi dxi ,
                                                                                                                



m

-
he
em

ase

in

try of

8110 J. Math. Phys., Vol. 41, No. 12, December 2000 Keane, Barrett, and Simmons

                    
and the canonical symplectic two-form

dp̃5dpi`dxi .

The symplectic two-formṽ can always be written locally asṽ5dp̃. For a symplectic manifold
(N,ṽ), the Hamiltonian vector fieldX̂ f corresponding to the functionf is defined as the unique
smooth vector field onN satisfying

ṽ~X̂ f !5df .

A Hamiltonian system is a symplectic manifold (N,ṽ) endowed with a Hamiltonian functionH
and denoted (N,ṽ,H).

Consider the direct product spaceW5R3N which is a 2n11 dimensional manifold locally
described by the coordinates (x1, . . . ,xn, p1 , . . . ,pn ,t). Then we can define a closed two-for
on W by

V5dpi`dxi2dH`dt, ~1!

whereH is a function onW. Then (W,V) is said to be an evolution space, see Andrie´9 for further
details.

III. THE CLASSICAL KEPLER PROBLEM

The classical Kepler problem is the motion of a particle in Euclidean~configuration! spaceE 3

under a central inverse square force2a/uxu2. The singularityuxu50 is removed from the mani
fold E 3: The configuration space is taken to beE 32$0%. The corresponding phase space is t
cotangent bundle (E 32$0%)3R3. Thus the classical Kepler problem is the Hamiltonian syst
(N,ṽ,H) whereN is the cotangent bundle (E 32$0%)3R3 andH is the Hamiltonian function

H5
upu2

2
2

a

uxu
~2!

with a a constant. The Hamiltonian vector field corresponding to the phase flow is

X̂H5pi

]

]xi 2a
xj

uxu3

]

]pj
, ~3!

wherei , j 51,2,3. The system (N,ṽ,H) only shares the rotational symmetry of the underlying b
manifold E 3, however it does admit an extra set of constants of motionAi . These quantities are
the components of theRunge–Lenz vectorwhich determines the orientation of the major axis
the orbital plane. The quantities

Ji5e i j
k xj pk ,

~4!

&Ai5xi S upu22
a

uxu D2pi~x"p!

are constants of motion for the system (N,ṽ,H), i.e., X̂H(Ji)5X̂H(Ai)50. The quantitiesAi are
quadratic in the momenta and so do not arise as a result of any simple Killing vector symme
the manifoldE 3.

Finally, we note that the Poisson brackets of the constants of motionJi andAi are

$Ji ,Jj%52e i j
k Jk , $Ji ,Aj%52e i j

k Ak ,
~5!

$Ai ,Aj%5He i j
k Jk .
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Therefore, on constant energy hypersurfacesH5E the Lie algebra given by the Poisson bracke
is isomorphic toso(4) for the caseE,0, so(3,1) for E.0, andiso(3) for E50. Thus there is
a one-to-one correspondence between the dynamical symmetry algebras of motion in the c
Kepler problem and geodesic motion on three-dimensional spaces of constant curvature.

IV. GEODESIC MOTION ON SPACES OF CONSTANT CURVATURE

We shall now present the Hamiltonian function, phase flow, and constants of motio
geodesic motion on spaces of constant curvature and indicate how they are related to
corresponding to classical Kepler motion. We can write the line element for a three-dimen
space of constant curvaturek in terms of the stereographic coordinates$xi%,i 51,2,3 as

ds25S 11
kuxu2

4 D 22

dsE
2, ~6!

wheredsE
25d i j dxi dxj and uxu25d i j x

ixj . We denote the generic three-geometry asG 3(k).
Geodesic motion on such a space can be described by a Hamiltonian,

G5
1

2 S 11
kuxu2

4 D 2

upu2, ~7!

where the three-vectorsx, p represent the position and velocity vectors, respectively, of
particle. Thus we label this Hamiltonian system (N̄,v̄,G) wherev̄5dpi`dxi .

The homogeneity and isotropy of these three-dimensional spaces give rise to
dimensional group of isometries and the corresponding Killing vectors form a six-dimension
algebra. The subgroup SO(3) is common to all three types of geometryS 3, E 3, andH 3. A basis
for the associated Lie algebra of Killing vectors is

Ri5e i j
k xj

]

]xk . ~8!

The homogeneity is granted through invariance of the metric~6! under transitive motions. How
ever, the transitive subgroup is different according to the value ofk. A basis for the associated Li
algebra of Killing vector fields is

Pi5S 12
kuxu2

4 D ]

]xi 1
k

2
xi S xj

]

]xj D . ~9!

The associated constants of motionLi5Ri•p andDi5Pi "p are, respectively,

Li5e i j
k xj pk , ~10!

Di5S 12
kuxu2

4 D pi1
k

2
xi~x"p!, ~11!

satisfying X̂G(Li)5X̂G(Di)50. The constants of motion have Poisson brackets with struc
constants identical to those of the Killing vectors and are as follows:

$Li ,L j%52e i j
k Lk , $Li ,D j%52e i j

k Dk ,
~12!

$Di ,D j%52ke i j
k Lk .
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Thus, the functionsLi ,D j form a Lie algebra under the Poisson bracket operation dependin
the value ofk. It can be seen that the Lie algebra given by the Poisson brackets is isomorp
the Lie algebraso(4) for the casek.0, so(3,1) for k,0, andiso(3) for k50.

We now implement a canonical transformation on the phase space as described in the
dix. The Hamiltonian function becomes

G5
1

4 S k1
up̄u2

2 D 2

ux̄u2 ~13!

and the Hamiltonian vector field corresponding to the phase flow is

X̂G5G1/2ux̄uS p̄i

]

] x̄i 22G1/2
x̄ j

ux̄u3
]

] p̄ j
D . ~14!

We note thatX̂G has a similar form to that for Kepler motion~3!, except for the factorG1/2ux̄u. The
constants of motion are

Li5e i j
k x̄ j p̄k ,

~15!

&Di5 x̄i S up̄u22
2G1/2

ux̄u D2 p̄i~ x̄"p̄!,

which are similar to those associated with Kepler motion presented in~4!. At this point we note
that ~13! can easily be rearranged to give

2k5
up̄u2

2
2

2G1/2

ux̄u
, ~16!

which resembles the Kepler problem Hamiltonian function. Expressions~13!–~16! form the basis
of the mapping discussed in the Sec. V.

V. RELATED DYNAMICAL SYSTEMS

Consider for the moment the constant energy surfaceG5C in system (N̄,v̄,G). If we iden-
tify the constantsa52C1/2 then the Hamiltonian vector fields~3! and ~14! have the same form
apart from a factorC1/2ux̄u. Thus if we can identify the phase space coordinates under some
then, for the constant energy surfaceH5E in the Hamiltonian system (N,ṽ,H), we can say that
E52k and we can see that the Hamiltonian vector fields can be considered parallel. We po
that the case wherea52C1/250 must be excluded from this analysis. If we writeX̂G5d/dl and
X̂H5d/dt, then the relationship between the Hamiltonian vector fields~3! and~14! can be written

d

dl
5C1/2ux̄u

d

dt
~17!

and so the time parameters are related by the followingdt/dl5C1/2ux̄u. This parameter change i
part of Moser’s transformation, see Eq.~2.8! in Ref. 1. It can also be seen that upon this iden
fication, the quantitiesAi andDi have precisely the same form. It is clear that the quantitiesJi and
Li have the same form.

Thus we can see from~16! that such a mapping will result in the energyE in the Kepler
problem being given byE52k, i.e., the whole of phase space for motion on a space w
curvaturek will be mapped to energy surfaces for Kepler problems with different mass param
a but with the sameenergyE. It then follows from this that energy surfacesG5C for motion on
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a space of fixedk will be mapped to energy surfacesE52k for Kepler motion with fixed mass
parametera52C1/2, i.e., energy surfaces are mapped to energy surfaces as in Moser1 and
Belbruno.2

We shall now formulate these notions rigorously and consider the implications of this r
First we shall construct a mapc between the 2n dimensional phase spacesN and N̄,

c:N̄°N, ~18!

such thatxi5 x̄i andpj5 p̄ j . Thus we have thatdpi`dxi5dp̄ j`dx̄ j . Thus the manifoldsN and
N̄ have the same symplectic structure.

Now we can construct the 2n11-dimensional evolution spaceWa5R3N with closed two-
form

V5dpi`dxi2dH`dt, ~19!

wheret is the time parameter for the system. This evolution space is characterized by the p
etera via the Hamiltonian functionH. Thus we can construct the family of evolution spaces, i
the fiber bundleF5R3Wa. This fiber bundle can be regarded asthe space of all Kepler prob-

lems, each characterized by the value ofa. Similarly we can construct the evolution spaceW̄k

5R3N̄ with closed two-form

V̄5dp̄i`dx̄i2dG`dl ~20!

characterized by the constantk. The corresponding family of evolution spaces isF̄5R3W̄k. This
fiber bundle can be regarded asthe space of all systems of geodesic motion on spaces of con
curvature.

Now, F̄uk5W̄k is a hypersurface inF̄ corresponding to a particular value ofk. We can define
an energy hypersurface via the mapf̄: F̄uC

k °F̄uk to be the surface defined byG5C, i.e.,

2k5up̄u2/222C1/2/ux̄u. ~21!

Similarly, Fua5Wa is a hypersurface in the fiber bundleF and we can define the energy surfa
via the mapf: FuE

a°Fua to be the surfaceH5E, i.e.,

E5upu2/22a/uxu. ~22!

Alternatively, we can define a hypersurface in the fiber bundleF corresponding to the space of a
orbits with energyH5E via a mapp: FuE°Fu.

We then define a mapF between energy hypersurfaces in the respective evolution spac
follows:

F:F̄uk°FuE , ~23!

such thatE52k. Thus under the map (F+c) we find thata52C1/2 and that the surfaceF̄uC
k is

mapped into the surfaceFuE
a . Under the the mapc ~18! we find thatṽ5v̄ and so (F+c)* v̄

5ṽ and under the mapF we have as a result of~17! that dH`dt5dG`dl and so

~F+c!* V̄5V. ~24!

Now consider the surfaceF̄uC
k in F̄. We have established that the quantitiesLi and D j have

Poisson brackets given by~12! and that the symplectic two-formv̄ is preserved under the ma
(F+c). Since the form of the quantitiesLi and D j are preserved under the map (F+c), these
quantities have the same poisson brackets on the surfaceFuE

a in F. Under the map we can write
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~F+c!* X̂H5
1

C1/2ux̄u
X̂G ~25!

and so the quantitiesLi and D j will also be constants of the motion on the energy surfaceH
5E52k, a52C1/2 in the system (N,ṽ,H). Since the Poisson structure is preserved then t
Poisson bracket Lie algebra will be identical to that in~12!. It is indeed the case that the quantiti
Ji5Li andAi5Di under the map (F+c).

Thus, given any point (x̄i ,p̄ j ,l,k) in the fiber bundleF̄, we have defined the correspondin
point (xi ,pj ,t,a) in the Kepler problem fiber bundleF by xi5 x̄i , pj5 p̄ j , a512C1/2 and t
5t(l,xi ,pj ) from relation ~17!. This mapping is injective. The casesa.0 anda,0 must be
treated separately and in the latter case we would define a map witha522C1/2. In a sense, the
Kepler problem is the ‘‘square root’’ of geodesic motion on spaces of constant curvature
same way as spinors are the ‘‘square root’’ of tensors. We note that this suggests consider
Kepler problem in a complex space. Two-body motion with a central repelling field, that is
case wherea,0, necessarily implies thatH.0 and sok,0 which corresponds to the hyperbol
geometryH 3.

Thus the phase flows in the surfacesF̄uC
k are mapped into those inFuE

a whereE52k and
a512C1/2 ~or a522C1/2) and so the constants of motion in the first will be mapped i
constants of the motion in the second. This formalism explains why the Poisson brack
algebra of constants of motion on constant energy surfaces in the classical Kepler prob
identical to that for the constants for geodesic motion on spaces of constant curvature. In a
it is clear that replacing the constantk by the function2H in the constants of motionDi gives the
components of the Runge–Lenz vectorAi . Hence, the constants of motionAi in the classical
Kepler problem arise in a natural way from the transitive isometries of the associated spa
constant curvature. Furthermore, the commutation relations amongst the constants of motio
Kepler problem (N,ṽ,H) can be thought of as being inherited from those in (N̄,v̄,G), i.e., the
commutation relations~12!, when restricted to the appropriate energy surface.

So far we have excluded the singularity at the originuxu50 in the Kepler problem. This is
equivalent to exclusion of certain points in the corresponding spacesG 3(k). It is now straightfor-
ward to reinstate these points thereby regularizing the problem. For example, theE,0 energy
surface in the Kepler problem is mapped to the tangent bundle of the sphereS 3 punctured at one
point, the north pole. TheE,0 Kepler problem energy surface is compactified when we incl
this point and so the geodesics through the north pole are transformed into collision orbits

VI. CONCLUSIONS

The formalism we have presented generalizes and we hope, clarifies previous work. Th
difference is that there are two parameters in each problem: the mass parametera and the value of
the HamiltonianH in the Kepler problem and the curvaturek and the value of the HamiltonianG
in the system of geodesic motion on spaces of constant curvature. In this paper we hav
structed the family of evolution spaces corresponding to both problems and via a suitabl
shown the equivalence of the flows in the two problems@Eqs.~24! and ~25!#. Within this frame-
work the energy of the Kepler problem is equal to~minus! the curvature parameter of the consta
curvature space, i.e.,H52k, and the mass parameter is given by the value of the Hamiltonian
the geodesic motion problem via the relationa52G1/2. This ensures the correspondence of
constants of motion for both systems. This result gives the Runge–Lenz vector a ‘‘purely
metrical’’ interpretation in that it arises from isometries of a three-dimensional manifold as
ated with the Kepler Hamiltonian system. In addition, the canonical nature of the transform
guarantees the correspondence between the Poisson bracket Lie algebras of constants of m
the constant energy hypersurfaces of the two systems. We have presented a unified tr
which is valid for all values of energy continuously. This is in contrast to the work of Moser1 and
Belbruno 2 which dealt with asingle Kepler problem and necessitated the use of a differ
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procedure for each sign of energy. Our method highlights the relationship between the two
flows in ageometricalway and we have used clear and simple canonical transformations to o
the result. Finally we note that we have said only that the two systems are related and we hnot
transformed one system into the other. In particular,H andG arenot the same Hamiltonian.

It is apparent from this result that the curvature parameterk may be considered to be
coordinate in some higher dimensional space and that this may provide further information
the dynamics of the classical Kepler problem. In addition, it is well known that the spec
generating Lie algebra and Lie algebra corresponding to the dynamical group of the cla
Kepler problem is the Lie algebraso(4,2). This Lie algebra also appears as the conformal s
metry group of Minkowski spacetime and our formalism suggests a connection between th
These issues are currently being investigated by the authors.

This type of procedure may have applications to other dynamical systems with dyna
symmetries, for example, the harmonic oscillator and systems which admit Killing tensor
associated quadratic constants of motion. That is, there may be a geometrical interpretatio
able for the dynamical constants of motion which exist in these systems.
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APPENDIX: CANONICAL TRANSFORMATION ON T*G 3
„k …

It turns out that for our purposes it is simplest to transform from the natural coordinate sy
of ~6! to a new coordinate system on configuration space. We perform an inversion of the
dinates

x8 i5
xi

uxu2
. ~A1!

The corresponding canonical momenta (pi85]xj /]x8 i pj ) are

pi85uxu2pi22xi~x"p!. ~A2!

Since this is just a coordinate transformation on configuration space, it is obviously cano
Using these inverted coordinates makes the relationship between the classical Kepler mot
geodesic motion on surfaces of constant curvature much more transparent. For flat Eu
spaceE3, i.e., the casek50, this coordinate inversion takes points near the origin to points n
infinity and vice versa, but of course the intrinsic geometry of the space is unaltered. A s
argument holds for the caseH 3, k,0 as shown by Belbruno.2 For the three-sphereS 3 with k
.0 this corresponds to an antipodal mapping which is an isometry ofS 3. This is why Moser’s
method1 does not require the inversion. Then we implement a further~canonical! transformation

x̄i5pi8/2&, p̄i522&x8 i . ~A3!

This transformation relates the momentum space of the classical Kepler problem to a config
space of constant curvature, that is, the velocity hodographs can be regarded as geodesics
spaces, as discussed in Moser1 and Belbruno.2

Combining these two transformations the Hamiltonian function becomes

G5
1

4 S k1
up̄u2

2 D 2

ux̄u2 ~A4!

and the conserved quantities are

Li5e i j
k x̄ j p̄k , ~A5!
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&Di5 x̄i S up̄u22
2G1/2

ux̄u D2 p̄i~ x̄"p̄!. ~A6!
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Poisson algebras associated with constrained
dispersionless modified Kadomtsev–Petviashvili
hierarchies

Jen-Hsu Changa)

Institute of Mathematics, Academia Sinica, Nankang, Taipei, Taiwan

Ming-Hsien Tub)

Department of Physics, National Chung Cheng University, Minghsiung, Chiayi, Taiwan

~Received 6 March 2000; accepted for publication 11 September 2000!

We investigate the bi-Hamiltonian structures associated with constrained disper-
sionless modified Kadomtsev–Petviashvili~KP! hierarchies which are constructed
from truncations of the Lax operator of the dmKP hierarchy. After transforming
their second Hamiltonian structures to those of the Gelfand–Dickey-type, we ob-
tain the Poisson algebras of the coefficient functions of the truncated Lax operators.
Then we study the conformal property and free-field realizations of these Poisson
algebras. Some examples are worked out explicitly to illustrate the obtained results.
© 2000 American Institute of Physics.@S0022-2488~00!02212-X#

I. INTRODUCTION

The dispersionless integrable hierarchies can be viewed as the quasiclassical limit
ordinary integrable systems.1,2 A typical example is the dispersionless Kadomtsev–Petviash
~dKP! hierarchy which has played an important role in theoretical and mathematical physics~see,
for example, Refs. 3–5, and references therein!. The Lax formulation of the dKP hierarchy can b
constructed by replacing the pseudodifferential Lax operator of KP with the corresponding
rent series. On the other hand, an analogous construction can be made for the modified KP~mKP!
hierarchy6 and thus leads to the dmKP hierarchy.

In the previous work,7 we have established the Miura map between the dKP and dm
hierarchies, which turns out to be canonical in the sense that the bi-Hamiltonian structure
dmKP hierarchy8 is mapped to the bi-Hamiltonian of the dKP hierarchy.8,9 We have also studied
the solution structure of the dmKP hierarchy using the twistor construction.5 In this paper we turn
to the Poisson algebras of the bi-Hamiltonian structures associated with the dmKP hierarch
particularly, its reductions. For the ordinary mKP hierarchy the reductions are quite limited10–12

However, in the dispersionless limit, we show that the Lax operator of the dmKP hierarchy c
truncated to any finite order and their associated bi-Hamiltonian structures can be obtain
Dirac reduction.13 To proceed the formulation of the dmKP hierarchy, we recall some basic
about the algebra of Laurent series in the following.

Let L be an algebra of Laurent series of the form

L5H AUA5 (
i 52`

N

aip
iJ ,

with coefficientsai depending on an infinite set of variablest1[x,t2 ,t3 ,... . ThealgebraL can be
decomposed into the subalgebras as

L5L>k% L,k , ~k50,1,2.!,

a!Electronic mail: changjen@math.sinica.edu.tw
b!Electronic mail: phymhtu@ccunix.ccu.edu.tw
81170022-2488/2000/41(12)/8117/15/$17.00 © 2000 American Institute of Physics
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where

L>k5H APLUA5(
i>k

aip
i J

L,k5H APLUA5(
i ,k

aip
i J ,

and using the notationsL15L>0 andL25L,0 for short. AlthoughL forms a commutative and
associative algebra under multiplication, we can define a Lie-bracket1 associated withL such that

@@A,B##5
]A

]p

]B

]x
2

]A

]x

]B

]p
, A,BPL,

which can be regarded as the Poisson bracket defined in the two-dimensional phase spacx,p).
For a given Laurent seriesA we define its residue as

resA5a21

and its trace as

tr A5E resA.

For any two Laurent seriesA5( iaip
i andB5( ibip

i we have

res@@A,B##5(
i

i ~aib2 i !8

which implies

tr@@A,B##50,

and

tr~A@@B,C## !5tr~@@A,B##C!.

Finally, given a functionalF(A)5* f (a) we define its gradient as

dF

dA
5(

i

d f

dai
p2 i 21,

where the variational derivative is defined by

d f

dak
5(

i
~21! i S ] i

•

] f

]ak
( i )D ,

with ak
( i )[(] i

•ak),][]/]x. Note that we will use the notations]• f 5 f 85] f /]x and ] f 5 f ]
1 f 8 in the following sections.

This paper is organized as follows: In Sec. II, we will derive the bi-Hamiltonian structure
constrained dmKP hierarchies from that of the dmKP hierarchy via Dirac reduction. In Sec. I
will investigate the conformal property of the second Poisson brackets associated with cons
dmKP hierarchies. In Sec. IV, the free-field realizations of these Poisson algebras will be
through the corresponding Kupershmidt–Wilson~KW! theorem.14 We will give some examples to
illustrate the obtained results in Sec. V. Section VI contains some concluding remarks.
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II. BI-HAMILTONIAN STRUCTURES

The ~generalized! dmKP hierarchy is defined by the Lax operator of the form

Kn5pn1vn21pn211¯ , ~n.0!

which satisfies the Lax equations of motion

]Kn

]tk
5@@Bk ,Kn##, Bk5~Kn

k/n!>1 ~2.1!

or zero-curvature conditions

]Bk

]t l
2

]Bl

]tk
1@@Bk ,Bl ##50. ~2.2!

Therefore, we work with the decompositionL5L>1% L,1 of the underlying algebra. Forn
51, the first nontrivial flows (t25y,t35t) of ~2.2! are given by

v21x5 3
2 v0y2 3

2 ~v0
2!x ,

v21y52v0t2
3
2 ~v0

2!y22v21v0x ,

which, by eliminatingv21 , yields the dmKP equation

v0t52 3
2 v0

2vox1
3
2 v0x]x

21v0y1 3
4 ]x

21v0yy .

The multi-Hamiltonian structures associated withKn have been obtained by Li8 using the classica
r -matrix formulation. Especially, the second structure can be expressed as

$F,G%~Kn!5E resS J2
(n)S dF

dKn
D dG

dKn
D ,

where the Hamiltonian mapJ2
(n) is defined by

J2
(n)~X!5@@Kn ,X##>21Kn2@@Kn ,~KnX!>1## ~2.3!

with X5( ixip
2 i 21. It is quite natural to define the conserved quantities as

Hk5
n

k
tr Kn

k/n ,

then the Lax flows~2.1! can be described by the Hamiltonian equations

]Kn

]tk
5$Hk ,Kn%2

(n)~Kn!5J2
(n)S dHk

dKn
D .

Based on the above results, we would like to consider reductions of the dmKP hierarchy an
associated bi-Hamiltonian structures. Let us consider truncations of the Lax operatorKn as fol-
lows:

K (n,m)5pn1vn21pn211¯1v2mp2m, mPZ\$0%. ~2.4!

It is quite easy to show that these are consistent truncations with respect to the Lax flows~2.1!.
Thus for each pair (n,m), the Lax operatorKn with infinitely many coefficient functions is
reduced to a finite-dimensional one2K (n,m) which we refer to the constrained dmKP hierarch
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However, the Hamiltonian map~2.3! cannot preserve the form of]K (n,m) /]tk since the lowest
order term ofJ2

(n)(dH/dK (n,m)) in p is p2m21. Hence we shall consider the Hamiltonian flows f
K̄ (n,m)5K (n,m)1mp2m21 and then setm50. However, imposing such a constraint leads to
modification of the Hamiltonian map~2.3! due to the Dirac reduction.13 It turns out that the
Hamiltonian flow form @the coefficient ofp2m21 in the Hamiltonian equations forK̄ (n,m)#, under
the conditionm50, gives the constraint

ṁ5v2mS resF F K̄ (n,m) ,
dH

dK̄ (n,m)
G G D

m50

50, ~2.5!

where

dH

dK̄ (n,m)

5
dH

dK (n,m)

1
dH

dm
pm.

The second equality in~2.5! means that the functiondH/dm can be expressed in terms o
dH/dv i ,i 52m,2m11,...,n21. Solving the constraint~2.5!, we obtain

v2m

dH

dm
5

1

m Ex

resF FK (n,m) ,
dH

dK (n,m)
G G ,

which implies

J2
(n)S dH

dK̄ (n,m)
D 5F FK (n,m) ,

dH

dK̄ (n,m)
G G

>21

K (n,m)2F FK (n,m) ,S K (n,m)

dH

dK̄ (n,m)
D

>1

G G
5F FK (n,m) ,

dH

dK (n,m)
G G

>21

K (n,m)2F FK (n,m) ,S K (n,m)

dH

dK (n,m)
D

>1
G G

1F FK (n,m) ,v2m

dH

dm
G G

5F FK (n,m) ,
dH

dK (n,m)
G G

1

K (n,m)2F FK (n,m) ,S K (n,m)

dH

dK (n,m)
D

1

G G
1F FK (n,m) ,S K (n,m)

dH

dK (n,m)
D

0
G G1F FK (n,m) ,

dH

dK (n,m)
G G

21

K (n,m)

1
1

m
F FK (n,m) ,Ex

resF FK (n,m) ,
dH

dK (n,m)
G G G G

[J2
(n,m)S dH

dK (n,m)
D . ~2.6!

Note that the above modified Hamiltonian map form561 are just the classical limit of the
second structures of constrained mKP hierarchies obtained in Refs. 10–12. Besides, wm
→`, J2

(n,`) recovers the Hamiltonian mapJ2
(n) , as expected. It should be mentioned that, form

50, the constrained equation~2.5! gives nothing and henceK (n,0) does not admit a proper reduce
Hamiltonian structure even thoughK (n,0) matches the Lax equations~2.1!. Similar situation for
ordinary mKP was also pointed out in Ref. 10.
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Remark 1:If we first treatm as a dynamical variable whose Poisson bracket can be easily
off from the first equality of~2.5! as $m,m%252mv2m]v2m which is nondegenerate formÞ0
and thus has an inverse2m21v2m

21 ]21v2m
21 . That means the constraintm50 is second class.13

Then the new Poisson brackets under the second class constraint now become$v i ,v j%2
new

5$v i ,v j%22$v i ,m%2$m,m%2
21$m,v j%2 which implies $m,m%2

new5$m,v j%2
new5$v i ,m%2

new50. It is
not hard to show that the new brackets are equivalent to the compact form~2.6!.

Finally, we would like to mention that the first Poisson structure of the constrained d
hierarchies can be defined as a deformation ofJ2

(n,m) by shiftingK (n,m)°K (n,m)1l by a constant
parameterl. Then the second structure induces a linear termJ2

(n,m)°J2
(n,m)1lJ1

(n,m) with

J1
(n,m)S dH

dK (n,m)
D5F FK (n,m) ,

dH

dK (n,m)
G G

>21

2F FK (n,m) ,S dH

dK (n,m)
D

>1
G G , ~2.7!

which, by definition, is compatible with the second structure and is a Laurent series of or
mostn21. It turns out that~2.7! is nothing but the first Poisson structure defined in Ref. 8. N
that the Hamiltonian mapJ1

(n,m) is consistent with the Lax flows~2.1! for m.0 but not form
,0 due to the fact that, form,0, the lowest order term ofJ1

(n,m)(dH/dK (n,m)) in p is p21, not
pumu. Hence, just as the second structure, we require the use of Dirac’s theory of constra
obtain the consistent result. This will be done in the next section.

III. POISSON ALGEBRAS

Having constructed the Hamiltonian map of the constrained dmKP hierarchies, we are
ready to calculate the Poisson brackets of the coefficient functionsv i in ~2.4!. Before doing that,
we would like to show that the complicated form of the modified Hamiltonian mapJ2

(n,m) defined
by K (n,m) can be transformed to the familiar Gelfand–Dickey~GD! type structures15 via the
following identification:

K (n,m)5Ln1mp2m5~pn1m1un1m21pn1m211¯1u0!p2m,

where

v i5ui 1m , i 52m,2m11,̄ ,n21. ~3.1!

On the other hand, from the variation

dF5E resS dK (n,m)

dF

dK (n,m)
D5E resS dLn1m

dF

dLn1m
D

we have

dF

dK (n,m)
5pm

dF

dLn1m
.

Using the above relations, some terms in~2.6! can be rewritten as

F FK (n,m) ,
dF

dK (n,m)
G G

1

K (n,m)5p2mF FLn1m ,
dF

dLn1m
G G

1

Ln1m2mp21K (n,m)S K (n,m)

dF

dK (n,m)
D

1

8

2mp21K (n,m)S K (n,m)

dF

dK (n,m)
D

0

8
,
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F FK (n,m) ,S K (n,m)

dF

dK (n,m)
D

1
G G5p2mF FLn1m ,S Ln1m

dF

dLn1m
D

1
G G

2mp21K (n,m)S K (n,m)

dF

dK (n,m)
D

1

8
,

1

m F FK (n,m) ,Ex

resF FK (n,m) ,
dF

dK (n,m)
G G G G5

1

m
p2mF FLn1m ,Ex

resF FLn1m ,
dF

dLn1m
G G G G

2p21K (n,m)resF FK (n,m) ,
dF

dK (n,m)
G G

2F FK (n,m) ,S K (n,m)

dF

dK (n,m)
D

0
G G

2mp21K (n,m)S K (n,m)

dF

dK (n,m)
D

0

8
,

which imply

$F,G%2
(n,m)~K (n,m)!5E resS J2

(n,m)S dF

dK (n,m)
D dG

dK (n,m)
D ,

5E resS Q213
GD S dF

dLn1m
D dG

dLn1m
D ,

5$F,G%213
GD ~Ln1m!, ~3.2!

where the Hamiltonian mapQ213
GD [Q2

GD1 (1/m) Q3
GD with

Q2
GD~X!5@@Ln1m ,X##1Ln1m2@@Ln1m ,~Ln1mX!1##, ~3.3!

Q3
GD~X!5F FLn1m ,Ex

res@@Ln1m ,X##G G . ~3.4!

Besides the standard second GD structureQ2
GD, ~3.4! is called the third GD bracket16 which is

compatible with the second one~see Appendix A!. Hence, under the identification~3.1!, the
modified Hamiltonian structure~2.6! has been mapped to the sum of the second and the third
structures defined by the polynomialLn1m .

Since the Poisson algebras associated with the second GD structure have been obtain9 we
only need to treat the third one. Therefore, by~3.2!, we can now use~3.3! and~3.4! instead of~2.6!
to read off the Poisson brackets$v i(x),v j (y)%2

(n,m)52(J2
(n,m)(v)) i j •d(x2y), where the operators

(J2
(n,m)(v)) i j are taken at the pointx. After some straightforward algebras we have

~J2
(n,m)!n21,n215

n~n1m!

m
],

~J2
(n,m)! i ,n215

n~ i 1m11!

m
v i 11],

~J2
(n,m)!n21,j5

n~ j 1m11!

m
]v j 11 ,
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~J2
(n,m)! i , j5~n2 i 21!v i 1 j 122n]1~n2 j 21!]v i 1 j 122n

1 (
k5 j 12

n21

@~k2 i 21!v i 1 j 122k]vk1~k2 j 21!vk]v i 1 j 122k#

1
~ i 1m11!~ j 11!

m
v i 11]v j 11 , ~3.5!

where i , j 52m,2m11,...,n22 andv i ,2m5v i .n50. We refer the above Poisson algebra
w(n,m)-algebra.

For the Poisson algebra associated with the first structure, it can be directly obtained fro
Hamiltonian map~2.7! for the case ofm.0 as follows:

~J1
(n,m.0)! i j 5H ~ i 11!v i 1 j 12]1~ j 11!]v i 1 j 12 , 21< i , j <n21

2~ i 11!v i 1 j 12]2~ j 11!]v i 1 j 12 , 2m< i , j <22

0 otherwise.

However, the case form,0 requires the Dirac reduction, which turns out to be

~J1
(n,m,0)! i j 5~J1

(n,1)! i j 2 (
k,l 521

umu21

~J1
(n,1)! ik~J1

(n,1)!kl
21~J1

(n,1)! l j , umu< i , j <n21.

Note that the bi-Hamiltonian structures of constrained dmKP hierarchies can be cast in
following recursive formula,

~J1
(n,m)! i j •

dHk1n

dv j
5~J2

(n,m)! i j •
dHk

dv j
.

Next, let us focus on the algebraic structures of thew(n,m)-algebra~3.5!. The first few of them are

$vn21~x!,vn21~y!%2
(n,m)52

n~n1m!

m
]•d~x2y!,

$vn21~x!,vn22~y!%2
(n,m)52

n~n1m21!

m
]vn21~x!•d~x2y!, ~3.6!

$vn22~x!,vn22~y!%2
(n,m)52Fvn22~x!]1]vn22~x!1

~n21!~n1m21!

m
vn21~x!]vn21~x!G

•d~x2y!.

In spite of the fact thatvn21 satisfies the U~1!-Kac–Moody algebra, the algebraic structure sho
above is still unclear. However, if we define

w2~x!5vn22~x!2
n21

2n
vn21

2 ~x!, ~3.7!

then the second and the third brackets in~3.6! can be rewritten as

$vn21~x!,w2~y!%2
(n,m)52@vn21~x!]1vn218 ~x!#•d~x2y!,

$w2~x!,w2~y!%2
(n,m)52@2w2~x!]1w28~x!#•d~x2y!,
                                                                                                                



nian
f
ke the

, if we

the

er the
ing

D

8124 J. Math. Phys., Vol. 41, No. 12, December 2000 J. H. Chang and M. H. Tu

                    
wherew2 , being a generator, is a DiffS1 tensor with weight 2 andvn21 a tensor of weight 1. In
fact, using~3.5! and ~3.7! we have

$vn2 i~x!,w2~y!%2
(n,m)52@ ivn2 i~x!]1vn2 i8 ~x!#•d~x2y!

that means, exceptvn22 , each coefficientvn2 i in the Lax operatorK (n,m) , with respect to the
generatorw2 , is already a DiffS1 tensor with weighti . Hence the Poisson algebraw(n,m) defined
in ~3.5! is isomorphic town1m-U~1!-Kac–Moody-algebra generated by the primary fields

w1[vn21 , w2[vn222
n21

2n
vn21

2 , wi[vn2 i , ~3< i<n1m!.

Note that the DiffS1 flows can be viewed as the Hamiltonian flows generated by the Hamilto
*e(x)h1 due to the fact thath15n resK (n,m)

1/n 5w2 . That is the reason why the classical limit o
W-algebraic structures are encoded in constrained dmKP hierarchies. Finally when we ta
limit m→`, ~3.7! still holds and the Poisson algebra~3.5! recovers tow(n,`)[wdmKP

(n) defined by
the Lax operatorKn .

IV. KW THEOREM AND FREE-FIELD REALIZATIONS

It has been shown9,17,18that the classical limit of the second GD structure defined by~3.3! has
nice properties with respect to the factorization of the associated Lax operator. For example
factorizeL5L1L2 , then

$F,G%2
GD~L !5$F,G%2

GD~L1!1$F,G%2
GD~L2!. ~4.1!

On the other hand, ifL5L1
a ,aPN then we have

$F,G%2
GD~L !5

1

a
$F,G%2

GD~L1!. ~4.2!

Equations~4.1! and ~4.2! are just the corresponding KW theorem for the classical limit of
second GD bracket. More generally, we shall consider the factorization of the polynomialLn1m of
the form

Ln1m5)
i 51

l

~p1f i !
a i, (

i 51

l

a i5n1m, ~4.3!

where the Miura variablesf i are zeros ofLn1m with multiplicities a i , then~4.1! and~4.2! imply
that

$F,G%2
GD~Ln1m!52(

i 51

l
1

a i
E S dF

df i
D 8S dG

df i
D . ~4.4!

To complete the discussion of the KW theorem we have to treat the third GD structure und
factorization ~4.3!. In fact, it can be shown that the third GD structure enjoys the follow
property~for the proof, see Appendix B!:

$F,G%3
GD~L1

aL2!5$F,G%3
GD~L1L2!. ~4.5!

That means the multiplicitiesa i do not involve in the KW theorem with respect to the third G
structure. Hence,
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$F,G%3
GD~Ln1m!5$F,G%3

GDS )
i 51

l

~p1f i !D ,

5 (
i , j 51

l E S dF

df i
D 8S dG

df j
D . ~4.6!

Combining~4.4! and ~4.6! we have

$F,G%213
GD ~Ln1m!52 (

i , j 51

l S 1

a i
d i j 2

1

mD E S dF

df i
D 8S dG

df j
D .

Among other things, the fundamental brackets for the Miura variablesf i are

$f i~x!,f j~y!%2
(n,m)~K (n,m)!5$f i~x!,f j~y!%213

GD ~Ln1m!5S 1

a i
d i j 2

1

mD ]•d~x2y!, ~4.7!

wherei , j 51,2,. . . ,l .
Since the above Poisson matrix is symmetric and hence can be diagonalized by li

combining the Miura variablesf i to obtain the free fields. For example, suppose all zeros
simple, i.e.,a i51,i 51,2,...,n1m, thenv i5Sn2 i(f j ) being the symmetric functions of$f j% and
the Poisson matrix~4.7! becomesP213512 (1/m) hhT, whereT denotes the transpose operatio
1 is a (n1m)3(n1m) identity matrix andhT5(1,...,1). It is quite easy to constructn1m21
orthonormal eigenvectorshi as follows:

h1
T5~1,21,0...,0!/&,

h2
T5~1,1,22...,0!/A6,

¯

hn1m21
T 5~1,1,...,1,2n2m11!/A~n1m!~n1m21!,

which satisfyP213hi5hi and hence have eigenvalue11. Finally, from orthogonality, the remain
ing orthonormal eigenvector has the form

hn1m
T 5~1,1,...,1!/An1m

with eigenvalue2n/m. Now if we rewrite the Miura variablesfT5(f1 ,f2 ,...,fn1m) as f
5He whereH is a (n1m)3(n1m) matrix defined byH5@h1 ,h2 ,...,hn1m#, then

$ei~x!,ej~y!%2
(n,m)5l i]•d~x2y!, ~4.8!

with l i51 (i 51,2,...,n1m21), ln1m52n/m. Therefore~4.8! provides a free-field realization
of the w(n,m)-algebras~3.5! and the Lax operatorK (n,m) can be expressed as

K (n,m)5 )
i 51

n1m

~p1~He! i !p
2m,

where the free fieldsei satisfy the Hamiltonian flows

]ei

]tk
52l i S dHk

dei
D 8

.
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In the case ofm→`, the Poisson matrix of~4.7! becomes diagonal, which provides the free-fie
realization of thewdmKP

(n) -algebra.

V. EXAMPLES

Example 1:For the Lax operatorK (2,1)5p21v1p1v01v21p21 the first nontrivial equations
are given by

]

]t2
S v1

v0

v21

D 5S 2v0x

v1v0x12v21x

~v1v21!x

D ,

8
]

]t3
S v1

v0

v21

D 5S 23v1
2v1x112~v0v1!x124v21x

12v1xv21124v1v21x112v0v0x13v1
2v0x

12~v0v21!x13~v1
2v21!x

D ,

which are first equations of the generalized Benney hierarchy. The first Hamiltonians of
hierarchy flows are given by

H15E ~v02 1
4 v1

2!,

H25E v21 ,

H35E ~ 1
2 v1v211 1

4 v0
22 1

8 v0v1
21 1

64 v1
4!,

H45E v0v21 ,

H55E ~2 1
512v1

61 3
128v1

4v02 1
16 v1

3v212 3
32 v1

2v0
21 3

4 v1v0v211 1
8 v0

31 3
4 v21

2 !.

Then the Lax flows can be rewritten as Hamiltonian flows as follows:

]v

]t2
5J1

(2,1)
•

dH4

dv
5J2

(2,1)
•

dH2

dv
,

]v

]t3
5J1

(2,1)
•

dH5

dv
5J2

(2,1)
•

dH3

dv
,

wherevT5(v1 ,v0 ,v21), (dHi /dv)T5(dHi /dv1 ,dHi /dv0 ,dHi /dv21) and

J1
(2,1)5S 0 0 2]

0 2] v1]

2] ]v1 0
D ,

J2
(2,1)5S 6] 4]v1 2]v0

4v1] v0]1]v012v1]v1 2]v211v21]1v1]v0

2v0] ]v2112v21]1v0]v1 ]v1v211v1v21]
D .

On the other hand, the Lax operatorK (2,1) can be expressed in terms of primary fields as
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K (2,1)5p21w1p1~w21 1
4 w1

2!1w3p21,

wherewi satisfy thew3-U~1!-Kac–Moody-algebra

$w1~x!,w1~y!%2
(2,1)526]•d~x2y!,

$w1~x!,w2~y!%2
(2,1)52@w1~x!]1w18~x!#•d~x2y!,

$w1~x!,w3~y!%2
(2,1)52@~2w2~x!1 1

2 w1
2~x!!]1~2w2~x!1w1

2~x!!8#•d~x2y!,

$w2~x!,w2~y!%2
(2,1)52@2w2~x!]1w28~x!#•d~x2y!,

$w3~x!,w2~y!%2
(2,1)52@3w3~x!]1w38~x!#•d~x2y!,

$w3~x!,w3~y!%2
(2,1)52@2w1~x!w3~x!]1~w1~x!w3~x!!8#•d~x2y!.

The free-field realization of the above algebra is given by

w15)e3 ,

w25e3
22 1

2 e2
22 1

2 e1
2 ,

w352
1

2)
~e1

21e2
2!e31

1

A6
S e1

22
1

3
e2

2De21
1

3)
e3

3,

with

$e1~x!,e1~y!%2
(2,1)5$e2~x!,e2~y!%2

(2,1)5]•d~x2y!,

$e3~x!,e3~y!%2
(2,1)522]•d~x2y!.

Remark 2:The algebraic and Hamiltonian structure associated with the Lax operatorK (2,1) has
also been investigated in Ref. 19, where the Lax equation is defined by the bracket@@A,B##
5p]A/]p]B/]x2p]A/]x]B/]p with respect to the decompositionL5L>0% L,0 and the rela-
tionship to the dispersionless Toda hierarchies is established as well.

Example 2:For the Lax operatorK (3,21)5p31v2p21v1p, the first nontrivial Lax equations
are

3
]

]t2
S v2

v1
D5S 6v1x22v2v2x

2v2v1x22v2xv1
D ,

81
]

]t4
S v2

v1
D5S ~5v2

4236v2
2v1154v1

2!x

24v2
3v1x112v2

2v2xv1236v2xv1
2D ,

which are first equations of the dispersionless modified Boussinesq hierarchy. The Hamil
flows are defined by

]v

]t2
5J1

(3,21)
•

dH5

dv
5J2

(3,21)
•

dH2

dv
,

]v

]t3
5J1

(3,21)
•

dH7

dv
5J2

(3,21)
•

dH4

dv
,
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with the first Hamiltonians

H15E ~v12 1
3 v2

2!,

H25E ~ 2
27 v2

32 1
3 v2v1!,

H45E ~2 2
243v2

51 5
81 v2

3v12 1
9 v2v1

2!,

H55E ~ 7
2187v2

62 7
243v2

4v11 2
27 v2

2v1
22 1

27 v1
3!,

H75E ~2 11
19683v2

81 44
6561v2

6v12 20
729v2

4v1
21 10

243v2
2v1

32 1
81 v1

4!

and

J1
(3,21)

5S 9v2v1
21]v1

2119v1
21]v2v1

21 29v1
21]16v2v1

21]v2v1
2116v1

21]v2
2v1

21

29]v1
2116v2v1

21]v2v1
2116v2

2v1
21]v1

21 26]v2v1
2126v2v1

21]18v2v1
21]v2v1

21 D ,

J2
(3,21)5S 26] 23]v2

23v2] v1]1]v122v2]v2
D .

Rewriting the Lax operatorK (3,21) in terms ofwi yields

K (3,21)5p31w1p21~w21 1
3 w1

2!p,

wherew1 andw2 satisfy the~centerless-! Virasoro-U~1!-Kac–Moody algebra, namely,

$w1~x!,w1~y!%2
(3,21)56]•d~x2y!,

$w1~x!,w2~y!%2
(3,21)52@w1~x!]1w18~x!#•d~x2y!,

$w2~x!,w2~y!%2
(3,21)52@2w2~x!]1w28~x!#•d~x2y!.

The free-field realization of the above algebra can be easily obtained as

w15&e2 ,

w252 1
2 e1

22 1
6 e2

2,

with

$e1~x!,e1~y!%2
(3,21)5]•d~x2y!,

$e2~x!,e2~y!%2
(3,21)53]•d~x2y!.
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VI. CONCLUDING REMARKS

We have studied constrained dmKP hierarchies from the dmKP hierarchy by truncatin
Lax operatorKn to any finite order. We have obtained the compatible bi-Hamiltonian structure
constrained dmKP hierarchies using Dirac reduction and written down their associated P
algebras explicitly. We show that the second Poisson algebraw(n,m) turns out to be the
w(n1m)-U~1!-Kac–Moody-algebra. Its free-field realization can be obtained via the correspon
KW theorem. Two examples including the generalized Benney hierarchy and the dispersi
modified Boussinesq hierarchy have been used to illustrate the obtained results.

We would like to remark that the bi-Hamiltonian structures obtained in this paper are o
hydrodynamic type20 ~see also Ref. 21!, i.e., the Hamiltonian operators can be expressed as@for
convention, we have to rewrite the Hamiltonian operators and coefficient functions as contr
ant tensors#

Ji j ~v !5gi j ~v !]1Gk
i j ~v !vx

k ,

where, under the nondegenerate condition det(gij(v))Þ0, gi j (v)[(gi j )21 can be viewed as a
~pseudo-! Riemannian metric andG i j

k (v)[2gil G j
kl are the components of the Levi-Civita` con-

nection for the metric. Moreover, the Jacobi identity of the Hamiltonian structures implies tha
metric is flat. This can be easily checked for the illustrated examples. On the other hand,
pointed out8 that the third and higher Hamiltonian structures may induce nonlocal Hamilto
operators which also possess nontrivial geometrical interpretations22 and thus deserve more inve
tigations.
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APPENDIX A: Q3
GD IS A HAMILTONIAN MAP

To justify thatQ3
GD is a Hamiltonian map, we have to check that the Poisson bracket de

by Q3
GD is antisymmetric and obeys the Jacobi identity. For antisymmetry, by direct comput

we have

$F,G%3
GD5E resS Q3

GDS dF

dL D dG

dL D5E resS F FL,Ex

resF FL,
dF

dL G G G G dG

dL D
52E resF FL,

dG

dL G G Ex

resF FL,
dF

dL G G52E resS F FL,Ex

resF FL,
dG

dL G G G G dF

dL D
52$G,F%3

GD,

where we have used the integration by part to reach the fourth line. For the Jacobi identi
argument is similar to that of the ordinary GD structure.16 For an arbitrary parameterl,

Q2
GD~X!1lQ3

GD~X!5@@Ln ,X##1Ln2@@Ln ,~LnX!1##1lF FLn ,Ex

res@@Ln ,X##G G5Q2
GD~X̂!,

~A1!

whereX5( ixip
2 i and

X̂5X2lp2nEx

res@@Ln ,X##.
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Since the Jacobi identity for the~dispersionless! second GD structure has been proven,9 thus Eq.
~A1! shows that an arbitrary linear combination of the second and the third GD structu
equivalent to the second structure with the modificationX→X̂. That means the third GD structur
is compatible with the second one and the Jacobi identity for the third structure is automa
satisfied.

APPENDIX B: A PROOF OF „4.5…

Let L5L1
aL2 , then the variation

dF5E resS dL
dF

dL D5E resS dL1

dF

dL1
1dL2

dF

dL2
D

gives the relations

dF

dL1
5aL1

a21L2

dF

dL
,

dF

dL2
5L1

a dF

dL
.

Hence

$F,G%3
GD~L !5E resS F FL1

aL2 ,Ex

resF FL1
aL2 ,

dF

dL G G G G dG

dL D
5E resS F FL1

aL2 ,Ex

resS F FL1 ,
dF

dL1
G G1F FL2 ,

dF

dL2
G G D G G dG

dL D
5E resS F FL1 ,Ex

resS F FL1 ,
dF

dL1
G G1F FL2 ,

dF

dL2
G G D G G dG

dL1
D1~1↔2!. ~B1!

Now defineL̂5L1L2 , then

dF

dL1

5
dF

dL̂
L2 ,

dF

dL2

5
dF

dL̂
L1

and

~A1!5E resS L2F FL1 ,Ex

resF F L̂,
dF

dL̂
G G G G dG

dL̂
D 1~1↔2!

5E resS F F L̂,Ex

resF F L̂,
dF

dL̂
G G G G dG

dL̂
D 5$F,G%3

GD~L1L2!.
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Integrability of the Cn and BC n Ruijsenaars–Schneider
models

Kai Chen,a) Bo-yu Hou,b) and Wen-Li Yang,c)

Institute of Modern Physics, Northwest University, Xian 710069,
People’s Republic of China

~Received 9 June 2000; accepted for publication 12 September 2000!

We study theCn andBCn Ruijsenaars–Schneider models with interaction potential
of trigonometric and rational types. The Lax pairs for these models are constructed
and the involutive Hamiltonians are also given. Taking a nonrelativistic limit, we
also obtain the Lax pairs for the corresponding Calogero–Moser systems. ©2000
American Institute of Physics.@S0022-2488~00!03012-7#

I. INTRODUCTION

Ruijsenaars–Schneider~RS! and Calogero–Moser~CM! models as integrable many-bod
models recently have attracted remarkable attention and have been extensively studied
describe one-dimensionaln-particle systems with pairwise interaction. Their importance lies
various fields ranging from lattice models in statistics physics,1,2 to the field theory and gaug
theory,3,4 e.g., to the Seiberg–Witten theory.5 Recently, the Lax pairs for the CM model in variou
root systems have been given by Olshanetsky and Perelomov,6 Bordneret al.7–10and D’Hoker and
Phong,11 respectively, while the commutative operators for the RS model based on various
of Lie algebra have been given by Komori and co-workers,12,13 Diejen,14,15 and Hasegawa1,16 An
interesting result is that in Ref. 17, the authors show that for thesl2 trigonometric RS and CM
models there exists the same nondynamicalr -matrix structure. On the other hand, similar
Hasegawa’s result that theAN21 RS model is related to theZn Sklyanin algebra, the integrability
of the CM model can be depicted byslN Gaudin algebra.18

As for theCn type RS model, commuting difference operators acting on the space of func
on theC2 type weight space have been constructed by Hasegawaet al. in Ref. 16. Extending that
work, the diagonalization of elliptic difference system of that type has been studied by Kikuc
Ref. 19. Despite the fact that the Lax pairs for CM models have been proposed for gene
algebra even for all of the finite reflection groups,10 the Lax integrability of the RS model is no
clear except forAN21 type20,2,21–24 and for C2 that have been obtained by the authors w
straightforward construction.25 The general Lax pairs for the RS models other than theAN21 type
model have not yet been obtained.

Extending the work of Ref. 25, the main purpose of the present paper is to provide th
pairs for theCn and BCn Ruijsenaars–Schneider models with the trigonometric and rati
interaction potentials. The key technique we used is Dirac’s method on the system impose
some constraints. We shall give the explicit forms of Lax pairs for these systems. It turned o
theCn andBCn RS systems can be obtained by Hamiltonian reduction of theA2n21 andA2n ones.
The characteristic polynomial of the Lax matrix leads to a complete set of involutive Hamilton
associated with the root system ofCn andBCn , respectively. In particular, taking their nonrel
tivistic limit, we shall recover the systems of corresponding CM types.

The paper is organized as follows. The basic materials of theAN21 RS model are reviewed in
Sec. II. We also give a Lax pair associating with the Hamiltonian which has a reflection sym

a!Electronic mail: kai@phy.nwu.edu.cn
b!Electronic mail: byhou@phy.nwu.edu.cn
c!Electronic mail: wlyang@phy.nwu.edu.cn
81320022-2488/2000/41(12)/8132/16/$17.00 © 2000 American Institute of Physics
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with respect to the particles in the origin. The main results are showed in Secs. III and IV. In
III, we present the Lax pairs ofCn andBCn RS models by reducing that of theAN21 RS model.
The explicit forms for the Lax pairs are given in Sec. IV. The characteristic polynomials, w
give the complete sets of involutive constant motions for these systems, will also be given
Section V is devoted to deriving the nonrelativistic limits of these systems which coincide wit
forms given in Refs. 6 and 7. A brief summary and discussion is given in Sec. VI.

II. A NÀ1-TYPE RUIJSENAARS–SCHNEIDER MODEL

As a relativistic-invariant generalization of theAN21-type Calogero–Moser model, th
AN21-type Ruijsenaars–Schneider system is completely integrable. The system’s integrabili
first shown by Ruijsenaars.20,26 The Lax pair for this model has been constructed in Refs. 20
and 21–24. Recent progress has showed that the compactification of higher dimension
Yang–Mills theory and Seiberg–Witten theory can be described by this model.5 Instanton correc-
tion of the prepotential associated with thesl2 RS system has been calculated in Ref. 27.

A. The Lax operator for the A NÀ1 RS model

Let us briefly give the basics of this model. In terms of the canonical variablespi , xi( i , j
51,...,N) enjoying the canonical Poisson bracket,

$pi ,pj%5$xi ,xj%50, $xi ,pj%5d i j , ~II.1!

we first give the Hamiltonian of theAN21 RS system

HAN21
5(

i 51

N S epi )
kÞ i

f ~xi2xk!1e2pi )
kÞ i

g~xi2xk! D . ~II.2!

Notice that in Ref. 20 Ruijsenaars used another ‘‘gauge’’ of the momenta such that tw
connected by the following canonical transformation:

xi→xi , pi→pi1
1

2
ln )

j Þ i

N
f ~xi j !

g~xi j !
. ~II.3!

The Lax operator for this model has the form~for the trigonometric case!

LAN21
5 (

i , j 51

N
sing

sin~xi2xj1g!
exp~pj ! bjEi j ,

and for the rational case

LAN21
5 (

i , j 51

N
g

xi2xj1g
exp~pj !bjEi j , ~II.4!

where

bjª)
kÞ j

f ~xj2xk!, ~Ei j !kl5d ikd j l ,

f ~x!ªH sin~x2g!

sin~x!
trigonometric case

x2g

x
rational case,

~II.5!
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g~x!ª f ~x!ug→2g , xikªxi2xk ,

andg denotes the coupling constant.
It is shown in Ref. 23 that the Lax operator satisfies the quadratic fundamental Poisson b

$L1 ,L2%5L1 L2 a12a2 L1 L21L2 s1 L12L1 s2 L2 , ~II.6!

whereL15LAN21
^ 1,L251^ LAN21

and the four matrices read as

a15a1w, s15s2w,
~II.7!

a25a1s2s* 2w, s25s* 1w.

The forms ofa,s,w are

a5(
kÞ j

cot~xk2xj !Ejk ^ Ek j ,

s52(
kÞ j

1

sin~xk2xj !
Ejk ^ Ekk , ~II.8!

w5(
kÞ j

cot~xk2xj !Ekk^ Ej j ,

for the trigonometric case and

a5(
kÞ j

1

xk2xj
Ejk ^ Ek j ,

s52(
kÞ j

1

xk2xj
Ejk ^ Ekk , ~II.9!

w5(
kÞ j

1

xk2xj
Ekk^ Ej j ,

for the rational case. The asterisk symbol meansr * 5PrP with P5(k, j 51
N Ek j ^ Ejk .

Noticing that

LAN21

21 55 (
i , j 51

N
2sing

sin~xi2xj2g!
exp~2pi !bj8Ei j for the trigonometric case

(
i , j 51

N
2g

xi2xj2g
exp~2pi !bj8Ei j , for the rational case,

~II.10!

where

bj8ª)
kÞ j

g~xj2xk!, ~II.11!

one can calculate the characteristic polynomials ofLAN21
andLAN21

21 ~Ref. 28!,

det~LAN21
2v•Id !5(

j 50

N

~2v !n2 j~H j
1!AN21

, ~II.12!
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det~LAN21

21 2v•Id !5(
j 50

N

~2v !n2 j~H j
2!AN21

, ~II.13!

where (H0
6)AN21

5(HN
6)AN21

51 and

~Hi
1!AN21

5 (
J,$1,...,N%

uJu5 i

expS (
j PJ

pj D )
j PJ

kP$1,...,N%\J

f ~xj2xk!, ~II.14!

~Hi
2!AN21

5 (
J,$1,...,N%

uJu5 i

expS (
j PJ

2pj D )
j PJ

kP$1, . . . ,N%\J

g~xj2xk!. ~II.15!

Define

~Hi !AN21
5~Hi

1!AN21
1~Hi

2!AN21
, ~II.16!

from the fundamental Poisson bracket Eq.~II.6!, we can verify that

$~Hi !AN21
,~H j !AN21

%5$~Hi
«!AN21

,~H j
«8

!AN21
%50, «,«856, i , j 51,...,N. ~II.17!

In particular, the Hamiltonian equation~II.2! can be rewritten as

HAN21
5~H1

1!AN21
1~H1

2!AN21
5(

j 51

N

~epjbj1e2pjbj8!5Tr~LAN21
1LAN21

21 !. ~II.18!

It should be remarked that the set of integrals of motion Eq.~II.16! have a reflection symmetry
which is the key property for the later reduction toCn andBCn cases, i.e., if we set

pi↔2pi , xi↔2xi , ~II.19!

then the Hamiltonian flows (Hi)AN21
are invariant with respect to this symmetry.

B. The construction of a Lax pair for the A NÀ1 RS model

As for theAN21 RS model, a generalized Lax pair has been given in Refs. 20, 2, 21–24
there is a common character that the time evolution of the Lax matrixLAN21

is associated with the

Hamiltonian (H1
1)AN21 . We will see in Sec. III that the Lax pair cannot reduce from that kind

forms directly. Instead, we give a new Lax pair in which the evolution ofLAN21
is associated with

the HamiltonianHAN21
,

L̇AN21
5$LAN21

,HAN21
%5@MAN21

,LAN21
#, ~II.20!

whereMAN21
can be constructed with the help of (r ,s) matrices as follows:

MAN21
5Tr2~~s12a2!~1^ ~LAN21

2LAN21

21 !!!. ~II.21!

The explicit expression of entries forMAN21
is
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~MAN21
! i j 5

sing cot~xi j !

sin~xi j 1g!
epjbj1

sing cotxi j

sin~xi j 2g!
e2pibj8 , iÞ j ,

~II.22!

~MAN21
! i i 52(

lÞ i
S sing

sin~xil !sin~xil 1g!
eplbl1

sing

sin~xil !sin~xil 2g!
e2pibl8D

for the trigonometric case and

~MAN21
! i j 5

g

xi j ~xi j 1g!
epjbj1

g

xi j ~xi j 2g!
e2pibj8 , iÞ j ,

~II.23!

~MAN21
! i i 52(

lÞ i
S g

xil ~xil 1g!
eplbl1

g

xil ~xil 2g!
e2pibl8D

for the rational case.

III. HAMILTONIAN REDUCTIONS OF Cn AND BC n RS MODELS FROM A NÀ1-TYPE
ONES

Let us first mention some results about the integrability of Hamiltonian~II.2!. In Ref. 26
Ruijsenaars demonstrated that the symplectic structure ofCn- andBCn-type RS systems can b
proved integrable by embedding their phase space to a submanifold ofA2n21- andA2n-type RS
ones, respectively, while in Refs. 14, 15, and 13, Diejen and Komori, respectively, gave a se
commuting difference operators which led to their quantum integrability. However, there ar
any results about their Lax representations so far, i.e., the explicit forms of the Lax matricL,
associated with anM ~respectively! which ensure their Lax integrability, haven’t been propos
up to now except for the special case ofC2 .25 In this section, we concentrate our treatment on
exhibition of the explicit forms for generalCn and BCn RS systems. Therefore, some previo
results, as well as new results, could now be obtained in a more straightforward manner us
Lax pairs.

For the convenience of analysis of symmetry, let us first give vector representation ofAN21

Lie algebra. Introducing anN-dimensional orthonormal basis ofRN,

ej•ek5d j ,k , j ,k51,...,N. ~III.1!

Then the sets of roots and vector weights are

D5$ej2ek : j ,k51,...,N%, ~III.2!

L5$ej : j 51,...,N%. ~III.3!

The dynamical variables are canonical coordinates$xj% and their canonical conjugate mo
menta $pj% with the Poisson brackets of Eq.~II.1!. In a general sense, we denote them
N-dimensional vectorsx andp,

x5~x1 ,...,xN!PRN, p5~p1 ,...,pN!PRN,

so that the scalar products ofx and p with the rootsa•x, p•b, etc., can be defined. Th
Hamiltonian equation~II.2! can be rewritten as

HAN21
5 (

mPL
S exp~m•p! )

D{b5m2n
f ~b•x!1exp~2m•p! )

D{b52m1n
g~b•x! D , ~III.4!

in which f (x) andg(x) are given in Eq.~II.5! for various choices of potentials. Here, the con
tion D{b5m2n means that the summation is over rootsb such that for'nPL
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m2n5bPD.

So does forD{b52m1n.

A. Cn model

The set ofCn roots consists of two parts, long roots and short roots:

DCn
5DLøDS , ~III.5!

in which the roots are conveniently expressed in terms of an orthonormal basis ofRn:

DL5$62ej : j 51,...,n%,
~III.6!

DS5$6ej6ek ,: j ,k51,...,n%.

In the vector representation, vector weightsL are

LCn
5$ej ,2ej : j 51,...,n%. ~III.7!

The Hamiltonian of theCn model is given by

HCn
5

1

2 (
mPLCn

S exp~m•p! )
DCn

{b5m2n
f ~b•x!1exp~2m•p! )

DCn
{b52m1n

g~b•x!D .

~III.8!

From the above-mentioned data, we notice that either forAN21 or Cn Lie algebra, any roota
PD can be constructed in terms with vector weights asa5m2n where m,nPL. By simple
comparison of representation betweenAN21 or Cn , one can find that if replacingej 1n with 2ej

in the vector weights ofA2n21 algebra, we can obtain the vector weights ofCn one. This also
holds for the corresponding roots. This gives us a hint that it is possible to get theCn model by
this kind of reduction.

For theA2n21 model let us set restrictions on the vector weights with

ej 1n1ej50 for j 51,...,n, ~III.9!

which correspond to the following constraints on the phase space of theA2n21-type RS model
with

Gi[~ei 1n1ei !•x5xi1xi 1n50,
~III.10!

Gi 1n[~ei 1n1ei !•p5pi1pi 1n50, i 51,...,n,

Following Dirac’s method,29 we can show

$Gi ,HA2n21
%.0, for ; i P$1,...,2n%, ~III.11!

i.e., HA2n21
is the first class Hamiltonian corresponding to the constraints in Eq.~III.10!. Here the

symbol. represents that only after calculating the result of left-hand side of the identity coul
use the conditions of constraints. It should be pointed out that the most necessary co
ensuring Eq.~III.11! is the symmetry property equation~II.19! for the Hamiltonian equation~II.2!.
So for an arbitrary dynamical variableA, we have

Ȧ5$A,HA2n21
%D5$A,HA2n21

%2$A,Gi%D i j
21$Gj ,HA2n21

%.$A,HA2n21
%, i , j 51,...,2n,

~III.12!
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where

D i j 5$Gi ,Gj%52S 0 Id

2Id 0 D , ~III.13!

and $,%D denotes the Dirac bracket. By straightforward calculation, we have the nonzero
brackets of

$xi ,pj%D5$xi 1n ,pj 1n%D5 1
2 d i , j ,

~III.14!
$xi ,pj 1n%D5$xi 1n ,pj%D52 1

2 d i , j .

Using the above-mentioned data together with the fact thatHAN21
is the first class Hamil-

tonian @see Eq.~III.11!#, we can directly obtain a Lax representation of theCn RS model by
imposing constraintsGk on Eq.~II.20!,

$LA2n21
,HA2n21

%D5$LA2n21
,HA2n21

%uGk ,k51, . . . ,2n ,

5@MA2n21
,LA2n21

#uGk ,k51, . . . ,2n

5@MCn
,LCn

#, ~III.15!

$LA2n21
,HA2n21

%D5$LCn
,HCn

%, ~III.16!

where

HCn
5 1

2 HA2n21
uGk ,k51, . . . ,2n ,

LCn
5LA2n21

uGk ,k51, . . . ,2n , ~III.17!

MCn
5MA2n21

uGk ,k51, . . . ,2n ,

so that

L̇Cn
5$LCn

,HCn
%5@MCn

,LCn
#. ~III.18!

Nevertheless, the (H1
1)A2n21

is not the first class Hamiltonian, so the Lax pair given by ma
authors previously cannot reduce to theCn case directly in this way.

B. BC n model

The BCn root system consists of three parts—long, middle, and short roots:

DBCn
5DLøDøDS , ~III.19!

in which the roots are conveniently expressed in terms of an orthonormal basis ofRn:

DL5$62ej : j 51,...,n%,

D5$6ej6ek : j ,k51,...,n%, ~III.20!

DS5$6ej : j 51,...,n%.

In the vector representation, vector weightsL can be
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LBCn
5$ej ,2ej ,0: j 51,...,n%. ~III.21!

The Hamiltonian of theBCn model is given by

HBCn
5

1

2 (
mPLBCn

S exp~m•p! )
DBCn

{b5m2n
f ~b•x!1exp~2m•p! )

DBCn
{b52m1n

g~b•x!D .

~III.22!

By similar comparison of representations betweenAN21 or BCn , one can find that if replacing
ej 1n with 2ej ande2n11 with 0 in the vector weights of theA2n Lie algebra, we can obtain th
vector weights of theBCn one. The same holds tauu for the corresponding roots. So by the
procedure as for theCn model, we expect to get the Lax representation of theBCn model.

For theA2n model, we set restrictions on the vector weights with

ej 1n1ej50 for j 51,...,n,
~III.23!

e2n1150,

which correspond to the following constraints on the phase space of anA2n-type RS model with

Gi8[~ei 1n1ei !•x5xi1xi 1n50,

Gi 1n8 [~ei 1n1ei !•p5pi1pi 1n50, i 51,...,n,
~III.24!

G2n118 [e2n11•x5x2n1150,

G2n128 [e2n11•p5p2n1150.

Similarly, we can show

$Gi ,HA2n
%.0, for ; i P$1,...,2n11,2n12%. ~III.25!

i.e., HA2n
is the first class Hamiltonian corresponding to the above-mentioned constraint

~III.24!. SoLBCn
andMBCn

can be constructed as follows:

LBCn
5LA2n

uG
k8 ,k51, . . . ,2n12 ,

~III.26!
MBCn

5MA2n
uG

k8 ,k51, . . . ,2n12 ,

while HBCn
is

HBCn
5 1

2 HA2n
uGk ,k51, . . . ,2n12 , ~III.27!

due to the similar derivation of Eqs.~III.12!–~III.18!.

IV. LAX REPRESENTATIONS OF Cn AND BC n RS MODELS

A. Cn model

The Hamiltonian of theCn RS system is Eq.~III.8!, so the canonical equations of motion a

ẋi5$xi ,H%5epibi2e2pibi8 , ~IV.1!
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ṗi5$pi ,H%

5(
j Þ i

n

~epjbj~h~xji !2h~xj1xi !!1e2pjbj8~ ĥ~xji !2ĥ~xj1xi !!!

2epibiS 2h~2xi !1(
j Þ i

n

~h~xi j !1h~xi1xj !!D
2e2pibi8S 2ĥ~2xi !1(

j Þ i

n

~ ĥ~xi j !1ĥ~xi1xj !!D , ~IV.2!

where

h~x!ª
d ln f ~x!

dx
, ĥ~x!ª

d ln g~x!

dx
,

bi5 f ~2xi ! )
kÞ i

n

~ f ~xi2xk! f ~xi1xk!!, ~IV.3!

bi85g~2xi ! )
kÞ i

n

~g~xi2xk!g~xi1xk!!.

The Lax matrix for theCn RS model can be written in the following form for the ration
case:

~LCn
!mn5en•pbn

g

~m2n!•x1g
, ~IV.4!

which is a 2n32n matrix whose indices are labeled by the vector weights, denoted bym,n
PLCn

, MCn
can be written as

MCn
5D1Y, ~IV.5!

whereD denotes the diagonal part andY denotes the off-diagonal part,

Ymn5en•pbn

g

~~m2n!•x!~~m2n!•x1g!
1e2m•pbn8

g

~~m2n!•x!~~m2n!•x2g!
, ~IV.6!

Dmm52 (
nÞm

S en•pbn

g

~~m2n!•x!~~m2n!•x1g!
1e2m•pbn8

g

~~m2n!•x!~~m2n!•x2g! D
52 (

nÞm
Ymn , ~IV.7!

and

bm5 )
DCn

{b5m2n
f ~b•x!,

~IV.8!

bm8 5 )
DCn

{b5m2n
g~b•x!.
                                                                                                                



8141J. Math. Phys., Vol. 41, No. 12, December 2000 Ruijsenaars–Schneider models

                    
For the trigonometric case, we have

~LCn
!mn5en•pbn

sing

sin~~m2n!•x1g!
, ~IV.9!

and

MCn
5D1Y, ~IV.10!

where

Ymn5en•pbn

sing cot~~m2n!•x!

sin~~m2n!•x1g!
1e2m•pbn8

sing cot~~m2n!•x!

sin~~m2n!•x2g!
, ~IV.11!

Dmm52 (
nÞm

S en•pbn

sing

sin~~m2n!•x!sin~~m2n!•x1g!

1e2m•pbn8
sing

sin~~m2n!•x!sin~~m2n!•x2g! D
52 (

nÞm

Ymn

cos~~m2n!•x!
, ~IV.12!

wherebm ,bm8 take the value as Eq.~IV.8! with the trigonometric forms off (x) andg(x).
The LCn

,MCn
satisfies the Lax equation

L̇Cn
5$LCn

,HCn
%5@MCn

,LCn
#, ~IV.13!

which is equivalent to the equations of motion Eqs.~IV.1! and~IV.2!. The HamiltonianHCn
can

be rewritten as the trace ofLCn
,

HCn
5tr LCn

5
1

2 (
mPLCn

~em•pbm1e2m•pbm8 !. ~IV.14!

The characteristic polynomial of the Lax matrixLCn
generates the involutive Hamiltonians

det~LCn
2v•Id !5 (

j 50

n21

~21! j~v j1v2n2 j !~H j !Cn
1~2v !n~Hn!Cn

, ~IV.15!

where (H0)Cn
51, and (Hi)Cn

Poisson commute,

$~Hi !Cn
,~H j !Cn

%50, i , j 51, . . . ,n. ~IV.16!

This can be deduced by verbose but straightforward calculation to verify that the (Hi)A2n21
,i

51, . . . ,2n is the first class Hamiltonian with respect to the constraints Eq.~III.10!, using Eqs.
~II.17!, ~III.12!, and the first formula of Eq.~III.17!.

The explicit forms of (Hl)Cn
are

~Hl !Cn
5 (

J,$1,...,n%, uJu< l
« j 561, j PJ

exp~p«J! F«J; Jc UJc, l 2uJu , l 51,...,n, ~IV.17!

with
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p«J5(
j PJ

« j pj ,

F«J; K5 )
j , j 8PJ
j , j 8

f 2~« j xj1« j 8xj 8! )
j PJ
kPK

f ~« j xj1xk! f ~« j xj2xk!)
j PJ

f ~2« j xj !, ~IV.18!

UI ,p5 (
I 8,I

uI 8u5[ p/2]

)
j PI 8

kPI \I 8

f ~xjk! f ~xj1xk!g~xjk!g~xj1xk!H 0 ~p odd!

1 ~p even!.

Here,@p/2# denotes the integer part ofp/2. As an example, for theC2 RS model, the independen
Hamiltonian flows (H1)C2

and (H2)C2
generated by the Lax matrixLC2

are25

~H1!C2
5HC2

5ep1f ~2x1! f ~x12! f ~x11x2!1e2p1g~2x1! g~x12!g~x11x2!

1ep2f ~2x2! f ~x21! f ~x21x1!1e2p2g~2x2! g~x21!g~x21x1!,
~IV.19!

~H2!C2
5ep11p2f ~2x1! ~ f ~x11x2!!2f ~2x2!1e2p12p2g~2x1! ~g~x11x2!!2g~2x2!

1ep12p2f ~2x1! ~ f ~x12!!2f ~22x2!1ep22p1g~2x1! ~g~x12!!2g~22x2!

12 f ~x12! g~x12! f ~x11x2!g~x11x2!. ~IV.20!

B. BC n model

The Hamiltonian of theBCn model is expressed in Eq.~III.22!, so the canonical equations o
motion are

ẋi5$xi ,H%5epibi2e2pibi8 , ~IV.21!

ṗi5$pi ,H%

5(
j Þ i

n

~epjbj~h~xji !2h~xj1xi !!1e2pjbj8~ ĥ~xji !2ĥ~xj1xi !!!

2epibiS h~xi !12h~2xi !1(
j Þ i

n

~h~xi j !1h~xi1xj !!D
2e2pibi8S ĥ~xi !12ĥ~2xi !1(

j Þ i

n

~ ĥ~xi j !1ĥ~xi1xj !!D 2b0~h~xi !1ĥ~xi !!, ~IV.22!

where

bi5 f ~xi ! f ~2xi ! )
kÞ i

n

~ f ~xi2xk! f ~xi1xk!!,

bi85g~xi !g~2xi ! )
kÞ i

n

~g~xi2xk!g~xi1xk!!, ~IV.23!

b05)
i 51

n

f ~xi !g~xi !.
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The Lax pair for theBCn RS model can be constructed as the form of Eqs.~IV.4!–~IV.12!
where one should replace the matrices labels withm,nPLBCn

, and roots withbPDBCn
.

The HamiltonianHBCn
can be rewritten as the trace ofLBCn

,

HBCn
5tr LBCn

5
1

2 (
mPLBCn

~em•pbm1e2m•pbm8 !. ~IV.24!

The characteristic polynomial of the Lax matrixL generates the involutive Hamiltonians

det~LBCn
2v•Id !5(

j 50

n

~21! j~v j2v2n112 j !~H j !BCn
, ~IV.25!

where (H0)BCn
51 and (Hi)BCn

Poisson commute,

$~Hi !BCn
,~H j !BCn

%50, i , j 51, . . . ,n. ~IV.26!

This can be deduced similarly to theCn case to verify that the (Hi)A2n
,i 51, . . . ,2n is the first

class Hamiltonian with respect to the constraints Eq.~III.24!.
The explicit forms of (Hl)BCn

are

~Hl !BCn
5 (

J,$1,...,n%, uJu< l
« j 561, j PJ

exp~p«J! F«J; Jc UJc, l 2uJu , l 51,...,n, ~IV.27!

with

p«J5(
j PJ

« j pj ,

F«J; K5 )
j , j 8PJ
j , j 8

f 2~« j xj1« j 8xj 8! )
j PJ
kPK

f ~« j xj1xk! f ~« j xj2xk!)
j PJ

f ~2« j xj !)
j PJ

f ~« j xj !,

~IV.28!

UI ,p5 (
I 8,I

uI 8u5[ p/2]

)
j PI 8

kPI /I 8

f ~xjk! f ~xj1xk!g~xjk!g~xj1xk!5 )
i PI /I 8

f ~xi !g~xi ! ~p odd!

)
i 8PI 8

f ~xi 8!g~xi 8! ~p even!.

V. NONRELATIVISTIC LIMIT TO THE CALOGERO–MOSER SYSTEM

A. Limit to the Cn CM model

The nonrelativistic limit can be achieved by rescalingpi°bpi , g°bg while letting b°0,
and making a canonical transformation

5 pi°pi1gS 1

2xi
1(

kÞ i

n S 1

xik
1

1

xi1xk
D D rational case,

pi°pi1gS cot~2xi !1(
kÞ i

n

~cot~xik!1cot~xi1xk!!D trigonometric case,

~V.1!

such that
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L°Id1bLCM1O~b2!, ~V.2!

M°2bMCM1O~b2!, ~V.3!

and

H°2n12b2HCM1O~b2!. ~V.4!

LCM can be expressed as

LCM5S ACM BCM

2BCM 2ACM
D , ~V.5!

where

~ACM! i i 5pi , ~BCM! i j 5
g

xi1xj
,

~V.6!

~ACM! i j 5
g

xi j
, ~ iÞ j !

for the rational case, and

~ACM! i i 5pi , ~BCM! i j 5
g

sin~xi1xj !
,

~ACM! i j 5
g

sin~xi j !
, ~ iÞ j !, ~V.7!

for the trigonometric case.
MCM is

MCM5S ACM BCM

BCM ACM
D , ~V.8!

as for the rational case

~ACM! i i 52(
kÞ i

n S g

xik
2 1

g

~xi1xk!
2D 2

g

~2xi !
2 , ~BCM! i j 5

g

~xi1xj !
2 ,

~V.9!

~ACM! i j 5
g

xi j
2 , ~ iÞ j !,

which is identified with the results of Refs. 6 and 7, and for the trigonometric case

~ACM! i i 52(
kÞ i

n S g

sin2 xik
1

g

sin2~xi1xk!
D2

g

sin2~2xi !
, ~BCM! i j 5

g cos~xi1xj !

sin2~xi1xj !
,

~V.10!

~ACM! i j 5
g cos~xi j !

sin2 xi j
~ iÞ j !,

which coincides with the form given in Ref. 6 up to a diagonalized matrix together with a sui
choice of coupling parameters.
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The Hamiltonian of theCn-type CM model can be given by

HCM5
1

2 (
k51

n

pk
22g2(

k, i

n S 1

xik
2 1

1

~xi1xk!
2D 2

g2

2 (
i 51

n
1

~2xi !
2 5

1

4
tr L2 for the rational case,

~V.11!

HCM5
1

2 (
k51

n

pk
22g2(

k, i

n S 1

sin2 xik
1

1

sin2~xi1xk!
D2

g2

2 (
i 51

n
1

sin2~2xi !

5
1

4
tr L2, for the trigonometric case. ~V.12!

The LCM , MCM satisfies the Lax equation

L̇CM5$LCM ,HCM%5@MCM ,LCM#. ~V.13!

B. Limit to BC n CM model

The nonrelativistic limit of theBCn model can also be achieved by rescalingpi°bpi ,
g°bg while letting b°0, and making the following canonical transformation:

5 pi°pi1gS 1

xi
1

1

2xi
1(

kÞ i

n S 1

xik
1

1

xi1xk
D D rational case

pi°pi1gS cot~xi !1cot~2xi !1(
kÞ i

n

~cot~xik!1cot~xi1xk!!D trigonometric case,

~V.14!

such that

L°Id1bLCM1O~b2!, ~V.15!

M°2bMCM1O~b2!, ~V.16!

and

H°~2n11!12b2HCM1O~b2!. ~V.17!

LCM can be expressed as

LCM5S ACM BCM ECM

2BCM 2ACM 2ECM

2~ECM! t ~ECM! t GCM

D , ~V.18!

where

~ACM! i i 5pi , ~BCM! i j 5
g

xi1xj
, ~ECM! i15

1

xi
, GCM50,

~V.19!

~ACM! i j 5
g

xi j
, ~ iÞ j !

for the rational case, and
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~ACM! i i 5pi , ~BCM! i j 5
g

sin~xi1xj !
, ~ECM! i15

1

sinxi
, GCM50,

~V.20!

~ACM! i j 5
g

sin~xi j !
, ~ iÞ j !

for the trigonometric case.
MCM is

MCM5S ACM BCM ECM

BCM ACM ECM

~ECM! t ~ECM! t GCM

D , ~V.21!

wheret denotes the transposition. As for the rational case, the forms ofA, B, E, G are

~ACM! i i 52(
kÞ i

n S g

xik
2 1

g

~xi1xk!
2D 2

g

~2xi !
2 2

g

~xi !
2 ,

~BCM! i j 5
g

~xi1xj !
2 , ~ECM! i15

g

~xi !
2 , ~V.22!

~ACM! i j 5
g

xi j
2 ~ iÞ j !, GCM52 (

k51

n
2g

xk
2 ,

which is identified with the results of Refs. 6 and 7, and for the trigonometric case

~ACM! i i 52(
kÞ i

n S g

sin2 xik
1

g

sin2~xi1xk!
D2

g

sin2~2xi !
2

g

sin2~xi !
,

~BCM! i j 5
g cos~xi1xj !

sin2~xi1xj !
, ~ECM! i15

g cosxi

sin2 xi
, ~V.23!

~ACM! i j 5
g cos~xi j !

sin2 xi j
, ~ iÞ j !, GCM52 (

k51

n
2g

sin2 xk
,

which coincides with the form given in Ref. 6 up to a diagonalized matrix together with a sui
choice of coupling parameters.

The Hamiltonian of theBCn-type CM model can be given by

HCM5
1

2 (
k51

n

pk
22g2(

k, i

n S 1

xik
2 1

1

~xi1xk!
2D 2

g2

2 (
i 51

n S 1

~2xi !
2 1

2

~xi !
2D

5
1

4
tr L2, for the rational case, ~V.24!

HCM5
1

2 (
k51

n

pk
22g2(

k, i

n S 1

sin2 xik
1

1

sin2~xi1xk!
D2

g2

2 (
i 51

n S 1

sin2~2xi !
1

2

sin2~xi !
D

5
1

4
tr L2, for the trigonometric case. ~V.25!
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The LCM , MCM satisfies the Lax equation

L̇CM5$LCM ,HCM%5@MCM ,LCM#. ~V.26!

VI. SUMMARY AND DISCUSSION

In this paper, we have proposed the Lax pairs for rational, trigonometricCn and BCn RS
models. Involutive Hamiltonians are show to be generated by the characteristic polynomial
corresponding Lax matrix. In the nonrelativistic limit, the systems lead to CM systems asso
with the root systems ofCn and BCn which are known previously. There are still many op
problems, e.g, it seems to be a challenging subject to carry out the Lax pairs with as
independent coupling constants as independent Weyl orbits in the set of roots, as done
Calogero–Moser systems.6–11What is also interesting is that the results obtained in this paper
be generalized to the systems associated with all other Lie algebras, even to those associa
all the finite reflection groups,10 including models based on the noncrystallographic root syst
and those based on crystallographic root systems.
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Geometric phases for corotating elliptical vortex patches
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We describe a geometric phase that arises when two elliptical vortex patches co-
rotate. Using the Hamiltonian moment model of Melander, Zabusky, and Styczek
@J. Fluid Mech.167, 95–115~1986!# we consider two corotating uniform elliptical
patches evolving according to the second order truncated equations of the model.
The phase is computed in the adiabatic setting of a slowly varying Hamiltonian as
in the work of Hannay@J. Phys. A18, 221–230~1985!# and Berry@Proc. R. Soc.
London, Ser. A392, 45–57~1984!#. We also discuss the geometry of the symplec-
tic phase space of the model in the context of nonadiabatic phases. The adiabatic
phase appears in the orientation angle of each patch—it is similiar in form and is
calculated using a multiscale perturbation procedure as in the point vortex configu-
ration of Newton@Physica D79, 416–423~1994!# and Shashikanth and Newton@J.
Nonlinear Sci.8, 183–214~1998!#, however, an extra factor due to the internal
stucture of the patch is present. The final result depends on the initial orientation of
the patches unlike the phases in the works of Hannay and Berry@J. Phys. A18,
221–230~1985!#; @Proc. R. Soc. London, Ser. A392, 45–57 ~1984!#. We then
show that the adiabatic phase can be interpreted as the holonomy of a connection
on the trivial principal fiber bundlep:T23S1→S1, whereT2 is identified with the
product of the momentum level sets of two Kirchhoff vortex patches andS1 is
diffeomorphic to the momentum level set of two point vortex motion. This two
point vortex motion is the motion that the patch centroids approach in the adiabatic
limit. © 2000 American Institute of Physics.@S0022-2488~00!01312-8#

I. INTRODUCTION

A vortex patch is a desingularization of a point vortex in which the vorticity is a boun
function over a finite, nonzero areaA of the plane. It can thus be viewed as the perpendic
section of an infinitely long rectilinear vortex tube of areaA whose vorticity distribution is
invariant along the length of the tube. The induced velocity field is given by integrating
contribution due to each infinitesimal vorticity element over the area of the patch. For a patc
vorticity distributionv(x,y), the stream function is given by

c~x,y!52
1

4p E
A
v~x8,y8!log@~x2x8!21~y2y8!2#dA8. ~1!

The velocity components (u,v) at a point (x,y) are related to the stream function in the usu
fashionu5]c/]y andv52]c/]x.

A patch is uniform if v(x,y)5constant. A simple example of an isolated uniform vort
patch, which is the basis for the model we consider, is the Kirchhoff elliptical vortex.1 Here the

a!Electronic mail: shashika@cds.caltech.edu
b!Electronic mail: newton@spock.usc.edu
81480022-2488/2000/41(12)/8148/15/$17.00 © 2000 American Institute of Physics
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uniform vorticity is distributed over an elliptical region with aspect ratiol5a/b ~a major axis,b
minor axis!. The patch rotates about the center of the ellipse with constant angular velocity
by

Q5
vl

~11l!2 5
Gl

A~11l!2 , ~2!

whereG5vA is the patch strength. As shown in Lamb~section 159! a fluid particle on the patch
moves in a circular orbit withtwice this frequency. Deem and Zabusky2 have conjectured, base
on numerical computations, that the Kirchhoff vortex is a member (m52) of a class of rotating
patches~constant frequency! with m-fold symmetry. Overman and Zabusky3,4 have computed
interactions of suchm-fold ‘‘states.’’ Kida5 showed that an elliptical vortex in a uniform she
flow maintains its elliptical shape. Nonlinear stability results for vortex patches can be fo
among others, in Wan and Pulverenti,6 Wan,7 and Constantin and Titi.8

For a system ofN disjoint patches, the velocity field is obtained by linearly superposing
velocity field due to each patch. A system ofN interacting patches is in general far more co
plicated than a system ofN interacting point vortices due to the internal structure associated
each patch. There is a large body of numerical work documenting various complex pro
associated with vortex patches, such as merger and filamentation. A good overview of wor
on patches can be found in Chap. 9 of Saffman.9

It is well-known ~see Refs. 10–13, and references therein! that the Euler equations, for whic
N patch systems are solutions, posses a noncanonical Hamiltonian structure. The real
Hamiltonian is a functional of the vorticity fieldv of the domain. The dynamics of the vorticit
field can be expressed in the form,

dF

dt
5$F,H%,

whereF is any functional ofv, and$ % are appropriately defined Poisson brackets. This repre
tation is equivalent to the dynamics represented by the Euler equations in the vorticity-st
function form.

Finite-dimensional Hamiltonian models forN patch systems can be obtained using the m
ment model of Melander, Zabusky, and Styczek14,15~henceforth referred to as the MZS model!. In
this paper we consider the evolution of two well-separated vortex patches in the plane as de
by the MZS model. The problem we address is the calculation of a geometric phase in the
order truncated system of equations obtained from the model. Geometric phases, though
been known in other forms for more than a century, attracted serious attention with the w
Berry16 ~‘‘Berry’s phase’’! and Hannay17 ~‘‘Hannay’s angle’’! in the context of adiabatic evolu
tions of quantum and classical parameter-dependent Hamiltonians, respectively. The form
ferential geometric interpretation of ‘‘Berry’s phase’’ was first given by Simon.18 Later, Marsden,
Montgomery, and Ratiu19 ~see also Montgomery20 and an introduction in Marsden and Ratiu21!
developed further the geometric theory in both adiabatic and nonadiabatic settings. We re
reader to the references and discussion in Shashikanth and Newton22,23 and Newton24 for back-
ground as well as discussions of its relevance in the context of point vortex theory.

We show in this paper that geometric phases appear in the vortex patch motion mode
the second order MZS system for two corotating~i.e., like-signed! patches. The second order MZ
system models the patches as ellipses of varying eccentricities and nonuniform rates of r
about their centroids which move approximately as point vortices. In other words the patch
be viewed as Kirchhoff ellipses with moving centroids and time-varying aspect ratios and an
velocities. The geometry of the symplectic phase space of the model is discussed first an
general calculations of the momentum map and the coadjoint isotropy subgroups are pre
We do not attempt to compute connections and phases on the Marsden–Weinstein bundle
paper but we do make some general remarks in this context. Geometric phases are then ca
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explicitly in an adiabatic setting defined as in the point vortex configurations considered i
work of Newton25 and Shashikanth and Newton.22,23,26The two length scales in the problem, du
to the interpatch separation and the patch size, define two corresponding time scales whi
resent the ‘‘slow’’ point-vortex-like motion of the centroids and the ‘‘fast’’ rotation rates of
Kirchhoff-ellipse-like patches, respectively. The question we address is: what is the change
orientation angle of each patch at the end of one appropriately defined time period of the ce
motion? More specifically, can this angle change be expressed as the sum of a ‘‘dynamic
and a ‘‘geometric’’ part? We show by a standard multiscale perturbation solution technique27 that
this splitting is possible and interpret the ‘‘geometric’’ part as being a geometric phase aris
the holonomy of a connection defined on an appropriately defined fiber bundle. We also ca
phases in a four-point vortex configuration analogous to the patch problem where each p
replaced by a like-signed point vortex pair of the same total strength as the patch.

The outline of the paper is as follows: in Sec. II we describe the MZS model forN patches and
its Hamiltonian structure. We show that, as in the planarN point vortex problem, the momentum
map for the SE(2) action is equivariant iff the sum of the patch strengths is zero. The iso
subgroups for the coadjoint action in each case~equivariant and nonequivariant! are calculated,
and we conclude by making some general remarks on connections and phases. In Sec
describe the adiabatic setting and give details of the multiscale asymptotic procedure f
calculation of the phase and the results. For comparision, we also present the results of a
batic phase calculation for a four point vortex problem analogous to the patch problem
section concludes with the formal geometric interpretation of the adiabatic phase.

II. HAMILTONIAN STRUCTURE OF THE MZS MODEL AND NONADIABATIC PHASES

Melander, Zabusky, and Styczek14,15 derived a system of equations~henceforth referred to a
the MZS model! valid for N uniform vortex patches as long as they satisfy the following:

~1! The maximum diameter of any patch is much smaller than the minimum distance betwee
two patch centroids;

~2! The centroid of any patch is within the patch itself.

The logarithmic integrands in the stream function are expanded in an infinite series abo
centroids of the respective patches. This leads to an infinite system of first order ODEs in the
centroids, measured with respect to a fixed frame, and thelocal geometric moments of all orders
The local geometric moment of orderm1n (m,n50,1,2,. . . ) for apatch is defined as

J(m,n)[E
A
jmhndA,

wherej andh are local coordinates in a moving frame~attached to each patch! whose origin is at
the centroid of the patch, as shown in Fig. 1. On the basis of criterion 1, a small paramet
then be introduced:e[maximum patch diameter/minimum intercentroid distance. Defining
initial minimum intercentroid distance as a characteristic unit length it can then be seen th

J(m,n)5O~em1n12!.

The higher order moments are thus viewed as higher order perturbation terms. The sys
ODEs is hierarchical in nature and one can obtain a closedkth-order truncated model accurate
O(ek12) by omitting moments of order greater thank for any k51,2 , . . . .Note that the zeroth
order geometric momentJ(0,0) is just the area of the patch which, as a consequence of Kelv
circulation theorem, is conserved.

For the first order model all the moments of order greater than one are omitted. The
geometric moments of order one represent the centroid of the patch in local coordinates. Th
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zero by the choice of the local coordinate system. The truncated equations then show t
patch centroids move like a system ofN point vortices, hence patches at this order are appr
mated as point vortices.

The second order model treats each patch as a uniformly rotating Kirchhoff elliptical v
perturbed by the presence of the other patches. The perturbation keeps the patch ellipti
changes its aspect ratio and rotation rate in general. The variableslª aspect ratio anduª tilt of
major axis, are introduced in place of the second order moments. The second order model c
be written as a closed system of ODEs in the four variablesX,Y,l, andu, whereX,Y are the
coordinates of the centroid of the patch. As shown in Ref. 15, the following symplectic struc

(
k51

N

GkdXk`dYk1 (
k51

N
GkAk

8p

lk
221

lk
2 dlk`duk ~3!

makes the system ofN patches a Hamiltonian system with the Hamiltonian function given b

H5 (
k51

N
Gk

2

8p
log F ~11lk!

2

4lk
G1 (

k51

N

(
k, l

N
GkG l

2p
log D̂kl

1 (
k51

N

(
k, l

N
GkG l

16p2D̂kl
2
FAl

~12l l
2!

l l

cos~2~fkl2u l !!1Ak

~12lk
2!

lk

cos~2~fkl2uk!!G , ~4!

where

Xk2Xl5D̂kl cosfkl , Yk2Yl5D̂kl sinfkl , ~5!

D̂kl being the distance between the centroids of patchk andl , andfkl the angle with the referenc
axis made by the line joining these centroids. The Hamiltonian vector field is

dXk

dt
52

1

Gk

]H

]Yk
,

FIG. 1. A schematic representation of well-separated vortex patches in the MZS model. The local geometric mom
each patch are measured with respect to a moving framej—h fixed to the centroid of the patch.Xk ,Yk are the coordinates
of the centroid of thekth patch in a fixedX–Y frame.
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dYk

dt
5

1

Gk

]H

]Xk
,

dlk

dt
5

8p

GkAk

lk
2

12lk
2

]H

]uk
,

duk

dt
52

8p

GkAk

lk
2

12lk
2

]H

]lk
k51, . . . .,N. ~6!

The phase space of the system isP5(R2)N\C3(U)N3(S1)N, where Cª$Xi ,Yi ,i
51, . . . ,NuXj5Xk ,Yj5Yk , j Þk% and UPR is the open interval~1,̀ !. The Hamiltonian is in-
variant under the SE(2) action onP given by

Fg~Xk ,Yk ,lk ,uk!5~Xk cosa2Yk sina1ax ,Xk sina1Yk cosa1ay ,lk ,uk1a!, ~7!

an elementgPSE(2) being identified with (A,a), whereAPSO(2) is identified with the anglea
and a[(ax ,ay)PR2. The action is free and proper. The invariants are the components o
momentum map21 of the action,J:P→se(2)* , which is computed as

^J~p!,j&5K S (
k51

N

Gk

Xk
21Yk

2

2
1

GkAk

8p

lk
211

lk
,2 (

k51

N

GkYk ,(
k51

N

GkXkD ,jL , ~8!

wherepPP, jPse(2) is an element of the Lie algebra of SE(2) and se(2)* is the dual of the Lie
algebra. The Lie algebra is identified withR3 and the pairinĝ ,& on the right above is then th
Euclidean inner product onR3. By Noether’s theorem,J is a conserved quantity. Note the ext
term appearing in the first component ofJ compared with the momentum map ofN-point vortex
motion in the unbounded plane.28 As in the point vortex problem the momentum map is equi
riant iff (k51

N Gk50. The one-cocycle for the group action which is a maps:G→L(g,C(P)) from
the group to the linear space of linear maps from the Lie algebra to the space of Casimir fun
on P is defined as21

~s~g!•j!~p!5^J~Fg~p!!,j&2^Adg21* J~p!,j&, pPP, gPG, jPg.

Since Casimirs are real-valued, the one-cocycle can be viewed as a maps:G→g* , for p fixed.
Computation of Adg21* the coadjoint action of SE(2) on se(2)* ~see Appendix! gives the follow-
ing one-cocycle:

~s~g!.j!~p!5K S GH ax
21ay

2

2 J ,2Gay ,GaxD ,jL , ~9!

whereG5(k51
N Gk . The cocycle for the SE(2) action in the planarN point vortex problem has the

same components.
The SE(2) invariance of the Hamiltonian function~4! suggests the possibility of geometr

phases arising as SE(2) drifts. Calculation of the isotropy subgroups of the coadjoint act
SE(2) on se(2)* gives an indication of the type of drifts possible in this model. The coadj
isotropy subgroupsGm , wherem is a value of anAd* -equivariantmomentum map, are define
as21

Gm5$gPGuAdg21* ~m!5m%.

The coadjoint action of SE(2)~see Appendix! is given by

^Ad(A,a)21* ~h,w!,~e,v !&5~h1^AR2p/2w,a&,Aw!. ~10!
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Hereê is an element of the Lie algebra of SO(2), thevector space of 232 skew-symmetric~real!
matrices which is identified withR via the isomorphism,

ê5eS 0 21

1 0 D , ePR, ~11!

v is an element of the Lie algebra ofR2 which is R2 itself, and (h,w)Pse(2)* . For (h,w)
5m, a value of the momentum map, we get (A,a)PGm iff

~h1^AR2p/2w,a&,Aw!5~h,w!.

This implies that

Gm5$~A,a!PSE~2!uA5I ,^R2p/2w,a&50%.R, wÞ0,

5SE~2!, w50.

The condition ^R2p/2w,a&50 picks out those elements aPR2 parallel to
w5(2(k51

N GkYk ,(k51
N GkXk).

When the momentum map isnot Ad* -equivariant, as in the model of two corotating patche
the coadjoint action is adjusted by the cocycle to define a new action ofG on g* with respect to
which the momentum map is equivariant,21

g•m5Adg21* ~m!1s~g!, gPG, mPg* .

The isotropy subgroups with respect to this action are then defined as

G̃m5$gPGug•m5m%.

Hence (A,a)PG̃m iff

~h1^AR2p/2w,a&,Aw!1S G
iai2

2
,GRp/2aD5~h,w!.

This gives two conditions that the isotropy elements have to satisfy,

h1^AR2p/2w,a&1G
iai2

2
5h,

Aw1GRp/2a5w.

The second equation solved fora gives a5(R2p/2(I 2A)w)/G, where I is the 232 identity
matrix. This expression fora identically solves the first equation since

G^AR2p/2w,a&1G2
iai2

2
5G^AR2p/2w,~R2p/2~ I 2A!w!/G&1G2

iai2

2
,

5^R2p/2ARp/2w,~ I 2A!w&1 1
2 i~ I 2A!wi2,

5^Aw,~ I 2A!w&1 1
2 ~2iwi222^w,Aw&!,

5^Aw,w&2^Aw,Aw&1iwi22^w,Aw&,

50.

Hence,
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G̃m5$~A,a~A!!PSE~2!uAPSO~2!,a5~R2p/2~ I 2A!w!/G%, wÞ0,

5SO~2!, w50.

By definition the isotropy groupsGm and G̃m act on them-level set of the momentum map
which is an invariant surface for phase space orbits. The actions are free and proper, as
easily checked, and thus the fiber bundlespm :J21(m)→J21(m)/Gm or pm :J21(m)
→J21(m)/G̃m are well-defined. The total phases are elements of these groups. They meas
drifts in phase space orbits for periodic evolutions on the reduced spaces. Note that we
investigate the existence of periodic orbits on the reduced spaces. The above geometric co
tion still remains valid in the absence of periodic orbits and can be used for other purpose
as study of relative equilibria in the model. The above calculations show that in the second
MZS model these drifts can be offour types which are summarized below:

Type I: A rotation or/and a translation of the initial patch configuration if(k51
N Gk50 and

(2(k51
N GkYk ,(k51

N GkXk)50.
Type II: A pure translation of the initial patch configuration if(k51

N Gk50 and
(2(k51

N GkYk ,(k51
N GkXk)Þ0. The direction of translation is always parallel to the center

vorticity vector of the patch centroids.
Type III: A pure rotation of the initial patch configuration if(k51

N GkÞ0 and
(2(k51

N GkYk ,(k51
N GkXk)50.

Type IV: A rotation and a translation of the initial patch configuration if(k51
N GkÞ0 and

(2(k51
N GkYk ,(k51

N GkXk)Þ0, the translation being determined uniquely by the rotation.
To show the existense of and compute geometric phases, one has to find a connection o

bundles. The geometric phase is then computed by horizontally lifting the closed loop o
reduced space, the horizontal lift operator being defined by the connection. We do not atte
do this in this paper. The phase space of this model does not have a canonical identification
cotangent bundleT* Q of a configuration spaceQ. Hence, it is not clear if the method of inducin
a connection on a cotangent bundle from a connection on the shape space bundle,p:Q→Q/G,
commonly used in simple mechanical systems, can be used here. Alternative strategies, su
by the theory of symplectic reduction by stages for semidirect products as outlined by Ma
Misiolek, Perlmutter, and Ratiu,29 or that of abstract mechanical connections described
Blaom,30 seem more promising. The Blaom theory also helps one compute dynamic ph
However it should be noted that both these theories have been formulated forAd* -equivariant
momentum maps. To be applied to the model for two corotating patches, these theories hav
extended to admit momentum maps that arenot Ad* -equivariant. A more thorough investigation
~with Perlmutter and Marsden! of these and other issues is currently under way using the mod
the planarN point vortex problem which shares many features of this model.

III. ADIABATIC PHASES FOR TWO COROTATING PATCHES

The geometric phase can be more easily computed in an adiabatic setting in the secon
MZS model for two corotating patches as shown in Fig. 2. The adiabatic setting can be phy
described as follows. Each patch is a phase object while the background field is provided
other patch. The relevant phase is the orientation of the patch as measured by the inclinatio
major axis of the ellipse with respect to the horizontal axis. As in the point vortex problem
small parametere in the MZS model defines a ratio of two time periods or frequencies in
following way. As e goes to zero the size of the patches goes to zero with respect to the
centroid distance. The rotation and deformation of each patch would then be more influen
its own velocity field than by the background field. We would thus expect the patch motio
approach the uniformly rotating, nondeforming motion of the Kirchhoff ellipse. If we assume
the strength of each patch and its initial aspect ratio is unaltered ase varies, we can then, from~2!,
associate a time periodTs;A with each patch. This means, in particular, that ife is decreased by
decreasing the area of the patches then the patches rotate increasingly fast. Simultaneou
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would expect the centroid motion to approach point vortex motion as discussed in the pre
section. There is also a longer time periodTl;D2, whereD is the typical distance between th
centroids. Assuming for simplicity thatA1 /A25constant for alle, we define the small paramete
explicitly as

e25
A11A2

Di
2 ,

whereDi is the initial intercentroid distance. We then see thate2;Ts /Tl . Therefore small values
of e define an adiabatic process just as in the point vortex problems in which there exist two
scales, one associated with the rotation of the patch and the other with the~relatively! slow
revolution of the centroids. Using scaling arguments as in Ref. 22, one would expect thae
→0, there is anO(1) contribution to the angle change of the patches at the end of the time p
Tl .

The vector field considered is

dD̂

dt
5S G11G2

8p2D̂3 D (
k51

2

Ak

12lk
2

lk

sin~2~f2uk!!,

df

dt
5

G11G2

2pD̂2
2S G11G2

8p2D̂4 D (
k51

2

Ak

12lk
2

lk

cos~2~f2uk!!,

dl1

dt
5l1

G2

pD̂2
sin~2~f2u1!!,

FIG. 2. The motion of two well-separated uniform elliptical vortex patches of the same sign in the MZS mode
patches have areasA1 , A2 and like- signed strengthsG1 , G2 . The motion of the centroids of the patches~small, filled
circles! is, to leading order, the same as that of two point vortices of strengthsG1 , G2 . This motion, shown by the
concentric dashed circles, is about the center of vorticity of the point vortices markedO.
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du1

dt
5

v1l1

~11l1!2
1S 11l1

2

12l1
2D G2

2pD̂2
cos~2~f2u1!!,

dl2

dt
5l2

G1

pD̂2
sin~2~f2u2!!,

du2

dt
5

v2l2

~11l2!2
1S 11l1

2

12l1
2D G1

2pD̂2
cos~2~f2u2!!.

By inspection it can be verified that this is a Hamiltonian vector field with respect to the
plectic structure,

VT5S 1

G1
1

1

G2
D 21

D̂dD̂`df1 (
k51

2
GkAk

8p

~lk
221!

lk
2 dlk`duk , ~12!

and Hamiltonian function,

h5 (
k51

2
Gk

2

8p
logF ~11lk!

2

4lk
G1

G1G2

2p
log D̂1

G1G2

16p2D̂2
(
k51

2

Ak

~12lk
2!

lk

cos~2~f2uk!!. ~13!

We conjecture that this is the symplectic structure residing on the reduced manifoldJT
21(w)/G̃w ,

whereJT denotes the momentum map for the action ofR2 the translation subgroup of SE(2), and
w belongs to the respective Lie algebra dual. Computation of the isotropy subgroupG̃w in this
nonequivariant case shows that it is trivial, i.e., it consists of only the zero element. Hence,
the Marsden–Weinstein theory,JT

21(w) is symplectic with a symplectic form defined byVT

5 i w* V, wherei w :JT
21(w)→P is the inclusion map andV is given by~3!.

We make the following additional remarks about this system of equations:

~1! The equations clearly show that for largeD̂ or smallA1 ,A2 the centroids move like two poin
vortices of strengthsG1 andG2 respectively;

~2! The lk ,uk variables represent the patch deformation and rotation, respectively. Their
tions are the same as Eqs.~3.19! and ~3.20! in Ref. 15. They show that for largeD̂ or small
A1 ,A2 ~equivalently largev1 ,v2! the patches rotate like Kirchhoff ellipses.

~3! Thelk ,uk equations for a patch are not explicitly dependent on thelk ,uk of the other patch.
The mutual interdependency comes only through theD̂ andf variables. However, there is
direct dependency on the strength of the other patch;

~4! As pointed out in Ref. 15 theu1 ,u2 equations are not defined forlk51, i.e., circular patches

We now proceed to nondimensionalize these equations and calculate the geometric p
the angle variablesu1 andu2 at the end of one long time periodTl of the centroid motion. The
phase appears as an additionalO(1) term in the leading order change in these variables.
method of computation is the standard two time scale asymptotic procedure described in R
and 25. The details of the calculations are not given in this paper but may be found in Re
only the final results are stated. The geometric interpretation is made in the next subsectio

Introduce the nondimensional variables,

D5
D̂

Di
, t5V t̂ ,
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whereV5(G11G2)/(A11A2). V is the mean strength over the mean area of the patches
represents the time scale of the ‘‘unperturbed’’ frequency of the patches. This gives the foll
equations in the nondimensional variables:

dD

dt
5S e4

8p2D3D (
k51

2

skf ~lk!sin~2~f2uk!!,

df

dt
5S e2

2pD2D2S e4

8p2D4D (
k51

2

skf ~lk!cos~2~f2uk!!,

dl1

dt
5e2l1

a2

pD2 sin~2~f2u1!!,

du1

dt
5

a1g~l1!

Ā1

1e2
a2h~l1!

2pD2
cos~2~f2u1!!,

dl2

dt
5e2l2

a1

pD2 sin~2~f2u2!!,

du2

dt
5

a2g~l2!

Ā2

1e2
a1h~l2!

2pD2
cos~2~f2u2!!,

where sk5Ak /(A11A2), ak5Gk /(G11G2), f (l)5(12l2)/l, g(l)5l/(11l)2, and h(l)
5(11l2)/(12l2). The initial conditions for this system are

D~0!51, f~0!,u1~0!, u2~0!, l1~0!, l2~0!.

Choosingt5e2t as the slow time scale and performing the multiscale calculation gives
following asymptotic results. The solutions to leading order are

D511O~e!,

f5
t

2p
1f~0!1O~e!,

lk5lk~0!1O~e!,

uk5
ak

sk
g~lk~0!!t2

ak8
2p

12lk~0!

11lk~0!
cos~2~f~0!2uk~0!!!•t1uk~0!1O~e!,

wherek852 if k51 and vice versa. The change in the patch orientation anglesDuk (k51,2) at
the end of the long time period,T54p2 ~to leading order!, are given by

Duk5
ak

sk
g~lk~0!!

4p2

e2 2ak8

12lk~0!

11lk~0!
2p cos~2~f~0!2uk~0!!!1O~e2!.

Thus,
Proposition: The adiabatic geometric phase for a system of two elliptical corotating vo

patches evolving according to the equations of the second-order truncated MZS model is gi
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where theGs andls refer to the strengths and the aspect ratios of the patches, respective.
To compare with an analogous point-vortex problem, we present the results of similar

computations of the four-vortex configuration shown in Fig. 3. There are now, in the termino
of Ref. 22,two phase object-parent vortex pairs with each pair playing the role of farfield vor
for the other pair. When these two pairs are well separated we expect their slow mot
approach that of two vortices of strengthsG11G2 andG31G4 , respectively. We therefore hav
an asymptotically defined closed orbit as in the three-vortex problem and we try to see if eac
experiences an adiabatic geometric phase at the end of one period of this two-vortex motio
geometric phase obtained inu andn is

For G450, ug gives the geometric phase for the three-vortex problem derived in Ref. 22 anng

gives the geometric phase for a passive particle in the vicinity ofG3 in the three-vortex problem
Comparing with the results of the patch problem, we find that the geometric phase for e

the two vortex patches is the geometric phase of a corresponding pair of point vortices
four-vortex configuration, where the sum of the strengths of the two vortices in a pair is the
strength,times the factor (12lk(0))/(11lk(0)) (k51,2). This factor can be viewed as th
contribution to the geometric phase of the internal structure associated with each patch.

We point out here that the results for both the patch and the point vortex problem c
depend upon the initial conditions, unlike the adiabatic phases in the works of Hanna
Berry.16,17 In particular, to make direct contact with this work, one would average the in
orientationsf(0)2u i(0) over the full circle and obtain zero for these averaged phases. In
context of point vortex models, we have shown23 that these phases, despite averaging to zero,

FIG. 3. Four point vortices~filled circles! of positive strengths in an unbounded plane. The geometric phase is calcu
for the variablesu andv. The 3s mark the centers of vorticity of each pair, respectively.
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important when computing quantities in the flow, such as interface stretching rates. We exp
same to be true when one replaces point vortices with vortex patches.

IV. GEOMETRIC INTERPRETATION

As shown by Simon18 and Marsden, Montgomery, and Ratiu,19 the process of averaging i
parameter-dependent Hamiltonian defines a connection on the trivial principal fiber bundlep:M
3P→P, whereP is the parameter space andM , for ann-dimensional integrable Hamiltonian, i
the level set of then independent integrals of the system with the parameters frozen. FoM
compact and connected this set is diffeomorphic to then-torus. Viewing the patch system as
‘‘parameter’’-dependent Hamiltonian system with the patch centroids as the ‘‘parameters
choice of the following fiber bundle for defining an adiabatic connection seems natural. D
E5p:T23S1→S1, whereT25S13S1 is the 2-torus.T2 is identified withM . As the adiabatic
limit is approached the patch centroids are frozen, relative to the patch motion, and each
behaves locally in time like a Kirchhoff ellipse. For a Kirchhoff patch,M5S1 the level set of the
momentum map~8!. For two patches we then defineM as the product of the level set for eac
patch, i.e.,M5T2. The patch centroids evolve locally in time like point vortices of the sa
strength, and therefore the ‘‘parameter’’ space for two patches is chosen as the level set
momentum map@of the SE(2) action# in the two point vortex problem. All these level sets a
diffeomorphic toS1 ~for like-signed vortices!, and this is our choice for our base space inE.

The next step is to show that the leading order motion of the patches defines a connec
this trivial principal fiber bundle. The leading order motion of each patch was obtained in Se
as ~dropping the subscriptk!

l (0)5constant,

u (0)5uF~ t !1uS~t!. ~14!

An examination of this relation reveals a connection. IndeeduS(t) defines alocal connection
1-form, i.e., a Lie-algebra valued differential 1-form on the base spaceS1 of the bundleE in the
following manner. The nondimensional slow time varaiablet can be viewed as a coordinate fo
the one-dimensional base spaceS1, since all the circular vortex orbits of the two-~point!vortex
motion ~diffeomorphic toS1! depend on the slow time alone. A change of coordinates fromt to
f can be affected through the relationf5t/2p. Definev5df/dt as the common nondimen
sionalized angular velocity of two-~point!vortex motion. The termuS(t) being linear int one can
rewrite it as

uS~t!5E
0

t duS

dt
dt5

vS

v
f,

wherevS can be viewed, nominally, as the angular velocity of the slow drift that cumulati
gives the geometric phase. This defines the following equation between differentials:

duS5
vS

v
df[vdf, vPR. ~15!

The right-hand side of the above equation defines a 1-form on the base manifoldS1 ~with coor-
dinatef!. Indeed, since there are two patches we get the followingR2-valued 1-form onS1:

g* 5~v1df;v2df!, v1 ,v2PR ~16!

~where we have reintroduced the subscripts!. In ~15! and~16! the tangent space at each point ofS1

is identified with the tangent line ([R), embedded inR2, at that point. The 1-formdf at the
point f is then just the canonical representation of a 1-form onR2. Now consider the action ofT2

on E by left translations, (a1 ,a2 ,f)→(u11a1 ,u21a2 ,f). This induces an isomorphism of th
                                                                                                                



copy

alued

-

ortex

int-
entum

r

n

onnec-
tch is

8160 J. Math. Phys., Vol. 41, No. 12, December 2000 B. N. Shashikanth and P. K. Newton

                    
tangent spaces ofT2 which, by viewing the tangent spaces as two lines each embedded in a
of R2, is a rotation of tangent vectors byu1 andu2 , respectively. The image vectors in~16! can
then be identified with Lie algebra elements and this allows the definition of a Lie-algebra v
local connection 1-form on the base spaceS1,

g5~R2u1
v1df,R2u2

v2df!,

whereRu1
denotes the 232 matrix which rotates vectors inR2 by u1 . The prescription for finding

a connection form on the bundleE is then straightforward. One simply ‘‘adds’’ the trivial con
nection 1-form to the local connection 1-form. Thus, we have:

Theorem: The adiabatic geometric phase in the second order MZS model of corotating v
patches can be viewed as the holonomy of a flat connection on the trivial principal bundlep:E
5T23S1→S1. The base space S1 is diffeomorphic to the momentum level set of the two-po
vortex motion of the patch centroids and the fiber at each point is the product of the mom
level set of each patch. The Lie algebra valued connection form is given by

where(u1 ,u2 ,f) are coordinates on E andvk is the ratio of the constant slow phase ‘‘angula
velocity,’’ d(uS)k /dt, induced on patch k by the other patch, and the angular velocity, v(f), of
the point vortex in the closed orbit.

Proof: Both properties of a connection form are trivially satisfied. TheT2 action onE is given
by fiber-invariant translationsFg(a1 ,a2 ,f)5(u11a1 ,u21a2 ,f), whereg[(u1 ,u2)PT2. The
infinitesimal generator of the action is the vector fieldjE(u1 ,u2 ,f)5(Ru1

z,Ru2
b,0), where

(z,j)[jPg ~the Lie algebra ofT2!. Hence,A(jE)5j.
Next, the adjoint action is the identity sinceT2 is Abelian. The derivative of the group actio

is given bydFg(p)(w1 ,w2,0)5(Ru1
w1 ,Ru2

w2,0), at p[(a1 ,a2 ,f) and where (w1 ,w2,0) is a
vector tangent to the fiber atp. Thus, A•dFg(p)5(R2u12a1

•Ru1
w1 ,R2u22a2

•Ru2
w2)

5(R2a1
w1 ,R2a2

w2)5Adg•A(p);gPT2 d

The existense of a connection implies a direct sum decompositionTpE5Hp% Vp . Any vector
(hu1

,hu2
,hf)PTpE can be written uniquely as

~hu1
,hu2

hf!5~hu1
2v1hf ,hu2

2v2hf ,0!1~v1hf ,v2hf ,hf!, ~17!

where (hu1
2v1hf ,hu2

2v2hf,0)[Vp is thevertical part and (v1hf ,v2hf ,hf)PHp is thehori-

zontalpart.Hp @the span of all vectors (v1hf ,v2hf ,hf)# is a one-dimensional subspace ofTpE
at eachp. It is the range of thehorizontal lift operator defined by horp(dp(v1hf ,v2hf ,hf))
5(v1hf ,v2hf ,hf).

The total phase change in the patch can therefore now be interpreted in terms of the c
tion. The constant-frequency constant-separation motion of each unperturbed Kirchhoff pa
represented by an orbit onE with coordinates ((uF(t))1 ,(uF(t))2 ,f5constant!. The leading
order perturbation term due to the other patch, isuS , causing these circular orbit onE to drift and
thus wind around the 3-torus. The orbit is now defined by the coordinates

$~uF~ t !!11~uS~ t !!1 ,~uF~ t !!21~uS~ t !!2 ,f~ t !%. ~18!

The tangent vector to this orbit at eachePE can be written according to~17! as
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S du1

dt
,
du2

dt
,
df

dt D[S du1

dt
2v1

df

dt
,
du2

dt
2v2

df

dt
,0D1S v1

df

dt
,v2

df

dt
,
df

dt D .

Using ~15! and ~18!, we can rewrite this as

S du1

dt
,
du2

dt
,
df

dt D[S du1

dt
2

d~uS!1

dt
,
du2

dt
2

d~uS!2

dt
,0D1S d~uS!1

dt
,
d~uS!2

dt
,
df

dt D ,

[S d~uF!1

dt
,
d~uF!2

dt
,0D1S d~uS!1

dt
,
d~uS!2

dt
,
df

dt D .

This clearly shows that the vertical part of the tangent vector is the rate of evolution a
unperturbed frequency leading to the dynamic phase and the vertical drift due to the hori
part gives the geometric phase at the end of one circuit around the base circle.

The geometric interpretation of the phase in the four point vortex problem is similarly m
The fibers of the principal bundlep:T23S1→S1 are identified with the product of the momentu
level set of each vortex pair and the base is diffeomorphic to the momentum level set of th
vortex motion of the pair centroids in the adiabatic limit. The connection on this bundle is
constructed exactly as before.
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APPENDIX

To compute the coadjoint action of SE(2), recall some basic facts about the SE(2) grou
Group composition of elements is given by

~A,a!•~B,b!5~AB,Ab1a!,

with the identitiy element (I ,0). The inverse of an element (A,a) is (A21,2A21a). Inner auto-
morphisms are thus given by

I (A,a)~B,b!ª~A,a!•~B,b!•~A,a!215~B,2Ba1Ab1a!.

The derivative of the inner automorhphism corresponding to (A,a) gives the adjoint action of
(A,a) on g,

Ad(A,a)~ ê,v !5
d

dtut50
I (A,a)~B~ t !,b~ t !!5~ ê,2 êa1Av !,

where (B(t),b(t)) is a smooth curve in SE(2) withB(0)5I , Ḃ(0)5 ê, b(0)50, ḃ(0)5v. Here
ê is an element of the Lie algebra of SO(2), the vector space of 232 skew-symmetric~real!
matrices which is identified withR via the isomorphism,

ê5eS 0 21

1 0 D , ePR, ~A1!
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andv is an element of the Lie algebra ofR2 which is R2 itself. As vector spaces we make th
usual identification se(2)[R3R2[R3. The coadjoint action of (A,a) on se(2)* is then com-
puted relative to the Euclidean inner product^,& on R3. It is a standard calculation and we reca
the final result,

^Ad(A,a)21* ~h,w!,~e,v !&5~h1^AR2p/2w,a&,Aw!. ~A2!

HereRp/2 denotes the matrix in~A1!, andR2p/2 its inverse.
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Multiply warped products with nonsmooth metrics
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In this article we study manifolds withC0-metrics and properties of Lorentzian
multiply warped products. We represent the interior Schwarzschild space–time as a
multiply warped product space–time with warping functions and we also investi-
gate the curvature of a multiply warped product withC0-warping functions. We
give theRicci curvaturein terms off 1 , f 2 for the multiply warped products of the
form M5(0,2m)3 f 1

R13 f 2
S2. © 2000 American Institute of Physics.

@S0022-2488~00!02109-5#

I. INTRODUCTION

The concept of a warped product manifold was introduced by Bishop and O’Neill,1 where it
served to provide a class of complete Riemannian manifolds with everywhere negative cur
The connection with general relativity was first made by Beem, Ehrich, and Powell,2,3 who
pointed out that several of the well-known exact solutions to Einstein’s field equations are ps
Riemannian warped products. Beem and Ehrich4 further explored the extent to which certa
causal and completeness properties of a space–time maybe determined by the presen
warped product structure. O’Neill’s book on semi-Riemannian geometry5 took this line of devel-
opment to a natural conclusion by elevating warped products to a central role. After first d
oping the general theory of warped products to spaces, O’Neill then applied the theory to d
in turn, the special cases of Robertson–Walker, Friedmann, static and Schwarzshild space
The role of warped products in the study of exact solutions to Einstein’s equations is now
established, and it appears that these structures are generating interest in other areas of g

We study manifolds withC0-metrics and properties of Lorentzian multiply warped produc
Many authors6–9 have dealt with Lorentzian manifolds with nonsmooth metric tensors from v
ous view points. Of particular interest are space–times which have a metric tensor which f
be C1 across a hypersurface, and isC` off the hypersurface. A space–time for which, in a
admissible coordinate system, the metric tensor is continuous but has a jump in its first and
derivatives across a submanifold will have a curvature tensor containing a Dirac
function.10,11The support of this distribution may be three-, two-, or one-dimensional or may
consist of a single event. Lichnerowicz’s formalism12 for dealing with such tensors is modified s
as to obtain a formalism in which the Riemannian curvature tensor and Ricci curvature tenso
in the sense of distributions. We note that Smoller and Temple13 have presented a general theo
for matching two solutions of the Einstein field equations at arbitrary shock-wave interface a
which the metricg is C0-Lorentzian, i.e., a smooth surface across which the first derivatives o
metric suffer at worst a jump discontinuity. Amultiply warped products space–time with base
(B,2dt2), fibers (Fi ,gi), i 51,...,n, and warping functionsf i.0 is the product manifold
(B3F13•••3Fn ,g) endowed with the Lorentzian metric:g52pB* dt21( i 51

n ( f i+pB)2p i* gi[
2dt21( i 51

n f i
2gi , wherepB , p i i 51, . . . ,n are the natural projections ofB3F13 . . . 3Fn onto

B and F1, . . . ,Fn , respectively. Thus, warped product spaces are extended to a richer cla
spaces involving multiply products. Multiply warped product spaces were studied by J. L. F
and M. Sa´nchez.14

a!Electronic mail: choijdong@yahoo.co.kr
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The conditions of spacelike boundaries in the multiply warped product space–times
studied by Steven G. Harris.15 From a physical point of view, these space–times are interes
first, because they include classical examples of space–time: whenn51 they aregeneralized
Robertson–Walkerspace-times, standard models of cosmology; whenn52, the intermediate zone
of Reissner–Norsdstro¨m space–time and interior of Schwarzschild space–time appear as pa
lar cases.16

The conditions of spacelike boundaries in the multiply warped product space–times
studied by Steven G. Harris. The Kasner metric was studied as a cosmological model by S¨ck-
ing and Heckmann.17

The Schwarzschild solution is interpreted as describing the gravitational field of a
particle with massm. Generally, this metric is taken to represent the outside metric for a star
r .r 0, where r 0 gives the boundary of the star. The metric insider ,r 0 is a different interior
metric determined by the matter distributionTi j inside the star and is matched at the bound
r 5r 0 with the metric. We represent the interior Schwarzschild space–time as a multiply w
product space-time with warping functions and we also investigate the curvature of a mu
warped product withC0-warping functions. We given theRicci curvaturein terms of f 1 , f 2 for
the multiply warped products of the formM5(0,2m)3 f 1

R13 f 2
S2.

II. MULTIPLY WARPED PRODUCTS MANIFOLDS WITH NONSMOOTH METRIC TENSOR

In this section, we state some definitions and standard results2,5 which will be needed below.
A Lorentzian manifold (M ,g) is a connected smooth manifold of dimension>2 with a countable
basis together with a Lorentzian metricg of signature (2,1,1, . . . ,1). Let (Fi ,gi) be Riemann-
ian manifolds, and let (B,gB) be either a space–time, or letB be R1 with gB52dt2. Let f i.0,
i 51, . . . ,n, be smooth functions onB. A multiply warped products space–timewith base (B,gB),
fibers (Fi ,gi), i 51, . . . ,n, and warping functionsf i.0 is the product manifold (B3F13 . . .
3Fn ,g) endowed with the Lorentzian metric:

g5pB* gB1(
i 51

n

~ f i+pB!2p i* gi[2dt21(
i 51

n

f i
2gi , ~2.1!

wherepB , p i , i 51, . . . ,n, are the natural projections ofB3F13•••3Fn ontoB andF1, . . . ,Fn ,
respectively.

Definition 2.1: SupposeM5B3 f 1
F13•••3 f n

Fn is a multiply warped product of semi
Riemannian manifolds. For any (p,q1 , . . . ,qn)PM , the submanifoldB3q13•••3qn is a leaf of
M. The submanifoldsp3F13 . . . 3qn are called type 1 fibers andp3q13•••3Fn are called
type n fibers, respectively. As in the case of warped products, a multiply warped metric sa
the following.

~1! For eachqiPFi , pBu(B3q13 . . . 3qn) is an isometry ontoB.
~2! For eachpPB and qjPF j , s i u(p3q13•••3Fi3•••3qn) is homothety ontoFi , with scale

factor 1/f i(p).
~3! For each (p,q1 , . . . ,qn)PM , the setB3q13•••3qn and theith type fiber,p3q13•••

3Fi3•••3qn are mutually orthogonal at (p,q1 , . . . ,qn).

Let M be a smooth manifold of dimensionn. Then subsetS of M is a regularly embedded
hypersurface ofM if for all pPS, there exists a coordinate neighborhoodU(p) with coordinates
(x1 , . . . ,xn) such thatSùU5$(x1 , . . . ,xn)PUuxn5p%. For convenience, we say that such
neighborhoodU is partitioned byS. We denote$xPUuxn.p% and$xPUuxn,p% by Up

1 andUp
2 ,

respectively. Now letM be a smooth manifold with a regularly embedded hypersurfaceS. Let Sc

denote the complement ofS. We define the concept of aC0-Lorentzian metric onM.
Definition 2.2:A C0-Lorentzian metric onM is a nondegenerate~0,2! tensor of Lorentzian

signature such that
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~1! gPC0 on S,
~2! gPC` on MùSc, and
~3! for all pPS andU(p) partitioned byS, guU

p
1 andguU

p
2 have smooth extensions toU.

We call S a C0-singular hypersurface of (M ,g).

III. MULTIPLY WARPED PRODUCT MANIFOLDS WITH C0 WARPING FUNCTION

Let M5B3 f 1
F13•••3 f n

Fn be a multiply warped products withgB52dt2. Let f i.0, i

51, . . . ,n be smooth functions onB5(a,b). Recall f iPC` for t5” t0 if f iPC0 at t5p. When
f PC0 at a single pointpPR1 andS5$p%3 f 1

F13•••3 f n
Fn , we use the notationf PC0(S).

Proposition 3.1:Let M5B3 f 1
F13•••3 f n

Fn be multiply warped products with Riemannia
curvature tensorR. If X, YPL(B), Vi , WiPL(Fi) where 1< i<n, and f iPC0(S), then

~1! ¹XYPL~B! is the lift of ¹XY on L~B!,
~2! ¹XVi5¹Vi

X5(X fi / f i)Vi5$X1( f i8
1u(t2p)1 f i8

2u(p2t))/ f i%Vi ,
~3! ¹Vi

Vj5¹Vj
Vi50 if i 5” j ,

~4! nor ¹Vi
Wi5II i(Vi ,Wi)52(^Vi ,Wi&/ f i)gradf i5(^Vi ,Wi&/ f i)( f i8

1u(t2p)1 f i8
2u(p

2t))]/]t, and
~5! tan¹Vi

WiPL(Fi) is the lift of ¹Vi
Wi on F.

Proof: Refer to O’Neill’s5 results, and similar arguments yield~1!, ~3!, and~5!. Clearly, it is
only necessary to establish~2! and ~4!.

~2! Since X( f i)5X1( f i8
1u(t2p)1 f i8

2u(p2t))/ f i where X5X1 ]/]t we have (X fi / f i)Vi

5$X1( f i8
1u(t2p)1 f i8

2u(p2t))/ f i%Vi .
~4! Since

grad f i5 (
k51

n

gk j
] f i

]xk

]

]xj
52

] f i

]t

]

]t
52~ f i8

1u~ t2p!1 f i8
2u~p2t !!

]

]t
,

nor

¹Vi
Wi5II i~Vi ,Wi !52~^Vi ,Wi&/ f i !gradf i

5~^Vi ,Wi&/ f i !~ f i8
1u~ t2p!1 f i8

2u~p2t !!
]

]t
.

h

Proposition 3.2:Let M5B3 f 1
F13•••3 f n

Fn be multiply warped products with Riemannia
curvature tensorR. If X, YPL(B), Ui , Vi , WiPL(Fi) where 1< i<n, and f iPC0(S), then

~1! RXYZPL~B! is the lift of BRXYZ(50) on L~B!,
~2! RXUi

U j5RUiU j
X5RU jX

Ui50 for i 5” j ,

~3! RUiX
Y5(H f i(X,Y)/ f i)Ui5$$X1Y1( f i9(t)1dp(t)( f i8

12 f i8
2))%/ f i%Ui , where Hi

f is the
Hessian off i .

~4! RXUi
U j5RUiU j

X5RU jX
Ui50 for i 5” j ,

~5! RXYUi50 for eachi 51,...,n,
~6! RUiVi

U j50 for i 5” j ,
~7! RUiU j

Vj5(^U j ,Vj&/ f i f j )( f j8
11 f j8

2)( f i8
11 f i8

2)Ui for i 5” j ,

~8! RUiVi
Wi5

FiRUiVi
Wi2(^gradf i ,gradf i&/ f i

2)(^Ui ,Wi&Vi2^Vi ,Wi&Ui)

5FiRUiVi
Wi1(( f i8

1u(t2p)1 f i8
2u(p2t))/ f i

2)(^Ui ,Wi&Vi2^Vi ,Wi&Ui).
Proof: We will establish~3! and ~8!. For X5X1 ]/]t , Y5Y1 ]/]t, since
                                                                                                                



n

8166 J. Math. Phys., Vol. 41, No. 12, December 2000 Jaedong Choi

                    
¹Xgradf i5¹X~2 !
] f i

]t

]

]t
52S ] f i

]t
X1¹]/]t

]/]t1X1
]

]t S ] f i

]t D ]

]t D
52X1~ f i9~ t !1dp~ t !~ f i8

12 f i8
2!!

]

]t
,

~3! H f i~X,Y!5^¹Xgradf i ,Y&5 K 2X1~ f i9~ t !1dp~ t !~ f i8
12 f i8

2!!
]

]t
,Y1

]

]t L
5X1Y1~ f i9~ t !1dp~ t !~ f i8

12 f i8
2!!,

RUiX
Y5~H f i~X,Y!/ f i !Ui5$$X1Y1~ f i9~ t !1dp~ t !~ f i8

12 f i8
2!!%/ f i%V.

~8! RUiVi
Wi5

FRUiVi
Wi2~^gradf i ,gradf i&/ f i

2!~^Ui ,Wi&Vi2^Vi ,Wi&Ui !

5FRUiVi
Wi1~~ f i8

1u~ t2p!1 f i8
2u~p2t !!/ f i

2!~^Ui ,Wi&Vi2^Vi ,Wi&Ui !. h

Corollary 3.3: Let M5B3 f 1
F13•••3 f n

Fn be multiply warped products with Riemannia
curvature tensorR. If X, YPL(B), Ui , ViPL(Fi) where 1< i<n, anddi5dimFi f iPC0(S),
then

~1! Ric~X,Y!52(
i 51

n

~di / f i !H
f i~X,Y!

52(
i 51

n

~di / f i !X
1Y1~ f i9~ t !1dp~ t !~ f i8

1~p!2 f i8
2~p!!!,

~2! Ric~X,Ui !50,

~3! Ric~Ui ,Vi !5FiRic~Ui ,Vi !1^Ui ,Vi&H ~ f i9~ t !1dp~ t !~ f i8
12 f i8

2!!/ f i

1~di21!~ f i8
12 f i8

2!/ f i
21(

j 5” i
dj

^ f i8
12 f i8

2, f j8
12 f j8

2&
f i f j

J ,

(4) Ric(Ui ,U j )50 for iÞ j .

Proof: We will establish~1! and ~3!

~1! Ric~X,Y!5(
M

«m^RXEm
Y,Em&5(

Fi

«m^RXEm
Y,Em&

5(
Fi

«mK 2H f i~X,Y!

f i
Em ,EmL 52(

Fi

H f i~X,Y!

f i
«m^Em ,Em&

52(
Fi

H f i~X,Y!

f i
«m

2 52(
i 51

n
di

f i
H f i~X,Y!

52(
i 51

n

~di / f i !X
1Y1~ f i9~ t !1dp~ t !~ f i8

1~p!2 f i8
2~p!!!
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~3! SinceD f i5div~gradf i !5$ f i9~ t !1dp~ t !~ f i8
1~p!2 f i8

2~p!!%,

f i
]5

D f i

f i
1~di21!

^gradf i ,gradf i&

f i
2

52$ f i9~ t !1dp~ t !~ f i8
1~p!2 f i8

2~p!!%/ f i2~di21!$ f i8
1u~ t2p!/ f i1 f i8

2u~p2t !/ f i%
2,

therefore

Ric~Ui ,Vi !5FiRic~Ui ,Vi !1^Ui ,Vi&H ~ f i9~ t !1dp~ t !~ f i8
12 f i8

2!!/ f i1~di21!~ f i8
12 f i8

2!/ f i
2

1(
j 5” i

dj

^ f i8
12 f i8

2, f j8
12 f j8

2&
f i f j

J . h

Now consider the multiply warped productsM5R13 f 1
F13 . . . 3 f n

Fn with the warping
function f i on the spacelike hypersurfaceS5$(x1 , . . . ,xn11)ux1is constant%. If M has a metric
g52dt21( i 51

n f i
2gi , metric ofFi (dimFi5di) is C` and symmetric.

Proposition 3.4:Let M5B3 f 1
F13•••3 f n

Fn be the multiply warped product space of d

mensiond511( i 51
n di with the warping functionsf i on the spacelike hypersurfaceS5$p%

3F13•••3Fn . The metric components ofg5gLøgR are C1 functions of the coordinate vari
ables, i.e.,f iPC1 if and only if @Lh#5(Lh

R2Lh
L)50 at each point on the spacelike hypersurfa

S. Hereh5 ]/]t.
Proof: We can get the second fundamental form as follows. ForM5B3 f 1

F13•••3 f n
Fn ,

consider the basis ofTpM :

H ]

]x1
,

]

]m11
, . . . ,

]

]m1d1

, . . . ,
]

]nn1
, . . . ,

]

]nndn
J 5H ]

]x1
,

]

]x2
, . . . ,

]

]xd
J .

For pPS, Xp5a2 ]/]x2 1a3 ]/]x31, . . . ,1ad ]/]xd PTS , choose normal vectorhp5]/]x1

such thatg(Xp ,hp)50 for nondegenerateg wherep5(x1 ,x2 , . . . ,xd11) and theai are smooth.
Since

LhX52¹Xh52 (
i 52

d11
ai

f i

] f i

]x1

]

]xi
,

therefore we have

@Lh#52 (
i 52

d11
ai

f i
F ] f i

]x1
G ]

]xi
,

@Lh#50⇔F ] f i

]x1
G50⇔ f iPC1~S!. h

IV. SCHWARZSCHILD SPACE–TIME AS A MULTIPLY WARPED PRODUCT

In this section we will briefly discuss the interior Schwarzschild solution. We show how
interior solution can be written as a multiply warped product.

A Schwarzschild black holefor the regionr ,2m has the metric

ds252S 2m

r
21D 21

dr21S 2m

r
21Ddt21r 2dV2. ~4.1!
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Replacingr with n and t with m, we have 0,n,2m and

ds252S 2m

n
21D 21

dn21S 2m

n
21Ddm21n2dV2. ~4.2!

Put

dm25S 2m

n
21D 21

dn2. ~4.3!

Integrating

dm5A n

2m2n
dn

we obtain

m52mcos21SA2m2n

2m D 2An~2m2n!1C5F~n!1C. ~4.4!

SettingC50 we obtainF(n)52mcos21(A(2m2n)/2m)2An(2m2n).
This yields

lim
n→2m

F~n!5mp, lim
n→0

F~n!50.

Notice dn/dm.0 impliesF21 is a well-defined function.
By using ~4.4! we rewrite~4.2! as

ds252dm21S 2m

F21~m!
21D dn21F21~m!2dV2. ~4.5!

Therefore we can write the Schwarzschild space–time as a multiply warped product

ds252dm21 f 1
2~m!dn21 f 2

2~m!dV2, ~4.6!

where

f 1~m!5A 2m

F21~m!
21

and

f 2~m!5F21~m!.

Clearly one may investigate the curvature of the interior metric~4.6! of the Schwarzschild
space-time as a multiply warped product. Futhermore, we have the followingRicci curvatureon
the multiply warped products.

Corollary 4.1: Let M be a multiply warped productM5R13 f 1
R13 f 2

S2 with metric ds2

52dm21 f 1
2(m)dn21 f 2

2(m)dV2 ~wheredV25du21sindf2) for warping functionsf 1 , f 2.
Then we haveRicci curvature.

~1! RicS ]

]m
,

]

]m D5Rmm5R1152
f 19

f 1
2

2 f 29

f 2
.
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~2! RicS ]

]n
,

]

]n D5Rnn5R225 f 1f 191
2 f 1f 18 f 28

f 2
.

~3! RicS ]

]u
,

]

]u D5Ruu5R335
f 18 f 2f 28

f 1
1 f 28

21 f 2f 2911.

~4! RicS ]

]f
,

]

]f D 5Rff5R445S f 18 f 2f 28

f 1
1 f 28

21 f 2f 2911D sinu.

~5! Rmn50 for m5” n.
Remark: Let M5(0,2m)3 f 1

R13 f 2
S2 be given the metric ds252dm21 f 1

2(m)dn2

1 f 2
2(m)dV2. Then M is the Ricci flat with interior Schwarzschild metric if limm→0( f 28(m)2

11) f 2(m)52m and limm→0f 1(m)5 limm→0f 28(m).
Proof: From Corollary 4.1 we havef 19/ f 1 52 2 f 29/ f 2 and f 19/ f 1 52 2 f 28/ f 2 from R1150,

R2250, respectively.
Substitutef 18/ f 1 5 ( f 19/ f 1)/( f 19/ f 18) 5 f 29/ f 28 to (1/f 2) 3R3350. Then we havef 18 f 28/ f 1 1 f 28

2

11/f 2 1 f 2950, so 2f 291 ( f 28
211)/ f 2 50, thus 2f 28 f 29/( f 28

211) 1 f 28/ f 250. After integrating
from 0 to m we have ln(f28(m)211)f2(m)5limm→0ln(f28(m)211)f2(m).

Put limm→0( f 28(m)211) f 2(m)5C, f 28(m)2115 C/ f 2(m) so f 28(m)5AC/ f 2(m) 21.
From f 18/ f 1 5 f 29/ f 28 we have f 1(m)5 @ f (m)/ f 28(m)# f 28(m)5 f 28(m) with initial condition

limm→0 f (m)/ f 28(m) 51, that is, f 1(m)5AC/ f 2(m) 21. Thereforef 1(m)5A2m/ f 2(m) 21 if C
52m.

Since f 2(m)5F21(m)5n and f 1(m)5A2m/F21(m) 215 dn/dm, we have~4.3!. h
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E6 unification model building II. Clebsch–Gordan
coefficients of 78 ‹78
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We have computed the Clebsch–Gordan coefficients for the product (000 001)
^ (000 001), where~000 001! is the adjoint 78-dimensional representation ofE6 .
The results are presented for the dominant weights of the irreducible representa-
tions in this product. As a simple application we express the singlet operator in
27^ 78^ 27 in terms of multiplets of the Standard Model gauge group. ©2000
American Institute of Physics.@S0022-2488~00!03610-0#

I. INTRODUCTION

The groupE6 is a promising and popular candidate for a grand unified group. Despite the
that it has received consideration for over twenty years,1 E6 model building has not been exten
sively developed due to mathematical complexities associated with a rank 6 exceptional Lie
The Clebsch–Gordan coefficients~CGCs!, for instance, have only been known for the products
two fundamental irreducible representations~irreps! of the lowest dimensionality:27 or 27.2,3 To
our knowledge, the CGCs for higher dimensional irreps ofE6 have never been computed. Th
difficulties are not related just to a large number of independent states in the weight syste
also to the construction of bases for states with degenerate weights. The latter problem is tri
smaller groups like, e.g., SU~2! or SU~3! which are of the highest interest for elementary parti
phenomenology, and can be avoided altogether by the use of tensor methods and Young ta
However, forE6 it becomes a progressively larger obstacle for higher dimensional irreps. I
27-dimensional irreps ofE6 , the basis is simply the weight system due to the fact that each we
state in the27 and 27 is nondegenerate. The irreps with dimensionality 78, 351, and 650
slightly more complicated, but do not pose a serious technical challenge, since the bases
chosen to coincide with the weight system obtained by the application of ladder operators~group
generators outside the Cartan subalgebra! despite the presence of degenerate weights. For
larger irreps, when derived by a method of successive lowerings from the highest weigh
obtains weight subspaces with the number of vectors by far exceeding the dimensionality
weight subspace. As a randomly selected example, by constructing a complete set of sta
found that the (21,1,21,1,21,1) weight subspace of2430,78^ 78 contained 28 unique vector
which span an 11-dimensional subspace. For the~0,0,0,0,0,0! weight subspace, our analysis r
sulted in 185 distinct linearly dependent states while dimensionality of the subspace is 36.

Several methods have been suggested which could be used to address this problem. O
proceed by methods based on group subalgebras4 which, however, become laborious for a rank
group. A more elegant method has been proposed in the analysis of Liet al.,5 which introduces a
set of rules for the construction of bases in irreducible representation spaces of simple Lie a
based on the unpublished ideas of Verma. The bases are specified in terms of seque
lowering operators applied to the highest weight of the representation. The ordering is d
from the opposite involution: A sequence of Weyl reflections which transforms every positive
into a negative root. While the opposite involution is not unique, the exponents of the low

a!Electronic mail: anderson@susy.phys.nwu.edu
b!On leave of absence from the Dept. of Theoretical Physics, Comenius Univ., Bratislava, Slovakia. Electroni

blazek@heppc19.phys.nwu.edu
81700022-2488/2000/41(12)/8170/20/$17.00 © 2000 American Institute of Physics
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operators in the involution satisfy basis-defining inequalities which are unique for a sp
involution, if they exist.6 The same study, however, finds it difficult to apply the method
exceptional groupsE6 and F4 .5 The basis-defining inequalities for these two Lie groups
unknown while these inequalities are provided for all other simple Lie groups with rankn<6. In
light of these studies, our approach is rather pragmatic: We adopt a straightforward pro
which probes all possible lowerings and calculates the complete set of states in the p
starting from the highest weight state of the highest irreducible representation. While the m
is straightforward, due to a large number of degenerate weights and nontrivial lowering rul
task is technically quite complex. The closest similar computation to our knowledge has only
done for the product of two adjoints in SU~5!.7

The purpose of this paper is to present the results of our computation of the CGCs f
product of two adjoint representations inE6 . These results are useful and necessary tools
building complete models based on the unified groupE6 . The paper follows our earlier work3

where the CGCs for the27^ 27 were calculated and the embeddings of the Standard Model fi
into the 27, the fundamental representation ofE6 have been listed. In Sec. II, we present som
basic theoretical background for the computation. Section III contains our results for the dom
weights in78^ 78. In Sec. IV, we conclude with an application which shows how the singlet p
of 27^ 78^ 27 can be expressed in terms of multiplets of the Standard Model gauge group

II. THEORETICAL BACKGROUND

We seek the construction of the CGCs in theE6 tensor product

78^ 7852430% 2925% 650% 78% 1, ~1!

TABLE I. Bases in the dominant weight subspaces of the 2430-dimensional~000 002! irrep. ~001 000! weight, Eq.~14!,
is left out as trivial.

Weight state Lowering path Weight state Lowering path

u100 0101& 634 236 u000 00010& 6 364 534 523 423 412 361 236
u100 0102& 364 236 u000 00011& 6 345 236 432 112 364 534 236
u100 0103& 436 236 u000 00012& 3 366 454 523 423 412 361 236

u000 00013& 3 516 443 222 133 456 634 236
u000 00014& 3 562 312 444 533 216 634 236

u000 0011& 63 452 341 236 u000 00015& 3 562 144 533 642 213 364 236
u000 0012& 36 452 341 236 u000 00016& 3 164 354 222 133 456 634 236
u000 0013& 35 144 236 236 u000 00017& 3 164 522 133 624 453 364 236
u000 0014& 34 523 641 236 u000 00018& 3 644 365 523 423 412 361 236
u000 0015& 52 312 436 436 u000 00019& 3 643 542 234 653 412 361 236
u000 0016& 54 362 341 236 u000 00020& 3 645 223 364 453 412 361 236
u000 0017& 14 534 236 236 u000 00021& 3 645 236 432 112 364 534 236
u000 0018& 12 364 534 236 u000 00022& 4 436 365 523 423 412 361 236
u000 0019& 42 513 634 236 u000 00023& 4 251 334 521 663 434 236 236
u000 00110& 43 652 341 236 u000 00024& 4 251 334 236 663 452 341 236
u000 00111& 23 645 341 236 u000 00025& 4 153 463 222 133 456 634 236

u000 00026& 4 153 622 133 624 453 364 236
u000 00027& 4 365 543 623 423 412 361 236

u000 0001& 6 634 534 523 423 412 361 236 u000 00028& 4 365 432 234 653 412 361 236
u000 0002& 6 524 133 364 452 213 364 236 u000 00029& 5 543 643 623 423 412 361 236
u000 0003& 6 514 233 364 452 213 364 236 u000 00030& 5 241 334 521 663 434 236 236
u000 0004& 6 543 364 523 423 412 361 236 u000 00031& 5 241 334 236 663 452 341 236
u000 0005& 6 245 133 364 452 213 364 236 u000 00032& 5 143 622 133 624 453 364 236
u000 0006& 6 213 362 145 453 434 236 236 u000 00033& 2 236 364 545 343 412 361 236
u000 0007& 6 415 233 364 452 213 364 236 u000 00034& 2 361 123 645 453 434 236 236
u000 0008& 6 453 364 523 423 412 361 236 u000 00035& 2 361 234 432 631 254 365 436
u000 0009& 6 123 362 145 453 434 236 236 u000 00036& 1 123 623 645 453 434 236 236
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or, equivalently, in terms of the highest weights of each irrep

~000 001! ^ ~000 001!5~000 002! % ~001 000! % ~100 010! % ~000 001! % ~000 000!. ~2!

Our conventions for the root system ofE6 and other notation follow Refs. 2, 3, and 9. Th
group algebra includes

@Hi ,H j #50, @Hi ,Ea j
#5~a j ! iEa j

, @Ea j
,E2a j

#5H j , ~3!

~no implicit sum over repeating indices!. The generatorsH form the Cartan subalgebra. Th
generatorsE are the ladder operators and correspond to nonzero roots. For simple rootsa j ) i

5(a i ,a j )5Ai j , whereA is the Cartan matrix

TABLE II. Bases in the dominant weight subspaces of the 2925-dimensional~001 000! irrep.

Weight state Lowering path Weight state Lowering path

u100 0101& 63 423 u000 00012& 612 321 453 632 454 363 423
u100 0102& 36 423 u000 00013& 636 453 422 345 311 236 423
u100 0103& 43 623 u000 00014& 633 442 362 554 311 236 423
u100 0104& 23 643 u000 00015& 634 523 643 212 364 534 123

u000 00016& 524 134 532 663 241 363 423
u000 00017& 524 134 263 453 261 363 423

u000 0011& 6 345 234 123 u000 00018& 524 134 321 663 452 363 423
u000 0012& 3 645 234 123 u000 00019& 513 644 321 223 465 363 423
u000 0013& 3 145 236 423 u000 00020& 514 362 134 223 465 363 423
u000 0014& 3 521 436 423 u000 00021& 514 362 233 643 521 436 423
u000 0015& 3 452 364 123 u000 00022& 536 231 245 443 261 363 423
u000 0016& 5 241 363 423 u000 00023& 536 214 532 443 261 363 423
u000 0017& 5 142 363 423 u000 00024& 536 214 436 323 145 236 423
u000 0018& 5 436 234 123 u000 00025& 545 342 312 663 241 363 423
u000 0019& 2 451 363 423 u000 00026& 544 332 266 345 311 236 423
u000 00110& 2 364 534 123 u000 00027& 245 134 532 663 241 363 423
u000 00111& 2 345 123 643 u000 00028& 245 134 263 453 261 363 423
u000 00112& 4 152 363 423 u000 00029& 245 134 321 663 452 363 423
u000 00113& 4 365 234 123 u000 00030& 211 345 234 663 452 363 423
u000 00114& 4 354 236 123 u000 00031& 212 334 466 332 155 436 423
u000 00115& 1 236 453 423 u000 00032& 213 324 466 332 155 436 423

u000 00033& 213 214 534 663 452 363 423
u000 00034& 213 245 346 633 452 364 123

u000 0001& 652 413 633 454 221 363 423 u000 00035& 415 346 321 223 465 363 423
u000 0002& 651 423 633 454 221 363 423 u000 00036& 415 362 134 223 465 363 423
u000 0003& 654 363 422 345 311 236 423 u000 00037& 415 362 233 643 521 436 423
u000 0004& 654 345 213 634 221 363 423 u000 00038& 453 342 266 345 311 236 423
u000 0005& 624 513 633 454 221 363 423 u000 00039& 453 452 312 663 241 363 423
u000 0006& 621 363 244 332 155 436 423 u000 00040& 453 423 126 633 452 364 123
u000 0007& 621 321 453 632 454 363 423 u000 00041& 136 435 421 223 465 363 423
u000 0008& 641 523 633 454 221 363 423 u000 00042& 136 452 134 223 465 363 423
u000 0009& 645 363 422 345 311 236 423 u00000043& 136 452 233 643 521 436 423
u000 00010& 645 345 213 634 221 363 423 u000 00044& 364 354 234 652 311 236 423
u000 00011& 612 363 244 332 155 436 423 u000 00045& 364 523 643 212 364 534 123
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A5S 2 21 0 0 0 0

21 2 21 0 0 0

0 21 2 21 0 21

0 0 21 2 21 0

0 0 0 21 2 0

0 0 21 0 0 2

D . ~4!

The weight system of the78 coincides with the root system and we can setHi ua j&
5(a j ) i ua j&. The normalization of the generators satisfies8

Tr~HiH j !5Ai j Tr~Ea j
E2a j

!. ~5!

This is consistent with the algebra, Eq.~3!, and the lowering rules discussed below.
The lowering rules for the78 are derived from the lowering rules for the fundamental rep

sentations and the Clebsch–Gordan decomposition of the78 states into the product of the27 and
27 states.3 This is especially important for the sixfold degenerate zero weight of the78. The
corresponding states can form an orthogonal basisu0̃i&, (i 51,..,6), as is assumed in~5! or,
alternatively, one can consider a nonorthogonal basisu0i& with each state specified by the la
lowering: u0i& }E2a i

ua i&, wherea i is a simple root. Based on the results of Ref. 3, the in
product of the two basis states is in this case

^0i u0 j&5 1
2 Ai j

0 , ~6!

with Ai j
0 5uAi j u. There is a nonsingular transformation between the two bases

u0̃i&5(
j 51

6

Ci j u0 j&, ~7!

which is nonunitary and corresponds to the projections of simple roots onto an orthogonal
Clearly, one is free to choose many different orthogonal bases and a particular selection
grand unified model building will depend on the way how theE6 symmetry is broken. For any
choice, however,CTC52(A0)21[2G0. We find

TABLE III. CG coefficients for~100 010! dominant weight in (000 001)̂ (000 001). Each entry should be divided by th
respective number in the last row to keep the degenerate states normalized to 1.

(000 002) (001 000) (100 010)

u100 0101& u100 0102& u100 0103& u100 0101& u100 0102& u100 0103& u100 0104& u100 010&

u100 011̄& u000 001& 1 1 1

u000 001& u100 011̄& 1 21 1

u101̄011& u001 001̄& 1 1 1 1 21

u001 001̄& u101̄011& 1 1 21 21 21

u11̄1 1̄10& u011̄100& 1 1 1 1 1 1

u011̄100& u11̄1 1̄10& 1 1 21 21 21 1

u11̄0 100& u010 1̄10& 1 1 21 21

u010 1̄10& u11̄0 100& 1 21 1 21

2 2 2 2 2 2 2 A8
                                                                                                                



TABLE IV. 1! irrep. un& is an abbreviation foru000 001n&. Each CGC
should be d

(100 010) A

u12& u13& u14& u15& u1& u2& u3& u4& u5& u1&

u000 001& u01& 2A2 A2 2A2

u01& u000 A2 A2 A2

u000 001& u02& A2 A8

u02& u000 A2 2A8

u000 001& u03& A2 2A18

u03& u000 A2 A18

u000 001& u04& 2A2 A2 A8

u04& u000 A2 A2 2A8

u000 001& u05& A2 2A2

u05& u000 A2 A2

u000 001& u06& A8

u06& u000 2A8

u001 001̄& u001̄ 21 21

u001̄ 002& u001 21 1

u011̄ 100& u01̄ 21 21 21 21 1

u01̄1 1̄01& u01 1 21 21 21 21

u11̄0 100& u1̄1 21 21 21 21 21 1 21

u1̄10 1̄01& u11̄ 1 1 1 21 21 1 1

u010 1̄10& u01̄ 21 1 21 21 21

u01̄0 11̄1& u01 1 1 21 21 1

u1̄00 100& u100 21 1 21 21 21 1

u100 1̄01& u1̄00 1 21 1 21 21 21

u11̄1 1̄10& u1̄1 21 21 1 1 1 1 1 1

u1̄11̄ 11̄1& u11̄ 1 1 1 1 1 1 1 21

u010 01̄0& u01̄ 21 21 1

u01̄0 011& u01 21 21 21

u1̄01 1̄10& u10̄ 21 1 1 21 21 21 21

u101̄ 11̄1& u1̄0 1 21 1 21 21 21 1

u101̄ 011& u1̄01 21 1 21 21

u1̄01 01̄0& u10 21 1 21 1

u11̄1 01̄0& u1̄1 21 21 21 1 21

u1̄11̄ 011& u11̄ 21 21 21 1 1

A8 A8 A8 A8 4 4 4 4 4 A24
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CG coefficients for~000 001! dominant weight in (000 001)̂ (000 001). In the last column,A stands for the adjoint~000 00
ivided by the respective number in the last row to maintain^nun&51.

(000 002) (001 000)

u1& u2& u3& u4& u5& u6& u7& u8& u9& u10& u11& u1& u2& u3& u4& u5& u6& u7& u8& u9& u10& u11&

A2

001& A2

A2 2A2

001& A2 A2

A2 2A2

001& A2 A2

A2

001& A2

A2 2A2

001& A2 A2

A2 2A2

001& A2 A2

002& 1 1 1 21 21 21

001̄& 1 1 1 1 1 1

1 1̄01& 1 1 1 1 1 21 21 21 21

1̄ 100& 1 1 1 1 1 1 1 1 1

0 1̄01& 1 1 1 1 21 21

0 100& 1 1 1 1 1 1

0 11̄1& 1 1 1 1 21 21 21 21

0 1̄10& 1 1 1 1 1 1 1 1

1̄01& 1 1

100& 1 1

1̄ 11̄1& 1 1 1 1 1 21 21 21 21 21 21 21

1 1̄10& 1 1 1 1 1 1 1 1 1 1 1 1

0 011& 1 1 21 21 1

0 01̄0& 1 1 1 1 21

1 11̄1& 1 1 21 1 21

1 1̄10& 1 1 1 21 1

01̄0& 1 1 21 21 21 1

1̄ 011& 1 1 1 1 1 21

1̄ 011& 1 1 1 21 21 21 1

1 01̄0& 1 1 21 1 1 1 21

A6 A8 A8 A8 A8 A8 A8 A8 A8 A8 A8 A6 A8 A8 A8 A8 A8 A8 A8 A8 A8 A8
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G05
1

3 S 4 25 6 24 2 23

25 10 212 8 24 6

6 212 18 212 6 29

24 8 212 10 25 6

2 24 6 25 4 23

23 6 29 6 23 6

D , ~8!

and that is, up to signs, the weight space metricG of E6 .9 Note that

(
k51

6

u0̃k& u0̃k&5 (
i , j 51

6

u0i&2Gi j
0 u0 j&. ~9!

As a particular example of theC matrix consider

C51
1 22 2 21 0 21

2
1

)

2

)
2

4

)

3

)
2

2

)

3

)

1 21 1 21 1 0

1

A15

1

A15

1

A15

3

A15
2

1

A15
0

2
1

A10
2

1

A10

4

A10
2

3

A10

1

A10
0

1

A6

1

A6
0 2

1

A6
2

1

A6
0

2 . ~10!

The first three rows of this matrix correspond to the projections onto the zero roots of the Sta
Model gauge groups@two roots of the SU~3!c and one root of the SU~2!L , respectively#. u0̃4& lies
in the hypercharge direction, and together with the first three completes the zero weight spa
the SU~5! subgroup ofE6 . In the same way,u0̃5& lies in the direction of the U(1) which is
contained in the SO~10! ~it was called U(1)r in Ref. 3!, and u0̃6& in the direction of the U(1)t ,
which is perpendicular to the SO~10! subgroup. Obviously, other branching chains ofE6 would
result in a modifiedC matrix.

Next we specify the lowering rules. A78 weight stateuw& of weight (w)5(w1 ,...,w6) is
lowered byE2a i

, with a i being a simple root, according to

E2a i
u w&5N2a i ,wu w2a i&, ~11!

which means that the new weight is always equal to (w2a i) provided the new state exists. It is
assumed thatN2a i ,w50 if the new state does not exist. For a nonzero weight and weight
equal to a simple root, the new state exists if the respective weight~Dynkin! coordinatewi.0. In
this case,N2a i ,w511. For weight~w! whose coordinates coincide with the coordinates of simp
root a j the new state exists only ifj 5 i , and N2a i ,a i

51&. Finally for a zero weight, (w)
5(0) j , the new state exists ifAi j Þ0, andN2a i ,0j

51uAi j u/&. All lowering rules are accounted
for in a single relation

N2a i ,(w) j
51@wi1uN2a i ,w1a i

u2u^~w! j u~w! i&u2#1/2, ~12!
                                                                                                                



TABLE V. C 0 001).un& is an abbreviation foru000 000n&. Each CGC
should be d

u25& u26& u27& u28& u29& u30& u31& u32& u33& u34& u35& u36&

u01& u01& 2

u02& u02& 2 4

u03& u03&

u04& u04& 4

u05& u05& 2

u06& u06&

u01& u02& 2

u01& u03&

u01& u04& 2

u01& u05& 2

u01& u06&

u02& u03&

u02& u04&

u02& u05& 2

u02& u06&

u03& u04&

u03& u05&

u03& u06&

u04& u05& 2

u04& u06&

u05& u06&

u000 001& u000

u001 001̄& u001̄

u011̄ 100& u01̄1

u11̄0 100& u1̄10 1

u010 1̄10& u01̄0 1

u1̄00 100& u100 1 1

u11̄1 1̄10& u1̄11̄ 1 1

u010 01̄0& u01̄0 1 1

u1̄01 1̄10& u101̄ 1 1

u101̄ 011& u1̄01
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G coefficients for~000 000! dominant weight states of the 2430-dimensional~000 002! irrep in the product (000 001)̂(00
ivided by the respective number in the last row to maintain^nun&51.

(000 002)

u1& u2& u3& u4& u5& u6& u7& u8& u9& u10& u11& u12& u13& u14& u15& u16& u17& u18& u19& u20& u21& u22& u23& u24&

2 4

2

2 4 4

2

2

2

2

2

2

2

2 2

2

2

001̄& 1

001& 1 1

1̄00& 1 1

1̄00& 1

11̄0& 1

1̄00&

11̄0& 1 1 1

010&

11̄0& 1 1

01̄1̄& 1 1 1 1

                                                                                                                                    



u25& u26& u27& u28& u29& u30& u31& u32& u33& u34& u35& u36&

u11̄1 01̄0& u1̄11̄ 1 1

u1̄01 01̄0& u101̄

u1̄11̄ 011& u11̄1 1

u100 011̄& u1̄00 1

u101̄ 11̄1& u1̄01 1

u1̄11̄ 11̄1& u11̄1 1 1 1 1

u01̄0 011& u010 1

u1̄10 011̄& u11̄0 1 1

u100 11̄1̄& u1̄00 1 1

u100 1̄01& u1̄00 1

u01̄0 11̄1& u010 1 1

u1̄10 1̄01& u11̄0 1 1

u1̄10 11̄1̄& u11̄0 1 1 1

u01̄1 011̄& u011̄ 1

u101 1̄01̄& u1̄01̄ 1

u01̄1 1̄01& u011̄

u01̄1 11̄1̄& u011̄ 1 1

u1̄11 1̄01̄& u11̄1̄ 1 1

u001̄ 110& u001¯ 1 1

u111̄ 000& u1̄1̄1 1 1

u21̄0 000& u2̄10 1 1 1

u1̄21̄ 000& u12̄1 1 1 2

u01̄2 1̄01̄& u012̄ 1 1

u001̄ 21̄0& u001 1 2

u000 1̄20& u000 1 1 1

u001̄ 002& u001

4 4 4 A40 A6 4 4 4 A6 4 A40 A6
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TABLE V. ~Continued.!

(000 002)

u1& u2& u3& u4& u5& u6& u7& u8& u9& u10& u11& u12& u13& u14& u15& u16& u17& u18& u19& u20& u21& u22& u23& u24&

010& 1 1

010& 1 1 1 1 1

01̄1̄& 1 1 1 1

01̄1& 1 1

1̄11̄& 1 1 1 1

1̄11̄& 1 1 1 1 1 1 1 1 1 1 1

01̄1̄& 1 1

01̄1& 1 1

1̄11& 1 1

101̄& 1 1

1̄11̄& 1 1 1 1 1

101̄& 1 1 1 1 1

1̄11& 1 1 1 1 1 1

01̄1& 1 1 1 1

101& 1 1 1 1

101̄& 1 1 1 1 1 1 2 1

1̄11& 1 1 1 1 1 1 1 1 1

101& 1 1 1 1 1 1 1 1 1

11̄0& 1 1

000& 1 1

000&

000& 1 1 1 1

101& 1 1 1 1 1 1 1 2 1 1 1

2̄10& 1 1 1 1 1

12̄0&

002̄& 1 3 2 1 2

A6 4 4 4 4 4 4 4 4 8 A40 A6 4 4 4 4 4 4 A40 4 A40 A6 4 4

                                                                                                                                    



TABLE VI. 0 001)̂(000 001).~The remaining nine states of this irrep
with the sam n the last row to maintain^nun&51.

u25& u26& u27& u28& u29& u30& u31& u32& u33& u34& u35& u36&

u01& u01&

u02& u02&

u03& u03&

u04& u04&

u05& u05&

u06& u06&

u01& u02& 2 22 2

u01& u03&

u01& u04& 2

u01& u05&

u01& u06&

u02& u03& 22 2

u02& u04& 22 2

u02& u05&

u02& u06&

u03& u04&

u03& u05&

u03& u06&

u04& u05& 22 2

u04& u06&

u05& u06&

u000 001& u000

u001 001̄& u001̄

u011̄ 100& u01̄1 21

u11̄0 100& u1̄10 21 21

u010 1̄10& u01̄0 21

u1̄00 100& u100 21

u11̄1 1̄10& u1̄11̄ 21 21

u010 01̄0& u01̄0 21

u1̄01 1̄10& u101̄ 21

u101̄ 011& u1̄01
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CG coefficients for the first 36~000 000! dominant weight states of the 2925-dimensional~001 000! irrep in the product (00
e weight are shown in Table VII.! un& stands foru000 000n&. Each CGC should be divided by the respective number i

(001 000)

u1& u2& u3& u4& u5& u6& u7& u8& u9& u10& u11& u12& u13& u14& u15& u16& u17& u18& u19& u20& u21& u22& u23& u24&

2 22

22 2

22 2

22 2

22 2

22 2

22 2

22 2

001̄& 21

001& 21

1̄00&

1̄00&

11̄0& 21

1̄00&

11̄0& 21 21

010& 21

11̄0& 21 21

01̄1̄& 21 21 21

                                                                                                                                    



u25& u26& u27& u28& u29& u30& u31& u32& u33& u34& u35& u36&

u11̄1 01̄0& u1̄11̄ 21

u1̄01 01̄0& u101̄

u1̄11̄ 011& u11̄1

u100 011̄& u1̄00

u101̄ 11̄1& u1̄01 21

u1̄11̄ 11̄1& u11̄1 21 21 21

u01̄0 011& u010

u1̄10 011̄& u11̄0

u100 01̄1̄& u1̄00 21

u100 1̄01& u1̄00 21

u01̄0 11̄& u010 1̄ 21 21

u1̄10 1̄01& u11̄0 21 21

u1̄10 11̄1̄& u11̄0 21 21 21

u01̄1 011̄& u011̄

u101 1̄01̄& u1̄01̄ 21

u01̄1 1̄01& u011̄ 21

u01̄1 11̄1̄& u011̄ 21 21

u1̄11 1̄01̄& u11̄1̄ 21 21 21 21 21 21

u001̄ 110& u001¯ 21 21

u111̄ 000& u1̄1̄1 21 21 21 21

u21̄0 000& u2̄10 21 21 21 21

u1̄21̄ 000& u12̄1 21 21 21 22 22

u01̄2 1̄01̄& u012̄ 21 21 21 21 21

u001̄ 21̄0& u001 21 21

u000 1̄20& u000 21 21

u001̄ 002& u001

A12 A12 4 4 4 A12 A12 A12 A32 A24 4 4

8179
J.

M
ath.

P
hys.,

V
ol.

41,
N

o.
12,

D
ecem

ber
2000

E
6

unification
m

odelbuilding
II.
TABLE VI. ~Continued.!

(001 000)

u1& u2& u3& u4& u5& u6& u7& u8& u9& u10& u11& u12& u13& u14& u15& u16& u17& u18& u19& u20& u21& u22& u23& u24&

010& 21 21

010& 21 21

01̄1̄& 21 21 21 21 21

01̄1& 21 21 21 21

1̄11̄& 21 21 21

1̄11̄& 21 21 21 21 21 21 21 21

01̄1̄& 21 21 21 21

01̄1& 21 21 21 21 21 21

1̄11& 21 21 21 21

101̄& 21 21 21

11̄& 21 21 21 21 21 21 21

101̄& 21 21 21 21 21 21

1̄11& 21 21 21 21 21 21 21 21 21

01̄1& 21 21 21 21 21 21 21 21

101& 21 21 21

101̄& 21 21 21 21 21 21 21 21

1̄11& 21 21 21 21 21 21 21 21 21 21 21

101& 21 21 21 21 21 21

11̄0& 21 21 21

000&

000&

000&

101& 21 21 21 21 21 21 21 21

2̄10& 21 21 21

12̄0&

002̄& 21 21 22

4 4 4 4 4 4 4 4 4 4 4 4 A12 A12 A24 4 4 4 4 4 4 4 4 4

                                                                                                                                    



TABLE VII. 0! irrep, 78-dimensional~000 001! irrep, and the singletS
in the produ maintain^nun&51.

(000 001) S

u16& u17& u18& u19& u20& u1& u2& u3& u4& u5& u6& u1&

u01& u01& 8

u02& u02& 20

u03& u03& 36

u04& u04& 20

u05& u05& 8

u06& u06& 24 12

u01& u02& 210

u01& u03& 12

u01& u04& 28

u01& u05& 4

u01& u06& 22 26

u02& u03& 224

u02& u04& 16

u02& u05& 28

u02& u06& 22 22 12

u03& u04& 224

u03& u05& 12

u03& u06& 4 218

u04& u05& 210

u04& u06& 22 22 12

u05& u06& 22 26

u000 001& u000 1 1 23

u001 001̄& u001̄ 1 1 1 3

u011̄ 100& u01̄1 1 1 1 23

u11̄0 100& u1̄10 1 1 21 3

u010 1̄10& u01̄0 21 1 1 3

u1̄00 100& u100 1 1 23

u11̄1 1̄10& u1̄11̄ 21 21 21 2 21 23

u010 01̄0& u01̄0 1 1 23

u1̄01 1̄10& u101̄ 21 1 1 1 3

u101̄ 011& u1̄01 1 1 1 1 21 1 21 3
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(001 000)

continued from table VI
(100 010)

u37& u38& u39& u40& u41& u42& u43& u44& u45& u1& u2& u3& u4& u5& u6& u7& u8& u9& u10& u11& u12& u13& u14& u15&

4

24 4

4 4 4

4 24

4

24 22

2 22 4 22

22 22 22

22

22

4 22 22 22

22 22 22

22 22

22

2 22 22 22 22 4

22 4

22 22 22

22 22 24

22

22

001̄&

001& 21 1

1̄00& 21 1 1

1̄00& 1 1 1

11̄0& 1 1 1

1̄00& 21 1 21 1

11̄0& 21 1 1 1 1 1 1 1 1 1

010& 1 21 1

11̄0& 21 1 1 1 21 1 1 21 1

01̄1̄& 21 1 1 21 1
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which relates the lowerings among the adjacent levels. In this relation, the subscript on~w! is only
relevant for the degenerate zero weights and can be ignored for all other weights of the78. Note
that the zero weight states which we use to derive the CGCs in the78^ 78 tensor product belong
to the nonorthogonal basis discussed above. In this case, the inner product entering~12! is given
by Eq.~6!. Relation~12! can be easily derived, up to the sign convention, from the group alge
Eq. ~3!, using the propertyE2a i

5Ea i

† . The recursive relation~12! must be further generalized fo

weight systems with degenerate weights on successive levels.10

III. CLEBSCH-GORDAN COEFFICIENTS FOR 78‹78

As discussed in Ref. 2, it is sufficient to present the tensor decomposition of the dom
weight states in the product. The CGCs of the other states can be obtained with the help
charged conjugate operators introduced in Ref. 11~or by direct lowerings!. Examples of applica-
tions of these operators can be found in Ref. 3.

The dominant weights in the product78^ 78 are listed on the right side of Eq.~2!. We start
with the highest weight state~or level 0! of the 2430-dimensional~000 002! irrep:

u000 002&5 u000 001&u000 001&. ~13!

TABLE VIII. Embeddings of the SU(3)c^ SU(2)L states into the 27 inE6 . Signs follow from our choice of projections
Eqs.~19!–~21!.

Superfield
standard

embedding

SU(3)c^ SU(2)L SU~5! SO~10! E6

~100 000! irrep

weight irrep weight irrep weight irrep weight level

Q ~10!~1! ~10!~1! ~0100! ~0100! ~00 001! ~00001! ~100 000! 0

2(1̄1)(1) (1̄010) 2(1̄0 010) (11̄0 010) 7

2(01̄)(1) 2(1̄101̄) 2(01̄ 001) (100 001̄) 11

(10)(1̄) 2(101̄1) 2(01 01̄0) (000 01̄1) 5

(1̄1)(1̄) 2(01̄01) 2(1̄1 001̄) (01̄0 001) 12

2(01̄)(1̄) (001̄0) (00 01̄0) (000 01̄0) 16

Uc ~01!~0! ~01!~0! (11̄10) (01 1̄10) (001̄101) 3

(11̄)(0) 2(1001̄) 2(10 1̄01) (011̄11̄0) 7

(1̄0)(0) 2(01̄11̄) 2(00 1̄10) (001̄100) 14

Ec ~00!~0! ~00!~0! (1̄11̄1) 2(1̄0 11̄0) (11̄11̄00) 9

Dc ~01!~0! ~01!~0! ~0001! ~0001! (00 101̄) (01̄1 000) 2

(11̄)(0) (011̄0) 2(11̄ 11̄0) (001 01̄1̄) 6

(1̄0)(0) 2(1̄000) 2(01̄ 101̄) (01̄1 001̄) 13

L 2(00)(1) ~00!~1! 2(0011̄) (11̄ 010) (000 101̄) 4

(00)(1̄) (11̄00) (10 001̄) (1̄00 11̄0) 9

Nc 2(00)(0) ~00!~0! 2(0000) ~0000! 2(1̄11̄01) (101̄001) 10

T ~10!~0! ~10!~0! ~1000! ~1000! ~10 000! ~10000! (1̄10 000) 1

2(1̄1)(0) 2(01̄10) (00 011̄) (1̄00 010) 8

2(01̄)(0) (0001̄) (11̄ 000) (1̄10 001̄) 12

Hu 2(00)(1) ~00!~1! 2(1̄100) 2(01̄ 100) (001 1̄11̄) 5

(00)(1̄) 2(001̄1) (00 11̄1̄) (1̄01 1̄00) 10

Tc 2(01)(0) ~01!~0! 2(0001) ~0001! 2(1̄1 000) (000 1̄11) 4

2(11̄)(0) 2(011̄0) 2(00 01̄1) (010 1̄00) 8

2(1̄0)(0) (1̄000) 2(1̄0 000) (000 1̄10) 12

Hd 2(00)(1) ~00!~1! 2(0011̄) 2(00 1̄11) (011̄010) 6

(00)(1̄) (11̄00) (01 1̄00) (1̄11̄ 001) 11

S ~00!~0! ~00!~0! ~0000! ~0000! ~00 000! ~00000! (11̄0 11̄0) 8
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The first lowering leads to~001 000! which is another dominant weight. Following the rul
outlined in the previous section the level 1 state of the~000 002! irrep consists of the symmetri
combination

u001 000&5
1

&
~ u000 001&u001 001̄&1u001 001̄&u000 001&), ~14!

while the orthogonal antisymmetric combination

u001 000&5
1

&
~ u000 001&u001 001̄&2 u001 001̄&u000 001&), ~15!

represents the highest weight state of the 2925-dimensional~001 000! irrep. (x̄[2x is used
throughout this paper.!

The next dominant weight,~100 010!, is reached at level 6 of the2430 and is three-fold
degenerate~level five and fourfold degenerate, in case of the2925!. The state orthogonal to bot
of these irreducible subspaces is symmetric and becomes the highest weight state of th
dimensional irrep. The~000 001! dominant weight is then obtained at level 11~10, 5! of the2430

TABLE IX. Embeddings of the SU(3)c^ SU(2)L states into the27 in E6 . Signs follow from our choice of projections
Eqs.~19!–~21!.

Superfield
standard

embedding

SU(3)c^ SU(2)L SU~5! SO~10! E6

~000 010! irrep

weight irrep weight irrep weight irrep weight level

Q̄ ~01!~1! ~01!~1! ~0010! ~0010! ~00 010! ~00010! ~000 010! 0

(11̄)(1) 2(0101̄) (11̄ 001) (010 001̄) 4

(1̄0)(1) (1̄011̄) 2(01̄ 010) (000 011̄) 11

(01)(1̄) (11̄01) 2(01 001̄) (1̄00 001) 5

2(11̄)(1̄) 2(101̄0) (10 01̄0) (1̄10 01̄0) 9

(1̄0)(1̄) (01̄00) (00 001̄) (1̄00 000) 16

Uc ~10!~0! ~10!~0! (011̄1) (00 11̄0) (001 1̄00) 2

(1̄1)(0) 2(1̄001) 2(1̄0 101̄) (01̄11̄10) 9

2(01̄)(0) (1̄11̄0) 2(01̄ 11̄0) (001 1̄01̄) 13

Ec ~00!~0! ~00!~0! (11̄11̄) 2(10 1̄10) (1̄11̄ 100) 7

Dc ~10!~0! ~10!~0! ~1000! ~1000! (01 1̄01) (011̄001) 3

(1̄1)(0) (01̄10) 2(1̄1 1̄10) (001̄011) 10

2(01̄)(0) (0001̄) 2(00 1̄01) (011̄000) 14

L̄ ~00!~1! ~00!~1! (1̄100) 2(1̄0 001) (100 1̄10) 7

2(00)(1̄) (001̄1) 2(1̄1 01̄0) (000 1̄01) 12

Nc 2(00)(0) ~00!~0! 2(0000) ~0000! 2(11̄ 101̄) (1̄01 001̄) 6

Tc ~10!~0! ~10!~0! ~1000! ~1000! ~10 000! ~10000! (000 11̄0) 1

(1̄1)(0) (01̄10) 2(00 011̄) (01̄0 100) 8

2(01̄)(0) (0001̄) (11̄ 000) (000 11̄1̄) 12

Hd 2(00)(1) ~00!~1! 2(1̄100) 2(01̄ 100) (11̄1 001̄) 5

(00)(1̄) 2(001̄1) (00 11̄1̄) (01̄1 01̄0) 10

T̄ 2(01)(0) ~01!~0! 2(0001) ~0001! 2(1̄1 000) (11̄0 001) 4

(11̄)(0) (011̄0) (00 01̄1) (100 01̄0) 8

2(1̄0)(0) (1̄000) 2(1̄0 000) (11̄0 000) 15

Hu 2(00)(1) ~00!~1! 2(0011̄) 2(00 1̄11) (101̄100) 6

(00)(1̄! (11̄00) (01 1̄00) (001̄11̄1) 11

S̄ ~00!~0! ~00!~0! ~0000! ~0000! ~00 000! ~00000! (1̄10 1̄10) 8
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TABLE X. Embeddings of the SU(3)c^ SU(2)L states into the nonzero weight states of the 78 inE6 . Signs follow from
our choice of projections, Eqs.~19!–~21!.

Superfield SU(3)c^ SU(2)L SU~5! SO~10! E6

~000 001! irrep

weight irrep weight irrep weight irrep weight level

G ~11!~0! ~11!~0! ~1001! ~1001! ~01 000! ~01000! ~000 001! 0

2(21̄)(0) 2(111̄0) 2(10 01̄1) (010 01̄0) 4

(1̄2)(0) (01̄11) (1̄1 011̄) (01̄0 011) 7

2(12̄)(0) (011̄1̄) 2(11̄ 01̄1) (010 01̄1̄) 15

2(2̄1)(0) (1̄1̄10) (1̄0 011̄) (01̄0 010) 18

2(1̄1̄)(0) 2(1̄001̄) (01̄ 000) (000 001̄) 22

W ~00!~2! ~00!~2! (1̄111̄) (01̄ 011) (100 011̄) 6

(00)(2̄) 2(11̄1̄1) (01 01̄1̄) (1̄00 01̄1) 16

X ~10!~1! ~10!~1! (1011̄) (10 1̄11) (011̄100) 2

(1̄1)(1) (01̄21̄) (00 1̄20) (001̄110) 9

(01̄)(1) 2(0012̄) (11̄ 1̄11) (011̄101̄) 13

(10)(1̄) (21̄00) (11 1̄00) (1̄11̄ 11̄1) 7

(1̄1)(1̄) (12̄10) 2(01 1̄11̄) (1̄01̄ 101) 14

(01̄)(1̄) 2(11̄01̄) (10 1̄00) (1̄11̄ 11̄0) 18

X̄ 2(01)(1) ~01!~1! 2(1̄101) (1̄0 100) (11̄1 1̄10) 4

(11̄)(1) (1̄21̄0) (01̄11̄1) (101 1̄01̄) 8

(1̄0)(1) 2(2̄100) (1̄1̄ 100) (11̄11̄ 11̄) 15

2(01)(1̄) (001̄2) (1̄1 11̄1̄) (01̄1 1̄01) 9

(11̄)(1̄) 2(012̄1) 2(00 12̄0) (001 1̄1̄0) 13

(1̄0)(1̄) (1̄01̄1) (1̄0 11̄1̄) (01̄1 1̄00) 20

Q45 ~10!~1! ~10!~1! ~0100! ~0100! (11̄ 100) (001 001̄) 1

(1̄1)(1) 2(1̄010) (01̄111̄) (01̄1 011̄) 8

(01̄)(1) (1̄101̄) (12̄ 100) (001 002̄) 12

(10)(1̄) 2(101̄1) (10 11̄1̄) (1̄01 01̄0) 6

(1̄1)(1̄) 2(01̄01) 2(00 102̄) (1̄1̄1 000) 13

(01̄)(1̄) 2(001̄0) (11̄11̄1̄) (1̄01 01̄1̄) 17

U45
c ~01!~0! ~01!~0! (11̄10) 2(10 011̄) (1̄00 100) 4

2(11̄)(0) (1001̄) (21̄ 000) (1̄10 11̄1̄) 8

2(1̄0)(0) (01̄11̄) 2(11̄ 011̄) (1̄00 101̄) 15

E45
c 2(00)(0) ~00!~0! 2(1̄11̄1) (01̄21̄1̄) (01̄2 1̄01̄) 10

Q̄45
~01!~1! ~01!~1! ~0010! ~0010! (1̄1 1̄11) (101̄011) 5

2(11̄)(1) (0101̄) (00 1̄02) (111̄000) 9

2(1̄0)(1) 2(1̄011̄) (1̄0 1̄11) (101̄010) 16

(01)(1̄) (11̄01) (1̄2 1̄00) (001̄002) 10

2(11̄)(1̄) 2(101̄0) 2(01 1̄1̄1) (011̄01̄1) 14

2(1̄0)(1̄) 2(01̄00) (1̄1 1̄00) (001̄001) 21

Uc
45 ~10!~0! ~10!~0! (011̄1) (1̄1 01̄1) (100 1̄01) 7

(1̄1)(0) 2(1̄001) (2̄1 000) (11̄0 1̄11) 14

(01̄)(0) 2(1̄11̄0) (1̄0 01̄1) (100 1̄00) 18

Ec
45 ~00!~0! ~00!~0! (11̄11̄) (01 2̄11) (012̄101) 12

Q16 ~10!~1! ~10!~1! ~0100! ~0100! ~00 001! ~00001! (010 1̄10) 3

(1̄1)(1) 2(1̄010) (1̄0 010) (000 1̄20) 10

(01̄)(1) (1̄101̄) (01̄ 001) (010 1̄11̄) 14

(10)(1̄) 2(101̄1) 2(01 01̄0) (1̄10 1̄01) 8

(1̄1)(1̄) 2(01̄01) 2(1̄1 001̄) (1̄00 1̄11) 15

(01̄)(1̄) 2(001̄0) 2(00 01̄0) (1̄10 1̄00) 19

U16
c 2(01)(0) ~01!~0! 2(11̄10) 2(01 1̄10) (1̄11̄ 011) 6

(11̄)(0) 2(1001̄) 2(10 1̄01) (1̄21̄ 000) 10
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~2925, 650! and is 11-fold~15-fold, fivefold! degenerate. The reducible~000 001! weight subspace
is, however, 32-dimensional. The extra orthogonal state is antisymmetric and represents th
est weight state of the78. Finally, at level 22~21, 16, 11! of the2430~2925, 650, 78! we get the
36-fold ~45-fold, 20-fold, sixfold! degenerate~000 000! weight. This reducible subspace is 10
dimensional and leaves room for one singlet state, which is symmetric.

For each dominant weight subspace at leveln the basis states are specified by their respec
lowering paths: sequences of integersi n¯ i 2i 1 , 1< i k<6. This is a shorthand notation for th
sequence of lowering operatorsE2a i n

¯E2a i 2
E2a i 1

which is to be applied from right to left to the

highest weight state in order to obtain a basis state. Lowering paths for the basis states of th2430
and2925are presented in Tables I and II. Lowering paths relevant for the remaining irreps c
found in Table I in Ref. 3. Lowering paths are in general not unique. This is not of much con
for the650or 78 since following different paths always yields the same basis states for thes
irreps. However, this convenient property is no longer true for the2430 and 2925 where the
number of distinct, albeit linearly dependent states may by far exceed the dimensionality
weight subspace.12

Tables III–VII contain the Clebsch–Gordan coefficients for the dominant weight stat
78^ 78. In Tables V–VII, after showing the CGCs for a combination of statesux&ux̄& we no longer
show the CGCs forux̄&ux&. The latter is either the same as the former for the symmetric~000 002!,
~100 010!, and~000 000! irreps, or opposite in sign for the antisymmetric~001 000! and~000 001!
irreps. For brevityA in Table IV stands for the adjoint~000 001! irrep, and similarly,S in Table
VII denotes the singlet. Numbering of the degenerate states is consistent with Tables I and
Table I in Ref. 3.

TABLE X. ~Continued.!

Superfield SU(3)c^ SU(2)L SU~5! SO~10! E6

~000 001! irrep

weight irrep weight irrep weight irrep weight leve

(1̄0)(0) 2(01̄11̄) 2(00 1̄10) (1̄11̄ 010) 17

E16
c 2(00)(0) ~00!~0! 2(1̄11̄1) (1̄0 11̄0) (001 2̄10) 12

D16
c 2(01)(0) ~01!~0! 2(0001) ~0001! 2(00 101̄) (1̄01 1̄10) 5

(11̄)(0) (011̄0) 2(11̄ 11̄0) (1̄11 1̄01̄) 9

(1̄0)(0) 2(1̄000) 2(01̄ 101̄) (1̄01 1̄11̄) 16

L16 ~00!~1! ~00!~1! (0011̄) 2(11̄ 010) (1̄10 011̄) 7

(00)(1̄) (11̄00) (10 001̄) (2̄10 000) 12

N16
c ~00!~0! ~00!~0! ~0000! ~0000! (1̄11̄01) (011̄1̄11) 13

Q̄16̄
~01!~1! ~01!~1! ~0010! ~0010! ~00 010! ~00010! (11̄0 100) 3

2(11̄)(1) (0101̄) 2(11̄ 001) (100 11̄1̄) 7

2(1̄0)(1) 2(1̄011̄) (01̄ 010) (11̄0 101̄) 14

(01)(1̄) (11̄01) 2(01 001̄) (01̄0 11̄1) 8

2(11̄)(1̄) 2(101̄0) (10 01̄0) (000 12̄0) 12

2(1̄0)(1̄) 2(01̄00) 2(00 001̄) (01̄0 11̄0) 19

Uc
16̄ 2(10)(0) ~10!~0! 2(011̄1) 2(00 11̄0) (11̄1 01̄0) 5

2(1̄1)(0) (1̄001) (1̄0 101̄) (12̄1 000) 12

2(01̄)(0) (1̄11̄0) 2(01̄ 11̄0) (11̄1 01̄1̄) 16

Ec
16̄ ~00!~0! ~00!~0! (11̄11̄) 2(10 1̄10) (001̄21̄0) 10

Dc
16̄ 2(10)(0) ~10!~0! 2(1000) ~1000! 2(01 1̄01) (101̄11̄1) 6

2(1̄1)(0) 2(01̄10) (1̄1 1̄10) (11̄1̄ 101) 13

2(01̄)(0) (0001̄) 2(00 1̄01) (101̄11̄0) 17

L̄16̄
2(00)(1) ~00!~1! 2(1̄100) (1̄0 001) (21̄0 000) 10

2(00)(1̄) (001̄1) 2(1̄1 01̄0) (11̄0 01̄1) 15

Nc
16̄ 2(00)(0) ~00!~0! 2(0000) ~0000! 2(11̄ 101̄) (01̄1 11̄1̄) 9
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The decomposition of the singlet~last column of Table VII! takes a very simple form

S[u000 000&5
1

A78
F 2Gi j

0 u0i&u0 j&1 (
k51

72

~21! l 11uxk&ux̄k&G , ~16!

wherek enumerates the nondegenerate weight states of the~000 001! irrep andl is the level of
weight (xk) within this irrep. MatrixG0 was introduced in the previous section. The transform
tion to the orthogonal basisu0̃i&, @Eq. ~7!#, then diagonalizes the zero weight subspace. Using
~9! we get

u000 000&5
1

A78
(

1

78

~21! l 11 uw&uw̄&, ~17!

where the last sum runs over the complete weight system of the~000 001!. After the phase
redefinition of the even level states we would get each Clebsch–Gordan coefficient the
1/A78, as one would expect for the singlet in the product of two self-conjugate 78-dimens
irreps.

IV. APPLICATION TO MODEL BUILDING: OPERATOR 27 ‹78‹27

As a simple application we have derived the explicit form of the singlet operator contain
27^ 78^ 27 in terms of the Standard Model gauge group multiplets. We assume the sta
embedding of the Standard Model states into the27 in E6 as summarized in Table VIII. States o
the 27 and 78 are labeled in Tables IX and X, respectively, according to the similarity of t
SU(3)c^ SU(2)L structure with the27 irrep.13 Labeling of the nonzero78 weights includes
subscripts which indicate an SO~10! irrep the state belongs to.

The tables include signs associated with each Dynkin label. The signs result from the
ventions used for the embedding of the subgroup chain

E6.SO~10!.SU~5!.SU~3!c^ SU~2!L ^ U~1!Y . ~18!

In particular, our conventions for the SO~10! projections read

E2j1
52@E2a2

,@E2a3
,E2a4

##,

E2j2
5E2a6

,

E2j3
5E2a3

, ~19!

E2j4
5@E2a4

,E2a5
#,

E2j5
5@E2a2

,E2a1
#,

where theE2j i
, (i 51,...,5) are the SO~10! ladder operators andj i ’s are the simple roots o

SO~10!. Similarly, SU~5! lowerings are projected out according to

E2h1
5@E2j2

,E2j1
#,

E2h2
5@E2j3

,E2j5
#,

~20!
E2h3

5E2j4
,
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E2h4
5@E2j3

,E2j2
#,

and SU~3!c and SU~2!L projections satisfy

E2p1
5@E2h2

,E2h1
#,

E2p2
5@E2h3

,E2h4
#, ~21!

E2r5@E2h2
,E2h3

#.

We remark that these projections are consistent with the explicit form of theC matrix in Eq.~10!
and with relation~13! in Ref. 3. Clearly, the sign at the SO~10! weights, SU~5! weights, or
SU(3)c^ SU(2)L weights in Tables VIII–X is a relative sign with respect to theE6 weights, and
follows from our choice of the subgroup embedding. We remind the reader that we have s
with simple lowering phase convention which was just overall~1! sign for any weight state
obtained by lowering inE6 @compare with the text below Eq.~11!#. We also assume that the sam
simple lowering phase convention applies to the construction of any weight system with
subgroups ofE6 . Signs in Tables VIII–X indicate that the embedding induces a relative phas
the states ofE6 and the corresponding states of its subgroups. On top of theembeddingphase
convention, we now introduce a third set of phase conventions, which we callphysical. These
combine with the former but are not taken into account in Tables VIII–X. In particular,
physical phase conventions for states of the SU(3)c^ SU(2)L irreps read:

~a! Each SU~3!c anti-triplet component with weight~1 1̄! has its phase redefined by multiplyin
the state by (21),

~b! anti-doublets of the SU~2!L are formed as (2(1)
(1̄)) with an extra (2) sign at the lower

component, as opposed to doublets which are simply labeled as (
(1̄)

(1)
),

~c! SU~3!c octet components with weights~2 1̄! and ~1 2̄! and the weight~2! component of an
SU~2!L triplet have their phases redefined by multiplying the corresponding state
(21),

~d! Assuming that the two~0 0! weight states of the SU(3)c octet are projected to be orthogon
to each other and one of them lies in the isospin direction,14 the isospin singlet state has i
phase redefined by multiplying the state with (21),

~e! The phases of theDc states~in the27 and78! andEc states~in the78 and27! are redefined
by multiplying the corresponding states with (21).

The phase conventions~a!–~d! make up for the simplicity of the lowering phase conventi
for the Standard Model subgroups. In fact, they could be substituted by a more compl
lowering rules at the SU(3)c^ SU(2)L level, or at theE6 level. The advantage of our approach
that the make-up changes are only suggested at the SU(3)^ SU(2) level after the weight system
of an E6 irrep is obtained with simple lowering phase convention, and thus the constructi
more transparent. Note that rules~a! and~b! of our physical phase conventions are introduced
make the singlet inf̄ f a symmetric combination~trace! of states in fundamental irrepsf and f̄ of
the SU~3! or SU~2!. Similarly, rules~c! and ~d! put the singlet inf̄ A f into the form familiar to
particle physics, with the interaction LagrangianC̄ f TaAa C f , whereA is the gauge field trans
forming as an adjoint irrep andTa s are the Gell–Mann matrices of SU~3! or Pauli matrices of
SU~2!. Finally, according to our rule~e!, Dc states change sign to make the down quark mass t
of the same sign as the up quark, electron, and neutrino mass terms, and the phase oEc is
redefined to keep the singlet in the27^ 27 with plus signs only~trace!, in terms of the particle
states.

Next, we specify which two-dimensional multiplets of SU~2! ~see tables VIII–X! are going to
be labeled as doublets and which as anti-doublets. In our notation, two-component staHd
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5(
H

d
0

Hd
2

) of the27, X̄ of the78, andQ̄5(
D̄

Ū
), L̄5(

e2

n̄
), andHu5(

Hu
0

Hu
1

) of both the78 and27 represent

SU(2)L anti-doublets. Any other two-dimensional multiplets of SU~2!L are assumed to be dou
blets. Our SU~2! contractions among doublets and anti-doublets are defined to be as sim
possible: two doublets and two anti-doublets are contracted through the same matrixe5(21 0

0 1 ),
while the contraction of a doublet and an anti-doublet does not depend on the orderin
instance,QL5Ue22Dn, Q̄Hd5ŪHd

02D̄Hd
2 , andQHd5HdQ5UHd

21DHd
0 .

With all the phase conventions included the explicit form of the singlet operator contain
27^ 78^ 27 takes the form

~78^ 27^ 27!15
1

)
AaH Q̄

la

2
Q2Uc

la *

2
Uc2Dc

la *

2
Dc1T̄

la

2
T2Tc

la *

2
TcJ

1
1

)
Wi H Q̄

s i

2
Q1L̄

s i

2
L1Hu

s i

2
Hu2Hd

s i *

2
HdJ 1

1

A180
Y0$Q̄Q24UcUc

16EcEc12DcDc23L̄L22T̄T13HuHu12TcTc23HdHd%1
1

A120
x0$2Q̄Q

2UcUc2EcEc13 ~DcDc1L̄L !25NcNc12 ~ T̄T1HuHu2TcTc2HdHd!%

1
1

A72
C0$Q̄Q1UcUc1EcEc1DcDc1L̄L1NcNc22 ~ T̄T1HuHu1TcTc

1HdHd!14 S̄S%1
1

A6
X$2Q̄Ec1L̄Dc2T̄Hu1HdTc2UcQ%1

1

A6
X̄$1EcQ

2DcL1HuT2TcHd2Q̄Uc%1
1

A6
Q45$2Q̄Nc1L̄Uc2HuTc1T̄Hd1DcQ%

1
1

A6
U45

c $2UcNc2DcEc1L̄Q1T̄Tc%1
1

A6
E45

c $2EcNc2HuHd2DcUc%

1
1

A6
Q̄45$1NcQ2UcL1TcHu2HdT1Q̄Dc%1

1

A6
Uc

45$1NcUc1EcDc2Q̄L

1TcT%1
1

A6
Ec

45$1NcEc2HdHu1UcDc%1
1

A6
Q16$Q̄S1T̄L1HuDc1HdUc

1TcQ%1
1

A6
U16

c $UcS2TcEc2HdQ2T̄Dc%1
1

A6
E16

c $EcS1HuL2TcUc%

1
1

A6
D16

c $DcS1TcNc1HuQ1T̄Uc%1
1

A6
L16$L̄S1HuEc1HdNc2T̄Q%

1
1

A6
N16

c $NcS2HdL1TcDc%1
1

A6
Q̄16$2S̄Q2L̄T2DcHu2UcHd1Q̄Tc%

1
1

A6
Uc

16$2S̄Uc1EcTc2Q̄Hd2DcT%1
1

A6
Ec

16$2S̄Ec2L̄Hu1UcTc%
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1
1

A6
Dc

16$2S̄Dc2NcTc2Q̄Hu1UcT%1
1

A6
L̄16$2S̄L2EcHu2NcHd1Q̄T%

1
1

A6
Nc

16$2S̄Nc2L̄Hd2DcTc%, ~22!

where the orthogonal zero weight states have been obtained using matrixC given in Eq.~10!.
u0̃4&, u0̃5&, andu0̃6& are now labeled asY0, x0, andC0, respectively. As usual in particle physic
‘‘gluon’’ fields Aa (a51,..,8) are defined via relationsG(6161)5(A47 iA5)/&, G(6271)5(A1

7 iA2)/&, G(7162)5(A67 iA7)/&, 2u0̃2&[G(00)
I 2singlet5A8, and u0̃1&[G(00)

I 2triplet5A3, and the
SU~2! triplet fields satisfyW(62)5(W17 iW2)/&, and u0̃3&[W(0)5W3. Note that theY0, x0,
andC0 interaction terms include numerical factors which coincide with theQz ~hypercharge, in
the standard embedding which we follow in this paper!, Qr , andQt charges, respectively, of th
components of the27 calculated in Ref. 3. This provides an important check of our calculat
Another interesting detail is the antisymmetry between off-diagonal charge conjugated term
is a direct consequence of the conventions we use. A symmetric property could be restore
broader set ofphysical conventions. In fact, rule (c) of our physical phase conventions do
exactly that for the off-diagonal contractions containing the SU~3! and SU~2! adjoints.16 Alterna-
tively, we could start with a differentlowering phase convention.

V. SUMMARY

In this paper we calculated the Clebsch–Gordan decomposition of the tensor product
adjoints inE6 . In detail, we explained the steps related to the presence of degenerate zero w
in the78. Our results can be applied to unification model building in a straightforward way.
simple application we worked out a complete form of the singlet27^ 78^ 27 operator. In addition,
the decomposition of the78^ 78 tensor product may be useful for a detailed study of the sym
try breaking sector of unified theories based onE6 , and for the analysis of higher dimension
operators in these theories, which contain fields transforming as an adjoint representationE6 .
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A homogeneous space–time model with singularities
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We show the existence of a left invariant pseudo-Riemannian metric on the Oscil-
lator Group of dimension four, such that this group becomes a space–time with
singularities in the sense of Hawking and Penrose. As an application we exhibit
new incomplete, nonhomeomorphic compact Lorentzian manifolds. ©2000
American Institute of Physics.@S0022-2488~00!01612-1#

I. INTRODUCTION

A space–time is a connected, four-dimensional semi-Riemannian manifold (M ,g), whereg is
Lorentzian, oriented by atimelike vector field X, i.e., g(X,X),0. Let ¹g be the Levi-Civita
connection of (M ,g). The solutions of the equation

¹ṡ
g ṡ50, ~1!

whereṡ is the tangent vector field of the curvet°s(t) (tPR) are thegeodesicsof g. The fact
that the connection is compatible with the metric implies

gs~ṡ,ṡ !5constant. ~2!

We say that a geodesict°s(t) is timelike, lightlike ~or null!, spacelikewhenever it satisfies
respectively,

gs(t)~ ṡ~ t !,ṡ~ t !!,0, gs(t)~ ṡ~ t !,ṡ~ t !!50, gs(t)~ ṡ~ t !,ṡ~ t !!.0.

A ~maximal! geodesic is calledcompletewhen it is defined for all valuestPR, otherwise it is
called incomplete. A space–time with incomplete timelike or null geodesics is said to h
singularities.1

Let G be a Lie group,g a left invariant pseudo-Riemannian metric onG. Clearly,g is given
by a nondegenerate bilinear symmetric formkg defined on its Lie algebraG[T«G. We denote by
Ls the left translation bys in G. Any xPG generates a left invariant vector field onG denoted by
xs

1
ª(Ls)* ,«x. Settingx(t)ª(Ls(t)21)* ,s(t)ṡ(t), Eq. ~1! becomes a differential equation onG,

ẋ52r ~x,x!, ~3!

wherer is the bilinear product onG defined by the formula¹x1
g y15r (x,y)1.

It is obvious that the completeness of Eq.~1! is equivalent to the completeness of Eq.~3!.
Definition 1: A Lie groupG endowed with a bi-invariant pseudo-Riemannian metric g

called Orthogonal Lie Group, and the pair(G,k) Orthogonal Lie Algebra (wherek is the restric-
tion of g toG).

a!Electronic mail: stbs@xanum.uam.mx
b!On sabbatical leave at Departamento de Matema´ticas, UAM-Iztapalapa, Me´xico, D.F. México. Electronic mail:

medina@darboux.math.univ-montp2.fr
81900022-2488/2000/41(12)/8190/6/$17.00 © 2000 American Institute of Physics
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Note that for (G,k) an orthogonal Lie algebra adx is k antisymmetric for allxPG. Every
k-symmetric isomorphismu of G defines a bilinear symmetric quadratic form onG setting

ku~x,y!5k~u~x!,y!,

and conversely.
The orthogonal Lie algebras are one of the objects underlying the WZW-models.2

In this work, we construct a Lorentzian, left invariant metricg on the Oscillator GroupG of
dimension four and we show that (G,g) is a space–time with singularities~in the sense of
Hawking–Penrose!. Moreover in this model, the hypothesis in Hawking’s and Penrose’s Sin
larities Theorems1,3 are not satisfied.

II. A NEW SPACE–TIME MODEL

Let us consider the orthogonal Abelian Lie algebraR2 with the usual scalar productk0
; , and

canonical orthonormal basisB5$e1 ,e2%. Let u be the antisymmetric endomorphism of (R2,k0
;)

given by the matrix

MBu5S 0 21

1 0 D .

Clearlyu defines a representation of the Lie algebraR by endomorphisms ofR2, also denoted
by u.

Let (G0 ,k0) be the orthogonal Lie algebra, obtained by double extension~in the Medina–
Revoy sense! of the algebra (R2,k0

;) by R by means ofu.4 That is, G0 is obtained by centra
extensionR e03vR2 of R2 by R by means of the scalar 2-cocyclev(x,y)ªk0

;(u(x),y), and then
by the semidirect product ofR e21 by R e03vR2 where the action is given by

@e21 ,e0#50, @e21 ,x#5u~x!, for xPR2.

Thus the Lie bracket inG0 is given by

@e21 ,e1#5e2 , @e21 ,e2#52e1 @e1 ,e2#5e0 ,

the other products are either null or are given by the antisymmetry of the Lie bracket. More
the quadratic formk0 extendsk0

; in such a way that the Minkowski plane Vect$e21 ,e0%,

k0~e0 ,e0!5k0~e21 ,e21!50, k0~e21 ,e0!51

is orthogonal toR2, and therefore the index ofk0 is one. SinceG0 is solvable, the connected~and
1-connected! Lie group G0 with Lie algebraG0 may be identified, as a manifold, withR4[R
3C3R with multiplication defined by

~s,z,t !•~s8,z8,t8!5~s1s81 1
2 Im z̄ei tz8,z1ei tz8,t1t8!.

Definition 2: The Lie groupG0 is called the four-dimensional Oscillator Group and its L
algebraG0 the four-dimensional Oscillator Algebra.

Remark:There is~essentially! a unique orthogonal structure onG0 . In fact, the set of orthogo-
nal structures on an orthogonal Lie algebra (G,k) is given by the invertible,k-symmetric elements
of

K~G!ª$wPEnd~G!; w@x,y#5@w~x!,y#, ; x,yPG%.

Two elementsw1 ,w2PK(G) are said to behomotheticif there existuPGL(G) and lPR, l
Þ0 such that
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k~u~x!,w1~u~y!!!5l k~x,w2~y!!, ;x,yPG.

Medina–Revoy5 proved that whenever the set

J~G!ª$wPEnd~G!;@G,G#,kerw and Imw,C~G!%

is contained inK(G) and K(G)5R% J(G), any two orthogonal structures onG are homothetic
@where C(G) is the center of the Lie algebraG#. And it is easily verified that this is the case fo
(G0 ,k0).

Let (x21 ,x0 ,x1 ,x2) be the coordinates ofxPG with respect to the basisB
5$e21 ,e0 ,e1 ,e2%. In these coordinates,

k~x,x!52x21x01x1
21x2

2 .

Propositions 3.2, 3.3, and 3.4~Ref. 6! allow us to state the following results inG0 :
Proposition 1: Let u be ak0-symmetric isomorphism ofG0 such that e0 is an eigenvector of

u. Then the left invariant metric onG0 induced byku is complete.
Proof: The hypothesis implies that the solutions of Eq.~3! are in fact solutions of an affine

equation and hence complete. h

Proposition 2: Let u be ak0-symmetric isomorphism ofG0 which leaves invariant a Cartan
subalgebra ofG0 . Then the left invariant metric onG0 induced byku is complete.

Proof: In this case the solutions of~3! are bounded and therefore complete.
h

Let us denote byLxªr (x,•). Sinceg is left invariant, the curvature tensorR of g may be
expressed by

RxyªL[x,y]2@Lx ,Ly# x,yPG.

A metric is said to beflat if R50.
Proposition 3: There is no flat left-invariant, pseudo-Riemannian metric onG0 .
Proof: Supposeku flat, then e0 is an eigenvector of the isomorphismu.6 Since u is

k-symmetric andC(G0)5Re0 is invariant byu, its k-orthogonal complement,G085@G0 ,G0#, is
also invariant byu. BeingC(G0) totally isotropic fork, the quotient algebraG08/C(G0) inherits an
orthogonal structure, denoted byk̄, and u induces an isomorphismū of G08/C(G0) which is
k̄-symmetric. This structure is positive definite, hence, there is ak̄-orthonormal basis ofG8/C(G0)
which diagonalizesū. We construct out of this basis a basisB5$E21 ,E05e0 ,E1 ,E2% of G0 such
that

k~E21 ,E0!5k~E1 ,E1!5k~E2 ,E2!51

~the nonstated products are either null or deduced from the given ones by symmetry!. The matrix
of u in this basis is given by

MBu5S n 0 0 0

r n a b

a 0 l 0

b 0 0 m

D .

The basisB is compatible with the bracket ofG0 in the sense that

@E21 ,E1#5vE2 ,

@E21 ,E2#52vE1 ,
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@E1 ,E2#5vE0 ,

wherevPR is a constant that we shall assume, with no loss of generality, equal to 1.
SinceLe0

50, Lxy2Lyx5@x,y#, andLE1
E15LE2

E250, in order to evaluateLx we just need
the following products:

LE1
~E2!5

1

2n
~n2l1m!E0 ,

LE21
~E21!5

ab

lnm
~m2l!E02

b

l
E11

a

m
E2 ,

LE21
~E1!52

b

2mn
~l2m2n!E01

1

2m
~l1m2n!E2 ,

LE21
~E2!52

a

2nl
~l2m1n!E02

1

2l
~l1m2n!E1 .

Sinceku is flat,

05ku~RE21E1
~E1!,E21!5m2n2

1

4m
~l1m2n!2

and

05ku~RE21E2
~E2!,E21!5l2n2

1

4l
~l1m2n!2.

The former equalities implylmn50, which is impossible. h

Remark:There are flat, left-invariant connections with torsion zero onG0 .7 Proposition 3
states that none of them is induced by a left invariant metric. Take for instance the conn
given onG0 by Table I.

These facts led us in the search for the noncomplete, left invariant pseudo-Riemannian
on G0 . We can prove the following result:

Theorem 1: Let g be the left invariant metric onG0 induced by thek0-symmetric isomor-
phism u ofG0 defined by

u~e21!5e1 , u~e0!5e21 , u~e1!5e0 , u~e2!5e2 .

Then(G0 ,g) is a nonflat space–time that is null and timelike incomplete hence with singularit
and such that the hypothesis of Penrose’s and Hawking’s Singularities Theorems are not fu.

Proof: In the global coordinates (s,(x,y),t) of G, wherez5x1 iy , the metricg is given by

ds21 1
4 ~ydx1xdy!21sin2 tdx21cos2 tdy212~costdx1sintdy!dt12~xdy2ydx!ds.

TABLE I. Left invariant connectionG0 .

r e21 e0 e1 e2

e21 0 0 e2 2e1

e0 0 0 0 0
e1 0 0 0 (1/2)e0

e2 0 0 2(1/2)e0 0
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As a consequence of Eq.~2! the differential equation~3! has a first integral called theenergy of the
systemwhich, in this case, is given by

E~x!5k~u~x!,x!52x21x11x0
21x2

2 .

Since the energy is a quadratic form of index one,g is a Lorentzian metric onG0 . Note that,
since the metric is left invariant,G0 may be oriented byx1, whereE(x),0. A simple calculation
shows that Eq.~3! is

ẋ215x2~x212x0!,

ẋ050,

ẋ15x2~x212x1!,

ẋ252x21
2 1x0x1 .

Let c be a nonzero real number. Then the curve

x21~ t !5c,

x0~ t !5c,

x1~ t !5c2~2l2/c!sec2~l t !,

x2~ t !522l tan~l t !

is a noncomplete solution of~3!, hence a noncomplete geodesic, whose energy is given by

E~x21~ t !,x0~ t !,x1~ t !,x2~ t !!53c224l2.

Therefore there are noncomplete geodesics with any energy level. In particular, there are no
plete timelike and null geodesics. Hence (G0 ,g) is a space–time with Hawking’s and Penrose
singularities.1

We find that the Ricci curvature for the metric induced byu, and expressed in the basisB, is
given by

Riccu~x,x!5x21
2 2 1

2 x1
22x2

21 3
4 x21x122x21x0 ,

which is a quadratic form of index 1. The lightlike geodesic through the identity element ofG0 in
the direction of the vectorx52(3/2)e212(3/2)e01e11()/2)e2 is noncomplete. However,

Ricc~x,x!,0.

Also the geodesic through the identity element ofG0 in the direction of the timelike vectory5
2e212e01e11()/2)e2 is noncomplete and

Ricc~y,y!,0.

Hence neither Penrose Singularity Theorem in the first case nor the Hawking Singularity Th
in the second are appliable in our model~see, for example, Ref. 3, Ths. 14.55B and 14.60!. h

III. APPLICATION

Let G be a group of diffeomorphisms ofG0 , acting freely and properly discontinuously o
G0 . Then the cannonical projection map,
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P:G0→G/G,

is a covering. Every left invariant metric onG0 projects on a metric onG0 /G. Therefore, the
compact manifoldG0 /G has a Lorentzian metric induced by the metric defined in Theorem
Since this metric is not complete~see, for example, Ref. 8, p. 42! the Lorentzian manifoldG0 /G
is not homogeneous, i.e., the action of its group of isometries is not transitive.9 For a complete
description of such groupsG, the reader is referred to Ref. 10. We have the following proposit

Proposition 4: For any discrete cocompact subgroupG of oscillator groupG0 , the compact
manifoldG0 /G has a Lorentzian, incomplete metric induced by that ofG0 given in Theorem 1.
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The significant problem with using point groups is the dependence upon exten-
sively tabulated results. We present simple algebraic expressions for the primitive
characters, matrix irreps, symmetry adapted functions~SAFs!, and Clebsch–
Gordan coefficients for all dihedral groups,Dn , Cnv , Dnd , andDnh . Those re-
sults, for arbitraryn and for single- and double-valued representations, have been
derived in a simple manner without using group tables. Previously incomplete
tabulated results are now redundant. In particular the parity dependence of the
SAFs of the improper dihedral groups is shown analytically. Simple relations are
derived between the SAFs of the proper and improper dihedral groups, so that the
SAFs of the latter can be easily obtained from the SAFs ofDn . © 2000 American
Institute of Physics.@S0022-2488~00!04608-9#

I. INTRODUCTION

Numerical solutions for the group theoretical coefficients of point groups, especially o
dihedral groups, are well known. The dihedral groups are the simplest non-Abelian point g
and have been treated in many publications~such as Refs. 1–13!. The symmetry adapted function
~SAFs!, or partners of irreps as they are sometimes called,7,14 are important in applications o
group theory and numerous researchers have made contributions to this subject.3,5,9,10,15–18Some
issues regarding the SAFs of improper dihedral groups need clarification.

First, it has long been known that theO(3)↓G subduction rules for an improper dihedr
group G depend on the parity of the state.3 Therefore the SAFs of an improper dihedral gro
should also depend on the parity. However the double-valued SAFs of theD2d , C3v , C4v , C6v ,
andD3h given in Ref. 3, and the double-valued SAFs ofC3v on p. 260 of Ref. 9, have all bee
presented as independent of the parity. Only in a recent book18 has the parity dependence of th
partners of the improper dihedral groups been made clear. However this parity dependence
tabulated in Ref. 18, and it is desirable to show it in an analytic way. We will give the pa
dependent SAFs for all improper dihedral groups. The double-valued SAFs mentioned ab
parity independent can be seen to be associated with even parity.

Second, the single-valued SAFs for a single-particle system and a many-particle system
because of the parity dependence in the improper dihedral groups. For the former the parip is
related to the angular momentumj 5 l by p5(21) j . For the latter, for given total angula
momentumj , p can take both (21) j and (21) j 21. Therefore one needs to explicitly distinguis
between single-valued SAFs for single-particle and many-particle systems. No such distincti
been made in previous publications of SAFs.3,5,9,18We give the many-particle SAFs, of which th
single-particle SAFs are a special case.

a!Electronic mail: jqchen@chenwang.nju.edu.cn
81960022-2488/2000/41(12)/8196/27/$17.00 © 2000 American Institute of Physics
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At a more general level, many tables exist for the point groups. The best known table
probably those of Kosteret al.3 and Butler.7 The most extensive tables are in a recently publish
book.18 That book contains stereographic projections, Euler angles of the group elements,
tables, characters, irreducible matrices, SAFs, subduction rules, the Clebsch–Gordan~CG! series,
and CG~or coupling! coefficients of 75 point groups, including the dihedral groupsDn , Cnv ,
Dnd , Dnh , n52,3,...,10.Despite Butler19 emphasizing that with proper choice of the phases
CG coefficients of an improper group are identical to those of a group with which it is isomor
Altmann and others insist on publishing huge tables for isomorphic groups.

To avoid the bulky tables various programs have been written. One,20 based on the eigen
function method,11 can computeab initio irreducible matrices and CG coefficients for any cry
tallographic point group, for both single-valued~vector! and double-valued~spinor! reps symme-
try adapted to any subgroup or subgroup chains. Another program under development,RACAH

v4.0, follows more the approach of Butler7 and of Searle and Butler21 with emphasis on the
calculation of generalized transformation coefficients and matrix elements of operators. Th
eral structure ofRACAH allows calculations for any compact group from selection rules on
structure of irreps and irrep products.

So far we have only mentioned numerical solutions for point groups. The shortcomin
numerical solutions are obvious, for example, for practical calculations one has needed to
various tables, which may not be readily available, and are subject to printing or other err
one only wants to use the coefficients then the programRACAH provides exact number solutions
not floating point solutions which are subject to round off error. The interface allows on
request sets of coefficients, or set up data files for the generation of tables. The developm
RACAH drives toward an integrated system where generalized transformation coefficients, i
ing SAFs and CG coefficients, are directly applied to the calculation of matrix elemen
arbitrary operators. Rosset al.22 record an earlier version’s partial success in this direction.
thoughRACAH is named after the physicist Racah, it can also serve as an appropriate acron
recursivealgorithms for thecalculation ofarbitrary Hamiltonians.

Another significant difficulty with the bulky tabulated material~for example, Altmann and
Herzig18! is that regularities are hard to find. This is obviously also a problem with programs
highly desirable therefore to obtain analytic or algebraic solutions to the representation prob
all point groups, just as we have for the rotation group. Some significant attempts have been
to find algebraic expressions for the SAFs ofDn for arbitraryn. Golding and Newmarch~Ref. 6,
Tables 3 and 5! found such expressions. However the results are rather complicated. There
expressions for theDn.Cn SAFs, 18 expressions forDn , n odd ~10 for the single-valued and 8
for the double-valued irreps!, and 10 expressions forDn , n even~8 for the single-valued and 2 fo
the double-valued irreps!. Damhus, Harnung, and Schaffer~Ref. 8, Table 2! simplified the expres-
sions for theDn.Cn andDn.C2 SAFs, but only for two sets of angular momenta, leading to
so-called primary and secondary sets of the SAFs. The algebraic solutions in Damhus, Ha
and Schaffer8 are still described by 20 expressions, and are still cumbersome to use.

Butler and Reid23 give SAFs for theD`.C` basis, as well as algebraic expressions for thej
of the proper dihedral groups. They also give expressions for CG coefficients of SO3.D` ,
D`.C` , Dn.Cn and Dn.C2 . Reid24 obtained algebraic expressions forD`h and C`v SAFs
and CG coefficients.

Using the double-induced and right-induced techniques and the eigenfunction metho
algebraic solutions for the tetrahedral groupT,25–27octahedral groupO,28,29and icosahedral group
I 30,31 have been obtained. A significant advantage of this approach is that the single- and d
valued reps are treated in a unified way. The methods of Altmann and Herzig,18 for example,
necessarily distinguish between the two.

The purpose of this paper then is to give algebraic solutions for all the dihedral gr
obtained using the eigenfunction method. The primitive characters, irreducible matrices,
CG series, and CG coefficients ofDn , Cnv , Dnh , and Dnd with arbitrary n, all have simple
formulas. All of the SAFs and CG coefficients of the groupsDn are covered by six expression
three for the SAFs and three for the CG coefficients. The algebraic solutions for the grouD`
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andC`v can be obtained from those forDn andCnv by lettingn→`. The solutions of the group
D`h are trivial, sinceD`h5C`v3Ci . The expressions we obtain are simpler than the related
given by Reid.24

Original to this paper are algebraic expressions for the CG coefficients and one-dimen
SAFs ofDn , and the algebraic solutions forDnh , Cnv , andDnd . Our approach to all the dihedra
groups exploits the simple relationships between and within the groups, especially betwe
proper and improper groups. This approach unites single-valued and double-valued repr
tions in a natural manner and clarifies the distinction between odd and even parity irrep
between single-particle and many-particle SAFs.

Although the resulting final algebraic expressions for various quantities are relatively si
the derivation is lengthy.Therefore we emphasize the results not the methods. Details of the
method can be obtained from one of the authors~J.-Q.C.! on request.

We structure the paper so as to describe results in terms of those already given. In pa
we give the algebraic solutions forDn andD` first, in Sec. II. Results for all the other dihedr
groups are obtained from those.

A nice feature of the algebraic solutions is that theO3↓G subduction rules for any dihedra
groupG are obtained as a by-product. Sometimes only the subduction rule is needed thoug
a simple formula for computing the rule is desirable. We give such a formula in Sec. VI. We
relations between the branching rules for odd and even parity irreps as well as for isom
groups. Those relations are obscured in the tables of Ref. 18.

In Tables II–VIII we give some examples of the results obtained using our algebraic ex
sions. Those give the interested reader a link between the abstract algebraic expressions
bulky, and sometimes different, results tabulated elsewhere~for example, Altmann and Herzig18!.

II. ALGEBRAIC SOLUTIONS FOR THE GROUPS Dn AND D`

A. The modified Mulliken notation

The groupDn is a semidirect product ofCn andC2x5$e,C2x%. It has 2n elements

Dn5Cn∧C2x5$Cnz
k ,C2

(k) :k50,1,...,n21%,
~2.1a!

Cnz5expS 2
2pJzi

n D , C2
(k)5Cnz

k C2x ,

where the axis of theC2
(k) is obtained by rotating that ofC2x about thez axis throughkp/n

counterclockwise. The two-fold axes forD3 are shown in Fig. 1.
The eigenvalues ofCnz andC2x are denoted byr andn561, 6 i , respectively, with

FIG. 1. Dn , n53, C2
(k)5Cnz

k C2x or Cnv5Cn∧Csy , n53, s (k)5Cnz
k sy .
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r[rm5expS 2
2pm i

n D ,

with the integer~half-integer! m referring to the single-valued~double-valued! reps.
The conventional point group irrep labeling schemes~Mulliken5 or Koster3! are not helpful in

obtaining simple algebraic expressions for the various quantities of those groups. A labeling
akin to that of Butler7 is required. We therefore introduce the modified Mulliken notation.

Since@Cnz ,C2x#Þ0, these two operators cannot be simultaneously diagonalized. Howev
one-dimensional irreps ofDn , bothCnz andC2x can have definite valuesr andn, which can be
used to label these irreps. To emphasize that they are one dimensional, we useArn as the irrep
label. All the two-dimensional irreps ofDn are associated with complex values ofr[rm

5exp(2 2pmi/n), and it is convenient to useEumu ~Refs. 6, 8, and 18! or umu ~Ref. 7! as the irrep
label. With such irrep labels we can overcome the difficulties of Refs. 6 and 8 in obta
algebraic expressions of the projection operators and SAFs ofDn . Table I shows the correspon
dence between the Koster, Mulliken, and modified Mulliken notations.

B. The projection operators of Dn

The main role we want projection operators to play here is in the construction of SAF
CG coefficients. It is sometimes more convenient to use generalized projection operators.26 They
are defined as

P m,n
(l) 5

hl

uGu (a51

uGu

D mn
(l)~Ra!* Ra , ~2.2!

whereuGu is the order ofG, hl is the dimension of the irrepl, andD mn
(l)(Ra) is a generalized~or

skew! matrix element ofRa
11,32 between two irreducible basis vectors in two different classifi

tion schemes~bases!, theG.G(s) basiscm
l andG.G(s8) basiswn

l , D mn
(l)(Ra)5^cm

l uRauwn
l&.

The generalized projection operator can be used for constructing theG.G(s) irreducible
basis from a reducible basis vectorf0 ,

cm
(l)5const3P m,n

(l) f0 .

The numerical factor in the projection operator is irrelevant. Therefore for the sake of clari
are sloppy about the numerical factor of the projection operator, but careful about its phas

We need to find the generalized projection operators for the dihedral groupsDn5Cn∧C2x .
There is a factorization lemma26 which states that the generalized projection operator of a se

TABLE I. The Koster, Mulliken, and modified Mulliken notations for irreps of dihedral groups. The first and se
columns are the Koster notation and Mulliken notation, while the third one is the modified Mulliken notation (Arn ,Em).
With Am0n notation,A0n5A1n ,A(n/2)n5A2n . In Ref. 7A(n/2)6→6n/2 andEm→m.

D2 D3 D4 D5 D6

G1 A1 A11 G1 A1 A11 G1 A1 A11 G1 A1 A11 G1 A A11

G2 B2 A22 G2 A2 A12 G2 A2 A12 G2 A2 A12 G2 A2 A12

G3 B1 A12 G3 E E1 G3 B1 A21 G3 E1 E1 G3 B1 A21

G4 B3 A21 G4 Ē1
E1/2 G4 B2 A22 G4 E2 E2 G4 B2 A22

G5 Ē E1/2 G5 Ē A2,2 i G5 E E1 G5 E8 E1/2 G5 E1 E1

G6 Ē A2,i G6
1Ē1

E1/2 G6 E9 E3/2 G6 E2 E2

G7
2Ē2

E3/2 G7 E- A2,2 i G7 Ē1
E1/2

G8 A2,i G8 Ē2
E5/2

G9 Ē3
E3/2
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direct product group of two Abelian groups is the product of the projection operators of the
Abelian groups. Thus we can immediately write down the two generalized projection operat
Dn :

for the group chainDn.Cn : P m,n
G 5umPm`n,

~2.3!
for the group chainDn.C2x : P n,m

G 5un`nPm.

The phase factorsum and un are to be determined by phase conventions.Pm and `n are the
projection operators ofCn andC2x ,

Pm[Prm5
1

n (
k50

n21

~rm* !k~Cnz!
k, ~2.4a!

`n5~11n* C2x!, n56~21!j, ~2.4b!

where j is an index which we use throughout this paper to specify the type~single valued or
double valued! of the representations,

j5H 0, for single-valued reps

1
2, for double-valued reps

, ~21!1/2[ i . ~2.5!

It has been proved26 that the operatorsP m,n
G andP n,m

G are irreducible under the groupDn , and
that the irrepG of Dn is determined by the values ofr ~or m! andn for one-dimensional irreps, o
by r ~or m! for two-dimensional irreps.

We now turn to using the modified Mulliken notation. For one-dimensional irreps Eq.~2.3!
can be rewritten as

P Arn5Pr`n5`nPr, ~2.6!

wherer51, n561; r521, n561, 6 i .
To deal with CG coefficients it is more convenient to use as the irrep label the add

quantum numberm, instead of the multiplicative quantum numberr. We introduce

Am0n5Arn , m08H 0~r51!, n561

n

2
~r521!, n561,6 i ,

~2.7!

wherea8b meansa5b ~mod n!, and Eq.~2.6! is rewritten as

P Am0n5Pm0`n5`nPm0. ~2.8!

Notice thatA01 , A02 , An/21[An/2,2 i andAn/22[An/2,i ~for odd n! in Am0 ,n notation corre-

spond to Butler’s7 0, 0̃, 1 n/2, and2 n/2.
For two-dimensional irreps, choosing the phaseum , andun so that the basis vectors for th

irrep E1 are (x,y) and (x1 iy ,x2 iy) for the Dn.C2x and Dn.Cn schemes, respectively, Eq
~2.3! becomes

Dn.Cn : P m,n
(Eumu)5Pm`n,

~2.9!

Dn.C2x :H P n,m
(Eumu)5`nPm

P
2n,m
(Eumu)5

1

i
`2nPm,
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wheren5(21)j, m56umu, and the range ofumu is given by

umu5
1

2
,1,

3

2
,...,

n21

2
. ~2.10!

Although theDn.Cn SAFs can be obtained using the generalized projection operatorsP m,n
(Eumu)

in ~2.9!, it is preferable to use the conventionalDn.Cn projection operator. The conventiona
projection operator can be obtained from the product of the generalized projection opera
~2.9! and its Hermitian conjugate,

H P m,m
(Eumu)5Pm,

P
2m,m
(Eumu)5~21!2jP2mC2x ,

m56umu. ~2.11!

C. Characters and irreducible matrices of Dn

From the projection operators we can read off the irreducible matrices, and in turn the
tive characters. Henceforthm is assumed to always be positive, unless otherwise stated.

The irreducible matrices in theDn.Cn basis are

DEm~Cnz
k !5S e2mfki 0

0 emfki D , DEm~C2
(k)!5~21!jS 0, e2mfki

emfki 0 D , fk5
2kp

n
~2.12a!

while the irreducible matrices in theDn.C2x basis are

DEm~Cnz
k !5S cosmfk 2sinmfk

sinmfk cosmfk
D , DEm~C2

(k)!5~21!jS cosmfk sinmfk

sinmfk 2cosmfk
D .

~2.12b!

The algebraic expression for the characters ofDn are

one dimensional:xArn~Cnz
k !5rk, xArn~C2

(k)!5nrk, ~2.13a!

two dimensional: xEm~Cnz
k !52 cosS 2kmp

n D , xEm~C2
(k)!50, ~2.13b!

where the ranges ofr andn are

r5H 1, n561, n5even or odd

21, n561, n5even; n56 i , n5odd.
~2.14!

D. The SAFs of Dn

By applying the projection operators in~2.8!, ~2.9!, and ~2.11! to a trial stateu jm̄& ~with
Condon–Shortley phase convention!, we can obtain the SAFs ofDn . However, as for the tetra
hedral groupT,27 we can use a short cut. Up to a normalization factor, theDn.Cn projection
operator can be written as

P mm̄
(l)5Pm`mm̄

(l)Pm̄, `mm̄
(l)5(

i 51

2

Dmm̄
(l)~ b̂ i !* b̂ i ,
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where`mm̄
(l) is called the reduced~or effective! projection operator, andb̂15e, b̂25C2x are the

coset generators ofDn with respect to the subgroupCn . It can be shown27 that theDn.Cn SAFs
cm

(l)m̄ can be obtained by applying the reduced projection operators`mm̄
(l) to the trial stateu jm̄&,

cm
(l)m̄5`mm̄

(l)u jm̄&5(
m

cmu jm&, ~2.15!

supplemented with the magnetic quantum number conservation rulem8m, m̄8m̄ for the final and
trial states. The quantum numberm̄ serves as the multiplicity label. For the special case ofDn , the
quantum numberm in ~2.15! is either equal tom̄ or equal to2m̄. Therefore only one condition
eitherm8m or m̄8m̄, is necessary. In the following we useu jm& as the trial state and ignore th
multiplicity label m in the SAFscm

(l)m . From ~2.12a! and ~2.13a! we get the reduced projectio
operators along with the magnetic quantum number conservation rule

`Am0n511n* C2x , m8m0 , ~2.16a!

`m,m̄
E 5dmm̄1dm,2m̄~21!2jC2x , m8m̄. ~2.16b!

Applying the reduced projection operator~2.16! to u jm& and using

C2xu jm&5~21!2 j u j 2m&

we obtain the following SAFs: For one-dimensional irreps ofDn ,

cAm0 ,n5
1

&
@ u jm&1~21! jnu j 2m&], n5~21!j, m.0, ~2.17a!

m8m05H 0, n561, n5even or odd

n

2
, n561, n5even; n56 i , n5odd,

~2.17b!

and for the two-dimensional irreps in theDn.Cn basis

H cm
Em5u jm&,

c
2m
Em 5~21! j 1ju j 2m&,

m5m ~modn!, ~2.17c!

with the m value given in~2.10!.
By applying~2.9! to u jm&, we get the SAFs for two-dimensional irreps in theDn.C2x basis,

5 cn
Em5

1

&
@ u jm&1~21! j 1ju j 2m&#,

c
2n
Em 5

1

& i
@ u jm&2~21! j 1ju j 2m&#,

n5~21!j, m5m ~modn!. ~2.17d!

Notice that for the single-valued reps,c
61
Em are usually denoted byc1

Em5cx
Em , c

21
Em 5cy

Em .
The relation between theDn.C2x basis and theDn.Cn basis is

S cn
Em

c
2n
Em D 5

1

&
S 1 1

2 i i D S cm
Em

c
2m
Em D , ~2.18!
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wherem.0, n5(21)j.
The SAFs of the groupDn are independent of the parity for many-particle cases and

double-valued cases. However they depend on the parity for the single-particle, single-
case, as is seen from the following:

cAm0 ,n5
1

&
@ u lm&1~21! lnu l 2m&], n561, ~2.19a!

H cm
Em5u lm&,

c
2m
Em 5~21! l u l 2m&,

m5m ~modn!. ~2.19b!

For example, theD3.C3 SAFs in the lowest possible values ofm are given in the following
~in the first column!. We give two other columns of SAFs, which shall be referred to later.

D3 C3v5C3∧Csx C3v5C3∧Csy

A11 : u00&, u33&2 , u43&1 u l0&, u l3&1 u l0&, u l3&2

A12 : u10&, u33&1 , u43&2 u l3&2 u l3&1

E1 : ~ u l1&,~21! l u l ,21&! ~ u l1&,u l ,21&! ~ u l1&,2u l ,21&!

A21,6 i : u 3
2

3
2&6 , ul 3

2
3
2&6~21! l ul 3

2,2
3
2& ul 3

2
3
2&7 i ~21! l ul 3

2,2
3
2&

E1/2: ~ u j 1
2&,~21! j 1 1/2u j ,2 1

2&! ~ ul j 1
2&,~21! l 1 j 1 1/2ul j ,2 1

2&! ~ ul j 1
2&,2~21! l 1 j ul j ,2 1

2&!

~ u j ,2 5
2&,~21! j 1 1/2u j 5

2&! ~ ul j ,2 5
2&,~21! l 1 j 1 1/2ul j 5

2&! ~ ul j ,2 5
2&,~21! l 1 j ul j 5

2&!,

~2.20!

where u jm&65u jm&6u j 2m&, and the normalization is ignored. The one-dimensionalD3 SAFs
are identical to the results on p. 263 of Ref. 9, while the two-dimensional SAFs differ in ph

E. The criterion for irreducible basis of Dn

In this section we examine how to check whether a basis vector is an irreducible basis
of Dn . For the rotation group we know that anO3.O2 irreducible basis vectorcm

( j ) is necessarily
a simultaneous eigenvector of the set of operators (j2, j z). That set of operators is known as th
CSCO~complete set of commuting operators! of the canonical group chainO3.O2 .11 From ~2.8!
and~2.9! it is known that for the group chainDn.Cn the CSCO is (J̇z ,C2x) and J̇z for one- and
two-dimensional irreps, respectively. The operatorJ̇z defined by

J̇zu jm&5mu jm&, m5m ~modn!, umu<
n

2
. ~2.21!

A Dn.Cn irreducible basis has to obey the following eigenvalue equations:

~ J̇z ,C2x!c
Am0n5~m0 ,n!cAm0n, m050 or

n

2
, ~2.22a!

J̇zcm
Eumu5mcm

Eumu , m0Þ0 or
n

2
. ~2.22b!

Equation~2.22! provides a necessary but not sufficient condition for theDn.Cn irreducible basis.
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F. The CG series

The CG series ofDn has been given in Ref. 23, having been obtained using character th
Here we describe the CG series ofDn obtained by a more intuitive method which does not rely
the characters.

1. Products between one-dimensional irreps

Sincer andn are multiplicative quantum numbers, the CG series for one-dimensional i
can be written down immediately,

Arn3Ar8n85Arr8,nn8 . ~2.23a!

2. Products between one-dimensional irreps and two-dimensional irreps

It is now more convenient to use the notationAm0n for the one-dimensional irrep. The CG
series ofDn can be determined by regardingm as the weight of the irrep, and using a meth
similar to the one used for Lie groups.33 The key points are as follows.~a! m is an additive
quantum number.~b! The value ofm determines the irrep; ifm80 (n/2), it belongs to the irrep
A06 (An/26), otherwise it belongs to the irrepEm ,

Am0n3Em5Em01m5Em02m . ~2.23b!

Notice thatm01m8m02m and that it is understood thatEm5Em(modn)5E2m .

3. Products between two-dimensional irreps

Em1
3Em2

55
A011A021E2m1

, m15m2

A011A021An/211An/22 , m15m25
n

4
~n5even!

An/211An/221Em12m2
, m11m25

n

2

Em11m2
1Eum12m2u , otherwise.

~2.23c!

G. The CG coefficients

In this section we usej1 , j2 , andj to specify the types of the three irreps in the produ
G13G2→G.

To obtain the CG coefficients we apply theDn.Cn reduced projection operators@reproduced
from Eq. ~2.16!#

`Am0n511n* C2x , ~2.24a!

`m,m̄
E 5dmm̄1dm,2m̄~21!2jC2x , ~2.24b!

to the trial stateum1 ,m2& supplemented with the following conditions on the valuesm18 , m28 of the
final state:m181m288m0 for the irrep Am0 ,n and m181m288m for the irrep Eumu . Here um i& is
understood to be the basis vectoruAm0n& for a one-dimensional basis vector, oruEum i u

m i& for a
two-dimensional basis vector.

From ~2.12a! and ~2.13a! we have

C2xuAm0n&5nuAm0n&, C2xum2&5~21!j2u2m2&. ~2.25!

~1! Am0n3Em2
5Em01m2

. Using ~2.24b! and ~2.25! we obtain
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Cm
E5 ḋm,m01m2

uAm0n ,m2&1n~21!j22jḋm,2(m01m2)uAm0n ,2m2&, ~2.26a!

where

ḋm,m85dm,m8(modn) .

In ~2.26! we suppressed the subscript ofE, since the component indexm in Cm
E specifies which

two-dimensional irrep it belongs to. It should be mentioned thatm082m0 ,
~2! Em1

3Eum2u . Using ~2.24! andC2xum1m2&5(21)j11j2u2m12m2& we get

CAm0n5
1

&
~ um1m2&1n* ~21!j11j2u2m1 ,2m2&), ~2.26b!

m11m28m0 , m050 or
n

2
,

Cm
E5 ḋm,m11m2

um1m2&1 ḋm,2(m11m2)~21!j11j22ju2m12m2&, ~2.26c!

m11m2Þ0 or
n

2
.

In ~2.26b! and~2.26c! it is understood thatm1.0, while m2 can be either positive or negative.
is seen that the irrepsE2m and An/26 are in the symmetrized part ofEm3Em , while the irrep
A01(A02) is in the symmetric part for integer~half-integer! m.

Butler7 calculated theDn.Cn and Cnv.Cn 3 jm factors for n52,3,4,5,6, as well as the
D2d.S4 , D3h.C3h 3 jm factors. Damhus, Harnung, and Schaffer8 calculated the 3-G symbols for
the dihedral groupsDn

† , n52,3,4,5,6,7,8,10,12. But the tables of these 3-G symbols were too
numerous and voluminous to be included in that paper, only theD3.C3 andD3.C2 3-G symbols
are listed~Ref. 8, Table 5!. The minimum number of theV̄ coefficients ofDn.Cn have been
given in Tables 4 and 6 of Ref. 6. A shortcoming of these coefficients is that they are com

It is to be noted that the algebraic expressions for the CG series and CG coefficients g
~2.23!–~2.26! cover all cases and are valid for anyn.

Example: The CG series of the group D3

There are six irreps,A0,1 , A0,2 , E1 , E1/2, A3/2,2 i , A3/2,i , corresponding toG1–G6 .
From ~2.23! we have

A0n3A0n85A0,nn8 , A0n3Em5Em , m5 1
2,1;

A~3/2!n3E1/25E1 , A~3/2!n3E15E1/2,

E13E15E1/23E1/25E11A011A02 ,

E13E1/25E1/21A3/2,i1A3/2,2 i .

Example: The CG coefficients of the group D3 : From ~2.26! we have
~1! Am0n3Em5Em01m

H Cm
E5cA0nfm

C2m
E 5ncA0nf2m

, m5 1
2,1, ~2.27a!

H C1
E5cA3/2,nf21/2

C21
E 5n icA3/2,nf1/2

, H C1/2
E 5cA3/2,nf21

C21/2
E 52n icA3/2,nf1

, ~2.27b!
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~2! Em1
3Em2

uA0,n&5
1

&
@c1f211nc21f1#,

uA0,n&5
1

&
@c1/2f21/22nc21/2f1/2#, ~2.27c!

uA3/2,n&5
1

&
@c1f1/21n* ic21f21/2#,

H C1
E5c21f21

C21
E 5c1f1

, H C1
E5c1/2f1/2

C21
E 52c21/2f21/2

, H C1/2
E 5c1f21/2

C21/2
E 5c21f1/2

. ~2.27d!

It can be shown19 that with suitable choices of phase the CG coefficients of an impro
dihedral group are identical to those of a dihedral group which it is isomorphic to. Therefore
following we will not discuss in detail the CG coefficients for the improper dihedral groups.

H. The group D`

The solutions for the groupD` are obtained fromDn by letting n→`, that is by letting

fk5
2kp

n
→w, Cnk→Rz~w!, C2

(k)→C2
(w/2) , ~2.28!

whereC2
(w) is obtained by rotatingC2x about thez axis through anglew/2 ~see Fig. 1!.

The groupD` is a semidirect product ofC`(5SO~2!) andC2x ,

D`5SO~2!∧C2x5$Rz~w!,C2
~w/2! :0<w,2p%. ~2.29!

From ~2.7! it is seen that the groupD` has only two one-dimensional irrepsAm0 ,n5A0,n ,
n561. Those areA1 andA2 in Mulliken notation.

1. Characters and irreducible matrices

From ~2.12! and ~2.28! we get the irreducible matrices in theD`.C` basis,

DEm~Rz~w!!5S e2mw i 0

0 emw i D , DEm~C2
(w/2)!5~21!jS 0, e2mw i

emw i , 0 D . ~2.30!

From ~2.13! and ~2.28! we get the characters ofD` ,

one dimensional:xA0n~Rz~w!!51, xA0n~C2
(w/2)!5n, ~2.31a!

two dimensional: xEm~Rz~w!!52 cos~mw!, xEm~C2
(w/2)!50, ~2.31b!

wheren561 andm5 1
2,1,32,... .

2. The D `¤C` SAFs

From ~2.17! we get

cA0n5@11~21! jn#u j ,0&,
~2.32!

cm
Em5u j m&, c

2m
Em 5~21! j 1ju j 2m&.
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3. The CG series and CG coefficients

Both the CG series ofD` and theD`.C` 3 jm factors have previously been calculated23

Here it suffices to mention that the CG series and CG coefficients ofD` can be obtained from
~2.23! and~2.26! by lettingn→`. Specifically:~1! Let m0[0. ~2! Replace8 with 5. ~3! Remove
the second and third equations in~2.23c!. ~4! In ~2.26c! remove the condition ‘‘orn/2’’ on m1

1m2 . To be more specific, the CG coefficients ofD` are
~1! A0n3Em2

5Em2
,

Cm
E5dm,m2

uA0n ,m2&1n~21!j22jdm,2m2
uA0n ,2m2&, ~2.33a!

~2! Em1
3Eum2u ,

CA0n5
1

&
~ um1 ,2m1&1n~21!2j1u2m1 ,m1&), ~2.33b!

Cm
E5dm,m11m2

um1m2&1dm,2(m11m2)~21!j11j22ju2m12m2&,

m11m2Þ0. ~2.33c!

III. THE GROUPS Cnv AND C`v

One can extend the algebraic results from the proper dihedral groupDn to an improper
dihedral groupG. First, one establishes the isomorphism between the elements ofG and those of
Dn . Then one can obtain algebraic expressions for the characters, irreducible matrices a
jection operators ofG from those ofDn . Finally, using the projection operators ofG, algebraic
expressions for the SAFs ofG can be obtained.

The group Cnv is a semidirect product of the groupCn and the reflection groupCsx

5$e,sx% or Csy5$e,sy%, depending on whether thex or y axis is the normal of a reflection plane
We first chooseCnv5Cn∧Csx . This group has 2n elements,

Cnv5Cn∧Csx5$Cnz
k ,s (k):k50,1,...,n21%. ~3.1a!

The kth vertical reflection planes (k) is generated froms (0)5sx by

s (k)5Cnz
k s (0), ~3.1b!

that is the planes (k) is obtained by rotatingsx about thez axis through anglekp/n. Figure 2

FIG. 2. Cnv5Cn∧Csx , n53, ands (k)5Cnz
k sx .
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shows the reflection planes ofC3v5C3∧Csx .
The groupCnv is isomorphic toDn , and the results~2.12!–~2.13! apply to the groupCnv with

the following replacements:

C2
(k)→s (k), C2x→sx . ~3.2!

It should be emphasized that in the double-valued representation the twofold axesn and2n
are not the same, and likewise two reflections with normals in the directionn and 2n are not
identical, but are related to one another as

C2
2n5uC2

n , s2n5usn, sn5 Î C2
n , ~3.3a!

whereu5(21)2j so that

u5H 1 for single-valued reps

21 for double-valued reps.
~3.3b!

A. Characters and irreducible matrices of Cnv

The characters and irreducible matrices ofCnv are obtained from~2.13! and ~2.12! with C2x

andC2
(k) replaced byCsx ands (k), respectively.

B. The SAFs of Cnv

We useul jm& to denote a many-particle state with the parity (21)l 561, total angular
momentumj , and its projectionm. For a single-particle state,l is identified with the orbital
angular momentuml , and in the single-valued reps we havej 5 l 5l .

As mentioned in Sec. I, the SAFs ofCnv differ from those ofDn in that the former depend on
the parity (21)l of the state. The reason for this difference it attributed to the following:

C2xul jm&5~21!2 j ul j 2m&, sxul jm&5~21! l 2 j ul j 2m&,
~3.4!

C2yul jm&5~21! j 2mul j 2m&, syul jm&5~21! l 1 j 2mul j 2m&.

For Cnv5Cn∧Csx , the SAFs are as follows.
(a) One-dimensional irreps

cArn5
1

&
@ ul jm&1~21! l 1 jnul j 2m&], r5expS 2

2pm0

n
i D , ~3.5a!

with the values ofm0 ,m,n given in ~2.17b!.
(b) Two-dimensional irreps
~1! The group chainCnv.Cn ,

H cm
Em5ul jm&,

c
2m
Em 5~21! l 1 j 1jul j 2m&

, m5m ~modn!. ~3.5b!

~2! The group chainCnv.Csx ,
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5 cn
Em5

1

&
@ ul jm&1~21! l 1 j 1jul j 2m&#,

c
2n
Em 5

1

& i
@ ul jm&2~21! l 1 j 1jul j 2m&#,

n5~21!j, m5m ~modn!, ~3.5c!

with m given in ~2.10!.
For Cnv5Cn∧Csy : ~The reflection planes ofC3v5C3∧Csy are shown in Fig. 1.!
(a) One-dimensional irreps

cArn5
1

&
@ ul jm&1~21! l 1 j 1mnul j 2m&]. ~3.6a!

(b) Two-dimensional irreps
~1! The group chainCnv.Cn ,

H cm
Em5ul jm&,

c
2m
Em 5~21! l 1 j 1m1jul j 2m&

, m5m ~modn!. ~3.6b!

~2! The group chainCnv.Csy ,

5 cn
Em5

1

&
@ ul jm&1~21! l 1 j 1m1jul j 2m&#,

c
2n
Em 5

1

& i
@ ul jm&2~21! l 1 j 1m1jul j 2m&#,

n5~21!j, m5m ~modn!.

~3.6c!

Notice that whenl is even the expression~3.5! @but not~3.6!# for Cnv is reduced to~2.17! for
Dn . In other words, the SAFs ofCnv5Cn∧Csx for even parity are identical to the SAFs ofDn ,

cs
G~ l 5even!uCnv

5cs
GuDn

, s5m,n, ~3.7a!

whereG5Arn , Eumu . From~3.5! or ~3.6! we have the following relation for theCnv.Cn SAFs of
even and odd parities;

cAr,n~ l 5odd!5cAr,2n~ l 5even!, ~3.7b!

cm
Eumu~ l 5odd!5sign~m!cm

Eumu~ l 5even!, ~3.7c!

where sign(m)561 for m56umu. It should be emphasized that Eqs.~3.7b! and~3.7c! are valid
for all cases except the single-valued single-particle case. This is because both sides i
equations refer to the samej and for the single-valued single-particle casej 5l , and an evenl
can never be equal to an oddl .

Contrary to the SAFs ofDn , the SAFs of the groupCnv depend on the parity for many
particle or double-valued cases but are independent of parity for the single-particle and s
valued case. For example, for one-dimensional irreps we have

Cnv5Cn∧Csx : cAr,n5
1

&
@ u lm&1nu l 2m&], n561, ~3.8a!
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Cnv5Cn∧Csy : cAr,n5
1

&
@ u lm&1~21!mnu l 2m&], n561. ~3.8b!

The C3v.C3 SAFs with the lowest possible values ofm are given in Eq.~2.20! for C3v
5C3∧Csx and for C3v5C3∧Csy . The subtle difference between the SAFs ofDn and Cnv
5Cn∧Csx andCnv5Cn∧Csy should be noted.

The SAFs forC3v5C3∧Csy andC3v5C3∧Csx are listed in Tables51.6A and51.6B of Ref.
18. Comparing their results with Eq.~2.20!, the results are seen to be identical for one-dimensio
irreps, but differ in phase for two-dimensional irreps. All the representations ofCnv are identical
with Dn in our formulation, but not in Ref. 18.

The CSCO for the group chainCnv.Cn is (J̇z ,sx) and J̇z for one- and two-dimensiona
irreps, respectively. ACnv.Cn irreducible basis has to obey the eigenvalue equations~2.22! with
C2x replaced bysx .

It should be mentioned that the SAFs for two-dimensional irreps ofCnv andDn differ only in
phase. They can be chosen to be the same, but the representation matrices ofC2x andsx are then
no longer the same.

C. The group C`v

The characters and irreducible matrices for the groupC`v are obtained from Eqs.~2.30! and
~2.31!, for D` , by lettingC2

(w/2)→s (w/2).
From ~3.5! we get theC`v.C` SAFs

cA0n5@11~21! l 1 jn#ul j ,0&,

cm
Em5ul j m&, c

2m
Em 5~21! l 1 j 1jul j 2m&. ~3.9a!

For the single-particle systeml 5 j ,

cA15u j ,0&, cA2[0, ~3.9b!

that is, there are no SAFs of the irrepA2 .
The CG series and CG coefficients ofC`v can be, and so are, chosen to be equal to thos

D` .7

IV. THE GROUPS Dnd WITH EVEN n

Two types of improper dihedral groups are direct products ofDn with the inversion group
Ci5$e, Î %,

Dnd5Dn3Ci , with n odd,

and

Dnh5Dn3Ci with n even. ~4.1!

Thus the treatment ofDnd with odd n andDnh with evenn is trivial. Therefore, we only need to
treat the dihedral groupsDnd with even n, and Dnh with odd n. In this section we give the
solutions forDnd with evenn, leaving the latter case until Sec V.

The improper rotation operatorSnz is defined as by Kosteret al. ~Ref. 3, p. 5! as

szR~w!5H S~w12p!, 0,w,p

S~w!, 2p,w,0.
~4.2!

This definition is equivalent to
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Snz5uszCnz , Snz
215szCnz

21 , ~4.3!

namely,Snz5szCnz , and 2szCnz for the single-valued and double-valued representations
spectively. Note that the following definition forSn

1 andSn
2 given on p. 25 of Ref. 18 is alway

correct forSn
2 , while for Sn

1 it is only correct for single-valued representations: ‘‘They are alw
given as a rotationCn

1 , Cn
2 followed or preceded with a reflection on a plane perpendicular to

axis of rotation.’’ However, according to their character tables, for example, Table63.4, it is found
thatx(Snz)5ux(sz)x(Cnz), so that their actual use ofSn is consistent with the definition in~4.3!.

The advantage of this definition is that the following relations hold for both single-valued
double-valued cases:

Î C3z
6 5S6z

7 , Î C4z
6 5S4z

7 , Î C5z
625S10z

7 , Î C6z
6 5S3z

7 . ~4.4!

To obtain unified algebraic solutions for both single-valued and double-valued reps, the
natural definition is

Snz8 [szCnz5uSnz . ~4.5!

In the following derivation we useSnz8 for simplicity, but will switch back to the usual definition
~4.3! in the final expressions, so that comparisons can be more easily made with others’ w

The groupDnd is a semidirect product ofS2n andC2x , which has the following 4n elements;

Dnd5S2n∧C2x5$~S2n,z8 !k:k50,1,...,2n21;C2
(k) ,s (k):k50,1,...,n21%, ~4.6a!

where C2
(k) and s (k) are given by~2.1a! and ~3.1b!, respectively, withC2

(0)5C2x and s (0)

5C2n,zsx , that is

s (0)5C2n,zsx ,
~4.6b!

s (k)5Cnz
k s (0)5Cnz

k C2n,zsx5C2n,z
2k11sx .

Notice thats (0) is a vertical plane obtained by rotating the planesx around thez axis through
p/2n. The elements ofD2d are shown in Fig. 3.

ThereforeDnd;D2n and the irreducible characters and matrices ofDnd are obtained from
those ofD2n with the following replacements:

S2n,z8k →C2n,z
(n11)k , C2

(k)→C2
(2k) , s (k)→C2

(2k11) . ~4.7!

FIG. 3. Dnd , n52 andC2
(k)5Cnz

k C2x , s (k)5Cnz
k s (0), s (0)5C2n,zsx .
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It is to be noted that for the groupD2n we have

C2
(2n1k)5uC2

(k) . ~4.8!

The isomorphism in~4.7! means the CG coefficients are equal to those forD2n , and so we do
not give them explicitly in this section. Butler7 givesD2d.S4 3 jm factors.

A. Characters and irreducible matrices of Dnd

The irreducible matrices in theDnd.S2n basis are

DEm~C2
(k)!5~21!jS 0 e2 iw1

eiw1 0 D , DEm~S2n,z
k !5ukS e2 iw2 0

0 eiw2
D ,

~4.9a!

DEm~s (k)!5~21!jS 0 e2 iw3

eiw3 0 D ,

where

w15
2k

n
mp, w25

~n11!k

n
mp, w35

2k11

n
mp. ~4.9b!

Similar to ~2.12b!, the irreducible matrices in theDnd.C2x basis can be easily obtained.
From ~2.12!, ~2.13!, ~4.7! andS2n,z8 5uS2n,z we obtain algebraic expressions for the charact

of Dnd :

H xArn~S2n,z
k !5rk,

xEm~S2n,z
k !5uk2 cos@~n11!kmp/n#,

k50,1,...,2n21, ~4.10a!

5
xArn~C2

(k)!5nr2k,

xArn~s (k)!5nr2k11,

xEm~C2
(k)!5xEm~s (k)!50,

k50,1,...,n21, ~4.10b!

where the ranges ofr, n, andm are

FIG. 4. Dnh , n53, andC2
(k)5Cnz

k C2x , s (k)5Cnz
k sy .
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r561, n561,
~4.11!

m5H 1,2,...~n21!, j50,

1
2,

3
2,...~n2 1

2!, j5 1
2.

From ~4.10a! we see that the characters of the elementsS2n,z
k in the irrepsEm andEn2m are

simply related by

xEm~S2n,z
k !5~21!kxEn2m~S2n,z

k !. ~4.12!

B. The SAFs of Dnd

(a) One-dimensional irreps

cArn5
1

&
@ ul jm&1~21! jnul j 2m&], r,n561, ~4.13a!

m5 1
2@12~21! l r#n ~mod 2n!. ~4.13b!

(b) Two-dimensional irreps

Dnd.S2n : H cm
Em5ul jm&,

c
2m
Em 5~21! j 1jul j 2m,

~4.13c!

Dnd.C2x : 5 cn
Em5

1

&
@ ul jm&1~21! j 1jul j 2m&#,

c
2n
Em 5

1

& i
@ ul jm&2~21! j 1jul j 2m&#,

n5~21!j, ~4.13d!

m5m2 1
2@12~21! l #n, ~mod 2n!, ~4.13e!

wherem is given in~4.11!. Notice that whenl is even,~4.13! is reduced to~2.17! with n replaced
by 2n, that is

cs
G~ l 5even!uDnd

5cs
GuD2n

, G5Arn ,Em . ~4.14a!

From ~4.13! we know that the one-dimensionalDnd.S2n SAFs of even and odd parities ar
related to one another by

cAr,s~ l 5odd!5cA2r,s~ l 5even!, ~4.14b!

while the SAFs of the irrepEm associated with oddl are obtained from those with evenl by the
replacementsm→n2m, m→2m, that is

cs
Em~ l 5odd!5cs

En2m~ l 5even!um→2m , s56m,n. ~4.14c!

The SAFs ofD2d are listed in Tables II and III. The one-dimensional single-particle SAFs ofD2d

for the lowest possible angular momentum are listed in Table IV, and are identical those lis
p. 65 of Ref. 5.

Notice that the remark about Eqs.~3.7b! and ~3.7c! for Cnv also apply to Eqs.~4.14b! and
~4.14c!. Namely, those symmetries for theDnd SAFs are valid for all cases except for the sing
valued single-particle case.
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V. THE GROUP Dnh WITH nÄodd

A. The isomorphism between Dnh and D2n

In many books~eg., Ref. 18, p. 38! the groupDnh is said to be a direct product of the group
Dn andCsz5$e,sz%,

Dnh5Dn3Csz. ~5.1!

Actually for odd n this is true only for single-valued reps. The double groupDnh
† is merely a

semidirect product ofDn
† andC sz

† ,

Dnh
† 5C sz

† ∧Dn
† , n5odd, ~5.2!

since for double-valued repssz andC2x anticommute rather than commute. Therefore finding
double-valued irreps ofDnh is a nontrivial problem.

The 4n elements ofDnh are

Dnh5$Cnz
k ,S nz

(k) ,C2
(k) ,s (k):k50,1,...n21% ~5.3a!

with C2
(0)5C2x and

S nz
(k)[szCnz

k , s (k)[szC2
(k) , s (0)5sy . ~5.3b!

Notice the distinction betweenS nz
(k)5szCnz

k andSnz8k5(Snz8 )k, the relation between the two bein

TABLE II. The one-dimensional SAFsu jm&1(21) jnu j 2m& of D2d and
D3h ,n561.

l 5even l 5odd

D2d A1,n m50 ~mod 4! m52 ~mod 4!
A2,n m52 ~mod 4! m50 ~mod 4!

D3h A1,n m50 ~mod 6! m53 ~mod 6!
A2,n m53 ~mod 6! m50 ~mod 6!

TABLE III. The first componentul jm& of the D2d.S4 two-dimensional
SAFs ~the second component is (21) j 1jul jm&).

Em

l 5even
m5m ~mod 4!

l 5odd
m5m22 ~mod 4!

E1 u j 1&, u j ,23&,... u j ,21&, u j 3&,...
E1/2 u j 1

2&, u j ,2 7
2&,... u j ,2 3

2&, u j 5
2&,...

E3/2 u j 3
2&, u j ,2 5

2&,... u j ,2 1
2&, u j 7

2&,...

TABLE IV. The minimum set of the one-dimensional SAFs ofD2d and
D3h . u jm&65(1/&) (u jm&6u j 2m&).

Irrep

D2d D3h

l 5even l 5odd l 5even l 5odd

A115A1 u00& u32&2 u00& u33&2

A125A2 u44&2 u32&1 u66&2 u33&1

A215B1 u22&1 u54&2 u43&1 u76&2

A225B2 u22&2 u10& u43&2 u10&
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S nz
(2k11)5ukSnz82k115uk11Snz

2k11 , S nz
(1)5uSnz . ~5.3c!

For example, forD3h which is shown in Fig. 4 we have

S 3z
(0)5sz , S 3z

(1)5uS3z , S 3z
(2)5uszC3z

215uS3z
21 .

The groupDnh is isomorphic to the proper rotation groupD2n and the irreducible matrices o
Dnh are obtained from those ofD2n under the following replacements:

Cnz
k →C2n,z

2k , C2
(k)→C2

(2k) ,
~5.4!

S nz
(k)→C2n,z

2k1n , s (k)→C2
(2k1n) .

As with the groupsDnd ~n even!, considered in the last section, the isomorphism means
algebraic expressions for the CG coefficients ofDnh ~n odd! are obtainable from the CG coeffi
cients ofD2n . Butler7 givesD3h.C3h 3 jm factors.

B. Characters and irreducible matrices of Dnh

From ~2.12!, ~2.13!, and~5.4! we obtain algebraic expressions for the characters and irre
ible matrices ofDnh .

The irreducible matrices in theDnh.Cnh basis are

DEm~Cnz
k !5S e2 iw1 0

0 eiw1
D , DEm~C2

(k)!5~21!jS 0 e2 iw1

eiw1 0 D , ~5.5a!

DEm~S nz
(k)!5S e2 iw4 0

0 eiw4
D , DEm~s (k)!5~21!jS 0 e2 iw4

eiw4 0 D , ~5.5b!

with

w15
2k

n
mp, w45

2k1n

n
mp. ~5.5c!

As with ~2.12b!, the irreducible matrices in theDnh.C2x basis can be obtained easily.
The characters ofDnh are

xArn~Cnz
k !5r2k, xEm~Cnz

k !52 cos~2kmp/n!,

xArn~S nz
(k)!5r2k1n, xEm~S nz

(k)!52 cos@~2k1n!mp/n!],
~5.6!

xArn~C2
(k)!5nr2k, xArn~s (k)!5nr2k1n,

xEm~C2
(k)!5xEm~s (k)!50, k50,1,...,n21,

where the ranges ofr,n, andm are the same as in~4.11!.
From ~5.6! we have

xEm~Cnz
k !5xEn2m~Cnz

k !, xEm~S nz
(k)!52xEn2m~S nz

(k)!. ~5.7!

C. The SAFs of Dnh

The SAFs for the group chainsDnh.Cnh andDnh.C2x are exactly those given in~4.13!, but
with n odd. The SAFs ofD3h are listed in Tables II and V. Comparing Table V with Table32.6
of Ref. 18 it is seen that the SAFs for two-dimensional irreps ofD3h are identical up to relative
                                                                                                                



n-

ferent

he

l
eded,

both

l

the

8216 J. Math. Phys., Vol. 41, No. 12, December 2000 Chen et al.

                    
phases. The one-dimensional single-particle SAFs ofD3h for the lowest possible angular mome
tum are listed in Table IV, and are identical to the ones listed in Ref. 18, Table32.6 and in Ref.
5, p. 66. Notice that the spherical harmonics used by Bradley and Cracknell in Ref. 5 are dif
from the ones used here. The relation between the two is

u lm&5~21!~m1umu!/2~Ylm!BC.

In conclusion, the SAFs of the groupDnd andDnh have exactly the same general form. T
striking similarities between theDnd with even n and Dnh with odd n suggest they could be
regarded as cases of the same group, sayGn , with n5even and odd, respectively.

VI. THE SUBDUCTION RULES FOR O„3…` DIHEDRAL GROUPS

A nice feature of the algebraic solutions is that theO3↓G subduction rules for any dihedra
groupG are obtained as a by-product. However, sometimes only the subduction rule is ne
and a simple formula for computing the rule is desirable.

For a double groupG† the frequency for the irrepG to appear in the subduced repj↓G† is
given by

f j p↓G5
1

u2Gu (a51

2uGu

xG~Ra!* x ( j l )~Ra!, p5~21! l , ~6.1a!

wherex ( j l )(Ra) is the character of the elementRa in the subduced representationj p↓G. Since

xG~Ra!* x ( j l )~Ra!5xG~Ra12p!* x ( j l )~Ra12p!,

Eq. ~6.1a! can be reduced to

yj p↓G~G!5
1

uGu (a51

uGu

xG~Ra!* x ( j l )~Ra!, p5~21! l . ~6.1b!

In other words we only need the characters of the elementsR(w), 0<w<2p, and not those
R̄(w)5R(w12p). In most textbooks which deal with double-valued reps, the characters for
the elementsR and R̄ are listed. This is a waste of space, and unnecessarily complicated.

TheO(3)↓ dihedral group subduction rules are given in Kosteret al.3 for each of the dihedra
groups. For improper dihedral groups they are given separately for each parity (21)l 561. There
are many regularities in these tables, which have not been pointed out.

From ~3.7! and ~4.14! we have already obtained the following relationships between
subduction rules of different groups and irreps with different paritiesp.

Rule 1. The subduction rules ofDn , and those for the two-dimensional irreps ofCnv are
independent of parity.

TABLE V. The first component of theD3h.C3h two-dimensional SAFs
~the second component is (21) j 1jul jm&).

Em

l 5even
m5m ~mod 6!

l 5odd
m5m23 ~mod 6!

E1 u j 1&, u j ,25&,... u j ,22&, u j 4&,...
E2 u j 2&, u j ,24&,... u j ,21&, u j 5&,...
E1/2 u j 1

2&, u j ,2 11
2 &,... u j ,2 5

2&, u j 7
2&,...

E3/2 u j 3
2&, u j ,2 9

2&,... u j ,2 3
2&, u j 9

2&,...
E5/2 u j 5

2&, u j ,2 7
2&,... u j ,2 1

2&, u j 11
2 &,...
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Rule 2. The subduction rules for even parity irreps ofCnv andDnd ~or Dnh! are identical to
those ofDn andD2n , respectively.

Rule 3. The subduction rules for odd parity irreps ofCnv andDnd ~or Dnh! are related to those
for even parity by

rule 3a

Cnv : f j 2↓Arn
5 f j 1↓Ar,2n

. ~6.2!

That is, the subduction rule of the odd parity is obtainable from that for even parity with
following replacements:

A11↔A12 , A21↔A22

or

G1↔G2 , G3↔G4 . ~6.3!

Similarly for Dnd andDnh ,

there is rule 3b. Dnd and Dnh : f j 2↓Ar,n
5 f j 1↓A2r,n

,

that is, A11↔A21 , A12↔A22 , Em↔En2m ,

or G1↔G3 , G2↔G4 , Em↔En2m . ~6.4!

Those relations have not previously all been given. We can prove those results usi
isomorphisms between dihedral groups, and using a simple formula for the frequency,f j↓G , of the
irrep G occurring in the subduced representationj↓Dn . We will obtain this simple formula now

The charactersx (G)(Ra) for the groupsDn are given in~2.13!, while the charactersx ( j l )(Ra)
for the subduced representation can be calculated from the characterx ( j )(f)5sin(j
11/2)f/sin(f/2) of SO~3!,

x ( j )~Cnz
k !5

sin@~2 j 11!kp/n#

sin~kp/n!
, ~6.5a!

x ( j )~C2
(k)!5cos~ j p!. ~6.5b!

From ~2.13!, ~6.1b!, and~6.5! we get the subduction rule forDn :

f j↓Arn
5

1

2n (
k50

n21

rk
sin@~2 j 11!kp/n#

sin~kp/n!
1

1

2n
n cos~ j p! (

k50

n21

rk, ~6.6a!

f j↓Em
5

1

n (
k50

n21

cos~2kmp/n!
sin@~2 j 11!kp/n#

sin~kp/n!
. ~6.6b!

Similar formulas can be found for the frequencies ofCnv , Dnd , andDnh . Those can be used t
prove the relations for subduction rules.

In summary, all we need is theO(3)↓Dn subduction rule given by the simple expressi
~6.6!, and rules~1!–~3! for the improper dihedral groups. The subduction rules can be state
such a concise form because we use the modified Mulliken notationArn , Em for the irreps of
dihedral groups.
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VII. DISCUSSION

A. Comparison with the tables of Altmann and Herzig „1994…

The most extensive tables for the dihedral groups are those taking up over 300 pa
Altmann and Herzig.18 They include the groupsDn , Cnv , Dnd , Dnh , n52,...,10,D`h , and
C`v . For each group they list the group table, its factor systems, irreducible character
matrices, SAFs, and CG coefficients. Those have been obtained using the conventional pro
operator method. Several comments are in order.

~1! For many isomorphic groups, the irreducible matrices and CG coefficients have not
chosen to be identical.

~2! The symmetry adaptation is only done to a single group chain, that is, to a cyclic g
Cn , S2n , or Cnh .

~3! Single-valued SAFs are valid only for single-particle systems with the parity (21) j .
~4! For Cartesian tensors~they are actually the single-valued SAFs of the group ch

G.$e,C2x%, or G.$e,sx%), the phase and the ordering of the two components of all the t
dimensional irreps are arbitrary. They are given only up to cubic powers of (x,y,z) ~the s, p, d,
f functions!.

The algebraic results we give here cover essentially all the tables of Altmann and He18

For one-dimensional irreps our results are identical, while for two-dimensional irreps, ther
phase differences~see Sec. VII C!.

It should also be noted that the method we used for deriving the algebraic results for the
groups is much simpler than the method used in Ref. 18 for getting numerical results only,
they need first to find the factor system for each group~or equivalently, to construct the multipli
cation table of the double group! and handle one group at a time.

B. The group table for a double group

Usually three numerical methods are used for determining the double-valued irreps of a
group, the double-group method,5 the representation group method,11 and projective representatio
method.9 In the former two, we need first to construct the group table of a double group, wh
the third we need to construct the factor system of the group. The group tables for the d
group D6

† and O† in Ref. 5 have some problems, as pointed out in Refs. 9 and 25, due t
ambiguity in the assignment of the matrices6D1/2(abg) to the elements of a double groupG†.
By using a rather complicated method, Altmann determined the factor system for all
groups.9,18

Contrary to the numerical approach,in the algebraic approach no group table or facto
system is required, which is another significant advantage of the new method. Recall tha
obtaining the algebraic solutions ofDn we only used the following multiplication relations:C2

(k)

5Cnz
k C2x , see~2.1a!, and andC2xCnzC2x

215Cnz
21 . If one needs to construct the group table o

point groupG†, we can take its irreducible matrices of the irrepE1/2, and use matrix multiplica-
tion to get the group table.

TABLE VI. The two-dimensional single-valued and double-valued irreducible matrices ofD4.C2x , C4v.C2x ,

D2d.C2x , D2.C2x and C2v.C2x . C2
xy5C4zC2x , C2

x̄y5C4z
3 C2x , sxy5 Î C2

xy ; D25$E,C2z ,C2x ,C2y%; C2v
5$E,C2z ,sx ,sy%. The matrices ofD2 andC2v can be read off by ignoring the rows labeled byE1 , E3/2 andE5/2 , and
columns not belonging to their elements.

D4 E C4z
1 C2z C4z

2 C2x C2
xy C2y C2

x̄y

C4v E C4z
1 C2z C4z

2 sx sxy sy s x̄y

D2d E S4z
2 C2z S4z

1 C2x sxy C2y s x̄y

E1 e r 2e 2r l k 2l 2k
E1/2 e 1

& (e1r) r 1
& (e2r) il i

& (l1k) ik i
& (k2l)

E3/2 e 1
& (r2e) 2r 2

1
& (e1r) il i

& (k2l) 2 ik i
& (l1k)
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For example, we take the irreducible matrices for the irrepE1/2 of D6 listed in Table VII, and
construct the group table ofD6

† . A remarkable thing is that the factor system extracted from
group table is exactly the same as the one listed on p. 253 of Ref. 9 obtained by Altman
much involved procedures.

Although in the character table~Tables 2.5 and 6.5! given by Bradley and Cracknell,5

x(S4z
6 )5x(C4z

7 ), in conformity with the mappingS4z
6 →C4z

7 indicated in~4.4!, their irreducible
matrices given in Table 2.3 obeyDE(S4z

6 )5DE(C4z
6 ), which implies the naive mappingS4z

6

→C4z
6 . It should be emphasized that the simple relations~3.7! and ~4.14! between the SAFs o

different dihedral groups hold only under the mapping~3.2!, ~4.7!, and~5.4!.

C. The irreducible matrices

The real irreducible matrices for the dihedral groups have been tabulated by McWeeny~Ref.
2, pp. 97–100! and by Bradley and Cracknell~Ref. 5, pp. 60 and 61! for single-valued reps, while
the double-valued irreducible matrices are usually given only for the generators~Ref. 5, pp.
429–432!. TheDn.C2x two-dimensional irreducible matrices of the operatorsCnz

k given by Dam-
hus,et al. Harnung, and Schaffer8 are complex.

We give the irreducible matrices for all operators and all irreps of any dihedral groupDn in
the algebraic formulas in Eqs.~2.12!, ~4.9!, and~5.5!. From them we can easily get the numeric
results shown in Tables VI and VII. Those tables are very compact in that they contain a
single-valued and double-valued irreducible matrices of any crystallographic dihedral grou

A key point in the unified solution for allDn groups is that the irreducible matrix of th
operatorC2x has been chosen to be independent ofEm andn, as shown in~2.12a!,

TABLE VII. The two-dimensional single-valued and double-valued irreducible matrices ofD6.C2x , C6v.C2x ,
D3h.C2x , D3.C2x and C3v.C2x . In D6 , C2

(k)5C6z
k C2x ,k50,...,5; in C6v , s (k)5C6z

k sx ,k50,...,5; in D3h , C2
(k)

5C3z
k C2x ,s (k)5C3z

k sy ,k50,1,2;u51(21) for single-valued~double-valued! cases.D35$E,C3z
1 ,C3z

2 ,C2x ,C2
(2) ,C2

(4)%;
C3v5$E,C2z

1 ,C3z
2 ,sx ,s (2),s (4).% The matrices ofD3 andC3v can be read off by ignoring the rows labeled byE2 , E3/2

andE5/2 , and columns not belonging to their elements.

D6 E C6z
1 C3z

1 C2z C2x C2
(1) C2

(2) C2y C2
(4) C2

(5)

C6v E C6z
1 C3z

1 C2z sx s (1) s (2) sy s (4) s (5)

D3h E S3z
2 C3z

1 sz C2x us (2) C2
(1) sy C2

(2) s (1)

E1 e 2b a 2e l 2m n 2l m 2n
E2 e a b e l n m l n m
E1/2 e n̂ 2b r il 2 i â 2 im ik in 2 i b̂
E3/2 e r 2e 2r il ik 2 il 2 ik il ik
E5/2 e m̂ 2a r il 2 i b̂ im ik im 2 i â

TABLE VIII. Matrices appearing in Tables VI and VII. The matricesâ,b̂,m̂,n̂ are obtained froma,b,m,n, respectively, by
interchanging their two columns.

e k a b m n

S1 0

0 1
D S0 1

1 0
D S2

1

2
2
)

2

)

2
2

1

2

D S 2
1

2

)

2

2
)

2
2

1

2

D S 2
1

2
2
)

2

2
)

2

1

2

D S2
1

2

)

2

)

2

1

2

D
l r â b̂ m̂ n̂

S1 0

0 21
D S0 21

1 0
D S2

)

2
2

1

2

2
1

2

)

2

D S )2 2
1

2

2
1

2
2
)

2

D S2
)

2
2

1

2

1

2
2
)

2

D S)2 2
1

2

1

2

)

2

D
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DEm~C2x!5~21!jS 0 1

1 0D , ~7.1!

while the matrixDEm(C2x) of Dn in Ref. 18 depends on bothm andn.
Using the projective representation, Altmann and Palacio10 calculated theD6.C6 irreducible

matrices and CG coefficients for both single-valued and double-valued reps, as tabulated in
4 and 5 in Ref. 10. The algebraic expressions in this paper are much more concise.

D. The symmetry adapted functions „partners of irreps …

As mentioned in Sec. II, the SAFs in this paper are valid for both the single-particle
many-particle systems. Those cases are distinguished in that for the single-valued single-
case where j 5l 5 l , u lm& becomes the spherical harmonicsYlm in Condon–Shortley
convention,34 and only the statesj p501,12,21,... areallowed. For the single-valued many
particle case, the statesj p501,12,21,... andj p502,11,22,... are allallowed.

The Dn.C2x SAFs for the single-particle and single-valued case are given by Bradley
Cracknell~Ref. 5, pp. 64–66!. TheDn.Cn double-valued symmetry adapted functions in Ref.
Table 6.8 are in uncoupled form, which is much more complicated than the simple form o
~2.17c!. To compare with their results, we take the simplest dihedral groupD2 as an example. The
matrix of C2x for the irrepE1/2 on p. 429 of Ref. 5 is

DEm~C2x!5S 0 1

21 0D ~7.2!

with row ~column! indexed bym52 1
2,

1
2. The first component of the irrepE1/2 with uncoupled

basis is either

w
21/2
E1/2 5u2Ylm5(

j
Clm, 1/22 1/2

j ,m8 u jm8&, m50 ~mod 2!,

due tom852 1
2 (mod 2) ~u2 being the spin wave function with projection2 1

2!, or

w
21/2
E1/2 5u1Ylm5(

j
Clm, 1/21/2

j ,m8 u jm8&, m51 ~mod 2!.

Due to ~7.2!, the second component can be obtained by usingw1/252C2xw21/2, with the
final results

FE1/25~u2Ylm ,i ~21! lu1Yl 2m!, m50 ~mod 2!, ~7.3a!

FE1/25~u1Ylm ,i ~21! lu2Yl 2m!, m51 ~mod 2!. ~7.3b!

Equation~7.3a! is the same as the SAFs given on p. 447 of Ref. 5 but~7.3b! differs in the order
of components and phase. We do not see the reason for interchanging the order and phas
components in Ref. 5. We also can use~2.22b! to check that~7.3b! is correct.

Shortcomings of the SAFs in the uncoupled form are obvious. First, the single-value
double-valued cases are listed separately. Second, the SAFs are cumbersome. Third, t
reducible with respect to the groupO3 .

It should be pointed out that the SAFs ofDn.C2x depend on thej value but are independen
of the parity. Only for the single-particle and single-valued case, wherej 5 l , do the SAFs appea
to depend on the parity (21)l .

The expressions for theDn.Cn SAFs given by Golding and Newmarch~Ref. 6, Tables 3 and
5! are also much more complicated than Eqs.~2.17a! and ~2.17c!.
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One notes that for the caseD6.C6 , the SAFs tabulated by Butler~Ref. 7, pp. 541–544! for
j 5 1

2,1,32,...,8, differ only by phase factors from our algebraic expressions~2.17a! and ~2.17c!.
The SAFs in the group chainsDn.Cn andDn.C2x in Damhus, Harnung, and Schaffer8 also

differ from ours by phase. They give the SAFs for the group chainDn.Cn as c
6m
Eumu5u j ,6m&,

m5m (modn).

E. RACAH

The programRACAH can be chosen to be consistent with the results we give here. Many o
resultsRACAH gives are already consistent.RACAH has the advantage of being able to use tra
formation coefficients in the calculation of matrix elements, reducing the need for familiarity
the sophisticated mathematical formalism of the Racah–Wigner calculus. The results in this
are for dihedral groups,RACAH is more general. More information aboutRACAH can be obtained
by contactingracah-help@phys.canterbury.ac.nz .

VIII. SUMMARY

In summary, algebraic expressions for the characters, irreducible matrices, the pro
operators, SAFs, CG series, and CG coefficients of all dihedral groups have been derive
simple and unified way without using group tables. These expressions are universal in the
that they are valid for both single- and double-valued reps ofDn , Cnv , Dnd , andDnh for any
positive integer nand with the limit at` giving the infinity groups such asD` . We have
concentrated on giving the results here, details of the method can be obtained from J.-Q
particular the results forDn ~the CG coefficients and SAFs of one-dimensional irreps!, Cnv , Dnh ,
andDnd are new, the others are given for completeness and to show the structural elegance
results.

One aspect of our expressions with which particular care must be taken is when one re
factorizability. One can use several of our algebraic solutions to give particular solutions fo
Dmn.Dn branch, which Butler7 pointed out cannot be chosen to be factorizable under all bra
ing schemes simultaneously.

The elegance of the algebraic solutions lies in their simplicity and universality. An infi
number of tables, of which a finite subset has been published, are replaced by a few
formulas. The simplification is more prominent for the SAFs and CG coefficients.

Our choice of phase and the specific mappings~3.2!, ~4.7!, and~5.4!, between group elements
mean the symmetry adapted functions for the even parity states ofCnv , Dnd , Dnh are identical
with those ofDn , D2n , D2n , respectively. Those for the odd parity states can be obtained
those of even parity with the simple replacements shown in~3.7! and~4.14!. The result of Butler19

that CG coefficients of isomorphic groups can be chosen to be equal, means that the CG
cients ofDn andCnv are equal to each other and that those ofDnd andDnh are equal to the CG
coefficients ofD2n .

Our goal of finding algebraic solutions for the dihedral groups, so that they are as amena
the rotation group, is complete.
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A parametric limiting absorption problem
with degeneration
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We are concerned with acoustic waves propagation in inhomogeneous media in the
case where densityr(x), being independent ofr 5uxu and depending on a param-
eter t, can vanish on some domains ofR3 for some isolated valuet5t0 . We
investigate the behavior of solutions of wave equation ast→t0 , prove the limiting
absorption principle fort5t0 , and apply the obtained results to a wave fronts
propagation problem. ©2000 American Institute of Physics.
@S0022-2488~00!01411-0#

I. INTRODUCTION

Let us consider the forced oscillation equation,

wtt2a2 Dw5eikt f ~x!, ~1.1!

wherew5w(x,t), xP5R3, t.0, k.0 is a frequency,a is a sound speed,a225r(x).0 is a
density of medium, andf (x)50 outside a sphere. We are looking for waves of the form

w5exp~ ikt !u~x!. ~2.1!

Then onR3,

Du1k2r~x!u1r~x! f ~x!50. ~3.1!

Setting

l 52r21D,

we can write~3.1! as follows:

lu5lru1 f , ~4.1!

wherel5k2. We shall restrict ourselves to the special case where

r5g~ x̂!, ~5.1!

x̂ªuxu21xPS2, g:S2→R1 , whereR15$x:xPR,x.0%, S25$x:xPR3,uxu51%. Then the equa-
tion ~3.1! outside a sphere has the form

Du1k2g~ x̂!u50. ~6.1!

Having a solutionf of the eikonal equation,

u¹fu25r, ~7.1!

a!Electronic mail: math@math.tau.ac.il
82230022-2488/2000/41(12)/8223/13/$17.00 © 2000 American Institute of Physics
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such that

f~x!5uxuf̂~ x̂!, ~8.1!

wheref̂ is a smooth positive function onS2, we can look for asymptotic solutions of~6.1! as r
ªuxu→`, which have the form

u65exp„6 ikf~x!…v6 , ~9.1!

wherev6 are nonoscillatory factors. For instance, ifr[1, f5uxu, then there exist solutions o
~6.1! with asymptotics~9.1! wherev65r 21h6( x̂).

It follows from ~2.1! and ~9.1! that the solutionsu1 and u2 describe propagation of wav
fronts

f~x!5c, ~10.1!

c5const, from and to infinity correspondingly with the normal speeda5a(x). Physically inter-
esting solutions of~4.1! with asymptotics~9.1! usually can be found by the limiting absorptio
principle ~LAP!, i.e., as limits,

lim
z→l60i

uzªul60i
, ~11.1!

whereuz is a solution of the equation

Lu5zu1 f , Im zÞ0, ~12.1!

treated in the spaceL2 with the weightr, andL is a self-adjoint realization ofl in this space. The
solutionsuz exist for anyzPC, Im zÞ0. The existence of limits~11.1! in some weightedL2 space
can be proved under conditions~5.1! and

0,c1<g~ x̂!<c2,`, x̂PS2 ~13.1!

~see Sec. II, Lemma 4.2!. The functionsul60i are solutions of~4.1! on R3.
As it was shown in Ref. 1 if~13.1! holds and there exists an asymptotic solutionf of ~7.1!,

satisfying~8.1!, with closed convex two-dimensional wave fronts~10.1! subject to some additiona
restrictions, thenul60i will satisfy the radiation conditions~RC! at infinity,

E ~11r !gU]u

]n
7 ikuAruU2

dx,`, ~14.1!

for somegP(21,0#, where we integrate overR3, and n is an external normal to the surface
~10.1!. RC ~14.1! imply the asymptotics~9.1! and guarantee the uniqueness of solutions of~4.1!.

Before setting our general problem let us first turn to an example of ellipsoidal wave fr
Example 1.1:Suppose onR3,

r5S (
j 51

3

aj
22xj

2D 21

(
j 51

3

aj
24x2, ~15.1!

wherex5(x1 ,x2 ,x3), aj5const, j 51,2,3,

0,a1<a2<a3 . ~16.1!

The function
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f5S (
j 51

3

aj
22xj

2D 1/2

~17.1!

is a phase function, satisfying~7.1! and ~8.1!. The wave fronts~10.1! are concentric homothetic
ellipsoids with semiaxes proportional to the numbersa1 , a2 , a3 , which we shall treat as param
eters.

Now suppose that these parameters behave in the following way:a15const,a2→`, then also
a3→`. Thenr, f, l, L, uz , ul60i depend ona2 , a3 , and for anyxPR3 with x1Þ0 we obtain
r→r`5a1

22. Below we shall prove that in some senseul60i converges asa2→` to a limit ul60i
`

and uz to a limit uz
` . The convergencef→f`5a1

21ux1u as a2→` could lead to an incorrec
conclusion that solutionsul60i

` describe plane wavesux1u5c propagating along thex1 axis. But in
reality, as we show, the limit wavesul60i

` are not asymptotically plane but spherical, propagat
with the constant speeda1 . It means that, generally speaking, we cannot pass to the limit off to
obtain limiting wave fronts, if the surfaces limf5c are nonclosed. The correct passage to
limit can be carried out by the equality

lim
z→l60i

uz
`5ul60i

` , ~18.1!

which will be proved in Sec. IV in a more general context. The functionuz
` is the solution of

~12.1! with r5r`5a1
22. This and~18.1! lead to the conclusion, thatul60i

` are solutions of~4.1!
with r5a1

22, satisfying the classical Sommerfeld RC,

ur7 ika1
21u5o~r 21!, r→`, ~19.1!

where r 5uxu, ur5]u/]r . Consequently, solutionsul60i
` describe spherical waves propagati

with the speeda1 .
In order to include this example into a general scheme, we have to observe that

min
S2

r5a3
22 ——→

a2→`

0, ~20.1!

and on any compactB̄,S2, which has an empty intersection with the planex350, we have

r>c0.0, ~21.1!

wherec0 is independent ofx̂, a2 , a3 . Moreover,

max
S2

r5a1
225const. ~22.1!

Relations~20.1! and~22.1! mean that in~13.1! the constantc1 , unlikec2 , depends ona1 , a2 , and
c1→0 asa2→`, so there is a degeneration of our parametric problem in the sense~20.1!. Let us
notice that a nonparametric degenerated problem withr→0 at infinity was discussed in Ref. 1.

Let us now set a general problem. For simplicity of notations let a functionr be dependent on
one parametern51,2,... . So we shall deal with a sequence of densitiesr (n)5r (n)( x̂), n
51,2,..., and assume that functionsr (n) are Lebesgue integrable onS2 and satisfy the following
conditions:

(A1) Almost everywhere~a.e.! on S2,

0,rI
~n!<p~n!<r̄, ~23.1!

where constantsrI
(n), r̄ do not depend onx̂ and r̄ does not depend onn.
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(A2) r (n)( x̂) ——→
n→`

r( x̂) a.e.on S2

(A3) There exists an open setB,S2, BÞf, such thata.e.on B,

r~n!~ x̂!>c0.0, ~24.1!

with c0 independent ofn51,2,...,x̂PB.
The conditionsA1–A3 are set in accordance with~20.1!–~22.1!. All operators and solutions

introduced above, now acquire an indexn:L(n), uz
(n) , etc. It is easy to show~see Sec. II! that the

conditionsA1 ,A2 imply the existence of the limits

lim
z→l60i

uz
~n!
ªul60i

~n! , ~25.1!

lim
n→`

uz
~n!
ªuz

` , ~26.1!

being understood in a sense defined in Sec. II. Our main objective is to prove the existence
limits

lim
n→`

ul60i
~n!

ªul60i
` , ~27.1!

and the equality~18.1! provided that the general conditionsA1–A3 are satisfied. The existence o
the limit on the left-hand-side of~18.1! means the validity of LAP for the equation

Du1zr`u52r` f , ~28.1!

where r` can vanish onS2\B. Because of that the operatorL(n) becomes meaningless forn
5`.

In the case whereA1 andA2 hold butA3 does not, anda.e.on S2 r`50, we prove~see Sec.
II, Theorem 2.2.!, that both sides of~18.1! are equal to zero, on the condition thatr (n) ——→

n→`
0

uniformly on S2 in some strong sense.

II. PRELIMINARIES, MAIN RESULTS

Denote byx, y points of Euclidean spaceR3 and setr 5uxu,

V~R!5$x:xPR3,r ,R%, R.0,

V~R1 ,R2!5$x:xPR3,R1,r ,R2%, R1.0,

VR5$x:xPR3,r .R%,

S~R!5$x:xPR3,r 5R%,

N5$1,2,...%, N05$0,1,2,...%.

By c, cj we denote positive constants, byz, zj -points in the complex planeC. Put

C65$z:zPC,6Im z.0%.

Fix some numbers«, «0 , l1 , l2PR, 0<«,«0 , 0,l1,l2 and set

C
6

«,«05$z:z5l1u i PC, lP@l1 ,l2#, 6uP~«,«0#%,
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C«,«05C
1

«,«0øC
2

«,«0,C6
« 5C6

«,` ,C«5C«,`,

E g dx5E
R3

g dx.

Let X, Y be normed spaces. Denote byB(X,Y) the space of bounded operatorsX→Y. Suppose
that r (n) is a sequence of Lebesgue measurable functionsR3→R satisfying the condition~23.1!
a.e.on R3. Introduce the following complete normed spaces.

~1! Hilbert spacesH (n)5L2(R3,r (n)dx), nPN with the norms

i•in5SEu•u2r~n! dxD1/2

,

and the corresponding inner products (•,•)n .

~2! The spacesH6
(n)5L2(R3,(11r )62r (n) dx) with the norm

i•in,6
2 5Eu•u2~11r!62r~n! dx.

~3! Sobolev spacesHg,p(v), wherev is a domain inR3, gPR, pPN0 , with norms

i•ig,p,v
2 5E

v
~11r!g (

uju50

p

uDj
•u2 dx,

where j 5( j 1 , j 2 , j 3), j lPN0 , u j u5( l 51
3 j l . Put Hg,p(R3)5Hg,p , i•ig,p,R35i•ig,p and denote by

~•,•! the inner product in the Hilbert spaceL2(R3)5H0,0.

~4! Topological spacesH̃m , mPN0 of functions v:R3→C belonging toH0,m„V(r 0)…, ;r 0.0
with the topology given by the system of seminorms$i•i0,m,V(r 0)%r 0.0

.

Metrics in the spacesH00 andH (n) are equivalent because of~23.1!. And so are metricsH2,0

andH1
(n) . We have imbeddings

H1
~n!,H ~n!,H ~n!,H2

~n! . ~1.2!

Introduce the imbedding operatorsI 1
(n)PB(H1

(n) ,H (n)), I 2
(n)PB(H (n),H2

(n)), I (n)PB(H2,0,H1
(n)).

Then

i I 6
~n!i51, ~2.2!

i I ~n!i<Ar̄. ~3.2!

Let l (n) be a differential operator defined by

l ~n!52~r~n!!21D,

L(n) be an operator in the Hilbert spaceH (n), defined byL(n)5 l (n) on H0,2. Then L(n)>0 is
self-adjoint inH (n). Denote byR(n)(z), Im zÞ0 the resolvent ofL(n), by R1

(n)(z) the operator

R1
~n!~z!5I 2

~n!R~n!~z!I 1
~n! , Im zÞ0,

belonging toB(n)
ªB(H1

(n) ,H2
(n)). Due to~2.2!,

iR1
~n!~z!iB~n!<uIm zu21. ~4.2!

Setu5Im z, l5Rez,
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N1
~n!~u!ª max

lP@l1 ,l2#

iR1
~n!~l1u i !iB~n!, uÞ0,

n«
~n!5 sup

uuu.«

N1
~n!~u!5 sup

xPC«

iR1
~n!~z!iB~n!, «>0. ~5.2!

Because of~4.2! for «.0, nPN,

n«
~n!<«21. ~6.2!

Now we go over to limits asn→`. The next three lemmas are free from the limitation~5.1!.
Lemma 1.2: Letr(x) be a real-valued function onR3, Im zÞ0, uPH̃2 satisfying the equation

Du1zr~x!u50, ~7.2!

a.e. onR3 and the condition

E „~11r !22uuu21u¹uu2…dx,`. ~8.2!

Then u50 a.e. onR3.
Proof: The condition~8.2! implies

lim inf
r 0→`

E
S~r 0!

uuur uds50, ~9.2!

ur5]u/]r , which yieldsu50 in a standard way. h

Lemma 2.2: Letr (n)(x), xPR3, nPN be a sequence of Lebesgue measurable functi
satisfying the condition (23.1) a.e. onR3, z5l1u i PC0, f PH0,0. Then for uz

(n)5R(n)(z) f we
have

iuz
~n!i22,01iu¹uz

~n!iu0,0<cuuu21/2~11uuu21/2!i f in , ~10.2!

where c5c(l2) does not depend on z, n.
Proof: By the equation

Duz
~n!1zr~n!uz

~n!52r~n! f , ~11.2!

we easily obtain

iuz
~n!in<uuu21i f in , ~12.2!

iu¹uz
~n!ui0,0<cuuu21/2~11uuu21/2!i f in , ~13.2!

c5c(l2). The Hardy inequality,

iwi22,0<2iu¹wui0,0, ~14.2!

which is valid forw5uz
(n)PH0,2, together with~13.2!, implies ~10.2!.

h

Corollary 1.2: For any r0.0,

iuz
~n!i0,1,V~r 0!<c1~l2 ,r 0!uuu21/2~11uuu21/2!i f in . ~15.2!
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Lemma 3.2: Let all the conditions of Lemma 2.2 be satisfied andr (n)→r` a.e. onR3. Then

the sequence uz
(n) converges as n→` in Hm,0 ,;m,22 to a solution uz

`PH̃2 of the equation

Du1zr`u52r` f ~16.2!

~a.e. onR3!, and the function uz
` is subject to the condition (8.2). The convergence is uniform

z on any domainC«, «.0.
Proof: Supposer 0.0, z5l1u i PC0. Due to ~15.2! and the Rellich compactness theore

there exists a subsequenceuz
(nl ) converging inH̃0 to a functionuz

`PH̃0 . By the inner estimate

E
V~r 0!

(
u j u51

2

uD jwu2dx<c~d!E
V~r 01d!

~ uwu21uDwu2!dx, ~17.2!

wherewPH̃2 , d.0, and by~11.2! we obtain the convergenceuz
(nl )→uz

` in H̃2 . The function

uz
`PH̃2 is a solution of~16.2! a.e.on R3. Because of~10.2!, the functionuz

` satisfies~8.2!. By
Lemma 1.2 we can conclude that the whole sequenceuz

(n) converges touz
` asn→` in H̃2 . Since

we have~10.2!, we see thatuz
(n)→

n→`
uz

`also inHm,0 , ;m,22.
The uniformity ~in z! of convergence onCe follows from the inequalities~10.2! and

iuz1,2

~n! i22,0<cuz12z2ui f i0,0, ~18.2!

whereuz1z2

(n) 5uz1

(n)2uz2

(n) , c is independent ofn, f PH0,0, z1 , z2PC. The inequality~18.2! can be

easily deduced~by a standard integration by parts! from ~10.2!, the equation

Duz1z2

~n! 1z1r~n!uz1z2

~n! 5~z22z1!r~n!uz2

~n! , ~19.2!

and the Hardy inequality~14.2!. h

From now on we suppose thatr (n) does not depend onr.
Lemma 4.2: Let the condition A1 be satisfied, f PH1

(n) , l.0. Then for uz
(n)5R(n)(z) f there

exist limits (25.1) in the space H2
(n) and

n0
~n!,`, ;nPN. ~20.2!

The proof can be easily obtained by the conjugate operator method2 using commutability of
differential operatorsl (n) and¹•x1x•¹.

So LAP is valid for anynPN, and the functionuz
(n) can be treated as continuous inz both on

C̄1
0 and onC̄2

0 ~in the sense of Lemma 4.2!.
The following theorem will be proved in Sec. IV.
Theorem 1.2:Let the conditions A1–A3 be satisfied and fPH2,0, uz

(n)5R(n)(z) f . Then uz
(n)

converges as n→` in the space Hm,0 ;m,24 uniformly in z on the domainC0.
By Lemma 4.1 we can see that the convergenceuz

(n) asn→` is uniform also in closuresC̄1
0

and C̄2
0 . Denote byuz,6

` the limits of uz
(n) as n→` on the domainsC̄6

0 , respectively. Due to
Theorem 1.2 the functionsus,6

` :C̄6
0 →Hm,0 , m,24 are continuous onC̄6

0 . This leads to the
following.

Corollary 2.2: Under conditions of Theorem 1.2 the equality (18.1) is valid for alll.0,
where ul6u i

` is defined by (27.1) and both limits (27.1) and (18.1) exist in the space Hm,0 , ;m
,24.

Applying Corollary 1.2 and Lemma 3.2 to Example 1.1, we easily obtain for; f PH2,0 that

ul60i→a →`
ul60i

` in the spaceHm,0 , ;m,24, where

2
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ul6u i
` 5

1

4pa1
2 E r 1

21 exp~6 ika1
21r 1! f ~y!dy,

r 15ux2yu.

Suppose now that the conditionA3 does not hold but instead,r (n)→
n→`

0 a.e.on R3. Then,

because of Lemma 3.2, we haveuz
(n)→0 in Hm0 , ;m,22 uniformly in z on C«, ;«.0. So

uz
`50 if Im zÞ0. The following theorem will be proved in Sec. III.

Theorem 2.2:Let r (n)(x) be not depending on r, the following condition:

0,c1b~n!<r~n!~ x̂!<c2b~n!, ~21.2!

be satisfied, where c1 ,c2 ,bn.0 do not depend on xPS2, b(n)→
n→`

0 and fPH2,0. Then

uz
(n)→

n→`
0 in the space Hm,0 ,;m,22 uniformly in z onC0.

Theorem 2.2 implies that the right-hand side of~18.1! is also equal to zero.

III. MAIN LEMMAS

Lemma 1.3: Let the condition A1 be imposed onr (n)( x̂). Then for any z1 ,z2PC1
0,« ~or

z1 ,z2PC2
0,«!, ;«.0 the inequality

iR1
~n!~z1!2R1

~n!~z2!iB~n!<cAn0
~n!uz12z2u1/2 ~1.3!

holds, where c5c(l1 ,l2 ,r̄,«) does not depend on n,z1 ,z2 .
Proof: Supposez5l1u i PC1

0 and for somenPN f jPH1
(n), uz j

(n)5R(n)(z)I 1
(n) f j , j 51,2.

Thena.e.on R3,

Duzj

~n!1zr~n!uzj

~n!52r~n! f j , j 51,2. ~2.3!

Consider the integral

E r S ]uz1
~n!

]r
Duz2

~n!1
]uz2

~n!

]r
Duz1

~n!D dx.

After integration by parts we obtain by~2.3!, using the independence ofr (n) of r, the inequality

U E r~n!uz1
~n!uz2

~n!dxU<c~l1!S US ]uz2
~n!

]r
,r f̄ 1D

n
U1US ]uz1

~n!

]r
,r f̄ 2D

n
U1u~uz2

~n! , f̄ 1!nu D . ~3.3!

By ~2.3!,

iuz j
~n!in

2<u21N~n!~u!i f j in,1
2 , ~4.3!

E u¹uz j
~n!u2 dx<~11l2u21!N~n!~u!i f j in,1

2 . ~5.3!

By ~3.3!–~5.3!,

U E r~n!uz1
~n!uz2

~n! dxU<c1~11u21/2!AN~n!~u!i f 1in,1i f 2in,1 , ~6.3!

wherec15c(l1 ,l2 ,r̄) does not depend onn. By the identity

„R~n!~z!…25
dR~n!

dz
, ~7.3!
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we can write~6.3! in the form

US dR~n!~z!

dz
I 1

~n! f 1 , f 2D
n
U<c1~11u21/2!AN~n!~u!i f 1in,1i f 2in,1 . ~8.3!

Here, putting

f 25~11r !22
dR~n!~z!

dz
I 1

~n! f 1PH1
~n! ,

we obtain

IdR1
~n!~z!

dz
I

B~n!

<C1~11u21/2!AN~n!~u!. ~9.3!

For zjPC1
0 , j 51,2 we have

iR1
~n!~z2!2R1

~n!~z1!iB~n!<E IdR1
~n!

dz
I

B~n!

udzu. ~10.3!

Here we integrate along the polygonz1 ,z18 ,z28 ,z2 in the complex planeC, where zj85zj1uz2

2z1u i . By ~9.3! and ~10.3! after simple calculations, we obtain

iR1
~n!~z2!2R1

~n!~z1!iB~n!<C2An0
~n!~ uz12z2u1/21uz12z2u!, ~11.3!

wherec25c2(l1 ,l2 ,r̄). For z1 ,z2PC1
0,« the inequality~11.3! implies ~1.3!. h

Lemma 2.3: Let the condition A1 imposed onr (n)( x̂) be satisfied. Then for some c5const,

n0
~n!<c, ;nPN. ~12.3!

Proof: Suppose the opposite. Then we can assume

lim
n→`

n0
~n!5`. ~13.3!

Because of~5.2! there exists for anynPN a numberzn5Ln1Qni PC0, such that

iR1
~n!~zn!iB~n!> 1

2 n0
~n! . ~14.3!

Let us restrict ourselves to the case whereQn.0,;nPN. Due to~4.2! and ~13.3! we have

Qn ——→
n→`

0. ~15.3!

Fix some numbers«.0 andz̃PC1
0,« . Becuase of~4.2!,

iR1
~n!~ z̃!iB~n!<c, ~16.3!

with c independent ofn. Since~15.3! for n>n0 znPC1
0,« . By ~1.3!, ~14.3!, and~16.3!,

1
2 n0

~n!<iR1
~n!~ z̃!iB~n!1iR1

~n!~ z̃!2R1
~n!~zn!iB~n!<c11c2An0

~n!, ~17.3!

wherec1 ,c2 are independent ofn. But this is in contradiction with~13.3!. h

Lemmas 1.3 and 2.3 yield the following.
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Corollary 1.3: Under conditions of Lemma 2.3 for any z1 ,z2PC1
0,«(C2

0,«),;«.0, the inequal-
ity

iR1
~n!~z1!2R1

~n!~z2!iB~n!<cuz12z2u1/2 ~18.3!

holds, wherec is independent ofn,z1 ,z2 .
Corollary 2.3: Let forr (n)( x̂) conditions A1 and A3 be satisfied, f (n)PH1

(n) ,r 0 ,«.0. Then
there exists a ball Q,V(r 0), such that for all nPN, z1 ,z2PC1

0,«(C2
0,«) the inequality

E
Q

uuz1

~n!2uz2

~n!u2 dx<cuz12z2ui f nin,1
2 ~19.3!

holds, where uzj

(n)5R(zj )I 1
(n) f (n), j 51,2, and c5c(l1 ,l2 ,r̄,r 0 ,«) does not depend on n,zj , f n .

The following lemma is a modification of an estimate obtained by Roach and Zhang.3

Lemma 3.3: Let the conditions of Lemma 2.3 be satisfied. Then for any f(n)PH1
(n) the follow-

ing inequality is valid:

E lr~n!uuz
~n!u21u¹uz

~n!u2

~11r !2 dx1E uuz
~n!u2

~11r !4 dx<c~ iuz
~n!i0,0,V~ r̃ !

2 1i f ~n!in,1
2 !, ~20.3!

where z5l1u i PC0, r̃ is an arbitrary positive number, uz
(n)5R(n)(z)I 1

(n) f (n), c5c(l1 ,l2 ,r̄, r̃ )
does not depend on n,z, f (n).

Proof: Since~4.2!, it suffices to prove~20.3! for zPC0,1. Multiply

Duz
~n!1zr~n!uz

~n!52r~n! f ~n!, ~21.3!

by (ūz
(n)) r1r 21ūz

(n) , wherev r5]v/]r , integrate overV r 0
, r 0.0, and pass to real parts. Multipl

the obtained equality byr 0
22 and integrate with respect tor 0 from r 05r 1 to r 05`. After some

integrations by parts we obtain the inequlity

E
Vr 1

lr~n!uuz
~n!u21u¹uz

~n!u2

~11r !2 dx12E
Vr 1

uuz
~n!u2

~11r !4 dx2
1

2r 1
3 E

S~r 1!
uuz

~n!u2 dS

12E
Vr 1

S 1

r 1
2

2

r D u¹uz
~n!u22u~uz

~n!!r u2

r
dx

<cS E lr~n!uuz
~n!u21u¹uz

~n!u2

~11r !2 dxD 1/2S E ~11r !2r~n!u f ~n!u2 dxD 1/2

,

wherec5c(l1 ,l2 ,r̄,r 1). This together with~17.2! leads to~20.3!. h

Proof of Theorem 2.2:We obtain from~21.2! and Corollary 1.3 the inequality

iuz1

~n!2uz2

~n!i22,0<cuz12z2u1/2i f i2,0, ~22.3!

wherez1 ,z2PC0,1, f PH2,0, uzj
5R(zj )I 1

(n)I (n) f , c does not depend onn,z1 ,z2 . Now the state-
ment of Theorem 2.2 immediately follows from Lemma 3.2.

IV. PROOF OF THEOREM 1.2

Fix a numberr 0.0 and denote byVr 0
a subspace inH0,0, consisting of all functions,

vanishinga.e.on V r 0
. Introduce an operatorPr 0

(n) : H (n)→Vr 0
as follows:

~Pr 0

~n!w!~x!5s r 0
~x!w~x!, wPH ~n!,
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wheres r 0
(x)51 for xPV(r 0), s r 0

(x)50 for xPV r 0
. Put

Rr 0

~n!~z!5Pr 0

~n!R~n!~z!I 1
~n! :H1

~n!→Vr 0
, zPC0.

Then

iRr 0

~n!~z!iB~H
1
~n! ,Vr 0

!<cniR1
~n!~z!iB~n!, ~1.4!

wherecn does not depend onz. On the other hand, because of~15.2!,

iRr 0

~n!iB~H
1
~n! ,Vr 0

!<c~l2 ,r 0!u21/2~11u21/2!. ~2.4!

Set

n0,r 0

~n! 5 sup
zPC0

iRr 0

~n!~z!iB~H
1
~n! ,Vr 0

! . ~3.4!

Because of~20.2! and ~1.4!,

n0,r 0

~n! ,`, ;nPN. ~4.4!

Lemma 1.4: Suppose that the functionsr (n)( x̂) satisfy the condition A1 . Then for any r0
.0,

n0,r 0

~n! <c, ~5.4!

where c5c(r 0) does not depend on n.

Proof: Supposing~5.4! be incorrect, we can assume that for somer 0.0,

lim
n→`

n0,r 0

~n! 5`. ~6.4!

Since~3.4! and~6.4!, for eachnPN there exist sequenceszn5ln1uni PC0 and f (n)PH1
(n) , such

that

i f ~n!in,151, ~7.4!

MnªiPr 0

~n!u~n!i0,0 ——→
n→`

`, ~8.4!

whereu(n)5R(n)(zn)I 1
(n) f (n). Since~2.4!, ~7.4!,

Mn<c~l2 ,r 0!un
21/2~11un

21/2!. ~9.4!

It follows from ~8.4! and~9.4! that un→0 asn→`. So we can assume thatzn→l0P@l1 ,l2# as
n→`. Setv (n)5Mn

21u(n). Then

iv ~n!i0,0,V~r 0!51, ~10.4!

anda.e.on R3,

Dv ~n!1znr~n!v ~n!52Mn
21r~n! f ~n!. ~11.4!

By ~7.4!, ~10.4!, ~11.4!, and Lemma 3.3, wherer̃ 5r 0 , we obtain for some chosenr 1.r 0 that
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iv ~n!i0,1,V~r 1!<c, ~12.4!

with c independent ofn. Therefore, there exists a subsequencev (nl ) converging inH0,0„V(r 1)… as
l→` to vPH0,0„V(r 1)…. Choose a numberr 2P(r 0 ,r 1). Then by~17.2! and conditionsA1 , A2 ,
we conclude thatv (nl )→v in H0,2„V(r 2)… anda.e.on V(r 2),

Dv1l0rv50. ~13.4!

On the other hand,~7.4! and Lemma 2.3 imply

iu~n!in,2<c, ~14.4!

wherec does not depend onn. By ~14.4! and the conditionA3 we obtain the existence of a ba
Q,V(r 2), such that

iv ~n!i0,0,Q<cMn
21. ~15.4!

Thereforev50 a.e.on Q. By the uniqueness of solutions of the Cauchy problem for the equa
~13.4!,4 we conclude thatv50 a. e.on V(r 2), but this is in contradiction with~10.4!. h

This lemma and Lemma 3.3 imply the following.
Corollary 1.4: Let the conditions of Lemma 1.4 be satisfied. Then for any fPH2,0. zPC0 the

following inequality holds:

E ~11r !22~r~n!uuz
~n!u21u¹uzu2!dx1E ~11r !24uuz

~n!u2 dx<ci f i2,0
2 , ~16.4!

where uz
(n)5R(n)(z)I 1

(n)I (n) f and c is independent of n, z, f.
Lemma 2.4: Let the conditions of Lemma 1.4 be satisfied. Then the sequence of fu

uz
(n)5R(n)(z)I 1

(n)I (n) f , where fPH2,0, nPN, zPC1
0 (C2

0 ), with values in H̃0 is equicontinuous in
z.

Proof: Due to~18.2!, it will suffice to prove the equicontinuity ofuz
(n) on C1

0,1. Suppose it is
incorrect. Then there existf PH2,0,r 0.0 and two sequenceszm j , j 51,2, mPN, such that

igm12gm2i0,0,V~r 0!>c0.0, ~17.4!

wherezm jPC1
0,1, zm j→z0PC̄1

0,1, j 51,2 asm→`, gm j5R(nm)(zm j)I 1

(nm)I (nm) f . Chooser 1.r 0 .
Since~16.4!, we can assume thatgm j→gj asm→` in H0,0„V(r 1)…, j 51,2. The functiongm j(x)
is a solution of the equation

Du1zm jr
~nm!u52r~nm! f , ~18.4!

a.e. on R3. Therefore,gm j→gj in H0,2„V(r 0)… and a.e. on V(r 0) the functionsgj satisfy the
equation

Du1z0ru52r f , j 51,2. ~19.4!

By Corollary 2.3 we can see that there exists a ballQ,V(r 0) such that

E
Q

ugm12gm2u2 dx<cuzm12zm2u,

wherec does not depend onmPN. Passing here to the limit asm→`, we obtaing15g2 a.e.on
Q. By virtue of ~19.4!, satisfied by bothg1 andg2 , we obtain thatg15g2 a.e.on V(r 0), which
contradicts~17.4!.

By Lemmas 2.4 and 3.2 we obtain the following.
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Corollary 2.4: Under conditions of Lemma 4.2 the function uz
(n) : C0→H0,0„V(r 0)… converges

uniformly as n→` for any r0.0.
Now Theorem 1.2 immediately follows from Corollary 1.4 and 2.4.
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We consider quasiperiodic and periodic~cnoidal! wave solutions of a set of
n-component vector nonlinear Schro¨dinger equations~VNLSEs!. In a biased pho-
torefractive crystal with a drift mechanism of nonlinear response and Kerr-type
nonlinearity,n-component nonlinear Schro¨dinger equations can be used to model
self-trapped mutually incoherent wave packets. These equations also model pulse–
pulse interactions in wavelength-division-multiplexed channels of optical fiber
transmission systems. Quasiperiodic wave solutions for the VNLSEs in terms of
n-dimensional Kleinian functions are presented. Periodic solutions in terms of Her-
mite polynomials and generalized Hermite polynomials forn-component nonlinear
Schrödinger equations are found. ©2000 American Institute of Physics.
@S0022-2488~00!00212-7#

I. INTRODUCTION

We consider the system of coupled nonlinear Schro¨dinger equations

i
]

]t
Qj1s

]2

]x2 Qj1sS (
k51

n

uQku2DQj50, j 51, . . . ,n, ~1!

wheres561, s561. These equations are important for a number of physical applications
example, for photorefractive media with a drift mechanism of nonlinear response, a good ap
mation describing the propagation ofn self-trapped mutually incoherent wave packets is the se
equations for a Kerr-type nonlinearity1

i
]

]z8
Q̃j1

1

2

]2

]x82 Q̃j1adhQ̃j50, j 51, . . . ,n, ~2!

whereQ̃j denotes thej th component of the beam,a is a coefficient representing the strength
nonlinearity, andz8 andx8 are the coordinates along the direction of propagation and transv
coordinate, respectively. The change in refractive index profileh created by all the incoheren
components in the light beam is defined by

a!Electronic mail: J.C.Eilbeck@ma.hw.ac.uk
b!Electronic mail: vze@imag.kiev.ua
c!Electronic mail: nakostov@ie.bas.bg
82360022-2488/2000/41(12)/8236/13/$17.00 © 2000 American Institute of Physics
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dh5 (
k51

n

uQ̃ku2. ~3!

Inserting~3! in ~2! and renormalizing the variables asQ̃j5Qj /A2a, z852t, x85x we obtain the
vector nonlinear Schro¨dinger equation~1!. Stability, localization, and soliton asymptotics of mu
ticomponent photorefractive cnoidal waves are discussed in Ref. 2. New solutions in explici
are presented here for the casen53. The pulse–pulse collision between wavelength-divisi
multiplexed channels of optical fiber transmission systems are described with equations of
nonlinear Schro¨dinger equation~VNLSE! type ~1!.3–6

Quasiperiodic solutions in terms ofN-phase theta functions for the Manakov system,7 which
is system~1! with n52, are derived in Ref. 8, while a series of special solutions are given in R
9–12. The authors have already discussed quasiperiodic and periodic solutions associat
Lamé and Treibich–Verdier potentials for the Manakov system in the framework of a sp
ansatz.13 General quasiperiodic solutions in terms ofN-phase theta functions of the VNLSEs a
derived in Refs. 14 and 15 and for matrix nonlinear Schro¨dinger equations in Ref. 16. We als
mention the method of constructing elliptic finite-gap solutions of the stationary Kortewe
Vries and AKNS hierarchy, based on a theorem due to Picard, proposed in Refs. 17–19, a
as the method developed by Smirnov in a series of publications: the review paper—Ref. 2
Refs. 21 and 22. Elliptic Ablowitz, Kaup, Newell, and Segur~AKNS! solutions have been char
acterized in Ref. 19 and Trebich–Verdier potentials were fully analyzed in Ref. 23. These
niques are are also useful for finding solutions to the complex Ginzburg–Landau equations24 and
for multicomponent periodic waves in photorefractive crystals.25

In the present paper, we investigate~1! by introducing a special ansatz to analyze hyperellip
and elliptic solutions of the VNLSEs. The paper is organized as follows. In Sec. II we cons
the Lax representation of the finite dimensional system obtained after substitution of the
and develop a hyperelliptic curve, which are associated with the system. In Sec. III we pres
integration of the system in terms ofKleinian hyperelliptic functions, which give quasiperiodic
solutions. Recently this realization of Abelian functions was discussed in Refs. 26–29. In S
we show how these quasiperiod solutions reduce in special cases to give periodic solutions~1!
in terms of elliptic functions. We also explain in Sec. IV the reduction of Kleinian hyperelli
functions to Hermite and generalized Hermite polynomials.

We seek solution of~1! in the following form ~e.g., Porubov and Parker11!:

Qj5qj~z!eiQ j , j 51, . . . ,n, ~4!

wherez5x2ct, Q j5Q j (z,t), with qj , Q j real. Substituting~4! into ~1! and separating real an
imaginary parts by supposing that the functionsQ j , j 51, . . . ,n behave as

Q j5
1

2
scx1S aj2

1

4
sc2D t2sCjE

0

z dz8

qj~z8!2 1Q j 0 ,

we obtain the system (s5s561)30–33

d2

dz2 qj1S (
k51

n
s

s
qk

22
aj

s D qj2
Cj

2

qj
3 50, k, j 51, . . . ,n, ~5!

whereCj , j 51, . . . ,n are free parameters andQ j 0 are constants. These equations describe
integrable case of motion of a particle in a quartic potential perturbed with inverse sq
potential, which is separable in ellipsoidal coordinates.30
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II. LAX REPRESENTATION

The system~5!, with s51,s51 is a completely integrable Hamiltonian system with t
Hamiltonian

H5
1

2 (
i 51

n

pi
21

1

4 S (
i 51

n

qi
2D 2

2
1

2 (
i 51

n

aiqi
21

1

2 (
i 51

n Ci
2

qi
2 , ~6!

where the variables (qi ,pi),i 51, . . . ,n, pi(z)5dqi(z)/dz, are the canonically conjugated var
ables with respect to the standard Poisson bracket,$•;•%.

This system has the Lax representation33

dL~l!

dz
5@M ~l!,L~l!#,

~7!

L~l!5S V~l! U~l!

W~l! 2V~l!
D , M5S 0 1

Q~l! 0D ,

which is equivalent to~5!, whereU(l), W(l), Q(l) have the form

U~z,l!52a~l!S 11
1

2 (
i 51

n qi
2

~l2ai !
D , V~z,l!52

1

2

dU~z,l!

dz
,

W~z,l!5a~l!S 2l1
1

2 (
i 51

n

qi
21

1

2 (
i 51

n
1

l2ai
S pi

21
Ci

2

qi
2 D D , ~8!

Q~z,l!5l2(
i 51

n

qi
2 .

The Lax representation yields the hyperelliptic curveK5(n,l),

det~L~l!2 1
2 n12!50, ~9!

where12 is the 232 unit matrix. The moduli of the curve~9! generate the integrals of motio
H,F ( i )5Hi1I i ,i 51, . . . ,n,

n25V2~z,l!1U~z,l!W~z,l!. ~10!

The curve~10! can be written in canonical form as

n254)
j 50

2n

~l2l j !, ~11!

wherel jÞlk are branching points.
From ~10! and explicit expressions forU(z,l),V(z,l),W(z,l) we obtain

n25a~l!2S l2(
i 51

n
Hi

l2ai
2

1

4 (
i 51

n Ji
2

~l2ai !
2 1(

i 51

n
I i

l2ai
D , ~12!

where

I i5
1

4 (
kÞ i

1

ai2ak
S ~qipk2qkpi !

22
Ci

2qk

qi
2 2

Ck
2qi

qk
2 D ,
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Hi5
1

2
pi

22
1

2
aiqi

21
1

4
qi

2S (
k51

n

qk
2D 1

1

2

Ci
2

qi
2 ,

Ji52Ci , a~l!5)
i 51

n

~l2ai !,

and( i 51
n Hi is the Hamiltonian. The parametersCi are linked with the coordinates of the poin

@ai ,n(ai)# by

Ci
252

n~ai !
2

)kÞ i~ai2ak!
, ~13!

wherei 51, . . . ,n. Let us define new coordinatesm i ,i 51, . . .n as zeros of the entryU(l) in the
Lax operator. Then

qi
252

) j 51
n ~ai2m j !

)kÞ i
n ~ai2ak!

, ~14!

wherei 51, . . . ,n. The definition ofm i ,i 51, . . . ,n in combination with the Lax representatio
leads to

n i5V~m i !52
1

2

d

dz
U~m i !, i 51, . . . ,n, ~15!

which can be transformed to equations of the form

ui5 (
k51

n E
lk

mk
dui , ~16!

where dui ,i 51, . . . ,n denote independent canonical holomorphic differentials

dui5l i 21
dl

n
, ~17!

anduk5dk , un52z1b with the constantsdk ,b,k51, . . . ,n21 defined by the initial conditions
The integration of the problem then reduces to the solution of theJacobi inversion problem
associated with the curve, which consists of the expression of the symmetric functio
(m i ,n i ,i 51, . . . ,n) as a function ofn complex variables (ui ,i 51, . . . ,n).

III. EXACT SOLUTIONS IN TERMS OF KLEINIAN HYPERELLIPTIC FUNCTIONS

In this section we show that the trajectories of the system under consideration in ter
Kleinian hyperelliptic functions~see, e.g., Refs. 34 and 26!, associated with the algebraic curv
~11! of genusn can also be written in the form

n254)
j 50

2n

~l2l j !54l2n111(
j 50

2n

a jl
j . ~18!

At all real branching pointsl jÞlk the closed intervals@l2i 21 ,l2i #,i 51, . . . ,n will be
referred to further as lacunae.35,36 Let us equip the curve with a homology basis (ai ;bi ,i
51, . . . ,n)PH1(K,Z) and fix the basis in the space of holomorphic differentials. The canon
meromorphic differentials of the second kind drT5(dr i ,i 51, . . . ,n), associated with~17!, have
the form
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dr j5 (
k5 j

2n112 j

~k112 j !ak111 j

lkdl

4n
, j 51, . . . ,n. ~19!

The n3n matrices of their periods are

2v5S R
ak

dul D
k,l 51, . . . ,n

, 2v85S R
bk

dul D
k,l 51, . . . ,n

,

2h5S 2 R
ak

dr l D
k,l 51, . . . ,n

, 2h85S 2 R
bk

dr l D
k,l 51, . . . ,n

.

Define the Abel map

Kn→Cn/~2v % 2v8!5Jac~K!

of symmetrized product ofK to the Jacobi variety whose coordinatesuT5(u1 , . . . ,un) are given
by formula ~16!.

The fundamentals function in this case is a natural generalization of the Weierstrass ell
s function and is defined as follows:

s~u!5
Apn

Adet~2v!

e

A4 )0< i , j <2n~l i2l j !
exp$uTh~2v!21u%u@«#~~2v!21uuv8v21!,

wheree851, t5v8v21, andu@«#(vut) is theu function,

u@«#~vut!5 (
mPZn

expip$~m1«!Tt~m1«!12~v1«8!T~m1«!%,

with the half integer characteristic

@«#5F«1 . . . «n

«18 . . . «n8
G , ;« i ,« j5

1

2
or 0.

The characteristic@«# is chosen in such the way, that it is the characteristic of the pointe at which
the u function u@0#(e) vanishes to the order@(n11)/2#. According to the vanishing Rieman
theorem and Clifford theorem the Jacobi variety Jac(K) of the hyperelliptic curve of genusn
always has such a point~see, e.g., Ref. 37!.

The 2n32n matrix,

S v v8

h h8
D

satisfies the generalized Legendre relation

S v v8

h h8
D S 0 21n

1n 0 D S v v8

h h8
D TS 0 21n

1n 0 D 52
ip

2
. ~20!

Relation~20! allows us to define a multidimensionals function, which has the following proper
ties

~1! The s function possesses the following periodicity property: if

E~m,m8!5hm1h8m8, V~m,m8!5vm1v8m8,
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wherem,m8PZ›, then

s@«#~z12V~m,m8!,v,v8!5exp$2ET~m,m8!~z1V~m,m8!!%exp$2p imTm8

22p i «Tm8%s@«#~z,v,v8!.

~2! As a modular function, the Kleinians function is invariant under the transformation of th
symplectic group, which represents an important characteristic feature.

We introduce the following notation. Kleinianz and ` functions are defined as logarithm
derivatives of the fundamentals function

z i~u!5
] ln s~u!

]ui
, i 51, . . . ,n,

` i j ~u!52
]2 ln s~u!

]ui]uj
, ` i jk~u!52

]3 ln s~u!

]ui]ui]uk
, . . . ,

i , j ,k, . . . 51, . . . ,n.

The functionsz i(u) and` i j (u) have the following periodicity properties:

z i~u12V~m,m8!!5z i~u!12Ei~m,m8!, i 51, . . . ,n,

` i j ~u12V~m,m8!!5` i j ~u!, i , j 51, . . . ,n,

whereEi(m,m8) is the i th component of the vectorE.
Alternatively thes function can be defined by its expansion nearu50. In particular, for small

genera we have29

s~u!5u11o~u3! for n51 and 2,

s~u!5u1u32u2
21o~u4! for n53 and 4,

s~u!52u3
312u2u3u42u1u4

22u2
2u51u1u3u51o~u5! for n55 and 6

and further terms can be computed with the help of a bilinear differential equation.26,38

The principal result of the theory is the formula of Klein, which reads in the case of genn
as follows:

(
k,l 51

n

`klS Èm

du2 (
m51

n E
am

mm
duDmk21m i

l 215
F~m,m i !12nn i

4~m2m i !
2 , i 51, . . . ,n, ~21!

where

F~m1 ,m2!5(
r 50

n

m1
r m2

r @2a2r1a2r 11~m11m2!#. ~22!

By expanding these equalities in the neighborhood of infinity we obtain the complete s
relations for the hyperelliptic functions.

The first group of relations represents the solution of the Jacobi inversion problem in the

ln2`nn~u!ln212`n,n21~u!ln222¯2`n1~u!50. ~23!

Let us introduce a polynomialF(u,l) in l of degreen,
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F5ln2`nn~u!ln212`n,n21~u!ln222¯2`n1~u!, ~24!

which are solutions of the following nonlinear equation:

2S d2

dun
2 FDF2S d

dun
FD 2

24~l1U!F 21n250, ~25!

whereU52`nn1 1
4a2n . It is possible to show26 that the following equations are valid:

`nnni5~6`nn1a2n!`ni16`n,i 2122`n21,i1
1
2 dnia2n21 , ~26!

for i 51, . . . ,n. These equations can be identified with the KdV hierarchy with ‘‘time variabl
(t1 ,t2 , . . . )5(un ,un21 , . . . )5(x,t, . . . ),26

Xk11@U#5RXk@U#, ~27!

whereR5]x
22U1c2 1

2Ux]
21, and c5a2n/12 is the Lenard recursion operator. The first tw

equations from the hierarchy are

Ut1
5Ux , Ut2

5 1
2 ~Uxxx26UxU!, ~28!

the second equation is the KdV equation, which is obtained from~26! with i 5n as the result of
differentiation byx5un and settingU52`nn1 1

6a2n . The next group of equations are obtain
from ~24! and ~25! and for simplicity we present results only for genusn53,

`333
2 54`33

3 1a6`33
2 14`23̀ 331a5`3314`2224`131a4 ,

`233
2 54`23

2 `331a6`23
2 24`22̀ 2318`13̀ 2314`111a2 ,

`133
2 54`13

2 `331a6`13
2 24`12̀ 131a0 ,

`233̀ 33354`33
2 `231a6`23̀ 3322`22̀ 3314`13̀ 3322`23

2 1 1
2 a5`2312`121

1
2 a3 ,

`133̀ 23354`13̀ 23̀ 331a6`13̀ 2322`12̀ 2322`13̀ 2214`13
2 1 1

2 a1 ,

`133̀ 33354`13̀ 33
2 1a6`13̀ 3322`12̀ 3312`13̀ 231

1
2 a5`1322`11.

Let us introduce finally theBaker–Akhiezerfunction, which in the framework of the formal
ism developed is expressible in terms of the Kleinians function as follows:

C~l,u!5
s~*l0

l du2u!

s~u!
expH Èl

drTuJ , ~29!

wherel is arbitrary,l0 is one of the branching points, andu is the Abel image of an arbitrary
point (n1 ,m1)3¯3(nn ,mn). It is straightforward to show by direct calculation, using the re
tions for three- and four-index Kleiniaǹ functions, thatC(l,u) satisfy the Schro¨dinger equation

S d2

dun
2 22`nn~u! DC~l,u!5S l1

1

4
a2nDC~l,u! ~30!

for all ~n,m!.
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Now we are in a position to write the solution of the system in terms of Kleinians functions
and identify the constants in terms of the moduli of the curve. Using~24! and~14!, the solutions
of ~5! have the following form in terms of Kleinian functions̀ni(u), i 5n,...1:

qi
252

ai
n2`nn~u!ai

n212`n,n21~u!ai
n222¯2`n1~u!

)kÞ i~ai2ak!
,

where the vectoruT5(dj ,2z1b), j 51, . . . ,n21. Finally, the solutions of the VNLSE~1! reads in
this case

Qi~x,t !5A2
F~u,ai !

)kÞ i
n ~ai2ak!

exp~Q i !, ~31!

where

Q j5H 1

2
icx1 i S aj2

1

4
c2D t2

1

2
n~aj !E

0

z dz8

F~u,aj !
J , ~32!

j 51, . . . ,n, and we have made use of~31! and ~4!.

IV. ELLIPTIC PERIODIC SOLUTIONS

In this section we develop a method~see also Refs. 31, 39–41! which allows us to construc
periodic solutions of~5! in a straightforward way, based on the application of the spectral th
for the Schro¨dinger equation with elliptic potentials.42,36 We start with the formula~14! and with
the equation for the Baker–Akhiezer functionC(l;u),

d2

dx2 C~l,u!2UC~l,u!5S l1
a2n

4 DC~l,u!, ~33!

where we identify the potential

U52`nn1 1
6 a2n .

We assume, without loss of generality, that the associated curve has the propertya2n50. To make
this assumption applicable to the initial curve of the system~5! derived from the Lax representa
tion, we shift the spectral parameter

l→l1D, D5
2

2n11 (
i 51

n

ai . ~34!

Suppose, thatU is a three, four gap Lame´ or three, four gapTreibich–Verdierpotential, which
means that

U~x!52(
i 51

N

`~x2xi !, ~35!

where`(x) is the standard Weierstrass elliptic function with periods 2v,2v8 andxi takes values
from the set$0,v15v,v25v1v8,v35v8% It is known, that the set of such potentials is e
hausted by the following potentials for genusn53,4:43,20,18

U~x!512̀ ~x!, ~36!
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U~x!512̀ ~x!12`~x1v i !, i 51,2,3, ~37!

U~x!56`~x!16`~x1v i !12`~x1v j !, iÞ j 51,2,3, ~38!

U~x!512̀ ~x!16`~x1v i !, i 51,2,3, ~39!

U~x!512̀ ~x!12(
i 51

3

`~x1v i !, ~40!

U~x!512̀ ~x!16(
i 51

2

`~x1v i !12`~x1v3!, ~41!

U~x!520̀ ~x!, ~42!

U~x!512̀ ~x!16(
i 51

3

`~x1v i !, ~43!

The potential~36!, ~42! is three, four gap Lame´ potential, respectively; the potentials~37!, ~39!,
~40!, ~38!, ~43!, ~41! are Treibich–Verdier potentials.43,44,20

To display the class of periodic solutions of system~5! we introduce thegeneralized Hermite
polynomialF(x,l) by

F~x,l!5ln2pn,n~x!ln212pn,n21~x!ln222 . . . 2pn,1~x!, ~44!

where the)n j are the result of substituting the potentialsU into ~24!. In the particular case of the
Lamépotential

U~x!5n~n11!`~x!, ~45!

the generalized Hermite polynomialcoincides with the standard Hermite polynomial45

F~x,` !5(
r 50

n

cr~l!~`~x!2e2!n2r , ~46!

where the coefficientscr are solutions of the following recurrence relation:

4r ~n2r 1 1
2!~2n2r 11!cr5~n2r 11!@12e2~n2r !~n2r 12!24e2~n21n23!24l#cr 21

22~n2r 11!~n2r 12!~2n22r 13!~e12e2!~e22e3!cr 22 .

This recurrent formula is satisfied if we set forr .n12,

cn115cn12¯50, and normalizec051.

The associated Lame´ curve is defined by~11!, where thel j are solutions of recurrence relation
given in Ref. 46, cf. Ref. 45. The original approach presented in Ref. 46 is useful becau
Lamécurve appears in factorized form.

The solutions of the system~5! are then given as

qi
2~z!52

F~z,ai2D!

)kÞ i
n ~ai2ak!

, i 51, . . . ,n. ~47!

The final formula for the solutions of the system~1! then reads
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Qi~x,t !5A2
F~z,ai2D!

)kÞ i
n ~ai2ak!

exp~Q i !, ~48!

where

Q j5H 1

2
icx1 i S aj2

1

4
c2D t2

1

2
n~aj2D!E

0

z dz8

F~z8,aj2D!J ,

and i 51, . . . ,n and we have made use of~47! and ~4!.
We shall consider in the following examples of genus three, four curves, which are asso

with the three, four gap elliptic potentials~36!, ~42!, and~37!, ~39!, ~40!, ~38!, ~43!, ~41!.
Consider the potential~36! and construct the associated curve47

n254l)
i 51

3

~l226eil145ei
2215g2!. ~49!

The Hermite polynomialF(`(x),l) associated with the Lame´ potential~36! has the form

F~`~x!,l!5l326`~x!l223•5~g223`2!l2
32
•52

4
~4`32g2`2g3!. ~50!

Then the finite and real solution of the system~5! is given by~48! with the Hermite polynomial
depending on the argumentx1v8 ~the shift inv8 provides the holomorphity of the solution!. The
solution is real under the choice of the arbitrary constantsai , i 51, . . . ,n in such a way, that the
constantsai2D,i 51, . . . ,n lie in different lacunae. According to~4! the constantsCi are then
given as

Ci
252

n~ai2D!2

)kÞ i~ai2ak!
,

wherei 51, . . . ,n andD is the shift~34! andn is the coordinate of the curve~49!.
The Hermite polynomialF(`(x),l) associated with the Lame´ potentials can be written in a

different form, useful for applications:

F~`~x!,l!5 (
k50

n

Ak~l!`~x!n2k. ~51!

For example for the genusn54 Lamépotential~42! we have

A0511 025, A1521575l, A25135l22
6615

2
g2 ,

A35210l31
1855

4
lg222450g3 ,

A45l42
113

2
l2g21

3969

16
g2

21
1925

4
lg3 .

For the general Lame´ potential the associated curve is defined by

n2~l!524lAn
22AnAn21g21~An21

2 24An22An!g354)
j 50

2n

~l2l j !. ~52!
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For the genus four Lame´ potential~42! we have

n25S )
l 51

3

~l2110ell27~5el
21g2!!D ~l3252lg21560g3!.

To display the class of periodic solutions of the system~5! for genusn53 we express the
generalized Hermite polynomialF(x,l) by

F~x,l!5l32p33~x!l22p23~x!l2p13~x! ~53!

with p33(x), p23(x), andp13(x) given as follows:

p33~x!5(
j 51

N

`~x2xj !1
1

3 (
j 50

6

Zj ,

p12~x!523(
i , j

`~x2xi !`~x2xj !2
Ng2

8
2

1

6 (
i , j

l il j1
1

6 S (
j 50

6

l j
2D ,

p13~x!5 5
2 p33

3 2 5
4 p33;xxp331

1
8 p33a52 5

8 p33;x
2 1 1

16 p33;xxxx2
1
8 a4 ,

wherexi are half-periods,N is the degree of the cover,Zj , j 50, . . . ,6 arepotential shifts~see,
e.g., Ref. 39!. Without loss of generality we assume thata65( j 50

6 l j50. For conciseness we
denote`5`(x), `(x1v1)5`1 . Then for the Treibich–Verdier potential~37! we find

p3356`1`12e1 ,

p235245̀ 2218̀ `1118̀ e113`1e11 7
4 g21156e1

2,

p135225̀ 31225̀ 2`1290̀ `1e12 15
2 `x`1;x2225̀ 2e11 105

4 `g21 5
4 `1g22900̀ e1

2

2150̀ 1e1
21 6237

2 e21155e1
32 2079

2 g22 7
4 g2e12 451

8 g3 ,

and the associated Treibich–Verdier curve has the form20

n254~l25~e12e2!!~l25~e12e3!!~l2112le1220~e12e2!~e12e3!!

3~l313e1l21~2141e1
224g2!145e1~e124e2!~5e114e2!.

The full list of generalized Hermite polynomials for other Treibich–Verdier potentials will
published elsewhere.

V. CONCLUSIONS

In this paper we have described a family of elliptic solutions for the vector nonlinear Sc¨-
dinger equations using a Lax pair method and the general method of reduction of Abelian
tions to elliptic functions. Our approach is systematic in the sense that special solutions~periodic,
soliton, etc.! are obtained in a unified way. In fiber optics applications, periodic and quasiper
waves are of interest in optical transmission systems.

Note added in proof. Since this paper was written two further papers have appeared whic
of interest in this context. A paper by S. Matsutani, ‘‘Hyperelliptic Solutions of KdV and
equations: Reevaluation of Baker’s Study on Hyperelliptic Sigma Functions,’’ discusses the
3 equations, given above between~28! and~29!, in the framework of soliton theory~arXiv:nlin.SI/
0007001!. Abelian functions in the context of trigonal curves have been discussed by V
                                                                                                                



nal

Civil

iton

ility,

-long

rn-to-

012

Teor.

ras,’’

igent

,’’

pled

.

,’’

alytic

Acta

ath.

ility,

,’’ in

the

ical
auba-

8247J. Math. Phys., Vol. 41, No. 12, December 2000 Vector nonlinear Schrödinger equations

                    
Buchstaber, V. Z. Enolskii, and D. V. Leykin, in ‘‘Uniformisation of Jacobi varieties of trigo
curves and nonlinear differential equations,’’ Func. Anal. Appl.34, 1–15~2000!.
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A theory is developed of product integrals of the form)a,s,b )c,t,d(11g@h#
(ds,dt)). Here@a,b@ and@c,d@ are disjoint finite subintervals ofR1 , andg@h# is
a formal power series in the indeterminateh whose constant term is zero and whose
coefficients are elements ofL^ L, whereL is the space of basic differentials of a
multidimensional quantum stochastic calculus. The product integrals are them-
selves formal power series inh whose coefficients are finite sums of iterated sto-
chastic integrals against the elements ofL. They are symmetrized in such a way
that )a,s,b )c,t,d(11g@h#(ds,dt)) is the image, obtained by applying the rep-
resentationJ[a,b[ ^ J[c,d[ to the coefficients, whereJ[a,b[ is the representation ca-
nonically associated with the interval@a,b@ , of a formal power series) )(1
1dg@h#) whose coefficients lie inU^ U, where U is the universal enveloping
algebra of the Lie algebraL. It is shown that the naturally conjectured multiplica-
tion rule, analogous to the multiplication rule for simple product integrals, holds in
the commutative case. ©2000 American Institute of Physics.
@S0022-2488~00!02812-7#

I. INTRODUCTION

In an earlier work1 we developed a theory of quantum stochastic product integrals in w
the coefficients were formal power series, having zero constant term, with coefficients in the
L of basic differentials of a multidimensional quantum stochastic calculus. The integrals
selves are then formal power series whose coefficients are well-defined finite sums of it
integrals. The tensors overL which define these finite sums are symmetric and consequently2 the
latter are images under the representation canonically associated with the interval of integra
corresponding elements of the universal enveloping algebraU of the Lie algebraL. These ele-
ments form the coefficients of a formal power series which is regarded as the indefinite form
corresponding product integral. Such indefinite product integrals are characterized amo
formal power series with coefficients inU by the property of being group-like. They satisfy
multiplication rule which is suggested by the quantum Itoˆ product formula.

In the present work we develop a similar theory for double stochastic product integrals
form

)
a,s,b

)
c,t,d

~11g@h#~ds,dt!!.

Here @a,b@ and @c,d@ are disjoint finite subintervals of the non-negative real half-lineR1 and
g@h# is a formal power series, with zero constant term, whose coefficients are elementsL
^ L. The product integrals are again formal power series inh, whose coefficients are now finit
sums of double iterated integrals of the form

a!Electronic mail: Robin.Hudson@nottingham.ac.uk
82490022-2488/2000/41(12)/8249/14/$17.00 © 2000 American Institute of Physics

                                                                                                                



ity,

triza-
t

grals

er

-
s

on

8250 J. Math. Phys., Vol. 41, No. 12, December 2000 R. L. Hudson and S. Pulmannová

                    
E
a,s1,s2,¯sm,b

dL1~s1!dL2~s2!¯dLm~sm!

E
c,t1,t2,¯tn,d

dLm11~ t1!dLm12~ t2!¯dLm1n~ tn!,

whereL1 ,L2 ,...,Lm1n are elements ofL. Because we no longer have infinitesimal commutativ
for example in generalg@h#(ds,dt) does not commute withg@h#(ds8,dt) if ds8Þds, the gen-
eralization to two or more dimensions is not straightforward. In particular a delicate symme
tion process is needed in order that the tensor over the spaceL which determines the coefficien
Pn of each powerhn in a double product integral be an element ofS~L!^ S~L!, whereS~L!
denotes the space of all symmetric tensors overL. This is necessary and sufficient2 for Pn to be
of the form Pn5J[a,b[ ^ J[c,d[ (Wn) for some elementWn of U^ U, where J[a,b[ denotes the
representation ofU which extends the representationL{L°*a,s,b dL(s) of L. We may then
construct the indefinite double product integral

) ) ~11dg@h# !5 (
n50

`

hnWn

as a formal power series with coefficients inU^ U.
We show that the natural generalization of the multiplication rule for simple product inte

of Ref. 1, namely that

) ) ~11dg1@h# !) ) ~11dg2@h# !5) ) ~11dg@h# !,

where

g@h#5g1@h#1g2@h#1g1@h#g2@h#

and the multiplication is that of formal power series with coefficients in the algebraL^ L, also
holds for double products in the commutative case.

II. NOTATIONS AND PRELIMINARIES

We denote byN the set of natural numbers$1,2,...% and byNn its subset$1,2,...,n% for each
nPN. The cardinal number of a setA is denoted byuAu. All vector spaces are complex and inn
products^•,•& are linear on the right. The symmetric sector of them-fold tensor product̂ mV of
a vector spaceV with itself is denoted by^ sym

m V. Given a formal power seriesV@h#
5(n50

` hnVn whose coefficients are elements of a vector spaceV together with a linear transfor
mationc from V to a second vector spaceW we definec(V@h#) to be the formal power serie
with coefficients inW given by

c~V@h# !5 (
n50

`

hnc~Vn!.

We use the notations of Ref. 1, which are based on Ref. 3. ThusK is the finite-dimensional
circumambient Hilbert space of a quantum stochastic calculus andh is the Hilbert space
L2(R1 ,K)5L2(R1) ^ K. L can then be identified with the space of all linear transformations
the Hilbert spaceK̃5C% K% C of the form
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L5S 0 ū z

0 S v

0 0 0
D ,

whereu andv are elements ofK, ū denotes the linear functionalv°^u,v& on K, z is a complex
number, andS is a linear transformation onK. For each suchL the corresponding integrato
process is the family of operators*0,s,t dL(s),tPR1 on the exponential domain in the Foc
spaceG(h) for which, for arbitraryf ,gPh,

K e~ f !,E
0,s,t

dL~s!e~g!L 5E
0

t

^ f 1~s!,Lg2~s!& ds^e~ f !,e~g!&,

wheree( f ) denotes the exponential vector corresponding tof Ph and

f 1~s!5~1,f ~s!,0!, g2~s!5~0,g~s!,1!.

Then the restriction to the exponential domain of the adjoint of*0,s,t dL(s) is *0,s,t dL†(s)
where

L†5S 0 v̄ z̄

0 S* u

0 0 0
D .

Under this involution † and composition of linear transformations onK̃, L is an involuted asso-
ciative algebra and hence also an involuted Lie algebra in which the Lie bracket is the co
tator. In this notation the quantum Itoˆ formula takes the simple form

dL dK5d~LK !.

For a,bPR1 the map

j [a,b[ :L{L°E
a,s,b

dL~s!5E
0,s,b

dL~s!2E
0,s,a

dL~s!

forms a weak representation of the involuted Lie algebraL insofar as, for arbitraryf ,gPh and
L,KPL,

K E
a,s,b

dL†~s! e~ f !,E
a,s,b

dK~s! e~g!L 2K E
a,s,b

dK†~s!e~ f !,E
a,s,b

dL~s!e~g!L
5K e~ f !,E

a,s,b
d@L,K#~s!e~g!L .

More generally we consider iterated integrals of the form

E
a,s1,s2,¯,sm,b

dL1~s1!dL2~s2!¯dLm~sm!,

whereL1 ,L2 ,...,LmPL. These are also operators on the exponential domain and
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S E
a,s1,s2,¯,sm,b

dL1~s1!dL2~s2!¯dLm~sm! D †

5E
a,s1,s2,¯,sm,b

dL1
†~s1!dL2

†~s2!¯dLm
† ~sm!,

where on the left-hand side the dagger again denotes the restriction of the adjoint to the ex
tial domain. The multilinear maps

~L1 ,L2 ,...,Lm!°E
a,s1,s2,¯,sm,b

dL1~s1!dL2~s2!¯dLm~sm!,

m51,2,... extend to injective linear mapsI [a,b]
(m) from the spaceŝ mL to the vector spaceP[a,b] of

finite linear combinations of such iterated integrals. DefiningI [a,b[
(0) to be the map which sendsz

PC5 ^
0L to the corresponding multiple of the identity operator, we may define the bijective

I [a,b[ from the spaceT(L)5 % m50
`

^
mL to P a

b by

I [a,b[~a!5 (
m50

`

I [a,b[
(m) ~am!,

where theam are the homogeneous components~only finitely many of which may be nonzero! of
the tensora.

P[a,b[ is a unital involuted algebra under the weak product; in fact for arbitraryf ,gPh and
a,bPT(L) we have2

^I [a,b[~a!†e~ f !,I [a,b[~b!e~g!&5^e~ f !,I [a,b[~a* b!e~g!&,

where* is the associative multiplication onT(L) given by

~a* b!m5(
A,B

a uAu
A b uBu

B . ~1!

Here the sum is over all ordered pairs (A,B) of possibly empty subsets whose union
$1,2,...,m%, the notationa uAu

A signifies that the homogeneous componenta uAu is to be placed in the
uAu copies ofL labeled by the elements ofA within ^

mL, and within the intersectionAùB the
Itô multiplication is used to form contractions.

The Lie algebra morphismj [a,b[ extends to a unital associative algebra morphismJ[a,b[ from
the universal enveloping algebraU of the Lie algebraL to the algebraP[a,b[ . J[a,b[ is not
surjective. In order thatP5I [a,b[ (a)PP[a,b[ be of formJ[a,b[ (U) for someUPU it is necessary
and sufficient2 that the tensora be symmetric,aPS(L).

Now let a,b,c,dPR1 . The map

~L,K !° j [a,b[~L ! ^ 111^ j [c,d[~K !

is a morphism from the direct sum Lie algebraL3L to the algebraic tensor productP[a,b[

^ P[c,d[ and so extends uniquely to a morphism, denoted byJ[a,b[ ^ J[c,d[ , from its universal
enveloping algebra which is canonically identified withU^ U. Elements ofP[a,b[ ^ P[c,d[ , in
particular elements of the range ofJ[a,b[ ^ J[c,d[ , are canonically identified with operators on th
exponential domain inG(h) by splitting the Fock space betweenb andd as follows. Choosingt
with b<t<c we use the canonical identificationG(h)5G(ht) ^ G(ht) whereG(ht) andG(ht) are
the Fock spaces overL2(@0,t@) ^ K) and L2(@ t,`@) ^ K, respectively. ForPPP[a,b[ and Q
PP[c,d[ we may write P5Pt ^ 1 and Q51^ Qt for operatorsPt and Qt on the exponential
domains inG(ht) and G(ht), respectively, and identifyP^ QPP[a,b[ ^ P[c,d[ with the algebraic
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tensor product operatorPt ^ Qt on the exponential domain inG(h). This identification is indepen-
dent of choice oftP@b,c# and extends by linearity to arbitrary elements ofP[a,b[ ^ P[c,d[ .

III. COMBINATORICS OF DISCRETE DOUBLE PRODUCTS

We denote by) j 51
m→ xj the productx1x2¯xm of finitely many possibly noncommuting ele

mentsx1 ,x2 ,...,xm in which xj occurs to the left ofxk if and only if j ,k, and by) j 51
m xj the

symmetrized product

whereSm is the group of permutations ofNm . In what follows we shall be concerned with doub
products of elementsxj ,k indexed by the Cartesian productNm3Nn with the property thatxj 1 ,k1

commutes withxj 2 ,k2
whenever both the conditionsj 1Þ j 2 and k1Þk2 hold. We say that such

elementsxj ,k are weakly commuting.
Theorem 1: Let $xj ,k : j PNm ,kPNn% be weakly commuting. Then

~2!

Proof: The proof is by induction onm, the casem51 being evidently true. For generalm,
assuming the result holds withm replaced bym21, we prove~2! by induction onn, the case
n51 being again evident. Thus
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Here we use successively the inductive hypothesis onm, the fact thatxm,1 commutes withxj ,k for
j 51,2,...,m21 andk52,3,...,n, the inductive hypothesis on eitherm or n and finally the induc-
tive hypothesis onn. h

Corollary 1: Let $xj ,k : j PNm ,kPNn% be weakly commuting. Then for arbitrary permutatio
s in Sm andt in Sn ,

Proof: This follows by applying the Theorem to the weakly commuting family$xj ,k8 : j
PNm ,kPNn% wherexj ,k8 5xs( j ),t(k) . h

Let $xj ,k : j PNm ,kPNn% be weakly commuting. We define the symmetrized double prod
) j 51

m )k51
n xj ,k by

In view of the Corollary

)
j 51

m

)
k51

n

xj ,k5)
k51

n

)
j 51

m

xj ,k . ~3!

Note that in general

)
j 51

m

)
k51

n

xj ,kÞ)
j 51

m H )
k51

n

xj ,kJ Þ)
k51

n H )
j 51

m

xj ,kJ .

IV. DEFINITION OF THE DOUBLE STOCHASTIC PRODUCT

Let @a,b@ and@c,d@ be disjoint finite subintervals ofR1 and letg@h# be a formal power series
of the form (n51

` hngn whose coefficientsg1 ,g2 ,... areelements ofL^ L. To motivate our
definition of the double stochastic product)a,s,b )c,t,d(11g@h#(ds,dt)) we use discrete ap
proximation. Thus leta5s0,s1,¯,sp5b and c5t0,t1,¯,tq5d be partitions of the in-
tervals ]a,b] and ]c,d] and for k51,2,...,p and l 51,2,...,q denote bygk,l@h# the formal power
series with operator valued coefficients obtained by applyingj sk21

sk ^ j t l 21

t l to the coefficients of

g@h#. Then$11gk,l@h#:k51,2,...,p,l 51,2,...,q% is a weakly commuting family of formal powe
series and we may form the symmetrized double product)k51

p ) l 51
q (11gk,l@h#). We may now

hope to imitate the procedure1 used in defining single stochastic products, namely to express
double product as a sum of iterated sums over the indicesk andl of products of thegk,l@h# using
the distributivity of multiplication over addition, and to pass from such iterated sums to ite
stochastic integrals in the limit of fine partitions. However this procedure is considerably
complicated in the two-dimensional case, both because for examplegk,l@h# does not commute
with gk/,l@h# for kÞk/ and because the index setNp3Nq is no longer naturally well ordered.

Let us first consider the discrete ordered double product
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~4!

This expansion suggests that we should seek to define an ordered double product integral u
expansion

~5!

in which products such asg@h#(ds,dt1)g@h#(ds,dt2) are evaluated using the Itoˆ multiplication in
L.

The terms in the expansion~4! which involve products ofN of the gk,l can be accounted fo
as follows. LetM(N) denote the set of all rectangular matricesM with the following properties:

~1! Each entryM (k,l )P$0,1%.
~2! The sum(k,l M (k,l ) of all entries isN.
~3! Each column and each row contains at least one 1.

Let m(M ) andn(M ) denote the number of rows and columns of the matrixM , let Mm,n(N)
denote the subset of elementsM of M(N) for which m(M )5m and n(M )5n, and letMm,n

5øN51
` Mm,n(N). M(N) is a finite set since an element can evidently have at mostN rows and

columns. For example

M~2!5H ~1,1!,S 1
1D ,S 1 0

0 1D ,S 0 1

1 0D J
and is in one-to-one correspondence with the terms in~4! involving products of 2 of thegk,l .
More generally we can place all the terms of the expansion~4! involving N of the gk,l in
one-to-one correspondence with elements ofM(N) as follows. We first pick natural numbersm
and n which count the number of distinct values ofk and l , respectively, occurring in eac
summand of the term. We then choosem nonempty setsA1 ,A2 ,...,Am whose union isNn ; Ak

consists of the labelsl in the summand of the formgk,l . The choice of suchA1 ,A2 ,...,Am is
equivalent to the choice of a matrixMPMm,n , with M (k,l )51 if and only if l PAk . Having
chosenM we finally choosek1 ,k2 ,...,km with 1<k1,k2,¯,km<p and l 1 ,l 2 ,...,l n with 1
< l 1, l 2,¯, l n<q to obtain the summand
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Thus we obtain the expansion

~6!

Remarkably, a similar expansion to~6! holds for symmetrized products.
Theorem 2:

)
k51

p

)
l 51

q

~11gk,l@h# !

511 (
N51

`

(
MPM(N)

(
1<k1,k2,¯,km(M )<p

(
1< l 1, l 2,¯, l n(N)<q

)
v51

m(M )

)
w51

n(M )

~gkv ,l w
@h# !M (v,w).

~7!

Proof: From the fact that, for fixedk1 ,k2 ,...,km with 1<k1 ,k2,¯,km<p and
l 1 ,l 2 ,...,l n with 1< l 1, l 2,¯, l n<q, exactly p!/m(M )! permutationss8 of Np and exactly
q!/n(M )! permutations t8 of Nq induce given permutations
s:(k1 ,k2 ,...,km)°(ks(1) ,ks(2) ,...,ks(m)) and t:( l 1 ,l 2 ,...,l n)°( l t(1) ,l t(2) ,...,l t(n)), and from
~6!, we deduce that

as claimed. h

Motivated by~7! we now define thesymmetrized double product
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)
a,s,b

)
c,t,d

~11g@h#~ds,dt!!5I [a,b[ ^ I [c,d[~g@h# !,

whereg@h#5(gm,n@h#)m,n50
` is defined as follows. We setg0,0@h#51 and form,n51,2,...,

gm,0@h#5g0,n@h#50,
~8!

gm,n@h#5 (
MPMm,n

)
v51

m

)
w51

n

~gv,m1w@h# !M (v,w).

Here we use the following place notation; ifM (v,w)51 then (gv,m1w@h#)M (v,w)5gv,m1w@h# is
the elementg regarded as living in thevth andm1wth copies ofL in ^

mL^ ^
nL5 ^

m1nL
while if M (v,w)50 then (gv,m1w@h#)M (v,w) is a virtual 1, meaning that it does not contribute
the product. From the fact thatg@h# has no constant term it follows that eachgm,n@h# is a formal
power series with coefficients inS(L) ^ S(L) which vanish for powers ofh less than the greate
of m andn, and hence thatg@h#5(m,n50

` gm,n@h# is well defined as a formal power series wi
coefficients inS(L) ^ S(L).

Thus )a,s,b )c,t,d(11g@h#(ds,dt)) is a formal power series with coefficients inP[a,b[

^ P[c,d[ . We use the canonical identification ofP[a,b[ ^ P[c,d[ with operators on the exponentia
domain onG(h) to regard)a,s,b )c,t,d(11g@h#(ds,dt)) as a formal power series whos
coefficients are such operators.

Sinceg@h# has coefficients inS(L) ^ S(L) we may set

)
a,s,b

)
c,t,d

~11g@h#~ds,dt!!5J[a,b[ ^ J[c,d[~W@h# !

whereW@h#, is a formal power series with coefficients inU^ U. We call W@h# the indefinite
double product integraland denote it by

W@h#5) ) ~11dg@h# !.

Theorem 3:

)
a,s,b

)
c,t,d

~11g@h#~ds,dt!!5 )
c,t,d

)
a,s,b

~11g@h#~ds,dt!!.

Proof: This follows from ~3!. h

V. THE NECESSITY OF FORMAL POWER SERIES

A simple but instructive example of a double product integral is obtained by takingg@h#
5hL ^ L. Here L is the gauge process of one-dimensional quantum stochastic calculu
satisfies the Itoˆ relation

dL dL5dL.

Consequently

gm,n@h#5hm1nuMm,nu ^
mL ^ ^

nL,

and so
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)
a,s,b

)
c,t,d

~11hdL~s! ^ dL~ t !!

511 (
m,n51

`

hm1nuMm,nu E
a,s1,s2,¯,sm,b

dL~s1!dL~s2!¯dL~sm!

3E
c,t1,t2,¯,tn,d

dL~ t1!dL~ t2!¯dL~ tn!.

Let us now replaceh by a complex numberz and consider the question of convergence on
exponential domain of the resulting series, which we naturally denote by)a,s,b )c,t,d(1
1zdL(s) ^ dL(t)). Assuming such convergence, we have, forf ,gPh,

K e~ f !, )
a,s,b

)
c,t,d

~11zdL~s! ^ dL~ t !!e~g!L
5^e~ f !, e~g!&H 11 (

m,n51

`

zm1nuMm,nu~m!n! !21xmynJ ,

where

Now for largem and n, uMm,nu is approximated by 2mn since the defining restriction that a
element ofMm,n must have at least one 1 in each row and column will usually be satisfied
free choice of 0’s and 1’s. Thus the double series(m,n51

` zm1nuMm,nu(m!n!) 21xmyn

;(m,n51
` zm1n2mn(m!n!) 21xmyn, and whenz51 it is evidently divergent for all nonzero value

of x andy. A more painstaking argument4 shows that for all suchx andy the radius of conver-
gence of the power series inz,

(
m,n51

`

zm1nuMm,nu~m!n! !21xmyn5 (
N51

`

zN (
m,n51

`

uMm,n~N!u~m!n! !21xmyn,

is zero. Thus)a,s,b )c,t,d(11zdL(s) ^ dL(t)) cannot be defined as an operator on the
ponential domain for any nonzero value ofz. Similar difficulties beset all attempts to construct
analytic theory of double product integrals whenever the integrator involves gauge terms.

VI. A MULTIPLICATION FORMULA

Now let there be given two formal power seriesg1@h# andg2@h# each with zero constant term
and coefficients inL^ L. In analogy with the multiplication theorem

)
a,s,t

~11dL@h#~s!! )
a,s,t

~11dK@h#~s!!5 )
a,s,t

~11d~L@h#1K@h#1L@h#K@h# !~s!!

of Ref. 1 for the case of simple product integrals, we might hope that

) ) ~11dg1@h# !) ) ~11dg2@h# !5) ) ~11dg@h# !, ~9!

where

g@h#5g1@h#1g2@h#1g1@h#g2@h#
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and the productg1@h#g2@h# is one of formal power series with coefficients in the algebraL
^ L.

To investigate this possibility, let us consider the left-hand side of~9!. Using the multiplica-
tion ~1! in S(L) we have

) ) ~11dg1@h# !) ) ~11dg2@h# !

5 (
m,n50

`

I m
^ I n (

MPMm,n
)
j 151

m

)
k151

n

~g1
j ,m1k!M ( j ,k)

3 (
m,n50

`

I m
^ I n (

MPMm,n
)
j 251

m

)
k251

n

~g2
j ,m1k!M ( j ,k)

5 (
m,n50

`

I m
^ I n (

AøB5Nm
(

CøD5Mn
(

M1PMuAu,uCu
(

M2PMuBu,uDu
)
a51

uAu

)
g51

uCu

~~g2
a,uAu1g!M1(a,g)!A,C

3 )
b51

uBu

)
d51

uDu

~~g2
b,uBu1d!M2(b,d)!B,D

5 (
m,n50

`

I m
^ I n (

MPMm,n
(

P∨Q5M
)
j 151

m

)
k151

n

~g1
j 1 ,m1k1!P( j 1 ,k1) )

j 251

m

)
k251

n

~g2
j 2 ,m1k2!Q( j 2 ,k2),

where the innermost sum is over all ordered pairs ofm3n incidence~$0,1%-valued! matrices
(P,Q) such that eachM ( j ,k)5P( j ,k)∨Q( j ,k), andP andQ are given byP( j ,k)51 if j PA and
kPC and is otherwise zero, whileQ( j ,k)51 if j PB andkPD and is otherwise zero.

For eachm,n50, . . . and eachMPMm,n we may place the terms of this sum in one-to-o
correspondence with terms of the symmetrized double product

)
j 51

m

)
k51

n

~g1
j ,m1k1g2

j ,m1k1g1
j ,m1kg2

j ,m1k!M ( j ,k),

where in the latter product the choices of terms obtained by expanding the sums within the p
are made by choosingg1

j ,m1k if P( j ,k)51 andQ( j ,k)50, g2
j ,m1k if P( j ,k)50 andQ( j ,k)51,

andg1
j ,m1kg2

j ,m1k if both P( j ,k)51 andQ( j ,k)51. Note that ifM ( j ,k)50 the choice is imma-
terial to the product. However for terms corresponding in this way to be equal, reordering
gl

j ,m1k is necessary so that we require commutativity. For example, takingM to be the matrix all
of whose entries are 1 and takingP5Q5M , we require that

)
j 51

m

)
k51

n

g1
j ,m1k)

j 52

m

)
k52

n

g2
j ,m1k

equal the corresponding term

)
j 51

m

)
k51

n

~g1
j ,m1kg2

j ,m1k!.

In general this is not so, but it evidently is so in the commutative case.
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VII. THE QUANTUM YANG–BAXTER EQUATION

Our principal motivation for initiating this work was the search for an explicit form for
universal solution of the quantum Yang–Baxter equation~QYBE! corresponding to a given solu
tion of the classical Yang–Baxter equation~CYBE!.

Recall5 that an elementg of L^ L satisfies CYBE if the identity

@g1,2,g1,3#1@g1,2,g2,3#1@g1,3,g2,3#50

in L^ L^ L. Here, if (L (1),L (2),...,L (d)) is a basis ofL andg5( j ,k51
d gj ,kL

( j )
^ L (k) then

@g1,2,g1,3#5 (
j , j /,k,l

gj ,kgj /,k@L ( j ),L ( j /)# ^ L (k)
^ L ( l )

and @g1,2,g2,3# and @g1,3,g2,3# are defined similarly. A simple example is provided by taking

g5L ^ A2A^ L,

whereA andL are the annihilation and gauge processes of one-dimensional quantum stoc
calculus. Recall also that a formal power seriesG@h# with coefficients inU^ U satisfies QYBE if
the identity

G1,2@h#G1,3@h#G2,3@h#5G2,3@h#G1,3@h#G1,2@h#

holds between formal power series with coefficients inU^ U^ U, where Gj ,k@h# denotes the
formal power series obtained by ampliating toU^ U^ U the coefficients ofG@h#, when placed in
the j th andkth copies ofU. If G@h# is of the form

G@h#511hg1o~h2! ~10!

wheregPL^ L, then it is easy to see that ifG@h# satisfies QYBE theng must satisfy CYBE.
Conversely it is known, but by a nonconstructive argument based on vanishing of cohomolo6

that, given a solutiong of CYBE, there exists a~nonunique! solutionG@h# of QYBE satisfying
~10!. Such a solution is called auniversal solutioncorresponding tog. Considerable effort has
been expended in the search for constructive descriptions of such universal solutions but a
construction has yet to be found. We believe that quantum stochastic calculus, and in particu
theory of double product integrals developed in this paper will contribute to this search. Our
is based on the following intuitive evidence.

Let gPL^ L, let @a,b@ ,@c,d@ and @e, f @ be disjoint finite subintervals ofR1 , let a5s0,s1

,¯,sp5b, c5t0,t1,¯,tq5d ande5u0,u1,¯,ur5 f be partitions of these intervals
In what follows we use the symbolsj , j / to label subintervals@sj 21 ,sj@ , @sj /21 ,sj /@ of the partition
of @a,b@ and similarly label subintervals of the partitions of@c,d@ and@e, f @ by k,k/ and l ,l /. We
denote bygj ,k the operatorj sj 21

sj ^ j tk21

tk (g); similarly gj ,l and gk,l denote j sj 21

sj ^ j ul 21

ul (g) and

j tk21

tk ^ j ul 21

ul (g). We consider the discrete symmetrized double products) j 51
p )k51

q (1

1gk,l),) j 51
p ) l 51

r (11gk,l), and)k51
q ) l 51

r (11gk,l) together with the formal power series wit
operator valued coefficients
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)
j 51

p

)
k51

q

~11hgk,l !)
j 51

p

)
l 51

r

~11hgk,l !)
k51

q

)
l 51

r

~11hgk,l !

511hS (
j ,k

gj ,k1(
j ,l

gj ,l1(
l ,k

gl ,kD 1h2S (
( j ,k)Þ( j /,k/)

gj ,kgj /,k/1 (
( j ,l )Þ( j /,l /)

gj ,lgj /,l /

1 (
( j ,l )Þ( j /,l /)

gj ,lgj /,l /1 (
j Þ j /,k,l

gj ,kgj /,l1 (
j ,kÞk/,l

gj ,kgk/,l1 (
j ,k,lÞ l /

gj ,lgk,l /

1(
j ,k,l

~gj ,kgj ,l1gj ,kgk,l1gj ,lgk,l !D 1o~h2!.

Let us compare this with a similar expansion to orderh2 of

)
k51

q

)
l 51

r

~11hgk,l !)
j 51

p

)
l 51

r

~11hgk,l !)
j 51

p

)
k51

q

~11hgk,l !.

We will evidently obtain the same coefficients ofh0 and h1. For h2, in view of the fact that
@gj ,k ,gj /,l #,@gj ,k ,gk/,l # and@gj ,l ,gk,l /# all vanish forj Þ j /,kÞk/, andlÞ l / we shall also obtain the
same terms with the exception of the final triple sum which is replaced by( j ,k,l(gj ,lgj ,k

1gk,lgj ,k1gk,lgj ,l). Hence the difference

)
j 51

p

)
k51

q

~11hgk,l !)
j 51

p

)
l 51

r

~11hgk,l !)
k51

q

)
l 51

r

~11hgk,l !

2)
k51

q

)
l 51

r

~11hgk,l !)
j 51

p

)
l 51

r

~11hgk,l !)
j 51

p

)
k51

q

~11hgk,l !

5h2(
j ,k,l

~@gj ,l ,gj ,k#1@gk,l ,gj ,k#1@gk,l ,gj ,l # !1o~h3!.

Thus if g satisfies CYBE, the difference vanishes to orderh3. Passing to the limit of fine parti-
tions, this leads to the conjecture that there is a universal solution of QYBE corresponding tg of
the formG@h#5) )(11dg@h#) where

g@h#511hg1o~h2!.

It is hoped that an understanding of the multiplicative properties indefinite double stoch
product integrals living partially in a common copy ofU and partially in distinct copies will settle
the conjecture.

Note added in proof.In fact it can be shown7 that G@h#5PP(11dg@h#) satisfies QYBE if
and only if g@h# satisfies @g12@h#,g13@h##1@g12@h#,g23@h##1@g13@h#,g23@h##
1g12@h#g13@h#g23@h#2g23@h#g13@h#g12@h#50 as formal power series with coefficients in th
associative algebraL^ L^ L. This condition entails thatg1 satisfies CYBE, and, given suchg1,
provides a hierarchy of inhomogeneous linear equations forg2,g3, . . . . We conjecture that thes
equations always have solutions.

ACKNOWLEDGMENTS

This work was partially supported by Grant No. VEGA 2/7193/2000 of the Slovak Acad
of Sciences. This work was initiated during a visit by R.L.H. to the Slovak Academy of Scie
                                                                                                                



enoble
owl-

th.

ebra

ario

atics

as

8262 J. Math. Phys., Vol. 41, No. 12, December 2000 R. L. Hudson and S. Pulmannová
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Commuting self-adjoint extensions of symmetric
operators defined from the partial derivatives
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We consider the problem of finding commuting self-adjoint extensions of the par-
tial derivatives $(1/i )(]/]xj ): j 51,...,d% with domain Cc

`(V) where the self-
adjointness is defined relative toL2(V), andV is a given open subset ofRd. The
measure onV is Lebesgue measure onRd restricted toV. The problem originates
with Segal and Fuglede, and is difficult in general. In this paper, we provide a
representation-theoretic answer in the special case whenV5I 3V2 and I is an
open interval. We then apply the results to the case whenV is ad cube,I d, and we
describe possible subsetsL,Rd such that$elu I d:lPL% is an orthonormal basis in
L2(I d). © 2000 American Institute of Physics.@S0022-2488~00!02712-2#

I. INTRODUCTION

Recently several papers have appeared on commuting non-self-adjoint operators an
spectral theory; see, e.g., Ref. 1. The present paper concerns the case when the given com
operators are unbounded and symmetric, but non-self-adjoint. A concrete class of opera
studied, and we address the questions of when commuting extension operators exist and
they do exist, what their structural properties are.

The problem of understanding commuting symmetric, but non-self-adjoint, unbounded o
tors also has an origin in mathematical physics.2–5 The terminology from physics is ‘‘Hermitian,’’
or ‘‘ formally self-adjoint,’’ for symmetry, i.e., for the identitŷS fuh&5^ f uSh& for all vectorsf, h
in the domain of the operatorS. The simplest case of this is the problem of assigning quan
mechanical boundary conditions for free particles confined in a box. More specifically, the
lem here corresponds to the quantum-mechanical trajectories of a particle confined to a re
tube type, e.g., a unit cube. It is ‘‘free’’ except for the boundary conditions, and variations o
boundary conditions~as considered here! correspond to different physics. For single operato
von Neumann solved~or made precise! the problem by use of the Cayley transform, and cons
ering instead the extension problem for partial isometries. But this approach does not work w
the case of several operators. Powers~in Refs. 6 and 7! introduced an algebraic approach f
understanding several operators, but the present problem is very concrete and does not le
easily to the algebraic techniques introduced by Powers.

Closely connected to the problem of finding commuting self-adjoint extensions
(1/i )(]/]xj ), j 51,...,d, on Cc

`(V) is the corresponding spectral question: If commuting s
adjoint extensions do exist, then it is known that the common eigenfunctions of the exte
operators must be of the formelªeil•x for special values oflPRd. Hence the spectral problem
is that of finding when a given pair~V, L! satisfies the condition that$eluV :lPL% is an orthogo-
nal basis in the Hilbert spaceL2(V). We note that this so-calledspectral paircondition is very
restrictive, and so it explains the rigid geometric configurations~V, L! which admit solutions. But

a!Electronic mail: jorgen@math.uiowa.edu
b!Electronic mail: steen@math.wright.edu
82630022-2488/2000/41(12)/8263/16/$17.00 © 2000 American Institute of Physics
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it also serves to motivate recent very interesting developments on overcomplete systems; s
Refs. 8 and 9.

The setting ofspectral pairsin d real dimensions involves two subsetsV andL in Rd such
that V has finite and positived-dimensional Lebesgue measure, andL is an index set for an
orthogonalL2(V)-basisel of exponentials, i.e.,

el~x!5ei2pl•x, xPV, lPL, ~1.1!

where l•x5( j 51
d l j xj . We use vector notationx5(x1 ,...,xd), l5(l1 ,...,ld), xj ,l jPR, j

51,...,d. The basis property refers to the Hilbert spaceL2(V) with inner product

^ f ug&VªE
V

f ~x!g~x!dx, ~1.2!

wheredx5dx1¯dxd , and f ,gPL2(V). The corresponding norm is

i f iV
2
ª^ f u f &V5E

V
u f ~x!u2dx, ~1.3!

as usual. It follows that the spectral pair property for a pair~V, L! is equivalent to

L2L5$l2l8:l,l8PL%

being contained in thezero-setof the complex function

z°E
V

ei2pz•xdx5..FV~z!, ~1.4!

wherez5(z1 ,...,zd)PCd, andz•xª( j 51
d zjxj , and the correspondingel-set $el :lPL% being

total in L2(V). Recall, totality means that the span of theel’s is dense inL2(V) relative to the
i•iV-norm, or, equivalently, thatf 50 is the onlyL2(V)-solution to

^ f uel&V50, for all lPL.

II. SPECTRAL PAIRS

The theory ofspectral pairswas developed in previous joint papers by the coauthors.10–12 A
setV with finite nonzero Lebesgue measure is called aspectral setif ~V, L! is a spectral pair for
some setL. We recall that Fuglede showed13 that the disk and the triangle in two dimensions a
not spectral sets. By the disk and the triangle we mean the usual versions, respecti
$(x1 ,x2)PR2:x1

21x2
2,1% and$(x1 ,x2)PR2:0,x1,0,x2 ,x11x2,1%. Note that, for the presen

discussion, it is inessential whether or not the setsV are taken to be open, but it is essential for t
following theorem which we will need. It is due to Fuglede and the coauthors; see Refs
13–15.

If V,Rd is open, then we consider the partial derivatives]/]xj , j 51,...,d, defined on
Cc

`(V) as unbounded skew-symmetric operators inL2(V). The corresponding version
(1/2pA21)(]/]xj ) are symmetric of course. We say thatV has theextension propertyif there are
commuting self-adjoint extension operatorsH j , i.e.,

1

2p i

]

]xj
,H j , j 51,...,d. ~2.1!

We say that the containmentA,B holds for two operatorsA andB if the graph ofA is contained
in that ofB. ~For details, see Refs. 16 and 17.! Commutativityfor the extension operatorsH j is in
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the strong sense of spectral resolutions. Since theH j ’s are assumed self-adjoint, each one ha
projection-valuedspectral resolution Ej , i.e., anL2(V)-projection-valued Borel measure onR,
such thatEj (R)5I L2(V) , and

H j5E
2`

`

lEj~dl! ~2.2!

for j 51,...,d. The strong commutativity is taken to mean

Ej~D!Ej 8~D8!5Ej 8~D8!Ej~D! ~2.3!

for all j, j 851,...,d, and all Borel subsetsD,D8,R. Extensions commuting in a weaker sen
were considered in Ref. 18.

Our analysis is based on von Neumann’s deficiency-space characterization of the self-
extensions of a given symmetric operator.19 Let V be an open set with finite Lebesgue measu
For eachj, the deficiency spaces corresponding to (1/i )(]/]xj ) are infinite dimensional. It follows
that each (1/i )(]/]xj ) has ‘‘many’’ self-adjoint extensions. The main problem~not addressed by
von Neumann’s theory! is the selection of a commuting setH1 ,H2 ,...,Hd of extensions. In fact,
for someV ~e.g., whend52, the disk and the triangle! it is impossible to select a commuting s
H1 ,H2 ,...,Hd of extensions.

We have~see Refs. 10, 13–15!
Theorem II.1 „Fuglede, Jorgensen, Pedersen…: Let V,Rd be open and connected with finit

and positive Lebesgue measure. ThenV has the extension property if and only if it is a spectr
set. Moreover, withV given, there is a one-to-one correspondence between the two sets of su

$L,Rd:~V,L! is a spetral pair% ~2.4!

and

$L,Rd:L is the joint spectrum of some

commutative family ~H1 ,...,Hd! of self-adjoint extensions%. ~2.5!

This correspondence is determined as follows:
~a! If the extensions(H1 ,...,Hd) are given, thenlPL if and only if

elPù
j

domain ~H j !. ~2.6!

~b! If, conversely, (V, L) is a spectral pair at the outset, then the ansatz~2.6! and

H jel5l jel , lPL ~2.7!

determine uniquely a set of commuting extensions.
If V is only assumed open, then the spectral-set property implies the extension proper

not conversely.
Corollary II.2: SupposeV is open and connected. It follows then that a discrete setL is the

joint spectrum of some commuting self-adjoint extension operators Hj , j51,...,d, if and only if (V,
L) is a spectral pair.

Remark II.3:The simplest case of a disconnectedV which has the extension property, b
which is not a spectral set, is ind51, and we may takeV5^0,1&ø^2,4&, i.e., the union of two
intervals with a doubling and separation. The example was noted first in Ref. 13 and is ba
the simple observation that the polynomial 11z21z3 has no roots z on the circleuzu51.
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Some of the interest in spectral pairs derives from their connection totilings. A subsetV,Rd

with nonzero measure is said totile Rd if there is a setL,Rd such that the translates$V1 l : l
PL% coverRd up to measure zero, and if the intersections

~V1 l !ù~V1 l 8! for lÞ l 8 in L ~2.8!

have measure zero. We will call~V, L! a tiling pair and we will say thatL is aset of translations.
The spectral-set conjecture~see Refs. 13–15, 20, 21! states:

Conjecture II.4:Let V,Rd have positive and finite Lebesgue measure. ThenV is a spectral
set if and only if there is a set L of translations which makeV tile Rd.

Lemma II.5: IfV5I d, then the zero set for the function FV in ~1.4! is

ZI d5$zPCd\$0%:' j P$1,...,d%s.t.zjPZ\$0%%. ~2.9!

Proof: The functionFI d(•) factors as follows:

FI d~z!5)
j 51

d

eipzj
sinpzj

pzj
~2.10!

for z5(z1 ,...,zd)PCd, with the interpretation that the functionz°(sinpz)/pz is 1 whenz50 in
C. h

Remark II.6:What is special aboutZV for V5I d, as opposed to the general form ofV, is that
ZI dø$0% is the Cayley graph of the groupG5Zd with generators

S5$~61,0,...,0!,...,~0,...,61,0,...,0!,...,~0,...,0,61!%.

We recall from Ref. 22, Chapter 10, the definition of the Cayley graphG(G,S) of a discrete group
G with generators S,e¹S. WhenG, S are given,G(G,S) is the graph with vertex setG in which
two verticesg1 ,g2 are the two ends of an edge iffg1

21g2PS. This gives a nonoriented graph
without any loop or multiple edge.

III. TWO DIMENSIONS

We begin with the following simple observation in one dimension forV5I 5@0,1&. ~For
details, see Refs. 10 and 16.!

Proposition III.1: The only subsetsL,R such that~I,L! is a spectral pair are the translate

Laªa1Z5$a1n:nPZ%, ~3.1!

wherea is some fixed real number.
In two dimensions, the corresponding result is more subtle, but the possibilities may s

enumerated as follows:
Theorem III.2 „Ref. 23…: The only subsetsL,R2 such that(I 2,L) is a spectral pair must

belong to either one or the other of the two classes, indexed by a numbera, and a sequence
$bmP@0,1&:mPZ%, where

L5 H S a1m
bm1nD :m,nPZJ ~3.2!

or

L5 H S bn1m
a1n D :m,nPZJ . ~3.3!

Each of the two types occurs as the spectrum of a pair for the cube I2, and each of the setsL as
specified is a set of translation vectors which produces a tiling ofR2 by the cube I2.
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Proof: See Ref. 23 for details. The following are some remarks of relevance to the ge
extension problem for operators.

The assertion in the theorem aboutL translations tiling the plane withI 2 is also clear from
~3.2! and ~3.3!, and is illustrated graphically in Figs. 1 and 2.

It is clear that the pattern~3.2! for d52 continues to higher dimensions as follows:

S a1k1

b~k1!1k2

g~k1 ,k2!1k3

]

z~k1 ,k2 ,...,kd21!1kd

D ~3.4!

with k1 ,k2 ,...,kdPZ, and

b:Z→@0,1&,

g:Z3Z→@0,1&,

]

z:Zd21→@0,1&.

Of course, then there are the obvious modifications of those cases resulting from permuta
the d coordinates; but the assertion is that, whend>10, these configurations do not suffice f
cataloguing all the possible spectraL which turn (I d,L) into anRd-spectral pair.

We now turn to the nontrivial spectral-theoretic content of the conclusion of the theorem
claim that the two cases~3.2! and~3.3! suffice whend52. Note that the sequenceb:Z→@0,1& is
completely arbitrary.

We will show in Theorem V.1 that, up to a single translation in the plane, the possibilitie
the coordinates of points in a spectrumL for I 2 are given by two sequencesjm ,hn satisfying the
following two cocycle relations:

~ei jm1k2ei jm!~12eihn!50 ~3.5!

FIG. 1. Illustrating tiling with~3.2!.
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and

~eihn1 l2eihn!~12ei jm!50 ~3.6!

as identities inm,nPZ, andk,l PZ\$0%. Note that the respective sequences are determined
this only up to 2pZ at each coordinate place.

Simple algebra shows that the two identities~3.5! and ~3.6! imply the following single iden-
tity:

~12ei jm1k!~12eihn!5~12ei jm!~12eihn1 l ! ~3.7!

again for all m,nPZ and k,l PZ\$0%. But it follows from ~3.7! that at least one of the two
sequences, 12ei jm or 12eihn, must then vanish identically. This yields the connection to the
cases forL stated in~3.2! and ~3.3! of the theorem.

Hence the result giving two classes forL in Theorem III.2 may be derived from our mor
general result in Sec. V.

The proof sketch of Theorem III.2 is completed for now, but details will be resumed in
V. h

IV. OPERATOR EXTENSIONS

We saw in Theorem II.1 that in some cases the existence problem for spectral pairs, i.
question of when some given open subsetV in Rd has an orthogonal basis$el :lPL% in L2(V)
for some setL in Rd, may be reformulated as a problem about existence of commuting
adjoint extensions of the operators$(1/i )(]/]xj ): j 51,...,d% with common~dense! domainCc

`(V)
in L2(V). Suppose for the moment thatV5^0,1&3V2 whereV2 is some subset inRd21 of finite
positive (d21)-dimensional Lebesgue measure. We then have the following classification o
self-adjoint extensionsH of (1/i )(]/]x1).

Theorem IV.1: The symmetric operator(1/i )(]/]x1) in L2(^0,1&3V2) with dense domainD
consisting ofwPL2(^0,1&3V2) such thatw(•,y)PCc

`(^0,1&) for all yPV2 , has self-adjoint
extensions indexed by unitary operators V inL2(V2) in such a way that the (unique) extension HV

is determined by its core domain being of the form

DV5$w~x1 ,y!1ex1h~y!1e12x1~Vh!~y!:wPD,hPL2~V2!% ~4.1!

and

FIG. 2. Illustrating tiling with~3.3!.
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iH V~w1ex1h1e12x1Vh!5
]w

]x1
1ex1h2e12x1Vh, ~4.2!

for wPD and hPL2(V2). We shall interpret the implicit boundary condition dictating som
extension HV as

f ~1,• !5UV~ f ~0,• !!, ~4.3!

f PDV where the partial isometry UV is given by

WV5~eI1V!~ I 1eV!21, UV5expWV . ~4.4!

Conversely, V may be calculated from UV by

V5~ I 2eWV!21~WV2eI!, ~4.5!

and in each case, the fractional linear transform, and its inverse, are well defined.
Proof: The proof is based on von Neumann’s deficiency-space analysis of self-adjoint e

sions, and we refer to Refs. 16, 19, and 24 for background material on the theory of op
extensions. IfS is a symmetric operator with dense domainD in a Hilbert spaceH, then it has
self-adjoint extension if and only if the two spaces

~~ i I 6S!D!'5..D6 ~4.6!

have the same dimensions. In that case, the corresponding extensions are given bypartial isom-
etriesbetween the respective defect spacesD1 andD2 ~see Ref. 16, 17, or 19!. For convenience,
we have chosen a slightly different ‘‘normalization’’ in our treatment of the Cayley transf
~4.4! and its inverse~4.5!. We did not normalize the functionsex1 ande12x1 in the defect spaces
They haveL2(I )-norm equal to

S e221

2 D 1/2

.

The fact thatUV in ~4.4! then defines a partial isometry as claimed amounts to the identities
If c(x1 ,y)5ex1h(y)1e12x1(Vh)(y) as in ~4.1!, then

c~1,y!5eh~y!1~Vh!~y!5~eI1V!h,

and

c~0,y!5h~y!1eVh~y!5~ I 1eV!h.

This means that the vectors in the domain~4.1! are given by the boundary conditions~4.3! which
in turn determine the unitary one-parameter group

UV~ t !ªexp~ i tH V!, tPR.

This group is defined from~4.3! by using translation moduloZ in the x1 variable. Then the
operatorUV in ~4.4! is used in defining the representationR{t°UV(t) via induction fromZ.

If V:D1→D2 is a partial isometry, then the domain of the corresponding extensionH(H
5HV) is

$w1h11Vh1 :wPD,h1PD1%

and
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iH V~w1h11Vh1!5 iSw1h12Vh1 . ~4.7!

It follows that the lemma amounts to an identification of thedefect spacesD6 when the symmetric
operator is as specified. When the variables inV5^0,1&3V2 are separated as (x1 ,y),
0,x1,1, y5(x2 ,...,xd)PV2 , then vectorsh6PD6 are precisely the solutions to

S* h656 ih6 . ~4.8!

This amounts to solving

]

]x1
h6~x1 ,y!56h6~x1 ,y!

in the sense of distributions, but with the restrictionsh6PL2(^0,1&3V2). The result of the
lemma then follows from von Neumann’s characterization. If the minimal operator is not clos
the outset, then the resulting self-adjoint extension comes from passing to the operator clo
the formulas~4.2! and ~4.7!. h

Corollary IV.2: Let V be a unitary operator inL2(V2) and let HV be the self-adjoint exten
sion operator described in Theorem IV.1 in (4.2) and (4.3). Then HV generates a unitary one
parameter group$UV(t):tPR% in L2(^0,1&3V2) which may be realized (up to unitary equiva
lence) in the Hilbert spaceHV of measurable functions f:R→L2(V2), satisfying

f ~x111!5UV~ f ~x1!!, ~4.9!

for all x1PR, where UV is the operator from~4.4! in TheoremIV.1, and the norm onHV is
defined by

i f iHV

2 5E
0

1
i f ~x1!iL2~V2!

2 dx1 .

In this space the group UV(t):HV→HV is given by

~UV~ t ! f !~x1!5 f ~x12t ! for x1 ,tPR. ~4.10!

The unitary isomorphism ofHV ontoL2(^0,1&3V2)5L2(^0,1&,L2(V2)) is simply the restriction
to ^0, 1& in the x1-variable. Finally, if UV(t) is computed inL2(^0,1&3V2), the formula is

~UV~ t ! f ! f ~x1 ,• !5H f ~x12t,• ! if 0<t,x1,1

UV~ f ~x12t,• !! if 0 ,x1<t<1
. ~4.11!

Proof: The realization on the spaceHV is the interpretation ofUV as a unitary representatio
of the groupR which is induced from the subgroupZ via formula ~4.10!. The advantage of this
viewpoint is that the spectral resolution of the unitary operatorUV leads directly to an associate
direct integral decomposition for the unitary one-parameter group$UV(t):tPR% which is gener-
ated by the extension operatorHV . h

When the corollary is applied toL2(I 3I ) from Sec. III we note that the respective unita
one-parameter groups,Ux(s) andUy(t), on L2(I 2) which are generated by self-adjoint extensi
operators of (1/i )(]/]x) and (1/i )(]/]y) with domainCc

`(I 2), are induced representations in th
sense of~4.9! and ~4.10!. For the extensions of (1/i )(]/]x), the boundary-unitary from~4.9! is
acting on L2($0,y,1%). But we shall view it as a unitary operator inL2(I 3I )5
L2(I x) ^ L2(I y) via U↔I ^ U2 with U2 acting in they variable. A similar observation applies t
the unitary one-parameter group$Uy(t):tPR% acting onL2(I 2) and generated by one of th
self-adjoint extensions of (1/i )(]/]y). Hence the boundary conditions for$Ux(s):sPR% are given
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by a unitaryU.I ^ U2 with U2 acting in the second variable, while those of$Uy(t):tPR% are
determined by a second unitary operatorV in L2(I 2), now of the formV↔V1^ I with V1 acting
in the first variable ofL2(I 3I ).

With this terminology we have the following preliminary result for the squareI 2 in the plane.
Theorem IV.3: Let Ux(s) be the unitary one-parameter group onL2(I 3I ), and let U2 be the

corresponding unitary boundary operator acting in the second variable y. Then U2 commutes with
the phase-periodic translation in the y variable for a phase angleb if and only if there is a
real-valued sequence$wn :nPZ% such that

Ux~s!em1wn
^ en1b5ei2p~m1wn!sem1wn

^ en1b ~4.12!

for all sPR and m,nPZ, where for (j,h)PR2,ej ^ eh(x,y)5ej(x)eh(y)5ei2p(jx1hy),
restricted to(x,y)PI 2.

Proof: Recall that some fixed unitary one-parameter group$Ux(s):sPR% on L2(I 3I ) is
determined uniquely by the corresponding boundary operatorI ^ U2 . But it follows from Propo-
sition III.1 that U2 satisfies the commutativity property of the theorem if and only if it is dia
nalized by the basis functions$en1b :nPZ% in L2(I y) for some bP@0,1&, i.e., if, for some
sequencewn ,

~U2en1b!~y!5ei2pwnen1b~y!. ~4.13!

But, according to Corollary IV.2, this means thatUx(s) as an induced representation decompo
accordingly, which is to say that the basis vectorsem1wn

^ en1b simultaneously diagonalize eac
operatorUx(s) as stated in formula~4.12!. h

Remark IV.4:For more details on the operator-theoretic approach to spectrum and to tile
refer to Refs. 15 and 25–27.

V. COCYCLES IN TWO DIMENSIONS

In this section, we continue with the self-adjoint extensions of the two commuting min
operators (1/i )(]/]x) and (1/i )(]/]y) with common dense domainCc

`(I 2) in L2(I 2).
Theorem V.1: Consider two commuting unitary one-parameter groups Ux(s) and Uy(t) on

L2(I 3I ) with respective boundary unitaries U2 and V1 . Then:
~i! Either U2 is of the form aIL2(I y) for a scalar a, or else V1 commutes with periodic

translation in the x-variable.
~ii ! Either V1 is of the form bIL2(I x) for some scalar b, or else U2 commutes with periodic

translation in the y-variable.
~iii ! In caseU25ei2paI L2(I y) , then

Ux~s!~ea1m^ g!5ei2p~a1m!sea1m^ g ~5.1!

for all mPZ and gPL2(I y).
~iv! In case V15ei2pbI L2(I x) , then

Uy~ t !~ f ^ eb1n!5ei2p~b1n!t f ^ eb1n ~5.2!

for all f PL2(I x) and nPZ.
Remark V.2:It follows that the conclusion in Theorem IV.3 is satisfied when the two o

parameter groups commute, i.e., when

Ux~s!Uy~ t !5Uy~ t !Ux~s! ~5.3!

is assumed,s,tPR. Specifically, it will then always be the case thatU2 commutes with some
phase-periodic translation in the y-variable, whileV1 commutes with some~possibly different!
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phase-periodic translation in the x-variable.@Also note that~5.3! is a reformulation of~2.3! in the
cased52. Furthermore~5.3! signifies the presence of a unitary representation ofR2.#

Proof of Theorem V.1:When the two one-parameter groupsUx(s) andUy(t) are written in
the form~4.11! from Corollary IV.2, then the alternatives in~4.11! may be expanded as follows
Let ts denote periodic translation inL2(^0,1&), and letPs denote the projection ofL2(^0,1&) onto
L2(^0,s&), with Ps

'5I 2Ps denoting then the projection onto the complementL2(^s,1&), for s
P@0,1#. We haveP050 andP15I L2(^0,1&) . Then from~4.11! we get

Ux~s!5tsPs
'

^ I 1tsPs^ U2 ~5.4!

and

Uy~ t !5I ^ t tPt
'1V1^ t tPt . ~5.5!

The assumed commutativity~5.3! then takes the form:

tsPs
'V1^ t tPt1tsPs^ U2t tPt

'1tsPsV1^ U2t tPt

5tsPs^ t tPt
'U21V1tsPs

'
^ t tPt1V1tsPs^ t tPtU2 .

If V1 is not a scalar timesI L2(I x) then two terms on either side are independent when evaluate

f ^ g. Hence bothU2t tPt
'5t tPt

'U2 andU2t tPt5t tPtU2 hold. Addition of these two identities
yields U2t t5t tU2 which is the commutativity ofU2 with periodic translation.

If on the other handV1 is a scalar, then it follows from the argument in Sec. IV that~iv! must
hold.

The two possibilities for the other boundary operatorU2 lead to cases~i! and ~iii ! by sym-
metry. h

Corollary V.3: Consider unitary one-parameter groups Ux(s) and Uy(t) as in Theorem V.1
and suppose the corresponding boundary operators U2 and V1 diagonalize as follows (identities
in n,mPZ):

U2en1b5ei2panen1b ~5.6!

and

V1em1a5ei2pbmem1a ~5.7!

for somea,bPR. The sequencesan , bm will be chosen taking values in [0,1&. Then the com-
mutativity (5.3) for the two groups holds if and only if the two sequences satisfy a certain co
property: Let anªei2pan and bmªei2pbm. Then the two identities

~bm2bm1k!~12an!50, m,nPZ, kPZ \$0% ~5.8!

and

~an2an1 l !~12bm!50, m,nPZ, l PZ \$0% ~5.9!

are equivalent to the commutativity (5.3). If commutativity holds, we must have(12an)•
(12bm)[0, n,mPZ. Hence we get a spectral pair with spectrumL having one of the two forms

H S a1m
n1bm

D :m,nPZJ if an[0,

or
                                                                                                                



he

meter

8)

rms

by

for

t

8273J. Math. Phys., Vol. 41, No. 12, December 2000 Commuting self-adjoint extensions . . .

                    
H S m1an

b1n D :m,nPZJ i f bm[0.

The derivation of the two cocycle identities~5.8! and ~5.9! from commutativity~5.3! at the
end of the proof is based on the following corollary of independent interest:

Corollary V.4: Let U51^ U2 and V5V1^ I be the respective boundary operators of t
one-parameter unitary groups Ux(s) and Uy(t) acting onL2(I 3I ). Then, if (5.6) and (5.7) hold
for somea, b and some sequences as specified, it follows that the respective one-para
groups may be expanded in the common basis E(m,n)5E(a,b)(m,n)ªem1a

(1)
^ en1b

(2) , (m,n)
PZ2, as follows: There are complex sequences$sk%kPZ and $t l% l PZ so that, if we define

s0
'
ª12s0 , t0

'
ª12t0 ~5.10!

and

sk
'
ª2sk ~ f or kÞ0!, t l

'
ª2t l ~ f or lÞ0!, ~5.11!

then

Ux~s!E~m,n!5(
kPZ

ei2p~m1a1k!s~sk
'1skan!E~m1k,n! ~5.12!

and

Uy~ t !E~m,n!5(
l PZ

ei2p~n1b1 l !t~ t l
'1t lbm!E~m,n1 l !. ~5.13!

The two one-parameter groups Ux(s) and Uy(t) commute if and only if the cocycle identities (5.
and (5.9) hold.

Proof: Recall from~5.4! and ~5.5! that the two one-parameter groups are expressed in te
of multiplication operators onL2(^0,1&) with the respective indicator functionsx^0,s& andx^0,t& .
The sequences~5.10!–~5.11! are the Fourier coefficients of these indicator functions, acting
multiplication in L2(I ), and the relations~5.10! and ~5.11! simply reflect the following two
obvious identities:

x^0,s&1x@s,1&51

and

x^0,t&1x@ t,1&51,

as functions on the unit interval. When the resulting formulas~5.12! and~5.13! are substituted into

Ux~s!Uy~ t !E~m,n!5Uy~ t !Ux~s!E~m,n! ~5.14!

the equivalence to~5.8! and ~5.9! results. h

VI. QUASICRYSTALS

For the spectral pairs (I d,L) in dimensionsd52,3, we noted that each of the candidates
spectrumL tiles Rd with L-translates ofI d. ~See Theorems III.2 and IV.3.! But reviewing for-
mulas~3.2!–~3.3! and~3.4!, and~7.4! in the next section, for the possible setsL which serve asI d

spectrum, we find functionsa, b,... onZ or Zk which describe the particular setL. Since all the
candidates forL make tailings, there is a directgeometricinterpretation for these functions; bu
we note in the present section that there is also aspectral-theoreticsignificance which derives
from diffraction considerations of quasicrystals; see Refs. 28–30.
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In this setting, diffractions show up as discrete components of the spectral distribution

DL~x!5 (
lPL

el~x!5 (
lPL

ei2pl•x.

We say that a spectrumL(,Rd) has adiffraction patternif there is a pair~M,c! whereM is a
subset ofRd andc is a function~measuring intensity! defined onM such that

DL~x!5 (
mPM

c~m!d~x2m!,

i.e., the spectral distribution is a weighted sum of point masses, supported on some~discrete!
subsetM in Rd. Note that the interpretation in both of the summations involvingDL(•) is to be
understood as Schwartz distributions; that is if the respective sums are evaluated on a
functionwPCc

`(Rd), then the first sum yields(lPL w̃(l) wherew̃(l)5*Rd el(x)w(x)dx, while
the second sum is(mPM c(m)w(m). We also note that, by the Poisson summation formula,
condition is satisfied ifL5Zd5M , and the density~intensity! function c is c[1 on M.

We shall also need the following definition: A functionj on R is said to bequasiperiodicif
there are positive numbersv1 ,...,v r , which are independent overQ, and functionsj1 ,...,j r such
thatj j hasv j as period, andj5( j 51

r j j . The condition onj j amounts to the generalized Fouri
expansion

j j~x!5 (
nPZ

cj~n!expS i2p
nx

v j
D .

In the following result we show that, if the functions which define a spectrumL for someI d

are quasiperiodic, then it follows thatL has a diffraction pattern. We will not state the result in t
widest generality as it will be clear that the idea in the simplest case carries over to the var
in higher dimensions. Even ford52, Theorem III.2 shows that there are two classes ofL corre-
sponding to~3.2! and ~3.3!, respectively. In the following we will treat only~3.2!, but the result
applies to~3.3! mutatis mutandis.

Theorem VI.1: Let

L5 H S m
b~m!1nD :m,nPZJ

for some functionb:Z→R and supposeb extends to a function onR which is quasiperiodic with
periodsv1 ,...,v r , independent overQ. Then it follows that(I 2,L) is a spectral pair with dif-
fraction pattern, specifically, there is a density function c:Zr3Z→C such that

DL~x,y!5 (
kPZr

(
nPZ

c~k,n!(
nPZ

dS x2(
i 51

r
ki

v i
2mD ^ d~y2n!

with the density c(k1 ,...,kr ,n) derived from the Bohr almost periodic Fourier expansion appl
to b.

Proof: Consider the formulaDL(x,y)5(m (nei2p(mx1(b(m)1n)y) and expand the inside func
tion, m°ei2pb(m)y according to the quasiperiodicity assumption onb: specifically,
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ei2pb~m!y5)
j 51

r

ei2pj j ~m!y

5)
j 51

r

(
kj PZ

c~ j !~kj !expS i2p
mkj

v j
D

5 (
k1PZ

¯ (
krPZ

c~1!~k1!¯c~r !~kr !expS i2pm(
j 51

r
kj

v j
D .

Settingc(k)ªP j 51
r c( j )(kj ) and using

(
mPZ

expF i2pmS x1(
j 51

r
kj

v j
D G5 (

mPZ
dS x2(

j 51

r
kj

v j
2mD

together with Poisson summation~also in the second variable! we arrive at the desired formula.h

VII. HIGHER DIMENSIONS

The following definitions help summarize the results ford52: We say that the one-paramet
unitary groups onL2(I 3I ) generated by self-adjoint extensions of the respective partial de
tives (1/i )(]/]x) and (1/i )(]/]y) on Cc

`(I 3I ) are quasicommuting if the conditions~5.6! and
~5.7! hold. Recall this means that the respective boundary operators commute with some
periodic translation in the opposite variable. We then showed in Theorem V.1 that the com
tivity property ~5.3!, for the unitary groupsUx(s) andUy(t), impliesquasicommutativity. Finally
we showed in Corollary V.3 that, among thequasicommutingextensions, those that in fact com
mute @in the sense of~5.3!# are characterized by the two cocycle identities~5.8! and ~5.9!.

It is clear thatquasicommutativitycan be defined analogously ford.2. It follows from
Theorem II.1 that commutativity ofd self-adjoint extensions of the respective partial derivativ
$(1/i )(]/]xj ): j 51,...,d%, on Cc

`(I d),L2(I d), is equivalent to thespectral-pair condition for
(I d,L). Moreover, if commuting self-adjoint extensions exist~i.e., (1/i )(]/]xj ),H j , H j* 5H j ,
j 51,...,d), then we may takeL to be the joint spectrum of the family$H j% j 51

d . Conversely,
commuting operatorsH j may easily be associated with some spectrumL in a spectral pair (I d,L).
Hence, ford52, our results in Sec. V provide a complete classification of the commuting~and
also the quasicommuting! self-adjoint extensions of$(1/i )(]/]xj )% j 51

d .
In higher dimensions, we still have boundary operators corresponding to each self-a

extension of the partials (1/i )(]/]xj ) ~on Cc
`(I d),L2(I d), j 51,...,d), by Corollary IV.2. If for

eachj, U j (t) denotes the unitary one-parameter group onL2(I d) generated by some self-adjoin
extensionH j , then Corollary IV.2 states thatU j (t) is induced by some unitary operatorVj acting
in the remaining variables (x1 ,...,xj 21 ,xj 11 ,...,xd) ~i.e., with omission of the variable on thej th
place!: specifically,U j (t)5 indZ

R(Vj ) as a representation of~R, 1!; or equivalently the domain o
H j is, for eachj, given by the boundary condition

f ~x1 ...,xj 21,1, xj 11 ,...,xd!5Vj~ f ~x1 ...,xj 21,0, xj 11 ,...,xd!!.

~Note that the more precise interpretation of this set of boundary conditions is given in for
~4.9! of Corollary IV.2. This is the interpretation of the unitary one-parameter groups in
respective coordinate directions asinduced unitary representations~see Refs. 31 and 32!, with
inductionZ→R for each direction.! We say that a family of self-adjoint extension operatorsH j ,
with corresponding boundary unitariesVj , is quasicommutingif there are phase anglesa j

P@0,1&, j 51,...,d, such that eachVj is diagonalized by

ea11n1

~1!
^¯^ ea j 211nj 21

~ j 21!
^ ea j 111nj 11

~ j 11!
^¯^ ead1nd

~d! ~7.1!
                                                                                                                



phase

ials
n-

nd

tive

irs of

me as

8276 J. Math. Phys., Vol. 41, No. 12, December 2000 P. E. T. Jorgensen and S. Pedersen

                    
as (n1 ,...,nd21 ,nd11 ,...,nd) vary over Zd21, i.e., the lattice resulting fromZd with the j th
coordinate place omitted. It follows that the quasicommutative case is characterized by the
angles a1 ,...,ad , and by functionsv j :Zd21→T such that, forn5(n1 ,...,ĵ ,...,nd), v j (n)
5v j (n1 ,...,ĵ ,...,nd) is the eigenvalue ofVj corresponding to the eigenvector in~7.1!. ~The
notation (n1 ,...,ĵ ,...,nd) means that thej th place is omitted.!

Theorem VII.1: Let $H j% j 51
d be a family of self-adjoint extensions of the respective part

(1/i )(]/]xj ) ( j 51,...,d, on Cc
`(I d),L2(I d)), which is assumed quasicommutative with eige

value functionsv j (n1 ,...,ĵ ,...,nd) from Zd21 to T. Then the extensions are commutative if a
only if the following pair of cocycle conditions is satisfied for all j,k such that1< j ,k<d, all

(n1 ,...,ĵ ,...,nd), and all l,mPZ\$0%:

~v j~n1 ,...,ĵ ,...,nk1 l ,...,nd!2v j~n1 ,...,ĵ ,...,nd!!3~12vk~n1 ,...,k̂,...,nd!!50 ~7.2!

and

~vk~n1 ,...,nj1m,...,k̂,...,nd!2vk~n1 ,...,k̂,...,nd!!3~12v j~n1 ,...,ĵ ,...,nd!!50. ~7.3!

Proof: Since the commutativity for the one-parameter groups of unitary operatorsU j (t j ) may
be stated for pairs, i.e.,U j (t j )Uk(tk)5Uk(tk)U j (t j ), j ,k, t jPR, tkPR, the argument for the
general cased.2 is the same as ford53. To see this, just use the formulas for the respec
one-parameter groups which are analogues to~5.12! and~5.13! in the proof of Corollary V.4. For
d53, we may introduce the leg-notation:v1→v23, v2→v13, v3→v12. When evaluated at a
general point inZ3 of the form ~k,l,m!, the respective eigenvalues are

v23~ l ,m! for V23, ~i!

v13~k,m! for V13, ~ii !

v12~k,l ! for V12. ~iii !

Specifically,

V23eb1 l
~2!

^ eg1m
~3! 5v23~ l ,m!eb1 l

~2!
^ eg1m

~3! , ~i8!

V13ea1k
~1!

^ eg1m
~3! 5v13~k,m!ea1k

~1!
^ eg1m

~3! , ~ii 8!

V12ea1k
~1!

^ eb1 l
~2! 5v12~k,l !ea1k

~1!
^ eb1 l

~2! , ~iii 8!

wherea, b, g are the fixed phase angles from the quasicommutativity. Then the three pa
cocycle identities from the theorem are as follows:~ia!–~ib!, ~iia!–~iib!, and ~iiia!–~iiib !. The
argument for the equivalence of commutativity and the cocycle identities is essentially the sa
the one used in the proof of Corollary V.4 above. The cocycle identities ford53 are

~v13~k,m!2v13~k1n1 ,m!!~12v23~ l ,m!!50, ~ia!

~v23~ l ,m!2v23~ l 1n2 ,m!!~12v13~k,m!!50, ~ib!

~v12~k,l !2v12~k1n1 ,l !!~12v23~ l ,m!!50, ~iia!

~v23~ l ,m!2v23~ l ,m1n3!!~12v12~k,l !!50, ~iib!

and

~v13~k,m!2v13~k,m1n3!!~12v12~k,l !!50, ~iiia!
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~v12~k,l !2v12~k,l 1n2!!~12v13~k,m!!50. ~iiib !

h

Example VII.2:Not all the spectral pairs in three dimensions are quasicommutative~although
this is true ind52). Take for example the case~3.4! of Sec. III with

L5H S k
b~k!1 l

g~k,l !1m
D :k,l ,mPZJ ~7.4!

with b:Z→@0,1& andg:Z2→@0,1& arbitrarily given functions. Then the three operatorsV23, V13,
andV12 are as follows:

V235I ~ the identity operator in the two marked tensor slots!, ~i88!

V13~ek
~1!

^ eg~k,l !1m
~3! !5ei2pb~k!ek

~1!
^ eg~k,l !1m

~3! , ~ii 88!

and

V12~ek
~1!

^ eb~k!1 l
~2! !5ei2pg~k,l !ek

~1!
^ eb~k!1 l

~2! . ~iii 88!

It follows that the three commuting unitary one-parameter groups associated withL, via Theorem
II.1, are not quasicommuting if the two functionsb andg in formula ~7.4! are both nonconstant
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1M. S. Livšic, N. Kravitsky, A. S. Markus, and V. Vinnikov,Theory of Commuting Non-selfadjoint Operators, Math-
ematics and its Applications Vol. 332~Kluwer Academic, Dordrecht, 1995!.

2S. A. Avdonin and S. A. Ivanov,Families of Exponentials: The Method of Moments in Controllability Problems
Distributed Parameter Systems~Cambridge University Press, Cambridge, 1995!.

3M. I. Belishev, ‘‘Wave bases in multidimensional inverse problems,’’ Mat. Sb.180, 584–602~1989!; 180, 720 ~1989!;
~Russian!, English translation: Math. USSR-Sb.67, 23–42~1990!.

4A. Haraux and V. Komornik, ‘‘On the vibrations of rectangular plates,’’ Proc. R. Soc. Edinburgh, Sect. A: Math.119,
47–62~1991!.

5B. S. Pavlov, ‘‘The basis property of a system of exponentials and the condition of Muckenhoupt,’’ Dokl. Akad.
SSSR247, 37–40~1979!, English translation: Soviet Math. Dokl.20, 655–659~1979!.

6R. T. Powers, ‘‘Self-adjoint algebras of unbounded operators,’’ Commun. Math. Phys.21, 85–124~1971!.
7R. T. Powers, ‘‘Selfadjoint algebras of unbounded operators, II,’’ Trans. Am. Math. Soc.187, 261–293~1974!.
8A. Kempf, ‘‘A generalized Shannon sampling theorem, fields at the Planck scale as bandlimited signals’’~unpublished!;
hep-th/9905114.

9A. Kempf, ‘‘Unsharp degrees of freedom and the generating of symmetries’’~unpublished!, hep-th/9907160.
10P. E. T. Jorgensen and S. Pedersen, ‘‘Spectral theory for Borel sets inRn of finite measure,’’ J. Funct. Anal.107, 72–104

~1992!.
11P. E. T. Jorgensen and S. Pedersen, ‘‘Harmonic analysis and fractal limit-measures induced by representati

certainC* -algebra,’’ J. Funct. Anal.125, 90–110~1994!.
12P. E. T. Jorgensen and S. Pedersen, ‘‘Harmonic analysis of fractal measures,’’ Constr. Approx.12, 1–30~1996!.
13B. Fuglede, ‘‘Commuting self-adjoint partial differential operators and a group theoretic problem,’’ J. Funct. Ana16,

101–121~1974!.
14P. E. T. Jorgensen, ‘‘Spectral theory of finite volume domains inRn, ’’ Adv. Math. 44, 105–120~1982!.
15S. Pedersen, ‘‘Spectral theory of commuting self-adjoint partial differential operators,’’ J. Funct. Anal.73, 122–134

~1987!.
16M. Reed and B. Simon,Fourier Analysis, Selfadjointness, Methods of Modern Mathematical Physics Vol. II~Academic,

New York, 1975!.
17N. Dunford and J. T. Schwartz,Linear Operators~Wiley Interscience, New York, 1963!, Vol. II.
18J. Friedrich, ‘‘On first order partial differential operators on bounded regions of the plane,’’ Math. Nachr.131, 33–47

~1987!.
                                                                                                                



.

tions

s,’’ pp.

Math.

8278 J. Math. Phys., Vol. 41, No. 12, December 2000 P. E. T. Jorgensen and S. Pedersen

                    
19J. von Neumann, ‘‘Allgemeine eigenwerttheorie Hermitescher funktionaloperatoren,’’ Math. Ann.102, 49–131~1929/
30!.

20J. C. Lagarias and Y. Wang, ‘‘Tiling the line with translates of one tile,’’ Invent. Math.124, 341–365~1996!.
21J. C. Lagarias and Y. Wang, ‘‘Integral self-affine tiles inRn. II. Lattice tilings,’’ J. Fourier Anal. Appl.3, 83–102~1997!.
22Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces~Trieste, 1989!, edited by T. Bedford, M. Keane, and C

Series~Oxford University Press, New York, 1991!.
23P. E. T. Jorgensen and S. Pedersen, ‘‘Spectral pairs in Cartesian coordinates,’’ J. Fourier Analysis Applica5,

285–302~1999!.
24P. E. T. Jorgensen, ‘‘Selfadjoint extension operators commuting with an algebra,’’ Math. Z.169, 41–62~1979!.
25P. E. T. Jorgensen, ‘‘Commutative algebras of unbounded operators,’’ J. Math. Anal. Appl.123, 508–527~1987!.
26P. E. T. Jorgensen, ‘‘Extensions and index of Hermitian representations,’’ Publ. Res. Inst. Math. Sci.25, 923–945

~1989!.
27S. Pedersen, ‘‘Spectral sets whose spectrum is a lattice with a base,’’ J. Funct. Anal.141, 496–509~1996!.
28M. Senechal,Quasicrystals and Geometry~Cambridge University Press, Cambridge, 1995!.
29A. Hof, ‘‘On diffraction by aperiodic structures,’’ Commun. Math. Phys.169, 25–43~1995!.
30E. Bombieri and J. E. Taylor, ‘‘Quasicrystals, tilings, and algebraic number theory: Some preliminary connection

241–264 inThe Legacy of Sonya Kovalevskaya (Cambridge, MA and Amherst, MA, 1985), Contemporary Mathematics
Vol. 64, edited by L. Keen~American Mathematical Society, Providence, 1987!.

31G. W. Mackey, ‘‘Induced representations of locally compact groups. II. The Frobenius reciprocity theorem,’’ Ann.
58, 193–221~1953!.

32G. W. Mackey, ‘‘Point realizations of transformation groups,’’ Ill. J. Math.6, 327–335~1962!.
                                                                                                                



the

v

olic
er Eq.

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 12 DECEMBER 2000

                    
An initial boundary value problem of Camassa–Holm
equation

Keng-Huat Kwek
Department of Mathematics, National University of Singapore,
10 Kent Ridge Crescent, Singapore 119260

Hongjun Gao
Department of Mathematics, Nanjing Normal University,
Nanjing, 210097, People’s Republic of China

Weinian Zhang
Department of Mathematics, Sichuan University,
Chengdu, 610064, People’s Republic of China

Chaochun Qu
Department of Mathematics, Yunan University,
Kunming, 650091, People’s Republic of China

~Received 11 October 1999; accepted for publication 15 June 2000!

In this paper, the local existence and blow-up for an initial boundary value problem
of the Camassa–Holm equation are obtained. ©2000 American Institute of Phys-
ics. @S0022-2488~00!00510-7#

I. INTRODUCTION

The Cauchy problem of the Camassa–Holm equation

ut2uxxt13uux52uxuxx1uuxxx , t.0, xPR, ~1!

was derived in Ref. 1 to describe the motion of solitary waves on shallow water, whereu describes
the free surface of the water above a flat bottom. With

m5u2uxx ,

Eq. ~1! can be written as

mt1umx522uxm, t.0, xPR. ~18!

The existence of solitary waves and various other types of solutions of Eq.~1! are obtained in
Refs. 1–4. Recently, Constatinet al. made sequential research on the Cauchy problem of
periodic Camassa–Holm equation.5–8 In particular, he proved in Ref. 5 that Eq.~18! is globally
well-posed inHp

2 if m0(x)PHp
2 does not change sign and that the solution of Eq.~18! with initial

datam0(x)5u0(x)2u0xx(x), while u0(x)PHp
4 is odd andu0[” 0, does not exist globally. Here

Hp
n5$v(x)PHn:v(x)5v(x11),;xPR%, n>0 is an integer, andHn is the standard Sobole

space.
It should also be interesting to discuss the Camassa-Holm equation~1! with boundary condi-

tions. Actually, its equivalent form Eq.~18! can be regarded as a first order quasilinear hyperb
equation, whose boundary value problems are still worth studying. In this paper we consid
~1! with initial data

u~x,0!5u0~x!, xP~0,1! ~2!

and boundary conditions
82790022-2488/2000/41(12)/8279/7/$17.00 © 2000 American Institute of Physics
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u~0,t !5uxx~0,t !5u~1,t !5uxx~1,t !50 ~3!

and prove the local existence and property of blow-up for this initial boundary problem.
The main result is
Theorem: Let B5$uPH4(0,1),u(0)5uxx(0)5u(1)5uxx(1)50%. For every u0PB, the

problem~1!–~3! has a unique solution

uPC~@0,T!,B!ùC1~@0,T!,H0
1~0,1!!,

for a certainT.0. Moreover,u is continuously dependent onu0 in H4 norm. Furthermore, if
u0x,0, then the solution blows-up in finite time.

II. THE PROOF OF THE THEOREM

We divide the proof of theTheoreminto two lemmas. First, we prove the local existence
the following initial boundary value problem:

mt1umx522uxm, in ~0,1!3~0,T!, ~4!

m5u2uxx , in ~0,1!3~0,T!, ~5!

uu t505u0~x!, mu t505m0~x!5u0~x!2u0xx~x!, ~6!

uux505uux5150, mux505mux5150, ~7!

where u0(x)PH4(0,1) satisfies compatible conditions:u0(0)5u0(1)5u0xx(0)5u0xx(1)50.
Second, we get the blow-up result.

Lemma 1:For m0PH2ùH0
1, the initial boundary value problem~4!–~7! has a unique solution

mPC~@0,T!,H2ùH0
1!ùC1~@0,T!,L2~0,1!!,

for a certainT.0.
Proof: Let

X5L2~0,1!, Y5H2ùH0
1 .

i•iX denotes the norm induced from the inner product (f,w)5*0
1 fw dx. The normi•iY in Y is

defined byiyiY5iSyiX5iyiX
212iyxiX

21iyxxiX
2 , ;yPY. WhereS5Id2D2 andD5]x . Clearly

the embeddingY�X is continuous and dense. Moreover,S:H2ùH0
1→X is an isometric isomor-

phism. In fact, for anyf PX, the well-known existence theorem of weak solution and regula
for boundary problem of elliptic equations implies that the boundary value problem

H v2v95 f , xP~0,1!

v~0!5v~1!50

has a unique solution inH2ùH0
1.

Furthermore, rewrite the problem~4!–~7! into an abstract form

dm

dt
1A~m!m5 f ~m!, t.0,

m~0!5m0 ,

where

A~m!5~S21m!D, f ~m!522m~S21m!x .
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To proveLemma 1, it suffices to verify conditions~i!–~iv! of Kato’s theorem~Ref. 9, see the
Appendix!.

Step 1. The operator —A(m) is an infinitesimal generator of a contractive semigroup inX.
Clearly A(m) is a closed operator with dense domain. Let

v5 1
2 sup
xP@0,1#

u~S21m~x!!xu.

By Hille–Yosida’s Theorem,10 it suffices to prove that there existsv1PR such that the resolven
of A(m) satisfies

i~l Id1A~m!!21iL(X)<
1

l2v1
, ;l.v1 ,

where

lPr~A~m!!. ~8!

It can be shown thatv15v. In fact, consider the equation

~l Id1A~m!!21g5 f ,

that is

l f 1S21m fx5g, ~9!

where f ,gPX. Making the inner product of~9! with f in X, we get

li f iX
21E

0

1

~S21m! f xf dx5E
0

1

g f dx. ~10!

SinceS21mPH2ùH0
1, from ~10! we see

li f iX
22

1

2E0

1

~S21m!xf 2 dx<i f iXigiX .

It implies

~l2 1
2 sup
xP@0,1#

u~S21m~x!!xu!i f iX
2<i f iXigiX ,

that is

i f iX<
1

l2v
igiX .

Thus the inequality~8! is proved.
Next, we need to estimate supxP[0,1]u(S21m(x))xu for every M.0 and mPY with imiY

<M . Since S21mPH2ùH0
1, we haveS21m(0)5S21m(1)50. There isjP(0,1) such that

(S21m)x(j)50. Then forxP@j,1#, by the definition ofS,
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u~S21m!x~x!u5U E
j

x

~S21m!xx dxU5U E
j

x

~S21m2SS21m!dxU
<U E

j

x

S21m dxU1U E
j

x

m dxU.
By Hölder inequality,

u~S21m!x~x!u<iS21miX1imiX<iS21miY1imiX

<2imiX<2imiY<2M .

Hence

sup
xP@0,1#

u~S21m~x!!xu<2M ,

so condition~i! of Kato’s theorem is verified with constantb5M .
Step 2.To check condition~ii ! of Kato’s theorem we first prove thatA(m):Y→X is bounded

linear operator for everymPY. For vPY,

iA~m!vi25i~S21m~x!!vxiX
25E

0

1

vx
2~S21m~x!!2dx

<ivxiL`
2 i~S21m!iX

2<CiviY
2i~S21m!iY

2

<CiviY
2imiX

2<CiviY
2imiY

2 ,

where the embeddingW1,̀
�H2ùH0

15Y is used andC.0 is a constant. Moreover, fory,z,w
PY,

i~A~y!2A~z!!wiX
25E

0

1

~S21y2S21z!2wx
2 dx

<iwxiL`
2 E

0

1

uS21y2S21zu2 dx

<CiwiY
2iS21~y2z!iY

25CiwiY
2iy2ziX

2 .

Step 3.Now, we check the condition~iii ! of Kato’s theorem. For everyM.0 andw,mPY with
imiY<M ,

i~SA~m!2A~m!S!S21wiX

5iA~m!S21w2~A~m!S21w!xx2A~m!wiX

5iS21m~S21w!x2~S21m~S21w!x!xx2S21~m!wxi

5iS21m~S21w!x2$~S21m!xx~S21w!x12~S21m!x~S21w!xx

1S21m~S21w!xxx%2S21~m!wxi

5i2S21w~S21m!x22w~S21m!x1~S21w!xS
21m2~S21w!xmiX

<2i~S21m!xiL`iS21wiX12i~S21m!xiL`iwiX

1iS21miL`i~S21w!xiX1imiL`i~S21w!xiX .

By the Sobolev embedding theorem, there exists a constantC.0 such that
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i~S21m!xiL`1iS21muL`<CiS21miY5CimiX<CimiY ,

and

imiL`<CimiY , i~S21w!xiX<iS21wiY5iwiX .

It follows that

i~SA~m!2A~m!S!S21wiX<6CiwiXimiY<m1iwiX ,

wherem156CM, and condition~iii ! in the Appendixis satisfied.
Step 4.Finally we check condition~iv! of Kato’s theorem. For anym1 ,m2PY,

i f ~m1!2 f ~m2!iX52im1~S21m1!x2m2~S21m2!xiX

<2i~S21m1!xiL`im12m2iX12im2iXi~S21~m12m2!!xiL`

<2CiS21m1iYim12m2iX12Cim2iXi~S21~m12m2!!xiY

5~2Cim1iX12Cim2iX!im12m2iX5m2im12m2iX ,

wherem252C(im1iX1im2iX). Similarly,

i f ~m1!2 f ~m2!iY52im1~S21m1!x2m2~S21m2!xiY

<2i~S21m1!xiL`im12m2iY12im2iYi~S21~m12m2!!xiL`

<~2Cim1iY12Cim2iY!im12m2iY5m3im12m2iY ,

wherem352C(im1iY1im2iY).
By Kato’s theorem, the proof ofLemma 1is completed. h

SinceS:B→Y5H2(0,1)ùH0
1(0,1) is bijective, we can solveu from u2uxx5m uniquely and

obtain byLemma 1the following
Corollary: Let u0PB, then the problem~1!–~3! has a unique solutionu(x,t) that satisfies

u~x,t !PC~@0,T!,B!ùC1~@0,T!,H0
1~0,1!!.

Lemma 2: If u0x(0),0 and under the condition ofcorollary, then the solutionu(x,t)
blows-up in finite time.

Proof: We consider the solutionu of ~1! given in thecorollary. First, rewrite~1! as

~ Id2]xx!~ut1uux!52]x~u21 1
2 ux

2!. ~11!

Sinceuux505uux5150, we have

~ut1uux!ux505~ut1uux!ux5150, for tP@0,T!.

Let G(x,j) denote the Green’s function of the operatorSwith zero Dirichlet boundary condition
Clearly G(x,j) satisfies that

G~x,j!2G~x,j!xx5d~x2j!, x,jP~0,1!

Gux505Gux5150.

By the method of Ref. 11, we obtain
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G~x,j!5H sh~x!sh~12j!

sh~1!
, 0<x<j,

sh~j!sh~12x!

sh~1!
, 1>x.j.

From ~11! we have

ut1uux52]xE
0

1

G~x,j!S u21
1

2
ux

2Ddj. ~12!

Differentiating ~12! in x we have

uxt1uuxx5u22
1

2
ux

22E
0

1

G~x,j!S u21
1

2
ux

2Ddj. ~13!

Let

g~ t !5ux~0,t !.

Note thatu(0,t)5uxx(0,t)50 andG(0,j)50. From~13!, we obtain

d

dt
g~ t !52

1

2
g2~ t !. ~14!

It implies that

1

g~ t !
5

1

g~0!
1

t

2
, t>0,

that is,

g~ t !5
2g~0!

21g~0!t
, t>0. ~15!

It implies thatg(t)→2` as t→T52 2/g(0) sinceg(0)5ux(0,0)5u0x(0),0. This completes
the proof ofLemma 2. h

By the Corollary andLemma 2, theTheoremis proved.
Remark: Taking u0(x)52sinpx, xP@0,1#, we have thatu0PB, m05(11p2)sinpx and

u0x(0)52p,0. By our theorem, the solution blows up in finite time. In Ref. 5, the initial da
was assumed to be odd in order to ensure blow-up, whereas here this condition is not neede
shows a difference between initial boundary value problem and periodic problem~or initial value
problem! for the first-order quasilinear hyperbolic equation.
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APPENDIX: KATO’S THEOREM

Let X,Y be reflexible Banach space withY embedded inX continuously and densely andSbe
the isomorphism ofY onto X. Consider the Cauchy problem
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dv
dt

1A~v !v5 f ~v !, t.0,

~A1!
v~0!5v0 .

Assume the following
~i! A(y) is a linear operator inX for yPY, andA(y) is quasi-m-accretive uniformly foriyiY

bounded, i.e., for everyM.0 there is a real numberb such that, for everyyPY with iyi<M , the
operator2A(y) generates aC0-semigroup$e2tA(y)% t>0 satisfyingie2tA(y)iL(X)<ebt, ;t>0.

~ii ! A(y):Y→X is a bounded linear operator foryPY and i(A(y)2A(z))wiX<mAiy
2ziXiwiY , ;y,z,w, for some constantmA depending only on max$iyiY ,iziY%.

~iii ! for every M.0 and yPY with iyiY<M , the inequality i(SA(y)2A(y)S)S21wiX

<m1(M )iwiX holds for allwPY wherem1(M ).0 is a constant.
~iv! For everyM.0, f :$yPY:iyiY<M %→Y is bounded, andi f (y)2 f (z)iX<m2iy2ziX ,

i f (y)2 f (z)iY<m3iy2ziY ,;y,zPY, for some constantsm2 and m3 depending only on
max$iyiX ,iziX% and max$iyiY ,iziY%, respectively.

Kato’s Theorem: Assume~i!–~iv! hold. For anyv0PY, there is aT.0, depending only on
iv0iY , and a unique solutionv of ~A1! such that

vPC~@0,T!;Y!ùC1~@0,T!;X!.

Moreover,v(t) depends continuously onv(0)5v0 in the Y norm.
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To get the similarity solutions of a nonlinear physical equation, one may use the
classical Lie group approach, nonclassical Lie group approach and the Clarkson
and Kruskal~CK! direct method. In this paper the direct method is modified to get
the similarity and conditional similarity reductions of a (211) dimensional KdV-
type equation. Ten types of usual similarity reductions@including the
(111)-dimensional shallow water wave equation and the variable KdV equation#
and six types of conditional similarity reductions of the (211)-dimensional KdV
equation are obtained. Some special solutions of the conditional similarity reduc-
tion equations are found to show the nontriviality of the conditional similarity
reduction approach. The conditional similarity solutions cannot be obtained by
using the nonclassical Lie group approach in its present form. How to modify the
nonclassical Lie group approach to obtain the conditional similarity solutions is still
open. © 2000 American Institute of Physics.@S0022-2488~00!01712-6#

I. INTRODUCTION

To find some similarity solutions of a nonlinear physics problem, one may use the clas
Lie group approach,1 the nonclassical Lie group approach,2 and the direct method which is devel
oped first by Clarkson and Kruskal3 ~CK!. The direct method has been widely used to find t
similarity solutions for many real physical models.4–6 Usually, one believes that the results ob
tained by the CK direct method contain those obtained by the classical Lie group approach a
results of the nonclassical Lie approach include those of the direct method. The classic
approach and the nonclassical Lie approach were proposed much earlier than the CK
method. However, it is just when the CK direct method was developed, much more simi
reductions for nonlinear systems were found though the results can also be found by the no
sical Lie approach.

In this paper, we try to find some more similarity reduction solutions, the conditional s
larity reductions, by the direct method with a suitable modification which cannot be obtaine
the nonclassical Lie group approach in its present form. In the usual CK’s direct method
requires that one reduction field satisfies only one reduction equation. Actually, one may los
restriction to find some more similarity solutions by using the direct method. In other words
may use the direct method to find some types of similarity reduction solutions that are obt
from more than one reduction equation for one reduction field. For simplicity later, we call
type of similarity solution as the conditional similarity solution.
82860022-2488/2000/41(12)/8286/18/$17.00 © 2000 American Institute of Physics
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Recently, it is shown that the following (211)-dimensional KdV equation

ut2uxxy24uuy24ux]x
21uy50, ~1!

where]x
21 is an indefinite integrate operator*dx, possesses some interesting coherent structu

For instance, a single dromion solution of the model~1! can be driven by not only two perpen
dicular line ghost solitons7 but also one ghost straight line soliton and one ghost curved
soliton.8

In this paper, we discuss the similarity solutions of~1! in its potential form (u5vx),

vxt2vxxxy24vxvxy24vxxvy50. ~2!

Actually, some authors had discussed some interesting properties of a more general mode9

vxt2vxxxy1avxvxy1bvxxvy50 ~3!

which is a generalization of the shallow water wave~SWW!,

vxxxy1avxvxt1bvxxv t2vxt2vxx50 ~4!

derived from the classical shallow water theory in the Boussinesq approximation.10 For the SWW
equation~4!, there exist two special integrable casesa52b ~Ref. 11! anda5b,12 which possess
the Painleve´ property and can be solved by means of the inverse scattering transformation

In Ref. 9, Clarkson and Mansfield had pointed out that though the SSW equation~4! is
integrable both for the casesa52b and a5b, the (211) dimensional equation~3! may be
integrable only for the special casea52b because it is the only case that can pass the neces
conditions of the Painleve´ partial differential equation~PDE! test. In Ref. 8, we had also pointe
out that Eq.~3! for a5b cannot pass the existence condition of the general three plane so
condition. Though~3! for a5b @which is equivalent to~2!# is not integrable, there exist reall
some interesting properties. For instance,~3! is bilinearizable only for the casea5b by using the
Hirota’s bilinear technique though its (111)-dimensional form~4! can be bilinearized both fo
the casesa52b anda5b. Some special types of dromion solutions of~3! driven by straight and
curved line solitons have been found also only for thea5b case.

In Sec. II, we use the usual CK direct method to obtain some two dimensional simi
solutions which can also be obtained by using the classical and/or nonclassical Lie grou
proaches. In Sec. III, the CK’s method is modified to obtain some conditional similarity reduc
of ~1!. Section IV is devoted to explain the nontriviality of the method by list some spe
solutions of the conditional similarity reductions. Though we have not yet given out a su
group explanation of the conditional similarity reductions, we can conclude that to give ou
conditional similarity reductions obtained in this paper, the usual nonclassical Lie group sym
approach should be modified. Section V is a short summary and discussion.

II. TWO-DIMENSIONAL SIMILARITY REDUCTIONS

As in the usual cases,4–6 we look for the similarity solutions of~2! in the form

v5a~x,y,t !1b~x,y,t !P~j~x,y,t !,h~x,y,t !![a1bP, j5j~x, y, t !,h5h~x, y, t !. ~5!

Substituting the ansatz~5! to the model equation~2!, we have

(
i 50

30

r i~a,ax ,b,bx ,jx ,jy ,hx ,hy , . . . !Fi~P,Pj ,Ph , . . . ![(
i 50

30

r iFi , ~6!

where$r i ,i 50,1,. . . ,30% and$Fi ,i 50,1,. . . ,30% are defined in the Appendix.
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In the usual CK’s direct method, one requires that the functionP satisfies only one reduction
equation. So~6! is a two-dimensional PDE ofP with respect to$j,h% only for all the ratios ofr i ,
i 50,1,. . . ,30being functions of$j,h%, that means

r i5r jG i , i 50,1,. . . ,30 ~7!

should be satisfied for some fixed nonzeror j andG i[G i(j,h) are functions ofj andh.
It is known that,4–6 to determine the possible nonequivalent similarity reductions from~6!, we

may use the following remarks:
Remark l: If a has the forma5bV(j,h)1a0(x,y,t), then we can takeV(j,h)[0 @by

substitutingP(j,h)→P(j,h)2V(j,h)#.
Remark 2:If b has the formb5b0(x,y,t)V(j,h), then we can takeV(j,h)[C5constant

@by substitutingP(j,h)→Pj (j,h)C/V(j,h)#.
Remark 3:If j5j(j0(x,y,t),h) @or h5h(j,h0(x,y,t))], then we can takej[j0 ~or h

[h0! @by substitutingP(j(j0 ,h),h)→P(j0 ,h), or P(j,h(j,h0))→P(j,h0)#.
Remark 4:If j(x,y,t) @or h(x,y,t)# has the formV(j)5j0(x,y,t) @or V(h)5h0(x,y,t)#,

where V is any invertible function, then we can takeV(j)[j @or V(h)[h# @by taking j
5V21(j) or h5V21(h)#.

The remained procedure to get the solutions of~36! is quite similar as in Refs. 4–6 for othe
physical models. So we list only the results here and omit the details of the derivation proc

~A! The first type of similarity solution of~1! has the form

v52
k2

8k1
x2

1

4
~2k1t1tk31k5!2 ~k31k1!/~2k11k3!~~2k1t1tk31k5!F1t1k1F1!y

1F21~2k1t1tk31k5!2k1 /~2k11k3!P~j,h!, ~8!

j5~2k1t1tk31k5!2k1 /~2k11k3!x2F1 , ~9!

h5
1

2k1
~2k1t1tk31k5!2k3 /~2k11k3!~2k1y2k2t1k4!, ~10!

whereF1[F1(t) andF2[F2(t) are arbitrary functions oft andk1 , . . . ,k5 are arbitrary constants
with the conditionsk1Þ0 andk3Þ2k1 . The corresponding reduction functionP5P(j,h) satis-
fies

Pjjjh1hk3Pjh14~PjPh!j1k1~jP!jj50. ~11!

It is easy to find that the similarity reduction equation~11! cannot pass the usual Painleve´ test for
PDEs due to Weiss, Tabor, and Carnevale~WTC!.13

~B! The reduction equation of the second type of similarity solution has the form

~k21hk3
2!

k3
Pjh14~PhPj!j1Pjjjh1

k2

4
50 ~12!

with

j5x2F1 , h52
k2

k3
2 ln~ tk31k1!1

1

tk31k1
y1

k4

~ tk31k1!
~13!

and the corresponding solution of the model~2! reads

v52
k2

4k3
ln~ tk31k1!x2

F1t

4
y1F21P~j,h!. ~14!
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k1 , k2 , andk3Þ0 in this reduction are arbitrary constants andF1 andF2 are arbitrary functions
of t. In this case, one can also prove that the reduction equation~12! has no Painleve´ property.

~C! The third reduction has the form

v52
k2t

4~2k1t1k3!
x2

~2k1t1k3!F1t1k1F1

4A2k1t1k3

y1F21
1

A2k1t1k3

P~j,h!, ~15!

with

j5
x

A2k1t1k3

2F1 , ~16!

h5
1

4k1
2 ~~k2k322k4k1!ln~2k1t1k3!14yk1

222k1k2t ! ~17!

and the functionP(j,h) satisfies the reduction equation

4~PjPh!j1Pjjjh1k4Pjh1k1~jP!jj1 1
4 k2k350, ~18!

wherek1Þ0, k2 , k3 , k4 are arbitrary constants andF1 andF2 are arbitrary functions oft. The
reduction equation~18! cannot pass the WTC Painleve´ test.

~D! The fourth reduction reads

v52
k2

8k1
x2

1

4k3
2 exp~k1k3

21t !~k3F1t1k1F1!y1F21exp~2k1k3
21t !P~j, h!, ~19!

j5exp~2k3
21k1t !x2F1k3

21 , ~20!

h5
1

2k1
~2yk12k2k1t1k4!exp~2k3

21k1t !, ~21!

k3
21k1~jP!jj14~PhPj!j1Pjjjh22k3

21k1hPjh50, ~22!

wherek1Þ0, k2 , k3Þ0, k4 are arbitrary constants andF1 andF2 are arbitrary functions oft. The
reduction equation~22! has no Painleve´ property.

~E! The fifth type of the similarity solution has the form

v5P~j, h!2
1

4k1
~F1ty1k2tx!1F2 , ~23!

j5~xk12F1!k1
21 , h5

1

2k1
~2yk12k2t222k4t !, ~24!

and the corresponding reduction equation for the functionP(j, h),

4~PjPh!j1Pjjjh1
k3

k1
Pjh1

k2

4k1
50 ~25!

is equivalent to the (111) dimensional integrable SSW equation~4! for a5b. k1Þ0, k2 , k3 are
constants andF1 andF2 are arbitrary functions of timet.
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~F! The sixth type of similarity solution reads

v52
k2

8k1
x1

1

4k1
F1ty1F21Ak2t22k1y1k3P~j, t !, ~26!

j5Ak2t22k1y1k3k1
21~xk11F1!, ~27!

with three arbitrary constantsk1 , k2 , andk3 and two arbitrary functions oft, F1 , andF2 . In this
case the related reduction equation

k1
21Pjt1~8jPj14P!Pjj18Pj

21jPjjjj14Pjjj50 ~28!

is also nonintegrable under the meaning that it has no Painleve´ property.
~G! The seventh type of similarity solution of~2! can be written as

v52
k1

4~k1t1k2!
xy1

1

8~k1t1k2!2 ~k1F12~k1t1k2!F1t!y
21yF21P~j, t !, ~29!

j5~~k1t1k2!x2F1y!~k1t1k2!21. ~30!

In this case the reduction functionp(j, t)[Pj(j, t) satisfies a variable coefficient celebra
Korteweg–de Vries~KdV! equation,

pjjj18ppj2
4F2~k1t1k2!

F1
pj1

k1

F1
~jp!j1

k1t1k2

F1
pt50, ~31!

wherek1 andk2 are arbitrary constants andF1 andF2 are arbitrary functions oft. Generally, the
variable coefficient KdV equation~31! is not integrable. However, in the following two speci
cases,~a! k150, and~b! F15k1t1k2 , both the case~a! and the case~b! can be changed to th
constant KdV equation,

Uj8j8j816UUj81Ut50. ~32!

For instance, for case~a!,

p5
3

4
U~j8, t!, j85j14E F2~h!dh, t5

1

k2
E F1~h!dh. ~33!

~H! The eighth type of the similarity solution simply has a form

v5P~y,t !2
xy

4t
1

k1x

t
~34!

with P(y,t) being an arbitrary function ofy and t.
~I! The ninth type of similarity solution reads

v52
1

4 S t

x
1F~ t ! D y1P~x,t ! ~35!

while the reduction functionP satisfies

Pxt1S x

t
1F~ t ! D Pxx1

1

t
Px50 ~36!

with an arbitrary functionF(t). The reduction equation~36! possesses the general solution
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P5F1~j1!1F2~ t !, j15
x

t
2E F~ t !

t
dt, ~37!

whereF1[F1(j1), F2[F2(t), andF(t) are arbitrary functions of the indicated variables.
~J! For the tenth type of similarity reduction, we have

v5 1
4 c1 ln~x1F~ t !!1 1

4 Ft~ t !y1F1~ t !1~x1F~ t !!P~y,t ! ~38!

and

Pt24PyP50. ~39!

The general solution of~39! is determined by

f ~P!1
y

4P
5t, ~40!

where f (P) is an arbitrary function ofP andF(t) andF1(t) are arbitrary functions oft.
In Ref. 9, Clarkson and Mansfield had written down the classical symmetries of the

equation ~3!. Using the symmetries offered by Clarkson and Mansfield, one may obtain
corresponding similarity reductions. For Eq.~2!, the related symmetry reads

X5c1x1 f 1~ t !, Y5c2t1c3y1c4 , T5~2c11c3!t1c5 ,

V52c1v1
1

4
y f1t~ t !1

c2

4
x1 f 2~ t ! ~41!

with arbitrary constantsc1 , c2 , . . . ,c5 and arbitrary functionsf 1(t) and f 2(t) that means~2! is
form invariant under the transformation

$x, y, t, v%→$x, y, t, v%1e$X, Y, T, V%, ~42!

with infinitesimal e. Using the standard Lie approach1 and subsymmetry algebras of the mod
@which can be obtained by the different selections of the constantsci , i 51,2,. . . ,5 andfunctions
f 1(t) and f 2(t)#, we can also obtain the first eight similarity reductions~A!–~H!.

By introducing a constrained condition,

X~x, y, t, v !vx1Y~x, y, t, v !vy1T~x, y, t, v !v t2V~x, y, t, v !50, ~43!

and considering the common symmetries of the system~2! and~43!, one may obtain the nonclas
sical similarity solutions. It is easy to find that the cases~A!–~H! can be reobtained by means
the nonclassical Lie group approach. The cases~I! and~J! can be obtained by the nonclassical L
approach but not the classical Lie approach. For the case~I!, the related$X, Y, T, V% of the
nonclassical symmetry reads

X5T50, Y51,V5
1

4 S t

x
1F~ t ! D , ~44!

while for the case~J! we have

Y5T50,X51,V5
c114~v2F1~ t !!2Ft~ t !y2c1 ln~x1F~ t !!

4~x1F~ t !!
. ~45!
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III. TWO-DIMENSIONAL CONDITIONAL SIMILARITY REDUCTIONS

Actually, to find out some special solutions of a model, it is not necessary to require th
reduction function satisfies one equation only. For instance, for the (211)-dimensional KdV type
equation~1!, using the same reduction ansatz~3!, we may first separate the resulting equation~4!
into several parts

(
j 51

m

(
i 50

N

Ai j Fi50, N>30 ~46!

with the condition

(
j 51

m

Ai j 5r i , i<30, (
j 51

m

Ai j 50, i .30, ~47!

whereFi for i .30 may be some suitable functions ofP and its partial differential derivatives with
respect toj andh. Then we require the reduction functionP(j,h) satisfiesm reduction equations

(
i 50

N

Ai j Fi50, j 51,2,. . . ,m. ~48!

Now it is sufficient to require that all the ratios ofAi j are functions of the$j,h% for the same j.
Without loss of generality we suppose that the ratios ofAi j for different j are not the functions of
$j,h% ~if the ratio ofAi j 1

andAi j 2
is a function of$j, h%, we can combine them into the same pa

of ~46!!.
To show the procedure in detail, we restrict to find some special conditional similarity

tions only for m52 because we have not yet found a possible way to obtain all the pos
conditional similarity reductions for a given model. Perhaps, it might be impossible to find o
the possible conditional similarity reductions because the separation procedure~46! with ~47! may
be quite free@one may selectAi j andFi( i .30) quite freely#.

Supposing that

r 052bjx
3jyÞ0, r 152bjx

2~hyjx13hxjy!Þ0, ~49!

we may look for the two-dimensional conditional similarity reductions in the forms

r 1Pjjjh1(
i 52

30

RiFi1 (
i 531

N

RiFi50, ~50!

r 0Pjjjj1(
i 52

30

~r i2Ri !Fi2 (
i 531

N

RiFi50, ~51!

by takingRi andFi , (i .30) appropriately. For simplicity, we fixFi50 for N.30 later.
Because of the assumption~49!, we can taker 0 andr 1 as the normalizing coefficients of th

first part and the second part, respectively. Requiring~50! and ~51! to be the partial differential
equations~PDEs! of P with respect to$j, h%, we have to solve the equations

Ri5r 1G i , i 52,3,. . . ,30 ~52!

and

r i2Ri5r 0V i~j, h!, i.e., r i5r 0V i1r 1G i , i 52,3,. . . ,30, ~53!

whereG i[G i(j,h) andV i[V i(j,h) are functions of$j,h%.
                                                                                                                



8293J. Math. Phys., Vol. 41, No. 12, December 2000 Similarity and conditional similarity reductions

                    
If we takeR3 as2bjxhx(jxhy13hxjy), then we have

2bjxhx~jxhy13hxjy!52bjx
2~jxhy13hxjy!G3 , ~54!

i.e.,

hx5jxG3 , h5E G3dj1h0~y, t !, ~55!

whereh0(y,t) is an integrating function. Using the remark 3 forh to ~55!, we have

h5h0~y,t !, G350, ~56!

and thenV350. Because of~56!, i.e., hx50, we can simply take

Ri5r i50, G i5V i50, for i 54,5,8,9,15,16,17,18,19,22. ~57!

Taking R1250, we have

G1250 ~58!

and

2b2jx
2jy52bjx

3jyV12, i.e., b5jxV12. ~59!

From ~59!, we may take

V1251, b5jx ~60!

without loss of the generality due to the remark 2. Now using the results~56! and~60! to r 11 and
r 21, we know thatR11 andR21 and thenG11, G21, V11 andV21 can be fixed as

R115r 11, R2150, V115G2150, G115V2154. ~61!

Substituting~56! and ~60! into ~A20! yields r 20524jx
2jxxhy . TakingR205r 20, we obtain

V2050 ~62!

and

4jxx5jx
2G20. ~63!

The general solution of~63! reads

E e2
1
4 *G20djdj5u~y,t !x1s~y,t !. ~64!

Now using remark~3! for j, we get immediately

j5u~y,t !x1s~y,t !, G2050. ~65!

From ~60! and ~65!, we know thatbx5jxx50. So we can take

Ri5r i50, G i5V i50, for i 510,24,25,27. ~66!

Because of the results~60! and ~65!, r 28 becomesr 28528u3uy . So we takeR285r 28 such that

V2850, ~67!
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and

28u3uy52u4hyG28~h!. ~68!

In ~68!, we takeG28(h)[G28 is only a function ofh because the left-hand side of~68! is x
independent. The general solution of~68! has the form

b5u5u0~ t !e~1/8! *G28dh. ~69!

Using remark~2!, we have

b5jx5u5u0~ t !, G2850 ~70!

that meansb5jx5u is only a function oft. Using this fact to the remainedr i , we may select

Ri5r i50, G i5V i50, for i 56,7, 13, 30. ~71!

Taking R235r 23 leads to

V2350,24axhy1h t524bjxhyG23. ~72!

The general solution of the second equation of~72! is

a5
h t

4hy
x1a01bE G23dj, ~73!

wherea0[a0(y,t) is an integration function. Using the remark 1 to~73! yields

G2350, a5
h t

4hy
x1a0 ~74!

and then

R265r 2650, G265V2650. ~75!

Now the remained undetermined equations in~53! are only fori 52,14, and 29,

2
1

4

h t

hy
S h t

hy
D

y

1S h t

4hy
D

t

52u4~syV21hyG2!, ~76!

u2S u tx1s t2sy

h t

hy
2uS S h t

hy
D

y

x14a0yD D 52u4~syV141hyG14!, ~77!

2u2S h t

hy
D

y

12uu t52u4~syV291hyG29!, ~78!

while the corresponding conditional similarity reduction equations read

Pjjjh14~PhPj!j1G14Pjj1G29Pj1G250, ~79!

Pjjjj14~Pj
2!j1V14Pjj1V29Pj1V250, ~80!

and the conditional similarity solution of~2! becomes
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v5
h t

4hy
x1a01bP~j,h!, j5ux1s. ~81!

Using the remarks and the relations$hx5ux5a0x5sx50, jy5sy% to solve Eqs.~76!–~78!, we
may obtain the following possible nonequivalent conditional similarity reductions:

Case (i):

G145c1j, V145B~h!, V25V2950, G295c121, G25c02 1
2 ~11c1!h, ~82!

u5c2t21/~31c1!, ~83!

h52c2
22 1

31c1
t2 ~11c1!/~31c1!y1c6t2/~31c1!1c5t2 ~11c1!/~31c1!12

c0

11c1
, ~84!

a05
1

4 E S 1

hyu
s1t1uA1~h!s11us1hA2~h!s11us1hBDdh1 f ~ t ! ~85!

with s5s(y,t)[s1(h,t), f (t) andB[B(h) being arbitrary functions of the indicated variabl
andci , i 50,1,. . . ,6 being arbitrary constants.

Case (ii):

G14523j, V145B, V25V2950, G29524, G25c01h, ~86!

h5c2 exp~22c2t !y1h0 , ~87!

u5exp~c2t !, h052c01exp~22c2t !~c41c5t !, ~88!

wheres5s(y,t)[s1(h,t) and B[B(h) are arbitrary functions of the indicated variables a
ci , i 50,1,. . . , 5 arearbitrary constants. The functiona0 is also given by~85! but the functionsu
andh are given by~87! and~88! but not by~83! and~84!. In all the other cases~iii !–~vi!, a0 are
all given by ~85! but with differenth, s andu and the fact will not be repeated later.

Case (iii):

G145c1j, V145B~h!, V25c3 , V2950, G295c121, G250, ~89!

u5c2t21/~31c1!, h5
2c2

22

31c1
t ~212c1!/~31c1!y1h0 , ~90!

s51
1

4c2
2c3

t2/~31c1!~~31c1!th0tt12~11c1!h0t!y

2
11c1

4c2
4c3~31c1!2 t22~11c1!/~31c1!y21j0 , ~91!

wherej0 andh0 are arbitrary functions oft, B is an arbitrary function ofh andc1 , c2 andc3 are
arbitrary constants.

Case (iv):

G14523j, V145B, V25c3 , V2950, G29524, G250, ~92!

u5exp~c2t !, h5c2 exp~22c2t !y1h0 , ~93!
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s5
c2

2

2c3
exp~24c2t !y22

1

4c3c2
exp~2c2t !2~4c2h0t1h0tt!y2j0 , ~94!

wherej0 andh0 are arbitrary functions oft, B is a function ofh andc1 , c2 , andc3 are constants.
Case (v):

G145j, V145c1j1B, V25c4h1c5 ,V295c1 , G2950, G25c2h1c3 . ~95!

In this case, the functionsh ands are given by

h5u23u ty1h0 , ~96!

s5S u tt

u2u tc1
2

5u t

c1u3D y1j0 ~97!

with two arbitrary functionsB(h), j0(t) while the undetermined functionsu andh0 in ~96! and
~97! are given by

2 1
2 c1u2u tt

2 1~ 3
4 c11c4!uu t

2u tt1
1
4 u tc1u2u ttt1~c1c22 3

2 c125c4!u t
450, ~98!

and

~4u tuu ttc4220u t
3c414u t

3c1c2!h0u2u tc1h0tt

1~6c1uu t
222c1u2u tt!h0t220u t

3c514u t
3c1c314uu tu ttc550, ~99!

respectively. Though we have not yet given out the general solutions of~98! and~99! because of
its high nonlinearity, some special types of them can be obtained easily. Here are three
examples:

Case (v.1):

u5c6t ~2c41c1!/2(2c11c1c224c4), ~100!

h05c7t ~2c41c1!/~c12c1c214c4!1c8t ~2c42c1c2!/~c1c224c42c1!

1
2c3c122c3c412c512c2c5

c1c222c4
, ~101!

wherec6–c8 are arbitrary integral constants.
Case (v.2):

h05~c61c7t !exp~22c8t !2c31
4

c1
c5 , u5exp~c8t !, ~102!

with three further arbitrary constantsc6 , c7 , andc8 .
Case (v.3):If c4 andc2 in ~95! are fixed asc452 3

4c1 andc252 9
4, then we have

h05
4c5

3c1
ln~ t !32

2

c1
~23c51c3c1!ln~ t !21

4

c1
~23c51c3c1!ln~ t !1

c71c8t

t ln~ t !3 , ~103!

u5c6 ln~ t !, ~104!

wherec6–c8 are arbitrary constants.
                                                                                                                



:
educ-
g a

milar-

itional
onve-

8297J. Math. Phys., Vol. 41, No. 12, December 2000 Similarity and conditional similarity reductions

                    
Case (vi):

G145c3j, V145~c11c2!j1B, V25c7h1c8 , V295c1 , G295c2 , G25c5h1c6 ,
~105!

h52
1

u1
u~2c11c2!/c1y1h0 , u1[c3E u~4c11c2!/c1dt2c4 , ~106!

s5
u t

c1u3 y1j0 , ~107!

whereB5B(h) andj05j0(t) are arbitrary functions andci , i 51, 2, . . . ,8 arearbitrary constants
while u andh0 satisfy the integral-differential equations,

2u1
2~2c11c2!~3c11c2!u t

22c1u1u~5c11c2!/c1~24c71c2c3!u t

1c1uu1
2~2c11c2!u tt14c1

2c5u~10c112c2 !/c150, ~108!

~2u2 ~c11c2!/c1u1
2~2c11c2!h0t24u3~h0c71c8!u1!u t12c1c3u4u1h0t

2c1u2 ~c2 /c1!u1
2h0tt24c1u~8c11c2! /c1~c5h01c6!50. ~109!

To get the general solutions of integral-differential equations~108! and~109! is very difficult. We
write down only a special case forc2524c1 . In this special case, the functionsu andh0 and then
h, s read

u5c9~c3t2c4!2 ~1/4c3c1!(c3c112c72c6), c6[6A~c3c112c7!2116c1
2c5, ~110!

h051c10~c3t2c4!2 ~1/2c3c1!(22c71c61c3c1)1c11~c3t2c4!~1/2c3c1!(c3c112c72c6)

2
~4c1

2c61c8~c3c112c72c6!!

4c1
2c51c7~c3c112c72c6!

, ~111!

h52~c3t2c4!2 ~1/4c3c1
2
!(c1c3(6c11c2)1(2c11c2)(2c72c6))y1h0 , ~112!

s52
c3c112c72c6

4c1
2 ~c3t2c4!~1/2c3c1!(2c3c112c72c6)y1j0 , ~113!

wherej0 andh0 are arbitrary functions oft andB2 is an arbitrary function ofh, andc9 , c10, c11

are arbitrary constants.

IV. ON THE NONTRIVIALITY OF THE CONDITIONAL SIMILARITY REDUCTIONS

For the conditional similarity reductions, two important questions should be answered~1!
Whether the conditional similarity reductions are the special cases of the usual similarity r
tions? In other words, two~or more! reduction equations should not be obtained by separatin
usual similarity reduction equation to two~or more! parts. ~2! Are there any solutions of the
conditional similarity reduction equations? That means the solution set of the conditional si
ity reductions is nonempty.

To answer the first question is quite easy and the answer is positive: Generally, the cond
similarity reductions are not the special cases of the usual similarity solutions. It is more c
nient to see this point from the first two conditional similarity reductions~82!–~85! and~86!–~88!.
The similarity variablej in these two cases allows an arbitrary function,s, of two independent
variablesy andt. However, in the usual similarity reductions of~1! ~see cases~A!–~J! in Sec. II!,
only some types of arbitrary functions withone independent variablet are allowed.
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More strictly, because we have selectedr 0 andr 1 as the normalized coefficients, for a give
conditional similarity reduction, we may check whether the ratior 0 /r 1 is a function ofj andh. If
r 0 /r 1 is really a function ofj andh then the conditional similarity reduction is only a special ca
of the usual similarity reduction. One can combine two reduction equations to one redu
equation. Ifr 0 /r 1 is not a function ofj andh then the conditional similarity reduction cannot b
a special case of the usual similarity reduction. It is impossible to combine two condit
similarity reduction equations to one reduction equation ifr 0 /r 1 is not a function ofj andh.

The conditional similarity reductions obtained in this paper are all not the special cases
usual similarity reductions except for some special selections of the arbitrary functions. Fro
concrete reductions listed in the last section, one can easily see thatr 0 /r 1 for all cases are not the
function of thej andh generally. For instance, for the first type of conditional similarity reduct
~83!, ~84!, and~85!, we have

r 0

r 1
5

jy

hy
5~31c1!c2

2syt
~11c1!/~31c1!. ~114!

From ~114! we know that the first type of conditional similarity reduction is not equivalent t
special case of the usual similarity reduction for generals. Only when the functions is fixed as

s5
1

~31c1!c2
2 t2 ~11c1!/~31c1!E V~h!dy1j0~ t !5E V~h!dh1j0~ t !, ~115!

whereV(h) andj0(t) are arbitrary functions ofh andt, respectively, the first type of conditiona
similarity becomes a special case of the usual similarity reduction.

To answer the second question, we have to find some special solutions of the cond
similarity reduction equations. Because of the nonintegrability of the model, it is very difficu
give out some common solutions of two reduction equation system. Here we list only some s
rational~or power! solutions for the variablej. From the conditional similarity reductions~i!–~vi!
of the last section, we can see that~79! and ~80! can be simplified further to

Pjjh14PjPh1g14~jPj2P!1g29P1~g21h1g20!j1 f 1~h!50, ~116!

Pjjj14Pj
21v14~jPj2P!1B~h!Pj1v29P1~v21h1v20!j1 f 0~h!50, ~117!

whereg14, g29, g21, g20, v14, v29, v21, v20 are constants andf 1(h) and f 0(h) are arbitrary
functions ofh.

Using the WTC approach, we can prove that the equation system~116! and ~117! has no
Painlevéproperty. Because of the non-Painleve´ integrability of the model it is very difficult to find
some significant exact solution of the conditional reduction system~116! and~117!. However, to
show the nonempty property of the solution set of the system~116! and ~117! for some special
selections of the constants and functions is still possible. Here we list some special solutions
system~116! and ~117! from some special selections of constants and functions.

~a! If the constantsg20 andg21 satisfy the conditions

g215
v21

v29
2 ~24v211g29v29!, g205

v20

v29
2 ~24v211g29v29!, ~118!

with v29Þ0, then the equation system~116! and ~117! have a solution

P52
v21h1v20

v29
j1B1~h! ~119!

for arbitraryB1(h).
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~b! In the special case for

v295v215v2050, ~120!

a special solution has the form

P5A~h!j1B1~h! ~121!

with A(h) being determined by

Ag29
2 216g21

2g29

lnS 4A~h!21S h1
g20

g21
D 2

g211S h1
g20

g21
D g29A~h!D 1C1

52arctanh
8g21A~h!1~g21h1g20!g29

~g21h1g20!Ag29
2 216g21

, ~122!

for g29Þ0 and

A~h!25C12
g21

4
h22

g20

2
h ~123!

for g2950, C1 being arbitrary constant andB1(h) being arbitrary function ofh.
~c! The third special solution

P52
1

16
~v141v29!j

22S g291g14

8
h1

c1v291c1v1428v20

8v14
D j1

g14
2 2g29

2 116g21

v141v29
h2

1
2~v141v29!~g142g29!c1132g20v14116g29v20216v20g14

16v14~v141v29!
h1c2 , ~124!

is valid for

B~h!5
~v14~g141g29!18v21!h1c1~v141v29!

v141v29
, ~125!

wherec1 andc2 are arbitrary constants.
~d! Under the conditions,

B~h!5
8~v21h1v20!

v29
, v1450,v29Þ0, ~126!

we have a special solution in the form

P52
1

16
v29j

22S 1

8
~g291g14!h2c1D j1

1

16v29
~h2~g14

2 116g212g29
2 !

116~c1g2912g202c1g14!h!1c2 ~127!

with arbitrary constantsc1 andc2 .
~e! The fifth type of special solution

P52
B1~h!j2~v21h1v20!2~A1~h!j1A0~h!!v29

v29~B1~h!j1B2~h!!
~128!

with
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B2~h!522
B1~h!

v29
2 ~2B~h!v2918v21h18v20!, ~129!

A1~h!5
A3~h!B1~h!22v29

5 A0~h!

4v29
3 ~8v21h18v202B~h!v29!

, ~130!

A3~h!58v29
2 ~v201v21h!B~h!22128v29~v201v21h!2B~h!13v29

5 1512~v201v21h!3,

A0~h!5
b~h!B1~h!

g29
5 E A2~h!dh1C1b~h!B1~h!, ~131!

A2~h!5S 2v29~2g142g29!h2
3v29

5

b~h!2 18v20Dbh~h!12v29~g292g14!b~h!,

where

b~h!5~B~h!24hg1412hg29!v2928v20, ~132!

is valid for

v145
1

2
v29, v29Þ0, g215

v21

v29
2 ~24v211g29v29!,

g205
v20

v29
2 ~24v211g29v29!, v215

1

4
~2g142g29!v29. ~133!

~f! In the case of

g2952g14, g215g205v205v2150, 2v145v29, ~134!

a related special solution has the form

P5
A1~h!j1A0~h!

B1~h!j1B2~h!
, ~135!

with

A0~h!5
3B1~h!v2914A1~h!B~h!

2v29
, ~136!

B2~h!52
B~h!B1~h!

v29
, B1~h!5

2A1~h!v29

g14*B~h!dh12C1v29
, ~137!

for arbitraryA1(h).

V. SUMMARY AND DISCUSSIONS

In summary, for the (211)-dimensional KdV equation~1!, in addition to the ten types o
usual similarity solutions which can be obtained by the CK’s direct method~and/or the usual
classical and nonclassical Lie group approach!, there exist many other types of similarity redu
tions we called them as the conditionally similarity reductions. The conditionally similarity re
tions can be obtained also by the CK’s direct method with a suitable modification. Eight typ
special conditional similarity reductions are obtained in this paper.
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Because of the non-Painleve´ integrability ~without Painleve´ property! of the original model
~4!, most of the similarity reductions are also non-Painleve´ integrable. The usual SSW equatio
and the variable~and the constant! KdV equation are two special cases of the usual simila
reductions~E! and ~G! @Eqs.~25! and ~31!#.

Generally, the conditional similarity reductions are not the special cases of the usual sim
solutions. Only when the arbitrary functions and constants are fixed as some cases, the con
similarity reductions may be reduced to some special solutions of the usual similarity solu
For instance, when the functions of the first type of conditional similarity reduction~83!, ~84!,
and~85! is fixed as in~115!, the first type of conditional similarity reduction may be considered
a special case of the usual similarity reduction.

The existence of the six types of special solutions with some special selections of the
stants and functions of the conditional similarity reduction equations shows us the nontrivia
the conditional similarity reduction approach.

To close this paper, we should point out that the conditional similarity reductions obta
here cannot be obtained by using the classical Lie group approach in its present form beca
reduction equation of the conditional similarity reductions is valid only when some other redu
equations are satisfied at the same time. Because the number of the reduction equations
than one, the traditional nonclassical method2 should also be modified. In the usual nonclassi
Lie group approach, one also introduces a conditional equation in the form

Xvx1Yvy1Tv t2V50, ~138!

where$X, Y, T, W% are all functions of$x, y, t%. However, the introduced equation~138! in the
usual nonclassical Lie group approach do not introduce a nontrivial conditional reduction eq
for the final reduction fieldP.

In order to introducing an additional similarity reduction equation by using an exten
nonclassical Lie group approach, we should introduce a suitable conditional equation

G~X,Y,T,V,x,y,t,v,vx ,vxx ,vy , . . . !50 ~139!

such that the introduced equation may offer an additional reduction equation. However, we
not yet found an appropriate method to find the concrete forms of~139! for the conditional
similarity reductions of~2! listed in Sec. III.

How to extend the group theory, and how to introduce the constraint equation~s! in the
nonclassical Lie group approach to get conditional similarity reductions discussed in this
are worthy of further study.
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APPENDIX: DEFINITIONS OF ˆr j , Fj‰

In this appendix, we write down the definitions of$r j , F j% in Eq. ~4!,

r 052bjx
3jy , F05Pjjjj , ~A1!

r 152bjx
2~hyjx13hxjy!, F15Pjjjh , ~A2!

r 2524~ayax!x2axxxy1axt , F251, ~A3!

r 3523hxbjx~hyjx1hxjy!, F35Pjjhh , ~A4!
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r 452hx
2b~3hyjx1hxjy!, F45Pjhhh , ~A5!

r 552bhx
3hy , F55Phhhh , ~A6!

r 652jx~byjx
213b~jxjy!x13jxjybx!, F65Pjjj , ~A7!

r 7523jx
2~byhx1bxhy!26~bjy!xhxjx23b~~jxhx!xjy1jx~jxhy!x!, F75Pjjh , ~A8!

r 8526jxhx~bhy!x23hx
2~byjx1bxjy!23b~~hxjx!xhy1hx~hxjy!x!, F85Pjhh , ~A9!

r 952hx~byhx
213hxhybx13hxhxyb13hyhxxb!, F95Phhh , ~A10!

r 10524~bybx!x , F105P2, ~A11!

r 11524b2jx~hyjx1hxjy!, F115PhPjj , ~A12!

r 1252jyjx
2b2, F1258PjjPj , ~A13!

r 13524bjx~byjx1jybx!, F135PjjP, ~A14!

r 145~bj tjx26bxjxjxy23bjxjxxy23jxx~bjx!y24baxjxjy

23jy~bxjx!x24aybjx
22bjxxxjy23bxyjx

2!, F145Pjj , ~A15!

r 1552hx
2hyb

2, F1558PhPhh , ~A16!

r 16524hxb
2~hxjy1hyjx!, F165PjPhh , ~A17!

r 17524bhx~byhx1hybx!, F175PhhP, ~A18!

r 185~bh thx23~bhx!yhxx24aybhx
224baxhxhy23bxyhx

223bhxhxxy

2bhxxxhy26bxhxhxy23hy~bxhx!x!, F185Phh , ~A19!

r 19524b~hy~bhxx12bxhx!1hx~~bhy!x1byhx!!, F195Ph
2, ~A20!

r 20524b~2byjxhx1bxjyhx1bxhyjx!, F205PjhP, ~A21!

r 21524b2jx~hyjx13hxjy!, F215PjPjh , ~A22!

r 22524hxb
2~hxjy13hyjx!, F225PhPjh , ~A23!

r 235~2~6bxy18ayb!hx2~4bax13bxx!hy1bh t23~hxxb!y26hxybx!jx

1~2~4bax13bxx!hx2bhxxx23hxxbx!jy2~6jxybx13~jxxb!y2bj t!hx

2~3jxxbx1bjxxx!hy23b~jxyhxx1jxxhxy!, F235Pjh , ~A24!

r 24524~~byhxx1bxxhy!1~bxhx!y!b24bx
2hy212hxbybx , F245PhP, ~A25!

r 25524b~~hxjx!yb13~hyjx1hxjy!bx12byjxhx!1~hxxjy1jxxhy!b, F255PhPj ,
~A26!

r 265~24~bax!yhx2ax~bhy!x!24~aybhxx1baxxhy12aybxhx!1~bt23bxxy!hx

2bxxxhy2bhxxxy23~bxhxx!y23bxxhxy2byhxxx1~bh t!x , F265Ph , ~A27!
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r 2754~2bx
2jy2bybxjx2b~bxjx!y!24~bybjxx1bbxxjy12bybxjx!, F275PjP, ~A28!

r 28524b~~~bjx!y1jybx!jx1~bjxx12jxbx!jy!, F285Pj
2, ~A29!

r 2954~2ax~bjy!x2~bax!yjx!24~aybjxx12aybxjx1baxxjy!2byjxxx23~bxjxx!y

1btjx2bxxxjy23~bxxjx!y1bxj t1b~j t2jxxy!x , F295Pj , ~A30!

r 30524~axbx!y24~byaxx1aybxx!2~bxxy2bt!x , F305P. ~A31!
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Golden mean renormalization for the Harper equation:
The strong coupling fixed point
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We construct a renormalization fixed point corresponding to the strong coupling
limit of the golden mean Harper equation. We give an analytic expression for this
fixed point, establish its existence and uniqueness, and verify properties previously
seen only in numerical calculations. The spectrum of the linearization of the renor-
malization operator at this fixed point is also explicitly determined. This strong
coupling fixed point also helps describe the onset of a strange nonchaotic attractor
in quasiperiodically forced systems. ©2000 American Institute of Physics.
@S0022-2488~00!01501-8#

I. INTRODUCTION

The finite difference eigenvalue equation known as the Harper equation~also known as the
almost Mathieu equation!:

c i 111c i 2112l cos~2p~ iv1f!!c i5Ec i ~I.1!

is important in the study of the localization transition in incommensurate systems.~For a review
see Ref. 1.! HereE is the eigenvalue corresponding to eigenfunctionc i , which is defined on the
one-dimensional integer lattice with sites labeled byi PZ.

In this paper we study the self-similar fluctuations of the exponentially localized eigensta
this equation occurring when the interaction parameterl.1. The exponential decay of the wav
function c i leads us to write

c i5e2gu i uh i , ~I.2!

whereg5 logl ~the Lyapunov exponent!.2 The fluctuations may thus be analyzed by consider
the evolution ofh i . For i .0 the Harper equation now reduces to

l21h i 111lh i 2112l cos~2p~ iv1f!!h i5Eh i . ~I.3!

We shall be exclusively concerned here with the golden mean casev5(A521)/2, which satisfies
v21v51.

According to the work of Ketoja and Satija,3 if the phasef is chosen so that the wave functio
has its peak ati 50, so that the fluctuations are bounded, the entire localized phase ma
characterized by a single universalstrong coupling fixed pointof the renormalization operato
associated with the recursion

a!Electronic mail: b.d.mestel@exeter.ac.uk
b!Electronic mail: a.h.osbaldestin@lboro.ac.uk
83040022-2488/2000/41(12)/8304/27/$17.00 © 2000 American Institute of Physics
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tn11~x!5tn~2vx!tn21~v2x1v!. ~I.4!

In this paper we determine a fixed point of this recursion and thereby rigorously establis
results numerically obtained in Ref. 3.

The outline of this paper is as follows. In Sec. II we review the work of Ketoja and Sa
focusing on a derivation of~I.4!. After establishing some notation in Sec. III, in Sec. IV w
formulate our main results, which we begin to prove in Sec. VI, having established some pr
nary results in Sec. V. We shall prove that the recursion~I.4! has a real analytic, entire fixed poin
unique up to a choice of ‘‘universality class.’’ We shall give an expression for this fixed point
determine some of its analytic properties, thereby confirming the numerical observations re
by Ketoja and Satija in Refs. 3 and 4. In Sec. VII we solve an associated eigenvalue pro
which in turn we use in Secs. VIII and IX to completely determine the spectrum of the deriv
of the renormalization operator at the fixed point. In Sec. X we point out a connection betwe
functional equations studied here and the classical Schro¨der and Abel functional equations.

There is subtle dependence of the universal characteristic functions on the phasef in ~I.1!.
We shall say little about how this affects the renormalization in this paper, confining our atte
to a few specifically chosen simple cases. We hope to be able to elaborate on this matt
forthcoming publication. We also remark that it is not yet completely clear how the re
generalize to other incommensurities.

Our work here will also shed some light on the problem of the onset of a strange nonc
attractor, in which an identical renormalization scheme determines critical behavior.5 In this set-
ting, the dependence on~the equivalent of! the phasef leads to a multifractal nature of the strang
nonchaotic attractor.

II. GOLDEN MEAN RENORMALIZATION THEORY FOR THE HARPER EQUATION

In this section we briefly review the renormalization/decimation approach of Ketoja
Satija,3 who show how a fixed point of the recursion~I.4! helps to explain the universality of th
supercritical localized regime of the golden mean Harper equation. Note that in Ref. 3 the ite
occurs in the form

t̃ n11~x!52 t̃ n~2vx! t̃ n21~v2x1v!, ~II.1!

but the substitutiont̃ n52tn renders it equivalent to~I.4!.
Remarkably, Kuznetsovet al.5 derive this same equation,~I.4!, in their analysis of the birth of

a strange nonchaotic attractor. In Ref. 4 these two seemingly distinct scenarios are linke
indeed an analogy with the critical dissipative standard map is also drawn.

In the decimation scheme of Ketoja and Satija~first introduced in Ref. 6! we consider only
sites with index a Fibonacci numberFn , where we defineF050, F151, andFn5Fn211Fn22

for n.1. This results in adecimationof the tight-binding model~I.3! of the form

sn~ i !h i 1Fn11
5h i 1Fn

1tn~ i !h i , ~II.2!

where, simply by using the defining property of the Fibonacci numbers, the functionstn andsn

may be seen to obey the explicit recursions

tn11~ i !5
2tn~ i !~ tn21~ i 1Fn!1sn21~ i 1Fn!tn~ i 1Fn!!

11sn~ i !~ tn21~ i 1Fn!1sn21~ i 1Fn!tn~ i 1Fn!!
, ~II.3!

sn11~ i !5
sn21~ i 1Fn!sn~ i 1Fn!

11sn~ i !~ tn21~ i 1Fn!1sn21~ i 1Fn!tn~ i 1Fn!!
~II.4!

for n.1. The initial conditions for these recursions are
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t1~ i !50, ~II.5!

s1~ i !51, ~II.6!

t2~ i !52~E/l22 cos~2p~~ i 11!v1f!!!21, ~II.7!

s2~ i !5l22~E/l22 cos~2p~~ i 11!v1f!!!21, ~II.8!

given by Eq.~II.2! with n51 and n52, respectively, referring to the original version of th
tight-binding model~I.3!. ~In their earlier work,7 Ketoja and Satija develop a general decimati
scheme for arbitrary irrationalv based on Farey paths.!

Under repeated iteration it is found thatsn→0, and so asymptotically~in n! we may ignoresn

and are left with the single recursion

tn11~ i !52tn~ i !tn21~ i 1Fn!. ~II.9!

We need to be careful, however, with regard to the initial conditions for this recursion. Looki
Eq. ~II.3! and assuming that we havesn50 for n.1 andt150, leads us to write

t3~ i !52t2~ i !t2~ i 1F2!, ~II.10!

wheret2 is given by~II.7!. Givent2 , we thus begin by definingt3 in this manner and then use Eq
~II.9! for n.3.

Henceforth, we shall consider these limiting equations at the ‘‘upper band edge,’’ at w
lim E/l512, and we shall also take the phasef50. ~The lower band edge where limE/l
522 can be treated similarly. In that case we setf51/2. A period-three orbit results rather tha
a fixed point.! For other choices of the phasef the analysis is far from complete. We hope to
able to investigate the resulting periodic orbits that arise for certain other choices off in a
forthcoming publication.~Some preliminary findings concerning this subtle dependence on
phase were also discussed in the context of strange nonchaotic attractors in Ref. 5.!

To analyze the scaling we now replace the discrete lattice indexi by the continuous variable
x5(2v)2n$ iv% where $•% denotes fractional part. Care must be taken when doing this as
definition of x depends on the indexn of the function. The result is that our recursion becom

tn11~x!52tn~2vx!tn21~v2x1v! ~II.11!

for n.2, with initial conditions

t2~x!52~2~12cos~2p~v2x1v!!!!21, ~II.12!

t3~x!52t2~2vx!t2~2vx21!. ~II.13!

We have thus derived the recursion~II.1!, or equivalently~I.4!. However, we shall not be con
cerned directly with the iteration itself starting with initial conditions arising from~I.3!. Rather we
seek the fixed point to which the starting conditions converge.

Note that a fixed point of~I.4! is a solution to

t~x!5t~2vx!t~v2x1v!, ~II.14!

and we remark that ift(x) is a fixed point then so, too, ist(x)a for any real numbera, so it is not
immediately clear how we should normalize this equation. Normalization corresponds to sel
the ‘‘correct’’ universality class, and for this reason it is important to pay attention to the in
conditions. We observe thatt2 has a pole of order two atx51, and that this singularity is
preserved~and indeed propagated! by the recursion. Thus we shall look for a solution to~II.14!
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with a pole of order two atx51. In fact we shall show that there exists a fixed point with a p
~or zero! of any order, i.e., there are many universality classes parametrized by the nature
singularity atx51.

It what follows it will at times be convenient to express the second-order recursion~I.4! as a
first-order recursion of pairs of functions. This is achieved~as in Ref. 3! by writing the original
iteration ~I.4! as an iteration for a pair of functions (tn21(2vx),tn(x))5(u(x),t(x)), say,
thereby defining the renormalization operator

R:~u~x!,t~x!!°~ t~2vx!,t~2vx!u~2vx21!!. ~II.15!

In our analysis we will also have recourse to an additive version of this operator

~U~x!,T~x!!°~T~2vx!,T~2vx!1U~2vx21!!. ~II.16!

III. ITERATED FUNCTION SYSTEM AND THE FUNDAMENTAL INTERVAL

Let

f1~z!52vz, f2~z!5v2z1v, ~III.1!

where v5(A521)/2 is the golden mean which satisfiesv21v51. Then we may write Eq.
~II.14! in the form

t~z!5t~f1~z!!t~f2~z!!. ~III.2!

Associated with this equation is an iterated function system~IFS! on C given by the two
contractionsf1 , f2 satisfying the following properties.

~1! f1 andf2 are linear contractions onC with fixed points 0 and 1, respectively, and wi
f18(z)52v andf28(z)5v2.

~2! The intervalI 5@2v,1# is the fixed point set for the IFS. Indeed

f1~@2v,1# !5@2v,v2#, f2~@2v,1# !5@v2,1#, ~III.3!

so that

f1~ I !øf2~ I !5I . ~III.4!

We shall refer toI as thefundamental interval.
~3! The fundamental intervalI is the attractor for the IFS. Indeed given any compact sub

K#C and any open neighborhoodU of I in C, there existsNPN such that for anyk>N and any
choicei 1 , . . . ,i kP$1,2% we have

f i 1
+¯+f i k

~z!PU ~III.5!

for any zPK.
~4! For any open neighborhoodU of I in C there is a neighborhoodV#U of I in C with

f1(V)#V, f2(V)#V.
For notational convenience we shall assume in what follows that all sums and product

a finite sequencei 1 , . . . ,i k of indices are assumed to be over an unrestricted choice from th
$1,2% unless otherwise indicated. We shall also often just writeS i j for the sum of the indices, the
range ofj being clear from context.

IV. STATEMENT OF MAIN RESULTS

In this section we state our main results, which put the numerical results of Ketoja and
in Refs. 3 and 4 on a firm basis. Proofs are given in later sections.
                                                                                                                



tion

the

-

8308 J. Math. Phys., Vol. 41, No. 12, December 2000 Mestel, Osbaldestin, and Winn

                    
First we have the following existence and uniqueness result.
Theorem 1: Let nPN be given. Then there exists a unique, real analytic, entire func

t:C→C satisfying the fixed point equation

t~z!5t~f1~z!!t~f2~z!! ~IV.1!

with
(1) t(1)50,
(2) t( j )(1)50 for j 51,...,n21, t (n)(1)Þ0, so that t has a zero of order n at z51, and
(3) t(z).0 for zP(2v21,1).

Moreover

t~z!5t* ~z!n, ~IV.2!

where t* is the entire function given by

t* ~z!5
12z

12v )
k51

`

)
i 1 ,...,i k
i 151

12f i 1
+¯+f i k

~z!

12f i 1
+¯+f i k

~v!
. ~IV.3!

The functiont* in Theorem 1 is plotted in Fig. 1. Some of its properties are given in
following theorem.

Theorem 2: The function t* in Theorem 1 satisfies:
(1) the zeros of t* are the points1 and f i k

21+¯+f i 1
21(1), where k>1, i 151, andi 2 , . . . ,i k

P$1,2% (we note that2v21 is of this form);
(2) t* (v)51, t* (2v)5v22, t* (v2)5v21;
(3) t* has a unique maximum at zc on (2v21,1) with zcP(2v,0).
In Sec. VIII we define a Banach spaceF on which the derivative of the operatorR ~II.15!

acts, and prove the following theorem.
Theorem 3: Let nPN and let t be the solution of (IV.1) given by Theorem 1. Let u(z)5

t(2vz). Then
(1) The derivative ofR at (u,t), L5dR(u,t) , is a compact operator on F.
(2) The spectrum of L consists of0 together with eigenvalues

l56v2n,6v2(n21),...,6v21,21,6v,6v2,... . ~IV.4!

Each of these eigenvalues is simple except forv21 which is a double eigenvalue with a one
dimensional eigenspace and further one-dimensional generalized eigenspace.

FIG. 1. The functiont* .
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Remark: The universal scaling ratiout(0)u, numerically calculated in Ref. 3 to b
0.172 586 410 945~with error bound one in the last digit!, is just t* (0)22. Indeed the universa
function t(x) ~Fig. 1 in Ref. 4! is just 2t* (x)22.

The spectrum given by Theorem 3 whenn52 is in accord with that studied by Ketoja an
Satija in Ref. 3. A similar spectrum is also noted by Ostlund and Pandit in their analysis o
critical golden mean Harper equation.8

To prove Theorem 1 we shall consider an additive version of the fixed point equation:

T~z!5T~f1~z!!1T~f2~z!!. ~IV.5!

Our proof involves first obtaining a fixed point of the linear operatorR given by

R~ f !~z!5 f ~f1~z!!1 f ~f2~z!!2 f ~f1~v!!2 f ~f2~v!!. ~IV.6!

We observe that a fixed pointT* of R that is analytic on (2v21,1) is a solution of~IV.5!. For if

T* ~z!5T* ~f1~z!!1T* ~f2~z!!2T* ~f1~v!!2T* ~f2~v!!, ~IV.7!

then, evaluating atz5v, we see thatT* (v)50. We now evaluate atz50 to obtain

T* ~0!5T* ~0!1T* ~v!2T* ~f1~v!!2T* ~f2~v!!, ~IV.8!

which immediately gives T* (f1(v))1T* (f2(v))50, and so T* (z)5T* (f1(z))
1T* (f2(z)).

V. PRELIMINARY RESULTS

In this section we establish some preliminary results to help us prove Theorem 1.
Specifically, letr .1 and consider a functionf analytic on the diskD(0,r )5$zPC:uzu,r %.

Let

f ~z!5(
i 50

`

f i S z

r D
i

. ~V.1!

We define thel1-norm, i f i , with respect to the basis functions 1,z/r , (z/r )2,..., by

i f i5(
i 50

`

u f i u. ~V.2!

We denote byBr the complex Banach space of analytic functions onD(0,r ) with i f i,`.
Now if r .1 we have

f1~D~0,r !!#D~0,r !, f2~D~0,r !!#D~0,r !. ~V.3!

For if uzu,r then uf1(z)u5vuzu,vr ,r , and uf2(z)u5uv2z1vu<v2uzu1v,v2r 1v,
(v21v)r 5r , where in the penultimate step we have usedr .1.

Our basic tool for the construction of a solution to~IV.5!, T* , is the observation that forr
chosen sufficiently large, the operatorR is a contraction onBr to the zero function. Indeed we
have the following lemma.

Lemma 1: There exist r.1 and0,c,1 such that R is a bounded linear operator on Br with
operator normiRi<c,1. Indeed r52 suffices.

Proof: It is clear thatR is linear and maps a function analytic onD(0,r ) to another such
function. Since the norm onBr is the l1-norm we have that

iRi5sup
i>0

iR~ei !i , ~V.4!
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whereei is the basis functionei(z)5(z/r ) i . If we show thatiRi<c for somec,1 then we shall
have shown thatR(Br)#Br and iRi<c.

Let us therefore consider the action ofR on the basis functionen .

R~en!~z!5~2vz/r !n1~~v2z1v!/r !n2~2v2/r !n2~~v31v!/r !n

5~~2v!n1v2n!~z/r !n1 (
j 51

n21 S n
j Dv2(n2 j )~z/r !n2 j1~v/r ! j

1~v/r !n2~2v2/r !n2~~v31v!/r !n. ~V.5!

Thus

iR~en!i5u~2v!n1v2nu1 (
j 51

n21 S n
j Dv2(n2 j )~v/r ! j

1u~v/r !n2~2v2/r !n2~~v31v!/r !nu. ~V.6!

We first of all consider the crude upper bound obtained by taking the absolute value of e
these terms. We have

iR~en!i<vn1v2n1 (
j 51

n21 S n
j Dv2(n2 j )~v/r ! j1~v/r !n1v2n/r n1~v31v!n/r n

5vn1~v21v/r !n1v2n/r n1~v31v!n/r n. ~V.7!

We note that this expression decreases asn increases and asr increases. Moreover for fixed
r .1 it has limit 0 asn→`. Indeed it can be easily checked that forn>3, r>2 we have

iR~en!i<v31~v21v/2!31v6/41~v31v!3/85~35v219!/4,1. ~V.8!

For n50 we haveR(e0)(z)50 for all z.
For n51,

iR~e1!i5u~2v!1v2u1uv/r 1v2/r 2~v31v!/r u

5v2v21v/r 1v2/r 2v3/r 2v/r

5v2v21v2/r 2v3/r

5~v2v2!~11v/r !

5v3~11v/r !,v2,1 ~V.9!

for r .1.
Finally for n52 we have~taking r>2)

iR~e2!i5uv21v4u12v3/r 1uv2/r 22v4/r 22~v31v!2/r 2u

<v21v41v31~v31v!2/41v4/42v2/4

5~19225v!/4,1, ~V.10!

as can readily be checked.
Taking the maximum of these numbers forn50,1,2,... it is clear that

iRi5sup
i>0

iR~ei !i<c ~V.11!
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for somec,1 providedr>2. Thus the lemma is proved. h

One immediate consequence of this lemma is the following
Corollary 1: The only entire solution of~IV.5! is the zero solution: T(z)50 for all z.
Proof: A solution of ~IV.5! is a fixed point ofR on B2 and as we have seen in the lemma

0<iR~T!i<iRiiTi<ciTi,iTi , ~V.12!

so if R(T)5T we must haveiTi50, i.e., T(z)50 for all zPD(0,2). HenceT(z)50 for all z
PC. h

This corollary will be used to establish the uniqueness of the solution.
In the proof of Theorem 1 we shall also have use of the following lemma that allows

extend solutions of Eq.~IV.1! to the whole of the complex plane.
Lemma 2 (The extension lemma): Let the function t be analytic and satisfy Eq. (IV.1)

open neighborhood U$@2v,1# in C. Then there is an entire extension of t to the whole oC
satisfying Eq. (IV.1) for all zPC.

Proof: From Sec. III, property~4!, we may, by restricting to a smaller set if necessary, ass
that f1(U), f2(U)#U. Let zPC\U. Then, since the iterated function system consisting off1

andf2 has fixed point set@2v,1#, there existsk>1 such that for alli 1 , . . . ,i kP$1,2% we have

f i 1
+ ¯ +f i k

~z!PU. ~V.13!

We define

t~z!5 )
i 1 , . . . ,i k

t~f i 1
+ ¯ +f i k

~z!!. ~V.14!

We first observe that this definition is independent of the choice ofk. For if 1<k1,k2 are such
that for all i 1 , . . . ,i k1

, we have f i 1
+ ¯ +f i k1

(z)PU and for all i 1 , . . . ,i k2
, we have

f i 1
+ ¯ +f i k2

(z)PU, then

)
i 1 , . . . ,i k111

t~f i 1
+ ¯ +f i k111

!5 )
i 1 , . . . ,i k1

t(f i 1
+ ¯ +f i k

~f1~z!!t(f i 1
+ ¯ +f i k

~f2~z!!

5 )
i 1 , . . . ,i k1

t~f i 1
+ ¯ +f i k

~z!!. ~V.15!

Here we have used the fact thatt satisfies Eq.~IV.1! on U. Continuing in this way we see that

)
i 1 , . . . ,i k2

t~f i 1
+ ¯ +f i k2

~z!!5 )
i 1 , . . . ,i k1

t~f i 1
+ ¯ +f i k1

~z!!. ~V.16!

Thus the definition is independent of the choice ofk.
We now observe thatt satisfies Eq.~IV.1!. For if zPC, and k>2 are such that

f i 1
+ ¯ +f i k

(z)PU for all choicesi 1 , . . . ,i kP$1,2%, we have

t~z!5 )
i 1 , . . . ,i k

t~f i 1
+ ¯ +f i k

~z!!

5 )
i 1 , . . . ,i k21

t~f i 1
+ ¯ +f i k21

~f1~z!!! )
i 1 , . . . ,i k21

t~f i 1
+ ¯ +f i k21

~f2~z!!!

5t~f1~z!!t~f2~z!!. ~V.17!
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Finally, let zPC. Then there existsk>1 and an open diskV in C containingz such that

f i 1
+ ¯ +f i k

~V!#U ~V.18!

for all i 1 , . . . ,i kP$1,2%. Then for allwPV,

t~w!5 )
i 1 , . . . ,i k

t~f i 1
+ ¯ +f i k

~w!! ~V.19!

is a finite product of analytic maps and is therefore analytic. Thus we have defined an an
extension oft to C. h

VI. PROOFS OF THEOREMS 1 AND 2

A. Proof of Theorem 1

1. Existence

We construct the solution of~IV.5! as follows. Let

f 0~z!5 logS 12z

12v D , ~VI.1!

where we take the principal branch of the logarithm function, analytic foruzu.0, arg(z)P
(2p,p). Let

f 1~z!5 f 0~f1~z!!2 f 0~f1~v!!5 logS 12f1~z!

12f1~v! D , ~VI.2!

and, forn>2, let

f n~z!5Rn21~ f 1!~z!5R~ f n21!~z! ~VI.3!

with the linear operatorR defined in~IV.6!. We observe that

f k~z!5 (
i 1 ,...,i k
i 151

logS 12f i 1
+¯+f i k

~z!

12f i 1
+¯+f i k

~v!D . ~VI.4!

We set

T* ~z!5 (
n50

`

f n~z!. ~VI.5!

We observe thatf 0 is analytic onD(0,1), andf 1 is analytic onf1
21(D(0,1))5D(0,v21). Fur-

thermore we observe that ifzPD̄(0,2) then

uf1
2~z!u5uv2zu<v2r ,1, ~VI.6!

and

uf1+f2~z!u5u2v3z2v2u<v3uzu1v2<v3r 1v2,1. ~VI.7!

Thus

f 2~z!5R~ f 1!~z!5 logS 12f1+f1~z!

12f1+f1~v! D1 logS 12f1+f2~z!

12f1+f2~v! D ~VI.8!
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is analytic on a domainD(0,21«) for some«.0, and thusf 2PB2 . It follows that forn>2,

i f ni5iRn22~ f 2!i<iRin22i f 2i<cn22i f 2i , ~VI.9!

wherec,1 is given by Lemma 1. Thus the function

S* ~z!5T* ~z!2 f 0~z!2 f 1~z!5 (
n52

`

f n~z! ~VI.10!

is absolutely convergent onB2 , and thusT* is well defined and analytic onD(0,1). Moreover

R~S* !~z!5R~T* !~z!2R~ f 0!~z!2R~ f 1!~z!

5RS (
n52

`

f n~z!D
5 (

n52

`

R~ f n!~z!

5 (
n53

`

f n~z!

5S* ~z!2 f 2~z!. ~VI.11!

But

R~ f 0!~z!5 logS 12f1~z!

12f1~v! D1 logS 12f2~z!

12f2~v! D
5 f 1~z!1 logS 12~v2z1v!

12~v31v! D
5 f 1~z!1 logS v2~12z!

v2~12v! D
5 f 1~z!1 f 0~z!. ~VI.12!

Hence

R~T* !~z!5R~S* 1 f 01 f 1!~z!

5R~S* !~z!1R~ f 0!~z!1R~ f 1!~z!

5S* ~z!2 f 2~z!1 f 0~z!1 f 1~z!1 f 2~z!

5S* ~z!1 f 0~z!1 f 1~z!

5T* ~z!. ~VI.13!

ThusT* is a fixed point ofR. We now define

t* ~z!5exp~T* ~z!!

5exp~ f 0~z!!exp~ f 1~z!!exp~S* ~z!! ~VI.14!
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5
~12z!

~12v!

~12f1~z!!

~12f1~v!! )
k>2

)
i 1 ,...,i k
i 151

12f i 1
+¯+f i k

~z!

12f i 1
+¯+f i k

~v!
.

~VI.15!

We note that the expression on the right-hand side is analytic onD(0,2) ~the exponential has
removed the singularities off 0 and f 1!. Moreover, letR̃ denote exp(R), i.e.,

R̃~ f !~z!5
f ~f1~z!!

f ~f1~v!!

f ~f2~z!!

f ~f2~v!!
. ~VI.16!

Then forzPD(0,2),

R̃~ t* !~z!5
~12f1~z!!

~12f1~v!!

~12f2~z!!

~12f2~v!!

~12f1+f1~z!!

~12f1+f1~v!!

~12f1+f2~z!!

~12f1+f2~v!!
exp~R~S* !~z!!

5
~12z!

~12v!

~12f1~z!!

~12f1~v!!
exp~ f 2~z!1S* ~z!2 f 2~z!!

5
~12z!

~12v!

~12f1~z!!

~12f1~v!!
exp~S* ~z!!

5t* ~z!. ~VI.17!

Thus R̃(t* )(z)5t* (z) for zPD(0,2), and hence

t* ~z!5
t* ~f1~z!!

t* ~f1~v!!

t* ~f2~z!!

t* ~f2~v!!
. ~VI.18!

Evaluating atz5v and then atz50 givest* (f1(v))t* (f2(v))51 and so

t* ~z!5t* ~f1~z!!t* ~f2~z!! ~VI.19!

for zPD(0,2). We also note thatt* is real analytic. Finally we use the extension lemma to exte
to the whole ofC.

We also observe thatt* (1)50 and t
*
8 (1)Þ0, and, in view of ~VI.14!, t* (z)Þ0 for z

PD(0,2)\$2v21,1% and indeedt* (z).0 for zP(2v21,1), so thatt* is the desired solution of
Eq. ~IV.1! in the casen51. The desired solution forn>1 is simply t(z)5t* (z)n.

2. Uniqueness

We shall now prove that the solution constructed is unique. Lett1 , t2 be two entire solutions
of Eq. ~IV.1! satisfying properties~1!–~3! of Theorem 1. We shall show thatt1(z)5t2(z) for all
zPC. Consider the function

v~z!5
t1~z!

t2~z!
. ~VI.20!

Then, in view of properties~1!–~3! of Theorem 1, we have thatv has a removable singularity a
z51 and so we may definev(1)5 limz→1 v(z)Þ0 so thatv is analytic atz51; v(z)Þ0 for z
P@2v,1#; and on a neighborhoodU of @2v,1# in C, t1(z), t2(z)Þ0 ~except atz51) and hence
v is well defined, analytic, and nonzero onU.

We may now apply the extension lemma~Lemma 2! to extendv to the whole complex plane
giving an entire function. Moreover we see thatv(z)Þ0 for all zPC. For if zPC, then we may
choosek>1 such thatf i 1

+¯+f i k
(z)PU for all i 1 ,...,i kP$1,2%. Then
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v~z!5 )
i 1 ,...,i k

v~f i 1
+¯+f i k

~z!!Þ0, ~VI.21!

sincev(z)Þ0 on U.
Now v is entire and nonzero, so we may writev(z)5exp(V(z)), whereV is an entire function,

defined up to an integer multiple of 2p i . Now

exp~V~z!!5v~z!5v~f1~z!!v~f2~z!!

5exp~V~f1~z!!1V~f2~z!!! ~VI.22!

for zPC, so that

exp~V~z!2V~f1~z!!2V~f2~z!!!51 ~VI.23!

for all zPC. It follows that

V~z!2V~f1~z!!2V~f2~z!!52p ik ~VI.24!

for somekPZ. However, sinceV is only defined up to a multiple of 2p i , we may~replacingV
by V12p ik! arrange fork50. Thus we havev(z)5exp(V(z)) whereV is entire and satisfies

V~z!5V~f1~z!!1V~f2~z!!. ~VI.25!

From Corollary 1 it follows thatV(z)50, and hencev(z)51, so thatt1(z)5t2(z) for all zPC.
This completes the proof of Theorem 1.

B. Proof of Theorem 2

~1! Since t* (z).0 on (2v21,1) it follows that there is an open neighborhoodU of
@2v,1) such thatz51 is the only zero oft* in U.

SupposezPC with t* (z)50. Then letk>1 be such thatf i 1
+¯+f i k

(z)PU for all choices
i 1 ,...,i kP$1,2%. Then since

05t* ~z!5 )
i 1 ,...,i k

t* ~f i 1
+¯+f i k

~z!! ~VI.26!

and we must havef i 1
+¯+f i k

(z)51 for some choice ofi 1 ,...,i kP$1,2%. Then clearly

z5f i k
21+¯+f i 1

21(1).

Conversely ifz5f i k
21+¯+f i 1

21(1) for somek and some choicei 1 ,...,i kP$1,2% then

t* ~z!5 )
i 1 ,...,i k

t* ~f i 1
+¯+f i k

~z!!50. ~VI.27!

~2! Substitutingz50 into Eq.~IV.1! we immediately obtaint* (v)51 sincet* (0)Þ0.
Differentiating Eq.~IV.1! and substitutingz51 gives

t
*
8 ~1!52vt

*
8 ~2v!t* ~1!1v2t* ~2v!t

*
8 ~1!. ~VI.28!

Sincet* (1)50, t
*
8 (1)Þ0 we obtaint* (2v)5v22.

Substitution ofz52v into Eq. ~IV.1! gives t* (2v)5t* (v2)2, which, sincet* (v2).0,
gives t* (v2)5v21.

~3! We observe thatT* @given by Eq.~VI.5!# is a sum of terms each of which have negati
second derivative onR. Indeed forxP(2v21,1) we have
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d2

dx2 log
12f i 1

+¯+f i k
~x!

12f i 1
+¯+f i k

~v!
52

~~f i 1
+¯+f i k

!8~x!!2

~12f i 1
+¯+f i k

~x!!2 ,0. ~VI.29!

It follows that T
*
9 (x),0.

Since limx→12T* (x)52` and limx→2v211T* (x)52`, we have thatT* @and hencet*
5exp(T* )# has a unique maximum in the interval (2v21,1). Furthermore, differentiating Eq
~IV.5!, we obtain

T
*
8 ~x!52vT

*
8 ~f1~x!!1v2T

*
8 ~f2~x!!, ~VI.30!

which, evaluated atx50, gives

~11v!T
*
8 ~0!5v2T

*
8 ~v!. ~VI.31!

Now, from the above-mentioned part~2!, we seeT* (2v)522 logv.2logv5T* (v2).T* (v)
5log 150, henceT

*
8 (v),0. It follows thatT

*
8 (0),0, and so the maximum is to the left of zer

Evaluating atx52v, we see that

T
*
8 ~2v!5~v22v!T

*
8 ~v2!. ~VI.32!

But v2.0 and henceT
*
8 (v2),0, and thusT

*
8 (2v).0, so the maximum occurs to the right o

2v.
This completes the proof of Theorem 2.

VII. AN ASSOCIATED EIGENVALUE PROBLEM

Associated with the additive version of the operatorR defined in Eq.~II.16! we may consider
the eigenproblem

l~U~z!,T~z!!5~T~2vz!,T~2vz!1U~2vz21!!, ~VII.1!

with lÞ0, which on eliminatingU becomes

T~z!5l21T~f1~z!!1l22T~f2~z!!). ~VII.2!

As well as being an interesting problem in its own right, this problem will also arise in
analysis in the next sections of the spectrum of the derivative of the operatorR at its fixed point.
In that case we will be interested in eigenfunctions~and a generalized eigenfunction! of ~VII.2!
which are either polynomial, or which possess a pole atz51.

A. Polynomial solutions

First we look for polynomial solutions of~VII.2!. If T is a polynomial of degreek:

T~z!5a01a1z1¯1akz
k ~VII.3!

with akÞ0, then consideration of the leading degree gives the necessary condition

l25~2v!kl1v2k, ~VII.4!

i.e., l5vk((21)k6A5)/2, which are just

l5H vk21,2vk11 if k is even

vk11,2vk21 if k is odd.
~VII.5!

We see that, givenl satisfying~VII.4! and a nonzero but otherwise arbitraryak , there is a unique
polynomial solution of degreek with coefficients given by the recurrence relations
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lai~l2~2v! i !5(
l5 i

k S l
i Dv l1 ial , i 5k21, . . . ,0, ~VII.6!

i.e.,

ai~l22~2v! il2v2i !5 (
l5 i 11

k S l
i Dv l1 ial , i 5k21, . . . ,0. ~VII.7!

The full list of possible eigenvalues corresponding to polynomial eigenfunctions is thus

v21,21,6v,6v2,6v3,..., ~VII.8!

and these are nondegenerate within the space of polynomials.
Remark:Note thatl51 is not possible, so that there do not exist nonzero polynomial fi

points of our original additive problem~IV.5!.

B. Nonpolynomial solutions

We now construct some nonpolynomial solutions of Eq.~VII.2! with reall with ulu.1. The
solutions are similar in structure to solution~IV.3! of Theorem 1, although our method of pro
will be more direct. We shall see in the next sections that the solutions we construct will c
spond to eigenfunctions of the derivative of the operatorR at its fixed point with eigenvalues

l56v22,6v23,... . ~VII.9!

In what follows let (12z)s be given by exp(s log(12z)), where log is the principal branch o
the logarithm function.

1. Solutions with zlzÌvÀ1

We first prove the following theorem.
Theorem 4: Let lPR with ulu.v21, let

s5
logulu
logv

, ~VII.10!

and let1,r ,v21. Then there exists a solution T of (VII.2) given by

T~z!5~12z!s1S~z!, ~VII.11!

where S is analytic onD(0,r ) and is given by

S~z!5 (
k51

`

(
i 1 ,...,i k
i 151

1

lS i j
~12f i 1

+¯+f i k
~z!!s. ~VII.12!

Of interest in the following sections will be eigenfunctions possessing a pole atz51. Condi-
tion ~VII.10! then shows that

l56v22,6v23, . . . ~VII.13!

are eigenvalues corresponding eigenfunctions with a pole atz51.
Proof: Sincer .1 we have that~V.3! holds. Furthermore we have forzPD(0,r ) that

u12f1~z!u5u11vzu>12uvzu>12vr .0, ~VII.14!

sincer ,v21. We thus have a lower bound foru12f1(z)u on D(0,r ).
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We wish to demonstrate the uniform convergence of the functionS on D(0,r ). We define

Sn~z!5 (
k51

n

(
i 1 ,...,i k
i 151

1

lS i j
~12f i 1

+¯+f i k
~z!!s, ~VII.15!

and

Tn~z!5~12z!s1Sn~z!. ~VII.16!

Now

U (
i 1 ,...,i k
i 151

1

lS i j
~12f i 1

+¯+f i k
~z!!sU< (

i 1 , . . . ,i k
i 151

1

uluS i j
u12f i 1

+¯+f i k
~z!us

<
1

ulu (
i 2 ,...,i k

1

ulu( j 52
k i j

u12f1~z1!us, ~VII.17!

where

z15f i 2
+¯+f i k

~z!PD~0,r ! ~VII.18!

in view of ~V.3!. Now, sinceulu.1, we haves,0 and so

u12f1~z1!us<~12vr !s, ~VII.19!

and hence

U (
i 1 ,...,i k
i 151

1

lS i j
~12f i 1

+¯+f i k
~z!!sU<

~12vr !s

ulu (
i 2 ,...,i k

1

ulu lulu2m , ~VII.20!

wherel andm are the number of occurrences of the digits 1 and 2 in the listi 2 ,...,i k .
Since we are summing over all possible choices ofi 2 ,...,i kP$1,2% we have

(
i 2 ,...,i k

1

ulu lulu2m 5 (
i 50

k21 S k21

i D 1

ulu i ulu2(k212 i ) 5S 1

ulu
1

1

ulu2D
k21

, ~VII.21!

and thus fork>2,

U (
i 1 ,...,i k
i 151

1

lS i j
~12f i 1

+¯+f i k
~z!!sU<

~12vr !s

ulu S 1

ulu
1

1

ulu2D
k21

. ~VII.22!

Now, sinceulu.v21, we have 1/ulu11/ulu2,1, and thus the bound in~VII.22! is a convergent
geometric progression, and hence, by the Weierstrass M-test, we have that the serieS(z)
5 lim Sn(z) converges uniformly onD(0,r ) to an analytic function.

We now show thatT5 lim Tn satisfies~VII.2!. We note that

~12f2~z!!s5v2s~12z!s5l2~12z!s. ~VII.23!

Now
                                                                                                                



r
e

8319J. Math. Phys., Vol. 41, No. 12, December 2000 Renormalization for the Harper equation

                    
l21Tn~f1~z!!1l22Tn~f2~z!!)

5l21~12f1~z!!sl21(
k51

n

(
i 1 ,...,i k
i 151

1

lS i j
~12f i 1

+¯+f i k
+f1~z!!s

1l22~12f2~z!!s1l22(
k51

n

(
i 1 ,...,i k
i 151

1

lS i j
~12f i 1

+¯+f i k
+f2~z!!s

5~12z!s1l21~12f1~z!!s1(
l52

n

(
i 1 ,...,i l
i 151

1

lS i j
~12f i 1

+¯+f i l
~z!!s

5Tn11~z!. ~VII.24!

Taking the limitn→` we have that

T~z!5 lim
n→`

Tn11~z!5 lim
n→`

l21Tn~f1~z!!1 lim
n→`

l22Tn~f2~z!!

5l21T~f1~z!!1l22T~f2~z!! ~VII.25!

as required. h

2. The case 1ËzlzÏvÀ1

We now prove a weaker version of this result for 1,ulu<v21. We shall use this weake
result to construct eigenfunctions in the casel52v21 and a generalized eigenfunction in th
casel5v21.

Theorem 5: Let lPR with 1,ulu<v21, let

s5
logulu
logv

, ~VII.26!

and let1,r ,v21 and z0PD(0,r )\$1%. Then there exists a solution T˜ of

T̃~z!5l21~ T̃~f1~z!!2T̃~f1~z0!!!1l22~ T̃~f2~z!!2T̃~f2~z0!!! ~VII.27!

given by

T̃~z!5~12z!s2~12z0!s1S̃~z!, ~VII.28!

where S̃is analytic onD(0,r ) and is given by

S̃~z!5 (
k51

`

(
i 1 ,...,i k
i 151

1

lS i j
~~12f i 1

+¯+f i k
~z!!s2~12f i 1

+¯+f i k
~z0!!s!. ~VII.29!

Moreover, iflÞv21 then there exists KPR such that

T~z!5T̃~z!2K ~VII.30!

satisfies (VII.2).
Proof: Settingl152l/v and applying Theorem 4 we obtain a solution

T1~z!5s~12z!s11sS1~z! ~VII.31!
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of

T1~z!5l1
21T1~f1~z!!1l1

22T1~f2~z!!), ~VII.32!

where

s15
log ul1u
logv

5s21, ~VII.33!

and where

S1~z!5 (
k51

`

(
i 1 ,...,i k
i 151

1

l1
S i j

~12f i 1
+¯+f i k

~z!!s1 ~VII.34!

is analytic onD(0,r ). Moreover, the series forS1(z) converges uniformly onD(0,r )$D(0,1).
@Note that we have introduced the constants in ~VII.31! merely for convenience in what follows.#

Integrating on a contour fromz0 to z in D(0,r ) we may define

S̃~z!5 (
k51

`

(
i 1 ,...,i k
i 151

1

lS i j
~~12f i 1

+¯+f i k
~z!!s2~12f i 1

+¯+f i k
~z0!!s!, ~VII.35!

since the series converges uniformly onD(0,r ).
For zPD(0,1) we may define

T̃~z!5E
z0

z

T1~w!dw5E
z0

z

s~12w!s21dw1S̃~z!

5~12z!s2~12z0!s1S̃~z!, ~VII.36!

and, in view of~VII.32!, we have

T̃~z!5l1
21~2v21!~ T̃~f1~z!!2T̃~f1~z0!!!1l1

22v22~ T̃~f2~z!!2T̃~f2~z0!!!

5l21~ T̃~f1~z!!2T̃~f1~z0!!!1l22~ T̃~f2~z!!2T̃~f2~z0!!!, ~VII.37!

as required.
Now if lÞv21 we set

T~z!5T̃~z!2K ~VII.38!

for a constantK to be determined. ForzPD(0,1) we have

T~z!5l21T~f1~z!!1l22T~f2~z!!1l21K1l22K2K1C, ~VII.39!

where

C52l21T̃~f1~z0!!2l22T̃~f2~z0!!, ~VII.40!

and so we choose

K5
Cl2

l22l21
~VII.41!

thereby ensuring thatT satisfies~VII.2!. h
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VIII. SPECTRUM OF THE DERIVATIVE OF R AT THE FIXED POINT

To analyze the spectrum of the renormalization operator we write, as in Ref. 3, the or
iteration~I.4! as an iteration for a pair of functions (tn21(2vz),tn(z))5(u(z),t(z)), say, thereby
defining the renomalization operator~II.15!,

R:~u~z!,t~z!!°~ t~u1~z!!,t~u1~z!!u~u2~z!!!, ~VIII.1 !

where

u1~z!52vz, ~VIII.2 !

u2~z!52vz21. ~VIII.3 !

We introduce the functionsu1 , u2 here for convenience only. They are related simply to
functionsf1 , f2 by f15u1 , f25u1+u2 .

We note that any solution of~IV.1! gives a fixed point ofR by settingu(z)5t(u1(z)), and,
vice versa, any fixed point ofR gives, on eliminatingu using the fixed point equations, a solutio
of ~IV.1!.

In Ref. 3, Ketoja and Satija made a conjecture for the spectrum of the derivative ofR at the
strong coupling fixed point. Theorem 3 is a more general rigorous statement which estab
their conjecture. In Sec. IX we prove this theorem, after having set the scene in this sectio

Let nPN and let t be the solution of~IV.1! given by Theorem 1. We setu(z)5t(u1(z)).
Then (u,t) is a fixed point ofR. Formally the derivative ofR at (u,t) is the linear operator

L5dR(u,t) ~VIII.4 !

acting on tangent vectors (du,dt) given by

L~du,dt !5~dt~u1~z!!,dt~u1~z!!u~u2~z!!1t~u1~z!!du~u2~z!!!. ~VIII.5 !

To make this rigorous we specify a Banach space on whichR acts and which contains the fixe
point (u,t). L then also acts on this Banach space.

Althoughu andt are entire, it is convenient to work in a larger space of functions. Let us
fix 1,r ,v21 andvr 11,r 8,rv21. ~Note that there does exist such anr 8 sincer .1.! For a
function f analytic on the diskD(0,t), t.0 we write

i f it,`5 sup
zPD~0,t!

u f ~z!u ~VIII.6 !

for the supremum norm onD(0,t). Let B denote the real Banach space of real analytic functi
f on D(0,r ) with i f i r ,`,`. Likewise, let B8 denote the real Banach space of real analy
functions f on D(0,r 8) with i f i r 8,`,`. We now defineF to be the real Banach spaceB83B of
pairs (f ,g) with f PB8, gPB, equipped with the norm

i~ f ,g!i5i f i r 8,`1igi r ,` . ~VIII.7 !

Observe that ifzPD(0,r 8) then

uu1~z!u5u2vzu5vuzu,vr 8,r , ~VIII.8 !

and if zPD(0,r ) then

uu1~z!u5u2vzu5vuzu,vr ,r , ~VIII.9 !

uu2~z!u<vuzu11,vr 11,r 8. ~VIII.10!
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Let us seth5min$vr8,vr% and h85vr 11. We now chooser and r8 so that h,r,r and
h8,r8,r 8. Then we have that

u1~D~0,r 8!!#D~0,h! D~0,r! D~0,r !, ~VIII.11!

u1~D~0,r !!#D~0,h! D~0,r! D~0,r !, ~VIII.12!

u2~D~0,r !!#D~0,h8! D~0,r8! D~0,r 8!. ~VIII.13!

The operatorR is then well defined onF andR(F)#F. For if zPD(0,r 8) thenu1(z)PD(0,r )
andt(u1(z)) is well defined. Likewise, ifzPD(0,r ) thenu1(z)PD(0,r ) andu2(z)PD(0,r 8) and
t(u1(z))u(u2(z)) is well defined. Furthermore,

i~ t~u1~z!!,t~u1~z!!u~u2~z!!!i<i ti r ,`1i ti r ,`iui r 8,`,`. ~VIII.14!

By standard results on composition operators, we also have thatR is C1 on F and its derivative
is given byL as in Eq.~VIII.5 !.

We note that since the solution to Eq.~IV.1!, t, is entire we havetPB and uPB8. In
particulari ti r ,`,` and iui r 8,`,`.

IX. PROOF OF THEOREM 3

A. Compactness

The compactness ofL follows from the analyticity improving nature of the operatorR, i.e.,
from relations~VIII.11! to ~VIII.13!. These conditions enable us to use Cauchy estimate
provide uniform bounds on derivatives and hence obtain equicontinuity. The compactnesL
then follows from Ascoli’s theorem. Let us be more precise.

Recall that a linear operatorL on F is compact if every bounded sequence is mapped
sequence having a convergent subsequence. So, letk.0 and (dun ,dtn)PF be a sequence o
tangent vectors inF with i(dun ,dtn)i<k for all n>1. Theniduni r 8,`<k and idtni r ,`<k. Let

~dvn ,dwn!5L~dun ,dtn!PF. ~IX.1!

We wish to show that (dvn ,dwn) has a convergent subsequence. Nowdvn(z)5dtn(u1(z)), so,
for zPD(0,r 8), integrating around the circleC(0,r) in D(0,r ), we have

udvn8~z!u5vudtn8~u1~z!!u5vU 1

2p i EC(0,r)

dtn~j!dj

~j2u1~z!!2 U
<

vr

~r2h!2 idtni r ,`<
vrk

~r2h!2 5L1 , ~IX.2!

say. Thus

idvn8i r 8,`<L1 . ~IX.3!

The estimate foridwn8i r 8,` is similar but more complicated. LetzPD(0,r ). Then

udwn8~z!u<v~ udtn8~u1~z!!u~u2~z!!u1udtn~u1~z!!u8~u2~z!!u1ut8~u1~z!!dun~u2~z!!u

1ut~u1~z!!dun8~u2~z!!u!. ~IX.4!

We may bound each of these terms using Cauchy estimates. Indeed
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udtn8~u1~z!!u~u2~z!!u<U 1

2p i EC(0,r)

dtn~j!dj

~j2u1~z!!2 Uuu~u2~z!!u

<
r

~r2h!2 idtni r ,`iui r 8,` . ~IX.5!

Similarly we have

udtn~u1~z!!u8~u2~z!!u<
r8

~r82h8!2 idtni r ,`iui r 8,` , ~IX.6!

ut8~u1~z!!dun~u2~z!!u<
r

~r2h!2 i ti r ,`iduni r 8,` , ~IX.7!

ut~u1~z!!dun8~u2~z!!u<
r8

~r82h8!2 i ti r ,`iduni r 8,` . ~IX.8!

Putting these together we obtain

udwn8~z!u<vS r

~r2h!2 1
r8

~r82h8!2D ~ idtni r ,`iui r 8,`1i ti r ,`iduni r 8,`!<L2 , ~IX.9!

say, usingiduni r 8,`<k and idtni r ,`<k. Thus

idwn8i r ,`<L2 . ~IX.10!

Now let z,z8PD(0,r 8). Then

udvn~z!2dvn~z8!u<idvn8~z!i r 8,`uz2z8u<L1uz2z8u, ~IX.11!

and so the sequencedvn is equicontinuous and bounded. It follows from Ascoli’s theorem that
sequencedvn has a convergent subsequence. Restricting to this subsequence, we now ha
z,z8PD(0,r 8),

udwn~z!2dwn~z8!u<L2uz2z8u, ~IX.12!

and we may again invoke Ascoli’s theorem to obtain a subsequence for which bothdvn anddwn

converge.
It follows that this subsequence of the sequence of pairs (dvn ,dwn)PF converges and thusL

is compact.

B. Spectrum

From the compactness ofL it follows that the spectrum ofL consists of 0 together with
discrete eigenvalues. Our study of the eigenvalues consists of the following steps.

First we construct eigenfunctions and generalized eigenfunctions ofL using the results on the
associated eigenproblem in Sec. VII. Indeed, forl5v21, 21, 6v, 6v2, 6v3,..., we useSec.
VII A to construct polynomial solutions, and, forl56v22,...,6v2n, we may use Theorem 4 o
Sec. VII B to obtain eigenfunctions. Forl52v21 we obtain an eigenfunction from Theorem 5
Sec. VII B, but forl5v21 we only obtain a generalized eigenfunction from Theorem 5.

We then show that these values ofl are the only possible eigenvalues and that the eigenfu
tions are unique~up to a multiple!. Finally we show that, except whenl5v21, there are no
generalized eigenfunctions.

Let (du,dt)PF be an eigenfunction ofL with eigenvaluelPC\$0%:
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L~du,dt !5l~du,dt !. ~IX.13!

@Note that we may identifyF with the tangent space ofF at (u,t).# This is

L~du,dt !~z!5~dt~u1~z!!,dt~u1~z!!u~u2~z!!1t~u1~z!!du~u2~z!!!

5~ldu~z!,ldt~z!!. ~IX.14!

Eliminating du andu using the first coordinate and the definition ofu, we obtain

dt~z!5l21dt~f1~z!!t~f2~z!!1l22t~f1~z!!dt~f2~z!!). ~IX.15!

We write

DT5dt/t. ~IX.16!

ThenDT is analytic on the same domain asdt, except at the zeros oft, where it may have poles
In fact DT is analytic onD(0,r ) except possibly atz51, which may be a pole of order at mostn.
@Recall thatt has a unique zero of ordern at z51 in D(0,r ) for 1,r ,v21.#

We now divide~IX.15! by t(z), using the fixed point equation~IV.1! to obtain

DT~z!5l21DT~f1~z!!1l22DT~f2~z!!, ~IX.17!

whereDT is a function analytic onD(0,r ) except for possibly a pole atz51. We recognize this
as Eq.~VII.2!, which we analyzed in Sec. VII.

We note that any solution of~IX.17! analytic onD(0,r ), except possibly for a pole of orde
k<n, gives rise to an eigenfunction ofL by setting

dt~z!5t~z!DT~z!, du~z!5l21dt~u1~z!!. ~IX.18!

1. Construction of eigenfunctions

In Sec. VII A we constructed solutions of~IX.17! which were polynomials forl5v21, 21,
6v, 6v2, 6v3,... . Applying Theorem 4 from Sec. VII B for the casesl56v2k for 2<k
<n we obtain solutions of~IX.17! with a pole of orderk at z51. Similarly, applying Theorem 5
with l52v21, we obtain a solution of~IX.17! with a simple pole atz51. Whenl5v21 we
note that Theorem 5 does not give a solution of~IX.17!, but rather of~VII.27! instead. Indeed
there does not exist a solution of~IX.17! that is analytic inD(0,r ) except for a simple pole a
z51, as we now show.

SupposeDT is a fixed point of the linear operatorR1 defined by

R1~ f !~z!5v f ~f1~z!!1v2f ~f2~z!! ~IX.19!

with

DT~z!;
A

12z
, ~IX.20!

asz→1, whereAÞ0. We define

DS~z!5DT~z!2
A

12z
. ~IX.21!

ThenDS is analytic onD(0,r ) with a removable singularity atz51. We have
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R1~DS!~z!2DS~z!5R1~DT!~z!2
vA

12f1~z!
2

v2A

12f2~z!
2DT~z!2

A

12z

5
vA

12f1~z!
, ~IX.22!

since 12f2(z)5v2(12z), and by iterating it follows that

R1
n~DS!~z!2DS~z!5A(

k51

n

(
i 1 ,...,i k
i 151

vS i j~12f i 1
+¯+f i k

~z!!21. ~IX.23!

Now, asDS is analytic inD(0,r ), we have, forzPD(0,1),

uAuU(k51

n

(
i 1 ,...,i k
i 151

vS i j~12f i 1
+¯+f i k

~z!!21U5uR1
n~DS!~z!2DS~z!u<2iDSi1,̀ ,`,

~IX.24!

where we have used the fact that

iR1~ f !i1,̀ <vi f i1,̀ 1v2i f i1,̀ 5i f i1,̀ . ~IX.25!

Now if yP@2v,1# we have 0,v<12f1(y)<11v5v21, so that

(
k51

n

(
i 1 ,...,i k
i 151

vS i j~12f i 1
+¯+f i k

~z!!21> (
k50

n21

~v1v2!kv5nv, ~IX.26!

which contradicts~IX.24!. We conclude that no eigenfunctions exist with a simple pole atz51
and withl5v21. Thus in~VII.27! we cannot havel21T* (f1(z0))1l22T* (f2(z0))50.

Remark:Indeed for the casel5v21 our eigenvalue problem is merely the invariant dens
problem for the map with inverse branches given by the two functionsf1 , f2 . The constant
function is the only solution in this case.

We shall see below in Sec. IX B 4 that in this case, although there are no eigenfunctions
type, there is in fact such a generalized eigenfunction ofL.

Having constructed these~generalized! eigenfunctions we now show that there are no ot
eigenvalues.

2. There are no other eigenvalues

In this section we determine the possible eigenvalues ofL. Our analysis consists of consid
ering the possible analytic behavior ofDT on D(0,r ).

Let (du,dt) be an eigenfunction ofL with eigenvaluelÞ0 such thatdt is analytic on
D(0,r ), with r .1 and thusDT is analytic onD(0,r ) except~possibly! at z51 at which we may
have at most a pole of ordern. Then, as we saw previously,DT satisfies Eq.~IX.17!.

First, if DT is analytic atz51 ~or has a removable singularity there! then let l>0 be the
smallest integer for which

v l

ulu
1

v2l

ulu2,1 ~IX.27!

~such anl clearly exists!.
Differentiating ~IX.17! l times we obtain
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DT( l)~z!5~2v! ll21DT( l)~f1~z!!1v2ll22DT( l)~f2~z!!, ~IX.28!

so we have

0<iDT( l)i1,̀ <S v l

ulu
1

v2l

ulu2D iDT( l)i1,̀ . ~IX.29!

Now, sinceDT, and henceDT( l), is analytic onD(0,r ), we haveiDT( l)i1,̀ ,`, and so using Eq.
~IX.27! we must haveiDT( l)i1,̀ 50 and henceDT( l)(z)50 for all zPD(0,r ) since it is analytic.
ThusDT is a polynomial of degreek< l21. Consideration of the coefficient ofzk in Eq. ~IX.17!
gives

15~2v!kl211v2kl22, ~IX.30!

which has solutions

l5~2v!kv21, l5~2v!k~2v!, ~IX.31!

and from the definition ofl we see thatk5 l21 or k5 l23. Indeed it is now clear thatDT must
be a multiple of the polynomial eigenfunction constructed in Sec. VII A.

Next, if DT has a pole of orderk at z51, thenDT(f1(z)) is analytic atz51 and so~IX.17!
shows that we must have

15 lim
z→1

DT~z!

l22DT~f2~z!!
5l2v2k, ~IX.32!

and hencel56v2k.

3. Uniqueness of eigenfunctions

We now show that the~generalized! eigenfunctions are unique. We saw in Sec. IX B 2 tha
DT is analytic onD(0,r ) then the resulting polynomial eigenfunctions are unique. Now supp
DT has a pole of orderk<n at z51 and suppose that

DT~z!;
K

~12z!k ~IX.33!

asz→1, with KÞ0.
Consider first the casek>2, so thatulu5uv2ku.v21, and letDS beDT with the eigenfunc-

tion constructed in Theorem 4 multiplied byK subtracted. ThenDS satisfies~VII.2! and does not
have a pole of orderk at z51.

If DS has a pole of orderl<k21 we have a contradiction with~IX.32!, and thusDS is
analytic onD(0,r ). We have

0<iDSi1,̀ <S 1

ulu
1

1

ulu2D iDSi1,̀ ,iDSi1,̀ , ~IX.34!

and, thus, fork>2, we haveiDSi1,̀ 50 and thusDS(z)50 for all zPD(0,r ). Thus DT is a
multiple of the eigenfunction constructed by Theorem 4.

We now consider the case whenk51. Differentiating~IX.17!, we obtain

0<iDS(1)i1,̀ <~v21v4!iDS(1)i1,̀ ,iDS(1)i1,̀ ,`, ~IX.35!

thusDS(1)(z)50 for all zPD(0,1) and soDS is constant.
Furthermore, ifl52v21, we have that
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c5DS~z!52vDS~f1~z!!1v2DS~f2~z!!5~2v1v2!c, ~IX.36!

which givesc50.
Now, if l5v21 we have already seen in Sec. IX B 1 that we do not have a solution of~VII.2!

with a simple pole atz51. However, from Theorem 5 we do have a solution of~VII.27!. Let DT
be a solution of~VII.27! analytic onD(0,r ) except for a simple pole atz51 with

DT~z!;
K

~12z!
~IX.37!

asz→1, with KÞ0. LetDS be this solution with the solution constructed in Theorem 5 multipl
by K subtracted. ThenDS has a removable singularity atz51, and satisfies

DS~z!5vDS~f1~z!!1v2DS~f2~z!!. ~IX.38!

Differentiating, we obtain

0<iDS(1)i1,̀ <~v21v4!iDS(1)i1,̀ ,`, ~IX.39!

and thusDS is a constant. It follows that any solution of~IX.38! is the solution constructed in Sec
VII up to a multiple and the addition of a constant.

4. Generalized eigenfunctions

We now consider the possibility of generalized eigenfunctions and show that~apart from one
case! they do not exist. Suppose

~L2lI !~du1 ,dt1!5~du,dt !, ~IX.40!

where (du,dt) is a nonzero eigenfunction satisfying

L~du,dt !5l~du,dt ! ~IX.41!

with eigenvaluelÞ0. Then

~L2lI !~du1 ,dt1!~z!5~dt1~u1~z!!2ldu1~z!,

dt1~u1~z!!u~u2~z!!1t~u1~z!!du1~u2~z!!2ldt1~z!)

5~du~z!,dt~z!!

5~l21dt~u1~z!!,l21~dt~u1~z!!u~u2~z!!1t~u1~z!!du~u2~z!!!. ~IX.42!

Writing

DU5du/u, DT5dt/t, DU15du1 /u, DT15dt1 /t, ~IX.43!

and using the fact that (u,t) is a fixed point ofR, we obtain

~DT1~u1~z!!2lDU1~z!,DT1~u1~z!!1DU1~u2~z!!2lDT1~z!!)

5~l21DT~u1~z!!,l21~DT~u1~z!!1DU~u2~z!!!. ~IX.44!

We now eliminateDU andDU1 from these equations, using the first of these equations and
eigenvalue equation

DU~z!5l21DT~u1~z!! ~IX.45!

to obtain
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l21DT1~f1~z!!1l22DT1~f2~z!!5DT1~z!1l22DT~f1~z!!12l23DT~f2~z!!.
~IX.46!

As before,DT can either be analytic onD(0,r ) or have a pole of orderk at z51.
We first consider the case whenDT has a pole of orderk at z51, so thatl2v2k51. Then, in

order to balance the last term on the right-hand side in~IX.46!, we must have thatDT1 has a pole
of order l>k at z51. If l.k, then, dividing byDT1(x), we have

1,
1

l2v2l 5 lim
z→1

l22DT1~f2~z!!

DT1~z!
511 lim

z→1

2l23DT~f2~z!!

DT1~z!
51, ~IX.47!

a contradiction.~Here we have used the fact that the other terms are bounded asz→1.! Hence
k5 l.

But then, taking the same limit in~IX.46!, we obtain

15
1

l2v2k 5 lim
z→1

l22DT1~f2~z!!

DT1~z!
511

2

l3v2k lim
z→1

DT~f2~z!!

DT1~z!
Þ1, ~IX.48!

a contradiction. Hence no such pair (DU1 ,DT1) exists, and so no generalized eigenfunctions
this type exist.

We now turn to the case whenDT is analytic onD(0,r ) for somer .1. Then we have thatDT
is a polynomial of degreek wherel25(2v)kl1v2k. @See Eq.~VII.4!.#

Now unlessl5v21 andk50 we see from~IX.46! thatDT1 cannot have a pole atz51 ~for,
as previously, we needl56v2k for a pole of orderk!. So, forlÞv21, we have thatDT1 is
analytic atz51.

Differentiating Eq.~IX.46! k21 times we see that~using the previously mentioned norm
argument! DT1

(k21)(z)50 for all z, so thatDT1 is a polynomial of degree at mostk.
Let

DT1~z!5b01¯1bkz
k, ~IX.49!

DT~z!5a01¯1akz
k, ~IX.50!

whereakÞ0. The leading term in~IX.46! gives

l21~2v!kbk1l22v2kbk5bk1l22~2v!kak12l23~2v!2kak , ~IX.51!

which using Eq.~VII.4! gives

l22~2v!k12l23~2v!2k50. ~IX.52!

But Eq. ~VII.4! may be written

l22~2v!k1l23~2v!2k5l21, ~IX.53!

which is clearly a contradiction. Hence no generalized eigenfunctions exist in this case eit
Now if l5v21 and DT is a polynomial, thenDT is a nonzero constant, and so~IX.46!

reduces to

vDT1~f1~z!!1v2DT1~f2~z!!5DT1~z!1C, ~IX.54!

for CÞ0 a constant. Now supposeDT1 is any solution of~IX.54!. If DT1 is analytic atz51 then
~as previously! DT1 is a polynomial of degreek50, i.e., a constant. It follows thatC50, a
contradiction.
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OtherwiseDT1 may have a simple pole atz51. We have constructed such a solution
Theorem 5, so in this case we have a generalized eigenfunction.

In general let

DT1~z!;
K

~12z!
~IX.55!

with KÞ0 asz→1. Then, subtracting off a multiple of the function constructed in Theorem 5
obtain a functionDS analytic onD(0,r ) satisfying~IX.54! for some other constantC, possibly
zero. Differentiation givesDS a constant~and indeedC50 in this case! and thusDT1 is a
multiple of the solution constructed in Theorem 5 plus a constant.

Thus we have shown that in the casel5v21 there is only one linearly independent gene
alized eigenfunction, which is that given by Theorem 5.

The theorem is proved.

X. CONNECTION WITH ABEL AND SCHRÖ DER EQUATIONS

It is interesting to note that the solutions of the multiplicative and additive equations~IV.1!
and ~IV.5! are intimately connected with the classical Schro¨der and Abel functional equations

s~x!5as~f2~x!!, ~X.1!

and

S~x!5S~f2~x!!1A, ~X.2!

respectively. These equations have been extensively studied, and we refer the reader to th
prehensive book by Kuczmaet al.9 for a review of the work done on these equations. Indeed E
~IV.1! and~IV.5! studied in this paper fall under a class of functional equations briefly consid
in Chap. 6 of Ref. 9.

The connection is made as follows. Supposet satisfies~IV.1! and T satisfies~IV.5!, then
setting

a5 lim
x→12

t~f2~x!!

t~x!
, ~X.3!

A5 lim
x→12

T~f2~x!!2T~x!, ~X.4!

and

s~x!5 lim
n→`

a2nt~f2
n~x!!, ~X.5!

S~x!5 lim
n→`

T~f2
n~x!!2nA, ~X.6!

we have thats andS satisfy ~X.1! and ~X.2!, respectively.
For the solutionst* andT* constructed in this paper we haves(x)512x with a5v2 and

S(x)5 log(12x) with A5 logv2, which are easily seen to be solutions to~X.1! and~X.2!, respec-
tively. In fact, if we ignore the question of convergence, the solutions of~IV.1! and~IV.5! may be
formally constructed from solutionss andS of ~X.1! and ~X.2! by setting
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t~x!5
s~x!

s~v! )
k51

`

)
i 1 ,...,i k
i 151

s~f i 1
+¯+f i k

~x!!

s~f i 1
+¯+f i k

~v!!
, ~X.7!

and

T~x!5S~x!2S~v!1 (
k51

`

(
i 1 ,...,i k
i 151

S~f i 1
+¯+f i k

~x!!2S~f i 1
+¯+f i k

~v!!. ~X.8!

XI. CONCLUSIONS

We have rigorously examined the fixed point of a functional iteration~I.4! that explains the
universality of the self-similar fluctuations in the Harper equation in the strong coupling reg
Our results put the numerical results of Ketoja and Satija in Refs. 3 and 4 on a firm footin

Of particular interest is the value of the universal scaling ratiot(0), numerically calculated in
Refs. 3 to be 0.172 586 410 945 with error bound one in the last digit. It remains to be
whether we can evaluate our functiont* at 0 @and hencet(0)# in closed form. Our solution does
however, provide a convergent series for it.

We anticipate that our analysis can be generalized to study the universal strange a
found by Ketoja and Satija3 in their analysis of the generalized Harper equation in which
next-nearest neighbor coupling is present.

In a forthcoming companion paper10 we shall analyzepiecewise constantperiodic orbits of the
recursion studied in this paper. Such orbits arise in a renormalization analysis of the autoc
tion function of quasiperiodically forced systems. They have been witnessed in the analys
strange nonchaotic attractor in a quasiperiodically forced system,11 and~in an additive version of
the recursion! in that of a quasiperiodically forced two-level quantum system.12
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Central projective quaternionic representations
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We obtain all the irreducible not similar central quaternionic projective represen-
tations of a finite groupG from the knowledge of the vector, complex irreducible
representations of suitable extensions ofG, and classify them according to a gen-
eralized Frobenius–Schur classification. Finally, a definition of equivalence of such
representations is proposed. ©2000 American Institute of Physics.
@S0022-2488~00!02412-9#

I. INTRODUCTION

In quaternionic quantum mechanics~QQM!, symmetries are associated with unitary transf
mations acting on the states of a Hilbert space by virtue of the quaternionic generalization
Wigner’s theorem.1 In the simplest case, the unitary transformationsUa ,Ub , . . . associated with
the elementsa,b, . . .PG form a vector representationof G:

UaUb5Uab , ~1!

that is, theU ’s obey a multiplication law isomorphic to that of the corresponding abstract g
elements.

More generally, a symmetry is also realized if the multiplication law is preserved over the
corresponding to the physical states, but not over the individual state vectors. We should the
a priori, not restrict ourselves to requiring that the operators of a representation satisfy Eq.~1!. For
instance, in complex quantum mechanics we can merely require that

UaUb5vUab , ~2!

wherev is a phase factor which depends ona andb. Such representations are calledprojectiveor
ray representations.

Considering their physical relevance, in this paper we intend to approach the study of q
nionic projective representations of finite groups. Toward this goal we recall in Sec. II s
results on the quaternionic irreducible~vector! representations (Q irreps! and then examine som
different proposals of extension of ray representations to the quaternionic case.

In Sec. III we state a one-to-one correspondence between the so-calledcentral projectiveQ
representations and the complex ones; by the way, a new class of noncentralC-irreducible ray
representations@which does not obey the multiplication law~2!# is introduced. In Sec. IV we recal
some classical results on the complex projective representations, which allow us to link, ag
a one-to-one correspondence, the above representations of a finite groupG with the vector rep-
resentations of suitable extensions ofG. Moreover, a theorem is proven which directly generaliz
to Qn spaces some of the aforementioned results.

Finally, in Sec. V a definition of equivalence of projective representations is proposed.

a!Electronic mail: Scolarici@le.infn.it
b!Electronic mail: Solombrino@le.infn.it
83310022-2488/2000/41(12)/8331/8/$17.00 © 2000 American Institute of Physics
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II. VECTOR AND RAY REPRESENTATIONS

First of all, we recall here some basic notations and previous results.
A quaternion is usually expressed as

q5q01q1i 1q2 j 1q3k,

whereqiPR ( i 50,1,2,3), i 25 j 25k2521, i j 52 j i 5k.
The quaternion skew-fieldQ is an associative algebra of rank 4 overR, noncommutative, and

endowed with an involutory antiautomorphism~conjugation! such that

q→qQ5q02q1i 2q2 j 2q3k.

The notion of norm follows at once:

uqu5AqqQ5~q0
21q1

21q2
21q3

2!1/2.

If we consider a rightn-dimensional vector spaceQn over Q, every linear operator is asso
ciated in a standard way to ann3n matrix acting on the left.2 In analogy with the case of comple
group representations, one can introduce the concepts of unitarity, hermiticity, and so on;
over, if G is a finite ~or a compact! group, reducibility implies complete reducibility even in th
case of unitaryQ-representationsU(G), and everyQ representation is equivalent to a unita
one.3–6

We have shown elsewhere6 that all theQ irreps of a finite~or compact! groupG fall into three
classes:potentially real or of type R, i.e., a basis exists in which it is real,potentially complex or
of type C, i.e., a basis exists in which it has a complex but never real form,(purely) quaternionic
or of type Q, i.e., in no basis it has a complex form~‘‘ generalized Frobenius–Schur, or FS,
classification’’ !. Indeed, they canall be obtained from the irreducible complex group represen
tions (C irreps!, in the sense that anyC irrep of class11 or 0 ~according to the FS classificatio
of complex representations!7 is itself aQ irrep of typeR or C, respectively, while it reduces~by
themain reduction theorem4! to two equivalentQ irreps of typeQ when it is of class21, and no
further Q irrep exists in addition to the ones generated~in the above sense! by theC irreps.

Finally, we recall that a generalized Schur’s Lemma1,8 holds forQ irreps, which asserts tha
any linear operator commuting with a givenQ-irrep U has the formT5q1, whereqPR,C,Q
whenU is of typeQ,C,R, respectively~in the last cases the form ofT refers to the basis in which
U has a complex or a real form, respectively!.

Taking up again the projective representations, in QQM the composition rule given in E~2!
can be generalized in order to define a quaternionic projective representation~or Q-ray represen-
tation! as follows:

UaUbu f &5Uabu f &v~ f ;b,a!, v~ f ;b,a!PQ,uv~ f ;b,a!u51. ~3!

In analogy with the complex case, we say that thev’s are afactor set~or factor system!7 of
the representationU. Furthermore, we can require that the multiplication law ofU ’s obeys Eq.~2!
on all states in the Hilbert space~strongprojective representation!, or on a complete set of fixed
states$u f &% ~weakprojective representations!.9 The latter, weakened condition~in contrast to the
former! allows one to embed into a quaternionic Hilbert space a nontrivial complex proje
representation, realized on a complex Hilbert space.

A complete classification of the irreducible projective quaternionic representations of
nected groups was given by Tao and Millard in theirstructure Theorem;10 moreover, in the same
paper, it was proven that in a complex Hilbert space the weak definition of projective repr
tations implies the stronger above condition, so that we can assume it as a starting point
study without any trouble.

Weak projective representations are determined by the choice of the complete set of
normal states$u f &% and by the set of quaternionic phasesv( f ;b,a).
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Equivalently, by defining a left-acting operatorV(b,a),1

V~b,a!5(
f

u f &v~ f ;b,a!^ f u ~4!

@note thatV(b,a) does not depend on the labelf ], the multiplication law for projective repre
sentations reads as follows:

UaUb5UabV~a,b!. ~5!

By an abuse of language, we will again call the operatorsV(b,a) a factor setof U; these
operators are quaternion unitary, and satisfy a nontrivial condition which arises from the as
tivity of multiplication of theU ’s:11

V~c,ba!V~b,a!5V~cb,a!Ua
21V~c,b!Ua . ~6!

A Q-ray representation is said to bemulticentral1 if

@V~b,a!,Ua#5@V~b,a!,Ub#50 for all a,b, ~7!

while it is said to becentral1 if

@V~b,a!,Uc#50 for all a,b,c. ~8!

~Note that wheneverG is a connected group, multicentrality of theQ-ray representation implies
centrality.!10

In this case, Eq.~6! reduces to the more familiar form

V~c,ba!V~b,a!5V~cb,a!V~c,b!, ~9!

and the~operator-valued! functionV mapsG3G into Z̃(U) @whereZ̃(U) is the commutant ofU,
i.e., the set of invertible operators inQn commuting withU].

III. IRREDUCIBLE CENTRAL PROJECTIVE REPRESENTATIONS

Let U andU8 be projective representations of a groupG on aQn space. We say thatU and
U8 aresimilar if a linear transformationS exists such that

Ua5S21Ua8S, ;aPG. ~10!

U is said to beirreducible if no similarity transformation exists such that

S21UaS5S Aa Ba

0 Ca
D , ;aPG ~11!

~i.e., no partition of the basis elements into two sub-bases exists with respect to which a
operatorsUa are block diagonal; equivalently, the spaceQn has no proper subspace invaria
under allUa ,aPG). Moreover, any reducible representation can easily be expressed as th
of irreducible representations.

We can obtain a threefold partition of the projectiveQ representations by considering tho
which are real in some basis~and we say, by an abuse of language, that they are of typeR), the
representations which have a complex~but never real! form in some basis~type C) and, finally,
those which have in every basis a quaternionic form~type Q).

Now, some remarks are in order about the phases of these representations, limiting ou
to consider the central ones. To analyze the implications of the centrality assumption, we
resort to the quaternionic generalization of Schur’s Lemma, and to the unitarity of theV operators.
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If the representation$Uc% is of typeR ~that is, a basis exists in which the representation
a real form!, we necessarily have in the same basis~hence, in every basis!

V~b,a!5~21!nb,a1 ~nb,aPN! ;b,aPG, ~12!

because@V,Uc#50 and UaUb5UabV(a,b), where Ua ,Ub and Uab are real matrices;a,b
PG.

Analogously, if$Uc% is of typeQ we obtain again, in all bases, that Eq.~12! holds.
Finally, if $Uc% is of typeC, in the basis in which$Uc% has a complex form, we must hav

V~b,a!5eiq(b,a)1. ~13!

Hence, the only central representations with a set of nonreal phases are the representa
type C.

With respect to the explicit form of these representations, some preliminary remarks h
be made. First, it must be stressed that Schur’s Lemma and its quaternionic generalization a
hold for any irreducible set of unitary operators, as one can see by direct inspection of a st
proof ~see, for instance, Ref. 1!. Moreover, we note that the main reduction theorem4 cited
previously~see Sec. II! applies both to vector and to ray representations, because the multi
tion law is never used in its proof. Then, one can easily prove that ‘‘a C-irreducible projective
representation is Q-reducible if and only if it is similar to its complex conjugate by an antisy
metric matrix, and in this case reduces to the sum of two similar Q-irreducible projective repre-
sentations of type Q. ’’

This implies that aC-irreducible ray representation of a groupG itself constitutes a
Q-irreducible ray representation ofG of type R or C, or generates aQ-irreducible ray represen
tation of typeQ @note that whenever aC-ray representationU is similar to its complex conjugate
one can easily prove, recalling Eq.~2! and using the similarity betweenU andU* , that its factor
set is necessarily real, i.e.,v(a,b)561].

On the other hand, letU5U (a)1 jU (b) be a representation of typeQ @U (a) and U (b) are
complex matrices# and consider the representation 2U; if we perform the similarity transformation

1

2 S 1 2 i1

2 j 1 k1 D S U (a)1 jU (b) 0

0 U (a)1 jU (b)D S 1 j 1

i1 2k1D 5S U (a) 2U (b)*

U (b) U (a)* D , ~14!

we obtain a complex projective representation which is equivalent to its complex conjugate
antisymmetric matrix:

S 0 1

21 0D S U (a) 2U (b)*

U (b) U (a)* D S 0 21

1 0 D 5S U (a)* 2U (b)

U (b)* U (a) D .

One can easily verify that the complex commutant of such representation consists
complex multiples of the identity, therefore, by the corollary of Schur’s Lemma forC-irreducible
representations, this representation is irreducible on aCn space. WheneverU is central, then its
factor set is real, and the same obviously happens for theC-ray representation generated byU,
coherently with the above-mentioned remark.

Thus, we have proved thatthe Q-irreducible ray representations of a finite (or, at the mo
compact) group G are in a one-to-one correspondence with the C-irreducible ray representations
of the same group, and can all be deduced from these ones according to the generalization
main reduction theorem.

Remark:Let us consider a noncentralQ-ray representationU of type Q with a factor set
V(a,b) ~e.g., the multicentral representation studied in Ref. 10!, and perform the same calcula
tions as in Eq.~14!. Then, we build up aC-irreducible representationŨ, which, however, does no
obey the multiplication law~2! more. Indeed, denoting byV5V (a)1 j V (b) the symplectic de-
composition ofV, we obtain
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ŨaŨb5ŨabṼ~a,b!, ~15!

where

Ṽ~a,b!5S V (a)~a,b! 2V (b)* ~a,b!

V (b)~a,b! V (a)* ~a,b!
D .

Moreover, letU be any~multidimensional! complex, vector representation of a groupG;
denoting by (61,a)[a6 the elements ofZ23G, the mapping:

Ũ~a1!5U~a!,

Ũ~a2!51,

defines a ‘‘projective’’ representation ofZ23G, obeying again Eq.~15!, where now

Ṽ~a1 ,b1!51,Ṽ~a2 ,b2!5U~b21a21!, Ṽ~a1 ,b2!5Ṽ~b2 ,a1!5U~a!.

Hence, these remarks suggest that one take into account a new class of~noncentral! complex
ray representations, whose multiplication law~15! mimics the general definition~5! introduced for
the Q-ray representations; of course, these representations cannot be associated with ray
tries, so that they are~seemingly! physically meaningless.

IV. PROJECTIVE REPRESENTATIONS AND CENTRAL EXTENSIONS

The final step of our research, i.e., the search ofall the projective representations of finit
groups has been completely solved in the complex case,7,11 by resorting to the concept of centra
extension.

We recall that a groupH is called anextensionof a groupG by a groupN if N is a normal
subgroup ofH and the factor groupH/N is isomorphic toG.

Furthermore, supposeH is a group,N belongs to the centerZ(H) of H, andG>H/N. Then,
H is a central extensionof G with kernelN.

In this context, the following theorem allows one to obtain the complex projective repre
tations ofG from the complex vector representations of a suitable central extensionH of G.

Theorem 1 „Ref. 12…: Let H be a central extension of G with kernel N, and if w:G→H/N is
an isomorphism letw(a)5haN,haPH. Then:

(i) hahb5haba(a,b), for somea(a,b)PN.
(ii) If U v is a vector irreducible representation

Uv :H→GL~V!,

where V is a vector space over an algebraically closed fieldf, then Uv(a(a,b))5v(a,b)1 for
somev(a,b)Pf2$0%, and the mapping U:G→GL(V) defined by

Ua5Uv~ha!

is a projective representation of G~lifted to H) with factor setv.
The converse is also true:
Theorem 2 „Ref. 12…: Let G be a finite group, f an algebraically closed field, M the Schur

multiplier of G. Then there is a central extension H of G with kernel M, such that every
projective representation of G is equivalent to one lifted to H.

So, the complex vector representations~which can always be assumed to be all known! of
suitable extensionsH of G are in a one-to-one correspondence with the complex projec
representations ofG, which in turn, on the basis of the results of Sec. III, are in a one-to-
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correspondence with the quaternionic projective representations ofG. Thus, we can affirm tha
also in the quaternionic case the problem of finding all the ray representations of a groupG is
completely solved.

However, we can prove the following theorem, which directly links, in the quaternionic c
the vector representations ofH and the ray representations ofG, generalizing to some extent t
our case the contents of Theorem 1 of this paper.

Theorem 3: Let H be a central extension of G with kernel N, and if w:G→H/N is an
isomorphism letw(a)5haN,haPH. Then:

(i) hahb5haba(a,b), for somea(a,b)PN.
(ii) If U v is a Q irrep of H, then (in a suitable basis) Uv(a(a,b))5v(a,b)1, for some

v(a,b)PC2$0%, and the mapping defined by

Ua5Uv~ha!

is a central projective quaternionic representation of G~lifted to H) with factor setv, which is
irreducible or decomposes in two similar irreducible Q representations of type Q.

Proof: haNhbN5w(a)w(b)5w(ab)5habN, so that condition~i! holds.
Moreover, since eacha(a,b) belongs toZ(H), the generalized corollary of Schur’s Lemm

implies:

~1! if Uv(H) is of typeR, thenUv(a(a,b))561, ;a,bPG,
~2! if Uv(H) is of typeQ, thenUv(a(a,b))561, ;a,bPG,
~3! if Uv(H) is of typeC, thenUv(a(a,b))5eiq(a,b)1, ;a,bPG ~in the basis in whichUv has

a complex form!.

Furthermore, we have

UaUb5Uv~ha!Uv~hb!5Uv~hahb!5Uv~hab!Uv~a~a,b!!5Uabv~a,b!,

that isU is a central projective representation ofG.
Finally, we inquire about the irreducibility ofU. We note that for every elementhPH we can

poseh5han, nPN. Then

Uv~h!5Uv~ha!Uv~n!5U~a!Uv~n!

and by the previous results, ifUv(H) is of typeR or Q we see that the elements ofU(G) can
differ at most by a sign from the ones ofUv(H), so that the irreducibility of the latter implies th
irreducibility of the former representation.

On the other hand, ifUv(H) is of typeC, we obtain analogously

U~a!5e2 iaUv~h!, aPR

and becauseU and Uv obviously admit the same complex commutant,U(G) is C irreducible.
Then, recalling the main reduction theorem, the last proposition of our statement follows at

Q.E.D.

V. EQUIVALENCE OF CENTRAL QUATERNIONIC PROJECTIVE REPRESENTATIONS

In this section we investigate the concept of equivalence between central projective rep
tation ~this concept includes, as a particular case, the concept of similarity between proj
representations, introduced in Sec. III!. To this aim we prove the following theorem.

Theorem 4: Let Ua8 be a central projective representation of a group G, with factor set

V8(a,b); then, if g:G→Z(Z̃(U8)) @i.e., g(a) belongs to the center of the commutant Z˜ (U8) of
U8] and S is an arbitrary similarity transformation,

Ua5S21g~a!Ua8S, ;aPG ~16!
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is a central projective representation of G with factor set given by

V~a,b!5S21V8~a,b!g~a!g~b!g~ab!21S. ~17!

Proof: By Eq. ~16! we have

UaUb5S21g~a!Ua8SS21g~b!Ub8S

5S21g~a!Ua8g~b!Ub8S

5S21Ua8Ub8g~a!g~b!S

5S21Uab8 V8~a,b!g~a!g~b!S

5UabS
21g~ab!21V8~a,b!g~a!g~b!S5UabV~a,b!, ~18!

where

V~a,b!5S21g~ab!21V8~a,b!g~a!g~b!S. ~19!

Now, recalling the definition ofg, the following relation holds:

@V8~a,b!,g~c!#50, ;a,b,cPG

and Eq.~19! becomes

V~a,b!5S21V8~a,b!g~a!g~b!g~ab!21S.

We finally prove that theV’s given in Eq.~19! form a factor set forU, that is, they satisfy
conditions~8! and ~9!. Indeed, we have

V~a,bc!5S21V8~a,bc!g~a!g~bc!g~abc!21S,

V~b,c!5S21V8~b,c!g~b!g~c!g~bc!21S,

V~a,b!5S21V8~a,b!g~a!g~b!g~ab!21S,

and

V~ab,c!5S21V8~ab,c!g~ab!g~c!g~abc!21S,

so one easily verifies that theV’s satisfy Eq.~9! if the V8’s do. Moreover, using again Eq.~16!
and the commutativity between allg’s andU8’s,

V~a,b!Uc5S21V8~a,b!Uc8g~a!g~b!g~ab!21g~c!S,

UcV~a,b!5S21Uc8V8~a,b!g~a!g~b!g~ab!21g~c!S,

i.e., U is central if and only ifU8 is, and the theorem is proved. Q.E.D
Whenever condition~16! holds, we say thatthe ray representations U and U8 are equivalent.
Analogously, whenever condition~17! holds, we say thatthe factor setsV,V8 of a group G

are equivalent.
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Kähler potential of moduli space of Calabi–Yau d-fold
embedded in CPd¿1

Katsuyuki Sugiyamaa)

Department of Fundamental Sciences, Faculty of Integrated Human Studies,
Kyoto University, Yoshida-Nihon-Matsu cho, Sakyo-ku, Kyoto 606-8501, Japan

~Received 3 April 2000; accepted for publication 7 August 2000!

We study a Ka¨hler potentialK of a one parameter family of a Calabi–Yaud-fold
embedded inCPd11. By comparing results of the topological B-model and the data
of the conformal field theory~CFT! calculation at a Gepner point, theK is deter-
mined unambiguously. It has a moduli parameterc that describes a deformation of
the CFT by a marginal operator. Also, a metric, a curvature and Hermitian two-
point functions in the neighborhood of the Gepner point are analyzed. We use a
recipe of thett* fusion and develop a method to determine theK from the point of
view of the topological sigma model. It is not restricted to this specific family of the
d-fold and can be applied to other Calabi–Yau cases. ©2000 American Institute
of Physics.@S0022-2488~00!00812-4#

I. INTRODUCTION

D-branes play important roles to describe the solitonic modes in string theories and
make clear dynamics in strong coupling regions. The physical observables ofD-brane’s effective
theories have dependences on moduli of compactified strings or wrappedD-branes. We expec
that properties of compactified internal spaces essentially control nonperturbative effects
energy theories. In this article, we focus on the superstring compactified on a Calabi–Yau
fold and study its topological sector from the point of view of a topological sigma mo
~B-model!1 to investigate properties of the moduli space.

When one considers correlation functions of anN52 nonlinear sigma model with a Calabi
Yau target space, they depend not only on the moduli space of the Riemann surface, but
the properties of the target Calabi–Yau manifold~especially on the Calabi–Yau moduli space!.
By twisting theN52 nonlinear sigma model, one can obtain two topological field theories~the
A-model and the B-model!,1 which describe two distinct Calabi–Yau moduli spaces~a Kähler
structure moduli space and a complex structure moduli space, respectively!.2,3

Because both the A- and B-models are topological theories, they are characterized b
two- and three-point functions that play important roles as the constituent elements in
models.4–10 Topological metrics are two-point functions and receive no quantum corrections
the other hand, the three-point functions of the A-model have information about the fusion
ture of observables. The remaining fundamental elements are a Ka¨hler potentialK and associated
Hermitian two-point functions. They are Hermitian and describe correlations of topologica
antitopological sectors.11,12,9 Also theK has information about intersections of homology cyc
with d ~or even! dimension~s! in the B- ~A-! models.

In this article, we take a genus zero Riemann surface as a world sheet and consider a~com-
plex! d-dimensional Calabi–Yau target spaceM realized as a hypersurface embedded in a p
jective spaceCPd11 and its mirrorW. We investigate a Ka¨hler potential of the B-model modul
space associated with theW from the point of view of the topological sigma model together w
results by a CFT~conformal field theory! at a Gepner point.

The aim of this article is to develop a concrete method to construct the Ka¨hler potential of the

a!Electronic mail: sugiyama@phys.h.kyoto-u.ac.jp
83390022-2488/2000/41(12)/8339/10/$17.00 © 2000 American Institute of Physics
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complex moduli space of theW and to investigate their properties in order to understand
structure of the moduli space in the B-model. We present a formula of the Ka¨hler potential for the
d-dimensional Calabi–Yau case explicitly and investigate a metric and a curvature of the m
space as mathematical physics applications. Also we propose a set of equations to obtain
ian two-point functions that contain the metric and the scalar curvature.

II. CALABI–YAU d-FOLD

We concentrate on a one-parameter family of a Calabi–Yaud-fold M realized as a zero locu
of a hypersurface in a projective spaceCPd11,

M ;p5X1
d121X2

d121¯1Xd12
d122~d12!c~X1X2¯Xd12!50 in CPd11,

as a target space in theN52 nonlinear sigma model. Hodge numbershp,q of this d-fold are
calculated as,13

hp,q5dp,q ~0<p<d, 0<q<d, p1qÞd!,

hd2p,p5d2p,d1(
i 50

p

~21! i S d12
i D •S ~p112 i !~d11!1p

d11 D ~0<p<d!.

A mirror manifoldW paired with thisM is constructed as an orbifold divided by some maxima
invariant discrete groupG5(ZN) ^ (N21),

W;$p50%/G,

where we introduced a numberN5d12. This discrete group acts on a set of coordina
(X1 ,X2 ,...,Xd11 ,Xd12) as

~aa1X1 ,aa2X2 ,...,aad11Xd11 ,aad12Xd12! with aªexpS 2p i

N D ,

~a1 ,a2 ,a3 ,...,ad ,ad11 ,ad12!55
~1,0,0,...,0,0,N21!,
~0,1,0,...,0,0,N21!,
~0,0,1,...,0,0,N21!,

...
~0,0,0,...,1,0,N21!,
~0,0,0,...,0,1,N21!.

Hodge numbershp,q of this d-fold W are calculated as13

hp,q5dp1q,d ~0<p<d,0<q<d,pÞq!,

hp,p5d2p,d1 (
m50

p

~21!mS d12
m D •S ~p112m!~d11!1p

d11 D .

When one thinks about the Hodge structure of theG-invariant parts of the cohomology grou
Hd(W), their Hodge numbers are written as

hd,05hd21,15¯5h1,d215hd,051,

and a deformation of a complex structure of theW is parametrized by a complex parameterc.
In order to describe the complex structure moduli space near a Gepner point (c;0), we use

a basis of periodsÃ̃k (1<k<N21),
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Ã̃k~c!5FGS k

ND GN ~Nc!k

G~k!
•Gk~c!,

Gkª11 (
n51

` FG~k/N 1n!

G~k/N! GN G~k!

G~Nn1k!
~Nc!Nn.

We can evaluate their behaviors aroundc;0:

Ã̃k~c!5FGS k

ND GN ~Nc!k

G~k!
•@11O~cN!#.

This is a set of projective coordinates of the B-model moduli space associated with theW. Also,
we use a canonical basis$Ãk

(0)% of the coordinates at the Gepner point defined as

Ã̃k5Ãk
(0)
•FGS k

ND GN

,

and take ratios to construct a set of normalized coordinates$vk21%

vk21ªÃk
(0)/Ã1

(0)5
~Nc!k21

~k21!!
•

Gk

G1
~k51,2,...,N21!.

TheG-invariant part ofHd(W) is associated to the complex structure deformation operator an
powers. The associated operators in the B-model are represented as

O (k)
ª~X1X2¯XN!k ~k50,1,2,...,N22!.

EachO (k) is related to a canonical periodvk . Also, a couplingc̃ªNc is associated with an
operatorO (1)5X1X2¯XN . When we choose a canonical set of periods, these operator
normalized appropriately and fusion couplingsk l are evaluated atc50:

vW ª t~v0v1¯vN22!,

KªS 0 k0

0 k1

0 k2

� �

0 kd21

0 0 0 ¯ 0 0

D ,

]c̃vW 5KvW , ↔O (1)
•O (l)5k lO (l11) ~ l50,1,...,d21!,

k051, k15]v1511O~cN!,

k l5]
1

k l21
]

1

k l22
]¯]

1

k0
]v l511O~cN!, ~ l>2!.

When one uses this canonical set of periods, the three-point couplings are normalized to u
to terms with the orderO(cN).
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III. KÄHLER POTENTIAL

Next let us consider a Ka¨hler potentialK of the moduli space.e2K is constructed by com-

bining a holomorphicd-form V and an antiholomorphic formV̄ quadratically;

e2K5E
W

V̄`V.

The V and V̄ are decomposed by a basis of~real! cohomology elementsâmPHd(W) and their
coefficients are realized as periods

V5 (
m51

N21

Ã̃mâm , V̄5 (
m51

N21

Ã̃m
† âm ,

e2K5E
W

V̄`V5 (
m,n51

N21

I m,nÃ̃m
† Ã̃n ,

I m,n5E
W

âm`ân .

Then we can understand that a matrixI 5$I m,n% which combines the periods and their compl
conjugates is an intersection matrix of the associated cycles. That is, the matrixI 5$I m,n% is
determined by properties of intersection numbers of associated homology cycles and do
change under any infinitesimal deformations of any continuous moduli parameters. TheI m,n’s
cannot depend on any moduli parameters and turn out to be constant numbers.

Now we take the matrixI in a diagonal form as an ansatz:

e2K5 (
k51

N21

I kÃ̃k
†Ã̃k . ~1!

In the next section, we will analyze~normalized! Hermitian two-point functionŝ O (m)uO (n)&
based on a method of thett* fusion. In our Calabi–Yau model, the fusion couplings of operat
are classified in the A-type. In the CFT analysis, it is known that only nonvanishing compo
of the Hermitian two-point functions in this case are diagonal parts^O (m)uO (m)&. For the quintic
case, associated Hermitian two-point functions are calculated concretely in Ref. 3, but th
mitian two-point functions in the quintic could not be reproduced correctly unless theI has a
diagonal form given as Eq.~1!.

Next we shall see actions of monodromy transformations one2K in Eq. ~1!. Information about
a global structure of the moduli space is encoded in monodromies and it is important t
properties of theK under the global monodromy transformations. Our basis$Ã̃k% diagonalizes a
cyclic ZN monodromyc→ac (a5e2p i /N) aroundc50,

Ã̃k~ac!5akÃ̃k~c! ~k51,2,...,N21!,

a5e2p i /N,

but the coefficientsI m,n are constants and do not transform. In our case,e2K in Eq. ~1! is invariant
under theZN transformation. Then the above physical normalized Hermitian two-point funct
^O (m)uO (m)& turn out to be invariant under this monodromy transformation. It is desirable bec
the normalized correlatorŝO (m)uO (m)& are physical quantities and should not depend on
monodromies. These are reasons why we take the ansatz on theI as Eq.~1!.

In the next section, we will explain how to determine the diagonal componentsI k .
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IV. DETERMINATION OF Ik

In order to determine the Ka¨hler potential, all we have to do is to fix the diagonal matrixI . We
use a method of thett* fusion in fixing the componentsI k (k51,2,...,N21) of the I . First note
that a moduli space metricgc̃cD is defined by using the Ka¨hler potentialK,

]]̄K5gc̃cD , ]5
]

]c̃
, ]̄5

]

]cD
.

When we introduce a set of Hermitian two-point functions in the B-model associated with tW

^Ō(l) uO (l)&5eql ~0< l<N22!, ~2!

the Kähler potential and the Zamolodchikov metricgc̃cD are expressed as

eq0
ªe2K, gc̃cDªeq12q0,

2]]̄q05eq12q0. ~3!

The equation~3! is a part of thett* -fusion equation11,9 of the Calabi–Yaud-fold with the fusion
couplingskn ,

]]̄q01uk0u2eq12q050,

]]̄ql1uk lu2eql112ql2uk l21u2eql2ql2150 ~1< l<d21!, ~4!

]]̄qd2ukd21u2eqd2qd2150.

This set of equations~4! represents anAd-type Toda system. By introducing new variablesq̃l ,

q̃05q0 ,

q̃l5ql1 (
n50

l21

log uknu2 ~1< l<d!,

and noting relations]]̄q̃l5]]̄ql , we can reexpress the Toda system into a formula

U0ªDq̃05D logF11 (
l52

N21
I l

I 1
U Ã̃ l

Ã̃1
U2G ,

U l5~ l11!U01 (
n50

l21

~ l2n!D log~2Un! ~1< l<d21!, ~5!

Ud50.

Here we introduced several notations

Unª (
m50

n

Dq̃m ~1<n<d!,

Dª]]̄.

Also theUn’s are related to theqm’s as
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uknu2
•eqn112qn52Un ~0<n<d21!. ~6!

The number of diagonal componentsI k in the Kähler potential is (d11), and the above Toda
system with (d11) equations gives us consistency conditions on theI k’s. Now recall that the
components of the matrixI are numerical constants. We may truncate terms of the periodsÃ̃k in
the series expansions up to the orderO(cN) for the purpose of the determination of theI :

Ã̃k~c!5 f k•~Nc!k@11O~cN!# ~k51,2,...,N21!,

U05D logF11 (
l52

N21

al~ c̃cD ! l211¯G , ~7!

f kªFGS k

ND GN 1

G~k!
, anª

I n

I 1
U f n

f 1
U2

.

We calculate theUn concretely forn<10 cases, and propose a conjecture for the$Un% ’s at the
Gepner pointc50:

U05a2 , Ud50,

Un5~n11!2
an12

an11
~1<n<d21!.

When we use definitions of thean and thef n , theUn’s are expressed as

U05a25
I 2

I 1
FG~2/N!

G~1/N!G
2N

,

Un5~n11!2
an12

an11
5

I n12

I n11
FG~~n12!/N!

G~~n11!/N!G
2N

~1<n<d21!.

Also we can obtain expressions of Hermitian two-point functions by remarking that the three
couplings become constantskn51 (n50,1,...,d21) at thec50:

eqn112qn52
I n12

I n11
FG~~n12!/N!

G~~n11!/N!G
2N

~0<n<d21!.

Equivalently, normalized two-point functions are represented as

^Ō(m)uO (m)&

^Ō(0)uO (0)&
5eqm2q05~21!m

•

I m11

I 1
FG~~m11!/N!

G~1/N!
G 2N

~0<m<d!. ~8!

Now let us compare these results with those in the CFT calculations12,11 for a Gepner model
associated with thed-fold W:

eqn5
1

NN F G~~n11!/N!

G~12 ~n11!/N!G
N

~n50,1,2,...,N22!,

~9!

→eqn2q05FG~~n11!/N!G~12 1/N!

G~1/N!G~12 ~n11!/N!G
N

.

By comparing two results, Eqs.~8! and~9!, we can determine the components of the matrixI up
to one numerical constantc:
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I m5c•~21!mS sin
pm

N D N

~m51,2,...,N21!.

In this case, thee2K in Eq. ~1! is given as

e2K5 (
m51

N21

c•~21!mpNF G~m/N!

G~12 m/N!G
N

3
~N2cc̄!m

@G~m!#2 •uGm~c!u2.

Because the Ka¨hler potential is not a function but a section of a line bundle, there is an arbit
ness in multiplying arbitrary~anti-!holomorphic functions to thee2K. We choose the normaliza
tion constantc as

c5
21

pN
•NN12 .

Then the Ka¨hler potential is written as

e2K5~cc̄!• (
m51

N21

~21!m21F 1

N

G~m/N!

G~12 m/N!G
N ~N2cc̄!m21

@G~m!#2 uGm~c!u2. ~10!

In order to confirm the validity of this convention, we restrict ourselves to the three-foldN
55) case and consider a three-point functionk of the operatorO (1) in the B-model:

kªkccc5^O (1)O (1)O (1)&5
1

53 •
5c2

12c5 . ~11!

@In considering thett* equation, we used normalized periodsvk by taking ratios. In that case, th
e2K in Eq. ~10! and the three-point functionuku in Eq. ~11! are divided by a factor;ucu2.# This
coupling k is a section of a holomorphic line bundle and changes with a normalization o
Kähler potential. However, there is an invariant three-point coupling

~gcc̄!23/2
•eK

•uku,

and its value is evaluated at thec50 in our normalization:

~gcc̄!23/2
•eK

•uku5F GS 3

5D
GS 2

5D G
15/2

•F GS 1

5D
GS 4

5D G
5/2

51.555 318 989 963 238 9725... .

This result coincides with that of the calculation of the CFT.12,3

In our d-fold case, we can obtain ad-point correlation function of the operatorO (1) in the
B-model. This correlator is a section of a holomorphic line bundle with a weight 2 and is
pressed as

~12!

However, there is an invariantd-point functionk that is constructed by combining the metric, th
K and thekc¯c :

kª~gcc̄!2d/2eKukcc¯cu.
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At the Gepner point~at c50!, we can evaluate this invariant coupling by using Eqs.~10! and~12!
in the sigma model:

k5F G~1/N!

G~12 1/N!G
~1/2! N(d22)FG~12 2/N!

G~2/N! G ~1/2! Nd

3
1

Nd23 .

V. METRIC AND CURVATURE

Now we have an exact formula of theK with a moduli parameterc and can evaluate the
corrections in the physical observables by a marginal deformation of the CFT. For simplicit
will consider leading corrections to the Ka¨hler potential, the metric and the scalar curvature in
moduli space. When we define a set of constantsAm as

Am5~2N2!m21
•

1

@G~m!#2 F 1

N

G~m/N!

G~12 m/N!G
N

~1<m<N21!,

we can obtain formulas of them:

Am

An
5~2N2!m2nS G~n!

G~m! D
2FG~m/N!G~12 n/N!

G~12 m/N!G~n/N!G
N

~m,n<N21!,

e2K5F 1

N

G~1/N!

G~12 1/N!G
N

•~cc̄!3F12N2
•FG~2/N!G~12 1/N!

G~12 2/N!G~1/N!G
N

~cc̄!1¯G ~n>3!,

gcc̄5N2
•FG~2/N!G~12 1/N!

G~12 2/N!G~1/N!G
N

1~cc̄!F2•S A2

A1
D 2

24S A3

A1
D G1¯ ~N>4!,

R52412•F G~1/N!G~3/N!

G~12 1/N!G~12 3/N!G
NFG~12 2/N!

G~2/N! G2N

1~cc̄!F24S A3

A2
D296S A1

A2
D S A3

A2
D 2

172S A1

A2
D S A4

A2
D G1¯ ~N>5!.

The Ricci tensor of the moduli space is represented asRcc̄5 1
2gcc̄R. For the torus (N53) case, its

metric is a standard one of the upper half-plane and the scalar curvature is a constantR524
except for pointsc5e2p i l/3 ( l50,1,2). Also the metric of theK3 (N54) moduli space is given
by the above formula and an associated scalar curvature is a negative constant numberR522
except forc5ep i l/2 ( l50,1,2,3). We plot this scalar curvature at thec50 for lower dimensions
in Fig. 1. It increases monotonically with the dimensiond, but the derivative with respect to]c]c̄

is negative forN>11 cases at thec50, as shown in Fig. 2.
Let us return to the Hermitian two-point functions. They are represented as some com

tions of theseK, gcc̄ and R. We can obtain these correlators by using Eg.~6! and a set of
equations, Eqs.~5!,

eq̃05e2K, eq̃12q̃05
1

N2 gcc̄ , eq̃22q̃15
1

N2 gcc̄S R

2
12D ,

eq̃32q̃25
1

N2 gcc̄F3S R

2
11D2gcc̄]c]̄ c̄ logS R

2
12D G ,
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eq̃42q̃35
1

N2 gcc̄F413R22gcc̄]c]̄ c̄ logS R

2
12D

2gcc̄]c]̄ c̄ logF3S R

2
11D2gcc̄]c]̄ c̄ logS R

2
12D G G ,

¯ .

Now we know the formulas of theK, R, andgcc̄ and can evaluate moduli dependences of th
correlators.

VI. CONCLUSION

In this article we develop a method to determine the Ka¨hler potential unambiguously by
comparing the result in the CFT with that in the topological sigma model. We calculate the m
and the curvature in the neighborhood of the Gepner point, which have dependences of a

FIG. 1. Leading partR0 of Scalar CurvatureR. This part depends on the dimensiond for the Calabi–Yaud-fold. It
increases monotonically with thed. For the torus (N53) andK3 (N54) cases, associated curvatures are negative.
the other cases have positive curvatures at thec50.

FIG. 2. Subleading partR1 of Scalar CurvatureR. This part is a coefficient of thecc̄ in the R and depends on the
dimensiond of the CY d-fold. For the 5<N<10 cases, associated values are positive. But theR1s are negative for the
other casesN>11.
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parameterc. The result represents a marginal deformation of the CFT. However, the formu
the K is exact and we can study it at any point in the whole moduli space by an ana
continuation. The method we developed here is not restricted to the specific model and
applied to any other Calabi–Yau spaces.
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Comment on ‘‘On the energy levels of a finite square-well
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David L. Aronstein and C. R. Stroud, Jr.
The Institute of Optics, University of Rochester, Rochester, New York 14627

~Received 3 July 2000; accepted for publication 11 September 2000!

@S0022-2488~00!02312-4#

In a recent paper, Paul and Nkemzi1 presented an elegant expression for the quantized en
levels of the finite square-well potential, derived using the solution of the Riemann–H
boundary problem from the theory of analytic functions. The authors developed an asym
expansion for the energy levelsE(p, k) in the limit of largep @wherep5A2mV0L/(2\), m is the
particle mass,V0 is the potential depth,L is the length of the finite well, andk is the quantum
number#, and showed that the finite-well energy levels are approximately equal to those
infinitely deep square well of lengthL8.L. In this comment, we correct an error in th
asymptotic expansion@specifically in Ref. 1, Eq.~28!# and point out that the connection betwe
a finite well and a longer infinite well has been noted previously by other researchers.

Paul and Nkemzi calculated@in Ref. 1, Eqs.~25! and ~27!# that in the limit of largep, the
quantized values ofz5 iA(V0 /E)21 take on the asymptotic form

zp,k5p ik~21!kS 1

4p
2

1

3p2 2
2~p11!

p2k2 D1OS 1

p3D . ~1!

The energy levels of the finite square well are given in terms ofzp, k by

E~p, k!5
V0

~12zp,k
2 !

5
2\2p2

mL2~12zp,k
2 !

[
1

C~p, k!

p2\2k2

2mL2 , ~2!

where in the last step we define a correction functionC(p, k) that reconciles the finite square-we
energy levels with those of an infinitely deep well; that is,C(p, k)→1 for all k asp→`. From
Eqs.~1! and ~2! we find that

C~p, k!5~12zp,k
2 !

p2k2

4p2 511
2

p
1

1

p2 1OS 1

p3D , ~3!

where the term (2/p) differs from the results of Paul and Nkemzi. Combining Eqs.~2! and~3!, the
finite square-well energy levels can be written as

E~p, k!5
1

~112p211p22!

p2\2k2

2mL2 1 OS 1

p3D 5
p2

~p11!2

p2\2k2

2mL2 1OS 1

p3D , ~4!

which are equivalent to the levels of an infinite square well of lengthL85L(111/p).
The asymptotic limit of the energy spectrum, Eq.~4!, and its interpretation in terms of th

infinite square-well spectrum were addressed in detail by Barkeret al.2 Calculations of the ‘‘ef-
fective length’’ or ‘‘tunneling length’’ of the finite square-well energy eigenstates beyond the
boundaries atx56L/2 were given by Garrett3 and Rokhsar.4 To our knowledge, the work by Pau
and Nkemzi is the first to derive the finite-well energy levels in an asymptotic expansion in po
of 1/p; however, power series expansions in the quantum numberk have been developed b
83490022-2488/2000/41(12)/8349/2/$17.00 © 2000 American Institute of Physics

                                                                                                                



-
plored

ell:

s.

Phys.

ential,’’

quare-

8350 J. Math. Phys., Vol. 41, No. 12, December 2000 D. L. Aronstein and C. R. Stroud, Jr.

                    
Cantrell,5 Barkeret al.,2 and Sprung, Wu, and Martorell.6 The asymptotic limit also has implica
tions for the behavior of wavepacket states excited in finite potential wells that have been ex
by Aronstein and Stroud7 and by Venugopalan and Agarwal.8

1P. Paul and D. Nkemzi, ‘‘On the energy levels of a finite square-well potential,’’ J. Math. Phys.41, 4551–4555~2000!.
2B. I. Barker, G. H. Rayborn, J. W. Ioup, and G. E. Ioup, ‘‘Approximating the finite square well with an infinite w
Energies and eigenfunctions,’’ Am. J. Phys.59, 1038–1042~1991!.

3S. Garrett, ‘‘Bound state energies of a particle in a finite square well: A simple approximation,’’ Am. J. Phy47,
195–196~1979!.

4D. S. Rokhsar, ‘‘Ehrenfest’s theorem and the particle-in-a-box,’’ Am. J. Phys.64, 1416–1418~1996!.
5C. D. Cantrell, ‘‘Bound-state energies of a particle in a finite square well: An improved graphical solution,’’ Am. J.
39, 107–110~1971!.

6D. W. L. Sprung, H. Wu, and J. Martorell, ‘‘A new look at the square well potential,’’ Eur. J. Phys.13, 21–25~1992!;
D. W. L. Sprung, H. Wu, and J. Martorell, ‘‘Poles, bound states, and resonances illustrated by the square well pot
Am. J. Phys.64, 136–144~1996!.

7D. L. Aronstein and C. R. Stroud, Jr., ‘‘Fractional wave-function revivals in the infinite square well,’’ Phys. Rev. A55,
4526–4537~1997!.

8A. Venugopalan and G. S. Agarwal, ‘‘Superrevivals in the quantum dynamics of a particle confined in a finite s
well potential,’’ Phys. Rev. A59, 1413–1422~1999!.
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Comment on ‘‘Colliding null shells of matter’’
†J. Math. Phys. 33, 1065 „1992…‡

M. Halilsoy
Physics Department, EMU, G. Magosa, Mersin 10, N. Cyprus, Turkey

~Received 20 March 2000; accepted for publication 8 August 2000!

The space–time created by the colliding null shells is combined with the metric of
colliding waves. By this method evolution and collision of waves with exact back-
reaction can be obtained in the de Sitter and Kasner space–times. ©2000 Ameri-
can Institute of Physics.@S0022-2488~00!01811-9#

The head-on collision problem of two null shells with delta function sources was introd
first by Dray and ’t Hooft1,2 ~DtH!. In their solution the two shells passed through each other w
a gravitational tail behind followed by an eventual focusing singularity. Their technique can e
be generalized to more general shells where tail generates the vacuum Kasner family.3 Later on,
another example of the shell collision problem was presented by Wang.4 In the latter case the nul
shells were conformally flat and upon their collision the yield was the well-known de S
space–time. Since these space–times are already expressed in the double null coordinate~Rosen!
system it is natural to consider such space–times within the context of colliding waves. Inter
null shells make useful test grounds for studying exact colliding waves in cosmological
grounds where the backreaction effects are also accounted for. This technique may prove
useful in testing the stability of horizons in the Rosen form against planar perturbations. In c
least a single curvature scalar diverges after introducing the shell~ingoing, outgoing, or both! into
the space–time the horizon becomes unstable and transforms into a true singularity.5 In this
comment we point out that the simple colliding shell problem of Wang~and that of DtH! can be
extended in various ways. As a result, our procedure generates new space–times such as
Penrose–de Sitter, Bell–Szekeres–de Sitter, and so on. The metric considered by Wang4 was

ds25f22~2du dv2dx22dy2!, ~1!

where the conformal factor is

f511auu~u!1bvu~v !

in which ~a,b! are positive constants andu represents the step function.
In this process the nonzero, scale invariant field strengths are

L5
ab

f2 u~u!u~v !, f225
ad~u!

11bvu~v !
, f005

bd~v !

11auu~u!
, ~2!

which also reveal the colliding sources of the problem. The resulting space–time can be ide
through the transformation

11au1bv5el l , au2bv5lz, ~3!

as the de Sitter space–time, wherel5const5A2ab. Consider now a general vacuum collidin
wave metric,6

ds0
252e2Mdu dv2e2U@~eV dx21e2V dy2!coshW22 sinhW dx dy#, ~4!

in which U, M, V, andW are functions of the null coordinates (u,v). Then, the metric obtained b
83510022-2488/2000/41(12)/8351/3/$17.00 © 2000 American Institute of Physics
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ds25
1

f2 ds0
2, ~5!

where the conformal factor is same as in~1! describes the solution of colliding gravity coupled
the shell problem. To admit an alternative interpretation we choose thef function as

f511a~u2u0!u~u2u0!1b~v2v0!u~v2v0!, ~6!

where the constantsu0 andv0 represent the wave fronts of the shells. Obviously these wave fr
are not coincident with the gravitational wave fronts occurring onu505v. This, however, raises
the following question: ‘‘How does the shell cross into the interaction region formed alrea
u505v?’’ We recall that the initial value problem of colliding superposed waves at double fr
~here atu50, u0 from one direction andv50, v0 from the other! still remains an open problem
We circumvent this handicap by interpreting the shells to originate inside the colliding w
space–time. By an unspecified process a left-moving shell may be generated to propagat
interaction region apt to make collision with an opposite one. This is what is implied by c
crossing of an interaction region by a pair of null shells. Anticipating that a singularity will f
on a surface~sayu21v251! we choose our secondary fronts~of the shells! so that the collision
occurs prior to the singularity. This is satisfied by choice, for exampleu0,1/& andv0,1/&.

Justification of the metric~5! follows directly by substituting~all new components are show
by tilde!

Ũ5U12 lnf, M̃5M12 lnf, Ṽ5V, W̃5W, ~7!

into the Ricci components@see Ref. 4 for a list#. Since the combinationU –M remains invariant
we getc̃ i5c i , for all Weyl scalars. Thus, any space that possesses singularity or horizon w
be affected in this process of criss-crossing. The Ricci componentsf i j and scalarL will modify
according to

f̃225
ad~u2u0!

11b~v2v0!u~v2v0!
1

a

f
u~u2u0!Mu ,

f̃005
bd~v2v0!

11a~u2u0!u~u2u0!
1

b

f
u~v2v0!M v ,

f̃115
1

4f
@au~u2u0!Uv1bu~v2v0!Uu#, ~8!

2f̃025
a

f
u~u2u0!@2Vv coshW1 iWv#1

b

f
u~v2v0!@2Vu coshW1 iWu#,

L̃5
ab

f2 u~u2u0!u~v2v0!2
1

4f
@au~u2u0!Uv1bu~v2v0!Uu#,

in which a subscript implies partial derivative. We can choose, for instance, the background
to be the space of colliding impulsive waves~i.e., the Khan–Penrose7 geometry!

ds0
25

2~D3d21!1/4

A12u2A12v2
du dv2ADdS 11t

12t
dx21

12t

11t
dy2D , ~9!

where

t5uA12v21vA12u2, D512t2, d512~uA12v22vA12u2!2.
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In this way for u.u0 ,v.v0 , (Ũ,M̃ ,Ṽ5V,W̃5W50) becomes the Khan–Penrose–de Sit
space–time. This space, however, is doomed to diverge on the singular hypersurfaceu21v251
inherited from the original Khan–Penrose geometry. In the de Sitter coordinates this hypers
reads~for the special casesu05v051/2a51/2b!

1

2a2 e2&at1z251. ~10!

Let us note that we can interchange the order of entering~or intrusion! of the gravitational
waves and null shells into the domain of the other. In other words the impulse waves en~at
u5u0 , v5v0! into the background de Sitter space formed already atu505v. This picture
describes an exact collision of impulsive waves in de Sitter space which includes the backre
effects. With minor changes the same analysis also applies to the electrovacuum spac
colliding electromagnetic waves. By the same token, the metric~without step functions in the
conformal factor!

ds25
1

~11au1bv !2 F2du dv2~11a~u2u0!u~u2u0!!2dx2

2~12a~u2u0!u~u2u0!!2dy2 G ~11!

describes an impulsive gravitational wave in the de Sitter space. Foru,u0 the space is pure de
Sitter with a and b positive constants. Atu5u0 an impulsive wave of Weyl scalarc4

52ad(u2u0), (a5const) enters into the de Sitter space and propagates giving rise to chan
the Ricci components. Automatically a horizon arises at

u5u01
1

a
. ~12!

An opposite impulsive wave onv5v0 enters into the same space and makes a collision w
the first wave. The exact solution is described by a metric~5! in which the order of intrusion mus
be interchanged.

In an analogous manner we can incorporate shells of~DtH! type. For this purpose we subst
tute ~let W50!

M̃5M1M0 , Ũ5U1U0 , Ṽ5V, ~13!

where (M ,U,V) correspond to the vacuum while (M0 ,U0) are the functions of the DtH space
time. We recall that

e2U05 f 1g, e2M0512u~u!u~v !F f ugv

klAf 1g
21G , ~14!

where

f 52
1

2
1S 12

k

2
uu~u! D 2

, g52
1

2
1S 12

l

2
vu~v ! D 2

, ~15!

in which k andl stand for the mass densities of the shells. For this type of shells it is seen
Weyl scalars also undergo changes. This procedure can be generalized to any Kasner cosm
model in which collision of gravitational waves are found with exact backreaction effects.

1T. Dray and G. ’t Hooft, Class. Quantum Grav.3, 825 ~1986!.
2A. H. Taub, J. Math. Phys.29, 2622~1988!.
3M. Halilsoy ~unpublished!.
4A. Wang, J. Math. Phys.33, 1065~1992!.
5Ö. Gürtuǧ and M. Halilsoy~unpublished!.
6P. Szekeres, J. Math. Phys.13, 286 ~1972!.
7K. A. Khan and R. Penrose, Nature~London! 229, 185 ~1971!.
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~Received 7 August 2000; accepted for publication 8 August 2000!
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In Comment on Colliding Null Shells of Matter,1 the author claimed that by the conform
transformations,

ds25f22ds0
2, ~1!

the resultant space–times described byds2 can be interpreted as the superposition of colliding n
shells and colliding~gravitational! waves, whereds0

2 represents the Einstein vacuum solutions a
f the conform factor, given, respectively, by Eqs.~4! and~6! in Ref. 1. As the author showed, th
above-mentioned conformal transformations usually result in a ‘‘matter’’ field with the follow
nonvanishing components:

f̃00, f̃22, f̃11, f̃02, L̃, ~2!

the explicit expressions of which were given by Eq.~8! in Ref. 1.
It should be noted that such a ‘‘matter’’ field is acceptable only if it satisfies some phy

conditions, such as the weak, dominant, and/or strong energy conditions.2 Clearly, the above-given
conformal transformations in general do not guarantee these conditions. It should be also
that the space–times described byds2 andds0

2 have the same singularity behavior only when t
conformal factorf22 and its derivatives exist and are nonsingular. Otherwise, the transforma
can introduce new space–time singularities. These arguments can be equally applied to th
cases considered in Ref. 1.

To get rid of the above-mentioned difficulties, instead of making the conformal transfo
tions, one can try the solutions3

$M ,U,V,W%5$M01Mn ,U0 ,V0 ,W0%, ~3!

where$M0 ,U0 ,V0 ,W0% represents any space–time background,

ds0
252e2M0du dv2e2U0$coshW0eV0dx212 sinhW0 dx dy1coshW0e2V0dy2%, ~4!

andMn is given by

Mn52 ln~f!. ~5!

Then, one can show that the solutions$M, U, V, W% will represent a superposition of the bac
ground and two null dust shells located, respectively, atu5u0 andv5v0 . For details, we refer
readers to Sec. II in Ref. 3. Note that in Ref. 3 only the case whereW50 was considered, but i
is not difficult to show that the conclusions are valid for the caseWÞ0, too.

a!Electronic mail: wang@dft.if.uerj.br
83540022-2488/2000/41(12)/8354/2/$17.00 © 2000 American Institute of Physics
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Another interesting application of Eq.~3! is the case where$M0 ,U0 ,V0 ,W0% represents a
vacuum space–time background, whileMn(u,v) now is due to the presence of a massless sc
field, in whichMn(u,v) is given by Eq.~3.2! in Ref. 4. Such resulting solutions will represent t
superposition of colliding gravitational waves and scalar waves. In this case, the backg
solution$M0 ,U0 ,V0 ,W0% can be further generalized to the electrovacuum case, since the c
bution of the massless scalar field to the metric in the latter case is only restricted to the
coefficientguv , too.5

1M. Halilsoy ~unpublished!.
2S. W. Hawking and G. F. R. Ellis,The Large Scale Structure of Spacetime~Cambridge University Press, Cambridg
1973!.

3P. S. Letelier and A. Z. Wang, Phys. Rev. D49, 5105~1994!; 51, 5968~E! ~1995!.
4A. Z. Wang, Phys. Rev. D48, 2591~1993!.
5J. Wainwright, W. C. W. Ince, and B. J. Marshman, Gen. Relativ. Gravit.10, 259 ~1979!.
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